xref: /linux/mm/page_alloc.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static bool cond_accept_memory(struct zone *zone, unsigned int order);
290 static bool __free_unaccepted(struct page *page);
291 
292 int page_group_by_mobility_disabled __read_mostly;
293 
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 /*
296  * During boot we initialize deferred pages on-demand, as needed, but once
297  * page_alloc_init_late() has finished, the deferred pages are all initialized,
298  * and we can permanently disable that path.
299  */
300 DEFINE_STATIC_KEY_TRUE(deferred_pages);
301 
302 static inline bool deferred_pages_enabled(void)
303 {
304 	return static_branch_unlikely(&deferred_pages);
305 }
306 
307 /*
308  * deferred_grow_zone() is __init, but it is called from
309  * get_page_from_freelist() during early boot until deferred_pages permanently
310  * disables this call. This is why we have refdata wrapper to avoid warning,
311  * and to ensure that the function body gets unloaded.
312  */
313 static bool __ref
314 _deferred_grow_zone(struct zone *zone, unsigned int order)
315 {
316 	return deferred_grow_zone(zone, order);
317 }
318 #else
319 static inline bool deferred_pages_enabled(void)
320 {
321 	return false;
322 }
323 
324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
325 {
326 	return false;
327 }
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
329 
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
331 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
332 							unsigned long pfn)
333 {
334 #ifdef CONFIG_SPARSEMEM
335 	return section_to_usemap(__pfn_to_section(pfn));
336 #else
337 	return page_zone(page)->pageblock_flags;
338 #endif /* CONFIG_SPARSEMEM */
339 }
340 
341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
342 {
343 #ifdef CONFIG_SPARSEMEM
344 	pfn &= (PAGES_PER_SECTION-1);
345 #else
346 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
347 #endif /* CONFIG_SPARSEMEM */
348 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
349 }
350 
351 /**
352  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353  * @page: The page within the block of interest
354  * @pfn: The target page frame number
355  * @mask: mask of bits that the caller is interested in
356  *
357  * Return: pageblock_bits flags
358  */
359 unsigned long get_pfnblock_flags_mask(const struct page *page,
360 					unsigned long pfn, unsigned long mask)
361 {
362 	unsigned long *bitmap;
363 	unsigned long bitidx, word_bitidx;
364 	unsigned long word;
365 
366 	bitmap = get_pageblock_bitmap(page, pfn);
367 	bitidx = pfn_to_bitidx(page, pfn);
368 	word_bitidx = bitidx / BITS_PER_LONG;
369 	bitidx &= (BITS_PER_LONG-1);
370 	/*
371 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 	 * a consistent read of the memory array, so that results, even though
373 	 * racy, are not corrupted.
374 	 */
375 	word = READ_ONCE(bitmap[word_bitidx]);
376 	return (word >> bitidx) & mask;
377 }
378 
379 static __always_inline int get_pfnblock_migratetype(const struct page *page,
380 					unsigned long pfn)
381 {
382 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
383 }
384 
385 /**
386  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387  * @page: The page within the block of interest
388  * @flags: The flags to set
389  * @pfn: The target page frame number
390  * @mask: mask of bits that the caller is interested in
391  */
392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
393 					unsigned long pfn,
394 					unsigned long mask)
395 {
396 	unsigned long *bitmap;
397 	unsigned long bitidx, word_bitidx;
398 	unsigned long word;
399 
400 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
401 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
402 
403 	bitmap = get_pageblock_bitmap(page, pfn);
404 	bitidx = pfn_to_bitidx(page, pfn);
405 	word_bitidx = bitidx / BITS_PER_LONG;
406 	bitidx &= (BITS_PER_LONG-1);
407 
408 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
409 
410 	mask <<= bitidx;
411 	flags <<= bitidx;
412 
413 	word = READ_ONCE(bitmap[word_bitidx]);
414 	do {
415 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
416 }
417 
418 void set_pageblock_migratetype(struct page *page, int migratetype)
419 {
420 	if (unlikely(page_group_by_mobility_disabled &&
421 		     migratetype < MIGRATE_PCPTYPES))
422 		migratetype = MIGRATE_UNMOVABLE;
423 
424 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
425 				page_to_pfn(page), MIGRATETYPE_MASK);
426 }
427 
428 #ifdef CONFIG_DEBUG_VM
429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
430 {
431 	int ret;
432 	unsigned seq;
433 	unsigned long pfn = page_to_pfn(page);
434 	unsigned long sp, start_pfn;
435 
436 	do {
437 		seq = zone_span_seqbegin(zone);
438 		start_pfn = zone->zone_start_pfn;
439 		sp = zone->spanned_pages;
440 		ret = !zone_spans_pfn(zone, pfn);
441 	} while (zone_span_seqretry(zone, seq));
442 
443 	if (ret)
444 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 			pfn, zone_to_nid(zone), zone->name,
446 			start_pfn, start_pfn + sp);
447 
448 	return ret;
449 }
450 
451 /*
452  * Temporary debugging check for pages not lying within a given zone.
453  */
454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
455 {
456 	if (page_outside_zone_boundaries(zone, page))
457 		return true;
458 	if (zone != page_zone(page))
459 		return true;
460 
461 	return false;
462 }
463 #else
464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
465 {
466 	return false;
467 }
468 #endif
469 
470 static void bad_page(struct page *page, const char *reason)
471 {
472 	static unsigned long resume;
473 	static unsigned long nr_shown;
474 	static unsigned long nr_unshown;
475 
476 	/*
477 	 * Allow a burst of 60 reports, then keep quiet for that minute;
478 	 * or allow a steady drip of one report per second.
479 	 */
480 	if (nr_shown == 60) {
481 		if (time_before(jiffies, resume)) {
482 			nr_unshown++;
483 			goto out;
484 		}
485 		if (nr_unshown) {
486 			pr_alert(
487 			      "BUG: Bad page state: %lu messages suppressed\n",
488 				nr_unshown);
489 			nr_unshown = 0;
490 		}
491 		nr_shown = 0;
492 	}
493 	if (nr_shown++ == 0)
494 		resume = jiffies + 60 * HZ;
495 
496 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
497 		current->comm, page_to_pfn(page));
498 	dump_page(page, reason);
499 
500 	print_modules();
501 	dump_stack();
502 out:
503 	/* Leave bad fields for debug, except PageBuddy could make trouble */
504 	if (PageBuddy(page))
505 		__ClearPageBuddy(page);
506 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
507 }
508 
509 static inline unsigned int order_to_pindex(int migratetype, int order)
510 {
511 	bool __maybe_unused movable;
512 
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
515 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
516 
517 		movable = migratetype == MIGRATE_MOVABLE;
518 
519 		return NR_LOWORDER_PCP_LISTS + movable;
520 	}
521 #else
522 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
523 #endif
524 
525 	return (MIGRATE_PCPTYPES * order) + migratetype;
526 }
527 
528 static inline int pindex_to_order(unsigned int pindex)
529 {
530 	int order = pindex / MIGRATE_PCPTYPES;
531 
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 	if (pindex >= NR_LOWORDER_PCP_LISTS)
534 		order = HPAGE_PMD_ORDER;
535 #else
536 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
537 #endif
538 
539 	return order;
540 }
541 
542 static inline bool pcp_allowed_order(unsigned int order)
543 {
544 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
545 		return true;
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 	if (order == HPAGE_PMD_ORDER)
548 		return true;
549 #endif
550 	return false;
551 }
552 
553 /*
554  * Higher-order pages are called "compound pages".  They are structured thusly:
555  *
556  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
557  *
558  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
560  *
561  * The first tail page's ->compound_order holds the order of allocation.
562  * This usage means that zero-order pages may not be compound.
563  */
564 
565 void prep_compound_page(struct page *page, unsigned int order)
566 {
567 	int i;
568 	int nr_pages = 1 << order;
569 
570 	__SetPageHead(page);
571 	for (i = 1; i < nr_pages; i++)
572 		prep_compound_tail(page, i);
573 
574 	prep_compound_head(page, order);
575 }
576 
577 static inline void set_buddy_order(struct page *page, unsigned int order)
578 {
579 	set_page_private(page, order);
580 	__SetPageBuddy(page);
581 }
582 
583 #ifdef CONFIG_COMPACTION
584 static inline struct capture_control *task_capc(struct zone *zone)
585 {
586 	struct capture_control *capc = current->capture_control;
587 
588 	return unlikely(capc) &&
589 		!(current->flags & PF_KTHREAD) &&
590 		!capc->page &&
591 		capc->cc->zone == zone ? capc : NULL;
592 }
593 
594 static inline bool
595 compaction_capture(struct capture_control *capc, struct page *page,
596 		   int order, int migratetype)
597 {
598 	if (!capc || order != capc->cc->order)
599 		return false;
600 
601 	/* Do not accidentally pollute CMA or isolated regions*/
602 	if (is_migrate_cma(migratetype) ||
603 	    is_migrate_isolate(migratetype))
604 		return false;
605 
606 	/*
607 	 * Do not let lower order allocations pollute a movable pageblock
608 	 * unless compaction is also requesting movable pages.
609 	 * This might let an unmovable request use a reclaimable pageblock
610 	 * and vice-versa but no more than normal fallback logic which can
611 	 * have trouble finding a high-order free page.
612 	 */
613 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
614 	    capc->cc->migratetype != MIGRATE_MOVABLE)
615 		return false;
616 
617 	capc->page = page;
618 	return true;
619 }
620 
621 #else
622 static inline struct capture_control *task_capc(struct zone *zone)
623 {
624 	return NULL;
625 }
626 
627 static inline bool
628 compaction_capture(struct capture_control *capc, struct page *page,
629 		   int order, int migratetype)
630 {
631 	return false;
632 }
633 #endif /* CONFIG_COMPACTION */
634 
635 static inline void account_freepages(struct zone *zone, int nr_pages,
636 				     int migratetype)
637 {
638 	if (is_migrate_isolate(migratetype))
639 		return;
640 
641 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
642 
643 	if (is_migrate_cma(migratetype))
644 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
645 }
646 
647 /* Used for pages not on another list */
648 static inline void __add_to_free_list(struct page *page, struct zone *zone,
649 				      unsigned int order, int migratetype,
650 				      bool tail)
651 {
652 	struct free_area *area = &zone->free_area[order];
653 
654 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
655 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
656 		     get_pageblock_migratetype(page), migratetype, 1 << order);
657 
658 	if (tail)
659 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
660 	else
661 		list_add(&page->buddy_list, &area->free_list[migratetype]);
662 	area->nr_free++;
663 }
664 
665 /*
666  * Used for pages which are on another list. Move the pages to the tail
667  * of the list - so the moved pages won't immediately be considered for
668  * allocation again (e.g., optimization for memory onlining).
669  */
670 static inline void move_to_free_list(struct page *page, struct zone *zone,
671 				     unsigned int order, int old_mt, int new_mt)
672 {
673 	struct free_area *area = &zone->free_area[order];
674 
675 	/* Free page moving can fail, so it happens before the type update */
676 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
677 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
678 		     get_pageblock_migratetype(page), old_mt, 1 << order);
679 
680 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
681 
682 	account_freepages(zone, -(1 << order), old_mt);
683 	account_freepages(zone, 1 << order, new_mt);
684 }
685 
686 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
687 					     unsigned int order, int migratetype)
688 {
689         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
690 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
691 		     get_pageblock_migratetype(page), migratetype, 1 << order);
692 
693 	/* clear reported state and update reported page count */
694 	if (page_reported(page))
695 		__ClearPageReported(page);
696 
697 	list_del(&page->buddy_list);
698 	__ClearPageBuddy(page);
699 	set_page_private(page, 0);
700 	zone->free_area[order].nr_free--;
701 }
702 
703 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
704 					   unsigned int order, int migratetype)
705 {
706 	__del_page_from_free_list(page, zone, order, migratetype);
707 	account_freepages(zone, -(1 << order), migratetype);
708 }
709 
710 static inline struct page *get_page_from_free_area(struct free_area *area,
711 					    int migratetype)
712 {
713 	return list_first_entry_or_null(&area->free_list[migratetype],
714 					struct page, buddy_list);
715 }
716 
717 /*
718  * If this is less than the 2nd largest possible page, check if the buddy
719  * of the next-higher order is free. If it is, it's possible
720  * that pages are being freed that will coalesce soon. In case,
721  * that is happening, add the free page to the tail of the list
722  * so it's less likely to be used soon and more likely to be merged
723  * as a 2-level higher order page
724  */
725 static inline bool
726 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
727 		   struct page *page, unsigned int order)
728 {
729 	unsigned long higher_page_pfn;
730 	struct page *higher_page;
731 
732 	if (order >= MAX_PAGE_ORDER - 1)
733 		return false;
734 
735 	higher_page_pfn = buddy_pfn & pfn;
736 	higher_page = page + (higher_page_pfn - pfn);
737 
738 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
739 			NULL) != NULL;
740 }
741 
742 /*
743  * Freeing function for a buddy system allocator.
744  *
745  * The concept of a buddy system is to maintain direct-mapped table
746  * (containing bit values) for memory blocks of various "orders".
747  * The bottom level table contains the map for the smallest allocatable
748  * units of memory (here, pages), and each level above it describes
749  * pairs of units from the levels below, hence, "buddies".
750  * At a high level, all that happens here is marking the table entry
751  * at the bottom level available, and propagating the changes upward
752  * as necessary, plus some accounting needed to play nicely with other
753  * parts of the VM system.
754  * At each level, we keep a list of pages, which are heads of continuous
755  * free pages of length of (1 << order) and marked with PageBuddy.
756  * Page's order is recorded in page_private(page) field.
757  * So when we are allocating or freeing one, we can derive the state of the
758  * other.  That is, if we allocate a small block, and both were
759  * free, the remainder of the region must be split into blocks.
760  * If a block is freed, and its buddy is also free, then this
761  * triggers coalescing into a block of larger size.
762  *
763  * -- nyc
764  */
765 
766 static inline void __free_one_page(struct page *page,
767 		unsigned long pfn,
768 		struct zone *zone, unsigned int order,
769 		int migratetype, fpi_t fpi_flags)
770 {
771 	struct capture_control *capc = task_capc(zone);
772 	unsigned long buddy_pfn = 0;
773 	unsigned long combined_pfn;
774 	struct page *buddy;
775 	bool to_tail;
776 
777 	VM_BUG_ON(!zone_is_initialized(zone));
778 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
779 
780 	VM_BUG_ON(migratetype == -1);
781 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
782 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
783 
784 	account_freepages(zone, 1 << order, migratetype);
785 
786 	while (order < MAX_PAGE_ORDER) {
787 		int buddy_mt = migratetype;
788 
789 		if (compaction_capture(capc, page, order, migratetype)) {
790 			account_freepages(zone, -(1 << order), migratetype);
791 			return;
792 		}
793 
794 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
795 		if (!buddy)
796 			goto done_merging;
797 
798 		if (unlikely(order >= pageblock_order)) {
799 			/*
800 			 * We want to prevent merge between freepages on pageblock
801 			 * without fallbacks and normal pageblock. Without this,
802 			 * pageblock isolation could cause incorrect freepage or CMA
803 			 * accounting or HIGHATOMIC accounting.
804 			 */
805 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
806 
807 			if (migratetype != buddy_mt &&
808 			    (!migratetype_is_mergeable(migratetype) ||
809 			     !migratetype_is_mergeable(buddy_mt)))
810 				goto done_merging;
811 		}
812 
813 		/*
814 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
815 		 * merge with it and move up one order.
816 		 */
817 		if (page_is_guard(buddy))
818 			clear_page_guard(zone, buddy, order);
819 		else
820 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
821 
822 		if (unlikely(buddy_mt != migratetype)) {
823 			/*
824 			 * Match buddy type. This ensures that an
825 			 * expand() down the line puts the sub-blocks
826 			 * on the right freelists.
827 			 */
828 			set_pageblock_migratetype(buddy, migratetype);
829 		}
830 
831 		combined_pfn = buddy_pfn & pfn;
832 		page = page + (combined_pfn - pfn);
833 		pfn = combined_pfn;
834 		order++;
835 	}
836 
837 done_merging:
838 	set_buddy_order(page, order);
839 
840 	if (fpi_flags & FPI_TO_TAIL)
841 		to_tail = true;
842 	else if (is_shuffle_order(order))
843 		to_tail = shuffle_pick_tail();
844 	else
845 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
846 
847 	__add_to_free_list(page, zone, order, migratetype, to_tail);
848 
849 	/* Notify page reporting subsystem of freed page */
850 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
851 		page_reporting_notify_free(order);
852 }
853 
854 /*
855  * A bad page could be due to a number of fields. Instead of multiple branches,
856  * try and check multiple fields with one check. The caller must do a detailed
857  * check if necessary.
858  */
859 static inline bool page_expected_state(struct page *page,
860 					unsigned long check_flags)
861 {
862 	if (unlikely(atomic_read(&page->_mapcount) != -1))
863 		return false;
864 
865 	if (unlikely((unsigned long)page->mapping |
866 			page_ref_count(page) |
867 #ifdef CONFIG_MEMCG
868 			page->memcg_data |
869 #endif
870 #ifdef CONFIG_PAGE_POOL
871 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
872 #endif
873 			(page->flags & check_flags)))
874 		return false;
875 
876 	return true;
877 }
878 
879 static const char *page_bad_reason(struct page *page, unsigned long flags)
880 {
881 	const char *bad_reason = NULL;
882 
883 	if (unlikely(atomic_read(&page->_mapcount) != -1))
884 		bad_reason = "nonzero mapcount";
885 	if (unlikely(page->mapping != NULL))
886 		bad_reason = "non-NULL mapping";
887 	if (unlikely(page_ref_count(page) != 0))
888 		bad_reason = "nonzero _refcount";
889 	if (unlikely(page->flags & flags)) {
890 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
891 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
892 		else
893 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
894 	}
895 #ifdef CONFIG_MEMCG
896 	if (unlikely(page->memcg_data))
897 		bad_reason = "page still charged to cgroup";
898 #endif
899 #ifdef CONFIG_PAGE_POOL
900 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
901 		bad_reason = "page_pool leak";
902 #endif
903 	return bad_reason;
904 }
905 
906 static void free_page_is_bad_report(struct page *page)
907 {
908 	bad_page(page,
909 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
910 }
911 
912 static inline bool free_page_is_bad(struct page *page)
913 {
914 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
915 		return false;
916 
917 	/* Something has gone sideways, find it */
918 	free_page_is_bad_report(page);
919 	return true;
920 }
921 
922 static inline bool is_check_pages_enabled(void)
923 {
924 	return static_branch_unlikely(&check_pages_enabled);
925 }
926 
927 static int free_tail_page_prepare(struct page *head_page, struct page *page)
928 {
929 	struct folio *folio = (struct folio *)head_page;
930 	int ret = 1;
931 
932 	/*
933 	 * We rely page->lru.next never has bit 0 set, unless the page
934 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
935 	 */
936 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
937 
938 	if (!is_check_pages_enabled()) {
939 		ret = 0;
940 		goto out;
941 	}
942 	switch (page - head_page) {
943 	case 1:
944 		/* the first tail page: these may be in place of ->mapping */
945 		if (unlikely(folio_entire_mapcount(folio))) {
946 			bad_page(page, "nonzero entire_mapcount");
947 			goto out;
948 		}
949 		if (unlikely(folio_large_mapcount(folio))) {
950 			bad_page(page, "nonzero large_mapcount");
951 			goto out;
952 		}
953 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
954 			bad_page(page, "nonzero nr_pages_mapped");
955 			goto out;
956 		}
957 		if (unlikely(atomic_read(&folio->_pincount))) {
958 			bad_page(page, "nonzero pincount");
959 			goto out;
960 		}
961 		break;
962 	case 2:
963 		/* the second tail page: deferred_list overlaps ->mapping */
964 		if (unlikely(!list_empty(&folio->_deferred_list) &&
965 		    folio_test_partially_mapped(folio))) {
966 			bad_page(page, "partially mapped folio on deferred list");
967 			goto out;
968 		}
969 		break;
970 	default:
971 		if (page->mapping != TAIL_MAPPING) {
972 			bad_page(page, "corrupted mapping in tail page");
973 			goto out;
974 		}
975 		break;
976 	}
977 	if (unlikely(!PageTail(page))) {
978 		bad_page(page, "PageTail not set");
979 		goto out;
980 	}
981 	if (unlikely(compound_head(page) != head_page)) {
982 		bad_page(page, "compound_head not consistent");
983 		goto out;
984 	}
985 	ret = 0;
986 out:
987 	page->mapping = NULL;
988 	clear_compound_head(page);
989 	return ret;
990 }
991 
992 /*
993  * Skip KASAN memory poisoning when either:
994  *
995  * 1. For generic KASAN: deferred memory initialization has not yet completed.
996  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
997  *    using page tags instead (see below).
998  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
999  *    that error detection is disabled for accesses via the page address.
1000  *
1001  * Pages will have match-all tags in the following circumstances:
1002  *
1003  * 1. Pages are being initialized for the first time, including during deferred
1004  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1005  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1006  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1007  * 3. The allocation was excluded from being checked due to sampling,
1008  *    see the call to kasan_unpoison_pages.
1009  *
1010  * Poisoning pages during deferred memory init will greatly lengthen the
1011  * process and cause problem in large memory systems as the deferred pages
1012  * initialization is done with interrupt disabled.
1013  *
1014  * Assuming that there will be no reference to those newly initialized
1015  * pages before they are ever allocated, this should have no effect on
1016  * KASAN memory tracking as the poison will be properly inserted at page
1017  * allocation time. The only corner case is when pages are allocated by
1018  * on-demand allocation and then freed again before the deferred pages
1019  * initialization is done, but this is not likely to happen.
1020  */
1021 static inline bool should_skip_kasan_poison(struct page *page)
1022 {
1023 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1024 		return deferred_pages_enabled();
1025 
1026 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1027 }
1028 
1029 static void kernel_init_pages(struct page *page, int numpages)
1030 {
1031 	int i;
1032 
1033 	/* s390's use of memset() could override KASAN redzones. */
1034 	kasan_disable_current();
1035 	for (i = 0; i < numpages; i++)
1036 		clear_highpage_kasan_tagged(page + i);
1037 	kasan_enable_current();
1038 }
1039 
1040 __always_inline bool free_pages_prepare(struct page *page,
1041 			unsigned int order)
1042 {
1043 	int bad = 0;
1044 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1045 	bool init = want_init_on_free();
1046 	bool compound = PageCompound(page);
1047 
1048 	VM_BUG_ON_PAGE(PageTail(page), page);
1049 
1050 	trace_mm_page_free(page, order);
1051 	kmsan_free_page(page, order);
1052 
1053 	if (memcg_kmem_online() && PageMemcgKmem(page))
1054 		__memcg_kmem_uncharge_page(page, order);
1055 
1056 	if (unlikely(PageHWPoison(page)) && !order) {
1057 		/* Do not let hwpoison pages hit pcplists/buddy */
1058 		reset_page_owner(page, order);
1059 		page_table_check_free(page, order);
1060 		pgalloc_tag_sub(page, 1 << order);
1061 
1062 		/*
1063 		 * The page is isolated and accounted for.
1064 		 * Mark the codetag as empty to avoid accounting error
1065 		 * when the page is freed by unpoison_memory().
1066 		 */
1067 		clear_page_tag_ref(page);
1068 		return false;
1069 	}
1070 
1071 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1072 
1073 	/*
1074 	 * Check tail pages before head page information is cleared to
1075 	 * avoid checking PageCompound for order-0 pages.
1076 	 */
1077 	if (unlikely(order)) {
1078 		int i;
1079 
1080 		if (compound)
1081 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1082 		for (i = 1; i < (1 << order); i++) {
1083 			if (compound)
1084 				bad += free_tail_page_prepare(page, page + i);
1085 			if (is_check_pages_enabled()) {
1086 				if (free_page_is_bad(page + i)) {
1087 					bad++;
1088 					continue;
1089 				}
1090 			}
1091 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1092 		}
1093 	}
1094 	if (PageMappingFlags(page)) {
1095 		if (PageAnon(page))
1096 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1097 		page->mapping = NULL;
1098 	}
1099 	if (is_check_pages_enabled()) {
1100 		if (free_page_is_bad(page))
1101 			bad++;
1102 		if (bad)
1103 			return false;
1104 	}
1105 
1106 	page_cpupid_reset_last(page);
1107 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1108 	reset_page_owner(page, order);
1109 	page_table_check_free(page, order);
1110 	pgalloc_tag_sub(page, 1 << order);
1111 
1112 	if (!PageHighMem(page)) {
1113 		debug_check_no_locks_freed(page_address(page),
1114 					   PAGE_SIZE << order);
1115 		debug_check_no_obj_freed(page_address(page),
1116 					   PAGE_SIZE << order);
1117 	}
1118 
1119 	kernel_poison_pages(page, 1 << order);
1120 
1121 	/*
1122 	 * As memory initialization might be integrated into KASAN,
1123 	 * KASAN poisoning and memory initialization code must be
1124 	 * kept together to avoid discrepancies in behavior.
1125 	 *
1126 	 * With hardware tag-based KASAN, memory tags must be set before the
1127 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1128 	 */
1129 	if (!skip_kasan_poison) {
1130 		kasan_poison_pages(page, order, init);
1131 
1132 		/* Memory is already initialized if KASAN did it internally. */
1133 		if (kasan_has_integrated_init())
1134 			init = false;
1135 	}
1136 	if (init)
1137 		kernel_init_pages(page, 1 << order);
1138 
1139 	/*
1140 	 * arch_free_page() can make the page's contents inaccessible.  s390
1141 	 * does this.  So nothing which can access the page's contents should
1142 	 * happen after this.
1143 	 */
1144 	arch_free_page(page, order);
1145 
1146 	debug_pagealloc_unmap_pages(page, 1 << order);
1147 
1148 	return true;
1149 }
1150 
1151 /*
1152  * Frees a number of pages from the PCP lists
1153  * Assumes all pages on list are in same zone.
1154  * count is the number of pages to free.
1155  */
1156 static void free_pcppages_bulk(struct zone *zone, int count,
1157 					struct per_cpu_pages *pcp,
1158 					int pindex)
1159 {
1160 	unsigned long flags;
1161 	unsigned int order;
1162 	struct page *page;
1163 
1164 	/*
1165 	 * Ensure proper count is passed which otherwise would stuck in the
1166 	 * below while (list_empty(list)) loop.
