xref: /linux/mm/page_alloc.c (revision 58652f2b6d21f2874c9f060165ec7e03e8b1fc71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static bool cond_accept_memory(struct zone *zone, unsigned int order);
290 static bool __free_unaccepted(struct page *page);
291 
292 int page_group_by_mobility_disabled __read_mostly;
293 
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 /*
296  * During boot we initialize deferred pages on-demand, as needed, but once
297  * page_alloc_init_late() has finished, the deferred pages are all initialized,
298  * and we can permanently disable that path.
299  */
300 DEFINE_STATIC_KEY_TRUE(deferred_pages);
301 
302 static inline bool deferred_pages_enabled(void)
303 {
304 	return static_branch_unlikely(&deferred_pages);
305 }
306 
307 /*
308  * deferred_grow_zone() is __init, but it is called from
309  * get_page_from_freelist() during early boot until deferred_pages permanently
310  * disables this call. This is why we have refdata wrapper to avoid warning,
311  * and to ensure that the function body gets unloaded.
312  */
313 static bool __ref
314 _deferred_grow_zone(struct zone *zone, unsigned int order)
315 {
316 	return deferred_grow_zone(zone, order);
317 }
318 #else
319 static inline bool deferred_pages_enabled(void)
320 {
321 	return false;
322 }
323 
324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
325 {
326 	return false;
327 }
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
329 
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
331 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
332 							unsigned long pfn)
333 {
334 #ifdef CONFIG_SPARSEMEM
335 	return section_to_usemap(__pfn_to_section(pfn));
336 #else
337 	return page_zone(page)->pageblock_flags;
338 #endif /* CONFIG_SPARSEMEM */
339 }
340 
341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
342 {
343 #ifdef CONFIG_SPARSEMEM
344 	pfn &= (PAGES_PER_SECTION-1);
345 #else
346 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
347 #endif /* CONFIG_SPARSEMEM */
348 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
349 }
350 
351 /**
352  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353  * @page: The page within the block of interest
354  * @pfn: The target page frame number
355  * @mask: mask of bits that the caller is interested in
356  *
357  * Return: pageblock_bits flags
358  */
359 unsigned long get_pfnblock_flags_mask(const struct page *page,
360 					unsigned long pfn, unsigned long mask)
361 {
362 	unsigned long *bitmap;
363 	unsigned long bitidx, word_bitidx;
364 	unsigned long word;
365 
366 	bitmap = get_pageblock_bitmap(page, pfn);
367 	bitidx = pfn_to_bitidx(page, pfn);
368 	word_bitidx = bitidx / BITS_PER_LONG;
369 	bitidx &= (BITS_PER_LONG-1);
370 	/*
371 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 	 * a consistent read of the memory array, so that results, even though
373 	 * racy, are not corrupted.
374 	 */
375 	word = READ_ONCE(bitmap[word_bitidx]);
376 	return (word >> bitidx) & mask;
377 }
378 
379 static __always_inline int get_pfnblock_migratetype(const struct page *page,
380 					unsigned long pfn)
381 {
382 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
383 }
384 
385 /**
386  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387  * @page: The page within the block of interest
388  * @flags: The flags to set
389  * @pfn: The target page frame number
390  * @mask: mask of bits that the caller is interested in
391  */
392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
393 					unsigned long pfn,
394 					unsigned long mask)
395 {
396 	unsigned long *bitmap;
397 	unsigned long bitidx, word_bitidx;
398 	unsigned long word;
399 
400 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
401 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
402 
403 	bitmap = get_pageblock_bitmap(page, pfn);
404 	bitidx = pfn_to_bitidx(page, pfn);
405 	word_bitidx = bitidx / BITS_PER_LONG;
406 	bitidx &= (BITS_PER_LONG-1);
407 
408 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
409 
410 	mask <<= bitidx;
411 	flags <<= bitidx;
412 
413 	word = READ_ONCE(bitmap[word_bitidx]);
414 	do {
415 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
416 }
417 
418 void set_pageblock_migratetype(struct page *page, int migratetype)
419 {
420 	if (unlikely(page_group_by_mobility_disabled &&
421 		     migratetype < MIGRATE_PCPTYPES))
422 		migratetype = MIGRATE_UNMOVABLE;
423 
424 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
425 				page_to_pfn(page), MIGRATETYPE_MASK);
426 }
427 
428 #ifdef CONFIG_DEBUG_VM
429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
430 {
431 	int ret;
432 	unsigned seq;
433 	unsigned long pfn = page_to_pfn(page);
434 	unsigned long sp, start_pfn;
435 
436 	do {
437 		seq = zone_span_seqbegin(zone);
438 		start_pfn = zone->zone_start_pfn;
439 		sp = zone->spanned_pages;
440 		ret = !zone_spans_pfn(zone, pfn);
441 	} while (zone_span_seqretry(zone, seq));
442 
443 	if (ret)
444 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 			pfn, zone_to_nid(zone), zone->name,
446 			start_pfn, start_pfn + sp);
447 
448 	return ret;
449 }
450 
451 /*
452  * Temporary debugging check for pages not lying within a given zone.
453  */
454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
455 {
456 	if (page_outside_zone_boundaries(zone, page))
457 		return true;
458 	if (zone != page_zone(page))
459 		return true;
460 
461 	return false;
462 }
463 #else
464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
465 {
466 	return false;
467 }
468 #endif
469 
470 static void bad_page(struct page *page, const char *reason)
471 {
472 	static unsigned long resume;
473 	static unsigned long nr_shown;
474 	static unsigned long nr_unshown;
475 
476 	/*
477 	 * Allow a burst of 60 reports, then keep quiet for that minute;
478 	 * or allow a steady drip of one report per second.
479 	 */
480 	if (nr_shown == 60) {
481 		if (time_before(jiffies, resume)) {
482 			nr_unshown++;
483 			goto out;
484 		}
485 		if (nr_unshown) {
486 			pr_alert(
487 			      "BUG: Bad page state: %lu messages suppressed\n",
488 				nr_unshown);
489 			nr_unshown = 0;
490 		}
491 		nr_shown = 0;
492 	}
493 	if (nr_shown++ == 0)
494 		resume = jiffies + 60 * HZ;
495 
496 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
497 		current->comm, page_to_pfn(page));
498 	dump_page(page, reason);
499 
500 	print_modules();
501 	dump_stack();
502 out:
503 	/* Leave bad fields for debug, except PageBuddy could make trouble */
504 	if (PageBuddy(page))
505 		__ClearPageBuddy(page);
506 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
507 }
508 
509 static inline unsigned int order_to_pindex(int migratetype, int order)
510 {
511 	bool __maybe_unused movable;
512 
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
515 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
516 
517 		movable = migratetype == MIGRATE_MOVABLE;
518 
519 		return NR_LOWORDER_PCP_LISTS + movable;
520 	}
521 #else
522 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
523 #endif
524 
525 	return (MIGRATE_PCPTYPES * order) + migratetype;
526 }
527 
528 static inline int pindex_to_order(unsigned int pindex)
529 {
530 	int order = pindex / MIGRATE_PCPTYPES;
531 
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 	if (pindex >= NR_LOWORDER_PCP_LISTS)
534 		order = HPAGE_PMD_ORDER;
535 #else
536 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
537 #endif
538 
539 	return order;
540 }
541 
542 static inline bool pcp_allowed_order(unsigned int order)
543 {
544 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
545 		return true;
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 	if (order == HPAGE_PMD_ORDER)
548 		return true;
549 #endif
550 	return false;
551 }
552 
553 /*
554  * Higher-order pages are called "compound pages".  They are structured thusly:
555  *
556  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
557  *
558  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
560  *
561  * The first tail page's ->compound_order holds the order of allocation.
562  * This usage means that zero-order pages may not be compound.
563  */
564 
565 void prep_compound_page(struct page *page, unsigned int order)
566 {
567 	int i;
568 	int nr_pages = 1 << order;
569 
570 	__SetPageHead(page);
571 	for (i = 1; i < nr_pages; i++)
572 		prep_compound_tail(page, i);
573 
574 	prep_compound_head(page, order);
575 }
576 
577 static inline void set_buddy_order(struct page *page, unsigned int order)
578 {
579 	set_page_private(page, order);
580 	__SetPageBuddy(page);
581 }
582 
583 #ifdef CONFIG_COMPACTION
584 static inline struct capture_control *task_capc(struct zone *zone)
585 {
586 	struct capture_control *capc = current->capture_control;
587 
588 	return unlikely(capc) &&
589 		!(current->flags & PF_KTHREAD) &&
590 		!capc->page &&
591 		capc->cc->zone == zone ? capc : NULL;
592 }
593 
594 static inline bool
595 compaction_capture(struct capture_control *capc, struct page *page,
596 		   int order, int migratetype)
597 {
598 	if (!capc || order != capc->cc->order)
599 		return false;
600 
601 	/* Do not accidentally pollute CMA or isolated regions*/
602 	if (is_migrate_cma(migratetype) ||
603 	    is_migrate_isolate(migratetype))
604 		return false;
605 
606 	/*
607 	 * Do not let lower order allocations pollute a movable pageblock
608 	 * unless compaction is also requesting movable pages.
609 	 * This might let an unmovable request use a reclaimable pageblock
610 	 * and vice-versa but no more than normal fallback logic which can
611 	 * have trouble finding a high-order free page.
612 	 */
613 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
614 	    capc->cc->migratetype != MIGRATE_MOVABLE)
615 		return false;
616 
617 	capc->page = page;
618 	return true;
619 }
620 
621 #else
622 static inline struct capture_control *task_capc(struct zone *zone)
623 {
624 	return NULL;
625 }
626 
627 static inline bool
628 compaction_capture(struct capture_control *capc, struct page *page,
629 		   int order, int migratetype)
630 {
631 	return false;
632 }
633 #endif /* CONFIG_COMPACTION */
634 
635 static inline void account_freepages(struct zone *zone, int nr_pages,
636 				     int migratetype)
637 {
638 	if (is_migrate_isolate(migratetype))
639 		return;
640 
641 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
642 
643 	if (is_migrate_cma(migratetype))
644 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
645 }
646 
647 /* Used for pages not on another list */
648 static inline void __add_to_free_list(struct page *page, struct zone *zone,
649 				      unsigned int order, int migratetype,
650 				      bool tail)
651 {
652 	struct free_area *area = &zone->free_area[order];
653 
654 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
655 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
656 		     get_pageblock_migratetype(page), migratetype, 1 << order);
657 
658 	if (tail)
659 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
660 	else
661 		list_add(&page->buddy_list, &area->free_list[migratetype]);
662 	area->nr_free++;
663 }
664 
665 /*
666  * Used for pages which are on another list. Move the pages to the tail
667  * of the list - so the moved pages won't immediately be considered for
668  * allocation again (e.g., optimization for memory onlining).
669  */
670 static inline void move_to_free_list(struct page *page, struct zone *zone,
671 				     unsigned int order, int old_mt, int new_mt)
672 {
673 	struct free_area *area = &zone->free_area[order];
674 
675 	/* Free page moving can fail, so it happens before the type update */
676 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
677 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
678 		     get_pageblock_migratetype(page), old_mt, 1 << order);
679 
680 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
681 
682 	account_freepages(zone, -(1 << order), old_mt);
683 	account_freepages(zone, 1 << order, new_mt);
684 }
685 
686 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
687 					     unsigned int order, int migratetype)
688 {
689         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
690 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
691 		     get_pageblock_migratetype(page), migratetype, 1 << order);
692 
693 	/* clear reported state and update reported page count */
694 	if (page_reported(page))
695 		__ClearPageReported(page);
696 
697 	list_del(&page->buddy_list);
698 	__ClearPageBuddy(page);
699 	set_page_private(page, 0);
700 	zone->free_area[order].nr_free--;
701 }
702 
703 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
704 					   unsigned int order, int migratetype)
705 {
706 	__del_page_from_free_list(page, zone, order, migratetype);
707 	account_freepages(zone, -(1 << order), migratetype);
708 }
709 
710 static inline struct page *get_page_from_free_area(struct free_area *area,
711 					    int migratetype)
712 {
713 	return list_first_entry_or_null(&area->free_list[migratetype],
714 					struct page, buddy_list);
715 }
716 
717 /*
718  * If this is less than the 2nd largest possible page, check if the buddy
719  * of the next-higher order is free. If it is, it's possible
720  * that pages are being freed that will coalesce soon. In case,
721  * that is happening, add the free page to the tail of the list
722  * so it's less likely to be used soon and more likely to be merged
723  * as a 2-level higher order page
724  */
725 static inline bool
726 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
727 		   struct page *page, unsigned int order)
728 {
729 	unsigned long higher_page_pfn;
730 	struct page *higher_page;
731 
732 	if (order >= MAX_PAGE_ORDER - 1)
733 		return false;
734 
735 	higher_page_pfn = buddy_pfn & pfn;
736 	higher_page = page + (higher_page_pfn - pfn);
737 
738 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
739 			NULL) != NULL;
740 }
741 
742 /*
743  * Freeing function for a buddy system allocator.
744  *
745  * The concept of a buddy system is to maintain direct-mapped table
746  * (containing bit values) for memory blocks of various "orders".
747  * The bottom level table contains the map for the smallest allocatable
748  * units of memory (here, pages), and each level above it describes
749  * pairs of units from the levels below, hence, "buddies".
750  * At a high level, all that happens here is marking the table entry
751  * at the bottom level available, and propagating the changes upward
752  * as necessary, plus some accounting needed to play nicely with other
753  * parts of the VM system.
754  * At each level, we keep a list of pages, which are heads of continuous
755  * free pages of length of (1 << order) and marked with PageBuddy.
756  * Page's order is recorded in page_private(page) field.
757  * So when we are allocating or freeing one, we can derive the state of the
758  * other.  That is, if we allocate a small block, and both were
759  * free, the remainder of the region must be split into blocks.
760  * If a block is freed, and its buddy is also free, then this
761  * triggers coalescing into a block of larger size.
762  *
763  * -- nyc
764  */
765 
766 static inline void __free_one_page(struct page *page,
767 		unsigned long pfn,
768 		struct zone *zone, unsigned int order,
769 		int migratetype, fpi_t fpi_flags)
770 {
771 	struct capture_control *capc = task_capc(zone);
772 	unsigned long buddy_pfn = 0;
773 	unsigned long combined_pfn;
774 	struct page *buddy;
775 	bool to_tail;
776 
777 	VM_BUG_ON(!zone_is_initialized(zone));
778 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
779 
780 	VM_BUG_ON(migratetype == -1);
781 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
782 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
783 
784 	account_freepages(zone, 1 << order, migratetype);
785 
786 	while (order < MAX_PAGE_ORDER) {
787 		int buddy_mt = migratetype;
788 
789 		if (compaction_capture(capc, page, order, migratetype)) {
790 			account_freepages(zone, -(1 << order), migratetype);
791 			return;
792 		}
793 
794 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
795 		if (!buddy)
796 			goto done_merging;
797 
798 		if (unlikely(order >= pageblock_order)) {
799 			/*
800 			 * We want to prevent merge between freepages on pageblock
801 			 * without fallbacks and normal pageblock. Without this,
802 			 * pageblock isolation could cause incorrect freepage or CMA
803 			 * accounting or HIGHATOMIC accounting.
804 			 */
805 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
806 
807 			if (migratetype != buddy_mt &&
808 			    (!migratetype_is_mergeable(migratetype) ||
809 			     !migratetype_is_mergeable(buddy_mt)))
810 				goto done_merging;
811 		}
812 
813 		/*
814 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
815 		 * merge with it and move up one order.
816 		 */
817 		if (page_is_guard(buddy))
818 			clear_page_guard(zone, buddy, order);
819 		else
820 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
821 
822 		if (unlikely(buddy_mt != migratetype)) {
823 			/*
824 			 * Match buddy type. This ensures that an
825 			 * expand() down the line puts the sub-blocks
826 			 * on the right freelists.
827 			 */
828 			set_pageblock_migratetype(buddy, migratetype);
829 		}
830 
831 		combined_pfn = buddy_pfn & pfn;
832 		page = page + (combined_pfn - pfn);
833 		pfn = combined_pfn;
834 		order++;
835 	}
836 
837 done_merging:
838 	set_buddy_order(page, order);
839 
840 	if (fpi_flags & FPI_TO_TAIL)
841 		to_tail = true;
842 	else if (is_shuffle_order(order))
843 		to_tail = shuffle_pick_tail();
844 	else
845 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
846 
847 	__add_to_free_list(page, zone, order, migratetype, to_tail);
848 
849 	/* Notify page reporting subsystem of freed page */
850 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
851 		page_reporting_notify_free(order);
852 }
853 
854 /*
855  * A bad page could be due to a number of fields. Instead of multiple branches,
856  * try and check multiple fields with one check. The caller must do a detailed
857  * check if necessary.
858  */
859 static inline bool page_expected_state(struct page *page,
860 					unsigned long check_flags)
861 {
862 	if (unlikely(atomic_read(&page->_mapcount) != -1))
863 		return false;
864 
865 	if (unlikely((unsigned long)page->mapping |
866 			page_ref_count(page) |
867 #ifdef CONFIG_MEMCG
868 			page->memcg_data |
869 #endif
870 #ifdef CONFIG_PAGE_POOL
871 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
872 #endif
873 			(page->flags & check_flags)))
874 		return false;
875 
876 	return true;
877 }
878 
879 static const char *page_bad_reason(struct page *page, unsigned long flags)
880 {
881 	const char *bad_reason = NULL;
882 
883 	if (unlikely(atomic_read(&page->_mapcount) != -1))
884 		bad_reason = "nonzero mapcount";
885 	if (unlikely(page->mapping != NULL))
886 		bad_reason = "non-NULL mapping";
887 	if (unlikely(page_ref_count(page) != 0))
888 		bad_reason = "nonzero _refcount";
889 	if (unlikely(page->flags & flags)) {
890 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
891 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
892 		else
893 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
894 	}
895 #ifdef CONFIG_MEMCG
896 	if (unlikely(page->memcg_data))
897 		bad_reason = "page still charged to cgroup";
898 #endif
899 #ifdef CONFIG_PAGE_POOL
900 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
901 		bad_reason = "page_pool leak";
902 #endif
903 	return bad_reason;
904 }
905 
906 static void free_page_is_bad_report(struct page *page)
907 {
908 	bad_page(page,
909 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
910 }
911 
912 static inline bool free_page_is_bad(struct page *page)
913 {
914 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
915 		return false;
916 
917 	/* Something has gone sideways, find it */
918 	free_page_is_bad_report(page);
919 	return true;
920 }
921 
922 static inline bool is_check_pages_enabled(void)
923 {
924 	return static_branch_unlikely(&check_pages_enabled);
925 }
926 
927 static int free_tail_page_prepare(struct page *head_page, struct page *page)
928 {
929 	struct folio *folio = (struct folio *)head_page;
930 	int ret = 1;
931 
932 	/*
933 	 * We rely page->lru.next never has bit 0 set, unless the page
934 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
935 	 */
936 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
937 
938 	if (!is_check_pages_enabled()) {
939 		ret = 0;
940 		goto out;
941 	}
942 	switch (page - head_page) {
943 	case 1:
944 		/* the first tail page: these may be in place of ->mapping */
945 		if (unlikely(folio_entire_mapcount(folio))) {
946 			bad_page(page, "nonzero entire_mapcount");
947 			goto out;
948 		}
949 		if (unlikely(folio_large_mapcount(folio))) {
950 			bad_page(page, "nonzero large_mapcount");
951 			goto out;
952 		}
953 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
954 			bad_page(page, "nonzero nr_pages_mapped");
955 			goto out;
956 		}
957 		if (unlikely(atomic_read(&folio->_pincount))) {
958 			bad_page(page, "nonzero pincount");
959 			goto out;
960 		}
961 		break;
962 	case 2:
963 		/* the second tail page: deferred_list overlaps ->mapping */
964 		if (unlikely(!list_empty(&folio->_deferred_list))) {
965 			bad_page(page, "on deferred list");
966 			goto out;
967 		}
968 		break;
969 	default:
970 		if (page->mapping != TAIL_MAPPING) {
971 			bad_page(page, "corrupted mapping in tail page");
972 			goto out;
973 		}
974 		break;
975 	}
976 	if (unlikely(!PageTail(page))) {
977 		bad_page(page, "PageTail not set");
978 		goto out;
979 	}
980 	if (unlikely(compound_head(page) != head_page)) {
981 		bad_page(page, "compound_head not consistent");
982 		goto out;
983 	}
984 	ret = 0;
985 out:
986 	page->mapping = NULL;
987 	clear_compound_head(page);
988 	return ret;
989 }
990 
991 /*
992  * Skip KASAN memory poisoning when either:
993  *
994  * 1. For generic KASAN: deferred memory initialization has not yet completed.
995  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
996  *    using page tags instead (see below).
997  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
998  *    that error detection is disabled for accesses via the page address.
999  *
1000  * Pages will have match-all tags in the following circumstances:
1001  *
1002  * 1. Pages are being initialized for the first time, including during deferred
1003  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1004  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1005  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1006  * 3. The allocation was excluded from being checked due to sampling,
1007  *    see the call to kasan_unpoison_pages.
1008  *
1009  * Poisoning pages during deferred memory init will greatly lengthen the
1010  * process and cause problem in large memory systems as the deferred pages
1011  * initialization is done with interrupt disabled.
1012  *
1013  * Assuming that there will be no reference to those newly initialized
1014  * pages before they are ever allocated, this should have no effect on
1015  * KASAN memory tracking as the poison will be properly inserted at page
1016  * allocation time. The only corner case is when pages are allocated by
1017  * on-demand allocation and then freed again before the deferred pages
1018  * initialization is done, but this is not likely to happen.
1019  */
1020 static inline bool should_skip_kasan_poison(struct page *page)
1021 {
1022 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1023 		return deferred_pages_enabled();
1024 
1025 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1026 }
1027 
1028 static void kernel_init_pages(struct page *page, int numpages)
1029 {
1030 	int i;
1031 
1032 	/* s390's use of memset() could override KASAN redzones. */
1033 	kasan_disable_current();
1034 	for (i = 0; i < numpages; i++)
1035 		clear_highpage_kasan_tagged(page + i);
1036 	kasan_enable_current();
1037 }
1038 
1039 __always_inline bool free_pages_prepare(struct page *page,
1040 			unsigned int order)
1041 {
1042 	int bad = 0;
1043 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1044 	bool init = want_init_on_free();
1045 	bool compound = PageCompound(page);
1046 
1047 	VM_BUG_ON_PAGE(PageTail(page), page);
1048 
1049 	trace_mm_page_free(page, order);
1050 	kmsan_free_page(page, order);
1051 
1052 	if (memcg_kmem_online() && PageMemcgKmem(page))
1053 		__memcg_kmem_uncharge_page(page, order);
1054 
1055 	if (unlikely(PageHWPoison(page)) && !order) {
1056 		/* Do not let hwpoison pages hit pcplists/buddy */
1057 		reset_page_owner(page, order);
1058 		page_table_check_free(page, order);
1059 		pgalloc_tag_sub(page, 1 << order);
1060 
1061 		/*
1062 		 * The page is isolated and accounted for.
1063 		 * Mark the codetag as empty to avoid accounting error
1064 		 * when the page is freed by unpoison_memory().
1065 		 */
1066 		clear_page_tag_ref(page);
1067 		return false;
1068 	}
1069 
1070 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1071 
1072 	/*
1073 	 * Check tail pages before head page information is cleared to
1074 	 * avoid checking PageCompound for order-0 pages.
1075 	 */
1076 	if (unlikely(order)) {
1077 		int i;
1078 
1079 		if (compound)
1080 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1081 		for (i = 1; i < (1 << order); i++) {
1082 			if (compound)
1083 				bad += free_tail_page_prepare(page, page + i);
1084 			if (is_check_pages_enabled()) {
1085 				if (free_page_is_bad(page + i)) {
1086 					bad++;
1087 					continue;
1088 				}
1089 			}
1090 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1091 		}
1092 	}
1093 	if (PageMappingFlags(page)) {
1094 		if (PageAnon(page))
1095 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1096 		page->mapping = NULL;
1097 	}
1098 	if (is_check_pages_enabled()) {
1099 		if (free_page_is_bad(page))
1100 			bad++;
1101 		if (bad)
1102 			return false;
1103 	}
1104 
1105 	page_cpupid_reset_last(page);
1106 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1107 	reset_page_owner(page, order);
1108 	page_table_check_free(page, order);
1109 	pgalloc_tag_sub(page, 1 << order);
1110 
1111 	if (!PageHighMem(page)) {
1112 		debug_check_no_locks_freed(page_address(page),
1113 					   PAGE_SIZE << order);
1114 		debug_check_no_obj_freed(page_address(page),
1115 					   PAGE_SIZE << order);
1116 	}
1117 
1118 	kernel_poison_pages(page, 1 << order);
1119 
1120 	/*
1121 	 * As memory initialization might be integrated into KASAN,
1122 	 * KASAN poisoning and memory initialization code must be
1123 	 * kept together to avoid discrepancies in behavior.
1124 	 *
1125 	 * With hardware tag-based KASAN, memory tags must be set before the
1126 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1127 	 */
1128 	if (!skip_kasan_poison) {
1129 		kasan_poison_pages(page, order, init);
1130 
1131 		/* Memory is already initialized if KASAN did it internally. */
1132 		if (kasan_has_integrated_init())
1133 			init = false;
1134 	}
1135 	if (init)
1136 		kernel_init_pages(page, 1 << order);
1137 
1138 	/*
1139 	 * arch_free_page() can make the page's contents inaccessible.  s390
1140 	 * does this.  So nothing which can access the page's contents should
1141 	 * happen after this.
1142 	 */
1143 	arch_free_page(page, order);
1144 
1145 	debug_pagealloc_unmap_pages(page, 1 << order);
1146 
1147 	return true;
1148 }
1149 
1150 /*
1151  * Frees a number of pages from the PCP lists
1152  * Assumes all pages on list are in same zone.
1153  * count is the number of pages to free.
1154  */
1155 static void free_pcppages_bulk(struct zone *zone, int count,
1156 					struct per_cpu_pages *pcp,
1157 					int pindex)
1158 {
1159 	unsigned long flags;
1160 	unsigned int order;
1161 	struct page *page;
1162 
1163 	/*
1164 	 * Ensure proper count is passed which otherwise would stuck in the
1165 	 * below while (list_empty(list)) loop.
