1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 92 static DEFINE_MUTEX(pcp_batch_high_lock); 93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 94 95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 96 /* 97 * On SMP, spin_trylock is sufficient protection. 98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 99 */ 100 #define pcp_trylock_prepare(flags) do { } while (0) 101 #define pcp_trylock_finish(flag) do { } while (0) 102 #else 103 104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 105 #define pcp_trylock_prepare(flags) local_irq_save(flags) 106 #define pcp_trylock_finish(flags) local_irq_restore(flags) 107 #endif 108 109 /* 110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 111 * a migration causing the wrong PCP to be locked and remote memory being 112 * potentially allocated, pin the task to the CPU for the lookup+lock. 113 * preempt_disable is used on !RT because it is faster than migrate_disable. 114 * migrate_disable is used on RT because otherwise RT spinlock usage is 115 * interfered with and a high priority task cannot preempt the allocator. 116 */ 117 #ifndef CONFIG_PREEMPT_RT 118 #define pcpu_task_pin() preempt_disable() 119 #define pcpu_task_unpin() preempt_enable() 120 #else 121 #define pcpu_task_pin() migrate_disable() 122 #define pcpu_task_unpin() migrate_enable() 123 #endif 124 125 /* 126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 127 * Return value should be used with equivalent unlock helper. 128 */ 129 #define pcpu_spin_lock(type, member, ptr) \ 130 ({ \ 131 type *_ret; \ 132 pcpu_task_pin(); \ 133 _ret = this_cpu_ptr(ptr); \ 134 spin_lock(&_ret->member); \ 135 _ret; \ 136 }) 137 138 #define pcpu_spin_trylock(type, member, ptr) \ 139 ({ \ 140 type *_ret; \ 141 pcpu_task_pin(); \ 142 _ret = this_cpu_ptr(ptr); \ 143 if (!spin_trylock(&_ret->member)) { \ 144 pcpu_task_unpin(); \ 145 _ret = NULL; \ 146 } \ 147 _ret; \ 148 }) 149 150 #define pcpu_spin_unlock(member, ptr) \ 151 ({ \ 152 spin_unlock(&ptr->member); \ 153 pcpu_task_unpin(); \ 154 }) 155 156 /* struct per_cpu_pages specific helpers. */ 157 #define pcp_spin_lock(ptr) \ 158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_trylock(ptr) \ 161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_unlock(ptr) \ 164 pcpu_spin_unlock(lock, ptr) 165 166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 167 DEFINE_PER_CPU(int, numa_node); 168 EXPORT_PER_CPU_SYMBOL(numa_node); 169 #endif 170 171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 172 173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 174 /* 175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 178 * defined in <linux/topology.h>. 179 */ 180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 181 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 182 #endif 183 184 static DEFINE_MUTEX(pcpu_drain_mutex); 185 186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 187 volatile unsigned long latent_entropy __latent_entropy; 188 EXPORT_SYMBOL(latent_entropy); 189 #endif 190 191 /* 192 * Array of node states. 193 */ 194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 195 [N_POSSIBLE] = NODE_MASK_ALL, 196 [N_ONLINE] = { { [0] = 1UL } }, 197 #ifndef CONFIG_NUMA 198 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 199 #ifdef CONFIG_HIGHMEM 200 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 201 #endif 202 [N_MEMORY] = { { [0] = 1UL } }, 203 [N_CPU] = { { [0] = 1UL } }, 204 #endif /* NUMA */ 205 }; 206 EXPORT_SYMBOL(node_states); 207 208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 209 210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 211 unsigned int pageblock_order __read_mostly; 212 #endif 213 214 static void __free_pages_ok(struct page *page, unsigned int order, 215 fpi_t fpi_flags); 216 217 /* 218 * results with 256, 32 in the lowmem_reserve sysctl: 219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 220 * 1G machine -> (16M dma, 784M normal, 224M high) 221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 224 * 225 * TBD: should special case ZONE_DMA32 machines here - in those we normally 226 * don't need any ZONE_NORMAL reservation 227 */ 228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 229 #ifdef CONFIG_ZONE_DMA 230 [ZONE_DMA] = 256, 231 #endif 232 #ifdef CONFIG_ZONE_DMA32 233 [ZONE_DMA32] = 256, 234 #endif 235 [ZONE_NORMAL] = 32, 236 #ifdef CONFIG_HIGHMEM 237 [ZONE_HIGHMEM] = 0, 238 #endif 239 [ZONE_MOVABLE] = 0, 240 }; 241 242 char * const zone_names[MAX_NR_ZONES] = { 243 #ifdef CONFIG_ZONE_DMA 244 "DMA", 245 #endif 246 #ifdef CONFIG_ZONE_DMA32 247 "DMA32", 248 #endif 249 "Normal", 250 #ifdef CONFIG_HIGHMEM 251 "HighMem", 252 #endif 253 "Movable", 254 #ifdef CONFIG_ZONE_DEVICE 255 "Device", 256 #endif 257 }; 258 259 const char * const migratetype_names[MIGRATE_TYPES] = { 260 "Unmovable", 261 "Movable", 262 "Reclaimable", 263 "HighAtomic", 264 #ifdef CONFIG_CMA 265 "CMA", 266 #endif 267 #ifdef CONFIG_MEMORY_ISOLATION 268 "Isolate", 269 #endif 270 }; 271 272 int min_free_kbytes = 1024; 273 int user_min_free_kbytes = -1; 274 static int watermark_boost_factor __read_mostly = 15000; 275 static int watermark_scale_factor = 10; 276 277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278 int movable_zone; 279 EXPORT_SYMBOL(movable_zone); 280 281 #if MAX_NUMNODES > 1 282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 283 unsigned int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 static bool page_contains_unaccepted(struct page *page, unsigned int order); 289 static bool cond_accept_memory(struct zone *zone, unsigned int order); 290 static bool __free_unaccepted(struct page *page); 291 292 int page_group_by_mobility_disabled __read_mostly; 293 294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 295 /* 296 * During boot we initialize deferred pages on-demand, as needed, but once 297 * page_alloc_init_late() has finished, the deferred pages are all initialized, 298 * and we can permanently disable that path. 299 */ 300 DEFINE_STATIC_KEY_TRUE(deferred_pages); 301 302 static inline bool deferred_pages_enabled(void) 303 { 304 return static_branch_unlikely(&deferred_pages); 305 } 306 307 /* 308 * deferred_grow_zone() is __init, but it is called from 309 * get_page_from_freelist() during early boot until deferred_pages permanently 310 * disables this call. This is why we have refdata wrapper to avoid warning, 311 * and to ensure that the function body gets unloaded. 312 */ 313 static bool __ref 314 _deferred_grow_zone(struct zone *zone, unsigned int order) 315 { 316 return deferred_grow_zone(zone, order); 317 } 318 #else 319 static inline bool deferred_pages_enabled(void) 320 { 321 return false; 322 } 323 324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 325 { 326 return false; 327 } 328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 329 330 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 331 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 332 unsigned long pfn) 333 { 334 #ifdef CONFIG_SPARSEMEM 335 return section_to_usemap(__pfn_to_section(pfn)); 336 #else 337 return page_zone(page)->pageblock_flags; 338 #endif /* CONFIG_SPARSEMEM */ 339 } 340 341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 342 { 343 #ifdef CONFIG_SPARSEMEM 344 pfn &= (PAGES_PER_SECTION-1); 345 #else 346 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 347 #endif /* CONFIG_SPARSEMEM */ 348 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 349 } 350 351 /** 352 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 353 * @page: The page within the block of interest 354 * @pfn: The target page frame number 355 * @mask: mask of bits that the caller is interested in 356 * 357 * Return: pageblock_bits flags 358 */ 359 unsigned long get_pfnblock_flags_mask(const struct page *page, 360 unsigned long pfn, unsigned long mask) 361 { 362 unsigned long *bitmap; 363 unsigned long bitidx, word_bitidx; 364 unsigned long word; 365 366 bitmap = get_pageblock_bitmap(page, pfn); 367 bitidx = pfn_to_bitidx(page, pfn); 368 word_bitidx = bitidx / BITS_PER_LONG; 369 bitidx &= (BITS_PER_LONG-1); 370 /* 371 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 372 * a consistent read of the memory array, so that results, even though 373 * racy, are not corrupted. 374 */ 375 word = READ_ONCE(bitmap[word_bitidx]); 376 return (word >> bitidx) & mask; 377 } 378 379 static __always_inline int get_pfnblock_migratetype(const struct page *page, 380 unsigned long pfn) 381 { 382 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 383 } 384 385 /** 386 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 387 * @page: The page within the block of interest 388 * @flags: The flags to set 389 * @pfn: The target page frame number 390 * @mask: mask of bits that the caller is interested in 391 */ 392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 393 unsigned long pfn, 394 unsigned long mask) 395 { 396 unsigned long *bitmap; 397 unsigned long bitidx, word_bitidx; 398 unsigned long word; 399 400 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 401 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 402 403 bitmap = get_pageblock_bitmap(page, pfn); 404 bitidx = pfn_to_bitidx(page, pfn); 405 word_bitidx = bitidx / BITS_PER_LONG; 406 bitidx &= (BITS_PER_LONG-1); 407 408 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 409 410 mask <<= bitidx; 411 flags <<= bitidx; 412 413 word = READ_ONCE(bitmap[word_bitidx]); 414 do { 415 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 416 } 417 418 void set_pageblock_migratetype(struct page *page, int migratetype) 419 { 420 if (unlikely(page_group_by_mobility_disabled && 421 migratetype < MIGRATE_PCPTYPES)) 422 migratetype = MIGRATE_UNMOVABLE; 423 424 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 425 page_to_pfn(page), MIGRATETYPE_MASK); 426 } 427 428 #ifdef CONFIG_DEBUG_VM 429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 430 { 431 int ret; 432 unsigned seq; 433 unsigned long pfn = page_to_pfn(page); 434 unsigned long sp, start_pfn; 435 436 do { 437 seq = zone_span_seqbegin(zone); 438 start_pfn = zone->zone_start_pfn; 439 sp = zone->spanned_pages; 440 ret = !zone_spans_pfn(zone, pfn); 441 } while (zone_span_seqretry(zone, seq)); 442 443 if (ret) 444 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 445 pfn, zone_to_nid(zone), zone->name, 446 start_pfn, start_pfn + sp); 447 448 return ret; 449 } 450 451 /* 452 * Temporary debugging check for pages not lying within a given zone. 453 */ 454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 455 { 456 if (page_outside_zone_boundaries(zone, page)) 457 return true; 458 if (zone != page_zone(page)) 459 return true; 460 461 return false; 462 } 463 #else 464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 465 { 466 return false; 467 } 468 #endif 469 470 static void bad_page(struct page *page, const char *reason) 471 { 472 static unsigned long resume; 473 static unsigned long nr_shown; 474 static unsigned long nr_unshown; 475 476 /* 477 * Allow a burst of 60 reports, then keep quiet for that minute; 478 * or allow a steady drip of one report per second. 479 */ 480 if (nr_shown == 60) { 481 if (time_before(jiffies, resume)) { 482 nr_unshown++; 483 goto out; 484 } 485 if (nr_unshown) { 486 pr_alert( 487 "BUG: Bad page state: %lu messages suppressed\n", 488 nr_unshown); 489 nr_unshown = 0; 490 } 491 nr_shown = 0; 492 } 493 if (nr_shown++ == 0) 494 resume = jiffies + 60 * HZ; 495 496 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 497 current->comm, page_to_pfn(page)); 498 dump_page(page, reason); 499 500 print_modules(); 501 dump_stack(); 502 out: 503 /* Leave bad fields for debug, except PageBuddy could make trouble */ 504 if (PageBuddy(page)) 505 __ClearPageBuddy(page); 506 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 507 } 508 509 static inline unsigned int order_to_pindex(int migratetype, int order) 510 { 511 bool __maybe_unused movable; 512 513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 514 if (order > PAGE_ALLOC_COSTLY_ORDER) { 515 VM_BUG_ON(order != HPAGE_PMD_ORDER); 516 517 movable = migratetype == MIGRATE_MOVABLE; 518 519 return NR_LOWORDER_PCP_LISTS + movable; 520 } 521 #else 522 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 523 #endif 524 525 return (MIGRATE_PCPTYPES * order) + migratetype; 526 } 527 528 static inline int pindex_to_order(unsigned int pindex) 529 { 530 int order = pindex / MIGRATE_PCPTYPES; 531 532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 533 if (pindex >= NR_LOWORDER_PCP_LISTS) 534 order = HPAGE_PMD_ORDER; 535 #else 536 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 537 #endif 538 539 return order; 540 } 541 542 static inline bool pcp_allowed_order(unsigned int order) 543 { 544 if (order <= PAGE_ALLOC_COSTLY_ORDER) 545 return true; 546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 547 if (order == HPAGE_PMD_ORDER) 548 return true; 549 #endif 550 return false; 551 } 552 553 /* 554 * Higher-order pages are called "compound pages". They are structured thusly: 555 * 556 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 557 * 558 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 559 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 560 * 561 * The first tail page's ->compound_order holds the order of allocation. 562 * This usage means that zero-order pages may not be compound. 563 */ 564 565 void prep_compound_page(struct page *page, unsigned int order) 566 { 567 int i; 568 int nr_pages = 1 << order; 569 570 __SetPageHead(page); 571 for (i = 1; i < nr_pages; i++) 572 prep_compound_tail(page, i); 573 574 prep_compound_head(page, order); 575 } 576 577 static inline void set_buddy_order(struct page *page, unsigned int order) 578 { 579 set_page_private(page, order); 580 __SetPageBuddy(page); 581 } 582 583 #ifdef CONFIG_COMPACTION 584 static inline struct capture_control *task_capc(struct zone *zone) 585 { 586 struct capture_control *capc = current->capture_control; 587 588 return unlikely(capc) && 589 !(current->flags & PF_KTHREAD) && 590 !capc->page && 591 capc->cc->zone == zone ? capc : NULL; 592 } 593 594 static inline bool 595 compaction_capture(struct capture_control *capc, struct page *page, 596 int order, int migratetype) 597 { 598 if (!capc || order != capc->cc->order) 599 return false; 600 601 /* Do not accidentally pollute CMA or isolated regions*/ 602 if (is_migrate_cma(migratetype) || 603 is_migrate_isolate(migratetype)) 604 return false; 605 606 /* 607 * Do not let lower order allocations pollute a movable pageblock 608 * unless compaction is also requesting movable pages. 609 * This might let an unmovable request use a reclaimable pageblock 610 * and vice-versa but no more than normal fallback logic which can 611 * have trouble finding a high-order free page. 612 */ 613 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 614 capc->cc->migratetype != MIGRATE_MOVABLE) 615 return false; 616 617 capc->page = page; 618 return true; 619 } 620 621 #else 622 static inline struct capture_control *task_capc(struct zone *zone) 623 { 624 return NULL; 625 } 626 627 static inline bool 628 compaction_capture(struct capture_control *capc, struct page *page, 629 int order, int migratetype) 630 { 631 return false; 632 } 633 #endif /* CONFIG_COMPACTION */ 634 635 static inline void account_freepages(struct zone *zone, int nr_pages, 636 int migratetype) 637 { 638 if (is_migrate_isolate(migratetype)) 639 return; 640 641 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 642 643 if (is_migrate_cma(migratetype)) 644 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 645 } 646 647 /* Used for pages not on another list */ 648 static inline void __add_to_free_list(struct page *page, struct zone *zone, 649 unsigned int order, int migratetype, 650 bool tail) 651 { 652 struct free_area *area = &zone->free_area[order]; 653 654 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 655 "page type is %lu, passed migratetype is %d (nr=%d)\n", 656 get_pageblock_migratetype(page), migratetype, 1 << order); 657 658 if (tail) 659 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 660 else 661 list_add(&page->buddy_list, &area->free_list[migratetype]); 662 area->nr_free++; 663 } 664 665 /* 666 * Used for pages which are on another list. Move the pages to the tail 667 * of the list - so the moved pages won't immediately be considered for 668 * allocation again (e.g., optimization for memory onlining). 669 */ 670 static inline void move_to_free_list(struct page *page, struct zone *zone, 671 unsigned int order, int old_mt, int new_mt) 672 { 673 struct free_area *area = &zone->free_area[order]; 674 675 /* Free page moving can fail, so it happens before the type update */ 676 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 677 "page type is %lu, passed migratetype is %d (nr=%d)\n", 678 get_pageblock_migratetype(page), old_mt, 1 << order); 679 680 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 681 682 account_freepages(zone, -(1 << order), old_mt); 683 account_freepages(zone, 1 << order, new_mt); 684 } 685 686 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 687 unsigned int order, int migratetype) 688 { 689 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 690 "page type is %lu, passed migratetype is %d (nr=%d)\n", 691 get_pageblock_migratetype(page), migratetype, 1 << order); 692 693 /* clear reported state and update reported page count */ 694 if (page_reported(page)) 695 __ClearPageReported(page); 696 697 list_del(&page->buddy_list); 698 __ClearPageBuddy(page); 699 set_page_private(page, 0); 700 zone->free_area[order].nr_free--; 701 } 702 703 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 704 unsigned int order, int migratetype) 705 { 706 __del_page_from_free_list(page, zone, order, migratetype); 707 account_freepages(zone, -(1 << order), migratetype); 708 } 709 710 static inline struct page *get_page_from_free_area(struct free_area *area, 711 int migratetype) 712 { 713 return list_first_entry_or_null(&area->free_list[migratetype], 714 struct page, buddy_list); 715 } 716 717 /* 718 * If this is less than the 2nd largest possible page, check if the buddy 719 * of the next-higher order is free. If it is, it's possible 720 * that pages are being freed that will coalesce soon. In case, 721 * that is happening, add the free page to the tail of the list 722 * so it's less likely to be used soon and more likely to be merged 723 * as a 2-level higher order page 724 */ 725 static inline bool 726 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 727 struct page *page, unsigned int order) 728 { 729 unsigned long higher_page_pfn; 730 struct page *higher_page; 731 732 if (order >= MAX_PAGE_ORDER - 1) 733 return false; 734 735 higher_page_pfn = buddy_pfn & pfn; 736 higher_page = page + (higher_page_pfn - pfn); 737 738 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 739 NULL) != NULL; 740 } 741 742 /* 743 * Freeing function for a buddy system allocator. 744 * 745 * The concept of a buddy system is to maintain direct-mapped table 746 * (containing bit values) for memory blocks of various "orders". 747 * The bottom level table contains the map for the smallest allocatable 748 * units of memory (here, pages), and each level above it describes 749 * pairs of units from the levels below, hence, "buddies". 750 * At a high level, all that happens here is marking the table entry 751 * at the bottom level available, and propagating the changes upward 752 * as necessary, plus some accounting needed to play nicely with other 753 * parts of the VM system. 754 * At each level, we keep a list of pages, which are heads of continuous 755 * free pages of length of (1 << order) and marked with PageBuddy. 756 * Page's order is recorded in page_private(page) field. 757 * So when we are allocating or freeing one, we can derive the state of the 758 * other. That is, if we allocate a small block, and both were 759 * free, the remainder of the region must be split into blocks. 760 * If a block is freed, and its buddy is also free, then this 761 * triggers coalescing into a block of larger size. 762 * 763 * -- nyc 764 */ 765 766 static inline void __free_one_page(struct page *page, 767 unsigned long pfn, 768 struct zone *zone, unsigned int order, 769 int migratetype, fpi_t fpi_flags) 770 { 771 struct capture_control *capc = task_capc(zone); 772 unsigned long buddy_pfn = 0; 773 unsigned long combined_pfn; 774 struct page *buddy; 775 bool to_tail; 776 777 VM_BUG_ON(!zone_is_initialized(zone)); 778 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 779 780 VM_BUG_ON(migratetype == -1); 781 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 782 VM_BUG_ON_PAGE(bad_range(zone, page), page); 783 784 account_freepages(zone, 1 << order, migratetype); 785 786 while (order < MAX_PAGE_ORDER) { 787 int buddy_mt = migratetype; 788 789 if (compaction_capture(capc, page, order, migratetype)) { 790 account_freepages(zone, -(1 << order), migratetype); 791 return; 792 } 793 794 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 795 if (!buddy) 796 goto done_merging; 797 798 if (unlikely(order >= pageblock_order)) { 799 /* 800 * We want to prevent merge between freepages on pageblock 801 * without fallbacks and normal pageblock. Without this, 802 * pageblock isolation could cause incorrect freepage or CMA 803 * accounting or HIGHATOMIC accounting. 804 */ 805 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 806 807 if (migratetype != buddy_mt && 808 (!migratetype_is_mergeable(migratetype) || 809 !migratetype_is_mergeable(buddy_mt))) 810 goto done_merging; 811 } 812 813 /* 814 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 815 * merge with it and move up one order. 816 */ 817 if (page_is_guard(buddy)) 818 clear_page_guard(zone, buddy, order); 819 else 820 __del_page_from_free_list(buddy, zone, order, buddy_mt); 821 822 if (unlikely(buddy_mt != migratetype)) { 823 /* 824 * Match buddy type. This ensures that an 825 * expand() down the line puts the sub-blocks 826 * on the right freelists. 827 */ 828 set_pageblock_migratetype(buddy, migratetype); 829 } 830 831 combined_pfn = buddy_pfn & pfn; 832 page = page + (combined_pfn - pfn); 833 pfn = combined_pfn; 834 order++; 835 } 836 837 done_merging: 838 set_buddy_order(page, order); 839 840 if (fpi_flags & FPI_TO_TAIL) 841 to_tail = true; 842 else if (is_shuffle_order(order)) 843 to_tail = shuffle_pick_tail(); 844 else 845 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 846 847 __add_to_free_list(page, zone, order, migratetype, to_tail); 848 849 /* Notify page reporting subsystem of freed page */ 850 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 851 page_reporting_notify_free(order); 852 } 853 854 /* 855 * A bad page could be due to a number of fields. Instead of multiple branches, 856 * try and check multiple fields with one check. The caller must do a detailed 857 * check if necessary. 858 */ 859 static inline bool page_expected_state(struct page *page, 860 unsigned long check_flags) 861 { 862 if (unlikely(atomic_read(&page->_mapcount) != -1)) 863 return false; 864 865 if (unlikely((unsigned long)page->mapping | 866 page_ref_count(page) | 867 #ifdef CONFIG_MEMCG 868 page->memcg_data | 869 #endif 870 #ifdef CONFIG_PAGE_POOL 871 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 872 #endif 873 (page->flags & check_flags))) 874 return false; 875 876 return true; 877 } 878 879 static const char *page_bad_reason(struct page *page, unsigned long flags) 880 { 881 const char *bad_reason = NULL; 882 883 if (unlikely(atomic_read(&page->_mapcount) != -1)) 884 bad_reason = "nonzero mapcount"; 885 if (unlikely(page->mapping != NULL)) 886 bad_reason = "non-NULL mapping"; 887 if (unlikely(page_ref_count(page) != 0)) 888 bad_reason = "nonzero _refcount"; 889 if (unlikely(page->flags & flags)) { 890 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 891 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 892 else 893 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 894 } 895 #ifdef CONFIG_MEMCG 896 if (unlikely(page->memcg_data)) 897 bad_reason = "page still charged to cgroup"; 898 #endif 899 #ifdef CONFIG_PAGE_POOL 900 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 901 bad_reason = "page_pool leak"; 902 #endif 903 return bad_reason; 904 } 905 906 static void free_page_is_bad_report(struct page *page) 907 { 908 bad_page(page, 909 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 910 } 911 912 static inline bool free_page_is_bad(struct page *page) 913 { 914 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 915 return false; 916 917 /* Something has gone sideways, find it */ 918 free_page_is_bad_report(page); 919 return true; 920 } 921 922 static inline bool is_check_pages_enabled(void) 923 { 924 return static_branch_unlikely(&check_pages_enabled); 925 } 926 927 static int free_tail_page_prepare(struct page *head_page, struct page *page) 928 { 929 struct folio *folio = (struct folio *)head_page; 930 int ret = 1; 931 932 /* 933 * We rely page->lru.next never has bit 0 set, unless the page 934 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 935 */ 936 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 937 938 if (!is_check_pages_enabled()) { 939 ret = 0; 940 goto out; 941 } 942 switch (page - head_page) { 943 case 1: 944 /* the first tail page: these may be in place of ->mapping */ 945 if (unlikely(folio_entire_mapcount(folio))) { 946 bad_page(page, "nonzero entire_mapcount"); 947 goto out; 948 } 949 if (unlikely(folio_large_mapcount(folio))) { 950 bad_page(page, "nonzero large_mapcount"); 951 goto out; 952 } 953 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 954 bad_page(page, "nonzero nr_pages_mapped"); 955 goto out; 956 } 957 if (unlikely(atomic_read(&folio->_pincount))) { 958 bad_page(page, "nonzero pincount"); 959 goto out; 960 } 961 break; 962 case 2: 963 /* the second tail page: deferred_list overlaps ->mapping */ 964 if (unlikely(!list_empty(&folio->_deferred_list))) { 965 bad_page(page, "on deferred list"); 966 goto out; 967 } 968 break; 969 default: 970 if (page->mapping != TAIL_MAPPING) { 971 bad_page(page, "corrupted mapping in tail page"); 972 goto out; 973 } 974 break; 975 } 976 if (unlikely(!PageTail(page))) { 977 bad_page(page, "PageTail not set"); 978 goto out; 979 } 980 if (unlikely(compound_head(page) != head_page)) { 981 bad_page(page, "compound_head not consistent"); 982 goto out; 983 } 984 ret = 0; 985 out: 986 page->mapping = NULL; 987 clear_compound_head(page); 988 return ret; 989 } 990 991 /* 992 * Skip KASAN memory poisoning when either: 993 * 994 * 1. For generic KASAN: deferred memory initialization has not yet completed. 995 * Tag-based KASAN modes skip pages freed via deferred memory initialization 996 * using page tags instead (see below). 997 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 998 * that error detection is disabled for accesses via the page address. 