xref: /linux/mm/page_alloc.c (revision 5d085ad2e68cceec8332b23ea8f630a28b506366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77 #include "page_reporting.h"
78 
79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80 static DEFINE_MUTEX(pcp_batch_high_lock);
81 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
82 
83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84 DEFINE_PER_CPU(int, numa_node);
85 EXPORT_PER_CPU_SYMBOL(numa_node);
86 #endif
87 
88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89 
90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 /*
92  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95  * defined in <linux/topology.h>.
96  */
97 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
98 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99 #endif
100 
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 	struct zone *zone;
104 	struct work_struct work;
105 };
106 static DEFINE_MUTEX(pcpu_drain_mutex);
107 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108 
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113 
114 /*
115  * Array of node states.
116  */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 	[N_POSSIBLE] = NODE_MASK_ALL,
119 	[N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 	[N_MEMORY] = { { [0] = 1UL } },
126 	[N_CPU] = { { [0] = 1UL } },
127 #endif	/* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130 
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135 
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
144 
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
151 
152 static int __init early_init_on_alloc(char *buf)
153 {
154 	int ret;
155 	bool bool_result;
156 
157 	if (!buf)
158 		return -EINVAL;
159 	ret = kstrtobool(buf, &bool_result);
160 	if (bool_result && page_poisoning_enabled())
161 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 	if (bool_result)
163 		static_branch_enable(&init_on_alloc);
164 	else
165 		static_branch_disable(&init_on_alloc);
166 	return ret;
167 }
168 early_param("init_on_alloc", early_init_on_alloc);
169 
170 static int __init early_init_on_free(char *buf)
171 {
172 	int ret;
173 	bool bool_result;
174 
175 	if (!buf)
176 		return -EINVAL;
177 	ret = kstrtobool(buf, &bool_result);
178 	if (bool_result && page_poisoning_enabled())
179 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 	if (bool_result)
181 		static_branch_enable(&init_on_free);
182 	else
183 		static_branch_disable(&init_on_free);
184 	return ret;
185 }
186 early_param("init_on_free", early_init_on_free);
187 
188 /*
189  * A cached value of the page's pageblock's migratetype, used when the page is
190  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192  * Also the migratetype set in the page does not necessarily match the pcplist
193  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194  * other index - this ensures that it will be put on the correct CMA freelist.
195  */
196 static inline int get_pcppage_migratetype(struct page *page)
197 {
198 	return page->index;
199 }
200 
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202 {
203 	page->index = migratetype;
204 }
205 
206 #ifdef CONFIG_PM_SLEEP
207 /*
208  * The following functions are used by the suspend/hibernate code to temporarily
209  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210  * while devices are suspended.  To avoid races with the suspend/hibernate code,
211  * they should always be called with system_transition_mutex held
212  * (gfp_allowed_mask also should only be modified with system_transition_mutex
213  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214  * with that modification).
215  */
216 
217 static gfp_t saved_gfp_mask;
218 
219 void pm_restore_gfp_mask(void)
220 {
221 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 	if (saved_gfp_mask) {
223 		gfp_allowed_mask = saved_gfp_mask;
224 		saved_gfp_mask = 0;
225 	}
226 }
227 
228 void pm_restrict_gfp_mask(void)
229 {
230 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 	WARN_ON(saved_gfp_mask);
232 	saved_gfp_mask = gfp_allowed_mask;
233 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234 }
235 
236 bool pm_suspended_storage(void)
237 {
238 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 		return false;
240 	return true;
241 }
242 #endif /* CONFIG_PM_SLEEP */
243 
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
247 
248 static void __free_pages_ok(struct page *page, unsigned int order);
249 
250 /*
251  * results with 256, 32 in the lowmem_reserve sysctl:
252  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253  *	1G machine -> (16M dma, 784M normal, 224M high)
254  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257  *
258  * TBD: should special case ZONE_DMA32 machines here - in those we normally
259  * don't need any ZONE_NORMAL reservation
260  */
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 	[ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 	[ZONE_DMA32] = 256,
267 #endif
268 	[ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 	[ZONE_HIGHMEM] = 0,
271 #endif
272 	[ZONE_MOVABLE] = 0,
273 };
274 
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 	 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 	 "DMA32",
281 #endif
282 	 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 	 "HighMem",
285 #endif
286 	 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 	 "Device",
289 #endif
290 };
291 
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 	"Unmovable",
294 	"Movable",
295 	"Reclaimable",
296 	"HighAtomic",
297 #ifdef CONFIG_CMA
298 	"CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 	"Isolate",
302 #endif
303 };
304 
305 compound_page_dtor * const compound_page_dtors[] = {
306 	NULL,
307 	free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 	free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 	free_transhuge_page,
313 #endif
314 };
315 
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
319 /*
320  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321  * are not on separate NUMA nodes. Functionally this works but with
322  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323  * quite small. By default, do not boost watermarks on discontigmem as in
324  * many cases very high-order allocations like THP are likely to be
325  * unsupported and the premature reclaim offsets the advantage of long-term
326  * fragmentation avoidance.
327  */
328 int watermark_boost_factor __read_mostly;
329 #else
330 int watermark_boost_factor __read_mostly = 15000;
331 #endif
332 int watermark_scale_factor = 10;
333 
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
337 
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347 
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352 
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
359 
360 int page_group_by_mobility_disabled __read_mostly;
361 
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 /*
364  * During boot we initialize deferred pages on-demand, as needed, but once
365  * page_alloc_init_late() has finished, the deferred pages are all initialized,
366  * and we can permanently disable that path.
367  */
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369 
370 /*
371  * Calling kasan_free_pages() only after deferred memory initialization
372  * has completed. Poisoning pages during deferred memory init will greatly
373  * lengthen the process and cause problem in large memory systems as the
374  * deferred pages initialization is done with interrupt disabled.
375  *
376  * Assuming that there will be no reference to those newly initialized
377  * pages before they are ever allocated, this should have no effect on
378  * KASAN memory tracking as the poison will be properly inserted at page
379  * allocation time. The only corner case is when pages are allocated by
380  * on-demand allocation and then freed again before the deferred pages
381  * initialization is done, but this is not likely to happen.
382  */
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 {
385 	if (!static_branch_unlikely(&deferred_pages))
386 		kasan_free_pages(page, order);
387 }
388 
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 {
392 	int nid = early_pfn_to_nid(pfn);
393 
394 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 		return true;
396 
397 	return false;
398 }
399 
400 /*
401  * Returns true when the remaining initialisation should be deferred until
402  * later in the boot cycle when it can be parallelised.
403  */
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 {
407 	static unsigned long prev_end_pfn, nr_initialised;
408 
409 	/*
410 	 * prev_end_pfn static that contains the end of previous zone
411 	 * No need to protect because called very early in boot before smp_init.
412 	 */
413 	if (prev_end_pfn != end_pfn) {
414 		prev_end_pfn = end_pfn;
415 		nr_initialised = 0;
416 	}
417 
418 	/* Always populate low zones for address-constrained allocations */
419 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 		return false;
421 
422 	/*
423 	 * We start only with one section of pages, more pages are added as
424 	 * needed until the rest of deferred pages are initialized.
425 	 */
426 	nr_initialised++;
427 	if ((nr_initialised > PAGES_PER_SECTION) &&
428 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 		NODE_DATA(nid)->first_deferred_pfn = pfn;
430 		return true;
431 	}
432 	return false;
433 }
434 #else
435 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
436 
437 static inline bool early_page_uninitialised(unsigned long pfn)
438 {
439 	return false;
440 }
441 
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443 {
444 	return false;
445 }
446 #endif
447 
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 							unsigned long pfn)
451 {
452 #ifdef CONFIG_SPARSEMEM
453 	return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 	return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
457 }
458 
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 {
461 #ifdef CONFIG_SPARSEMEM
462 	pfn &= (PAGES_PER_SECTION-1);
463 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 #else
465 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
468 }
469 
470 /**
471  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472  * @page: The page within the block of interest
473  * @pfn: The target page frame number
474  * @end_bitidx: The last bit of interest to retrieve
475  * @mask: mask of bits that the caller is interested in
476  *
477  * Return: pageblock_bits flags
478  */
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 					unsigned long pfn,
481 					unsigned long end_bitidx,
482 					unsigned long mask)
483 {
484 	unsigned long *bitmap;
485 	unsigned long bitidx, word_bitidx;
486 	unsigned long word;
487 
488 	bitmap = get_pageblock_bitmap(page, pfn);
489 	bitidx = pfn_to_bitidx(page, pfn);
490 	word_bitidx = bitidx / BITS_PER_LONG;
491 	bitidx &= (BITS_PER_LONG-1);
492 
493 	word = bitmap[word_bitidx];
494 	bitidx += end_bitidx;
495 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496 }
497 
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 					unsigned long end_bitidx,
500 					unsigned long mask)
501 {
502 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503 }
504 
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 {
507 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508 }
509 
510 /**
511  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512  * @page: The page within the block of interest
513  * @flags: The flags to set
514  * @pfn: The target page frame number
515  * @end_bitidx: The last bit of interest
516  * @mask: mask of bits that the caller is interested in
517  */
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 					unsigned long pfn,
520 					unsigned long end_bitidx,
521 					unsigned long mask)
522 {
523 	unsigned long *bitmap;
524 	unsigned long bitidx, word_bitidx;
525 	unsigned long old_word, word;
526 
527 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 
530 	bitmap = get_pageblock_bitmap(page, pfn);
531 	bitidx = pfn_to_bitidx(page, pfn);
532 	word_bitidx = bitidx / BITS_PER_LONG;
533 	bitidx &= (BITS_PER_LONG-1);
534 
535 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536 
537 	bitidx += end_bitidx;
538 	mask <<= (BITS_PER_LONG - bitidx - 1);
539 	flags <<= (BITS_PER_LONG - bitidx - 1);
540 
541 	word = READ_ONCE(bitmap[word_bitidx]);
542 	for (;;) {
543 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 		if (word == old_word)
545 			break;
546 		word = old_word;
547 	}
548 }
549 
550 void set_pageblock_migratetype(struct page *page, int migratetype)
551 {
552 	if (unlikely(page_group_by_mobility_disabled &&
553 		     migratetype < MIGRATE_PCPTYPES))
554 		migratetype = MIGRATE_UNMOVABLE;
555 
556 	set_pageblock_flags_group(page, (unsigned long)migratetype,
557 					PB_migrate, PB_migrate_end);
558 }
559 
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
562 {
563 	int ret = 0;
564 	unsigned seq;
565 	unsigned long pfn = page_to_pfn(page);
566 	unsigned long sp, start_pfn;
567 
568 	do {
569 		seq = zone_span_seqbegin(zone);
570 		start_pfn = zone->zone_start_pfn;
571 		sp = zone->spanned_pages;
572 		if (!zone_spans_pfn(zone, pfn))
573 			ret = 1;
574 	} while (zone_span_seqretry(zone, seq));
575 
576 	if (ret)
577 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 			pfn, zone_to_nid(zone), zone->name,
579 			start_pfn, start_pfn + sp);
580 
581 	return ret;
582 }
583 
584 static int page_is_consistent(struct zone *zone, struct page *page)
585 {
586 	if (!pfn_valid_within(page_to_pfn(page)))
587 		return 0;
588 	if (zone != page_zone(page))
589 		return 0;
590 
591 	return 1;
592 }
593 /*
594  * Temporary debugging check for pages not lying within a given zone.
595  */
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 {
598 	if (page_outside_zone_boundaries(zone, page))
599 		return 1;
600 	if (!page_is_consistent(zone, page))
601 		return 1;
602 
603 	return 0;
604 }
605 #else
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
607 {
608 	return 0;
609 }
610 #endif
611 
612 static void bad_page(struct page *page, const char *reason,
613 		unsigned long bad_flags)
614 {
615 	static unsigned long resume;
616 	static unsigned long nr_shown;
617 	static unsigned long nr_unshown;
618 
619 	/*
620 	 * Allow a burst of 60 reports, then keep quiet for that minute;
621 	 * or allow a steady drip of one report per second.
622 	 */
623 	if (nr_shown == 60) {
624 		if (time_before(jiffies, resume)) {
625 			nr_unshown++;
626 			goto out;
627 		}
628 		if (nr_unshown) {
629 			pr_alert(
630 			      "BUG: Bad page state: %lu messages suppressed\n",
631 				nr_unshown);
632 			nr_unshown = 0;
633 		}
634 		nr_shown = 0;
635 	}
636 	if (nr_shown++ == 0)
637 		resume = jiffies + 60 * HZ;
638 
639 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
640 		current->comm, page_to_pfn(page));
641 	__dump_page(page, reason);
642 	bad_flags &= page->flags;
643 	if (bad_flags)
644 		pr_alert("bad because of flags: %#lx(%pGp)\n",
645 						bad_flags, &bad_flags);
646 	dump_page_owner(page);
647 
648 	print_modules();
649 	dump_stack();
650 out:
651 	/* Leave bad fields for debug, except PageBuddy could make trouble */
652 	page_mapcount_reset(page); /* remove PageBuddy */
653 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655 
656 /*
657  * Higher-order pages are called "compound pages".  They are structured thusly:
658  *
659  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
660  *
661  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
663  *
664  * The first tail page's ->compound_dtor holds the offset in array of compound
665  * page destructors. See compound_page_dtors.
666  *
667  * The first tail page's ->compound_order holds the order of allocation.
668  * This usage means that zero-order pages may not be compound.
669  */
670 
671 void free_compound_page(struct page *page)
672 {
673 	mem_cgroup_uncharge(page);
674 	__free_pages_ok(page, compound_order(page));
675 }
676 
677 void prep_compound_page(struct page *page, unsigned int order)
678 {
679 	int i;
680 	int nr_pages = 1 << order;
681 
682 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 	set_compound_order(page, order);
684 	__SetPageHead(page);
685 	for (i = 1; i < nr_pages; i++) {
686 		struct page *p = page + i;
687 		set_page_count(p, 0);
688 		p->mapping = TAIL_MAPPING;
689 		set_compound_head(p, page);
690 	}
691 	atomic_set(compound_mapcount_ptr(page), -1);
692 	if (hpage_pincount_available(page))
693 		atomic_set(compound_pincount_ptr(page), 0);
694 }
695 
696 #ifdef CONFIG_DEBUG_PAGEALLOC
697 unsigned int _debug_guardpage_minorder;
698 
699 bool _debug_pagealloc_enabled_early __read_mostly
700 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
701 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
702 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
703 EXPORT_SYMBOL(_debug_pagealloc_enabled);
704 
705 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
706 
707 static int __init early_debug_pagealloc(char *buf)
708 {
709 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
710 }
711 early_param("debug_pagealloc", early_debug_pagealloc);
712 
713 void init_debug_pagealloc(void)
714 {
715 	if (!debug_pagealloc_enabled())
716 		return;
717 
718 	static_branch_enable(&_debug_pagealloc_enabled);
719 
720 	if (!debug_guardpage_minorder())
721 		return;
722 
723 	static_branch_enable(&_debug_guardpage_enabled);
724 }
725 
726 static int __init debug_guardpage_minorder_setup(char *buf)
727 {
728 	unsigned long res;
729 
730 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
731 		pr_err("Bad debug_guardpage_minorder value\n");
732 		return 0;
733 	}
734 	_debug_guardpage_minorder = res;
735 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
736 	return 0;
737 }
738 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
739 
740 static inline bool set_page_guard(struct zone *zone, struct page *page,
741 				unsigned int order, int migratetype)
742 {
743 	if (!debug_guardpage_enabled())
744 		return false;
745 
746 	if (order >= debug_guardpage_minorder())
747 		return false;
748 
749 	__SetPageGuard(page);
750 	INIT_LIST_HEAD(&page->lru);
751 	set_page_private(page, order);
752 	/* Guard pages are not available for any usage */
753 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
754 
755 	return true;
756 }
757 
758 static inline void clear_page_guard(struct zone *zone, struct page *page,
759 				unsigned int order, int migratetype)
760 {
761 	if (!debug_guardpage_enabled())
762 		return;
763 
764 	__ClearPageGuard(page);
765 
766 	set_page_private(page, 0);
767 	if (!is_migrate_isolate(migratetype))
768 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
769 }
770 #else
771 static inline bool set_page_guard(struct zone *zone, struct page *page,
772 			unsigned int order, int migratetype) { return false; }
773 static inline void clear_page_guard(struct zone *zone, struct page *page,
774 				unsigned int order, int migratetype) {}
775 #endif
776 
777 static inline void set_page_order(struct page *page, unsigned int order)
778 {
779 	set_page_private(page, order);
780 	__SetPageBuddy(page);
781 }
782 
783 /*
784  * This function checks whether a page is free && is the buddy
785  * we can coalesce a page and its buddy if
786  * (a) the buddy is not in a hole (check before calling!) &&
787  * (b) the buddy is in the buddy system &&
788  * (c) a page and its buddy have the same order &&
789  * (d) a page and its buddy are in the same zone.
790  *
791  * For recording whether a page is in the buddy system, we set PageBuddy.
792  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
793  *
794  * For recording page's order, we use page_private(page).
795  */
796 static inline bool page_is_buddy(struct page *page, struct page *buddy,
797 							unsigned int order)
798 {
799 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
800 		return false;
801 
802 	if (page_order(buddy) != order)
803 		return false;
804 
805 	/*
806 	 * zone check is done late to avoid uselessly calculating
807 	 * zone/node ids for pages that could never merge.
808 	 */
809 	if (page_zone_id(page) != page_zone_id(buddy))
810 		return false;
811 
812 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
813 
814 	return true;
815 }
816 
817 #ifdef CONFIG_COMPACTION
818 static inline struct capture_control *task_capc(struct zone *zone)
819 {
820 	struct capture_control *capc = current->capture_control;
821 
822 	return capc &&
823 		!(current->flags & PF_KTHREAD) &&
824 		!capc->page &&
825 		capc->cc->zone == zone &&
826 		capc->cc->direct_compaction ? capc : NULL;
827 }
828 
829 static inline bool
830 compaction_capture(struct capture_control *capc, struct page *page,
831 		   int order, int migratetype)
832 {
833 	if (!capc || order != capc->cc->order)
834 		return false;
835 
836 	/* Do not accidentally pollute CMA or isolated regions*/
837 	if (is_migrate_cma(migratetype) ||
838 	    is_migrate_isolate(migratetype))
839 		return false;
840 
841 	/*
842 	 * Do not let lower order allocations polluate a movable pageblock.
843 	 * This might let an unmovable request use a reclaimable pageblock
844 	 * and vice-versa but no more than normal fallback logic which can
845 	 * have trouble finding a high-order free page.
846 	 */
847 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
848 		return false;
849 
850 	capc->page = page;
851 	return true;
852 }
853 
854 #else
855 static inline struct capture_control *task_capc(struct zone *zone)
856 {
857 	return NULL;
858 }
859 
860 static inline bool
861 compaction_capture(struct capture_control *capc, struct page *page,
862 		   int order, int migratetype)
863 {
864 	return false;
865 }
866 #endif /* CONFIG_COMPACTION */
867 
868 /* Used for pages not on another list */
869 static inline void add_to_free_list(struct page *page, struct zone *zone,
870 				    unsigned int order, int migratetype)
871 {
872 	struct free_area *area = &zone->free_area[order];
873 
874 	list_add(&page->lru, &area->free_list[migratetype]);
875 	area->nr_free++;
876 }
877 
878 /* Used for pages not on another list */
879 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
880 					 unsigned int order, int migratetype)
881 {
882 	struct free_area *area = &zone->free_area[order];
883 
884 	list_add_tail(&page->lru, &area->free_list[migratetype]);
885 	area->nr_free++;
886 }
887 
888 /* Used for pages which are on another list */
889 static inline void move_to_free_list(struct page *page, struct zone *zone,
890 				     unsigned int order, int migratetype)
891 {
892 	struct free_area *area = &zone->free_area[order];
893 
894 	list_move(&page->lru, &area->free_list[migratetype]);
895 }
896 
897 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
898 					   unsigned int order)
899 {
900 	/* clear reported state and update reported page count */
901 	if (page_reported(page))
902 		__ClearPageReported(page);
903 
904 	list_del(&page->lru);
905 	__ClearPageBuddy(page);
906 	set_page_private(page, 0);
907 	zone->free_area[order].nr_free--;
908 }
909 
910 /*
911  * If this is not the largest possible page, check if the buddy
912  * of the next-highest order is free. If it is, it's possible
913  * that pages are being freed that will coalesce soon. In case,
914  * that is happening, add the free page to the tail of the list
915  * so it's less likely to be used soon and more likely to be merged
916  * as a higher order page
917  */
918 static inline bool
919 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
920 		   struct page *page, unsigned int order)
921 {
922 	struct page *higher_page, *higher_buddy;
923 	unsigned long combined_pfn;
924 
925 	if (order >= MAX_ORDER - 2)
926 		return false;
927 
928 	if (!pfn_valid_within(buddy_pfn))
929 		return false;
930 
931 	combined_pfn = buddy_pfn & pfn;
932 	higher_page = page + (combined_pfn - pfn);
933 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
934 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
935 
936 	return pfn_valid_within(buddy_pfn) &&
937 	       page_is_buddy(higher_page, higher_buddy, order + 1);
938 }
939 
940 /*
941  * Freeing function for a buddy system allocator.
942  *
943  * The concept of a buddy system is to maintain direct-mapped table
944  * (containing bit values) for memory blocks of various "orders".
945  * The bottom level table contains the map for the smallest allocatable
946  * units of memory (here, pages), and each level above it describes
947  * pairs of units from the levels below, hence, "buddies".
948  * At a high level, all that happens here is marking the table entry
949  * at the bottom level available, and propagating the changes upward
950  * as necessary, plus some accounting needed to play nicely with other
951  * parts of the VM system.
952  * At each level, we keep a list of pages, which are heads of continuous
953  * free pages of length of (1 << order) and marked with PageBuddy.
954  * Page's order is recorded in page_private(page) field.
955  * So when we are allocating or freeing one, we can derive the state of the
956  * other.  That is, if we allocate a small block, and both were
957  * free, the remainder of the region must be split into blocks.
958  * If a block is freed, and its buddy is also free, then this
959  * triggers coalescing into a block of larger size.
960  *
961  * -- nyc
962  */
963 
964 static inline void __free_one_page(struct page *page,
965 		unsigned long pfn,
966 		struct zone *zone, unsigned int order,
967 		int migratetype, bool report)
968 {
969 	struct capture_control *capc = task_capc(zone);
970 	unsigned long uninitialized_var(buddy_pfn);
971 	unsigned long combined_pfn;
972 	unsigned int max_order;
973 	struct page *buddy;
974 	bool to_tail;
975 
976 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
977 
978 	VM_BUG_ON(!zone_is_initialized(zone));
979 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
980 
981 	VM_BUG_ON(migratetype == -1);
982 	if (likely(!is_migrate_isolate(migratetype)))
983 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
984 
985 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
986 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
987 
988 continue_merging:
989 	while (order < max_order - 1) {
990 		if (compaction_capture(capc, page, order, migratetype)) {
991 			__mod_zone_freepage_state(zone, -(1 << order),
992 								migratetype);
993 			return;
994 		}
995 		buddy_pfn = __find_buddy_pfn(pfn, order);
996 		buddy = page + (buddy_pfn - pfn);
997 
998 		if (!pfn_valid_within(buddy_pfn))
999 			goto done_merging;
1000 		if (!page_is_buddy(page, buddy, order))
1001 			goto done_merging;
1002 		/*
1003 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1004 		 * merge with it and move up one order.
1005 		 */
1006 		if (page_is_guard(buddy))
1007 			clear_page_guard(zone, buddy, order, migratetype);
1008 		else
1009 			del_page_from_free_list(buddy, zone, order);
1010 		combined_pfn = buddy_pfn & pfn;
1011 		page = page + (combined_pfn - pfn);
1012 		pfn = combined_pfn;
1013 		order++;
1014 	}
1015 	if (max_order < MAX_ORDER) {
1016 		/* If we are here, it means order is >= pageblock_order.
1017 		 * We want to prevent merge between freepages on isolate
1018 		 * pageblock and normal pageblock. Without this, pageblock
1019 		 * isolation could cause incorrect freepage or CMA accounting.
1020 		 *
1021 		 * We don't want to hit this code for the more frequent
1022 		 * low-order merging.
1023 		 */
1024 		if (unlikely(has_isolate_pageblock(zone))) {
1025 			int buddy_mt;
1026 
1027 			buddy_pfn = __find_buddy_pfn(pfn, order);
1028 			buddy = page + (buddy_pfn - pfn);
1029 			buddy_mt = get_pageblock_migratetype(buddy);
1030 
1031 			if (migratetype != buddy_mt
1032 					&& (is_migrate_isolate(migratetype) ||
1033 						is_migrate_isolate(buddy_mt)))
1034 				goto done_merging;
1035 		}
1036 		max_order++;
1037 		goto continue_merging;
1038 	}
1039 
1040 done_merging:
1041 	set_page_order(page, order);
1042 
1043 	if (is_shuffle_order(order))
1044 		to_tail = shuffle_pick_tail();
1045 	else
1046 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1047 
1048 	if (to_tail)
1049 		add_to_free_list_tail(page, zone, order, migratetype);
1050 	else
1051 		add_to_free_list(page, zone, order, migratetype);
1052 
1053 	/* Notify page reporting subsystem of freed page */
1054 	if (report)
1055 		page_reporting_notify_free(order);
1056 }
1057 
1058 /*
1059  * A bad page could be due to a number of fields. Instead of multiple branches,
1060  * try and check multiple fields with one check. The caller must do a detailed
1061  * check if necessary.
1062  */
1063 static inline bool page_expected_state(struct page *page,
1064 					unsigned long check_flags)
1065 {
1066 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1067 		return false;
1068 
1069 	if (unlikely((unsigned long)page->mapping |
1070 			page_ref_count(page) |
1071 #ifdef CONFIG_MEMCG
1072 			(unsigned long)page->mem_cgroup |
1073 #endif
1074 			(page->flags & check_flags)))
1075 		return false;
1076 
1077 	return true;
1078 }
1079 
1080 static void free_pages_check_bad(struct page *page)
1081 {
1082 	const char *bad_reason;
1083 	unsigned long bad_flags;
1084 
1085 	bad_reason = NULL;
1086 	bad_flags = 0;
1087 
1088 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1089 		bad_reason = "nonzero mapcount";
1090 	if (unlikely(page->mapping != NULL))
1091 		bad_reason = "non-NULL mapping";
1092 	if (unlikely(page_ref_count(page) != 0))
1093 		bad_reason = "nonzero _refcount";
1094 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1095 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1096 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1097 	}
1098 #ifdef CONFIG_MEMCG
1099 	if (unlikely(page->mem_cgroup))
1100 		bad_reason = "page still charged to cgroup";
1101 #endif
1102 	bad_page(page, bad_reason, bad_flags);
1103 }
1104 
1105 static inline int free_pages_check(struct page *page)
1106 {
1107 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1108 		return 0;
1109 
1110 	/* Something has gone sideways, find it */
1111 	free_pages_check_bad(page);
1112 	return 1;
1113 }
1114 
1115 static int free_tail_pages_check(struct page *head_page, struct page *page)
1116 {
1117 	int ret = 1;
1118 
1119 	/*
1120 	 * We rely page->lru.next never has bit 0 set, unless the page
1121 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1122 	 */
1123 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1124 
1125 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1126 		ret = 0;
1127 		goto out;
1128 	}
1129 	switch (page - head_page) {
1130 	case 1:
1131 		/* the first tail page: ->mapping may be compound_mapcount() */
1132 		if (unlikely(compound_mapcount(page))) {
1133 			bad_page(page, "nonzero compound_mapcount", 0);
1134 			goto out;
1135 		}
1136 		break;
1137 	case 2:
1138 		/*
1139 		 * the second tail page: ->mapping is
1140 		 * deferred_list.next -- ignore value.
1141 		 */
1142 		break;
1143 	default:
1144 		if (page->mapping != TAIL_MAPPING) {
1145 			bad_page(page, "corrupted mapping in tail page", 0);
1146 			goto out;
1147 		}
1148 		break;
1149 	}
1150 	if (unlikely(!PageTail(page))) {
1151 		bad_page(page, "PageTail not set", 0);
1152 		goto out;
1153 	}
1154 	if (unlikely(compound_head(page) != head_page)) {
1155 		bad_page(page, "compound_head not consistent", 0);
1156 		goto out;
1157 	}
1158 	ret = 0;
1159 out:
1160 	page->mapping = NULL;
1161 	clear_compound_head(page);
1162 	return ret;
1163 }
1164 
1165 static void kernel_init_free_pages(struct page *page, int numpages)
1166 {
1167 	int i;
1168 
1169 	for (i = 0; i < numpages; i++)
1170 		clear_highpage(page + i);
1171 }
1172 
1173 static __always_inline bool free_pages_prepare(struct page *page,
1174 					unsigned int order, bool check_free)
1175 {
1176 	int bad = 0;
1177 
1178 	VM_BUG_ON_PAGE(PageTail(page), page);
1179 
1180 	trace_mm_page_free(page, order);
1181 
1182 	/*
1183 	 * Check tail pages before head page information is cleared to
1184 	 * avoid checking PageCompound for order-0 pages.
1185 	 */
1186 	if (unlikely(order)) {
1187 		bool compound = PageCompound(page);
1188 		int i;
1189 
1190 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1191 
1192 		if (compound)
1193 			ClearPageDoubleMap(page);
1194 		for (i = 1; i < (1 << order); i++) {
1195 			if (compound)
1196 				bad += free_tail_pages_check(page, page + i);
1197 			if (unlikely(free_pages_check(page + i))) {
1198 				bad++;
1199 				continue;
1200 			}
1201 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1202 		}
1203 	}
1204 	if (PageMappingFlags(page))
1205 		page->mapping = NULL;
1206 	if (memcg_kmem_enabled() && PageKmemcg(page))
1207 		__memcg_kmem_uncharge_page(page, order);
1208 	if (check_free)
1209 		bad += free_pages_check(page);
1210 	if (bad)
1211 		return false;
1212 
1213 	page_cpupid_reset_last(page);
1214 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1215 	reset_page_owner(page, order);
1216 
1217 	if (!PageHighMem(page)) {
1218 		debug_check_no_locks_freed(page_address(page),
1219 					   PAGE_SIZE << order);
1220 		debug_check_no_obj_freed(page_address(page),
1221 					   PAGE_SIZE << order);
1222 	}
1223 	if (want_init_on_free())
1224 		kernel_init_free_pages(page, 1 << order);
1225 
1226 	kernel_poison_pages(page, 1 << order, 0);
1227 	/*
1228 	 * arch_free_page() can make the page's contents inaccessible.  s390
1229 	 * does this.  So nothing which can access the page's contents should
1230 	 * happen after this.
1231 	 */
1232 	arch_free_page(page, order);
1233 
1234 	if (debug_pagealloc_enabled_static())
1235 		kernel_map_pages(page, 1 << order, 0);
1236 
1237 	kasan_free_nondeferred_pages(page, order);
1238 
1239 	return true;
1240 }
1241 
1242 #ifdef CONFIG_DEBUG_VM
1243 /*
1244  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1245  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1246  * moved from pcp lists to free lists.
1247  */
1248 static bool free_pcp_prepare(struct page *page)
1249 {
1250 	return free_pages_prepare(page, 0, true);
1251 }
1252 
1253 static bool bulkfree_pcp_prepare(struct page *page)
1254 {
1255 	if (debug_pagealloc_enabled_static())
1256 		return free_pages_check(page);
1257 	else
1258 		return false;
1259 }
1260 #else
1261 /*
1262  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1263  * moving from pcp lists to free list in order to reduce overhead. With
1264  * debug_pagealloc enabled, they are checked also immediately when being freed
1265  * to the pcp lists.
1266  */
1267 static bool free_pcp_prepare(struct page *page)
1268 {
1269 	if (debug_pagealloc_enabled_static())
1270 		return free_pages_prepare(page, 0, true);
1271 	else
1272 		return free_pages_prepare(page, 0, false);
1273 }
1274 
1275 static bool bulkfree_pcp_prepare(struct page *page)
1276 {
1277 	return free_pages_check(page);
1278 }
1279 #endif /* CONFIG_DEBUG_VM */
1280 
1281 static inline void prefetch_buddy(struct page *page)
1282 {
1283 	unsigned long pfn = page_to_pfn(page);
1284 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1285 	struct page *buddy = page + (buddy_pfn - pfn);
1286 
1287 	prefetch(buddy);
1288 }
1289 
1290 /*
1291  * Frees a number of pages from the PCP lists
1292  * Assumes all pages on list are in same zone, and of same order.
1293  * count is the number of pages to free.
1294  *
1295  * If the zone was previously in an "all pages pinned" state then look to
1296  * see if this freeing clears that state.
1297  *
1298  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1299  * pinned" detection logic.
1300  */
1301 static void free_pcppages_bulk(struct zone *zone, int count,
1302 					struct per_cpu_pages *pcp)
1303 {
1304 	int migratetype = 0;
1305 	int batch_free = 0;
1306 	int prefetch_nr = 0;
1307 	bool isolated_pageblocks;
1308 	struct page *page, *tmp;
1309 	LIST_HEAD(head);
1310 
1311 	while (count) {
1312 		struct list_head *list;
1313 
1314 		/*
1315 		 * Remove pages from lists in a round-robin fashion. A
1316 		 * batch_free count is maintained that is incremented when an
1317 		 * empty list is encountered.  This is so more pages are freed
1318 		 * off fuller lists instead of spinning excessively around empty
1319 		 * lists
1320 		 */
1321 		do {
1322 			batch_free++;
1323 			if (++migratetype == MIGRATE_PCPTYPES)
1324 				migratetype = 0;
1325 			list = &pcp->lists[migratetype];
1326 		} while (list_empty(list));
1327 
1328 		/* This is the only non-empty list. Free them all. */
1329 		if (batch_free == MIGRATE_PCPTYPES)
1330 			batch_free = count;
1331 
1332 		do {
1333 			page = list_last_entry(list, struct page, lru);
1334 			/* must delete to avoid corrupting pcp list */
1335 			list_del(&page->lru);
1336 			pcp->count--;
1337 
1338 			if (bulkfree_pcp_prepare(page))
1339 				continue;
1340 
1341 			list_add_tail(&page->lru, &head);
1342 
1343 			/*
1344 			 * We are going to put the page back to the global
1345 			 * pool, prefetch its buddy to speed up later access
1346 			 * under zone->lock. It is believed the overhead of
1347 			 * an additional test and calculating buddy_pfn here
1348 			 * can be offset by reduced memory latency later. To
1349 			 * avoid excessive prefetching due to large count, only
1350 			 * prefetch buddy for the first pcp->batch nr of pages.
