1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 #include "internal.h" 65 66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 67 DEFINE_PER_CPU(int, numa_node); 68 EXPORT_PER_CPU_SYMBOL(numa_node); 69 #endif 70 71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 72 /* 73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 76 * defined in <linux/topology.h>. 77 */ 78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 79 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 80 #endif 81 82 /* 83 * Array of node states. 84 */ 85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 86 [N_POSSIBLE] = NODE_MASK_ALL, 87 [N_ONLINE] = { { [0] = 1UL } }, 88 #ifndef CONFIG_NUMA 89 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 90 #ifdef CONFIG_HIGHMEM 91 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 92 #endif 93 #ifdef CONFIG_MOVABLE_NODE 94 [N_MEMORY] = { { [0] = 1UL } }, 95 #endif 96 [N_CPU] = { { [0] = 1UL } }, 97 #endif /* NUMA */ 98 }; 99 EXPORT_SYMBOL(node_states); 100 101 unsigned long totalram_pages __read_mostly; 102 unsigned long totalreserve_pages __read_mostly; 103 /* 104 * When calculating the number of globally allowed dirty pages, there 105 * is a certain number of per-zone reserves that should not be 106 * considered dirtyable memory. This is the sum of those reserves 107 * over all existing zones that contribute dirtyable memory. 108 */ 109 unsigned long dirty_balance_reserve __read_mostly; 110 111 int percpu_pagelist_fraction; 112 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 113 114 #ifdef CONFIG_PM_SLEEP 115 /* 116 * The following functions are used by the suspend/hibernate code to temporarily 117 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 118 * while devices are suspended. To avoid races with the suspend/hibernate code, 119 * they should always be called with pm_mutex held (gfp_allowed_mask also should 120 * only be modified with pm_mutex held, unless the suspend/hibernate code is 121 * guaranteed not to run in parallel with that modification). 122 */ 123 124 static gfp_t saved_gfp_mask; 125 126 void pm_restore_gfp_mask(void) 127 { 128 WARN_ON(!mutex_is_locked(&pm_mutex)); 129 if (saved_gfp_mask) { 130 gfp_allowed_mask = saved_gfp_mask; 131 saved_gfp_mask = 0; 132 } 133 } 134 135 void pm_restrict_gfp_mask(void) 136 { 137 WARN_ON(!mutex_is_locked(&pm_mutex)); 138 WARN_ON(saved_gfp_mask); 139 saved_gfp_mask = gfp_allowed_mask; 140 gfp_allowed_mask &= ~GFP_IOFS; 141 } 142 143 bool pm_suspended_storage(void) 144 { 145 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 146 return false; 147 return true; 148 } 149 #endif /* CONFIG_PM_SLEEP */ 150 151 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 152 int pageblock_order __read_mostly; 153 #endif 154 155 static void __free_pages_ok(struct page *page, unsigned int order); 156 157 /* 158 * results with 256, 32 in the lowmem_reserve sysctl: 159 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 160 * 1G machine -> (16M dma, 784M normal, 224M high) 161 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 162 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 163 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 164 * 165 * TBD: should special case ZONE_DMA32 machines here - in those we normally 166 * don't need any ZONE_NORMAL reservation 167 */ 168 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 169 #ifdef CONFIG_ZONE_DMA 170 256, 171 #endif 172 #ifdef CONFIG_ZONE_DMA32 173 256, 174 #endif 175 #ifdef CONFIG_HIGHMEM 176 32, 177 #endif 178 32, 179 }; 180 181 EXPORT_SYMBOL(totalram_pages); 182 183 static char * const zone_names[MAX_NR_ZONES] = { 184 #ifdef CONFIG_ZONE_DMA 185 "DMA", 186 #endif 187 #ifdef CONFIG_ZONE_DMA32 188 "DMA32", 189 #endif 190 "Normal", 191 #ifdef CONFIG_HIGHMEM 192 "HighMem", 193 #endif 194 "Movable", 195 }; 196 197 int min_free_kbytes = 1024; 198 199 static unsigned long __meminitdata nr_kernel_pages; 200 static unsigned long __meminitdata nr_all_pages; 201 static unsigned long __meminitdata dma_reserve; 202 203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 206 static unsigned long __initdata required_kernelcore; 207 static unsigned long __initdata required_movablecore; 208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 209 210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 211 int movable_zone; 212 EXPORT_SYMBOL(movable_zone); 213 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 214 215 #if MAX_NUMNODES > 1 216 int nr_node_ids __read_mostly = MAX_NUMNODES; 217 int nr_online_nodes __read_mostly = 1; 218 EXPORT_SYMBOL(nr_node_ids); 219 EXPORT_SYMBOL(nr_online_nodes); 220 #endif 221 222 int page_group_by_mobility_disabled __read_mostly; 223 224 void set_pageblock_migratetype(struct page *page, int migratetype) 225 { 226 227 if (unlikely(page_group_by_mobility_disabled)) 228 migratetype = MIGRATE_UNMOVABLE; 229 230 set_pageblock_flags_group(page, (unsigned long)migratetype, 231 PB_migrate, PB_migrate_end); 232 } 233 234 bool oom_killer_disabled __read_mostly; 235 236 #ifdef CONFIG_DEBUG_VM 237 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 238 { 239 int ret = 0; 240 unsigned seq; 241 unsigned long pfn = page_to_pfn(page); 242 243 do { 244 seq = zone_span_seqbegin(zone); 245 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 246 ret = 1; 247 else if (pfn < zone->zone_start_pfn) 248 ret = 1; 249 } while (zone_span_seqretry(zone, seq)); 250 251 return ret; 252 } 253 254 static int page_is_consistent(struct zone *zone, struct page *page) 255 { 256 if (!pfn_valid_within(page_to_pfn(page))) 257 return 0; 258 if (zone != page_zone(page)) 259 return 0; 260 261 return 1; 262 } 263 /* 264 * Temporary debugging check for pages not lying within a given zone. 265 */ 266 static int bad_range(struct zone *zone, struct page *page) 267 { 268 if (page_outside_zone_boundaries(zone, page)) 269 return 1; 270 if (!page_is_consistent(zone, page)) 271 return 1; 272 273 return 0; 274 } 275 #else 276 static inline int bad_range(struct zone *zone, struct page *page) 277 { 278 return 0; 279 } 280 #endif 281 282 static void bad_page(struct page *page) 283 { 284 static unsigned long resume; 285 static unsigned long nr_shown; 286 static unsigned long nr_unshown; 287 288 /* Don't complain about poisoned pages */ 289 if (PageHWPoison(page)) { 290 reset_page_mapcount(page); /* remove PageBuddy */ 291 return; 292 } 293 294 /* 295 * Allow a burst of 60 reports, then keep quiet for that minute; 296 * or allow a steady drip of one report per second. 297 */ 298 if (nr_shown == 60) { 299 if (time_before(jiffies, resume)) { 300 nr_unshown++; 301 goto out; 302 } 303 if (nr_unshown) { 304 printk(KERN_ALERT 305 "BUG: Bad page state: %lu messages suppressed\n", 306 nr_unshown); 307 nr_unshown = 0; 308 } 309 nr_shown = 0; 310 } 311 if (nr_shown++ == 0) 312 resume = jiffies + 60 * HZ; 313 314 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 315 current->comm, page_to_pfn(page)); 316 dump_page(page); 317 318 print_modules(); 319 dump_stack(); 320 out: 321 /* Leave bad fields for debug, except PageBuddy could make trouble */ 322 reset_page_mapcount(page); /* remove PageBuddy */ 323 add_taint(TAINT_BAD_PAGE); 324 } 325 326 /* 327 * Higher-order pages are called "compound pages". They are structured thusly: 328 * 329 * The first PAGE_SIZE page is called the "head page". 330 * 331 * The remaining PAGE_SIZE pages are called "tail pages". 332 * 333 * All pages have PG_compound set. All tail pages have their ->first_page 334 * pointing at the head page. 335 * 336 * The first tail page's ->lru.next holds the address of the compound page's 337 * put_page() function. Its ->lru.prev holds the order of allocation. 338 * This usage means that zero-order pages may not be compound. 339 */ 340 341 static void free_compound_page(struct page *page) 342 { 343 __free_pages_ok(page, compound_order(page)); 344 } 345 346 void prep_compound_page(struct page *page, unsigned long order) 347 { 348 int i; 349 int nr_pages = 1 << order; 350 351 set_compound_page_dtor(page, free_compound_page); 352 set_compound_order(page, order); 353 __SetPageHead(page); 354 for (i = 1; i < nr_pages; i++) { 355 struct page *p = page + i; 356 __SetPageTail(p); 357 set_page_count(p, 0); 358 p->first_page = page; 359 } 360 } 361 362 /* update __split_huge_page_refcount if you change this function */ 363 static int destroy_compound_page(struct page *page, unsigned long order) 364 { 365 int i; 366 int nr_pages = 1 << order; 367 int bad = 0; 368 369 if (unlikely(compound_order(page) != order)) { 370 bad_page(page); 371 bad++; 372 } 373 374 __ClearPageHead(page); 375 376 for (i = 1; i < nr_pages; i++) { 377 struct page *p = page + i; 378 379 if (unlikely(!PageTail(p) || (p->first_page != page))) { 380 bad_page(page); 381 bad++; 382 } 383 __ClearPageTail(p); 384 } 385 386 return bad; 387 } 388 389 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 390 { 391 int i; 392 393 /* 394 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 395 * and __GFP_HIGHMEM from hard or soft interrupt context. 396 */ 397 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 398 for (i = 0; i < (1 << order); i++) 399 clear_highpage(page + i); 400 } 401 402 #ifdef CONFIG_DEBUG_PAGEALLOC 403 unsigned int _debug_guardpage_minorder; 404 405 static int __init debug_guardpage_minorder_setup(char *buf) 406 { 407 unsigned long res; 408 409 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 410 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 411 return 0; 412 } 413 _debug_guardpage_minorder = res; 414 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 415 return 0; 416 } 417 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 418 419 static inline void set_page_guard_flag(struct page *page) 420 { 421 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 422 } 423 424 static inline void clear_page_guard_flag(struct page *page) 425 { 426 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 427 } 428 #else 429 static inline void set_page_guard_flag(struct page *page) { } 430 static inline void clear_page_guard_flag(struct page *page) { } 431 #endif 432 433 static inline void set_page_order(struct page *page, int order) 434 { 435 set_page_private(page, order); 436 __SetPageBuddy(page); 437 } 438 439 static inline void rmv_page_order(struct page *page) 440 { 441 __ClearPageBuddy(page); 442 set_page_private(page, 0); 443 } 444 445 /* 446 * Locate the struct page for both the matching buddy in our 447 * pair (buddy1) and the combined O(n+1) page they form (page). 448 * 449 * 1) Any buddy B1 will have an order O twin B2 which satisfies 450 * the following equation: 451 * B2 = B1 ^ (1 << O) 452 * For example, if the starting buddy (buddy2) is #8 its order 453 * 1 buddy is #10: 454 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 455 * 456 * 2) Any buddy B will have an order O+1 parent P which 457 * satisfies the following equation: 458 * P = B & ~(1 << O) 459 * 460 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 461 */ 462 static inline unsigned long 463 __find_buddy_index(unsigned long page_idx, unsigned int order) 464 { 465 return page_idx ^ (1 << order); 466 } 467 468 /* 469 * This function checks whether a page is free && is the buddy 470 * we can do coalesce a page and its buddy if 471 * (a) the buddy is not in a hole && 472 * (b) the buddy is in the buddy system && 473 * (c) a page and its buddy have the same order && 474 * (d) a page and its buddy are in the same zone. 475 * 476 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 477 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 478 * 479 * For recording page's order, we use page_private(page). 480 */ 481 static inline int page_is_buddy(struct page *page, struct page *buddy, 482 int order) 483 { 484 if (!pfn_valid_within(page_to_pfn(buddy))) 485 return 0; 486 487 if (page_zone_id(page) != page_zone_id(buddy)) 488 return 0; 489 490 if (page_is_guard(buddy) && page_order(buddy) == order) { 491 VM_BUG_ON(page_count(buddy) != 0); 492 return 1; 493 } 494 495 if (PageBuddy(buddy) && page_order(buddy) == order) { 496 VM_BUG_ON(page_count(buddy) != 0); 497 return 1; 498 } 499 return 0; 500 } 501 502 /* 503 * Freeing function for a buddy system allocator. 504 * 505 * The concept of a buddy system is to maintain direct-mapped table 506 * (containing bit values) for memory blocks of various "orders". 507 * The bottom level table contains the map for the smallest allocatable 508 * units of memory (here, pages), and each level above it describes 509 * pairs of units from the levels below, hence, "buddies". 510 * At a high level, all that happens here is marking the table entry 511 * at the bottom level available, and propagating the changes upward 512 * as necessary, plus some accounting needed to play nicely with other 513 * parts of the VM system. 514 * At each level, we keep a list of pages, which are heads of continuous 515 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 516 * order is recorded in page_private(page) field. 517 * So when we are allocating or freeing one, we can derive the state of the 518 * other. That is, if we allocate a small block, and both were 519 * free, the remainder of the region must be split into blocks. 520 * If a block is freed, and its buddy is also free, then this 521 * triggers coalescing into a block of larger size. 522 * 523 * -- nyc 524 */ 525 526 static inline void __free_one_page(struct page *page, 527 struct zone *zone, unsigned int order, 528 int migratetype) 529 { 530 unsigned long page_idx; 531 unsigned long combined_idx; 532 unsigned long uninitialized_var(buddy_idx); 533 struct page *buddy; 534 535 if (unlikely(PageCompound(page))) 536 if (unlikely(destroy_compound_page(page, order))) 537 return; 538 539 VM_BUG_ON(migratetype == -1); 540 541 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 542 543 VM_BUG_ON(page_idx & ((1 << order) - 1)); 544 VM_BUG_ON(bad_range(zone, page)); 545 546 while (order < MAX_ORDER-1) { 547 buddy_idx = __find_buddy_index(page_idx, order); 548 buddy = page + (buddy_idx - page_idx); 549 if (!page_is_buddy(page, buddy, order)) 550 break; 551 /* 552 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 553 * merge with it and move up one order. 554 */ 555 if (page_is_guard(buddy)) { 556 clear_page_guard_flag(buddy); 557 set_page_private(page, 0); 558 __mod_zone_freepage_state(zone, 1 << order, 559 migratetype); 560 } else { 561 list_del(&buddy->lru); 562 zone->free_area[order].nr_free--; 563 rmv_page_order(buddy); 564 } 565 combined_idx = buddy_idx & page_idx; 566 page = page + (combined_idx - page_idx); 567 page_idx = combined_idx; 568 order++; 569 } 570 set_page_order(page, order); 571 572 /* 573 * If this is not the largest possible page, check if the buddy 574 * of the next-highest order is free. If it is, it's possible 575 * that pages are being freed that will coalesce soon. In case, 576 * that is happening, add the free page to the tail of the list 577 * so it's less likely to be used soon and more likely to be merged 578 * as a higher order page 579 */ 580 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 581 struct page *higher_page, *higher_buddy; 582 combined_idx = buddy_idx & page_idx; 583 higher_page = page + (combined_idx - page_idx); 584 buddy_idx = __find_buddy_index(combined_idx, order + 1); 585 higher_buddy = higher_page + (buddy_idx - combined_idx); 586 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 587 list_add_tail(&page->lru, 588 &zone->free_area[order].free_list[migratetype]); 589 goto out; 590 } 591 } 592 593 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 594 out: 595 zone->free_area[order].nr_free++; 596 } 597 598 static inline int free_pages_check(struct page *page) 599 { 600 if (unlikely(page_mapcount(page) | 601 (page->mapping != NULL) | 602 (atomic_read(&page->_count) != 0) | 603 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 604 (mem_cgroup_bad_page_check(page)))) { 605 bad_page(page); 606 return 1; 607 } 608 reset_page_last_nid(page); 609 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 610 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 611 return 0; 612 } 613 614 /* 615 * Frees a number of pages from the PCP lists 616 * Assumes all pages on list are in same zone, and of same order. 617 * count is the number of pages to free. 618 * 619 * If the zone was previously in an "all pages pinned" state then look to 620 * see if this freeing clears that state. 621 * 622 * And clear the zone's pages_scanned counter, to hold off the "all pages are 623 * pinned" detection logic. 624 */ 625 static void free_pcppages_bulk(struct zone *zone, int count, 626 struct per_cpu_pages *pcp) 627 { 628 int migratetype = 0; 629 int batch_free = 0; 630 int to_free = count; 631 632 spin_lock(&zone->lock); 633 zone->all_unreclaimable = 0; 634 zone->pages_scanned = 0; 635 636 while (to_free) { 637 struct page *page; 638 struct list_head *list; 639 640 /* 641 * Remove pages from lists in a round-robin fashion. A 642 * batch_free count is maintained that is incremented when an 643 * empty list is encountered. This is so more pages are freed 644 * off fuller lists instead of spinning excessively around empty 645 * lists 646 */ 647 do { 648 batch_free++; 649 if (++migratetype == MIGRATE_PCPTYPES) 650 migratetype = 0; 651 list = &pcp->lists[migratetype]; 652 } while (list_empty(list)); 653 654 /* This is the only non-empty list. Free them all. */ 655 if (batch_free == MIGRATE_PCPTYPES) 656 batch_free = to_free; 657 658 do { 659 int mt; /* migratetype of the to-be-freed page */ 660 661 page = list_entry(list->prev, struct page, lru); 662 /* must delete as __free_one_page list manipulates */ 663 list_del(&page->lru); 664 mt = get_freepage_migratetype(page); 665 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 666 __free_one_page(page, zone, 0, mt); 667 trace_mm_page_pcpu_drain(page, 0, mt); 668 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) { 669 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 670 if (is_migrate_cma(mt)) 671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 672 } 673 } while (--to_free && --batch_free && !list_empty(list)); 674 } 675 spin_unlock(&zone->lock); 676 } 677 678 static void free_one_page(struct zone *zone, struct page *page, int order, 679 int migratetype) 680 { 681 spin_lock(&zone->lock); 682 zone->all_unreclaimable = 0; 683 zone->pages_scanned = 0; 684 685 __free_one_page(page, zone, order, migratetype); 686 if (unlikely(migratetype != MIGRATE_ISOLATE)) 687 __mod_zone_freepage_state(zone, 1 << order, migratetype); 688 spin_unlock(&zone->lock); 689 } 690 691 static bool free_pages_prepare(struct page *page, unsigned int order) 692 { 693 int i; 694 int bad = 0; 695 696 trace_mm_page_free(page, order); 697 kmemcheck_free_shadow(page, order); 698 699 if (PageAnon(page)) 700 page->mapping = NULL; 701 for (i = 0; i < (1 << order); i++) 702 bad += free_pages_check(page + i); 703 if (bad) 704 return false; 705 706 if (!PageHighMem(page)) { 707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 708 debug_check_no_obj_freed(page_address(page), 709 PAGE_SIZE << order); 710 } 711 arch_free_page(page, order); 712 kernel_map_pages(page, 1 << order, 0); 713 714 return true; 715 } 716 717 static void __free_pages_ok(struct page *page, unsigned int order) 718 { 719 unsigned long flags; 720 int migratetype; 721 722 if (!free_pages_prepare(page, order)) 723 return; 724 725 local_irq_save(flags); 726 __count_vm_events(PGFREE, 1 << order); 727 migratetype = get_pageblock_migratetype(page); 728 set_freepage_migratetype(page, migratetype); 729 free_one_page(page_zone(page), page, order, migratetype); 730 local_irq_restore(flags); 731 } 732 733 /* 734 * Read access to zone->managed_pages is safe because it's unsigned long, 735 * but we still need to serialize writers. Currently all callers of 736 * __free_pages_bootmem() except put_page_bootmem() should only be used 737 * at boot time. So for shorter boot time, we shift the burden to 738 * put_page_bootmem() to serialize writers. 739 */ 740 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 741 { 742 unsigned int nr_pages = 1 << order; 743 unsigned int loop; 744 745 prefetchw(page); 746 for (loop = 0; loop < nr_pages; loop++) { 747 struct page *p = &page[loop]; 748 749 if (loop + 1 < nr_pages) 750 prefetchw(p + 1); 751 __ClearPageReserved(p); 752 set_page_count(p, 0); 753 } 754 755 page_zone(page)->managed_pages += 1 << order; 756 set_page_refcounted(page); 757 __free_pages(page, order); 758 } 759 760 #ifdef CONFIG_CMA 761 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 762 void __init init_cma_reserved_pageblock(struct page *page) 763 { 764 unsigned i = pageblock_nr_pages; 765 struct page *p = page; 766 767 do { 768 __ClearPageReserved(p); 769 set_page_count(p, 0); 770 } while (++p, --i); 771 772 set_page_refcounted(page); 773 set_pageblock_migratetype(page, MIGRATE_CMA); 774 __free_pages(page, pageblock_order); 775 totalram_pages += pageblock_nr_pages; 776 } 777 #endif 778 779 /* 780 * The order of subdivision here is critical for the IO subsystem. 781 * Please do not alter this order without good reasons and regression 782 * testing. Specifically, as large blocks of memory are subdivided, 783 * the order in which smaller blocks are delivered depends on the order 784 * they're subdivided in this function. This is the primary factor 785 * influencing the order in which pages are delivered to the IO 786 * subsystem according to empirical testing, and this is also justified 787 * by considering the behavior of a buddy system containing a single 788 * large block of memory acted on by a series of small allocations. 789 * This behavior is a critical factor in sglist merging's success. 790 * 791 * -- nyc 792 */ 793 static inline void expand(struct zone *zone, struct page *page, 794 int low, int high, struct free_area *area, 795 int migratetype) 796 { 797 unsigned long size = 1 << high; 798 799 while (high > low) { 800 area--; 801 high--; 802 size >>= 1; 803 VM_BUG_ON(bad_range(zone, &page[size])); 804 805 #ifdef CONFIG_DEBUG_PAGEALLOC 806 if (high < debug_guardpage_minorder()) { 807 /* 808 * Mark as guard pages (or page), that will allow to 809 * merge back to allocator when buddy will be freed. 