1167 	 */
1168 	count = min(pcp->count, count);
1169 
1170 	/* Ensure requested pindex is drained first. */
1171 	pindex = pindex - 1;
1172 
1173 	spin_lock_irqsave(&zone->lock, flags);
1174 
1175 	while (count > 0) {
1176 		struct list_head *list;
1177 		int nr_pages;
1178 
1179 		/* Remove pages from lists in a round-robin fashion. */
1180 		do {
1181 			if (++pindex > NR_PCP_LISTS - 1)
1182 				pindex = 0;
1183 			list = &pcp->lists[pindex];
1184 		} while (list_empty(list));
1185 
1186 		order = pindex_to_order(pindex);
1187 		nr_pages = 1 << order;
1188 		do {
1189 			unsigned long pfn;
1190 			int mt;
1191 
1192 			page = list_last_entry(list, struct page, pcp_list);
1193 			pfn = page_to_pfn(page);
1194 			mt = get_pfnblock_migratetype(page, pfn);
1195 
1196 			/* must delete to avoid corrupting pcp list */
1197 			list_del(&page->pcp_list);
1198 			count -= nr_pages;
1199 			pcp->count -= nr_pages;
1200 
1201 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1202 			trace_mm_page_pcpu_drain(page, order, mt);
1203 		} while (count > 0 && !list_empty(list));
1204 	}
1205 
1206 	spin_unlock_irqrestore(&zone->lock, flags);
1207 }
1208 
1209 /* Split a multi-block free page into its individual pageblocks. */
1210 static void split_large_buddy(struct zone *zone, struct page *page,
1211 			      unsigned long pfn, int order, fpi_t fpi)
1212 {
1213 	unsigned long end = pfn + (1 << order);
1214 
1215 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1216 	/* Caller removed page from freelist, buddy info cleared! */
1217 	VM_WARN_ON_ONCE(PageBuddy(page));
1218 
1219 	if (order > pageblock_order)
1220 		order = pageblock_order;
1221 
1222 	while (pfn != end) {
1223 		int mt = get_pfnblock_migratetype(page, pfn);
1224 
1225 		__free_one_page(page, pfn, zone, order, mt, fpi);
1226 		pfn += 1 << order;
1227 		page = pfn_to_page(pfn);
1228 	}
1229 }
1230 
1231 static void free_one_page(struct zone *zone, struct page *page,
1232 			  unsigned long pfn, unsigned int order,
1233 			  fpi_t fpi_flags)
1234 {
1235 	unsigned long flags;
1236 
1237 	spin_lock_irqsave(&zone->lock, flags);
1238 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1239 	spin_unlock_irqrestore(&zone->lock, flags);
1240 
1241 	__count_vm_events(PGFREE, 1 << order);
1242 }
1243 
1244 static void __free_pages_ok(struct page *page, unsigned int order,
1245 			    fpi_t fpi_flags)
1246 {
1247 	unsigned long pfn = page_to_pfn(page);
1248 	struct zone *zone = page_zone(page);
1249 
1250 	if (free_pages_prepare(page, order))
1251 		free_one_page(zone, page, pfn, order, fpi_flags);
1252 }
1253 
1254 void __meminit __free_pages_core(struct page *page, unsigned int order,
1255 		enum meminit_context context)
1256 {
1257 	unsigned int nr_pages = 1 << order;
1258 	struct page *p = page;
1259 	unsigned int loop;
1260 
1261 	/*
1262 	 * When initializing the memmap, __init_single_page() sets the refcount
1263 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1264 	 * refcount of all involved pages to 0.
1265 	 *
1266 	 * Note that hotplugged memory pages are initialized to PageOffline().
1267 	 * Pages freed from memblock might be marked as reserved.
1268 	 */
1269 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1270 	    unlikely(context == MEMINIT_HOTPLUG)) {
1271 		for (loop = 0; loop < nr_pages; loop++, p++) {
1272 			VM_WARN_ON_ONCE(PageReserved(p));
1273 			__ClearPageOffline(p);
1274 			set_page_count(p, 0);
1275 		}
1276 
1277 		/*
1278 		 * Freeing the page with debug_pagealloc enabled will try to
1279 		 * unmap it; some archs don't like double-unmappings, so
1280 		 * map it first.
1281 		 */
1282 		debug_pagealloc_map_pages(page, nr_pages);
1283 		adjust_managed_page_count(page, nr_pages);
1284 	} else {
1285 		for (loop = 0; loop < nr_pages; loop++, p++) {
1286 			__ClearPageReserved(p);
1287 			set_page_count(p, 0);
1288 		}
1289 
1290 		/* memblock adjusts totalram_pages() manually. */
1291 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1292 	}
1293 
1294 	if (page_contains_unaccepted(page, order)) {
1295 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1296 			return;
1297 
1298 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1299 	}
1300 
1301 	/*
1302 	 * Bypass PCP and place fresh pages right to the tail, primarily
1303 	 * relevant for memory onlining.
1304 	 */
1305 	__free_pages_ok(page, order, FPI_TO_TAIL);
1306 }
1307 
1308 /*
1309  * Check that the whole (or subset of) a pageblock given by the interval of
1310  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1311  * with the migration of free compaction scanner.
1312  *
1313  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1314  *
1315  * It's possible on some configurations to have a setup like node0 node1 node0
1316  * i.e. it's possible that all pages within a zones range of pages do not
1317  * belong to a single zone. We assume that a border between node0 and node1
1318  * can occur within a single pageblock, but not a node0 node1 node0
1319  * interleaving within a single pageblock. It is therefore sufficient to check
1320  * the first and last page of a pageblock and avoid checking each individual
1321  * page in a pageblock.
1322  *
1323  * Note: the function may return non-NULL struct page even for a page block
1324  * which contains a memory hole (i.e. there is no physical memory for a subset
1325  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1326  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1327  * even though the start pfn is online and valid. This should be safe most of
1328  * the time because struct pages are still initialized via init_unavailable_range()
1329  * and pfn walkers shouldn't touch any physical memory range for which they do
1330  * not recognize any specific metadata in struct pages.
1331  */
1332 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1333 				     unsigned long end_pfn, struct zone *zone)
1334 {
1335 	struct page *start_page;
1336 	struct page *end_page;
1337 
1338 	/* end_pfn is one past the range we are checking */
1339 	end_pfn--;
1340 
1341 	if (!pfn_valid(end_pfn))
1342 		return NULL;
1343 
1344 	start_page = pfn_to_online_page(start_pfn);
1345 	if (!start_page)
1346 		return NULL;
1347 
1348 	if (page_zone(start_page) != zone)
1349 		return NULL;
1350 
1351 	end_page = pfn_to_page(end_pfn);
1352 
1353 	/* This gives a shorter code than deriving page_zone(end_page) */
1354 	if (page_zone_id(start_page) != page_zone_id(end_page))
1355 		return NULL;
1356 
1357 	return start_page;
1358 }
1359 
1360 /*
1361  * The order of subdivision here is critical for the IO subsystem.
1362  * Please do not alter this order without good reasons and regression
1363  * testing. Specifically, as large blocks of memory are subdivided,
1364  * the order in which smaller blocks are delivered depends on the order
1365  * they're subdivided in this function. This is the primary factor
1366  * influencing the order in which pages are delivered to the IO
1367  * subsystem according to empirical testing, and this is also justified
1368  * by considering the behavior of a buddy system containing a single
1369  * large block of memory acted on by a series of small allocations.
1370  * This behavior is a critical factor in sglist merging's success.
1371  *
1372  * -- nyc
1373  */
1374 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1375 				  int high, int migratetype)
1376 {
1377 	unsigned int size = 1 << high;
1378 	unsigned int nr_added = 0;
1379 
1380 	while (high > low) {
1381 		high--;
1382 		size >>= 1;
1383 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1384 
1385 		/*
1386 		 * Mark as guard pages (or page), that will allow to
1387 		 * merge back to allocator when buddy will be freed.
1388 		 * Corresponding page table entries will not be touched,
1389 		 * pages will stay not present in virtual address space
1390 		 */
1391 		if (set_page_guard(zone, &page[size], high))
1392 			continue;
1393 
1394 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1395 		set_buddy_order(&page[size], high);
1396 		nr_added += size;
1397 	}
1398 
1399 	return nr_added;
1400 }
1401 
1402 static __always_inline void page_del_and_expand(struct zone *zone,
1403 						struct page *page, int low,
1404 						int high, int migratetype)
1405 {
1406 	int nr_pages = 1 << high;
1407 
1408 	__del_page_from_free_list(page, zone, high, migratetype);
1409 	nr_pages -= expand(zone, page, low, high, migratetype);
1410 	account_freepages(zone, -nr_pages, migratetype);
1411 }
1412 
1413 static void check_new_page_bad(struct page *page)
1414 {
1415 	if (unlikely(page->flags & __PG_HWPOISON)) {
1416 		/* Don't complain about hwpoisoned pages */
1417 		if (PageBuddy(page))
1418 			__ClearPageBuddy(page);
1419 		return;
1420 	}
1421 
1422 	bad_page(page,
1423 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1424 }
1425 
1426 /*
1427  * This page is about to be returned from the page allocator
1428  */
1429 static bool check_new_page(struct page *page)
1430 {
1431 	if (likely(page_expected_state(page,
1432 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1433 		return false;
1434 
1435 	check_new_page_bad(page);
1436 	return true;
1437 }
1438 
1439 static inline bool check_new_pages(struct page *page, unsigned int order)
1440 {
1441 	if (is_check_pages_enabled()) {
1442 		for (int i = 0; i < (1 << order); i++) {
1443 			struct page *p = page + i;
1444 
1445 			if (check_new_page(p))
1446 				return true;
1447 		}
1448 	}
1449 
1450 	return false;
1451 }
1452 
1453 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1454 {
1455 	/* Don't skip if a software KASAN mode is enabled. */
1456 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1457 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1458 		return false;
1459 
1460 	/* Skip, if hardware tag-based KASAN is not enabled. */
1461 	if (!kasan_hw_tags_enabled())
1462 		return true;
1463 
1464 	/*
1465 	 * With hardware tag-based KASAN enabled, skip if this has been
1466 	 * requested via __GFP_SKIP_KASAN.
1467 	 */
1468 	return flags & __GFP_SKIP_KASAN;
1469 }
1470 
1471 static inline bool should_skip_init(gfp_t flags)
1472 {
1473 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1474 	if (!kasan_hw_tags_enabled())
1475 		return false;
1476 
1477 	/* For hardware tag-based KASAN, skip if requested. */
1478 	return (flags & __GFP_SKIP_ZERO);
1479 }
1480 
1481 inline void post_alloc_hook(struct page *page, unsigned int order,
1482 				gfp_t gfp_flags)
1483 {
1484 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1485 			!should_skip_init(gfp_flags);
1486 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1487 	int i;
1488 
1489 	set_page_private(page, 0);
1490 	set_page_refcounted(page);
1491 
1492 	arch_alloc_page(page, order);
1493 	debug_pagealloc_map_pages(page, 1 << order);
1494 
1495 	/*
1496 	 * Page unpoisoning must happen before memory initialization.
1497 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1498 	 * allocations and the page unpoisoning code will complain.
1499 	 */
1500 	kernel_unpoison_pages(page, 1 << order);
1501 
1502 	/*
1503 	 * As memory initialization might be integrated into KASAN,
1504 	 * KASAN unpoisoning and memory initializion code must be
1505 	 * kept together to avoid discrepancies in behavior.
1506 	 */
1507 
1508 	/*
1509 	 * If memory tags should be zeroed
1510 	 * (which happens only when memory should be initialized as well).
1511 	 */
1512 	if (zero_tags) {
1513 		/* Initialize both memory and memory tags. */
1514 		for (i = 0; i != 1 << order; ++i)
1515 			tag_clear_highpage(page + i);
1516 
1517 		/* Take note that memory was initialized by the loop above. */
1518 		init = false;
1519 	}
1520 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1521 	    kasan_unpoison_pages(page, order, init)) {
1522 		/* Take note that memory was initialized by KASAN. */
1523 		if (kasan_has_integrated_init())
1524 			init = false;
1525 	} else {
1526 		/*
1527 		 * If memory tags have not been set by KASAN, reset the page
1528 		 * tags to ensure page_address() dereferencing does not fault.
1529 		 */
1530 		for (i = 0; i != 1 << order; ++i)
1531 			page_kasan_tag_reset(page + i);
1532 	}
1533 	/* If memory is still not initialized, initialize it now. */
1534 	if (init)
1535 		kernel_init_pages(page, 1 << order);
1536 
1537 	set_page_owner(page, order, gfp_flags);
1538 	page_table_check_alloc(page, order);
1539 	pgalloc_tag_add(page, current, 1 << order);
1540 }
1541 
1542 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1543 							unsigned int alloc_flags)
1544 {
1545 	post_alloc_hook(page, order, gfp_flags);
1546 
1547 	if (order && (gfp_flags & __GFP_COMP))
1548 		prep_compound_page(page, order);
1549 
1550 	/*
1551 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1552 	 * allocate the page. The expectation is that the caller is taking
1553 	 * steps that will free more memory. The caller should avoid the page
1554 	 * being used for !PFMEMALLOC purposes.
1555 	 */
1556 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1557 		set_page_pfmemalloc(page);
1558 	else
1559 		clear_page_pfmemalloc(page);
1560 }
1561 
1562 /*
1563  * Go through the free lists for the given migratetype and remove
1564  * the smallest available page from the freelists
1565  */
1566 static __always_inline
1567 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1568 						int migratetype)
1569 {
1570 	unsigned int current_order;
1571 	struct free_area *area;
1572 	struct page *page;
1573 
1574 	/* Find a page of the appropriate size in the preferred list */
1575 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1576 		area = &(zone->free_area[current_order]);
1577 		page = get_page_from_free_area(area, migratetype);
1578 		if (!page)
1579 			continue;
1580 
1581 		page_del_and_expand(zone, page, order, current_order,
1582 				    migratetype);
1583 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1584 				pcp_allowed_order(order) &&
1585 				migratetype < MIGRATE_PCPTYPES);
1586 		return page;
1587 	}
1588 
1589 	return NULL;
1590 }
1591 
1592 
1593 /*
1594  * This array describes the order lists are fallen back to when
1595  * the free lists for the desirable migrate type are depleted
1596  *
1597  * The other migratetypes do not have fallbacks.
1598  */
1599 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1600 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1601 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1602 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1603 };
1604 
1605 #ifdef CONFIG_CMA
1606 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1607 					unsigned int order)
1608 {
1609 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1610 }
1611 #else
1612 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1613 					unsigned int order) { return NULL; }
1614 #endif
1615 
1616 /*
1617  * Change the type of a block and move all its free pages to that
1618  * type's freelist.
1619  */
1620 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1621 				  int old_mt, int new_mt)
1622 {
1623 	struct page *page;
1624 	unsigned long pfn, end_pfn;
1625 	unsigned int order;
1626 	int pages_moved = 0;
1627 
1628 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1629 	end_pfn = pageblock_end_pfn(start_pfn);
1630 
1631 	for (pfn = start_pfn; pfn < end_pfn;) {
1632 		page = pfn_to_page(pfn);
1633 		if (!PageBuddy(page)) {
1634 			pfn++;
1635 			continue;
1636 		}
1637 
1638 		/* Make sure we are not inadvertently changing nodes */
1639 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1640 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1641 
1642 		order = buddy_order(page);
1643 
1644 		move_to_free_list(page, zone, order, old_mt, new_mt);
1645 
1646 		pfn += 1 << order;
1647 		pages_moved += 1 << order;
1648 	}
1649 
1650 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1651 
1652 	return pages_moved;
1653 }
1654 
1655 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1656 				      unsigned long *start_pfn,
1657 				      int *num_free, int *num_movable)
1658 {
1659 	unsigned long pfn, start, end;
1660 
1661 	pfn = page_to_pfn(page);
1662 	start = pageblock_start_pfn(pfn);
1663 	end = pageblock_end_pfn(pfn);
1664 
1665 	/*
1666 	 * The caller only has the lock for @zone, don't touch ranges
1667 	 * that straddle into other zones. While we could move part of
1668 	 * the range that's inside the zone, this call is usually
1669 	 * accompanied by other operations such as migratetype updates
1670 	 * which also should be locked.
1671 	 */
1672 	if (!zone_spans_pfn(zone, start))
1673 		return false;
1674 	if (!zone_spans_pfn(zone, end - 1))
1675 		return false;
1676 
1677 	*start_pfn = start;
1678 
1679 	if (num_free) {
1680 		*num_free = 0;
1681 		*num_movable = 0;
1682 		for (pfn = start; pfn < end;) {
1683 			page = pfn_to_page(pfn);
1684 			if (PageBuddy(page)) {
1685 				int nr = 1 << buddy_order(page);
1686 
1687 				*num_free += nr;
1688 				pfn += nr;
1689 				continue;
1690 			}
1691 			/*
1692 			 * We assume that pages that could be isolated for
1693 			 * migration are movable. But we don't actually try
1694 			 * isolating, as that would be expensive.
1695 			 */
1696 			if (PageLRU(page) || __PageMovable(page))
1697 				(*num_movable)++;
1698 			pfn++;
1699 		}
1700 	}
1701 
1702 	return true;
1703 }
1704 
1705 static int move_freepages_block(struct zone *zone, struct page *page,
1706 				int old_mt, int new_mt)
1707 {
1708 	unsigned long start_pfn;
1709 
1710 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1711 		return -1;
1712 
1713 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1714 }
1715 
1716 #ifdef CONFIG_MEMORY_ISOLATION
1717 /* Look for a buddy that straddles start_pfn */
1718 static unsigned long find_large_buddy(unsigned long start_pfn)
1719 {
1720 	int order = 0;
1721 	struct page *page;
1722 	unsigned long pfn = start_pfn;
1723 
1724 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1725 		/* Nothing found */
1726 		if (++order > MAX_PAGE_ORDER)
1727 			return start_pfn;
1728 		pfn &= ~0UL << order;
1729 	}
1730 
1731 	/*
1732 	 * Found a preceding buddy, but does it straddle?
1733 	 */
1734 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1735 		return pfn;
1736 
1737 	/* Nothing found */
1738 	return start_pfn;
1739 }
1740 
1741 /**
1742  * move_freepages_block_isolate - move free pages in block for page isolation
1743  * @zone: the zone
1744  * @page: the pageblock page
1745  * @migratetype: migratetype to set on the pageblock
1746  *
1747  * This is similar to move_freepages_block(), but handles the special
1748  * case encountered in page isolation, where the block of interest
1749  * might be part of a larger buddy spanning multiple pageblocks.
1750  *
1751  * Unlike the regular page allocator path, which moves pages while
1752  * stealing buddies off the freelist, page isolation is interested in
1753  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1754  *
1755  * This function handles that. Straddling buddies are split into
1756  * individual pageblocks. Only the block of interest is moved.
1757  *
1758  * Returns %true if pages could be moved, %false otherwise.
1759  */
1760 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1761 				  int migratetype)
1762 {
1763 	unsigned long start_pfn, pfn;
1764 
1765 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1766 		return false;
1767 
1768 	/* No splits needed if buddies can't span multiple blocks */
1769 	if (pageblock_order == MAX_PAGE_ORDER)
1770 		goto move;
1771 
1772 	/* We're a tail block in a larger buddy */
1773 	pfn = find_large_buddy(start_pfn);
1774 	if (pfn != start_pfn) {
1775 		struct page *buddy = pfn_to_page(pfn);
1776 		int order = buddy_order(buddy);
1777 
1778 		del_page_from_free_list(buddy, zone, order,
1779 					get_pfnblock_migratetype(buddy, pfn));
1780 		set_pageblock_migratetype(page, migratetype);
1781 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1782 		return true;
1783 	}
1784 
1785 	/* We're the starting block of a larger buddy */
1786 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1787 		int order = buddy_order(page);
1788 
1789 		del_page_from_free_list(page, zone, order,
1790 					get_pfnblock_migratetype(page, pfn));
1791 		set_pageblock_migratetype(page, migratetype);
1792 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1793 		return true;
1794 	}
1795 move:
1796 	__move_freepages_block(zone, start_pfn,
1797 			       get_pfnblock_migratetype(page, start_pfn),
1798 			       migratetype);
1799 	return true;
1800 }
1801 #endif /* CONFIG_MEMORY_ISOLATION */
1802 
1803 static void change_pageblock_range(struct page *pageblock_page,
1804 					int start_order, int migratetype)
1805 {
1806 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1807 
1808 	while (nr_pageblocks--) {
1809 		set_pageblock_migratetype(pageblock_page, migratetype);
1810 		pageblock_page += pageblock_nr_pages;
1811 	}
1812 }
1813 
1814 /*
1815  * When we are falling back to another migratetype during allocation, try to
1816  * steal extra free pages from the same pageblocks to satisfy further
1817  * allocations, instead of polluting multiple pageblocks.
1818  *
1819  * If we are stealing a relatively large buddy page, it is likely there will
1820  * be more free pages in the pageblock, so try to steal them all. For
1821  * reclaimable and unmovable allocations, we steal regardless of page size,
1822  * as fragmentation caused by those allocations polluting movable pageblocks
1823  * is worse than movable allocations stealing from unmovable and reclaimable
1824  * pageblocks.
1825  */
1826 static bool can_steal_fallback(unsigned int order, int start_mt)
1827 {
1828 	/*
1829 	 * Leaving this order check is intended, although there is
1830 	 * relaxed order check in next check. The reason is that
1831 	 * we can actually steal whole pageblock if this condition met,
1832 	 * but, below check doesn't guarantee it and that is just heuristic
1833 	 * so could be changed anytime.
1834 	 */
1835 	if (order >= pageblock_order)
1836 		return true;
1837 
1838 	if (order >= pageblock_order / 2 ||
1839 		start_mt == MIGRATE_RECLAIMABLE ||
1840 		start_mt == MIGRATE_UNMOVABLE ||
1841 		page_group_by_mobility_disabled)
1842 		return true;
1843 
1844 	return false;
1845 }
1846 
1847 static inline bool boost_watermark(struct zone *zone)
1848 {
1849 	unsigned long max_boost;
1850 
1851 	if (!watermark_boost_factor)
1852 		return false;
1853 	/*
1854 	 * Don't bother in zones that are unlikely to produce results.
1855 	 * On small machines, including kdump capture kernels running
1856 	 * in a small area, boosting the watermark can cause an out of
1857 	 * memory situation immediately.
1858 	 */
1859 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1860 		return false;
1861 
1862 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1863 			watermark_boost_factor, 10000);
1864 
1865 	/*
1866 	 * high watermark may be uninitialised if fragmentation occurs
1867 	 * very early in boot so do not boost. We do not fall
1868 	 * through and boost by pageblock_nr_pages as failing
1869 	 * allocations that early means that reclaim is not going
1870 	 * to help and it may even be impossible to reclaim the
1871 	 * boosted watermark resulting in a hang.
1872 	 */
1873 	if (!max_boost)
1874 		return false;
1875 
1876 	max_boost = max(pageblock_nr_pages, max_boost);
1877 
1878 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1879 		max_boost);
1880 
1881 	return true;
1882 }
1883 
1884 /*
1885  * This function implements actual steal behaviour. If order is large enough, we
1886  * can claim the whole pageblock for the requested migratetype. If not, we check
1887  * the pageblock for constituent pages; if at least half of the pages are free
1888  * or compatible, we can still claim the whole block, so pages freed in the
1889  * future will be put on the correct free list. Otherwise, we isolate exactly
1890  * the order we need from the fallback block and leave its migratetype alone.
1891  */
1892 static struct page *
1893 steal_suitable_fallback(struct zone *zone, struct page *page,
1894 			int current_order, int order, int start_type,
1895 			unsigned int alloc_flags, bool whole_block)
1896 {
1897 	int free_pages, movable_pages, alike_pages;
1898 	unsigned long start_pfn;
1899 	int block_type;
1900 
1901 	block_type = get_pageblock_migratetype(page);
1902 
1903 	/*
1904 	 * This can happen due to races and we want to prevent broken
1905 	 * highatomic accounting.
1906 	 */
1907 	if (is_migrate_highatomic(block_type))
1908 		goto single_page;
1909 
1910 	/* Take ownership for orders >= pageblock_order */
1911 	if (current_order >= pageblock_order) {
1912 		unsigned int nr_added;
1913 
1914 		del_page_from_free_list(page, zone, current_order, block_type);
1915 		change_pageblock_range(page, current_order, start_type);
1916 		nr_added = expand(zone, page, order, current_order, start_type);
1917 		account_freepages(zone, nr_added, start_type);
1918 		return page;
1919 	}
1920 
1921 	/*
1922 	 * Boost watermarks to increase reclaim pressure to reduce the
1923 	 * likelihood of future fallbacks. Wake kswapd now as the node
1924 	 * may be balanced overall and kswapd will not wake naturally.
1925 	 */
1926 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1927 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1928 
1929 	/* We are not allowed to try stealing from the whole block */
1930 	if (!whole_block)
1931 		goto single_page;
1932 
1933 	/* moving whole block can fail due to zone boundary conditions */
1934 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1935 				       &movable_pages))
1936 		goto single_page;
1937 
1938 	/*
1939 	 * Determine how many pages are compatible with our allocation.
1940 	 * For movable allocation, it's the number of movable pages which
1941 	 * we just obtained. For other types it's a bit more tricky.
1942 	 */
1943 	if (start_type == MIGRATE_MOVABLE) {
1944 		alike_pages = movable_pages;
1945 	} else {
1946 		/*
1947 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1948 		 * to MOVABLE pageblock, consider all non-movable pages as
1949 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1950 		 * vice versa, be conservative since we can't distinguish the
1951 		 * exact migratetype of non-movable pages.
1952 		 */
1953 		if (block_type == MIGRATE_MOVABLE)
1954 			alike_pages = pageblock_nr_pages
1955 						- (free_pages + movable_pages);
1956 		else
1957 			alike_pages = 0;
1958 	}
1959 	/*
1960 	 * If a sufficient number of pages in the block are either free or of
1961 	 * compatible migratability as our allocation, claim the whole block.
1962 	 */
1963 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1964 			page_group_by_mobility_disabled) {
1965 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1966 		return __rmqueue_smallest(zone, order, start_type);
1967 	}
1968 
1969 single_page:
1970 	page_del_and_expand(zone, page, order, current_order, block_type);
1971 	return page;
1972 }
1973 
1974 /*
1975  * Check whether there is a suitable fallback freepage with requested order.
1976  * If only_stealable is true, this function returns fallback_mt only if
1977  * we can steal other freepages all together. This would help to reduce
1978  * fragmentation due to mixed migratetype pages in one pageblock.