1166 	 */
1167 	count = min(pcp->count, count);
1168 
1169 	/* Ensure requested pindex is drained first. */
1170 	pindex = pindex - 1;
1171 
1172 	spin_lock_irqsave(&zone->lock, flags);
1173 
1174 	while (count > 0) {
1175 		struct list_head *list;
1176 		int nr_pages;
1177 
1178 		/* Remove pages from lists in a round-robin fashion. */
1179 		do {
1180 			if (++pindex > NR_PCP_LISTS - 1)
1181 				pindex = 0;
1182 			list = &pcp->lists[pindex];
1183 		} while (list_empty(list));
1184 
1185 		order = pindex_to_order(pindex);
1186 		nr_pages = 1 << order;
1187 		do {
1188 			unsigned long pfn;
1189 			int mt;
1190 
1191 			page = list_last_entry(list, struct page, pcp_list);
1192 			pfn = page_to_pfn(page);
1193 			mt = get_pfnblock_migratetype(page, pfn);
1194 
1195 			/* must delete to avoid corrupting pcp list */
1196 			list_del(&page->pcp_list);
1197 			count -= nr_pages;
1198 			pcp->count -= nr_pages;
1199 
1200 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1201 			trace_mm_page_pcpu_drain(page, order, mt);
1202 		} while (count > 0 && !list_empty(list));
1203 	}
1204 
1205 	spin_unlock_irqrestore(&zone->lock, flags);
1206 }
1207 
1208 /* Split a multi-block free page into its individual pageblocks. */
1209 static void split_large_buddy(struct zone *zone, struct page *page,
1210 			      unsigned long pfn, int order, fpi_t fpi)
1211 {
1212 	unsigned long end = pfn + (1 << order);
1213 
1214 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1215 	/* Caller removed page from freelist, buddy info cleared! */
1216 	VM_WARN_ON_ONCE(PageBuddy(page));
1217 
1218 	if (order > pageblock_order)
1219 		order = pageblock_order;
1220 
1221 	while (pfn != end) {
1222 		int mt = get_pfnblock_migratetype(page, pfn);
1223 
1224 		__free_one_page(page, pfn, zone, order, mt, fpi);
1225 		pfn += 1 << order;
1226 		page = pfn_to_page(pfn);
1227 	}
1228 }
1229 
1230 static void free_one_page(struct zone *zone, struct page *page,
1231 			  unsigned long pfn, unsigned int order,
1232 			  fpi_t fpi_flags)
1233 {
1234 	unsigned long flags;
1235 
1236 	spin_lock_irqsave(&zone->lock, flags);
1237 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1238 	spin_unlock_irqrestore(&zone->lock, flags);
1239 
1240 	__count_vm_events(PGFREE, 1 << order);
1241 }
1242 
1243 static void __free_pages_ok(struct page *page, unsigned int order,
1244 			    fpi_t fpi_flags)
1245 {
1246 	unsigned long pfn = page_to_pfn(page);
1247 	struct zone *zone = page_zone(page);
1248 
1249 	if (free_pages_prepare(page, order))
1250 		free_one_page(zone, page, pfn, order, fpi_flags);
1251 }
1252 
1253 void __meminit __free_pages_core(struct page *page, unsigned int order,
1254 		enum meminit_context context)
1255 {
1256 	unsigned int nr_pages = 1 << order;
1257 	struct page *p = page;
1258 	unsigned int loop;
1259 
1260 	/*
1261 	 * When initializing the memmap, __init_single_page() sets the refcount
1262 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1263 	 * refcount of all involved pages to 0.
1264 	 *
1265 	 * Note that hotplugged memory pages are initialized to PageOffline().
1266 	 * Pages freed from memblock might be marked as reserved.
1267 	 */
1268 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1269 	    unlikely(context == MEMINIT_HOTPLUG)) {
1270 		for (loop = 0; loop < nr_pages; loop++, p++) {
1271 			VM_WARN_ON_ONCE(PageReserved(p));
1272 			__ClearPageOffline(p);
1273 			set_page_count(p, 0);
1274 		}
1275 
1276 		/*
1277 		 * Freeing the page with debug_pagealloc enabled will try to
1278 		 * unmap it; some archs don't like double-unmappings, so
1279 		 * map it first.
1280 		 */
1281 		debug_pagealloc_map_pages(page, nr_pages);
1282 		adjust_managed_page_count(page, nr_pages);
1283 	} else {
1284 		for (loop = 0; loop < nr_pages; loop++, p++) {
1285 			__ClearPageReserved(p);
1286 			set_page_count(p, 0);
1287 		}
1288 
1289 		/* memblock adjusts totalram_pages() manually. */
1290 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1291 	}
1292 
1293 	if (page_contains_unaccepted(page, order)) {
1294 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1295 			return;
1296 
1297 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1298 	}
1299 
1300 	/*
1301 	 * Bypass PCP and place fresh pages right to the tail, primarily
1302 	 * relevant for memory onlining.
1303 	 */
1304 	__free_pages_ok(page, order, FPI_TO_TAIL);
1305 }
1306 
1307 /*
1308  * Check that the whole (or subset of) a pageblock given by the interval of
1309  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1310  * with the migration of free compaction scanner.
1311  *
1312  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1313  *
1314  * It's possible on some configurations to have a setup like node0 node1 node0
1315  * i.e. it's possible that all pages within a zones range of pages do not
1316  * belong to a single zone. We assume that a border between node0 and node1
1317  * can occur within a single pageblock, but not a node0 node1 node0
1318  * interleaving within a single pageblock. It is therefore sufficient to check
1319  * the first and last page of a pageblock and avoid checking each individual
1320  * page in a pageblock.
1321  *
1322  * Note: the function may return non-NULL struct page even for a page block
1323  * which contains a memory hole (i.e. there is no physical memory for a subset
1324  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1325  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1326  * even though the start pfn is online and valid. This should be safe most of
1327  * the time because struct pages are still initialized via init_unavailable_range()
1328  * and pfn walkers shouldn't touch any physical memory range for which they do
1329  * not recognize any specific metadata in struct pages.
1330  */
1331 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1332 				     unsigned long end_pfn, struct zone *zone)
1333 {
1334 	struct page *start_page;
1335 	struct page *end_page;
1336 
1337 	/* end_pfn is one past the range we are checking */
1338 	end_pfn--;
1339 
1340 	if (!pfn_valid(end_pfn))
1341 		return NULL;
1342 
1343 	start_page = pfn_to_online_page(start_pfn);
1344 	if (!start_page)
1345 		return NULL;
1346 
1347 	if (page_zone(start_page) != zone)
1348 		return NULL;
1349 
1350 	end_page = pfn_to_page(end_pfn);
1351 
1352 	/* This gives a shorter code than deriving page_zone(end_page) */
1353 	if (page_zone_id(start_page) != page_zone_id(end_page))
1354 		return NULL;
1355 
1356 	return start_page;
1357 }
1358 
1359 /*
1360  * The order of subdivision here is critical for the IO subsystem.
1361  * Please do not alter this order without good reasons and regression
1362  * testing. Specifically, as large blocks of memory are subdivided,
1363  * the order in which smaller blocks are delivered depends on the order
1364  * they're subdivided in this function. This is the primary factor
1365  * influencing the order in which pages are delivered to the IO
1366  * subsystem according to empirical testing, and this is also justified
1367  * by considering the behavior of a buddy system containing a single
1368  * large block of memory acted on by a series of small allocations.
1369  * This behavior is a critical factor in sglist merging's success.
1370  *
1371  * -- nyc
1372  */
1373 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1374 				  int high, int migratetype)
1375 {
1376 	unsigned int size = 1 << high;
1377 	unsigned int nr_added = 0;
1378 
1379 	while (high > low) {
1380 		high--;
1381 		size >>= 1;
1382 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1383 
1384 		/*
1385 		 * Mark as guard pages (or page), that will allow to
1386 		 * merge back to allocator when buddy will be freed.
1387 		 * Corresponding page table entries will not be touched,
1388 		 * pages will stay not present in virtual address space
1389 		 */
1390 		if (set_page_guard(zone, &page[size], high))
1391 			continue;
1392 
1393 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1394 		set_buddy_order(&page[size], high);
1395 		nr_added += size;
1396 	}
1397 
1398 	return nr_added;
1399 }
1400 
1401 static __always_inline void page_del_and_expand(struct zone *zone,
1402 						struct page *page, int low,
1403 						int high, int migratetype)
1404 {
1405 	int nr_pages = 1 << high;
1406 
1407 	__del_page_from_free_list(page, zone, high, migratetype);
1408 	nr_pages -= expand(zone, page, low, high, migratetype);
1409 	account_freepages(zone, -nr_pages, migratetype);
1410 }
1411 
1412 static void check_new_page_bad(struct page *page)
1413 {
1414 	if (unlikely(page->flags & __PG_HWPOISON)) {
1415 		/* Don't complain about hwpoisoned pages */
1416 		if (PageBuddy(page))
1417 			__ClearPageBuddy(page);
1418 		return;
1419 	}
1420 
1421 	bad_page(page,
1422 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1423 }
1424 
1425 /*
1426  * This page is about to be returned from the page allocator
1427  */
1428 static bool check_new_page(struct page *page)
1429 {
1430 	if (likely(page_expected_state(page,
1431 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1432 		return false;
1433 
1434 	check_new_page_bad(page);
1435 	return true;
1436 }
1437 
1438 static inline bool check_new_pages(struct page *page, unsigned int order)
1439 {
1440 	if (is_check_pages_enabled()) {
1441 		for (int i = 0; i < (1 << order); i++) {
1442 			struct page *p = page + i;
1443 
1444 			if (check_new_page(p))
1445 				return true;
1446 		}
1447 	}
1448 
1449 	return false;
1450 }
1451 
1452 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1453 {
1454 	/* Don't skip if a software KASAN mode is enabled. */
1455 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1456 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1457 		return false;
1458 
1459 	/* Skip, if hardware tag-based KASAN is not enabled. */
1460 	if (!kasan_hw_tags_enabled())
1461 		return true;
1462 
1463 	/*
1464 	 * With hardware tag-based KASAN enabled, skip if this has been
1465 	 * requested via __GFP_SKIP_KASAN.
1466 	 */
1467 	return flags & __GFP_SKIP_KASAN;
1468 }
1469 
1470 static inline bool should_skip_init(gfp_t flags)
1471 {
1472 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1473 	if (!kasan_hw_tags_enabled())
1474 		return false;
1475 
1476 	/* For hardware tag-based KASAN, skip if requested. */
1477 	return (flags & __GFP_SKIP_ZERO);
1478 }
1479 
1480 inline void post_alloc_hook(struct page *page, unsigned int order,
1481 				gfp_t gfp_flags)
1482 {
1483 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1484 			!should_skip_init(gfp_flags);
1485 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1486 	int i;
1487 
1488 	set_page_private(page, 0);
1489 	set_page_refcounted(page);
1490 
1491 	arch_alloc_page(page, order);
1492 	debug_pagealloc_map_pages(page, 1 << order);
1493 
1494 	/*
1495 	 * Page unpoisoning must happen before memory initialization.
1496 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1497 	 * allocations and the page unpoisoning code will complain.
1498 	 */
1499 	kernel_unpoison_pages(page, 1 << order);
1500 
1501 	/*
1502 	 * As memory initialization might be integrated into KASAN,
1503 	 * KASAN unpoisoning and memory initializion code must be
1504 	 * kept together to avoid discrepancies in behavior.
1505 	 */
1506 
1507 	/*
1508 	 * If memory tags should be zeroed
1509 	 * (which happens only when memory should be initialized as well).
1510 	 */
1511 	if (zero_tags) {
1512 		/* Initialize both memory and memory tags. */
1513 		for (i = 0; i != 1 << order; ++i)
1514 			tag_clear_highpage(page + i);
1515 
1516 		/* Take note that memory was initialized by the loop above. */
1517 		init = false;
1518 	}
1519 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1520 	    kasan_unpoison_pages(page, order, init)) {
1521 		/* Take note that memory was initialized by KASAN. */
1522 		if (kasan_has_integrated_init())
1523 			init = false;
1524 	} else {
1525 		/*
1526 		 * If memory tags have not been set by KASAN, reset the page
1527 		 * tags to ensure page_address() dereferencing does not fault.
1528 		 */
1529 		for (i = 0; i != 1 << order; ++i)
1530 			page_kasan_tag_reset(page + i);
1531 	}
1532 	/* If memory is still not initialized, initialize it now. */
1533 	if (init)
1534 		kernel_init_pages(page, 1 << order);
1535 
1536 	set_page_owner(page, order, gfp_flags);
1537 	page_table_check_alloc(page, order);
1538 	pgalloc_tag_add(page, current, 1 << order);
1539 }
1540 
1541 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1542 							unsigned int alloc_flags)
1543 {
1544 	post_alloc_hook(page, order, gfp_flags);
1545 
1546 	if (order && (gfp_flags & __GFP_COMP))
1547 		prep_compound_page(page, order);
1548 
1549 	/*
1550 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1551 	 * allocate the page. The expectation is that the caller is taking
1552 	 * steps that will free more memory. The caller should avoid the page
1553 	 * being used for !PFMEMALLOC purposes.
1554 	 */
1555 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1556 		set_page_pfmemalloc(page);
1557 	else
1558 		clear_page_pfmemalloc(page);
1559 }
1560 
1561 /*
1562  * Go through the free lists for the given migratetype and remove
1563  * the smallest available page from the freelists
1564  */
1565 static __always_inline
1566 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1567 						int migratetype)
1568 {
1569 	unsigned int current_order;
1570 	struct free_area *area;
1571 	struct page *page;
1572 
1573 	/* Find a page of the appropriate size in the preferred list */
1574 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1575 		area = &(zone->free_area[current_order]);
1576 		page = get_page_from_free_area(area, migratetype);
1577 		if (!page)
1578 			continue;
1579 
1580 		page_del_and_expand(zone, page, order, current_order,
1581 				    migratetype);
1582 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1583 				pcp_allowed_order(order) &&
1584 				migratetype < MIGRATE_PCPTYPES);
1585 		return page;
1586 	}
1587 
1588 	return NULL;
1589 }
1590 
1591 
1592 /*
1593  * This array describes the order lists are fallen back to when
1594  * the free lists for the desirable migrate type are depleted
1595  *
1596  * The other migratetypes do not have fallbacks.
1597  */
1598 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1599 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1600 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1601 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1602 };
1603 
1604 #ifdef CONFIG_CMA
1605 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1606 					unsigned int order)
1607 {
1608 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1609 }
1610 #else
1611 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1612 					unsigned int order) { return NULL; }
1613 #endif
1614 
1615 /*
1616  * Change the type of a block and move all its free pages to that
1617  * type's freelist.
1618  */
1619 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1620 				  int old_mt, int new_mt)
1621 {
1622 	struct page *page;
1623 	unsigned long pfn, end_pfn;
1624 	unsigned int order;
1625 	int pages_moved = 0;
1626 
1627 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1628 	end_pfn = pageblock_end_pfn(start_pfn);
1629 
1630 	for (pfn = start_pfn; pfn < end_pfn;) {
1631 		page = pfn_to_page(pfn);
1632 		if (!PageBuddy(page)) {
1633 			pfn++;
1634 			continue;
1635 		}
1636 
1637 		/* Make sure we are not inadvertently changing nodes */
1638 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1639 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1640 
1641 		order = buddy_order(page);
1642 
1643 		move_to_free_list(page, zone, order, old_mt, new_mt);
1644 
1645 		pfn += 1 << order;
1646 		pages_moved += 1 << order;
1647 	}
1648 
1649 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1650 
1651 	return pages_moved;
1652 }
1653 
1654 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1655 				      unsigned long *start_pfn,
1656 				      int *num_free, int *num_movable)
1657 {
1658 	unsigned long pfn, start, end;
1659 
1660 	pfn = page_to_pfn(page);
1661 	start = pageblock_start_pfn(pfn);
1662 	end = pageblock_end_pfn(pfn);
1663 
1664 	/*
1665 	 * The caller only has the lock for @zone, don't touch ranges
1666 	 * that straddle into other zones. While we could move part of
1667 	 * the range that's inside the zone, this call is usually
1668 	 * accompanied by other operations such as migratetype updates
1669 	 * which also should be locked.
1670 	 */
1671 	if (!zone_spans_pfn(zone, start))
1672 		return false;
1673 	if (!zone_spans_pfn(zone, end - 1))
1674 		return false;
1675 
1676 	*start_pfn = start;
1677 
1678 	if (num_free) {
1679 		*num_free = 0;
1680 		*num_movable = 0;
1681 		for (pfn = start; pfn < end;) {
1682 			page = pfn_to_page(pfn);
1683 			if (PageBuddy(page)) {
1684 				int nr = 1 << buddy_order(page);
1685 
1686 				*num_free += nr;
1687 				pfn += nr;
1688 				continue;
1689 			}
1690 			/*
1691 			 * We assume that pages that could be isolated for
1692 			 * migration are movable. But we don't actually try
1693 			 * isolating, as that would be expensive.
1694 			 */
1695 			if (PageLRU(page) || __PageMovable(page))
1696 				(*num_movable)++;
1697 			pfn++;
1698 		}
1699 	}
1700 
1701 	return true;
1702 }
1703 
1704 static int move_freepages_block(struct zone *zone, struct page *page,
1705 				int old_mt, int new_mt)
1706 {
1707 	unsigned long start_pfn;
1708 
1709 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1710 		return -1;
1711 
1712 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1713 }
1714 
1715 #ifdef CONFIG_MEMORY_ISOLATION
1716 /* Look for a buddy that straddles start_pfn */
1717 static unsigned long find_large_buddy(unsigned long start_pfn)
1718 {
1719 	int order = 0;
1720 	struct page *page;
1721 	unsigned long pfn = start_pfn;
1722 
1723 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1724 		/* Nothing found */
1725 		if (++order > MAX_PAGE_ORDER)
1726 			return start_pfn;
1727 		pfn &= ~0UL << order;
1728 	}
1729 
1730 	/*
1731 	 * Found a preceding buddy, but does it straddle?
1732 	 */
1733 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1734 		return pfn;
1735 
1736 	/* Nothing found */
1737 	return start_pfn;
1738 }
1739 
1740 /**
1741  * move_freepages_block_isolate - move free pages in block for page isolation
1742  * @zone: the zone
1743  * @page: the pageblock page
1744  * @migratetype: migratetype to set on the pageblock
1745  *
1746  * This is similar to move_freepages_block(), but handles the special
1747  * case encountered in page isolation, where the block of interest
1748  * might be part of a larger buddy spanning multiple pageblocks.
1749  *
1750  * Unlike the regular page allocator path, which moves pages while
1751  * stealing buddies off the freelist, page isolation is interested in
1752  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1753  *
1754  * This function handles that. Straddling buddies are split into
1755  * individual pageblocks. Only the block of interest is moved.
1756  *
1757  * Returns %true if pages could be moved, %false otherwise.
1758  */
1759 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1760 				  int migratetype)
1761 {
1762 	unsigned long start_pfn, pfn;
1763 
1764 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1765 		return false;
1766 
1767 	/* No splits needed if buddies can't span multiple blocks */
1768 	if (pageblock_order == MAX_PAGE_ORDER)
1769 		goto move;
1770 
1771 	/* We're a tail block in a larger buddy */
1772 	pfn = find_large_buddy(start_pfn);
1773 	if (pfn != start_pfn) {
1774 		struct page *buddy = pfn_to_page(pfn);
1775 		int order = buddy_order(buddy);
1776 
1777 		del_page_from_free_list(buddy, zone, order,
1778 					get_pfnblock_migratetype(buddy, pfn));
1779 		set_pageblock_migratetype(page, migratetype);
1780 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1781 		return true;
1782 	}
1783 
1784 	/* We're the starting block of a larger buddy */
1785 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1786 		int order = buddy_order(page);
1787 
1788 		del_page_from_free_list(page, zone, order,
1789 					get_pfnblock_migratetype(page, pfn));
1790 		set_pageblock_migratetype(page, migratetype);
1791 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1792 		return true;
1793 	}
1794 move:
1795 	__move_freepages_block(zone, start_pfn,
1796 			       get_pfnblock_migratetype(page, start_pfn),
1797 			       migratetype);
1798 	return true;
1799 }
1800 #endif /* CONFIG_MEMORY_ISOLATION */
1801 
1802 static void change_pageblock_range(struct page *pageblock_page,
1803 					int start_order, int migratetype)
1804 {
1805 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1806 
1807 	while (nr_pageblocks--) {
1808 		set_pageblock_migratetype(pageblock_page, migratetype);
1809 		pageblock_page += pageblock_nr_pages;
1810 	}
1811 }
1812 
1813 /*
1814  * When we are falling back to another migratetype during allocation, try to
1815  * steal extra free pages from the same pageblocks to satisfy further
1816  * allocations, instead of polluting multiple pageblocks.
1817  *
1818  * If we are stealing a relatively large buddy page, it is likely there will
1819  * be more free pages in the pageblock, so try to steal them all. For
1820  * reclaimable and unmovable allocations, we steal regardless of page size,
1821  * as fragmentation caused by those allocations polluting movable pageblocks
1822  * is worse than movable allocations stealing from unmovable and reclaimable
1823  * pageblocks.
1824  */
1825 static bool can_steal_fallback(unsigned int order, int start_mt)
1826 {
1827 	/*
1828 	 * Leaving this order check is intended, although there is
1829 	 * relaxed order check in next check. The reason is that
1830 	 * we can actually steal whole pageblock if this condition met,
1831 	 * but, below check doesn't guarantee it and that is just heuristic
1832 	 * so could be changed anytime.
1833 	 */
1834 	if (order >= pageblock_order)
1835 		return true;
1836 
1837 	if (order >= pageblock_order / 2 ||
1838 		start_mt == MIGRATE_RECLAIMABLE ||
1839 		start_mt == MIGRATE_UNMOVABLE ||
1840 		page_group_by_mobility_disabled)
1841 		return true;
1842 
1843 	return false;
1844 }
1845 
1846 static inline bool boost_watermark(struct zone *zone)
1847 {
1848 	unsigned long max_boost;
1849 
1850 	if (!watermark_boost_factor)
1851 		return false;
1852 	/*
1853 	 * Don't bother in zones that are unlikely to produce results.
1854 	 * On small machines, including kdump capture kernels running
1855 	 * in a small area, boosting the watermark can cause an out of
1856 	 * memory situation immediately.
1857 	 */
1858 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1859 		return false;
1860 
1861 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1862 			watermark_boost_factor, 10000);
1863 
1864 	/*
1865 	 * high watermark may be uninitialised if fragmentation occurs
1866 	 * very early in boot so do not boost. We do not fall
1867 	 * through and boost by pageblock_nr_pages as failing
1868 	 * allocations that early means that reclaim is not going
1869 	 * to help and it may even be impossible to reclaim the
1870 	 * boosted watermark resulting in a hang.
1871 	 */
1872 	if (!max_boost)
1873 		return false;
1874 
1875 	max_boost = max(pageblock_nr_pages, max_boost);
1876 
1877 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1878 		max_boost);
1879 
1880 	return true;
1881 }
1882 
1883 /*
1884  * This function implements actual steal behaviour. If order is large enough, we
1885  * can claim the whole pageblock for the requested migratetype. If not, we check
1886  * the pageblock for constituent pages; if at least half of the pages are free
1887  * or compatible, we can still claim the whole block, so pages freed in the
1888  * future will be put on the correct free list. Otherwise, we isolate exactly
1889  * the order we need from the fallback block and leave its migratetype alone.
1890  */
1891 static struct page *
1892 steal_suitable_fallback(struct zone *zone, struct page *page,
1893 			int current_order, int order, int start_type,
1894 			unsigned int alloc_flags, bool whole_block)
1895 {
1896 	int free_pages, movable_pages, alike_pages;
1897 	unsigned long start_pfn;
1898 	int block_type;
1899 
1900 	block_type = get_pageblock_migratetype(page);
1901 
1902 	/*
1903 	 * This can happen due to races and we want to prevent broken
1904 	 * highatomic accounting.
1905 	 */
1906 	if (is_migrate_highatomic(block_type))
1907 		goto single_page;
1908 
1909 	/* Take ownership for orders >= pageblock_order */
1910 	if (current_order >= pageblock_order) {
1911 		unsigned int nr_added;
1912 
1913 		del_page_from_free_list(page, zone, current_order, block_type);
1914 		change_pageblock_range(page, current_order, start_type);
1915 		nr_added = expand(zone, page, order, current_order, start_type);
1916 		account_freepages(zone, nr_added, start_type);
1917 		return page;
1918 	}
1919 
1920 	/*
1921 	 * Boost watermarks to increase reclaim pressure to reduce the
1922 	 * likelihood of future fallbacks. Wake kswapd now as the node
1923 	 * may be balanced overall and kswapd will not wake naturally.
1924 	 */
1925 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1926 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1927 
1928 	/* We are not allowed to try stealing from the whole block */
1929 	if (!whole_block)
1930 		goto single_page;
1931 
1932 	/* moving whole block can fail due to zone boundary conditions */
1933 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1934 				       &movable_pages))
1935 		goto single_page;
1936 
1937 	/*
1938 	 * Determine how many pages are compatible with our allocation.
1939 	 * For movable allocation, it's the number of movable pages which
1940 	 * we just obtained. For other types it's a bit more tricky.
1941 	 */
1942 	if (start_type == MIGRATE_MOVABLE) {
1943 		alike_pages = movable_pages;
1944 	} else {
1945 		/*
1946 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1947 		 * to MOVABLE pageblock, consider all non-movable pages as
1948 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1949 		 * vice versa, be conservative since we can't distinguish the
1950 		 * exact migratetype of non-movable pages.
1951 		 */
1952 		if (block_type == MIGRATE_MOVABLE)
1953 			alike_pages = pageblock_nr_pages
1954 						- (free_pages + movable_pages);
1955 		else
1956 			alike_pages = 0;
1957 	}
1958 	/*
1959 	 * If a sufficient number of pages in the block are either free or of
1960 	 * compatible migratability as our allocation, claim the whole block.
1961 	 */
1962 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1963 			page_group_by_mobility_disabled) {
1964 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1965 		return __rmqueue_smallest(zone, order, start_type);
1966 	}
1967 
1968 single_page:
1969 	page_del_and_expand(zone, page, order, current_order, block_type);
1970 	return page;
1971 }
1972 
1973 /*
1974  * Check whether there is a suitable fallback freepage with requested order.
1975  * If only_stealable is true, this function returns fallback_mt only if
1976  * we can steal other freepages all together. This would help to reduce
1977  * fragmentation due to mixed migratetype pages in one pageblock.
