xref: /linux/mm/page_alloc.c (revision 5bf18281534451bf1ad56a45a3085cd7ad46860d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <linux/delayacct.h>
76 #include <asm/sections.h>
77 #include <asm/tlbflush.h>
78 #include <asm/div64.h>
79 #include "internal.h"
80 #include "shuffle.h"
81 #include "page_reporting.h"
82 
83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84 typedef int __bitwise fpi_t;
85 
86 /* No special request */
87 #define FPI_NONE		((__force fpi_t)0)
88 
89 /*
90  * Skip free page reporting notification for the (possibly merged) page.
91  * This does not hinder free page reporting from grabbing the page,
92  * reporting it and marking it "reported" -  it only skips notifying
93  * the free page reporting infrastructure about a newly freed page. For
94  * example, used when temporarily pulling a page from a freelist and
95  * putting it back unmodified.
96  */
97 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
98 
99 /*
100  * Place the (possibly merged) page to the tail of the freelist. Will ignore
101  * page shuffling (relevant code - e.g., memory onlining - is expected to
102  * shuffle the whole zone).
103  *
104  * Note: No code should rely on this flag for correctness - it's purely
105  *       to allow for optimizations when handing back either fresh pages
106  *       (memory onlining) or untouched pages (page isolation, free page
107  *       reporting).
108  */
109 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
110 
111 /*
112  * Don't poison memory with KASAN (only for the tag-based modes).
113  * During boot, all non-reserved memblock memory is exposed to page_alloc.
114  * Poisoning all that memory lengthens boot time, especially on systems with
115  * large amount of RAM. This flag is used to skip that poisoning.
116  * This is only done for the tag-based KASAN modes, as those are able to
117  * detect memory corruptions with the memory tags assigned by default.
118  * All memory allocated normally after boot gets poisoned as usual.
119  */
120 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
121 
122 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
123 static DEFINE_MUTEX(pcp_batch_high_lock);
124 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
125 
126 struct pagesets {
127 	local_lock_t lock;
128 };
129 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
130 	.lock = INIT_LOCAL_LOCK(lock),
131 };
132 
133 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
134 DEFINE_PER_CPU(int, numa_node);
135 EXPORT_PER_CPU_SYMBOL(numa_node);
136 #endif
137 
138 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
139 
140 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
141 /*
142  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
143  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
144  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
145  * defined in <linux/topology.h>.
146  */
147 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
148 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
149 #endif
150 
151 /* work_structs for global per-cpu drains */
152 struct pcpu_drain {
153 	struct zone *zone;
154 	struct work_struct work;
155 };
156 static DEFINE_MUTEX(pcpu_drain_mutex);
157 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
158 
159 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
160 volatile unsigned long latent_entropy __latent_entropy;
161 EXPORT_SYMBOL(latent_entropy);
162 #endif
163 
164 /*
165  * Array of node states.
166  */
167 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
168 	[N_POSSIBLE] = NODE_MASK_ALL,
169 	[N_ONLINE] = { { [0] = 1UL } },
170 #ifndef CONFIG_NUMA
171 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
172 #ifdef CONFIG_HIGHMEM
173 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
174 #endif
175 	[N_MEMORY] = { { [0] = 1UL } },
176 	[N_CPU] = { { [0] = 1UL } },
177 #endif	/* NUMA */
178 };
179 EXPORT_SYMBOL(node_states);
180 
181 atomic_long_t _totalram_pages __read_mostly;
182 EXPORT_SYMBOL(_totalram_pages);
183 unsigned long totalreserve_pages __read_mostly;
184 unsigned long totalcma_pages __read_mostly;
185 
186 int percpu_pagelist_high_fraction;
187 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
188 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
189 EXPORT_SYMBOL(init_on_alloc);
190 
191 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
192 EXPORT_SYMBOL(init_on_free);
193 
194 static bool _init_on_alloc_enabled_early __read_mostly
195 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
196 static int __init early_init_on_alloc(char *buf)
197 {
198 
199 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
200 }
201 early_param("init_on_alloc", early_init_on_alloc);
202 
203 static bool _init_on_free_enabled_early __read_mostly
204 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
205 static int __init early_init_on_free(char *buf)
206 {
207 	return kstrtobool(buf, &_init_on_free_enabled_early);
208 }
209 early_param("init_on_free", early_init_on_free);
210 
211 /*
212  * A cached value of the page's pageblock's migratetype, used when the page is
213  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
214  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
215  * Also the migratetype set in the page does not necessarily match the pcplist
216  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
217  * other index - this ensures that it will be put on the correct CMA freelist.
218  */
219 static inline int get_pcppage_migratetype(struct page *page)
220 {
221 	return page->index;
222 }
223 
224 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
225 {
226 	page->index = migratetype;
227 }
228 
229 #ifdef CONFIG_PM_SLEEP
230 /*
231  * The following functions are used by the suspend/hibernate code to temporarily
232  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
233  * while devices are suspended.  To avoid races with the suspend/hibernate code,
234  * they should always be called with system_transition_mutex held
235  * (gfp_allowed_mask also should only be modified with system_transition_mutex
236  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
237  * with that modification).
238  */
239 
240 static gfp_t saved_gfp_mask;
241 
242 void pm_restore_gfp_mask(void)
243 {
244 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
245 	if (saved_gfp_mask) {
246 		gfp_allowed_mask = saved_gfp_mask;
247 		saved_gfp_mask = 0;
248 	}
249 }
250 
251 void pm_restrict_gfp_mask(void)
252 {
253 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
254 	WARN_ON(saved_gfp_mask);
255 	saved_gfp_mask = gfp_allowed_mask;
256 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
257 }
258 
259 bool pm_suspended_storage(void)
260 {
261 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
262 		return false;
263 	return true;
264 }
265 #endif /* CONFIG_PM_SLEEP */
266 
267 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
268 unsigned int pageblock_order __read_mostly;
269 #endif
270 
271 static void __free_pages_ok(struct page *page, unsigned int order,
272 			    fpi_t fpi_flags);
273 
274 /*
275  * results with 256, 32 in the lowmem_reserve sysctl:
276  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
277  *	1G machine -> (16M dma, 784M normal, 224M high)
278  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
279  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
280  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
281  *
282  * TBD: should special case ZONE_DMA32 machines here - in those we normally
283  * don't need any ZONE_NORMAL reservation
284  */
285 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
286 #ifdef CONFIG_ZONE_DMA
287 	[ZONE_DMA] = 256,
288 #endif
289 #ifdef CONFIG_ZONE_DMA32
290 	[ZONE_DMA32] = 256,
291 #endif
292 	[ZONE_NORMAL] = 32,
293 #ifdef CONFIG_HIGHMEM
294 	[ZONE_HIGHMEM] = 0,
295 #endif
296 	[ZONE_MOVABLE] = 0,
297 };
298 
299 static char * const zone_names[MAX_NR_ZONES] = {
300 #ifdef CONFIG_ZONE_DMA
301 	 "DMA",
302 #endif
303 #ifdef CONFIG_ZONE_DMA32
304 	 "DMA32",
305 #endif
306 	 "Normal",
307 #ifdef CONFIG_HIGHMEM
308 	 "HighMem",
309 #endif
310 	 "Movable",
311 #ifdef CONFIG_ZONE_DEVICE
312 	 "Device",
313 #endif
314 };
315 
316 const char * const migratetype_names[MIGRATE_TYPES] = {
317 	"Unmovable",
318 	"Movable",
319 	"Reclaimable",
320 	"HighAtomic",
321 #ifdef CONFIG_CMA
322 	"CMA",
323 #endif
324 #ifdef CONFIG_MEMORY_ISOLATION
325 	"Isolate",
326 #endif
327 };
328 
329 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
330 	[NULL_COMPOUND_DTOR] = NULL,
331 	[COMPOUND_PAGE_DTOR] = free_compound_page,
332 #ifdef CONFIG_HUGETLB_PAGE
333 	[HUGETLB_PAGE_DTOR] = free_huge_page,
334 #endif
335 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
336 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
337 #endif
338 };
339 
340 int min_free_kbytes = 1024;
341 int user_min_free_kbytes = -1;
342 int watermark_boost_factor __read_mostly = 15000;
343 int watermark_scale_factor = 10;
344 
345 static unsigned long nr_kernel_pages __initdata;
346 static unsigned long nr_all_pages __initdata;
347 static unsigned long dma_reserve __initdata;
348 
349 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
350 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
351 static unsigned long required_kernelcore __initdata;
352 static unsigned long required_kernelcore_percent __initdata;
353 static unsigned long required_movablecore __initdata;
354 static unsigned long required_movablecore_percent __initdata;
355 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
356 static bool mirrored_kernelcore __meminitdata;
357 
358 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
359 int movable_zone;
360 EXPORT_SYMBOL(movable_zone);
361 
362 #if MAX_NUMNODES > 1
363 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
364 unsigned int nr_online_nodes __read_mostly = 1;
365 EXPORT_SYMBOL(nr_node_ids);
366 EXPORT_SYMBOL(nr_online_nodes);
367 #endif
368 
369 int page_group_by_mobility_disabled __read_mostly;
370 
371 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
372 /*
373  * During boot we initialize deferred pages on-demand, as needed, but once
374  * page_alloc_init_late() has finished, the deferred pages are all initialized,
375  * and we can permanently disable that path.
376  */
377 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
378 
379 /*
380  * Calling kasan_poison_pages() only after deferred memory initialization
381  * has completed. Poisoning pages during deferred memory init will greatly
382  * lengthen the process and cause problem in large memory systems as the
383  * deferred pages initialization is done with interrupt disabled.
384  *
385  * Assuming that there will be no reference to those newly initialized
386  * pages before they are ever allocated, this should have no effect on
387  * KASAN memory tracking as the poison will be properly inserted at page
388  * allocation time. The only corner case is when pages are allocated by
389  * on-demand allocation and then freed again before the deferred pages
390  * initialization is done, but this is not likely to happen.
391  */
392 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
393 {
394 	return static_branch_unlikely(&deferred_pages) ||
395 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
396 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
397 	       PageSkipKASanPoison(page);
398 }
399 
400 /* Returns true if the struct page for the pfn is uninitialised */
401 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
402 {
403 	int nid = early_pfn_to_nid(pfn);
404 
405 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
406 		return true;
407 
408 	return false;
409 }
410 
411 /*
412  * Returns true when the remaining initialisation should be deferred until
413  * later in the boot cycle when it can be parallelised.
414  */
415 static bool __meminit
416 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
417 {
418 	static unsigned long prev_end_pfn, nr_initialised;
419 
420 	/*
421 	 * prev_end_pfn static that contains the end of previous zone
422 	 * No need to protect because called very early in boot before smp_init.
423 	 */
424 	if (prev_end_pfn != end_pfn) {
425 		prev_end_pfn = end_pfn;
426 		nr_initialised = 0;
427 	}
428 
429 	/* Always populate low zones for address-constrained allocations */
430 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
431 		return false;
432 
433 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
434 		return true;
435 	/*
436 	 * We start only with one section of pages, more pages are added as
437 	 * needed until the rest of deferred pages are initialized.
438 	 */
439 	nr_initialised++;
440 	if ((nr_initialised > PAGES_PER_SECTION) &&
441 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
442 		NODE_DATA(nid)->first_deferred_pfn = pfn;
443 		return true;
444 	}
445 	return false;
446 }
447 #else
448 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
449 {
450 	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
451 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
452 	       PageSkipKASanPoison(page);
453 }
454 
455 static inline bool early_page_uninitialised(unsigned long pfn)
456 {
457 	return false;
458 }
459 
460 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
461 {
462 	return false;
463 }
464 #endif
465 
466 /* Return a pointer to the bitmap storing bits affecting a block of pages */
467 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
468 							unsigned long pfn)
469 {
470 #ifdef CONFIG_SPARSEMEM
471 	return section_to_usemap(__pfn_to_section(pfn));
472 #else
473 	return page_zone(page)->pageblock_flags;
474 #endif /* CONFIG_SPARSEMEM */
475 }
476 
477 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
478 {
479 #ifdef CONFIG_SPARSEMEM
480 	pfn &= (PAGES_PER_SECTION-1);
481 #else
482 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
483 #endif /* CONFIG_SPARSEMEM */
484 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
485 }
486 
487 static __always_inline
488 unsigned long __get_pfnblock_flags_mask(const struct page *page,
489 					unsigned long pfn,
490 					unsigned long mask)
491 {
492 	unsigned long *bitmap;
493 	unsigned long bitidx, word_bitidx;
494 	unsigned long word;
495 
496 	bitmap = get_pageblock_bitmap(page, pfn);
497 	bitidx = pfn_to_bitidx(page, pfn);
498 	word_bitidx = bitidx / BITS_PER_LONG;
499 	bitidx &= (BITS_PER_LONG-1);
500 
501 	word = bitmap[word_bitidx];
502 	return (word >> bitidx) & mask;
503 }
504 
505 /**
506  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
507  * @page: The page within the block of interest
508  * @pfn: The target page frame number
509  * @mask: mask of bits that the caller is interested in
510  *
511  * Return: pageblock_bits flags
512  */
513 unsigned long get_pfnblock_flags_mask(const struct page *page,
514 					unsigned long pfn, unsigned long mask)
515 {
516 	return __get_pfnblock_flags_mask(page, pfn, mask);
517 }
518 
519 static __always_inline int get_pfnblock_migratetype(const struct page *page,
520 					unsigned long pfn)
521 {
522 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
523 }
524 
525 /**
526  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
527  * @page: The page within the block of interest
528  * @flags: The flags to set
529  * @pfn: The target page frame number
530  * @mask: mask of bits that the caller is interested in
531  */
532 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
533 					unsigned long pfn,
534 					unsigned long mask)
535 {
536 	unsigned long *bitmap;
537 	unsigned long bitidx, word_bitidx;
538 	unsigned long old_word, word;
539 
540 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
541 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
542 
543 	bitmap = get_pageblock_bitmap(page, pfn);
544 	bitidx = pfn_to_bitidx(page, pfn);
545 	word_bitidx = bitidx / BITS_PER_LONG;
546 	bitidx &= (BITS_PER_LONG-1);
547 
548 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
549 
550 	mask <<= bitidx;
551 	flags <<= bitidx;
552 
553 	word = READ_ONCE(bitmap[word_bitidx]);
554 	for (;;) {
555 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
556 		if (word == old_word)
557 			break;
558 		word = old_word;
559 	}
560 }
561 
562 void set_pageblock_migratetype(struct page *page, int migratetype)
563 {
564 	if (unlikely(page_group_by_mobility_disabled &&
565 		     migratetype < MIGRATE_PCPTYPES))
566 		migratetype = MIGRATE_UNMOVABLE;
567 
568 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
569 				page_to_pfn(page), MIGRATETYPE_MASK);
570 }
571 
572 #ifdef CONFIG_DEBUG_VM
573 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
574 {
575 	int ret = 0;
576 	unsigned seq;
577 	unsigned long pfn = page_to_pfn(page);
578 	unsigned long sp, start_pfn;
579 
580 	do {
581 		seq = zone_span_seqbegin(zone);
582 		start_pfn = zone->zone_start_pfn;
583 		sp = zone->spanned_pages;
584 		if (!zone_spans_pfn(zone, pfn))
585 			ret = 1;
586 	} while (zone_span_seqretry(zone, seq));
587 
588 	if (ret)
589 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
590 			pfn, zone_to_nid(zone), zone->name,
591 			start_pfn, start_pfn + sp);
592 
593 	return ret;
594 }
595 
596 static int page_is_consistent(struct zone *zone, struct page *page)
597 {
598 	if (zone != page_zone(page))
599 		return 0;
600 
601 	return 1;
602 }
603 /*
604  * Temporary debugging check for pages not lying within a given zone.
605  */
606 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
607 {
608 	if (page_outside_zone_boundaries(zone, page))
609 		return 1;
610 	if (!page_is_consistent(zone, page))
611 		return 1;
612 
613 	return 0;
614 }
615 #else
616 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
617 {
618 	return 0;
619 }
620 #endif
621 
622 static void bad_page(struct page *page, const char *reason)
623 {
624 	static unsigned long resume;
625 	static unsigned long nr_shown;
626 	static unsigned long nr_unshown;
627 
628 	/*
629 	 * Allow a burst of 60 reports, then keep quiet for that minute;
630 	 * or allow a steady drip of one report per second.
631 	 */
632 	if (nr_shown == 60) {
633 		if (time_before(jiffies, resume)) {
634 			nr_unshown++;
635 			goto out;
636 		}
637 		if (nr_unshown) {
638 			pr_alert(
639 			      "BUG: Bad page state: %lu messages suppressed\n",
640 				nr_unshown);
641 			nr_unshown = 0;
642 		}
643 		nr_shown = 0;
644 	}
645 	if (nr_shown++ == 0)
646 		resume = jiffies + 60 * HZ;
647 
648 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
649 		current->comm, page_to_pfn(page));
650 	dump_page(page, reason);
651 
652 	print_modules();
653 	dump_stack();
654 out:
655 	/* Leave bad fields for debug, except PageBuddy could make trouble */
656 	page_mapcount_reset(page); /* remove PageBuddy */
657 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
658 }
659 
660 static inline unsigned int order_to_pindex(int migratetype, int order)
661 {
662 	int base = order;
663 
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
666 		VM_BUG_ON(order != pageblock_order);
667 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
668 	}
669 #else
670 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
671 #endif
672 
673 	return (MIGRATE_PCPTYPES * base) + migratetype;
674 }
675 
676 static inline int pindex_to_order(unsigned int pindex)
677 {
678 	int order = pindex / MIGRATE_PCPTYPES;
679 
680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
681 	if (order > PAGE_ALLOC_COSTLY_ORDER)
682 		order = pageblock_order;
683 #else
684 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
685 #endif
686 
687 	return order;
688 }
689 
690 static inline bool pcp_allowed_order(unsigned int order)
691 {
692 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
693 		return true;
694 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
695 	if (order == pageblock_order)
696 		return true;
697 #endif
698 	return false;
699 }
700 
701 static inline void free_the_page(struct page *page, unsigned int order)
702 {
703 	if (pcp_allowed_order(order))		/* Via pcp? */
704 		free_unref_page(page, order);
705 	else
706 		__free_pages_ok(page, order, FPI_NONE);
707 }
708 
709 /*
710  * Higher-order pages are called "compound pages".  They are structured thusly:
711  *
712  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
713  *
714  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
715  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
716  *
717  * The first tail page's ->compound_dtor holds the offset in array of compound
718  * page destructors. See compound_page_dtors.
719  *
720  * The first tail page's ->compound_order holds the order of allocation.
721  * This usage means that zero-order pages may not be compound.
722  */
723 
724 void free_compound_page(struct page *page)
725 {
726 	mem_cgroup_uncharge(page_folio(page));
727 	free_the_page(page, compound_order(page));
728 }
729 
730 void prep_compound_page(struct page *page, unsigned int order)
731 {
732 	int i;
733 	int nr_pages = 1 << order;
734 
735 	__SetPageHead(page);
736 	for (i = 1; i < nr_pages; i++) {
737 		struct page *p = page + i;
738 		p->mapping = TAIL_MAPPING;
739 		set_compound_head(p, page);
740 	}
741 
742 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
743 	set_compound_order(page, order);
744 	atomic_set(compound_mapcount_ptr(page), -1);
745 	if (hpage_pincount_available(page))
746 		atomic_set(compound_pincount_ptr(page), 0);
747 }
748 
749 #ifdef CONFIG_DEBUG_PAGEALLOC
750 unsigned int _debug_guardpage_minorder;
751 
752 bool _debug_pagealloc_enabled_early __read_mostly
753 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
754 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
755 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
756 EXPORT_SYMBOL(_debug_pagealloc_enabled);
757 
758 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
759 
760 static int __init early_debug_pagealloc(char *buf)
761 {
762 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
763 }
764 early_param("debug_pagealloc", early_debug_pagealloc);
765 
766 static int __init debug_guardpage_minorder_setup(char *buf)
767 {
768 	unsigned long res;
769 
770 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
771 		pr_err("Bad debug_guardpage_minorder value\n");
772 		return 0;
773 	}
774 	_debug_guardpage_minorder = res;
775 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
776 	return 0;
777 }
778 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
779 
780 static inline bool set_page_guard(struct zone *zone, struct page *page,
781 				unsigned int order, int migratetype)
782 {
783 	if (!debug_guardpage_enabled())
784 		return false;
785 
786 	if (order >= debug_guardpage_minorder())
787 		return false;
788 
789 	__SetPageGuard(page);
790 	INIT_LIST_HEAD(&page->lru);
791 	set_page_private(page, order);
792 	/* Guard pages are not available for any usage */
793 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
794 
795 	return true;
796 }
797 
798 static inline void clear_page_guard(struct zone *zone, struct page *page,
799 				unsigned int order, int migratetype)
800 {
801 	if (!debug_guardpage_enabled())
802 		return;
803 
804 	__ClearPageGuard(page);
805 
806 	set_page_private(page, 0);
807 	if (!is_migrate_isolate(migratetype))
808 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
809 }
810 #else
811 static inline bool set_page_guard(struct zone *zone, struct page *page,
812 			unsigned int order, int migratetype) { return false; }
813 static inline void clear_page_guard(struct zone *zone, struct page *page,
814 				unsigned int order, int migratetype) {}
815 #endif
816 
817 /*
818  * Enable static keys related to various memory debugging and hardening options.
819  * Some override others, and depend on early params that are evaluated in the
820  * order of appearance. So we need to first gather the full picture of what was
821  * enabled, and then make decisions.
822  */
823 void init_mem_debugging_and_hardening(void)
824 {
825 	bool page_poisoning_requested = false;
826 
827 #ifdef CONFIG_PAGE_POISONING
828 	/*
829 	 * Page poisoning is debug page alloc for some arches. If
830 	 * either of those options are enabled, enable poisoning.
831 	 */
832 	if (page_poisoning_enabled() ||
833 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
834 	      debug_pagealloc_enabled())) {
835 		static_branch_enable(&_page_poisoning_enabled);
836 		page_poisoning_requested = true;
837 	}
838 #endif
839 
840 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
841 	    page_poisoning_requested) {
842 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
843 			"will take precedence over init_on_alloc and init_on_free\n");
844 		_init_on_alloc_enabled_early = false;
845 		_init_on_free_enabled_early = false;
846 	}
847 
848 	if (_init_on_alloc_enabled_early)
849 		static_branch_enable(&init_on_alloc);
850 	else
851 		static_branch_disable(&init_on_alloc);
852 
853 	if (_init_on_free_enabled_early)
854 		static_branch_enable(&init_on_free);
855 	else
856 		static_branch_disable(&init_on_free);
857 
858 #ifdef CONFIG_DEBUG_PAGEALLOC
859 	if (!debug_pagealloc_enabled())
860 		return;
861 
862 	static_branch_enable(&_debug_pagealloc_enabled);
863 
864 	if (!debug_guardpage_minorder())
865 		return;
866 
867 	static_branch_enable(&_debug_guardpage_enabled);
868 #endif
869 }
870 
871 static inline void set_buddy_order(struct page *page, unsigned int order)
872 {
873 	set_page_private(page, order);
874 	__SetPageBuddy(page);
875 }
876 
877 /*
878  * This function checks whether a page is free && is the buddy
879  * we can coalesce a page and its buddy if
880  * (a) the buddy is not in a hole (check before calling!) &&
881  * (b) the buddy is in the buddy system &&
882  * (c) a page and its buddy have the same order &&
883  * (d) a page and its buddy are in the same zone.
884  *
885  * For recording whether a page is in the buddy system, we set PageBuddy.
886  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
887  *
888  * For recording page's order, we use page_private(page).
889  */
890 static inline bool page_is_buddy(struct page *page, struct page *buddy,
891 							unsigned int order)
892 {
893 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
894 		return false;
895 
896 	if (buddy_order(buddy) != order)
897 		return false;
898 
899 	/*
900 	 * zone check is done late to avoid uselessly calculating
901 	 * zone/node ids for pages that could never merge.
902 	 */
903 	if (page_zone_id(page) != page_zone_id(buddy))
904 		return false;
905 
906 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
907 
908 	return true;
909 }
910 
911 #ifdef CONFIG_COMPACTION
912 static inline struct capture_control *task_capc(struct zone *zone)
913 {
914 	struct capture_control *capc = current->capture_control;
915 
916 	return unlikely(capc) &&
917 		!(current->flags & PF_KTHREAD) &&
918 		!capc->page &&
919 		capc->cc->zone == zone ? capc : NULL;
920 }
921 
922 static inline bool
923 compaction_capture(struct capture_control *capc, struct page *page,
924 		   int order, int migratetype)
925 {
926 	if (!capc || order != capc->cc->order)
927 		return false;
928 
929 	/* Do not accidentally pollute CMA or isolated regions*/
930 	if (is_migrate_cma(migratetype) ||
931 	    is_migrate_isolate(migratetype))
932 		return false;
933 
934 	/*
935 	 * Do not let lower order allocations pollute a movable pageblock.
936 	 * This might let an unmovable request use a reclaimable pageblock
937 	 * and vice-versa but no more than normal fallback logic which can
938 	 * have trouble finding a high-order free page.
939 	 */
940 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
941 		return false;
942 
943 	capc->page = page;
944 	return true;
945 }
946 
947 #else
948 static inline struct capture_control *task_capc(struct zone *zone)
949 {
950 	return NULL;
951 }
952 
953 static inline bool
954 compaction_capture(struct capture_control *capc, struct page *page,
955 		   int order, int migratetype)
956 {
957 	return false;
958 }
959 #endif /* CONFIG_COMPACTION */
960 
961 /* Used for pages not on another list */
962 static inline void add_to_free_list(struct page *page, struct zone *zone,
963 				    unsigned int order, int migratetype)
964 {
965 	struct free_area *area = &zone->free_area[order];
966 
967 	list_add(&page->lru, &area->free_list[migratetype]);
968 	area->nr_free++;
969 }
970 
971 /* Used for pages not on another list */
972 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
973 					 unsigned int order, int migratetype)
974 {
975 	struct free_area *area = &zone->free_area[order];
976 
977 	list_add_tail(&page->lru, &area->free_list[migratetype]);
978 	area->nr_free++;
979 }
980 
981 /*
982  * Used for pages which are on another list. Move the pages to the tail
983  * of the list - so the moved pages won't immediately be considered for
984  * allocation again (e.g., optimization for memory onlining).
985  */
986 static inline void move_to_free_list(struct page *page, struct zone *zone,
987 				     unsigned int order, int migratetype)
988 {
989 	struct free_area *area = &zone->free_area[order];
990 
991 	list_move_tail(&page->lru, &area->free_list[migratetype]);
992 }
993 
994 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
995 					   unsigned int order)
996 {
997 	/* clear reported state and update reported page count */
998 	if (page_reported(page))
999 		__ClearPageReported(page);
1000 
1001 	list_del(&page->lru);
1002 	__ClearPageBuddy(page);
1003 	set_page_private(page, 0);
1004 	zone->free_area[order].nr_free--;
1005 }
1006 
1007 /*
1008  * If this is not the largest possible page, check if the buddy
1009  * of the next-highest order is free. If it is, it's possible
1010  * that pages are being freed that will coalesce soon. In case,
1011  * that is happening, add the free page to the tail of the list
1012  * so it's less likely to be used soon and more likely to be merged
1013  * as a higher order page
1014  */
1015 static inline bool
1016 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1017 		   struct page *page, unsigned int order)
1018 {
1019 	struct page *higher_page, *higher_buddy;
1020 	unsigned long combined_pfn;
1021 
1022 	if (order >= MAX_ORDER - 2)
1023 		return false;
1024 
1025 	combined_pfn = buddy_pfn & pfn;
1026 	higher_page = page + (combined_pfn - pfn);
1027 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1028 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1029 
1030 	return page_is_buddy(higher_page, higher_buddy, order + 1);
1031 }
1032 
1033 /*
1034  * Freeing function for a buddy system allocator.
1035  *
1036  * The concept of a buddy system is to maintain direct-mapped table
1037  * (containing bit values) for memory blocks of various "orders".
1038  * The bottom level table contains the map for the smallest allocatable
1039  * units of memory (here, pages), and each level above it describes
1040  * pairs of units from the levels below, hence, "buddies".
1041  * At a high level, all that happens here is marking the table entry
1042  * at the bottom level available, and propagating the changes upward
1043  * as necessary, plus some accounting needed to play nicely with other
1044  * parts of the VM system.
1045  * At each level, we keep a list of pages, which are heads of continuous
1046  * free pages of length of (1 << order) and marked with PageBuddy.
1047  * Page's order is recorded in page_private(page) field.
1048  * So when we are allocating or freeing one, we can derive the state of the
1049  * other.  That is, if we allocate a small block, and both were
1050  * free, the remainder of the region must be split into blocks.
1051  * If a block is freed, and its buddy is also free, then this
1052  * triggers coalescing into a block of larger size.
1053  *
1054  * -- nyc
1055  */
1056 
1057 static inline void __free_one_page(struct page *page,
1058 		unsigned long pfn,
1059 		struct zone *zone, unsigned int order,
1060 		int migratetype, fpi_t fpi_flags)
1061 {
1062 	struct capture_control *capc = task_capc(zone);
1063 	unsigned long buddy_pfn;
1064 	unsigned long combined_pfn;
1065 	unsigned int max_order;
1066 	struct page *buddy;
1067 	bool to_tail;
1068 
1069 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1070 
1071 	VM_BUG_ON(!zone_is_initialized(zone));
1072 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1073 
1074 	VM_BUG_ON(migratetype == -1);
1075 	if (likely(!is_migrate_isolate(migratetype)))
1076 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1077 
1078 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1079 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1080 
1081 continue_merging:
1082 	while (order < max_order) {
1083 		if (compaction_capture(capc, page, order, migratetype)) {
1084 			__mod_zone_freepage_state(zone, -(1 << order),
1085 								migratetype);
1086 			return;
1087 		}
1088 		buddy_pfn = __find_buddy_pfn(pfn, order);
1089 		buddy = page + (buddy_pfn - pfn);
1090 
1091 		if (!page_is_buddy(page, buddy, order))
1092 			goto done_merging;
1093 		/*
1094 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1095 		 * merge with it and move up one order.
1096 		 */
1097 		if (page_is_guard(buddy))
1098 			clear_page_guard(zone, buddy, order, migratetype);
1099 		else
1100 			del_page_from_free_list(buddy, zone, order);
1101 		combined_pfn = buddy_pfn & pfn;
1102 		page = page + (combined_pfn - pfn);
1103 		pfn = combined_pfn;
1104 		order++;
1105 	}
1106 	if (order < MAX_ORDER - 1) {
1107 		/* If we are here, it means order is >= pageblock_order.
1108 		 * We want to prevent merge between freepages on isolate
1109 		 * pageblock and normal pageblock. Without this, pageblock
1110 		 * isolation could cause incorrect freepage or CMA accounting.
1111 		 *
1112 		 * We don't want to hit this code for the more frequent
1113 		 * low-order merging.
1114 		 */
1115 		if (unlikely(has_isolate_pageblock(zone))) {
1116 			int buddy_mt;
1117 
1118 			buddy_pfn = __find_buddy_pfn(pfn, order);
1119 			buddy = page + (buddy_pfn - pfn);
1120 			buddy_mt = get_pageblock_migratetype(buddy);
1121 
1122 			if (migratetype != buddy_mt
1123 					&& (is_migrate_isolate(migratetype) ||
1124 						is_migrate_isolate(buddy_mt)))
1125 				goto done_merging;
1126 		}
1127 		max_order = order + 1;
1128 		goto continue_merging;
1129 	}
1130 
1131 done_merging:
1132 	set_buddy_order(page, order);
1133 
1134 	if (fpi_flags & FPI_TO_TAIL)
1135 		to_tail = true;
1136 	else if (is_shuffle_order(order))
1137 		to_tail = shuffle_pick_tail();
1138 	else
1139 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1140 
1141 	if (to_tail)
1142 		add_to_free_list_tail(page, zone, order, migratetype);
1143 	else
1144 		add_to_free_list(page, zone, order, migratetype);
1145 
1146 	/* Notify page reporting subsystem of freed page */
1147 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1148 		page_reporting_notify_free(order);
1149 }
1150 
1151 /*
1152  * A bad page could be due to a number of fields. Instead of multiple branches,
1153  * try and check multiple fields with one check. The caller must do a detailed
1154  * check if necessary.
1155  */
1156 static inline bool page_expected_state(struct page *page,
1157 					unsigned long check_flags)
1158 {
1159 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1160 		return false;
1161 
1162 	if (unlikely((unsigned long)page->mapping |
1163 			page_ref_count(page) |
1164 #ifdef CONFIG_MEMCG
1165 			page->memcg_data |
1166 #endif
1167 			(page->flags & check_flags)))
1168 		return false;
1169 
1170 	return true;
1171 }
1172 
1173 static const char *page_bad_reason(struct page *page, unsigned long flags)
1174 {
1175 	const char *bad_reason = NULL;
1176 
1177 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1178 		bad_reason = "nonzero mapcount";
1179 	if (unlikely(page->mapping != NULL))
1180 		bad_reason = "non-NULL mapping";
1181 	if (unlikely(page_ref_count(page) != 0))
1182 		bad_reason = "nonzero _refcount";
1183 	if (unlikely(page->flags & flags)) {
1184 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1185 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1186 		else
1187 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1188 	}
1189 #ifdef CONFIG_MEMCG
1190 	if (unlikely(page->memcg_data))
1191 		bad_reason = "page still charged to cgroup";
1192 #endif
1193 	return bad_reason;
1194 }
1195 
1196 static void check_free_page_bad(struct page *page)
1197 {
1198 	bad_page(page,
1199 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1200 }
1201 
1202 static inline int check_free_page(struct page *page)
1203 {
1204 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1205 		return 0;
1206 
1207 	/* Something has gone sideways, find it */
1208 	check_free_page_bad(page);
1209 	return 1;
1210 }
1211 
1212 static int free_tail_pages_check(struct page *head_page, struct page *page)
1213 {
1214 	int ret = 1;
1215 
1216 	/*
1217 	 * We rely page->lru.next never has bit 0 set, unless the page
1218 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1219 	 */
1220 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1221 
1222 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1223 		ret = 0;
1224 		goto out;
1225 	}
1226 	switch (page - head_page) {
1227 	case 1:
1228 		/* the first tail page: ->mapping may be compound_mapcount() */
1229 		if (unlikely(compound_mapcount(page))) {
1230 			bad_page(page, "nonzero compound_mapcount");
1231 			goto out;
1232 		}
1233 		break;
1234 	case 2:
1235 		/*
1236 		 * the second tail page: ->mapping is
1237 		 * deferred_list.next -- ignore value.
1238 		 */
1239 		break;
1240 	default:
1241 		if (page->mapping != TAIL_MAPPING) {
1242 			bad_page(page, "corrupted mapping in tail page");
1243 			goto out;
1244 		}
1245 		break;
1246 	}
1247 	if (unlikely(!PageTail(page))) {
1248 		bad_page(page, "PageTail not set");
1249 		goto out;
1250 	}
1251 	if (unlikely(compound_head(page) != head_page)) {
1252 		bad_page(page, "compound_head not consistent");
1253 		goto out;
1254 	}
1255 	ret = 0;
1256 out:
1257 	page->mapping = NULL;
1258 	clear_compound_head(page);
1259 	return ret;
1260 }
1261 
1262 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1263 {
1264 	int i;
1265 
1266 	if (zero_tags) {
1267 		for (i = 0; i < numpages; i++)
1268 			tag_clear_highpage(page + i);
1269 		return;
1270 	}
1271 
1272 	/* s390's use of memset() could override KASAN redzones. */
1273 	kasan_disable_current();
1274 	for (i = 0; i < numpages; i++) {
1275 		u8 tag = page_kasan_tag(page + i);
1276 		page_kasan_tag_reset(page + i);
1277 		clear_highpage(page + i);
1278 		page_kasan_tag_set(page + i, tag);
1279 	}
1280 	kasan_enable_current();
1281 }
1282 
1283 static __always_inline bool free_pages_prepare(struct page *page,
1284 			unsigned int order, bool check_free, fpi_t fpi_flags)
1285 {
1286 	int bad = 0;
1287 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1288 
1289 	VM_BUG_ON_PAGE(PageTail(page), page);
1290 
1291 	trace_mm_page_free(page, order);
1292 
1293 	if (unlikely(PageHWPoison(page)) && !order) {
1294 		/*
1295 		 * Do not let hwpoison pages hit pcplists/buddy
1296 		 * Untie memcg state and reset page's owner
1297 		 */
1298 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1299 			__memcg_kmem_uncharge_page(page, order);
1300 		reset_page_owner(page, order);
1301 		return false;
1302 	}
1303 
1304 	/*
1305 	 * Check tail pages before head page information is cleared to
1306 	 * avoid checking PageCompound for order-0 pages.
