1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/highmem.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/jiffies.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/topology.h> 36 #include <linux/sysctl.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/memory_hotplug.h> 40 #include <linux/nodemask.h> 41 #include <linux/vmalloc.h> 42 #include <linux/vmstat.h> 43 #include <linux/mempolicy.h> 44 #include <linux/memremap.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_ext.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <trace/events/oom.h> 57 #include <linux/prefetch.h> 58 #include <linux/mm_inline.h> 59 #include <linux/migrate.h> 60 #include <linux/hugetlb.h> 61 #include <linux/sched/rt.h> 62 #include <linux/sched/mm.h> 63 #include <linux/page_owner.h> 64 #include <linux/kthread.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/lockdep.h> 68 #include <linux/nmi.h> 69 #include <linux/psi.h> 70 71 #include <asm/sections.h> 72 #include <asm/tlbflush.h> 73 #include <asm/div64.h> 74 #include "internal.h" 75 76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 77 static DEFINE_MUTEX(pcp_batch_high_lock); 78 #define MIN_PERCPU_PAGELIST_FRACTION (8) 79 80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 81 DEFINE_PER_CPU(int, numa_node); 82 EXPORT_PER_CPU_SYMBOL(numa_node); 83 #endif 84 85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 86 87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 88 /* 89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 92 * defined in <linux/topology.h>. 93 */ 94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 95 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 96 int _node_numa_mem_[MAX_NUMNODES]; 97 #endif 98 99 /* work_structs for global per-cpu drains */ 100 struct pcpu_drain { 101 struct zone *zone; 102 struct work_struct work; 103 }; 104 DEFINE_MUTEX(pcpu_drain_mutex); 105 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 106 107 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 108 volatile unsigned long latent_entropy __latent_entropy; 109 EXPORT_SYMBOL(latent_entropy); 110 #endif 111 112 /* 113 * Array of node states. 114 */ 115 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 116 [N_POSSIBLE] = NODE_MASK_ALL, 117 [N_ONLINE] = { { [0] = 1UL } }, 118 #ifndef CONFIG_NUMA 119 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 120 #ifdef CONFIG_HIGHMEM 121 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 122 #endif 123 [N_MEMORY] = { { [0] = 1UL } }, 124 [N_CPU] = { { [0] = 1UL } }, 125 #endif /* NUMA */ 126 }; 127 EXPORT_SYMBOL(node_states); 128 129 atomic_long_t _totalram_pages __read_mostly; 130 EXPORT_SYMBOL(_totalram_pages); 131 unsigned long totalreserve_pages __read_mostly; 132 unsigned long totalcma_pages __read_mostly; 133 134 int percpu_pagelist_fraction; 135 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 136 137 /* 138 * A cached value of the page's pageblock's migratetype, used when the page is 139 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 140 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 141 * Also the migratetype set in the page does not necessarily match the pcplist 142 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 143 * other index - this ensures that it will be put on the correct CMA freelist. 144 */ 145 static inline int get_pcppage_migratetype(struct page *page) 146 { 147 return page->index; 148 } 149 150 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 151 { 152 page->index = migratetype; 153 } 154 155 #ifdef CONFIG_PM_SLEEP 156 /* 157 * The following functions are used by the suspend/hibernate code to temporarily 158 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 159 * while devices are suspended. To avoid races with the suspend/hibernate code, 160 * they should always be called with system_transition_mutex held 161 * (gfp_allowed_mask also should only be modified with system_transition_mutex 162 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 163 * with that modification). 164 */ 165 166 static gfp_t saved_gfp_mask; 167 168 void pm_restore_gfp_mask(void) 169 { 170 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 171 if (saved_gfp_mask) { 172 gfp_allowed_mask = saved_gfp_mask; 173 saved_gfp_mask = 0; 174 } 175 } 176 177 void pm_restrict_gfp_mask(void) 178 { 179 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 180 WARN_ON(saved_gfp_mask); 181 saved_gfp_mask = gfp_allowed_mask; 182 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 183 } 184 185 bool pm_suspended_storage(void) 186 { 187 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 188 return false; 189 return true; 190 } 191 #endif /* CONFIG_PM_SLEEP */ 192 193 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 194 unsigned int pageblock_order __read_mostly; 195 #endif 196 197 static void __free_pages_ok(struct page *page, unsigned int order); 198 199 /* 200 * results with 256, 32 in the lowmem_reserve sysctl: 201 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 202 * 1G machine -> (16M dma, 784M normal, 224M high) 203 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 204 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 205 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 206 * 207 * TBD: should special case ZONE_DMA32 machines here - in those we normally 208 * don't need any ZONE_NORMAL reservation 209 */ 210 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 211 #ifdef CONFIG_ZONE_DMA 212 [ZONE_DMA] = 256, 213 #endif 214 #ifdef CONFIG_ZONE_DMA32 215 [ZONE_DMA32] = 256, 216 #endif 217 [ZONE_NORMAL] = 32, 218 #ifdef CONFIG_HIGHMEM 219 [ZONE_HIGHMEM] = 0, 220 #endif 221 [ZONE_MOVABLE] = 0, 222 }; 223 224 EXPORT_SYMBOL(totalram_pages); 225 226 static char * const zone_names[MAX_NR_ZONES] = { 227 #ifdef CONFIG_ZONE_DMA 228 "DMA", 229 #endif 230 #ifdef CONFIG_ZONE_DMA32 231 "DMA32", 232 #endif 233 "Normal", 234 #ifdef CONFIG_HIGHMEM 235 "HighMem", 236 #endif 237 "Movable", 238 #ifdef CONFIG_ZONE_DEVICE 239 "Device", 240 #endif 241 }; 242 243 const char * const migratetype_names[MIGRATE_TYPES] = { 244 "Unmovable", 245 "Movable", 246 "Reclaimable", 247 "HighAtomic", 248 #ifdef CONFIG_CMA 249 "CMA", 250 #endif 251 #ifdef CONFIG_MEMORY_ISOLATION 252 "Isolate", 253 #endif 254 }; 255 256 compound_page_dtor * const compound_page_dtors[] = { 257 NULL, 258 free_compound_page, 259 #ifdef CONFIG_HUGETLB_PAGE 260 free_huge_page, 261 #endif 262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 263 free_transhuge_page, 264 #endif 265 }; 266 267 int min_free_kbytes = 1024; 268 int user_min_free_kbytes = -1; 269 int watermark_boost_factor __read_mostly = 15000; 270 int watermark_scale_factor = 10; 271 272 static unsigned long nr_kernel_pages __initdata; 273 static unsigned long nr_all_pages __initdata; 274 static unsigned long dma_reserve __initdata; 275 276 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 277 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 278 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 279 static unsigned long required_kernelcore __initdata; 280 static unsigned long required_kernelcore_percent __initdata; 281 static unsigned long required_movablecore __initdata; 282 static unsigned long required_movablecore_percent __initdata; 283 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 284 static bool mirrored_kernelcore __meminitdata; 285 286 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 287 int movable_zone; 288 EXPORT_SYMBOL(movable_zone); 289 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 290 291 #if MAX_NUMNODES > 1 292 int nr_node_ids __read_mostly = MAX_NUMNODES; 293 int nr_online_nodes __read_mostly = 1; 294 EXPORT_SYMBOL(nr_node_ids); 295 EXPORT_SYMBOL(nr_online_nodes); 296 #endif 297 298 int page_group_by_mobility_disabled __read_mostly; 299 300 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 301 /* 302 * During boot we initialize deferred pages on-demand, as needed, but once 303 * page_alloc_init_late() has finished, the deferred pages are all initialized, 304 * and we can permanently disable that path. 305 */ 306 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 307 308 /* 309 * Calling kasan_free_pages() only after deferred memory initialization 310 * has completed. Poisoning pages during deferred memory init will greatly 311 * lengthen the process and cause problem in large memory systems as the 312 * deferred pages initialization is done with interrupt disabled. 313 * 314 * Assuming that there will be no reference to those newly initialized 315 * pages before they are ever allocated, this should have no effect on 316 * KASAN memory tracking as the poison will be properly inserted at page 317 * allocation time. The only corner case is when pages are allocated by 318 * on-demand allocation and then freed again before the deferred pages 319 * initialization is done, but this is not likely to happen. 320 */ 321 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 322 { 323 if (!static_branch_unlikely(&deferred_pages)) 324 kasan_free_pages(page, order); 325 } 326 327 /* Returns true if the struct page for the pfn is uninitialised */ 328 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 329 { 330 int nid = early_pfn_to_nid(pfn); 331 332 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 333 return true; 334 335 return false; 336 } 337 338 /* 339 * Returns true when the remaining initialisation should be deferred until 340 * later in the boot cycle when it can be parallelised. 341 */ 342 static bool __meminit 343 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 344 { 345 static unsigned long prev_end_pfn, nr_initialised; 346 347 /* 348 * prev_end_pfn static that contains the end of previous zone 349 * No need to protect because called very early in boot before smp_init. 350 */ 351 if (prev_end_pfn != end_pfn) { 352 prev_end_pfn = end_pfn; 353 nr_initialised = 0; 354 } 355 356 /* Always populate low zones for address-constrained allocations */ 357 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 358 return false; 359 360 /* 361 * We start only with one section of pages, more pages are added as 362 * needed until the rest of deferred pages are initialized. 363 */ 364 nr_initialised++; 365 if ((nr_initialised > PAGES_PER_SECTION) && 366 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 367 NODE_DATA(nid)->first_deferred_pfn = pfn; 368 return true; 369 } 370 return false; 371 } 372 #else 373 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 374 375 static inline bool early_page_uninitialised(unsigned long pfn) 376 { 377 return false; 378 } 379 380 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 381 { 382 return false; 383 } 384 #endif 385 386 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 387 static inline unsigned long *get_pageblock_bitmap(struct page *page, 388 unsigned long pfn) 389 { 390 #ifdef CONFIG_SPARSEMEM 391 return __pfn_to_section(pfn)->pageblock_flags; 392 #else 393 return page_zone(page)->pageblock_flags; 394 #endif /* CONFIG_SPARSEMEM */ 395 } 396 397 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 398 { 399 #ifdef CONFIG_SPARSEMEM 400 pfn &= (PAGES_PER_SECTION-1); 401 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 402 #else 403 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 404 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 405 #endif /* CONFIG_SPARSEMEM */ 406 } 407 408 /** 409 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 410 * @page: The page within the block of interest 411 * @pfn: The target page frame number 412 * @end_bitidx: The last bit of interest to retrieve 413 * @mask: mask of bits that the caller is interested in 414 * 415 * Return: pageblock_bits flags 416 */ 417 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 418 unsigned long pfn, 419 unsigned long end_bitidx, 420 unsigned long mask) 421 { 422 unsigned long *bitmap; 423 unsigned long bitidx, word_bitidx; 424 unsigned long word; 425 426 bitmap = get_pageblock_bitmap(page, pfn); 427 bitidx = pfn_to_bitidx(page, pfn); 428 word_bitidx = bitidx / BITS_PER_LONG; 429 bitidx &= (BITS_PER_LONG-1); 430 431 word = bitmap[word_bitidx]; 432 bitidx += end_bitidx; 433 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 434 } 435 436 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 437 unsigned long end_bitidx, 438 unsigned long mask) 439 { 440 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 441 } 442 443 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 444 { 445 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 446 } 447 448 /** 449 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 450 * @page: The page within the block of interest 451 * @flags: The flags to set 452 * @pfn: The target page frame number 453 * @end_bitidx: The last bit of interest 454 * @mask: mask of bits that the caller is interested in 455 */ 456 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 457 unsigned long pfn, 458 unsigned long end_bitidx, 459 unsigned long mask) 460 { 461 unsigned long *bitmap; 462 unsigned long bitidx, word_bitidx; 463 unsigned long old_word, word; 464 465 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 466 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 467 468 bitmap = get_pageblock_bitmap(page, pfn); 469 bitidx = pfn_to_bitidx(page, pfn); 470 word_bitidx = bitidx / BITS_PER_LONG; 471 bitidx &= (BITS_PER_LONG-1); 472 473 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 474 475 bitidx += end_bitidx; 476 mask <<= (BITS_PER_LONG - bitidx - 1); 477 flags <<= (BITS_PER_LONG - bitidx - 1); 478 479 word = READ_ONCE(bitmap[word_bitidx]); 480 for (;;) { 481 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 482 if (word == old_word) 483 break; 484 word = old_word; 485 } 486 } 487 488 void set_pageblock_migratetype(struct page *page, int migratetype) 489 { 490 if (unlikely(page_group_by_mobility_disabled && 491 migratetype < MIGRATE_PCPTYPES)) 492 migratetype = MIGRATE_UNMOVABLE; 493 494 set_pageblock_flags_group(page, (unsigned long)migratetype, 495 PB_migrate, PB_migrate_end); 496 } 497 498 #ifdef CONFIG_DEBUG_VM 499 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 500 { 501 int ret = 0; 502 unsigned seq; 503 unsigned long pfn = page_to_pfn(page); 504 unsigned long sp, start_pfn; 505 506 do { 507 seq = zone_span_seqbegin(zone); 508 start_pfn = zone->zone_start_pfn; 509 sp = zone->spanned_pages; 510 if (!zone_spans_pfn(zone, pfn)) 511 ret = 1; 512 } while (zone_span_seqretry(zone, seq)); 513 514 if (ret) 515 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 516 pfn, zone_to_nid(zone), zone->name, 517 start_pfn, start_pfn + sp); 518 519 return ret; 520 } 521 522 static int page_is_consistent(struct zone *zone, struct page *page) 523 { 524 if (!pfn_valid_within(page_to_pfn(page))) 525 return 0; 526 if (zone != page_zone(page)) 527 return 0; 528 529 return 1; 530 } 531 /* 532 * Temporary debugging check for pages not lying within a given zone. 533 */ 534 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 535 { 536 if (page_outside_zone_boundaries(zone, page)) 537 return 1; 538 if (!page_is_consistent(zone, page)) 539 return 1; 540 541 return 0; 542 } 543 #else 544 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 545 { 546 return 0; 547 } 548 #endif 549 550 static void bad_page(struct page *page, const char *reason, 551 unsigned long bad_flags) 552 { 553 static unsigned long resume; 554 static unsigned long nr_shown; 555 static unsigned long nr_unshown; 556 557 /* 558 * Allow a burst of 60 reports, then keep quiet for that minute; 559 * or allow a steady drip of one report per second. 560 */ 561 if (nr_shown == 60) { 562 if (time_before(jiffies, resume)) { 563 nr_unshown++; 564 goto out; 565 } 566 if (nr_unshown) { 567 pr_alert( 568 "BUG: Bad page state: %lu messages suppressed\n", 569 nr_unshown); 570 nr_unshown = 0; 571 } 572 nr_shown = 0; 573 } 574 if (nr_shown++ == 0) 575 resume = jiffies + 60 * HZ; 576 577 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 578 current->comm, page_to_pfn(page)); 579 __dump_page(page, reason); 580 bad_flags &= page->flags; 581 if (bad_flags) 582 pr_alert("bad because of flags: %#lx(%pGp)\n", 583 bad_flags, &bad_flags); 584 dump_page_owner(page); 585 586 print_modules(); 587 dump_stack(); 588 out: 589 /* Leave bad fields for debug, except PageBuddy could make trouble */ 590 page_mapcount_reset(page); /* remove PageBuddy */ 591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 592 } 593 594 /* 595 * Higher-order pages are called "compound pages". They are structured thusly: 596 * 597 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 598 * 599 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 600 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 601 * 602 * The first tail page's ->compound_dtor holds the offset in array of compound 603 * page destructors. See compound_page_dtors. 