810 * Corresponding page table entries will not be touched, 811 * pages will stay not present in virtual address space 812 */ 813 INIT_LIST_HEAD(&page[size].lru); 814 set_page_guard_flag(&page[size]); 815 set_page_private(&page[size], high); 816 /* Guard pages are not available for any usage */ 817 __mod_zone_freepage_state(zone, -(1 << high), 818 migratetype); 819 continue; 820 } 821 #endif 822 list_add(&page[size].lru, &area->free_list[migratetype]); 823 area->nr_free++; 824 set_page_order(&page[size], high); 825 } 826 } 827 828 /* 829 * This page is about to be returned from the page allocator 830 */ 831 static inline int check_new_page(struct page *page) 832 { 833 if (unlikely(page_mapcount(page) | 834 (page->mapping != NULL) | 835 (atomic_read(&page->_count) != 0) | 836 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 837 (mem_cgroup_bad_page_check(page)))) { 838 bad_page(page); 839 return 1; 840 } 841 return 0; 842 } 843 844 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 845 { 846 int i; 847 848 for (i = 0; i < (1 << order); i++) { 849 struct page *p = page + i; 850 if (unlikely(check_new_page(p))) 851 return 1; 852 } 853 854 set_page_private(page, 0); 855 set_page_refcounted(page); 856 857 arch_alloc_page(page, order); 858 kernel_map_pages(page, 1 << order, 1); 859 860 if (gfp_flags & __GFP_ZERO) 861 prep_zero_page(page, order, gfp_flags); 862 863 if (order && (gfp_flags & __GFP_COMP)) 864 prep_compound_page(page, order); 865 866 return 0; 867 } 868 869 /* 870 * Go through the free lists for the given migratetype and remove 871 * the smallest available page from the freelists 872 */ 873 static inline 874 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 875 int migratetype) 876 { 877 unsigned int current_order; 878 struct free_area * area; 879 struct page *page; 880 881 /* Find a page of the appropriate size in the preferred list */ 882 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 883 area = &(zone->free_area[current_order]); 884 if (list_empty(&area->free_list[migratetype])) 885 continue; 886 887 page = list_entry(area->free_list[migratetype].next, 888 struct page, lru); 889 list_del(&page->lru); 890 rmv_page_order(page); 891 area->nr_free--; 892 expand(zone, page, order, current_order, area, migratetype); 893 return page; 894 } 895 896 return NULL; 897 } 898 899 900 /* 901 * This array describes the order lists are fallen back to when 902 * the free lists for the desirable migrate type are depleted 903 */ 904 static int fallbacks[MIGRATE_TYPES][4] = { 905 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 906 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 907 #ifdef CONFIG_CMA 908 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 909 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 910 #else 911 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 912 #endif 913 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 914 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 915 }; 916 917 /* 918 * Move the free pages in a range to the free lists of the requested type. 919 * Note that start_page and end_pages are not aligned on a pageblock 920 * boundary. If alignment is required, use move_freepages_block() 921 */ 922 int move_freepages(struct zone *zone, 923 struct page *start_page, struct page *end_page, 924 int migratetype) 925 { 926 struct page *page; 927 unsigned long order; 928 int pages_moved = 0; 929 930 #ifndef CONFIG_HOLES_IN_ZONE 931 /* 932 * page_zone is not safe to call in this context when 933 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 934 * anyway as we check zone boundaries in move_freepages_block(). 935 * Remove at a later date when no bug reports exist related to 936 * grouping pages by mobility 937 */ 938 BUG_ON(page_zone(start_page) != page_zone(end_page)); 939 #endif 940 941 for (page = start_page; page <= end_page;) { 942 /* Make sure we are not inadvertently changing nodes */ 943 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 944 945 if (!pfn_valid_within(page_to_pfn(page))) { 946 page++; 947 continue; 948 } 949 950 if (!PageBuddy(page)) { 951 page++; 952 continue; 953 } 954 955 order = page_order(page); 956 list_move(&page->lru, 957 &zone->free_area[order].free_list[migratetype]); 958 set_freepage_migratetype(page, migratetype); 959 page += 1 << order; 960 pages_moved += 1 << order; 961 } 962 963 return pages_moved; 964 } 965 966 int move_freepages_block(struct zone *zone, struct page *page, 967 int migratetype) 968 { 969 unsigned long start_pfn, end_pfn; 970 struct page *start_page, *end_page; 971 972 start_pfn = page_to_pfn(page); 973 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 974 start_page = pfn_to_page(start_pfn); 975 end_page = start_page + pageblock_nr_pages - 1; 976 end_pfn = start_pfn + pageblock_nr_pages - 1; 977 978 /* Do not cross zone boundaries */ 979 if (start_pfn < zone->zone_start_pfn) 980 start_page = page; 981 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 982 return 0; 983 984 return move_freepages(zone, start_page, end_page, migratetype); 985 } 986 987 static void change_pageblock_range(struct page *pageblock_page, 988 int start_order, int migratetype) 989 { 990 int nr_pageblocks = 1 << (start_order - pageblock_order); 991 992 while (nr_pageblocks--) { 993 set_pageblock_migratetype(pageblock_page, migratetype); 994 pageblock_page += pageblock_nr_pages; 995 } 996 } 997 998 /* Remove an element from the buddy allocator from the fallback list */ 999 static inline struct page * 1000 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1001 { 1002 struct free_area * area; 1003 int current_order; 1004 struct page *page; 1005 int migratetype, i; 1006 1007 /* Find the largest possible block of pages in the other list */ 1008 for (current_order = MAX_ORDER-1; current_order >= order; 1009 --current_order) { 1010 for (i = 0;; i++) { 1011 migratetype = fallbacks[start_migratetype][i]; 1012 1013 /* MIGRATE_RESERVE handled later if necessary */ 1014 if (migratetype == MIGRATE_RESERVE) 1015 break; 1016 1017 area = &(zone->free_area[current_order]); 1018 if (list_empty(&area->free_list[migratetype])) 1019 continue; 1020 1021 page = list_entry(area->free_list[migratetype].next, 1022 struct page, lru); 1023 area->nr_free--; 1024 1025 /* 1026 * If breaking a large block of pages, move all free 1027 * pages to the preferred allocation list. If falling 1028 * back for a reclaimable kernel allocation, be more 1029 * aggressive about taking ownership of free pages 1030 * 1031 * On the other hand, never change migration 1032 * type of MIGRATE_CMA pageblocks nor move CMA 1033 * pages on different free lists. We don't 1034 * want unmovable pages to be allocated from 1035 * MIGRATE_CMA areas. 1036 */ 1037 if (!is_migrate_cma(migratetype) && 1038 (unlikely(current_order >= pageblock_order / 2) || 1039 start_migratetype == MIGRATE_RECLAIMABLE || 1040 page_group_by_mobility_disabled)) { 1041 int pages; 1042 pages = move_freepages_block(zone, page, 1043 start_migratetype); 1044 1045 /* Claim the whole block if over half of it is free */ 1046 if (pages >= (1 << (pageblock_order-1)) || 1047 page_group_by_mobility_disabled) 1048 set_pageblock_migratetype(page, 1049 start_migratetype); 1050 1051 migratetype = start_migratetype; 1052 } 1053 1054 /* Remove the page from the freelists */ 1055 list_del(&page->lru); 1056 rmv_page_order(page); 1057 1058 /* Take ownership for orders >= pageblock_order */ 1059 if (current_order >= pageblock_order && 1060 !is_migrate_cma(migratetype)) 1061 change_pageblock_range(page, current_order, 1062 start_migratetype); 1063 1064 expand(zone, page, order, current_order, area, 1065 is_migrate_cma(migratetype) 1066 ? migratetype : start_migratetype); 1067 1068 trace_mm_page_alloc_extfrag(page, order, current_order, 1069 start_migratetype, migratetype); 1070 1071 return page; 1072 } 1073 } 1074 1075 return NULL; 1076 } 1077 1078 /* 1079 * Do the hard work of removing an element from the buddy allocator. 1080 * Call me with the zone->lock already held. 1081 */ 1082 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1083 int migratetype) 1084 { 1085 struct page *page; 1086 1087 retry_reserve: 1088 page = __rmqueue_smallest(zone, order, migratetype); 1089 1090 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1091 page = __rmqueue_fallback(zone, order, migratetype); 1092 1093 /* 1094 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1095 * is used because __rmqueue_smallest is an inline function 1096 * and we want just one call site 1097 */ 1098 if (!page) { 1099 migratetype = MIGRATE_RESERVE; 1100 goto retry_reserve; 1101 } 1102 } 1103 1104 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1105 return page; 1106 } 1107 1108 /* 1109 * Obtain a specified number of elements from the buddy allocator, all under 1110 * a single hold of the lock, for efficiency. Add them to the supplied list. 1111 * Returns the number of new pages which were placed at *list. 1112 */ 1113 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1114 unsigned long count, struct list_head *list, 1115 int migratetype, int cold) 1116 { 1117 int mt = migratetype, i; 1118 1119 spin_lock(&zone->lock); 1120 for (i = 0; i < count; ++i) { 1121 struct page *page = __rmqueue(zone, order, migratetype); 1122 if (unlikely(page == NULL)) 1123 break; 1124 1125 /* 1126 * Split buddy pages returned by expand() are received here 1127 * in physical page order. The page is added to the callers and 1128 * list and the list head then moves forward. From the callers 1129 * perspective, the linked list is ordered by page number in 1130 * some conditions. This is useful for IO devices that can 1131 * merge IO requests if the physical pages are ordered 1132 * properly. 1133 */ 1134 if (likely(cold == 0)) 1135 list_add(&page->lru, list); 1136 else 1137 list_add_tail(&page->lru, list); 1138 if (IS_ENABLED(CONFIG_CMA)) { 1139 mt = get_pageblock_migratetype(page); 1140 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE) 1141 mt = migratetype; 1142 } 1143 set_freepage_migratetype(page, mt); 1144 list = &page->lru; 1145 if (is_migrate_cma(mt)) 1146 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1147 -(1 << order)); 1148 } 1149 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1150 spin_unlock(&zone->lock); 1151 return i; 1152 } 1153 1154 #ifdef CONFIG_NUMA 1155 /* 1156 * Called from the vmstat counter updater to drain pagesets of this 1157 * currently executing processor on remote nodes after they have 1158 * expired. 1159 * 1160 * Note that this function must be called with the thread pinned to 1161 * a single processor. 1162 */ 1163 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1164 { 1165 unsigned long flags; 1166 int to_drain; 1167 1168 local_irq_save(flags); 1169 if (pcp->count >= pcp->batch) 1170 to_drain = pcp->batch; 1171 else 1172 to_drain = pcp->count; 1173 if (to_drain > 0) { 1174 free_pcppages_bulk(zone, to_drain, pcp); 1175 pcp->count -= to_drain; 1176 } 1177 local_irq_restore(flags); 1178 } 1179 #endif 1180 1181 /* 1182 * Drain pages of the indicated processor. 1183 * 1184 * The processor must either be the current processor and the 1185 * thread pinned to the current processor or a processor that 1186 * is not online. 1187 */ 1188 static void drain_pages(unsigned int cpu) 1189 { 1190 unsigned long flags; 1191 struct zone *zone; 1192 1193 for_each_populated_zone(zone) { 1194 struct per_cpu_pageset *pset; 1195 struct per_cpu_pages *pcp; 1196 1197 local_irq_save(flags); 1198 pset = per_cpu_ptr(zone->pageset, cpu); 1199 1200 pcp = &pset->pcp; 1201 if (pcp->count) { 1202 free_pcppages_bulk(zone, pcp->count, pcp); 1203 pcp->count = 0; 1204 } 1205 local_irq_restore(flags); 1206 } 1207 } 1208 1209 /* 1210 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1211 */ 1212 void drain_local_pages(void *arg) 1213 { 1214 drain_pages(smp_processor_id()); 1215 } 1216 1217 /* 1218 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1219 * 1220 * Note that this code is protected against sending an IPI to an offline 1221 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1222 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1223 * nothing keeps CPUs from showing up after we populated the cpumask and 1224 * before the call to on_each_cpu_mask(). 1225 */ 1226 void drain_all_pages(void) 1227 { 1228 int cpu; 1229 struct per_cpu_pageset *pcp; 1230 struct zone *zone; 1231 1232 /* 1233 * Allocate in the BSS so we wont require allocation in 1234 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1235 */ 1236 static cpumask_t cpus_with_pcps; 1237 1238 /* 1239 * We don't care about racing with CPU hotplug event 1240 * as offline notification will cause the notified 1241 * cpu to drain that CPU pcps and on_each_cpu_mask 1242 * disables preemption as part of its processing 1243 */ 1244 for_each_online_cpu(cpu) { 1245 bool has_pcps = false; 1246 for_each_populated_zone(zone) { 1247 pcp = per_cpu_ptr(zone->pageset, cpu); 1248 if (pcp->pcp.count) { 1249 has_pcps = true; 1250 break; 1251 } 1252 } 1253 if (has_pcps) 1254 cpumask_set_cpu(cpu, &cpus_with_pcps); 1255 else 1256 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1257 } 1258 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1259 } 1260 1261 #ifdef CONFIG_HIBERNATION 1262 1263 void mark_free_pages(struct zone *zone) 1264 { 1265 unsigned long pfn, max_zone_pfn; 1266 unsigned long flags; 1267 int order, t; 1268 struct list_head *curr; 1269 1270 if (!zone->spanned_pages) 1271 return; 1272 1273 spin_lock_irqsave(&zone->lock, flags); 1274 1275 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1276 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1277 if (pfn_valid(pfn)) { 1278 struct page *page = pfn_to_page(pfn); 1279 1280 if (!swsusp_page_is_forbidden(page)) 1281 swsusp_unset_page_free(page); 1282 } 1283 1284 for_each_migratetype_order(order, t) { 1285 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1286 unsigned long i; 1287 1288 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1289 for (i = 0; i < (1UL << order); i++) 1290 swsusp_set_page_free(pfn_to_page(pfn + i)); 1291 } 1292 } 1293 spin_unlock_irqrestore(&zone->lock, flags); 1294 } 1295 #endif /* CONFIG_PM */ 1296 1297 /* 1298 * Free a 0-order page 1299 * cold == 1 ? free a cold page : free a hot page 1300 */ 1301 void free_hot_cold_page(struct page *page, int cold) 1302 { 1303 struct zone *zone = page_zone(page); 1304 struct per_cpu_pages *pcp; 1305 unsigned long flags; 1306 int migratetype; 1307 1308 if (!free_pages_prepare(page, 0)) 1309 return; 1310 1311 migratetype = get_pageblock_migratetype(page); 1312 set_freepage_migratetype(page, migratetype); 1313 local_irq_save(flags); 1314 __count_vm_event(PGFREE); 1315 1316 /* 1317 * We only track unmovable, reclaimable and movable on pcp lists. 1318 * Free ISOLATE pages back to the allocator because they are being 1319 * offlined but treat RESERVE as movable pages so we can get those 1320 * areas back if necessary. Otherwise, we may have to free 1321 * excessively into the page allocator 1322 */ 1323 if (migratetype >= MIGRATE_PCPTYPES) { 1324 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1325 free_one_page(zone, page, 0, migratetype); 1326 goto out; 1327 } 1328 migratetype = MIGRATE_MOVABLE; 1329 } 1330 1331 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1332 if (cold) 1333 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1334 else 1335 list_add(&page->lru, &pcp->lists[migratetype]); 1336 pcp->count++; 1337 if (pcp->count >= pcp->high) { 1338 free_pcppages_bulk(zone, pcp->batch, pcp); 1339 pcp->count -= pcp->batch; 1340 } 1341 1342 out: 1343 local_irq_restore(flags); 1344 } 1345 1346 /* 1347 * Free a list of 0-order pages 1348 */ 1349 void free_hot_cold_page_list(struct list_head *list, int cold) 1350 { 1351 struct page *page, *next; 1352 1353 list_for_each_entry_safe(page, next, list, lru) { 1354 trace_mm_page_free_batched(page, cold); 1355 free_hot_cold_page(page, cold); 1356 } 1357 } 1358 1359 /* 1360 * split_page takes a non-compound higher-order page, and splits it into 1361 * n (1<<order) sub-pages: page[0..n] 1362 * Each sub-page must be freed individually. 1363 * 1364 * Note: this is probably too low level an operation for use in drivers. 1365 * Please consult with lkml before using this in your driver. 1366 */ 1367 void split_page(struct page *page, unsigned int order) 1368 { 1369 int i; 1370 1371 VM_BUG_ON(PageCompound(page)); 1372 VM_BUG_ON(!page_count(page)); 1373 1374 #ifdef CONFIG_KMEMCHECK 1375 /* 1376 * Split shadow pages too, because free(page[0]) would 1377 * otherwise free the whole shadow. 1378 */ 1379 if (kmemcheck_page_is_tracked(page)) 1380 split_page(virt_to_page(page[0].shadow), order); 1381 #endif 1382 1383 for (i = 1; i < (1 << order); i++) 1384 set_page_refcounted(page + i); 1385 } 1386 1387 /* 1388 * Similar to the split_page family of functions except that the page 1389 * required at the given order and being isolated now to prevent races 1390 * with parallel allocators 1391 */ 1392 int capture_free_page(struct page *page, int alloc_order, int migratetype) 1393 { 1394 unsigned int order; 1395 unsigned long watermark; 1396 struct zone *zone; 1397 int mt; 1398 1399 BUG_ON(!PageBuddy(page)); 1400 1401 zone = page_zone(page); 1402 order = page_order(page); 1403 mt = get_pageblock_migratetype(page); 1404 1405 if (mt != MIGRATE_ISOLATE) { 1406 /* Obey watermarks as if the page was being allocated */ 1407 watermark = low_wmark_pages(zone) + (1 << order); 1408 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1409 return 0; 1410 1411 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt); 1412 } 1413 1414 /* Remove page from free list */ 1415 list_del(&page->lru); 1416 zone->free_area[order].nr_free--; 1417 rmv_page_order(page); 1418 1419 if (alloc_order != order) 1420 expand(zone, page, alloc_order, order, 1421 &zone->free_area[order], migratetype); 1422 1423 /* Set the pageblock if the captured page is at least a pageblock */ 1424 if (order >= pageblock_order - 1) { 1425 struct page *endpage = page + (1 << order) - 1; 1426 for (; page < endpage; page += pageblock_nr_pages) { 1427 int mt = get_pageblock_migratetype(page); 1428 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt)) 1429 set_pageblock_migratetype(page, 1430 MIGRATE_MOVABLE); 1431 } 1432 } 1433 1434 return 1UL << alloc_order; 1435 } 1436 1437 /* 1438 * Similar to split_page except the page is already free. As this is only 1439 * being used for migration, the migratetype of the block also changes. 1440 * As this is called with interrupts disabled, the caller is responsible 1441 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1442 * are enabled. 1443 * 1444 * Note: this is probably too low level an operation for use in drivers. 1445 * Please consult with lkml before using this in your driver. 1446 */ 1447 int split_free_page(struct page *page) 1448 { 1449 unsigned int order; 1450 int nr_pages; 1451 1452 BUG_ON(!PageBuddy(page)); 1453 order = page_order(page); 1454 1455 nr_pages = capture_free_page(page, order, 0); 1456 if (!nr_pages) 1457 return 0; 1458 1459 /* Split into individual pages */ 1460 set_page_refcounted(page); 1461 split_page(page, order); 1462 return nr_pages; 1463 } 1464 1465 /* 1466 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1467 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1468 * or two. 1469 */ 1470 static inline 1471 struct page *buffered_rmqueue(struct zone *preferred_zone, 1472 struct zone *zone, int order, gfp_t gfp_flags, 1473 int migratetype) 1474 { 1475 unsigned long flags; 1476 struct page *page; 1477 int cold = !!(gfp_flags & __GFP_COLD); 1478 1479 again: 1480 if (likely(order == 0)) { 1481 struct per_cpu_pages *pcp; 1482 struct list_head *list; 1483 1484 local_irq_save(flags); 1485 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1486 list = &pcp->lists[migratetype]; 1487 if (list_empty(list)) { 1488 pcp->count += rmqueue_bulk(zone, 0, 1489 pcp->batch, list, 1490 migratetype, cold); 1491 if (unlikely(list_empty(list))) 1492 goto failed; 1493 } 1494 1495 if (cold) 1496 page = list_entry(list->prev, struct page, lru); 1497 else 1498 page = list_entry(list->next, struct page, lru); 1499 1500 list_del(&page->lru); 1501 pcp->count--; 1502 } else { 1503 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1504 /* 1505 * __GFP_NOFAIL is not to be used in new code. 1506 * 1507 * All __GFP_NOFAIL callers should be fixed so that they 1508 * properly detect and handle allocation failures. 1509 * 1510 * We most definitely don't want callers attempting to 1511 * allocate greater than order-1 page units with 1512 * __GFP_NOFAIL. 1513 */ 1514 WARN_ON_ONCE(order > 1); 1515 } 1516 spin_lock_irqsave(&zone->lock, flags); 1517 page = __rmqueue(zone, order, migratetype); 1518 spin_unlock(&zone->lock); 1519 if (!page) 1520 goto failed; 1521 __mod_zone_freepage_state(zone, -(1 << order), 1522 get_pageblock_migratetype(page)); 1523 } 1524 1525 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1526 zone_statistics(preferred_zone, zone, gfp_flags); 1527 local_irq_restore(flags); 1528 1529 VM_BUG_ON(bad_range(zone, page)); 1530 if (prep_new_page(page, order, gfp_flags)) 1531 goto again; 1532 return page; 1533 1534 failed: 1535 local_irq_restore(flags); 1536 return NULL; 1537 } 1538 1539 #ifdef CONFIG_FAIL_PAGE_ALLOC 1540 1541 static struct { 1542 struct fault_attr attr; 1543 1544 u32 ignore_gfp_highmem; 1545 u32 ignore_gfp_wait; 1546 u32 min_order; 1547 } fail_page_alloc = { 1548 .attr = FAULT_ATTR_INITIALIZER, 1549 .ignore_gfp_wait = 1, 1550 .ignore_gfp_highmem = 1, 1551 .min_order = 1, 1552 }; 1553 1554 static int __init setup_fail_page_alloc(char *str) 1555 { 1556 return setup_fault_attr(&fail_page_alloc.attr, str); 1557 } 1558 __setup("fail_page_alloc=", setup_fail_page_alloc); 1559 1560 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1561 { 1562 if (order < fail_page_alloc.min_order) 1563 return false; 1564 if (gfp_mask & __GFP_NOFAIL) 1565 return false; 1566 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1567 return false; 1568 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1569 return false; 1570 1571 return should_fail(&fail_page_alloc.attr, 1 << order); 1572 } 1573 1574 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1575 1576 static int __init fail_page_alloc_debugfs(void) 1577 { 1578 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1579 struct dentry *dir; 1580 1581 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1582 &fail_page_alloc.attr); 1583 if (IS_ERR(dir)) 1584 return PTR_ERR(dir); 1585 1586 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1587 &fail_page_alloc.ignore_gfp_wait)) 1588 goto fail; 1589 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1590 &fail_page_alloc.ignore_gfp_highmem)) 1591 goto fail; 1592 if (!debugfs_create_u32("min-order", mode, dir, 1593 &fail_page_alloc.min_order)) 1594 goto fail; 1595 1596 return 0; 1597 fail: 1598 debugfs_remove_recursive(dir); 1599 1600 return -ENOMEM; 1601 } 1602 1603 late_initcall(fail_page_alloc_debugfs); 1604 1605 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1606 1607 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1608 1609 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1610 { 1611 return false; 1612 } 1613 1614 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1615 1616 /* 1617 * Return true if free pages are above 'mark'. This takes into account the order 1618 * of the allocation. 1619 */ 1620 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1621 int classzone_idx, int alloc_flags, long free_pages) 1622 { 1623 /* free_pages my go negative - that's OK */ 1624 long min = mark; 1625 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1626 int o; 1627 1628 free_pages -= (1 << order) - 1; 1629 if (alloc_flags & ALLOC_HIGH) 1630 min -= min / 2; 1631 if (alloc_flags & ALLOC_HARDER) 1632 min -= min / 4; 1633 #ifdef CONFIG_CMA 1634 /* If allocation can't use CMA areas don't use free CMA pages */ 1635 if (!(alloc_flags & ALLOC_CMA)) 1636 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 1637 #endif 1638 if (free_pages <= min + lowmem_reserve) 1639 return false; 1640 for (o = 0; o < order; o++) { 1641 /* At the next order, this order's pages become unavailable */ 1642 free_pages -= z->free_area[o].nr_free << o; 1643 1644 /* Require fewer higher order pages to be free */ 1645 min >>= 1; 1646 1647 if (free_pages <= min) 1648 return false; 1649 } 1650 return true; 1651 } 1652 1653 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1654 int classzone_idx, int alloc_flags) 1655 { 1656 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1657 zone_page_state(z, NR_FREE_PAGES)); 1658 } 1659 1660 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1661 int classzone_idx, int alloc_flags) 1662 { 1663 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1664 1665 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1666 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1667 1668 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1669 free_pages); 1670 } 1671 1672 #ifdef CONFIG_NUMA 1673 /* 1674 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1675 * skip over zones that are not allowed by the cpuset, or that have 1676 * been recently (in last second) found to be nearly full. See further 1677 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1678 * that have to skip over a lot of full or unallowed zones. 