1307 	 */
1308 	if (unlikely(order)) {
1309 		bool compound = PageCompound(page);
1310 		int i;
1311 
1312 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1313 
1314 		if (compound) {
1315 			ClearPageDoubleMap(page);
1316 			ClearPageHasHWPoisoned(page);
1317 		}
1318 		for (i = 1; i < (1 << order); i++) {
1319 			if (compound)
1320 				bad += free_tail_pages_check(page, page + i);
1321 			if (unlikely(check_free_page(page + i))) {
1322 				bad++;
1323 				continue;
1324 			}
1325 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1326 		}
1327 	}
1328 	if (PageMappingFlags(page))
1329 		page->mapping = NULL;
1330 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1331 		__memcg_kmem_uncharge_page(page, order);
1332 	if (check_free)
1333 		bad += check_free_page(page);
1334 	if (bad)
1335 		return false;
1336 
1337 	page_cpupid_reset_last(page);
1338 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1339 	reset_page_owner(page, order);
1340 
1341 	if (!PageHighMem(page)) {
1342 		debug_check_no_locks_freed(page_address(page),
1343 					   PAGE_SIZE << order);
1344 		debug_check_no_obj_freed(page_address(page),
1345 					   PAGE_SIZE << order);
1346 	}
1347 
1348 	kernel_poison_pages(page, 1 << order);
1349 
1350 	/*
1351 	 * As memory initialization might be integrated into KASAN,
1352 	 * kasan_free_pages and kernel_init_free_pages must be
1353 	 * kept together to avoid discrepancies in behavior.
1354 	 *
1355 	 * With hardware tag-based KASAN, memory tags must be set before the
1356 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1357 	 */
1358 	if (kasan_has_integrated_init()) {
1359 		if (!skip_kasan_poison)
1360 			kasan_free_pages(page, order);
1361 	} else {
1362 		bool init = want_init_on_free();
1363 
1364 		if (init)
1365 			kernel_init_free_pages(page, 1 << order, false);
1366 		if (!skip_kasan_poison)
1367 			kasan_poison_pages(page, order, init);
1368 	}
1369 
1370 	/*
1371 	 * arch_free_page() can make the page's contents inaccessible.  s390
1372 	 * does this.  So nothing which can access the page's contents should
1373 	 * happen after this.
1374 	 */
1375 	arch_free_page(page, order);
1376 
1377 	debug_pagealloc_unmap_pages(page, 1 << order);
1378 
1379 	return true;
1380 }
1381 
1382 #ifdef CONFIG_DEBUG_VM
1383 /*
1384  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1385  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1386  * moved from pcp lists to free lists.
1387  */
1388 static bool free_pcp_prepare(struct page *page, unsigned int order)
1389 {
1390 	return free_pages_prepare(page, order, true, FPI_NONE);
1391 }
1392 
1393 static bool bulkfree_pcp_prepare(struct page *page)
1394 {
1395 	if (debug_pagealloc_enabled_static())
1396 		return check_free_page(page);
1397 	else
1398 		return false;
1399 }
1400 #else
1401 /*
1402  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1403  * moving from pcp lists to free list in order to reduce overhead. With
1404  * debug_pagealloc enabled, they are checked also immediately when being freed
1405  * to the pcp lists.
1406  */
1407 static bool free_pcp_prepare(struct page *page, unsigned int order)
1408 {
1409 	if (debug_pagealloc_enabled_static())
1410 		return free_pages_prepare(page, order, true, FPI_NONE);
1411 	else
1412 		return free_pages_prepare(page, order, false, FPI_NONE);
1413 }
1414 
1415 static bool bulkfree_pcp_prepare(struct page *page)
1416 {
1417 	return check_free_page(page);
1418 }
1419 #endif /* CONFIG_DEBUG_VM */
1420 
1421 static inline void prefetch_buddy(struct page *page)
1422 {
1423 	unsigned long pfn = page_to_pfn(page);
1424 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1425 	struct page *buddy = page + (buddy_pfn - pfn);
1426 
1427 	prefetch(buddy);
1428 }
1429 
1430 /*
1431  * Frees a number of pages from the PCP lists
1432  * Assumes all pages on list are in same zone.
1433  * count is the number of pages to free.
1434  */
1435 static void free_pcppages_bulk(struct zone *zone, int count,
1436 					struct per_cpu_pages *pcp)
1437 {
1438 	int pindex = 0;
1439 	int batch_free = 0;
1440 	int nr_freed = 0;
1441 	unsigned int order;
1442 	int prefetch_nr = READ_ONCE(pcp->batch);
1443 	bool isolated_pageblocks;
1444 	struct page *page, *tmp;
1445 	LIST_HEAD(head);
1446 
1447 	/*
1448 	 * Ensure proper count is passed which otherwise would stuck in the
1449 	 * below while (list_empty(list)) loop.
1450 	 */
1451 	count = min(pcp->count, count);
1452 	while (count > 0) {
1453 		struct list_head *list;
1454 
1455 		/*
1456 		 * Remove pages from lists in a round-robin fashion. A
1457 		 * batch_free count is maintained that is incremented when an
1458 		 * empty list is encountered.  This is so more pages are freed
1459 		 * off fuller lists instead of spinning excessively around empty
1460 		 * lists
1461 		 */
1462 		do {
1463 			batch_free++;
1464 			if (++pindex == NR_PCP_LISTS)
1465 				pindex = 0;
1466 			list = &pcp->lists[pindex];
1467 		} while (list_empty(list));
1468 
1469 		/* This is the only non-empty list. Free them all. */
1470 		if (batch_free == NR_PCP_LISTS)
1471 			batch_free = count;
1472 
1473 		order = pindex_to_order(pindex);
1474 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1475 		do {
1476 			page = list_last_entry(list, struct page, lru);
1477 			/* must delete to avoid corrupting pcp list */
1478 			list_del(&page->lru);
1479 			nr_freed += 1 << order;
1480 			count -= 1 << order;
1481 
1482 			if (bulkfree_pcp_prepare(page))
1483 				continue;
1484 
1485 			/* Encode order with the migratetype */
1486 			page->index <<= NR_PCP_ORDER_WIDTH;
1487 			page->index |= order;
1488 
1489 			list_add_tail(&page->lru, &head);
1490 
1491 			/*
1492 			 * We are going to put the page back to the global
1493 			 * pool, prefetch its buddy to speed up later access
1494 			 * under zone->lock. It is believed the overhead of
1495 			 * an additional test and calculating buddy_pfn here
1496 			 * can be offset by reduced memory latency later. To
1497 			 * avoid excessive prefetching due to large count, only
1498 			 * prefetch buddy for the first pcp->batch nr of pages.
1499 			 */
1500 			if (prefetch_nr) {
1501 				prefetch_buddy(page);
1502 				prefetch_nr--;
1503 			}
1504 		} while (count > 0 && --batch_free && !list_empty(list));
1505 	}
1506 	pcp->count -= nr_freed;
1507 
1508 	/*
1509 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1510 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1511 	 */
1512 	spin_lock(&zone->lock);
1513 	isolated_pageblocks = has_isolate_pageblock(zone);
1514 
1515 	/*
1516 	 * Use safe version since after __free_one_page(),
1517 	 * page->lru.next will not point to original list.
1518 	 */
1519 	list_for_each_entry_safe(page, tmp, &head, lru) {
1520 		int mt = get_pcppage_migratetype(page);
1521 
1522 		/* mt has been encoded with the order (see above) */
1523 		order = mt & NR_PCP_ORDER_MASK;
1524 		mt >>= NR_PCP_ORDER_WIDTH;
1525 
1526 		/* MIGRATE_ISOLATE page should not go to pcplists */
1527 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1528 		/* Pageblock could have been isolated meanwhile */
1529 		if (unlikely(isolated_pageblocks))
1530 			mt = get_pageblock_migratetype(page);
1531 
1532 		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1533 		trace_mm_page_pcpu_drain(page, order, mt);
1534 	}
1535 	spin_unlock(&zone->lock);
1536 }
1537 
1538 static void free_one_page(struct zone *zone,
1539 				struct page *page, unsigned long pfn,
1540 				unsigned int order,
1541 				int migratetype, fpi_t fpi_flags)
1542 {
1543 	unsigned long flags;
1544 
1545 	spin_lock_irqsave(&zone->lock, flags);
1546 	if (unlikely(has_isolate_pageblock(zone) ||
1547 		is_migrate_isolate(migratetype))) {
1548 		migratetype = get_pfnblock_migratetype(page, pfn);
1549 	}
1550 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1551 	spin_unlock_irqrestore(&zone->lock, flags);
1552 }
1553 
1554 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1555 				unsigned long zone, int nid)
1556 {
1557 	mm_zero_struct_page(page);
1558 	set_page_links(page, zone, nid, pfn);
1559 	init_page_count(page);
1560 	page_mapcount_reset(page);
1561 	page_cpupid_reset_last(page);
1562 	page_kasan_tag_reset(page);
1563 
1564 	INIT_LIST_HEAD(&page->lru);
1565 #ifdef WANT_PAGE_VIRTUAL
1566 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1567 	if (!is_highmem_idx(zone))
1568 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1569 #endif
1570 }
1571 
1572 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1573 static void __meminit init_reserved_page(unsigned long pfn)
1574 {
1575 	pg_data_t *pgdat;
1576 	int nid, zid;
1577 
1578 	if (!early_page_uninitialised(pfn))
1579 		return;
1580 
1581 	nid = early_pfn_to_nid(pfn);
1582 	pgdat = NODE_DATA(nid);
1583 
1584 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1585 		struct zone *zone = &pgdat->node_zones[zid];
1586 
1587 		if (zone_spans_pfn(zone, pfn))
1588 			break;
1589 	}
1590 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1591 }
1592 #else
1593 static inline void init_reserved_page(unsigned long pfn)
1594 {
1595 }
1596 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1597 
1598 /*
1599  * Initialised pages do not have PageReserved set. This function is
1600  * called for each range allocated by the bootmem allocator and
1601  * marks the pages PageReserved. The remaining valid pages are later
1602  * sent to the buddy page allocator.
1603  */
1604 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1605 {
1606 	unsigned long start_pfn = PFN_DOWN(start);
1607 	unsigned long end_pfn = PFN_UP(end);
1608 
1609 	for (; start_pfn < end_pfn; start_pfn++) {
1610 		if (pfn_valid(start_pfn)) {
1611 			struct page *page = pfn_to_page(start_pfn);
1612 
1613 			init_reserved_page(start_pfn);
1614 
1615 			/* Avoid false-positive PageTail() */
1616 			INIT_LIST_HEAD(&page->lru);
1617 
1618 			/*
1619 			 * no need for atomic set_bit because the struct
1620 			 * page is not visible yet so nobody should
1621 			 * access it yet.
1622 			 */
1623 			__SetPageReserved(page);
1624 		}
1625 	}
1626 }
1627 
1628 static void __free_pages_ok(struct page *page, unsigned int order,
1629 			    fpi_t fpi_flags)
1630 {
1631 	unsigned long flags;
1632 	int migratetype;
1633 	unsigned long pfn = page_to_pfn(page);
1634 	struct zone *zone = page_zone(page);
1635 
1636 	if (!free_pages_prepare(page, order, true, fpi_flags))
1637 		return;
1638 
1639 	migratetype = get_pfnblock_migratetype(page, pfn);
1640 
1641 	spin_lock_irqsave(&zone->lock, flags);
1642 	if (unlikely(has_isolate_pageblock(zone) ||
1643 		is_migrate_isolate(migratetype))) {
1644 		migratetype = get_pfnblock_migratetype(page, pfn);
1645 	}
1646 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1647 	spin_unlock_irqrestore(&zone->lock, flags);
1648 
1649 	__count_vm_events(PGFREE, 1 << order);
1650 }
1651 
1652 void __free_pages_core(struct page *page, unsigned int order)
1653 {
1654 	unsigned int nr_pages = 1 << order;
1655 	struct page *p = page;
1656 	unsigned int loop;
1657 
1658 	/*
1659 	 * When initializing the memmap, __init_single_page() sets the refcount
1660 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1661 	 * refcount of all involved pages to 0.
1662 	 */
1663 	prefetchw(p);
1664 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1665 		prefetchw(p + 1);
1666 		__ClearPageReserved(p);
1667 		set_page_count(p, 0);
1668 	}
1669 	__ClearPageReserved(p);
1670 	set_page_count(p, 0);
1671 
1672 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1673 
1674 	/*
1675 	 * Bypass PCP and place fresh pages right to the tail, primarily
1676 	 * relevant for memory onlining.
1677 	 */
1678 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1679 }
1680 
1681 #ifdef CONFIG_NUMA
1682 
1683 /*
1684  * During memory init memblocks map pfns to nids. The search is expensive and
1685  * this caches recent lookups. The implementation of __early_pfn_to_nid
1686  * treats start/end as pfns.
1687  */
1688 struct mminit_pfnnid_cache {
1689 	unsigned long last_start;
1690 	unsigned long last_end;
1691 	int last_nid;
1692 };
1693 
1694 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1695 
1696 /*
1697  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1698  */
1699 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1700 					struct mminit_pfnnid_cache *state)
1701 {
1702 	unsigned long start_pfn, end_pfn;
1703 	int nid;
1704 
1705 	if (state->last_start <= pfn && pfn < state->last_end)
1706 		return state->last_nid;
1707 
1708 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1709 	if (nid != NUMA_NO_NODE) {
1710 		state->last_start = start_pfn;
1711 		state->last_end = end_pfn;
1712 		state->last_nid = nid;
1713 	}
1714 
1715 	return nid;
1716 }
1717 
1718 int __meminit early_pfn_to_nid(unsigned long pfn)
1719 {
1720 	static DEFINE_SPINLOCK(early_pfn_lock);
1721 	int nid;
1722 
1723 	spin_lock(&early_pfn_lock);
1724 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1725 	if (nid < 0)
1726 		nid = first_online_node;
1727 	spin_unlock(&early_pfn_lock);
1728 
1729 	return nid;
1730 }
1731 #endif /* CONFIG_NUMA */
1732 
1733 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1734 							unsigned int order)
1735 {
1736 	if (early_page_uninitialised(pfn))
1737 		return;
1738 	__free_pages_core(page, order);
1739 }
1740 
1741 /*
1742  * Check that the whole (or subset of) a pageblock given by the interval of
1743  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1744  * with the migration of free compaction scanner.
1745  *
1746  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1747  *
1748  * It's possible on some configurations to have a setup like node0 node1 node0
1749  * i.e. it's possible that all pages within a zones range of pages do not
1750  * belong to a single zone. We assume that a border between node0 and node1
1751  * can occur within a single pageblock, but not a node0 node1 node0
1752  * interleaving within a single pageblock. It is therefore sufficient to check
1753  * the first and last page of a pageblock and avoid checking each individual
1754  * page in a pageblock.
1755  */
1756 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1757 				     unsigned long end_pfn, struct zone *zone)
1758 {
1759 	struct page *start_page;
1760 	struct page *end_page;
1761 
1762 	/* end_pfn is one past the range we are checking */
1763 	end_pfn--;
1764 
1765 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1766 		return NULL;
1767 
1768 	start_page = pfn_to_online_page(start_pfn);
1769 	if (!start_page)
1770 		return NULL;
1771 
1772 	if (page_zone(start_page) != zone)
1773 		return NULL;
1774 
1775 	end_page = pfn_to_page(end_pfn);
1776 
1777 	/* This gives a shorter code than deriving page_zone(end_page) */
1778 	if (page_zone_id(start_page) != page_zone_id(end_page))
1779 		return NULL;
1780 
1781 	return start_page;
1782 }
1783 
1784 void set_zone_contiguous(struct zone *zone)
1785 {
1786 	unsigned long block_start_pfn = zone->zone_start_pfn;
1787 	unsigned long block_end_pfn;
1788 
1789 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1790 	for (; block_start_pfn < zone_end_pfn(zone);
1791 			block_start_pfn = block_end_pfn,
1792 			 block_end_pfn += pageblock_nr_pages) {
1793 
1794 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1795 
1796 		if (!__pageblock_pfn_to_page(block_start_pfn,
1797 					     block_end_pfn, zone))
1798 			return;
1799 		cond_resched();
1800 	}
1801 
1802 	/* We confirm that there is no hole */
1803 	zone->contiguous = true;
1804 }
1805 
1806 void clear_zone_contiguous(struct zone *zone)
1807 {
1808 	zone->contiguous = false;
1809 }
1810 
1811 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1812 static void __init deferred_free_range(unsigned long pfn,
1813 				       unsigned long nr_pages)
1814 {
1815 	struct page *page;
1816 	unsigned long i;
1817 
1818 	if (!nr_pages)
1819 		return;
1820 
1821 	page = pfn_to_page(pfn);
1822 
1823 	/* Free a large naturally-aligned chunk if possible */
1824 	if (nr_pages == pageblock_nr_pages &&
1825 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1826 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1827 		__free_pages_core(page, pageblock_order);
1828 		return;
1829 	}
1830 
1831 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1832 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1833 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1834 		__free_pages_core(page, 0);
1835 	}
1836 }
1837 
1838 /* Completion tracking for deferred_init_memmap() threads */
1839 static atomic_t pgdat_init_n_undone __initdata;
1840 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1841 
1842 static inline void __init pgdat_init_report_one_done(void)
1843 {
1844 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1845 		complete(&pgdat_init_all_done_comp);
1846 }
1847 
1848 /*
1849  * Returns true if page needs to be initialized or freed to buddy allocator.
1850  *
1851  * First we check if pfn is valid on architectures where it is possible to have
1852  * holes within pageblock_nr_pages. On systems where it is not possible, this
1853  * function is optimized out.
1854  *
1855  * Then, we check if a current large page is valid by only checking the validity
1856  * of the head pfn.
1857  */
1858 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1859 {
1860 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1861 		return false;
1862 	return true;
1863 }
1864 
1865 /*
1866  * Free pages to buddy allocator. Try to free aligned pages in
1867  * pageblock_nr_pages sizes.
1868  */
1869 static void __init deferred_free_pages(unsigned long pfn,
1870 				       unsigned long end_pfn)
1871 {
1872 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1873 	unsigned long nr_free = 0;
1874 
1875 	for (; pfn < end_pfn; pfn++) {
1876 		if (!deferred_pfn_valid(pfn)) {
1877 			deferred_free_range(pfn - nr_free, nr_free);
1878 			nr_free = 0;
1879 		} else if (!(pfn & nr_pgmask)) {
1880 			deferred_free_range(pfn - nr_free, nr_free);
1881 			nr_free = 1;
1882 		} else {
1883 			nr_free++;
1884 		}
1885 	}
1886 	/* Free the last block of pages to allocator */
1887 	deferred_free_range(pfn - nr_free, nr_free);
1888 }
1889 
1890 /*
1891  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1892  * by performing it only once every pageblock_nr_pages.
1893  * Return number of pages initialized.
1894  */
1895 static unsigned long  __init deferred_init_pages(struct zone *zone,
1896 						 unsigned long pfn,
1897 						 unsigned long end_pfn)
1898 {
1899 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1900 	int nid = zone_to_nid(zone);
1901 	unsigned long nr_pages = 0;
1902 	int zid = zone_idx(zone);
1903 	struct page *page = NULL;
1904 
1905 	for (; pfn < end_pfn; pfn++) {
1906 		if (!deferred_pfn_valid(pfn)) {
1907 			page = NULL;
1908 			continue;
1909 		} else if (!page || !(pfn & nr_pgmask)) {
1910 			page = pfn_to_page(pfn);
1911 		} else {
1912 			page++;
1913 		}
1914 		__init_single_page(page, pfn, zid, nid);
1915 		nr_pages++;
1916 	}
1917 	return (nr_pages);
1918 }
1919 
1920 /*
1921  * This function is meant to pre-load the iterator for the zone init.
1922  * Specifically it walks through the ranges until we are caught up to the
1923  * first_init_pfn value and exits there. If we never encounter the value we
1924  * return false indicating there are no valid ranges left.
1925  */
1926 static bool __init
1927 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1928 				    unsigned long *spfn, unsigned long *epfn,
1929 				    unsigned long first_init_pfn)
1930 {
1931 	u64 j;
1932 
1933 	/*
1934 	 * Start out by walking through the ranges in this zone that have
1935 	 * already been initialized. We don't need to do anything with them
1936 	 * so we just need to flush them out of the system.
1937 	 */
1938 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1939 		if (*epfn <= first_init_pfn)
1940 			continue;
1941 		if (*spfn < first_init_pfn)
1942 			*spfn = first_init_pfn;
1943 		*i = j;
1944 		return true;
1945 	}
1946 
1947 	return false;
1948 }
1949 
1950 /*
1951  * Initialize and free pages. We do it in two loops: first we initialize
1952  * struct page, then free to buddy allocator, because while we are
1953  * freeing pages we can access pages that are ahead (computing buddy
1954  * page in __free_one_page()).
1955  *
1956  * In order to try and keep some memory in the cache we have the loop
1957  * broken along max page order boundaries. This way we will not cause
1958  * any issues with the buddy page computation.
1959  */
1960 static unsigned long __init
1961 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1962 		       unsigned long *end_pfn)
1963 {
1964 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1965 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1966 	unsigned long nr_pages = 0;
1967 	u64 j = *i;
1968 
1969 	/* First we loop through and initialize the page values */
1970 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1971 		unsigned long t;
1972 
1973 		if (mo_pfn <= *start_pfn)
1974 			break;
1975 
1976 		t = min(mo_pfn, *end_pfn);
1977 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1978 
1979 		if (mo_pfn < *end_pfn) {
1980 			*start_pfn = mo_pfn;
1981 			break;
1982 		}
1983 	}
1984 
1985 	/* Reset values and now loop through freeing pages as needed */
1986 	swap(j, *i);
1987 
1988 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1989 		unsigned long t;
1990 
1991 		if (mo_pfn <= spfn)
1992 			break;
1993 
1994 		t = min(mo_pfn, epfn);
1995 		deferred_free_pages(spfn, t);
1996 
1997 		if (mo_pfn <= epfn)
1998 			break;
1999 	}
2000 
2001 	return nr_pages;
2002 }
2003 
2004 static void __init
2005 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2006 			   void *arg)
2007 {
2008 	unsigned long spfn, epfn;
2009 	struct zone *zone = arg;
2010 	u64 i;
2011 
2012 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2013 
2014 	/*
2015 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2016 	 * can avoid introducing any issues with the buddy allocator.
2017 	 */
2018 	while (spfn < end_pfn) {
2019 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2020 		cond_resched();
2021 	}
2022 }
2023 
2024 /* An arch may override for more concurrency. */
2025 __weak int __init
2026 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2027 {
2028 	return 1;
2029 }
2030 
2031 /* Initialise remaining memory on a node */
2032 static int __init deferred_init_memmap(void *data)
2033 {
2034 	pg_data_t *pgdat = data;
2035 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2036 	unsigned long spfn = 0, epfn = 0;
2037 	unsigned long first_init_pfn, flags;
2038 	unsigned long start = jiffies;
2039 	struct zone *zone;
2040 	int zid, max_threads;
2041 	u64 i;
2042 
2043 	/* Bind memory initialisation thread to a local node if possible */
2044 	if (!cpumask_empty(cpumask))
2045 		set_cpus_allowed_ptr(current, cpumask);
2046 
2047 	pgdat_resize_lock(pgdat, &flags);
2048 	first_init_pfn = pgdat->first_deferred_pfn;
2049 	if (first_init_pfn == ULONG_MAX) {
2050 		pgdat_resize_unlock(pgdat, &flags);
2051 		pgdat_init_report_one_done();
2052 		return 0;
2053 	}
2054 
2055 	/* Sanity check boundaries */
2056 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2057 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2058 	pgdat->first_deferred_pfn = ULONG_MAX;
2059 
2060 	/*
2061 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2062 	 * interrupt thread must allocate this early in boot, zone must be
2063 	 * pre-grown prior to start of deferred page initialization.
2064 	 */
2065 	pgdat_resize_unlock(pgdat, &flags);
2066 
2067 	/* Only the highest zone is deferred so find it */
2068 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2069 		zone = pgdat->node_zones + zid;
2070 		if (first_init_pfn < zone_end_pfn(zone))
2071 			break;
2072 	}
2073 
2074 	/* If the zone is empty somebody else may have cleared out the zone */
2075 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2076 						 first_init_pfn))
2077 		goto zone_empty;
2078 
2079 	max_threads = deferred_page_init_max_threads(cpumask);
2080 
2081 	while (spfn < epfn) {
2082 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2083 		struct padata_mt_job job = {
2084 			.thread_fn   = deferred_init_memmap_chunk,
2085 			.fn_arg      = zone,
2086 			.start       = spfn,
2087 			.size        = epfn_align - spfn,
2088 			.align       = PAGES_PER_SECTION,
2089 			.min_chunk   = PAGES_PER_SECTION,
2090 			.max_threads = max_threads,
2091 		};
2092 
2093 		padata_do_multithreaded(&job);
2094 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2095 						    epfn_align);
2096 	}
2097 zone_empty:
2098 	/* Sanity check that the next zone really is unpopulated */
2099 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2100 
2101 	pr_info("node %d deferred pages initialised in %ums\n",
2102 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2103 
2104 	pgdat_init_report_one_done();
2105 	return 0;
2106 }
2107 
2108 /*
2109  * If this zone has deferred pages, try to grow it by initializing enough
2110  * deferred pages to satisfy the allocation specified by order, rounded up to
2111  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2112  * of SECTION_SIZE bytes by initializing struct pages in increments of
2113  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2114  *
2115  * Return true when zone was grown, otherwise return false. We return true even
2116  * when we grow less than requested, to let the caller decide if there are
2117  * enough pages to satisfy the allocation.
2118  *
2119  * Note: We use noinline because this function is needed only during boot, and
2120  * it is called from a __ref function _deferred_grow_zone. This way we are
2121  * making sure that it is not inlined into permanent text section.
2122  */
2123 static noinline bool __init
2124 deferred_grow_zone(struct zone *zone, unsigned int order)
2125 {
2126 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2127 	pg_data_t *pgdat = zone->zone_pgdat;
2128 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2129 	unsigned long spfn, epfn, flags;
2130 	unsigned long nr_pages = 0;
2131 	u64 i;
2132 
2133 	/* Only the last zone may have deferred pages */
2134 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2135 		return false;
2136 
2137 	pgdat_resize_lock(pgdat, &flags);
2138 
2139 	/*
2140 	 * If someone grew this zone while we were waiting for spinlock, return
2141 	 * true, as there might be enough pages already.
2142 	 */
2143 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2144 		pgdat_resize_unlock(pgdat, &flags);
2145 		return true;
2146 	}
2147 
2148 	/* If the zone is empty somebody else may have cleared out the zone */
2149 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2150 						 first_deferred_pfn)) {
2151 		pgdat->first_deferred_pfn = ULONG_MAX;
2152 		pgdat_resize_unlock(pgdat, &flags);
2153 		/* Retry only once. */
2154 		return first_deferred_pfn != ULONG_MAX;
2155 	}
2156 
2157 	/*
2158 	 * Initialize and free pages in MAX_ORDER sized increments so
2159 	 * that we can avoid introducing any issues with the buddy
2160 	 * allocator.
2161 	 */
2162 	while (spfn < epfn) {
2163 		/* update our first deferred PFN for this section */
2164 		first_deferred_pfn = spfn;
2165 
2166 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2167 		touch_nmi_watchdog();
2168 
2169 		/* We should only stop along section boundaries */
2170 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2171 			continue;
2172 
2173 		/* If our quota has been met we can stop here */
2174 		if (nr_pages >= nr_pages_needed)
2175 			break;
2176 	}
2177 
2178 	pgdat->first_deferred_pfn = spfn;
2179 	pgdat_resize_unlock(pgdat, &flags);
2180 
2181 	return nr_pages > 0;
2182 }
2183 
2184 /*
2185  * deferred_grow_zone() is __init, but it is called from
2186  * get_page_from_freelist() during early boot until deferred_pages permanently
2187  * disables this call. This is why we have refdata wrapper to avoid warning,
2188  * and to ensure that the function body gets unloaded.
2189  */
2190 static bool __ref
2191 _deferred_grow_zone(struct zone *zone, unsigned int order)
2192 {
2193 	return deferred_grow_zone(zone, order);
2194 }
2195 
2196 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2197 
2198 void __init page_alloc_init_late(void)
2199 {
2200 	struct zone *zone;
2201 	int nid;
2202 
2203 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2204 
2205 	/* There will be num_node_state(N_MEMORY) threads */
2206 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2207 	for_each_node_state(nid, N_MEMORY) {
2208 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2209 	}
2210 
2211 	/* Block until all are initialised */
2212 	wait_for_completion(&pgdat_init_all_done_comp);
2213 
2214 	/*
2215 	 * We initialized the rest of the deferred pages.  Permanently disable
2216 	 * on-demand struct page initialization.
2217 	 */
2218 	static_branch_disable(&deferred_pages);
2219 
2220 	/* Reinit limits that are based on free pages after the kernel is up */
2221 	files_maxfiles_init();
2222 #endif
2223 
2224 	buffer_init();
2225 
2226 	/* Discard memblock private memory */
2227 	memblock_discard();
2228 
2229 	for_each_node_state(nid, N_MEMORY)
2230 		shuffle_free_memory(NODE_DATA(nid));
2231 
2232 	for_each_populated_zone(zone)
2233 		set_zone_contiguous(zone);
2234 }
2235 
2236 #ifdef CONFIG_CMA
2237 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2238 void __init init_cma_reserved_pageblock(struct page *page)
2239 {
2240 	unsigned i = pageblock_nr_pages;
2241 	struct page *p = page;
2242 
2243 	do {
2244 		__ClearPageReserved(p);
2245 		set_page_count(p, 0);
2246 	} while (++p, --i);
2247 
2248 	set_pageblock_migratetype(page, MIGRATE_CMA);
2249 
2250 	if (pageblock_order >= MAX_ORDER) {
2251 		i = pageblock_nr_pages;
2252 		p = page;
2253 		do {
2254 			set_page_refcounted(p);
2255 			__free_pages(p, MAX_ORDER - 1);
2256 			p += MAX_ORDER_NR_PAGES;
2257 		} while (i -= MAX_ORDER_NR_PAGES);
2258 	} else {
2259 		set_page_refcounted(page);
2260 		__free_pages(page, pageblock_order);
2261 	}
2262 
2263 	adjust_managed_page_count(page, pageblock_nr_pages);
2264 	page_zone(page)->cma_pages += pageblock_nr_pages;
2265 }
2266 #endif
2267 
2268 /*
2269  * The order of subdivision here is critical for the IO subsystem.
2270  * Please do not alter this order without good reasons and regression
2271  * testing. Specifically, as large blocks of memory are subdivided,
2272  * the order in which smaller blocks are delivered depends on the order
2273  * they're subdivided in this function. This is the primary factor
2274  * influencing the order in which pages are delivered to the IO
2275  * subsystem according to empirical testing, and this is also justified
2276  * by considering the behavior of a buddy system containing a single
2277  * large block of memory acted on by a series of small allocations.
2278  * This behavior is a critical factor in sglist merging's success.
2279  *
2280  * -- nyc
2281  */
2282 static inline void expand(struct zone *zone, struct page *page,
2283 	int low, int high, int migratetype)
2284 {
2285 	unsigned long size = 1 << high;
2286 
2287 	while (high > low) {
2288 		high--;
2289 		size >>= 1;
2290 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2291 
2292 		/*
2293 		 * Mark as guard pages (or page), that will allow to
2294 		 * merge back to allocator when buddy will be freed.
2295 		 * Corresponding page table entries will not be touched,
2296 		 * pages will stay not present in virtual address space
2297 		 */
2298 		if (set_page_guard(zone, &page[size], high, migratetype))
2299 			continue;
2300 
2301 		add_to_free_list(&page[size], zone, high, migratetype);
2302 		set_buddy_order(&page[size], high);
2303 	}
2304 }
2305 
2306 static void check_new_page_bad(struct page *page)
2307 {
2308 	if (unlikely(page->flags & __PG_HWPOISON)) {
2309 		/* Don't complain about hwpoisoned pages */
2310 		page_mapcount_reset(page); /* remove PageBuddy */
2311 		return;
2312 	}
2313 
2314 	bad_page(page,
2315 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2316 }
2317 
2318 /*
2319  * This page is about to be returned from the page allocator
2320  */
2321 static inline int check_new_page(struct page *page)
2322 {
2323 	if (likely(page_expected_state(page,
2324 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2325 		return 0;
2326 
2327 	check_new_page_bad(page);
2328 	return 1;
2329 }
2330 
2331 #ifdef CONFIG_DEBUG_VM
2332 /*
2333  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2334  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2335  * also checked when pcp lists are refilled from the free lists.
2336  */
2337 static inline bool check_pcp_refill(struct page *page)
2338 {
2339 	if (debug_pagealloc_enabled_static())
2340 		return check_new_page(page);
2341 	else
2342 		return false;
2343 }
2344 
2345 static inline bool check_new_pcp(struct page *page)
2346 {
2347 	return check_new_page(page);
2348 }
2349 #else
2350 /*
2351  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2352  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2353  * enabled, they are also checked when being allocated from the pcp lists.
2354  */
2355 static inline bool check_pcp_refill(struct page *page)
2356 {
2357 	return check_new_page(page);
2358 }
2359 static inline bool check_new_pcp(struct page *page)
2360 {
2361 	if (debug_pagealloc_enabled_static())
2362 		return check_new_page(page);
2363 	else
2364 		return false;
2365 }
2366 #endif /* CONFIG_DEBUG_VM */
2367 
2368 static bool check_new_pages(struct page *page, unsigned int order)
2369 {
2370 	int i;
2371 	for (i = 0; i < (1 << order); i++) {
2372 		struct page *p = page + i;
2373 
2374 		if (unlikely(check_new_page(p)))
2375 			return true;
2376 	}
2377 
2378 	return false;
2379 }
2380 
2381 inline void post_alloc_hook(struct page *page, unsigned int order,
2382 				gfp_t gfp_flags)
2383 {
2384 	set_page_private(page, 0);
2385 	set_page_refcounted(page);
2386 
2387 	arch_alloc_page(page, order);
2388 	debug_pagealloc_map_pages(page, 1 << order);
2389 
2390 	/*
2391 	 * Page unpoisoning must happen before memory initialization.
2392 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2393 	 * allocations and the page unpoisoning code will complain.
2394 	 */
2395 	kernel_unpoison_pages(page, 1 << order);
2396 
2397 	/*
2398 	 * As memory initialization might be integrated into KASAN,
2399 	 * kasan_alloc_pages and kernel_init_free_pages must be
2400 	 * kept together to avoid discrepancies in behavior.
2401 	 */
2402 	if (kasan_has_integrated_init()) {
2403 		kasan_alloc_pages(page, order, gfp_flags);
2404 	} else {
2405 		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2406 
2407 		kasan_unpoison_pages(page, order, init);
2408 		if (init)
2409 			kernel_init_free_pages(page, 1 << order,
2410 					       gfp_flags & __GFP_ZEROTAGS);
2411 	}
2412 
2413 	set_page_owner(page, order, gfp_flags);
2414 }
2415 
2416 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2417 							unsigned int alloc_flags)
2418 {
2419 	post_alloc_hook(page, order, gfp_flags);
2420 
2421 	if (order && (gfp_flags & __GFP_COMP))
2422 		prep_compound_page(page, order);
2423 
2424 	/*
2425 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2426 	 * allocate the page. The expectation is that the caller is taking
2427 	 * steps that will free more memory. The caller should avoid the page
2428 	 * being used for !PFMEMALLOC purposes.
2429 	 */
2430 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2431 		set_page_pfmemalloc(page);
2432 	else
2433 		clear_page_pfmemalloc(page);
2434 }
2435 
2436 /*
2437  * Go through the free lists for the given migratetype and remove
2438  * the smallest available page from the freelists
2439  */
2440 static __always_inline
2441 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2442 						int migratetype)
2443 {
2444 	unsigned int current_order;
2445 	struct free_area *area;
2446 	struct page *page;
2447 
2448 	/* Find a page of the appropriate size in the preferred list */
2449 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2450 		area = &(zone->free_area[current_order]);
2451 		page = get_page_from_free_area(area, migratetype);
2452 		if (!page)
2453 			continue;
2454 		del_page_from_free_list(page, zone, current_order);
2455 		expand(zone, page, order, current_order, migratetype);
2456 		set_pcppage_migratetype(page, migratetype);
2457 		return page;
2458 	}
2459 
2460 	return NULL;
2461 }
2462 
2463 
2464 /*
2465  * This array describes the order lists are fallen back to when
2466  * the free lists for the desirable migrate type are depleted
2467  */
2468 static int fallbacks[MIGRATE_TYPES][3] = {
2469 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2470 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2471 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2472 #ifdef CONFIG_CMA
2473 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2474 #endif
2475 #ifdef CONFIG_MEMORY_ISOLATION
2476 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2477 #endif
2478 };
2479 
2480 #ifdef CONFIG_CMA
2481 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2482 					unsigned int order)
2483 {
2484 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2485 }
2486 #else
2487 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2488 					unsigned int order) { return NULL; }
2489 #endif
2490 
2491 /*
2492  * Move the free pages in a range to the freelist tail of the requested type.
