1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 #include <linux/delayacct.h> 76 #include <asm/sections.h> 77 #include <asm/tlbflush.h> 78 #include <asm/div64.h> 79 #include "internal.h" 80 #include "shuffle.h" 81 #include "page_reporting.h" 82 83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 84 typedef int __bitwise fpi_t; 85 86 /* No special request */ 87 #define FPI_NONE ((__force fpi_t)0) 88 89 /* 90 * Skip free page reporting notification for the (possibly merged) page. 91 * This does not hinder free page reporting from grabbing the page, 92 * reporting it and marking it "reported" - it only skips notifying 93 * the free page reporting infrastructure about a newly freed page. For 94 * example, used when temporarily pulling a page from a freelist and 95 * putting it back unmodified. 96 */ 97 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 98 99 /* 100 * Place the (possibly merged) page to the tail of the freelist. Will ignore 101 * page shuffling (relevant code - e.g., memory onlining - is expected to 102 * shuffle the whole zone). 103 * 104 * Note: No code should rely on this flag for correctness - it's purely 105 * to allow for optimizations when handing back either fresh pages 106 * (memory onlining) or untouched pages (page isolation, free page 107 * reporting). 108 */ 109 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 110 111 /* 112 * Don't poison memory with KASAN (only for the tag-based modes). 113 * During boot, all non-reserved memblock memory is exposed to page_alloc. 114 * Poisoning all that memory lengthens boot time, especially on systems with 115 * large amount of RAM. This flag is used to skip that poisoning. 116 * This is only done for the tag-based KASAN modes, as those are able to 117 * detect memory corruptions with the memory tags assigned by default. 118 * All memory allocated normally after boot gets poisoned as usual. 119 */ 120 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 121 122 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 123 static DEFINE_MUTEX(pcp_batch_high_lock); 124 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 125 126 struct pagesets { 127 local_lock_t lock; 128 }; 129 static DEFINE_PER_CPU(struct pagesets, pagesets) = { 130 .lock = INIT_LOCAL_LOCK(lock), 131 }; 132 133 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 134 DEFINE_PER_CPU(int, numa_node); 135 EXPORT_PER_CPU_SYMBOL(numa_node); 136 #endif 137 138 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 139 140 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 141 /* 142 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 143 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 144 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 145 * defined in <linux/topology.h>. 146 */ 147 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 148 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 149 #endif 150 151 /* work_structs for global per-cpu drains */ 152 struct pcpu_drain { 153 struct zone *zone; 154 struct work_struct work; 155 }; 156 static DEFINE_MUTEX(pcpu_drain_mutex); 157 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 158 159 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 160 volatile unsigned long latent_entropy __latent_entropy; 161 EXPORT_SYMBOL(latent_entropy); 162 #endif 163 164 /* 165 * Array of node states. 166 */ 167 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 168 [N_POSSIBLE] = NODE_MASK_ALL, 169 [N_ONLINE] = { { [0] = 1UL } }, 170 #ifndef CONFIG_NUMA 171 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 172 #ifdef CONFIG_HIGHMEM 173 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 174 #endif 175 [N_MEMORY] = { { [0] = 1UL } }, 176 [N_CPU] = { { [0] = 1UL } }, 177 #endif /* NUMA */ 178 }; 179 EXPORT_SYMBOL(node_states); 180 181 atomic_long_t _totalram_pages __read_mostly; 182 EXPORT_SYMBOL(_totalram_pages); 183 unsigned long totalreserve_pages __read_mostly; 184 unsigned long totalcma_pages __read_mostly; 185 186 int percpu_pagelist_high_fraction; 187 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 188 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 189 EXPORT_SYMBOL(init_on_alloc); 190 191 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 192 EXPORT_SYMBOL(init_on_free); 193 194 static bool _init_on_alloc_enabled_early __read_mostly 195 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 196 static int __init early_init_on_alloc(char *buf) 197 { 198 199 return kstrtobool(buf, &_init_on_alloc_enabled_early); 200 } 201 early_param("init_on_alloc", early_init_on_alloc); 202 203 static bool _init_on_free_enabled_early __read_mostly 204 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 205 static int __init early_init_on_free(char *buf) 206 { 207 return kstrtobool(buf, &_init_on_free_enabled_early); 208 } 209 early_param("init_on_free", early_init_on_free); 210 211 /* 212 * A cached value of the page's pageblock's migratetype, used when the page is 213 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 214 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 215 * Also the migratetype set in the page does not necessarily match the pcplist 216 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 217 * other index - this ensures that it will be put on the correct CMA freelist. 218 */ 219 static inline int get_pcppage_migratetype(struct page *page) 220 { 221 return page->index; 222 } 223 224 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 225 { 226 page->index = migratetype; 227 } 228 229 #ifdef CONFIG_PM_SLEEP 230 /* 231 * The following functions are used by the suspend/hibernate code to temporarily 232 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 233 * while devices are suspended. To avoid races with the suspend/hibernate code, 234 * they should always be called with system_transition_mutex held 235 * (gfp_allowed_mask also should only be modified with system_transition_mutex 236 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 237 * with that modification). 238 */ 239 240 static gfp_t saved_gfp_mask; 241 242 void pm_restore_gfp_mask(void) 243 { 244 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 245 if (saved_gfp_mask) { 246 gfp_allowed_mask = saved_gfp_mask; 247 saved_gfp_mask = 0; 248 } 249 } 250 251 void pm_restrict_gfp_mask(void) 252 { 253 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 254 WARN_ON(saved_gfp_mask); 255 saved_gfp_mask = gfp_allowed_mask; 256 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 257 } 258 259 bool pm_suspended_storage(void) 260 { 261 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 262 return false; 263 return true; 264 } 265 #endif /* CONFIG_PM_SLEEP */ 266 267 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 268 unsigned int pageblock_order __read_mostly; 269 #endif 270 271 static void __free_pages_ok(struct page *page, unsigned int order, 272 fpi_t fpi_flags); 273 274 /* 275 * results with 256, 32 in the lowmem_reserve sysctl: 276 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 277 * 1G machine -> (16M dma, 784M normal, 224M high) 278 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 279 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 280 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 281 * 282 * TBD: should special case ZONE_DMA32 machines here - in those we normally 283 * don't need any ZONE_NORMAL reservation 284 */ 285 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 286 #ifdef CONFIG_ZONE_DMA 287 [ZONE_DMA] = 256, 288 #endif 289 #ifdef CONFIG_ZONE_DMA32 290 [ZONE_DMA32] = 256, 291 #endif 292 [ZONE_NORMAL] = 32, 293 #ifdef CONFIG_HIGHMEM 294 [ZONE_HIGHMEM] = 0, 295 #endif 296 [ZONE_MOVABLE] = 0, 297 }; 298 299 static char * const zone_names[MAX_NR_ZONES] = { 300 #ifdef CONFIG_ZONE_DMA 301 "DMA", 302 #endif 303 #ifdef CONFIG_ZONE_DMA32 304 "DMA32", 305 #endif 306 "Normal", 307 #ifdef CONFIG_HIGHMEM 308 "HighMem", 309 #endif 310 "Movable", 311 #ifdef CONFIG_ZONE_DEVICE 312 "Device", 313 #endif 314 }; 315 316 const char * const migratetype_names[MIGRATE_TYPES] = { 317 "Unmovable", 318 "Movable", 319 "Reclaimable", 320 "HighAtomic", 321 #ifdef CONFIG_CMA 322 "CMA", 323 #endif 324 #ifdef CONFIG_MEMORY_ISOLATION 325 "Isolate", 326 #endif 327 }; 328 329 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 330 [NULL_COMPOUND_DTOR] = NULL, 331 [COMPOUND_PAGE_DTOR] = free_compound_page, 332 #ifdef CONFIG_HUGETLB_PAGE 333 [HUGETLB_PAGE_DTOR] = free_huge_page, 334 #endif 335 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 336 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 337 #endif 338 }; 339 340 int min_free_kbytes = 1024; 341 int user_min_free_kbytes = -1; 342 int watermark_boost_factor __read_mostly = 15000; 343 int watermark_scale_factor = 10; 344 345 static unsigned long nr_kernel_pages __initdata; 346 static unsigned long nr_all_pages __initdata; 347 static unsigned long dma_reserve __initdata; 348 349 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 350 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 351 static unsigned long required_kernelcore __initdata; 352 static unsigned long required_kernelcore_percent __initdata; 353 static unsigned long required_movablecore __initdata; 354 static unsigned long required_movablecore_percent __initdata; 355 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 356 static bool mirrored_kernelcore __meminitdata; 357 358 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 359 int movable_zone; 360 EXPORT_SYMBOL(movable_zone); 361 362 #if MAX_NUMNODES > 1 363 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 364 unsigned int nr_online_nodes __read_mostly = 1; 365 EXPORT_SYMBOL(nr_node_ids); 366 EXPORT_SYMBOL(nr_online_nodes); 367 #endif 368 369 int page_group_by_mobility_disabled __read_mostly; 370 371 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 372 /* 373 * During boot we initialize deferred pages on-demand, as needed, but once 374 * page_alloc_init_late() has finished, the deferred pages are all initialized, 375 * and we can permanently disable that path. 376 */ 377 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 378 379 /* 380 * Calling kasan_poison_pages() only after deferred memory initialization 381 * has completed. Poisoning pages during deferred memory init will greatly 382 * lengthen the process and cause problem in large memory systems as the 383 * deferred pages initialization is done with interrupt disabled. 384 * 385 * Assuming that there will be no reference to those newly initialized 386 * pages before they are ever allocated, this should have no effect on 387 * KASAN memory tracking as the poison will be properly inserted at page 388 * allocation time. The only corner case is when pages are allocated by 389 * on-demand allocation and then freed again before the deferred pages 390 * initialization is done, but this is not likely to happen. 391 */ 392 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 393 { 394 return static_branch_unlikely(&deferred_pages) || 395 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 396 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 397 PageSkipKASanPoison(page); 398 } 399 400 /* Returns true if the struct page for the pfn is uninitialised */ 401 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 402 { 403 int nid = early_pfn_to_nid(pfn); 404 405 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 406 return true; 407 408 return false; 409 } 410 411 /* 412 * Returns true when the remaining initialisation should be deferred until 413 * later in the boot cycle when it can be parallelised. 414 */ 415 static bool __meminit 416 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 417 { 418 static unsigned long prev_end_pfn, nr_initialised; 419 420 /* 421 * prev_end_pfn static that contains the end of previous zone 422 * No need to protect because called very early in boot before smp_init. 423 */ 424 if (prev_end_pfn != end_pfn) { 425 prev_end_pfn = end_pfn; 426 nr_initialised = 0; 427 } 428 429 /* Always populate low zones for address-constrained allocations */ 430 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 431 return false; 432 433 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 434 return true; 435 /* 436 * We start only with one section of pages, more pages are added as 437 * needed until the rest of deferred pages are initialized. 438 */ 439 nr_initialised++; 440 if ((nr_initialised > PAGES_PER_SECTION) && 441 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 442 NODE_DATA(nid)->first_deferred_pfn = pfn; 443 return true; 444 } 445 return false; 446 } 447 #else 448 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 449 { 450 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 451 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 452 PageSkipKASanPoison(page); 453 } 454 455 static inline bool early_page_uninitialised(unsigned long pfn) 456 { 457 return false; 458 } 459 460 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 461 { 462 return false; 463 } 464 #endif 465 466 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 467 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 468 unsigned long pfn) 469 { 470 #ifdef CONFIG_SPARSEMEM 471 return section_to_usemap(__pfn_to_section(pfn)); 472 #else 473 return page_zone(page)->pageblock_flags; 474 #endif /* CONFIG_SPARSEMEM */ 475 } 476 477 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 478 { 479 #ifdef CONFIG_SPARSEMEM 480 pfn &= (PAGES_PER_SECTION-1); 481 #else 482 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 483 #endif /* CONFIG_SPARSEMEM */ 484 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 485 } 486 487 static __always_inline 488 unsigned long __get_pfnblock_flags_mask(const struct page *page, 489 unsigned long pfn, 490 unsigned long mask) 491 { 492 unsigned long *bitmap; 493 unsigned long bitidx, word_bitidx; 494 unsigned long word; 495 496 bitmap = get_pageblock_bitmap(page, pfn); 497 bitidx = pfn_to_bitidx(page, pfn); 498 word_bitidx = bitidx / BITS_PER_LONG; 499 bitidx &= (BITS_PER_LONG-1); 500 501 word = bitmap[word_bitidx]; 502 return (word >> bitidx) & mask; 503 } 504 505 /** 506 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 507 * @page: The page within the block of interest 508 * @pfn: The target page frame number 509 * @mask: mask of bits that the caller is interested in 510 * 511 * Return: pageblock_bits flags 512 */ 513 unsigned long get_pfnblock_flags_mask(const struct page *page, 514 unsigned long pfn, unsigned long mask) 515 { 516 return __get_pfnblock_flags_mask(page, pfn, mask); 517 } 518 519 static __always_inline int get_pfnblock_migratetype(const struct page *page, 520 unsigned long pfn) 521 { 522 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 523 } 524 525 /** 526 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 527 * @page: The page within the block of interest 528 * @flags: The flags to set 529 * @pfn: The target page frame number 530 * @mask: mask of bits that the caller is interested in 531 */ 532 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 533 unsigned long pfn, 534 unsigned long mask) 535 { 536 unsigned long *bitmap; 537 unsigned long bitidx, word_bitidx; 538 unsigned long old_word, word; 539 540 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 541 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 542 543 bitmap = get_pageblock_bitmap(page, pfn); 544 bitidx = pfn_to_bitidx(page, pfn); 545 word_bitidx = bitidx / BITS_PER_LONG; 546 bitidx &= (BITS_PER_LONG-1); 547 548 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 549 550 mask <<= bitidx; 551 flags <<= bitidx; 552 553 word = READ_ONCE(bitmap[word_bitidx]); 554 for (;;) { 555 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 556 if (word == old_word) 557 break; 558 word = old_word; 559 } 560 } 561 562 void set_pageblock_migratetype(struct page *page, int migratetype) 563 { 564 if (unlikely(page_group_by_mobility_disabled && 565 migratetype < MIGRATE_PCPTYPES)) 566 migratetype = MIGRATE_UNMOVABLE; 567 568 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 569 page_to_pfn(page), MIGRATETYPE_MASK); 570 } 571 572 #ifdef CONFIG_DEBUG_VM 573 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 574 { 575 int ret = 0; 576 unsigned seq; 577 unsigned long pfn = page_to_pfn(page); 578 unsigned long sp, start_pfn; 579 580 do { 581 seq = zone_span_seqbegin(zone); 582 start_pfn = zone->zone_start_pfn; 583 sp = zone->spanned_pages; 584 if (!zone_spans_pfn(zone, pfn)) 585 ret = 1; 586 } while (zone_span_seqretry(zone, seq)); 587 588 if (ret) 589 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 590 pfn, zone_to_nid(zone), zone->name, 591 start_pfn, start_pfn + sp); 592 593 return ret; 594 } 595 596 static int page_is_consistent(struct zone *zone, struct page *page) 597 { 598 if (zone != page_zone(page)) 599 return 0; 600 601 return 1; 602 } 603 /* 604 * Temporary debugging check for pages not lying within a given zone. 605 */ 606 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 607 { 608 if (page_outside_zone_boundaries(zone, page)) 609 return 1; 610 if (!page_is_consistent(zone, page)) 611 return 1; 612 613 return 0; 614 } 615 #else 616 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 617 { 618 return 0; 619 } 620 #endif 621 622 static void bad_page(struct page *page, const char *reason) 623 { 624 static unsigned long resume; 625 static unsigned long nr_shown; 626 static unsigned long nr_unshown; 627 628 /* 629 * Allow a burst of 60 reports, then keep quiet for that minute; 630 * or allow a steady drip of one report per second. 631 */ 632 if (nr_shown == 60) { 633 if (time_before(jiffies, resume)) { 634 nr_unshown++; 635 goto out; 636 } 637 if (nr_unshown) { 638 pr_alert( 639 "BUG: Bad page state: %lu messages suppressed\n", 640 nr_unshown); 641 nr_unshown = 0; 642 } 643 nr_shown = 0; 644 } 645 if (nr_shown++ == 0) 646 resume = jiffies + 60 * HZ; 647 648 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 649 current->comm, page_to_pfn(page)); 650 dump_page(page, reason); 651 652 print_modules(); 653 dump_stack(); 654 out: 655 /* Leave bad fields for debug, except PageBuddy could make trouble */ 656 page_mapcount_reset(page); /* remove PageBuddy */ 657 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 658 } 659 660 static inline unsigned int order_to_pindex(int migratetype, int order) 661 { 662 int base = order; 663 664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 665 if (order > PAGE_ALLOC_COSTLY_ORDER) { 666 VM_BUG_ON(order != pageblock_order); 667 base = PAGE_ALLOC_COSTLY_ORDER + 1; 668 } 669 #else 670 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 671 #endif 672 673 return (MIGRATE_PCPTYPES * base) + migratetype; 674 } 675 676 static inline int pindex_to_order(unsigned int pindex) 677 { 678 int order = pindex / MIGRATE_PCPTYPES; 679 680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 681 if (order > PAGE_ALLOC_COSTLY_ORDER) 682 order = pageblock_order; 683 #else 684 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 685 #endif 686 687 return order; 688 } 689 690 static inline bool pcp_allowed_order(unsigned int order) 691 { 692 if (order <= PAGE_ALLOC_COSTLY_ORDER) 693 return true; 694 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 695 if (order == pageblock_order) 696 return true; 697 #endif 698 return false; 699 } 700 701 static inline void free_the_page(struct page *page, unsigned int order) 702 { 703 if (pcp_allowed_order(order)) /* Via pcp? */ 704 free_unref_page(page, order); 705 else 706 __free_pages_ok(page, order, FPI_NONE); 707 } 708 709 /* 710 * Higher-order pages are called "compound pages". They are structured thusly: 711 * 712 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 713 * 714 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 715 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 716 * 717 * The first tail page's ->compound_dtor holds the offset in array of compound 718 * page destructors. See compound_page_dtors. 719 * 720 * The first tail page's ->compound_order holds the order of allocation. 721 * This usage means that zero-order pages may not be compound. 722 */ 723 724 void free_compound_page(struct page *page) 725 { 726 mem_cgroup_uncharge(page_folio(page)); 727 free_the_page(page, compound_order(page)); 728 } 729 730 void prep_compound_page(struct page *page, unsigned int order) 731 { 732 int i; 733 int nr_pages = 1 << order; 734 735 __SetPageHead(page); 736 for (i = 1; i < nr_pages; i++) { 737 struct page *p = page + i; 738 p->mapping = TAIL_MAPPING; 739 set_compound_head(p, page); 740 } 741 742 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 743 set_compound_order(page, order); 744 atomic_set(compound_mapcount_ptr(page), -1); 745 if (hpage_pincount_available(page)) 746 atomic_set(compound_pincount_ptr(page), 0); 747 } 748 749 #ifdef CONFIG_DEBUG_PAGEALLOC 750 unsigned int _debug_guardpage_minorder; 751 752 bool _debug_pagealloc_enabled_early __read_mostly 753 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 754 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 755 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 756 EXPORT_SYMBOL(_debug_pagealloc_enabled); 757 758 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 759 760 static int __init early_debug_pagealloc(char *buf) 761 { 762 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 763 } 764 early_param("debug_pagealloc", early_debug_pagealloc); 765 766 static int __init debug_guardpage_minorder_setup(char *buf) 767 { 768 unsigned long res; 769 770 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 771 pr_err("Bad debug_guardpage_minorder value\n"); 772 return 0; 773 } 774 _debug_guardpage_minorder = res; 775 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 776 return 0; 777 } 778 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 779 780 static inline bool set_page_guard(struct zone *zone, struct page *page, 781 unsigned int order, int migratetype) 782 { 783 if (!debug_guardpage_enabled()) 784 return false; 785 786 if (order >= debug_guardpage_minorder()) 787 return false; 788 789 __SetPageGuard(page); 790 INIT_LIST_HEAD(&page->lru); 791 set_page_private(page, order); 792 /* Guard pages are not available for any usage */ 793 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 794 795 return true; 796 } 797 798 static inline void clear_page_guard(struct zone *zone, struct page *page, 799 unsigned int order, int migratetype) 800 { 801 if (!debug_guardpage_enabled()) 802 return; 803 804 __ClearPageGuard(page); 805 806 set_page_private(page, 0); 807 if (!is_migrate_isolate(migratetype)) 808 __mod_zone_freepage_state(zone, (1 << order), migratetype); 809 } 810 #else 811 static inline bool set_page_guard(struct zone *zone, struct page *page, 812 unsigned int order, int migratetype) { return false; } 813 static inline void clear_page_guard(struct zone *zone, struct page *page, 814 unsigned int order, int migratetype) {} 815 #endif 816 817 /* 818 * Enable static keys related to various memory debugging and hardening options. 819 * Some override others, and depend on early params that are evaluated in the 820 * order of appearance. So we need to first gather the full picture of what was 821 * enabled, and then make decisions. 822 */ 823 void init_mem_debugging_and_hardening(void) 824 { 825 bool page_poisoning_requested = false; 826 827 #ifdef CONFIG_PAGE_POISONING 828 /* 829 * Page poisoning is debug page alloc for some arches. If 830 * either of those options are enabled, enable poisoning. 831 */ 832 if (page_poisoning_enabled() || 833 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 834 debug_pagealloc_enabled())) { 835 static_branch_enable(&_page_poisoning_enabled); 836 page_poisoning_requested = true; 837 } 838 #endif 839 840 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 841 page_poisoning_requested) { 842 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 843 "will take precedence over init_on_alloc and init_on_free\n"); 844 _init_on_alloc_enabled_early = false; 845 _init_on_free_enabled_early = false; 846 } 847 848 if (_init_on_alloc_enabled_early) 849 static_branch_enable(&init_on_alloc); 850 else 851 static_branch_disable(&init_on_alloc); 852 853 if (_init_on_free_enabled_early) 854 static_branch_enable(&init_on_free); 855 else 856 static_branch_disable(&init_on_free); 857 858 #ifdef CONFIG_DEBUG_PAGEALLOC 859 if (!debug_pagealloc_enabled()) 860 return; 861 862 static_branch_enable(&_debug_pagealloc_enabled); 863 864 if (!debug_guardpage_minorder()) 865 return; 866 867 static_branch_enable(&_debug_guardpage_enabled); 868 #endif 869 } 870 871 static inline void set_buddy_order(struct page *page, unsigned int order) 872 { 873 set_page_private(page, order); 874 __SetPageBuddy(page); 875 } 876 877 /* 878 * This function checks whether a page is free && is the buddy 879 * we can coalesce a page and its buddy if 880 * (a) the buddy is not in a hole (check before calling!) && 881 * (b) the buddy is in the buddy system && 882 * (c) a page and its buddy have the same order && 883 * (d) a page and its buddy are in the same zone. 884 * 885 * For recording whether a page is in the buddy system, we set PageBuddy. 886 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 887 * 888 * For recording page's order, we use page_private(page). 889 */ 890 static inline bool page_is_buddy(struct page *page, struct page *buddy, 891 unsigned int order) 892 { 893 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 894 return false; 895 896 if (buddy_order(buddy) != order) 897 return false; 898 899 /* 900 * zone check is done late to avoid uselessly calculating 901 * zone/node ids for pages that could never merge. 902 */ 903 if (page_zone_id(page) != page_zone_id(buddy)) 904 return false; 905 906 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 907 908 return true; 909 } 910 911 #ifdef CONFIG_COMPACTION 912 static inline struct capture_control *task_capc(struct zone *zone) 913 { 914 struct capture_control *capc = current->capture_control; 915 916 return unlikely(capc) && 917 !(current->flags & PF_KTHREAD) && 918 !capc->page && 919 capc->cc->zone == zone ? capc : NULL; 920 } 921 922 static inline bool 923 compaction_capture(struct capture_control *capc, struct page *page, 924 int order, int migratetype) 925 { 926 if (!capc || order != capc->cc->order) 927 return false; 928 929 /* Do not accidentally pollute CMA or isolated regions*/ 930 if (is_migrate_cma(migratetype) || 931 is_migrate_isolate(migratetype)) 932 return false; 933 934 /* 935 * Do not let lower order allocations pollute a movable pageblock. 936 * This might let an unmovable request use a reclaimable pageblock 937 * and vice-versa but no more than normal fallback logic which can 938 * have trouble finding a high-order free page. 939 */ 940 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 941 return false; 942 943 capc->page = page; 944 return true; 945 } 946 947 #else 948 static inline struct capture_control *task_capc(struct zone *zone) 949 { 950 return NULL; 951 } 952 953 static inline bool 954 compaction_capture(struct capture_control *capc, struct page *page, 955 int order, int migratetype) 956 { 957 return false; 958 } 959 #endif /* CONFIG_COMPACTION */ 960 961 /* Used for pages not on another list */ 962 static inline void add_to_free_list(struct page *page, struct zone *zone, 963 unsigned int order, int migratetype) 964 { 965 struct free_area *area = &zone->free_area[order]; 966 967 list_add(&page->lru, &area->free_list[migratetype]); 968 area->nr_free++; 969 } 970 971 /* Used for pages not on another list */ 972 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 973 unsigned int order, int migratetype) 974 { 975 struct free_area *area = &zone->free_area[order]; 976 977 list_add_tail(&page->lru, &area->free_list[migratetype]); 978 area->nr_free++; 979 } 980 981 /* 982 * Used for pages which are on another list. Move the pages to the tail 983 * of the list - so the moved pages won't immediately be considered for 984 * allocation again (e.g., optimization for memory onlining). 985 */ 986 static inline void move_to_free_list(struct page *page, struct zone *zone, 987 unsigned int order, int migratetype) 988 { 989 struct free_area *area = &zone->free_area[order]; 990 991 list_move_tail(&page->lru, &area->free_list[migratetype]); 992 } 993 994 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 995 unsigned int order) 996 { 997 /* clear reported state and update reported page count */ 998 if (page_reported(page)) 999 __ClearPageReported(page); 1000 1001 list_del(&page->lru); 1002 __ClearPageBuddy(page); 1003 set_page_private(page, 0); 1004 zone->free_area[order].nr_free--; 1005 } 1006 1007 /* 1008 * If this is not the largest possible page, check if the buddy 1009 * of the next-highest order is free. If it is, it's possible 1010 * that pages are being freed that will coalesce soon. In case, 1011 * that is happening, add the free page to the tail of the list 1012 * so it's less likely to be used soon and more likely to be merged 1013 * as a higher order page 1014 */ 1015 static inline bool 1016 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1017 struct page *page, unsigned int order) 1018 { 1019 struct page *higher_page, *higher_buddy; 1020 unsigned long combined_pfn; 1021 1022 if (order >= MAX_ORDER - 2) 1023 return false; 1024 1025 combined_pfn = buddy_pfn & pfn; 1026 higher_page = page + (combined_pfn - pfn); 1027 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 1028 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 1029 1030 return page_is_buddy(higher_page, higher_buddy, order + 1); 1031 } 1032 1033 /* 1034 * Freeing function for a buddy system allocator. 1035 * 1036 * The concept of a buddy system is to maintain direct-mapped table 1037 * (containing bit values) for memory blocks of various "orders". 1038 * The bottom level table contains the map for the smallest allocatable 1039 * units of memory (here, pages), and each level above it describes 1040 * pairs of units from the levels below, hence, "buddies". 1041 * At a high level, all that happens here is marking the table entry 1042 * at the bottom level available, and propagating the changes upward 1043 * as necessary, plus some accounting needed to play nicely with other 1044 * parts of the VM system. 1045 * At each level, we keep a list of pages, which are heads of continuous 1046 * free pages of length of (1 << order) and marked with PageBuddy. 1047 * Page's order is recorded in page_private(page) field. 1048 * So when we are allocating or freeing one, we can derive the state of the 1049 * other. That is, if we allocate a small block, and both were 1050 * free, the remainder of the region must be split into blocks. 1051 * If a block is freed, and its buddy is also free, then this 1052 * triggers coalescing into a block of larger size. 1053 * 1054 * -- nyc 1055 */ 1056 1057 static inline void __free_one_page(struct page *page, 1058 unsigned long pfn, 1059 struct zone *zone, unsigned int order, 1060 int migratetype, fpi_t fpi_flags) 1061 { 1062 struct capture_control *capc = task_capc(zone); 1063 unsigned long buddy_pfn; 1064 unsigned long combined_pfn; 1065 unsigned int max_order; 1066 struct page *buddy; 1067 bool to_tail; 1068 1069 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1070 1071 VM_BUG_ON(!zone_is_initialized(zone)); 1072 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1073 1074 VM_BUG_ON(migratetype == -1); 1075 if (likely(!is_migrate_isolate(migratetype))) 1076 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1077 1078 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1079 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1080 1081 continue_merging: 1082 while (order < max_order) { 1083 if (compaction_capture(capc, page, order, migratetype)) { 1084 __mod_zone_freepage_state(zone, -(1 << order), 1085 migratetype); 1086 return; 1087 } 1088 buddy_pfn = __find_buddy_pfn(pfn, order); 1089 buddy = page + (buddy_pfn - pfn); 1090 1091 if (!page_is_buddy(page, buddy, order)) 1092 goto done_merging; 1093 /* 1094 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1095 * merge with it and move up one order. 1096 */ 1097 if (page_is_guard(buddy)) 1098 clear_page_guard(zone, buddy, order, migratetype); 1099 else 1100 del_page_from_free_list(buddy, zone, order); 1101 combined_pfn = buddy_pfn & pfn; 1102 page = page + (combined_pfn - pfn); 1103 pfn = combined_pfn; 1104 order++; 1105 } 1106 if (order < MAX_ORDER - 1) { 1107 /* If we are here, it means order is >= pageblock_order. 1108 * We want to prevent merge between freepages on isolate 1109 * pageblock and normal pageblock. Without this, pageblock 1110 * isolation could cause incorrect freepage or CMA accounting. 1111 * 1112 * We don't want to hit this code for the more frequent 1113 * low-order merging. 1114 */ 1115 if (unlikely(has_isolate_pageblock(zone))) { 1116 int buddy_mt; 1117 1118 buddy_pfn = __find_buddy_pfn(pfn, order); 1119 buddy = page + (buddy_pfn - pfn); 1120 buddy_mt = get_pageblock_migratetype(buddy); 1121 1122 if (migratetype != buddy_mt 1123 && (is_migrate_isolate(migratetype) || 1124 is_migrate_isolate(buddy_mt))) 1125 goto done_merging; 1126 } 1127 max_order = order + 1; 1128 goto continue_merging; 1129 } 1130 1131 done_merging: 1132 set_buddy_order(page, order); 1133 1134 if (fpi_flags & FPI_TO_TAIL) 1135 to_tail = true; 1136 else if (is_shuffle_order(order)) 1137 to_tail = shuffle_pick_tail(); 1138 else 1139 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1140 1141 if (to_tail) 1142 add_to_free_list_tail(page, zone, order, migratetype); 1143 else 1144 add_to_free_list(page, zone, order, migratetype); 1145 1146 /* Notify page reporting subsystem of freed page */ 1147 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1148 page_reporting_notify_free(order); 1149 } 1150 1151 /* 1152 * A bad page could be due to a number of fields. Instead of multiple branches, 1153 * try and check multiple fields with one check. The caller must do a detailed 1154 * check if necessary. 1155 */ 1156 static inline bool page_expected_state(struct page *page, 1157 unsigned long check_flags) 1158 { 1159 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1160 return false; 1161 1162 if (unlikely((unsigned long)page->mapping | 1163 page_ref_count(page) | 1164 #ifdef CONFIG_MEMCG 1165 page->memcg_data | 1166 #endif 1167 (page->flags & check_flags))) 1168 return false; 1169 1170 return true; 1171 } 1172 1173 static const char *page_bad_reason(struct page *page, unsigned long flags) 1174 { 1175 const char *bad_reason = NULL; 1176 1177 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1178 bad_reason = "nonzero mapcount"; 1179 if (unlikely(page->mapping != NULL)) 1180 bad_reason = "non-NULL mapping"; 1181 if (unlikely(page_ref_count(page) != 0)) 1182 bad_reason = "nonzero _refcount"; 1183 if (unlikely(page->flags & flags)) { 1184 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1185 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1186 else 1187 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1188 } 1189 #ifdef CONFIG_MEMCG 1190 if (unlikely(page->memcg_data)) 1191 bad_reason = "page still charged to cgroup"; 1192 #endif 1193 return bad_reason; 1194 } 1195 1196 static void check_free_page_bad(struct page *page) 1197 { 1198 bad_page(page, 1199 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1200 } 1201 1202 static inline int check_free_page(struct page *page) 1203 { 1204 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1205 return 0; 1206 1207 /* Something has gone sideways, find it */ 1208 check_free_page_bad(page); 1209 return 1; 1210 } 1211 1212 static int free_tail_pages_check(struct page *head_page, struct page *page) 1213 { 1214 int ret = 1; 1215 1216 /* 1217 * We rely page->lru.next never has bit 0 set, unless the page 1218 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1219 */ 1220 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1221 1222 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1223 ret = 0; 1224 goto out; 1225 } 1226 switch (page - head_page) { 1227 case 1: 1228 /* the first tail page: ->mapping may be compound_mapcount() */ 1229 if (unlikely(compound_mapcount(page))) { 1230 bad_page(page, "nonzero compound_mapcount"); 1231 goto out; 1232 } 1233 break; 1234 case 2: 1235 /* 1236 * the second tail page: ->mapping is 1237 * deferred_list.next -- ignore value. 