1979  */
1980 int find_suitable_fallback(struct free_area *area, unsigned int order,
1981 			int migratetype, bool only_stealable, bool *can_steal)
1982 {
1983 	int i;
1984 	int fallback_mt;
1985 
1986 	if (area->nr_free == 0)
1987 		return -1;
1988 
1989 	*can_steal = false;
1990 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1991 		fallback_mt = fallbacks[migratetype][i];
1992 		if (free_area_empty(area, fallback_mt))
1993 			continue;
1994 
1995 		if (can_steal_fallback(order, migratetype))
1996 			*can_steal = true;
1997 
1998 		if (!only_stealable)
1999 			return fallback_mt;
2000 
2001 		if (*can_steal)
2002 			return fallback_mt;
2003 	}
2004 
2005 	return -1;
2006 }
2007 
2008 /*
2009  * Reserve the pageblock(s) surrounding an allocation request for
2010  * exclusive use of high-order atomic allocations if there are no
2011  * empty page blocks that contain a page with a suitable order
2012  */
2013 static void reserve_highatomic_pageblock(struct page *page, int order,
2014 					 struct zone *zone)
2015 {
2016 	int mt;
2017 	unsigned long max_managed, flags;
2018 
2019 	/*
2020 	 * The number reserved as: minimum is 1 pageblock, maximum is
2021 	 * roughly 1% of a zone. But if 1% of a zone falls below a
2022 	 * pageblock size, then don't reserve any pageblocks.
2023 	 * Check is race-prone but harmless.
2024 	 */
2025 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2026 		return;
2027 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2028 	if (zone->nr_reserved_highatomic >= max_managed)
2029 		return;
2030 
2031 	spin_lock_irqsave(&zone->lock, flags);
2032 
2033 	/* Recheck the nr_reserved_highatomic limit under the lock */
2034 	if (zone->nr_reserved_highatomic >= max_managed)
2035 		goto out_unlock;
2036 
2037 	/* Yoink! */
2038 	mt = get_pageblock_migratetype(page);
2039 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2040 	if (!migratetype_is_mergeable(mt))
2041 		goto out_unlock;
2042 
2043 	if (order < pageblock_order) {
2044 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2045 			goto out_unlock;
2046 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2047 	} else {
2048 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2049 		zone->nr_reserved_highatomic += 1 << order;
2050 	}
2051 
2052 out_unlock:
2053 	spin_unlock_irqrestore(&zone->lock, flags);
2054 }
2055 
2056 /*
2057  * Used when an allocation is about to fail under memory pressure. This
2058  * potentially hurts the reliability of high-order allocations when under
2059  * intense memory pressure but failed atomic allocations should be easier
2060  * to recover from than an OOM.
2061  *
2062  * If @force is true, try to unreserve pageblocks even though highatomic
2063  * pageblock is exhausted.
2064  */
2065 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 						bool force)
2067 {
2068 	struct zonelist *zonelist = ac->zonelist;
2069 	unsigned long flags;
2070 	struct zoneref *z;
2071 	struct zone *zone;
2072 	struct page *page;
2073 	int order;
2074 	int ret;
2075 
2076 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2077 								ac->nodemask) {
2078 		/*
2079 		 * Preserve at least one pageblock unless memory pressure
2080 		 * is really high.
2081 		 */
2082 		if (!force && zone->nr_reserved_highatomic <=
2083 					pageblock_nr_pages)
2084 			continue;
2085 
2086 		spin_lock_irqsave(&zone->lock, flags);
2087 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2088 			struct free_area *area = &(zone->free_area[order]);
2089 			int mt;
2090 
2091 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2092 			if (!page)
2093 				continue;
2094 
2095 			mt = get_pageblock_migratetype(page);
2096 			/*
2097 			 * In page freeing path, migratetype change is racy so
2098 			 * we can counter several free pages in a pageblock
2099 			 * in this loop although we changed the pageblock type
2100 			 * from highatomic to ac->migratetype. So we should
2101 			 * adjust the count once.
2102 			 */
2103 			if (is_migrate_highatomic(mt)) {
2104 				unsigned long size;
2105 				/*
2106 				 * It should never happen but changes to
2107 				 * locking could inadvertently allow a per-cpu
2108 				 * drain to add pages to MIGRATE_HIGHATOMIC
2109 				 * while unreserving so be safe and watch for
2110 				 * underflows.
2111 				 */
2112 				size = max(pageblock_nr_pages, 1UL << order);
2113 				size = min(size, zone->nr_reserved_highatomic);
2114 				zone->nr_reserved_highatomic -= size;
2115 			}
2116 
2117 			/*
2118 			 * Convert to ac->migratetype and avoid the normal
2119 			 * pageblock stealing heuristics. Minimally, the caller
2120 			 * is doing the work and needs the pages. More
2121 			 * importantly, if the block was always converted to
2122 			 * MIGRATE_UNMOVABLE or another type then the number
2123 			 * of pageblocks that cannot be completely freed
2124 			 * may increase.
2125 			 */
2126 			if (order < pageblock_order)
2127 				ret = move_freepages_block(zone, page, mt,
2128 							   ac->migratetype);
2129 			else {
2130 				move_to_free_list(page, zone, order, mt,
2131 						  ac->migratetype);
2132 				change_pageblock_range(page, order,
2133 						       ac->migratetype);
2134 				ret = 1;
2135 			}
2136 			/*
2137 			 * Reserving the block(s) already succeeded,
2138 			 * so this should not fail on zone boundaries.
2139 			 */
2140 			WARN_ON_ONCE(ret == -1);
2141 			if (ret > 0) {
2142 				spin_unlock_irqrestore(&zone->lock, flags);
2143 				return ret;
2144 			}
2145 		}
2146 		spin_unlock_irqrestore(&zone->lock, flags);
2147 	}
2148 
2149 	return false;
2150 }
2151 
2152 /*
2153  * Try finding a free buddy page on the fallback list and put it on the free
2154  * list of requested migratetype, possibly along with other pages from the same
2155  * block, depending on fragmentation avoidance heuristics. Returns true if
2156  * fallback was found so that __rmqueue_smallest() can grab it.
2157  *
2158  * The use of signed ints for order and current_order is a deliberate
2159  * deviation from the rest of this file, to make the for loop
2160  * condition simpler.
2161  */
2162 static __always_inline struct page *
2163 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2164 						unsigned int alloc_flags)
2165 {
2166 	struct free_area *area;
2167 	int current_order;
2168 	int min_order = order;
2169 	struct page *page;
2170 	int fallback_mt;
2171 	bool can_steal;
2172 
2173 	/*
2174 	 * Do not steal pages from freelists belonging to other pageblocks
2175 	 * i.e. orders < pageblock_order. If there are no local zones free,
2176 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2177 	 */
2178 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2179 		min_order = pageblock_order;
2180 
2181 	/*
2182 	 * Find the largest available free page in the other list. This roughly
2183 	 * approximates finding the pageblock with the most free pages, which
2184 	 * would be too costly to do exactly.
2185 	 */
2186 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2187 				--current_order) {
2188 		area = &(zone->free_area[current_order]);
2189 		fallback_mt = find_suitable_fallback(area, current_order,
2190 				start_migratetype, false, &can_steal);
2191 		if (fallback_mt == -1)
2192 			continue;
2193 
2194 		/*
2195 		 * We cannot steal all free pages from the pageblock and the
2196 		 * requested migratetype is movable. In that case it's better to
2197 		 * steal and split the smallest available page instead of the
2198 		 * largest available page, because even if the next movable
2199 		 * allocation falls back into a different pageblock than this
2200 		 * one, it won't cause permanent fragmentation.
2201 		 */
2202 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2203 					&& current_order > order)
2204 			goto find_smallest;
2205 
2206 		goto do_steal;
2207 	}
2208 
2209 	return NULL;
2210 
2211 find_smallest:
2212 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2213 		area = &(zone->free_area[current_order]);
2214 		fallback_mt = find_suitable_fallback(area, current_order,
2215 				start_migratetype, false, &can_steal);
2216 		if (fallback_mt != -1)
2217 			break;
2218 	}
2219 
2220 	/*
2221 	 * This should not happen - we already found a suitable fallback
2222 	 * when looking for the largest page.
2223 	 */
2224 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2225 
2226 do_steal:
2227 	page = get_page_from_free_area(area, fallback_mt);
2228 
2229 	/* take off list, maybe claim block, expand remainder */
2230 	page = steal_suitable_fallback(zone, page, current_order, order,
2231 				       start_migratetype, alloc_flags, can_steal);
2232 
2233 	trace_mm_page_alloc_extfrag(page, order, current_order,
2234 		start_migratetype, fallback_mt);
2235 
2236 	return page;
2237 }
2238 
2239 /*
2240  * Do the hard work of removing an element from the buddy allocator.
2241  * Call me with the zone->lock already held.
2242  */
2243 static __always_inline struct page *
2244 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2245 						unsigned int alloc_flags)
2246 {
2247 	struct page *page;
2248 
2249 	if (IS_ENABLED(CONFIG_CMA)) {
2250 		/*
2251 		 * Balance movable allocations between regular and CMA areas by
2252 		 * allocating from CMA when over half of the zone's free memory
2253 		 * is in the CMA area.
2254 		 */
2255 		if (alloc_flags & ALLOC_CMA &&
2256 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2257 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2258 			page = __rmqueue_cma_fallback(zone, order);
2259 			if (page)
2260 				return page;
2261 		}
2262 	}
2263 
2264 	page = __rmqueue_smallest(zone, order, migratetype);
2265 	if (unlikely(!page)) {
2266 		if (alloc_flags & ALLOC_CMA)
2267 			page = __rmqueue_cma_fallback(zone, order);
2268 
2269 		if (!page)
2270 			page = __rmqueue_fallback(zone, order, migratetype,
2271 						  alloc_flags);
2272 	}
2273 	return page;
2274 }
2275 
2276 /*
2277  * Obtain a specified number of elements from the buddy allocator, all under
2278  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2279  * Returns the number of new pages which were placed at *list.
2280  */
2281 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2282 			unsigned long count, struct list_head *list,
2283 			int migratetype, unsigned int alloc_flags)
2284 {
2285 	unsigned long flags;
2286 	int i;
2287 
2288 	spin_lock_irqsave(&zone->lock, flags);
2289 	for (i = 0; i < count; ++i) {
2290 		struct page *page = __rmqueue(zone, order, migratetype,
2291 								alloc_flags);
2292 		if (unlikely(page == NULL))
2293 			break;
2294 
2295 		/*
2296 		 * Split buddy pages returned by expand() are received here in
2297 		 * physical page order. The page is added to the tail of
2298 		 * caller's list. From the callers perspective, the linked list
2299 		 * is ordered by page number under some conditions. This is
2300 		 * useful for IO devices that can forward direction from the
2301 		 * head, thus also in the physical page order. This is useful
2302 		 * for IO devices that can merge IO requests if the physical
2303 		 * pages are ordered properly.
2304 		 */
2305 		list_add_tail(&page->pcp_list, list);
2306 	}
2307 	spin_unlock_irqrestore(&zone->lock, flags);
2308 
2309 	return i;
2310 }
2311 
2312 /*
2313  * Called from the vmstat counter updater to decay the PCP high.
2314  * Return whether there are addition works to do.
2315  */
2316 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2317 {
2318 	int high_min, to_drain, batch;
2319 	int todo = 0;
2320 
2321 	high_min = READ_ONCE(pcp->high_min);
2322 	batch = READ_ONCE(pcp->batch);
2323 	/*
2324 	 * Decrease pcp->high periodically to try to free possible
2325 	 * idle PCP pages.  And, avoid to free too many pages to
2326 	 * control latency.  This caps pcp->high decrement too.
2327 	 */
2328 	if (pcp->high > high_min) {
2329 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2330 				 pcp->high - (pcp->high >> 3), high_min);
2331 		if (pcp->high > high_min)
2332 			todo++;
2333 	}
2334 
2335 	to_drain = pcp->count - pcp->high;
2336 	if (to_drain > 0) {
2337 		spin_lock(&pcp->lock);
2338 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2339 		spin_unlock(&pcp->lock);
2340 		todo++;
2341 	}
2342 
2343 	return todo;
2344 }
2345 
2346 #ifdef CONFIG_NUMA
2347 /*
2348  * Called from the vmstat counter updater to drain pagesets of this
2349  * currently executing processor on remote nodes after they have
2350  * expired.
2351  */
2352 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2353 {
2354 	int to_drain, batch;
2355 
2356 	batch = READ_ONCE(pcp->batch);
2357 	to_drain = min(pcp->count, batch);
2358 	if (to_drain > 0) {
2359 		spin_lock(&pcp->lock);
2360 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2361 		spin_unlock(&pcp->lock);
2362 	}
2363 }
2364 #endif
2365 
2366 /*
2367  * Drain pcplists of the indicated processor and zone.
2368  */
2369 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2370 {
2371 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2372 	int count;
2373 
2374 	do {
2375 		spin_lock(&pcp->lock);
2376 		count = pcp->count;
2377 		if (count) {
2378 			int to_drain = min(count,
2379 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2380 
2381 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2382 			count -= to_drain;
2383 		}
2384 		spin_unlock(&pcp->lock);
2385 	} while (count);
2386 }
2387 
2388 /*
2389  * Drain pcplists of all zones on the indicated processor.
2390  */
2391 static void drain_pages(unsigned int cpu)
2392 {
2393 	struct zone *zone;
2394 
2395 	for_each_populated_zone(zone) {
2396 		drain_pages_zone(cpu, zone);
2397 	}
2398 }
2399 
2400 /*
2401  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2402  */
2403 void drain_local_pages(struct zone *zone)
2404 {
2405 	int cpu = smp_processor_id();
2406 
2407 	if (zone)
2408 		drain_pages_zone(cpu, zone);
2409 	else
2410 		drain_pages(cpu);
2411 }
2412 
2413 /*
2414  * The implementation of drain_all_pages(), exposing an extra parameter to
2415  * drain on all cpus.
2416  *
2417  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2418  * not empty. The check for non-emptiness can however race with a free to
2419  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2420  * that need the guarantee that every CPU has drained can disable the
2421  * optimizing racy check.
2422  */
2423 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2424 {
2425 	int cpu;
2426 
2427 	/*
2428 	 * Allocate in the BSS so we won't require allocation in
2429 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2430 	 */
2431 	static cpumask_t cpus_with_pcps;
2432 
2433 	/*
2434 	 * Do not drain if one is already in progress unless it's specific to
2435 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2436 	 * the drain to be complete when the call returns.
2437 	 */
2438 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2439 		if (!zone)
2440 			return;
2441 		mutex_lock(&pcpu_drain_mutex);
2442 	}
2443 
2444 	/*
2445 	 * We don't care about racing with CPU hotplug event
2446 	 * as offline notification will cause the notified
2447 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2448 	 * disables preemption as part of its processing
2449 	 */
2450 	for_each_online_cpu(cpu) {
2451 		struct per_cpu_pages *pcp;
2452 		struct zone *z;
2453 		bool has_pcps = false;
2454 
2455 		if (force_all_cpus) {
2456 			/*
2457 			 * The pcp.count check is racy, some callers need a
2458 			 * guarantee that no cpu is missed.
2459 			 */
2460 			has_pcps = true;
2461 		} else if (zone) {
2462 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2463 			if (pcp->count)
2464 				has_pcps = true;
2465 		} else {
2466 			for_each_populated_zone(z) {
2467 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2468 				if (pcp->count) {
2469 					has_pcps = true;
2470 					break;
2471 				}
2472 			}
2473 		}
2474 
2475 		if (has_pcps)
2476 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2477 		else
2478 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2479 	}
2480 
2481 	for_each_cpu(cpu, &cpus_with_pcps) {
2482 		if (zone)
2483 			drain_pages_zone(cpu, zone);
2484 		else
2485 			drain_pages(cpu);
2486 	}
2487 
2488 	mutex_unlock(&pcpu_drain_mutex);
2489 }
2490 
2491 /*
2492  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2493  *
2494  * When zone parameter is non-NULL, spill just the single zone's pages.
2495  */
2496 void drain_all_pages(struct zone *zone)
2497 {
2498 	__drain_all_pages(zone, false);
2499 }
2500 
2501 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2502 {
2503 	int min_nr_free, max_nr_free;
2504 
2505 	/* Free as much as possible if batch freeing high-order pages. */
2506 	if (unlikely(free_high))
2507 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2508 
2509 	/* Check for PCP disabled or boot pageset */
2510 	if (unlikely(high < batch))
2511 		return 1;
2512 
2513 	/* Leave at least pcp->batch pages on the list */
2514 	min_nr_free = batch;
2515 	max_nr_free = high - batch;
2516 
2517 	/*
2518 	 * Increase the batch number to the number of the consecutive
2519 	 * freed pages to reduce zone lock contention.
2520 	 */
2521 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2522 
2523 	return batch;
2524 }
2525 
2526 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2527 		       int batch, bool free_high)
2528 {
2529 	int high, high_min, high_max;
2530 
2531 	high_min = READ_ONCE(pcp->high_min);
2532 	high_max = READ_ONCE(pcp->high_max);
2533 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2534 
2535 	if (unlikely(!high))
2536 		return 0;
2537 
2538 	if (unlikely(free_high)) {
2539 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2540 				high_min);
2541 		return 0;
2542 	}
2543 
2544 	/*
2545 	 * If reclaim is active, limit the number of pages that can be
2546 	 * stored on pcp lists
2547 	 */
2548 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2549 		int free_count = max_t(int, pcp->free_count, batch);
2550 
2551 		pcp->high = max(high - free_count, high_min);
2552 		return min(batch << 2, pcp->high);
2553 	}
2554 
2555 	if (high_min == high_max)
2556 		return high;
2557 
2558 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2559 		int free_count = max_t(int, pcp->free_count, batch);
2560 
2561 		pcp->high = max(high - free_count, high_min);
2562 		high = max(pcp->count, high_min);
2563 	} else if (pcp->count >= high) {
2564 		int need_high = pcp->free_count + batch;
2565 
2566 		/* pcp->high should be large enough to hold batch freed pages */
2567 		if (pcp->high < need_high)
2568 			pcp->high = clamp(need_high, high_min, high_max);
2569 	}
2570 
2571 	return high;
2572 }
2573 
2574 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2575 				   struct page *page, int migratetype,
2576 				   unsigned int order)
2577 {
2578 	int high, batch;
2579 	int pindex;
2580 	bool free_high = false;
2581 
2582 	/*
2583 	 * On freeing, reduce the number of pages that are batch allocated.
2584 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2585 	 * allocations.
2586 	 */
2587 	pcp->alloc_factor >>= 1;
2588 	__count_vm_events(PGFREE, 1 << order);
2589 	pindex = order_to_pindex(migratetype, order);
2590 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2591 	pcp->count += 1 << order;
2592 
2593 	batch = READ_ONCE(pcp->batch);
2594 	/*
2595 	 * As high-order pages other than THP's stored on PCP can contribute
2596 	 * to fragmentation, limit the number stored when PCP is heavily
2597 	 * freeing without allocation. The remainder after bulk freeing
2598 	 * stops will be drained from vmstat refresh context.
2599 	 */
2600 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2601 		free_high = (pcp->free_count >= batch &&
2602 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2603 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2604 			      pcp->count >= READ_ONCE(batch)));
2605 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2606 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2607 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2608 	}
2609 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2610 		pcp->free_count += (1 << order);
2611 	high = nr_pcp_high(pcp, zone, batch, free_high);
2612 	if (pcp->count >= high) {
2613 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2614 				   pcp, pindex);
2615 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2616 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2617 				      ZONE_MOVABLE, 0))
2618 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2619 	}
2620 }
2621 
2622 /*
2623  * Free a pcp page
2624  */
2625 void free_unref_page(struct page *page, unsigned int order)
2626 {
2627 	unsigned long __maybe_unused UP_flags;
2628 	struct per_cpu_pages *pcp;
2629 	struct zone *zone;
2630 	unsigned long pfn = page_to_pfn(page);
2631 	int migratetype;
2632 
2633 	if (!pcp_allowed_order(order)) {
2634 		__free_pages_ok(page, order, FPI_NONE);
2635 		return;
2636 	}
2637 
2638 	if (!free_pages_prepare(page, order))
2639 		return;
2640 
2641 	/*
2642 	 * We only track unmovable, reclaimable and movable on pcp lists.
2643 	 * Place ISOLATE pages on the isolated list because they are being
2644 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2645 	 * get those areas back if necessary. Otherwise, we may have to free
2646 	 * excessively into the page allocator
2647 	 */
2648 	migratetype = get_pfnblock_migratetype(page, pfn);
2649 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2650 		if (unlikely(is_migrate_isolate(migratetype))) {
2651 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2652 			return;
2653 		}
2654 		migratetype = MIGRATE_MOVABLE;
2655 	}
2656 
2657 	zone = page_zone(page);
2658 	pcp_trylock_prepare(UP_flags);
2659 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2660 	if (pcp) {
2661 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2662 		pcp_spin_unlock(pcp);
2663 	} else {
2664 		free_one_page(zone, page, pfn, order, FPI_NONE);
2665 	}
2666 	pcp_trylock_finish(UP_flags);
2667 }
2668 
2669 /*
2670  * Free a batch of folios
2671  */
2672 void free_unref_folios(struct folio_batch *folios)
2673 {
2674 	unsigned long __maybe_unused UP_flags;
2675 	struct per_cpu_pages *pcp = NULL;
2676 	struct zone *locked_zone = NULL;
2677 	int i, j;
2678 
2679 	/* Prepare folios for freeing */
2680 	for (i = 0, j = 0; i < folios->nr; i++) {
2681 		struct folio *folio = folios->folios[i];
2682 		unsigned long pfn = folio_pfn(folio);
2683 		unsigned int order = folio_order(folio);
2684 
2685 		folio_undo_large_rmappable(folio);
2686 		if (!free_pages_prepare(&folio->page, order))
2687 			continue;
2688 		/*
2689 		 * Free orders not handled on the PCP directly to the
2690 		 * allocator.
2691 		 */
2692 		if (!pcp_allowed_order(order)) {
2693 			free_one_page(folio_zone(folio), &folio->page,
2694 				      pfn, order, FPI_NONE);
2695 			continue;
2696 		}
2697 		folio->private = (void *)(unsigned long)order;
2698 		if (j != i)
2699 			folios->folios[j] = folio;
2700 		j++;
2701 	}
2702 	folios->nr = j;
2703 
2704 	for (i = 0; i < folios->nr; i++) {
2705 		struct folio *folio = folios->folios[i];
2706 		struct zone *zone = folio_zone(folio);
2707 		unsigned long pfn = folio_pfn(folio);
2708 		unsigned int order = (unsigned long)folio->private;
2709 		int migratetype;
2710 
2711 		folio->private = NULL;
2712 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2713 
2714 		/* Different zone requires a different pcp lock */
2715 		if (zone != locked_zone ||
2716 		    is_migrate_isolate(migratetype)) {
2717 			if (pcp) {
2718 				pcp_spin_unlock(pcp);
2719 				pcp_trylock_finish(UP_flags);
2720 				locked_zone = NULL;
2721 				pcp = NULL;
2722 			}
2723 
2724 			/*
2725 			 * Free isolated pages directly to the
2726 			 * allocator, see comment in free_unref_page.
2727 			 */
2728 			if (is_migrate_isolate(migratetype)) {
2729 				free_one_page(zone, &folio->page, pfn,
2730 					      order, FPI_NONE);
2731 				continue;
2732 			}
2733 
2734 			/*
2735 			 * trylock is necessary as folios may be getting freed
2736 			 * from IRQ or SoftIRQ context after an IO completion.
2737 			 */
2738 			pcp_trylock_prepare(UP_flags);
2739 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2740 			if (unlikely(!pcp)) {
2741 				pcp_trylock_finish(UP_flags);
2742 				free_one_page(zone, &folio->page, pfn,
2743 					      order, FPI_NONE);
2744 				continue;
2745 			}
2746 			locked_zone = zone;
2747 		}
2748 
2749 		/*
2750 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2751 		 * to the MIGRATE_MOVABLE pcp list.
2752 		 */
2753 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2754 			migratetype = MIGRATE_MOVABLE;
2755 
2756 		trace_mm_page_free_batched(&folio->page);
2757 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2758 				order);
2759 	}
2760 
2761 	if (pcp) {
2762 		pcp_spin_unlock(pcp);
2763 		pcp_trylock_finish(UP_flags);
2764 	}
2765 	folio_batch_reinit(folios);
2766 }
2767 
2768 /*
2769  * split_page takes a non-compound higher-order page, and splits it into
2770  * n (1<<order) sub-pages: page[0..n]
2771  * Each sub-page must be freed individually.
2772  *
2773  * Note: this is probably too low level an operation for use in drivers.
2774  * Please consult with lkml before using this in your driver.
2775  */
2776 void split_page(struct page *page, unsigned int order)
2777 {
2778 	int i;
2779 
2780 	VM_BUG_ON_PAGE(PageCompound(page), page);
2781 	VM_BUG_ON_PAGE(!page_count(page), page);
2782 
2783 	for (i = 1; i < (1 << order); i++)
2784 		set_page_refcounted(page + i);
2785 	split_page_owner(page, order, 0);
2786 	pgalloc_tag_split(page_folio(page), order, 0);
2787 	split_page_memcg(page, order, 0);
2788 }
2789 EXPORT_SYMBOL_GPL(split_page);
2790 
2791 int __isolate_free_page(struct page *page, unsigned int order)
2792 {
2793 	struct zone *zone = page_zone(page);
2794 	int mt = get_pageblock_migratetype(page);
2795 
2796 	if (!is_migrate_isolate(mt)) {
2797 		unsigned long watermark;
2798 		/*
2799 		 * Obey watermarks as if the page was being allocated. We can
2800 		 * emulate a high-order watermark check with a raised order-0
2801 		 * watermark, because we already know our high-order page
2802 		 * exists.
2803 		 */
2804 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2805 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2806 			return 0;
2807 	}
2808 
2809 	del_page_from_free_list(page, zone, order, mt);
2810 
2811 	/*
2812 	 * Set the pageblock if the isolated page is at least half of a
2813 	 * pageblock
2814 	 */
2815 	if (order >= pageblock_order - 1) {
2816 		struct page *endpage = page + (1 << order) - 1;
2817 		for (; page < endpage; page += pageblock_nr_pages) {
2818 			int mt = get_pageblock_migratetype(page);
2819 			/*
2820 			 * Only change normal pageblocks (i.e., they can merge
2821 			 * with others)
2822 			 */
2823 			if (migratetype_is_mergeable(mt))
2824 				move_freepages_block(zone, page, mt,
2825 						     MIGRATE_MOVABLE);
2826 		}
2827 	}
2828 
2829 	return 1UL << order;
2830 }
2831 
2832 /**
2833  * __putback_isolated_page - Return a now-isolated page back where we got it
2834  * @page: Page that was isolated
2835  * @order: Order of the isolated page
2836  * @mt: The page's pageblock's migratetype
2837  *
2838  * This function is meant to return a page pulled from the free lists via
2839  * __isolate_free_page back to the free lists they were pulled from.