2493  * Note that start_page and end_pages are not aligned on a pageblock
2494  * boundary. If alignment is required, use move_freepages_block()
2495  */
2496 static int move_freepages(struct zone *zone,
2497 			  unsigned long start_pfn, unsigned long end_pfn,
2498 			  int migratetype, int *num_movable)
2499 {
2500 	struct page *page;
2501 	unsigned long pfn;
2502 	unsigned int order;
2503 	int pages_moved = 0;
2504 
2505 	for (pfn = start_pfn; pfn <= end_pfn;) {
2506 		page = pfn_to_page(pfn);
2507 		if (!PageBuddy(page)) {
2508 			/*
2509 			 * We assume that pages that could be isolated for
2510 			 * migration are movable. But we don't actually try
2511 			 * isolating, as that would be expensive.
2512 			 */
2513 			if (num_movable &&
2514 					(PageLRU(page) || __PageMovable(page)))
2515 				(*num_movable)++;
2516 			pfn++;
2517 			continue;
2518 		}
2519 
2520 		/* Make sure we are not inadvertently changing nodes */
2521 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2522 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2523 
2524 		order = buddy_order(page);
2525 		move_to_free_list(page, zone, order, migratetype);
2526 		pfn += 1 << order;
2527 		pages_moved += 1 << order;
2528 	}
2529 
2530 	return pages_moved;
2531 }
2532 
2533 int move_freepages_block(struct zone *zone, struct page *page,
2534 				int migratetype, int *num_movable)
2535 {
2536 	unsigned long start_pfn, end_pfn, pfn;
2537 
2538 	if (num_movable)
2539 		*num_movable = 0;
2540 
2541 	pfn = page_to_pfn(page);
2542 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2543 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2544 
2545 	/* Do not cross zone boundaries */
2546 	if (!zone_spans_pfn(zone, start_pfn))
2547 		start_pfn = pfn;
2548 	if (!zone_spans_pfn(zone, end_pfn))
2549 		return 0;
2550 
2551 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2552 								num_movable);
2553 }
2554 
2555 static void change_pageblock_range(struct page *pageblock_page,
2556 					int start_order, int migratetype)
2557 {
2558 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2559 
2560 	while (nr_pageblocks--) {
2561 		set_pageblock_migratetype(pageblock_page, migratetype);
2562 		pageblock_page += pageblock_nr_pages;
2563 	}
2564 }
2565 
2566 /*
2567  * When we are falling back to another migratetype during allocation, try to
2568  * steal extra free pages from the same pageblocks to satisfy further
2569  * allocations, instead of polluting multiple pageblocks.
2570  *
2571  * If we are stealing a relatively large buddy page, it is likely there will
2572  * be more free pages in the pageblock, so try to steal them all. For
2573  * reclaimable and unmovable allocations, we steal regardless of page size,
2574  * as fragmentation caused by those allocations polluting movable pageblocks
2575  * is worse than movable allocations stealing from unmovable and reclaimable
2576  * pageblocks.
2577  */
2578 static bool can_steal_fallback(unsigned int order, int start_mt)
2579 {
2580 	/*
2581 	 * Leaving this order check is intended, although there is
2582 	 * relaxed order check in next check. The reason is that
2583 	 * we can actually steal whole pageblock if this condition met,
2584 	 * but, below check doesn't guarantee it and that is just heuristic
2585 	 * so could be changed anytime.
2586 	 */
2587 	if (order >= pageblock_order)
2588 		return true;
2589 
2590 	if (order >= pageblock_order / 2 ||
2591 		start_mt == MIGRATE_RECLAIMABLE ||
2592 		start_mt == MIGRATE_UNMOVABLE ||
2593 		page_group_by_mobility_disabled)
2594 		return true;
2595 
2596 	return false;
2597 }
2598 
2599 static inline bool boost_watermark(struct zone *zone)
2600 {
2601 	unsigned long max_boost;
2602 
2603 	if (!watermark_boost_factor)
2604 		return false;
2605 	/*
2606 	 * Don't bother in zones that are unlikely to produce results.
2607 	 * On small machines, including kdump capture kernels running
2608 	 * in a small area, boosting the watermark can cause an out of
2609 	 * memory situation immediately.
2610 	 */
2611 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2612 		return false;
2613 
2614 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2615 			watermark_boost_factor, 10000);
2616 
2617 	/*
2618 	 * high watermark may be uninitialised if fragmentation occurs
2619 	 * very early in boot so do not boost. We do not fall
2620 	 * through and boost by pageblock_nr_pages as failing
2621 	 * allocations that early means that reclaim is not going
2622 	 * to help and it may even be impossible to reclaim the
2623 	 * boosted watermark resulting in a hang.
2624 	 */
2625 	if (!max_boost)
2626 		return false;
2627 
2628 	max_boost = max(pageblock_nr_pages, max_boost);
2629 
2630 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2631 		max_boost);
2632 
2633 	return true;
2634 }
2635 
2636 /*
2637  * This function implements actual steal behaviour. If order is large enough,
2638  * we can steal whole pageblock. If not, we first move freepages in this
2639  * pageblock to our migratetype and determine how many already-allocated pages
2640  * are there in the pageblock with a compatible migratetype. If at least half
2641  * of pages are free or compatible, we can change migratetype of the pageblock
2642  * itself, so pages freed in the future will be put on the correct free list.
2643  */
2644 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2645 		unsigned int alloc_flags, int start_type, bool whole_block)
2646 {
2647 	unsigned int current_order = buddy_order(page);
2648 	int free_pages, movable_pages, alike_pages;
2649 	int old_block_type;
2650 
2651 	old_block_type = get_pageblock_migratetype(page);
2652 
2653 	/*
2654 	 * This can happen due to races and we want to prevent broken
2655 	 * highatomic accounting.
2656 	 */
2657 	if (is_migrate_highatomic(old_block_type))
2658 		goto single_page;
2659 
2660 	/* Take ownership for orders >= pageblock_order */
2661 	if (current_order >= pageblock_order) {
2662 		change_pageblock_range(page, current_order, start_type);
2663 		goto single_page;
2664 	}
2665 
2666 	/*
2667 	 * Boost watermarks to increase reclaim pressure to reduce the
2668 	 * likelihood of future fallbacks. Wake kswapd now as the node
2669 	 * may be balanced overall and kswapd will not wake naturally.
2670 	 */
2671 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2672 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2673 
2674 	/* We are not allowed to try stealing from the whole block */
2675 	if (!whole_block)
2676 		goto single_page;
2677 
2678 	free_pages = move_freepages_block(zone, page, start_type,
2679 						&movable_pages);
2680 	/*
2681 	 * Determine how many pages are compatible with our allocation.
2682 	 * For movable allocation, it's the number of movable pages which
2683 	 * we just obtained. For other types it's a bit more tricky.
2684 	 */
2685 	if (start_type == MIGRATE_MOVABLE) {
2686 		alike_pages = movable_pages;
2687 	} else {
2688 		/*
2689 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2690 		 * to MOVABLE pageblock, consider all non-movable pages as
2691 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2692 		 * vice versa, be conservative since we can't distinguish the
2693 		 * exact migratetype of non-movable pages.
2694 		 */
2695 		if (old_block_type == MIGRATE_MOVABLE)
2696 			alike_pages = pageblock_nr_pages
2697 						- (free_pages + movable_pages);
2698 		else
2699 			alike_pages = 0;
2700 	}
2701 
2702 	/* moving whole block can fail due to zone boundary conditions */
2703 	if (!free_pages)
2704 		goto single_page;
2705 
2706 	/*
2707 	 * If a sufficient number of pages in the block are either free or of
2708 	 * comparable migratability as our allocation, claim the whole block.
2709 	 */
2710 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2711 			page_group_by_mobility_disabled)
2712 		set_pageblock_migratetype(page, start_type);
2713 
2714 	return;
2715 
2716 single_page:
2717 	move_to_free_list(page, zone, current_order, start_type);
2718 }
2719 
2720 /*
2721  * Check whether there is a suitable fallback freepage with requested order.
2722  * If only_stealable is true, this function returns fallback_mt only if
2723  * we can steal other freepages all together. This would help to reduce
2724  * fragmentation due to mixed migratetype pages in one pageblock.
2725  */
2726 int find_suitable_fallback(struct free_area *area, unsigned int order,
2727 			int migratetype, bool only_stealable, bool *can_steal)
2728 {
2729 	int i;
2730 	int fallback_mt;
2731 
2732 	if (area->nr_free == 0)
2733 		return -1;
2734 
2735 	*can_steal = false;
2736 	for (i = 0;; i++) {
2737 		fallback_mt = fallbacks[migratetype][i];
2738 		if (fallback_mt == MIGRATE_TYPES)
2739 			break;
2740 
2741 		if (free_area_empty(area, fallback_mt))
2742 			continue;
2743 
2744 		if (can_steal_fallback(order, migratetype))
2745 			*can_steal = true;
2746 
2747 		if (!only_stealable)
2748 			return fallback_mt;
2749 
2750 		if (*can_steal)
2751 			return fallback_mt;
2752 	}
2753 
2754 	return -1;
2755 }
2756 
2757 /*
2758  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2759  * there are no empty page blocks that contain a page with a suitable order
2760  */
2761 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2762 				unsigned int alloc_order)
2763 {
2764 	int mt;
2765 	unsigned long max_managed, flags;
2766 
2767 	/*
2768 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2769 	 * Check is race-prone but harmless.
2770 	 */
2771 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2772 	if (zone->nr_reserved_highatomic >= max_managed)
2773 		return;
2774 
2775 	spin_lock_irqsave(&zone->lock, flags);
2776 
2777 	/* Recheck the nr_reserved_highatomic limit under the lock */
2778 	if (zone->nr_reserved_highatomic >= max_managed)
2779 		goto out_unlock;
2780 
2781 	/* Yoink! */
2782 	mt = get_pageblock_migratetype(page);
2783 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2784 	    && !is_migrate_cma(mt)) {
2785 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2786 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2787 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2788 	}
2789 
2790 out_unlock:
2791 	spin_unlock_irqrestore(&zone->lock, flags);
2792 }
2793 
2794 /*
2795  * Used when an allocation is about to fail under memory pressure. This
2796  * potentially hurts the reliability of high-order allocations when under
2797  * intense memory pressure but failed atomic allocations should be easier
2798  * to recover from than an OOM.
2799  *
2800  * If @force is true, try to unreserve a pageblock even though highatomic
2801  * pageblock is exhausted.
2802  */
2803 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2804 						bool force)
2805 {
2806 	struct zonelist *zonelist = ac->zonelist;
2807 	unsigned long flags;
2808 	struct zoneref *z;
2809 	struct zone *zone;
2810 	struct page *page;
2811 	int order;
2812 	bool ret;
2813 
2814 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2815 								ac->nodemask) {
2816 		/*
2817 		 * Preserve at least one pageblock unless memory pressure
2818 		 * is really high.
2819 		 */
2820 		if (!force && zone->nr_reserved_highatomic <=
2821 					pageblock_nr_pages)
2822 			continue;
2823 
2824 		spin_lock_irqsave(&zone->lock, flags);
2825 		for (order = 0; order < MAX_ORDER; order++) {
2826 			struct free_area *area = &(zone->free_area[order]);
2827 
2828 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2829 			if (!page)
2830 				continue;
2831 
2832 			/*
2833 			 * In page freeing path, migratetype change is racy so
2834 			 * we can counter several free pages in a pageblock
2835 			 * in this loop although we changed the pageblock type
2836 			 * from highatomic to ac->migratetype. So we should
2837 			 * adjust the count once.
2838 			 */
2839 			if (is_migrate_highatomic_page(page)) {
2840 				/*
2841 				 * It should never happen but changes to
2842 				 * locking could inadvertently allow a per-cpu
2843 				 * drain to add pages to MIGRATE_HIGHATOMIC
2844 				 * while unreserving so be safe and watch for
2845 				 * underflows.
2846 				 */
2847 				zone->nr_reserved_highatomic -= min(
2848 						pageblock_nr_pages,
2849 						zone->nr_reserved_highatomic);
2850 			}
2851 
2852 			/*
2853 			 * Convert to ac->migratetype and avoid the normal
2854 			 * pageblock stealing heuristics. Minimally, the caller
2855 			 * is doing the work and needs the pages. More
2856 			 * importantly, if the block was always converted to
2857 			 * MIGRATE_UNMOVABLE or another type then the number
2858 			 * of pageblocks that cannot be completely freed
2859 			 * may increase.
2860 			 */
2861 			set_pageblock_migratetype(page, ac->migratetype);
2862 			ret = move_freepages_block(zone, page, ac->migratetype,
2863 									NULL);
2864 			if (ret) {
2865 				spin_unlock_irqrestore(&zone->lock, flags);
2866 				return ret;
2867 			}
2868 		}
2869 		spin_unlock_irqrestore(&zone->lock, flags);
2870 	}
2871 
2872 	return false;
2873 }
2874 
2875 /*
2876  * Try finding a free buddy page on the fallback list and put it on the free
2877  * list of requested migratetype, possibly along with other pages from the same
2878  * block, depending on fragmentation avoidance heuristics. Returns true if
2879  * fallback was found so that __rmqueue_smallest() can grab it.
2880  *
2881  * The use of signed ints for order and current_order is a deliberate
2882  * deviation from the rest of this file, to make the for loop
2883  * condition simpler.
2884  */
2885 static __always_inline bool
2886 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2887 						unsigned int alloc_flags)
2888 {
2889 	struct free_area *area;
2890 	int current_order;
2891 	int min_order = order;
2892 	struct page *page;
2893 	int fallback_mt;
2894 	bool can_steal;
2895 
2896 	/*
2897 	 * Do not steal pages from freelists belonging to other pageblocks
2898 	 * i.e. orders < pageblock_order. If there are no local zones free,
2899 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2900 	 */
2901 	if (alloc_flags & ALLOC_NOFRAGMENT)
2902 		min_order = pageblock_order;
2903 
2904 	/*
2905 	 * Find the largest available free page in the other list. This roughly
2906 	 * approximates finding the pageblock with the most free pages, which
2907 	 * would be too costly to do exactly.
2908 	 */
2909 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2910 				--current_order) {
2911 		area = &(zone->free_area[current_order]);
2912 		fallback_mt = find_suitable_fallback(area, current_order,
2913 				start_migratetype, false, &can_steal);
2914 		if (fallback_mt == -1)
2915 			continue;
2916 
2917 		/*
2918 		 * We cannot steal all free pages from the pageblock and the
2919 		 * requested migratetype is movable. In that case it's better to
2920 		 * steal and split the smallest available page instead of the
2921 		 * largest available page, because even if the next movable
2922 		 * allocation falls back into a different pageblock than this
2923 		 * one, it won't cause permanent fragmentation.
2924 		 */
2925 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2926 					&& current_order > order)
2927 			goto find_smallest;
2928 
2929 		goto do_steal;
2930 	}
2931 
2932 	return false;
2933 
2934 find_smallest:
2935 	for (current_order = order; current_order < MAX_ORDER;
2936 							current_order++) {
2937 		area = &(zone->free_area[current_order]);
2938 		fallback_mt = find_suitable_fallback(area, current_order,
2939 				start_migratetype, false, &can_steal);
2940 		if (fallback_mt != -1)
2941 			break;
2942 	}
2943 
2944 	/*
2945 	 * This should not happen - we already found a suitable fallback
2946 	 * when looking for the largest page.
2947 	 */
2948 	VM_BUG_ON(current_order == MAX_ORDER);
2949 
2950 do_steal:
2951 	page = get_page_from_free_area(area, fallback_mt);
2952 
2953 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2954 								can_steal);
2955 
2956 	trace_mm_page_alloc_extfrag(page, order, current_order,
2957 		start_migratetype, fallback_mt);
2958 
2959 	return true;
2960 
2961 }
2962 
2963 /*
2964  * Do the hard work of removing an element from the buddy allocator.
2965  * Call me with the zone->lock already held.
2966  */
2967 static __always_inline struct page *
2968 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2969 						unsigned int alloc_flags)
2970 {
2971 	struct page *page;
2972 
2973 	if (IS_ENABLED(CONFIG_CMA)) {
2974 		/*
2975 		 * Balance movable allocations between regular and CMA areas by
2976 		 * allocating from CMA when over half of the zone's free memory
2977 		 * is in the CMA area.
2978 		 */
2979 		if (alloc_flags & ALLOC_CMA &&
2980 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2981 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2982 			page = __rmqueue_cma_fallback(zone, order);
2983 			if (page)
2984 				goto out;
2985 		}
2986 	}
2987 retry:
2988 	page = __rmqueue_smallest(zone, order, migratetype);
2989 	if (unlikely(!page)) {
2990 		if (alloc_flags & ALLOC_CMA)
2991 			page = __rmqueue_cma_fallback(zone, order);
2992 
2993 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2994 								alloc_flags))
2995 			goto retry;
2996 	}
2997 out:
2998 	if (page)
2999 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3000 	return page;
3001 }
3002 
3003 /*
3004  * Obtain a specified number of elements from the buddy allocator, all under
3005  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3006  * Returns the number of new pages which were placed at *list.
3007  */
3008 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3009 			unsigned long count, struct list_head *list,
3010 			int migratetype, unsigned int alloc_flags)
3011 {
3012 	int i, allocated = 0;
3013 
3014 	/*
3015 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3016 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3017 	 */
3018 	spin_lock(&zone->lock);
3019 	for (i = 0; i < count; ++i) {
3020 		struct page *page = __rmqueue(zone, order, migratetype,
3021 								alloc_flags);
3022 		if (unlikely(page == NULL))
3023 			break;
3024 
3025 		if (unlikely(check_pcp_refill(page)))
3026 			continue;
3027 
3028 		/*
3029 		 * Split buddy pages returned by expand() are received here in
3030 		 * physical page order. The page is added to the tail of
3031 		 * caller's list. From the callers perspective, the linked list
3032 		 * is ordered by page number under some conditions. This is
3033 		 * useful for IO devices that can forward direction from the
3034 		 * head, thus also in the physical page order. This is useful
3035 		 * for IO devices that can merge IO requests if the physical
3036 		 * pages are ordered properly.
3037 		 */
3038 		list_add_tail(&page->lru, list);
3039 		allocated++;
3040 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3041 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3042 					      -(1 << order));
3043 	}
3044 
3045 	/*
3046 	 * i pages were removed from the buddy list even if some leak due
3047 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3048 	 * on i. Do not confuse with 'allocated' which is the number of
3049 	 * pages added to the pcp list.
3050 	 */
3051 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3052 	spin_unlock(&zone->lock);
3053 	return allocated;
3054 }
3055 
3056 #ifdef CONFIG_NUMA
3057 /*
3058  * Called from the vmstat counter updater to drain pagesets of this
3059  * currently executing processor on remote nodes after they have
3060  * expired.
3061  *
3062  * Note that this function must be called with the thread pinned to
3063  * a single processor.
3064  */
3065 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3066 {
3067 	unsigned long flags;
3068 	int to_drain, batch;
3069 
3070 	local_lock_irqsave(&pagesets.lock, flags);
3071 	batch = READ_ONCE(pcp->batch);
3072 	to_drain = min(pcp->count, batch);
3073 	if (to_drain > 0)
3074 		free_pcppages_bulk(zone, to_drain, pcp);
3075 	local_unlock_irqrestore(&pagesets.lock, flags);
3076 }
3077 #endif
3078 
3079 /*
3080  * Drain pcplists of the indicated processor and zone.
3081  *
3082  * The processor must either be the current processor and the
3083  * thread pinned to the current processor or a processor that
3084  * is not online.
3085  */
3086 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3087 {
3088 	unsigned long flags;
3089 	struct per_cpu_pages *pcp;
3090 
3091 	local_lock_irqsave(&pagesets.lock, flags);
3092 
3093 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3094 	if (pcp->count)
3095 		free_pcppages_bulk(zone, pcp->count, pcp);
3096 
3097 	local_unlock_irqrestore(&pagesets.lock, flags);
3098 }
3099 
3100 /*
3101  * Drain pcplists of all zones on the indicated processor.
3102  *
3103  * The processor must either be the current processor and the
3104  * thread pinned to the current processor or a processor that
3105  * is not online.
3106  */
3107 static void drain_pages(unsigned int cpu)
3108 {
3109 	struct zone *zone;
3110 
3111 	for_each_populated_zone(zone) {
3112 		drain_pages_zone(cpu, zone);
3113 	}
3114 }
3115 
3116 /*
3117  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3118  *
3119  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3120  * the single zone's pages.
3121  */
3122 void drain_local_pages(struct zone *zone)
3123 {
3124 	int cpu = smp_processor_id();
3125 
3126 	if (zone)
3127 		drain_pages_zone(cpu, zone);
3128 	else
3129 		drain_pages(cpu);
3130 }
3131 
3132 static void drain_local_pages_wq(struct work_struct *work)
3133 {
3134 	struct pcpu_drain *drain;
3135 
3136 	drain = container_of(work, struct pcpu_drain, work);
3137 
3138 	/*
3139 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3140 	 * we can race with cpu offline when the WQ can move this from
3141 	 * a cpu pinned worker to an unbound one. We can operate on a different
3142 	 * cpu which is alright but we also have to make sure to not move to
3143 	 * a different one.
3144 	 */
3145 	migrate_disable();
3146 	drain_local_pages(drain->zone);
3147 	migrate_enable();
3148 }
3149 
3150 /*
3151  * The implementation of drain_all_pages(), exposing an extra parameter to
3152  * drain on all cpus.
3153  *
3154  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3155  * not empty. The check for non-emptiness can however race with a free to
3156  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3157  * that need the guarantee that every CPU has drained can disable the
3158  * optimizing racy check.
3159  */
3160 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3161 {
3162 	int cpu;
3163 
3164 	/*
3165 	 * Allocate in the BSS so we won't require allocation in
3166 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3167 	 */
3168 	static cpumask_t cpus_with_pcps;
3169 
3170 	/*
3171 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3172 	 * initialized.
3173 	 */
3174 	if (WARN_ON_ONCE(!mm_percpu_wq))
3175 		return;
3176 
3177 	/*
3178 	 * Do not drain if one is already in progress unless it's specific to
3179 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3180 	 * the drain to be complete when the call returns.
3181 	 */
3182 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3183 		if (!zone)
3184 			return;
3185 		mutex_lock(&pcpu_drain_mutex);
3186 	}
3187 
3188 	/*
3189 	 * We don't care about racing with CPU hotplug event
3190 	 * as offline notification will cause the notified
3191 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3192 	 * disables preemption as part of its processing
3193 	 */
3194 	for_each_online_cpu(cpu) {
3195 		struct per_cpu_pages *pcp;
3196 		struct zone *z;
3197 		bool has_pcps = false;
3198 
3199 		if (force_all_cpus) {
3200 			/*
3201 			 * The pcp.count check is racy, some callers need a
3202 			 * guarantee that no cpu is missed.
3203 			 */
3204 			has_pcps = true;
3205 		} else if (zone) {
3206 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3207 			if (pcp->count)
3208 				has_pcps = true;
3209 		} else {
3210 			for_each_populated_zone(z) {
3211 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3212 				if (pcp->count) {
3213 					has_pcps = true;
3214 					break;
3215 				}
3216 			}
3217 		}
3218 
3219 		if (has_pcps)
3220 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3221 		else
3222 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3223 	}
3224 
3225 	for_each_cpu(cpu, &cpus_with_pcps) {
3226 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3227 
3228 		drain->zone = zone;
3229 		INIT_WORK(&drain->work, drain_local_pages_wq);
3230 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3231 	}
3232 	for_each_cpu(cpu, &cpus_with_pcps)
3233 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3234 
3235 	mutex_unlock(&pcpu_drain_mutex);
3236 }
3237 
3238 /*
3239  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3240  *
3241  * When zone parameter is non-NULL, spill just the single zone's pages.
3242  *
3243  * Note that this can be extremely slow as the draining happens in a workqueue.
3244  */
3245 void drain_all_pages(struct zone *zone)
3246 {
3247 	__drain_all_pages(zone, false);
3248 }
3249 
3250 #ifdef CONFIG_HIBERNATION
3251 
3252 /*
3253  * Touch the watchdog for every WD_PAGE_COUNT pages.
3254  */
3255 #define WD_PAGE_COUNT	(128*1024)
3256 
3257 void mark_free_pages(struct zone *zone)
3258 {
3259 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3260 	unsigned long flags;
3261 	unsigned int order, t;
3262 	struct page *page;
3263 
3264 	if (zone_is_empty(zone))
3265 		return;
3266 
3267 	spin_lock_irqsave(&zone->lock, flags);
3268 
3269 	max_zone_pfn = zone_end_pfn(zone);
3270 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3271 		if (pfn_valid(pfn)) {
3272 			page = pfn_to_page(pfn);
3273 
3274 			if (!--page_count) {
3275 				touch_nmi_watchdog();
3276 				page_count = WD_PAGE_COUNT;
3277 			}
3278 
3279 			if (page_zone(page) != zone)
3280 				continue;
3281 
3282 			if (!swsusp_page_is_forbidden(page))
3283 				swsusp_unset_page_free(page);
3284 		}
3285 
3286 	for_each_migratetype_order(order, t) {
3287 		list_for_each_entry(page,
3288 				&zone->free_area[order].free_list[t], lru) {
3289 			unsigned long i;
3290 
3291 			pfn = page_to_pfn(page);
3292 			for (i = 0; i < (1UL << order); i++) {
3293 				if (!--page_count) {
3294 					touch_nmi_watchdog();
3295 					page_count = WD_PAGE_COUNT;
3296 				}
3297 				swsusp_set_page_free(pfn_to_page(pfn + i));
3298 			}
3299 		}
3300 	}
3301 	spin_unlock_irqrestore(&zone->lock, flags);
3302 }
3303 #endif /* CONFIG_PM */
3304 
3305 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3306 							unsigned int order)
3307 {
3308 	int migratetype;
3309 
3310 	if (!free_pcp_prepare(page, order))
3311 		return false;
3312 
3313 	migratetype = get_pfnblock_migratetype(page, pfn);
3314 	set_pcppage_migratetype(page, migratetype);
3315 	return true;
3316 }
3317 
3318 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3319 {
3320 	int min_nr_free, max_nr_free;
3321 
3322 	/* Check for PCP disabled or boot pageset */
3323 	if (unlikely(high < batch))
3324 		return 1;
3325 
3326 	/* Leave at least pcp->batch pages on the list */
3327 	min_nr_free = batch;
3328 	max_nr_free = high - batch;
3329 
3330 	/*
3331 	 * Double the number of pages freed each time there is subsequent
3332 	 * freeing of pages without any allocation.
3333 	 */
3334 	batch <<= pcp->free_factor;
3335 	if (batch < max_nr_free)
3336 		pcp->free_factor++;
3337 	batch = clamp(batch, min_nr_free, max_nr_free);
3338 
3339 	return batch;
3340 }
3341 
3342 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3343 {
3344 	int high = READ_ONCE(pcp->high);
3345 
3346 	if (unlikely(!high))
3347 		return 0;
3348 
3349 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3350 		return high;
3351 
3352 	/*
3353 	 * If reclaim is active, limit the number of pages that can be
3354 	 * stored on pcp lists
3355 	 */
3356 	return min(READ_ONCE(pcp->batch) << 2, high);
3357 }
3358 
3359 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3360 				   int migratetype, unsigned int order)
3361 {
3362 	struct zone *zone = page_zone(page);
3363 	struct per_cpu_pages *pcp;
3364 	int high;
3365 	int pindex;
3366 
3367 	__count_vm_event(PGFREE);
3368 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3369 	pindex = order_to_pindex(migratetype, order);
3370 	list_add(&page->lru, &pcp->lists[pindex]);
3371 	pcp->count += 1 << order;
3372 	high = nr_pcp_high(pcp, zone);
3373 	if (pcp->count >= high) {
3374 		int batch = READ_ONCE(pcp->batch);
3375 
3376 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3377 	}
3378 }
3379 
3380 /*
3381  * Free a pcp page
3382  */
3383 void free_unref_page(struct page *page, unsigned int order)
3384 {
3385 	unsigned long flags;
3386 	unsigned long pfn = page_to_pfn(page);
3387 	int migratetype;
3388 
3389 	if (!free_unref_page_prepare(page, pfn, order))
3390 		return;
3391 
3392 	/*
3393 	 * We only track unmovable, reclaimable and movable on pcp lists.
3394 	 * Place ISOLATE pages on the isolated list because they are being
3395 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3396 	 * areas back if necessary. Otherwise, we may have to free
3397 	 * excessively into the page allocator
3398 	 */
3399 	migratetype = get_pcppage_migratetype(page);
3400 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3401 		if (unlikely(is_migrate_isolate(migratetype))) {
3402 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3403 			return;
3404 		}
3405 		migratetype = MIGRATE_MOVABLE;
3406 	}
3407 
3408 	local_lock_irqsave(&pagesets.lock, flags);
3409 	free_unref_page_commit(page, pfn, migratetype, order);
3410 	local_unlock_irqrestore(&pagesets.lock, flags);
3411 }
3412 
3413 /*
3414  * Free a list of 0-order pages
3415  */
3416 void free_unref_page_list(struct list_head *list)
3417 {
3418 	struct page *page, *next;
3419 	unsigned long flags, pfn;
3420 	int batch_count = 0;
3421 	int migratetype;
3422 
3423 	/* Prepare pages for freeing */
3424 	list_for_each_entry_safe(page, next, list, lru) {
3425 		pfn = page_to_pfn(page);
3426 		if (!free_unref_page_prepare(page, pfn, 0)) {
3427 			list_del(&page->lru);
3428 			continue;
3429 		}
3430 
3431 		/*
3432 		 * Free isolated pages directly to the allocator, see
3433 		 * comment in free_unref_page.
3434 		 */
3435 		migratetype = get_pcppage_migratetype(page);
3436 		if (unlikely(is_migrate_isolate(migratetype))) {
3437 			list_del(&page->lru);
3438 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3439 			continue;
3440 		}
3441 
3442 		set_page_private(page, pfn);
3443 	}
3444 
3445 	local_lock_irqsave(&pagesets.lock, flags);
3446 	list_for_each_entry_safe(page, next, list, lru) {
3447 		pfn = page_private(page);
3448 		set_page_private(page, 0);
3449 
3450 		/*
3451 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3452 		 * to the MIGRATE_MOVABLE pcp list.
3453 		 */
3454 		migratetype = get_pcppage_migratetype(page);
3455 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3456 			migratetype = MIGRATE_MOVABLE;
3457 
3458 		trace_mm_page_free_batched(page);
3459 		free_unref_page_commit(page, pfn, migratetype, 0);
3460 
3461 		/*
3462 		 * Guard against excessive IRQ disabled times when we get
3463 		 * a large list of pages to free.
3464 		 */
3465 		if (++batch_count == SWAP_CLUSTER_MAX) {
3466 			local_unlock_irqrestore(&pagesets.lock, flags);
3467 			batch_count = 0;
3468 			local_lock_irqsave(&pagesets.lock, flags);
3469 		}
3470 	}
3471 	local_unlock_irqrestore(&pagesets.lock, flags);
3472 }
3473 
3474 /*
3475  * split_page takes a non-compound higher-order page, and splits it into
3476  * n (1<<order) sub-pages: page[0..n]
3477  * Each sub-page must be freed individually.
3478  *
3479  * Note: this is probably too low level an operation for use in drivers.
3480  * Please consult with lkml before using this in your driver.
3481  */
3482 void split_page(struct page *page, unsigned int order)
3483 {
3484 	int i;
3485 
3486 	VM_BUG_ON_PAGE(PageCompound(page), page);
3487 	VM_BUG_ON_PAGE(!page_count(page), page);
3488 
3489 	for (i = 1; i < (1 << order); i++)
3490 		set_page_refcounted(page + i);
3491 	split_page_owner(page, 1 << order);
3492 	split_page_memcg(page, 1 << order);
3493 }
3494 EXPORT_SYMBOL_GPL(split_page);
3495 
3496 int __isolate_free_page(struct page *page, unsigned int order)
3497 {
3498 	unsigned long watermark;
3499 	struct zone *zone;
3500 	int mt;
3501 
3502 	BUG_ON(!PageBuddy(page));
3503 
3504 	zone = page_zone(page);
3505 	mt = get_pageblock_migratetype(page);
3506 
3507 	if (!is_migrate_isolate(mt)) {
3508 		/*
3509 		 * Obey watermarks as if the page was being allocated. We can
3510 		 * emulate a high-order watermark check with a raised order-0
3511 		 * watermark, because we already know our high-order page
3512 		 * exists.
3513 		 */
3514 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3515 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3516 			return 0;
3517 
3518 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3519 	}
3520 
3521 	/* Remove page from free list */
3522 
3523 	del_page_from_free_list(page, zone, order);
3524 
3525 	/*
3526 	 * Set the pageblock if the isolated page is at least half of a
3527 	 * pageblock
3528 	 */
3529 	if (order >= pageblock_order - 1) {
3530 		struct page *endpage = page + (1 << order) - 1;
3531 		for (; page < endpage; page += pageblock_nr_pages) {
3532 			int mt = get_pageblock_migratetype(page);
3533 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3534 			    && !is_migrate_highatomic(mt))
3535 				set_pageblock_migratetype(page,
3536 							  MIGRATE_MOVABLE);
3537 		}
3538 	}
3539 
3540 
3541 	return 1UL << order;
3542 }
3543 
3544 /**
3545  * __putback_isolated_page - Return a now-isolated page back where we got it
3546  * @page: Page that was isolated
3547  * @order: Order of the isolated page
3548  * @mt: The page's pageblock's migratetype
3549  *
3550  * This function is meant to return a page pulled from the free lists via
3551  * __isolate_free_page back to the free lists they were pulled from.
3552  */
3553 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3554 {
3555 	struct zone *zone = page_zone(page);
3556 
3557 	/* zone lock should be held when this function is called */
3558 	lockdep_assert_held(&zone->lock);
3559 
3560 	/* Return isolated page to tail of freelist. */
3561 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3562 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3563 }
3564 
3565 /*
3566  * Update NUMA hit/miss statistics
3567  *
3568  * Must be called with interrupts disabled.
3569  */
3570 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3571 				   long nr_account)
3572 {
3573 #ifdef CONFIG_NUMA
3574 	enum numa_stat_item local_stat = NUMA_LOCAL;
3575 
3576 	/* skip numa counters update if numa stats is disabled */
3577 	if (!static_branch_likely(&vm_numa_stat_key))
3578 		return;
3579 
3580 	if (zone_to_nid(z) != numa_node_id())
3581 		local_stat = NUMA_OTHER;
3582 
3583 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3584 		__count_numa_events(z, NUMA_HIT, nr_account);
3585 	else {
3586 		__count_numa_events(z, NUMA_MISS, nr_account);
3587 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3588 	}
3589 	__count_numa_events(z, local_stat, nr_account);
3590 #endif
3591 }
3592 
3593 /* Remove page from the per-cpu list, caller must protect the list */
3594 static inline
3595 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3596 			int migratetype,
3597 			unsigned int alloc_flags,
3598 			struct per_cpu_pages *pcp,
3599 			struct list_head *list)
3600 {
3601 	struct page *page;
3602 
3603 	do {
3604 		if (list_empty(list)) {
3605 			int batch = READ_ONCE(pcp->batch);
3606 			int alloced;
3607 
3608 			/*
3609 			 * Scale batch relative to order if batch implies
3610 			 * free pages can be stored on the PCP. Batch can
3611 			 * be 1 for small zones or for boot pagesets which
3612 			 * should never store free pages as the pages may
3613 			 * belong to arbitrary zones.