1238 */ 1239 break; 1240 default: 1241 if (page->mapping != TAIL_MAPPING) { 1242 bad_page(page, "corrupted mapping in tail page"); 1243 goto out; 1244 } 1245 break; 1246 } 1247 if (unlikely(!PageTail(page))) { 1248 bad_page(page, "PageTail not set"); 1249 goto out; 1250 } 1251 if (unlikely(compound_head(page) != head_page)) { 1252 bad_page(page, "compound_head not consistent"); 1253 goto out; 1254 } 1255 ret = 0; 1256 out: 1257 page->mapping = NULL; 1258 clear_compound_head(page); 1259 return ret; 1260 } 1261 1262 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags) 1263 { 1264 int i; 1265 1266 if (zero_tags) { 1267 for (i = 0; i < numpages; i++) 1268 tag_clear_highpage(page + i); 1269 return; 1270 } 1271 1272 /* s390's use of memset() could override KASAN redzones. */ 1273 kasan_disable_current(); 1274 for (i = 0; i < numpages; i++) { 1275 u8 tag = page_kasan_tag(page + i); 1276 page_kasan_tag_reset(page + i); 1277 clear_highpage(page + i); 1278 page_kasan_tag_set(page + i, tag); 1279 } 1280 kasan_enable_current(); 1281 } 1282 1283 static __always_inline bool free_pages_prepare(struct page *page, 1284 unsigned int order, bool check_free, fpi_t fpi_flags) 1285 { 1286 int bad = 0; 1287 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1288 1289 VM_BUG_ON_PAGE(PageTail(page), page); 1290 1291 trace_mm_page_free(page, order); 1292 1293 if (unlikely(PageHWPoison(page)) && !order) { 1294 /* 1295 * Do not let hwpoison pages hit pcplists/buddy 1296 * Untie memcg state and reset page's owner 1297 */ 1298 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1299 __memcg_kmem_uncharge_page(page, order); 1300 reset_page_owner(page, order); 1301 return false; 1302 } 1303 1304 /* 1305 * Check tail pages before head page information is cleared to 1306 * avoid checking PageCompound for order-0 pages. 1307 */ 1308 if (unlikely(order)) { 1309 bool compound = PageCompound(page); 1310 int i; 1311 1312 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1313 1314 if (compound) { 1315 ClearPageDoubleMap(page); 1316 ClearPageHasHWPoisoned(page); 1317 } 1318 for (i = 1; i < (1 << order); i++) { 1319 if (compound) 1320 bad += free_tail_pages_check(page, page + i); 1321 if (unlikely(check_free_page(page + i))) { 1322 bad++; 1323 continue; 1324 } 1325 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1326 } 1327 } 1328 if (PageMappingFlags(page)) 1329 page->mapping = NULL; 1330 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1331 __memcg_kmem_uncharge_page(page, order); 1332 if (check_free) 1333 bad += check_free_page(page); 1334 if (bad) 1335 return false; 1336 1337 page_cpupid_reset_last(page); 1338 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1339 reset_page_owner(page, order); 1340 1341 if (!PageHighMem(page)) { 1342 debug_check_no_locks_freed(page_address(page), 1343 PAGE_SIZE << order); 1344 debug_check_no_obj_freed(page_address(page), 1345 PAGE_SIZE << order); 1346 } 1347 1348 kernel_poison_pages(page, 1 << order); 1349 1350 /* 1351 * As memory initialization might be integrated into KASAN, 1352 * kasan_free_pages and kernel_init_free_pages must be 1353 * kept together to avoid discrepancies in behavior. 1354 * 1355 * With hardware tag-based KASAN, memory tags must be set before the 1356 * page becomes unavailable via debug_pagealloc or arch_free_page. 1357 */ 1358 if (kasan_has_integrated_init()) { 1359 if (!skip_kasan_poison) 1360 kasan_free_pages(page, order); 1361 } else { 1362 bool init = want_init_on_free(); 1363 1364 if (init) 1365 kernel_init_free_pages(page, 1 << order, false); 1366 if (!skip_kasan_poison) 1367 kasan_poison_pages(page, order, init); 1368 } 1369 1370 /* 1371 * arch_free_page() can make the page's contents inaccessible. s390 1372 * does this. So nothing which can access the page's contents should 1373 * happen after this. 1374 */ 1375 arch_free_page(page, order); 1376 1377 debug_pagealloc_unmap_pages(page, 1 << order); 1378 1379 return true; 1380 } 1381 1382 #ifdef CONFIG_DEBUG_VM 1383 /* 1384 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1385 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1386 * moved from pcp lists to free lists. 1387 */ 1388 static bool free_pcp_prepare(struct page *page, unsigned int order) 1389 { 1390 return free_pages_prepare(page, order, true, FPI_NONE); 1391 } 1392 1393 static bool bulkfree_pcp_prepare(struct page *page) 1394 { 1395 if (debug_pagealloc_enabled_static()) 1396 return check_free_page(page); 1397 else 1398 return false; 1399 } 1400 #else 1401 /* 1402 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1403 * moving from pcp lists to free list in order to reduce overhead. With 1404 * debug_pagealloc enabled, they are checked also immediately when being freed 1405 * to the pcp lists. 1406 */ 1407 static bool free_pcp_prepare(struct page *page, unsigned int order) 1408 { 1409 if (debug_pagealloc_enabled_static()) 1410 return free_pages_prepare(page, order, true, FPI_NONE); 1411 else 1412 return free_pages_prepare(page, order, false, FPI_NONE); 1413 } 1414 1415 static bool bulkfree_pcp_prepare(struct page *page) 1416 { 1417 return check_free_page(page); 1418 } 1419 #endif /* CONFIG_DEBUG_VM */ 1420 1421 static inline void prefetch_buddy(struct page *page) 1422 { 1423 unsigned long pfn = page_to_pfn(page); 1424 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1425 struct page *buddy = page + (buddy_pfn - pfn); 1426 1427 prefetch(buddy); 1428 } 1429 1430 /* 1431 * Frees a number of pages from the PCP lists 1432 * Assumes all pages on list are in same zone. 1433 * count is the number of pages to free. 1434 */ 1435 static void free_pcppages_bulk(struct zone *zone, int count, 1436 struct per_cpu_pages *pcp) 1437 { 1438 int pindex = 0; 1439 int batch_free = 0; 1440 int nr_freed = 0; 1441 unsigned int order; 1442 int prefetch_nr = READ_ONCE(pcp->batch); 1443 bool isolated_pageblocks; 1444 struct page *page, *tmp; 1445 LIST_HEAD(head); 1446 1447 /* 1448 * Ensure proper count is passed which otherwise would stuck in the 1449 * below while (list_empty(list)) loop. 1450 */ 1451 count = min(pcp->count, count); 1452 while (count > 0) { 1453 struct list_head *list; 1454 1455 /* 1456 * Remove pages from lists in a round-robin fashion. A 1457 * batch_free count is maintained that is incremented when an 1458 * empty list is encountered. This is so more pages are freed 1459 * off fuller lists instead of spinning excessively around empty 1460 * lists 1461 */ 1462 do { 1463 batch_free++; 1464 if (++pindex == NR_PCP_LISTS) 1465 pindex = 0; 1466 list = &pcp->lists[pindex]; 1467 } while (list_empty(list)); 1468 1469 /* This is the only non-empty list. Free them all. */ 1470 if (batch_free == NR_PCP_LISTS) 1471 batch_free = count; 1472 1473 order = pindex_to_order(pindex); 1474 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1475 do { 1476 page = list_last_entry(list, struct page, lru); 1477 /* must delete to avoid corrupting pcp list */ 1478 list_del(&page->lru); 1479 nr_freed += 1 << order; 1480 count -= 1 << order; 1481 1482 if (bulkfree_pcp_prepare(page)) 1483 continue; 1484 1485 /* Encode order with the migratetype */ 1486 page->index <<= NR_PCP_ORDER_WIDTH; 1487 page->index |= order; 1488 1489 list_add_tail(&page->lru, &head); 1490 1491 /* 1492 * We are going to put the page back to the global 1493 * pool, prefetch its buddy to speed up later access 1494 * under zone->lock. It is believed the overhead of 1495 * an additional test and calculating buddy_pfn here 1496 * can be offset by reduced memory latency later. To 1497 * avoid excessive prefetching due to large count, only 1498 * prefetch buddy for the first pcp->batch nr of pages. 1499 */ 1500 if (prefetch_nr) { 1501 prefetch_buddy(page); 1502 prefetch_nr--; 1503 } 1504 } while (count > 0 && --batch_free && !list_empty(list)); 1505 } 1506 pcp->count -= nr_freed; 1507 1508 /* 1509 * local_lock_irq held so equivalent to spin_lock_irqsave for 1510 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1511 */ 1512 spin_lock(&zone->lock); 1513 isolated_pageblocks = has_isolate_pageblock(zone); 1514 1515 /* 1516 * Use safe version since after __free_one_page(), 1517 * page->lru.next will not point to original list. 1518 */ 1519 list_for_each_entry_safe(page, tmp, &head, lru) { 1520 int mt = get_pcppage_migratetype(page); 1521 1522 /* mt has been encoded with the order (see above) */ 1523 order = mt & NR_PCP_ORDER_MASK; 1524 mt >>= NR_PCP_ORDER_WIDTH; 1525 1526 /* MIGRATE_ISOLATE page should not go to pcplists */ 1527 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1528 /* Pageblock could have been isolated meanwhile */ 1529 if (unlikely(isolated_pageblocks)) 1530 mt = get_pageblock_migratetype(page); 1531 1532 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1533 trace_mm_page_pcpu_drain(page, order, mt); 1534 } 1535 spin_unlock(&zone->lock); 1536 } 1537 1538 static void free_one_page(struct zone *zone, 1539 struct page *page, unsigned long pfn, 1540 unsigned int order, 1541 int migratetype, fpi_t fpi_flags) 1542 { 1543 unsigned long flags; 1544 1545 spin_lock_irqsave(&zone->lock, flags); 1546 if (unlikely(has_isolate_pageblock(zone) || 1547 is_migrate_isolate(migratetype))) { 1548 migratetype = get_pfnblock_migratetype(page, pfn); 1549 } 1550 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1551 spin_unlock_irqrestore(&zone->lock, flags); 1552 } 1553 1554 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1555 unsigned long zone, int nid) 1556 { 1557 mm_zero_struct_page(page); 1558 set_page_links(page, zone, nid, pfn); 1559 init_page_count(page); 1560 page_mapcount_reset(page); 1561 page_cpupid_reset_last(page); 1562 page_kasan_tag_reset(page); 1563 1564 INIT_LIST_HEAD(&page->lru); 1565 #ifdef WANT_PAGE_VIRTUAL 1566 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1567 if (!is_highmem_idx(zone)) 1568 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1569 #endif 1570 } 1571 1572 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1573 static void __meminit init_reserved_page(unsigned long pfn) 1574 { 1575 pg_data_t *pgdat; 1576 int nid, zid; 1577 1578 if (!early_page_uninitialised(pfn)) 1579 return; 1580 1581 nid = early_pfn_to_nid(pfn); 1582 pgdat = NODE_DATA(nid); 1583 1584 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1585 struct zone *zone = &pgdat->node_zones[zid]; 1586 1587 if (zone_spans_pfn(zone, pfn)) 1588 break; 1589 } 1590 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1591 } 1592 #else 1593 static inline void init_reserved_page(unsigned long pfn) 1594 { 1595 } 1596 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1597 1598 /* 1599 * Initialised pages do not have PageReserved set. This function is 1600 * called for each range allocated by the bootmem allocator and 1601 * marks the pages PageReserved. The remaining valid pages are later 1602 * sent to the buddy page allocator. 1603 */ 1604 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1605 { 1606 unsigned long start_pfn = PFN_DOWN(start); 1607 unsigned long end_pfn = PFN_UP(end); 1608 1609 for (; start_pfn < end_pfn; start_pfn++) { 1610 if (pfn_valid(start_pfn)) { 1611 struct page *page = pfn_to_page(start_pfn); 1612 1613 init_reserved_page(start_pfn); 1614 1615 /* Avoid false-positive PageTail() */ 1616 INIT_LIST_HEAD(&page->lru); 1617 1618 /* 1619 * no need for atomic set_bit because the struct 1620 * page is not visible yet so nobody should 1621 * access it yet. 1622 */ 1623 __SetPageReserved(page); 1624 } 1625 } 1626 } 1627 1628 static void __free_pages_ok(struct page *page, unsigned int order, 1629 fpi_t fpi_flags) 1630 { 1631 unsigned long flags; 1632 int migratetype; 1633 unsigned long pfn = page_to_pfn(page); 1634 struct zone *zone = page_zone(page); 1635 1636 if (!free_pages_prepare(page, order, true, fpi_flags)) 1637 return; 1638 1639 migratetype = get_pfnblock_migratetype(page, pfn); 1640 1641 spin_lock_irqsave(&zone->lock, flags); 1642 if (unlikely(has_isolate_pageblock(zone) || 1643 is_migrate_isolate(migratetype))) { 1644 migratetype = get_pfnblock_migratetype(page, pfn); 1645 } 1646 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1647 spin_unlock_irqrestore(&zone->lock, flags); 1648 1649 __count_vm_events(PGFREE, 1 << order); 1650 } 1651 1652 void __free_pages_core(struct page *page, unsigned int order) 1653 { 1654 unsigned int nr_pages = 1 << order; 1655 struct page *p = page; 1656 unsigned int loop; 1657 1658 /* 1659 * When initializing the memmap, __init_single_page() sets the refcount 1660 * of all pages to 1 ("allocated"/"not free"). We have to set the 1661 * refcount of all involved pages to 0. 1662 */ 1663 prefetchw(p); 1664 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1665 prefetchw(p + 1); 1666 __ClearPageReserved(p); 1667 set_page_count(p, 0); 1668 } 1669 __ClearPageReserved(p); 1670 set_page_count(p, 0); 1671 1672 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1673 1674 /* 1675 * Bypass PCP and place fresh pages right to the tail, primarily 1676 * relevant for memory onlining. 1677 */ 1678 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1679 } 1680 1681 #ifdef CONFIG_NUMA 1682 1683 /* 1684 * During memory init memblocks map pfns to nids. The search is expensive and 1685 * this caches recent lookups. The implementation of __early_pfn_to_nid 1686 * treats start/end as pfns. 1687 */ 1688 struct mminit_pfnnid_cache { 1689 unsigned long last_start; 1690 unsigned long last_end; 1691 int last_nid; 1692 }; 1693 1694 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1695 1696 /* 1697 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1698 */ 1699 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1700 struct mminit_pfnnid_cache *state) 1701 { 1702 unsigned long start_pfn, end_pfn; 1703 int nid; 1704 1705 if (state->last_start <= pfn && pfn < state->last_end) 1706 return state->last_nid; 1707 1708 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1709 if (nid != NUMA_NO_NODE) { 1710 state->last_start = start_pfn; 1711 state->last_end = end_pfn; 1712 state->last_nid = nid; 1713 } 1714 1715 return nid; 1716 } 1717 1718 int __meminit early_pfn_to_nid(unsigned long pfn) 1719 { 1720 static DEFINE_SPINLOCK(early_pfn_lock); 1721 int nid; 1722 1723 spin_lock(&early_pfn_lock); 1724 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1725 if (nid < 0) 1726 nid = first_online_node; 1727 spin_unlock(&early_pfn_lock); 1728 1729 return nid; 1730 } 1731 #endif /* CONFIG_NUMA */ 1732 1733 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1734 unsigned int order) 1735 { 1736 if (early_page_uninitialised(pfn)) 1737 return; 1738 __free_pages_core(page, order); 1739 } 1740 1741 /* 1742 * Check that the whole (or subset of) a pageblock given by the interval of 1743 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1744 * with the migration of free compaction scanner. 1745 * 1746 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1747 * 1748 * It's possible on some configurations to have a setup like node0 node1 node0 1749 * i.e. it's possible that all pages within a zones range of pages do not 1750 * belong to a single zone. We assume that a border between node0 and node1 1751 * can occur within a single pageblock, but not a node0 node1 node0 1752 * interleaving within a single pageblock. It is therefore sufficient to check 1753 * the first and last page of a pageblock and avoid checking each individual 1754 * page in a pageblock. 1755 */ 1756 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1757 unsigned long end_pfn, struct zone *zone) 1758 { 1759 struct page *start_page; 1760 struct page *end_page; 1761 1762 /* end_pfn is one past the range we are checking */ 1763 end_pfn--; 1764 1765 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1766 return NULL; 1767 1768 start_page = pfn_to_online_page(start_pfn); 1769 if (!start_page) 1770 return NULL; 1771 1772 if (page_zone(start_page) != zone) 1773 return NULL; 1774 1775 end_page = pfn_to_page(end_pfn); 1776 1777 /* This gives a shorter code than deriving page_zone(end_page) */ 1778 if (page_zone_id(start_page) != page_zone_id(end_page)) 1779 return NULL; 1780 1781 return start_page; 1782 } 1783 1784 void set_zone_contiguous(struct zone *zone) 1785 { 1786 unsigned long block_start_pfn = zone->zone_start_pfn; 1787 unsigned long block_end_pfn; 1788 1789 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1790 for (; block_start_pfn < zone_end_pfn(zone); 1791 block_start_pfn = block_end_pfn, 1792 block_end_pfn += pageblock_nr_pages) { 1793 1794 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1795 1796 if (!__pageblock_pfn_to_page(block_start_pfn, 1797 block_end_pfn, zone)) 1798 return; 1799 cond_resched(); 1800 } 1801 1802 /* We confirm that there is no hole */ 1803 zone->contiguous = true; 1804 } 1805 1806 void clear_zone_contiguous(struct zone *zone) 1807 { 1808 zone->contiguous = false; 1809 } 1810 1811 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1812 static void __init deferred_free_range(unsigned long pfn, 1813 unsigned long nr_pages) 1814 { 1815 struct page *page; 1816 unsigned long i; 1817 1818 if (!nr_pages) 1819 return; 1820 1821 page = pfn_to_page(pfn); 1822 1823 /* Free a large naturally-aligned chunk if possible */ 1824 if (nr_pages == pageblock_nr_pages && 1825 (pfn & (pageblock_nr_pages - 1)) == 0) { 1826 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1827 __free_pages_core(page, pageblock_order); 1828 return; 1829 } 1830 1831 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1832 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1833 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1834 __free_pages_core(page, 0); 1835 } 1836 } 1837 1838 /* Completion tracking for deferred_init_memmap() threads */ 1839 static atomic_t pgdat_init_n_undone __initdata; 1840 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1841 1842 static inline void __init pgdat_init_report_one_done(void) 1843 { 1844 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1845 complete(&pgdat_init_all_done_comp); 1846 } 1847 1848 /* 1849 * Returns true if page needs to be initialized or freed to buddy allocator. 1850 * 1851 * First we check if pfn is valid on architectures where it is possible to have 1852 * holes within pageblock_nr_pages. On systems where it is not possible, this 1853 * function is optimized out. 1854 * 1855 * Then, we check if a current large page is valid by only checking the validity 1856 * of the head pfn. 1857 */ 1858 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1859 { 1860 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1861 return false; 1862 return true; 1863 } 1864 1865 /* 1866 * Free pages to buddy allocator. Try to free aligned pages in 1867 * pageblock_nr_pages sizes. 1868 */ 1869 static void __init deferred_free_pages(unsigned long pfn, 1870 unsigned long end_pfn) 1871 { 1872 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1873 unsigned long nr_free = 0; 1874 1875 for (; pfn < end_pfn; pfn++) { 1876 if (!deferred_pfn_valid(pfn)) { 1877 deferred_free_range(pfn - nr_free, nr_free); 1878 nr_free = 0; 1879 } else if (!(pfn & nr_pgmask)) { 1880 deferred_free_range(pfn - nr_free, nr_free); 1881 nr_free = 1; 1882 } else { 1883 nr_free++; 1884 } 1885 } 1886 /* Free the last block of pages to allocator */ 1887 deferred_free_range(pfn - nr_free, nr_free); 1888 } 1889 1890 /* 1891 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1892 * by performing it only once every pageblock_nr_pages. 1893 * Return number of pages initialized. 1894 */ 1895 static unsigned long __init deferred_init_pages(struct zone *zone, 1896 unsigned long pfn, 1897 unsigned long end_pfn) 1898 { 1899 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1900 int nid = zone_to_nid(zone); 1901 unsigned long nr_pages = 0; 1902 int zid = zone_idx(zone); 1903 struct page *page = NULL; 1904 1905 for (; pfn < end_pfn; pfn++) { 1906 if (!deferred_pfn_valid(pfn)) { 1907 page = NULL; 1908 continue; 1909 } else if (!page || !(pfn & nr_pgmask)) { 1910 page = pfn_to_page(pfn); 1911 } else { 1912 page++; 1913 } 1914 __init_single_page(page, pfn, zid, nid); 1915 nr_pages++; 1916 } 1917 return (nr_pages); 1918 } 1919 1920 /* 1921 * This function is meant to pre-load the iterator for the zone init. 1922 * Specifically it walks through the ranges until we are caught up to the 1923 * first_init_pfn value and exits there. If we never encounter the value we 1924 * return false indicating there are no valid ranges left. 1925 */ 1926 static bool __init 1927 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1928 unsigned long *spfn, unsigned long *epfn, 1929 unsigned long first_init_pfn) 1930 { 1931 u64 j; 1932 1933 /* 1934 * Start out by walking through the ranges in this zone that have 1935 * already been initialized. We don't need to do anything with them 1936 * so we just need to flush them out of the system. 1937 */ 1938 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1939 if (*epfn <= first_init_pfn) 1940 continue; 1941 if (*spfn < first_init_pfn) 1942 *spfn = first_init_pfn; 1943 *i = j; 1944 return true; 1945 } 1946 1947 return false; 1948 } 1949 1950 /* 1951 * Initialize and free pages. We do it in two loops: first we initialize 1952 * struct page, then free to buddy allocator, because while we are 1953 * freeing pages we can access pages that are ahead (computing buddy 1954 * page in __free_one_page()). 1955 * 1956 * In order to try and keep some memory in the cache we have the loop 1957 * broken along max page order boundaries. This way we will not cause 1958 * any issues with the buddy page computation. 1959 */ 1960 static unsigned long __init 1961 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1962 unsigned long *end_pfn) 1963 { 1964 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1965 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1966 unsigned long nr_pages = 0; 1967 u64 j = *i; 1968 1969 /* First we loop through and initialize the page values */ 1970 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1971 unsigned long t; 1972 1973 if (mo_pfn <= *start_pfn) 1974 break; 1975 1976 t = min(mo_pfn, *end_pfn); 1977 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1978 1979 if (mo_pfn < *end_pfn) { 1980 *start_pfn = mo_pfn; 1981 break; 1982 } 1983 } 1984 1985 /* Reset values and now loop through freeing pages as needed */ 1986 swap(j, *i); 1987 1988 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1989 unsigned long t; 1990 1991 if (mo_pfn <= spfn) 1992 break; 1993 1994 t = min(mo_pfn, epfn); 1995 deferred_free_pages(spfn, t); 1996 1997 if (mo_pfn <= epfn) 1998 break; 1999 } 2000 2001 return nr_pages; 2002 } 2003 2004 static void __init 2005 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2006 void *arg) 2007 { 2008 unsigned long spfn, epfn; 2009 struct zone *zone = arg; 2010 u64 i; 2011 2012 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2013 2014 /* 2015 * Initialize and free pages in MAX_ORDER sized increments so that we 2016 * can avoid introducing any issues with the buddy allocator. 2017 */ 2018 while (spfn < end_pfn) { 2019 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2020 cond_resched(); 2021 } 2022 } 2023 2024 /* An arch may override for more concurrency. */ 2025 __weak int __init 2026 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2027 { 2028 return 1; 2029 } 2030 2031 /* Initialise remaining memory on a node */ 2032 static int __init deferred_init_memmap(void *data) 2033 { 2034 pg_data_t *pgdat = data; 2035 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2036 unsigned long spfn = 0, epfn = 0; 2037 unsigned long first_init_pfn, flags; 2038 unsigned long start = jiffies; 2039 struct zone *zone; 2040 int zid, max_threads; 2041 u64 i; 2042 2043 /* Bind memory initialisation thread to a local node if possible */ 2044 if (!cpumask_empty(cpumask)) 2045 set_cpus_allowed_ptr(current, cpumask); 2046 2047 pgdat_resize_lock(pgdat, &flags); 2048 first_init_pfn = pgdat->first_deferred_pfn; 2049 if (first_init_pfn == ULONG_MAX) { 2050 pgdat_resize_unlock(pgdat, &flags); 2051 pgdat_init_report_one_done(); 2052 return 0; 2053 } 2054 2055 /* Sanity check boundaries */ 2056 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2057 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2058 pgdat->first_deferred_pfn = ULONG_MAX; 2059 2060 /* 2061 * Once we unlock here, the zone cannot be grown anymore, thus if an 2062 * interrupt thread must allocate this early in boot, zone must be 2063 * pre-grown prior to start of deferred page initialization. 2064 */ 2065 pgdat_resize_unlock(pgdat, &flags); 2066 2067 /* Only the highest zone is deferred so find it */ 2068 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2069 zone = pgdat->node_zones + zid; 2070 if (first_init_pfn < zone_end_pfn(zone)) 2071 break; 2072 } 2073 2074 /* If the zone is empty somebody else may have cleared out the zone */ 2075 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2076 first_init_pfn)) 2077 goto zone_empty; 2078 2079 max_threads = deferred_page_init_max_threads(cpumask); 2080 2081 while (spfn < epfn) { 2082 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2083 struct padata_mt_job job = { 2084 .thread_fn = deferred_init_memmap_chunk, 2085 .fn_arg = zone, 2086 .start = spfn, 2087 .size = epfn_align - spfn, 2088 .align = PAGES_PER_SECTION, 2089 .min_chunk = PAGES_PER_SECTION, 2090 .max_threads = max_threads, 2091 }; 2092 2093 padata_do_multithreaded(&job); 2094 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2095 epfn_align); 2096 } 2097 zone_empty: 2098 /* Sanity check that the next zone really is unpopulated */ 2099 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2100 2101 pr_info("node %d deferred pages initialised in %ums\n", 2102 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2103 2104 pgdat_init_report_one_done(); 2105 return 0; 2106 } 2107 2108 /* 2109 * If this zone has deferred pages, try to grow it by initializing enough 2110 * deferred pages to satisfy the allocation specified by order, rounded up to 2111 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2112 * of SECTION_SIZE bytes by initializing struct pages in increments of 2113 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2114 * 2115 * Return true when zone was grown, otherwise return false. We return true even 2116 * when we grow less than requested, to let the caller decide if there are 2117 * enough pages to satisfy the allocation. 2118 * 2119 * Note: We use noinline because this function is needed only during boot, and 2120 * it is called from a __ref function _deferred_grow_zone. This way we are 2121 * making sure that it is not inlined into permanent text section. 2122 */ 2123 static noinline bool __init 2124 deferred_grow_zone(struct zone *zone, unsigned int order) 2125 { 2126 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2127 pg_data_t *pgdat = zone->zone_pgdat; 2128 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2129 unsigned long spfn, epfn, flags; 2130 unsigned long nr_pages = 0; 2131 u64 i; 2132 2133 /* Only the last zone may have deferred pages */ 2134 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2135 return false; 2136 2137 pgdat_resize_lock(pgdat, &flags); 2138 2139 /* 2140 * If someone grew this zone while we were waiting for spinlock, return 2141 * true, as there might be enough pages already. 2142 */ 2143 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2144 pgdat_resize_unlock(pgdat, &flags); 2145 return true; 2146 } 2147 2148 /* If the zone is empty somebody else may have cleared out the zone */ 2149 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2150 first_deferred_pfn)) { 2151 pgdat->first_deferred_pfn = ULONG_MAX; 2152 pgdat_resize_unlock(pgdat, &flags); 2153 /* Retry only once. */ 2154 return first_deferred_pfn != ULONG_MAX; 2155 } 2156 2157 /* 2158 * Initialize and free pages in MAX_ORDER sized increments so 2159 * that we can avoid introducing any issues with the buddy 2160 * allocator. 2161 */ 2162 while (spfn < epfn) { 2163 /* update our first deferred PFN for this section */ 2164 first_deferred_pfn = spfn; 2165 2166 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2167 touch_nmi_watchdog(); 2168 2169 /* We should only stop along section boundaries */ 2170 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2171 continue; 2172 2173 /* If our quota has been met we can stop here */ 2174 if (nr_pages >= nr_pages_needed) 2175 break; 2176 } 2177 2178 pgdat->first_deferred_pfn = spfn; 2179 pgdat_resize_unlock(pgdat, &flags); 2180 2181 return nr_pages > 0; 2182 } 2183 2184 /* 2185 * deferred_grow_zone() is __init, but it is called from 2186 * get_page_from_freelist() during early boot until deferred_pages permanently 2187 * disables this call. This is why we have refdata wrapper to avoid warning, 2188 * and to ensure that the function body gets unloaded. 2189 */ 2190 static bool __ref 2191 _deferred_grow_zone(struct zone *zone, unsigned int order) 2192 { 2193 return deferred_grow_zone(zone, order); 2194 } 2195 2196 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2197 2198 void __init page_alloc_init_late(void) 2199 { 2200 struct zone *zone; 2201 int nid; 2202 2203 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2204 2205 /* There will be num_node_state(N_MEMORY) threads */ 2206 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2207 for_each_node_state(nid, N_MEMORY) { 2208 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2209 } 2210 2211 /* Block until all are initialised */ 2212 wait_for_completion(&pgdat_init_all_done_comp); 2213 2214 /* 2215 * We initialized the rest of the deferred pages. Permanently disable 2216 * on-demand struct page initialization. 2217 */ 2218 static_branch_disable(&deferred_pages); 2219 2220 /* Reinit limits that are based on free pages after the kernel is up */ 2221 files_maxfiles_init(); 2222 #endif 2223 2224 buffer_init(); 2225 2226 /* Discard memblock private memory */ 2227 memblock_discard(); 2228 2229 for_each_node_state(nid, N_MEMORY) 2230 shuffle_free_memory(NODE_DATA(nid)); 2231 2232 for_each_populated_zone(zone) 2233 set_zone_contiguous(zone); 2234 } 2235 2236 #ifdef CONFIG_CMA 2237 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2238 void __init init_cma_reserved_pageblock(struct page *page) 2239 { 2240 unsigned i = pageblock_nr_pages; 2241 struct page *p = page; 2242 2243 do { 2244 __ClearPageReserved(p); 2245 set_page_count(p, 0); 2246 } while (++p, --i); 2247 2248 set_pageblock_migratetype(page, MIGRATE_CMA); 2249 2250 if (pageblock_order >= MAX_ORDER) { 2251 i = pageblock_nr_pages; 2252 p = page; 2253 do { 2254 set_page_refcounted(p); 2255 __free_pages(p, MAX_ORDER - 1); 2256 p += MAX_ORDER_NR_PAGES; 2257 } while (i -= MAX_ORDER_NR_PAGES); 2258 } else { 2259 set_page_refcounted(page); 2260 __free_pages(page, pageblock_order); 2261 } 2262 2263 adjust_managed_page_count(page, pageblock_nr_pages); 2264 page_zone(page)->cma_pages += pageblock_nr_pages; 2265 } 2266 #endif 2267 2268 /* 2269 * The order of subdivision here is critical for the IO subsystem. 2270 * Please do not alter this order without good reasons and regression 2271 * testing. Specifically, as large blocks of memory are subdivided, 2272 * the order in which smaller blocks are delivered depends on the order 2273 * they're subdivided in this function. This is the primary factor 2274 * influencing the order in which pages are delivered to the IO 2275 * subsystem according to empirical testing, and this is also justified 2276 * by considering the behavior of a buddy system containing a single 2277 * large block of memory acted on by a series of small allocations. 2278 * This behavior is a critical factor in sglist merging's success. 2279 * 2280 * -- nyc 2281 */ 2282 static inline void expand(struct zone *zone, struct page *page, 2283 int low, int high, int migratetype) 2284 { 2285 unsigned long size = 1 << high; 2286 2287 while (high > low) { 2288 high--; 2289 size >>= 1; 2290 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2291 2292 /* 2293 * Mark as guard pages (or page), that will allow to 2294 * merge back to allocator when buddy will be freed. 2295 * Corresponding page table entries will not be touched, 2296 * pages will stay not present in virtual address space 2297 */ 2298 if (set_page_guard(zone, &page[size], high, migratetype)) 2299 continue; 2300 2301 add_to_free_list(&page[size], zone, high, migratetype); 2302 set_buddy_order(&page[size], high); 2303 } 2304 } 2305 2306 static void check_new_page_bad(struct page *page) 2307 { 2308 if (unlikely(page->flags & __PG_HWPOISON)) { 2309 /* Don't complain about hwpoisoned pages */ 2310 page_mapcount_reset(page); /* remove PageBuddy */ 2311 return; 2312 } 2313 2314 bad_page(page, 2315 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2316 } 2317 2318 /* 2319 * This page is about to be returned from the page allocator 2320 */ 2321 static inline int check_new_page(struct page *page) 2322 { 2323 if (likely(page_expected_state(page, 2324 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2325 return 0; 2326 2327 check_new_page_bad(page); 2328 return 1; 2329 } 2330 2331 #ifdef CONFIG_DEBUG_VM 2332 /* 2333 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2334 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2335 * also checked when pcp lists are refilled from the free lists. 2336 */ 2337 static inline bool check_pcp_refill(struct page *page) 2338 { 2339 if (debug_pagealloc_enabled_static()) 2340 return check_new_page(page); 2341 else 2342 return false; 2343 } 2344 2345 static inline bool check_new_pcp(struct page *page) 2346 { 2347 return check_new_page(page); 2348 } 2349 #else 2350 /* 2351 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2352 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2353 * enabled, they are also checked when being allocated from the pcp lists. 2354 */ 2355 static inline bool check_pcp_refill(struct page *page) 2356 { 2357 return check_new_page(page); 2358 } 2359 static inline bool check_new_pcp(struct page *page) 2360 { 2361 if (debug_pagealloc_enabled_static()) 2362 return check_new_page(page); 2363 else 2364 return false; 2365 } 2366 #endif /* CONFIG_DEBUG_VM */ 2367 2368 static bool check_new_pages(struct page *page, unsigned int order) 2369 { 2370 int i; 2371 for (i = 0; i < (1 << order); i++) { 2372 struct page *p = page + i; 2373 2374 if (unlikely(check_new_page(p))) 2375 return true; 2376 } 2377 2378 return false; 2379 } 2380 2381 inline void post_alloc_hook(struct page *page, unsigned int order, 2382 gfp_t gfp_flags) 2383 { 2384 set_page_private(page, 0); 2385 set_page_refcounted(page); 2386 2387 arch_alloc_page(page, order); 2388 debug_pagealloc_map_pages(page, 1 << order); 2389 2390 /* 2391 * Page unpoisoning must happen before memory initialization. 2392 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2393 * allocations and the page unpoisoning code will complain. 2394 */ 2395 kernel_unpoison_pages(page, 1 << order); 2396 2397 /* 2398 * As memory initialization might be integrated into KASAN, 2399 * kasan_alloc_pages and kernel_init_free_pages must be 2400 * kept together to avoid discrepancies in behavior. 2401 */ 2402 if (kasan_has_integrated_init()) { 2403 kasan_alloc_pages(page, order, gfp_flags); 2404 } else { 2405 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags); 2406 2407 kasan_unpoison_pages(page, order, init); 2408 if (init) 2409 kernel_init_free_pages(page, 1 << order, 2410 gfp_flags & __GFP_ZEROTAGS); 2411 } 2412 2413 set_page_owner(page, order, gfp_flags); 2414 } 2415 2416 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2417 unsigned int alloc_flags) 2418 { 2419 post_alloc_hook(page, order, gfp_flags); 2420 2421 if (order && (gfp_flags & __GFP_COMP)) 2422 prep_compound_page(page, order); 2423 2424 /* 2425 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2426 * allocate the page. The expectation is that the caller is taking 2427 * steps that will free more memory. The caller should avoid the page 2428 * being used for !PFMEMALLOC purposes. 