2840  */
2841 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2842 {
2843 	struct zone *zone = page_zone(page);
2844 
2845 	/* zone lock should be held when this function is called */
2846 	lockdep_assert_held(&zone->lock);
2847 
2848 	/* Return isolated page to tail of freelist. */
2849 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2850 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2851 }
2852 
2853 /*
2854  * Update NUMA hit/miss statistics
2855  */
2856 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2857 				   long nr_account)
2858 {
2859 #ifdef CONFIG_NUMA
2860 	enum numa_stat_item local_stat = NUMA_LOCAL;
2861 
2862 	/* skip numa counters update if numa stats is disabled */
2863 	if (!static_branch_likely(&vm_numa_stat_key))
2864 		return;
2865 
2866 	if (zone_to_nid(z) != numa_node_id())
2867 		local_stat = NUMA_OTHER;
2868 
2869 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2870 		__count_numa_events(z, NUMA_HIT, nr_account);
2871 	else {
2872 		__count_numa_events(z, NUMA_MISS, nr_account);
2873 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2874 	}
2875 	__count_numa_events(z, local_stat, nr_account);
2876 #endif
2877 }
2878 
2879 static __always_inline
2880 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2881 			   unsigned int order, unsigned int alloc_flags,
2882 			   int migratetype)
2883 {
2884 	struct page *page;
2885 	unsigned long flags;
2886 
2887 	do {
2888 		page = NULL;
2889 		spin_lock_irqsave(&zone->lock, flags);
2890 		if (alloc_flags & ALLOC_HIGHATOMIC)
2891 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2892 		if (!page) {
2893 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2894 
2895 			/*
2896 			 * If the allocation fails, allow OOM handling access
2897 			 * to HIGHATOMIC reserves as failing now is worse than
2898 			 * failing a high-order atomic allocation in the
2899 			 * future.
2900 			 */
2901 			if (!page && (alloc_flags & ALLOC_OOM))
2902 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2903 
2904 			if (!page) {
2905 				spin_unlock_irqrestore(&zone->lock, flags);
2906 				return NULL;
2907 			}
2908 		}
2909 		spin_unlock_irqrestore(&zone->lock, flags);
2910 	} while (check_new_pages(page, order));
2911 
2912 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2913 	zone_statistics(preferred_zone, zone, 1);
2914 
2915 	return page;
2916 }
2917 
2918 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2919 {
2920 	int high, base_batch, batch, max_nr_alloc;
2921 	int high_max, high_min;
2922 
2923 	base_batch = READ_ONCE(pcp->batch);
2924 	high_min = READ_ONCE(pcp->high_min);
2925 	high_max = READ_ONCE(pcp->high_max);
2926 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2927 
2928 	/* Check for PCP disabled or boot pageset */
2929 	if (unlikely(high < base_batch))
2930 		return 1;
2931 
2932 	if (order)
2933 		batch = base_batch;
2934 	else
2935 		batch = (base_batch << pcp->alloc_factor);
2936 
2937 	/*
2938 	 * If we had larger pcp->high, we could avoid to allocate from
2939 	 * zone.
2940 	 */
2941 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2942 		high = pcp->high = min(high + batch, high_max);
2943 
2944 	if (!order) {
2945 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2946 		/*
2947 		 * Double the number of pages allocated each time there is
2948 		 * subsequent allocation of order-0 pages without any freeing.
2949 		 */
2950 		if (batch <= max_nr_alloc &&
2951 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2952 			pcp->alloc_factor++;
2953 		batch = min(batch, max_nr_alloc);
2954 	}
2955 
2956 	/*
2957 	 * Scale batch relative to order if batch implies free pages
2958 	 * can be stored on the PCP. Batch can be 1 for small zones or
2959 	 * for boot pagesets which should never store free pages as
2960 	 * the pages may belong to arbitrary zones.
2961 	 */
2962 	if (batch > 1)
2963 		batch = max(batch >> order, 2);
2964 
2965 	return batch;
2966 }
2967 
2968 /* Remove page from the per-cpu list, caller must protect the list */
2969 static inline
2970 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2971 			int migratetype,
2972 			unsigned int alloc_flags,
2973 			struct per_cpu_pages *pcp,
2974 			struct list_head *list)
2975 {
2976 	struct page *page;
2977 
2978 	do {
2979 		if (list_empty(list)) {
2980 			int batch = nr_pcp_alloc(pcp, zone, order);
2981 			int alloced;
2982 
2983 			alloced = rmqueue_bulk(zone, order,
2984 					batch, list,
2985 					migratetype, alloc_flags);
2986 
2987 			pcp->count += alloced << order;
2988 			if (unlikely(list_empty(list)))
2989 				return NULL;
2990 		}
2991 
2992 		page = list_first_entry(list, struct page, pcp_list);
2993 		list_del(&page->pcp_list);
2994 		pcp->count -= 1 << order;
2995 	} while (check_new_pages(page, order));
2996 
2997 	return page;
2998 }
2999 
3000 /* Lock and remove page from the per-cpu list */
3001 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3002 			struct zone *zone, unsigned int order,
3003 			int migratetype, unsigned int alloc_flags)
3004 {
3005 	struct per_cpu_pages *pcp;
3006 	struct list_head *list;
3007 	struct page *page;
3008 	unsigned long __maybe_unused UP_flags;
3009 
3010 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3011 	pcp_trylock_prepare(UP_flags);
3012 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3013 	if (!pcp) {
3014 		pcp_trylock_finish(UP_flags);
3015 		return NULL;
3016 	}
3017 
3018 	/*
3019 	 * On allocation, reduce the number of pages that are batch freed.
3020 	 * See nr_pcp_free() where free_factor is increased for subsequent
3021 	 * frees.
3022 	 */
3023 	pcp->free_count >>= 1;
3024 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3025 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3026 	pcp_spin_unlock(pcp);
3027 	pcp_trylock_finish(UP_flags);
3028 	if (page) {
3029 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3030 		zone_statistics(preferred_zone, zone, 1);
3031 	}
3032 	return page;
3033 }
3034 
3035 /*
3036  * Allocate a page from the given zone.
3037  * Use pcplists for THP or "cheap" high-order allocations.
3038  */
3039 
3040 /*
3041  * Do not instrument rmqueue() with KMSAN. This function may call
3042  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3043  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3044  * may call rmqueue() again, which will result in a deadlock.
3045  */
3046 __no_sanitize_memory
3047 static inline
3048 struct page *rmqueue(struct zone *preferred_zone,
3049 			struct zone *zone, unsigned int order,
3050 			gfp_t gfp_flags, unsigned int alloc_flags,
3051 			int migratetype)
3052 {
3053 	struct page *page;
3054 
3055 	if (likely(pcp_allowed_order(order))) {
3056 		page = rmqueue_pcplist(preferred_zone, zone, order,
3057 				       migratetype, alloc_flags);
3058 		if (likely(page))
3059 			goto out;
3060 	}
3061 
3062 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3063 							migratetype);
3064 
3065 out:
3066 	/* Separate test+clear to avoid unnecessary atomics */
3067 	if ((alloc_flags & ALLOC_KSWAPD) &&
3068 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3069 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3070 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3071 	}
3072 
3073 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3074 	return page;
3075 }
3076 
3077 static inline long __zone_watermark_unusable_free(struct zone *z,
3078 				unsigned int order, unsigned int alloc_flags)
3079 {
3080 	long unusable_free = (1 << order) - 1;
3081 
3082 	/*
3083 	 * If the caller does not have rights to reserves below the min
3084 	 * watermark then subtract the high-atomic reserves. This will
3085 	 * over-estimate the size of the atomic reserve but it avoids a search.
3086 	 */
3087 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3088 		unusable_free += z->nr_reserved_highatomic;
3089 
3090 #ifdef CONFIG_CMA
3091 	/* If allocation can't use CMA areas don't use free CMA pages */
3092 	if (!(alloc_flags & ALLOC_CMA))
3093 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3094 #endif
3095 
3096 	return unusable_free;
3097 }
3098 
3099 /*
3100  * Return true if free base pages are above 'mark'. For high-order checks it
3101  * will return true of the order-0 watermark is reached and there is at least
3102  * one free page of a suitable size. Checking now avoids taking the zone lock
3103  * to check in the allocation paths if no pages are free.
3104  */
3105 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3106 			 int highest_zoneidx, unsigned int alloc_flags,
3107 			 long free_pages)
3108 {
3109 	long min = mark;
3110 	int o;
3111 
3112 	/* free_pages may go negative - that's OK */
3113 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3114 
3115 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3116 		/*
3117 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3118 		 * as OOM.
3119 		 */
3120 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3121 			min -= min / 2;
3122 
3123 			/*
3124 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3125 			 * access more reserves than just __GFP_HIGH. Other
3126 			 * non-blocking allocations requests such as GFP_NOWAIT
3127 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3128 			 * access to the min reserve.
3129 			 */
3130 			if (alloc_flags & ALLOC_NON_BLOCK)
3131 				min -= min / 4;
3132 		}
3133 
3134 		/*
3135 		 * OOM victims can try even harder than the normal reserve
3136 		 * users on the grounds that it's definitely going to be in
3137 		 * the exit path shortly and free memory. Any allocation it
3138 		 * makes during the free path will be small and short-lived.
3139 		 */
3140 		if (alloc_flags & ALLOC_OOM)
3141 			min -= min / 2;
3142 	}
3143 
3144 	/*
3145 	 * Check watermarks for an order-0 allocation request. If these
3146 	 * are not met, then a high-order request also cannot go ahead
3147 	 * even if a suitable page happened to be free.
3148 	 */
3149 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3150 		return false;
3151 
3152 	/* If this is an order-0 request then the watermark is fine */
3153 	if (!order)
3154 		return true;
3155 
3156 	/* For a high-order request, check at least one suitable page is free */
3157 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3158 		struct free_area *area = &z->free_area[o];
3159 		int mt;
3160 
3161 		if (!area->nr_free)
3162 			continue;
3163 
3164 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3165 			if (!free_area_empty(area, mt))
3166 				return true;
3167 		}
3168 
3169 #ifdef CONFIG_CMA
3170 		if ((alloc_flags & ALLOC_CMA) &&
3171 		    !free_area_empty(area, MIGRATE_CMA)) {
3172 			return true;
3173 		}
3174 #endif
3175 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3176 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3177 			return true;
3178 		}
3179 	}
3180 	return false;
3181 }
3182 
3183 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3184 		      int highest_zoneidx, unsigned int alloc_flags)
3185 {
3186 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3187 					zone_page_state(z, NR_FREE_PAGES));
3188 }
3189 
3190 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3191 				unsigned long mark, int highest_zoneidx,
3192 				unsigned int alloc_flags, gfp_t gfp_mask)
3193 {
3194 	long free_pages;
3195 
3196 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3197 
3198 	/*
3199 	 * Fast check for order-0 only. If this fails then the reserves
3200 	 * need to be calculated.
3201 	 */
3202 	if (!order) {
3203 		long usable_free;
3204 		long reserved;
3205 
3206 		usable_free = free_pages;
3207 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3208 
3209 		/* reserved may over estimate high-atomic reserves. */
3210 		usable_free -= min(usable_free, reserved);
3211 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3212 			return true;
3213 	}
3214 
3215 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3216 					free_pages))
3217 		return true;
3218 
3219 	/*
3220 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3221 	 * when checking the min watermark. The min watermark is the
3222 	 * point where boosting is ignored so that kswapd is woken up
3223 	 * when below the low watermark.
3224 	 */
3225 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3226 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3227 		mark = z->_watermark[WMARK_MIN];
3228 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3229 					alloc_flags, free_pages);
3230 	}
3231 
3232 	return false;
3233 }
3234 
3235 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3236 			unsigned long mark, int highest_zoneidx)
3237 {
3238 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3239 
3240 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3241 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3242 
3243 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3244 								free_pages);
3245 }
3246 
3247 #ifdef CONFIG_NUMA
3248 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3249 
3250 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3251 {
3252 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3253 				node_reclaim_distance;
3254 }
3255 #else	/* CONFIG_NUMA */
3256 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3257 {
3258 	return true;
3259 }
3260 #endif	/* CONFIG_NUMA */
3261 
3262 /*
3263  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3264  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3265  * premature use of a lower zone may cause lowmem pressure problems that
3266  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3267  * probably too small. It only makes sense to spread allocations to avoid
3268  * fragmentation between the Normal and DMA32 zones.
3269  */
3270 static inline unsigned int
3271 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3272 {
3273 	unsigned int alloc_flags;
3274 
3275 	/*
3276 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3277 	 * to save a branch.
3278 	 */
3279 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3280 
3281 #ifdef CONFIG_ZONE_DMA32
3282 	if (!zone)
3283 		return alloc_flags;
3284 
3285 	if (zone_idx(zone) != ZONE_NORMAL)
3286 		return alloc_flags;
3287 
3288 	/*
3289 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3290 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3291 	 * on UMA that if Normal is populated then so is DMA32.
3292 	 */
3293 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3294 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3295 		return alloc_flags;
3296 
3297 	alloc_flags |= ALLOC_NOFRAGMENT;
3298 #endif /* CONFIG_ZONE_DMA32 */
3299 	return alloc_flags;
3300 }
3301 
3302 /* Must be called after current_gfp_context() which can change gfp_mask */
3303 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3304 						  unsigned int alloc_flags)
3305 {
3306 #ifdef CONFIG_CMA
3307 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3308 		alloc_flags |= ALLOC_CMA;
3309 #endif
3310 	return alloc_flags;
3311 }
3312 
3313 /*
3314  * get_page_from_freelist goes through the zonelist trying to allocate
3315  * a page.
3316  */
3317 static struct page *
3318 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3319 						const struct alloc_context *ac)
3320 {
3321 	struct zoneref *z;
3322 	struct zone *zone;
3323 	struct pglist_data *last_pgdat = NULL;
3324 	bool last_pgdat_dirty_ok = false;
3325 	bool no_fallback;
3326 
3327 retry:
3328 	/*
3329 	 * Scan zonelist, looking for a zone with enough free.
3330 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3331 	 */
3332 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3333 	z = ac->preferred_zoneref;
3334 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3335 					ac->nodemask) {
3336 		struct page *page;
3337 		unsigned long mark;
3338 
3339 		if (cpusets_enabled() &&
3340 			(alloc_flags & ALLOC_CPUSET) &&
3341 			!__cpuset_zone_allowed(zone, gfp_mask))
3342 				continue;
3343 		/*
3344 		 * When allocating a page cache page for writing, we
3345 		 * want to get it from a node that is within its dirty
3346 		 * limit, such that no single node holds more than its
3347 		 * proportional share of globally allowed dirty pages.
3348 		 * The dirty limits take into account the node's
3349 		 * lowmem reserves and high watermark so that kswapd
3350 		 * should be able to balance it without having to
3351 		 * write pages from its LRU list.
3352 		 *
3353 		 * XXX: For now, allow allocations to potentially
3354 		 * exceed the per-node dirty limit in the slowpath
3355 		 * (spread_dirty_pages unset) before going into reclaim,
3356 		 * which is important when on a NUMA setup the allowed
3357 		 * nodes are together not big enough to reach the
3358 		 * global limit.  The proper fix for these situations
3359 		 * will require awareness of nodes in the
3360 		 * dirty-throttling and the flusher threads.
3361 		 */
3362 		if (ac->spread_dirty_pages) {
3363 			if (last_pgdat != zone->zone_pgdat) {
3364 				last_pgdat = zone->zone_pgdat;
3365 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3366 			}
3367 
3368 			if (!last_pgdat_dirty_ok)
3369 				continue;
3370 		}
3371 
3372 		if (no_fallback && nr_online_nodes > 1 &&
3373 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3374 			int local_nid;
3375 
3376 			/*
3377 			 * If moving to a remote node, retry but allow
3378 			 * fragmenting fallbacks. Locality is more important
3379 			 * than fragmentation avoidance.
3380 			 */
3381 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3382 			if (zone_to_nid(zone) != local_nid) {
3383 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3384 				goto retry;
3385 			}
3386 		}
3387 
3388 		cond_accept_memory(zone, order);
3389 
3390 		/*
3391 		 * Detect whether the number of free pages is below high
3392 		 * watermark.  If so, we will decrease pcp->high and free
3393 		 * PCP pages in free path to reduce the possibility of
3394 		 * premature page reclaiming.  Detection is done here to
3395 		 * avoid to do that in hotter free path.
3396 		 */
3397 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3398 			goto check_alloc_wmark;
3399 
3400 		mark = high_wmark_pages(zone);
3401 		if (zone_watermark_fast(zone, order, mark,
3402 					ac->highest_zoneidx, alloc_flags,
3403 					gfp_mask))
3404 			goto try_this_zone;
3405 		else
3406 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3407 
3408 check_alloc_wmark:
3409 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3410 		if (!zone_watermark_fast(zone, order, mark,
3411 				       ac->highest_zoneidx, alloc_flags,
3412 				       gfp_mask)) {
3413 			int ret;
3414 
3415 			if (cond_accept_memory(zone, order))
3416 				goto try_this_zone;
3417 
3418 			/*
3419 			 * Watermark failed for this zone, but see if we can
3420 			 * grow this zone if it contains deferred pages.
3421 			 */
3422 			if (deferred_pages_enabled()) {
3423 				if (_deferred_grow_zone(zone, order))
3424 					goto try_this_zone;
3425 			}
3426 			/* Checked here to keep the fast path fast */
3427 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3428 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3429 				goto try_this_zone;
3430 
3431 			if (!node_reclaim_enabled() ||
3432 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3433 				continue;
3434 
3435 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3436 			switch (ret) {
3437 			case NODE_RECLAIM_NOSCAN:
3438 				/* did not scan */
3439 				continue;
3440 			case NODE_RECLAIM_FULL:
3441 				/* scanned but unreclaimable */
3442 				continue;
3443 			default:
3444 				/* did we reclaim enough */
3445 				if (zone_watermark_ok(zone, order, mark,
3446 					ac->highest_zoneidx, alloc_flags))
3447 					goto try_this_zone;
3448 
3449 				continue;
3450 			}
3451 		}
3452 
3453 try_this_zone:
3454 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3455 				gfp_mask, alloc_flags, ac->migratetype);
3456 		if (page) {
3457 			prep_new_page(page, order, gfp_mask, alloc_flags);
3458 
3459 			/*
3460 			 * If this is a high-order atomic allocation then check
3461 			 * if the pageblock should be reserved for the future
3462 			 */
3463 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3464 				reserve_highatomic_pageblock(page, order, zone);
3465 
3466 			return page;
3467 		} else {
3468 			if (cond_accept_memory(zone, order))
3469 				goto try_this_zone;
3470 
3471 			/* Try again if zone has deferred pages */
3472 			if (deferred_pages_enabled()) {
3473 				if (_deferred_grow_zone(zone, order))
3474 					goto try_this_zone;
3475 			}
3476 		}
3477 	}
3478 
3479 	/*
3480 	 * It's possible on a UMA machine to get through all zones that are
3481 	 * fragmented. If avoiding fragmentation, reset and try again.
3482 	 */
3483 	if (no_fallback) {
3484 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3485 		goto retry;
3486 	}
3487 
3488 	return NULL;
3489 }
3490 
3491 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3492 {
3493 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3494 
3495 	/*
3496 	 * This documents exceptions given to allocations in certain
3497 	 * contexts that are allowed to allocate outside current's set
3498 	 * of allowed nodes.
3499 	 */
3500 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3501 		if (tsk_is_oom_victim(current) ||
3502 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3503 			filter &= ~SHOW_MEM_FILTER_NODES;
3504 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3505 		filter &= ~SHOW_MEM_FILTER_NODES;
3506 
3507 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3508 }
3509 
3510 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3511 {
3512 	struct va_format vaf;
3513 	va_list args;
3514 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3515 
3516 	if ((gfp_mask & __GFP_NOWARN) ||
3517 	     !__ratelimit(&nopage_rs) ||
3518 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3519 		return;
3520 
3521 	va_start(args, fmt);
3522 	vaf.fmt = fmt;
3523 	vaf.va = &args;
3524 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3525 			current->comm, &vaf, gfp_mask, &gfp_mask,
3526 			nodemask_pr_args(nodemask));
3527 	va_end(args);
3528 
3529 	cpuset_print_current_mems_allowed();
3530 	pr_cont("\n");
3531 	dump_stack();
3532 	warn_alloc_show_mem(gfp_mask, nodemask);
3533 }
3534 
3535 static inline struct page *
3536 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3537 			      unsigned int alloc_flags,
3538 			      const struct alloc_context *ac)
3539 {
3540 	struct page *page;
3541 
3542 	page = get_page_from_freelist(gfp_mask, order,
3543 			alloc_flags|ALLOC_CPUSET, ac);
3544 	/*
3545 	 * fallback to ignore cpuset restriction if our nodes
3546 	 * are depleted
3547 	 */
3548 	if (!page)
3549 		page = get_page_from_freelist(gfp_mask, order,
3550 				alloc_flags, ac);
3551 
3552 	return page;
3553 }
3554 
3555 static inline struct page *
3556 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3557 	const struct alloc_context *ac, unsigned long *did_some_progress)
3558 {
3559 	struct oom_control oc = {
3560 		.zonelist = ac->zonelist,
3561 		.nodemask = ac->nodemask,
3562 		.memcg = NULL,
3563 		.gfp_mask = gfp_mask,
3564 		.order = order,
3565 	};
3566 	struct page *page;
3567 
3568 	*did_some_progress = 0;
3569 
3570 	/*
3571 	 * Acquire the oom lock.  If that fails, somebody else is
3572 	 * making progress for us.
3573 	 */
3574 	if (!mutex_trylock(&oom_lock)) {
3575 		*did_some_progress = 1;
3576 		schedule_timeout_uninterruptible(1);
3577 		return NULL;
3578 	}
3579 
3580 	/*
3581 	 * Go through the zonelist yet one more time, keep very high watermark
3582 	 * here, this is only to catch a parallel oom killing, we must fail if
3583 	 * we're still under heavy pressure. But make sure that this reclaim
3584 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3585 	 * allocation which will never fail due to oom_lock already held.
3586 	 */
3587 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3588 				      ~__GFP_DIRECT_RECLAIM, order,
3589 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3590 	if (page)
3591 		goto out;
3592 
3593 	/* Coredumps can quickly deplete all memory reserves */
3594 	if (current->flags & PF_DUMPCORE)
3595 		goto out;
3596 	/* The OOM killer will not help higher order allocs */
3597 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3598 		goto out;
3599 	/*
3600 	 * We have already exhausted all our reclaim opportunities without any
3601 	 * success so it is time to admit defeat. We will skip the OOM killer
3602 	 * because it is very likely that the caller has a more reasonable
3603 	 * fallback than shooting a random task.
3604 	 *
3605 	 * The OOM killer may not free memory on a specific node.
3606 	 */
3607 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3608 		goto out;
3609 	/* The OOM killer does not needlessly kill tasks for lowmem */
3610 	if (ac->highest_zoneidx < ZONE_NORMAL)
3611 		goto out;
3612 	if (pm_suspended_storage())
3613 		goto out;
3614 	/*
3615 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3616 	 * other request to make a forward progress.
3617 	 * We are in an unfortunate situation where out_of_memory cannot
3618 	 * do much for this context but let's try it to at least get
3619 	 * access to memory reserved if the current task is killed (see
3620 	 * out_of_memory). Once filesystems are ready to handle allocation
3621 	 * failures more gracefully we should just bail out here.
3622 	 */
3623 
3624 	/* Exhausted what can be done so it's blame time */
3625 	if (out_of_memory(&oc) ||
3626 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3627 		*did_some_progress = 1;
3628 
3629 		/*
3630 		 * Help non-failing allocations by giving them access to memory
3631 		 * reserves
3632 		 */
3633 		if (gfp_mask & __GFP_NOFAIL)
3634 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3635 					ALLOC_NO_WATERMARKS, ac);
3636 	}
3637 out:
3638 	mutex_unlock(&oom_lock);
3639 	return page;
3640 }
3641 
3642 /*
3643  * Maximum number of compaction retries with a progress before OOM
3644  * killer is consider as the only way to move forward.
3645  */
3646 #define MAX_COMPACT_RETRIES 16
3647 
3648 #ifdef CONFIG_COMPACTION
3649 /* Try memory compaction for high-order allocations before reclaim */
3650 static struct page *
3651 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3652 		unsigned int alloc_flags, const struct alloc_context *ac,
3653 		enum compact_priority prio, enum compact_result *compact_result)
3654 {
3655 	struct page *page = NULL;
3656 	unsigned long pflags;
3657 	unsigned int noreclaim_flag;
3658 
3659 	if (!order)
3660 		return NULL;
3661 
3662 	psi_memstall_enter(&pflags);
3663 	delayacct_compact_start();
3664 	noreclaim_flag = memalloc_noreclaim_save();
3665 
3666 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3667 								prio, &page);
3668 
3669 	memalloc_noreclaim_restore(noreclaim_flag);
3670 	psi_memstall_leave(&pflags);
3671 	delayacct_compact_end();
3672 
3673 	if (*compact_result == COMPACT_SKIPPED)
3674 		return NULL;
3675 	/*
3676 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3677 	 * count a compaction stall
3678 	 */
3679 	count_vm_event(COMPACTSTALL);
3680 
3681 	/* Prep a captured page if available */
3682 	if (page)
3683 		prep_new_page(page, order, gfp_mask, alloc_flags);
3684 
3685 	/* Try get a page from the freelist if available */
3686 	if (!page)
3687 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3688 
3689 	if (page) {
3690 		struct zone *zone = page_zone(page);
3691 
3692 		zone->compact_blockskip_flush = false;
3693 		compaction_defer_reset(zone, order, true);
3694 		count_vm_event(COMPACTSUCCESS);
3695 		return page;
3696 	}
3697 
3698 	/*
3699 	 * It's bad if compaction run occurs and fails. The most likely reason
3700 	 * is that pages exist, but not enough to satisfy watermarks.
3701 	 */
3702 	count_vm_event(COMPACTFAIL);
3703 
3704 	cond_resched();
3705 
3706 	return NULL;
3707 }
3708 
3709 static inline bool
3710 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3711 		     enum compact_result compact_result,
3712 		     enum compact_priority *compact_priority,
3713 		     int *compaction_retries)
3714 {
3715 	int max_retries = MAX_COMPACT_RETRIES;
3716 	int min_priority;
3717 	bool ret = false;
3718 	int retries = *compaction_retries;
3719 	enum compact_priority priority = *compact_priority;
3720 
3721 	if (!order)
3722 		return false;
3723 
3724 	if (fatal_signal_pending(current))
3725 		return false;
3726 
3727 	/*
3728 	 * Compaction was skipped due to a lack of free order-0
3729 	 * migration targets. Continue if reclaim can help.