1351 			 */
1352 			if (prefetch_nr++ < pcp->batch)
1353 				prefetch_buddy(page);
1354 		} while (--count && --batch_free && !list_empty(list));
1355 	}
1356 
1357 	spin_lock(&zone->lock);
1358 	isolated_pageblocks = has_isolate_pageblock(zone);
1359 
1360 	/*
1361 	 * Use safe version since after __free_one_page(),
1362 	 * page->lru.next will not point to original list.
1363 	 */
1364 	list_for_each_entry_safe(page, tmp, &head, lru) {
1365 		int mt = get_pcppage_migratetype(page);
1366 		/* MIGRATE_ISOLATE page should not go to pcplists */
1367 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1368 		/* Pageblock could have been isolated meanwhile */
1369 		if (unlikely(isolated_pageblocks))
1370 			mt = get_pageblock_migratetype(page);
1371 
1372 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1373 		trace_mm_page_pcpu_drain(page, 0, mt);
1374 	}
1375 	spin_unlock(&zone->lock);
1376 }
1377 
1378 static void free_one_page(struct zone *zone,
1379 				struct page *page, unsigned long pfn,
1380 				unsigned int order,
1381 				int migratetype)
1382 {
1383 	spin_lock(&zone->lock);
1384 	if (unlikely(has_isolate_pageblock(zone) ||
1385 		is_migrate_isolate(migratetype))) {
1386 		migratetype = get_pfnblock_migratetype(page, pfn);
1387 	}
1388 	__free_one_page(page, pfn, zone, order, migratetype, true);
1389 	spin_unlock(&zone->lock);
1390 }
1391 
1392 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1393 				unsigned long zone, int nid)
1394 {
1395 	mm_zero_struct_page(page);
1396 	set_page_links(page, zone, nid, pfn);
1397 	init_page_count(page);
1398 	page_mapcount_reset(page);
1399 	page_cpupid_reset_last(page);
1400 	page_kasan_tag_reset(page);
1401 
1402 	INIT_LIST_HEAD(&page->lru);
1403 #ifdef WANT_PAGE_VIRTUAL
1404 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405 	if (!is_highmem_idx(zone))
1406 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1407 #endif
1408 }
1409 
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __meminit init_reserved_page(unsigned long pfn)
1412 {
1413 	pg_data_t *pgdat;
1414 	int nid, zid;
1415 
1416 	if (!early_page_uninitialised(pfn))
1417 		return;
1418 
1419 	nid = early_pfn_to_nid(pfn);
1420 	pgdat = NODE_DATA(nid);
1421 
1422 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1423 		struct zone *zone = &pgdat->node_zones[zid];
1424 
1425 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1426 			break;
1427 	}
1428 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1429 }
1430 #else
1431 static inline void init_reserved_page(unsigned long pfn)
1432 {
1433 }
1434 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1435 
1436 /*
1437  * Initialised pages do not have PageReserved set. This function is
1438  * called for each range allocated by the bootmem allocator and
1439  * marks the pages PageReserved. The remaining valid pages are later
1440  * sent to the buddy page allocator.
1441  */
1442 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1443 {
1444 	unsigned long start_pfn = PFN_DOWN(start);
1445 	unsigned long end_pfn = PFN_UP(end);
1446 
1447 	for (; start_pfn < end_pfn; start_pfn++) {
1448 		if (pfn_valid(start_pfn)) {
1449 			struct page *page = pfn_to_page(start_pfn);
1450 
1451 			init_reserved_page(start_pfn);
1452 
1453 			/* Avoid false-positive PageTail() */
1454 			INIT_LIST_HEAD(&page->lru);
1455 
1456 			/*
1457 			 * no need for atomic set_bit because the struct
1458 			 * page is not visible yet so nobody should
1459 			 * access it yet.
1460 			 */
1461 			__SetPageReserved(page);
1462 		}
1463 	}
1464 }
1465 
1466 static void __free_pages_ok(struct page *page, unsigned int order)
1467 {
1468 	unsigned long flags;
1469 	int migratetype;
1470 	unsigned long pfn = page_to_pfn(page);
1471 
1472 	if (!free_pages_prepare(page, order, true))
1473 		return;
1474 
1475 	migratetype = get_pfnblock_migratetype(page, pfn);
1476 	local_irq_save(flags);
1477 	__count_vm_events(PGFREE, 1 << order);
1478 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1479 	local_irq_restore(flags);
1480 }
1481 
1482 void __free_pages_core(struct page *page, unsigned int order)
1483 {
1484 	unsigned int nr_pages = 1 << order;
1485 	struct page *p = page;
1486 	unsigned int loop;
1487 
1488 	prefetchw(p);
1489 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1490 		prefetchw(p + 1);
1491 		__ClearPageReserved(p);
1492 		set_page_count(p, 0);
1493 	}
1494 	__ClearPageReserved(p);
1495 	set_page_count(p, 0);
1496 
1497 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1498 	set_page_refcounted(page);
1499 	__free_pages(page, order);
1500 }
1501 
1502 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1503 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1504 
1505 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1506 
1507 int __meminit early_pfn_to_nid(unsigned long pfn)
1508 {
1509 	static DEFINE_SPINLOCK(early_pfn_lock);
1510 	int nid;
1511 
1512 	spin_lock(&early_pfn_lock);
1513 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1514 	if (nid < 0)
1515 		nid = first_online_node;
1516 	spin_unlock(&early_pfn_lock);
1517 
1518 	return nid;
1519 }
1520 #endif
1521 
1522 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1523 /* Only safe to use early in boot when initialisation is single-threaded */
1524 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1525 {
1526 	int nid;
1527 
1528 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1529 	if (nid >= 0 && nid != node)
1530 		return false;
1531 	return true;
1532 }
1533 
1534 #else
1535 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1536 {
1537 	return true;
1538 }
1539 #endif
1540 
1541 
1542 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1543 							unsigned int order)
1544 {
1545 	if (early_page_uninitialised(pfn))
1546 		return;
1547 	__free_pages_core(page, order);
1548 }
1549 
1550 /*
1551  * Check that the whole (or subset of) a pageblock given by the interval of
1552  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1553  * with the migration of free compaction scanner. The scanners then need to
1554  * use only pfn_valid_within() check for arches that allow holes within
1555  * pageblocks.
1556  *
1557  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1558  *
1559  * It's possible on some configurations to have a setup like node0 node1 node0
1560  * i.e. it's possible that all pages within a zones range of pages do not
1561  * belong to a single zone. We assume that a border between node0 and node1
1562  * can occur within a single pageblock, but not a node0 node1 node0
1563  * interleaving within a single pageblock. It is therefore sufficient to check
1564  * the first and last page of a pageblock and avoid checking each individual
1565  * page in a pageblock.
1566  */
1567 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1568 				     unsigned long end_pfn, struct zone *zone)
1569 {
1570 	struct page *start_page;
1571 	struct page *end_page;
1572 
1573 	/* end_pfn is one past the range we are checking */
1574 	end_pfn--;
1575 
1576 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1577 		return NULL;
1578 
1579 	start_page = pfn_to_online_page(start_pfn);
1580 	if (!start_page)
1581 		return NULL;
1582 
1583 	if (page_zone(start_page) != zone)
1584 		return NULL;
1585 
1586 	end_page = pfn_to_page(end_pfn);
1587 
1588 	/* This gives a shorter code than deriving page_zone(end_page) */
1589 	if (page_zone_id(start_page) != page_zone_id(end_page))
1590 		return NULL;
1591 
1592 	return start_page;
1593 }
1594 
1595 void set_zone_contiguous(struct zone *zone)
1596 {
1597 	unsigned long block_start_pfn = zone->zone_start_pfn;
1598 	unsigned long block_end_pfn;
1599 
1600 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1601 	for (; block_start_pfn < zone_end_pfn(zone);
1602 			block_start_pfn = block_end_pfn,
1603 			 block_end_pfn += pageblock_nr_pages) {
1604 
1605 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1606 
1607 		if (!__pageblock_pfn_to_page(block_start_pfn,
1608 					     block_end_pfn, zone))
1609 			return;
1610 	}
1611 
1612 	/* We confirm that there is no hole */
1613 	zone->contiguous = true;
1614 }
1615 
1616 void clear_zone_contiguous(struct zone *zone)
1617 {
1618 	zone->contiguous = false;
1619 }
1620 
1621 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1622 static void __init deferred_free_range(unsigned long pfn,
1623 				       unsigned long nr_pages)
1624 {
1625 	struct page *page;
1626 	unsigned long i;
1627 
1628 	if (!nr_pages)
1629 		return;
1630 
1631 	page = pfn_to_page(pfn);
1632 
1633 	/* Free a large naturally-aligned chunk if possible */
1634 	if (nr_pages == pageblock_nr_pages &&
1635 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1636 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1637 		__free_pages_core(page, pageblock_order);
1638 		return;
1639 	}
1640 
1641 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1642 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1643 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1644 		__free_pages_core(page, 0);
1645 	}
1646 }
1647 
1648 /* Completion tracking for deferred_init_memmap() threads */
1649 static atomic_t pgdat_init_n_undone __initdata;
1650 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1651 
1652 static inline void __init pgdat_init_report_one_done(void)
1653 {
1654 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1655 		complete(&pgdat_init_all_done_comp);
1656 }
1657 
1658 /*
1659  * Returns true if page needs to be initialized or freed to buddy allocator.
1660  *
1661  * First we check if pfn is valid on architectures where it is possible to have
1662  * holes within pageblock_nr_pages. On systems where it is not possible, this
1663  * function is optimized out.
1664  *
1665  * Then, we check if a current large page is valid by only checking the validity
1666  * of the head pfn.
1667  */
1668 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1669 {
1670 	if (!pfn_valid_within(pfn))
1671 		return false;
1672 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1673 		return false;
1674 	return true;
1675 }
1676 
1677 /*
1678  * Free pages to buddy allocator. Try to free aligned pages in
1679  * pageblock_nr_pages sizes.
1680  */
1681 static void __init deferred_free_pages(unsigned long pfn,
1682 				       unsigned long end_pfn)
1683 {
1684 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1685 	unsigned long nr_free = 0;
1686 
1687 	for (; pfn < end_pfn; pfn++) {
1688 		if (!deferred_pfn_valid(pfn)) {
1689 			deferred_free_range(pfn - nr_free, nr_free);
1690 			nr_free = 0;
1691 		} else if (!(pfn & nr_pgmask)) {
1692 			deferred_free_range(pfn - nr_free, nr_free);
1693 			nr_free = 1;
1694 			touch_nmi_watchdog();
1695 		} else {
1696 			nr_free++;
1697 		}
1698 	}
1699 	/* Free the last block of pages to allocator */
1700 	deferred_free_range(pfn - nr_free, nr_free);
1701 }
1702 
1703 /*
1704  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1705  * by performing it only once every pageblock_nr_pages.
1706  * Return number of pages initialized.
1707  */
1708 static unsigned long  __init deferred_init_pages(struct zone *zone,
1709 						 unsigned long pfn,
1710 						 unsigned long end_pfn)
1711 {
1712 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1713 	int nid = zone_to_nid(zone);
1714 	unsigned long nr_pages = 0;
1715 	int zid = zone_idx(zone);
1716 	struct page *page = NULL;
1717 
1718 	for (; pfn < end_pfn; pfn++) {
1719 		if (!deferred_pfn_valid(pfn)) {
1720 			page = NULL;
1721 			continue;
1722 		} else if (!page || !(pfn & nr_pgmask)) {
1723 			page = pfn_to_page(pfn);
1724 			touch_nmi_watchdog();
1725 		} else {
1726 			page++;
1727 		}
1728 		__init_single_page(page, pfn, zid, nid);
1729 		nr_pages++;
1730 	}
1731 	return (nr_pages);
1732 }
1733 
1734 /*
1735  * This function is meant to pre-load the iterator for the zone init.
1736  * Specifically it walks through the ranges until we are caught up to the
1737  * first_init_pfn value and exits there. If we never encounter the value we
1738  * return false indicating there are no valid ranges left.
1739  */
1740 static bool __init
1741 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1742 				    unsigned long *spfn, unsigned long *epfn,
1743 				    unsigned long first_init_pfn)
1744 {
1745 	u64 j;
1746 
1747 	/*
1748 	 * Start out by walking through the ranges in this zone that have
1749 	 * already been initialized. We don't need to do anything with them
1750 	 * so we just need to flush them out of the system.
1751 	 */
1752 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1753 		if (*epfn <= first_init_pfn)
1754 			continue;
1755 		if (*spfn < first_init_pfn)
1756 			*spfn = first_init_pfn;
1757 		*i = j;
1758 		return true;
1759 	}
1760 
1761 	return false;
1762 }
1763 
1764 /*
1765  * Initialize and free pages. We do it in two loops: first we initialize
1766  * struct page, then free to buddy allocator, because while we are
1767  * freeing pages we can access pages that are ahead (computing buddy
1768  * page in __free_one_page()).
1769  *
1770  * In order to try and keep some memory in the cache we have the loop
1771  * broken along max page order boundaries. This way we will not cause
1772  * any issues with the buddy page computation.
1773  */
1774 static unsigned long __init
1775 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1776 		       unsigned long *end_pfn)
1777 {
1778 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1779 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1780 	unsigned long nr_pages = 0;
1781 	u64 j = *i;
1782 
1783 	/* First we loop through and initialize the page values */
1784 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1785 		unsigned long t;
1786 
1787 		if (mo_pfn <= *start_pfn)
1788 			break;
1789 
1790 		t = min(mo_pfn, *end_pfn);
1791 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1792 
1793 		if (mo_pfn < *end_pfn) {
1794 			*start_pfn = mo_pfn;
1795 			break;
1796 		}
1797 	}
1798 
1799 	/* Reset values and now loop through freeing pages as needed */
1800 	swap(j, *i);
1801 
1802 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1803 		unsigned long t;
1804 
1805 		if (mo_pfn <= spfn)
1806 			break;
1807 
1808 		t = min(mo_pfn, epfn);
1809 		deferred_free_pages(spfn, t);
1810 
1811 		if (mo_pfn <= epfn)
1812 			break;
1813 	}
1814 
1815 	return nr_pages;
1816 }
1817 
1818 /* Initialise remaining memory on a node */
1819 static int __init deferred_init_memmap(void *data)
1820 {
1821 	pg_data_t *pgdat = data;
1822 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1823 	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1824 	unsigned long first_init_pfn, flags;
1825 	unsigned long start = jiffies;
1826 	struct zone *zone;
1827 	int zid;
1828 	u64 i;
1829 
1830 	/* Bind memory initialisation thread to a local node if possible */
1831 	if (!cpumask_empty(cpumask))
1832 		set_cpus_allowed_ptr(current, cpumask);
1833 
1834 	pgdat_resize_lock(pgdat, &flags);
1835 	first_init_pfn = pgdat->first_deferred_pfn;
1836 	if (first_init_pfn == ULONG_MAX) {
1837 		pgdat_resize_unlock(pgdat, &flags);
1838 		pgdat_init_report_one_done();
1839 		return 0;
1840 	}
1841 
1842 	/* Sanity check boundaries */
1843 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1844 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1845 	pgdat->first_deferred_pfn = ULONG_MAX;
1846 
1847 	/* Only the highest zone is deferred so find it */
1848 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1849 		zone = pgdat->node_zones + zid;
1850 		if (first_init_pfn < zone_end_pfn(zone))
1851 			break;
1852 	}
1853 
1854 	/* If the zone is empty somebody else may have cleared out the zone */
1855 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1856 						 first_init_pfn))
1857 		goto zone_empty;
1858 
1859 	/*
1860 	 * Initialize and free pages in MAX_ORDER sized increments so
1861 	 * that we can avoid introducing any issues with the buddy
1862 	 * allocator.
1863 	 */
1864 	while (spfn < epfn)
1865 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1866 zone_empty:
1867 	pgdat_resize_unlock(pgdat, &flags);
1868 
1869 	/* Sanity check that the next zone really is unpopulated */
1870 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1871 
1872 	pr_info("node %d initialised, %lu pages in %ums\n",
1873 		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1874 
1875 	pgdat_init_report_one_done();
1876 	return 0;
1877 }
1878 
1879 /*
1880  * If this zone has deferred pages, try to grow it by initializing enough
1881  * deferred pages to satisfy the allocation specified by order, rounded up to
1882  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1883  * of SECTION_SIZE bytes by initializing struct pages in increments of
1884  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1885  *
1886  * Return true when zone was grown, otherwise return false. We return true even
1887  * when we grow less than requested, to let the caller decide if there are
1888  * enough pages to satisfy the allocation.
1889  *
1890  * Note: We use noinline because this function is needed only during boot, and
1891  * it is called from a __ref function _deferred_grow_zone. This way we are
1892  * making sure that it is not inlined into permanent text section.
1893  */
1894 static noinline bool __init
1895 deferred_grow_zone(struct zone *zone, unsigned int order)
1896 {
1897 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1898 	pg_data_t *pgdat = zone->zone_pgdat;
1899 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1900 	unsigned long spfn, epfn, flags;
1901 	unsigned long nr_pages = 0;
1902 	u64 i;
1903 
1904 	/* Only the last zone may have deferred pages */
1905 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1906 		return false;
1907 
1908 	pgdat_resize_lock(pgdat, &flags);
1909 
1910 	/*
1911 	 * If deferred pages have been initialized while we were waiting for
1912 	 * the lock, return true, as the zone was grown.  The caller will retry
1913 	 * this zone.  We won't return to this function since the caller also
1914 	 * has this static branch.
1915 	 */
1916 	if (!static_branch_unlikely(&deferred_pages)) {
1917 		pgdat_resize_unlock(pgdat, &flags);
1918 		return true;
1919 	}
1920 
1921 	/*
1922 	 * If someone grew this zone while we were waiting for spinlock, return
1923 	 * true, as there might be enough pages already.
1924 	 */
1925 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1926 		pgdat_resize_unlock(pgdat, &flags);
1927 		return true;
1928 	}
1929 
1930 	/* If the zone is empty somebody else may have cleared out the zone */
1931 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1932 						 first_deferred_pfn)) {
1933 		pgdat->first_deferred_pfn = ULONG_MAX;
1934 		pgdat_resize_unlock(pgdat, &flags);
1935 		/* Retry only once. */
1936 		return first_deferred_pfn != ULONG_MAX;
1937 	}
1938 
1939 	/*
1940 	 * Initialize and free pages in MAX_ORDER sized increments so
1941 	 * that we can avoid introducing any issues with the buddy
1942 	 * allocator.
1943 	 */
1944 	while (spfn < epfn) {
1945 		/* update our first deferred PFN for this section */
1946 		first_deferred_pfn = spfn;
1947 
1948 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1949 
1950 		/* We should only stop along section boundaries */
1951 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1952 			continue;
1953 
1954 		/* If our quota has been met we can stop here */
1955 		if (nr_pages >= nr_pages_needed)
1956 			break;
1957 	}
1958 
1959 	pgdat->first_deferred_pfn = spfn;
1960 	pgdat_resize_unlock(pgdat, &flags);
1961 
1962 	return nr_pages > 0;
1963 }
1964 
1965 /*
1966  * deferred_grow_zone() is __init, but it is called from
1967  * get_page_from_freelist() during early boot until deferred_pages permanently
1968  * disables this call. This is why we have refdata wrapper to avoid warning,
1969  * and to ensure that the function body gets unloaded.
1970  */
1971 static bool __ref
1972 _deferred_grow_zone(struct zone *zone, unsigned int order)
1973 {
1974 	return deferred_grow_zone(zone, order);
1975 }
1976 
1977 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1978 
1979 void __init page_alloc_init_late(void)
1980 {
1981 	struct zone *zone;
1982 	int nid;
1983 
1984 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1985 
1986 	/* There will be num_node_state(N_MEMORY) threads */
1987 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1988 	for_each_node_state(nid, N_MEMORY) {
1989 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1990 	}
1991 
1992 	/* Block until all are initialised */
1993 	wait_for_completion(&pgdat_init_all_done_comp);
1994 
1995 	/*
1996 	 * The number of managed pages has changed due to the initialisation
1997 	 * so the pcpu batch and high limits needs to be updated or the limits
1998 	 * will be artificially small.
1999 	 */
2000 	for_each_populated_zone(zone)
2001 		zone_pcp_update(zone);
2002 
2003 	/*
2004 	 * We initialized the rest of the deferred pages.  Permanently disable
2005 	 * on-demand struct page initialization.
2006 	 */
2007 	static_branch_disable(&deferred_pages);
2008 
2009 	/* Reinit limits that are based on free pages after the kernel is up */
2010 	files_maxfiles_init();
2011 #endif
2012 
2013 	/* Discard memblock private memory */
2014 	memblock_discard();
2015 
2016 	for_each_node_state(nid, N_MEMORY)
2017 		shuffle_free_memory(NODE_DATA(nid));
2018 
2019 	for_each_populated_zone(zone)
2020 		set_zone_contiguous(zone);
2021 }
2022 
2023 #ifdef CONFIG_CMA
2024 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2025 void __init init_cma_reserved_pageblock(struct page *page)
2026 {
2027 	unsigned i = pageblock_nr_pages;
2028 	struct page *p = page;
2029 
2030 	do {
2031 		__ClearPageReserved(p);
2032 		set_page_count(p, 0);
2033 	} while (++p, --i);
2034 
2035 	set_pageblock_migratetype(page, MIGRATE_CMA);
2036 
2037 	if (pageblock_order >= MAX_ORDER) {
2038 		i = pageblock_nr_pages;
2039 		p = page;
2040 		do {
2041 			set_page_refcounted(p);
2042 			__free_pages(p, MAX_ORDER - 1);
2043 			p += MAX_ORDER_NR_PAGES;
2044 		} while (i -= MAX_ORDER_NR_PAGES);
2045 	} else {
2046 		set_page_refcounted(page);
2047 		__free_pages(page, pageblock_order);
2048 	}
2049 
2050 	adjust_managed_page_count(page, pageblock_nr_pages);
2051 }
2052 #endif
2053 
2054 /*
2055  * The order of subdivision here is critical for the IO subsystem.
2056  * Please do not alter this order without good reasons and regression
2057  * testing. Specifically, as large blocks of memory are subdivided,
2058  * the order in which smaller blocks are delivered depends on the order
2059  * they're subdivided in this function. This is the primary factor
2060  * influencing the order in which pages are delivered to the IO
2061  * subsystem according to empirical testing, and this is also justified
2062  * by considering the behavior of a buddy system containing a single
2063  * large block of memory acted on by a series of small allocations.
2064  * This behavior is a critical factor in sglist merging's success.
2065  *
2066  * -- nyc
2067  */
2068 static inline void expand(struct zone *zone, struct page *page,
2069 	int low, int high, int migratetype)
2070 {
2071 	unsigned long size = 1 << high;
2072 
2073 	while (high > low) {
2074 		high--;
2075 		size >>= 1;
2076 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2077 
2078 		/*
2079 		 * Mark as guard pages (or page), that will allow to
2080 		 * merge back to allocator when buddy will be freed.
2081 		 * Corresponding page table entries will not be touched,
2082 		 * pages will stay not present in virtual address space
2083 		 */
2084 		if (set_page_guard(zone, &page[size], high, migratetype))
2085 			continue;
2086 
2087 		add_to_free_list(&page[size], zone, high, migratetype);
2088 		set_page_order(&page[size], high);
2089 	}
2090 }
2091 
2092 static void check_new_page_bad(struct page *page)
2093 {
2094 	const char *bad_reason = NULL;
2095 	unsigned long bad_flags = 0;
2096 
2097 	if (unlikely(atomic_read(&page->_mapcount) != -1))
2098 		bad_reason = "nonzero mapcount";
2099 	if (unlikely(page->mapping != NULL))
2100 		bad_reason = "non-NULL mapping";
2101 	if (unlikely(page_ref_count(page) != 0))
2102 		bad_reason = "nonzero _refcount";
2103 	if (unlikely(page->flags & __PG_HWPOISON)) {
2104 		bad_reason = "HWPoisoned (hardware-corrupted)";
2105 		bad_flags = __PG_HWPOISON;
2106 		/* Don't complain about hwpoisoned pages */
2107 		page_mapcount_reset(page); /* remove PageBuddy */
2108 		return;
2109 	}
2110 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2111 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2112 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2113 	}
2114 #ifdef CONFIG_MEMCG
2115 	if (unlikely(page->mem_cgroup))
2116 		bad_reason = "page still charged to cgroup";
2117 #endif
2118 	bad_page(page, bad_reason, bad_flags);
2119 }
2120 
2121 /*
2122  * This page is about to be returned from the page allocator
2123  */
2124 static inline int check_new_page(struct page *page)
2125 {
2126 	if (likely(page_expected_state(page,
2127 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2128 		return 0;
2129 
2130 	check_new_page_bad(page);
2131 	return 1;
2132 }
2133 
2134 static inline bool free_pages_prezeroed(void)
2135 {
2136 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2137 		page_poisoning_enabled()) || want_init_on_free();
2138 }
2139 
2140 #ifdef CONFIG_DEBUG_VM
2141 /*
2142  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2143  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2144  * also checked when pcp lists are refilled from the free lists.
2145  */
2146 static inline bool check_pcp_refill(struct page *page)
2147 {
2148 	if (debug_pagealloc_enabled_static())
2149 		return check_new_page(page);
2150 	else
2151 		return false;
2152 }
2153 
2154 static inline bool check_new_pcp(struct page *page)
2155 {
2156 	return check_new_page(page);
2157 }
2158 #else
2159 /*
2160  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2161  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2162  * enabled, they are also checked when being allocated from the pcp lists.
2163  */
2164 static inline bool check_pcp_refill(struct page *page)
2165 {
2166 	return check_new_page(page);
2167 }
2168 static inline bool check_new_pcp(struct page *page)
2169 {
2170 	if (debug_pagealloc_enabled_static())
2171 		return check_new_page(page);
2172 	else
2173 		return false;
2174 }
2175 #endif /* CONFIG_DEBUG_VM */
2176 
2177 static bool check_new_pages(struct page *page, unsigned int order)
2178 {
2179 	int i;
2180 	for (i = 0; i < (1 << order); i++) {
2181 		struct page *p = page + i;
2182 
2183 		if (unlikely(check_new_page(p)))
2184 			return true;
2185 	}
2186 
2187 	return false;
2188 }
2189 
2190 inline void post_alloc_hook(struct page *page, unsigned int order,
2191 				gfp_t gfp_flags)
2192 {
2193 	set_page_private(page, 0);
2194 	set_page_refcounted(page);
2195 
2196 	arch_alloc_page(page, order);
2197 	if (debug_pagealloc_enabled_static())
2198 		kernel_map_pages(page, 1 << order, 1);
2199 	kasan_alloc_pages(page, order);
2200 	kernel_poison_pages(page, 1 << order, 1);
2201 	set_page_owner(page, order, gfp_flags);
2202 }
2203 
2204 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2205 							unsigned int alloc_flags)
2206 {
2207 	post_alloc_hook(page, order, gfp_flags);
2208 
2209 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2210 		kernel_init_free_pages(page, 1 << order);
2211 
2212 	if (order && (gfp_flags & __GFP_COMP))
2213 		prep_compound_page(page, order);
2214 
2215 	/*
2216 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2217 	 * allocate the page. The expectation is that the caller is taking
2218 	 * steps that will free more memory. The caller should avoid the page
2219 	 * being used for !PFMEMALLOC purposes.
2220 	 */
2221 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2222 		set_page_pfmemalloc(page);
2223 	else
2224 		clear_page_pfmemalloc(page);
2225 }
2226 
2227 /*
2228  * Go through the free lists for the given migratetype and remove
2229  * the smallest available page from the freelists
2230  */
2231 static __always_inline
2232 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2233 						int migratetype)
2234 {
2235 	unsigned int current_order;
2236 	struct free_area *area;
2237 	struct page *page;
2238 
2239 	/* Find a page of the appropriate size in the preferred list */
2240 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2241 		area = &(zone->free_area[current_order]);
2242 		page = get_page_from_free_area(area, migratetype);
2243 		if (!page)
2244 			continue;
2245 		del_page_from_free_list(page, zone, current_order);
2246 		expand(zone, page, order, current_order, migratetype);
2247 		set_pcppage_migratetype(page, migratetype);
2248 		return page;
2249 	}
2250 
2251 	return NULL;
2252 }
2253 
2254 
2255 /*
2256  * This array describes the order lists are fallen back to when
2257  * the free lists for the desirable migrate type are depleted
2258  */
2259 static int fallbacks[MIGRATE_TYPES][4] = {
2260 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2261 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2262 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2263 #ifdef CONFIG_CMA
2264 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2265 #endif
2266 #ifdef CONFIG_MEMORY_ISOLATION
2267 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2268 #endif
2269 };
2270 
2271 #ifdef CONFIG_CMA
2272 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2273 					unsigned int order)
2274 {
2275 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2276 }
2277 #else
2278 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2279 					unsigned int order) { return NULL; }
2280 #endif
2281 
2282 /*
2283  * Move the free pages in a range to the free lists of the requested type.
2284  * Note that start_page and end_pages are not aligned on a pageblock
2285  * boundary. If alignment is required, use move_freepages_block()
2286  */
2287 static int move_freepages(struct zone *zone,
2288 			  struct page *start_page, struct page *end_page,
2289 			  int migratetype, int *num_movable)
2290 {
2291 	struct page *page;
2292 	unsigned int order;
2293 	int pages_moved = 0;
2294 
2295 	for (page = start_page; page <= end_page;) {
2296 		if (!pfn_valid_within(page_to_pfn(page))) {
2297 			page++;
2298 			continue;
2299 		}
2300 
2301 		if (!PageBuddy(page)) {
2302 			/*
2303 			 * We assume that pages that could be isolated for
2304 			 * migration are movable. But we don't actually try
2305 			 * isolating, as that would be expensive.
2306 			 */
2307 			if (num_movable &&
2308 					(PageLRU(page) || __PageMovable(page)))
2309 				(*num_movable)++;
2310 
2311 			page++;
2312 			continue;
2313 		}
2314 
2315 		/* Make sure we are not inadvertently changing nodes */
2316 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2317 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2318 
2319 		order = page_order(page);
2320 		move_to_free_list(page, zone, order, migratetype);
2321 		page += 1 << order;
2322 		pages_moved += 1 << order;
2323 	}
2324 
2325 	return pages_moved;
2326 }
2327 
2328 int move_freepages_block(struct zone *zone, struct page *page,
2329 				int migratetype, int *num_movable)
2330 {
2331 	unsigned long start_pfn, end_pfn;
2332 	struct page *start_page, *end_page;
2333 
2334 	if (num_movable)
2335 		*num_movable = 0;
2336 
2337 	start_pfn = page_to_pfn(page);
2338 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2339 	start_page = pfn_to_page(start_pfn);
2340 	end_page = start_page + pageblock_nr_pages - 1;
2341 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2342 
2343 	/* Do not cross zone boundaries */
2344 	if (!zone_spans_pfn(zone, start_pfn))
2345 		start_page = page;
2346 	if (!zone_spans_pfn(zone, end_pfn))
2347 		return 0;
2348 
2349 	return move_freepages(zone, start_page, end_page, migratetype,
2350 								num_movable);
2351 }
2352 
2353 static void change_pageblock_range(struct page *pageblock_page,
2354 					int start_order, int migratetype)
2355 {
2356 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2357 
2358 	while (nr_pageblocks--) {
2359 		set_pageblock_migratetype(pageblock_page, migratetype);
2360 		pageblock_page += pageblock_nr_pages;
2361 	}
2362 }
2363 
2364 /*
2365  * When we are falling back to another migratetype during allocation, try to
2366  * steal extra free pages from the same pageblocks to satisfy further
2367  * allocations, instead of polluting multiple pageblocks.
2368  *
2369  * If we are stealing a relatively large buddy page, it is likely there will
2370  * be more free pages in the pageblock, so try to steal them all. For
2371  * reclaimable and unmovable allocations, we steal regardless of page size,
2372  * as fragmentation caused by those allocations polluting movable pageblocks
2373  * is worse than movable allocations stealing from unmovable and reclaimable
2374  * pageblocks.
2375  */
2376 static bool can_steal_fallback(unsigned int order, int start_mt)
2377 {
2378 	/*
2379 	 * Leaving this order check is intended, although there is
2380 	 * relaxed order check in next check. The reason is that
2381 	 * we can actually steal whole pageblock if this condition met,
2382 	 * but, below check doesn't guarantee it and that is just heuristic
2383 	 * so could be changed anytime.
