xref: /linux/mm/page_alloc.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 #include "internal.h"
55 
56 /*
57  * Array of node states.
58  */
59 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 	[N_POSSIBLE] = NODE_MASK_ALL,
61 	[N_ONLINE] = { { [0] = 1UL } },
62 #ifndef CONFIG_NUMA
63 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
64 #ifdef CONFIG_HIGHMEM
65 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
66 #endif
67 	[N_CPU] = { { [0] = 1UL } },
68 #endif	/* NUMA */
69 };
70 EXPORT_SYMBOL(node_states);
71 
72 unsigned long totalram_pages __read_mostly;
73 unsigned long totalreserve_pages __read_mostly;
74 unsigned long highest_memmap_pfn __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
77 
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
81 
82 static void __free_pages_ok(struct page *page, unsigned int order);
83 
84 /*
85  * results with 256, 32 in the lowmem_reserve sysctl:
86  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87  *	1G machine -> (16M dma, 784M normal, 224M high)
88  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91  *
92  * TBD: should special case ZONE_DMA32 machines here - in those we normally
93  * don't need any ZONE_NORMAL reservation
94  */
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 	 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 	 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
103 	 32,
104 #endif
105 	 32,
106 };
107 
108 EXPORT_SYMBOL(totalram_pages);
109 
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 	 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 	 "DMA32",
116 #endif
117 	 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 	 "HighMem",
120 #endif
121 	 "Movable",
122 };
123 
124 int min_free_kbytes = 1024;
125 
126 unsigned long __meminitdata nr_kernel_pages;
127 unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
129 
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131   /*
132    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133    * ranges of memory (RAM) that may be registered with add_active_range().
134    * Ranges passed to add_active_range() will be merged if possible
135    * so the number of times add_active_range() can be called is
136    * related to the number of nodes and the number of holes
137    */
138   #ifdef CONFIG_MAX_ACTIVE_REGIONS
139     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141   #else
142     #if MAX_NUMNODES >= 32
143       /* If there can be many nodes, allow up to 50 holes per node */
144       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145     #else
146       /* By default, allow up to 256 distinct regions */
147       #define MAX_ACTIVE_REGIONS 256
148     #endif
149   #endif
150 
151   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152   static int __meminitdata nr_nodemap_entries;
153   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155   static unsigned long __initdata required_kernelcore;
156   static unsigned long __initdata required_movablecore;
157   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158 
159   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160   int movable_zone;
161   EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163 
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
170 
171 int page_group_by_mobility_disabled __read_mostly;
172 
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 {
175 
176 	if (unlikely(page_group_by_mobility_disabled))
177 		migratetype = MIGRATE_UNMOVABLE;
178 
179 	set_pageblock_flags_group(page, (unsigned long)migratetype,
180 					PB_migrate, PB_migrate_end);
181 }
182 
183 bool oom_killer_disabled __read_mostly;
184 
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
187 {
188 	int ret = 0;
189 	unsigned seq;
190 	unsigned long pfn = page_to_pfn(page);
191 
192 	do {
193 		seq = zone_span_seqbegin(zone);
194 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 			ret = 1;
196 		else if (pfn < zone->zone_start_pfn)
197 			ret = 1;
198 	} while (zone_span_seqretry(zone, seq));
199 
200 	return ret;
201 }
202 
203 static int page_is_consistent(struct zone *zone, struct page *page)
204 {
205 	if (!pfn_valid_within(page_to_pfn(page)))
206 		return 0;
207 	if (zone != page_zone(page))
208 		return 0;
209 
210 	return 1;
211 }
212 /*
213  * Temporary debugging check for pages not lying within a given zone.
214  */
215 static int bad_range(struct zone *zone, struct page *page)
216 {
217 	if (page_outside_zone_boundaries(zone, page))
218 		return 1;
219 	if (!page_is_consistent(zone, page))
220 		return 1;
221 
222 	return 0;
223 }
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
226 {
227 	return 0;
228 }
229 #endif
230 
231 static void bad_page(struct page *page)
232 {
233 	static unsigned long resume;
234 	static unsigned long nr_shown;
235 	static unsigned long nr_unshown;
236 
237 	/*
238 	 * Allow a burst of 60 reports, then keep quiet for that minute;
239 	 * or allow a steady drip of one report per second.
240 	 */
241 	if (nr_shown == 60) {
242 		if (time_before(jiffies, resume)) {
243 			nr_unshown++;
244 			goto out;
245 		}
246 		if (nr_unshown) {
247 			printk(KERN_ALERT
248 			      "BUG: Bad page state: %lu messages suppressed\n",
249 				nr_unshown);
250 			nr_unshown = 0;
251 		}
252 		nr_shown = 0;
253 	}
254 	if (nr_shown++ == 0)
255 		resume = jiffies + 60 * HZ;
256 
257 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
258 		current->comm, page_to_pfn(page));
259 	printk(KERN_ALERT
260 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 		page, (void *)page->flags, page_count(page),
262 		page_mapcount(page), page->mapping, page->index);
263 
264 	dump_stack();
265 out:
266 	/* Leave bad fields for debug, except PageBuddy could make trouble */
267 	__ClearPageBuddy(page);
268 	add_taint(TAINT_BAD_PAGE);
269 }
270 
271 /*
272  * Higher-order pages are called "compound pages".  They are structured thusly:
273  *
274  * The first PAGE_SIZE page is called the "head page".
275  *
276  * The remaining PAGE_SIZE pages are called "tail pages".
277  *
278  * All pages have PG_compound set.  All pages have their ->private pointing at
279  * the head page (even the head page has this).
280  *
281  * The first tail page's ->lru.next holds the address of the compound page's
282  * put_page() function.  Its ->lru.prev holds the order of allocation.
283  * This usage means that zero-order pages may not be compound.
284  */
285 
286 static void free_compound_page(struct page *page)
287 {
288 	__free_pages_ok(page, compound_order(page));
289 }
290 
291 void prep_compound_page(struct page *page, unsigned long order)
292 {
293 	int i;
294 	int nr_pages = 1 << order;
295 
296 	set_compound_page_dtor(page, free_compound_page);
297 	set_compound_order(page, order);
298 	__SetPageHead(page);
299 	for (i = 1; i < nr_pages; i++) {
300 		struct page *p = page + i;
301 
302 		__SetPageTail(p);
303 		p->first_page = page;
304 	}
305 }
306 
307 static int destroy_compound_page(struct page *page, unsigned long order)
308 {
309 	int i;
310 	int nr_pages = 1 << order;
311 	int bad = 0;
312 
313 	if (unlikely(compound_order(page) != order) ||
314 	    unlikely(!PageHead(page))) {
315 		bad_page(page);
316 		bad++;
317 	}
318 
319 	__ClearPageHead(page);
320 
321 	for (i = 1; i < nr_pages; i++) {
322 		struct page *p = page + i;
323 
324 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
325 			bad_page(page);
326 			bad++;
327 		}
328 		__ClearPageTail(p);
329 	}
330 
331 	return bad;
332 }
333 
334 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335 {
336 	int i;
337 
338 	/*
339 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
341 	 */
342 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
343 	for (i = 0; i < (1 << order); i++)
344 		clear_highpage(page + i);
345 }
346 
347 static inline void set_page_order(struct page *page, int order)
348 {
349 	set_page_private(page, order);
350 	__SetPageBuddy(page);
351 }
352 
353 static inline void rmv_page_order(struct page *page)
354 {
355 	__ClearPageBuddy(page);
356 	set_page_private(page, 0);
357 }
358 
359 /*
360  * Locate the struct page for both the matching buddy in our
361  * pair (buddy1) and the combined O(n+1) page they form (page).
362  *
363  * 1) Any buddy B1 will have an order O twin B2 which satisfies
364  * the following equation:
365  *     B2 = B1 ^ (1 << O)
366  * For example, if the starting buddy (buddy2) is #8 its order
367  * 1 buddy is #10:
368  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369  *
370  * 2) Any buddy B will have an order O+1 parent P which
371  * satisfies the following equation:
372  *     P = B & ~(1 << O)
373  *
374  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
375  */
376 static inline struct page *
377 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378 {
379 	unsigned long buddy_idx = page_idx ^ (1 << order);
380 
381 	return page + (buddy_idx - page_idx);
382 }
383 
384 static inline unsigned long
385 __find_combined_index(unsigned long page_idx, unsigned int order)
386 {
387 	return (page_idx & ~(1 << order));
388 }
389 
390 /*
391  * This function checks whether a page is free && is the buddy
392  * we can do coalesce a page and its buddy if
393  * (a) the buddy is not in a hole &&
394  * (b) the buddy is in the buddy system &&
395  * (c) a page and its buddy have the same order &&
396  * (d) a page and its buddy are in the same zone.
397  *
398  * For recording whether a page is in the buddy system, we use PG_buddy.
399  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
400  *
401  * For recording page's order, we use page_private(page).
402  */
403 static inline int page_is_buddy(struct page *page, struct page *buddy,
404 								int order)
405 {
406 	if (!pfn_valid_within(page_to_pfn(buddy)))
407 		return 0;
408 
409 	if (page_zone_id(page) != page_zone_id(buddy))
410 		return 0;
411 
412 	if (PageBuddy(buddy) && page_order(buddy) == order) {
413 		VM_BUG_ON(page_count(buddy) != 0);
414 		return 1;
415 	}
416 	return 0;
417 }
418 
419 /*
420  * Freeing function for a buddy system allocator.
421  *
422  * The concept of a buddy system is to maintain direct-mapped table
423  * (containing bit values) for memory blocks of various "orders".
424  * The bottom level table contains the map for the smallest allocatable
425  * units of memory (here, pages), and each level above it describes
426  * pairs of units from the levels below, hence, "buddies".
427  * At a high level, all that happens here is marking the table entry
428  * at the bottom level available, and propagating the changes upward
429  * as necessary, plus some accounting needed to play nicely with other
430  * parts of the VM system.
431  * At each level, we keep a list of pages, which are heads of continuous
432  * free pages of length of (1 << order) and marked with PG_buddy. Page's
433  * order is recorded in page_private(page) field.
434  * So when we are allocating or freeing one, we can derive the state of the
435  * other.  That is, if we allocate a small block, and both were
436  * free, the remainder of the region must be split into blocks.
437  * If a block is freed, and its buddy is also free, then this
438  * triggers coalescing into a block of larger size.
439  *
440  * -- wli
441  */
442 
443 static inline void __free_one_page(struct page *page,
444 		struct zone *zone, unsigned int order,
445 		int migratetype)
446 {
447 	unsigned long page_idx;
448 
449 	if (unlikely(PageCompound(page)))
450 		if (unlikely(destroy_compound_page(page, order)))
451 			return;
452 
453 	VM_BUG_ON(migratetype == -1);
454 
455 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456 
457 	VM_BUG_ON(page_idx & ((1 << order) - 1));
458 	VM_BUG_ON(bad_range(zone, page));
459 
460 	while (order < MAX_ORDER-1) {
461 		unsigned long combined_idx;
462 		struct page *buddy;
463 
464 		buddy = __page_find_buddy(page, page_idx, order);
465 		if (!page_is_buddy(page, buddy, order))
466 			break;
467 
468 		/* Our buddy is free, merge with it and move up one order. */
469 		list_del(&buddy->lru);
470 		zone->free_area[order].nr_free--;
471 		rmv_page_order(buddy);
472 		combined_idx = __find_combined_index(page_idx, order);
473 		page = page + (combined_idx - page_idx);
474 		page_idx = combined_idx;
475 		order++;
476 	}
477 	set_page_order(page, order);
478 	list_add(&page->lru,
479 		&zone->free_area[order].free_list[migratetype]);
480 	zone->free_area[order].nr_free++;
481 }
482 
483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484 /*
485  * free_page_mlock() -- clean up attempts to free and mlocked() page.
486  * Page should not be on lru, so no need to fix that up.
487  * free_pages_check() will verify...
488  */
489 static inline void free_page_mlock(struct page *page)
490 {
491 	__dec_zone_page_state(page, NR_MLOCK);
492 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
493 }
494 #else
495 static void free_page_mlock(struct page *page) { }
496 #endif
497 
498 static inline int free_pages_check(struct page *page)
499 {
500 	if (unlikely(page_mapcount(page) |
501 		(page->mapping != NULL)  |
502 		(atomic_read(&page->_count) != 0) |
503 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
504 		bad_page(page);
505 		return 1;
506 	}
507 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 	return 0;
510 }
511 
512 /*
513  * Frees a list of pages.
514  * Assumes all pages on list are in same zone, and of same order.
515  * count is the number of pages to free.
516  *
517  * If the zone was previously in an "all pages pinned" state then look to
518  * see if this freeing clears that state.
519  *
520  * And clear the zone's pages_scanned counter, to hold off the "all pages are
521  * pinned" detection logic.
522  */
523 static void free_pages_bulk(struct zone *zone, int count,
524 					struct list_head *list, int order)
525 {
526 	spin_lock(&zone->lock);
527 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
528 	zone->pages_scanned = 0;
529 
530 	__mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
531 	while (count--) {
532 		struct page *page;
533 
534 		VM_BUG_ON(list_empty(list));
535 		page = list_entry(list->prev, struct page, lru);
536 		/* have to delete it as __free_one_page list manipulates */
537 		list_del(&page->lru);
538 		__free_one_page(page, zone, order, page_private(page));
539 	}
540 	spin_unlock(&zone->lock);
541 }
542 
543 static void free_one_page(struct zone *zone, struct page *page, int order,
544 				int migratetype)
545 {
546 	spin_lock(&zone->lock);
547 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
548 	zone->pages_scanned = 0;
549 
550 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
551 	__free_one_page(page, zone, order, migratetype);
552 	spin_unlock(&zone->lock);
553 }
554 
555 static void __free_pages_ok(struct page *page, unsigned int order)
556 {
557 	unsigned long flags;
558 	int i;
559 	int bad = 0;
560 	int wasMlocked = TestClearPageMlocked(page);
561 
562 	kmemcheck_free_shadow(page, order);
563 
564 	for (i = 0 ; i < (1 << order) ; ++i)
565 		bad += free_pages_check(page + i);
566 	if (bad)
567 		return;
568 
569 	if (!PageHighMem(page)) {
570 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
571 		debug_check_no_obj_freed(page_address(page),
572 					   PAGE_SIZE << order);
573 	}
574 	arch_free_page(page, order);
575 	kernel_map_pages(page, 1 << order, 0);
576 
577 	local_irq_save(flags);
578 	if (unlikely(wasMlocked))
579 		free_page_mlock(page);
580 	__count_vm_events(PGFREE, 1 << order);
581 	free_one_page(page_zone(page), page, order,
582 					get_pageblock_migratetype(page));
583 	local_irq_restore(flags);
584 }
585 
586 /*
587  * permit the bootmem allocator to evade page validation on high-order frees
588  */
589 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
590 {
591 	if (order == 0) {
592 		__ClearPageReserved(page);
593 		set_page_count(page, 0);
594 		set_page_refcounted(page);
595 		__free_page(page);
596 	} else {
597 		int loop;
598 
599 		prefetchw(page);
600 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
601 			struct page *p = &page[loop];
602 
603 			if (loop + 1 < BITS_PER_LONG)
604 				prefetchw(p + 1);
605 			__ClearPageReserved(p);
606 			set_page_count(p, 0);
607 		}
608 
609 		set_page_refcounted(page);
610 		__free_pages(page, order);
611 	}
612 }
613 
614 
615 /*
616  * The order of subdivision here is critical for the IO subsystem.
617  * Please do not alter this order without good reasons and regression
618  * testing. Specifically, as large blocks of memory are subdivided,
619  * the order in which smaller blocks are delivered depends on the order
620  * they're subdivided in this function. This is the primary factor
621  * influencing the order in which pages are delivered to the IO
622  * subsystem according to empirical testing, and this is also justified
623  * by considering the behavior of a buddy system containing a single
624  * large block of memory acted on by a series of small allocations.
625  * This behavior is a critical factor in sglist merging's success.
626  *
627  * -- wli
628  */
629 static inline void expand(struct zone *zone, struct page *page,
630 	int low, int high, struct free_area *area,
631 	int migratetype)
632 {
633 	unsigned long size = 1 << high;
634 
635 	while (high > low) {
636 		area--;
637 		high--;
638 		size >>= 1;
639 		VM_BUG_ON(bad_range(zone, &page[size]));
640 		list_add(&page[size].lru, &area->free_list[migratetype]);
641 		area->nr_free++;
642 		set_page_order(&page[size], high);
643 	}
644 }
645 
646 /*
647  * This page is about to be returned from the page allocator
648  */
649 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
650 {
651 	if (unlikely(page_mapcount(page) |
652 		(page->mapping != NULL)  |
653 		(atomic_read(&page->_count) != 0)  |
654 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
655 		bad_page(page);
656 		return 1;
657 	}
658 
659 	set_page_private(page, 0);
660 	set_page_refcounted(page);
661 
662 	arch_alloc_page(page, order);
663 	kernel_map_pages(page, 1 << order, 1);
664 
665 	if (gfp_flags & __GFP_ZERO)
666 		prep_zero_page(page, order, gfp_flags);
667 
668 	if (order && (gfp_flags & __GFP_COMP))
669 		prep_compound_page(page, order);
670 
671 	return 0;
672 }
673 
674 /*
675  * Go through the free lists for the given migratetype and remove
676  * the smallest available page from the freelists
677  */
678 static inline
679 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
680 						int migratetype)
681 {
682 	unsigned int current_order;
683 	struct free_area * area;
684 	struct page *page;
685 
686 	/* Find a page of the appropriate size in the preferred list */
687 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688 		area = &(zone->free_area[current_order]);
689 		if (list_empty(&area->free_list[migratetype]))
690 			continue;
691 
692 		page = list_entry(area->free_list[migratetype].next,
693 							struct page, lru);
694 		list_del(&page->lru);
695 		rmv_page_order(page);
696 		area->nr_free--;
697 		expand(zone, page, order, current_order, area, migratetype);
698 		return page;
699 	}
700 
701 	return NULL;
702 }
703 
704 
705 /*
706  * This array describes the order lists are fallen back to when
707  * the free lists for the desirable migrate type are depleted
708  */
709 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
710 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
711 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
712 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
714 };
715 
716 /*
717  * Move the free pages in a range to the free lists of the requested type.
718  * Note that start_page and end_pages are not aligned on a pageblock
719  * boundary. If alignment is required, use move_freepages_block()
720  */
721 static int move_freepages(struct zone *zone,
722 			  struct page *start_page, struct page *end_page,
723 			  int migratetype)
724 {
725 	struct page *page;
726 	unsigned long order;
727 	int pages_moved = 0;
728 
729 #ifndef CONFIG_HOLES_IN_ZONE
730 	/*
731 	 * page_zone is not safe to call in this context when
732 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733 	 * anyway as we check zone boundaries in move_freepages_block().
