xref: /linux/mm/page_alloc.c (revision 5ba0a3be6ecc3a0b0d52c2a818b05564c6b42510)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65 
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70 
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76  * defined in <linux/topology.h>.
77  */
78 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81 
82 /*
83  * Array of node states.
84  */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 	[N_POSSIBLE] = NODE_MASK_ALL,
87 	[N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 #ifdef CONFIG_MOVABLE_NODE
94 	[N_MEMORY] = { { [0] = 1UL } },
95 #endif
96 	[N_CPU] = { { [0] = 1UL } },
97 #endif	/* NUMA */
98 };
99 EXPORT_SYMBOL(node_states);
100 
101 unsigned long totalram_pages __read_mostly;
102 unsigned long totalreserve_pages __read_mostly;
103 /*
104  * When calculating the number of globally allowed dirty pages, there
105  * is a certain number of per-zone reserves that should not be
106  * considered dirtyable memory.  This is the sum of those reserves
107  * over all existing zones that contribute dirtyable memory.
108  */
109 unsigned long dirty_balance_reserve __read_mostly;
110 
111 int percpu_pagelist_fraction;
112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
113 
114 #ifdef CONFIG_PM_SLEEP
115 /*
116  * The following functions are used by the suspend/hibernate code to temporarily
117  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118  * while devices are suspended.  To avoid races with the suspend/hibernate code,
119  * they should always be called with pm_mutex held (gfp_allowed_mask also should
120  * only be modified with pm_mutex held, unless the suspend/hibernate code is
121  * guaranteed not to run in parallel with that modification).
122  */
123 
124 static gfp_t saved_gfp_mask;
125 
126 void pm_restore_gfp_mask(void)
127 {
128 	WARN_ON(!mutex_is_locked(&pm_mutex));
129 	if (saved_gfp_mask) {
130 		gfp_allowed_mask = saved_gfp_mask;
131 		saved_gfp_mask = 0;
132 	}
133 }
134 
135 void pm_restrict_gfp_mask(void)
136 {
137 	WARN_ON(!mutex_is_locked(&pm_mutex));
138 	WARN_ON(saved_gfp_mask);
139 	saved_gfp_mask = gfp_allowed_mask;
140 	gfp_allowed_mask &= ~GFP_IOFS;
141 }
142 
143 bool pm_suspended_storage(void)
144 {
145 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
146 		return false;
147 	return true;
148 }
149 #endif /* CONFIG_PM_SLEEP */
150 
151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152 int pageblock_order __read_mostly;
153 #endif
154 
155 static void __free_pages_ok(struct page *page, unsigned int order);
156 
157 /*
158  * results with 256, 32 in the lowmem_reserve sysctl:
159  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160  *	1G machine -> (16M dma, 784M normal, 224M high)
161  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
164  *
165  * TBD: should special case ZONE_DMA32 machines here - in those we normally
166  * don't need any ZONE_NORMAL reservation
167  */
168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
169 #ifdef CONFIG_ZONE_DMA
170 	 256,
171 #endif
172 #ifdef CONFIG_ZONE_DMA32
173 	 256,
174 #endif
175 #ifdef CONFIG_HIGHMEM
176 	 32,
177 #endif
178 	 32,
179 };
180 
181 EXPORT_SYMBOL(totalram_pages);
182 
183 static char * const zone_names[MAX_NR_ZONES] = {
184 #ifdef CONFIG_ZONE_DMA
185 	 "DMA",
186 #endif
187 #ifdef CONFIG_ZONE_DMA32
188 	 "DMA32",
189 #endif
190 	 "Normal",
191 #ifdef CONFIG_HIGHMEM
192 	 "HighMem",
193 #endif
194 	 "Movable",
195 };
196 
197 int min_free_kbytes = 1024;
198 
199 static unsigned long __meminitdata nr_kernel_pages;
200 static unsigned long __meminitdata nr_all_pages;
201 static unsigned long __meminitdata dma_reserve;
202 
203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __initdata required_kernelcore;
207 static unsigned long __initdata required_movablecore;
208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209 
210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211 int movable_zone;
212 EXPORT_SYMBOL(movable_zone);
213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
214 
215 #if MAX_NUMNODES > 1
216 int nr_node_ids __read_mostly = MAX_NUMNODES;
217 int nr_online_nodes __read_mostly = 1;
218 EXPORT_SYMBOL(nr_node_ids);
219 EXPORT_SYMBOL(nr_online_nodes);
220 #endif
221 
222 int page_group_by_mobility_disabled __read_mostly;
223 
224 void set_pageblock_migratetype(struct page *page, int migratetype)
225 {
226 
227 	if (unlikely(page_group_by_mobility_disabled))
228 		migratetype = MIGRATE_UNMOVABLE;
229 
230 	set_pageblock_flags_group(page, (unsigned long)migratetype,
231 					PB_migrate, PB_migrate_end);
232 }
233 
234 bool oom_killer_disabled __read_mostly;
235 
236 #ifdef CONFIG_DEBUG_VM
237 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
238 {
239 	int ret = 0;
240 	unsigned seq;
241 	unsigned long pfn = page_to_pfn(page);
242 
243 	do {
244 		seq = zone_span_seqbegin(zone);
245 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
246 			ret = 1;
247 		else if (pfn < zone->zone_start_pfn)
248 			ret = 1;
249 	} while (zone_span_seqretry(zone, seq));
250 
251 	return ret;
252 }
253 
254 static int page_is_consistent(struct zone *zone, struct page *page)
255 {
256 	if (!pfn_valid_within(page_to_pfn(page)))
257 		return 0;
258 	if (zone != page_zone(page))
259 		return 0;
260 
261 	return 1;
262 }
263 /*
264  * Temporary debugging check for pages not lying within a given zone.
265  */
266 static int bad_range(struct zone *zone, struct page *page)
267 {
268 	if (page_outside_zone_boundaries(zone, page))
269 		return 1;
270 	if (!page_is_consistent(zone, page))
271 		return 1;
272 
273 	return 0;
274 }
275 #else
276 static inline int bad_range(struct zone *zone, struct page *page)
277 {
278 	return 0;
279 }
280 #endif
281 
282 static void bad_page(struct page *page)
283 {
284 	static unsigned long resume;
285 	static unsigned long nr_shown;
286 	static unsigned long nr_unshown;
287 
288 	/* Don't complain about poisoned pages */
289 	if (PageHWPoison(page)) {
290 		reset_page_mapcount(page); /* remove PageBuddy */
291 		return;
292 	}
293 
294 	/*
295 	 * Allow a burst of 60 reports, then keep quiet for that minute;
296 	 * or allow a steady drip of one report per second.
297 	 */
298 	if (nr_shown == 60) {
299 		if (time_before(jiffies, resume)) {
300 			nr_unshown++;
301 			goto out;
302 		}
303 		if (nr_unshown) {
304 			printk(KERN_ALERT
305 			      "BUG: Bad page state: %lu messages suppressed\n",
306 				nr_unshown);
307 			nr_unshown = 0;
308 		}
309 		nr_shown = 0;
310 	}
311 	if (nr_shown++ == 0)
312 		resume = jiffies + 60 * HZ;
313 
314 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
315 		current->comm, page_to_pfn(page));
316 	dump_page(page);
317 
318 	print_modules();
319 	dump_stack();
320 out:
321 	/* Leave bad fields for debug, except PageBuddy could make trouble */
322 	reset_page_mapcount(page); /* remove PageBuddy */
323 	add_taint(TAINT_BAD_PAGE);
324 }
325 
326 /*
327  * Higher-order pages are called "compound pages".  They are structured thusly:
328  *
329  * The first PAGE_SIZE page is called the "head page".
330  *
331  * The remaining PAGE_SIZE pages are called "tail pages".
332  *
333  * All pages have PG_compound set.  All tail pages have their ->first_page
334  * pointing at the head page.
335  *
336  * The first tail page's ->lru.next holds the address of the compound page's
337  * put_page() function.  Its ->lru.prev holds the order of allocation.
338  * This usage means that zero-order pages may not be compound.
339  */
340 
341 static void free_compound_page(struct page *page)
342 {
343 	__free_pages_ok(page, compound_order(page));
344 }
345 
346 void prep_compound_page(struct page *page, unsigned long order)
347 {
348 	int i;
349 	int nr_pages = 1 << order;
350 
351 	set_compound_page_dtor(page, free_compound_page);
352 	set_compound_order(page, order);
353 	__SetPageHead(page);
354 	for (i = 1; i < nr_pages; i++) {
355 		struct page *p = page + i;
356 		__SetPageTail(p);
357 		set_page_count(p, 0);
358 		p->first_page = page;
359 	}
360 }
361 
362 /* update __split_huge_page_refcount if you change this function */
363 static int destroy_compound_page(struct page *page, unsigned long order)
364 {
365 	int i;
366 	int nr_pages = 1 << order;
367 	int bad = 0;
368 
369 	if (unlikely(compound_order(page) != order)) {
370 		bad_page(page);
371 		bad++;
372 	}
373 
374 	__ClearPageHead(page);
375 
376 	for (i = 1; i < nr_pages; i++) {
377 		struct page *p = page + i;
378 
379 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
380 			bad_page(page);
381 			bad++;
382 		}
383 		__ClearPageTail(p);
384 	}
385 
386 	return bad;
387 }
388 
389 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
390 {
391 	int i;
392 
393 	/*
394 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
395 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 	 */
397 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
398 	for (i = 0; i < (1 << order); i++)
399 		clear_highpage(page + i);
400 }
401 
402 #ifdef CONFIG_DEBUG_PAGEALLOC
403 unsigned int _debug_guardpage_minorder;
404 
405 static int __init debug_guardpage_minorder_setup(char *buf)
406 {
407 	unsigned long res;
408 
409 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
410 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
411 		return 0;
412 	}
413 	_debug_guardpage_minorder = res;
414 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
415 	return 0;
416 }
417 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
418 
419 static inline void set_page_guard_flag(struct page *page)
420 {
421 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
422 }
423 
424 static inline void clear_page_guard_flag(struct page *page)
425 {
426 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
427 }
428 #else
429 static inline void set_page_guard_flag(struct page *page) { }
430 static inline void clear_page_guard_flag(struct page *page) { }
431 #endif
432 
433 static inline void set_page_order(struct page *page, int order)
434 {
435 	set_page_private(page, order);
436 	__SetPageBuddy(page);
437 }
438 
439 static inline void rmv_page_order(struct page *page)
440 {
441 	__ClearPageBuddy(page);
442 	set_page_private(page, 0);
443 }
444 
445 /*
446  * Locate the struct page for both the matching buddy in our
447  * pair (buddy1) and the combined O(n+1) page they form (page).
448  *
449  * 1) Any buddy B1 will have an order O twin B2 which satisfies
450  * the following equation:
451  *     B2 = B1 ^ (1 << O)
452  * For example, if the starting buddy (buddy2) is #8 its order
453  * 1 buddy is #10:
454  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
455  *
456  * 2) Any buddy B will have an order O+1 parent P which
457  * satisfies the following equation:
458  *     P = B & ~(1 << O)
459  *
460  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
461  */
462 static inline unsigned long
463 __find_buddy_index(unsigned long page_idx, unsigned int order)
464 {
465 	return page_idx ^ (1 << order);
466 }
467 
468 /*
469  * This function checks whether a page is free && is the buddy
470  * we can do coalesce a page and its buddy if
471  * (a) the buddy is not in a hole &&
472  * (b) the buddy is in the buddy system &&
473  * (c) a page and its buddy have the same order &&
474  * (d) a page and its buddy are in the same zone.
475  *
476  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
477  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
478  *
479  * For recording page's order, we use page_private(page).
480  */
481 static inline int page_is_buddy(struct page *page, struct page *buddy,
482 								int order)
483 {
484 	if (!pfn_valid_within(page_to_pfn(buddy)))
485 		return 0;
486 
487 	if (page_zone_id(page) != page_zone_id(buddy))
488 		return 0;
489 
490 	if (page_is_guard(buddy) && page_order(buddy) == order) {
491 		VM_BUG_ON(page_count(buddy) != 0);
492 		return 1;
493 	}
494 
495 	if (PageBuddy(buddy) && page_order(buddy) == order) {
496 		VM_BUG_ON(page_count(buddy) != 0);
497 		return 1;
498 	}
499 	return 0;
500 }
501 
502 /*
503  * Freeing function for a buddy system allocator.
504  *
505  * The concept of a buddy system is to maintain direct-mapped table
506  * (containing bit values) for memory blocks of various "orders".
507  * The bottom level table contains the map for the smallest allocatable
508  * units of memory (here, pages), and each level above it describes
509  * pairs of units from the levels below, hence, "buddies".
510  * At a high level, all that happens here is marking the table entry
511  * at the bottom level available, and propagating the changes upward
512  * as necessary, plus some accounting needed to play nicely with other
513  * parts of the VM system.
514  * At each level, we keep a list of pages, which are heads of continuous
515  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
516  * order is recorded in page_private(page) field.
517  * So when we are allocating or freeing one, we can derive the state of the
518  * other.  That is, if we allocate a small block, and both were
519  * free, the remainder of the region must be split into blocks.
520  * If a block is freed, and its buddy is also free, then this
521  * triggers coalescing into a block of larger size.
522  *
523  * -- nyc
524  */
525 
526 static inline void __free_one_page(struct page *page,
527 		struct zone *zone, unsigned int order,
528 		int migratetype)
529 {
530 	unsigned long page_idx;
531 	unsigned long combined_idx;
532 	unsigned long uninitialized_var(buddy_idx);
533 	struct page *buddy;
534 
535 	if (unlikely(PageCompound(page)))
536 		if (unlikely(destroy_compound_page(page, order)))
537 			return;
538 
539 	VM_BUG_ON(migratetype == -1);
540 
541 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
542 
543 	VM_BUG_ON(page_idx & ((1 << order) - 1));
544 	VM_BUG_ON(bad_range(zone, page));
545 
546 	while (order < MAX_ORDER-1) {
547 		buddy_idx = __find_buddy_index(page_idx, order);
548 		buddy = page + (buddy_idx - page_idx);
549 		if (!page_is_buddy(page, buddy, order))
550 			break;
551 		/*
552 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
553 		 * merge with it and move up one order.
554 		 */
555 		if (page_is_guard(buddy)) {
556 			clear_page_guard_flag(buddy);
557 			set_page_private(page, 0);
558 			__mod_zone_freepage_state(zone, 1 << order,
559 						  migratetype);
560 		} else {
561 			list_del(&buddy->lru);
562 			zone->free_area[order].nr_free--;
563 			rmv_page_order(buddy);
564 		}
565 		combined_idx = buddy_idx & page_idx;
566 		page = page + (combined_idx - page_idx);
567 		page_idx = combined_idx;
568 		order++;
569 	}
570 	set_page_order(page, order);
571 
572 	/*
573 	 * If this is not the largest possible page, check if the buddy
574 	 * of the next-highest order is free. If it is, it's possible
575 	 * that pages are being freed that will coalesce soon. In case,
576 	 * that is happening, add the free page to the tail of the list
577 	 * so it's less likely to be used soon and more likely to be merged
578 	 * as a higher order page
579 	 */
580 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
581 		struct page *higher_page, *higher_buddy;
582 		combined_idx = buddy_idx & page_idx;
583 		higher_page = page + (combined_idx - page_idx);
584 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
585 		higher_buddy = higher_page + (buddy_idx - combined_idx);
586 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
587 			list_add_tail(&page->lru,
588 				&zone->free_area[order].free_list[migratetype]);
589 			goto out;
590 		}
591 	}
592 
593 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
594 out:
595 	zone->free_area[order].nr_free++;
596 }
597 
598 static inline int free_pages_check(struct page *page)
599 {
600 	if (unlikely(page_mapcount(page) |
601 		(page->mapping != NULL)  |
602 		(atomic_read(&page->_count) != 0) |
603 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
604 		(mem_cgroup_bad_page_check(page)))) {
605 		bad_page(page);
606 		return 1;
607 	}
608 	reset_page_last_nid(page);
609 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
610 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
611 	return 0;
612 }
613 
614 /*
615  * Frees a number of pages from the PCP lists
616  * Assumes all pages on list are in same zone, and of same order.
617  * count is the number of pages to free.
618  *
619  * If the zone was previously in an "all pages pinned" state then look to
620  * see if this freeing clears that state.
621  *
622  * And clear the zone's pages_scanned counter, to hold off the "all pages are
623  * pinned" detection logic.
624  */
625 static void free_pcppages_bulk(struct zone *zone, int count,
626 					struct per_cpu_pages *pcp)
627 {
628 	int migratetype = 0;
629 	int batch_free = 0;
630 	int to_free = count;
631 
632 	spin_lock(&zone->lock);
633 	zone->all_unreclaimable = 0;
634 	zone->pages_scanned = 0;
635 
636 	while (to_free) {
637 		struct page *page;
638 		struct list_head *list;
639 
640 		/*
641 		 * Remove pages from lists in a round-robin fashion. A
642 		 * batch_free count is maintained that is incremented when an
643 		 * empty list is encountered.  This is so more pages are freed
644 		 * off fuller lists instead of spinning excessively around empty
645 		 * lists
646 		 */
647 		do {
648 			batch_free++;
649 			if (++migratetype == MIGRATE_PCPTYPES)
650 				migratetype = 0;
651 			list = &pcp->lists[migratetype];
652 		} while (list_empty(list));
653 
654 		/* This is the only non-empty list. Free them all. */
655 		if (batch_free == MIGRATE_PCPTYPES)
656 			batch_free = to_free;
657 
658 		do {
659 			int mt;	/* migratetype of the to-be-freed page */
660 
661 			page = list_entry(list->prev, struct page, lru);
662 			/* must delete as __free_one_page list manipulates */
663 			list_del(&page->lru);
664 			mt = get_freepage_migratetype(page);
665 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
666 			__free_one_page(page, zone, 0, mt);
667 			trace_mm_page_pcpu_drain(page, 0, mt);
668 			if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
669 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
670 				if (is_migrate_cma(mt))
671 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
672 			}
673 		} while (--to_free && --batch_free && !list_empty(list));
674 	}
675 	spin_unlock(&zone->lock);
676 }
677 
678 static void free_one_page(struct zone *zone, struct page *page, int order,
679 				int migratetype)
680 {
681 	spin_lock(&zone->lock);
682 	zone->all_unreclaimable = 0;
683 	zone->pages_scanned = 0;
684 
685 	__free_one_page(page, zone, order, migratetype);
686 	if (unlikely(migratetype != MIGRATE_ISOLATE))
687 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
688 	spin_unlock(&zone->lock);
689 }
690 
691 static bool free_pages_prepare(struct page *page, unsigned int order)
692 {
693 	int i;
694 	int bad = 0;
695 
696 	trace_mm_page_free(page, order);
697 	kmemcheck_free_shadow(page, order);
698 
699 	if (PageAnon(page))
700 		page->mapping = NULL;
701 	for (i = 0; i < (1 << order); i++)
702 		bad += free_pages_check(page + i);
703 	if (bad)
704 		return false;
705 
706 	if (!PageHighMem(page)) {
707 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 		debug_check_no_obj_freed(page_address(page),
709 					   PAGE_SIZE << order);
710 	}
711 	arch_free_page(page, order);
712 	kernel_map_pages(page, 1 << order, 0);
713 
714 	return true;
715 }
716 
717 static void __free_pages_ok(struct page *page, unsigned int order)
718 {
719 	unsigned long flags;
720 	int migratetype;
721 
722 	if (!free_pages_prepare(page, order))
723 		return;
724 
725 	local_irq_save(flags);
726 	__count_vm_events(PGFREE, 1 << order);
727 	migratetype = get_pageblock_migratetype(page);
728 	set_freepage_migratetype(page, migratetype);
729 	free_one_page(page_zone(page), page, order, migratetype);
730 	local_irq_restore(flags);
731 }
732 
733 /*
734  * Read access to zone->managed_pages is safe because it's unsigned long,
735  * but we still need to serialize writers. Currently all callers of
736  * __free_pages_bootmem() except put_page_bootmem() should only be used
737  * at boot time. So for shorter boot time, we shift the burden to
738  * put_page_bootmem() to serialize writers.
739  */
740 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
741 {
742 	unsigned int nr_pages = 1 << order;
743 	unsigned int loop;
744 
745 	prefetchw(page);
746 	for (loop = 0; loop < nr_pages; loop++) {
747 		struct page *p = &page[loop];
748 
749 		if (loop + 1 < nr_pages)
750 			prefetchw(p + 1);
751 		__ClearPageReserved(p);
752 		set_page_count(p, 0);
753 	}
754 
755 	page_zone(page)->managed_pages += 1 << order;
756 	set_page_refcounted(page);
757 	__free_pages(page, order);
758 }
759 
760 #ifdef CONFIG_CMA
761 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
762 void __init init_cma_reserved_pageblock(struct page *page)
763 {
764 	unsigned i = pageblock_nr_pages;
765 	struct page *p = page;
766 
767 	do {
768 		__ClearPageReserved(p);
769 		set_page_count(p, 0);
770 	} while (++p, --i);
771 
772 	set_page_refcounted(page);
773 	set_pageblock_migratetype(page, MIGRATE_CMA);
774 	__free_pages(page, pageblock_order);
775 	totalram_pages += pageblock_nr_pages;
776 }
777 #endif
778 
779 /*
780  * The order of subdivision here is critical for the IO subsystem.
781  * Please do not alter this order without good reasons and regression
782  * testing. Specifically, as large blocks of memory are subdivided,
783  * the order in which smaller blocks are delivered depends on the order
784  * they're subdivided in this function. This is the primary factor
785  * influencing the order in which pages are delivered to the IO
786  * subsystem according to empirical testing, and this is also justified
787  * by considering the behavior of a buddy system containing a single
788  * large block of memory acted on by a series of small allocations.
789  * This behavior is a critical factor in sglist merging's success.
790  *
791  * -- nyc
792  */
793 static inline void expand(struct zone *zone, struct page *page,
794 	int low, int high, struct free_area *area,
795 	int migratetype)
796 {
797 	unsigned long size = 1 << high;
798 
799 	while (high > low) {
800 		area--;
801 		high--;
802 		size >>= 1;
803 		VM_BUG_ON(bad_range(zone, &page[size]));
804 
805 #ifdef CONFIG_DEBUG_PAGEALLOC
806 		if (high < debug_guardpage_minorder()) {
807 			/*
808 			 * Mark as guard pages (or page), that will allow to
809 			 * merge back to allocator when buddy will be freed.
810 			 * Corresponding page table entries will not be touched,
811 			 * pages will stay not present in virtual address space
812 			 */
813 			INIT_LIST_HEAD(&page[size].lru);
814 			set_page_guard_flag(&page[size]);
815 			set_page_private(&page[size], high);
816 			/* Guard pages are not available for any usage */
817 			__mod_zone_freepage_state(zone, -(1 << high),
818 						  migratetype);
819 			continue;
820 		}
821 #endif
822 		list_add(&page[size].lru, &area->free_list[migratetype]);
823 		area->nr_free++;
824 		set_page_order(&page[size], high);
825 	}
826 }
827 
828 /*
829  * This page is about to be returned from the page allocator
830  */
831 static inline int check_new_page(struct page *page)
832 {
833 	if (unlikely(page_mapcount(page) |
834 		(page->mapping != NULL)  |
835 		(atomic_read(&page->_count) != 0)  |
836 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
837 		(mem_cgroup_bad_page_check(page)))) {
838 		bad_page(page);
839 		return 1;
840 	}
841 	return 0;
842 }
843 
844 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
845 {
846 	int i;
847 
848 	for (i = 0; i < (1 << order); i++) {
849 		struct page *p = page + i;
850 		if (unlikely(check_new_page(p)))
851 			return 1;
852 	}
853 
854 	set_page_private(page, 0);
855 	set_page_refcounted(page);
856 
857 	arch_alloc_page(page, order);
858 	kernel_map_pages(page, 1 << order, 1);
859 
860 	if (gfp_flags & __GFP_ZERO)
861 		prep_zero_page(page, order, gfp_flags);
862 
863 	if (order && (gfp_flags & __GFP_COMP))
864 		prep_compound_page(page, order);
865 
866 	return 0;
867 }
868 
869 /*
870  * Go through the free lists for the given migratetype and remove
871  * the smallest available page from the freelists
872  */
873 static inline
874 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
875 						int migratetype)
876 {
877 	unsigned int current_order;
878 	struct free_area * area;
879 	struct page *page;
880 
881 	/* Find a page of the appropriate size in the preferred list */
882 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
883 		area = &(zone->free_area[current_order]);
884 		if (list_empty(&area->free_list[migratetype]))
885 			continue;
886 
887 		page = list_entry(area->free_list[migratetype].next,
888 							struct page, lru);
889 		list_del(&page->lru);
890 		rmv_page_order(page);
891 		area->nr_free--;
892 		expand(zone, page, order, current_order, area, migratetype);
893 		return page;
894 	}
895 
896 	return NULL;
897 }
898 
899 
900 /*
901  * This array describes the order lists are fallen back to when
902  * the free lists for the desirable migrate type are depleted
903  */
904 static int fallbacks[MIGRATE_TYPES][4] = {
905 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
906 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
907 #ifdef CONFIG_CMA
908 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
909 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
910 #else
911 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
912 #endif
913 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
914 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
915 };
916 
917 /*
918  * Move the free pages in a range to the free lists of the requested type.