3614 			 */
3615 			if (batch > 1)
3616 				batch = max(batch >> order, 2);
3617 			alloced = rmqueue_bulk(zone, order,
3618 					batch, list,
3619 					migratetype, alloc_flags);
3620 
3621 			pcp->count += alloced << order;
3622 			if (unlikely(list_empty(list)))
3623 				return NULL;
3624 		}
3625 
3626 		page = list_first_entry(list, struct page, lru);
3627 		list_del(&page->lru);
3628 		pcp->count -= 1 << order;
3629 	} while (check_new_pcp(page));
3630 
3631 	return page;
3632 }
3633 
3634 /* Lock and remove page from the per-cpu list */
3635 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3636 			struct zone *zone, unsigned int order,
3637 			gfp_t gfp_flags, int migratetype,
3638 			unsigned int alloc_flags)
3639 {
3640 	struct per_cpu_pages *pcp;
3641 	struct list_head *list;
3642 	struct page *page;
3643 	unsigned long flags;
3644 
3645 	local_lock_irqsave(&pagesets.lock, flags);
3646 
3647 	/*
3648 	 * On allocation, reduce the number of pages that are batch freed.
3649 	 * See nr_pcp_free() where free_factor is increased for subsequent
3650 	 * frees.
3651 	 */
3652 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3653 	pcp->free_factor >>= 1;
3654 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3655 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3656 	local_unlock_irqrestore(&pagesets.lock, flags);
3657 	if (page) {
3658 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3659 		zone_statistics(preferred_zone, zone, 1);
3660 	}
3661 	return page;
3662 }
3663 
3664 /*
3665  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3666  */
3667 static inline
3668 struct page *rmqueue(struct zone *preferred_zone,
3669 			struct zone *zone, unsigned int order,
3670 			gfp_t gfp_flags, unsigned int alloc_flags,
3671 			int migratetype)
3672 {
3673 	unsigned long flags;
3674 	struct page *page;
3675 
3676 	if (likely(pcp_allowed_order(order))) {
3677 		/*
3678 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3679 		 * we need to skip it when CMA area isn't allowed.
3680 		 */
3681 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3682 				migratetype != MIGRATE_MOVABLE) {
3683 			page = rmqueue_pcplist(preferred_zone, zone, order,
3684 					gfp_flags, migratetype, alloc_flags);
3685 			goto out;
3686 		}
3687 	}
3688 
3689 	/*
3690 	 * We most definitely don't want callers attempting to
3691 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3692 	 */
3693 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3694 	spin_lock_irqsave(&zone->lock, flags);
3695 
3696 	do {
3697 		page = NULL;
3698 		/*
3699 		 * order-0 request can reach here when the pcplist is skipped
3700 		 * due to non-CMA allocation context. HIGHATOMIC area is
3701 		 * reserved for high-order atomic allocation, so order-0
3702 		 * request should skip it.
3703 		 */
3704 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3705 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3706 			if (page)
3707 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3708 		}
3709 		if (!page)
3710 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3711 	} while (page && check_new_pages(page, order));
3712 	if (!page)
3713 		goto failed;
3714 
3715 	__mod_zone_freepage_state(zone, -(1 << order),
3716 				  get_pcppage_migratetype(page));
3717 	spin_unlock_irqrestore(&zone->lock, flags);
3718 
3719 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3720 	zone_statistics(preferred_zone, zone, 1);
3721 
3722 out:
3723 	/* Separate test+clear to avoid unnecessary atomics */
3724 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3725 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3726 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3727 	}
3728 
3729 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3730 	return page;
3731 
3732 failed:
3733 	spin_unlock_irqrestore(&zone->lock, flags);
3734 	return NULL;
3735 }
3736 
3737 #ifdef CONFIG_FAIL_PAGE_ALLOC
3738 
3739 static struct {
3740 	struct fault_attr attr;
3741 
3742 	bool ignore_gfp_highmem;
3743 	bool ignore_gfp_reclaim;
3744 	u32 min_order;
3745 } fail_page_alloc = {
3746 	.attr = FAULT_ATTR_INITIALIZER,
3747 	.ignore_gfp_reclaim = true,
3748 	.ignore_gfp_highmem = true,
3749 	.min_order = 1,
3750 };
3751 
3752 static int __init setup_fail_page_alloc(char *str)
3753 {
3754 	return setup_fault_attr(&fail_page_alloc.attr, str);
3755 }
3756 __setup("fail_page_alloc=", setup_fail_page_alloc);
3757 
3758 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3759 {
3760 	if (order < fail_page_alloc.min_order)
3761 		return false;
3762 	if (gfp_mask & __GFP_NOFAIL)
3763 		return false;
3764 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3765 		return false;
3766 	if (fail_page_alloc.ignore_gfp_reclaim &&
3767 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3768 		return false;
3769 
3770 	return should_fail(&fail_page_alloc.attr, 1 << order);
3771 }
3772 
3773 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3774 
3775 static int __init fail_page_alloc_debugfs(void)
3776 {
3777 	umode_t mode = S_IFREG | 0600;
3778 	struct dentry *dir;
3779 
3780 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3781 					&fail_page_alloc.attr);
3782 
3783 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3784 			    &fail_page_alloc.ignore_gfp_reclaim);
3785 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3786 			    &fail_page_alloc.ignore_gfp_highmem);
3787 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3788 
3789 	return 0;
3790 }
3791 
3792 late_initcall(fail_page_alloc_debugfs);
3793 
3794 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3795 
3796 #else /* CONFIG_FAIL_PAGE_ALLOC */
3797 
3798 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3799 {
3800 	return false;
3801 }
3802 
3803 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3804 
3805 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3806 {
3807 	return __should_fail_alloc_page(gfp_mask, order);
3808 }
3809 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3810 
3811 static inline long __zone_watermark_unusable_free(struct zone *z,
3812 				unsigned int order, unsigned int alloc_flags)
3813 {
3814 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3815 	long unusable_free = (1 << order) - 1;
3816 
3817 	/*
3818 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3819 	 * the high-atomic reserves. This will over-estimate the size of the
3820 	 * atomic reserve but it avoids a search.
3821 	 */
3822 	if (likely(!alloc_harder))
3823 		unusable_free += z->nr_reserved_highatomic;
3824 
3825 #ifdef CONFIG_CMA
3826 	/* If allocation can't use CMA areas don't use free CMA pages */
3827 	if (!(alloc_flags & ALLOC_CMA))
3828 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3829 #endif
3830 
3831 	return unusable_free;
3832 }
3833 
3834 /*
3835  * Return true if free base pages are above 'mark'. For high-order checks it
3836  * will return true of the order-0 watermark is reached and there is at least
3837  * one free page of a suitable size. Checking now avoids taking the zone lock
3838  * to check in the allocation paths if no pages are free.
3839  */
3840 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3841 			 int highest_zoneidx, unsigned int alloc_flags,
3842 			 long free_pages)
3843 {
3844 	long min = mark;
3845 	int o;
3846 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3847 
3848 	/* free_pages may go negative - that's OK */
3849 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3850 
3851 	if (alloc_flags & ALLOC_HIGH)
3852 		min -= min / 2;
3853 
3854 	if (unlikely(alloc_harder)) {
3855 		/*
3856 		 * OOM victims can try even harder than normal ALLOC_HARDER
3857 		 * users on the grounds that it's definitely going to be in
3858 		 * the exit path shortly and free memory. Any allocation it
3859 		 * makes during the free path will be small and short-lived.
3860 		 */
3861 		if (alloc_flags & ALLOC_OOM)
3862 			min -= min / 2;
3863 		else
3864 			min -= min / 4;
3865 	}
3866 
3867 	/*
3868 	 * Check watermarks for an order-0 allocation request. If these
3869 	 * are not met, then a high-order request also cannot go ahead
3870 	 * even if a suitable page happened to be free.
3871 	 */
3872 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3873 		return false;
3874 
3875 	/* If this is an order-0 request then the watermark is fine */
3876 	if (!order)
3877 		return true;
3878 
3879 	/* For a high-order request, check at least one suitable page is free */
3880 	for (o = order; o < MAX_ORDER; o++) {
3881 		struct free_area *area = &z->free_area[o];
3882 		int mt;
3883 
3884 		if (!area->nr_free)
3885 			continue;
3886 
3887 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3888 			if (!free_area_empty(area, mt))
3889 				return true;
3890 		}
3891 
3892 #ifdef CONFIG_CMA
3893 		if ((alloc_flags & ALLOC_CMA) &&
3894 		    !free_area_empty(area, MIGRATE_CMA)) {
3895 			return true;
3896 		}
3897 #endif
3898 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3899 			return true;
3900 	}
3901 	return false;
3902 }
3903 
3904 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3905 		      int highest_zoneidx, unsigned int alloc_flags)
3906 {
3907 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3908 					zone_page_state(z, NR_FREE_PAGES));
3909 }
3910 
3911 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3912 				unsigned long mark, int highest_zoneidx,
3913 				unsigned int alloc_flags, gfp_t gfp_mask)
3914 {
3915 	long free_pages;
3916 
3917 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3918 
3919 	/*
3920 	 * Fast check for order-0 only. If this fails then the reserves
3921 	 * need to be calculated.
3922 	 */
3923 	if (!order) {
3924 		long fast_free;
3925 
3926 		fast_free = free_pages;
3927 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3928 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3929 			return true;
3930 	}
3931 
3932 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3933 					free_pages))
3934 		return true;
3935 	/*
3936 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3937 	 * when checking the min watermark. The min watermark is the
3938 	 * point where boosting is ignored so that kswapd is woken up
3939 	 * when below the low watermark.
3940 	 */
3941 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3942 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3943 		mark = z->_watermark[WMARK_MIN];
3944 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3945 					alloc_flags, free_pages);
3946 	}
3947 
3948 	return false;
3949 }
3950 
3951 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3952 			unsigned long mark, int highest_zoneidx)
3953 {
3954 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3955 
3956 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3957 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3958 
3959 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3960 								free_pages);
3961 }
3962 
3963 #ifdef CONFIG_NUMA
3964 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3965 
3966 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3967 {
3968 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3969 				node_reclaim_distance;
3970 }
3971 #else	/* CONFIG_NUMA */
3972 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3973 {
3974 	return true;
3975 }
3976 #endif	/* CONFIG_NUMA */
3977 
3978 /*
3979  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3980  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3981  * premature use of a lower zone may cause lowmem pressure problems that
3982  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3983  * probably too small. It only makes sense to spread allocations to avoid
3984  * fragmentation between the Normal and DMA32 zones.
3985  */
3986 static inline unsigned int
3987 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3988 {
3989 	unsigned int alloc_flags;
3990 
3991 	/*
3992 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3993 	 * to save a branch.
3994 	 */
3995 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3996 
3997 #ifdef CONFIG_ZONE_DMA32
3998 	if (!zone)
3999 		return alloc_flags;
4000 
4001 	if (zone_idx(zone) != ZONE_NORMAL)
4002 		return alloc_flags;
4003 
4004 	/*
4005 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4006 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4007 	 * on UMA that if Normal is populated then so is DMA32.
4008 	 */
4009 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4010 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4011 		return alloc_flags;
4012 
4013 	alloc_flags |= ALLOC_NOFRAGMENT;
4014 #endif /* CONFIG_ZONE_DMA32 */
4015 	return alloc_flags;
4016 }
4017 
4018 /* Must be called after current_gfp_context() which can change gfp_mask */
4019 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4020 						  unsigned int alloc_flags)
4021 {
4022 #ifdef CONFIG_CMA
4023 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4024 		alloc_flags |= ALLOC_CMA;
4025 #endif
4026 	return alloc_flags;
4027 }
4028 
4029 /*
4030  * get_page_from_freelist goes through the zonelist trying to allocate
4031  * a page.
4032  */
4033 static struct page *
4034 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4035 						const struct alloc_context *ac)
4036 {
4037 	struct zoneref *z;
4038 	struct zone *zone;
4039 	struct pglist_data *last_pgdat_dirty_limit = NULL;
4040 	bool no_fallback;
4041 
4042 retry:
4043 	/*
4044 	 * Scan zonelist, looking for a zone with enough free.
4045 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4046 	 */
4047 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4048 	z = ac->preferred_zoneref;
4049 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4050 					ac->nodemask) {
4051 		struct page *page;
4052 		unsigned long mark;
4053 
4054 		if (cpusets_enabled() &&
4055 			(alloc_flags & ALLOC_CPUSET) &&
4056 			!__cpuset_zone_allowed(zone, gfp_mask))
4057 				continue;
4058 		/*
4059 		 * When allocating a page cache page for writing, we
4060 		 * want to get it from a node that is within its dirty
4061 		 * limit, such that no single node holds more than its
4062 		 * proportional share of globally allowed dirty pages.
4063 		 * The dirty limits take into account the node's
4064 		 * lowmem reserves and high watermark so that kswapd
4065 		 * should be able to balance it without having to
4066 		 * write pages from its LRU list.
4067 		 *
4068 		 * XXX: For now, allow allocations to potentially
4069 		 * exceed the per-node dirty limit in the slowpath
4070 		 * (spread_dirty_pages unset) before going into reclaim,
4071 		 * which is important when on a NUMA setup the allowed
4072 		 * nodes are together not big enough to reach the
4073 		 * global limit.  The proper fix for these situations
4074 		 * will require awareness of nodes in the
4075 		 * dirty-throttling and the flusher threads.
4076 		 */
4077 		if (ac->spread_dirty_pages) {
4078 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4079 				continue;
4080 
4081 			if (!node_dirty_ok(zone->zone_pgdat)) {
4082 				last_pgdat_dirty_limit = zone->zone_pgdat;
4083 				continue;
4084 			}
4085 		}
4086 
4087 		if (no_fallback && nr_online_nodes > 1 &&
4088 		    zone != ac->preferred_zoneref->zone) {
4089 			int local_nid;
4090 
4091 			/*
4092 			 * If moving to a remote node, retry but allow
4093 			 * fragmenting fallbacks. Locality is more important
4094 			 * than fragmentation avoidance.
4095 			 */
4096 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4097 			if (zone_to_nid(zone) != local_nid) {
4098 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4099 				goto retry;
4100 			}
4101 		}
4102 
4103 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4104 		if (!zone_watermark_fast(zone, order, mark,
4105 				       ac->highest_zoneidx, alloc_flags,
4106 				       gfp_mask)) {
4107 			int ret;
4108 
4109 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4110 			/*
4111 			 * Watermark failed for this zone, but see if we can
4112 			 * grow this zone if it contains deferred pages.
4113 			 */
4114 			if (static_branch_unlikely(&deferred_pages)) {
4115 				if (_deferred_grow_zone(zone, order))
4116 					goto try_this_zone;
4117 			}
4118 #endif
4119 			/* Checked here to keep the fast path fast */
4120 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4121 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4122 				goto try_this_zone;
4123 
4124 			if (!node_reclaim_enabled() ||
4125 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4126 				continue;
4127 
4128 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4129 			switch (ret) {
4130 			case NODE_RECLAIM_NOSCAN:
4131 				/* did not scan */
4132 				continue;
4133 			case NODE_RECLAIM_FULL:
4134 				/* scanned but unreclaimable */
4135 				continue;
4136 			default:
4137 				/* did we reclaim enough */
4138 				if (zone_watermark_ok(zone, order, mark,
4139 					ac->highest_zoneidx, alloc_flags))
4140 					goto try_this_zone;
4141 
4142 				continue;
4143 			}
4144 		}
4145 
4146 try_this_zone:
4147 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4148 				gfp_mask, alloc_flags, ac->migratetype);
4149 		if (page) {
4150 			prep_new_page(page, order, gfp_mask, alloc_flags);
4151 
4152 			/*
4153 			 * If this is a high-order atomic allocation then check
4154 			 * if the pageblock should be reserved for the future
4155 			 */
4156 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4157 				reserve_highatomic_pageblock(page, zone, order);
4158 
4159 			return page;
4160 		} else {
4161 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4162 			/* Try again if zone has deferred pages */
4163 			if (static_branch_unlikely(&deferred_pages)) {
4164 				if (_deferred_grow_zone(zone, order))
4165 					goto try_this_zone;
4166 			}
4167 #endif
4168 		}
4169 	}
4170 
4171 	/*
4172 	 * It's possible on a UMA machine to get through all zones that are
4173 	 * fragmented. If avoiding fragmentation, reset and try again.
4174 	 */
4175 	if (no_fallback) {
4176 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4177 		goto retry;
4178 	}
4179 
4180 	return NULL;
4181 }
4182 
4183 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4184 {
4185 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4186 
4187 	/*
4188 	 * This documents exceptions given to allocations in certain
4189 	 * contexts that are allowed to allocate outside current's set
4190 	 * of allowed nodes.
4191 	 */
4192 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4193 		if (tsk_is_oom_victim(current) ||
4194 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4195 			filter &= ~SHOW_MEM_FILTER_NODES;
4196 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4197 		filter &= ~SHOW_MEM_FILTER_NODES;
4198 
4199 	show_mem(filter, nodemask);
4200 }
4201 
4202 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4203 {
4204 	struct va_format vaf;
4205 	va_list args;
4206 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4207 
4208 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4209 		return;
4210 
4211 	va_start(args, fmt);
4212 	vaf.fmt = fmt;
4213 	vaf.va = &args;
4214 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4215 			current->comm, &vaf, gfp_mask, &gfp_mask,
4216 			nodemask_pr_args(nodemask));
4217 	va_end(args);
4218 
4219 	cpuset_print_current_mems_allowed();
4220 	pr_cont("\n");
4221 	dump_stack();
4222 	warn_alloc_show_mem(gfp_mask, nodemask);
4223 }
4224 
4225 static inline struct page *
4226 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4227 			      unsigned int alloc_flags,
4228 			      const struct alloc_context *ac)
4229 {
4230 	struct page *page;
4231 
4232 	page = get_page_from_freelist(gfp_mask, order,
4233 			alloc_flags|ALLOC_CPUSET, ac);
4234 	/*
4235 	 * fallback to ignore cpuset restriction if our nodes
4236 	 * are depleted
4237 	 */
4238 	if (!page)
4239 		page = get_page_from_freelist(gfp_mask, order,
4240 				alloc_flags, ac);
4241 
4242 	return page;
4243 }
4244 
4245 static inline struct page *
4246 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4247 	const struct alloc_context *ac, unsigned long *did_some_progress)
4248 {
4249 	struct oom_control oc = {
4250 		.zonelist = ac->zonelist,
4251 		.nodemask = ac->nodemask,
4252 		.memcg = NULL,
4253 		.gfp_mask = gfp_mask,
4254 		.order = order,
4255 	};
4256 	struct page *page;
4257 
4258 	*did_some_progress = 0;
4259 
4260 	/*
4261 	 * Acquire the oom lock.  If that fails, somebody else is
4262 	 * making progress for us.
4263 	 */
4264 	if (!mutex_trylock(&oom_lock)) {
4265 		*did_some_progress = 1;
4266 		schedule_timeout_uninterruptible(1);
4267 		return NULL;
4268 	}
4269 
4270 	/*
4271 	 * Go through the zonelist yet one more time, keep very high watermark
4272 	 * here, this is only to catch a parallel oom killing, we must fail if
4273 	 * we're still under heavy pressure. But make sure that this reclaim
4274 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4275 	 * allocation which will never fail due to oom_lock already held.
4276 	 */
4277 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4278 				      ~__GFP_DIRECT_RECLAIM, order,
4279 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4280 	if (page)
4281 		goto out;
4282 
4283 	/* Coredumps can quickly deplete all memory reserves */
4284 	if (current->flags & PF_DUMPCORE)
4285 		goto out;
4286 	/* The OOM killer will not help higher order allocs */
4287 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4288 		goto out;
4289 	/*
4290 	 * We have already exhausted all our reclaim opportunities without any
4291 	 * success so it is time to admit defeat. We will skip the OOM killer
4292 	 * because it is very likely that the caller has a more reasonable
4293 	 * fallback than shooting a random task.
4294 	 *
4295 	 * The OOM killer may not free memory on a specific node.
4296 	 */
4297 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4298 		goto out;
4299 	/* The OOM killer does not needlessly kill tasks for lowmem */
4300 	if (ac->highest_zoneidx < ZONE_NORMAL)
4301 		goto out;
4302 	if (pm_suspended_storage())
4303 		goto out;
4304 	/*
4305 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4306 	 * other request to make a forward progress.
4307 	 * We are in an unfortunate situation where out_of_memory cannot
4308 	 * do much for this context but let's try it to at least get
4309 	 * access to memory reserved if the current task is killed (see
4310 	 * out_of_memory). Once filesystems are ready to handle allocation
4311 	 * failures more gracefully we should just bail out here.
4312 	 */
4313 
4314 	/* Exhausted what can be done so it's blame time */
4315 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4316 		*did_some_progress = 1;
4317 
4318 		/*
4319 		 * Help non-failing allocations by giving them access to memory
4320 		 * reserves
4321 		 */
4322 		if (gfp_mask & __GFP_NOFAIL)
4323 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4324 					ALLOC_NO_WATERMARKS, ac);
4325 	}
4326 out:
4327 	mutex_unlock(&oom_lock);
4328 	return page;
4329 }
4330 
4331 /*
4332  * Maximum number of compaction retries with a progress before OOM
4333  * killer is consider as the only way to move forward.
4334  */
4335 #define MAX_COMPACT_RETRIES 16
4336 
4337 #ifdef CONFIG_COMPACTION
4338 /* Try memory compaction for high-order allocations before reclaim */
4339 static struct page *
4340 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4341 		unsigned int alloc_flags, const struct alloc_context *ac,
4342 		enum compact_priority prio, enum compact_result *compact_result)
4343 {
4344 	struct page *page = NULL;
4345 	unsigned long pflags;
4346 	unsigned int noreclaim_flag;
4347 
4348 	if (!order)
4349 		return NULL;
4350 
4351 	psi_memstall_enter(&pflags);
4352 	delayacct_compact_start();
4353 	noreclaim_flag = memalloc_noreclaim_save();
4354 
4355 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4356 								prio, &page);
4357 
4358 	memalloc_noreclaim_restore(noreclaim_flag);
4359 	psi_memstall_leave(&pflags);
4360 	delayacct_compact_end();
4361 
4362 	if (*compact_result == COMPACT_SKIPPED)
4363 		return NULL;
4364 	/*
4365 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4366 	 * count a compaction stall
4367 	 */
4368 	count_vm_event(COMPACTSTALL);
4369 
4370 	/* Prep a captured page if available */
4371 	if (page)
4372 		prep_new_page(page, order, gfp_mask, alloc_flags);
4373 
4374 	/* Try get a page from the freelist if available */
4375 	if (!page)
4376 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4377 
4378 	if (page) {
4379 		struct zone *zone = page_zone(page);
4380 
4381 		zone->compact_blockskip_flush = false;
4382 		compaction_defer_reset(zone, order, true);
4383 		count_vm_event(COMPACTSUCCESS);
4384 		return page;
4385 	}
4386 
4387 	/*
4388 	 * It's bad if compaction run occurs and fails. The most likely reason
4389 	 * is that pages exist, but not enough to satisfy watermarks.
4390 	 */
4391 	count_vm_event(COMPACTFAIL);
4392 
4393 	cond_resched();
4394 
4395 	return NULL;
4396 }
4397 
4398 static inline bool
4399 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4400 		     enum compact_result compact_result,
4401 		     enum compact_priority *compact_priority,
4402 		     int *compaction_retries)
4403 {
4404 	int max_retries = MAX_COMPACT_RETRIES;
4405 	int min_priority;
4406 	bool ret = false;
4407 	int retries = *compaction_retries;
4408 	enum compact_priority priority = *compact_priority;
4409 
4410 	if (!order)
4411 		return false;
4412 
4413 	if (fatal_signal_pending(current))
4414 		return false;
4415 
4416 	if (compaction_made_progress(compact_result))
4417 		(*compaction_retries)++;
4418 
4419 	/*
4420 	 * compaction considers all the zone as desperately out of memory
4421 	 * so it doesn't really make much sense to retry except when the
4422 	 * failure could be caused by insufficient priority
4423 	 */
4424 	if (compaction_failed(compact_result))
4425 		goto check_priority;
4426 
4427 	/*
4428 	 * compaction was skipped because there are not enough order-0 pages
4429 	 * to work with, so we retry only if it looks like reclaim can help.
4430 	 */
4431 	if (compaction_needs_reclaim(compact_result)) {
4432 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4433 		goto out;
4434 	}
4435 
4436 	/*
4437 	 * make sure the compaction wasn't deferred or didn't bail out early
4438 	 * due to locks contention before we declare that we should give up.
4439 	 * But the next retry should use a higher priority if allowed, so
4440 	 * we don't just keep bailing out endlessly.
4441 	 */
4442 	if (compaction_withdrawn(compact_result)) {
4443 		goto check_priority;
4444 	}
4445 
4446 	/*
4447 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4448 	 * costly ones because they are de facto nofail and invoke OOM
4449 	 * killer to move on while costly can fail and users are ready
4450 	 * to cope with that. 1/4 retries is rather arbitrary but we
4451 	 * would need much more detailed feedback from compaction to
4452 	 * make a better decision.
4453 	 */
4454 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4455 		max_retries /= 4;
4456 	if (*compaction_retries <= max_retries) {
4457 		ret = true;
4458 		goto out;
4459 	}
4460 
4461 	/*
4462 	 * Make sure there are attempts at the highest priority if we exhausted
4463 	 * all retries or failed at the lower priorities.
4464 	 */
4465 check_priority:
4466 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4467 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4468 
4469 	if (*compact_priority > min_priority) {
4470 		(*compact_priority)--;
4471 		*compaction_retries = 0;
4472 		ret = true;
4473 	}
4474 out:
4475 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4476 	return ret;
4477 }
4478 #else
4479 static inline struct page *
4480 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4481 		unsigned int alloc_flags, const struct alloc_context *ac,
4482 		enum compact_priority prio, enum compact_result *compact_result)
4483 {
4484 	*compact_result = COMPACT_SKIPPED;
4485 	return NULL;
4486 }
4487 
4488 static inline bool
4489 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4490 		     enum compact_result compact_result,
4491 		     enum compact_priority *compact_priority,
4492 		     int *compaction_retries)
4493 {
4494 	struct zone *zone;
4495 	struct zoneref *z;
4496 
4497 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4498 		return false;
4499 
4500 	/*
4501 	 * There are setups with compaction disabled which would prefer to loop
4502 	 * inside the allocator rather than hit the oom killer prematurely.
4503 	 * Let's give them a good hope and keep retrying while the order-0
4504 	 * watermarks are OK.
4505 	 */
4506 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4507 				ac->highest_zoneidx, ac->nodemask) {
4508 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4509 					ac->highest_zoneidx, alloc_flags))
4510 			return true;
4511 	}
4512 	return false;
4513 }
4514 #endif /* CONFIG_COMPACTION */
4515 
4516 #ifdef CONFIG_LOCKDEP
4517 static struct lockdep_map __fs_reclaim_map =
4518 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4519 
4520 static bool __need_reclaim(gfp_t gfp_mask)
4521 {
4522 	/* no reclaim without waiting on it */
4523 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4524 		return false;
4525 
4526 	/* this guy won't enter reclaim */
4527 	if (current->flags & PF_MEMALLOC)
4528 		return false;
4529 
4530 	if (gfp_mask & __GFP_NOLOCKDEP)
4531 		return false;
4532 
4533 	return true;
4534 }
4535 
4536 void __fs_reclaim_acquire(unsigned long ip)
4537 {
4538 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4539 }
4540 
4541 void __fs_reclaim_release(unsigned long ip)
4542 {
4543 	lock_release(&__fs_reclaim_map, ip);
4544 }
4545 
4546 void fs_reclaim_acquire(gfp_t gfp_mask)
4547 {
4548 	gfp_mask = current_gfp_context(gfp_mask);
4549 
4550 	if (__need_reclaim(gfp_mask)) {
4551 		if (gfp_mask & __GFP_FS)
4552 			__fs_reclaim_acquire(_RET_IP_);
4553 
4554 #ifdef CONFIG_MMU_NOTIFIER
4555 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4556 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4557 #endif
4558 
4559 	}
4560 }
4561 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4562 
4563 void fs_reclaim_release(gfp_t gfp_mask)
4564 {
4565 	gfp_mask = current_gfp_context(gfp_mask);
4566 
4567 	if (__need_reclaim(gfp_mask)) {
4568 		if (gfp_mask & __GFP_FS)
4569 			__fs_reclaim_release(_RET_IP_);
4570 	}
4571 }
4572 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4573 #endif
4574 
4575 /* Perform direct synchronous page reclaim */
4576 static unsigned long
4577 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4578 					const struct alloc_context *ac)
4579 {
4580 	unsigned int noreclaim_flag;
4581 	unsigned long pflags, progress;
4582 
4583 	cond_resched();
4584 
4585 	/* We now go into synchronous reclaim */
4586 	cpuset_memory_pressure_bump();
4587 	psi_memstall_enter(&pflags);
4588 	fs_reclaim_acquire(gfp_mask);
4589 	noreclaim_flag = memalloc_noreclaim_save();
4590 
4591 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4592 								ac->nodemask);
4593 
4594 	memalloc_noreclaim_restore(noreclaim_flag);
4595 	fs_reclaim_release(gfp_mask);
4596 	psi_memstall_leave(&pflags);
4597 
4598 	cond_resched();
4599 
4600 	return progress;
4601 }
4602 
4603 /* The really slow allocator path where we enter direct reclaim */
4604 static inline struct page *
4605 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4606 		unsigned int alloc_flags, const struct alloc_context *ac,
4607 		unsigned long *did_some_progress)
4608 {
4609 	struct page *page = NULL;
4610 	bool drained = false;
4611 
4612 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4613 	if (unlikely(!(*did_some_progress)))
4614 		return NULL;
4615 
4616 retry:
4617 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4618 
4619 	/*
4620 	 * If an allocation failed after direct reclaim, it could be because
4621 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4622 	 * Shrink them and try again
4623 	 */
4624 	if (!page && !drained) {
4625 		unreserve_highatomic_pageblock(ac, false);
4626 		drain_all_pages(NULL);
4627 		drained = true;
4628 		goto retry;
4629 	}
4630 
4631 	return page;
4632 }
4633 
4634 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4635 			     const struct alloc_context *ac)
4636 {
4637 	struct zoneref *z;
4638 	struct zone *zone;
4639 	pg_data_t *last_pgdat = NULL;
4640 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4641 
4642 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4643 					ac->nodemask) {
4644 		if (last_pgdat != zone->zone_pgdat)
4645 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4646 		last_pgdat = zone->zone_pgdat;
4647 	}
4648 }
4649 
4650 static inline unsigned int
4651 gfp_to_alloc_flags(gfp_t gfp_mask)
4652 {
4653 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4654 
4655 	/*
4656 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4657 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4658 	 * to save two branches.
4659 	 */
4660 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4661 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4662 
4663 	/*
4664 	 * The caller may dip into page reserves a bit more if the caller
4665 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4666 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4667 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4668 	 */
4669 	alloc_flags |= (__force int)
4670 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4671 
4672 	if (gfp_mask & __GFP_ATOMIC) {
4673 		/*
4674 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4675 		 * if it can't schedule.
4676 		 */
4677 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4678 			alloc_flags |= ALLOC_HARDER;
4679 		/*
4680 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4681 		 * comment for __cpuset_node_allowed().
4682 		 */
4683 		alloc_flags &= ~ALLOC_CPUSET;
4684 	} else if (unlikely(rt_task(current)) && in_task())
4685 		alloc_flags |= ALLOC_HARDER;
4686 
4687 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4688 
4689 	return alloc_flags;
4690 }
4691 
4692 static bool oom_reserves_allowed(struct task_struct *tsk)
4693 {
4694 	if (!tsk_is_oom_victim(tsk))
4695 		return false;
4696 
4697 	/*
4698 	 * !MMU doesn't have oom reaper so give access to memory reserves
4699 	 * only to the thread with TIF_MEMDIE set
4700 	 */
4701 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4702 		return false;
4703 
4704 	return true;
4705 }
4706 
4707 /*
4708  * Distinguish requests which really need access to full memory
4709  * reserves from oom victims which can live with a portion of it
4710  */
4711 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4712 {
4713 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4714 		return 0;
4715 	if (gfp_mask & __GFP_MEMALLOC)
4716 		return ALLOC_NO_WATERMARKS;
4717 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4718 		return ALLOC_NO_WATERMARKS;
4719 	if (!in_interrupt()) {
4720 		if (current->flags & PF_MEMALLOC)
4721 			return ALLOC_NO_WATERMARKS;
4722 		else if (oom_reserves_allowed(current))
4723 			return ALLOC_OOM;
4724 	}
4725 
4726 	return 0;
4727 }
4728 
4729 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4730 {
4731 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4732 }
4733 
4734 /*
4735  * Checks whether it makes sense to retry the reclaim to make a forward progress
4736  * for the given allocation request.
4737  *
4738  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4739  * without success, or when we couldn't even meet the watermark if we
4740  * reclaimed all remaining pages on the LRU lists.
4741  *
4742  * Returns true if a retry is viable or false to enter the oom path.
4743  */
4744 static inline bool
4745 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4746 		     struct alloc_context *ac, int alloc_flags,
4747 		     bool did_some_progress, int *no_progress_loops)
4748 {
4749 	struct zone *zone;
4750 	struct zoneref *z;
4751 	bool ret = false;
4752 
4753 	/*
4754 	 * Costly allocations might have made a progress but this doesn't mean
4755 	 * their order will become available due to high fragmentation so
4756 	 * always increment the no progress counter for them
4757 	 */
4758 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4759 		*no_progress_loops = 0;
4760 	else
4761 		(*no_progress_loops)++;
4762 
4763 	/*
4764 	 * Make sure we converge to OOM if we cannot make any progress
4765 	 * several times in the row.
4766 	 */
4767 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4768 		/* Before OOM, exhaust highatomic_reserve */
4769 		return unreserve_highatomic_pageblock(ac, true);
4770 	}
4771 
4772 	/*
4773 	 * Keep reclaiming pages while there is a chance this will lead
4774 	 * somewhere.  If none of the target zones can satisfy our allocation
4775 	 * request even if all reclaimable pages are considered then we are
4776 	 * screwed and have to go OOM.
4777 	 */
4778 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4779 				ac->highest_zoneidx, ac->nodemask) {
4780 		unsigned long available;
4781 		unsigned long reclaimable;
4782 		unsigned long min_wmark = min_wmark_pages(zone);
4783 		bool wmark;
4784 
4785 		available = reclaimable = zone_reclaimable_pages(zone);
4786 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4787 
4788 		/*
4789 		 * Would the allocation succeed if we reclaimed all
4790 		 * reclaimable pages?
4791 		 */
4792 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4793 				ac->highest_zoneidx, alloc_flags, available);
4794 		trace_reclaim_retry_zone(z, order, reclaimable,
4795 				available, min_wmark, *no_progress_loops, wmark);
4796 		if (wmark) {
4797 			ret = true;
4798 			break;
4799 		}
4800 	}
4801 
4802 	/*
4803 	 * Memory allocation/reclaim might be called from a WQ context and the
4804 	 * current implementation of the WQ concurrency control doesn't
4805 	 * recognize that a particular WQ is congested if the worker thread is
4806 	 * looping without ever sleeping. Therefore we have to do a short sleep
4807 	 * here rather than calling cond_resched().
4808 	 */
4809 	if (current->flags & PF_WQ_WORKER)
4810 		schedule_timeout_uninterruptible(1);
4811 	else
4812 		cond_resched();
4813 	return ret;
4814 }
4815 
4816 static inline bool
4817 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4818 {
4819 	/*
4820 	 * It's possible that cpuset's mems_allowed and the nodemask from
4821 	 * mempolicy don't intersect. This should be normally dealt with by
4822 	 * policy_nodemask(), but it's possible to race with cpuset update in
4823 	 * such a way the check therein was true, and then it became false
4824 	 * before we got our cpuset_mems_cookie here.
4825 	 * This assumes that for all allocations, ac->nodemask can come only
4826 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4827 	 * when it does not intersect with the cpuset restrictions) or the
4828 	 * caller can deal with a violated nodemask.
4829 	 */
4830 	if (cpusets_enabled() && ac->nodemask &&
4831 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4832 		ac->nodemask = NULL;
4833 		return true;
4834 	}
4835 
4836 	/*
4837 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4838 	 * possible to race with parallel threads in such a way that our
4839 	 * allocation can fail while the mask is being updated. If we are about
4840 	 * to fail, check if the cpuset changed during allocation and if so,
4841 	 * retry.
4842 	 */
4843 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4844 		return true;
4845 
4846 	return false;
4847 }
4848 
4849 static inline struct page *
4850 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4851 						struct alloc_context *ac)
4852 {
4853 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4854 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4855 	struct page *page = NULL;
4856 	unsigned int alloc_flags;
4857 	unsigned long did_some_progress;
4858 	enum compact_priority compact_priority;
4859 	enum compact_result compact_result;
4860 	int compaction_retries;
4861 	int no_progress_loops;
4862 	unsigned int cpuset_mems_cookie;
4863 	int reserve_flags;
4864 
4865 	/*
4866 	 * We also sanity check to catch abuse of atomic reserves being used by
4867 	 * callers that are not in atomic context.