604 * 605 * The first tail page's ->compound_order holds the order of allocation. 606 * This usage means that zero-order pages may not be compound. 607 */ 608 609 void free_compound_page(struct page *page) 610 { 611 __free_pages_ok(page, compound_order(page)); 612 } 613 614 void prep_compound_page(struct page *page, unsigned int order) 615 { 616 int i; 617 int nr_pages = 1 << order; 618 619 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 620 set_compound_order(page, order); 621 __SetPageHead(page); 622 for (i = 1; i < nr_pages; i++) { 623 struct page *p = page + i; 624 set_page_count(p, 0); 625 p->mapping = TAIL_MAPPING; 626 set_compound_head(p, page); 627 } 628 atomic_set(compound_mapcount_ptr(page), -1); 629 } 630 631 #ifdef CONFIG_DEBUG_PAGEALLOC 632 unsigned int _debug_guardpage_minorder; 633 bool _debug_pagealloc_enabled __read_mostly 634 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 635 EXPORT_SYMBOL(_debug_pagealloc_enabled); 636 bool _debug_guardpage_enabled __read_mostly; 637 638 static int __init early_debug_pagealloc(char *buf) 639 { 640 if (!buf) 641 return -EINVAL; 642 return kstrtobool(buf, &_debug_pagealloc_enabled); 643 } 644 early_param("debug_pagealloc", early_debug_pagealloc); 645 646 static bool need_debug_guardpage(void) 647 { 648 /* If we don't use debug_pagealloc, we don't need guard page */ 649 if (!debug_pagealloc_enabled()) 650 return false; 651 652 if (!debug_guardpage_minorder()) 653 return false; 654 655 return true; 656 } 657 658 static void init_debug_guardpage(void) 659 { 660 if (!debug_pagealloc_enabled()) 661 return; 662 663 if (!debug_guardpage_minorder()) 664 return; 665 666 _debug_guardpage_enabled = true; 667 } 668 669 struct page_ext_operations debug_guardpage_ops = { 670 .need = need_debug_guardpage, 671 .init = init_debug_guardpage, 672 }; 673 674 static int __init debug_guardpage_minorder_setup(char *buf) 675 { 676 unsigned long res; 677 678 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 679 pr_err("Bad debug_guardpage_minorder value\n"); 680 return 0; 681 } 682 _debug_guardpage_minorder = res; 683 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 684 return 0; 685 } 686 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 687 688 static inline bool set_page_guard(struct zone *zone, struct page *page, 689 unsigned int order, int migratetype) 690 { 691 struct page_ext *page_ext; 692 693 if (!debug_guardpage_enabled()) 694 return false; 695 696 if (order >= debug_guardpage_minorder()) 697 return false; 698 699 page_ext = lookup_page_ext(page); 700 if (unlikely(!page_ext)) 701 return false; 702 703 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 704 705 INIT_LIST_HEAD(&page->lru); 706 set_page_private(page, order); 707 /* Guard pages are not available for any usage */ 708 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 709 710 return true; 711 } 712 713 static inline void clear_page_guard(struct zone *zone, struct page *page, 714 unsigned int order, int migratetype) 715 { 716 struct page_ext *page_ext; 717 718 if (!debug_guardpage_enabled()) 719 return; 720 721 page_ext = lookup_page_ext(page); 722 if (unlikely(!page_ext)) 723 return; 724 725 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 726 727 set_page_private(page, 0); 728 if (!is_migrate_isolate(migratetype)) 729 __mod_zone_freepage_state(zone, (1 << order), migratetype); 730 } 731 #else 732 struct page_ext_operations debug_guardpage_ops; 733 static inline bool set_page_guard(struct zone *zone, struct page *page, 734 unsigned int order, int migratetype) { return false; } 735 static inline void clear_page_guard(struct zone *zone, struct page *page, 736 unsigned int order, int migratetype) {} 737 #endif 738 739 static inline void set_page_order(struct page *page, unsigned int order) 740 { 741 set_page_private(page, order); 742 __SetPageBuddy(page); 743 } 744 745 static inline void rmv_page_order(struct page *page) 746 { 747 __ClearPageBuddy(page); 748 set_page_private(page, 0); 749 } 750 751 /* 752 * This function checks whether a page is free && is the buddy 753 * we can coalesce a page and its buddy if 754 * (a) the buddy is not in a hole (check before calling!) && 755 * (b) the buddy is in the buddy system && 756 * (c) a page and its buddy have the same order && 757 * (d) a page and its buddy are in the same zone. 758 * 759 * For recording whether a page is in the buddy system, we set PageBuddy. 760 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 761 * 762 * For recording page's order, we use page_private(page). 763 */ 764 static inline int page_is_buddy(struct page *page, struct page *buddy, 765 unsigned int order) 766 { 767 if (page_is_guard(buddy) && page_order(buddy) == order) { 768 if (page_zone_id(page) != page_zone_id(buddy)) 769 return 0; 770 771 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 772 773 return 1; 774 } 775 776 if (PageBuddy(buddy) && page_order(buddy) == order) { 777 /* 778 * zone check is done late to avoid uselessly 779 * calculating zone/node ids for pages that could 780 * never merge. 781 */ 782 if (page_zone_id(page) != page_zone_id(buddy)) 783 return 0; 784 785 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 786 787 return 1; 788 } 789 return 0; 790 } 791 792 #ifdef CONFIG_COMPACTION 793 static inline struct capture_control *task_capc(struct zone *zone) 794 { 795 struct capture_control *capc = current->capture_control; 796 797 return capc && 798 !(current->flags & PF_KTHREAD) && 799 !capc->page && 800 capc->cc->zone == zone && 801 capc->cc->direct_compaction ? capc : NULL; 802 } 803 804 static inline bool 805 compaction_capture(struct capture_control *capc, struct page *page, 806 int order, int migratetype) 807 { 808 if (!capc || order != capc->cc->order) 809 return false; 810 811 /* Do not accidentally pollute CMA or isolated regions*/ 812 if (is_migrate_cma(migratetype) || 813 is_migrate_isolate(migratetype)) 814 return false; 815 816 /* 817 * Do not let lower order allocations polluate a movable pageblock. 818 * This might let an unmovable request use a reclaimable pageblock 819 * and vice-versa but no more than normal fallback logic which can 820 * have trouble finding a high-order free page. 821 */ 822 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 823 return false; 824 825 capc->page = page; 826 return true; 827 } 828 829 #else 830 static inline struct capture_control *task_capc(struct zone *zone) 831 { 832 return NULL; 833 } 834 835 static inline bool 836 compaction_capture(struct capture_control *capc, struct page *page, 837 int order, int migratetype) 838 { 839 return false; 840 } 841 #endif /* CONFIG_COMPACTION */ 842 843 /* 844 * Freeing function for a buddy system allocator. 845 * 846 * The concept of a buddy system is to maintain direct-mapped table 847 * (containing bit values) for memory blocks of various "orders". 848 * The bottom level table contains the map for the smallest allocatable 849 * units of memory (here, pages), and each level above it describes 850 * pairs of units from the levels below, hence, "buddies". 851 * At a high level, all that happens here is marking the table entry 852 * at the bottom level available, and propagating the changes upward 853 * as necessary, plus some accounting needed to play nicely with other 854 * parts of the VM system. 855 * At each level, we keep a list of pages, which are heads of continuous 856 * free pages of length of (1 << order) and marked with PageBuddy. 857 * Page's order is recorded in page_private(page) field. 858 * So when we are allocating or freeing one, we can derive the state of the 859 * other. That is, if we allocate a small block, and both were 860 * free, the remainder of the region must be split into blocks. 861 * If a block is freed, and its buddy is also free, then this 862 * triggers coalescing into a block of larger size. 863 * 864 * -- nyc 865 */ 866 867 static inline void __free_one_page(struct page *page, 868 unsigned long pfn, 869 struct zone *zone, unsigned int order, 870 int migratetype) 871 { 872 unsigned long combined_pfn; 873 unsigned long uninitialized_var(buddy_pfn); 874 struct page *buddy; 875 unsigned int max_order; 876 struct capture_control *capc = task_capc(zone); 877 878 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 879 880 VM_BUG_ON(!zone_is_initialized(zone)); 881 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 882 883 VM_BUG_ON(migratetype == -1); 884 if (likely(!is_migrate_isolate(migratetype))) 885 __mod_zone_freepage_state(zone, 1 << order, migratetype); 886 887 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 888 VM_BUG_ON_PAGE(bad_range(zone, page), page); 889 890 continue_merging: 891 while (order < max_order - 1) { 892 if (compaction_capture(capc, page, order, migratetype)) { 893 __mod_zone_freepage_state(zone, -(1 << order), 894 migratetype); 895 return; 896 } 897 buddy_pfn = __find_buddy_pfn(pfn, order); 898 buddy = page + (buddy_pfn - pfn); 899 900 if (!pfn_valid_within(buddy_pfn)) 901 goto done_merging; 902 if (!page_is_buddy(page, buddy, order)) 903 goto done_merging; 904 /* 905 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 906 * merge with it and move up one order. 907 */ 908 if (page_is_guard(buddy)) { 909 clear_page_guard(zone, buddy, order, migratetype); 910 } else { 911 list_del(&buddy->lru); 912 zone->free_area[order].nr_free--; 913 rmv_page_order(buddy); 914 } 915 combined_pfn = buddy_pfn & pfn; 916 page = page + (combined_pfn - pfn); 917 pfn = combined_pfn; 918 order++; 919 } 920 if (max_order < MAX_ORDER) { 921 /* If we are here, it means order is >= pageblock_order. 922 * We want to prevent merge between freepages on isolate 923 * pageblock and normal pageblock. Without this, pageblock 924 * isolation could cause incorrect freepage or CMA accounting. 925 * 926 * We don't want to hit this code for the more frequent 927 * low-order merging. 928 */ 929 if (unlikely(has_isolate_pageblock(zone))) { 930 int buddy_mt; 931 932 buddy_pfn = __find_buddy_pfn(pfn, order); 933 buddy = page + (buddy_pfn - pfn); 934 buddy_mt = get_pageblock_migratetype(buddy); 935 936 if (migratetype != buddy_mt 937 && (is_migrate_isolate(migratetype) || 938 is_migrate_isolate(buddy_mt))) 939 goto done_merging; 940 } 941 max_order++; 942 goto continue_merging; 943 } 944 945 done_merging: 946 set_page_order(page, order); 947 948 /* 949 * If this is not the largest possible page, check if the buddy 950 * of the next-highest order is free. If it is, it's possible 951 * that pages are being freed that will coalesce soon. In case, 952 * that is happening, add the free page to the tail of the list 953 * so it's less likely to be used soon and more likely to be merged 954 * as a higher order page 955 */ 956 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 957 struct page *higher_page, *higher_buddy; 958 combined_pfn = buddy_pfn & pfn; 959 higher_page = page + (combined_pfn - pfn); 960 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 961 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 962 if (pfn_valid_within(buddy_pfn) && 963 page_is_buddy(higher_page, higher_buddy, order + 1)) { 964 list_add_tail(&page->lru, 965 &zone->free_area[order].free_list[migratetype]); 966 goto out; 967 } 968 } 969 970 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 971 out: 972 zone->free_area[order].nr_free++; 973 } 974 975 /* 976 * A bad page could be due to a number of fields. Instead of multiple branches, 977 * try and check multiple fields with one check. The caller must do a detailed 978 * check if necessary. 979 */ 980 static inline bool page_expected_state(struct page *page, 981 unsigned long check_flags) 982 { 983 if (unlikely(atomic_read(&page->_mapcount) != -1)) 984 return false; 985 986 if (unlikely((unsigned long)page->mapping | 987 page_ref_count(page) | 988 #ifdef CONFIG_MEMCG 989 (unsigned long)page->mem_cgroup | 990 #endif 991 (page->flags & check_flags))) 992 return false; 993 994 return true; 995 } 996 997 static void free_pages_check_bad(struct page *page) 998 { 999 const char *bad_reason; 1000 unsigned long bad_flags; 1001 1002 bad_reason = NULL; 1003 bad_flags = 0; 1004 1005 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1006 bad_reason = "nonzero mapcount"; 1007 if (unlikely(page->mapping != NULL)) 1008 bad_reason = "non-NULL mapping"; 1009 if (unlikely(page_ref_count(page) != 0)) 1010 bad_reason = "nonzero _refcount"; 1011 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1012 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1013 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1014 } 1015 #ifdef CONFIG_MEMCG 1016 if (unlikely(page->mem_cgroup)) 1017 bad_reason = "page still charged to cgroup"; 1018 #endif 1019 bad_page(page, bad_reason, bad_flags); 1020 } 1021 1022 static inline int free_pages_check(struct page *page) 1023 { 1024 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1025 return 0; 1026 1027 /* Something has gone sideways, find it */ 1028 free_pages_check_bad(page); 1029 return 1; 1030 } 1031 1032 static int free_tail_pages_check(struct page *head_page, struct page *page) 1033 { 1034 int ret = 1; 1035 1036 /* 1037 * We rely page->lru.next never has bit 0 set, unless the page 1038 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1039 */ 1040 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1041 1042 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1043 ret = 0; 1044 goto out; 1045 } 1046 switch (page - head_page) { 1047 case 1: 1048 /* the first tail page: ->mapping may be compound_mapcount() */ 1049 if (unlikely(compound_mapcount(page))) { 1050 bad_page(page, "nonzero compound_mapcount", 0); 1051 goto out; 1052 } 1053 break; 1054 case 2: 1055 /* 1056 * the second tail page: ->mapping is 1057 * deferred_list.next -- ignore value. 1058 */ 1059 break; 1060 default: 1061 if (page->mapping != TAIL_MAPPING) { 1062 bad_page(page, "corrupted mapping in tail page", 0); 1063 goto out; 1064 } 1065 break; 1066 } 1067 if (unlikely(!PageTail(page))) { 1068 bad_page(page, "PageTail not set", 0); 1069 goto out; 1070 } 1071 if (unlikely(compound_head(page) != head_page)) { 1072 bad_page(page, "compound_head not consistent", 0); 1073 goto out; 1074 } 1075 ret = 0; 1076 out: 1077 page->mapping = NULL; 1078 clear_compound_head(page); 1079 return ret; 1080 } 1081 1082 static __always_inline bool free_pages_prepare(struct page *page, 1083 unsigned int order, bool check_free) 1084 { 1085 int bad = 0; 1086 1087 VM_BUG_ON_PAGE(PageTail(page), page); 1088 1089 trace_mm_page_free(page, order); 1090 1091 /* 1092 * Check tail pages before head page information is cleared to 1093 * avoid checking PageCompound for order-0 pages. 1094 */ 1095 if (unlikely(order)) { 1096 bool compound = PageCompound(page); 1097 int i; 1098 1099 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1100 1101 if (compound) 1102 ClearPageDoubleMap(page); 1103 for (i = 1; i < (1 << order); i++) { 1104 if (compound) 1105 bad += free_tail_pages_check(page, page + i); 1106 if (unlikely(free_pages_check(page + i))) { 1107 bad++; 1108 continue; 1109 } 1110 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1111 } 1112 } 1113 if (PageMappingFlags(page)) 1114 page->mapping = NULL; 1115 if (memcg_kmem_enabled() && PageKmemcg(page)) 1116 __memcg_kmem_uncharge(page, order); 1117 if (check_free) 1118 bad += free_pages_check(page); 1119 if (bad) 1120 return false; 1121 1122 page_cpupid_reset_last(page); 1123 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1124 reset_page_owner(page, order); 1125 1126 if (!PageHighMem(page)) { 1127 debug_check_no_locks_freed(page_address(page), 1128 PAGE_SIZE << order); 1129 debug_check_no_obj_freed(page_address(page), 1130 PAGE_SIZE << order); 1131 } 1132 arch_free_page(page, order); 1133 kernel_poison_pages(page, 1 << order, 0); 1134 kernel_map_pages(page, 1 << order, 0); 1135 kasan_free_nondeferred_pages(page, order); 1136 1137 return true; 1138 } 1139 1140 #ifdef CONFIG_DEBUG_VM 1141 static inline bool free_pcp_prepare(struct page *page) 1142 { 1143 return free_pages_prepare(page, 0, true); 1144 } 1145 1146 static inline bool bulkfree_pcp_prepare(struct page *page) 1147 { 1148 return false; 1149 } 1150 #else 1151 static bool free_pcp_prepare(struct page *page) 1152 { 1153 return free_pages_prepare(page, 0, false); 1154 } 1155 1156 static bool bulkfree_pcp_prepare(struct page *page) 1157 { 1158 return free_pages_check(page); 1159 } 1160 #endif /* CONFIG_DEBUG_VM */ 1161 1162 static inline void prefetch_buddy(struct page *page) 1163 { 1164 unsigned long pfn = page_to_pfn(page); 1165 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1166 struct page *buddy = page + (buddy_pfn - pfn); 1167 1168 prefetch(buddy); 1169 } 1170 1171 /* 1172 * Frees a number of pages from the PCP lists 1173 * Assumes all pages on list are in same zone, and of same order. 