919  * Note that start_page and end_pages are not aligned on a pageblock
920  * boundary. If alignment is required, use move_freepages_block()
921  */
922 int move_freepages(struct zone *zone,
923 			  struct page *start_page, struct page *end_page,
924 			  int migratetype)
925 {
926 	struct page *page;
927 	unsigned long order;
928 	int pages_moved = 0;
929 
930 #ifndef CONFIG_HOLES_IN_ZONE
931 	/*
932 	 * page_zone is not safe to call in this context when
933 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
934 	 * anyway as we check zone boundaries in move_freepages_block().
935 	 * Remove at a later date when no bug reports exist related to
936 	 * grouping pages by mobility
937 	 */
938 	BUG_ON(page_zone(start_page) != page_zone(end_page));
939 #endif
940 
941 	for (page = start_page; page <= end_page;) {
942 		/* Make sure we are not inadvertently changing nodes */
943 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
944 
945 		if (!pfn_valid_within(page_to_pfn(page))) {
946 			page++;
947 			continue;
948 		}
949 
950 		if (!PageBuddy(page)) {
951 			page++;
952 			continue;
953 		}
954 
955 		order = page_order(page);
956 		list_move(&page->lru,
957 			  &zone->free_area[order].free_list[migratetype]);
958 		set_freepage_migratetype(page, migratetype);
959 		page += 1 << order;
960 		pages_moved += 1 << order;
961 	}
962 
963 	return pages_moved;
964 }
965 
966 int move_freepages_block(struct zone *zone, struct page *page,
967 				int migratetype)
968 {
969 	unsigned long start_pfn, end_pfn;
970 	struct page *start_page, *end_page;
971 
972 	start_pfn = page_to_pfn(page);
973 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
974 	start_page = pfn_to_page(start_pfn);
975 	end_page = start_page + pageblock_nr_pages - 1;
976 	end_pfn = start_pfn + pageblock_nr_pages - 1;
977 
978 	/* Do not cross zone boundaries */
979 	if (start_pfn < zone->zone_start_pfn)
980 		start_page = page;
981 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
982 		return 0;
983 
984 	return move_freepages(zone, start_page, end_page, migratetype);
985 }
986 
987 static void change_pageblock_range(struct page *pageblock_page,
988 					int start_order, int migratetype)
989 {
990 	int nr_pageblocks = 1 << (start_order - pageblock_order);
991 
992 	while (nr_pageblocks--) {
993 		set_pageblock_migratetype(pageblock_page, migratetype);
994 		pageblock_page += pageblock_nr_pages;
995 	}
996 }
997 
998 /* Remove an element from the buddy allocator from the fallback list */
999 static inline struct page *
1000 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1001 {
1002 	struct free_area * area;
1003 	int current_order;
1004 	struct page *page;
1005 	int migratetype, i;
1006 
1007 	/* Find the largest possible block of pages in the other list */
1008 	for (current_order = MAX_ORDER-1; current_order >= order;
1009 						--current_order) {
1010 		for (i = 0;; i++) {
1011 			migratetype = fallbacks[start_migratetype][i];
1012 
1013 			/* MIGRATE_RESERVE handled later if necessary */
1014 			if (migratetype == MIGRATE_RESERVE)
1015 				break;
1016 
1017 			area = &(zone->free_area[current_order]);
1018 			if (list_empty(&area->free_list[migratetype]))
1019 				continue;
1020 
1021 			page = list_entry(area->free_list[migratetype].next,
1022 					struct page, lru);
1023 			area->nr_free--;
1024 
1025 			/*
1026 			 * If breaking a large block of pages, move all free
1027 			 * pages to the preferred allocation list. If falling
1028 			 * back for a reclaimable kernel allocation, be more
1029 			 * aggressive about taking ownership of free pages
1030 			 *
1031 			 * On the other hand, never change migration
1032 			 * type of MIGRATE_CMA pageblocks nor move CMA
1033 			 * pages on different free lists. We don't
1034 			 * want unmovable pages to be allocated from
1035 			 * MIGRATE_CMA areas.
1036 			 */
1037 			if (!is_migrate_cma(migratetype) &&
1038 			    (unlikely(current_order >= pageblock_order / 2) ||
1039 			     start_migratetype == MIGRATE_RECLAIMABLE ||
1040 			     page_group_by_mobility_disabled)) {
1041 				int pages;
1042 				pages = move_freepages_block(zone, page,
1043 								start_migratetype);
1044 
1045 				/* Claim the whole block if over half of it is free */
1046 				if (pages >= (1 << (pageblock_order-1)) ||
1047 						page_group_by_mobility_disabled)
1048 					set_pageblock_migratetype(page,
1049 								start_migratetype);
1050 
1051 				migratetype = start_migratetype;
1052 			}
1053 
1054 			/* Remove the page from the freelists */
1055 			list_del(&page->lru);
1056 			rmv_page_order(page);
1057 
1058 			/* Take ownership for orders >= pageblock_order */
1059 			if (current_order >= pageblock_order &&
1060 			    !is_migrate_cma(migratetype))
1061 				change_pageblock_range(page, current_order,
1062 							start_migratetype);
1063 
1064 			expand(zone, page, order, current_order, area,
1065 			       is_migrate_cma(migratetype)
1066 			     ? migratetype : start_migratetype);
1067 
1068 			trace_mm_page_alloc_extfrag(page, order, current_order,
1069 				start_migratetype, migratetype);
1070 
1071 			return page;
1072 		}
1073 	}
1074 
1075 	return NULL;
1076 }
1077 
1078 /*
1079  * Do the hard work of removing an element from the buddy allocator.
1080  * Call me with the zone->lock already held.
1081  */
1082 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1083 						int migratetype)
1084 {
1085 	struct page *page;
1086 
1087 retry_reserve:
1088 	page = __rmqueue_smallest(zone, order, migratetype);
1089 
1090 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1091 		page = __rmqueue_fallback(zone, order, migratetype);
1092 
1093 		/*
1094 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1095 		 * is used because __rmqueue_smallest is an inline function
1096 		 * and we want just one call site
1097 		 */
1098 		if (!page) {
1099 			migratetype = MIGRATE_RESERVE;
1100 			goto retry_reserve;
1101 		}
1102 	}
1103 
1104 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1105 	return page;
1106 }
1107 
1108 /*
1109  * Obtain a specified number of elements from the buddy allocator, all under
1110  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1111  * Returns the number of new pages which were placed at *list.
1112  */
1113 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1114 			unsigned long count, struct list_head *list,
1115 			int migratetype, int cold)
1116 {
1117 	int mt = migratetype, i;
1118 
1119 	spin_lock(&zone->lock);
1120 	for (i = 0; i < count; ++i) {
1121 		struct page *page = __rmqueue(zone, order, migratetype);
1122 		if (unlikely(page == NULL))
1123 			break;
1124 
1125 		/*
1126 		 * Split buddy pages returned by expand() are received here
1127 		 * in physical page order. The page is added to the callers and
1128 		 * list and the list head then moves forward. From the callers
1129 		 * perspective, the linked list is ordered by page number in
1130 		 * some conditions. This is useful for IO devices that can
1131 		 * merge IO requests if the physical pages are ordered
1132 		 * properly.
1133 		 */
1134 		if (likely(cold == 0))
1135 			list_add(&page->lru, list);
1136 		else
1137 			list_add_tail(&page->lru, list);
1138 		if (IS_ENABLED(CONFIG_CMA)) {
1139 			mt = get_pageblock_migratetype(page);
1140 			if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1141 				mt = migratetype;
1142 		}
1143 		set_freepage_migratetype(page, mt);
1144 		list = &page->lru;
1145 		if (is_migrate_cma(mt))
1146 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1147 					      -(1 << order));
1148 	}
1149 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1150 	spin_unlock(&zone->lock);
1151 	return i;
1152 }
1153 
1154 #ifdef CONFIG_NUMA
1155 /*
1156  * Called from the vmstat counter updater to drain pagesets of this
1157  * currently executing processor on remote nodes after they have
1158  * expired.
1159  *
1160  * Note that this function must be called with the thread pinned to
1161  * a single processor.
1162  */
1163 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1164 {
1165 	unsigned long flags;
1166 	int to_drain;
1167 
1168 	local_irq_save(flags);
1169 	if (pcp->count >= pcp->batch)
1170 		to_drain = pcp->batch;
1171 	else
1172 		to_drain = pcp->count;
1173 	if (to_drain > 0) {
1174 		free_pcppages_bulk(zone, to_drain, pcp);
1175 		pcp->count -= to_drain;
1176 	}
1177 	local_irq_restore(flags);
1178 }
1179 #endif
1180 
1181 /*
1182  * Drain pages of the indicated processor.
1183  *
1184  * The processor must either be the current processor and the
1185  * thread pinned to the current processor or a processor that
1186  * is not online.
1187  */
1188 static void drain_pages(unsigned int cpu)
1189 {
1190 	unsigned long flags;
1191 	struct zone *zone;
1192 
1193 	for_each_populated_zone(zone) {
1194 		struct per_cpu_pageset *pset;
1195 		struct per_cpu_pages *pcp;
1196 
1197 		local_irq_save(flags);
1198 		pset = per_cpu_ptr(zone->pageset, cpu);
1199 
1200 		pcp = &pset->pcp;
1201 		if (pcp->count) {
1202 			free_pcppages_bulk(zone, pcp->count, pcp);
1203 			pcp->count = 0;
1204 		}
1205 		local_irq_restore(flags);
1206 	}
1207 }
1208 
1209 /*
1210  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1211  */
1212 void drain_local_pages(void *arg)
1213 {
1214 	drain_pages(smp_processor_id());
1215 }
1216 
1217 /*
1218  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1219  *
1220  * Note that this code is protected against sending an IPI to an offline
1221  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1222  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1223  * nothing keeps CPUs from showing up after we populated the cpumask and
1224  * before the call to on_each_cpu_mask().
1225  */
1226 void drain_all_pages(void)
1227 {
1228 	int cpu;
1229 	struct per_cpu_pageset *pcp;
1230 	struct zone *zone;
1231 
1232 	/*
1233 	 * Allocate in the BSS so we wont require allocation in
1234 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1235 	 */
1236 	static cpumask_t cpus_with_pcps;
1237 
1238 	/*
1239 	 * We don't care about racing with CPU hotplug event
1240 	 * as offline notification will cause the notified
1241 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1242 	 * disables preemption as part of its processing
1243 	 */
1244 	for_each_online_cpu(cpu) {
1245 		bool has_pcps = false;
1246 		for_each_populated_zone(zone) {
1247 			pcp = per_cpu_ptr(zone->pageset, cpu);
1248 			if (pcp->pcp.count) {
1249 				has_pcps = true;
1250 				break;
1251 			}
1252 		}
1253 		if (has_pcps)
1254 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1255 		else
1256 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1257 	}
1258 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1259 }
1260 
1261 #ifdef CONFIG_HIBERNATION
1262 
1263 void mark_free_pages(struct zone *zone)
1264 {
1265 	unsigned long pfn, max_zone_pfn;
1266 	unsigned long flags;
1267 	int order, t;
1268 	struct list_head *curr;
1269 
1270 	if (!zone->spanned_pages)
1271 		return;
1272 
1273 	spin_lock_irqsave(&zone->lock, flags);
1274 
1275 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1276 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1277 		if (pfn_valid(pfn)) {
1278 			struct page *page = pfn_to_page(pfn);
1279 
1280 			if (!swsusp_page_is_forbidden(page))
1281 				swsusp_unset_page_free(page);
1282 		}
1283 
1284 	for_each_migratetype_order(order, t) {
1285 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1286 			unsigned long i;
1287 
1288 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1289 			for (i = 0; i < (1UL << order); i++)
1290 				swsusp_set_page_free(pfn_to_page(pfn + i));
1291 		}
1292 	}
1293 	spin_unlock_irqrestore(&zone->lock, flags);
1294 }
1295 #endif /* CONFIG_PM */
1296 
1297 /*
1298  * Free a 0-order page
1299  * cold == 1 ? free a cold page : free a hot page
1300  */
1301 void free_hot_cold_page(struct page *page, int cold)
1302 {
1303 	struct zone *zone = page_zone(page);
1304 	struct per_cpu_pages *pcp;
1305 	unsigned long flags;
1306 	int migratetype;
1307 
1308 	if (!free_pages_prepare(page, 0))
1309 		return;
1310 
1311 	migratetype = get_pageblock_migratetype(page);
1312 	set_freepage_migratetype(page, migratetype);
1313 	local_irq_save(flags);
1314 	__count_vm_event(PGFREE);
1315 
1316 	/*
1317 	 * We only track unmovable, reclaimable and movable on pcp lists.
1318 	 * Free ISOLATE pages back to the allocator because they are being
1319 	 * offlined but treat RESERVE as movable pages so we can get those
1320 	 * areas back if necessary. Otherwise, we may have to free
1321 	 * excessively into the page allocator
1322 	 */
1323 	if (migratetype >= MIGRATE_PCPTYPES) {
1324 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1325 			free_one_page(zone, page, 0, migratetype);
1326 			goto out;
1327 		}
1328 		migratetype = MIGRATE_MOVABLE;
1329 	}
1330 
1331 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1332 	if (cold)
1333 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1334 	else
1335 		list_add(&page->lru, &pcp->lists[migratetype]);
1336 	pcp->count++;
1337 	if (pcp->count >= pcp->high) {
1338 		free_pcppages_bulk(zone, pcp->batch, pcp);
1339 		pcp->count -= pcp->batch;
1340 	}
1341 
1342 out:
1343 	local_irq_restore(flags);
1344 }
1345 
1346 /*
1347  * Free a list of 0-order pages
1348  */
1349 void free_hot_cold_page_list(struct list_head *list, int cold)
1350 {
1351 	struct page *page, *next;
1352 
1353 	list_for_each_entry_safe(page, next, list, lru) {
1354 		trace_mm_page_free_batched(page, cold);
1355 		free_hot_cold_page(page, cold);
1356 	}
1357 }
1358 
1359 /*
1360  * split_page takes a non-compound higher-order page, and splits it into
1361  * n (1<<order) sub-pages: page[0..n]
1362  * Each sub-page must be freed individually.
1363  *
1364  * Note: this is probably too low level an operation for use in drivers.
1365  * Please consult with lkml before using this in your driver.
1366  */
1367 void split_page(struct page *page, unsigned int order)
1368 {
1369 	int i;
1370 
1371 	VM_BUG_ON(PageCompound(page));
1372 	VM_BUG_ON(!page_count(page));
1373 
1374 #ifdef CONFIG_KMEMCHECK
1375 	/*
1376 	 * Split shadow pages too, because free(page[0]) would
1377 	 * otherwise free the whole shadow.
1378 	 */
1379 	if (kmemcheck_page_is_tracked(page))
1380 		split_page(virt_to_page(page[0].shadow), order);
1381 #endif
1382 
1383 	for (i = 1; i < (1 << order); i++)
1384 		set_page_refcounted(page + i);
1385 }
1386 
1387 /*
1388  * Similar to the split_page family of functions except that the page
1389  * required at the given order and being isolated now to prevent races
1390  * with parallel allocators
1391  */
1392 int capture_free_page(struct page *page, int alloc_order, int migratetype)
1393 {
1394 	unsigned int order;
1395 	unsigned long watermark;
1396 	struct zone *zone;
1397 	int mt;
1398 
1399 	BUG_ON(!PageBuddy(page));
1400 
1401 	zone = page_zone(page);
1402 	order = page_order(page);
1403 	mt = get_pageblock_migratetype(page);
1404 
1405 	if (mt != MIGRATE_ISOLATE) {
1406 		/* Obey watermarks as if the page was being allocated */
1407 		watermark = low_wmark_pages(zone) + (1 << order);
1408 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1409 			return 0;
1410 
1411 		__mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
1412 	}
1413 
1414 	/* Remove page from free list */
1415 	list_del(&page->lru);
1416 	zone->free_area[order].nr_free--;
1417 	rmv_page_order(page);
1418 
1419 	if (alloc_order != order)
1420 		expand(zone, page, alloc_order, order,
1421 			&zone->free_area[order], migratetype);
1422 
1423 	/* Set the pageblock if the captured page is at least a pageblock */
1424 	if (order >= pageblock_order - 1) {
1425 		struct page *endpage = page + (1 << order) - 1;
1426 		for (; page < endpage; page += pageblock_nr_pages) {
1427 			int mt = get_pageblock_migratetype(page);
1428 			if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1429 				set_pageblock_migratetype(page,
1430 							  MIGRATE_MOVABLE);
1431 		}
1432 	}
1433 
1434 	return 1UL << alloc_order;
1435 }
1436 
1437 /*
1438  * Similar to split_page except the page is already free. As this is only
1439  * being used for migration, the migratetype of the block also changes.
1440  * As this is called with interrupts disabled, the caller is responsible
1441  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1442  * are enabled.
1443  *
1444  * Note: this is probably too low level an operation for use in drivers.
1445  * Please consult with lkml before using this in your driver.
1446  */
1447 int split_free_page(struct page *page)
1448 {
1449 	unsigned int order;
1450 	int nr_pages;
1451 
1452 	BUG_ON(!PageBuddy(page));
1453 	order = page_order(page);
1454 
1455 	nr_pages = capture_free_page(page, order, 0);
1456 	if (!nr_pages)
1457 		return 0;
1458 
1459 	/* Split into individual pages */
1460 	set_page_refcounted(page);
1461 	split_page(page, order);
1462 	return nr_pages;
1463 }
1464 
1465 /*
1466  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1467  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1468  * or two.
1469  */
1470 static inline
1471 struct page *buffered_rmqueue(struct zone *preferred_zone,
1472 			struct zone *zone, int order, gfp_t gfp_flags,
1473 			int migratetype)
1474 {
1475 	unsigned long flags;
1476 	struct page *page;
1477 	int cold = !!(gfp_flags & __GFP_COLD);
1478 
1479 again:
1480 	if (likely(order == 0)) {
1481 		struct per_cpu_pages *pcp;
1482 		struct list_head *list;
1483 
1484 		local_irq_save(flags);
1485 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1486 		list = &pcp->lists[migratetype];
1487 		if (list_empty(list)) {
1488 			pcp->count += rmqueue_bulk(zone, 0,
1489 					pcp->batch, list,
1490 					migratetype, cold);
1491 			if (unlikely(list_empty(list)))
1492 				goto failed;
1493 		}
1494 
1495 		if (cold)
1496 			page = list_entry(list->prev, struct page, lru);
1497 		else
1498 			page = list_entry(list->next, struct page, lru);
1499 
1500 		list_del(&page->lru);
1501 		pcp->count--;
1502 	} else {
1503 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1504 			/*
1505 			 * __GFP_NOFAIL is not to be used in new code.
1506 			 *
1507 			 * All __GFP_NOFAIL callers should be fixed so that they
1508 			 * properly detect and handle allocation failures.
1509 			 *
1510 			 * We most definitely don't want callers attempting to
1511 			 * allocate greater than order-1 page units with
1512 			 * __GFP_NOFAIL.
1513 			 */
1514 			WARN_ON_ONCE(order > 1);
1515 		}
1516 		spin_lock_irqsave(&zone->lock, flags);
1517 		page = __rmqueue(zone, order, migratetype);
1518 		spin_unlock(&zone->lock);
1519 		if (!page)
1520 			goto failed;
1521 		__mod_zone_freepage_state(zone, -(1 << order),
1522 					  get_pageblock_migratetype(page));
1523 	}
1524 
1525 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1526 	zone_statistics(preferred_zone, zone, gfp_flags);
1527 	local_irq_restore(flags);
1528 
1529 	VM_BUG_ON(bad_range(zone, page));
1530 	if (prep_new_page(page, order, gfp_flags))
1531 		goto again;
1532 	return page;
1533 
1534 failed:
1535 	local_irq_restore(flags);
1536 	return NULL;
1537 }
1538 
1539 #ifdef CONFIG_FAIL_PAGE_ALLOC
1540 
1541 static struct {
1542 	struct fault_attr attr;
1543 
1544 	u32 ignore_gfp_highmem;
1545 	u32 ignore_gfp_wait;
1546 	u32 min_order;
1547 } fail_page_alloc = {
1548 	.attr = FAULT_ATTR_INITIALIZER,
1549 	.ignore_gfp_wait = 1,
1550 	.ignore_gfp_highmem = 1,
1551 	.min_order = 1,
1552 };
1553 
1554 static int __init setup_fail_page_alloc(char *str)
1555 {
1556 	return setup_fault_attr(&fail_page_alloc.attr, str);
1557 }
1558 __setup("fail_page_alloc=", setup_fail_page_alloc);
1559 
1560 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1561 {
1562 	if (order < fail_page_alloc.min_order)
1563 		return false;
1564 	if (gfp_mask & __GFP_NOFAIL)
1565 		return false;
1566 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1567 		return false;
1568 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1569 		return false;
1570 
1571 	return should_fail(&fail_page_alloc.attr, 1 << order);
1572 }
1573 
1574 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1575 
1576 static int __init fail_page_alloc_debugfs(void)
1577 {
1578 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1579 	struct dentry *dir;
1580 
1581 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1582 					&fail_page_alloc.attr);
1583 	if (IS_ERR(dir))
1584 		return PTR_ERR(dir);
1585 
1586 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1587 				&fail_page_alloc.ignore_gfp_wait))
1588 		goto fail;
1589 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1590 				&fail_page_alloc.ignore_gfp_highmem))
1591 		goto fail;
1592 	if (!debugfs_create_u32("min-order", mode, dir,
1593 				&fail_page_alloc.min_order))
1594 		goto fail;
1595 
1596 	return 0;
1597 fail:
1598 	debugfs_remove_recursive(dir);
1599 
1600 	return -ENOMEM;
1601 }
1602 
1603 late_initcall(fail_page_alloc_debugfs);
1604 
1605 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1606 
1607 #else /* CONFIG_FAIL_PAGE_ALLOC */
1608 
1609 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1610 {
1611 	return false;
1612 }
1613 
1614 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1615 
1616 /*
1617  * Return true if free pages are above 'mark'. This takes into account the order
1618  * of the allocation.
1619  */
1620 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1621 		      int classzone_idx, int alloc_flags, long free_pages)
1622 {
1623 	/* free_pages my go negative - that's OK */
1624 	long min = mark;
1625 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1626 	int o;
1627 
1628 	free_pages -= (1 << order) - 1;
1629 	if (alloc_flags & ALLOC_HIGH)
1630 		min -= min / 2;
1631 	if (alloc_flags & ALLOC_HARDER)
1632 		min -= min / 4;
1633 #ifdef CONFIG_CMA
1634 	/* If allocation can't use CMA areas don't use free CMA pages */
1635 	if (!(alloc_flags & ALLOC_CMA))
1636 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1637 #endif
1638 	if (free_pages <= min + lowmem_reserve)
1639 		return false;
1640 	for (o = 0; o < order; o++) {
1641 		/* At the next order, this order's pages become unavailable */
1642 		free_pages -= z->free_area[o].nr_free << o;
1643 
1644 		/* Require fewer higher order pages to be free */
1645 		min >>= 1;
1646 
1647 		if (free_pages <= min)
1648 			return false;
1649 	}
1650 	return true;
1651 }
1652 
1653 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1654 		      int classzone_idx, int alloc_flags)
1655 {
1656 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1657 					zone_page_state(z, NR_FREE_PAGES));
1658 }
1659 
1660 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1661 		      int classzone_idx, int alloc_flags)
1662 {
1663 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1664 
1665 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1666 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1667 
1668 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1669 								free_pages);
1670 }
1671 
1672 #ifdef CONFIG_NUMA
1673 /*
1674  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1675  * skip over zones that are not allowed by the cpuset, or that have
1676  * been recently (in last second) found to be nearly full.  See further
1677  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1678  * that have to skip over a lot of full or unallowed zones.