2429 */ 2430 if (alloc_flags & ALLOC_NO_WATERMARKS) 2431 set_page_pfmemalloc(page); 2432 else 2433 clear_page_pfmemalloc(page); 2434 } 2435 2436 /* 2437 * Go through the free lists for the given migratetype and remove 2438 * the smallest available page from the freelists 2439 */ 2440 static __always_inline 2441 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2442 int migratetype) 2443 { 2444 unsigned int current_order; 2445 struct free_area *area; 2446 struct page *page; 2447 2448 /* Find a page of the appropriate size in the preferred list */ 2449 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2450 area = &(zone->free_area[current_order]); 2451 page = get_page_from_free_area(area, migratetype); 2452 if (!page) 2453 continue; 2454 del_page_from_free_list(page, zone, current_order); 2455 expand(zone, page, order, current_order, migratetype); 2456 set_pcppage_migratetype(page, migratetype); 2457 return page; 2458 } 2459 2460 return NULL; 2461 } 2462 2463 2464 /* 2465 * This array describes the order lists are fallen back to when 2466 * the free lists for the desirable migrate type are depleted 2467 */ 2468 static int fallbacks[MIGRATE_TYPES][3] = { 2469 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2470 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2471 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2472 #ifdef CONFIG_CMA 2473 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2474 #endif 2475 #ifdef CONFIG_MEMORY_ISOLATION 2476 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2477 #endif 2478 }; 2479 2480 #ifdef CONFIG_CMA 2481 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2482 unsigned int order) 2483 { 2484 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2485 } 2486 #else 2487 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2488 unsigned int order) { return NULL; } 2489 #endif 2490 2491 /* 2492 * Move the free pages in a range to the freelist tail of the requested type. 2493 * Note that start_page and end_pages are not aligned on a pageblock 2494 * boundary. If alignment is required, use move_freepages_block() 2495 */ 2496 static int move_freepages(struct zone *zone, 2497 unsigned long start_pfn, unsigned long end_pfn, 2498 int migratetype, int *num_movable) 2499 { 2500 struct page *page; 2501 unsigned long pfn; 2502 unsigned int order; 2503 int pages_moved = 0; 2504 2505 for (pfn = start_pfn; pfn <= end_pfn;) { 2506 page = pfn_to_page(pfn); 2507 if (!PageBuddy(page)) { 2508 /* 2509 * We assume that pages that could be isolated for 2510 * migration are movable. But we don't actually try 2511 * isolating, as that would be expensive. 2512 */ 2513 if (num_movable && 2514 (PageLRU(page) || __PageMovable(page))) 2515 (*num_movable)++; 2516 pfn++; 2517 continue; 2518 } 2519 2520 /* Make sure we are not inadvertently changing nodes */ 2521 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2522 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2523 2524 order = buddy_order(page); 2525 move_to_free_list(page, zone, order, migratetype); 2526 pfn += 1 << order; 2527 pages_moved += 1 << order; 2528 } 2529 2530 return pages_moved; 2531 } 2532 2533 int move_freepages_block(struct zone *zone, struct page *page, 2534 int migratetype, int *num_movable) 2535 { 2536 unsigned long start_pfn, end_pfn, pfn; 2537 2538 if (num_movable) 2539 *num_movable = 0; 2540 2541 pfn = page_to_pfn(page); 2542 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2543 end_pfn = start_pfn + pageblock_nr_pages - 1; 2544 2545 /* Do not cross zone boundaries */ 2546 if (!zone_spans_pfn(zone, start_pfn)) 2547 start_pfn = pfn; 2548 if (!zone_spans_pfn(zone, end_pfn)) 2549 return 0; 2550 2551 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2552 num_movable); 2553 } 2554 2555 static void change_pageblock_range(struct page *pageblock_page, 2556 int start_order, int migratetype) 2557 { 2558 int nr_pageblocks = 1 << (start_order - pageblock_order); 2559 2560 while (nr_pageblocks--) { 2561 set_pageblock_migratetype(pageblock_page, migratetype); 2562 pageblock_page += pageblock_nr_pages; 2563 } 2564 } 2565 2566 /* 2567 * When we are falling back to another migratetype during allocation, try to 2568 * steal extra free pages from the same pageblocks to satisfy further 2569 * allocations, instead of polluting multiple pageblocks. 2570 * 2571 * If we are stealing a relatively large buddy page, it is likely there will 2572 * be more free pages in the pageblock, so try to steal them all. For 2573 * reclaimable and unmovable allocations, we steal regardless of page size, 2574 * as fragmentation caused by those allocations polluting movable pageblocks 2575 * is worse than movable allocations stealing from unmovable and reclaimable 2576 * pageblocks. 2577 */ 2578 static bool can_steal_fallback(unsigned int order, int start_mt) 2579 { 2580 /* 2581 * Leaving this order check is intended, although there is 2582 * relaxed order check in next check. The reason is that 2583 * we can actually steal whole pageblock if this condition met, 2584 * but, below check doesn't guarantee it and that is just heuristic 2585 * so could be changed anytime. 2586 */ 2587 if (order >= pageblock_order) 2588 return true; 2589 2590 if (order >= pageblock_order / 2 || 2591 start_mt == MIGRATE_RECLAIMABLE || 2592 start_mt == MIGRATE_UNMOVABLE || 2593 page_group_by_mobility_disabled) 2594 return true; 2595 2596 return false; 2597 } 2598 2599 static inline bool boost_watermark(struct zone *zone) 2600 { 2601 unsigned long max_boost; 2602 2603 if (!watermark_boost_factor) 2604 return false; 2605 /* 2606 * Don't bother in zones that are unlikely to produce results. 2607 * On small machines, including kdump capture kernels running 2608 * in a small area, boosting the watermark can cause an out of 2609 * memory situation immediately. 2610 */ 2611 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2612 return false; 2613 2614 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2615 watermark_boost_factor, 10000); 2616 2617 /* 2618 * high watermark may be uninitialised if fragmentation occurs 2619 * very early in boot so do not boost. We do not fall 2620 * through and boost by pageblock_nr_pages as failing 2621 * allocations that early means that reclaim is not going 2622 * to help and it may even be impossible to reclaim the 2623 * boosted watermark resulting in a hang. 2624 */ 2625 if (!max_boost) 2626 return false; 2627 2628 max_boost = max(pageblock_nr_pages, max_boost); 2629 2630 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2631 max_boost); 2632 2633 return true; 2634 } 2635 2636 /* 2637 * This function implements actual steal behaviour. If order is large enough, 2638 * we can steal whole pageblock. If not, we first move freepages in this 2639 * pageblock to our migratetype and determine how many already-allocated pages 2640 * are there in the pageblock with a compatible migratetype. If at least half 2641 * of pages are free or compatible, we can change migratetype of the pageblock 2642 * itself, so pages freed in the future will be put on the correct free list. 2643 */ 2644 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2645 unsigned int alloc_flags, int start_type, bool whole_block) 2646 { 2647 unsigned int current_order = buddy_order(page); 2648 int free_pages, movable_pages, alike_pages; 2649 int old_block_type; 2650 2651 old_block_type = get_pageblock_migratetype(page); 2652 2653 /* 2654 * This can happen due to races and we want to prevent broken 2655 * highatomic accounting. 2656 */ 2657 if (is_migrate_highatomic(old_block_type)) 2658 goto single_page; 2659 2660 /* Take ownership for orders >= pageblock_order */ 2661 if (current_order >= pageblock_order) { 2662 change_pageblock_range(page, current_order, start_type); 2663 goto single_page; 2664 } 2665 2666 /* 2667 * Boost watermarks to increase reclaim pressure to reduce the 2668 * likelihood of future fallbacks. Wake kswapd now as the node 2669 * may be balanced overall and kswapd will not wake naturally. 2670 */ 2671 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2672 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2673 2674 /* We are not allowed to try stealing from the whole block */ 2675 if (!whole_block) 2676 goto single_page; 2677 2678 free_pages = move_freepages_block(zone, page, start_type, 2679 &movable_pages); 2680 /* 2681 * Determine how many pages are compatible with our allocation. 2682 * For movable allocation, it's the number of movable pages which 2683 * we just obtained. For other types it's a bit more tricky. 2684 */ 2685 if (start_type == MIGRATE_MOVABLE) { 2686 alike_pages = movable_pages; 2687 } else { 2688 /* 2689 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2690 * to MOVABLE pageblock, consider all non-movable pages as 2691 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2692 * vice versa, be conservative since we can't distinguish the 2693 * exact migratetype of non-movable pages. 2694 */ 2695 if (old_block_type == MIGRATE_MOVABLE) 2696 alike_pages = pageblock_nr_pages 2697 - (free_pages + movable_pages); 2698 else 2699 alike_pages = 0; 2700 } 2701 2702 /* moving whole block can fail due to zone boundary conditions */ 2703 if (!free_pages) 2704 goto single_page; 2705 2706 /* 2707 * If a sufficient number of pages in the block are either free or of 2708 * comparable migratability as our allocation, claim the whole block. 2709 */ 2710 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2711 page_group_by_mobility_disabled) 2712 set_pageblock_migratetype(page, start_type); 2713 2714 return; 2715 2716 single_page: 2717 move_to_free_list(page, zone, current_order, start_type); 2718 } 2719 2720 /* 2721 * Check whether there is a suitable fallback freepage with requested order. 2722 * If only_stealable is true, this function returns fallback_mt only if 2723 * we can steal other freepages all together. This would help to reduce 2724 * fragmentation due to mixed migratetype pages in one pageblock. 2725 */ 2726 int find_suitable_fallback(struct free_area *area, unsigned int order, 2727 int migratetype, bool only_stealable, bool *can_steal) 2728 { 2729 int i; 2730 int fallback_mt; 2731 2732 if (area->nr_free == 0) 2733 return -1; 2734 2735 *can_steal = false; 2736 for (i = 0;; i++) { 2737 fallback_mt = fallbacks[migratetype][i]; 2738 if (fallback_mt == MIGRATE_TYPES) 2739 break; 2740 2741 if (free_area_empty(area, fallback_mt)) 2742 continue; 2743 2744 if (can_steal_fallback(order, migratetype)) 2745 *can_steal = true; 2746 2747 if (!only_stealable) 2748 return fallback_mt; 2749 2750 if (*can_steal) 2751 return fallback_mt; 2752 } 2753 2754 return -1; 2755 } 2756 2757 /* 2758 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2759 * there are no empty page blocks that contain a page with a suitable order 2760 */ 2761 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2762 unsigned int alloc_order) 2763 { 2764 int mt; 2765 unsigned long max_managed, flags; 2766 2767 /* 2768 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2769 * Check is race-prone but harmless. 2770 */ 2771 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2772 if (zone->nr_reserved_highatomic >= max_managed) 2773 return; 2774 2775 spin_lock_irqsave(&zone->lock, flags); 2776 2777 /* Recheck the nr_reserved_highatomic limit under the lock */ 2778 if (zone->nr_reserved_highatomic >= max_managed) 2779 goto out_unlock; 2780 2781 /* Yoink! */ 2782 mt = get_pageblock_migratetype(page); 2783 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2784 && !is_migrate_cma(mt)) { 2785 zone->nr_reserved_highatomic += pageblock_nr_pages; 2786 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2787 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2788 } 2789 2790 out_unlock: 2791 spin_unlock_irqrestore(&zone->lock, flags); 2792 } 2793 2794 /* 2795 * Used when an allocation is about to fail under memory pressure. This 2796 * potentially hurts the reliability of high-order allocations when under 2797 * intense memory pressure but failed atomic allocations should be easier 2798 * to recover from than an OOM. 2799 * 2800 * If @force is true, try to unreserve a pageblock even though highatomic 2801 * pageblock is exhausted. 2802 */ 2803 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2804 bool force) 2805 { 2806 struct zonelist *zonelist = ac->zonelist; 2807 unsigned long flags; 2808 struct zoneref *z; 2809 struct zone *zone; 2810 struct page *page; 2811 int order; 2812 bool ret; 2813 2814 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2815 ac->nodemask) { 2816 /* 2817 * Preserve at least one pageblock unless memory pressure 2818 * is really high. 2819 */ 2820 if (!force && zone->nr_reserved_highatomic <= 2821 pageblock_nr_pages) 2822 continue; 2823 2824 spin_lock_irqsave(&zone->lock, flags); 2825 for (order = 0; order < MAX_ORDER; order++) { 2826 struct free_area *area = &(zone->free_area[order]); 2827 2828 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2829 if (!page) 2830 continue; 2831 2832 /* 2833 * In page freeing path, migratetype change is racy so 2834 * we can counter several free pages in a pageblock 2835 * in this loop although we changed the pageblock type 2836 * from highatomic to ac->migratetype. So we should 2837 * adjust the count once. 2838 */ 2839 if (is_migrate_highatomic_page(page)) { 2840 /* 2841 * It should never happen but changes to 2842 * locking could inadvertently allow a per-cpu 2843 * drain to add pages to MIGRATE_HIGHATOMIC 2844 * while unreserving so be safe and watch for 2845 * underflows. 2846 */ 2847 zone->nr_reserved_highatomic -= min( 2848 pageblock_nr_pages, 2849 zone->nr_reserved_highatomic); 2850 } 2851 2852 /* 2853 * Convert to ac->migratetype and avoid the normal 2854 * pageblock stealing heuristics. Minimally, the caller 2855 * is doing the work and needs the pages. More 2856 * importantly, if the block was always converted to 2857 * MIGRATE_UNMOVABLE or another type then the number 2858 * of pageblocks that cannot be completely freed 2859 * may increase. 2860 */ 2861 set_pageblock_migratetype(page, ac->migratetype); 2862 ret = move_freepages_block(zone, page, ac->migratetype, 2863 NULL); 2864 if (ret) { 2865 spin_unlock_irqrestore(&zone->lock, flags); 2866 return ret; 2867 } 2868 } 2869 spin_unlock_irqrestore(&zone->lock, flags); 2870 } 2871 2872 return false; 2873 } 2874 2875 /* 2876 * Try finding a free buddy page on the fallback list and put it on the free 2877 * list of requested migratetype, possibly along with other pages from the same 2878 * block, depending on fragmentation avoidance heuristics. Returns true if 2879 * fallback was found so that __rmqueue_smallest() can grab it. 2880 * 2881 * The use of signed ints for order and current_order is a deliberate 2882 * deviation from the rest of this file, to make the for loop 2883 * condition simpler. 2884 */ 2885 static __always_inline bool 2886 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2887 unsigned int alloc_flags) 2888 { 2889 struct free_area *area; 2890 int current_order; 2891 int min_order = order; 2892 struct page *page; 2893 int fallback_mt; 2894 bool can_steal; 2895 2896 /* 2897 * Do not steal pages from freelists belonging to other pageblocks 2898 * i.e. orders < pageblock_order. If there are no local zones free, 2899 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2900 */ 2901 if (alloc_flags & ALLOC_NOFRAGMENT) 2902 min_order = pageblock_order; 2903 2904 /* 2905 * Find the largest available free page in the other list. This roughly 2906 * approximates finding the pageblock with the most free pages, which 2907 * would be too costly to do exactly. 2908 */ 2909 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2910 --current_order) { 2911 area = &(zone->free_area[current_order]); 2912 fallback_mt = find_suitable_fallback(area, current_order, 2913 start_migratetype, false, &can_steal); 2914 if (fallback_mt == -1) 2915 continue; 2916 2917 /* 2918 * We cannot steal all free pages from the pageblock and the 2919 * requested migratetype is movable. In that case it's better to 2920 * steal and split the smallest available page instead of the 2921 * largest available page, because even if the next movable 2922 * allocation falls back into a different pageblock than this 2923 * one, it won't cause permanent fragmentation. 2924 */ 2925 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2926 && current_order > order) 2927 goto find_smallest; 2928 2929 goto do_steal; 2930 } 2931 2932 return false; 2933 2934 find_smallest: 2935 for (current_order = order; current_order < MAX_ORDER; 2936 current_order++) { 2937 area = &(zone->free_area[current_order]); 2938 fallback_mt = find_suitable_fallback(area, current_order, 2939 start_migratetype, false, &can_steal); 2940 if (fallback_mt != -1) 2941 break; 2942 } 2943 2944 /* 2945 * This should not happen - we already found a suitable fallback 2946 * when looking for the largest page. 2947 */ 2948 VM_BUG_ON(current_order == MAX_ORDER); 2949 2950 do_steal: 2951 page = get_page_from_free_area(area, fallback_mt); 2952 2953 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2954 can_steal); 2955 2956 trace_mm_page_alloc_extfrag(page, order, current_order, 2957 start_migratetype, fallback_mt); 2958 2959 return true; 2960 2961 } 2962 2963 /* 2964 * Do the hard work of removing an element from the buddy allocator. 2965 * Call me with the zone->lock already held. 2966 */ 2967 static __always_inline struct page * 2968 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2969 unsigned int alloc_flags) 2970 { 2971 struct page *page; 2972 2973 if (IS_ENABLED(CONFIG_CMA)) { 2974 /* 2975 * Balance movable allocations between regular and CMA areas by 2976 * allocating from CMA when over half of the zone's free memory 2977 * is in the CMA area. 2978 */ 2979 if (alloc_flags & ALLOC_CMA && 2980 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2981 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2982 page = __rmqueue_cma_fallback(zone, order); 2983 if (page) 2984 goto out; 2985 } 2986 } 2987 retry: 2988 page = __rmqueue_smallest(zone, order, migratetype); 2989 if (unlikely(!page)) { 2990 if (alloc_flags & ALLOC_CMA) 2991 page = __rmqueue_cma_fallback(zone, order); 2992 2993 if (!page && __rmqueue_fallback(zone, order, migratetype, 2994 alloc_flags)) 2995 goto retry; 2996 } 2997 out: 2998 if (page) 2999 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3000 return page; 3001 } 3002 3003 /* 3004 * Obtain a specified number of elements from the buddy allocator, all under 3005 * a single hold of the lock, for efficiency. Add them to the supplied list. 3006 * Returns the number of new pages which were placed at *list. 3007 */ 3008 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3009 unsigned long count, struct list_head *list, 3010 int migratetype, unsigned int alloc_flags) 3011 { 3012 int i, allocated = 0; 3013 3014 /* 3015 * local_lock_irq held so equivalent to spin_lock_irqsave for 3016 * both PREEMPT_RT and non-PREEMPT_RT configurations. 3017 */ 3018 spin_lock(&zone->lock); 3019 for (i = 0; i < count; ++i) { 3020 struct page *page = __rmqueue(zone, order, migratetype, 3021 alloc_flags); 3022 if (unlikely(page == NULL)) 3023 break; 3024 3025 if (unlikely(check_pcp_refill(page))) 3026 continue; 3027 3028 /* 3029 * Split buddy pages returned by expand() are received here in 3030 * physical page order. The page is added to the tail of 3031 * caller's list. From the callers perspective, the linked list 3032 * is ordered by page number under some conditions. This is 3033 * useful for IO devices that can forward direction from the 3034 * head, thus also in the physical page order. This is useful 3035 * for IO devices that can merge IO requests if the physical 3036 * pages are ordered properly. 3037 */ 3038 list_add_tail(&page->lru, list); 3039 allocated++; 3040 if (is_migrate_cma(get_pcppage_migratetype(page))) 3041 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3042 -(1 << order)); 3043 } 3044 3045 /* 3046 * i pages were removed from the buddy list even if some leak due 3047 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3048 * on i. Do not confuse with 'allocated' which is the number of 3049 * pages added to the pcp list. 3050 */ 3051 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3052 spin_unlock(&zone->lock); 3053 return allocated; 3054 } 3055 3056 #ifdef CONFIG_NUMA 3057 /* 3058 * Called from the vmstat counter updater to drain pagesets of this 3059 * currently executing processor on remote nodes after they have 3060 * expired. 3061 * 3062 * Note that this function must be called with the thread pinned to 3063 * a single processor. 3064 */ 3065 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3066 { 3067 unsigned long flags; 3068 int to_drain, batch; 3069 3070 local_lock_irqsave(&pagesets.lock, flags); 3071 batch = READ_ONCE(pcp->batch); 3072 to_drain = min(pcp->count, batch); 3073 if (to_drain > 0) 3074 free_pcppages_bulk(zone, to_drain, pcp); 3075 local_unlock_irqrestore(&pagesets.lock, flags); 3076 } 3077 #endif 3078 3079 /* 3080 * Drain pcplists of the indicated processor and zone. 3081 * 3082 * The processor must either be the current processor and the 3083 * thread pinned to the current processor or a processor that 3084 * is not online. 3085 */ 3086 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3087 { 3088 unsigned long flags; 3089 struct per_cpu_pages *pcp; 3090 3091 local_lock_irqsave(&pagesets.lock, flags); 3092 3093 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3094 if (pcp->count) 3095 free_pcppages_bulk(zone, pcp->count, pcp); 3096 3097 local_unlock_irqrestore(&pagesets.lock, flags); 3098 } 3099 3100 /* 3101 * Drain pcplists of all zones on the indicated processor. 3102 * 3103 * The processor must either be the current processor and the 3104 * thread pinned to the current processor or a processor that 3105 * is not online. 3106 */ 3107 static void drain_pages(unsigned int cpu) 3108 { 3109 struct zone *zone; 3110 3111 for_each_populated_zone(zone) { 3112 drain_pages_zone(cpu, zone); 3113 } 3114 } 3115 3116 /* 3117 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3118 * 3119 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3120 * the single zone's pages. 3121 */ 3122 void drain_local_pages(struct zone *zone) 3123 { 3124 int cpu = smp_processor_id(); 3125 3126 if (zone) 3127 drain_pages_zone(cpu, zone); 3128 else 3129 drain_pages(cpu); 3130 } 3131 3132 static void drain_local_pages_wq(struct work_struct *work) 3133 { 3134 struct pcpu_drain *drain; 3135 3136 drain = container_of(work, struct pcpu_drain, work); 3137 3138 /* 3139 * drain_all_pages doesn't use proper cpu hotplug protection so 3140 * we can race with cpu offline when the WQ can move this from 3141 * a cpu pinned worker to an unbound one. We can operate on a different 3142 * cpu which is alright but we also have to make sure to not move to 3143 * a different one. 3144 */ 3145 migrate_disable(); 3146 drain_local_pages(drain->zone); 3147 migrate_enable(); 3148 } 3149 3150 /* 3151 * The implementation of drain_all_pages(), exposing an extra parameter to 3152 * drain on all cpus. 3153 * 3154 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3155 * not empty. The check for non-emptiness can however race with a free to 3156 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3157 * that need the guarantee that every CPU has drained can disable the 3158 * optimizing racy check. 3159 */ 3160 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3161 { 3162 int cpu; 3163 3164 /* 3165 * Allocate in the BSS so we won't require allocation in 3166 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3167 */ 3168 static cpumask_t cpus_with_pcps; 3169 3170 /* 3171 * Make sure nobody triggers this path before mm_percpu_wq is fully 3172 * initialized. 3173 */ 3174 if (WARN_ON_ONCE(!mm_percpu_wq)) 3175 return; 3176 3177 /* 3178 * Do not drain if one is already in progress unless it's specific to 3179 * a zone. Such callers are primarily CMA and memory hotplug and need 3180 * the drain to be complete when the call returns. 3181 */ 3182 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3183 if (!zone) 3184 return; 3185 mutex_lock(&pcpu_drain_mutex); 3186 } 3187 3188 /* 3189 * We don't care about racing with CPU hotplug event 3190 * as offline notification will cause the notified 3191 * cpu to drain that CPU pcps and on_each_cpu_mask 3192 * disables preemption as part of its processing 3193 */ 3194 for_each_online_cpu(cpu) { 3195 struct per_cpu_pages *pcp; 3196 struct zone *z; 3197 bool has_pcps = false; 3198 3199 if (force_all_cpus) { 3200 /* 3201 * The pcp.count check is racy, some callers need a 3202 * guarantee that no cpu is missed. 3203 */ 3204 has_pcps = true; 3205 } else if (zone) { 3206 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3207 if (pcp->count) 3208 has_pcps = true; 3209 } else { 3210 for_each_populated_zone(z) { 3211 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3212 if (pcp->count) { 3213 has_pcps = true; 3214 break; 3215 } 3216 } 3217 } 3218 3219 if (has_pcps) 3220 cpumask_set_cpu(cpu, &cpus_with_pcps); 3221 else 3222 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3223 } 3224 3225 for_each_cpu(cpu, &cpus_with_pcps) { 3226 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3227 3228 drain->zone = zone; 3229 INIT_WORK(&drain->work, drain_local_pages_wq); 3230 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3231 } 3232 for_each_cpu(cpu, &cpus_with_pcps) 3233 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3234 3235 mutex_unlock(&pcpu_drain_mutex); 3236 } 3237 3238 /* 3239 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3240 * 3241 * When zone parameter is non-NULL, spill just the single zone's pages. 3242 * 3243 * Note that this can be extremely slow as the draining happens in a workqueue. 3244 */ 3245 void drain_all_pages(struct zone *zone) 3246 { 3247 __drain_all_pages(zone, false); 3248 } 3249 3250 #ifdef CONFIG_HIBERNATION 3251 3252 /* 3253 * Touch the watchdog for every WD_PAGE_COUNT pages. 3254 */ 3255 #define WD_PAGE_COUNT (128*1024) 3256 3257 void mark_free_pages(struct zone *zone) 3258 { 3259 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3260 unsigned long flags; 3261 unsigned int order, t; 3262 struct page *page; 3263 3264 if (zone_is_empty(zone)) 3265 return; 3266 3267 spin_lock_irqsave(&zone->lock, flags); 3268 3269 max_zone_pfn = zone_end_pfn(zone); 3270 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3271 if (pfn_valid(pfn)) { 3272 page = pfn_to_page(pfn); 3273 3274 if (!--page_count) { 3275 touch_nmi_watchdog(); 3276 page_count = WD_PAGE_COUNT; 3277 } 3278 3279 if (page_zone(page) != zone) 3280 continue; 3281 3282 if (!swsusp_page_is_forbidden(page)) 3283 swsusp_unset_page_free(page); 3284 } 3285 3286 for_each_migratetype_order(order, t) { 3287 list_for_each_entry(page, 3288 &zone->free_area[order].free_list[t], lru) { 3289 unsigned long i; 3290 3291 pfn = page_to_pfn(page); 3292 for (i = 0; i < (1UL << order); i++) { 3293 if (!--page_count) { 3294 touch_nmi_watchdog(); 3295 page_count = WD_PAGE_COUNT; 3296 } 3297 swsusp_set_page_free(pfn_to_page(pfn + i)); 3298 } 3299 } 3300 } 3301 spin_unlock_irqrestore(&zone->lock, flags); 3302 } 3303 #endif /* CONFIG_PM */ 3304 3305 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3306 unsigned int order) 3307 { 3308 int migratetype; 3309 3310 if (!free_pcp_prepare(page, order)) 3311 return false; 3312 3313 migratetype = get_pfnblock_migratetype(page, pfn); 3314 set_pcppage_migratetype(page, migratetype); 3315 return true; 3316 } 3317 3318 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch) 3319 { 3320 int min_nr_free, max_nr_free; 3321 3322 /* Check for PCP disabled or boot pageset */ 3323 if (unlikely(high < batch)) 3324 return 1; 3325 3326 /* Leave at least pcp->batch pages on the list */ 3327 min_nr_free = batch; 3328 max_nr_free = high - batch; 3329 3330 /* 3331 * Double the number of pages freed each time there is subsequent 3332 * freeing of pages without any allocation. 3333 */ 3334 batch <<= pcp->free_factor; 3335 if (batch < max_nr_free) 3336 pcp->free_factor++; 3337 batch = clamp(batch, min_nr_free, max_nr_free); 3338 3339 return batch; 3340 } 3341 3342 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone) 3343 { 3344 int high = READ_ONCE(pcp->high); 3345 3346 if (unlikely(!high)) 3347 return 0; 3348 3349 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3350 return high; 3351 3352 /* 3353 * If reclaim is active, limit the number of pages that can be 3354 * stored on pcp lists 3355 */ 3356 return min(READ_ONCE(pcp->batch) << 2, high); 3357 } 3358 3359 static void free_unref_page_commit(struct page *page, unsigned long pfn, 3360 int migratetype, unsigned int order) 3361 { 3362 struct zone *zone = page_zone(page); 3363 struct per_cpu_pages *pcp; 3364 int high; 3365 int pindex; 3366 3367 __count_vm_event(PGFREE); 3368 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3369 pindex = order_to_pindex(migratetype, order); 3370 list_add(&page->lru, &pcp->lists[pindex]); 3371 pcp->count += 1 << order; 3372 high = nr_pcp_high(pcp, zone); 3373 if (pcp->count >= high) { 3374 int batch = READ_ONCE(pcp->batch); 3375 3376 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp); 3377 } 3378 } 3379 3380 /* 3381 * Free a pcp page 3382 */ 3383 void free_unref_page(struct page *page, unsigned int order) 3384 { 3385 unsigned long flags; 3386 unsigned long pfn = page_to_pfn(page); 3387 int migratetype; 3388 3389 if (!free_unref_page_prepare(page, pfn, order)) 3390 return; 3391 3392 /* 3393 * We only track unmovable, reclaimable and movable on pcp lists. 3394 * Place ISOLATE pages on the isolated list because they are being 3395 * offlined but treat HIGHATOMIC as movable pages so we can get those 3396 * areas back if necessary. Otherwise, we may have to free 3397 * excessively into the page allocator 3398 */ 3399 migratetype = get_pcppage_migratetype(page); 3400 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3401 if (unlikely(is_migrate_isolate(migratetype))) { 3402 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3403 return; 3404 } 3405 migratetype = MIGRATE_MOVABLE; 3406 } 3407 3408 local_lock_irqsave(&pagesets.lock, flags); 3409 free_unref_page_commit(page, pfn, migratetype, order); 3410 local_unlock_irqrestore(&pagesets.lock, flags); 3411 } 3412 3413 /* 3414 * Free a list of 0-order pages 3415 */ 3416 void free_unref_page_list(struct list_head *list) 3417 { 3418 struct page *page, *next; 3419 unsigned long flags, pfn; 3420 int batch_count = 0; 3421 int migratetype; 3422 3423 /* Prepare pages for freeing */ 3424 list_for_each_entry_safe(page, next, list, lru) { 3425 pfn = page_to_pfn(page); 3426 if (!free_unref_page_prepare(page, pfn, 0)) { 3427 list_del(&page->lru); 3428 continue; 3429 } 3430 3431 /* 3432 * Free isolated pages directly to the allocator, see 3433 * comment in free_unref_page. 3434 */ 3435 migratetype = get_pcppage_migratetype(page); 3436 if (unlikely(is_migrate_isolate(migratetype))) { 3437 list_del(&page->lru); 3438 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3439 continue; 3440 } 3441 3442 set_page_private(page, pfn); 3443 } 3444 3445 local_lock_irqsave(&pagesets.lock, flags); 3446 list_for_each_entry_safe(page, next, list, lru) { 3447 pfn = page_private(page); 3448 set_page_private(page, 0); 3449 3450 /* 3451 * Non-isolated types over MIGRATE_PCPTYPES get added 3452 * to the MIGRATE_MOVABLE pcp list. 3453 */ 3454 migratetype = get_pcppage_migratetype(page); 3455 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3456 migratetype = MIGRATE_MOVABLE; 3457 3458 trace_mm_page_free_batched(page); 3459 free_unref_page_commit(page, pfn, migratetype, 0); 3460 3461 /* 3462 * Guard against excessive IRQ disabled times when we get 3463 * a large list of pages to free. 3464 */ 3465 if (++batch_count == SWAP_CLUSTER_MAX) { 3466 local_unlock_irqrestore(&pagesets.lock, flags); 3467 batch_count = 0; 3468 local_lock_irqsave(&pagesets.lock, flags); 3469 } 3470 } 3471 local_unlock_irqrestore(&pagesets.lock, flags); 3472 } 3473 3474 /* 3475 * split_page takes a non-compound higher-order page, and splits it into 3476 * n (1<<order) sub-pages: page[0..n] 3477 * Each sub-page must be freed individually. 3478 * 3479 * Note: this is probably too low level an operation for use in drivers. 3480 * Please consult with lkml before using this in your driver. 3481 */ 3482 void split_page(struct page *page, unsigned int order) 3483 { 3484 int i; 3485 3486 VM_BUG_ON_PAGE(PageCompound(page), page); 3487 VM_BUG_ON_PAGE(!page_count(page), page); 3488 3489 for (i = 1; i < (1 << order); i++) 3490 set_page_refcounted(page + i); 3491 split_page_owner(page, 1 << order); 3492 split_page_memcg(page, 1 << order); 3493 } 3494 EXPORT_SYMBOL_GPL(split_page); 3495 3496 int __isolate_free_page(struct page *page, unsigned int order) 3497 { 3498 unsigned long watermark; 3499 struct zone *zone; 3500 int mt; 3501 3502 BUG_ON(!PageBuddy(page)); 3503 3504 zone = page_zone(page); 3505 mt = get_pageblock_migratetype(page); 3506 3507 if (!is_migrate_isolate(mt)) { 3508 /* 3509 * Obey watermarks as if the page was being allocated. We can 3510 * emulate a high-order watermark check with a raised order-0 3511 * watermark, because we already know our high-order page 3512 * exists. 3513 */ 3514 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3515 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3516 return 0; 3517 3518 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3519 } 3520 3521 /* Remove page from free list */ 3522 3523 del_page_from_free_list(page, zone, order); 3524 3525 /* 3526 * Set the pageblock if the isolated page is at least half of a 3527 * pageblock 3528 */ 3529 if (order >= pageblock_order - 1) { 3530 struct page *endpage = page + (1 << order) - 1; 3531 for (; page < endpage; page += pageblock_nr_pages) { 3532 int mt = get_pageblock_migratetype(page); 3533 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3534 && !is_migrate_highatomic(mt)) 3535 set_pageblock_migratetype(page, 3536 MIGRATE_MOVABLE); 3537 } 3538 } 3539 3540 3541 return 1UL << order; 3542 } 3543 3544 /** 3545 * __putback_isolated_page - Return a now-isolated page back where we got it 3546 * @page: Page that was isolated 3547 * @order: Order of the isolated page 3548 * @mt: The page's pageblock's migratetype 3549 * 3550 * This function is meant to return a page pulled from the free lists via 3551 * __isolate_free_page back to the free lists they were pulled from. 3552 */ 3553 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3554 { 3555 struct zone *zone = page_zone(page); 3556 3557 /* zone lock should be held when this function is called */ 3558 lockdep_assert_held(&zone->lock); 3559 3560 /* Return isolated page to tail of freelist. */ 3561 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3562 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3563 } 3564 3565 /* 3566 * Update NUMA hit/miss statistics 3567 * 3568 * Must be called with interrupts disabled. 3569 */ 3570 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3571 long nr_account) 3572 { 3573 #ifdef CONFIG_NUMA 3574 enum numa_stat_item local_stat = NUMA_LOCAL; 3575 3576 /* skip numa counters update if numa stats is disabled */ 3577 if (!static_branch_likely(&vm_numa_stat_key)) 3578 return; 3579 3580 if (zone_to_nid(z) != numa_node_id()) 3581 local_stat = NUMA_OTHER; 3582 3583 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3584 __count_numa_events(z, NUMA_HIT, nr_account); 3585 else { 3586 __count_numa_events(z, NUMA_MISS, nr_account); 3587 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3588 } 3589 __count_numa_events(z, local_stat, nr_account); 3590 #endif 3591 } 3592 3593 /* Remove page from the per-cpu list, caller must protect the list */ 3594 static inline 3595 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3596 int migratetype, 3597 unsigned int alloc_flags, 3598 struct per_cpu_pages *pcp, 3599 struct list_head *list) 3600 { 3601 struct page *page; 3602 3603 do { 3604 if (list_empty(list)) { 3605 int batch = READ_ONCE(pcp->batch); 3606 int alloced; 3607 3608 /* 3609 * Scale batch relative to order if batch implies 3610 * free pages can be stored on the PCP. Batch can 3611 * be 1 for small zones or for boot pagesets which 3612 * should never store free pages as the pages may 3613 * belong to arbitrary zones. 3614 */ 3615 if (batch > 1) 3616 batch = max(batch >> order, 2); 3617 alloced = rmqueue_bulk(zone, order, 3618 batch, list, 3619 migratetype, alloc_flags); 3620 3621 pcp->count += alloced << order; 3622 if (unlikely(list_empty(list))) 3623 return NULL; 3624 } 3625 3626 page = list_first_entry(list, struct page, lru); 3627 list_del(&page->lru); 3628 pcp->count -= 1 << order; 3629 } while (check_new_pcp(page)); 3630 3631 return page; 3632 } 3633 3634 /* Lock and remove page from the per-cpu list */ 3635 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3636 struct zone *zone, unsigned int order, 3637 gfp_t gfp_flags, int migratetype, 3638 unsigned int alloc_flags) 3639 { 3640 struct per_cpu_pages *pcp; 3641 struct list_head *list; 3642 struct page *page; 3643 unsigned long flags; 3644 3645 local_lock_irqsave(&pagesets.lock, flags); 3646 3647 /* 3648 * On allocation, reduce the number of pages that are batch freed. 