4868 	 */
4869 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4870 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4871 		gfp_mask &= ~__GFP_ATOMIC;
4872 
4873 retry_cpuset:
4874 	compaction_retries = 0;
4875 	no_progress_loops = 0;
4876 	compact_priority = DEF_COMPACT_PRIORITY;
4877 	cpuset_mems_cookie = read_mems_allowed_begin();
4878 
4879 	/*
4880 	 * The fast path uses conservative alloc_flags to succeed only until
4881 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4882 	 * alloc_flags precisely. So we do that now.
4883 	 */
4884 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4885 
4886 	/*
4887 	 * We need to recalculate the starting point for the zonelist iterator
4888 	 * because we might have used different nodemask in the fast path, or
4889 	 * there was a cpuset modification and we are retrying - otherwise we
4890 	 * could end up iterating over non-eligible zones endlessly.
4891 	 */
4892 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4893 					ac->highest_zoneidx, ac->nodemask);
4894 	if (!ac->preferred_zoneref->zone)
4895 		goto nopage;
4896 
4897 	/*
4898 	 * Check for insane configurations where the cpuset doesn't contain
4899 	 * any suitable zone to satisfy the request - e.g. non-movable
4900 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4901 	 */
4902 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4903 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4904 					ac->highest_zoneidx,
4905 					&cpuset_current_mems_allowed);
4906 		if (!z->zone)
4907 			goto nopage;
4908 	}
4909 
4910 	if (alloc_flags & ALLOC_KSWAPD)
4911 		wake_all_kswapds(order, gfp_mask, ac);
4912 
4913 	/*
4914 	 * The adjusted alloc_flags might result in immediate success, so try
4915 	 * that first
4916 	 */
4917 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4918 	if (page)
4919 		goto got_pg;
4920 
4921 	/*
4922 	 * For costly allocations, try direct compaction first, as it's likely
4923 	 * that we have enough base pages and don't need to reclaim. For non-
4924 	 * movable high-order allocations, do that as well, as compaction will
4925 	 * try prevent permanent fragmentation by migrating from blocks of the
4926 	 * same migratetype.
4927 	 * Don't try this for allocations that are allowed to ignore
4928 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4929 	 */
4930 	if (can_direct_reclaim &&
4931 			(costly_order ||
4932 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4933 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4934 		page = __alloc_pages_direct_compact(gfp_mask, order,
4935 						alloc_flags, ac,
4936 						INIT_COMPACT_PRIORITY,
4937 						&compact_result);
4938 		if (page)
4939 			goto got_pg;
4940 
4941 		/*
4942 		 * Checks for costly allocations with __GFP_NORETRY, which
4943 		 * includes some THP page fault allocations
4944 		 */
4945 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4946 			/*
4947 			 * If allocating entire pageblock(s) and compaction
4948 			 * failed because all zones are below low watermarks
4949 			 * or is prohibited because it recently failed at this
4950 			 * order, fail immediately unless the allocator has
4951 			 * requested compaction and reclaim retry.
4952 			 *
4953 			 * Reclaim is
4954 			 *  - potentially very expensive because zones are far
4955 			 *    below their low watermarks or this is part of very
4956 			 *    bursty high order allocations,
4957 			 *  - not guaranteed to help because isolate_freepages()
4958 			 *    may not iterate over freed pages as part of its
4959 			 *    linear scan, and
4960 			 *  - unlikely to make entire pageblocks free on its
4961 			 *    own.
4962 			 */
4963 			if (compact_result == COMPACT_SKIPPED ||
4964 			    compact_result == COMPACT_DEFERRED)
4965 				goto nopage;
4966 
4967 			/*
4968 			 * Looks like reclaim/compaction is worth trying, but
4969 			 * sync compaction could be very expensive, so keep
4970 			 * using async compaction.
4971 			 */
4972 			compact_priority = INIT_COMPACT_PRIORITY;
4973 		}
4974 	}
4975 
4976 retry:
4977 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4978 	if (alloc_flags & ALLOC_KSWAPD)
4979 		wake_all_kswapds(order, gfp_mask, ac);
4980 
4981 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4982 	if (reserve_flags)
4983 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4984 
4985 	/*
4986 	 * Reset the nodemask and zonelist iterators if memory policies can be
4987 	 * ignored. These allocations are high priority and system rather than
4988 	 * user oriented.
4989 	 */
4990 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4991 		ac->nodemask = NULL;
4992 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4993 					ac->highest_zoneidx, ac->nodemask);
4994 	}
4995 
4996 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4997 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4998 	if (page)
4999 		goto got_pg;
5000 
5001 	/* Caller is not willing to reclaim, we can't balance anything */
5002 	if (!can_direct_reclaim)
5003 		goto nopage;
5004 
5005 	/* Avoid recursion of direct reclaim */
5006 	if (current->flags & PF_MEMALLOC)
5007 		goto nopage;
5008 
5009 	/* Try direct reclaim and then allocating */
5010 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5011 							&did_some_progress);
5012 	if (page)
5013 		goto got_pg;
5014 
5015 	/* Try direct compaction and then allocating */
5016 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5017 					compact_priority, &compact_result);
5018 	if (page)
5019 		goto got_pg;
5020 
5021 	/* Do not loop if specifically requested */
5022 	if (gfp_mask & __GFP_NORETRY)
5023 		goto nopage;
5024 
5025 	/*
5026 	 * Do not retry costly high order allocations unless they are
5027 	 * __GFP_RETRY_MAYFAIL
5028 	 */
5029 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5030 		goto nopage;
5031 
5032 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5033 				 did_some_progress > 0, &no_progress_loops))
5034 		goto retry;
5035 
5036 	/*
5037 	 * It doesn't make any sense to retry for the compaction if the order-0
5038 	 * reclaim is not able to make any progress because the current
5039 	 * implementation of the compaction depends on the sufficient amount
5040 	 * of free memory (see __compaction_suitable)
5041 	 */
5042 	if (did_some_progress > 0 &&
5043 			should_compact_retry(ac, order, alloc_flags,
5044 				compact_result, &compact_priority,
5045 				&compaction_retries))
5046 		goto retry;
5047 
5048 
5049 	/* Deal with possible cpuset update races before we start OOM killing */
5050 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5051 		goto retry_cpuset;
5052 
5053 	/* Reclaim has failed us, start killing things */
5054 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5055 	if (page)
5056 		goto got_pg;
5057 
5058 	/* Avoid allocations with no watermarks from looping endlessly */
5059 	if (tsk_is_oom_victim(current) &&
5060 	    (alloc_flags & ALLOC_OOM ||
5061 	     (gfp_mask & __GFP_NOMEMALLOC)))
5062 		goto nopage;
5063 
5064 	/* Retry as long as the OOM killer is making progress */
5065 	if (did_some_progress) {
5066 		no_progress_loops = 0;
5067 		goto retry;
5068 	}
5069 
5070 nopage:
5071 	/* Deal with possible cpuset update races before we fail */
5072 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5073 		goto retry_cpuset;
5074 
5075 	/*
5076 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5077 	 * we always retry
5078 	 */
5079 	if (gfp_mask & __GFP_NOFAIL) {
5080 		/*
5081 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5082 		 * of any new users that actually require GFP_NOWAIT
5083 		 */
5084 		if (WARN_ON_ONCE(!can_direct_reclaim))
5085 			goto fail;
5086 
5087 		/*
5088 		 * PF_MEMALLOC request from this context is rather bizarre
5089 		 * because we cannot reclaim anything and only can loop waiting
5090 		 * for somebody to do a work for us
5091 		 */
5092 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5093 
5094 		/*
5095 		 * non failing costly orders are a hard requirement which we
5096 		 * are not prepared for much so let's warn about these users
5097 		 * so that we can identify them and convert them to something
5098 		 * else.
5099 		 */
5100 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5101 
5102 		/*
5103 		 * Help non-failing allocations by giving them access to memory
5104 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5105 		 * could deplete whole memory reserves which would just make
5106 		 * the situation worse
5107 		 */
5108 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5109 		if (page)
5110 			goto got_pg;
5111 
5112 		cond_resched();
5113 		goto retry;
5114 	}
5115 fail:
5116 	warn_alloc(gfp_mask, ac->nodemask,
5117 			"page allocation failure: order:%u", order);
5118 got_pg:
5119 	return page;
5120 }
5121 
5122 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5123 		int preferred_nid, nodemask_t *nodemask,
5124 		struct alloc_context *ac, gfp_t *alloc_gfp,
5125 		unsigned int *alloc_flags)
5126 {
5127 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5128 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5129 	ac->nodemask = nodemask;
5130 	ac->migratetype = gfp_migratetype(gfp_mask);
5131 
5132 	if (cpusets_enabled()) {
5133 		*alloc_gfp |= __GFP_HARDWALL;
5134 		/*
5135 		 * When we are in the interrupt context, it is irrelevant
5136 		 * to the current task context. It means that any node ok.
5137 		 */
5138 		if (in_task() && !ac->nodemask)
5139 			ac->nodemask = &cpuset_current_mems_allowed;
5140 		else
5141 			*alloc_flags |= ALLOC_CPUSET;
5142 	}
5143 
5144 	fs_reclaim_acquire(gfp_mask);
5145 	fs_reclaim_release(gfp_mask);
5146 
5147 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5148 
5149 	if (should_fail_alloc_page(gfp_mask, order))
5150 		return false;
5151 
5152 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5153 
5154 	/* Dirty zone balancing only done in the fast path */
5155 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5156 
5157 	/*
5158 	 * The preferred zone is used for statistics but crucially it is
5159 	 * also used as the starting point for the zonelist iterator. It
5160 	 * may get reset for allocations that ignore memory policies.
5161 	 */
5162 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5163 					ac->highest_zoneidx, ac->nodemask);
5164 
5165 	return true;
5166 }
5167 
5168 /*
5169  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5170  * @gfp: GFP flags for the allocation
5171  * @preferred_nid: The preferred NUMA node ID to allocate from
5172  * @nodemask: Set of nodes to allocate from, may be NULL
5173  * @nr_pages: The number of pages desired on the list or array
5174  * @page_list: Optional list to store the allocated pages
5175  * @page_array: Optional array to store the pages
5176  *
5177  * This is a batched version of the page allocator that attempts to
5178  * allocate nr_pages quickly. Pages are added to page_list if page_list
5179  * is not NULL, otherwise it is assumed that the page_array is valid.
5180  *
5181  * For lists, nr_pages is the number of pages that should be allocated.
5182  *
5183  * For arrays, only NULL elements are populated with pages and nr_pages
5184  * is the maximum number of pages that will be stored in the array.
5185  *
5186  * Returns the number of pages on the list or array.
5187  */
5188 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5189 			nodemask_t *nodemask, int nr_pages,
5190 			struct list_head *page_list,
5191 			struct page **page_array)
5192 {
5193 	struct page *page;
5194 	unsigned long flags;
5195 	struct zone *zone;
5196 	struct zoneref *z;
5197 	struct per_cpu_pages *pcp;
5198 	struct list_head *pcp_list;
5199 	struct alloc_context ac;
5200 	gfp_t alloc_gfp;
5201 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5202 	int nr_populated = 0, nr_account = 0;
5203 
5204 	/*
5205 	 * Skip populated array elements to determine if any pages need
5206 	 * to be allocated before disabling IRQs.
5207 	 */
5208 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5209 		nr_populated++;
5210 
5211 	/* No pages requested? */
5212 	if (unlikely(nr_pages <= 0))
5213 		goto out;
5214 
5215 	/* Already populated array? */
5216 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5217 		goto out;
5218 
5219 	/* Bulk allocator does not support memcg accounting. */
5220 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5221 		goto failed;
5222 
5223 	/* Use the single page allocator for one page. */
5224 	if (nr_pages - nr_populated == 1)
5225 		goto failed;
5226 
5227 #ifdef CONFIG_PAGE_OWNER
5228 	/*
5229 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5230 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5231 	 * removes much of the performance benefit of bulk allocation so
5232 	 * force the caller to allocate one page at a time as it'll have
5233 	 * similar performance to added complexity to the bulk allocator.
5234 	 */
5235 	if (static_branch_unlikely(&page_owner_inited))
5236 		goto failed;
5237 #endif
5238 
5239 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5240 	gfp &= gfp_allowed_mask;
5241 	alloc_gfp = gfp;
5242 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5243 		goto out;
5244 	gfp = alloc_gfp;
5245 
5246 	/* Find an allowed local zone that meets the low watermark. */
5247 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5248 		unsigned long mark;
5249 
5250 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5251 		    !__cpuset_zone_allowed(zone, gfp)) {
5252 			continue;
5253 		}
5254 
5255 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5256 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5257 			goto failed;
5258 		}
5259 
5260 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5261 		if (zone_watermark_fast(zone, 0,  mark,
5262 				zonelist_zone_idx(ac.preferred_zoneref),
5263 				alloc_flags, gfp)) {
5264 			break;
5265 		}
5266 	}
5267 
5268 	/*
5269 	 * If there are no allowed local zones that meets the watermarks then
5270 	 * try to allocate a single page and reclaim if necessary.
5271 	 */
5272 	if (unlikely(!zone))
5273 		goto failed;
5274 
5275 	/* Attempt the batch allocation */
5276 	local_lock_irqsave(&pagesets.lock, flags);
5277 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5278 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5279 
5280 	while (nr_populated < nr_pages) {
5281 
5282 		/* Skip existing pages */
5283 		if (page_array && page_array[nr_populated]) {
5284 			nr_populated++;
5285 			continue;
5286 		}
5287 
5288 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5289 								pcp, pcp_list);
5290 		if (unlikely(!page)) {
5291 			/* Try and get at least one page */
5292 			if (!nr_populated)
5293 				goto failed_irq;
5294 			break;
5295 		}
5296 		nr_account++;
5297 
5298 		prep_new_page(page, 0, gfp, 0);
5299 		if (page_list)
5300 			list_add(&page->lru, page_list);
5301 		else
5302 			page_array[nr_populated] = page;
5303 		nr_populated++;
5304 	}
5305 
5306 	local_unlock_irqrestore(&pagesets.lock, flags);
5307 
5308 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5309 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5310 
5311 out:
5312 	return nr_populated;
5313 
5314 failed_irq:
5315 	local_unlock_irqrestore(&pagesets.lock, flags);
5316 
5317 failed:
5318 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5319 	if (page) {
5320 		if (page_list)
5321 			list_add(&page->lru, page_list);
5322 		else
5323 			page_array[nr_populated] = page;
5324 		nr_populated++;
5325 	}
5326 
5327 	goto out;
5328 }
5329 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5330 
5331 /*
5332  * This is the 'heart' of the zoned buddy allocator.
5333  */
5334 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5335 							nodemask_t *nodemask)
5336 {
5337 	struct page *page;
5338 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5339 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5340 	struct alloc_context ac = { };
5341 
5342 	/*
5343 	 * There are several places where we assume that the order value is sane
5344 	 * so bail out early if the request is out of bound.
5345 	 */
5346 	if (unlikely(order >= MAX_ORDER)) {
5347 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5348 		return NULL;
5349 	}
5350 
5351 	gfp &= gfp_allowed_mask;
5352 	/*
5353 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5354 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5355 	 * from a particular context which has been marked by
5356 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5357 	 * movable zones are not used during allocation.
5358 	 */
5359 	gfp = current_gfp_context(gfp);
5360 	alloc_gfp = gfp;
5361 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5362 			&alloc_gfp, &alloc_flags))
5363 		return NULL;
5364 
5365 	/*
5366 	 * Forbid the first pass from falling back to types that fragment
5367 	 * memory until all local zones are considered.
5368 	 */
5369 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5370 
5371 	/* First allocation attempt */
5372 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5373 	if (likely(page))
5374 		goto out;
5375 
5376 	alloc_gfp = gfp;
5377 	ac.spread_dirty_pages = false;
5378 
5379 	/*
5380 	 * Restore the original nodemask if it was potentially replaced with
5381 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5382 	 */
5383 	ac.nodemask = nodemask;
5384 
5385 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5386 
5387 out:
5388 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5389 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5390 		__free_pages(page, order);
5391 		page = NULL;
5392 	}
5393 
5394 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5395 
5396 	return page;
5397 }
5398 EXPORT_SYMBOL(__alloc_pages);
5399 
5400 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5401 		nodemask_t *nodemask)
5402 {
5403 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5404 			preferred_nid, nodemask);
5405 
5406 	if (page && order > 1)
5407 		prep_transhuge_page(page);
5408 	return (struct folio *)page;
5409 }
5410 EXPORT_SYMBOL(__folio_alloc);
5411 
5412 /*
5413  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5414  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5415  * you need to access high mem.
5416  */
5417 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5418 {
5419 	struct page *page;
5420 
5421 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5422 	if (!page)
5423 		return 0;
5424 	return (unsigned long) page_address(page);
5425 }
5426 EXPORT_SYMBOL(__get_free_pages);
5427 
5428 unsigned long get_zeroed_page(gfp_t gfp_mask)
5429 {
5430 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5431 }
5432 EXPORT_SYMBOL(get_zeroed_page);
5433 
5434 /**
5435  * __free_pages - Free pages allocated with alloc_pages().
5436  * @page: The page pointer returned from alloc_pages().
5437  * @order: The order of the allocation.
5438  *
5439  * This function can free multi-page allocations that are not compound
5440  * pages.  It does not check that the @order passed in matches that of
5441  * the allocation, so it is easy to leak memory.  Freeing more memory
5442  * than was allocated will probably emit a warning.
5443  *
5444  * If the last reference to this page is speculative, it will be released
5445  * by put_page() which only frees the first page of a non-compound
5446  * allocation.  To prevent the remaining pages from being leaked, we free
5447  * the subsequent pages here.  If you want to use the page's reference
5448  * count to decide when to free the allocation, you should allocate a
5449  * compound page, and use put_page() instead of __free_pages().
5450  *
5451  * Context: May be called in interrupt context or while holding a normal
5452  * spinlock, but not in NMI context or while holding a raw spinlock.
5453  */
5454 void __free_pages(struct page *page, unsigned int order)
5455 {
5456 	if (put_page_testzero(page))
5457 		free_the_page(page, order);
5458 	else if (!PageHead(page))
5459 		while (order-- > 0)
5460 			free_the_page(page + (1 << order), order);
5461 }
5462 EXPORT_SYMBOL(__free_pages);
5463 
5464 void free_pages(unsigned long addr, unsigned int order)
5465 {
5466 	if (addr != 0) {
5467 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5468 		__free_pages(virt_to_page((void *)addr), order);
5469 	}
5470 }
5471 
5472 EXPORT_SYMBOL(free_pages);
5473 
5474 /*
5475  * Page Fragment:
5476  *  An arbitrary-length arbitrary-offset area of memory which resides
5477  *  within a 0 or higher order page.  Multiple fragments within that page
5478  *  are individually refcounted, in the page's reference counter.
5479  *
5480  * The page_frag functions below provide a simple allocation framework for
5481  * page fragments.  This is used by the network stack and network device
5482  * drivers to provide a backing region of memory for use as either an
5483  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5484  */
5485 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5486 					     gfp_t gfp_mask)
5487 {
5488 	struct page *page = NULL;
5489 	gfp_t gfp = gfp_mask;
5490 
5491 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5492 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5493 		    __GFP_NOMEMALLOC;
5494 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5495 				PAGE_FRAG_CACHE_MAX_ORDER);
5496 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5497 #endif
5498 	if (unlikely(!page))
5499 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5500 
5501 	nc->va = page ? page_address(page) : NULL;
5502 
5503 	return page;
5504 }
5505 
5506 void __page_frag_cache_drain(struct page *page, unsigned int count)
5507 {
5508 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5509 
5510 	if (page_ref_sub_and_test(page, count))
5511 		free_the_page(page, compound_order(page));
5512 }
5513 EXPORT_SYMBOL(__page_frag_cache_drain);
5514 
5515 void *page_frag_alloc_align(struct page_frag_cache *nc,
5516 		      unsigned int fragsz, gfp_t gfp_mask,
5517 		      unsigned int align_mask)
5518 {
5519 	unsigned int size = PAGE_SIZE;
5520 	struct page *page;
5521 	int offset;
5522 
5523 	if (unlikely(!nc->va)) {
5524 refill:
5525 		page = __page_frag_cache_refill(nc, gfp_mask);
5526 		if (!page)
5527 			return NULL;
5528 
5529 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5530 		/* if size can vary use size else just use PAGE_SIZE */
5531 		size = nc->size;
5532 #endif
5533 		/* Even if we own the page, we do not use atomic_set().
5534 		 * This would break get_page_unless_zero() users.
5535 		 */
5536 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5537 
5538 		/* reset page count bias and offset to start of new frag */
5539 		nc->pfmemalloc = page_is_pfmemalloc(page);
5540 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5541 		nc->offset = size;
5542 	}
5543 
5544 	offset = nc->offset - fragsz;
5545 	if (unlikely(offset < 0)) {
5546 		page = virt_to_page(nc->va);
5547 
5548 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5549 			goto refill;
5550 
5551 		if (unlikely(nc->pfmemalloc)) {
5552 			free_the_page(page, compound_order(page));
5553 			goto refill;
5554 		}
5555 
5556 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5557 		/* if size can vary use size else just use PAGE_SIZE */
5558 		size = nc->size;
5559 #endif
5560 		/* OK, page count is 0, we can safely set it */
5561 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5562 
5563 		/* reset page count bias and offset to start of new frag */
5564 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5565 		offset = size - fragsz;
5566 	}
5567 
5568 	nc->pagecnt_bias--;
5569 	offset &= align_mask;
5570 	nc->offset = offset;
5571 
5572 	return nc->va + offset;
5573 }
5574 EXPORT_SYMBOL(page_frag_alloc_align);
5575 
5576 /*
5577  * Frees a page fragment allocated out of either a compound or order 0 page.
5578  */
5579 void page_frag_free(void *addr)
5580 {
5581 	struct page *page = virt_to_head_page(addr);
5582 
5583 	if (unlikely(put_page_testzero(page)))
5584 		free_the_page(page, compound_order(page));
5585 }
5586 EXPORT_SYMBOL(page_frag_free);
5587 
5588 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5589 		size_t size)
5590 {
5591 	if (addr) {
5592 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5593 		unsigned long used = addr + PAGE_ALIGN(size);
5594 
5595 		split_page(virt_to_page((void *)addr), order);
5596 		while (used < alloc_end) {
5597 			free_page(used);
5598 			used += PAGE_SIZE;
5599 		}
5600 	}
5601 	return (void *)addr;
5602 }
5603 
5604 /**
5605  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5606  * @size: the number of bytes to allocate
5607  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5608  *
5609  * This function is similar to alloc_pages(), except that it allocates the
5610  * minimum number of pages to satisfy the request.  alloc_pages() can only
5611  * allocate memory in power-of-two pages.
5612  *
5613  * This function is also limited by MAX_ORDER.
5614  *
5615  * Memory allocated by this function must be released by free_pages_exact().
5616  *
5617  * Return: pointer to the allocated area or %NULL in case of error.
5618  */
5619 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5620 {
5621 	unsigned int order = get_order(size);
5622 	unsigned long addr;
5623 
5624 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5625 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5626 
5627 	addr = __get_free_pages(gfp_mask, order);
5628 	return make_alloc_exact(addr, order, size);
5629 }
5630 EXPORT_SYMBOL(alloc_pages_exact);
5631 
5632 /**
5633  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5634  *			   pages on a node.
5635  * @nid: the preferred node ID where memory should be allocated
5636  * @size: the number of bytes to allocate
5637  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5638  *
5639  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5640  * back.
5641  *
5642  * Return: pointer to the allocated area or %NULL in case of error.
5643  */
5644 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5645 {
5646 	unsigned int order = get_order(size);
5647 	struct page *p;
5648 
5649 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5650 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5651 
5652 	p = alloc_pages_node(nid, gfp_mask, order);
5653 	if (!p)
5654 		return NULL;
5655 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5656 }
5657 
5658 /**
5659  * free_pages_exact - release memory allocated via alloc_pages_exact()
5660  * @virt: the value returned by alloc_pages_exact.
5661  * @size: size of allocation, same value as passed to alloc_pages_exact().
5662  *
5663  * Release the memory allocated by a previous call to alloc_pages_exact.
5664  */
5665 void free_pages_exact(void *virt, size_t size)
5666 {
5667 	unsigned long addr = (unsigned long)virt;
5668 	unsigned long end = addr + PAGE_ALIGN(size);
5669 
5670 	while (addr < end) {
5671 		free_page(addr);
5672 		addr += PAGE_SIZE;
5673 	}
5674 }
5675 EXPORT_SYMBOL(free_pages_exact);
5676 
5677 /**
5678  * nr_free_zone_pages - count number of pages beyond high watermark
5679  * @offset: The zone index of the highest zone
5680  *
5681  * nr_free_zone_pages() counts the number of pages which are beyond the
5682  * high watermark within all zones at or below a given zone index.  For each
5683  * zone, the number of pages is calculated as:
5684  *
5685  *     nr_free_zone_pages = managed_pages - high_pages
5686  *
5687  * Return: number of pages beyond high watermark.
5688  */
5689 static unsigned long nr_free_zone_pages(int offset)
5690 {
5691 	struct zoneref *z;
5692 	struct zone *zone;
5693 
5694 	/* Just pick one node, since fallback list is circular */
5695 	unsigned long sum = 0;
5696 
5697 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5698 
5699 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5700 		unsigned long size = zone_managed_pages(zone);
5701 		unsigned long high = high_wmark_pages(zone);
5702 		if (size > high)
5703 			sum += size - high;
5704 	}
5705 
5706 	return sum;
5707 }
5708 
5709 /**
5710  * nr_free_buffer_pages - count number of pages beyond high watermark
5711  *
5712  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5713  * watermark within ZONE_DMA and ZONE_NORMAL.
5714  *
5715  * Return: number of pages beyond high watermark within ZONE_DMA and
5716  * ZONE_NORMAL.
5717  */
5718 unsigned long nr_free_buffer_pages(void)
5719 {
5720 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5721 }
5722 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5723 
5724 static inline void show_node(struct zone *zone)
5725 {
5726 	if (IS_ENABLED(CONFIG_NUMA))
5727 		printk("Node %d ", zone_to_nid(zone));
5728 }
5729 
5730 long si_mem_available(void)
5731 {
5732 	long available;
5733 	unsigned long pagecache;
5734 	unsigned long wmark_low = 0;
5735 	unsigned long pages[NR_LRU_LISTS];
5736 	unsigned long reclaimable;
5737 	struct zone *zone;
5738 	int lru;
5739 
5740 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5741 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5742 
5743 	for_each_zone(zone)
5744 		wmark_low += low_wmark_pages(zone);
5745 
5746 	/*
5747 	 * Estimate the amount of memory available for userspace allocations,
5748 	 * without causing swapping.
5749 	 */
5750 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5751 
5752 	/*
5753 	 * Not all the page cache can be freed, otherwise the system will
5754 	 * start swapping. Assume at least half of the page cache, or the
5755 	 * low watermark worth of cache, needs to stay.
5756 	 */
5757 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5758 	pagecache -= min(pagecache / 2, wmark_low);
5759 	available += pagecache;
5760 
5761 	/*
5762 	 * Part of the reclaimable slab and other kernel memory consists of
5763 	 * items that are in use, and cannot be freed. Cap this estimate at the
5764 	 * low watermark.
5765 	 */
5766 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5767 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5768 	available += reclaimable - min(reclaimable / 2, wmark_low);
5769 
5770 	if (available < 0)
5771 		available = 0;
5772 	return available;
5773 }
5774 EXPORT_SYMBOL_GPL(si_mem_available);
5775 
5776 void si_meminfo(struct sysinfo *val)
5777 {
5778 	val->totalram = totalram_pages();
5779 	val->sharedram = global_node_page_state(NR_SHMEM);
5780 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5781 	val->bufferram = nr_blockdev_pages();
5782 	val->totalhigh = totalhigh_pages();
5783 	val->freehigh = nr_free_highpages();
5784 	val->mem_unit = PAGE_SIZE;
5785 }
5786 
5787 EXPORT_SYMBOL(si_meminfo);
5788 
5789 #ifdef CONFIG_NUMA
5790 void si_meminfo_node(struct sysinfo *val, int nid)
5791 {
5792 	int zone_type;		/* needs to be signed */
5793 	unsigned long managed_pages = 0;
5794 	unsigned long managed_highpages = 0;
5795 	unsigned long free_highpages = 0;
5796 	pg_data_t *pgdat = NODE_DATA(nid);
5797 
5798 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5799 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5800 	val->totalram = managed_pages;
5801 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5802 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5803 #ifdef CONFIG_HIGHMEM
5804 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5805 		struct zone *zone = &pgdat->node_zones[zone_type];
5806 
5807 		if (is_highmem(zone)) {
5808 			managed_highpages += zone_managed_pages(zone);
5809 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5810 		}
5811 	}
5812 	val->totalhigh = managed_highpages;
5813 	val->freehigh = free_highpages;
5814 #else
5815 	val->totalhigh = managed_highpages;
5816 	val->freehigh = free_highpages;
5817 #endif
5818 	val->mem_unit = PAGE_SIZE;
5819 }
5820 #endif
5821 
5822 /*
5823  * Determine whether the node should be displayed or not, depending on whether
5824  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5825  */
5826 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5827 {
5828 	if (!(flags & SHOW_MEM_FILTER_NODES))
5829 		return false;
5830 
5831 	/*
5832 	 * no node mask - aka implicit memory numa policy. Do not bother with
5833 	 * the synchronization - read_mems_allowed_begin - because we do not
5834 	 * have to be precise here.
5835 	 */
5836 	if (!nodemask)
5837 		nodemask = &cpuset_current_mems_allowed;
5838 
5839 	return !node_isset(nid, *nodemask);
5840 }
5841 
5842 #define K(x) ((x) << (PAGE_SHIFT-10))
5843 
5844 static void show_migration_types(unsigned char type)
5845 {
5846 	static const char types[MIGRATE_TYPES] = {
5847 		[MIGRATE_UNMOVABLE]	= 'U',
5848 		[MIGRATE_MOVABLE]	= 'M',
5849 		[MIGRATE_RECLAIMABLE]	= 'E',
5850 		[MIGRATE_HIGHATOMIC]	= 'H',
5851 #ifdef CONFIG_CMA
5852 		[MIGRATE_CMA]		= 'C',
5853 #endif
5854 #ifdef CONFIG_MEMORY_ISOLATION
5855 		[MIGRATE_ISOLATE]	= 'I',
5856 #endif
5857 	};
5858 	char tmp[MIGRATE_TYPES + 1];
5859 	char *p = tmp;
5860 	int i;
5861 
5862 	for (i = 0; i < MIGRATE_TYPES; i++) {
5863 		if (type & (1 << i))
5864 			*p++ = types[i];
5865 	}
5866 
5867 	*p = '\0';
5868 	printk(KERN_CONT "(%s) ", tmp);
5869 }
5870 
5871 /*
5872  * Show free area list (used inside shift_scroll-lock stuff)
5873  * We also calculate the percentage fragmentation. We do this by counting the
5874  * memory on each free list with the exception of the first item on the list.
5875  *
5876  * Bits in @filter:
5877  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5878  *   cpuset.
5879  */
5880 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5881 {
5882 	unsigned long free_pcp = 0;
5883 	int cpu;
5884 	struct zone *zone;
5885 	pg_data_t *pgdat;
5886 
5887 	for_each_populated_zone(zone) {
5888 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5889 			continue;
5890 
5891 		for_each_online_cpu(cpu)
5892 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5893 	}
5894 
5895 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5896 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5897 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5898 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5899 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5900 		" kernel_misc_reclaimable:%lu\n"
5901 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5902 		global_node_page_state(NR_ACTIVE_ANON),
5903 		global_node_page_state(NR_INACTIVE_ANON),
5904 		global_node_page_state(NR_ISOLATED_ANON),
5905 		global_node_page_state(NR_ACTIVE_FILE),
5906 		global_node_page_state(NR_INACTIVE_FILE),
5907 		global_node_page_state(NR_ISOLATED_FILE),
5908 		global_node_page_state(NR_UNEVICTABLE),
5909 		global_node_page_state(NR_FILE_DIRTY),
5910 		global_node_page_state(NR_WRITEBACK),
5911 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5912 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5913 		global_node_page_state(NR_FILE_MAPPED),
5914 		global_node_page_state(NR_SHMEM),
5915 		global_node_page_state(NR_PAGETABLE),
5916 		global_zone_page_state(NR_BOUNCE),
5917 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5918 		global_zone_page_state(NR_FREE_PAGES),
5919 		free_pcp,
5920 		global_zone_page_state(NR_FREE_CMA_PAGES));
5921 
5922 	for_each_online_pgdat(pgdat) {
5923 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5924 			continue;
5925 
5926 		printk("Node %d"
5927 			" active_anon:%lukB"
5928 			" inactive_anon:%lukB"
5929 			" active_file:%lukB"
5930 			" inactive_file:%lukB"
5931 			" unevictable:%lukB"
5932 			" isolated(anon):%lukB"
5933 			" isolated(file):%lukB"
5934 			" mapped:%lukB"
5935 			" dirty:%lukB"
5936 			" writeback:%lukB"
5937 			" shmem:%lukB"
5938 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5939 			" shmem_thp: %lukB"
5940 			" shmem_pmdmapped: %lukB"
5941 			" anon_thp: %lukB"
5942 #endif
5943 			" writeback_tmp:%lukB"
5944 			" kernel_stack:%lukB"
5945 #ifdef CONFIG_SHADOW_CALL_STACK
5946 			" shadow_call_stack:%lukB"
5947 #endif
5948 			" pagetables:%lukB"
5949 			" all_unreclaimable? %s"
5950 			"\n",
5951 			pgdat->node_id,
5952 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5953 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5954 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5955 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5956 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5957 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5958 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5959 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5960 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5961 			K(node_page_state(pgdat, NR_WRITEBACK)),
5962 			K(node_page_state(pgdat, NR_SHMEM)),
5963 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5964 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5965 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5966 			K(node_page_state(pgdat, NR_ANON_THPS)),
5967 #endif
5968 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5969 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5970 #ifdef CONFIG_SHADOW_CALL_STACK
5971 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5972 #endif
5973 			K(node_page_state(pgdat, NR_PAGETABLE)),
5974 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5975 				"yes" : "no");
5976 	}
5977 
5978 	for_each_populated_zone(zone) {
5979 		int i;
5980 
5981 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5982 			continue;
5983 
5984 		free_pcp = 0;
5985 		for_each_online_cpu(cpu)
5986 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5987 
5988 		show_node(zone);
5989 		printk(KERN_CONT
5990 			"%s"
5991 			" free:%lukB"
5992 			" boost:%lukB"
5993 			" min:%lukB"
5994 			" low:%lukB"
5995 			" high:%lukB"
5996 			" reserved_highatomic:%luKB"
5997 			" active_anon:%lukB"
5998 			" inactive_anon:%lukB"
5999 			" active_file:%lukB"
6000 			" inactive_file:%lukB"
6001 			" unevictable:%lukB"
6002 			" writepending:%lukB"
6003 			" present:%lukB"
6004 			" managed:%lukB"
6005 			" mlocked:%lukB"
6006 			" bounce:%lukB"
6007 			" free_pcp:%lukB"
6008 			" local_pcp:%ukB"
6009 			" free_cma:%lukB"
6010 			"\n",
6011 			zone->name,
6012 			K(zone_page_state(zone, NR_FREE_PAGES)),
6013 			K(zone->watermark_boost),
6014 			K(min_wmark_pages(zone)),
6015 			K(low_wmark_pages(zone)),
6016 			K(high_wmark_pages(zone)),
6017 			K(zone->nr_reserved_highatomic),
6018 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6019 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6020 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6021 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6022 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6023 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6024 			K(zone->present_pages),
6025 			K(zone_managed_pages(zone)),
6026 			K(zone_page_state(zone, NR_MLOCK)),
6027 			K(zone_page_state(zone, NR_BOUNCE)),
6028 			K(free_pcp),
6029 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6030 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6031 		printk("lowmem_reserve[]:");
6032 		for (i = 0; i < MAX_NR_ZONES; i++)
6033 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6034 		printk(KERN_CONT "\n");
6035 	}
6036 
6037 	for_each_populated_zone(zone) {
6038 		unsigned int order;
6039 		unsigned long nr[MAX_ORDER], flags, total = 0;
6040 		unsigned char types[MAX_ORDER];
6041 
6042 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6043 			continue;
6044 		show_node(zone);
6045 		printk(KERN_CONT "%s: ", zone->name);
6046 
6047 		spin_lock_irqsave(&zone->lock, flags);
6048 		for (order = 0; order < MAX_ORDER; order++) {
6049 			struct free_area *area = &zone->free_area[order];
6050 			int type;
6051 
6052 			nr[order] = area->nr_free;
6053 			total += nr[order] << order;
6054 
6055 			types[order] = 0;
6056 			for (type = 0; type < MIGRATE_TYPES; type++) {
6057 				if (!free_area_empty(area, type))
6058 					types[order] |= 1 << type;
6059 			}
6060 		}
6061 		spin_unlock_irqrestore(&zone->lock, flags);
6062 		for (order = 0; order < MAX_ORDER; order++) {
6063 			printk(KERN_CONT "%lu*%lukB ",
6064 			       nr[order], K(1UL) << order);
6065 			if (nr[order])
6066 				show_migration_types(types[order]);
6067 		}
6068 		printk(KERN_CONT "= %lukB\n", K(total));
6069 	}
6070 
6071 	hugetlb_show_meminfo();
6072 
6073 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6074 
6075 	show_swap_cache_info();
6076 }
6077 
6078 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6079 {
6080 	zoneref->zone = zone;
6081 	zoneref->zone_idx = zone_idx(zone);
6082 }
6083 
6084 /*
6085  * Builds allocation fallback zone lists.