1174 * count is the number of pages to free. 1175 * 1176 * If the zone was previously in an "all pages pinned" state then look to 1177 * see if this freeing clears that state. 1178 * 1179 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1180 * pinned" detection logic. 1181 */ 1182 static void free_pcppages_bulk(struct zone *zone, int count, 1183 struct per_cpu_pages *pcp) 1184 { 1185 int migratetype = 0; 1186 int batch_free = 0; 1187 int prefetch_nr = 0; 1188 bool isolated_pageblocks; 1189 struct page *page, *tmp; 1190 LIST_HEAD(head); 1191 1192 while (count) { 1193 struct list_head *list; 1194 1195 /* 1196 * Remove pages from lists in a round-robin fashion. A 1197 * batch_free count is maintained that is incremented when an 1198 * empty list is encountered. This is so more pages are freed 1199 * off fuller lists instead of spinning excessively around empty 1200 * lists 1201 */ 1202 do { 1203 batch_free++; 1204 if (++migratetype == MIGRATE_PCPTYPES) 1205 migratetype = 0; 1206 list = &pcp->lists[migratetype]; 1207 } while (list_empty(list)); 1208 1209 /* This is the only non-empty list. Free them all. */ 1210 if (batch_free == MIGRATE_PCPTYPES) 1211 batch_free = count; 1212 1213 do { 1214 page = list_last_entry(list, struct page, lru); 1215 /* must delete to avoid corrupting pcp list */ 1216 list_del(&page->lru); 1217 pcp->count--; 1218 1219 if (bulkfree_pcp_prepare(page)) 1220 continue; 1221 1222 list_add_tail(&page->lru, &head); 1223 1224 /* 1225 * We are going to put the page back to the global 1226 * pool, prefetch its buddy to speed up later access 1227 * under zone->lock. It is believed the overhead of 1228 * an additional test and calculating buddy_pfn here 1229 * can be offset by reduced memory latency later. To 1230 * avoid excessive prefetching due to large count, only 1231 * prefetch buddy for the first pcp->batch nr of pages. 1232 */ 1233 if (prefetch_nr++ < pcp->batch) 1234 prefetch_buddy(page); 1235 } while (--count && --batch_free && !list_empty(list)); 1236 } 1237 1238 spin_lock(&zone->lock); 1239 isolated_pageblocks = has_isolate_pageblock(zone); 1240 1241 /* 1242 * Use safe version since after __free_one_page(), 1243 * page->lru.next will not point to original list. 1244 */ 1245 list_for_each_entry_safe(page, tmp, &head, lru) { 1246 int mt = get_pcppage_migratetype(page); 1247 /* MIGRATE_ISOLATE page should not go to pcplists */ 1248 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1249 /* Pageblock could have been isolated meanwhile */ 1250 if (unlikely(isolated_pageblocks)) 1251 mt = get_pageblock_migratetype(page); 1252 1253 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1254 trace_mm_page_pcpu_drain(page, 0, mt); 1255 } 1256 spin_unlock(&zone->lock); 1257 } 1258 1259 static void free_one_page(struct zone *zone, 1260 struct page *page, unsigned long pfn, 1261 unsigned int order, 1262 int migratetype) 1263 { 1264 spin_lock(&zone->lock); 1265 if (unlikely(has_isolate_pageblock(zone) || 1266 is_migrate_isolate(migratetype))) { 1267 migratetype = get_pfnblock_migratetype(page, pfn); 1268 } 1269 __free_one_page(page, pfn, zone, order, migratetype); 1270 spin_unlock(&zone->lock); 1271 } 1272 1273 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1274 unsigned long zone, int nid) 1275 { 1276 mm_zero_struct_page(page); 1277 set_page_links(page, zone, nid, pfn); 1278 init_page_count(page); 1279 page_mapcount_reset(page); 1280 page_cpupid_reset_last(page); 1281 page_kasan_tag_reset(page); 1282 1283 INIT_LIST_HEAD(&page->lru); 1284 #ifdef WANT_PAGE_VIRTUAL 1285 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1286 if (!is_highmem_idx(zone)) 1287 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1288 #endif 1289 } 1290 1291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1292 static void __meminit init_reserved_page(unsigned long pfn) 1293 { 1294 pg_data_t *pgdat; 1295 int nid, zid; 1296 1297 if (!early_page_uninitialised(pfn)) 1298 return; 1299 1300 nid = early_pfn_to_nid(pfn); 1301 pgdat = NODE_DATA(nid); 1302 1303 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1304 struct zone *zone = &pgdat->node_zones[zid]; 1305 1306 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1307 break; 1308 } 1309 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1310 } 1311 #else 1312 static inline void init_reserved_page(unsigned long pfn) 1313 { 1314 } 1315 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1316 1317 /* 1318 * Initialised pages do not have PageReserved set. This function is 1319 * called for each range allocated by the bootmem allocator and 1320 * marks the pages PageReserved. The remaining valid pages are later 1321 * sent to the buddy page allocator. 1322 */ 1323 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1324 { 1325 unsigned long start_pfn = PFN_DOWN(start); 1326 unsigned long end_pfn = PFN_UP(end); 1327 1328 for (; start_pfn < end_pfn; start_pfn++) { 1329 if (pfn_valid(start_pfn)) { 1330 struct page *page = pfn_to_page(start_pfn); 1331 1332 init_reserved_page(start_pfn); 1333 1334 /* Avoid false-positive PageTail() */ 1335 INIT_LIST_HEAD(&page->lru); 1336 1337 /* 1338 * no need for atomic set_bit because the struct 1339 * page is not visible yet so nobody should 1340 * access it yet. 1341 */ 1342 __SetPageReserved(page); 1343 } 1344 } 1345 } 1346 1347 static void __free_pages_ok(struct page *page, unsigned int order) 1348 { 1349 unsigned long flags; 1350 int migratetype; 1351 unsigned long pfn = page_to_pfn(page); 1352 1353 if (!free_pages_prepare(page, order, true)) 1354 return; 1355 1356 migratetype = get_pfnblock_migratetype(page, pfn); 1357 local_irq_save(flags); 1358 __count_vm_events(PGFREE, 1 << order); 1359 free_one_page(page_zone(page), page, pfn, order, migratetype); 1360 local_irq_restore(flags); 1361 } 1362 1363 void __free_pages_core(struct page *page, unsigned int order) 1364 { 1365 unsigned int nr_pages = 1 << order; 1366 struct page *p = page; 1367 unsigned int loop; 1368 1369 prefetchw(p); 1370 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1371 prefetchw(p + 1); 1372 __ClearPageReserved(p); 1373 set_page_count(p, 0); 1374 } 1375 __ClearPageReserved(p); 1376 set_page_count(p, 0); 1377 1378 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1379 set_page_refcounted(page); 1380 __free_pages(page, order); 1381 } 1382 1383 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1384 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1385 1386 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1387 1388 int __meminit early_pfn_to_nid(unsigned long pfn) 1389 { 1390 static DEFINE_SPINLOCK(early_pfn_lock); 1391 int nid; 1392 1393 spin_lock(&early_pfn_lock); 1394 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1395 if (nid < 0) 1396 nid = first_online_node; 1397 spin_unlock(&early_pfn_lock); 1398 1399 return nid; 1400 } 1401 #endif 1402 1403 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1404 static inline bool __meminit __maybe_unused 1405 meminit_pfn_in_nid(unsigned long pfn, int node, 1406 struct mminit_pfnnid_cache *state) 1407 { 1408 int nid; 1409 1410 nid = __early_pfn_to_nid(pfn, state); 1411 if (nid >= 0 && nid != node) 1412 return false; 1413 return true; 1414 } 1415 1416 /* Only safe to use early in boot when initialisation is single-threaded */ 1417 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1418 { 1419 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1420 } 1421 1422 #else 1423 1424 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1425 { 1426 return true; 1427 } 1428 static inline bool __meminit __maybe_unused 1429 meminit_pfn_in_nid(unsigned long pfn, int node, 1430 struct mminit_pfnnid_cache *state) 1431 { 1432 return true; 1433 } 1434 #endif 1435 1436 1437 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1438 unsigned int order) 1439 { 1440 if (early_page_uninitialised(pfn)) 1441 return; 1442 __free_pages_core(page, order); 1443 } 1444 1445 /* 1446 * Check that the whole (or subset of) a pageblock given by the interval of 1447 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1448 * with the migration of free compaction scanner. The scanners then need to 1449 * use only pfn_valid_within() check for arches that allow holes within 1450 * pageblocks. 1451 * 1452 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1453 * 1454 * It's possible on some configurations to have a setup like node0 node1 node0 1455 * i.e. it's possible that all pages within a zones range of pages do not 1456 * belong to a single zone. We assume that a border between node0 and node1 1457 * can occur within a single pageblock, but not a node0 node1 node0 1458 * interleaving within a single pageblock. It is therefore sufficient to check 1459 * the first and last page of a pageblock and avoid checking each individual 1460 * page in a pageblock. 1461 */ 1462 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1463 unsigned long end_pfn, struct zone *zone) 1464 { 1465 struct page *start_page; 1466 struct page *end_page; 1467 1468 /* end_pfn is one past the range we are checking */ 1469 end_pfn--; 1470 1471 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1472 return NULL; 1473 1474 start_page = pfn_to_online_page(start_pfn); 1475 if (!start_page) 1476 return NULL; 1477 1478 if (page_zone(start_page) != zone) 1479 return NULL; 1480 1481 end_page = pfn_to_page(end_pfn); 1482 1483 /* This gives a shorter code than deriving page_zone(end_page) */ 1484 if (page_zone_id(start_page) != page_zone_id(end_page)) 1485 return NULL; 1486 1487 return start_page; 1488 } 1489 1490 void set_zone_contiguous(struct zone *zone) 1491 { 1492 unsigned long block_start_pfn = zone->zone_start_pfn; 1493 unsigned long block_end_pfn; 1494 1495 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1496 for (; block_start_pfn < zone_end_pfn(zone); 1497 block_start_pfn = block_end_pfn, 1498 block_end_pfn += pageblock_nr_pages) { 1499 1500 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1501 1502 if (!__pageblock_pfn_to_page(block_start_pfn, 1503 block_end_pfn, zone)) 1504 return; 1505 } 1506 1507 /* We confirm that there is no hole */ 1508 zone->contiguous = true; 1509 } 1510 1511 void clear_zone_contiguous(struct zone *zone) 1512 { 1513 zone->contiguous = false; 1514 } 1515 1516 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1517 static void __init deferred_free_range(unsigned long pfn, 1518 unsigned long nr_pages) 1519 { 1520 struct page *page; 1521 unsigned long i; 1522 1523 if (!nr_pages) 1524 return; 1525 1526 page = pfn_to_page(pfn); 1527 1528 /* Free a large naturally-aligned chunk if possible */ 1529 if (nr_pages == pageblock_nr_pages && 1530 (pfn & (pageblock_nr_pages - 1)) == 0) { 1531 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1532 __free_pages_core(page, pageblock_order); 1533 return; 1534 } 1535 1536 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1537 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1538 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1539 __free_pages_core(page, 0); 1540 } 1541 } 1542 1543 /* Completion tracking for deferred_init_memmap() threads */ 1544 static atomic_t pgdat_init_n_undone __initdata; 1545 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1546 1547 static inline void __init pgdat_init_report_one_done(void) 1548 { 1549 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1550 complete(&pgdat_init_all_done_comp); 1551 } 1552 1553 /* 1554 * Returns true if page needs to be initialized or freed to buddy allocator. 1555 * 1556 * First we check if pfn is valid on architectures where it is possible to have 1557 * holes within pageblock_nr_pages. On systems where it is not possible, this 1558 * function is optimized out. 1559 * 1560 * Then, we check if a current large page is valid by only checking the validity 1561 * of the head pfn. 1562 * 1563 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave 1564 * within a node: a pfn is between start and end of a node, but does not belong 1565 * to this memory node. 1566 */ 1567 static inline bool __init 1568 deferred_pfn_valid(int nid, unsigned long pfn, 1569 struct mminit_pfnnid_cache *nid_init_state) 1570 { 1571 if (!pfn_valid_within(pfn)) 1572 return false; 1573 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1574 return false; 1575 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) 1576 return false; 1577 return true; 1578 } 1579 1580 /* 1581 * Free pages to buddy allocator. Try to free aligned pages in 1582 * pageblock_nr_pages sizes. 1583 */ 1584 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, 1585 unsigned long end_pfn) 1586 { 1587 struct mminit_pfnnid_cache nid_init_state = { }; 1588 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1589 unsigned long nr_free = 0; 1590 1591 for (; pfn < end_pfn; pfn++) { 1592 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1593 deferred_free_range(pfn - nr_free, nr_free); 1594 nr_free = 0; 1595 } else if (!(pfn & nr_pgmask)) { 1596 deferred_free_range(pfn - nr_free, nr_free); 1597 nr_free = 1; 1598 touch_nmi_watchdog(); 1599 } else { 1600 nr_free++; 1601 } 1602 } 1603 /* Free the last block of pages to allocator */ 1604 deferred_free_range(pfn - nr_free, nr_free); 1605 } 1606 1607 /* 1608 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1609 * by performing it only once every pageblock_nr_pages. 1610 * Return number of pages initialized. 1611 */ 1612 static unsigned long __init deferred_init_pages(int nid, int zid, 1613 unsigned long pfn, 1614 unsigned long end_pfn) 1615 { 1616 struct mminit_pfnnid_cache nid_init_state = { }; 1617 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1618 unsigned long nr_pages = 0; 1619 struct page *page = NULL; 1620 1621 for (; pfn < end_pfn; pfn++) { 1622 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1623 page = NULL; 1624 continue; 1625 } else if (!page || !(pfn & nr_pgmask)) { 1626 page = pfn_to_page(pfn); 1627 touch_nmi_watchdog(); 1628 } else { 1629 page++; 1630 } 1631 __init_single_page(page, pfn, zid, nid); 1632 nr_pages++; 1633 } 1634 return (nr_pages); 1635 } 1636 1637 /* Initialise remaining memory on a node */ 1638 static int __init deferred_init_memmap(void *data) 1639 { 1640 pg_data_t *pgdat = data; 1641 int nid = pgdat->node_id; 1642 unsigned long start = jiffies; 1643 unsigned long nr_pages = 0; 1644 unsigned long spfn, epfn, first_init_pfn, flags; 1645 phys_addr_t spa, epa; 1646 int zid; 1647 struct zone *zone; 1648 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1649 u64 i; 1650 1651 /* Bind memory initialisation thread to a local node if possible */ 1652 if (!cpumask_empty(cpumask)) 1653 set_cpus_allowed_ptr(current, cpumask); 1654 1655 pgdat_resize_lock(pgdat, &flags); 1656 first_init_pfn = pgdat->first_deferred_pfn; 1657 if (first_init_pfn == ULONG_MAX) { 1658 pgdat_resize_unlock(pgdat, &flags); 1659 pgdat_init_report_one_done(); 1660 return 0; 1661 } 1662 1663 /* Sanity check boundaries */ 1664 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1665 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1666 pgdat->first_deferred_pfn = ULONG_MAX; 1667 1668 /* Only the highest zone is deferred so find it */ 1669 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1670 zone = pgdat->node_zones + zid; 1671 if (first_init_pfn < zone_end_pfn(zone)) 1672 break; 1673 } 1674 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1675 1676 /* 1677 * Initialize and free pages. We do it in two loops: first we initialize 1678 * struct page, than free to buddy allocator, because while we are 1679 * freeing pages we can access pages that are ahead (computing buddy 1680 * page in __free_one_page()). 