1679 * 1680 * If the zonelist cache is present in the passed in zonelist, then 1681 * returns a pointer to the allowed node mask (either the current 1682 * tasks mems_allowed, or node_states[N_MEMORY].) 1683 * 1684 * If the zonelist cache is not available for this zonelist, does 1685 * nothing and returns NULL. 1686 * 1687 * If the fullzones BITMAP in the zonelist cache is stale (more than 1688 * a second since last zap'd) then we zap it out (clear its bits.) 1689 * 1690 * We hold off even calling zlc_setup, until after we've checked the 1691 * first zone in the zonelist, on the theory that most allocations will 1692 * be satisfied from that first zone, so best to examine that zone as 1693 * quickly as we can. 1694 */ 1695 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1696 { 1697 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1698 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1699 1700 zlc = zonelist->zlcache_ptr; 1701 if (!zlc) 1702 return NULL; 1703 1704 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1705 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1706 zlc->last_full_zap = jiffies; 1707 } 1708 1709 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1710 &cpuset_current_mems_allowed : 1711 &node_states[N_MEMORY]; 1712 return allowednodes; 1713 } 1714 1715 /* 1716 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1717 * if it is worth looking at further for free memory: 1718 * 1) Check that the zone isn't thought to be full (doesn't have its 1719 * bit set in the zonelist_cache fullzones BITMAP). 1720 * 2) Check that the zones node (obtained from the zonelist_cache 1721 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1722 * Return true (non-zero) if zone is worth looking at further, or 1723 * else return false (zero) if it is not. 1724 * 1725 * This check -ignores- the distinction between various watermarks, 1726 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1727 * found to be full for any variation of these watermarks, it will 1728 * be considered full for up to one second by all requests, unless 1729 * we are so low on memory on all allowed nodes that we are forced 1730 * into the second scan of the zonelist. 1731 * 1732 * In the second scan we ignore this zonelist cache and exactly 1733 * apply the watermarks to all zones, even it is slower to do so. 1734 * We are low on memory in the second scan, and should leave no stone 1735 * unturned looking for a free page. 1736 */ 1737 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1738 nodemask_t *allowednodes) 1739 { 1740 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1741 int i; /* index of *z in zonelist zones */ 1742 int n; /* node that zone *z is on */ 1743 1744 zlc = zonelist->zlcache_ptr; 1745 if (!zlc) 1746 return 1; 1747 1748 i = z - zonelist->_zonerefs; 1749 n = zlc->z_to_n[i]; 1750 1751 /* This zone is worth trying if it is allowed but not full */ 1752 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1753 } 1754 1755 /* 1756 * Given 'z' scanning a zonelist, set the corresponding bit in 1757 * zlc->fullzones, so that subsequent attempts to allocate a page 1758 * from that zone don't waste time re-examining it. 1759 */ 1760 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1761 { 1762 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1763 int i; /* index of *z in zonelist zones */ 1764 1765 zlc = zonelist->zlcache_ptr; 1766 if (!zlc) 1767 return; 1768 1769 i = z - zonelist->_zonerefs; 1770 1771 set_bit(i, zlc->fullzones); 1772 } 1773 1774 /* 1775 * clear all zones full, called after direct reclaim makes progress so that 1776 * a zone that was recently full is not skipped over for up to a second 1777 */ 1778 static void zlc_clear_zones_full(struct zonelist *zonelist) 1779 { 1780 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1781 1782 zlc = zonelist->zlcache_ptr; 1783 if (!zlc) 1784 return; 1785 1786 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1787 } 1788 1789 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1790 { 1791 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1792 } 1793 1794 static void __paginginit init_zone_allows_reclaim(int nid) 1795 { 1796 int i; 1797 1798 for_each_online_node(i) 1799 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1800 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1801 else 1802 zone_reclaim_mode = 1; 1803 } 1804 1805 #else /* CONFIG_NUMA */ 1806 1807 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1808 { 1809 return NULL; 1810 } 1811 1812 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1813 nodemask_t *allowednodes) 1814 { 1815 return 1; 1816 } 1817 1818 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1819 { 1820 } 1821 1822 static void zlc_clear_zones_full(struct zonelist *zonelist) 1823 { 1824 } 1825 1826 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1827 { 1828 return true; 1829 } 1830 1831 static inline void init_zone_allows_reclaim(int nid) 1832 { 1833 } 1834 #endif /* CONFIG_NUMA */ 1835 1836 /* 1837 * get_page_from_freelist goes through the zonelist trying to allocate 1838 * a page. 1839 */ 1840 static struct page * 1841 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1842 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1843 struct zone *preferred_zone, int migratetype) 1844 { 1845 struct zoneref *z; 1846 struct page *page = NULL; 1847 int classzone_idx; 1848 struct zone *zone; 1849 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1850 int zlc_active = 0; /* set if using zonelist_cache */ 1851 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1852 1853 classzone_idx = zone_idx(preferred_zone); 1854 zonelist_scan: 1855 /* 1856 * Scan zonelist, looking for a zone with enough free. 1857 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1858 */ 1859 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1860 high_zoneidx, nodemask) { 1861 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1862 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1863 continue; 1864 if ((alloc_flags & ALLOC_CPUSET) && 1865 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1866 continue; 1867 /* 1868 * When allocating a page cache page for writing, we 1869 * want to get it from a zone that is within its dirty 1870 * limit, such that no single zone holds more than its 1871 * proportional share of globally allowed dirty pages. 1872 * The dirty limits take into account the zone's 1873 * lowmem reserves and high watermark so that kswapd 1874 * should be able to balance it without having to 1875 * write pages from its LRU list. 1876 * 1877 * This may look like it could increase pressure on 1878 * lower zones by failing allocations in higher zones 1879 * before they are full. But the pages that do spill 1880 * over are limited as the lower zones are protected 1881 * by this very same mechanism. It should not become 1882 * a practical burden to them. 1883 * 1884 * XXX: For now, allow allocations to potentially 1885 * exceed the per-zone dirty limit in the slowpath 1886 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1887 * which is important when on a NUMA setup the allowed 1888 * zones are together not big enough to reach the 1889 * global limit. The proper fix for these situations 1890 * will require awareness of zones in the 1891 * dirty-throttling and the flusher threads. 1892 */ 1893 if ((alloc_flags & ALLOC_WMARK_LOW) && 1894 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1895 goto this_zone_full; 1896 1897 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1898 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1899 unsigned long mark; 1900 int ret; 1901 1902 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1903 if (zone_watermark_ok(zone, order, mark, 1904 classzone_idx, alloc_flags)) 1905 goto try_this_zone; 1906 1907 if (IS_ENABLED(CONFIG_NUMA) && 1908 !did_zlc_setup && nr_online_nodes > 1) { 1909 /* 1910 * we do zlc_setup if there are multiple nodes 1911 * and before considering the first zone allowed 1912 * by the cpuset. 1913 */ 1914 allowednodes = zlc_setup(zonelist, alloc_flags); 1915 zlc_active = 1; 1916 did_zlc_setup = 1; 1917 } 1918 1919 if (zone_reclaim_mode == 0 || 1920 !zone_allows_reclaim(preferred_zone, zone)) 1921 goto this_zone_full; 1922 1923 /* 1924 * As we may have just activated ZLC, check if the first 1925 * eligible zone has failed zone_reclaim recently. 1926 */ 1927 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1928 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1929 continue; 1930 1931 ret = zone_reclaim(zone, gfp_mask, order); 1932 switch (ret) { 1933 case ZONE_RECLAIM_NOSCAN: 1934 /* did not scan */ 1935 continue; 1936 case ZONE_RECLAIM_FULL: 1937 /* scanned but unreclaimable */ 1938 continue; 1939 default: 1940 /* did we reclaim enough */ 1941 if (!zone_watermark_ok(zone, order, mark, 1942 classzone_idx, alloc_flags)) 1943 goto this_zone_full; 1944 } 1945 } 1946 1947 try_this_zone: 1948 page = buffered_rmqueue(preferred_zone, zone, order, 1949 gfp_mask, migratetype); 1950 if (page) 1951 break; 1952 this_zone_full: 1953 if (IS_ENABLED(CONFIG_NUMA)) 1954 zlc_mark_zone_full(zonelist, z); 1955 } 1956 1957 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 1958 /* Disable zlc cache for second zonelist scan */ 1959 zlc_active = 0; 1960 goto zonelist_scan; 1961 } 1962 1963 if (page) 1964 /* 1965 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 1966 * necessary to allocate the page. The expectation is 1967 * that the caller is taking steps that will free more 1968 * memory. The caller should avoid the page being used 1969 * for !PFMEMALLOC purposes. 1970 */ 1971 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 1972 1973 return page; 1974 } 1975 1976 /* 1977 * Large machines with many possible nodes should not always dump per-node 1978 * meminfo in irq context. 1979 */ 1980 static inline bool should_suppress_show_mem(void) 1981 { 1982 bool ret = false; 1983 1984 #if NODES_SHIFT > 8 1985 ret = in_interrupt(); 1986 #endif 1987 return ret; 1988 } 1989 1990 static DEFINE_RATELIMIT_STATE(nopage_rs, 1991 DEFAULT_RATELIMIT_INTERVAL, 1992 DEFAULT_RATELIMIT_BURST); 1993 1994 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1995 { 1996 unsigned int filter = SHOW_MEM_FILTER_NODES; 1997 1998 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 1999 debug_guardpage_minorder() > 0) 2000 return; 2001 2002 /* 2003 * This documents exceptions given to allocations in certain 2004 * contexts that are allowed to allocate outside current's set 2005 * of allowed nodes. 2006 */ 2007 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2008 if (test_thread_flag(TIF_MEMDIE) || 2009 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2010 filter &= ~SHOW_MEM_FILTER_NODES; 2011 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2012 filter &= ~SHOW_MEM_FILTER_NODES; 2013 2014 if (fmt) { 2015 struct va_format vaf; 2016 va_list args; 2017 2018 va_start(args, fmt); 2019 2020 vaf.fmt = fmt; 2021 vaf.va = &args; 2022 2023 pr_warn("%pV", &vaf); 2024 2025 va_end(args); 2026 } 2027 2028 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2029 current->comm, order, gfp_mask); 2030 2031 dump_stack(); 2032 if (!should_suppress_show_mem()) 2033 show_mem(filter); 2034 } 2035 2036 static inline int 2037 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2038 unsigned long did_some_progress, 2039 unsigned long pages_reclaimed) 2040 { 2041 /* Do not loop if specifically requested */ 2042 if (gfp_mask & __GFP_NORETRY) 2043 return 0; 2044 2045 /* Always retry if specifically requested */ 2046 if (gfp_mask & __GFP_NOFAIL) 2047 return 1; 2048 2049 /* 2050 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2051 * making forward progress without invoking OOM. Suspend also disables 2052 * storage devices so kswapd will not help. Bail if we are suspending. 2053 */ 2054 if (!did_some_progress && pm_suspended_storage()) 2055 return 0; 2056 2057 /* 2058 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2059 * means __GFP_NOFAIL, but that may not be true in other 2060 * implementations. 2061 */ 2062 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2063 return 1; 2064 2065 /* 2066 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2067 * specified, then we retry until we no longer reclaim any pages 2068 * (above), or we've reclaimed an order of pages at least as 2069 * large as the allocation's order. In both cases, if the 2070 * allocation still fails, we stop retrying. 2071 */ 2072 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2073 return 1; 2074 2075 return 0; 2076 } 2077 2078 static inline struct page * 2079 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2080 struct zonelist *zonelist, enum zone_type high_zoneidx, 2081 nodemask_t *nodemask, struct zone *preferred_zone, 2082 int migratetype) 2083 { 2084 struct page *page; 2085 2086 /* Acquire the OOM killer lock for the zones in zonelist */ 2087 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2088 schedule_timeout_uninterruptible(1); 2089 return NULL; 2090 } 2091 2092 /* 2093 * Go through the zonelist yet one more time, keep very high watermark 2094 * here, this is only to catch a parallel oom killing, we must fail if 2095 * we're still under heavy pressure. 2096 */ 2097 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2098 order, zonelist, high_zoneidx, 2099 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2100 preferred_zone, migratetype); 2101 if (page) 2102 goto out; 2103 2104 if (!(gfp_mask & __GFP_NOFAIL)) { 2105 /* The OOM killer will not help higher order allocs */ 2106 if (order > PAGE_ALLOC_COSTLY_ORDER) 2107 goto out; 2108 /* The OOM killer does not needlessly kill tasks for lowmem */ 2109 if (high_zoneidx < ZONE_NORMAL) 2110 goto out; 2111 /* 2112 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2113 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2114 * The caller should handle page allocation failure by itself if 2115 * it specifies __GFP_THISNODE. 2116 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2117 */ 2118 if (gfp_mask & __GFP_THISNODE) 2119 goto out; 2120 } 2121 /* Exhausted what can be done so it's blamo time */ 2122 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2123 2124 out: 2125 clear_zonelist_oom(zonelist, gfp_mask); 2126 return page; 2127 } 2128 2129 #ifdef CONFIG_COMPACTION 2130 /* Try memory compaction for high-order allocations before reclaim */ 2131 static struct page * 2132 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2133 struct zonelist *zonelist, enum zone_type high_zoneidx, 2134 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2135 int migratetype, bool sync_migration, 2136 bool *contended_compaction, bool *deferred_compaction, 2137 unsigned long *did_some_progress) 2138 { 2139 struct page *page = NULL; 2140 2141 if (!order) 2142 return NULL; 2143 2144 if (compaction_deferred(preferred_zone, order)) { 2145 *deferred_compaction = true; 2146 return NULL; 2147 } 2148 2149 current->flags |= PF_MEMALLOC; 2150 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2151 nodemask, sync_migration, 2152 contended_compaction, &page); 2153 current->flags &= ~PF_MEMALLOC; 2154 2155 /* If compaction captured a page, prep and use it */ 2156 if (page) { 2157 prep_new_page(page, order, gfp_mask); 2158 goto got_page; 2159 } 2160 2161 if (*did_some_progress != COMPACT_SKIPPED) { 2162 /* Page migration frees to the PCP lists but we want merging */ 2163 drain_pages(get_cpu()); 2164 put_cpu(); 2165 2166 page = get_page_from_freelist(gfp_mask, nodemask, 2167 order, zonelist, high_zoneidx, 2168 alloc_flags & ~ALLOC_NO_WATERMARKS, 2169 preferred_zone, migratetype); 2170 if (page) { 2171 got_page: 2172 preferred_zone->compact_blockskip_flush = false; 2173 preferred_zone->compact_considered = 0; 2174 preferred_zone->compact_defer_shift = 0; 2175 if (order >= preferred_zone->compact_order_failed) 2176 preferred_zone->compact_order_failed = order + 1; 2177 count_vm_event(COMPACTSUCCESS); 2178 return page; 2179 } 2180 2181 /* 2182 * It's bad if compaction run occurs and fails. 2183 * The most likely reason is that pages exist, 2184 * but not enough to satisfy watermarks. 2185 */ 2186 count_vm_event(COMPACTFAIL); 2187 2188 /* 2189 * As async compaction considers a subset of pageblocks, only 2190 * defer if the failure was a sync compaction failure. 2191 */ 2192 if (sync_migration) 2193 defer_compaction(preferred_zone, order); 2194 2195 cond_resched(); 2196 } 2197 2198 return NULL; 2199 } 2200 #else 2201 static inline struct page * 2202 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2203 struct zonelist *zonelist, enum zone_type high_zoneidx, 2204 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2205 int migratetype, bool sync_migration, 2206 bool *contended_compaction, bool *deferred_compaction, 2207 unsigned long *did_some_progress) 2208 { 2209 return NULL; 2210 } 2211 #endif /* CONFIG_COMPACTION */ 2212 2213 /* Perform direct synchronous page reclaim */ 2214 static int 2215 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2216 nodemask_t *nodemask) 2217 { 2218 struct reclaim_state reclaim_state; 2219 int progress; 2220 2221 cond_resched(); 2222 2223 /* We now go into synchronous reclaim */ 2224 cpuset_memory_pressure_bump(); 2225 current->flags |= PF_MEMALLOC; 2226 lockdep_set_current_reclaim_state(gfp_mask); 2227 reclaim_state.reclaimed_slab = 0; 2228 current->reclaim_state = &reclaim_state; 2229 2230 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2231 2232 current->reclaim_state = NULL; 2233 lockdep_clear_current_reclaim_state(); 2234 current->flags &= ~PF_MEMALLOC; 2235 2236 cond_resched(); 2237 2238 return progress; 2239 } 2240 2241 /* The really slow allocator path where we enter direct reclaim */ 2242 static inline struct page * 2243 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2244 struct zonelist *zonelist, enum zone_type high_zoneidx, 2245 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2246 int migratetype, unsigned long *did_some_progress) 2247 { 2248 struct page *page = NULL; 2249 bool drained = false; 2250 2251 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2252 nodemask); 2253 if (unlikely(!(*did_some_progress))) 2254 return NULL; 2255 2256 /* After successful reclaim, reconsider all zones for allocation */ 2257 if (IS_ENABLED(CONFIG_NUMA)) 2258 zlc_clear_zones_full(zonelist); 2259 2260 retry: 2261 page = get_page_from_freelist(gfp_mask, nodemask, order, 2262 zonelist, high_zoneidx, 2263 alloc_flags & ~ALLOC_NO_WATERMARKS, 2264 preferred_zone, migratetype); 2265 2266 /* 2267 * If an allocation failed after direct reclaim, it could be because 2268 * pages are pinned on the per-cpu lists. Drain them and try again 2269 */ 2270 if (!page && !drained) { 2271 drain_all_pages(); 2272 drained = true; 2273 goto retry; 2274 } 2275 2276 return page; 2277 } 2278 2279 /* 2280 * This is called in the allocator slow-path if the allocation request is of 2281 * sufficient urgency to ignore watermarks and take other desperate measures 2282 */ 2283 static inline struct page * 2284 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2285 struct zonelist *zonelist, enum zone_type high_zoneidx, 2286 nodemask_t *nodemask, struct zone *preferred_zone, 2287 int migratetype) 2288 { 2289 struct page *page; 2290 2291 do { 2292 page = get_page_from_freelist(gfp_mask, nodemask, order, 2293 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2294 preferred_zone, migratetype); 2295 2296 if (!page && gfp_mask & __GFP_NOFAIL) 2297 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2298 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2299 2300 return page; 2301 } 2302 2303 static inline 2304 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2305 enum zone_type high_zoneidx, 2306 enum zone_type classzone_idx) 2307 { 2308 struct zoneref *z; 2309 struct zone *zone; 2310 2311 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2312 wakeup_kswapd(zone, order, classzone_idx); 2313 } 2314 2315 static inline int 2316 gfp_to_alloc_flags(gfp_t gfp_mask) 2317 { 2318 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2319 const gfp_t wait = gfp_mask & __GFP_WAIT; 2320 2321 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2322 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2323 2324 /* 2325 * The caller may dip into page reserves a bit more if the caller 2326 * cannot run direct reclaim, or if the caller has realtime scheduling 2327 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2328 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2329 */ 2330 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2331 2332 if (!wait) { 2333 /* 2334 * Not worth trying to allocate harder for 2335 * __GFP_NOMEMALLOC even if it can't schedule. 2336 */ 2337 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2338 alloc_flags |= ALLOC_HARDER; 2339 /* 2340 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2341 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2342 */ 2343 alloc_flags &= ~ALLOC_CPUSET; 2344 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2345 alloc_flags |= ALLOC_HARDER; 2346 2347 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2348 if (gfp_mask & __GFP_MEMALLOC) 2349 alloc_flags |= ALLOC_NO_WATERMARKS; 2350 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2351 alloc_flags |= ALLOC_NO_WATERMARKS; 2352 else if (!in_interrupt() && 2353 ((current->flags & PF_MEMALLOC) || 2354 unlikely(test_thread_flag(TIF_MEMDIE)))) 2355 alloc_flags |= ALLOC_NO_WATERMARKS; 2356 } 2357 #ifdef CONFIG_CMA 2358 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2359 alloc_flags |= ALLOC_CMA; 2360 #endif 2361 return alloc_flags; 2362 } 2363 2364 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2365 { 2366 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2367 } 2368 2369 static inline struct page * 2370 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2371 struct zonelist *zonelist, enum zone_type high_zoneidx, 2372 nodemask_t *nodemask, struct zone *preferred_zone, 2373 int migratetype) 2374 { 2375 const gfp_t wait = gfp_mask & __GFP_WAIT; 2376 struct page *page = NULL; 2377 int alloc_flags; 2378 unsigned long pages_reclaimed = 0; 2379 unsigned long did_some_progress; 2380 bool sync_migration = false; 2381 bool deferred_compaction = false; 2382 bool contended_compaction = false; 2383 2384 /* 2385 * In the slowpath, we sanity check order to avoid ever trying to 2386 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2387 * be using allocators in order of preference for an area that is 2388 * too large. 