1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/kmemcheck.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/slab.h> 32 #include <linux/oom.h> 33 #include <linux/notifier.h> 34 #include <linux/topology.h> 35 #include <linux/sysctl.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/memory_hotplug.h> 39 #include <linux/nodemask.h> 40 #include <linux/vmalloc.h> 41 #include <linux/mempolicy.h> 42 #include <linux/stop_machine.h> 43 #include <linux/sort.h> 44 #include <linux/pfn.h> 45 #include <linux/backing-dev.h> 46 #include <linux/fault-inject.h> 47 #include <linux/page-isolation.h> 48 #include <linux/page_cgroup.h> 49 #include <linux/debugobjects.h> 50 #include <linux/kmemleak.h> 51 52 #include <asm/tlbflush.h> 53 #include <asm/div64.h> 54 #include "internal.h" 55 56 /* 57 * Array of node states. 58 */ 59 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 60 [N_POSSIBLE] = NODE_MASK_ALL, 61 [N_ONLINE] = { { [0] = 1UL } }, 62 #ifndef CONFIG_NUMA 63 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 64 #ifdef CONFIG_HIGHMEM 65 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 66 #endif 67 [N_CPU] = { { [0] = 1UL } }, 68 #endif /* NUMA */ 69 }; 70 EXPORT_SYMBOL(node_states); 71 72 unsigned long totalram_pages __read_mostly; 73 unsigned long totalreserve_pages __read_mostly; 74 unsigned long highest_memmap_pfn __read_mostly; 75 int percpu_pagelist_fraction; 76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 77 78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 79 int pageblock_order __read_mostly; 80 #endif 81 82 static void __free_pages_ok(struct page *page, unsigned int order); 83 84 /* 85 * results with 256, 32 in the lowmem_reserve sysctl: 86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 87 * 1G machine -> (16M dma, 784M normal, 224M high) 88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 91 * 92 * TBD: should special case ZONE_DMA32 machines here - in those we normally 93 * don't need any ZONE_NORMAL reservation 94 */ 95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 96 #ifdef CONFIG_ZONE_DMA 97 256, 98 #endif 99 #ifdef CONFIG_ZONE_DMA32 100 256, 101 #endif 102 #ifdef CONFIG_HIGHMEM 103 32, 104 #endif 105 32, 106 }; 107 108 EXPORT_SYMBOL(totalram_pages); 109 110 static char * const zone_names[MAX_NR_ZONES] = { 111 #ifdef CONFIG_ZONE_DMA 112 "DMA", 113 #endif 114 #ifdef CONFIG_ZONE_DMA32 115 "DMA32", 116 #endif 117 "Normal", 118 #ifdef CONFIG_HIGHMEM 119 "HighMem", 120 #endif 121 "Movable", 122 }; 123 124 int min_free_kbytes = 1024; 125 126 unsigned long __meminitdata nr_kernel_pages; 127 unsigned long __meminitdata nr_all_pages; 128 static unsigned long __meminitdata dma_reserve; 129 130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 131 /* 132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 133 * ranges of memory (RAM) that may be registered with add_active_range(). 134 * Ranges passed to add_active_range() will be merged if possible 135 * so the number of times add_active_range() can be called is 136 * related to the number of nodes and the number of holes 137 */ 138 #ifdef CONFIG_MAX_ACTIVE_REGIONS 139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 141 #else 142 #if MAX_NUMNODES >= 32 143 /* If there can be many nodes, allow up to 50 holes per node */ 144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 145 #else 146 /* By default, allow up to 256 distinct regions */ 147 #define MAX_ACTIVE_REGIONS 256 148 #endif 149 #endif 150 151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 152 static int __meminitdata nr_nodemap_entries; 153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 155 static unsigned long __initdata required_kernelcore; 156 static unsigned long __initdata required_movablecore; 157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 158 159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 160 int movable_zone; 161 EXPORT_SYMBOL(movable_zone); 162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 163 164 #if MAX_NUMNODES > 1 165 int nr_node_ids __read_mostly = MAX_NUMNODES; 166 int nr_online_nodes __read_mostly = 1; 167 EXPORT_SYMBOL(nr_node_ids); 168 EXPORT_SYMBOL(nr_online_nodes); 169 #endif 170 171 int page_group_by_mobility_disabled __read_mostly; 172 173 static void set_pageblock_migratetype(struct page *page, int migratetype) 174 { 175 176 if (unlikely(page_group_by_mobility_disabled)) 177 migratetype = MIGRATE_UNMOVABLE; 178 179 set_pageblock_flags_group(page, (unsigned long)migratetype, 180 PB_migrate, PB_migrate_end); 181 } 182 183 bool oom_killer_disabled __read_mostly; 184 185 #ifdef CONFIG_DEBUG_VM 186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 187 { 188 int ret = 0; 189 unsigned seq; 190 unsigned long pfn = page_to_pfn(page); 191 192 do { 193 seq = zone_span_seqbegin(zone); 194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 195 ret = 1; 196 else if (pfn < zone->zone_start_pfn) 197 ret = 1; 198 } while (zone_span_seqretry(zone, seq)); 199 200 return ret; 201 } 202 203 static int page_is_consistent(struct zone *zone, struct page *page) 204 { 205 if (!pfn_valid_within(page_to_pfn(page))) 206 return 0; 207 if (zone != page_zone(page)) 208 return 0; 209 210 return 1; 211 } 212 /* 213 * Temporary debugging check for pages not lying within a given zone. 214 */ 215 static int bad_range(struct zone *zone, struct page *page) 216 { 217 if (page_outside_zone_boundaries(zone, page)) 218 return 1; 219 if (!page_is_consistent(zone, page)) 220 return 1; 221 222 return 0; 223 } 224 #else 225 static inline int bad_range(struct zone *zone, struct page *page) 226 { 227 return 0; 228 } 229 #endif 230 231 static void bad_page(struct page *page) 232 { 233 static unsigned long resume; 234 static unsigned long nr_shown; 235 static unsigned long nr_unshown; 236 237 /* 238 * Allow a burst of 60 reports, then keep quiet for that minute; 239 * or allow a steady drip of one report per second. 240 */ 241 if (nr_shown == 60) { 242 if (time_before(jiffies, resume)) { 243 nr_unshown++; 244 goto out; 245 } 246 if (nr_unshown) { 247 printk(KERN_ALERT 248 "BUG: Bad page state: %lu messages suppressed\n", 249 nr_unshown); 250 nr_unshown = 0; 251 } 252 nr_shown = 0; 253 } 254 if (nr_shown++ == 0) 255 resume = jiffies + 60 * HZ; 256 257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 258 current->comm, page_to_pfn(page)); 259 printk(KERN_ALERT 260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 261 page, (void *)page->flags, page_count(page), 262 page_mapcount(page), page->mapping, page->index); 263 264 dump_stack(); 265 out: 266 /* Leave bad fields for debug, except PageBuddy could make trouble */ 267 __ClearPageBuddy(page); 268 add_taint(TAINT_BAD_PAGE); 269 } 270 271 /* 272 * Higher-order pages are called "compound pages". They are structured thusly: 273 * 274 * The first PAGE_SIZE page is called the "head page". 275 * 276 * The remaining PAGE_SIZE pages are called "tail pages". 277 * 278 * All pages have PG_compound set. All pages have their ->private pointing at 279 * the head page (even the head page has this). 280 * 281 * The first tail page's ->lru.next holds the address of the compound page's 282 * put_page() function. Its ->lru.prev holds the order of allocation. 283 * This usage means that zero-order pages may not be compound. 284 */ 285 286 static void free_compound_page(struct page *page) 287 { 288 __free_pages_ok(page, compound_order(page)); 289 } 290 291 void prep_compound_page(struct page *page, unsigned long order) 292 { 293 int i; 294 int nr_pages = 1 << order; 295 296 set_compound_page_dtor(page, free_compound_page); 297 set_compound_order(page, order); 298 __SetPageHead(page); 299 for (i = 1; i < nr_pages; i++) { 300 struct page *p = page + i; 301 302 __SetPageTail(p); 303 p->first_page = page; 304 } 305 } 306 307 static int destroy_compound_page(struct page *page, unsigned long order) 308 { 309 int i; 310 int nr_pages = 1 << order; 311 int bad = 0; 312 313 if (unlikely(compound_order(page) != order) || 314 unlikely(!PageHead(page))) { 315 bad_page(page); 316 bad++; 317 } 318 319 __ClearPageHead(page); 320 321 for (i = 1; i < nr_pages; i++) { 322 struct page *p = page + i; 323 324 if (unlikely(!PageTail(p) || (p->first_page != page))) { 325 bad_page(page); 326 bad++; 327 } 328 __ClearPageTail(p); 329 } 330 331 return bad; 332 } 333 334 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 335 { 336 int i; 337 338 /* 339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 340 * and __GFP_HIGHMEM from hard or soft interrupt context. 341 */ 342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 343 for (i = 0; i < (1 << order); i++) 344 clear_highpage(page + i); 345 } 346 347 static inline void set_page_order(struct page *page, int order) 348 { 349 set_page_private(page, order); 350 __SetPageBuddy(page); 351 } 352 353 static inline void rmv_page_order(struct page *page) 354 { 355 __ClearPageBuddy(page); 356 set_page_private(page, 0); 357 } 358 359 /* 360 * Locate the struct page for both the matching buddy in our 361 * pair (buddy1) and the combined O(n+1) page they form (page). 362 * 363 * 1) Any buddy B1 will have an order O twin B2 which satisfies 364 * the following equation: 365 * B2 = B1 ^ (1 << O) 366 * For example, if the starting buddy (buddy2) is #8 its order 367 * 1 buddy is #10: 368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 369 * 370 * 2) Any buddy B will have an order O+1 parent P which 371 * satisfies the following equation: 372 * P = B & ~(1 << O) 373 * 374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 375 */ 376 static inline struct page * 377 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 378 { 379 unsigned long buddy_idx = page_idx ^ (1 << order); 380 381 return page + (buddy_idx - page_idx); 382 } 383 384 static inline unsigned long 385 __find_combined_index(unsigned long page_idx, unsigned int order) 386 { 387 return (page_idx & ~(1 << order)); 388 } 389 390 /* 391 * This function checks whether a page is free && is the buddy 392 * we can do coalesce a page and its buddy if 393 * (a) the buddy is not in a hole && 394 * (b) the buddy is in the buddy system && 395 * (c) a page and its buddy have the same order && 396 * (d) a page and its buddy are in the same zone. 397 * 398 * For recording whether a page is in the buddy system, we use PG_buddy. 399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 400 * 401 * For recording page's order, we use page_private(page). 402 */ 403 static inline int page_is_buddy(struct page *page, struct page *buddy, 404 int order) 405 { 406 if (!pfn_valid_within(page_to_pfn(buddy))) 407 return 0; 408 409 if (page_zone_id(page) != page_zone_id(buddy)) 410 return 0; 411 412 if (PageBuddy(buddy) && page_order(buddy) == order) { 413 VM_BUG_ON(page_count(buddy) != 0); 414 return 1; 415 } 416 return 0; 417 } 418 419 /* 420 * Freeing function for a buddy system allocator. 421 * 422 * The concept of a buddy system is to maintain direct-mapped table 423 * (containing bit values) for memory blocks of various "orders". 424 * The bottom level table contains the map for the smallest allocatable 425 * units of memory (here, pages), and each level above it describes 426 * pairs of units from the levels below, hence, "buddies". 427 * At a high level, all that happens here is marking the table entry 428 * at the bottom level available, and propagating the changes upward 429 * as necessary, plus some accounting needed to play nicely with other 430 * parts of the VM system. 431 * At each level, we keep a list of pages, which are heads of continuous 432 * free pages of length of (1 << order) and marked with PG_buddy. Page's 433 * order is recorded in page_private(page) field. 434 * So when we are allocating or freeing one, we can derive the state of the 435 * other. That is, if we allocate a small block, and both were 436 * free, the remainder of the region must be split into blocks. 437 * If a block is freed, and its buddy is also free, then this 438 * triggers coalescing into a block of larger size. 439 * 440 * -- wli 441 */ 442 443 static inline void __free_one_page(struct page *page, 444 struct zone *zone, unsigned int order, 445 int migratetype) 446 { 447 unsigned long page_idx; 448 449 if (unlikely(PageCompound(page))) 450 if (unlikely(destroy_compound_page(page, order))) 451 return; 452 453 VM_BUG_ON(migratetype == -1); 454 455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 456 457 VM_BUG_ON(page_idx & ((1 << order) - 1)); 458 VM_BUG_ON(bad_range(zone, page)); 459 460 while (order < MAX_ORDER-1) { 461 unsigned long combined_idx; 462 struct page *buddy; 463 464 buddy = __page_find_buddy(page, page_idx, order); 465 if (!page_is_buddy(page, buddy, order)) 466 break; 467 468 /* Our buddy is free, merge with it and move up one order. */ 469 list_del(&buddy->lru); 470 zone->free_area[order].nr_free--; 471 rmv_page_order(buddy); 472 combined_idx = __find_combined_index(page_idx, order); 473 page = page + (combined_idx - page_idx); 474 page_idx = combined_idx; 475 order++; 476 } 477 set_page_order(page, order); 478 list_add(&page->lru, 479 &zone->free_area[order].free_list[migratetype]); 480 zone->free_area[order].nr_free++; 481 } 482 483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT 484 /* 485 * free_page_mlock() -- clean up attempts to free and mlocked() page. 486 * Page should not be on lru, so no need to fix that up. 487 * free_pages_check() will verify... 488 */ 489 static inline void free_page_mlock(struct page *page) 490 { 491 __dec_zone_page_state(page, NR_MLOCK); 492 __count_vm_event(UNEVICTABLE_MLOCKFREED); 493 } 494 #else 495 static void free_page_mlock(struct page *page) { } 496 #endif 497 498 static inline int free_pages_check(struct page *page) 499 { 500 if (unlikely(page_mapcount(page) | 501 (page->mapping != NULL) | 502 (atomic_read(&page->_count) != 0) | 503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 504 bad_page(page); 505 return 1; 506 } 507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 509 return 0; 510 } 511 512 /* 513 * Frees a list of pages. 514 * Assumes all pages on list are in same zone, and of same order. 515 * count is the number of pages to free. 516 * 517 * If the zone was previously in an "all pages pinned" state then look to 518 * see if this freeing clears that state. 519 * 520 * And clear the zone's pages_scanned counter, to hold off the "all pages are 521 * pinned" detection logic. 522 */ 523 static void free_pages_bulk(struct zone *zone, int count, 524 struct list_head *list, int order) 525 { 526 spin_lock(&zone->lock); 527 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 528 zone->pages_scanned = 0; 529 530 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order); 531 while (count--) { 532 struct page *page; 533 534 VM_BUG_ON(list_empty(list)); 535 page = list_entry(list->prev, struct page, lru); 536 /* have to delete it as __free_one_page list manipulates */ 537 list_del(&page->lru); 538 __free_one_page(page, zone, order, page_private(page)); 539 } 540 spin_unlock(&zone->lock); 541 } 542 543 static void free_one_page(struct zone *zone, struct page *page, int order, 544 int migratetype) 545 { 546 spin_lock(&zone->lock); 547 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 548 zone->pages_scanned = 0; 549 550 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 551 __free_one_page(page, zone, order, migratetype); 552 spin_unlock(&zone->lock); 553 } 554 555 static void __free_pages_ok(struct page *page, unsigned int order) 556 { 557 unsigned long flags; 558 int i; 559 int bad = 0; 560 int wasMlocked = TestClearPageMlocked(page); 561 562 kmemcheck_free_shadow(page, order); 563 564 for (i = 0 ; i < (1 << order) ; ++i) 565 bad += free_pages_check(page + i); 566 if (bad) 567 return; 568 569 if (!PageHighMem(page)) { 570 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 571 debug_check_no_obj_freed(page_address(page), 572 PAGE_SIZE << order); 573 } 574 arch_free_page(page, order); 575 kernel_map_pages(page, 1 << order, 0); 576 577 local_irq_save(flags); 578 if (unlikely(wasMlocked)) 579 free_page_mlock(page); 580 __count_vm_events(PGFREE, 1 << order); 581 free_one_page(page_zone(page), page, order, 582 get_pageblock_migratetype(page)); 583 local_irq_restore(flags); 584 } 585 586 /* 587 * permit the bootmem allocator to evade page validation on high-order frees 588 */ 589 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 590 { 591 if (order == 0) { 592 __ClearPageReserved(page); 593 set_page_count(page, 0); 594 set_page_refcounted(page); 595 __free_page(page); 596 } else { 597 int loop; 598 599 prefetchw(page); 600 for (loop = 0; loop < BITS_PER_LONG; loop++) { 601 struct page *p = &page[loop]; 602 603 if (loop + 1 < BITS_PER_LONG) 604 prefetchw(p + 1); 605 __ClearPageReserved(p); 606 set_page_count(p, 0); 607 } 608 609 set_page_refcounted(page); 610 __free_pages(page, order); 611 } 612 } 613 614 615 /* 616 * The order of subdivision here is critical for the IO subsystem. 617 * Please do not alter this order without good reasons and regression 618 * testing. Specifically, as large blocks of memory are subdivided, 619 * the order in which smaller blocks are delivered depends on the order 620 * they're subdivided in this function. This is the primary factor 621 * influencing the order in which pages are delivered to the IO 622 * subsystem according to empirical testing, and this is also justified 623 * by considering the behavior of a buddy system containing a single 624 * large block of memory acted on by a series of small allocations. 625 * This behavior is a critical factor in sglist merging's success. 