1978  */
1979 int find_suitable_fallback(struct free_area *area, unsigned int order,
1980 			int migratetype, bool only_stealable, bool *can_steal)
1981 {
1982 	int i;
1983 	int fallback_mt;
1984 
1985 	if (area->nr_free == 0)
1986 		return -1;
1987 
1988 	*can_steal = false;
1989 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1990 		fallback_mt = fallbacks[migratetype][i];
1991 		if (free_area_empty(area, fallback_mt))
1992 			continue;
1993 
1994 		if (can_steal_fallback(order, migratetype))
1995 			*can_steal = true;
1996 
1997 		if (!only_stealable)
1998 			return fallback_mt;
1999 
2000 		if (*can_steal)
2001 			return fallback_mt;
2002 	}
2003 
2004 	return -1;
2005 }
2006 
2007 /*
2008  * Reserve the pageblock(s) surrounding an allocation request for
2009  * exclusive use of high-order atomic allocations if there are no
2010  * empty page blocks that contain a page with a suitable order
2011  */
2012 static void reserve_highatomic_pageblock(struct page *page, int order,
2013 					 struct zone *zone)
2014 {
2015 	int mt;
2016 	unsigned long max_managed, flags;
2017 
2018 	/*
2019 	 * The number reserved as: minimum is 1 pageblock, maximum is
2020 	 * roughly 1% of a zone. But if 1% of a zone falls below a
2021 	 * pageblock size, then don't reserve any pageblocks.
2022 	 * Check is race-prone but harmless.
2023 	 */
2024 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2025 		return;
2026 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2027 	if (zone->nr_reserved_highatomic >= max_managed)
2028 		return;
2029 
2030 	spin_lock_irqsave(&zone->lock, flags);
2031 
2032 	/* Recheck the nr_reserved_highatomic limit under the lock */
2033 	if (zone->nr_reserved_highatomic >= max_managed)
2034 		goto out_unlock;
2035 
2036 	/* Yoink! */
2037 	mt = get_pageblock_migratetype(page);
2038 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2039 	if (!migratetype_is_mergeable(mt))
2040 		goto out_unlock;
2041 
2042 	if (order < pageblock_order) {
2043 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2044 			goto out_unlock;
2045 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2046 	} else {
2047 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2048 		zone->nr_reserved_highatomic += 1 << order;
2049 	}
2050 
2051 out_unlock:
2052 	spin_unlock_irqrestore(&zone->lock, flags);
2053 }
2054 
2055 /*
2056  * Used when an allocation is about to fail under memory pressure. This
2057  * potentially hurts the reliability of high-order allocations when under
2058  * intense memory pressure but failed atomic allocations should be easier
2059  * to recover from than an OOM.
2060  *
2061  * If @force is true, try to unreserve pageblocks even though highatomic
2062  * pageblock is exhausted.
2063  */
2064 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2065 						bool force)
2066 {
2067 	struct zonelist *zonelist = ac->zonelist;
2068 	unsigned long flags;
2069 	struct zoneref *z;
2070 	struct zone *zone;
2071 	struct page *page;
2072 	int order;
2073 	int ret;
2074 
2075 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2076 								ac->nodemask) {
2077 		/*
2078 		 * Preserve at least one pageblock unless memory pressure
2079 		 * is really high.
2080 		 */
2081 		if (!force && zone->nr_reserved_highatomic <=
2082 					pageblock_nr_pages)
2083 			continue;
2084 
2085 		spin_lock_irqsave(&zone->lock, flags);
2086 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2087 			struct free_area *area = &(zone->free_area[order]);
2088 			int mt;
2089 
2090 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2091 			if (!page)
2092 				continue;
2093 
2094 			mt = get_pageblock_migratetype(page);
2095 			/*
2096 			 * In page freeing path, migratetype change is racy so
2097 			 * we can counter several free pages in a pageblock
2098 			 * in this loop although we changed the pageblock type
2099 			 * from highatomic to ac->migratetype. So we should
2100 			 * adjust the count once.
2101 			 */
2102 			if (is_migrate_highatomic(mt)) {
2103 				unsigned long size;
2104 				/*
2105 				 * It should never happen but changes to
2106 				 * locking could inadvertently allow a per-cpu
2107 				 * drain to add pages to MIGRATE_HIGHATOMIC
2108 				 * while unreserving so be safe and watch for
2109 				 * underflows.
2110 				 */
2111 				size = max(pageblock_nr_pages, 1UL << order);
2112 				size = min(size, zone->nr_reserved_highatomic);
2113 				zone->nr_reserved_highatomic -= size;
2114 			}
2115 
2116 			/*
2117 			 * Convert to ac->migratetype and avoid the normal
2118 			 * pageblock stealing heuristics. Minimally, the caller
2119 			 * is doing the work and needs the pages. More
2120 			 * importantly, if the block was always converted to
2121 			 * MIGRATE_UNMOVABLE or another type then the number
2122 			 * of pageblocks that cannot be completely freed
2123 			 * may increase.
2124 			 */
2125 			if (order < pageblock_order)
2126 				ret = move_freepages_block(zone, page, mt,
2127 							   ac->migratetype);
2128 			else {
2129 				move_to_free_list(page, zone, order, mt,
2130 						  ac->migratetype);
2131 				change_pageblock_range(page, order,
2132 						       ac->migratetype);
2133 				ret = 1;
2134 			}
2135 			/*
2136 			 * Reserving the block(s) already succeeded,
2137 			 * so this should not fail on zone boundaries.
2138 			 */
2139 			WARN_ON_ONCE(ret == -1);
2140 			if (ret > 0) {
2141 				spin_unlock_irqrestore(&zone->lock, flags);
2142 				return ret;
2143 			}
2144 		}
2145 		spin_unlock_irqrestore(&zone->lock, flags);
2146 	}
2147 
2148 	return false;
2149 }
2150 
2151 /*
2152  * Try finding a free buddy page on the fallback list and put it on the free
2153  * list of requested migratetype, possibly along with other pages from the same
2154  * block, depending on fragmentation avoidance heuristics. Returns true if
2155  * fallback was found so that __rmqueue_smallest() can grab it.
2156  *
2157  * The use of signed ints for order and current_order is a deliberate
2158  * deviation from the rest of this file, to make the for loop
2159  * condition simpler.
2160  */
2161 static __always_inline struct page *
2162 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2163 						unsigned int alloc_flags)
2164 {
2165 	struct free_area *area;
2166 	int current_order;
2167 	int min_order = order;
2168 	struct page *page;
2169 	int fallback_mt;
2170 	bool can_steal;
2171 
2172 	/*
2173 	 * Do not steal pages from freelists belonging to other pageblocks
2174 	 * i.e. orders < pageblock_order. If there are no local zones free,
2175 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2176 	 */
2177 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2178 		min_order = pageblock_order;
2179 
2180 	/*
2181 	 * Find the largest available free page in the other list. This roughly
2182 	 * approximates finding the pageblock with the most free pages, which
2183 	 * would be too costly to do exactly.
2184 	 */
2185 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2186 				--current_order) {
2187 		area = &(zone->free_area[current_order]);
2188 		fallback_mt = find_suitable_fallback(area, current_order,
2189 				start_migratetype, false, &can_steal);
2190 		if (fallback_mt == -1)
2191 			continue;
2192 
2193 		/*
2194 		 * We cannot steal all free pages from the pageblock and the
2195 		 * requested migratetype is movable. In that case it's better to
2196 		 * steal and split the smallest available page instead of the
2197 		 * largest available page, because even if the next movable
2198 		 * allocation falls back into a different pageblock than this
2199 		 * one, it won't cause permanent fragmentation.
2200 		 */
2201 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2202 					&& current_order > order)
2203 			goto find_smallest;
2204 
2205 		goto do_steal;
2206 	}
2207 
2208 	return NULL;
2209 
2210 find_smallest:
2211 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2212 		area = &(zone->free_area[current_order]);
2213 		fallback_mt = find_suitable_fallback(area, current_order,
2214 				start_migratetype, false, &can_steal);
2215 		if (fallback_mt != -1)
2216 			break;
2217 	}
2218 
2219 	/*
2220 	 * This should not happen - we already found a suitable fallback
2221 	 * when looking for the largest page.
2222 	 */
2223 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2224 
2225 do_steal:
2226 	page = get_page_from_free_area(area, fallback_mt);
2227 
2228 	/* take off list, maybe claim block, expand remainder */
2229 	page = steal_suitable_fallback(zone, page, current_order, order,
2230 				       start_migratetype, alloc_flags, can_steal);
2231 
2232 	trace_mm_page_alloc_extfrag(page, order, current_order,
2233 		start_migratetype, fallback_mt);
2234 
2235 	return page;
2236 }
2237 
2238 /*
2239  * Do the hard work of removing an element from the buddy allocator.
2240  * Call me with the zone->lock already held.
2241  */
2242 static __always_inline struct page *
2243 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2244 						unsigned int alloc_flags)
2245 {
2246 	struct page *page;
2247 
2248 	if (IS_ENABLED(CONFIG_CMA)) {
2249 		/*
2250 		 * Balance movable allocations between regular and CMA areas by
2251 		 * allocating from CMA when over half of the zone's free memory
2252 		 * is in the CMA area.
2253 		 */
2254 		if (alloc_flags & ALLOC_CMA &&
2255 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2256 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2257 			page = __rmqueue_cma_fallback(zone, order);
2258 			if (page)
2259 				return page;
2260 		}
2261 	}
2262 
2263 	page = __rmqueue_smallest(zone, order, migratetype);
2264 	if (unlikely(!page)) {
2265 		if (alloc_flags & ALLOC_CMA)
2266 			page = __rmqueue_cma_fallback(zone, order);
2267 
2268 		if (!page)
2269 			page = __rmqueue_fallback(zone, order, migratetype,
2270 						  alloc_flags);
2271 	}
2272 	return page;
2273 }
2274 
2275 /*
2276  * Obtain a specified number of elements from the buddy allocator, all under
2277  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2278  * Returns the number of new pages which were placed at *list.
2279  */
2280 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2281 			unsigned long count, struct list_head *list,
2282 			int migratetype, unsigned int alloc_flags)
2283 {
2284 	unsigned long flags;
2285 	int i;
2286 
2287 	spin_lock_irqsave(&zone->lock, flags);
2288 	for (i = 0; i < count; ++i) {
2289 		struct page *page = __rmqueue(zone, order, migratetype,
2290 								alloc_flags);
2291 		if (unlikely(page == NULL))
2292 			break;
2293 
2294 		/*
2295 		 * Split buddy pages returned by expand() are received here in
2296 		 * physical page order. The page is added to the tail of
2297 		 * caller's list. From the callers perspective, the linked list
2298 		 * is ordered by page number under some conditions. This is
2299 		 * useful for IO devices that can forward direction from the
2300 		 * head, thus also in the physical page order. This is useful
2301 		 * for IO devices that can merge IO requests if the physical
2302 		 * pages are ordered properly.
2303 		 */
2304 		list_add_tail(&page->pcp_list, list);
2305 	}
2306 	spin_unlock_irqrestore(&zone->lock, flags);
2307 
2308 	return i;
2309 }
2310 
2311 /*
2312  * Called from the vmstat counter updater to decay the PCP high.
2313  * Return whether there are addition works to do.
2314  */
2315 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2316 {
2317 	int high_min, to_drain, batch;
2318 	int todo = 0;
2319 
2320 	high_min = READ_ONCE(pcp->high_min);
2321 	batch = READ_ONCE(pcp->batch);
2322 	/*
2323 	 * Decrease pcp->high periodically to try to free possible
2324 	 * idle PCP pages.  And, avoid to free too many pages to
2325 	 * control latency.  This caps pcp->high decrement too.
2326 	 */
2327 	if (pcp->high > high_min) {
2328 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2329 				 pcp->high - (pcp->high >> 3), high_min);
2330 		if (pcp->high > high_min)
2331 			todo++;
2332 	}
2333 
2334 	to_drain = pcp->count - pcp->high;
2335 	if (to_drain > 0) {
2336 		spin_lock(&pcp->lock);
2337 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2338 		spin_unlock(&pcp->lock);
2339 		todo++;
2340 	}
2341 
2342 	return todo;
2343 }
2344 
2345 #ifdef CONFIG_NUMA
2346 /*
2347  * Called from the vmstat counter updater to drain pagesets of this
2348  * currently executing processor on remote nodes after they have
2349  * expired.
2350  */
2351 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2352 {
2353 	int to_drain, batch;
2354 
2355 	batch = READ_ONCE(pcp->batch);
2356 	to_drain = min(pcp->count, batch);
2357 	if (to_drain > 0) {
2358 		spin_lock(&pcp->lock);
2359 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2360 		spin_unlock(&pcp->lock);
2361 	}
2362 }
2363 #endif
2364 
2365 /*
2366  * Drain pcplists of the indicated processor and zone.
2367  */
2368 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2369 {
2370 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2371 	int count;
2372 
2373 	do {
2374 		spin_lock(&pcp->lock);
2375 		count = pcp->count;
2376 		if (count) {
2377 			int to_drain = min(count,
2378 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2379 
2380 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2381 			count -= to_drain;
2382 		}
2383 		spin_unlock(&pcp->lock);
2384 	} while (count);
2385 }
2386 
2387 /*
2388  * Drain pcplists of all zones on the indicated processor.
2389  */
2390 static void drain_pages(unsigned int cpu)
2391 {
2392 	struct zone *zone;
2393 
2394 	for_each_populated_zone(zone) {
2395 		drain_pages_zone(cpu, zone);
2396 	}
2397 }
2398 
2399 /*
2400  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2401  */
2402 void drain_local_pages(struct zone *zone)
2403 {
2404 	int cpu = smp_processor_id();
2405 
2406 	if (zone)
2407 		drain_pages_zone(cpu, zone);
2408 	else
2409 		drain_pages(cpu);
2410 }
2411 
2412 /*
2413  * The implementation of drain_all_pages(), exposing an extra parameter to
2414  * drain on all cpus.
2415  *
2416  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2417  * not empty. The check for non-emptiness can however race with a free to
2418  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2419  * that need the guarantee that every CPU has drained can disable the
2420  * optimizing racy check.
2421  */
2422 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2423 {
2424 	int cpu;
2425 
2426 	/*
2427 	 * Allocate in the BSS so we won't require allocation in
2428 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2429 	 */
2430 	static cpumask_t cpus_with_pcps;
2431 
2432 	/*
2433 	 * Do not drain if one is already in progress unless it's specific to
2434 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2435 	 * the drain to be complete when the call returns.
2436 	 */
2437 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2438 		if (!zone)
2439 			return;
2440 		mutex_lock(&pcpu_drain_mutex);
2441 	}
2442 
2443 	/*
2444 	 * We don't care about racing with CPU hotplug event
2445 	 * as offline notification will cause the notified
2446 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2447 	 * disables preemption as part of its processing
2448 	 */
2449 	for_each_online_cpu(cpu) {
2450 		struct per_cpu_pages *pcp;
2451 		struct zone *z;
2452 		bool has_pcps = false;
2453 
2454 		if (force_all_cpus) {
2455 			/*
2456 			 * The pcp.count check is racy, some callers need a
2457 			 * guarantee that no cpu is missed.
2458 			 */
2459 			has_pcps = true;
2460 		} else if (zone) {
2461 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2462 			if (pcp->count)
2463 				has_pcps = true;
2464 		} else {
2465 			for_each_populated_zone(z) {
2466 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2467 				if (pcp->count) {
2468 					has_pcps = true;
2469 					break;
2470 				}
2471 			}
2472 		}
2473 
2474 		if (has_pcps)
2475 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2476 		else
2477 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2478 	}
2479 
2480 	for_each_cpu(cpu, &cpus_with_pcps) {
2481 		if (zone)
2482 			drain_pages_zone(cpu, zone);
2483 		else
2484 			drain_pages(cpu);
2485 	}
2486 
2487 	mutex_unlock(&pcpu_drain_mutex);
2488 }
2489 
2490 /*
2491  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2492  *
2493  * When zone parameter is non-NULL, spill just the single zone's pages.
2494  */
2495 void drain_all_pages(struct zone *zone)
2496 {
2497 	__drain_all_pages(zone, false);
2498 }
2499 
2500 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2501 {
2502 	int min_nr_free, max_nr_free;
2503 
2504 	/* Free as much as possible if batch freeing high-order pages. */
2505 	if (unlikely(free_high))
2506 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2507 
2508 	/* Check for PCP disabled or boot pageset */
2509 	if (unlikely(high < batch))
2510 		return 1;
2511 
2512 	/* Leave at least pcp->batch pages on the list */
2513 	min_nr_free = batch;
2514 	max_nr_free = high - batch;
2515 
2516 	/*
2517 	 * Increase the batch number to the number of the consecutive
2518 	 * freed pages to reduce zone lock contention.
2519 	 */
2520 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2521 
2522 	return batch;
2523 }
2524 
2525 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2526 		       int batch, bool free_high)
2527 {
2528 	int high, high_min, high_max;
2529 
2530 	high_min = READ_ONCE(pcp->high_min);
2531 	high_max = READ_ONCE(pcp->high_max);
2532 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2533 
2534 	if (unlikely(!high))
2535 		return 0;
2536 
2537 	if (unlikely(free_high)) {
2538 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2539 				high_min);
2540 		return 0;
2541 	}
2542 
2543 	/*
2544 	 * If reclaim is active, limit the number of pages that can be
2545 	 * stored on pcp lists
2546 	 */
2547 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2548 		int free_count = max_t(int, pcp->free_count, batch);
2549 
2550 		pcp->high = max(high - free_count, high_min);
2551 		return min(batch << 2, pcp->high);
2552 	}
2553 
2554 	if (high_min == high_max)
2555 		return high;
2556 
2557 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2558 		int free_count = max_t(int, pcp->free_count, batch);
2559 
2560 		pcp->high = max(high - free_count, high_min);
2561 		high = max(pcp->count, high_min);
2562 	} else if (pcp->count >= high) {
2563 		int need_high = pcp->free_count + batch;
2564 
2565 		/* pcp->high should be large enough to hold batch freed pages */
2566 		if (pcp->high < need_high)
2567 			pcp->high = clamp(need_high, high_min, high_max);
2568 	}
2569 
2570 	return high;
2571 }
2572 
2573 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2574 				   struct page *page, int migratetype,
2575 				   unsigned int order)
2576 {
2577 	int high, batch;
2578 	int pindex;
2579 	bool free_high = false;
2580 
2581 	/*
2582 	 * On freeing, reduce the number of pages that are batch allocated.
2583 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2584 	 * allocations.
2585 	 */
2586 	pcp->alloc_factor >>= 1;
2587 	__count_vm_events(PGFREE, 1 << order);
2588 	pindex = order_to_pindex(migratetype, order);
2589 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2590 	pcp->count += 1 << order;
2591 
2592 	batch = READ_ONCE(pcp->batch);
2593 	/*
2594 	 * As high-order pages other than THP's stored on PCP can contribute
2595 	 * to fragmentation, limit the number stored when PCP is heavily
2596 	 * freeing without allocation. The remainder after bulk freeing
2597 	 * stops will be drained from vmstat refresh context.
2598 	 */
2599 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2600 		free_high = (pcp->free_count >= batch &&
2601 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2602 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2603 			      pcp->count >= READ_ONCE(batch)));
2604 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2605 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2606 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2607 	}
2608 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2609 		pcp->free_count += (1 << order);
2610 	high = nr_pcp_high(pcp, zone, batch, free_high);
2611 	if (pcp->count >= high) {
2612 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2613 				   pcp, pindex);
2614 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2615 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2616 				      ZONE_MOVABLE, 0))
2617 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2618 	}
2619 }
2620 
2621 /*
2622  * Free a pcp page
2623  */
2624 void free_unref_page(struct page *page, unsigned int order)
2625 {
2626 	unsigned long __maybe_unused UP_flags;
2627 	struct per_cpu_pages *pcp;
2628 	struct zone *zone;
2629 	unsigned long pfn = page_to_pfn(page);
2630 	int migratetype;
2631 
2632 	if (!pcp_allowed_order(order)) {
2633 		__free_pages_ok(page, order, FPI_NONE);
2634 		return;
2635 	}
2636 
2637 	if (!free_pages_prepare(page, order))
2638 		return;
2639 
2640 	/*
2641 	 * We only track unmovable, reclaimable and movable on pcp lists.
2642 	 * Place ISOLATE pages on the isolated list because they are being
2643 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2644 	 * get those areas back if necessary. Otherwise, we may have to free
2645 	 * excessively into the page allocator
2646 	 */
2647 	migratetype = get_pfnblock_migratetype(page, pfn);
2648 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2649 		if (unlikely(is_migrate_isolate(migratetype))) {
2650 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2651 			return;
2652 		}
2653 		migratetype = MIGRATE_MOVABLE;
2654 	}
2655 
2656 	zone = page_zone(page);
2657 	pcp_trylock_prepare(UP_flags);
2658 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2659 	if (pcp) {
2660 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2661 		pcp_spin_unlock(pcp);
2662 	} else {
2663 		free_one_page(zone, page, pfn, order, FPI_NONE);
2664 	}
2665 	pcp_trylock_finish(UP_flags);
2666 }
2667 
2668 /*
2669  * Free a batch of folios
2670  */
2671 void free_unref_folios(struct folio_batch *folios)
2672 {
2673 	unsigned long __maybe_unused UP_flags;
2674 	struct per_cpu_pages *pcp = NULL;
2675 	struct zone *locked_zone = NULL;
2676 	int i, j;
2677 
2678 	/* Prepare folios for freeing */
2679 	for (i = 0, j = 0; i < folios->nr; i++) {
2680 		struct folio *folio = folios->folios[i];
2681 		unsigned long pfn = folio_pfn(folio);
2682 		unsigned int order = folio_order(folio);
2683 
2684 		if (!free_pages_prepare(&folio->page, order))
2685 			continue;
2686 		/*
2687 		 * Free orders not handled on the PCP directly to the
2688 		 * allocator.
2689 		 */
2690 		if (!pcp_allowed_order(order)) {
2691 			free_one_page(folio_zone(folio), &folio->page,
2692 				      pfn, order, FPI_NONE);
2693 			continue;
2694 		}
2695 		folio->private = (void *)(unsigned long)order;
2696 		if (j != i)
2697 			folios->folios[j] = folio;
2698 		j++;
2699 	}
2700 	folios->nr = j;
2701 
2702 	for (i = 0; i < folios->nr; i++) {
2703 		struct folio *folio = folios->folios[i];
2704 		struct zone *zone = folio_zone(folio);
2705 		unsigned long pfn = folio_pfn(folio);
2706 		unsigned int order = (unsigned long)folio->private;
2707 		int migratetype;
2708 
2709 		folio->private = NULL;
2710 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2711 
2712 		/* Different zone requires a different pcp lock */
2713 		if (zone != locked_zone ||
2714 		    is_migrate_isolate(migratetype)) {
2715 			if (pcp) {
2716 				pcp_spin_unlock(pcp);
2717 				pcp_trylock_finish(UP_flags);
2718 				locked_zone = NULL;
2719 				pcp = NULL;
2720 			}
2721 
2722 			/*
2723 			 * Free isolated pages directly to the
2724 			 * allocator, see comment in free_unref_page.
2725 			 */
2726 			if (is_migrate_isolate(migratetype)) {
2727 				free_one_page(zone, &folio->page, pfn,
2728 					      order, FPI_NONE);
2729 				continue;
2730 			}
2731 
2732 			/*
2733 			 * trylock is necessary as folios may be getting freed
2734 			 * from IRQ or SoftIRQ context after an IO completion.
2735 			 */
2736 			pcp_trylock_prepare(UP_flags);
2737 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2738 			if (unlikely(!pcp)) {
2739 				pcp_trylock_finish(UP_flags);
2740 				free_one_page(zone, &folio->page, pfn,
2741 					      order, FPI_NONE);
2742 				continue;
2743 			}
2744 			locked_zone = zone;
2745 		}
2746 
2747 		/*
2748 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2749 		 * to the MIGRATE_MOVABLE pcp list.
2750 		 */
2751 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2752 			migratetype = MIGRATE_MOVABLE;
2753 
2754 		trace_mm_page_free_batched(&folio->page);
2755 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2756 				order);
2757 	}
2758 
2759 	if (pcp) {
2760 		pcp_spin_unlock(pcp);
2761 		pcp_trylock_finish(UP_flags);
2762 	}
2763 	folio_batch_reinit(folios);
2764 }
2765 
2766 /*
2767  * split_page takes a non-compound higher-order page, and splits it into
2768  * n (1<<order) sub-pages: page[0..n]
2769  * Each sub-page must be freed individually.
2770  *
2771  * Note: this is probably too low level an operation for use in drivers.
2772  * Please consult with lkml before using this in your driver.
2773  */
2774 void split_page(struct page *page, unsigned int order)
2775 {
2776 	int i;
2777 
2778 	VM_BUG_ON_PAGE(PageCompound(page), page);
2779 	VM_BUG_ON_PAGE(!page_count(page), page);
2780 
2781 	for (i = 1; i < (1 << order); i++)
2782 		set_page_refcounted(page + i);
2783 	split_page_owner(page, order, 0);
2784 	pgalloc_tag_split(page_folio(page), order, 0);
2785 	split_page_memcg(page, order, 0);
2786 }
2787 EXPORT_SYMBOL_GPL(split_page);
2788 
2789 int __isolate_free_page(struct page *page, unsigned int order)
2790 {
2791 	struct zone *zone = page_zone(page);
2792 	int mt = get_pageblock_migratetype(page);
2793 
2794 	if (!is_migrate_isolate(mt)) {
2795 		unsigned long watermark;
2796 		/*
2797 		 * Obey watermarks as if the page was being allocated. We can
2798 		 * emulate a high-order watermark check with a raised order-0
2799 		 * watermark, because we already know our high-order page
2800 		 * exists.
2801 		 */
2802 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2803 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2804 			return 0;
2805 	}
2806 
2807 	del_page_from_free_list(page, zone, order, mt);
2808 
2809 	/*
2810 	 * Set the pageblock if the isolated page is at least half of a
2811 	 * pageblock
2812 	 */
2813 	if (order >= pageblock_order - 1) {
2814 		struct page *endpage = page + (1 << order) - 1;
2815 		for (; page < endpage; page += pageblock_nr_pages) {
2816 			int mt = get_pageblock_migratetype(page);
2817 			/*
2818 			 * Only change normal pageblocks (i.e., they can merge
2819 			 * with others)
2820 			 */
2821 			if (migratetype_is_mergeable(mt))
2822 				move_freepages_block(zone, page, mt,
2823 						     MIGRATE_MOVABLE);
2824 		}
2825 	}
2826 
2827 	return 1UL << order;
2828 }
2829 
2830 /**
2831  * __putback_isolated_page - Return a now-isolated page back where we got it
2832  * @page: Page that was isolated
2833  * @order: Order of the isolated page
2834  * @mt: The page's pageblock's migratetype
2835  *
2836  * This function is meant to return a page pulled from the free lists via
2837  * __isolate_free_page back to the free lists they were pulled from.