3649 * See nr_pcp_free() where free_factor is increased for subsequent 3650 * frees. 3651 */ 3652 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3653 pcp->free_factor >>= 1; 3654 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3655 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3656 local_unlock_irqrestore(&pagesets.lock, flags); 3657 if (page) { 3658 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3659 zone_statistics(preferred_zone, zone, 1); 3660 } 3661 return page; 3662 } 3663 3664 /* 3665 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3666 */ 3667 static inline 3668 struct page *rmqueue(struct zone *preferred_zone, 3669 struct zone *zone, unsigned int order, 3670 gfp_t gfp_flags, unsigned int alloc_flags, 3671 int migratetype) 3672 { 3673 unsigned long flags; 3674 struct page *page; 3675 3676 if (likely(pcp_allowed_order(order))) { 3677 /* 3678 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3679 * we need to skip it when CMA area isn't allowed. 3680 */ 3681 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3682 migratetype != MIGRATE_MOVABLE) { 3683 page = rmqueue_pcplist(preferred_zone, zone, order, 3684 gfp_flags, migratetype, alloc_flags); 3685 goto out; 3686 } 3687 } 3688 3689 /* 3690 * We most definitely don't want callers attempting to 3691 * allocate greater than order-1 page units with __GFP_NOFAIL. 3692 */ 3693 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3694 spin_lock_irqsave(&zone->lock, flags); 3695 3696 do { 3697 page = NULL; 3698 /* 3699 * order-0 request can reach here when the pcplist is skipped 3700 * due to non-CMA allocation context. HIGHATOMIC area is 3701 * reserved for high-order atomic allocation, so order-0 3702 * request should skip it. 3703 */ 3704 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3705 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3706 if (page) 3707 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3708 } 3709 if (!page) 3710 page = __rmqueue(zone, order, migratetype, alloc_flags); 3711 } while (page && check_new_pages(page, order)); 3712 if (!page) 3713 goto failed; 3714 3715 __mod_zone_freepage_state(zone, -(1 << order), 3716 get_pcppage_migratetype(page)); 3717 spin_unlock_irqrestore(&zone->lock, flags); 3718 3719 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3720 zone_statistics(preferred_zone, zone, 1); 3721 3722 out: 3723 /* Separate test+clear to avoid unnecessary atomics */ 3724 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3725 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3726 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3727 } 3728 3729 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3730 return page; 3731 3732 failed: 3733 spin_unlock_irqrestore(&zone->lock, flags); 3734 return NULL; 3735 } 3736 3737 #ifdef CONFIG_FAIL_PAGE_ALLOC 3738 3739 static struct { 3740 struct fault_attr attr; 3741 3742 bool ignore_gfp_highmem; 3743 bool ignore_gfp_reclaim; 3744 u32 min_order; 3745 } fail_page_alloc = { 3746 .attr = FAULT_ATTR_INITIALIZER, 3747 .ignore_gfp_reclaim = true, 3748 .ignore_gfp_highmem = true, 3749 .min_order = 1, 3750 }; 3751 3752 static int __init setup_fail_page_alloc(char *str) 3753 { 3754 return setup_fault_attr(&fail_page_alloc.attr, str); 3755 } 3756 __setup("fail_page_alloc=", setup_fail_page_alloc); 3757 3758 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3759 { 3760 if (order < fail_page_alloc.min_order) 3761 return false; 3762 if (gfp_mask & __GFP_NOFAIL) 3763 return false; 3764 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3765 return false; 3766 if (fail_page_alloc.ignore_gfp_reclaim && 3767 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3768 return false; 3769 3770 return should_fail(&fail_page_alloc.attr, 1 << order); 3771 } 3772 3773 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3774 3775 static int __init fail_page_alloc_debugfs(void) 3776 { 3777 umode_t mode = S_IFREG | 0600; 3778 struct dentry *dir; 3779 3780 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3781 &fail_page_alloc.attr); 3782 3783 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3784 &fail_page_alloc.ignore_gfp_reclaim); 3785 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3786 &fail_page_alloc.ignore_gfp_highmem); 3787 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3788 3789 return 0; 3790 } 3791 3792 late_initcall(fail_page_alloc_debugfs); 3793 3794 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3795 3796 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3797 3798 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3799 { 3800 return false; 3801 } 3802 3803 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3804 3805 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3806 { 3807 return __should_fail_alloc_page(gfp_mask, order); 3808 } 3809 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3810 3811 static inline long __zone_watermark_unusable_free(struct zone *z, 3812 unsigned int order, unsigned int alloc_flags) 3813 { 3814 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3815 long unusable_free = (1 << order) - 1; 3816 3817 /* 3818 * If the caller does not have rights to ALLOC_HARDER then subtract 3819 * the high-atomic reserves. This will over-estimate the size of the 3820 * atomic reserve but it avoids a search. 3821 */ 3822 if (likely(!alloc_harder)) 3823 unusable_free += z->nr_reserved_highatomic; 3824 3825 #ifdef CONFIG_CMA 3826 /* If allocation can't use CMA areas don't use free CMA pages */ 3827 if (!(alloc_flags & ALLOC_CMA)) 3828 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3829 #endif 3830 3831 return unusable_free; 3832 } 3833 3834 /* 3835 * Return true if free base pages are above 'mark'. For high-order checks it 3836 * will return true of the order-0 watermark is reached and there is at least 3837 * one free page of a suitable size. Checking now avoids taking the zone lock 3838 * to check in the allocation paths if no pages are free. 3839 */ 3840 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3841 int highest_zoneidx, unsigned int alloc_flags, 3842 long free_pages) 3843 { 3844 long min = mark; 3845 int o; 3846 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3847 3848 /* free_pages may go negative - that's OK */ 3849 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3850 3851 if (alloc_flags & ALLOC_HIGH) 3852 min -= min / 2; 3853 3854 if (unlikely(alloc_harder)) { 3855 /* 3856 * OOM victims can try even harder than normal ALLOC_HARDER 3857 * users on the grounds that it's definitely going to be in 3858 * the exit path shortly and free memory. Any allocation it 3859 * makes during the free path will be small and short-lived. 3860 */ 3861 if (alloc_flags & ALLOC_OOM) 3862 min -= min / 2; 3863 else 3864 min -= min / 4; 3865 } 3866 3867 /* 3868 * Check watermarks for an order-0 allocation request. If these 3869 * are not met, then a high-order request also cannot go ahead 3870 * even if a suitable page happened to be free. 3871 */ 3872 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3873 return false; 3874 3875 /* If this is an order-0 request then the watermark is fine */ 3876 if (!order) 3877 return true; 3878 3879 /* For a high-order request, check at least one suitable page is free */ 3880 for (o = order; o < MAX_ORDER; o++) { 3881 struct free_area *area = &z->free_area[o]; 3882 int mt; 3883 3884 if (!area->nr_free) 3885 continue; 3886 3887 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3888 if (!free_area_empty(area, mt)) 3889 return true; 3890 } 3891 3892 #ifdef CONFIG_CMA 3893 if ((alloc_flags & ALLOC_CMA) && 3894 !free_area_empty(area, MIGRATE_CMA)) { 3895 return true; 3896 } 3897 #endif 3898 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3899 return true; 3900 } 3901 return false; 3902 } 3903 3904 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3905 int highest_zoneidx, unsigned int alloc_flags) 3906 { 3907 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3908 zone_page_state(z, NR_FREE_PAGES)); 3909 } 3910 3911 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3912 unsigned long mark, int highest_zoneidx, 3913 unsigned int alloc_flags, gfp_t gfp_mask) 3914 { 3915 long free_pages; 3916 3917 free_pages = zone_page_state(z, NR_FREE_PAGES); 3918 3919 /* 3920 * Fast check for order-0 only. If this fails then the reserves 3921 * need to be calculated. 3922 */ 3923 if (!order) { 3924 long fast_free; 3925 3926 fast_free = free_pages; 3927 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3928 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3929 return true; 3930 } 3931 3932 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3933 free_pages)) 3934 return true; 3935 /* 3936 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3937 * when checking the min watermark. The min watermark is the 3938 * point where boosting is ignored so that kswapd is woken up 3939 * when below the low watermark. 3940 */ 3941 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3942 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3943 mark = z->_watermark[WMARK_MIN]; 3944 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3945 alloc_flags, free_pages); 3946 } 3947 3948 return false; 3949 } 3950 3951 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3952 unsigned long mark, int highest_zoneidx) 3953 { 3954 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3955 3956 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3957 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3958 3959 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3960 free_pages); 3961 } 3962 3963 #ifdef CONFIG_NUMA 3964 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3965 3966 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3967 { 3968 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3969 node_reclaim_distance; 3970 } 3971 #else /* CONFIG_NUMA */ 3972 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3973 { 3974 return true; 3975 } 3976 #endif /* CONFIG_NUMA */ 3977 3978 /* 3979 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3980 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3981 * premature use of a lower zone may cause lowmem pressure problems that 3982 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3983 * probably too small. It only makes sense to spread allocations to avoid 3984 * fragmentation between the Normal and DMA32 zones. 3985 */ 3986 static inline unsigned int 3987 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3988 { 3989 unsigned int alloc_flags; 3990 3991 /* 3992 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3993 * to save a branch. 3994 */ 3995 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3996 3997 #ifdef CONFIG_ZONE_DMA32 3998 if (!zone) 3999 return alloc_flags; 4000 4001 if (zone_idx(zone) != ZONE_NORMAL) 4002 return alloc_flags; 4003 4004 /* 4005 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4006 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4007 * on UMA that if Normal is populated then so is DMA32. 4008 */ 4009 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4010 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4011 return alloc_flags; 4012 4013 alloc_flags |= ALLOC_NOFRAGMENT; 4014 #endif /* CONFIG_ZONE_DMA32 */ 4015 return alloc_flags; 4016 } 4017 4018 /* Must be called after current_gfp_context() which can change gfp_mask */ 4019 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4020 unsigned int alloc_flags) 4021 { 4022 #ifdef CONFIG_CMA 4023 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4024 alloc_flags |= ALLOC_CMA; 4025 #endif 4026 return alloc_flags; 4027 } 4028 4029 /* 4030 * get_page_from_freelist goes through the zonelist trying to allocate 4031 * a page. 4032 */ 4033 static struct page * 4034 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4035 const struct alloc_context *ac) 4036 { 4037 struct zoneref *z; 4038 struct zone *zone; 4039 struct pglist_data *last_pgdat_dirty_limit = NULL; 4040 bool no_fallback; 4041 4042 retry: 4043 /* 4044 * Scan zonelist, looking for a zone with enough free. 4045 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4046 */ 4047 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4048 z = ac->preferred_zoneref; 4049 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4050 ac->nodemask) { 4051 struct page *page; 4052 unsigned long mark; 4053 4054 if (cpusets_enabled() && 4055 (alloc_flags & ALLOC_CPUSET) && 4056 !__cpuset_zone_allowed(zone, gfp_mask)) 4057 continue; 4058 /* 4059 * When allocating a page cache page for writing, we 4060 * want to get it from a node that is within its dirty 4061 * limit, such that no single node holds more than its 4062 * proportional share of globally allowed dirty pages. 4063 * The dirty limits take into account the node's 4064 * lowmem reserves and high watermark so that kswapd 4065 * should be able to balance it without having to 4066 * write pages from its LRU list. 4067 * 4068 * XXX: For now, allow allocations to potentially 4069 * exceed the per-node dirty limit in the slowpath 4070 * (spread_dirty_pages unset) before going into reclaim, 4071 * which is important when on a NUMA setup the allowed 4072 * nodes are together not big enough to reach the 4073 * global limit. The proper fix for these situations 4074 * will require awareness of nodes in the 4075 * dirty-throttling and the flusher threads. 4076 */ 4077 if (ac->spread_dirty_pages) { 4078 if (last_pgdat_dirty_limit == zone->zone_pgdat) 4079 continue; 4080 4081 if (!node_dirty_ok(zone->zone_pgdat)) { 4082 last_pgdat_dirty_limit = zone->zone_pgdat; 4083 continue; 4084 } 4085 } 4086 4087 if (no_fallback && nr_online_nodes > 1 && 4088 zone != ac->preferred_zoneref->zone) { 4089 int local_nid; 4090 4091 /* 4092 * If moving to a remote node, retry but allow 4093 * fragmenting fallbacks. Locality is more important 4094 * than fragmentation avoidance. 4095 */ 4096 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4097 if (zone_to_nid(zone) != local_nid) { 4098 alloc_flags &= ~ALLOC_NOFRAGMENT; 4099 goto retry; 4100 } 4101 } 4102 4103 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4104 if (!zone_watermark_fast(zone, order, mark, 4105 ac->highest_zoneidx, alloc_flags, 4106 gfp_mask)) { 4107 int ret; 4108 4109 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4110 /* 4111 * Watermark failed for this zone, but see if we can 4112 * grow this zone if it contains deferred pages. 4113 */ 4114 if (static_branch_unlikely(&deferred_pages)) { 4115 if (_deferred_grow_zone(zone, order)) 4116 goto try_this_zone; 4117 } 4118 #endif 4119 /* Checked here to keep the fast path fast */ 4120 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4121 if (alloc_flags & ALLOC_NO_WATERMARKS) 4122 goto try_this_zone; 4123 4124 if (!node_reclaim_enabled() || 4125 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4126 continue; 4127 4128 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4129 switch (ret) { 4130 case NODE_RECLAIM_NOSCAN: 4131 /* did not scan */ 4132 continue; 4133 case NODE_RECLAIM_FULL: 4134 /* scanned but unreclaimable */ 4135 continue; 4136 default: 4137 /* did we reclaim enough */ 4138 if (zone_watermark_ok(zone, order, mark, 4139 ac->highest_zoneidx, alloc_flags)) 4140 goto try_this_zone; 4141 4142 continue; 4143 } 4144 } 4145 4146 try_this_zone: 4147 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4148 gfp_mask, alloc_flags, ac->migratetype); 4149 if (page) { 4150 prep_new_page(page, order, gfp_mask, alloc_flags); 4151 4152 /* 4153 * If this is a high-order atomic allocation then check 4154 * if the pageblock should be reserved for the future 4155 */ 4156 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4157 reserve_highatomic_pageblock(page, zone, order); 4158 4159 return page; 4160 } else { 4161 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4162 /* Try again if zone has deferred pages */ 4163 if (static_branch_unlikely(&deferred_pages)) { 4164 if (_deferred_grow_zone(zone, order)) 4165 goto try_this_zone; 4166 } 4167 #endif 4168 } 4169 } 4170 4171 /* 4172 * It's possible on a UMA machine to get through all zones that are 4173 * fragmented. If avoiding fragmentation, reset and try again. 4174 */ 4175 if (no_fallback) { 4176 alloc_flags &= ~ALLOC_NOFRAGMENT; 4177 goto retry; 4178 } 4179 4180 return NULL; 4181 } 4182 4183 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4184 { 4185 unsigned int filter = SHOW_MEM_FILTER_NODES; 4186 4187 /* 4188 * This documents exceptions given to allocations in certain 4189 * contexts that are allowed to allocate outside current's set 4190 * of allowed nodes. 4191 */ 4192 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4193 if (tsk_is_oom_victim(current) || 4194 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4195 filter &= ~SHOW_MEM_FILTER_NODES; 4196 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4197 filter &= ~SHOW_MEM_FILTER_NODES; 4198 4199 show_mem(filter, nodemask); 4200 } 4201 4202 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4203 { 4204 struct va_format vaf; 4205 va_list args; 4206 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4207 4208 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4209 return; 4210 4211 va_start(args, fmt); 4212 vaf.fmt = fmt; 4213 vaf.va = &args; 4214 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4215 current->comm, &vaf, gfp_mask, &gfp_mask, 4216 nodemask_pr_args(nodemask)); 4217 va_end(args); 4218 4219 cpuset_print_current_mems_allowed(); 4220 pr_cont("\n"); 4221 dump_stack(); 4222 warn_alloc_show_mem(gfp_mask, nodemask); 4223 } 4224 4225 static inline struct page * 4226 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4227 unsigned int alloc_flags, 4228 const struct alloc_context *ac) 4229 { 4230 struct page *page; 4231 4232 page = get_page_from_freelist(gfp_mask, order, 4233 alloc_flags|ALLOC_CPUSET, ac); 4234 /* 4235 * fallback to ignore cpuset restriction if our nodes 4236 * are depleted 4237 */ 4238 if (!page) 4239 page = get_page_from_freelist(gfp_mask, order, 4240 alloc_flags, ac); 4241 4242 return page; 4243 } 4244 4245 static inline struct page * 4246 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4247 const struct alloc_context *ac, unsigned long *did_some_progress) 4248 { 4249 struct oom_control oc = { 4250 .zonelist = ac->zonelist, 4251 .nodemask = ac->nodemask, 4252 .memcg = NULL, 4253 .gfp_mask = gfp_mask, 4254 .order = order, 4255 }; 4256 struct page *page; 4257 4258 *did_some_progress = 0; 4259 4260 /* 4261 * Acquire the oom lock. If that fails, somebody else is 4262 * making progress for us. 4263 */ 4264 if (!mutex_trylock(&oom_lock)) { 4265 *did_some_progress = 1; 4266 schedule_timeout_uninterruptible(1); 4267 return NULL; 4268 } 4269 4270 /* 4271 * Go through the zonelist yet one more time, keep very high watermark 4272 * here, this is only to catch a parallel oom killing, we must fail if 4273 * we're still under heavy pressure. But make sure that this reclaim 4274 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4275 * allocation which will never fail due to oom_lock already held. 4276 */ 4277 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4278 ~__GFP_DIRECT_RECLAIM, order, 4279 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4280 if (page) 4281 goto out; 4282 4283 /* Coredumps can quickly deplete all memory reserves */ 4284 if (current->flags & PF_DUMPCORE) 4285 goto out; 4286 /* The OOM killer will not help higher order allocs */ 4287 if (order > PAGE_ALLOC_COSTLY_ORDER) 4288 goto out; 4289 /* 4290 * We have already exhausted all our reclaim opportunities without any 4291 * success so it is time to admit defeat. We will skip the OOM killer 4292 * because it is very likely that the caller has a more reasonable 4293 * fallback than shooting a random task. 4294 * 4295 * The OOM killer may not free memory on a specific node. 4296 */ 4297 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4298 goto out; 4299 /* The OOM killer does not needlessly kill tasks for lowmem */ 4300 if (ac->highest_zoneidx < ZONE_NORMAL) 4301 goto out; 4302 if (pm_suspended_storage()) 4303 goto out; 4304 /* 4305 * XXX: GFP_NOFS allocations should rather fail than rely on 4306 * other request to make a forward progress. 4307 * We are in an unfortunate situation where out_of_memory cannot 4308 * do much for this context but let's try it to at least get 4309 * access to memory reserved if the current task is killed (see 4310 * out_of_memory). Once filesystems are ready to handle allocation 4311 * failures more gracefully we should just bail out here. 4312 */ 4313 4314 /* Exhausted what can be done so it's blame time */ 4315 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4316 *did_some_progress = 1; 4317 4318 /* 4319 * Help non-failing allocations by giving them access to memory 4320 * reserves 4321 */ 4322 if (gfp_mask & __GFP_NOFAIL) 4323 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4324 ALLOC_NO_WATERMARKS, ac); 4325 } 4326 out: 4327 mutex_unlock(&oom_lock); 4328 return page; 4329 } 4330 4331 /* 4332 * Maximum number of compaction retries with a progress before OOM 4333 * killer is consider as the only way to move forward. 4334 */ 4335 #define MAX_COMPACT_RETRIES 16 4336 4337 #ifdef CONFIG_COMPACTION 4338 /* Try memory compaction for high-order allocations before reclaim */ 4339 static struct page * 4340 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4341 unsigned int alloc_flags, const struct alloc_context *ac, 4342 enum compact_priority prio, enum compact_result *compact_result) 4343 { 4344 struct page *page = NULL; 4345 unsigned long pflags; 4346 unsigned int noreclaim_flag; 4347 4348 if (!order) 4349 return NULL; 4350 4351 psi_memstall_enter(&pflags); 4352 delayacct_compact_start(); 4353 noreclaim_flag = memalloc_noreclaim_save(); 4354 4355 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4356 prio, &page); 4357 4358 memalloc_noreclaim_restore(noreclaim_flag); 4359 psi_memstall_leave(&pflags); 4360 delayacct_compact_end(); 4361 4362 if (*compact_result == COMPACT_SKIPPED) 4363 return NULL; 4364 /* 4365 * At least in one zone compaction wasn't deferred or skipped, so let's 4366 * count a compaction stall 4367 */ 4368 count_vm_event(COMPACTSTALL); 4369 4370 /* Prep a captured page if available */ 4371 if (page) 4372 prep_new_page(page, order, gfp_mask, alloc_flags); 4373 4374 /* Try get a page from the freelist if available */ 4375 if (!page) 4376 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4377 4378 if (page) { 4379 struct zone *zone = page_zone(page); 4380 4381 zone->compact_blockskip_flush = false; 4382 compaction_defer_reset(zone, order, true); 4383 count_vm_event(COMPACTSUCCESS); 4384 return page; 4385 } 4386 4387 /* 4388 * It's bad if compaction run occurs and fails. The most likely reason 4389 * is that pages exist, but not enough to satisfy watermarks. 4390 */ 4391 count_vm_event(COMPACTFAIL); 4392 4393 cond_resched(); 4394 4395 return NULL; 4396 } 4397 4398 static inline bool 4399 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4400 enum compact_result compact_result, 4401 enum compact_priority *compact_priority, 4402 int *compaction_retries) 4403 { 4404 int max_retries = MAX_COMPACT_RETRIES; 4405 int min_priority; 4406 bool ret = false; 4407 int retries = *compaction_retries; 4408 enum compact_priority priority = *compact_priority; 4409 4410 if (!order) 4411 return false; 4412 4413 if (fatal_signal_pending(current)) 4414 return false; 4415 4416 if (compaction_made_progress(compact_result)) 4417 (*compaction_retries)++; 4418 4419 /* 4420 * compaction considers all the zone as desperately out of memory 4421 * so it doesn't really make much sense to retry except when the 4422 * failure could be caused by insufficient priority 4423 */ 4424 if (compaction_failed(compact_result)) 4425 goto check_priority; 4426 4427 /* 4428 * compaction was skipped because there are not enough order-0 pages 4429 * to work with, so we retry only if it looks like reclaim can help. 4430 */ 4431 if (compaction_needs_reclaim(compact_result)) { 4432 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4433 goto out; 4434 } 4435 4436 /* 4437 * make sure the compaction wasn't deferred or didn't bail out early 4438 * due to locks contention before we declare that we should give up. 4439 * But the next retry should use a higher priority if allowed, so 4440 * we don't just keep bailing out endlessly. 4441 */ 4442 if (compaction_withdrawn(compact_result)) { 4443 goto check_priority; 4444 } 4445 4446 /* 4447 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4448 * costly ones because they are de facto nofail and invoke OOM 4449 * killer to move on while costly can fail and users are ready 4450 * to cope with that. 1/4 retries is rather arbitrary but we 4451 * would need much more detailed feedback from compaction to 4452 * make a better decision. 4453 */ 4454 if (order > PAGE_ALLOC_COSTLY_ORDER) 4455 max_retries /= 4; 4456 if (*compaction_retries <= max_retries) { 4457 ret = true; 4458 goto out; 4459 } 4460 4461 /* 4462 * Make sure there are attempts at the highest priority if we exhausted 4463 * all retries or failed at the lower priorities. 4464 */ 4465 check_priority: 4466 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4467 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4468 4469 if (*compact_priority > min_priority) { 4470 (*compact_priority)--; 4471 *compaction_retries = 0; 4472 ret = true; 4473 } 4474 out: 4475 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4476 return ret; 4477 } 4478 #else 4479 static inline struct page * 4480 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4481 unsigned int alloc_flags, const struct alloc_context *ac, 4482 enum compact_priority prio, enum compact_result *compact_result) 4483 { 4484 *compact_result = COMPACT_SKIPPED; 4485 return NULL; 4486 } 4487 4488 static inline bool 4489 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4490 enum compact_result compact_result, 4491 enum compact_priority *compact_priority, 4492 int *compaction_retries) 4493 { 4494 struct zone *zone; 4495 struct zoneref *z; 4496 4497 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4498 return false; 4499 4500 /* 4501 * There are setups with compaction disabled which would prefer to loop 4502 * inside the allocator rather than hit the oom killer prematurely. 4503 * Let's give them a good hope and keep retrying while the order-0 4504 * watermarks are OK. 4505 */ 4506 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4507 ac->highest_zoneidx, ac->nodemask) { 4508 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4509 ac->highest_zoneidx, alloc_flags)) 4510 return true; 4511 } 4512 return false; 4513 } 4514 #endif /* CONFIG_COMPACTION */ 4515 4516 #ifdef CONFIG_LOCKDEP 4517 static struct lockdep_map __fs_reclaim_map = 4518 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4519 4520 static bool __need_reclaim(gfp_t gfp_mask) 4521 { 4522 /* no reclaim without waiting on it */ 4523 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4524 return false; 4525 4526 /* this guy won't enter reclaim */ 4527 if (current->flags & PF_MEMALLOC) 4528 return false; 4529 4530 if (gfp_mask & __GFP_NOLOCKDEP) 4531 return false; 4532 4533 return true; 4534 } 4535 4536 void __fs_reclaim_acquire(unsigned long ip) 4537 { 4538 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4539 } 4540 4541 void __fs_reclaim_release(unsigned long ip) 4542 { 4543 lock_release(&__fs_reclaim_map, ip); 4544 } 4545 4546 void fs_reclaim_acquire(gfp_t gfp_mask) 4547 { 4548 gfp_mask = current_gfp_context(gfp_mask); 4549 4550 if (__need_reclaim(gfp_mask)) { 4551 if (gfp_mask & __GFP_FS) 4552 __fs_reclaim_acquire(_RET_IP_); 4553 4554 #ifdef CONFIG_MMU_NOTIFIER 4555 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4556 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4557 #endif 4558 4559 } 4560 } 4561 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4562 4563 void fs_reclaim_release(gfp_t gfp_mask) 4564 { 4565 gfp_mask = current_gfp_context(gfp_mask); 4566 4567 if (__need_reclaim(gfp_mask)) { 4568 if (gfp_mask & __GFP_FS) 4569 __fs_reclaim_release(_RET_IP_); 4570 } 4571 } 4572 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4573 #endif 4574 4575 /* Perform direct synchronous page reclaim */ 4576 static unsigned long 4577 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4578 const struct alloc_context *ac) 4579 { 4580 unsigned int noreclaim_flag; 4581 unsigned long pflags, progress; 4582 4583 cond_resched(); 4584 4585 /* We now go into synchronous reclaim */ 4586 cpuset_memory_pressure_bump(); 4587 psi_memstall_enter(&pflags); 4588 fs_reclaim_acquire(gfp_mask); 4589 noreclaim_flag = memalloc_noreclaim_save(); 4590 4591 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4592 ac->nodemask); 4593 4594 memalloc_noreclaim_restore(noreclaim_flag); 4595 fs_reclaim_release(gfp_mask); 4596 psi_memstall_leave(&pflags); 4597 4598 cond_resched(); 4599 4600 return progress; 4601 } 4602 4603 /* The really slow allocator path where we enter direct reclaim */ 4604 static inline struct page * 4605 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4606 unsigned int alloc_flags, const struct alloc_context *ac, 4607 unsigned long *did_some_progress) 4608 { 4609 struct page *page = NULL; 4610 bool drained = false; 4611 4612 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4613 if (unlikely(!(*did_some_progress))) 4614 return NULL; 4615 4616 retry: 4617 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4618 4619 /* 4620 * If an allocation failed after direct reclaim, it could be because 4621 * pages are pinned on the per-cpu lists or in high alloc reserves. 4622 * Shrink them and try again 4623 */ 4624 if (!page && !drained) { 4625 unreserve_highatomic_pageblock(ac, false); 4626 drain_all_pages(NULL); 4627 drained = true; 4628 goto retry; 4629 } 4630 4631 return page; 4632 } 4633 4634 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4635 const struct alloc_context *ac) 4636 { 4637 struct zoneref *z; 4638 struct zone *zone; 4639 pg_data_t *last_pgdat = NULL; 4640 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4641 4642 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4643 ac->nodemask) { 4644 if (last_pgdat != zone->zone_pgdat) 4645 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4646 last_pgdat = zone->zone_pgdat; 4647 } 4648 } 4649 4650 static inline unsigned int 4651 gfp_to_alloc_flags(gfp_t gfp_mask) 4652 { 4653 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4654 4655 /* 4656 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4657 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4658 * to save two branches. 4659 */ 4660 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4661 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4662 4663 /* 4664 * The caller may dip into page reserves a bit more if the caller 4665 * cannot run direct reclaim, or if the caller has realtime scheduling 4666 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4667 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4668 */ 4669 alloc_flags |= (__force int) 4670 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4671 4672 if (gfp_mask & __GFP_ATOMIC) { 4673 /* 4674 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4675 * if it can't schedule. 4676 */ 4677 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4678 alloc_flags |= ALLOC_HARDER; 4679 /* 4680 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4681 * comment for __cpuset_node_allowed(). 4682 */ 4683 alloc_flags &= ~ALLOC_CPUSET; 4684 } else if (unlikely(rt_task(current)) && in_task()) 4685 alloc_flags |= ALLOC_HARDER; 4686 4687 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4688 4689 return alloc_flags; 4690 } 4691 4692 static bool oom_reserves_allowed(struct task_struct *tsk) 4693 { 4694 if (!tsk_is_oom_victim(tsk)) 4695 return false; 4696 4697 /* 4698 * !MMU doesn't have oom reaper so give access to memory reserves 4699 * only to the thread with TIF_MEMDIE set 4700 */ 4701 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4702 return false; 4703 4704 return true; 4705 } 4706 4707 /* 4708 * Distinguish requests which really need access to full memory 4709 * reserves from oom victims which can live with a portion of it 4710 */ 4711 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4712 { 4713 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4714 return 0; 4715 if (gfp_mask & __GFP_MEMALLOC) 4716 return ALLOC_NO_WATERMARKS; 4717 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4718 return ALLOC_NO_WATERMARKS; 4719 if (!in_interrupt()) { 4720 if (current->flags & PF_MEMALLOC) 4721 return ALLOC_NO_WATERMARKS; 4722 else if (oom_reserves_allowed(current)) 4723 return ALLOC_OOM; 4724 } 4725 4726 return 0; 4727 } 4728 4729 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4730 { 4731 return !!__gfp_pfmemalloc_flags(gfp_mask); 4732 } 4733 4734 /* 4735 * Checks whether it makes sense to retry the reclaim to make a forward progress 4736 * for the given allocation request. 4737 * 4738 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4739 * without success, or when we couldn't even meet the watermark if we 4740 * reclaimed all remaining pages on the LRU lists. 4741 * 4742 * Returns true if a retry is viable or false to enter the oom path. 4743 */ 4744 static inline bool 4745 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4746 struct alloc_context *ac, int alloc_flags, 4747 bool did_some_progress, int *no_progress_loops) 4748 { 4749 struct zone *zone; 4750 struct zoneref *z; 4751 bool ret = false; 4752 4753 /* 4754 * Costly allocations might have made a progress but this doesn't mean 4755 * their order will become available due to high fragmentation so 4756 * always increment the no progress counter for them 4757 */ 4758 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4759 *no_progress_loops = 0; 4760 else 4761 (*no_progress_loops)++; 4762 4763 /* 4764 * Make sure we converge to OOM if we cannot make any progress 4765 * several times in the row. 4766 */ 4767 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4768 /* Before OOM, exhaust highatomic_reserve */ 4769 return unreserve_highatomic_pageblock(ac, true); 4770 } 4771 4772 /* 4773 * Keep reclaiming pages while there is a chance this will lead 4774 * somewhere. If none of the target zones can satisfy our allocation 4775 * request even if all reclaimable pages are considered then we are 4776 * screwed and have to go OOM. 4777 */ 4778 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4779 ac->highest_zoneidx, ac->nodemask) { 4780 unsigned long available; 4781 unsigned long reclaimable; 4782 unsigned long min_wmark = min_wmark_pages(zone); 4783 bool wmark; 4784 4785 available = reclaimable = zone_reclaimable_pages(zone); 4786 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4787 4788 /* 4789 * Would the allocation succeed if we reclaimed all 4790 * reclaimable pages? 4791 */ 4792 wmark = __zone_watermark_ok(zone, order, min_wmark, 4793 ac->highest_zoneidx, alloc_flags, available); 4794 trace_reclaim_retry_zone(z, order, reclaimable, 4795 available, min_wmark, *no_progress_loops, wmark); 4796 if (wmark) { 4797 ret = true; 4798 break; 4799 } 4800 } 4801 4802 /* 4803 * Memory allocation/reclaim might be called from a WQ context and the 4804 * current implementation of the WQ concurrency control doesn't 4805 * recognize that a particular WQ is congested if the worker thread is 4806 * looping without ever sleeping. Therefore we have to do a short sleep 4807 * here rather than calling cond_resched(). 4808 */ 4809 if (current->flags & PF_WQ_WORKER) 4810 schedule_timeout_uninterruptible(1); 4811 else 4812 cond_resched(); 4813 return ret; 4814 } 4815 4816 static inline bool 4817 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4818 { 4819 /* 4820 * It's possible that cpuset's mems_allowed and the nodemask from 4821 * mempolicy don't intersect. This should be normally dealt with by 4822 * policy_nodemask(), but it's possible to race with cpuset update in 4823 * such a way the check therein was true, and then it became false 4824 * before we got our cpuset_mems_cookie here. 4825 * This assumes that for all allocations, ac->nodemask can come only 4826 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4827 * when it does not intersect with the cpuset restrictions) or the 4828 * caller can deal with a violated nodemask. 