3730 	 */
3731 	if (compact_result == COMPACT_SKIPPED) {
3732 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3733 		goto out;
3734 	}
3735 
3736 	/*
3737 	 * Compaction managed to coalesce some page blocks, but the
3738 	 * allocation failed presumably due to a race. Retry some.
3739 	 */
3740 	if (compact_result == COMPACT_SUCCESS) {
3741 		/*
3742 		 * !costly requests are much more important than
3743 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3744 		 * facto nofail and invoke OOM killer to move on while
3745 		 * costly can fail and users are ready to cope with
3746 		 * that. 1/4 retries is rather arbitrary but we would
3747 		 * need much more detailed feedback from compaction to
3748 		 * make a better decision.
3749 		 */
3750 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3751 			max_retries /= 4;
3752 
3753 		if (++(*compaction_retries) <= max_retries) {
3754 			ret = true;
3755 			goto out;
3756 		}
3757 	}
3758 
3759 	/*
3760 	 * Compaction failed. Retry with increasing priority.
3761 	 */
3762 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3763 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3764 
3765 	if (*compact_priority > min_priority) {
3766 		(*compact_priority)--;
3767 		*compaction_retries = 0;
3768 		ret = true;
3769 	}
3770 out:
3771 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3772 	return ret;
3773 }
3774 #else
3775 static inline struct page *
3776 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3777 		unsigned int alloc_flags, const struct alloc_context *ac,
3778 		enum compact_priority prio, enum compact_result *compact_result)
3779 {
3780 	*compact_result = COMPACT_SKIPPED;
3781 	return NULL;
3782 }
3783 
3784 static inline bool
3785 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3786 		     enum compact_result compact_result,
3787 		     enum compact_priority *compact_priority,
3788 		     int *compaction_retries)
3789 {
3790 	struct zone *zone;
3791 	struct zoneref *z;
3792 
3793 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3794 		return false;
3795 
3796 	/*
3797 	 * There are setups with compaction disabled which would prefer to loop
3798 	 * inside the allocator rather than hit the oom killer prematurely.
3799 	 * Let's give them a good hope and keep retrying while the order-0
3800 	 * watermarks are OK.
3801 	 */
3802 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3803 				ac->highest_zoneidx, ac->nodemask) {
3804 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3805 					ac->highest_zoneidx, alloc_flags))
3806 			return true;
3807 	}
3808 	return false;
3809 }
3810 #endif /* CONFIG_COMPACTION */
3811 
3812 #ifdef CONFIG_LOCKDEP
3813 static struct lockdep_map __fs_reclaim_map =
3814 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3815 
3816 static bool __need_reclaim(gfp_t gfp_mask)
3817 {
3818 	/* no reclaim without waiting on it */
3819 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3820 		return false;
3821 
3822 	/* this guy won't enter reclaim */
3823 	if (current->flags & PF_MEMALLOC)
3824 		return false;
3825 
3826 	if (gfp_mask & __GFP_NOLOCKDEP)
3827 		return false;
3828 
3829 	return true;
3830 }
3831 
3832 void __fs_reclaim_acquire(unsigned long ip)
3833 {
3834 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3835 }
3836 
3837 void __fs_reclaim_release(unsigned long ip)
3838 {
3839 	lock_release(&__fs_reclaim_map, ip);
3840 }
3841 
3842 void fs_reclaim_acquire(gfp_t gfp_mask)
3843 {
3844 	gfp_mask = current_gfp_context(gfp_mask);
3845 
3846 	if (__need_reclaim(gfp_mask)) {
3847 		if (gfp_mask & __GFP_FS)
3848 			__fs_reclaim_acquire(_RET_IP_);
3849 
3850 #ifdef CONFIG_MMU_NOTIFIER
3851 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3852 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3853 #endif
3854 
3855 	}
3856 }
3857 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3858 
3859 void fs_reclaim_release(gfp_t gfp_mask)
3860 {
3861 	gfp_mask = current_gfp_context(gfp_mask);
3862 
3863 	if (__need_reclaim(gfp_mask)) {
3864 		if (gfp_mask & __GFP_FS)
3865 			__fs_reclaim_release(_RET_IP_);
3866 	}
3867 }
3868 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3869 #endif
3870 
3871 /*
3872  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3873  * have been rebuilt so allocation retries. Reader side does not lock and
3874  * retries the allocation if zonelist changes. Writer side is protected by the
3875  * embedded spin_lock.
3876  */
3877 static DEFINE_SEQLOCK(zonelist_update_seq);
3878 
3879 static unsigned int zonelist_iter_begin(void)
3880 {
3881 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3882 		return read_seqbegin(&zonelist_update_seq);
3883 
3884 	return 0;
3885 }
3886 
3887 static unsigned int check_retry_zonelist(unsigned int seq)
3888 {
3889 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3890 		return read_seqretry(&zonelist_update_seq, seq);
3891 
3892 	return seq;
3893 }
3894 
3895 /* Perform direct synchronous page reclaim */
3896 static unsigned long
3897 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3898 					const struct alloc_context *ac)
3899 {
3900 	unsigned int noreclaim_flag;
3901 	unsigned long progress;
3902 
3903 	cond_resched();
3904 
3905 	/* We now go into synchronous reclaim */
3906 	cpuset_memory_pressure_bump();
3907 	fs_reclaim_acquire(gfp_mask);
3908 	noreclaim_flag = memalloc_noreclaim_save();
3909 
3910 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3911 								ac->nodemask);
3912 
3913 	memalloc_noreclaim_restore(noreclaim_flag);
3914 	fs_reclaim_release(gfp_mask);
3915 
3916 	cond_resched();
3917 
3918 	return progress;
3919 }
3920 
3921 /* The really slow allocator path where we enter direct reclaim */
3922 static inline struct page *
3923 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3924 		unsigned int alloc_flags, const struct alloc_context *ac,
3925 		unsigned long *did_some_progress)
3926 {
3927 	struct page *page = NULL;
3928 	unsigned long pflags;
3929 	bool drained = false;
3930 
3931 	psi_memstall_enter(&pflags);
3932 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3933 	if (unlikely(!(*did_some_progress)))
3934 		goto out;
3935 
3936 retry:
3937 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3938 
3939 	/*
3940 	 * If an allocation failed after direct reclaim, it could be because
3941 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3942 	 * Shrink them and try again
3943 	 */
3944 	if (!page && !drained) {
3945 		unreserve_highatomic_pageblock(ac, false);
3946 		drain_all_pages(NULL);
3947 		drained = true;
3948 		goto retry;
3949 	}
3950 out:
3951 	psi_memstall_leave(&pflags);
3952 
3953 	return page;
3954 }
3955 
3956 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3957 			     const struct alloc_context *ac)
3958 {
3959 	struct zoneref *z;
3960 	struct zone *zone;
3961 	pg_data_t *last_pgdat = NULL;
3962 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3963 
3964 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3965 					ac->nodemask) {
3966 		if (!managed_zone(zone))
3967 			continue;
3968 		if (last_pgdat != zone->zone_pgdat) {
3969 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3970 			last_pgdat = zone->zone_pgdat;
3971 		}
3972 	}
3973 }
3974 
3975 static inline unsigned int
3976 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3977 {
3978 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3979 
3980 	/*
3981 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3982 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3983 	 * to save two branches.
3984 	 */
3985 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3986 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3987 
3988 	/*
3989 	 * The caller may dip into page reserves a bit more if the caller
3990 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3991 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3992 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3993 	 */
3994 	alloc_flags |= (__force int)
3995 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3996 
3997 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3998 		/*
3999 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4000 		 * if it can't schedule.
4001 		 */
4002 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4003 			alloc_flags |= ALLOC_NON_BLOCK;
4004 
4005 			if (order > 0)
4006 				alloc_flags |= ALLOC_HIGHATOMIC;
4007 		}
4008 
4009 		/*
4010 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4011 		 * GFP_ATOMIC) rather than fail, see the comment for
4012 		 * cpuset_node_allowed().
4013 		 */
4014 		if (alloc_flags & ALLOC_MIN_RESERVE)
4015 			alloc_flags &= ~ALLOC_CPUSET;
4016 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4017 		alloc_flags |= ALLOC_MIN_RESERVE;
4018 
4019 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4020 
4021 	return alloc_flags;
4022 }
4023 
4024 static bool oom_reserves_allowed(struct task_struct *tsk)
4025 {
4026 	if (!tsk_is_oom_victim(tsk))
4027 		return false;
4028 
4029 	/*
4030 	 * !MMU doesn't have oom reaper so give access to memory reserves
4031 	 * only to the thread with TIF_MEMDIE set
4032 	 */
4033 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4034 		return false;
4035 
4036 	return true;
4037 }
4038 
4039 /*
4040  * Distinguish requests which really need access to full memory
4041  * reserves from oom victims which can live with a portion of it
4042  */
4043 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4044 {
4045 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4046 		return 0;
4047 	if (gfp_mask & __GFP_MEMALLOC)
4048 		return ALLOC_NO_WATERMARKS;
4049 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4050 		return ALLOC_NO_WATERMARKS;
4051 	if (!in_interrupt()) {
4052 		if (current->flags & PF_MEMALLOC)
4053 			return ALLOC_NO_WATERMARKS;
4054 		else if (oom_reserves_allowed(current))
4055 			return ALLOC_OOM;
4056 	}
4057 
4058 	return 0;
4059 }
4060 
4061 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4062 {
4063 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4064 }
4065 
4066 /*
4067  * Checks whether it makes sense to retry the reclaim to make a forward progress
4068  * for the given allocation request.
4069  *
4070  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4071  * without success, or when we couldn't even meet the watermark if we
4072  * reclaimed all remaining pages on the LRU lists.
4073  *
4074  * Returns true if a retry is viable or false to enter the oom path.
4075  */
4076 static inline bool
4077 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4078 		     struct alloc_context *ac, int alloc_flags,
4079 		     bool did_some_progress, int *no_progress_loops)
4080 {
4081 	struct zone *zone;
4082 	struct zoneref *z;
4083 	bool ret = false;
4084 
4085 	/*
4086 	 * Costly allocations might have made a progress but this doesn't mean
4087 	 * their order will become available due to high fragmentation so
4088 	 * always increment the no progress counter for them
4089 	 */
4090 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4091 		*no_progress_loops = 0;
4092 	else
4093 		(*no_progress_loops)++;
4094 
4095 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4096 		goto out;
4097 
4098 
4099 	/*
4100 	 * Keep reclaiming pages while there is a chance this will lead
4101 	 * somewhere.  If none of the target zones can satisfy our allocation
4102 	 * request even if all reclaimable pages are considered then we are
4103 	 * screwed and have to go OOM.
4104 	 */
4105 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4106 				ac->highest_zoneidx, ac->nodemask) {
4107 		unsigned long available;
4108 		unsigned long reclaimable;
4109 		unsigned long min_wmark = min_wmark_pages(zone);
4110 		bool wmark;
4111 
4112 		if (cpusets_enabled() &&
4113 			(alloc_flags & ALLOC_CPUSET) &&
4114 			!__cpuset_zone_allowed(zone, gfp_mask))
4115 				continue;
4116 
4117 		available = reclaimable = zone_reclaimable_pages(zone);
4118 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4119 
4120 		/*
4121 		 * Would the allocation succeed if we reclaimed all
4122 		 * reclaimable pages?
4123 		 */
4124 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4125 				ac->highest_zoneidx, alloc_flags, available);
4126 		trace_reclaim_retry_zone(z, order, reclaimable,
4127 				available, min_wmark, *no_progress_loops, wmark);
4128 		if (wmark) {
4129 			ret = true;
4130 			break;
4131 		}
4132 	}
4133 
4134 	/*
4135 	 * Memory allocation/reclaim might be called from a WQ context and the
4136 	 * current implementation of the WQ concurrency control doesn't
4137 	 * recognize that a particular WQ is congested if the worker thread is
4138 	 * looping without ever sleeping. Therefore we have to do a short sleep
4139 	 * here rather than calling cond_resched().
4140 	 */
4141 	if (current->flags & PF_WQ_WORKER)
4142 		schedule_timeout_uninterruptible(1);
4143 	else
4144 		cond_resched();
4145 out:
4146 	/* Before OOM, exhaust highatomic_reserve */
4147 	if (!ret)
4148 		return unreserve_highatomic_pageblock(ac, true);
4149 
4150 	return ret;
4151 }
4152 
4153 static inline bool
4154 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4155 {
4156 	/*
4157 	 * It's possible that cpuset's mems_allowed and the nodemask from
4158 	 * mempolicy don't intersect. This should be normally dealt with by
4159 	 * policy_nodemask(), but it's possible to race with cpuset update in
4160 	 * such a way the check therein was true, and then it became false
4161 	 * before we got our cpuset_mems_cookie here.
4162 	 * This assumes that for all allocations, ac->nodemask can come only
4163 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4164 	 * when it does not intersect with the cpuset restrictions) or the
4165 	 * caller can deal with a violated nodemask.
4166 	 */
4167 	if (cpusets_enabled() && ac->nodemask &&
4168 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4169 		ac->nodemask = NULL;
4170 		return true;
4171 	}
4172 
4173 	/*
4174 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4175 	 * possible to race with parallel threads in such a way that our
4176 	 * allocation can fail while the mask is being updated. If we are about
4177 	 * to fail, check if the cpuset changed during allocation and if so,
4178 	 * retry.
4179 	 */
4180 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4181 		return true;
4182 
4183 	return false;
4184 }
4185 
4186 static inline struct page *
4187 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4188 						struct alloc_context *ac)
4189 {
4190 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4191 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4192 	bool nofail = gfp_mask & __GFP_NOFAIL;
4193 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4194 	struct page *page = NULL;
4195 	unsigned int alloc_flags;
4196 	unsigned long did_some_progress;
4197 	enum compact_priority compact_priority;
4198 	enum compact_result compact_result;
4199 	int compaction_retries;
4200 	int no_progress_loops;
4201 	unsigned int cpuset_mems_cookie;
4202 	unsigned int zonelist_iter_cookie;
4203 	int reserve_flags;
4204 
4205 	if (unlikely(nofail)) {
4206 		/*
4207 		 * We most definitely don't want callers attempting to
4208 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4209 		 */
4210 		WARN_ON_ONCE(order > 1);
4211 		/*
4212 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4213 		 * otherwise, we may result in lockup.
4214 		 */
4215 		WARN_ON_ONCE(!can_direct_reclaim);
4216 		/*
4217 		 * PF_MEMALLOC request from this context is rather bizarre
4218 		 * because we cannot reclaim anything and only can loop waiting
4219 		 * for somebody to do a work for us.
4220 		 */
4221 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4222 	}
4223 
4224 restart:
4225 	compaction_retries = 0;
4226 	no_progress_loops = 0;
4227 	compact_priority = DEF_COMPACT_PRIORITY;
4228 	cpuset_mems_cookie = read_mems_allowed_begin();
4229 	zonelist_iter_cookie = zonelist_iter_begin();
4230 
4231 	/*
4232 	 * The fast path uses conservative alloc_flags to succeed only until
4233 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4234 	 * alloc_flags precisely. So we do that now.
4235 	 */
4236 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4237 
4238 	/*
4239 	 * We need to recalculate the starting point for the zonelist iterator
4240 	 * because we might have used different nodemask in the fast path, or
4241 	 * there was a cpuset modification and we are retrying - otherwise we
4242 	 * could end up iterating over non-eligible zones endlessly.
4243 	 */
4244 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4245 					ac->highest_zoneidx, ac->nodemask);
4246 	if (!zonelist_zone(ac->preferred_zoneref))
4247 		goto nopage;
4248 
4249 	/*
4250 	 * Check for insane configurations where the cpuset doesn't contain
4251 	 * any suitable zone to satisfy the request - e.g. non-movable
4252 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4253 	 */
4254 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4255 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4256 					ac->highest_zoneidx,
4257 					&cpuset_current_mems_allowed);
4258 		if (!zonelist_zone(z))
4259 			goto nopage;
4260 	}
4261 
4262 	if (alloc_flags & ALLOC_KSWAPD)
4263 		wake_all_kswapds(order, gfp_mask, ac);
4264 
4265 	/*
4266 	 * The adjusted alloc_flags might result in immediate success, so try
4267 	 * that first
4268 	 */
4269 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4270 	if (page)
4271 		goto got_pg;
4272 
4273 	/*
4274 	 * For costly allocations, try direct compaction first, as it's likely
4275 	 * that we have enough base pages and don't need to reclaim. For non-
4276 	 * movable high-order allocations, do that as well, as compaction will
4277 	 * try prevent permanent fragmentation by migrating from blocks of the
4278 	 * same migratetype.
4279 	 * Don't try this for allocations that are allowed to ignore
4280 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4281 	 */
4282 	if (can_direct_reclaim && can_compact &&
4283 			(costly_order ||
4284 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4285 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4286 		page = __alloc_pages_direct_compact(gfp_mask, order,
4287 						alloc_flags, ac,
4288 						INIT_COMPACT_PRIORITY,
4289 						&compact_result);
4290 		if (page)
4291 			goto got_pg;
4292 
4293 		/*
4294 		 * Checks for costly allocations with __GFP_NORETRY, which
4295 		 * includes some THP page fault allocations
4296 		 */
4297 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4298 			/*
4299 			 * If allocating entire pageblock(s) and compaction
4300 			 * failed because all zones are below low watermarks
4301 			 * or is prohibited because it recently failed at this
4302 			 * order, fail immediately unless the allocator has
4303 			 * requested compaction and reclaim retry.
4304 			 *
4305 			 * Reclaim is
4306 			 *  - potentially very expensive because zones are far
4307 			 *    below their low watermarks or this is part of very
4308 			 *    bursty high order allocations,
4309 			 *  - not guaranteed to help because isolate_freepages()
4310 			 *    may not iterate over freed pages as part of its
4311 			 *    linear scan, and
4312 			 *  - unlikely to make entire pageblocks free on its
4313 			 *    own.
4314 			 */
4315 			if (compact_result == COMPACT_SKIPPED ||
4316 			    compact_result == COMPACT_DEFERRED)
4317 				goto nopage;
4318 
4319 			/*
4320 			 * Looks like reclaim/compaction is worth trying, but
4321 			 * sync compaction could be very expensive, so keep
4322 			 * using async compaction.
4323 			 */
4324 			compact_priority = INIT_COMPACT_PRIORITY;
4325 		}
4326 	}
4327 
4328 retry:
4329 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4330 	if (alloc_flags & ALLOC_KSWAPD)
4331 		wake_all_kswapds(order, gfp_mask, ac);
4332 
4333 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4334 	if (reserve_flags)
4335 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4336 					  (alloc_flags & ALLOC_KSWAPD);
4337 
4338 	/*
4339 	 * Reset the nodemask and zonelist iterators if memory policies can be
4340 	 * ignored. These allocations are high priority and system rather than
4341 	 * user oriented.
4342 	 */
4343 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4344 		ac->nodemask = NULL;
4345 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4346 					ac->highest_zoneidx, ac->nodemask);
4347 	}
4348 
4349 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4350 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4351 	if (page)
4352 		goto got_pg;
4353 
4354 	/* Caller is not willing to reclaim, we can't balance anything */
4355 	if (!can_direct_reclaim)
4356 		goto nopage;
4357 
4358 	/* Avoid recursion of direct reclaim */
4359 	if (current->flags & PF_MEMALLOC)
4360 		goto nopage;
4361 
4362 	/* Try direct reclaim and then allocating */
4363 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4364 							&did_some_progress);
4365 	if (page)
4366 		goto got_pg;
4367 
4368 	/* Try direct compaction and then allocating */
4369 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4370 					compact_priority, &compact_result);
4371 	if (page)
4372 		goto got_pg;
4373 
4374 	/* Do not loop if specifically requested */
4375 	if (gfp_mask & __GFP_NORETRY)
4376 		goto nopage;
4377 
4378 	/*
4379 	 * Do not retry costly high order allocations unless they are
4380 	 * __GFP_RETRY_MAYFAIL and we can compact
4381 	 */
4382 	if (costly_order && (!can_compact ||
4383 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4384 		goto nopage;
4385 
4386 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4387 				 did_some_progress > 0, &no_progress_loops))
4388 		goto retry;
4389 
4390 	/*
4391 	 * It doesn't make any sense to retry for the compaction if the order-0
4392 	 * reclaim is not able to make any progress because the current
4393 	 * implementation of the compaction depends on the sufficient amount
4394 	 * of free memory (see __compaction_suitable)
4395 	 */
4396 	if (did_some_progress > 0 && can_compact &&
4397 			should_compact_retry(ac, order, alloc_flags,
4398 				compact_result, &compact_priority,
4399 				&compaction_retries))
4400 		goto retry;
4401 
4402 
4403 	/*
4404 	 * Deal with possible cpuset update races or zonelist updates to avoid
4405 	 * a unnecessary OOM kill.
4406 	 */
4407 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4408 	    check_retry_zonelist(zonelist_iter_cookie))
4409 		goto restart;
4410 
4411 	/* Reclaim has failed us, start killing things */
4412 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4413 	if (page)
4414 		goto got_pg;
4415 
4416 	/* Avoid allocations with no watermarks from looping endlessly */
4417 	if (tsk_is_oom_victim(current) &&
4418 	    (alloc_flags & ALLOC_OOM ||
4419 	     (gfp_mask & __GFP_NOMEMALLOC)))
4420 		goto nopage;
4421 
4422 	/* Retry as long as the OOM killer is making progress */
4423 	if (did_some_progress) {
4424 		no_progress_loops = 0;
4425 		goto retry;
4426 	}
4427 
4428 nopage:
4429 	/*
4430 	 * Deal with possible cpuset update races or zonelist updates to avoid
4431 	 * a unnecessary OOM kill.
4432 	 */
4433 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4434 	    check_retry_zonelist(zonelist_iter_cookie))
4435 		goto restart;
4436 
4437 	/*
4438 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4439 	 * we always retry
4440 	 */
4441 	if (unlikely(nofail)) {
4442 		/*
4443 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4444 		 * we disregard these unreasonable nofail requests and still
4445 		 * return NULL
4446 		 */
4447 		if (!can_direct_reclaim)
4448 			goto fail;
4449 
4450 		/*
4451 		 * Help non-failing allocations by giving some access to memory
4452 		 * reserves normally used for high priority non-blocking
4453 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4454 		 * could deplete whole memory reserves which would just make
4455 		 * the situation worse.
4456 		 */
4457 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4458 		if (page)
4459 			goto got_pg;
4460 
4461 		cond_resched();
4462 		goto retry;
4463 	}
4464 fail:
4465 	warn_alloc(gfp_mask, ac->nodemask,
4466 			"page allocation failure: order:%u", order);
4467 got_pg:
4468 	return page;
4469 }
4470 
4471 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4472 		int preferred_nid, nodemask_t *nodemask,
4473 		struct alloc_context *ac, gfp_t *alloc_gfp,
4474 		unsigned int *alloc_flags)
4475 {
4476 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4477 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4478 	ac->nodemask = nodemask;
4479 	ac->migratetype = gfp_migratetype(gfp_mask);
4480 
4481 	if (cpusets_enabled()) {
4482 		*alloc_gfp |= __GFP_HARDWALL;
4483 		/*
4484 		 * When we are in the interrupt context, it is irrelevant
4485 		 * to the current task context. It means that any node ok.
4486 		 */
4487 		if (in_task() && !ac->nodemask)
4488 			ac->nodemask = &cpuset_current_mems_allowed;
4489 		else
4490 			*alloc_flags |= ALLOC_CPUSET;
4491 	}
4492 
4493 	might_alloc(gfp_mask);
4494 
4495 	if (should_fail_alloc_page(gfp_mask, order))
4496 		return false;
4497 
4498 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4499 
4500 	/* Dirty zone balancing only done in the fast path */
4501 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4502 
4503 	/*
4504 	 * The preferred zone is used for statistics but crucially it is
4505 	 * also used as the starting point for the zonelist iterator. It
4506 	 * may get reset for allocations that ignore memory policies.
4507 	 */
4508 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4509 					ac->highest_zoneidx, ac->nodemask);
4510 
4511 	return true;
4512 }
4513 
4514 /*
4515  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4516  * @gfp: GFP flags for the allocation
4517  * @preferred_nid: The preferred NUMA node ID to allocate from
4518  * @nodemask: Set of nodes to allocate from, may be NULL
4519  * @nr_pages: The number of pages desired on the list or array
4520  * @page_list: Optional list to store the allocated pages
4521  * @page_array: Optional array to store the pages
4522  *
4523  * This is a batched version of the page allocator that attempts to
4524  * allocate nr_pages quickly. Pages are added to page_list if page_list
4525  * is not NULL, otherwise it is assumed that the page_array is valid.
4526  *
4527  * For lists, nr_pages is the number of pages that should be allocated.
4528  *
4529  * For arrays, only NULL elements are populated with pages and nr_pages
4530  * is the maximum number of pages that will be stored in the array.
4531  *
4532  * Returns the number of pages on the list or array.
4533  */
4534 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4535 			nodemask_t *nodemask, int nr_pages,
4536 			struct list_head *page_list,
4537 			struct page **page_array)
4538 {
4539 	struct page *page;
4540 	unsigned long __maybe_unused UP_flags;
4541 	struct zone *zone;
4542 	struct zoneref *z;
4543 	struct per_cpu_pages *pcp;
4544 	struct list_head *pcp_list;
4545 	struct alloc_context ac;
4546 	gfp_t alloc_gfp;
4547 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4548 	int nr_populated = 0, nr_account = 0;
4549 
4550 	/*
4551 	 * Skip populated array elements to determine if any pages need
4552 	 * to be allocated before disabling IRQs.
4553 	 */
4554 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4555 		nr_populated++;
4556 
4557 	/* No pages requested? */
4558 	if (unlikely(nr_pages <= 0))
4559 		goto out;
4560 
4561 	/* Already populated array? */
4562 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4563 		goto out;
4564 
4565 	/* Bulk allocator does not support memcg accounting. */
4566 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4567 		goto failed;
4568 
4569 	/* Use the single page allocator for one page. */
4570 	if (nr_pages - nr_populated == 1)
4571 		goto failed;
4572 
4573 #ifdef CONFIG_PAGE_OWNER
4574 	/*
4575 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4576 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4577 	 * removes much of the performance benefit of bulk allocation so
4578 	 * force the caller to allocate one page at a time as it'll have
4579 	 * similar performance to added complexity to the bulk allocator.