1681 */ 1682 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1683 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1684 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1685 nr_pages += deferred_init_pages(nid, zid, spfn, epfn); 1686 } 1687 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1688 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1689 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1690 deferred_free_pages(nid, zid, spfn, epfn); 1691 } 1692 pgdat_resize_unlock(pgdat, &flags); 1693 1694 /* Sanity check that the next zone really is unpopulated */ 1695 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1696 1697 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1698 jiffies_to_msecs(jiffies - start)); 1699 1700 pgdat_init_report_one_done(); 1701 return 0; 1702 } 1703 1704 /* 1705 * If this zone has deferred pages, try to grow it by initializing enough 1706 * deferred pages to satisfy the allocation specified by order, rounded up to 1707 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1708 * of SECTION_SIZE bytes by initializing struct pages in increments of 1709 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1710 * 1711 * Return true when zone was grown, otherwise return false. We return true even 1712 * when we grow less than requested, to let the caller decide if there are 1713 * enough pages to satisfy the allocation. 1714 * 1715 * Note: We use noinline because this function is needed only during boot, and 1716 * it is called from a __ref function _deferred_grow_zone. This way we are 1717 * making sure that it is not inlined into permanent text section. 1718 */ 1719 static noinline bool __init 1720 deferred_grow_zone(struct zone *zone, unsigned int order) 1721 { 1722 int zid = zone_idx(zone); 1723 int nid = zone_to_nid(zone); 1724 pg_data_t *pgdat = NODE_DATA(nid); 1725 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1726 unsigned long nr_pages = 0; 1727 unsigned long first_init_pfn, spfn, epfn, t, flags; 1728 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1729 phys_addr_t spa, epa; 1730 u64 i; 1731 1732 /* Only the last zone may have deferred pages */ 1733 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1734 return false; 1735 1736 pgdat_resize_lock(pgdat, &flags); 1737 1738 /* 1739 * If deferred pages have been initialized while we were waiting for 1740 * the lock, return true, as the zone was grown. The caller will retry 1741 * this zone. We won't return to this function since the caller also 1742 * has this static branch. 1743 */ 1744 if (!static_branch_unlikely(&deferred_pages)) { 1745 pgdat_resize_unlock(pgdat, &flags); 1746 return true; 1747 } 1748 1749 /* 1750 * If someone grew this zone while we were waiting for spinlock, return 1751 * true, as there might be enough pages already. 1752 */ 1753 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1754 pgdat_resize_unlock(pgdat, &flags); 1755 return true; 1756 } 1757 1758 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn); 1759 1760 if (first_init_pfn >= pgdat_end_pfn(pgdat)) { 1761 pgdat_resize_unlock(pgdat, &flags); 1762 return false; 1763 } 1764 1765 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1766 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1767 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1768 1769 while (spfn < epfn && nr_pages < nr_pages_needed) { 1770 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION); 1771 first_deferred_pfn = min(t, epfn); 1772 nr_pages += deferred_init_pages(nid, zid, spfn, 1773 first_deferred_pfn); 1774 spfn = first_deferred_pfn; 1775 } 1776 1777 if (nr_pages >= nr_pages_needed) 1778 break; 1779 } 1780 1781 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1782 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1783 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa)); 1784 deferred_free_pages(nid, zid, spfn, epfn); 1785 1786 if (first_deferred_pfn == epfn) 1787 break; 1788 } 1789 pgdat->first_deferred_pfn = first_deferred_pfn; 1790 pgdat_resize_unlock(pgdat, &flags); 1791 1792 return nr_pages > 0; 1793 } 1794 1795 /* 1796 * deferred_grow_zone() is __init, but it is called from 1797 * get_page_from_freelist() during early boot until deferred_pages permanently 1798 * disables this call. This is why we have refdata wrapper to avoid warning, 1799 * and to ensure that the function body gets unloaded. 1800 */ 1801 static bool __ref 1802 _deferred_grow_zone(struct zone *zone, unsigned int order) 1803 { 1804 return deferred_grow_zone(zone, order); 1805 } 1806 1807 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1808 1809 void __init page_alloc_init_late(void) 1810 { 1811 struct zone *zone; 1812 1813 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1814 int nid; 1815 1816 /* There will be num_node_state(N_MEMORY) threads */ 1817 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1818 for_each_node_state(nid, N_MEMORY) { 1819 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1820 } 1821 1822 /* Block until all are initialised */ 1823 wait_for_completion(&pgdat_init_all_done_comp); 1824 1825 /* 1826 * We initialized the rest of the deferred pages. Permanently disable 1827 * on-demand struct page initialization. 1828 */ 1829 static_branch_disable(&deferred_pages); 1830 1831 /* Reinit limits that are based on free pages after the kernel is up */ 1832 files_maxfiles_init(); 1833 #endif 1834 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1835 /* Discard memblock private memory */ 1836 memblock_discard(); 1837 #endif 1838 1839 for_each_populated_zone(zone) 1840 set_zone_contiguous(zone); 1841 } 1842 1843 #ifdef CONFIG_CMA 1844 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1845 void __init init_cma_reserved_pageblock(struct page *page) 1846 { 1847 unsigned i = pageblock_nr_pages; 1848 struct page *p = page; 1849 1850 do { 1851 __ClearPageReserved(p); 1852 set_page_count(p, 0); 1853 } while (++p, --i); 1854 1855 set_pageblock_migratetype(page, MIGRATE_CMA); 1856 1857 if (pageblock_order >= MAX_ORDER) { 1858 i = pageblock_nr_pages; 1859 p = page; 1860 do { 1861 set_page_refcounted(p); 1862 __free_pages(p, MAX_ORDER - 1); 1863 p += MAX_ORDER_NR_PAGES; 1864 } while (i -= MAX_ORDER_NR_PAGES); 1865 } else { 1866 set_page_refcounted(page); 1867 __free_pages(page, pageblock_order); 1868 } 1869 1870 adjust_managed_page_count(page, pageblock_nr_pages); 1871 } 1872 #endif 1873 1874 /* 1875 * The order of subdivision here is critical for the IO subsystem. 1876 * Please do not alter this order without good reasons and regression 1877 * testing. Specifically, as large blocks of memory are subdivided, 1878 * the order in which smaller blocks are delivered depends on the order 1879 * they're subdivided in this function. This is the primary factor 1880 * influencing the order in which pages are delivered to the IO 1881 * subsystem according to empirical testing, and this is also justified 1882 * by considering the behavior of a buddy system containing a single 1883 * large block of memory acted on by a series of small allocations. 1884 * This behavior is a critical factor in sglist merging's success. 1885 * 1886 * -- nyc 1887 */ 1888 static inline void expand(struct zone *zone, struct page *page, 1889 int low, int high, struct free_area *area, 1890 int migratetype) 1891 { 1892 unsigned long size = 1 << high; 1893 1894 while (high > low) { 1895 area--; 1896 high--; 1897 size >>= 1; 1898 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1899 1900 /* 1901 * Mark as guard pages (or page), that will allow to 1902 * merge back to allocator when buddy will be freed. 1903 * Corresponding page table entries will not be touched, 1904 * pages will stay not present in virtual address space 1905 */ 1906 if (set_page_guard(zone, &page[size], high, migratetype)) 1907 continue; 1908 1909 list_add(&page[size].lru, &area->free_list[migratetype]); 1910 area->nr_free++; 1911 set_page_order(&page[size], high); 1912 } 1913 } 1914 1915 static void check_new_page_bad(struct page *page) 1916 { 1917 const char *bad_reason = NULL; 1918 unsigned long bad_flags = 0; 1919 1920 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1921 bad_reason = "nonzero mapcount"; 1922 if (unlikely(page->mapping != NULL)) 1923 bad_reason = "non-NULL mapping"; 1924 if (unlikely(page_ref_count(page) != 0)) 1925 bad_reason = "nonzero _count"; 1926 if (unlikely(page->flags & __PG_HWPOISON)) { 1927 bad_reason = "HWPoisoned (hardware-corrupted)"; 1928 bad_flags = __PG_HWPOISON; 1929 /* Don't complain about hwpoisoned pages */ 1930 page_mapcount_reset(page); /* remove PageBuddy */ 1931 return; 1932 } 1933 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1934 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1935 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1936 } 1937 #ifdef CONFIG_MEMCG 1938 if (unlikely(page->mem_cgroup)) 1939 bad_reason = "page still charged to cgroup"; 1940 #endif 1941 bad_page(page, bad_reason, bad_flags); 1942 } 1943 1944 /* 1945 * This page is about to be returned from the page allocator 1946 */ 1947 static inline int check_new_page(struct page *page) 1948 { 1949 if (likely(page_expected_state(page, 1950 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1951 return 0; 1952 1953 check_new_page_bad(page); 1954 return 1; 1955 } 1956 1957 static inline bool free_pages_prezeroed(void) 1958 { 1959 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1960 page_poisoning_enabled(); 1961 } 1962 1963 #ifdef CONFIG_DEBUG_VM 1964 static bool check_pcp_refill(struct page *page) 1965 { 1966 return false; 1967 } 1968 1969 static bool check_new_pcp(struct page *page) 1970 { 1971 return check_new_page(page); 1972 } 1973 #else 1974 static bool check_pcp_refill(struct page *page) 1975 { 1976 return check_new_page(page); 1977 } 1978 static bool check_new_pcp(struct page *page) 1979 { 1980 return false; 1981 } 1982 #endif /* CONFIG_DEBUG_VM */ 1983 1984 static bool check_new_pages(struct page *page, unsigned int order) 1985 { 1986 int i; 1987 for (i = 0; i < (1 << order); i++) { 1988 struct page *p = page + i; 1989 1990 if (unlikely(check_new_page(p))) 1991 return true; 1992 } 1993 1994 return false; 1995 } 1996 1997 inline void post_alloc_hook(struct page *page, unsigned int order, 1998 gfp_t gfp_flags) 1999 { 2000 set_page_private(page, 0); 2001 set_page_refcounted(page); 2002 2003 arch_alloc_page(page, order); 2004 kernel_map_pages(page, 1 << order, 1); 2005 kasan_alloc_pages(page, order); 2006 kernel_poison_pages(page, 1 << order, 1); 2007 set_page_owner(page, order, gfp_flags); 2008 } 2009 2010 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2011 unsigned int alloc_flags) 2012 { 2013 int i; 2014 2015 post_alloc_hook(page, order, gfp_flags); 2016 2017 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 2018 for (i = 0; i < (1 << order); i++) 2019 clear_highpage(page + i); 2020 2021 if (order && (gfp_flags & __GFP_COMP)) 2022 prep_compound_page(page, order); 2023 2024 /* 2025 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2026 * allocate the page. The expectation is that the caller is taking 2027 * steps that will free more memory. The caller should avoid the page 2028 * being used for !PFMEMALLOC purposes. 2029 */ 2030 if (alloc_flags & ALLOC_NO_WATERMARKS) 2031 set_page_pfmemalloc(page); 2032 else 2033 clear_page_pfmemalloc(page); 2034 } 2035 2036 /* 2037 * Go through the free lists for the given migratetype and remove 2038 * the smallest available page from the freelists 2039 */ 2040 static __always_inline 2041 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2042 int migratetype) 2043 { 2044 unsigned int current_order; 2045 struct free_area *area; 2046 struct page *page; 2047 2048 /* Find a page of the appropriate size in the preferred list */ 2049 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2050 area = &(zone->free_area[current_order]); 2051 page = list_first_entry_or_null(&area->free_list[migratetype], 2052 struct page, lru); 2053 if (!page) 2054 continue; 2055 list_del(&page->lru); 2056 rmv_page_order(page); 2057 area->nr_free--; 2058 expand(zone, page, order, current_order, area, migratetype); 2059 set_pcppage_migratetype(page, migratetype); 2060 return page; 2061 } 2062 2063 return NULL; 2064 } 2065 2066 2067 /* 2068 * This array describes the order lists are fallen back to when 2069 * the free lists for the desirable migrate type are depleted 2070 */ 2071 static int fallbacks[MIGRATE_TYPES][4] = { 2072 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2073 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2074 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2075 #ifdef CONFIG_CMA 2076 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2077 #endif 2078 #ifdef CONFIG_MEMORY_ISOLATION 2079 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2080 #endif 2081 }; 2082 2083 #ifdef CONFIG_CMA 2084 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2085 unsigned int order) 2086 { 2087 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2088 } 2089 #else 2090 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2091 unsigned int order) { return NULL; } 2092 #endif 2093 2094 /* 2095 * Move the free pages in a range to the free lists of the requested type. 2096 * Note that start_page and end_pages are not aligned on a pageblock 2097 * boundary. If alignment is required, use move_freepages_block() 2098 */ 2099 static int move_freepages(struct zone *zone, 2100 struct page *start_page, struct page *end_page, 2101 int migratetype, int *num_movable) 2102 { 2103 struct page *page; 2104 unsigned int order; 2105 int pages_moved = 0; 2106 2107 #ifndef CONFIG_HOLES_IN_ZONE 2108 /* 2109 * page_zone is not safe to call in this context when 2110 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2111 * anyway as we check zone boundaries in move_freepages_block(). 2112 * Remove at a later date when no bug reports exist related to 2113 * grouping pages by mobility 2114 */ 2115 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2116 pfn_valid(page_to_pfn(end_page)) && 2117 page_zone(start_page) != page_zone(end_page)); 2118 #endif 2119 for (page = start_page; page <= end_page;) { 2120 if (!pfn_valid_within(page_to_pfn(page))) { 2121 page++; 2122 continue; 2123 } 2124 2125 /* Make sure we are not inadvertently changing nodes */ 2126 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2127 2128 if (!PageBuddy(page)) { 2129 /* 2130 * We assume that pages that could be isolated for 2131 * migration are movable. But we don't actually try 2132 * isolating, as that would be expensive. 2133 */ 2134 if (num_movable && 2135 (PageLRU(page) || __PageMovable(page))) 2136 (*num_movable)++; 2137 2138 page++; 2139 continue; 2140 } 2141 2142 order = page_order(page); 2143 list_move(&page->lru, 2144 &zone->free_area[order].free_list[migratetype]); 2145 page += 1 << order; 2146 pages_moved += 1 << order; 2147 } 2148 2149 return pages_moved; 2150 } 2151 2152 int move_freepages_block(struct zone *zone, struct page *page, 2153 int migratetype, int *num_movable) 2154 { 2155 unsigned long start_pfn, end_pfn; 2156 struct page *start_page, *end_page; 2157 2158 if (num_movable) 2159 *num_movable = 0; 2160 2161 start_pfn = page_to_pfn(page); 2162 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2163 start_page = pfn_to_page(start_pfn); 2164 end_page = start_page + pageblock_nr_pages - 1; 2165 end_pfn = start_pfn + pageblock_nr_pages - 1; 2166 2167 /* Do not cross zone boundaries */ 2168 if (!zone_spans_pfn(zone, start_pfn)) 2169 start_page = page; 2170 if (!zone_spans_pfn(zone, end_pfn)) 2171 return 0; 2172 2173 return move_freepages(zone, start_page, end_page, migratetype, 2174 num_movable); 2175 } 2176 2177 static void change_pageblock_range(struct page *pageblock_page, 2178 int start_order, int migratetype) 2179 { 2180 int nr_pageblocks = 1 << (start_order - pageblock_order); 2181 2182 while (nr_pageblocks--) { 2183 set_pageblock_migratetype(pageblock_page, migratetype); 2184 pageblock_page += pageblock_nr_pages; 2185 } 2186 } 2187 2188 /* 2189 * When we are falling back to another migratetype during allocation, try to 2190 * steal extra free pages from the same pageblocks to satisfy further 2191 * allocations, instead of polluting multiple pageblocks. 2192 * 2193 * If we are stealing a relatively large buddy page, it is likely there will 2194 * be more free pages in the pageblock, so try to steal them all. For 2195 * reclaimable and unmovable allocations, we steal regardless of page size, 2196 * as fragmentation caused by those allocations polluting movable pageblocks 2197 * is worse than movable allocations stealing from unmovable and reclaimable 2198 * pageblocks. 