4829 */ 4830 if (cpusets_enabled() && ac->nodemask && 4831 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4832 ac->nodemask = NULL; 4833 return true; 4834 } 4835 4836 /* 4837 * When updating a task's mems_allowed or mempolicy nodemask, it is 4838 * possible to race with parallel threads in such a way that our 4839 * allocation can fail while the mask is being updated. If we are about 4840 * to fail, check if the cpuset changed during allocation and if so, 4841 * retry. 4842 */ 4843 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4844 return true; 4845 4846 return false; 4847 } 4848 4849 static inline struct page * 4850 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4851 struct alloc_context *ac) 4852 { 4853 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4854 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4855 struct page *page = NULL; 4856 unsigned int alloc_flags; 4857 unsigned long did_some_progress; 4858 enum compact_priority compact_priority; 4859 enum compact_result compact_result; 4860 int compaction_retries; 4861 int no_progress_loops; 4862 unsigned int cpuset_mems_cookie; 4863 int reserve_flags; 4864 4865 /* 4866 * We also sanity check to catch abuse of atomic reserves being used by 4867 * callers that are not in atomic context. 4868 */ 4869 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4870 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4871 gfp_mask &= ~__GFP_ATOMIC; 4872 4873 retry_cpuset: 4874 compaction_retries = 0; 4875 no_progress_loops = 0; 4876 compact_priority = DEF_COMPACT_PRIORITY; 4877 cpuset_mems_cookie = read_mems_allowed_begin(); 4878 4879 /* 4880 * The fast path uses conservative alloc_flags to succeed only until 4881 * kswapd needs to be woken up, and to avoid the cost of setting up 4882 * alloc_flags precisely. So we do that now. 4883 */ 4884 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4885 4886 /* 4887 * We need to recalculate the starting point for the zonelist iterator 4888 * because we might have used different nodemask in the fast path, or 4889 * there was a cpuset modification and we are retrying - otherwise we 4890 * could end up iterating over non-eligible zones endlessly. 4891 */ 4892 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4893 ac->highest_zoneidx, ac->nodemask); 4894 if (!ac->preferred_zoneref->zone) 4895 goto nopage; 4896 4897 /* 4898 * Check for insane configurations where the cpuset doesn't contain 4899 * any suitable zone to satisfy the request - e.g. non-movable 4900 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4901 */ 4902 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4903 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4904 ac->highest_zoneidx, 4905 &cpuset_current_mems_allowed); 4906 if (!z->zone) 4907 goto nopage; 4908 } 4909 4910 if (alloc_flags & ALLOC_KSWAPD) 4911 wake_all_kswapds(order, gfp_mask, ac); 4912 4913 /* 4914 * The adjusted alloc_flags might result in immediate success, so try 4915 * that first 4916 */ 4917 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4918 if (page) 4919 goto got_pg; 4920 4921 /* 4922 * For costly allocations, try direct compaction first, as it's likely 4923 * that we have enough base pages and don't need to reclaim. For non- 4924 * movable high-order allocations, do that as well, as compaction will 4925 * try prevent permanent fragmentation by migrating from blocks of the 4926 * same migratetype. 4927 * Don't try this for allocations that are allowed to ignore 4928 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4929 */ 4930 if (can_direct_reclaim && 4931 (costly_order || 4932 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4933 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4934 page = __alloc_pages_direct_compact(gfp_mask, order, 4935 alloc_flags, ac, 4936 INIT_COMPACT_PRIORITY, 4937 &compact_result); 4938 if (page) 4939 goto got_pg; 4940 4941 /* 4942 * Checks for costly allocations with __GFP_NORETRY, which 4943 * includes some THP page fault allocations 4944 */ 4945 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4946 /* 4947 * If allocating entire pageblock(s) and compaction 4948 * failed because all zones are below low watermarks 4949 * or is prohibited because it recently failed at this 4950 * order, fail immediately unless the allocator has 4951 * requested compaction and reclaim retry. 4952 * 4953 * Reclaim is 4954 * - potentially very expensive because zones are far 4955 * below their low watermarks or this is part of very 4956 * bursty high order allocations, 4957 * - not guaranteed to help because isolate_freepages() 4958 * may not iterate over freed pages as part of its 4959 * linear scan, and 4960 * - unlikely to make entire pageblocks free on its 4961 * own. 4962 */ 4963 if (compact_result == COMPACT_SKIPPED || 4964 compact_result == COMPACT_DEFERRED) 4965 goto nopage; 4966 4967 /* 4968 * Looks like reclaim/compaction is worth trying, but 4969 * sync compaction could be very expensive, so keep 4970 * using async compaction. 4971 */ 4972 compact_priority = INIT_COMPACT_PRIORITY; 4973 } 4974 } 4975 4976 retry: 4977 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4978 if (alloc_flags & ALLOC_KSWAPD) 4979 wake_all_kswapds(order, gfp_mask, ac); 4980 4981 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4982 if (reserve_flags) 4983 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 4984 4985 /* 4986 * Reset the nodemask and zonelist iterators if memory policies can be 4987 * ignored. These allocations are high priority and system rather than 4988 * user oriented. 4989 */ 4990 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4991 ac->nodemask = NULL; 4992 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4993 ac->highest_zoneidx, ac->nodemask); 4994 } 4995 4996 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4997 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4998 if (page) 4999 goto got_pg; 5000 5001 /* Caller is not willing to reclaim, we can't balance anything */ 5002 if (!can_direct_reclaim) 5003 goto nopage; 5004 5005 /* Avoid recursion of direct reclaim */ 5006 if (current->flags & PF_MEMALLOC) 5007 goto nopage; 5008 5009 /* Try direct reclaim and then allocating */ 5010 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5011 &did_some_progress); 5012 if (page) 5013 goto got_pg; 5014 5015 /* Try direct compaction and then allocating */ 5016 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5017 compact_priority, &compact_result); 5018 if (page) 5019 goto got_pg; 5020 5021 /* Do not loop if specifically requested */ 5022 if (gfp_mask & __GFP_NORETRY) 5023 goto nopage; 5024 5025 /* 5026 * Do not retry costly high order allocations unless they are 5027 * __GFP_RETRY_MAYFAIL 5028 */ 5029 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5030 goto nopage; 5031 5032 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5033 did_some_progress > 0, &no_progress_loops)) 5034 goto retry; 5035 5036 /* 5037 * It doesn't make any sense to retry for the compaction if the order-0 5038 * reclaim is not able to make any progress because the current 5039 * implementation of the compaction depends on the sufficient amount 5040 * of free memory (see __compaction_suitable) 5041 */ 5042 if (did_some_progress > 0 && 5043 should_compact_retry(ac, order, alloc_flags, 5044 compact_result, &compact_priority, 5045 &compaction_retries)) 5046 goto retry; 5047 5048 5049 /* Deal with possible cpuset update races before we start OOM killing */ 5050 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5051 goto retry_cpuset; 5052 5053 /* Reclaim has failed us, start killing things */ 5054 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5055 if (page) 5056 goto got_pg; 5057 5058 /* Avoid allocations with no watermarks from looping endlessly */ 5059 if (tsk_is_oom_victim(current) && 5060 (alloc_flags & ALLOC_OOM || 5061 (gfp_mask & __GFP_NOMEMALLOC))) 5062 goto nopage; 5063 5064 /* Retry as long as the OOM killer is making progress */ 5065 if (did_some_progress) { 5066 no_progress_loops = 0; 5067 goto retry; 5068 } 5069 5070 nopage: 5071 /* Deal with possible cpuset update races before we fail */ 5072 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5073 goto retry_cpuset; 5074 5075 /* 5076 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5077 * we always retry 5078 */ 5079 if (gfp_mask & __GFP_NOFAIL) { 5080 /* 5081 * All existing users of the __GFP_NOFAIL are blockable, so warn 5082 * of any new users that actually require GFP_NOWAIT 5083 */ 5084 if (WARN_ON_ONCE(!can_direct_reclaim)) 5085 goto fail; 5086 5087 /* 5088 * PF_MEMALLOC request from this context is rather bizarre 5089 * because we cannot reclaim anything and only can loop waiting 5090 * for somebody to do a work for us 5091 */ 5092 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 5093 5094 /* 5095 * non failing costly orders are a hard requirement which we 5096 * are not prepared for much so let's warn about these users 5097 * so that we can identify them and convert them to something 5098 * else. 5099 */ 5100 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 5101 5102 /* 5103 * Help non-failing allocations by giving them access to memory 5104 * reserves but do not use ALLOC_NO_WATERMARKS because this 5105 * could deplete whole memory reserves which would just make 5106 * the situation worse 5107 */ 5108 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5109 if (page) 5110 goto got_pg; 5111 5112 cond_resched(); 5113 goto retry; 5114 } 5115 fail: 5116 warn_alloc(gfp_mask, ac->nodemask, 5117 "page allocation failure: order:%u", order); 5118 got_pg: 5119 return page; 5120 } 5121 5122 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5123 int preferred_nid, nodemask_t *nodemask, 5124 struct alloc_context *ac, gfp_t *alloc_gfp, 5125 unsigned int *alloc_flags) 5126 { 5127 ac->highest_zoneidx = gfp_zone(gfp_mask); 5128 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5129 ac->nodemask = nodemask; 5130 ac->migratetype = gfp_migratetype(gfp_mask); 5131 5132 if (cpusets_enabled()) { 5133 *alloc_gfp |= __GFP_HARDWALL; 5134 /* 5135 * When we are in the interrupt context, it is irrelevant 5136 * to the current task context. It means that any node ok. 5137 */ 5138 if (in_task() && !ac->nodemask) 5139 ac->nodemask = &cpuset_current_mems_allowed; 5140 else 5141 *alloc_flags |= ALLOC_CPUSET; 5142 } 5143 5144 fs_reclaim_acquire(gfp_mask); 5145 fs_reclaim_release(gfp_mask); 5146 5147 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5148 5149 if (should_fail_alloc_page(gfp_mask, order)) 5150 return false; 5151 5152 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5153 5154 /* Dirty zone balancing only done in the fast path */ 5155 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5156 5157 /* 5158 * The preferred zone is used for statistics but crucially it is 5159 * also used as the starting point for the zonelist iterator. It 5160 * may get reset for allocations that ignore memory policies. 5161 */ 5162 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5163 ac->highest_zoneidx, ac->nodemask); 5164 5165 return true; 5166 } 5167 5168 /* 5169 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5170 * @gfp: GFP flags for the allocation 5171 * @preferred_nid: The preferred NUMA node ID to allocate from 5172 * @nodemask: Set of nodes to allocate from, may be NULL 5173 * @nr_pages: The number of pages desired on the list or array 5174 * @page_list: Optional list to store the allocated pages 5175 * @page_array: Optional array to store the pages 5176 * 5177 * This is a batched version of the page allocator that attempts to 5178 * allocate nr_pages quickly. Pages are added to page_list if page_list 5179 * is not NULL, otherwise it is assumed that the page_array is valid. 5180 * 5181 * For lists, nr_pages is the number of pages that should be allocated. 5182 * 5183 * For arrays, only NULL elements are populated with pages and nr_pages 5184 * is the maximum number of pages that will be stored in the array. 5185 * 5186 * Returns the number of pages on the list or array. 5187 */ 5188 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5189 nodemask_t *nodemask, int nr_pages, 5190 struct list_head *page_list, 5191 struct page **page_array) 5192 { 5193 struct page *page; 5194 unsigned long flags; 5195 struct zone *zone; 5196 struct zoneref *z; 5197 struct per_cpu_pages *pcp; 5198 struct list_head *pcp_list; 5199 struct alloc_context ac; 5200 gfp_t alloc_gfp; 5201 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5202 int nr_populated = 0, nr_account = 0; 5203 5204 /* 5205 * Skip populated array elements to determine if any pages need 5206 * to be allocated before disabling IRQs. 5207 */ 5208 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5209 nr_populated++; 5210 5211 /* No pages requested? */ 5212 if (unlikely(nr_pages <= 0)) 5213 goto out; 5214 5215 /* Already populated array? */ 5216 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5217 goto out; 5218 5219 /* Bulk allocator does not support memcg accounting. */ 5220 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5221 goto failed; 5222 5223 /* Use the single page allocator for one page. */ 5224 if (nr_pages - nr_populated == 1) 5225 goto failed; 5226 5227 #ifdef CONFIG_PAGE_OWNER 5228 /* 5229 * PAGE_OWNER may recurse into the allocator to allocate space to 5230 * save the stack with pagesets.lock held. Releasing/reacquiring 5231 * removes much of the performance benefit of bulk allocation so 5232 * force the caller to allocate one page at a time as it'll have 5233 * similar performance to added complexity to the bulk allocator. 5234 */ 5235 if (static_branch_unlikely(&page_owner_inited)) 5236 goto failed; 5237 #endif 5238 5239 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5240 gfp &= gfp_allowed_mask; 5241 alloc_gfp = gfp; 5242 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5243 goto out; 5244 gfp = alloc_gfp; 5245 5246 /* Find an allowed local zone that meets the low watermark. */ 5247 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5248 unsigned long mark; 5249 5250 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5251 !__cpuset_zone_allowed(zone, gfp)) { 5252 continue; 5253 } 5254 5255 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5256 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5257 goto failed; 5258 } 5259 5260 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5261 if (zone_watermark_fast(zone, 0, mark, 5262 zonelist_zone_idx(ac.preferred_zoneref), 5263 alloc_flags, gfp)) { 5264 break; 5265 } 5266 } 5267 5268 /* 5269 * If there are no allowed local zones that meets the watermarks then 5270 * try to allocate a single page and reclaim if necessary. 5271 */ 5272 if (unlikely(!zone)) 5273 goto failed; 5274 5275 /* Attempt the batch allocation */ 5276 local_lock_irqsave(&pagesets.lock, flags); 5277 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5278 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5279 5280 while (nr_populated < nr_pages) { 5281 5282 /* Skip existing pages */ 5283 if (page_array && page_array[nr_populated]) { 5284 nr_populated++; 5285 continue; 5286 } 5287 5288 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5289 pcp, pcp_list); 5290 if (unlikely(!page)) { 5291 /* Try and get at least one page */ 5292 if (!nr_populated) 5293 goto failed_irq; 5294 break; 5295 } 5296 nr_account++; 5297 5298 prep_new_page(page, 0, gfp, 0); 5299 if (page_list) 5300 list_add(&page->lru, page_list); 5301 else 5302 page_array[nr_populated] = page; 5303 nr_populated++; 5304 } 5305 5306 local_unlock_irqrestore(&pagesets.lock, flags); 5307 5308 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5309 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5310 5311 out: 5312 return nr_populated; 5313 5314 failed_irq: 5315 local_unlock_irqrestore(&pagesets.lock, flags); 5316 5317 failed: 5318 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5319 if (page) { 5320 if (page_list) 5321 list_add(&page->lru, page_list); 5322 else 5323 page_array[nr_populated] = page; 5324 nr_populated++; 5325 } 5326 5327 goto out; 5328 } 5329 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5330 5331 /* 5332 * This is the 'heart' of the zoned buddy allocator. 5333 */ 5334 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5335 nodemask_t *nodemask) 5336 { 5337 struct page *page; 5338 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5339 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5340 struct alloc_context ac = { }; 5341 5342 /* 5343 * There are several places where we assume that the order value is sane 5344 * so bail out early if the request is out of bound. 5345 */ 5346 if (unlikely(order >= MAX_ORDER)) { 5347 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5348 return NULL; 5349 } 5350 5351 gfp &= gfp_allowed_mask; 5352 /* 5353 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5354 * resp. GFP_NOIO which has to be inherited for all allocation requests 5355 * from a particular context which has been marked by 5356 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5357 * movable zones are not used during allocation. 5358 */ 5359 gfp = current_gfp_context(gfp); 5360 alloc_gfp = gfp; 5361 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5362 &alloc_gfp, &alloc_flags)) 5363 return NULL; 5364 5365 /* 5366 * Forbid the first pass from falling back to types that fragment 5367 * memory until all local zones are considered. 5368 */ 5369 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5370 5371 /* First allocation attempt */ 5372 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5373 if (likely(page)) 5374 goto out; 5375 5376 alloc_gfp = gfp; 5377 ac.spread_dirty_pages = false; 5378 5379 /* 5380 * Restore the original nodemask if it was potentially replaced with 5381 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5382 */ 5383 ac.nodemask = nodemask; 5384 5385 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5386 5387 out: 5388 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5389 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5390 __free_pages(page, order); 5391 page = NULL; 5392 } 5393 5394 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5395 5396 return page; 5397 } 5398 EXPORT_SYMBOL(__alloc_pages); 5399 5400 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5401 nodemask_t *nodemask) 5402 { 5403 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5404 preferred_nid, nodemask); 5405 5406 if (page && order > 1) 5407 prep_transhuge_page(page); 5408 return (struct folio *)page; 5409 } 5410 EXPORT_SYMBOL(__folio_alloc); 5411 5412 /* 5413 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5414 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5415 * you need to access high mem. 5416 */ 5417 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5418 { 5419 struct page *page; 5420 5421 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5422 if (!page) 5423 return 0; 5424 return (unsigned long) page_address(page); 5425 } 5426 EXPORT_SYMBOL(__get_free_pages); 5427 5428 unsigned long get_zeroed_page(gfp_t gfp_mask) 5429 { 5430 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5431 } 5432 EXPORT_SYMBOL(get_zeroed_page); 5433 5434 /** 5435 * __free_pages - Free pages allocated with alloc_pages(). 5436 * @page: The page pointer returned from alloc_pages(). 5437 * @order: The order of the allocation. 5438 * 5439 * This function can free multi-page allocations that are not compound 5440 * pages. It does not check that the @order passed in matches that of 5441 * the allocation, so it is easy to leak memory. Freeing more memory 5442 * than was allocated will probably emit a warning. 5443 * 5444 * If the last reference to this page is speculative, it will be released 5445 * by put_page() which only frees the first page of a non-compound 5446 * allocation. To prevent the remaining pages from being leaked, we free 5447 * the subsequent pages here. If you want to use the page's reference 5448 * count to decide when to free the allocation, you should allocate a 5449 * compound page, and use put_page() instead of __free_pages(). 5450 * 5451 * Context: May be called in interrupt context or while holding a normal 5452 * spinlock, but not in NMI context or while holding a raw spinlock. 5453 */ 5454 void __free_pages(struct page *page, unsigned int order) 5455 { 5456 if (put_page_testzero(page)) 5457 free_the_page(page, order); 5458 else if (!PageHead(page)) 5459 while (order-- > 0) 5460 free_the_page(page + (1 << order), order); 5461 } 5462 EXPORT_SYMBOL(__free_pages); 5463 5464 void free_pages(unsigned long addr, unsigned int order) 5465 { 5466 if (addr != 0) { 5467 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5468 __free_pages(virt_to_page((void *)addr), order); 5469 } 5470 } 5471 5472 EXPORT_SYMBOL(free_pages); 5473 5474 /* 5475 * Page Fragment: 5476 * An arbitrary-length arbitrary-offset area of memory which resides 5477 * within a 0 or higher order page. Multiple fragments within that page 5478 * are individually refcounted, in the page's reference counter. 5479 * 5480 * The page_frag functions below provide a simple allocation framework for 5481 * page fragments. This is used by the network stack and network device 5482 * drivers to provide a backing region of memory for use as either an 5483 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5484 */ 5485 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5486 gfp_t gfp_mask) 5487 { 5488 struct page *page = NULL; 5489 gfp_t gfp = gfp_mask; 5490 5491 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5492 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5493 __GFP_NOMEMALLOC; 5494 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5495 PAGE_FRAG_CACHE_MAX_ORDER); 5496 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5497 #endif 5498 if (unlikely(!page)) 5499 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5500 5501 nc->va = page ? page_address(page) : NULL; 5502 5503 return page; 5504 } 5505 5506 void __page_frag_cache_drain(struct page *page, unsigned int count) 5507 { 5508 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5509 5510 if (page_ref_sub_and_test(page, count)) 5511 free_the_page(page, compound_order(page)); 5512 } 5513 EXPORT_SYMBOL(__page_frag_cache_drain); 5514 5515 void *page_frag_alloc_align(struct page_frag_cache *nc, 5516 unsigned int fragsz, gfp_t gfp_mask, 5517 unsigned int align_mask) 5518 { 5519 unsigned int size = PAGE_SIZE; 5520 struct page *page; 5521 int offset; 5522 5523 if (unlikely(!nc->va)) { 5524 refill: 5525 page = __page_frag_cache_refill(nc, gfp_mask); 5526 if (!page) 5527 return NULL; 5528 5529 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5530 /* if size can vary use size else just use PAGE_SIZE */ 5531 size = nc->size; 5532 #endif 5533 /* Even if we own the page, we do not use atomic_set(). 5534 * This would break get_page_unless_zero() users. 5535 */ 5536 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5537 5538 /* reset page count bias and offset to start of new frag */ 5539 nc->pfmemalloc = page_is_pfmemalloc(page); 5540 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5541 nc->offset = size; 5542 } 5543 5544 offset = nc->offset - fragsz; 5545 if (unlikely(offset < 0)) { 5546 page = virt_to_page(nc->va); 5547 5548 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5549 goto refill; 5550 5551 if (unlikely(nc->pfmemalloc)) { 5552 free_the_page(page, compound_order(page)); 5553 goto refill; 5554 } 5555 5556 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5557 /* if size can vary use size else just use PAGE_SIZE */ 5558 size = nc->size; 5559 #endif 5560 /* OK, page count is 0, we can safely set it */ 5561 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5562 5563 /* reset page count bias and offset to start of new frag */ 5564 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5565 offset = size - fragsz; 5566 } 5567 5568 nc->pagecnt_bias--; 5569 offset &= align_mask; 5570 nc->offset = offset; 5571 5572 return nc->va + offset; 5573 } 5574 EXPORT_SYMBOL(page_frag_alloc_align); 5575 5576 /* 5577 * Frees a page fragment allocated out of either a compound or order 0 page. 5578 */ 5579 void page_frag_free(void *addr) 5580 { 5581 struct page *page = virt_to_head_page(addr); 5582 5583 if (unlikely(put_page_testzero(page))) 5584 free_the_page(page, compound_order(page)); 5585 } 5586 EXPORT_SYMBOL(page_frag_free); 5587 5588 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5589 size_t size) 5590 { 5591 if (addr) { 5592 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5593 unsigned long used = addr + PAGE_ALIGN(size); 5594 5595 split_page(virt_to_page((void *)addr), order); 5596 while (used < alloc_end) { 5597 free_page(used); 5598 used += PAGE_SIZE; 5599 } 5600 } 5601 return (void *)addr; 5602 } 5603 5604 /** 5605 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5606 * @size: the number of bytes to allocate 5607 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5608 * 5609 * This function is similar to alloc_pages(), except that it allocates the 5610 * minimum number of pages to satisfy the request. alloc_pages() can only 5611 * allocate memory in power-of-two pages. 5612 * 5613 * This function is also limited by MAX_ORDER. 5614 * 5615 * Memory allocated by this function must be released by free_pages_exact(). 5616 * 5617 * Return: pointer to the allocated area or %NULL in case of error. 5618 */ 5619 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5620 { 5621 unsigned int order = get_order(size); 5622 unsigned long addr; 5623 5624 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5625 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5626 5627 addr = __get_free_pages(gfp_mask, order); 5628 return make_alloc_exact(addr, order, size); 5629 } 5630 EXPORT_SYMBOL(alloc_pages_exact); 5631 5632 /** 5633 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5634 * pages on a node. 5635 * @nid: the preferred node ID where memory should be allocated 5636 * @size: the number of bytes to allocate 5637 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5638 * 5639 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5640 * back. 5641 * 5642 * Return: pointer to the allocated area or %NULL in case of error. 5643 */ 5644 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5645 { 5646 unsigned int order = get_order(size); 5647 struct page *p; 5648 5649 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5650 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5651 5652 p = alloc_pages_node(nid, gfp_mask, order); 5653 if (!p) 5654 return NULL; 5655 return make_alloc_exact((unsigned long)page_address(p), order, size); 5656 } 5657 5658 /** 5659 * free_pages_exact - release memory allocated via alloc_pages_exact() 5660 * @virt: the value returned by alloc_pages_exact. 5661 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5662 * 5663 * Release the memory allocated by a previous call to alloc_pages_exact. 5664 */ 5665 void free_pages_exact(void *virt, size_t size) 5666 { 5667 unsigned long addr = (unsigned long)virt; 5668 unsigned long end = addr + PAGE_ALIGN(size); 5669 5670 while (addr < end) { 5671 free_page(addr); 5672 addr += PAGE_SIZE; 5673 } 5674 } 5675 EXPORT_SYMBOL(free_pages_exact); 5676 5677 /** 5678 * nr_free_zone_pages - count number of pages beyond high watermark 5679 * @offset: The zone index of the highest zone 5680 * 5681 * nr_free_zone_pages() counts the number of pages which are beyond the 5682 * high watermark within all zones at or below a given zone index. For each 5683 * zone, the number of pages is calculated as: 5684 * 5685 * nr_free_zone_pages = managed_pages - high_pages 5686 * 5687 * Return: number of pages beyond high watermark. 5688 */ 5689 static unsigned long nr_free_zone_pages(int offset) 5690 { 5691 struct zoneref *z; 5692 struct zone *zone; 5693 5694 /* Just pick one node, since fallback list is circular */ 5695 unsigned long sum = 0; 5696 5697 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5698 5699 for_each_zone_zonelist(zone, z, zonelist, offset) { 5700 unsigned long size = zone_managed_pages(zone); 5701 unsigned long high = high_wmark_pages(zone); 5702 if (size > high) 5703 sum += size - high; 5704 } 5705 5706 return sum; 5707 } 5708 5709 /** 5710 * nr_free_buffer_pages - count number of pages beyond high watermark 5711 * 5712 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5713 * watermark within ZONE_DMA and ZONE_NORMAL. 5714 * 5715 * Return: number of pages beyond high watermark within ZONE_DMA and 5716 * ZONE_NORMAL. 5717 */ 5718 unsigned long nr_free_buffer_pages(void) 5719 { 5720 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5721 } 5722 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5723 5724 static inline void show_node(struct zone *zone) 5725 { 5726 if (IS_ENABLED(CONFIG_NUMA)) 5727 printk("Node %d ", zone_to_nid(zone)); 5728 } 5729 5730 long si_mem_available(void) 5731 { 5732 long available; 5733 unsigned long pagecache; 5734 unsigned long wmark_low = 0; 5735 unsigned long pages[NR_LRU_LISTS]; 5736 unsigned long reclaimable; 5737 struct zone *zone; 5738 int lru; 5739 5740 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5741 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5742 5743 for_each_zone(zone) 5744 wmark_low += low_wmark_pages(zone); 5745 5746 /* 5747 * Estimate the amount of memory available for userspace allocations, 5748 * without causing swapping. 5749 */ 5750 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5751 5752 /* 5753 * Not all the page cache can be freed, otherwise the system will 5754 * start swapping. Assume at least half of the page cache, or the 5755 * low watermark worth of cache, needs to stay. 5756 */ 5757 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5758 pagecache -= min(pagecache / 2, wmark_low); 5759 available += pagecache; 5760 5761 /* 5762 * Part of the reclaimable slab and other kernel memory consists of 5763 * items that are in use, and cannot be freed. Cap this estimate at the 5764 * low watermark. 5765 */ 5766 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5767 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5768 available += reclaimable - min(reclaimable / 2, wmark_low); 5769 5770 if (available < 0) 5771 available = 0; 5772 return available; 5773 } 5774 EXPORT_SYMBOL_GPL(si_mem_available); 5775 5776 void si_meminfo(struct sysinfo *val) 5777 { 5778 val->totalram = totalram_pages(); 5779 val->sharedram = global_node_page_state(NR_SHMEM); 5780 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5781 val->bufferram = nr_blockdev_pages(); 5782 val->totalhigh = totalhigh_pages(); 5783 val->freehigh = nr_free_highpages(); 5784 val->mem_unit = PAGE_SIZE; 5785 } 5786 5787 EXPORT_SYMBOL(si_meminfo); 5788 5789 #ifdef CONFIG_NUMA 5790 void si_meminfo_node(struct sysinfo *val, int nid) 5791 { 5792 int zone_type; /* needs to be signed */ 5793 unsigned long managed_pages = 0; 5794 unsigned long managed_highpages = 0; 5795 unsigned long free_highpages = 0; 5796 pg_data_t *pgdat = NODE_DATA(nid); 5797 5798 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5799 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5800 val->totalram = managed_pages; 5801 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5802 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5803 #ifdef CONFIG_HIGHMEM 5804 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5805 struct zone *zone = &pgdat->node_zones[zone_type]; 5806 5807 if (is_highmem(zone)) { 5808 managed_highpages += zone_managed_pages(zone); 5809 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5810 } 5811 } 5812 val->totalhigh = managed_highpages; 5813 val->freehigh = free_highpages; 5814 #else 5815 val->totalhigh = managed_highpages; 5816 val->freehigh = free_highpages; 5817 #endif 5818 val->mem_unit = PAGE_SIZE; 5819 } 5820 #endif 5821 5822 /* 5823 * Determine whether the node should be displayed or not, depending on whether 5824 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5825 */ 5826 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5827 { 5828 if (!(flags & SHOW_MEM_FILTER_NODES)) 5829 return false; 5830 5831 /* 5832 * no node mask - aka implicit memory numa policy. Do not bother with 5833 * the synchronization - read_mems_allowed_begin - because we do not 5834 * have to be precise here. 5835 */ 5836 if (!nodemask) 5837 nodemask = &cpuset_current_mems_allowed; 5838 5839 return !node_isset(nid, *nodemask); 5840 } 5841 5842 #define K(x) ((x) << (PAGE_SHIFT-10)) 5843 5844 static void show_migration_types(unsigned char type) 5845 { 5846 static const char types[MIGRATE_TYPES] = { 5847 [MIGRATE_UNMOVABLE] = 'U', 5848 [MIGRATE_MOVABLE] = 'M', 5849 [MIGRATE_RECLAIMABLE] = 'E', 5850 [MIGRATE_HIGHATOMIC] = 'H', 5851 #ifdef CONFIG_CMA 5852 [MIGRATE_CMA] = 'C', 5853 #endif 5854 #ifdef CONFIG_MEMORY_ISOLATION 5855 [MIGRATE_ISOLATE] = 'I', 5856 #endif 5857 }; 5858 char tmp[MIGRATE_TYPES + 1]; 5859 char *p = tmp; 5860 int i; 5861 5862 for (i = 0; i < MIGRATE_TYPES; i++) { 5863 if (type & (1 << i)) 5864 *p++ = types[i]; 5865 } 5866 5867 *p = '\0'; 5868 printk(KERN_CONT "(%s) ", tmp); 5869 } 5870 5871 /* 5872 * Show free area list (used inside shift_scroll-lock stuff) 5873 * We also calculate the percentage fragmentation. We do this by counting the 5874 * memory on each free list with the exception of the first item on the list. 5875 * 5876 * Bits in @filter: 5877 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5878 * cpuset. 