6086  *
6087  * Add all populated zones of a node to the zonelist.
6088  */
6089 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6090 {
6091 	struct zone *zone;
6092 	enum zone_type zone_type = MAX_NR_ZONES;
6093 	int nr_zones = 0;
6094 
6095 	do {
6096 		zone_type--;
6097 		zone = pgdat->node_zones + zone_type;
6098 		if (managed_zone(zone)) {
6099 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6100 			check_highest_zone(zone_type);
6101 		}
6102 	} while (zone_type);
6103 
6104 	return nr_zones;
6105 }
6106 
6107 #ifdef CONFIG_NUMA
6108 
6109 static int __parse_numa_zonelist_order(char *s)
6110 {
6111 	/*
6112 	 * We used to support different zonelists modes but they turned
6113 	 * out to be just not useful. Let's keep the warning in place
6114 	 * if somebody still use the cmd line parameter so that we do
6115 	 * not fail it silently
6116 	 */
6117 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6118 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6119 		return -EINVAL;
6120 	}
6121 	return 0;
6122 }
6123 
6124 char numa_zonelist_order[] = "Node";
6125 
6126 /*
6127  * sysctl handler for numa_zonelist_order
6128  */
6129 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6130 		void *buffer, size_t *length, loff_t *ppos)
6131 {
6132 	if (write)
6133 		return __parse_numa_zonelist_order(buffer);
6134 	return proc_dostring(table, write, buffer, length, ppos);
6135 }
6136 
6137 
6138 #define MAX_NODE_LOAD (nr_online_nodes)
6139 static int node_load[MAX_NUMNODES];
6140 
6141 /**
6142  * find_next_best_node - find the next node that should appear in a given node's fallback list
6143  * @node: node whose fallback list we're appending
6144  * @used_node_mask: nodemask_t of already used nodes
6145  *
6146  * We use a number of factors to determine which is the next node that should
6147  * appear on a given node's fallback list.  The node should not have appeared
6148  * already in @node's fallback list, and it should be the next closest node
6149  * according to the distance array (which contains arbitrary distance values
6150  * from each node to each node in the system), and should also prefer nodes
6151  * with no CPUs, since presumably they'll have very little allocation pressure
6152  * on them otherwise.
6153  *
6154  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6155  */
6156 int find_next_best_node(int node, nodemask_t *used_node_mask)
6157 {
6158 	int n, val;
6159 	int min_val = INT_MAX;
6160 	int best_node = NUMA_NO_NODE;
6161 
6162 	/* Use the local node if we haven't already */
6163 	if (!node_isset(node, *used_node_mask)) {
6164 		node_set(node, *used_node_mask);
6165 		return node;
6166 	}
6167 
6168 	for_each_node_state(n, N_MEMORY) {
6169 
6170 		/* Don't want a node to appear more than once */
6171 		if (node_isset(n, *used_node_mask))
6172 			continue;
6173 
6174 		/* Use the distance array to find the distance */
6175 		val = node_distance(node, n);
6176 
6177 		/* Penalize nodes under us ("prefer the next node") */
6178 		val += (n < node);
6179 
6180 		/* Give preference to headless and unused nodes */
6181 		if (!cpumask_empty(cpumask_of_node(n)))
6182 			val += PENALTY_FOR_NODE_WITH_CPUS;
6183 
6184 		/* Slight preference for less loaded node */
6185 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6186 		val += node_load[n];
6187 
6188 		if (val < min_val) {
6189 			min_val = val;
6190 			best_node = n;
6191 		}
6192 	}
6193 
6194 	if (best_node >= 0)
6195 		node_set(best_node, *used_node_mask);
6196 
6197 	return best_node;
6198 }
6199 
6200 
6201 /*
6202  * Build zonelists ordered by node and zones within node.
6203  * This results in maximum locality--normal zone overflows into local
6204  * DMA zone, if any--but risks exhausting DMA zone.
6205  */
6206 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6207 		unsigned nr_nodes)
6208 {
6209 	struct zoneref *zonerefs;
6210 	int i;
6211 
6212 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6213 
6214 	for (i = 0; i < nr_nodes; i++) {
6215 		int nr_zones;
6216 
6217 		pg_data_t *node = NODE_DATA(node_order[i]);
6218 
6219 		nr_zones = build_zonerefs_node(node, zonerefs);
6220 		zonerefs += nr_zones;
6221 	}
6222 	zonerefs->zone = NULL;
6223 	zonerefs->zone_idx = 0;
6224 }
6225 
6226 /*
6227  * Build gfp_thisnode zonelists
6228  */
6229 static void build_thisnode_zonelists(pg_data_t *pgdat)
6230 {
6231 	struct zoneref *zonerefs;
6232 	int nr_zones;
6233 
6234 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6235 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6236 	zonerefs += nr_zones;
6237 	zonerefs->zone = NULL;
6238 	zonerefs->zone_idx = 0;
6239 }
6240 
6241 /*
6242  * Build zonelists ordered by zone and nodes within zones.
6243  * This results in conserving DMA zone[s] until all Normal memory is
6244  * exhausted, but results in overflowing to remote node while memory
6245  * may still exist in local DMA zone.
6246  */
6247 
6248 static void build_zonelists(pg_data_t *pgdat)
6249 {
6250 	static int node_order[MAX_NUMNODES];
6251 	int node, load, nr_nodes = 0;
6252 	nodemask_t used_mask = NODE_MASK_NONE;
6253 	int local_node, prev_node;
6254 
6255 	/* NUMA-aware ordering of nodes */
6256 	local_node = pgdat->node_id;
6257 	load = nr_online_nodes;
6258 	prev_node = local_node;
6259 
6260 	memset(node_order, 0, sizeof(node_order));
6261 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6262 		/*
6263 		 * We don't want to pressure a particular node.
6264 		 * So adding penalty to the first node in same
6265 		 * distance group to make it round-robin.
6266 		 */
6267 		if (node_distance(local_node, node) !=
6268 		    node_distance(local_node, prev_node))
6269 			node_load[node] += load;
6270 
6271 		node_order[nr_nodes++] = node;
6272 		prev_node = node;
6273 		load--;
6274 	}
6275 
6276 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6277 	build_thisnode_zonelists(pgdat);
6278 	pr_info("Fallback order for Node %d: ", local_node);
6279 	for (node = 0; node < nr_nodes; node++)
6280 		pr_cont("%d ", node_order[node]);
6281 	pr_cont("\n");
6282 }
6283 
6284 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6285 /*
6286  * Return node id of node used for "local" allocations.
6287  * I.e., first node id of first zone in arg node's generic zonelist.
6288  * Used for initializing percpu 'numa_mem', which is used primarily
6289  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6290  */
6291 int local_memory_node(int node)
6292 {
6293 	struct zoneref *z;
6294 
6295 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6296 				   gfp_zone(GFP_KERNEL),
6297 				   NULL);
6298 	return zone_to_nid(z->zone);
6299 }
6300 #endif
6301 
6302 static void setup_min_unmapped_ratio(void);
6303 static void setup_min_slab_ratio(void);
6304 #else	/* CONFIG_NUMA */
6305 
6306 static void build_zonelists(pg_data_t *pgdat)
6307 {
6308 	int node, local_node;
6309 	struct zoneref *zonerefs;
6310 	int nr_zones;
6311 
6312 	local_node = pgdat->node_id;
6313 
6314 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6315 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6316 	zonerefs += nr_zones;
6317 
6318 	/*
6319 	 * Now we build the zonelist so that it contains the zones
6320 	 * of all the other nodes.
6321 	 * We don't want to pressure a particular node, so when
6322 	 * building the zones for node N, we make sure that the
6323 	 * zones coming right after the local ones are those from
6324 	 * node N+1 (modulo N)
6325 	 */
6326 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6327 		if (!node_online(node))
6328 			continue;
6329 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6330 		zonerefs += nr_zones;
6331 	}
6332 	for (node = 0; node < local_node; node++) {
6333 		if (!node_online(node))
6334 			continue;
6335 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6336 		zonerefs += nr_zones;
6337 	}
6338 
6339 	zonerefs->zone = NULL;
6340 	zonerefs->zone_idx = 0;
6341 }
6342 
6343 #endif	/* CONFIG_NUMA */
6344 
6345 /*
6346  * Boot pageset table. One per cpu which is going to be used for all
6347  * zones and all nodes. The parameters will be set in such a way
6348  * that an item put on a list will immediately be handed over to
6349  * the buddy list. This is safe since pageset manipulation is done
6350  * with interrupts disabled.
6351  *
6352  * The boot_pagesets must be kept even after bootup is complete for
6353  * unused processors and/or zones. They do play a role for bootstrapping
6354  * hotplugged processors.
6355  *
6356  * zoneinfo_show() and maybe other functions do
6357  * not check if the processor is online before following the pageset pointer.
6358  * Other parts of the kernel may not check if the zone is available.
6359  */
6360 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6361 /* These effectively disable the pcplists in the boot pageset completely */
6362 #define BOOT_PAGESET_HIGH	0
6363 #define BOOT_PAGESET_BATCH	1
6364 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6365 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6366 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6367 
6368 static void __build_all_zonelists(void *data)
6369 {
6370 	int nid;
6371 	int __maybe_unused cpu;
6372 	pg_data_t *self = data;
6373 	static DEFINE_SPINLOCK(lock);
6374 
6375 	spin_lock(&lock);
6376 
6377 #ifdef CONFIG_NUMA
6378 	memset(node_load, 0, sizeof(node_load));
6379 #endif
6380 
6381 	/*
6382 	 * This node is hotadded and no memory is yet present.   So just
6383 	 * building zonelists is fine - no need to touch other nodes.
6384 	 */
6385 	if (self && !node_online(self->node_id)) {
6386 		build_zonelists(self);
6387 	} else {
6388 		for_each_online_node(nid) {
6389 			pg_data_t *pgdat = NODE_DATA(nid);
6390 
6391 			build_zonelists(pgdat);
6392 		}
6393 
6394 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6395 		/*
6396 		 * We now know the "local memory node" for each node--
6397 		 * i.e., the node of the first zone in the generic zonelist.
6398 		 * Set up numa_mem percpu variable for on-line cpus.  During
6399 		 * boot, only the boot cpu should be on-line;  we'll init the
6400 		 * secondary cpus' numa_mem as they come on-line.  During
6401 		 * node/memory hotplug, we'll fixup all on-line cpus.
6402 		 */
6403 		for_each_online_cpu(cpu)
6404 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6405 #endif
6406 	}
6407 
6408 	spin_unlock(&lock);
6409 }
6410 
6411 static noinline void __init
6412 build_all_zonelists_init(void)
6413 {
6414 	int cpu;
6415 
6416 	__build_all_zonelists(NULL);
6417 
6418 	/*
6419 	 * Initialize the boot_pagesets that are going to be used
6420 	 * for bootstrapping processors. The real pagesets for
6421 	 * each zone will be allocated later when the per cpu
6422 	 * allocator is available.
6423 	 *
6424 	 * boot_pagesets are used also for bootstrapping offline
6425 	 * cpus if the system is already booted because the pagesets
6426 	 * are needed to initialize allocators on a specific cpu too.
6427 	 * F.e. the percpu allocator needs the page allocator which
6428 	 * needs the percpu allocator in order to allocate its pagesets
6429 	 * (a chicken-egg dilemma).
6430 	 */
6431 	for_each_possible_cpu(cpu)
6432 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6433 
6434 	mminit_verify_zonelist();
6435 	cpuset_init_current_mems_allowed();
6436 }
6437 
6438 /*
6439  * unless system_state == SYSTEM_BOOTING.
6440  *
6441  * __ref due to call of __init annotated helper build_all_zonelists_init
6442  * [protected by SYSTEM_BOOTING].
6443  */
6444 void __ref build_all_zonelists(pg_data_t *pgdat)
6445 {
6446 	unsigned long vm_total_pages;
6447 
6448 	if (system_state == SYSTEM_BOOTING) {
6449 		build_all_zonelists_init();
6450 	} else {
6451 		__build_all_zonelists(pgdat);
6452 		/* cpuset refresh routine should be here */
6453 	}
6454 	/* Get the number of free pages beyond high watermark in all zones. */
6455 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6456 	/*
6457 	 * Disable grouping by mobility if the number of pages in the
6458 	 * system is too low to allow the mechanism to work. It would be
6459 	 * more accurate, but expensive to check per-zone. This check is
6460 	 * made on memory-hotadd so a system can start with mobility
6461 	 * disabled and enable it later
6462 	 */
6463 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6464 		page_group_by_mobility_disabled = 1;
6465 	else
6466 		page_group_by_mobility_disabled = 0;
6467 
6468 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6469 		nr_online_nodes,
6470 		page_group_by_mobility_disabled ? "off" : "on",
6471 		vm_total_pages);
6472 #ifdef CONFIG_NUMA
6473 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6474 #endif
6475 }
6476 
6477 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6478 static bool __meminit
6479 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6480 {
6481 	static struct memblock_region *r;
6482 
6483 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6484 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6485 			for_each_mem_region(r) {
6486 				if (*pfn < memblock_region_memory_end_pfn(r))
6487 					break;
6488 			}
6489 		}
6490 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6491 		    memblock_is_mirror(r)) {
6492 			*pfn = memblock_region_memory_end_pfn(r);
6493 			return true;
6494 		}
6495 	}
6496 	return false;
6497 }
6498 
6499 /*
6500  * Initially all pages are reserved - free ones are freed
6501  * up by memblock_free_all() once the early boot process is
6502  * done. Non-atomic initialization, single-pass.
6503  *
6504  * All aligned pageblocks are initialized to the specified migratetype
6505  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6506  * zone stats (e.g., nr_isolate_pageblock) are touched.
6507  */
6508 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6509 		unsigned long start_pfn, unsigned long zone_end_pfn,
6510 		enum meminit_context context,
6511 		struct vmem_altmap *altmap, int migratetype)
6512 {
6513 	unsigned long pfn, end_pfn = start_pfn + size;
6514 	struct page *page;
6515 
6516 	if (highest_memmap_pfn < end_pfn - 1)
6517 		highest_memmap_pfn = end_pfn - 1;
6518 
6519 #ifdef CONFIG_ZONE_DEVICE
6520 	/*
6521 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6522 	 * memory. We limit the total number of pages to initialize to just
6523 	 * those that might contain the memory mapping. We will defer the
6524 	 * ZONE_DEVICE page initialization until after we have released
6525 	 * the hotplug lock.
6526 	 */
6527 	if (zone == ZONE_DEVICE) {
6528 		if (!altmap)
6529 			return;
6530 
6531 		if (start_pfn == altmap->base_pfn)
6532 			start_pfn += altmap->reserve;
6533 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6534 	}
6535 #endif
6536 
6537 	for (pfn = start_pfn; pfn < end_pfn; ) {
6538 		/*
6539 		 * There can be holes in boot-time mem_map[]s handed to this
6540 		 * function.  They do not exist on hotplugged memory.
6541 		 */
6542 		if (context == MEMINIT_EARLY) {
6543 			if (overlap_memmap_init(zone, &pfn))
6544 				continue;
6545 			if (defer_init(nid, pfn, zone_end_pfn))
6546 				break;
6547 		}
6548 
6549 		page = pfn_to_page(pfn);
6550 		__init_single_page(page, pfn, zone, nid);
6551 		if (context == MEMINIT_HOTPLUG)
6552 			__SetPageReserved(page);
6553 
6554 		/*
6555 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6556 		 * such that unmovable allocations won't be scattered all
6557 		 * over the place during system boot.
6558 		 */
6559 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6560 			set_pageblock_migratetype(page, migratetype);
6561 			cond_resched();
6562 		}
6563 		pfn++;
6564 	}
6565 }
6566 
6567 #ifdef CONFIG_ZONE_DEVICE
6568 void __ref memmap_init_zone_device(struct zone *zone,
6569 				   unsigned long start_pfn,
6570 				   unsigned long nr_pages,
6571 				   struct dev_pagemap *pgmap)
6572 {
6573 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6574 	struct pglist_data *pgdat = zone->zone_pgdat;
6575 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6576 	unsigned long zone_idx = zone_idx(zone);
6577 	unsigned long start = jiffies;
6578 	int nid = pgdat->node_id;
6579 
6580 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6581 		return;
6582 
6583 	/*
6584 	 * The call to memmap_init should have already taken care
6585 	 * of the pages reserved for the memmap, so we can just jump to
6586 	 * the end of that region and start processing the device pages.
6587 	 */
6588 	if (altmap) {
6589 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6590 		nr_pages = end_pfn - start_pfn;
6591 	}
6592 
6593 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6594 		struct page *page = pfn_to_page(pfn);
6595 
6596 		__init_single_page(page, pfn, zone_idx, nid);
6597 
6598 		/*
6599 		 * Mark page reserved as it will need to wait for onlining
6600 		 * phase for it to be fully associated with a zone.
6601 		 *
6602 		 * We can use the non-atomic __set_bit operation for setting
6603 		 * the flag as we are still initializing the pages.
6604 		 */
6605 		__SetPageReserved(page);
6606 
6607 		/*
6608 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6609 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6610 		 * ever freed or placed on a driver-private list.
6611 		 */
6612 		page->pgmap = pgmap;
6613 		page->zone_device_data = NULL;
6614 
6615 		/*
6616 		 * Mark the block movable so that blocks are reserved for
6617 		 * movable at startup. This will force kernel allocations
6618 		 * to reserve their blocks rather than leaking throughout
6619 		 * the address space during boot when many long-lived
6620 		 * kernel allocations are made.
6621 		 *
6622 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6623 		 * because this is done early in section_activate()
6624 		 */
6625 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6626 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6627 			cond_resched();
6628 		}
6629 	}
6630 
6631 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6632 		nr_pages, jiffies_to_msecs(jiffies - start));
6633 }
6634 
6635 #endif
6636 static void __meminit zone_init_free_lists(struct zone *zone)
6637 {
6638 	unsigned int order, t;
6639 	for_each_migratetype_order(order, t) {
6640 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6641 		zone->free_area[order].nr_free = 0;
6642 	}
6643 }
6644 
6645 /*
6646  * Only struct pages that correspond to ranges defined by memblock.memory
6647  * are zeroed and initialized by going through __init_single_page() during
6648  * memmap_init_zone_range().
6649  *
6650  * But, there could be struct pages that correspond to holes in
6651  * memblock.memory. This can happen because of the following reasons:
6652  * - physical memory bank size is not necessarily the exact multiple of the
6653  *   arbitrary section size
6654  * - early reserved memory may not be listed in memblock.memory
6655  * - memory layouts defined with memmap= kernel parameter may not align
6656  *   nicely with memmap sections
6657  *
6658  * Explicitly initialize those struct pages so that:
6659  * - PG_Reserved is set
6660  * - zone and node links point to zone and node that span the page if the
6661  *   hole is in the middle of a zone
6662  * - zone and node links point to adjacent zone/node if the hole falls on
6663  *   the zone boundary; the pages in such holes will be prepended to the
6664  *   zone/node above the hole except for the trailing pages in the last
6665  *   section that will be appended to the zone/node below.
6666  */
6667 static void __init init_unavailable_range(unsigned long spfn,
6668 					  unsigned long epfn,
6669 					  int zone, int node)
6670 {
6671 	unsigned long pfn;
6672 	u64 pgcnt = 0;
6673 
6674 	for (pfn = spfn; pfn < epfn; pfn++) {
6675 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6676 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6677 				+ pageblock_nr_pages - 1;
6678 			continue;
6679 		}
6680 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6681 		__SetPageReserved(pfn_to_page(pfn));
6682 		pgcnt++;
6683 	}
6684 
6685 	if (pgcnt)
6686 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6687 			node, zone_names[zone], pgcnt);
6688 }
6689 
6690 static void __init memmap_init_zone_range(struct zone *zone,
6691 					  unsigned long start_pfn,
6692 					  unsigned long end_pfn,
6693 					  unsigned long *hole_pfn)
6694 {
6695 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6696 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6697 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6698 
6699 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6700 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6701 
6702 	if (start_pfn >= end_pfn)
6703 		return;
6704 
6705 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6706 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6707 
6708 	if (*hole_pfn < start_pfn)
6709 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6710 
6711 	*hole_pfn = end_pfn;
6712 }
6713 
6714 static void __init memmap_init(void)
6715 {
6716 	unsigned long start_pfn, end_pfn;
6717 	unsigned long hole_pfn = 0;
6718 	int i, j, zone_id = 0, nid;
6719 
6720 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6721 		struct pglist_data *node = NODE_DATA(nid);
6722 
6723 		for (j = 0; j < MAX_NR_ZONES; j++) {
6724 			struct zone *zone = node->node_zones + j;
6725 
6726 			if (!populated_zone(zone))
6727 				continue;
6728 
6729 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6730 					       &hole_pfn);
6731 			zone_id = j;
6732 		}
6733 	}
6734 
6735 #ifdef CONFIG_SPARSEMEM
6736 	/*
6737 	 * Initialize the memory map for hole in the range [memory_end,
6738 	 * section_end].
6739 	 * Append the pages in this hole to the highest zone in the last
6740 	 * node.
6741 	 * The call to init_unavailable_range() is outside the ifdef to
6742 	 * silence the compiler warining about zone_id set but not used;
6743 	 * for FLATMEM it is a nop anyway
6744 	 */
6745 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6746 	if (hole_pfn < end_pfn)
6747 #endif
6748 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6749 }
6750 
6751 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6752 			  phys_addr_t min_addr, int nid, bool exact_nid)
6753 {
6754 	void *ptr;
6755 
6756 	if (exact_nid)
6757 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6758 						   MEMBLOCK_ALLOC_ACCESSIBLE,
6759 						   nid);
6760 	else
6761 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6762 						 MEMBLOCK_ALLOC_ACCESSIBLE,
6763 						 nid);
6764 
6765 	if (ptr && size > 0)
6766 		page_init_poison(ptr, size);
6767 
6768 	return ptr;
6769 }
6770 
6771 static int zone_batchsize(struct zone *zone)
6772 {
6773 #ifdef CONFIG_MMU
6774 	int batch;
6775 
6776 	/*
6777 	 * The number of pages to batch allocate is either ~0.1%
6778 	 * of the zone or 1MB, whichever is smaller. The batch
6779 	 * size is striking a balance between allocation latency
6780 	 * and zone lock contention.
6781 	 */
6782 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6783 	batch /= 4;		/* We effectively *= 4 below */
6784 	if (batch < 1)
6785 		batch = 1;
6786 
6787 	/*
6788 	 * Clamp the batch to a 2^n - 1 value. Having a power
6789 	 * of 2 value was found to be more likely to have
6790 	 * suboptimal cache aliasing properties in some cases.
6791 	 *
6792 	 * For example if 2 tasks are alternately allocating
6793 	 * batches of pages, one task can end up with a lot
6794 	 * of pages of one half of the possible page colors
6795 	 * and the other with pages of the other colors.
6796 	 */
6797 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6798 
6799 	return batch;
6800 
6801 #else
6802 	/* The deferral and batching of frees should be suppressed under NOMMU
6803 	 * conditions.
6804 	 *
6805 	 * The problem is that NOMMU needs to be able to allocate large chunks
6806 	 * of contiguous memory as there's no hardware page translation to
6807 	 * assemble apparent contiguous memory from discontiguous pages.
6808 	 *
6809 	 * Queueing large contiguous runs of pages for batching, however,
6810 	 * causes the pages to actually be freed in smaller chunks.  As there
6811 	 * can be a significant delay between the individual batches being
6812 	 * recycled, this leads to the once large chunks of space being
6813 	 * fragmented and becoming unavailable for high-order allocations.
6814 	 */
6815 	return 0;
6816 #endif
6817 }
6818 
6819 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6820 {
6821 #ifdef CONFIG_MMU
6822 	int high;
6823 	int nr_split_cpus;
6824 	unsigned long total_pages;
6825 
6826 	if (!percpu_pagelist_high_fraction) {
6827 		/*
6828 		 * By default, the high value of the pcp is based on the zone
6829 		 * low watermark so that if they are full then background
6830 		 * reclaim will not be started prematurely.
6831 		 */
6832 		total_pages = low_wmark_pages(zone);
6833 	} else {
6834 		/*
6835 		 * If percpu_pagelist_high_fraction is configured, the high
6836 		 * value is based on a fraction of the managed pages in the
6837 		 * zone.
6838 		 */
6839 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6840 	}
6841 
6842 	/*
6843 	 * Split the high value across all online CPUs local to the zone. Note
6844 	 * that early in boot that CPUs may not be online yet and that during
6845 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6846 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6847 	 * all online CPUs to mitigate the risk that reclaim is triggered
6848 	 * prematurely due to pages stored on pcp lists.
6849 	 */
6850 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6851 	if (!nr_split_cpus)
6852 		nr_split_cpus = num_online_cpus();
6853 	high = total_pages / nr_split_cpus;
6854 
6855 	/*
6856 	 * Ensure high is at least batch*4. The multiple is based on the
6857 	 * historical relationship between high and batch.
6858 	 */
6859 	high = max(high, batch << 2);
6860 
6861 	return high;
6862 #else
6863 	return 0;
6864 #endif
6865 }
6866 
6867 /*
6868  * pcp->high and pcp->batch values are related and generally batch is lower
6869  * than high. They are also related to pcp->count such that count is lower
6870  * than high, and as soon as it reaches high, the pcplist is flushed.
6871  *
6872  * However, guaranteeing these relations at all times would require e.g. write
6873  * barriers here but also careful usage of read barriers at the read side, and
6874  * thus be prone to error and bad for performance. Thus the update only prevents
6875  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6876  * can cope with those fields changing asynchronously, and fully trust only the
6877  * pcp->count field on the local CPU with interrupts disabled.
6878  *
6879  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6880  * outside of boot time (or some other assurance that no concurrent updaters
6881  * exist).
6882  */
6883 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6884 		unsigned long batch)
6885 {
6886 	WRITE_ONCE(pcp->batch, batch);
6887 	WRITE_ONCE(pcp->high, high);
6888 }
6889 
6890 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6891 {
6892 	int pindex;
6893 
6894 	memset(pcp, 0, sizeof(*pcp));
6895 	memset(pzstats, 0, sizeof(*pzstats));
6896 
6897 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6898 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6899 
6900 	/*
6901 	 * Set batch and high values safe for a boot pageset. A true percpu
6902 	 * pageset's initialization will update them subsequently. Here we don't
6903 	 * need to be as careful as pageset_update() as nobody can access the
6904 	 * pageset yet.
6905 	 */
6906 	pcp->high = BOOT_PAGESET_HIGH;
6907 	pcp->batch = BOOT_PAGESET_BATCH;
6908 	pcp->free_factor = 0;
6909 }
6910 
6911 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6912 		unsigned long batch)
6913 {
6914 	struct per_cpu_pages *pcp;
6915 	int cpu;
6916 
6917 	for_each_possible_cpu(cpu) {
6918 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6919 		pageset_update(pcp, high, batch);
6920 	}
6921 }
6922 
6923 /*
6924  * Calculate and set new high and batch values for all per-cpu pagesets of a
6925  * zone based on the zone's size.
6926  */
6927 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6928 {
6929 	int new_high, new_batch;
6930 
6931 	new_batch = max(1, zone_batchsize(zone));
6932 	new_high = zone_highsize(zone, new_batch, cpu_online);
6933 
6934 	if (zone->pageset_high == new_high &&
6935 	    zone->pageset_batch == new_batch)
6936 		return;
6937 
6938 	zone->pageset_high = new_high;
6939 	zone->pageset_batch = new_batch;
6940 
6941 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6942 }
6943 
6944 void __meminit setup_zone_pageset(struct zone *zone)
6945 {
6946 	int cpu;
6947 
6948 	/* Size may be 0 on !SMP && !NUMA */
6949 	if (sizeof(struct per_cpu_zonestat) > 0)
6950 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6951 
6952 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6953 	for_each_possible_cpu(cpu) {
6954 		struct per_cpu_pages *pcp;
6955 		struct per_cpu_zonestat *pzstats;
6956 
6957 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6958 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6959 		per_cpu_pages_init(pcp, pzstats);
6960 	}
6961 
6962 	zone_set_pageset_high_and_batch(zone, 0);
6963 }
6964 
6965 /*
6966  * Allocate per cpu pagesets and initialize them.
6967  * Before this call only boot pagesets were available.
6968  */
6969 void __init setup_per_cpu_pageset(void)
6970 {
6971 	struct pglist_data *pgdat;
6972 	struct zone *zone;
6973 	int __maybe_unused cpu;
6974 
6975 	for_each_populated_zone(zone)
6976 		setup_zone_pageset(zone);
6977 
6978 #ifdef CONFIG_NUMA
6979 	/*
6980 	 * Unpopulated zones continue using the boot pagesets.
6981 	 * The numa stats for these pagesets need to be reset.
6982 	 * Otherwise, they will end up skewing the stats of
6983 	 * the nodes these zones are associated with.
6984 	 */
6985 	for_each_possible_cpu(cpu) {
6986 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6987 		memset(pzstats->vm_numa_event, 0,
6988 		       sizeof(pzstats->vm_numa_event));
6989 	}
6990 #endif
6991 
6992 	for_each_online_pgdat(pgdat)
6993 		pgdat->per_cpu_nodestats =
6994 			alloc_percpu(struct per_cpu_nodestat);
6995 }
6996 
6997 static __meminit void zone_pcp_init(struct zone *zone)
6998 {
6999 	/*
7000 	 * per cpu subsystem is not up at this point. The following code
7001 	 * relies on the ability of the linker to provide the
7002 	 * offset of a (static) per cpu variable into the per cpu area.
7003 	 */
7004 	zone->per_cpu_pageset = &boot_pageset;
7005 	zone->per_cpu_zonestats = &boot_zonestats;
7006 	zone->pageset_high = BOOT_PAGESET_HIGH;
7007 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7008 
7009 	if (populated_zone(zone))
7010 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7011 			 zone->present_pages, zone_batchsize(zone));
7012 }
7013 
7014 void __meminit init_currently_empty_zone(struct zone *zone,
7015 					unsigned long zone_start_pfn,
7016 					unsigned long size)
7017 {
7018 	struct pglist_data *pgdat = zone->zone_pgdat;
7019 	int zone_idx = zone_idx(zone) + 1;
7020 
7021 	if (zone_idx > pgdat->nr_zones)
7022 		pgdat->nr_zones = zone_idx;
7023 
7024 	zone->zone_start_pfn = zone_start_pfn;
7025 
7026 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7027 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7028 			pgdat->node_id,
7029 			(unsigned long)zone_idx(zone),
7030 			zone_start_pfn, (zone_start_pfn + size));
7031 
7032 	zone_init_free_lists(zone);
7033 	zone->initialized = 1;
7034 }
7035 
7036 /**
7037  * get_pfn_range_for_nid - Return the start and end page frames for a node
7038  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7039  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7040  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7041  *
7042  * It returns the start and end page frame of a node based on information
7043  * provided by memblock_set_node(). If called for a node
7044  * with no available memory, a warning is printed and the start and end
7045  * PFNs will be 0.
7046  */
7047 void __init get_pfn_range_for_nid(unsigned int nid,
7048 			unsigned long *start_pfn, unsigned long *end_pfn)
7049 {
7050 	unsigned long this_start_pfn, this_end_pfn;
7051 	int i;
7052 
7053 	*start_pfn = -1UL;
7054 	*end_pfn = 0;
7055 
7056 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7057 		*start_pfn = min(*start_pfn, this_start_pfn);
7058 		*end_pfn = max(*end_pfn, this_end_pfn);
7059 	}
7060 
7061 	if (*start_pfn == -1UL)
7062 		*start_pfn = 0;
7063 }
7064 
7065 /*
7066  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7067  * assumption is made that zones within a node are ordered in monotonic
7068  * increasing memory addresses so that the "highest" populated zone is used
7069  */
7070 static void __init find_usable_zone_for_movable(void)
7071 {
7072 	int zone_index;
7073 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7074 		if (zone_index == ZONE_MOVABLE)
7075 			continue;
7076 
7077 		if (arch_zone_highest_possible_pfn[zone_index] >
7078 				arch_zone_lowest_possible_pfn[zone_index])
7079 			break;
7080 	}
7081 
7082 	VM_BUG_ON(zone_index == -1);
7083 	movable_zone = zone_index;
7084 }
7085 
7086 /*
7087  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7088  * because it is sized independent of architecture. Unlike the other zones,
7089  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7090  * in each node depending on the size of each node and how evenly kernelcore
7091  * is distributed. This helper function adjusts the zone ranges
7092  * provided by the architecture for a given node by using the end of the
7093  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7094  * zones within a node are in order of monotonic increases memory addresses
7095  */
7096 static void __init adjust_zone_range_for_zone_movable(int nid,
7097 					unsigned long zone_type,
7098 					unsigned long node_start_pfn,
7099 					unsigned long node_end_pfn,
7100 					unsigned long *zone_start_pfn,
7101 					unsigned long *zone_end_pfn)
7102 {
7103 	/* Only adjust if ZONE_MOVABLE is on this node */
7104 	if (zone_movable_pfn[nid]) {
7105 		/* Size ZONE_MOVABLE */
7106 		if (zone_type == ZONE_MOVABLE) {
7107 			*zone_start_pfn = zone_movable_pfn[nid];
7108 			*zone_end_pfn = min(node_end_pfn,
7109 				arch_zone_highest_possible_pfn[movable_zone]);
7110 
7111 		/* Adjust for ZONE_MOVABLE starting within this range */
7112 		} else if (!mirrored_kernelcore &&
7113 			*zone_start_pfn < zone_movable_pfn[nid] &&
7114 			*zone_end_pfn > zone_movable_pfn[nid]) {
7115 			*zone_end_pfn = zone_movable_pfn[nid];
7116 
7117 		/* Check if this whole range is within ZONE_MOVABLE */
7118 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7119 			*zone_start_pfn = *zone_end_pfn;
7120 	}
7121 }
7122 
7123 /*
7124  * Return the number of pages a zone spans in a node, including holes
7125  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7126  */
7127 static unsigned long __init zone_spanned_pages_in_node(int nid,
7128 					unsigned long zone_type,
7129 					unsigned long node_start_pfn,
7130 					unsigned long node_end_pfn,
7131 					unsigned long *zone_start_pfn,
7132 					unsigned long *zone_end_pfn)
7133 {
7134 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7135 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7136 	/* When hotadd a new node from cpu_up(), the node should be empty */
7137 	if (!node_start_pfn && !node_end_pfn)
7138 		return 0;
7139 
7140 	/* Get the start and end of the zone */
7141 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7142 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7143 	adjust_zone_range_for_zone_movable(nid, zone_type,
7144 				node_start_pfn, node_end_pfn,
7145 				zone_start_pfn, zone_end_pfn);
7146 
7147 	/* Check that this node has pages within the zone's required range */
7148 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7149 		return 0;
7150 
7151 	/* Move the zone boundaries inside the node if necessary */
7152 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7153 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7154 
7155 	/* Return the spanned pages */
7156 	return *zone_end_pfn - *zone_start_pfn;
7157 }
7158 
7159 /*
7160  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7161  * then all holes in the requested range will be accounted for.
7162  */
7163 unsigned long __init __absent_pages_in_range(int nid,
7164 				unsigned long range_start_pfn,
7165 				unsigned long range_end_pfn)
7166 {
7167 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7168 	unsigned long start_pfn, end_pfn;
7169 	int i;
7170 
7171 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7172 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7173 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7174 		nr_absent -= end_pfn - start_pfn;
7175 	}
7176 	return nr_absent;
7177 }
7178 
7179 /**
7180  * absent_pages_in_range - Return number of page frames in holes within a range
7181  * @start_pfn: The start PFN to start searching for holes
7182  * @end_pfn: The end PFN to stop searching for holes
7183  *
7184  * Return: the number of pages frames in memory holes within a range.