4580 	 */
4581 	if (static_branch_unlikely(&page_owner_inited))
4582 		goto failed;
4583 #endif
4584 
4585 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4586 	gfp &= gfp_allowed_mask;
4587 	alloc_gfp = gfp;
4588 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4589 		goto out;
4590 	gfp = alloc_gfp;
4591 
4592 	/* Find an allowed local zone that meets the low watermark. */
4593 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4594 		unsigned long mark;
4595 
4596 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4597 		    !__cpuset_zone_allowed(zone, gfp)) {
4598 			continue;
4599 		}
4600 
4601 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4602 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4603 			goto failed;
4604 		}
4605 
4606 		cond_accept_memory(zone, 0);
4607 retry_this_zone:
4608 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4609 		if (zone_watermark_fast(zone, 0,  mark,
4610 				zonelist_zone_idx(ac.preferred_zoneref),
4611 				alloc_flags, gfp)) {
4612 			break;
4613 		}
4614 
4615 		if (cond_accept_memory(zone, 0))
4616 			goto retry_this_zone;
4617 
4618 		/* Try again if zone has deferred pages */
4619 		if (deferred_pages_enabled()) {
4620 			if (_deferred_grow_zone(zone, 0))
4621 				goto retry_this_zone;
4622 		}
4623 	}
4624 
4625 	/*
4626 	 * If there are no allowed local zones that meets the watermarks then
4627 	 * try to allocate a single page and reclaim if necessary.
4628 	 */
4629 	if (unlikely(!zone))
4630 		goto failed;
4631 
4632 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4633 	pcp_trylock_prepare(UP_flags);
4634 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4635 	if (!pcp)
4636 		goto failed_irq;
4637 
4638 	/* Attempt the batch allocation */
4639 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4640 	while (nr_populated < nr_pages) {
4641 
4642 		/* Skip existing pages */
4643 		if (page_array && page_array[nr_populated]) {
4644 			nr_populated++;
4645 			continue;
4646 		}
4647 
4648 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4649 								pcp, pcp_list);
4650 		if (unlikely(!page)) {
4651 			/* Try and allocate at least one page */
4652 			if (!nr_account) {
4653 				pcp_spin_unlock(pcp);
4654 				goto failed_irq;
4655 			}
4656 			break;
4657 		}
4658 		nr_account++;
4659 
4660 		prep_new_page(page, 0, gfp, 0);
4661 		if (page_list)
4662 			list_add(&page->lru, page_list);
4663 		else
4664 			page_array[nr_populated] = page;
4665 		nr_populated++;
4666 	}
4667 
4668 	pcp_spin_unlock(pcp);
4669 	pcp_trylock_finish(UP_flags);
4670 
4671 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4672 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4673 
4674 out:
4675 	return nr_populated;
4676 
4677 failed_irq:
4678 	pcp_trylock_finish(UP_flags);
4679 
4680 failed:
4681 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4682 	if (page) {
4683 		if (page_list)
4684 			list_add(&page->lru, page_list);
4685 		else
4686 			page_array[nr_populated] = page;
4687 		nr_populated++;
4688 	}
4689 
4690 	goto out;
4691 }
4692 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4693 
4694 /*
4695  * This is the 'heart' of the zoned buddy allocator.
4696  */
4697 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4698 				      int preferred_nid, nodemask_t *nodemask)
4699 {
4700 	struct page *page;
4701 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4702 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4703 	struct alloc_context ac = { };
4704 
4705 	/*
4706 	 * There are several places where we assume that the order value is sane
4707 	 * so bail out early if the request is out of bound.
4708 	 */
4709 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4710 		return NULL;
4711 
4712 	gfp &= gfp_allowed_mask;
4713 	/*
4714 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4715 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4716 	 * from a particular context which has been marked by
4717 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4718 	 * movable zones are not used during allocation.
4719 	 */
4720 	gfp = current_gfp_context(gfp);
4721 	alloc_gfp = gfp;
4722 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4723 			&alloc_gfp, &alloc_flags))
4724 		return NULL;
4725 
4726 	/*
4727 	 * Forbid the first pass from falling back to types that fragment
4728 	 * memory until all local zones are considered.
4729 	 */
4730 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4731 
4732 	/* First allocation attempt */
4733 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4734 	if (likely(page))
4735 		goto out;
4736 
4737 	alloc_gfp = gfp;
4738 	ac.spread_dirty_pages = false;
4739 
4740 	/*
4741 	 * Restore the original nodemask if it was potentially replaced with
4742 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4743 	 */
4744 	ac.nodemask = nodemask;
4745 
4746 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4747 
4748 out:
4749 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4750 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4751 		__free_pages(page, order);
4752 		page = NULL;
4753 	}
4754 
4755 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4756 	kmsan_alloc_page(page, order, alloc_gfp);
4757 
4758 	return page;
4759 }
4760 EXPORT_SYMBOL(__alloc_pages_noprof);
4761 
4762 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4763 		nodemask_t *nodemask)
4764 {
4765 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4766 					preferred_nid, nodemask);
4767 	return page_rmappable_folio(page);
4768 }
4769 EXPORT_SYMBOL(__folio_alloc_noprof);
4770 
4771 /*
4772  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4773  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4774  * you need to access high mem.
4775  */
4776 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4777 {
4778 	struct page *page;
4779 
4780 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4781 	if (!page)
4782 		return 0;
4783 	return (unsigned long) page_address(page);
4784 }
4785 EXPORT_SYMBOL(get_free_pages_noprof);
4786 
4787 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4788 {
4789 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4790 }
4791 EXPORT_SYMBOL(get_zeroed_page_noprof);
4792 
4793 /**
4794  * __free_pages - Free pages allocated with alloc_pages().
4795  * @page: The page pointer returned from alloc_pages().
4796  * @order: The order of the allocation.
4797  *
4798  * This function can free multi-page allocations that are not compound
4799  * pages.  It does not check that the @order passed in matches that of
4800  * the allocation, so it is easy to leak memory.  Freeing more memory
4801  * than was allocated will probably emit a warning.
4802  *
4803  * If the last reference to this page is speculative, it will be released
4804  * by put_page() which only frees the first page of a non-compound
4805  * allocation.  To prevent the remaining pages from being leaked, we free
4806  * the subsequent pages here.  If you want to use the page's reference
4807  * count to decide when to free the allocation, you should allocate a
4808  * compound page, and use put_page() instead of __free_pages().
4809  *
4810  * Context: May be called in interrupt context or while holding a normal
4811  * spinlock, but not in NMI context or while holding a raw spinlock.
4812  */
4813 void __free_pages(struct page *page, unsigned int order)
4814 {
4815 	/* get PageHead before we drop reference */
4816 	int head = PageHead(page);
4817 	struct alloc_tag *tag = pgalloc_tag_get(page);
4818 
4819 	if (put_page_testzero(page))
4820 		free_unref_page(page, order);
4821 	else if (!head) {
4822 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4823 		while (order-- > 0)
4824 			free_unref_page(page + (1 << order), order);
4825 	}
4826 }
4827 EXPORT_SYMBOL(__free_pages);
4828 
4829 void free_pages(unsigned long addr, unsigned int order)
4830 {
4831 	if (addr != 0) {
4832 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4833 		__free_pages(virt_to_page((void *)addr), order);
4834 	}
4835 }
4836 
4837 EXPORT_SYMBOL(free_pages);
4838 
4839 /*
4840  * Page Fragment:
4841  *  An arbitrary-length arbitrary-offset area of memory which resides
4842  *  within a 0 or higher order page.  Multiple fragments within that page
4843  *  are individually refcounted, in the page's reference counter.
4844  *
4845  * The page_frag functions below provide a simple allocation framework for
4846  * page fragments.  This is used by the network stack and network device
4847  * drivers to provide a backing region of memory for use as either an
4848  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4849  */
4850 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4851 					     gfp_t gfp_mask)
4852 {
4853 	struct page *page = NULL;
4854 	gfp_t gfp = gfp_mask;
4855 
4856 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4857 	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4858 		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4859 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4860 				PAGE_FRAG_CACHE_MAX_ORDER);
4861 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4862 #endif
4863 	if (unlikely(!page))
4864 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4865 
4866 	nc->va = page ? page_address(page) : NULL;
4867 
4868 	return page;
4869 }
4870 
4871 void page_frag_cache_drain(struct page_frag_cache *nc)
4872 {
4873 	if (!nc->va)
4874 		return;
4875 
4876 	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4877 	nc->va = NULL;
4878 }
4879 EXPORT_SYMBOL(page_frag_cache_drain);
4880 
4881 void __page_frag_cache_drain(struct page *page, unsigned int count)
4882 {
4883 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4884 
4885 	if (page_ref_sub_and_test(page, count))
4886 		free_unref_page(page, compound_order(page));
4887 }
4888 EXPORT_SYMBOL(__page_frag_cache_drain);
4889 
4890 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4891 			      unsigned int fragsz, gfp_t gfp_mask,
4892 			      unsigned int align_mask)
4893 {
4894 	unsigned int size = PAGE_SIZE;
4895 	struct page *page;
4896 	int offset;
4897 
4898 	if (unlikely(!nc->va)) {
4899 refill:
4900 		page = __page_frag_cache_refill(nc, gfp_mask);
4901 		if (!page)
4902 			return NULL;
4903 
4904 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4905 		/* if size can vary use size else just use PAGE_SIZE */
4906 		size = nc->size;
4907 #endif
4908 		/* Even if we own the page, we do not use atomic_set().
4909 		 * This would break get_page_unless_zero() users.
4910 		 */
4911 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4912 
4913 		/* reset page count bias and offset to start of new frag */
4914 		nc->pfmemalloc = page_is_pfmemalloc(page);
4915 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4916 		nc->offset = size;
4917 	}
4918 
4919 	offset = nc->offset - fragsz;
4920 	if (unlikely(offset < 0)) {
4921 		page = virt_to_page(nc->va);
4922 
4923 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4924 			goto refill;
4925 
4926 		if (unlikely(nc->pfmemalloc)) {
4927 			free_unref_page(page, compound_order(page));
4928 			goto refill;
4929 		}
4930 
4931 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4932 		/* if size can vary use size else just use PAGE_SIZE */
4933 		size = nc->size;
4934 #endif
4935 		/* OK, page count is 0, we can safely set it */
4936 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4937 
4938 		/* reset page count bias and offset to start of new frag */
4939 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4940 		offset = size - fragsz;
4941 		if (unlikely(offset < 0)) {
4942 			/*
4943 			 * The caller is trying to allocate a fragment
4944 			 * with fragsz > PAGE_SIZE but the cache isn't big
4945 			 * enough to satisfy the request, this may
4946 			 * happen in low memory conditions.
4947 			 * We don't release the cache page because
4948 			 * it could make memory pressure worse
4949 			 * so we simply return NULL here.
4950 			 */
4951 			return NULL;
4952 		}
4953 	}
4954 
4955 	nc->pagecnt_bias--;
4956 	offset &= align_mask;
4957 	nc->offset = offset;
4958 
4959 	return nc->va + offset;
4960 }
4961 EXPORT_SYMBOL(__page_frag_alloc_align);
4962 
4963 /*
4964  * Frees a page fragment allocated out of either a compound or order 0 page.
4965  */
4966 void page_frag_free(void *addr)
4967 {
4968 	struct page *page = virt_to_head_page(addr);
4969 
4970 	if (unlikely(put_page_testzero(page)))
4971 		free_unref_page(page, compound_order(page));
4972 }
4973 EXPORT_SYMBOL(page_frag_free);
4974 
4975 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4976 		size_t size)
4977 {
4978 	if (addr) {
4979 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4980 		struct page *page = virt_to_page((void *)addr);
4981 		struct page *last = page + nr;
4982 
4983 		split_page_owner(page, order, 0);
4984 		pgalloc_tag_split(page_folio(page), order, 0);
4985 		split_page_memcg(page, order, 0);
4986 		while (page < --last)
4987 			set_page_refcounted(last);
4988 
4989 		last = page + (1UL << order);
4990 		for (page += nr; page < last; page++)
4991 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4992 	}
4993 	return (void *)addr;
4994 }
4995 
4996 /**
4997  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4998  * @size: the number of bytes to allocate
4999  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5000  *
5001  * This function is similar to alloc_pages(), except that it allocates the
5002  * minimum number of pages to satisfy the request.  alloc_pages() can only
5003  * allocate memory in power-of-two pages.
5004  *
5005  * This function is also limited by MAX_PAGE_ORDER.
5006  *
5007  * Memory allocated by this function must be released by free_pages_exact().
5008  *
5009  * Return: pointer to the allocated area or %NULL in case of error.
5010  */
5011 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5012 {
5013 	unsigned int order = get_order(size);
5014 	unsigned long addr;
5015 
5016 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5017 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5018 
5019 	addr = get_free_pages_noprof(gfp_mask, order);
5020 	return make_alloc_exact(addr, order, size);
5021 }
5022 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5023 
5024 /**
5025  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5026  *			   pages on a node.
5027  * @nid: the preferred node ID where memory should be allocated
5028  * @size: the number of bytes to allocate
5029  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5030  *
5031  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5032  * back.
5033  *
5034  * Return: pointer to the allocated area or %NULL in case of error.
5035  */
5036 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5037 {
5038 	unsigned int order = get_order(size);
5039 	struct page *p;
5040 
5041 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5042 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5043 
5044 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5045 	if (!p)
5046 		return NULL;
5047 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5048 }
5049 
5050 /**
5051  * free_pages_exact - release memory allocated via alloc_pages_exact()
5052  * @virt: the value returned by alloc_pages_exact.
5053  * @size: size of allocation, same value as passed to alloc_pages_exact().
5054  *
5055  * Release the memory allocated by a previous call to alloc_pages_exact.
5056  */
5057 void free_pages_exact(void *virt, size_t size)
5058 {
5059 	unsigned long addr = (unsigned long)virt;
5060 	unsigned long end = addr + PAGE_ALIGN(size);
5061 
5062 	while (addr < end) {
5063 		free_page(addr);
5064 		addr += PAGE_SIZE;
5065 	}
5066 }
5067 EXPORT_SYMBOL(free_pages_exact);
5068 
5069 /**
5070  * nr_free_zone_pages - count number of pages beyond high watermark
5071  * @offset: The zone index of the highest zone
5072  *
5073  * nr_free_zone_pages() counts the number of pages which are beyond the
5074  * high watermark within all zones at or below a given zone index.  For each
5075  * zone, the number of pages is calculated as:
5076  *
5077  *     nr_free_zone_pages = managed_pages - high_pages
5078  *
5079  * Return: number of pages beyond high watermark.
5080  */
5081 static unsigned long nr_free_zone_pages(int offset)
5082 {
5083 	struct zoneref *z;
5084 	struct zone *zone;
5085 
5086 	/* Just pick one node, since fallback list is circular */
5087 	unsigned long sum = 0;
5088 
5089 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5090 
5091 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5092 		unsigned long size = zone_managed_pages(zone);
5093 		unsigned long high = high_wmark_pages(zone);
5094 		if (size > high)
5095 			sum += size - high;
5096 	}
5097 
5098 	return sum;
5099 }
5100 
5101 /**
5102  * nr_free_buffer_pages - count number of pages beyond high watermark
5103  *
5104  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5105  * watermark within ZONE_DMA and ZONE_NORMAL.
5106  *
5107  * Return: number of pages beyond high watermark within ZONE_DMA and
5108  * ZONE_NORMAL.
5109  */
5110 unsigned long nr_free_buffer_pages(void)
5111 {
5112 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5113 }
5114 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5115 
5116 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5117 {
5118 	zoneref->zone = zone;
5119 	zoneref->zone_idx = zone_idx(zone);
5120 }
5121 
5122 /*
5123  * Builds allocation fallback zone lists.
5124  *
5125  * Add all populated zones of a node to the zonelist.
5126  */
5127 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5128 {
5129 	struct zone *zone;
5130 	enum zone_type zone_type = MAX_NR_ZONES;
5131 	int nr_zones = 0;
5132 
5133 	do {
5134 		zone_type--;
5135 		zone = pgdat->node_zones + zone_type;
5136 		if (populated_zone(zone)) {
5137 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5138 			check_highest_zone(zone_type);
5139 		}
5140 	} while (zone_type);
5141 
5142 	return nr_zones;
5143 }
5144 
5145 #ifdef CONFIG_NUMA
5146 
5147 static int __parse_numa_zonelist_order(char *s)
5148 {
5149 	/*
5150 	 * We used to support different zonelists modes but they turned
5151 	 * out to be just not useful. Let's keep the warning in place
5152 	 * if somebody still use the cmd line parameter so that we do
5153 	 * not fail it silently
5154 	 */
5155 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5156 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5157 		return -EINVAL;
5158 	}
5159 	return 0;
5160 }
5161 
5162 static char numa_zonelist_order[] = "Node";
5163 #define NUMA_ZONELIST_ORDER_LEN	16
5164 /*
5165  * sysctl handler for numa_zonelist_order
5166  */
5167 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5168 		void *buffer, size_t *length, loff_t *ppos)
5169 {
5170 	if (write)
5171 		return __parse_numa_zonelist_order(buffer);
5172 	return proc_dostring(table, write, buffer, length, ppos);
5173 }
5174 
5175 static int node_load[MAX_NUMNODES];
5176 
5177 /**
5178  * find_next_best_node - find the next node that should appear in a given node's fallback list
5179  * @node: node whose fallback list we're appending
5180  * @used_node_mask: nodemask_t of already used nodes
5181  *
5182  * We use a number of factors to determine which is the next node that should
5183  * appear on a given node's fallback list.  The node should not have appeared
5184  * already in @node's fallback list, and it should be the next closest node
5185  * according to the distance array (which contains arbitrary distance values
5186  * from each node to each node in the system), and should also prefer nodes
5187  * with no CPUs, since presumably they'll have very little allocation pressure
5188  * on them otherwise.
5189  *
5190  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5191  */
5192 int find_next_best_node(int node, nodemask_t *used_node_mask)
5193 {
5194 	int n, val;
5195 	int min_val = INT_MAX;
5196 	int best_node = NUMA_NO_NODE;
5197 
5198 	/*
5199 	 * Use the local node if we haven't already, but for memoryless local
5200 	 * node, we should skip it and fall back to other nodes.
5201 	 */
5202 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5203 		node_set(node, *used_node_mask);
5204 		return node;
5205 	}
5206 
5207 	for_each_node_state(n, N_MEMORY) {
5208 
5209 		/* Don't want a node to appear more than once */
5210 		if (node_isset(n, *used_node_mask))
5211 			continue;
5212 
5213 		/* Use the distance array to find the distance */
5214 		val = node_distance(node, n);
5215 
5216 		/* Penalize nodes under us ("prefer the next node") */
5217 		val += (n < node);
5218 
5219 		/* Give preference to headless and unused nodes */
5220 		if (!cpumask_empty(cpumask_of_node(n)))
5221 			val += PENALTY_FOR_NODE_WITH_CPUS;
5222 
5223 		/* Slight preference for less loaded node */
5224 		val *= MAX_NUMNODES;
5225 		val += node_load[n];
5226 
5227 		if (val < min_val) {
5228 			min_val = val;
5229 			best_node = n;
5230 		}
5231 	}
5232 
5233 	if (best_node >= 0)
5234 		node_set(best_node, *used_node_mask);
5235 
5236 	return best_node;
5237 }
5238 
5239 
5240 /*
5241  * Build zonelists ordered by node and zones within node.
5242  * This results in maximum locality--normal zone overflows into local
5243  * DMA zone, if any--but risks exhausting DMA zone.
5244  */
5245 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5246 		unsigned nr_nodes)
5247 {
5248 	struct zoneref *zonerefs;
5249 	int i;
5250 
5251 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5252 
5253 	for (i = 0; i < nr_nodes; i++) {
5254 		int nr_zones;
5255 
5256 		pg_data_t *node = NODE_DATA(node_order[i]);
5257 
5258 		nr_zones = build_zonerefs_node(node, zonerefs);
5259 		zonerefs += nr_zones;
5260 	}
5261 	zonerefs->zone = NULL;
5262 	zonerefs->zone_idx = 0;
5263 }
5264 
5265 /*
5266  * Build __GFP_THISNODE zonelists
5267  */
5268 static void build_thisnode_zonelists(pg_data_t *pgdat)
5269 {
5270 	struct zoneref *zonerefs;
5271 	int nr_zones;
5272 
5273 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5274 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5275 	zonerefs += nr_zones;
5276 	zonerefs->zone = NULL;
5277 	zonerefs->zone_idx = 0;
5278 }
5279 
5280 /*
5281  * Build zonelists ordered by zone and nodes within zones.
5282  * This results in conserving DMA zone[s] until all Normal memory is
5283  * exhausted, but results in overflowing to remote node while memory
5284  * may still exist in local DMA zone.
5285  */
5286 
5287 static void build_zonelists(pg_data_t *pgdat)
5288 {
5289 	static int node_order[MAX_NUMNODES];
5290 	int node, nr_nodes = 0;
5291 	nodemask_t used_mask = NODE_MASK_NONE;
5292 	int local_node, prev_node;
5293 
5294 	/* NUMA-aware ordering of nodes */
5295 	local_node = pgdat->node_id;
5296 	prev_node = local_node;
5297 
5298 	memset(node_order, 0, sizeof(node_order));
5299 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5300 		/*
5301 		 * We don't want to pressure a particular node.
5302 		 * So adding penalty to the first node in same
5303 		 * distance group to make it round-robin.
5304 		 */
5305 		if (node_distance(local_node, node) !=
5306 		    node_distance(local_node, prev_node))
5307 			node_load[node] += 1;
5308 
5309 		node_order[nr_nodes++] = node;
5310 		prev_node = node;
5311 	}
5312 
5313 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5314 	build_thisnode_zonelists(pgdat);
5315 	pr_info("Fallback order for Node %d: ", local_node);
5316 	for (node = 0; node < nr_nodes; node++)
5317 		pr_cont("%d ", node_order[node]);
5318 	pr_cont("\n");
5319 }
5320 
5321 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5322 /*
5323  * Return node id of node used for "local" allocations.
5324  * I.e., first node id of first zone in arg node's generic zonelist.
5325  * Used for initializing percpu 'numa_mem', which is used primarily
5326  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5327  */
5328 int local_memory_node(int node)
5329 {
5330 	struct zoneref *z;
5331 
5332 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5333 				   gfp_zone(GFP_KERNEL),
5334 				   NULL);
5335 	return zonelist_node_idx(z);
5336 }
5337 #endif
5338 
5339 static void setup_min_unmapped_ratio(void);
5340 static void setup_min_slab_ratio(void);
5341 #else	/* CONFIG_NUMA */
5342 
5343 static void build_zonelists(pg_data_t *pgdat)
5344 {
5345 	struct zoneref *zonerefs;
5346 	int nr_zones;
5347 
5348 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5349 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5350 	zonerefs += nr_zones;
5351 
5352 	zonerefs->zone = NULL;
5353 	zonerefs->zone_idx = 0;
5354 }
5355 
5356 #endif	/* CONFIG_NUMA */
5357 
5358 /*
5359  * Boot pageset table. One per cpu which is going to be used for all
5360  * zones and all nodes. The parameters will be set in such a way
5361  * that an item put on a list will immediately be handed over to
5362  * the buddy list. This is safe since pageset manipulation is done
5363  * with interrupts disabled.
5364  *
5365  * The boot_pagesets must be kept even after bootup is complete for
5366  * unused processors and/or zones. They do play a role for bootstrapping
5367  * hotplugged processors.
5368  *
5369  * zoneinfo_show() and maybe other functions do
5370  * not check if the processor is online before following the pageset pointer.
5371  * Other parts of the kernel may not check if the zone is available.
5372  */
5373 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5374 /* These effectively disable the pcplists in the boot pageset completely */
5375 #define BOOT_PAGESET_HIGH	0
5376 #define BOOT_PAGESET_BATCH	1
5377 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5378 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5379 
5380 static void __build_all_zonelists(void *data)
5381 {
5382 	int nid;
5383 	int __maybe_unused cpu;
5384 	pg_data_t *self = data;
5385 	unsigned long flags;
5386 
5387 	/*
5388 	 * The zonelist_update_seq must be acquired with irqsave because the
5389 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5390 	 */
5391 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5392 	/*
5393 	 * Also disable synchronous printk() to prevent any printk() from
5394 	 * trying to hold port->lock, for
5395 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5396 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5397 	 */
5398 	printk_deferred_enter();
5399 
5400 #ifdef CONFIG_NUMA
5401 	memset(node_load, 0, sizeof(node_load));
5402 #endif
5403 
5404 	/*
5405 	 * This node is hotadded and no memory is yet present.   So just
5406 	 * building zonelists is fine - no need to touch other nodes.
5407 	 */
5408 	if (self && !node_online(self->node_id)) {
5409 		build_zonelists(self);
5410 	} else {
5411 		/*
5412 		 * All possible nodes have pgdat preallocated
5413 		 * in free_area_init
5414 		 */
5415 		for_each_node(nid) {
5416 			pg_data_t *pgdat = NODE_DATA(nid);
5417 
5418 			build_zonelists(pgdat);
5419 		}
5420 
5421 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5422 		/*
5423 		 * We now know the "local memory node" for each node--
5424 		 * i.e., the node of the first zone in the generic zonelist.
5425 		 * Set up numa_mem percpu variable for on-line cpus.  During
5426 		 * boot, only the boot cpu should be on-line;  we'll init the
5427 		 * secondary cpus' numa_mem as they come on-line.  During
5428 		 * node/memory hotplug, we'll fixup all on-line cpus.
5429 		 */
5430 		for_each_online_cpu(cpu)
5431 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5432 #endif
5433 	}
5434 
5435 	printk_deferred_exit();
5436 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5437 }
5438 
5439 static noinline void __init
5440 build_all_zonelists_init(void)
5441 {
5442 	int cpu;
5443 
5444 	__build_all_zonelists(NULL);
5445 
5446 	/*
5447 	 * Initialize the boot_pagesets that are going to be used
5448 	 * for bootstrapping processors. The real pagesets for
5449 	 * each zone will be allocated later when the per cpu
5450 	 * allocator is available.
5451 	 *
5452 	 * boot_pagesets are used also for bootstrapping offline
5453 	 * cpus if the system is already booted because the pagesets
5454 	 * are needed to initialize allocators on a specific cpu too.
5455 	 * F.e. the percpu allocator needs the page allocator which
5456 	 * needs the percpu allocator in order to allocate its pagesets
5457 	 * (a chicken-egg dilemma).
5458 	 */
5459 	for_each_possible_cpu(cpu)
5460 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5461 
5462 	mminit_verify_zonelist();
5463 	cpuset_init_current_mems_allowed();
5464 }
5465 
5466 /*
5467  * unless system_state == SYSTEM_BOOTING.