5879 */ 5880 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5881 { 5882 unsigned long free_pcp = 0; 5883 int cpu; 5884 struct zone *zone; 5885 pg_data_t *pgdat; 5886 5887 for_each_populated_zone(zone) { 5888 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5889 continue; 5890 5891 for_each_online_cpu(cpu) 5892 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5893 } 5894 5895 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5896 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5897 " unevictable:%lu dirty:%lu writeback:%lu\n" 5898 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5899 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5900 " kernel_misc_reclaimable:%lu\n" 5901 " free:%lu free_pcp:%lu free_cma:%lu\n", 5902 global_node_page_state(NR_ACTIVE_ANON), 5903 global_node_page_state(NR_INACTIVE_ANON), 5904 global_node_page_state(NR_ISOLATED_ANON), 5905 global_node_page_state(NR_ACTIVE_FILE), 5906 global_node_page_state(NR_INACTIVE_FILE), 5907 global_node_page_state(NR_ISOLATED_FILE), 5908 global_node_page_state(NR_UNEVICTABLE), 5909 global_node_page_state(NR_FILE_DIRTY), 5910 global_node_page_state(NR_WRITEBACK), 5911 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5912 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5913 global_node_page_state(NR_FILE_MAPPED), 5914 global_node_page_state(NR_SHMEM), 5915 global_node_page_state(NR_PAGETABLE), 5916 global_zone_page_state(NR_BOUNCE), 5917 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5918 global_zone_page_state(NR_FREE_PAGES), 5919 free_pcp, 5920 global_zone_page_state(NR_FREE_CMA_PAGES)); 5921 5922 for_each_online_pgdat(pgdat) { 5923 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5924 continue; 5925 5926 printk("Node %d" 5927 " active_anon:%lukB" 5928 " inactive_anon:%lukB" 5929 " active_file:%lukB" 5930 " inactive_file:%lukB" 5931 " unevictable:%lukB" 5932 " isolated(anon):%lukB" 5933 " isolated(file):%lukB" 5934 " mapped:%lukB" 5935 " dirty:%lukB" 5936 " writeback:%lukB" 5937 " shmem:%lukB" 5938 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5939 " shmem_thp: %lukB" 5940 " shmem_pmdmapped: %lukB" 5941 " anon_thp: %lukB" 5942 #endif 5943 " writeback_tmp:%lukB" 5944 " kernel_stack:%lukB" 5945 #ifdef CONFIG_SHADOW_CALL_STACK 5946 " shadow_call_stack:%lukB" 5947 #endif 5948 " pagetables:%lukB" 5949 " all_unreclaimable? %s" 5950 "\n", 5951 pgdat->node_id, 5952 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5953 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5954 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5955 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5956 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5957 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5958 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5959 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5960 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5961 K(node_page_state(pgdat, NR_WRITEBACK)), 5962 K(node_page_state(pgdat, NR_SHMEM)), 5963 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5964 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5965 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5966 K(node_page_state(pgdat, NR_ANON_THPS)), 5967 #endif 5968 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5969 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5970 #ifdef CONFIG_SHADOW_CALL_STACK 5971 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5972 #endif 5973 K(node_page_state(pgdat, NR_PAGETABLE)), 5974 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5975 "yes" : "no"); 5976 } 5977 5978 for_each_populated_zone(zone) { 5979 int i; 5980 5981 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5982 continue; 5983 5984 free_pcp = 0; 5985 for_each_online_cpu(cpu) 5986 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5987 5988 show_node(zone); 5989 printk(KERN_CONT 5990 "%s" 5991 " free:%lukB" 5992 " boost:%lukB" 5993 " min:%lukB" 5994 " low:%lukB" 5995 " high:%lukB" 5996 " reserved_highatomic:%luKB" 5997 " active_anon:%lukB" 5998 " inactive_anon:%lukB" 5999 " active_file:%lukB" 6000 " inactive_file:%lukB" 6001 " unevictable:%lukB" 6002 " writepending:%lukB" 6003 " present:%lukB" 6004 " managed:%lukB" 6005 " mlocked:%lukB" 6006 " bounce:%lukB" 6007 " free_pcp:%lukB" 6008 " local_pcp:%ukB" 6009 " free_cma:%lukB" 6010 "\n", 6011 zone->name, 6012 K(zone_page_state(zone, NR_FREE_PAGES)), 6013 K(zone->watermark_boost), 6014 K(min_wmark_pages(zone)), 6015 K(low_wmark_pages(zone)), 6016 K(high_wmark_pages(zone)), 6017 K(zone->nr_reserved_highatomic), 6018 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6019 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6020 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6021 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6022 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6023 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6024 K(zone->present_pages), 6025 K(zone_managed_pages(zone)), 6026 K(zone_page_state(zone, NR_MLOCK)), 6027 K(zone_page_state(zone, NR_BOUNCE)), 6028 K(free_pcp), 6029 K(this_cpu_read(zone->per_cpu_pageset->count)), 6030 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6031 printk("lowmem_reserve[]:"); 6032 for (i = 0; i < MAX_NR_ZONES; i++) 6033 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6034 printk(KERN_CONT "\n"); 6035 } 6036 6037 for_each_populated_zone(zone) { 6038 unsigned int order; 6039 unsigned long nr[MAX_ORDER], flags, total = 0; 6040 unsigned char types[MAX_ORDER]; 6041 6042 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6043 continue; 6044 show_node(zone); 6045 printk(KERN_CONT "%s: ", zone->name); 6046 6047 spin_lock_irqsave(&zone->lock, flags); 6048 for (order = 0; order < MAX_ORDER; order++) { 6049 struct free_area *area = &zone->free_area[order]; 6050 int type; 6051 6052 nr[order] = area->nr_free; 6053 total += nr[order] << order; 6054 6055 types[order] = 0; 6056 for (type = 0; type < MIGRATE_TYPES; type++) { 6057 if (!free_area_empty(area, type)) 6058 types[order] |= 1 << type; 6059 } 6060 } 6061 spin_unlock_irqrestore(&zone->lock, flags); 6062 for (order = 0; order < MAX_ORDER; order++) { 6063 printk(KERN_CONT "%lu*%lukB ", 6064 nr[order], K(1UL) << order); 6065 if (nr[order]) 6066 show_migration_types(types[order]); 6067 } 6068 printk(KERN_CONT "= %lukB\n", K(total)); 6069 } 6070 6071 hugetlb_show_meminfo(); 6072 6073 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6074 6075 show_swap_cache_info(); 6076 } 6077 6078 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6079 { 6080 zoneref->zone = zone; 6081 zoneref->zone_idx = zone_idx(zone); 6082 } 6083 6084 /* 6085 * Builds allocation fallback zone lists. 6086 * 6087 * Add all populated zones of a node to the zonelist. 6088 */ 6089 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6090 { 6091 struct zone *zone; 6092 enum zone_type zone_type = MAX_NR_ZONES; 6093 int nr_zones = 0; 6094 6095 do { 6096 zone_type--; 6097 zone = pgdat->node_zones + zone_type; 6098 if (managed_zone(zone)) { 6099 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6100 check_highest_zone(zone_type); 6101 } 6102 } while (zone_type); 6103 6104 return nr_zones; 6105 } 6106 6107 #ifdef CONFIG_NUMA 6108 6109 static int __parse_numa_zonelist_order(char *s) 6110 { 6111 /* 6112 * We used to support different zonelists modes but they turned 6113 * out to be just not useful. Let's keep the warning in place 6114 * if somebody still use the cmd line parameter so that we do 6115 * not fail it silently 6116 */ 6117 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6118 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6119 return -EINVAL; 6120 } 6121 return 0; 6122 } 6123 6124 char numa_zonelist_order[] = "Node"; 6125 6126 /* 6127 * sysctl handler for numa_zonelist_order 6128 */ 6129 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6130 void *buffer, size_t *length, loff_t *ppos) 6131 { 6132 if (write) 6133 return __parse_numa_zonelist_order(buffer); 6134 return proc_dostring(table, write, buffer, length, ppos); 6135 } 6136 6137 6138 #define MAX_NODE_LOAD (nr_online_nodes) 6139 static int node_load[MAX_NUMNODES]; 6140 6141 /** 6142 * find_next_best_node - find the next node that should appear in a given node's fallback list 6143 * @node: node whose fallback list we're appending 6144 * @used_node_mask: nodemask_t of already used nodes 6145 * 6146 * We use a number of factors to determine which is the next node that should 6147 * appear on a given node's fallback list. The node should not have appeared 6148 * already in @node's fallback list, and it should be the next closest node 6149 * according to the distance array (which contains arbitrary distance values 6150 * from each node to each node in the system), and should also prefer nodes 6151 * with no CPUs, since presumably they'll have very little allocation pressure 6152 * on them otherwise. 6153 * 6154 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6155 */ 6156 int find_next_best_node(int node, nodemask_t *used_node_mask) 6157 { 6158 int n, val; 6159 int min_val = INT_MAX; 6160 int best_node = NUMA_NO_NODE; 6161 6162 /* Use the local node if we haven't already */ 6163 if (!node_isset(node, *used_node_mask)) { 6164 node_set(node, *used_node_mask); 6165 return node; 6166 } 6167 6168 for_each_node_state(n, N_MEMORY) { 6169 6170 /* Don't want a node to appear more than once */ 6171 if (node_isset(n, *used_node_mask)) 6172 continue; 6173 6174 /* Use the distance array to find the distance */ 6175 val = node_distance(node, n); 6176 6177 /* Penalize nodes under us ("prefer the next node") */ 6178 val += (n < node); 6179 6180 /* Give preference to headless and unused nodes */ 6181 if (!cpumask_empty(cpumask_of_node(n))) 6182 val += PENALTY_FOR_NODE_WITH_CPUS; 6183 6184 /* Slight preference for less loaded node */ 6185 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6186 val += node_load[n]; 6187 6188 if (val < min_val) { 6189 min_val = val; 6190 best_node = n; 6191 } 6192 } 6193 6194 if (best_node >= 0) 6195 node_set(best_node, *used_node_mask); 6196 6197 return best_node; 6198 } 6199 6200 6201 /* 6202 * Build zonelists ordered by node and zones within node. 6203 * This results in maximum locality--normal zone overflows into local 6204 * DMA zone, if any--but risks exhausting DMA zone. 6205 */ 6206 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6207 unsigned nr_nodes) 6208 { 6209 struct zoneref *zonerefs; 6210 int i; 6211 6212 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6213 6214 for (i = 0; i < nr_nodes; i++) { 6215 int nr_zones; 6216 6217 pg_data_t *node = NODE_DATA(node_order[i]); 6218 6219 nr_zones = build_zonerefs_node(node, zonerefs); 6220 zonerefs += nr_zones; 6221 } 6222 zonerefs->zone = NULL; 6223 zonerefs->zone_idx = 0; 6224 } 6225 6226 /* 6227 * Build gfp_thisnode zonelists 6228 */ 6229 static void build_thisnode_zonelists(pg_data_t *pgdat) 6230 { 6231 struct zoneref *zonerefs; 6232 int nr_zones; 6233 6234 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6235 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6236 zonerefs += nr_zones; 6237 zonerefs->zone = NULL; 6238 zonerefs->zone_idx = 0; 6239 } 6240 6241 /* 6242 * Build zonelists ordered by zone and nodes within zones. 6243 * This results in conserving DMA zone[s] until all Normal memory is 6244 * exhausted, but results in overflowing to remote node while memory 6245 * may still exist in local DMA zone. 6246 */ 6247 6248 static void build_zonelists(pg_data_t *pgdat) 6249 { 6250 static int node_order[MAX_NUMNODES]; 6251 int node, load, nr_nodes = 0; 6252 nodemask_t used_mask = NODE_MASK_NONE; 6253 int local_node, prev_node; 6254 6255 /* NUMA-aware ordering of nodes */ 6256 local_node = pgdat->node_id; 6257 load = nr_online_nodes; 6258 prev_node = local_node; 6259 6260 memset(node_order, 0, sizeof(node_order)); 6261 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6262 /* 6263 * We don't want to pressure a particular node. 6264 * So adding penalty to the first node in same 6265 * distance group to make it round-robin. 6266 */ 6267 if (node_distance(local_node, node) != 6268 node_distance(local_node, prev_node)) 6269 node_load[node] += load; 6270 6271 node_order[nr_nodes++] = node; 6272 prev_node = node; 6273 load--; 6274 } 6275 6276 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6277 build_thisnode_zonelists(pgdat); 6278 pr_info("Fallback order for Node %d: ", local_node); 6279 for (node = 0; node < nr_nodes; node++) 6280 pr_cont("%d ", node_order[node]); 6281 pr_cont("\n"); 6282 } 6283 6284 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6285 /* 6286 * Return node id of node used for "local" allocations. 6287 * I.e., first node id of first zone in arg node's generic zonelist. 6288 * Used for initializing percpu 'numa_mem', which is used primarily 6289 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6290 */ 6291 int local_memory_node(int node) 6292 { 6293 struct zoneref *z; 6294 6295 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6296 gfp_zone(GFP_KERNEL), 6297 NULL); 6298 return zone_to_nid(z->zone); 6299 } 6300 #endif 6301 6302 static void setup_min_unmapped_ratio(void); 6303 static void setup_min_slab_ratio(void); 6304 #else /* CONFIG_NUMA */ 6305 6306 static void build_zonelists(pg_data_t *pgdat) 6307 { 6308 int node, local_node; 6309 struct zoneref *zonerefs; 6310 int nr_zones; 6311 6312 local_node = pgdat->node_id; 6313 6314 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6315 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6316 zonerefs += nr_zones; 6317 6318 /* 6319 * Now we build the zonelist so that it contains the zones 6320 * of all the other nodes. 6321 * We don't want to pressure a particular node, so when 6322 * building the zones for node N, we make sure that the 6323 * zones coming right after the local ones are those from 6324 * node N+1 (modulo N) 6325 */ 6326 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6327 if (!node_online(node)) 6328 continue; 6329 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6330 zonerefs += nr_zones; 6331 } 6332 for (node = 0; node < local_node; node++) { 6333 if (!node_online(node)) 6334 continue; 6335 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6336 zonerefs += nr_zones; 6337 } 6338 6339 zonerefs->zone = NULL; 6340 zonerefs->zone_idx = 0; 6341 } 6342 6343 #endif /* CONFIG_NUMA */ 6344 6345 /* 6346 * Boot pageset table. One per cpu which is going to be used for all 6347 * zones and all nodes. The parameters will be set in such a way 6348 * that an item put on a list will immediately be handed over to 6349 * the buddy list. This is safe since pageset manipulation is done 6350 * with interrupts disabled. 6351 * 6352 * The boot_pagesets must be kept even after bootup is complete for 6353 * unused processors and/or zones. They do play a role for bootstrapping 6354 * hotplugged processors. 6355 * 6356 * zoneinfo_show() and maybe other functions do 6357 * not check if the processor is online before following the pageset pointer. 6358 * Other parts of the kernel may not check if the zone is available. 6359 */ 6360 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6361 /* These effectively disable the pcplists in the boot pageset completely */ 6362 #define BOOT_PAGESET_HIGH 0 6363 #define BOOT_PAGESET_BATCH 1 6364 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6365 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6366 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6367 6368 static void __build_all_zonelists(void *data) 6369 { 6370 int nid; 6371 int __maybe_unused cpu; 6372 pg_data_t *self = data; 6373 static DEFINE_SPINLOCK(lock); 6374 6375 spin_lock(&lock); 6376 6377 #ifdef CONFIG_NUMA 6378 memset(node_load, 0, sizeof(node_load)); 6379 #endif 6380 6381 /* 6382 * This node is hotadded and no memory is yet present. So just 6383 * building zonelists is fine - no need to touch other nodes. 6384 */ 6385 if (self && !node_online(self->node_id)) { 6386 build_zonelists(self); 6387 } else { 6388 for_each_online_node(nid) { 6389 pg_data_t *pgdat = NODE_DATA(nid); 6390 6391 build_zonelists(pgdat); 6392 } 6393 6394 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6395 /* 6396 * We now know the "local memory node" for each node-- 6397 * i.e., the node of the first zone in the generic zonelist. 6398 * Set up numa_mem percpu variable for on-line cpus. During 6399 * boot, only the boot cpu should be on-line; we'll init the 6400 * secondary cpus' numa_mem as they come on-line. During 6401 * node/memory hotplug, we'll fixup all on-line cpus. 6402 */ 6403 for_each_online_cpu(cpu) 6404 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6405 #endif 6406 } 6407 6408 spin_unlock(&lock); 6409 } 6410 6411 static noinline void __init 6412 build_all_zonelists_init(void) 6413 { 6414 int cpu; 6415 6416 __build_all_zonelists(NULL); 6417 6418 /* 6419 * Initialize the boot_pagesets that are going to be used 6420 * for bootstrapping processors. The real pagesets for 6421 * each zone will be allocated later when the per cpu 6422 * allocator is available. 6423 * 6424 * boot_pagesets are used also for bootstrapping offline 6425 * cpus if the system is already booted because the pagesets 6426 * are needed to initialize allocators on a specific cpu too. 6427 * F.e. the percpu allocator needs the page allocator which 6428 * needs the percpu allocator in order to allocate its pagesets 6429 * (a chicken-egg dilemma). 6430 */ 6431 for_each_possible_cpu(cpu) 6432 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6433 6434 mminit_verify_zonelist(); 6435 cpuset_init_current_mems_allowed(); 6436 } 6437 6438 /* 6439 * unless system_state == SYSTEM_BOOTING. 6440 * 6441 * __ref due to call of __init annotated helper build_all_zonelists_init 6442 * [protected by SYSTEM_BOOTING]. 6443 */ 6444 void __ref build_all_zonelists(pg_data_t *pgdat) 6445 { 6446 unsigned long vm_total_pages; 6447 6448 if (system_state == SYSTEM_BOOTING) { 6449 build_all_zonelists_init(); 6450 } else { 6451 __build_all_zonelists(pgdat); 6452 /* cpuset refresh routine should be here */ 6453 } 6454 /* Get the number of free pages beyond high watermark in all zones. */ 6455 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6456 /* 6457 * Disable grouping by mobility if the number of pages in the 6458 * system is too low to allow the mechanism to work. It would be 6459 * more accurate, but expensive to check per-zone. This check is 6460 * made on memory-hotadd so a system can start with mobility 6461 * disabled and enable it later 6462 */ 6463 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6464 page_group_by_mobility_disabled = 1; 6465 else 6466 page_group_by_mobility_disabled = 0; 6467 6468 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6469 nr_online_nodes, 6470 page_group_by_mobility_disabled ? "off" : "on", 6471 vm_total_pages); 6472 #ifdef CONFIG_NUMA 6473 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6474 #endif 6475 } 6476 6477 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6478 static bool __meminit 6479 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6480 { 6481 static struct memblock_region *r; 6482 6483 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6484 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6485 for_each_mem_region(r) { 6486 if (*pfn < memblock_region_memory_end_pfn(r)) 6487 break; 6488 } 6489 } 6490 if (*pfn >= memblock_region_memory_base_pfn(r) && 6491 memblock_is_mirror(r)) { 6492 *pfn = memblock_region_memory_end_pfn(r); 6493 return true; 6494 } 6495 } 6496 return false; 6497 } 6498 6499 /* 6500 * Initially all pages are reserved - free ones are freed 6501 * up by memblock_free_all() once the early boot process is 6502 * done. Non-atomic initialization, single-pass. 6503 * 6504 * All aligned pageblocks are initialized to the specified migratetype 6505 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6506 * zone stats (e.g., nr_isolate_pageblock) are touched. 6507 */ 6508 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6509 unsigned long start_pfn, unsigned long zone_end_pfn, 6510 enum meminit_context context, 6511 struct vmem_altmap *altmap, int migratetype) 6512 { 6513 unsigned long pfn, end_pfn = start_pfn + size; 6514 struct page *page; 6515 6516 if (highest_memmap_pfn < end_pfn - 1) 6517 highest_memmap_pfn = end_pfn - 1; 6518 6519 #ifdef CONFIG_ZONE_DEVICE 6520 /* 6521 * Honor reservation requested by the driver for this ZONE_DEVICE 6522 * memory. We limit the total number of pages to initialize to just 6523 * those that might contain the memory mapping. We will defer the 6524 * ZONE_DEVICE page initialization until after we have released 6525 * the hotplug lock. 6526 */ 6527 if (zone == ZONE_DEVICE) { 6528 if (!altmap) 6529 return; 6530 6531 if (start_pfn == altmap->base_pfn) 6532 start_pfn += altmap->reserve; 6533 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6534 } 6535 #endif 6536 6537 for (pfn = start_pfn; pfn < end_pfn; ) { 6538 /* 6539 * There can be holes in boot-time mem_map[]s handed to this 6540 * function. They do not exist on hotplugged memory. 6541 */ 6542 if (context == MEMINIT_EARLY) { 6543 if (overlap_memmap_init(zone, &pfn)) 6544 continue; 6545 if (defer_init(nid, pfn, zone_end_pfn)) 6546 break; 6547 } 6548 6549 page = pfn_to_page(pfn); 6550 __init_single_page(page, pfn, zone, nid); 6551 if (context == MEMINIT_HOTPLUG) 6552 __SetPageReserved(page); 6553 6554 /* 6555 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6556 * such that unmovable allocations won't be scattered all 6557 * over the place during system boot. 6558 */ 6559 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6560 set_pageblock_migratetype(page, migratetype); 6561 cond_resched(); 6562 } 6563 pfn++; 6564 } 6565 } 6566 6567 #ifdef CONFIG_ZONE_DEVICE 6568 void __ref memmap_init_zone_device(struct zone *zone, 6569 unsigned long start_pfn, 6570 unsigned long nr_pages, 6571 struct dev_pagemap *pgmap) 6572 { 6573 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6574 struct pglist_data *pgdat = zone->zone_pgdat; 6575 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6576 unsigned long zone_idx = zone_idx(zone); 6577 unsigned long start = jiffies; 6578 int nid = pgdat->node_id; 6579 6580 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6581 return; 6582 6583 /* 6584 * The call to memmap_init should have already taken care 6585 * of the pages reserved for the memmap, so we can just jump to 6586 * the end of that region and start processing the device pages. 6587 */ 6588 if (altmap) { 6589 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6590 nr_pages = end_pfn - start_pfn; 6591 } 6592 6593 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6594 struct page *page = pfn_to_page(pfn); 6595 6596 __init_single_page(page, pfn, zone_idx, nid); 6597 6598 /* 6599 * Mark page reserved as it will need to wait for onlining 6600 * phase for it to be fully associated with a zone. 6601 * 6602 * We can use the non-atomic __set_bit operation for setting 6603 * the flag as we are still initializing the pages. 6604 */ 6605 __SetPageReserved(page); 6606 6607 /* 6608 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6609 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6610 * ever freed or placed on a driver-private list. 6611 */ 6612 page->pgmap = pgmap; 6613 page->zone_device_data = NULL; 6614 6615 /* 6616 * Mark the block movable so that blocks are reserved for 6617 * movable at startup. This will force kernel allocations 6618 * to reserve their blocks rather than leaking throughout 6619 * the address space during boot when many long-lived 6620 * kernel allocations are made. 6621 * 6622 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6623 * because this is done early in section_activate() 6624 */ 6625 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6626 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6627 cond_resched(); 6628 } 6629 } 6630 6631 pr_info("%s initialised %lu pages in %ums\n", __func__, 6632 nr_pages, jiffies_to_msecs(jiffies - start)); 6633 } 6634 6635 #endif 6636 static void __meminit zone_init_free_lists(struct zone *zone) 6637 { 6638 unsigned int order, t; 6639 for_each_migratetype_order(order, t) { 6640 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6641 zone->free_area[order].nr_free = 0; 6642 } 6643 } 6644 6645 /* 6646 * Only struct pages that correspond to ranges defined by memblock.memory 6647 * are zeroed and initialized by going through __init_single_page() during 6648 * memmap_init_zone_range(). 6649 * 6650 * But, there could be struct pages that correspond to holes in 6651 * memblock.memory. This can happen because of the following reasons: 6652 * - physical memory bank size is not necessarily the exact multiple of the 6653 * arbitrary section size 6654 * - early reserved memory may not be listed in memblock.memory 6655 * - memory layouts defined with memmap= kernel parameter may not align 6656 * nicely with memmap sections 6657 * 6658 * Explicitly initialize those struct pages so that: 6659 * - PG_Reserved is set 6660 * - zone and node links point to zone and node that span the page if the 6661 * hole is in the middle of a zone 6662 * - zone and node links point to adjacent zone/node if the hole falls on 6663 * the zone boundary; the pages in such holes will be prepended to the 6664 * zone/node above the hole except for the trailing pages in the last 6665 * section that will be appended to the zone/node below. 6666 */ 6667 static void __init init_unavailable_range(unsigned long spfn, 6668 unsigned long epfn, 6669 int zone, int node) 6670 { 6671 unsigned long pfn; 6672 u64 pgcnt = 0; 6673 6674 for (pfn = spfn; pfn < epfn; pfn++) { 6675 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6676 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6677 + pageblock_nr_pages - 1; 6678 continue; 6679 } 6680 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6681 __SetPageReserved(pfn_to_page(pfn)); 6682 pgcnt++; 6683 } 6684 6685 if (pgcnt) 6686 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6687 node, zone_names[zone], pgcnt); 6688 } 6689 6690 static void __init memmap_init_zone_range(struct zone *zone, 6691 unsigned long start_pfn, 6692 unsigned long end_pfn, 6693 unsigned long *hole_pfn) 6694 { 6695 unsigned long zone_start_pfn = zone->zone_start_pfn; 6696 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6697 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6698 6699 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6700 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6701 6702 if (start_pfn >= end_pfn) 6703 return; 6704 6705 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6706 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6707 6708 if (*hole_pfn < start_pfn) 6709 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6710 6711 *hole_pfn = end_pfn; 6712 } 6713 6714 static void __init memmap_init(void) 6715 { 6716 unsigned long start_pfn, end_pfn; 6717 unsigned long hole_pfn = 0; 6718 int i, j, zone_id = 0, nid; 6719 6720 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6721 struct pglist_data *node = NODE_DATA(nid); 6722 6723 for (j = 0; j < MAX_NR_ZONES; j++) { 6724 struct zone *zone = node->node_zones + j; 6725 6726 if (!populated_zone(zone)) 6727 continue; 6728 6729 memmap_init_zone_range(zone, start_pfn, end_pfn, 6730 &hole_pfn); 6731 zone_id = j; 6732 } 6733 } 6734 6735 #ifdef CONFIG_SPARSEMEM 6736 /* 6737 * Initialize the memory map for hole in the range [memory_end, 6738 * section_end]. 6739 * Append the pages in this hole to the highest zone in the last 6740 * node. 6741 * The call to init_unavailable_range() is outside the ifdef to 6742 * silence the compiler warining about zone_id set but not used; 6743 * for FLATMEM it is a nop anyway 6744 */ 6745 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6746 if (hole_pfn < end_pfn) 6747 #endif 6748 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6749 } 6750 6751 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 6752 phys_addr_t min_addr, int nid, bool exact_nid) 6753 { 6754 void *ptr; 6755 6756 if (exact_nid) 6757 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 6758 MEMBLOCK_ALLOC_ACCESSIBLE, 6759 nid); 6760 else 6761 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 6762 MEMBLOCK_ALLOC_ACCESSIBLE, 6763 nid); 6764 6765 if (ptr && size > 0) 6766 page_init_poison(ptr, size); 6767 6768 return ptr; 6769 } 6770 6771 static int zone_batchsize(struct zone *zone) 6772 { 6773 #ifdef CONFIG_MMU 6774 int batch; 6775 6776 /* 6777 * The number of pages to batch allocate is either ~0.1% 6778 * of the zone or 1MB, whichever is smaller. The batch 6779 * size is striking a balance between allocation latency 6780 * and zone lock contention. 6781 */ 6782 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6783 batch /= 4; /* We effectively *= 4 below */ 6784 if (batch < 1) 6785 batch = 1; 6786 6787 /* 6788 * Clamp the batch to a 2^n - 1 value. Having a power 6789 * of 2 value was found to be more likely to have 6790 * suboptimal cache aliasing properties in some cases. 6791 * 6792 * For example if 2 tasks are alternately allocating 6793 * batches of pages, one task can end up with a lot 6794 * of pages of one half of the possible page colors 6795 * and the other with pages of the other colors. 6796 */ 6797 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6798 6799 return batch; 6800 6801 #else 6802 /* The deferral and batching of frees should be suppressed under NOMMU 6803 * conditions. 6804 * 6805 * The problem is that NOMMU needs to be able to allocate large chunks 6806 * of contiguous memory as there's no hardware page translation to 6807 * assemble apparent contiguous memory from discontiguous pages. 6808 * 6809 * Queueing large contiguous runs of pages for batching, however, 6810 * causes the pages to actually be freed in smaller chunks. As there 6811 * can be a significant delay between the individual batches being 6812 * recycled, this leads to the once large chunks of space being 6813 * fragmented and becoming unavailable for high-order allocations. 6814 */ 6815 return 0; 6816 #endif 6817 } 6818 6819 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6820 { 6821 #ifdef CONFIG_MMU 6822 int high; 6823 int nr_split_cpus; 6824 unsigned long total_pages; 6825 6826 if (!percpu_pagelist_high_fraction) { 6827 /* 6828 * By default, the high value of the pcp is based on the zone 6829 * low watermark so that if they are full then background 6830 * reclaim will not be started prematurely. 6831 */ 6832 total_pages = low_wmark_pages(zone); 6833 } else { 6834 /* 6835 * If percpu_pagelist_high_fraction is configured, the high 6836 * value is based on a fraction of the managed pages in the 6837 * zone. 6838 */ 6839 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6840 } 6841 6842 /* 6843 * Split the high value across all online CPUs local to the zone. Note 6844 * that early in boot that CPUs may not be online yet and that during 6845 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6846 * onlined. For memory nodes that have no CPUs, split pcp->high across 6847 * all online CPUs to mitigate the risk that reclaim is triggered 6848 * prematurely due to pages stored on pcp lists. 6849 */ 6850 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6851 if (!nr_split_cpus) 6852 nr_split_cpus = num_online_cpus(); 6853 high = total_pages / nr_split_cpus; 6854 6855 /* 6856 * Ensure high is at least batch*4. The multiple is based on the 6857 * historical relationship between high and batch. 6858 */ 6859 high = max(high, batch << 2); 6860 6861 return high; 6862 #else 6863 return 0; 6864 #endif 6865 } 6866 6867 /* 6868 * pcp->high and pcp->batch values are related and generally batch is lower 6869 * than high. They are also related to pcp->count such that count is lower 6870 * than high, and as soon as it reaches high, the pcplist is flushed. 6871 * 6872 * However, guaranteeing these relations at all times would require e.g. write 6873 * barriers here but also careful usage of read barriers at the read side, and 6874 * thus be prone to error and bad for performance. Thus the update only prevents 6875 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6876 * can cope with those fields changing asynchronously, and fully trust only the 6877 * pcp->count field on the local CPU with interrupts disabled. 6878 * 6879 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6880 * outside of boot time (or some other assurance that no concurrent updaters 6881 * exist). 6882 */ 6883 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6884 unsigned long batch) 6885 { 6886 WRITE_ONCE(pcp->batch, batch); 6887 WRITE_ONCE(pcp->high, high); 6888 } 6889 6890 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6891 { 6892 int pindex; 6893 6894 memset(pcp, 0, sizeof(*pcp)); 6895 memset(pzstats, 0, sizeof(*pzstats)); 6896 6897 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6898 INIT_LIST_HEAD(&pcp->lists[pindex]); 6899 6900 /* 6901 * Set batch and high values safe for a boot pageset. A true percpu 6902 * pageset's initialization will update them subsequently. Here we don't 6903 * need to be as careful as pageset_update() as nobody can access the 6904 * pageset yet. 6905 */ 6906 pcp->high = BOOT_PAGESET_HIGH; 6907 pcp->batch = BOOT_PAGESET_BATCH; 6908 pcp->free_factor = 0; 6909 } 6910 6911 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6912 unsigned long batch) 6913 { 6914 struct per_cpu_pages *pcp; 6915 int cpu; 6916 6917 for_each_possible_cpu(cpu) { 6918 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6919 pageset_update(pcp, high, batch); 6920 } 6921 } 6922 6923 /* 6924 * Calculate and set new high and batch values for all per-cpu pagesets of a 6925 * zone based on the zone's size. 6926 */ 6927 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6928 { 6929 int new_high, new_batch; 6930 6931 new_batch = max(1, zone_batchsize(zone)); 6932 new_high = zone_highsize(zone, new_batch, cpu_online); 6933 6934 if (zone->pageset_high == new_high && 6935 zone->pageset_batch == new_batch) 6936 return; 6937 6938 zone->pageset_high = new_high; 6939 zone->pageset_batch = new_batch; 6940 6941 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6942 } 6943 6944 void __meminit setup_zone_pageset(struct zone *zone) 6945 { 6946 int cpu; 6947 6948 /* Size may be 0 on !SMP && !NUMA */ 6949 if (sizeof(struct per_cpu_zonestat) > 0) 6950 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6951 6952 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6953 for_each_possible_cpu(cpu) { 6954 struct per_cpu_pages *pcp; 6955 struct per_cpu_zonestat *pzstats; 6956 6957 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6958 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6959 per_cpu_pages_init(pcp, pzstats); 6960 } 6961 6962 zone_set_pageset_high_and_batch(zone, 0); 6963 } 6964 6965 /* 6966 * Allocate per cpu pagesets and initialize them. 6967 * Before this call only boot pagesets were available. 6968 */ 6969 void __init setup_per_cpu_pageset(void) 6970 { 6971 struct pglist_data *pgdat; 6972 struct zone *zone; 6973 int __maybe_unused cpu; 6974 6975 for_each_populated_zone(zone) 6976 setup_zone_pageset(zone); 6977 6978 #ifdef CONFIG_NUMA 6979 /* 6980 * Unpopulated zones continue using the boot pagesets. 6981 * The numa stats for these pagesets need to be reset. 6982 * Otherwise, they will end up skewing the stats of 6983 * the nodes these zones are associated with. 6984 */ 6985 for_each_possible_cpu(cpu) { 6986 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6987 memset(pzstats->vm_numa_event, 0, 6988 sizeof(pzstats->vm_numa_event)); 6989 } 6990 #endif 6991 6992 for_each_online_pgdat(pgdat) 6993 pgdat->per_cpu_nodestats = 6994 alloc_percpu(struct per_cpu_nodestat); 6995 } 6996 6997 static __meminit void zone_pcp_init(struct zone *zone) 6998 { 6999 /* 7000 * per cpu subsystem is not up at this point. The following code 7001 * relies on the ability of the linker to provide the 7002 * offset of a (static) per cpu variable into the per cpu area. 7003 */ 7004 zone->per_cpu_pageset = &boot_pageset; 7005 zone->per_cpu_zonestats = &boot_zonestats; 7006 zone->pageset_high = BOOT_PAGESET_HIGH; 7007 zone->pageset_batch = BOOT_PAGESET_BATCH; 7008 7009 if (populated_zone(zone)) 7010 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7011 zone->present_pages, zone_batchsize(zone)); 7012 } 7013 7014 void __meminit init_currently_empty_zone(struct zone *zone, 7015 unsigned long zone_start_pfn, 7016 unsigned long size) 7017 { 7018 struct pglist_data *pgdat = zone->zone_pgdat; 7019 int zone_idx = zone_idx(zone) + 1; 7020 7021 if (zone_idx > pgdat->nr_zones) 7022 pgdat->nr_zones = zone_idx; 7023 7024 zone->zone_start_pfn = zone_start_pfn; 7025 7026 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7027 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7028 pgdat->node_id, 7029 (unsigned long)zone_idx(zone), 7030 zone_start_pfn, (zone_start_pfn + size)); 7031 7032 zone_init_free_lists(zone); 7033 zone->initialized = 1; 7034 } 7035 7036 /** 7037 * get_pfn_range_for_nid - Return the start and end page frames for a node 7038 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7039 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7040 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7041 * 7042 * It returns the start and end page frame of a node based on information 7043 * provided by memblock_set_node(). If called for a node 7044 * with no available memory, a warning is printed and the start and end 7045 * PFNs will be 0. 