734 	 * Remove at a later date when no bug reports exist related to
735 	 * grouping pages by mobility
736 	 */
737 	BUG_ON(page_zone(start_page) != page_zone(end_page));
738 #endif
739 
740 	for (page = start_page; page <= end_page;) {
741 		/* Make sure we are not inadvertently changing nodes */
742 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
743 
744 		if (!pfn_valid_within(page_to_pfn(page))) {
745 			page++;
746 			continue;
747 		}
748 
749 		if (!PageBuddy(page)) {
750 			page++;
751 			continue;
752 		}
753 
754 		order = page_order(page);
755 		list_del(&page->lru);
756 		list_add(&page->lru,
757 			&zone->free_area[order].free_list[migratetype]);
758 		page += 1 << order;
759 		pages_moved += 1 << order;
760 	}
761 
762 	return pages_moved;
763 }
764 
765 static int move_freepages_block(struct zone *zone, struct page *page,
766 				int migratetype)
767 {
768 	unsigned long start_pfn, end_pfn;
769 	struct page *start_page, *end_page;
770 
771 	start_pfn = page_to_pfn(page);
772 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
773 	start_page = pfn_to_page(start_pfn);
774 	end_page = start_page + pageblock_nr_pages - 1;
775 	end_pfn = start_pfn + pageblock_nr_pages - 1;
776 
777 	/* Do not cross zone boundaries */
778 	if (start_pfn < zone->zone_start_pfn)
779 		start_page = page;
780 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781 		return 0;
782 
783 	return move_freepages(zone, start_page, end_page, migratetype);
784 }
785 
786 /* Remove an element from the buddy allocator from the fallback list */
787 static inline struct page *
788 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
789 {
790 	struct free_area * area;
791 	int current_order;
792 	struct page *page;
793 	int migratetype, i;
794 
795 	/* Find the largest possible block of pages in the other list */
796 	for (current_order = MAX_ORDER-1; current_order >= order;
797 						--current_order) {
798 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
799 			migratetype = fallbacks[start_migratetype][i];
800 
801 			/* MIGRATE_RESERVE handled later if necessary */
802 			if (migratetype == MIGRATE_RESERVE)
803 				continue;
804 
805 			area = &(zone->free_area[current_order]);
806 			if (list_empty(&area->free_list[migratetype]))
807 				continue;
808 
809 			page = list_entry(area->free_list[migratetype].next,
810 					struct page, lru);
811 			area->nr_free--;
812 
813 			/*
814 			 * If breaking a large block of pages, move all free
815 			 * pages to the preferred allocation list. If falling
816 			 * back for a reclaimable kernel allocation, be more
817 			 * agressive about taking ownership of free pages
818 			 */
819 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
820 					start_migratetype == MIGRATE_RECLAIMABLE) {
821 				unsigned long pages;
822 				pages = move_freepages_block(zone, page,
823 								start_migratetype);
824 
825 				/* Claim the whole block if over half of it is free */
826 				if (pages >= (1 << (pageblock_order-1)))
827 					set_pageblock_migratetype(page,
828 								start_migratetype);
829 
830 				migratetype = start_migratetype;
831 			}
832 
833 			/* Remove the page from the freelists */
834 			list_del(&page->lru);
835 			rmv_page_order(page);
836 
837 			if (current_order == pageblock_order)
838 				set_pageblock_migratetype(page,
839 							start_migratetype);
840 
841 			expand(zone, page, order, current_order, area, migratetype);
842 			return page;
843 		}
844 	}
845 
846 	return NULL;
847 }
848 
849 /*
850  * Do the hard work of removing an element from the buddy allocator.
851  * Call me with the zone->lock already held.
852  */
853 static struct page *__rmqueue(struct zone *zone, unsigned int order,
854 						int migratetype)
855 {
856 	struct page *page;
857 
858 retry_reserve:
859 	page = __rmqueue_smallest(zone, order, migratetype);
860 
861 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
862 		page = __rmqueue_fallback(zone, order, migratetype);
863 
864 		/*
865 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
866 		 * is used because __rmqueue_smallest is an inline function
867 		 * and we want just one call site
868 		 */
869 		if (!page) {
870 			migratetype = MIGRATE_RESERVE;
871 			goto retry_reserve;
872 		}
873 	}
874 
875 	return page;
876 }
877 
878 /*
879  * Obtain a specified number of elements from the buddy allocator, all under
880  * a single hold of the lock, for efficiency.  Add them to the supplied list.
881  * Returns the number of new pages which were placed at *list.
882  */
883 static int rmqueue_bulk(struct zone *zone, unsigned int order,
884 			unsigned long count, struct list_head *list,
885 			int migratetype)
886 {
887 	int i;
888 
889 	spin_lock(&zone->lock);
890 	for (i = 0; i < count; ++i) {
891 		struct page *page = __rmqueue(zone, order, migratetype);
892 		if (unlikely(page == NULL))
893 			break;
894 
895 		/*
896 		 * Split buddy pages returned by expand() are received here
897 		 * in physical page order. The page is added to the callers and
898 		 * list and the list head then moves forward. From the callers
899 		 * perspective, the linked list is ordered by page number in
900 		 * some conditions. This is useful for IO devices that can
901 		 * merge IO requests if the physical pages are ordered
902 		 * properly.
903 		 */
904 		list_add(&page->lru, list);
905 		set_page_private(page, migratetype);
906 		list = &page->lru;
907 	}
908 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
909 	spin_unlock(&zone->lock);
910 	return i;
911 }
912 
913 #ifdef CONFIG_NUMA
914 /*
915  * Called from the vmstat counter updater to drain pagesets of this
916  * currently executing processor on remote nodes after they have
917  * expired.
918  *
919  * Note that this function must be called with the thread pinned to
920  * a single processor.
921  */
922 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
923 {
924 	unsigned long flags;
925 	int to_drain;
926 
927 	local_irq_save(flags);
928 	if (pcp->count >= pcp->batch)
929 		to_drain = pcp->batch;
930 	else
931 		to_drain = pcp->count;
932 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
933 	pcp->count -= to_drain;
934 	local_irq_restore(flags);
935 }
936 #endif
937 
938 /*
939  * Drain pages of the indicated processor.
940  *
941  * The processor must either be the current processor and the
942  * thread pinned to the current processor or a processor that
943  * is not online.
944  */
945 static void drain_pages(unsigned int cpu)
946 {
947 	unsigned long flags;
948 	struct zone *zone;
949 
950 	for_each_populated_zone(zone) {
951 		struct per_cpu_pageset *pset;
952 		struct per_cpu_pages *pcp;
953 
954 		pset = zone_pcp(zone, cpu);
955 
956 		pcp = &pset->pcp;
957 		local_irq_save(flags);
958 		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
959 		pcp->count = 0;
960 		local_irq_restore(flags);
961 	}
962 }
963 
964 /*
965  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
966  */
967 void drain_local_pages(void *arg)
968 {
969 	drain_pages(smp_processor_id());
970 }
971 
972 /*
973  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
974  */
975 void drain_all_pages(void)
976 {
977 	on_each_cpu(drain_local_pages, NULL, 1);
978 }
979 
980 #ifdef CONFIG_HIBERNATION
981 
982 void mark_free_pages(struct zone *zone)
983 {
984 	unsigned long pfn, max_zone_pfn;
985 	unsigned long flags;
986 	int order, t;
987 	struct list_head *curr;
988 
989 	if (!zone->spanned_pages)
990 		return;
991 
992 	spin_lock_irqsave(&zone->lock, flags);
993 
994 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
995 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
996 		if (pfn_valid(pfn)) {
997 			struct page *page = pfn_to_page(pfn);
998 
999 			if (!swsusp_page_is_forbidden(page))
1000 				swsusp_unset_page_free(page);
1001 		}
1002 
1003 	for_each_migratetype_order(order, t) {
1004 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1005 			unsigned long i;
1006 
1007 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1008 			for (i = 0; i < (1UL << order); i++)
1009 				swsusp_set_page_free(pfn_to_page(pfn + i));
1010 		}
1011 	}
1012 	spin_unlock_irqrestore(&zone->lock, flags);
1013 }
1014 #endif /* CONFIG_PM */
1015 
1016 /*
1017  * Free a 0-order page
1018  */
1019 static void free_hot_cold_page(struct page *page, int cold)
1020 {
1021 	struct zone *zone = page_zone(page);
1022 	struct per_cpu_pages *pcp;
1023 	unsigned long flags;
1024 	int wasMlocked = TestClearPageMlocked(page);
1025 
1026 	kmemcheck_free_shadow(page, 0);
1027 
1028 	if (PageAnon(page))
1029 		page->mapping = NULL;
1030 	if (free_pages_check(page))
1031 		return;
1032 
1033 	if (!PageHighMem(page)) {
1034 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1035 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1036 	}
1037 	arch_free_page(page, 0);
1038 	kernel_map_pages(page, 1, 0);
1039 
1040 	pcp = &zone_pcp(zone, get_cpu())->pcp;
1041 	set_page_private(page, get_pageblock_migratetype(page));
1042 	local_irq_save(flags);
1043 	if (unlikely(wasMlocked))
1044 		free_page_mlock(page);
1045 	__count_vm_event(PGFREE);
1046 
1047 	if (cold)
1048 		list_add_tail(&page->lru, &pcp->list);
1049 	else
1050 		list_add(&page->lru, &pcp->list);
1051 	pcp->count++;
1052 	if (pcp->count >= pcp->high) {
1053 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1054 		pcp->count -= pcp->batch;
1055 	}
1056 	local_irq_restore(flags);
1057 	put_cpu();
1058 }
1059 
1060 void free_hot_page(struct page *page)
1061 {
1062 	free_hot_cold_page(page, 0);
1063 }
1064 
1065 void free_cold_page(struct page *page)
1066 {
1067 	free_hot_cold_page(page, 1);
1068 }
1069 
1070 /*
1071  * split_page takes a non-compound higher-order page, and splits it into
1072  * n (1<<order) sub-pages: page[0..n]
1073  * Each sub-page must be freed individually.
1074  *
1075  * Note: this is probably too low level an operation for use in drivers.
1076  * Please consult with lkml before using this in your driver.
1077  */
1078 void split_page(struct page *page, unsigned int order)
1079 {
1080 	int i;
1081 
1082 	VM_BUG_ON(PageCompound(page));
1083 	VM_BUG_ON(!page_count(page));
1084 
1085 #ifdef CONFIG_KMEMCHECK
1086 	/*
1087 	 * Split shadow pages too, because free(page[0]) would
1088 	 * otherwise free the whole shadow.
1089 	 */
1090 	if (kmemcheck_page_is_tracked(page))
1091 		split_page(virt_to_page(page[0].shadow), order);
1092 #endif
1093 
1094 	for (i = 1; i < (1 << order); i++)
1095 		set_page_refcounted(page + i);
1096 }
1097 
1098 /*
1099  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1100  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1101  * or two.
1102  */
1103 static inline
1104 struct page *buffered_rmqueue(struct zone *preferred_zone,
1105 			struct zone *zone, int order, gfp_t gfp_flags,
1106 			int migratetype)
1107 {
1108 	unsigned long flags;
1109 	struct page *page;
1110 	int cold = !!(gfp_flags & __GFP_COLD);
1111 	int cpu;
1112 
1113 again:
1114 	cpu  = get_cpu();
1115 	if (likely(order == 0)) {
1116 		struct per_cpu_pages *pcp;
1117 
1118 		pcp = &zone_pcp(zone, cpu)->pcp;
1119 		local_irq_save(flags);
1120 		if (!pcp->count) {
1121 			pcp->count = rmqueue_bulk(zone, 0,
1122 					pcp->batch, &pcp->list, migratetype);
1123 			if (unlikely(!pcp->count))
1124 				goto failed;
1125 		}
1126 
1127 		/* Find a page of the appropriate migrate type */
1128 		if (cold) {
1129 			list_for_each_entry_reverse(page, &pcp->list, lru)
1130 				if (page_private(page) == migratetype)
1131 					break;
1132 		} else {
1133 			list_for_each_entry(page, &pcp->list, lru)
1134 				if (page_private(page) == migratetype)
1135 					break;
1136 		}
1137 
1138 		/* Allocate more to the pcp list if necessary */
1139 		if (unlikely(&page->lru == &pcp->list)) {
1140 			pcp->count += rmqueue_bulk(zone, 0,
1141 					pcp->batch, &pcp->list, migratetype);
1142 			page = list_entry(pcp->list.next, struct page, lru);
1143 		}
1144 
1145 		list_del(&page->lru);
1146 		pcp->count--;
1147 	} else {
1148 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1149 			/*
1150 			 * __GFP_NOFAIL is not to be used in new code.
1151 			 *
1152 			 * All __GFP_NOFAIL callers should be fixed so that they
1153 			 * properly detect and handle allocation failures.
1154 			 *
1155 			 * We most definitely don't want callers attempting to
1156 			 * allocate greater than order-1 page units with
1157 			 * __GFP_NOFAIL.
1158 			 */
1159 			WARN_ON_ONCE(order > 1);
1160 		}
1161 		spin_lock_irqsave(&zone->lock, flags);
1162 		page = __rmqueue(zone, order, migratetype);
1163 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1164 		spin_unlock(&zone->lock);
1165 		if (!page)
1166 			goto failed;
1167 	}
1168 
1169 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1170 	zone_statistics(preferred_zone, zone);
1171 	local_irq_restore(flags);
1172 	put_cpu();
1173 
1174 	VM_BUG_ON(bad_range(zone, page));
1175 	if (prep_new_page(page, order, gfp_flags))
1176 		goto again;
1177 	return page;
1178 
1179 failed:
1180 	local_irq_restore(flags);
1181 	put_cpu();
1182 	return NULL;
1183 }
1184 
1185 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1186 #define ALLOC_WMARK_MIN		WMARK_MIN
1187 #define ALLOC_WMARK_LOW		WMARK_LOW
1188 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1189 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1190 
1191 /* Mask to get the watermark bits */
1192 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1193 
1194 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1195 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1196 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1197 
1198 #ifdef CONFIG_FAIL_PAGE_ALLOC
1199 
1200 static struct fail_page_alloc_attr {
1201 	struct fault_attr attr;
1202 
1203 	u32 ignore_gfp_highmem;
1204 	u32 ignore_gfp_wait;
1205 	u32 min_order;
1206 
1207 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1208 
1209 	struct dentry *ignore_gfp_highmem_file;
1210 	struct dentry *ignore_gfp_wait_file;
1211 	struct dentry *min_order_file;
1212 
1213 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1214 
1215 } fail_page_alloc = {
1216 	.attr = FAULT_ATTR_INITIALIZER,
1217 	.ignore_gfp_wait = 1,
1218 	.ignore_gfp_highmem = 1,
1219 	.min_order = 1,
1220 };
1221 
1222 static int __init setup_fail_page_alloc(char *str)
1223 {
1224 	return setup_fault_attr(&fail_page_alloc.attr, str);
1225 }
1226 __setup("fail_page_alloc=", setup_fail_page_alloc);
1227 
1228 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1229 {
1230 	if (order < fail_page_alloc.min_order)
1231 		return 0;
1232 	if (gfp_mask & __GFP_NOFAIL)
1233 		return 0;
1234 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1235 		return 0;
1236 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1237 		return 0;
1238 
1239 	return should_fail(&fail_page_alloc.attr, 1 << order);
1240 }
1241 
1242 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1243 
1244 static int __init fail_page_alloc_debugfs(void)
1245 {
1246 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1247 	struct dentry *dir;
1248 	int err;
1249 
1250 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1251 				       "fail_page_alloc");
1252 	if (err)
1253 		return err;
1254 	dir = fail_page_alloc.attr.dentries.dir;
1255 
1256 	fail_page_alloc.ignore_gfp_wait_file =
1257 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1258 				      &fail_page_alloc.ignore_gfp_wait);
1259 
1260 	fail_page_alloc.ignore_gfp_highmem_file =
1261 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1262 				      &fail_page_alloc.ignore_gfp_highmem);
1263 	fail_page_alloc.min_order_file =
1264 		debugfs_create_u32("min-order", mode, dir,
1265 				   &fail_page_alloc.min_order);
1266 
1267 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1268             !fail_page_alloc.ignore_gfp_highmem_file ||
1269             !fail_page_alloc.min_order_file) {
1270 		err = -ENOMEM;
1271 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1272 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1273 		debugfs_remove(fail_page_alloc.min_order_file);
1274 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1275 	}
1276 
1277 	return err;
1278 }
1279 
1280 late_initcall(fail_page_alloc_debugfs);
1281 
1282 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1283 
1284 #else /* CONFIG_FAIL_PAGE_ALLOC */
1285 
1286 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1287 {
1288 	return 0;
1289 }
1290 
1291 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1292 
1293 /*
1294  * Return 1 if free pages are above 'mark'. This takes into account the order
1295  * of the allocation.
1296  */
1297 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1298 		      int classzone_idx, int alloc_flags)
1299 {
1300 	/* free_pages my go negative - that's OK */
1301 	long min = mark;
1302 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1303 	int o;
1304 
1305 	if (alloc_flags & ALLOC_HIGH)
1306 		min -= min / 2;
1307 	if (alloc_flags & ALLOC_HARDER)
1308 		min -= min / 4;
1309 
1310 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1311 		return 0;
1312 	for (o = 0; o < order; o++) {
1313 		/* At the next order, this order's pages become unavailable */
1314 		free_pages -= z->free_area[o].nr_free << o;
1315 
1316 		/* Require fewer higher order pages to be free */
1317 		min >>= 1;
1318 
1319 		if (free_pages <= min)
1320 			return 0;
1321 	}
1322 	return 1;
1323 }
1324 
1325 #ifdef CONFIG_NUMA
1326 /*
1327  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1328  * skip over zones that are not allowed by the cpuset, or that have
1329  * been recently (in last second) found to be nearly full.  See further
1330  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1331  * that have to skip over a lot of full or unallowed zones.
1332  *
1333  * If the zonelist cache is present in the passed in zonelist, then
1334  * returns a pointer to the allowed node mask (either the current
1335  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1336  *
1337  * If the zonelist cache is not available for this zonelist, does
1338  * nothing and returns NULL.
1339  *
1340  * If the fullzones BITMAP in the zonelist cache is stale (more than
1341  * a second since last zap'd) then we zap it out (clear its bits.)
1342  *
1343  * We hold off even calling zlc_setup, until after we've checked the
1344  * first zone in the zonelist, on the theory that most allocations will
1345  * be satisfied from that first zone, so best to examine that zone as
1346  * quickly as we can.
1347  */
1348 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1349 {
1350 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1351 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1352 
1353 	zlc = zonelist->zlcache_ptr;
1354 	if (!zlc)
1355 		return NULL;
1356 
1357 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1358 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1359 		zlc->last_full_zap = jiffies;
1360 	}
1361 
1362 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1363 					&cpuset_current_mems_allowed :
1364 					&node_states[N_HIGH_MEMORY];
1365 	return allowednodes;
1366 }
1367 
1368 /*
1369  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1370  * if it is worth looking at further for free memory:
1371  *  1) Check that the zone isn't thought to be full (doesn't have its
1372  *     bit set in the zonelist_cache fullzones BITMAP).