999 * 1000 * Pages will have match-all tags in the following circumstances: 1001 * 1002 * 1. Pages are being initialized for the first time, including during deferred 1003 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1004 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1005 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1006 * 3. The allocation was excluded from being checked due to sampling, 1007 * see the call to kasan_unpoison_pages. 1008 * 1009 * Poisoning pages during deferred memory init will greatly lengthen the 1010 * process and cause problem in large memory systems as the deferred pages 1011 * initialization is done with interrupt disabled. 1012 * 1013 * Assuming that there will be no reference to those newly initialized 1014 * pages before they are ever allocated, this should have no effect on 1015 * KASAN memory tracking as the poison will be properly inserted at page 1016 * allocation time. The only corner case is when pages are allocated by 1017 * on-demand allocation and then freed again before the deferred pages 1018 * initialization is done, but this is not likely to happen. 1019 */ 1020 static inline bool should_skip_kasan_poison(struct page *page) 1021 { 1022 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1023 return deferred_pages_enabled(); 1024 1025 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1026 } 1027 1028 static void kernel_init_pages(struct page *page, int numpages) 1029 { 1030 int i; 1031 1032 /* s390's use of memset() could override KASAN redzones. */ 1033 kasan_disable_current(); 1034 for (i = 0; i < numpages; i++) 1035 clear_highpage_kasan_tagged(page + i); 1036 kasan_enable_current(); 1037 } 1038 1039 __always_inline bool free_pages_prepare(struct page *page, 1040 unsigned int order) 1041 { 1042 int bad = 0; 1043 bool skip_kasan_poison = should_skip_kasan_poison(page); 1044 bool init = want_init_on_free(); 1045 bool compound = PageCompound(page); 1046 1047 VM_BUG_ON_PAGE(PageTail(page), page); 1048 1049 trace_mm_page_free(page, order); 1050 kmsan_free_page(page, order); 1051 1052 if (memcg_kmem_online() && PageMemcgKmem(page)) 1053 __memcg_kmem_uncharge_page(page, order); 1054 1055 if (unlikely(PageHWPoison(page)) && !order) { 1056 /* Do not let hwpoison pages hit pcplists/buddy */ 1057 reset_page_owner(page, order); 1058 page_table_check_free(page, order); 1059 pgalloc_tag_sub(page, 1 << order); 1060 1061 /* 1062 * The page is isolated and accounted for. 1063 * Mark the codetag as empty to avoid accounting error 1064 * when the page is freed by unpoison_memory(). 1065 */ 1066 clear_page_tag_ref(page); 1067 return false; 1068 } 1069 1070 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1071 1072 /* 1073 * Check tail pages before head page information is cleared to 1074 * avoid checking PageCompound for order-0 pages. 1075 */ 1076 if (unlikely(order)) { 1077 int i; 1078 1079 if (compound) 1080 page[1].flags &= ~PAGE_FLAGS_SECOND; 1081 for (i = 1; i < (1 << order); i++) { 1082 if (compound) 1083 bad += free_tail_page_prepare(page, page + i); 1084 if (is_check_pages_enabled()) { 1085 if (free_page_is_bad(page + i)) { 1086 bad++; 1087 continue; 1088 } 1089 } 1090 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1091 } 1092 } 1093 if (PageMappingFlags(page)) { 1094 if (PageAnon(page)) 1095 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1096 page->mapping = NULL; 1097 } 1098 if (is_check_pages_enabled()) { 1099 if (free_page_is_bad(page)) 1100 bad++; 1101 if (bad) 1102 return false; 1103 } 1104 1105 page_cpupid_reset_last(page); 1106 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1107 reset_page_owner(page, order); 1108 page_table_check_free(page, order); 1109 pgalloc_tag_sub(page, 1 << order); 1110 1111 if (!PageHighMem(page)) { 1112 debug_check_no_locks_freed(page_address(page), 1113 PAGE_SIZE << order); 1114 debug_check_no_obj_freed(page_address(page), 1115 PAGE_SIZE << order); 1116 } 1117 1118 kernel_poison_pages(page, 1 << order); 1119 1120 /* 1121 * As memory initialization might be integrated into KASAN, 1122 * KASAN poisoning and memory initialization code must be 1123 * kept together to avoid discrepancies in behavior. 1124 * 1125 * With hardware tag-based KASAN, memory tags must be set before the 1126 * page becomes unavailable via debug_pagealloc or arch_free_page. 1127 */ 1128 if (!skip_kasan_poison) { 1129 kasan_poison_pages(page, order, init); 1130 1131 /* Memory is already initialized if KASAN did it internally. */ 1132 if (kasan_has_integrated_init()) 1133 init = false; 1134 } 1135 if (init) 1136 kernel_init_pages(page, 1 << order); 1137 1138 /* 1139 * arch_free_page() can make the page's contents inaccessible. s390 1140 * does this. So nothing which can access the page's contents should 1141 * happen after this. 1142 */ 1143 arch_free_page(page, order); 1144 1145 debug_pagealloc_unmap_pages(page, 1 << order); 1146 1147 return true; 1148 } 1149 1150 /* 1151 * Frees a number of pages from the PCP lists 1152 * Assumes all pages on list are in same zone. 1153 * count is the number of pages to free. 1154 */ 1155 static void free_pcppages_bulk(struct zone *zone, int count, 1156 struct per_cpu_pages *pcp, 1157 int pindex) 1158 { 1159 unsigned long flags; 1160 unsigned int order; 1161 struct page *page; 1162 1163 /* 1164 * Ensure proper count is passed which otherwise would stuck in the 1165 * below while (list_empty(list)) loop. 1166 */ 1167 count = min(pcp->count, count); 1168 1169 /* Ensure requested pindex is drained first. */ 1170 pindex = pindex - 1; 1171 1172 spin_lock_irqsave(&zone->lock, flags); 1173 1174 while (count > 0) { 1175 struct list_head *list; 1176 int nr_pages; 1177 1178 /* Remove pages from lists in a round-robin fashion. */ 1179 do { 1180 if (++pindex > NR_PCP_LISTS - 1) 1181 pindex = 0; 1182 list = &pcp->lists[pindex]; 1183 } while (list_empty(list)); 1184 1185 order = pindex_to_order(pindex); 1186 nr_pages = 1 << order; 1187 do { 1188 unsigned long pfn; 1189 int mt; 1190 1191 page = list_last_entry(list, struct page, pcp_list); 1192 pfn = page_to_pfn(page); 1193 mt = get_pfnblock_migratetype(page, pfn); 1194 1195 /* must delete to avoid corrupting pcp list */ 1196 list_del(&page->pcp_list); 1197 count -= nr_pages; 1198 pcp->count -= nr_pages; 1199 1200 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1201 trace_mm_page_pcpu_drain(page, order, mt); 1202 } while (count > 0 && !list_empty(list)); 1203 } 1204 1205 spin_unlock_irqrestore(&zone->lock, flags); 1206 } 1207 1208 /* Split a multi-block free page into its individual pageblocks. */ 1209 static void split_large_buddy(struct zone *zone, struct page *page, 1210 unsigned long pfn, int order, fpi_t fpi) 1211 { 1212 unsigned long end = pfn + (1 << order); 1213 1214 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1215 /* Caller removed page from freelist, buddy info cleared! */ 1216 VM_WARN_ON_ONCE(PageBuddy(page)); 1217 1218 if (order > pageblock_order) 1219 order = pageblock_order; 1220 1221 while (pfn != end) { 1222 int mt = get_pfnblock_migratetype(page, pfn); 1223 1224 __free_one_page(page, pfn, zone, order, mt, fpi); 1225 pfn += 1 << order; 1226 page = pfn_to_page(pfn); 1227 } 1228 } 1229 1230 static void free_one_page(struct zone *zone, struct page *page, 1231 unsigned long pfn, unsigned int order, 1232 fpi_t fpi_flags) 1233 { 1234 unsigned long flags; 1235 1236 spin_lock_irqsave(&zone->lock, flags); 1237 split_large_buddy(zone, page, pfn, order, fpi_flags); 1238 spin_unlock_irqrestore(&zone->lock, flags); 1239 1240 __count_vm_events(PGFREE, 1 << order); 1241 } 1242 1243 static void __free_pages_ok(struct page *page, unsigned int order, 1244 fpi_t fpi_flags) 1245 { 1246 unsigned long pfn = page_to_pfn(page); 1247 struct zone *zone = page_zone(page); 1248 1249 if (free_pages_prepare(page, order)) 1250 free_one_page(zone, page, pfn, order, fpi_flags); 1251 } 1252 1253 void __meminit __free_pages_core(struct page *page, unsigned int order, 1254 enum meminit_context context) 1255 { 1256 unsigned int nr_pages = 1 << order; 1257 struct page *p = page; 1258 unsigned int loop; 1259 1260 /* 1261 * When initializing the memmap, __init_single_page() sets the refcount 1262 * of all pages to 1 ("allocated"/"not free"). We have to set the 1263 * refcount of all involved pages to 0. 1264 * 1265 * Note that hotplugged memory pages are initialized to PageOffline(). 1266 * Pages freed from memblock might be marked as reserved. 1267 */ 1268 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1269 unlikely(context == MEMINIT_HOTPLUG)) { 1270 for (loop = 0; loop < nr_pages; loop++, p++) { 1271 VM_WARN_ON_ONCE(PageReserved(p)); 1272 __ClearPageOffline(p); 1273 set_page_count(p, 0); 1274 } 1275 1276 /* 1277 * Freeing the page with debug_pagealloc enabled will try to 1278 * unmap it; some archs don't like double-unmappings, so 1279 * map it first. 1280 */ 1281 debug_pagealloc_map_pages(page, nr_pages); 1282 adjust_managed_page_count(page, nr_pages); 1283 } else { 1284 for (loop = 0; loop < nr_pages; loop++, p++) { 1285 __ClearPageReserved(p); 1286 set_page_count(p, 0); 1287 } 1288 1289 /* memblock adjusts totalram_pages() manually. */ 1290 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1291 } 1292 1293 if (page_contains_unaccepted(page, order)) { 1294 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1295 return; 1296 1297 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1298 } 1299 1300 /* 1301 * Bypass PCP and place fresh pages right to the tail, primarily 1302 * relevant for memory onlining. 1303 */ 1304 __free_pages_ok(page, order, FPI_TO_TAIL); 1305 } 1306 1307 /* 1308 * Check that the whole (or subset of) a pageblock given by the interval of 1309 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1310 * with the migration of free compaction scanner. 1311 * 1312 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1313 * 1314 * It's possible on some configurations to have a setup like node0 node1 node0 1315 * i.e. it's possible that all pages within a zones range of pages do not 1316 * belong to a single zone. We assume that a border between node0 and node1 1317 * can occur within a single pageblock, but not a node0 node1 node0 1318 * interleaving within a single pageblock. It is therefore sufficient to check 1319 * the first and last page of a pageblock and avoid checking each individual 1320 * page in a pageblock. 1321 * 1322 * Note: the function may return non-NULL struct page even for a page block 1323 * which contains a memory hole (i.e. there is no physical memory for a subset 1324 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1325 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1326 * even though the start pfn is online and valid. This should be safe most of 1327 * the time because struct pages are still initialized via init_unavailable_range() 1328 * and pfn walkers shouldn't touch any physical memory range for which they do 1329 * not recognize any specific metadata in struct pages. 1330 */ 1331 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1332 unsigned long end_pfn, struct zone *zone) 1333 { 1334 struct page *start_page; 1335 struct page *end_page; 1336 1337 /* end_pfn is one past the range we are checking */ 1338 end_pfn--; 1339 1340 if (!pfn_valid(end_pfn)) 1341 return NULL; 1342 1343 start_page = pfn_to_online_page(start_pfn); 1344 if (!start_page) 1345 return NULL; 1346 1347 if (page_zone(start_page) != zone) 1348 return NULL; 1349 1350 end_page = pfn_to_page(end_pfn); 1351 1352 /* This gives a shorter code than deriving page_zone(end_page) */ 1353 if (page_zone_id(start_page) != page_zone_id(end_page)) 1354 return NULL; 1355 1356 return start_page; 1357 } 1358 1359 /* 1360 * The order of subdivision here is critical for the IO subsystem. 1361 * Please do not alter this order without good reasons and regression 1362 * testing. Specifically, as large blocks of memory are subdivided, 1363 * the order in which smaller blocks are delivered depends on the order 1364 * they're subdivided in this function. This is the primary factor 1365 * influencing the order in which pages are delivered to the IO 1366 * subsystem according to empirical testing, and this is also justified 1367 * by considering the behavior of a buddy system containing a single 1368 * large block of memory acted on by a series of small allocations. 1369 * This behavior is a critical factor in sglist merging's success. 1370 * 1371 * -- nyc 1372 */ 1373 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1374 int high, int migratetype) 1375 { 1376 unsigned int size = 1 << high; 1377 unsigned int nr_added = 0; 1378 1379 while (high > low) { 1380 high--; 1381 size >>= 1; 1382 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1383 1384 /* 1385 * Mark as guard pages (or page), that will allow to 1386 * merge back to allocator when buddy will be freed. 1387 * Corresponding page table entries will not be touched, 1388 * pages will stay not present in virtual address space 1389 */ 1390 if (set_page_guard(zone, &page[size], high)) 1391 continue; 1392 1393 __add_to_free_list(&page[size], zone, high, migratetype, false); 1394 set_buddy_order(&page[size], high); 1395 nr_added += size; 1396 } 1397 1398 return nr_added; 1399 } 1400 1401 static __always_inline void page_del_and_expand(struct zone *zone, 1402 struct page *page, int low, 1403 int high, int migratetype) 1404 { 1405 int nr_pages = 1 << high; 1406 1407 __del_page_from_free_list(page, zone, high, migratetype); 1408 nr_pages -= expand(zone, page, low, high, migratetype); 1409 account_freepages(zone, -nr_pages, migratetype); 1410 } 1411 1412 static void check_new_page_bad(struct page *page) 1413 { 1414 if (unlikely(page->flags & __PG_HWPOISON)) { 1415 /* Don't complain about hwpoisoned pages */ 1416 if (PageBuddy(page)) 1417 __ClearPageBuddy(page); 1418 return; 1419 } 1420 1421 bad_page(page, 1422 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1423 } 1424 1425 /* 1426 * This page is about to be returned from the page allocator 1427 */ 1428 static bool check_new_page(struct page *page) 1429 { 1430 if (likely(page_expected_state(page, 1431 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1432 return false; 1433 1434 check_new_page_bad(page); 1435 return true; 1436 } 1437 1438 static inline bool check_new_pages(struct page *page, unsigned int order) 1439 { 1440 if (is_check_pages_enabled()) { 1441 for (int i = 0; i < (1 << order); i++) { 1442 struct page *p = page + i; 1443 1444 if (check_new_page(p)) 1445 return true; 1446 } 1447 } 1448 1449 return false; 1450 } 1451 1452 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1453 { 1454 /* Don't skip if a software KASAN mode is enabled. */ 1455 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1456 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1457 return false; 1458 1459 /* Skip, if hardware tag-based KASAN is not enabled. */ 1460 if (!kasan_hw_tags_enabled()) 1461 return true; 1462 1463 /* 1464 * With hardware tag-based KASAN enabled, skip if this has been 1465 * requested via __GFP_SKIP_KASAN. 1466 */ 1467 return flags & __GFP_SKIP_KASAN; 1468 } 1469 1470 static inline bool should_skip_init(gfp_t flags) 1471 { 1472 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1473 if (!kasan_hw_tags_enabled()) 1474 return false; 1475 1476 /* For hardware tag-based KASAN, skip if requested. */ 1477 return (flags & __GFP_SKIP_ZERO); 1478 } 1479 1480 inline void post_alloc_hook(struct page *page, unsigned int order, 1481 gfp_t gfp_flags) 1482 { 1483 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1484 !should_skip_init(gfp_flags); 1485 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1486 int i; 1487 1488 set_page_private(page, 0); 1489 set_page_refcounted(page); 1490 1491 arch_alloc_page(page, order); 1492 debug_pagealloc_map_pages(page, 1 << order); 1493 1494 /* 1495 * Page unpoisoning must happen before memory initialization. 1496 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1497 * allocations and the page unpoisoning code will complain. 1498 */ 1499 kernel_unpoison_pages(page, 1 << order); 1500 1501 /* 1502 * As memory initialization might be integrated into KASAN, 1503 * KASAN unpoisoning and memory initializion code must be 1504 * kept together to avoid discrepancies in behavior. 1505 */ 1506 1507 /* 1508 * If memory tags should be zeroed 1509 * (which happens only when memory should be initialized as well). 1510 */ 1511 if (zero_tags) { 1512 /* Initialize both memory and memory tags. */ 1513 for (i = 0; i != 1 << order; ++i) 1514 tag_clear_highpage(page + i); 1515 1516 /* Take note that memory was initialized by the loop above. */ 1517 init = false; 1518 } 1519 if (!should_skip_kasan_unpoison(gfp_flags) && 1520 kasan_unpoison_pages(page, order, init)) { 1521 /* Take note that memory was initialized by KASAN. */ 1522 if (kasan_has_integrated_init()) 1523 init = false; 1524 } else { 1525 /* 1526 * If memory tags have not been set by KASAN, reset the page 1527 * tags to ensure page_address() dereferencing does not fault. 1528 */ 1529 for (i = 0; i != 1 << order; ++i) 1530 page_kasan_tag_reset(page + i); 1531 } 1532 /* If memory is still not initialized, initialize it now. */ 1533 if (init) 1534 kernel_init_pages(page, 1 << order); 1535 1536 set_page_owner(page, order, gfp_flags); 1537 page_table_check_alloc(page, order); 1538 pgalloc_tag_add(page, current, 1 << order); 1539 } 1540 1541 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1542 unsigned int alloc_flags) 1543 { 1544 post_alloc_hook(page, order, gfp_flags); 1545 1546 if (order && (gfp_flags & __GFP_COMP)) 1547 prep_compound_page(page, order); 1548 1549 /* 1550 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1551 * allocate the page. The expectation is that the caller is taking 1552 * steps that will free more memory. The caller should avoid the page 1553 * being used for !PFMEMALLOC purposes. 1554 */ 1555 if (alloc_flags & ALLOC_NO_WATERMARKS) 1556 set_page_pfmemalloc(page); 1557 else 1558 clear_page_pfmemalloc(page); 1559 } 1560 1561 /* 1562 * Go through the free lists for the given migratetype and remove 1563 * the smallest available page from the freelists 1564 */ 1565 static __always_inline 1566 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1567 int migratetype) 1568 { 1569 unsigned int current_order; 1570 struct free_area *area; 1571 struct page *page; 1572 1573 /* Find a page of the appropriate size in the preferred list */ 1574 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1575 area = &(zone->free_area[current_order]); 1576 page = get_page_from_free_area(area, migratetype); 1577 if (!page) 1578 continue; 1579 1580 page_del_and_expand(zone, page, order, current_order, 1581 migratetype); 1582 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1583 pcp_allowed_order(order) && 1584 migratetype < MIGRATE_PCPTYPES); 1585 return page; 1586 } 1587 1588 return NULL; 1589 } 1590 1591 1592 /* 1593 * This array describes the order lists are fallen back to when 1594 * the free lists for the desirable migrate type are depleted 1595 * 1596 * The other migratetypes do not have fallbacks. 1597 */ 1598 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1599 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1600 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1601 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1602 }; 1603 1604 #ifdef CONFIG_CMA 1605 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1606 unsigned int order) 1607 { 1608 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1609 } 1610 #else 1611 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1612 unsigned int order) { return NULL; } 1613 #endif 1614 1615 /* 1616 * Change the type of a block and move all its free pages to that 1617 * type's freelist. 1618 */ 1619 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1620 int old_mt, int new_mt) 1621 { 1622 struct page *page; 1623 unsigned long pfn, end_pfn; 1624 unsigned int order; 1625 int pages_moved = 0; 1626 1627 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1628 end_pfn = pageblock_end_pfn(start_pfn); 1629 1630 for (pfn = start_pfn; pfn < end_pfn;) { 1631 page = pfn_to_page(pfn); 1632 if (!PageBuddy(page)) { 1633 pfn++; 1634 continue; 1635 } 1636 1637 /* Make sure we are not inadvertently changing nodes */ 1638 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1639 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1640 1641 order = buddy_order(page); 1642 1643 move_to_free_list(page, zone, order, old_mt, new_mt); 1644 1645 pfn += 1 << order; 1646 pages_moved += 1 << order; 1647 } 1648 1649 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1650 1651 return pages_moved; 1652 } 1653 1654 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1655 unsigned long *start_pfn, 1656 int *num_free, int *num_movable) 1657 { 1658 unsigned long pfn, start, end; 1659 1660 pfn = page_to_pfn(page); 1661 start = pageblock_start_pfn(pfn); 1662 end = pageblock_end_pfn(pfn); 1663 1664 /* 1665 * The caller only has the lock for @zone, don't touch ranges 1666 * that straddle into other zones. While we could move part of 1667 * the range that's inside the zone, this call is usually 1668 * accompanied by other operations such as migratetype updates 1669 * which also should be locked. 1670 */ 1671 if (!zone_spans_pfn(zone, start)) 1672 return false; 1673 if (!zone_spans_pfn(zone, end - 1)) 1674 return false; 1675 1676 *start_pfn = start; 1677 1678 if (num_free) { 1679 *num_free = 0; 1680 *num_movable = 0; 1681 for (pfn = start; pfn < end;) { 1682 page = pfn_to_page(pfn); 1683 if (PageBuddy(page)) { 1684 int nr = 1 << buddy_order(page); 1685 1686 *num_free += nr; 1687 pfn += nr; 1688 continue; 1689 } 1690 /* 1691 * We assume that pages that could be isolated for 1692 * migration are movable. But we don't actually try 1693 * isolating, as that would be expensive. 1694 */ 1695 if (PageLRU(page) || __PageMovable(page)) 1696 (*num_movable)++; 1697 pfn++; 1698 } 1699 } 1700 1701 return true; 1702 } 1703 1704 static int move_freepages_block(struct zone *zone, struct page *page, 1705 int old_mt, int new_mt) 1706 { 1707 unsigned long start_pfn; 1708 1709 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1710 return -1; 1711 1712 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1713 } 1714 1715 #ifdef CONFIG_MEMORY_ISOLATION 1716 /* Look for a buddy that straddles start_pfn */ 1717 static unsigned long find_large_buddy(unsigned long start_pfn) 1718 { 1719 int order = 0; 1720 struct page *page; 1721 unsigned long pfn = start_pfn; 1722 1723 while (!PageBuddy(page = pfn_to_page(pfn))) { 1724 /* Nothing found */ 1725 if (++order > MAX_PAGE_ORDER) 1726 return start_pfn; 1727 pfn &= ~0UL << order; 1728 } 1729 1730 /* 1731 * Found a preceding buddy, but does it straddle? 1732 */ 1733 if (pfn + (1 << buddy_order(page)) > start_pfn) 1734 return pfn; 1735 1736 /* Nothing found */ 1737 return start_pfn; 1738 } 1739 1740 /** 1741 * move_freepages_block_isolate - move free pages in block for page isolation 1742 * @zone: the zone 1743 * @page: the pageblock page 1744 * @migratetype: migratetype to set on the pageblock 1745 * 1746 * This is similar to move_freepages_block(), but handles the special 1747 * case encountered in page isolation, where the block of interest 1748 * might be part of a larger buddy spanning multiple pageblocks. 1749 * 1750 * Unlike the regular page allocator path, which moves pages while 1751 * stealing buddies off the freelist, page isolation is interested in 1752 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1753 * 1754 * This function handles that. Straddling buddies are split into 1755 * individual pageblocks. Only the block of interest is moved. 1756 * 1757 * Returns %true if pages could be moved, %false otherwise. 1758 */ 1759 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1760 int migratetype) 1761 { 1762 unsigned long start_pfn, pfn; 1763 1764 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1765 return false; 1766 1767 /* No splits needed if buddies can't span multiple blocks */ 1768 if (pageblock_order == MAX_PAGE_ORDER) 1769 goto move; 1770 1771 /* We're a tail block in a larger buddy */ 1772 pfn = find_large_buddy(start_pfn); 1773 if (pfn != start_pfn) { 1774 struct page *buddy = pfn_to_page(pfn); 1775 int order = buddy_order(buddy); 1776 1777 del_page_from_free_list(buddy, zone, order, 1778 get_pfnblock_migratetype(buddy, pfn)); 1779 set_pageblock_migratetype(page, migratetype); 1780 split_large_buddy(zone, buddy, pfn, order, FPI_NONE); 1781 return true; 1782 } 1783 1784 /* We're the starting block of a larger buddy */ 1785 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1786 int order = buddy_order(page); 1787 1788 del_page_from_free_list(page, zone, order, 1789 get_pfnblock_migratetype(page, pfn)); 1790 set_pageblock_migratetype(page, migratetype); 1791 split_large_buddy(zone, page, pfn, order, FPI_NONE); 1792 return true; 1793 } 1794 move: 1795 __move_freepages_block(zone, start_pfn, 1796 get_pfnblock_migratetype(page, start_pfn), 1797 migratetype); 1798 return true; 1799 } 1800 #endif /* CONFIG_MEMORY_ISOLATION */ 1801 1802 static void change_pageblock_range(struct page *pageblock_page, 1803 int start_order, int migratetype) 1804 { 1805 int nr_pageblocks = 1 << (start_order - pageblock_order); 1806 1807 while (nr_pageblocks--) { 1808 set_pageblock_migratetype(pageblock_page, migratetype); 1809 pageblock_page += pageblock_nr_pages; 1810 } 1811 } 1812 1813 /* 1814 * When we are falling back to another migratetype during allocation, try to 1815 * steal extra free pages from the same pageblocks to satisfy further 1816 * allocations, instead of polluting multiple pageblocks. 1817 * 1818 * If we are stealing a relatively large buddy page, it is likely there will 1819 * be more free pages in the pageblock, so try to steal them all. For 1820 * reclaimable and unmovable allocations, we steal regardless of page size, 1821 * as fragmentation caused by those allocations polluting movable pageblocks 1822 * is worse than movable allocations stealing from unmovable and reclaimable 1823 * pageblocks. 1824 */ 1825 static bool can_steal_fallback(unsigned int order, int start_mt) 1826 { 1827 /* 1828 * Leaving this order check is intended, although there is 1829 * relaxed order check in next check. The reason is that 1830 * we can actually steal whole pageblock if this condition met, 1831 * but, below check doesn't guarantee it and that is just heuristic 1832 * so could be changed anytime. 1833 */ 1834 if (order >= pageblock_order) 1835 return true; 1836 1837 if (order >= pageblock_order / 2 || 1838 start_mt == MIGRATE_RECLAIMABLE || 1839 start_mt == MIGRATE_UNMOVABLE || 1840 page_group_by_mobility_disabled) 1841 return true; 1842 1843 return false; 1844 } 1845 1846 static inline bool boost_watermark(struct zone *zone) 1847 { 1848 unsigned long max_boost; 1849 1850 if (!watermark_boost_factor) 1851 return false; 1852 /* 1853 * Don't bother in zones that are unlikely to produce results. 1854 * On small machines, including kdump capture kernels running 1855 * in a small area, boosting the watermark can cause an out of 1856 * memory situation immediately. 