7046 */ 7047 void __init get_pfn_range_for_nid(unsigned int nid, 7048 unsigned long *start_pfn, unsigned long *end_pfn) 7049 { 7050 unsigned long this_start_pfn, this_end_pfn; 7051 int i; 7052 7053 *start_pfn = -1UL; 7054 *end_pfn = 0; 7055 7056 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7057 *start_pfn = min(*start_pfn, this_start_pfn); 7058 *end_pfn = max(*end_pfn, this_end_pfn); 7059 } 7060 7061 if (*start_pfn == -1UL) 7062 *start_pfn = 0; 7063 } 7064 7065 /* 7066 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7067 * assumption is made that zones within a node are ordered in monotonic 7068 * increasing memory addresses so that the "highest" populated zone is used 7069 */ 7070 static void __init find_usable_zone_for_movable(void) 7071 { 7072 int zone_index; 7073 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7074 if (zone_index == ZONE_MOVABLE) 7075 continue; 7076 7077 if (arch_zone_highest_possible_pfn[zone_index] > 7078 arch_zone_lowest_possible_pfn[zone_index]) 7079 break; 7080 } 7081 7082 VM_BUG_ON(zone_index == -1); 7083 movable_zone = zone_index; 7084 } 7085 7086 /* 7087 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7088 * because it is sized independent of architecture. Unlike the other zones, 7089 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7090 * in each node depending on the size of each node and how evenly kernelcore 7091 * is distributed. This helper function adjusts the zone ranges 7092 * provided by the architecture for a given node by using the end of the 7093 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7094 * zones within a node are in order of monotonic increases memory addresses 7095 */ 7096 static void __init adjust_zone_range_for_zone_movable(int nid, 7097 unsigned long zone_type, 7098 unsigned long node_start_pfn, 7099 unsigned long node_end_pfn, 7100 unsigned long *zone_start_pfn, 7101 unsigned long *zone_end_pfn) 7102 { 7103 /* Only adjust if ZONE_MOVABLE is on this node */ 7104 if (zone_movable_pfn[nid]) { 7105 /* Size ZONE_MOVABLE */ 7106 if (zone_type == ZONE_MOVABLE) { 7107 *zone_start_pfn = zone_movable_pfn[nid]; 7108 *zone_end_pfn = min(node_end_pfn, 7109 arch_zone_highest_possible_pfn[movable_zone]); 7110 7111 /* Adjust for ZONE_MOVABLE starting within this range */ 7112 } else if (!mirrored_kernelcore && 7113 *zone_start_pfn < zone_movable_pfn[nid] && 7114 *zone_end_pfn > zone_movable_pfn[nid]) { 7115 *zone_end_pfn = zone_movable_pfn[nid]; 7116 7117 /* Check if this whole range is within ZONE_MOVABLE */ 7118 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7119 *zone_start_pfn = *zone_end_pfn; 7120 } 7121 } 7122 7123 /* 7124 * Return the number of pages a zone spans in a node, including holes 7125 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7126 */ 7127 static unsigned long __init zone_spanned_pages_in_node(int nid, 7128 unsigned long zone_type, 7129 unsigned long node_start_pfn, 7130 unsigned long node_end_pfn, 7131 unsigned long *zone_start_pfn, 7132 unsigned long *zone_end_pfn) 7133 { 7134 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7135 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7136 /* When hotadd a new node from cpu_up(), the node should be empty */ 7137 if (!node_start_pfn && !node_end_pfn) 7138 return 0; 7139 7140 /* Get the start and end of the zone */ 7141 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7142 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7143 adjust_zone_range_for_zone_movable(nid, zone_type, 7144 node_start_pfn, node_end_pfn, 7145 zone_start_pfn, zone_end_pfn); 7146 7147 /* Check that this node has pages within the zone's required range */ 7148 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7149 return 0; 7150 7151 /* Move the zone boundaries inside the node if necessary */ 7152 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7153 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7154 7155 /* Return the spanned pages */ 7156 return *zone_end_pfn - *zone_start_pfn; 7157 } 7158 7159 /* 7160 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7161 * then all holes in the requested range will be accounted for. 7162 */ 7163 unsigned long __init __absent_pages_in_range(int nid, 7164 unsigned long range_start_pfn, 7165 unsigned long range_end_pfn) 7166 { 7167 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7168 unsigned long start_pfn, end_pfn; 7169 int i; 7170 7171 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7172 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7173 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7174 nr_absent -= end_pfn - start_pfn; 7175 } 7176 return nr_absent; 7177 } 7178 7179 /** 7180 * absent_pages_in_range - Return number of page frames in holes within a range 7181 * @start_pfn: The start PFN to start searching for holes 7182 * @end_pfn: The end PFN to stop searching for holes 7183 * 7184 * Return: the number of pages frames in memory holes within a range. 7185 */ 7186 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7187 unsigned long end_pfn) 7188 { 7189 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7190 } 7191 7192 /* Return the number of page frames in holes in a zone on a node */ 7193 static unsigned long __init zone_absent_pages_in_node(int nid, 7194 unsigned long zone_type, 7195 unsigned long node_start_pfn, 7196 unsigned long node_end_pfn) 7197 { 7198 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7199 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7200 unsigned long zone_start_pfn, zone_end_pfn; 7201 unsigned long nr_absent; 7202 7203 /* When hotadd a new node from cpu_up(), the node should be empty */ 7204 if (!node_start_pfn && !node_end_pfn) 7205 return 0; 7206 7207 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7208 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7209 7210 adjust_zone_range_for_zone_movable(nid, zone_type, 7211 node_start_pfn, node_end_pfn, 7212 &zone_start_pfn, &zone_end_pfn); 7213 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7214 7215 /* 7216 * ZONE_MOVABLE handling. 7217 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7218 * and vice versa. 7219 */ 7220 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7221 unsigned long start_pfn, end_pfn; 7222 struct memblock_region *r; 7223 7224 for_each_mem_region(r) { 7225 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7226 zone_start_pfn, zone_end_pfn); 7227 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7228 zone_start_pfn, zone_end_pfn); 7229 7230 if (zone_type == ZONE_MOVABLE && 7231 memblock_is_mirror(r)) 7232 nr_absent += end_pfn - start_pfn; 7233 7234 if (zone_type == ZONE_NORMAL && 7235 !memblock_is_mirror(r)) 7236 nr_absent += end_pfn - start_pfn; 7237 } 7238 } 7239 7240 return nr_absent; 7241 } 7242 7243 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7244 unsigned long node_start_pfn, 7245 unsigned long node_end_pfn) 7246 { 7247 unsigned long realtotalpages = 0, totalpages = 0; 7248 enum zone_type i; 7249 7250 for (i = 0; i < MAX_NR_ZONES; i++) { 7251 struct zone *zone = pgdat->node_zones + i; 7252 unsigned long zone_start_pfn, zone_end_pfn; 7253 unsigned long spanned, absent; 7254 unsigned long size, real_size; 7255 7256 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7257 node_start_pfn, 7258 node_end_pfn, 7259 &zone_start_pfn, 7260 &zone_end_pfn); 7261 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7262 node_start_pfn, 7263 node_end_pfn); 7264 7265 size = spanned; 7266 real_size = size - absent; 7267 7268 if (size) 7269 zone->zone_start_pfn = zone_start_pfn; 7270 else 7271 zone->zone_start_pfn = 0; 7272 zone->spanned_pages = size; 7273 zone->present_pages = real_size; 7274 #if defined(CONFIG_MEMORY_HOTPLUG) 7275 zone->present_early_pages = real_size; 7276 #endif 7277 7278 totalpages += size; 7279 realtotalpages += real_size; 7280 } 7281 7282 pgdat->node_spanned_pages = totalpages; 7283 pgdat->node_present_pages = realtotalpages; 7284 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7285 } 7286 7287 #ifndef CONFIG_SPARSEMEM 7288 /* 7289 * Calculate the size of the zone->blockflags rounded to an unsigned long 7290 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7291 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7292 * round what is now in bits to nearest long in bits, then return it in 7293 * bytes. 7294 */ 7295 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7296 { 7297 unsigned long usemapsize; 7298 7299 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7300 usemapsize = roundup(zonesize, pageblock_nr_pages); 7301 usemapsize = usemapsize >> pageblock_order; 7302 usemapsize *= NR_PAGEBLOCK_BITS; 7303 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7304 7305 return usemapsize / 8; 7306 } 7307 7308 static void __ref setup_usemap(struct zone *zone) 7309 { 7310 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7311 zone->spanned_pages); 7312 zone->pageblock_flags = NULL; 7313 if (usemapsize) { 7314 zone->pageblock_flags = 7315 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7316 zone_to_nid(zone)); 7317 if (!zone->pageblock_flags) 7318 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7319 usemapsize, zone->name, zone_to_nid(zone)); 7320 } 7321 } 7322 #else 7323 static inline void setup_usemap(struct zone *zone) {} 7324 #endif /* CONFIG_SPARSEMEM */ 7325 7326 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7327 7328 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7329 void __init set_pageblock_order(void) 7330 { 7331 unsigned int order; 7332 7333 /* Check that pageblock_nr_pages has not already been setup */ 7334 if (pageblock_order) 7335 return; 7336 7337 if (HPAGE_SHIFT > PAGE_SHIFT) 7338 order = HUGETLB_PAGE_ORDER; 7339 else 7340 order = MAX_ORDER - 1; 7341 7342 /* 7343 * Assume the largest contiguous order of interest is a huge page. 7344 * This value may be variable depending on boot parameters on IA64 and 7345 * powerpc. 7346 */ 7347 pageblock_order = order; 7348 } 7349 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7350 7351 /* 7352 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7353 * is unused as pageblock_order is set at compile-time. See 7354 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7355 * the kernel config 7356 */ 7357 void __init set_pageblock_order(void) 7358 { 7359 } 7360 7361 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7362 7363 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7364 unsigned long present_pages) 7365 { 7366 unsigned long pages = spanned_pages; 7367 7368 /* 7369 * Provide a more accurate estimation if there are holes within 7370 * the zone and SPARSEMEM is in use. If there are holes within the 7371 * zone, each populated memory region may cost us one or two extra 7372 * memmap pages due to alignment because memmap pages for each 7373 * populated regions may not be naturally aligned on page boundary. 7374 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7375 */ 7376 if (spanned_pages > present_pages + (present_pages >> 4) && 7377 IS_ENABLED(CONFIG_SPARSEMEM)) 7378 pages = present_pages; 7379 7380 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7381 } 7382 7383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7384 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7385 { 7386 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7387 7388 spin_lock_init(&ds_queue->split_queue_lock); 7389 INIT_LIST_HEAD(&ds_queue->split_queue); 7390 ds_queue->split_queue_len = 0; 7391 } 7392 #else 7393 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7394 #endif 7395 7396 #ifdef CONFIG_COMPACTION 7397 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7398 { 7399 init_waitqueue_head(&pgdat->kcompactd_wait); 7400 } 7401 #else 7402 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7403 #endif 7404 7405 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7406 { 7407 int i; 7408 7409 pgdat_resize_init(pgdat); 7410 7411 pgdat_init_split_queue(pgdat); 7412 pgdat_init_kcompactd(pgdat); 7413 7414 init_waitqueue_head(&pgdat->kswapd_wait); 7415 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7416 7417 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7418 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7419 7420 pgdat_page_ext_init(pgdat); 7421 lruvec_init(&pgdat->__lruvec); 7422 } 7423 7424 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7425 unsigned long remaining_pages) 7426 { 7427 atomic_long_set(&zone->managed_pages, remaining_pages); 7428 zone_set_nid(zone, nid); 7429 zone->name = zone_names[idx]; 7430 zone->zone_pgdat = NODE_DATA(nid); 7431 spin_lock_init(&zone->lock); 7432 zone_seqlock_init(zone); 7433 zone_pcp_init(zone); 7434 } 7435 7436 /* 7437 * Set up the zone data structures 7438 * - init pgdat internals 7439 * - init all zones belonging to this node 7440 * 7441 * NOTE: this function is only called during memory hotplug 7442 */ 7443 #ifdef CONFIG_MEMORY_HOTPLUG 7444 void __ref free_area_init_core_hotplug(int nid) 7445 { 7446 enum zone_type z; 7447 pg_data_t *pgdat = NODE_DATA(nid); 7448 7449 pgdat_init_internals(pgdat); 7450 for (z = 0; z < MAX_NR_ZONES; z++) 7451 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7452 } 7453 #endif 7454 7455 /* 7456 * Set up the zone data structures: 7457 * - mark all pages reserved 7458 * - mark all memory queues empty 7459 * - clear the memory bitmaps 7460 * 7461 * NOTE: pgdat should get zeroed by caller. 7462 * NOTE: this function is only called during early init. 7463 */ 7464 static void __init free_area_init_core(struct pglist_data *pgdat) 7465 { 7466 enum zone_type j; 7467 int nid = pgdat->node_id; 7468 7469 pgdat_init_internals(pgdat); 7470 pgdat->per_cpu_nodestats = &boot_nodestats; 7471 7472 for (j = 0; j < MAX_NR_ZONES; j++) { 7473 struct zone *zone = pgdat->node_zones + j; 7474 unsigned long size, freesize, memmap_pages; 7475 7476 size = zone->spanned_pages; 7477 freesize = zone->present_pages; 7478 7479 /* 7480 * Adjust freesize so that it accounts for how much memory 7481 * is used by this zone for memmap. This affects the watermark 7482 * and per-cpu initialisations 7483 */ 7484 memmap_pages = calc_memmap_size(size, freesize); 7485 if (!is_highmem_idx(j)) { 7486 if (freesize >= memmap_pages) { 7487 freesize -= memmap_pages; 7488 if (memmap_pages) 7489 pr_debug(" %s zone: %lu pages used for memmap\n", 7490 zone_names[j], memmap_pages); 7491 } else 7492 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7493 zone_names[j], memmap_pages, freesize); 7494 } 7495 7496 /* Account for reserved pages */ 7497 if (j == 0 && freesize > dma_reserve) { 7498 freesize -= dma_reserve; 7499 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7500 } 7501 7502 if (!is_highmem_idx(j)) 7503 nr_kernel_pages += freesize; 7504 /* Charge for highmem memmap if there are enough kernel pages */ 7505 else if (nr_kernel_pages > memmap_pages * 2) 7506 nr_kernel_pages -= memmap_pages; 7507 nr_all_pages += freesize; 7508 7509 /* 7510 * Set an approximate value for lowmem here, it will be adjusted 7511 * when the bootmem allocator frees pages into the buddy system. 7512 * And all highmem pages will be managed by the buddy system. 7513 */ 7514 zone_init_internals(zone, j, nid, freesize); 7515 7516 if (!size) 7517 continue; 7518 7519 set_pageblock_order(); 7520 setup_usemap(zone); 7521 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7522 } 7523 } 7524 7525 #ifdef CONFIG_FLATMEM 7526 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7527 { 7528 unsigned long __maybe_unused start = 0; 7529 unsigned long __maybe_unused offset = 0; 7530 7531 /* Skip empty nodes */ 7532 if (!pgdat->node_spanned_pages) 7533 return; 7534 7535 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7536 offset = pgdat->node_start_pfn - start; 7537 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7538 if (!pgdat->node_mem_map) { 7539 unsigned long size, end; 7540 struct page *map; 7541 7542 /* 7543 * The zone's endpoints aren't required to be MAX_ORDER 7544 * aligned but the node_mem_map endpoints must be in order 7545 * for the buddy allocator to function correctly. 7546 */ 7547 end = pgdat_end_pfn(pgdat); 7548 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7549 size = (end - start) * sizeof(struct page); 7550 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7551 pgdat->node_id, false); 7552 if (!map) 7553 panic("Failed to allocate %ld bytes for node %d memory map\n", 7554 size, pgdat->node_id); 7555 pgdat->node_mem_map = map + offset; 7556 } 7557 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7558 __func__, pgdat->node_id, (unsigned long)pgdat, 7559 (unsigned long)pgdat->node_mem_map); 7560 #ifndef CONFIG_NUMA 7561 /* 7562 * With no DISCONTIG, the global mem_map is just set as node 0's 7563 */ 7564 if (pgdat == NODE_DATA(0)) { 7565 mem_map = NODE_DATA(0)->node_mem_map; 7566 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7567 mem_map -= offset; 7568 } 7569 #endif 7570 } 7571 #else 7572 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7573 #endif /* CONFIG_FLATMEM */ 7574 7575 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7576 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7577 { 7578 pgdat->first_deferred_pfn = ULONG_MAX; 7579 } 7580 #else 7581 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7582 #endif 7583 7584 static void __init free_area_init_node(int nid) 7585 { 7586 pg_data_t *pgdat = NODE_DATA(nid); 7587 unsigned long start_pfn = 0; 7588 unsigned long end_pfn = 0; 7589 7590 /* pg_data_t should be reset to zero when it's allocated */ 7591 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7592 7593 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7594 7595 pgdat->node_id = nid; 7596 pgdat->node_start_pfn = start_pfn; 7597 pgdat->per_cpu_nodestats = NULL; 7598 7599 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7600 (u64)start_pfn << PAGE_SHIFT, 7601 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7602 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7603 7604 alloc_node_mem_map(pgdat); 7605 pgdat_set_deferred_range(pgdat); 7606 7607 free_area_init_core(pgdat); 7608 } 7609 7610 void __init free_area_init_memoryless_node(int nid) 7611 { 7612 free_area_init_node(nid); 7613 } 7614 7615 #if MAX_NUMNODES > 1 7616 /* 7617 * Figure out the number of possible node ids. 7618 */ 7619 void __init setup_nr_node_ids(void) 7620 { 7621 unsigned int highest; 7622 7623 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7624 nr_node_ids = highest + 1; 7625 } 7626 #endif 7627 7628 /** 7629 * node_map_pfn_alignment - determine the maximum internode alignment 7630 * 7631 * This function should be called after node map is populated and sorted. 7632 * It calculates the maximum power of two alignment which can distinguish 7633 * all the nodes. 7634 * 7635 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7636 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7637 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7638 * shifted, 1GiB is enough and this function will indicate so. 7639 * 7640 * This is used to test whether pfn -> nid mapping of the chosen memory 7641 * model has fine enough granularity to avoid incorrect mapping for the 7642 * populated node map. 7643 * 7644 * Return: the determined alignment in pfn's. 0 if there is no alignment 7645 * requirement (single node). 7646 */ 7647 unsigned long __init node_map_pfn_alignment(void) 7648 { 7649 unsigned long accl_mask = 0, last_end = 0; 7650 unsigned long start, end, mask; 7651 int last_nid = NUMA_NO_NODE; 7652 int i, nid; 7653 7654 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7655 if (!start || last_nid < 0 || last_nid == nid) { 7656 last_nid = nid; 7657 last_end = end; 7658 continue; 7659 } 7660 7661 /* 7662 * Start with a mask granular enough to pin-point to the 7663 * start pfn and tick off bits one-by-one until it becomes 7664 * too coarse to separate the current node from the last. 7665 */ 7666 mask = ~((1 << __ffs(start)) - 1); 7667 while (mask && last_end <= (start & (mask << 1))) 7668 mask <<= 1; 7669 7670 /* accumulate all internode masks */ 7671 accl_mask |= mask; 7672 } 7673 7674 /* convert mask to number of pages */ 7675 return ~accl_mask + 1; 7676 } 7677 7678 /** 7679 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7680 * 7681 * Return: the minimum PFN based on information provided via 7682 * memblock_set_node(). 7683 */ 7684 unsigned long __init find_min_pfn_with_active_regions(void) 7685 { 7686 return PHYS_PFN(memblock_start_of_DRAM()); 7687 } 7688 7689 /* 7690 * early_calculate_totalpages() 7691 * Sum pages in active regions for movable zone. 7692 * Populate N_MEMORY for calculating usable_nodes. 7693 */ 7694 static unsigned long __init early_calculate_totalpages(void) 7695 { 7696 unsigned long totalpages = 0; 7697 unsigned long start_pfn, end_pfn; 7698 int i, nid; 7699 7700 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7701 unsigned long pages = end_pfn - start_pfn; 7702 7703 totalpages += pages; 7704 if (pages) 7705 node_set_state(nid, N_MEMORY); 7706 } 7707 return totalpages; 7708 } 7709 7710 /* 7711 * Find the PFN the Movable zone begins in each node. Kernel memory 7712 * is spread evenly between nodes as long as the nodes have enough 7713 * memory. When they don't, some nodes will have more kernelcore than 7714 * others 7715 */ 7716 static void __init find_zone_movable_pfns_for_nodes(void) 7717 { 7718 int i, nid; 7719 unsigned long usable_startpfn; 7720 unsigned long kernelcore_node, kernelcore_remaining; 7721 /* save the state before borrow the nodemask */ 7722 nodemask_t saved_node_state = node_states[N_MEMORY]; 7723 unsigned long totalpages = early_calculate_totalpages(); 7724 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7725 struct memblock_region *r; 7726 7727 /* Need to find movable_zone earlier when movable_node is specified. */ 7728 find_usable_zone_for_movable(); 7729 7730 /* 7731 * If movable_node is specified, ignore kernelcore and movablecore 7732 * options. 7733 */ 7734 if (movable_node_is_enabled()) { 7735 for_each_mem_region(r) { 7736 if (!memblock_is_hotpluggable(r)) 7737 continue; 7738 7739 nid = memblock_get_region_node(r); 7740 7741 usable_startpfn = PFN_DOWN(r->base); 7742 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7743 min(usable_startpfn, zone_movable_pfn[nid]) : 7744 usable_startpfn; 7745 } 7746 7747 goto out2; 7748 } 7749 7750 /* 7751 * If kernelcore=mirror is specified, ignore movablecore option 7752 */ 7753 if (mirrored_kernelcore) { 7754 bool mem_below_4gb_not_mirrored = false; 7755 7756 for_each_mem_region(r) { 7757 if (memblock_is_mirror(r)) 7758 continue; 7759 7760 nid = memblock_get_region_node(r); 7761 7762 usable_startpfn = memblock_region_memory_base_pfn(r); 7763 7764 if (usable_startpfn < 0x100000) { 7765 mem_below_4gb_not_mirrored = true; 7766 continue; 7767 } 7768 7769 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7770 min(usable_startpfn, zone_movable_pfn[nid]) : 7771 usable_startpfn; 7772 } 7773 7774 if (mem_below_4gb_not_mirrored) 7775 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7776 7777 goto out2; 7778 } 7779 7780 /* 7781 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7782 * amount of necessary memory. 7783 */ 7784 if (required_kernelcore_percent) 7785 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7786 10000UL; 7787 if (required_movablecore_percent) 7788 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7789 10000UL; 7790 7791 /* 7792 * If movablecore= was specified, calculate what size of 7793 * kernelcore that corresponds so that memory usable for 7794 * any allocation type is evenly spread. If both kernelcore 7795 * and movablecore are specified, then the value of kernelcore 7796 * will be used for required_kernelcore if it's greater than 7797 * what movablecore would have allowed. 7798 */ 7799 if (required_movablecore) { 7800 unsigned long corepages; 7801 7802 /* 7803 * Round-up so that ZONE_MOVABLE is at least as large as what 7804 * was requested by the user 7805 */ 7806 required_movablecore = 7807 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7808 required_movablecore = min(totalpages, required_movablecore); 7809 corepages = totalpages - required_movablecore; 7810 7811 required_kernelcore = max(required_kernelcore, corepages); 7812 } 7813 7814 /* 7815 * If kernelcore was not specified or kernelcore size is larger 7816 * than totalpages, there is no ZONE_MOVABLE. 7817 */ 7818 if (!required_kernelcore || required_kernelcore >= totalpages) 7819 goto out; 7820 7821 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7822 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7823 7824 restart: 7825 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7826 kernelcore_node = required_kernelcore / usable_nodes; 7827 for_each_node_state(nid, N_MEMORY) { 7828 unsigned long start_pfn, end_pfn; 7829 7830 /* 7831 * Recalculate kernelcore_node if the division per node 7832 * now exceeds what is necessary to satisfy the requested 7833 * amount of memory for the kernel 7834 */ 7835 if (required_kernelcore < kernelcore_node) 7836 kernelcore_node = required_kernelcore / usable_nodes; 7837 7838 /* 7839 * As the map is walked, we track how much memory is usable 7840 * by the kernel using kernelcore_remaining. When it is 7841 * 0, the rest of the node is usable by ZONE_MOVABLE 7842 */ 7843 kernelcore_remaining = kernelcore_node; 7844 7845 /* Go through each range of PFNs within this node */ 7846 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7847 unsigned long size_pages; 7848 7849 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7850 if (start_pfn >= end_pfn) 7851 continue; 7852 7853 /* Account for what is only usable for kernelcore */ 7854 if (start_pfn < usable_startpfn) { 7855 unsigned long kernel_pages; 7856 kernel_pages = min(end_pfn, usable_startpfn) 7857 - start_pfn; 7858 7859 kernelcore_remaining -= min(kernel_pages, 7860 kernelcore_remaining); 7861 required_kernelcore -= min(kernel_pages, 7862 required_kernelcore); 7863 7864 /* Continue if range is now fully accounted */ 7865 if (end_pfn <= usable_startpfn) { 7866 7867 /* 7868 * Push zone_movable_pfn to the end so 7869 * that if we have to rebalance 7870 * kernelcore across nodes, we will 7871 * not double account here 7872 */ 7873 zone_movable_pfn[nid] = end_pfn; 7874 continue; 7875 } 7876 start_pfn = usable_startpfn; 7877 } 7878 7879 /* 7880 * The usable PFN range for ZONE_MOVABLE is from 7881 * start_pfn->end_pfn. Calculate size_pages as the 7882 * number of pages used as kernelcore 7883 */ 7884 size_pages = end_pfn - start_pfn; 7885 if (size_pages > kernelcore_remaining) 7886 size_pages = kernelcore_remaining; 7887 zone_movable_pfn[nid] = start_pfn + size_pages; 7888 7889 /* 7890 * Some kernelcore has been met, update counts and 7891 * break if the kernelcore for this node has been 7892 * satisfied 7893 */ 7894 required_kernelcore -= min(required_kernelcore, 7895 size_pages); 7896 kernelcore_remaining -= size_pages; 7897 if (!kernelcore_remaining) 7898 break; 7899 } 7900 } 7901 7902 /* 7903 * If there is still required_kernelcore, we do another pass with one 7904 * less node in the count. This will push zone_movable_pfn[nid] further 7905 * along on the nodes that still have memory until kernelcore is 7906 * satisfied 7907 */ 7908 usable_nodes--; 7909 if (usable_nodes && required_kernelcore > usable_nodes) 7910 goto restart; 7911 7912 out2: 7913 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7914 for (nid = 0; nid < MAX_NUMNODES; nid++) 7915 zone_movable_pfn[nid] = 7916 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7917 7918 out: 7919 /* restore the node_state */ 7920 node_states[N_MEMORY] = saved_node_state; 7921 } 7922 7923 /* Any regular or high memory on that node ? */ 7924 static void check_for_memory(pg_data_t *pgdat, int nid) 7925 { 7926 enum zone_type zone_type; 7927 7928 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7929 struct zone *zone = &pgdat->node_zones[zone_type]; 7930 if (populated_zone(zone)) { 7931 if (IS_ENABLED(CONFIG_HIGHMEM)) 7932 node_set_state(nid, N_HIGH_MEMORY); 7933 if (zone_type <= ZONE_NORMAL) 7934 node_set_state(nid, N_NORMAL_MEMORY); 7935 break; 7936 } 7937 } 7938 } 7939 7940 /* 7941 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7942 * such cases we allow max_zone_pfn sorted in the descending order 7943 */ 7944 bool __weak arch_has_descending_max_zone_pfns(void) 7945 { 7946 return false; 7947 } 7948 7949 /** 7950 * free_area_init - Initialise all pg_data_t and zone data 7951 * @max_zone_pfn: an array of max PFNs for each zone 7952 * 7953 * This will call free_area_init_node() for each active node in the system. 7954 * Using the page ranges provided by memblock_set_node(), the size of each 7955 * zone in each node and their holes is calculated. If the maximum PFN 7956 * between two adjacent zones match, it is assumed that the zone is empty. 7957 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7958 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7959 * starts where the previous one ended. For example, ZONE_DMA32 starts 7960 * at arch_max_dma_pfn. 7961 */ 7962 void __init free_area_init(unsigned long *max_zone_pfn) 7963 { 7964 unsigned long start_pfn, end_pfn; 7965 int i, nid, zone; 7966 bool descending; 7967 7968 /* Record where the zone boundaries are */ 7969 memset(arch_zone_lowest_possible_pfn, 0, 7970 sizeof(arch_zone_lowest_possible_pfn)); 7971 memset(arch_zone_highest_possible_pfn, 0, 7972 sizeof(arch_zone_highest_possible_pfn)); 7973 7974 start_pfn = find_min_pfn_with_active_regions(); 7975 descending = arch_has_descending_max_zone_pfns(); 7976 7977 for (i = 0; i < MAX_NR_ZONES; i++) { 7978 if (descending) 7979 zone = MAX_NR_ZONES - i - 1; 7980 else 7981 zone = i; 7982 7983 if (zone == ZONE_MOVABLE) 7984 continue; 7985 7986 end_pfn = max(max_zone_pfn[zone], start_pfn); 7987 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7988 arch_zone_highest_possible_pfn[zone] = end_pfn; 7989 7990 start_pfn = end_pfn; 7991 } 7992 7993 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7994 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7995 find_zone_movable_pfns_for_nodes(); 7996 7997 /* Print out the zone ranges */ 7998 pr_info("Zone ranges:\n"); 7999 for (i = 0; i < MAX_NR_ZONES; i++) { 8000 if (i == ZONE_MOVABLE) 8001 continue; 8002 pr_info(" %-8s ", zone_names[i]); 8003 if (arch_zone_lowest_possible_pfn[i] == 8004 arch_zone_highest_possible_pfn[i]) 8005 pr_cont("empty\n"); 8006 else 8007 pr_cont("[mem %#018Lx-%#018Lx]\n", 8008 (u64)arch_zone_lowest_possible_pfn[i] 8009 << PAGE_SHIFT, 8010 ((u64)arch_zone_highest_possible_pfn[i] 8011 << PAGE_SHIFT) - 1); 8012 } 8013 8014 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8015 pr_info("Movable zone start for each node\n"); 8016 for (i = 0; i < MAX_NUMNODES; i++) { 8017 if (zone_movable_pfn[i]) 8018 pr_info(" Node %d: %#018Lx\n", i, 8019 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8020 } 8021 8022 /* 8023 * Print out the early node map, and initialize the 8024 * subsection-map relative to active online memory ranges to 8025 * enable future "sub-section" extensions of the memory map. 8026 */ 8027 pr_info("Early memory node ranges\n"); 8028 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8029 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8030 (u64)start_pfn << PAGE_SHIFT, 8031 ((u64)end_pfn << PAGE_SHIFT) - 1); 8032 subsection_map_init(start_pfn, end_pfn - start_pfn); 8033 } 8034 8035 /* Initialise every node */ 8036 mminit_verify_pageflags_layout(); 8037 setup_nr_node_ids(); 8038 for_each_online_node(nid) { 8039 pg_data_t *pgdat = NODE_DATA(nid); 8040 free_area_init_node(nid); 8041 8042 /* Any memory on that node */ 8043 if (pgdat->node_present_pages) 8044 node_set_state(nid, N_MEMORY); 8045 check_for_memory(pgdat, nid); 8046 } 8047 8048 memmap_init(); 8049 } 8050 8051 static int __init cmdline_parse_core(char *p, unsigned long *core, 8052 unsigned long *percent) 8053 { 8054 unsigned long long coremem; 8055 char *endptr; 8056 8057 if (!p) 8058 return -EINVAL; 8059 8060 /* Value may be a percentage of total memory, otherwise bytes */ 8061 coremem = simple_strtoull(p, &endptr, 0); 8062 if (*endptr == '%') { 8063 /* Paranoid check for percent values greater than 100 */ 8064 WARN_ON(coremem > 100); 8065 8066 *percent = coremem; 8067 } else { 8068 coremem = memparse(p, &p); 8069 /* Paranoid check that UL is enough for the coremem value */ 8070 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8071 8072 *core = coremem >> PAGE_SHIFT; 8073 *percent = 0UL; 8074 } 8075 return 0; 8076 } 8077 8078 /* 8079 * kernelcore=size sets the amount of memory for use for allocations that 8080 * cannot be reclaimed or migrated. 8081 */ 8082 static int __init cmdline_parse_kernelcore(char *p) 8083 { 8084 /* parse kernelcore=mirror */ 8085 if (parse_option_str(p, "mirror")) { 8086 mirrored_kernelcore = true; 8087 return 0; 8088 } 8089 8090 return cmdline_parse_core(p, &required_kernelcore, 8091 &required_kernelcore_percent); 8092 } 8093 8094 /* 8095 * movablecore=size sets the amount of memory for use for allocations that 8096 * can be reclaimed or migrated. 8097 */ 8098 static int __init cmdline_parse_movablecore(char *p) 8099 { 8100 return cmdline_parse_core(p, &required_movablecore, 8101 &required_movablecore_percent); 8102 } 8103 8104 early_param("kernelcore", cmdline_parse_kernelcore); 8105 early_param("movablecore", cmdline_parse_movablecore); 8106 8107 void adjust_managed_page_count(struct page *page, long count) 8108 { 8109 atomic_long_add(count, &page_zone(page)->managed_pages); 8110 totalram_pages_add(count); 8111 #ifdef CONFIG_HIGHMEM 8112 if (PageHighMem(page)) 8113 totalhigh_pages_add(count); 8114 #endif 8115 } 8116 EXPORT_SYMBOL(adjust_managed_page_count); 8117 8118 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8119 { 8120 void *pos; 8121 unsigned long pages = 0; 8122 8123 start = (void *)PAGE_ALIGN((unsigned long)start); 8124 end = (void *)((unsigned long)end & PAGE_MASK); 8125 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8126 struct page *page = virt_to_page(pos); 8127 void *direct_map_addr; 8128 8129 /* 8130 * 'direct_map_addr' might be different from 'pos' 8131 * because some architectures' virt_to_page() 8132 * work with aliases. Getting the direct map 8133 * address ensures that we get a _writeable_ 8134 * alias for the memset(). 8135 */ 8136 direct_map_addr = page_address(page); 8137 /* 8138 * Perform a kasan-unchecked memset() since this memory 8139 * has not been initialized. 8140 */ 8141 direct_map_addr = kasan_reset_tag(direct_map_addr); 8142 if ((unsigned int)poison <= 0xFF) 8143 memset(direct_map_addr, poison, PAGE_SIZE); 8144 8145 free_reserved_page(page); 8146 } 8147 8148 if (pages && s) 8149 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8150 8151 return pages; 8152 } 8153 8154 void __init mem_init_print_info(void) 8155 { 8156 unsigned long physpages, codesize, datasize, rosize, bss_size; 8157 unsigned long init_code_size, init_data_size; 8158 8159 physpages = get_num_physpages(); 8160 codesize = _etext - _stext; 8161 datasize = _edata - _sdata; 8162 rosize = __end_rodata - __start_rodata; 8163 bss_size = __bss_stop - __bss_start; 8164 init_data_size = __init_end - __init_begin; 8165 init_code_size = _einittext - _sinittext; 8166 8167 /* 8168 * Detect special cases and adjust section sizes accordingly: 8169 * 1) .init.* may be embedded into .data sections 8170 * 2) .init.text.* may be out of [__init_begin, __init_end], 8171 * please refer to arch/tile/kernel/vmlinux.lds.S. 8172 * 3) .rodata.* may be embedded into .text or .data sections. 8173 */ 8174 #define adj_init_size(start, end, size, pos, adj) \ 8175 do { \ 8176 if (start <= pos && pos < end && size > adj) \ 8177 size -= adj; \ 8178 } while (0) 8179 8180 adj_init_size(__init_begin, __init_end, init_data_size, 8181 _sinittext, init_code_size); 8182 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8183 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8184 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8185 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8186 8187 #undef adj_init_size 8188 8189 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8190 #ifdef CONFIG_HIGHMEM 8191 ", %luK highmem" 8192 #endif 8193 ")\n", 8194 K(nr_free_pages()), K(physpages), 8195 codesize >> 10, datasize >> 10, rosize >> 10, 8196 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8197 K(physpages - totalram_pages() - totalcma_pages), 8198 K(totalcma_pages) 8199 #ifdef CONFIG_HIGHMEM 8200 , K(totalhigh_pages()) 8201 #endif 8202 ); 8203 } 8204 8205 /** 8206 * set_dma_reserve - set the specified number of pages reserved in the first zone 8207 * @new_dma_reserve: The number of pages to mark reserved 8208 * 8209 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8210 * In the DMA zone, a significant percentage may be consumed by kernel image 8211 * and other unfreeable allocations which can skew the watermarks badly. This 8212 * function may optionally be used to account for unfreeable pages in the 8213 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8214 * smaller per-cpu batchsize. 8215 */ 8216 void __init set_dma_reserve(unsigned long new_dma_reserve) 8217 { 8218 dma_reserve = new_dma_reserve; 8219 } 8220 8221 static int page_alloc_cpu_dead(unsigned int cpu) 8222 { 8223 struct zone *zone; 8224 8225 lru_add_drain_cpu(cpu); 8226 drain_pages(cpu); 8227 8228 /* 8229 * Spill the event counters of the dead processor 8230 * into the current processors event counters. 8231 * This artificially elevates the count of the current 8232 * processor. 8233 */ 8234 vm_events_fold_cpu(cpu); 8235 8236 /* 8237 * Zero the differential counters of the dead processor 8238 * so that the vm statistics are consistent. 8239 * 8240 * This is only okay since the processor is dead and cannot 8241 * race with what we are doing. 