2384 	 */
2385 	if (order >= pageblock_order)
2386 		return true;
2387 
2388 	if (order >= pageblock_order / 2 ||
2389 		start_mt == MIGRATE_RECLAIMABLE ||
2390 		start_mt == MIGRATE_UNMOVABLE ||
2391 		page_group_by_mobility_disabled)
2392 		return true;
2393 
2394 	return false;
2395 }
2396 
2397 static inline void boost_watermark(struct zone *zone)
2398 {
2399 	unsigned long max_boost;
2400 
2401 	if (!watermark_boost_factor)
2402 		return;
2403 
2404 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2405 			watermark_boost_factor, 10000);
2406 
2407 	/*
2408 	 * high watermark may be uninitialised if fragmentation occurs
2409 	 * very early in boot so do not boost. We do not fall
2410 	 * through and boost by pageblock_nr_pages as failing
2411 	 * allocations that early means that reclaim is not going
2412 	 * to help and it may even be impossible to reclaim the
2413 	 * boosted watermark resulting in a hang.
2414 	 */
2415 	if (!max_boost)
2416 		return;
2417 
2418 	max_boost = max(pageblock_nr_pages, max_boost);
2419 
2420 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2421 		max_boost);
2422 }
2423 
2424 /*
2425  * This function implements actual steal behaviour. If order is large enough,
2426  * we can steal whole pageblock. If not, we first move freepages in this
2427  * pageblock to our migratetype and determine how many already-allocated pages
2428  * are there in the pageblock with a compatible migratetype. If at least half
2429  * of pages are free or compatible, we can change migratetype of the pageblock
2430  * itself, so pages freed in the future will be put on the correct free list.
2431  */
2432 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2433 		unsigned int alloc_flags, int start_type, bool whole_block)
2434 {
2435 	unsigned int current_order = page_order(page);
2436 	int free_pages, movable_pages, alike_pages;
2437 	int old_block_type;
2438 
2439 	old_block_type = get_pageblock_migratetype(page);
2440 
2441 	/*
2442 	 * This can happen due to races and we want to prevent broken
2443 	 * highatomic accounting.
2444 	 */
2445 	if (is_migrate_highatomic(old_block_type))
2446 		goto single_page;
2447 
2448 	/* Take ownership for orders >= pageblock_order */
2449 	if (current_order >= pageblock_order) {
2450 		change_pageblock_range(page, current_order, start_type);
2451 		goto single_page;
2452 	}
2453 
2454 	/*
2455 	 * Boost watermarks to increase reclaim pressure to reduce the
2456 	 * likelihood of future fallbacks. Wake kswapd now as the node
2457 	 * may be balanced overall and kswapd will not wake naturally.
2458 	 */
2459 	boost_watermark(zone);
2460 	if (alloc_flags & ALLOC_KSWAPD)
2461 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2462 
2463 	/* We are not allowed to try stealing from the whole block */
2464 	if (!whole_block)
2465 		goto single_page;
2466 
2467 	free_pages = move_freepages_block(zone, page, start_type,
2468 						&movable_pages);
2469 	/*
2470 	 * Determine how many pages are compatible with our allocation.
2471 	 * For movable allocation, it's the number of movable pages which
2472 	 * we just obtained. For other types it's a bit more tricky.
2473 	 */
2474 	if (start_type == MIGRATE_MOVABLE) {
2475 		alike_pages = movable_pages;
2476 	} else {
2477 		/*
2478 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2479 		 * to MOVABLE pageblock, consider all non-movable pages as
2480 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2481 		 * vice versa, be conservative since we can't distinguish the
2482 		 * exact migratetype of non-movable pages.
2483 		 */
2484 		if (old_block_type == MIGRATE_MOVABLE)
2485 			alike_pages = pageblock_nr_pages
2486 						- (free_pages + movable_pages);
2487 		else
2488 			alike_pages = 0;
2489 	}
2490 
2491 	/* moving whole block can fail due to zone boundary conditions */
2492 	if (!free_pages)
2493 		goto single_page;
2494 
2495 	/*
2496 	 * If a sufficient number of pages in the block are either free or of
2497 	 * comparable migratability as our allocation, claim the whole block.
2498 	 */
2499 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2500 			page_group_by_mobility_disabled)
2501 		set_pageblock_migratetype(page, start_type);
2502 
2503 	return;
2504 
2505 single_page:
2506 	move_to_free_list(page, zone, current_order, start_type);
2507 }
2508 
2509 /*
2510  * Check whether there is a suitable fallback freepage with requested order.
2511  * If only_stealable is true, this function returns fallback_mt only if
2512  * we can steal other freepages all together. This would help to reduce
2513  * fragmentation due to mixed migratetype pages in one pageblock.
2514  */
2515 int find_suitable_fallback(struct free_area *area, unsigned int order,
2516 			int migratetype, bool only_stealable, bool *can_steal)
2517 {
2518 	int i;
2519 	int fallback_mt;
2520 
2521 	if (area->nr_free == 0)
2522 		return -1;
2523 
2524 	*can_steal = false;
2525 	for (i = 0;; i++) {
2526 		fallback_mt = fallbacks[migratetype][i];
2527 		if (fallback_mt == MIGRATE_TYPES)
2528 			break;
2529 
2530 		if (free_area_empty(area, fallback_mt))
2531 			continue;
2532 
2533 		if (can_steal_fallback(order, migratetype))
2534 			*can_steal = true;
2535 
2536 		if (!only_stealable)
2537 			return fallback_mt;
2538 
2539 		if (*can_steal)
2540 			return fallback_mt;
2541 	}
2542 
2543 	return -1;
2544 }
2545 
2546 /*
2547  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2548  * there are no empty page blocks that contain a page with a suitable order
2549  */
2550 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2551 				unsigned int alloc_order)
2552 {
2553 	int mt;
2554 	unsigned long max_managed, flags;
2555 
2556 	/*
2557 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2558 	 * Check is race-prone but harmless.
2559 	 */
2560 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2561 	if (zone->nr_reserved_highatomic >= max_managed)
2562 		return;
2563 
2564 	spin_lock_irqsave(&zone->lock, flags);
2565 
2566 	/* Recheck the nr_reserved_highatomic limit under the lock */
2567 	if (zone->nr_reserved_highatomic >= max_managed)
2568 		goto out_unlock;
2569 
2570 	/* Yoink! */
2571 	mt = get_pageblock_migratetype(page);
2572 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2573 	    && !is_migrate_cma(mt)) {
2574 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2575 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2576 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2577 	}
2578 
2579 out_unlock:
2580 	spin_unlock_irqrestore(&zone->lock, flags);
2581 }
2582 
2583 /*
2584  * Used when an allocation is about to fail under memory pressure. This
2585  * potentially hurts the reliability of high-order allocations when under
2586  * intense memory pressure but failed atomic allocations should be easier
2587  * to recover from than an OOM.
2588  *
2589  * If @force is true, try to unreserve a pageblock even though highatomic
2590  * pageblock is exhausted.
2591  */
2592 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2593 						bool force)
2594 {
2595 	struct zonelist *zonelist = ac->zonelist;
2596 	unsigned long flags;
2597 	struct zoneref *z;
2598 	struct zone *zone;
2599 	struct page *page;
2600 	int order;
2601 	bool ret;
2602 
2603 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2604 								ac->nodemask) {
2605 		/*
2606 		 * Preserve at least one pageblock unless memory pressure
2607 		 * is really high.
2608 		 */
2609 		if (!force && zone->nr_reserved_highatomic <=
2610 					pageblock_nr_pages)
2611 			continue;
2612 
2613 		spin_lock_irqsave(&zone->lock, flags);
2614 		for (order = 0; order < MAX_ORDER; order++) {
2615 			struct free_area *area = &(zone->free_area[order]);
2616 
2617 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2618 			if (!page)
2619 				continue;
2620 
2621 			/*
2622 			 * In page freeing path, migratetype change is racy so
2623 			 * we can counter several free pages in a pageblock
2624 			 * in this loop althoug we changed the pageblock type
2625 			 * from highatomic to ac->migratetype. So we should
2626 			 * adjust the count once.
2627 			 */
2628 			if (is_migrate_highatomic_page(page)) {
2629 				/*
2630 				 * It should never happen but changes to
2631 				 * locking could inadvertently allow a per-cpu
2632 				 * drain to add pages to MIGRATE_HIGHATOMIC
2633 				 * while unreserving so be safe and watch for
2634 				 * underflows.
2635 				 */
2636 				zone->nr_reserved_highatomic -= min(
2637 						pageblock_nr_pages,
2638 						zone->nr_reserved_highatomic);
2639 			}
2640 
2641 			/*
2642 			 * Convert to ac->migratetype and avoid the normal
2643 			 * pageblock stealing heuristics. Minimally, the caller
2644 			 * is doing the work and needs the pages. More
2645 			 * importantly, if the block was always converted to
2646 			 * MIGRATE_UNMOVABLE or another type then the number
2647 			 * of pageblocks that cannot be completely freed
2648 			 * may increase.
2649 			 */
2650 			set_pageblock_migratetype(page, ac->migratetype);
2651 			ret = move_freepages_block(zone, page, ac->migratetype,
2652 									NULL);
2653 			if (ret) {
2654 				spin_unlock_irqrestore(&zone->lock, flags);
2655 				return ret;
2656 			}
2657 		}
2658 		spin_unlock_irqrestore(&zone->lock, flags);
2659 	}
2660 
2661 	return false;
2662 }
2663 
2664 /*
2665  * Try finding a free buddy page on the fallback list and put it on the free
2666  * list of requested migratetype, possibly along with other pages from the same
2667  * block, depending on fragmentation avoidance heuristics. Returns true if
2668  * fallback was found so that __rmqueue_smallest() can grab it.
2669  *
2670  * The use of signed ints for order and current_order is a deliberate
2671  * deviation from the rest of this file, to make the for loop
2672  * condition simpler.
2673  */
2674 static __always_inline bool
2675 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2676 						unsigned int alloc_flags)
2677 {
2678 	struct free_area *area;
2679 	int current_order;
2680 	int min_order = order;
2681 	struct page *page;
2682 	int fallback_mt;
2683 	bool can_steal;
2684 
2685 	/*
2686 	 * Do not steal pages from freelists belonging to other pageblocks
2687 	 * i.e. orders < pageblock_order. If there are no local zones free,
2688 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2689 	 */
2690 	if (alloc_flags & ALLOC_NOFRAGMENT)
2691 		min_order = pageblock_order;
2692 
2693 	/*
2694 	 * Find the largest available free page in the other list. This roughly
2695 	 * approximates finding the pageblock with the most free pages, which
2696 	 * would be too costly to do exactly.
2697 	 */
2698 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2699 				--current_order) {
2700 		area = &(zone->free_area[current_order]);
2701 		fallback_mt = find_suitable_fallback(area, current_order,
2702 				start_migratetype, false, &can_steal);
2703 		if (fallback_mt == -1)
2704 			continue;
2705 
2706 		/*
2707 		 * We cannot steal all free pages from the pageblock and the
2708 		 * requested migratetype is movable. In that case it's better to
2709 		 * steal and split the smallest available page instead of the
2710 		 * largest available page, because even if the next movable
2711 		 * allocation falls back into a different pageblock than this
2712 		 * one, it won't cause permanent fragmentation.
2713 		 */
2714 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2715 					&& current_order > order)
2716 			goto find_smallest;
2717 
2718 		goto do_steal;
2719 	}
2720 
2721 	return false;
2722 
2723 find_smallest:
2724 	for (current_order = order; current_order < MAX_ORDER;
2725 							current_order++) {
2726 		area = &(zone->free_area[current_order]);
2727 		fallback_mt = find_suitable_fallback(area, current_order,
2728 				start_migratetype, false, &can_steal);
2729 		if (fallback_mt != -1)
2730 			break;
2731 	}
2732 
2733 	/*
2734 	 * This should not happen - we already found a suitable fallback
2735 	 * when looking for the largest page.
2736 	 */
2737 	VM_BUG_ON(current_order == MAX_ORDER);
2738 
2739 do_steal:
2740 	page = get_page_from_free_area(area, fallback_mt);
2741 
2742 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2743 								can_steal);
2744 
2745 	trace_mm_page_alloc_extfrag(page, order, current_order,
2746 		start_migratetype, fallback_mt);
2747 
2748 	return true;
2749 
2750 }
2751 
2752 /*
2753  * Do the hard work of removing an element from the buddy allocator.
2754  * Call me with the zone->lock already held.
2755  */
2756 static __always_inline struct page *
2757 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2758 						unsigned int alloc_flags)
2759 {
2760 	struct page *page;
2761 
2762 retry:
2763 	page = __rmqueue_smallest(zone, order, migratetype);
2764 	if (unlikely(!page)) {
2765 		if (migratetype == MIGRATE_MOVABLE)
2766 			page = __rmqueue_cma_fallback(zone, order);
2767 
2768 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2769 								alloc_flags))
2770 			goto retry;
2771 	}
2772 
2773 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2774 	return page;
2775 }
2776 
2777 /*
2778  * Obtain a specified number of elements from the buddy allocator, all under
2779  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2780  * Returns the number of new pages which were placed at *list.
2781  */
2782 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2783 			unsigned long count, struct list_head *list,
2784 			int migratetype, unsigned int alloc_flags)
2785 {
2786 	int i, alloced = 0;
2787 
2788 	spin_lock(&zone->lock);
2789 	for (i = 0; i < count; ++i) {
2790 		struct page *page = __rmqueue(zone, order, migratetype,
2791 								alloc_flags);
2792 		if (unlikely(page == NULL))
2793 			break;
2794 
2795 		if (unlikely(check_pcp_refill(page)))
2796 			continue;
2797 
2798 		/*
2799 		 * Split buddy pages returned by expand() are received here in
2800 		 * physical page order. The page is added to the tail of
2801 		 * caller's list. From the callers perspective, the linked list
2802 		 * is ordered by page number under some conditions. This is
2803 		 * useful for IO devices that can forward direction from the
2804 		 * head, thus also in the physical page order. This is useful
2805 		 * for IO devices that can merge IO requests if the physical
2806 		 * pages are ordered properly.
2807 		 */
2808 		list_add_tail(&page->lru, list);
2809 		alloced++;
2810 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2811 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2812 					      -(1 << order));
2813 	}
2814 
2815 	/*
2816 	 * i pages were removed from the buddy list even if some leak due
2817 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2818 	 * on i. Do not confuse with 'alloced' which is the number of
2819 	 * pages added to the pcp list.
2820 	 */
2821 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2822 	spin_unlock(&zone->lock);
2823 	return alloced;
2824 }
2825 
2826 #ifdef CONFIG_NUMA
2827 /*
2828  * Called from the vmstat counter updater to drain pagesets of this
2829  * currently executing processor on remote nodes after they have
2830  * expired.
2831  *
2832  * Note that this function must be called with the thread pinned to
2833  * a single processor.
2834  */
2835 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2836 {
2837 	unsigned long flags;
2838 	int to_drain, batch;
2839 
2840 	local_irq_save(flags);
2841 	batch = READ_ONCE(pcp->batch);
2842 	to_drain = min(pcp->count, batch);
2843 	if (to_drain > 0)
2844 		free_pcppages_bulk(zone, to_drain, pcp);
2845 	local_irq_restore(flags);
2846 }
2847 #endif
2848 
2849 /*
2850  * Drain pcplists of the indicated processor and zone.
2851  *
2852  * The processor must either be the current processor and the
2853  * thread pinned to the current processor or a processor that
2854  * is not online.
2855  */
2856 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2857 {
2858 	unsigned long flags;
2859 	struct per_cpu_pageset *pset;
2860 	struct per_cpu_pages *pcp;
2861 
2862 	local_irq_save(flags);
2863 	pset = per_cpu_ptr(zone->pageset, cpu);
2864 
2865 	pcp = &pset->pcp;
2866 	if (pcp->count)
2867 		free_pcppages_bulk(zone, pcp->count, pcp);
2868 	local_irq_restore(flags);
2869 }
2870 
2871 /*
2872  * Drain pcplists of all zones on the indicated processor.
2873  *
2874  * The processor must either be the current processor and the
2875  * thread pinned to the current processor or a processor that
2876  * is not online.
2877  */
2878 static void drain_pages(unsigned int cpu)
2879 {
2880 	struct zone *zone;
2881 
2882 	for_each_populated_zone(zone) {
2883 		drain_pages_zone(cpu, zone);
2884 	}
2885 }
2886 
2887 /*
2888  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2889  *
2890  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2891  * the single zone's pages.
2892  */
2893 void drain_local_pages(struct zone *zone)
2894 {
2895 	int cpu = smp_processor_id();
2896 
2897 	if (zone)
2898 		drain_pages_zone(cpu, zone);
2899 	else
2900 		drain_pages(cpu);
2901 }
2902 
2903 static void drain_local_pages_wq(struct work_struct *work)
2904 {
2905 	struct pcpu_drain *drain;
2906 
2907 	drain = container_of(work, struct pcpu_drain, work);
2908 
2909 	/*
2910 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2911 	 * we can race with cpu offline when the WQ can move this from
2912 	 * a cpu pinned worker to an unbound one. We can operate on a different
2913 	 * cpu which is allright but we also have to make sure to not move to
2914 	 * a different one.
2915 	 */
2916 	preempt_disable();
2917 	drain_local_pages(drain->zone);
2918 	preempt_enable();
2919 }
2920 
2921 /*
2922  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2923  *
2924  * When zone parameter is non-NULL, spill just the single zone's pages.
2925  *
2926  * Note that this can be extremely slow as the draining happens in a workqueue.
2927  */
2928 void drain_all_pages(struct zone *zone)
2929 {
2930 	int cpu;
2931 
2932 	/*
2933 	 * Allocate in the BSS so we wont require allocation in
2934 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2935 	 */
2936 	static cpumask_t cpus_with_pcps;
2937 
2938 	/*
2939 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2940 	 * initialized.
2941 	 */
2942 	if (WARN_ON_ONCE(!mm_percpu_wq))
2943 		return;
2944 
2945 	/*
2946 	 * Do not drain if one is already in progress unless it's specific to
2947 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2948 	 * the drain to be complete when the call returns.
2949 	 */
2950 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2951 		if (!zone)
2952 			return;
2953 		mutex_lock(&pcpu_drain_mutex);
2954 	}
2955 
2956 	/*
2957 	 * We don't care about racing with CPU hotplug event
2958 	 * as offline notification will cause the notified
2959 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2960 	 * disables preemption as part of its processing
2961 	 */
2962 	for_each_online_cpu(cpu) {
2963 		struct per_cpu_pageset *pcp;
2964 		struct zone *z;
2965 		bool has_pcps = false;
2966 
2967 		if (zone) {
2968 			pcp = per_cpu_ptr(zone->pageset, cpu);
2969 			if (pcp->pcp.count)
2970 				has_pcps = true;
2971 		} else {
2972 			for_each_populated_zone(z) {
2973 				pcp = per_cpu_ptr(z->pageset, cpu);
2974 				if (pcp->pcp.count) {
2975 					has_pcps = true;
2976 					break;
2977 				}
2978 			}
2979 		}
2980 
2981 		if (has_pcps)
2982 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2983 		else
2984 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2985 	}
2986 
2987 	for_each_cpu(cpu, &cpus_with_pcps) {
2988 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2989 
2990 		drain->zone = zone;
2991 		INIT_WORK(&drain->work, drain_local_pages_wq);
2992 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2993 	}
2994 	for_each_cpu(cpu, &cpus_with_pcps)
2995 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2996 
2997 	mutex_unlock(&pcpu_drain_mutex);
2998 }
2999 
3000 #ifdef CONFIG_HIBERNATION
3001 
3002 /*
3003  * Touch the watchdog for every WD_PAGE_COUNT pages.
3004  */
3005 #define WD_PAGE_COUNT	(128*1024)
3006 
3007 void mark_free_pages(struct zone *zone)
3008 {
3009 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3010 	unsigned long flags;
3011 	unsigned int order, t;
3012 	struct page *page;
3013 
3014 	if (zone_is_empty(zone))
3015 		return;
3016 
3017 	spin_lock_irqsave(&zone->lock, flags);
3018 
3019 	max_zone_pfn = zone_end_pfn(zone);
3020 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3021 		if (pfn_valid(pfn)) {
3022 			page = pfn_to_page(pfn);
3023 
3024 			if (!--page_count) {
3025 				touch_nmi_watchdog();
3026 				page_count = WD_PAGE_COUNT;
3027 			}
3028 
3029 			if (page_zone(page) != zone)
3030 				continue;
3031 
3032 			if (!swsusp_page_is_forbidden(page))
3033 				swsusp_unset_page_free(page);
3034 		}
3035 
3036 	for_each_migratetype_order(order, t) {
3037 		list_for_each_entry(page,
3038 				&zone->free_area[order].free_list[t], lru) {
3039 			unsigned long i;
3040 
3041 			pfn = page_to_pfn(page);
3042 			for (i = 0; i < (1UL << order); i++) {
3043 				if (!--page_count) {
3044 					touch_nmi_watchdog();
3045 					page_count = WD_PAGE_COUNT;
3046 				}
3047 				swsusp_set_page_free(pfn_to_page(pfn + i));
3048 			}
3049 		}
3050 	}
3051 	spin_unlock_irqrestore(&zone->lock, flags);
3052 }
3053 #endif /* CONFIG_PM */
3054 
3055 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3056 {
3057 	int migratetype;
3058 
3059 	if (!free_pcp_prepare(page))
3060 		return false;
3061 
3062 	migratetype = get_pfnblock_migratetype(page, pfn);
3063 	set_pcppage_migratetype(page, migratetype);
3064 	return true;
3065 }
3066 
3067 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3068 {
3069 	struct zone *zone = page_zone(page);
3070 	struct per_cpu_pages *pcp;
3071 	int migratetype;
3072 
3073 	migratetype = get_pcppage_migratetype(page);
3074 	__count_vm_event(PGFREE);
3075 
3076 	/*
3077 	 * We only track unmovable, reclaimable and movable on pcp lists.
3078 	 * Free ISOLATE pages back to the allocator because they are being
3079 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3080 	 * areas back if necessary. Otherwise, we may have to free
3081 	 * excessively into the page allocator
3082 	 */
3083 	if (migratetype >= MIGRATE_PCPTYPES) {
3084 		if (unlikely(is_migrate_isolate(migratetype))) {
3085 			free_one_page(zone, page, pfn, 0, migratetype);
3086 			return;
3087 		}
3088 		migratetype = MIGRATE_MOVABLE;
3089 	}
3090 
3091 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3092 	list_add(&page->lru, &pcp->lists[migratetype]);
3093 	pcp->count++;
3094 	if (pcp->count >= pcp->high) {
3095 		unsigned long batch = READ_ONCE(pcp->batch);
3096 		free_pcppages_bulk(zone, batch, pcp);
3097 	}
3098 }
3099 
3100 /*
3101  * Free a 0-order page
3102  */
3103 void free_unref_page(struct page *page)
3104 {
3105 	unsigned long flags;
3106 	unsigned long pfn = page_to_pfn(page);
3107 
3108 	if (!free_unref_page_prepare(page, pfn))
3109 		return;
3110 
3111 	local_irq_save(flags);
3112 	free_unref_page_commit(page, pfn);
3113 	local_irq_restore(flags);
3114 }
3115 
3116 /*
3117  * Free a list of 0-order pages
3118  */
3119 void free_unref_page_list(struct list_head *list)
3120 {
3121 	struct page *page, *next;
3122 	unsigned long flags, pfn;
3123 	int batch_count = 0;
3124 
3125 	/* Prepare pages for freeing */
3126 	list_for_each_entry_safe(page, next, list, lru) {
3127 		pfn = page_to_pfn(page);
3128 		if (!free_unref_page_prepare(page, pfn))
3129 			list_del(&page->lru);
3130 		set_page_private(page, pfn);
3131 	}
3132 
3133 	local_irq_save(flags);
3134 	list_for_each_entry_safe(page, next, list, lru) {
3135 		unsigned long pfn = page_private(page);
3136 
3137 		set_page_private(page, 0);
3138 		trace_mm_page_free_batched(page);
3139 		free_unref_page_commit(page, pfn);
3140 
3141 		/*
3142 		 * Guard against excessive IRQ disabled times when we get
3143 		 * a large list of pages to free.
3144 		 */
3145 		if (++batch_count == SWAP_CLUSTER_MAX) {
3146 			local_irq_restore(flags);
3147 			batch_count = 0;
3148 			local_irq_save(flags);
3149 		}
3150 	}
3151 	local_irq_restore(flags);
3152 }
3153 
3154 /*
3155  * split_page takes a non-compound higher-order page, and splits it into
3156  * n (1<<order) sub-pages: page[0..n]
3157  * Each sub-page must be freed individually.
3158  *
3159  * Note: this is probably too low level an operation for use in drivers.
3160  * Please consult with lkml before using this in your driver.
3161  */
3162 void split_page(struct page *page, unsigned int order)
3163 {
3164 	int i;
3165 
3166 	VM_BUG_ON_PAGE(PageCompound(page), page);
3167 	VM_BUG_ON_PAGE(!page_count(page), page);
3168 
3169 	for (i = 1; i < (1 << order); i++)
3170 		set_page_refcounted(page + i);
3171 	split_page_owner(page, order);
3172 }
3173 EXPORT_SYMBOL_GPL(split_page);
3174 
3175 int __isolate_free_page(struct page *page, unsigned int order)
3176 {
3177 	unsigned long watermark;
3178 	struct zone *zone;
3179 	int mt;
3180 
3181 	BUG_ON(!PageBuddy(page));
3182 
3183 	zone = page_zone(page);
3184 	mt = get_pageblock_migratetype(page);
3185 
3186 	if (!is_migrate_isolate(mt)) {
3187 		/*
3188 		 * Obey watermarks as if the page was being allocated. We can
3189 		 * emulate a high-order watermark check with a raised order-0
3190 		 * watermark, because we already know our high-order page
3191 		 * exists.
3192 		 */
3193 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3194 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3195 			return 0;
3196 
3197 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3198 	}
3199 
3200 	/* Remove page from free list */
3201 
3202 	del_page_from_free_list(page, zone, order);
3203 
3204 	/*
3205 	 * Set the pageblock if the isolated page is at least half of a
3206 	 * pageblock
3207 	 */
3208 	if (order >= pageblock_order - 1) {
3209 		struct page *endpage = page + (1 << order) - 1;
3210 		for (; page < endpage; page += pageblock_nr_pages) {
3211 			int mt = get_pageblock_migratetype(page);
3212 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3213 			    && !is_migrate_highatomic(mt))
3214 				set_pageblock_migratetype(page,
3215 							  MIGRATE_MOVABLE);
3216 		}
3217 	}
3218 
3219 
3220 	return 1UL << order;
3221 }
3222 
3223 /**
3224  * __putback_isolated_page - Return a now-isolated page back where we got it
3225  * @page: Page that was isolated
3226  * @order: Order of the isolated page
3227  * @mt: The page's pageblock's migratetype
3228  *
3229  * This function is meant to return a page pulled from the free lists via
3230  * __isolate_free_page back to the free lists they were pulled from.
3231  */
3232 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3233 {
3234 	struct zone *zone = page_zone(page);
3235 
3236 	/* zone lock should be held when this function is called */
3237 	lockdep_assert_held(&zone->lock);
3238 
3239 	/* Return isolated page to tail of freelist. */
3240 	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3241 }
3242 
3243 /*
3244  * Update NUMA hit/miss statistics
3245  *
3246  * Must be called with interrupts disabled.
3247  */
3248 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3249 {
3250 #ifdef CONFIG_NUMA
3251 	enum numa_stat_item local_stat = NUMA_LOCAL;
3252 
3253 	/* skip numa counters update if numa stats is disabled */
3254 	if (!static_branch_likely(&vm_numa_stat_key))
3255 		return;
3256 
3257 	if (zone_to_nid(z) != numa_node_id())
3258 		local_stat = NUMA_OTHER;
3259 
3260 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3261 		__inc_numa_state(z, NUMA_HIT);
3262 	else {
3263 		__inc_numa_state(z, NUMA_MISS);
3264 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3265 	}
3266 	__inc_numa_state(z, local_stat);
3267 #endif
3268 }
3269 
3270 /* Remove page from the per-cpu list, caller must protect the list */
3271 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3272 			unsigned int alloc_flags,
3273 			struct per_cpu_pages *pcp,
3274 			struct list_head *list)
3275 {
3276 	struct page *page;
3277 
3278 	do {
3279 		if (list_empty(list)) {
3280 			pcp->count += rmqueue_bulk(zone, 0,
3281 					pcp->batch, list,
3282 					migratetype, alloc_flags);
3283 			if (unlikely(list_empty(list)))
3284 				return NULL;
3285 		}
3286 
3287 		page = list_first_entry(list, struct page, lru);
3288 		list_del(&page->lru);
3289 		pcp->count--;
3290 	} while (check_new_pcp(page));
3291 
3292 	return page;
3293 }
3294 
3295 /* Lock and remove page from the per-cpu list */
3296 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3297 			struct zone *zone, gfp_t gfp_flags,
3298 			int migratetype, unsigned int alloc_flags)
3299 {
3300 	struct per_cpu_pages *pcp;
3301 	struct list_head *list;
3302 	struct page *page;
3303 	unsigned long flags;
3304 
3305 	local_irq_save(flags);
3306 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3307 	list = &pcp->lists[migratetype];
3308 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3309 	if (page) {
3310 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3311 		zone_statistics(preferred_zone, zone);
3312 	}
3313 	local_irq_restore(flags);
3314 	return page;
3315 }
3316 
3317 /*
3318  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3319  */
3320 static inline
3321 struct page *rmqueue(struct zone *preferred_zone,
3322 			struct zone *zone, unsigned int order,
3323 			gfp_t gfp_flags, unsigned int alloc_flags,
3324 			int migratetype)
3325 {
3326 	unsigned long flags;
3327 	struct page *page;
3328 
3329 	if (likely(order == 0)) {
3330 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3331 					migratetype, alloc_flags);
3332 		goto out;
3333 	}
3334 
3335 	/*
3336 	 * We most definitely don't want callers attempting to
3337 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3338 	 */
3339 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3340 	spin_lock_irqsave(&zone->lock, flags);
3341 
3342 	do {
3343 		page = NULL;
3344 		if (alloc_flags & ALLOC_HARDER) {
3345 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3346 			if (page)
3347 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3348 		}
3349 		if (!page)
3350 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3351 	} while (page && check_new_pages(page, order));
3352 	spin_unlock(&zone->lock);
3353 	if (!page)
3354 		goto failed;
3355 	__mod_zone_freepage_state(zone, -(1 << order),
3356 				  get_pcppage_migratetype(page));
3357 
3358 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3359 	zone_statistics(preferred_zone, zone);
3360 	local_irq_restore(flags);
3361 
3362 out:
3363 	/* Separate test+clear to avoid unnecessary atomics */
3364 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3365 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3366 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3367 	}
3368 
3369 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3370 	return page;
3371 
3372 failed:
3373 	local_irq_restore(flags);
3374 	return NULL;
3375 }
3376 
3377 #ifdef CONFIG_FAIL_PAGE_ALLOC
3378 
3379 static struct {
3380 	struct fault_attr attr;
3381 
3382 	bool ignore_gfp_highmem;
3383 	bool ignore_gfp_reclaim;
3384 	u32 min_order;
3385 } fail_page_alloc = {
3386 	.attr = FAULT_ATTR_INITIALIZER,
3387 	.ignore_gfp_reclaim = true,
3388 	.ignore_gfp_highmem = true,
3389 	.min_order = 1,
3390 };
3391 
3392 static int __init setup_fail_page_alloc(char *str)
3393 {
3394 	return setup_fault_attr(&fail_page_alloc.attr, str);
3395 }
3396 __setup("fail_page_alloc=", setup_fail_page_alloc);
3397 
3398 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3399 {
3400 	if (order < fail_page_alloc.min_order)
3401 		return false;
3402 	if (gfp_mask & __GFP_NOFAIL)
3403 		return false;
3404 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3405 		return false;
3406 	if (fail_page_alloc.ignore_gfp_reclaim &&
3407 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3408 		return false;
3409 
3410 	return should_fail(&fail_page_alloc.attr, 1 << order);
3411 }
3412 
3413 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3414 
3415 static int __init fail_page_alloc_debugfs(void)
3416 {
3417 	umode_t mode = S_IFREG | 0600;
3418 	struct dentry *dir;
3419 
3420 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3421 					&fail_page_alloc.attr);
3422 
3423 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3424 			    &fail_page_alloc.ignore_gfp_reclaim);
3425 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3426 			    &fail_page_alloc.ignore_gfp_highmem);
3427 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3428 
3429 	return 0;
3430 }
3431 
3432 late_initcall(fail_page_alloc_debugfs);
3433 
3434 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3435 
3436 #else /* CONFIG_FAIL_PAGE_ALLOC */
3437 
3438 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3439 {
3440 	return false;
3441 }
3442 
3443 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3444 
3445 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3446 {
3447 	return __should_fail_alloc_page(gfp_mask, order);
3448 }
3449 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3450 
3451 /*
3452  * Return true if free base pages are above 'mark'. For high-order checks it
3453  * will return true of the order-0 watermark is reached and there is at least
3454  * one free page of a suitable size. Checking now avoids taking the zone lock
3455  * to check in the allocation paths if no pages are free.
3456  */
3457 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3458 			 int classzone_idx, unsigned int alloc_flags,
3459 			 long free_pages)
3460 {
3461 	long min = mark;
3462 	int o;
3463 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3464 
3465 	/* free_pages may go negative - that's OK */
3466 	free_pages -= (1 << order) - 1;
3467 
3468 	if (alloc_flags & ALLOC_HIGH)
3469 		min -= min / 2;
3470 
3471 	/*
3472 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3473 	 * the high-atomic reserves. This will over-estimate the size of the
3474 	 * atomic reserve but it avoids a search.
3475 	 */
3476 	if (likely(!alloc_harder)) {
3477 		free_pages -= z->nr_reserved_highatomic;
3478 	} else {
3479 		/*
3480 		 * OOM victims can try even harder than normal ALLOC_HARDER
3481 		 * users on the grounds that it's definitely going to be in
3482 		 * the exit path shortly and free memory. Any allocation it
3483 		 * makes during the free path will be small and short-lived.