1679  *
1680  * If the zonelist cache is present in the passed in zonelist, then
1681  * returns a pointer to the allowed node mask (either the current
1682  * tasks mems_allowed, or node_states[N_MEMORY].)
1683  *
1684  * If the zonelist cache is not available for this zonelist, does
1685  * nothing and returns NULL.
1686  *
1687  * If the fullzones BITMAP in the zonelist cache is stale (more than
1688  * a second since last zap'd) then we zap it out (clear its bits.)
1689  *
1690  * We hold off even calling zlc_setup, until after we've checked the
1691  * first zone in the zonelist, on the theory that most allocations will
1692  * be satisfied from that first zone, so best to examine that zone as
1693  * quickly as we can.
1694  */
1695 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1696 {
1697 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1698 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1699 
1700 	zlc = zonelist->zlcache_ptr;
1701 	if (!zlc)
1702 		return NULL;
1703 
1704 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1705 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1706 		zlc->last_full_zap = jiffies;
1707 	}
1708 
1709 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1710 					&cpuset_current_mems_allowed :
1711 					&node_states[N_MEMORY];
1712 	return allowednodes;
1713 }
1714 
1715 /*
1716  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1717  * if it is worth looking at further for free memory:
1718  *  1) Check that the zone isn't thought to be full (doesn't have its
1719  *     bit set in the zonelist_cache fullzones BITMAP).
1720  *  2) Check that the zones node (obtained from the zonelist_cache
1721  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1722  * Return true (non-zero) if zone is worth looking at further, or
1723  * else return false (zero) if it is not.
1724  *
1725  * This check -ignores- the distinction between various watermarks,
1726  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1727  * found to be full for any variation of these watermarks, it will
1728  * be considered full for up to one second by all requests, unless
1729  * we are so low on memory on all allowed nodes that we are forced
1730  * into the second scan of the zonelist.
1731  *
1732  * In the second scan we ignore this zonelist cache and exactly
1733  * apply the watermarks to all zones, even it is slower to do so.
1734  * We are low on memory in the second scan, and should leave no stone
1735  * unturned looking for a free page.
1736  */
1737 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1738 						nodemask_t *allowednodes)
1739 {
1740 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1741 	int i;				/* index of *z in zonelist zones */
1742 	int n;				/* node that zone *z is on */
1743 
1744 	zlc = zonelist->zlcache_ptr;
1745 	if (!zlc)
1746 		return 1;
1747 
1748 	i = z - zonelist->_zonerefs;
1749 	n = zlc->z_to_n[i];
1750 
1751 	/* This zone is worth trying if it is allowed but not full */
1752 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1753 }
1754 
1755 /*
1756  * Given 'z' scanning a zonelist, set the corresponding bit in
1757  * zlc->fullzones, so that subsequent attempts to allocate a page
1758  * from that zone don't waste time re-examining it.
1759  */
1760 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1761 {
1762 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1763 	int i;				/* index of *z in zonelist zones */
1764 
1765 	zlc = zonelist->zlcache_ptr;
1766 	if (!zlc)
1767 		return;
1768 
1769 	i = z - zonelist->_zonerefs;
1770 
1771 	set_bit(i, zlc->fullzones);
1772 }
1773 
1774 /*
1775  * clear all zones full, called after direct reclaim makes progress so that
1776  * a zone that was recently full is not skipped over for up to a second
1777  */
1778 static void zlc_clear_zones_full(struct zonelist *zonelist)
1779 {
1780 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1781 
1782 	zlc = zonelist->zlcache_ptr;
1783 	if (!zlc)
1784 		return;
1785 
1786 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1787 }
1788 
1789 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1790 {
1791 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1792 }
1793 
1794 static void __paginginit init_zone_allows_reclaim(int nid)
1795 {
1796 	int i;
1797 
1798 	for_each_online_node(i)
1799 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1800 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1801 		else
1802 			zone_reclaim_mode = 1;
1803 }
1804 
1805 #else	/* CONFIG_NUMA */
1806 
1807 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1808 {
1809 	return NULL;
1810 }
1811 
1812 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1813 				nodemask_t *allowednodes)
1814 {
1815 	return 1;
1816 }
1817 
1818 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1819 {
1820 }
1821 
1822 static void zlc_clear_zones_full(struct zonelist *zonelist)
1823 {
1824 }
1825 
1826 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1827 {
1828 	return true;
1829 }
1830 
1831 static inline void init_zone_allows_reclaim(int nid)
1832 {
1833 }
1834 #endif	/* CONFIG_NUMA */
1835 
1836 /*
1837  * get_page_from_freelist goes through the zonelist trying to allocate
1838  * a page.
1839  */
1840 static struct page *
1841 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1842 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1843 		struct zone *preferred_zone, int migratetype)
1844 {
1845 	struct zoneref *z;
1846 	struct page *page = NULL;
1847 	int classzone_idx;
1848 	struct zone *zone;
1849 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1850 	int zlc_active = 0;		/* set if using zonelist_cache */
1851 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1852 
1853 	classzone_idx = zone_idx(preferred_zone);
1854 zonelist_scan:
1855 	/*
1856 	 * Scan zonelist, looking for a zone with enough free.
1857 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1858 	 */
1859 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1860 						high_zoneidx, nodemask) {
1861 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1862 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1863 				continue;
1864 		if ((alloc_flags & ALLOC_CPUSET) &&
1865 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1866 				continue;
1867 		/*
1868 		 * When allocating a page cache page for writing, we
1869 		 * want to get it from a zone that is within its dirty
1870 		 * limit, such that no single zone holds more than its
1871 		 * proportional share of globally allowed dirty pages.
1872 		 * The dirty limits take into account the zone's
1873 		 * lowmem reserves and high watermark so that kswapd
1874 		 * should be able to balance it without having to
1875 		 * write pages from its LRU list.
1876 		 *
1877 		 * This may look like it could increase pressure on
1878 		 * lower zones by failing allocations in higher zones
1879 		 * before they are full.  But the pages that do spill
1880 		 * over are limited as the lower zones are protected
1881 		 * by this very same mechanism.  It should not become
1882 		 * a practical burden to them.
1883 		 *
1884 		 * XXX: For now, allow allocations to potentially
1885 		 * exceed the per-zone dirty limit in the slowpath
1886 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1887 		 * which is important when on a NUMA setup the allowed
1888 		 * zones are together not big enough to reach the
1889 		 * global limit.  The proper fix for these situations
1890 		 * will require awareness of zones in the
1891 		 * dirty-throttling and the flusher threads.
1892 		 */
1893 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1894 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1895 			goto this_zone_full;
1896 
1897 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1898 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1899 			unsigned long mark;
1900 			int ret;
1901 
1902 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1903 			if (zone_watermark_ok(zone, order, mark,
1904 				    classzone_idx, alloc_flags))
1905 				goto try_this_zone;
1906 
1907 			if (IS_ENABLED(CONFIG_NUMA) &&
1908 					!did_zlc_setup && nr_online_nodes > 1) {
1909 				/*
1910 				 * we do zlc_setup if there are multiple nodes
1911 				 * and before considering the first zone allowed
1912 				 * by the cpuset.
1913 				 */
1914 				allowednodes = zlc_setup(zonelist, alloc_flags);
1915 				zlc_active = 1;
1916 				did_zlc_setup = 1;
1917 			}
1918 
1919 			if (zone_reclaim_mode == 0 ||
1920 			    !zone_allows_reclaim(preferred_zone, zone))
1921 				goto this_zone_full;
1922 
1923 			/*
1924 			 * As we may have just activated ZLC, check if the first
1925 			 * eligible zone has failed zone_reclaim recently.
1926 			 */
1927 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1928 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1929 				continue;
1930 
1931 			ret = zone_reclaim(zone, gfp_mask, order);
1932 			switch (ret) {
1933 			case ZONE_RECLAIM_NOSCAN:
1934 				/* did not scan */
1935 				continue;
1936 			case ZONE_RECLAIM_FULL:
1937 				/* scanned but unreclaimable */
1938 				continue;
1939 			default:
1940 				/* did we reclaim enough */
1941 				if (!zone_watermark_ok(zone, order, mark,
1942 						classzone_idx, alloc_flags))
1943 					goto this_zone_full;
1944 			}
1945 		}
1946 
1947 try_this_zone:
1948 		page = buffered_rmqueue(preferred_zone, zone, order,
1949 						gfp_mask, migratetype);
1950 		if (page)
1951 			break;
1952 this_zone_full:
1953 		if (IS_ENABLED(CONFIG_NUMA))
1954 			zlc_mark_zone_full(zonelist, z);
1955 	}
1956 
1957 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1958 		/* Disable zlc cache for second zonelist scan */
1959 		zlc_active = 0;
1960 		goto zonelist_scan;
1961 	}
1962 
1963 	if (page)
1964 		/*
1965 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1966 		 * necessary to allocate the page. The expectation is
1967 		 * that the caller is taking steps that will free more
1968 		 * memory. The caller should avoid the page being used
1969 		 * for !PFMEMALLOC purposes.
1970 		 */
1971 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1972 
1973 	return page;
1974 }
1975 
1976 /*
1977  * Large machines with many possible nodes should not always dump per-node
1978  * meminfo in irq context.
1979  */
1980 static inline bool should_suppress_show_mem(void)
1981 {
1982 	bool ret = false;
1983 
1984 #if NODES_SHIFT > 8
1985 	ret = in_interrupt();
1986 #endif
1987 	return ret;
1988 }
1989 
1990 static DEFINE_RATELIMIT_STATE(nopage_rs,
1991 		DEFAULT_RATELIMIT_INTERVAL,
1992 		DEFAULT_RATELIMIT_BURST);
1993 
1994 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1995 {
1996 	unsigned int filter = SHOW_MEM_FILTER_NODES;
1997 
1998 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1999 	    debug_guardpage_minorder() > 0)
2000 		return;
2001 
2002 	/*
2003 	 * This documents exceptions given to allocations in certain
2004 	 * contexts that are allowed to allocate outside current's set
2005 	 * of allowed nodes.
2006 	 */
2007 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2008 		if (test_thread_flag(TIF_MEMDIE) ||
2009 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2010 			filter &= ~SHOW_MEM_FILTER_NODES;
2011 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2012 		filter &= ~SHOW_MEM_FILTER_NODES;
2013 
2014 	if (fmt) {
2015 		struct va_format vaf;
2016 		va_list args;
2017 
2018 		va_start(args, fmt);
2019 
2020 		vaf.fmt = fmt;
2021 		vaf.va = &args;
2022 
2023 		pr_warn("%pV", &vaf);
2024 
2025 		va_end(args);
2026 	}
2027 
2028 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2029 		current->comm, order, gfp_mask);
2030 
2031 	dump_stack();
2032 	if (!should_suppress_show_mem())
2033 		show_mem(filter);
2034 }
2035 
2036 static inline int
2037 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2038 				unsigned long did_some_progress,
2039 				unsigned long pages_reclaimed)
2040 {
2041 	/* Do not loop if specifically requested */
2042 	if (gfp_mask & __GFP_NORETRY)
2043 		return 0;
2044 
2045 	/* Always retry if specifically requested */
2046 	if (gfp_mask & __GFP_NOFAIL)
2047 		return 1;
2048 
2049 	/*
2050 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2051 	 * making forward progress without invoking OOM. Suspend also disables
2052 	 * storage devices so kswapd will not help. Bail if we are suspending.
2053 	 */
2054 	if (!did_some_progress && pm_suspended_storage())
2055 		return 0;
2056 
2057 	/*
2058 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2059 	 * means __GFP_NOFAIL, but that may not be true in other
2060 	 * implementations.
2061 	 */
2062 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2063 		return 1;
2064 
2065 	/*
2066 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2067 	 * specified, then we retry until we no longer reclaim any pages
2068 	 * (above), or we've reclaimed an order of pages at least as
2069 	 * large as the allocation's order. In both cases, if the
2070 	 * allocation still fails, we stop retrying.
2071 	 */
2072 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2073 		return 1;
2074 
2075 	return 0;
2076 }
2077 
2078 static inline struct page *
2079 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2080 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2081 	nodemask_t *nodemask, struct zone *preferred_zone,
2082 	int migratetype)
2083 {
2084 	struct page *page;
2085 
2086 	/* Acquire the OOM killer lock for the zones in zonelist */
2087 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2088 		schedule_timeout_uninterruptible(1);
2089 		return NULL;
2090 	}
2091 
2092 	/*
2093 	 * Go through the zonelist yet one more time, keep very high watermark
2094 	 * here, this is only to catch a parallel oom killing, we must fail if
2095 	 * we're still under heavy pressure.
2096 	 */
2097 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2098 		order, zonelist, high_zoneidx,
2099 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2100 		preferred_zone, migratetype);
2101 	if (page)
2102 		goto out;
2103 
2104 	if (!(gfp_mask & __GFP_NOFAIL)) {
2105 		/* The OOM killer will not help higher order allocs */
2106 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2107 			goto out;
2108 		/* The OOM killer does not needlessly kill tasks for lowmem */
2109 		if (high_zoneidx < ZONE_NORMAL)
2110 			goto out;
2111 		/*
2112 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2113 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2114 		 * The caller should handle page allocation failure by itself if
2115 		 * it specifies __GFP_THISNODE.
2116 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2117 		 */
2118 		if (gfp_mask & __GFP_THISNODE)
2119 			goto out;
2120 	}
2121 	/* Exhausted what can be done so it's blamo time */
2122 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2123 
2124 out:
2125 	clear_zonelist_oom(zonelist, gfp_mask);
2126 	return page;
2127 }
2128 
2129 #ifdef CONFIG_COMPACTION
2130 /* Try memory compaction for high-order allocations before reclaim */
2131 static struct page *
2132 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2133 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2134 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2135 	int migratetype, bool sync_migration,
2136 	bool *contended_compaction, bool *deferred_compaction,
2137 	unsigned long *did_some_progress)
2138 {
2139 	struct page *page = NULL;
2140 
2141 	if (!order)
2142 		return NULL;
2143 
2144 	if (compaction_deferred(preferred_zone, order)) {
2145 		*deferred_compaction = true;
2146 		return NULL;
2147 	}
2148 
2149 	current->flags |= PF_MEMALLOC;
2150 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2151 						nodemask, sync_migration,
2152 						contended_compaction, &page);
2153 	current->flags &= ~PF_MEMALLOC;
2154 
2155 	/* If compaction captured a page, prep and use it */
2156 	if (page) {
2157 		prep_new_page(page, order, gfp_mask);
2158 		goto got_page;
2159 	}
2160 
2161 	if (*did_some_progress != COMPACT_SKIPPED) {
2162 		/* Page migration frees to the PCP lists but we want merging */
2163 		drain_pages(get_cpu());
2164 		put_cpu();
2165 
2166 		page = get_page_from_freelist(gfp_mask, nodemask,
2167 				order, zonelist, high_zoneidx,
2168 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2169 				preferred_zone, migratetype);
2170 		if (page) {
2171 got_page:
2172 			preferred_zone->compact_blockskip_flush = false;
2173 			preferred_zone->compact_considered = 0;
2174 			preferred_zone->compact_defer_shift = 0;
2175 			if (order >= preferred_zone->compact_order_failed)
2176 				preferred_zone->compact_order_failed = order + 1;
2177 			count_vm_event(COMPACTSUCCESS);
2178 			return page;
2179 		}
2180 
2181 		/*
2182 		 * It's bad if compaction run occurs and fails.
2183 		 * The most likely reason is that pages exist,
2184 		 * but not enough to satisfy watermarks.
2185 		 */
2186 		count_vm_event(COMPACTFAIL);
2187 
2188 		/*
2189 		 * As async compaction considers a subset of pageblocks, only
2190 		 * defer if the failure was a sync compaction failure.
2191 		 */
2192 		if (sync_migration)
2193 			defer_compaction(preferred_zone, order);
2194 
2195 		cond_resched();
2196 	}
2197 
2198 	return NULL;
2199 }
2200 #else
2201 static inline struct page *
2202 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2203 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2204 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2205 	int migratetype, bool sync_migration,
2206 	bool *contended_compaction, bool *deferred_compaction,
2207 	unsigned long *did_some_progress)
2208 {
2209 	return NULL;
2210 }
2211 #endif /* CONFIG_COMPACTION */
2212 
2213 /* Perform direct synchronous page reclaim */
2214 static int
2215 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2216 		  nodemask_t *nodemask)
2217 {
2218 	struct reclaim_state reclaim_state;
2219 	int progress;
2220 
2221 	cond_resched();
2222 
2223 	/* We now go into synchronous reclaim */
2224 	cpuset_memory_pressure_bump();
2225 	current->flags |= PF_MEMALLOC;
2226 	lockdep_set_current_reclaim_state(gfp_mask);
2227 	reclaim_state.reclaimed_slab = 0;
2228 	current->reclaim_state = &reclaim_state;
2229 
2230 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2231 
2232 	current->reclaim_state = NULL;
2233 	lockdep_clear_current_reclaim_state();
2234 	current->flags &= ~PF_MEMALLOC;
2235 
2236 	cond_resched();
2237 
2238 	return progress;
2239 }
2240 
2241 /* The really slow allocator path where we enter direct reclaim */
2242 static inline struct page *
2243 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2244 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2245 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2246 	int migratetype, unsigned long *did_some_progress)
2247 {
2248 	struct page *page = NULL;
2249 	bool drained = false;
2250 
2251 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2252 					       nodemask);
2253 	if (unlikely(!(*did_some_progress)))
2254 		return NULL;
2255 
2256 	/* After successful reclaim, reconsider all zones for allocation */
2257 	if (IS_ENABLED(CONFIG_NUMA))
2258 		zlc_clear_zones_full(zonelist);
2259 
2260 retry:
2261 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2262 					zonelist, high_zoneidx,
2263 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2264 					preferred_zone, migratetype);
2265 
2266 	/*
2267 	 * If an allocation failed after direct reclaim, it could be because
2268 	 * pages are pinned on the per-cpu lists. Drain them and try again
2269 	 */
2270 	if (!page && !drained) {
2271 		drain_all_pages();
2272 		drained = true;
2273 		goto retry;
2274 	}
2275 
2276 	return page;
2277 }
2278 
2279 /*
2280  * This is called in the allocator slow-path if the allocation request is of
2281  * sufficient urgency to ignore watermarks and take other desperate measures
2282  */
2283 static inline struct page *
2284 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2285 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2286 	nodemask_t *nodemask, struct zone *preferred_zone,
2287 	int migratetype)
2288 {
2289 	struct page *page;
2290 
2291 	do {
2292 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2293 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2294 			preferred_zone, migratetype);
2295 
2296 		if (!page && gfp_mask & __GFP_NOFAIL)
2297 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2298 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2299 
2300 	return page;
2301 }
2302 
2303 static inline
2304 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2305 						enum zone_type high_zoneidx,
2306 						enum zone_type classzone_idx)
2307 {
2308 	struct zoneref *z;
2309 	struct zone *zone;
2310 
2311 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2312 		wakeup_kswapd(zone, order, classzone_idx);
2313 }
2314 
2315 static inline int
2316 gfp_to_alloc_flags(gfp_t gfp_mask)
2317 {
2318 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2319 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2320 
2321 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2322 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2323 
2324 	/*
2325 	 * The caller may dip into page reserves a bit more if the caller
2326 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2327 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2328 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2329 	 */
2330 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2331 
2332 	if (!wait) {
2333 		/*
2334 		 * Not worth trying to allocate harder for
2335 		 * __GFP_NOMEMALLOC even if it can't schedule.
2336 		 */
2337 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2338 			alloc_flags |= ALLOC_HARDER;
2339 		/*
2340 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2341 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2342 		 */
2343 		alloc_flags &= ~ALLOC_CPUSET;
2344 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2345 		alloc_flags |= ALLOC_HARDER;
2346 
2347 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2348 		if (gfp_mask & __GFP_MEMALLOC)
2349 			alloc_flags |= ALLOC_NO_WATERMARKS;
2350 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2351 			alloc_flags |= ALLOC_NO_WATERMARKS;
2352 		else if (!in_interrupt() &&
2353 				((current->flags & PF_MEMALLOC) ||
2354 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2355 			alloc_flags |= ALLOC_NO_WATERMARKS;
2356 	}
2357 #ifdef CONFIG_CMA
2358 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2359 		alloc_flags |= ALLOC_CMA;
2360 #endif
2361 	return alloc_flags;
2362 }
2363 
2364 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2365 {
2366 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2367 }
2368 
2369 static inline struct page *
2370 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2371 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2372 	nodemask_t *nodemask, struct zone *preferred_zone,
2373 	int migratetype)
2374 {
2375 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2376 	struct page *page = NULL;
2377 	int alloc_flags;
2378 	unsigned long pages_reclaimed = 0;
2379 	unsigned long did_some_progress;
2380 	bool sync_migration = false;
2381 	bool deferred_compaction = false;
2382 	bool contended_compaction = false;
2383 
2384 	/*
2385 	 * In the slowpath, we sanity check order to avoid ever trying to
2386 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2387 	 * be using allocators in order of preference for an area that is
2388 	 * too large.
2389 	 */
2390 	if (order >= MAX_ORDER) {
2391 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2392 		return NULL;
2393 	}
2394 
2395 	/*
2396 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2397 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2398 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2399 	 * using a larger set of nodes after it has established that the
2400 	 * allowed per node queues are empty and that nodes are
2401 	 * over allocated.
2402 	 */
2403 	if (IS_ENABLED(CONFIG_NUMA) &&
2404 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2405 		goto nopage;
2406 
2407 restart:
2408 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2409 		wake_all_kswapd(order, zonelist, high_zoneidx,
2410 						zone_idx(preferred_zone));
2411 
2412 	/*
2413 	 * OK, we're below the kswapd watermark and have kicked background
2414 	 * reclaim. Now things get more complex, so set up alloc_flags according
2415 	 * to how we want to proceed.
2416 	 */
2417 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2418 
2419 	/*
2420 	 * Find the true preferred zone if the allocation is unconstrained by
2421 	 * cpusets.
2422 	 */
2423 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2424 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2425 					&preferred_zone);
2426 
2427 rebalance:
2428 	/* This is the last chance, in general, before the goto nopage. */
2429 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2430 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2431 			preferred_zone, migratetype);
2432 	if (page)
2433 		goto got_pg;
2434 
2435 	/* Allocate without watermarks if the context allows */
2436 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2437 		/*
2438 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2439 		 * the allocation is high priority and these type of
2440 		 * allocations are system rather than user orientated
2441 		 */
2442 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2443 
2444 		page = __alloc_pages_high_priority(gfp_mask, order,
2445 				zonelist, high_zoneidx, nodemask,
2446 				preferred_zone, migratetype);
2447 		if (page) {
2448 			goto got_pg;
2449 		}
2450 	}
2451 
2452 	/* Atomic allocations - we can't balance anything */
2453 	if (!wait)
2454 		goto nopage;
2455 
2456 	/* Avoid recursion of direct reclaim */
2457 	if (current->flags & PF_MEMALLOC)
2458 		goto nopage;
2459 
2460 	/* Avoid allocations with no watermarks from looping endlessly */
2461 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2462 		goto nopage;
2463 
2464 	/*
2465 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2466 	 * attempts after direct reclaim are synchronous
2467 	 */
2468 	page = __alloc_pages_direct_compact(gfp_mask, order,
2469 					zonelist, high_zoneidx,
2470 					nodemask,
2471 					alloc_flags, preferred_zone,
2472 					migratetype, sync_migration,
2473 					&contended_compaction,
2474 					&deferred_compaction,
2475 					&did_some_progress);
2476 	if (page)
2477 		goto got_pg;
2478 	sync_migration = true;
2479 
2480 	/*
2481 	 * If compaction is deferred for high-order allocations, it is because
2482 	 * sync compaction recently failed. In this is the case and the caller
2483 	 * requested a movable allocation that does not heavily disrupt the
2484 	 * system then fail the allocation instead of entering direct reclaim.