626 * 627 * -- wli 628 */ 629 static inline void expand(struct zone *zone, struct page *page, 630 int low, int high, struct free_area *area, 631 int migratetype) 632 { 633 unsigned long size = 1 << high; 634 635 while (high > low) { 636 area--; 637 high--; 638 size >>= 1; 639 VM_BUG_ON(bad_range(zone, &page[size])); 640 list_add(&page[size].lru, &area->free_list[migratetype]); 641 area->nr_free++; 642 set_page_order(&page[size], high); 643 } 644 } 645 646 /* 647 * This page is about to be returned from the page allocator 648 */ 649 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 650 { 651 if (unlikely(page_mapcount(page) | 652 (page->mapping != NULL) | 653 (atomic_read(&page->_count) != 0) | 654 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 655 bad_page(page); 656 return 1; 657 } 658 659 set_page_private(page, 0); 660 set_page_refcounted(page); 661 662 arch_alloc_page(page, order); 663 kernel_map_pages(page, 1 << order, 1); 664 665 if (gfp_flags & __GFP_ZERO) 666 prep_zero_page(page, order, gfp_flags); 667 668 if (order && (gfp_flags & __GFP_COMP)) 669 prep_compound_page(page, order); 670 671 return 0; 672 } 673 674 /* 675 * Go through the free lists for the given migratetype and remove 676 * the smallest available page from the freelists 677 */ 678 static inline 679 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 680 int migratetype) 681 { 682 unsigned int current_order; 683 struct free_area * area; 684 struct page *page; 685 686 /* Find a page of the appropriate size in the preferred list */ 687 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 688 area = &(zone->free_area[current_order]); 689 if (list_empty(&area->free_list[migratetype])) 690 continue; 691 692 page = list_entry(area->free_list[migratetype].next, 693 struct page, lru); 694 list_del(&page->lru); 695 rmv_page_order(page); 696 area->nr_free--; 697 expand(zone, page, order, current_order, area, migratetype); 698 return page; 699 } 700 701 return NULL; 702 } 703 704 705 /* 706 * This array describes the order lists are fallen back to when 707 * the free lists for the desirable migrate type are depleted 708 */ 709 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 710 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 711 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 712 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 713 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 714 }; 715 716 /* 717 * Move the free pages in a range to the free lists of the requested type. 718 * Note that start_page and end_pages are not aligned on a pageblock 719 * boundary. If alignment is required, use move_freepages_block() 720 */ 721 static int move_freepages(struct zone *zone, 722 struct page *start_page, struct page *end_page, 723 int migratetype) 724 { 725 struct page *page; 726 unsigned long order; 727 int pages_moved = 0; 728 729 #ifndef CONFIG_HOLES_IN_ZONE 730 /* 731 * page_zone is not safe to call in this context when 732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 733 * anyway as we check zone boundaries in move_freepages_block(). 734 * Remove at a later date when no bug reports exist related to 735 * grouping pages by mobility 736 */ 737 BUG_ON(page_zone(start_page) != page_zone(end_page)); 738 #endif 739 740 for (page = start_page; page <= end_page;) { 741 /* Make sure we are not inadvertently changing nodes */ 742 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 743 744 if (!pfn_valid_within(page_to_pfn(page))) { 745 page++; 746 continue; 747 } 748 749 if (!PageBuddy(page)) { 750 page++; 751 continue; 752 } 753 754 order = page_order(page); 755 list_del(&page->lru); 756 list_add(&page->lru, 757 &zone->free_area[order].free_list[migratetype]); 758 page += 1 << order; 759 pages_moved += 1 << order; 760 } 761 762 return pages_moved; 763 } 764 765 static int move_freepages_block(struct zone *zone, struct page *page, 766 int migratetype) 767 { 768 unsigned long start_pfn, end_pfn; 769 struct page *start_page, *end_page; 770 771 start_pfn = page_to_pfn(page); 772 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 773 start_page = pfn_to_page(start_pfn); 774 end_page = start_page + pageblock_nr_pages - 1; 775 end_pfn = start_pfn + pageblock_nr_pages - 1; 776 777 /* Do not cross zone boundaries */ 778 if (start_pfn < zone->zone_start_pfn) 779 start_page = page; 780 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 781 return 0; 782 783 return move_freepages(zone, start_page, end_page, migratetype); 784 } 785 786 /* Remove an element from the buddy allocator from the fallback list */ 787 static inline struct page * 788 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 789 { 790 struct free_area * area; 791 int current_order; 792 struct page *page; 793 int migratetype, i; 794 795 /* Find the largest possible block of pages in the other list */ 796 for (current_order = MAX_ORDER-1; current_order >= order; 797 --current_order) { 798 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 799 migratetype = fallbacks[start_migratetype][i]; 800 801 /* MIGRATE_RESERVE handled later if necessary */ 802 if (migratetype == MIGRATE_RESERVE) 803 continue; 804 805 area = &(zone->free_area[current_order]); 806 if (list_empty(&area->free_list[migratetype])) 807 continue; 808 809 page = list_entry(area->free_list[migratetype].next, 810 struct page, lru); 811 area->nr_free--; 812 813 /* 814 * If breaking a large block of pages, move all free 815 * pages to the preferred allocation list. If falling 816 * back for a reclaimable kernel allocation, be more 817 * agressive about taking ownership of free pages 818 */ 819 if (unlikely(current_order >= (pageblock_order >> 1)) || 820 start_migratetype == MIGRATE_RECLAIMABLE) { 821 unsigned long pages; 822 pages = move_freepages_block(zone, page, 823 start_migratetype); 824 825 /* Claim the whole block if over half of it is free */ 826 if (pages >= (1 << (pageblock_order-1))) 827 set_pageblock_migratetype(page, 828 start_migratetype); 829 830 migratetype = start_migratetype; 831 } 832 833 /* Remove the page from the freelists */ 834 list_del(&page->lru); 835 rmv_page_order(page); 836 837 if (current_order == pageblock_order) 838 set_pageblock_migratetype(page, 839 start_migratetype); 840 841 expand(zone, page, order, current_order, area, migratetype); 842 return page; 843 } 844 } 845 846 return NULL; 847 } 848 849 /* 850 * Do the hard work of removing an element from the buddy allocator. 851 * Call me with the zone->lock already held. 852 */ 853 static struct page *__rmqueue(struct zone *zone, unsigned int order, 854 int migratetype) 855 { 856 struct page *page; 857 858 retry_reserve: 859 page = __rmqueue_smallest(zone, order, migratetype); 860 861 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 862 page = __rmqueue_fallback(zone, order, migratetype); 863 864 /* 865 * Use MIGRATE_RESERVE rather than fail an allocation. goto 866 * is used because __rmqueue_smallest is an inline function 867 * and we want just one call site 868 */ 869 if (!page) { 870 migratetype = MIGRATE_RESERVE; 871 goto retry_reserve; 872 } 873 } 874 875 return page; 876 } 877 878 /* 879 * Obtain a specified number of elements from the buddy allocator, all under 880 * a single hold of the lock, for efficiency. Add them to the supplied list. 881 * Returns the number of new pages which were placed at *list. 882 */ 883 static int rmqueue_bulk(struct zone *zone, unsigned int order, 884 unsigned long count, struct list_head *list, 885 int migratetype) 886 { 887 int i; 888 889 spin_lock(&zone->lock); 890 for (i = 0; i < count; ++i) { 891 struct page *page = __rmqueue(zone, order, migratetype); 892 if (unlikely(page == NULL)) 893 break; 894 895 /* 896 * Split buddy pages returned by expand() are received here 897 * in physical page order. The page is added to the callers and 898 * list and the list head then moves forward. From the callers 899 * perspective, the linked list is ordered by page number in 900 * some conditions. This is useful for IO devices that can 901 * merge IO requests if the physical pages are ordered 902 * properly. 903 */ 904 list_add(&page->lru, list); 905 set_page_private(page, migratetype); 906 list = &page->lru; 907 } 908 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 909 spin_unlock(&zone->lock); 910 return i; 911 } 912 913 #ifdef CONFIG_NUMA 914 /* 915 * Called from the vmstat counter updater to drain pagesets of this 916 * currently executing processor on remote nodes after they have 917 * expired. 918 * 919 * Note that this function must be called with the thread pinned to 920 * a single processor. 921 */ 922 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 923 { 924 unsigned long flags; 925 int to_drain; 926 927 local_irq_save(flags); 928 if (pcp->count >= pcp->batch) 929 to_drain = pcp->batch; 930 else 931 to_drain = pcp->count; 932 free_pages_bulk(zone, to_drain, &pcp->list, 0); 933 pcp->count -= to_drain; 934 local_irq_restore(flags); 935 } 936 #endif 937 938 /* 939 * Drain pages of the indicated processor. 940 * 941 * The processor must either be the current processor and the 942 * thread pinned to the current processor or a processor that 943 * is not online. 944 */ 945 static void drain_pages(unsigned int cpu) 946 { 947 unsigned long flags; 948 struct zone *zone; 949 950 for_each_populated_zone(zone) { 951 struct per_cpu_pageset *pset; 952 struct per_cpu_pages *pcp; 953 954 pset = zone_pcp(zone, cpu); 955 956 pcp = &pset->pcp; 957 local_irq_save(flags); 958 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 959 pcp->count = 0; 960 local_irq_restore(flags); 961 } 962 } 963 964 /* 965 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 966 */ 967 void drain_local_pages(void *arg) 968 { 969 drain_pages(smp_processor_id()); 970 } 971 972 /* 973 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 974 */ 975 void drain_all_pages(void) 976 { 977 on_each_cpu(drain_local_pages, NULL, 1); 978 } 979 980 #ifdef CONFIG_HIBERNATION 981 982 void mark_free_pages(struct zone *zone) 983 { 984 unsigned long pfn, max_zone_pfn; 985 unsigned long flags; 986 int order, t; 987 struct list_head *curr; 988 989 if (!zone->spanned_pages) 990 return; 991 992 spin_lock_irqsave(&zone->lock, flags); 993 994 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 995 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 996 if (pfn_valid(pfn)) { 997 struct page *page = pfn_to_page(pfn); 998 999 if (!swsusp_page_is_forbidden(page)) 1000 swsusp_unset_page_free(page); 1001 } 1002 1003 for_each_migratetype_order(order, t) { 1004 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1005 unsigned long i; 1006 1007 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1008 for (i = 0; i < (1UL << order); i++) 1009 swsusp_set_page_free(pfn_to_page(pfn + i)); 1010 } 1011 } 1012 spin_unlock_irqrestore(&zone->lock, flags); 1013 } 1014 #endif /* CONFIG_PM */ 1015 1016 /* 1017 * Free a 0-order page 1018 */ 1019 static void free_hot_cold_page(struct page *page, int cold) 1020 { 1021 struct zone *zone = page_zone(page); 1022 struct per_cpu_pages *pcp; 1023 unsigned long flags; 1024 int wasMlocked = TestClearPageMlocked(page); 1025 1026 kmemcheck_free_shadow(page, 0); 1027 1028 if (PageAnon(page)) 1029 page->mapping = NULL; 1030 if (free_pages_check(page)) 1031 return; 1032 1033 if (!PageHighMem(page)) { 1034 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 1035 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 1036 } 1037 arch_free_page(page, 0); 1038 kernel_map_pages(page, 1, 0); 1039 1040 pcp = &zone_pcp(zone, get_cpu())->pcp; 1041 set_page_private(page, get_pageblock_migratetype(page)); 1042 local_irq_save(flags); 1043 if (unlikely(wasMlocked)) 1044 free_page_mlock(page); 1045 __count_vm_event(PGFREE); 1046 1047 if (cold) 1048 list_add_tail(&page->lru, &pcp->list); 1049 else 1050 list_add(&page->lru, &pcp->list); 1051 pcp->count++; 1052 if (pcp->count >= pcp->high) { 1053 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 1054 pcp->count -= pcp->batch; 1055 } 1056 local_irq_restore(flags); 1057 put_cpu(); 1058 } 1059 1060 void free_hot_page(struct page *page) 1061 { 1062 free_hot_cold_page(page, 0); 1063 } 1064 1065 void free_cold_page(struct page *page) 1066 { 1067 free_hot_cold_page(page, 1); 1068 } 1069 1070 /* 1071 * split_page takes a non-compound higher-order page, and splits it into 1072 * n (1<<order) sub-pages: page[0..n] 1073 * Each sub-page must be freed individually. 1074 * 1075 * Note: this is probably too low level an operation for use in drivers. 1076 * Please consult with lkml before using this in your driver. 1077 */ 1078 void split_page(struct page *page, unsigned int order) 1079 { 1080 int i; 1081 1082 VM_BUG_ON(PageCompound(page)); 1083 VM_BUG_ON(!page_count(page)); 1084 1085 #ifdef CONFIG_KMEMCHECK 1086 /* 1087 * Split shadow pages too, because free(page[0]) would 1088 * otherwise free the whole shadow. 1089 */ 1090 if (kmemcheck_page_is_tracked(page)) 1091 split_page(virt_to_page(page[0].shadow), order); 1092 #endif 1093 1094 for (i = 1; i < (1 << order); i++) 1095 set_page_refcounted(page + i); 1096 } 1097 1098 /* 1099 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1100 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1101 * or two. 1102 */ 1103 static inline 1104 struct page *buffered_rmqueue(struct zone *preferred_zone, 1105 struct zone *zone, int order, gfp_t gfp_flags, 1106 int migratetype) 1107 { 1108 unsigned long flags; 1109 struct page *page; 1110 int cold = !!(gfp_flags & __GFP_COLD); 1111 int cpu; 1112 1113 again: 1114 cpu = get_cpu(); 1115 if (likely(order == 0)) { 1116 struct per_cpu_pages *pcp; 1117 1118 pcp = &zone_pcp(zone, cpu)->pcp; 1119 local_irq_save(flags); 1120 if (!pcp->count) { 1121 pcp->count = rmqueue_bulk(zone, 0, 1122 pcp->batch, &pcp->list, migratetype); 1123 if (unlikely(!pcp->count)) 1124 goto failed; 1125 } 1126 1127 /* Find a page of the appropriate migrate type */ 1128 if (cold) { 1129 list_for_each_entry_reverse(page, &pcp->list, lru) 1130 if (page_private(page) == migratetype) 1131 break; 1132 } else { 1133 list_for_each_entry(page, &pcp->list, lru) 1134 if (page_private(page) == migratetype) 1135 break; 1136 } 1137 1138 /* Allocate more to the pcp list if necessary */ 1139 if (unlikely(&page->lru == &pcp->list)) { 1140 pcp->count += rmqueue_bulk(zone, 0, 1141 pcp->batch, &pcp->list, migratetype); 1142 page = list_entry(pcp->list.next, struct page, lru); 1143 } 1144 1145 list_del(&page->lru); 1146 pcp->count--; 1147 } else { 1148 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1149 /* 1150 * __GFP_NOFAIL is not to be used in new code. 1151 * 1152 * All __GFP_NOFAIL callers should be fixed so that they 1153 * properly detect and handle allocation failures. 1154 * 1155 * We most definitely don't want callers attempting to 1156 * allocate greater than order-1 page units with 1157 * __GFP_NOFAIL. 1158 */ 1159 WARN_ON_ONCE(order > 1); 1160 } 1161 spin_lock_irqsave(&zone->lock, flags); 1162 page = __rmqueue(zone, order, migratetype); 1163 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1164 spin_unlock(&zone->lock); 1165 if (!page) 1166 goto failed; 1167 } 1168 1169 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1170 zone_statistics(preferred_zone, zone); 1171 local_irq_restore(flags); 1172 put_cpu(); 1173 1174 VM_BUG_ON(bad_range(zone, page)); 1175 if (prep_new_page(page, order, gfp_flags)) 1176 goto again; 1177 return page; 1178 1179 failed: 1180 local_irq_restore(flags); 1181 put_cpu(); 1182 return NULL; 1183 } 1184 1185 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1186 #define ALLOC_WMARK_MIN WMARK_MIN 1187 #define ALLOC_WMARK_LOW WMARK_LOW 1188 #define ALLOC_WMARK_HIGH WMARK_HIGH 1189 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1190 1191 /* Mask to get the watermark bits */ 1192 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1193 1194 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1195 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1196 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1197 1198 #ifdef CONFIG_FAIL_PAGE_ALLOC 1199 1200 static struct fail_page_alloc_attr { 1201 struct fault_attr attr; 1202 1203 u32 ignore_gfp_highmem; 1204 u32 ignore_gfp_wait; 1205 u32 min_order; 1206 1207 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1208 1209 struct dentry *ignore_gfp_highmem_file; 1210 struct dentry *ignore_gfp_wait_file; 1211 struct dentry *min_order_file; 1212 1213 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1214 1215 } fail_page_alloc = { 1216 .attr = FAULT_ATTR_INITIALIZER, 1217 .ignore_gfp_wait = 1, 1218 .ignore_gfp_highmem = 1, 1219 .min_order = 1, 1220 }; 1221 1222 static int __init setup_fail_page_alloc(char *str) 1223 { 1224 return setup_fault_attr(&fail_page_alloc.attr, str); 1225 } 1226 __setup("fail_page_alloc=", setup_fail_page_alloc); 1227 1228 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1229 { 1230 if (order < fail_page_alloc.min_order) 1231 return 0; 1232 if (gfp_mask & __GFP_NOFAIL) 1233 return 0; 1234 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1235 return 0; 1236 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1237 return 0; 1238 1239 return should_fail(&fail_page_alloc.attr, 1 << order); 1240 } 1241 1242 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1243 1244 static int __init fail_page_alloc_debugfs(void) 1245 { 1246 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1247 struct dentry *dir; 1248 int err; 1249 1250 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1251 "fail_page_alloc"); 1252 if (err) 1253 return err; 1254 dir = fail_page_alloc.attr.dentries.dir; 1255 1256 fail_page_alloc.ignore_gfp_wait_file = 1257 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1258 &fail_page_alloc.ignore_gfp_wait); 1259 1260 fail_page_alloc.ignore_gfp_highmem_file = 1261 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1262 &fail_page_alloc.ignore_gfp_highmem); 1263 fail_page_alloc.min_order_file = 1264 debugfs_create_u32("min-order", mode, dir, 1265 &fail_page_alloc.min_order); 1266 1267 if (!fail_page_alloc.ignore_gfp_wait_file || 1268 !fail_page_alloc.ignore_gfp_highmem_file || 1269 !fail_page_alloc.min_order_file) { 1270 err = -ENOMEM; 1271 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1272 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1273 debugfs_remove(fail_page_alloc.min_order_file); 1274 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1275 } 1276 1277 return err; 1278 } 1279 1280 late_initcall(fail_page_alloc_debugfs); 1281 1282 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1283 1284 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1285 1286 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1287 { 1288 return 0; 1289 } 1290 1291 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1292 1293 /* 1294 * Return 1 if free pages are above 'mark'. This takes into account the order 1295 * of the allocation. 1296 */ 1297 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1298 int classzone_idx, int alloc_flags) 1299 { 1300 /* free_pages my go negative - that's OK */ 1301 long min = mark; 1302 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1303 int o; 1304 1305 if (alloc_flags & ALLOC_HIGH) 1306 min -= min / 2; 1307 if (alloc_flags & ALLOC_HARDER) 1308 min -= min / 4; 1309 1310 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1311 return 0; 1312 for (o = 0; o < order; o++) { 1313 /* At the next order, this order's pages become unavailable */ 1314 free_pages -= z->free_area[o].nr_free << o; 1315 1316 /* Require fewer higher order pages to be free */ 1317 min >>= 1; 1318 1319 if (free_pages <= min) 1320 return 0; 1321 } 1322 return 1; 1323 } 1324 1325 #ifdef CONFIG_NUMA 1326 /* 1327 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1328 * skip over zones that are not allowed by the cpuset, or that have 1329 * been recently (in last second) found to be nearly full. See further 1330 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1331 * that have to skip over a lot of full or unallowed zones. 