1857 */ 1858 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1859 return false; 1860 1861 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1862 watermark_boost_factor, 10000); 1863 1864 /* 1865 * high watermark may be uninitialised if fragmentation occurs 1866 * very early in boot so do not boost. We do not fall 1867 * through and boost by pageblock_nr_pages as failing 1868 * allocations that early means that reclaim is not going 1869 * to help and it may even be impossible to reclaim the 1870 * boosted watermark resulting in a hang. 1871 */ 1872 if (!max_boost) 1873 return false; 1874 1875 max_boost = max(pageblock_nr_pages, max_boost); 1876 1877 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1878 max_boost); 1879 1880 return true; 1881 } 1882 1883 /* 1884 * This function implements actual steal behaviour. If order is large enough, we 1885 * can claim the whole pageblock for the requested migratetype. If not, we check 1886 * the pageblock for constituent pages; if at least half of the pages are free 1887 * or compatible, we can still claim the whole block, so pages freed in the 1888 * future will be put on the correct free list. Otherwise, we isolate exactly 1889 * the order we need from the fallback block and leave its migratetype alone. 1890 */ 1891 static struct page * 1892 steal_suitable_fallback(struct zone *zone, struct page *page, 1893 int current_order, int order, int start_type, 1894 unsigned int alloc_flags, bool whole_block) 1895 { 1896 int free_pages, movable_pages, alike_pages; 1897 unsigned long start_pfn; 1898 int block_type; 1899 1900 block_type = get_pageblock_migratetype(page); 1901 1902 /* 1903 * This can happen due to races and we want to prevent broken 1904 * highatomic accounting. 1905 */ 1906 if (is_migrate_highatomic(block_type)) 1907 goto single_page; 1908 1909 /* Take ownership for orders >= pageblock_order */ 1910 if (current_order >= pageblock_order) { 1911 unsigned int nr_added; 1912 1913 del_page_from_free_list(page, zone, current_order, block_type); 1914 change_pageblock_range(page, current_order, start_type); 1915 nr_added = expand(zone, page, order, current_order, start_type); 1916 account_freepages(zone, nr_added, start_type); 1917 return page; 1918 } 1919 1920 /* 1921 * Boost watermarks to increase reclaim pressure to reduce the 1922 * likelihood of future fallbacks. Wake kswapd now as the node 1923 * may be balanced overall and kswapd will not wake naturally. 1924 */ 1925 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1926 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1927 1928 /* We are not allowed to try stealing from the whole block */ 1929 if (!whole_block) 1930 goto single_page; 1931 1932 /* moving whole block can fail due to zone boundary conditions */ 1933 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 1934 &movable_pages)) 1935 goto single_page; 1936 1937 /* 1938 * Determine how many pages are compatible with our allocation. 1939 * For movable allocation, it's the number of movable pages which 1940 * we just obtained. For other types it's a bit more tricky. 1941 */ 1942 if (start_type == MIGRATE_MOVABLE) { 1943 alike_pages = movable_pages; 1944 } else { 1945 /* 1946 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1947 * to MOVABLE pageblock, consider all non-movable pages as 1948 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1949 * vice versa, be conservative since we can't distinguish the 1950 * exact migratetype of non-movable pages. 1951 */ 1952 if (block_type == MIGRATE_MOVABLE) 1953 alike_pages = pageblock_nr_pages 1954 - (free_pages + movable_pages); 1955 else 1956 alike_pages = 0; 1957 } 1958 /* 1959 * If a sufficient number of pages in the block are either free or of 1960 * compatible migratability as our allocation, claim the whole block. 1961 */ 1962 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1963 page_group_by_mobility_disabled) { 1964 __move_freepages_block(zone, start_pfn, block_type, start_type); 1965 return __rmqueue_smallest(zone, order, start_type); 1966 } 1967 1968 single_page: 1969 page_del_and_expand(zone, page, order, current_order, block_type); 1970 return page; 1971 } 1972 1973 /* 1974 * Check whether there is a suitable fallback freepage with requested order. 1975 * If only_stealable is true, this function returns fallback_mt only if 1976 * we can steal other freepages all together. This would help to reduce 1977 * fragmentation due to mixed migratetype pages in one pageblock. 1978 */ 1979 int find_suitable_fallback(struct free_area *area, unsigned int order, 1980 int migratetype, bool only_stealable, bool *can_steal) 1981 { 1982 int i; 1983 int fallback_mt; 1984 1985 if (area->nr_free == 0) 1986 return -1; 1987 1988 *can_steal = false; 1989 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1990 fallback_mt = fallbacks[migratetype][i]; 1991 if (free_area_empty(area, fallback_mt)) 1992 continue; 1993 1994 if (can_steal_fallback(order, migratetype)) 1995 *can_steal = true; 1996 1997 if (!only_stealable) 1998 return fallback_mt; 1999 2000 if (*can_steal) 2001 return fallback_mt; 2002 } 2003 2004 return -1; 2005 } 2006 2007 /* 2008 * Reserve the pageblock(s) surrounding an allocation request for 2009 * exclusive use of high-order atomic allocations if there are no 2010 * empty page blocks that contain a page with a suitable order 2011 */ 2012 static void reserve_highatomic_pageblock(struct page *page, int order, 2013 struct zone *zone) 2014 { 2015 int mt; 2016 unsigned long max_managed, flags; 2017 2018 /* 2019 * The number reserved as: minimum is 1 pageblock, maximum is 2020 * roughly 1% of a zone. But if 1% of a zone falls below a 2021 * pageblock size, then don't reserve any pageblocks. 2022 * Check is race-prone but harmless. 2023 */ 2024 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 2025 return; 2026 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 2027 if (zone->nr_reserved_highatomic >= max_managed) 2028 return; 2029 2030 spin_lock_irqsave(&zone->lock, flags); 2031 2032 /* Recheck the nr_reserved_highatomic limit under the lock */ 2033 if (zone->nr_reserved_highatomic >= max_managed) 2034 goto out_unlock; 2035 2036 /* Yoink! */ 2037 mt = get_pageblock_migratetype(page); 2038 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2039 if (!migratetype_is_mergeable(mt)) 2040 goto out_unlock; 2041 2042 if (order < pageblock_order) { 2043 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 2044 goto out_unlock; 2045 zone->nr_reserved_highatomic += pageblock_nr_pages; 2046 } else { 2047 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 2048 zone->nr_reserved_highatomic += 1 << order; 2049 } 2050 2051 out_unlock: 2052 spin_unlock_irqrestore(&zone->lock, flags); 2053 } 2054 2055 /* 2056 * Used when an allocation is about to fail under memory pressure. This 2057 * potentially hurts the reliability of high-order allocations when under 2058 * intense memory pressure but failed atomic allocations should be easier 2059 * to recover from than an OOM. 2060 * 2061 * If @force is true, try to unreserve pageblocks even though highatomic 2062 * pageblock is exhausted. 2063 */ 2064 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2065 bool force) 2066 { 2067 struct zonelist *zonelist = ac->zonelist; 2068 unsigned long flags; 2069 struct zoneref *z; 2070 struct zone *zone; 2071 struct page *page; 2072 int order; 2073 int ret; 2074 2075 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2076 ac->nodemask) { 2077 /* 2078 * Preserve at least one pageblock unless memory pressure 2079 * is really high. 2080 */ 2081 if (!force && zone->nr_reserved_highatomic <= 2082 pageblock_nr_pages) 2083 continue; 2084 2085 spin_lock_irqsave(&zone->lock, flags); 2086 for (order = 0; order < NR_PAGE_ORDERS; order++) { 2087 struct free_area *area = &(zone->free_area[order]); 2088 int mt; 2089 2090 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2091 if (!page) 2092 continue; 2093 2094 mt = get_pageblock_migratetype(page); 2095 /* 2096 * In page freeing path, migratetype change is racy so 2097 * we can counter several free pages in a pageblock 2098 * in this loop although we changed the pageblock type 2099 * from highatomic to ac->migratetype. So we should 2100 * adjust the count once. 2101 */ 2102 if (is_migrate_highatomic(mt)) { 2103 unsigned long size; 2104 /* 2105 * It should never happen but changes to 2106 * locking could inadvertently allow a per-cpu 2107 * drain to add pages to MIGRATE_HIGHATOMIC 2108 * while unreserving so be safe and watch for 2109 * underflows. 2110 */ 2111 size = max(pageblock_nr_pages, 1UL << order); 2112 size = min(size, zone->nr_reserved_highatomic); 2113 zone->nr_reserved_highatomic -= size; 2114 } 2115 2116 /* 2117 * Convert to ac->migratetype and avoid the normal 2118 * pageblock stealing heuristics. Minimally, the caller 2119 * is doing the work and needs the pages. More 2120 * importantly, if the block was always converted to 2121 * MIGRATE_UNMOVABLE or another type then the number 2122 * of pageblocks that cannot be completely freed 2123 * may increase. 2124 */ 2125 if (order < pageblock_order) 2126 ret = move_freepages_block(zone, page, mt, 2127 ac->migratetype); 2128 else { 2129 move_to_free_list(page, zone, order, mt, 2130 ac->migratetype); 2131 change_pageblock_range(page, order, 2132 ac->migratetype); 2133 ret = 1; 2134 } 2135 /* 2136 * Reserving the block(s) already succeeded, 2137 * so this should not fail on zone boundaries. 2138 */ 2139 WARN_ON_ONCE(ret == -1); 2140 if (ret > 0) { 2141 spin_unlock_irqrestore(&zone->lock, flags); 2142 return ret; 2143 } 2144 } 2145 spin_unlock_irqrestore(&zone->lock, flags); 2146 } 2147 2148 return false; 2149 } 2150 2151 /* 2152 * Try finding a free buddy page on the fallback list and put it on the free 2153 * list of requested migratetype, possibly along with other pages from the same 2154 * block, depending on fragmentation avoidance heuristics. Returns true if 2155 * fallback was found so that __rmqueue_smallest() can grab it. 2156 * 2157 * The use of signed ints for order and current_order is a deliberate 2158 * deviation from the rest of this file, to make the for loop 2159 * condition simpler. 2160 */ 2161 static __always_inline struct page * 2162 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2163 unsigned int alloc_flags) 2164 { 2165 struct free_area *area; 2166 int current_order; 2167 int min_order = order; 2168 struct page *page; 2169 int fallback_mt; 2170 bool can_steal; 2171 2172 /* 2173 * Do not steal pages from freelists belonging to other pageblocks 2174 * i.e. orders < pageblock_order. If there are no local zones free, 2175 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2176 */ 2177 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2178 min_order = pageblock_order; 2179 2180 /* 2181 * Find the largest available free page in the other list. This roughly 2182 * approximates finding the pageblock with the most free pages, which 2183 * would be too costly to do exactly. 2184 */ 2185 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2186 --current_order) { 2187 area = &(zone->free_area[current_order]); 2188 fallback_mt = find_suitable_fallback(area, current_order, 2189 start_migratetype, false, &can_steal); 2190 if (fallback_mt == -1) 2191 continue; 2192 2193 /* 2194 * We cannot steal all free pages from the pageblock and the 2195 * requested migratetype is movable. In that case it's better to 2196 * steal and split the smallest available page instead of the 2197 * largest available page, because even if the next movable 2198 * allocation falls back into a different pageblock than this 2199 * one, it won't cause permanent fragmentation. 2200 */ 2201 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2202 && current_order > order) 2203 goto find_smallest; 2204 2205 goto do_steal; 2206 } 2207 2208 return NULL; 2209 2210 find_smallest: 2211 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2212 area = &(zone->free_area[current_order]); 2213 fallback_mt = find_suitable_fallback(area, current_order, 2214 start_migratetype, false, &can_steal); 2215 if (fallback_mt != -1) 2216 break; 2217 } 2218 2219 /* 2220 * This should not happen - we already found a suitable fallback 2221 * when looking for the largest page. 2222 */ 2223 VM_BUG_ON(current_order > MAX_PAGE_ORDER); 2224 2225 do_steal: 2226 page = get_page_from_free_area(area, fallback_mt); 2227 2228 /* take off list, maybe claim block, expand remainder */ 2229 page = steal_suitable_fallback(zone, page, current_order, order, 2230 start_migratetype, alloc_flags, can_steal); 2231 2232 trace_mm_page_alloc_extfrag(page, order, current_order, 2233 start_migratetype, fallback_mt); 2234 2235 return page; 2236 } 2237 2238 /* 2239 * Do the hard work of removing an element from the buddy allocator. 2240 * Call me with the zone->lock already held. 2241 */ 2242 static __always_inline struct page * 2243 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2244 unsigned int alloc_flags) 2245 { 2246 struct page *page; 2247 2248 if (IS_ENABLED(CONFIG_CMA)) { 2249 /* 2250 * Balance movable allocations between regular and CMA areas by 2251 * allocating from CMA when over half of the zone's free memory 2252 * is in the CMA area. 2253 */ 2254 if (alloc_flags & ALLOC_CMA && 2255 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2256 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2257 page = __rmqueue_cma_fallback(zone, order); 2258 if (page) 2259 return page; 2260 } 2261 } 2262 2263 page = __rmqueue_smallest(zone, order, migratetype); 2264 if (unlikely(!page)) { 2265 if (alloc_flags & ALLOC_CMA) 2266 page = __rmqueue_cma_fallback(zone, order); 2267 2268 if (!page) 2269 page = __rmqueue_fallback(zone, order, migratetype, 2270 alloc_flags); 2271 } 2272 return page; 2273 } 2274 2275 /* 2276 * Obtain a specified number of elements from the buddy allocator, all under 2277 * a single hold of the lock, for efficiency. Add them to the supplied list. 2278 * Returns the number of new pages which were placed at *list. 2279 */ 2280 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2281 unsigned long count, struct list_head *list, 2282 int migratetype, unsigned int alloc_flags) 2283 { 2284 unsigned long flags; 2285 int i; 2286 2287 spin_lock_irqsave(&zone->lock, flags); 2288 for (i = 0; i < count; ++i) { 2289 struct page *page = __rmqueue(zone, order, migratetype, 2290 alloc_flags); 2291 if (unlikely(page == NULL)) 2292 break; 2293 2294 /* 2295 * Split buddy pages returned by expand() are received here in 2296 * physical page order. The page is added to the tail of 2297 * caller's list. From the callers perspective, the linked list 2298 * is ordered by page number under some conditions. This is 2299 * useful for IO devices that can forward direction from the 2300 * head, thus also in the physical page order. This is useful 2301 * for IO devices that can merge IO requests if the physical 2302 * pages are ordered properly. 2303 */ 2304 list_add_tail(&page->pcp_list, list); 2305 } 2306 spin_unlock_irqrestore(&zone->lock, flags); 2307 2308 return i; 2309 } 2310 2311 /* 2312 * Called from the vmstat counter updater to decay the PCP high. 2313 * Return whether there are addition works to do. 2314 */ 2315 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2316 { 2317 int high_min, to_drain, batch; 2318 int todo = 0; 2319 2320 high_min = READ_ONCE(pcp->high_min); 2321 batch = READ_ONCE(pcp->batch); 2322 /* 2323 * Decrease pcp->high periodically to try to free possible 2324 * idle PCP pages. And, avoid to free too many pages to 2325 * control latency. This caps pcp->high decrement too. 2326 */ 2327 if (pcp->high > high_min) { 2328 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2329 pcp->high - (pcp->high >> 3), high_min); 2330 if (pcp->high > high_min) 2331 todo++; 2332 } 2333 2334 to_drain = pcp->count - pcp->high; 2335 if (to_drain > 0) { 2336 spin_lock(&pcp->lock); 2337 free_pcppages_bulk(zone, to_drain, pcp, 0); 2338 spin_unlock(&pcp->lock); 2339 todo++; 2340 } 2341 2342 return todo; 2343 } 2344 2345 #ifdef CONFIG_NUMA 2346 /* 2347 * Called from the vmstat counter updater to drain pagesets of this 2348 * currently executing processor on remote nodes after they have 2349 * expired. 2350 */ 2351 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2352 { 2353 int to_drain, batch; 2354 2355 batch = READ_ONCE(pcp->batch); 2356 to_drain = min(pcp->count, batch); 2357 if (to_drain > 0) { 2358 spin_lock(&pcp->lock); 2359 free_pcppages_bulk(zone, to_drain, pcp, 0); 2360 spin_unlock(&pcp->lock); 2361 } 2362 } 2363 #endif 2364 2365 /* 2366 * Drain pcplists of the indicated processor and zone. 2367 */ 2368 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2369 { 2370 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2371 int count; 2372 2373 do { 2374 spin_lock(&pcp->lock); 2375 count = pcp->count; 2376 if (count) { 2377 int to_drain = min(count, 2378 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2379 2380 free_pcppages_bulk(zone, to_drain, pcp, 0); 2381 count -= to_drain; 2382 } 2383 spin_unlock(&pcp->lock); 2384 } while (count); 2385 } 2386 2387 /* 2388 * Drain pcplists of all zones on the indicated processor. 2389 */ 2390 static void drain_pages(unsigned int cpu) 2391 { 2392 struct zone *zone; 2393 2394 for_each_populated_zone(zone) { 2395 drain_pages_zone(cpu, zone); 2396 } 2397 } 2398 2399 /* 2400 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2401 */ 2402 void drain_local_pages(struct zone *zone) 2403 { 2404 int cpu = smp_processor_id(); 2405 2406 if (zone) 2407 drain_pages_zone(cpu, zone); 2408 else 2409 drain_pages(cpu); 2410 } 2411 2412 /* 2413 * The implementation of drain_all_pages(), exposing an extra parameter to 2414 * drain on all cpus. 2415 * 2416 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2417 * not empty. The check for non-emptiness can however race with a free to 2418 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2419 * that need the guarantee that every CPU has drained can disable the 2420 * optimizing racy check. 2421 */ 2422 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2423 { 2424 int cpu; 2425 2426 /* 2427 * Allocate in the BSS so we won't require allocation in 2428 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2429 */ 2430 static cpumask_t cpus_with_pcps; 2431 2432 /* 2433 * Do not drain if one is already in progress unless it's specific to 2434 * a zone. Such callers are primarily CMA and memory hotplug and need 2435 * the drain to be complete when the call returns. 2436 */ 2437 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2438 if (!zone) 2439 return; 2440 mutex_lock(&pcpu_drain_mutex); 2441 } 2442 2443 /* 2444 * We don't care about racing with CPU hotplug event 2445 * as offline notification will cause the notified 2446 * cpu to drain that CPU pcps and on_each_cpu_mask 2447 * disables preemption as part of its processing 2448 */ 2449 for_each_online_cpu(cpu) { 2450 struct per_cpu_pages *pcp; 2451 struct zone *z; 2452 bool has_pcps = false; 2453 2454 if (force_all_cpus) { 2455 /* 2456 * The pcp.count check is racy, some callers need a 2457 * guarantee that no cpu is missed. 2458 */ 2459 has_pcps = true; 2460 } else if (zone) { 2461 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2462 if (pcp->count) 2463 has_pcps = true; 2464 } else { 2465 for_each_populated_zone(z) { 2466 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2467 if (pcp->count) { 2468 has_pcps = true; 2469 break; 2470 } 2471 } 2472 } 2473 2474 if (has_pcps) 2475 cpumask_set_cpu(cpu, &cpus_with_pcps); 2476 else 2477 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2478 } 2479 2480 for_each_cpu(cpu, &cpus_with_pcps) { 2481 if (zone) 2482 drain_pages_zone(cpu, zone); 2483 else 2484 drain_pages(cpu); 2485 } 2486 2487 mutex_unlock(&pcpu_drain_mutex); 2488 } 2489 2490 /* 2491 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2492 * 2493 * When zone parameter is non-NULL, spill just the single zone's pages. 2494 */ 2495 void drain_all_pages(struct zone *zone) 2496 { 2497 __drain_all_pages(zone, false); 2498 } 2499 2500 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2501 { 2502 int min_nr_free, max_nr_free; 2503 2504 /* Free as much as possible if batch freeing high-order pages. */ 2505 if (unlikely(free_high)) 2506 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2507 2508 /* Check for PCP disabled or boot pageset */ 2509 if (unlikely(high < batch)) 2510 return 1; 2511 2512 /* Leave at least pcp->batch pages on the list */ 2513 min_nr_free = batch; 2514 max_nr_free = high - batch; 2515 2516 /* 2517 * Increase the batch number to the number of the consecutive 2518 * freed pages to reduce zone lock contention. 2519 */ 2520 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2521 2522 return batch; 2523 } 2524 2525 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2526 int batch, bool free_high) 2527 { 2528 int high, high_min, high_max; 2529 2530 high_min = READ_ONCE(pcp->high_min); 2531 high_max = READ_ONCE(pcp->high_max); 2532 high = pcp->high = clamp(pcp->high, high_min, high_max); 2533 2534 if (unlikely(!high)) 2535 return 0; 2536 2537 if (unlikely(free_high)) { 2538 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2539 high_min); 2540 return 0; 2541 } 2542 2543 /* 2544 * If reclaim is active, limit the number of pages that can be 2545 * stored on pcp lists 2546 */ 2547 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2548 int free_count = max_t(int, pcp->free_count, batch); 2549 2550 pcp->high = max(high - free_count, high_min); 2551 return min(batch << 2, pcp->high); 2552 } 2553 2554 if (high_min == high_max) 2555 return high; 2556 2557 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2558 int free_count = max_t(int, pcp->free_count, batch); 2559 2560 pcp->high = max(high - free_count, high_min); 2561 high = max(pcp->count, high_min); 2562 } else if (pcp->count >= high) { 2563 int need_high = pcp->free_count + batch; 2564 2565 /* pcp->high should be large enough to hold batch freed pages */ 2566 if (pcp->high < need_high) 2567 pcp->high = clamp(need_high, high_min, high_max); 2568 } 2569 2570 return high; 2571 } 2572 2573 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2574 struct page *page, int migratetype, 2575 unsigned int order) 2576 { 2577 int high, batch; 2578 int pindex; 2579 bool free_high = false; 2580 2581 /* 2582 * On freeing, reduce the number of pages that are batch allocated. 2583 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2584 * allocations. 2585 */ 2586 pcp->alloc_factor >>= 1; 2587 __count_vm_events(PGFREE, 1 << order); 2588 pindex = order_to_pindex(migratetype, order); 2589 list_add(&page->pcp_list, &pcp->lists[pindex]); 2590 pcp->count += 1 << order; 2591 2592 batch = READ_ONCE(pcp->batch); 2593 /* 2594 * As high-order pages other than THP's stored on PCP can contribute 2595 * to fragmentation, limit the number stored when PCP is heavily 2596 * freeing without allocation. The remainder after bulk freeing 2597 * stops will be drained from vmstat refresh context. 2598 */ 2599 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2600 free_high = (pcp->free_count >= batch && 2601 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2602 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2603 pcp->count >= READ_ONCE(batch))); 2604 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2605 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2606 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2607 } 2608 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2609 pcp->free_count += (1 << order); 2610 high = nr_pcp_high(pcp, zone, batch, free_high); 2611 if (pcp->count >= high) { 2612 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2613 pcp, pindex); 2614 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2615 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2616 ZONE_MOVABLE, 0)) 2617 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2618 } 2619 } 2620 2621 /* 2622 * Free a pcp page 2623 */ 2624 void free_unref_page(struct page *page, unsigned int order) 2625 { 2626 unsigned long __maybe_unused UP_flags; 2627 struct per_cpu_pages *pcp; 2628 struct zone *zone; 2629 unsigned long pfn = page_to_pfn(page); 2630 int migratetype; 2631 2632 if (!pcp_allowed_order(order)) { 2633 __free_pages_ok(page, order, FPI_NONE); 2634 return; 2635 } 2636 2637 if (!free_pages_prepare(page, order)) 2638 return; 2639 2640 /* 2641 * We only track unmovable, reclaimable and movable on pcp lists. 2642 * Place ISOLATE pages on the isolated list because they are being 2643 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2644 * get those areas back if necessary. Otherwise, we may have to free 2645 * excessively into the page allocator 2646 */ 2647 migratetype = get_pfnblock_migratetype(page, pfn); 2648 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2649 if (unlikely(is_migrate_isolate(migratetype))) { 2650 free_one_page(page_zone(page), page, pfn, order, FPI_NONE); 2651 return; 2652 } 2653 migratetype = MIGRATE_MOVABLE; 2654 } 2655 2656 zone = page_zone(page); 2657 pcp_trylock_prepare(UP_flags); 2658 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2659 if (pcp) { 2660 free_unref_page_commit(zone, pcp, page, migratetype, order); 2661 pcp_spin_unlock(pcp); 2662 } else { 2663 free_one_page(zone, page, pfn, order, FPI_NONE); 2664 } 2665 pcp_trylock_finish(UP_flags); 2666 } 2667 2668 /* 2669 * Free a batch of folios 2670 */ 2671 void free_unref_folios(struct folio_batch *folios) 2672 { 2673 unsigned long __maybe_unused UP_flags; 2674 struct per_cpu_pages *pcp = NULL; 2675 struct zone *locked_zone = NULL; 2676 int i, j; 2677 2678 /* Prepare folios for freeing */ 2679 for (i = 0, j = 0; i < folios->nr; i++) { 2680 struct folio *folio = folios->folios[i]; 2681 unsigned long pfn = folio_pfn(folio); 2682 unsigned int order = folio_order(folio); 2683 2684 if (!free_pages_prepare(&folio->page, order)) 2685 continue; 2686 /* 2687 * Free orders not handled on the PCP directly to the 2688 * allocator. 2689 */ 2690 if (!pcp_allowed_order(order)) { 2691 free_one_page(folio_zone(folio), &folio->page, 2692 pfn, order, FPI_NONE); 2693 continue; 2694 } 2695 folio->private = (void *)(unsigned long)order; 2696 if (j != i) 2697 folios->folios[j] = folio; 2698 j++; 2699 } 2700 folios->nr = j; 2701 2702 for (i = 0; i < folios->nr; i++) { 2703 struct folio *folio = folios->folios[i]; 2704 struct zone *zone = folio_zone(folio); 2705 unsigned long pfn = folio_pfn(folio); 2706 unsigned int order = (unsigned long)folio->private; 2707 int migratetype; 2708 2709 folio->private = NULL; 2710 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2711 2712 /* Different zone requires a different pcp lock */ 2713 if (zone != locked_zone || 2714 is_migrate_isolate(migratetype)) { 2715 if (pcp) { 2716 pcp_spin_unlock(pcp); 2717 pcp_trylock_finish(UP_flags); 2718 locked_zone = NULL; 2719 pcp = NULL; 2720 } 2721 2722 /* 2723 * Free isolated pages directly to the 2724 * allocator, see comment in free_unref_page. 2725 */ 2726 if (is_migrate_isolate(migratetype)) { 2727 free_one_page(zone, &folio->page, pfn, 2728 order, FPI_NONE); 2729 continue; 2730 } 2731 2732 /* 2733 * trylock is necessary as folios may be getting freed 2734 * from IRQ or SoftIRQ context after an IO completion. 