1373  *  2) Check that the zones node (obtained from the zonelist_cache
1374  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1375  * Return true (non-zero) if zone is worth looking at further, or
1376  * else return false (zero) if it is not.
1377  *
1378  * This check -ignores- the distinction between various watermarks,
1379  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1380  * found to be full for any variation of these watermarks, it will
1381  * be considered full for up to one second by all requests, unless
1382  * we are so low on memory on all allowed nodes that we are forced
1383  * into the second scan of the zonelist.
1384  *
1385  * In the second scan we ignore this zonelist cache and exactly
1386  * apply the watermarks to all zones, even it is slower to do so.
1387  * We are low on memory in the second scan, and should leave no stone
1388  * unturned looking for a free page.
1389  */
1390 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1391 						nodemask_t *allowednodes)
1392 {
1393 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1394 	int i;				/* index of *z in zonelist zones */
1395 	int n;				/* node that zone *z is on */
1396 
1397 	zlc = zonelist->zlcache_ptr;
1398 	if (!zlc)
1399 		return 1;
1400 
1401 	i = z - zonelist->_zonerefs;
1402 	n = zlc->z_to_n[i];
1403 
1404 	/* This zone is worth trying if it is allowed but not full */
1405 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1406 }
1407 
1408 /*
1409  * Given 'z' scanning a zonelist, set the corresponding bit in
1410  * zlc->fullzones, so that subsequent attempts to allocate a page
1411  * from that zone don't waste time re-examining it.
1412  */
1413 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1414 {
1415 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1416 	int i;				/* index of *z in zonelist zones */
1417 
1418 	zlc = zonelist->zlcache_ptr;
1419 	if (!zlc)
1420 		return;
1421 
1422 	i = z - zonelist->_zonerefs;
1423 
1424 	set_bit(i, zlc->fullzones);
1425 }
1426 
1427 #else	/* CONFIG_NUMA */
1428 
1429 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1430 {
1431 	return NULL;
1432 }
1433 
1434 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1435 				nodemask_t *allowednodes)
1436 {
1437 	return 1;
1438 }
1439 
1440 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1441 {
1442 }
1443 #endif	/* CONFIG_NUMA */
1444 
1445 /*
1446  * get_page_from_freelist goes through the zonelist trying to allocate
1447  * a page.
1448  */
1449 static struct page *
1450 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1451 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1452 		struct zone *preferred_zone, int migratetype)
1453 {
1454 	struct zoneref *z;
1455 	struct page *page = NULL;
1456 	int classzone_idx;
1457 	struct zone *zone;
1458 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1459 	int zlc_active = 0;		/* set if using zonelist_cache */
1460 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1461 
1462 	classzone_idx = zone_idx(preferred_zone);
1463 zonelist_scan:
1464 	/*
1465 	 * Scan zonelist, looking for a zone with enough free.
1466 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1467 	 */
1468 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1469 						high_zoneidx, nodemask) {
1470 		if (NUMA_BUILD && zlc_active &&
1471 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1472 				continue;
1473 		if ((alloc_flags & ALLOC_CPUSET) &&
1474 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1475 				goto try_next_zone;
1476 
1477 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1478 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1479 			unsigned long mark;
1480 			int ret;
1481 
1482 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1483 			if (zone_watermark_ok(zone, order, mark,
1484 				    classzone_idx, alloc_flags))
1485 				goto try_this_zone;
1486 
1487 			if (zone_reclaim_mode == 0)
1488 				goto this_zone_full;
1489 
1490 			ret = zone_reclaim(zone, gfp_mask, order);
1491 			switch (ret) {
1492 			case ZONE_RECLAIM_NOSCAN:
1493 				/* did not scan */
1494 				goto try_next_zone;
1495 			case ZONE_RECLAIM_FULL:
1496 				/* scanned but unreclaimable */
1497 				goto this_zone_full;
1498 			default:
1499 				/* did we reclaim enough */
1500 				if (!zone_watermark_ok(zone, order, mark,
1501 						classzone_idx, alloc_flags))
1502 					goto this_zone_full;
1503 			}
1504 		}
1505 
1506 try_this_zone:
1507 		page = buffered_rmqueue(preferred_zone, zone, order,
1508 						gfp_mask, migratetype);
1509 		if (page)
1510 			break;
1511 this_zone_full:
1512 		if (NUMA_BUILD)
1513 			zlc_mark_zone_full(zonelist, z);
1514 try_next_zone:
1515 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1516 			/*
1517 			 * we do zlc_setup after the first zone is tried but only
1518 			 * if there are multiple nodes make it worthwhile
1519 			 */
1520 			allowednodes = zlc_setup(zonelist, alloc_flags);
1521 			zlc_active = 1;
1522 			did_zlc_setup = 1;
1523 		}
1524 	}
1525 
1526 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1527 		/* Disable zlc cache for second zonelist scan */
1528 		zlc_active = 0;
1529 		goto zonelist_scan;
1530 	}
1531 	return page;
1532 }
1533 
1534 static inline int
1535 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1536 				unsigned long pages_reclaimed)
1537 {
1538 	/* Do not loop if specifically requested */
1539 	if (gfp_mask & __GFP_NORETRY)
1540 		return 0;
1541 
1542 	/*
1543 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1544 	 * means __GFP_NOFAIL, but that may not be true in other
1545 	 * implementations.
1546 	 */
1547 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1548 		return 1;
1549 
1550 	/*
1551 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1552 	 * specified, then we retry until we no longer reclaim any pages
1553 	 * (above), or we've reclaimed an order of pages at least as
1554 	 * large as the allocation's order. In both cases, if the
1555 	 * allocation still fails, we stop retrying.
1556 	 */
1557 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1558 		return 1;
1559 
1560 	/*
1561 	 * Don't let big-order allocations loop unless the caller
1562 	 * explicitly requests that.
1563 	 */
1564 	if (gfp_mask & __GFP_NOFAIL)
1565 		return 1;
1566 
1567 	return 0;
1568 }
1569 
1570 static inline struct page *
1571 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1572 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1573 	nodemask_t *nodemask, struct zone *preferred_zone,
1574 	int migratetype)
1575 {
1576 	struct page *page;
1577 
1578 	/* Acquire the OOM killer lock for the zones in zonelist */
1579 	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1580 		schedule_timeout_uninterruptible(1);
1581 		return NULL;
1582 	}
1583 
1584 	/*
1585 	 * Go through the zonelist yet one more time, keep very high watermark
1586 	 * here, this is only to catch a parallel oom killing, we must fail if
1587 	 * we're still under heavy pressure.
1588 	 */
1589 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1590 		order, zonelist, high_zoneidx,
1591 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1592 		preferred_zone, migratetype);
1593 	if (page)
1594 		goto out;
1595 
1596 	/* The OOM killer will not help higher order allocs */
1597 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1598 		goto out;
1599 
1600 	/* Exhausted what can be done so it's blamo time */
1601 	out_of_memory(zonelist, gfp_mask, order);
1602 
1603 out:
1604 	clear_zonelist_oom(zonelist, gfp_mask);
1605 	return page;
1606 }
1607 
1608 /* The really slow allocator path where we enter direct reclaim */
1609 static inline struct page *
1610 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1611 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1612 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1613 	int migratetype, unsigned long *did_some_progress)
1614 {
1615 	struct page *page = NULL;
1616 	struct reclaim_state reclaim_state;
1617 	struct task_struct *p = current;
1618 
1619 	cond_resched();
1620 
1621 	/* We now go into synchronous reclaim */
1622 	cpuset_memory_pressure_bump();
1623 
1624 	/*
1625 	 * The task's cpuset might have expanded its set of allowable nodes
1626 	 */
1627 	p->flags |= PF_MEMALLOC;
1628 	lockdep_set_current_reclaim_state(gfp_mask);
1629 	reclaim_state.reclaimed_slab = 0;
1630 	p->reclaim_state = &reclaim_state;
1631 
1632 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1633 
1634 	p->reclaim_state = NULL;
1635 	lockdep_clear_current_reclaim_state();
1636 	p->flags &= ~PF_MEMALLOC;
1637 
1638 	cond_resched();
1639 
1640 	if (order != 0)
1641 		drain_all_pages();
1642 
1643 	if (likely(*did_some_progress))
1644 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1645 					zonelist, high_zoneidx,
1646 					alloc_flags, preferred_zone,
1647 					migratetype);
1648 	return page;
1649 }
1650 
1651 /*
1652  * This is called in the allocator slow-path if the allocation request is of
1653  * sufficient urgency to ignore watermarks and take other desperate measures
1654  */
1655 static inline struct page *
1656 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1657 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1658 	nodemask_t *nodemask, struct zone *preferred_zone,
1659 	int migratetype)
1660 {
1661 	struct page *page;
1662 
1663 	do {
1664 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1665 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1666 			preferred_zone, migratetype);
1667 
1668 		if (!page && gfp_mask & __GFP_NOFAIL)
1669 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1670 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1671 
1672 	return page;
1673 }
1674 
1675 static inline
1676 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1677 						enum zone_type high_zoneidx)
1678 {
1679 	struct zoneref *z;
1680 	struct zone *zone;
1681 
1682 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1683 		wakeup_kswapd(zone, order);
1684 }
1685 
1686 static inline int
1687 gfp_to_alloc_flags(gfp_t gfp_mask)
1688 {
1689 	struct task_struct *p = current;
1690 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1691 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1692 
1693 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1694 	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1695 
1696 	/*
1697 	 * The caller may dip into page reserves a bit more if the caller
1698 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1699 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1700 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1701 	 */
1702 	alloc_flags |= (gfp_mask & __GFP_HIGH);
1703 
1704 	if (!wait) {
1705 		alloc_flags |= ALLOC_HARDER;
1706 		/*
1707 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1708 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1709 		 */
1710 		alloc_flags &= ~ALLOC_CPUSET;
1711 	} else if (unlikely(rt_task(p)))
1712 		alloc_flags |= ALLOC_HARDER;
1713 
1714 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1715 		if (!in_interrupt() &&
1716 		    ((p->flags & PF_MEMALLOC) ||
1717 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1718 			alloc_flags |= ALLOC_NO_WATERMARKS;
1719 	}
1720 
1721 	return alloc_flags;
1722 }
1723 
1724 static inline struct page *
1725 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1726 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1727 	nodemask_t *nodemask, struct zone *preferred_zone,
1728 	int migratetype)
1729 {
1730 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1731 	struct page *page = NULL;
1732 	int alloc_flags;
1733 	unsigned long pages_reclaimed = 0;
1734 	unsigned long did_some_progress;
1735 	struct task_struct *p = current;
1736 
1737 	/*
1738 	 * In the slowpath, we sanity check order to avoid ever trying to
1739 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1740 	 * be using allocators in order of preference for an area that is
1741 	 * too large.
1742 	 */
1743 	if (WARN_ON_ONCE(order >= MAX_ORDER))
1744 		return NULL;
1745 
1746 	/*
1747 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1748 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1749 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1750 	 * using a larger set of nodes after it has established that the
1751 	 * allowed per node queues are empty and that nodes are
1752 	 * over allocated.
1753 	 */
1754 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1755 		goto nopage;
1756 
1757 	wake_all_kswapd(order, zonelist, high_zoneidx);
1758 
1759 	/*
1760 	 * OK, we're below the kswapd watermark and have kicked background
1761 	 * reclaim. Now things get more complex, so set up alloc_flags according
1762 	 * to how we want to proceed.
1763 	 */
1764 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1765 
1766 restart:
1767 	/* This is the last chance, in general, before the goto nopage. */
1768 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1769 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1770 			preferred_zone, migratetype);
1771 	if (page)
1772 		goto got_pg;
1773 
1774 rebalance:
1775 	/* Allocate without watermarks if the context allows */
1776 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1777 		page = __alloc_pages_high_priority(gfp_mask, order,
1778 				zonelist, high_zoneidx, nodemask,
1779 				preferred_zone, migratetype);
1780 		if (page)
1781 			goto got_pg;
1782 	}
1783 
1784 	/* Atomic allocations - we can't balance anything */
1785 	if (!wait)
1786 		goto nopage;
1787 
1788 	/* Avoid recursion of direct reclaim */
1789 	if (p->flags & PF_MEMALLOC)
1790 		goto nopage;
1791 
1792 	/* Try direct reclaim and then allocating */
1793 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1794 					zonelist, high_zoneidx,
1795 					nodemask,
1796 					alloc_flags, preferred_zone,
1797 					migratetype, &did_some_progress);
1798 	if (page)
1799 		goto got_pg;
1800 
1801 	/*
1802 	 * If we failed to make any progress reclaiming, then we are
1803 	 * running out of options and have to consider going OOM
1804 	 */
1805 	if (!did_some_progress) {
1806 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1807 			if (oom_killer_disabled)
1808 				goto nopage;
1809 			page = __alloc_pages_may_oom(gfp_mask, order,
1810 					zonelist, high_zoneidx,
1811 					nodemask, preferred_zone,
1812 					migratetype);
1813 			if (page)
1814 				goto got_pg;
1815 
1816 			/*
1817 			 * The OOM killer does not trigger for high-order
1818 			 * ~__GFP_NOFAIL allocations so if no progress is being
1819 			 * made, there are no other options and retrying is
1820 			 * unlikely to help.
1821 			 */
1822 			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1823 						!(gfp_mask & __GFP_NOFAIL))
1824 				goto nopage;
1825 
1826 			goto restart;
1827 		}
1828 	}
1829 
1830 	/* Check if we should retry the allocation */
1831 	pages_reclaimed += did_some_progress;
1832 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1833 		/* Wait for some write requests to complete then retry */
1834 		congestion_wait(BLK_RW_ASYNC, HZ/50);
1835 		goto rebalance;
1836 	}
1837 
1838 nopage:
1839 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1840 		printk(KERN_WARNING "%s: page allocation failure."
1841 			" order:%d, mode:0x%x\n",
1842 			p->comm, order, gfp_mask);
1843 		dump_stack();
1844 		show_mem();
1845 	}
1846 	return page;
1847 got_pg:
1848 	if (kmemcheck_enabled)
1849 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1850 	return page;
1851 
1852 }
1853 
1854 /*
1855  * This is the 'heart' of the zoned buddy allocator.
1856  */
1857 struct page *
1858 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1859 			struct zonelist *zonelist, nodemask_t *nodemask)
1860 {
1861 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1862 	struct zone *preferred_zone;
1863 	struct page *page;
1864 	int migratetype = allocflags_to_migratetype(gfp_mask);
1865 
1866 	gfp_mask &= gfp_allowed_mask;
1867 
1868 	lockdep_trace_alloc(gfp_mask);
1869 
1870 	might_sleep_if(gfp_mask & __GFP_WAIT);
1871 
1872 	if (should_fail_alloc_page(gfp_mask, order))
1873 		return NULL;
1874 
1875 	/*
1876 	 * Check the zones suitable for the gfp_mask contain at least one
1877 	 * valid zone. It's possible to have an empty zonelist as a result
1878 	 * of GFP_THISNODE and a memoryless node
1879 	 */
1880 	if (unlikely(!zonelist->_zonerefs->zone))
1881 		return NULL;
1882 
1883 	/* The preferred zone is used for statistics later */
1884 	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1885 	if (!preferred_zone)
1886 		return NULL;
1887 
1888 	/* First allocation attempt */
1889 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1890 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1891 			preferred_zone, migratetype);
1892 	if (unlikely(!page))
1893 		page = __alloc_pages_slowpath(gfp_mask, order,
1894 				zonelist, high_zoneidx, nodemask,
1895 				preferred_zone, migratetype);
1896 
1897 	return page;
1898 }
1899 EXPORT_SYMBOL(__alloc_pages_nodemask);
1900 
1901 /*
1902  * Common helper functions.
1903  */
1904 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1905 {
1906 	struct page * page;
1907 	page = alloc_pages(gfp_mask, order);
1908 	if (!page)
1909 		return 0;
1910 	return (unsigned long) page_address(page);
1911 }
1912 
1913 EXPORT_SYMBOL(__get_free_pages);
1914 
1915 unsigned long get_zeroed_page(gfp_t gfp_mask)
1916 {
1917 	struct page * page;
1918 
1919 	/*
1920 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1921 	 * a highmem page
1922 	 */
1923 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1924 
1925 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1926 	if (page)
1927 		return (unsigned long) page_address(page);
1928 	return 0;
1929 }
1930 
1931 EXPORT_SYMBOL(get_zeroed_page);
1932 
1933 void __pagevec_free(struct pagevec *pvec)
1934 {
1935 	int i = pagevec_count(pvec);
1936 
1937 	while (--i >= 0)
1938 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1939 }
1940 
1941 void __free_pages(struct page *page, unsigned int order)
1942 {
1943 	if (put_page_testzero(page)) {
1944 		if (order == 0)
1945 			free_hot_page(page);
1946 		else
1947 			__free_pages_ok(page, order);
1948 	}
1949 }
1950 
1951 EXPORT_SYMBOL(__free_pages);
1952 
1953 void free_pages(unsigned long addr, unsigned int order)
1954 {
1955 	if (addr != 0) {
1956 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1957 		__free_pages(virt_to_page((void *)addr), order);
1958 	}
1959 }
1960 
1961 EXPORT_SYMBOL(free_pages);
1962 
1963 /**
1964  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1965  * @size: the number of bytes to allocate
1966  * @gfp_mask: GFP flags for the allocation
1967  *
1968  * This function is similar to alloc_pages(), except that it allocates the
1969  * minimum number of pages to satisfy the request.  alloc_pages() can only
1970  * allocate memory in power-of-two pages.
1971  *
1972  * This function is also limited by MAX_ORDER.
1973  *
1974  * Memory allocated by this function must be released by free_pages_exact().
1975  */
1976 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1977 {
1978 	unsigned int order = get_order(size);
1979 	unsigned long addr;
1980 
1981 	addr = __get_free_pages(gfp_mask, order);
1982 	if (addr) {
1983 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1984 		unsigned long used = addr + PAGE_ALIGN(size);
1985 
1986 		split_page(virt_to_page((void *)addr), order);
1987 		while (used < alloc_end) {
1988 			free_page(used);
1989 			used += PAGE_SIZE;
1990 		}
1991 	}
1992 
1993 	return (void *)addr;
1994 }
1995 EXPORT_SYMBOL(alloc_pages_exact);
1996 
1997 /**
1998  * free_pages_exact - release memory allocated via alloc_pages_exact()
1999  * @virt: the value returned by alloc_pages_exact.
2000  * @size: size of allocation, same value as passed to alloc_pages_exact().
2001  *
2002  * Release the memory allocated by a previous call to alloc_pages_exact.