1332 * 1333 * If the zonelist cache is present in the passed in zonelist, then 1334 * returns a pointer to the allowed node mask (either the current 1335 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1336 * 1337 * If the zonelist cache is not available for this zonelist, does 1338 * nothing and returns NULL. 1339 * 1340 * If the fullzones BITMAP in the zonelist cache is stale (more than 1341 * a second since last zap'd) then we zap it out (clear its bits.) 1342 * 1343 * We hold off even calling zlc_setup, until after we've checked the 1344 * first zone in the zonelist, on the theory that most allocations will 1345 * be satisfied from that first zone, so best to examine that zone as 1346 * quickly as we can. 1347 */ 1348 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1349 { 1350 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1351 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1352 1353 zlc = zonelist->zlcache_ptr; 1354 if (!zlc) 1355 return NULL; 1356 1357 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1358 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1359 zlc->last_full_zap = jiffies; 1360 } 1361 1362 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1363 &cpuset_current_mems_allowed : 1364 &node_states[N_HIGH_MEMORY]; 1365 return allowednodes; 1366 } 1367 1368 /* 1369 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1370 * if it is worth looking at further for free memory: 1371 * 1) Check that the zone isn't thought to be full (doesn't have its 1372 * bit set in the zonelist_cache fullzones BITMAP). 1373 * 2) Check that the zones node (obtained from the zonelist_cache 1374 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1375 * Return true (non-zero) if zone is worth looking at further, or 1376 * else return false (zero) if it is not. 1377 * 1378 * This check -ignores- the distinction between various watermarks, 1379 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1380 * found to be full for any variation of these watermarks, it will 1381 * be considered full for up to one second by all requests, unless 1382 * we are so low on memory on all allowed nodes that we are forced 1383 * into the second scan of the zonelist. 1384 * 1385 * In the second scan we ignore this zonelist cache and exactly 1386 * apply the watermarks to all zones, even it is slower to do so. 1387 * We are low on memory in the second scan, and should leave no stone 1388 * unturned looking for a free page. 1389 */ 1390 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1391 nodemask_t *allowednodes) 1392 { 1393 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1394 int i; /* index of *z in zonelist zones */ 1395 int n; /* node that zone *z is on */ 1396 1397 zlc = zonelist->zlcache_ptr; 1398 if (!zlc) 1399 return 1; 1400 1401 i = z - zonelist->_zonerefs; 1402 n = zlc->z_to_n[i]; 1403 1404 /* This zone is worth trying if it is allowed but not full */ 1405 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1406 } 1407 1408 /* 1409 * Given 'z' scanning a zonelist, set the corresponding bit in 1410 * zlc->fullzones, so that subsequent attempts to allocate a page 1411 * from that zone don't waste time re-examining it. 1412 */ 1413 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1414 { 1415 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1416 int i; /* index of *z in zonelist zones */ 1417 1418 zlc = zonelist->zlcache_ptr; 1419 if (!zlc) 1420 return; 1421 1422 i = z - zonelist->_zonerefs; 1423 1424 set_bit(i, zlc->fullzones); 1425 } 1426 1427 #else /* CONFIG_NUMA */ 1428 1429 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1430 { 1431 return NULL; 1432 } 1433 1434 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1435 nodemask_t *allowednodes) 1436 { 1437 return 1; 1438 } 1439 1440 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1441 { 1442 } 1443 #endif /* CONFIG_NUMA */ 1444 1445 /* 1446 * get_page_from_freelist goes through the zonelist trying to allocate 1447 * a page. 1448 */ 1449 static struct page * 1450 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1451 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1452 struct zone *preferred_zone, int migratetype) 1453 { 1454 struct zoneref *z; 1455 struct page *page = NULL; 1456 int classzone_idx; 1457 struct zone *zone; 1458 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1459 int zlc_active = 0; /* set if using zonelist_cache */ 1460 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1461 1462 classzone_idx = zone_idx(preferred_zone); 1463 zonelist_scan: 1464 /* 1465 * Scan zonelist, looking for a zone with enough free. 1466 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1467 */ 1468 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1469 high_zoneidx, nodemask) { 1470 if (NUMA_BUILD && zlc_active && 1471 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1472 continue; 1473 if ((alloc_flags & ALLOC_CPUSET) && 1474 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1475 goto try_next_zone; 1476 1477 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1478 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1479 unsigned long mark; 1480 int ret; 1481 1482 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1483 if (zone_watermark_ok(zone, order, mark, 1484 classzone_idx, alloc_flags)) 1485 goto try_this_zone; 1486 1487 if (zone_reclaim_mode == 0) 1488 goto this_zone_full; 1489 1490 ret = zone_reclaim(zone, gfp_mask, order); 1491 switch (ret) { 1492 case ZONE_RECLAIM_NOSCAN: 1493 /* did not scan */ 1494 goto try_next_zone; 1495 case ZONE_RECLAIM_FULL: 1496 /* scanned but unreclaimable */ 1497 goto this_zone_full; 1498 default: 1499 /* did we reclaim enough */ 1500 if (!zone_watermark_ok(zone, order, mark, 1501 classzone_idx, alloc_flags)) 1502 goto this_zone_full; 1503 } 1504 } 1505 1506 try_this_zone: 1507 page = buffered_rmqueue(preferred_zone, zone, order, 1508 gfp_mask, migratetype); 1509 if (page) 1510 break; 1511 this_zone_full: 1512 if (NUMA_BUILD) 1513 zlc_mark_zone_full(zonelist, z); 1514 try_next_zone: 1515 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1516 /* 1517 * we do zlc_setup after the first zone is tried but only 1518 * if there are multiple nodes make it worthwhile 1519 */ 1520 allowednodes = zlc_setup(zonelist, alloc_flags); 1521 zlc_active = 1; 1522 did_zlc_setup = 1; 1523 } 1524 } 1525 1526 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1527 /* Disable zlc cache for second zonelist scan */ 1528 zlc_active = 0; 1529 goto zonelist_scan; 1530 } 1531 return page; 1532 } 1533 1534 static inline int 1535 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1536 unsigned long pages_reclaimed) 1537 { 1538 /* Do not loop if specifically requested */ 1539 if (gfp_mask & __GFP_NORETRY) 1540 return 0; 1541 1542 /* 1543 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1544 * means __GFP_NOFAIL, but that may not be true in other 1545 * implementations. 1546 */ 1547 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1548 return 1; 1549 1550 /* 1551 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1552 * specified, then we retry until we no longer reclaim any pages 1553 * (above), or we've reclaimed an order of pages at least as 1554 * large as the allocation's order. In both cases, if the 1555 * allocation still fails, we stop retrying. 1556 */ 1557 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1558 return 1; 1559 1560 /* 1561 * Don't let big-order allocations loop unless the caller 1562 * explicitly requests that. 1563 */ 1564 if (gfp_mask & __GFP_NOFAIL) 1565 return 1; 1566 1567 return 0; 1568 } 1569 1570 static inline struct page * 1571 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1572 struct zonelist *zonelist, enum zone_type high_zoneidx, 1573 nodemask_t *nodemask, struct zone *preferred_zone, 1574 int migratetype) 1575 { 1576 struct page *page; 1577 1578 /* Acquire the OOM killer lock for the zones in zonelist */ 1579 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1580 schedule_timeout_uninterruptible(1); 1581 return NULL; 1582 } 1583 1584 /* 1585 * Go through the zonelist yet one more time, keep very high watermark 1586 * here, this is only to catch a parallel oom killing, we must fail if 1587 * we're still under heavy pressure. 1588 */ 1589 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1590 order, zonelist, high_zoneidx, 1591 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1592 preferred_zone, migratetype); 1593 if (page) 1594 goto out; 1595 1596 /* The OOM killer will not help higher order allocs */ 1597 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL)) 1598 goto out; 1599 1600 /* Exhausted what can be done so it's blamo time */ 1601 out_of_memory(zonelist, gfp_mask, order); 1602 1603 out: 1604 clear_zonelist_oom(zonelist, gfp_mask); 1605 return page; 1606 } 1607 1608 /* The really slow allocator path where we enter direct reclaim */ 1609 static inline struct page * 1610 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1611 struct zonelist *zonelist, enum zone_type high_zoneidx, 1612 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1613 int migratetype, unsigned long *did_some_progress) 1614 { 1615 struct page *page = NULL; 1616 struct reclaim_state reclaim_state; 1617 struct task_struct *p = current; 1618 1619 cond_resched(); 1620 1621 /* We now go into synchronous reclaim */ 1622 cpuset_memory_pressure_bump(); 1623 1624 /* 1625 * The task's cpuset might have expanded its set of allowable nodes 1626 */ 1627 p->flags |= PF_MEMALLOC; 1628 lockdep_set_current_reclaim_state(gfp_mask); 1629 reclaim_state.reclaimed_slab = 0; 1630 p->reclaim_state = &reclaim_state; 1631 1632 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1633 1634 p->reclaim_state = NULL; 1635 lockdep_clear_current_reclaim_state(); 1636 p->flags &= ~PF_MEMALLOC; 1637 1638 cond_resched(); 1639 1640 if (order != 0) 1641 drain_all_pages(); 1642 1643 if (likely(*did_some_progress)) 1644 page = get_page_from_freelist(gfp_mask, nodemask, order, 1645 zonelist, high_zoneidx, 1646 alloc_flags, preferred_zone, 1647 migratetype); 1648 return page; 1649 } 1650 1651 /* 1652 * This is called in the allocator slow-path if the allocation request is of 1653 * sufficient urgency to ignore watermarks and take other desperate measures 1654 */ 1655 static inline struct page * 1656 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1657 struct zonelist *zonelist, enum zone_type high_zoneidx, 1658 nodemask_t *nodemask, struct zone *preferred_zone, 1659 int migratetype) 1660 { 1661 struct page *page; 1662 1663 do { 1664 page = get_page_from_freelist(gfp_mask, nodemask, order, 1665 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1666 preferred_zone, migratetype); 1667 1668 if (!page && gfp_mask & __GFP_NOFAIL) 1669 congestion_wait(BLK_RW_ASYNC, HZ/50); 1670 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1671 1672 return page; 1673 } 1674 1675 static inline 1676 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1677 enum zone_type high_zoneidx) 1678 { 1679 struct zoneref *z; 1680 struct zone *zone; 1681 1682 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1683 wakeup_kswapd(zone, order); 1684 } 1685 1686 static inline int 1687 gfp_to_alloc_flags(gfp_t gfp_mask) 1688 { 1689 struct task_struct *p = current; 1690 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1691 const gfp_t wait = gfp_mask & __GFP_WAIT; 1692 1693 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1694 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); 1695 1696 /* 1697 * The caller may dip into page reserves a bit more if the caller 1698 * cannot run direct reclaim, or if the caller has realtime scheduling 1699 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1700 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1701 */ 1702 alloc_flags |= (gfp_mask & __GFP_HIGH); 1703 1704 if (!wait) { 1705 alloc_flags |= ALLOC_HARDER; 1706 /* 1707 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1708 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1709 */ 1710 alloc_flags &= ~ALLOC_CPUSET; 1711 } else if (unlikely(rt_task(p))) 1712 alloc_flags |= ALLOC_HARDER; 1713 1714 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1715 if (!in_interrupt() && 1716 ((p->flags & PF_MEMALLOC) || 1717 unlikely(test_thread_flag(TIF_MEMDIE)))) 1718 alloc_flags |= ALLOC_NO_WATERMARKS; 1719 } 1720 1721 return alloc_flags; 1722 } 1723 1724 static inline struct page * 1725 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1726 struct zonelist *zonelist, enum zone_type high_zoneidx, 1727 nodemask_t *nodemask, struct zone *preferred_zone, 1728 int migratetype) 1729 { 1730 const gfp_t wait = gfp_mask & __GFP_WAIT; 1731 struct page *page = NULL; 1732 int alloc_flags; 1733 unsigned long pages_reclaimed = 0; 1734 unsigned long did_some_progress; 1735 struct task_struct *p = current; 1736 1737 /* 1738 * In the slowpath, we sanity check order to avoid ever trying to 1739 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 1740 * be using allocators in order of preference for an area that is 1741 * too large. 1742 */ 1743 if (WARN_ON_ONCE(order >= MAX_ORDER)) 1744 return NULL; 1745 1746 /* 1747 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1748 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1749 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1750 * using a larger set of nodes after it has established that the 1751 * allowed per node queues are empty and that nodes are 1752 * over allocated. 1753 */ 1754 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1755 goto nopage; 1756 1757 wake_all_kswapd(order, zonelist, high_zoneidx); 1758 1759 /* 1760 * OK, we're below the kswapd watermark and have kicked background 1761 * reclaim. Now things get more complex, so set up alloc_flags according 1762 * to how we want to proceed. 1763 */ 1764 alloc_flags = gfp_to_alloc_flags(gfp_mask); 1765 1766 restart: 1767 /* This is the last chance, in general, before the goto nopage. */ 1768 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1769 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 1770 preferred_zone, migratetype); 1771 if (page) 1772 goto got_pg; 1773 1774 rebalance: 1775 /* Allocate without watermarks if the context allows */ 1776 if (alloc_flags & ALLOC_NO_WATERMARKS) { 1777 page = __alloc_pages_high_priority(gfp_mask, order, 1778 zonelist, high_zoneidx, nodemask, 1779 preferred_zone, migratetype); 1780 if (page) 1781 goto got_pg; 1782 } 1783 1784 /* Atomic allocations - we can't balance anything */ 1785 if (!wait) 1786 goto nopage; 1787 1788 /* Avoid recursion of direct reclaim */ 1789 if (p->flags & PF_MEMALLOC) 1790 goto nopage; 1791 1792 /* Try direct reclaim and then allocating */ 1793 page = __alloc_pages_direct_reclaim(gfp_mask, order, 1794 zonelist, high_zoneidx, 1795 nodemask, 1796 alloc_flags, preferred_zone, 1797 migratetype, &did_some_progress); 1798 if (page) 1799 goto got_pg; 1800 1801 /* 1802 * If we failed to make any progress reclaiming, then we are 1803 * running out of options and have to consider going OOM 1804 */ 1805 if (!did_some_progress) { 1806 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1807 if (oom_killer_disabled) 1808 goto nopage; 1809 page = __alloc_pages_may_oom(gfp_mask, order, 1810 zonelist, high_zoneidx, 1811 nodemask, preferred_zone, 1812 migratetype); 1813 if (page) 1814 goto got_pg; 1815 1816 /* 1817 * The OOM killer does not trigger for high-order 1818 * ~__GFP_NOFAIL allocations so if no progress is being 1819 * made, there are no other options and retrying is 1820 * unlikely to help. 1821 */ 1822 if (order > PAGE_ALLOC_COSTLY_ORDER && 1823 !(gfp_mask & __GFP_NOFAIL)) 1824 goto nopage; 1825 1826 goto restart; 1827 } 1828 } 1829 1830 /* Check if we should retry the allocation */ 1831 pages_reclaimed += did_some_progress; 1832 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 1833 /* Wait for some write requests to complete then retry */ 1834 congestion_wait(BLK_RW_ASYNC, HZ/50); 1835 goto rebalance; 1836 } 1837 1838 nopage: 1839 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1840 printk(KERN_WARNING "%s: page allocation failure." 1841 " order:%d, mode:0x%x\n", 1842 p->comm, order, gfp_mask); 1843 dump_stack(); 1844 show_mem(); 1845 } 1846 return page; 1847 got_pg: 1848 if (kmemcheck_enabled) 1849 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 1850 return page; 1851 1852 } 1853 1854 /* 1855 * This is the 'heart' of the zoned buddy allocator. 1856 */ 1857 struct page * 1858 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 1859 struct zonelist *zonelist, nodemask_t *nodemask) 1860 { 1861 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1862 struct zone *preferred_zone; 1863 struct page *page; 1864 int migratetype = allocflags_to_migratetype(gfp_mask); 1865 1866 gfp_mask &= gfp_allowed_mask; 1867 1868 lockdep_trace_alloc(gfp_mask); 1869 1870 might_sleep_if(gfp_mask & __GFP_WAIT); 1871 1872 if (should_fail_alloc_page(gfp_mask, order)) 1873 return NULL; 1874 1875 /* 1876 * Check the zones suitable for the gfp_mask contain at least one 1877 * valid zone. It's possible to have an empty zonelist as a result 1878 * of GFP_THISNODE and a memoryless node 1879 */ 1880 if (unlikely(!zonelist->_zonerefs->zone)) 1881 return NULL; 1882 1883 /* The preferred zone is used for statistics later */ 1884 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); 1885 if (!preferred_zone) 1886 return NULL; 1887 1888 /* First allocation attempt */ 1889 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1890 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 1891 preferred_zone, migratetype); 1892 if (unlikely(!page)) 1893 page = __alloc_pages_slowpath(gfp_mask, order, 1894 zonelist, high_zoneidx, nodemask, 1895 preferred_zone, migratetype); 1896 1897 return page; 1898 } 1899 EXPORT_SYMBOL(__alloc_pages_nodemask); 1900 1901 /* 1902 * Common helper functions. 