3484 		 */
3485 		if (alloc_flags & ALLOC_OOM)
3486 			min -= min / 2;
3487 		else
3488 			min -= min / 4;
3489 	}
3490 
3491 
3492 #ifdef CONFIG_CMA
3493 	/* If allocation can't use CMA areas don't use free CMA pages */
3494 	if (!(alloc_flags & ALLOC_CMA))
3495 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3496 #endif
3497 
3498 	/*
3499 	 * Check watermarks for an order-0 allocation request. If these
3500 	 * are not met, then a high-order request also cannot go ahead
3501 	 * even if a suitable page happened to be free.
3502 	 */
3503 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3504 		return false;
3505 
3506 	/* If this is an order-0 request then the watermark is fine */
3507 	if (!order)
3508 		return true;
3509 
3510 	/* For a high-order request, check at least one suitable page is free */
3511 	for (o = order; o < MAX_ORDER; o++) {
3512 		struct free_area *area = &z->free_area[o];
3513 		int mt;
3514 
3515 		if (!area->nr_free)
3516 			continue;
3517 
3518 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3519 			if (!free_area_empty(area, mt))
3520 				return true;
3521 		}
3522 
3523 #ifdef CONFIG_CMA
3524 		if ((alloc_flags & ALLOC_CMA) &&
3525 		    !free_area_empty(area, MIGRATE_CMA)) {
3526 			return true;
3527 		}
3528 #endif
3529 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3530 			return true;
3531 	}
3532 	return false;
3533 }
3534 
3535 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3536 		      int classzone_idx, unsigned int alloc_flags)
3537 {
3538 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3539 					zone_page_state(z, NR_FREE_PAGES));
3540 }
3541 
3542 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3543 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3544 {
3545 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3546 	long cma_pages = 0;
3547 
3548 #ifdef CONFIG_CMA
3549 	/* If allocation can't use CMA areas don't use free CMA pages */
3550 	if (!(alloc_flags & ALLOC_CMA))
3551 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3552 #endif
3553 
3554 	/*
3555 	 * Fast check for order-0 only. If this fails then the reserves
3556 	 * need to be calculated. There is a corner case where the check
3557 	 * passes but only the high-order atomic reserve are free. If
3558 	 * the caller is !atomic then it'll uselessly search the free
3559 	 * list. That corner case is then slower but it is harmless.
3560 	 */
3561 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3562 		return true;
3563 
3564 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3565 					free_pages);
3566 }
3567 
3568 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3569 			unsigned long mark, int classzone_idx)
3570 {
3571 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3572 
3573 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3574 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3575 
3576 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3577 								free_pages);
3578 }
3579 
3580 #ifdef CONFIG_NUMA
3581 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3582 {
3583 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3584 				node_reclaim_distance;
3585 }
3586 #else	/* CONFIG_NUMA */
3587 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3588 {
3589 	return true;
3590 }
3591 #endif	/* CONFIG_NUMA */
3592 
3593 /*
3594  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3595  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3596  * premature use of a lower zone may cause lowmem pressure problems that
3597  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3598  * probably too small. It only makes sense to spread allocations to avoid
3599  * fragmentation between the Normal and DMA32 zones.
3600  */
3601 static inline unsigned int
3602 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3603 {
3604 	unsigned int alloc_flags;
3605 
3606 	/*
3607 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3608 	 * to save a branch.
3609 	 */
3610 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3611 
3612 #ifdef CONFIG_ZONE_DMA32
3613 	if (!zone)
3614 		return alloc_flags;
3615 
3616 	if (zone_idx(zone) != ZONE_NORMAL)
3617 		return alloc_flags;
3618 
3619 	/*
3620 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3621 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3622 	 * on UMA that if Normal is populated then so is DMA32.
3623 	 */
3624 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3625 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3626 		return alloc_flags;
3627 
3628 	alloc_flags |= ALLOC_NOFRAGMENT;
3629 #endif /* CONFIG_ZONE_DMA32 */
3630 	return alloc_flags;
3631 }
3632 
3633 /*
3634  * get_page_from_freelist goes through the zonelist trying to allocate
3635  * a page.
3636  */
3637 static struct page *
3638 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3639 						const struct alloc_context *ac)
3640 {
3641 	struct zoneref *z;
3642 	struct zone *zone;
3643 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3644 	bool no_fallback;
3645 
3646 retry:
3647 	/*
3648 	 * Scan zonelist, looking for a zone with enough free.
3649 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3650 	 */
3651 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3652 	z = ac->preferred_zoneref;
3653 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3654 								ac->nodemask) {
3655 		struct page *page;
3656 		unsigned long mark;
3657 
3658 		if (cpusets_enabled() &&
3659 			(alloc_flags & ALLOC_CPUSET) &&
3660 			!__cpuset_zone_allowed(zone, gfp_mask))
3661 				continue;
3662 		/*
3663 		 * When allocating a page cache page for writing, we
3664 		 * want to get it from a node that is within its dirty
3665 		 * limit, such that no single node holds more than its
3666 		 * proportional share of globally allowed dirty pages.
3667 		 * The dirty limits take into account the node's
3668 		 * lowmem reserves and high watermark so that kswapd
3669 		 * should be able to balance it without having to
3670 		 * write pages from its LRU list.
3671 		 *
3672 		 * XXX: For now, allow allocations to potentially
3673 		 * exceed the per-node dirty limit in the slowpath
3674 		 * (spread_dirty_pages unset) before going into reclaim,
3675 		 * which is important when on a NUMA setup the allowed
3676 		 * nodes are together not big enough to reach the
3677 		 * global limit.  The proper fix for these situations
3678 		 * will require awareness of nodes in the
3679 		 * dirty-throttling and the flusher threads.
3680 		 */
3681 		if (ac->spread_dirty_pages) {
3682 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3683 				continue;
3684 
3685 			if (!node_dirty_ok(zone->zone_pgdat)) {
3686 				last_pgdat_dirty_limit = zone->zone_pgdat;
3687 				continue;
3688 			}
3689 		}
3690 
3691 		if (no_fallback && nr_online_nodes > 1 &&
3692 		    zone != ac->preferred_zoneref->zone) {
3693 			int local_nid;
3694 
3695 			/*
3696 			 * If moving to a remote node, retry but allow
3697 			 * fragmenting fallbacks. Locality is more important
3698 			 * than fragmentation avoidance.
3699 			 */
3700 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3701 			if (zone_to_nid(zone) != local_nid) {
3702 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3703 				goto retry;
3704 			}
3705 		}
3706 
3707 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3708 		if (!zone_watermark_fast(zone, order, mark,
3709 				       ac_classzone_idx(ac), alloc_flags)) {
3710 			int ret;
3711 
3712 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3713 			/*
3714 			 * Watermark failed for this zone, but see if we can
3715 			 * grow this zone if it contains deferred pages.
3716 			 */
3717 			if (static_branch_unlikely(&deferred_pages)) {
3718 				if (_deferred_grow_zone(zone, order))
3719 					goto try_this_zone;
3720 			}
3721 #endif
3722 			/* Checked here to keep the fast path fast */
3723 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3724 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3725 				goto try_this_zone;
3726 
3727 			if (node_reclaim_mode == 0 ||
3728 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3729 				continue;
3730 
3731 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3732 			switch (ret) {
3733 			case NODE_RECLAIM_NOSCAN:
3734 				/* did not scan */
3735 				continue;
3736 			case NODE_RECLAIM_FULL:
3737 				/* scanned but unreclaimable */
3738 				continue;
3739 			default:
3740 				/* did we reclaim enough */
3741 				if (zone_watermark_ok(zone, order, mark,
3742 						ac_classzone_idx(ac), alloc_flags))
3743 					goto try_this_zone;
3744 
3745 				continue;
3746 			}
3747 		}
3748 
3749 try_this_zone:
3750 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3751 				gfp_mask, alloc_flags, ac->migratetype);
3752 		if (page) {
3753 			prep_new_page(page, order, gfp_mask, alloc_flags);
3754 
3755 			/*
3756 			 * If this is a high-order atomic allocation then check
3757 			 * if the pageblock should be reserved for the future
3758 			 */
3759 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3760 				reserve_highatomic_pageblock(page, zone, order);
3761 
3762 			return page;
3763 		} else {
3764 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3765 			/* Try again if zone has deferred pages */
3766 			if (static_branch_unlikely(&deferred_pages)) {
3767 				if (_deferred_grow_zone(zone, order))
3768 					goto try_this_zone;
3769 			}
3770 #endif
3771 		}
3772 	}
3773 
3774 	/*
3775 	 * It's possible on a UMA machine to get through all zones that are
3776 	 * fragmented. If avoiding fragmentation, reset and try again.
3777 	 */
3778 	if (no_fallback) {
3779 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3780 		goto retry;
3781 	}
3782 
3783 	return NULL;
3784 }
3785 
3786 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3787 {
3788 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3789 
3790 	/*
3791 	 * This documents exceptions given to allocations in certain
3792 	 * contexts that are allowed to allocate outside current's set
3793 	 * of allowed nodes.
3794 	 */
3795 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3796 		if (tsk_is_oom_victim(current) ||
3797 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3798 			filter &= ~SHOW_MEM_FILTER_NODES;
3799 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3800 		filter &= ~SHOW_MEM_FILTER_NODES;
3801 
3802 	show_mem(filter, nodemask);
3803 }
3804 
3805 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3806 {
3807 	struct va_format vaf;
3808 	va_list args;
3809 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3810 
3811 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3812 		return;
3813 
3814 	va_start(args, fmt);
3815 	vaf.fmt = fmt;
3816 	vaf.va = &args;
3817 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3818 			current->comm, &vaf, gfp_mask, &gfp_mask,
3819 			nodemask_pr_args(nodemask));
3820 	va_end(args);
3821 
3822 	cpuset_print_current_mems_allowed();
3823 	pr_cont("\n");
3824 	dump_stack();
3825 	warn_alloc_show_mem(gfp_mask, nodemask);
3826 }
3827 
3828 static inline struct page *
3829 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3830 			      unsigned int alloc_flags,
3831 			      const struct alloc_context *ac)
3832 {
3833 	struct page *page;
3834 
3835 	page = get_page_from_freelist(gfp_mask, order,
3836 			alloc_flags|ALLOC_CPUSET, ac);
3837 	/*
3838 	 * fallback to ignore cpuset restriction if our nodes
3839 	 * are depleted
3840 	 */
3841 	if (!page)
3842 		page = get_page_from_freelist(gfp_mask, order,
3843 				alloc_flags, ac);
3844 
3845 	return page;
3846 }
3847 
3848 static inline struct page *
3849 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3850 	const struct alloc_context *ac, unsigned long *did_some_progress)
3851 {
3852 	struct oom_control oc = {
3853 		.zonelist = ac->zonelist,
3854 		.nodemask = ac->nodemask,
3855 		.memcg = NULL,
3856 		.gfp_mask = gfp_mask,
3857 		.order = order,
3858 	};
3859 	struct page *page;
3860 
3861 	*did_some_progress = 0;
3862 
3863 	/*
3864 	 * Acquire the oom lock.  If that fails, somebody else is
3865 	 * making progress for us.
3866 	 */
3867 	if (!mutex_trylock(&oom_lock)) {
3868 		*did_some_progress = 1;
3869 		schedule_timeout_uninterruptible(1);
3870 		return NULL;
3871 	}
3872 
3873 	/*
3874 	 * Go through the zonelist yet one more time, keep very high watermark
3875 	 * here, this is only to catch a parallel oom killing, we must fail if
3876 	 * we're still under heavy pressure. But make sure that this reclaim
3877 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3878 	 * allocation which will never fail due to oom_lock already held.
3879 	 */
3880 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3881 				      ~__GFP_DIRECT_RECLAIM, order,
3882 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3883 	if (page)
3884 		goto out;
3885 
3886 	/* Coredumps can quickly deplete all memory reserves */
3887 	if (current->flags & PF_DUMPCORE)
3888 		goto out;
3889 	/* The OOM killer will not help higher order allocs */
3890 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3891 		goto out;
3892 	/*
3893 	 * We have already exhausted all our reclaim opportunities without any
3894 	 * success so it is time to admit defeat. We will skip the OOM killer
3895 	 * because it is very likely that the caller has a more reasonable
3896 	 * fallback than shooting a random task.
3897 	 */
3898 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3899 		goto out;
3900 	/* The OOM killer does not needlessly kill tasks for lowmem */
3901 	if (ac->high_zoneidx < ZONE_NORMAL)
3902 		goto out;
3903 	if (pm_suspended_storage())
3904 		goto out;
3905 	/*
3906 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3907 	 * other request to make a forward progress.
3908 	 * We are in an unfortunate situation where out_of_memory cannot
3909 	 * do much for this context but let's try it to at least get
3910 	 * access to memory reserved if the current task is killed (see
3911 	 * out_of_memory). Once filesystems are ready to handle allocation
3912 	 * failures more gracefully we should just bail out here.
3913 	 */
3914 
3915 	/* The OOM killer may not free memory on a specific node */
3916 	if (gfp_mask & __GFP_THISNODE)
3917 		goto out;
3918 
3919 	/* Exhausted what can be done so it's blame time */
3920 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3921 		*did_some_progress = 1;
3922 
3923 		/*
3924 		 * Help non-failing allocations by giving them access to memory
3925 		 * reserves
3926 		 */
3927 		if (gfp_mask & __GFP_NOFAIL)
3928 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3929 					ALLOC_NO_WATERMARKS, ac);
3930 	}
3931 out:
3932 	mutex_unlock(&oom_lock);
3933 	return page;
3934 }
3935 
3936 /*
3937  * Maximum number of compaction retries wit a progress before OOM
3938  * killer is consider as the only way to move forward.
3939  */
3940 #define MAX_COMPACT_RETRIES 16
3941 
3942 #ifdef CONFIG_COMPACTION
3943 /* Try memory compaction for high-order allocations before reclaim */
3944 static struct page *
3945 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3946 		unsigned int alloc_flags, const struct alloc_context *ac,
3947 		enum compact_priority prio, enum compact_result *compact_result)
3948 {
3949 	struct page *page = NULL;
3950 	unsigned long pflags;
3951 	unsigned int noreclaim_flag;
3952 
3953 	if (!order)
3954 		return NULL;
3955 
3956 	psi_memstall_enter(&pflags);
3957 	noreclaim_flag = memalloc_noreclaim_save();
3958 
3959 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3960 								prio, &page);
3961 
3962 	memalloc_noreclaim_restore(noreclaim_flag);
3963 	psi_memstall_leave(&pflags);
3964 
3965 	/*
3966 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3967 	 * count a compaction stall
3968 	 */
3969 	count_vm_event(COMPACTSTALL);
3970 
3971 	/* Prep a captured page if available */
3972 	if (page)
3973 		prep_new_page(page, order, gfp_mask, alloc_flags);
3974 
3975 	/* Try get a page from the freelist if available */
3976 	if (!page)
3977 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3978 
3979 	if (page) {
3980 		struct zone *zone = page_zone(page);
3981 
3982 		zone->compact_blockskip_flush = false;
3983 		compaction_defer_reset(zone, order, true);
3984 		count_vm_event(COMPACTSUCCESS);
3985 		return page;
3986 	}
3987 
3988 	/*
3989 	 * It's bad if compaction run occurs and fails. The most likely reason
3990 	 * is that pages exist, but not enough to satisfy watermarks.
3991 	 */
3992 	count_vm_event(COMPACTFAIL);
3993 
3994 	cond_resched();
3995 
3996 	return NULL;
3997 }
3998 
3999 static inline bool
4000 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4001 		     enum compact_result compact_result,
4002 		     enum compact_priority *compact_priority,
4003 		     int *compaction_retries)
4004 {
4005 	int max_retries = MAX_COMPACT_RETRIES;
4006 	int min_priority;
4007 	bool ret = false;
4008 	int retries = *compaction_retries;
4009 	enum compact_priority priority = *compact_priority;
4010 
4011 	if (!order)
4012 		return false;
4013 
4014 	if (compaction_made_progress(compact_result))
4015 		(*compaction_retries)++;
4016 
4017 	/*
4018 	 * compaction considers all the zone as desperately out of memory
4019 	 * so it doesn't really make much sense to retry except when the
4020 	 * failure could be caused by insufficient priority
4021 	 */
4022 	if (compaction_failed(compact_result))
4023 		goto check_priority;
4024 
4025 	/*
4026 	 * compaction was skipped because there are not enough order-0 pages
4027 	 * to work with, so we retry only if it looks like reclaim can help.
4028 	 */
4029 	if (compaction_needs_reclaim(compact_result)) {
4030 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4031 		goto out;
4032 	}
4033 
4034 	/*
4035 	 * make sure the compaction wasn't deferred or didn't bail out early
4036 	 * due to locks contention before we declare that we should give up.
4037 	 * But the next retry should use a higher priority if allowed, so
4038 	 * we don't just keep bailing out endlessly.
4039 	 */
4040 	if (compaction_withdrawn(compact_result)) {
4041 		goto check_priority;
4042 	}
4043 
4044 	/*
4045 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4046 	 * costly ones because they are de facto nofail and invoke OOM
4047 	 * killer to move on while costly can fail and users are ready
4048 	 * to cope with that. 1/4 retries is rather arbitrary but we
4049 	 * would need much more detailed feedback from compaction to
4050 	 * make a better decision.
4051 	 */
4052 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4053 		max_retries /= 4;
4054 	if (*compaction_retries <= max_retries) {
4055 		ret = true;
4056 		goto out;
4057 	}
4058 
4059 	/*
4060 	 * Make sure there are attempts at the highest priority if we exhausted
4061 	 * all retries or failed at the lower priorities.
4062 	 */
4063 check_priority:
4064 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4065 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4066 
4067 	if (*compact_priority > min_priority) {
4068 		(*compact_priority)--;
4069 		*compaction_retries = 0;
4070 		ret = true;
4071 	}
4072 out:
4073 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4074 	return ret;
4075 }
4076 #else
4077 static inline struct page *
4078 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4079 		unsigned int alloc_flags, const struct alloc_context *ac,
4080 		enum compact_priority prio, enum compact_result *compact_result)
4081 {
4082 	*compact_result = COMPACT_SKIPPED;
4083 	return NULL;
4084 }
4085 
4086 static inline bool
4087 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4088 		     enum compact_result compact_result,
4089 		     enum compact_priority *compact_priority,
4090 		     int *compaction_retries)
4091 {
4092 	struct zone *zone;
4093 	struct zoneref *z;
4094 
4095 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4096 		return false;
4097 
4098 	/*
4099 	 * There are setups with compaction disabled which would prefer to loop
4100 	 * inside the allocator rather than hit the oom killer prematurely.
4101 	 * Let's give them a good hope and keep retrying while the order-0
4102 	 * watermarks are OK.
4103 	 */
4104 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4105 					ac->nodemask) {
4106 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4107 					ac_classzone_idx(ac), alloc_flags))
4108 			return true;
4109 	}
4110 	return false;
4111 }
4112 #endif /* CONFIG_COMPACTION */
4113 
4114 #ifdef CONFIG_LOCKDEP
4115 static struct lockdep_map __fs_reclaim_map =
4116 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4117 
4118 static bool __need_fs_reclaim(gfp_t gfp_mask)
4119 {
4120 	gfp_mask = current_gfp_context(gfp_mask);
4121 
4122 	/* no reclaim without waiting on it */
4123 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4124 		return false;
4125 
4126 	/* this guy won't enter reclaim */
4127 	if (current->flags & PF_MEMALLOC)
4128 		return false;
4129 
4130 	/* We're only interested __GFP_FS allocations for now */
4131 	if (!(gfp_mask & __GFP_FS))
4132 		return false;
4133 
4134 	if (gfp_mask & __GFP_NOLOCKDEP)
4135 		return false;
4136 
4137 	return true;
4138 }
4139 
4140 void __fs_reclaim_acquire(void)
4141 {
4142 	lock_map_acquire(&__fs_reclaim_map);
4143 }
4144 
4145 void __fs_reclaim_release(void)
4146 {
4147 	lock_map_release(&__fs_reclaim_map);
4148 }
4149 
4150 void fs_reclaim_acquire(gfp_t gfp_mask)
4151 {
4152 	if (__need_fs_reclaim(gfp_mask))
4153 		__fs_reclaim_acquire();
4154 }
4155 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4156 
4157 void fs_reclaim_release(gfp_t gfp_mask)
4158 {
4159 	if (__need_fs_reclaim(gfp_mask))
4160 		__fs_reclaim_release();
4161 }
4162 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4163 #endif
4164 
4165 /* Perform direct synchronous page reclaim */
4166 static int
4167 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4168 					const struct alloc_context *ac)
4169 {
4170 	int progress;
4171 	unsigned int noreclaim_flag;
4172 	unsigned long pflags;
4173 
4174 	cond_resched();
4175 
4176 	/* We now go into synchronous reclaim */
4177 	cpuset_memory_pressure_bump();
4178 	psi_memstall_enter(&pflags);
4179 	fs_reclaim_acquire(gfp_mask);
4180 	noreclaim_flag = memalloc_noreclaim_save();
4181 
4182 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4183 								ac->nodemask);
4184 
4185 	memalloc_noreclaim_restore(noreclaim_flag);
4186 	fs_reclaim_release(gfp_mask);
4187 	psi_memstall_leave(&pflags);
4188 
4189 	cond_resched();
4190 
4191 	return progress;
4192 }
4193 
4194 /* The really slow allocator path where we enter direct reclaim */
4195 static inline struct page *
4196 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4197 		unsigned int alloc_flags, const struct alloc_context *ac,
4198 		unsigned long *did_some_progress)
4199 {
4200 	struct page *page = NULL;
4201 	bool drained = false;
4202 
4203 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4204 	if (unlikely(!(*did_some_progress)))
4205 		return NULL;
4206 
4207 retry:
4208 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4209 
4210 	/*
4211 	 * If an allocation failed after direct reclaim, it could be because
4212 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4213 	 * Shrink them them and try again
4214 	 */
4215 	if (!page && !drained) {
4216 		unreserve_highatomic_pageblock(ac, false);
4217 		drain_all_pages(NULL);
4218 		drained = true;
4219 		goto retry;
4220 	}
4221 
4222 	return page;
4223 }
4224 
4225 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4226 			     const struct alloc_context *ac)
4227 {
4228 	struct zoneref *z;
4229 	struct zone *zone;
4230 	pg_data_t *last_pgdat = NULL;
4231 	enum zone_type high_zoneidx = ac->high_zoneidx;
4232 
4233 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4234 					ac->nodemask) {
4235 		if (last_pgdat != zone->zone_pgdat)
4236 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4237 		last_pgdat = zone->zone_pgdat;
4238 	}
4239 }
4240 
4241 static inline unsigned int
4242 gfp_to_alloc_flags(gfp_t gfp_mask)
4243 {
4244 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4245 
4246 	/*
4247 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4248 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4249 	 * to save two branches.
4250 	 */
4251 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4252 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4253 
4254 	/*
4255 	 * The caller may dip into page reserves a bit more if the caller
4256 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4257 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4258 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4259 	 */
4260 	alloc_flags |= (__force int)
4261 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4262 
4263 	if (gfp_mask & __GFP_ATOMIC) {
4264 		/*
4265 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4266 		 * if it can't schedule.
4267 		 */
4268 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4269 			alloc_flags |= ALLOC_HARDER;
4270 		/*
4271 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4272 		 * comment for __cpuset_node_allowed().
4273 		 */
4274 		alloc_flags &= ~ALLOC_CPUSET;
4275 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4276 		alloc_flags |= ALLOC_HARDER;
4277 
4278 #ifdef CONFIG_CMA
4279 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4280 		alloc_flags |= ALLOC_CMA;
4281 #endif
4282 	return alloc_flags;
4283 }
4284 
4285 static bool oom_reserves_allowed(struct task_struct *tsk)
4286 {
4287 	if (!tsk_is_oom_victim(tsk))
4288 		return false;
4289 
4290 	/*
4291 	 * !MMU doesn't have oom reaper so give access to memory reserves
4292 	 * only to the thread with TIF_MEMDIE set
4293 	 */
4294 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4295 		return false;
4296 
4297 	return true;
4298 }
4299 
4300 /*
4301  * Distinguish requests which really need access to full memory
4302  * reserves from oom victims which can live with a portion of it
4303  */
4304 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4305 {
4306 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4307 		return 0;
4308 	if (gfp_mask & __GFP_MEMALLOC)
4309 		return ALLOC_NO_WATERMARKS;
4310 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4311 		return ALLOC_NO_WATERMARKS;
4312 	if (!in_interrupt()) {
4313 		if (current->flags & PF_MEMALLOC)
4314 			return ALLOC_NO_WATERMARKS;
4315 		else if (oom_reserves_allowed(current))
4316 			return ALLOC_OOM;
4317 	}
4318 
4319 	return 0;
4320 }
4321 
4322 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4323 {
4324 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4325 }
4326 
4327 /*
4328  * Checks whether it makes sense to retry the reclaim to make a forward progress
4329  * for the given allocation request.
4330  *
4331  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4332  * without success, or when we couldn't even meet the watermark if we
4333  * reclaimed all remaining pages on the LRU lists.
4334  *
4335  * Returns true if a retry is viable or false to enter the oom path.
4336  */
4337 static inline bool
4338 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4339 		     struct alloc_context *ac, int alloc_flags,
4340 		     bool did_some_progress, int *no_progress_loops)
4341 {
4342 	struct zone *zone;
4343 	struct zoneref *z;
4344 	bool ret = false;
4345 
4346 	/*
4347 	 * Costly allocations might have made a progress but this doesn't mean
4348 	 * their order will become available due to high fragmentation so
4349 	 * always increment the no progress counter for them
4350 	 */
4351 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4352 		*no_progress_loops = 0;
4353 	else
4354 		(*no_progress_loops)++;
4355 
4356 	/*
4357 	 * Make sure we converge to OOM if we cannot make any progress
4358 	 * several times in the row.
4359 	 */
4360 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4361 		/* Before OOM, exhaust highatomic_reserve */
4362 		return unreserve_highatomic_pageblock(ac, true);
4363 	}
4364 
4365 	/*
4366 	 * Keep reclaiming pages while there is a chance this will lead
4367 	 * somewhere.  If none of the target zones can satisfy our allocation
4368 	 * request even if all reclaimable pages are considered then we are
4369 	 * screwed and have to go OOM.
4370 	 */
4371 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4372 					ac->nodemask) {
4373 		unsigned long available;
4374 		unsigned long reclaimable;
4375 		unsigned long min_wmark = min_wmark_pages(zone);
4376 		bool wmark;
4377 
4378 		available = reclaimable = zone_reclaimable_pages(zone);
4379 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4380 
4381 		/*
4382 		 * Would the allocation succeed if we reclaimed all
4383 		 * reclaimable pages?
4384 		 */
4385 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4386 				ac_classzone_idx(ac), alloc_flags, available);
4387 		trace_reclaim_retry_zone(z, order, reclaimable,
4388 				available, min_wmark, *no_progress_loops, wmark);
4389 		if (wmark) {
4390 			/*
4391 			 * If we didn't make any progress and have a lot of
4392 			 * dirty + writeback pages then we should wait for
4393 			 * an IO to complete to slow down the reclaim and
4394 			 * prevent from pre mature OOM
4395 			 */
4396 			if (!did_some_progress) {
4397 				unsigned long write_pending;
4398 
4399 				write_pending = zone_page_state_snapshot(zone,
4400 							NR_ZONE_WRITE_PENDING);
4401 
4402 				if (2 * write_pending > reclaimable) {
4403 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4404 					return true;
4405 				}
4406 			}
4407 
4408 			ret = true;
4409 			goto out;
4410 		}
4411 	}
4412 
4413 out:
4414 	/*
4415 	 * Memory allocation/reclaim might be called from a WQ context and the
4416 	 * current implementation of the WQ concurrency control doesn't
4417 	 * recognize that a particular WQ is congested if the worker thread is
4418 	 * looping without ever sleeping. Therefore we have to do a short sleep
4419 	 * here rather than calling cond_resched().
4420 	 */
4421 	if (current->flags & PF_WQ_WORKER)
4422 		schedule_timeout_uninterruptible(1);
4423 	else
4424 		cond_resched();
4425 	return ret;
4426 }
4427 
4428 static inline bool
4429 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4430 {
4431 	/*
4432 	 * It's possible that cpuset's mems_allowed and the nodemask from
4433 	 * mempolicy don't intersect. This should be normally dealt with by
4434 	 * policy_nodemask(), but it's possible to race with cpuset update in
4435 	 * such a way the check therein was true, and then it became false
4436 	 * before we got our cpuset_mems_cookie here.
4437 	 * This assumes that for all allocations, ac->nodemask can come only
4438 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4439 	 * when it does not intersect with the cpuset restrictions) or the
4440 	 * caller can deal with a violated nodemask.
4441 	 */
4442 	if (cpusets_enabled() && ac->nodemask &&
4443 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4444 		ac->nodemask = NULL;
4445 		return true;
4446 	}
4447 
4448 	/*
4449 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4450 	 * possible to race with parallel threads in such a way that our
4451 	 * allocation can fail while the mask is being updated. If we are about
4452 	 * to fail, check if the cpuset changed during allocation and if so,
4453 	 * retry.
4454 	 */
4455 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4456 		return true;
4457 
4458 	return false;
4459 }
4460 
4461 static inline struct page *
4462 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4463 						struct alloc_context *ac)
4464 {
4465 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4466 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4467 	struct page *page = NULL;
4468 	unsigned int alloc_flags;
4469 	unsigned long did_some_progress;
4470 	enum compact_priority compact_priority;
4471 	enum compact_result compact_result;
4472 	int compaction_retries;
4473 	int no_progress_loops;
4474 	unsigned int cpuset_mems_cookie;
4475 	int reserve_flags;
4476 
4477 	/*
4478 	 * We also sanity check to catch abuse of atomic reserves being used by
4479 	 * callers that are not in atomic context.
4480 	 */
4481 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4482 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4483 		gfp_mask &= ~__GFP_ATOMIC;
4484 
4485 retry_cpuset:
4486 	compaction_retries = 0;
4487 	no_progress_loops = 0;
4488 	compact_priority = DEF_COMPACT_PRIORITY;
4489 	cpuset_mems_cookie = read_mems_allowed_begin();
4490 
4491 	/*
4492 	 * The fast path uses conservative alloc_flags to succeed only until
4493 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4494 	 * alloc_flags precisely. So we do that now.
4495 	 */
4496 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4497 
4498 	/*
4499 	 * We need to recalculate the starting point for the zonelist iterator
4500 	 * because we might have used different nodemask in the fast path, or
4501 	 * there was a cpuset modification and we are retrying - otherwise we
4502 	 * could end up iterating over non-eligible zones endlessly.
4503 	 */
4504 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4505 					ac->high_zoneidx, ac->nodemask);
4506 	if (!ac->preferred_zoneref->zone)
4507 		goto nopage;
4508 
4509 	if (alloc_flags & ALLOC_KSWAPD)
4510 		wake_all_kswapds(order, gfp_mask, ac);
4511 
4512 	/*
4513 	 * The adjusted alloc_flags might result in immediate success, so try
4514 	 * that first
4515 	 */
4516 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4517 	if (page)
4518 		goto got_pg;
4519 
4520 	/*
4521 	 * For costly allocations, try direct compaction first, as it's likely
4522 	 * that we have enough base pages and don't need to reclaim. For non-
4523 	 * movable high-order allocations, do that as well, as compaction will
4524 	 * try prevent permanent fragmentation by migrating from blocks of the
4525 	 * same migratetype.
4526 	 * Don't try this for allocations that are allowed to ignore
4527 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4528 	 */
4529 	if (can_direct_reclaim &&
4530 			(costly_order ||
4531 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4532 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4533 		page = __alloc_pages_direct_compact(gfp_mask, order,
4534 						alloc_flags, ac,
4535 						INIT_COMPACT_PRIORITY,
4536 						&compact_result);
4537 		if (page)
4538 			goto got_pg;
4539 
4540 		/*
4541 		 * Checks for costly allocations with __GFP_NORETRY, which
4542 		 * includes some THP page fault allocations
4543 		 */
4544 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4545 			/*
4546 			 * If allocating entire pageblock(s) and compaction
4547 			 * failed because all zones are below low watermarks
4548 			 * or is prohibited because it recently failed at this
4549 			 * order, fail immediately unless the allocator has
4550 			 * requested compaction and reclaim retry.
4551 			 *
4552 			 * Reclaim is
4553 			 *  - potentially very expensive because zones are far
4554 			 *    below their low watermarks or this is part of very
4555 			 *    bursty high order allocations,
4556 			 *  - not guaranteed to help because isolate_freepages()
4557 			 *    may not iterate over freed pages as part of its
4558 			 *    linear scan, and
4559 			 *  - unlikely to make entire pageblocks free on its
4560 			 *    own.
4561 			 */
4562 			if (compact_result == COMPACT_SKIPPED ||
4563 			    compact_result == COMPACT_DEFERRED)
4564 				goto nopage;
4565 
4566 			/*
4567 			 * Looks like reclaim/compaction is worth trying, but
4568 			 * sync compaction could be very expensive, so keep
4569 			 * using async compaction.
4570 			 */
4571 			compact_priority = INIT_COMPACT_PRIORITY;
4572 		}
4573 	}
4574 
4575 retry:
4576 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4577 	if (alloc_flags & ALLOC_KSWAPD)
4578 		wake_all_kswapds(order, gfp_mask, ac);
4579 
4580 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4581 	if (reserve_flags)
4582 		alloc_flags = reserve_flags;
4583 
4584 	/*
4585 	 * Reset the nodemask and zonelist iterators if memory policies can be
4586 	 * ignored. These allocations are high priority and system rather than
4587 	 * user oriented.