2735 */ 2736 pcp_trylock_prepare(UP_flags); 2737 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2738 if (unlikely(!pcp)) { 2739 pcp_trylock_finish(UP_flags); 2740 free_one_page(zone, &folio->page, pfn, 2741 order, FPI_NONE); 2742 continue; 2743 } 2744 locked_zone = zone; 2745 } 2746 2747 /* 2748 * Non-isolated types over MIGRATE_PCPTYPES get added 2749 * to the MIGRATE_MOVABLE pcp list. 2750 */ 2751 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2752 migratetype = MIGRATE_MOVABLE; 2753 2754 trace_mm_page_free_batched(&folio->page); 2755 free_unref_page_commit(zone, pcp, &folio->page, migratetype, 2756 order); 2757 } 2758 2759 if (pcp) { 2760 pcp_spin_unlock(pcp); 2761 pcp_trylock_finish(UP_flags); 2762 } 2763 folio_batch_reinit(folios); 2764 } 2765 2766 /* 2767 * split_page takes a non-compound higher-order page, and splits it into 2768 * n (1<<order) sub-pages: page[0..n] 2769 * Each sub-page must be freed individually. 2770 * 2771 * Note: this is probably too low level an operation for use in drivers. 2772 * Please consult with lkml before using this in your driver. 2773 */ 2774 void split_page(struct page *page, unsigned int order) 2775 { 2776 int i; 2777 2778 VM_BUG_ON_PAGE(PageCompound(page), page); 2779 VM_BUG_ON_PAGE(!page_count(page), page); 2780 2781 for (i = 1; i < (1 << order); i++) 2782 set_page_refcounted(page + i); 2783 split_page_owner(page, order, 0); 2784 pgalloc_tag_split(page_folio(page), order, 0); 2785 split_page_memcg(page, order, 0); 2786 } 2787 EXPORT_SYMBOL_GPL(split_page); 2788 2789 int __isolate_free_page(struct page *page, unsigned int order) 2790 { 2791 struct zone *zone = page_zone(page); 2792 int mt = get_pageblock_migratetype(page); 2793 2794 if (!is_migrate_isolate(mt)) { 2795 unsigned long watermark; 2796 /* 2797 * Obey watermarks as if the page was being allocated. We can 2798 * emulate a high-order watermark check with a raised order-0 2799 * watermark, because we already know our high-order page 2800 * exists. 2801 */ 2802 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2803 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2804 return 0; 2805 } 2806 2807 del_page_from_free_list(page, zone, order, mt); 2808 2809 /* 2810 * Set the pageblock if the isolated page is at least half of a 2811 * pageblock 2812 */ 2813 if (order >= pageblock_order - 1) { 2814 struct page *endpage = page + (1 << order) - 1; 2815 for (; page < endpage; page += pageblock_nr_pages) { 2816 int mt = get_pageblock_migratetype(page); 2817 /* 2818 * Only change normal pageblocks (i.e., they can merge 2819 * with others) 2820 */ 2821 if (migratetype_is_mergeable(mt)) 2822 move_freepages_block(zone, page, mt, 2823 MIGRATE_MOVABLE); 2824 } 2825 } 2826 2827 return 1UL << order; 2828 } 2829 2830 /** 2831 * __putback_isolated_page - Return a now-isolated page back where we got it 2832 * @page: Page that was isolated 2833 * @order: Order of the isolated page 2834 * @mt: The page's pageblock's migratetype 2835 * 2836 * This function is meant to return a page pulled from the free lists via 2837 * __isolate_free_page back to the free lists they were pulled from. 2838 */ 2839 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2840 { 2841 struct zone *zone = page_zone(page); 2842 2843 /* zone lock should be held when this function is called */ 2844 lockdep_assert_held(&zone->lock); 2845 2846 /* Return isolated page to tail of freelist. */ 2847 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2848 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2849 } 2850 2851 /* 2852 * Update NUMA hit/miss statistics 2853 */ 2854 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2855 long nr_account) 2856 { 2857 #ifdef CONFIG_NUMA 2858 enum numa_stat_item local_stat = NUMA_LOCAL; 2859 2860 /* skip numa counters update if numa stats is disabled */ 2861 if (!static_branch_likely(&vm_numa_stat_key)) 2862 return; 2863 2864 if (zone_to_nid(z) != numa_node_id()) 2865 local_stat = NUMA_OTHER; 2866 2867 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2868 __count_numa_events(z, NUMA_HIT, nr_account); 2869 else { 2870 __count_numa_events(z, NUMA_MISS, nr_account); 2871 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2872 } 2873 __count_numa_events(z, local_stat, nr_account); 2874 #endif 2875 } 2876 2877 static __always_inline 2878 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2879 unsigned int order, unsigned int alloc_flags, 2880 int migratetype) 2881 { 2882 struct page *page; 2883 unsigned long flags; 2884 2885 do { 2886 page = NULL; 2887 spin_lock_irqsave(&zone->lock, flags); 2888 if (alloc_flags & ALLOC_HIGHATOMIC) 2889 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2890 if (!page) { 2891 page = __rmqueue(zone, order, migratetype, alloc_flags); 2892 2893 /* 2894 * If the allocation fails, allow OOM handling and 2895 * order-0 (atomic) allocs access to HIGHATOMIC 2896 * reserves as failing now is worse than failing a 2897 * high-order atomic allocation in the future. 2898 */ 2899 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 2900 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2901 2902 if (!page) { 2903 spin_unlock_irqrestore(&zone->lock, flags); 2904 return NULL; 2905 } 2906 } 2907 spin_unlock_irqrestore(&zone->lock, flags); 2908 } while (check_new_pages(page, order)); 2909 2910 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2911 zone_statistics(preferred_zone, zone, 1); 2912 2913 return page; 2914 } 2915 2916 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2917 { 2918 int high, base_batch, batch, max_nr_alloc; 2919 int high_max, high_min; 2920 2921 base_batch = READ_ONCE(pcp->batch); 2922 high_min = READ_ONCE(pcp->high_min); 2923 high_max = READ_ONCE(pcp->high_max); 2924 high = pcp->high = clamp(pcp->high, high_min, high_max); 2925 2926 /* Check for PCP disabled or boot pageset */ 2927 if (unlikely(high < base_batch)) 2928 return 1; 2929 2930 if (order) 2931 batch = base_batch; 2932 else 2933 batch = (base_batch << pcp->alloc_factor); 2934 2935 /* 2936 * If we had larger pcp->high, we could avoid to allocate from 2937 * zone. 2938 */ 2939 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2940 high = pcp->high = min(high + batch, high_max); 2941 2942 if (!order) { 2943 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2944 /* 2945 * Double the number of pages allocated each time there is 2946 * subsequent allocation of order-0 pages without any freeing. 2947 */ 2948 if (batch <= max_nr_alloc && 2949 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2950 pcp->alloc_factor++; 2951 batch = min(batch, max_nr_alloc); 2952 } 2953 2954 /* 2955 * Scale batch relative to order if batch implies free pages 2956 * can be stored on the PCP. Batch can be 1 for small zones or 2957 * for boot pagesets which should never store free pages as 2958 * the pages may belong to arbitrary zones. 2959 */ 2960 if (batch > 1) 2961 batch = max(batch >> order, 2); 2962 2963 return batch; 2964 } 2965 2966 /* Remove page from the per-cpu list, caller must protect the list */ 2967 static inline 2968 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2969 int migratetype, 2970 unsigned int alloc_flags, 2971 struct per_cpu_pages *pcp, 2972 struct list_head *list) 2973 { 2974 struct page *page; 2975 2976 do { 2977 if (list_empty(list)) { 2978 int batch = nr_pcp_alloc(pcp, zone, order); 2979 int alloced; 2980 2981 alloced = rmqueue_bulk(zone, order, 2982 batch, list, 2983 migratetype, alloc_flags); 2984 2985 pcp->count += alloced << order; 2986 if (unlikely(list_empty(list))) 2987 return NULL; 2988 } 2989 2990 page = list_first_entry(list, struct page, pcp_list); 2991 list_del(&page->pcp_list); 2992 pcp->count -= 1 << order; 2993 } while (check_new_pages(page, order)); 2994 2995 return page; 2996 } 2997 2998 /* Lock and remove page from the per-cpu list */ 2999 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3000 struct zone *zone, unsigned int order, 3001 int migratetype, unsigned int alloc_flags) 3002 { 3003 struct per_cpu_pages *pcp; 3004 struct list_head *list; 3005 struct page *page; 3006 unsigned long __maybe_unused UP_flags; 3007 3008 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3009 pcp_trylock_prepare(UP_flags); 3010 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3011 if (!pcp) { 3012 pcp_trylock_finish(UP_flags); 3013 return NULL; 3014 } 3015 3016 /* 3017 * On allocation, reduce the number of pages that are batch freed. 3018 * See nr_pcp_free() where free_factor is increased for subsequent 3019 * frees. 3020 */ 3021 pcp->free_count >>= 1; 3022 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3023 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3024 pcp_spin_unlock(pcp); 3025 pcp_trylock_finish(UP_flags); 3026 if (page) { 3027 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3028 zone_statistics(preferred_zone, zone, 1); 3029 } 3030 return page; 3031 } 3032 3033 /* 3034 * Allocate a page from the given zone. 3035 * Use pcplists for THP or "cheap" high-order allocations. 3036 */ 3037 3038 /* 3039 * Do not instrument rmqueue() with KMSAN. This function may call 3040 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3041 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3042 * may call rmqueue() again, which will result in a deadlock. 3043 */ 3044 __no_sanitize_memory 3045 static inline 3046 struct page *rmqueue(struct zone *preferred_zone, 3047 struct zone *zone, unsigned int order, 3048 gfp_t gfp_flags, unsigned int alloc_flags, 3049 int migratetype) 3050 { 3051 struct page *page; 3052 3053 if (likely(pcp_allowed_order(order))) { 3054 page = rmqueue_pcplist(preferred_zone, zone, order, 3055 migratetype, alloc_flags); 3056 if (likely(page)) 3057 goto out; 3058 } 3059 3060 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3061 migratetype); 3062 3063 out: 3064 /* Separate test+clear to avoid unnecessary atomics */ 3065 if ((alloc_flags & ALLOC_KSWAPD) && 3066 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3067 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3068 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3069 } 3070 3071 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3072 return page; 3073 } 3074 3075 static inline long __zone_watermark_unusable_free(struct zone *z, 3076 unsigned int order, unsigned int alloc_flags) 3077 { 3078 long unusable_free = (1 << order) - 1; 3079 3080 /* 3081 * If the caller does not have rights to reserves below the min 3082 * watermark then subtract the high-atomic reserves. This will 3083 * over-estimate the size of the atomic reserve but it avoids a search. 3084 */ 3085 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3086 unusable_free += z->nr_reserved_highatomic; 3087 3088 #ifdef CONFIG_CMA 3089 /* If allocation can't use CMA areas don't use free CMA pages */ 3090 if (!(alloc_flags & ALLOC_CMA)) 3091 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3092 #endif 3093 3094 return unusable_free; 3095 } 3096 3097 /* 3098 * Return true if free base pages are above 'mark'. For high-order checks it 3099 * will return true of the order-0 watermark is reached and there is at least 3100 * one free page of a suitable size. Checking now avoids taking the zone lock 3101 * to check in the allocation paths if no pages are free. 3102 */ 3103 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3104 int highest_zoneidx, unsigned int alloc_flags, 3105 long free_pages) 3106 { 3107 long min = mark; 3108 int o; 3109 3110 /* free_pages may go negative - that's OK */ 3111 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3112 3113 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3114 /* 3115 * __GFP_HIGH allows access to 50% of the min reserve as well 3116 * as OOM. 3117 */ 3118 if (alloc_flags & ALLOC_MIN_RESERVE) { 3119 min -= min / 2; 3120 3121 /* 3122 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3123 * access more reserves than just __GFP_HIGH. Other 3124 * non-blocking allocations requests such as GFP_NOWAIT 3125 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3126 * access to the min reserve. 3127 */ 3128 if (alloc_flags & ALLOC_NON_BLOCK) 3129 min -= min / 4; 3130 } 3131 3132 /* 3133 * OOM victims can try even harder than the normal reserve 3134 * users on the grounds that it's definitely going to be in 3135 * the exit path shortly and free memory. Any allocation it 3136 * makes during the free path will be small and short-lived. 3137 */ 3138 if (alloc_flags & ALLOC_OOM) 3139 min -= min / 2; 3140 } 3141 3142 /* 3143 * Check watermarks for an order-0 allocation request. If these 3144 * are not met, then a high-order request also cannot go ahead 3145 * even if a suitable page happened to be free. 3146 */ 3147 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3148 return false; 3149 3150 /* If this is an order-0 request then the watermark is fine */ 3151 if (!order) 3152 return true; 3153 3154 /* For a high-order request, check at least one suitable page is free */ 3155 for (o = order; o < NR_PAGE_ORDERS; o++) { 3156 struct free_area *area = &z->free_area[o]; 3157 int mt; 3158 3159 if (!area->nr_free) 3160 continue; 3161 3162 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3163 if (!free_area_empty(area, mt)) 3164 return true; 3165 } 3166 3167 #ifdef CONFIG_CMA 3168 if ((alloc_flags & ALLOC_CMA) && 3169 !free_area_empty(area, MIGRATE_CMA)) { 3170 return true; 3171 } 3172 #endif 3173 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3174 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3175 return true; 3176 } 3177 } 3178 return false; 3179 } 3180 3181 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3182 int highest_zoneidx, unsigned int alloc_flags) 3183 { 3184 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3185 zone_page_state(z, NR_FREE_PAGES)); 3186 } 3187 3188 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3189 unsigned long mark, int highest_zoneidx, 3190 unsigned int alloc_flags, gfp_t gfp_mask) 3191 { 3192 long free_pages; 3193 3194 free_pages = zone_page_state(z, NR_FREE_PAGES); 3195 3196 /* 3197 * Fast check for order-0 only. If this fails then the reserves 3198 * need to be calculated. 3199 */ 3200 if (!order) { 3201 long usable_free; 3202 long reserved; 3203 3204 usable_free = free_pages; 3205 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3206 3207 /* reserved may over estimate high-atomic reserves. */ 3208 usable_free -= min(usable_free, reserved); 3209 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3210 return true; 3211 } 3212 3213 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3214 free_pages)) 3215 return true; 3216 3217 /* 3218 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3219 * when checking the min watermark. The min watermark is the 3220 * point where boosting is ignored so that kswapd is woken up 3221 * when below the low watermark. 3222 */ 3223 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3224 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3225 mark = z->_watermark[WMARK_MIN]; 3226 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3227 alloc_flags, free_pages); 3228 } 3229 3230 return false; 3231 } 3232 3233 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3234 unsigned long mark, int highest_zoneidx) 3235 { 3236 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3237 3238 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3239 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3240 3241 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3242 free_pages); 3243 } 3244 3245 #ifdef CONFIG_NUMA 3246 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3247 3248 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3249 { 3250 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3251 node_reclaim_distance; 3252 } 3253 #else /* CONFIG_NUMA */ 3254 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3255 { 3256 return true; 3257 } 3258 #endif /* CONFIG_NUMA */ 3259 3260 /* 3261 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3262 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3263 * premature use of a lower zone may cause lowmem pressure problems that 3264 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3265 * probably too small. It only makes sense to spread allocations to avoid 3266 * fragmentation between the Normal and DMA32 zones. 3267 */ 3268 static inline unsigned int 3269 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3270 { 3271 unsigned int alloc_flags; 3272 3273 /* 3274 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3275 * to save a branch. 3276 */ 3277 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3278 3279 #ifdef CONFIG_ZONE_DMA32 3280 if (!zone) 3281 return alloc_flags; 3282 3283 if (zone_idx(zone) != ZONE_NORMAL) 3284 return alloc_flags; 3285 3286 /* 3287 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3288 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3289 * on UMA that if Normal is populated then so is DMA32. 3290 */ 3291 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3292 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3293 return alloc_flags; 3294 3295 alloc_flags |= ALLOC_NOFRAGMENT; 3296 #endif /* CONFIG_ZONE_DMA32 */ 3297 return alloc_flags; 3298 } 3299 3300 /* Must be called after current_gfp_context() which can change gfp_mask */ 3301 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3302 unsigned int alloc_flags) 3303 { 3304 #ifdef CONFIG_CMA 3305 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3306 alloc_flags |= ALLOC_CMA; 3307 #endif 3308 return alloc_flags; 3309 } 3310 3311 /* 3312 * get_page_from_freelist goes through the zonelist trying to allocate 3313 * a page. 3314 */ 3315 static struct page * 3316 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3317 const struct alloc_context *ac) 3318 { 3319 struct zoneref *z; 3320 struct zone *zone; 3321 struct pglist_data *last_pgdat = NULL; 3322 bool last_pgdat_dirty_ok = false; 3323 bool no_fallback; 3324 3325 retry: 3326 /* 3327 * Scan zonelist, looking for a zone with enough free. 3328 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3329 */ 3330 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3331 z = ac->preferred_zoneref; 3332 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3333 ac->nodemask) { 3334 struct page *page; 3335 unsigned long mark; 3336 3337 if (cpusets_enabled() && 3338 (alloc_flags & ALLOC_CPUSET) && 3339 !__cpuset_zone_allowed(zone, gfp_mask)) 3340 continue; 3341 /* 3342 * When allocating a page cache page for writing, we 3343 * want to get it from a node that is within its dirty 3344 * limit, such that no single node holds more than its 3345 * proportional share of globally allowed dirty pages. 3346 * The dirty limits take into account the node's 3347 * lowmem reserves and high watermark so that kswapd 3348 * should be able to balance it without having to 3349 * write pages from its LRU list. 3350 * 3351 * XXX: For now, allow allocations to potentially 3352 * exceed the per-node dirty limit in the slowpath 3353 * (spread_dirty_pages unset) before going into reclaim, 3354 * which is important when on a NUMA setup the allowed 3355 * nodes are together not big enough to reach the 3356 * global limit. The proper fix for these situations 3357 * will require awareness of nodes in the 3358 * dirty-throttling and the flusher threads. 3359 */ 3360 if (ac->spread_dirty_pages) { 3361 if (last_pgdat != zone->zone_pgdat) { 3362 last_pgdat = zone->zone_pgdat; 3363 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3364 } 3365 3366 if (!last_pgdat_dirty_ok) 3367 continue; 3368 } 3369 3370 if (no_fallback && nr_online_nodes > 1 && 3371 zone != zonelist_zone(ac->preferred_zoneref)) { 3372 int local_nid; 3373 3374 /* 3375 * If moving to a remote node, retry but allow 3376 * fragmenting fallbacks. Locality is more important 3377 * than fragmentation avoidance. 3378 */ 3379 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3380 if (zone_to_nid(zone) != local_nid) { 3381 alloc_flags &= ~ALLOC_NOFRAGMENT; 3382 goto retry; 3383 } 3384 } 3385 3386 cond_accept_memory(zone, order); 3387 3388 /* 3389 * Detect whether the number of free pages is below high 3390 * watermark. If so, we will decrease pcp->high and free 3391 * PCP pages in free path to reduce the possibility of 3392 * premature page reclaiming. Detection is done here to 3393 * avoid to do that in hotter free path. 3394 */ 3395 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3396 goto check_alloc_wmark; 3397 3398 mark = high_wmark_pages(zone); 3399 if (zone_watermark_fast(zone, order, mark, 3400 ac->highest_zoneidx, alloc_flags, 3401 gfp_mask)) 3402 goto try_this_zone; 3403 else 3404 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3405 3406 check_alloc_wmark: 3407 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3408 if (!zone_watermark_fast(zone, order, mark, 3409 ac->highest_zoneidx, alloc_flags, 3410 gfp_mask)) { 3411 int ret; 3412 3413 if (cond_accept_memory(zone, order)) 3414 goto try_this_zone; 3415 3416 /* 3417 * Watermark failed for this zone, but see if we can 3418 * grow this zone if it contains deferred pages. 3419 */ 3420 if (deferred_pages_enabled()) { 3421 if (_deferred_grow_zone(zone, order)) 3422 goto try_this_zone; 3423 } 3424 /* Checked here to keep the fast path fast */ 3425 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3426 if (alloc_flags & ALLOC_NO_WATERMARKS) 3427 goto try_this_zone; 3428 3429 if (!node_reclaim_enabled() || 3430 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3431 continue; 3432 3433 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3434 switch (ret) { 3435 case NODE_RECLAIM_NOSCAN: 3436 /* did not scan */ 3437 continue; 3438 case NODE_RECLAIM_FULL: 3439 /* scanned but unreclaimable */ 3440 continue; 3441 default: 3442 /* did we reclaim enough */ 3443 if (zone_watermark_ok(zone, order, mark, 3444 ac->highest_zoneidx, alloc_flags)) 3445 goto try_this_zone; 3446 3447 continue; 3448 } 3449 } 3450 3451 try_this_zone: 3452 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3453 gfp_mask, alloc_flags, ac->migratetype); 3454 if (page) { 3455 prep_new_page(page, order, gfp_mask, alloc_flags); 3456 3457 /* 3458 * If this is a high-order atomic allocation then check 3459 * if the pageblock should be reserved for the future 3460 */ 3461 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3462 reserve_highatomic_pageblock(page, order, zone); 3463 3464 return page; 3465 } else { 3466 if (cond_accept_memory(zone, order)) 3467 goto try_this_zone; 3468 3469 /* Try again if zone has deferred pages */ 3470 if (deferred_pages_enabled()) { 3471 if (_deferred_grow_zone(zone, order)) 3472 goto try_this_zone; 3473 } 3474 } 3475 } 3476 3477 /* 3478 * It's possible on a UMA machine to get through all zones that are 3479 * fragmented. If avoiding fragmentation, reset and try again. 3480 */ 3481 if (no_fallback) { 3482 alloc_flags &= ~ALLOC_NOFRAGMENT; 3483 goto retry; 3484 } 3485 3486 return NULL; 3487 } 3488 3489 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3490 { 3491 unsigned int filter = SHOW_MEM_FILTER_NODES; 3492 3493 /* 3494 * This documents exceptions given to allocations in certain 3495 * contexts that are allowed to allocate outside current's set 3496 * of allowed nodes. 3497 */ 3498 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3499 if (tsk_is_oom_victim(current) || 3500 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3501 filter &= ~SHOW_MEM_FILTER_NODES; 3502 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3503 filter &= ~SHOW_MEM_FILTER_NODES; 3504 3505 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3506 } 3507 3508 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3509 { 3510 struct va_format vaf; 3511 va_list args; 3512 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3513 3514 if ((gfp_mask & __GFP_NOWARN) || 3515 !__ratelimit(&nopage_rs) || 3516 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3517 return; 3518 3519 va_start(args, fmt); 3520 vaf.fmt = fmt; 3521 vaf.va = &args; 3522 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3523 current->comm, &vaf, gfp_mask, &gfp_mask, 3524 nodemask_pr_args(nodemask)); 3525 va_end(args); 3526 3527 cpuset_print_current_mems_allowed(); 3528 pr_cont("\n"); 3529 dump_stack(); 3530 warn_alloc_show_mem(gfp_mask, nodemask); 3531 } 3532 3533 static inline struct page * 3534 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3535 unsigned int alloc_flags, 3536 const struct alloc_context *ac) 3537 { 3538 struct page *page; 3539 3540 page = get_page_from_freelist(gfp_mask, order, 3541 alloc_flags|ALLOC_CPUSET, ac); 3542 /* 3543 * fallback to ignore cpuset restriction if our nodes 3544 * are depleted 3545 */ 3546 if (!page) 3547 page = get_page_from_freelist(gfp_mask, order, 3548 alloc_flags, ac); 3549 3550 return page; 3551 } 3552 3553 static inline struct page * 3554 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3555 const struct alloc_context *ac, unsigned long *did_some_progress) 3556 { 3557 struct oom_control oc = { 3558 .zonelist = ac->zonelist, 3559 .nodemask = ac->nodemask, 3560 .memcg = NULL, 3561 .gfp_mask = gfp_mask, 3562 .order = order, 3563 }; 3564 struct page *page; 3565 3566 *did_some_progress = 0; 3567 3568 /* 3569 * Acquire the oom lock. If that fails, somebody else is 3570 * making progress for us. 3571 */ 3572 if (!mutex_trylock(&oom_lock)) { 3573 *did_some_progress = 1; 3574 schedule_timeout_uninterruptible(1); 3575 return NULL; 3576 } 3577 3578 /* 3579 * Go through the zonelist yet one more time, keep very high watermark 3580 * here, this is only to catch a parallel oom killing, we must fail if 3581 * we're still under heavy pressure. But make sure that this reclaim 3582 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3583 * allocation which will never fail due to oom_lock already held. 3584 */ 3585 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3586 ~__GFP_DIRECT_RECLAIM, order, 3587 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3588 if (page) 3589 goto out; 3590 3591 /* Coredumps can quickly deplete all memory reserves */ 3592 if (current->flags & PF_DUMPCORE) 3593 goto out; 3594 /* The OOM killer will not help higher order allocs */ 3595 if (order > PAGE_ALLOC_COSTLY_ORDER) 3596 goto out; 3597 /* 3598 * We have already exhausted all our reclaim opportunities without any 3599 * success so it is time to admit defeat. We will skip the OOM killer 3600 * because it is very likely that the caller has a more reasonable 3601 * fallback than shooting a random task. 3602 * 3603 * The OOM killer may not free memory on a specific node. 3604 */ 3605 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3606 goto out; 3607 /* The OOM killer does not needlessly kill tasks for lowmem */ 3608 if (ac->highest_zoneidx < ZONE_NORMAL) 3609 goto out; 3610 if (pm_suspended_storage()) 3611 goto out; 3612 /* 3613 * XXX: GFP_NOFS allocations should rather fail than rely on 3614 * other request to make a forward progress. 