7185  */
7186 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7187 							unsigned long end_pfn)
7188 {
7189 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7190 }
7191 
7192 /* Return the number of page frames in holes in a zone on a node */
7193 static unsigned long __init zone_absent_pages_in_node(int nid,
7194 					unsigned long zone_type,
7195 					unsigned long node_start_pfn,
7196 					unsigned long node_end_pfn)
7197 {
7198 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7199 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7200 	unsigned long zone_start_pfn, zone_end_pfn;
7201 	unsigned long nr_absent;
7202 
7203 	/* When hotadd a new node from cpu_up(), the node should be empty */
7204 	if (!node_start_pfn && !node_end_pfn)
7205 		return 0;
7206 
7207 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7208 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7209 
7210 	adjust_zone_range_for_zone_movable(nid, zone_type,
7211 			node_start_pfn, node_end_pfn,
7212 			&zone_start_pfn, &zone_end_pfn);
7213 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7214 
7215 	/*
7216 	 * ZONE_MOVABLE handling.
7217 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7218 	 * and vice versa.
7219 	 */
7220 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7221 		unsigned long start_pfn, end_pfn;
7222 		struct memblock_region *r;
7223 
7224 		for_each_mem_region(r) {
7225 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7226 					  zone_start_pfn, zone_end_pfn);
7227 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7228 					zone_start_pfn, zone_end_pfn);
7229 
7230 			if (zone_type == ZONE_MOVABLE &&
7231 			    memblock_is_mirror(r))
7232 				nr_absent += end_pfn - start_pfn;
7233 
7234 			if (zone_type == ZONE_NORMAL &&
7235 			    !memblock_is_mirror(r))
7236 				nr_absent += end_pfn - start_pfn;
7237 		}
7238 	}
7239 
7240 	return nr_absent;
7241 }
7242 
7243 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7244 						unsigned long node_start_pfn,
7245 						unsigned long node_end_pfn)
7246 {
7247 	unsigned long realtotalpages = 0, totalpages = 0;
7248 	enum zone_type i;
7249 
7250 	for (i = 0; i < MAX_NR_ZONES; i++) {
7251 		struct zone *zone = pgdat->node_zones + i;
7252 		unsigned long zone_start_pfn, zone_end_pfn;
7253 		unsigned long spanned, absent;
7254 		unsigned long size, real_size;
7255 
7256 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7257 						     node_start_pfn,
7258 						     node_end_pfn,
7259 						     &zone_start_pfn,
7260 						     &zone_end_pfn);
7261 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7262 						   node_start_pfn,
7263 						   node_end_pfn);
7264 
7265 		size = spanned;
7266 		real_size = size - absent;
7267 
7268 		if (size)
7269 			zone->zone_start_pfn = zone_start_pfn;
7270 		else
7271 			zone->zone_start_pfn = 0;
7272 		zone->spanned_pages = size;
7273 		zone->present_pages = real_size;
7274 #if defined(CONFIG_MEMORY_HOTPLUG)
7275 		zone->present_early_pages = real_size;
7276 #endif
7277 
7278 		totalpages += size;
7279 		realtotalpages += real_size;
7280 	}
7281 
7282 	pgdat->node_spanned_pages = totalpages;
7283 	pgdat->node_present_pages = realtotalpages;
7284 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7285 }
7286 
7287 #ifndef CONFIG_SPARSEMEM
7288 /*
7289  * Calculate the size of the zone->blockflags rounded to an unsigned long
7290  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7291  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7292  * round what is now in bits to nearest long in bits, then return it in
7293  * bytes.
7294  */
7295 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7296 {
7297 	unsigned long usemapsize;
7298 
7299 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7300 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7301 	usemapsize = usemapsize >> pageblock_order;
7302 	usemapsize *= NR_PAGEBLOCK_BITS;
7303 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7304 
7305 	return usemapsize / 8;
7306 }
7307 
7308 static void __ref setup_usemap(struct zone *zone)
7309 {
7310 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7311 					       zone->spanned_pages);
7312 	zone->pageblock_flags = NULL;
7313 	if (usemapsize) {
7314 		zone->pageblock_flags =
7315 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7316 					    zone_to_nid(zone));
7317 		if (!zone->pageblock_flags)
7318 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7319 			      usemapsize, zone->name, zone_to_nid(zone));
7320 	}
7321 }
7322 #else
7323 static inline void setup_usemap(struct zone *zone) {}
7324 #endif /* CONFIG_SPARSEMEM */
7325 
7326 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7327 
7328 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7329 void __init set_pageblock_order(void)
7330 {
7331 	unsigned int order;
7332 
7333 	/* Check that pageblock_nr_pages has not already been setup */
7334 	if (pageblock_order)
7335 		return;
7336 
7337 	if (HPAGE_SHIFT > PAGE_SHIFT)
7338 		order = HUGETLB_PAGE_ORDER;
7339 	else
7340 		order = MAX_ORDER - 1;
7341 
7342 	/*
7343 	 * Assume the largest contiguous order of interest is a huge page.
7344 	 * This value may be variable depending on boot parameters on IA64 and
7345 	 * powerpc.
7346 	 */
7347 	pageblock_order = order;
7348 }
7349 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7350 
7351 /*
7352  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7353  * is unused as pageblock_order is set at compile-time. See
7354  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7355  * the kernel config
7356  */
7357 void __init set_pageblock_order(void)
7358 {
7359 }
7360 
7361 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7362 
7363 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7364 						unsigned long present_pages)
7365 {
7366 	unsigned long pages = spanned_pages;
7367 
7368 	/*
7369 	 * Provide a more accurate estimation if there are holes within
7370 	 * the zone and SPARSEMEM is in use. If there are holes within the
7371 	 * zone, each populated memory region may cost us one or two extra
7372 	 * memmap pages due to alignment because memmap pages for each
7373 	 * populated regions may not be naturally aligned on page boundary.
7374 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7375 	 */
7376 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7377 	    IS_ENABLED(CONFIG_SPARSEMEM))
7378 		pages = present_pages;
7379 
7380 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7381 }
7382 
7383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7384 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7385 {
7386 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7387 
7388 	spin_lock_init(&ds_queue->split_queue_lock);
7389 	INIT_LIST_HEAD(&ds_queue->split_queue);
7390 	ds_queue->split_queue_len = 0;
7391 }
7392 #else
7393 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7394 #endif
7395 
7396 #ifdef CONFIG_COMPACTION
7397 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7398 {
7399 	init_waitqueue_head(&pgdat->kcompactd_wait);
7400 }
7401 #else
7402 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7403 #endif
7404 
7405 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7406 {
7407 	int i;
7408 
7409 	pgdat_resize_init(pgdat);
7410 
7411 	pgdat_init_split_queue(pgdat);
7412 	pgdat_init_kcompactd(pgdat);
7413 
7414 	init_waitqueue_head(&pgdat->kswapd_wait);
7415 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7416 
7417 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7418 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7419 
7420 	pgdat_page_ext_init(pgdat);
7421 	lruvec_init(&pgdat->__lruvec);
7422 }
7423 
7424 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7425 							unsigned long remaining_pages)
7426 {
7427 	atomic_long_set(&zone->managed_pages, remaining_pages);
7428 	zone_set_nid(zone, nid);
7429 	zone->name = zone_names[idx];
7430 	zone->zone_pgdat = NODE_DATA(nid);
7431 	spin_lock_init(&zone->lock);
7432 	zone_seqlock_init(zone);
7433 	zone_pcp_init(zone);
7434 }
7435 
7436 /*
7437  * Set up the zone data structures
7438  * - init pgdat internals
7439  * - init all zones belonging to this node
7440  *
7441  * NOTE: this function is only called during memory hotplug
7442  */
7443 #ifdef CONFIG_MEMORY_HOTPLUG
7444 void __ref free_area_init_core_hotplug(int nid)
7445 {
7446 	enum zone_type z;
7447 	pg_data_t *pgdat = NODE_DATA(nid);
7448 
7449 	pgdat_init_internals(pgdat);
7450 	for (z = 0; z < MAX_NR_ZONES; z++)
7451 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7452 }
7453 #endif
7454 
7455 /*
7456  * Set up the zone data structures:
7457  *   - mark all pages reserved
7458  *   - mark all memory queues empty
7459  *   - clear the memory bitmaps
7460  *
7461  * NOTE: pgdat should get zeroed by caller.
7462  * NOTE: this function is only called during early init.
7463  */
7464 static void __init free_area_init_core(struct pglist_data *pgdat)
7465 {
7466 	enum zone_type j;
7467 	int nid = pgdat->node_id;
7468 
7469 	pgdat_init_internals(pgdat);
7470 	pgdat->per_cpu_nodestats = &boot_nodestats;
7471 
7472 	for (j = 0; j < MAX_NR_ZONES; j++) {
7473 		struct zone *zone = pgdat->node_zones + j;
7474 		unsigned long size, freesize, memmap_pages;
7475 
7476 		size = zone->spanned_pages;
7477 		freesize = zone->present_pages;
7478 
7479 		/*
7480 		 * Adjust freesize so that it accounts for how much memory
7481 		 * is used by this zone for memmap. This affects the watermark
7482 		 * and per-cpu initialisations
7483 		 */
7484 		memmap_pages = calc_memmap_size(size, freesize);
7485 		if (!is_highmem_idx(j)) {
7486 			if (freesize >= memmap_pages) {
7487 				freesize -= memmap_pages;
7488 				if (memmap_pages)
7489 					pr_debug("  %s zone: %lu pages used for memmap\n",
7490 						 zone_names[j], memmap_pages);
7491 			} else
7492 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7493 					zone_names[j], memmap_pages, freesize);
7494 		}
7495 
7496 		/* Account for reserved pages */
7497 		if (j == 0 && freesize > dma_reserve) {
7498 			freesize -= dma_reserve;
7499 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7500 		}
7501 
7502 		if (!is_highmem_idx(j))
7503 			nr_kernel_pages += freesize;
7504 		/* Charge for highmem memmap if there are enough kernel pages */
7505 		else if (nr_kernel_pages > memmap_pages * 2)
7506 			nr_kernel_pages -= memmap_pages;
7507 		nr_all_pages += freesize;
7508 
7509 		/*
7510 		 * Set an approximate value for lowmem here, it will be adjusted
7511 		 * when the bootmem allocator frees pages into the buddy system.
7512 		 * And all highmem pages will be managed by the buddy system.
7513 		 */
7514 		zone_init_internals(zone, j, nid, freesize);
7515 
7516 		if (!size)
7517 			continue;
7518 
7519 		set_pageblock_order();
7520 		setup_usemap(zone);
7521 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7522 	}
7523 }
7524 
7525 #ifdef CONFIG_FLATMEM
7526 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7527 {
7528 	unsigned long __maybe_unused start = 0;
7529 	unsigned long __maybe_unused offset = 0;
7530 
7531 	/* Skip empty nodes */
7532 	if (!pgdat->node_spanned_pages)
7533 		return;
7534 
7535 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7536 	offset = pgdat->node_start_pfn - start;
7537 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7538 	if (!pgdat->node_mem_map) {
7539 		unsigned long size, end;
7540 		struct page *map;
7541 
7542 		/*
7543 		 * The zone's endpoints aren't required to be MAX_ORDER
7544 		 * aligned but the node_mem_map endpoints must be in order
7545 		 * for the buddy allocator to function correctly.
7546 		 */
7547 		end = pgdat_end_pfn(pgdat);
7548 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7549 		size =  (end - start) * sizeof(struct page);
7550 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7551 				   pgdat->node_id, false);
7552 		if (!map)
7553 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7554 			      size, pgdat->node_id);
7555 		pgdat->node_mem_map = map + offset;
7556 	}
7557 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7558 				__func__, pgdat->node_id, (unsigned long)pgdat,
7559 				(unsigned long)pgdat->node_mem_map);
7560 #ifndef CONFIG_NUMA
7561 	/*
7562 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7563 	 */
7564 	if (pgdat == NODE_DATA(0)) {
7565 		mem_map = NODE_DATA(0)->node_mem_map;
7566 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7567 			mem_map -= offset;
7568 	}
7569 #endif
7570 }
7571 #else
7572 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7573 #endif /* CONFIG_FLATMEM */
7574 
7575 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7576 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7577 {
7578 	pgdat->first_deferred_pfn = ULONG_MAX;
7579 }
7580 #else
7581 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7582 #endif
7583 
7584 static void __init free_area_init_node(int nid)
7585 {
7586 	pg_data_t *pgdat = NODE_DATA(nid);
7587 	unsigned long start_pfn = 0;
7588 	unsigned long end_pfn = 0;
7589 
7590 	/* pg_data_t should be reset to zero when it's allocated */
7591 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7592 
7593 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7594 
7595 	pgdat->node_id = nid;
7596 	pgdat->node_start_pfn = start_pfn;
7597 	pgdat->per_cpu_nodestats = NULL;
7598 
7599 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7600 		(u64)start_pfn << PAGE_SHIFT,
7601 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7602 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7603 
7604 	alloc_node_mem_map(pgdat);
7605 	pgdat_set_deferred_range(pgdat);
7606 
7607 	free_area_init_core(pgdat);
7608 }
7609 
7610 void __init free_area_init_memoryless_node(int nid)
7611 {
7612 	free_area_init_node(nid);
7613 }
7614 
7615 #if MAX_NUMNODES > 1
7616 /*
7617  * Figure out the number of possible node ids.
7618  */
7619 void __init setup_nr_node_ids(void)
7620 {
7621 	unsigned int highest;
7622 
7623 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7624 	nr_node_ids = highest + 1;
7625 }
7626 #endif
7627 
7628 /**
7629  * node_map_pfn_alignment - determine the maximum internode alignment
7630  *
7631  * This function should be called after node map is populated and sorted.
7632  * It calculates the maximum power of two alignment which can distinguish
7633  * all the nodes.
7634  *
7635  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7636  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7637  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7638  * shifted, 1GiB is enough and this function will indicate so.
7639  *
7640  * This is used to test whether pfn -> nid mapping of the chosen memory
7641  * model has fine enough granularity to avoid incorrect mapping for the
7642  * populated node map.
7643  *
7644  * Return: the determined alignment in pfn's.  0 if there is no alignment
7645  * requirement (single node).
7646  */
7647 unsigned long __init node_map_pfn_alignment(void)
7648 {
7649 	unsigned long accl_mask = 0, last_end = 0;
7650 	unsigned long start, end, mask;
7651 	int last_nid = NUMA_NO_NODE;
7652 	int i, nid;
7653 
7654 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7655 		if (!start || last_nid < 0 || last_nid == nid) {
7656 			last_nid = nid;
7657 			last_end = end;
7658 			continue;
7659 		}
7660 
7661 		/*
7662 		 * Start with a mask granular enough to pin-point to the
7663 		 * start pfn and tick off bits one-by-one until it becomes
7664 		 * too coarse to separate the current node from the last.
7665 		 */
7666 		mask = ~((1 << __ffs(start)) - 1);
7667 		while (mask && last_end <= (start & (mask << 1)))
7668 			mask <<= 1;
7669 
7670 		/* accumulate all internode masks */
7671 		accl_mask |= mask;
7672 	}
7673 
7674 	/* convert mask to number of pages */
7675 	return ~accl_mask + 1;
7676 }
7677 
7678 /**
7679  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7680  *
7681  * Return: the minimum PFN based on information provided via
7682  * memblock_set_node().
7683  */
7684 unsigned long __init find_min_pfn_with_active_regions(void)
7685 {
7686 	return PHYS_PFN(memblock_start_of_DRAM());
7687 }
7688 
7689 /*
7690  * early_calculate_totalpages()
7691  * Sum pages in active regions for movable zone.
7692  * Populate N_MEMORY for calculating usable_nodes.
7693  */
7694 static unsigned long __init early_calculate_totalpages(void)
7695 {
7696 	unsigned long totalpages = 0;
7697 	unsigned long start_pfn, end_pfn;
7698 	int i, nid;
7699 
7700 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7701 		unsigned long pages = end_pfn - start_pfn;
7702 
7703 		totalpages += pages;
7704 		if (pages)
7705 			node_set_state(nid, N_MEMORY);
7706 	}
7707 	return totalpages;
7708 }
7709 
7710 /*
7711  * Find the PFN the Movable zone begins in each node. Kernel memory
7712  * is spread evenly between nodes as long as the nodes have enough
7713  * memory. When they don't, some nodes will have more kernelcore than
7714  * others
7715  */
7716 static void __init find_zone_movable_pfns_for_nodes(void)
7717 {
7718 	int i, nid;
7719 	unsigned long usable_startpfn;
7720 	unsigned long kernelcore_node, kernelcore_remaining;
7721 	/* save the state before borrow the nodemask */
7722 	nodemask_t saved_node_state = node_states[N_MEMORY];
7723 	unsigned long totalpages = early_calculate_totalpages();
7724 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7725 	struct memblock_region *r;
7726 
7727 	/* Need to find movable_zone earlier when movable_node is specified. */
7728 	find_usable_zone_for_movable();
7729 
7730 	/*
7731 	 * If movable_node is specified, ignore kernelcore and movablecore
7732 	 * options.
7733 	 */
7734 	if (movable_node_is_enabled()) {
7735 		for_each_mem_region(r) {
7736 			if (!memblock_is_hotpluggable(r))
7737 				continue;
7738 
7739 			nid = memblock_get_region_node(r);
7740 
7741 			usable_startpfn = PFN_DOWN(r->base);
7742 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7743 				min(usable_startpfn, zone_movable_pfn[nid]) :
7744 				usable_startpfn;
7745 		}
7746 
7747 		goto out2;
7748 	}
7749 
7750 	/*
7751 	 * If kernelcore=mirror is specified, ignore movablecore option
7752 	 */
7753 	if (mirrored_kernelcore) {
7754 		bool mem_below_4gb_not_mirrored = false;
7755 
7756 		for_each_mem_region(r) {
7757 			if (memblock_is_mirror(r))
7758 				continue;
7759 
7760 			nid = memblock_get_region_node(r);
7761 
7762 			usable_startpfn = memblock_region_memory_base_pfn(r);
7763 
7764 			if (usable_startpfn < 0x100000) {
7765 				mem_below_4gb_not_mirrored = true;
7766 				continue;
7767 			}
7768 
7769 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7770 				min(usable_startpfn, zone_movable_pfn[nid]) :
7771 				usable_startpfn;
7772 		}
7773 
7774 		if (mem_below_4gb_not_mirrored)
7775 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7776 
7777 		goto out2;
7778 	}
7779 
7780 	/*
7781 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7782 	 * amount of necessary memory.
7783 	 */
7784 	if (required_kernelcore_percent)
7785 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7786 				       10000UL;
7787 	if (required_movablecore_percent)
7788 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7789 					10000UL;
7790 
7791 	/*
7792 	 * If movablecore= was specified, calculate what size of
7793 	 * kernelcore that corresponds so that memory usable for
7794 	 * any allocation type is evenly spread. If both kernelcore
7795 	 * and movablecore are specified, then the value of kernelcore
7796 	 * will be used for required_kernelcore if it's greater than
7797 	 * what movablecore would have allowed.
7798 	 */
7799 	if (required_movablecore) {
7800 		unsigned long corepages;
7801 
7802 		/*
7803 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7804 		 * was requested by the user
7805 		 */
7806 		required_movablecore =
7807 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7808 		required_movablecore = min(totalpages, required_movablecore);
7809 		corepages = totalpages - required_movablecore;
7810 
7811 		required_kernelcore = max(required_kernelcore, corepages);
7812 	}
7813 
7814 	/*
7815 	 * If kernelcore was not specified or kernelcore size is larger
7816 	 * than totalpages, there is no ZONE_MOVABLE.
7817 	 */
7818 	if (!required_kernelcore || required_kernelcore >= totalpages)
7819 		goto out;
7820 
7821 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7822 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7823 
7824 restart:
7825 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7826 	kernelcore_node = required_kernelcore / usable_nodes;
7827 	for_each_node_state(nid, N_MEMORY) {
7828 		unsigned long start_pfn, end_pfn;
7829 
7830 		/*
7831 		 * Recalculate kernelcore_node if the division per node
7832 		 * now exceeds what is necessary to satisfy the requested
7833 		 * amount of memory for the kernel
7834 		 */
7835 		if (required_kernelcore < kernelcore_node)
7836 			kernelcore_node = required_kernelcore / usable_nodes;
7837 
7838 		/*
7839 		 * As the map is walked, we track how much memory is usable
7840 		 * by the kernel using kernelcore_remaining. When it is
7841 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7842 		 */
7843 		kernelcore_remaining = kernelcore_node;
7844 
7845 		/* Go through each range of PFNs within this node */
7846 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7847 			unsigned long size_pages;
7848 
7849 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7850 			if (start_pfn >= end_pfn)
7851 				continue;
7852 
7853 			/* Account for what is only usable for kernelcore */
7854 			if (start_pfn < usable_startpfn) {
7855 				unsigned long kernel_pages;
7856 				kernel_pages = min(end_pfn, usable_startpfn)
7857 								- start_pfn;
7858 
7859 				kernelcore_remaining -= min(kernel_pages,
7860 							kernelcore_remaining);
7861 				required_kernelcore -= min(kernel_pages,
7862 							required_kernelcore);
7863 
7864 				/* Continue if range is now fully accounted */
7865 				if (end_pfn <= usable_startpfn) {
7866 
7867 					/*
7868 					 * Push zone_movable_pfn to the end so
7869 					 * that if we have to rebalance
7870 					 * kernelcore across nodes, we will
7871 					 * not double account here
7872 					 */
7873 					zone_movable_pfn[nid] = end_pfn;
7874 					continue;
7875 				}
7876 				start_pfn = usable_startpfn;
7877 			}
7878 
7879 			/*
7880 			 * The usable PFN range for ZONE_MOVABLE is from
7881 			 * start_pfn->end_pfn. Calculate size_pages as the
7882 			 * number of pages used as kernelcore
7883 			 */
7884 			size_pages = end_pfn - start_pfn;
7885 			if (size_pages > kernelcore_remaining)
7886 				size_pages = kernelcore_remaining;
7887 			zone_movable_pfn[nid] = start_pfn + size_pages;
7888 
7889 			/*
7890 			 * Some kernelcore has been met, update counts and
7891 			 * break if the kernelcore for this node has been
7892 			 * satisfied
7893 			 */
7894 			required_kernelcore -= min(required_kernelcore,
7895 								size_pages);
7896 			kernelcore_remaining -= size_pages;
7897 			if (!kernelcore_remaining)
7898 				break;
7899 		}
7900 	}
7901 
7902 	/*
7903 	 * If there is still required_kernelcore, we do another pass with one
7904 	 * less node in the count. This will push zone_movable_pfn[nid] further
7905 	 * along on the nodes that still have memory until kernelcore is
7906 	 * satisfied
7907 	 */
7908 	usable_nodes--;
7909 	if (usable_nodes && required_kernelcore > usable_nodes)
7910 		goto restart;
7911 
7912 out2:
7913 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7914 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7915 		zone_movable_pfn[nid] =
7916 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7917 
7918 out:
7919 	/* restore the node_state */
7920 	node_states[N_MEMORY] = saved_node_state;
7921 }
7922 
7923 /* Any regular or high memory on that node ? */
7924 static void check_for_memory(pg_data_t *pgdat, int nid)
7925 {
7926 	enum zone_type zone_type;
7927 
7928 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7929 		struct zone *zone = &pgdat->node_zones[zone_type];
7930 		if (populated_zone(zone)) {
7931 			if (IS_ENABLED(CONFIG_HIGHMEM))
7932 				node_set_state(nid, N_HIGH_MEMORY);
7933 			if (zone_type <= ZONE_NORMAL)
7934 				node_set_state(nid, N_NORMAL_MEMORY);
7935 			break;
7936 		}
7937 	}
7938 }
7939 
7940 /*
7941  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7942  * such cases we allow max_zone_pfn sorted in the descending order
7943  */
7944 bool __weak arch_has_descending_max_zone_pfns(void)
7945 {
7946 	return false;
7947 }
7948 
7949 /**
7950  * free_area_init - Initialise all pg_data_t and zone data
7951  * @max_zone_pfn: an array of max PFNs for each zone
7952  *
7953  * This will call free_area_init_node() for each active node in the system.
7954  * Using the page ranges provided by memblock_set_node(), the size of each
7955  * zone in each node and their holes is calculated. If the maximum PFN
7956  * between two adjacent zones match, it is assumed that the zone is empty.
7957  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7958  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7959  * starts where the previous one ended. For example, ZONE_DMA32 starts
7960  * at arch_max_dma_pfn.
7961  */
7962 void __init free_area_init(unsigned long *max_zone_pfn)
7963 {
7964 	unsigned long start_pfn, end_pfn;
7965 	int i, nid, zone;
7966 	bool descending;
7967 
7968 	/* Record where the zone boundaries are */
7969 	memset(arch_zone_lowest_possible_pfn, 0,
7970 				sizeof(arch_zone_lowest_possible_pfn));
7971 	memset(arch_zone_highest_possible_pfn, 0,
7972 				sizeof(arch_zone_highest_possible_pfn));
7973 
7974 	start_pfn = find_min_pfn_with_active_regions();
7975 	descending = arch_has_descending_max_zone_pfns();
7976 
7977 	for (i = 0; i < MAX_NR_ZONES; i++) {
7978 		if (descending)
7979 			zone = MAX_NR_ZONES - i - 1;
7980 		else
7981 			zone = i;
7982 
7983 		if (zone == ZONE_MOVABLE)
7984 			continue;
7985 
7986 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7987 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7988 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7989 
7990 		start_pfn = end_pfn;
7991 	}
7992 
7993 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7994 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7995 	find_zone_movable_pfns_for_nodes();
7996 
7997 	/* Print out the zone ranges */
7998 	pr_info("Zone ranges:\n");
7999 	for (i = 0; i < MAX_NR_ZONES; i++) {
8000 		if (i == ZONE_MOVABLE)
8001 			continue;
8002 		pr_info("  %-8s ", zone_names[i]);
8003 		if (arch_zone_lowest_possible_pfn[i] ==
8004 				arch_zone_highest_possible_pfn[i])
8005 			pr_cont("empty\n");
8006 		else
8007 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8008 				(u64)arch_zone_lowest_possible_pfn[i]
8009 					<< PAGE_SHIFT,
8010 				((u64)arch_zone_highest_possible_pfn[i]
8011 					<< PAGE_SHIFT) - 1);
8012 	}
8013 
8014 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8015 	pr_info("Movable zone start for each node\n");
8016 	for (i = 0; i < MAX_NUMNODES; i++) {
8017 		if (zone_movable_pfn[i])
8018 			pr_info("  Node %d: %#018Lx\n", i,
8019 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8020 	}
8021 
8022 	/*
8023 	 * Print out the early node map, and initialize the
8024 	 * subsection-map relative to active online memory ranges to
8025 	 * enable future "sub-section" extensions of the memory map.
8026 	 */
8027 	pr_info("Early memory node ranges\n");
8028 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8029 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8030 			(u64)start_pfn << PAGE_SHIFT,
8031 			((u64)end_pfn << PAGE_SHIFT) - 1);
8032 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8033 	}
8034 
8035 	/* Initialise every node */
8036 	mminit_verify_pageflags_layout();
8037 	setup_nr_node_ids();
8038 	for_each_online_node(nid) {
8039 		pg_data_t *pgdat = NODE_DATA(nid);
8040 		free_area_init_node(nid);
8041 
8042 		/* Any memory on that node */
8043 		if (pgdat->node_present_pages)
8044 			node_set_state(nid, N_MEMORY);
8045 		check_for_memory(pgdat, nid);
8046 	}
8047 
8048 	memmap_init();
8049 }
8050 
8051 static int __init cmdline_parse_core(char *p, unsigned long *core,
8052 				     unsigned long *percent)
8053 {
8054 	unsigned long long coremem;
8055 	char *endptr;
8056 
8057 	if (!p)
8058 		return -EINVAL;
8059 
8060 	/* Value may be a percentage of total memory, otherwise bytes */
8061 	coremem = simple_strtoull(p, &endptr, 0);
8062 	if (*endptr == '%') {
8063 		/* Paranoid check for percent values greater than 100 */
8064 		WARN_ON(coremem > 100);
8065 
8066 		*percent = coremem;
8067 	} else {
8068 		coremem = memparse(p, &p);
8069 		/* Paranoid check that UL is enough for the coremem value */
8070 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8071 
8072 		*core = coremem >> PAGE_SHIFT;
8073 		*percent = 0UL;
8074 	}
8075 	return 0;
8076 }
8077 
8078 /*
8079  * kernelcore=size sets the amount of memory for use for allocations that
8080  * cannot be reclaimed or migrated.
8081  */
8082 static int __init cmdline_parse_kernelcore(char *p)
8083 {
8084 	/* parse kernelcore=mirror */
8085 	if (parse_option_str(p, "mirror")) {
8086 		mirrored_kernelcore = true;
8087 		return 0;
8088 	}
8089 
8090 	return cmdline_parse_core(p, &required_kernelcore,
8091 				  &required_kernelcore_percent);
8092 }
8093 
8094 /*
8095  * movablecore=size sets the amount of memory for use for allocations that
8096  * can be reclaimed or migrated.
8097  */
8098 static int __init cmdline_parse_movablecore(char *p)
8099 {
8100 	return cmdline_parse_core(p, &required_movablecore,
8101 				  &required_movablecore_percent);
8102 }
8103 
8104 early_param("kernelcore", cmdline_parse_kernelcore);
8105 early_param("movablecore", cmdline_parse_movablecore);
8106 
8107 void adjust_managed_page_count(struct page *page, long count)
8108 {
8109 	atomic_long_add(count, &page_zone(page)->managed_pages);
8110 	totalram_pages_add(count);
8111 #ifdef CONFIG_HIGHMEM
8112 	if (PageHighMem(page))
8113 		totalhigh_pages_add(count);
8114 #endif
8115 }
8116 EXPORT_SYMBOL(adjust_managed_page_count);
8117 
8118 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8119 {
8120 	void *pos;
8121 	unsigned long pages = 0;
8122 
8123 	start = (void *)PAGE_ALIGN((unsigned long)start);
8124 	end = (void *)((unsigned long)end & PAGE_MASK);
8125 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8126 		struct page *page = virt_to_page(pos);
8127 		void *direct_map_addr;
8128 
8129 		/*
8130 		 * 'direct_map_addr' might be different from 'pos'
8131 		 * because some architectures' virt_to_page()
8132 		 * work with aliases.  Getting the direct map
8133 		 * address ensures that we get a _writeable_
8134 		 * alias for the memset().
8135 		 */
8136 		direct_map_addr = page_address(page);
8137 		/*
8138 		 * Perform a kasan-unchecked memset() since this memory
8139 		 * has not been initialized.
8140 		 */
8141 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8142 		if ((unsigned int)poison <= 0xFF)
8143 			memset(direct_map_addr, poison, PAGE_SIZE);
8144 
8145 		free_reserved_page(page);
8146 	}
8147 
8148 	if (pages && s)
8149 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8150 
8151 	return pages;
8152 }
8153 
8154 void __init mem_init_print_info(void)
8155 {
8156 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8157 	unsigned long init_code_size, init_data_size;
8158 
8159 	physpages = get_num_physpages();
8160 	codesize = _etext - _stext;
8161 	datasize = _edata - _sdata;
8162 	rosize = __end_rodata - __start_rodata;
8163 	bss_size = __bss_stop - __bss_start;
8164 	init_data_size = __init_end - __init_begin;
8165 	init_code_size = _einittext - _sinittext;
8166 
8167 	/*
8168 	 * Detect special cases and adjust section sizes accordingly:
8169 	 * 1) .init.* may be embedded into .data sections
8170 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8171 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8172 	 * 3) .rodata.* may be embedded into .text or .data sections.
8173 	 */
8174 #define adj_init_size(start, end, size, pos, adj) \
8175 	do { \
8176 		if (start <= pos && pos < end && size > adj) \
8177 			size -= adj; \
8178 	} while (0)
8179 
8180 	adj_init_size(__init_begin, __init_end, init_data_size,
8181 		     _sinittext, init_code_size);
8182 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8183 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8184 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8185 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8186 
8187 #undef	adj_init_size
8188 
8189 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8190 #ifdef	CONFIG_HIGHMEM
8191 		", %luK highmem"
8192 #endif
8193 		")\n",
8194 		K(nr_free_pages()), K(physpages),
8195 		codesize >> 10, datasize >> 10, rosize >> 10,
8196 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8197 		K(physpages - totalram_pages() - totalcma_pages),
8198 		K(totalcma_pages)
8199 #ifdef	CONFIG_HIGHMEM
8200 		, K(totalhigh_pages())
8201 #endif
8202 		);
8203 }
8204 
8205 /**
8206  * set_dma_reserve - set the specified number of pages reserved in the first zone
8207  * @new_dma_reserve: The number of pages to mark reserved
8208  *
8209  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8210  * In the DMA zone, a significant percentage may be consumed by kernel image
8211  * and other unfreeable allocations which can skew the watermarks badly. This
8212  * function may optionally be used to account for unfreeable pages in the
8213  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8214  * smaller per-cpu batchsize.
8215  */
8216 void __init set_dma_reserve(unsigned long new_dma_reserve)
8217 {
8218 	dma_reserve = new_dma_reserve;
8219 }
8220 
8221 static int page_alloc_cpu_dead(unsigned int cpu)
8222 {
8223 	struct zone *zone;
8224 
8225 	lru_add_drain_cpu(cpu);
8226 	drain_pages(cpu);
8227 
8228 	/*
8229 	 * Spill the event counters of the dead processor
8230 	 * into the current processors event counters.
8231 	 * This artificially elevates the count of the current
8232 	 * processor.
8233 	 */
8234 	vm_events_fold_cpu(cpu);
8235 
8236 	/*
8237 	 * Zero the differential counters of the dead processor
8238 	 * so that the vm statistics are consistent.
8239 	 *
8240 	 * This is only okay since the processor is dead and cannot
8241 	 * race with what we are doing.
8242 	 */
8243 	cpu_vm_stats_fold(cpu);
8244 
8245 	for_each_populated_zone(zone)
8246 		zone_pcp_update(zone, 0);
8247 
8248 	return 0;
8249 }
8250 
8251 static int page_alloc_cpu_online(unsigned int cpu)
8252 {
8253 	struct zone *zone;
8254 
8255 	for_each_populated_zone(zone)
8256 		zone_pcp_update(zone, 1);
8257 	return 0;
8258 }
8259 
8260 #ifdef CONFIG_NUMA
8261 int hashdist = HASHDIST_DEFAULT;
8262 
8263 static int __init set_hashdist(char *str)
8264 {
8265 	if (!str)
8266 		return 0;
8267 	hashdist = simple_strtoul(str, &str, 0);
8268 	return 1;
8269 }
8270 __setup("hashdist=", set_hashdist);
8271 #endif
8272 
8273 void __init page_alloc_init(void)
8274 {
8275 	int ret;
8276 
8277 #ifdef CONFIG_NUMA
8278 	if (num_node_state(N_MEMORY) == 1)
8279 		hashdist = 0;
8280 #endif
8281 
8282 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8283 					"mm/page_alloc:pcp",
8284 					page_alloc_cpu_online,
8285 					page_alloc_cpu_dead);
8286 	WARN_ON(ret < 0);
8287 }
8288 
8289 /*
8290  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8291  *	or min_free_kbytes changes.
8292  */
8293 static void calculate_totalreserve_pages(void)
8294 {
8295 	struct pglist_data *pgdat;
8296 	unsigned long reserve_pages = 0;
8297 	enum zone_type i, j;
8298 
8299 	for_each_online_pgdat(pgdat) {
8300 
8301 		pgdat->totalreserve_pages = 0;
8302 
8303 		for (i = 0; i < MAX_NR_ZONES; i++) {
8304 			struct zone *zone = pgdat->node_zones + i;
8305 			long max = 0;
8306 			unsigned long managed_pages = zone_managed_pages(zone);
8307 
8308 			/* Find valid and maximum lowmem_reserve in the zone */
8309 			for (j = i; j < MAX_NR_ZONES; j++) {
8310 				if (zone->lowmem_reserve[j] > max)
8311 					max = zone->lowmem_reserve[j];
8312 			}
8313 
8314 			/* we treat the high watermark as reserved pages. */
8315 			max += high_wmark_pages(zone);
8316 
8317 			if (max > managed_pages)
8318 				max = managed_pages;
8319 
8320 			pgdat->totalreserve_pages += max;
8321 
8322 			reserve_pages += max;
8323 		}
8324 	}
8325 	totalreserve_pages = reserve_pages;
8326 }
8327 
8328 /*
8329  * setup_per_zone_lowmem_reserve - called whenever
8330  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8331  *	has a correct pages reserved value, so an adequate number of
8332  *	pages are left in the zone after a successful __alloc_pages().