1903 */ 1904 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1905 { 1906 struct page * page; 1907 page = alloc_pages(gfp_mask, order); 1908 if (!page) 1909 return 0; 1910 return (unsigned long) page_address(page); 1911 } 1912 1913 EXPORT_SYMBOL(__get_free_pages); 1914 1915 unsigned long get_zeroed_page(gfp_t gfp_mask) 1916 { 1917 struct page * page; 1918 1919 /* 1920 * get_zeroed_page() returns a 32-bit address, which cannot represent 1921 * a highmem page 1922 */ 1923 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1924 1925 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1926 if (page) 1927 return (unsigned long) page_address(page); 1928 return 0; 1929 } 1930 1931 EXPORT_SYMBOL(get_zeroed_page); 1932 1933 void __pagevec_free(struct pagevec *pvec) 1934 { 1935 int i = pagevec_count(pvec); 1936 1937 while (--i >= 0) 1938 free_hot_cold_page(pvec->pages[i], pvec->cold); 1939 } 1940 1941 void __free_pages(struct page *page, unsigned int order) 1942 { 1943 if (put_page_testzero(page)) { 1944 if (order == 0) 1945 free_hot_page(page); 1946 else 1947 __free_pages_ok(page, order); 1948 } 1949 } 1950 1951 EXPORT_SYMBOL(__free_pages); 1952 1953 void free_pages(unsigned long addr, unsigned int order) 1954 { 1955 if (addr != 0) { 1956 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1957 __free_pages(virt_to_page((void *)addr), order); 1958 } 1959 } 1960 1961 EXPORT_SYMBOL(free_pages); 1962 1963 /** 1964 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 1965 * @size: the number of bytes to allocate 1966 * @gfp_mask: GFP flags for the allocation 1967 * 1968 * This function is similar to alloc_pages(), except that it allocates the 1969 * minimum number of pages to satisfy the request. alloc_pages() can only 1970 * allocate memory in power-of-two pages. 1971 * 1972 * This function is also limited by MAX_ORDER. 1973 * 1974 * Memory allocated by this function must be released by free_pages_exact(). 1975 */ 1976 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 1977 { 1978 unsigned int order = get_order(size); 1979 unsigned long addr; 1980 1981 addr = __get_free_pages(gfp_mask, order); 1982 if (addr) { 1983 unsigned long alloc_end = addr + (PAGE_SIZE << order); 1984 unsigned long used = addr + PAGE_ALIGN(size); 1985 1986 split_page(virt_to_page((void *)addr), order); 1987 while (used < alloc_end) { 1988 free_page(used); 1989 used += PAGE_SIZE; 1990 } 1991 } 1992 1993 return (void *)addr; 1994 } 1995 EXPORT_SYMBOL(alloc_pages_exact); 1996 1997 /** 1998 * free_pages_exact - release memory allocated via alloc_pages_exact() 1999 * @virt: the value returned by alloc_pages_exact. 2000 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2001 * 2002 * Release the memory allocated by a previous call to alloc_pages_exact. 2003 */ 2004 void free_pages_exact(void *virt, size_t size) 2005 { 2006 unsigned long addr = (unsigned long)virt; 2007 unsigned long end = addr + PAGE_ALIGN(size); 2008 2009 while (addr < end) { 2010 free_page(addr); 2011 addr += PAGE_SIZE; 2012 } 2013 } 2014 EXPORT_SYMBOL(free_pages_exact); 2015 2016 static unsigned int nr_free_zone_pages(int offset) 2017 { 2018 struct zoneref *z; 2019 struct zone *zone; 2020 2021 /* Just pick one node, since fallback list is circular */ 2022 unsigned int sum = 0; 2023 2024 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2025 2026 for_each_zone_zonelist(zone, z, zonelist, offset) { 2027 unsigned long size = zone->present_pages; 2028 unsigned long high = high_wmark_pages(zone); 2029 if (size > high) 2030 sum += size - high; 2031 } 2032 2033 return sum; 2034 } 2035 2036 /* 2037 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2038 */ 2039 unsigned int nr_free_buffer_pages(void) 2040 { 2041 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2042 } 2043 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2044 2045 /* 2046 * Amount of free RAM allocatable within all zones 2047 */ 2048 unsigned int nr_free_pagecache_pages(void) 2049 { 2050 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2051 } 2052 2053 static inline void show_node(struct zone *zone) 2054 { 2055 if (NUMA_BUILD) 2056 printk("Node %d ", zone_to_nid(zone)); 2057 } 2058 2059 void si_meminfo(struct sysinfo *val) 2060 { 2061 val->totalram = totalram_pages; 2062 val->sharedram = 0; 2063 val->freeram = global_page_state(NR_FREE_PAGES); 2064 val->bufferram = nr_blockdev_pages(); 2065 val->totalhigh = totalhigh_pages; 2066 val->freehigh = nr_free_highpages(); 2067 val->mem_unit = PAGE_SIZE; 2068 } 2069 2070 EXPORT_SYMBOL(si_meminfo); 2071 2072 #ifdef CONFIG_NUMA 2073 void si_meminfo_node(struct sysinfo *val, int nid) 2074 { 2075 pg_data_t *pgdat = NODE_DATA(nid); 2076 2077 val->totalram = pgdat->node_present_pages; 2078 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2079 #ifdef CONFIG_HIGHMEM 2080 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2081 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2082 NR_FREE_PAGES); 2083 #else 2084 val->totalhigh = 0; 2085 val->freehigh = 0; 2086 #endif 2087 val->mem_unit = PAGE_SIZE; 2088 } 2089 #endif 2090 2091 #define K(x) ((x) << (PAGE_SHIFT-10)) 2092 2093 /* 2094 * Show free area list (used inside shift_scroll-lock stuff) 2095 * We also calculate the percentage fragmentation. We do this by counting the 2096 * memory on each free list with the exception of the first item on the list. 2097 */ 2098 void show_free_areas(void) 2099 { 2100 int cpu; 2101 struct zone *zone; 2102 2103 for_each_populated_zone(zone) { 2104 show_node(zone); 2105 printk("%s per-cpu:\n", zone->name); 2106 2107 for_each_online_cpu(cpu) { 2108 struct per_cpu_pageset *pageset; 2109 2110 pageset = zone_pcp(zone, cpu); 2111 2112 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2113 cpu, pageset->pcp.high, 2114 pageset->pcp.batch, pageset->pcp.count); 2115 } 2116 } 2117 2118 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n" 2119 " inactive_file:%lu" 2120 " unevictable:%lu" 2121 " dirty:%lu writeback:%lu unstable:%lu\n" 2122 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 2123 global_page_state(NR_ACTIVE_ANON), 2124 global_page_state(NR_ACTIVE_FILE), 2125 global_page_state(NR_INACTIVE_ANON), 2126 global_page_state(NR_INACTIVE_FILE), 2127 global_page_state(NR_UNEVICTABLE), 2128 global_page_state(NR_FILE_DIRTY), 2129 global_page_state(NR_WRITEBACK), 2130 global_page_state(NR_UNSTABLE_NFS), 2131 global_page_state(NR_FREE_PAGES), 2132 global_page_state(NR_SLAB_RECLAIMABLE) + 2133 global_page_state(NR_SLAB_UNRECLAIMABLE), 2134 global_page_state(NR_FILE_MAPPED), 2135 global_page_state(NR_PAGETABLE), 2136 global_page_state(NR_BOUNCE)); 2137 2138 for_each_populated_zone(zone) { 2139 int i; 2140 2141 show_node(zone); 2142 printk("%s" 2143 " free:%lukB" 2144 " min:%lukB" 2145 " low:%lukB" 2146 " high:%lukB" 2147 " active_anon:%lukB" 2148 " inactive_anon:%lukB" 2149 " active_file:%lukB" 2150 " inactive_file:%lukB" 2151 " unevictable:%lukB" 2152 " present:%lukB" 2153 " pages_scanned:%lu" 2154 " all_unreclaimable? %s" 2155 "\n", 2156 zone->name, 2157 K(zone_page_state(zone, NR_FREE_PAGES)), 2158 K(min_wmark_pages(zone)), 2159 K(low_wmark_pages(zone)), 2160 K(high_wmark_pages(zone)), 2161 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2162 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2163 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2164 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2165 K(zone_page_state(zone, NR_UNEVICTABLE)), 2166 K(zone->present_pages), 2167 zone->pages_scanned, 2168 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 2169 ); 2170 printk("lowmem_reserve[]:"); 2171 for (i = 0; i < MAX_NR_ZONES; i++) 2172 printk(" %lu", zone->lowmem_reserve[i]); 2173 printk("\n"); 2174 } 2175 2176 for_each_populated_zone(zone) { 2177 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2178 2179 show_node(zone); 2180 printk("%s: ", zone->name); 2181 2182 spin_lock_irqsave(&zone->lock, flags); 2183 for (order = 0; order < MAX_ORDER; order++) { 2184 nr[order] = zone->free_area[order].nr_free; 2185 total += nr[order] << order; 2186 } 2187 spin_unlock_irqrestore(&zone->lock, flags); 2188 for (order = 0; order < MAX_ORDER; order++) 2189 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2190 printk("= %lukB\n", K(total)); 2191 } 2192 2193 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2194 2195 show_swap_cache_info(); 2196 } 2197 2198 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2199 { 2200 zoneref->zone = zone; 2201 zoneref->zone_idx = zone_idx(zone); 2202 } 2203 2204 /* 2205 * Builds allocation fallback zone lists. 2206 * 2207 * Add all populated zones of a node to the zonelist. 2208 */ 2209 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2210 int nr_zones, enum zone_type zone_type) 2211 { 2212 struct zone *zone; 2213 2214 BUG_ON(zone_type >= MAX_NR_ZONES); 2215 zone_type++; 2216 2217 do { 2218 zone_type--; 2219 zone = pgdat->node_zones + zone_type; 2220 if (populated_zone(zone)) { 2221 zoneref_set_zone(zone, 2222 &zonelist->_zonerefs[nr_zones++]); 2223 check_highest_zone(zone_type); 2224 } 2225 2226 } while (zone_type); 2227 return nr_zones; 2228 } 2229 2230 2231 /* 2232 * zonelist_order: 2233 * 0 = automatic detection of better ordering. 2234 * 1 = order by ([node] distance, -zonetype) 2235 * 2 = order by (-zonetype, [node] distance) 2236 * 2237 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2238 * the same zonelist. So only NUMA can configure this param. 2239 */ 2240 #define ZONELIST_ORDER_DEFAULT 0 2241 #define ZONELIST_ORDER_NODE 1 2242 #define ZONELIST_ORDER_ZONE 2 2243 2244 /* zonelist order in the kernel. 2245 * set_zonelist_order() will set this to NODE or ZONE. 2246 */ 2247 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2248 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2249 2250 2251 #ifdef CONFIG_NUMA 2252 /* The value user specified ....changed by config */ 2253 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2254 /* string for sysctl */ 2255 #define NUMA_ZONELIST_ORDER_LEN 16 2256 char numa_zonelist_order[16] = "default"; 2257 2258 /* 2259 * interface for configure zonelist ordering. 2260 * command line option "numa_zonelist_order" 2261 * = "[dD]efault - default, automatic configuration. 2262 * = "[nN]ode - order by node locality, then by zone within node 2263 * = "[zZ]one - order by zone, then by locality within zone 2264 */ 2265 2266 static int __parse_numa_zonelist_order(char *s) 2267 { 2268 if (*s == 'd' || *s == 'D') { 2269 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2270 } else if (*s == 'n' || *s == 'N') { 2271 user_zonelist_order = ZONELIST_ORDER_NODE; 2272 } else if (*s == 'z' || *s == 'Z') { 2273 user_zonelist_order = ZONELIST_ORDER_ZONE; 2274 } else { 2275 printk(KERN_WARNING 2276 "Ignoring invalid numa_zonelist_order value: " 2277 "%s\n", s); 2278 return -EINVAL; 2279 } 2280 return 0; 2281 } 2282 2283 static __init int setup_numa_zonelist_order(char *s) 2284 { 2285 if (s) 2286 return __parse_numa_zonelist_order(s); 2287 return 0; 2288 } 2289 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2290 2291 /* 2292 * sysctl handler for numa_zonelist_order 2293 */ 2294 int numa_zonelist_order_handler(ctl_table *table, int write, 2295 struct file *file, void __user *buffer, size_t *length, 2296 loff_t *ppos) 2297 { 2298 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2299 int ret; 2300 2301 if (write) 2302 strncpy(saved_string, (char*)table->data, 2303 NUMA_ZONELIST_ORDER_LEN); 2304 ret = proc_dostring(table, write, file, buffer, length, ppos); 2305 if (ret) 2306 return ret; 2307 if (write) { 2308 int oldval = user_zonelist_order; 2309 if (__parse_numa_zonelist_order((char*)table->data)) { 2310 /* 2311 * bogus value. restore saved string 2312 */ 2313 strncpy((char*)table->data, saved_string, 2314 NUMA_ZONELIST_ORDER_LEN); 2315 user_zonelist_order = oldval; 2316 } else if (oldval != user_zonelist_order) 2317 build_all_zonelists(); 2318 } 2319 return 0; 2320 } 2321 2322 2323 #define MAX_NODE_LOAD (nr_online_nodes) 2324 static int node_load[MAX_NUMNODES]; 2325 2326 /** 2327 * find_next_best_node - find the next node that should appear in a given node's fallback list 2328 * @node: node whose fallback list we're appending 2329 * @used_node_mask: nodemask_t of already used nodes 2330 * 2331 * We use a number of factors to determine which is the next node that should 2332 * appear on a given node's fallback list. The node should not have appeared 2333 * already in @node's fallback list, and it should be the next closest node 2334 * according to the distance array (which contains arbitrary distance values 2335 * from each node to each node in the system), and should also prefer nodes 2336 * with no CPUs, since presumably they'll have very little allocation pressure 2337 * on them otherwise. 2338 * It returns -1 if no node is found. 2339 */ 2340 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2341 { 2342 int n, val; 2343 int min_val = INT_MAX; 2344 int best_node = -1; 2345 const struct cpumask *tmp = cpumask_of_node(0); 2346 2347 /* Use the local node if we haven't already */ 2348 if (!node_isset(node, *used_node_mask)) { 2349 node_set(node, *used_node_mask); 2350 return node; 2351 } 2352 2353 for_each_node_state(n, N_HIGH_MEMORY) { 2354 2355 /* Don't want a node to appear more than once */ 2356 if (node_isset(n, *used_node_mask)) 2357 continue; 2358 2359 /* Use the distance array to find the distance */ 2360 val = node_distance(node, n); 2361 2362 /* Penalize nodes under us ("prefer the next node") */ 2363 val += (n < node); 2364 2365 /* Give preference to headless and unused nodes */ 2366 tmp = cpumask_of_node(n); 2367 if (!cpumask_empty(tmp)) 2368 val += PENALTY_FOR_NODE_WITH_CPUS; 2369 2370 /* Slight preference for less loaded node */ 2371 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2372 val += node_load[n]; 2373 2374 if (val < min_val) { 2375 min_val = val; 2376 best_node = n; 2377 } 2378 } 2379 2380 if (best_node >= 0) 2381 node_set(best_node, *used_node_mask); 2382 2383 return best_node; 2384 } 2385 2386 2387 /* 2388 * Build zonelists ordered by node and zones within node. 2389 * This results in maximum locality--normal zone overflows into local 2390 * DMA zone, if any--but risks exhausting DMA zone. 2391 */ 2392 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2393 { 2394 int j; 2395 struct zonelist *zonelist; 2396 2397 zonelist = &pgdat->node_zonelists[0]; 2398 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2399 ; 2400 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2401 MAX_NR_ZONES - 1); 2402 zonelist->_zonerefs[j].zone = NULL; 2403 zonelist->_zonerefs[j].zone_idx = 0; 2404 } 2405 2406 /* 2407 * Build gfp_thisnode zonelists 2408 */ 2409 static void build_thisnode_zonelists(pg_data_t *pgdat) 2410 { 2411 int j; 2412 struct zonelist *zonelist; 2413 2414 zonelist = &pgdat->node_zonelists[1]; 2415 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2416 zonelist->_zonerefs[j].zone = NULL; 2417 zonelist->_zonerefs[j].zone_idx = 0; 2418 } 2419 2420 /* 2421 * Build zonelists ordered by zone and nodes within zones. 2422 * This results in conserving DMA zone[s] until all Normal memory is 2423 * exhausted, but results in overflowing to remote node while memory 2424 * may still exist in local DMA zone. 2425 */ 2426 static int node_order[MAX_NUMNODES]; 2427 2428 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2429 { 2430 int pos, j, node; 2431 int zone_type; /* needs to be signed */ 2432 struct zone *z; 2433 struct zonelist *zonelist; 2434 2435 zonelist = &pgdat->node_zonelists[0]; 2436 pos = 0; 2437 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2438 for (j = 0; j < nr_nodes; j++) { 2439 node = node_order[j]; 2440 z = &NODE_DATA(node)->node_zones[zone_type]; 2441 if (populated_zone(z)) { 2442 zoneref_set_zone(z, 2443 &zonelist->_zonerefs[pos++]); 2444 check_highest_zone(zone_type); 2445 } 2446 } 2447 } 2448 zonelist->_zonerefs[pos].zone = NULL; 2449 zonelist->_zonerefs[pos].zone_idx = 0; 2450 } 2451 2452 static int default_zonelist_order(void) 2453 { 2454 int nid, zone_type; 2455 unsigned long low_kmem_size,total_size; 2456 struct zone *z; 2457 int average_size; 2458 /* 2459 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2460 * If they are really small and used heavily, the system can fall 2461 * into OOM very easily. 2462 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2463 */ 2464 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2465 low_kmem_size = 0; 2466 total_size = 0; 2467 for_each_online_node(nid) { 2468 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2469 z = &NODE_DATA(nid)->node_zones[zone_type]; 2470 if (populated_zone(z)) { 2471 if (zone_type < ZONE_NORMAL) 2472 low_kmem_size += z->present_pages; 2473 total_size += z->present_pages; 2474 } 2475 } 2476 } 2477 if (!low_kmem_size || /* there are no DMA area. */ 2478 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2479 return ZONELIST_ORDER_NODE; 2480 /* 2481 * look into each node's config. 2482 * If there is a node whose DMA/DMA32 memory is very big area on 2483 * local memory, NODE_ORDER may be suitable. 2484 */ 2485 average_size = total_size / 2486 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2487 for_each_online_node(nid) { 2488 low_kmem_size = 0; 2489 total_size = 0; 2490 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2491 z = &NODE_DATA(nid)->node_zones[zone_type]; 2492 if (populated_zone(z)) { 2493 if (zone_type < ZONE_NORMAL) 2494 low_kmem_size += z->present_pages; 2495 total_size += z->present_pages; 2496 } 2497 } 2498 if (low_kmem_size && 2499 total_size > average_size && /* ignore small node */ 2500 low_kmem_size > total_size * 70/100) 2501 return ZONELIST_ORDER_NODE; 2502 } 2503 return ZONELIST_ORDER_ZONE; 2504 } 2505 2506 static void set_zonelist_order(void) 2507 { 2508 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2509 current_zonelist_order = default_zonelist_order(); 2510 else 2511 current_zonelist_order = user_zonelist_order; 2512 } 2513 2514 static void build_zonelists(pg_data_t *pgdat) 2515 { 2516 int j, node, load; 2517 enum zone_type i; 2518 nodemask_t used_mask; 2519 int local_node, prev_node; 2520 struct zonelist *zonelist; 2521 int order = current_zonelist_order; 2522 2523 /* initialize zonelists */ 2524 for (i = 0; i < MAX_ZONELISTS; i++) { 2525 zonelist = pgdat->node_zonelists + i; 2526 zonelist->_zonerefs[0].zone = NULL; 2527 zonelist->_zonerefs[0].zone_idx = 0; 2528 } 2529 2530 /* NUMA-aware ordering of nodes */ 2531 local_node = pgdat->node_id; 2532 load = nr_online_nodes; 2533 prev_node = local_node; 2534 nodes_clear(used_mask); 2535 2536 memset(node_load, 0, sizeof(node_load)); 2537 memset(node_order, 0, sizeof(node_order)); 2538 j = 0; 2539 2540 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2541 int distance = node_distance(local_node, node); 2542 2543 /* 2544 * If another node is sufficiently far away then it is better 2545 * to reclaim pages in a zone before going off node. 2546 */ 2547 if (distance > RECLAIM_DISTANCE) 2548 zone_reclaim_mode = 1; 2549 2550 /* 2551 * We don't want to pressure a particular node. 2552 * So adding penalty to the first node in same 2553 * distance group to make it round-robin. 