2389 */ 2390 if (order >= MAX_ORDER) { 2391 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2392 return NULL; 2393 } 2394 2395 /* 2396 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2397 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2398 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2399 * using a larger set of nodes after it has established that the 2400 * allowed per node queues are empty and that nodes are 2401 * over allocated. 2402 */ 2403 if (IS_ENABLED(CONFIG_NUMA) && 2404 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2405 goto nopage; 2406 2407 restart: 2408 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2409 wake_all_kswapd(order, zonelist, high_zoneidx, 2410 zone_idx(preferred_zone)); 2411 2412 /* 2413 * OK, we're below the kswapd watermark and have kicked background 2414 * reclaim. Now things get more complex, so set up alloc_flags according 2415 * to how we want to proceed. 2416 */ 2417 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2418 2419 /* 2420 * Find the true preferred zone if the allocation is unconstrained by 2421 * cpusets. 2422 */ 2423 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2424 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2425 &preferred_zone); 2426 2427 rebalance: 2428 /* This is the last chance, in general, before the goto nopage. */ 2429 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2430 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2431 preferred_zone, migratetype); 2432 if (page) 2433 goto got_pg; 2434 2435 /* Allocate without watermarks if the context allows */ 2436 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2437 /* 2438 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2439 * the allocation is high priority and these type of 2440 * allocations are system rather than user orientated 2441 */ 2442 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2443 2444 page = __alloc_pages_high_priority(gfp_mask, order, 2445 zonelist, high_zoneidx, nodemask, 2446 preferred_zone, migratetype); 2447 if (page) { 2448 goto got_pg; 2449 } 2450 } 2451 2452 /* Atomic allocations - we can't balance anything */ 2453 if (!wait) 2454 goto nopage; 2455 2456 /* Avoid recursion of direct reclaim */ 2457 if (current->flags & PF_MEMALLOC) 2458 goto nopage; 2459 2460 /* Avoid allocations with no watermarks from looping endlessly */ 2461 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2462 goto nopage; 2463 2464 /* 2465 * Try direct compaction. The first pass is asynchronous. Subsequent 2466 * attempts after direct reclaim are synchronous 2467 */ 2468 page = __alloc_pages_direct_compact(gfp_mask, order, 2469 zonelist, high_zoneidx, 2470 nodemask, 2471 alloc_flags, preferred_zone, 2472 migratetype, sync_migration, 2473 &contended_compaction, 2474 &deferred_compaction, 2475 &did_some_progress); 2476 if (page) 2477 goto got_pg; 2478 sync_migration = true; 2479 2480 /* 2481 * If compaction is deferred for high-order allocations, it is because 2482 * sync compaction recently failed. In this is the case and the caller 2483 * requested a movable allocation that does not heavily disrupt the 2484 * system then fail the allocation instead of entering direct reclaim. 2485 */ 2486 if ((deferred_compaction || contended_compaction) && 2487 (gfp_mask & __GFP_NO_KSWAPD)) 2488 goto nopage; 2489 2490 /* Try direct reclaim and then allocating */ 2491 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2492 zonelist, high_zoneidx, 2493 nodemask, 2494 alloc_flags, preferred_zone, 2495 migratetype, &did_some_progress); 2496 if (page) 2497 goto got_pg; 2498 2499 /* 2500 * If we failed to make any progress reclaiming, then we are 2501 * running out of options and have to consider going OOM 2502 */ 2503 if (!did_some_progress) { 2504 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2505 if (oom_killer_disabled) 2506 goto nopage; 2507 /* Coredumps can quickly deplete all memory reserves */ 2508 if ((current->flags & PF_DUMPCORE) && 2509 !(gfp_mask & __GFP_NOFAIL)) 2510 goto nopage; 2511 page = __alloc_pages_may_oom(gfp_mask, order, 2512 zonelist, high_zoneidx, 2513 nodemask, preferred_zone, 2514 migratetype); 2515 if (page) 2516 goto got_pg; 2517 2518 if (!(gfp_mask & __GFP_NOFAIL)) { 2519 /* 2520 * The oom killer is not called for high-order 2521 * allocations that may fail, so if no progress 2522 * is being made, there are no other options and 2523 * retrying is unlikely to help. 2524 */ 2525 if (order > PAGE_ALLOC_COSTLY_ORDER) 2526 goto nopage; 2527 /* 2528 * The oom killer is not called for lowmem 2529 * allocations to prevent needlessly killing 2530 * innocent tasks. 2531 */ 2532 if (high_zoneidx < ZONE_NORMAL) 2533 goto nopage; 2534 } 2535 2536 goto restart; 2537 } 2538 } 2539 2540 /* Check if we should retry the allocation */ 2541 pages_reclaimed += did_some_progress; 2542 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2543 pages_reclaimed)) { 2544 /* Wait for some write requests to complete then retry */ 2545 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2546 goto rebalance; 2547 } else { 2548 /* 2549 * High-order allocations do not necessarily loop after 2550 * direct reclaim and reclaim/compaction depends on compaction 2551 * being called after reclaim so call directly if necessary 2552 */ 2553 page = __alloc_pages_direct_compact(gfp_mask, order, 2554 zonelist, high_zoneidx, 2555 nodemask, 2556 alloc_flags, preferred_zone, 2557 migratetype, sync_migration, 2558 &contended_compaction, 2559 &deferred_compaction, 2560 &did_some_progress); 2561 if (page) 2562 goto got_pg; 2563 } 2564 2565 nopage: 2566 warn_alloc_failed(gfp_mask, order, NULL); 2567 return page; 2568 got_pg: 2569 if (kmemcheck_enabled) 2570 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2571 2572 return page; 2573 } 2574 2575 /* 2576 * This is the 'heart' of the zoned buddy allocator. 2577 */ 2578 struct page * 2579 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2580 struct zonelist *zonelist, nodemask_t *nodemask) 2581 { 2582 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2583 struct zone *preferred_zone; 2584 struct page *page = NULL; 2585 int migratetype = allocflags_to_migratetype(gfp_mask); 2586 unsigned int cpuset_mems_cookie; 2587 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2588 struct mem_cgroup *memcg = NULL; 2589 2590 gfp_mask &= gfp_allowed_mask; 2591 2592 lockdep_trace_alloc(gfp_mask); 2593 2594 might_sleep_if(gfp_mask & __GFP_WAIT); 2595 2596 if (should_fail_alloc_page(gfp_mask, order)) 2597 return NULL; 2598 2599 /* 2600 * Check the zones suitable for the gfp_mask contain at least one 2601 * valid zone. It's possible to have an empty zonelist as a result 2602 * of GFP_THISNODE and a memoryless node 2603 */ 2604 if (unlikely(!zonelist->_zonerefs->zone)) 2605 return NULL; 2606 2607 /* 2608 * Will only have any effect when __GFP_KMEMCG is set. This is 2609 * verified in the (always inline) callee 2610 */ 2611 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2612 return NULL; 2613 2614 retry_cpuset: 2615 cpuset_mems_cookie = get_mems_allowed(); 2616 2617 /* The preferred zone is used for statistics later */ 2618 first_zones_zonelist(zonelist, high_zoneidx, 2619 nodemask ? : &cpuset_current_mems_allowed, 2620 &preferred_zone); 2621 if (!preferred_zone) 2622 goto out; 2623 2624 #ifdef CONFIG_CMA 2625 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2626 alloc_flags |= ALLOC_CMA; 2627 #endif 2628 /* First allocation attempt */ 2629 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2630 zonelist, high_zoneidx, alloc_flags, 2631 preferred_zone, migratetype); 2632 if (unlikely(!page)) 2633 page = __alloc_pages_slowpath(gfp_mask, order, 2634 zonelist, high_zoneidx, nodemask, 2635 preferred_zone, migratetype); 2636 2637 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2638 2639 out: 2640 /* 2641 * When updating a task's mems_allowed, it is possible to race with 2642 * parallel threads in such a way that an allocation can fail while 2643 * the mask is being updated. If a page allocation is about to fail, 2644 * check if the cpuset changed during allocation and if so, retry. 2645 */ 2646 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2647 goto retry_cpuset; 2648 2649 memcg_kmem_commit_charge(page, memcg, order); 2650 2651 return page; 2652 } 2653 EXPORT_SYMBOL(__alloc_pages_nodemask); 2654 2655 /* 2656 * Common helper functions. 2657 */ 2658 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2659 { 2660 struct page *page; 2661 2662 /* 2663 * __get_free_pages() returns a 32-bit address, which cannot represent 2664 * a highmem page 2665 */ 2666 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2667 2668 page = alloc_pages(gfp_mask, order); 2669 if (!page) 2670 return 0; 2671 return (unsigned long) page_address(page); 2672 } 2673 EXPORT_SYMBOL(__get_free_pages); 2674 2675 unsigned long get_zeroed_page(gfp_t gfp_mask) 2676 { 2677 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2678 } 2679 EXPORT_SYMBOL(get_zeroed_page); 2680 2681 void __free_pages(struct page *page, unsigned int order) 2682 { 2683 if (put_page_testzero(page)) { 2684 if (order == 0) 2685 free_hot_cold_page(page, 0); 2686 else 2687 __free_pages_ok(page, order); 2688 } 2689 } 2690 2691 EXPORT_SYMBOL(__free_pages); 2692 2693 void free_pages(unsigned long addr, unsigned int order) 2694 { 2695 if (addr != 0) { 2696 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2697 __free_pages(virt_to_page((void *)addr), order); 2698 } 2699 } 2700 2701 EXPORT_SYMBOL(free_pages); 2702 2703 /* 2704 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free 2705 * pages allocated with __GFP_KMEMCG. 2706 * 2707 * Those pages are accounted to a particular memcg, embedded in the 2708 * corresponding page_cgroup. To avoid adding a hit in the allocator to search 2709 * for that information only to find out that it is NULL for users who have no 2710 * interest in that whatsoever, we provide these functions. 2711 * 2712 * The caller knows better which flags it relies on. 2713 */ 2714 void __free_memcg_kmem_pages(struct page *page, unsigned int order) 2715 { 2716 memcg_kmem_uncharge_pages(page, order); 2717 __free_pages(page, order); 2718 } 2719 2720 void free_memcg_kmem_pages(unsigned long addr, unsigned int order) 2721 { 2722 if (addr != 0) { 2723 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2724 __free_memcg_kmem_pages(virt_to_page((void *)addr), order); 2725 } 2726 } 2727 2728 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2729 { 2730 if (addr) { 2731 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2732 unsigned long used = addr + PAGE_ALIGN(size); 2733 2734 split_page(virt_to_page((void *)addr), order); 2735 while (used < alloc_end) { 2736 free_page(used); 2737 used += PAGE_SIZE; 2738 } 2739 } 2740 return (void *)addr; 2741 } 2742 2743 /** 2744 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2745 * @size: the number of bytes to allocate 2746 * @gfp_mask: GFP flags for the allocation 2747 * 2748 * This function is similar to alloc_pages(), except that it allocates the 2749 * minimum number of pages to satisfy the request. alloc_pages() can only 2750 * allocate memory in power-of-two pages. 2751 * 2752 * This function is also limited by MAX_ORDER. 2753 * 2754 * Memory allocated by this function must be released by free_pages_exact(). 2755 */ 2756 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2757 { 2758 unsigned int order = get_order(size); 2759 unsigned long addr; 2760 2761 addr = __get_free_pages(gfp_mask, order); 2762 return make_alloc_exact(addr, order, size); 2763 } 2764 EXPORT_SYMBOL(alloc_pages_exact); 2765 2766 /** 2767 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2768 * pages on a node. 2769 * @nid: the preferred node ID where memory should be allocated 2770 * @size: the number of bytes to allocate 2771 * @gfp_mask: GFP flags for the allocation 2772 * 2773 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2774 * back. 2775 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2776 * but is not exact. 2777 */ 2778 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2779 { 2780 unsigned order = get_order(size); 2781 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2782 if (!p) 2783 return NULL; 2784 return make_alloc_exact((unsigned long)page_address(p), order, size); 2785 } 2786 EXPORT_SYMBOL(alloc_pages_exact_nid); 2787 2788 /** 2789 * free_pages_exact - release memory allocated via alloc_pages_exact() 2790 * @virt: the value returned by alloc_pages_exact. 2791 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2792 * 2793 * Release the memory allocated by a previous call to alloc_pages_exact. 2794 */ 2795 void free_pages_exact(void *virt, size_t size) 2796 { 2797 unsigned long addr = (unsigned long)virt; 2798 unsigned long end = addr + PAGE_ALIGN(size); 2799 2800 while (addr < end) { 2801 free_page(addr); 2802 addr += PAGE_SIZE; 2803 } 2804 } 2805 EXPORT_SYMBOL(free_pages_exact); 2806 2807 static unsigned int nr_free_zone_pages(int offset) 2808 { 2809 struct zoneref *z; 2810 struct zone *zone; 2811 2812 /* Just pick one node, since fallback list is circular */ 2813 unsigned int sum = 0; 2814 2815 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2816 2817 for_each_zone_zonelist(zone, z, zonelist, offset) { 2818 unsigned long size = zone->present_pages; 2819 unsigned long high = high_wmark_pages(zone); 2820 if (size > high) 2821 sum += size - high; 2822 } 2823 2824 return sum; 2825 } 2826 2827 /* 2828 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2829 */ 2830 unsigned int nr_free_buffer_pages(void) 2831 { 2832 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2833 } 2834 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2835 2836 /* 2837 * Amount of free RAM allocatable within all zones 2838 */ 2839 unsigned int nr_free_pagecache_pages(void) 2840 { 2841 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2842 } 2843 2844 static inline void show_node(struct zone *zone) 2845 { 2846 if (IS_ENABLED(CONFIG_NUMA)) 2847 printk("Node %d ", zone_to_nid(zone)); 2848 } 2849 2850 void si_meminfo(struct sysinfo *val) 2851 { 2852 val->totalram = totalram_pages; 2853 val->sharedram = 0; 2854 val->freeram = global_page_state(NR_FREE_PAGES); 2855 val->bufferram = nr_blockdev_pages(); 2856 val->totalhigh = totalhigh_pages; 2857 val->freehigh = nr_free_highpages(); 2858 val->mem_unit = PAGE_SIZE; 2859 } 2860 2861 EXPORT_SYMBOL(si_meminfo); 2862 2863 #ifdef CONFIG_NUMA 2864 void si_meminfo_node(struct sysinfo *val, int nid) 2865 { 2866 pg_data_t *pgdat = NODE_DATA(nid); 2867 2868 val->totalram = pgdat->node_present_pages; 2869 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2870 #ifdef CONFIG_HIGHMEM 2871 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2872 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2873 NR_FREE_PAGES); 2874 #else 2875 val->totalhigh = 0; 2876 val->freehigh = 0; 2877 #endif 2878 val->mem_unit = PAGE_SIZE; 2879 } 2880 #endif 2881 2882 /* 2883 * Determine whether the node should be displayed or not, depending on whether 2884 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2885 */ 2886 bool skip_free_areas_node(unsigned int flags, int nid) 2887 { 2888 bool ret = false; 2889 unsigned int cpuset_mems_cookie; 2890 2891 if (!(flags & SHOW_MEM_FILTER_NODES)) 2892 goto out; 2893 2894 do { 2895 cpuset_mems_cookie = get_mems_allowed(); 2896 ret = !node_isset(nid, cpuset_current_mems_allowed); 2897 } while (!put_mems_allowed(cpuset_mems_cookie)); 2898 out: 2899 return ret; 2900 } 2901 2902 #define K(x) ((x) << (PAGE_SHIFT-10)) 2903 2904 static void show_migration_types(unsigned char type) 2905 { 2906 static const char types[MIGRATE_TYPES] = { 2907 [MIGRATE_UNMOVABLE] = 'U', 2908 [MIGRATE_RECLAIMABLE] = 'E', 2909 [MIGRATE_MOVABLE] = 'M', 2910 [MIGRATE_RESERVE] = 'R', 2911 #ifdef CONFIG_CMA 2912 [MIGRATE_CMA] = 'C', 2913 #endif 2914 [MIGRATE_ISOLATE] = 'I', 2915 }; 2916 char tmp[MIGRATE_TYPES + 1]; 2917 char *p = tmp; 2918 int i; 2919 2920 for (i = 0; i < MIGRATE_TYPES; i++) { 2921 if (type & (1 << i)) 2922 *p++ = types[i]; 2923 } 2924 2925 *p = '\0'; 2926 printk("(%s) ", tmp); 2927 } 2928 2929 /* 2930 * Show free area list (used inside shift_scroll-lock stuff) 2931 * We also calculate the percentage fragmentation. We do this by counting the 2932 * memory on each free list with the exception of the first item on the list. 2933 * Suppresses nodes that are not allowed by current's cpuset if 2934 * SHOW_MEM_FILTER_NODES is passed. 2935 */ 2936 void show_free_areas(unsigned int filter) 2937 { 2938 int cpu; 2939 struct zone *zone; 2940 2941 for_each_populated_zone(zone) { 2942 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2943 continue; 2944 show_node(zone); 2945 printk("%s per-cpu:\n", zone->name); 2946 2947 for_each_online_cpu(cpu) { 2948 struct per_cpu_pageset *pageset; 2949 2950 pageset = per_cpu_ptr(zone->pageset, cpu); 2951 2952 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2953 cpu, pageset->pcp.high, 2954 pageset->pcp.batch, pageset->pcp.count); 2955 } 2956 } 2957 2958 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2959 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2960 " unevictable:%lu" 2961 " dirty:%lu writeback:%lu unstable:%lu\n" 2962 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2963 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 2964 " free_cma:%lu\n", 2965 global_page_state(NR_ACTIVE_ANON), 2966 global_page_state(NR_INACTIVE_ANON), 2967 global_page_state(NR_ISOLATED_ANON), 2968 global_page_state(NR_ACTIVE_FILE), 2969 global_page_state(NR_INACTIVE_FILE), 2970 global_page_state(NR_ISOLATED_FILE), 2971 global_page_state(NR_UNEVICTABLE), 2972 global_page_state(NR_FILE_DIRTY), 2973 global_page_state(NR_WRITEBACK), 2974 global_page_state(NR_UNSTABLE_NFS), 2975 global_page_state(NR_FREE_PAGES), 2976 global_page_state(NR_SLAB_RECLAIMABLE), 2977 global_page_state(NR_SLAB_UNRECLAIMABLE), 2978 global_page_state(NR_FILE_MAPPED), 2979 global_page_state(NR_SHMEM), 2980 global_page_state(NR_PAGETABLE), 2981 global_page_state(NR_BOUNCE), 2982 global_page_state(NR_FREE_CMA_PAGES)); 2983 2984 for_each_populated_zone(zone) { 2985 int i; 2986 2987 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2988 continue; 2989 show_node(zone); 2990 printk("%s" 2991 " free:%lukB" 2992 " min:%lukB" 2993 " low:%lukB" 2994 " high:%lukB" 2995 " active_anon:%lukB" 2996 " inactive_anon:%lukB" 2997 " active_file:%lukB" 2998 " inactive_file:%lukB" 2999 " unevictable:%lukB" 3000 " isolated(anon):%lukB" 3001 " isolated(file):%lukB" 3002 " present:%lukB" 3003 " managed:%lukB" 3004 " mlocked:%lukB" 3005 " dirty:%lukB" 3006 " writeback:%lukB" 3007 " mapped:%lukB" 3008 " shmem:%lukB" 3009 " slab_reclaimable:%lukB" 3010 " slab_unreclaimable:%lukB" 3011 " kernel_stack:%lukB" 3012 " pagetables:%lukB" 3013 " unstable:%lukB" 3014 " bounce:%lukB" 3015 " free_cma:%lukB" 3016 " writeback_tmp:%lukB" 3017 " pages_scanned:%lu" 3018 " all_unreclaimable? %s" 3019 "\n", 3020 zone->name, 3021 K(zone_page_state(zone, NR_FREE_PAGES)), 3022 K(min_wmark_pages(zone)), 3023 K(low_wmark_pages(zone)), 3024 K(high_wmark_pages(zone)), 3025 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3026 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3027 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3028 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3029 K(zone_page_state(zone, NR_UNEVICTABLE)), 3030 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3031 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3032 K(zone->present_pages), 3033 K(zone->managed_pages), 3034 K(zone_page_state(zone, NR_MLOCK)), 3035 K(zone_page_state(zone, NR_FILE_DIRTY)), 3036 K(zone_page_state(zone, NR_WRITEBACK)), 3037 K(zone_page_state(zone, NR_FILE_MAPPED)), 3038 K(zone_page_state(zone, NR_SHMEM)), 3039 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3040 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3041 zone_page_state(zone, NR_KERNEL_STACK) * 3042 THREAD_SIZE / 1024, 3043 K(zone_page_state(zone, NR_PAGETABLE)), 3044 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3045 K(zone_page_state(zone, NR_BOUNCE)), 3046 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3047 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3048 zone->pages_scanned, 3049 (zone->all_unreclaimable ? "yes" : "no") 3050 ); 3051 printk("lowmem_reserve[]:"); 3052 for (i = 0; i < MAX_NR_ZONES; i++) 3053 printk(" %lu", zone->lowmem_reserve[i]); 3054 printk("\n"); 3055 } 3056 3057 for_each_populated_zone(zone) { 3058 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3059 unsigned char types[MAX_ORDER]; 3060 3061 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3062 continue; 3063 show_node(zone); 3064 printk("%s: ", zone->name); 3065 3066 spin_lock_irqsave(&zone->lock, flags); 3067 for (order = 0; order < MAX_ORDER; order++) { 3068 struct free_area *area = &zone->free_area[order]; 3069 int type; 3070 3071 nr[order] = area->nr_free; 3072 total += nr[order] << order; 3073 3074 types[order] = 0; 3075 for (type = 0; type < MIGRATE_TYPES; type++) { 3076 if (!list_empty(&area->free_list[type])) 3077 types[order] |= 1 << type; 3078 } 3079 } 3080 spin_unlock_irqrestore(&zone->lock, flags); 3081 for (order = 0; order < MAX_ORDER; order++) { 3082 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3083 if (nr[order]) 3084 show_migration_types(types[order]); 3085 } 3086 printk("= %lukB\n", K(total)); 3087 } 3088 3089 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3090 3091 show_swap_cache_info(); 3092 } 3093 3094 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3095 { 3096 zoneref->zone = zone; 3097 zoneref->zone_idx = zone_idx(zone); 3098 } 3099 3100 /* 3101 * Builds allocation fallback zone lists. 3102 * 3103 * Add all populated zones of a node to the zonelist. 3104 */ 3105 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3106 int nr_zones, enum zone_type zone_type) 3107 { 3108 struct zone *zone; 3109 3110 BUG_ON(zone_type >= MAX_NR_ZONES); 3111 zone_type++; 3112 3113 do { 3114 zone_type--; 3115 zone = pgdat->node_zones + zone_type; 3116 if (populated_zone(zone)) { 3117 zoneref_set_zone(zone, 3118 &zonelist->_zonerefs[nr_zones++]); 3119 check_highest_zone(zone_type); 3120 } 3121 3122 } while (zone_type); 3123 return nr_zones; 3124 } 3125 3126 3127 /* 3128 * zonelist_order: 3129 * 0 = automatic detection of better ordering. 3130 * 1 = order by ([node] distance, -zonetype) 3131 * 2 = order by (-zonetype, [node] distance) 3132 * 3133 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3134 * the same zonelist. So only NUMA can configure this param. 3135 */ 3136 #define ZONELIST_ORDER_DEFAULT 0 3137 #define ZONELIST_ORDER_NODE 1 3138 #define ZONELIST_ORDER_ZONE 2 3139 3140 /* zonelist order in the kernel. 3141 * set_zonelist_order() will set this to NODE or ZONE. 3142 */ 3143 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3144 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3145 3146 3147 #ifdef CONFIG_NUMA 3148 /* The value user specified ....changed by config */ 3149 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3150 /* string for sysctl */ 3151 #define NUMA_ZONELIST_ORDER_LEN 16 3152 char numa_zonelist_order[16] = "default"; 3153 3154 /* 3155 * interface for configure zonelist ordering. 3156 * command line option "numa_zonelist_order" 3157 * = "[dD]efault - default, automatic configuration. 