2485 	 */
2486 	if ((deferred_compaction || contended_compaction) &&
2487 						(gfp_mask & __GFP_NO_KSWAPD))
2488 		goto nopage;
2489 
2490 	/* Try direct reclaim and then allocating */
2491 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2492 					zonelist, high_zoneidx,
2493 					nodemask,
2494 					alloc_flags, preferred_zone,
2495 					migratetype, &did_some_progress);
2496 	if (page)
2497 		goto got_pg;
2498 
2499 	/*
2500 	 * If we failed to make any progress reclaiming, then we are
2501 	 * running out of options and have to consider going OOM
2502 	 */
2503 	if (!did_some_progress) {
2504 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2505 			if (oom_killer_disabled)
2506 				goto nopage;
2507 			/* Coredumps can quickly deplete all memory reserves */
2508 			if ((current->flags & PF_DUMPCORE) &&
2509 			    !(gfp_mask & __GFP_NOFAIL))
2510 				goto nopage;
2511 			page = __alloc_pages_may_oom(gfp_mask, order,
2512 					zonelist, high_zoneidx,
2513 					nodemask, preferred_zone,
2514 					migratetype);
2515 			if (page)
2516 				goto got_pg;
2517 
2518 			if (!(gfp_mask & __GFP_NOFAIL)) {
2519 				/*
2520 				 * The oom killer is not called for high-order
2521 				 * allocations that may fail, so if no progress
2522 				 * is being made, there are no other options and
2523 				 * retrying is unlikely to help.
2524 				 */
2525 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2526 					goto nopage;
2527 				/*
2528 				 * The oom killer is not called for lowmem
2529 				 * allocations to prevent needlessly killing
2530 				 * innocent tasks.
2531 				 */
2532 				if (high_zoneidx < ZONE_NORMAL)
2533 					goto nopage;
2534 			}
2535 
2536 			goto restart;
2537 		}
2538 	}
2539 
2540 	/* Check if we should retry the allocation */
2541 	pages_reclaimed += did_some_progress;
2542 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2543 						pages_reclaimed)) {
2544 		/* Wait for some write requests to complete then retry */
2545 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2546 		goto rebalance;
2547 	} else {
2548 		/*
2549 		 * High-order allocations do not necessarily loop after
2550 		 * direct reclaim and reclaim/compaction depends on compaction
2551 		 * being called after reclaim so call directly if necessary
2552 		 */
2553 		page = __alloc_pages_direct_compact(gfp_mask, order,
2554 					zonelist, high_zoneidx,
2555 					nodemask,
2556 					alloc_flags, preferred_zone,
2557 					migratetype, sync_migration,
2558 					&contended_compaction,
2559 					&deferred_compaction,
2560 					&did_some_progress);
2561 		if (page)
2562 			goto got_pg;
2563 	}
2564 
2565 nopage:
2566 	warn_alloc_failed(gfp_mask, order, NULL);
2567 	return page;
2568 got_pg:
2569 	if (kmemcheck_enabled)
2570 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2571 
2572 	return page;
2573 }
2574 
2575 /*
2576  * This is the 'heart' of the zoned buddy allocator.
2577  */
2578 struct page *
2579 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2580 			struct zonelist *zonelist, nodemask_t *nodemask)
2581 {
2582 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2583 	struct zone *preferred_zone;
2584 	struct page *page = NULL;
2585 	int migratetype = allocflags_to_migratetype(gfp_mask);
2586 	unsigned int cpuset_mems_cookie;
2587 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2588 	struct mem_cgroup *memcg = NULL;
2589 
2590 	gfp_mask &= gfp_allowed_mask;
2591 
2592 	lockdep_trace_alloc(gfp_mask);
2593 
2594 	might_sleep_if(gfp_mask & __GFP_WAIT);
2595 
2596 	if (should_fail_alloc_page(gfp_mask, order))
2597 		return NULL;
2598 
2599 	/*
2600 	 * Check the zones suitable for the gfp_mask contain at least one
2601 	 * valid zone. It's possible to have an empty zonelist as a result
2602 	 * of GFP_THISNODE and a memoryless node
2603 	 */
2604 	if (unlikely(!zonelist->_zonerefs->zone))
2605 		return NULL;
2606 
2607 	/*
2608 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2609 	 * verified in the (always inline) callee
2610 	 */
2611 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2612 		return NULL;
2613 
2614 retry_cpuset:
2615 	cpuset_mems_cookie = get_mems_allowed();
2616 
2617 	/* The preferred zone is used for statistics later */
2618 	first_zones_zonelist(zonelist, high_zoneidx,
2619 				nodemask ? : &cpuset_current_mems_allowed,
2620 				&preferred_zone);
2621 	if (!preferred_zone)
2622 		goto out;
2623 
2624 #ifdef CONFIG_CMA
2625 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2626 		alloc_flags |= ALLOC_CMA;
2627 #endif
2628 	/* First allocation attempt */
2629 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2630 			zonelist, high_zoneidx, alloc_flags,
2631 			preferred_zone, migratetype);
2632 	if (unlikely(!page))
2633 		page = __alloc_pages_slowpath(gfp_mask, order,
2634 				zonelist, high_zoneidx, nodemask,
2635 				preferred_zone, migratetype);
2636 
2637 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2638 
2639 out:
2640 	/*
2641 	 * When updating a task's mems_allowed, it is possible to race with
2642 	 * parallel threads in such a way that an allocation can fail while
2643 	 * the mask is being updated. If a page allocation is about to fail,
2644 	 * check if the cpuset changed during allocation and if so, retry.
2645 	 */
2646 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2647 		goto retry_cpuset;
2648 
2649 	memcg_kmem_commit_charge(page, memcg, order);
2650 
2651 	return page;
2652 }
2653 EXPORT_SYMBOL(__alloc_pages_nodemask);
2654 
2655 /*
2656  * Common helper functions.
2657  */
2658 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2659 {
2660 	struct page *page;
2661 
2662 	/*
2663 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2664 	 * a highmem page
2665 	 */
2666 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2667 
2668 	page = alloc_pages(gfp_mask, order);
2669 	if (!page)
2670 		return 0;
2671 	return (unsigned long) page_address(page);
2672 }
2673 EXPORT_SYMBOL(__get_free_pages);
2674 
2675 unsigned long get_zeroed_page(gfp_t gfp_mask)
2676 {
2677 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2678 }
2679 EXPORT_SYMBOL(get_zeroed_page);
2680 
2681 void __free_pages(struct page *page, unsigned int order)
2682 {
2683 	if (put_page_testzero(page)) {
2684 		if (order == 0)
2685 			free_hot_cold_page(page, 0);
2686 		else
2687 			__free_pages_ok(page, order);
2688 	}
2689 }
2690 
2691 EXPORT_SYMBOL(__free_pages);
2692 
2693 void free_pages(unsigned long addr, unsigned int order)
2694 {
2695 	if (addr != 0) {
2696 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2697 		__free_pages(virt_to_page((void *)addr), order);
2698 	}
2699 }
2700 
2701 EXPORT_SYMBOL(free_pages);
2702 
2703 /*
2704  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2705  * pages allocated with __GFP_KMEMCG.
2706  *
2707  * Those pages are accounted to a particular memcg, embedded in the
2708  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2709  * for that information only to find out that it is NULL for users who have no
2710  * interest in that whatsoever, we provide these functions.
2711  *
2712  * The caller knows better which flags it relies on.
2713  */
2714 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2715 {
2716 	memcg_kmem_uncharge_pages(page, order);
2717 	__free_pages(page, order);
2718 }
2719 
2720 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2721 {
2722 	if (addr != 0) {
2723 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2724 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2725 	}
2726 }
2727 
2728 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2729 {
2730 	if (addr) {
2731 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2732 		unsigned long used = addr + PAGE_ALIGN(size);
2733 
2734 		split_page(virt_to_page((void *)addr), order);
2735 		while (used < alloc_end) {
2736 			free_page(used);
2737 			used += PAGE_SIZE;
2738 		}
2739 	}
2740 	return (void *)addr;
2741 }
2742 
2743 /**
2744  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2745  * @size: the number of bytes to allocate
2746  * @gfp_mask: GFP flags for the allocation
2747  *
2748  * This function is similar to alloc_pages(), except that it allocates the
2749  * minimum number of pages to satisfy the request.  alloc_pages() can only
2750  * allocate memory in power-of-two pages.
2751  *
2752  * This function is also limited by MAX_ORDER.
2753  *
2754  * Memory allocated by this function must be released by free_pages_exact().
2755  */
2756 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2757 {
2758 	unsigned int order = get_order(size);
2759 	unsigned long addr;
2760 
2761 	addr = __get_free_pages(gfp_mask, order);
2762 	return make_alloc_exact(addr, order, size);
2763 }
2764 EXPORT_SYMBOL(alloc_pages_exact);
2765 
2766 /**
2767  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2768  *			   pages on a node.
2769  * @nid: the preferred node ID where memory should be allocated
2770  * @size: the number of bytes to allocate
2771  * @gfp_mask: GFP flags for the allocation
2772  *
2773  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2774  * back.
2775  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2776  * but is not exact.
2777  */
2778 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2779 {
2780 	unsigned order = get_order(size);
2781 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2782 	if (!p)
2783 		return NULL;
2784 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2785 }
2786 EXPORT_SYMBOL(alloc_pages_exact_nid);
2787 
2788 /**
2789  * free_pages_exact - release memory allocated via alloc_pages_exact()
2790  * @virt: the value returned by alloc_pages_exact.
2791  * @size: size of allocation, same value as passed to alloc_pages_exact().
2792  *
2793  * Release the memory allocated by a previous call to alloc_pages_exact.
2794  */
2795 void free_pages_exact(void *virt, size_t size)
2796 {
2797 	unsigned long addr = (unsigned long)virt;
2798 	unsigned long end = addr + PAGE_ALIGN(size);
2799 
2800 	while (addr < end) {
2801 		free_page(addr);
2802 		addr += PAGE_SIZE;
2803 	}
2804 }
2805 EXPORT_SYMBOL(free_pages_exact);
2806 
2807 static unsigned int nr_free_zone_pages(int offset)
2808 {
2809 	struct zoneref *z;
2810 	struct zone *zone;
2811 
2812 	/* Just pick one node, since fallback list is circular */
2813 	unsigned int sum = 0;
2814 
2815 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2816 
2817 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2818 		unsigned long size = zone->present_pages;
2819 		unsigned long high = high_wmark_pages(zone);
2820 		if (size > high)
2821 			sum += size - high;
2822 	}
2823 
2824 	return sum;
2825 }
2826 
2827 /*
2828  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2829  */
2830 unsigned int nr_free_buffer_pages(void)
2831 {
2832 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2833 }
2834 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2835 
2836 /*
2837  * Amount of free RAM allocatable within all zones
2838  */
2839 unsigned int nr_free_pagecache_pages(void)
2840 {
2841 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2842 }
2843 
2844 static inline void show_node(struct zone *zone)
2845 {
2846 	if (IS_ENABLED(CONFIG_NUMA))
2847 		printk("Node %d ", zone_to_nid(zone));
2848 }
2849 
2850 void si_meminfo(struct sysinfo *val)
2851 {
2852 	val->totalram = totalram_pages;
2853 	val->sharedram = 0;
2854 	val->freeram = global_page_state(NR_FREE_PAGES);
2855 	val->bufferram = nr_blockdev_pages();
2856 	val->totalhigh = totalhigh_pages;
2857 	val->freehigh = nr_free_highpages();
2858 	val->mem_unit = PAGE_SIZE;
2859 }
2860 
2861 EXPORT_SYMBOL(si_meminfo);
2862 
2863 #ifdef CONFIG_NUMA
2864 void si_meminfo_node(struct sysinfo *val, int nid)
2865 {
2866 	pg_data_t *pgdat = NODE_DATA(nid);
2867 
2868 	val->totalram = pgdat->node_present_pages;
2869 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2870 #ifdef CONFIG_HIGHMEM
2871 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2872 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2873 			NR_FREE_PAGES);
2874 #else
2875 	val->totalhigh = 0;
2876 	val->freehigh = 0;
2877 #endif
2878 	val->mem_unit = PAGE_SIZE;
2879 }
2880 #endif
2881 
2882 /*
2883  * Determine whether the node should be displayed or not, depending on whether
2884  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2885  */
2886 bool skip_free_areas_node(unsigned int flags, int nid)
2887 {
2888 	bool ret = false;
2889 	unsigned int cpuset_mems_cookie;
2890 
2891 	if (!(flags & SHOW_MEM_FILTER_NODES))
2892 		goto out;
2893 
2894 	do {
2895 		cpuset_mems_cookie = get_mems_allowed();
2896 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2897 	} while (!put_mems_allowed(cpuset_mems_cookie));
2898 out:
2899 	return ret;
2900 }
2901 
2902 #define K(x) ((x) << (PAGE_SHIFT-10))
2903 
2904 static void show_migration_types(unsigned char type)
2905 {
2906 	static const char types[MIGRATE_TYPES] = {
2907 		[MIGRATE_UNMOVABLE]	= 'U',
2908 		[MIGRATE_RECLAIMABLE]	= 'E',
2909 		[MIGRATE_MOVABLE]	= 'M',
2910 		[MIGRATE_RESERVE]	= 'R',
2911 #ifdef CONFIG_CMA
2912 		[MIGRATE_CMA]		= 'C',
2913 #endif
2914 		[MIGRATE_ISOLATE]	= 'I',
2915 	};
2916 	char tmp[MIGRATE_TYPES + 1];
2917 	char *p = tmp;
2918 	int i;
2919 
2920 	for (i = 0; i < MIGRATE_TYPES; i++) {
2921 		if (type & (1 << i))
2922 			*p++ = types[i];
2923 	}
2924 
2925 	*p = '\0';
2926 	printk("(%s) ", tmp);
2927 }
2928 
2929 /*
2930  * Show free area list (used inside shift_scroll-lock stuff)
2931  * We also calculate the percentage fragmentation. We do this by counting the
2932  * memory on each free list with the exception of the first item on the list.
2933  * Suppresses nodes that are not allowed by current's cpuset if
2934  * SHOW_MEM_FILTER_NODES is passed.
2935  */
2936 void show_free_areas(unsigned int filter)
2937 {
2938 	int cpu;
2939 	struct zone *zone;
2940 
2941 	for_each_populated_zone(zone) {
2942 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2943 			continue;
2944 		show_node(zone);
2945 		printk("%s per-cpu:\n", zone->name);
2946 
2947 		for_each_online_cpu(cpu) {
2948 			struct per_cpu_pageset *pageset;
2949 
2950 			pageset = per_cpu_ptr(zone->pageset, cpu);
2951 
2952 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2953 			       cpu, pageset->pcp.high,
2954 			       pageset->pcp.batch, pageset->pcp.count);
2955 		}
2956 	}
2957 
2958 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2959 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2960 		" unevictable:%lu"
2961 		" dirty:%lu writeback:%lu unstable:%lu\n"
2962 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2963 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2964 		" free_cma:%lu\n",
2965 		global_page_state(NR_ACTIVE_ANON),
2966 		global_page_state(NR_INACTIVE_ANON),
2967 		global_page_state(NR_ISOLATED_ANON),
2968 		global_page_state(NR_ACTIVE_FILE),
2969 		global_page_state(NR_INACTIVE_FILE),
2970 		global_page_state(NR_ISOLATED_FILE),
2971 		global_page_state(NR_UNEVICTABLE),
2972 		global_page_state(NR_FILE_DIRTY),
2973 		global_page_state(NR_WRITEBACK),
2974 		global_page_state(NR_UNSTABLE_NFS),
2975 		global_page_state(NR_FREE_PAGES),
2976 		global_page_state(NR_SLAB_RECLAIMABLE),
2977 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2978 		global_page_state(NR_FILE_MAPPED),
2979 		global_page_state(NR_SHMEM),
2980 		global_page_state(NR_PAGETABLE),
2981 		global_page_state(NR_BOUNCE),
2982 		global_page_state(NR_FREE_CMA_PAGES));
2983 
2984 	for_each_populated_zone(zone) {
2985 		int i;
2986 
2987 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2988 			continue;
2989 		show_node(zone);
2990 		printk("%s"
2991 			" free:%lukB"
2992 			" min:%lukB"
2993 			" low:%lukB"
2994 			" high:%lukB"
2995 			" active_anon:%lukB"
2996 			" inactive_anon:%lukB"
2997 			" active_file:%lukB"
2998 			" inactive_file:%lukB"
2999 			" unevictable:%lukB"
3000 			" isolated(anon):%lukB"
3001 			" isolated(file):%lukB"
3002 			" present:%lukB"
3003 			" managed:%lukB"
3004 			" mlocked:%lukB"
3005 			" dirty:%lukB"
3006 			" writeback:%lukB"
3007 			" mapped:%lukB"
3008 			" shmem:%lukB"
3009 			" slab_reclaimable:%lukB"
3010 			" slab_unreclaimable:%lukB"
3011 			" kernel_stack:%lukB"
3012 			" pagetables:%lukB"
3013 			" unstable:%lukB"
3014 			" bounce:%lukB"
3015 			" free_cma:%lukB"
3016 			" writeback_tmp:%lukB"
3017 			" pages_scanned:%lu"
3018 			" all_unreclaimable? %s"
3019 			"\n",
3020 			zone->name,
3021 			K(zone_page_state(zone, NR_FREE_PAGES)),
3022 			K(min_wmark_pages(zone)),
3023 			K(low_wmark_pages(zone)),
3024 			K(high_wmark_pages(zone)),
3025 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3026 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3027 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3028 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3029 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3030 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3031 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3032 			K(zone->present_pages),
3033 			K(zone->managed_pages),
3034 			K(zone_page_state(zone, NR_MLOCK)),
3035 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3036 			K(zone_page_state(zone, NR_WRITEBACK)),
3037 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3038 			K(zone_page_state(zone, NR_SHMEM)),
3039 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3040 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3041 			zone_page_state(zone, NR_KERNEL_STACK) *
3042 				THREAD_SIZE / 1024,
3043 			K(zone_page_state(zone, NR_PAGETABLE)),
3044 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3045 			K(zone_page_state(zone, NR_BOUNCE)),
3046 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3047 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3048 			zone->pages_scanned,
3049 			(zone->all_unreclaimable ? "yes" : "no")
3050 			);
3051 		printk("lowmem_reserve[]:");
3052 		for (i = 0; i < MAX_NR_ZONES; i++)
3053 			printk(" %lu", zone->lowmem_reserve[i]);
3054 		printk("\n");
3055 	}
3056 
3057 	for_each_populated_zone(zone) {
3058  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3059 		unsigned char types[MAX_ORDER];
3060 
3061 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3062 			continue;
3063 		show_node(zone);
3064 		printk("%s: ", zone->name);
3065 
3066 		spin_lock_irqsave(&zone->lock, flags);
3067 		for (order = 0; order < MAX_ORDER; order++) {
3068 			struct free_area *area = &zone->free_area[order];
3069 			int type;
3070 
3071 			nr[order] = area->nr_free;
3072 			total += nr[order] << order;
3073 
3074 			types[order] = 0;
3075 			for (type = 0; type < MIGRATE_TYPES; type++) {
3076 				if (!list_empty(&area->free_list[type]))
3077 					types[order] |= 1 << type;
3078 			}
3079 		}
3080 		spin_unlock_irqrestore(&zone->lock, flags);
3081 		for (order = 0; order < MAX_ORDER; order++) {
3082 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3083 			if (nr[order])
3084 				show_migration_types(types[order]);
3085 		}
3086 		printk("= %lukB\n", K(total));
3087 	}
3088 
3089 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3090 
3091 	show_swap_cache_info();
3092 }
3093 
3094 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3095 {
3096 	zoneref->zone = zone;
3097 	zoneref->zone_idx = zone_idx(zone);
3098 }
3099 
3100 /*
3101  * Builds allocation fallback zone lists.
3102  *
3103  * Add all populated zones of a node to the zonelist.
3104  */
3105 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3106 				int nr_zones, enum zone_type zone_type)
3107 {
3108 	struct zone *zone;
3109 
3110 	BUG_ON(zone_type >= MAX_NR_ZONES);
3111 	zone_type++;
3112 
3113 	do {
3114 		zone_type--;
3115 		zone = pgdat->node_zones + zone_type;
3116 		if (populated_zone(zone)) {
3117 			zoneref_set_zone(zone,
3118 				&zonelist->_zonerefs[nr_zones++]);
3119 			check_highest_zone(zone_type);
3120 		}
3121 
3122 	} while (zone_type);
3123 	return nr_zones;
3124 }
3125 
3126 
3127 /*
3128  *  zonelist_order:
3129  *  0 = automatic detection of better ordering.
3130  *  1 = order by ([node] distance, -zonetype)
3131  *  2 = order by (-zonetype, [node] distance)
3132  *
3133  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3134  *  the same zonelist. So only NUMA can configure this param.
3135  */
3136 #define ZONELIST_ORDER_DEFAULT  0
3137 #define ZONELIST_ORDER_NODE     1
3138 #define ZONELIST_ORDER_ZONE     2
3139 
3140 /* zonelist order in the kernel.
3141  * set_zonelist_order() will set this to NODE or ZONE.
3142  */
3143 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3144 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3145 
3146 
3147 #ifdef CONFIG_NUMA
3148 /* The value user specified ....changed by config */
3149 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3150 /* string for sysctl */
3151 #define NUMA_ZONELIST_ORDER_LEN	16
3152 char numa_zonelist_order[16] = "default";
3153 
3154 /*
3155  * interface for configure zonelist ordering.
3156  * command line option "numa_zonelist_order"
3157  *	= "[dD]efault	- default, automatic configuration.
3158  *	= "[nN]ode 	- order by node locality, then by zone within node
3159  *	= "[zZ]one      - order by zone, then by locality within zone
3160  */
3161 
3162 static int __parse_numa_zonelist_order(char *s)
3163 {
3164 	if (*s == 'd' || *s == 'D') {
3165 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3166 	} else if (*s == 'n' || *s == 'N') {
3167 		user_zonelist_order = ZONELIST_ORDER_NODE;
3168 	} else if (*s == 'z' || *s == 'Z') {
3169 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3170 	} else {
3171 		printk(KERN_WARNING
3172 			"Ignoring invalid numa_zonelist_order value:  "
3173 			"%s\n", s);
3174 		return -EINVAL;
3175 	}
3176 	return 0;
3177 }
3178 
3179 static __init int setup_numa_zonelist_order(char *s)
3180 {
3181 	int ret;
3182 
3183 	if (!s)
3184 		return 0;
3185 
3186 	ret = __parse_numa_zonelist_order(s);
3187 	if (ret == 0)
3188 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3189 
3190 	return ret;
3191 }
3192 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3193 
3194 /*
3195  * sysctl handler for numa_zonelist_order
3196  */
3197 int numa_zonelist_order_handler(ctl_table *table, int write,
3198 		void __user *buffer, size_t *length,
3199 		loff_t *ppos)
3200 {
3201 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3202 	int ret;
3203 	static DEFINE_MUTEX(zl_order_mutex);
3204 
3205 	mutex_lock(&zl_order_mutex);
3206 	if (write)
3207 		strcpy(saved_string, (char*)table->data);
3208 	ret = proc_dostring(table, write, buffer, length, ppos);
3209 	if (ret)
3210 		goto out;
3211 	if (write) {
3212 		int oldval = user_zonelist_order;
3213 		if (__parse_numa_zonelist_order((char*)table->data)) {
3214 			/*
3215 			 * bogus value.  restore saved string
3216 			 */
3217 			strncpy((char*)table->data, saved_string,
3218 				NUMA_ZONELIST_ORDER_LEN);
3219 			user_zonelist_order = oldval;
3220 		} else if (oldval != user_zonelist_order) {
3221 			mutex_lock(&zonelists_mutex);
3222 			build_all_zonelists(NULL, NULL);
3223 			mutex_unlock(&zonelists_mutex);
3224 		}
3225 	}
3226 out:
3227 	mutex_unlock(&zl_order_mutex);
3228 	return ret;
3229 }
3230 
3231 
3232 #define MAX_NODE_LOAD (nr_online_nodes)
3233 static int node_load[MAX_NUMNODES];
3234 
3235 /**
3236  * find_next_best_node - find the next node that should appear in a given node's fallback list
3237  * @node: node whose fallback list we're appending
3238  * @used_node_mask: nodemask_t of already used nodes
3239  *
3240  * We use a number of factors to determine which is the next node that should
3241  * appear on a given node's fallback list.  The node should not have appeared
3242  * already in @node's fallback list, and it should be the next closest node
3243  * according to the distance array (which contains arbitrary distance values
3244  * from each node to each node in the system), and should also prefer nodes
3245  * with no CPUs, since presumably they'll have very little allocation pressure
3246  * on them otherwise.