4588 	 */
4589 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4590 		ac->nodemask = NULL;
4591 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4592 					ac->high_zoneidx, ac->nodemask);
4593 	}
4594 
4595 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4596 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4597 	if (page)
4598 		goto got_pg;
4599 
4600 	/* Caller is not willing to reclaim, we can't balance anything */
4601 	if (!can_direct_reclaim)
4602 		goto nopage;
4603 
4604 	/* Avoid recursion of direct reclaim */
4605 	if (current->flags & PF_MEMALLOC)
4606 		goto nopage;
4607 
4608 	/* Try direct reclaim and then allocating */
4609 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4610 							&did_some_progress);
4611 	if (page)
4612 		goto got_pg;
4613 
4614 	/* Try direct compaction and then allocating */
4615 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4616 					compact_priority, &compact_result);
4617 	if (page)
4618 		goto got_pg;
4619 
4620 	/* Do not loop if specifically requested */
4621 	if (gfp_mask & __GFP_NORETRY)
4622 		goto nopage;
4623 
4624 	/*
4625 	 * Do not retry costly high order allocations unless they are
4626 	 * __GFP_RETRY_MAYFAIL
4627 	 */
4628 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4629 		goto nopage;
4630 
4631 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4632 				 did_some_progress > 0, &no_progress_loops))
4633 		goto retry;
4634 
4635 	/*
4636 	 * It doesn't make any sense to retry for the compaction if the order-0
4637 	 * reclaim is not able to make any progress because the current
4638 	 * implementation of the compaction depends on the sufficient amount
4639 	 * of free memory (see __compaction_suitable)
4640 	 */
4641 	if (did_some_progress > 0 &&
4642 			should_compact_retry(ac, order, alloc_flags,
4643 				compact_result, &compact_priority,
4644 				&compaction_retries))
4645 		goto retry;
4646 
4647 
4648 	/* Deal with possible cpuset update races before we start OOM killing */
4649 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4650 		goto retry_cpuset;
4651 
4652 	/* Reclaim has failed us, start killing things */
4653 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4654 	if (page)
4655 		goto got_pg;
4656 
4657 	/* Avoid allocations with no watermarks from looping endlessly */
4658 	if (tsk_is_oom_victim(current) &&
4659 	    (alloc_flags == ALLOC_OOM ||
4660 	     (gfp_mask & __GFP_NOMEMALLOC)))
4661 		goto nopage;
4662 
4663 	/* Retry as long as the OOM killer is making progress */
4664 	if (did_some_progress) {
4665 		no_progress_loops = 0;
4666 		goto retry;
4667 	}
4668 
4669 nopage:
4670 	/* Deal with possible cpuset update races before we fail */
4671 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4672 		goto retry_cpuset;
4673 
4674 	/*
4675 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4676 	 * we always retry
4677 	 */
4678 	if (gfp_mask & __GFP_NOFAIL) {
4679 		/*
4680 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4681 		 * of any new users that actually require GFP_NOWAIT
4682 		 */
4683 		if (WARN_ON_ONCE(!can_direct_reclaim))
4684 			goto fail;
4685 
4686 		/*
4687 		 * PF_MEMALLOC request from this context is rather bizarre
4688 		 * because we cannot reclaim anything and only can loop waiting
4689 		 * for somebody to do a work for us
4690 		 */
4691 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4692 
4693 		/*
4694 		 * non failing costly orders are a hard requirement which we
4695 		 * are not prepared for much so let's warn about these users
4696 		 * so that we can identify them and convert them to something
4697 		 * else.
4698 		 */
4699 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4700 
4701 		/*
4702 		 * Help non-failing allocations by giving them access to memory
4703 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4704 		 * could deplete whole memory reserves which would just make
4705 		 * the situation worse
4706 		 */
4707 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4708 		if (page)
4709 			goto got_pg;
4710 
4711 		cond_resched();
4712 		goto retry;
4713 	}
4714 fail:
4715 	warn_alloc(gfp_mask, ac->nodemask,
4716 			"page allocation failure: order:%u", order);
4717 got_pg:
4718 	return page;
4719 }
4720 
4721 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4722 		int preferred_nid, nodemask_t *nodemask,
4723 		struct alloc_context *ac, gfp_t *alloc_mask,
4724 		unsigned int *alloc_flags)
4725 {
4726 	ac->high_zoneidx = gfp_zone(gfp_mask);
4727 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4728 	ac->nodemask = nodemask;
4729 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4730 
4731 	if (cpusets_enabled()) {
4732 		*alloc_mask |= __GFP_HARDWALL;
4733 		if (!ac->nodemask)
4734 			ac->nodemask = &cpuset_current_mems_allowed;
4735 		else
4736 			*alloc_flags |= ALLOC_CPUSET;
4737 	}
4738 
4739 	fs_reclaim_acquire(gfp_mask);
4740 	fs_reclaim_release(gfp_mask);
4741 
4742 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4743 
4744 	if (should_fail_alloc_page(gfp_mask, order))
4745 		return false;
4746 
4747 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4748 		*alloc_flags |= ALLOC_CMA;
4749 
4750 	return true;
4751 }
4752 
4753 /* Determine whether to spread dirty pages and what the first usable zone */
4754 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4755 {
4756 	/* Dirty zone balancing only done in the fast path */
4757 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4758 
4759 	/*
4760 	 * The preferred zone is used for statistics but crucially it is
4761 	 * also used as the starting point for the zonelist iterator. It
4762 	 * may get reset for allocations that ignore memory policies.
4763 	 */
4764 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4765 					ac->high_zoneidx, ac->nodemask);
4766 }
4767 
4768 /*
4769  * This is the 'heart' of the zoned buddy allocator.
4770  */
4771 struct page *
4772 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4773 							nodemask_t *nodemask)
4774 {
4775 	struct page *page;
4776 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4777 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4778 	struct alloc_context ac = { };
4779 
4780 	/*
4781 	 * There are several places where we assume that the order value is sane
4782 	 * so bail out early if the request is out of bound.
4783 	 */
4784 	if (unlikely(order >= MAX_ORDER)) {
4785 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4786 		return NULL;
4787 	}
4788 
4789 	gfp_mask &= gfp_allowed_mask;
4790 	alloc_mask = gfp_mask;
4791 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4792 		return NULL;
4793 
4794 	finalise_ac(gfp_mask, &ac);
4795 
4796 	/*
4797 	 * Forbid the first pass from falling back to types that fragment
4798 	 * memory until all local zones are considered.
4799 	 */
4800 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4801 
4802 	/* First allocation attempt */
4803 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4804 	if (likely(page))
4805 		goto out;
4806 
4807 	/*
4808 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4809 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4810 	 * from a particular context which has been marked by
4811 	 * memalloc_no{fs,io}_{save,restore}.
4812 	 */
4813 	alloc_mask = current_gfp_context(gfp_mask);
4814 	ac.spread_dirty_pages = false;
4815 
4816 	/*
4817 	 * Restore the original nodemask if it was potentially replaced with
4818 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4819 	 */
4820 	ac.nodemask = nodemask;
4821 
4822 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4823 
4824 out:
4825 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4826 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4827 		__free_pages(page, order);
4828 		page = NULL;
4829 	}
4830 
4831 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4832 
4833 	return page;
4834 }
4835 EXPORT_SYMBOL(__alloc_pages_nodemask);
4836 
4837 /*
4838  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4839  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4840  * you need to access high mem.
4841  */
4842 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4843 {
4844 	struct page *page;
4845 
4846 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4847 	if (!page)
4848 		return 0;
4849 	return (unsigned long) page_address(page);
4850 }
4851 EXPORT_SYMBOL(__get_free_pages);
4852 
4853 unsigned long get_zeroed_page(gfp_t gfp_mask)
4854 {
4855 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4856 }
4857 EXPORT_SYMBOL(get_zeroed_page);
4858 
4859 static inline void free_the_page(struct page *page, unsigned int order)
4860 {
4861 	if (order == 0)		/* Via pcp? */
4862 		free_unref_page(page);
4863 	else
4864 		__free_pages_ok(page, order);
4865 }
4866 
4867 void __free_pages(struct page *page, unsigned int order)
4868 {
4869 	if (put_page_testzero(page))
4870 		free_the_page(page, order);
4871 }
4872 EXPORT_SYMBOL(__free_pages);
4873 
4874 void free_pages(unsigned long addr, unsigned int order)
4875 {
4876 	if (addr != 0) {
4877 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4878 		__free_pages(virt_to_page((void *)addr), order);
4879 	}
4880 }
4881 
4882 EXPORT_SYMBOL(free_pages);
4883 
4884 /*
4885  * Page Fragment:
4886  *  An arbitrary-length arbitrary-offset area of memory which resides
4887  *  within a 0 or higher order page.  Multiple fragments within that page
4888  *  are individually refcounted, in the page's reference counter.
4889  *
4890  * The page_frag functions below provide a simple allocation framework for
4891  * page fragments.  This is used by the network stack and network device
4892  * drivers to provide a backing region of memory for use as either an
4893  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4894  */
4895 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4896 					     gfp_t gfp_mask)
4897 {
4898 	struct page *page = NULL;
4899 	gfp_t gfp = gfp_mask;
4900 
4901 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4902 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4903 		    __GFP_NOMEMALLOC;
4904 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4905 				PAGE_FRAG_CACHE_MAX_ORDER);
4906 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4907 #endif
4908 	if (unlikely(!page))
4909 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4910 
4911 	nc->va = page ? page_address(page) : NULL;
4912 
4913 	return page;
4914 }
4915 
4916 void __page_frag_cache_drain(struct page *page, unsigned int count)
4917 {
4918 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4919 
4920 	if (page_ref_sub_and_test(page, count))
4921 		free_the_page(page, compound_order(page));
4922 }
4923 EXPORT_SYMBOL(__page_frag_cache_drain);
4924 
4925 void *page_frag_alloc(struct page_frag_cache *nc,
4926 		      unsigned int fragsz, gfp_t gfp_mask)
4927 {
4928 	unsigned int size = PAGE_SIZE;
4929 	struct page *page;
4930 	int offset;
4931 
4932 	if (unlikely(!nc->va)) {
4933 refill:
4934 		page = __page_frag_cache_refill(nc, gfp_mask);
4935 		if (!page)
4936 			return NULL;
4937 
4938 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4939 		/* if size can vary use size else just use PAGE_SIZE */
4940 		size = nc->size;
4941 #endif
4942 		/* Even if we own the page, we do not use atomic_set().
4943 		 * This would break get_page_unless_zero() users.
4944 		 */
4945 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4946 
4947 		/* reset page count bias and offset to start of new frag */
4948 		nc->pfmemalloc = page_is_pfmemalloc(page);
4949 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4950 		nc->offset = size;
4951 	}
4952 
4953 	offset = nc->offset - fragsz;
4954 	if (unlikely(offset < 0)) {
4955 		page = virt_to_page(nc->va);
4956 
4957 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4958 			goto refill;
4959 
4960 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4961 		/* if size can vary use size else just use PAGE_SIZE */
4962 		size = nc->size;
4963 #endif
4964 		/* OK, page count is 0, we can safely set it */
4965 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4966 
4967 		/* reset page count bias and offset to start of new frag */
4968 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4969 		offset = size - fragsz;
4970 	}
4971 
4972 	nc->pagecnt_bias--;
4973 	nc->offset = offset;
4974 
4975 	return nc->va + offset;
4976 }
4977 EXPORT_SYMBOL(page_frag_alloc);
4978 
4979 /*
4980  * Frees a page fragment allocated out of either a compound or order 0 page.
4981  */
4982 void page_frag_free(void *addr)
4983 {
4984 	struct page *page = virt_to_head_page(addr);
4985 
4986 	if (unlikely(put_page_testzero(page)))
4987 		free_the_page(page, compound_order(page));
4988 }
4989 EXPORT_SYMBOL(page_frag_free);
4990 
4991 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4992 		size_t size)
4993 {
4994 	if (addr) {
4995 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4996 		unsigned long used = addr + PAGE_ALIGN(size);
4997 
4998 		split_page(virt_to_page((void *)addr), order);
4999 		while (used < alloc_end) {
5000 			free_page(used);
5001 			used += PAGE_SIZE;
5002 		}
5003 	}
5004 	return (void *)addr;
5005 }
5006 
5007 /**
5008  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5009  * @size: the number of bytes to allocate
5010  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5011  *
5012  * This function is similar to alloc_pages(), except that it allocates the
5013  * minimum number of pages to satisfy the request.  alloc_pages() can only
5014  * allocate memory in power-of-two pages.
5015  *
5016  * This function is also limited by MAX_ORDER.
5017  *
5018  * Memory allocated by this function must be released by free_pages_exact().
5019  *
5020  * Return: pointer to the allocated area or %NULL in case of error.
5021  */
5022 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5023 {
5024 	unsigned int order = get_order(size);
5025 	unsigned long addr;
5026 
5027 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5028 		gfp_mask &= ~__GFP_COMP;
5029 
5030 	addr = __get_free_pages(gfp_mask, order);
5031 	return make_alloc_exact(addr, order, size);
5032 }
5033 EXPORT_SYMBOL(alloc_pages_exact);
5034 
5035 /**
5036  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5037  *			   pages on a node.
5038  * @nid: the preferred node ID where memory should be allocated
5039  * @size: the number of bytes to allocate
5040  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5041  *
5042  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5043  * back.
5044  *
5045  * Return: pointer to the allocated area or %NULL in case of error.
5046  */
5047 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5048 {
5049 	unsigned int order = get_order(size);
5050 	struct page *p;
5051 
5052 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5053 		gfp_mask &= ~__GFP_COMP;
5054 
5055 	p = alloc_pages_node(nid, gfp_mask, order);
5056 	if (!p)
5057 		return NULL;
5058 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5059 }
5060 
5061 /**
5062  * free_pages_exact - release memory allocated via alloc_pages_exact()
5063  * @virt: the value returned by alloc_pages_exact.
5064  * @size: size of allocation, same value as passed to alloc_pages_exact().
5065  *
5066  * Release the memory allocated by a previous call to alloc_pages_exact.
5067  */
5068 void free_pages_exact(void *virt, size_t size)
5069 {
5070 	unsigned long addr = (unsigned long)virt;
5071 	unsigned long end = addr + PAGE_ALIGN(size);
5072 
5073 	while (addr < end) {
5074 		free_page(addr);
5075 		addr += PAGE_SIZE;
5076 	}
5077 }
5078 EXPORT_SYMBOL(free_pages_exact);
5079 
5080 /**
5081  * nr_free_zone_pages - count number of pages beyond high watermark
5082  * @offset: The zone index of the highest zone
5083  *
5084  * nr_free_zone_pages() counts the number of pages which are beyond the
5085  * high watermark within all zones at or below a given zone index.  For each
5086  * zone, the number of pages is calculated as:
5087  *
5088  *     nr_free_zone_pages = managed_pages - high_pages
5089  *
5090  * Return: number of pages beyond high watermark.
5091  */
5092 static unsigned long nr_free_zone_pages(int offset)
5093 {
5094 	struct zoneref *z;
5095 	struct zone *zone;
5096 
5097 	/* Just pick one node, since fallback list is circular */
5098 	unsigned long sum = 0;
5099 
5100 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5101 
5102 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5103 		unsigned long size = zone_managed_pages(zone);
5104 		unsigned long high = high_wmark_pages(zone);
5105 		if (size > high)
5106 			sum += size - high;
5107 	}
5108 
5109 	return sum;
5110 }
5111 
5112 /**
5113  * nr_free_buffer_pages - count number of pages beyond high watermark
5114  *
5115  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5116  * watermark within ZONE_DMA and ZONE_NORMAL.
5117  *
5118  * Return: number of pages beyond high watermark within ZONE_DMA and
5119  * ZONE_NORMAL.
5120  */
5121 unsigned long nr_free_buffer_pages(void)
5122 {
5123 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5124 }
5125 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5126 
5127 /**
5128  * nr_free_pagecache_pages - count number of pages beyond high watermark
5129  *
5130  * nr_free_pagecache_pages() counts the number of pages which are beyond the
5131  * high watermark within all zones.
5132  *
5133  * Return: number of pages beyond high watermark within all zones.
5134  */
5135 unsigned long nr_free_pagecache_pages(void)
5136 {
5137 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5138 }
5139 
5140 static inline void show_node(struct zone *zone)
5141 {
5142 	if (IS_ENABLED(CONFIG_NUMA))
5143 		printk("Node %d ", zone_to_nid(zone));
5144 }
5145 
5146 long si_mem_available(void)
5147 {
5148 	long available;
5149 	unsigned long pagecache;
5150 	unsigned long wmark_low = 0;
5151 	unsigned long pages[NR_LRU_LISTS];
5152 	unsigned long reclaimable;
5153 	struct zone *zone;
5154 	int lru;
5155 
5156 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5157 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5158 
5159 	for_each_zone(zone)
5160 		wmark_low += low_wmark_pages(zone);
5161 
5162 	/*
5163 	 * Estimate the amount of memory available for userspace allocations,
5164 	 * without causing swapping.
5165 	 */
5166 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5167 
5168 	/*
5169 	 * Not all the page cache can be freed, otherwise the system will
5170 	 * start swapping. Assume at least half of the page cache, or the
5171 	 * low watermark worth of cache, needs to stay.
5172 	 */
5173 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5174 	pagecache -= min(pagecache / 2, wmark_low);
5175 	available += pagecache;
5176 
5177 	/*
5178 	 * Part of the reclaimable slab and other kernel memory consists of
5179 	 * items that are in use, and cannot be freed. Cap this estimate at the
5180 	 * low watermark.
5181 	 */
5182 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5183 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5184 	available += reclaimable - min(reclaimable / 2, wmark_low);
5185 
5186 	if (available < 0)
5187 		available = 0;
5188 	return available;
5189 }
5190 EXPORT_SYMBOL_GPL(si_mem_available);
5191 
5192 void si_meminfo(struct sysinfo *val)
5193 {
5194 	val->totalram = totalram_pages();
5195 	val->sharedram = global_node_page_state(NR_SHMEM);
5196 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5197 	val->bufferram = nr_blockdev_pages();
5198 	val->totalhigh = totalhigh_pages();
5199 	val->freehigh = nr_free_highpages();
5200 	val->mem_unit = PAGE_SIZE;
5201 }
5202 
5203 EXPORT_SYMBOL(si_meminfo);
5204 
5205 #ifdef CONFIG_NUMA
5206 void si_meminfo_node(struct sysinfo *val, int nid)
5207 {
5208 	int zone_type;		/* needs to be signed */
5209 	unsigned long managed_pages = 0;
5210 	unsigned long managed_highpages = 0;
5211 	unsigned long free_highpages = 0;
5212 	pg_data_t *pgdat = NODE_DATA(nid);
5213 
5214 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5215 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5216 	val->totalram = managed_pages;
5217 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5218 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5219 #ifdef CONFIG_HIGHMEM
5220 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5221 		struct zone *zone = &pgdat->node_zones[zone_type];
5222 
5223 		if (is_highmem(zone)) {
5224 			managed_highpages += zone_managed_pages(zone);
5225 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5226 		}
5227 	}
5228 	val->totalhigh = managed_highpages;
5229 	val->freehigh = free_highpages;
5230 #else
5231 	val->totalhigh = managed_highpages;
5232 	val->freehigh = free_highpages;
5233 #endif
5234 	val->mem_unit = PAGE_SIZE;
5235 }
5236 #endif
5237 
5238 /*
5239  * Determine whether the node should be displayed or not, depending on whether
5240  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5241  */
5242 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5243 {
5244 	if (!(flags & SHOW_MEM_FILTER_NODES))
5245 		return false;
5246 
5247 	/*
5248 	 * no node mask - aka implicit memory numa policy. Do not bother with
5249 	 * the synchronization - read_mems_allowed_begin - because we do not
5250 	 * have to be precise here.
5251 	 */
5252 	if (!nodemask)
5253 		nodemask = &cpuset_current_mems_allowed;
5254 
5255 	return !node_isset(nid, *nodemask);
5256 }
5257 
5258 #define K(x) ((x) << (PAGE_SHIFT-10))
5259 
5260 static void show_migration_types(unsigned char type)
5261 {
5262 	static const char types[MIGRATE_TYPES] = {
5263 		[MIGRATE_UNMOVABLE]	= 'U',
5264 		[MIGRATE_MOVABLE]	= 'M',
5265 		[MIGRATE_RECLAIMABLE]	= 'E',
5266 		[MIGRATE_HIGHATOMIC]	= 'H',
5267 #ifdef CONFIG_CMA
5268 		[MIGRATE_CMA]		= 'C',
5269 #endif
5270 #ifdef CONFIG_MEMORY_ISOLATION
5271 		[MIGRATE_ISOLATE]	= 'I',
5272 #endif
5273 	};
5274 	char tmp[MIGRATE_TYPES + 1];
5275 	char *p = tmp;
5276 	int i;
5277 
5278 	for (i = 0; i < MIGRATE_TYPES; i++) {
5279 		if (type & (1 << i))
5280 			*p++ = types[i];
5281 	}
5282 
5283 	*p = '\0';
5284 	printk(KERN_CONT "(%s) ", tmp);
5285 }
5286 
5287 /*
5288  * Show free area list (used inside shift_scroll-lock stuff)
5289  * We also calculate the percentage fragmentation. We do this by counting the
5290  * memory on each free list with the exception of the first item on the list.
5291  *
5292  * Bits in @filter:
5293  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5294  *   cpuset.
5295  */
5296 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5297 {
5298 	unsigned long free_pcp = 0;
5299 	int cpu;
5300 	struct zone *zone;
5301 	pg_data_t *pgdat;
5302 
5303 	for_each_populated_zone(zone) {
5304 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5305 			continue;
5306 
5307 		for_each_online_cpu(cpu)
5308 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5309 	}
5310 
5311 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5312 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5313 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5314 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5315 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5316 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5317 		global_node_page_state(NR_ACTIVE_ANON),
5318 		global_node_page_state(NR_INACTIVE_ANON),
5319 		global_node_page_state(NR_ISOLATED_ANON),
5320 		global_node_page_state(NR_ACTIVE_FILE),
5321 		global_node_page_state(NR_INACTIVE_FILE),
5322 		global_node_page_state(NR_ISOLATED_FILE),
5323 		global_node_page_state(NR_UNEVICTABLE),
5324 		global_node_page_state(NR_FILE_DIRTY),
5325 		global_node_page_state(NR_WRITEBACK),
5326 		global_node_page_state(NR_UNSTABLE_NFS),
5327 		global_node_page_state(NR_SLAB_RECLAIMABLE),
5328 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5329 		global_node_page_state(NR_FILE_MAPPED),
5330 		global_node_page_state(NR_SHMEM),
5331 		global_zone_page_state(NR_PAGETABLE),
5332 		global_zone_page_state(NR_BOUNCE),
5333 		global_zone_page_state(NR_FREE_PAGES),
5334 		free_pcp,
5335 		global_zone_page_state(NR_FREE_CMA_PAGES));
5336 
5337 	for_each_online_pgdat(pgdat) {
5338 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5339 			continue;
5340 
5341 		printk("Node %d"
5342 			" active_anon:%lukB"
5343 			" inactive_anon:%lukB"
5344 			" active_file:%lukB"
5345 			" inactive_file:%lukB"
5346 			" unevictable:%lukB"
5347 			" isolated(anon):%lukB"
5348 			" isolated(file):%lukB"
5349 			" mapped:%lukB"
5350 			" dirty:%lukB"
5351 			" writeback:%lukB"
5352 			" shmem:%lukB"
5353 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5354 			" shmem_thp: %lukB"
5355 			" shmem_pmdmapped: %lukB"
5356 			" anon_thp: %lukB"
5357 #endif
5358 			" writeback_tmp:%lukB"
5359 			" unstable:%lukB"
5360 			" all_unreclaimable? %s"
5361 			"\n",
5362 			pgdat->node_id,
5363 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5364 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5365 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5366 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5367 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5368 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5369 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5370 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5371 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5372 			K(node_page_state(pgdat, NR_WRITEBACK)),
5373 			K(node_page_state(pgdat, NR_SHMEM)),
5374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5375 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5376 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5377 					* HPAGE_PMD_NR),
5378 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5379 #endif
5380 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5381 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5382 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5383 				"yes" : "no");
5384 	}
5385 
5386 	for_each_populated_zone(zone) {
5387 		int i;
5388 
5389 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5390 			continue;
5391 
5392 		free_pcp = 0;
5393 		for_each_online_cpu(cpu)
5394 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5395 
5396 		show_node(zone);
5397 		printk(KERN_CONT
5398 			"%s"
5399 			" free:%lukB"
5400 			" min:%lukB"
5401 			" low:%lukB"
5402 			" high:%lukB"
5403 			" reserved_highatomic:%luKB"
5404 			" active_anon:%lukB"
5405 			" inactive_anon:%lukB"
5406 			" active_file:%lukB"
5407 			" inactive_file:%lukB"
5408 			" unevictable:%lukB"
5409 			" writepending:%lukB"
5410 			" present:%lukB"
5411 			" managed:%lukB"
5412 			" mlocked:%lukB"
5413 			" kernel_stack:%lukB"
5414 			" pagetables:%lukB"
5415 			" bounce:%lukB"
5416 			" free_pcp:%lukB"
5417 			" local_pcp:%ukB"
5418 			" free_cma:%lukB"
5419 			"\n",
5420 			zone->name,
5421 			K(zone_page_state(zone, NR_FREE_PAGES)),
5422 			K(min_wmark_pages(zone)),
5423 			K(low_wmark_pages(zone)),
5424 			K(high_wmark_pages(zone)),
5425 			K(zone->nr_reserved_highatomic),
5426 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5427 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5428 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5429 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5430 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5431 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5432 			K(zone->present_pages),
5433 			K(zone_managed_pages(zone)),
5434 			K(zone_page_state(zone, NR_MLOCK)),
5435 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5436 			K(zone_page_state(zone, NR_PAGETABLE)),
5437 			K(zone_page_state(zone, NR_BOUNCE)),
5438 			K(free_pcp),
5439 			K(this_cpu_read(zone->pageset->pcp.count)),
5440 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5441 		printk("lowmem_reserve[]:");
5442 		for (i = 0; i < MAX_NR_ZONES; i++)
5443 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5444 		printk(KERN_CONT "\n");
5445 	}
5446 
5447 	for_each_populated_zone(zone) {
5448 		unsigned int order;
5449 		unsigned long nr[MAX_ORDER], flags, total = 0;
5450 		unsigned char types[MAX_ORDER];
5451 
5452 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5453 			continue;
5454 		show_node(zone);
5455 		printk(KERN_CONT "%s: ", zone->name);
5456 
5457 		spin_lock_irqsave(&zone->lock, flags);
5458 		for (order = 0; order < MAX_ORDER; order++) {
5459 			struct free_area *area = &zone->free_area[order];
5460 			int type;
5461 
5462 			nr[order] = area->nr_free;
5463 			total += nr[order] << order;
5464 
5465 			types[order] = 0;
5466 			for (type = 0; type < MIGRATE_TYPES; type++) {
5467 				if (!free_area_empty(area, type))
5468 					types[order] |= 1 << type;
5469 			}
5470 		}
5471 		spin_unlock_irqrestore(&zone->lock, flags);
5472 		for (order = 0; order < MAX_ORDER; order++) {
5473 			printk(KERN_CONT "%lu*%lukB ",
5474 			       nr[order], K(1UL) << order);
5475 			if (nr[order])
5476 				show_migration_types(types[order]);
5477 		}
5478 		printk(KERN_CONT "= %lukB\n", K(total));
5479 	}
5480 
5481 	hugetlb_show_meminfo();
5482 
5483 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5484 
5485 	show_swap_cache_info();
5486 }
5487 
5488 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5489 {
5490 	zoneref->zone = zone;
5491 	zoneref->zone_idx = zone_idx(zone);
5492 }
5493 
5494 /*
5495  * Builds allocation fallback zone lists.
5496  *
5497  * Add all populated zones of a node to the zonelist.
5498  */
5499 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5500 {
5501 	struct zone *zone;
5502 	enum zone_type zone_type = MAX_NR_ZONES;
5503 	int nr_zones = 0;
5504 
5505 	do {
5506 		zone_type--;
5507 		zone = pgdat->node_zones + zone_type;
5508 		if (managed_zone(zone)) {
5509 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5510 			check_highest_zone(zone_type);
5511 		}
5512 	} while (zone_type);
5513 
5514 	return nr_zones;
5515 }
5516 
5517 #ifdef CONFIG_NUMA
5518 
5519 static int __parse_numa_zonelist_order(char *s)
5520 {
5521 	/*
5522 	 * We used to support different zonlists modes but they turned
5523 	 * out to be just not useful. Let's keep the warning in place
5524 	 * if somebody still use the cmd line parameter so that we do
5525 	 * not fail it silently
5526 	 */
5527 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5528 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5529 		return -EINVAL;
5530 	}
5531 	return 0;
5532 }
5533 
5534 static __init int setup_numa_zonelist_order(char *s)
5535 {
5536 	if (!s)
5537 		return 0;
5538 
5539 	return __parse_numa_zonelist_order(s);
5540 }
5541 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5542 
5543 char numa_zonelist_order[] = "Node";
5544 
5545 /*
5546  * sysctl handler for numa_zonelist_order
5547  */
5548 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5549 		void *buffer, size_t *length, loff_t *ppos)
5550 {
5551 	if (write)
5552 		return __parse_numa_zonelist_order(buffer);
5553 	return proc_dostring(table, write, buffer, length, ppos);
5554 }
5555 
5556 
5557 #define MAX_NODE_LOAD (nr_online_nodes)
5558 static int node_load[MAX_NUMNODES];
5559 
5560 /**
5561  * find_next_best_node - find the next node that should appear in a given node's fallback list
5562  * @node: node whose fallback list we're appending
5563  * @used_node_mask: nodemask_t of already used nodes
5564  *
5565  * We use a number of factors to determine which is the next node that should
5566  * appear on a given node's fallback list.  The node should not have appeared
5567  * already in @node's fallback list, and it should be the next closest node
5568  * according to the distance array (which contains arbitrary distance values
5569  * from each node to each node in the system), and should also prefer nodes
5570  * with no CPUs, since presumably they'll have very little allocation pressure
5571  * on them otherwise.
5572  *
5573  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5574  */
5575 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5576 {
5577 	int n, val;
5578 	int min_val = INT_MAX;
5579 	int best_node = NUMA_NO_NODE;
5580 	const struct cpumask *tmp = cpumask_of_node(0);
5581 
5582 	/* Use the local node if we haven't already */
5583 	if (!node_isset(node, *used_node_mask)) {
5584 		node_set(node, *used_node_mask);
5585 		return node;
5586 	}
5587 
5588 	for_each_node_state(n, N_MEMORY) {
5589 
5590 		/* Don't want a node to appear more than once */
5591 		if (node_isset(n, *used_node_mask))
5592 			continue;
5593 
5594 		/* Use the distance array to find the distance */
5595 		val = node_distance(node, n);
5596 
5597 		/* Penalize nodes under us ("prefer the next node") */
5598 		val += (n < node);
5599 
5600 		/* Give preference to headless and unused nodes */
5601 		tmp = cpumask_of_node(n);
5602 		if (!cpumask_empty(tmp))
5603 			val += PENALTY_FOR_NODE_WITH_CPUS;
5604 
5605 		/* Slight preference for less loaded node */
5606 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5607 		val += node_load[n];
5608 
5609 		if (val < min_val) {
5610 			min_val = val;
5611 			best_node = n;
5612 		}
5613 	}
5614 
5615 	if (best_node >= 0)
5616 		node_set(best_node, *used_node_mask);
5617 
5618 	return best_node;
5619 }
5620 
5621 
5622 /*
5623  * Build zonelists ordered by node and zones within node.
5624  * This results in maximum locality--normal zone overflows into local
5625  * DMA zone, if any--but risks exhausting DMA zone.
5626  */
5627 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5628 		unsigned nr_nodes)
5629 {
5630 	struct zoneref *zonerefs;
5631 	int i;
5632 
5633 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5634 
5635 	for (i = 0; i < nr_nodes; i++) {
5636 		int nr_zones;
5637 
5638 		pg_data_t *node = NODE_DATA(node_order[i]);
5639 
5640 		nr_zones = build_zonerefs_node(node, zonerefs);
5641 		zonerefs += nr_zones;
5642 	}
5643 	zonerefs->zone = NULL;
5644 	zonerefs->zone_idx = 0;
5645 }
5646 
5647 /*
5648  * Build gfp_thisnode zonelists
5649  */
5650 static void build_thisnode_zonelists(pg_data_t *pgdat)
5651 {
5652 	struct zoneref *zonerefs;
5653 	int nr_zones;
5654 
5655 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5656 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5657 	zonerefs += nr_zones;
5658 	zonerefs->zone = NULL;
5659 	zonerefs->zone_idx = 0;
5660 }
5661 
5662 /*
5663  * Build zonelists ordered by zone and nodes within zones.
5664  * This results in conserving DMA zone[s] until all Normal memory is
5665  * exhausted, but results in overflowing to remote node while memory
5666  * may still exist in local DMA zone.
5667  */
5668 
5669 static void build_zonelists(pg_data_t *pgdat)
5670 {
5671 	static int node_order[MAX_NUMNODES];
5672 	int node, load, nr_nodes = 0;
5673 	nodemask_t used_mask;
5674 	int local_node, prev_node;
5675 
5676 	/* NUMA-aware ordering of nodes */
5677 	local_node = pgdat->node_id;
5678 	load = nr_online_nodes;
5679 	prev_node = local_node;
5680 	nodes_clear(used_mask);
5681 
5682 	memset(node_order, 0, sizeof(node_order));
5683 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5684 		/*
5685 		 * We don't want to pressure a particular node.