2554 */ 2555 if (distance != node_distance(local_node, prev_node)) 2556 node_load[node] = load; 2557 2558 prev_node = node; 2559 load--; 2560 if (order == ZONELIST_ORDER_NODE) 2561 build_zonelists_in_node_order(pgdat, node); 2562 else 2563 node_order[j++] = node; /* remember order */ 2564 } 2565 2566 if (order == ZONELIST_ORDER_ZONE) { 2567 /* calculate node order -- i.e., DMA last! */ 2568 build_zonelists_in_zone_order(pgdat, j); 2569 } 2570 2571 build_thisnode_zonelists(pgdat); 2572 } 2573 2574 /* Construct the zonelist performance cache - see further mmzone.h */ 2575 static void build_zonelist_cache(pg_data_t *pgdat) 2576 { 2577 struct zonelist *zonelist; 2578 struct zonelist_cache *zlc; 2579 struct zoneref *z; 2580 2581 zonelist = &pgdat->node_zonelists[0]; 2582 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2583 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2584 for (z = zonelist->_zonerefs; z->zone; z++) 2585 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2586 } 2587 2588 2589 #else /* CONFIG_NUMA */ 2590 2591 static void set_zonelist_order(void) 2592 { 2593 current_zonelist_order = ZONELIST_ORDER_ZONE; 2594 } 2595 2596 static void build_zonelists(pg_data_t *pgdat) 2597 { 2598 int node, local_node; 2599 enum zone_type j; 2600 struct zonelist *zonelist; 2601 2602 local_node = pgdat->node_id; 2603 2604 zonelist = &pgdat->node_zonelists[0]; 2605 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2606 2607 /* 2608 * Now we build the zonelist so that it contains the zones 2609 * of all the other nodes. 2610 * We don't want to pressure a particular node, so when 2611 * building the zones for node N, we make sure that the 2612 * zones coming right after the local ones are those from 2613 * node N+1 (modulo N) 2614 */ 2615 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2616 if (!node_online(node)) 2617 continue; 2618 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2619 MAX_NR_ZONES - 1); 2620 } 2621 for (node = 0; node < local_node; node++) { 2622 if (!node_online(node)) 2623 continue; 2624 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2625 MAX_NR_ZONES - 1); 2626 } 2627 2628 zonelist->_zonerefs[j].zone = NULL; 2629 zonelist->_zonerefs[j].zone_idx = 0; 2630 } 2631 2632 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2633 static void build_zonelist_cache(pg_data_t *pgdat) 2634 { 2635 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2636 } 2637 2638 #endif /* CONFIG_NUMA */ 2639 2640 /* return values int ....just for stop_machine() */ 2641 static int __build_all_zonelists(void *dummy) 2642 { 2643 int nid; 2644 2645 for_each_online_node(nid) { 2646 pg_data_t *pgdat = NODE_DATA(nid); 2647 2648 build_zonelists(pgdat); 2649 build_zonelist_cache(pgdat); 2650 } 2651 return 0; 2652 } 2653 2654 void build_all_zonelists(void) 2655 { 2656 set_zonelist_order(); 2657 2658 if (system_state == SYSTEM_BOOTING) { 2659 __build_all_zonelists(NULL); 2660 mminit_verify_zonelist(); 2661 cpuset_init_current_mems_allowed(); 2662 } else { 2663 /* we have to stop all cpus to guarantee there is no user 2664 of zonelist */ 2665 stop_machine(__build_all_zonelists, NULL, NULL); 2666 /* cpuset refresh routine should be here */ 2667 } 2668 vm_total_pages = nr_free_pagecache_pages(); 2669 /* 2670 * Disable grouping by mobility if the number of pages in the 2671 * system is too low to allow the mechanism to work. It would be 2672 * more accurate, but expensive to check per-zone. This check is 2673 * made on memory-hotadd so a system can start with mobility 2674 * disabled and enable it later 2675 */ 2676 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2677 page_group_by_mobility_disabled = 1; 2678 else 2679 page_group_by_mobility_disabled = 0; 2680 2681 printk("Built %i zonelists in %s order, mobility grouping %s. " 2682 "Total pages: %ld\n", 2683 nr_online_nodes, 2684 zonelist_order_name[current_zonelist_order], 2685 page_group_by_mobility_disabled ? "off" : "on", 2686 vm_total_pages); 2687 #ifdef CONFIG_NUMA 2688 printk("Policy zone: %s\n", zone_names[policy_zone]); 2689 #endif 2690 } 2691 2692 /* 2693 * Helper functions to size the waitqueue hash table. 2694 * Essentially these want to choose hash table sizes sufficiently 2695 * large so that collisions trying to wait on pages are rare. 2696 * But in fact, the number of active page waitqueues on typical 2697 * systems is ridiculously low, less than 200. So this is even 2698 * conservative, even though it seems large. 2699 * 2700 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2701 * waitqueues, i.e. the size of the waitq table given the number of pages. 2702 */ 2703 #define PAGES_PER_WAITQUEUE 256 2704 2705 #ifndef CONFIG_MEMORY_HOTPLUG 2706 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2707 { 2708 unsigned long size = 1; 2709 2710 pages /= PAGES_PER_WAITQUEUE; 2711 2712 while (size < pages) 2713 size <<= 1; 2714 2715 /* 2716 * Once we have dozens or even hundreds of threads sleeping 2717 * on IO we've got bigger problems than wait queue collision. 2718 * Limit the size of the wait table to a reasonable size. 2719 */ 2720 size = min(size, 4096UL); 2721 2722 return max(size, 4UL); 2723 } 2724 #else 2725 /* 2726 * A zone's size might be changed by hot-add, so it is not possible to determine 2727 * a suitable size for its wait_table. So we use the maximum size now. 2728 * 2729 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2730 * 2731 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2732 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2733 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2734 * 2735 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2736 * or more by the traditional way. (See above). It equals: 2737 * 2738 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2739 * ia64(16K page size) : = ( 8G + 4M)byte. 2740 * powerpc (64K page size) : = (32G +16M)byte. 2741 */ 2742 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2743 { 2744 return 4096UL; 2745 } 2746 #endif 2747 2748 /* 2749 * This is an integer logarithm so that shifts can be used later 2750 * to extract the more random high bits from the multiplicative 2751 * hash function before the remainder is taken. 2752 */ 2753 static inline unsigned long wait_table_bits(unsigned long size) 2754 { 2755 return ffz(~size); 2756 } 2757 2758 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2759 2760 /* 2761 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2762 * of blocks reserved is based on min_wmark_pages(zone). The memory within 2763 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 2764 * higher will lead to a bigger reserve which will get freed as contiguous 2765 * blocks as reclaim kicks in 2766 */ 2767 static void setup_zone_migrate_reserve(struct zone *zone) 2768 { 2769 unsigned long start_pfn, pfn, end_pfn; 2770 struct page *page; 2771 unsigned long reserve, block_migratetype; 2772 2773 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2774 start_pfn = zone->zone_start_pfn; 2775 end_pfn = start_pfn + zone->spanned_pages; 2776 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 2777 pageblock_order; 2778 2779 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2780 if (!pfn_valid(pfn)) 2781 continue; 2782 page = pfn_to_page(pfn); 2783 2784 /* Watch out for overlapping nodes */ 2785 if (page_to_nid(page) != zone_to_nid(zone)) 2786 continue; 2787 2788 /* Blocks with reserved pages will never free, skip them. */ 2789 if (PageReserved(page)) 2790 continue; 2791 2792 block_migratetype = get_pageblock_migratetype(page); 2793 2794 /* If this block is reserved, account for it */ 2795 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2796 reserve--; 2797 continue; 2798 } 2799 2800 /* Suitable for reserving if this block is movable */ 2801 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2802 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2803 move_freepages_block(zone, page, MIGRATE_RESERVE); 2804 reserve--; 2805 continue; 2806 } 2807 2808 /* 2809 * If the reserve is met and this is a previous reserved block, 2810 * take it back 2811 */ 2812 if (block_migratetype == MIGRATE_RESERVE) { 2813 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2814 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2815 } 2816 } 2817 } 2818 2819 /* 2820 * Initially all pages are reserved - free ones are freed 2821 * up by free_all_bootmem() once the early boot process is 2822 * done. Non-atomic initialization, single-pass. 2823 */ 2824 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2825 unsigned long start_pfn, enum memmap_context context) 2826 { 2827 struct page *page; 2828 unsigned long end_pfn = start_pfn + size; 2829 unsigned long pfn; 2830 struct zone *z; 2831 2832 if (highest_memmap_pfn < end_pfn - 1) 2833 highest_memmap_pfn = end_pfn - 1; 2834 2835 z = &NODE_DATA(nid)->node_zones[zone]; 2836 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2837 /* 2838 * There can be holes in boot-time mem_map[]s 2839 * handed to this function. They do not 2840 * exist on hotplugged memory. 2841 */ 2842 if (context == MEMMAP_EARLY) { 2843 if (!early_pfn_valid(pfn)) 2844 continue; 2845 if (!early_pfn_in_nid(pfn, nid)) 2846 continue; 2847 } 2848 page = pfn_to_page(pfn); 2849 set_page_links(page, zone, nid, pfn); 2850 mminit_verify_page_links(page, zone, nid, pfn); 2851 init_page_count(page); 2852 reset_page_mapcount(page); 2853 SetPageReserved(page); 2854 /* 2855 * Mark the block movable so that blocks are reserved for 2856 * movable at startup. This will force kernel allocations 2857 * to reserve their blocks rather than leaking throughout 2858 * the address space during boot when many long-lived 2859 * kernel allocations are made. Later some blocks near 2860 * the start are marked MIGRATE_RESERVE by 2861 * setup_zone_migrate_reserve() 2862 * 2863 * bitmap is created for zone's valid pfn range. but memmap 2864 * can be created for invalid pages (for alignment) 2865 * check here not to call set_pageblock_migratetype() against 2866 * pfn out of zone. 2867 */ 2868 if ((z->zone_start_pfn <= pfn) 2869 && (pfn < z->zone_start_pfn + z->spanned_pages) 2870 && !(pfn & (pageblock_nr_pages - 1))) 2871 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2872 2873 INIT_LIST_HEAD(&page->lru); 2874 #ifdef WANT_PAGE_VIRTUAL 2875 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2876 if (!is_highmem_idx(zone)) 2877 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2878 #endif 2879 } 2880 } 2881 2882 static void __meminit zone_init_free_lists(struct zone *zone) 2883 { 2884 int order, t; 2885 for_each_migratetype_order(order, t) { 2886 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2887 zone->free_area[order].nr_free = 0; 2888 } 2889 } 2890 2891 #ifndef __HAVE_ARCH_MEMMAP_INIT 2892 #define memmap_init(size, nid, zone, start_pfn) \ 2893 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2894 #endif 2895 2896 static int zone_batchsize(struct zone *zone) 2897 { 2898 #ifdef CONFIG_MMU 2899 int batch; 2900 2901 /* 2902 * The per-cpu-pages pools are set to around 1000th of the 2903 * size of the zone. But no more than 1/2 of a meg. 2904 * 2905 * OK, so we don't know how big the cache is. So guess. 2906 */ 2907 batch = zone->present_pages / 1024; 2908 if (batch * PAGE_SIZE > 512 * 1024) 2909 batch = (512 * 1024) / PAGE_SIZE; 2910 batch /= 4; /* We effectively *= 4 below */ 2911 if (batch < 1) 2912 batch = 1; 2913 2914 /* 2915 * Clamp the batch to a 2^n - 1 value. Having a power 2916 * of 2 value was found to be more likely to have 2917 * suboptimal cache aliasing properties in some cases. 2918 * 2919 * For example if 2 tasks are alternately allocating 2920 * batches of pages, one task can end up with a lot 2921 * of pages of one half of the possible page colors 2922 * and the other with pages of the other colors. 2923 */ 2924 batch = rounddown_pow_of_two(batch + batch/2) - 1; 2925 2926 return batch; 2927 2928 #else 2929 /* The deferral and batching of frees should be suppressed under NOMMU 2930 * conditions. 2931 * 2932 * The problem is that NOMMU needs to be able to allocate large chunks 2933 * of contiguous memory as there's no hardware page translation to 2934 * assemble apparent contiguous memory from discontiguous pages. 2935 * 2936 * Queueing large contiguous runs of pages for batching, however, 2937 * causes the pages to actually be freed in smaller chunks. As there 2938 * can be a significant delay between the individual batches being 2939 * recycled, this leads to the once large chunks of space being 2940 * fragmented and becoming unavailable for high-order allocations. 2941 */ 2942 return 0; 2943 #endif 2944 } 2945 2946 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2947 { 2948 struct per_cpu_pages *pcp; 2949 2950 memset(p, 0, sizeof(*p)); 2951 2952 pcp = &p->pcp; 2953 pcp->count = 0; 2954 pcp->high = 6 * batch; 2955 pcp->batch = max(1UL, 1 * batch); 2956 INIT_LIST_HEAD(&pcp->list); 2957 } 2958 2959 /* 2960 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2961 * to the value high for the pageset p. 2962 */ 2963 2964 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2965 unsigned long high) 2966 { 2967 struct per_cpu_pages *pcp; 2968 2969 pcp = &p->pcp; 2970 pcp->high = high; 2971 pcp->batch = max(1UL, high/4); 2972 if ((high/4) > (PAGE_SHIFT * 8)) 2973 pcp->batch = PAGE_SHIFT * 8; 2974 } 2975 2976 2977 #ifdef CONFIG_NUMA 2978 /* 2979 * Boot pageset table. One per cpu which is going to be used for all 2980 * zones and all nodes. The parameters will be set in such a way 2981 * that an item put on a list will immediately be handed over to 2982 * the buddy list. This is safe since pageset manipulation is done 2983 * with interrupts disabled. 2984 * 2985 * Some NUMA counter updates may also be caught by the boot pagesets. 2986 * 2987 * The boot_pagesets must be kept even after bootup is complete for 2988 * unused processors and/or zones. They do play a role for bootstrapping 2989 * hotplugged processors. 2990 * 2991 * zoneinfo_show() and maybe other functions do 2992 * not check if the processor is online before following the pageset pointer. 2993 * Other parts of the kernel may not check if the zone is available. 2994 */ 2995 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2996 2997 /* 2998 * Dynamically allocate memory for the 2999 * per cpu pageset array in struct zone. 3000 */ 3001 static int __cpuinit process_zones(int cpu) 3002 { 3003 struct zone *zone, *dzone; 3004 int node = cpu_to_node(cpu); 3005 3006 node_set_state(node, N_CPU); /* this node has a cpu */ 3007 3008 for_each_populated_zone(zone) { 3009 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 3010 GFP_KERNEL, node); 3011 if (!zone_pcp(zone, cpu)) 3012 goto bad; 3013 3014 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 3015 3016 if (percpu_pagelist_fraction) 3017 setup_pagelist_highmark(zone_pcp(zone, cpu), 3018 (zone->present_pages / percpu_pagelist_fraction)); 3019 } 3020 3021 return 0; 3022 bad: 3023 for_each_zone(dzone) { 3024 if (!populated_zone(dzone)) 3025 continue; 3026 if (dzone == zone) 3027 break; 3028 kfree(zone_pcp(dzone, cpu)); 3029 zone_pcp(dzone, cpu) = &boot_pageset[cpu]; 3030 } 3031 return -ENOMEM; 3032 } 3033 3034 static inline void free_zone_pagesets(int cpu) 3035 { 3036 struct zone *zone; 3037 3038 for_each_zone(zone) { 3039 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 3040 3041 /* Free per_cpu_pageset if it is slab allocated */ 3042 if (pset != &boot_pageset[cpu]) 3043 kfree(pset); 3044 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 3045 } 3046 } 3047 3048 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 3049 unsigned long action, 3050 void *hcpu) 3051 { 3052 int cpu = (long)hcpu; 3053 int ret = NOTIFY_OK; 3054 3055 switch (action) { 3056 case CPU_UP_PREPARE: 3057 case CPU_UP_PREPARE_FROZEN: 3058 if (process_zones(cpu)) 3059 ret = NOTIFY_BAD; 3060 break; 3061 case CPU_UP_CANCELED: 3062 case CPU_UP_CANCELED_FROZEN: 3063 case CPU_DEAD: 3064 case CPU_DEAD_FROZEN: 3065 free_zone_pagesets(cpu); 3066 break; 3067 default: 3068 break; 3069 } 3070 return ret; 3071 } 3072 3073 static struct notifier_block __cpuinitdata pageset_notifier = 3074 { &pageset_cpuup_callback, NULL, 0 }; 3075 3076 void __init setup_per_cpu_pageset(void) 3077 { 3078 int err; 3079 3080 /* Initialize per_cpu_pageset for cpu 0. 3081 * A cpuup callback will do this for every cpu 3082 * as it comes online 3083 */ 3084 err = process_zones(smp_processor_id()); 3085 BUG_ON(err); 3086 register_cpu_notifier(&pageset_notifier); 3087 } 3088 3089 #endif 3090 3091 static noinline __init_refok 3092 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3093 { 3094 int i; 3095 struct pglist_data *pgdat = zone->zone_pgdat; 3096 size_t alloc_size; 3097 3098 /* 3099 * The per-page waitqueue mechanism uses hashed waitqueues 3100 * per zone. 3101 */ 3102 zone->wait_table_hash_nr_entries = 3103 wait_table_hash_nr_entries(zone_size_pages); 3104 zone->wait_table_bits = 3105 wait_table_bits(zone->wait_table_hash_nr_entries); 3106 alloc_size = zone->wait_table_hash_nr_entries 3107 * sizeof(wait_queue_head_t); 3108 3109 if (!slab_is_available()) { 3110 zone->wait_table = (wait_queue_head_t *) 3111 alloc_bootmem_node(pgdat, alloc_size); 3112 } else { 3113 /* 3114 * This case means that a zone whose size was 0 gets new memory 3115 * via memory hot-add. 3116 * But it may be the case that a new node was hot-added. In 3117 * this case vmalloc() will not be able to use this new node's 3118 * memory - this wait_table must be initialized to use this new 3119 * node itself as well. 3120 * To use this new node's memory, further consideration will be 3121 * necessary. 