3615 * We are in an unfortunate situation where out_of_memory cannot 3616 * do much for this context but let's try it to at least get 3617 * access to memory reserved if the current task is killed (see 3618 * out_of_memory). Once filesystems are ready to handle allocation 3619 * failures more gracefully we should just bail out here. 3620 */ 3621 3622 /* Exhausted what can be done so it's blame time */ 3623 if (out_of_memory(&oc) || 3624 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3625 *did_some_progress = 1; 3626 3627 /* 3628 * Help non-failing allocations by giving them access to memory 3629 * reserves 3630 */ 3631 if (gfp_mask & __GFP_NOFAIL) 3632 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3633 ALLOC_NO_WATERMARKS, ac); 3634 } 3635 out: 3636 mutex_unlock(&oom_lock); 3637 return page; 3638 } 3639 3640 /* 3641 * Maximum number of compaction retries with a progress before OOM 3642 * killer is consider as the only way to move forward. 3643 */ 3644 #define MAX_COMPACT_RETRIES 16 3645 3646 #ifdef CONFIG_COMPACTION 3647 /* Try memory compaction for high-order allocations before reclaim */ 3648 static struct page * 3649 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3650 unsigned int alloc_flags, const struct alloc_context *ac, 3651 enum compact_priority prio, enum compact_result *compact_result) 3652 { 3653 struct page *page = NULL; 3654 unsigned long pflags; 3655 unsigned int noreclaim_flag; 3656 3657 if (!order) 3658 return NULL; 3659 3660 psi_memstall_enter(&pflags); 3661 delayacct_compact_start(); 3662 noreclaim_flag = memalloc_noreclaim_save(); 3663 3664 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3665 prio, &page); 3666 3667 memalloc_noreclaim_restore(noreclaim_flag); 3668 psi_memstall_leave(&pflags); 3669 delayacct_compact_end(); 3670 3671 if (*compact_result == COMPACT_SKIPPED) 3672 return NULL; 3673 /* 3674 * At least in one zone compaction wasn't deferred or skipped, so let's 3675 * count a compaction stall 3676 */ 3677 count_vm_event(COMPACTSTALL); 3678 3679 /* Prep a captured page if available */ 3680 if (page) 3681 prep_new_page(page, order, gfp_mask, alloc_flags); 3682 3683 /* Try get a page from the freelist if available */ 3684 if (!page) 3685 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3686 3687 if (page) { 3688 struct zone *zone = page_zone(page); 3689 3690 zone->compact_blockskip_flush = false; 3691 compaction_defer_reset(zone, order, true); 3692 count_vm_event(COMPACTSUCCESS); 3693 return page; 3694 } 3695 3696 /* 3697 * It's bad if compaction run occurs and fails. The most likely reason 3698 * is that pages exist, but not enough to satisfy watermarks. 3699 */ 3700 count_vm_event(COMPACTFAIL); 3701 3702 cond_resched(); 3703 3704 return NULL; 3705 } 3706 3707 static inline bool 3708 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3709 enum compact_result compact_result, 3710 enum compact_priority *compact_priority, 3711 int *compaction_retries) 3712 { 3713 int max_retries = MAX_COMPACT_RETRIES; 3714 int min_priority; 3715 bool ret = false; 3716 int retries = *compaction_retries; 3717 enum compact_priority priority = *compact_priority; 3718 3719 if (!order) 3720 return false; 3721 3722 if (fatal_signal_pending(current)) 3723 return false; 3724 3725 /* 3726 * Compaction was skipped due to a lack of free order-0 3727 * migration targets. Continue if reclaim can help. 3728 */ 3729 if (compact_result == COMPACT_SKIPPED) { 3730 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3731 goto out; 3732 } 3733 3734 /* 3735 * Compaction managed to coalesce some page blocks, but the 3736 * allocation failed presumably due to a race. Retry some. 3737 */ 3738 if (compact_result == COMPACT_SUCCESS) { 3739 /* 3740 * !costly requests are much more important than 3741 * __GFP_RETRY_MAYFAIL costly ones because they are de 3742 * facto nofail and invoke OOM killer to move on while 3743 * costly can fail and users are ready to cope with 3744 * that. 1/4 retries is rather arbitrary but we would 3745 * need much more detailed feedback from compaction to 3746 * make a better decision. 3747 */ 3748 if (order > PAGE_ALLOC_COSTLY_ORDER) 3749 max_retries /= 4; 3750 3751 if (++(*compaction_retries) <= max_retries) { 3752 ret = true; 3753 goto out; 3754 } 3755 } 3756 3757 /* 3758 * Compaction failed. Retry with increasing priority. 3759 */ 3760 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3761 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3762 3763 if (*compact_priority > min_priority) { 3764 (*compact_priority)--; 3765 *compaction_retries = 0; 3766 ret = true; 3767 } 3768 out: 3769 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3770 return ret; 3771 } 3772 #else 3773 static inline struct page * 3774 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3775 unsigned int alloc_flags, const struct alloc_context *ac, 3776 enum compact_priority prio, enum compact_result *compact_result) 3777 { 3778 *compact_result = COMPACT_SKIPPED; 3779 return NULL; 3780 } 3781 3782 static inline bool 3783 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3784 enum compact_result compact_result, 3785 enum compact_priority *compact_priority, 3786 int *compaction_retries) 3787 { 3788 struct zone *zone; 3789 struct zoneref *z; 3790 3791 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3792 return false; 3793 3794 /* 3795 * There are setups with compaction disabled which would prefer to loop 3796 * inside the allocator rather than hit the oom killer prematurely. 3797 * Let's give them a good hope and keep retrying while the order-0 3798 * watermarks are OK. 3799 */ 3800 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3801 ac->highest_zoneidx, ac->nodemask) { 3802 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3803 ac->highest_zoneidx, alloc_flags)) 3804 return true; 3805 } 3806 return false; 3807 } 3808 #endif /* CONFIG_COMPACTION */ 3809 3810 #ifdef CONFIG_LOCKDEP 3811 static struct lockdep_map __fs_reclaim_map = 3812 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3813 3814 static bool __need_reclaim(gfp_t gfp_mask) 3815 { 3816 /* no reclaim without waiting on it */ 3817 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3818 return false; 3819 3820 /* this guy won't enter reclaim */ 3821 if (current->flags & PF_MEMALLOC) 3822 return false; 3823 3824 if (gfp_mask & __GFP_NOLOCKDEP) 3825 return false; 3826 3827 return true; 3828 } 3829 3830 void __fs_reclaim_acquire(unsigned long ip) 3831 { 3832 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3833 } 3834 3835 void __fs_reclaim_release(unsigned long ip) 3836 { 3837 lock_release(&__fs_reclaim_map, ip); 3838 } 3839 3840 void fs_reclaim_acquire(gfp_t gfp_mask) 3841 { 3842 gfp_mask = current_gfp_context(gfp_mask); 3843 3844 if (__need_reclaim(gfp_mask)) { 3845 if (gfp_mask & __GFP_FS) 3846 __fs_reclaim_acquire(_RET_IP_); 3847 3848 #ifdef CONFIG_MMU_NOTIFIER 3849 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3850 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3851 #endif 3852 3853 } 3854 } 3855 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3856 3857 void fs_reclaim_release(gfp_t gfp_mask) 3858 { 3859 gfp_mask = current_gfp_context(gfp_mask); 3860 3861 if (__need_reclaim(gfp_mask)) { 3862 if (gfp_mask & __GFP_FS) 3863 __fs_reclaim_release(_RET_IP_); 3864 } 3865 } 3866 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3867 #endif 3868 3869 /* 3870 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3871 * have been rebuilt so allocation retries. Reader side does not lock and 3872 * retries the allocation if zonelist changes. Writer side is protected by the 3873 * embedded spin_lock. 3874 */ 3875 static DEFINE_SEQLOCK(zonelist_update_seq); 3876 3877 static unsigned int zonelist_iter_begin(void) 3878 { 3879 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3880 return read_seqbegin(&zonelist_update_seq); 3881 3882 return 0; 3883 } 3884 3885 static unsigned int check_retry_zonelist(unsigned int seq) 3886 { 3887 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3888 return read_seqretry(&zonelist_update_seq, seq); 3889 3890 return seq; 3891 } 3892 3893 /* Perform direct synchronous page reclaim */ 3894 static unsigned long 3895 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3896 const struct alloc_context *ac) 3897 { 3898 unsigned int noreclaim_flag; 3899 unsigned long progress; 3900 3901 cond_resched(); 3902 3903 /* We now go into synchronous reclaim */ 3904 cpuset_memory_pressure_bump(); 3905 fs_reclaim_acquire(gfp_mask); 3906 noreclaim_flag = memalloc_noreclaim_save(); 3907 3908 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3909 ac->nodemask); 3910 3911 memalloc_noreclaim_restore(noreclaim_flag); 3912 fs_reclaim_release(gfp_mask); 3913 3914 cond_resched(); 3915 3916 return progress; 3917 } 3918 3919 /* The really slow allocator path where we enter direct reclaim */ 3920 static inline struct page * 3921 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3922 unsigned int alloc_flags, const struct alloc_context *ac, 3923 unsigned long *did_some_progress) 3924 { 3925 struct page *page = NULL; 3926 unsigned long pflags; 3927 bool drained = false; 3928 3929 psi_memstall_enter(&pflags); 3930 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3931 if (unlikely(!(*did_some_progress))) 3932 goto out; 3933 3934 retry: 3935 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3936 3937 /* 3938 * If an allocation failed after direct reclaim, it could be because 3939 * pages are pinned on the per-cpu lists or in high alloc reserves. 3940 * Shrink them and try again 3941 */ 3942 if (!page && !drained) { 3943 unreserve_highatomic_pageblock(ac, false); 3944 drain_all_pages(NULL); 3945 drained = true; 3946 goto retry; 3947 } 3948 out: 3949 psi_memstall_leave(&pflags); 3950 3951 return page; 3952 } 3953 3954 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3955 const struct alloc_context *ac) 3956 { 3957 struct zoneref *z; 3958 struct zone *zone; 3959 pg_data_t *last_pgdat = NULL; 3960 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3961 3962 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3963 ac->nodemask) { 3964 if (!managed_zone(zone)) 3965 continue; 3966 if (last_pgdat != zone->zone_pgdat) { 3967 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3968 last_pgdat = zone->zone_pgdat; 3969 } 3970 } 3971 } 3972 3973 static inline unsigned int 3974 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3975 { 3976 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3977 3978 /* 3979 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3980 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3981 * to save two branches. 3982 */ 3983 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3984 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3985 3986 /* 3987 * The caller may dip into page reserves a bit more if the caller 3988 * cannot run direct reclaim, or if the caller has realtime scheduling 3989 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3990 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3991 */ 3992 alloc_flags |= (__force int) 3993 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3994 3995 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3996 /* 3997 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3998 * if it can't schedule. 3999 */ 4000 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4001 alloc_flags |= ALLOC_NON_BLOCK; 4002 4003 if (order > 0) 4004 alloc_flags |= ALLOC_HIGHATOMIC; 4005 } 4006 4007 /* 4008 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4009 * GFP_ATOMIC) rather than fail, see the comment for 4010 * cpuset_node_allowed(). 4011 */ 4012 if (alloc_flags & ALLOC_MIN_RESERVE) 4013 alloc_flags &= ~ALLOC_CPUSET; 4014 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4015 alloc_flags |= ALLOC_MIN_RESERVE; 4016 4017 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4018 4019 return alloc_flags; 4020 } 4021 4022 static bool oom_reserves_allowed(struct task_struct *tsk) 4023 { 4024 if (!tsk_is_oom_victim(tsk)) 4025 return false; 4026 4027 /* 4028 * !MMU doesn't have oom reaper so give access to memory reserves 4029 * only to the thread with TIF_MEMDIE set 4030 */ 4031 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4032 return false; 4033 4034 return true; 4035 } 4036 4037 /* 4038 * Distinguish requests which really need access to full memory 4039 * reserves from oom victims which can live with a portion of it 4040 */ 4041 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4042 { 4043 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4044 return 0; 4045 if (gfp_mask & __GFP_MEMALLOC) 4046 return ALLOC_NO_WATERMARKS; 4047 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4048 return ALLOC_NO_WATERMARKS; 4049 if (!in_interrupt()) { 4050 if (current->flags & PF_MEMALLOC) 4051 return ALLOC_NO_WATERMARKS; 4052 else if (oom_reserves_allowed(current)) 4053 return ALLOC_OOM; 4054 } 4055 4056 return 0; 4057 } 4058 4059 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4060 { 4061 return !!__gfp_pfmemalloc_flags(gfp_mask); 4062 } 4063 4064 /* 4065 * Checks whether it makes sense to retry the reclaim to make a forward progress 4066 * for the given allocation request. 4067 * 4068 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4069 * without success, or when we couldn't even meet the watermark if we 4070 * reclaimed all remaining pages on the LRU lists. 4071 * 4072 * Returns true if a retry is viable or false to enter the oom path. 4073 */ 4074 static inline bool 4075 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4076 struct alloc_context *ac, int alloc_flags, 4077 bool did_some_progress, int *no_progress_loops) 4078 { 4079 struct zone *zone; 4080 struct zoneref *z; 4081 bool ret = false; 4082 4083 /* 4084 * Costly allocations might have made a progress but this doesn't mean 4085 * their order will become available due to high fragmentation so 4086 * always increment the no progress counter for them 4087 */ 4088 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4089 *no_progress_loops = 0; 4090 else 4091 (*no_progress_loops)++; 4092 4093 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4094 goto out; 4095 4096 4097 /* 4098 * Keep reclaiming pages while there is a chance this will lead 4099 * somewhere. If none of the target zones can satisfy our allocation 4100 * request even if all reclaimable pages are considered then we are 4101 * screwed and have to go OOM. 4102 */ 4103 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4104 ac->highest_zoneidx, ac->nodemask) { 4105 unsigned long available; 4106 unsigned long reclaimable; 4107 unsigned long min_wmark = min_wmark_pages(zone); 4108 bool wmark; 4109 4110 if (cpusets_enabled() && 4111 (alloc_flags & ALLOC_CPUSET) && 4112 !__cpuset_zone_allowed(zone, gfp_mask)) 4113 continue; 4114 4115 available = reclaimable = zone_reclaimable_pages(zone); 4116 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4117 4118 /* 4119 * Would the allocation succeed if we reclaimed all 4120 * reclaimable pages? 4121 */ 4122 wmark = __zone_watermark_ok(zone, order, min_wmark, 4123 ac->highest_zoneidx, alloc_flags, available); 4124 trace_reclaim_retry_zone(z, order, reclaimable, 4125 available, min_wmark, *no_progress_loops, wmark); 4126 if (wmark) { 4127 ret = true; 4128 break; 4129 } 4130 } 4131 4132 /* 4133 * Memory allocation/reclaim might be called from a WQ context and the 4134 * current implementation of the WQ concurrency control doesn't 4135 * recognize that a particular WQ is congested if the worker thread is 4136 * looping without ever sleeping. Therefore we have to do a short sleep 4137 * here rather than calling cond_resched(). 4138 */ 4139 if (current->flags & PF_WQ_WORKER) 4140 schedule_timeout_uninterruptible(1); 4141 else 4142 cond_resched(); 4143 out: 4144 /* Before OOM, exhaust highatomic_reserve */ 4145 if (!ret) 4146 return unreserve_highatomic_pageblock(ac, true); 4147 4148 return ret; 4149 } 4150 4151 static inline bool 4152 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4153 { 4154 /* 4155 * It's possible that cpuset's mems_allowed and the nodemask from 4156 * mempolicy don't intersect. This should be normally dealt with by 4157 * policy_nodemask(), but it's possible to race with cpuset update in 4158 * such a way the check therein was true, and then it became false 4159 * before we got our cpuset_mems_cookie here. 4160 * This assumes that for all allocations, ac->nodemask can come only 4161 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4162 * when it does not intersect with the cpuset restrictions) or the 4163 * caller can deal with a violated nodemask. 4164 */ 4165 if (cpusets_enabled() && ac->nodemask && 4166 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4167 ac->nodemask = NULL; 4168 return true; 4169 } 4170 4171 /* 4172 * When updating a task's mems_allowed or mempolicy nodemask, it is 4173 * possible to race with parallel threads in such a way that our 4174 * allocation can fail while the mask is being updated. If we are about 4175 * to fail, check if the cpuset changed during allocation and if so, 4176 * retry. 4177 */ 4178 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4179 return true; 4180 4181 return false; 4182 } 4183 4184 static inline struct page * 4185 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4186 struct alloc_context *ac) 4187 { 4188 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4189 bool can_compact = gfp_compaction_allowed(gfp_mask); 4190 bool nofail = gfp_mask & __GFP_NOFAIL; 4191 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4192 struct page *page = NULL; 4193 unsigned int alloc_flags; 4194 unsigned long did_some_progress; 4195 enum compact_priority compact_priority; 4196 enum compact_result compact_result; 4197 int compaction_retries; 4198 int no_progress_loops; 4199 unsigned int cpuset_mems_cookie; 4200 unsigned int zonelist_iter_cookie; 4201 int reserve_flags; 4202 4203 if (unlikely(nofail)) { 4204 /* 4205 * We most definitely don't want callers attempting to 4206 * allocate greater than order-1 page units with __GFP_NOFAIL. 4207 */ 4208 WARN_ON_ONCE(order > 1); 4209 /* 4210 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4211 * otherwise, we may result in lockup. 4212 */ 4213 WARN_ON_ONCE(!can_direct_reclaim); 4214 /* 4215 * PF_MEMALLOC request from this context is rather bizarre 4216 * because we cannot reclaim anything and only can loop waiting 4217 * for somebody to do a work for us. 4218 */ 4219 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4220 } 4221 4222 restart: 4223 compaction_retries = 0; 4224 no_progress_loops = 0; 4225 compact_priority = DEF_COMPACT_PRIORITY; 4226 cpuset_mems_cookie = read_mems_allowed_begin(); 4227 zonelist_iter_cookie = zonelist_iter_begin(); 4228 4229 /* 4230 * The fast path uses conservative alloc_flags to succeed only until 4231 * kswapd needs to be woken up, and to avoid the cost of setting up 4232 * alloc_flags precisely. So we do that now. 4233 */ 4234 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4235 4236 /* 4237 * We need to recalculate the starting point for the zonelist iterator 4238 * because we might have used different nodemask in the fast path, or 4239 * there was a cpuset modification and we are retrying - otherwise we 4240 * could end up iterating over non-eligible zones endlessly. 4241 */ 4242 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4243 ac->highest_zoneidx, ac->nodemask); 4244 if (!zonelist_zone(ac->preferred_zoneref)) 4245 goto nopage; 4246 4247 /* 4248 * Check for insane configurations where the cpuset doesn't contain 4249 * any suitable zone to satisfy the request - e.g. non-movable 4250 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4251 */ 4252 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4253 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4254 ac->highest_zoneidx, 4255 &cpuset_current_mems_allowed); 4256 if (!zonelist_zone(z)) 4257 goto nopage; 4258 } 4259 4260 if (alloc_flags & ALLOC_KSWAPD) 4261 wake_all_kswapds(order, gfp_mask, ac); 4262 4263 /* 4264 * The adjusted alloc_flags might result in immediate success, so try 4265 * that first 4266 */ 4267 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4268 if (page) 4269 goto got_pg; 4270 4271 /* 4272 * For costly allocations, try direct compaction first, as it's likely 4273 * that we have enough base pages and don't need to reclaim. For non- 4274 * movable high-order allocations, do that as well, as compaction will 4275 * try prevent permanent fragmentation by migrating from blocks of the 4276 * same migratetype. 4277 * Don't try this for allocations that are allowed to ignore 4278 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4279 */ 4280 if (can_direct_reclaim && can_compact && 4281 (costly_order || 4282 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4283 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4284 page = __alloc_pages_direct_compact(gfp_mask, order, 4285 alloc_flags, ac, 4286 INIT_COMPACT_PRIORITY, 4287 &compact_result); 4288 if (page) 4289 goto got_pg; 4290 4291 /* 4292 * Checks for costly allocations with __GFP_NORETRY, which 4293 * includes some THP page fault allocations 4294 */ 4295 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4296 /* 4297 * If allocating entire pageblock(s) and compaction 4298 * failed because all zones are below low watermarks 4299 * or is prohibited because it recently failed at this 4300 * order, fail immediately unless the allocator has 4301 * requested compaction and reclaim retry. 4302 * 4303 * Reclaim is 4304 * - potentially very expensive because zones are far 4305 * below their low watermarks or this is part of very 4306 * bursty high order allocations, 4307 * - not guaranteed to help because isolate_freepages() 4308 * may not iterate over freed pages as part of its 4309 * linear scan, and 4310 * - unlikely to make entire pageblocks free on its 4311 * own. 4312 */ 4313 if (compact_result == COMPACT_SKIPPED || 4314 compact_result == COMPACT_DEFERRED) 4315 goto nopage; 4316 4317 /* 4318 * Looks like reclaim/compaction is worth trying, but 4319 * sync compaction could be very expensive, so keep 4320 * using async compaction. 4321 */ 4322 compact_priority = INIT_COMPACT_PRIORITY; 4323 } 4324 } 4325 4326 retry: 4327 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4328 if (alloc_flags & ALLOC_KSWAPD) 4329 wake_all_kswapds(order, gfp_mask, ac); 4330 4331 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4332 if (reserve_flags) 4333 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4334 (alloc_flags & ALLOC_KSWAPD); 4335 4336 /* 4337 * Reset the nodemask and zonelist iterators if memory policies can be 4338 * ignored. These allocations are high priority and system rather than 4339 * user oriented. 4340 */ 4341 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4342 ac->nodemask = NULL; 4343 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4344 ac->highest_zoneidx, ac->nodemask); 4345 } 4346 4347 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4348 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4349 if (page) 4350 goto got_pg; 4351 4352 /* Caller is not willing to reclaim, we can't balance anything */ 4353 if (!can_direct_reclaim) 4354 goto nopage; 4355 4356 /* Avoid recursion of direct reclaim */ 4357 if (current->flags & PF_MEMALLOC) 4358 goto nopage; 4359 4360 /* Try direct reclaim and then allocating */ 4361 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4362 &did_some_progress); 4363 if (page) 4364 goto got_pg; 4365 4366 /* Try direct compaction and then allocating */ 4367 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4368 compact_priority, &compact_result); 4369 if (page) 4370 goto got_pg; 4371 4372 /* Do not loop if specifically requested */ 4373 if (gfp_mask & __GFP_NORETRY) 4374 goto nopage; 4375 4376 /* 4377 * Do not retry costly high order allocations unless they are 4378 * __GFP_RETRY_MAYFAIL and we can compact 4379 */ 4380 if (costly_order && (!can_compact || 4381 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4382 goto nopage; 4383 4384 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4385 did_some_progress > 0, &no_progress_loops)) 4386 goto retry; 4387 4388 /* 4389 * It doesn't make any sense to retry for the compaction if the order-0 4390 * reclaim is not able to make any progress because the current 4391 * implementation of the compaction depends on the sufficient amount 4392 * of free memory (see __compaction_suitable) 4393 */ 4394 if (did_some_progress > 0 && can_compact && 4395 should_compact_retry(ac, order, alloc_flags, 4396 compact_result, &compact_priority, 4397 &compaction_retries)) 4398 goto retry; 4399 4400 4401 /* 4402 * Deal with possible cpuset update races or zonelist updates to avoid 4403 * a unnecessary OOM kill. 4404 */ 4405 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4406 check_retry_zonelist(zonelist_iter_cookie)) 4407 goto restart; 4408 4409 /* Reclaim has failed us, start killing things */ 4410 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4411 if (page) 4412 goto got_pg; 4413 4414 /* Avoid allocations with no watermarks from looping endlessly */ 4415 if (tsk_is_oom_victim(current) && 4416 (alloc_flags & ALLOC_OOM || 4417 (gfp_mask & __GFP_NOMEMALLOC))) 4418 goto nopage; 4419 4420 /* Retry as long as the OOM killer is making progress */ 4421 if (did_some_progress) { 4422 no_progress_loops = 0; 4423 goto retry; 4424 } 4425 4426 nopage: 4427 /* 4428 * Deal with possible cpuset update races or zonelist updates to avoid 4429 * a unnecessary OOM kill. 4430 */ 4431 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4432 check_retry_zonelist(zonelist_iter_cookie)) 4433 goto restart; 4434 4435 /* 4436 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4437 * we always retry 4438 */ 4439 if (unlikely(nofail)) { 4440 /* 4441 * Lacking direct_reclaim we can't do anything to reclaim memory, 4442 * we disregard these unreasonable nofail requests and still 4443 * return NULL 4444 */ 4445 if (!can_direct_reclaim) 4446 goto fail; 4447 4448 /* 4449 * Help non-failing allocations by giving some access to memory 4450 * reserves normally used for high priority non-blocking 4451 * allocations but do not use ALLOC_NO_WATERMARKS because this 4452 * could deplete whole memory reserves which would just make 4453 * the situation worse. 