5686 		 * So adding penalty to the first node in same
5687 		 * distance group to make it round-robin.
5688 		 */
5689 		if (node_distance(local_node, node) !=
5690 		    node_distance(local_node, prev_node))
5691 			node_load[node] = load;
5692 
5693 		node_order[nr_nodes++] = node;
5694 		prev_node = node;
5695 		load--;
5696 	}
5697 
5698 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5699 	build_thisnode_zonelists(pgdat);
5700 }
5701 
5702 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5703 /*
5704  * Return node id of node used for "local" allocations.
5705  * I.e., first node id of first zone in arg node's generic zonelist.
5706  * Used for initializing percpu 'numa_mem', which is used primarily
5707  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5708  */
5709 int local_memory_node(int node)
5710 {
5711 	struct zoneref *z;
5712 
5713 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5714 				   gfp_zone(GFP_KERNEL),
5715 				   NULL);
5716 	return zone_to_nid(z->zone);
5717 }
5718 #endif
5719 
5720 static void setup_min_unmapped_ratio(void);
5721 static void setup_min_slab_ratio(void);
5722 #else	/* CONFIG_NUMA */
5723 
5724 static void build_zonelists(pg_data_t *pgdat)
5725 {
5726 	int node, local_node;
5727 	struct zoneref *zonerefs;
5728 	int nr_zones;
5729 
5730 	local_node = pgdat->node_id;
5731 
5732 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5733 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5734 	zonerefs += nr_zones;
5735 
5736 	/*
5737 	 * Now we build the zonelist so that it contains the zones
5738 	 * of all the other nodes.
5739 	 * We don't want to pressure a particular node, so when
5740 	 * building the zones for node N, we make sure that the
5741 	 * zones coming right after the local ones are those from
5742 	 * node N+1 (modulo N)
5743 	 */
5744 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5745 		if (!node_online(node))
5746 			continue;
5747 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5748 		zonerefs += nr_zones;
5749 	}
5750 	for (node = 0; node < local_node; node++) {
5751 		if (!node_online(node))
5752 			continue;
5753 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5754 		zonerefs += nr_zones;
5755 	}
5756 
5757 	zonerefs->zone = NULL;
5758 	zonerefs->zone_idx = 0;
5759 }
5760 
5761 #endif	/* CONFIG_NUMA */
5762 
5763 /*
5764  * Boot pageset table. One per cpu which is going to be used for all
5765  * zones and all nodes. The parameters will be set in such a way
5766  * that an item put on a list will immediately be handed over to
5767  * the buddy list. This is safe since pageset manipulation is done
5768  * with interrupts disabled.
5769  *
5770  * The boot_pagesets must be kept even after bootup is complete for
5771  * unused processors and/or zones. They do play a role for bootstrapping
5772  * hotplugged processors.
5773  *
5774  * zoneinfo_show() and maybe other functions do
5775  * not check if the processor is online before following the pageset pointer.
5776  * Other parts of the kernel may not check if the zone is available.
5777  */
5778 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5779 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5780 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5781 
5782 static void __build_all_zonelists(void *data)
5783 {
5784 	int nid;
5785 	int __maybe_unused cpu;
5786 	pg_data_t *self = data;
5787 	static DEFINE_SPINLOCK(lock);
5788 
5789 	spin_lock(&lock);
5790 
5791 #ifdef CONFIG_NUMA
5792 	memset(node_load, 0, sizeof(node_load));
5793 #endif
5794 
5795 	/*
5796 	 * This node is hotadded and no memory is yet present.   So just
5797 	 * building zonelists is fine - no need to touch other nodes.
5798 	 */
5799 	if (self && !node_online(self->node_id)) {
5800 		build_zonelists(self);
5801 	} else {
5802 		for_each_online_node(nid) {
5803 			pg_data_t *pgdat = NODE_DATA(nid);
5804 
5805 			build_zonelists(pgdat);
5806 		}
5807 
5808 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5809 		/*
5810 		 * We now know the "local memory node" for each node--
5811 		 * i.e., the node of the first zone in the generic zonelist.
5812 		 * Set up numa_mem percpu variable for on-line cpus.  During
5813 		 * boot, only the boot cpu should be on-line;  we'll init the
5814 		 * secondary cpus' numa_mem as they come on-line.  During
5815 		 * node/memory hotplug, we'll fixup all on-line cpus.
5816 		 */
5817 		for_each_online_cpu(cpu)
5818 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5819 #endif
5820 	}
5821 
5822 	spin_unlock(&lock);
5823 }
5824 
5825 static noinline void __init
5826 build_all_zonelists_init(void)
5827 {
5828 	int cpu;
5829 
5830 	__build_all_zonelists(NULL);
5831 
5832 	/*
5833 	 * Initialize the boot_pagesets that are going to be used
5834 	 * for bootstrapping processors. The real pagesets for
5835 	 * each zone will be allocated later when the per cpu
5836 	 * allocator is available.
5837 	 *
5838 	 * boot_pagesets are used also for bootstrapping offline
5839 	 * cpus if the system is already booted because the pagesets
5840 	 * are needed to initialize allocators on a specific cpu too.
5841 	 * F.e. the percpu allocator needs the page allocator which
5842 	 * needs the percpu allocator in order to allocate its pagesets
5843 	 * (a chicken-egg dilemma).
5844 	 */
5845 	for_each_possible_cpu(cpu)
5846 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5847 
5848 	mminit_verify_zonelist();
5849 	cpuset_init_current_mems_allowed();
5850 }
5851 
5852 /*
5853  * unless system_state == SYSTEM_BOOTING.
5854  *
5855  * __ref due to call of __init annotated helper build_all_zonelists_init
5856  * [protected by SYSTEM_BOOTING].
5857  */
5858 void __ref build_all_zonelists(pg_data_t *pgdat)
5859 {
5860 	if (system_state == SYSTEM_BOOTING) {
5861 		build_all_zonelists_init();
5862 	} else {
5863 		__build_all_zonelists(pgdat);
5864 		/* cpuset refresh routine should be here */
5865 	}
5866 	vm_total_pages = nr_free_pagecache_pages();
5867 	/*
5868 	 * Disable grouping by mobility if the number of pages in the
5869 	 * system is too low to allow the mechanism to work. It would be
5870 	 * more accurate, but expensive to check per-zone. This check is
5871 	 * made on memory-hotadd so a system can start with mobility
5872 	 * disabled and enable it later
5873 	 */
5874 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5875 		page_group_by_mobility_disabled = 1;
5876 	else
5877 		page_group_by_mobility_disabled = 0;
5878 
5879 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5880 		nr_online_nodes,
5881 		page_group_by_mobility_disabled ? "off" : "on",
5882 		vm_total_pages);
5883 #ifdef CONFIG_NUMA
5884 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5885 #endif
5886 }
5887 
5888 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5889 static bool __meminit
5890 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5891 {
5892 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5893 	static struct memblock_region *r;
5894 
5895 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5896 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5897 			for_each_memblock(memory, r) {
5898 				if (*pfn < memblock_region_memory_end_pfn(r))
5899 					break;
5900 			}
5901 		}
5902 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5903 		    memblock_is_mirror(r)) {
5904 			*pfn = memblock_region_memory_end_pfn(r);
5905 			return true;
5906 		}
5907 	}
5908 #endif
5909 	return false;
5910 }
5911 
5912 #ifdef CONFIG_SPARSEMEM
5913 /* Skip PFNs that belong to non-present sections */
5914 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5915 {
5916 	const unsigned long section_nr = pfn_to_section_nr(++pfn);
5917 
5918 	if (present_section_nr(section_nr))
5919 		return pfn;
5920 	return section_nr_to_pfn(next_present_section_nr(section_nr));
5921 }
5922 #else
5923 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5924 {
5925 	return pfn++;
5926 }
5927 #endif
5928 
5929 /*
5930  * Initially all pages are reserved - free ones are freed
5931  * up by memblock_free_all() once the early boot process is
5932  * done. Non-atomic initialization, single-pass.
5933  */
5934 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5935 		unsigned long start_pfn, enum memmap_context context,
5936 		struct vmem_altmap *altmap)
5937 {
5938 	unsigned long pfn, end_pfn = start_pfn + size;
5939 	struct page *page;
5940 
5941 	if (highest_memmap_pfn < end_pfn - 1)
5942 		highest_memmap_pfn = end_pfn - 1;
5943 
5944 #ifdef CONFIG_ZONE_DEVICE
5945 	/*
5946 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5947 	 * memory. We limit the total number of pages to initialize to just
5948 	 * those that might contain the memory mapping. We will defer the
5949 	 * ZONE_DEVICE page initialization until after we have released
5950 	 * the hotplug lock.
5951 	 */
5952 	if (zone == ZONE_DEVICE) {
5953 		if (!altmap)
5954 			return;
5955 
5956 		if (start_pfn == altmap->base_pfn)
5957 			start_pfn += altmap->reserve;
5958 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5959 	}
5960 #endif
5961 
5962 	for (pfn = start_pfn; pfn < end_pfn; ) {
5963 		/*
5964 		 * There can be holes in boot-time mem_map[]s handed to this
5965 		 * function.  They do not exist on hotplugged memory.
5966 		 */
5967 		if (context == MEMMAP_EARLY) {
5968 			if (!early_pfn_valid(pfn)) {
5969 				pfn = next_pfn(pfn);
5970 				continue;
5971 			}
5972 			if (!early_pfn_in_nid(pfn, nid)) {
5973 				pfn++;
5974 				continue;
5975 			}
5976 			if (overlap_memmap_init(zone, &pfn))
5977 				continue;
5978 			if (defer_init(nid, pfn, end_pfn))
5979 				break;
5980 		}
5981 
5982 		page = pfn_to_page(pfn);
5983 		__init_single_page(page, pfn, zone, nid);
5984 		if (context == MEMMAP_HOTPLUG)
5985 			__SetPageReserved(page);
5986 
5987 		/*
5988 		 * Mark the block movable so that blocks are reserved for
5989 		 * movable at startup. This will force kernel allocations
5990 		 * to reserve their blocks rather than leaking throughout
5991 		 * the address space during boot when many long-lived
5992 		 * kernel allocations are made.
5993 		 *
5994 		 * bitmap is created for zone's valid pfn range. but memmap
5995 		 * can be created for invalid pages (for alignment)
5996 		 * check here not to call set_pageblock_migratetype() against
5997 		 * pfn out of zone.
5998 		 */
5999 		if (!(pfn & (pageblock_nr_pages - 1))) {
6000 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6001 			cond_resched();
6002 		}
6003 		pfn++;
6004 	}
6005 }
6006 
6007 #ifdef CONFIG_ZONE_DEVICE
6008 void __ref memmap_init_zone_device(struct zone *zone,
6009 				   unsigned long start_pfn,
6010 				   unsigned long nr_pages,
6011 				   struct dev_pagemap *pgmap)
6012 {
6013 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6014 	struct pglist_data *pgdat = zone->zone_pgdat;
6015 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6016 	unsigned long zone_idx = zone_idx(zone);
6017 	unsigned long start = jiffies;
6018 	int nid = pgdat->node_id;
6019 
6020 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6021 		return;
6022 
6023 	/*
6024 	 * The call to memmap_init_zone should have already taken care
6025 	 * of the pages reserved for the memmap, so we can just jump to
6026 	 * the end of that region and start processing the device pages.
6027 	 */
6028 	if (altmap) {
6029 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6030 		nr_pages = end_pfn - start_pfn;
6031 	}
6032 
6033 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6034 		struct page *page = pfn_to_page(pfn);
6035 
6036 		__init_single_page(page, pfn, zone_idx, nid);
6037 
6038 		/*
6039 		 * Mark page reserved as it will need to wait for onlining
6040 		 * phase for it to be fully associated with a zone.
6041 		 *
6042 		 * We can use the non-atomic __set_bit operation for setting
6043 		 * the flag as we are still initializing the pages.
6044 		 */
6045 		__SetPageReserved(page);
6046 
6047 		/*
6048 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6049 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6050 		 * ever freed or placed on a driver-private list.
6051 		 */
6052 		page->pgmap = pgmap;
6053 		page->zone_device_data = NULL;
6054 
6055 		/*
6056 		 * Mark the block movable so that blocks are reserved for
6057 		 * movable at startup. This will force kernel allocations
6058 		 * to reserve their blocks rather than leaking throughout
6059 		 * the address space during boot when many long-lived
6060 		 * kernel allocations are made.
6061 		 *
6062 		 * bitmap is created for zone's valid pfn range. but memmap
6063 		 * can be created for invalid pages (for alignment)
6064 		 * check here not to call set_pageblock_migratetype() against
6065 		 * pfn out of zone.
6066 		 *
6067 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6068 		 * because this is done early in section_activate()
6069 		 */
6070 		if (!(pfn & (pageblock_nr_pages - 1))) {
6071 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6072 			cond_resched();
6073 		}
6074 	}
6075 
6076 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6077 		nr_pages, jiffies_to_msecs(jiffies - start));
6078 }
6079 
6080 #endif
6081 static void __meminit zone_init_free_lists(struct zone *zone)
6082 {
6083 	unsigned int order, t;
6084 	for_each_migratetype_order(order, t) {
6085 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6086 		zone->free_area[order].nr_free = 0;
6087 	}
6088 }
6089 
6090 void __meminit __weak memmap_init(unsigned long size, int nid,
6091 				  unsigned long zone, unsigned long start_pfn)
6092 {
6093 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6094 }
6095 
6096 static int zone_batchsize(struct zone *zone)
6097 {
6098 #ifdef CONFIG_MMU
6099 	int batch;
6100 
6101 	/*
6102 	 * The per-cpu-pages pools are set to around 1000th of the
6103 	 * size of the zone.
6104 	 */
6105 	batch = zone_managed_pages(zone) / 1024;
6106 	/* But no more than a meg. */
6107 	if (batch * PAGE_SIZE > 1024 * 1024)
6108 		batch = (1024 * 1024) / PAGE_SIZE;
6109 	batch /= 4;		/* We effectively *= 4 below */
6110 	if (batch < 1)
6111 		batch = 1;
6112 
6113 	/*
6114 	 * Clamp the batch to a 2^n - 1 value. Having a power
6115 	 * of 2 value was found to be more likely to have
6116 	 * suboptimal cache aliasing properties in some cases.
6117 	 *
6118 	 * For example if 2 tasks are alternately allocating
6119 	 * batches of pages, one task can end up with a lot
6120 	 * of pages of one half of the possible page colors
6121 	 * and the other with pages of the other colors.
6122 	 */
6123 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6124 
6125 	return batch;
6126 
6127 #else
6128 	/* The deferral and batching of frees should be suppressed under NOMMU
6129 	 * conditions.
6130 	 *
6131 	 * The problem is that NOMMU needs to be able to allocate large chunks
6132 	 * of contiguous memory as there's no hardware page translation to
6133 	 * assemble apparent contiguous memory from discontiguous pages.
6134 	 *
6135 	 * Queueing large contiguous runs of pages for batching, however,
6136 	 * causes the pages to actually be freed in smaller chunks.  As there
6137 	 * can be a significant delay between the individual batches being
6138 	 * recycled, this leads to the once large chunks of space being
6139 	 * fragmented and becoming unavailable for high-order allocations.
6140 	 */
6141 	return 0;
6142 #endif
6143 }
6144 
6145 /*
6146  * pcp->high and pcp->batch values are related and dependent on one another:
6147  * ->batch must never be higher then ->high.
6148  * The following function updates them in a safe manner without read side
6149  * locking.
6150  *
6151  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6152  * those fields changing asynchronously (acording the the above rule).
6153  *
6154  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6155  * outside of boot time (or some other assurance that no concurrent updaters
6156  * exist).
6157  */
6158 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6159 		unsigned long batch)
6160 {
6161        /* start with a fail safe value for batch */
6162 	pcp->batch = 1;
6163 	smp_wmb();
6164 
6165        /* Update high, then batch, in order */
6166 	pcp->high = high;
6167 	smp_wmb();
6168 
6169 	pcp->batch = batch;
6170 }
6171 
6172 /* a companion to pageset_set_high() */
6173 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6174 {
6175 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6176 }
6177 
6178 static void pageset_init(struct per_cpu_pageset *p)
6179 {
6180 	struct per_cpu_pages *pcp;
6181 	int migratetype;
6182 
6183 	memset(p, 0, sizeof(*p));
6184 
6185 	pcp = &p->pcp;
6186 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6187 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6188 }
6189 
6190 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6191 {
6192 	pageset_init(p);
6193 	pageset_set_batch(p, batch);
6194 }
6195 
6196 /*
6197  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6198  * to the value high for the pageset p.
6199  */
6200 static void pageset_set_high(struct per_cpu_pageset *p,
6201 				unsigned long high)
6202 {
6203 	unsigned long batch = max(1UL, high / 4);
6204 	if ((high / 4) > (PAGE_SHIFT * 8))
6205 		batch = PAGE_SHIFT * 8;
6206 
6207 	pageset_update(&p->pcp, high, batch);
6208 }
6209 
6210 static void pageset_set_high_and_batch(struct zone *zone,
6211 				       struct per_cpu_pageset *pcp)
6212 {
6213 	if (percpu_pagelist_fraction)
6214 		pageset_set_high(pcp,
6215 			(zone_managed_pages(zone) /
6216 				percpu_pagelist_fraction));
6217 	else
6218 		pageset_set_batch(pcp, zone_batchsize(zone));
6219 }
6220 
6221 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6222 {
6223 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6224 
6225 	pageset_init(pcp);
6226 	pageset_set_high_and_batch(zone, pcp);
6227 }
6228 
6229 void __meminit setup_zone_pageset(struct zone *zone)
6230 {
6231 	int cpu;
6232 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6233 	for_each_possible_cpu(cpu)
6234 		zone_pageset_init(zone, cpu);
6235 }
6236 
6237 /*
6238  * Allocate per cpu pagesets and initialize them.
6239  * Before this call only boot pagesets were available.
6240  */
6241 void __init setup_per_cpu_pageset(void)
6242 {
6243 	struct pglist_data *pgdat;
6244 	struct zone *zone;
6245 
6246 	for_each_populated_zone(zone)
6247 		setup_zone_pageset(zone);
6248 
6249 	for_each_online_pgdat(pgdat)
6250 		pgdat->per_cpu_nodestats =
6251 			alloc_percpu(struct per_cpu_nodestat);
6252 }
6253 
6254 static __meminit void zone_pcp_init(struct zone *zone)
6255 {
6256 	/*
6257 	 * per cpu subsystem is not up at this point. The following code
6258 	 * relies on the ability of the linker to provide the
6259 	 * offset of a (static) per cpu variable into the per cpu area.
6260 	 */
6261 	zone->pageset = &boot_pageset;
6262 
6263 	if (populated_zone(zone))
6264 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6265 			zone->name, zone->present_pages,
6266 					 zone_batchsize(zone));
6267 }
6268 
6269 void __meminit init_currently_empty_zone(struct zone *zone,
6270 					unsigned long zone_start_pfn,
6271 					unsigned long size)
6272 {
6273 	struct pglist_data *pgdat = zone->zone_pgdat;
6274 	int zone_idx = zone_idx(zone) + 1;
6275 
6276 	if (zone_idx > pgdat->nr_zones)
6277 		pgdat->nr_zones = zone_idx;
6278 
6279 	zone->zone_start_pfn = zone_start_pfn;
6280 
6281 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6282 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6283 			pgdat->node_id,
6284 			(unsigned long)zone_idx(zone),
6285 			zone_start_pfn, (zone_start_pfn + size));
6286 
6287 	zone_init_free_lists(zone);
6288 	zone->initialized = 1;
6289 }
6290 
6291 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6292 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6293 
6294 /*
6295  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6296  */
6297 int __meminit __early_pfn_to_nid(unsigned long pfn,
6298 					struct mminit_pfnnid_cache *state)
6299 {
6300 	unsigned long start_pfn, end_pfn;
6301 	int nid;
6302 
6303 	if (state->last_start <= pfn && pfn < state->last_end)
6304 		return state->last_nid;
6305 
6306 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6307 	if (nid != NUMA_NO_NODE) {
6308 		state->last_start = start_pfn;
6309 		state->last_end = end_pfn;
6310 		state->last_nid = nid;
6311 	}
6312 
6313 	return nid;
6314 }
6315 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6316 
6317 /**
6318  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6319  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6320  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6321  *
6322  * If an architecture guarantees that all ranges registered contain no holes
6323  * and may be freed, this this function may be used instead of calling
6324  * memblock_free_early_nid() manually.
6325  */
6326 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6327 {
6328 	unsigned long start_pfn, end_pfn;
6329 	int i, this_nid;
6330 
6331 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6332 		start_pfn = min(start_pfn, max_low_pfn);
6333 		end_pfn = min(end_pfn, max_low_pfn);
6334 
6335 		if (start_pfn < end_pfn)
6336 			memblock_free_early_nid(PFN_PHYS(start_pfn),
6337 					(end_pfn - start_pfn) << PAGE_SHIFT,
6338 					this_nid);
6339 	}
6340 }
6341 
6342 /**
6343  * sparse_memory_present_with_active_regions - Call memory_present for each active range
6344  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6345  *
6346  * If an architecture guarantees that all ranges registered contain no holes and may
6347  * be freed, this function may be used instead of calling memory_present() manually.
6348  */
6349 void __init sparse_memory_present_with_active_regions(int nid)
6350 {
6351 	unsigned long start_pfn, end_pfn;
6352 	int i, this_nid;
6353 
6354 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6355 		memory_present(this_nid, start_pfn, end_pfn);
6356 }
6357 
6358 /**
6359  * get_pfn_range_for_nid - Return the start and end page frames for a node
6360  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6361  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6362  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6363  *
6364  * It returns the start and end page frame of a node based on information
6365  * provided by memblock_set_node(). If called for a node
6366  * with no available memory, a warning is printed and the start and end
6367  * PFNs will be 0.
6368  */
6369 void __init get_pfn_range_for_nid(unsigned int nid,
6370 			unsigned long *start_pfn, unsigned long *end_pfn)
6371 {
6372 	unsigned long this_start_pfn, this_end_pfn;
6373 	int i;
6374 
6375 	*start_pfn = -1UL;
6376 	*end_pfn = 0;
6377 
6378 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6379 		*start_pfn = min(*start_pfn, this_start_pfn);
6380 		*end_pfn = max(*end_pfn, this_end_pfn);
6381 	}
6382 
6383 	if (*start_pfn == -1UL)
6384 		*start_pfn = 0;
6385 }
6386 
6387 /*
6388  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6389  * assumption is made that zones within a node are ordered in monotonic
6390  * increasing memory addresses so that the "highest" populated zone is used
6391  */
6392 static void __init find_usable_zone_for_movable(void)
6393 {
6394 	int zone_index;
6395 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6396 		if (zone_index == ZONE_MOVABLE)
6397 			continue;
6398 
6399 		if (arch_zone_highest_possible_pfn[zone_index] >
6400 				arch_zone_lowest_possible_pfn[zone_index])
6401 			break;
6402 	}
6403 
6404 	VM_BUG_ON(zone_index == -1);
6405 	movable_zone = zone_index;
6406 }
6407 
6408 /*
6409  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6410  * because it is sized independent of architecture. Unlike the other zones,
6411  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6412  * in each node depending on the size of each node and how evenly kernelcore
6413  * is distributed. This helper function adjusts the zone ranges
6414  * provided by the architecture for a given node by using the end of the
6415  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6416  * zones within a node are in order of monotonic increases memory addresses
6417  */
6418 static void __init adjust_zone_range_for_zone_movable(int nid,
6419 					unsigned long zone_type,
6420 					unsigned long node_start_pfn,
6421 					unsigned long node_end_pfn,
6422 					unsigned long *zone_start_pfn,
6423 					unsigned long *zone_end_pfn)
6424 {
6425 	/* Only adjust if ZONE_MOVABLE is on this node */
6426 	if (zone_movable_pfn[nid]) {
6427 		/* Size ZONE_MOVABLE */
6428 		if (zone_type == ZONE_MOVABLE) {
6429 			*zone_start_pfn = zone_movable_pfn[nid];
6430 			*zone_end_pfn = min(node_end_pfn,
6431 				arch_zone_highest_possible_pfn[movable_zone]);
6432 
6433 		/* Adjust for ZONE_MOVABLE starting within this range */
6434 		} else if (!mirrored_kernelcore &&
6435 			*zone_start_pfn < zone_movable_pfn[nid] &&
6436 			*zone_end_pfn > zone_movable_pfn[nid]) {
6437 			*zone_end_pfn = zone_movable_pfn[nid];
6438 
6439 		/* Check if this whole range is within ZONE_MOVABLE */
6440 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6441 			*zone_start_pfn = *zone_end_pfn;
6442 	}
6443 }
6444 
6445 /*
6446  * Return the number of pages a zone spans in a node, including holes
6447  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6448  */
6449 static unsigned long __init zone_spanned_pages_in_node(int nid,
6450 					unsigned long zone_type,
6451 					unsigned long node_start_pfn,
6452 					unsigned long node_end_pfn,
6453 					unsigned long *zone_start_pfn,
6454 					unsigned long *zone_end_pfn,
6455 					unsigned long *ignored)
6456 {
6457 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6458 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6459 	/* When hotadd a new node from cpu_up(), the node should be empty */
6460 	if (!node_start_pfn && !node_end_pfn)
6461 		return 0;
6462 
6463 	/* Get the start and end of the zone */
6464 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6465 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6466 	adjust_zone_range_for_zone_movable(nid, zone_type,
6467 				node_start_pfn, node_end_pfn,
6468 				zone_start_pfn, zone_end_pfn);
6469 
6470 	/* Check that this node has pages within the zone's required range */
6471 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6472 		return 0;
6473 
6474 	/* Move the zone boundaries inside the node if necessary */
6475 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6476 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6477 
6478 	/* Return the spanned pages */
6479 	return *zone_end_pfn - *zone_start_pfn;
6480 }
6481 
6482 /*
6483  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6484  * then all holes in the requested range will be accounted for.
6485  */
6486 unsigned long __init __absent_pages_in_range(int nid,
6487 				unsigned long range_start_pfn,
6488 				unsigned long range_end_pfn)
6489 {
6490 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6491 	unsigned long start_pfn, end_pfn;
6492 	int i;
6493 
6494 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6495 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6496 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6497 		nr_absent -= end_pfn - start_pfn;
6498 	}
6499 	return nr_absent;
6500 }
6501 
6502 /**
6503  * absent_pages_in_range - Return number of page frames in holes within a range
6504  * @start_pfn: The start PFN to start searching for holes
6505  * @end_pfn: The end PFN to stop searching for holes
6506  *
6507  * Return: the number of pages frames in memory holes within a range.
6508  */
6509 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6510 							unsigned long end_pfn)
6511 {
6512 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6513 }
6514 
6515 /* Return the number of page frames in holes in a zone on a node */
6516 static unsigned long __init zone_absent_pages_in_node(int nid,
6517 					unsigned long zone_type,
6518 					unsigned long node_start_pfn,
6519 					unsigned long node_end_pfn,
6520 					unsigned long *ignored)
6521 {
6522 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6523 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6524 	unsigned long zone_start_pfn, zone_end_pfn;
6525 	unsigned long nr_absent;
6526 
6527 	/* When hotadd a new node from cpu_up(), the node should be empty */
6528 	if (!node_start_pfn && !node_end_pfn)
6529 		return 0;
6530 
6531 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6532 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6533 
6534 	adjust_zone_range_for_zone_movable(nid, zone_type,
6535 			node_start_pfn, node_end_pfn,
6536 			&zone_start_pfn, &zone_end_pfn);
6537 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6538 
6539 	/*
6540 	 * ZONE_MOVABLE handling.
6541 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6542 	 * and vice versa.
6543 	 */
6544 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6545 		unsigned long start_pfn, end_pfn;
6546 		struct memblock_region *r;
6547 
6548 		for_each_memblock(memory, r) {
6549 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6550 					  zone_start_pfn, zone_end_pfn);
6551 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6552 					zone_start_pfn, zone_end_pfn);
6553 
6554 			if (zone_type == ZONE_MOVABLE &&
6555 			    memblock_is_mirror(r))
6556 				nr_absent += end_pfn - start_pfn;
6557 
6558 			if (zone_type == ZONE_NORMAL &&
6559 			    !memblock_is_mirror(r))
6560 				nr_absent += end_pfn - start_pfn;
6561 		}
6562 	}
6563 
6564 	return nr_absent;
6565 }
6566 
6567 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6568 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6569 					unsigned long zone_type,
6570 					unsigned long node_start_pfn,
6571 					unsigned long node_end_pfn,
6572 					unsigned long *zone_start_pfn,
6573 					unsigned long *zone_end_pfn,
6574 					unsigned long *zones_size)
6575 {
6576 	unsigned int zone;
6577 
6578 	*zone_start_pfn = node_start_pfn;
6579 	for (zone = 0; zone < zone_type; zone++)
6580 		*zone_start_pfn += zones_size[zone];
6581 
6582 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6583 
6584 	return zones_size[zone_type];
6585 }
6586 
6587 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6588 						unsigned long zone_type,
6589 						unsigned long node_start_pfn,
6590 						unsigned long node_end_pfn,
6591 						unsigned long *zholes_size)
6592 {
6593 	if (!zholes_size)
6594 		return 0;
6595 
6596 	return zholes_size[zone_type];
6597 }
6598 
6599 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6600 
6601 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6602 						unsigned long node_start_pfn,
6603 						unsigned long node_end_pfn,
6604 						unsigned long *zones_size,
6605 						unsigned long *zholes_size)
6606 {
6607 	unsigned long realtotalpages = 0, totalpages = 0;
6608 	enum zone_type i;
6609 
6610 	for (i = 0; i < MAX_NR_ZONES; i++) {
6611 		struct zone *zone = pgdat->node_zones + i;
6612 		unsigned long zone_start_pfn, zone_end_pfn;
6613 		unsigned long size, real_size;
6614 
6615 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6616 						  node_start_pfn,
6617 						  node_end_pfn,
6618 						  &zone_start_pfn,
6619 						  &zone_end_pfn,
6620 						  zones_size);
6621 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6622 						  node_start_pfn, node_end_pfn,
6623 						  zholes_size);
6624 		if (size)
6625 			zone->zone_start_pfn = zone_start_pfn;
6626 		else
6627 			zone->zone_start_pfn = 0;
6628 		zone->spanned_pages = size;
6629 		zone->present_pages = real_size;
6630 
6631 		totalpages += size;
6632 		realtotalpages += real_size;
6633 	}
6634 
6635 	pgdat->node_spanned_pages = totalpages;
6636 	pgdat->node_present_pages = realtotalpages;
6637 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6638 							realtotalpages);
6639 }
6640 
6641 #ifndef CONFIG_SPARSEMEM
6642 /*
6643  * Calculate the size of the zone->blockflags rounded to an unsigned long
6644  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6645  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6646  * round what is now in bits to nearest long in bits, then return it in
6647  * bytes.
6648  */
6649 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6650 {
6651 	unsigned long usemapsize;
6652 
6653 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6654 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6655 	usemapsize = usemapsize >> pageblock_order;
6656 	usemapsize *= NR_PAGEBLOCK_BITS;
6657 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6658 
6659 	return usemapsize / 8;
6660 }
6661 
6662 static void __ref setup_usemap(struct pglist_data *pgdat,
6663 				struct zone *zone,
6664 				unsigned long zone_start_pfn,
6665 				unsigned long zonesize)
6666 {
6667 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6668 	zone->pageblock_flags = NULL;
6669 	if (usemapsize) {
6670 		zone->pageblock_flags =
6671 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6672 					    pgdat->node_id);
6673 		if (!zone->pageblock_flags)
6674 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6675 			      usemapsize, zone->name, pgdat->node_id);
6676 	}
6677 }
6678 #else
6679 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6680 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6681 #endif /* CONFIG_SPARSEMEM */
6682 
6683 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6684 
6685 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6686 void __init set_pageblock_order(void)
6687 {
6688 	unsigned int order;
6689 
6690 	/* Check that pageblock_nr_pages has not already been setup */
6691 	if (pageblock_order)
6692 		return;
6693 
6694 	if (HPAGE_SHIFT > PAGE_SHIFT)
6695 		order = HUGETLB_PAGE_ORDER;
6696 	else
6697 		order = MAX_ORDER - 1;
6698 
6699 	/*
6700 	 * Assume the largest contiguous order of interest is a huge page.
6701 	 * This value may be variable depending on boot parameters on IA64 and
6702 	 * powerpc.
6703 	 */
6704 	pageblock_order = order;
6705 }
6706 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6707 
6708 /*
6709  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6710  * is unused as pageblock_order is set at compile-time. See
6711  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6712  * the kernel config
6713  */
6714 void __init set_pageblock_order(void)
6715 {
6716 }
6717 
6718 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6719 
6720 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6721 						unsigned long present_pages)
6722 {
6723 	unsigned long pages = spanned_pages;
6724 
6725 	/*
6726 	 * Provide a more accurate estimation if there are holes within
6727 	 * the zone and SPARSEMEM is in use. If there are holes within the
6728 	 * zone, each populated memory region may cost us one or two extra
6729 	 * memmap pages due to alignment because memmap pages for each
6730 	 * populated regions may not be naturally aligned on page boundary.