3158 * = "[nN]ode - order by node locality, then by zone within node 3159 * = "[zZ]one - order by zone, then by locality within zone 3160 */ 3161 3162 static int __parse_numa_zonelist_order(char *s) 3163 { 3164 if (*s == 'd' || *s == 'D') { 3165 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3166 } else if (*s == 'n' || *s == 'N') { 3167 user_zonelist_order = ZONELIST_ORDER_NODE; 3168 } else if (*s == 'z' || *s == 'Z') { 3169 user_zonelist_order = ZONELIST_ORDER_ZONE; 3170 } else { 3171 printk(KERN_WARNING 3172 "Ignoring invalid numa_zonelist_order value: " 3173 "%s\n", s); 3174 return -EINVAL; 3175 } 3176 return 0; 3177 } 3178 3179 static __init int setup_numa_zonelist_order(char *s) 3180 { 3181 int ret; 3182 3183 if (!s) 3184 return 0; 3185 3186 ret = __parse_numa_zonelist_order(s); 3187 if (ret == 0) 3188 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3189 3190 return ret; 3191 } 3192 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3193 3194 /* 3195 * sysctl handler for numa_zonelist_order 3196 */ 3197 int numa_zonelist_order_handler(ctl_table *table, int write, 3198 void __user *buffer, size_t *length, 3199 loff_t *ppos) 3200 { 3201 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3202 int ret; 3203 static DEFINE_MUTEX(zl_order_mutex); 3204 3205 mutex_lock(&zl_order_mutex); 3206 if (write) 3207 strcpy(saved_string, (char*)table->data); 3208 ret = proc_dostring(table, write, buffer, length, ppos); 3209 if (ret) 3210 goto out; 3211 if (write) { 3212 int oldval = user_zonelist_order; 3213 if (__parse_numa_zonelist_order((char*)table->data)) { 3214 /* 3215 * bogus value. restore saved string 3216 */ 3217 strncpy((char*)table->data, saved_string, 3218 NUMA_ZONELIST_ORDER_LEN); 3219 user_zonelist_order = oldval; 3220 } else if (oldval != user_zonelist_order) { 3221 mutex_lock(&zonelists_mutex); 3222 build_all_zonelists(NULL, NULL); 3223 mutex_unlock(&zonelists_mutex); 3224 } 3225 } 3226 out: 3227 mutex_unlock(&zl_order_mutex); 3228 return ret; 3229 } 3230 3231 3232 #define MAX_NODE_LOAD (nr_online_nodes) 3233 static int node_load[MAX_NUMNODES]; 3234 3235 /** 3236 * find_next_best_node - find the next node that should appear in a given node's fallback list 3237 * @node: node whose fallback list we're appending 3238 * @used_node_mask: nodemask_t of already used nodes 3239 * 3240 * We use a number of factors to determine which is the next node that should 3241 * appear on a given node's fallback list. The node should not have appeared 3242 * already in @node's fallback list, and it should be the next closest node 3243 * according to the distance array (which contains arbitrary distance values 3244 * from each node to each node in the system), and should also prefer nodes 3245 * with no CPUs, since presumably they'll have very little allocation pressure 3246 * on them otherwise. 3247 * It returns -1 if no node is found. 3248 */ 3249 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3250 { 3251 int n, val; 3252 int min_val = INT_MAX; 3253 int best_node = -1; 3254 const struct cpumask *tmp = cpumask_of_node(0); 3255 3256 /* Use the local node if we haven't already */ 3257 if (!node_isset(node, *used_node_mask)) { 3258 node_set(node, *used_node_mask); 3259 return node; 3260 } 3261 3262 for_each_node_state(n, N_MEMORY) { 3263 3264 /* Don't want a node to appear more than once */ 3265 if (node_isset(n, *used_node_mask)) 3266 continue; 3267 3268 /* Use the distance array to find the distance */ 3269 val = node_distance(node, n); 3270 3271 /* Penalize nodes under us ("prefer the next node") */ 3272 val += (n < node); 3273 3274 /* Give preference to headless and unused nodes */ 3275 tmp = cpumask_of_node(n); 3276 if (!cpumask_empty(tmp)) 3277 val += PENALTY_FOR_NODE_WITH_CPUS; 3278 3279 /* Slight preference for less loaded node */ 3280 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3281 val += node_load[n]; 3282 3283 if (val < min_val) { 3284 min_val = val; 3285 best_node = n; 3286 } 3287 } 3288 3289 if (best_node >= 0) 3290 node_set(best_node, *used_node_mask); 3291 3292 return best_node; 3293 } 3294 3295 3296 /* 3297 * Build zonelists ordered by node and zones within node. 3298 * This results in maximum locality--normal zone overflows into local 3299 * DMA zone, if any--but risks exhausting DMA zone. 3300 */ 3301 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3302 { 3303 int j; 3304 struct zonelist *zonelist; 3305 3306 zonelist = &pgdat->node_zonelists[0]; 3307 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3308 ; 3309 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3310 MAX_NR_ZONES - 1); 3311 zonelist->_zonerefs[j].zone = NULL; 3312 zonelist->_zonerefs[j].zone_idx = 0; 3313 } 3314 3315 /* 3316 * Build gfp_thisnode zonelists 3317 */ 3318 static void build_thisnode_zonelists(pg_data_t *pgdat) 3319 { 3320 int j; 3321 struct zonelist *zonelist; 3322 3323 zonelist = &pgdat->node_zonelists[1]; 3324 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3325 zonelist->_zonerefs[j].zone = NULL; 3326 zonelist->_zonerefs[j].zone_idx = 0; 3327 } 3328 3329 /* 3330 * Build zonelists ordered by zone and nodes within zones. 3331 * This results in conserving DMA zone[s] until all Normal memory is 3332 * exhausted, but results in overflowing to remote node while memory 3333 * may still exist in local DMA zone. 3334 */ 3335 static int node_order[MAX_NUMNODES]; 3336 3337 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3338 { 3339 int pos, j, node; 3340 int zone_type; /* needs to be signed */ 3341 struct zone *z; 3342 struct zonelist *zonelist; 3343 3344 zonelist = &pgdat->node_zonelists[0]; 3345 pos = 0; 3346 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3347 for (j = 0; j < nr_nodes; j++) { 3348 node = node_order[j]; 3349 z = &NODE_DATA(node)->node_zones[zone_type]; 3350 if (populated_zone(z)) { 3351 zoneref_set_zone(z, 3352 &zonelist->_zonerefs[pos++]); 3353 check_highest_zone(zone_type); 3354 } 3355 } 3356 } 3357 zonelist->_zonerefs[pos].zone = NULL; 3358 zonelist->_zonerefs[pos].zone_idx = 0; 3359 } 3360 3361 static int default_zonelist_order(void) 3362 { 3363 int nid, zone_type; 3364 unsigned long low_kmem_size,total_size; 3365 struct zone *z; 3366 int average_size; 3367 /* 3368 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3369 * If they are really small and used heavily, the system can fall 3370 * into OOM very easily. 3371 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3372 */ 3373 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3374 low_kmem_size = 0; 3375 total_size = 0; 3376 for_each_online_node(nid) { 3377 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3378 z = &NODE_DATA(nid)->node_zones[zone_type]; 3379 if (populated_zone(z)) { 3380 if (zone_type < ZONE_NORMAL) 3381 low_kmem_size += z->present_pages; 3382 total_size += z->present_pages; 3383 } else if (zone_type == ZONE_NORMAL) { 3384 /* 3385 * If any node has only lowmem, then node order 3386 * is preferred to allow kernel allocations 3387 * locally; otherwise, they can easily infringe 3388 * on other nodes when there is an abundance of 3389 * lowmem available to allocate from. 3390 */ 3391 return ZONELIST_ORDER_NODE; 3392 } 3393 } 3394 } 3395 if (!low_kmem_size || /* there are no DMA area. */ 3396 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3397 return ZONELIST_ORDER_NODE; 3398 /* 3399 * look into each node's config. 3400 * If there is a node whose DMA/DMA32 memory is very big area on 3401 * local memory, NODE_ORDER may be suitable. 3402 */ 3403 average_size = total_size / 3404 (nodes_weight(node_states[N_MEMORY]) + 1); 3405 for_each_online_node(nid) { 3406 low_kmem_size = 0; 3407 total_size = 0; 3408 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3409 z = &NODE_DATA(nid)->node_zones[zone_type]; 3410 if (populated_zone(z)) { 3411 if (zone_type < ZONE_NORMAL) 3412 low_kmem_size += z->present_pages; 3413 total_size += z->present_pages; 3414 } 3415 } 3416 if (low_kmem_size && 3417 total_size > average_size && /* ignore small node */ 3418 low_kmem_size > total_size * 70/100) 3419 return ZONELIST_ORDER_NODE; 3420 } 3421 return ZONELIST_ORDER_ZONE; 3422 } 3423 3424 static void set_zonelist_order(void) 3425 { 3426 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3427 current_zonelist_order = default_zonelist_order(); 3428 else 3429 current_zonelist_order = user_zonelist_order; 3430 } 3431 3432 static void build_zonelists(pg_data_t *pgdat) 3433 { 3434 int j, node, load; 3435 enum zone_type i; 3436 nodemask_t used_mask; 3437 int local_node, prev_node; 3438 struct zonelist *zonelist; 3439 int order = current_zonelist_order; 3440 3441 /* initialize zonelists */ 3442 for (i = 0; i < MAX_ZONELISTS; i++) { 3443 zonelist = pgdat->node_zonelists + i; 3444 zonelist->_zonerefs[0].zone = NULL; 3445 zonelist->_zonerefs[0].zone_idx = 0; 3446 } 3447 3448 /* NUMA-aware ordering of nodes */ 3449 local_node = pgdat->node_id; 3450 load = nr_online_nodes; 3451 prev_node = local_node; 3452 nodes_clear(used_mask); 3453 3454 memset(node_order, 0, sizeof(node_order)); 3455 j = 0; 3456 3457 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3458 /* 3459 * We don't want to pressure a particular node. 3460 * So adding penalty to the first node in same 3461 * distance group to make it round-robin. 3462 */ 3463 if (node_distance(local_node, node) != 3464 node_distance(local_node, prev_node)) 3465 node_load[node] = load; 3466 3467 prev_node = node; 3468 load--; 3469 if (order == ZONELIST_ORDER_NODE) 3470 build_zonelists_in_node_order(pgdat, node); 3471 else 3472 node_order[j++] = node; /* remember order */ 3473 } 3474 3475 if (order == ZONELIST_ORDER_ZONE) { 3476 /* calculate node order -- i.e., DMA last! */ 3477 build_zonelists_in_zone_order(pgdat, j); 3478 } 3479 3480 build_thisnode_zonelists(pgdat); 3481 } 3482 3483 /* Construct the zonelist performance cache - see further mmzone.h */ 3484 static void build_zonelist_cache(pg_data_t *pgdat) 3485 { 3486 struct zonelist *zonelist; 3487 struct zonelist_cache *zlc; 3488 struct zoneref *z; 3489 3490 zonelist = &pgdat->node_zonelists[0]; 3491 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3492 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3493 for (z = zonelist->_zonerefs; z->zone; z++) 3494 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3495 } 3496 3497 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3498 /* 3499 * Return node id of node used for "local" allocations. 3500 * I.e., first node id of first zone in arg node's generic zonelist. 3501 * Used for initializing percpu 'numa_mem', which is used primarily 3502 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3503 */ 3504 int local_memory_node(int node) 3505 { 3506 struct zone *zone; 3507 3508 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3509 gfp_zone(GFP_KERNEL), 3510 NULL, 3511 &zone); 3512 return zone->node; 3513 } 3514 #endif 3515 3516 #else /* CONFIG_NUMA */ 3517 3518 static void set_zonelist_order(void) 3519 { 3520 current_zonelist_order = ZONELIST_ORDER_ZONE; 3521 } 3522 3523 static void build_zonelists(pg_data_t *pgdat) 3524 { 3525 int node, local_node; 3526 enum zone_type j; 3527 struct zonelist *zonelist; 3528 3529 local_node = pgdat->node_id; 3530 3531 zonelist = &pgdat->node_zonelists[0]; 3532 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3533 3534 /* 3535 * Now we build the zonelist so that it contains the zones 3536 * of all the other nodes. 3537 * We don't want to pressure a particular node, so when 3538 * building the zones for node N, we make sure that the 3539 * zones coming right after the local ones are those from 3540 * node N+1 (modulo N) 3541 */ 3542 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3543 if (!node_online(node)) 3544 continue; 3545 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3546 MAX_NR_ZONES - 1); 3547 } 3548 for (node = 0; node < local_node; node++) { 3549 if (!node_online(node)) 3550 continue; 3551 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3552 MAX_NR_ZONES - 1); 3553 } 3554 3555 zonelist->_zonerefs[j].zone = NULL; 3556 zonelist->_zonerefs[j].zone_idx = 0; 3557 } 3558 3559 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3560 static void build_zonelist_cache(pg_data_t *pgdat) 3561 { 3562 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3563 } 3564 3565 #endif /* CONFIG_NUMA */ 3566 3567 /* 3568 * Boot pageset table. One per cpu which is going to be used for all 3569 * zones and all nodes. The parameters will be set in such a way 3570 * that an item put on a list will immediately be handed over to 3571 * the buddy list. This is safe since pageset manipulation is done 3572 * with interrupts disabled. 3573 * 3574 * The boot_pagesets must be kept even after bootup is complete for 3575 * unused processors and/or zones. They do play a role for bootstrapping 3576 * hotplugged processors. 3577 * 3578 * zoneinfo_show() and maybe other functions do 3579 * not check if the processor is online before following the pageset pointer. 3580 * Other parts of the kernel may not check if the zone is available. 3581 */ 3582 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3583 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3584 static void setup_zone_pageset(struct zone *zone); 3585 3586 /* 3587 * Global mutex to protect against size modification of zonelists 3588 * as well as to serialize pageset setup for the new populated zone. 3589 */ 3590 DEFINE_MUTEX(zonelists_mutex); 3591 3592 /* return values int ....just for stop_machine() */ 3593 static int __build_all_zonelists(void *data) 3594 { 3595 int nid; 3596 int cpu; 3597 pg_data_t *self = data; 3598 3599 #ifdef CONFIG_NUMA 3600 memset(node_load, 0, sizeof(node_load)); 3601 #endif 3602 3603 if (self && !node_online(self->node_id)) { 3604 build_zonelists(self); 3605 build_zonelist_cache(self); 3606 } 3607 3608 for_each_online_node(nid) { 3609 pg_data_t *pgdat = NODE_DATA(nid); 3610 3611 build_zonelists(pgdat); 3612 build_zonelist_cache(pgdat); 3613 } 3614 3615 /* 3616 * Initialize the boot_pagesets that are going to be used 3617 * for bootstrapping processors. The real pagesets for 3618 * each zone will be allocated later when the per cpu 3619 * allocator is available. 3620 * 3621 * boot_pagesets are used also for bootstrapping offline 3622 * cpus if the system is already booted because the pagesets 3623 * are needed to initialize allocators on a specific cpu too. 3624 * F.e. the percpu allocator needs the page allocator which 3625 * needs the percpu allocator in order to allocate its pagesets 3626 * (a chicken-egg dilemma). 3627 */ 3628 for_each_possible_cpu(cpu) { 3629 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3630 3631 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3632 /* 3633 * We now know the "local memory node" for each node-- 3634 * i.e., the node of the first zone in the generic zonelist. 3635 * Set up numa_mem percpu variable for on-line cpus. During 3636 * boot, only the boot cpu should be on-line; we'll init the 3637 * secondary cpus' numa_mem as they come on-line. During 3638 * node/memory hotplug, we'll fixup all on-line cpus. 3639 */ 3640 if (cpu_online(cpu)) 3641 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3642 #endif 3643 } 3644 3645 return 0; 3646 } 3647 3648 /* 3649 * Called with zonelists_mutex held always 3650 * unless system_state == SYSTEM_BOOTING. 3651 */ 3652 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3653 { 3654 set_zonelist_order(); 3655 3656 if (system_state == SYSTEM_BOOTING) { 3657 __build_all_zonelists(NULL); 3658 mminit_verify_zonelist(); 3659 cpuset_init_current_mems_allowed(); 3660 } else { 3661 /* we have to stop all cpus to guarantee there is no user 3662 of zonelist */ 3663 #ifdef CONFIG_MEMORY_HOTPLUG 3664 if (zone) 3665 setup_zone_pageset(zone); 3666 #endif 3667 stop_machine(__build_all_zonelists, pgdat, NULL); 3668 /* cpuset refresh routine should be here */ 3669 } 3670 vm_total_pages = nr_free_pagecache_pages(); 3671 /* 3672 * Disable grouping by mobility if the number of pages in the 3673 * system is too low to allow the mechanism to work. It would be 3674 * more accurate, but expensive to check per-zone. This check is 3675 * made on memory-hotadd so a system can start with mobility 3676 * disabled and enable it later 3677 */ 3678 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3679 page_group_by_mobility_disabled = 1; 3680 else 3681 page_group_by_mobility_disabled = 0; 3682 3683 printk("Built %i zonelists in %s order, mobility grouping %s. " 3684 "Total pages: %ld\n", 3685 nr_online_nodes, 3686 zonelist_order_name[current_zonelist_order], 3687 page_group_by_mobility_disabled ? "off" : "on", 3688 vm_total_pages); 3689 #ifdef CONFIG_NUMA 3690 printk("Policy zone: %s\n", zone_names[policy_zone]); 3691 #endif 3692 } 3693 3694 /* 3695 * Helper functions to size the waitqueue hash table. 3696 * Essentially these want to choose hash table sizes sufficiently 3697 * large so that collisions trying to wait on pages are rare. 3698 * But in fact, the number of active page waitqueues on typical 3699 * systems is ridiculously low, less than 200. So this is even 3700 * conservative, even though it seems large. 3701 * 3702 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3703 * waitqueues, i.e. the size of the waitq table given the number of pages. 3704 */ 3705 #define PAGES_PER_WAITQUEUE 256 3706 3707 #ifndef CONFIG_MEMORY_HOTPLUG 3708 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3709 { 3710 unsigned long size = 1; 3711 3712 pages /= PAGES_PER_WAITQUEUE; 3713 3714 while (size < pages) 3715 size <<= 1; 3716 3717 /* 3718 * Once we have dozens or even hundreds of threads sleeping 3719 * on IO we've got bigger problems than wait queue collision. 3720 * Limit the size of the wait table to a reasonable size. 3721 */ 3722 size = min(size, 4096UL); 3723 3724 return max(size, 4UL); 3725 } 3726 #else 3727 /* 3728 * A zone's size might be changed by hot-add, so it is not possible to determine 3729 * a suitable size for its wait_table. So we use the maximum size now. 3730 * 3731 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3732 * 3733 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3734 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3735 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3736 * 3737 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3738 * or more by the traditional way. (See above). It equals: 3739 * 3740 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3741 * ia64(16K page size) : = ( 8G + 4M)byte. 3742 * powerpc (64K page size) : = (32G +16M)byte. 3743 */ 3744 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3745 { 3746 return 4096UL; 3747 } 3748 #endif 3749 3750 /* 3751 * This is an integer logarithm so that shifts can be used later 3752 * to extract the more random high bits from the multiplicative 3753 * hash function before the remainder is taken. 3754 */ 3755 static inline unsigned long wait_table_bits(unsigned long size) 3756 { 3757 return ffz(~size); 3758 } 3759 3760 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3761 3762 /* 3763 * Check if a pageblock contains reserved pages 3764 */ 3765 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3766 { 3767 unsigned long pfn; 3768 3769 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3770 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3771 return 1; 3772 } 3773 return 0; 3774 } 3775 3776 /* 3777 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3778 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3779 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3780 * higher will lead to a bigger reserve which will get freed as contiguous 3781 * blocks as reclaim kicks in 3782 */ 3783 static void setup_zone_migrate_reserve(struct zone *zone) 3784 { 3785 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3786 struct page *page; 3787 unsigned long block_migratetype; 3788 int reserve; 3789 3790 /* 3791 * Get the start pfn, end pfn and the number of blocks to reserve 3792 * We have to be careful to be aligned to pageblock_nr_pages to 3793 * make sure that we always check pfn_valid for the first page in 3794 * the block. 3795 */ 3796 start_pfn = zone->zone_start_pfn; 3797 end_pfn = start_pfn + zone->spanned_pages; 3798 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3799 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3800 pageblock_order; 3801 3802 /* 3803 * Reserve blocks are generally in place to help high-order atomic 3804 * allocations that are short-lived. A min_free_kbytes value that 3805 * would result in more than 2 reserve blocks for atomic allocations 3806 * is assumed to be in place to help anti-fragmentation for the 3807 * future allocation of hugepages at runtime. 3808 */ 3809 reserve = min(2, reserve); 3810 3811 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3812 if (!pfn_valid(pfn)) 3813 continue; 3814 page = pfn_to_page(pfn); 3815 3816 /* Watch out for overlapping nodes */ 3817 if (page_to_nid(page) != zone_to_nid(zone)) 3818 continue; 3819 3820 block_migratetype = get_pageblock_migratetype(page); 3821 3822 /* Only test what is necessary when the reserves are not met */ 3823 if (reserve > 0) { 3824 /* 3825 * Blocks with reserved pages will never free, skip 3826 * them. 3827 */ 3828 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3829 if (pageblock_is_reserved(pfn, block_end_pfn)) 3830 continue; 3831 3832 /* If this block is reserved, account for it */ 3833 if (block_migratetype == MIGRATE_RESERVE) { 3834 reserve--; 3835 continue; 3836 } 3837 3838 /* Suitable for reserving if this block is movable */ 3839 if (block_migratetype == MIGRATE_MOVABLE) { 3840 set_pageblock_migratetype(page, 3841 MIGRATE_RESERVE); 3842 move_freepages_block(zone, page, 3843 MIGRATE_RESERVE); 3844 reserve--; 3845 continue; 3846 } 3847 } 3848 3849 /* 3850 * If the reserve is met and this is a previous reserved block, 3851 * take it back 3852 */ 3853 if (block_migratetype == MIGRATE_RESERVE) { 3854 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3855 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3856 } 3857 } 3858 } 3859 3860 /* 3861 * Initially all pages are reserved - free ones are freed 3862 * up by free_all_bootmem() once the early boot process is 3863 * done. Non-atomic initialization, single-pass. 3864 */ 3865 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3866 unsigned long start_pfn, enum memmap_context context) 3867 { 3868 struct page *page; 3869 unsigned long end_pfn = start_pfn + size; 3870 unsigned long pfn; 3871 struct zone *z; 3872 3873 if (highest_memmap_pfn < end_pfn - 1) 3874 highest_memmap_pfn = end_pfn - 1; 3875 3876 z = &NODE_DATA(nid)->node_zones[zone]; 3877 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3878 /* 3879 * There can be holes in boot-time mem_map[]s 3880 * handed to this function. They do not 3881 * exist on hotplugged memory. 3882 */ 3883 if (context == MEMMAP_EARLY) { 3884 if (!early_pfn_valid(pfn)) 3885 continue; 3886 if (!early_pfn_in_nid(pfn, nid)) 3887 continue; 3888 } 3889 page = pfn_to_page(pfn); 3890 set_page_links(page, zone, nid, pfn); 3891 mminit_verify_page_links(page, zone, nid, pfn); 3892 init_page_count(page); 3893 reset_page_mapcount(page); 3894 reset_page_last_nid(page); 3895 SetPageReserved(page); 3896 /* 3897 * Mark the block movable so that blocks are reserved for 3898 * movable at startup. This will force kernel allocations 3899 * to reserve their blocks rather than leaking throughout 3900 * the address space during boot when many long-lived 3901 * kernel allocations are made. Later some blocks near 3902 * the start are marked MIGRATE_RESERVE by 3903 * setup_zone_migrate_reserve() 3904 * 3905 * bitmap is created for zone's valid pfn range. but memmap 3906 * can be created for invalid pages (for alignment) 3907 * check here not to call set_pageblock_migratetype() against 3908 * pfn out of zone. 3909 */ 3910 if ((z->zone_start_pfn <= pfn) 3911 && (pfn < z->zone_start_pfn + z->spanned_pages) 3912 && !