3247  * It returns -1 if no node is found.
3248  */
3249 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3250 {
3251 	int n, val;
3252 	int min_val = INT_MAX;
3253 	int best_node = -1;
3254 	const struct cpumask *tmp = cpumask_of_node(0);
3255 
3256 	/* Use the local node if we haven't already */
3257 	if (!node_isset(node, *used_node_mask)) {
3258 		node_set(node, *used_node_mask);
3259 		return node;
3260 	}
3261 
3262 	for_each_node_state(n, N_MEMORY) {
3263 
3264 		/* Don't want a node to appear more than once */
3265 		if (node_isset(n, *used_node_mask))
3266 			continue;
3267 
3268 		/* Use the distance array to find the distance */
3269 		val = node_distance(node, n);
3270 
3271 		/* Penalize nodes under us ("prefer the next node") */
3272 		val += (n < node);
3273 
3274 		/* Give preference to headless and unused nodes */
3275 		tmp = cpumask_of_node(n);
3276 		if (!cpumask_empty(tmp))
3277 			val += PENALTY_FOR_NODE_WITH_CPUS;
3278 
3279 		/* Slight preference for less loaded node */
3280 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3281 		val += node_load[n];
3282 
3283 		if (val < min_val) {
3284 			min_val = val;
3285 			best_node = n;
3286 		}
3287 	}
3288 
3289 	if (best_node >= 0)
3290 		node_set(best_node, *used_node_mask);
3291 
3292 	return best_node;
3293 }
3294 
3295 
3296 /*
3297  * Build zonelists ordered by node and zones within node.
3298  * This results in maximum locality--normal zone overflows into local
3299  * DMA zone, if any--but risks exhausting DMA zone.
3300  */
3301 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3302 {
3303 	int j;
3304 	struct zonelist *zonelist;
3305 
3306 	zonelist = &pgdat->node_zonelists[0];
3307 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3308 		;
3309 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3310 							MAX_NR_ZONES - 1);
3311 	zonelist->_zonerefs[j].zone = NULL;
3312 	zonelist->_zonerefs[j].zone_idx = 0;
3313 }
3314 
3315 /*
3316  * Build gfp_thisnode zonelists
3317  */
3318 static void build_thisnode_zonelists(pg_data_t *pgdat)
3319 {
3320 	int j;
3321 	struct zonelist *zonelist;
3322 
3323 	zonelist = &pgdat->node_zonelists[1];
3324 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3325 	zonelist->_zonerefs[j].zone = NULL;
3326 	zonelist->_zonerefs[j].zone_idx = 0;
3327 }
3328 
3329 /*
3330  * Build zonelists ordered by zone and nodes within zones.
3331  * This results in conserving DMA zone[s] until all Normal memory is
3332  * exhausted, but results in overflowing to remote node while memory
3333  * may still exist in local DMA zone.
3334  */
3335 static int node_order[MAX_NUMNODES];
3336 
3337 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3338 {
3339 	int pos, j, node;
3340 	int zone_type;		/* needs to be signed */
3341 	struct zone *z;
3342 	struct zonelist *zonelist;
3343 
3344 	zonelist = &pgdat->node_zonelists[0];
3345 	pos = 0;
3346 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3347 		for (j = 0; j < nr_nodes; j++) {
3348 			node = node_order[j];
3349 			z = &NODE_DATA(node)->node_zones[zone_type];
3350 			if (populated_zone(z)) {
3351 				zoneref_set_zone(z,
3352 					&zonelist->_zonerefs[pos++]);
3353 				check_highest_zone(zone_type);
3354 			}
3355 		}
3356 	}
3357 	zonelist->_zonerefs[pos].zone = NULL;
3358 	zonelist->_zonerefs[pos].zone_idx = 0;
3359 }
3360 
3361 static int default_zonelist_order(void)
3362 {
3363 	int nid, zone_type;
3364 	unsigned long low_kmem_size,total_size;
3365 	struct zone *z;
3366 	int average_size;
3367 	/*
3368          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3369 	 * If they are really small and used heavily, the system can fall
3370 	 * into OOM very easily.
3371 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3372 	 */
3373 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3374 	low_kmem_size = 0;
3375 	total_size = 0;
3376 	for_each_online_node(nid) {
3377 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3378 			z = &NODE_DATA(nid)->node_zones[zone_type];
3379 			if (populated_zone(z)) {
3380 				if (zone_type < ZONE_NORMAL)
3381 					low_kmem_size += z->present_pages;
3382 				total_size += z->present_pages;
3383 			} else if (zone_type == ZONE_NORMAL) {
3384 				/*
3385 				 * If any node has only lowmem, then node order
3386 				 * is preferred to allow kernel allocations
3387 				 * locally; otherwise, they can easily infringe
3388 				 * on other nodes when there is an abundance of
3389 				 * lowmem available to allocate from.
3390 				 */
3391 				return ZONELIST_ORDER_NODE;
3392 			}
3393 		}
3394 	}
3395 	if (!low_kmem_size ||  /* there are no DMA area. */
3396 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3397 		return ZONELIST_ORDER_NODE;
3398 	/*
3399 	 * look into each node's config.
3400   	 * If there is a node whose DMA/DMA32 memory is very big area on
3401  	 * local memory, NODE_ORDER may be suitable.
3402          */
3403 	average_size = total_size /
3404 				(nodes_weight(node_states[N_MEMORY]) + 1);
3405 	for_each_online_node(nid) {
3406 		low_kmem_size = 0;
3407 		total_size = 0;
3408 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3409 			z = &NODE_DATA(nid)->node_zones[zone_type];
3410 			if (populated_zone(z)) {
3411 				if (zone_type < ZONE_NORMAL)
3412 					low_kmem_size += z->present_pages;
3413 				total_size += z->present_pages;
3414 			}
3415 		}
3416 		if (low_kmem_size &&
3417 		    total_size > average_size && /* ignore small node */
3418 		    low_kmem_size > total_size * 70/100)
3419 			return ZONELIST_ORDER_NODE;
3420 	}
3421 	return ZONELIST_ORDER_ZONE;
3422 }
3423 
3424 static void set_zonelist_order(void)
3425 {
3426 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3427 		current_zonelist_order = default_zonelist_order();
3428 	else
3429 		current_zonelist_order = user_zonelist_order;
3430 }
3431 
3432 static void build_zonelists(pg_data_t *pgdat)
3433 {
3434 	int j, node, load;
3435 	enum zone_type i;
3436 	nodemask_t used_mask;
3437 	int local_node, prev_node;
3438 	struct zonelist *zonelist;
3439 	int order = current_zonelist_order;
3440 
3441 	/* initialize zonelists */
3442 	for (i = 0; i < MAX_ZONELISTS; i++) {
3443 		zonelist = pgdat->node_zonelists + i;
3444 		zonelist->_zonerefs[0].zone = NULL;
3445 		zonelist->_zonerefs[0].zone_idx = 0;
3446 	}
3447 
3448 	/* NUMA-aware ordering of nodes */
3449 	local_node = pgdat->node_id;
3450 	load = nr_online_nodes;
3451 	prev_node = local_node;
3452 	nodes_clear(used_mask);
3453 
3454 	memset(node_order, 0, sizeof(node_order));
3455 	j = 0;
3456 
3457 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3458 		/*
3459 		 * We don't want to pressure a particular node.
3460 		 * So adding penalty to the first node in same
3461 		 * distance group to make it round-robin.
3462 		 */
3463 		if (node_distance(local_node, node) !=
3464 		    node_distance(local_node, prev_node))
3465 			node_load[node] = load;
3466 
3467 		prev_node = node;
3468 		load--;
3469 		if (order == ZONELIST_ORDER_NODE)
3470 			build_zonelists_in_node_order(pgdat, node);
3471 		else
3472 			node_order[j++] = node;	/* remember order */
3473 	}
3474 
3475 	if (order == ZONELIST_ORDER_ZONE) {
3476 		/* calculate node order -- i.e., DMA last! */
3477 		build_zonelists_in_zone_order(pgdat, j);
3478 	}
3479 
3480 	build_thisnode_zonelists(pgdat);
3481 }
3482 
3483 /* Construct the zonelist performance cache - see further mmzone.h */
3484 static void build_zonelist_cache(pg_data_t *pgdat)
3485 {
3486 	struct zonelist *zonelist;
3487 	struct zonelist_cache *zlc;
3488 	struct zoneref *z;
3489 
3490 	zonelist = &pgdat->node_zonelists[0];
3491 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3492 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3493 	for (z = zonelist->_zonerefs; z->zone; z++)
3494 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3495 }
3496 
3497 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3498 /*
3499  * Return node id of node used for "local" allocations.
3500  * I.e., first node id of first zone in arg node's generic zonelist.
3501  * Used for initializing percpu 'numa_mem', which is used primarily
3502  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3503  */
3504 int local_memory_node(int node)
3505 {
3506 	struct zone *zone;
3507 
3508 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3509 				   gfp_zone(GFP_KERNEL),
3510 				   NULL,
3511 				   &zone);
3512 	return zone->node;
3513 }
3514 #endif
3515 
3516 #else	/* CONFIG_NUMA */
3517 
3518 static void set_zonelist_order(void)
3519 {
3520 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3521 }
3522 
3523 static void build_zonelists(pg_data_t *pgdat)
3524 {
3525 	int node, local_node;
3526 	enum zone_type j;
3527 	struct zonelist *zonelist;
3528 
3529 	local_node = pgdat->node_id;
3530 
3531 	zonelist = &pgdat->node_zonelists[0];
3532 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3533 
3534 	/*
3535 	 * Now we build the zonelist so that it contains the zones
3536 	 * of all the other nodes.
3537 	 * We don't want to pressure a particular node, so when
3538 	 * building the zones for node N, we make sure that the
3539 	 * zones coming right after the local ones are those from
3540 	 * node N+1 (modulo N)
3541 	 */
3542 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3543 		if (!node_online(node))
3544 			continue;
3545 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3546 							MAX_NR_ZONES - 1);
3547 	}
3548 	for (node = 0; node < local_node; node++) {
3549 		if (!node_online(node))
3550 			continue;
3551 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3552 							MAX_NR_ZONES - 1);
3553 	}
3554 
3555 	zonelist->_zonerefs[j].zone = NULL;
3556 	zonelist->_zonerefs[j].zone_idx = 0;
3557 }
3558 
3559 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3560 static void build_zonelist_cache(pg_data_t *pgdat)
3561 {
3562 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3563 }
3564 
3565 #endif	/* CONFIG_NUMA */
3566 
3567 /*
3568  * Boot pageset table. One per cpu which is going to be used for all
3569  * zones and all nodes. The parameters will be set in such a way
3570  * that an item put on a list will immediately be handed over to
3571  * the buddy list. This is safe since pageset manipulation is done
3572  * with interrupts disabled.
3573  *
3574  * The boot_pagesets must be kept even after bootup is complete for
3575  * unused processors and/or zones. They do play a role for bootstrapping
3576  * hotplugged processors.
3577  *
3578  * zoneinfo_show() and maybe other functions do
3579  * not check if the processor is online before following the pageset pointer.
3580  * Other parts of the kernel may not check if the zone is available.
3581  */
3582 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3583 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3584 static void setup_zone_pageset(struct zone *zone);
3585 
3586 /*
3587  * Global mutex to protect against size modification of zonelists
3588  * as well as to serialize pageset setup for the new populated zone.
3589  */
3590 DEFINE_MUTEX(zonelists_mutex);
3591 
3592 /* return values int ....just for stop_machine() */
3593 static int __build_all_zonelists(void *data)
3594 {
3595 	int nid;
3596 	int cpu;
3597 	pg_data_t *self = data;
3598 
3599 #ifdef CONFIG_NUMA
3600 	memset(node_load, 0, sizeof(node_load));
3601 #endif
3602 
3603 	if (self && !node_online(self->node_id)) {
3604 		build_zonelists(self);
3605 		build_zonelist_cache(self);
3606 	}
3607 
3608 	for_each_online_node(nid) {
3609 		pg_data_t *pgdat = NODE_DATA(nid);
3610 
3611 		build_zonelists(pgdat);
3612 		build_zonelist_cache(pgdat);
3613 	}
3614 
3615 	/*
3616 	 * Initialize the boot_pagesets that are going to be used
3617 	 * for bootstrapping processors. The real pagesets for
3618 	 * each zone will be allocated later when the per cpu
3619 	 * allocator is available.
3620 	 *
3621 	 * boot_pagesets are used also for bootstrapping offline
3622 	 * cpus if the system is already booted because the pagesets
3623 	 * are needed to initialize allocators on a specific cpu too.
3624 	 * F.e. the percpu allocator needs the page allocator which
3625 	 * needs the percpu allocator in order to allocate its pagesets
3626 	 * (a chicken-egg dilemma).
3627 	 */
3628 	for_each_possible_cpu(cpu) {
3629 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3630 
3631 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3632 		/*
3633 		 * We now know the "local memory node" for each node--
3634 		 * i.e., the node of the first zone in the generic zonelist.
3635 		 * Set up numa_mem percpu variable for on-line cpus.  During
3636 		 * boot, only the boot cpu should be on-line;  we'll init the
3637 		 * secondary cpus' numa_mem as they come on-line.  During
3638 		 * node/memory hotplug, we'll fixup all on-line cpus.
3639 		 */
3640 		if (cpu_online(cpu))
3641 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3642 #endif
3643 	}
3644 
3645 	return 0;
3646 }
3647 
3648 /*
3649  * Called with zonelists_mutex held always
3650  * unless system_state == SYSTEM_BOOTING.
3651  */
3652 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3653 {
3654 	set_zonelist_order();
3655 
3656 	if (system_state == SYSTEM_BOOTING) {
3657 		__build_all_zonelists(NULL);
3658 		mminit_verify_zonelist();
3659 		cpuset_init_current_mems_allowed();
3660 	} else {
3661 		/* we have to stop all cpus to guarantee there is no user
3662 		   of zonelist */
3663 #ifdef CONFIG_MEMORY_HOTPLUG
3664 		if (zone)
3665 			setup_zone_pageset(zone);
3666 #endif
3667 		stop_machine(__build_all_zonelists, pgdat, NULL);
3668 		/* cpuset refresh routine should be here */
3669 	}
3670 	vm_total_pages = nr_free_pagecache_pages();
3671 	/*
3672 	 * Disable grouping by mobility if the number of pages in the
3673 	 * system is too low to allow the mechanism to work. It would be
3674 	 * more accurate, but expensive to check per-zone. This check is
3675 	 * made on memory-hotadd so a system can start with mobility
3676 	 * disabled and enable it later
3677 	 */
3678 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3679 		page_group_by_mobility_disabled = 1;
3680 	else
3681 		page_group_by_mobility_disabled = 0;
3682 
3683 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3684 		"Total pages: %ld\n",
3685 			nr_online_nodes,
3686 			zonelist_order_name[current_zonelist_order],
3687 			page_group_by_mobility_disabled ? "off" : "on",
3688 			vm_total_pages);
3689 #ifdef CONFIG_NUMA
3690 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3691 #endif
3692 }
3693 
3694 /*
3695  * Helper functions to size the waitqueue hash table.
3696  * Essentially these want to choose hash table sizes sufficiently
3697  * large so that collisions trying to wait on pages are rare.
3698  * But in fact, the number of active page waitqueues on typical
3699  * systems is ridiculously low, less than 200. So this is even
3700  * conservative, even though it seems large.
3701  *
3702  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3703  * waitqueues, i.e. the size of the waitq table given the number of pages.
3704  */
3705 #define PAGES_PER_WAITQUEUE	256
3706 
3707 #ifndef CONFIG_MEMORY_HOTPLUG
3708 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3709 {
3710 	unsigned long size = 1;
3711 
3712 	pages /= PAGES_PER_WAITQUEUE;
3713 
3714 	while (size < pages)
3715 		size <<= 1;
3716 
3717 	/*
3718 	 * Once we have dozens or even hundreds of threads sleeping
3719 	 * on IO we've got bigger problems than wait queue collision.
3720 	 * Limit the size of the wait table to a reasonable size.
3721 	 */
3722 	size = min(size, 4096UL);
3723 
3724 	return max(size, 4UL);
3725 }
3726 #else
3727 /*
3728  * A zone's size might be changed by hot-add, so it is not possible to determine
3729  * a suitable size for its wait_table.  So we use the maximum size now.
3730  *
3731  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3732  *
3733  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3734  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3735  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3736  *
3737  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3738  * or more by the traditional way. (See above).  It equals:
3739  *
3740  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3741  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3742  *    powerpc (64K page size)             : =  (32G +16M)byte.
3743  */
3744 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3745 {
3746 	return 4096UL;
3747 }
3748 #endif
3749 
3750 /*
3751  * This is an integer logarithm so that shifts can be used later
3752  * to extract the more random high bits from the multiplicative
3753  * hash function before the remainder is taken.
3754  */
3755 static inline unsigned long wait_table_bits(unsigned long size)
3756 {
3757 	return ffz(~size);
3758 }
3759 
3760 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3761 
3762 /*
3763  * Check if a pageblock contains reserved pages
3764  */
3765 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3766 {
3767 	unsigned long pfn;
3768 
3769 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3770 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3771 			return 1;
3772 	}
3773 	return 0;
3774 }
3775 
3776 /*
3777  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3778  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3779  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3780  * higher will lead to a bigger reserve which will get freed as contiguous
3781  * blocks as reclaim kicks in
3782  */
3783 static void setup_zone_migrate_reserve(struct zone *zone)
3784 {
3785 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3786 	struct page *page;
3787 	unsigned long block_migratetype;
3788 	int reserve;
3789 
3790 	/*
3791 	 * Get the start pfn, end pfn and the number of blocks to reserve
3792 	 * We have to be careful to be aligned to pageblock_nr_pages to
3793 	 * make sure that we always check pfn_valid for the first page in
3794 	 * the block.
3795 	 */
3796 	start_pfn = zone->zone_start_pfn;
3797 	end_pfn = start_pfn + zone->spanned_pages;
3798 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3799 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3800 							pageblock_order;
3801 
3802 	/*
3803 	 * Reserve blocks are generally in place to help high-order atomic
3804 	 * allocations that are short-lived. A min_free_kbytes value that
3805 	 * would result in more than 2 reserve blocks for atomic allocations
3806 	 * is assumed to be in place to help anti-fragmentation for the
3807 	 * future allocation of hugepages at runtime.
3808 	 */
3809 	reserve = min(2, reserve);
3810 
3811 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3812 		if (!pfn_valid(pfn))
3813 			continue;
3814 		page = pfn_to_page(pfn);
3815 
3816 		/* Watch out for overlapping nodes */
3817 		if (page_to_nid(page) != zone_to_nid(zone))
3818 			continue;
3819 
3820 		block_migratetype = get_pageblock_migratetype(page);
3821 
3822 		/* Only test what is necessary when the reserves are not met */
3823 		if (reserve > 0) {
3824 			/*
3825 			 * Blocks with reserved pages will never free, skip
3826 			 * them.
3827 			 */
3828 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3829 			if (pageblock_is_reserved(pfn, block_end_pfn))
3830 				continue;
3831 
3832 			/* If this block is reserved, account for it */
3833 			if (block_migratetype == MIGRATE_RESERVE) {
3834 				reserve--;
3835 				continue;
3836 			}
3837 
3838 			/* Suitable for reserving if this block is movable */
3839 			if (block_migratetype == MIGRATE_MOVABLE) {
3840 				set_pageblock_migratetype(page,
3841 							MIGRATE_RESERVE);
3842 				move_freepages_block(zone, page,
3843 							MIGRATE_RESERVE);
3844 				reserve--;
3845 				continue;
3846 			}
3847 		}
3848 
3849 		/*
3850 		 * If the reserve is met and this is a previous reserved block,
3851 		 * take it back
3852 		 */
3853 		if (block_migratetype == MIGRATE_RESERVE) {
3854 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3855 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3856 		}
3857 	}
3858 }
3859 
3860 /*
3861  * Initially all pages are reserved - free ones are freed
3862  * up by free_all_bootmem() once the early boot process is
3863  * done. Non-atomic initialization, single-pass.
3864  */
3865 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3866 		unsigned long start_pfn, enum memmap_context context)
3867 {
3868 	struct page *page;
3869 	unsigned long end_pfn = start_pfn + size;
3870 	unsigned long pfn;
3871 	struct zone *z;
3872 
3873 	if (highest_memmap_pfn < end_pfn - 1)
3874 		highest_memmap_pfn = end_pfn - 1;
3875 
3876 	z = &NODE_DATA(nid)->node_zones[zone];
3877 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3878 		/*
3879 		 * There can be holes in boot-time mem_map[]s
3880 		 * handed to this function.  They do not
3881 		 * exist on hotplugged memory.
3882 		 */
3883 		if (context == MEMMAP_EARLY) {
3884 			if (!early_pfn_valid(pfn))
3885 				continue;
3886 			if (!early_pfn_in_nid(pfn, nid))
3887 				continue;
3888 		}
3889 		page = pfn_to_page(pfn);
3890 		set_page_links(page, zone, nid, pfn);
3891 		mminit_verify_page_links(page, zone, nid, pfn);
3892 		init_page_count(page);
3893 		reset_page_mapcount(page);
3894 		reset_page_last_nid(page);
3895 		SetPageReserved(page);
3896 		/*
3897 		 * Mark the block movable so that blocks are reserved for
3898 		 * movable at startup. This will force kernel allocations
3899 		 * to reserve their blocks rather than leaking throughout
3900 		 * the address space during boot when many long-lived
3901 		 * kernel allocations are made. Later some blocks near
3902 		 * the start are marked MIGRATE_RESERVE by
3903 		 * setup_zone_migrate_reserve()
3904 		 *
3905 		 * bitmap is created for zone's valid pfn range. but memmap
3906 		 * can be created for invalid pages (for alignment)
3907 		 * check here not to call set_pageblock_migratetype() against
3908 		 * pfn out of zone.
3909 		 */
3910 		if ((z->zone_start_pfn <= pfn)
3911 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3912 		    && !(pfn & (pageblock_nr_pages - 1)))
3913 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3914 
3915 		INIT_LIST_HEAD(&page->lru);
3916 #ifdef WANT_PAGE_VIRTUAL
3917 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3918 		if (!is_highmem_idx(zone))
3919 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3920 #endif
3921 	}
3922 }
3923 
3924 static void __meminit zone_init_free_lists(struct zone *zone)
3925 {
3926 	int order, t;
3927 	for_each_migratetype_order(order, t) {
3928 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3929 		zone->free_area[order].nr_free = 0;
3930 	}
3931 }
3932 
3933 #ifndef __HAVE_ARCH_MEMMAP_INIT
3934 #define memmap_init(size, nid, zone, start_pfn) \
3935 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3936 #endif
3937 
3938 static int __meminit zone_batchsize(struct zone *zone)
3939 {
3940 #ifdef CONFIG_MMU
3941 	int batch;
3942 
3943 	/*
3944 	 * The per-cpu-pages pools are set to around 1000th of the
3945 	 * size of the zone.  But no more than 1/2 of a meg.