6731 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6732 	 */
6733 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6734 	    IS_ENABLED(CONFIG_SPARSEMEM))
6735 		pages = present_pages;
6736 
6737 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6738 }
6739 
6740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6741 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6742 {
6743 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6744 
6745 	spin_lock_init(&ds_queue->split_queue_lock);
6746 	INIT_LIST_HEAD(&ds_queue->split_queue);
6747 	ds_queue->split_queue_len = 0;
6748 }
6749 #else
6750 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6751 #endif
6752 
6753 #ifdef CONFIG_COMPACTION
6754 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6755 {
6756 	init_waitqueue_head(&pgdat->kcompactd_wait);
6757 }
6758 #else
6759 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6760 #endif
6761 
6762 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6763 {
6764 	pgdat_resize_init(pgdat);
6765 
6766 	pgdat_init_split_queue(pgdat);
6767 	pgdat_init_kcompactd(pgdat);
6768 
6769 	init_waitqueue_head(&pgdat->kswapd_wait);
6770 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6771 
6772 	pgdat_page_ext_init(pgdat);
6773 	spin_lock_init(&pgdat->lru_lock);
6774 	lruvec_init(&pgdat->__lruvec);
6775 }
6776 
6777 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6778 							unsigned long remaining_pages)
6779 {
6780 	atomic_long_set(&zone->managed_pages, remaining_pages);
6781 	zone_set_nid(zone, nid);
6782 	zone->name = zone_names[idx];
6783 	zone->zone_pgdat = NODE_DATA(nid);
6784 	spin_lock_init(&zone->lock);
6785 	zone_seqlock_init(zone);
6786 	zone_pcp_init(zone);
6787 }
6788 
6789 /*
6790  * Set up the zone data structures
6791  * - init pgdat internals
6792  * - init all zones belonging to this node
6793  *
6794  * NOTE: this function is only called during memory hotplug
6795  */
6796 #ifdef CONFIG_MEMORY_HOTPLUG
6797 void __ref free_area_init_core_hotplug(int nid)
6798 {
6799 	enum zone_type z;
6800 	pg_data_t *pgdat = NODE_DATA(nid);
6801 
6802 	pgdat_init_internals(pgdat);
6803 	for (z = 0; z < MAX_NR_ZONES; z++)
6804 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6805 }
6806 #endif
6807 
6808 /*
6809  * Set up the zone data structures:
6810  *   - mark all pages reserved
6811  *   - mark all memory queues empty
6812  *   - clear the memory bitmaps
6813  *
6814  * NOTE: pgdat should get zeroed by caller.
6815  * NOTE: this function is only called during early init.
6816  */
6817 static void __init free_area_init_core(struct pglist_data *pgdat)
6818 {
6819 	enum zone_type j;
6820 	int nid = pgdat->node_id;
6821 
6822 	pgdat_init_internals(pgdat);
6823 	pgdat->per_cpu_nodestats = &boot_nodestats;
6824 
6825 	for (j = 0; j < MAX_NR_ZONES; j++) {
6826 		struct zone *zone = pgdat->node_zones + j;
6827 		unsigned long size, freesize, memmap_pages;
6828 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6829 
6830 		size = zone->spanned_pages;
6831 		freesize = zone->present_pages;
6832 
6833 		/*
6834 		 * Adjust freesize so that it accounts for how much memory
6835 		 * is used by this zone for memmap. This affects the watermark
6836 		 * and per-cpu initialisations
6837 		 */
6838 		memmap_pages = calc_memmap_size(size, freesize);
6839 		if (!is_highmem_idx(j)) {
6840 			if (freesize >= memmap_pages) {
6841 				freesize -= memmap_pages;
6842 				if (memmap_pages)
6843 					printk(KERN_DEBUG
6844 					       "  %s zone: %lu pages used for memmap\n",
6845 					       zone_names[j], memmap_pages);
6846 			} else
6847 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6848 					zone_names[j], memmap_pages, freesize);
6849 		}
6850 
6851 		/* Account for reserved pages */
6852 		if (j == 0 && freesize > dma_reserve) {
6853 			freesize -= dma_reserve;
6854 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6855 					zone_names[0], dma_reserve);
6856 		}
6857 
6858 		if (!is_highmem_idx(j))
6859 			nr_kernel_pages += freesize;
6860 		/* Charge for highmem memmap if there are enough kernel pages */
6861 		else if (nr_kernel_pages > memmap_pages * 2)
6862 			nr_kernel_pages -= memmap_pages;
6863 		nr_all_pages += freesize;
6864 
6865 		/*
6866 		 * Set an approximate value for lowmem here, it will be adjusted
6867 		 * when the bootmem allocator frees pages into the buddy system.
6868 		 * And all highmem pages will be managed by the buddy system.
6869 		 */
6870 		zone_init_internals(zone, j, nid, freesize);
6871 
6872 		if (!size)
6873 			continue;
6874 
6875 		set_pageblock_order();
6876 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6877 		init_currently_empty_zone(zone, zone_start_pfn, size);
6878 		memmap_init(size, nid, j, zone_start_pfn);
6879 	}
6880 }
6881 
6882 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6883 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6884 {
6885 	unsigned long __maybe_unused start = 0;
6886 	unsigned long __maybe_unused offset = 0;
6887 
6888 	/* Skip empty nodes */
6889 	if (!pgdat->node_spanned_pages)
6890 		return;
6891 
6892 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6893 	offset = pgdat->node_start_pfn - start;
6894 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6895 	if (!pgdat->node_mem_map) {
6896 		unsigned long size, end;
6897 		struct page *map;
6898 
6899 		/*
6900 		 * The zone's endpoints aren't required to be MAX_ORDER
6901 		 * aligned but the node_mem_map endpoints must be in order
6902 		 * for the buddy allocator to function correctly.
6903 		 */
6904 		end = pgdat_end_pfn(pgdat);
6905 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6906 		size =  (end - start) * sizeof(struct page);
6907 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6908 					  pgdat->node_id);
6909 		if (!map)
6910 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6911 			      size, pgdat->node_id);
6912 		pgdat->node_mem_map = map + offset;
6913 	}
6914 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6915 				__func__, pgdat->node_id, (unsigned long)pgdat,
6916 				(unsigned long)pgdat->node_mem_map);
6917 #ifndef CONFIG_NEED_MULTIPLE_NODES
6918 	/*
6919 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6920 	 */
6921 	if (pgdat == NODE_DATA(0)) {
6922 		mem_map = NODE_DATA(0)->node_mem_map;
6923 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6924 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6925 			mem_map -= offset;
6926 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6927 	}
6928 #endif
6929 }
6930 #else
6931 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6932 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6933 
6934 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6935 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6936 {
6937 	pgdat->first_deferred_pfn = ULONG_MAX;
6938 }
6939 #else
6940 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6941 #endif
6942 
6943 void __init free_area_init_node(int nid, unsigned long *zones_size,
6944 				   unsigned long node_start_pfn,
6945 				   unsigned long *zholes_size)
6946 {
6947 	pg_data_t *pgdat = NODE_DATA(nid);
6948 	unsigned long start_pfn = 0;
6949 	unsigned long end_pfn = 0;
6950 
6951 	/* pg_data_t should be reset to zero when it's allocated */
6952 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6953 
6954 	pgdat->node_id = nid;
6955 	pgdat->node_start_pfn = node_start_pfn;
6956 	pgdat->per_cpu_nodestats = NULL;
6957 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6958 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6959 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6960 		(u64)start_pfn << PAGE_SHIFT,
6961 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6962 #else
6963 	start_pfn = node_start_pfn;
6964 #endif
6965 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6966 				  zones_size, zholes_size);
6967 
6968 	alloc_node_mem_map(pgdat);
6969 	pgdat_set_deferred_range(pgdat);
6970 
6971 	free_area_init_core(pgdat);
6972 }
6973 
6974 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6975 /*
6976  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6977  * PageReserved(). Return the number of struct pages that were initialized.
6978  */
6979 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6980 {
6981 	unsigned long pfn;
6982 	u64 pgcnt = 0;
6983 
6984 	for (pfn = spfn; pfn < epfn; pfn++) {
6985 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6986 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6987 				+ pageblock_nr_pages - 1;
6988 			continue;
6989 		}
6990 		/*
6991 		 * Use a fake node/zone (0) for now. Some of these pages
6992 		 * (in memblock.reserved but not in memblock.memory) will
6993 		 * get re-initialized via reserve_bootmem_region() later.
6994 		 */
6995 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6996 		__SetPageReserved(pfn_to_page(pfn));
6997 		pgcnt++;
6998 	}
6999 
7000 	return pgcnt;
7001 }
7002 
7003 /*
7004  * Only struct pages that are backed by physical memory are zeroed and
7005  * initialized by going through __init_single_page(). But, there are some
7006  * struct pages which are reserved in memblock allocator and their fields
7007  * may be accessed (for example page_to_pfn() on some configuration accesses
7008  * flags). We must explicitly initialize those struct pages.
7009  *
7010  * This function also addresses a similar issue where struct pages are left
7011  * uninitialized because the physical address range is not covered by
7012  * memblock.memory or memblock.reserved. That could happen when memblock
7013  * layout is manually configured via memmap=, or when the highest physical
7014  * address (max_pfn) does not end on a section boundary.
7015  */
7016 static void __init init_unavailable_mem(void)
7017 {
7018 	phys_addr_t start, end;
7019 	u64 i, pgcnt;
7020 	phys_addr_t next = 0;
7021 
7022 	/*
7023 	 * Loop through unavailable ranges not covered by memblock.memory.
7024 	 */
7025 	pgcnt = 0;
7026 	for_each_mem_range(i, &memblock.memory, NULL,
7027 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
7028 		if (next < start)
7029 			pgcnt += init_unavailable_range(PFN_DOWN(next),
7030 							PFN_UP(start));
7031 		next = end;
7032 	}
7033 
7034 	/*
7035 	 * Early sections always have a fully populated memmap for the whole
7036 	 * section - see pfn_valid(). If the last section has holes at the
7037 	 * end and that section is marked "online", the memmap will be
7038 	 * considered initialized. Make sure that memmap has a well defined
7039 	 * state.
7040 	 */
7041 	pgcnt += init_unavailable_range(PFN_DOWN(next),
7042 					round_up(max_pfn, PAGES_PER_SECTION));
7043 
7044 	/*
7045 	 * Struct pages that do not have backing memory. This could be because
7046 	 * firmware is using some of this memory, or for some other reasons.
7047 	 */
7048 	if (pgcnt)
7049 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7050 }
7051 #else
7052 static inline void __init init_unavailable_mem(void)
7053 {
7054 }
7055 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7056 
7057 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7058 
7059 #if MAX_NUMNODES > 1
7060 /*
7061  * Figure out the number of possible node ids.
7062  */
7063 void __init setup_nr_node_ids(void)
7064 {
7065 	unsigned int highest;
7066 
7067 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7068 	nr_node_ids = highest + 1;
7069 }
7070 #endif
7071 
7072 /**
7073  * node_map_pfn_alignment - determine the maximum internode alignment
7074  *
7075  * This function should be called after node map is populated and sorted.
7076  * It calculates the maximum power of two alignment which can distinguish
7077  * all the nodes.
7078  *
7079  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7080  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7081  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7082  * shifted, 1GiB is enough and this function will indicate so.
7083  *
7084  * This is used to test whether pfn -> nid mapping of the chosen memory
7085  * model has fine enough granularity to avoid incorrect mapping for the
7086  * populated node map.
7087  *
7088  * Return: the determined alignment in pfn's.  0 if there is no alignment
7089  * requirement (single node).
7090  */
7091 unsigned long __init node_map_pfn_alignment(void)
7092 {
7093 	unsigned long accl_mask = 0, last_end = 0;
7094 	unsigned long start, end, mask;
7095 	int last_nid = NUMA_NO_NODE;
7096 	int i, nid;
7097 
7098 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7099 		if (!start || last_nid < 0 || last_nid == nid) {
7100 			last_nid = nid;
7101 			last_end = end;
7102 			continue;
7103 		}
7104 
7105 		/*
7106 		 * Start with a mask granular enough to pin-point to the
7107 		 * start pfn and tick off bits one-by-one until it becomes
7108 		 * too coarse to separate the current node from the last.
7109 		 */
7110 		mask = ~((1 << __ffs(start)) - 1);
7111 		while (mask && last_end <= (start & (mask << 1)))
7112 			mask <<= 1;
7113 
7114 		/* accumulate all internode masks */
7115 		accl_mask |= mask;
7116 	}
7117 
7118 	/* convert mask to number of pages */
7119 	return ~accl_mask + 1;
7120 }
7121 
7122 /* Find the lowest pfn for a node */
7123 static unsigned long __init find_min_pfn_for_node(int nid)
7124 {
7125 	unsigned long min_pfn = ULONG_MAX;
7126 	unsigned long start_pfn;
7127 	int i;
7128 
7129 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7130 		min_pfn = min(min_pfn, start_pfn);
7131 
7132 	if (min_pfn == ULONG_MAX) {
7133 		pr_warn("Could not find start_pfn for node %d\n", nid);
7134 		return 0;
7135 	}
7136 
7137 	return min_pfn;
7138 }
7139 
7140 /**
7141  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7142  *
7143  * Return: the minimum PFN based on information provided via
7144  * memblock_set_node().
7145  */
7146 unsigned long __init find_min_pfn_with_active_regions(void)
7147 {
7148 	return find_min_pfn_for_node(MAX_NUMNODES);
7149 }
7150 
7151 /*
7152  * early_calculate_totalpages()
7153  * Sum pages in active regions for movable zone.
7154  * Populate N_MEMORY for calculating usable_nodes.
7155  */
7156 static unsigned long __init early_calculate_totalpages(void)
7157 {
7158 	unsigned long totalpages = 0;
7159 	unsigned long start_pfn, end_pfn;
7160 	int i, nid;
7161 
7162 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7163 		unsigned long pages = end_pfn - start_pfn;
7164 
7165 		totalpages += pages;
7166 		if (pages)
7167 			node_set_state(nid, N_MEMORY);
7168 	}
7169 	return totalpages;
7170 }
7171 
7172 /*
7173  * Find the PFN the Movable zone begins in each node. Kernel memory
7174  * is spread evenly between nodes as long as the nodes have enough
7175  * memory. When they don't, some nodes will have more kernelcore than
7176  * others
7177  */
7178 static void __init find_zone_movable_pfns_for_nodes(void)
7179 {
7180 	int i, nid;
7181 	unsigned long usable_startpfn;
7182 	unsigned long kernelcore_node, kernelcore_remaining;
7183 	/* save the state before borrow the nodemask */
7184 	nodemask_t saved_node_state = node_states[N_MEMORY];
7185 	unsigned long totalpages = early_calculate_totalpages();
7186 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7187 	struct memblock_region *r;
7188 
7189 	/* Need to find movable_zone earlier when movable_node is specified. */
7190 	find_usable_zone_for_movable();
7191 
7192 	/*
7193 	 * If movable_node is specified, ignore kernelcore and movablecore
7194 	 * options.
7195 	 */
7196 	if (movable_node_is_enabled()) {
7197 		for_each_memblock(memory, r) {
7198 			if (!memblock_is_hotpluggable(r))
7199 				continue;
7200 
7201 			nid = r->nid;
7202 
7203 			usable_startpfn = PFN_DOWN(r->base);
7204 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7205 				min(usable_startpfn, zone_movable_pfn[nid]) :
7206 				usable_startpfn;
7207 		}
7208 
7209 		goto out2;
7210 	}
7211 
7212 	/*
7213 	 * If kernelcore=mirror is specified, ignore movablecore option
7214 	 */
7215 	if (mirrored_kernelcore) {
7216 		bool mem_below_4gb_not_mirrored = false;
7217 
7218 		for_each_memblock(memory, r) {
7219 			if (memblock_is_mirror(r))
7220 				continue;
7221 
7222 			nid = r->nid;
7223 
7224 			usable_startpfn = memblock_region_memory_base_pfn(r);
7225 
7226 			if (usable_startpfn < 0x100000) {
7227 				mem_below_4gb_not_mirrored = true;
7228 				continue;
7229 			}
7230 
7231 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7232 				min(usable_startpfn, zone_movable_pfn[nid]) :
7233 				usable_startpfn;
7234 		}
7235 
7236 		if (mem_below_4gb_not_mirrored)
7237 			pr_warn("This configuration results in unmirrored kernel memory.");
7238 
7239 		goto out2;
7240 	}
7241 
7242 	/*
7243 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7244 	 * amount of necessary memory.
7245 	 */
7246 	if (required_kernelcore_percent)
7247 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7248 				       10000UL;
7249 	if (required_movablecore_percent)
7250 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7251 					10000UL;
7252 
7253 	/*
7254 	 * If movablecore= was specified, calculate what size of
7255 	 * kernelcore that corresponds so that memory usable for
7256 	 * any allocation type is evenly spread. If both kernelcore
7257 	 * and movablecore are specified, then the value of kernelcore
7258 	 * will be used for required_kernelcore if it's greater than
7259 	 * what movablecore would have allowed.
7260 	 */
7261 	if (required_movablecore) {
7262 		unsigned long corepages;
7263 
7264 		/*
7265 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7266 		 * was requested by the user
7267 		 */
7268 		required_movablecore =
7269 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7270 		required_movablecore = min(totalpages, required_movablecore);
7271 		corepages = totalpages - required_movablecore;
7272 
7273 		required_kernelcore = max(required_kernelcore, corepages);
7274 	}
7275 
7276 	/*
7277 	 * If kernelcore was not specified or kernelcore size is larger
7278 	 * than totalpages, there is no ZONE_MOVABLE.
7279 	 */
7280 	if (!required_kernelcore || required_kernelcore >= totalpages)
7281 		goto out;
7282 
7283 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7284 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7285 
7286 restart:
7287 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7288 	kernelcore_node = required_kernelcore / usable_nodes;
7289 	for_each_node_state(nid, N_MEMORY) {
7290 		unsigned long start_pfn, end_pfn;
7291 
7292 		/*
7293 		 * Recalculate kernelcore_node if the division per node
7294 		 * now exceeds what is necessary to satisfy the requested
7295 		 * amount of memory for the kernel
7296 		 */
7297 		if (required_kernelcore < kernelcore_node)
7298 			kernelcore_node = required_kernelcore / usable_nodes;
7299 
7300 		/*
7301 		 * As the map is walked, we track how much memory is usable
7302 		 * by the kernel using kernelcore_remaining. When it is
7303 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7304 		 */
7305 		kernelcore_remaining = kernelcore_node;
7306 
7307 		/* Go through each range of PFNs within this node */
7308 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7309 			unsigned long size_pages;
7310 
7311 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7312 			if (start_pfn >= end_pfn)
7313 				continue;
7314 
7315 			/* Account for what is only usable for kernelcore */
7316 			if (start_pfn < usable_startpfn) {
7317 				unsigned long kernel_pages;
7318 				kernel_pages = min(end_pfn, usable_startpfn)
7319 								- start_pfn;
7320 
7321 				kernelcore_remaining -= min(kernel_pages,
7322 							kernelcore_remaining);
7323 				required_kernelcore -= min(kernel_pages,
7324 							required_kernelcore);
7325 
7326 				/* Continue if range is now fully accounted */
7327 				if (end_pfn <= usable_startpfn) {
7328 
7329 					/*
7330 					 * Push zone_movable_pfn to the end so
7331 					 * that if we have to rebalance
7332 					 * kernelcore across nodes, we will
7333 					 * not double account here
7334 					 */
7335 					zone_movable_pfn[nid] = end_pfn;
7336 					continue;
7337 				}
7338 				start_pfn = usable_startpfn;
7339 			}
7340 
7341 			/*
7342 			 * The usable PFN range for ZONE_MOVABLE is from
7343 			 * start_pfn->end_pfn. Calculate size_pages as the
7344 			 * number of pages used as kernelcore
7345 			 */
7346 			size_pages = end_pfn - start_pfn;
7347 			if (size_pages > kernelcore_remaining)
7348 				size_pages = kernelcore_remaining;
7349 			zone_movable_pfn[nid] = start_pfn + size_pages;
7350 
7351 			/*
7352 			 * Some kernelcore has been met, update counts and
7353 			 * break if the kernelcore for this node has been
7354 			 * satisfied
7355 			 */
7356 			required_kernelcore -= min(required_kernelcore,
7357 								size_pages);
7358 			kernelcore_remaining -= size_pages;
7359 			if (!kernelcore_remaining)
7360 				break;
7361 		}
7362 	}
7363 
7364 	/*
7365 	 * If there is still required_kernelcore, we do another pass with one
7366 	 * less node in the count. This will push zone_movable_pfn[nid] further
7367 	 * along on the nodes that still have memory until kernelcore is
7368 	 * satisfied
7369 	 */
7370 	usable_nodes--;
7371 	if (usable_nodes && required_kernelcore > usable_nodes)
7372 		goto restart;
7373 
7374 out2:
7375 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7376 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7377 		zone_movable_pfn[nid] =
7378 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7379 
7380 out:
7381 	/* restore the node_state */
7382 	node_states[N_MEMORY] = saved_node_state;
7383 }
7384 
7385 /* Any regular or high memory on that node ? */
7386 static void check_for_memory(pg_data_t *pgdat, int nid)
7387 {
7388 	enum zone_type zone_type;
7389 
7390 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7391 		struct zone *zone = &pgdat->node_zones[zone_type];
7392 		if (populated_zone(zone)) {
7393 			if (IS_ENABLED(CONFIG_HIGHMEM))
7394 				node_set_state(nid, N_HIGH_MEMORY);
7395 			if (zone_type <= ZONE_NORMAL)
7396 				node_set_state(nid, N_NORMAL_MEMORY);
7397 			break;
7398 		}
7399 	}
7400 }
7401 
7402 /**
7403  * free_area_init_nodes - Initialise all pg_data_t and zone data
7404  * @max_zone_pfn: an array of max PFNs for each zone
7405  *
7406  * This will call free_area_init_node() for each active node in the system.
7407  * Using the page ranges provided by memblock_set_node(), the size of each
7408  * zone in each node and their holes is calculated. If the maximum PFN
7409  * between two adjacent zones match, it is assumed that the zone is empty.
7410  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7411  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7412  * starts where the previous one ended. For example, ZONE_DMA32 starts
7413  * at arch_max_dma_pfn.
7414  */
7415 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7416 {
7417 	unsigned long start_pfn, end_pfn;
7418 	int i, nid;
7419 
7420 	/* Record where the zone boundaries are */
7421 	memset(arch_zone_lowest_possible_pfn, 0,
7422 				sizeof(arch_zone_lowest_possible_pfn));
7423 	memset(arch_zone_highest_possible_pfn, 0,
7424 				sizeof(arch_zone_highest_possible_pfn));
7425 
7426 	start_pfn = find_min_pfn_with_active_regions();
7427 
7428 	for (i = 0; i < MAX_NR_ZONES; i++) {
7429 		if (i == ZONE_MOVABLE)
7430 			continue;
7431 
7432 		end_pfn = max(max_zone_pfn[i], start_pfn);
7433 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7434 		arch_zone_highest_possible_pfn[i] = end_pfn;
7435 
7436 		start_pfn = end_pfn;
7437 	}
7438 
7439 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7440 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7441 	find_zone_movable_pfns_for_nodes();
7442 
7443 	/* Print out the zone ranges */
7444 	pr_info("Zone ranges:\n");
7445 	for (i = 0; i < MAX_NR_ZONES; i++) {
7446 		if (i == ZONE_MOVABLE)
7447 			continue;
7448 		pr_info("  %-8s ", zone_names[i]);
7449 		if (arch_zone_lowest_possible_pfn[i] ==
7450 				arch_zone_highest_possible_pfn[i])
7451 			pr_cont("empty\n");
7452 		else
7453 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7454 				(u64)arch_zone_lowest_possible_pfn[i]
7455 					<< PAGE_SHIFT,
7456 				((u64)arch_zone_highest_possible_pfn[i]
7457 					<< PAGE_SHIFT) - 1);
7458 	}
7459 
7460 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7461 	pr_info("Movable zone start for each node\n");
7462 	for (i = 0; i < MAX_NUMNODES; i++) {
7463 		if (zone_movable_pfn[i])
7464 			pr_info("  Node %d: %#018Lx\n", i,
7465 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7466 	}
7467 
7468 	/*
7469 	 * Print out the early node map, and initialize the
7470 	 * subsection-map relative to active online memory ranges to
7471 	 * enable future "sub-section" extensions of the memory map.
7472 	 */
7473 	pr_info("Early memory node ranges\n");
7474 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7475 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7476 			(u64)start_pfn << PAGE_SHIFT,
7477 			((u64)end_pfn << PAGE_SHIFT) - 1);
7478 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7479 	}
7480 
7481 	/* Initialise every node */
7482 	mminit_verify_pageflags_layout();
7483 	setup_nr_node_ids();
7484 	init_unavailable_mem();
7485 	for_each_online_node(nid) {
7486 		pg_data_t *pgdat = NODE_DATA(nid);
7487 		free_area_init_node(nid, NULL,
7488 				find_min_pfn_for_node(nid), NULL);
7489 
7490 		/* Any memory on that node */
7491 		if (pgdat->node_present_pages)
7492 			node_set_state(nid, N_MEMORY);
7493 		check_for_memory(pgdat, nid);
7494 	}
7495 }
7496 
7497 static int __init cmdline_parse_core(char *p, unsigned long *core,
7498 				     unsigned long *percent)
7499 {
7500 	unsigned long long coremem;
7501 	char *endptr;
7502 
7503 	if (!p)
7504 		return -EINVAL;
7505 
7506 	/* Value may be a percentage of total memory, otherwise bytes */
7507 	coremem = simple_strtoull(p, &endptr, 0);
7508 	if (*endptr == '%') {
7509 		/* Paranoid check for percent values greater than 100 */
7510 		WARN_ON(coremem > 100);
7511 
7512 		*percent = coremem;
7513 	} else {
7514 		coremem = memparse(p, &p);
7515 		/* Paranoid check that UL is enough for the coremem value */
7516 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7517 
7518 		*core = coremem >> PAGE_SHIFT;
7519 		*percent = 0UL;
7520 	}
7521 	return 0;
7522 }
7523 
7524 /*
7525  * kernelcore=size sets the amount of memory for use for allocations that
7526  * cannot be reclaimed or migrated.
7527  */
7528 static int __init cmdline_parse_kernelcore(char *p)
7529 {
7530 	/* parse kernelcore=mirror */
7531 	if (parse_option_str(p, "mirror")) {
7532 		mirrored_kernelcore = true;
7533 		return 0;
7534 	}
7535 
7536 	return cmdline_parse_core(p, &required_kernelcore,
7537 				  &required_kernelcore_percent);
7538 }
7539 
7540 /*
7541  * movablecore=size sets the amount of memory for use for allocations that
7542  * can be reclaimed or migrated.
7543  */
7544 static int __init cmdline_parse_movablecore(char *p)
7545 {
7546 	return cmdline_parse_core(p, &required_movablecore,
7547 				  &required_movablecore_percent);
7548 }
7549 
7550 early_param("kernelcore", cmdline_parse_kernelcore);
7551 early_param("movablecore", cmdline_parse_movablecore);
7552 
7553 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7554 
7555 void adjust_managed_page_count(struct page *page, long count)
7556 {
7557 	atomic_long_add(count, &page_zone(page)->managed_pages);
7558 	totalram_pages_add(count);
7559 #ifdef CONFIG_HIGHMEM
7560 	if (PageHighMem(page))
7561 		totalhigh_pages_add(count);
7562 #endif
7563 }
7564 EXPORT_SYMBOL(adjust_managed_page_count);
7565 
7566 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7567 {
7568 	void *pos;
7569 	unsigned long pages = 0;
7570 
7571 	start = (void *)PAGE_ALIGN((unsigned long)start);
7572 	end = (void *)((unsigned long)end & PAGE_MASK);
7573 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7574 		struct page *page = virt_to_page(pos);
7575 		void *direct_map_addr;
7576 
7577 		/*
7578 		 * 'direct_map_addr' might be different from 'pos'
7579 		 * because some architectures' virt_to_page()
7580 		 * work with aliases.  Getting the direct map
7581 		 * address ensures that we get a _writeable_
7582 		 * alias for the memset().
7583 		 */
7584 		direct_map_addr = page_address(page);
7585 		if ((unsigned int)poison <= 0xFF)
7586 			memset(direct_map_addr, poison, PAGE_SIZE);
7587 
7588 		free_reserved_page(page);
7589 	}
7590 
7591 	if (pages && s)
7592 		pr_info("Freeing %s memory: %ldK\n",
7593 			s, pages << (PAGE_SHIFT - 10));
7594 
7595 	return pages;
7596 }
7597 
7598 #ifdef	CONFIG_HIGHMEM
7599 void free_highmem_page(struct page *page)
7600 {
7601 	__free_reserved_page(page);
7602 	totalram_pages_inc();
7603 	atomic_long_inc(&page_zone(page)->managed_pages);
7604 	totalhigh_pages_inc();
7605 }
7606 #endif
7607 
7608 
7609 void __init mem_init_print_info(const char *str)
7610 {
7611 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7612 	unsigned long init_code_size, init_data_size;
7613 
7614 	physpages = get_num_physpages();
7615 	codesize = _etext - _stext;
7616 	datasize = _edata - _sdata;
7617 	rosize = __end_rodata - __start_rodata;
7618 	bss_size = __bss_stop - __bss_start;
7619 	init_data_size = __init_end - __init_begin;
7620 	init_code_size = _einittext - _sinittext;
7621 
7622 	/*
7623 	 * Detect special cases and adjust section sizes accordingly:
7624 	 * 1) .init.* may be embedded into .data sections
7625 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7626 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7627 	 * 3) .rodata.* may be embedded into .text or .data sections.
7628 	 */
7629 #define adj_init_size(start, end, size, pos, adj) \
7630 	do { \
7631 		if (start <= pos && pos < end && size > adj) \
7632 			size -= adj; \
7633 	} while (0)
7634 
7635 	adj_init_size(__init_begin, __init_end, init_data_size,
7636 		     _sinittext, init_code_size);
7637 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7638 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7639 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7640 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7641 
7642 #undef	adj_init_size
7643 
7644 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7645 #ifdef	CONFIG_HIGHMEM
7646 		", %luK highmem"
7647 #endif
7648 		"%s%s)\n",
7649 		nr_free_pages() << (PAGE_SHIFT - 10),
7650 		physpages << (PAGE_SHIFT - 10),
7651 		codesize >> 10, datasize >> 10, rosize >> 10,
7652 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7653 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7654 		totalcma_pages << (PAGE_SHIFT - 10),
7655 #ifdef	CONFIG_HIGHMEM
7656 		totalhigh_pages() << (PAGE_SHIFT - 10),
7657 #endif
7658 		str ? ", " : "", str ? str : "");
7659 }
7660 
7661 /**
7662  * set_dma_reserve - set the specified number of pages reserved in the first zone
7663  * @new_dma_reserve: The number of pages to mark reserved
7664  *
7665  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7666  * In the DMA zone, a significant percentage may be consumed by kernel image
7667  * and other unfreeable allocations which can skew the watermarks badly. This
7668  * function may optionally be used to account for unfreeable pages in the
7669  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7670  * smaller per-cpu batchsize.
7671  */
7672 void __init set_dma_reserve(unsigned long new_dma_reserve)
7673 {
7674 	dma_reserve = new_dma_reserve;
7675 }
7676 
7677 void __init free_area_init(unsigned long *zones_size)
7678 {
7679 	init_unavailable_mem();
7680 	free_area_init_node(0, zones_size,
7681 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7682 }
7683 
7684 static int page_alloc_cpu_dead(unsigned int cpu)
7685 {
7686 
7687 	lru_add_drain_cpu(cpu);
7688 	drain_pages(cpu);
7689 
7690 	/*
7691 	 * Spill the event counters of the dead processor
7692 	 * into the current processors event counters.
7693 	 * This artificially elevates the count of the current
7694 	 * processor.
7695 	 */
7696 	vm_events_fold_cpu(cpu);
7697 
7698 	/*
7699 	 * Zero the differential counters of the dead processor
7700 	 * so that the vm statistics are consistent.
7701 	 *
7702 	 * This is only okay since the processor is dead and cannot
7703 	 * race with what we are doing.
7704 	 */
7705 	cpu_vm_stats_fold(cpu);
7706 	return 0;
7707 }
7708 
7709 #ifdef CONFIG_NUMA
7710 int hashdist = HASHDIST_DEFAULT;
7711 
7712 static int __init set_hashdist(char *str)
7713 {
7714 	if (!str)
7715 		return 0;
7716 	hashdist = simple_strtoul(str, &str, 0);
7717 	return 1;
7718 }
7719 __setup("hashdist=", set_hashdist);
7720 #endif
7721 
7722 void __init page_alloc_init(void)
7723 {
7724 	int ret;
7725 
7726 #ifdef CONFIG_NUMA
7727 	if (num_node_state(N_MEMORY) == 1)
7728 		hashdist = 0;
7729 #endif
7730 
7731 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7732 					"mm/page_alloc:dead", NULL,
7733 					page_alloc_cpu_dead);
7734 	WARN_ON(ret < 0);
7735 }
7736 
7737 /*
7738  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7739  *	or min_free_kbytes changes.
7740  */
7741 static void calculate_totalreserve_pages(void)
7742 {
7743 	struct pglist_data *pgdat;
7744 	unsigned long reserve_pages = 0;
7745 	enum zone_type i, j;
7746 
7747 	for_each_online_pgdat(pgdat) {
7748 
7749 		pgdat->totalreserve_pages = 0;
7750 
7751 		for (i = 0; i < MAX_NR_ZONES; i++) {
7752 			struct zone *zone = pgdat->node_zones + i;
7753 			long max = 0;
7754 			unsigned long managed_pages = zone_managed_pages(zone);
7755 
7756 			/* Find valid and maximum lowmem_reserve in the zone */
7757 			for (j = i; j < MAX_NR_ZONES; j++) {
7758 				if (zone->lowmem_reserve[j] > max)
7759 					max = zone->lowmem_reserve[j];
7760 			}
7761 
7762 			/* we treat the high watermark as reserved pages. */
7763 			max += high_wmark_pages(zone);
7764 
7765 			if (max > managed_pages)
7766 				max = managed_pages;
7767 
7768 			pgdat->totalreserve_pages += max;
7769 
7770 			reserve_pages += max;
7771 		}
7772 	}
7773 	totalreserve_pages = reserve_pages;
7774 }
7775 
7776 /*
7777  * setup_per_zone_lowmem_reserve - called whenever
7778  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7779  *	has a correct pages reserved value, so an adequate number of
7780  *	pages are left in the zone after a successful __alloc_pages().