2838  */
2839 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2840 {
2841 	struct zone *zone = page_zone(page);
2842 
2843 	/* zone lock should be held when this function is called */
2844 	lockdep_assert_held(&zone->lock);
2845 
2846 	/* Return isolated page to tail of freelist. */
2847 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2848 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2849 }
2850 
2851 /*
2852  * Update NUMA hit/miss statistics
2853  */
2854 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2855 				   long nr_account)
2856 {
2857 #ifdef CONFIG_NUMA
2858 	enum numa_stat_item local_stat = NUMA_LOCAL;
2859 
2860 	/* skip numa counters update if numa stats is disabled */
2861 	if (!static_branch_likely(&vm_numa_stat_key))
2862 		return;
2863 
2864 	if (zone_to_nid(z) != numa_node_id())
2865 		local_stat = NUMA_OTHER;
2866 
2867 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2868 		__count_numa_events(z, NUMA_HIT, nr_account);
2869 	else {
2870 		__count_numa_events(z, NUMA_MISS, nr_account);
2871 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2872 	}
2873 	__count_numa_events(z, local_stat, nr_account);
2874 #endif
2875 }
2876 
2877 static __always_inline
2878 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2879 			   unsigned int order, unsigned int alloc_flags,
2880 			   int migratetype)
2881 {
2882 	struct page *page;
2883 	unsigned long flags;
2884 
2885 	do {
2886 		page = NULL;
2887 		spin_lock_irqsave(&zone->lock, flags);
2888 		if (alloc_flags & ALLOC_HIGHATOMIC)
2889 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2890 		if (!page) {
2891 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2892 
2893 			/*
2894 			 * If the allocation fails, allow OOM handling and
2895 			 * order-0 (atomic) allocs access to HIGHATOMIC
2896 			 * reserves as failing now is worse than failing a
2897 			 * high-order atomic allocation in the future.
2898 			 */
2899 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2900 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2901 
2902 			if (!page) {
2903 				spin_unlock_irqrestore(&zone->lock, flags);
2904 				return NULL;
2905 			}
2906 		}
2907 		spin_unlock_irqrestore(&zone->lock, flags);
2908 	} while (check_new_pages(page, order));
2909 
2910 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2911 	zone_statistics(preferred_zone, zone, 1);
2912 
2913 	return page;
2914 }
2915 
2916 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2917 {
2918 	int high, base_batch, batch, max_nr_alloc;
2919 	int high_max, high_min;
2920 
2921 	base_batch = READ_ONCE(pcp->batch);
2922 	high_min = READ_ONCE(pcp->high_min);
2923 	high_max = READ_ONCE(pcp->high_max);
2924 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2925 
2926 	/* Check for PCP disabled or boot pageset */
2927 	if (unlikely(high < base_batch))
2928 		return 1;
2929 
2930 	if (order)
2931 		batch = base_batch;
2932 	else
2933 		batch = (base_batch << pcp->alloc_factor);
2934 
2935 	/*
2936 	 * If we had larger pcp->high, we could avoid to allocate from
2937 	 * zone.
2938 	 */
2939 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2940 		high = pcp->high = min(high + batch, high_max);
2941 
2942 	if (!order) {
2943 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2944 		/*
2945 		 * Double the number of pages allocated each time there is
2946 		 * subsequent allocation of order-0 pages without any freeing.
2947 		 */
2948 		if (batch <= max_nr_alloc &&
2949 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2950 			pcp->alloc_factor++;
2951 		batch = min(batch, max_nr_alloc);
2952 	}
2953 
2954 	/*
2955 	 * Scale batch relative to order if batch implies free pages
2956 	 * can be stored on the PCP. Batch can be 1 for small zones or
2957 	 * for boot pagesets which should never store free pages as
2958 	 * the pages may belong to arbitrary zones.
2959 	 */
2960 	if (batch > 1)
2961 		batch = max(batch >> order, 2);
2962 
2963 	return batch;
2964 }
2965 
2966 /* Remove page from the per-cpu list, caller must protect the list */
2967 static inline
2968 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2969 			int migratetype,
2970 			unsigned int alloc_flags,
2971 			struct per_cpu_pages *pcp,
2972 			struct list_head *list)
2973 {
2974 	struct page *page;
2975 
2976 	do {
2977 		if (list_empty(list)) {
2978 			int batch = nr_pcp_alloc(pcp, zone, order);
2979 			int alloced;
2980 
2981 			alloced = rmqueue_bulk(zone, order,
2982 					batch, list,
2983 					migratetype, alloc_flags);
2984 
2985 			pcp->count += alloced << order;
2986 			if (unlikely(list_empty(list)))
2987 				return NULL;
2988 		}
2989 
2990 		page = list_first_entry(list, struct page, pcp_list);
2991 		list_del(&page->pcp_list);
2992 		pcp->count -= 1 << order;
2993 	} while (check_new_pages(page, order));
2994 
2995 	return page;
2996 }
2997 
2998 /* Lock and remove page from the per-cpu list */
2999 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3000 			struct zone *zone, unsigned int order,
3001 			int migratetype, unsigned int alloc_flags)
3002 {
3003 	struct per_cpu_pages *pcp;
3004 	struct list_head *list;
3005 	struct page *page;
3006 	unsigned long __maybe_unused UP_flags;
3007 
3008 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3009 	pcp_trylock_prepare(UP_flags);
3010 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3011 	if (!pcp) {
3012 		pcp_trylock_finish(UP_flags);
3013 		return NULL;
3014 	}
3015 
3016 	/*
3017 	 * On allocation, reduce the number of pages that are batch freed.
3018 	 * See nr_pcp_free() where free_factor is increased for subsequent
3019 	 * frees.
3020 	 */
3021 	pcp->free_count >>= 1;
3022 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3023 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3024 	pcp_spin_unlock(pcp);
3025 	pcp_trylock_finish(UP_flags);
3026 	if (page) {
3027 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3028 		zone_statistics(preferred_zone, zone, 1);
3029 	}
3030 	return page;
3031 }
3032 
3033 /*
3034  * Allocate a page from the given zone.
3035  * Use pcplists for THP or "cheap" high-order allocations.
3036  */
3037 
3038 /*
3039  * Do not instrument rmqueue() with KMSAN. This function may call
3040  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3041  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3042  * may call rmqueue() again, which will result in a deadlock.
3043  */
3044 __no_sanitize_memory
3045 static inline
3046 struct page *rmqueue(struct zone *preferred_zone,
3047 			struct zone *zone, unsigned int order,
3048 			gfp_t gfp_flags, unsigned int alloc_flags,
3049 			int migratetype)
3050 {
3051 	struct page *page;
3052 
3053 	if (likely(pcp_allowed_order(order))) {
3054 		page = rmqueue_pcplist(preferred_zone, zone, order,
3055 				       migratetype, alloc_flags);
3056 		if (likely(page))
3057 			goto out;
3058 	}
3059 
3060 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3061 							migratetype);
3062 
3063 out:
3064 	/* Separate test+clear to avoid unnecessary atomics */
3065 	if ((alloc_flags & ALLOC_KSWAPD) &&
3066 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3067 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3068 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3069 	}
3070 
3071 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3072 	return page;
3073 }
3074 
3075 static inline long __zone_watermark_unusable_free(struct zone *z,
3076 				unsigned int order, unsigned int alloc_flags)
3077 {
3078 	long unusable_free = (1 << order) - 1;
3079 
3080 	/*
3081 	 * If the caller does not have rights to reserves below the min
3082 	 * watermark then subtract the high-atomic reserves. This will
3083 	 * over-estimate the size of the atomic reserve but it avoids a search.
3084 	 */
3085 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3086 		unusable_free += z->nr_reserved_highatomic;
3087 
3088 #ifdef CONFIG_CMA
3089 	/* If allocation can't use CMA areas don't use free CMA pages */
3090 	if (!(alloc_flags & ALLOC_CMA))
3091 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3092 #endif
3093 
3094 	return unusable_free;
3095 }
3096 
3097 /*
3098  * Return true if free base pages are above 'mark'. For high-order checks it
3099  * will return true of the order-0 watermark is reached and there is at least
3100  * one free page of a suitable size. Checking now avoids taking the zone lock
3101  * to check in the allocation paths if no pages are free.
3102  */
3103 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3104 			 int highest_zoneidx, unsigned int alloc_flags,
3105 			 long free_pages)
3106 {
3107 	long min = mark;
3108 	int o;
3109 
3110 	/* free_pages may go negative - that's OK */
3111 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3112 
3113 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3114 		/*
3115 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3116 		 * as OOM.
3117 		 */
3118 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3119 			min -= min / 2;
3120 
3121 			/*
3122 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3123 			 * access more reserves than just __GFP_HIGH. Other
3124 			 * non-blocking allocations requests such as GFP_NOWAIT
3125 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3126 			 * access to the min reserve.
3127 			 */
3128 			if (alloc_flags & ALLOC_NON_BLOCK)
3129 				min -= min / 4;
3130 		}
3131 
3132 		/*
3133 		 * OOM victims can try even harder than the normal reserve
3134 		 * users on the grounds that it's definitely going to be in
3135 		 * the exit path shortly and free memory. Any allocation it
3136 		 * makes during the free path will be small and short-lived.
3137 		 */
3138 		if (alloc_flags & ALLOC_OOM)
3139 			min -= min / 2;
3140 	}
3141 
3142 	/*
3143 	 * Check watermarks for an order-0 allocation request. If these
3144 	 * are not met, then a high-order request also cannot go ahead
3145 	 * even if a suitable page happened to be free.
3146 	 */
3147 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3148 		return false;
3149 
3150 	/* If this is an order-0 request then the watermark is fine */
3151 	if (!order)
3152 		return true;
3153 
3154 	/* For a high-order request, check at least one suitable page is free */
3155 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3156 		struct free_area *area = &z->free_area[o];
3157 		int mt;
3158 
3159 		if (!area->nr_free)
3160 			continue;
3161 
3162 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3163 			if (!free_area_empty(area, mt))
3164 				return true;
3165 		}
3166 
3167 #ifdef CONFIG_CMA
3168 		if ((alloc_flags & ALLOC_CMA) &&
3169 		    !free_area_empty(area, MIGRATE_CMA)) {
3170 			return true;
3171 		}
3172 #endif
3173 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3174 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3175 			return true;
3176 		}
3177 	}
3178 	return false;
3179 }
3180 
3181 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3182 		      int highest_zoneidx, unsigned int alloc_flags)
3183 {
3184 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3185 					zone_page_state(z, NR_FREE_PAGES));
3186 }
3187 
3188 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3189 				unsigned long mark, int highest_zoneidx,
3190 				unsigned int alloc_flags, gfp_t gfp_mask)
3191 {
3192 	long free_pages;
3193 
3194 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3195 
3196 	/*
3197 	 * Fast check for order-0 only. If this fails then the reserves
3198 	 * need to be calculated.
3199 	 */
3200 	if (!order) {
3201 		long usable_free;
3202 		long reserved;
3203 
3204 		usable_free = free_pages;
3205 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3206 
3207 		/* reserved may over estimate high-atomic reserves. */
3208 		usable_free -= min(usable_free, reserved);
3209 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3210 			return true;
3211 	}
3212 
3213 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3214 					free_pages))
3215 		return true;
3216 
3217 	/*
3218 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3219 	 * when checking the min watermark. The min watermark is the
3220 	 * point where boosting is ignored so that kswapd is woken up
3221 	 * when below the low watermark.
3222 	 */
3223 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3224 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3225 		mark = z->_watermark[WMARK_MIN];
3226 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3227 					alloc_flags, free_pages);
3228 	}
3229 
3230 	return false;
3231 }
3232 
3233 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3234 			unsigned long mark, int highest_zoneidx)
3235 {
3236 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3237 
3238 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3239 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3240 
3241 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3242 								free_pages);
3243 }
3244 
3245 #ifdef CONFIG_NUMA
3246 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3247 
3248 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3249 {
3250 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3251 				node_reclaim_distance;
3252 }
3253 #else	/* CONFIG_NUMA */
3254 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3255 {
3256 	return true;
3257 }
3258 #endif	/* CONFIG_NUMA */
3259 
3260 /*
3261  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3262  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3263  * premature use of a lower zone may cause lowmem pressure problems that
3264  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3265  * probably too small. It only makes sense to spread allocations to avoid
3266  * fragmentation between the Normal and DMA32 zones.
3267  */
3268 static inline unsigned int
3269 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3270 {
3271 	unsigned int alloc_flags;
3272 
3273 	/*
3274 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3275 	 * to save a branch.
3276 	 */
3277 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3278 
3279 #ifdef CONFIG_ZONE_DMA32
3280 	if (!zone)
3281 		return alloc_flags;
3282 
3283 	if (zone_idx(zone) != ZONE_NORMAL)
3284 		return alloc_flags;
3285 
3286 	/*
3287 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3288 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3289 	 * on UMA that if Normal is populated then so is DMA32.
3290 	 */
3291 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3292 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3293 		return alloc_flags;
3294 
3295 	alloc_flags |= ALLOC_NOFRAGMENT;
3296 #endif /* CONFIG_ZONE_DMA32 */
3297 	return alloc_flags;
3298 }
3299 
3300 /* Must be called after current_gfp_context() which can change gfp_mask */
3301 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3302 						  unsigned int alloc_flags)
3303 {
3304 #ifdef CONFIG_CMA
3305 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3306 		alloc_flags |= ALLOC_CMA;
3307 #endif
3308 	return alloc_flags;
3309 }
3310 
3311 /*
3312  * get_page_from_freelist goes through the zonelist trying to allocate
3313  * a page.
3314  */
3315 static struct page *
3316 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3317 						const struct alloc_context *ac)
3318 {
3319 	struct zoneref *z;
3320 	struct zone *zone;
3321 	struct pglist_data *last_pgdat = NULL;
3322 	bool last_pgdat_dirty_ok = false;
3323 	bool no_fallback;
3324 
3325 retry:
3326 	/*
3327 	 * Scan zonelist, looking for a zone with enough free.
3328 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3329 	 */
3330 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3331 	z = ac->preferred_zoneref;
3332 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3333 					ac->nodemask) {
3334 		struct page *page;
3335 		unsigned long mark;
3336 
3337 		if (cpusets_enabled() &&
3338 			(alloc_flags & ALLOC_CPUSET) &&
3339 			!__cpuset_zone_allowed(zone, gfp_mask))
3340 				continue;
3341 		/*
3342 		 * When allocating a page cache page for writing, we
3343 		 * want to get it from a node that is within its dirty
3344 		 * limit, such that no single node holds more than its
3345 		 * proportional share of globally allowed dirty pages.
3346 		 * The dirty limits take into account the node's
3347 		 * lowmem reserves and high watermark so that kswapd
3348 		 * should be able to balance it without having to
3349 		 * write pages from its LRU list.
3350 		 *
3351 		 * XXX: For now, allow allocations to potentially
3352 		 * exceed the per-node dirty limit in the slowpath
3353 		 * (spread_dirty_pages unset) before going into reclaim,
3354 		 * which is important when on a NUMA setup the allowed
3355 		 * nodes are together not big enough to reach the
3356 		 * global limit.  The proper fix for these situations
3357 		 * will require awareness of nodes in the
3358 		 * dirty-throttling and the flusher threads.
3359 		 */
3360 		if (ac->spread_dirty_pages) {
3361 			if (last_pgdat != zone->zone_pgdat) {
3362 				last_pgdat = zone->zone_pgdat;
3363 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3364 			}
3365 
3366 			if (!last_pgdat_dirty_ok)
3367 				continue;
3368 		}
3369 
3370 		if (no_fallback && nr_online_nodes > 1 &&
3371 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3372 			int local_nid;
3373 
3374 			/*
3375 			 * If moving to a remote node, retry but allow
3376 			 * fragmenting fallbacks. Locality is more important
3377 			 * than fragmentation avoidance.
3378 			 */
3379 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3380 			if (zone_to_nid(zone) != local_nid) {
3381 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3382 				goto retry;
3383 			}
3384 		}
3385 
3386 		cond_accept_memory(zone, order);
3387 
3388 		/*
3389 		 * Detect whether the number of free pages is below high
3390 		 * watermark.  If so, we will decrease pcp->high and free
3391 		 * PCP pages in free path to reduce the possibility of
3392 		 * premature page reclaiming.  Detection is done here to
3393 		 * avoid to do that in hotter free path.
3394 		 */
3395 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3396 			goto check_alloc_wmark;
3397 
3398 		mark = high_wmark_pages(zone);
3399 		if (zone_watermark_fast(zone, order, mark,
3400 					ac->highest_zoneidx, alloc_flags,
3401 					gfp_mask))
3402 			goto try_this_zone;
3403 		else
3404 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3405 
3406 check_alloc_wmark:
3407 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3408 		if (!zone_watermark_fast(zone, order, mark,
3409 				       ac->highest_zoneidx, alloc_flags,
3410 				       gfp_mask)) {
3411 			int ret;
3412 
3413 			if (cond_accept_memory(zone, order))
3414 				goto try_this_zone;
3415 
3416 			/*
3417 			 * Watermark failed for this zone, but see if we can
3418 			 * grow this zone if it contains deferred pages.
3419 			 */
3420 			if (deferred_pages_enabled()) {
3421 				if (_deferred_grow_zone(zone, order))
3422 					goto try_this_zone;
3423 			}
3424 			/* Checked here to keep the fast path fast */
3425 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3426 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3427 				goto try_this_zone;
3428 
3429 			if (!node_reclaim_enabled() ||
3430 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3431 				continue;
3432 
3433 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3434 			switch (ret) {
3435 			case NODE_RECLAIM_NOSCAN:
3436 				/* did not scan */
3437 				continue;
3438 			case NODE_RECLAIM_FULL:
3439 				/* scanned but unreclaimable */
3440 				continue;
3441 			default:
3442 				/* did we reclaim enough */
3443 				if (zone_watermark_ok(zone, order, mark,
3444 					ac->highest_zoneidx, alloc_flags))
3445 					goto try_this_zone;
3446 
3447 				continue;
3448 			}
3449 		}
3450 
3451 try_this_zone:
3452 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3453 				gfp_mask, alloc_flags, ac->migratetype);
3454 		if (page) {
3455 			prep_new_page(page, order, gfp_mask, alloc_flags);
3456 
3457 			/*
3458 			 * If this is a high-order atomic allocation then check
3459 			 * if the pageblock should be reserved for the future
3460 			 */
3461 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3462 				reserve_highatomic_pageblock(page, order, zone);
3463 
3464 			return page;
3465 		} else {
3466 			if (cond_accept_memory(zone, order))
3467 				goto try_this_zone;
3468 
3469 			/* Try again if zone has deferred pages */
3470 			if (deferred_pages_enabled()) {
3471 				if (_deferred_grow_zone(zone, order))
3472 					goto try_this_zone;
3473 			}
3474 		}
3475 	}
3476 
3477 	/*
3478 	 * It's possible on a UMA machine to get through all zones that are
3479 	 * fragmented. If avoiding fragmentation, reset and try again.
3480 	 */
3481 	if (no_fallback) {
3482 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3483 		goto retry;
3484 	}
3485 
3486 	return NULL;
3487 }
3488 
3489 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3490 {
3491 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3492 
3493 	/*
3494 	 * This documents exceptions given to allocations in certain
3495 	 * contexts that are allowed to allocate outside current's set
3496 	 * of allowed nodes.
3497 	 */
3498 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3499 		if (tsk_is_oom_victim(current) ||
3500 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3501 			filter &= ~SHOW_MEM_FILTER_NODES;
3502 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3503 		filter &= ~SHOW_MEM_FILTER_NODES;
3504 
3505 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3506 }
3507 
3508 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3509 {
3510 	struct va_format vaf;
3511 	va_list args;
3512 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3513 
3514 	if ((gfp_mask & __GFP_NOWARN) ||
3515 	     !__ratelimit(&nopage_rs) ||
3516 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3517 		return;
3518 
3519 	va_start(args, fmt);
3520 	vaf.fmt = fmt;
3521 	vaf.va = &args;
3522 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3523 			current->comm, &vaf, gfp_mask, &gfp_mask,
3524 			nodemask_pr_args(nodemask));
3525 	va_end(args);
3526 
3527 	cpuset_print_current_mems_allowed();
3528 	pr_cont("\n");
3529 	dump_stack();
3530 	warn_alloc_show_mem(gfp_mask, nodemask);
3531 }
3532 
3533 static inline struct page *
3534 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3535 			      unsigned int alloc_flags,
3536 			      const struct alloc_context *ac)
3537 {
3538 	struct page *page;
3539 
3540 	page = get_page_from_freelist(gfp_mask, order,
3541 			alloc_flags|ALLOC_CPUSET, ac);
3542 	/*
3543 	 * fallback to ignore cpuset restriction if our nodes
3544 	 * are depleted
3545 	 */
3546 	if (!page)
3547 		page = get_page_from_freelist(gfp_mask, order,
3548 				alloc_flags, ac);
3549 
3550 	return page;
3551 }
3552 
3553 static inline struct page *
3554 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3555 	const struct alloc_context *ac, unsigned long *did_some_progress)
3556 {
3557 	struct oom_control oc = {
3558 		.zonelist = ac->zonelist,
3559 		.nodemask = ac->nodemask,
3560 		.memcg = NULL,
3561 		.gfp_mask = gfp_mask,
3562 		.order = order,
3563 	};
3564 	struct page *page;
3565 
3566 	*did_some_progress = 0;
3567 
3568 	/*
3569 	 * Acquire the oom lock.  If that fails, somebody else is
3570 	 * making progress for us.
3571 	 */
3572 	if (!mutex_trylock(&oom_lock)) {
3573 		*did_some_progress = 1;
3574 		schedule_timeout_uninterruptible(1);
3575 		return NULL;
3576 	}
3577 
3578 	/*
3579 	 * Go through the zonelist yet one more time, keep very high watermark
3580 	 * here, this is only to catch a parallel oom killing, we must fail if
3581 	 * we're still under heavy pressure. But make sure that this reclaim
3582 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3583 	 * allocation which will never fail due to oom_lock already held.
3584 	 */
3585 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3586 				      ~__GFP_DIRECT_RECLAIM, order,
3587 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3588 	if (page)
3589 		goto out;
3590 
3591 	/* Coredumps can quickly deplete all memory reserves */
3592 	if (current->flags & PF_DUMPCORE)
3593 		goto out;
3594 	/* The OOM killer will not help higher order allocs */
3595 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3596 		goto out;
3597 	/*
3598 	 * We have already exhausted all our reclaim opportunities without any
3599 	 * success so it is time to admit defeat. We will skip the OOM killer
3600 	 * because it is very likely that the caller has a more reasonable
3601 	 * fallback than shooting a random task.
3602 	 *
3603 	 * The OOM killer may not free memory on a specific node.
3604 	 */
3605 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3606 		goto out;
3607 	/* The OOM killer does not needlessly kill tasks for lowmem */
3608 	if (ac->highest_zoneidx < ZONE_NORMAL)
3609 		goto out;
3610 	if (pm_suspended_storage())
3611 		goto out;
3612 	/*
3613 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3614 	 * other request to make a forward progress.
3615 	 * We are in an unfortunate situation where out_of_memory cannot
3616 	 * do much for this context but let's try it to at least get
3617 	 * access to memory reserved if the current task is killed (see
3618 	 * out_of_memory). Once filesystems are ready to handle allocation
3619 	 * failures more gracefully we should just bail out here.
3620 	 */
3621 
3622 	/* Exhausted what can be done so it's blame time */
3623 	if (out_of_memory(&oc) ||
3624 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3625 		*did_some_progress = 1;
3626 
3627 		/*
3628 		 * Help non-failing allocations by giving them access to memory
3629 		 * reserves
3630 		 */
3631 		if (gfp_mask & __GFP_NOFAIL)
3632 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3633 					ALLOC_NO_WATERMARKS, ac);
3634 	}
3635 out:
3636 	mutex_unlock(&oom_lock);
3637 	return page;
3638 }
3639 
3640 /*
3641  * Maximum number of compaction retries with a progress before OOM
3642  * killer is consider as the only way to move forward.
3643  */
3644 #define MAX_COMPACT_RETRIES 16
3645 
3646 #ifdef CONFIG_COMPACTION
3647 /* Try memory compaction for high-order allocations before reclaim */
3648 static struct page *
3649 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3650 		unsigned int alloc_flags, const struct alloc_context *ac,
3651 		enum compact_priority prio, enum compact_result *compact_result)
3652 {
3653 	struct page *page = NULL;
3654 	unsigned long pflags;
3655 	unsigned int noreclaim_flag;
3656 
3657 	if (!order)
3658 		return NULL;
3659 
3660 	psi_memstall_enter(&pflags);
3661 	delayacct_compact_start();
3662 	noreclaim_flag = memalloc_noreclaim_save();
3663 
3664 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3665 								prio, &page);
3666 
3667 	memalloc_noreclaim_restore(noreclaim_flag);
3668 	psi_memstall_leave(&pflags);
3669 	delayacct_compact_end();
3670 
3671 	if (*compact_result == COMPACT_SKIPPED)
3672 		return NULL;
3673 	/*
3674 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3675 	 * count a compaction stall
3676 	 */
3677 	count_vm_event(COMPACTSTALL);
3678 
3679 	/* Prep a captured page if available */
3680 	if (page)
3681 		prep_new_page(page, order, gfp_mask, alloc_flags);
3682 
3683 	/* Try get a page from the freelist if available */
3684 	if (!page)
3685 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3686 
3687 	if (page) {
3688 		struct zone *zone = page_zone(page);
3689 
3690 		zone->compact_blockskip_flush = false;
3691 		compaction_defer_reset(zone, order, true);
3692 		count_vm_event(COMPACTSUCCESS);
3693 		return page;
3694 	}
3695 
3696 	/*
3697 	 * It's bad if compaction run occurs and fails. The most likely reason
3698 	 * is that pages exist, but not enough to satisfy watermarks.
3699 	 */
3700 	count_vm_event(COMPACTFAIL);
3701 
3702 	cond_resched();
3703 
3704 	return NULL;
3705 }
3706 
3707 static inline bool
3708 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3709 		     enum compact_result compact_result,
3710 		     enum compact_priority *compact_priority,
3711 		     int *compaction_retries)
3712 {
3713 	int max_retries = MAX_COMPACT_RETRIES;
3714 	int min_priority;
3715 	bool ret = false;
3716 	int retries = *compaction_retries;
3717 	enum compact_priority priority = *compact_priority;
3718 
3719 	if (!order)
3720 		return false;
3721 
3722 	if (fatal_signal_pending(current))
3723 		return false;
3724 
3725 	/*
3726 	 * Compaction was skipped due to a lack of free order-0
3727 	 * migration targets. Continue if reclaim can help.