2003  */
2004 void free_pages_exact(void *virt, size_t size)
2005 {
2006 	unsigned long addr = (unsigned long)virt;
2007 	unsigned long end = addr + PAGE_ALIGN(size);
2008 
2009 	while (addr < end) {
2010 		free_page(addr);
2011 		addr += PAGE_SIZE;
2012 	}
2013 }
2014 EXPORT_SYMBOL(free_pages_exact);
2015 
2016 static unsigned int nr_free_zone_pages(int offset)
2017 {
2018 	struct zoneref *z;
2019 	struct zone *zone;
2020 
2021 	/* Just pick one node, since fallback list is circular */
2022 	unsigned int sum = 0;
2023 
2024 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2025 
2026 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2027 		unsigned long size = zone->present_pages;
2028 		unsigned long high = high_wmark_pages(zone);
2029 		if (size > high)
2030 			sum += size - high;
2031 	}
2032 
2033 	return sum;
2034 }
2035 
2036 /*
2037  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2038  */
2039 unsigned int nr_free_buffer_pages(void)
2040 {
2041 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2042 }
2043 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2044 
2045 /*
2046  * Amount of free RAM allocatable within all zones
2047  */
2048 unsigned int nr_free_pagecache_pages(void)
2049 {
2050 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2051 }
2052 
2053 static inline void show_node(struct zone *zone)
2054 {
2055 	if (NUMA_BUILD)
2056 		printk("Node %d ", zone_to_nid(zone));
2057 }
2058 
2059 void si_meminfo(struct sysinfo *val)
2060 {
2061 	val->totalram = totalram_pages;
2062 	val->sharedram = 0;
2063 	val->freeram = global_page_state(NR_FREE_PAGES);
2064 	val->bufferram = nr_blockdev_pages();
2065 	val->totalhigh = totalhigh_pages;
2066 	val->freehigh = nr_free_highpages();
2067 	val->mem_unit = PAGE_SIZE;
2068 }
2069 
2070 EXPORT_SYMBOL(si_meminfo);
2071 
2072 #ifdef CONFIG_NUMA
2073 void si_meminfo_node(struct sysinfo *val, int nid)
2074 {
2075 	pg_data_t *pgdat = NODE_DATA(nid);
2076 
2077 	val->totalram = pgdat->node_present_pages;
2078 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2079 #ifdef CONFIG_HIGHMEM
2080 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2081 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2082 			NR_FREE_PAGES);
2083 #else
2084 	val->totalhigh = 0;
2085 	val->freehigh = 0;
2086 #endif
2087 	val->mem_unit = PAGE_SIZE;
2088 }
2089 #endif
2090 
2091 #define K(x) ((x) << (PAGE_SHIFT-10))
2092 
2093 /*
2094  * Show free area list (used inside shift_scroll-lock stuff)
2095  * We also calculate the percentage fragmentation. We do this by counting the
2096  * memory on each free list with the exception of the first item on the list.
2097  */
2098 void show_free_areas(void)
2099 {
2100 	int cpu;
2101 	struct zone *zone;
2102 
2103 	for_each_populated_zone(zone) {
2104 		show_node(zone);
2105 		printk("%s per-cpu:\n", zone->name);
2106 
2107 		for_each_online_cpu(cpu) {
2108 			struct per_cpu_pageset *pageset;
2109 
2110 			pageset = zone_pcp(zone, cpu);
2111 
2112 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2113 			       cpu, pageset->pcp.high,
2114 			       pageset->pcp.batch, pageset->pcp.count);
2115 		}
2116 	}
2117 
2118 	printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2119 		" inactive_file:%lu"
2120 		" unevictable:%lu"
2121 		" dirty:%lu writeback:%lu unstable:%lu\n"
2122 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2123 		global_page_state(NR_ACTIVE_ANON),
2124 		global_page_state(NR_ACTIVE_FILE),
2125 		global_page_state(NR_INACTIVE_ANON),
2126 		global_page_state(NR_INACTIVE_FILE),
2127 		global_page_state(NR_UNEVICTABLE),
2128 		global_page_state(NR_FILE_DIRTY),
2129 		global_page_state(NR_WRITEBACK),
2130 		global_page_state(NR_UNSTABLE_NFS),
2131 		global_page_state(NR_FREE_PAGES),
2132 		global_page_state(NR_SLAB_RECLAIMABLE) +
2133 			global_page_state(NR_SLAB_UNRECLAIMABLE),
2134 		global_page_state(NR_FILE_MAPPED),
2135 		global_page_state(NR_PAGETABLE),
2136 		global_page_state(NR_BOUNCE));
2137 
2138 	for_each_populated_zone(zone) {
2139 		int i;
2140 
2141 		show_node(zone);
2142 		printk("%s"
2143 			" free:%lukB"
2144 			" min:%lukB"
2145 			" low:%lukB"
2146 			" high:%lukB"
2147 			" active_anon:%lukB"
2148 			" inactive_anon:%lukB"
2149 			" active_file:%lukB"
2150 			" inactive_file:%lukB"
2151 			" unevictable:%lukB"
2152 			" present:%lukB"
2153 			" pages_scanned:%lu"
2154 			" all_unreclaimable? %s"
2155 			"\n",
2156 			zone->name,
2157 			K(zone_page_state(zone, NR_FREE_PAGES)),
2158 			K(min_wmark_pages(zone)),
2159 			K(low_wmark_pages(zone)),
2160 			K(high_wmark_pages(zone)),
2161 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2162 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2163 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2164 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2165 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2166 			K(zone->present_pages),
2167 			zone->pages_scanned,
2168 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
2169 			);
2170 		printk("lowmem_reserve[]:");
2171 		for (i = 0; i < MAX_NR_ZONES; i++)
2172 			printk(" %lu", zone->lowmem_reserve[i]);
2173 		printk("\n");
2174 	}
2175 
2176 	for_each_populated_zone(zone) {
2177  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2178 
2179 		show_node(zone);
2180 		printk("%s: ", zone->name);
2181 
2182 		spin_lock_irqsave(&zone->lock, flags);
2183 		for (order = 0; order < MAX_ORDER; order++) {
2184 			nr[order] = zone->free_area[order].nr_free;
2185 			total += nr[order] << order;
2186 		}
2187 		spin_unlock_irqrestore(&zone->lock, flags);
2188 		for (order = 0; order < MAX_ORDER; order++)
2189 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2190 		printk("= %lukB\n", K(total));
2191 	}
2192 
2193 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2194 
2195 	show_swap_cache_info();
2196 }
2197 
2198 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2199 {
2200 	zoneref->zone = zone;
2201 	zoneref->zone_idx = zone_idx(zone);
2202 }
2203 
2204 /*
2205  * Builds allocation fallback zone lists.
2206  *
2207  * Add all populated zones of a node to the zonelist.
2208  */
2209 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2210 				int nr_zones, enum zone_type zone_type)
2211 {
2212 	struct zone *zone;
2213 
2214 	BUG_ON(zone_type >= MAX_NR_ZONES);
2215 	zone_type++;
2216 
2217 	do {
2218 		zone_type--;
2219 		zone = pgdat->node_zones + zone_type;
2220 		if (populated_zone(zone)) {
2221 			zoneref_set_zone(zone,
2222 				&zonelist->_zonerefs[nr_zones++]);
2223 			check_highest_zone(zone_type);
2224 		}
2225 
2226 	} while (zone_type);
2227 	return nr_zones;
2228 }
2229 
2230 
2231 /*
2232  *  zonelist_order:
2233  *  0 = automatic detection of better ordering.
2234  *  1 = order by ([node] distance, -zonetype)
2235  *  2 = order by (-zonetype, [node] distance)
2236  *
2237  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2238  *  the same zonelist. So only NUMA can configure this param.
2239  */
2240 #define ZONELIST_ORDER_DEFAULT  0
2241 #define ZONELIST_ORDER_NODE     1
2242 #define ZONELIST_ORDER_ZONE     2
2243 
2244 /* zonelist order in the kernel.
2245  * set_zonelist_order() will set this to NODE or ZONE.
2246  */
2247 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2248 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2249 
2250 
2251 #ifdef CONFIG_NUMA
2252 /* The value user specified ....changed by config */
2253 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2254 /* string for sysctl */
2255 #define NUMA_ZONELIST_ORDER_LEN	16
2256 char numa_zonelist_order[16] = "default";
2257 
2258 /*
2259  * interface for configure zonelist ordering.
2260  * command line option "numa_zonelist_order"
2261  *	= "[dD]efault	- default, automatic configuration.
2262  *	= "[nN]ode 	- order by node locality, then by zone within node
2263  *	= "[zZ]one      - order by zone, then by locality within zone
2264  */
2265 
2266 static int __parse_numa_zonelist_order(char *s)
2267 {
2268 	if (*s == 'd' || *s == 'D') {
2269 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2270 	} else if (*s == 'n' || *s == 'N') {
2271 		user_zonelist_order = ZONELIST_ORDER_NODE;
2272 	} else if (*s == 'z' || *s == 'Z') {
2273 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2274 	} else {
2275 		printk(KERN_WARNING
2276 			"Ignoring invalid numa_zonelist_order value:  "
2277 			"%s\n", s);
2278 		return -EINVAL;
2279 	}
2280 	return 0;
2281 }
2282 
2283 static __init int setup_numa_zonelist_order(char *s)
2284 {
2285 	if (s)
2286 		return __parse_numa_zonelist_order(s);
2287 	return 0;
2288 }
2289 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2290 
2291 /*
2292  * sysctl handler for numa_zonelist_order
2293  */
2294 int numa_zonelist_order_handler(ctl_table *table, int write,
2295 		struct file *file, void __user *buffer, size_t *length,
2296 		loff_t *ppos)
2297 {
2298 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2299 	int ret;
2300 
2301 	if (write)
2302 		strncpy(saved_string, (char*)table->data,
2303 			NUMA_ZONELIST_ORDER_LEN);
2304 	ret = proc_dostring(table, write, file, buffer, length, ppos);
2305 	if (ret)
2306 		return ret;
2307 	if (write) {
2308 		int oldval = user_zonelist_order;
2309 		if (__parse_numa_zonelist_order((char*)table->data)) {
2310 			/*
2311 			 * bogus value.  restore saved string
2312 			 */
2313 			strncpy((char*)table->data, saved_string,
2314 				NUMA_ZONELIST_ORDER_LEN);
2315 			user_zonelist_order = oldval;
2316 		} else if (oldval != user_zonelist_order)
2317 			build_all_zonelists();
2318 	}
2319 	return 0;
2320 }
2321 
2322 
2323 #define MAX_NODE_LOAD (nr_online_nodes)
2324 static int node_load[MAX_NUMNODES];
2325 
2326 /**
2327  * find_next_best_node - find the next node that should appear in a given node's fallback list
2328  * @node: node whose fallback list we're appending
2329  * @used_node_mask: nodemask_t of already used nodes
2330  *
2331  * We use a number of factors to determine which is the next node that should
2332  * appear on a given node's fallback list.  The node should not have appeared
2333  * already in @node's fallback list, and it should be the next closest node
2334  * according to the distance array (which contains arbitrary distance values
2335  * from each node to each node in the system), and should also prefer nodes
2336  * with no CPUs, since presumably they'll have very little allocation pressure
2337  * on them otherwise.
2338  * It returns -1 if no node is found.
2339  */
2340 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2341 {
2342 	int n, val;
2343 	int min_val = INT_MAX;
2344 	int best_node = -1;
2345 	const struct cpumask *tmp = cpumask_of_node(0);
2346 
2347 	/* Use the local node if we haven't already */
2348 	if (!node_isset(node, *used_node_mask)) {
2349 		node_set(node, *used_node_mask);
2350 		return node;
2351 	}
2352 
2353 	for_each_node_state(n, N_HIGH_MEMORY) {
2354 
2355 		/* Don't want a node to appear more than once */
2356 		if (node_isset(n, *used_node_mask))
2357 			continue;
2358 
2359 		/* Use the distance array to find the distance */
2360 		val = node_distance(node, n);
2361 
2362 		/* Penalize nodes under us ("prefer the next node") */
2363 		val += (n < node);
2364 
2365 		/* Give preference to headless and unused nodes */
2366 		tmp = cpumask_of_node(n);
2367 		if (!cpumask_empty(tmp))
2368 			val += PENALTY_FOR_NODE_WITH_CPUS;
2369 
2370 		/* Slight preference for less loaded node */
2371 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2372 		val += node_load[n];
2373 
2374 		if (val < min_val) {
2375 			min_val = val;
2376 			best_node = n;
2377 		}
2378 	}
2379 
2380 	if (best_node >= 0)
2381 		node_set(best_node, *used_node_mask);
2382 
2383 	return best_node;
2384 }
2385 
2386 
2387 /*
2388  * Build zonelists ordered by node and zones within node.
2389  * This results in maximum locality--normal zone overflows into local
2390  * DMA zone, if any--but risks exhausting DMA zone.
2391  */
2392 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2393 {
2394 	int j;
2395 	struct zonelist *zonelist;
2396 
2397 	zonelist = &pgdat->node_zonelists[0];
2398 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2399 		;
2400 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2401 							MAX_NR_ZONES - 1);
2402 	zonelist->_zonerefs[j].zone = NULL;
2403 	zonelist->_zonerefs[j].zone_idx = 0;
2404 }
2405 
2406 /*
2407  * Build gfp_thisnode zonelists
2408  */
2409 static void build_thisnode_zonelists(pg_data_t *pgdat)
2410 {
2411 	int j;
2412 	struct zonelist *zonelist;
2413 
2414 	zonelist = &pgdat->node_zonelists[1];
2415 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2416 	zonelist->_zonerefs[j].zone = NULL;
2417 	zonelist->_zonerefs[j].zone_idx = 0;
2418 }
2419 
2420 /*
2421  * Build zonelists ordered by zone and nodes within zones.
2422  * This results in conserving DMA zone[s] until all Normal memory is
2423  * exhausted, but results in overflowing to remote node while memory
2424  * may still exist in local DMA zone.
2425  */
2426 static int node_order[MAX_NUMNODES];
2427 
2428 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2429 {
2430 	int pos, j, node;
2431 	int zone_type;		/* needs to be signed */
2432 	struct zone *z;
2433 	struct zonelist *zonelist;
2434 
2435 	zonelist = &pgdat->node_zonelists[0];
2436 	pos = 0;
2437 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2438 		for (j = 0; j < nr_nodes; j++) {
2439 			node = node_order[j];
2440 			z = &NODE_DATA(node)->node_zones[zone_type];
2441 			if (populated_zone(z)) {
2442 				zoneref_set_zone(z,
2443 					&zonelist->_zonerefs[pos++]);
2444 				check_highest_zone(zone_type);
2445 			}
2446 		}
2447 	}
2448 	zonelist->_zonerefs[pos].zone = NULL;
2449 	zonelist->_zonerefs[pos].zone_idx = 0;
2450 }
2451 
2452 static int default_zonelist_order(void)
2453 {
2454 	int nid, zone_type;
2455 	unsigned long low_kmem_size,total_size;
2456 	struct zone *z;
2457 	int average_size;
2458 	/*
2459          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2460 	 * If they are really small and used heavily, the system can fall
2461 	 * into OOM very easily.
2462 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2463 	 */
2464 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2465 	low_kmem_size = 0;
2466 	total_size = 0;
2467 	for_each_online_node(nid) {
2468 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2469 			z = &NODE_DATA(nid)->node_zones[zone_type];
2470 			if (populated_zone(z)) {
2471 				if (zone_type < ZONE_NORMAL)
2472 					low_kmem_size += z->present_pages;
2473 				total_size += z->present_pages;
2474 			}
2475 		}
2476 	}
2477 	if (!low_kmem_size ||  /* there are no DMA area. */
2478 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2479 		return ZONELIST_ORDER_NODE;
2480 	/*
2481 	 * look into each node's config.
2482   	 * If there is a node whose DMA/DMA32 memory is very big area on
2483  	 * local memory, NODE_ORDER may be suitable.
2484          */
2485 	average_size = total_size /
2486 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2487 	for_each_online_node(nid) {
2488 		low_kmem_size = 0;
2489 		total_size = 0;
2490 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2491 			z = &NODE_DATA(nid)->node_zones[zone_type];
2492 			if (populated_zone(z)) {
2493 				if (zone_type < ZONE_NORMAL)
2494 					low_kmem_size += z->present_pages;
2495 				total_size += z->present_pages;
2496 			}
2497 		}
2498 		if (low_kmem_size &&
2499 		    total_size > average_size && /* ignore small node */
2500 		    low_kmem_size > total_size * 70/100)
2501 			return ZONELIST_ORDER_NODE;
2502 	}
2503 	return ZONELIST_ORDER_ZONE;
2504 }
2505 
2506 static void set_zonelist_order(void)
2507 {
2508 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2509 		current_zonelist_order = default_zonelist_order();
2510 	else
2511 		current_zonelist_order = user_zonelist_order;
2512 }
2513 
2514 static void build_zonelists(pg_data_t *pgdat)
2515 {
2516 	int j, node, load;
2517 	enum zone_type i;
2518 	nodemask_t used_mask;
2519 	int local_node, prev_node;
2520 	struct zonelist *zonelist;
2521 	int order = current_zonelist_order;
2522 
2523 	/* initialize zonelists */
2524 	for (i = 0; i < MAX_ZONELISTS; i++) {
2525 		zonelist = pgdat->node_zonelists + i;
2526 		zonelist->_zonerefs[0].zone = NULL;
2527 		zonelist->_zonerefs[0].zone_idx = 0;
2528 	}
2529 
2530 	/* NUMA-aware ordering of nodes */
2531 	local_node = pgdat->node_id;
2532 	load = nr_online_nodes;
2533 	prev_node = local_node;
2534 	nodes_clear(used_mask);
2535 
2536 	memset(node_load, 0, sizeof(node_load));
2537 	memset(node_order, 0, sizeof(node_order));
2538 	j = 0;
2539 
2540 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2541 		int distance = node_distance(local_node, node);
2542 
2543 		/*
2544 		 * If another node is sufficiently far away then it is better
2545 		 * to reclaim pages in a zone before going off node.
2546 		 */
2547 		if (distance > RECLAIM_DISTANCE)
2548 			zone_reclaim_mode = 1;
2549 
2550 		/*
2551 		 * We don't want to pressure a particular node.
2552 		 * So adding penalty to the first node in same
2553 		 * distance group to make it round-robin.
2554 		 */
2555 		if (distance != node_distance(local_node, prev_node))
2556 			node_load[node] = load;
2557 
2558 		prev_node = node;
2559 		load--;
2560 		if (order == ZONELIST_ORDER_NODE)
2561 			build_zonelists_in_node_order(pgdat, node);
2562 		else
2563 			node_order[j++] = node;	/* remember order */
2564 	}
2565 
2566 	if (order == ZONELIST_ORDER_ZONE) {
2567 		/* calculate node order -- i.e., DMA last! */
2568 		build_zonelists_in_zone_order(pgdat, j);
2569 	}
2570 
2571 	build_thisnode_zonelists(pgdat);
2572 }
2573 
2574 /* Construct the zonelist performance cache - see further mmzone.h */
2575 static void build_zonelist_cache(pg_data_t *pgdat)
2576 {
2577 	struct zonelist *zonelist;
2578 	struct zonelist_cache *zlc;
2579 	struct zoneref *z;
2580 
2581 	zonelist = &pgdat->node_zonelists[0];
2582 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2583 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2584 	for (z = zonelist->_zonerefs; z->zone; z++)
2585 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2586 }
2587 
2588 
2589 #else	/* CONFIG_NUMA */
2590 
2591 static void set_zonelist_order(void)
2592 {
2593 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2594 }
2595 
2596 static void build_zonelists(pg_data_t *pgdat)
2597 {
2598 	int node, local_node;
2599 	enum zone_type j;
2600 	struct zonelist *zonelist;
2601 
2602 	local_node = pgdat->node_id;
2603 
2604 	zonelist = &pgdat->node_zonelists[0];
2605 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2606 
2607 	/*
2608 	 * Now we build the zonelist so that it contains the zones
2609 	 * of all the other nodes.