7781  */
7782 static void setup_per_zone_lowmem_reserve(void)
7783 {
7784 	struct pglist_data *pgdat;
7785 	enum zone_type j, idx;
7786 
7787 	for_each_online_pgdat(pgdat) {
7788 		for (j = 0; j < MAX_NR_ZONES; j++) {
7789 			struct zone *zone = pgdat->node_zones + j;
7790 			unsigned long managed_pages = zone_managed_pages(zone);
7791 
7792 			zone->lowmem_reserve[j] = 0;
7793 
7794 			idx = j;
7795 			while (idx) {
7796 				struct zone *lower_zone;
7797 
7798 				idx--;
7799 				lower_zone = pgdat->node_zones + idx;
7800 
7801 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7802 					sysctl_lowmem_reserve_ratio[idx] = 0;
7803 					lower_zone->lowmem_reserve[j] = 0;
7804 				} else {
7805 					lower_zone->lowmem_reserve[j] =
7806 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7807 				}
7808 				managed_pages += zone_managed_pages(lower_zone);
7809 			}
7810 		}
7811 	}
7812 
7813 	/* update totalreserve_pages */
7814 	calculate_totalreserve_pages();
7815 }
7816 
7817 static void __setup_per_zone_wmarks(void)
7818 {
7819 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7820 	unsigned long lowmem_pages = 0;
7821 	struct zone *zone;
7822 	unsigned long flags;
7823 
7824 	/* Calculate total number of !ZONE_HIGHMEM pages */
7825 	for_each_zone(zone) {
7826 		if (!is_highmem(zone))
7827 			lowmem_pages += zone_managed_pages(zone);
7828 	}
7829 
7830 	for_each_zone(zone) {
7831 		u64 tmp;
7832 
7833 		spin_lock_irqsave(&zone->lock, flags);
7834 		tmp = (u64)pages_min * zone_managed_pages(zone);
7835 		do_div(tmp, lowmem_pages);
7836 		if (is_highmem(zone)) {
7837 			/*
7838 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7839 			 * need highmem pages, so cap pages_min to a small
7840 			 * value here.
7841 			 *
7842 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7843 			 * deltas control async page reclaim, and so should
7844 			 * not be capped for highmem.
7845 			 */
7846 			unsigned long min_pages;
7847 
7848 			min_pages = zone_managed_pages(zone) / 1024;
7849 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7850 			zone->_watermark[WMARK_MIN] = min_pages;
7851 		} else {
7852 			/*
7853 			 * If it's a lowmem zone, reserve a number of pages
7854 			 * proportionate to the zone's size.
7855 			 */
7856 			zone->_watermark[WMARK_MIN] = tmp;
7857 		}
7858 
7859 		/*
7860 		 * Set the kswapd watermarks distance according to the
7861 		 * scale factor in proportion to available memory, but
7862 		 * ensure a minimum size on small systems.
7863 		 */
7864 		tmp = max_t(u64, tmp >> 2,
7865 			    mult_frac(zone_managed_pages(zone),
7866 				      watermark_scale_factor, 10000));
7867 
7868 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7869 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7870 		zone->watermark_boost = 0;
7871 
7872 		spin_unlock_irqrestore(&zone->lock, flags);
7873 	}
7874 
7875 	/* update totalreserve_pages */
7876 	calculate_totalreserve_pages();
7877 }
7878 
7879 /**
7880  * setup_per_zone_wmarks - called when min_free_kbytes changes
7881  * or when memory is hot-{added|removed}
7882  *
7883  * Ensures that the watermark[min,low,high] values for each zone are set
7884  * correctly with respect to min_free_kbytes.
7885  */
7886 void setup_per_zone_wmarks(void)
7887 {
7888 	static DEFINE_SPINLOCK(lock);
7889 
7890 	spin_lock(&lock);
7891 	__setup_per_zone_wmarks();
7892 	spin_unlock(&lock);
7893 }
7894 
7895 /*
7896  * Initialise min_free_kbytes.
7897  *
7898  * For small machines we want it small (128k min).  For large machines
7899  * we want it large (64MB max).  But it is not linear, because network
7900  * bandwidth does not increase linearly with machine size.  We use
7901  *
7902  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7903  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7904  *
7905  * which yields
7906  *
7907  * 16MB:	512k
7908  * 32MB:	724k
7909  * 64MB:	1024k
7910  * 128MB:	1448k
7911  * 256MB:	2048k
7912  * 512MB:	2896k
7913  * 1024MB:	4096k
7914  * 2048MB:	5792k
7915  * 4096MB:	8192k
7916  * 8192MB:	11584k
7917  * 16384MB:	16384k
7918  */
7919 int __meminit init_per_zone_wmark_min(void)
7920 {
7921 	unsigned long lowmem_kbytes;
7922 	int new_min_free_kbytes;
7923 
7924 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7925 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7926 
7927 	if (new_min_free_kbytes > user_min_free_kbytes) {
7928 		min_free_kbytes = new_min_free_kbytes;
7929 		if (min_free_kbytes < 128)
7930 			min_free_kbytes = 128;
7931 		if (min_free_kbytes > 262144)
7932 			min_free_kbytes = 262144;
7933 	} else {
7934 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7935 				new_min_free_kbytes, user_min_free_kbytes);
7936 	}
7937 	setup_per_zone_wmarks();
7938 	refresh_zone_stat_thresholds();
7939 	setup_per_zone_lowmem_reserve();
7940 
7941 #ifdef CONFIG_NUMA
7942 	setup_min_unmapped_ratio();
7943 	setup_min_slab_ratio();
7944 #endif
7945 
7946 	return 0;
7947 }
7948 core_initcall(init_per_zone_wmark_min)
7949 
7950 /*
7951  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7952  *	that we can call two helper functions whenever min_free_kbytes
7953  *	changes.
7954  */
7955 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7956 		void *buffer, size_t *length, loff_t *ppos)
7957 {
7958 	int rc;
7959 
7960 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7961 	if (rc)
7962 		return rc;
7963 
7964 	if (write) {
7965 		user_min_free_kbytes = min_free_kbytes;
7966 		setup_per_zone_wmarks();
7967 	}
7968 	return 0;
7969 }
7970 
7971 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7972 		void *buffer, size_t *length, loff_t *ppos)
7973 {
7974 	int rc;
7975 
7976 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7977 	if (rc)
7978 		return rc;
7979 
7980 	if (write)
7981 		setup_per_zone_wmarks();
7982 
7983 	return 0;
7984 }
7985 
7986 #ifdef CONFIG_NUMA
7987 static void setup_min_unmapped_ratio(void)
7988 {
7989 	pg_data_t *pgdat;
7990 	struct zone *zone;
7991 
7992 	for_each_online_pgdat(pgdat)
7993 		pgdat->min_unmapped_pages = 0;
7994 
7995 	for_each_zone(zone)
7996 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7997 						         sysctl_min_unmapped_ratio) / 100;
7998 }
7999 
8000 
8001 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8002 		void *buffer, size_t *length, loff_t *ppos)
8003 {
8004 	int rc;
8005 
8006 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8007 	if (rc)
8008 		return rc;
8009 
8010 	setup_min_unmapped_ratio();
8011 
8012 	return 0;
8013 }
8014 
8015 static void setup_min_slab_ratio(void)
8016 {
8017 	pg_data_t *pgdat;
8018 	struct zone *zone;
8019 
8020 	for_each_online_pgdat(pgdat)
8021 		pgdat->min_slab_pages = 0;
8022 
8023 	for_each_zone(zone)
8024 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8025 						     sysctl_min_slab_ratio) / 100;
8026 }
8027 
8028 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8029 		void *buffer, size_t *length, loff_t *ppos)
8030 {
8031 	int rc;
8032 
8033 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8034 	if (rc)
8035 		return rc;
8036 
8037 	setup_min_slab_ratio();
8038 
8039 	return 0;
8040 }
8041 #endif
8042 
8043 /*
8044  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8045  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8046  *	whenever sysctl_lowmem_reserve_ratio changes.
8047  *
8048  * The reserve ratio obviously has absolutely no relation with the
8049  * minimum watermarks. The lowmem reserve ratio can only make sense
8050  * if in function of the boot time zone sizes.
8051  */
8052 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8053 		void *buffer, size_t *length, loff_t *ppos)
8054 {
8055 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8056 	setup_per_zone_lowmem_reserve();
8057 	return 0;
8058 }
8059 
8060 static void __zone_pcp_update(struct zone *zone)
8061 {
8062 	unsigned int cpu;
8063 
8064 	for_each_possible_cpu(cpu)
8065 		pageset_set_high_and_batch(zone,
8066 				per_cpu_ptr(zone->pageset, cpu));
8067 }
8068 
8069 /*
8070  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8071  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8072  * pagelist can have before it gets flushed back to buddy allocator.
8073  */
8074 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8075 		void *buffer, size_t *length, loff_t *ppos)
8076 {
8077 	struct zone *zone;
8078 	int old_percpu_pagelist_fraction;
8079 	int ret;
8080 
8081 	mutex_lock(&pcp_batch_high_lock);
8082 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8083 
8084 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8085 	if (!write || ret < 0)
8086 		goto out;
8087 
8088 	/* Sanity checking to avoid pcp imbalance */
8089 	if (percpu_pagelist_fraction &&
8090 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8091 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8092 		ret = -EINVAL;
8093 		goto out;
8094 	}
8095 
8096 	/* No change? */
8097 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8098 		goto out;
8099 
8100 	for_each_populated_zone(zone)
8101 		__zone_pcp_update(zone);
8102 out:
8103 	mutex_unlock(&pcp_batch_high_lock);
8104 	return ret;
8105 }
8106 
8107 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8108 /*
8109  * Returns the number of pages that arch has reserved but
8110  * is not known to alloc_large_system_hash().
8111  */
8112 static unsigned long __init arch_reserved_kernel_pages(void)
8113 {
8114 	return 0;
8115 }
8116 #endif
8117 
8118 /*
8119  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8120  * machines. As memory size is increased the scale is also increased but at
8121  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8122  * quadruples the scale is increased by one, which means the size of hash table
8123  * only doubles, instead of quadrupling as well.
8124  * Because 32-bit systems cannot have large physical memory, where this scaling
8125  * makes sense, it is disabled on such platforms.
8126  */
8127 #if __BITS_PER_LONG > 32
8128 #define ADAPT_SCALE_BASE	(64ul << 30)
8129 #define ADAPT_SCALE_SHIFT	2
8130 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8131 #endif
8132 
8133 /*
8134  * allocate a large system hash table from bootmem
8135  * - it is assumed that the hash table must contain an exact power-of-2
8136  *   quantity of entries
8137  * - limit is the number of hash buckets, not the total allocation size
8138  */
8139 void *__init alloc_large_system_hash(const char *tablename,
8140 				     unsigned long bucketsize,
8141 				     unsigned long numentries,
8142 				     int scale,
8143 				     int flags,
8144 				     unsigned int *_hash_shift,
8145 				     unsigned int *_hash_mask,
8146 				     unsigned long low_limit,
8147 				     unsigned long high_limit)
8148 {
8149 	unsigned long long max = high_limit;
8150 	unsigned long log2qty, size;
8151 	void *table = NULL;
8152 	gfp_t gfp_flags;
8153 	bool virt;
8154 
8155 	/* allow the kernel cmdline to have a say */
8156 	if (!numentries) {
8157 		/* round applicable memory size up to nearest megabyte */
8158 		numentries = nr_kernel_pages;
8159 		numentries -= arch_reserved_kernel_pages();
8160 
8161 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8162 		if (PAGE_SHIFT < 20)
8163 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8164 
8165 #if __BITS_PER_LONG > 32
8166 		if (!high_limit) {
8167 			unsigned long adapt;
8168 
8169 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8170 			     adapt <<= ADAPT_SCALE_SHIFT)
8171 				scale++;
8172 		}
8173 #endif
8174 
8175 		/* limit to 1 bucket per 2^scale bytes of low memory */
8176 		if (scale > PAGE_SHIFT)
8177 			numentries >>= (scale - PAGE_SHIFT);
8178 		else
8179 			numentries <<= (PAGE_SHIFT - scale);
8180 
8181 		/* Make sure we've got at least a 0-order allocation.. */
8182 		if (unlikely(flags & HASH_SMALL)) {
8183 			/* Makes no sense without HASH_EARLY */
8184 			WARN_ON(!(flags & HASH_EARLY));
8185 			if (!(numentries >> *_hash_shift)) {
8186 				numentries = 1UL << *_hash_shift;
8187 				BUG_ON(!numentries);
8188 			}
8189 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8190 			numentries = PAGE_SIZE / bucketsize;
8191 	}
8192 	numentries = roundup_pow_of_two(numentries);
8193 
8194 	/* limit allocation size to 1/16 total memory by default */
8195 	if (max == 0) {
8196 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8197 		do_div(max, bucketsize);
8198 	}
8199 	max = min(max, 0x80000000ULL);
8200 
8201 	if (numentries < low_limit)
8202 		numentries = low_limit;
8203 	if (numentries > max)
8204 		numentries = max;
8205 
8206 	log2qty = ilog2(numentries);
8207 
8208 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8209 	do {
8210 		virt = false;
8211 		size = bucketsize << log2qty;
8212 		if (flags & HASH_EARLY) {
8213 			if (flags & HASH_ZERO)
8214 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8215 			else
8216 				table = memblock_alloc_raw(size,
8217 							   SMP_CACHE_BYTES);
8218 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8219 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8220 			virt = true;
8221 		} else {
8222 			/*
8223 			 * If bucketsize is not a power-of-two, we may free
8224 			 * some pages at the end of hash table which
8225 			 * alloc_pages_exact() automatically does
8226 			 */
8227 			table = alloc_pages_exact(size, gfp_flags);
8228 			kmemleak_alloc(table, size, 1, gfp_flags);
8229 		}
8230 	} while (!table && size > PAGE_SIZE && --log2qty);
8231 
8232 	if (!table)
8233 		panic("Failed to allocate %s hash table\n", tablename);
8234 
8235 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8236 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8237 		virt ? "vmalloc" : "linear");
8238 
8239 	if (_hash_shift)
8240 		*_hash_shift = log2qty;
8241 	if (_hash_mask)
8242 		*_hash_mask = (1 << log2qty) - 1;
8243 
8244 	return table;
8245 }
8246 
8247 /*
8248  * This function checks whether pageblock includes unmovable pages or not.
8249  *
8250  * PageLRU check without isolation or lru_lock could race so that
8251  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8252  * check without lock_page also may miss some movable non-lru pages at
8253  * race condition. So you can't expect this function should be exact.
8254  *
8255  * Returns a page without holding a reference. If the caller wants to
8256  * dereference that page (e.g., dumping), it has to make sure that that it
8257  * cannot get removed (e.g., via memory unplug) concurrently.
8258  *
8259  */
8260 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8261 				 int migratetype, int flags)
8262 {
8263 	unsigned long iter = 0;
8264 	unsigned long pfn = page_to_pfn(page);
8265 
8266 	/*
8267 	 * TODO we could make this much more efficient by not checking every
8268 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8269 	 * that the movable zone guarantees that pages are migratable but
8270 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8271 	 * can still lead to having bootmem allocations in zone_movable.
8272 	 */
8273 
8274 	if (is_migrate_cma_page(page)) {
8275 		/*
8276 		 * CMA allocations (alloc_contig_range) really need to mark
8277 		 * isolate CMA pageblocks even when they are not movable in fact
8278 		 * so consider them movable here.
8279 		 */
8280 		if (is_migrate_cma(migratetype))
8281 			return NULL;
8282 
8283 		return page;
8284 	}
8285 
8286 	for (; iter < pageblock_nr_pages; iter++) {
8287 		if (!pfn_valid_within(pfn + iter))
8288 			continue;
8289 
8290 		page = pfn_to_page(pfn + iter);
8291 
8292 		if (PageReserved(page))
8293 			return page;
8294 
8295 		/*
8296 		 * If the zone is movable and we have ruled out all reserved
8297 		 * pages then it should be reasonably safe to assume the rest
8298 		 * is movable.
8299 		 */
8300 		if (zone_idx(zone) == ZONE_MOVABLE)
8301 			continue;
8302 
8303 		/*
8304 		 * Hugepages are not in LRU lists, but they're movable.
8305 		 * THPs are on the LRU, but need to be counted as #small pages.
8306 		 * We need not scan over tail pages because we don't
8307 		 * handle each tail page individually in migration.
8308 		 */
8309 		if (PageHuge(page) || PageTransCompound(page)) {
8310 			struct page *head = compound_head(page);
8311 			unsigned int skip_pages;
8312 
8313 			if (PageHuge(page)) {
8314 				if (!hugepage_migration_supported(page_hstate(head)))
8315 					return page;
8316 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8317 				return page;
8318 			}
8319 
8320 			skip_pages = compound_nr(head) - (page - head);
8321 			iter += skip_pages - 1;
8322 			continue;
8323 		}
8324 
8325 		/*
8326 		 * We can't use page_count without pin a page
8327 		 * because another CPU can free compound page.
8328 		 * This check already skips compound tails of THP
8329 		 * because their page->_refcount is zero at all time.
8330 		 */
8331 		if (!page_ref_count(page)) {
8332 			if (PageBuddy(page))
8333 				iter += (1 << page_order(page)) - 1;
8334 			continue;
8335 		}
8336 
8337 		/*
8338 		 * The HWPoisoned page may be not in buddy system, and
8339 		 * page_count() is not 0.
8340 		 */
8341 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8342 			continue;
8343 
8344 		if (__PageMovable(page) || PageLRU(page))
8345 			continue;
8346 
8347 		/*
8348 		 * If there are RECLAIMABLE pages, we need to check
8349 		 * it.  But now, memory offline itself doesn't call
8350 		 * shrink_node_slabs() and it still to be fixed.
8351 		 */
8352 		/*
8353 		 * If the page is not RAM, page_count()should be 0.
8354 		 * we don't need more check. This is an _used_ not-movable page.
8355 		 *
8356 		 * The problematic thing here is PG_reserved pages. PG_reserved
8357 		 * is set to both of a memory hole page and a _used_ kernel
8358 		 * page at boot.
8359 		 */
8360 		return page;
8361 	}
8362 	return NULL;
8363 }
8364 
8365 #ifdef CONFIG_CONTIG_ALLOC
8366 static unsigned long pfn_max_align_down(unsigned long pfn)
8367 {
8368 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8369 			     pageblock_nr_pages) - 1);
8370 }
8371 
8372 static unsigned long pfn_max_align_up(unsigned long pfn)
8373 {
8374 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8375 				pageblock_nr_pages));
8376 }
8377 
8378 /* [start, end) must belong to a single zone. */
8379 static int __alloc_contig_migrate_range(struct compact_control *cc,
8380 					unsigned long start, unsigned long end)
8381 {
8382 	/* This function is based on compact_zone() from compaction.c. */
8383 	unsigned long nr_reclaimed;
8384 	unsigned long pfn = start;
8385 	unsigned int tries = 0;
8386 	int ret = 0;
8387 
8388 	migrate_prep();
8389 
8390 	while (pfn < end || !list_empty(&cc->migratepages)) {
8391 		if (fatal_signal_pending(current)) {
8392 			ret = -EINTR;
8393 			break;
8394 		}
8395 
8396 		if (list_empty(&cc->migratepages)) {
8397 			cc->nr_migratepages = 0;
8398 			pfn = isolate_migratepages_range(cc, pfn, end);
8399 			if (!pfn) {
8400 				ret = -EINTR;
8401 				break;
8402 			}
8403 			tries = 0;
8404 		} else if (++tries == 5) {
8405 			ret = ret < 0 ? ret : -EBUSY;
8406 			break;
8407 		}
8408 
8409 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8410 							&cc->migratepages);
8411 		cc->nr_migratepages -= nr_reclaimed;
8412 
8413 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8414 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8415 	}
8416 	if (ret < 0) {
8417 		putback_movable_pages(&cc->migratepages);
8418 		return ret;
8419 	}
8420 	return 0;
8421 }
8422 
8423 /**
8424  * alloc_contig_range() -- tries to allocate given range of pages
8425  * @start:	start PFN to allocate
8426  * @end:	one-past-the-last PFN to allocate
8427  * @migratetype:	migratetype of the underlaying pageblocks (either
8428  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8429  *			in range must have the same migratetype and it must
8430  *			be either of the two.
8431  * @gfp_mask:	GFP mask to use during compaction
8432  *
8433  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8434  * aligned.  The PFN range must belong to a single zone.
8435  *
8436  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8437  * pageblocks in the range.  Once isolated, the pageblocks should not
8438  * be modified by others.
8439  *
8440  * Return: zero on success or negative error code.  On success all
8441  * pages which PFN is in [start, end) are allocated for the caller and
8442  * need to be freed with free_contig_range().
8443  */
8444 int alloc_contig_range(unsigned long start, unsigned long end,
8445 		       unsigned migratetype, gfp_t gfp_mask)
8446 {
8447 	unsigned long outer_start, outer_end;
8448 	unsigned int order;
8449 	int ret = 0;
8450 
8451 	struct compact_control cc = {
8452 		.nr_migratepages = 0,
8453 		.order = -1,
8454 		.zone = page_zone(pfn_to_page(start)),
8455 		.mode = MIGRATE_SYNC,
8456 		.ignore_skip_hint = true,
8457 		.no_set_skip_hint = true,
8458 		.gfp_mask = current_gfp_context(gfp_mask),
8459 		.alloc_contig = true,
8460 	};
8461 	INIT_LIST_HEAD(&cc.migratepages);
8462 
8463 	/*
8464 	 * What we do here is we mark all pageblocks in range as
8465 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8466 	 * have different sizes, and due to the way page allocator
8467 	 * work, we align the range to biggest of the two pages so
8468 	 * that page allocator won't try to merge buddies from
8469 	 * different pageblocks and change MIGRATE_ISOLATE to some
8470 	 * other migration type.
8471 	 *
8472 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8473 	 * migrate the pages from an unaligned range (ie. pages that
8474 	 * we are interested in).  This will put all the pages in
8475 	 * range back to page allocator as MIGRATE_ISOLATE.
8476 	 *
8477 	 * When this is done, we take the pages in range from page
8478 	 * allocator removing them from the buddy system.  This way
8479 	 * page allocator will never consider using them.
8480 	 *
8481 	 * This lets us mark the pageblocks back as
8482 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8483 	 * aligned range but not in the unaligned, original range are
8484 	 * put back to page allocator so that buddy can use them.
8485 	 */
8486 
8487 	ret = start_isolate_page_range(pfn_max_align_down(start),
8488 				       pfn_max_align_up(end), migratetype, 0);
8489 	if (ret < 0)
8490 		return ret;
8491 
8492 	/*
8493 	 * In case of -EBUSY, we'd like to know which page causes problem.
8494 	 * So, just fall through. test_pages_isolated() has a tracepoint
8495 	 * which will report the busy page.
8496 	 *
8497 	 * It is possible that busy pages could become available before
8498 	 * the call to test_pages_isolated, and the range will actually be
8499 	 * allocated.  So, if we fall through be sure to clear ret so that
8500 	 * -EBUSY is not accidentally used or returned to caller.
8501 	 */
8502 	ret = __alloc_contig_migrate_range(&cc, start, end);
8503 	if (ret && ret != -EBUSY)
8504 		goto done;
8505 	ret =0;
8506 
8507 	/*
8508 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8509 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8510 	 * more, all pages in [start, end) are free in page allocator.
8511 	 * What we are going to do is to allocate all pages from
8512 	 * [start, end) (that is remove them from page allocator).
8513 	 *
8514 	 * The only problem is that pages at the beginning and at the
8515 	 * end of interesting range may be not aligned with pages that
8516 	 * page allocator holds, ie. they can be part of higher order
8517 	 * pages.  Because of this, we reserve the bigger range and
8518 	 * once this is done free the pages we are not interested in.
8519 	 *
8520 	 * We don't have to hold zone->lock here because the pages are
8521 	 * isolated thus they won't get removed from buddy.
8522 	 */
8523 
8524 	lru_add_drain_all();
8525 
8526 	order = 0;
8527 	outer_start = start;
8528 	while (!PageBuddy(pfn_to_page(outer_start))) {
8529 		if (++order >= MAX_ORDER) {
8530 			outer_start = start;
8531 			break;
8532 		}
8533 		outer_start &= ~0UL << order;
8534 	}
8535 
8536 	if (outer_start != start) {
8537 		order = page_order(pfn_to_page(outer_start));
8538 
8539 		/*
8540 		 * outer_start page could be small order buddy page and
8541 		 * it doesn't include start page. Adjust outer_start
8542 		 * in this case to report failed page properly
8543 		 * on tracepoint in test_pages_isolated()
8544 		 */
8545 		if (outer_start + (1UL << order) <= start)
8546 			outer_start = start;
8547 	}
8548 
8549 	/* Make sure the range is really isolated. */
8550 	if (test_pages_isolated(outer_start, end, 0)) {
8551 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8552 			__func__, outer_start, end);
8553 		ret = -EBUSY;
8554 		goto done;
8555 	}
8556 
8557 	/* Grab isolated pages from freelists. */
8558 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8559 	if (!outer_end) {
8560 		ret = -EBUSY;
8561 		goto done;
8562 	}
8563 
8564 	/* Free head and tail (if any) */
8565 	if (start != outer_start)
8566 		free_contig_range(outer_start, start - outer_start);
8567 	if (end != outer_end)
8568 		free_contig_range(end, outer_end - end);
8569 
8570 done:
8571 	undo_isolate_page_range(pfn_max_align_down(start),
8572 				pfn_max_align_up(end), migratetype);
8573 	return ret;
8574 }
8575 
8576 static int __alloc_contig_pages(unsigned long start_pfn,
8577 				unsigned long nr_pages, gfp_t gfp_mask)
8578 {
8579 	unsigned long end_pfn = start_pfn + nr_pages;
8580 
8581 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8582 				  gfp_mask);
8583 }
8584 
8585 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8586 				   unsigned long nr_pages)
8587 {
8588 	unsigned long i, end_pfn = start_pfn + nr_pages;
8589 	struct page *page;
8590 
8591 	for (i = start_pfn; i < end_pfn; i++) {
8592 		page = pfn_to_online_page(i);
8593 		if (!page)
8594 			return false;
8595 
8596 		if (page_zone(page) != z)
8597 			return false;
8598 
8599 		if (PageReserved(page))
8600 			return false;
8601 
8602 		if (page_count(page) > 0)
8603 			return false;
8604 
8605 		if (PageHuge(page))
8606 			return false;
8607 	}
8608 	return true;
8609 }
8610 
8611 static bool zone_spans_last_pfn(const struct zone *zone,
8612 				unsigned long start_pfn, unsigned long nr_pages)
8613 {
8614 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8615 
8616 	return zone_spans_pfn(zone, last_pfn);
8617 }
8618 
8619 /**
8620  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8621  * @nr_pages:	Number of contiguous pages to allocate
8622  * @gfp_mask:	GFP mask to limit search and used during compaction
8623  * @nid:	Target node
8624  * @nodemask:	Mask for other possible nodes
8625  *
8626  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8627  * on an applicable zonelist to find a contiguous pfn range which can then be
8628  * tried for allocation with alloc_contig_range(). This routine is intended
8629  * for allocation requests which can not be fulfilled with the buddy allocator.
8630  *
8631  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8632  * power of two then the alignment is guaranteed to be to the given nr_pages
8633  * (e.g. 1GB request would be aligned to 1GB).
8634  *
8635  * Allocated pages can be freed with free_contig_range() or by manually calling
8636  * __free_page() on each allocated page.
8637  *
8638  * Return: pointer to contiguous pages on success, or NULL if not successful.
8639  */
8640 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8641 				int nid, nodemask_t *nodemask)
8642 {
8643 	unsigned long ret, pfn, flags;
8644 	struct zonelist *zonelist;
8645 	struct zone *zone;
8646 	struct zoneref *z;
8647 
8648 	zonelist = node_zonelist(nid, gfp_mask);
8649 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8650 					gfp_zone(gfp_mask), nodemask) {
8651 		spin_lock_irqsave(&zone->lock, flags);
8652 
8653 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8654 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8655 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8656 				/*
8657 				 * We release the zone lock here because
8658 				 * alloc_contig_range() will also lock the zone
8659 				 * at some point. If there's an allocation
8660 				 * spinning on this lock, it may win the race
8661 				 * and cause alloc_contig_range() to fail...
8662 				 */
8663 				spin_unlock_irqrestore(&zone->lock, flags);
8664 				ret = __alloc_contig_pages(pfn, nr_pages,
8665 							gfp_mask);
8666 				if (!ret)
8667 					return pfn_to_page(pfn);
8668 				spin_lock_irqsave(&zone->lock, flags);
8669 			}
8670 			pfn += nr_pages;
8671 		}
8672 		spin_unlock_irqrestore(&zone->lock, flags);
8673 	}
8674 	return NULL;
8675 }
8676 #endif /* CONFIG_CONTIG_ALLOC */
8677 
8678 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8679 {
8680 	unsigned int count = 0;
8681 
8682 	for (; nr_pages--; pfn++) {
8683 		struct page *page = pfn_to_page(pfn);
8684 
8685 		count += page_count(page) != 1;
8686 		__free_page(page);
8687 	}
8688 	WARN(count != 0, "%d pages are still in use!\n", count);
8689 }
8690 
8691 /*
8692  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8693  * page high values need to be recalulated.
8694  */
8695 void __meminit zone_pcp_update(struct zone *zone)
8696 {
8697 	mutex_lock(&pcp_batch_high_lock);
8698 	__zone_pcp_update(zone);
8699 	mutex_unlock(&pcp_batch_high_lock);
8700 }
8701 
8702 void zone_pcp_reset(struct zone *zone)
8703 {
8704 	unsigned long flags;
8705 	int cpu;
8706 	struct per_cpu_pageset *pset;
8707 
8708 	/* avoid races with drain_pages()  */
8709 	local_irq_save(flags);
8710 	if (zone->pageset != &boot_pageset) {
8711 		for_each_online_cpu(cpu) {
8712 			pset = per_cpu_ptr(zone->pageset, cpu);
8713 			drain_zonestat(zone, pset);
8714 		}
8715 		free_percpu(zone->pageset);
8716 		zone->pageset = &boot_pageset;
8717 	}
8718 	local_irq_restore(flags);
8719 }
8720 
8721 #ifdef CONFIG_MEMORY_HOTREMOVE
8722 /*
8723  * All pages in the range must be in a single zone and isolated
8724  * before calling this.
8725  */
8726 unsigned long
8727 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8728 {
8729 	struct page *page;
8730 	struct zone *zone;
8731 	unsigned int order;
8732 	unsigned long pfn;
8733 	unsigned long flags;
8734 	unsigned long offlined_pages = 0;
8735 
8736 	/* find the first valid pfn */
8737 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8738 		if (pfn_valid(pfn))
8739 			break;
8740 	if (pfn == end_pfn)
8741 		return offlined_pages;
8742 
8743 	offline_mem_sections(pfn, end_pfn);
8744 	zone = page_zone(pfn_to_page(pfn));
8745 	spin_lock_irqsave(&zone->lock, flags);
8746 	pfn = start_pfn;
8747 	while (pfn < end_pfn) {
8748 		if (!pfn_valid(pfn)) {
8749 			pfn++;
8750 			continue;
8751 		}
8752 		page = pfn_to_page(pfn);
8753 		/*
8754 		 * The HWPoisoned page may be not in buddy system, and
8755 		 * page_count() is not 0.
8756 		 */
8757 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8758 			pfn++;
8759 			offlined_pages++;
8760 			continue;
8761 		}
8762 
8763 		BUG_ON(page_count(page));
8764 		BUG_ON(!PageBuddy(page));
8765 		order = page_order(page);
8766 		offlined_pages += 1 << order;
8767 		del_page_from_free_list(page, zone, order);
8768 		pfn += (1 << order);
8769 	}
8770 	spin_unlock_irqrestore(&zone->lock, flags);
8771 
8772 	return offlined_pages;
8773 }
8774 #endif
8775 
8776 bool is_free_buddy_page(struct page *page)
8777 {
8778 	struct zone *zone = page_zone(page);
8779 	unsigned long pfn = page_to_pfn(page);
8780 	unsigned long flags;
8781 	unsigned int order;
8782 
8783 	spin_lock_irqsave(&zone->lock, flags);
8784 	for (order = 0; order < MAX_ORDER; order++) {
8785 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8786 
8787 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8788 			break;
8789 	}
8790 	spin_unlock_irqrestore(&zone->lock, flags);
8791 
8792 	return order < MAX_ORDER;
8793 }
8794 
8795 #ifdef CONFIG_MEMORY_FAILURE
8796 /*
8797  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8798  * test is performed under the zone lock to prevent a race against page
8799  * allocation.
8800  */
8801 bool set_hwpoison_free_buddy_page(struct page *page)
8802 {
8803 	struct zone *zone = page_zone(page);
8804 	unsigned long pfn = page_to_pfn(page);
8805 	unsigned long flags;
8806 	unsigned int order;
8807 	bool hwpoisoned = false;
8808 
8809 	spin_lock_irqsave(&zone->lock, flags);
8810 	for (order = 0; order < MAX_ORDER; order++) {
8811 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8812 
8813 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8814 			if (!TestSetPageHWPoison(page))
8815 				hwpoisoned = true;
8816 			break;
8817 		}
8818 	}
8819 	spin_unlock_irqrestore(&zone->lock, flags);
8820 
8821 	return hwpoisoned;
8822 }
8823 #endif
8824