3728 	 */
3729 	if (compact_result == COMPACT_SKIPPED) {
3730 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3731 		goto out;
3732 	}
3733 
3734 	/*
3735 	 * Compaction managed to coalesce some page blocks, but the
3736 	 * allocation failed presumably due to a race. Retry some.
3737 	 */
3738 	if (compact_result == COMPACT_SUCCESS) {
3739 		/*
3740 		 * !costly requests are much more important than
3741 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3742 		 * facto nofail and invoke OOM killer to move on while
3743 		 * costly can fail and users are ready to cope with
3744 		 * that. 1/4 retries is rather arbitrary but we would
3745 		 * need much more detailed feedback from compaction to
3746 		 * make a better decision.
3747 		 */
3748 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3749 			max_retries /= 4;
3750 
3751 		if (++(*compaction_retries) <= max_retries) {
3752 			ret = true;
3753 			goto out;
3754 		}
3755 	}
3756 
3757 	/*
3758 	 * Compaction failed. Retry with increasing priority.
3759 	 */
3760 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3761 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3762 
3763 	if (*compact_priority > min_priority) {
3764 		(*compact_priority)--;
3765 		*compaction_retries = 0;
3766 		ret = true;
3767 	}
3768 out:
3769 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3770 	return ret;
3771 }
3772 #else
3773 static inline struct page *
3774 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3775 		unsigned int alloc_flags, const struct alloc_context *ac,
3776 		enum compact_priority prio, enum compact_result *compact_result)
3777 {
3778 	*compact_result = COMPACT_SKIPPED;
3779 	return NULL;
3780 }
3781 
3782 static inline bool
3783 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3784 		     enum compact_result compact_result,
3785 		     enum compact_priority *compact_priority,
3786 		     int *compaction_retries)
3787 {
3788 	struct zone *zone;
3789 	struct zoneref *z;
3790 
3791 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3792 		return false;
3793 
3794 	/*
3795 	 * There are setups with compaction disabled which would prefer to loop
3796 	 * inside the allocator rather than hit the oom killer prematurely.
3797 	 * Let's give them a good hope and keep retrying while the order-0
3798 	 * watermarks are OK.
3799 	 */
3800 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3801 				ac->highest_zoneidx, ac->nodemask) {
3802 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3803 					ac->highest_zoneidx, alloc_flags))
3804 			return true;
3805 	}
3806 	return false;
3807 }
3808 #endif /* CONFIG_COMPACTION */
3809 
3810 #ifdef CONFIG_LOCKDEP
3811 static struct lockdep_map __fs_reclaim_map =
3812 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3813 
3814 static bool __need_reclaim(gfp_t gfp_mask)
3815 {
3816 	/* no reclaim without waiting on it */
3817 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3818 		return false;
3819 
3820 	/* this guy won't enter reclaim */
3821 	if (current->flags & PF_MEMALLOC)
3822 		return false;
3823 
3824 	if (gfp_mask & __GFP_NOLOCKDEP)
3825 		return false;
3826 
3827 	return true;
3828 }
3829 
3830 void __fs_reclaim_acquire(unsigned long ip)
3831 {
3832 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3833 }
3834 
3835 void __fs_reclaim_release(unsigned long ip)
3836 {
3837 	lock_release(&__fs_reclaim_map, ip);
3838 }
3839 
3840 void fs_reclaim_acquire(gfp_t gfp_mask)
3841 {
3842 	gfp_mask = current_gfp_context(gfp_mask);
3843 
3844 	if (__need_reclaim(gfp_mask)) {
3845 		if (gfp_mask & __GFP_FS)
3846 			__fs_reclaim_acquire(_RET_IP_);
3847 
3848 #ifdef CONFIG_MMU_NOTIFIER
3849 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3850 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3851 #endif
3852 
3853 	}
3854 }
3855 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3856 
3857 void fs_reclaim_release(gfp_t gfp_mask)
3858 {
3859 	gfp_mask = current_gfp_context(gfp_mask);
3860 
3861 	if (__need_reclaim(gfp_mask)) {
3862 		if (gfp_mask & __GFP_FS)
3863 			__fs_reclaim_release(_RET_IP_);
3864 	}
3865 }
3866 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3867 #endif
3868 
3869 /*
3870  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3871  * have been rebuilt so allocation retries. Reader side does not lock and
3872  * retries the allocation if zonelist changes. Writer side is protected by the
3873  * embedded spin_lock.
3874  */
3875 static DEFINE_SEQLOCK(zonelist_update_seq);
3876 
3877 static unsigned int zonelist_iter_begin(void)
3878 {
3879 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3880 		return read_seqbegin(&zonelist_update_seq);
3881 
3882 	return 0;
3883 }
3884 
3885 static unsigned int check_retry_zonelist(unsigned int seq)
3886 {
3887 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3888 		return read_seqretry(&zonelist_update_seq, seq);
3889 
3890 	return seq;
3891 }
3892 
3893 /* Perform direct synchronous page reclaim */
3894 static unsigned long
3895 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3896 					const struct alloc_context *ac)
3897 {
3898 	unsigned int noreclaim_flag;
3899 	unsigned long progress;
3900 
3901 	cond_resched();
3902 
3903 	/* We now go into synchronous reclaim */
3904 	cpuset_memory_pressure_bump();
3905 	fs_reclaim_acquire(gfp_mask);
3906 	noreclaim_flag = memalloc_noreclaim_save();
3907 
3908 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3909 								ac->nodemask);
3910 
3911 	memalloc_noreclaim_restore(noreclaim_flag);
3912 	fs_reclaim_release(gfp_mask);
3913 
3914 	cond_resched();
3915 
3916 	return progress;
3917 }
3918 
3919 /* The really slow allocator path where we enter direct reclaim */
3920 static inline struct page *
3921 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3922 		unsigned int alloc_flags, const struct alloc_context *ac,
3923 		unsigned long *did_some_progress)
3924 {
3925 	struct page *page = NULL;
3926 	unsigned long pflags;
3927 	bool drained = false;
3928 
3929 	psi_memstall_enter(&pflags);
3930 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3931 	if (unlikely(!(*did_some_progress)))
3932 		goto out;
3933 
3934 retry:
3935 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3936 
3937 	/*
3938 	 * If an allocation failed after direct reclaim, it could be because
3939 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3940 	 * Shrink them and try again
3941 	 */
3942 	if (!page && !drained) {
3943 		unreserve_highatomic_pageblock(ac, false);
3944 		drain_all_pages(NULL);
3945 		drained = true;
3946 		goto retry;
3947 	}
3948 out:
3949 	psi_memstall_leave(&pflags);
3950 
3951 	return page;
3952 }
3953 
3954 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3955 			     const struct alloc_context *ac)
3956 {
3957 	struct zoneref *z;
3958 	struct zone *zone;
3959 	pg_data_t *last_pgdat = NULL;
3960 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3961 
3962 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3963 					ac->nodemask) {
3964 		if (!managed_zone(zone))
3965 			continue;
3966 		if (last_pgdat != zone->zone_pgdat) {
3967 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3968 			last_pgdat = zone->zone_pgdat;
3969 		}
3970 	}
3971 }
3972 
3973 static inline unsigned int
3974 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3975 {
3976 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3977 
3978 	/*
3979 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3980 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3981 	 * to save two branches.
3982 	 */
3983 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3984 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3985 
3986 	/*
3987 	 * The caller may dip into page reserves a bit more if the caller
3988 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3989 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3990 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3991 	 */
3992 	alloc_flags |= (__force int)
3993 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3994 
3995 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3996 		/*
3997 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3998 		 * if it can't schedule.
3999 		 */
4000 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4001 			alloc_flags |= ALLOC_NON_BLOCK;
4002 
4003 			if (order > 0)
4004 				alloc_flags |= ALLOC_HIGHATOMIC;
4005 		}
4006 
4007 		/*
4008 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4009 		 * GFP_ATOMIC) rather than fail, see the comment for
4010 		 * cpuset_node_allowed().
4011 		 */
4012 		if (alloc_flags & ALLOC_MIN_RESERVE)
4013 			alloc_flags &= ~ALLOC_CPUSET;
4014 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4015 		alloc_flags |= ALLOC_MIN_RESERVE;
4016 
4017 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4018 
4019 	return alloc_flags;
4020 }
4021 
4022 static bool oom_reserves_allowed(struct task_struct *tsk)
4023 {
4024 	if (!tsk_is_oom_victim(tsk))
4025 		return false;
4026 
4027 	/*
4028 	 * !MMU doesn't have oom reaper so give access to memory reserves
4029 	 * only to the thread with TIF_MEMDIE set
4030 	 */
4031 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4032 		return false;
4033 
4034 	return true;
4035 }
4036 
4037 /*
4038  * Distinguish requests which really need access to full memory
4039  * reserves from oom victims which can live with a portion of it
4040  */
4041 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4042 {
4043 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4044 		return 0;
4045 	if (gfp_mask & __GFP_MEMALLOC)
4046 		return ALLOC_NO_WATERMARKS;
4047 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4048 		return ALLOC_NO_WATERMARKS;
4049 	if (!in_interrupt()) {
4050 		if (current->flags & PF_MEMALLOC)
4051 			return ALLOC_NO_WATERMARKS;
4052 		else if (oom_reserves_allowed(current))
4053 			return ALLOC_OOM;
4054 	}
4055 
4056 	return 0;
4057 }
4058 
4059 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4060 {
4061 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4062 }
4063 
4064 /*
4065  * Checks whether it makes sense to retry the reclaim to make a forward progress
4066  * for the given allocation request.
4067  *
4068  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4069  * without success, or when we couldn't even meet the watermark if we
4070  * reclaimed all remaining pages on the LRU lists.
4071  *
4072  * Returns true if a retry is viable or false to enter the oom path.
4073  */
4074 static inline bool
4075 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4076 		     struct alloc_context *ac, int alloc_flags,
4077 		     bool did_some_progress, int *no_progress_loops)
4078 {
4079 	struct zone *zone;
4080 	struct zoneref *z;
4081 	bool ret = false;
4082 
4083 	/*
4084 	 * Costly allocations might have made a progress but this doesn't mean
4085 	 * their order will become available due to high fragmentation so
4086 	 * always increment the no progress counter for them
4087 	 */
4088 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4089 		*no_progress_loops = 0;
4090 	else
4091 		(*no_progress_loops)++;
4092 
4093 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4094 		goto out;
4095 
4096 
4097 	/*
4098 	 * Keep reclaiming pages while there is a chance this will lead
4099 	 * somewhere.  If none of the target zones can satisfy our allocation
4100 	 * request even if all reclaimable pages are considered then we are
4101 	 * screwed and have to go OOM.
4102 	 */
4103 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4104 				ac->highest_zoneidx, ac->nodemask) {
4105 		unsigned long available;
4106 		unsigned long reclaimable;
4107 		unsigned long min_wmark = min_wmark_pages(zone);
4108 		bool wmark;
4109 
4110 		if (cpusets_enabled() &&
4111 			(alloc_flags & ALLOC_CPUSET) &&
4112 			!__cpuset_zone_allowed(zone, gfp_mask))
4113 				continue;
4114 
4115 		available = reclaimable = zone_reclaimable_pages(zone);
4116 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4117 
4118 		/*
4119 		 * Would the allocation succeed if we reclaimed all
4120 		 * reclaimable pages?
4121 		 */
4122 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4123 				ac->highest_zoneidx, alloc_flags, available);
4124 		trace_reclaim_retry_zone(z, order, reclaimable,
4125 				available, min_wmark, *no_progress_loops, wmark);
4126 		if (wmark) {
4127 			ret = true;
4128 			break;
4129 		}
4130 	}
4131 
4132 	/*
4133 	 * Memory allocation/reclaim might be called from a WQ context and the
4134 	 * current implementation of the WQ concurrency control doesn't
4135 	 * recognize that a particular WQ is congested if the worker thread is
4136 	 * looping without ever sleeping. Therefore we have to do a short sleep
4137 	 * here rather than calling cond_resched().
4138 	 */
4139 	if (current->flags & PF_WQ_WORKER)
4140 		schedule_timeout_uninterruptible(1);
4141 	else
4142 		cond_resched();
4143 out:
4144 	/* Before OOM, exhaust highatomic_reserve */
4145 	if (!ret)
4146 		return unreserve_highatomic_pageblock(ac, true);
4147 
4148 	return ret;
4149 }
4150 
4151 static inline bool
4152 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4153 {
4154 	/*
4155 	 * It's possible that cpuset's mems_allowed and the nodemask from
4156 	 * mempolicy don't intersect. This should be normally dealt with by
4157 	 * policy_nodemask(), but it's possible to race with cpuset update in
4158 	 * such a way the check therein was true, and then it became false
4159 	 * before we got our cpuset_mems_cookie here.
4160 	 * This assumes that for all allocations, ac->nodemask can come only
4161 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4162 	 * when it does not intersect with the cpuset restrictions) or the
4163 	 * caller can deal with a violated nodemask.
4164 	 */
4165 	if (cpusets_enabled() && ac->nodemask &&
4166 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4167 		ac->nodemask = NULL;
4168 		return true;
4169 	}
4170 
4171 	/*
4172 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4173 	 * possible to race with parallel threads in such a way that our
4174 	 * allocation can fail while the mask is being updated. If we are about
4175 	 * to fail, check if the cpuset changed during allocation and if so,
4176 	 * retry.
4177 	 */
4178 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4179 		return true;
4180 
4181 	return false;
4182 }
4183 
4184 static inline struct page *
4185 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4186 						struct alloc_context *ac)
4187 {
4188 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4189 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4190 	bool nofail = gfp_mask & __GFP_NOFAIL;
4191 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4192 	struct page *page = NULL;
4193 	unsigned int alloc_flags;
4194 	unsigned long did_some_progress;
4195 	enum compact_priority compact_priority;
4196 	enum compact_result compact_result;
4197 	int compaction_retries;
4198 	int no_progress_loops;
4199 	unsigned int cpuset_mems_cookie;
4200 	unsigned int zonelist_iter_cookie;
4201 	int reserve_flags;
4202 
4203 	if (unlikely(nofail)) {
4204 		/*
4205 		 * We most definitely don't want callers attempting to
4206 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4207 		 */
4208 		WARN_ON_ONCE(order > 1);
4209 		/*
4210 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4211 		 * otherwise, we may result in lockup.
4212 		 */
4213 		WARN_ON_ONCE(!can_direct_reclaim);
4214 		/*
4215 		 * PF_MEMALLOC request from this context is rather bizarre
4216 		 * because we cannot reclaim anything and only can loop waiting
4217 		 * for somebody to do a work for us.
4218 		 */
4219 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4220 	}
4221 
4222 restart:
4223 	compaction_retries = 0;
4224 	no_progress_loops = 0;
4225 	compact_priority = DEF_COMPACT_PRIORITY;
4226 	cpuset_mems_cookie = read_mems_allowed_begin();
4227 	zonelist_iter_cookie = zonelist_iter_begin();
4228 
4229 	/*
4230 	 * The fast path uses conservative alloc_flags to succeed only until
4231 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4232 	 * alloc_flags precisely. So we do that now.
4233 	 */
4234 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4235 
4236 	/*
4237 	 * We need to recalculate the starting point for the zonelist iterator
4238 	 * because we might have used different nodemask in the fast path, or
4239 	 * there was a cpuset modification and we are retrying - otherwise we
4240 	 * could end up iterating over non-eligible zones endlessly.
4241 	 */
4242 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4243 					ac->highest_zoneidx, ac->nodemask);
4244 	if (!zonelist_zone(ac->preferred_zoneref))
4245 		goto nopage;
4246 
4247 	/*
4248 	 * Check for insane configurations where the cpuset doesn't contain
4249 	 * any suitable zone to satisfy the request - e.g. non-movable
4250 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4251 	 */
4252 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4253 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4254 					ac->highest_zoneidx,
4255 					&cpuset_current_mems_allowed);
4256 		if (!zonelist_zone(z))
4257 			goto nopage;
4258 	}
4259 
4260 	if (alloc_flags & ALLOC_KSWAPD)
4261 		wake_all_kswapds(order, gfp_mask, ac);
4262 
4263 	/*
4264 	 * The adjusted alloc_flags might result in immediate success, so try
4265 	 * that first
4266 	 */
4267 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4268 	if (page)
4269 		goto got_pg;
4270 
4271 	/*
4272 	 * For costly allocations, try direct compaction first, as it's likely
4273 	 * that we have enough base pages and don't need to reclaim. For non-
4274 	 * movable high-order allocations, do that as well, as compaction will
4275 	 * try prevent permanent fragmentation by migrating from blocks of the
4276 	 * same migratetype.
4277 	 * Don't try this for allocations that are allowed to ignore
4278 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4279 	 */
4280 	if (can_direct_reclaim && can_compact &&
4281 			(costly_order ||
4282 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4283 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4284 		page = __alloc_pages_direct_compact(gfp_mask, order,
4285 						alloc_flags, ac,
4286 						INIT_COMPACT_PRIORITY,
4287 						&compact_result);
4288 		if (page)
4289 			goto got_pg;
4290 
4291 		/*
4292 		 * Checks for costly allocations with __GFP_NORETRY, which
4293 		 * includes some THP page fault allocations
4294 		 */
4295 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4296 			/*
4297 			 * If allocating entire pageblock(s) and compaction
4298 			 * failed because all zones are below low watermarks
4299 			 * or is prohibited because it recently failed at this
4300 			 * order, fail immediately unless the allocator has
4301 			 * requested compaction and reclaim retry.
4302 			 *
4303 			 * Reclaim is
4304 			 *  - potentially very expensive because zones are far
4305 			 *    below their low watermarks or this is part of very
4306 			 *    bursty high order allocations,
4307 			 *  - not guaranteed to help because isolate_freepages()
4308 			 *    may not iterate over freed pages as part of its
4309 			 *    linear scan, and
4310 			 *  - unlikely to make entire pageblocks free on its
4311 			 *    own.
4312 			 */
4313 			if (compact_result == COMPACT_SKIPPED ||
4314 			    compact_result == COMPACT_DEFERRED)
4315 				goto nopage;
4316 
4317 			/*
4318 			 * Looks like reclaim/compaction is worth trying, but
4319 			 * sync compaction could be very expensive, so keep
4320 			 * using async compaction.
4321 			 */
4322 			compact_priority = INIT_COMPACT_PRIORITY;
4323 		}
4324 	}
4325 
4326 retry:
4327 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4328 	if (alloc_flags & ALLOC_KSWAPD)
4329 		wake_all_kswapds(order, gfp_mask, ac);
4330 
4331 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4332 	if (reserve_flags)
4333 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4334 					  (alloc_flags & ALLOC_KSWAPD);
4335 
4336 	/*
4337 	 * Reset the nodemask and zonelist iterators if memory policies can be
4338 	 * ignored. These allocations are high priority and system rather than
4339 	 * user oriented.
4340 	 */
4341 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4342 		ac->nodemask = NULL;
4343 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4344 					ac->highest_zoneidx, ac->nodemask);
4345 	}
4346 
4347 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4348 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4349 	if (page)
4350 		goto got_pg;
4351 
4352 	/* Caller is not willing to reclaim, we can't balance anything */
4353 	if (!can_direct_reclaim)
4354 		goto nopage;
4355 
4356 	/* Avoid recursion of direct reclaim */
4357 	if (current->flags & PF_MEMALLOC)
4358 		goto nopage;
4359 
4360 	/* Try direct reclaim and then allocating */
4361 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4362 							&did_some_progress);
4363 	if (page)
4364 		goto got_pg;
4365 
4366 	/* Try direct compaction and then allocating */
4367 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4368 					compact_priority, &compact_result);
4369 	if (page)
4370 		goto got_pg;
4371 
4372 	/* Do not loop if specifically requested */
4373 	if (gfp_mask & __GFP_NORETRY)
4374 		goto nopage;
4375 
4376 	/*
4377 	 * Do not retry costly high order allocations unless they are
4378 	 * __GFP_RETRY_MAYFAIL and we can compact
4379 	 */
4380 	if (costly_order && (!can_compact ||
4381 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4382 		goto nopage;
4383 
4384 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4385 				 did_some_progress > 0, &no_progress_loops))
4386 		goto retry;
4387 
4388 	/*
4389 	 * It doesn't make any sense to retry for the compaction if the order-0
4390 	 * reclaim is not able to make any progress because the current
4391 	 * implementation of the compaction depends on the sufficient amount
4392 	 * of free memory (see __compaction_suitable)
4393 	 */
4394 	if (did_some_progress > 0 && can_compact &&
4395 			should_compact_retry(ac, order, alloc_flags,
4396 				compact_result, &compact_priority,
4397 				&compaction_retries))
4398 		goto retry;
4399 
4400 
4401 	/*
4402 	 * Deal with possible cpuset update races or zonelist updates to avoid
4403 	 * a unnecessary OOM kill.
4404 	 */
4405 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4406 	    check_retry_zonelist(zonelist_iter_cookie))
4407 		goto restart;
4408 
4409 	/* Reclaim has failed us, start killing things */
4410 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4411 	if (page)
4412 		goto got_pg;
4413 
4414 	/* Avoid allocations with no watermarks from looping endlessly */
4415 	if (tsk_is_oom_victim(current) &&
4416 	    (alloc_flags & ALLOC_OOM ||
4417 	     (gfp_mask & __GFP_NOMEMALLOC)))
4418 		goto nopage;
4419 
4420 	/* Retry as long as the OOM killer is making progress */
4421 	if (did_some_progress) {
4422 		no_progress_loops = 0;
4423 		goto retry;
4424 	}
4425 
4426 nopage:
4427 	/*
4428 	 * Deal with possible cpuset update races or zonelist updates to avoid
4429 	 * a unnecessary OOM kill.
4430 	 */
4431 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4432 	    check_retry_zonelist(zonelist_iter_cookie))
4433 		goto restart;
4434 
4435 	/*
4436 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4437 	 * we always retry
4438 	 */
4439 	if (unlikely(nofail)) {
4440 		/*
4441 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4442 		 * we disregard these unreasonable nofail requests and still
4443 		 * return NULL
4444 		 */
4445 		if (!can_direct_reclaim)
4446 			goto fail;
4447 
4448 		/*
4449 		 * Help non-failing allocations by giving some access to memory
4450 		 * reserves normally used for high priority non-blocking
4451 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4452 		 * could deplete whole memory reserves which would just make
4453 		 * the situation worse.
4454 		 */
4455 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4456 		if (page)
4457 			goto got_pg;
4458 
4459 		cond_resched();
4460 		goto retry;
4461 	}
4462 fail:
4463 	warn_alloc(gfp_mask, ac->nodemask,
4464 			"page allocation failure: order:%u", order);
4465 got_pg:
4466 	return page;
4467 }
4468 
4469 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4470 		int preferred_nid, nodemask_t *nodemask,
4471 		struct alloc_context *ac, gfp_t *alloc_gfp,
4472 		unsigned int *alloc_flags)
4473 {
4474 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4475 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4476 	ac->nodemask = nodemask;
4477 	ac->migratetype = gfp_migratetype(gfp_mask);
4478 
4479 	if (cpusets_enabled()) {
4480 		*alloc_gfp |= __GFP_HARDWALL;
4481 		/*
4482 		 * When we are in the interrupt context, it is irrelevant
4483 		 * to the current task context. It means that any node ok.
4484 		 */
4485 		if (in_task() && !ac->nodemask)
4486 			ac->nodemask = &cpuset_current_mems_allowed;
4487 		else
4488 			*alloc_flags |= ALLOC_CPUSET;
4489 	}
4490 
4491 	might_alloc(gfp_mask);
4492 
4493 	if (should_fail_alloc_page(gfp_mask, order))
4494 		return false;
4495 
4496 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4497 
4498 	/* Dirty zone balancing only done in the fast path */
4499 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4500 
4501 	/*
4502 	 * The preferred zone is used for statistics but crucially it is
4503 	 * also used as the starting point for the zonelist iterator. It
4504 	 * may get reset for allocations that ignore memory policies.
4505 	 */
4506 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4507 					ac->highest_zoneidx, ac->nodemask);
4508 
4509 	return true;
4510 }
4511 
4512 /*
4513  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4514  * @gfp: GFP flags for the allocation
4515  * @preferred_nid: The preferred NUMA node ID to allocate from
4516  * @nodemask: Set of nodes to allocate from, may be NULL
4517  * @nr_pages: The number of pages desired on the list or array
4518  * @page_list: Optional list to store the allocated pages
4519  * @page_array: Optional array to store the pages
4520  *
4521  * This is a batched version of the page allocator that attempts to
4522  * allocate nr_pages quickly. Pages are added to page_list if page_list
4523  * is not NULL, otherwise it is assumed that the page_array is valid.
4524  *
4525  * For lists, nr_pages is the number of pages that should be allocated.
4526  *
4527  * For arrays, only NULL elements are populated with pages and nr_pages
4528  * is the maximum number of pages that will be stored in the array.
4529  *
4530  * Returns the number of pages on the list or array.
4531  */
4532 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4533 			nodemask_t *nodemask, int nr_pages,
4534 			struct list_head *page_list,
4535 			struct page **page_array)
4536 {
4537 	struct page *page;
4538 	unsigned long __maybe_unused UP_flags;
4539 	struct zone *zone;
4540 	struct zoneref *z;
4541 	struct per_cpu_pages *pcp;
4542 	struct list_head *pcp_list;
4543 	struct alloc_context ac;
4544 	gfp_t alloc_gfp;
4545 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4546 	int nr_populated = 0, nr_account = 0;
4547 
4548 	/*
4549 	 * Skip populated array elements to determine if any pages need
4550 	 * to be allocated before disabling IRQs.
4551 	 */
4552 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4553 		nr_populated++;
4554 
4555 	/* No pages requested? */
4556 	if (unlikely(nr_pages <= 0))
4557 		goto out;
4558 
4559 	/* Already populated array? */
4560 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4561 		goto out;
4562 
4563 	/* Bulk allocator does not support memcg accounting. */
4564 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4565 		goto failed;
4566 
4567 	/* Use the single page allocator for one page. */
4568 	if (nr_pages - nr_populated == 1)
4569 		goto failed;
4570 
4571 #ifdef CONFIG_PAGE_OWNER
4572 	/*
4573 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4574 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4575 	 * removes much of the performance benefit of bulk allocation so
4576 	 * force the caller to allocate one page at a time as it'll have
4577 	 * similar performance to added complexity to the bulk allocator.