3946 	 *
3947 	 * OK, so we don't know how big the cache is.  So guess.
3948 	 */
3949 	batch = zone->present_pages / 1024;
3950 	if (batch * PAGE_SIZE > 512 * 1024)
3951 		batch = (512 * 1024) / PAGE_SIZE;
3952 	batch /= 4;		/* We effectively *= 4 below */
3953 	if (batch < 1)
3954 		batch = 1;
3955 
3956 	/*
3957 	 * Clamp the batch to a 2^n - 1 value. Having a power
3958 	 * of 2 value was found to be more likely to have
3959 	 * suboptimal cache aliasing properties in some cases.
3960 	 *
3961 	 * For example if 2 tasks are alternately allocating
3962 	 * batches of pages, one task can end up with a lot
3963 	 * of pages of one half of the possible page colors
3964 	 * and the other with pages of the other colors.
3965 	 */
3966 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3967 
3968 	return batch;
3969 
3970 #else
3971 	/* The deferral and batching of frees should be suppressed under NOMMU
3972 	 * conditions.
3973 	 *
3974 	 * The problem is that NOMMU needs to be able to allocate large chunks
3975 	 * of contiguous memory as there's no hardware page translation to
3976 	 * assemble apparent contiguous memory from discontiguous pages.
3977 	 *
3978 	 * Queueing large contiguous runs of pages for batching, however,
3979 	 * causes the pages to actually be freed in smaller chunks.  As there
3980 	 * can be a significant delay between the individual batches being
3981 	 * recycled, this leads to the once large chunks of space being
3982 	 * fragmented and becoming unavailable for high-order allocations.
3983 	 */
3984 	return 0;
3985 #endif
3986 }
3987 
3988 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3989 {
3990 	struct per_cpu_pages *pcp;
3991 	int migratetype;
3992 
3993 	memset(p, 0, sizeof(*p));
3994 
3995 	pcp = &p->pcp;
3996 	pcp->count = 0;
3997 	pcp->high = 6 * batch;
3998 	pcp->batch = max(1UL, 1 * batch);
3999 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4000 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4001 }
4002 
4003 /*
4004  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4005  * to the value high for the pageset p.
4006  */
4007 
4008 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4009 				unsigned long high)
4010 {
4011 	struct per_cpu_pages *pcp;
4012 
4013 	pcp = &p->pcp;
4014 	pcp->high = high;
4015 	pcp->batch = max(1UL, high/4);
4016 	if ((high/4) > (PAGE_SHIFT * 8))
4017 		pcp->batch = PAGE_SHIFT * 8;
4018 }
4019 
4020 static void __meminit setup_zone_pageset(struct zone *zone)
4021 {
4022 	int cpu;
4023 
4024 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4025 
4026 	for_each_possible_cpu(cpu) {
4027 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4028 
4029 		setup_pageset(pcp, zone_batchsize(zone));
4030 
4031 		if (percpu_pagelist_fraction)
4032 			setup_pagelist_highmark(pcp,
4033 				(zone->present_pages /
4034 					percpu_pagelist_fraction));
4035 	}
4036 }
4037 
4038 /*
4039  * Allocate per cpu pagesets and initialize them.
4040  * Before this call only boot pagesets were available.
4041  */
4042 void __init setup_per_cpu_pageset(void)
4043 {
4044 	struct zone *zone;
4045 
4046 	for_each_populated_zone(zone)
4047 		setup_zone_pageset(zone);
4048 }
4049 
4050 static noinline __init_refok
4051 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4052 {
4053 	int i;
4054 	struct pglist_data *pgdat = zone->zone_pgdat;
4055 	size_t alloc_size;
4056 
4057 	/*
4058 	 * The per-page waitqueue mechanism uses hashed waitqueues
4059 	 * per zone.
4060 	 */
4061 	zone->wait_table_hash_nr_entries =
4062 		 wait_table_hash_nr_entries(zone_size_pages);
4063 	zone->wait_table_bits =
4064 		wait_table_bits(zone->wait_table_hash_nr_entries);
4065 	alloc_size = zone->wait_table_hash_nr_entries
4066 					* sizeof(wait_queue_head_t);
4067 
4068 	if (!slab_is_available()) {
4069 		zone->wait_table = (wait_queue_head_t *)
4070 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
4071 	} else {
4072 		/*
4073 		 * This case means that a zone whose size was 0 gets new memory
4074 		 * via memory hot-add.
4075 		 * But it may be the case that a new node was hot-added.  In
4076 		 * this case vmalloc() will not be able to use this new node's
4077 		 * memory - this wait_table must be initialized to use this new
4078 		 * node itself as well.
4079 		 * To use this new node's memory, further consideration will be
4080 		 * necessary.
4081 		 */
4082 		zone->wait_table = vmalloc(alloc_size);
4083 	}
4084 	if (!zone->wait_table)
4085 		return -ENOMEM;
4086 
4087 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4088 		init_waitqueue_head(zone->wait_table + i);
4089 
4090 	return 0;
4091 }
4092 
4093 static __meminit void zone_pcp_init(struct zone *zone)
4094 {
4095 	/*
4096 	 * per cpu subsystem is not up at this point. The following code
4097 	 * relies on the ability of the linker to provide the
4098 	 * offset of a (static) per cpu variable into the per cpu area.
4099 	 */
4100 	zone->pageset = &boot_pageset;
4101 
4102 	if (zone->present_pages)
4103 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4104 			zone->name, zone->present_pages,
4105 					 zone_batchsize(zone));
4106 }
4107 
4108 int __meminit init_currently_empty_zone(struct zone *zone,
4109 					unsigned long zone_start_pfn,
4110 					unsigned long size,
4111 					enum memmap_context context)
4112 {
4113 	struct pglist_data *pgdat = zone->zone_pgdat;
4114 	int ret;
4115 	ret = zone_wait_table_init(zone, size);
4116 	if (ret)
4117 		return ret;
4118 	pgdat->nr_zones = zone_idx(zone) + 1;
4119 
4120 	zone->zone_start_pfn = zone_start_pfn;
4121 
4122 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4123 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4124 			pgdat->node_id,
4125 			(unsigned long)zone_idx(zone),
4126 			zone_start_pfn, (zone_start_pfn + size));
4127 
4128 	zone_init_free_lists(zone);
4129 
4130 	return 0;
4131 }
4132 
4133 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4134 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4135 /*
4136  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4137  * Architectures may implement their own version but if add_active_range()
4138  * was used and there are no special requirements, this is a convenient
4139  * alternative
4140  */
4141 int __meminit __early_pfn_to_nid(unsigned long pfn)
4142 {
4143 	unsigned long start_pfn, end_pfn;
4144 	int i, nid;
4145 
4146 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4147 		if (start_pfn <= pfn && pfn < end_pfn)
4148 			return nid;
4149 	/* This is a memory hole */
4150 	return -1;
4151 }
4152 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4153 
4154 int __meminit early_pfn_to_nid(unsigned long pfn)
4155 {
4156 	int nid;
4157 
4158 	nid = __early_pfn_to_nid(pfn);
4159 	if (nid >= 0)
4160 		return nid;
4161 	/* just returns 0 */
4162 	return 0;
4163 }
4164 
4165 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4166 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4167 {
4168 	int nid;
4169 
4170 	nid = __early_pfn_to_nid(pfn);
4171 	if (nid >= 0 && nid != node)
4172 		return false;
4173 	return true;
4174 }
4175 #endif
4176 
4177 /**
4178  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4179  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4180  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4181  *
4182  * If an architecture guarantees that all ranges registered with
4183  * add_active_ranges() contain no holes and may be freed, this
4184  * this function may be used instead of calling free_bootmem() manually.
4185  */
4186 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4187 {
4188 	unsigned long start_pfn, end_pfn;
4189 	int i, this_nid;
4190 
4191 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4192 		start_pfn = min(start_pfn, max_low_pfn);
4193 		end_pfn = min(end_pfn, max_low_pfn);
4194 
4195 		if (start_pfn < end_pfn)
4196 			free_bootmem_node(NODE_DATA(this_nid),
4197 					  PFN_PHYS(start_pfn),
4198 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4199 	}
4200 }
4201 
4202 /**
4203  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4204  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4205  *
4206  * If an architecture guarantees that all ranges registered with
4207  * add_active_ranges() contain no holes and may be freed, this
4208  * function may be used instead of calling memory_present() manually.
4209  */
4210 void __init sparse_memory_present_with_active_regions(int nid)
4211 {
4212 	unsigned long start_pfn, end_pfn;
4213 	int i, this_nid;
4214 
4215 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4216 		memory_present(this_nid, start_pfn, end_pfn);
4217 }
4218 
4219 /**
4220  * get_pfn_range_for_nid - Return the start and end page frames for a node
4221  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4222  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4223  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4224  *
4225  * It returns the start and end page frame of a node based on information
4226  * provided by an arch calling add_active_range(). If called for a node
4227  * with no available memory, a warning is printed and the start and end
4228  * PFNs will be 0.
4229  */
4230 void __meminit get_pfn_range_for_nid(unsigned int nid,
4231 			unsigned long *start_pfn, unsigned long *end_pfn)
4232 {
4233 	unsigned long this_start_pfn, this_end_pfn;
4234 	int i;
4235 
4236 	*start_pfn = -1UL;
4237 	*end_pfn = 0;
4238 
4239 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4240 		*start_pfn = min(*start_pfn, this_start_pfn);
4241 		*end_pfn = max(*end_pfn, this_end_pfn);
4242 	}
4243 
4244 	if (*start_pfn == -1UL)
4245 		*start_pfn = 0;
4246 }
4247 
4248 /*
4249  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4250  * assumption is made that zones within a node are ordered in monotonic
4251  * increasing memory addresses so that the "highest" populated zone is used
4252  */
4253 static void __init find_usable_zone_for_movable(void)
4254 {
4255 	int zone_index;
4256 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4257 		if (zone_index == ZONE_MOVABLE)
4258 			continue;
4259 
4260 		if (arch_zone_highest_possible_pfn[zone_index] >
4261 				arch_zone_lowest_possible_pfn[zone_index])
4262 			break;
4263 	}
4264 
4265 	VM_BUG_ON(zone_index == -1);
4266 	movable_zone = zone_index;
4267 }
4268 
4269 /*
4270  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4271  * because it is sized independent of architecture. Unlike the other zones,
4272  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4273  * in each node depending on the size of each node and how evenly kernelcore
4274  * is distributed. This helper function adjusts the zone ranges
4275  * provided by the architecture for a given node by using the end of the
4276  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4277  * zones within a node are in order of monotonic increases memory addresses
4278  */
4279 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4280 					unsigned long zone_type,
4281 					unsigned long node_start_pfn,
4282 					unsigned long node_end_pfn,
4283 					unsigned long *zone_start_pfn,
4284 					unsigned long *zone_end_pfn)
4285 {
4286 	/* Only adjust if ZONE_MOVABLE is on this node */
4287 	if (zone_movable_pfn[nid]) {
4288 		/* Size ZONE_MOVABLE */
4289 		if (zone_type == ZONE_MOVABLE) {
4290 			*zone_start_pfn = zone_movable_pfn[nid];
4291 			*zone_end_pfn = min(node_end_pfn,
4292 				arch_zone_highest_possible_pfn[movable_zone]);
4293 
4294 		/* Adjust for ZONE_MOVABLE starting within this range */
4295 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4296 				*zone_end_pfn > zone_movable_pfn[nid]) {
4297 			*zone_end_pfn = zone_movable_pfn[nid];
4298 
4299 		/* Check if this whole range is within ZONE_MOVABLE */
4300 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4301 			*zone_start_pfn = *zone_end_pfn;
4302 	}
4303 }
4304 
4305 /*
4306  * Return the number of pages a zone spans in a node, including holes
4307  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4308  */
4309 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4310 					unsigned long zone_type,
4311 					unsigned long *ignored)
4312 {
4313 	unsigned long node_start_pfn, node_end_pfn;
4314 	unsigned long zone_start_pfn, zone_end_pfn;
4315 
4316 	/* Get the start and end of the node and zone */
4317 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4318 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4319 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4320 	adjust_zone_range_for_zone_movable(nid, zone_type,
4321 				node_start_pfn, node_end_pfn,
4322 				&zone_start_pfn, &zone_end_pfn);
4323 
4324 	/* Check that this node has pages within the zone's required range */
4325 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4326 		return 0;
4327 
4328 	/* Move the zone boundaries inside the node if necessary */
4329 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4330 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4331 
4332 	/* Return the spanned pages */
4333 	return zone_end_pfn - zone_start_pfn;
4334 }
4335 
4336 /*
4337  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4338  * then all holes in the requested range will be accounted for.
4339  */
4340 unsigned long __meminit __absent_pages_in_range(int nid,
4341 				unsigned long range_start_pfn,
4342 				unsigned long range_end_pfn)
4343 {
4344 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4345 	unsigned long start_pfn, end_pfn;
4346 	int i;
4347 
4348 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4349 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4350 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4351 		nr_absent -= end_pfn - start_pfn;
4352 	}
4353 	return nr_absent;
4354 }
4355 
4356 /**
4357  * absent_pages_in_range - Return number of page frames in holes within a range
4358  * @start_pfn: The start PFN to start searching for holes
4359  * @end_pfn: The end PFN to stop searching for holes
4360  *
4361  * It returns the number of pages frames in memory holes within a range.
4362  */
4363 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4364 							unsigned long end_pfn)
4365 {
4366 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4367 }
4368 
4369 /* Return the number of page frames in holes in a zone on a node */
4370 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4371 					unsigned long zone_type,
4372 					unsigned long *ignored)
4373 {
4374 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4375 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4376 	unsigned long node_start_pfn, node_end_pfn;
4377 	unsigned long zone_start_pfn, zone_end_pfn;
4378 
4379 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4380 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4381 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4382 
4383 	adjust_zone_range_for_zone_movable(nid, zone_type,
4384 			node_start_pfn, node_end_pfn,
4385 			&zone_start_pfn, &zone_end_pfn);
4386 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4387 }
4388 
4389 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4390 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4391 					unsigned long zone_type,
4392 					unsigned long *zones_size)
4393 {
4394 	return zones_size[zone_type];
4395 }
4396 
4397 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4398 						unsigned long zone_type,
4399 						unsigned long *zholes_size)
4400 {
4401 	if (!zholes_size)
4402 		return 0;
4403 
4404 	return zholes_size[zone_type];
4405 }
4406 
4407 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4408 
4409 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4410 		unsigned long *zones_size, unsigned long *zholes_size)
4411 {
4412 	unsigned long realtotalpages, totalpages = 0;
4413 	enum zone_type i;
4414 
4415 	for (i = 0; i < MAX_NR_ZONES; i++)
4416 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4417 								zones_size);
4418 	pgdat->node_spanned_pages = totalpages;
4419 
4420 	realtotalpages = totalpages;
4421 	for (i = 0; i < MAX_NR_ZONES; i++)
4422 		realtotalpages -=
4423 			zone_absent_pages_in_node(pgdat->node_id, i,
4424 								zholes_size);
4425 	pgdat->node_present_pages = realtotalpages;
4426 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4427 							realtotalpages);
4428 }
4429 
4430 #ifndef CONFIG_SPARSEMEM
4431 /*
4432  * Calculate the size of the zone->blockflags rounded to an unsigned long
4433  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4434  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4435  * round what is now in bits to nearest long in bits, then return it in
4436  * bytes.
4437  */
4438 static unsigned long __init usemap_size(unsigned long zonesize)
4439 {
4440 	unsigned long usemapsize;
4441 
4442 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4443 	usemapsize = usemapsize >> pageblock_order;
4444 	usemapsize *= NR_PAGEBLOCK_BITS;
4445 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4446 
4447 	return usemapsize / 8;
4448 }
4449 
4450 static void __init setup_usemap(struct pglist_data *pgdat,
4451 				struct zone *zone, unsigned long zonesize)
4452 {
4453 	unsigned long usemapsize = usemap_size(zonesize);
4454 	zone->pageblock_flags = NULL;
4455 	if (usemapsize)
4456 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4457 								   usemapsize);
4458 }
4459 #else
4460 static inline void setup_usemap(struct pglist_data *pgdat,
4461 				struct zone *zone, unsigned long zonesize) {}
4462 #endif /* CONFIG_SPARSEMEM */
4463 
4464 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4465 
4466 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4467 void __init set_pageblock_order(void)
4468 {
4469 	unsigned int order;
4470 
4471 	/* Check that pageblock_nr_pages has not already been setup */
4472 	if (pageblock_order)
4473 		return;
4474 
4475 	if (HPAGE_SHIFT > PAGE_SHIFT)
4476 		order = HUGETLB_PAGE_ORDER;
4477 	else
4478 		order = MAX_ORDER - 1;
4479 
4480 	/*
4481 	 * Assume the largest contiguous order of interest is a huge page.
4482 	 * This value may be variable depending on boot parameters on IA64 and
4483 	 * powerpc.
4484 	 */
4485 	pageblock_order = order;
4486 }
4487 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4488 
4489 /*
4490  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4491  * is unused as pageblock_order is set at compile-time. See
4492  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4493  * the kernel config
4494  */
4495 void __init set_pageblock_order(void)
4496 {
4497 }
4498 
4499 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4500 
4501 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4502 						   unsigned long present_pages)
4503 {
4504 	unsigned long pages = spanned_pages;
4505 
4506 	/*
4507 	 * Provide a more accurate estimation if there are holes within
4508 	 * the zone and SPARSEMEM is in use. If there are holes within the
4509 	 * zone, each populated memory region may cost us one or two extra
4510 	 * memmap pages due to alignment because memmap pages for each
4511 	 * populated regions may not naturally algined on page boundary.
4512 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4513 	 */
4514 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4515 	    IS_ENABLED(CONFIG_SPARSEMEM))
4516 		pages = present_pages;
4517 
4518 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4519 }
4520 
4521 /*
4522  * Set up the zone data structures:
4523  *   - mark all pages reserved
4524  *   - mark all memory queues empty
4525  *   - clear the memory bitmaps
4526  *
4527  * NOTE: pgdat should get zeroed by caller.
4528  */
4529 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4530 		unsigned long *zones_size, unsigned long *zholes_size)
4531 {
4532 	enum zone_type j;
4533 	int nid = pgdat->node_id;
4534 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4535 	int ret;
4536 
4537 	pgdat_resize_init(pgdat);
4538 #ifdef CONFIG_NUMA_BALANCING
4539 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4540 	pgdat->numabalancing_migrate_nr_pages = 0;
4541 	pgdat->numabalancing_migrate_next_window = jiffies;
4542 #endif
4543 	init_waitqueue_head(&pgdat->kswapd_wait);
4544 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4545 	pgdat_page_cgroup_init(pgdat);
4546 
4547 	for (j = 0; j < MAX_NR_ZONES; j++) {
4548 		struct zone *zone = pgdat->node_zones + j;
4549 		unsigned long size, realsize, freesize, memmap_pages;
4550 
4551 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4552 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4553 								zholes_size);
4554 
4555 		/*
4556 		 * Adjust freesize so that it accounts for how much memory
4557 		 * is used by this zone for memmap. This affects the watermark
4558 		 * and per-cpu initialisations
4559 		 */
4560 		memmap_pages = calc_memmap_size(size, realsize);
4561 		if (freesize >= memmap_pages) {
4562 			freesize -= memmap_pages;
4563 			if (memmap_pages)
4564 				printk(KERN_DEBUG
4565 				       "  %s zone: %lu pages used for memmap\n",
4566 				       zone_names[j], memmap_pages);
4567 		} else
4568 			printk(KERN_WARNING
4569 				"  %s zone: %lu pages exceeds freesize %lu\n",
4570 				zone_names[j], memmap_pages, freesize);
4571 
4572 		/* Account for reserved pages */
4573 		if (j == 0 && freesize > dma_reserve) {
4574 			freesize -= dma_reserve;
4575 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4576 					zone_names[0], dma_reserve);
4577 		}
4578 
4579 		if (!is_highmem_idx(j))
4580 			nr_kernel_pages += freesize;
4581 		/* Charge for highmem memmap if there are enough kernel pages */
4582 		else if (nr_kernel_pages > memmap_pages * 2)
4583 			nr_kernel_pages -= memmap_pages;
4584 		nr_all_pages += freesize;
4585 
4586 		zone->spanned_pages = size;
4587 		zone->present_pages = freesize;
4588 		/*
4589 		 * Set an approximate value for lowmem here, it will be adjusted
4590 		 * when the bootmem allocator frees pages into the buddy system.
4591 		 * And all highmem pages will be managed by the buddy system.
4592 		 */
4593 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4594 #ifdef CONFIG_NUMA
4595 		zone->node = nid;
4596 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4597 						/ 100;
4598 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4599 #endif
4600 		zone->name = zone_names[j];
4601 		spin_lock_init(&zone->lock);
4602 		spin_lock_init(&zone->lru_lock);
4603 		zone_seqlock_init(zone);
4604 		zone->zone_pgdat = pgdat;
4605 
4606 		zone_pcp_init(zone);
4607 		lruvec_init(&zone->lruvec);
4608 		if (!size)
4609 			continue;
4610 
4611 		set_pageblock_order();
4612 		setup_usemap(pgdat, zone, size);
4613 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4614 						size, MEMMAP_EARLY);
4615 		BUG_ON(ret);
4616 		memmap_init(size, nid, j, zone_start_pfn);
4617 		zone_start_pfn += size;
4618 	}
4619 }
4620 
4621 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4622 {
4623 	/* Skip empty nodes */
4624 	if (!pgdat->node_spanned_pages)
4625 		return;
4626 
4627 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4628 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4629 	if (!pgdat->node_mem_map) {
4630 		unsigned long size, start, end;
4631 		struct page *map;
4632 
4633 		/*
4634 		 * The zone's endpoints aren't required to be MAX_ORDER
4635 		 * aligned but the node_mem_map endpoints must be in order
4636 		 * for the buddy allocator to function correctly.
4637 		 */
4638 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4639 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4640 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4641 		size =  (end - start) * sizeof(struct page);
4642 		map = alloc_remap(pgdat->node_id, size);
4643 		if (!map)
4644 			map = alloc_bootmem_node_nopanic(pgdat, size);
4645 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4646 	}
4647 #ifndef CONFIG_NEED_MULTIPLE_NODES
4648 	/*
4649 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4650 	 */
4651 	if (pgdat == NODE_DATA(0)) {
4652 		mem_map = NODE_DATA(0)->node_mem_map;
4653 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4654 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4655 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4656 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4657 	}
4658 #endif
4659 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4660 }
4661 
4662 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4663 		unsigned long node_start_pfn, unsigned long *zholes_size)
4664 {
4665 	pg_data_t *pgdat = NODE_DATA(nid);
4666 
4667 	/* pg_data_t should be reset to zero when it's allocated */
4668 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4669 
4670 	pgdat->node_id = nid;
4671 	pgdat->node_start_pfn = node_start_pfn;
4672 	init_zone_allows_reclaim(nid);
4673 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4674 
4675 	alloc_node_mem_map(pgdat);
4676 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4677 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4678 		nid, (unsigned long)pgdat,
4679 		(unsigned long)pgdat->node_mem_map);
4680 #endif
4681 
4682 	free_area_init_core(pgdat, zones_size, zholes_size);
4683 }
4684 
4685 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4686 
4687 #if MAX_NUMNODES > 1
4688 /*
4689  * Figure out the number of possible node ids.
4690  */
4691 static void __init setup_nr_node_ids(void)
4692 {
4693 	unsigned int node;
4694 	unsigned int highest = 0;
4695 
4696 	for_each_node_mask(node, node_possible_map)
4697 		highest = node;
4698 	nr_node_ids = highest + 1;
4699 }
4700 #else
4701 static inline void setup_nr_node_ids(void)
4702 {
4703 }
4704 #endif
4705 
4706 /**
4707  * node_map_pfn_alignment - determine the maximum internode alignment
4708  *
4709  * This function should be called after node map is populated and sorted.
4710  * It calculates the maximum power of two alignment which can distinguish
4711  * all the nodes.
4712  *
4713  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4714  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4715  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4716  * shifted, 1GiB is enough and this function will indicate so.