(pfn & (pageblock_nr_pages - 1))) 3913 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3914 3915 INIT_LIST_HEAD(&page->lru); 3916 #ifdef WANT_PAGE_VIRTUAL 3917 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3918 if (!is_highmem_idx(zone)) 3919 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3920 #endif 3921 } 3922 } 3923 3924 static void __meminit zone_init_free_lists(struct zone *zone) 3925 { 3926 int order, t; 3927 for_each_migratetype_order(order, t) { 3928 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3929 zone->free_area[order].nr_free = 0; 3930 } 3931 } 3932 3933 #ifndef __HAVE_ARCH_MEMMAP_INIT 3934 #define memmap_init(size, nid, zone, start_pfn) \ 3935 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3936 #endif 3937 3938 static int __meminit zone_batchsize(struct zone *zone) 3939 { 3940 #ifdef CONFIG_MMU 3941 int batch; 3942 3943 /* 3944 * The per-cpu-pages pools are set to around 1000th of the 3945 * size of the zone. But no more than 1/2 of a meg. 3946 * 3947 * OK, so we don't know how big the cache is. So guess. 3948 */ 3949 batch = zone->present_pages / 1024; 3950 if (batch * PAGE_SIZE > 512 * 1024) 3951 batch = (512 * 1024) / PAGE_SIZE; 3952 batch /= 4; /* We effectively *= 4 below */ 3953 if (batch < 1) 3954 batch = 1; 3955 3956 /* 3957 * Clamp the batch to a 2^n - 1 value. Having a power 3958 * of 2 value was found to be more likely to have 3959 * suboptimal cache aliasing properties in some cases. 3960 * 3961 * For example if 2 tasks are alternately allocating 3962 * batches of pages, one task can end up with a lot 3963 * of pages of one half of the possible page colors 3964 * and the other with pages of the other colors. 3965 */ 3966 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3967 3968 return batch; 3969 3970 #else 3971 /* The deferral and batching of frees should be suppressed under NOMMU 3972 * conditions. 3973 * 3974 * The problem is that NOMMU needs to be able to allocate large chunks 3975 * of contiguous memory as there's no hardware page translation to 3976 * assemble apparent contiguous memory from discontiguous pages. 3977 * 3978 * Queueing large contiguous runs of pages for batching, however, 3979 * causes the pages to actually be freed in smaller chunks. As there 3980 * can be a significant delay between the individual batches being 3981 * recycled, this leads to the once large chunks of space being 3982 * fragmented and becoming unavailable for high-order allocations. 3983 */ 3984 return 0; 3985 #endif 3986 } 3987 3988 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3989 { 3990 struct per_cpu_pages *pcp; 3991 int migratetype; 3992 3993 memset(p, 0, sizeof(*p)); 3994 3995 pcp = &p->pcp; 3996 pcp->count = 0; 3997 pcp->high = 6 * batch; 3998 pcp->batch = max(1UL, 1 * batch); 3999 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4000 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4001 } 4002 4003 /* 4004 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 4005 * to the value high for the pageset p. 4006 */ 4007 4008 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 4009 unsigned long high) 4010 { 4011 struct per_cpu_pages *pcp; 4012 4013 pcp = &p->pcp; 4014 pcp->high = high; 4015 pcp->batch = max(1UL, high/4); 4016 if ((high/4) > (PAGE_SHIFT * 8)) 4017 pcp->batch = PAGE_SHIFT * 8; 4018 } 4019 4020 static void __meminit setup_zone_pageset(struct zone *zone) 4021 { 4022 int cpu; 4023 4024 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4025 4026 for_each_possible_cpu(cpu) { 4027 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4028 4029 setup_pageset(pcp, zone_batchsize(zone)); 4030 4031 if (percpu_pagelist_fraction) 4032 setup_pagelist_highmark(pcp, 4033 (zone->present_pages / 4034 percpu_pagelist_fraction)); 4035 } 4036 } 4037 4038 /* 4039 * Allocate per cpu pagesets and initialize them. 4040 * Before this call only boot pagesets were available. 4041 */ 4042 void __init setup_per_cpu_pageset(void) 4043 { 4044 struct zone *zone; 4045 4046 for_each_populated_zone(zone) 4047 setup_zone_pageset(zone); 4048 } 4049 4050 static noinline __init_refok 4051 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4052 { 4053 int i; 4054 struct pglist_data *pgdat = zone->zone_pgdat; 4055 size_t alloc_size; 4056 4057 /* 4058 * The per-page waitqueue mechanism uses hashed waitqueues 4059 * per zone. 4060 */ 4061 zone->wait_table_hash_nr_entries = 4062 wait_table_hash_nr_entries(zone_size_pages); 4063 zone->wait_table_bits = 4064 wait_table_bits(zone->wait_table_hash_nr_entries); 4065 alloc_size = zone->wait_table_hash_nr_entries 4066 * sizeof(wait_queue_head_t); 4067 4068 if (!slab_is_available()) { 4069 zone->wait_table = (wait_queue_head_t *) 4070 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4071 } else { 4072 /* 4073 * This case means that a zone whose size was 0 gets new memory 4074 * via memory hot-add. 4075 * But it may be the case that a new node was hot-added. In 4076 * this case vmalloc() will not be able to use this new node's 4077 * memory - this wait_table must be initialized to use this new 4078 * node itself as well. 4079 * To use this new node's memory, further consideration will be 4080 * necessary. 4081 */ 4082 zone->wait_table = vmalloc(alloc_size); 4083 } 4084 if (!zone->wait_table) 4085 return -ENOMEM; 4086 4087 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4088 init_waitqueue_head(zone->wait_table + i); 4089 4090 return 0; 4091 } 4092 4093 static __meminit void zone_pcp_init(struct zone *zone) 4094 { 4095 /* 4096 * per cpu subsystem is not up at this point. The following code 4097 * relies on the ability of the linker to provide the 4098 * offset of a (static) per cpu variable into the per cpu area. 4099 */ 4100 zone->pageset = &boot_pageset; 4101 4102 if (zone->present_pages) 4103 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4104 zone->name, zone->present_pages, 4105 zone_batchsize(zone)); 4106 } 4107 4108 int __meminit init_currently_empty_zone(struct zone *zone, 4109 unsigned long zone_start_pfn, 4110 unsigned long size, 4111 enum memmap_context context) 4112 { 4113 struct pglist_data *pgdat = zone->zone_pgdat; 4114 int ret; 4115 ret = zone_wait_table_init(zone, size); 4116 if (ret) 4117 return ret; 4118 pgdat->nr_zones = zone_idx(zone) + 1; 4119 4120 zone->zone_start_pfn = zone_start_pfn; 4121 4122 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4123 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4124 pgdat->node_id, 4125 (unsigned long)zone_idx(zone), 4126 zone_start_pfn, (zone_start_pfn + size)); 4127 4128 zone_init_free_lists(zone); 4129 4130 return 0; 4131 } 4132 4133 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4134 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4135 /* 4136 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4137 * Architectures may implement their own version but if add_active_range() 4138 * was used and there are no special requirements, this is a convenient 4139 * alternative 4140 */ 4141 int __meminit __early_pfn_to_nid(unsigned long pfn) 4142 { 4143 unsigned long start_pfn, end_pfn; 4144 int i, nid; 4145 4146 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4147 if (start_pfn <= pfn && pfn < end_pfn) 4148 return nid; 4149 /* This is a memory hole */ 4150 return -1; 4151 } 4152 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4153 4154 int __meminit early_pfn_to_nid(unsigned long pfn) 4155 { 4156 int nid; 4157 4158 nid = __early_pfn_to_nid(pfn); 4159 if (nid >= 0) 4160 return nid; 4161 /* just returns 0 */ 4162 return 0; 4163 } 4164 4165 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4166 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4167 { 4168 int nid; 4169 4170 nid = __early_pfn_to_nid(pfn); 4171 if (nid >= 0 && nid != node) 4172 return false; 4173 return true; 4174 } 4175 #endif 4176 4177 /** 4178 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4179 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4180 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4181 * 4182 * If an architecture guarantees that all ranges registered with 4183 * add_active_ranges() contain no holes and may be freed, this 4184 * this function may be used instead of calling free_bootmem() manually. 4185 */ 4186 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4187 { 4188 unsigned long start_pfn, end_pfn; 4189 int i, this_nid; 4190 4191 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4192 start_pfn = min(start_pfn, max_low_pfn); 4193 end_pfn = min(end_pfn, max_low_pfn); 4194 4195 if (start_pfn < end_pfn) 4196 free_bootmem_node(NODE_DATA(this_nid), 4197 PFN_PHYS(start_pfn), 4198 (end_pfn - start_pfn) << PAGE_SHIFT); 4199 } 4200 } 4201 4202 /** 4203 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4204 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4205 * 4206 * If an architecture guarantees that all ranges registered with 4207 * add_active_ranges() contain no holes and may be freed, this 4208 * function may be used instead of calling memory_present() manually. 4209 */ 4210 void __init sparse_memory_present_with_active_regions(int nid) 4211 { 4212 unsigned long start_pfn, end_pfn; 4213 int i, this_nid; 4214 4215 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4216 memory_present(this_nid, start_pfn, end_pfn); 4217 } 4218 4219 /** 4220 * get_pfn_range_for_nid - Return the start and end page frames for a node 4221 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4222 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4223 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4224 * 4225 * It returns the start and end page frame of a node based on information 4226 * provided by an arch calling add_active_range(). If called for a node 4227 * with no available memory, a warning is printed and the start and end 4228 * PFNs will be 0. 4229 */ 4230 void __meminit get_pfn_range_for_nid(unsigned int nid, 4231 unsigned long *start_pfn, unsigned long *end_pfn) 4232 { 4233 unsigned long this_start_pfn, this_end_pfn; 4234 int i; 4235 4236 *start_pfn = -1UL; 4237 *end_pfn = 0; 4238 4239 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4240 *start_pfn = min(*start_pfn, this_start_pfn); 4241 *end_pfn = max(*end_pfn, this_end_pfn); 4242 } 4243 4244 if (*start_pfn == -1UL) 4245 *start_pfn = 0; 4246 } 4247 4248 /* 4249 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4250 * assumption is made that zones within a node are ordered in monotonic 4251 * increasing memory addresses so that the "highest" populated zone is used 4252 */ 4253 static void __init find_usable_zone_for_movable(void) 4254 { 4255 int zone_index; 4256 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4257 if (zone_index == ZONE_MOVABLE) 4258 continue; 4259 4260 if (arch_zone_highest_possible_pfn[zone_index] > 4261 arch_zone_lowest_possible_pfn[zone_index]) 4262 break; 4263 } 4264 4265 VM_BUG_ON(zone_index == -1); 4266 movable_zone = zone_index; 4267 } 4268 4269 /* 4270 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4271 * because it is sized independent of architecture. Unlike the other zones, 4272 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4273 * in each node depending on the size of each node and how evenly kernelcore 4274 * is distributed. This helper function adjusts the zone ranges 4275 * provided by the architecture for a given node by using the end of the 4276 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4277 * zones within a node are in order of monotonic increases memory addresses 4278 */ 4279 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4280 unsigned long zone_type, 4281 unsigned long node_start_pfn, 4282 unsigned long node_end_pfn, 4283 unsigned long *zone_start_pfn, 4284 unsigned long *zone_end_pfn) 4285 { 4286 /* Only adjust if ZONE_MOVABLE is on this node */ 4287 if (zone_movable_pfn[nid]) { 4288 /* Size ZONE_MOVABLE */ 4289 if (zone_type == ZONE_MOVABLE) { 4290 *zone_start_pfn = zone_movable_pfn[nid]; 4291 *zone_end_pfn = min(node_end_pfn, 4292 arch_zone_highest_possible_pfn[movable_zone]); 4293 4294 /* Adjust for ZONE_MOVABLE starting within this range */ 4295 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4296 *zone_end_pfn > zone_movable_pfn[nid]) { 4297 *zone_end_pfn = zone_movable_pfn[nid]; 4298 4299 /* Check if this whole range is within ZONE_MOVABLE */ 4300 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4301 *zone_start_pfn = *zone_end_pfn; 4302 } 4303 } 4304 4305 /* 4306 * Return the number of pages a zone spans in a node, including holes 4307 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4308 */ 4309 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4310 unsigned long zone_type, 4311 unsigned long *ignored) 4312 { 4313 unsigned long node_start_pfn, node_end_pfn; 4314 unsigned long zone_start_pfn, zone_end_pfn; 4315 4316 /* Get the start and end of the node and zone */ 4317 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4318 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4319 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4320 adjust_zone_range_for_zone_movable(nid, zone_type, 4321 node_start_pfn, node_end_pfn, 4322 &zone_start_pfn, &zone_end_pfn); 4323 4324 /* Check that this node has pages within the zone's required range */ 4325 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4326 return 0; 4327 4328 /* Move the zone boundaries inside the node if necessary */ 4329 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4330 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4331 4332 /* Return the spanned pages */ 4333 return zone_end_pfn - zone_start_pfn; 4334 } 4335 4336 /* 4337 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4338 * then all holes in the requested range will be accounted for. 4339 */ 4340 unsigned long __meminit __absent_pages_in_range(int nid, 4341 unsigned long range_start_pfn, 4342 unsigned long range_end_pfn) 4343 { 4344 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4345 unsigned long start_pfn, end_pfn; 4346 int i; 4347 4348 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4349 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4350 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4351 nr_absent -= end_pfn - start_pfn; 4352 } 4353 return nr_absent; 4354 } 4355 4356 /** 4357 * absent_pages_in_range - Return number of page frames in holes within a range 4358 * @start_pfn: The start PFN to start searching for holes 4359 * @end_pfn: The end PFN to stop searching for holes 4360 * 4361 * It returns the number of pages frames in memory holes within a range. 4362 */ 4363 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4364 unsigned long end_pfn) 4365 { 4366 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4367 } 4368 4369 /* Return the number of page frames in holes in a zone on a node */ 4370 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4371 unsigned long zone_type, 4372 unsigned long *ignored) 4373 { 4374 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4375 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4376 unsigned long node_start_pfn, node_end_pfn; 4377 unsigned long zone_start_pfn, zone_end_pfn; 4378 4379 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4380 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4381 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4382 4383 adjust_zone_range_for_zone_movable(nid, zone_type, 4384 node_start_pfn, node_end_pfn, 4385 &zone_start_pfn, &zone_end_pfn); 4386 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4387 } 4388 4389 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4390 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4391 unsigned long zone_type, 4392 unsigned long *zones_size) 4393 { 4394 return zones_size[zone_type]; 4395 } 4396 4397 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4398 unsigned long zone_type, 4399 unsigned long *zholes_size) 4400 { 4401 if (!zholes_size) 4402 return 0; 4403 4404 return zholes_size[zone_type]; 4405 } 4406 4407 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4408 4409 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4410 unsigned long *zones_size, unsigned long *zholes_size) 4411 { 4412 unsigned long realtotalpages, totalpages = 0; 4413 enum zone_type i; 4414 4415 for (i = 0; i < MAX_NR_ZONES; i++) 4416 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4417 zones_size); 4418 pgdat->node_spanned_pages = totalpages; 4419 4420 realtotalpages = totalpages; 4421 for (i = 0; i < MAX_NR_ZONES; i++) 4422 realtotalpages -= 4423 zone_absent_pages_in_node(pgdat->node_id, i, 4424 zholes_size); 4425 pgdat->node_present_pages = realtotalpages; 4426 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4427 realtotalpages); 4428 } 4429 4430 #ifndef CONFIG_SPARSEMEM 4431 /* 4432 * Calculate the size of the zone->blockflags rounded to an unsigned long 4433 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4434 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4435 * round what is now in bits to nearest long in bits, then return it in 4436 * bytes. 4437 */ 4438 static unsigned long __init usemap_size(unsigned long zonesize) 4439 { 4440 unsigned long usemapsize; 4441 4442 usemapsize = roundup(zonesize, pageblock_nr_pages); 4443 usemapsize = usemapsize >> pageblock_order; 4444 usemapsize *= NR_PAGEBLOCK_BITS; 4445 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4446 4447 return usemapsize / 8; 4448 } 4449 4450 static void __init setup_usemap(struct pglist_data *pgdat, 4451 struct zone *zone, unsigned long zonesize) 4452 { 4453 unsigned long usemapsize = usemap_size(zonesize); 4454 zone->pageblock_flags = NULL; 4455 if (usemapsize) 4456 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4457 usemapsize); 4458 } 4459 #else 4460 static inline void setup_usemap(struct pglist_data *pgdat, 4461 struct zone *zone, unsigned long zonesize) {} 4462 #endif /* CONFIG_SPARSEMEM */ 4463 4464 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4465 4466 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4467 void __init set_pageblock_order(void) 4468 { 4469 unsigned int order; 4470 4471 /* Check that pageblock_nr_pages has not already been setup */ 4472 if (pageblock_order) 4473 return; 4474 4475 if (HPAGE_SHIFT > PAGE_SHIFT) 4476 order = HUGETLB_PAGE_ORDER; 4477 else 4478 order = MAX_ORDER - 1; 4479 4480 /* 4481 * Assume the largest contiguous order of interest is a huge page. 4482 * This value may be variable depending on boot parameters on IA64 and 4483 * powerpc. 4484 */ 4485 pageblock_order = order; 4486 } 4487 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4488 4489 /* 4490 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4491 * is unused as pageblock_order is set at compile-time. See 4492 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4493 * the kernel config 4494 */ 4495 void __init set_pageblock_order(void) 4496 { 4497 } 4498 4499 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4500 4501 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4502 unsigned long present_pages) 4503 { 4504 unsigned long pages = spanned_pages; 4505 4506 /* 4507 * Provide a more accurate estimation if there are holes within 4508 * the zone and SPARSEMEM is in use. If there are holes within the 4509 * zone, each populated memory region may cost us one or two extra 4510 * memmap pages due to alignment because memmap pages for each 4511 * populated regions may not naturally algined on page boundary. 4512 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4513 */ 4514 if (spanned_pages > present_pages + (present_pages >> 4) && 4515 IS_ENABLED(CONFIG_SPARSEMEM)) 4516 pages = present_pages; 4517 4518 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4519 } 4520 4521 /* 4522 * Set up the zone data structures: 4523 * - mark all pages reserved 4524 * - mark all memory queues empty 4525 * - clear the memory bitmaps 4526 * 4527 * NOTE: pgdat should get zeroed by caller. 4528 */ 4529 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4530 unsigned long *zones_size, unsigned long *zholes_size) 4531 { 4532 enum zone_type j; 4533 int nid = pgdat->node_id; 4534 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4535 int ret; 4536 4537 pgdat_resize_init(pgdat); 4538 #ifdef CONFIG_NUMA_BALANCING 4539 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4540 pgdat->numabalancing_migrate_nr_pages = 0; 4541 pgdat->numabalancing_migrate_next_window = jiffies; 4542 #endif 4543 init_waitqueue_head(&pgdat->kswapd_wait); 4544 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4545 pgdat_page_cgroup_init(pgdat); 4546 4547 for (j = 0; j < MAX_NR_ZONES; j++) { 4548 struct zone *zone = pgdat->node_zones + j; 4549 unsigned long size, realsize, freesize, memmap_pages; 4550 4551 size = zone_spanned_pages_in_node(nid, j, zones_size); 4552 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4553 zholes_size); 4554 4555 /* 4556 * Adjust freesize so that it accounts for how much memory 4557 * is used by this zone for memmap. This affects the watermark 4558 * and per-cpu initialisations 4559 */ 4560 memmap_pages = calc_memmap_size(size, realsize); 4561 if (freesize >= memmap_pages) { 4562 freesize -= memmap_pages; 4563 if (memmap_pages) 4564 printk(KERN_DEBUG 4565 " %s zone: %lu pages used for memmap\n", 4566 zone_names[j], memmap_pages); 4567 } else 4568 printk(KERN_WARNING 4569 " %s zone: %lu pages exceeds freesize %lu\n", 4570 zone_names[j], memmap_pages, freesize); 4571 4572 /* Account for reserved pages */ 4573 if (j == 0 && freesize > dma_reserve) { 4574 freesize -= dma_reserve; 4575 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4576 zone_names[0], dma_reserve); 4577 } 4578 4579 if (!is_highmem_idx(j)) 4580 nr_kernel_pages += freesize; 4581 /* Charge for highmem memmap if there are enough kernel pages */ 4582 else if (nr_kernel_pages > memmap_pages * 2) 4583 nr_kernel_pages -= memmap_pages; 4584 nr_all_pages += freesize; 4585 4586 zone->spanned_pages = size; 4587 zone->present_pages = freesize; 4588 /* 4589 * Set an approximate value for lowmem here, it will be adjusted 4590 * when the bootmem allocator frees pages into the buddy system. 4591 * And all highmem pages will be managed by the buddy system. 4592 */ 4593 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4594 #ifdef CONFIG_NUMA 4595 zone->node = nid; 4596 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4597 / 100; 4598 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4599 #endif 4600 zone->name = zone_names[j]; 4601 spin_lock_init(&zone->lock); 4602 spin_lock_init(&zone->lru_lock); 4603 zone_seqlock_init(zone); 4604 zone->zone_pgdat = pgdat; 4605 4606 zone_pcp_init(zone); 4607 lruvec_init(&zone->lruvec); 4608 if (!size) 4609 continue; 4610 4611 set_pageblock_order(); 4612 setup_usemap(pgdat, zone, size); 4613 ret = init_currently_empty_zone(zone, zone_start_pfn, 4614 size, MEMMAP_EARLY); 4615 BUG_ON(ret); 4616 memmap_init(size, nid, j, zone_start_pfn); 4617 zone_start_pfn += size; 4618 } 4619 } 4620 4621 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4622 { 4623 /* Skip empty nodes */ 4624 if (!pgdat->node_spanned_pages) 4625 return; 4626 4627 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4628 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4629 if (!pgdat->node_mem_map) { 4630 unsigned long size, start, end; 4631 struct page *map; 4632 4633 /* 4634 * The zone's endpoints aren't required to be MAX_ORDER 4635 * aligned but the node_mem_map endpoints must be in order 4636 * for the buddy allocator to function correctly. 