2199 */ 2200 static bool can_steal_fallback(unsigned int order, int start_mt) 2201 { 2202 /* 2203 * Leaving this order check is intended, although there is 2204 * relaxed order check in next check. The reason is that 2205 * we can actually steal whole pageblock if this condition met, 2206 * but, below check doesn't guarantee it and that is just heuristic 2207 * so could be changed anytime. 2208 */ 2209 if (order >= pageblock_order) 2210 return true; 2211 2212 if (order >= pageblock_order / 2 || 2213 start_mt == MIGRATE_RECLAIMABLE || 2214 start_mt == MIGRATE_UNMOVABLE || 2215 page_group_by_mobility_disabled) 2216 return true; 2217 2218 return false; 2219 } 2220 2221 static inline void boost_watermark(struct zone *zone) 2222 { 2223 unsigned long max_boost; 2224 2225 if (!watermark_boost_factor) 2226 return; 2227 2228 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2229 watermark_boost_factor, 10000); 2230 2231 /* 2232 * high watermark may be uninitialised if fragmentation occurs 2233 * very early in boot so do not boost. We do not fall 2234 * through and boost by pageblock_nr_pages as failing 2235 * allocations that early means that reclaim is not going 2236 * to help and it may even be impossible to reclaim the 2237 * boosted watermark resulting in a hang. 2238 */ 2239 if (!max_boost) 2240 return; 2241 2242 max_boost = max(pageblock_nr_pages, max_boost); 2243 2244 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2245 max_boost); 2246 } 2247 2248 /* 2249 * This function implements actual steal behaviour. If order is large enough, 2250 * we can steal whole pageblock. If not, we first move freepages in this 2251 * pageblock to our migratetype and determine how many already-allocated pages 2252 * are there in the pageblock with a compatible migratetype. If at least half 2253 * of pages are free or compatible, we can change migratetype of the pageblock 2254 * itself, so pages freed in the future will be put on the correct free list. 2255 */ 2256 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2257 unsigned int alloc_flags, int start_type, bool whole_block) 2258 { 2259 unsigned int current_order = page_order(page); 2260 struct free_area *area; 2261 int free_pages, movable_pages, alike_pages; 2262 int old_block_type; 2263 2264 old_block_type = get_pageblock_migratetype(page); 2265 2266 /* 2267 * This can happen due to races and we want to prevent broken 2268 * highatomic accounting. 2269 */ 2270 if (is_migrate_highatomic(old_block_type)) 2271 goto single_page; 2272 2273 /* Take ownership for orders >= pageblock_order */ 2274 if (current_order >= pageblock_order) { 2275 change_pageblock_range(page, current_order, start_type); 2276 goto single_page; 2277 } 2278 2279 /* 2280 * Boost watermarks to increase reclaim pressure to reduce the 2281 * likelihood of future fallbacks. Wake kswapd now as the node 2282 * may be balanced overall and kswapd will not wake naturally. 2283 */ 2284 boost_watermark(zone); 2285 if (alloc_flags & ALLOC_KSWAPD) 2286 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2287 2288 /* We are not allowed to try stealing from the whole block */ 2289 if (!whole_block) 2290 goto single_page; 2291 2292 free_pages = move_freepages_block(zone, page, start_type, 2293 &movable_pages); 2294 /* 2295 * Determine how many pages are compatible with our allocation. 2296 * For movable allocation, it's the number of movable pages which 2297 * we just obtained. For other types it's a bit more tricky. 2298 */ 2299 if (start_type == MIGRATE_MOVABLE) { 2300 alike_pages = movable_pages; 2301 } else { 2302 /* 2303 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2304 * to MOVABLE pageblock, consider all non-movable pages as 2305 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2306 * vice versa, be conservative since we can't distinguish the 2307 * exact migratetype of non-movable pages. 2308 */ 2309 if (old_block_type == MIGRATE_MOVABLE) 2310 alike_pages = pageblock_nr_pages 2311 - (free_pages + movable_pages); 2312 else 2313 alike_pages = 0; 2314 } 2315 2316 /* moving whole block can fail due to zone boundary conditions */ 2317 if (!free_pages) 2318 goto single_page; 2319 2320 /* 2321 * If a sufficient number of pages in the block are either free or of 2322 * comparable migratability as our allocation, claim the whole block. 2323 */ 2324 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2325 page_group_by_mobility_disabled) 2326 set_pageblock_migratetype(page, start_type); 2327 2328 return; 2329 2330 single_page: 2331 area = &zone->free_area[current_order]; 2332 list_move(&page->lru, &area->free_list[start_type]); 2333 } 2334 2335 /* 2336 * Check whether there is a suitable fallback freepage with requested order. 2337 * If only_stealable is true, this function returns fallback_mt only if 2338 * we can steal other freepages all together. This would help to reduce 2339 * fragmentation due to mixed migratetype pages in one pageblock. 2340 */ 2341 int find_suitable_fallback(struct free_area *area, unsigned int order, 2342 int migratetype, bool only_stealable, bool *can_steal) 2343 { 2344 int i; 2345 int fallback_mt; 2346 2347 if (area->nr_free == 0) 2348 return -1; 2349 2350 *can_steal = false; 2351 for (i = 0;; i++) { 2352 fallback_mt = fallbacks[migratetype][i]; 2353 if (fallback_mt == MIGRATE_TYPES) 2354 break; 2355 2356 if (list_empty(&area->free_list[fallback_mt])) 2357 continue; 2358 2359 if (can_steal_fallback(order, migratetype)) 2360 *can_steal = true; 2361 2362 if (!only_stealable) 2363 return fallback_mt; 2364 2365 if (*can_steal) 2366 return fallback_mt; 2367 } 2368 2369 return -1; 2370 } 2371 2372 /* 2373 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2374 * there are no empty page blocks that contain a page with a suitable order 2375 */ 2376 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2377 unsigned int alloc_order) 2378 { 2379 int mt; 2380 unsigned long max_managed, flags; 2381 2382 /* 2383 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2384 * Check is race-prone but harmless. 2385 */ 2386 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2387 if (zone->nr_reserved_highatomic >= max_managed) 2388 return; 2389 2390 spin_lock_irqsave(&zone->lock, flags); 2391 2392 /* Recheck the nr_reserved_highatomic limit under the lock */ 2393 if (zone->nr_reserved_highatomic >= max_managed) 2394 goto out_unlock; 2395 2396 /* Yoink! */ 2397 mt = get_pageblock_migratetype(page); 2398 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2399 && !is_migrate_cma(mt)) { 2400 zone->nr_reserved_highatomic += pageblock_nr_pages; 2401 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2402 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2403 } 2404 2405 out_unlock: 2406 spin_unlock_irqrestore(&zone->lock, flags); 2407 } 2408 2409 /* 2410 * Used when an allocation is about to fail under memory pressure. This 2411 * potentially hurts the reliability of high-order allocations when under 2412 * intense memory pressure but failed atomic allocations should be easier 2413 * to recover from than an OOM. 2414 * 2415 * If @force is true, try to unreserve a pageblock even though highatomic 2416 * pageblock is exhausted. 2417 */ 2418 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2419 bool force) 2420 { 2421 struct zonelist *zonelist = ac->zonelist; 2422 unsigned long flags; 2423 struct zoneref *z; 2424 struct zone *zone; 2425 struct page *page; 2426 int order; 2427 bool ret; 2428 2429 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2430 ac->nodemask) { 2431 /* 2432 * Preserve at least one pageblock unless memory pressure 2433 * is really high. 2434 */ 2435 if (!force && zone->nr_reserved_highatomic <= 2436 pageblock_nr_pages) 2437 continue; 2438 2439 spin_lock_irqsave(&zone->lock, flags); 2440 for (order = 0; order < MAX_ORDER; order++) { 2441 struct free_area *area = &(zone->free_area[order]); 2442 2443 page = list_first_entry_or_null( 2444 &area->free_list[MIGRATE_HIGHATOMIC], 2445 struct page, lru); 2446 if (!page) 2447 continue; 2448 2449 /* 2450 * In page freeing path, migratetype change is racy so 2451 * we can counter several free pages in a pageblock 2452 * in this loop althoug we changed the pageblock type 2453 * from highatomic to ac->migratetype. So we should 2454 * adjust the count once. 2455 */ 2456 if (is_migrate_highatomic_page(page)) { 2457 /* 2458 * It should never happen but changes to 2459 * locking could inadvertently allow a per-cpu 2460 * drain to add pages to MIGRATE_HIGHATOMIC 2461 * while unreserving so be safe and watch for 2462 * underflows. 2463 */ 2464 zone->nr_reserved_highatomic -= min( 2465 pageblock_nr_pages, 2466 zone->nr_reserved_highatomic); 2467 } 2468 2469 /* 2470 * Convert to ac->migratetype and avoid the normal 2471 * pageblock stealing heuristics. Minimally, the caller 2472 * is doing the work and needs the pages. More 2473 * importantly, if the block was always converted to 2474 * MIGRATE_UNMOVABLE or another type then the number 2475 * of pageblocks that cannot be completely freed 2476 * may increase. 2477 */ 2478 set_pageblock_migratetype(page, ac->migratetype); 2479 ret = move_freepages_block(zone, page, ac->migratetype, 2480 NULL); 2481 if (ret) { 2482 spin_unlock_irqrestore(&zone->lock, flags); 2483 return ret; 2484 } 2485 } 2486 spin_unlock_irqrestore(&zone->lock, flags); 2487 } 2488 2489 return false; 2490 } 2491 2492 /* 2493 * Try finding a free buddy page on the fallback list and put it on the free 2494 * list of requested migratetype, possibly along with other pages from the same 2495 * block, depending on fragmentation avoidance heuristics. Returns true if 2496 * fallback was found so that __rmqueue_smallest() can grab it. 2497 * 2498 * The use of signed ints for order and current_order is a deliberate 2499 * deviation from the rest of this file, to make the for loop 2500 * condition simpler. 2501 */ 2502 static __always_inline bool 2503 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2504 unsigned int alloc_flags) 2505 { 2506 struct free_area *area; 2507 int current_order; 2508 int min_order = order; 2509 struct page *page; 2510 int fallback_mt; 2511 bool can_steal; 2512 2513 /* 2514 * Do not steal pages from freelists belonging to other pageblocks 2515 * i.e. orders < pageblock_order. If there are no local zones free, 2516 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2517 */ 2518 if (alloc_flags & ALLOC_NOFRAGMENT) 2519 min_order = pageblock_order; 2520 2521 /* 2522 * Find the largest available free page in the other list. This roughly 2523 * approximates finding the pageblock with the most free pages, which 2524 * would be too costly to do exactly. 2525 */ 2526 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2527 --current_order) { 2528 area = &(zone->free_area[current_order]); 2529 fallback_mt = find_suitable_fallback(area, current_order, 2530 start_migratetype, false, &can_steal); 2531 if (fallback_mt == -1) 2532 continue; 2533 2534 /* 2535 * We cannot steal all free pages from the pageblock and the 2536 * requested migratetype is movable. In that case it's better to 2537 * steal and split the smallest available page instead of the 2538 * largest available page, because even if the next movable 2539 * allocation falls back into a different pageblock than this 2540 * one, it won't cause permanent fragmentation. 2541 */ 2542 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2543 && current_order > order) 2544 goto find_smallest; 2545 2546 goto do_steal; 2547 } 2548 2549 return false; 2550 2551 find_smallest: 2552 for (current_order = order; current_order < MAX_ORDER; 2553 current_order++) { 2554 area = &(zone->free_area[current_order]); 2555 fallback_mt = find_suitable_fallback(area, current_order, 2556 start_migratetype, false, &can_steal); 2557 if (fallback_mt != -1) 2558 break; 2559 } 2560 2561 /* 2562 * This should not happen - we already found a suitable fallback 2563 * when looking for the largest page. 2564 */ 2565 VM_BUG_ON(current_order == MAX_ORDER); 2566 2567 do_steal: 2568 page = list_first_entry(&area->free_list[fallback_mt], 2569 struct page, lru); 2570 2571 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2572 can_steal); 2573 2574 trace_mm_page_alloc_extfrag(page, order, current_order, 2575 start_migratetype, fallback_mt); 2576 2577 return true; 2578 2579 } 2580 2581 /* 2582 * Do the hard work of removing an element from the buddy allocator. 2583 * Call me with the zone->lock already held. 2584 */ 2585 static __always_inline struct page * 2586 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2587 unsigned int alloc_flags) 2588 { 2589 struct page *page; 2590 2591 retry: 2592 page = __rmqueue_smallest(zone, order, migratetype); 2593 if (unlikely(!page)) { 2594 if (migratetype == MIGRATE_MOVABLE) 2595 page = __rmqueue_cma_fallback(zone, order); 2596 2597 if (!page && __rmqueue_fallback(zone, order, migratetype, 2598 alloc_flags)) 2599 goto retry; 2600 } 2601 2602 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2603 return page; 2604 } 2605 2606 /* 2607 * Obtain a specified number of elements from the buddy allocator, all under 2608 * a single hold of the lock, for efficiency. Add them to the supplied list. 2609 * Returns the number of new pages which were placed at *list. 2610 */ 2611 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2612 unsigned long count, struct list_head *list, 2613 int migratetype, unsigned int alloc_flags) 2614 { 2615 int i, alloced = 0; 2616 2617 spin_lock(&zone->lock); 2618 for (i = 0; i < count; ++i) { 2619 struct page *page = __rmqueue(zone, order, migratetype, 2620 alloc_flags); 2621 if (unlikely(page == NULL)) 2622 break; 2623 2624 if (unlikely(check_pcp_refill(page))) 2625 continue; 2626 2627 /* 2628 * Split buddy pages returned by expand() are received here in 2629 * physical page order. The page is added to the tail of 2630 * caller's list. From the callers perspective, the linked list 2631 * is ordered by page number under some conditions. This is 2632 * useful for IO devices that can forward direction from the 2633 * head, thus also in the physical page order. This is useful 2634 * for IO devices that can merge IO requests if the physical 2635 * pages are ordered properly. 2636 */ 2637 list_add_tail(&page->lru, list); 2638 alloced++; 2639 if (is_migrate_cma(get_pcppage_migratetype(page))) 2640 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2641 -(1 << order)); 2642 } 2643 2644 /* 2645 * i pages were removed from the buddy list even if some leak due 2646 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2647 * on i. Do not confuse with 'alloced' which is the number of 2648 * pages added to the pcp list. 2649 */ 2650 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2651 spin_unlock(&zone->lock); 2652 return alloced; 2653 } 2654 2655 #ifdef CONFIG_NUMA 2656 /* 2657 * Called from the vmstat counter updater to drain pagesets of this 2658 * currently executing processor on remote nodes after they have 2659 * expired. 2660 * 2661 * Note that this function must be called with the thread pinned to 2662 * a single processor. 2663 */ 2664 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2665 { 2666 unsigned long flags; 2667 int to_drain, batch; 2668 2669 local_irq_save(flags); 2670 batch = READ_ONCE(pcp->batch); 2671 to_drain = min(pcp->count, batch); 2672 if (to_drain > 0) 2673 free_pcppages_bulk(zone, to_drain, pcp); 2674 local_irq_restore(flags); 2675 } 2676 #endif 2677 2678 /* 2679 * Drain pcplists of the indicated processor and zone. 2680 * 2681 * The processor must either be the current processor and the 2682 * thread pinned to the current processor or a processor that 2683 * is not online. 2684 */ 2685 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2686 { 2687 unsigned long flags; 2688 struct per_cpu_pageset *pset; 2689 struct per_cpu_pages *pcp; 2690 2691 local_irq_save(flags); 2692 pset = per_cpu_ptr(zone->pageset, cpu); 2693 2694 pcp = &pset->pcp; 2695 if (pcp->count) 2696 free_pcppages_bulk(zone, pcp->count, pcp); 2697 local_irq_restore(flags); 2698 } 2699 2700 /* 2701 * Drain pcplists of all zones on the indicated processor. 2702 * 2703 * The processor must either be the current processor and the 2704 * thread pinned to the current processor or a processor that 2705 * is not online. 