4717  *
4718  * This is used to test whether pfn -> nid mapping of the chosen memory
4719  * model has fine enough granularity to avoid incorrect mapping for the
4720  * populated node map.
4721  *
4722  * Returns the determined alignment in pfn's.  0 if there is no alignment
4723  * requirement (single node).
4724  */
4725 unsigned long __init node_map_pfn_alignment(void)
4726 {
4727 	unsigned long accl_mask = 0, last_end = 0;
4728 	unsigned long start, end, mask;
4729 	int last_nid = -1;
4730 	int i, nid;
4731 
4732 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4733 		if (!start || last_nid < 0 || last_nid == nid) {
4734 			last_nid = nid;
4735 			last_end = end;
4736 			continue;
4737 		}
4738 
4739 		/*
4740 		 * Start with a mask granular enough to pin-point to the
4741 		 * start pfn and tick off bits one-by-one until it becomes
4742 		 * too coarse to separate the current node from the last.
4743 		 */
4744 		mask = ~((1 << __ffs(start)) - 1);
4745 		while (mask && last_end <= (start & (mask << 1)))
4746 			mask <<= 1;
4747 
4748 		/* accumulate all internode masks */
4749 		accl_mask |= mask;
4750 	}
4751 
4752 	/* convert mask to number of pages */
4753 	return ~accl_mask + 1;
4754 }
4755 
4756 /* Find the lowest pfn for a node */
4757 static unsigned long __init find_min_pfn_for_node(int nid)
4758 {
4759 	unsigned long min_pfn = ULONG_MAX;
4760 	unsigned long start_pfn;
4761 	int i;
4762 
4763 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4764 		min_pfn = min(min_pfn, start_pfn);
4765 
4766 	if (min_pfn == ULONG_MAX) {
4767 		printk(KERN_WARNING
4768 			"Could not find start_pfn for node %d\n", nid);
4769 		return 0;
4770 	}
4771 
4772 	return min_pfn;
4773 }
4774 
4775 /**
4776  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4777  *
4778  * It returns the minimum PFN based on information provided via
4779  * add_active_range().
4780  */
4781 unsigned long __init find_min_pfn_with_active_regions(void)
4782 {
4783 	return find_min_pfn_for_node(MAX_NUMNODES);
4784 }
4785 
4786 /*
4787  * early_calculate_totalpages()
4788  * Sum pages in active regions for movable zone.
4789  * Populate N_MEMORY for calculating usable_nodes.
4790  */
4791 static unsigned long __init early_calculate_totalpages(void)
4792 {
4793 	unsigned long totalpages = 0;
4794 	unsigned long start_pfn, end_pfn;
4795 	int i, nid;
4796 
4797 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4798 		unsigned long pages = end_pfn - start_pfn;
4799 
4800 		totalpages += pages;
4801 		if (pages)
4802 			node_set_state(nid, N_MEMORY);
4803 	}
4804   	return totalpages;
4805 }
4806 
4807 /*
4808  * Find the PFN the Movable zone begins in each node. Kernel memory
4809  * is spread evenly between nodes as long as the nodes have enough
4810  * memory. When they don't, some nodes will have more kernelcore than
4811  * others
4812  */
4813 static void __init find_zone_movable_pfns_for_nodes(void)
4814 {
4815 	int i, nid;
4816 	unsigned long usable_startpfn;
4817 	unsigned long kernelcore_node, kernelcore_remaining;
4818 	/* save the state before borrow the nodemask */
4819 	nodemask_t saved_node_state = node_states[N_MEMORY];
4820 	unsigned long totalpages = early_calculate_totalpages();
4821 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4822 
4823 	/*
4824 	 * If movablecore was specified, calculate what size of
4825 	 * kernelcore that corresponds so that memory usable for
4826 	 * any allocation type is evenly spread. If both kernelcore
4827 	 * and movablecore are specified, then the value of kernelcore
4828 	 * will be used for required_kernelcore if it's greater than
4829 	 * what movablecore would have allowed.
4830 	 */
4831 	if (required_movablecore) {
4832 		unsigned long corepages;
4833 
4834 		/*
4835 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4836 		 * was requested by the user
4837 		 */
4838 		required_movablecore =
4839 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4840 		corepages = totalpages - required_movablecore;
4841 
4842 		required_kernelcore = max(required_kernelcore, corepages);
4843 	}
4844 
4845 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4846 	if (!required_kernelcore)
4847 		goto out;
4848 
4849 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4850 	find_usable_zone_for_movable();
4851 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4852 
4853 restart:
4854 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4855 	kernelcore_node = required_kernelcore / usable_nodes;
4856 	for_each_node_state(nid, N_MEMORY) {
4857 		unsigned long start_pfn, end_pfn;
4858 
4859 		/*
4860 		 * Recalculate kernelcore_node if the division per node
4861 		 * now exceeds what is necessary to satisfy the requested
4862 		 * amount of memory for the kernel
4863 		 */
4864 		if (required_kernelcore < kernelcore_node)
4865 			kernelcore_node = required_kernelcore / usable_nodes;
4866 
4867 		/*
4868 		 * As the map is walked, we track how much memory is usable
4869 		 * by the kernel using kernelcore_remaining. When it is
4870 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4871 		 */
4872 		kernelcore_remaining = kernelcore_node;
4873 
4874 		/* Go through each range of PFNs within this node */
4875 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4876 			unsigned long size_pages;
4877 
4878 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4879 			if (start_pfn >= end_pfn)
4880 				continue;
4881 
4882 			/* Account for what is only usable for kernelcore */
4883 			if (start_pfn < usable_startpfn) {
4884 				unsigned long kernel_pages;
4885 				kernel_pages = min(end_pfn, usable_startpfn)
4886 								- start_pfn;
4887 
4888 				kernelcore_remaining -= min(kernel_pages,
4889 							kernelcore_remaining);
4890 				required_kernelcore -= min(kernel_pages,
4891 							required_kernelcore);
4892 
4893 				/* Continue if range is now fully accounted */
4894 				if (end_pfn <= usable_startpfn) {
4895 
4896 					/*
4897 					 * Push zone_movable_pfn to the end so
4898 					 * that if we have to rebalance
4899 					 * kernelcore across nodes, we will
4900 					 * not double account here
4901 					 */
4902 					zone_movable_pfn[nid] = end_pfn;
4903 					continue;
4904 				}
4905 				start_pfn = usable_startpfn;
4906 			}
4907 
4908 			/*
4909 			 * The usable PFN range for ZONE_MOVABLE is from
4910 			 * start_pfn->end_pfn. Calculate size_pages as the
4911 			 * number of pages used as kernelcore
4912 			 */
4913 			size_pages = end_pfn - start_pfn;
4914 			if (size_pages > kernelcore_remaining)
4915 				size_pages = kernelcore_remaining;
4916 			zone_movable_pfn[nid] = start_pfn + size_pages;
4917 
4918 			/*
4919 			 * Some kernelcore has been met, update counts and
4920 			 * break if the kernelcore for this node has been
4921 			 * satisified
4922 			 */
4923 			required_kernelcore -= min(required_kernelcore,
4924 								size_pages);
4925 			kernelcore_remaining -= size_pages;
4926 			if (!kernelcore_remaining)
4927 				break;
4928 		}
4929 	}
4930 
4931 	/*
4932 	 * If there is still required_kernelcore, we do another pass with one
4933 	 * less node in the count. This will push zone_movable_pfn[nid] further
4934 	 * along on the nodes that still have memory until kernelcore is
4935 	 * satisified
4936 	 */
4937 	usable_nodes--;
4938 	if (usable_nodes && required_kernelcore > usable_nodes)
4939 		goto restart;
4940 
4941 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4942 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4943 		zone_movable_pfn[nid] =
4944 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4945 
4946 out:
4947 	/* restore the node_state */
4948 	node_states[N_MEMORY] = saved_node_state;
4949 }
4950 
4951 /* Any regular or high memory on that node ? */
4952 static void check_for_memory(pg_data_t *pgdat, int nid)
4953 {
4954 	enum zone_type zone_type;
4955 
4956 	if (N_MEMORY == N_NORMAL_MEMORY)
4957 		return;
4958 
4959 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4960 		struct zone *zone = &pgdat->node_zones[zone_type];
4961 		if (zone->present_pages) {
4962 			node_set_state(nid, N_HIGH_MEMORY);
4963 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4964 			    zone_type <= ZONE_NORMAL)
4965 				node_set_state(nid, N_NORMAL_MEMORY);
4966 			break;
4967 		}
4968 	}
4969 }
4970 
4971 /**
4972  * free_area_init_nodes - Initialise all pg_data_t and zone data
4973  * @max_zone_pfn: an array of max PFNs for each zone
4974  *
4975  * This will call free_area_init_node() for each active node in the system.
4976  * Using the page ranges provided by add_active_range(), the size of each
4977  * zone in each node and their holes is calculated. If the maximum PFN
4978  * between two adjacent zones match, it is assumed that the zone is empty.
4979  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4980  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4981  * starts where the previous one ended. For example, ZONE_DMA32 starts
4982  * at arch_max_dma_pfn.
4983  */
4984 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4985 {
4986 	unsigned long start_pfn, end_pfn;
4987 	int i, nid;
4988 
4989 	/* Record where the zone boundaries are */
4990 	memset(arch_zone_lowest_possible_pfn, 0,
4991 				sizeof(arch_zone_lowest_possible_pfn));
4992 	memset(arch_zone_highest_possible_pfn, 0,
4993 				sizeof(arch_zone_highest_possible_pfn));
4994 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4995 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4996 	for (i = 1; i < MAX_NR_ZONES; i++) {
4997 		if (i == ZONE_MOVABLE)
4998 			continue;
4999 		arch_zone_lowest_possible_pfn[i] =
5000 			arch_zone_highest_possible_pfn[i-1];
5001 		arch_zone_highest_possible_pfn[i] =
5002 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5003 	}
5004 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5005 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5006 
5007 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5008 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5009 	find_zone_movable_pfns_for_nodes();
5010 
5011 	/* Print out the zone ranges */
5012 	printk("Zone ranges:\n");
5013 	for (i = 0; i < MAX_NR_ZONES; i++) {
5014 		if (i == ZONE_MOVABLE)
5015 			continue;
5016 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5017 		if (arch_zone_lowest_possible_pfn[i] ==
5018 				arch_zone_highest_possible_pfn[i])
5019 			printk(KERN_CONT "empty\n");
5020 		else
5021 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5022 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5023 				(arch_zone_highest_possible_pfn[i]
5024 					<< PAGE_SHIFT) - 1);
5025 	}
5026 
5027 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5028 	printk("Movable zone start for each node\n");
5029 	for (i = 0; i < MAX_NUMNODES; i++) {
5030 		if (zone_movable_pfn[i])
5031 			printk("  Node %d: %#010lx\n", i,
5032 			       zone_movable_pfn[i] << PAGE_SHIFT);
5033 	}
5034 
5035 	/* Print out the early node map */
5036 	printk("Early memory node ranges\n");
5037 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5038 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5039 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5040 
5041 	/* Initialise every node */
5042 	mminit_verify_pageflags_layout();
5043 	setup_nr_node_ids();
5044 	for_each_online_node(nid) {
5045 		pg_data_t *pgdat = NODE_DATA(nid);
5046 		free_area_init_node(nid, NULL,
5047 				find_min_pfn_for_node(nid), NULL);
5048 
5049 		/* Any memory on that node */
5050 		if (pgdat->node_present_pages)
5051 			node_set_state(nid, N_MEMORY);
5052 		check_for_memory(pgdat, nid);
5053 	}
5054 }
5055 
5056 static int __init cmdline_parse_core(char *p, unsigned long *core)
5057 {
5058 	unsigned long long coremem;
5059 	if (!p)
5060 		return -EINVAL;
5061 
5062 	coremem = memparse(p, &p);
5063 	*core = coremem >> PAGE_SHIFT;
5064 
5065 	/* Paranoid check that UL is enough for the coremem value */
5066 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5067 
5068 	return 0;
5069 }
5070 
5071 /*
5072  * kernelcore=size sets the amount of memory for use for allocations that
5073  * cannot be reclaimed or migrated.
5074  */
5075 static int __init cmdline_parse_kernelcore(char *p)
5076 {
5077 	return cmdline_parse_core(p, &required_kernelcore);
5078 }
5079 
5080 /*
5081  * movablecore=size sets the amount of memory for use for allocations that
5082  * can be reclaimed or migrated.
5083  */
5084 static int __init cmdline_parse_movablecore(char *p)
5085 {
5086 	return cmdline_parse_core(p, &required_movablecore);
5087 }
5088 
5089 early_param("kernelcore", cmdline_parse_kernelcore);
5090 early_param("movablecore", cmdline_parse_movablecore);
5091 
5092 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5093 
5094 /**
5095  * set_dma_reserve - set the specified number of pages reserved in the first zone
5096  * @new_dma_reserve: The number of pages to mark reserved
5097  *
5098  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5099  * In the DMA zone, a significant percentage may be consumed by kernel image
5100  * and other unfreeable allocations which can skew the watermarks badly. This
5101  * function may optionally be used to account for unfreeable pages in the
5102  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5103  * smaller per-cpu batchsize.
5104  */
5105 void __init set_dma_reserve(unsigned long new_dma_reserve)
5106 {
5107 	dma_reserve = new_dma_reserve;
5108 }
5109 
5110 void __init free_area_init(unsigned long *zones_size)
5111 {
5112 	free_area_init_node(0, zones_size,
5113 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5114 }
5115 
5116 static int page_alloc_cpu_notify(struct notifier_block *self,
5117 				 unsigned long action, void *hcpu)
5118 {
5119 	int cpu = (unsigned long)hcpu;
5120 
5121 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5122 		lru_add_drain_cpu(cpu);
5123 		drain_pages(cpu);
5124 
5125 		/*
5126 		 * Spill the event counters of the dead processor
5127 		 * into the current processors event counters.
5128 		 * This artificially elevates the count of the current
5129 		 * processor.
5130 		 */
5131 		vm_events_fold_cpu(cpu);
5132 
5133 		/*
5134 		 * Zero the differential counters of the dead processor
5135 		 * so that the vm statistics are consistent.
5136 		 *
5137 		 * This is only okay since the processor is dead and cannot
5138 		 * race with what we are doing.
5139 		 */
5140 		refresh_cpu_vm_stats(cpu);
5141 	}
5142 	return NOTIFY_OK;
5143 }
5144 
5145 void __init page_alloc_init(void)
5146 {
5147 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5148 }
5149 
5150 /*
5151  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5152  *	or min_free_kbytes changes.
5153  */
5154 static void calculate_totalreserve_pages(void)
5155 {
5156 	struct pglist_data *pgdat;
5157 	unsigned long reserve_pages = 0;
5158 	enum zone_type i, j;
5159 
5160 	for_each_online_pgdat(pgdat) {
5161 		for (i = 0; i < MAX_NR_ZONES; i++) {
5162 			struct zone *zone = pgdat->node_zones + i;
5163 			unsigned long max = 0;
5164 
5165 			/* Find valid and maximum lowmem_reserve in the zone */
5166 			for (j = i; j < MAX_NR_ZONES; j++) {
5167 				if (zone->lowmem_reserve[j] > max)
5168 					max = zone->lowmem_reserve[j];
5169 			}
5170 
5171 			/* we treat the high watermark as reserved pages. */
5172 			max += high_wmark_pages(zone);
5173 
5174 			if (max > zone->present_pages)
5175 				max = zone->present_pages;
5176 			reserve_pages += max;
5177 			/*
5178 			 * Lowmem reserves are not available to
5179 			 * GFP_HIGHUSER page cache allocations and
5180 			 * kswapd tries to balance zones to their high
5181 			 * watermark.  As a result, neither should be
5182 			 * regarded as dirtyable memory, to prevent a
5183 			 * situation where reclaim has to clean pages
5184 			 * in order to balance the zones.
5185 			 */
5186 			zone->dirty_balance_reserve = max;
5187 		}
5188 	}
5189 	dirty_balance_reserve = reserve_pages;
5190 	totalreserve_pages = reserve_pages;
5191 }
5192 
5193 /*
5194  * setup_per_zone_lowmem_reserve - called whenever
5195  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5196  *	has a correct pages reserved value, so an adequate number of
5197  *	pages are left in the zone after a successful __alloc_pages().
5198  */
5199 static void setup_per_zone_lowmem_reserve(void)
5200 {
5201 	struct pglist_data *pgdat;
5202 	enum zone_type j, idx;
5203 
5204 	for_each_online_pgdat(pgdat) {
5205 		for (j = 0; j < MAX_NR_ZONES; j++) {
5206 			struct zone *zone = pgdat->node_zones + j;
5207 			unsigned long present_pages = zone->present_pages;
5208 
5209 			zone->lowmem_reserve[j] = 0;
5210 
5211 			idx = j;
5212 			while (idx) {
5213 				struct zone *lower_zone;
5214 
5215 				idx--;
5216 
5217 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5218 					sysctl_lowmem_reserve_ratio[idx] = 1;
5219 
5220 				lower_zone = pgdat->node_zones + idx;
5221 				lower_zone->lowmem_reserve[j] = present_pages /
5222 					sysctl_lowmem_reserve_ratio[idx];
5223 				present_pages += lower_zone->present_pages;
5224 			}
5225 		}
5226 	}
5227 
5228 	/* update totalreserve_pages */
5229 	calculate_totalreserve_pages();
5230 }
5231 
5232 static void __setup_per_zone_wmarks(void)
5233 {
5234 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5235 	unsigned long lowmem_pages = 0;
5236 	struct zone *zone;
5237 	unsigned long flags;
5238 
5239 	/* Calculate total number of !ZONE_HIGHMEM pages */
5240 	for_each_zone(zone) {
5241 		if (!is_highmem(zone))
5242 			lowmem_pages += zone->present_pages;
5243 	}
5244 
5245 	for_each_zone(zone) {
5246 		u64 tmp;
5247 
5248 		spin_lock_irqsave(&zone->lock, flags);
5249 		tmp = (u64)pages_min * zone->present_pages;
5250 		do_div(tmp, lowmem_pages);
5251 		if (is_highmem(zone)) {
5252 			/*
5253 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5254 			 * need highmem pages, so cap pages_min to a small
5255 			 * value here.
5256 			 *
5257 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5258 			 * deltas controls asynch page reclaim, and so should
5259 			 * not be capped for highmem.
5260 			 */
5261 			int min_pages;
5262 
5263 			min_pages = zone->present_pages / 1024;
5264 			if (min_pages < SWAP_CLUSTER_MAX)
5265 				min_pages = SWAP_CLUSTER_MAX;
5266 			if (min_pages > 128)
5267 				min_pages = 128;
5268 			zone->watermark[WMARK_MIN] = min_pages;
5269 		} else {
5270 			/*
5271 			 * If it's a lowmem zone, reserve a number of pages
5272 			 * proportionate to the zone's size.
5273 			 */
5274 			zone->watermark[WMARK_MIN] = tmp;
5275 		}
5276 
5277 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5278 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5279 
5280 		setup_zone_migrate_reserve(zone);
5281 		spin_unlock_irqrestore(&zone->lock, flags);
5282 	}
5283 
5284 	/* update totalreserve_pages */
5285 	calculate_totalreserve_pages();
5286 }
5287 
5288 /**
5289  * setup_per_zone_wmarks - called when min_free_kbytes changes
5290  * or when memory is hot-{added|removed}
5291  *
5292  * Ensures that the watermark[min,low,high] values for each zone are set
5293  * correctly with respect to min_free_kbytes.
5294  */
5295 void setup_per_zone_wmarks(void)
5296 {
5297 	mutex_lock(&zonelists_mutex);
5298 	__setup_per_zone_wmarks();
5299 	mutex_unlock(&zonelists_mutex);
5300 }
5301 
5302 /*
5303  * The inactive anon list should be small enough that the VM never has to
5304  * do too much work, but large enough that each inactive page has a chance
5305  * to be referenced again before it is swapped out.
5306  *
5307  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5308  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5309  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5310  * the anonymous pages are kept on the inactive list.
5311  *
5312  * total     target    max
5313  * memory    ratio     inactive anon
5314  * -------------------------------------
5315  *   10MB       1         5MB
5316  *  100MB       1        50MB
5317  *    1GB       3       250MB
5318  *   10GB      10       0.9GB
5319  *  100GB      31         3GB
5320  *    1TB     101        10GB
5321  *   10TB     320        32GB
5322  */
5323 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5324 {
5325 	unsigned int gb, ratio;
5326 
5327 	/* Zone size in gigabytes */
5328 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5329 	if (gb)
5330 		ratio = int_sqrt(10 * gb);
5331 	else
5332 		ratio = 1;
5333 
5334 	zone->inactive_ratio = ratio;
5335 }
5336 
5337 static void __meminit setup_per_zone_inactive_ratio(void)
5338 {
5339 	struct zone *zone;
5340 
5341 	for_each_zone(zone)
5342 		calculate_zone_inactive_ratio(zone);
5343 }
5344 
5345 /*
5346  * Initialise min_free_kbytes.
5347  *
5348  * For small machines we want it small (128k min).  For large machines
5349  * we want it large (64MB max).  But it is not linear, because network
5350  * bandwidth does not increase linearly with machine size.  We use
5351  *
5352  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5353  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5354  *
5355  * which yields
5356  *
5357  * 16MB:	512k
5358  * 32MB:	724k
5359  * 64MB:	1024k
5360  * 128MB:	1448k
5361  * 256MB:	2048k
5362  * 512MB:	2896k
5363  * 1024MB:	4096k
5364  * 2048MB:	5792k
5365  * 4096MB:	8192k
5366  * 8192MB:	11584k
5367  * 16384MB:	16384k
5368  */
5369 int __meminit init_per_zone_wmark_min(void)
5370 {
5371 	unsigned long lowmem_kbytes;
5372 
5373 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5374 
5375 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5376 	if (min_free_kbytes < 128)
5377 		min_free_kbytes = 128;
5378 	if (min_free_kbytes > 65536)
5379 		min_free_kbytes = 65536;
5380 	setup_per_zone_wmarks();
5381 	refresh_zone_stat_thresholds();
5382 	setup_per_zone_lowmem_reserve();
5383 	setup_per_zone_inactive_ratio();
5384 	return 0;
5385 }
5386 module_init(init_per_zone_wmark_min)
5387 
5388 /*
5389  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5390  *	that we can call two helper functions whenever min_free_kbytes
5391  *	changes.
5392  */
5393 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5394 	void __user *buffer, size_t *length, loff_t *ppos)
5395 {
5396 	proc_dointvec(table, write, buffer, length, ppos);
5397 	if (write)
5398 		setup_per_zone_wmarks();
5399 	return 0;
5400 }
5401 
5402 #ifdef CONFIG_NUMA
5403 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5404 	void __user *buffer, size_t *length, loff_t *ppos)
5405 {
5406 	struct zone *zone;
5407 	int rc;
5408 
5409 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5410 	if (rc)
5411 		return rc;
5412 
5413 	for_each_zone(zone)
5414 		zone->min_unmapped_pages = (zone->present_pages *
5415 				sysctl_min_unmapped_ratio) / 100;
5416 	return 0;
5417 }
5418 
5419 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5420 	void __user *buffer, size_t *length, loff_t *ppos)
5421 {
5422 	struct zone *zone;
5423 	int rc;
5424 
5425 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5426 	if (rc)
5427 		return rc;
5428 
5429 	for_each_zone(zone)
5430 		zone->min_slab_pages = (zone->present_pages *
5431 				sysctl_min_slab_ratio) / 100;
5432 	return 0;
5433 }
5434 #endif
5435 
5436 /*
5437  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5438  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5439  *	whenever sysctl_lowmem_reserve_ratio changes.
5440  *
5441  * The reserve ratio obviously has absolutely no relation with the
5442  * minimum watermarks. The lowmem reserve ratio can only make sense
5443  * if in function of the boot time zone sizes.
5444  */
5445 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5446 	void __user *buffer, size_t *length, loff_t *ppos)
5447 {
5448 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5449 	setup_per_zone_lowmem_reserve();
5450 	return 0;
5451 }
5452 
5453 /*
5454  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5455  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5456  * can have before it gets flushed back to buddy allocator.