4637 */ 4638 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4639 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4640 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4641 size = (end - start) * sizeof(struct page); 4642 map = alloc_remap(pgdat->node_id, size); 4643 if (!map) 4644 map = alloc_bootmem_node_nopanic(pgdat, size); 4645 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4646 } 4647 #ifndef CONFIG_NEED_MULTIPLE_NODES 4648 /* 4649 * With no DISCONTIG, the global mem_map is just set as node 0's 4650 */ 4651 if (pgdat == NODE_DATA(0)) { 4652 mem_map = NODE_DATA(0)->node_mem_map; 4653 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4654 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4655 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4656 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4657 } 4658 #endif 4659 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4660 } 4661 4662 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4663 unsigned long node_start_pfn, unsigned long *zholes_size) 4664 { 4665 pg_data_t *pgdat = NODE_DATA(nid); 4666 4667 /* pg_data_t should be reset to zero when it's allocated */ 4668 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4669 4670 pgdat->node_id = nid; 4671 pgdat->node_start_pfn = node_start_pfn; 4672 init_zone_allows_reclaim(nid); 4673 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4674 4675 alloc_node_mem_map(pgdat); 4676 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4677 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4678 nid, (unsigned long)pgdat, 4679 (unsigned long)pgdat->node_mem_map); 4680 #endif 4681 4682 free_area_init_core(pgdat, zones_size, zholes_size); 4683 } 4684 4685 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4686 4687 #if MAX_NUMNODES > 1 4688 /* 4689 * Figure out the number of possible node ids. 4690 */ 4691 static void __init setup_nr_node_ids(void) 4692 { 4693 unsigned int node; 4694 unsigned int highest = 0; 4695 4696 for_each_node_mask(node, node_possible_map) 4697 highest = node; 4698 nr_node_ids = highest + 1; 4699 } 4700 #else 4701 static inline void setup_nr_node_ids(void) 4702 { 4703 } 4704 #endif 4705 4706 /** 4707 * node_map_pfn_alignment - determine the maximum internode alignment 4708 * 4709 * This function should be called after node map is populated and sorted. 4710 * It calculates the maximum power of two alignment which can distinguish 4711 * all the nodes. 4712 * 4713 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4714 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4715 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4716 * shifted, 1GiB is enough and this function will indicate so. 4717 * 4718 * This is used to test whether pfn -> nid mapping of the chosen memory 4719 * model has fine enough granularity to avoid incorrect mapping for the 4720 * populated node map. 4721 * 4722 * Returns the determined alignment in pfn's. 0 if there is no alignment 4723 * requirement (single node). 4724 */ 4725 unsigned long __init node_map_pfn_alignment(void) 4726 { 4727 unsigned long accl_mask = 0, last_end = 0; 4728 unsigned long start, end, mask; 4729 int last_nid = -1; 4730 int i, nid; 4731 4732 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4733 if (!start || last_nid < 0 || last_nid == nid) { 4734 last_nid = nid; 4735 last_end = end; 4736 continue; 4737 } 4738 4739 /* 4740 * Start with a mask granular enough to pin-point to the 4741 * start pfn and tick off bits one-by-one until it becomes 4742 * too coarse to separate the current node from the last. 4743 */ 4744 mask = ~((1 << __ffs(start)) - 1); 4745 while (mask && last_end <= (start & (mask << 1))) 4746 mask <<= 1; 4747 4748 /* accumulate all internode masks */ 4749 accl_mask |= mask; 4750 } 4751 4752 /* convert mask to number of pages */ 4753 return ~accl_mask + 1; 4754 } 4755 4756 /* Find the lowest pfn for a node */ 4757 static unsigned long __init find_min_pfn_for_node(int nid) 4758 { 4759 unsigned long min_pfn = ULONG_MAX; 4760 unsigned long start_pfn; 4761 int i; 4762 4763 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4764 min_pfn = min(min_pfn, start_pfn); 4765 4766 if (min_pfn == ULONG_MAX) { 4767 printk(KERN_WARNING 4768 "Could not find start_pfn for node %d\n", nid); 4769 return 0; 4770 } 4771 4772 return min_pfn; 4773 } 4774 4775 /** 4776 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4777 * 4778 * It returns the minimum PFN based on information provided via 4779 * add_active_range(). 4780 */ 4781 unsigned long __init find_min_pfn_with_active_regions(void) 4782 { 4783 return find_min_pfn_for_node(MAX_NUMNODES); 4784 } 4785 4786 /* 4787 * early_calculate_totalpages() 4788 * Sum pages in active regions for movable zone. 4789 * Populate N_MEMORY for calculating usable_nodes. 4790 */ 4791 static unsigned long __init early_calculate_totalpages(void) 4792 { 4793 unsigned long totalpages = 0; 4794 unsigned long start_pfn, end_pfn; 4795 int i, nid; 4796 4797 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4798 unsigned long pages = end_pfn - start_pfn; 4799 4800 totalpages += pages; 4801 if (pages) 4802 node_set_state(nid, N_MEMORY); 4803 } 4804 return totalpages; 4805 } 4806 4807 /* 4808 * Find the PFN the Movable zone begins in each node. Kernel memory 4809 * is spread evenly between nodes as long as the nodes have enough 4810 * memory. When they don't, some nodes will have more kernelcore than 4811 * others 4812 */ 4813 static void __init find_zone_movable_pfns_for_nodes(void) 4814 { 4815 int i, nid; 4816 unsigned long usable_startpfn; 4817 unsigned long kernelcore_node, kernelcore_remaining; 4818 /* save the state before borrow the nodemask */ 4819 nodemask_t saved_node_state = node_states[N_MEMORY]; 4820 unsigned long totalpages = early_calculate_totalpages(); 4821 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 4822 4823 /* 4824 * If movablecore was specified, calculate what size of 4825 * kernelcore that corresponds so that memory usable for 4826 * any allocation type is evenly spread. If both kernelcore 4827 * and movablecore are specified, then the value of kernelcore 4828 * will be used for required_kernelcore if it's greater than 4829 * what movablecore would have allowed. 4830 */ 4831 if (required_movablecore) { 4832 unsigned long corepages; 4833 4834 /* 4835 * Round-up so that ZONE_MOVABLE is at least as large as what 4836 * was requested by the user 4837 */ 4838 required_movablecore = 4839 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4840 corepages = totalpages - required_movablecore; 4841 4842 required_kernelcore = max(required_kernelcore, corepages); 4843 } 4844 4845 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4846 if (!required_kernelcore) 4847 goto out; 4848 4849 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4850 find_usable_zone_for_movable(); 4851 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4852 4853 restart: 4854 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4855 kernelcore_node = required_kernelcore / usable_nodes; 4856 for_each_node_state(nid, N_MEMORY) { 4857 unsigned long start_pfn, end_pfn; 4858 4859 /* 4860 * Recalculate kernelcore_node if the division per node 4861 * now exceeds what is necessary to satisfy the requested 4862 * amount of memory for the kernel 4863 */ 4864 if (required_kernelcore < kernelcore_node) 4865 kernelcore_node = required_kernelcore / usable_nodes; 4866 4867 /* 4868 * As the map is walked, we track how much memory is usable 4869 * by the kernel using kernelcore_remaining. When it is 4870 * 0, the rest of the node is usable by ZONE_MOVABLE 4871 */ 4872 kernelcore_remaining = kernelcore_node; 4873 4874 /* Go through each range of PFNs within this node */ 4875 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4876 unsigned long size_pages; 4877 4878 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4879 if (start_pfn >= end_pfn) 4880 continue; 4881 4882 /* Account for what is only usable for kernelcore */ 4883 if (start_pfn < usable_startpfn) { 4884 unsigned long kernel_pages; 4885 kernel_pages = min(end_pfn, usable_startpfn) 4886 - start_pfn; 4887 4888 kernelcore_remaining -= min(kernel_pages, 4889 kernelcore_remaining); 4890 required_kernelcore -= min(kernel_pages, 4891 required_kernelcore); 4892 4893 /* Continue if range is now fully accounted */ 4894 if (end_pfn <= usable_startpfn) { 4895 4896 /* 4897 * Push zone_movable_pfn to the end so 4898 * that if we have to rebalance 4899 * kernelcore across nodes, we will 4900 * not double account here 4901 */ 4902 zone_movable_pfn[nid] = end_pfn; 4903 continue; 4904 } 4905 start_pfn = usable_startpfn; 4906 } 4907 4908 /* 4909 * The usable PFN range for ZONE_MOVABLE is from 4910 * start_pfn->end_pfn. Calculate size_pages as the 4911 * number of pages used as kernelcore 4912 */ 4913 size_pages = end_pfn - start_pfn; 4914 if (size_pages > kernelcore_remaining) 4915 size_pages = kernelcore_remaining; 4916 zone_movable_pfn[nid] = start_pfn + size_pages; 4917 4918 /* 4919 * Some kernelcore has been met, update counts and 4920 * break if the kernelcore for this node has been 4921 * satisified 4922 */ 4923 required_kernelcore -= min(required_kernelcore, 4924 size_pages); 4925 kernelcore_remaining -= size_pages; 4926 if (!kernelcore_remaining) 4927 break; 4928 } 4929 } 4930 4931 /* 4932 * If there is still required_kernelcore, we do another pass with one 4933 * less node in the count. This will push zone_movable_pfn[nid] further 4934 * along on the nodes that still have memory until kernelcore is 4935 * satisified 4936 */ 4937 usable_nodes--; 4938 if (usable_nodes && required_kernelcore > usable_nodes) 4939 goto restart; 4940 4941 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4942 for (nid = 0; nid < MAX_NUMNODES; nid++) 4943 zone_movable_pfn[nid] = 4944 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4945 4946 out: 4947 /* restore the node_state */ 4948 node_states[N_MEMORY] = saved_node_state; 4949 } 4950 4951 /* Any regular or high memory on that node ? */ 4952 static void check_for_memory(pg_data_t *pgdat, int nid) 4953 { 4954 enum zone_type zone_type; 4955 4956 if (N_MEMORY == N_NORMAL_MEMORY) 4957 return; 4958 4959 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 4960 struct zone *zone = &pgdat->node_zones[zone_type]; 4961 if (zone->present_pages) { 4962 node_set_state(nid, N_HIGH_MEMORY); 4963 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 4964 zone_type <= ZONE_NORMAL) 4965 node_set_state(nid, N_NORMAL_MEMORY); 4966 break; 4967 } 4968 } 4969 } 4970 4971 /** 4972 * free_area_init_nodes - Initialise all pg_data_t and zone data 4973 * @max_zone_pfn: an array of max PFNs for each zone 4974 * 4975 * This will call free_area_init_node() for each active node in the system. 4976 * Using the page ranges provided by add_active_range(), the size of each 4977 * zone in each node and their holes is calculated. If the maximum PFN 4978 * between two adjacent zones match, it is assumed that the zone is empty. 4979 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4980 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4981 * starts where the previous one ended. For example, ZONE_DMA32 starts 4982 * at arch_max_dma_pfn. 4983 */ 4984 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4985 { 4986 unsigned long start_pfn, end_pfn; 4987 int i, nid; 4988 4989 /* Record where the zone boundaries are */ 4990 memset(arch_zone_lowest_possible_pfn, 0, 4991 sizeof(arch_zone_lowest_possible_pfn)); 4992 memset(arch_zone_highest_possible_pfn, 0, 4993 sizeof(arch_zone_highest_possible_pfn)); 4994 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4995 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4996 for (i = 1; i < MAX_NR_ZONES; i++) { 4997 if (i == ZONE_MOVABLE) 4998 continue; 4999 arch_zone_lowest_possible_pfn[i] = 5000 arch_zone_highest_possible_pfn[i-1]; 5001 arch_zone_highest_possible_pfn[i] = 5002 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5003 } 5004 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5005 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5006 5007 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5008 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5009 find_zone_movable_pfns_for_nodes(); 5010 5011 /* Print out the zone ranges */ 5012 printk("Zone ranges:\n"); 5013 for (i = 0; i < MAX_NR_ZONES; i++) { 5014 if (i == ZONE_MOVABLE) 5015 continue; 5016 printk(KERN_CONT " %-8s ", zone_names[i]); 5017 if (arch_zone_lowest_possible_pfn[i] == 5018 arch_zone_highest_possible_pfn[i]) 5019 printk(KERN_CONT "empty\n"); 5020 else 5021 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5022 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5023 (arch_zone_highest_possible_pfn[i] 5024 << PAGE_SHIFT) - 1); 5025 } 5026 5027 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5028 printk("Movable zone start for each node\n"); 5029 for (i = 0; i < MAX_NUMNODES; i++) { 5030 if (zone_movable_pfn[i]) 5031 printk(" Node %d: %#010lx\n", i, 5032 zone_movable_pfn[i] << PAGE_SHIFT); 5033 } 5034 5035 /* Print out the early node map */ 5036 printk("Early memory node ranges\n"); 5037 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5038 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5039 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5040 5041 /* Initialise every node */ 5042 mminit_verify_pageflags_layout(); 5043 setup_nr_node_ids(); 5044 for_each_online_node(nid) { 5045 pg_data_t *pgdat = NODE_DATA(nid); 5046 free_area_init_node(nid, NULL, 5047 find_min_pfn_for_node(nid), NULL); 5048 5049 /* Any memory on that node */ 5050 if (pgdat->node_present_pages) 5051 node_set_state(nid, N_MEMORY); 5052 check_for_memory(pgdat, nid); 5053 } 5054 } 5055 5056 static int __init cmdline_parse_core(char *p, unsigned long *core) 5057 { 5058 unsigned long long coremem; 5059 if (!p) 5060 return -EINVAL; 5061 5062 coremem = memparse(p, &p); 5063 *core = coremem >> PAGE_SHIFT; 5064 5065 /* Paranoid check that UL is enough for the coremem value */ 5066 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5067 5068 return 0; 5069 } 5070 5071 /* 5072 * kernelcore=size sets the amount of memory for use for allocations that 5073 * cannot be reclaimed or migrated. 5074 */ 5075 static int __init cmdline_parse_kernelcore(char *p) 5076 { 5077 return cmdline_parse_core(p, &required_kernelcore); 5078 } 5079 5080 /* 5081 * movablecore=size sets the amount of memory for use for allocations that 5082 * can be reclaimed or migrated. 5083 */ 5084 static int __init cmdline_parse_movablecore(char *p) 5085 { 5086 return cmdline_parse_core(p, &required_movablecore); 5087 } 5088 5089 early_param("kernelcore", cmdline_parse_kernelcore); 5090 early_param("movablecore", cmdline_parse_movablecore); 5091 5092 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5093 5094 /** 5095 * set_dma_reserve - set the specified number of pages reserved in the first zone 5096 * @new_dma_reserve: The number of pages to mark reserved 5097 * 5098 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5099 * In the DMA zone, a significant percentage may be consumed by kernel image 5100 * and other unfreeable allocations which can skew the watermarks badly. This 5101 * function may optionally be used to account for unfreeable pages in the 5102 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5103 * smaller per-cpu batchsize. 5104 */ 5105 void __init set_dma_reserve(unsigned long new_dma_reserve) 5106 { 5107 dma_reserve = new_dma_reserve; 5108 } 5109 5110 void __init free_area_init(unsigned long *zones_size) 5111 { 5112 free_area_init_node(0, zones_size, 5113 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5114 } 5115 5116 static int page_alloc_cpu_notify(struct notifier_block *self, 5117 unsigned long action, void *hcpu) 5118 { 5119 int cpu = (unsigned long)hcpu; 5120 5121 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5122 lru_add_drain_cpu(cpu); 5123 drain_pages(cpu); 5124 5125 /* 5126 * Spill the event counters of the dead processor 5127 * into the current processors event counters. 5128 * This artificially elevates the count of the current 5129 * processor. 5130 */ 5131 vm_events_fold_cpu(cpu); 5132 5133 /* 5134 * Zero the differential counters of the dead processor 5135 * so that the vm statistics are consistent. 5136 * 5137 * This is only okay since the processor is dead and cannot 5138 * race with what we are doing. 5139 */ 5140 refresh_cpu_vm_stats(cpu); 5141 } 5142 return NOTIFY_OK; 5143 } 5144 5145 void __init page_alloc_init(void) 5146 { 5147 hotcpu_notifier(page_alloc_cpu_notify, 0); 5148 } 5149 5150 /* 5151 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5152 * or min_free_kbytes changes. 5153 */ 5154 static void calculate_totalreserve_pages(void) 5155 { 5156 struct pglist_data *pgdat; 5157 unsigned long reserve_pages = 0; 5158 enum zone_type i, j; 5159 5160 for_each_online_pgdat(pgdat) { 5161 for (i = 0; i < MAX_NR_ZONES; i++) { 5162 struct zone *zone = pgdat->node_zones + i; 5163 unsigned long max = 0; 5164 5165 /* Find valid and maximum lowmem_reserve in the zone */ 5166 for (j = i; j < MAX_NR_ZONES; j++) { 5167 if (zone->lowmem_reserve[j] > max) 5168 max = zone->lowmem_reserve[j]; 5169 } 5170 5171 /* we treat the high watermark as reserved pages. */ 5172 max += high_wmark_pages(zone); 5173 5174 if (max > zone->present_pages) 5175 max = zone->present_pages; 5176 reserve_pages += max; 5177 /* 5178 * Lowmem reserves are not available to 5179 * GFP_HIGHUSER page cache allocations and 5180 * kswapd tries to balance zones to their high 5181 * watermark. As a result, neither should be 5182 * regarded as dirtyable memory, to prevent a 5183 * situation where reclaim has to clean pages 5184 * in order to balance the zones. 5185 */ 5186 zone->dirty_balance_reserve = max; 5187 } 5188 } 5189 dirty_balance_reserve = reserve_pages; 5190 totalreserve_pages = reserve_pages; 5191 } 5192 5193 /* 5194 * setup_per_zone_lowmem_reserve - called whenever 5195 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5196 * has a correct pages reserved value, so an adequate number of 5197 * pages are left in the zone after a successful __alloc_pages(). 5198 */ 5199 static void setup_per_zone_lowmem_reserve(void) 5200 { 5201 struct pglist_data *pgdat; 5202 enum zone_type j, idx; 5203 5204 for_each_online_pgdat(pgdat) { 5205 for (j = 0; j < MAX_NR_ZONES; j++) { 5206 struct zone *zone = pgdat->node_zones + j; 5207 unsigned long present_pages = zone->present_pages; 5208 5209 zone->lowmem_reserve[j] = 0; 5210 5211 idx = j; 5212 while (idx) { 5213 struct zone *lower_zone; 5214 5215 idx--; 5216 5217 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5218 sysctl_lowmem_reserve_ratio[idx] = 1; 5219 5220 lower_zone = pgdat->node_zones + idx; 5221 lower_zone->lowmem_reserve[j] = present_pages / 5222 sysctl_lowmem_reserve_ratio[idx]; 5223 present_pages += lower_zone->present_pages; 5224 } 5225 } 5226 } 5227 5228 /* update totalreserve_pages */ 5229 calculate_totalreserve_pages(); 5230 } 5231 5232 static void __setup_per_zone_wmarks(void) 5233 { 5234 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5235 unsigned long lowmem_pages = 0; 5236 struct zone *zone; 5237 unsigned long flags; 5238 5239 /* Calculate total number of !ZONE_HIGHMEM pages */ 5240 for_each_zone(zone) { 5241 if (!is_highmem(zone)) 5242 lowmem_pages += zone->present_pages; 5243 } 5244 5245 for_each_zone(zone) { 5246 u64 tmp; 5247 5248 spin_lock_irqsave(&zone->lock, flags); 5249 tmp = (u64)pages_min * zone->present_pages; 5250 do_div(tmp, lowmem_pages); 5251 if (is_highmem(zone)) { 5252 /* 5253 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5254 * need highmem pages, so cap pages_min to a small 5255 * value here. 5256 * 5257 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5258 * deltas controls asynch page reclaim, and so should 5259 * not be capped for highmem. 5260 */ 5261 int min_pages; 5262 5263 min_pages = zone->present_pages / 1024; 5264 if (min_pages < SWAP_CLUSTER_MAX) 5265 min_pages = SWAP_CLUSTER_MAX; 5266 if (min_pages > 128) 5267 min_pages = 128; 5268 zone->watermark[WMARK_MIN] = min_pages; 5269 } else { 5270 /* 5271 * If it's a lowmem zone, reserve a number of pages 5272 * proportionate to the zone's size. 5273 */ 5274 zone->watermark[WMARK_MIN] = tmp; 5275 } 5276 5277 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5278 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5279 5280 setup_zone_migrate_reserve(zone); 5281 spin_unlock_irqrestore(&zone->lock, flags); 5282 } 5283 5284 /* update totalreserve_pages */ 5285 calculate_totalreserve_pages(); 5286 } 5287 5288 /** 5289 * setup_per_zone_wmarks - called when min_free_kbytes changes 5290 * or when memory is hot-{added|removed} 5291 * 5292 * Ensures that the watermark[min,low,high] values for each zone are set 5293 * correctly with respect to min_free_kbytes. 5294 */ 5295 void setup_per_zone_wmarks(void) 5296 { 5297 mutex_lock(&zonelists_mutex); 5298 __setup_per_zone_wmarks(); 5299 mutex_unlock(&zonelists_mutex); 5300 } 5301 5302 /* 5303 * The inactive anon list should be small enough that the VM never has to 5304 * do too much work, but large enough that each inactive page has a chance 5305 * to be referenced again before it is swapped out. 5306 * 5307 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5308 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5309 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5310 * the anonymous pages are kept on the inactive list. 5311 * 5312 * total target max 5313 * memory ratio inactive anon 5314 * ------------------------------------- 5315 * 10MB 1 5MB 5316 * 100MB 1 50MB 5317 * 1GB 3 250MB 5318 * 10GB 10 0.9GB 5319 * 100GB 31 3GB 5320 * 1TB 101 10GB 5321 * 10TB 320 32GB 5322 */ 5323 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5324 { 5325 unsigned int gb, ratio; 5326 5327 /* Zone size in gigabytes */ 5328 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5329 if (gb) 5330 ratio = int_sqrt(10 * gb); 5331 else 5332 ratio = 1; 5333 5334 zone->inactive_ratio = ratio; 5335 } 5336 5337 static void __meminit setup_per_zone_inactive_ratio(void) 5338 { 5339 struct zone *zone; 5340 5341 for_each_zone(zone) 5342 calculate_zone_inactive_ratio(zone); 5343 } 5344 5345 /* 5346 * Initialise min_free_kbytes. 5347 * 5348 * For small machines we want it small (128k min). For large machines 5349 * we want it large (64MB max). But it is not linear, because network 5350 * bandwidth does not increase linearly with machine size. We use 5351 * 5352 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5353 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5354 * 5355 * which yields 5356 * 5357 * 16MB: 512k 5358 * 32MB: 724k 5359 * 64MB: 1024k 5360 * 128MB: 1448k 5361 * 256MB: 2048k 5362 * 512MB: 2896k 5363 * 1024MB: 4096k 5364 * 2048MB: 5792k 5365 * 4096MB: 8192k 5366 * 8192MB: 11584k 5367 * 16384MB: 16384k 5368 */ 5369 int __meminit init_per_zone_wmark_min(void) 5370 { 5371 unsigned long lowmem_kbytes; 5372 5373 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5374 5375 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5376 if (min_free_kbytes < 128) 5377 min_free_kbytes = 128; 5378 if (min_free_kbytes > 65536) 5379 min_free_kbytes = 65536; 5380 setup_per_zone_wmarks(); 5381 refresh_zone_stat_thresholds(); 5382 setup_per_zone_lowmem_reserve(); 5383 setup_per_zone_inactive_ratio(); 5384 return 0; 5385 } 5386 module_init(init_per_zone_wmark_min) 5387 5388 /* 5389 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5390 * that we can call two helper functions whenever min_free_kbytes 5391 * changes. 