2610 	 * We don't want to pressure a particular node, so when
2611 	 * building the zones for node N, we make sure that the
2612 	 * zones coming right after the local ones are those from
2613 	 * node N+1 (modulo N)
2614 	 */
2615 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2616 		if (!node_online(node))
2617 			continue;
2618 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2619 							MAX_NR_ZONES - 1);
2620 	}
2621 	for (node = 0; node < local_node; node++) {
2622 		if (!node_online(node))
2623 			continue;
2624 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2625 							MAX_NR_ZONES - 1);
2626 	}
2627 
2628 	zonelist->_zonerefs[j].zone = NULL;
2629 	zonelist->_zonerefs[j].zone_idx = 0;
2630 }
2631 
2632 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2633 static void build_zonelist_cache(pg_data_t *pgdat)
2634 {
2635 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2636 }
2637 
2638 #endif	/* CONFIG_NUMA */
2639 
2640 /* return values int ....just for stop_machine() */
2641 static int __build_all_zonelists(void *dummy)
2642 {
2643 	int nid;
2644 
2645 	for_each_online_node(nid) {
2646 		pg_data_t *pgdat = NODE_DATA(nid);
2647 
2648 		build_zonelists(pgdat);
2649 		build_zonelist_cache(pgdat);
2650 	}
2651 	return 0;
2652 }
2653 
2654 void build_all_zonelists(void)
2655 {
2656 	set_zonelist_order();
2657 
2658 	if (system_state == SYSTEM_BOOTING) {
2659 		__build_all_zonelists(NULL);
2660 		mminit_verify_zonelist();
2661 		cpuset_init_current_mems_allowed();
2662 	} else {
2663 		/* we have to stop all cpus to guarantee there is no user
2664 		   of zonelist */
2665 		stop_machine(__build_all_zonelists, NULL, NULL);
2666 		/* cpuset refresh routine should be here */
2667 	}
2668 	vm_total_pages = nr_free_pagecache_pages();
2669 	/*
2670 	 * Disable grouping by mobility if the number of pages in the
2671 	 * system is too low to allow the mechanism to work. It would be
2672 	 * more accurate, but expensive to check per-zone. This check is
2673 	 * made on memory-hotadd so a system can start with mobility
2674 	 * disabled and enable it later
2675 	 */
2676 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2677 		page_group_by_mobility_disabled = 1;
2678 	else
2679 		page_group_by_mobility_disabled = 0;
2680 
2681 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2682 		"Total pages: %ld\n",
2683 			nr_online_nodes,
2684 			zonelist_order_name[current_zonelist_order],
2685 			page_group_by_mobility_disabled ? "off" : "on",
2686 			vm_total_pages);
2687 #ifdef CONFIG_NUMA
2688 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2689 #endif
2690 }
2691 
2692 /*
2693  * Helper functions to size the waitqueue hash table.
2694  * Essentially these want to choose hash table sizes sufficiently
2695  * large so that collisions trying to wait on pages are rare.
2696  * But in fact, the number of active page waitqueues on typical
2697  * systems is ridiculously low, less than 200. So this is even
2698  * conservative, even though it seems large.
2699  *
2700  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2701  * waitqueues, i.e. the size of the waitq table given the number of pages.
2702  */
2703 #define PAGES_PER_WAITQUEUE	256
2704 
2705 #ifndef CONFIG_MEMORY_HOTPLUG
2706 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2707 {
2708 	unsigned long size = 1;
2709 
2710 	pages /= PAGES_PER_WAITQUEUE;
2711 
2712 	while (size < pages)
2713 		size <<= 1;
2714 
2715 	/*
2716 	 * Once we have dozens or even hundreds of threads sleeping
2717 	 * on IO we've got bigger problems than wait queue collision.
2718 	 * Limit the size of the wait table to a reasonable size.
2719 	 */
2720 	size = min(size, 4096UL);
2721 
2722 	return max(size, 4UL);
2723 }
2724 #else
2725 /*
2726  * A zone's size might be changed by hot-add, so it is not possible to determine
2727  * a suitable size for its wait_table.  So we use the maximum size now.
2728  *
2729  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2730  *
2731  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2732  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2733  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2734  *
2735  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2736  * or more by the traditional way. (See above).  It equals:
2737  *
2738  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2739  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2740  *    powerpc (64K page size)             : =  (32G +16M)byte.
2741  */
2742 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2743 {
2744 	return 4096UL;
2745 }
2746 #endif
2747 
2748 /*
2749  * This is an integer logarithm so that shifts can be used later
2750  * to extract the more random high bits from the multiplicative
2751  * hash function before the remainder is taken.
2752  */
2753 static inline unsigned long wait_table_bits(unsigned long size)
2754 {
2755 	return ffz(~size);
2756 }
2757 
2758 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2759 
2760 /*
2761  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2762  * of blocks reserved is based on min_wmark_pages(zone). The memory within
2763  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2764  * higher will lead to a bigger reserve which will get freed as contiguous
2765  * blocks as reclaim kicks in
2766  */
2767 static void setup_zone_migrate_reserve(struct zone *zone)
2768 {
2769 	unsigned long start_pfn, pfn, end_pfn;
2770 	struct page *page;
2771 	unsigned long reserve, block_migratetype;
2772 
2773 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2774 	start_pfn = zone->zone_start_pfn;
2775 	end_pfn = start_pfn + zone->spanned_pages;
2776 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2777 							pageblock_order;
2778 
2779 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2780 		if (!pfn_valid(pfn))
2781 			continue;
2782 		page = pfn_to_page(pfn);
2783 
2784 		/* Watch out for overlapping nodes */
2785 		if (page_to_nid(page) != zone_to_nid(zone))
2786 			continue;
2787 
2788 		/* Blocks with reserved pages will never free, skip them. */
2789 		if (PageReserved(page))
2790 			continue;
2791 
2792 		block_migratetype = get_pageblock_migratetype(page);
2793 
2794 		/* If this block is reserved, account for it */
2795 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2796 			reserve--;
2797 			continue;
2798 		}
2799 
2800 		/* Suitable for reserving if this block is movable */
2801 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2802 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2803 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2804 			reserve--;
2805 			continue;
2806 		}
2807 
2808 		/*
2809 		 * If the reserve is met and this is a previous reserved block,
2810 		 * take it back
2811 		 */
2812 		if (block_migratetype == MIGRATE_RESERVE) {
2813 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2814 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2815 		}
2816 	}
2817 }
2818 
2819 /*
2820  * Initially all pages are reserved - free ones are freed
2821  * up by free_all_bootmem() once the early boot process is
2822  * done. Non-atomic initialization, single-pass.
2823  */
2824 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2825 		unsigned long start_pfn, enum memmap_context context)
2826 {
2827 	struct page *page;
2828 	unsigned long end_pfn = start_pfn + size;
2829 	unsigned long pfn;
2830 	struct zone *z;
2831 
2832 	if (highest_memmap_pfn < end_pfn - 1)
2833 		highest_memmap_pfn = end_pfn - 1;
2834 
2835 	z = &NODE_DATA(nid)->node_zones[zone];
2836 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2837 		/*
2838 		 * There can be holes in boot-time mem_map[]s
2839 		 * handed to this function.  They do not
2840 		 * exist on hotplugged memory.
2841 		 */
2842 		if (context == MEMMAP_EARLY) {
2843 			if (!early_pfn_valid(pfn))
2844 				continue;
2845 			if (!early_pfn_in_nid(pfn, nid))
2846 				continue;
2847 		}
2848 		page = pfn_to_page(pfn);
2849 		set_page_links(page, zone, nid, pfn);
2850 		mminit_verify_page_links(page, zone, nid, pfn);
2851 		init_page_count(page);
2852 		reset_page_mapcount(page);
2853 		SetPageReserved(page);
2854 		/*
2855 		 * Mark the block movable so that blocks are reserved for
2856 		 * movable at startup. This will force kernel allocations
2857 		 * to reserve their blocks rather than leaking throughout
2858 		 * the address space during boot when many long-lived
2859 		 * kernel allocations are made. Later some blocks near
2860 		 * the start are marked MIGRATE_RESERVE by
2861 		 * setup_zone_migrate_reserve()
2862 		 *
2863 		 * bitmap is created for zone's valid pfn range. but memmap
2864 		 * can be created for invalid pages (for alignment)
2865 		 * check here not to call set_pageblock_migratetype() against
2866 		 * pfn out of zone.
2867 		 */
2868 		if ((z->zone_start_pfn <= pfn)
2869 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2870 		    && !(pfn & (pageblock_nr_pages - 1)))
2871 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2872 
2873 		INIT_LIST_HEAD(&page->lru);
2874 #ifdef WANT_PAGE_VIRTUAL
2875 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2876 		if (!is_highmem_idx(zone))
2877 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2878 #endif
2879 	}
2880 }
2881 
2882 static void __meminit zone_init_free_lists(struct zone *zone)
2883 {
2884 	int order, t;
2885 	for_each_migratetype_order(order, t) {
2886 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2887 		zone->free_area[order].nr_free = 0;
2888 	}
2889 }
2890 
2891 #ifndef __HAVE_ARCH_MEMMAP_INIT
2892 #define memmap_init(size, nid, zone, start_pfn) \
2893 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2894 #endif
2895 
2896 static int zone_batchsize(struct zone *zone)
2897 {
2898 #ifdef CONFIG_MMU
2899 	int batch;
2900 
2901 	/*
2902 	 * The per-cpu-pages pools are set to around 1000th of the
2903 	 * size of the zone.  But no more than 1/2 of a meg.
2904 	 *
2905 	 * OK, so we don't know how big the cache is.  So guess.
2906 	 */
2907 	batch = zone->present_pages / 1024;
2908 	if (batch * PAGE_SIZE > 512 * 1024)
2909 		batch = (512 * 1024) / PAGE_SIZE;
2910 	batch /= 4;		/* We effectively *= 4 below */
2911 	if (batch < 1)
2912 		batch = 1;
2913 
2914 	/*
2915 	 * Clamp the batch to a 2^n - 1 value. Having a power
2916 	 * of 2 value was found to be more likely to have
2917 	 * suboptimal cache aliasing properties in some cases.
2918 	 *
2919 	 * For example if 2 tasks are alternately allocating
2920 	 * batches of pages, one task can end up with a lot
2921 	 * of pages of one half of the possible page colors
2922 	 * and the other with pages of the other colors.
2923 	 */
2924 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
2925 
2926 	return batch;
2927 
2928 #else
2929 	/* The deferral and batching of frees should be suppressed under NOMMU
2930 	 * conditions.
2931 	 *
2932 	 * The problem is that NOMMU needs to be able to allocate large chunks
2933 	 * of contiguous memory as there's no hardware page translation to
2934 	 * assemble apparent contiguous memory from discontiguous pages.
2935 	 *
2936 	 * Queueing large contiguous runs of pages for batching, however,
2937 	 * causes the pages to actually be freed in smaller chunks.  As there
2938 	 * can be a significant delay between the individual batches being
2939 	 * recycled, this leads to the once large chunks of space being
2940 	 * fragmented and becoming unavailable for high-order allocations.
2941 	 */
2942 	return 0;
2943 #endif
2944 }
2945 
2946 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2947 {
2948 	struct per_cpu_pages *pcp;
2949 
2950 	memset(p, 0, sizeof(*p));
2951 
2952 	pcp = &p->pcp;
2953 	pcp->count = 0;
2954 	pcp->high = 6 * batch;
2955 	pcp->batch = max(1UL, 1 * batch);
2956 	INIT_LIST_HEAD(&pcp->list);
2957 }
2958 
2959 /*
2960  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2961  * to the value high for the pageset p.
2962  */
2963 
2964 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2965 				unsigned long high)
2966 {
2967 	struct per_cpu_pages *pcp;
2968 
2969 	pcp = &p->pcp;
2970 	pcp->high = high;
2971 	pcp->batch = max(1UL, high/4);
2972 	if ((high/4) > (PAGE_SHIFT * 8))
2973 		pcp->batch = PAGE_SHIFT * 8;
2974 }
2975 
2976 
2977 #ifdef CONFIG_NUMA
2978 /*
2979  * Boot pageset table. One per cpu which is going to be used for all
2980  * zones and all nodes. The parameters will be set in such a way
2981  * that an item put on a list will immediately be handed over to
2982  * the buddy list. This is safe since pageset manipulation is done
2983  * with interrupts disabled.
2984  *
2985  * Some NUMA counter updates may also be caught by the boot pagesets.
2986  *
2987  * The boot_pagesets must be kept even after bootup is complete for
2988  * unused processors and/or zones. They do play a role for bootstrapping
2989  * hotplugged processors.
2990  *
2991  * zoneinfo_show() and maybe other functions do
2992  * not check if the processor is online before following the pageset pointer.
2993  * Other parts of the kernel may not check if the zone is available.
2994  */
2995 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2996 
2997 /*
2998  * Dynamically allocate memory for the
2999  * per cpu pageset array in struct zone.
3000  */
3001 static int __cpuinit process_zones(int cpu)
3002 {
3003 	struct zone *zone, *dzone;
3004 	int node = cpu_to_node(cpu);
3005 
3006 	node_set_state(node, N_CPU);	/* this node has a cpu */
3007 
3008 	for_each_populated_zone(zone) {
3009 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3010 					 GFP_KERNEL, node);
3011 		if (!zone_pcp(zone, cpu))
3012 			goto bad;
3013 
3014 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3015 
3016 		if (percpu_pagelist_fraction)
3017 			setup_pagelist_highmark(zone_pcp(zone, cpu),
3018 			 	(zone->present_pages / percpu_pagelist_fraction));
3019 	}
3020 
3021 	return 0;
3022 bad:
3023 	for_each_zone(dzone) {
3024 		if (!populated_zone(dzone))
3025 			continue;
3026 		if (dzone == zone)
3027 			break;
3028 		kfree(zone_pcp(dzone, cpu));
3029 		zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3030 	}
3031 	return -ENOMEM;
3032 }
3033 
3034 static inline void free_zone_pagesets(int cpu)
3035 {
3036 	struct zone *zone;
3037 
3038 	for_each_zone(zone) {
3039 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3040 
3041 		/* Free per_cpu_pageset if it is slab allocated */
3042 		if (pset != &boot_pageset[cpu])
3043 			kfree(pset);
3044 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3045 	}
3046 }
3047 
3048 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3049 		unsigned long action,
3050 		void *hcpu)
3051 {
3052 	int cpu = (long)hcpu;
3053 	int ret = NOTIFY_OK;
3054 
3055 	switch (action) {
3056 	case CPU_UP_PREPARE:
3057 	case CPU_UP_PREPARE_FROZEN:
3058 		if (process_zones(cpu))
3059 			ret = NOTIFY_BAD;
3060 		break;
3061 	case CPU_UP_CANCELED:
3062 	case CPU_UP_CANCELED_FROZEN:
3063 	case CPU_DEAD:
3064 	case CPU_DEAD_FROZEN:
3065 		free_zone_pagesets(cpu);
3066 		break;
3067 	default:
3068 		break;
3069 	}
3070 	return ret;
3071 }
3072 
3073 static struct notifier_block __cpuinitdata pageset_notifier =
3074 	{ &pageset_cpuup_callback, NULL, 0 };
3075 
3076 void __init setup_per_cpu_pageset(void)
3077 {
3078 	int err;
3079 
3080 	/* Initialize per_cpu_pageset for cpu 0.
3081 	 * A cpuup callback will do this for every cpu
3082 	 * as it comes online
3083 	 */
3084 	err = process_zones(smp_processor_id());
3085 	BUG_ON(err);
3086 	register_cpu_notifier(&pageset_notifier);
3087 }
3088 
3089 #endif
3090 
3091 static noinline __init_refok
3092 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3093 {
3094 	int i;
3095 	struct pglist_data *pgdat = zone->zone_pgdat;
3096 	size_t alloc_size;
3097 
3098 	/*
3099 	 * The per-page waitqueue mechanism uses hashed waitqueues
3100 	 * per zone.
3101 	 */
3102 	zone->wait_table_hash_nr_entries =
3103 		 wait_table_hash_nr_entries(zone_size_pages);
3104 	zone->wait_table_bits =
3105 		wait_table_bits(zone->wait_table_hash_nr_entries);
3106 	alloc_size = zone->wait_table_hash_nr_entries
3107 					* sizeof(wait_queue_head_t);
3108 
3109 	if (!slab_is_available()) {
3110 		zone->wait_table = (wait_queue_head_t *)
3111 			alloc_bootmem_node(pgdat, alloc_size);
3112 	} else {
3113 		/*
3114 		 * This case means that a zone whose size was 0 gets new memory
3115 		 * via memory hot-add.
3116 		 * But it may be the case that a new node was hot-added.  In
3117 		 * this case vmalloc() will not be able to use this new node's
3118 		 * memory - this wait_table must be initialized to use this new
3119 		 * node itself as well.
3120 		 * To use this new node's memory, further consideration will be
3121 		 * necessary.