3122 */ 3123 zone->wait_table = vmalloc(alloc_size); 3124 } 3125 if (!zone->wait_table) 3126 return -ENOMEM; 3127 3128 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3129 init_waitqueue_head(zone->wait_table + i); 3130 3131 return 0; 3132 } 3133 3134 static __meminit void zone_pcp_init(struct zone *zone) 3135 { 3136 int cpu; 3137 unsigned long batch = zone_batchsize(zone); 3138 3139 for (cpu = 0; cpu < NR_CPUS; cpu++) { 3140 #ifdef CONFIG_NUMA 3141 /* Early boot. Slab allocator not functional yet */ 3142 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 3143 setup_pageset(&boot_pageset[cpu],0); 3144 #else 3145 setup_pageset(zone_pcp(zone,cpu), batch); 3146 #endif 3147 } 3148 if (zone->present_pages) 3149 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 3150 zone->name, zone->present_pages, batch); 3151 } 3152 3153 __meminit int init_currently_empty_zone(struct zone *zone, 3154 unsigned long zone_start_pfn, 3155 unsigned long size, 3156 enum memmap_context context) 3157 { 3158 struct pglist_data *pgdat = zone->zone_pgdat; 3159 int ret; 3160 ret = zone_wait_table_init(zone, size); 3161 if (ret) 3162 return ret; 3163 pgdat->nr_zones = zone_idx(zone) + 1; 3164 3165 zone->zone_start_pfn = zone_start_pfn; 3166 3167 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3168 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3169 pgdat->node_id, 3170 (unsigned long)zone_idx(zone), 3171 zone_start_pfn, (zone_start_pfn + size)); 3172 3173 zone_init_free_lists(zone); 3174 3175 return 0; 3176 } 3177 3178 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3179 /* 3180 * Basic iterator support. Return the first range of PFNs for a node 3181 * Note: nid == MAX_NUMNODES returns first region regardless of node 3182 */ 3183 static int __meminit first_active_region_index_in_nid(int nid) 3184 { 3185 int i; 3186 3187 for (i = 0; i < nr_nodemap_entries; i++) 3188 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3189 return i; 3190 3191 return -1; 3192 } 3193 3194 /* 3195 * Basic iterator support. Return the next active range of PFNs for a node 3196 * Note: nid == MAX_NUMNODES returns next region regardless of node 3197 */ 3198 static int __meminit next_active_region_index_in_nid(int index, int nid) 3199 { 3200 for (index = index + 1; index < nr_nodemap_entries; index++) 3201 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3202 return index; 3203 3204 return -1; 3205 } 3206 3207 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3208 /* 3209 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3210 * Architectures may implement their own version but if add_active_range() 3211 * was used and there are no special requirements, this is a convenient 3212 * alternative 3213 */ 3214 int __meminit __early_pfn_to_nid(unsigned long pfn) 3215 { 3216 int i; 3217 3218 for (i = 0; i < nr_nodemap_entries; i++) { 3219 unsigned long start_pfn = early_node_map[i].start_pfn; 3220 unsigned long end_pfn = early_node_map[i].end_pfn; 3221 3222 if (start_pfn <= pfn && pfn < end_pfn) 3223 return early_node_map[i].nid; 3224 } 3225 /* This is a memory hole */ 3226 return -1; 3227 } 3228 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3229 3230 int __meminit early_pfn_to_nid(unsigned long pfn) 3231 { 3232 int nid; 3233 3234 nid = __early_pfn_to_nid(pfn); 3235 if (nid >= 0) 3236 return nid; 3237 /* just returns 0 */ 3238 return 0; 3239 } 3240 3241 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3242 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3243 { 3244 int nid; 3245 3246 nid = __early_pfn_to_nid(pfn); 3247 if (nid >= 0 && nid != node) 3248 return false; 3249 return true; 3250 } 3251 #endif 3252 3253 /* Basic iterator support to walk early_node_map[] */ 3254 #define for_each_active_range_index_in_nid(i, nid) \ 3255 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3256 i = next_active_region_index_in_nid(i, nid)) 3257 3258 /** 3259 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3260 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3261 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3262 * 3263 * If an architecture guarantees that all ranges registered with 3264 * add_active_ranges() contain no holes and may be freed, this 3265 * this function may be used instead of calling free_bootmem() manually. 3266 */ 3267 void __init free_bootmem_with_active_regions(int nid, 3268 unsigned long max_low_pfn) 3269 { 3270 int i; 3271 3272 for_each_active_range_index_in_nid(i, nid) { 3273 unsigned long size_pages = 0; 3274 unsigned long end_pfn = early_node_map[i].end_pfn; 3275 3276 if (early_node_map[i].start_pfn >= max_low_pfn) 3277 continue; 3278 3279 if (end_pfn > max_low_pfn) 3280 end_pfn = max_low_pfn; 3281 3282 size_pages = end_pfn - early_node_map[i].start_pfn; 3283 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3284 PFN_PHYS(early_node_map[i].start_pfn), 3285 size_pages << PAGE_SHIFT); 3286 } 3287 } 3288 3289 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3290 { 3291 int i; 3292 int ret; 3293 3294 for_each_active_range_index_in_nid(i, nid) { 3295 ret = work_fn(early_node_map[i].start_pfn, 3296 early_node_map[i].end_pfn, data); 3297 if (ret) 3298 break; 3299 } 3300 } 3301 /** 3302 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3303 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3304 * 3305 * If an architecture guarantees that all ranges registered with 3306 * add_active_ranges() contain no holes and may be freed, this 3307 * function may be used instead of calling memory_present() manually. 3308 */ 3309 void __init sparse_memory_present_with_active_regions(int nid) 3310 { 3311 int i; 3312 3313 for_each_active_range_index_in_nid(i, nid) 3314 memory_present(early_node_map[i].nid, 3315 early_node_map[i].start_pfn, 3316 early_node_map[i].end_pfn); 3317 } 3318 3319 /** 3320 * get_pfn_range_for_nid - Return the start and end page frames for a node 3321 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3322 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3323 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3324 * 3325 * It returns the start and end page frame of a node based on information 3326 * provided by an arch calling add_active_range(). If called for a node 3327 * with no available memory, a warning is printed and the start and end 3328 * PFNs will be 0. 3329 */ 3330 void __meminit get_pfn_range_for_nid(unsigned int nid, 3331 unsigned long *start_pfn, unsigned long *end_pfn) 3332 { 3333 int i; 3334 *start_pfn = -1UL; 3335 *end_pfn = 0; 3336 3337 for_each_active_range_index_in_nid(i, nid) { 3338 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3339 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3340 } 3341 3342 if (*start_pfn == -1UL) 3343 *start_pfn = 0; 3344 } 3345 3346 /* 3347 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3348 * assumption is made that zones within a node are ordered in monotonic 3349 * increasing memory addresses so that the "highest" populated zone is used 3350 */ 3351 static void __init find_usable_zone_for_movable(void) 3352 { 3353 int zone_index; 3354 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3355 if (zone_index == ZONE_MOVABLE) 3356 continue; 3357 3358 if (arch_zone_highest_possible_pfn[zone_index] > 3359 arch_zone_lowest_possible_pfn[zone_index]) 3360 break; 3361 } 3362 3363 VM_BUG_ON(zone_index == -1); 3364 movable_zone = zone_index; 3365 } 3366 3367 /* 3368 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3369 * because it is sized independant of architecture. Unlike the other zones, 3370 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3371 * in each node depending on the size of each node and how evenly kernelcore 3372 * is distributed. This helper function adjusts the zone ranges 3373 * provided by the architecture for a given node by using the end of the 3374 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3375 * zones within a node are in order of monotonic increases memory addresses 3376 */ 3377 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3378 unsigned long zone_type, 3379 unsigned long node_start_pfn, 3380 unsigned long node_end_pfn, 3381 unsigned long *zone_start_pfn, 3382 unsigned long *zone_end_pfn) 3383 { 3384 /* Only adjust if ZONE_MOVABLE is on this node */ 3385 if (zone_movable_pfn[nid]) { 3386 /* Size ZONE_MOVABLE */ 3387 if (zone_type == ZONE_MOVABLE) { 3388 *zone_start_pfn = zone_movable_pfn[nid]; 3389 *zone_end_pfn = min(node_end_pfn, 3390 arch_zone_highest_possible_pfn[movable_zone]); 3391 3392 /* Adjust for ZONE_MOVABLE starting within this range */ 3393 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3394 *zone_end_pfn > zone_movable_pfn[nid]) { 3395 *zone_end_pfn = zone_movable_pfn[nid]; 3396 3397 /* Check if this whole range is within ZONE_MOVABLE */ 3398 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3399 *zone_start_pfn = *zone_end_pfn; 3400 } 3401 } 3402 3403 /* 3404 * Return the number of pages a zone spans in a node, including holes 3405 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3406 */ 3407 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3408 unsigned long zone_type, 3409 unsigned long *ignored) 3410 { 3411 unsigned long node_start_pfn, node_end_pfn; 3412 unsigned long zone_start_pfn, zone_end_pfn; 3413 3414 /* Get the start and end of the node and zone */ 3415 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3416 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3417 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3418 adjust_zone_range_for_zone_movable(nid, zone_type, 3419 node_start_pfn, node_end_pfn, 3420 &zone_start_pfn, &zone_end_pfn); 3421 3422 /* Check that this node has pages within the zone's required range */ 3423 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3424 return 0; 3425 3426 /* Move the zone boundaries inside the node if necessary */ 3427 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3428 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3429 3430 /* Return the spanned pages */ 3431 return zone_end_pfn - zone_start_pfn; 3432 } 3433 3434 /* 3435 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3436 * then all holes in the requested range will be accounted for. 3437 */ 3438 static unsigned long __meminit __absent_pages_in_range(int nid, 3439 unsigned long range_start_pfn, 3440 unsigned long range_end_pfn) 3441 { 3442 int i = 0; 3443 unsigned long prev_end_pfn = 0, hole_pages = 0; 3444 unsigned long start_pfn; 3445 3446 /* Find the end_pfn of the first active range of pfns in the node */ 3447 i = first_active_region_index_in_nid(nid); 3448 if (i == -1) 3449 return 0; 3450 3451 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3452 3453 /* Account for ranges before physical memory on this node */ 3454 if (early_node_map[i].start_pfn > range_start_pfn) 3455 hole_pages = prev_end_pfn - range_start_pfn; 3456 3457 /* Find all holes for the zone within the node */ 3458 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3459 3460 /* No need to continue if prev_end_pfn is outside the zone */ 3461 if (prev_end_pfn >= range_end_pfn) 3462 break; 3463 3464 /* Make sure the end of the zone is not within the hole */ 3465 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3466 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3467 3468 /* Update the hole size cound and move on */ 3469 if (start_pfn > range_start_pfn) { 3470 BUG_ON(prev_end_pfn > start_pfn); 3471 hole_pages += start_pfn - prev_end_pfn; 3472 } 3473 prev_end_pfn = early_node_map[i].end_pfn; 3474 } 3475 3476 /* Account for ranges past physical memory on this node */ 3477 if (range_end_pfn > prev_end_pfn) 3478 hole_pages += range_end_pfn - 3479 max(range_start_pfn, prev_end_pfn); 3480 3481 return hole_pages; 3482 } 3483 3484 /** 3485 * absent_pages_in_range - Return number of page frames in holes within a range 3486 * @start_pfn: The start PFN to start searching for holes 3487 * @end_pfn: The end PFN to stop searching for holes 3488 * 3489 * It returns the number of pages frames in memory holes within a range. 3490 */ 3491 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3492 unsigned long end_pfn) 3493 { 3494 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3495 } 3496 3497 /* Return the number of page frames in holes in a zone on a node */ 3498 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3499 unsigned long zone_type, 3500 unsigned long *ignored) 3501 { 3502 unsigned long node_start_pfn, node_end_pfn; 3503 unsigned long zone_start_pfn, zone_end_pfn; 3504 3505 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3506 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3507 node_start_pfn); 3508 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3509 node_end_pfn); 3510 3511 adjust_zone_range_for_zone_movable(nid, zone_type, 3512 node_start_pfn, node_end_pfn, 3513 &zone_start_pfn, &zone_end_pfn); 3514 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3515 } 3516 3517 #else 3518 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3519 unsigned long zone_type, 3520 unsigned long *zones_size) 3521 { 3522 return zones_size[zone_type]; 3523 } 3524 3525 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3526 unsigned long zone_type, 3527 unsigned long *zholes_size) 3528 { 3529 if (!zholes_size) 3530 return 0; 3531 3532 return zholes_size[zone_type]; 3533 } 3534 3535 #endif 3536 3537 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3538 unsigned long *zones_size, unsigned long *zholes_size) 3539 { 3540 unsigned long realtotalpages, totalpages = 0; 3541 enum zone_type i; 3542 3543 for (i = 0; i < MAX_NR_ZONES; i++) 3544 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3545 zones_size); 3546 pgdat->node_spanned_pages = totalpages; 3547 3548 realtotalpages = totalpages; 3549 for (i = 0; i < MAX_NR_ZONES; i++) 3550 realtotalpages -= 3551 zone_absent_pages_in_node(pgdat->node_id, i, 3552 zholes_size); 3553 pgdat->node_present_pages = realtotalpages; 3554 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3555 realtotalpages); 3556 } 3557 3558 #ifndef CONFIG_SPARSEMEM 3559 /* 3560 * Calculate the size of the zone->blockflags rounded to an unsigned long 3561 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3562 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3563 * round what is now in bits to nearest long in bits, then return it in 3564 * bytes. 3565 */ 3566 static unsigned long __init usemap_size(unsigned long zonesize) 3567 { 3568 unsigned long usemapsize; 3569 3570 usemapsize = roundup(zonesize, pageblock_nr_pages); 3571 usemapsize = usemapsize >> pageblock_order; 3572 usemapsize *= NR_PAGEBLOCK_BITS; 3573 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3574 3575 return usemapsize / 8; 3576 } 3577 3578 static void __init setup_usemap(struct pglist_data *pgdat, 3579 struct zone *zone, unsigned long zonesize) 3580 { 3581 unsigned long usemapsize = usemap_size(zonesize); 3582 zone->pageblock_flags = NULL; 3583 if (usemapsize) 3584 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3585 } 3586 #else 3587 static void inline setup_usemap(struct pglist_data *pgdat, 3588 struct zone *zone, unsigned long zonesize) {} 3589 #endif /* CONFIG_SPARSEMEM */ 3590 3591 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3592 3593 /* Return a sensible default order for the pageblock size. */ 3594 static inline int pageblock_default_order(void) 3595 { 3596 if (HPAGE_SHIFT > PAGE_SHIFT) 3597 return HUGETLB_PAGE_ORDER; 3598 3599 return MAX_ORDER-1; 3600 } 3601 3602 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3603 static inline void __init set_pageblock_order(unsigned int order) 3604 { 3605 /* Check that pageblock_nr_pages has not already been setup */ 3606 if (pageblock_order) 3607 return; 3608 3609 /* 3610 * Assume the largest contiguous order of interest is a huge page. 3611 * This value may be variable depending on boot parameters on IA64 3612 */ 3613 pageblock_order = order; 3614 } 3615 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3616 3617 /* 3618 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3619 * and pageblock_default_order() are unused as pageblock_order is set 3620 * at compile-time. See include/linux/pageblock-flags.h for the values of 3621 * pageblock_order based on the kernel config 3622 */ 3623 static inline int pageblock_default_order(unsigned int order) 3624 { 3625 return MAX_ORDER-1; 3626 } 3627 #define set_pageblock_order(x) do {} while (0) 3628 3629 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3630 3631 /* 3632 * Set up the zone data structures: 3633 * - mark all pages reserved 3634 * - mark all memory queues empty 3635 * - clear the memory bitmaps 3636 */ 3637 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3638 unsigned long *zones_size, unsigned long *zholes_size) 3639 { 3640 enum zone_type j; 3641 int nid = pgdat->node_id; 3642 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3643 int ret; 3644 3645 pgdat_resize_init(pgdat); 3646 pgdat->nr_zones = 0; 3647 init_waitqueue_head(&pgdat->kswapd_wait); 3648 pgdat->kswapd_max_order = 0; 3649 pgdat_page_cgroup_init(pgdat); 3650 3651 for (j = 0; j < MAX_NR_ZONES; j++) { 3652 struct zone *zone = pgdat->node_zones + j; 3653 unsigned long size, realsize, memmap_pages; 3654 enum lru_list l; 3655 3656 size = zone_spanned_pages_in_node(nid, j, zones_size); 3657 realsize = size - zone_absent_pages_in_node(nid, j, 3658 zholes_size); 3659 3660 /* 3661 * Adjust realsize so that it accounts for how much memory 3662 * is used by this zone for memmap. This affects the watermark 3663 * and per-cpu initialisations 3664 */ 3665 memmap_pages = 3666 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3667 if (realsize >= memmap_pages) { 3668 realsize -= memmap_pages; 3669 if (memmap_pages) 3670 printk(KERN_DEBUG 3671 " %s zone: %lu pages used for memmap\n", 3672 zone_names[j], memmap_pages); 3673 } else 3674 printk(KERN_WARNING 3675 " %s zone: %lu pages exceeds realsize %lu\n", 3676 zone_names[j], memmap_pages, realsize); 3677 3678 /* Account for reserved pages */ 3679 if (j == 0 && realsize > dma_reserve) { 3680 realsize -= dma_reserve; 3681 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3682 zone_names[0], dma_reserve); 3683 } 3684 3685 if (!is_highmem_idx(j)) 3686 nr_kernel_pages += realsize; 3687 nr_all_pages += realsize; 3688 3689 zone->spanned_pages = size; 3690 zone->present_pages = realsize; 3691 #ifdef CONFIG_NUMA 3692 zone->node = nid; 3693 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3694 / 100; 3695 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3696 #endif 3697 zone->name = zone_names[j]; 3698 spin_lock_init(&zone->lock); 3699 spin_lock_init(&zone->lru_lock); 3700 zone_seqlock_init(zone); 3701 zone->zone_pgdat = pgdat; 3702 3703 zone->prev_priority = DEF_PRIORITY; 3704 3705 zone_pcp_init(zone); 3706 for_each_lru(l) { 3707 INIT_LIST_HEAD(&zone->lru[l].list); 3708 zone->lru[l].nr_saved_scan = 0; 3709 } 3710 zone->reclaim_stat.recent_rotated[0] = 0; 3711 zone->reclaim_stat.recent_rotated[1] = 0; 3712 zone->reclaim_stat.recent_scanned[0] = 0; 3713 zone->reclaim_stat.recent_scanned[1] = 0; 3714 zap_zone_vm_stats(zone); 3715 zone->flags = 0; 3716 if (!size) 3717 continue; 3718 3719 set_pageblock_order(pageblock_default_order()); 3720 setup_usemap(pgdat, zone, size); 3721 ret = init_currently_empty_zone(zone, zone_start_pfn, 3722 size, MEMMAP_EARLY); 3723 BUG_ON(ret); 3724 memmap_init(size, nid, j, zone_start_pfn); 3725 zone_start_pfn += size; 3726 } 3727 } 3728 3729 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3730 { 3731 /* Skip empty nodes */ 3732 if (!pgdat->node_spanned_pages) 3733 return; 3734 3735 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3736 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3737 if (!pgdat->node_mem_map) { 3738 unsigned long size, start, end; 3739 struct page *map; 3740 3741 /* 3742 * The zone's endpoints aren't required to be MAX_ORDER 3743 * aligned but the node_mem_map endpoints must be in order 3744 * for the buddy allocator to function correctly. 