8242 */ 8243 cpu_vm_stats_fold(cpu); 8244 8245 for_each_populated_zone(zone) 8246 zone_pcp_update(zone, 0); 8247 8248 return 0; 8249 } 8250 8251 static int page_alloc_cpu_online(unsigned int cpu) 8252 { 8253 struct zone *zone; 8254 8255 for_each_populated_zone(zone) 8256 zone_pcp_update(zone, 1); 8257 return 0; 8258 } 8259 8260 #ifdef CONFIG_NUMA 8261 int hashdist = HASHDIST_DEFAULT; 8262 8263 static int __init set_hashdist(char *str) 8264 { 8265 if (!str) 8266 return 0; 8267 hashdist = simple_strtoul(str, &str, 0); 8268 return 1; 8269 } 8270 __setup("hashdist=", set_hashdist); 8271 #endif 8272 8273 void __init page_alloc_init(void) 8274 { 8275 int ret; 8276 8277 #ifdef CONFIG_NUMA 8278 if (num_node_state(N_MEMORY) == 1) 8279 hashdist = 0; 8280 #endif 8281 8282 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8283 "mm/page_alloc:pcp", 8284 page_alloc_cpu_online, 8285 page_alloc_cpu_dead); 8286 WARN_ON(ret < 0); 8287 } 8288 8289 /* 8290 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8291 * or min_free_kbytes changes. 8292 */ 8293 static void calculate_totalreserve_pages(void) 8294 { 8295 struct pglist_data *pgdat; 8296 unsigned long reserve_pages = 0; 8297 enum zone_type i, j; 8298 8299 for_each_online_pgdat(pgdat) { 8300 8301 pgdat->totalreserve_pages = 0; 8302 8303 for (i = 0; i < MAX_NR_ZONES; i++) { 8304 struct zone *zone = pgdat->node_zones + i; 8305 long max = 0; 8306 unsigned long managed_pages = zone_managed_pages(zone); 8307 8308 /* Find valid and maximum lowmem_reserve in the zone */ 8309 for (j = i; j < MAX_NR_ZONES; j++) { 8310 if (zone->lowmem_reserve[j] > max) 8311 max = zone->lowmem_reserve[j]; 8312 } 8313 8314 /* we treat the high watermark as reserved pages. */ 8315 max += high_wmark_pages(zone); 8316 8317 if (max > managed_pages) 8318 max = managed_pages; 8319 8320 pgdat->totalreserve_pages += max; 8321 8322 reserve_pages += max; 8323 } 8324 } 8325 totalreserve_pages = reserve_pages; 8326 } 8327 8328 /* 8329 * setup_per_zone_lowmem_reserve - called whenever 8330 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8331 * has a correct pages reserved value, so an adequate number of 8332 * pages are left in the zone after a successful __alloc_pages(). 8333 */ 8334 static void setup_per_zone_lowmem_reserve(void) 8335 { 8336 struct pglist_data *pgdat; 8337 enum zone_type i, j; 8338 8339 for_each_online_pgdat(pgdat) { 8340 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8341 struct zone *zone = &pgdat->node_zones[i]; 8342 int ratio = sysctl_lowmem_reserve_ratio[i]; 8343 bool clear = !ratio || !zone_managed_pages(zone); 8344 unsigned long managed_pages = 0; 8345 8346 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8347 struct zone *upper_zone = &pgdat->node_zones[j]; 8348 8349 managed_pages += zone_managed_pages(upper_zone); 8350 8351 if (clear) 8352 zone->lowmem_reserve[j] = 0; 8353 else 8354 zone->lowmem_reserve[j] = managed_pages / ratio; 8355 } 8356 } 8357 } 8358 8359 /* update totalreserve_pages */ 8360 calculate_totalreserve_pages(); 8361 } 8362 8363 static void __setup_per_zone_wmarks(void) 8364 { 8365 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8366 unsigned long lowmem_pages = 0; 8367 struct zone *zone; 8368 unsigned long flags; 8369 8370 /* Calculate total number of !ZONE_HIGHMEM pages */ 8371 for_each_zone(zone) { 8372 if (!is_highmem(zone)) 8373 lowmem_pages += zone_managed_pages(zone); 8374 } 8375 8376 for_each_zone(zone) { 8377 u64 tmp; 8378 8379 spin_lock_irqsave(&zone->lock, flags); 8380 tmp = (u64)pages_min * zone_managed_pages(zone); 8381 do_div(tmp, lowmem_pages); 8382 if (is_highmem(zone)) { 8383 /* 8384 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8385 * need highmem pages, so cap pages_min to a small 8386 * value here. 8387 * 8388 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8389 * deltas control async page reclaim, and so should 8390 * not be capped for highmem. 8391 */ 8392 unsigned long min_pages; 8393 8394 min_pages = zone_managed_pages(zone) / 1024; 8395 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8396 zone->_watermark[WMARK_MIN] = min_pages; 8397 } else { 8398 /* 8399 * If it's a lowmem zone, reserve a number of pages 8400 * proportionate to the zone's size. 8401 */ 8402 zone->_watermark[WMARK_MIN] = tmp; 8403 } 8404 8405 /* 8406 * Set the kswapd watermarks distance according to the 8407 * scale factor in proportion to available memory, but 8408 * ensure a minimum size on small systems. 8409 */ 8410 tmp = max_t(u64, tmp >> 2, 8411 mult_frac(zone_managed_pages(zone), 8412 watermark_scale_factor, 10000)); 8413 8414 zone->watermark_boost = 0; 8415 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8416 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 8417 8418 spin_unlock_irqrestore(&zone->lock, flags); 8419 } 8420 8421 /* update totalreserve_pages */ 8422 calculate_totalreserve_pages(); 8423 } 8424 8425 /** 8426 * setup_per_zone_wmarks - called when min_free_kbytes changes 8427 * or when memory is hot-{added|removed} 8428 * 8429 * Ensures that the watermark[min,low,high] values for each zone are set 8430 * correctly with respect to min_free_kbytes. 8431 */ 8432 void setup_per_zone_wmarks(void) 8433 { 8434 struct zone *zone; 8435 static DEFINE_SPINLOCK(lock); 8436 8437 spin_lock(&lock); 8438 __setup_per_zone_wmarks(); 8439 spin_unlock(&lock); 8440 8441 /* 8442 * The watermark size have changed so update the pcpu batch 8443 * and high limits or the limits may be inappropriate. 8444 */ 8445 for_each_zone(zone) 8446 zone_pcp_update(zone, 0); 8447 } 8448 8449 /* 8450 * Initialise min_free_kbytes. 8451 * 8452 * For small machines we want it small (128k min). For large machines 8453 * we want it large (256MB max). But it is not linear, because network 8454 * bandwidth does not increase linearly with machine size. We use 8455 * 8456 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8457 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8458 * 8459 * which yields 8460 * 8461 * 16MB: 512k 8462 * 32MB: 724k 8463 * 64MB: 1024k 8464 * 128MB: 1448k 8465 * 256MB: 2048k 8466 * 512MB: 2896k 8467 * 1024MB: 4096k 8468 * 2048MB: 5792k 8469 * 4096MB: 8192k 8470 * 8192MB: 11584k 8471 * 16384MB: 16384k 8472 */ 8473 void calculate_min_free_kbytes(void) 8474 { 8475 unsigned long lowmem_kbytes; 8476 int new_min_free_kbytes; 8477 8478 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8479 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8480 8481 if (new_min_free_kbytes > user_min_free_kbytes) 8482 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8483 else 8484 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8485 new_min_free_kbytes, user_min_free_kbytes); 8486 8487 } 8488 8489 int __meminit init_per_zone_wmark_min(void) 8490 { 8491 calculate_min_free_kbytes(); 8492 setup_per_zone_wmarks(); 8493 refresh_zone_stat_thresholds(); 8494 setup_per_zone_lowmem_reserve(); 8495 8496 #ifdef CONFIG_NUMA 8497 setup_min_unmapped_ratio(); 8498 setup_min_slab_ratio(); 8499 #endif 8500 8501 khugepaged_min_free_kbytes_update(); 8502 8503 return 0; 8504 } 8505 postcore_initcall(init_per_zone_wmark_min) 8506 8507 /* 8508 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8509 * that we can call two helper functions whenever min_free_kbytes 8510 * changes. 8511 */ 8512 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8513 void *buffer, size_t *length, loff_t *ppos) 8514 { 8515 int rc; 8516 8517 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8518 if (rc) 8519 return rc; 8520 8521 if (write) { 8522 user_min_free_kbytes = min_free_kbytes; 8523 setup_per_zone_wmarks(); 8524 } 8525 return 0; 8526 } 8527 8528 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8529 void *buffer, size_t *length, loff_t *ppos) 8530 { 8531 int rc; 8532 8533 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8534 if (rc) 8535 return rc; 8536 8537 if (write) 8538 setup_per_zone_wmarks(); 8539 8540 return 0; 8541 } 8542 8543 #ifdef CONFIG_NUMA 8544 static void setup_min_unmapped_ratio(void) 8545 { 8546 pg_data_t *pgdat; 8547 struct zone *zone; 8548 8549 for_each_online_pgdat(pgdat) 8550 pgdat->min_unmapped_pages = 0; 8551 8552 for_each_zone(zone) 8553 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8554 sysctl_min_unmapped_ratio) / 100; 8555 } 8556 8557 8558 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8559 void *buffer, size_t *length, loff_t *ppos) 8560 { 8561 int rc; 8562 8563 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8564 if (rc) 8565 return rc; 8566 8567 setup_min_unmapped_ratio(); 8568 8569 return 0; 8570 } 8571 8572 static void setup_min_slab_ratio(void) 8573 { 8574 pg_data_t *pgdat; 8575 struct zone *zone; 8576 8577 for_each_online_pgdat(pgdat) 8578 pgdat->min_slab_pages = 0; 8579 8580 for_each_zone(zone) 8581 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8582 sysctl_min_slab_ratio) / 100; 8583 } 8584 8585 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8586 void *buffer, size_t *length, loff_t *ppos) 8587 { 8588 int rc; 8589 8590 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8591 if (rc) 8592 return rc; 8593 8594 setup_min_slab_ratio(); 8595 8596 return 0; 8597 } 8598 #endif 8599 8600 /* 8601 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8602 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8603 * whenever sysctl_lowmem_reserve_ratio changes. 8604 * 8605 * The reserve ratio obviously has absolutely no relation with the 8606 * minimum watermarks. The lowmem reserve ratio can only make sense 8607 * if in function of the boot time zone sizes. 8608 */ 8609 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8610 void *buffer, size_t *length, loff_t *ppos) 8611 { 8612 int i; 8613 8614 proc_dointvec_minmax(table, write, buffer, length, ppos); 8615 8616 for (i = 0; i < MAX_NR_ZONES; i++) { 8617 if (sysctl_lowmem_reserve_ratio[i] < 1) 8618 sysctl_lowmem_reserve_ratio[i] = 0; 8619 } 8620 8621 setup_per_zone_lowmem_reserve(); 8622 return 0; 8623 } 8624 8625 /* 8626 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8627 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8628 * pagelist can have before it gets flushed back to buddy allocator. 8629 */ 8630 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8631 int write, void *buffer, size_t *length, loff_t *ppos) 8632 { 8633 struct zone *zone; 8634 int old_percpu_pagelist_high_fraction; 8635 int ret; 8636 8637 mutex_lock(&pcp_batch_high_lock); 8638 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8639 8640 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8641 if (!write || ret < 0) 8642 goto out; 8643 8644 /* Sanity checking to avoid pcp imbalance */ 8645 if (percpu_pagelist_high_fraction && 8646 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8647 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8648 ret = -EINVAL; 8649 goto out; 8650 } 8651 8652 /* No change? */ 8653 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8654 goto out; 8655 8656 for_each_populated_zone(zone) 8657 zone_set_pageset_high_and_batch(zone, 0); 8658 out: 8659 mutex_unlock(&pcp_batch_high_lock); 8660 return ret; 8661 } 8662 8663 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8664 /* 8665 * Returns the number of pages that arch has reserved but 8666 * is not known to alloc_large_system_hash(). 8667 */ 8668 static unsigned long __init arch_reserved_kernel_pages(void) 8669 { 8670 return 0; 8671 } 8672 #endif 8673 8674 /* 8675 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8676 * machines. As memory size is increased the scale is also increased but at 8677 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8678 * quadruples the scale is increased by one, which means the size of hash table 8679 * only doubles, instead of quadrupling as well. 8680 * Because 32-bit systems cannot have large physical memory, where this scaling 8681 * makes sense, it is disabled on such platforms. 8682 */ 8683 #if __BITS_PER_LONG > 32 8684 #define ADAPT_SCALE_BASE (64ul << 30) 8685 #define ADAPT_SCALE_SHIFT 2 8686 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8687 #endif 8688 8689 /* 8690 * allocate a large system hash table from bootmem 8691 * - it is assumed that the hash table must contain an exact power-of-2 8692 * quantity of entries 8693 * - limit is the number of hash buckets, not the total allocation size 8694 */ 8695 void *__init alloc_large_system_hash(const char *tablename, 8696 unsigned long bucketsize, 8697 unsigned long numentries, 8698 int scale, 8699 int flags, 8700 unsigned int *_hash_shift, 8701 unsigned int *_hash_mask, 8702 unsigned long low_limit, 8703 unsigned long high_limit) 8704 { 8705 unsigned long long max = high_limit; 8706 unsigned long log2qty, size; 8707 void *table = NULL; 8708 gfp_t gfp_flags; 8709 bool virt; 8710 bool huge; 8711 8712 /* allow the kernel cmdline to have a say */ 8713 if (!numentries) { 8714 /* round applicable memory size up to nearest megabyte */ 8715 numentries = nr_kernel_pages; 8716 numentries -= arch_reserved_kernel_pages(); 8717 8718 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8719 if (PAGE_SHIFT < 20) 8720 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8721 8722 #if __BITS_PER_LONG > 32 8723 if (!high_limit) { 8724 unsigned long adapt; 8725 8726 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8727 adapt <<= ADAPT_SCALE_SHIFT) 8728 scale++; 8729 } 8730 #endif 8731 8732 /* limit to 1 bucket per 2^scale bytes of low memory */ 8733 if (scale > PAGE_SHIFT) 8734 numentries >>= (scale - PAGE_SHIFT); 8735 else 8736 numentries <<= (PAGE_SHIFT - scale); 8737 8738 /* Make sure we've got at least a 0-order allocation.. */ 8739 if (unlikely(flags & HASH_SMALL)) { 8740 /* Makes no sense without HASH_EARLY */ 8741 WARN_ON(!(flags & HASH_EARLY)); 8742 if (!(numentries >> *_hash_shift)) { 8743 numentries = 1UL << *_hash_shift; 8744 BUG_ON(!numentries); 8745 } 8746 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8747 numentries = PAGE_SIZE / bucketsize; 8748 } 8749 numentries = roundup_pow_of_two(numentries); 8750 8751 /* limit allocation size to 1/16 total memory by default */ 8752 if (max == 0) { 8753 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8754 do_div(max, bucketsize); 8755 } 8756 max = min(max, 0x80000000ULL); 8757 8758 if (numentries < low_limit) 8759 numentries = low_limit; 8760 if (numentries > max) 8761 numentries = max; 8762 8763 log2qty = ilog2(numentries); 8764 8765 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8766 do { 8767 virt = false; 8768 size = bucketsize << log2qty; 8769 if (flags & HASH_EARLY) { 8770 if (flags & HASH_ZERO) 8771 table = memblock_alloc(size, SMP_CACHE_BYTES); 8772 else 8773 table = memblock_alloc_raw(size, 8774 SMP_CACHE_BYTES); 8775 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8776 table = __vmalloc(size, gfp_flags); 8777 virt = true; 8778 if (table) 8779 huge = is_vm_area_hugepages(table); 8780 } else { 8781 /* 8782 * If bucketsize is not a power-of-two, we may free 8783 * some pages at the end of hash table which 8784 * alloc_pages_exact() automatically does 8785 */ 8786 table = alloc_pages_exact(size, gfp_flags); 8787 kmemleak_alloc(table, size, 1, gfp_flags); 8788 } 8789 } while (!table && size > PAGE_SIZE && --log2qty); 8790 8791 if (!table) 8792 panic("Failed to allocate %s hash table\n", tablename); 8793 8794 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8795 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8796 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8797 8798 if (_hash_shift) 8799 *_hash_shift = log2qty; 8800 if (_hash_mask) 8801 *_hash_mask = (1 << log2qty) - 1; 8802 8803 return table; 8804 } 8805 8806 /* 8807 * This function checks whether pageblock includes unmovable pages or not. 8808 * 8809 * PageLRU check without isolation or lru_lock could race so that 8810 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8811 * check without lock_page also may miss some movable non-lru pages at 8812 * race condition. So you can't expect this function should be exact. 8813 * 8814 * Returns a page without holding a reference. If the caller wants to 8815 * dereference that page (e.g., dumping), it has to make sure that it 8816 * cannot get removed (e.g., via memory unplug) concurrently. 8817 * 8818 */ 8819 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8820 int migratetype, int flags) 8821 { 8822 unsigned long iter = 0; 8823 unsigned long pfn = page_to_pfn(page); 8824 unsigned long offset = pfn % pageblock_nr_pages; 8825 8826 if (is_migrate_cma_page(page)) { 8827 /* 8828 * CMA allocations (alloc_contig_range) really need to mark 8829 * isolate CMA pageblocks even when they are not movable in fact 8830 * so consider them movable here. 8831 */ 8832 if (is_migrate_cma(migratetype)) 8833 return NULL; 8834 8835 return page; 8836 } 8837 8838 for (; iter < pageblock_nr_pages - offset; iter++) { 8839 page = pfn_to_page(pfn + iter); 8840 8841 /* 8842 * Both, bootmem allocations and memory holes are marked 8843 * PG_reserved and are unmovable. We can even have unmovable 8844 * allocations inside ZONE_MOVABLE, for example when 8845 * specifying "movablecore". 8846 */ 8847 if (PageReserved(page)) 8848 return page; 8849 8850 /* 8851 * If the zone is movable and we have ruled out all reserved 8852 * pages then it should be reasonably safe to assume the rest 8853 * is movable. 8854 */ 8855 if (zone_idx(zone) == ZONE_MOVABLE) 8856 continue; 8857 8858 /* 8859 * Hugepages are not in LRU lists, but they're movable. 8860 * THPs are on the LRU, but need to be counted as #small pages. 8861 * We need not scan over tail pages because we don't 8862 * handle each tail page individually in migration. 8863 */ 8864 if (PageHuge(page) || PageTransCompound(page)) { 8865 struct page *head = compound_head(page); 8866 unsigned int skip_pages; 8867 8868 if (PageHuge(page)) { 8869 if (!hugepage_migration_supported(page_hstate(head))) 8870 return page; 8871 } else if (!PageLRU(head) && !__PageMovable(head)) { 8872 return page; 8873 } 8874 8875 skip_pages = compound_nr(head) - (page - head); 8876 iter += skip_pages - 1; 8877 continue; 8878 } 8879 8880 /* 8881 * We can't use page_count without pin a page 8882 * because another CPU can free compound page. 8883 * This check already skips compound tails of THP 8884 * because their page->_refcount is zero at all time. 8885 */ 8886 if (!page_ref_count(page)) { 8887 if (PageBuddy(page)) 8888 iter += (1 << buddy_order(page)) - 1; 8889 continue; 8890 } 8891 8892 /* 8893 * The HWPoisoned page may be not in buddy system, and 8894 * page_count() is not 0. 8895 */ 8896 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8897 continue; 8898 8899 /* 8900 * We treat all PageOffline() pages as movable when offlining 8901 * to give drivers a chance to decrement their reference count 8902 * in MEM_GOING_OFFLINE in order to indicate that these pages 8903 * can be offlined as there are no direct references anymore. 8904 * For actually unmovable PageOffline() where the driver does 8905 * not support this, we will fail later when trying to actually 8906 * move these pages that still have a reference count > 0. 8907 * (false negatives in this function only) 8908 */ 8909 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8910 continue; 8911 8912 if (__PageMovable(page) || PageLRU(page)) 8913 continue; 8914 8915 /* 8916 * If there are RECLAIMABLE pages, we need to check 8917 * it. But now, memory offline itself doesn't call 8918 * shrink_node_slabs() and it still to be fixed. 8919 */ 8920 return page; 8921 } 8922 return NULL; 8923 } 8924 8925 #ifdef CONFIG_CONTIG_ALLOC 8926 static unsigned long pfn_max_align_down(unsigned long pfn) 8927 { 8928 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8929 pageblock_nr_pages) - 1); 8930 } 8931 8932 static unsigned long pfn_max_align_up(unsigned long pfn) 8933 { 8934 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8935 pageblock_nr_pages)); 8936 } 8937 8938 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 8939 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 8940 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 8941 static void alloc_contig_dump_pages(struct list_head *page_list) 8942 { 8943 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 8944 8945 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 8946 struct page *page; 8947 8948 dump_stack(); 8949 list_for_each_entry(page, page_list, lru) 8950 dump_page(page, "migration failure"); 8951 } 8952 } 8953 #else 8954 static inline void alloc_contig_dump_pages(struct list_head *page_list) 8955 { 8956 } 8957 #endif 8958 8959 /* [start, end) must belong to a single zone. */ 8960 static int __alloc_contig_migrate_range(struct compact_control *cc, 8961 unsigned long start, unsigned long end) 8962 { 8963 /* This function is based on compact_zone() from compaction.c. */ 8964 unsigned int nr_reclaimed; 8965 unsigned long pfn = start; 8966 unsigned int tries = 0; 8967 int ret = 0; 8968 struct migration_target_control mtc = { 8969 .nid = zone_to_nid(cc->zone), 8970 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8971 }; 8972 8973 lru_cache_disable(); 8974 8975 while (pfn < end || !list_empty(&cc->migratepages)) { 8976 if (fatal_signal_pending(current)) { 8977 ret = -EINTR; 8978 break; 8979 } 8980 8981 if (list_empty(&cc->migratepages)) { 8982 cc->nr_migratepages = 0; 8983 ret = isolate_migratepages_range(cc, pfn, end); 8984 if (ret && ret != -EAGAIN) 8985 break; 8986 pfn = cc->migrate_pfn; 8987 tries = 0; 8988 } else if (++tries == 5) { 8989 ret = -EBUSY; 8990 break; 8991 } 8992 8993 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8994 &cc->migratepages); 8995 cc->nr_migratepages -= nr_reclaimed; 8996 8997 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8998 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 8999 9000 /* 9001 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9002 * to retry again over this error, so do the same here. 9003 */ 9004 if (ret == -ENOMEM) 9005 break; 9006 } 9007 9008 lru_cache_enable(); 9009 if (ret < 0) { 9010 if (ret == -EBUSY) 9011 alloc_contig_dump_pages(&cc->migratepages); 9012 putback_movable_pages(&cc->migratepages); 9013 return ret; 9014 } 9015 return 0; 9016 } 9017 9018 /** 9019 * alloc_contig_range() -- tries to allocate given range of pages 9020 * @start: start PFN to allocate 9021 * @end: one-past-the-last PFN to allocate 9022 * @migratetype: migratetype of the underlying pageblocks (either 9023 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9024 * in range must have the same migratetype and it must 9025 * be either of the two. 9026 * @gfp_mask: GFP mask to use during compaction 9027 * 9028 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 9029 * aligned. The PFN range must belong to a single zone. 9030 * 9031 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9032 * pageblocks in the range. Once isolated, the pageblocks should not 9033 * be modified by others. 9034 * 9035 * Return: zero on success or negative error code. On success all 9036 * pages which PFN is in [start, end) are allocated for the caller and 9037 * need to be freed with free_contig_range(). 9038 */ 9039 int alloc_contig_range(unsigned long start, unsigned long end, 9040 unsigned migratetype, gfp_t gfp_mask) 9041 { 9042 unsigned long outer_start, outer_end; 9043 unsigned int order; 9044 int ret = 0; 9045 9046 struct compact_control cc = { 9047 .nr_migratepages = 0, 9048 .order = -1, 9049 .zone = page_zone(pfn_to_page(start)), 9050 .mode = MIGRATE_SYNC, 9051 .ignore_skip_hint = true, 9052 .no_set_skip_hint = true, 9053 .gfp_mask = current_gfp_context(gfp_mask), 9054 .alloc_contig = true, 9055 }; 9056 INIT_LIST_HEAD(&cc.migratepages); 9057 9058 /* 9059 * What we do here is we mark all pageblocks in range as 9060 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9061 * have different sizes, and due to the way page allocator 9062 * work, we align the range to biggest of the two pages so 9063 * that page allocator won't try to merge buddies from 9064 * different pageblocks and change MIGRATE_ISOLATE to some 9065 * other migration type. 9066 * 9067 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9068 * migrate the pages from an unaligned range (ie. pages that 9069 * we are interested in). This will put all the pages in 9070 * range back to page allocator as MIGRATE_ISOLATE. 9071 * 9072 * When this is done, we take the pages in range from page 9073 * allocator removing them from the buddy system. This way 9074 * page allocator will never consider using them. 9075 * 9076 * This lets us mark the pageblocks back as 9077 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9078 * aligned range but not in the unaligned, original range are 9079 * put back to page allocator so that buddy can use them. 9080 */ 9081 9082 ret = start_isolate_page_range(pfn_max_align_down(start), 9083 pfn_max_align_up(end), migratetype, 0); 9084 if (ret) 9085 return ret; 9086 9087 drain_all_pages(cc.zone); 9088 9089 /* 9090 * In case of -EBUSY, we'd like to know which page causes problem. 9091 * So, just fall through. test_pages_isolated() has a tracepoint 9092 * which will report the busy page. 9093 * 9094 * It is possible that busy pages could become available before 9095 * the call to test_pages_isolated, and the range will actually be 9096 * allocated. So, if we fall through be sure to clear ret so that 9097 * -EBUSY is not accidentally used or returned to caller. 9098 */ 9099 ret = __alloc_contig_migrate_range(&cc, start, end); 9100 if (ret && ret != -EBUSY) 9101 goto done; 9102 ret = 0; 9103 9104 /* 9105 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 9106 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9107 * more, all pages in [start, end) are free in page allocator. 9108 * What we are going to do is to allocate all pages from 9109 * [start, end) (that is remove them from page allocator). 9110 * 9111 * The only problem is that pages at the beginning and at the 9112 * end of interesting range may be not aligned with pages that 9113 * page allocator holds, ie. they can be part of higher order 9114 * pages. Because of this, we reserve the bigger range and 9115 * once this is done free the pages we are not interested in. 9116 * 9117 * We don't have to hold zone->lock here because the pages are 9118 * isolated thus they won't get removed from buddy. 9119 */ 9120 9121 order = 0; 9122 outer_start = start; 9123 while (!PageBuddy(pfn_to_page(outer_start))) { 9124 if (++order >= MAX_ORDER) { 9125 outer_start = start; 9126 break; 9127 } 9128 outer_start &= ~0UL << order; 9129 } 9130 9131 if (outer_start != start) { 9132 order = buddy_order(pfn_to_page(outer_start)); 9133 9134 /* 9135 * outer_start page could be small order buddy page and 9136 * it doesn't include start page. Adjust outer_start 9137 * in this case to report failed page properly 9138 * on tracepoint in test_pages_isolated() 9139 */ 9140 if (outer_start + (1UL << order) <= start) 9141 outer_start = start; 9142 } 9143 9144 /* Make sure the range is really isolated. */ 9145 if (test_pages_isolated(outer_start, end, 0)) { 9146 ret = -EBUSY; 9147 goto done; 9148 } 9149 9150 /* Grab isolated pages from freelists. */ 9151 outer_end = isolate_freepages_range(&cc, outer_start, end); 9152 if (!outer_end) { 9153 ret = -EBUSY; 9154 goto done; 9155 } 9156 9157 /* Free head and tail (if any) */ 9158 if (start != outer_start) 9159 free_contig_range(outer_start, start - outer_start); 9160 if (end != outer_end) 9161 free_contig_range(end, outer_end - end); 9162 9163 done: 9164 undo_isolate_page_range(pfn_max_align_down(start), 9165 pfn_max_align_up(end), migratetype); 9166 return ret; 9167 } 9168 EXPORT_SYMBOL(alloc_contig_range); 9169 9170 static int __alloc_contig_pages(unsigned long start_pfn, 9171 unsigned long nr_pages, gfp_t gfp_mask) 9172 { 9173 unsigned long end_pfn = start_pfn + nr_pages; 9174 9175 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9176 gfp_mask); 9177 } 9178 9179 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9180 unsigned long nr_pages) 9181 { 9182 unsigned long i, end_pfn = start_pfn + nr_pages; 9183 struct page *page; 9184 9185 for (i = start_pfn; i < end_pfn; i++) { 9186 page = pfn_to_online_page(i); 9187 if (!page) 9188 return false; 9189 9190 if (page_zone(page) != z) 9191 return false; 9192 9193 if (PageReserved(page)) 9194 return false; 9195 } 9196 return true; 9197 } 9198 9199 static bool zone_spans_last_pfn(const struct zone *zone, 9200 unsigned long start_pfn, unsigned long nr_pages) 9201 { 9202 unsigned long last_pfn = start_pfn + nr_pages - 1; 9203 9204 return zone_spans_pfn(zone, last_pfn); 9205 } 9206 9207 /** 9208 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9209 * @nr_pages: Number of contiguous pages to allocate 9210 * @gfp_mask: GFP mask to limit search and used during compaction 9211 * @nid: Target node 9212 * @nodemask: Mask for other possible nodes 9213 * 9214 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9215 * on an applicable zonelist to find a contiguous pfn range which can then be 9216 * tried for allocation with alloc_contig_range(). This routine is intended 9217 * for allocation requests which can not be fulfilled with the buddy allocator. 9218 * 9219 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9220 * power of two then the alignment is guaranteed to be to the given nr_pages 9221 * (e.g. 1GB request would be aligned to 1GB). 9222 * 9223 * Allocated pages can be freed with free_contig_range() or by manually calling 9224 * __free_page() on each allocated page. 9225 * 9226 * Return: pointer to contiguous pages on success, or NULL if not successful. 9227 */ 9228 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9229 int nid, nodemask_t *nodemask) 9230 { 9231 unsigned long ret, pfn, flags; 9232 struct zonelist *zonelist; 9233 struct zone *zone; 9234 struct zoneref *z; 9235 9236 zonelist = node_zonelist(nid, gfp_mask); 9237 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9238 gfp_zone(gfp_mask), nodemask) { 9239 spin_lock_irqsave(&zone->lock, flags); 9240 9241 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9242 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9243 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9244 /* 9245 * We release the zone lock here because 9246 * alloc_contig_range() will also lock the zone 9247 * at some point. If there's an allocation 9248 * spinning on this lock, it may win the race 9249 * and cause alloc_contig_range() to fail... 9250 */ 9251 spin_unlock_irqrestore(&zone->lock, flags); 9252 ret = __alloc_contig_pages(pfn, nr_pages, 9253 gfp_mask); 9254 if (!ret) 9255 return pfn_to_page(pfn); 9256 spin_lock_irqsave(&zone->lock, flags); 9257 } 9258 pfn += nr_pages; 9259 } 9260 spin_unlock_irqrestore(&zone->lock, flags); 9261 } 9262 return NULL; 9263 } 9264 #endif /* CONFIG_CONTIG_ALLOC */ 9265 9266 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9267 { 9268 unsigned long count = 0; 9269 9270 for (; nr_pages--; pfn++) { 9271 struct page *page = pfn_to_page(pfn); 9272 9273 count += page_count(page) != 1; 9274 __free_page(page); 9275 } 9276 WARN(count != 0, "%lu pages are still in use!\n", count); 9277 } 9278 EXPORT_SYMBOL(free_contig_range); 9279 9280 /* 9281 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9282 * page high values need to be recalculated. 9283 */ 9284 void zone_pcp_update(struct zone *zone, int cpu_online) 9285 { 9286 mutex_lock(&pcp_batch_high_lock); 9287 zone_set_pageset_high_and_batch(zone, cpu_online); 9288 mutex_unlock(&pcp_batch_high_lock); 9289 } 9290 9291 /* 9292 * Effectively disable pcplists for the zone by setting the high limit to 0 9293 * and draining all cpus. A concurrent page freeing on another CPU that's about 9294 * to put the page on pcplist will either finish before the drain and the page 9295 * will be drained, or observe the new high limit and skip the pcplist. 9296 * 9297 * Must be paired with a call to zone_pcp_enable(). 9298 */ 9299 void zone_pcp_disable(struct zone *zone) 9300 { 9301 mutex_lock(&pcp_batch_high_lock); 9302 __zone_set_pageset_high_and_batch(zone, 0, 1); 9303 __drain_all_pages(zone, true); 9304 } 9305 9306 void zone_pcp_enable(struct zone *zone) 9307 { 9308 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9309 mutex_unlock(&pcp_batch_high_lock); 9310 } 9311 9312 void zone_pcp_reset(struct zone *zone) 9313 { 9314 int cpu; 9315 struct per_cpu_zonestat *pzstats; 9316 9317 if (zone->per_cpu_pageset != &boot_pageset) { 9318 for_each_online_cpu(cpu) { 9319 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9320 drain_zonestat(zone, pzstats); 9321 } 9322 free_percpu(zone->per_cpu_pageset); 9323 free_percpu(zone->per_cpu_zonestats); 9324 zone->per_cpu_pageset = &boot_pageset; 9325 zone->per_cpu_zonestats = &boot_zonestats; 9326 } 9327 } 9328 9329 #ifdef CONFIG_MEMORY_HOTREMOVE 9330 /* 9331 * All pages in the range must be in a single zone, must not contain holes, 9332 * must span full sections, and must be isolated before calling this function. 9333 */ 9334 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9335 { 9336 unsigned long pfn = start_pfn; 9337 struct page *page; 9338 struct zone *zone; 9339 unsigned int order; 9340 unsigned long flags; 9341 9342 offline_mem_sections(pfn, end_pfn); 9343 zone = page_zone(pfn_to_page(pfn)); 9344 spin_lock_irqsave(&zone->lock, flags); 9345 while (pfn < end_pfn) { 9346 page = pfn_to_page(pfn); 9347 /* 9348 * The HWPoisoned page may be not in buddy system, and 9349 * page_count() is not 0. 9350 */ 9351 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9352 pfn++; 9353 continue; 9354 } 9355 /* 9356 * At this point all remaining PageOffline() pages have a 9357 * reference count of 0 and can simply be skipped. 9358 */ 9359 if (PageOffline(page)) { 9360 BUG_ON(page_count(page)); 9361 BUG_ON(PageBuddy(page)); 9362 pfn++; 9363 continue; 9364 } 9365 9366 BUG_ON(page_count(page)); 9367 BUG_ON(!PageBuddy(page)); 9368 order = buddy_order(page); 9369 del_page_from_free_list(page, zone, order); 9370 pfn += (1 << order); 9371 } 9372 spin_unlock_irqrestore(&zone->lock, flags); 9373 } 9374 #endif 9375 9376 /* 9377 * This function returns a stable result only if called under zone lock. 9378 */ 9379 bool is_free_buddy_page(struct page *page) 9380 { 9381 unsigned long pfn = page_to_pfn(page); 9382 unsigned int order; 9383 9384 for (order = 0; order < MAX_ORDER; order++) { 9385 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9386 9387 if (PageBuddy(page_head) && 9388 buddy_order_unsafe(page_head) >= order) 9389 break; 9390 } 9391 9392 return order < MAX_ORDER; 9393 } 9394 9395 #ifdef CONFIG_MEMORY_FAILURE 9396 /* 9397 * Break down a higher-order page in sub-pages, and keep our target out of 9398 * buddy allocator. 9399 */ 9400 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9401 struct page *target, int low, int high, 9402 int migratetype) 9403 { 9404 unsigned long size = 1 << high; 9405 struct page *current_buddy, *next_page; 9406 9407 while (high > low) { 9408 high--; 9409 size >>= 1; 9410 9411 if (target >= &page[size]) { 9412 next_page = page + size; 9413 current_buddy = page; 9414 } else { 9415 next_page = page; 9416 current_buddy = page + size; 9417 } 9418 9419 if (set_page_guard(zone, current_buddy, high, migratetype)) 9420 continue; 9421 9422 if (current_buddy != target) { 9423 add_to_free_list(current_buddy, zone, high, migratetype); 9424 set_buddy_order(current_buddy, high); 9425 page = next_page; 9426 } 9427 } 9428 } 9429 9430 /* 9431 * Take a page that will be marked as poisoned off the buddy allocator. 9432 */ 9433 bool take_page_off_buddy(struct page *page) 9434 { 9435 struct zone *zone = page_zone(page); 9436 unsigned long pfn = page_to_pfn(page); 9437 unsigned long flags; 9438 unsigned int order; 9439 bool ret = false; 9440 9441 spin_lock_irqsave(&zone->lock, flags); 9442 for (order = 0; order < MAX_ORDER; order++) { 9443 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9444 int page_order = buddy_order(page_head); 9445 9446 if (PageBuddy(page_head) && page_order >= order) { 9447 unsigned long pfn_head = page_to_pfn(page_head); 9448 int migratetype = get_pfnblock_migratetype(page_head, 9449 pfn_head); 9450 9451 del_page_from_free_list(page_head, zone, page_order); 9452 break_down_buddy_pages(zone, page_head, page, 0, 9453 page_order, migratetype); 9454 if (!is_migrate_isolate(migratetype)) 9455 __mod_zone_freepage_state(zone, -1, migratetype); 9456 ret = true; 9457 break; 9458 } 9459 if (page_count(page_head) > 0) 9460 break; 9461 } 9462 spin_unlock_irqrestore(&zone->lock, flags); 9463 return ret; 9464 } 9465 #endif 9466