3122 		 */
3123 		zone->wait_table = vmalloc(alloc_size);
3124 	}
3125 	if (!zone->wait_table)
3126 		return -ENOMEM;
3127 
3128 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3129 		init_waitqueue_head(zone->wait_table + i);
3130 
3131 	return 0;
3132 }
3133 
3134 static __meminit void zone_pcp_init(struct zone *zone)
3135 {
3136 	int cpu;
3137 	unsigned long batch = zone_batchsize(zone);
3138 
3139 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3140 #ifdef CONFIG_NUMA
3141 		/* Early boot. Slab allocator not functional yet */
3142 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3143 		setup_pageset(&boot_pageset[cpu],0);
3144 #else
3145 		setup_pageset(zone_pcp(zone,cpu), batch);
3146 #endif
3147 	}
3148 	if (zone->present_pages)
3149 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
3150 			zone->name, zone->present_pages, batch);
3151 }
3152 
3153 __meminit int init_currently_empty_zone(struct zone *zone,
3154 					unsigned long zone_start_pfn,
3155 					unsigned long size,
3156 					enum memmap_context context)
3157 {
3158 	struct pglist_data *pgdat = zone->zone_pgdat;
3159 	int ret;
3160 	ret = zone_wait_table_init(zone, size);
3161 	if (ret)
3162 		return ret;
3163 	pgdat->nr_zones = zone_idx(zone) + 1;
3164 
3165 	zone->zone_start_pfn = zone_start_pfn;
3166 
3167 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3168 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3169 			pgdat->node_id,
3170 			(unsigned long)zone_idx(zone),
3171 			zone_start_pfn, (zone_start_pfn + size));
3172 
3173 	zone_init_free_lists(zone);
3174 
3175 	return 0;
3176 }
3177 
3178 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3179 /*
3180  * Basic iterator support. Return the first range of PFNs for a node
3181  * Note: nid == MAX_NUMNODES returns first region regardless of node
3182  */
3183 static int __meminit first_active_region_index_in_nid(int nid)
3184 {
3185 	int i;
3186 
3187 	for (i = 0; i < nr_nodemap_entries; i++)
3188 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3189 			return i;
3190 
3191 	return -1;
3192 }
3193 
3194 /*
3195  * Basic iterator support. Return the next active range of PFNs for a node
3196  * Note: nid == MAX_NUMNODES returns next region regardless of node
3197  */
3198 static int __meminit next_active_region_index_in_nid(int index, int nid)
3199 {
3200 	for (index = index + 1; index < nr_nodemap_entries; index++)
3201 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3202 			return index;
3203 
3204 	return -1;
3205 }
3206 
3207 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3208 /*
3209  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3210  * Architectures may implement their own version but if add_active_range()
3211  * was used and there are no special requirements, this is a convenient
3212  * alternative
3213  */
3214 int __meminit __early_pfn_to_nid(unsigned long pfn)
3215 {
3216 	int i;
3217 
3218 	for (i = 0; i < nr_nodemap_entries; i++) {
3219 		unsigned long start_pfn = early_node_map[i].start_pfn;
3220 		unsigned long end_pfn = early_node_map[i].end_pfn;
3221 
3222 		if (start_pfn <= pfn && pfn < end_pfn)
3223 			return early_node_map[i].nid;
3224 	}
3225 	/* This is a memory hole */
3226 	return -1;
3227 }
3228 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3229 
3230 int __meminit early_pfn_to_nid(unsigned long pfn)
3231 {
3232 	int nid;
3233 
3234 	nid = __early_pfn_to_nid(pfn);
3235 	if (nid >= 0)
3236 		return nid;
3237 	/* just returns 0 */
3238 	return 0;
3239 }
3240 
3241 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3242 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3243 {
3244 	int nid;
3245 
3246 	nid = __early_pfn_to_nid(pfn);
3247 	if (nid >= 0 && nid != node)
3248 		return false;
3249 	return true;
3250 }
3251 #endif
3252 
3253 /* Basic iterator support to walk early_node_map[] */
3254 #define for_each_active_range_index_in_nid(i, nid) \
3255 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3256 				i = next_active_region_index_in_nid(i, nid))
3257 
3258 /**
3259  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3260  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3261  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3262  *
3263  * If an architecture guarantees that all ranges registered with
3264  * add_active_ranges() contain no holes and may be freed, this
3265  * this function may be used instead of calling free_bootmem() manually.
3266  */
3267 void __init free_bootmem_with_active_regions(int nid,
3268 						unsigned long max_low_pfn)
3269 {
3270 	int i;
3271 
3272 	for_each_active_range_index_in_nid(i, nid) {
3273 		unsigned long size_pages = 0;
3274 		unsigned long end_pfn = early_node_map[i].end_pfn;
3275 
3276 		if (early_node_map[i].start_pfn >= max_low_pfn)
3277 			continue;
3278 
3279 		if (end_pfn > max_low_pfn)
3280 			end_pfn = max_low_pfn;
3281 
3282 		size_pages = end_pfn - early_node_map[i].start_pfn;
3283 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3284 				PFN_PHYS(early_node_map[i].start_pfn),
3285 				size_pages << PAGE_SHIFT);
3286 	}
3287 }
3288 
3289 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3290 {
3291 	int i;
3292 	int ret;
3293 
3294 	for_each_active_range_index_in_nid(i, nid) {
3295 		ret = work_fn(early_node_map[i].start_pfn,
3296 			      early_node_map[i].end_pfn, data);
3297 		if (ret)
3298 			break;
3299 	}
3300 }
3301 /**
3302  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3303  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3304  *
3305  * If an architecture guarantees that all ranges registered with
3306  * add_active_ranges() contain no holes and may be freed, this
3307  * function may be used instead of calling memory_present() manually.
3308  */
3309 void __init sparse_memory_present_with_active_regions(int nid)
3310 {
3311 	int i;
3312 
3313 	for_each_active_range_index_in_nid(i, nid)
3314 		memory_present(early_node_map[i].nid,
3315 				early_node_map[i].start_pfn,
3316 				early_node_map[i].end_pfn);
3317 }
3318 
3319 /**
3320  * get_pfn_range_for_nid - Return the start and end page frames for a node
3321  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3322  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3323  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3324  *
3325  * It returns the start and end page frame of a node based on information
3326  * provided by an arch calling add_active_range(). If called for a node
3327  * with no available memory, a warning is printed and the start and end
3328  * PFNs will be 0.
3329  */
3330 void __meminit get_pfn_range_for_nid(unsigned int nid,
3331 			unsigned long *start_pfn, unsigned long *end_pfn)
3332 {
3333 	int i;
3334 	*start_pfn = -1UL;
3335 	*end_pfn = 0;
3336 
3337 	for_each_active_range_index_in_nid(i, nid) {
3338 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3339 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3340 	}
3341 
3342 	if (*start_pfn == -1UL)
3343 		*start_pfn = 0;
3344 }
3345 
3346 /*
3347  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3348  * assumption is made that zones within a node are ordered in monotonic
3349  * increasing memory addresses so that the "highest" populated zone is used
3350  */
3351 static void __init find_usable_zone_for_movable(void)
3352 {
3353 	int zone_index;
3354 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3355 		if (zone_index == ZONE_MOVABLE)
3356 			continue;
3357 
3358 		if (arch_zone_highest_possible_pfn[zone_index] >
3359 				arch_zone_lowest_possible_pfn[zone_index])
3360 			break;
3361 	}
3362 
3363 	VM_BUG_ON(zone_index == -1);
3364 	movable_zone = zone_index;
3365 }
3366 
3367 /*
3368  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3369  * because it is sized independant of architecture. Unlike the other zones,
3370  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3371  * in each node depending on the size of each node and how evenly kernelcore
3372  * is distributed. This helper function adjusts the zone ranges
3373  * provided by the architecture for a given node by using the end of the
3374  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3375  * zones within a node are in order of monotonic increases memory addresses
3376  */
3377 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3378 					unsigned long zone_type,
3379 					unsigned long node_start_pfn,
3380 					unsigned long node_end_pfn,
3381 					unsigned long *zone_start_pfn,
3382 					unsigned long *zone_end_pfn)
3383 {
3384 	/* Only adjust if ZONE_MOVABLE is on this node */
3385 	if (zone_movable_pfn[nid]) {
3386 		/* Size ZONE_MOVABLE */
3387 		if (zone_type == ZONE_MOVABLE) {
3388 			*zone_start_pfn = zone_movable_pfn[nid];
3389 			*zone_end_pfn = min(node_end_pfn,
3390 				arch_zone_highest_possible_pfn[movable_zone]);
3391 
3392 		/* Adjust for ZONE_MOVABLE starting within this range */
3393 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3394 				*zone_end_pfn > zone_movable_pfn[nid]) {
3395 			*zone_end_pfn = zone_movable_pfn[nid];
3396 
3397 		/* Check if this whole range is within ZONE_MOVABLE */
3398 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3399 			*zone_start_pfn = *zone_end_pfn;
3400 	}
3401 }
3402 
3403 /*
3404  * Return the number of pages a zone spans in a node, including holes
3405  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3406  */
3407 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3408 					unsigned long zone_type,
3409 					unsigned long *ignored)
3410 {
3411 	unsigned long node_start_pfn, node_end_pfn;
3412 	unsigned long zone_start_pfn, zone_end_pfn;
3413 
3414 	/* Get the start and end of the node and zone */
3415 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3416 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3417 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3418 	adjust_zone_range_for_zone_movable(nid, zone_type,
3419 				node_start_pfn, node_end_pfn,
3420 				&zone_start_pfn, &zone_end_pfn);
3421 
3422 	/* Check that this node has pages within the zone's required range */
3423 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3424 		return 0;
3425 
3426 	/* Move the zone boundaries inside the node if necessary */
3427 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3428 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3429 
3430 	/* Return the spanned pages */
3431 	return zone_end_pfn - zone_start_pfn;
3432 }
3433 
3434 /*
3435  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3436  * then all holes in the requested range will be accounted for.
3437  */
3438 static unsigned long __meminit __absent_pages_in_range(int nid,
3439 				unsigned long range_start_pfn,
3440 				unsigned long range_end_pfn)
3441 {
3442 	int i = 0;
3443 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3444 	unsigned long start_pfn;
3445 
3446 	/* Find the end_pfn of the first active range of pfns in the node */
3447 	i = first_active_region_index_in_nid(nid);
3448 	if (i == -1)
3449 		return 0;
3450 
3451 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3452 
3453 	/* Account for ranges before physical memory on this node */
3454 	if (early_node_map[i].start_pfn > range_start_pfn)
3455 		hole_pages = prev_end_pfn - range_start_pfn;
3456 
3457 	/* Find all holes for the zone within the node */
3458 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3459 
3460 		/* No need to continue if prev_end_pfn is outside the zone */
3461 		if (prev_end_pfn >= range_end_pfn)
3462 			break;
3463 
3464 		/* Make sure the end of the zone is not within the hole */
3465 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3466 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3467 
3468 		/* Update the hole size cound and move on */
3469 		if (start_pfn > range_start_pfn) {
3470 			BUG_ON(prev_end_pfn > start_pfn);
3471 			hole_pages += start_pfn - prev_end_pfn;
3472 		}
3473 		prev_end_pfn = early_node_map[i].end_pfn;
3474 	}
3475 
3476 	/* Account for ranges past physical memory on this node */
3477 	if (range_end_pfn > prev_end_pfn)
3478 		hole_pages += range_end_pfn -
3479 				max(range_start_pfn, prev_end_pfn);
3480 
3481 	return hole_pages;
3482 }
3483 
3484 /**
3485  * absent_pages_in_range - Return number of page frames in holes within a range
3486  * @start_pfn: The start PFN to start searching for holes
3487  * @end_pfn: The end PFN to stop searching for holes
3488  *
3489  * It returns the number of pages frames in memory holes within a range.
3490  */
3491 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3492 							unsigned long end_pfn)
3493 {
3494 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3495 }
3496 
3497 /* Return the number of page frames in holes in a zone on a node */
3498 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3499 					unsigned long zone_type,
3500 					unsigned long *ignored)
3501 {
3502 	unsigned long node_start_pfn, node_end_pfn;
3503 	unsigned long zone_start_pfn, zone_end_pfn;
3504 
3505 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3506 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3507 							node_start_pfn);
3508 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3509 							node_end_pfn);
3510 
3511 	adjust_zone_range_for_zone_movable(nid, zone_type,
3512 			node_start_pfn, node_end_pfn,
3513 			&zone_start_pfn, &zone_end_pfn);
3514 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3515 }
3516 
3517 #else
3518 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3519 					unsigned long zone_type,
3520 					unsigned long *zones_size)
3521 {
3522 	return zones_size[zone_type];
3523 }
3524 
3525 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3526 						unsigned long zone_type,
3527 						unsigned long *zholes_size)
3528 {
3529 	if (!zholes_size)
3530 		return 0;
3531 
3532 	return zholes_size[zone_type];
3533 }
3534 
3535 #endif
3536 
3537 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3538 		unsigned long *zones_size, unsigned long *zholes_size)
3539 {
3540 	unsigned long realtotalpages, totalpages = 0;
3541 	enum zone_type i;
3542 
3543 	for (i = 0; i < MAX_NR_ZONES; i++)
3544 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3545 								zones_size);
3546 	pgdat->node_spanned_pages = totalpages;
3547 
3548 	realtotalpages = totalpages;
3549 	for (i = 0; i < MAX_NR_ZONES; i++)
3550 		realtotalpages -=
3551 			zone_absent_pages_in_node(pgdat->node_id, i,
3552 								zholes_size);
3553 	pgdat->node_present_pages = realtotalpages;
3554 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3555 							realtotalpages);
3556 }
3557 
3558 #ifndef CONFIG_SPARSEMEM
3559 /*
3560  * Calculate the size of the zone->blockflags rounded to an unsigned long
3561  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3562  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3563  * round what is now in bits to nearest long in bits, then return it in
3564  * bytes.
3565  */
3566 static unsigned long __init usemap_size(unsigned long zonesize)
3567 {
3568 	unsigned long usemapsize;
3569 
3570 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3571 	usemapsize = usemapsize >> pageblock_order;
3572 	usemapsize *= NR_PAGEBLOCK_BITS;
3573 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3574 
3575 	return usemapsize / 8;
3576 }
3577 
3578 static void __init setup_usemap(struct pglist_data *pgdat,
3579 				struct zone *zone, unsigned long zonesize)
3580 {
3581 	unsigned long usemapsize = usemap_size(zonesize);
3582 	zone->pageblock_flags = NULL;
3583 	if (usemapsize)
3584 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3585 }
3586 #else
3587 static void inline setup_usemap(struct pglist_data *pgdat,
3588 				struct zone *zone, unsigned long zonesize) {}
3589 #endif /* CONFIG_SPARSEMEM */
3590 
3591 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3592 
3593 /* Return a sensible default order for the pageblock size. */
3594 static inline int pageblock_default_order(void)
3595 {
3596 	if (HPAGE_SHIFT > PAGE_SHIFT)
3597 		return HUGETLB_PAGE_ORDER;
3598 
3599 	return MAX_ORDER-1;
3600 }
3601 
3602 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3603 static inline void __init set_pageblock_order(unsigned int order)
3604 {
3605 	/* Check that pageblock_nr_pages has not already been setup */
3606 	if (pageblock_order)
3607 		return;
3608 
3609 	/*
3610 	 * Assume the largest contiguous order of interest is a huge page.
3611 	 * This value may be variable depending on boot parameters on IA64
3612 	 */
3613 	pageblock_order = order;
3614 }
3615 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3616 
3617 /*
3618  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3619  * and pageblock_default_order() are unused as pageblock_order is set
3620  * at compile-time. See include/linux/pageblock-flags.h for the values of
3621  * pageblock_order based on the kernel config
3622  */
3623 static inline int pageblock_default_order(unsigned int order)
3624 {
3625 	return MAX_ORDER-1;
3626 }
3627 #define set_pageblock_order(x)	do {} while (0)
3628 
3629 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3630 
3631 /*
3632  * Set up the zone data structures:
3633  *   - mark all pages reserved
3634  *   - mark all memory queues empty
3635  *   - clear the memory bitmaps
3636  */
3637 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3638 		unsigned long *zones_size, unsigned long *zholes_size)
3639 {
3640 	enum zone_type j;
3641 	int nid = pgdat->node_id;
3642 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3643 	int ret;
3644 
3645 	pgdat_resize_init(pgdat);
3646 	pgdat->nr_zones = 0;
3647 	init_waitqueue_head(&pgdat->kswapd_wait);
3648 	pgdat->kswapd_max_order = 0;
3649 	pgdat_page_cgroup_init(pgdat);
3650 
3651 	for (j = 0; j < MAX_NR_ZONES; j++) {
3652 		struct zone *zone = pgdat->node_zones + j;
3653 		unsigned long size, realsize, memmap_pages;
3654 		enum lru_list l;
3655 
3656 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3657 		realsize = size - zone_absent_pages_in_node(nid, j,
3658 								zholes_size);
3659 
3660 		/*
3661 		 * Adjust realsize so that it accounts for how much memory
3662 		 * is used by this zone for memmap. This affects the watermark
3663 		 * and per-cpu initialisations
3664 		 */
3665 		memmap_pages =
3666 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3667 		if (realsize >= memmap_pages) {
3668 			realsize -= memmap_pages;
3669 			if (memmap_pages)
3670 				printk(KERN_DEBUG
3671 				       "  %s zone: %lu pages used for memmap\n",
3672 				       zone_names[j], memmap_pages);
3673 		} else
3674 			printk(KERN_WARNING
3675 				"  %s zone: %lu pages exceeds realsize %lu\n",
3676 				zone_names[j], memmap_pages, realsize);
3677 
3678 		/* Account for reserved pages */
3679 		if (j == 0 && realsize > dma_reserve) {
3680 			realsize -= dma_reserve;
3681 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3682 					zone_names[0], dma_reserve);
3683 		}
3684 
3685 		if (!is_highmem_idx(j))
3686 			nr_kernel_pages += realsize;
3687 		nr_all_pages += realsize;
3688 
3689 		zone->spanned_pages = size;
3690 		zone->present_pages = realsize;
3691 #ifdef CONFIG_NUMA
3692 		zone->node = nid;
3693 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3694 						/ 100;
3695 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3696 #endif
3697 		zone->name = zone_names[j];
3698 		spin_lock_init(&zone->lock);
3699 		spin_lock_init(&zone->lru_lock);
3700 		zone_seqlock_init(zone);
3701 		zone->zone_pgdat = pgdat;
3702 
3703 		zone->prev_priority = DEF_PRIORITY;
3704 
3705 		zone_pcp_init(zone);
3706 		for_each_lru(l) {
3707 			INIT_LIST_HEAD(&zone->lru[l].list);
3708 			zone->lru[l].nr_saved_scan = 0;
3709 		}
3710 		zone->reclaim_stat.recent_rotated[0] = 0;
3711 		zone->reclaim_stat.recent_rotated[1] = 0;
3712 		zone->reclaim_stat.recent_scanned[0] = 0;
3713 		zone->reclaim_stat.recent_scanned[1] = 0;
3714 		zap_zone_vm_stats(zone);
3715 		zone->flags = 0;
3716 		if (!size)
3717 			continue;
3718 
3719 		set_pageblock_order(pageblock_default_order());
3720 		setup_usemap(pgdat, zone, size);
3721 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3722 						size, MEMMAP_EARLY);
3723 		BUG_ON(ret);
3724 		memmap_init(size, nid, j, zone_start_pfn);
3725 		zone_start_pfn += size;
3726 	}
3727 }
3728 
3729 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3730 {
3731 	/* Skip empty nodes */
3732 	if (!pgdat->node_spanned_pages)
3733 		return;
3734 
3735 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3736 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3737 	if (!pgdat->node_mem_map) {
3738 		unsigned long size, start, end;
3739 		struct page *map;
3740 
3741 		/*
3742 		 * The zone's endpoints aren't required to be MAX_ORDER
3743 		 * aligned but the node_mem_map endpoints must be in order
3744 		 * for the buddy allocator to function correctly.