4578 	 */
4579 	if (static_branch_unlikely(&page_owner_inited))
4580 		goto failed;
4581 #endif
4582 
4583 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4584 	gfp &= gfp_allowed_mask;
4585 	alloc_gfp = gfp;
4586 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4587 		goto out;
4588 	gfp = alloc_gfp;
4589 
4590 	/* Find an allowed local zone that meets the low watermark. */
4591 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4592 		unsigned long mark;
4593 
4594 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4595 		    !__cpuset_zone_allowed(zone, gfp)) {
4596 			continue;
4597 		}
4598 
4599 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4600 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4601 			goto failed;
4602 		}
4603 
4604 		cond_accept_memory(zone, 0);
4605 retry_this_zone:
4606 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4607 		if (zone_watermark_fast(zone, 0,  mark,
4608 				zonelist_zone_idx(ac.preferred_zoneref),
4609 				alloc_flags, gfp)) {
4610 			break;
4611 		}
4612 
4613 		if (cond_accept_memory(zone, 0))
4614 			goto retry_this_zone;
4615 
4616 		/* Try again if zone has deferred pages */
4617 		if (deferred_pages_enabled()) {
4618 			if (_deferred_grow_zone(zone, 0))
4619 				goto retry_this_zone;
4620 		}
4621 	}
4622 
4623 	/*
4624 	 * If there are no allowed local zones that meets the watermarks then
4625 	 * try to allocate a single page and reclaim if necessary.
4626 	 */
4627 	if (unlikely(!zone))
4628 		goto failed;
4629 
4630 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4631 	pcp_trylock_prepare(UP_flags);
4632 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4633 	if (!pcp)
4634 		goto failed_irq;
4635 
4636 	/* Attempt the batch allocation */
4637 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4638 	while (nr_populated < nr_pages) {
4639 
4640 		/* Skip existing pages */
4641 		if (page_array && page_array[nr_populated]) {
4642 			nr_populated++;
4643 			continue;
4644 		}
4645 
4646 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4647 								pcp, pcp_list);
4648 		if (unlikely(!page)) {
4649 			/* Try and allocate at least one page */
4650 			if (!nr_account) {
4651 				pcp_spin_unlock(pcp);
4652 				goto failed_irq;
4653 			}
4654 			break;
4655 		}
4656 		nr_account++;
4657 
4658 		prep_new_page(page, 0, gfp, 0);
4659 		if (page_list)
4660 			list_add(&page->lru, page_list);
4661 		else
4662 			page_array[nr_populated] = page;
4663 		nr_populated++;
4664 	}
4665 
4666 	pcp_spin_unlock(pcp);
4667 	pcp_trylock_finish(UP_flags);
4668 
4669 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4670 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4671 
4672 out:
4673 	return nr_populated;
4674 
4675 failed_irq:
4676 	pcp_trylock_finish(UP_flags);
4677 
4678 failed:
4679 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4680 	if (page) {
4681 		if (page_list)
4682 			list_add(&page->lru, page_list);
4683 		else
4684 			page_array[nr_populated] = page;
4685 		nr_populated++;
4686 	}
4687 
4688 	goto out;
4689 }
4690 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4691 
4692 /*
4693  * This is the 'heart' of the zoned buddy allocator.
4694  */
4695 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4696 				      int preferred_nid, nodemask_t *nodemask)
4697 {
4698 	struct page *page;
4699 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4700 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4701 	struct alloc_context ac = { };
4702 
4703 	/*
4704 	 * There are several places where we assume that the order value is sane
4705 	 * so bail out early if the request is out of bound.
4706 	 */
4707 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4708 		return NULL;
4709 
4710 	gfp &= gfp_allowed_mask;
4711 	/*
4712 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4713 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4714 	 * from a particular context which has been marked by
4715 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4716 	 * movable zones are not used during allocation.
4717 	 */
4718 	gfp = current_gfp_context(gfp);
4719 	alloc_gfp = gfp;
4720 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4721 			&alloc_gfp, &alloc_flags))
4722 		return NULL;
4723 
4724 	/*
4725 	 * Forbid the first pass from falling back to types that fragment
4726 	 * memory until all local zones are considered.
4727 	 */
4728 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4729 
4730 	/* First allocation attempt */
4731 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4732 	if (likely(page))
4733 		goto out;
4734 
4735 	alloc_gfp = gfp;
4736 	ac.spread_dirty_pages = false;
4737 
4738 	/*
4739 	 * Restore the original nodemask if it was potentially replaced with
4740 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4741 	 */
4742 	ac.nodemask = nodemask;
4743 
4744 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4745 
4746 out:
4747 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4748 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4749 		__free_pages(page, order);
4750 		page = NULL;
4751 	}
4752 
4753 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4754 	kmsan_alloc_page(page, order, alloc_gfp);
4755 
4756 	return page;
4757 }
4758 EXPORT_SYMBOL(__alloc_pages_noprof);
4759 
4760 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4761 		nodemask_t *nodemask)
4762 {
4763 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4764 					preferred_nid, nodemask);
4765 	return page_rmappable_folio(page);
4766 }
4767 EXPORT_SYMBOL(__folio_alloc_noprof);
4768 
4769 /*
4770  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4771  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4772  * you need to access high mem.
4773  */
4774 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4775 {
4776 	struct page *page;
4777 
4778 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4779 	if (!page)
4780 		return 0;
4781 	return (unsigned long) page_address(page);
4782 }
4783 EXPORT_SYMBOL(get_free_pages_noprof);
4784 
4785 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4786 {
4787 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4788 }
4789 EXPORT_SYMBOL(get_zeroed_page_noprof);
4790 
4791 /**
4792  * __free_pages - Free pages allocated with alloc_pages().
4793  * @page: The page pointer returned from alloc_pages().
4794  * @order: The order of the allocation.
4795  *
4796  * This function can free multi-page allocations that are not compound
4797  * pages.  It does not check that the @order passed in matches that of
4798  * the allocation, so it is easy to leak memory.  Freeing more memory
4799  * than was allocated will probably emit a warning.
4800  *
4801  * If the last reference to this page is speculative, it will be released
4802  * by put_page() which only frees the first page of a non-compound
4803  * allocation.  To prevent the remaining pages from being leaked, we free
4804  * the subsequent pages here.  If you want to use the page's reference
4805  * count to decide when to free the allocation, you should allocate a
4806  * compound page, and use put_page() instead of __free_pages().
4807  *
4808  * Context: May be called in interrupt context or while holding a normal
4809  * spinlock, but not in NMI context or while holding a raw spinlock.
4810  */
4811 void __free_pages(struct page *page, unsigned int order)
4812 {
4813 	/* get PageHead before we drop reference */
4814 	int head = PageHead(page);
4815 	struct alloc_tag *tag = pgalloc_tag_get(page);
4816 
4817 	if (put_page_testzero(page))
4818 		free_unref_page(page, order);
4819 	else if (!head) {
4820 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4821 		while (order-- > 0)
4822 			free_unref_page(page + (1 << order), order);
4823 	}
4824 }
4825 EXPORT_SYMBOL(__free_pages);
4826 
4827 void free_pages(unsigned long addr, unsigned int order)
4828 {
4829 	if (addr != 0) {
4830 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4831 		__free_pages(virt_to_page((void *)addr), order);
4832 	}
4833 }
4834 
4835 EXPORT_SYMBOL(free_pages);
4836 
4837 /*
4838  * Page Fragment:
4839  *  An arbitrary-length arbitrary-offset area of memory which resides
4840  *  within a 0 or higher order page.  Multiple fragments within that page
4841  *  are individually refcounted, in the page's reference counter.
4842  *
4843  * The page_frag functions below provide a simple allocation framework for
4844  * page fragments.  This is used by the network stack and network device
4845  * drivers to provide a backing region of memory for use as either an
4846  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4847  */
4848 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4849 					     gfp_t gfp_mask)
4850 {
4851 	struct page *page = NULL;
4852 	gfp_t gfp = gfp_mask;
4853 
4854 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4855 	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4856 		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4857 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4858 				PAGE_FRAG_CACHE_MAX_ORDER);
4859 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4860 #endif
4861 	if (unlikely(!page))
4862 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4863 
4864 	nc->va = page ? page_address(page) : NULL;
4865 
4866 	return page;
4867 }
4868 
4869 void page_frag_cache_drain(struct page_frag_cache *nc)
4870 {
4871 	if (!nc->va)
4872 		return;
4873 
4874 	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4875 	nc->va = NULL;
4876 }
4877 EXPORT_SYMBOL(page_frag_cache_drain);
4878 
4879 void __page_frag_cache_drain(struct page *page, unsigned int count)
4880 {
4881 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4882 
4883 	if (page_ref_sub_and_test(page, count))
4884 		free_unref_page(page, compound_order(page));
4885 }
4886 EXPORT_SYMBOL(__page_frag_cache_drain);
4887 
4888 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4889 			      unsigned int fragsz, gfp_t gfp_mask,
4890 			      unsigned int align_mask)
4891 {
4892 	unsigned int size = PAGE_SIZE;
4893 	struct page *page;
4894 	int offset;
4895 
4896 	if (unlikely(!nc->va)) {
4897 refill:
4898 		page = __page_frag_cache_refill(nc, gfp_mask);
4899 		if (!page)
4900 			return NULL;
4901 
4902 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4903 		/* if size can vary use size else just use PAGE_SIZE */
4904 		size = nc->size;
4905 #endif
4906 		/* Even if we own the page, we do not use atomic_set().
4907 		 * This would break get_page_unless_zero() users.
4908 		 */
4909 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4910 
4911 		/* reset page count bias and offset to start of new frag */
4912 		nc->pfmemalloc = page_is_pfmemalloc(page);
4913 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4914 		nc->offset = size;
4915 	}
4916 
4917 	offset = nc->offset - fragsz;
4918 	if (unlikely(offset < 0)) {
4919 		page = virt_to_page(nc->va);
4920 
4921 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4922 			goto refill;
4923 
4924 		if (unlikely(nc->pfmemalloc)) {
4925 			free_unref_page(page, compound_order(page));
4926 			goto refill;
4927 		}
4928 
4929 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4930 		/* if size can vary use size else just use PAGE_SIZE */
4931 		size = nc->size;
4932 #endif
4933 		/* OK, page count is 0, we can safely set it */
4934 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4935 
4936 		/* reset page count bias and offset to start of new frag */
4937 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4938 		offset = size - fragsz;
4939 		if (unlikely(offset < 0)) {
4940 			/*
4941 			 * The caller is trying to allocate a fragment
4942 			 * with fragsz > PAGE_SIZE but the cache isn't big
4943 			 * enough to satisfy the request, this may
4944 			 * happen in low memory conditions.
4945 			 * We don't release the cache page because
4946 			 * it could make memory pressure worse
4947 			 * so we simply return NULL here.
4948 			 */
4949 			return NULL;
4950 		}
4951 	}
4952 
4953 	nc->pagecnt_bias--;
4954 	offset &= align_mask;
4955 	nc->offset = offset;
4956 
4957 	return nc->va + offset;
4958 }
4959 EXPORT_SYMBOL(__page_frag_alloc_align);
4960 
4961 /*
4962  * Frees a page fragment allocated out of either a compound or order 0 page.
4963  */
4964 void page_frag_free(void *addr)
4965 {
4966 	struct page *page = virt_to_head_page(addr);
4967 
4968 	if (unlikely(put_page_testzero(page)))
4969 		free_unref_page(page, compound_order(page));
4970 }
4971 EXPORT_SYMBOL(page_frag_free);
4972 
4973 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4974 		size_t size)
4975 {
4976 	if (addr) {
4977 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4978 		struct page *page = virt_to_page((void *)addr);
4979 		struct page *last = page + nr;
4980 
4981 		split_page_owner(page, order, 0);
4982 		pgalloc_tag_split(page_folio(page), order, 0);
4983 		split_page_memcg(page, order, 0);
4984 		while (page < --last)
4985 			set_page_refcounted(last);
4986 
4987 		last = page + (1UL << order);
4988 		for (page += nr; page < last; page++)
4989 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4990 	}
4991 	return (void *)addr;
4992 }
4993 
4994 /**
4995  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4996  * @size: the number of bytes to allocate
4997  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4998  *
4999  * This function is similar to alloc_pages(), except that it allocates the
5000  * minimum number of pages to satisfy the request.  alloc_pages() can only
5001  * allocate memory in power-of-two pages.
5002  *
5003  * This function is also limited by MAX_PAGE_ORDER.
5004  *
5005  * Memory allocated by this function must be released by free_pages_exact().
5006  *
5007  * Return: pointer to the allocated area or %NULL in case of error.
5008  */
5009 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5010 {
5011 	unsigned int order = get_order(size);
5012 	unsigned long addr;
5013 
5014 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5015 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5016 
5017 	addr = get_free_pages_noprof(gfp_mask, order);
5018 	return make_alloc_exact(addr, order, size);
5019 }
5020 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5021 
5022 /**
5023  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5024  *			   pages on a node.
5025  * @nid: the preferred node ID where memory should be allocated
5026  * @size: the number of bytes to allocate
5027  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5028  *
5029  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5030  * back.
5031  *
5032  * Return: pointer to the allocated area or %NULL in case of error.
5033  */
5034 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5035 {
5036 	unsigned int order = get_order(size);
5037 	struct page *p;
5038 
5039 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5040 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5041 
5042 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5043 	if (!p)
5044 		return NULL;
5045 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5046 }
5047 
5048 /**
5049  * free_pages_exact - release memory allocated via alloc_pages_exact()
5050  * @virt: the value returned by alloc_pages_exact.
5051  * @size: size of allocation, same value as passed to alloc_pages_exact().
5052  *
5053  * Release the memory allocated by a previous call to alloc_pages_exact.
5054  */
5055 void free_pages_exact(void *virt, size_t size)
5056 {
5057 	unsigned long addr = (unsigned long)virt;
5058 	unsigned long end = addr + PAGE_ALIGN(size);
5059 
5060 	while (addr < end) {
5061 		free_page(addr);
5062 		addr += PAGE_SIZE;
5063 	}
5064 }
5065 EXPORT_SYMBOL(free_pages_exact);
5066 
5067 /**
5068  * nr_free_zone_pages - count number of pages beyond high watermark
5069  * @offset: The zone index of the highest zone
5070  *
5071  * nr_free_zone_pages() counts the number of pages which are beyond the
5072  * high watermark within all zones at or below a given zone index.  For each
5073  * zone, the number of pages is calculated as:
5074  *
5075  *     nr_free_zone_pages = managed_pages - high_pages
5076  *
5077  * Return: number of pages beyond high watermark.
5078  */
5079 static unsigned long nr_free_zone_pages(int offset)
5080 {
5081 	struct zoneref *z;
5082 	struct zone *zone;
5083 
5084 	/* Just pick one node, since fallback list is circular */
5085 	unsigned long sum = 0;
5086 
5087 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5088 
5089 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5090 		unsigned long size = zone_managed_pages(zone);
5091 		unsigned long high = high_wmark_pages(zone);
5092 		if (size > high)
5093 			sum += size - high;
5094 	}
5095 
5096 	return sum;
5097 }
5098 
5099 /**
5100  * nr_free_buffer_pages - count number of pages beyond high watermark
5101  *
5102  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5103  * watermark within ZONE_DMA and ZONE_NORMAL.
5104  *
5105  * Return: number of pages beyond high watermark within ZONE_DMA and
5106  * ZONE_NORMAL.
5107  */
5108 unsigned long nr_free_buffer_pages(void)
5109 {
5110 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5111 }
5112 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5113 
5114 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5115 {
5116 	zoneref->zone = zone;
5117 	zoneref->zone_idx = zone_idx(zone);
5118 }
5119 
5120 /*
5121  * Builds allocation fallback zone lists.
5122  *
5123  * Add all populated zones of a node to the zonelist.
5124  */
5125 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5126 {
5127 	struct zone *zone;
5128 	enum zone_type zone_type = MAX_NR_ZONES;
5129 	int nr_zones = 0;
5130 
5131 	do {
5132 		zone_type--;
5133 		zone = pgdat->node_zones + zone_type;
5134 		if (populated_zone(zone)) {
5135 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5136 			check_highest_zone(zone_type);
5137 		}
5138 	} while (zone_type);
5139 
5140 	return nr_zones;
5141 }
5142 
5143 #ifdef CONFIG_NUMA
5144 
5145 static int __parse_numa_zonelist_order(char *s)
5146 {
5147 	/*
5148 	 * We used to support different zonelists modes but they turned
5149 	 * out to be just not useful. Let's keep the warning in place
5150 	 * if somebody still use the cmd line parameter so that we do
5151 	 * not fail it silently
5152 	 */
5153 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5154 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5155 		return -EINVAL;
5156 	}
5157 	return 0;
5158 }
5159 
5160 static char numa_zonelist_order[] = "Node";
5161 #define NUMA_ZONELIST_ORDER_LEN	16
5162 /*
5163  * sysctl handler for numa_zonelist_order
5164  */
5165 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5166 		void *buffer, size_t *length, loff_t *ppos)
5167 {
5168 	if (write)
5169 		return __parse_numa_zonelist_order(buffer);
5170 	return proc_dostring(table, write, buffer, length, ppos);
5171 }
5172 
5173 static int node_load[MAX_NUMNODES];
5174 
5175 /**
5176  * find_next_best_node - find the next node that should appear in a given node's fallback list
5177  * @node: node whose fallback list we're appending
5178  * @used_node_mask: nodemask_t of already used nodes
5179  *
5180  * We use a number of factors to determine which is the next node that should
5181  * appear on a given node's fallback list.  The node should not have appeared
5182  * already in @node's fallback list, and it should be the next closest node
5183  * according to the distance array (which contains arbitrary distance values
5184  * from each node to each node in the system), and should also prefer nodes
5185  * with no CPUs, since presumably they'll have very little allocation pressure
5186  * on them otherwise.
5187  *
5188  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5189  */
5190 int find_next_best_node(int node, nodemask_t *used_node_mask)
5191 {
5192 	int n, val;
5193 	int min_val = INT_MAX;
5194 	int best_node = NUMA_NO_NODE;
5195 
5196 	/*
5197 	 * Use the local node if we haven't already, but for memoryless local
5198 	 * node, we should skip it and fall back to other nodes.
5199 	 */
5200 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5201 		node_set(node, *used_node_mask);
5202 		return node;
5203 	}
5204 
5205 	for_each_node_state(n, N_MEMORY) {
5206 
5207 		/* Don't want a node to appear more than once */
5208 		if (node_isset(n, *used_node_mask))
5209 			continue;
5210 
5211 		/* Use the distance array to find the distance */
5212 		val = node_distance(node, n);
5213 
5214 		/* Penalize nodes under us ("prefer the next node") */
5215 		val += (n < node);
5216 
5217 		/* Give preference to headless and unused nodes */
5218 		if (!cpumask_empty(cpumask_of_node(n)))
5219 			val += PENALTY_FOR_NODE_WITH_CPUS;
5220 
5221 		/* Slight preference for less loaded node */
5222 		val *= MAX_NUMNODES;
5223 		val += node_load[n];
5224 
5225 		if (val < min_val) {
5226 			min_val = val;
5227 			best_node = n;
5228 		}
5229 	}
5230 
5231 	if (best_node >= 0)
5232 		node_set(best_node, *used_node_mask);
5233 
5234 	return best_node;
5235 }
5236 
5237 
5238 /*
5239  * Build zonelists ordered by node and zones within node.
5240  * This results in maximum locality--normal zone overflows into local
5241  * DMA zone, if any--but risks exhausting DMA zone.
5242  */
5243 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5244 		unsigned nr_nodes)
5245 {
5246 	struct zoneref *zonerefs;
5247 	int i;
5248 
5249 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5250 
5251 	for (i = 0; i < nr_nodes; i++) {
5252 		int nr_zones;
5253 
5254 		pg_data_t *node = NODE_DATA(node_order[i]);
5255 
5256 		nr_zones = build_zonerefs_node(node, zonerefs);
5257 		zonerefs += nr_zones;
5258 	}
5259 	zonerefs->zone = NULL;
5260 	zonerefs->zone_idx = 0;
5261 }
5262 
5263 /*
5264  * Build __GFP_THISNODE zonelists
5265  */
5266 static void build_thisnode_zonelists(pg_data_t *pgdat)
5267 {
5268 	struct zoneref *zonerefs;
5269 	int nr_zones;
5270 
5271 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5272 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5273 	zonerefs += nr_zones;
5274 	zonerefs->zone = NULL;
5275 	zonerefs->zone_idx = 0;
5276 }
5277 
5278 /*
5279  * Build zonelists ordered by zone and nodes within zones.
5280  * This results in conserving DMA zone[s] until all Normal memory is
5281  * exhausted, but results in overflowing to remote node while memory
5282  * may still exist in local DMA zone.
5283  */
5284 
5285 static void build_zonelists(pg_data_t *pgdat)
5286 {
5287 	static int node_order[MAX_NUMNODES];
5288 	int node, nr_nodes = 0;
5289 	nodemask_t used_mask = NODE_MASK_NONE;
5290 	int local_node, prev_node;
5291 
5292 	/* NUMA-aware ordering of nodes */
5293 	local_node = pgdat->node_id;
5294 	prev_node = local_node;
5295 
5296 	memset(node_order, 0, sizeof(node_order));
5297 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5298 		/*
5299 		 * We don't want to pressure a particular node.
5300 		 * So adding penalty to the first node in same
5301 		 * distance group to make it round-robin.
5302 		 */
5303 		if (node_distance(local_node, node) !=
5304 		    node_distance(local_node, prev_node))
5305 			node_load[node] += 1;
5306 
5307 		node_order[nr_nodes++] = node;
5308 		prev_node = node;
5309 	}
5310 
5311 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5312 	build_thisnode_zonelists(pgdat);
5313 	pr_info("Fallback order for Node %d: ", local_node);
5314 	for (node = 0; node < nr_nodes; node++)
5315 		pr_cont("%d ", node_order[node]);
5316 	pr_cont("\n");
5317 }
5318 
5319 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5320 /*
5321  * Return node id of node used for "local" allocations.
5322  * I.e., first node id of first zone in arg node's generic zonelist.
5323  * Used for initializing percpu 'numa_mem', which is used primarily
5324  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5325  */
5326 int local_memory_node(int node)
5327 {
5328 	struct zoneref *z;
5329 
5330 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5331 				   gfp_zone(GFP_KERNEL),
5332 				   NULL);
5333 	return zonelist_node_idx(z);
5334 }
5335 #endif
5336 
5337 static void setup_min_unmapped_ratio(void);
5338 static void setup_min_slab_ratio(void);
5339 #else	/* CONFIG_NUMA */
5340 
5341 static void build_zonelists(pg_data_t *pgdat)
5342 {
5343 	struct zoneref *zonerefs;
5344 	int nr_zones;
5345 
5346 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5347 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5348 	zonerefs += nr_zones;
5349 
5350 	zonerefs->zone = NULL;
5351 	zonerefs->zone_idx = 0;
5352 }
5353 
5354 #endif	/* CONFIG_NUMA */
5355 
5356 /*
5357  * Boot pageset table. One per cpu which is going to be used for all
5358  * zones and all nodes. The parameters will be set in such a way
5359  * that an item put on a list will immediately be handed over to
5360  * the buddy list. This is safe since pageset manipulation is done
5361  * with interrupts disabled.
5362  *
5363  * The boot_pagesets must be kept even after bootup is complete for
5364  * unused processors and/or zones. They do play a role for bootstrapping
5365  * hotplugged processors.
5366  *
5367  * zoneinfo_show() and maybe other functions do
5368  * not check if the processor is online before following the pageset pointer.
5369  * Other parts of the kernel may not check if the zone is available.
5370  */
5371 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5372 /* These effectively disable the pcplists in the boot pageset completely */
5373 #define BOOT_PAGESET_HIGH	0
5374 #define BOOT_PAGESET_BATCH	1
5375 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5376 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5377 
5378 static void __build_all_zonelists(void *data)
5379 {
5380 	int nid;
5381 	int __maybe_unused cpu;
5382 	pg_data_t *self = data;
5383 	unsigned long flags;
5384 
5385 	/*
5386 	 * The zonelist_update_seq must be acquired with irqsave because the
5387 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5388 	 */
5389 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5390 	/*
5391 	 * Also disable synchronous printk() to prevent any printk() from
5392 	 * trying to hold port->lock, for
5393 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5394 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5395 	 */
5396 	printk_deferred_enter();
5397 
5398 #ifdef CONFIG_NUMA
5399 	memset(node_load, 0, sizeof(node_load));
5400 #endif
5401 
5402 	/*
5403 	 * This node is hotadded and no memory is yet present.   So just
5404 	 * building zonelists is fine - no need to touch other nodes.
5405 	 */
5406 	if (self && !node_online(self->node_id)) {
5407 		build_zonelists(self);
5408 	} else {
5409 		/*
5410 		 * All possible nodes have pgdat preallocated
5411 		 * in free_area_init
5412 		 */
5413 		for_each_node(nid) {
5414 			pg_data_t *pgdat = NODE_DATA(nid);
5415 
5416 			build_zonelists(pgdat);
5417 		}
5418 
5419 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5420 		/*
5421 		 * We now know the "local memory node" for each node--
5422 		 * i.e., the node of the first zone in the generic zonelist.
5423 		 * Set up numa_mem percpu variable for on-line cpus.  During
5424 		 * boot, only the boot cpu should be on-line;  we'll init the
5425 		 * secondary cpus' numa_mem as they come on-line.  During
5426 		 * node/memory hotplug, we'll fixup all on-line cpus.
5427 		 */
5428 		for_each_online_cpu(cpu)
5429 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5430 #endif
5431 	}
5432 
5433 	printk_deferred_exit();
5434 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5435 }
5436 
5437 static noinline void __init
5438 build_all_zonelists_init(void)
5439 {
5440 	int cpu;
5441 
5442 	__build_all_zonelists(NULL);
5443 
5444 	/*
5445 	 * Initialize the boot_pagesets that are going to be used
5446 	 * for bootstrapping processors. The real pagesets for
5447 	 * each zone will be allocated later when the per cpu
5448 	 * allocator is available.
5449 	 *
5450 	 * boot_pagesets are used also for bootstrapping offline
5451 	 * cpus if the system is already booted because the pagesets
5452 	 * are needed to initialize allocators on a specific cpu too.
5453 	 * F.e. the percpu allocator needs the page allocator which
5454 	 * needs the percpu allocator in order to allocate its pagesets
5455 	 * (a chicken-egg dilemma).
5456 	 */
5457 	for_each_possible_cpu(cpu)
5458 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5459 
5460 	mminit_verify_zonelist();
5461 	cpuset_init_current_mems_allowed();
5462 }
5463 
5464 /*
5465  * unless system_state == SYSTEM_BOOTING.