5457  */
5458 
5459 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5460 	void __user *buffer, size_t *length, loff_t *ppos)
5461 {
5462 	struct zone *zone;
5463 	unsigned int cpu;
5464 	int ret;
5465 
5466 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5467 	if (!write || (ret < 0))
5468 		return ret;
5469 	for_each_populated_zone(zone) {
5470 		for_each_possible_cpu(cpu) {
5471 			unsigned long  high;
5472 			high = zone->present_pages / percpu_pagelist_fraction;
5473 			setup_pagelist_highmark(
5474 				per_cpu_ptr(zone->pageset, cpu), high);
5475 		}
5476 	}
5477 	return 0;
5478 }
5479 
5480 int hashdist = HASHDIST_DEFAULT;
5481 
5482 #ifdef CONFIG_NUMA
5483 static int __init set_hashdist(char *str)
5484 {
5485 	if (!str)
5486 		return 0;
5487 	hashdist = simple_strtoul(str, &str, 0);
5488 	return 1;
5489 }
5490 __setup("hashdist=", set_hashdist);
5491 #endif
5492 
5493 /*
5494  * allocate a large system hash table from bootmem
5495  * - it is assumed that the hash table must contain an exact power-of-2
5496  *   quantity of entries
5497  * - limit is the number of hash buckets, not the total allocation size
5498  */
5499 void *__init alloc_large_system_hash(const char *tablename,
5500 				     unsigned long bucketsize,
5501 				     unsigned long numentries,
5502 				     int scale,
5503 				     int flags,
5504 				     unsigned int *_hash_shift,
5505 				     unsigned int *_hash_mask,
5506 				     unsigned long low_limit,
5507 				     unsigned long high_limit)
5508 {
5509 	unsigned long long max = high_limit;
5510 	unsigned long log2qty, size;
5511 	void *table = NULL;
5512 
5513 	/* allow the kernel cmdline to have a say */
5514 	if (!numentries) {
5515 		/* round applicable memory size up to nearest megabyte */
5516 		numentries = nr_kernel_pages;
5517 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5518 		numentries >>= 20 - PAGE_SHIFT;
5519 		numentries <<= 20 - PAGE_SHIFT;
5520 
5521 		/* limit to 1 bucket per 2^scale bytes of low memory */
5522 		if (scale > PAGE_SHIFT)
5523 			numentries >>= (scale - PAGE_SHIFT);
5524 		else
5525 			numentries <<= (PAGE_SHIFT - scale);
5526 
5527 		/* Make sure we've got at least a 0-order allocation.. */
5528 		if (unlikely(flags & HASH_SMALL)) {
5529 			/* Makes no sense without HASH_EARLY */
5530 			WARN_ON(!(flags & HASH_EARLY));
5531 			if (!(numentries >> *_hash_shift)) {
5532 				numentries = 1UL << *_hash_shift;
5533 				BUG_ON(!numentries);
5534 			}
5535 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5536 			numentries = PAGE_SIZE / bucketsize;
5537 	}
5538 	numentries = roundup_pow_of_two(numentries);
5539 
5540 	/* limit allocation size to 1/16 total memory by default */
5541 	if (max == 0) {
5542 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5543 		do_div(max, bucketsize);
5544 	}
5545 	max = min(max, 0x80000000ULL);
5546 
5547 	if (numentries < low_limit)
5548 		numentries = low_limit;
5549 	if (numentries > max)
5550 		numentries = max;
5551 
5552 	log2qty = ilog2(numentries);
5553 
5554 	do {
5555 		size = bucketsize << log2qty;
5556 		if (flags & HASH_EARLY)
5557 			table = alloc_bootmem_nopanic(size);
5558 		else if (hashdist)
5559 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5560 		else {
5561 			/*
5562 			 * If bucketsize is not a power-of-two, we may free
5563 			 * some pages at the end of hash table which
5564 			 * alloc_pages_exact() automatically does
5565 			 */
5566 			if (get_order(size) < MAX_ORDER) {
5567 				table = alloc_pages_exact(size, GFP_ATOMIC);
5568 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5569 			}
5570 		}
5571 	} while (!table && size > PAGE_SIZE && --log2qty);
5572 
5573 	if (!table)
5574 		panic("Failed to allocate %s hash table\n", tablename);
5575 
5576 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5577 	       tablename,
5578 	       (1UL << log2qty),
5579 	       ilog2(size) - PAGE_SHIFT,
5580 	       size);
5581 
5582 	if (_hash_shift)
5583 		*_hash_shift = log2qty;
5584 	if (_hash_mask)
5585 		*_hash_mask = (1 << log2qty) - 1;
5586 
5587 	return table;
5588 }
5589 
5590 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5591 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5592 							unsigned long pfn)
5593 {
5594 #ifdef CONFIG_SPARSEMEM
5595 	return __pfn_to_section(pfn)->pageblock_flags;
5596 #else
5597 	return zone->pageblock_flags;
5598 #endif /* CONFIG_SPARSEMEM */
5599 }
5600 
5601 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5602 {
5603 #ifdef CONFIG_SPARSEMEM
5604 	pfn &= (PAGES_PER_SECTION-1);
5605 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5606 #else
5607 	pfn = pfn - zone->zone_start_pfn;
5608 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5609 #endif /* CONFIG_SPARSEMEM */
5610 }
5611 
5612 /**
5613  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5614  * @page: The page within the block of interest
5615  * @start_bitidx: The first bit of interest to retrieve
5616  * @end_bitidx: The last bit of interest
5617  * returns pageblock_bits flags
5618  */
5619 unsigned long get_pageblock_flags_group(struct page *page,
5620 					int start_bitidx, int end_bitidx)
5621 {
5622 	struct zone *zone;
5623 	unsigned long *bitmap;
5624 	unsigned long pfn, bitidx;
5625 	unsigned long flags = 0;
5626 	unsigned long value = 1;
5627 
5628 	zone = page_zone(page);
5629 	pfn = page_to_pfn(page);
5630 	bitmap = get_pageblock_bitmap(zone, pfn);
5631 	bitidx = pfn_to_bitidx(zone, pfn);
5632 
5633 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5634 		if (test_bit(bitidx + start_bitidx, bitmap))
5635 			flags |= value;
5636 
5637 	return flags;
5638 }
5639 
5640 /**
5641  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5642  * @page: The page within the block of interest
5643  * @start_bitidx: The first bit of interest
5644  * @end_bitidx: The last bit of interest
5645  * @flags: The flags to set
5646  */
5647 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5648 					int start_bitidx, int end_bitidx)
5649 {
5650 	struct zone *zone;
5651 	unsigned long *bitmap;
5652 	unsigned long pfn, bitidx;
5653 	unsigned long value = 1;
5654 
5655 	zone = page_zone(page);
5656 	pfn = page_to_pfn(page);
5657 	bitmap = get_pageblock_bitmap(zone, pfn);
5658 	bitidx = pfn_to_bitidx(zone, pfn);
5659 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5660 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5661 
5662 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5663 		if (flags & value)
5664 			__set_bit(bitidx + start_bitidx, bitmap);
5665 		else
5666 			__clear_bit(bitidx + start_bitidx, bitmap);
5667 }
5668 
5669 /*
5670  * This function checks whether pageblock includes unmovable pages or not.
5671  * If @count is not zero, it is okay to include less @count unmovable pages
5672  *
5673  * PageLRU check wihtout isolation or lru_lock could race so that
5674  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5675  * expect this function should be exact.
5676  */
5677 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5678 			 bool skip_hwpoisoned_pages)
5679 {
5680 	unsigned long pfn, iter, found;
5681 	int mt;
5682 
5683 	/*
5684 	 * For avoiding noise data, lru_add_drain_all() should be called
5685 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5686 	 */
5687 	if (zone_idx(zone) == ZONE_MOVABLE)
5688 		return false;
5689 	mt = get_pageblock_migratetype(page);
5690 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5691 		return false;
5692 
5693 	pfn = page_to_pfn(page);
5694 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5695 		unsigned long check = pfn + iter;
5696 
5697 		if (!pfn_valid_within(check))
5698 			continue;
5699 
5700 		page = pfn_to_page(check);
5701 		/*
5702 		 * We can't use page_count without pin a page
5703 		 * because another CPU can free compound page.
5704 		 * This check already skips compound tails of THP
5705 		 * because their page->_count is zero at all time.
5706 		 */
5707 		if (!atomic_read(&page->_count)) {
5708 			if (PageBuddy(page))
5709 				iter += (1 << page_order(page)) - 1;
5710 			continue;
5711 		}
5712 
5713 		/*
5714 		 * The HWPoisoned page may be not in buddy system, and
5715 		 * page_count() is not 0.
5716 		 */
5717 		if (skip_hwpoisoned_pages && PageHWPoison(page))
5718 			continue;
5719 
5720 		if (!PageLRU(page))
5721 			found++;
5722 		/*
5723 		 * If there are RECLAIMABLE pages, we need to check it.
5724 		 * But now, memory offline itself doesn't call shrink_slab()
5725 		 * and it still to be fixed.
5726 		 */
5727 		/*
5728 		 * If the page is not RAM, page_count()should be 0.
5729 		 * we don't need more check. This is an _used_ not-movable page.
5730 		 *
5731 		 * The problematic thing here is PG_reserved pages. PG_reserved
5732 		 * is set to both of a memory hole page and a _used_ kernel
5733 		 * page at boot.
5734 		 */
5735 		if (found > count)
5736 			return true;
5737 	}
5738 	return false;
5739 }
5740 
5741 bool is_pageblock_removable_nolock(struct page *page)
5742 {
5743 	struct zone *zone;
5744 	unsigned long pfn;
5745 
5746 	/*
5747 	 * We have to be careful here because we are iterating over memory
5748 	 * sections which are not zone aware so we might end up outside of
5749 	 * the zone but still within the section.
5750 	 * We have to take care about the node as well. If the node is offline
5751 	 * its NODE_DATA will be NULL - see page_zone.
5752 	 */
5753 	if (!node_online(page_to_nid(page)))
5754 		return false;
5755 
5756 	zone = page_zone(page);
5757 	pfn = page_to_pfn(page);
5758 	if (zone->zone_start_pfn > pfn ||
5759 			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5760 		return false;
5761 
5762 	return !has_unmovable_pages(zone, page, 0, true);
5763 }
5764 
5765 #ifdef CONFIG_CMA
5766 
5767 static unsigned long pfn_max_align_down(unsigned long pfn)
5768 {
5769 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5770 			     pageblock_nr_pages) - 1);
5771 }
5772 
5773 static unsigned long pfn_max_align_up(unsigned long pfn)
5774 {
5775 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5776 				pageblock_nr_pages));
5777 }
5778 
5779 /* [start, end) must belong to a single zone. */
5780 static int __alloc_contig_migrate_range(struct compact_control *cc,
5781 					unsigned long start, unsigned long end)
5782 {
5783 	/* This function is based on compact_zone() from compaction.c. */
5784 	unsigned long nr_reclaimed;
5785 	unsigned long pfn = start;
5786 	unsigned int tries = 0;
5787 	int ret = 0;
5788 
5789 	migrate_prep();
5790 
5791 	while (pfn < end || !list_empty(&cc->migratepages)) {
5792 		if (fatal_signal_pending(current)) {
5793 			ret = -EINTR;
5794 			break;
5795 		}
5796 
5797 		if (list_empty(&cc->migratepages)) {
5798 			cc->nr_migratepages = 0;
5799 			pfn = isolate_migratepages_range(cc->zone, cc,
5800 							 pfn, end, true);
5801 			if (!pfn) {
5802 				ret = -EINTR;
5803 				break;
5804 			}
5805 			tries = 0;
5806 		} else if (++tries == 5) {
5807 			ret = ret < 0 ? ret : -EBUSY;
5808 			break;
5809 		}
5810 
5811 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5812 							&cc->migratepages);
5813 		cc->nr_migratepages -= nr_reclaimed;
5814 
5815 		ret = migrate_pages(&cc->migratepages,
5816 				    alloc_migrate_target,
5817 				    0, false, MIGRATE_SYNC,
5818 				    MR_CMA);
5819 	}
5820 
5821 	putback_movable_pages(&cc->migratepages);
5822 	return ret > 0 ? 0 : ret;
5823 }
5824 
5825 /**
5826  * alloc_contig_range() -- tries to allocate given range of pages
5827  * @start:	start PFN to allocate
5828  * @end:	one-past-the-last PFN to allocate
5829  * @migratetype:	migratetype of the underlaying pageblocks (either
5830  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
5831  *			in range must have the same migratetype and it must
5832  *			be either of the two.
5833  *
5834  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5835  * aligned, however it's the caller's responsibility to guarantee that
5836  * we are the only thread that changes migrate type of pageblocks the
5837  * pages fall in.
5838  *
5839  * The PFN range must belong to a single zone.
5840  *
5841  * Returns zero on success or negative error code.  On success all
5842  * pages which PFN is in [start, end) are allocated for the caller and
5843  * need to be freed with free_contig_range().
5844  */
5845 int alloc_contig_range(unsigned long start, unsigned long end,
5846 		       unsigned migratetype)
5847 {
5848 	unsigned long outer_start, outer_end;
5849 	int ret = 0, order;
5850 
5851 	struct compact_control cc = {
5852 		.nr_migratepages = 0,
5853 		.order = -1,
5854 		.zone = page_zone(pfn_to_page(start)),
5855 		.sync = true,
5856 		.ignore_skip_hint = true,
5857 	};
5858 	INIT_LIST_HEAD(&cc.migratepages);
5859 
5860 	/*
5861 	 * What we do here is we mark all pageblocks in range as
5862 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
5863 	 * have different sizes, and due to the way page allocator
5864 	 * work, we align the range to biggest of the two pages so
5865 	 * that page allocator won't try to merge buddies from
5866 	 * different pageblocks and change MIGRATE_ISOLATE to some
5867 	 * other migration type.
5868 	 *
5869 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5870 	 * migrate the pages from an unaligned range (ie. pages that
5871 	 * we are interested in).  This will put all the pages in
5872 	 * range back to page allocator as MIGRATE_ISOLATE.
5873 	 *
5874 	 * When this is done, we take the pages in range from page
5875 	 * allocator removing them from the buddy system.  This way
5876 	 * page allocator will never consider using them.
5877 	 *
5878 	 * This lets us mark the pageblocks back as
5879 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5880 	 * aligned range but not in the unaligned, original range are
5881 	 * put back to page allocator so that buddy can use them.
5882 	 */
5883 
5884 	ret = start_isolate_page_range(pfn_max_align_down(start),
5885 				       pfn_max_align_up(end), migratetype,
5886 				       false);
5887 	if (ret)
5888 		return ret;
5889 
5890 	ret = __alloc_contig_migrate_range(&cc, start, end);
5891 	if (ret)
5892 		goto done;
5893 
5894 	/*
5895 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5896 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
5897 	 * more, all pages in [start, end) are free in page allocator.
5898 	 * What we are going to do is to allocate all pages from
5899 	 * [start, end) (that is remove them from page allocator).
5900 	 *
5901 	 * The only problem is that pages at the beginning and at the
5902 	 * end of interesting range may be not aligned with pages that
5903 	 * page allocator holds, ie. they can be part of higher order
5904 	 * pages.  Because of this, we reserve the bigger range and
5905 	 * once this is done free the pages we are not interested in.
5906 	 *
5907 	 * We don't have to hold zone->lock here because the pages are
5908 	 * isolated thus they won't get removed from buddy.
5909 	 */
5910 
5911 	lru_add_drain_all();
5912 	drain_all_pages();
5913 
5914 	order = 0;
5915 	outer_start = start;
5916 	while (!PageBuddy(pfn_to_page(outer_start))) {
5917 		if (++order >= MAX_ORDER) {
5918 			ret = -EBUSY;
5919 			goto done;
5920 		}
5921 		outer_start &= ~0UL << order;
5922 	}
5923 
5924 	/* Make sure the range is really isolated. */
5925 	if (test_pages_isolated(outer_start, end, false)) {
5926 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5927 		       outer_start, end);
5928 		ret = -EBUSY;
5929 		goto done;
5930 	}
5931 
5932 
5933 	/* Grab isolated pages from freelists. */
5934 	outer_end = isolate_freepages_range(&cc, outer_start, end);
5935 	if (!outer_end) {
5936 		ret = -EBUSY;
5937 		goto done;
5938 	}
5939 
5940 	/* Free head and tail (if any) */
5941 	if (start != outer_start)
5942 		free_contig_range(outer_start, start - outer_start);
5943 	if (end != outer_end)
5944 		free_contig_range(end, outer_end - end);
5945 
5946 done:
5947 	undo_isolate_page_range(pfn_max_align_down(start),
5948 				pfn_max_align_up(end), migratetype);
5949 	return ret;
5950 }
5951 
5952 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5953 {
5954 	unsigned int count = 0;
5955 
5956 	for (; nr_pages--; pfn++) {
5957 		struct page *page = pfn_to_page(pfn);
5958 
5959 		count += page_count(page) != 1;
5960 		__free_page(page);
5961 	}
5962 	WARN(count != 0, "%d pages are still in use!\n", count);
5963 }
5964 #endif
5965 
5966 #ifdef CONFIG_MEMORY_HOTPLUG
5967 static int __meminit __zone_pcp_update(void *data)
5968 {
5969 	struct zone *zone = data;
5970 	int cpu;
5971 	unsigned long batch = zone_batchsize(zone), flags;
5972 
5973 	for_each_possible_cpu(cpu) {
5974 		struct per_cpu_pageset *pset;
5975 		struct per_cpu_pages *pcp;
5976 
5977 		pset = per_cpu_ptr(zone->pageset, cpu);
5978 		pcp = &pset->pcp;
5979 
5980 		local_irq_save(flags);
5981 		if (pcp->count > 0)
5982 			free_pcppages_bulk(zone, pcp->count, pcp);
5983 		drain_zonestat(zone, pset);
5984 		setup_pageset(pset, batch);
5985 		local_irq_restore(flags);
5986 	}
5987 	return 0;
5988 }
5989 
5990 void __meminit zone_pcp_update(struct zone *zone)
5991 {
5992 	stop_machine(__zone_pcp_update, zone, NULL);
5993 }
5994 #endif
5995 
5996 void zone_pcp_reset(struct zone *zone)
5997 {
5998 	unsigned long flags;
5999 	int cpu;
6000 	struct per_cpu_pageset *pset;
6001 
6002 	/* avoid races with drain_pages()  */
6003 	local_irq_save(flags);
6004 	if (zone->pageset != &boot_pageset) {
6005 		for_each_online_cpu(cpu) {
6006 			pset = per_cpu_ptr(zone->pageset, cpu);
6007 			drain_zonestat(zone, pset);
6008 		}
6009 		free_percpu(zone->pageset);
6010 		zone->pageset = &boot_pageset;
6011 	}
6012 	local_irq_restore(flags);
6013 }
6014 
6015 #ifdef CONFIG_MEMORY_HOTREMOVE
6016 /*
6017  * All pages in the range must be isolated before calling this.
6018  */
6019 void
6020 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6021 {
6022 	struct page *page;
6023 	struct zone *zone;
6024 	int order, i;
6025 	unsigned long pfn;
6026 	unsigned long flags;
6027 	/* find the first valid pfn */
6028 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6029 		if (pfn_valid(pfn))
6030 			break;
6031 	if (pfn == end_pfn)
6032 		return;
6033 	zone = page_zone(pfn_to_page(pfn));
6034 	spin_lock_irqsave(&zone->lock, flags);
6035 	pfn = start_pfn;
6036 	while (pfn < end_pfn) {
6037 		if (!pfn_valid(pfn)) {
6038 			pfn++;
6039 			continue;
6040 		}
6041 		page = pfn_to_page(pfn);
6042 		/*
6043 		 * The HWPoisoned page may be not in buddy system, and
6044 		 * page_count() is not 0.
6045 		 */
6046 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6047 			pfn++;
6048 			SetPageReserved(page);
6049 			continue;
6050 		}
6051 
6052 		BUG_ON(page_count(page));
6053 		BUG_ON(!PageBuddy(page));
6054 		order = page_order(page);
6055 #ifdef CONFIG_DEBUG_VM
6056 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6057 		       pfn, 1 << order, end_pfn);
6058 #endif
6059 		list_del(&page->lru);
6060 		rmv_page_order(page);
6061 		zone->free_area[order].nr_free--;
6062 		for (i = 0; i < (1 << order); i++)
6063 			SetPageReserved((page+i));
6064 		pfn += (1 << order);
6065 	}
6066 	spin_unlock_irqrestore(&zone->lock, flags);
6067 }
6068 #endif
6069 
6070 #ifdef CONFIG_MEMORY_FAILURE
6071 bool is_free_buddy_page(struct page *page)
6072 {
6073 	struct zone *zone = page_zone(page);
6074 	unsigned long pfn = page_to_pfn(page);
6075 	unsigned long flags;
6076 	int order;
6077 
6078 	spin_lock_irqsave(&zone->lock, flags);
6079 	for (order = 0; order < MAX_ORDER; order++) {
6080 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6081 
6082 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6083 			break;
6084 	}
6085 	spin_unlock_irqrestore(&zone->lock, flags);
6086 
6087 	return order < MAX_ORDER;
6088 }
6089 #endif
6090 
6091 static const struct trace_print_flags pageflag_names[] = {
6092 	{1UL << PG_locked,		"locked"	},
6093 	{1UL << PG_error,		"error"		},
6094 	{1UL << PG_referenced,		"referenced"	},
6095 	{1UL << PG_uptodate,		"uptodate"	},
6096 	{1UL << PG_dirty,		"dirty"		},
6097 	{1UL << PG_lru,			"lru"		},
6098 	{1UL << PG_active,		"active"	},
6099 	{1UL << PG_slab,		"slab"		},
6100 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6101 	{1UL << PG_arch_1,		"arch_1"	},
6102 	{1UL << PG_reserved,		"reserved"	},
6103 	{1UL << PG_private,		"private"	},
6104 	{1UL << PG_private_2,		"private_2"	},
6105 	{1UL << PG_writeback,		"writeback"	},
6106 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6107 	{1UL << PG_head,		"head"		},
6108 	{1UL << PG_tail,		"tail"		},
6109 #else
6110 	{1UL << PG_compound,		"compound"	},
6111 #endif
6112 	{1UL << PG_swapcache,		"swapcache"	},
6113 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6114 	{1UL << PG_reclaim,		"reclaim"	},
6115 	{1UL << PG_swapbacked,		"swapbacked"	},
6116 	{1UL << PG_unevictable,		"unevictable"	},
6117 #ifdef CONFIG_MMU
6118 	{1UL << PG_mlocked,		"mlocked"	},
6119 #endif
6120 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6121 	{1UL << PG_uncached,		"uncached"	},
6122 #endif
6123 #ifdef CONFIG_MEMORY_FAILURE
6124 	{1UL << PG_hwpoison,		"hwpoison"	},
6125 #endif
6126 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6127 	{1UL << PG_compound_lock,	"compound_lock"	},
6128 #endif
6129 };
6130 
6131 static void dump_page_flags(unsigned long flags)
6132 {
6133 	const char *delim = "";
6134 	unsigned long mask;
6135 	int i;
6136 
6137 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6138 
6139 	printk(KERN_ALERT "page flags: %#lx(", flags);
6140 
6141 	/* remove zone id */
6142 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6143 
6144 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6145 
6146 		mask = pageflag_names[i].mask;
6147 		if ((flags & mask) != mask)
6148 			continue;
6149 
6150 		flags &= ~mask;
6151 		printk("%s%s", delim, pageflag_names[i].name);
6152 		delim = "|";
6153 	}
6154 
6155 	/* check for left over flags */
6156 	if (flags)
6157 		printk("%s%#lx", delim, flags);
6158 
6159 	printk(")\n");
6160 }
6161 
6162 void dump_page(struct page *page)
6163 {
6164 	printk(KERN_ALERT
6165 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6166 		page, atomic_read(&page->_count), page_mapcount(page),
6167 		page->mapping, page->index);
6168 	dump_page_flags(page->flags);
6169 	mem_cgroup_print_bad_page(page);
6170 }
6171