3745 		 */
3746 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3747 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3748 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3749 		size =  (end - start) * sizeof(struct page);
3750 		map = alloc_remap(pgdat->node_id, size);
3751 		if (!map)
3752 			map = alloc_bootmem_node(pgdat, size);
3753 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3754 	}
3755 #ifndef CONFIG_NEED_MULTIPLE_NODES
3756 	/*
3757 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3758 	 */
3759 	if (pgdat == NODE_DATA(0)) {
3760 		mem_map = NODE_DATA(0)->node_mem_map;
3761 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3762 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3763 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3764 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3765 	}
3766 #endif
3767 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3768 }
3769 
3770 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3771 		unsigned long node_start_pfn, unsigned long *zholes_size)
3772 {
3773 	pg_data_t *pgdat = NODE_DATA(nid);
3774 
3775 	pgdat->node_id = nid;
3776 	pgdat->node_start_pfn = node_start_pfn;
3777 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3778 
3779 	alloc_node_mem_map(pgdat);
3780 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3781 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3782 		nid, (unsigned long)pgdat,
3783 		(unsigned long)pgdat->node_mem_map);
3784 #endif
3785 
3786 	free_area_init_core(pgdat, zones_size, zholes_size);
3787 }
3788 
3789 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3790 
3791 #if MAX_NUMNODES > 1
3792 /*
3793  * Figure out the number of possible node ids.
3794  */
3795 static void __init setup_nr_node_ids(void)
3796 {
3797 	unsigned int node;
3798 	unsigned int highest = 0;
3799 
3800 	for_each_node_mask(node, node_possible_map)
3801 		highest = node;
3802 	nr_node_ids = highest + 1;
3803 }
3804 #else
3805 static inline void setup_nr_node_ids(void)
3806 {
3807 }
3808 #endif
3809 
3810 /**
3811  * add_active_range - Register a range of PFNs backed by physical memory
3812  * @nid: The node ID the range resides on
3813  * @start_pfn: The start PFN of the available physical memory
3814  * @end_pfn: The end PFN of the available physical memory
3815  *
3816  * These ranges are stored in an early_node_map[] and later used by
3817  * free_area_init_nodes() to calculate zone sizes and holes. If the
3818  * range spans a memory hole, it is up to the architecture to ensure
3819  * the memory is not freed by the bootmem allocator. If possible
3820  * the range being registered will be merged with existing ranges.
3821  */
3822 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3823 						unsigned long end_pfn)
3824 {
3825 	int i;
3826 
3827 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3828 			"Entering add_active_range(%d, %#lx, %#lx) "
3829 			"%d entries of %d used\n",
3830 			nid, start_pfn, end_pfn,
3831 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3832 
3833 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3834 
3835 	/* Merge with existing active regions if possible */
3836 	for (i = 0; i < nr_nodemap_entries; i++) {
3837 		if (early_node_map[i].nid != nid)
3838 			continue;
3839 
3840 		/* Skip if an existing region covers this new one */
3841 		if (start_pfn >= early_node_map[i].start_pfn &&
3842 				end_pfn <= early_node_map[i].end_pfn)
3843 			return;
3844 
3845 		/* Merge forward if suitable */
3846 		if (start_pfn <= early_node_map[i].end_pfn &&
3847 				end_pfn > early_node_map[i].end_pfn) {
3848 			early_node_map[i].end_pfn = end_pfn;
3849 			return;
3850 		}
3851 
3852 		/* Merge backward if suitable */
3853 		if (start_pfn < early_node_map[i].end_pfn &&
3854 				end_pfn >= early_node_map[i].start_pfn) {
3855 			early_node_map[i].start_pfn = start_pfn;
3856 			return;
3857 		}
3858 	}
3859 
3860 	/* Check that early_node_map is large enough */
3861 	if (i >= MAX_ACTIVE_REGIONS) {
3862 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3863 							MAX_ACTIVE_REGIONS);
3864 		return;
3865 	}
3866 
3867 	early_node_map[i].nid = nid;
3868 	early_node_map[i].start_pfn = start_pfn;
3869 	early_node_map[i].end_pfn = end_pfn;
3870 	nr_nodemap_entries = i + 1;
3871 }
3872 
3873 /**
3874  * remove_active_range - Shrink an existing registered range of PFNs
3875  * @nid: The node id the range is on that should be shrunk
3876  * @start_pfn: The new PFN of the range
3877  * @end_pfn: The new PFN of the range
3878  *
3879  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3880  * The map is kept near the end physical page range that has already been
3881  * registered. This function allows an arch to shrink an existing registered
3882  * range.
3883  */
3884 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3885 				unsigned long end_pfn)
3886 {
3887 	int i, j;
3888 	int removed = 0;
3889 
3890 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3891 			  nid, start_pfn, end_pfn);
3892 
3893 	/* Find the old active region end and shrink */
3894 	for_each_active_range_index_in_nid(i, nid) {
3895 		if (early_node_map[i].start_pfn >= start_pfn &&
3896 		    early_node_map[i].end_pfn <= end_pfn) {
3897 			/* clear it */
3898 			early_node_map[i].start_pfn = 0;
3899 			early_node_map[i].end_pfn = 0;
3900 			removed = 1;
3901 			continue;
3902 		}
3903 		if (early_node_map[i].start_pfn < start_pfn &&
3904 		    early_node_map[i].end_pfn > start_pfn) {
3905 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3906 			early_node_map[i].end_pfn = start_pfn;
3907 			if (temp_end_pfn > end_pfn)
3908 				add_active_range(nid, end_pfn, temp_end_pfn);
3909 			continue;
3910 		}
3911 		if (early_node_map[i].start_pfn >= start_pfn &&
3912 		    early_node_map[i].end_pfn > end_pfn &&
3913 		    early_node_map[i].start_pfn < end_pfn) {
3914 			early_node_map[i].start_pfn = end_pfn;
3915 			continue;
3916 		}
3917 	}
3918 
3919 	if (!removed)
3920 		return;
3921 
3922 	/* remove the blank ones */
3923 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3924 		if (early_node_map[i].nid != nid)
3925 			continue;
3926 		if (early_node_map[i].end_pfn)
3927 			continue;
3928 		/* we found it, get rid of it */
3929 		for (j = i; j < nr_nodemap_entries - 1; j++)
3930 			memcpy(&early_node_map[j], &early_node_map[j+1],
3931 				sizeof(early_node_map[j]));
3932 		j = nr_nodemap_entries - 1;
3933 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3934 		nr_nodemap_entries--;
3935 	}
3936 }
3937 
3938 /**
3939  * remove_all_active_ranges - Remove all currently registered regions
3940  *
3941  * During discovery, it may be found that a table like SRAT is invalid
3942  * and an alternative discovery method must be used. This function removes
3943  * all currently registered regions.
3944  */
3945 void __init remove_all_active_ranges(void)
3946 {
3947 	memset(early_node_map, 0, sizeof(early_node_map));
3948 	nr_nodemap_entries = 0;
3949 }
3950 
3951 /* Compare two active node_active_regions */
3952 static int __init cmp_node_active_region(const void *a, const void *b)
3953 {
3954 	struct node_active_region *arange = (struct node_active_region *)a;
3955 	struct node_active_region *brange = (struct node_active_region *)b;
3956 
3957 	/* Done this way to avoid overflows */
3958 	if (arange->start_pfn > brange->start_pfn)
3959 		return 1;
3960 	if (arange->start_pfn < brange->start_pfn)
3961 		return -1;
3962 
3963 	return 0;
3964 }
3965 
3966 /* sort the node_map by start_pfn */
3967 static void __init sort_node_map(void)
3968 {
3969 	sort(early_node_map, (size_t)nr_nodemap_entries,
3970 			sizeof(struct node_active_region),
3971 			cmp_node_active_region, NULL);
3972 }
3973 
3974 /* Find the lowest pfn for a node */
3975 static unsigned long __init find_min_pfn_for_node(int nid)
3976 {
3977 	int i;
3978 	unsigned long min_pfn = ULONG_MAX;
3979 
3980 	/* Assuming a sorted map, the first range found has the starting pfn */
3981 	for_each_active_range_index_in_nid(i, nid)
3982 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3983 
3984 	if (min_pfn == ULONG_MAX) {
3985 		printk(KERN_WARNING
3986 			"Could not find start_pfn for node %d\n", nid);
3987 		return 0;
3988 	}
3989 
3990 	return min_pfn;
3991 }
3992 
3993 /**
3994  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3995  *
3996  * It returns the minimum PFN based on information provided via
3997  * add_active_range().
3998  */
3999 unsigned long __init find_min_pfn_with_active_regions(void)
4000 {
4001 	return find_min_pfn_for_node(MAX_NUMNODES);
4002 }
4003 
4004 /*
4005  * early_calculate_totalpages()
4006  * Sum pages in active regions for movable zone.
4007  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4008  */
4009 static unsigned long __init early_calculate_totalpages(void)
4010 {
4011 	int i;
4012 	unsigned long totalpages = 0;
4013 
4014 	for (i = 0; i < nr_nodemap_entries; i++) {
4015 		unsigned long pages = early_node_map[i].end_pfn -
4016 						early_node_map[i].start_pfn;
4017 		totalpages += pages;
4018 		if (pages)
4019 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4020 	}
4021   	return totalpages;
4022 }
4023 
4024 /*
4025  * Find the PFN the Movable zone begins in each node. Kernel memory
4026  * is spread evenly between nodes as long as the nodes have enough
4027  * memory. When they don't, some nodes will have more kernelcore than
4028  * others
4029  */
4030 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4031 {
4032 	int i, nid;
4033 	unsigned long usable_startpfn;
4034 	unsigned long kernelcore_node, kernelcore_remaining;
4035 	/* save the state before borrow the nodemask */
4036 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4037 	unsigned long totalpages = early_calculate_totalpages();
4038 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4039 
4040 	/*
4041 	 * If movablecore was specified, calculate what size of
4042 	 * kernelcore that corresponds so that memory usable for
4043 	 * any allocation type is evenly spread. If both kernelcore
4044 	 * and movablecore are specified, then the value of kernelcore
4045 	 * will be used for required_kernelcore if it's greater than
4046 	 * what movablecore would have allowed.
4047 	 */
4048 	if (required_movablecore) {
4049 		unsigned long corepages;
4050 
4051 		/*
4052 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4053 		 * was requested by the user
4054 		 */
4055 		required_movablecore =
4056 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4057 		corepages = totalpages - required_movablecore;
4058 
4059 		required_kernelcore = max(required_kernelcore, corepages);
4060 	}
4061 
4062 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4063 	if (!required_kernelcore)
4064 		goto out;
4065 
4066 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4067 	find_usable_zone_for_movable();
4068 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4069 
4070 restart:
4071 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4072 	kernelcore_node = required_kernelcore / usable_nodes;
4073 	for_each_node_state(nid, N_HIGH_MEMORY) {
4074 		/*
4075 		 * Recalculate kernelcore_node if the division per node
4076 		 * now exceeds what is necessary to satisfy the requested
4077 		 * amount of memory for the kernel
4078 		 */
4079 		if (required_kernelcore < kernelcore_node)
4080 			kernelcore_node = required_kernelcore / usable_nodes;
4081 
4082 		/*
4083 		 * As the map is walked, we track how much memory is usable
4084 		 * by the kernel using kernelcore_remaining. When it is
4085 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4086 		 */
4087 		kernelcore_remaining = kernelcore_node;
4088 
4089 		/* Go through each range of PFNs within this node */
4090 		for_each_active_range_index_in_nid(i, nid) {
4091 			unsigned long start_pfn, end_pfn;
4092 			unsigned long size_pages;
4093 
4094 			start_pfn = max(early_node_map[i].start_pfn,
4095 						zone_movable_pfn[nid]);
4096 			end_pfn = early_node_map[i].end_pfn;
4097 			if (start_pfn >= end_pfn)
4098 				continue;
4099 
4100 			/* Account for what is only usable for kernelcore */
4101 			if (start_pfn < usable_startpfn) {
4102 				unsigned long kernel_pages;
4103 				kernel_pages = min(end_pfn, usable_startpfn)
4104 								- start_pfn;
4105 
4106 				kernelcore_remaining -= min(kernel_pages,
4107 							kernelcore_remaining);
4108 				required_kernelcore -= min(kernel_pages,
4109 							required_kernelcore);
4110 
4111 				/* Continue if range is now fully accounted */
4112 				if (end_pfn <= usable_startpfn) {
4113 
4114 					/*
4115 					 * Push zone_movable_pfn to the end so
4116 					 * that if we have to rebalance
4117 					 * kernelcore across nodes, we will
4118 					 * not double account here
4119 					 */
4120 					zone_movable_pfn[nid] = end_pfn;
4121 					continue;
4122 				}
4123 				start_pfn = usable_startpfn;
4124 			}
4125 
4126 			/*
4127 			 * The usable PFN range for ZONE_MOVABLE is from
4128 			 * start_pfn->end_pfn. Calculate size_pages as the
4129 			 * number of pages used as kernelcore
4130 			 */
4131 			size_pages = end_pfn - start_pfn;
4132 			if (size_pages > kernelcore_remaining)
4133 				size_pages = kernelcore_remaining;
4134 			zone_movable_pfn[nid] = start_pfn + size_pages;
4135 
4136 			/*
4137 			 * Some kernelcore has been met, update counts and
4138 			 * break if the kernelcore for this node has been
4139 			 * satisified
4140 			 */
4141 			required_kernelcore -= min(required_kernelcore,
4142 								size_pages);
4143 			kernelcore_remaining -= size_pages;
4144 			if (!kernelcore_remaining)
4145 				break;
4146 		}
4147 	}
4148 
4149 	/*
4150 	 * If there is still required_kernelcore, we do another pass with one
4151 	 * less node in the count. This will push zone_movable_pfn[nid] further
4152 	 * along on the nodes that still have memory until kernelcore is
4153 	 * satisified
4154 	 */
4155 	usable_nodes--;
4156 	if (usable_nodes && required_kernelcore > usable_nodes)
4157 		goto restart;
4158 
4159 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4160 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4161 		zone_movable_pfn[nid] =
4162 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4163 
4164 out:
4165 	/* restore the node_state */
4166 	node_states[N_HIGH_MEMORY] = saved_node_state;
4167 }
4168 
4169 /* Any regular memory on that node ? */
4170 static void check_for_regular_memory(pg_data_t *pgdat)
4171 {
4172 #ifdef CONFIG_HIGHMEM
4173 	enum zone_type zone_type;
4174 
4175 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4176 		struct zone *zone = &pgdat->node_zones[zone_type];
4177 		if (zone->present_pages)
4178 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4179 	}
4180 #endif
4181 }
4182 
4183 /**
4184  * free_area_init_nodes - Initialise all pg_data_t and zone data
4185  * @max_zone_pfn: an array of max PFNs for each zone
4186  *
4187  * This will call free_area_init_node() for each active node in the system.
4188  * Using the page ranges provided by add_active_range(), the size of each
4189  * zone in each node and their holes is calculated. If the maximum PFN
4190  * between two adjacent zones match, it is assumed that the zone is empty.
4191  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4192  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4193  * starts where the previous one ended. For example, ZONE_DMA32 starts
4194  * at arch_max_dma_pfn.
4195  */
4196 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4197 {
4198 	unsigned long nid;
4199 	int i;
4200 
4201 	/* Sort early_node_map as initialisation assumes it is sorted */
4202 	sort_node_map();
4203 
4204 	/* Record where the zone boundaries are */
4205 	memset(arch_zone_lowest_possible_pfn, 0,
4206 				sizeof(arch_zone_lowest_possible_pfn));
4207 	memset(arch_zone_highest_possible_pfn, 0,
4208 				sizeof(arch_zone_highest_possible_pfn));
4209 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4210 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4211 	for (i = 1; i < MAX_NR_ZONES; i++) {
4212 		if (i == ZONE_MOVABLE)
4213 			continue;
4214 		arch_zone_lowest_possible_pfn[i] =
4215 			arch_zone_highest_possible_pfn[i-1];
4216 		arch_zone_highest_possible_pfn[i] =
4217 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4218 	}
4219 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4220 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4221 
4222 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4223 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4224 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4225 
4226 	/* Print out the zone ranges */
4227 	printk("Zone PFN ranges:\n");
4228 	for (i = 0; i < MAX_NR_ZONES; i++) {
4229 		if (i == ZONE_MOVABLE)
4230 			continue;
4231 		printk("  %-8s %0#10lx -> %0#10lx\n",
4232 				zone_names[i],
4233 				arch_zone_lowest_possible_pfn[i],
4234 				arch_zone_highest_possible_pfn[i]);
4235 	}
4236 
4237 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4238 	printk("Movable zone start PFN for each node\n");
4239 	for (i = 0; i < MAX_NUMNODES; i++) {
4240 		if (zone_movable_pfn[i])
4241 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4242 	}
4243 
4244 	/* Print out the early_node_map[] */
4245 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4246 	for (i = 0; i < nr_nodemap_entries; i++)
4247 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4248 						early_node_map[i].start_pfn,
4249 						early_node_map[i].end_pfn);
4250 
4251 	/* Initialise every node */
4252 	mminit_verify_pageflags_layout();
4253 	setup_nr_node_ids();
4254 	for_each_online_node(nid) {
4255 		pg_data_t *pgdat = NODE_DATA(nid);
4256 		free_area_init_node(nid, NULL,
4257 				find_min_pfn_for_node(nid), NULL);
4258 
4259 		/* Any memory on that node */
4260 		if (pgdat->node_present_pages)
4261 			node_set_state(nid, N_HIGH_MEMORY);
4262 		check_for_regular_memory(pgdat);
4263 	}
4264 }
4265 
4266 static int __init cmdline_parse_core(char *p, unsigned long *core)
4267 {
4268 	unsigned long long coremem;
4269 	if (!p)
4270 		return -EINVAL;
4271 
4272 	coremem = memparse(p, &p);
4273 	*core = coremem >> PAGE_SHIFT;
4274 
4275 	/* Paranoid check that UL is enough for the coremem value */
4276 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4277 
4278 	return 0;
4279 }
4280 
4281 /*
4282  * kernelcore=size sets the amount of memory for use for allocations that
4283  * cannot be reclaimed or migrated.
4284  */
4285 static int __init cmdline_parse_kernelcore(char *p)
4286 {
4287 	return cmdline_parse_core(p, &required_kernelcore);
4288 }
4289 
4290 /*
4291  * movablecore=size sets the amount of memory for use for allocations that
4292  * can be reclaimed or migrated.
4293  */
4294 static int __init cmdline_parse_movablecore(char *p)
4295 {
4296 	return cmdline_parse_core(p, &required_movablecore);
4297 }
4298 
4299 early_param("kernelcore", cmdline_parse_kernelcore);
4300 early_param("movablecore", cmdline_parse_movablecore);
4301 
4302 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4303 
4304 /**
4305  * set_dma_reserve - set the specified number of pages reserved in the first zone
4306  * @new_dma_reserve: The number of pages to mark reserved
4307  *
4308  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4309  * In the DMA zone, a significant percentage may be consumed by kernel image
4310  * and other unfreeable allocations which can skew the watermarks badly. This
4311  * function may optionally be used to account for unfreeable pages in the
4312  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4313  * smaller per-cpu batchsize.