4454 */ 4455 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4456 if (page) 4457 goto got_pg; 4458 4459 cond_resched(); 4460 goto retry; 4461 } 4462 fail: 4463 warn_alloc(gfp_mask, ac->nodemask, 4464 "page allocation failure: order:%u", order); 4465 got_pg: 4466 return page; 4467 } 4468 4469 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4470 int preferred_nid, nodemask_t *nodemask, 4471 struct alloc_context *ac, gfp_t *alloc_gfp, 4472 unsigned int *alloc_flags) 4473 { 4474 ac->highest_zoneidx = gfp_zone(gfp_mask); 4475 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4476 ac->nodemask = nodemask; 4477 ac->migratetype = gfp_migratetype(gfp_mask); 4478 4479 if (cpusets_enabled()) { 4480 *alloc_gfp |= __GFP_HARDWALL; 4481 /* 4482 * When we are in the interrupt context, it is irrelevant 4483 * to the current task context. It means that any node ok. 4484 */ 4485 if (in_task() && !ac->nodemask) 4486 ac->nodemask = &cpuset_current_mems_allowed; 4487 else 4488 *alloc_flags |= ALLOC_CPUSET; 4489 } 4490 4491 might_alloc(gfp_mask); 4492 4493 if (should_fail_alloc_page(gfp_mask, order)) 4494 return false; 4495 4496 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4497 4498 /* Dirty zone balancing only done in the fast path */ 4499 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4500 4501 /* 4502 * The preferred zone is used for statistics but crucially it is 4503 * also used as the starting point for the zonelist iterator. It 4504 * may get reset for allocations that ignore memory policies. 4505 */ 4506 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4507 ac->highest_zoneidx, ac->nodemask); 4508 4509 return true; 4510 } 4511 4512 /* 4513 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4514 * @gfp: GFP flags for the allocation 4515 * @preferred_nid: The preferred NUMA node ID to allocate from 4516 * @nodemask: Set of nodes to allocate from, may be NULL 4517 * @nr_pages: The number of pages desired on the list or array 4518 * @page_list: Optional list to store the allocated pages 4519 * @page_array: Optional array to store the pages 4520 * 4521 * This is a batched version of the page allocator that attempts to 4522 * allocate nr_pages quickly. Pages are added to page_list if page_list 4523 * is not NULL, otherwise it is assumed that the page_array is valid. 4524 * 4525 * For lists, nr_pages is the number of pages that should be allocated. 4526 * 4527 * For arrays, only NULL elements are populated with pages and nr_pages 4528 * is the maximum number of pages that will be stored in the array. 4529 * 4530 * Returns the number of pages on the list or array. 4531 */ 4532 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4533 nodemask_t *nodemask, int nr_pages, 4534 struct list_head *page_list, 4535 struct page **page_array) 4536 { 4537 struct page *page; 4538 unsigned long __maybe_unused UP_flags; 4539 struct zone *zone; 4540 struct zoneref *z; 4541 struct per_cpu_pages *pcp; 4542 struct list_head *pcp_list; 4543 struct alloc_context ac; 4544 gfp_t alloc_gfp; 4545 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4546 int nr_populated = 0, nr_account = 0; 4547 4548 /* 4549 * Skip populated array elements to determine if any pages need 4550 * to be allocated before disabling IRQs. 4551 */ 4552 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4553 nr_populated++; 4554 4555 /* No pages requested? */ 4556 if (unlikely(nr_pages <= 0)) 4557 goto out; 4558 4559 /* Already populated array? */ 4560 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4561 goto out; 4562 4563 /* Bulk allocator does not support memcg accounting. */ 4564 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4565 goto failed; 4566 4567 /* Use the single page allocator for one page. */ 4568 if (nr_pages - nr_populated == 1) 4569 goto failed; 4570 4571 #ifdef CONFIG_PAGE_OWNER 4572 /* 4573 * PAGE_OWNER may recurse into the allocator to allocate space to 4574 * save the stack with pagesets.lock held. Releasing/reacquiring 4575 * removes much of the performance benefit of bulk allocation so 4576 * force the caller to allocate one page at a time as it'll have 4577 * similar performance to added complexity to the bulk allocator. 4578 */ 4579 if (static_branch_unlikely(&page_owner_inited)) 4580 goto failed; 4581 #endif 4582 4583 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4584 gfp &= gfp_allowed_mask; 4585 alloc_gfp = gfp; 4586 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4587 goto out; 4588 gfp = alloc_gfp; 4589 4590 /* Find an allowed local zone that meets the low watermark. */ 4591 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4592 unsigned long mark; 4593 4594 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4595 !__cpuset_zone_allowed(zone, gfp)) { 4596 continue; 4597 } 4598 4599 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 4600 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 4601 goto failed; 4602 } 4603 4604 cond_accept_memory(zone, 0); 4605 retry_this_zone: 4606 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4607 if (zone_watermark_fast(zone, 0, mark, 4608 zonelist_zone_idx(ac.preferred_zoneref), 4609 alloc_flags, gfp)) { 4610 break; 4611 } 4612 4613 if (cond_accept_memory(zone, 0)) 4614 goto retry_this_zone; 4615 4616 /* Try again if zone has deferred pages */ 4617 if (deferred_pages_enabled()) { 4618 if (_deferred_grow_zone(zone, 0)) 4619 goto retry_this_zone; 4620 } 4621 } 4622 4623 /* 4624 * If there are no allowed local zones that meets the watermarks then 4625 * try to allocate a single page and reclaim if necessary. 4626 */ 4627 if (unlikely(!zone)) 4628 goto failed; 4629 4630 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4631 pcp_trylock_prepare(UP_flags); 4632 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4633 if (!pcp) 4634 goto failed_irq; 4635 4636 /* Attempt the batch allocation */ 4637 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4638 while (nr_populated < nr_pages) { 4639 4640 /* Skip existing pages */ 4641 if (page_array && page_array[nr_populated]) { 4642 nr_populated++; 4643 continue; 4644 } 4645 4646 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4647 pcp, pcp_list); 4648 if (unlikely(!page)) { 4649 /* Try and allocate at least one page */ 4650 if (!nr_account) { 4651 pcp_spin_unlock(pcp); 4652 goto failed_irq; 4653 } 4654 break; 4655 } 4656 nr_account++; 4657 4658 prep_new_page(page, 0, gfp, 0); 4659 if (page_list) 4660 list_add(&page->lru, page_list); 4661 else 4662 page_array[nr_populated] = page; 4663 nr_populated++; 4664 } 4665 4666 pcp_spin_unlock(pcp); 4667 pcp_trylock_finish(UP_flags); 4668 4669 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4670 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 4671 4672 out: 4673 return nr_populated; 4674 4675 failed_irq: 4676 pcp_trylock_finish(UP_flags); 4677 4678 failed: 4679 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4680 if (page) { 4681 if (page_list) 4682 list_add(&page->lru, page_list); 4683 else 4684 page_array[nr_populated] = page; 4685 nr_populated++; 4686 } 4687 4688 goto out; 4689 } 4690 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4691 4692 /* 4693 * This is the 'heart' of the zoned buddy allocator. 4694 */ 4695 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4696 int preferred_nid, nodemask_t *nodemask) 4697 { 4698 struct page *page; 4699 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4700 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4701 struct alloc_context ac = { }; 4702 4703 /* 4704 * There are several places where we assume that the order value is sane 4705 * so bail out early if the request is out of bound. 4706 */ 4707 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4708 return NULL; 4709 4710 gfp &= gfp_allowed_mask; 4711 /* 4712 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4713 * resp. GFP_NOIO which has to be inherited for all allocation requests 4714 * from a particular context which has been marked by 4715 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4716 * movable zones are not used during allocation. 4717 */ 4718 gfp = current_gfp_context(gfp); 4719 alloc_gfp = gfp; 4720 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4721 &alloc_gfp, &alloc_flags)) 4722 return NULL; 4723 4724 /* 4725 * Forbid the first pass from falling back to types that fragment 4726 * memory until all local zones are considered. 4727 */ 4728 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 4729 4730 /* First allocation attempt */ 4731 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4732 if (likely(page)) 4733 goto out; 4734 4735 alloc_gfp = gfp; 4736 ac.spread_dirty_pages = false; 4737 4738 /* 4739 * Restore the original nodemask if it was potentially replaced with 4740 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4741 */ 4742 ac.nodemask = nodemask; 4743 4744 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4745 4746 out: 4747 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4748 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4749 __free_pages(page, order); 4750 page = NULL; 4751 } 4752 4753 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4754 kmsan_alloc_page(page, order, alloc_gfp); 4755 4756 return page; 4757 } 4758 EXPORT_SYMBOL(__alloc_pages_noprof); 4759 4760 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 4761 nodemask_t *nodemask) 4762 { 4763 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 4764 preferred_nid, nodemask); 4765 return page_rmappable_folio(page); 4766 } 4767 EXPORT_SYMBOL(__folio_alloc_noprof); 4768 4769 /* 4770 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4771 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4772 * you need to access high mem. 4773 */ 4774 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 4775 { 4776 struct page *page; 4777 4778 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 4779 if (!page) 4780 return 0; 4781 return (unsigned long) page_address(page); 4782 } 4783 EXPORT_SYMBOL(get_free_pages_noprof); 4784 4785 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 4786 { 4787 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 4788 } 4789 EXPORT_SYMBOL(get_zeroed_page_noprof); 4790 4791 /** 4792 * __free_pages - Free pages allocated with alloc_pages(). 4793 * @page: The page pointer returned from alloc_pages(). 4794 * @order: The order of the allocation. 4795 * 4796 * This function can free multi-page allocations that are not compound 4797 * pages. It does not check that the @order passed in matches that of 4798 * the allocation, so it is easy to leak memory. Freeing more memory 4799 * than was allocated will probably emit a warning. 4800 * 4801 * If the last reference to this page is speculative, it will be released 4802 * by put_page() which only frees the first page of a non-compound 4803 * allocation. To prevent the remaining pages from being leaked, we free 4804 * the subsequent pages here. If you want to use the page's reference 4805 * count to decide when to free the allocation, you should allocate a 4806 * compound page, and use put_page() instead of __free_pages(). 4807 * 4808 * Context: May be called in interrupt context or while holding a normal 4809 * spinlock, but not in NMI context or while holding a raw spinlock. 4810 */ 4811 void __free_pages(struct page *page, unsigned int order) 4812 { 4813 /* get PageHead before we drop reference */ 4814 int head = PageHead(page); 4815 struct alloc_tag *tag = pgalloc_tag_get(page); 4816 4817 if (put_page_testzero(page)) 4818 free_unref_page(page, order); 4819 else if (!head) { 4820 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 4821 while (order-- > 0) 4822 free_unref_page(page + (1 << order), order); 4823 } 4824 } 4825 EXPORT_SYMBOL(__free_pages); 4826 4827 void free_pages(unsigned long addr, unsigned int order) 4828 { 4829 if (addr != 0) { 4830 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4831 __free_pages(virt_to_page((void *)addr), order); 4832 } 4833 } 4834 4835 EXPORT_SYMBOL(free_pages); 4836 4837 /* 4838 * Page Fragment: 4839 * An arbitrary-length arbitrary-offset area of memory which resides 4840 * within a 0 or higher order page. Multiple fragments within that page 4841 * are individually refcounted, in the page's reference counter. 4842 * 4843 * The page_frag functions below provide a simple allocation framework for 4844 * page fragments. This is used by the network stack and network device 4845 * drivers to provide a backing region of memory for use as either an 4846 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4847 */ 4848 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4849 gfp_t gfp_mask) 4850 { 4851 struct page *page = NULL; 4852 gfp_t gfp = gfp_mask; 4853 4854 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4855 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | 4856 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC; 4857 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4858 PAGE_FRAG_CACHE_MAX_ORDER); 4859 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4860 #endif 4861 if (unlikely(!page)) 4862 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4863 4864 nc->va = page ? page_address(page) : NULL; 4865 4866 return page; 4867 } 4868 4869 void page_frag_cache_drain(struct page_frag_cache *nc) 4870 { 4871 if (!nc->va) 4872 return; 4873 4874 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias); 4875 nc->va = NULL; 4876 } 4877 EXPORT_SYMBOL(page_frag_cache_drain); 4878 4879 void __page_frag_cache_drain(struct page *page, unsigned int count) 4880 { 4881 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4882 4883 if (page_ref_sub_and_test(page, count)) 4884 free_unref_page(page, compound_order(page)); 4885 } 4886 EXPORT_SYMBOL(__page_frag_cache_drain); 4887 4888 void *__page_frag_alloc_align(struct page_frag_cache *nc, 4889 unsigned int fragsz, gfp_t gfp_mask, 4890 unsigned int align_mask) 4891 { 4892 unsigned int size = PAGE_SIZE; 4893 struct page *page; 4894 int offset; 4895 4896 if (unlikely(!nc->va)) { 4897 refill: 4898 page = __page_frag_cache_refill(nc, gfp_mask); 4899 if (!page) 4900 return NULL; 4901 4902 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4903 /* if size can vary use size else just use PAGE_SIZE */ 4904 size = nc->size; 4905 #endif 4906 /* Even if we own the page, we do not use atomic_set(). 4907 * This would break get_page_unless_zero() users. 4908 */ 4909 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4910 4911 /* reset page count bias and offset to start of new frag */ 4912 nc->pfmemalloc = page_is_pfmemalloc(page); 4913 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4914 nc->offset = size; 4915 } 4916 4917 offset = nc->offset - fragsz; 4918 if (unlikely(offset < 0)) { 4919 page = virt_to_page(nc->va); 4920 4921 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4922 goto refill; 4923 4924 if (unlikely(nc->pfmemalloc)) { 4925 free_unref_page(page, compound_order(page)); 4926 goto refill; 4927 } 4928 4929 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4930 /* if size can vary use size else just use PAGE_SIZE */ 4931 size = nc->size; 4932 #endif 4933 /* OK, page count is 0, we can safely set it */ 4934 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4935 4936 /* reset page count bias and offset to start of new frag */ 4937 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4938 offset = size - fragsz; 4939 if (unlikely(offset < 0)) { 4940 /* 4941 * The caller is trying to allocate a fragment 4942 * with fragsz > PAGE_SIZE but the cache isn't big 4943 * enough to satisfy the request, this may 4944 * happen in low memory conditions. 4945 * We don't release the cache page because 4946 * it could make memory pressure worse 4947 * so we simply return NULL here. 4948 */ 4949 return NULL; 4950 } 4951 } 4952 4953 nc->pagecnt_bias--; 4954 offset &= align_mask; 4955 nc->offset = offset; 4956 4957 return nc->va + offset; 4958 } 4959 EXPORT_SYMBOL(__page_frag_alloc_align); 4960 4961 /* 4962 * Frees a page fragment allocated out of either a compound or order 0 page. 4963 */ 4964 void page_frag_free(void *addr) 4965 { 4966 struct page *page = virt_to_head_page(addr); 4967 4968 if (unlikely(put_page_testzero(page))) 4969 free_unref_page(page, compound_order(page)); 4970 } 4971 EXPORT_SYMBOL(page_frag_free); 4972 4973 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4974 size_t size) 4975 { 4976 if (addr) { 4977 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4978 struct page *page = virt_to_page((void *)addr); 4979 struct page *last = page + nr; 4980 4981 split_page_owner(page, order, 0); 4982 pgalloc_tag_split(page_folio(page), order, 0); 4983 split_page_memcg(page, order, 0); 4984 while (page < --last) 4985 set_page_refcounted(last); 4986 4987 last = page + (1UL << order); 4988 for (page += nr; page < last; page++) 4989 __free_pages_ok(page, 0, FPI_TO_TAIL); 4990 } 4991 return (void *)addr; 4992 } 4993 4994 /** 4995 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4996 * @size: the number of bytes to allocate 4997 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4998 * 4999 * This function is similar to alloc_pages(), except that it allocates the 5000 * minimum number of pages to satisfy the request. alloc_pages() can only 5001 * allocate memory in power-of-two pages. 5002 * 5003 * This function is also limited by MAX_PAGE_ORDER. 5004 * 5005 * Memory allocated by this function must be released by free_pages_exact(). 5006 * 5007 * Return: pointer to the allocated area or %NULL in case of error. 5008 */ 5009 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5010 { 5011 unsigned int order = get_order(size); 5012 unsigned long addr; 5013 5014 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5015 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5016 5017 addr = get_free_pages_noprof(gfp_mask, order); 5018 return make_alloc_exact(addr, order, size); 5019 } 5020 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5021 5022 /** 5023 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5024 * pages on a node. 5025 * @nid: the preferred node ID where memory should be allocated 5026 * @size: the number of bytes to allocate 5027 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5028 * 5029 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5030 * back. 5031 * 5032 * Return: pointer to the allocated area or %NULL in case of error. 5033 */ 5034 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5035 { 5036 unsigned int order = get_order(size); 5037 struct page *p; 5038 5039 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5040 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5041 5042 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5043 if (!p) 5044 return NULL; 5045 return make_alloc_exact((unsigned long)page_address(p), order, size); 5046 } 5047 5048 /** 5049 * free_pages_exact - release memory allocated via alloc_pages_exact() 5050 * @virt: the value returned by alloc_pages_exact. 5051 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5052 * 5053 * Release the memory allocated by a previous call to alloc_pages_exact. 5054 */ 5055 void free_pages_exact(void *virt, size_t size) 5056 { 5057 unsigned long addr = (unsigned long)virt; 5058 unsigned long end = addr + PAGE_ALIGN(size); 5059 5060 while (addr < end) { 5061 free_page(addr); 5062 addr += PAGE_SIZE; 5063 } 5064 } 5065 EXPORT_SYMBOL(free_pages_exact); 5066 5067 /** 5068 * nr_free_zone_pages - count number of pages beyond high watermark 5069 * @offset: The zone index of the highest zone 5070 * 5071 * nr_free_zone_pages() counts the number of pages which are beyond the 5072 * high watermark within all zones at or below a given zone index. For each 5073 * zone, the number of pages is calculated as: 5074 * 5075 * nr_free_zone_pages = managed_pages - high_pages 5076 * 5077 * Return: number of pages beyond high watermark. 5078 */ 5079 static unsigned long nr_free_zone_pages(int offset) 5080 { 5081 struct zoneref *z; 5082 struct zone *zone; 5083 5084 /* Just pick one node, since fallback list is circular */ 5085 unsigned long sum = 0; 5086 5087 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5088 5089 for_each_zone_zonelist(zone, z, zonelist, offset) { 5090 unsigned long size = zone_managed_pages(zone); 5091 unsigned long high = high_wmark_pages(zone); 5092 if (size > high) 5093 sum += size - high; 5094 } 5095 5096 return sum; 5097 } 5098 5099 /** 5100 * nr_free_buffer_pages - count number of pages beyond high watermark 5101 * 5102 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5103 * watermark within ZONE_DMA and ZONE_NORMAL. 5104 * 5105 * Return: number of pages beyond high watermark within ZONE_DMA and 5106 * ZONE_NORMAL. 5107 */ 5108 unsigned long nr_free_buffer_pages(void) 5109 { 5110 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5111 } 5112 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5113 5114 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5115 { 5116 zoneref->zone = zone; 5117 zoneref->zone_idx = zone_idx(zone); 5118 } 5119 5120 /* 5121 * Builds allocation fallback zone lists. 5122 * 5123 * Add all populated zones of a node to the zonelist. 5124 */ 5125 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5126 { 5127 struct zone *zone; 5128 enum zone_type zone_type = MAX_NR_ZONES; 5129 int nr_zones = 0; 5130 5131 do { 5132 zone_type--; 5133 zone = pgdat->node_zones + zone_type; 5134 if (populated_zone(zone)) { 5135 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5136 check_highest_zone(zone_type); 5137 } 5138 } while (zone_type); 5139 5140 return nr_zones; 5141 } 5142 5143 #ifdef CONFIG_NUMA 5144 5145 static int __parse_numa_zonelist_order(char *s) 5146 { 5147 /* 5148 * We used to support different zonelists modes but they turned 5149 * out to be just not useful. Let's keep the warning in place 5150 * if somebody still use the cmd line parameter so that we do 5151 * not fail it silently 5152 */ 5153 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5154 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5155 return -EINVAL; 5156 } 5157 return 0; 5158 } 5159 5160 static char numa_zonelist_order[] = "Node"; 5161 #define NUMA_ZONELIST_ORDER_LEN 16 5162 /* 5163 * sysctl handler for numa_zonelist_order 5164 */ 5165 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5166 void *buffer, size_t *length, loff_t *ppos) 5167 { 5168 if (write) 5169 return __parse_numa_zonelist_order(buffer); 5170 return proc_dostring(table, write, buffer, length, ppos); 5171 } 5172 5173 static int node_load[MAX_NUMNODES]; 5174 5175 /** 5176 * find_next_best_node - find the next node that should appear in a given node's fallback list 5177 * @node: node whose fallback list we're appending 5178 * @used_node_mask: nodemask_t of already used nodes 5179 * 5180 * We use a number of factors to determine which is the next node that should 5181 * appear on a given node's fallback list. The node should not have appeared 5182 * already in @node's fallback list, and it should be the next closest node 5183 * according to the distance array (which contains arbitrary distance values 5184 * from each node to each node in the system), and should also prefer nodes 5185 * with no CPUs, since presumably they'll have very little allocation pressure 5186 * on them otherwise. 5187 * 5188 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5189 */ 5190 int find_next_best_node(int node, nodemask_t *used_node_mask) 5191 { 5192 int n, val; 5193 int min_val = INT_MAX; 5194 int best_node = NUMA_NO_NODE; 5195 5196 /* 5197 * Use the local node if we haven't already, but for memoryless local 5198 * node, we should skip it and fall back to other nodes. 5199 */ 5200 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5201 node_set(node, *used_node_mask); 5202 return node; 5203 } 5204 5205 for_each_node_state(n, N_MEMORY) { 5206 5207 /* Don't want a node to appear more than once */ 5208 if (node_isset(n, *used_node_mask)) 5209 continue; 5210 5211 /* Use the distance array to find the distance */ 5212 val = node_distance(node, n); 5213 5214 /* Penalize nodes under us ("prefer the next node") */ 5215 val += (n < node); 5216 5217 /* Give preference to headless and unused nodes */ 5218 if (!cpumask_empty(cpumask_of_node(n))) 5219 val += PENALTY_FOR_NODE_WITH_CPUS; 5220 5221 /* Slight preference for less loaded node */ 5222 val *= MAX_NUMNODES; 5223 val += node_load[n]; 5224 5225 if (val < min_val) { 5226 min_val = val; 5227 best_node = n; 5228 } 5229 } 5230 5231 if (best_node >= 0) 5232 node_set(best_node, *used_node_mask); 5233 5234 return best_node; 5235 } 5236 5237 5238 /* 5239 * Build zonelists ordered by node and zones within node. 5240 * This results in maximum locality--normal zone overflows into local 5241 * DMA zone, if any--but risks exhausting DMA zone. 5242 */ 5243 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5244 unsigned nr_nodes) 5245 { 5246 struct zoneref *zonerefs; 5247 int i; 5248 5249 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5250 5251 for (i = 0; i < nr_nodes; i++) { 5252 int nr_zones; 5253 5254 pg_data_t *node = NODE_DATA(node_order[i]); 5255 5256 nr_zones = build_zonerefs_node(node, zonerefs); 5257 zonerefs += nr_zones; 5258 } 5259 zonerefs->zone = NULL; 5260 zonerefs->zone_idx = 0; 5261 } 5262 5263 /* 5264 * Build __GFP_THISNODE zonelists 5265 */ 5266 static void build_thisnode_zonelists(pg_data_t *pgdat) 5267 { 5268 struct zoneref *zonerefs; 5269 int nr_zones; 5270 5271 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5272 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5273 zonerefs += nr_zones; 5274 zonerefs->zone = NULL; 5275 zonerefs->zone_idx = 0; 5276 } 5277 5278 /* 5279 * Build zonelists ordered by zone and nodes within zones. 5280 * This results in conserving DMA zone[s] until all Normal memory is 5281 * exhausted, but results in overflowing to remote node while memory 5282 * may still exist in local DMA zone. 5283 */ 5284 5285 static void build_zonelists(pg_data_t *pgdat) 5286 { 5287 static int node_order[MAX_NUMNODES]; 5288 int node, nr_nodes = 0; 5289 nodemask_t used_mask = NODE_MASK_NONE; 5290 int local_node, prev_node; 5291 5292 /* NUMA-aware ordering of nodes */ 5293 local_node = pgdat->node_id; 5294 prev_node = local_node; 5295 5296 memset(node_order, 0, sizeof(node_order)); 5297 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5298 /* 5299 * We don't want to pressure a particular node. 5300 * So adding penalty to the first node in same 5301 * distance group to make it round-robin. 5302 */ 5303 if (node_distance(local_node, node) != 5304 node_distance(local_node, prev_node)) 5305 node_load[node] += 1; 5306 5307 node_order[nr_nodes++] = node; 5308 prev_node = node; 5309 } 5310 5311 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5312 build_thisnode_zonelists(pgdat); 5313 pr_info("Fallback order for Node %d: ", local_node); 5314 for (node = 0; node < nr_nodes; node++) 5315 pr_cont("%d ", node_order[node]); 5316 pr_cont("\n"); 5317 } 5318 5319 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5320 /* 5321 * Return node id of node used for "local" allocations. 5322 * I.e., first node id of first zone in arg node's generic zonelist. 5323 * Used for initializing percpu 'numa_mem', which is used primarily 5324 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5325 */ 5326 int local_memory_node(int node) 5327 { 5328 struct zoneref *z; 5329 5330 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5331 gfp_zone(GFP_KERNEL), 5332 NULL); 5333 return zonelist_node_idx(z); 5334 } 5335 #endif 5336 5337 static void setup_min_unmapped_ratio(void); 5338 static void setup_min_slab_ratio(void); 5339 #else /* CONFIG_NUMA */ 5340 5341 static void build_zonelists(pg_data_t *pgdat) 5342 { 5343 struct zoneref *zonerefs; 5344 int nr_zones; 5345 5346 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5347 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5348 zonerefs += nr_zones; 5349 5350 zonerefs->zone = NULL; 5351 zonerefs->zone_idx = 0; 5352 } 5353 5354 #endif /* CONFIG_NUMA */ 5355 5356 /* 5357 * Boot pageset table. One per cpu which is going to be used for all 5358 * zones and all nodes. The parameters will be set in such a way 5359 * that an item put on a list will immediately be handed over to 5360 * the buddy list. This is safe since pageset manipulation is done 5361 * with interrupts disabled. 