5392 */ 5393 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5394 void __user *buffer, size_t *length, loff_t *ppos) 5395 { 5396 proc_dointvec(table, write, buffer, length, ppos); 5397 if (write) 5398 setup_per_zone_wmarks(); 5399 return 0; 5400 } 5401 5402 #ifdef CONFIG_NUMA 5403 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5404 void __user *buffer, size_t *length, loff_t *ppos) 5405 { 5406 struct zone *zone; 5407 int rc; 5408 5409 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5410 if (rc) 5411 return rc; 5412 5413 for_each_zone(zone) 5414 zone->min_unmapped_pages = (zone->present_pages * 5415 sysctl_min_unmapped_ratio) / 100; 5416 return 0; 5417 } 5418 5419 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5420 void __user *buffer, size_t *length, loff_t *ppos) 5421 { 5422 struct zone *zone; 5423 int rc; 5424 5425 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5426 if (rc) 5427 return rc; 5428 5429 for_each_zone(zone) 5430 zone->min_slab_pages = (zone->present_pages * 5431 sysctl_min_slab_ratio) / 100; 5432 return 0; 5433 } 5434 #endif 5435 5436 /* 5437 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5438 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5439 * whenever sysctl_lowmem_reserve_ratio changes. 5440 * 5441 * The reserve ratio obviously has absolutely no relation with the 5442 * minimum watermarks. The lowmem reserve ratio can only make sense 5443 * if in function of the boot time zone sizes. 5444 */ 5445 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5446 void __user *buffer, size_t *length, loff_t *ppos) 5447 { 5448 proc_dointvec_minmax(table, write, buffer, length, ppos); 5449 setup_per_zone_lowmem_reserve(); 5450 return 0; 5451 } 5452 5453 /* 5454 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5455 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5456 * can have before it gets flushed back to buddy allocator. 5457 */ 5458 5459 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5460 void __user *buffer, size_t *length, loff_t *ppos) 5461 { 5462 struct zone *zone; 5463 unsigned int cpu; 5464 int ret; 5465 5466 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5467 if (!write || (ret < 0)) 5468 return ret; 5469 for_each_populated_zone(zone) { 5470 for_each_possible_cpu(cpu) { 5471 unsigned long high; 5472 high = zone->present_pages / percpu_pagelist_fraction; 5473 setup_pagelist_highmark( 5474 per_cpu_ptr(zone->pageset, cpu), high); 5475 } 5476 } 5477 return 0; 5478 } 5479 5480 int hashdist = HASHDIST_DEFAULT; 5481 5482 #ifdef CONFIG_NUMA 5483 static int __init set_hashdist(char *str) 5484 { 5485 if (!str) 5486 return 0; 5487 hashdist = simple_strtoul(str, &str, 0); 5488 return 1; 5489 } 5490 __setup("hashdist=", set_hashdist); 5491 #endif 5492 5493 /* 5494 * allocate a large system hash table from bootmem 5495 * - it is assumed that the hash table must contain an exact power-of-2 5496 * quantity of entries 5497 * - limit is the number of hash buckets, not the total allocation size 5498 */ 5499 void *__init alloc_large_system_hash(const char *tablename, 5500 unsigned long bucketsize, 5501 unsigned long numentries, 5502 int scale, 5503 int flags, 5504 unsigned int *_hash_shift, 5505 unsigned int *_hash_mask, 5506 unsigned long low_limit, 5507 unsigned long high_limit) 5508 { 5509 unsigned long long max = high_limit; 5510 unsigned long log2qty, size; 5511 void *table = NULL; 5512 5513 /* allow the kernel cmdline to have a say */ 5514 if (!numentries) { 5515 /* round applicable memory size up to nearest megabyte */ 5516 numentries = nr_kernel_pages; 5517 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5518 numentries >>= 20 - PAGE_SHIFT; 5519 numentries <<= 20 - PAGE_SHIFT; 5520 5521 /* limit to 1 bucket per 2^scale bytes of low memory */ 5522 if (scale > PAGE_SHIFT) 5523 numentries >>= (scale - PAGE_SHIFT); 5524 else 5525 numentries <<= (PAGE_SHIFT - scale); 5526 5527 /* Make sure we've got at least a 0-order allocation.. */ 5528 if (unlikely(flags & HASH_SMALL)) { 5529 /* Makes no sense without HASH_EARLY */ 5530 WARN_ON(!(flags & HASH_EARLY)); 5531 if (!(numentries >> *_hash_shift)) { 5532 numentries = 1UL << *_hash_shift; 5533 BUG_ON(!numentries); 5534 } 5535 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5536 numentries = PAGE_SIZE / bucketsize; 5537 } 5538 numentries = roundup_pow_of_two(numentries); 5539 5540 /* limit allocation size to 1/16 total memory by default */ 5541 if (max == 0) { 5542 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5543 do_div(max, bucketsize); 5544 } 5545 max = min(max, 0x80000000ULL); 5546 5547 if (numentries < low_limit) 5548 numentries = low_limit; 5549 if (numentries > max) 5550 numentries = max; 5551 5552 log2qty = ilog2(numentries); 5553 5554 do { 5555 size = bucketsize << log2qty; 5556 if (flags & HASH_EARLY) 5557 table = alloc_bootmem_nopanic(size); 5558 else if (hashdist) 5559 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5560 else { 5561 /* 5562 * If bucketsize is not a power-of-two, we may free 5563 * some pages at the end of hash table which 5564 * alloc_pages_exact() automatically does 5565 */ 5566 if (get_order(size) < MAX_ORDER) { 5567 table = alloc_pages_exact(size, GFP_ATOMIC); 5568 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5569 } 5570 } 5571 } while (!table && size > PAGE_SIZE && --log2qty); 5572 5573 if (!table) 5574 panic("Failed to allocate %s hash table\n", tablename); 5575 5576 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5577 tablename, 5578 (1UL << log2qty), 5579 ilog2(size) - PAGE_SHIFT, 5580 size); 5581 5582 if (_hash_shift) 5583 *_hash_shift = log2qty; 5584 if (_hash_mask) 5585 *_hash_mask = (1 << log2qty) - 1; 5586 5587 return table; 5588 } 5589 5590 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5591 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5592 unsigned long pfn) 5593 { 5594 #ifdef CONFIG_SPARSEMEM 5595 return __pfn_to_section(pfn)->pageblock_flags; 5596 #else 5597 return zone->pageblock_flags; 5598 #endif /* CONFIG_SPARSEMEM */ 5599 } 5600 5601 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5602 { 5603 #ifdef CONFIG_SPARSEMEM 5604 pfn &= (PAGES_PER_SECTION-1); 5605 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5606 #else 5607 pfn = pfn - zone->zone_start_pfn; 5608 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5609 #endif /* CONFIG_SPARSEMEM */ 5610 } 5611 5612 /** 5613 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5614 * @page: The page within the block of interest 5615 * @start_bitidx: The first bit of interest to retrieve 5616 * @end_bitidx: The last bit of interest 5617 * returns pageblock_bits flags 5618 */ 5619 unsigned long get_pageblock_flags_group(struct page *page, 5620 int start_bitidx, int end_bitidx) 5621 { 5622 struct zone *zone; 5623 unsigned long *bitmap; 5624 unsigned long pfn, bitidx; 5625 unsigned long flags = 0; 5626 unsigned long value = 1; 5627 5628 zone = page_zone(page); 5629 pfn = page_to_pfn(page); 5630 bitmap = get_pageblock_bitmap(zone, pfn); 5631 bitidx = pfn_to_bitidx(zone, pfn); 5632 5633 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5634 if (test_bit(bitidx + start_bitidx, bitmap)) 5635 flags |= value; 5636 5637 return flags; 5638 } 5639 5640 /** 5641 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5642 * @page: The page within the block of interest 5643 * @start_bitidx: The first bit of interest 5644 * @end_bitidx: The last bit of interest 5645 * @flags: The flags to set 5646 */ 5647 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5648 int start_bitidx, int end_bitidx) 5649 { 5650 struct zone *zone; 5651 unsigned long *bitmap; 5652 unsigned long pfn, bitidx; 5653 unsigned long value = 1; 5654 5655 zone = page_zone(page); 5656 pfn = page_to_pfn(page); 5657 bitmap = get_pageblock_bitmap(zone, pfn); 5658 bitidx = pfn_to_bitidx(zone, pfn); 5659 VM_BUG_ON(pfn < zone->zone_start_pfn); 5660 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5661 5662 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5663 if (flags & value) 5664 __set_bit(bitidx + start_bitidx, bitmap); 5665 else 5666 __clear_bit(bitidx + start_bitidx, bitmap); 5667 } 5668 5669 /* 5670 * This function checks whether pageblock includes unmovable pages or not. 5671 * If @count is not zero, it is okay to include less @count unmovable pages 5672 * 5673 * PageLRU check wihtout isolation or lru_lock could race so that 5674 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5675 * expect this function should be exact. 5676 */ 5677 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 5678 bool skip_hwpoisoned_pages) 5679 { 5680 unsigned long pfn, iter, found; 5681 int mt; 5682 5683 /* 5684 * For avoiding noise data, lru_add_drain_all() should be called 5685 * If ZONE_MOVABLE, the zone never contains unmovable pages 5686 */ 5687 if (zone_idx(zone) == ZONE_MOVABLE) 5688 return false; 5689 mt = get_pageblock_migratetype(page); 5690 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5691 return false; 5692 5693 pfn = page_to_pfn(page); 5694 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5695 unsigned long check = pfn + iter; 5696 5697 if (!pfn_valid_within(check)) 5698 continue; 5699 5700 page = pfn_to_page(check); 5701 /* 5702 * We can't use page_count without pin a page 5703 * because another CPU can free compound page. 5704 * This check already skips compound tails of THP 5705 * because their page->_count is zero at all time. 5706 */ 5707 if (!atomic_read(&page->_count)) { 5708 if (PageBuddy(page)) 5709 iter += (1 << page_order(page)) - 1; 5710 continue; 5711 } 5712 5713 /* 5714 * The HWPoisoned page may be not in buddy system, and 5715 * page_count() is not 0. 5716 */ 5717 if (skip_hwpoisoned_pages && PageHWPoison(page)) 5718 continue; 5719 5720 if (!PageLRU(page)) 5721 found++; 5722 /* 5723 * If there are RECLAIMABLE pages, we need to check it. 5724 * But now, memory offline itself doesn't call shrink_slab() 5725 * and it still to be fixed. 5726 */ 5727 /* 5728 * If the page is not RAM, page_count()should be 0. 5729 * we don't need more check. This is an _used_ not-movable page. 5730 * 5731 * The problematic thing here is PG_reserved pages. PG_reserved 5732 * is set to both of a memory hole page and a _used_ kernel 5733 * page at boot. 5734 */ 5735 if (found > count) 5736 return true; 5737 } 5738 return false; 5739 } 5740 5741 bool is_pageblock_removable_nolock(struct page *page) 5742 { 5743 struct zone *zone; 5744 unsigned long pfn; 5745 5746 /* 5747 * We have to be careful here because we are iterating over memory 5748 * sections which are not zone aware so we might end up outside of 5749 * the zone but still within the section. 5750 * We have to take care about the node as well. If the node is offline 5751 * its NODE_DATA will be NULL - see page_zone. 5752 */ 5753 if (!node_online(page_to_nid(page))) 5754 return false; 5755 5756 zone = page_zone(page); 5757 pfn = page_to_pfn(page); 5758 if (zone->zone_start_pfn > pfn || 5759 zone->zone_start_pfn + zone->spanned_pages <= pfn) 5760 return false; 5761 5762 return !has_unmovable_pages(zone, page, 0, true); 5763 } 5764 5765 #ifdef CONFIG_CMA 5766 5767 static unsigned long pfn_max_align_down(unsigned long pfn) 5768 { 5769 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5770 pageblock_nr_pages) - 1); 5771 } 5772 5773 static unsigned long pfn_max_align_up(unsigned long pfn) 5774 { 5775 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5776 pageblock_nr_pages)); 5777 } 5778 5779 /* [start, end) must belong to a single zone. */ 5780 static int __alloc_contig_migrate_range(struct compact_control *cc, 5781 unsigned long start, unsigned long end) 5782 { 5783 /* This function is based on compact_zone() from compaction.c. */ 5784 unsigned long nr_reclaimed; 5785 unsigned long pfn = start; 5786 unsigned int tries = 0; 5787 int ret = 0; 5788 5789 migrate_prep(); 5790 5791 while (pfn < end || !list_empty(&cc->migratepages)) { 5792 if (fatal_signal_pending(current)) { 5793 ret = -EINTR; 5794 break; 5795 } 5796 5797 if (list_empty(&cc->migratepages)) { 5798 cc->nr_migratepages = 0; 5799 pfn = isolate_migratepages_range(cc->zone, cc, 5800 pfn, end, true); 5801 if (!pfn) { 5802 ret = -EINTR; 5803 break; 5804 } 5805 tries = 0; 5806 } else if (++tries == 5) { 5807 ret = ret < 0 ? ret : -EBUSY; 5808 break; 5809 } 5810 5811 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 5812 &cc->migratepages); 5813 cc->nr_migratepages -= nr_reclaimed; 5814 5815 ret = migrate_pages(&cc->migratepages, 5816 alloc_migrate_target, 5817 0, false, MIGRATE_SYNC, 5818 MR_CMA); 5819 } 5820 5821 putback_movable_pages(&cc->migratepages); 5822 return ret > 0 ? 0 : ret; 5823 } 5824 5825 /** 5826 * alloc_contig_range() -- tries to allocate given range of pages 5827 * @start: start PFN to allocate 5828 * @end: one-past-the-last PFN to allocate 5829 * @migratetype: migratetype of the underlaying pageblocks (either 5830 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 5831 * in range must have the same migratetype and it must 5832 * be either of the two. 5833 * 5834 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 5835 * aligned, however it's the caller's responsibility to guarantee that 5836 * we are the only thread that changes migrate type of pageblocks the 5837 * pages fall in. 5838 * 5839 * The PFN range must belong to a single zone. 5840 * 5841 * Returns zero on success or negative error code. On success all 5842 * pages which PFN is in [start, end) are allocated for the caller and 5843 * need to be freed with free_contig_range(). 5844 */ 5845 int alloc_contig_range(unsigned long start, unsigned long end, 5846 unsigned migratetype) 5847 { 5848 unsigned long outer_start, outer_end; 5849 int ret = 0, order; 5850 5851 struct compact_control cc = { 5852 .nr_migratepages = 0, 5853 .order = -1, 5854 .zone = page_zone(pfn_to_page(start)), 5855 .sync = true, 5856 .ignore_skip_hint = true, 5857 }; 5858 INIT_LIST_HEAD(&cc.migratepages); 5859 5860 /* 5861 * What we do here is we mark all pageblocks in range as 5862 * MIGRATE_ISOLATE. Because pageblock and max order pages may 5863 * have different sizes, and due to the way page allocator 5864 * work, we align the range to biggest of the two pages so 5865 * that page allocator won't try to merge buddies from 5866 * different pageblocks and change MIGRATE_ISOLATE to some 5867 * other migration type. 5868 * 5869 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 5870 * migrate the pages from an unaligned range (ie. pages that 5871 * we are interested in). This will put all the pages in 5872 * range back to page allocator as MIGRATE_ISOLATE. 5873 * 5874 * When this is done, we take the pages in range from page 5875 * allocator removing them from the buddy system. This way 5876 * page allocator will never consider using them. 5877 * 5878 * This lets us mark the pageblocks back as 5879 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 5880 * aligned range but not in the unaligned, original range are 5881 * put back to page allocator so that buddy can use them. 5882 */ 5883 5884 ret = start_isolate_page_range(pfn_max_align_down(start), 5885 pfn_max_align_up(end), migratetype, 5886 false); 5887 if (ret) 5888 return ret; 5889 5890 ret = __alloc_contig_migrate_range(&cc, start, end); 5891 if (ret) 5892 goto done; 5893 5894 /* 5895 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 5896 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 5897 * more, all pages in [start, end) are free in page allocator. 5898 * What we are going to do is to allocate all pages from 5899 * [start, end) (that is remove them from page allocator). 5900 * 5901 * The only problem is that pages at the beginning and at the 5902 * end of interesting range may be not aligned with pages that 5903 * page allocator holds, ie. they can be part of higher order 5904 * pages. Because of this, we reserve the bigger range and 5905 * once this is done free the pages we are not interested in. 5906 * 5907 * We don't have to hold zone->lock here because the pages are 5908 * isolated thus they won't get removed from buddy. 5909 */ 5910 5911 lru_add_drain_all(); 5912 drain_all_pages(); 5913 5914 order = 0; 5915 outer_start = start; 5916 while (!PageBuddy(pfn_to_page(outer_start))) { 5917 if (++order >= MAX_ORDER) { 5918 ret = -EBUSY; 5919 goto done; 5920 } 5921 outer_start &= ~0UL << order; 5922 } 5923 5924 /* Make sure the range is really isolated. */ 5925 if (test_pages_isolated(outer_start, end, false)) { 5926 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 5927 outer_start, end); 5928 ret = -EBUSY; 5929 goto done; 5930 } 5931 5932 5933 /* Grab isolated pages from freelists. */ 5934 outer_end = isolate_freepages_range(&cc, outer_start, end); 5935 if (!outer_end) { 5936 ret = -EBUSY; 5937 goto done; 5938 } 5939 5940 /* Free head and tail (if any) */ 5941 if (start != outer_start) 5942 free_contig_range(outer_start, start - outer_start); 5943 if (end != outer_end) 5944 free_contig_range(end, outer_end - end); 5945 5946 done: 5947 undo_isolate_page_range(pfn_max_align_down(start), 5948 pfn_max_align_up(end), migratetype); 5949 return ret; 5950 } 5951 5952 void free_contig_range(unsigned long pfn, unsigned nr_pages) 5953 { 5954 unsigned int count = 0; 5955 5956 for (; nr_pages--; pfn++) { 5957 struct page *page = pfn_to_page(pfn); 5958 5959 count += page_count(page) != 1; 5960 __free_page(page); 5961 } 5962 WARN(count != 0, "%d pages are still in use!\n", count); 5963 } 5964 #endif 5965 5966 #ifdef CONFIG_MEMORY_HOTPLUG 5967 static int __meminit __zone_pcp_update(void *data) 5968 { 5969 struct zone *zone = data; 5970 int cpu; 5971 unsigned long batch = zone_batchsize(zone), flags; 5972 5973 for_each_possible_cpu(cpu) { 5974 struct per_cpu_pageset *pset; 5975 struct per_cpu_pages *pcp; 5976 5977 pset = per_cpu_ptr(zone->pageset, cpu); 5978 pcp = &pset->pcp; 5979 5980 local_irq_save(flags); 5981 if (pcp->count > 0) 5982 free_pcppages_bulk(zone, pcp->count, pcp); 5983 drain_zonestat(zone, pset); 5984 setup_pageset(pset, batch); 5985 local_irq_restore(flags); 5986 } 5987 return 0; 5988 } 5989 5990 void __meminit zone_pcp_update(struct zone *zone) 5991 { 5992 stop_machine(__zone_pcp_update, zone, NULL); 5993 } 5994 #endif 5995 5996 void zone_pcp_reset(struct zone *zone) 5997 { 5998 unsigned long flags; 5999 int cpu; 6000 struct per_cpu_pageset *pset; 6001 6002 /* avoid races with drain_pages() */ 6003 local_irq_save(flags); 6004 if (zone->pageset != &boot_pageset) { 6005 for_each_online_cpu(cpu) { 6006 pset = per_cpu_ptr(zone->pageset, cpu); 6007 drain_zonestat(zone, pset); 6008 } 6009 free_percpu(zone->pageset); 6010 zone->pageset = &boot_pageset; 6011 } 6012 local_irq_restore(flags); 6013 } 6014 6015 #ifdef CONFIG_MEMORY_HOTREMOVE 6016 /* 6017 * All pages in the range must be isolated before calling this. 6018 */ 6019 void 6020 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6021 { 6022 struct page *page; 6023 struct zone *zone; 6024 int order, i; 6025 unsigned long pfn; 6026 unsigned long flags; 6027 /* find the first valid pfn */ 6028 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6029 if (pfn_valid(pfn)) 6030 break; 6031 if (pfn == end_pfn) 6032 return; 6033 zone = page_zone(pfn_to_page(pfn)); 6034 spin_lock_irqsave(&zone->lock, flags); 6035 pfn = start_pfn; 6036 while (pfn < end_pfn) { 6037 if (!pfn_valid(pfn)) { 6038 pfn++; 6039 continue; 6040 } 6041 page = pfn_to_page(pfn); 6042 /* 6043 * The HWPoisoned page may be not in buddy system, and 6044 * page_count() is not 0. 6045 */ 6046 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6047 pfn++; 6048 SetPageReserved(page); 6049 continue; 6050 } 6051 6052 BUG_ON(page_count(page)); 6053 BUG_ON(!PageBuddy(page)); 6054 order = page_order(page); 6055 #ifdef CONFIG_DEBUG_VM 6056 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6057 pfn, 1 << order, end_pfn); 6058 #endif 6059 list_del(&page->lru); 6060 rmv_page_order(page); 6061 zone->free_area[order].nr_free--; 6062 for (i = 0; i < (1 << order); i++) 6063 SetPageReserved((page+i)); 6064 pfn += (1 << order); 6065 } 6066 spin_unlock_irqrestore(&zone->lock, flags); 6067 } 6068 #endif 6069 6070 #ifdef CONFIG_MEMORY_FAILURE 6071 bool is_free_buddy_page(struct page *page) 6072 { 6073 struct zone *zone = page_zone(page); 6074 unsigned long pfn = page_to_pfn(page); 6075 unsigned long flags; 6076 int order; 6077 6078 spin_lock_irqsave(&zone->lock, flags); 6079 for (order = 0; order < MAX_ORDER; order++) { 6080 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6081 6082 if (PageBuddy(page_head) && page_order(page_head) >= order) 6083 break; 6084 } 6085 spin_unlock_irqrestore(&zone->lock, flags); 6086 6087 return order < MAX_ORDER; 6088 } 6089 #endif 6090 6091 static const struct trace_print_flags pageflag_names[] = { 6092 {1UL << PG_locked, "locked" }, 6093 {1UL << PG_error, "error" }, 6094 {1UL << PG_referenced, "referenced" }, 6095 {1UL << PG_uptodate, "uptodate" }, 6096 {1UL << PG_dirty, "dirty" }, 6097 {1UL << PG_lru, "lru" }, 6098 {1UL << PG_active, "active" }, 6099 {1UL << PG_slab, "slab" }, 6100 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6101 {1UL << PG_arch_1, "arch_1" }, 6102 {1UL << PG_reserved, "reserved" }, 6103 {1UL << PG_private, "private" }, 6104 {1UL << PG_private_2, "private_2" }, 6105 {1UL << PG_writeback, "writeback" }, 6106 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6107 {1UL << PG_head, "head" }, 6108 {1UL << PG_tail, "tail" }, 6109 #else 6110 {1UL << PG_compound, "compound" }, 6111 #endif 6112 {1UL << PG_swapcache, "swapcache" }, 6113 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6114 {1UL << PG_reclaim, "reclaim" }, 6115 {1UL << PG_swapbacked, "swapbacked" }, 6116 {1UL << PG_unevictable, "unevictable" }, 6117 #ifdef CONFIG_MMU 6118 {1UL << PG_mlocked, "mlocked" }, 6119 #endif 6120 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6121 {1UL << PG_uncached, "uncached" }, 6122 #endif 6123 #ifdef CONFIG_MEMORY_FAILURE 6124 {1UL << PG_hwpoison, "hwpoison" }, 6125 #endif 6126 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6127 {1UL << PG_compound_lock, "compound_lock" }, 6128 #endif 6129 }; 6130 6131 static void dump_page_flags(unsigned long flags) 6132 { 6133 const char *delim = ""; 6134 unsigned long mask; 6135 int i; 6136 6137 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6138 6139 printk(KERN_ALERT "page flags: %#lx(", flags); 6140 6141 /* remove zone id */ 6142 flags &= (1UL << NR_PAGEFLAGS) - 1; 6143 6144 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6145 6146 mask = pageflag_names[i].mask; 6147 if ((flags & mask) != mask) 6148 continue; 6149 6150 flags &= ~mask; 6151 printk("%s%s", delim, pageflag_names[i].name); 6152 delim = "|"; 6153 } 6154 6155 /* check for left over flags */ 6156 if (flags) 6157 printk("%s%#lx", delim, flags); 6158 6159 printk(")\n"); 6160 } 6161 6162 void dump_page(struct page *page) 6163 { 6164 printk(KERN_ALERT 6165 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6166 page, atomic_read(&page->_count), page_mapcount(page), 6167 page->mapping, page->index); 6168 dump_page_flags(page->flags); 6169 mem_cgroup_print_bad_page(page); 6170 } 6171