5466  *
5467  * __ref due to call of __init annotated helper build_all_zonelists_init
5468  * [protected by SYSTEM_BOOTING].
5469  */
5470 void __ref build_all_zonelists(pg_data_t *pgdat)
5471 {
5472 	unsigned long vm_total_pages;
5473 
5474 	if (system_state == SYSTEM_BOOTING) {
5475 		build_all_zonelists_init();
5476 	} else {
5477 		__build_all_zonelists(pgdat);
5478 		/* cpuset refresh routine should be here */
5479 	}
5480 	/* Get the number of free pages beyond high watermark in all zones. */
5481 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5482 	/*
5483 	 * Disable grouping by mobility if the number of pages in the
5484 	 * system is too low to allow the mechanism to work. It would be
5485 	 * more accurate, but expensive to check per-zone. This check is
5486 	 * made on memory-hotadd so a system can start with mobility
5487 	 * disabled and enable it later
5488 	 */
5489 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5490 		page_group_by_mobility_disabled = 1;
5491 	else
5492 		page_group_by_mobility_disabled = 0;
5493 
5494 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5495 		nr_online_nodes,
5496 		page_group_by_mobility_disabled ? "off" : "on",
5497 		vm_total_pages);
5498 #ifdef CONFIG_NUMA
5499 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5500 #endif
5501 }
5502 
5503 static int zone_batchsize(struct zone *zone)
5504 {
5505 #ifdef CONFIG_MMU
5506 	int batch;
5507 
5508 	/*
5509 	 * The number of pages to batch allocate is either ~0.1%
5510 	 * of the zone or 1MB, whichever is smaller. The batch
5511 	 * size is striking a balance between allocation latency
5512 	 * and zone lock contention.
5513 	 */
5514 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5515 	batch /= 4;		/* We effectively *= 4 below */
5516 	if (batch < 1)
5517 		batch = 1;
5518 
5519 	/*
5520 	 * Clamp the batch to a 2^n - 1 value. Having a power
5521 	 * of 2 value was found to be more likely to have
5522 	 * suboptimal cache aliasing properties in some cases.
5523 	 *
5524 	 * For example if 2 tasks are alternately allocating
5525 	 * batches of pages, one task can end up with a lot
5526 	 * of pages of one half of the possible page colors
5527 	 * and the other with pages of the other colors.
5528 	 */
5529 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5530 
5531 	return batch;
5532 
5533 #else
5534 	/* The deferral and batching of frees should be suppressed under NOMMU
5535 	 * conditions.
5536 	 *
5537 	 * The problem is that NOMMU needs to be able to allocate large chunks
5538 	 * of contiguous memory as there's no hardware page translation to
5539 	 * assemble apparent contiguous memory from discontiguous pages.
5540 	 *
5541 	 * Queueing large contiguous runs of pages for batching, however,
5542 	 * causes the pages to actually be freed in smaller chunks.  As there
5543 	 * can be a significant delay between the individual batches being
5544 	 * recycled, this leads to the once large chunks of space being
5545 	 * fragmented and becoming unavailable for high-order allocations.
5546 	 */
5547 	return 0;
5548 #endif
5549 }
5550 
5551 static int percpu_pagelist_high_fraction;
5552 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5553 			 int high_fraction)
5554 {
5555 #ifdef CONFIG_MMU
5556 	int high;
5557 	int nr_split_cpus;
5558 	unsigned long total_pages;
5559 
5560 	if (!high_fraction) {
5561 		/*
5562 		 * By default, the high value of the pcp is based on the zone
5563 		 * low watermark so that if they are full then background
5564 		 * reclaim will not be started prematurely.
5565 		 */
5566 		total_pages = low_wmark_pages(zone);
5567 	} else {
5568 		/*
5569 		 * If percpu_pagelist_high_fraction is configured, the high
5570 		 * value is based on a fraction of the managed pages in the
5571 		 * zone.
5572 		 */
5573 		total_pages = zone_managed_pages(zone) / high_fraction;
5574 	}
5575 
5576 	/*
5577 	 * Split the high value across all online CPUs local to the zone. Note
5578 	 * that early in boot that CPUs may not be online yet and that during
5579 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5580 	 * onlined. For memory nodes that have no CPUs, split the high value
5581 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5582 	 * prematurely due to pages stored on pcp lists.
5583 	 */
5584 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5585 	if (!nr_split_cpus)
5586 		nr_split_cpus = num_online_cpus();
5587 	high = total_pages / nr_split_cpus;
5588 
5589 	/*
5590 	 * Ensure high is at least batch*4. The multiple is based on the
5591 	 * historical relationship between high and batch.
5592 	 */
5593 	high = max(high, batch << 2);
5594 
5595 	return high;
5596 #else
5597 	return 0;
5598 #endif
5599 }
5600 
5601 /*
5602  * pcp->high and pcp->batch values are related and generally batch is lower
5603  * than high. They are also related to pcp->count such that count is lower
5604  * than high, and as soon as it reaches high, the pcplist is flushed.
5605  *
5606  * However, guaranteeing these relations at all times would require e.g. write
5607  * barriers here but also careful usage of read barriers at the read side, and
5608  * thus be prone to error and bad for performance. Thus the update only prevents
5609  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5610  * should ensure they can cope with those fields changing asynchronously, and
5611  * fully trust only the pcp->count field on the local CPU with interrupts
5612  * disabled.
5613  *
5614  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5615  * outside of boot time (or some other assurance that no concurrent updaters
5616  * exist).
5617  */
5618 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5619 			   unsigned long high_max, unsigned long batch)
5620 {
5621 	WRITE_ONCE(pcp->batch, batch);
5622 	WRITE_ONCE(pcp->high_min, high_min);
5623 	WRITE_ONCE(pcp->high_max, high_max);
5624 }
5625 
5626 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5627 {
5628 	int pindex;
5629 
5630 	memset(pcp, 0, sizeof(*pcp));
5631 	memset(pzstats, 0, sizeof(*pzstats));
5632 
5633 	spin_lock_init(&pcp->lock);
5634 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5635 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5636 
5637 	/*
5638 	 * Set batch and high values safe for a boot pageset. A true percpu
5639 	 * pageset's initialization will update them subsequently. Here we don't
5640 	 * need to be as careful as pageset_update() as nobody can access the
5641 	 * pageset yet.
5642 	 */
5643 	pcp->high_min = BOOT_PAGESET_HIGH;
5644 	pcp->high_max = BOOT_PAGESET_HIGH;
5645 	pcp->batch = BOOT_PAGESET_BATCH;
5646 	pcp->free_count = 0;
5647 }
5648 
5649 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5650 					      unsigned long high_max, unsigned long batch)
5651 {
5652 	struct per_cpu_pages *pcp;
5653 	int cpu;
5654 
5655 	for_each_possible_cpu(cpu) {
5656 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5657 		pageset_update(pcp, high_min, high_max, batch);
5658 	}
5659 }
5660 
5661 /*
5662  * Calculate and set new high and batch values for all per-cpu pagesets of a
5663  * zone based on the zone's size.
5664  */
5665 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5666 {
5667 	int new_high_min, new_high_max, new_batch;
5668 
5669 	new_batch = max(1, zone_batchsize(zone));
5670 	if (percpu_pagelist_high_fraction) {
5671 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5672 					     percpu_pagelist_high_fraction);
5673 		/*
5674 		 * PCP high is tuned manually, disable auto-tuning via
5675 		 * setting high_min and high_max to the manual value.
5676 		 */
5677 		new_high_max = new_high_min;
5678 	} else {
5679 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5680 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5681 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5682 	}
5683 
5684 	if (zone->pageset_high_min == new_high_min &&
5685 	    zone->pageset_high_max == new_high_max &&
5686 	    zone->pageset_batch == new_batch)
5687 		return;
5688 
5689 	zone->pageset_high_min = new_high_min;
5690 	zone->pageset_high_max = new_high_max;
5691 	zone->pageset_batch = new_batch;
5692 
5693 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5694 					  new_batch);
5695 }
5696 
5697 void __meminit setup_zone_pageset(struct zone *zone)
5698 {
5699 	int cpu;
5700 
5701 	/* Size may be 0 on !SMP && !NUMA */
5702 	if (sizeof(struct per_cpu_zonestat) > 0)
5703 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5704 
5705 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5706 	for_each_possible_cpu(cpu) {
5707 		struct per_cpu_pages *pcp;
5708 		struct per_cpu_zonestat *pzstats;
5709 
5710 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5711 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5712 		per_cpu_pages_init(pcp, pzstats);
5713 	}
5714 
5715 	zone_set_pageset_high_and_batch(zone, 0);
5716 }
5717 
5718 /*
5719  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5720  * page high values need to be recalculated.
5721  */
5722 static void zone_pcp_update(struct zone *zone, int cpu_online)
5723 {
5724 	mutex_lock(&pcp_batch_high_lock);
5725 	zone_set_pageset_high_and_batch(zone, cpu_online);
5726 	mutex_unlock(&pcp_batch_high_lock);
5727 }
5728 
5729 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5730 {
5731 	struct per_cpu_pages *pcp;
5732 	struct cpu_cacheinfo *cci;
5733 
5734 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5735 	cci = get_cpu_cacheinfo(cpu);
5736 	/*
5737 	 * If data cache slice of CPU is large enough, "pcp->batch"
5738 	 * pages can be preserved in PCP before draining PCP for
5739 	 * consecutive high-order pages freeing without allocation.
5740 	 * This can reduce zone lock contention without hurting
5741 	 * cache-hot pages sharing.
5742 	 */
5743 	spin_lock(&pcp->lock);
5744 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5745 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5746 	else
5747 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5748 	spin_unlock(&pcp->lock);
5749 }
5750 
5751 void setup_pcp_cacheinfo(unsigned int cpu)
5752 {
5753 	struct zone *zone;
5754 
5755 	for_each_populated_zone(zone)
5756 		zone_pcp_update_cacheinfo(zone, cpu);
5757 }
5758 
5759 /*
5760  * Allocate per cpu pagesets and initialize them.
5761  * Before this call only boot pagesets were available.
5762  */
5763 void __init setup_per_cpu_pageset(void)
5764 {
5765 	struct pglist_data *pgdat;
5766 	struct zone *zone;
5767 	int __maybe_unused cpu;
5768 
5769 	for_each_populated_zone(zone)
5770 		setup_zone_pageset(zone);
5771 
5772 #ifdef CONFIG_NUMA
5773 	/*
5774 	 * Unpopulated zones continue using the boot pagesets.
5775 	 * The numa stats for these pagesets need to be reset.
5776 	 * Otherwise, they will end up skewing the stats of
5777 	 * the nodes these zones are associated with.
5778 	 */
5779 	for_each_possible_cpu(cpu) {
5780 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5781 		memset(pzstats->vm_numa_event, 0,
5782 		       sizeof(pzstats->vm_numa_event));
5783 	}
5784 #endif
5785 
5786 	for_each_online_pgdat(pgdat)
5787 		pgdat->per_cpu_nodestats =
5788 			alloc_percpu(struct per_cpu_nodestat);
5789 }
5790 
5791 __meminit void zone_pcp_init(struct zone *zone)
5792 {
5793 	/*
5794 	 * per cpu subsystem is not up at this point. The following code
5795 	 * relies on the ability of the linker to provide the
5796 	 * offset of a (static) per cpu variable into the per cpu area.
5797 	 */
5798 	zone->per_cpu_pageset = &boot_pageset;
5799 	zone->per_cpu_zonestats = &boot_zonestats;
5800 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5801 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5802 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5803 
5804 	if (populated_zone(zone))
5805 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5806 			 zone->present_pages, zone_batchsize(zone));
5807 }
5808 
5809 void adjust_managed_page_count(struct page *page, long count)
5810 {
5811 	atomic_long_add(count, &page_zone(page)->managed_pages);
5812 	totalram_pages_add(count);
5813 }
5814 EXPORT_SYMBOL(adjust_managed_page_count);
5815 
5816 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5817 {
5818 	void *pos;
5819 	unsigned long pages = 0;
5820 
5821 	start = (void *)PAGE_ALIGN((unsigned long)start);
5822 	end = (void *)((unsigned long)end & PAGE_MASK);
5823 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5824 		struct page *page = virt_to_page(pos);
5825 		void *direct_map_addr;
5826 
5827 		/*
5828 		 * 'direct_map_addr' might be different from 'pos'
5829 		 * because some architectures' virt_to_page()
5830 		 * work with aliases.  Getting the direct map
5831 		 * address ensures that we get a _writeable_
5832 		 * alias for the memset().
5833 		 */
5834 		direct_map_addr = page_address(page);
5835 		/*
5836 		 * Perform a kasan-unchecked memset() since this memory
5837 		 * has not been initialized.
5838 		 */
5839 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5840 		if ((unsigned int)poison <= 0xFF)
5841 			memset(direct_map_addr, poison, PAGE_SIZE);
5842 
5843 		free_reserved_page(page);
5844 	}
5845 
5846 	if (pages && s)
5847 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5848 
5849 	return pages;
5850 }
5851 
5852 void free_reserved_page(struct page *page)
5853 {
5854 	clear_page_tag_ref(page);
5855 	ClearPageReserved(page);
5856 	init_page_count(page);
5857 	__free_page(page);
5858 	adjust_managed_page_count(page, 1);
5859 }
5860 EXPORT_SYMBOL(free_reserved_page);
5861 
5862 static int page_alloc_cpu_dead(unsigned int cpu)
5863 {
5864 	struct zone *zone;
5865 
5866 	lru_add_drain_cpu(cpu);
5867 	mlock_drain_remote(cpu);
5868 	drain_pages(cpu);
5869 
5870 	/*
5871 	 * Spill the event counters of the dead processor
5872 	 * into the current processors event counters.
5873 	 * This artificially elevates the count of the current
5874 	 * processor.
5875 	 */
5876 	vm_events_fold_cpu(cpu);
5877 
5878 	/*
5879 	 * Zero the differential counters of the dead processor
5880 	 * so that the vm statistics are consistent.
5881 	 *
5882 	 * This is only okay since the processor is dead and cannot
5883 	 * race with what we are doing.
5884 	 */
5885 	cpu_vm_stats_fold(cpu);
5886 
5887 	for_each_populated_zone(zone)
5888 		zone_pcp_update(zone, 0);
5889 
5890 	return 0;
5891 }
5892 
5893 static int page_alloc_cpu_online(unsigned int cpu)
5894 {
5895 	struct zone *zone;
5896 
5897 	for_each_populated_zone(zone)
5898 		zone_pcp_update(zone, 1);
5899 	return 0;
5900 }
5901 
5902 void __init page_alloc_init_cpuhp(void)
5903 {
5904 	int ret;
5905 
5906 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5907 					"mm/page_alloc:pcp",
5908 					page_alloc_cpu_online,
5909 					page_alloc_cpu_dead);
5910 	WARN_ON(ret < 0);
5911 }
5912 
5913 /*
5914  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5915  *	or min_free_kbytes changes.
5916  */
5917 static void calculate_totalreserve_pages(void)
5918 {
5919 	struct pglist_data *pgdat;
5920 	unsigned long reserve_pages = 0;
5921 	enum zone_type i, j;
5922 
5923 	for_each_online_pgdat(pgdat) {
5924 
5925 		pgdat->totalreserve_pages = 0;
5926 
5927 		for (i = 0; i < MAX_NR_ZONES; i++) {
5928 			struct zone *zone = pgdat->node_zones + i;
5929 			long max = 0;
5930 			unsigned long managed_pages = zone_managed_pages(zone);
5931 
5932 			/* Find valid and maximum lowmem_reserve in the zone */
5933 			for (j = i; j < MAX_NR_ZONES; j++) {
5934 				if (zone->lowmem_reserve[j] > max)
5935 					max = zone->lowmem_reserve[j];
5936 			}
5937 
5938 			/* we treat the high watermark as reserved pages. */
5939 			max += high_wmark_pages(zone);
5940 
5941 			if (max > managed_pages)
5942 				max = managed_pages;
5943 
5944 			pgdat->totalreserve_pages += max;
5945 
5946 			reserve_pages += max;
5947 		}
5948 	}
5949 	totalreserve_pages = reserve_pages;
5950 }
5951 
5952 /*
5953  * setup_per_zone_lowmem_reserve - called whenever
5954  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5955  *	has a correct pages reserved value, so an adequate number of
5956  *	pages are left in the zone after a successful __alloc_pages().
5957  */
5958 static void setup_per_zone_lowmem_reserve(void)
5959 {
5960 	struct pglist_data *pgdat;
5961 	enum zone_type i, j;
5962 
5963 	for_each_online_pgdat(pgdat) {
5964 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5965 			struct zone *zone = &pgdat->node_zones[i];
5966 			int ratio = sysctl_lowmem_reserve_ratio[i];
5967 			bool clear = !ratio || !zone_managed_pages(zone);
5968 			unsigned long managed_pages = 0;
5969 
5970 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5971 				struct zone *upper_zone = &pgdat->node_zones[j];
5972 				bool empty = !zone_managed_pages(upper_zone);
5973 
5974 				managed_pages += zone_managed_pages(upper_zone);
5975 
5976 				if (clear || empty)
5977 					zone->lowmem_reserve[j] = 0;
5978 				else
5979 					zone->lowmem_reserve[j] = managed_pages / ratio;
5980 			}
5981 		}
5982 	}
5983 
5984 	/* update totalreserve_pages */
5985 	calculate_totalreserve_pages();
5986 }
5987 
5988 static void __setup_per_zone_wmarks(void)
5989 {
5990 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5991 	unsigned long lowmem_pages = 0;
5992 	struct zone *zone;
5993 	unsigned long flags;
5994 
5995 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5996 	for_each_zone(zone) {
5997 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5998 			lowmem_pages += zone_managed_pages(zone);
5999 	}
6000 
6001 	for_each_zone(zone) {
6002 		u64 tmp;
6003 
6004 		spin_lock_irqsave(&zone->lock, flags);
6005 		tmp = (u64)pages_min * zone_managed_pages(zone);
6006 		tmp = div64_ul(tmp, lowmem_pages);
6007 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6008 			/*
6009 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6010 			 * need highmem and movable zones pages, so cap pages_min
6011 			 * to a small  value here.
6012 			 *
6013 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6014 			 * deltas control async page reclaim, and so should
6015 			 * not be capped for highmem and movable zones.
6016 			 */
6017 			unsigned long min_pages;
6018 
6019 			min_pages = zone_managed_pages(zone) / 1024;
6020 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6021 			zone->_watermark[WMARK_MIN] = min_pages;
6022 		} else {
6023 			/*
6024 			 * If it's a lowmem zone, reserve a number of pages
6025 			 * proportionate to the zone's size.
6026 			 */
6027 			zone->_watermark[WMARK_MIN] = tmp;
6028 		}
6029 
6030 		/*
6031 		 * Set the kswapd watermarks distance according to the
6032 		 * scale factor in proportion to available memory, but
6033 		 * ensure a minimum size on small systems.
6034 		 */
6035 		tmp = max_t(u64, tmp >> 2,
6036 			    mult_frac(zone_managed_pages(zone),
6037 				      watermark_scale_factor, 10000));
6038 
6039 		zone->watermark_boost = 0;
6040 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6041 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6042 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6043 
6044 		spin_unlock_irqrestore(&zone->lock, flags);
6045 	}
6046 
6047 	/* update totalreserve_pages */
6048 	calculate_totalreserve_pages();
6049 }
6050 
6051 /**
6052  * setup_per_zone_wmarks - called when min_free_kbytes changes
6053  * or when memory is hot-{added|removed}
6054  *
6055  * Ensures that the watermark[min,low,high] values for each zone are set
6056  * correctly with respect to min_free_kbytes.
6057  */
6058 void setup_per_zone_wmarks(void)
6059 {
6060 	struct zone *zone;
6061 	static DEFINE_SPINLOCK(lock);
6062 
6063 	spin_lock(&lock);
6064 	__setup_per_zone_wmarks();
6065 	spin_unlock(&lock);
6066 
6067 	/*
6068 	 * The watermark size have changed so update the pcpu batch
6069 	 * and high limits or the limits may be inappropriate.
6070 	 */
6071 	for_each_zone(zone)
6072 		zone_pcp_update(zone, 0);
6073 }
6074 
6075 /*
6076  * Initialise min_free_kbytes.
6077  *
6078  * For small machines we want it small (128k min).  For large machines
6079  * we want it large (256MB max).  But it is not linear, because network
6080  * bandwidth does not increase linearly with machine size.  We use
6081  *
6082  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6083  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6084  *
6085  * which yields
6086  *
6087  * 16MB:	512k
6088  * 32MB:	724k
6089  * 64MB:	1024k
6090  * 128MB:	1448k
6091  * 256MB:	2048k
6092  * 512MB:	2896k
6093  * 1024MB:	4096k
6094  * 2048MB:	5792k
6095  * 4096MB:	8192k
6096  * 8192MB:	11584k
6097  * 16384MB:	16384k
6098  */
6099 void calculate_min_free_kbytes(void)
6100 {
6101 	unsigned long lowmem_kbytes;
6102 	int new_min_free_kbytes;
6103 
6104 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6105 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6106 
6107 	if (new_min_free_kbytes > user_min_free_kbytes)
6108 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6109 	else
6110 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6111 				new_min_free_kbytes, user_min_free_kbytes);
6112 
6113 }
6114 
6115 int __meminit init_per_zone_wmark_min(void)
6116 {
6117 	calculate_min_free_kbytes();
6118 	setup_per_zone_wmarks();
6119 	refresh_zone_stat_thresholds();
6120 	setup_per_zone_lowmem_reserve();
6121 
6122 #ifdef CONFIG_NUMA
6123 	setup_min_unmapped_ratio();
6124 	setup_min_slab_ratio();
6125 #endif
6126 
6127 	khugepaged_min_free_kbytes_update();
6128 
6129 	return 0;
6130 }
6131 postcore_initcall(init_per_zone_wmark_min)
6132 
6133 /*
6134  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6135  *	that we can call two helper functions whenever min_free_kbytes
6136  *	changes.
6137  */
6138 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6139 		void *buffer, size_t *length, loff_t *ppos)
6140 {
6141 	int rc;
6142 
6143 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6144 	if (rc)
6145 		return rc;
6146 
6147 	if (write) {
6148 		user_min_free_kbytes = min_free_kbytes;
6149 		setup_per_zone_wmarks();
6150 	}
6151 	return 0;
6152 }
6153 
6154 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6155 		void *buffer, size_t *length, loff_t *ppos)
6156 {
6157 	int rc;
6158 
6159 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6160 	if (rc)
6161 		return rc;
6162 
6163 	if (write)
6164 		setup_per_zone_wmarks();
6165 
6166 	return 0;
6167 }
6168 
6169 #ifdef CONFIG_NUMA
6170 static void setup_min_unmapped_ratio(void)
6171 {
6172 	pg_data_t *pgdat;
6173 	struct zone *zone;
6174 
6175 	for_each_online_pgdat(pgdat)
6176 		pgdat->min_unmapped_pages = 0;
6177 
6178 	for_each_zone(zone)
6179 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6180 						         sysctl_min_unmapped_ratio) / 100;
6181 }
6182 
6183 
6184 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6185 		void *buffer, size_t *length, loff_t *ppos)
6186 {
6187 	int rc;
6188 
6189 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6190 	if (rc)
6191 		return rc;
6192 
6193 	setup_min_unmapped_ratio();
6194 
6195 	return 0;
6196 }
6197 
6198 static void setup_min_slab_ratio(void)
6199 {
6200 	pg_data_t *pgdat;
6201 	struct zone *zone;
6202 
6203 	for_each_online_pgdat(pgdat)
6204 		pgdat->min_slab_pages = 0;
6205 
6206 	for_each_zone(zone)
6207 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6208 						     sysctl_min_slab_ratio) / 100;
6209 }
6210 
6211 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6212 		void *buffer, size_t *length, loff_t *ppos)
6213 {
6214 	int rc;
6215 
6216 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6217 	if (rc)
6218 		return rc;
6219 
6220 	setup_min_slab_ratio();
6221 
6222 	return 0;
6223 }
6224 #endif
6225 
6226 /*
6227  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6228  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6229  *	whenever sysctl_lowmem_reserve_ratio changes.
6230  *
6231  * The reserve ratio obviously has absolutely no relation with the
6232  * minimum watermarks. The lowmem reserve ratio can only make sense
6233  * if in function of the boot time zone sizes.
6234  */
6235 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6236 		int write, void *buffer, size_t *length, loff_t *ppos)
6237 {
6238 	int i;
6239 
6240 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6241 
6242 	for (i = 0; i < MAX_NR_ZONES; i++) {
6243 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6244 			sysctl_lowmem_reserve_ratio[i] = 0;
6245 	}
6246 
6247 	setup_per_zone_lowmem_reserve();
6248 	return 0;
6249 }
6250 
6251 /*
6252  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6253  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6254  * pagelist can have before it gets flushed back to buddy allocator.