5362 * 5363 * The boot_pagesets must be kept even after bootup is complete for 5364 * unused processors and/or zones. They do play a role for bootstrapping 5365 * hotplugged processors. 5366 * 5367 * zoneinfo_show() and maybe other functions do 5368 * not check if the processor is online before following the pageset pointer. 5369 * Other parts of the kernel may not check if the zone is available. 5370 */ 5371 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5372 /* These effectively disable the pcplists in the boot pageset completely */ 5373 #define BOOT_PAGESET_HIGH 0 5374 #define BOOT_PAGESET_BATCH 1 5375 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5376 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5377 5378 static void __build_all_zonelists(void *data) 5379 { 5380 int nid; 5381 int __maybe_unused cpu; 5382 pg_data_t *self = data; 5383 unsigned long flags; 5384 5385 /* 5386 * The zonelist_update_seq must be acquired with irqsave because the 5387 * reader can be invoked from IRQ with GFP_ATOMIC. 5388 */ 5389 write_seqlock_irqsave(&zonelist_update_seq, flags); 5390 /* 5391 * Also disable synchronous printk() to prevent any printk() from 5392 * trying to hold port->lock, for 5393 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5394 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5395 */ 5396 printk_deferred_enter(); 5397 5398 #ifdef CONFIG_NUMA 5399 memset(node_load, 0, sizeof(node_load)); 5400 #endif 5401 5402 /* 5403 * This node is hotadded and no memory is yet present. So just 5404 * building zonelists is fine - no need to touch other nodes. 5405 */ 5406 if (self && !node_online(self->node_id)) { 5407 build_zonelists(self); 5408 } else { 5409 /* 5410 * All possible nodes have pgdat preallocated 5411 * in free_area_init 5412 */ 5413 for_each_node(nid) { 5414 pg_data_t *pgdat = NODE_DATA(nid); 5415 5416 build_zonelists(pgdat); 5417 } 5418 5419 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5420 /* 5421 * We now know the "local memory node" for each node-- 5422 * i.e., the node of the first zone in the generic zonelist. 5423 * Set up numa_mem percpu variable for on-line cpus. During 5424 * boot, only the boot cpu should be on-line; we'll init the 5425 * secondary cpus' numa_mem as they come on-line. During 5426 * node/memory hotplug, we'll fixup all on-line cpus. 5427 */ 5428 for_each_online_cpu(cpu) 5429 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5430 #endif 5431 } 5432 5433 printk_deferred_exit(); 5434 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5435 } 5436 5437 static noinline void __init 5438 build_all_zonelists_init(void) 5439 { 5440 int cpu; 5441 5442 __build_all_zonelists(NULL); 5443 5444 /* 5445 * Initialize the boot_pagesets that are going to be used 5446 * for bootstrapping processors. The real pagesets for 5447 * each zone will be allocated later when the per cpu 5448 * allocator is available. 5449 * 5450 * boot_pagesets are used also for bootstrapping offline 5451 * cpus if the system is already booted because the pagesets 5452 * are needed to initialize allocators on a specific cpu too. 5453 * F.e. the percpu allocator needs the page allocator which 5454 * needs the percpu allocator in order to allocate its pagesets 5455 * (a chicken-egg dilemma). 5456 */ 5457 for_each_possible_cpu(cpu) 5458 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5459 5460 mminit_verify_zonelist(); 5461 cpuset_init_current_mems_allowed(); 5462 } 5463 5464 /* 5465 * unless system_state == SYSTEM_BOOTING. 5466 * 5467 * __ref due to call of __init annotated helper build_all_zonelists_init 5468 * [protected by SYSTEM_BOOTING]. 5469 */ 5470 void __ref build_all_zonelists(pg_data_t *pgdat) 5471 { 5472 unsigned long vm_total_pages; 5473 5474 if (system_state == SYSTEM_BOOTING) { 5475 build_all_zonelists_init(); 5476 } else { 5477 __build_all_zonelists(pgdat); 5478 /* cpuset refresh routine should be here */ 5479 } 5480 /* Get the number of free pages beyond high watermark in all zones. */ 5481 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5482 /* 5483 * Disable grouping by mobility if the number of pages in the 5484 * system is too low to allow the mechanism to work. It would be 5485 * more accurate, but expensive to check per-zone. This check is 5486 * made on memory-hotadd so a system can start with mobility 5487 * disabled and enable it later 5488 */ 5489 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5490 page_group_by_mobility_disabled = 1; 5491 else 5492 page_group_by_mobility_disabled = 0; 5493 5494 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5495 nr_online_nodes, 5496 page_group_by_mobility_disabled ? "off" : "on", 5497 vm_total_pages); 5498 #ifdef CONFIG_NUMA 5499 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5500 #endif 5501 } 5502 5503 static int zone_batchsize(struct zone *zone) 5504 { 5505 #ifdef CONFIG_MMU 5506 int batch; 5507 5508 /* 5509 * The number of pages to batch allocate is either ~0.1% 5510 * of the zone or 1MB, whichever is smaller. The batch 5511 * size is striking a balance between allocation latency 5512 * and zone lock contention. 5513 */ 5514 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5515 batch /= 4; /* We effectively *= 4 below */ 5516 if (batch < 1) 5517 batch = 1; 5518 5519 /* 5520 * Clamp the batch to a 2^n - 1 value. Having a power 5521 * of 2 value was found to be more likely to have 5522 * suboptimal cache aliasing properties in some cases. 5523 * 5524 * For example if 2 tasks are alternately allocating 5525 * batches of pages, one task can end up with a lot 5526 * of pages of one half of the possible page colors 5527 * and the other with pages of the other colors. 5528 */ 5529 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5530 5531 return batch; 5532 5533 #else 5534 /* The deferral and batching of frees should be suppressed under NOMMU 5535 * conditions. 5536 * 5537 * The problem is that NOMMU needs to be able to allocate large chunks 5538 * of contiguous memory as there's no hardware page translation to 5539 * assemble apparent contiguous memory from discontiguous pages. 5540 * 5541 * Queueing large contiguous runs of pages for batching, however, 5542 * causes the pages to actually be freed in smaller chunks. As there 5543 * can be a significant delay between the individual batches being 5544 * recycled, this leads to the once large chunks of space being 5545 * fragmented and becoming unavailable for high-order allocations. 5546 */ 5547 return 0; 5548 #endif 5549 } 5550 5551 static int percpu_pagelist_high_fraction; 5552 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5553 int high_fraction) 5554 { 5555 #ifdef CONFIG_MMU 5556 int high; 5557 int nr_split_cpus; 5558 unsigned long total_pages; 5559 5560 if (!high_fraction) { 5561 /* 5562 * By default, the high value of the pcp is based on the zone 5563 * low watermark so that if they are full then background 5564 * reclaim will not be started prematurely. 5565 */ 5566 total_pages = low_wmark_pages(zone); 5567 } else { 5568 /* 5569 * If percpu_pagelist_high_fraction is configured, the high 5570 * value is based on a fraction of the managed pages in the 5571 * zone. 5572 */ 5573 total_pages = zone_managed_pages(zone) / high_fraction; 5574 } 5575 5576 /* 5577 * Split the high value across all online CPUs local to the zone. Note 5578 * that early in boot that CPUs may not be online yet and that during 5579 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5580 * onlined. For memory nodes that have no CPUs, split the high value 5581 * across all online CPUs to mitigate the risk that reclaim is triggered 5582 * prematurely due to pages stored on pcp lists. 5583 */ 5584 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5585 if (!nr_split_cpus) 5586 nr_split_cpus = num_online_cpus(); 5587 high = total_pages / nr_split_cpus; 5588 5589 /* 5590 * Ensure high is at least batch*4. The multiple is based on the 5591 * historical relationship between high and batch. 5592 */ 5593 high = max(high, batch << 2); 5594 5595 return high; 5596 #else 5597 return 0; 5598 #endif 5599 } 5600 5601 /* 5602 * pcp->high and pcp->batch values are related and generally batch is lower 5603 * than high. They are also related to pcp->count such that count is lower 5604 * than high, and as soon as it reaches high, the pcplist is flushed. 5605 * 5606 * However, guaranteeing these relations at all times would require e.g. write 5607 * barriers here but also careful usage of read barriers at the read side, and 5608 * thus be prone to error and bad for performance. Thus the update only prevents 5609 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5610 * should ensure they can cope with those fields changing asynchronously, and 5611 * fully trust only the pcp->count field on the local CPU with interrupts 5612 * disabled. 5613 * 5614 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5615 * outside of boot time (or some other assurance that no concurrent updaters 5616 * exist). 5617 */ 5618 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5619 unsigned long high_max, unsigned long batch) 5620 { 5621 WRITE_ONCE(pcp->batch, batch); 5622 WRITE_ONCE(pcp->high_min, high_min); 5623 WRITE_ONCE(pcp->high_max, high_max); 5624 } 5625 5626 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5627 { 5628 int pindex; 5629 5630 memset(pcp, 0, sizeof(*pcp)); 5631 memset(pzstats, 0, sizeof(*pzstats)); 5632 5633 spin_lock_init(&pcp->lock); 5634 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5635 INIT_LIST_HEAD(&pcp->lists[pindex]); 5636 5637 /* 5638 * Set batch and high values safe for a boot pageset. A true percpu 5639 * pageset's initialization will update them subsequently. Here we don't 5640 * need to be as careful as pageset_update() as nobody can access the 5641 * pageset yet. 5642 */ 5643 pcp->high_min = BOOT_PAGESET_HIGH; 5644 pcp->high_max = BOOT_PAGESET_HIGH; 5645 pcp->batch = BOOT_PAGESET_BATCH; 5646 pcp->free_count = 0; 5647 } 5648 5649 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5650 unsigned long high_max, unsigned long batch) 5651 { 5652 struct per_cpu_pages *pcp; 5653 int cpu; 5654 5655 for_each_possible_cpu(cpu) { 5656 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5657 pageset_update(pcp, high_min, high_max, batch); 5658 } 5659 } 5660 5661 /* 5662 * Calculate and set new high and batch values for all per-cpu pagesets of a 5663 * zone based on the zone's size. 5664 */ 5665 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5666 { 5667 int new_high_min, new_high_max, new_batch; 5668 5669 new_batch = max(1, zone_batchsize(zone)); 5670 if (percpu_pagelist_high_fraction) { 5671 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5672 percpu_pagelist_high_fraction); 5673 /* 5674 * PCP high is tuned manually, disable auto-tuning via 5675 * setting high_min and high_max to the manual value. 5676 */ 5677 new_high_max = new_high_min; 5678 } else { 5679 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5680 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5681 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5682 } 5683 5684 if (zone->pageset_high_min == new_high_min && 5685 zone->pageset_high_max == new_high_max && 5686 zone->pageset_batch == new_batch) 5687 return; 5688 5689 zone->pageset_high_min = new_high_min; 5690 zone->pageset_high_max = new_high_max; 5691 zone->pageset_batch = new_batch; 5692 5693 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5694 new_batch); 5695 } 5696 5697 void __meminit setup_zone_pageset(struct zone *zone) 5698 { 5699 int cpu; 5700 5701 /* Size may be 0 on !SMP && !NUMA */ 5702 if (sizeof(struct per_cpu_zonestat) > 0) 5703 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5704 5705 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5706 for_each_possible_cpu(cpu) { 5707 struct per_cpu_pages *pcp; 5708 struct per_cpu_zonestat *pzstats; 5709 5710 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5711 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5712 per_cpu_pages_init(pcp, pzstats); 5713 } 5714 5715 zone_set_pageset_high_and_batch(zone, 0); 5716 } 5717 5718 /* 5719 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5720 * page high values need to be recalculated. 5721 */ 5722 static void zone_pcp_update(struct zone *zone, int cpu_online) 5723 { 5724 mutex_lock(&pcp_batch_high_lock); 5725 zone_set_pageset_high_and_batch(zone, cpu_online); 5726 mutex_unlock(&pcp_batch_high_lock); 5727 } 5728 5729 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5730 { 5731 struct per_cpu_pages *pcp; 5732 struct cpu_cacheinfo *cci; 5733 5734 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5735 cci = get_cpu_cacheinfo(cpu); 5736 /* 5737 * If data cache slice of CPU is large enough, "pcp->batch" 5738 * pages can be preserved in PCP before draining PCP for 5739 * consecutive high-order pages freeing without allocation. 5740 * This can reduce zone lock contention without hurting 5741 * cache-hot pages sharing. 5742 */ 5743 spin_lock(&pcp->lock); 5744 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5745 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5746 else 5747 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5748 spin_unlock(&pcp->lock); 5749 } 5750 5751 void setup_pcp_cacheinfo(unsigned int cpu) 5752 { 5753 struct zone *zone; 5754 5755 for_each_populated_zone(zone) 5756 zone_pcp_update_cacheinfo(zone, cpu); 5757 } 5758 5759 /* 5760 * Allocate per cpu pagesets and initialize them. 5761 * Before this call only boot pagesets were available. 5762 */ 5763 void __init setup_per_cpu_pageset(void) 5764 { 5765 struct pglist_data *pgdat; 5766 struct zone *zone; 5767 int __maybe_unused cpu; 5768 5769 for_each_populated_zone(zone) 5770 setup_zone_pageset(zone); 5771 5772 #ifdef CONFIG_NUMA 5773 /* 5774 * Unpopulated zones continue using the boot pagesets. 5775 * The numa stats for these pagesets need to be reset. 5776 * Otherwise, they will end up skewing the stats of 5777 * the nodes these zones are associated with. 5778 */ 5779 for_each_possible_cpu(cpu) { 5780 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5781 memset(pzstats->vm_numa_event, 0, 5782 sizeof(pzstats->vm_numa_event)); 5783 } 5784 #endif 5785 5786 for_each_online_pgdat(pgdat) 5787 pgdat->per_cpu_nodestats = 5788 alloc_percpu(struct per_cpu_nodestat); 5789 } 5790 5791 __meminit void zone_pcp_init(struct zone *zone) 5792 { 5793 /* 5794 * per cpu subsystem is not up at this point. The following code 5795 * relies on the ability of the linker to provide the 5796 * offset of a (static) per cpu variable into the per cpu area. 5797 */ 5798 zone->per_cpu_pageset = &boot_pageset; 5799 zone->per_cpu_zonestats = &boot_zonestats; 5800 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5801 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5802 zone->pageset_batch = BOOT_PAGESET_BATCH; 5803 5804 if (populated_zone(zone)) 5805 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5806 zone->present_pages, zone_batchsize(zone)); 5807 } 5808 5809 void adjust_managed_page_count(struct page *page, long count) 5810 { 5811 atomic_long_add(count, &page_zone(page)->managed_pages); 5812 totalram_pages_add(count); 5813 } 5814 EXPORT_SYMBOL(adjust_managed_page_count); 5815 5816 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5817 { 5818 void *pos; 5819 unsigned long pages = 0; 5820 5821 start = (void *)PAGE_ALIGN((unsigned long)start); 5822 end = (void *)((unsigned long)end & PAGE_MASK); 5823 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5824 struct page *page = virt_to_page(pos); 5825 void *direct_map_addr; 5826 5827 /* 5828 * 'direct_map_addr' might be different from 'pos' 5829 * because some architectures' virt_to_page() 5830 * work with aliases. Getting the direct map 5831 * address ensures that we get a _writeable_ 5832 * alias for the memset(). 5833 */ 5834 direct_map_addr = page_address(page); 5835 /* 5836 * Perform a kasan-unchecked memset() since this memory 5837 * has not been initialized. 5838 */ 5839 direct_map_addr = kasan_reset_tag(direct_map_addr); 5840 if ((unsigned int)poison <= 0xFF) 5841 memset(direct_map_addr, poison, PAGE_SIZE); 5842 5843 free_reserved_page(page); 5844 } 5845 5846 if (pages && s) 5847 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5848 5849 return pages; 5850 } 5851 5852 void free_reserved_page(struct page *page) 5853 { 5854 clear_page_tag_ref(page); 5855 ClearPageReserved(page); 5856 init_page_count(page); 5857 __free_page(page); 5858 adjust_managed_page_count(page, 1); 5859 } 5860 EXPORT_SYMBOL(free_reserved_page); 5861 5862 static int page_alloc_cpu_dead(unsigned int cpu) 5863 { 5864 struct zone *zone; 5865 5866 lru_add_drain_cpu(cpu); 5867 mlock_drain_remote(cpu); 5868 drain_pages(cpu); 5869 5870 /* 5871 * Spill the event counters of the dead processor 5872 * into the current processors event counters. 5873 * This artificially elevates the count of the current 5874 * processor. 5875 */ 5876 vm_events_fold_cpu(cpu); 5877 5878 /* 5879 * Zero the differential counters of the dead processor 5880 * so that the vm statistics are consistent. 5881 * 5882 * This is only okay since the processor is dead and cannot 5883 * race with what we are doing. 5884 */ 5885 cpu_vm_stats_fold(cpu); 5886 5887 for_each_populated_zone(zone) 5888 zone_pcp_update(zone, 0); 5889 5890 return 0; 5891 } 5892 5893 static int page_alloc_cpu_online(unsigned int cpu) 5894 { 5895 struct zone *zone; 5896 5897 for_each_populated_zone(zone) 5898 zone_pcp_update(zone, 1); 5899 return 0; 5900 } 5901 5902 void __init page_alloc_init_cpuhp(void) 5903 { 5904 int ret; 5905 5906 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5907 "mm/page_alloc:pcp", 5908 page_alloc_cpu_online, 5909 page_alloc_cpu_dead); 5910 WARN_ON(ret < 0); 5911 } 5912 5913 /* 5914 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5915 * or min_free_kbytes changes. 5916 */ 5917 static void calculate_totalreserve_pages(void) 5918 { 5919 struct pglist_data *pgdat; 5920 unsigned long reserve_pages = 0; 5921 enum zone_type i, j; 5922 5923 for_each_online_pgdat(pgdat) { 5924 5925 pgdat->totalreserve_pages = 0; 5926 5927 for (i = 0; i < MAX_NR_ZONES; i++) { 5928 struct zone *zone = pgdat->node_zones + i; 5929 long max = 0; 5930 unsigned long managed_pages = zone_managed_pages(zone); 5931 5932 /* Find valid and maximum lowmem_reserve in the zone */ 5933 for (j = i; j < MAX_NR_ZONES; j++) { 5934 if (zone->lowmem_reserve[j] > max) 5935 max = zone->lowmem_reserve[j]; 5936 } 5937 5938 /* we treat the high watermark as reserved pages. */ 5939 max += high_wmark_pages(zone); 5940 5941 if (max > managed_pages) 5942 max = managed_pages; 5943 5944 pgdat->totalreserve_pages += max; 5945 5946 reserve_pages += max; 5947 } 5948 } 5949 totalreserve_pages = reserve_pages; 5950 } 5951 5952 /* 5953 * setup_per_zone_lowmem_reserve - called whenever 5954 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5955 * has a correct pages reserved value, so an adequate number of 5956 * pages are left in the zone after a successful __alloc_pages(). 5957 */ 5958 static void setup_per_zone_lowmem_reserve(void) 5959 { 5960 struct pglist_data *pgdat; 5961 enum zone_type i, j; 5962 5963 for_each_online_pgdat(pgdat) { 5964 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5965 struct zone *zone = &pgdat->node_zones[i]; 5966 int ratio = sysctl_lowmem_reserve_ratio[i]; 5967 bool clear = !ratio || !zone_managed_pages(zone); 5968 unsigned long managed_pages = 0; 5969 5970 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5971 struct zone *upper_zone = &pgdat->node_zones[j]; 5972 bool empty = !zone_managed_pages(upper_zone); 5973 5974 managed_pages += zone_managed_pages(upper_zone); 5975 5976 if (clear || empty) 5977 zone->lowmem_reserve[j] = 0; 5978 else 5979 zone->lowmem_reserve[j] = managed_pages / ratio; 5980 } 5981 } 5982 } 5983 5984 /* update totalreserve_pages */ 5985 calculate_totalreserve_pages(); 5986 } 5987 5988 static void __setup_per_zone_wmarks(void) 5989 { 5990 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5991 unsigned long lowmem_pages = 0; 5992 struct zone *zone; 5993 unsigned long flags; 5994 5995 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5996 for_each_zone(zone) { 5997 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5998 lowmem_pages += zone_managed_pages(zone); 5999 } 6000 6001 for_each_zone(zone) { 6002 u64 tmp; 6003 6004 spin_lock_irqsave(&zone->lock, flags); 6005 tmp = (u64)pages_min * zone_managed_pages(zone); 6006 tmp = div64_ul(tmp, lowmem_pages); 6007 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6008 /* 6009 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6010 * need highmem and movable zones pages, so cap pages_min 6011 * to a small value here. 6012 * 6013 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6014 * deltas control async page reclaim, and so should 6015 * not be capped for highmem and movable zones. 6016 */ 6017 unsigned long min_pages; 6018 6019 min_pages = zone_managed_pages(zone) / 1024; 6020 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6021 zone->_watermark[WMARK_MIN] = min_pages; 6022 } else { 6023 /* 6024 * If it's a lowmem zone, reserve a number of pages 6025 * proportionate to the zone's size. 6026 */ 6027 zone->_watermark[WMARK_MIN] = tmp; 6028 } 6029 6030 /* 6031 * Set the kswapd watermarks distance according to the 6032 * scale factor in proportion to available memory, but 6033 * ensure a minimum size on small systems. 6034 */ 6035 tmp = max_t(u64, tmp >> 2, 6036 mult_frac(zone_managed_pages(zone), 6037 watermark_scale_factor, 10000)); 6038 6039 zone->watermark_boost = 0; 6040 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6041 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6042 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6043 6044 spin_unlock_irqrestore(&zone->lock, flags); 6045 } 6046 6047 /* update totalreserve_pages */ 6048 calculate_totalreserve_pages(); 6049 } 6050 6051 /** 6052 * setup_per_zone_wmarks - called when min_free_kbytes changes 6053 * or when memory is hot-{added|removed} 6054 * 6055 * Ensures that the watermark[min,low,high] values for each zone are set 6056 * correctly with respect to min_free_kbytes. 6057 */ 6058 void setup_per_zone_wmarks(void) 6059 { 6060 struct zone *zone; 6061 static DEFINE_SPINLOCK(lock); 6062 6063 spin_lock(&lock); 6064 __setup_per_zone_wmarks(); 6065 spin_unlock(&lock); 6066 6067 /* 6068 * The watermark size have changed so update the pcpu batch 6069 * and high limits or the limits may be inappropriate. 6070 */ 6071 for_each_zone(zone) 6072 zone_pcp_update(zone, 0); 6073 } 6074 6075 /* 6076 * Initialise min_free_kbytes. 6077 * 6078 * For small machines we want it small (128k min). For large machines 6079 * we want it large (256MB max). But it is not linear, because network 6080 * bandwidth does not increase linearly with machine size. We use 6081 * 6082 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6083 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6084 * 6085 * which yields 6086 * 6087 * 16MB: 512k 6088 * 32MB: 724k 6089 * 64MB: 1024k 6090 * 128MB: 1448k 6091 * 256MB: 2048k 6092 * 512MB: 2896k 6093 * 1024MB: 4096k 6094 * 2048MB: 5792k 6095 * 4096MB: 8192k 6096 * 8192MB: 11584k 6097 * 16384MB: 16384k 6098 */ 6099 void calculate_min_free_kbytes(void) 6100 { 6101 unsigned long lowmem_kbytes; 6102 int new_min_free_kbytes; 6103 6104 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6105 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6106 6107 if (new_min_free_kbytes > user_min_free_kbytes) 6108 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6109 else 6110 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6111 new_min_free_kbytes, user_min_free_kbytes); 6112 6113 } 6114 6115 int __meminit init_per_zone_wmark_min(void) 6116 { 6117 calculate_min_free_kbytes(); 6118 setup_per_zone_wmarks(); 6119 refresh_zone_stat_thresholds(); 6120 setup_per_zone_lowmem_reserve(); 6121 6122 #ifdef CONFIG_NUMA 6123 setup_min_unmapped_ratio(); 6124 setup_min_slab_ratio(); 6125 #endif 6126 6127 khugepaged_min_free_kbytes_update(); 6128 6129 return 0; 6130 } 6131 postcore_initcall(init_per_zone_wmark_min) 6132 6133 /* 6134 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6135 * that we can call two helper functions whenever min_free_kbytes 6136 * changes. 6137 */ 6138 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6139 void *buffer, size_t *length, loff_t *ppos) 6140 { 6141 int rc; 6142 6143 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6144 if (rc) 6145 return rc; 6146 6147 if (write) { 6148 user_min_free_kbytes = min_free_kbytes; 6149 setup_per_zone_wmarks(); 6150 } 6151 return 0; 6152 } 6153 6154 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6155 void *buffer, size_t *length, loff_t *ppos) 6156 { 6157 int rc; 6158 6159 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6160 if (rc) 6161 return rc; 6162 6163 if (write) 6164 setup_per_zone_wmarks(); 6165 6166 return 0; 6167 } 6168 6169 #ifdef CONFIG_NUMA 6170 static void setup_min_unmapped_ratio(void) 6171 { 6172 pg_data_t *pgdat; 6173 struct zone *zone; 6174 6175 for_each_online_pgdat(pgdat) 6176 pgdat->min_unmapped_pages = 0; 6177 6178 for_each_zone(zone) 6179 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6180 sysctl_min_unmapped_ratio) / 100; 6181 } 6182 6183 6184 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6185 void *buffer, size_t *length, loff_t *ppos) 6186 { 6187 int rc; 6188 6189 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6190 if (rc) 6191 return rc; 6192 6193 setup_min_unmapped_ratio(); 6194 6195 return 0; 6196 } 6197 6198 static void setup_min_slab_ratio(void) 6199 { 6200 pg_data_t *pgdat; 6201 struct zone *zone; 6202 6203 for_each_online_pgdat(pgdat) 6204 pgdat->min_slab_pages = 0; 6205 6206 for_each_zone(zone) 6207 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6208 sysctl_min_slab_ratio) / 100; 6209 } 6210 6211 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6212 void *buffer, size_t *length, loff_t *ppos) 6213 { 6214 int rc; 6215 6216 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6217 if (rc) 6218 return rc; 6219 6220 setup_min_slab_ratio(); 6221 6222 return 0; 6223 } 6224 #endif 6225 6226 /* 6227 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6228 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6229 * whenever sysctl_lowmem_reserve_ratio changes. 6230 * 6231 * The reserve ratio obviously has absolutely no relation with the 6232 * minimum watermarks. The lowmem reserve ratio can only make sense 6233 * if in function of the boot time zone sizes. 