2706 */ 2707 static void drain_pages(unsigned int cpu) 2708 { 2709 struct zone *zone; 2710 2711 for_each_populated_zone(zone) { 2712 drain_pages_zone(cpu, zone); 2713 } 2714 } 2715 2716 /* 2717 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2718 * 2719 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2720 * the single zone's pages. 2721 */ 2722 void drain_local_pages(struct zone *zone) 2723 { 2724 int cpu = smp_processor_id(); 2725 2726 if (zone) 2727 drain_pages_zone(cpu, zone); 2728 else 2729 drain_pages(cpu); 2730 } 2731 2732 static void drain_local_pages_wq(struct work_struct *work) 2733 { 2734 struct pcpu_drain *drain; 2735 2736 drain = container_of(work, struct pcpu_drain, work); 2737 2738 /* 2739 * drain_all_pages doesn't use proper cpu hotplug protection so 2740 * we can race with cpu offline when the WQ can move this from 2741 * a cpu pinned worker to an unbound one. We can operate on a different 2742 * cpu which is allright but we also have to make sure to not move to 2743 * a different one. 2744 */ 2745 preempt_disable(); 2746 drain_local_pages(drain->zone); 2747 preempt_enable(); 2748 } 2749 2750 /* 2751 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2752 * 2753 * When zone parameter is non-NULL, spill just the single zone's pages. 2754 * 2755 * Note that this can be extremely slow as the draining happens in a workqueue. 2756 */ 2757 void drain_all_pages(struct zone *zone) 2758 { 2759 int cpu; 2760 2761 /* 2762 * Allocate in the BSS so we wont require allocation in 2763 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2764 */ 2765 static cpumask_t cpus_with_pcps; 2766 2767 /* 2768 * Make sure nobody triggers this path before mm_percpu_wq is fully 2769 * initialized. 2770 */ 2771 if (WARN_ON_ONCE(!mm_percpu_wq)) 2772 return; 2773 2774 /* 2775 * Do not drain if one is already in progress unless it's specific to 2776 * a zone. Such callers are primarily CMA and memory hotplug and need 2777 * the drain to be complete when the call returns. 2778 */ 2779 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2780 if (!zone) 2781 return; 2782 mutex_lock(&pcpu_drain_mutex); 2783 } 2784 2785 /* 2786 * We don't care about racing with CPU hotplug event 2787 * as offline notification will cause the notified 2788 * cpu to drain that CPU pcps and on_each_cpu_mask 2789 * disables preemption as part of its processing 2790 */ 2791 for_each_online_cpu(cpu) { 2792 struct per_cpu_pageset *pcp; 2793 struct zone *z; 2794 bool has_pcps = false; 2795 2796 if (zone) { 2797 pcp = per_cpu_ptr(zone->pageset, cpu); 2798 if (pcp->pcp.count) 2799 has_pcps = true; 2800 } else { 2801 for_each_populated_zone(z) { 2802 pcp = per_cpu_ptr(z->pageset, cpu); 2803 if (pcp->pcp.count) { 2804 has_pcps = true; 2805 break; 2806 } 2807 } 2808 } 2809 2810 if (has_pcps) 2811 cpumask_set_cpu(cpu, &cpus_with_pcps); 2812 else 2813 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2814 } 2815 2816 for_each_cpu(cpu, &cpus_with_pcps) { 2817 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2818 2819 drain->zone = zone; 2820 INIT_WORK(&drain->work, drain_local_pages_wq); 2821 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2822 } 2823 for_each_cpu(cpu, &cpus_with_pcps) 2824 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2825 2826 mutex_unlock(&pcpu_drain_mutex); 2827 } 2828 2829 #ifdef CONFIG_HIBERNATION 2830 2831 /* 2832 * Touch the watchdog for every WD_PAGE_COUNT pages. 2833 */ 2834 #define WD_PAGE_COUNT (128*1024) 2835 2836 void mark_free_pages(struct zone *zone) 2837 { 2838 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2839 unsigned long flags; 2840 unsigned int order, t; 2841 struct page *page; 2842 2843 if (zone_is_empty(zone)) 2844 return; 2845 2846 spin_lock_irqsave(&zone->lock, flags); 2847 2848 max_zone_pfn = zone_end_pfn(zone); 2849 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2850 if (pfn_valid(pfn)) { 2851 page = pfn_to_page(pfn); 2852 2853 if (!--page_count) { 2854 touch_nmi_watchdog(); 2855 page_count = WD_PAGE_COUNT; 2856 } 2857 2858 if (page_zone(page) != zone) 2859 continue; 2860 2861 if (!swsusp_page_is_forbidden(page)) 2862 swsusp_unset_page_free(page); 2863 } 2864 2865 for_each_migratetype_order(order, t) { 2866 list_for_each_entry(page, 2867 &zone->free_area[order].free_list[t], lru) { 2868 unsigned long i; 2869 2870 pfn = page_to_pfn(page); 2871 for (i = 0; i < (1UL << order); i++) { 2872 if (!--page_count) { 2873 touch_nmi_watchdog(); 2874 page_count = WD_PAGE_COUNT; 2875 } 2876 swsusp_set_page_free(pfn_to_page(pfn + i)); 2877 } 2878 } 2879 } 2880 spin_unlock_irqrestore(&zone->lock, flags); 2881 } 2882 #endif /* CONFIG_PM */ 2883 2884 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2885 { 2886 int migratetype; 2887 2888 if (!free_pcp_prepare(page)) 2889 return false; 2890 2891 migratetype = get_pfnblock_migratetype(page, pfn); 2892 set_pcppage_migratetype(page, migratetype); 2893 return true; 2894 } 2895 2896 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2897 { 2898 struct zone *zone = page_zone(page); 2899 struct per_cpu_pages *pcp; 2900 int migratetype; 2901 2902 migratetype = get_pcppage_migratetype(page); 2903 __count_vm_event(PGFREE); 2904 2905 /* 2906 * We only track unmovable, reclaimable and movable on pcp lists. 2907 * Free ISOLATE pages back to the allocator because they are being 2908 * offlined but treat HIGHATOMIC as movable pages so we can get those 2909 * areas back if necessary. Otherwise, we may have to free 2910 * excessively into the page allocator 2911 */ 2912 if (migratetype >= MIGRATE_PCPTYPES) { 2913 if (unlikely(is_migrate_isolate(migratetype))) { 2914 free_one_page(zone, page, pfn, 0, migratetype); 2915 return; 2916 } 2917 migratetype = MIGRATE_MOVABLE; 2918 } 2919 2920 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2921 list_add(&page->lru, &pcp->lists[migratetype]); 2922 pcp->count++; 2923 if (pcp->count >= pcp->high) { 2924 unsigned long batch = READ_ONCE(pcp->batch); 2925 free_pcppages_bulk(zone, batch, pcp); 2926 } 2927 } 2928 2929 /* 2930 * Free a 0-order page 2931 */ 2932 void free_unref_page(struct page *page) 2933 { 2934 unsigned long flags; 2935 unsigned long pfn = page_to_pfn(page); 2936 2937 if (!free_unref_page_prepare(page, pfn)) 2938 return; 2939 2940 local_irq_save(flags); 2941 free_unref_page_commit(page, pfn); 2942 local_irq_restore(flags); 2943 } 2944 2945 /* 2946 * Free a list of 0-order pages 2947 */ 2948 void free_unref_page_list(struct list_head *list) 2949 { 2950 struct page *page, *next; 2951 unsigned long flags, pfn; 2952 int batch_count = 0; 2953 2954 /* Prepare pages for freeing */ 2955 list_for_each_entry_safe(page, next, list, lru) { 2956 pfn = page_to_pfn(page); 2957 if (!free_unref_page_prepare(page, pfn)) 2958 list_del(&page->lru); 2959 set_page_private(page, pfn); 2960 } 2961 2962 local_irq_save(flags); 2963 list_for_each_entry_safe(page, next, list, lru) { 2964 unsigned long pfn = page_private(page); 2965 2966 set_page_private(page, 0); 2967 trace_mm_page_free_batched(page); 2968 free_unref_page_commit(page, pfn); 2969 2970 /* 2971 * Guard against excessive IRQ disabled times when we get 2972 * a large list of pages to free. 2973 */ 2974 if (++batch_count == SWAP_CLUSTER_MAX) { 2975 local_irq_restore(flags); 2976 batch_count = 0; 2977 local_irq_save(flags); 2978 } 2979 } 2980 local_irq_restore(flags); 2981 } 2982 2983 /* 2984 * split_page takes a non-compound higher-order page, and splits it into 2985 * n (1<<order) sub-pages: page[0..n] 2986 * Each sub-page must be freed individually. 2987 * 2988 * Note: this is probably too low level an operation for use in drivers. 2989 * Please consult with lkml before using this in your driver. 2990 */ 2991 void split_page(struct page *page, unsigned int order) 2992 { 2993 int i; 2994 2995 VM_BUG_ON_PAGE(PageCompound(page), page); 2996 VM_BUG_ON_PAGE(!page_count(page), page); 2997 2998 for (i = 1; i < (1 << order); i++) 2999 set_page_refcounted(page + i); 3000 split_page_owner(page, order); 3001 } 3002 EXPORT_SYMBOL_GPL(split_page); 3003 3004 int __isolate_free_page(struct page *page, unsigned int order) 3005 { 3006 unsigned long watermark; 3007 struct zone *zone; 3008 int mt; 3009 3010 BUG_ON(!PageBuddy(page)); 3011 3012 zone = page_zone(page); 3013 mt = get_pageblock_migratetype(page); 3014 3015 if (!is_migrate_isolate(mt)) { 3016 /* 3017 * Obey watermarks as if the page was being allocated. We can 3018 * emulate a high-order watermark check with a raised order-0 3019 * watermark, because we already know our high-order page 3020 * exists. 3021 */ 3022 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3023 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3024 return 0; 3025 3026 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3027 } 3028 3029 /* Remove page from free list */ 3030 list_del(&page->lru); 3031 zone->free_area[order].nr_free--; 3032 rmv_page_order(page); 3033 3034 /* 3035 * Set the pageblock if the isolated page is at least half of a 3036 * pageblock 3037 */ 3038 if (order >= pageblock_order - 1) { 3039 struct page *endpage = page + (1 << order) - 1; 3040 for (; page < endpage; page += pageblock_nr_pages) { 3041 int mt = get_pageblock_migratetype(page); 3042 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3043 && !is_migrate_highatomic(mt)) 3044 set_pageblock_migratetype(page, 3045 MIGRATE_MOVABLE); 3046 } 3047 } 3048 3049 3050 return 1UL << order; 3051 } 3052 3053 /* 3054 * Update NUMA hit/miss statistics 3055 * 3056 * Must be called with interrupts disabled. 3057 */ 3058 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3059 { 3060 #ifdef CONFIG_NUMA 3061 enum numa_stat_item local_stat = NUMA_LOCAL; 3062 3063 /* skip numa counters update if numa stats is disabled */ 3064 if (!static_branch_likely(&vm_numa_stat_key)) 3065 return; 3066 3067 if (zone_to_nid(z) != numa_node_id()) 3068 local_stat = NUMA_OTHER; 3069 3070 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3071 __inc_numa_state(z, NUMA_HIT); 3072 else { 3073 __inc_numa_state(z, NUMA_MISS); 3074 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3075 } 3076 __inc_numa_state(z, local_stat); 3077 #endif 3078 } 3079 3080 /* Remove page from the per-cpu list, caller must protect the list */ 3081 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3082 unsigned int alloc_flags, 3083 struct per_cpu_pages *pcp, 3084 struct list_head *list) 3085 { 3086 struct page *page; 3087 3088 do { 3089 if (list_empty(list)) { 3090 pcp->count += rmqueue_bulk(zone, 0, 3091 pcp->batch, list, 3092 migratetype, alloc_flags); 3093 if (unlikely(list_empty(list))) 3094 return NULL; 3095 } 3096 3097 page = list_first_entry(list, struct page, lru); 3098 list_del(&page->lru); 3099 pcp->count--; 3100 } while (check_new_pcp(page)); 3101 3102 return page; 3103 } 3104 3105 /* Lock and remove page from the per-cpu list */ 3106 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3107 struct zone *zone, unsigned int order, 3108 gfp_t gfp_flags, int migratetype, 3109 unsigned int alloc_flags) 3110 { 3111 struct per_cpu_pages *pcp; 3112 struct list_head *list; 3113 struct page *page; 3114 unsigned long flags; 3115 3116 local_irq_save(flags); 3117 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3118 list = &pcp->lists[migratetype]; 3119 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3120 if (page) { 3121 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3122 zone_statistics(preferred_zone, zone); 3123 } 3124 local_irq_restore(flags); 3125 return page; 3126 } 3127 3128 /* 3129 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3130 */ 3131 static inline 3132 struct page *rmqueue(struct zone *preferred_zone, 3133 struct zone *zone, unsigned int order, 3134 gfp_t gfp_flags, unsigned int alloc_flags, 3135 int migratetype) 3136 { 3137 unsigned long flags; 3138 struct page *page; 3139 3140 if (likely(order == 0)) { 3141 page = rmqueue_pcplist(preferred_zone, zone, order, 3142 gfp_flags, migratetype, alloc_flags); 3143 goto out; 3144 } 3145 3146 /* 3147 * We most definitely don't want callers attempting to 3148 * allocate greater than order-1 page units with __GFP_NOFAIL. 3149 */ 3150 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3151 spin_lock_irqsave(&zone->lock, flags); 3152 3153 do { 3154 page = NULL; 3155 if (alloc_flags & ALLOC_HARDER) { 3156 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3157 if (page) 3158 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3159 } 3160 if (!page) 3161 page = __rmqueue(zone, order, migratetype, alloc_flags); 3162 } while (page && check_new_pages(page, order)); 3163 spin_unlock(&zone->lock); 3164 if (!page) 3165 goto failed; 3166 __mod_zone_freepage_state(zone, -(1 << order), 3167 get_pcppage_migratetype(page)); 3168 3169 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3170 zone_statistics(preferred_zone, zone); 3171 local_irq_restore(flags); 3172 3173 out: 3174 /* Separate test+clear to avoid unnecessary atomics */ 3175 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3176 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3177 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3178 } 3179 3180 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3181 return page; 3182 3183 failed: 3184 local_irq_restore(flags); 3185 return NULL; 3186 } 3187 3188 #ifdef CONFIG_FAIL_PAGE_ALLOC 3189 3190 static struct { 3191 struct fault_attr attr; 3192 3193 bool ignore_gfp_highmem; 3194 bool ignore_gfp_reclaim; 3195 u32 min_order; 3196 } fail_page_alloc = { 3197 .attr = FAULT_ATTR_INITIALIZER, 3198 .ignore_gfp_reclaim = true, 3199 .ignore_gfp_highmem = true, 3200 .min_order = 1, 3201 }; 3202 3203 static int __init setup_fail_page_alloc(char *str) 3204 { 3205 return setup_fault_attr(&fail_page_alloc.attr, str); 3206 } 3207 __setup("fail_page_alloc=", setup_fail_page_alloc); 3208 3209 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3210 { 3211 if (order < fail_page_alloc.min_order) 3212 return false; 3213 if (gfp_mask & __GFP_NOFAIL) 3214 return false; 3215 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3216 return false; 3217 if (fail_page_alloc.ignore_gfp_reclaim && 3218 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3219 return false; 3220 3221 return should_fail(&fail_page_alloc.attr, 1 << order); 3222 } 3223 3224 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3225 3226 static int __init fail_page_alloc_debugfs(void) 3227 { 3228 umode_t mode = S_IFREG | 0600; 3229 struct dentry *dir; 3230 3231 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3232 &fail_page_alloc.attr); 3233 3234 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3235 &fail_page_alloc.ignore_gfp_reclaim); 3236 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3237 &fail_page_alloc.ignore_gfp_highmem); 3238 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3239 3240 return 0; 3241 } 3242 3243 late_initcall(fail_page_alloc_debugfs); 3244 3245 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3246 3247 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3248 3249 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3250 { 3251 return false; 3252 } 3253 3254 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3255 3256 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3257 { 3258 return __should_fail_alloc_page(gfp_mask, order); 3259 } 3260 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3261 3262 /* 3263 * Return true if free base pages are above 'mark'. For high-order checks it 3264 * will return true of the order-0 watermark is reached and there is at least 3265 * one free page of a suitable size. Checking now avoids taking the zone lock 3266 * to check in the allocation paths if no pages are free. 3267 */ 3268 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3269 int classzone_idx, unsigned int alloc_flags, 3270 long free_pages) 3271 { 3272 long min = mark; 3273 int o; 3274 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3275 3276 /* free_pages may go negative - that's OK */ 3277 free_pages -= (1 << order) - 1; 3278 3279 if (alloc_flags & ALLOC_HIGH) 3280 min -= min / 2; 3281 3282 /* 3283 * If the caller does not have rights to ALLOC_HARDER then subtract 3284 * the high-atomic reserves. This will over-estimate the size of the 3285 * atomic reserve but it avoids a search. 3286 */ 3287 if (likely(!alloc_harder)) { 3288 free_pages -= z->nr_reserved_highatomic; 3289 } else { 3290 /* 3291 * OOM victims can try even harder than normal ALLOC_HARDER 3292 * users on the grounds that it's definitely going to be in 3293 * the exit path shortly and free memory. Any allocation it 3294 * makes during the free path will be small and short-lived. 