3745 */ 3746 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3747 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3748 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3749 size = (end - start) * sizeof(struct page); 3750 map = alloc_remap(pgdat->node_id, size); 3751 if (!map) 3752 map = alloc_bootmem_node(pgdat, size); 3753 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3754 } 3755 #ifndef CONFIG_NEED_MULTIPLE_NODES 3756 /* 3757 * With no DISCONTIG, the global mem_map is just set as node 0's 3758 */ 3759 if (pgdat == NODE_DATA(0)) { 3760 mem_map = NODE_DATA(0)->node_mem_map; 3761 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3762 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3763 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3764 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3765 } 3766 #endif 3767 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3768 } 3769 3770 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3771 unsigned long node_start_pfn, unsigned long *zholes_size) 3772 { 3773 pg_data_t *pgdat = NODE_DATA(nid); 3774 3775 pgdat->node_id = nid; 3776 pgdat->node_start_pfn = node_start_pfn; 3777 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3778 3779 alloc_node_mem_map(pgdat); 3780 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3781 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3782 nid, (unsigned long)pgdat, 3783 (unsigned long)pgdat->node_mem_map); 3784 #endif 3785 3786 free_area_init_core(pgdat, zones_size, zholes_size); 3787 } 3788 3789 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3790 3791 #if MAX_NUMNODES > 1 3792 /* 3793 * Figure out the number of possible node ids. 3794 */ 3795 static void __init setup_nr_node_ids(void) 3796 { 3797 unsigned int node; 3798 unsigned int highest = 0; 3799 3800 for_each_node_mask(node, node_possible_map) 3801 highest = node; 3802 nr_node_ids = highest + 1; 3803 } 3804 #else 3805 static inline void setup_nr_node_ids(void) 3806 { 3807 } 3808 #endif 3809 3810 /** 3811 * add_active_range - Register a range of PFNs backed by physical memory 3812 * @nid: The node ID the range resides on 3813 * @start_pfn: The start PFN of the available physical memory 3814 * @end_pfn: The end PFN of the available physical memory 3815 * 3816 * These ranges are stored in an early_node_map[] and later used by 3817 * free_area_init_nodes() to calculate zone sizes and holes. If the 3818 * range spans a memory hole, it is up to the architecture to ensure 3819 * the memory is not freed by the bootmem allocator. If possible 3820 * the range being registered will be merged with existing ranges. 3821 */ 3822 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3823 unsigned long end_pfn) 3824 { 3825 int i; 3826 3827 mminit_dprintk(MMINIT_TRACE, "memory_register", 3828 "Entering add_active_range(%d, %#lx, %#lx) " 3829 "%d entries of %d used\n", 3830 nid, start_pfn, end_pfn, 3831 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3832 3833 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 3834 3835 /* Merge with existing active regions if possible */ 3836 for (i = 0; i < nr_nodemap_entries; i++) { 3837 if (early_node_map[i].nid != nid) 3838 continue; 3839 3840 /* Skip if an existing region covers this new one */ 3841 if (start_pfn >= early_node_map[i].start_pfn && 3842 end_pfn <= early_node_map[i].end_pfn) 3843 return; 3844 3845 /* Merge forward if suitable */ 3846 if (start_pfn <= early_node_map[i].end_pfn && 3847 end_pfn > early_node_map[i].end_pfn) { 3848 early_node_map[i].end_pfn = end_pfn; 3849 return; 3850 } 3851 3852 /* Merge backward if suitable */ 3853 if (start_pfn < early_node_map[i].end_pfn && 3854 end_pfn >= early_node_map[i].start_pfn) { 3855 early_node_map[i].start_pfn = start_pfn; 3856 return; 3857 } 3858 } 3859 3860 /* Check that early_node_map is large enough */ 3861 if (i >= MAX_ACTIVE_REGIONS) { 3862 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3863 MAX_ACTIVE_REGIONS); 3864 return; 3865 } 3866 3867 early_node_map[i].nid = nid; 3868 early_node_map[i].start_pfn = start_pfn; 3869 early_node_map[i].end_pfn = end_pfn; 3870 nr_nodemap_entries = i + 1; 3871 } 3872 3873 /** 3874 * remove_active_range - Shrink an existing registered range of PFNs 3875 * @nid: The node id the range is on that should be shrunk 3876 * @start_pfn: The new PFN of the range 3877 * @end_pfn: The new PFN of the range 3878 * 3879 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3880 * The map is kept near the end physical page range that has already been 3881 * registered. This function allows an arch to shrink an existing registered 3882 * range. 3883 */ 3884 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 3885 unsigned long end_pfn) 3886 { 3887 int i, j; 3888 int removed = 0; 3889 3890 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 3891 nid, start_pfn, end_pfn); 3892 3893 /* Find the old active region end and shrink */ 3894 for_each_active_range_index_in_nid(i, nid) { 3895 if (early_node_map[i].start_pfn >= start_pfn && 3896 early_node_map[i].end_pfn <= end_pfn) { 3897 /* clear it */ 3898 early_node_map[i].start_pfn = 0; 3899 early_node_map[i].end_pfn = 0; 3900 removed = 1; 3901 continue; 3902 } 3903 if (early_node_map[i].start_pfn < start_pfn && 3904 early_node_map[i].end_pfn > start_pfn) { 3905 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 3906 early_node_map[i].end_pfn = start_pfn; 3907 if (temp_end_pfn > end_pfn) 3908 add_active_range(nid, end_pfn, temp_end_pfn); 3909 continue; 3910 } 3911 if (early_node_map[i].start_pfn >= start_pfn && 3912 early_node_map[i].end_pfn > end_pfn && 3913 early_node_map[i].start_pfn < end_pfn) { 3914 early_node_map[i].start_pfn = end_pfn; 3915 continue; 3916 } 3917 } 3918 3919 if (!removed) 3920 return; 3921 3922 /* remove the blank ones */ 3923 for (i = nr_nodemap_entries - 1; i > 0; i--) { 3924 if (early_node_map[i].nid != nid) 3925 continue; 3926 if (early_node_map[i].end_pfn) 3927 continue; 3928 /* we found it, get rid of it */ 3929 for (j = i; j < nr_nodemap_entries - 1; j++) 3930 memcpy(&early_node_map[j], &early_node_map[j+1], 3931 sizeof(early_node_map[j])); 3932 j = nr_nodemap_entries - 1; 3933 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 3934 nr_nodemap_entries--; 3935 } 3936 } 3937 3938 /** 3939 * remove_all_active_ranges - Remove all currently registered regions 3940 * 3941 * During discovery, it may be found that a table like SRAT is invalid 3942 * and an alternative discovery method must be used. This function removes 3943 * all currently registered regions. 3944 */ 3945 void __init remove_all_active_ranges(void) 3946 { 3947 memset(early_node_map, 0, sizeof(early_node_map)); 3948 nr_nodemap_entries = 0; 3949 } 3950 3951 /* Compare two active node_active_regions */ 3952 static int __init cmp_node_active_region(const void *a, const void *b) 3953 { 3954 struct node_active_region *arange = (struct node_active_region *)a; 3955 struct node_active_region *brange = (struct node_active_region *)b; 3956 3957 /* Done this way to avoid overflows */ 3958 if (arange->start_pfn > brange->start_pfn) 3959 return 1; 3960 if (arange->start_pfn < brange->start_pfn) 3961 return -1; 3962 3963 return 0; 3964 } 3965 3966 /* sort the node_map by start_pfn */ 3967 static void __init sort_node_map(void) 3968 { 3969 sort(early_node_map, (size_t)nr_nodemap_entries, 3970 sizeof(struct node_active_region), 3971 cmp_node_active_region, NULL); 3972 } 3973 3974 /* Find the lowest pfn for a node */ 3975 static unsigned long __init find_min_pfn_for_node(int nid) 3976 { 3977 int i; 3978 unsigned long min_pfn = ULONG_MAX; 3979 3980 /* Assuming a sorted map, the first range found has the starting pfn */ 3981 for_each_active_range_index_in_nid(i, nid) 3982 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3983 3984 if (min_pfn == ULONG_MAX) { 3985 printk(KERN_WARNING 3986 "Could not find start_pfn for node %d\n", nid); 3987 return 0; 3988 } 3989 3990 return min_pfn; 3991 } 3992 3993 /** 3994 * find_min_pfn_with_active_regions - Find the minimum PFN registered 3995 * 3996 * It returns the minimum PFN based on information provided via 3997 * add_active_range(). 3998 */ 3999 unsigned long __init find_min_pfn_with_active_regions(void) 4000 { 4001 return find_min_pfn_for_node(MAX_NUMNODES); 4002 } 4003 4004 /* 4005 * early_calculate_totalpages() 4006 * Sum pages in active regions for movable zone. 4007 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4008 */ 4009 static unsigned long __init early_calculate_totalpages(void) 4010 { 4011 int i; 4012 unsigned long totalpages = 0; 4013 4014 for (i = 0; i < nr_nodemap_entries; i++) { 4015 unsigned long pages = early_node_map[i].end_pfn - 4016 early_node_map[i].start_pfn; 4017 totalpages += pages; 4018 if (pages) 4019 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4020 } 4021 return totalpages; 4022 } 4023 4024 /* 4025 * Find the PFN the Movable zone begins in each node. Kernel memory 4026 * is spread evenly between nodes as long as the nodes have enough 4027 * memory. When they don't, some nodes will have more kernelcore than 4028 * others 4029 */ 4030 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4031 { 4032 int i, nid; 4033 unsigned long usable_startpfn; 4034 unsigned long kernelcore_node, kernelcore_remaining; 4035 /* save the state before borrow the nodemask */ 4036 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4037 unsigned long totalpages = early_calculate_totalpages(); 4038 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4039 4040 /* 4041 * If movablecore was specified, calculate what size of 4042 * kernelcore that corresponds so that memory usable for 4043 * any allocation type is evenly spread. If both kernelcore 4044 * and movablecore are specified, then the value of kernelcore 4045 * will be used for required_kernelcore if it's greater than 4046 * what movablecore would have allowed. 4047 */ 4048 if (required_movablecore) { 4049 unsigned long corepages; 4050 4051 /* 4052 * Round-up so that ZONE_MOVABLE is at least as large as what 4053 * was requested by the user 4054 */ 4055 required_movablecore = 4056 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4057 corepages = totalpages - required_movablecore; 4058 4059 required_kernelcore = max(required_kernelcore, corepages); 4060 } 4061 4062 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4063 if (!required_kernelcore) 4064 goto out; 4065 4066 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4067 find_usable_zone_for_movable(); 4068 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4069 4070 restart: 4071 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4072 kernelcore_node = required_kernelcore / usable_nodes; 4073 for_each_node_state(nid, N_HIGH_MEMORY) { 4074 /* 4075 * Recalculate kernelcore_node if the division per node 4076 * now exceeds what is necessary to satisfy the requested 4077 * amount of memory for the kernel 4078 */ 4079 if (required_kernelcore < kernelcore_node) 4080 kernelcore_node = required_kernelcore / usable_nodes; 4081 4082 /* 4083 * As the map is walked, we track how much memory is usable 4084 * by the kernel using kernelcore_remaining. When it is 4085 * 0, the rest of the node is usable by ZONE_MOVABLE 4086 */ 4087 kernelcore_remaining = kernelcore_node; 4088 4089 /* Go through each range of PFNs within this node */ 4090 for_each_active_range_index_in_nid(i, nid) { 4091 unsigned long start_pfn, end_pfn; 4092 unsigned long size_pages; 4093 4094 start_pfn = max(early_node_map[i].start_pfn, 4095 zone_movable_pfn[nid]); 4096 end_pfn = early_node_map[i].end_pfn; 4097 if (start_pfn >= end_pfn) 4098 continue; 4099 4100 /* Account for what is only usable for kernelcore */ 4101 if (start_pfn < usable_startpfn) { 4102 unsigned long kernel_pages; 4103 kernel_pages = min(end_pfn, usable_startpfn) 4104 - start_pfn; 4105 4106 kernelcore_remaining -= min(kernel_pages, 4107 kernelcore_remaining); 4108 required_kernelcore -= min(kernel_pages, 4109 required_kernelcore); 4110 4111 /* Continue if range is now fully accounted */ 4112 if (end_pfn <= usable_startpfn) { 4113 4114 /* 4115 * Push zone_movable_pfn to the end so 4116 * that if we have to rebalance 4117 * kernelcore across nodes, we will 4118 * not double account here 4119 */ 4120 zone_movable_pfn[nid] = end_pfn; 4121 continue; 4122 } 4123 start_pfn = usable_startpfn; 4124 } 4125 4126 /* 4127 * The usable PFN range for ZONE_MOVABLE is from 4128 * start_pfn->end_pfn. Calculate size_pages as the 4129 * number of pages used as kernelcore 4130 */ 4131 size_pages = end_pfn - start_pfn; 4132 if (size_pages > kernelcore_remaining) 4133 size_pages = kernelcore_remaining; 4134 zone_movable_pfn[nid] = start_pfn + size_pages; 4135 4136 /* 4137 * Some kernelcore has been met, update counts and 4138 * break if the kernelcore for this node has been 4139 * satisified 4140 */ 4141 required_kernelcore -= min(required_kernelcore, 4142 size_pages); 4143 kernelcore_remaining -= size_pages; 4144 if (!kernelcore_remaining) 4145 break; 4146 } 4147 } 4148 4149 /* 4150 * If there is still required_kernelcore, we do another pass with one 4151 * less node in the count. This will push zone_movable_pfn[nid] further 4152 * along on the nodes that still have memory until kernelcore is 4153 * satisified 4154 */ 4155 usable_nodes--; 4156 if (usable_nodes && required_kernelcore > usable_nodes) 4157 goto restart; 4158 4159 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4160 for (nid = 0; nid < MAX_NUMNODES; nid++) 4161 zone_movable_pfn[nid] = 4162 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4163 4164 out: 4165 /* restore the node_state */ 4166 node_states[N_HIGH_MEMORY] = saved_node_state; 4167 } 4168 4169 /* Any regular memory on that node ? */ 4170 static void check_for_regular_memory(pg_data_t *pgdat) 4171 { 4172 #ifdef CONFIG_HIGHMEM 4173 enum zone_type zone_type; 4174 4175 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4176 struct zone *zone = &pgdat->node_zones[zone_type]; 4177 if (zone->present_pages) 4178 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4179 } 4180 #endif 4181 } 4182 4183 /** 4184 * free_area_init_nodes - Initialise all pg_data_t and zone data 4185 * @max_zone_pfn: an array of max PFNs for each zone 4186 * 4187 * This will call free_area_init_node() for each active node in the system. 4188 * Using the page ranges provided by add_active_range(), the size of each 4189 * zone in each node and their holes is calculated. If the maximum PFN 4190 * between two adjacent zones match, it is assumed that the zone is empty. 4191 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4192 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4193 * starts where the previous one ended. For example, ZONE_DMA32 starts 4194 * at arch_max_dma_pfn. 4195 */ 4196 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4197 { 4198 unsigned long nid; 4199 int i; 4200 4201 /* Sort early_node_map as initialisation assumes it is sorted */ 4202 sort_node_map(); 4203 4204 /* Record where the zone boundaries are */ 4205 memset(arch_zone_lowest_possible_pfn, 0, 4206 sizeof(arch_zone_lowest_possible_pfn)); 4207 memset(arch_zone_highest_possible_pfn, 0, 4208 sizeof(arch_zone_highest_possible_pfn)); 4209 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4210 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4211 for (i = 1; i < MAX_NR_ZONES; i++) { 4212 if (i == ZONE_MOVABLE) 4213 continue; 4214 arch_zone_lowest_possible_pfn[i] = 4215 arch_zone_highest_possible_pfn[i-1]; 4216 arch_zone_highest_possible_pfn[i] = 4217 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4218 } 4219 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4220 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4221 4222 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4223 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4224 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4225 4226 /* Print out the zone ranges */ 4227 printk("Zone PFN ranges:\n"); 4228 for (i = 0; i < MAX_NR_ZONES; i++) { 4229 if (i == ZONE_MOVABLE) 4230 continue; 4231 printk(" %-8s %0#10lx -> %0#10lx\n", 4232 zone_names[i], 4233 arch_zone_lowest_possible_pfn[i], 4234 arch_zone_highest_possible_pfn[i]); 4235 } 4236 4237 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4238 printk("Movable zone start PFN for each node\n"); 4239 for (i = 0; i < MAX_NUMNODES; i++) { 4240 if (zone_movable_pfn[i]) 4241 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4242 } 4243 4244 /* Print out the early_node_map[] */ 4245 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4246 for (i = 0; i < nr_nodemap_entries; i++) 4247 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4248 early_node_map[i].start_pfn, 4249 early_node_map[i].end_pfn); 4250 4251 /* Initialise every node */ 4252 mminit_verify_pageflags_layout(); 4253 setup_nr_node_ids(); 4254 for_each_online_node(nid) { 4255 pg_data_t *pgdat = NODE_DATA(nid); 4256 free_area_init_node(nid, NULL, 4257 find_min_pfn_for_node(nid), NULL); 4258 4259 /* Any memory on that node */ 4260 if (pgdat->node_present_pages) 4261 node_set_state(nid, N_HIGH_MEMORY); 4262 check_for_regular_memory(pgdat); 4263 } 4264 } 4265 4266 static int __init cmdline_parse_core(char *p, unsigned long *core) 4267 { 4268 unsigned long long coremem; 4269 if (!p) 4270 return -EINVAL; 4271 4272 coremem = memparse(p, &p); 4273 *core = coremem >> PAGE_SHIFT; 4274 4275 /* Paranoid check that UL is enough for the coremem value */ 4276 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4277 4278 return 0; 4279 } 4280 4281 /* 4282 * kernelcore=size sets the amount of memory for use for allocations that 4283 * cannot be reclaimed or migrated. 4284 */ 4285 static int __init cmdline_parse_kernelcore(char *p) 4286 { 4287 return cmdline_parse_core(p, &required_kernelcore); 4288 } 4289 4290 /* 4291 * movablecore=size sets the amount of memory for use for allocations that 4292 * can be reclaimed or migrated. 