6234 */ 6235 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6236 int write, void *buffer, size_t *length, loff_t *ppos) 6237 { 6238 int i; 6239 6240 proc_dointvec_minmax(table, write, buffer, length, ppos); 6241 6242 for (i = 0; i < MAX_NR_ZONES; i++) { 6243 if (sysctl_lowmem_reserve_ratio[i] < 1) 6244 sysctl_lowmem_reserve_ratio[i] = 0; 6245 } 6246 6247 setup_per_zone_lowmem_reserve(); 6248 return 0; 6249 } 6250 6251 /* 6252 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6253 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6254 * pagelist can have before it gets flushed back to buddy allocator. 6255 */ 6256 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6257 int write, void *buffer, size_t *length, loff_t *ppos) 6258 { 6259 struct zone *zone; 6260 int old_percpu_pagelist_high_fraction; 6261 int ret; 6262 6263 mutex_lock(&pcp_batch_high_lock); 6264 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6265 6266 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6267 if (!write || ret < 0) 6268 goto out; 6269 6270 /* Sanity checking to avoid pcp imbalance */ 6271 if (percpu_pagelist_high_fraction && 6272 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6273 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6274 ret = -EINVAL; 6275 goto out; 6276 } 6277 6278 /* No change? */ 6279 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6280 goto out; 6281 6282 for_each_populated_zone(zone) 6283 zone_set_pageset_high_and_batch(zone, 0); 6284 out: 6285 mutex_unlock(&pcp_batch_high_lock); 6286 return ret; 6287 } 6288 6289 static struct ctl_table page_alloc_sysctl_table[] = { 6290 { 6291 .procname = "min_free_kbytes", 6292 .data = &min_free_kbytes, 6293 .maxlen = sizeof(min_free_kbytes), 6294 .mode = 0644, 6295 .proc_handler = min_free_kbytes_sysctl_handler, 6296 .extra1 = SYSCTL_ZERO, 6297 }, 6298 { 6299 .procname = "watermark_boost_factor", 6300 .data = &watermark_boost_factor, 6301 .maxlen = sizeof(watermark_boost_factor), 6302 .mode = 0644, 6303 .proc_handler = proc_dointvec_minmax, 6304 .extra1 = SYSCTL_ZERO, 6305 }, 6306 { 6307 .procname = "watermark_scale_factor", 6308 .data = &watermark_scale_factor, 6309 .maxlen = sizeof(watermark_scale_factor), 6310 .mode = 0644, 6311 .proc_handler = watermark_scale_factor_sysctl_handler, 6312 .extra1 = SYSCTL_ONE, 6313 .extra2 = SYSCTL_THREE_THOUSAND, 6314 }, 6315 { 6316 .procname = "percpu_pagelist_high_fraction", 6317 .data = &percpu_pagelist_high_fraction, 6318 .maxlen = sizeof(percpu_pagelist_high_fraction), 6319 .mode = 0644, 6320 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6321 .extra1 = SYSCTL_ZERO, 6322 }, 6323 { 6324 .procname = "lowmem_reserve_ratio", 6325 .data = &sysctl_lowmem_reserve_ratio, 6326 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6327 .mode = 0644, 6328 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6329 }, 6330 #ifdef CONFIG_NUMA 6331 { 6332 .procname = "numa_zonelist_order", 6333 .data = &numa_zonelist_order, 6334 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6335 .mode = 0644, 6336 .proc_handler = numa_zonelist_order_handler, 6337 }, 6338 { 6339 .procname = "min_unmapped_ratio", 6340 .data = &sysctl_min_unmapped_ratio, 6341 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6342 .mode = 0644, 6343 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6344 .extra1 = SYSCTL_ZERO, 6345 .extra2 = SYSCTL_ONE_HUNDRED, 6346 }, 6347 { 6348 .procname = "min_slab_ratio", 6349 .data = &sysctl_min_slab_ratio, 6350 .maxlen = sizeof(sysctl_min_slab_ratio), 6351 .mode = 0644, 6352 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6353 .extra1 = SYSCTL_ZERO, 6354 .extra2 = SYSCTL_ONE_HUNDRED, 6355 }, 6356 #endif 6357 }; 6358 6359 void __init page_alloc_sysctl_init(void) 6360 { 6361 register_sysctl_init("vm", page_alloc_sysctl_table); 6362 } 6363 6364 #ifdef CONFIG_CONTIG_ALLOC 6365 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6366 static void alloc_contig_dump_pages(struct list_head *page_list) 6367 { 6368 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6369 6370 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6371 struct page *page; 6372 6373 dump_stack(); 6374 list_for_each_entry(page, page_list, lru) 6375 dump_page(page, "migration failure"); 6376 } 6377 } 6378 6379 /* 6380 * [start, end) must belong to a single zone. 6381 * @migratetype: using migratetype to filter the type of migration in 6382 * trace_mm_alloc_contig_migrate_range_info. 6383 */ 6384 int __alloc_contig_migrate_range(struct compact_control *cc, 6385 unsigned long start, unsigned long end, 6386 int migratetype) 6387 { 6388 /* This function is based on compact_zone() from compaction.c. */ 6389 unsigned int nr_reclaimed; 6390 unsigned long pfn = start; 6391 unsigned int tries = 0; 6392 int ret = 0; 6393 struct migration_target_control mtc = { 6394 .nid = zone_to_nid(cc->zone), 6395 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6396 .reason = MR_CONTIG_RANGE, 6397 }; 6398 struct page *page; 6399 unsigned long total_mapped = 0; 6400 unsigned long total_migrated = 0; 6401 unsigned long total_reclaimed = 0; 6402 6403 lru_cache_disable(); 6404 6405 while (pfn < end || !list_empty(&cc->migratepages)) { 6406 if (fatal_signal_pending(current)) { 6407 ret = -EINTR; 6408 break; 6409 } 6410 6411 if (list_empty(&cc->migratepages)) { 6412 cc->nr_migratepages = 0; 6413 ret = isolate_migratepages_range(cc, pfn, end); 6414 if (ret && ret != -EAGAIN) 6415 break; 6416 pfn = cc->migrate_pfn; 6417 tries = 0; 6418 } else if (++tries == 5) { 6419 ret = -EBUSY; 6420 break; 6421 } 6422 6423 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6424 &cc->migratepages); 6425 cc->nr_migratepages -= nr_reclaimed; 6426 6427 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6428 total_reclaimed += nr_reclaimed; 6429 list_for_each_entry(page, &cc->migratepages, lru) { 6430 struct folio *folio = page_folio(page); 6431 6432 total_mapped += folio_mapped(folio) * 6433 folio_nr_pages(folio); 6434 } 6435 } 6436 6437 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6438 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6439 6440 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6441 total_migrated += cc->nr_migratepages; 6442 6443 /* 6444 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6445 * to retry again over this error, so do the same here. 6446 */ 6447 if (ret == -ENOMEM) 6448 break; 6449 } 6450 6451 lru_cache_enable(); 6452 if (ret < 0) { 6453 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6454 alloc_contig_dump_pages(&cc->migratepages); 6455 putback_movable_pages(&cc->migratepages); 6456 } 6457 6458 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6459 total_migrated, 6460 total_reclaimed, 6461 total_mapped); 6462 return (ret < 0) ? ret : 0; 6463 } 6464 6465 static void split_free_pages(struct list_head *list) 6466 { 6467 int order; 6468 6469 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6470 struct page *page, *next; 6471 int nr_pages = 1 << order; 6472 6473 list_for_each_entry_safe(page, next, &list[order], lru) { 6474 int i; 6475 6476 post_alloc_hook(page, order, __GFP_MOVABLE); 6477 if (!order) 6478 continue; 6479 6480 split_page(page, order); 6481 6482 /* Add all subpages to the order-0 head, in sequence. */ 6483 list_del(&page->lru); 6484 for (i = 0; i < nr_pages; i++) 6485 list_add_tail(&page[i].lru, &list[0]); 6486 } 6487 } 6488 } 6489 6490 /** 6491 * alloc_contig_range() -- tries to allocate given range of pages 6492 * @start: start PFN to allocate 6493 * @end: one-past-the-last PFN to allocate 6494 * @migratetype: migratetype of the underlying pageblocks (either 6495 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6496 * in range must have the same migratetype and it must 6497 * be either of the two. 6498 * @gfp_mask: GFP mask to use during compaction 6499 * 6500 * The PFN range does not have to be pageblock aligned. The PFN range must 6501 * belong to a single zone. 6502 * 6503 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6504 * pageblocks in the range. Once isolated, the pageblocks should not 6505 * be modified by others. 6506 * 6507 * Return: zero on success or negative error code. On success all 6508 * pages which PFN is in [start, end) are allocated for the caller and 6509 * need to be freed with free_contig_range(). 6510 */ 6511 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6512 unsigned migratetype, gfp_t gfp_mask) 6513 { 6514 unsigned long outer_start, outer_end; 6515 int ret = 0; 6516 6517 struct compact_control cc = { 6518 .nr_migratepages = 0, 6519 .order = -1, 6520 .zone = page_zone(pfn_to_page(start)), 6521 .mode = MIGRATE_SYNC, 6522 .ignore_skip_hint = true, 6523 .no_set_skip_hint = true, 6524 .gfp_mask = current_gfp_context(gfp_mask), 6525 .alloc_contig = true, 6526 }; 6527 INIT_LIST_HEAD(&cc.migratepages); 6528 6529 /* 6530 * What we do here is we mark all pageblocks in range as 6531 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6532 * have different sizes, and due to the way page allocator 6533 * work, start_isolate_page_range() has special handlings for this. 6534 * 6535 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6536 * migrate the pages from an unaligned range (ie. pages that 6537 * we are interested in). This will put all the pages in 6538 * range back to page allocator as MIGRATE_ISOLATE. 6539 * 6540 * When this is done, we take the pages in range from page 6541 * allocator removing them from the buddy system. This way 6542 * page allocator will never consider using them. 6543 * 6544 * This lets us mark the pageblocks back as 6545 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6546 * aligned range but not in the unaligned, original range are 6547 * put back to page allocator so that buddy can use them. 6548 */ 6549 6550 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6551 if (ret) 6552 goto done; 6553 6554 drain_all_pages(cc.zone); 6555 6556 /* 6557 * In case of -EBUSY, we'd like to know which page causes problem. 6558 * So, just fall through. test_pages_isolated() has a tracepoint 6559 * which will report the busy page. 6560 * 6561 * It is possible that busy pages could become available before 6562 * the call to test_pages_isolated, and the range will actually be 6563 * allocated. So, if we fall through be sure to clear ret so that 6564 * -EBUSY is not accidentally used or returned to caller. 6565 */ 6566 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6567 if (ret && ret != -EBUSY) 6568 goto done; 6569 ret = 0; 6570 6571 /* 6572 * Pages from [start, end) are within a pageblock_nr_pages 6573 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6574 * more, all pages in [start, end) are free in page allocator. 6575 * What we are going to do is to allocate all pages from 6576 * [start, end) (that is remove them from page allocator). 6577 * 6578 * The only problem is that pages at the beginning and at the 6579 * end of interesting range may be not aligned with pages that 6580 * page allocator holds, ie. they can be part of higher order 6581 * pages. Because of this, we reserve the bigger range and 6582 * once this is done free the pages we are not interested in. 6583 * 6584 * We don't have to hold zone->lock here because the pages are 6585 * isolated thus they won't get removed from buddy. 6586 */ 6587 outer_start = find_large_buddy(start); 6588 6589 /* Make sure the range is really isolated. */ 6590 if (test_pages_isolated(outer_start, end, 0)) { 6591 ret = -EBUSY; 6592 goto done; 6593 } 6594 6595 /* Grab isolated pages from freelists. */ 6596 outer_end = isolate_freepages_range(&cc, outer_start, end); 6597 if (!outer_end) { 6598 ret = -EBUSY; 6599 goto done; 6600 } 6601 6602 if (!(gfp_mask & __GFP_COMP)) { 6603 split_free_pages(cc.freepages); 6604 6605 /* Free head and tail (if any) */ 6606 if (start != outer_start) 6607 free_contig_range(outer_start, start - outer_start); 6608 if (end != outer_end) 6609 free_contig_range(end, outer_end - end); 6610 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6611 struct page *head = pfn_to_page(start); 6612 int order = ilog2(end - start); 6613 6614 check_new_pages(head, order); 6615 prep_new_page(head, order, gfp_mask, 0); 6616 } else { 6617 ret = -EINVAL; 6618 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6619 start, end, outer_start, outer_end); 6620 } 6621 done: 6622 undo_isolate_page_range(start, end, migratetype); 6623 return ret; 6624 } 6625 EXPORT_SYMBOL(alloc_contig_range_noprof); 6626 6627 static int __alloc_contig_pages(unsigned long start_pfn, 6628 unsigned long nr_pages, gfp_t gfp_mask) 6629 { 6630 unsigned long end_pfn = start_pfn + nr_pages; 6631 6632 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6633 gfp_mask); 6634 } 6635 6636 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6637 unsigned long nr_pages) 6638 { 6639 unsigned long i, end_pfn = start_pfn + nr_pages; 6640 struct page *page; 6641 6642 for (i = start_pfn; i < end_pfn; i++) { 6643 page = pfn_to_online_page(i); 6644 if (!page) 6645 return false; 6646 6647 if (page_zone(page) != z) 6648 return false; 6649 6650 if (PageReserved(page)) 6651 return false; 6652 6653 if (PageHuge(page)) 6654 return false; 6655 } 6656 return true; 6657 } 6658 6659 static bool zone_spans_last_pfn(const struct zone *zone, 6660 unsigned long start_pfn, unsigned long nr_pages) 6661 { 6662 unsigned long last_pfn = start_pfn + nr_pages - 1; 6663 6664 return zone_spans_pfn(zone, last_pfn); 6665 } 6666 6667 /** 6668 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6669 * @nr_pages: Number of contiguous pages to allocate 6670 * @gfp_mask: GFP mask to limit search and used during compaction 6671 * @nid: Target node 6672 * @nodemask: Mask for other possible nodes 6673 * 6674 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6675 * on an applicable zonelist to find a contiguous pfn range which can then be 6676 * tried for allocation with alloc_contig_range(). This routine is intended 6677 * for allocation requests which can not be fulfilled with the buddy allocator. 6678 * 6679 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6680 * power of two, then allocated range is also guaranteed to be aligned to same 6681 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6682 * 6683 * Allocated pages can be freed with free_contig_range() or by manually calling 6684 * __free_page() on each allocated page. 6685 * 6686 * Return: pointer to contiguous pages on success, or NULL if not successful. 6687 */ 6688 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6689 int nid, nodemask_t *nodemask) 6690 { 6691 unsigned long ret, pfn, flags; 6692 struct zonelist *zonelist; 6693 struct zone *zone; 6694 struct zoneref *z; 6695 6696 zonelist = node_zonelist(nid, gfp_mask); 6697 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6698 gfp_zone(gfp_mask), nodemask) { 6699 spin_lock_irqsave(&zone->lock, flags); 6700 6701 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6702 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6703 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6704 /* 6705 * We release the zone lock here because 6706 * alloc_contig_range() will also lock the zone 6707 * at some point. If there's an allocation 6708 * spinning on this lock, it may win the race 6709 * and cause alloc_contig_range() to fail... 6710 */ 6711 spin_unlock_irqrestore(&zone->lock, flags); 6712 ret = __alloc_contig_pages(pfn, nr_pages, 6713 gfp_mask); 6714 if (!ret) 6715 return pfn_to_page(pfn); 6716 spin_lock_irqsave(&zone->lock, flags); 6717 } 6718 pfn += nr_pages; 6719 } 6720 spin_unlock_irqrestore(&zone->lock, flags); 6721 } 6722 return NULL; 6723 } 6724 #endif /* CONFIG_CONTIG_ALLOC */ 6725 6726 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6727 { 6728 unsigned long count = 0; 6729 struct folio *folio = pfn_folio(pfn); 6730 6731 if (folio_test_large(folio)) { 6732 int expected = folio_nr_pages(folio); 6733 6734 if (nr_pages == expected) 6735 folio_put(folio); 6736 else 6737 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 6738 pfn, nr_pages, expected); 6739 return; 6740 } 6741 6742 for (; nr_pages--; pfn++) { 6743 struct page *page = pfn_to_page(pfn); 6744 6745 count += page_count(page) != 1; 6746 __free_page(page); 6747 } 6748 WARN(count != 0, "%lu pages are still in use!\n", count); 6749 } 6750 EXPORT_SYMBOL(free_contig_range); 6751 6752 /* 6753 * Effectively disable pcplists for the zone by setting the high limit to 0 6754 * and draining all cpus. A concurrent page freeing on another CPU that's about 6755 * to put the page on pcplist will either finish before the drain and the page 6756 * will be drained, or observe the new high limit and skip the pcplist. 6757 * 6758 * Must be paired with a call to zone_pcp_enable(). 6759 */ 6760 void zone_pcp_disable(struct zone *zone) 6761 { 6762 mutex_lock(&pcp_batch_high_lock); 6763 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6764 __drain_all_pages(zone, true); 6765 } 6766 6767 void zone_pcp_enable(struct zone *zone) 6768 { 6769 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6770 zone->pageset_high_max, zone->pageset_batch); 6771 mutex_unlock(&pcp_batch_high_lock); 6772 } 6773 6774 void zone_pcp_reset(struct zone *zone) 6775 { 6776 int cpu; 6777 struct per_cpu_zonestat *pzstats; 6778 6779 if (zone->per_cpu_pageset != &boot_pageset) { 6780 for_each_online_cpu(cpu) { 6781 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6782 drain_zonestat(zone, pzstats); 6783 } 6784 free_percpu(zone->per_cpu_pageset); 6785 zone->per_cpu_pageset = &boot_pageset; 6786 if (zone->per_cpu_zonestats != &boot_zonestats) { 6787 free_percpu(zone->per_cpu_zonestats); 6788 zone->per_cpu_zonestats = &boot_zonestats; 6789 } 6790 } 6791 } 6792 6793 #ifdef CONFIG_MEMORY_HOTREMOVE 6794 /* 6795 * All pages in the range must be in a single zone, must not contain holes, 6796 * must span full sections, and must be isolated before calling this function. 6797 * 6798 * Returns the number of managed (non-PageOffline()) pages in the range: the 6799 * number of pages for which memory offlining code must adjust managed page 6800 * counters using adjust_managed_page_count(). 6801 */ 6802 unsigned long __offline_isolated_pages(unsigned long start_pfn, 6803 unsigned long end_pfn) 6804 { 6805 unsigned long already_offline = 0, flags; 6806 unsigned long pfn = start_pfn; 6807 struct page *page; 6808 struct zone *zone; 6809 unsigned int order; 6810 6811 offline_mem_sections(pfn, end_pfn); 6812 zone = page_zone(pfn_to_page(pfn)); 6813 spin_lock_irqsave(&zone->lock, flags); 6814 while (pfn < end_pfn) { 6815 page = pfn_to_page(pfn); 6816 /* 6817 * The HWPoisoned page may be not in buddy system, and 6818 * page_count() is not 0. 6819 */ 6820 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6821 pfn++; 6822 continue; 6823 } 6824 /* 6825 * At this point all remaining PageOffline() pages have a 6826 * reference count of 0 and can simply be skipped. 6827 */ 6828 if (PageOffline(page)) { 6829 BUG_ON(page_count(page)); 6830 BUG_ON(PageBuddy(page)); 6831 already_offline++; 6832 pfn++; 6833 continue; 6834 } 6835 6836 BUG_ON(page_count(page)); 6837 BUG_ON(!PageBuddy(page)); 6838 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 6839 order = buddy_order(page); 6840 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 6841 pfn += (1 << order); 6842 } 6843 spin_unlock_irqrestore(&zone->lock, flags); 6844 6845 return end_pfn - start_pfn - already_offline; 6846 } 6847 #endif 6848 6849 /* 6850 * This function returns a stable result only if called under zone lock. 6851 */ 6852 bool is_free_buddy_page(const struct page *page) 6853 { 6854 unsigned long pfn = page_to_pfn(page); 6855 unsigned int order; 6856 6857 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6858 const struct page *head = page - (pfn & ((1 << order) - 1)); 6859 6860 if (PageBuddy(head) && 6861 buddy_order_unsafe(head) >= order) 6862 break; 6863 } 6864 6865 return order <= MAX_PAGE_ORDER; 6866 } 6867 EXPORT_SYMBOL(is_free_buddy_page); 6868 6869 #ifdef CONFIG_MEMORY_FAILURE 6870 static inline void add_to_free_list(struct page *page, struct zone *zone, 6871 unsigned int order, int migratetype, 6872 bool tail) 6873 { 6874 __add_to_free_list(page, zone, order, migratetype, tail); 6875 account_freepages(zone, 1 << order, migratetype); 6876 } 6877 6878 /* 6879 * Break down a higher-order page in sub-pages, and keep our target out of 6880 * buddy allocator. 6881 */ 6882 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6883 struct page *target, int low, int high, 6884 int migratetype) 6885 { 6886 unsigned long size = 1 << high; 6887 struct page *current_buddy; 6888 6889 while (high > low) { 6890 high--; 6891 size >>= 1; 6892 6893 if (target >= &page[size]) { 6894 current_buddy = page; 6895 page = page + size; 6896 } else { 6897 current_buddy = page + size; 6898 } 6899 6900 if (set_page_guard(zone, current_buddy, high)) 6901 continue; 6902 6903 add_to_free_list(current_buddy, zone, high, migratetype, false); 6904 set_buddy_order(current_buddy, high); 6905 } 6906 } 6907 6908 /* 6909 * Take a page that will be marked as poisoned off the buddy allocator. 6910 */ 6911 bool take_page_off_buddy(struct page *page) 6912 { 6913 struct zone *zone = page_zone(page); 6914 unsigned long pfn = page_to_pfn(page); 6915 unsigned long flags; 6916 unsigned int order; 6917 bool ret = false; 6918 6919 spin_lock_irqsave(&zone->lock, flags); 6920 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6921 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6922 int page_order = buddy_order(page_head); 6923 6924 if (PageBuddy(page_head) && page_order >= order) { 6925 unsigned long pfn_head = page_to_pfn(page_head); 6926 int migratetype = get_pfnblock_migratetype(page_head, 6927 pfn_head); 6928 6929 del_page_from_free_list(page_head, zone, page_order, 6930 migratetype); 6931 break_down_buddy_pages(zone, page_head, page, 0, 6932 page_order, migratetype); 6933 SetPageHWPoisonTakenOff(page); 6934 ret = true; 6935 break; 6936 } 6937 if (page_count(page_head) > 0) 6938 break; 6939 } 6940 spin_unlock_irqrestore(&zone->lock, flags); 6941 return ret; 6942 } 6943 6944 /* 6945 * Cancel takeoff done by take_page_off_buddy(). 6946 */ 6947 bool put_page_back_buddy(struct page *page) 6948 { 6949 struct zone *zone = page_zone(page); 6950 unsigned long flags; 6951 bool ret = false; 6952 6953 spin_lock_irqsave(&zone->lock, flags); 6954 if (put_page_testzero(page)) { 6955 unsigned long pfn = page_to_pfn(page); 6956 int migratetype = get_pfnblock_migratetype(page, pfn); 6957 6958 ClearPageHWPoisonTakenOff(page); 6959 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6960 if (TestClearPageHWPoison(page)) { 6961 ret = true; 6962 } 6963 } 6964 spin_unlock_irqrestore(&zone->lock, flags); 6965 6966 return ret; 6967 } 6968 #endif 6969 6970 #ifdef CONFIG_ZONE_DMA 6971 bool has_managed_dma(void) 6972 { 6973 struct pglist_data *pgdat; 6974 6975 for_each_online_pgdat(pgdat) { 6976 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6977 6978 if (managed_zone(zone)) 6979 return true; 6980 } 6981 return false; 6982 } 6983 #endif /* CONFIG_ZONE_DMA */ 6984 6985 #ifdef CONFIG_UNACCEPTED_MEMORY 6986 6987 /* Counts number of zones with unaccepted pages. */ 6988 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6989 6990 static bool lazy_accept = true; 6991 6992 static int __init accept_memory_parse(char *p) 6993 { 6994 if (!strcmp(p, "lazy")) { 6995 lazy_accept = true; 6996 return 0; 6997 } else if (!strcmp(p, "eager")) { 6998 lazy_accept = false; 6999 return 0; 7000 } else { 7001 return -EINVAL; 7002 } 7003 } 7004 early_param("accept_memory", accept_memory_parse); 7005 7006 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7007 { 7008 phys_addr_t start = page_to_phys(page); 7009 7010 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7011 } 7012 7013 static void __accept_page(struct zone *zone, unsigned long *flags, 7014 struct page *page) 7015 { 7016 bool last; 7017 7018 list_del(&page->lru); 7019 last = list_empty(&zone->unaccepted_pages); 7020 7021 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7022 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7023 __ClearPageUnaccepted(page); 7024 spin_unlock_irqrestore(&zone->lock, *flags); 7025 7026 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7027 7028 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7029 7030 if (last) 7031 static_branch_dec(&zones_with_unaccepted_pages); 7032 } 7033 7034 void accept_page(struct page *page) 7035 { 7036 struct zone *zone = page_zone(page); 7037 unsigned long flags; 7038 7039 spin_lock_irqsave(&zone->lock, flags); 7040 if (!PageUnaccepted(page)) { 7041 spin_unlock_irqrestore(&zone->lock, flags); 7042 return; 7043 } 7044 7045 /* Unlocks zone->lock */ 7046 __accept_page(zone, &flags, page); 7047 } 7048 7049 static bool try_to_accept_memory_one(struct zone *zone) 7050 { 7051 unsigned long flags; 7052 struct page *page; 7053 7054 spin_lock_irqsave(&zone->lock, flags); 7055 page = list_first_entry_or_null(&zone->unaccepted_pages, 7056 struct page, lru); 7057 if (!page) { 7058 spin_unlock_irqrestore(&zone->lock, flags); 7059 return false; 7060 } 7061 7062 /* Unlocks zone->lock */ 7063 __accept_page(zone, &flags, page); 7064 7065 return true; 7066 } 7067 7068 static inline bool has_unaccepted_memory(void) 7069 { 7070 return static_branch_unlikely(&zones_with_unaccepted_pages); 7071 } 7072 7073 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7074 { 7075 long to_accept; 7076 bool ret = false; 7077 7078 if (!has_unaccepted_memory()) 7079 return false; 7080 7081 if (list_empty(&zone->unaccepted_pages)) 7082 return false; 7083 7084 /* How much to accept to get to promo watermark? */ 7085 to_accept = promo_wmark_pages(zone) - 7086 (zone_page_state(zone, NR_FREE_PAGES) - 7087 __zone_watermark_unusable_free(zone, order, 0) - 7088 zone_page_state(zone, NR_UNACCEPTED)); 7089 7090 while (to_accept > 0) { 7091 if (!try_to_accept_memory_one(zone)) 7092 break; 7093 ret = true; 7094 to_accept -= MAX_ORDER_NR_PAGES; 7095 } 7096 7097 return ret; 7098 } 7099 7100 static bool __free_unaccepted(struct page *page) 7101 { 7102 struct zone *zone = page_zone(page); 7103 unsigned long flags; 7104 bool first = false; 7105 7106 if (!lazy_accept) 7107 return false; 7108 7109 spin_lock_irqsave(&zone->lock, flags); 7110 first = list_empty(&zone->unaccepted_pages); 7111 list_add_tail(&page->lru, &zone->unaccepted_pages); 7112 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7113 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7114 __SetPageUnaccepted(page); 7115 spin_unlock_irqrestore(&zone->lock, flags); 7116 7117 if (first) 7118 static_branch_inc(&zones_with_unaccepted_pages); 7119 7120 return true; 7121 } 7122 7123 #else 7124 7125 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7126 { 7127 return false; 7128 } 7129 7130 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7131 { 7132 return false; 7133 } 7134 7135 static bool __free_unaccepted(struct page *page) 7136 { 7137 BUILD_BUG(); 7138 return false; 7139 } 7140 7141 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7142