4314  */
4315 void __init set_dma_reserve(unsigned long new_dma_reserve)
4316 {
4317 	dma_reserve = new_dma_reserve;
4318 }
4319 
4320 #ifndef CONFIG_NEED_MULTIPLE_NODES
4321 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4322 EXPORT_SYMBOL(contig_page_data);
4323 #endif
4324 
4325 void __init free_area_init(unsigned long *zones_size)
4326 {
4327 	free_area_init_node(0, zones_size,
4328 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4329 }
4330 
4331 static int page_alloc_cpu_notify(struct notifier_block *self,
4332 				 unsigned long action, void *hcpu)
4333 {
4334 	int cpu = (unsigned long)hcpu;
4335 
4336 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4337 		drain_pages(cpu);
4338 
4339 		/*
4340 		 * Spill the event counters of the dead processor
4341 		 * into the current processors event counters.
4342 		 * This artificially elevates the count of the current
4343 		 * processor.
4344 		 */
4345 		vm_events_fold_cpu(cpu);
4346 
4347 		/*
4348 		 * Zero the differential counters of the dead processor
4349 		 * so that the vm statistics are consistent.
4350 		 *
4351 		 * This is only okay since the processor is dead and cannot
4352 		 * race with what we are doing.
4353 		 */
4354 		refresh_cpu_vm_stats(cpu);
4355 	}
4356 	return NOTIFY_OK;
4357 }
4358 
4359 void __init page_alloc_init(void)
4360 {
4361 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4362 }
4363 
4364 /*
4365  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4366  *	or min_free_kbytes changes.
4367  */
4368 static void calculate_totalreserve_pages(void)
4369 {
4370 	struct pglist_data *pgdat;
4371 	unsigned long reserve_pages = 0;
4372 	enum zone_type i, j;
4373 
4374 	for_each_online_pgdat(pgdat) {
4375 		for (i = 0; i < MAX_NR_ZONES; i++) {
4376 			struct zone *zone = pgdat->node_zones + i;
4377 			unsigned long max = 0;
4378 
4379 			/* Find valid and maximum lowmem_reserve in the zone */
4380 			for (j = i; j < MAX_NR_ZONES; j++) {
4381 				if (zone->lowmem_reserve[j] > max)
4382 					max = zone->lowmem_reserve[j];
4383 			}
4384 
4385 			/* we treat the high watermark as reserved pages. */
4386 			max += high_wmark_pages(zone);
4387 
4388 			if (max > zone->present_pages)
4389 				max = zone->present_pages;
4390 			reserve_pages += max;
4391 		}
4392 	}
4393 	totalreserve_pages = reserve_pages;
4394 }
4395 
4396 /*
4397  * setup_per_zone_lowmem_reserve - called whenever
4398  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4399  *	has a correct pages reserved value, so an adequate number of
4400  *	pages are left in the zone after a successful __alloc_pages().
4401  */
4402 static void setup_per_zone_lowmem_reserve(void)
4403 {
4404 	struct pglist_data *pgdat;
4405 	enum zone_type j, idx;
4406 
4407 	for_each_online_pgdat(pgdat) {
4408 		for (j = 0; j < MAX_NR_ZONES; j++) {
4409 			struct zone *zone = pgdat->node_zones + j;
4410 			unsigned long present_pages = zone->present_pages;
4411 
4412 			zone->lowmem_reserve[j] = 0;
4413 
4414 			idx = j;
4415 			while (idx) {
4416 				struct zone *lower_zone;
4417 
4418 				idx--;
4419 
4420 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4421 					sysctl_lowmem_reserve_ratio[idx] = 1;
4422 
4423 				lower_zone = pgdat->node_zones + idx;
4424 				lower_zone->lowmem_reserve[j] = present_pages /
4425 					sysctl_lowmem_reserve_ratio[idx];
4426 				present_pages += lower_zone->present_pages;
4427 			}
4428 		}
4429 	}
4430 
4431 	/* update totalreserve_pages */
4432 	calculate_totalreserve_pages();
4433 }
4434 
4435 /**
4436  * setup_per_zone_wmarks - called when min_free_kbytes changes
4437  * or when memory is hot-{added|removed}
4438  *
4439  * Ensures that the watermark[min,low,high] values for each zone are set
4440  * correctly with respect to min_free_kbytes.
4441  */
4442 void setup_per_zone_wmarks(void)
4443 {
4444 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4445 	unsigned long lowmem_pages = 0;
4446 	struct zone *zone;
4447 	unsigned long flags;
4448 
4449 	/* Calculate total number of !ZONE_HIGHMEM pages */
4450 	for_each_zone(zone) {
4451 		if (!is_highmem(zone))
4452 			lowmem_pages += zone->present_pages;
4453 	}
4454 
4455 	for_each_zone(zone) {
4456 		u64 tmp;
4457 
4458 		spin_lock_irqsave(&zone->lock, flags);
4459 		tmp = (u64)pages_min * zone->present_pages;
4460 		do_div(tmp, lowmem_pages);
4461 		if (is_highmem(zone)) {
4462 			/*
4463 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4464 			 * need highmem pages, so cap pages_min to a small
4465 			 * value here.
4466 			 *
4467 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4468 			 * deltas controls asynch page reclaim, and so should
4469 			 * not be capped for highmem.
4470 			 */
4471 			int min_pages;
4472 
4473 			min_pages = zone->present_pages / 1024;
4474 			if (min_pages < SWAP_CLUSTER_MAX)
4475 				min_pages = SWAP_CLUSTER_MAX;
4476 			if (min_pages > 128)
4477 				min_pages = 128;
4478 			zone->watermark[WMARK_MIN] = min_pages;
4479 		} else {
4480 			/*
4481 			 * If it's a lowmem zone, reserve a number of pages
4482 			 * proportionate to the zone's size.
4483 			 */
4484 			zone->watermark[WMARK_MIN] = tmp;
4485 		}
4486 
4487 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4488 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4489 		setup_zone_migrate_reserve(zone);
4490 		spin_unlock_irqrestore(&zone->lock, flags);
4491 	}
4492 
4493 	/* update totalreserve_pages */
4494 	calculate_totalreserve_pages();
4495 }
4496 
4497 /**
4498  * The inactive anon list should be small enough that the VM never has to
4499  * do too much work, but large enough that each inactive page has a chance
4500  * to be referenced again before it is swapped out.
4501  *
4502  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4503  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4504  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4505  * the anonymous pages are kept on the inactive list.
4506  *
4507  * total     target    max
4508  * memory    ratio     inactive anon
4509  * -------------------------------------
4510  *   10MB       1         5MB
4511  *  100MB       1        50MB
4512  *    1GB       3       250MB
4513  *   10GB      10       0.9GB
4514  *  100GB      31         3GB
4515  *    1TB     101        10GB
4516  *   10TB     320        32GB
4517  */
4518 void calculate_zone_inactive_ratio(struct zone *zone)
4519 {
4520 	unsigned int gb, ratio;
4521 
4522 	/* Zone size in gigabytes */
4523 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4524 	if (gb)
4525 		ratio = int_sqrt(10 * gb);
4526 	else
4527 		ratio = 1;
4528 
4529 	zone->inactive_ratio = ratio;
4530 }
4531 
4532 static void __init setup_per_zone_inactive_ratio(void)
4533 {
4534 	struct zone *zone;
4535 
4536 	for_each_zone(zone)
4537 		calculate_zone_inactive_ratio(zone);
4538 }
4539 
4540 /*
4541  * Initialise min_free_kbytes.
4542  *
4543  * For small machines we want it small (128k min).  For large machines
4544  * we want it large (64MB max).  But it is not linear, because network
4545  * bandwidth does not increase linearly with machine size.  We use
4546  *
4547  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4548  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4549  *
4550  * which yields
4551  *
4552  * 16MB:	512k
4553  * 32MB:	724k
4554  * 64MB:	1024k
4555  * 128MB:	1448k
4556  * 256MB:	2048k
4557  * 512MB:	2896k
4558  * 1024MB:	4096k
4559  * 2048MB:	5792k
4560  * 4096MB:	8192k
4561  * 8192MB:	11584k
4562  * 16384MB:	16384k
4563  */
4564 static int __init init_per_zone_wmark_min(void)
4565 {
4566 	unsigned long lowmem_kbytes;
4567 
4568 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4569 
4570 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4571 	if (min_free_kbytes < 128)
4572 		min_free_kbytes = 128;
4573 	if (min_free_kbytes > 65536)
4574 		min_free_kbytes = 65536;
4575 	setup_per_zone_wmarks();
4576 	setup_per_zone_lowmem_reserve();
4577 	setup_per_zone_inactive_ratio();
4578 	return 0;
4579 }
4580 module_init(init_per_zone_wmark_min)
4581 
4582 /*
4583  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4584  *	that we can call two helper functions whenever min_free_kbytes
4585  *	changes.
4586  */
4587 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4588 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4589 {
4590 	proc_dointvec(table, write, file, buffer, length, ppos);
4591 	if (write)
4592 		setup_per_zone_wmarks();
4593 	return 0;
4594 }
4595 
4596 #ifdef CONFIG_NUMA
4597 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4598 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4599 {
4600 	struct zone *zone;
4601 	int rc;
4602 
4603 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4604 	if (rc)
4605 		return rc;
4606 
4607 	for_each_zone(zone)
4608 		zone->min_unmapped_pages = (zone->present_pages *
4609 				sysctl_min_unmapped_ratio) / 100;
4610 	return 0;
4611 }
4612 
4613 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4614 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4615 {
4616 	struct zone *zone;
4617 	int rc;
4618 
4619 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4620 	if (rc)
4621 		return rc;
4622 
4623 	for_each_zone(zone)
4624 		zone->min_slab_pages = (zone->present_pages *
4625 				sysctl_min_slab_ratio) / 100;
4626 	return 0;
4627 }
4628 #endif
4629 
4630 /*
4631  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4632  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4633  *	whenever sysctl_lowmem_reserve_ratio changes.
4634  *
4635  * The reserve ratio obviously has absolutely no relation with the
4636  * minimum watermarks. The lowmem reserve ratio can only make sense
4637  * if in function of the boot time zone sizes.
4638  */
4639 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4640 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4641 {
4642 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4643 	setup_per_zone_lowmem_reserve();
4644 	return 0;
4645 }
4646 
4647 /*
4648  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4649  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4650  * can have before it gets flushed back to buddy allocator.
4651  */
4652 
4653 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4654 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4655 {
4656 	struct zone *zone;
4657 	unsigned int cpu;
4658 	int ret;
4659 
4660 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4661 	if (!write || (ret == -EINVAL))
4662 		return ret;
4663 	for_each_populated_zone(zone) {
4664 		for_each_online_cpu(cpu) {
4665 			unsigned long  high;
4666 			high = zone->present_pages / percpu_pagelist_fraction;
4667 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4668 		}
4669 	}
4670 	return 0;
4671 }
4672 
4673 int hashdist = HASHDIST_DEFAULT;
4674 
4675 #ifdef CONFIG_NUMA
4676 static int __init set_hashdist(char *str)
4677 {
4678 	if (!str)
4679 		return 0;
4680 	hashdist = simple_strtoul(str, &str, 0);
4681 	return 1;
4682 }
4683 __setup("hashdist=", set_hashdist);
4684 #endif
4685 
4686 /*
4687  * allocate a large system hash table from bootmem
4688  * - it is assumed that the hash table must contain an exact power-of-2
4689  *   quantity of entries
4690  * - limit is the number of hash buckets, not the total allocation size
4691  */
4692 void *__init alloc_large_system_hash(const char *tablename,
4693 				     unsigned long bucketsize,
4694 				     unsigned long numentries,
4695 				     int scale,
4696 				     int flags,
4697 				     unsigned int *_hash_shift,
4698 				     unsigned int *_hash_mask,
4699 				     unsigned long limit)
4700 {
4701 	unsigned long long max = limit;
4702 	unsigned long log2qty, size;
4703 	void *table = NULL;
4704 
4705 	/* allow the kernel cmdline to have a say */
4706 	if (!numentries) {
4707 		/* round applicable memory size up to nearest megabyte */
4708 		numentries = nr_kernel_pages;
4709 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4710 		numentries >>= 20 - PAGE_SHIFT;
4711 		numentries <<= 20 - PAGE_SHIFT;
4712 
4713 		/* limit to 1 bucket per 2^scale bytes of low memory */
4714 		if (scale > PAGE_SHIFT)
4715 			numentries >>= (scale - PAGE_SHIFT);
4716 		else
4717 			numentries <<= (PAGE_SHIFT - scale);
4718 
4719 		/* Make sure we've got at least a 0-order allocation.. */
4720 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4721 			numentries = PAGE_SIZE / bucketsize;
4722 	}
4723 	numentries = roundup_pow_of_two(numentries);
4724 
4725 	/* limit allocation size to 1/16 total memory by default */
4726 	if (max == 0) {
4727 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4728 		do_div(max, bucketsize);
4729 	}
4730 
4731 	if (numentries > max)
4732 		numentries = max;
4733 
4734 	log2qty = ilog2(numentries);
4735 
4736 	do {
4737 		size = bucketsize << log2qty;
4738 		if (flags & HASH_EARLY)
4739 			table = alloc_bootmem_nopanic(size);
4740 		else if (hashdist)
4741 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4742 		else {
4743 			/*
4744 			 * If bucketsize is not a power-of-two, we may free
4745 			 * some pages at the end of hash table which
4746 			 * alloc_pages_exact() automatically does
4747 			 */
4748 			if (get_order(size) < MAX_ORDER) {
4749 				table = alloc_pages_exact(size, GFP_ATOMIC);
4750 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4751 			}
4752 		}
4753 	} while (!table && size > PAGE_SIZE && --log2qty);
4754 
4755 	if (!table)
4756 		panic("Failed to allocate %s hash table\n", tablename);
4757 
4758 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4759 	       tablename,
4760 	       (1U << log2qty),
4761 	       ilog2(size) - PAGE_SHIFT,
4762 	       size);
4763 
4764 	if (_hash_shift)
4765 		*_hash_shift = log2qty;
4766 	if (_hash_mask)
4767 		*_hash_mask = (1 << log2qty) - 1;
4768 
4769 	return table;
4770 }
4771 
4772 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4773 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4774 							unsigned long pfn)
4775 {
4776 #ifdef CONFIG_SPARSEMEM
4777 	return __pfn_to_section(pfn)->pageblock_flags;
4778 #else
4779 	return zone->pageblock_flags;
4780 #endif /* CONFIG_SPARSEMEM */
4781 }
4782 
4783 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4784 {
4785 #ifdef CONFIG_SPARSEMEM
4786 	pfn &= (PAGES_PER_SECTION-1);
4787 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4788 #else
4789 	pfn = pfn - zone->zone_start_pfn;
4790 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4791 #endif /* CONFIG_SPARSEMEM */
4792 }
4793 
4794 /**
4795  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4796  * @page: The page within the block of interest
4797  * @start_bitidx: The first bit of interest to retrieve
4798  * @end_bitidx: The last bit of interest
4799  * returns pageblock_bits flags
4800  */
4801 unsigned long get_pageblock_flags_group(struct page *page,
4802 					int start_bitidx, int end_bitidx)
4803 {
4804 	struct zone *zone;
4805 	unsigned long *bitmap;
4806 	unsigned long pfn, bitidx;
4807 	unsigned long flags = 0;
4808 	unsigned long value = 1;
4809 
4810 	zone = page_zone(page);
4811 	pfn = page_to_pfn(page);
4812 	bitmap = get_pageblock_bitmap(zone, pfn);
4813 	bitidx = pfn_to_bitidx(zone, pfn);
4814 
4815 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4816 		if (test_bit(bitidx + start_bitidx, bitmap))
4817 			flags |= value;
4818 
4819 	return flags;
4820 }
4821 
4822 /**
4823  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4824  * @page: The page within the block of interest
4825  * @start_bitidx: The first bit of interest
4826  * @end_bitidx: The last bit of interest
4827  * @flags: The flags to set
4828  */
4829 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4830 					int start_bitidx, int end_bitidx)
4831 {
4832 	struct zone *zone;
4833 	unsigned long *bitmap;
4834 	unsigned long pfn, bitidx;
4835 	unsigned long value = 1;
4836 
4837 	zone = page_zone(page);
4838 	pfn = page_to_pfn(page);
4839 	bitmap = get_pageblock_bitmap(zone, pfn);
4840 	bitidx = pfn_to_bitidx(zone, pfn);
4841 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4842 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4843 
4844 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4845 		if (flags & value)
4846 			__set_bit(bitidx + start_bitidx, bitmap);
4847 		else
4848 			__clear_bit(bitidx + start_bitidx, bitmap);
4849 }
4850 
4851 /*
4852  * This is designed as sub function...plz see page_isolation.c also.
4853  * set/clear page block's type to be ISOLATE.
4854  * page allocater never alloc memory from ISOLATE block.
4855  */
4856 
4857 int set_migratetype_isolate(struct page *page)
4858 {
4859 	struct zone *zone;
4860 	unsigned long flags;
4861 	int ret = -EBUSY;
4862 
4863 	zone = page_zone(page);
4864 	spin_lock_irqsave(&zone->lock, flags);
4865 	/*
4866 	 * In future, more migrate types will be able to be isolation target.
4867 	 */
4868 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4869 		goto out;
4870 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4871 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4872 	ret = 0;
4873 out:
4874 	spin_unlock_irqrestore(&zone->lock, flags);
4875 	if (!ret)
4876 		drain_all_pages();
4877 	return ret;
4878 }
4879 
4880 void unset_migratetype_isolate(struct page *page)
4881 {
4882 	struct zone *zone;
4883 	unsigned long flags;
4884 	zone = page_zone(page);
4885 	spin_lock_irqsave(&zone->lock, flags);
4886 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4887 		goto out;
4888 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4889 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4890 out:
4891 	spin_unlock_irqrestore(&zone->lock, flags);
4892 }
4893 
4894 #ifdef CONFIG_MEMORY_HOTREMOVE
4895 /*
4896  * All pages in the range must be isolated before calling this.
4897  */
4898 void
4899 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4900 {
4901 	struct page *page;
4902 	struct zone *zone;
4903 	int order, i;
4904 	unsigned long pfn;
4905 	unsigned long flags;
4906 	/* find the first valid pfn */
4907 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4908 		if (pfn_valid(pfn))
4909 			break;
4910 	if (pfn == end_pfn)
4911 		return;
4912 	zone = page_zone(pfn_to_page(pfn));
4913 	spin_lock_irqsave(&zone->lock, flags);
4914 	pfn = start_pfn;
4915 	while (pfn < end_pfn) {
4916 		if (!pfn_valid(pfn)) {
4917 			pfn++;
4918 			continue;
4919 		}
4920 		page = pfn_to_page(pfn);
4921 		BUG_ON(page_count(page));
4922 		BUG_ON(!PageBuddy(page));
4923 		order = page_order(page);
4924 #ifdef CONFIG_DEBUG_VM
4925 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4926 		       pfn, 1 << order, end_pfn);
4927 #endif
4928 		list_del(&page->lru);
4929 		rmv_page_order(page);
4930 		zone->free_area[order].nr_free--;
4931 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4932 				      - (1UL << order));
4933 		for (i = 0; i < (1 << order); i++)
4934 			SetPageReserved((page+i));
4935 		pfn += (1 << order);
4936 	}
4937 	spin_unlock_irqrestore(&zone->lock, flags);
4938 }
4939 #endif
4940