6255  */
6256 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6257 		int write, void *buffer, size_t *length, loff_t *ppos)
6258 {
6259 	struct zone *zone;
6260 	int old_percpu_pagelist_high_fraction;
6261 	int ret;
6262 
6263 	mutex_lock(&pcp_batch_high_lock);
6264 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6265 
6266 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6267 	if (!write || ret < 0)
6268 		goto out;
6269 
6270 	/* Sanity checking to avoid pcp imbalance */
6271 	if (percpu_pagelist_high_fraction &&
6272 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6273 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6274 		ret = -EINVAL;
6275 		goto out;
6276 	}
6277 
6278 	/* No change? */
6279 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6280 		goto out;
6281 
6282 	for_each_populated_zone(zone)
6283 		zone_set_pageset_high_and_batch(zone, 0);
6284 out:
6285 	mutex_unlock(&pcp_batch_high_lock);
6286 	return ret;
6287 }
6288 
6289 static struct ctl_table page_alloc_sysctl_table[] = {
6290 	{
6291 		.procname	= "min_free_kbytes",
6292 		.data		= &min_free_kbytes,
6293 		.maxlen		= sizeof(min_free_kbytes),
6294 		.mode		= 0644,
6295 		.proc_handler	= min_free_kbytes_sysctl_handler,
6296 		.extra1		= SYSCTL_ZERO,
6297 	},
6298 	{
6299 		.procname	= "watermark_boost_factor",
6300 		.data		= &watermark_boost_factor,
6301 		.maxlen		= sizeof(watermark_boost_factor),
6302 		.mode		= 0644,
6303 		.proc_handler	= proc_dointvec_minmax,
6304 		.extra1		= SYSCTL_ZERO,
6305 	},
6306 	{
6307 		.procname	= "watermark_scale_factor",
6308 		.data		= &watermark_scale_factor,
6309 		.maxlen		= sizeof(watermark_scale_factor),
6310 		.mode		= 0644,
6311 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6312 		.extra1		= SYSCTL_ONE,
6313 		.extra2		= SYSCTL_THREE_THOUSAND,
6314 	},
6315 	{
6316 		.procname	= "percpu_pagelist_high_fraction",
6317 		.data		= &percpu_pagelist_high_fraction,
6318 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6319 		.mode		= 0644,
6320 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6321 		.extra1		= SYSCTL_ZERO,
6322 	},
6323 	{
6324 		.procname	= "lowmem_reserve_ratio",
6325 		.data		= &sysctl_lowmem_reserve_ratio,
6326 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6327 		.mode		= 0644,
6328 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6329 	},
6330 #ifdef CONFIG_NUMA
6331 	{
6332 		.procname	= "numa_zonelist_order",
6333 		.data		= &numa_zonelist_order,
6334 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6335 		.mode		= 0644,
6336 		.proc_handler	= numa_zonelist_order_handler,
6337 	},
6338 	{
6339 		.procname	= "min_unmapped_ratio",
6340 		.data		= &sysctl_min_unmapped_ratio,
6341 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6342 		.mode		= 0644,
6343 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6344 		.extra1		= SYSCTL_ZERO,
6345 		.extra2		= SYSCTL_ONE_HUNDRED,
6346 	},
6347 	{
6348 		.procname	= "min_slab_ratio",
6349 		.data		= &sysctl_min_slab_ratio,
6350 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6351 		.mode		= 0644,
6352 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6353 		.extra1		= SYSCTL_ZERO,
6354 		.extra2		= SYSCTL_ONE_HUNDRED,
6355 	},
6356 #endif
6357 };
6358 
6359 void __init page_alloc_sysctl_init(void)
6360 {
6361 	register_sysctl_init("vm", page_alloc_sysctl_table);
6362 }
6363 
6364 #ifdef CONFIG_CONTIG_ALLOC
6365 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6366 static void alloc_contig_dump_pages(struct list_head *page_list)
6367 {
6368 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6369 
6370 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6371 		struct page *page;
6372 
6373 		dump_stack();
6374 		list_for_each_entry(page, page_list, lru)
6375 			dump_page(page, "migration failure");
6376 	}
6377 }
6378 
6379 /*
6380  * [start, end) must belong to a single zone.
6381  * @migratetype: using migratetype to filter the type of migration in
6382  *		trace_mm_alloc_contig_migrate_range_info.
6383  */
6384 int __alloc_contig_migrate_range(struct compact_control *cc,
6385 					unsigned long start, unsigned long end,
6386 					int migratetype)
6387 {
6388 	/* This function is based on compact_zone() from compaction.c. */
6389 	unsigned int nr_reclaimed;
6390 	unsigned long pfn = start;
6391 	unsigned int tries = 0;
6392 	int ret = 0;
6393 	struct migration_target_control mtc = {
6394 		.nid = zone_to_nid(cc->zone),
6395 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6396 		.reason = MR_CONTIG_RANGE,
6397 	};
6398 	struct page *page;
6399 	unsigned long total_mapped = 0;
6400 	unsigned long total_migrated = 0;
6401 	unsigned long total_reclaimed = 0;
6402 
6403 	lru_cache_disable();
6404 
6405 	while (pfn < end || !list_empty(&cc->migratepages)) {
6406 		if (fatal_signal_pending(current)) {
6407 			ret = -EINTR;
6408 			break;
6409 		}
6410 
6411 		if (list_empty(&cc->migratepages)) {
6412 			cc->nr_migratepages = 0;
6413 			ret = isolate_migratepages_range(cc, pfn, end);
6414 			if (ret && ret != -EAGAIN)
6415 				break;
6416 			pfn = cc->migrate_pfn;
6417 			tries = 0;
6418 		} else if (++tries == 5) {
6419 			ret = -EBUSY;
6420 			break;
6421 		}
6422 
6423 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6424 							&cc->migratepages);
6425 		cc->nr_migratepages -= nr_reclaimed;
6426 
6427 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6428 			total_reclaimed += nr_reclaimed;
6429 			list_for_each_entry(page, &cc->migratepages, lru) {
6430 				struct folio *folio = page_folio(page);
6431 
6432 				total_mapped += folio_mapped(folio) *
6433 						folio_nr_pages(folio);
6434 			}
6435 		}
6436 
6437 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6438 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6439 
6440 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6441 			total_migrated += cc->nr_migratepages;
6442 
6443 		/*
6444 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6445 		 * to retry again over this error, so do the same here.
6446 		 */
6447 		if (ret == -ENOMEM)
6448 			break;
6449 	}
6450 
6451 	lru_cache_enable();
6452 	if (ret < 0) {
6453 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6454 			alloc_contig_dump_pages(&cc->migratepages);
6455 		putback_movable_pages(&cc->migratepages);
6456 	}
6457 
6458 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6459 						 total_migrated,
6460 						 total_reclaimed,
6461 						 total_mapped);
6462 	return (ret < 0) ? ret : 0;
6463 }
6464 
6465 static void split_free_pages(struct list_head *list)
6466 {
6467 	int order;
6468 
6469 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6470 		struct page *page, *next;
6471 		int nr_pages = 1 << order;
6472 
6473 		list_for_each_entry_safe(page, next, &list[order], lru) {
6474 			int i;
6475 
6476 			post_alloc_hook(page, order, __GFP_MOVABLE);
6477 			if (!order)
6478 				continue;
6479 
6480 			split_page(page, order);
6481 
6482 			/* Add all subpages to the order-0 head, in sequence. */
6483 			list_del(&page->lru);
6484 			for (i = 0; i < nr_pages; i++)
6485 				list_add_tail(&page[i].lru, &list[0]);
6486 		}
6487 	}
6488 }
6489 
6490 /**
6491  * alloc_contig_range() -- tries to allocate given range of pages
6492  * @start:	start PFN to allocate
6493  * @end:	one-past-the-last PFN to allocate
6494  * @migratetype:	migratetype of the underlying pageblocks (either
6495  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6496  *			in range must have the same migratetype and it must
6497  *			be either of the two.
6498  * @gfp_mask:	GFP mask to use during compaction
6499  *
6500  * The PFN range does not have to be pageblock aligned. The PFN range must
6501  * belong to a single zone.
6502  *
6503  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6504  * pageblocks in the range.  Once isolated, the pageblocks should not
6505  * be modified by others.
6506  *
6507  * Return: zero on success or negative error code.  On success all
6508  * pages which PFN is in [start, end) are allocated for the caller and
6509  * need to be freed with free_contig_range().
6510  */
6511 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6512 		       unsigned migratetype, gfp_t gfp_mask)
6513 {
6514 	unsigned long outer_start, outer_end;
6515 	int ret = 0;
6516 
6517 	struct compact_control cc = {
6518 		.nr_migratepages = 0,
6519 		.order = -1,
6520 		.zone = page_zone(pfn_to_page(start)),
6521 		.mode = MIGRATE_SYNC,
6522 		.ignore_skip_hint = true,
6523 		.no_set_skip_hint = true,
6524 		.gfp_mask = current_gfp_context(gfp_mask),
6525 		.alloc_contig = true,
6526 	};
6527 	INIT_LIST_HEAD(&cc.migratepages);
6528 
6529 	/*
6530 	 * What we do here is we mark all pageblocks in range as
6531 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6532 	 * have different sizes, and due to the way page allocator
6533 	 * work, start_isolate_page_range() has special handlings for this.
6534 	 *
6535 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6536 	 * migrate the pages from an unaligned range (ie. pages that
6537 	 * we are interested in). This will put all the pages in
6538 	 * range back to page allocator as MIGRATE_ISOLATE.
6539 	 *
6540 	 * When this is done, we take the pages in range from page
6541 	 * allocator removing them from the buddy system.  This way
6542 	 * page allocator will never consider using them.
6543 	 *
6544 	 * This lets us mark the pageblocks back as
6545 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6546 	 * aligned range but not in the unaligned, original range are
6547 	 * put back to page allocator so that buddy can use them.
6548 	 */
6549 
6550 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6551 	if (ret)
6552 		goto done;
6553 
6554 	drain_all_pages(cc.zone);
6555 
6556 	/*
6557 	 * In case of -EBUSY, we'd like to know which page causes problem.
6558 	 * So, just fall through. test_pages_isolated() has a tracepoint
6559 	 * which will report the busy page.
6560 	 *
6561 	 * It is possible that busy pages could become available before
6562 	 * the call to test_pages_isolated, and the range will actually be
6563 	 * allocated.  So, if we fall through be sure to clear ret so that
6564 	 * -EBUSY is not accidentally used or returned to caller.
6565 	 */
6566 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6567 	if (ret && ret != -EBUSY)
6568 		goto done;
6569 	ret = 0;
6570 
6571 	/*
6572 	 * Pages from [start, end) are within a pageblock_nr_pages
6573 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6574 	 * more, all pages in [start, end) are free in page allocator.
6575 	 * What we are going to do is to allocate all pages from
6576 	 * [start, end) (that is remove them from page allocator).
6577 	 *
6578 	 * The only problem is that pages at the beginning and at the
6579 	 * end of interesting range may be not aligned with pages that
6580 	 * page allocator holds, ie. they can be part of higher order
6581 	 * pages.  Because of this, we reserve the bigger range and
6582 	 * once this is done free the pages we are not interested in.
6583 	 *
6584 	 * We don't have to hold zone->lock here because the pages are
6585 	 * isolated thus they won't get removed from buddy.
6586 	 */
6587 	outer_start = find_large_buddy(start);
6588 
6589 	/* Make sure the range is really isolated. */
6590 	if (test_pages_isolated(outer_start, end, 0)) {
6591 		ret = -EBUSY;
6592 		goto done;
6593 	}
6594 
6595 	/* Grab isolated pages from freelists. */
6596 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6597 	if (!outer_end) {
6598 		ret = -EBUSY;
6599 		goto done;
6600 	}
6601 
6602 	if (!(gfp_mask & __GFP_COMP)) {
6603 		split_free_pages(cc.freepages);
6604 
6605 		/* Free head and tail (if any) */
6606 		if (start != outer_start)
6607 			free_contig_range(outer_start, start - outer_start);
6608 		if (end != outer_end)
6609 			free_contig_range(end, outer_end - end);
6610 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6611 		struct page *head = pfn_to_page(start);
6612 		int order = ilog2(end - start);
6613 
6614 		check_new_pages(head, order);
6615 		prep_new_page(head, order, gfp_mask, 0);
6616 	} else {
6617 		ret = -EINVAL;
6618 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6619 		     start, end, outer_start, outer_end);
6620 	}
6621 done:
6622 	undo_isolate_page_range(start, end, migratetype);
6623 	return ret;
6624 }
6625 EXPORT_SYMBOL(alloc_contig_range_noprof);
6626 
6627 static int __alloc_contig_pages(unsigned long start_pfn,
6628 				unsigned long nr_pages, gfp_t gfp_mask)
6629 {
6630 	unsigned long end_pfn = start_pfn + nr_pages;
6631 
6632 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6633 				   gfp_mask);
6634 }
6635 
6636 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6637 				   unsigned long nr_pages)
6638 {
6639 	unsigned long i, end_pfn = start_pfn + nr_pages;
6640 	struct page *page;
6641 
6642 	for (i = start_pfn; i < end_pfn; i++) {
6643 		page = pfn_to_online_page(i);
6644 		if (!page)
6645 			return false;
6646 
6647 		if (page_zone(page) != z)
6648 			return false;
6649 
6650 		if (PageReserved(page))
6651 			return false;
6652 
6653 		if (PageHuge(page))
6654 			return false;
6655 	}
6656 	return true;
6657 }
6658 
6659 static bool zone_spans_last_pfn(const struct zone *zone,
6660 				unsigned long start_pfn, unsigned long nr_pages)
6661 {
6662 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6663 
6664 	return zone_spans_pfn(zone, last_pfn);
6665 }
6666 
6667 /**
6668  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6669  * @nr_pages:	Number of contiguous pages to allocate
6670  * @gfp_mask:	GFP mask to limit search and used during compaction
6671  * @nid:	Target node
6672  * @nodemask:	Mask for other possible nodes
6673  *
6674  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6675  * on an applicable zonelist to find a contiguous pfn range which can then be
6676  * tried for allocation with alloc_contig_range(). This routine is intended
6677  * for allocation requests which can not be fulfilled with the buddy allocator.
6678  *
6679  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6680  * power of two, then allocated range is also guaranteed to be aligned to same
6681  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6682  *
6683  * Allocated pages can be freed with free_contig_range() or by manually calling
6684  * __free_page() on each allocated page.
6685  *
6686  * Return: pointer to contiguous pages on success, or NULL if not successful.
6687  */
6688 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6689 				 int nid, nodemask_t *nodemask)
6690 {
6691 	unsigned long ret, pfn, flags;
6692 	struct zonelist *zonelist;
6693 	struct zone *zone;
6694 	struct zoneref *z;
6695 
6696 	zonelist = node_zonelist(nid, gfp_mask);
6697 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6698 					gfp_zone(gfp_mask), nodemask) {
6699 		spin_lock_irqsave(&zone->lock, flags);
6700 
6701 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6702 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6703 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6704 				/*
6705 				 * We release the zone lock here because
6706 				 * alloc_contig_range() will also lock the zone
6707 				 * at some point. If there's an allocation
6708 				 * spinning on this lock, it may win the race
6709 				 * and cause alloc_contig_range() to fail...
6710 				 */
6711 				spin_unlock_irqrestore(&zone->lock, flags);
6712 				ret = __alloc_contig_pages(pfn, nr_pages,
6713 							gfp_mask);
6714 				if (!ret)
6715 					return pfn_to_page(pfn);
6716 				spin_lock_irqsave(&zone->lock, flags);
6717 			}
6718 			pfn += nr_pages;
6719 		}
6720 		spin_unlock_irqrestore(&zone->lock, flags);
6721 	}
6722 	return NULL;
6723 }
6724 #endif /* CONFIG_CONTIG_ALLOC */
6725 
6726 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6727 {
6728 	unsigned long count = 0;
6729 	struct folio *folio = pfn_folio(pfn);
6730 
6731 	if (folio_test_large(folio)) {
6732 		int expected = folio_nr_pages(folio);
6733 
6734 		if (nr_pages == expected)
6735 			folio_put(folio);
6736 		else
6737 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6738 			     pfn, nr_pages, expected);
6739 		return;
6740 	}
6741 
6742 	for (; nr_pages--; pfn++) {
6743 		struct page *page = pfn_to_page(pfn);
6744 
6745 		count += page_count(page) != 1;
6746 		__free_page(page);
6747 	}
6748 	WARN(count != 0, "%lu pages are still in use!\n", count);
6749 }
6750 EXPORT_SYMBOL(free_contig_range);
6751 
6752 /*
6753  * Effectively disable pcplists for the zone by setting the high limit to 0
6754  * and draining all cpus. A concurrent page freeing on another CPU that's about
6755  * to put the page on pcplist will either finish before the drain and the page
6756  * will be drained, or observe the new high limit and skip the pcplist.
6757  *
6758  * Must be paired with a call to zone_pcp_enable().
6759  */
6760 void zone_pcp_disable(struct zone *zone)
6761 {
6762 	mutex_lock(&pcp_batch_high_lock);
6763 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6764 	__drain_all_pages(zone, true);
6765 }
6766 
6767 void zone_pcp_enable(struct zone *zone)
6768 {
6769 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6770 		zone->pageset_high_max, zone->pageset_batch);
6771 	mutex_unlock(&pcp_batch_high_lock);
6772 }
6773 
6774 void zone_pcp_reset(struct zone *zone)
6775 {
6776 	int cpu;
6777 	struct per_cpu_zonestat *pzstats;
6778 
6779 	if (zone->per_cpu_pageset != &boot_pageset) {
6780 		for_each_online_cpu(cpu) {
6781 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6782 			drain_zonestat(zone, pzstats);
6783 		}
6784 		free_percpu(zone->per_cpu_pageset);
6785 		zone->per_cpu_pageset = &boot_pageset;
6786 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6787 			free_percpu(zone->per_cpu_zonestats);
6788 			zone->per_cpu_zonestats = &boot_zonestats;
6789 		}
6790 	}
6791 }
6792 
6793 #ifdef CONFIG_MEMORY_HOTREMOVE
6794 /*
6795  * All pages in the range must be in a single zone, must not contain holes,
6796  * must span full sections, and must be isolated before calling this function.
6797  *
6798  * Returns the number of managed (non-PageOffline()) pages in the range: the
6799  * number of pages for which memory offlining code must adjust managed page
6800  * counters using adjust_managed_page_count().
6801  */
6802 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6803 		unsigned long end_pfn)
6804 {
6805 	unsigned long already_offline = 0, flags;
6806 	unsigned long pfn = start_pfn;
6807 	struct page *page;
6808 	struct zone *zone;
6809 	unsigned int order;
6810 
6811 	offline_mem_sections(pfn, end_pfn);
6812 	zone = page_zone(pfn_to_page(pfn));
6813 	spin_lock_irqsave(&zone->lock, flags);
6814 	while (pfn < end_pfn) {
6815 		page = pfn_to_page(pfn);
6816 		/*
6817 		 * The HWPoisoned page may be not in buddy system, and
6818 		 * page_count() is not 0.
6819 		 */
6820 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6821 			pfn++;
6822 			continue;
6823 		}
6824 		/*
6825 		 * At this point all remaining PageOffline() pages have a
6826 		 * reference count of 0 and can simply be skipped.
6827 		 */
6828 		if (PageOffline(page)) {
6829 			BUG_ON(page_count(page));
6830 			BUG_ON(PageBuddy(page));
6831 			already_offline++;
6832 			pfn++;
6833 			continue;
6834 		}
6835 
6836 		BUG_ON(page_count(page));
6837 		BUG_ON(!PageBuddy(page));
6838 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6839 		order = buddy_order(page);
6840 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6841 		pfn += (1 << order);
6842 	}
6843 	spin_unlock_irqrestore(&zone->lock, flags);
6844 
6845 	return end_pfn - start_pfn - already_offline;
6846 }
6847 #endif
6848 
6849 /*
6850  * This function returns a stable result only if called under zone lock.
6851  */
6852 bool is_free_buddy_page(const struct page *page)
6853 {
6854 	unsigned long pfn = page_to_pfn(page);
6855 	unsigned int order;
6856 
6857 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6858 		const struct page *head = page - (pfn & ((1 << order) - 1));
6859 
6860 		if (PageBuddy(head) &&
6861 		    buddy_order_unsafe(head) >= order)
6862 			break;
6863 	}
6864 
6865 	return order <= MAX_PAGE_ORDER;
6866 }
6867 EXPORT_SYMBOL(is_free_buddy_page);
6868 
6869 #ifdef CONFIG_MEMORY_FAILURE
6870 static inline void add_to_free_list(struct page *page, struct zone *zone,
6871 				    unsigned int order, int migratetype,
6872 				    bool tail)
6873 {
6874 	__add_to_free_list(page, zone, order, migratetype, tail);
6875 	account_freepages(zone, 1 << order, migratetype);
6876 }
6877 
6878 /*
6879  * Break down a higher-order page in sub-pages, and keep our target out of
6880  * buddy allocator.
6881  */
6882 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6883 				   struct page *target, int low, int high,
6884 				   int migratetype)
6885 {
6886 	unsigned long size = 1 << high;
6887 	struct page *current_buddy;
6888 
6889 	while (high > low) {
6890 		high--;
6891 		size >>= 1;
6892 
6893 		if (target >= &page[size]) {
6894 			current_buddy = page;
6895 			page = page + size;
6896 		} else {
6897 			current_buddy = page + size;
6898 		}
6899 
6900 		if (set_page_guard(zone, current_buddy, high))
6901 			continue;
6902 
6903 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6904 		set_buddy_order(current_buddy, high);
6905 	}
6906 }
6907 
6908 /*
6909  * Take a page that will be marked as poisoned off the buddy allocator.
6910  */
6911 bool take_page_off_buddy(struct page *page)
6912 {
6913 	struct zone *zone = page_zone(page);
6914 	unsigned long pfn = page_to_pfn(page);
6915 	unsigned long flags;
6916 	unsigned int order;
6917 	bool ret = false;
6918 
6919 	spin_lock_irqsave(&zone->lock, flags);
6920 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6921 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6922 		int page_order = buddy_order(page_head);
6923 
6924 		if (PageBuddy(page_head) && page_order >= order) {
6925 			unsigned long pfn_head = page_to_pfn(page_head);
6926 			int migratetype = get_pfnblock_migratetype(page_head,
6927 								   pfn_head);
6928 
6929 			del_page_from_free_list(page_head, zone, page_order,
6930 						migratetype);
6931 			break_down_buddy_pages(zone, page_head, page, 0,
6932 						page_order, migratetype);
6933 			SetPageHWPoisonTakenOff(page);
6934 			ret = true;
6935 			break;
6936 		}
6937 		if (page_count(page_head) > 0)
6938 			break;
6939 	}
6940 	spin_unlock_irqrestore(&zone->lock, flags);
6941 	return ret;
6942 }
6943 
6944 /*
6945  * Cancel takeoff done by take_page_off_buddy().
6946  */
6947 bool put_page_back_buddy(struct page *page)
6948 {
6949 	struct zone *zone = page_zone(page);
6950 	unsigned long flags;
6951 	bool ret = false;
6952 
6953 	spin_lock_irqsave(&zone->lock, flags);
6954 	if (put_page_testzero(page)) {
6955 		unsigned long pfn = page_to_pfn(page);
6956 		int migratetype = get_pfnblock_migratetype(page, pfn);
6957 
6958 		ClearPageHWPoisonTakenOff(page);
6959 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6960 		if (TestClearPageHWPoison(page)) {
6961 			ret = true;
6962 		}
6963 	}
6964 	spin_unlock_irqrestore(&zone->lock, flags);
6965 
6966 	return ret;
6967 }
6968 #endif
6969 
6970 #ifdef CONFIG_ZONE_DMA
6971 bool has_managed_dma(void)
6972 {
6973 	struct pglist_data *pgdat;
6974 
6975 	for_each_online_pgdat(pgdat) {
6976 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6977 
6978 		if (managed_zone(zone))
6979 			return true;
6980 	}
6981 	return false;
6982 }
6983 #endif /* CONFIG_ZONE_DMA */
6984 
6985 #ifdef CONFIG_UNACCEPTED_MEMORY
6986 
6987 /* Counts number of zones with unaccepted pages. */
6988 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6989 
6990 static bool lazy_accept = true;
6991 
6992 static int __init accept_memory_parse(char *p)
6993 {
6994 	if (!strcmp(p, "lazy")) {
6995 		lazy_accept = true;
6996 		return 0;
6997 	} else if (!strcmp(p, "eager")) {
6998 		lazy_accept = false;
6999 		return 0;
7000 	} else {
7001 		return -EINVAL;
7002 	}
7003 }
7004 early_param("accept_memory", accept_memory_parse);
7005 
7006 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7007 {
7008 	phys_addr_t start = page_to_phys(page);
7009 
7010 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7011 }
7012 
7013 static void __accept_page(struct zone *zone, unsigned long *flags,
7014 			  struct page *page)
7015 {
7016 	bool last;
7017 
7018 	list_del(&page->lru);
7019 	last = list_empty(&zone->unaccepted_pages);
7020 
7021 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7022 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7023 	__ClearPageUnaccepted(page);
7024 	spin_unlock_irqrestore(&zone->lock, *flags);
7025 
7026 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7027 
7028 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7029 
7030 	if (last)
7031 		static_branch_dec(&zones_with_unaccepted_pages);
7032 }
7033 
7034 void accept_page(struct page *page)
7035 {
7036 	struct zone *zone = page_zone(page);
7037 	unsigned long flags;
7038 
7039 	spin_lock_irqsave(&zone->lock, flags);
7040 	if (!PageUnaccepted(page)) {
7041 		spin_unlock_irqrestore(&zone->lock, flags);
7042 		return;
7043 	}
7044 
7045 	/* Unlocks zone->lock */
7046 	__accept_page(zone, &flags, page);
7047 }
7048 
7049 static bool try_to_accept_memory_one(struct zone *zone)
7050 {
7051 	unsigned long flags;
7052 	struct page *page;
7053 
7054 	spin_lock_irqsave(&zone->lock, flags);
7055 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7056 					struct page, lru);
7057 	if (!page) {
7058 		spin_unlock_irqrestore(&zone->lock, flags);
7059 		return false;
7060 	}
7061 
7062 	/* Unlocks zone->lock */
7063 	__accept_page(zone, &flags, page);
7064 
7065 	return true;
7066 }
7067 
7068 static inline bool has_unaccepted_memory(void)
7069 {
7070 	return static_branch_unlikely(&zones_with_unaccepted_pages);
7071 }
7072 
7073 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7074 {
7075 	long to_accept;
7076 	bool ret = false;
7077 
7078 	if (!has_unaccepted_memory())
7079 		return false;
7080 
7081 	if (list_empty(&zone->unaccepted_pages))
7082 		return false;
7083 
7084 	/* How much to accept to get to promo watermark? */
7085 	to_accept = promo_wmark_pages(zone) -
7086 		    (zone_page_state(zone, NR_FREE_PAGES) -
7087 		    __zone_watermark_unusable_free(zone, order, 0) -
7088 		    zone_page_state(zone, NR_UNACCEPTED));
7089 
7090 	while (to_accept > 0) {
7091 		if (!try_to_accept_memory_one(zone))
7092 			break;
7093 		ret = true;
7094 		to_accept -= MAX_ORDER_NR_PAGES;
7095 	}
7096 
7097 	return ret;
7098 }
7099 
7100 static bool __free_unaccepted(struct page *page)
7101 {
7102 	struct zone *zone = page_zone(page);
7103 	unsigned long flags;
7104 	bool first = false;
7105 
7106 	if (!lazy_accept)
7107 		return false;
7108 
7109 	spin_lock_irqsave(&zone->lock, flags);
7110 	first = list_empty(&zone->unaccepted_pages);
7111 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7112 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7113 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7114 	__SetPageUnaccepted(page);
7115 	spin_unlock_irqrestore(&zone->lock, flags);
7116 
7117 	if (first)
7118 		static_branch_inc(&zones_with_unaccepted_pages);
7119 
7120 	return true;
7121 }
7122 
7123 #else
7124 
7125 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7126 {
7127 	return false;
7128 }
7129 
7130 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7131 {
7132 	return false;
7133 }
7134 
7135 static bool __free_unaccepted(struct page *page)
7136 {
7137 	BUILD_BUG();
7138 	return false;
7139 }
7140 
7141 #endif /* CONFIG_UNACCEPTED_MEMORY */
7142