8333  */
8334 static void setup_per_zone_lowmem_reserve(void)
8335 {
8336 	struct pglist_data *pgdat;
8337 	enum zone_type i, j;
8338 
8339 	for_each_online_pgdat(pgdat) {
8340 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8341 			struct zone *zone = &pgdat->node_zones[i];
8342 			int ratio = sysctl_lowmem_reserve_ratio[i];
8343 			bool clear = !ratio || !zone_managed_pages(zone);
8344 			unsigned long managed_pages = 0;
8345 
8346 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8347 				struct zone *upper_zone = &pgdat->node_zones[j];
8348 
8349 				managed_pages += zone_managed_pages(upper_zone);
8350 
8351 				if (clear)
8352 					zone->lowmem_reserve[j] = 0;
8353 				else
8354 					zone->lowmem_reserve[j] = managed_pages / ratio;
8355 			}
8356 		}
8357 	}
8358 
8359 	/* update totalreserve_pages */
8360 	calculate_totalreserve_pages();
8361 }
8362 
8363 static void __setup_per_zone_wmarks(void)
8364 {
8365 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8366 	unsigned long lowmem_pages = 0;
8367 	struct zone *zone;
8368 	unsigned long flags;
8369 
8370 	/* Calculate total number of !ZONE_HIGHMEM pages */
8371 	for_each_zone(zone) {
8372 		if (!is_highmem(zone))
8373 			lowmem_pages += zone_managed_pages(zone);
8374 	}
8375 
8376 	for_each_zone(zone) {
8377 		u64 tmp;
8378 
8379 		spin_lock_irqsave(&zone->lock, flags);
8380 		tmp = (u64)pages_min * zone_managed_pages(zone);
8381 		do_div(tmp, lowmem_pages);
8382 		if (is_highmem(zone)) {
8383 			/*
8384 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8385 			 * need highmem pages, so cap pages_min to a small
8386 			 * value here.
8387 			 *
8388 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8389 			 * deltas control async page reclaim, and so should
8390 			 * not be capped for highmem.
8391 			 */
8392 			unsigned long min_pages;
8393 
8394 			min_pages = zone_managed_pages(zone) / 1024;
8395 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8396 			zone->_watermark[WMARK_MIN] = min_pages;
8397 		} else {
8398 			/*
8399 			 * If it's a lowmem zone, reserve a number of pages
8400 			 * proportionate to the zone's size.
8401 			 */
8402 			zone->_watermark[WMARK_MIN] = tmp;
8403 		}
8404 
8405 		/*
8406 		 * Set the kswapd watermarks distance according to the
8407 		 * scale factor in proportion to available memory, but
8408 		 * ensure a minimum size on small systems.
8409 		 */
8410 		tmp = max_t(u64, tmp >> 2,
8411 			    mult_frac(zone_managed_pages(zone),
8412 				      watermark_scale_factor, 10000));
8413 
8414 		zone->watermark_boost = 0;
8415 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8416 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8417 
8418 		spin_unlock_irqrestore(&zone->lock, flags);
8419 	}
8420 
8421 	/* update totalreserve_pages */
8422 	calculate_totalreserve_pages();
8423 }
8424 
8425 /**
8426  * setup_per_zone_wmarks - called when min_free_kbytes changes
8427  * or when memory is hot-{added|removed}
8428  *
8429  * Ensures that the watermark[min,low,high] values for each zone are set
8430  * correctly with respect to min_free_kbytes.
8431  */
8432 void setup_per_zone_wmarks(void)
8433 {
8434 	struct zone *zone;
8435 	static DEFINE_SPINLOCK(lock);
8436 
8437 	spin_lock(&lock);
8438 	__setup_per_zone_wmarks();
8439 	spin_unlock(&lock);
8440 
8441 	/*
8442 	 * The watermark size have changed so update the pcpu batch
8443 	 * and high limits or the limits may be inappropriate.
8444 	 */
8445 	for_each_zone(zone)
8446 		zone_pcp_update(zone, 0);
8447 }
8448 
8449 /*
8450  * Initialise min_free_kbytes.
8451  *
8452  * For small machines we want it small (128k min).  For large machines
8453  * we want it large (256MB max).  But it is not linear, because network
8454  * bandwidth does not increase linearly with machine size.  We use
8455  *
8456  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8457  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8458  *
8459  * which yields
8460  *
8461  * 16MB:	512k
8462  * 32MB:	724k
8463  * 64MB:	1024k
8464  * 128MB:	1448k
8465  * 256MB:	2048k
8466  * 512MB:	2896k
8467  * 1024MB:	4096k
8468  * 2048MB:	5792k
8469  * 4096MB:	8192k
8470  * 8192MB:	11584k
8471  * 16384MB:	16384k
8472  */
8473 void calculate_min_free_kbytes(void)
8474 {
8475 	unsigned long lowmem_kbytes;
8476 	int new_min_free_kbytes;
8477 
8478 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8479 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8480 
8481 	if (new_min_free_kbytes > user_min_free_kbytes)
8482 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8483 	else
8484 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8485 				new_min_free_kbytes, user_min_free_kbytes);
8486 
8487 }
8488 
8489 int __meminit init_per_zone_wmark_min(void)
8490 {
8491 	calculate_min_free_kbytes();
8492 	setup_per_zone_wmarks();
8493 	refresh_zone_stat_thresholds();
8494 	setup_per_zone_lowmem_reserve();
8495 
8496 #ifdef CONFIG_NUMA
8497 	setup_min_unmapped_ratio();
8498 	setup_min_slab_ratio();
8499 #endif
8500 
8501 	khugepaged_min_free_kbytes_update();
8502 
8503 	return 0;
8504 }
8505 postcore_initcall(init_per_zone_wmark_min)
8506 
8507 /*
8508  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8509  *	that we can call two helper functions whenever min_free_kbytes
8510  *	changes.
8511  */
8512 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8513 		void *buffer, size_t *length, loff_t *ppos)
8514 {
8515 	int rc;
8516 
8517 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8518 	if (rc)
8519 		return rc;
8520 
8521 	if (write) {
8522 		user_min_free_kbytes = min_free_kbytes;
8523 		setup_per_zone_wmarks();
8524 	}
8525 	return 0;
8526 }
8527 
8528 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8529 		void *buffer, size_t *length, loff_t *ppos)
8530 {
8531 	int rc;
8532 
8533 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8534 	if (rc)
8535 		return rc;
8536 
8537 	if (write)
8538 		setup_per_zone_wmarks();
8539 
8540 	return 0;
8541 }
8542 
8543 #ifdef CONFIG_NUMA
8544 static void setup_min_unmapped_ratio(void)
8545 {
8546 	pg_data_t *pgdat;
8547 	struct zone *zone;
8548 
8549 	for_each_online_pgdat(pgdat)
8550 		pgdat->min_unmapped_pages = 0;
8551 
8552 	for_each_zone(zone)
8553 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8554 						         sysctl_min_unmapped_ratio) / 100;
8555 }
8556 
8557 
8558 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8559 		void *buffer, size_t *length, loff_t *ppos)
8560 {
8561 	int rc;
8562 
8563 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8564 	if (rc)
8565 		return rc;
8566 
8567 	setup_min_unmapped_ratio();
8568 
8569 	return 0;
8570 }
8571 
8572 static void setup_min_slab_ratio(void)
8573 {
8574 	pg_data_t *pgdat;
8575 	struct zone *zone;
8576 
8577 	for_each_online_pgdat(pgdat)
8578 		pgdat->min_slab_pages = 0;
8579 
8580 	for_each_zone(zone)
8581 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8582 						     sysctl_min_slab_ratio) / 100;
8583 }
8584 
8585 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8586 		void *buffer, size_t *length, loff_t *ppos)
8587 {
8588 	int rc;
8589 
8590 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8591 	if (rc)
8592 		return rc;
8593 
8594 	setup_min_slab_ratio();
8595 
8596 	return 0;
8597 }
8598 #endif
8599 
8600 /*
8601  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8602  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8603  *	whenever sysctl_lowmem_reserve_ratio changes.
8604  *
8605  * The reserve ratio obviously has absolutely no relation with the
8606  * minimum watermarks. The lowmem reserve ratio can only make sense
8607  * if in function of the boot time zone sizes.
8608  */
8609 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8610 		void *buffer, size_t *length, loff_t *ppos)
8611 {
8612 	int i;
8613 
8614 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8615 
8616 	for (i = 0; i < MAX_NR_ZONES; i++) {
8617 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8618 			sysctl_lowmem_reserve_ratio[i] = 0;
8619 	}
8620 
8621 	setup_per_zone_lowmem_reserve();
8622 	return 0;
8623 }
8624 
8625 /*
8626  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8627  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8628  * pagelist can have before it gets flushed back to buddy allocator.
8629  */
8630 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8631 		int write, void *buffer, size_t *length, loff_t *ppos)
8632 {
8633 	struct zone *zone;
8634 	int old_percpu_pagelist_high_fraction;
8635 	int ret;
8636 
8637 	mutex_lock(&pcp_batch_high_lock);
8638 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8639 
8640 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8641 	if (!write || ret < 0)
8642 		goto out;
8643 
8644 	/* Sanity checking to avoid pcp imbalance */
8645 	if (percpu_pagelist_high_fraction &&
8646 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8647 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8648 		ret = -EINVAL;
8649 		goto out;
8650 	}
8651 
8652 	/* No change? */
8653 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8654 		goto out;
8655 
8656 	for_each_populated_zone(zone)
8657 		zone_set_pageset_high_and_batch(zone, 0);
8658 out:
8659 	mutex_unlock(&pcp_batch_high_lock);
8660 	return ret;
8661 }
8662 
8663 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8664 /*
8665  * Returns the number of pages that arch has reserved but
8666  * is not known to alloc_large_system_hash().
8667  */
8668 static unsigned long __init arch_reserved_kernel_pages(void)
8669 {
8670 	return 0;
8671 }
8672 #endif
8673 
8674 /*
8675  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8676  * machines. As memory size is increased the scale is also increased but at
8677  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8678  * quadruples the scale is increased by one, which means the size of hash table
8679  * only doubles, instead of quadrupling as well.
8680  * Because 32-bit systems cannot have large physical memory, where this scaling
8681  * makes sense, it is disabled on such platforms.
8682  */
8683 #if __BITS_PER_LONG > 32
8684 #define ADAPT_SCALE_BASE	(64ul << 30)
8685 #define ADAPT_SCALE_SHIFT	2
8686 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8687 #endif
8688 
8689 /*
8690  * allocate a large system hash table from bootmem
8691  * - it is assumed that the hash table must contain an exact power-of-2
8692  *   quantity of entries
8693  * - limit is the number of hash buckets, not the total allocation size
8694  */
8695 void *__init alloc_large_system_hash(const char *tablename,
8696 				     unsigned long bucketsize,
8697 				     unsigned long numentries,
8698 				     int scale,
8699 				     int flags,
8700 				     unsigned int *_hash_shift,
8701 				     unsigned int *_hash_mask,
8702 				     unsigned long low_limit,
8703 				     unsigned long high_limit)
8704 {
8705 	unsigned long long max = high_limit;
8706 	unsigned long log2qty, size;
8707 	void *table = NULL;
8708 	gfp_t gfp_flags;
8709 	bool virt;
8710 	bool huge;
8711 
8712 	/* allow the kernel cmdline to have a say */
8713 	if (!numentries) {
8714 		/* round applicable memory size up to nearest megabyte */
8715 		numentries = nr_kernel_pages;
8716 		numentries -= arch_reserved_kernel_pages();
8717 
8718 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8719 		if (PAGE_SHIFT < 20)
8720 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8721 
8722 #if __BITS_PER_LONG > 32
8723 		if (!high_limit) {
8724 			unsigned long adapt;
8725 
8726 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8727 			     adapt <<= ADAPT_SCALE_SHIFT)
8728 				scale++;
8729 		}
8730 #endif
8731 
8732 		/* limit to 1 bucket per 2^scale bytes of low memory */
8733 		if (scale > PAGE_SHIFT)
8734 			numentries >>= (scale - PAGE_SHIFT);
8735 		else
8736 			numentries <<= (PAGE_SHIFT - scale);
8737 
8738 		/* Make sure we've got at least a 0-order allocation.. */
8739 		if (unlikely(flags & HASH_SMALL)) {
8740 			/* Makes no sense without HASH_EARLY */
8741 			WARN_ON(!(flags & HASH_EARLY));
8742 			if (!(numentries >> *_hash_shift)) {
8743 				numentries = 1UL << *_hash_shift;
8744 				BUG_ON(!numentries);
8745 			}
8746 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8747 			numentries = PAGE_SIZE / bucketsize;
8748 	}
8749 	numentries = roundup_pow_of_two(numentries);
8750 
8751 	/* limit allocation size to 1/16 total memory by default */
8752 	if (max == 0) {
8753 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8754 		do_div(max, bucketsize);
8755 	}
8756 	max = min(max, 0x80000000ULL);
8757 
8758 	if (numentries < low_limit)
8759 		numentries = low_limit;
8760 	if (numentries > max)
8761 		numentries = max;
8762 
8763 	log2qty = ilog2(numentries);
8764 
8765 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8766 	do {
8767 		virt = false;
8768 		size = bucketsize << log2qty;
8769 		if (flags & HASH_EARLY) {
8770 			if (flags & HASH_ZERO)
8771 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8772 			else
8773 				table = memblock_alloc_raw(size,
8774 							   SMP_CACHE_BYTES);
8775 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8776 			table = __vmalloc(size, gfp_flags);
8777 			virt = true;
8778 			if (table)
8779 				huge = is_vm_area_hugepages(table);
8780 		} else {
8781 			/*
8782 			 * If bucketsize is not a power-of-two, we may free
8783 			 * some pages at the end of hash table which
8784 			 * alloc_pages_exact() automatically does
8785 			 */
8786 			table = alloc_pages_exact(size, gfp_flags);
8787 			kmemleak_alloc(table, size, 1, gfp_flags);
8788 		}
8789 	} while (!table && size > PAGE_SIZE && --log2qty);
8790 
8791 	if (!table)
8792 		panic("Failed to allocate %s hash table\n", tablename);
8793 
8794 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8795 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8796 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8797 
8798 	if (_hash_shift)
8799 		*_hash_shift = log2qty;
8800 	if (_hash_mask)
8801 		*_hash_mask = (1 << log2qty) - 1;
8802 
8803 	return table;
8804 }
8805 
8806 /*
8807  * This function checks whether pageblock includes unmovable pages or not.
8808  *
8809  * PageLRU check without isolation or lru_lock could race so that
8810  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8811  * check without lock_page also may miss some movable non-lru pages at
8812  * race condition. So you can't expect this function should be exact.
8813  *
8814  * Returns a page without holding a reference. If the caller wants to
8815  * dereference that page (e.g., dumping), it has to make sure that it
8816  * cannot get removed (e.g., via memory unplug) concurrently.
8817  *
8818  */
8819 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8820 				 int migratetype, int flags)
8821 {
8822 	unsigned long iter = 0;
8823 	unsigned long pfn = page_to_pfn(page);
8824 	unsigned long offset = pfn % pageblock_nr_pages;
8825 
8826 	if (is_migrate_cma_page(page)) {
8827 		/*
8828 		 * CMA allocations (alloc_contig_range) really need to mark
8829 		 * isolate CMA pageblocks even when they are not movable in fact
8830 		 * so consider them movable here.
8831 		 */
8832 		if (is_migrate_cma(migratetype))
8833 			return NULL;
8834 
8835 		return page;
8836 	}
8837 
8838 	for (; iter < pageblock_nr_pages - offset; iter++) {
8839 		page = pfn_to_page(pfn + iter);
8840 
8841 		/*
8842 		 * Both, bootmem allocations and memory holes are marked
8843 		 * PG_reserved and are unmovable. We can even have unmovable
8844 		 * allocations inside ZONE_MOVABLE, for example when
8845 		 * specifying "movablecore".
8846 		 */
8847 		if (PageReserved(page))
8848 			return page;
8849 
8850 		/*
8851 		 * If the zone is movable and we have ruled out all reserved
8852 		 * pages then it should be reasonably safe to assume the rest
8853 		 * is movable.
8854 		 */
8855 		if (zone_idx(zone) == ZONE_MOVABLE)
8856 			continue;
8857 
8858 		/*
8859 		 * Hugepages are not in LRU lists, but they're movable.
8860 		 * THPs are on the LRU, but need to be counted as #small pages.
8861 		 * We need not scan over tail pages because we don't
8862 		 * handle each tail page individually in migration.
8863 		 */
8864 		if (PageHuge(page) || PageTransCompound(page)) {
8865 			struct page *head = compound_head(page);
8866 			unsigned int skip_pages;
8867 
8868 			if (PageHuge(page)) {
8869 				if (!hugepage_migration_supported(page_hstate(head)))
8870 					return page;
8871 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8872 				return page;
8873 			}
8874 
8875 			skip_pages = compound_nr(head) - (page - head);
8876 			iter += skip_pages - 1;
8877 			continue;
8878 		}
8879 
8880 		/*
8881 		 * We can't use page_count without pin a page
8882 		 * because another CPU can free compound page.
8883 		 * This check already skips compound tails of THP
8884 		 * because their page->_refcount is zero at all time.
8885 		 */
8886 		if (!page_ref_count(page)) {
8887 			if (PageBuddy(page))
8888 				iter += (1 << buddy_order(page)) - 1;
8889 			continue;
8890 		}
8891 
8892 		/*
8893 		 * The HWPoisoned page may be not in buddy system, and
8894 		 * page_count() is not 0.
8895 		 */
8896 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8897 			continue;
8898 
8899 		/*
8900 		 * We treat all PageOffline() pages as movable when offlining
8901 		 * to give drivers a chance to decrement their reference count
8902 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8903 		 * can be offlined as there are no direct references anymore.
8904 		 * For actually unmovable PageOffline() where the driver does
8905 		 * not support this, we will fail later when trying to actually
8906 		 * move these pages that still have a reference count > 0.
8907 		 * (false negatives in this function only)
8908 		 */
8909 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8910 			continue;
8911 
8912 		if (__PageMovable(page) || PageLRU(page))
8913 			continue;
8914 
8915 		/*
8916 		 * If there are RECLAIMABLE pages, we need to check
8917 		 * it.  But now, memory offline itself doesn't call
8918 		 * shrink_node_slabs() and it still to be fixed.
8919 		 */
8920 		return page;
8921 	}
8922 	return NULL;
8923 }
8924 
8925 #ifdef CONFIG_CONTIG_ALLOC
8926 static unsigned long pfn_max_align_down(unsigned long pfn)
8927 {
8928 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8929 			     pageblock_nr_pages) - 1);
8930 }
8931 
8932 static unsigned long pfn_max_align_up(unsigned long pfn)
8933 {
8934 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8935 				pageblock_nr_pages));
8936 }
8937 
8938 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8939 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8940 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8941 static void alloc_contig_dump_pages(struct list_head *page_list)
8942 {
8943 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8944 
8945 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8946 		struct page *page;
8947 
8948 		dump_stack();
8949 		list_for_each_entry(page, page_list, lru)
8950 			dump_page(page, "migration failure");
8951 	}
8952 }
8953 #else
8954 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8955 {
8956 }
8957 #endif
8958 
8959 /* [start, end) must belong to a single zone. */
8960 static int __alloc_contig_migrate_range(struct compact_control *cc,
8961 					unsigned long start, unsigned long end)
8962 {
8963 	/* This function is based on compact_zone() from compaction.c. */
8964 	unsigned int nr_reclaimed;
8965 	unsigned long pfn = start;
8966 	unsigned int tries = 0;
8967 	int ret = 0;
8968 	struct migration_target_control mtc = {
8969 		.nid = zone_to_nid(cc->zone),
8970 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8971 	};
8972 
8973 	lru_cache_disable();
8974 
8975 	while (pfn < end || !list_empty(&cc->migratepages)) {
8976 		if (fatal_signal_pending(current)) {
8977 			ret = -EINTR;
8978 			break;
8979 		}
8980 
8981 		if (list_empty(&cc->migratepages)) {
8982 			cc->nr_migratepages = 0;
8983 			ret = isolate_migratepages_range(cc, pfn, end);
8984 			if (ret && ret != -EAGAIN)
8985 				break;
8986 			pfn = cc->migrate_pfn;
8987 			tries = 0;
8988 		} else if (++tries == 5) {
8989 			ret = -EBUSY;
8990 			break;
8991 		}
8992 
8993 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8994 							&cc->migratepages);
8995 		cc->nr_migratepages -= nr_reclaimed;
8996 
8997 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8998 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
8999 
9000 		/*
9001 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9002 		 * to retry again over this error, so do the same here.
9003 		 */
9004 		if (ret == -ENOMEM)
9005 			break;
9006 	}
9007 
9008 	lru_cache_enable();
9009 	if (ret < 0) {
9010 		if (ret == -EBUSY)
9011 			alloc_contig_dump_pages(&cc->migratepages);
9012 		putback_movable_pages(&cc->migratepages);
9013 		return ret;
9014 	}
9015 	return 0;
9016 }
9017 
9018 /**
9019  * alloc_contig_range() -- tries to allocate given range of pages
9020  * @start:	start PFN to allocate
9021  * @end:	one-past-the-last PFN to allocate
9022  * @migratetype:	migratetype of the underlying pageblocks (either
9023  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9024  *			in range must have the same migratetype and it must
9025  *			be either of the two.
9026  * @gfp_mask:	GFP mask to use during compaction
9027  *
9028  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9029  * aligned.  The PFN range must belong to a single zone.
9030  *
9031  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9032  * pageblocks in the range.  Once isolated, the pageblocks should not
9033  * be modified by others.
9034  *
9035  * Return: zero on success or negative error code.  On success all
9036  * pages which PFN is in [start, end) are allocated for the caller and
9037  * need to be freed with free_contig_range().
9038  */
9039 int alloc_contig_range(unsigned long start, unsigned long end,
9040 		       unsigned migratetype, gfp_t gfp_mask)
9041 {
9042 	unsigned long outer_start, outer_end;
9043 	unsigned int order;
9044 	int ret = 0;
9045 
9046 	struct compact_control cc = {
9047 		.nr_migratepages = 0,
9048 		.order = -1,
9049 		.zone = page_zone(pfn_to_page(start)),
9050 		.mode = MIGRATE_SYNC,
9051 		.ignore_skip_hint = true,
9052 		.no_set_skip_hint = true,
9053 		.gfp_mask = current_gfp_context(gfp_mask),
9054 		.alloc_contig = true,
9055 	};
9056 	INIT_LIST_HEAD(&cc.migratepages);
9057 
9058 	/*
9059 	 * What we do here is we mark all pageblocks in range as
9060 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9061 	 * have different sizes, and due to the way page allocator
9062 	 * work, we align the range to biggest of the two pages so
9063 	 * that page allocator won't try to merge buddies from
9064 	 * different pageblocks and change MIGRATE_ISOLATE to some
9065 	 * other migration type.
9066 	 *
9067 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9068 	 * migrate the pages from an unaligned range (ie. pages that
9069 	 * we are interested in).  This will put all the pages in
9070 	 * range back to page allocator as MIGRATE_ISOLATE.
9071 	 *
9072 	 * When this is done, we take the pages in range from page
9073 	 * allocator removing them from the buddy system.  This way
9074 	 * page allocator will never consider using them.
9075 	 *
9076 	 * This lets us mark the pageblocks back as
9077 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9078 	 * aligned range but not in the unaligned, original range are
9079 	 * put back to page allocator so that buddy can use them.
9080 	 */
9081 
9082 	ret = start_isolate_page_range(pfn_max_align_down(start),
9083 				       pfn_max_align_up(end), migratetype, 0);
9084 	if (ret)
9085 		return ret;
9086 
9087 	drain_all_pages(cc.zone);
9088 
9089 	/*
9090 	 * In case of -EBUSY, we'd like to know which page causes problem.
9091 	 * So, just fall through. test_pages_isolated() has a tracepoint
9092 	 * which will report the busy page.
9093 	 *
9094 	 * It is possible that busy pages could become available before
9095 	 * the call to test_pages_isolated, and the range will actually be
9096 	 * allocated.  So, if we fall through be sure to clear ret so that
9097 	 * -EBUSY is not accidentally used or returned to caller.
9098 	 */
9099 	ret = __alloc_contig_migrate_range(&cc, start, end);
9100 	if (ret && ret != -EBUSY)
9101 		goto done;
9102 	ret = 0;
9103 
9104 	/*
9105 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9106 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9107 	 * more, all pages in [start, end) are free in page allocator.
9108 	 * What we are going to do is to allocate all pages from
9109 	 * [start, end) (that is remove them from page allocator).
9110 	 *
9111 	 * The only problem is that pages at the beginning and at the
9112 	 * end of interesting range may be not aligned with pages that
9113 	 * page allocator holds, ie. they can be part of higher order
9114 	 * pages.  Because of this, we reserve the bigger range and
9115 	 * once this is done free the pages we are not interested in.
9116 	 *
9117 	 * We don't have to hold zone->lock here because the pages are
9118 	 * isolated thus they won't get removed from buddy.
9119 	 */
9120 
9121 	order = 0;
9122 	outer_start = start;
9123 	while (!PageBuddy(pfn_to_page(outer_start))) {
9124 		if (++order >= MAX_ORDER) {
9125 			outer_start = start;
9126 			break;
9127 		}
9128 		outer_start &= ~0UL << order;
9129 	}
9130 
9131 	if (outer_start != start) {
9132 		order = buddy_order(pfn_to_page(outer_start));
9133 
9134 		/*
9135 		 * outer_start page could be small order buddy page and
9136 		 * it doesn't include start page. Adjust outer_start
9137 		 * in this case to report failed page properly
9138 		 * on tracepoint in test_pages_isolated()
9139 		 */
9140 		if (outer_start + (1UL << order) <= start)
9141 			outer_start = start;
9142 	}
9143 
9144 	/* Make sure the range is really isolated. */
9145 	if (test_pages_isolated(outer_start, end, 0)) {
9146 		ret = -EBUSY;
9147 		goto done;
9148 	}
9149 
9150 	/* Grab isolated pages from freelists. */
9151 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9152 	if (!outer_end) {
9153 		ret = -EBUSY;
9154 		goto done;
9155 	}
9156 
9157 	/* Free head and tail (if any) */
9158 	if (start != outer_start)
9159 		free_contig_range(outer_start, start - outer_start);
9160 	if (end != outer_end)
9161 		free_contig_range(end, outer_end - end);
9162 
9163 done:
9164 	undo_isolate_page_range(pfn_max_align_down(start),
9165 				pfn_max_align_up(end), migratetype);
9166 	return ret;
9167 }
9168 EXPORT_SYMBOL(alloc_contig_range);
9169 
9170 static int __alloc_contig_pages(unsigned long start_pfn,
9171 				unsigned long nr_pages, gfp_t gfp_mask)
9172 {
9173 	unsigned long end_pfn = start_pfn + nr_pages;
9174 
9175 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9176 				  gfp_mask);
9177 }
9178 
9179 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9180 				   unsigned long nr_pages)
9181 {
9182 	unsigned long i, end_pfn = start_pfn + nr_pages;
9183 	struct page *page;
9184 
9185 	for (i = start_pfn; i < end_pfn; i++) {
9186 		page = pfn_to_online_page(i);
9187 		if (!page)
9188 			return false;
9189 
9190 		if (page_zone(page) != z)
9191 			return false;
9192 
9193 		if (PageReserved(page))
9194 			return false;
9195 	}
9196 	return true;
9197 }
9198 
9199 static bool zone_spans_last_pfn(const struct zone *zone,
9200 				unsigned long start_pfn, unsigned long nr_pages)
9201 {
9202 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9203 
9204 	return zone_spans_pfn(zone, last_pfn);
9205 }
9206 
9207 /**
9208  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9209  * @nr_pages:	Number of contiguous pages to allocate
9210  * @gfp_mask:	GFP mask to limit search and used during compaction
9211  * @nid:	Target node
9212  * @nodemask:	Mask for other possible nodes
9213  *
9214  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9215  * on an applicable zonelist to find a contiguous pfn range which can then be
9216  * tried for allocation with alloc_contig_range(). This routine is intended
9217  * for allocation requests which can not be fulfilled with the buddy allocator.
9218  *
9219  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9220  * power of two then the alignment is guaranteed to be to the given nr_pages
9221  * (e.g. 1GB request would be aligned to 1GB).
9222  *
9223  * Allocated pages can be freed with free_contig_range() or by manually calling
9224  * __free_page() on each allocated page.
9225  *
9226  * Return: pointer to contiguous pages on success, or NULL if not successful.
9227  */
9228 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9229 				int nid, nodemask_t *nodemask)
9230 {
9231 	unsigned long ret, pfn, flags;
9232 	struct zonelist *zonelist;
9233 	struct zone *zone;
9234 	struct zoneref *z;
9235 
9236 	zonelist = node_zonelist(nid, gfp_mask);
9237 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9238 					gfp_zone(gfp_mask), nodemask) {
9239 		spin_lock_irqsave(&zone->lock, flags);
9240 
9241 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9242 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9243 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9244 				/*
9245 				 * We release the zone lock here because
9246 				 * alloc_contig_range() will also lock the zone
9247 				 * at some point. If there's an allocation
9248 				 * spinning on this lock, it may win the race
9249 				 * and cause alloc_contig_range() to fail...
9250 				 */
9251 				spin_unlock_irqrestore(&zone->lock, flags);
9252 				ret = __alloc_contig_pages(pfn, nr_pages,
9253 							gfp_mask);
9254 				if (!ret)
9255 					return pfn_to_page(pfn);
9256 				spin_lock_irqsave(&zone->lock, flags);
9257 			}
9258 			pfn += nr_pages;
9259 		}
9260 		spin_unlock_irqrestore(&zone->lock, flags);
9261 	}
9262 	return NULL;
9263 }
9264 #endif /* CONFIG_CONTIG_ALLOC */
9265 
9266 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9267 {
9268 	unsigned long count = 0;
9269 
9270 	for (; nr_pages--; pfn++) {
9271 		struct page *page = pfn_to_page(pfn);
9272 
9273 		count += page_count(page) != 1;
9274 		__free_page(page);
9275 	}
9276 	WARN(count != 0, "%lu pages are still in use!\n", count);
9277 }
9278 EXPORT_SYMBOL(free_contig_range);
9279 
9280 /*
9281  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9282  * page high values need to be recalculated.
9283  */
9284 void zone_pcp_update(struct zone *zone, int cpu_online)
9285 {
9286 	mutex_lock(&pcp_batch_high_lock);
9287 	zone_set_pageset_high_and_batch(zone, cpu_online);
9288 	mutex_unlock(&pcp_batch_high_lock);
9289 }
9290 
9291 /*
9292  * Effectively disable pcplists for the zone by setting the high limit to 0
9293  * and draining all cpus. A concurrent page freeing on another CPU that's about
9294  * to put the page on pcplist will either finish before the drain and the page
9295  * will be drained, or observe the new high limit and skip the pcplist.
9296  *
9297  * Must be paired with a call to zone_pcp_enable().
9298  */
9299 void zone_pcp_disable(struct zone *zone)
9300 {
9301 	mutex_lock(&pcp_batch_high_lock);
9302 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9303 	__drain_all_pages(zone, true);
9304 }
9305 
9306 void zone_pcp_enable(struct zone *zone)
9307 {
9308 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9309 	mutex_unlock(&pcp_batch_high_lock);
9310 }
9311 
9312 void zone_pcp_reset(struct zone *zone)
9313 {
9314 	int cpu;
9315 	struct per_cpu_zonestat *pzstats;
9316 
9317 	if (zone->per_cpu_pageset != &boot_pageset) {
9318 		for_each_online_cpu(cpu) {
9319 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9320 			drain_zonestat(zone, pzstats);
9321 		}
9322 		free_percpu(zone->per_cpu_pageset);
9323 		free_percpu(zone->per_cpu_zonestats);
9324 		zone->per_cpu_pageset = &boot_pageset;
9325 		zone->per_cpu_zonestats = &boot_zonestats;
9326 	}
9327 }
9328 
9329 #ifdef CONFIG_MEMORY_HOTREMOVE
9330 /*
9331  * All pages in the range must be in a single zone, must not contain holes,
9332  * must span full sections, and must be isolated before calling this function.
9333  */
9334 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9335 {
9336 	unsigned long pfn = start_pfn;
9337 	struct page *page;
9338 	struct zone *zone;
9339 	unsigned int order;
9340 	unsigned long flags;
9341 
9342 	offline_mem_sections(pfn, end_pfn);
9343 	zone = page_zone(pfn_to_page(pfn));
9344 	spin_lock_irqsave(&zone->lock, flags);
9345 	while (pfn < end_pfn) {
9346 		page = pfn_to_page(pfn);
9347 		/*
9348 		 * The HWPoisoned page may be not in buddy system, and
9349 		 * page_count() is not 0.
9350 		 */
9351 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9352 			pfn++;
9353 			continue;
9354 		}
9355 		/*
9356 		 * At this point all remaining PageOffline() pages have a
9357 		 * reference count of 0 and can simply be skipped.
9358 		 */
9359 		if (PageOffline(page)) {
9360 			BUG_ON(page_count(page));
9361 			BUG_ON(PageBuddy(page));
9362 			pfn++;
9363 			continue;
9364 		}
9365 
9366 		BUG_ON(page_count(page));
9367 		BUG_ON(!PageBuddy(page));
9368 		order = buddy_order(page);
9369 		del_page_from_free_list(page, zone, order);
9370 		pfn += (1 << order);
9371 	}
9372 	spin_unlock_irqrestore(&zone->lock, flags);
9373 }
9374 #endif
9375 
9376 /*
9377  * This function returns a stable result only if called under zone lock.
9378  */
9379 bool is_free_buddy_page(struct page *page)
9380 {
9381 	unsigned long pfn = page_to_pfn(page);
9382 	unsigned int order;
9383 
9384 	for (order = 0; order < MAX_ORDER; order++) {
9385 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9386 
9387 		if (PageBuddy(page_head) &&
9388 		    buddy_order_unsafe(page_head) >= order)
9389 			break;
9390 	}
9391 
9392 	return order < MAX_ORDER;
9393 }
9394 
9395 #ifdef CONFIG_MEMORY_FAILURE
9396 /*
9397  * Break down a higher-order page in sub-pages, and keep our target out of
9398  * buddy allocator.
9399  */
9400 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9401 				   struct page *target, int low, int high,
9402 				   int migratetype)
9403 {
9404 	unsigned long size = 1 << high;
9405 	struct page *current_buddy, *next_page;
9406 
9407 	while (high > low) {
9408 		high--;
9409 		size >>= 1;
9410 
9411 		if (target >= &page[size]) {
9412 			next_page = page + size;
9413 			current_buddy = page;
9414 		} else {
9415 			next_page = page;
9416 			current_buddy = page + size;
9417 		}
9418 
9419 		if (set_page_guard(zone, current_buddy, high, migratetype))
9420 			continue;
9421 
9422 		if (current_buddy != target) {
9423 			add_to_free_list(current_buddy, zone, high, migratetype);
9424 			set_buddy_order(current_buddy, high);
9425 			page = next_page;
9426 		}
9427 	}
9428 }
9429 
9430 /*
9431  * Take a page that will be marked as poisoned off the buddy allocator.
9432  */
9433 bool take_page_off_buddy(struct page *page)
9434 {
9435 	struct zone *zone = page_zone(page);
9436 	unsigned long pfn = page_to_pfn(page);
9437 	unsigned long flags;
9438 	unsigned int order;
9439 	bool ret = false;
9440 
9441 	spin_lock_irqsave(&zone->lock, flags);
9442 	for (order = 0; order < MAX_ORDER; order++) {
9443 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9444 		int page_order = buddy_order(page_head);
9445 
9446 		if (PageBuddy(page_head) && page_order >= order) {
9447 			unsigned long pfn_head = page_to_pfn(page_head);
9448 			int migratetype = get_pfnblock_migratetype(page_head,
9449 								   pfn_head);
9450 
9451 			del_page_from_free_list(page_head, zone, page_order);
9452 			break_down_buddy_pages(zone, page_head, page, 0,
9453 						page_order, migratetype);
9454 			if (!is_migrate_isolate(migratetype))
9455 				__mod_zone_freepage_state(zone, -1, migratetype);
9456 			ret = true;
9457 			break;
9458 		}
9459 		if (page_count(page_head) > 0)
9460 			break;
9461 	}
9462 	spin_unlock_irqrestore(&zone->lock, flags);
9463 	return ret;
9464 }
9465 #endif
9466