3295 */ 3296 if (alloc_flags & ALLOC_OOM) 3297 min -= min / 2; 3298 else 3299 min -= min / 4; 3300 } 3301 3302 3303 #ifdef CONFIG_CMA 3304 /* If allocation can't use CMA areas don't use free CMA pages */ 3305 if (!(alloc_flags & ALLOC_CMA)) 3306 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3307 #endif 3308 3309 /* 3310 * Check watermarks for an order-0 allocation request. If these 3311 * are not met, then a high-order request also cannot go ahead 3312 * even if a suitable page happened to be free. 3313 */ 3314 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3315 return false; 3316 3317 /* If this is an order-0 request then the watermark is fine */ 3318 if (!order) 3319 return true; 3320 3321 /* For a high-order request, check at least one suitable page is free */ 3322 for (o = order; o < MAX_ORDER; o++) { 3323 struct free_area *area = &z->free_area[o]; 3324 int mt; 3325 3326 if (!area->nr_free) 3327 continue; 3328 3329 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3330 if (!list_empty(&area->free_list[mt])) 3331 return true; 3332 } 3333 3334 #ifdef CONFIG_CMA 3335 if ((alloc_flags & ALLOC_CMA) && 3336 !list_empty(&area->free_list[MIGRATE_CMA])) { 3337 return true; 3338 } 3339 #endif 3340 if (alloc_harder && 3341 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3342 return true; 3343 } 3344 return false; 3345 } 3346 3347 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3348 int classzone_idx, unsigned int alloc_flags) 3349 { 3350 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3351 zone_page_state(z, NR_FREE_PAGES)); 3352 } 3353 3354 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3355 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3356 { 3357 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3358 long cma_pages = 0; 3359 3360 #ifdef CONFIG_CMA 3361 /* If allocation can't use CMA areas don't use free CMA pages */ 3362 if (!(alloc_flags & ALLOC_CMA)) 3363 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3364 #endif 3365 3366 /* 3367 * Fast check for order-0 only. If this fails then the reserves 3368 * need to be calculated. There is a corner case where the check 3369 * passes but only the high-order atomic reserve are free. If 3370 * the caller is !atomic then it'll uselessly search the free 3371 * list. That corner case is then slower but it is harmless. 3372 */ 3373 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3374 return true; 3375 3376 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3377 free_pages); 3378 } 3379 3380 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3381 unsigned long mark, int classzone_idx) 3382 { 3383 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3384 3385 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3386 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3387 3388 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3389 free_pages); 3390 } 3391 3392 #ifdef CONFIG_NUMA 3393 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3394 { 3395 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3396 RECLAIM_DISTANCE; 3397 } 3398 #else /* CONFIG_NUMA */ 3399 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3400 { 3401 return true; 3402 } 3403 #endif /* CONFIG_NUMA */ 3404 3405 /* 3406 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3407 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3408 * premature use of a lower zone may cause lowmem pressure problems that 3409 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3410 * probably too small. It only makes sense to spread allocations to avoid 3411 * fragmentation between the Normal and DMA32 zones. 3412 */ 3413 static inline unsigned int 3414 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3415 { 3416 unsigned int alloc_flags = 0; 3417 3418 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3419 alloc_flags |= ALLOC_KSWAPD; 3420 3421 #ifdef CONFIG_ZONE_DMA32 3422 if (zone_idx(zone) != ZONE_NORMAL) 3423 goto out; 3424 3425 /* 3426 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3427 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3428 * on UMA that if Normal is populated then so is DMA32. 3429 */ 3430 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3431 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3432 goto out; 3433 3434 out: 3435 #endif /* CONFIG_ZONE_DMA32 */ 3436 return alloc_flags; 3437 } 3438 3439 /* 3440 * get_page_from_freelist goes through the zonelist trying to allocate 3441 * a page. 3442 */ 3443 static struct page * 3444 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3445 const struct alloc_context *ac) 3446 { 3447 struct zoneref *z; 3448 struct zone *zone; 3449 struct pglist_data *last_pgdat_dirty_limit = NULL; 3450 bool no_fallback; 3451 3452 retry: 3453 /* 3454 * Scan zonelist, looking for a zone with enough free. 3455 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3456 */ 3457 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3458 z = ac->preferred_zoneref; 3459 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3460 ac->nodemask) { 3461 struct page *page; 3462 unsigned long mark; 3463 3464 if (cpusets_enabled() && 3465 (alloc_flags & ALLOC_CPUSET) && 3466 !__cpuset_zone_allowed(zone, gfp_mask)) 3467 continue; 3468 /* 3469 * When allocating a page cache page for writing, we 3470 * want to get it from a node that is within its dirty 3471 * limit, such that no single node holds more than its 3472 * proportional share of globally allowed dirty pages. 3473 * The dirty limits take into account the node's 3474 * lowmem reserves and high watermark so that kswapd 3475 * should be able to balance it without having to 3476 * write pages from its LRU list. 3477 * 3478 * XXX: For now, allow allocations to potentially 3479 * exceed the per-node dirty limit in the slowpath 3480 * (spread_dirty_pages unset) before going into reclaim, 3481 * which is important when on a NUMA setup the allowed 3482 * nodes are together not big enough to reach the 3483 * global limit. The proper fix for these situations 3484 * will require awareness of nodes in the 3485 * dirty-throttling and the flusher threads. 3486 */ 3487 if (ac->spread_dirty_pages) { 3488 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3489 continue; 3490 3491 if (!node_dirty_ok(zone->zone_pgdat)) { 3492 last_pgdat_dirty_limit = zone->zone_pgdat; 3493 continue; 3494 } 3495 } 3496 3497 if (no_fallback && nr_online_nodes > 1 && 3498 zone != ac->preferred_zoneref->zone) { 3499 int local_nid; 3500 3501 /* 3502 * If moving to a remote node, retry but allow 3503 * fragmenting fallbacks. Locality is more important 3504 * than fragmentation avoidance. 3505 */ 3506 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3507 if (zone_to_nid(zone) != local_nid) { 3508 alloc_flags &= ~ALLOC_NOFRAGMENT; 3509 goto retry; 3510 } 3511 } 3512 3513 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3514 if (!zone_watermark_fast(zone, order, mark, 3515 ac_classzone_idx(ac), alloc_flags)) { 3516 int ret; 3517 3518 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3519 /* 3520 * Watermark failed for this zone, but see if we can 3521 * grow this zone if it contains deferred pages. 3522 */ 3523 if (static_branch_unlikely(&deferred_pages)) { 3524 if (_deferred_grow_zone(zone, order)) 3525 goto try_this_zone; 3526 } 3527 #endif 3528 /* Checked here to keep the fast path fast */ 3529 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3530 if (alloc_flags & ALLOC_NO_WATERMARKS) 3531 goto try_this_zone; 3532 3533 if (node_reclaim_mode == 0 || 3534 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3535 continue; 3536 3537 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3538 switch (ret) { 3539 case NODE_RECLAIM_NOSCAN: 3540 /* did not scan */ 3541 continue; 3542 case NODE_RECLAIM_FULL: 3543 /* scanned but unreclaimable */ 3544 continue; 3545 default: 3546 /* did we reclaim enough */ 3547 if (zone_watermark_ok(zone, order, mark, 3548 ac_classzone_idx(ac), alloc_flags)) 3549 goto try_this_zone; 3550 3551 continue; 3552 } 3553 } 3554 3555 try_this_zone: 3556 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3557 gfp_mask, alloc_flags, ac->migratetype); 3558 if (page) { 3559 prep_new_page(page, order, gfp_mask, alloc_flags); 3560 3561 /* 3562 * If this is a high-order atomic allocation then check 3563 * if the pageblock should be reserved for the future 3564 */ 3565 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3566 reserve_highatomic_pageblock(page, zone, order); 3567 3568 return page; 3569 } else { 3570 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3571 /* Try again if zone has deferred pages */ 3572 if (static_branch_unlikely(&deferred_pages)) { 3573 if (_deferred_grow_zone(zone, order)) 3574 goto try_this_zone; 3575 } 3576 #endif 3577 } 3578 } 3579 3580 /* 3581 * It's possible on a UMA machine to get through all zones that are 3582 * fragmented. If avoiding fragmentation, reset and try again. 3583 */ 3584 if (no_fallback) { 3585 alloc_flags &= ~ALLOC_NOFRAGMENT; 3586 goto retry; 3587 } 3588 3589 return NULL; 3590 } 3591 3592 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3593 { 3594 unsigned int filter = SHOW_MEM_FILTER_NODES; 3595 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3596 3597 if (!__ratelimit(&show_mem_rs)) 3598 return; 3599 3600 /* 3601 * This documents exceptions given to allocations in certain 3602 * contexts that are allowed to allocate outside current's set 3603 * of allowed nodes. 3604 */ 3605 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3606 if (tsk_is_oom_victim(current) || 3607 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3608 filter &= ~SHOW_MEM_FILTER_NODES; 3609 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3610 filter &= ~SHOW_MEM_FILTER_NODES; 3611 3612 show_mem(filter, nodemask); 3613 } 3614 3615 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3616 { 3617 struct va_format vaf; 3618 va_list args; 3619 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3620 DEFAULT_RATELIMIT_BURST); 3621 3622 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3623 return; 3624 3625 va_start(args, fmt); 3626 vaf.fmt = fmt; 3627 vaf.va = &args; 3628 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3629 current->comm, &vaf, gfp_mask, &gfp_mask, 3630 nodemask_pr_args(nodemask)); 3631 va_end(args); 3632 3633 cpuset_print_current_mems_allowed(); 3634 pr_cont("\n"); 3635 dump_stack(); 3636 warn_alloc_show_mem(gfp_mask, nodemask); 3637 } 3638 3639 static inline struct page * 3640 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3641 unsigned int alloc_flags, 3642 const struct alloc_context *ac) 3643 { 3644 struct page *page; 3645 3646 page = get_page_from_freelist(gfp_mask, order, 3647 alloc_flags|ALLOC_CPUSET, ac); 3648 /* 3649 * fallback to ignore cpuset restriction if our nodes 3650 * are depleted 3651 */ 3652 if (!page) 3653 page = get_page_from_freelist(gfp_mask, order, 3654 alloc_flags, ac); 3655 3656 return page; 3657 } 3658 3659 static inline struct page * 3660 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3661 const struct alloc_context *ac, unsigned long *did_some_progress) 3662 { 3663 struct oom_control oc = { 3664 .zonelist = ac->zonelist, 3665 .nodemask = ac->nodemask, 3666 .memcg = NULL, 3667 .gfp_mask = gfp_mask, 3668 .order = order, 3669 }; 3670 struct page *page; 3671 3672 *did_some_progress = 0; 3673 3674 /* 3675 * Acquire the oom lock. If that fails, somebody else is 3676 * making progress for us. 3677 */ 3678 if (!mutex_trylock(&oom_lock)) { 3679 *did_some_progress = 1; 3680 schedule_timeout_uninterruptible(1); 3681 return NULL; 3682 } 3683 3684 /* 3685 * Go through the zonelist yet one more time, keep very high watermark 3686 * here, this is only to catch a parallel oom killing, we must fail if 3687 * we're still under heavy pressure. But make sure that this reclaim 3688 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3689 * allocation which will never fail due to oom_lock already held. 3690 */ 3691 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3692 ~__GFP_DIRECT_RECLAIM, order, 3693 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3694 if (page) 3695 goto out; 3696 3697 /* Coredumps can quickly deplete all memory reserves */ 3698 if (current->flags & PF_DUMPCORE) 3699 goto out; 3700 /* The OOM killer will not help higher order allocs */ 3701 if (order > PAGE_ALLOC_COSTLY_ORDER) 3702 goto out; 3703 /* 3704 * We have already exhausted all our reclaim opportunities without any 3705 * success so it is time to admit defeat. We will skip the OOM killer 3706 * because it is very likely that the caller has a more reasonable 3707 * fallback than shooting a random task. 3708 */ 3709 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3710 goto out; 3711 /* The OOM killer does not needlessly kill tasks for lowmem */ 3712 if (ac->high_zoneidx < ZONE_NORMAL) 3713 goto out; 3714 if (pm_suspended_storage()) 3715 goto out; 3716 /* 3717 * XXX: GFP_NOFS allocations should rather fail than rely on 3718 * other request to make a forward progress. 3719 * We are in an unfortunate situation where out_of_memory cannot 3720 * do much for this context but let's try it to at least get 3721 * access to memory reserved if the current task is killed (see 3722 * out_of_memory). Once filesystems are ready to handle allocation 3723 * failures more gracefully we should just bail out here. 3724 */ 3725 3726 /* The OOM killer may not free memory on a specific node */ 3727 if (gfp_mask & __GFP_THISNODE) 3728 goto out; 3729 3730 /* Exhausted what can be done so it's blame time */ 3731 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3732 *did_some_progress = 1; 3733 3734 /* 3735 * Help non-failing allocations by giving them access to memory 3736 * reserves 3737 */ 3738 if (gfp_mask & __GFP_NOFAIL) 3739 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3740 ALLOC_NO_WATERMARKS, ac); 3741 } 3742 out: 3743 mutex_unlock(&oom_lock); 3744 return page; 3745 } 3746 3747 /* 3748 * Maximum number of compaction retries wit a progress before OOM 3749 * killer is consider as the only way to move forward. 3750 */ 3751 #define MAX_COMPACT_RETRIES 16 3752 3753 #ifdef CONFIG_COMPACTION 3754 /* Try memory compaction for high-order allocations before reclaim */ 3755 static struct page * 3756 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3757 unsigned int alloc_flags, const struct alloc_context *ac, 3758 enum compact_priority prio, enum compact_result *compact_result) 3759 { 3760 struct page *page = NULL; 3761 unsigned long pflags; 3762 unsigned int noreclaim_flag; 3763 3764 if (!order) 3765 return NULL; 3766 3767 psi_memstall_enter(&pflags); 3768 noreclaim_flag = memalloc_noreclaim_save(); 3769 3770 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3771 prio, &page); 3772 3773 memalloc_noreclaim_restore(noreclaim_flag); 3774 psi_memstall_leave(&pflags); 3775 3776 if (*compact_result <= COMPACT_INACTIVE) { 3777 WARN_ON_ONCE(page); 3778 return NULL; 3779 } 3780 3781 /* 3782 * At least in one zone compaction wasn't deferred or skipped, so let's 3783 * count a compaction stall 3784 */ 3785 count_vm_event(COMPACTSTALL); 3786 3787 /* Prep a captured page if available */ 3788 if (page) 3789 prep_new_page(page, order, gfp_mask, alloc_flags); 3790 3791 /* Try get a page from the freelist if available */ 3792 if (!page) 3793 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3794 3795 if (page) { 3796 struct zone *zone = page_zone(page); 3797 3798 zone->compact_blockskip_flush = false; 3799 compaction_defer_reset(zone, order, true); 3800 count_vm_event(COMPACTSUCCESS); 3801 return page; 3802 } 3803 3804 /* 3805 * It's bad if compaction run occurs and fails. The most likely reason 3806 * is that pages exist, but not enough to satisfy watermarks. 