5468  *
5469  * __ref due to call of __init annotated helper build_all_zonelists_init
5470  * [protected by SYSTEM_BOOTING].
5471  */
5472 void __ref build_all_zonelists(pg_data_t *pgdat)
5473 {
5474 	unsigned long vm_total_pages;
5475 
5476 	if (system_state == SYSTEM_BOOTING) {
5477 		build_all_zonelists_init();
5478 	} else {
5479 		__build_all_zonelists(pgdat);
5480 		/* cpuset refresh routine should be here */
5481 	}
5482 	/* Get the number of free pages beyond high watermark in all zones. */
5483 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5484 	/*
5485 	 * Disable grouping by mobility if the number of pages in the
5486 	 * system is too low to allow the mechanism to work. It would be
5487 	 * more accurate, but expensive to check per-zone. This check is
5488 	 * made on memory-hotadd so a system can start with mobility
5489 	 * disabled and enable it later
5490 	 */
5491 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5492 		page_group_by_mobility_disabled = 1;
5493 	else
5494 		page_group_by_mobility_disabled = 0;
5495 
5496 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5497 		nr_online_nodes,
5498 		page_group_by_mobility_disabled ? "off" : "on",
5499 		vm_total_pages);
5500 #ifdef CONFIG_NUMA
5501 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5502 #endif
5503 }
5504 
5505 static int zone_batchsize(struct zone *zone)
5506 {
5507 #ifdef CONFIG_MMU
5508 	int batch;
5509 
5510 	/*
5511 	 * The number of pages to batch allocate is either ~0.1%
5512 	 * of the zone or 1MB, whichever is smaller. The batch
5513 	 * size is striking a balance between allocation latency
5514 	 * and zone lock contention.
5515 	 */
5516 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5517 	batch /= 4;		/* We effectively *= 4 below */
5518 	if (batch < 1)
5519 		batch = 1;
5520 
5521 	/*
5522 	 * Clamp the batch to a 2^n - 1 value. Having a power
5523 	 * of 2 value was found to be more likely to have
5524 	 * suboptimal cache aliasing properties in some cases.
5525 	 *
5526 	 * For example if 2 tasks are alternately allocating
5527 	 * batches of pages, one task can end up with a lot
5528 	 * of pages of one half of the possible page colors
5529 	 * and the other with pages of the other colors.
5530 	 */
5531 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5532 
5533 	return batch;
5534 
5535 #else
5536 	/* The deferral and batching of frees should be suppressed under NOMMU
5537 	 * conditions.
5538 	 *
5539 	 * The problem is that NOMMU needs to be able to allocate large chunks
5540 	 * of contiguous memory as there's no hardware page translation to
5541 	 * assemble apparent contiguous memory from discontiguous pages.
5542 	 *
5543 	 * Queueing large contiguous runs of pages for batching, however,
5544 	 * causes the pages to actually be freed in smaller chunks.  As there
5545 	 * can be a significant delay between the individual batches being
5546 	 * recycled, this leads to the once large chunks of space being
5547 	 * fragmented and becoming unavailable for high-order allocations.
5548 	 */
5549 	return 0;
5550 #endif
5551 }
5552 
5553 static int percpu_pagelist_high_fraction;
5554 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5555 			 int high_fraction)
5556 {
5557 #ifdef CONFIG_MMU
5558 	int high;
5559 	int nr_split_cpus;
5560 	unsigned long total_pages;
5561 
5562 	if (!high_fraction) {
5563 		/*
5564 		 * By default, the high value of the pcp is based on the zone
5565 		 * low watermark so that if they are full then background
5566 		 * reclaim will not be started prematurely.
5567 		 */
5568 		total_pages = low_wmark_pages(zone);
5569 	} else {
5570 		/*
5571 		 * If percpu_pagelist_high_fraction is configured, the high
5572 		 * value is based on a fraction of the managed pages in the
5573 		 * zone.
5574 		 */
5575 		total_pages = zone_managed_pages(zone) / high_fraction;
5576 	}
5577 
5578 	/*
5579 	 * Split the high value across all online CPUs local to the zone. Note
5580 	 * that early in boot that CPUs may not be online yet and that during
5581 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5582 	 * onlined. For memory nodes that have no CPUs, split the high value
5583 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5584 	 * prematurely due to pages stored on pcp lists.
5585 	 */
5586 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5587 	if (!nr_split_cpus)
5588 		nr_split_cpus = num_online_cpus();
5589 	high = total_pages / nr_split_cpus;
5590 
5591 	/*
5592 	 * Ensure high is at least batch*4. The multiple is based on the
5593 	 * historical relationship between high and batch.
5594 	 */
5595 	high = max(high, batch << 2);
5596 
5597 	return high;
5598 #else
5599 	return 0;
5600 #endif
5601 }
5602 
5603 /*
5604  * pcp->high and pcp->batch values are related and generally batch is lower
5605  * than high. They are also related to pcp->count such that count is lower
5606  * than high, and as soon as it reaches high, the pcplist is flushed.
5607  *
5608  * However, guaranteeing these relations at all times would require e.g. write
5609  * barriers here but also careful usage of read barriers at the read side, and
5610  * thus be prone to error and bad for performance. Thus the update only prevents
5611  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5612  * should ensure they can cope with those fields changing asynchronously, and
5613  * fully trust only the pcp->count field on the local CPU with interrupts
5614  * disabled.
5615  *
5616  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5617  * outside of boot time (or some other assurance that no concurrent updaters
5618  * exist).
5619  */
5620 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5621 			   unsigned long high_max, unsigned long batch)
5622 {
5623 	WRITE_ONCE(pcp->batch, batch);
5624 	WRITE_ONCE(pcp->high_min, high_min);
5625 	WRITE_ONCE(pcp->high_max, high_max);
5626 }
5627 
5628 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5629 {
5630 	int pindex;
5631 
5632 	memset(pcp, 0, sizeof(*pcp));
5633 	memset(pzstats, 0, sizeof(*pzstats));
5634 
5635 	spin_lock_init(&pcp->lock);
5636 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5637 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5638 
5639 	/*
5640 	 * Set batch and high values safe for a boot pageset. A true percpu
5641 	 * pageset's initialization will update them subsequently. Here we don't
5642 	 * need to be as careful as pageset_update() as nobody can access the
5643 	 * pageset yet.
5644 	 */
5645 	pcp->high_min = BOOT_PAGESET_HIGH;
5646 	pcp->high_max = BOOT_PAGESET_HIGH;
5647 	pcp->batch = BOOT_PAGESET_BATCH;
5648 	pcp->free_count = 0;
5649 }
5650 
5651 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5652 					      unsigned long high_max, unsigned long batch)
5653 {
5654 	struct per_cpu_pages *pcp;
5655 	int cpu;
5656 
5657 	for_each_possible_cpu(cpu) {
5658 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5659 		pageset_update(pcp, high_min, high_max, batch);
5660 	}
5661 }
5662 
5663 /*
5664  * Calculate and set new high and batch values for all per-cpu pagesets of a
5665  * zone based on the zone's size.
5666  */
5667 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5668 {
5669 	int new_high_min, new_high_max, new_batch;
5670 
5671 	new_batch = max(1, zone_batchsize(zone));
5672 	if (percpu_pagelist_high_fraction) {
5673 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5674 					     percpu_pagelist_high_fraction);
5675 		/*
5676 		 * PCP high is tuned manually, disable auto-tuning via
5677 		 * setting high_min and high_max to the manual value.
5678 		 */
5679 		new_high_max = new_high_min;
5680 	} else {
5681 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5682 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5683 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5684 	}
5685 
5686 	if (zone->pageset_high_min == new_high_min &&
5687 	    zone->pageset_high_max == new_high_max &&
5688 	    zone->pageset_batch == new_batch)
5689 		return;
5690 
5691 	zone->pageset_high_min = new_high_min;
5692 	zone->pageset_high_max = new_high_max;
5693 	zone->pageset_batch = new_batch;
5694 
5695 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5696 					  new_batch);
5697 }
5698 
5699 void __meminit setup_zone_pageset(struct zone *zone)
5700 {
5701 	int cpu;
5702 
5703 	/* Size may be 0 on !SMP && !NUMA */
5704 	if (sizeof(struct per_cpu_zonestat) > 0)
5705 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5706 
5707 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5708 	for_each_possible_cpu(cpu) {
5709 		struct per_cpu_pages *pcp;
5710 		struct per_cpu_zonestat *pzstats;
5711 
5712 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5713 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5714 		per_cpu_pages_init(pcp, pzstats);
5715 	}
5716 
5717 	zone_set_pageset_high_and_batch(zone, 0);
5718 }
5719 
5720 /*
5721  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5722  * page high values need to be recalculated.
5723  */
5724 static void zone_pcp_update(struct zone *zone, int cpu_online)
5725 {
5726 	mutex_lock(&pcp_batch_high_lock);
5727 	zone_set_pageset_high_and_batch(zone, cpu_online);
5728 	mutex_unlock(&pcp_batch_high_lock);
5729 }
5730 
5731 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5732 {
5733 	struct per_cpu_pages *pcp;
5734 	struct cpu_cacheinfo *cci;
5735 
5736 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5737 	cci = get_cpu_cacheinfo(cpu);
5738 	/*
5739 	 * If data cache slice of CPU is large enough, "pcp->batch"
5740 	 * pages can be preserved in PCP before draining PCP for
5741 	 * consecutive high-order pages freeing without allocation.
5742 	 * This can reduce zone lock contention without hurting
5743 	 * cache-hot pages sharing.
5744 	 */
5745 	spin_lock(&pcp->lock);
5746 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5747 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5748 	else
5749 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5750 	spin_unlock(&pcp->lock);
5751 }
5752 
5753 void setup_pcp_cacheinfo(unsigned int cpu)
5754 {
5755 	struct zone *zone;
5756 
5757 	for_each_populated_zone(zone)
5758 		zone_pcp_update_cacheinfo(zone, cpu);
5759 }
5760 
5761 /*
5762  * Allocate per cpu pagesets and initialize them.
5763  * Before this call only boot pagesets were available.
5764  */
5765 void __init setup_per_cpu_pageset(void)
5766 {
5767 	struct pglist_data *pgdat;
5768 	struct zone *zone;
5769 	int __maybe_unused cpu;
5770 
5771 	for_each_populated_zone(zone)
5772 		setup_zone_pageset(zone);
5773 
5774 #ifdef CONFIG_NUMA
5775 	/*
5776 	 * Unpopulated zones continue using the boot pagesets.
5777 	 * The numa stats for these pagesets need to be reset.
5778 	 * Otherwise, they will end up skewing the stats of
5779 	 * the nodes these zones are associated with.
5780 	 */
5781 	for_each_possible_cpu(cpu) {
5782 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5783 		memset(pzstats->vm_numa_event, 0,
5784 		       sizeof(pzstats->vm_numa_event));
5785 	}
5786 #endif
5787 
5788 	for_each_online_pgdat(pgdat)
5789 		pgdat->per_cpu_nodestats =
5790 			alloc_percpu(struct per_cpu_nodestat);
5791 }
5792 
5793 __meminit void zone_pcp_init(struct zone *zone)
5794 {
5795 	/*
5796 	 * per cpu subsystem is not up at this point. The following code
5797 	 * relies on the ability of the linker to provide the
5798 	 * offset of a (static) per cpu variable into the per cpu area.
5799 	 */
5800 	zone->per_cpu_pageset = &boot_pageset;
5801 	zone->per_cpu_zonestats = &boot_zonestats;
5802 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5803 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5804 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5805 
5806 	if (populated_zone(zone))
5807 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5808 			 zone->present_pages, zone_batchsize(zone));
5809 }
5810 
5811 void adjust_managed_page_count(struct page *page, long count)
5812 {
5813 	atomic_long_add(count, &page_zone(page)->managed_pages);
5814 	totalram_pages_add(count);
5815 }
5816 EXPORT_SYMBOL(adjust_managed_page_count);
5817 
5818 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5819 {
5820 	void *pos;
5821 	unsigned long pages = 0;
5822 
5823 	start = (void *)PAGE_ALIGN((unsigned long)start);
5824 	end = (void *)((unsigned long)end & PAGE_MASK);
5825 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5826 		struct page *page = virt_to_page(pos);
5827 		void *direct_map_addr;
5828 
5829 		/*
5830 		 * 'direct_map_addr' might be different from 'pos'
5831 		 * because some architectures' virt_to_page()
5832 		 * work with aliases.  Getting the direct map
5833 		 * address ensures that we get a _writeable_
5834 		 * alias for the memset().
5835 		 */
5836 		direct_map_addr = page_address(page);
5837 		/*
5838 		 * Perform a kasan-unchecked memset() since this memory
5839 		 * has not been initialized.
5840 		 */
5841 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5842 		if ((unsigned int)poison <= 0xFF)
5843 			memset(direct_map_addr, poison, PAGE_SIZE);
5844 
5845 		free_reserved_page(page);
5846 	}
5847 
5848 	if (pages && s)
5849 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5850 
5851 	return pages;
5852 }
5853 
5854 void free_reserved_page(struct page *page)
5855 {
5856 	clear_page_tag_ref(page);
5857 	ClearPageReserved(page);
5858 	init_page_count(page);
5859 	__free_page(page);
5860 	adjust_managed_page_count(page, 1);
5861 }
5862 EXPORT_SYMBOL(free_reserved_page);
5863 
5864 static int page_alloc_cpu_dead(unsigned int cpu)
5865 {
5866 	struct zone *zone;
5867 
5868 	lru_add_drain_cpu(cpu);
5869 	mlock_drain_remote(cpu);
5870 	drain_pages(cpu);
5871 
5872 	/*
5873 	 * Spill the event counters of the dead processor
5874 	 * into the current processors event counters.
5875 	 * This artificially elevates the count of the current
5876 	 * processor.
5877 	 */
5878 	vm_events_fold_cpu(cpu);
5879 
5880 	/*
5881 	 * Zero the differential counters of the dead processor
5882 	 * so that the vm statistics are consistent.
5883 	 *
5884 	 * This is only okay since the processor is dead and cannot
5885 	 * race with what we are doing.
5886 	 */
5887 	cpu_vm_stats_fold(cpu);
5888 
5889 	for_each_populated_zone(zone)
5890 		zone_pcp_update(zone, 0);
5891 
5892 	return 0;
5893 }
5894 
5895 static int page_alloc_cpu_online(unsigned int cpu)
5896 {
5897 	struct zone *zone;
5898 
5899 	for_each_populated_zone(zone)
5900 		zone_pcp_update(zone, 1);
5901 	return 0;
5902 }
5903 
5904 void __init page_alloc_init_cpuhp(void)
5905 {
5906 	int ret;
5907 
5908 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5909 					"mm/page_alloc:pcp",
5910 					page_alloc_cpu_online,
5911 					page_alloc_cpu_dead);
5912 	WARN_ON(ret < 0);
5913 }
5914 
5915 /*
5916  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5917  *	or min_free_kbytes changes.
5918  */
5919 static void calculate_totalreserve_pages(void)
5920 {
5921 	struct pglist_data *pgdat;
5922 	unsigned long reserve_pages = 0;
5923 	enum zone_type i, j;
5924 
5925 	for_each_online_pgdat(pgdat) {
5926 
5927 		pgdat->totalreserve_pages = 0;
5928 
5929 		for (i = 0; i < MAX_NR_ZONES; i++) {
5930 			struct zone *zone = pgdat->node_zones + i;
5931 			long max = 0;
5932 			unsigned long managed_pages = zone_managed_pages(zone);
5933 
5934 			/* Find valid and maximum lowmem_reserve in the zone */
5935 			for (j = i; j < MAX_NR_ZONES; j++) {
5936 				if (zone->lowmem_reserve[j] > max)
5937 					max = zone->lowmem_reserve[j];
5938 			}
5939 
5940 			/* we treat the high watermark as reserved pages. */
5941 			max += high_wmark_pages(zone);
5942 
5943 			if (max > managed_pages)
5944 				max = managed_pages;
5945 
5946 			pgdat->totalreserve_pages += max;
5947 
5948 			reserve_pages += max;
5949 		}
5950 	}
5951 	totalreserve_pages = reserve_pages;
5952 }
5953 
5954 /*
5955  * setup_per_zone_lowmem_reserve - called whenever
5956  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5957  *	has a correct pages reserved value, so an adequate number of
5958  *	pages are left in the zone after a successful __alloc_pages().
5959  */
5960 static void setup_per_zone_lowmem_reserve(void)
5961 {
5962 	struct pglist_data *pgdat;
5963 	enum zone_type i, j;
5964 
5965 	for_each_online_pgdat(pgdat) {
5966 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5967 			struct zone *zone = &pgdat->node_zones[i];
5968 			int ratio = sysctl_lowmem_reserve_ratio[i];
5969 			bool clear = !ratio || !zone_managed_pages(zone);
5970 			unsigned long managed_pages = 0;
5971 
5972 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5973 				struct zone *upper_zone = &pgdat->node_zones[j];
5974 				bool empty = !zone_managed_pages(upper_zone);
5975 
5976 				managed_pages += zone_managed_pages(upper_zone);
5977 
5978 				if (clear || empty)
5979 					zone->lowmem_reserve[j] = 0;
5980 				else
5981 					zone->lowmem_reserve[j] = managed_pages / ratio;
5982 			}
5983 		}
5984 	}
5985 
5986 	/* update totalreserve_pages */
5987 	calculate_totalreserve_pages();
5988 }
5989 
5990 static void __setup_per_zone_wmarks(void)
5991 {
5992 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5993 	unsigned long lowmem_pages = 0;
5994 	struct zone *zone;
5995 	unsigned long flags;
5996 
5997 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5998 	for_each_zone(zone) {
5999 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6000 			lowmem_pages += zone_managed_pages(zone);
6001 	}
6002 
6003 	for_each_zone(zone) {
6004 		u64 tmp;
6005 
6006 		spin_lock_irqsave(&zone->lock, flags);
6007 		tmp = (u64)pages_min * zone_managed_pages(zone);
6008 		tmp = div64_ul(tmp, lowmem_pages);
6009 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6010 			/*
6011 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6012 			 * need highmem and movable zones pages, so cap pages_min
6013 			 * to a small  value here.
6014 			 *
6015 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6016 			 * deltas control async page reclaim, and so should
6017 			 * not be capped for highmem and movable zones.
6018 			 */
6019 			unsigned long min_pages;
6020 
6021 			min_pages = zone_managed_pages(zone) / 1024;
6022 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6023 			zone->_watermark[WMARK_MIN] = min_pages;
6024 		} else {
6025 			/*
6026 			 * If it's a lowmem zone, reserve a number of pages
6027 			 * proportionate to the zone's size.
6028 			 */
6029 			zone->_watermark[WMARK_MIN] = tmp;
6030 		}
6031 
6032 		/*
6033 		 * Set the kswapd watermarks distance according to the
6034 		 * scale factor in proportion to available memory, but
6035 		 * ensure a minimum size on small systems.
6036 		 */
6037 		tmp = max_t(u64, tmp >> 2,
6038 			    mult_frac(zone_managed_pages(zone),
6039 				      watermark_scale_factor, 10000));
6040 
6041 		zone->watermark_boost = 0;
6042 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6043 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6044 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6045 
6046 		spin_unlock_irqrestore(&zone->lock, flags);
6047 	}
6048 
6049 	/* update totalreserve_pages */
6050 	calculate_totalreserve_pages();
6051 }
6052 
6053 /**
6054  * setup_per_zone_wmarks - called when min_free_kbytes changes
6055  * or when memory is hot-{added|removed}
6056  *
6057  * Ensures that the watermark[min,low,high] values for each zone are set
6058  * correctly with respect to min_free_kbytes.
6059  */
6060 void setup_per_zone_wmarks(void)
6061 {
6062 	struct zone *zone;
6063 	static DEFINE_SPINLOCK(lock);
6064 
6065 	spin_lock(&lock);
6066 	__setup_per_zone_wmarks();
6067 	spin_unlock(&lock);
6068 
6069 	/*
6070 	 * The watermark size have changed so update the pcpu batch
6071 	 * and high limits or the limits may be inappropriate.
6072 	 */
6073 	for_each_zone(zone)
6074 		zone_pcp_update(zone, 0);
6075 }
6076 
6077 /*
6078  * Initialise min_free_kbytes.
6079  *
6080  * For small machines we want it small (128k min).  For large machines
6081  * we want it large (256MB max).  But it is not linear, because network
6082  * bandwidth does not increase linearly with machine size.  We use
6083  *
6084  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6085  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6086  *
6087  * which yields
6088  *
6089  * 16MB:	512k
6090  * 32MB:	724k
6091  * 64MB:	1024k
6092  * 128MB:	1448k
6093  * 256MB:	2048k
6094  * 512MB:	2896k
6095  * 1024MB:	4096k
6096  * 2048MB:	5792k
6097  * 4096MB:	8192k
6098  * 8192MB:	11584k
6099  * 16384MB:	16384k
6100  */
6101 void calculate_min_free_kbytes(void)
6102 {
6103 	unsigned long lowmem_kbytes;
6104 	int new_min_free_kbytes;
6105 
6106 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6107 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6108 
6109 	if (new_min_free_kbytes > user_min_free_kbytes)
6110 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6111 	else
6112 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6113 				new_min_free_kbytes, user_min_free_kbytes);
6114 
6115 }
6116 
6117 int __meminit init_per_zone_wmark_min(void)
6118 {
6119 	calculate_min_free_kbytes();
6120 	setup_per_zone_wmarks();
6121 	refresh_zone_stat_thresholds();
6122 	setup_per_zone_lowmem_reserve();
6123 
6124 #ifdef CONFIG_NUMA
6125 	setup_min_unmapped_ratio();
6126 	setup_min_slab_ratio();
6127 #endif
6128 
6129 	khugepaged_min_free_kbytes_update();
6130 
6131 	return 0;
6132 }
6133 postcore_initcall(init_per_zone_wmark_min)
6134 
6135 /*
6136  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6137  *	that we can call two helper functions whenever min_free_kbytes
6138  *	changes.
6139  */
6140 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6141 		void *buffer, size_t *length, loff_t *ppos)
6142 {
6143 	int rc;
6144 
6145 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6146 	if (rc)
6147 		return rc;
6148 
6149 	if (write) {
6150 		user_min_free_kbytes = min_free_kbytes;
6151 		setup_per_zone_wmarks();
6152 	}
6153 	return 0;
6154 }
6155 
6156 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6157 		void *buffer, size_t *length, loff_t *ppos)
6158 {
6159 	int rc;
6160 
6161 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6162 	if (rc)
6163 		return rc;
6164 
6165 	if (write)
6166 		setup_per_zone_wmarks();
6167 
6168 	return 0;
6169 }
6170 
6171 #ifdef CONFIG_NUMA
6172 static void setup_min_unmapped_ratio(void)
6173 {
6174 	pg_data_t *pgdat;
6175 	struct zone *zone;
6176 
6177 	for_each_online_pgdat(pgdat)
6178 		pgdat->min_unmapped_pages = 0;
6179 
6180 	for_each_zone(zone)
6181 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6182 						         sysctl_min_unmapped_ratio) / 100;
6183 }
6184 
6185 
6186 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6187 		void *buffer, size_t *length, loff_t *ppos)
6188 {
6189 	int rc;
6190 
6191 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6192 	if (rc)
6193 		return rc;
6194 
6195 	setup_min_unmapped_ratio();
6196 
6197 	return 0;
6198 }
6199 
6200 static void setup_min_slab_ratio(void)
6201 {
6202 	pg_data_t *pgdat;
6203 	struct zone *zone;
6204 
6205 	for_each_online_pgdat(pgdat)
6206 		pgdat->min_slab_pages = 0;
6207 
6208 	for_each_zone(zone)
6209 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6210 						     sysctl_min_slab_ratio) / 100;
6211 }
6212 
6213 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6214 		void *buffer, size_t *length, loff_t *ppos)
6215 {
6216 	int rc;
6217 
6218 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6219 	if (rc)
6220 		return rc;
6221 
6222 	setup_min_slab_ratio();
6223 
6224 	return 0;
6225 }
6226 #endif
6227 
6228 /*
6229  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6230  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6231  *	whenever sysctl_lowmem_reserve_ratio changes.
6232  *
6233  * The reserve ratio obviously has absolutely no relation with the
6234  * minimum watermarks. The lowmem reserve ratio can only make sense
6235  * if in function of the boot time zone sizes.
6236  */
6237 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6238 		int write, void *buffer, size_t *length, loff_t *ppos)
6239 {
6240 	int i;
6241 
6242 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6243 
6244 	for (i = 0; i < MAX_NR_ZONES; i++) {
6245 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6246 			sysctl_lowmem_reserve_ratio[i] = 0;
6247 	}
6248 
6249 	setup_per_zone_lowmem_reserve();
6250 	return 0;
6251 }
6252 
6253 /*
6254  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6255  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6256  * pagelist can have before it gets flushed back to buddy allocator.