4293 */ 4294 static int __init cmdline_parse_movablecore(char *p) 4295 { 4296 return cmdline_parse_core(p, &required_movablecore); 4297 } 4298 4299 early_param("kernelcore", cmdline_parse_kernelcore); 4300 early_param("movablecore", cmdline_parse_movablecore); 4301 4302 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4303 4304 /** 4305 * set_dma_reserve - set the specified number of pages reserved in the first zone 4306 * @new_dma_reserve: The number of pages to mark reserved 4307 * 4308 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4309 * In the DMA zone, a significant percentage may be consumed by kernel image 4310 * and other unfreeable allocations which can skew the watermarks badly. This 4311 * function may optionally be used to account for unfreeable pages in the 4312 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4313 * smaller per-cpu batchsize. 4314 */ 4315 void __init set_dma_reserve(unsigned long new_dma_reserve) 4316 { 4317 dma_reserve = new_dma_reserve; 4318 } 4319 4320 #ifndef CONFIG_NEED_MULTIPLE_NODES 4321 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; 4322 EXPORT_SYMBOL(contig_page_data); 4323 #endif 4324 4325 void __init free_area_init(unsigned long *zones_size) 4326 { 4327 free_area_init_node(0, zones_size, 4328 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4329 } 4330 4331 static int page_alloc_cpu_notify(struct notifier_block *self, 4332 unsigned long action, void *hcpu) 4333 { 4334 int cpu = (unsigned long)hcpu; 4335 4336 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4337 drain_pages(cpu); 4338 4339 /* 4340 * Spill the event counters of the dead processor 4341 * into the current processors event counters. 4342 * This artificially elevates the count of the current 4343 * processor. 4344 */ 4345 vm_events_fold_cpu(cpu); 4346 4347 /* 4348 * Zero the differential counters of the dead processor 4349 * so that the vm statistics are consistent. 4350 * 4351 * This is only okay since the processor is dead and cannot 4352 * race with what we are doing. 4353 */ 4354 refresh_cpu_vm_stats(cpu); 4355 } 4356 return NOTIFY_OK; 4357 } 4358 4359 void __init page_alloc_init(void) 4360 { 4361 hotcpu_notifier(page_alloc_cpu_notify, 0); 4362 } 4363 4364 /* 4365 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4366 * or min_free_kbytes changes. 4367 */ 4368 static void calculate_totalreserve_pages(void) 4369 { 4370 struct pglist_data *pgdat; 4371 unsigned long reserve_pages = 0; 4372 enum zone_type i, j; 4373 4374 for_each_online_pgdat(pgdat) { 4375 for (i = 0; i < MAX_NR_ZONES; i++) { 4376 struct zone *zone = pgdat->node_zones + i; 4377 unsigned long max = 0; 4378 4379 /* Find valid and maximum lowmem_reserve in the zone */ 4380 for (j = i; j < MAX_NR_ZONES; j++) { 4381 if (zone->lowmem_reserve[j] > max) 4382 max = zone->lowmem_reserve[j]; 4383 } 4384 4385 /* we treat the high watermark as reserved pages. */ 4386 max += high_wmark_pages(zone); 4387 4388 if (max > zone->present_pages) 4389 max = zone->present_pages; 4390 reserve_pages += max; 4391 } 4392 } 4393 totalreserve_pages = reserve_pages; 4394 } 4395 4396 /* 4397 * setup_per_zone_lowmem_reserve - called whenever 4398 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4399 * has a correct pages reserved value, so an adequate number of 4400 * pages are left in the zone after a successful __alloc_pages(). 4401 */ 4402 static void setup_per_zone_lowmem_reserve(void) 4403 { 4404 struct pglist_data *pgdat; 4405 enum zone_type j, idx; 4406 4407 for_each_online_pgdat(pgdat) { 4408 for (j = 0; j < MAX_NR_ZONES; j++) { 4409 struct zone *zone = pgdat->node_zones + j; 4410 unsigned long present_pages = zone->present_pages; 4411 4412 zone->lowmem_reserve[j] = 0; 4413 4414 idx = j; 4415 while (idx) { 4416 struct zone *lower_zone; 4417 4418 idx--; 4419 4420 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4421 sysctl_lowmem_reserve_ratio[idx] = 1; 4422 4423 lower_zone = pgdat->node_zones + idx; 4424 lower_zone->lowmem_reserve[j] = present_pages / 4425 sysctl_lowmem_reserve_ratio[idx]; 4426 present_pages += lower_zone->present_pages; 4427 } 4428 } 4429 } 4430 4431 /* update totalreserve_pages */ 4432 calculate_totalreserve_pages(); 4433 } 4434 4435 /** 4436 * setup_per_zone_wmarks - called when min_free_kbytes changes 4437 * or when memory is hot-{added|removed} 4438 * 4439 * Ensures that the watermark[min,low,high] values for each zone are set 4440 * correctly with respect to min_free_kbytes. 4441 */ 4442 void setup_per_zone_wmarks(void) 4443 { 4444 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4445 unsigned long lowmem_pages = 0; 4446 struct zone *zone; 4447 unsigned long flags; 4448 4449 /* Calculate total number of !ZONE_HIGHMEM pages */ 4450 for_each_zone(zone) { 4451 if (!is_highmem(zone)) 4452 lowmem_pages += zone->present_pages; 4453 } 4454 4455 for_each_zone(zone) { 4456 u64 tmp; 4457 4458 spin_lock_irqsave(&zone->lock, flags); 4459 tmp = (u64)pages_min * zone->present_pages; 4460 do_div(tmp, lowmem_pages); 4461 if (is_highmem(zone)) { 4462 /* 4463 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4464 * need highmem pages, so cap pages_min to a small 4465 * value here. 4466 * 4467 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4468 * deltas controls asynch page reclaim, and so should 4469 * not be capped for highmem. 4470 */ 4471 int min_pages; 4472 4473 min_pages = zone->present_pages / 1024; 4474 if (min_pages < SWAP_CLUSTER_MAX) 4475 min_pages = SWAP_CLUSTER_MAX; 4476 if (min_pages > 128) 4477 min_pages = 128; 4478 zone->watermark[WMARK_MIN] = min_pages; 4479 } else { 4480 /* 4481 * If it's a lowmem zone, reserve a number of pages 4482 * proportionate to the zone's size. 4483 */ 4484 zone->watermark[WMARK_MIN] = tmp; 4485 } 4486 4487 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4488 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4489 setup_zone_migrate_reserve(zone); 4490 spin_unlock_irqrestore(&zone->lock, flags); 4491 } 4492 4493 /* update totalreserve_pages */ 4494 calculate_totalreserve_pages(); 4495 } 4496 4497 /** 4498 * The inactive anon list should be small enough that the VM never has to 4499 * do too much work, but large enough that each inactive page has a chance 4500 * to be referenced again before it is swapped out. 4501 * 4502 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4503 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4504 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4505 * the anonymous pages are kept on the inactive list. 4506 * 4507 * total target max 4508 * memory ratio inactive anon 4509 * ------------------------------------- 4510 * 10MB 1 5MB 4511 * 100MB 1 50MB 4512 * 1GB 3 250MB 4513 * 10GB 10 0.9GB 4514 * 100GB 31 3GB 4515 * 1TB 101 10GB 4516 * 10TB 320 32GB 4517 */ 4518 void calculate_zone_inactive_ratio(struct zone *zone) 4519 { 4520 unsigned int gb, ratio; 4521 4522 /* Zone size in gigabytes */ 4523 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4524 if (gb) 4525 ratio = int_sqrt(10 * gb); 4526 else 4527 ratio = 1; 4528 4529 zone->inactive_ratio = ratio; 4530 } 4531 4532 static void __init setup_per_zone_inactive_ratio(void) 4533 { 4534 struct zone *zone; 4535 4536 for_each_zone(zone) 4537 calculate_zone_inactive_ratio(zone); 4538 } 4539 4540 /* 4541 * Initialise min_free_kbytes. 4542 * 4543 * For small machines we want it small (128k min). For large machines 4544 * we want it large (64MB max). But it is not linear, because network 4545 * bandwidth does not increase linearly with machine size. We use 4546 * 4547 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4548 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4549 * 4550 * which yields 4551 * 4552 * 16MB: 512k 4553 * 32MB: 724k 4554 * 64MB: 1024k 4555 * 128MB: 1448k 4556 * 256MB: 2048k 4557 * 512MB: 2896k 4558 * 1024MB: 4096k 4559 * 2048MB: 5792k 4560 * 4096MB: 8192k 4561 * 8192MB: 11584k 4562 * 16384MB: 16384k 4563 */ 4564 static int __init init_per_zone_wmark_min(void) 4565 { 4566 unsigned long lowmem_kbytes; 4567 4568 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4569 4570 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4571 if (min_free_kbytes < 128) 4572 min_free_kbytes = 128; 4573 if (min_free_kbytes > 65536) 4574 min_free_kbytes = 65536; 4575 setup_per_zone_wmarks(); 4576 setup_per_zone_lowmem_reserve(); 4577 setup_per_zone_inactive_ratio(); 4578 return 0; 4579 } 4580 module_init(init_per_zone_wmark_min) 4581 4582 /* 4583 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4584 * that we can call two helper functions whenever min_free_kbytes 4585 * changes. 4586 */ 4587 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4588 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4589 { 4590 proc_dointvec(table, write, file, buffer, length, ppos); 4591 if (write) 4592 setup_per_zone_wmarks(); 4593 return 0; 4594 } 4595 4596 #ifdef CONFIG_NUMA 4597 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4598 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4599 { 4600 struct zone *zone; 4601 int rc; 4602 4603 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4604 if (rc) 4605 return rc; 4606 4607 for_each_zone(zone) 4608 zone->min_unmapped_pages = (zone->present_pages * 4609 sysctl_min_unmapped_ratio) / 100; 4610 return 0; 4611 } 4612 4613 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4614 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4615 { 4616 struct zone *zone; 4617 int rc; 4618 4619 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4620 if (rc) 4621 return rc; 4622 4623 for_each_zone(zone) 4624 zone->min_slab_pages = (zone->present_pages * 4625 sysctl_min_slab_ratio) / 100; 4626 return 0; 4627 } 4628 #endif 4629 4630 /* 4631 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4632 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4633 * whenever sysctl_lowmem_reserve_ratio changes. 4634 * 4635 * The reserve ratio obviously has absolutely no relation with the 4636 * minimum watermarks. The lowmem reserve ratio can only make sense 4637 * if in function of the boot time zone sizes. 4638 */ 4639 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4640 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4641 { 4642 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4643 setup_per_zone_lowmem_reserve(); 4644 return 0; 4645 } 4646 4647 /* 4648 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4649 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4650 * can have before it gets flushed back to buddy allocator. 4651 */ 4652 4653 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4654 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4655 { 4656 struct zone *zone; 4657 unsigned int cpu; 4658 int ret; 4659 4660 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4661 if (!write || (ret == -EINVAL)) 4662 return ret; 4663 for_each_populated_zone(zone) { 4664 for_each_online_cpu(cpu) { 4665 unsigned long high; 4666 high = zone->present_pages / percpu_pagelist_fraction; 4667 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4668 } 4669 } 4670 return 0; 4671 } 4672 4673 int hashdist = HASHDIST_DEFAULT; 4674 4675 #ifdef CONFIG_NUMA 4676 static int __init set_hashdist(char *str) 4677 { 4678 if (!str) 4679 return 0; 4680 hashdist = simple_strtoul(str, &str, 0); 4681 return 1; 4682 } 4683 __setup("hashdist=", set_hashdist); 4684 #endif 4685 4686 /* 4687 * allocate a large system hash table from bootmem 4688 * - it is assumed that the hash table must contain an exact power-of-2 4689 * quantity of entries 4690 * - limit is the number of hash buckets, not the total allocation size 4691 */ 4692 void *__init alloc_large_system_hash(const char *tablename, 4693 unsigned long bucketsize, 4694 unsigned long numentries, 4695 int scale, 4696 int flags, 4697 unsigned int *_hash_shift, 4698 unsigned int *_hash_mask, 4699 unsigned long limit) 4700 { 4701 unsigned long long max = limit; 4702 unsigned long log2qty, size; 4703 void *table = NULL; 4704 4705 /* allow the kernel cmdline to have a say */ 4706 if (!numentries) { 4707 /* round applicable memory size up to nearest megabyte */ 4708 numentries = nr_kernel_pages; 4709 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4710 numentries >>= 20 - PAGE_SHIFT; 4711 numentries <<= 20 - PAGE_SHIFT; 4712 4713 /* limit to 1 bucket per 2^scale bytes of low memory */ 4714 if (scale > PAGE_SHIFT) 4715 numentries >>= (scale - PAGE_SHIFT); 4716 else 4717 numentries <<= (PAGE_SHIFT - scale); 4718 4719 /* Make sure we've got at least a 0-order allocation.. */ 4720 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4721 numentries = PAGE_SIZE / bucketsize; 4722 } 4723 numentries = roundup_pow_of_two(numentries); 4724 4725 /* limit allocation size to 1/16 total memory by default */ 4726 if (max == 0) { 4727 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4728 do_div(max, bucketsize); 4729 } 4730 4731 if (numentries > max) 4732 numentries = max; 4733 4734 log2qty = ilog2(numentries); 4735 4736 do { 4737 size = bucketsize << log2qty; 4738 if (flags & HASH_EARLY) 4739 table = alloc_bootmem_nopanic(size); 4740 else if (hashdist) 4741 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4742 else { 4743 /* 4744 * If bucketsize is not a power-of-two, we may free 4745 * some pages at the end of hash table which 4746 * alloc_pages_exact() automatically does 4747 */ 4748 if (get_order(size) < MAX_ORDER) { 4749 table = alloc_pages_exact(size, GFP_ATOMIC); 4750 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 4751 } 4752 } 4753 } while (!table && size > PAGE_SIZE && --log2qty); 4754 4755 if (!table) 4756 panic("Failed to allocate %s hash table\n", tablename); 4757 4758 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4759 tablename, 4760 (1U << log2qty), 4761 ilog2(size) - PAGE_SHIFT, 4762 size); 4763 4764 if (_hash_shift) 4765 *_hash_shift = log2qty; 4766 if (_hash_mask) 4767 *_hash_mask = (1 << log2qty) - 1; 4768 4769 return table; 4770 } 4771 4772 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4773 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4774 unsigned long pfn) 4775 { 4776 #ifdef CONFIG_SPARSEMEM 4777 return __pfn_to_section(pfn)->pageblock_flags; 4778 #else 4779 return zone->pageblock_flags; 4780 #endif /* CONFIG_SPARSEMEM */ 4781 } 4782 4783 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4784 { 4785 #ifdef CONFIG_SPARSEMEM 4786 pfn &= (PAGES_PER_SECTION-1); 4787 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4788 #else 4789 pfn = pfn - zone->zone_start_pfn; 4790 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4791 #endif /* CONFIG_SPARSEMEM */ 4792 } 4793 4794 /** 4795 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4796 * @page: The page within the block of interest 4797 * @start_bitidx: The first bit of interest to retrieve 4798 * @end_bitidx: The last bit of interest 4799 * returns pageblock_bits flags 4800 */ 4801 unsigned long get_pageblock_flags_group(struct page *page, 4802 int start_bitidx, int end_bitidx) 4803 { 4804 struct zone *zone; 4805 unsigned long *bitmap; 4806 unsigned long pfn, bitidx; 4807 unsigned long flags = 0; 4808 unsigned long value = 1; 4809 4810 zone = page_zone(page); 4811 pfn = page_to_pfn(page); 4812 bitmap = get_pageblock_bitmap(zone, pfn); 4813 bitidx = pfn_to_bitidx(zone, pfn); 4814 4815 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4816 if (test_bit(bitidx + start_bitidx, bitmap)) 4817 flags |= value; 4818 4819 return flags; 4820 } 4821 4822 /** 4823 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4824 * @page: The page within the block of interest 4825 * @start_bitidx: The first bit of interest 4826 * @end_bitidx: The last bit of interest 4827 * @flags: The flags to set 4828 */ 4829 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4830 int start_bitidx, int end_bitidx) 4831 { 4832 struct zone *zone; 4833 unsigned long *bitmap; 4834 unsigned long pfn, bitidx; 4835 unsigned long value = 1; 4836 4837 zone = page_zone(page); 4838 pfn = page_to_pfn(page); 4839 bitmap = get_pageblock_bitmap(zone, pfn); 4840 bitidx = pfn_to_bitidx(zone, pfn); 4841 VM_BUG_ON(pfn < zone->zone_start_pfn); 4842 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4843 4844 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4845 if (flags & value) 4846 __set_bit(bitidx + start_bitidx, bitmap); 4847 else 4848 __clear_bit(bitidx + start_bitidx, bitmap); 4849 } 4850 4851 /* 4852 * This is designed as sub function...plz see page_isolation.c also. 4853 * set/clear page block's type to be ISOLATE. 4854 * page allocater never alloc memory from ISOLATE block. 4855 */ 4856 4857 int set_migratetype_isolate(struct page *page) 4858 { 4859 struct zone *zone; 4860 unsigned long flags; 4861 int ret = -EBUSY; 4862 4863 zone = page_zone(page); 4864 spin_lock_irqsave(&zone->lock, flags); 4865 /* 4866 * In future, more migrate types will be able to be isolation target. 4867 */ 4868 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 4869 goto out; 4870 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 4871 move_freepages_block(zone, page, MIGRATE_ISOLATE); 4872 ret = 0; 4873 out: 4874 spin_unlock_irqrestore(&zone->lock, flags); 4875 if (!ret) 4876 drain_all_pages(); 4877 return ret; 4878 } 4879 4880 void unset_migratetype_isolate(struct page *page) 4881 { 4882 struct zone *zone; 4883 unsigned long flags; 4884 zone = page_zone(page); 4885 spin_lock_irqsave(&zone->lock, flags); 4886 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 4887 goto out; 4888 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4889 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4890 out: 4891 spin_unlock_irqrestore(&zone->lock, flags); 4892 } 4893 4894 #ifdef CONFIG_MEMORY_HOTREMOVE 4895 /* 4896 * All pages in the range must be isolated before calling this. 4897 */ 4898 void 4899 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 4900 { 4901 struct page *page; 4902 struct zone *zone; 4903 int order, i; 4904 unsigned long pfn; 4905 unsigned long flags; 4906 /* find the first valid pfn */ 4907 for (pfn = start_pfn; pfn < end_pfn; pfn++) 4908 if (pfn_valid(pfn)) 4909 break; 4910 if (pfn == end_pfn) 4911 return; 4912 zone = page_zone(pfn_to_page(pfn)); 4913 spin_lock_irqsave(&zone->lock, flags); 4914 pfn = start_pfn; 4915 while (pfn < end_pfn) { 4916 if (!pfn_valid(pfn)) { 4917 pfn++; 4918 continue; 4919 } 4920 page = pfn_to_page(pfn); 4921 BUG_ON(page_count(page)); 4922 BUG_ON(!PageBuddy(page)); 4923 order = page_order(page); 4924 #ifdef CONFIG_DEBUG_VM 4925 printk(KERN_INFO "remove from free list %lx %d %lx\n", 4926 pfn, 1 << order, end_pfn); 4927 #endif 4928 list_del(&page->lru); 4929 rmv_page_order(page); 4930 zone->free_area[order].nr_free--; 4931 __mod_zone_page_state(zone, NR_FREE_PAGES, 4932 - (1UL << order)); 4933 for (i = 0; i < (1 << order); i++) 4934 SetPageReserved((page+i)); 4935 pfn += (1 << order); 4936 } 4937 spin_unlock_irqrestore(&zone->lock, flags); 4938 } 4939 #endif 4940