6257  */
6258 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6259 		int write, void *buffer, size_t *length, loff_t *ppos)
6260 {
6261 	struct zone *zone;
6262 	int old_percpu_pagelist_high_fraction;
6263 	int ret;
6264 
6265 	mutex_lock(&pcp_batch_high_lock);
6266 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6267 
6268 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6269 	if (!write || ret < 0)
6270 		goto out;
6271 
6272 	/* Sanity checking to avoid pcp imbalance */
6273 	if (percpu_pagelist_high_fraction &&
6274 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6275 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6276 		ret = -EINVAL;
6277 		goto out;
6278 	}
6279 
6280 	/* No change? */
6281 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6282 		goto out;
6283 
6284 	for_each_populated_zone(zone)
6285 		zone_set_pageset_high_and_batch(zone, 0);
6286 out:
6287 	mutex_unlock(&pcp_batch_high_lock);
6288 	return ret;
6289 }
6290 
6291 static struct ctl_table page_alloc_sysctl_table[] = {
6292 	{
6293 		.procname	= "min_free_kbytes",
6294 		.data		= &min_free_kbytes,
6295 		.maxlen		= sizeof(min_free_kbytes),
6296 		.mode		= 0644,
6297 		.proc_handler	= min_free_kbytes_sysctl_handler,
6298 		.extra1		= SYSCTL_ZERO,
6299 	},
6300 	{
6301 		.procname	= "watermark_boost_factor",
6302 		.data		= &watermark_boost_factor,
6303 		.maxlen		= sizeof(watermark_boost_factor),
6304 		.mode		= 0644,
6305 		.proc_handler	= proc_dointvec_minmax,
6306 		.extra1		= SYSCTL_ZERO,
6307 	},
6308 	{
6309 		.procname	= "watermark_scale_factor",
6310 		.data		= &watermark_scale_factor,
6311 		.maxlen		= sizeof(watermark_scale_factor),
6312 		.mode		= 0644,
6313 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6314 		.extra1		= SYSCTL_ONE,
6315 		.extra2		= SYSCTL_THREE_THOUSAND,
6316 	},
6317 	{
6318 		.procname	= "percpu_pagelist_high_fraction",
6319 		.data		= &percpu_pagelist_high_fraction,
6320 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6321 		.mode		= 0644,
6322 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6323 		.extra1		= SYSCTL_ZERO,
6324 	},
6325 	{
6326 		.procname	= "lowmem_reserve_ratio",
6327 		.data		= &sysctl_lowmem_reserve_ratio,
6328 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6329 		.mode		= 0644,
6330 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6331 	},
6332 #ifdef CONFIG_NUMA
6333 	{
6334 		.procname	= "numa_zonelist_order",
6335 		.data		= &numa_zonelist_order,
6336 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6337 		.mode		= 0644,
6338 		.proc_handler	= numa_zonelist_order_handler,
6339 	},
6340 	{
6341 		.procname	= "min_unmapped_ratio",
6342 		.data		= &sysctl_min_unmapped_ratio,
6343 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6344 		.mode		= 0644,
6345 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6346 		.extra1		= SYSCTL_ZERO,
6347 		.extra2		= SYSCTL_ONE_HUNDRED,
6348 	},
6349 	{
6350 		.procname	= "min_slab_ratio",
6351 		.data		= &sysctl_min_slab_ratio,
6352 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6353 		.mode		= 0644,
6354 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6355 		.extra1		= SYSCTL_ZERO,
6356 		.extra2		= SYSCTL_ONE_HUNDRED,
6357 	},
6358 #endif
6359 };
6360 
6361 void __init page_alloc_sysctl_init(void)
6362 {
6363 	register_sysctl_init("vm", page_alloc_sysctl_table);
6364 }
6365 
6366 #ifdef CONFIG_CONTIG_ALLOC
6367 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6368 static void alloc_contig_dump_pages(struct list_head *page_list)
6369 {
6370 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6371 
6372 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6373 		struct page *page;
6374 
6375 		dump_stack();
6376 		list_for_each_entry(page, page_list, lru)
6377 			dump_page(page, "migration failure");
6378 	}
6379 }
6380 
6381 /*
6382  * [start, end) must belong to a single zone.
6383  * @migratetype: using migratetype to filter the type of migration in
6384  *		trace_mm_alloc_contig_migrate_range_info.
6385  */
6386 int __alloc_contig_migrate_range(struct compact_control *cc,
6387 					unsigned long start, unsigned long end,
6388 					int migratetype)
6389 {
6390 	/* This function is based on compact_zone() from compaction.c. */
6391 	unsigned int nr_reclaimed;
6392 	unsigned long pfn = start;
6393 	unsigned int tries = 0;
6394 	int ret = 0;
6395 	struct migration_target_control mtc = {
6396 		.nid = zone_to_nid(cc->zone),
6397 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6398 		.reason = MR_CONTIG_RANGE,
6399 	};
6400 	struct page *page;
6401 	unsigned long total_mapped = 0;
6402 	unsigned long total_migrated = 0;
6403 	unsigned long total_reclaimed = 0;
6404 
6405 	lru_cache_disable();
6406 
6407 	while (pfn < end || !list_empty(&cc->migratepages)) {
6408 		if (fatal_signal_pending(current)) {
6409 			ret = -EINTR;
6410 			break;
6411 		}
6412 
6413 		if (list_empty(&cc->migratepages)) {
6414 			cc->nr_migratepages = 0;
6415 			ret = isolate_migratepages_range(cc, pfn, end);
6416 			if (ret && ret != -EAGAIN)
6417 				break;
6418 			pfn = cc->migrate_pfn;
6419 			tries = 0;
6420 		} else if (++tries == 5) {
6421 			ret = -EBUSY;
6422 			break;
6423 		}
6424 
6425 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6426 							&cc->migratepages);
6427 		cc->nr_migratepages -= nr_reclaimed;
6428 
6429 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6430 			total_reclaimed += nr_reclaimed;
6431 			list_for_each_entry(page, &cc->migratepages, lru) {
6432 				struct folio *folio = page_folio(page);
6433 
6434 				total_mapped += folio_mapped(folio) *
6435 						folio_nr_pages(folio);
6436 			}
6437 		}
6438 
6439 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6440 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6441 
6442 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6443 			total_migrated += cc->nr_migratepages;
6444 
6445 		/*
6446 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6447 		 * to retry again over this error, so do the same here.
6448 		 */
6449 		if (ret == -ENOMEM)
6450 			break;
6451 	}
6452 
6453 	lru_cache_enable();
6454 	if (ret < 0) {
6455 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6456 			alloc_contig_dump_pages(&cc->migratepages);
6457 		putback_movable_pages(&cc->migratepages);
6458 	}
6459 
6460 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6461 						 total_migrated,
6462 						 total_reclaimed,
6463 						 total_mapped);
6464 	return (ret < 0) ? ret : 0;
6465 }
6466 
6467 static void split_free_pages(struct list_head *list)
6468 {
6469 	int order;
6470 
6471 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6472 		struct page *page, *next;
6473 		int nr_pages = 1 << order;
6474 
6475 		list_for_each_entry_safe(page, next, &list[order], lru) {
6476 			int i;
6477 
6478 			post_alloc_hook(page, order, __GFP_MOVABLE);
6479 			if (!order)
6480 				continue;
6481 
6482 			split_page(page, order);
6483 
6484 			/* Add all subpages to the order-0 head, in sequence. */
6485 			list_del(&page->lru);
6486 			for (i = 0; i < nr_pages; i++)
6487 				list_add_tail(&page[i].lru, &list[0]);
6488 		}
6489 	}
6490 }
6491 
6492 /**
6493  * alloc_contig_range() -- tries to allocate given range of pages
6494  * @start:	start PFN to allocate
6495  * @end:	one-past-the-last PFN to allocate
6496  * @migratetype:	migratetype of the underlying pageblocks (either
6497  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6498  *			in range must have the same migratetype and it must
6499  *			be either of the two.
6500  * @gfp_mask:	GFP mask to use during compaction
6501  *
6502  * The PFN range does not have to be pageblock aligned. The PFN range must
6503  * belong to a single zone.
6504  *
6505  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6506  * pageblocks in the range.  Once isolated, the pageblocks should not
6507  * be modified by others.
6508  *
6509  * Return: zero on success or negative error code.  On success all
6510  * pages which PFN is in [start, end) are allocated for the caller and
6511  * need to be freed with free_contig_range().
6512  */
6513 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6514 		       unsigned migratetype, gfp_t gfp_mask)
6515 {
6516 	unsigned long outer_start, outer_end;
6517 	int ret = 0;
6518 
6519 	struct compact_control cc = {
6520 		.nr_migratepages = 0,
6521 		.order = -1,
6522 		.zone = page_zone(pfn_to_page(start)),
6523 		.mode = MIGRATE_SYNC,
6524 		.ignore_skip_hint = true,
6525 		.no_set_skip_hint = true,
6526 		.gfp_mask = current_gfp_context(gfp_mask),
6527 		.alloc_contig = true,
6528 	};
6529 	INIT_LIST_HEAD(&cc.migratepages);
6530 
6531 	/*
6532 	 * What we do here is we mark all pageblocks in range as
6533 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6534 	 * have different sizes, and due to the way page allocator
6535 	 * work, start_isolate_page_range() has special handlings for this.
6536 	 *
6537 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6538 	 * migrate the pages from an unaligned range (ie. pages that
6539 	 * we are interested in). This will put all the pages in
6540 	 * range back to page allocator as MIGRATE_ISOLATE.
6541 	 *
6542 	 * When this is done, we take the pages in range from page
6543 	 * allocator removing them from the buddy system.  This way
6544 	 * page allocator will never consider using them.
6545 	 *
6546 	 * This lets us mark the pageblocks back as
6547 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6548 	 * aligned range but not in the unaligned, original range are
6549 	 * put back to page allocator so that buddy can use them.
6550 	 */
6551 
6552 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6553 	if (ret)
6554 		goto done;
6555 
6556 	drain_all_pages(cc.zone);
6557 
6558 	/*
6559 	 * In case of -EBUSY, we'd like to know which page causes problem.
6560 	 * So, just fall through. test_pages_isolated() has a tracepoint
6561 	 * which will report the busy page.
6562 	 *
6563 	 * It is possible that busy pages could become available before
6564 	 * the call to test_pages_isolated, and the range will actually be
6565 	 * allocated.  So, if we fall through be sure to clear ret so that
6566 	 * -EBUSY is not accidentally used or returned to caller.
6567 	 */
6568 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6569 	if (ret && ret != -EBUSY)
6570 		goto done;
6571 	ret = 0;
6572 
6573 	/*
6574 	 * Pages from [start, end) are within a pageblock_nr_pages
6575 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6576 	 * more, all pages in [start, end) are free in page allocator.
6577 	 * What we are going to do is to allocate all pages from
6578 	 * [start, end) (that is remove them from page allocator).
6579 	 *
6580 	 * The only problem is that pages at the beginning and at the
6581 	 * end of interesting range may be not aligned with pages that
6582 	 * page allocator holds, ie. they can be part of higher order
6583 	 * pages.  Because of this, we reserve the bigger range and
6584 	 * once this is done free the pages we are not interested in.
6585 	 *
6586 	 * We don't have to hold zone->lock here because the pages are
6587 	 * isolated thus they won't get removed from buddy.
6588 	 */
6589 	outer_start = find_large_buddy(start);
6590 
6591 	/* Make sure the range is really isolated. */
6592 	if (test_pages_isolated(outer_start, end, 0)) {
6593 		ret = -EBUSY;
6594 		goto done;
6595 	}
6596 
6597 	/* Grab isolated pages from freelists. */
6598 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6599 	if (!outer_end) {
6600 		ret = -EBUSY;
6601 		goto done;
6602 	}
6603 
6604 	if (!(gfp_mask & __GFP_COMP)) {
6605 		split_free_pages(cc.freepages);
6606 
6607 		/* Free head and tail (if any) */
6608 		if (start != outer_start)
6609 			free_contig_range(outer_start, start - outer_start);
6610 		if (end != outer_end)
6611 			free_contig_range(end, outer_end - end);
6612 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6613 		struct page *head = pfn_to_page(start);
6614 		int order = ilog2(end - start);
6615 
6616 		check_new_pages(head, order);
6617 		prep_new_page(head, order, gfp_mask, 0);
6618 	} else {
6619 		ret = -EINVAL;
6620 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6621 		     start, end, outer_start, outer_end);
6622 	}
6623 done:
6624 	undo_isolate_page_range(start, end, migratetype);
6625 	return ret;
6626 }
6627 EXPORT_SYMBOL(alloc_contig_range_noprof);
6628 
6629 static int __alloc_contig_pages(unsigned long start_pfn,
6630 				unsigned long nr_pages, gfp_t gfp_mask)
6631 {
6632 	unsigned long end_pfn = start_pfn + nr_pages;
6633 
6634 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6635 				   gfp_mask);
6636 }
6637 
6638 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6639 				   unsigned long nr_pages)
6640 {
6641 	unsigned long i, end_pfn = start_pfn + nr_pages;
6642 	struct page *page;
6643 
6644 	for (i = start_pfn; i < end_pfn; i++) {
6645 		page = pfn_to_online_page(i);
6646 		if (!page)
6647 			return false;
6648 
6649 		if (page_zone(page) != z)
6650 			return false;
6651 
6652 		if (PageReserved(page))
6653 			return false;
6654 
6655 		if (PageHuge(page))
6656 			return false;
6657 	}
6658 	return true;
6659 }
6660 
6661 static bool zone_spans_last_pfn(const struct zone *zone,
6662 				unsigned long start_pfn, unsigned long nr_pages)
6663 {
6664 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6665 
6666 	return zone_spans_pfn(zone, last_pfn);
6667 }
6668 
6669 /**
6670  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6671  * @nr_pages:	Number of contiguous pages to allocate
6672  * @gfp_mask:	GFP mask to limit search and used during compaction
6673  * @nid:	Target node
6674  * @nodemask:	Mask for other possible nodes
6675  *
6676  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6677  * on an applicable zonelist to find a contiguous pfn range which can then be
6678  * tried for allocation with alloc_contig_range(). This routine is intended
6679  * for allocation requests which can not be fulfilled with the buddy allocator.
6680  *
6681  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6682  * power of two, then allocated range is also guaranteed to be aligned to same
6683  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6684  *
6685  * Allocated pages can be freed with free_contig_range() or by manually calling
6686  * __free_page() on each allocated page.
6687  *
6688  * Return: pointer to contiguous pages on success, or NULL if not successful.
6689  */
6690 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6691 				 int nid, nodemask_t *nodemask)
6692 {
6693 	unsigned long ret, pfn, flags;
6694 	struct zonelist *zonelist;
6695 	struct zone *zone;
6696 	struct zoneref *z;
6697 
6698 	zonelist = node_zonelist(nid, gfp_mask);
6699 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6700 					gfp_zone(gfp_mask), nodemask) {
6701 		spin_lock_irqsave(&zone->lock, flags);
6702 
6703 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6704 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6705 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6706 				/*
6707 				 * We release the zone lock here because
6708 				 * alloc_contig_range() will also lock the zone
6709 				 * at some point. If there's an allocation
6710 				 * spinning on this lock, it may win the race
6711 				 * and cause alloc_contig_range() to fail...
6712 				 */
6713 				spin_unlock_irqrestore(&zone->lock, flags);
6714 				ret = __alloc_contig_pages(pfn, nr_pages,
6715 							gfp_mask);
6716 				if (!ret)
6717 					return pfn_to_page(pfn);
6718 				spin_lock_irqsave(&zone->lock, flags);
6719 			}
6720 			pfn += nr_pages;
6721 		}
6722 		spin_unlock_irqrestore(&zone->lock, flags);
6723 	}
6724 	return NULL;
6725 }
6726 #endif /* CONFIG_CONTIG_ALLOC */
6727 
6728 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6729 {
6730 	unsigned long count = 0;
6731 	struct folio *folio = pfn_folio(pfn);
6732 
6733 	if (folio_test_large(folio)) {
6734 		int expected = folio_nr_pages(folio);
6735 
6736 		if (nr_pages == expected)
6737 			folio_put(folio);
6738 		else
6739 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6740 			     pfn, nr_pages, expected);
6741 		return;
6742 	}
6743 
6744 	for (; nr_pages--; pfn++) {
6745 		struct page *page = pfn_to_page(pfn);
6746 
6747 		count += page_count(page) != 1;
6748 		__free_page(page);
6749 	}
6750 	WARN(count != 0, "%lu pages are still in use!\n", count);
6751 }
6752 EXPORT_SYMBOL(free_contig_range);
6753 
6754 /*
6755  * Effectively disable pcplists for the zone by setting the high limit to 0
6756  * and draining all cpus. A concurrent page freeing on another CPU that's about
6757  * to put the page on pcplist will either finish before the drain and the page
6758  * will be drained, or observe the new high limit and skip the pcplist.
6759  *
6760  * Must be paired with a call to zone_pcp_enable().
6761  */
6762 void zone_pcp_disable(struct zone *zone)
6763 {
6764 	mutex_lock(&pcp_batch_high_lock);
6765 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6766 	__drain_all_pages(zone, true);
6767 }
6768 
6769 void zone_pcp_enable(struct zone *zone)
6770 {
6771 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6772 		zone->pageset_high_max, zone->pageset_batch);
6773 	mutex_unlock(&pcp_batch_high_lock);
6774 }
6775 
6776 void zone_pcp_reset(struct zone *zone)
6777 {
6778 	int cpu;
6779 	struct per_cpu_zonestat *pzstats;
6780 
6781 	if (zone->per_cpu_pageset != &boot_pageset) {
6782 		for_each_online_cpu(cpu) {
6783 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6784 			drain_zonestat(zone, pzstats);
6785 		}
6786 		free_percpu(zone->per_cpu_pageset);
6787 		zone->per_cpu_pageset = &boot_pageset;
6788 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6789 			free_percpu(zone->per_cpu_zonestats);
6790 			zone->per_cpu_zonestats = &boot_zonestats;
6791 		}
6792 	}
6793 }
6794 
6795 #ifdef CONFIG_MEMORY_HOTREMOVE
6796 /*
6797  * All pages in the range must be in a single zone, must not contain holes,
6798  * must span full sections, and must be isolated before calling this function.
6799  *
6800  * Returns the number of managed (non-PageOffline()) pages in the range: the
6801  * number of pages for which memory offlining code must adjust managed page
6802  * counters using adjust_managed_page_count().
6803  */
6804 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6805 		unsigned long end_pfn)
6806 {
6807 	unsigned long already_offline = 0, flags;
6808 	unsigned long pfn = start_pfn;
6809 	struct page *page;
6810 	struct zone *zone;
6811 	unsigned int order;
6812 
6813 	offline_mem_sections(pfn, end_pfn);
6814 	zone = page_zone(pfn_to_page(pfn));
6815 	spin_lock_irqsave(&zone->lock, flags);
6816 	while (pfn < end_pfn) {
6817 		page = pfn_to_page(pfn);
6818 		/*
6819 		 * The HWPoisoned page may be not in buddy system, and
6820 		 * page_count() is not 0.
6821 		 */
6822 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6823 			pfn++;
6824 			continue;
6825 		}
6826 		/*
6827 		 * At this point all remaining PageOffline() pages have a
6828 		 * reference count of 0 and can simply be skipped.
6829 		 */
6830 		if (PageOffline(page)) {
6831 			BUG_ON(page_count(page));
6832 			BUG_ON(PageBuddy(page));
6833 			already_offline++;
6834 			pfn++;
6835 			continue;
6836 		}
6837 
6838 		BUG_ON(page_count(page));
6839 		BUG_ON(!PageBuddy(page));
6840 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6841 		order = buddy_order(page);
6842 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6843 		pfn += (1 << order);
6844 	}
6845 	spin_unlock_irqrestore(&zone->lock, flags);
6846 
6847 	return end_pfn - start_pfn - already_offline;
6848 }
6849 #endif
6850 
6851 /*
6852  * This function returns a stable result only if called under zone lock.
6853  */
6854 bool is_free_buddy_page(const struct page *page)
6855 {
6856 	unsigned long pfn = page_to_pfn(page);
6857 	unsigned int order;
6858 
6859 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6860 		const struct page *head = page - (pfn & ((1 << order) - 1));
6861 
6862 		if (PageBuddy(head) &&
6863 		    buddy_order_unsafe(head) >= order)
6864 			break;
6865 	}
6866 
6867 	return order <= MAX_PAGE_ORDER;
6868 }
6869 EXPORT_SYMBOL(is_free_buddy_page);
6870 
6871 #ifdef CONFIG_MEMORY_FAILURE
6872 static inline void add_to_free_list(struct page *page, struct zone *zone,
6873 				    unsigned int order, int migratetype,
6874 				    bool tail)
6875 {
6876 	__add_to_free_list(page, zone, order, migratetype, tail);
6877 	account_freepages(zone, 1 << order, migratetype);
6878 }
6879 
6880 /*
6881  * Break down a higher-order page in sub-pages, and keep our target out of
6882  * buddy allocator.
6883  */
6884 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6885 				   struct page *target, int low, int high,
6886 				   int migratetype)
6887 {
6888 	unsigned long size = 1 << high;
6889 	struct page *current_buddy;
6890 
6891 	while (high > low) {
6892 		high--;
6893 		size >>= 1;
6894 
6895 		if (target >= &page[size]) {
6896 			current_buddy = page;
6897 			page = page + size;
6898 		} else {
6899 			current_buddy = page + size;
6900 		}
6901 
6902 		if (set_page_guard(zone, current_buddy, high))
6903 			continue;
6904 
6905 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6906 		set_buddy_order(current_buddy, high);
6907 	}
6908 }
6909 
6910 /*
6911  * Take a page that will be marked as poisoned off the buddy allocator.
6912  */
6913 bool take_page_off_buddy(struct page *page)
6914 {
6915 	struct zone *zone = page_zone(page);
6916 	unsigned long pfn = page_to_pfn(page);
6917 	unsigned long flags;
6918 	unsigned int order;
6919 	bool ret = false;
6920 
6921 	spin_lock_irqsave(&zone->lock, flags);
6922 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6923 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6924 		int page_order = buddy_order(page_head);
6925 
6926 		if (PageBuddy(page_head) && page_order >= order) {
6927 			unsigned long pfn_head = page_to_pfn(page_head);
6928 			int migratetype = get_pfnblock_migratetype(page_head,
6929 								   pfn_head);
6930 
6931 			del_page_from_free_list(page_head, zone, page_order,
6932 						migratetype);
6933 			break_down_buddy_pages(zone, page_head, page, 0,
6934 						page_order, migratetype);
6935 			SetPageHWPoisonTakenOff(page);
6936 			ret = true;
6937 			break;
6938 		}
6939 		if (page_count(page_head) > 0)
6940 			break;
6941 	}
6942 	spin_unlock_irqrestore(&zone->lock, flags);
6943 	return ret;
6944 }
6945 
6946 /*
6947  * Cancel takeoff done by take_page_off_buddy().
6948  */
6949 bool put_page_back_buddy(struct page *page)
6950 {
6951 	struct zone *zone = page_zone(page);
6952 	unsigned long flags;
6953 	bool ret = false;
6954 
6955 	spin_lock_irqsave(&zone->lock, flags);
6956 	if (put_page_testzero(page)) {
6957 		unsigned long pfn = page_to_pfn(page);
6958 		int migratetype = get_pfnblock_migratetype(page, pfn);
6959 
6960 		ClearPageHWPoisonTakenOff(page);
6961 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6962 		if (TestClearPageHWPoison(page)) {
6963 			ret = true;
6964 		}
6965 	}
6966 	spin_unlock_irqrestore(&zone->lock, flags);
6967 
6968 	return ret;
6969 }
6970 #endif
6971 
6972 #ifdef CONFIG_ZONE_DMA
6973 bool has_managed_dma(void)
6974 {
6975 	struct pglist_data *pgdat;
6976 
6977 	for_each_online_pgdat(pgdat) {
6978 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6979 
6980 		if (managed_zone(zone))
6981 			return true;
6982 	}
6983 	return false;
6984 }
6985 #endif /* CONFIG_ZONE_DMA */
6986 
6987 #ifdef CONFIG_UNACCEPTED_MEMORY
6988 
6989 /* Counts number of zones with unaccepted pages. */
6990 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6991 
6992 static bool lazy_accept = true;
6993 
6994 static int __init accept_memory_parse(char *p)
6995 {
6996 	if (!strcmp(p, "lazy")) {
6997 		lazy_accept = true;
6998 		return 0;
6999 	} else if (!strcmp(p, "eager")) {
7000 		lazy_accept = false;
7001 		return 0;
7002 	} else {
7003 		return -EINVAL;
7004 	}
7005 }
7006 early_param("accept_memory", accept_memory_parse);
7007 
7008 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7009 {
7010 	phys_addr_t start = page_to_phys(page);
7011 
7012 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7013 }
7014 
7015 static void __accept_page(struct zone *zone, unsigned long *flags,
7016 			  struct page *page)
7017 {
7018 	bool last;
7019 
7020 	list_del(&page->lru);
7021 	last = list_empty(&zone->unaccepted_pages);
7022 
7023 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7024 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7025 	__ClearPageUnaccepted(page);
7026 	spin_unlock_irqrestore(&zone->lock, *flags);
7027 
7028 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7029 
7030 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7031 
7032 	if (last)
7033 		static_branch_dec(&zones_with_unaccepted_pages);
7034 }
7035 
7036 void accept_page(struct page *page)
7037 {
7038 	struct zone *zone = page_zone(page);
7039 	unsigned long flags;
7040 
7041 	spin_lock_irqsave(&zone->lock, flags);
7042 	if (!PageUnaccepted(page)) {
7043 		spin_unlock_irqrestore(&zone->lock, flags);
7044 		return;
7045 	}
7046 
7047 	/* Unlocks zone->lock */
7048 	__accept_page(zone, &flags, page);
7049 }
7050 
7051 static bool try_to_accept_memory_one(struct zone *zone)
7052 {
7053 	unsigned long flags;
7054 	struct page *page;
7055 
7056 	spin_lock_irqsave(&zone->lock, flags);
7057 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7058 					struct page, lru);
7059 	if (!page) {
7060 		spin_unlock_irqrestore(&zone->lock, flags);
7061 		return false;
7062 	}
7063 
7064 	/* Unlocks zone->lock */
7065 	__accept_page(zone, &flags, page);
7066 
7067 	return true;
7068 }
7069 
7070 static inline bool has_unaccepted_memory(void)
7071 {
7072 	return static_branch_unlikely(&zones_with_unaccepted_pages);
7073 }
7074 
7075 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7076 {
7077 	long to_accept;
7078 	bool ret = false;
7079 
7080 	if (!has_unaccepted_memory())
7081 		return false;
7082 
7083 	if (list_empty(&zone->unaccepted_pages))
7084 		return false;
7085 
7086 	/* How much to accept to get to promo watermark? */
7087 	to_accept = promo_wmark_pages(zone) -
7088 		    (zone_page_state(zone, NR_FREE_PAGES) -
7089 		    __zone_watermark_unusable_free(zone, order, 0) -
7090 		    zone_page_state(zone, NR_UNACCEPTED));
7091 
7092 	while (to_accept > 0) {
7093 		if (!try_to_accept_memory_one(zone))
7094 			break;
7095 		ret = true;
7096 		to_accept -= MAX_ORDER_NR_PAGES;
7097 	}
7098 
7099 	return ret;
7100 }
7101 
7102 static bool __free_unaccepted(struct page *page)
7103 {
7104 	struct zone *zone = page_zone(page);
7105 	unsigned long flags;
7106 	bool first = false;
7107 
7108 	if (!lazy_accept)
7109 		return false;
7110 
7111 	spin_lock_irqsave(&zone->lock, flags);
7112 	first = list_empty(&zone->unaccepted_pages);
7113 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7114 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7115 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7116 	__SetPageUnaccepted(page);
7117 	spin_unlock_irqrestore(&zone->lock, flags);
7118 
7119 	if (first)
7120 		static_branch_inc(&zones_with_unaccepted_pages);
7121 
7122 	return true;
7123 }
7124 
7125 #else
7126 
7127 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7128 {
7129 	return false;
7130 }
7131 
7132 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7133 {
7134 	return false;
7135 }
7136 
7137 static bool __free_unaccepted(struct page *page)
7138 {
7139 	BUILD_BUG();
7140 	return false;
7141 }
7142 
7143 #endif /* CONFIG_UNACCEPTED_MEMORY */
7144