3807 */ 3808 count_vm_event(COMPACTFAIL); 3809 3810 cond_resched(); 3811 3812 return NULL; 3813 } 3814 3815 static inline bool 3816 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3817 enum compact_result compact_result, 3818 enum compact_priority *compact_priority, 3819 int *compaction_retries) 3820 { 3821 int max_retries = MAX_COMPACT_RETRIES; 3822 int min_priority; 3823 bool ret = false; 3824 int retries = *compaction_retries; 3825 enum compact_priority priority = *compact_priority; 3826 3827 if (!order) 3828 return false; 3829 3830 if (compaction_made_progress(compact_result)) 3831 (*compaction_retries)++; 3832 3833 /* 3834 * compaction considers all the zone as desperately out of memory 3835 * so it doesn't really make much sense to retry except when the 3836 * failure could be caused by insufficient priority 3837 */ 3838 if (compaction_failed(compact_result)) 3839 goto check_priority; 3840 3841 /* 3842 * make sure the compaction wasn't deferred or didn't bail out early 3843 * due to locks contention before we declare that we should give up. 3844 * But do not retry if the given zonelist is not suitable for 3845 * compaction. 3846 */ 3847 if (compaction_withdrawn(compact_result)) { 3848 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3849 goto out; 3850 } 3851 3852 /* 3853 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3854 * costly ones because they are de facto nofail and invoke OOM 3855 * killer to move on while costly can fail and users are ready 3856 * to cope with that. 1/4 retries is rather arbitrary but we 3857 * would need much more detailed feedback from compaction to 3858 * make a better decision. 3859 */ 3860 if (order > PAGE_ALLOC_COSTLY_ORDER) 3861 max_retries /= 4; 3862 if (*compaction_retries <= max_retries) { 3863 ret = true; 3864 goto out; 3865 } 3866 3867 /* 3868 * Make sure there are attempts at the highest priority if we exhausted 3869 * all retries or failed at the lower priorities. 3870 */ 3871 check_priority: 3872 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3873 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3874 3875 if (*compact_priority > min_priority) { 3876 (*compact_priority)--; 3877 *compaction_retries = 0; 3878 ret = true; 3879 } 3880 out: 3881 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3882 return ret; 3883 } 3884 #else 3885 static inline struct page * 3886 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3887 unsigned int alloc_flags, const struct alloc_context *ac, 3888 enum compact_priority prio, enum compact_result *compact_result) 3889 { 3890 *compact_result = COMPACT_SKIPPED; 3891 return NULL; 3892 } 3893 3894 static inline bool 3895 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3896 enum compact_result compact_result, 3897 enum compact_priority *compact_priority, 3898 int *compaction_retries) 3899 { 3900 struct zone *zone; 3901 struct zoneref *z; 3902 3903 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3904 return false; 3905 3906 /* 3907 * There are setups with compaction disabled which would prefer to loop 3908 * inside the allocator rather than hit the oom killer prematurely. 3909 * Let's give them a good hope and keep retrying while the order-0 3910 * watermarks are OK. 3911 */ 3912 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3913 ac->nodemask) { 3914 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3915 ac_classzone_idx(ac), alloc_flags)) 3916 return true; 3917 } 3918 return false; 3919 } 3920 #endif /* CONFIG_COMPACTION */ 3921 3922 #ifdef CONFIG_LOCKDEP 3923 static struct lockdep_map __fs_reclaim_map = 3924 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3925 3926 static bool __need_fs_reclaim(gfp_t gfp_mask) 3927 { 3928 gfp_mask = current_gfp_context(gfp_mask); 3929 3930 /* no reclaim without waiting on it */ 3931 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3932 return false; 3933 3934 /* this guy won't enter reclaim */ 3935 if (current->flags & PF_MEMALLOC) 3936 return false; 3937 3938 /* We're only interested __GFP_FS allocations for now */ 3939 if (!(gfp_mask & __GFP_FS)) 3940 return false; 3941 3942 if (gfp_mask & __GFP_NOLOCKDEP) 3943 return false; 3944 3945 return true; 3946 } 3947 3948 void __fs_reclaim_acquire(void) 3949 { 3950 lock_map_acquire(&__fs_reclaim_map); 3951 } 3952 3953 void __fs_reclaim_release(void) 3954 { 3955 lock_map_release(&__fs_reclaim_map); 3956 } 3957 3958 void fs_reclaim_acquire(gfp_t gfp_mask) 3959 { 3960 if (__need_fs_reclaim(gfp_mask)) 3961 __fs_reclaim_acquire(); 3962 } 3963 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3964 3965 void fs_reclaim_release(gfp_t gfp_mask) 3966 { 3967 if (__need_fs_reclaim(gfp_mask)) 3968 __fs_reclaim_release(); 3969 } 3970 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3971 #endif 3972 3973 /* Perform direct synchronous page reclaim */ 3974 static int 3975 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3976 const struct alloc_context *ac) 3977 { 3978 struct reclaim_state reclaim_state; 3979 int progress; 3980 unsigned int noreclaim_flag; 3981 unsigned long pflags; 3982 3983 cond_resched(); 3984 3985 /* We now go into synchronous reclaim */ 3986 cpuset_memory_pressure_bump(); 3987 psi_memstall_enter(&pflags); 3988 fs_reclaim_acquire(gfp_mask); 3989 noreclaim_flag = memalloc_noreclaim_save(); 3990 reclaim_state.reclaimed_slab = 0; 3991 current->reclaim_state = &reclaim_state; 3992 3993 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3994 ac->nodemask); 3995 3996 current->reclaim_state = NULL; 3997 memalloc_noreclaim_restore(noreclaim_flag); 3998 fs_reclaim_release(gfp_mask); 3999 psi_memstall_leave(&pflags); 4000 4001 cond_resched(); 4002 4003 return progress; 4004 } 4005 4006 /* The really slow allocator path where we enter direct reclaim */ 4007 static inline struct page * 4008 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4009 unsigned int alloc_flags, const struct alloc_context *ac, 4010 unsigned long *did_some_progress) 4011 { 4012 struct page *page = NULL; 4013 bool drained = false; 4014 4015 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4016 if (unlikely(!(*did_some_progress))) 4017 return NULL; 4018 4019 retry: 4020 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4021 4022 /* 4023 * If an allocation failed after direct reclaim, it could be because 4024 * pages are pinned on the per-cpu lists or in high alloc reserves. 4025 * Shrink them them and try again 4026 */ 4027 if (!page && !drained) { 4028 unreserve_highatomic_pageblock(ac, false); 4029 drain_all_pages(NULL); 4030 drained = true; 4031 goto retry; 4032 } 4033 4034 return page; 4035 } 4036 4037 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4038 const struct alloc_context *ac) 4039 { 4040 struct zoneref *z; 4041 struct zone *zone; 4042 pg_data_t *last_pgdat = NULL; 4043 enum zone_type high_zoneidx = ac->high_zoneidx; 4044 4045 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4046 ac->nodemask) { 4047 if (last_pgdat != zone->zone_pgdat) 4048 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4049 last_pgdat = zone->zone_pgdat; 4050 } 4051 } 4052 4053 static inline unsigned int 4054 gfp_to_alloc_flags(gfp_t gfp_mask) 4055 { 4056 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4057 4058 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 4059 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4060 4061 /* 4062 * The caller may dip into page reserves a bit more if the caller 4063 * cannot run direct reclaim, or if the caller has realtime scheduling 4064 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4065 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4066 */ 4067 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 4068 4069 if (gfp_mask & __GFP_ATOMIC) { 4070 /* 4071 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4072 * if it can't schedule. 4073 */ 4074 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4075 alloc_flags |= ALLOC_HARDER; 4076 /* 4077 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4078 * comment for __cpuset_node_allowed(). 4079 */ 4080 alloc_flags &= ~ALLOC_CPUSET; 4081 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4082 alloc_flags |= ALLOC_HARDER; 4083 4084 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4085 alloc_flags |= ALLOC_KSWAPD; 4086 4087 #ifdef CONFIG_CMA 4088 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4089 alloc_flags |= ALLOC_CMA; 4090 #endif 4091 return alloc_flags; 4092 } 4093 4094 static bool oom_reserves_allowed(struct task_struct *tsk) 4095 { 4096 if (!tsk_is_oom_victim(tsk)) 4097 return false; 4098 4099 /* 4100 * !MMU doesn't have oom reaper so give access to memory reserves 4101 * only to the thread with TIF_MEMDIE set 4102 */ 4103 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4104 return false; 4105 4106 return true; 4107 } 4108 4109 /* 4110 * Distinguish requests which really need access to full memory 4111 * reserves from oom victims which can live with a portion of it 4112 */ 4113 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4114 { 4115 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4116 return 0; 4117 if (gfp_mask & __GFP_MEMALLOC) 4118 return ALLOC_NO_WATERMARKS; 4119 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4120 return ALLOC_NO_WATERMARKS; 4121 if (!in_interrupt()) { 4122 if (current->flags & PF_MEMALLOC) 4123 return ALLOC_NO_WATERMARKS; 4124 else if (oom_reserves_allowed(current)) 4125 return ALLOC_OOM; 4126 } 4127 4128 return 0; 4129 } 4130 4131 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4132 { 4133 return !!__gfp_pfmemalloc_flags(gfp_mask); 4134 } 4135 4136 /* 4137 * Checks whether it makes sense to retry the reclaim to make a forward progress 4138 * for the given allocation request. 4139 * 4140 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4141 * without success, or when we couldn't even meet the watermark if we 4142 * reclaimed all remaining pages on the LRU lists. 4143 * 4144 * Returns true if a retry is viable or false to enter the oom path. 4145 */ 4146 static inline bool 4147 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4148 struct alloc_context *ac, int alloc_flags, 4149 bool did_some_progress, int *no_progress_loops) 4150 { 4151 struct zone *zone; 4152 struct zoneref *z; 4153 bool ret = false; 4154 4155 /* 4156 * Costly allocations might have made a progress but this doesn't mean 4157 * their order will become available due to high fragmentation so 4158 * always increment the no progress counter for them 4159 */ 4160 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4161 *no_progress_loops = 0; 4162 else 4163 (*no_progress_loops)++; 4164 4165 /* 4166 * Make sure we converge to OOM if we cannot make any progress 4167 * several times in the row. 4168 */ 4169 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4170 /* Before OOM, exhaust highatomic_reserve */ 4171 return unreserve_highatomic_pageblock(ac, true); 4172 } 4173 4174 /* 4175 * Keep reclaiming pages while there is a chance this will lead 4176 * somewhere. If none of the target zones can satisfy our allocation 4177 * request even if all reclaimable pages are considered then we are 4178 * screwed and have to go OOM. 4179 */ 4180 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4181 ac->nodemask) { 4182 unsigned long available; 4183 unsigned long reclaimable; 4184 unsigned long min_wmark = min_wmark_pages(zone); 4185 bool wmark; 4186 4187 available = reclaimable = zone_reclaimable_pages(zone); 4188 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4189 4190 /* 4191 * Would the allocation succeed if we reclaimed all 4192 * reclaimable pages? 4193 */ 4194 wmark = __zone_watermark_ok(zone, order, min_wmark, 4195 ac_classzone_idx(ac), alloc_flags, available); 4196 trace_reclaim_retry_zone(z, order, reclaimable, 4197 available, min_wmark, *no_progress_loops, wmark); 4198 if (wmark) { 4199 /* 4200 * If we didn't make any progress and have a lot of 4201 * dirty + writeback pages then we should wait for 4202 * an IO to complete to slow down the reclaim and 4203 * prevent from pre mature OOM 4204 */ 4205 if (!did_some_progress) { 4206 unsigned long write_pending; 4207 4208 write_pending = zone_page_state_snapshot(zone, 4209 NR_ZONE_WRITE_PENDING); 4210 4211 if (2 * write_pending > reclaimable) { 4212 congestion_wait(BLK_RW_ASYNC, HZ/10); 4213 return true; 4214 } 4215 } 4216 4217 ret = true; 4218 goto out; 4219 } 4220 } 4221 4222 out: 4223 /* 4224 * Memory allocation/reclaim might be called from a WQ context and the 4225 * current implementation of the WQ concurrency control doesn't 4226 * recognize that a particular WQ is congested if the worker thread is 4227 * looping without ever sleeping. Therefore we have to do a short sleep 4228 * here rather than calling cond_resched(). 4229 */ 4230 if (current->flags & PF_WQ_WORKER) 4231 schedule_timeout_uninterruptible(1); 4232 else 4233 cond_resched(); 4234 return ret; 4235 } 4236 4237 static inline bool 4238 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4239 { 4240 /* 4241 * It's possible that cpuset's mems_allowed and the nodemask from 4242 * mempolicy don't intersect. This should be normally dealt with by 4243 * policy_nodemask(), but it's possible to race with cpuset update in 4244 * such a way the check therein was true, and then it became false 4245 * before we got our cpuset_mems_cookie here. 4246 * This assumes that for all allocations, ac->nodemask can come only 4247 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4248 * when it does not intersect with the cpuset restrictions) or the 4249 * caller can deal with a violated nodemask. 4250 */ 4251 if (cpusets_enabled() && ac->nodemask && 4252 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4253 ac->nodemask = NULL; 4254 return true; 4255 } 4256 4257 /* 4258 * When updating a task's mems_allowed or mempolicy nodemask, it is 4259 * possible to race with parallel threads in such a way that our 4260 * allocation can fail while the mask is being updated. If we are about 4261 * to fail, check if the cpuset changed during allocation and if so, 4262 * retry. 4263 */ 4264 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4265 return true; 4266 4267 return false; 4268 } 4269 4270 static inline struct page * 4271 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4272 struct alloc_context *ac) 4273 { 4274 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4275 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4276 struct page *page = NULL; 4277 unsigned int alloc_flags; 4278 unsigned long did_some_progress; 4279 enum compact_priority compact_priority; 4280 enum compact_result compact_result; 4281 int compaction_retries; 4282 int no_progress_loops; 4283 unsigned int cpuset_mems_cookie; 4284 int reserve_flags; 4285 4286 /* 4287 * We also sanity check to catch abuse of atomic reserves being used by 4288 * callers that are not in atomic context. 4289 */ 4290 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4291 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4292 gfp_mask &= ~__GFP_ATOMIC; 4293 4294 retry_cpuset: 4295 compaction_retries = 0; 4296 no_progress_loops = 0; 4297 compact_priority = DEF_COMPACT_PRIORITY; 4298 cpuset_mems_cookie = read_mems_allowed_begin(); 4299 4300 /* 4301 * The fast path uses conservative alloc_flags to succeed only until 4302 * kswapd needs to be woken up, and to avoid the cost of setting up 4303 * alloc_flags precisely. So we do that now. 4304 */ 4305 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4306 4307 /* 4308 * We need to recalculate the starting point for the zonelist iterator 4309 * because we might have used different nodemask in the fast path, or 4310 * there was a cpuset modification and we are retrying - otherwise we 4311 * could end up iterating over non-eligible zones endlessly. 4312 */ 4313 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4314 ac->high_zoneidx, ac->nodemask); 4315 if (!ac->preferred_zoneref->zone) 4316 goto nopage; 4317 4318 if (alloc_flags & ALLOC_KSWAPD) 4319 wake_all_kswapds(order, gfp_mask, ac); 4320 4321 /* 4322 * The adjusted alloc_flags might result in immediate success, so try 4323 * that first 4324 */ 4325 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4326 if (page) 4327 goto got_pg; 4328 4329 /* 4330 * For costly allocations, try direct compaction first, as it's likely 4331 * that we have enough base pages and don't need to reclaim. For non- 4332 * movable high-order allocations, do that as well, as compaction will 4333 * try prevent permanent fragmentation by migrating from blocks of the 4334 * same migratetype. 4335 * Don't try this for allocations that are allowed to ignore 4336 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4337 */ 4338 if (can_direct_reclaim && 4339 (costly_order || 4340 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4341 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4342 page = __alloc_pages_direct_compact(gfp_mask, order, 4343 alloc_flags, ac, 4344 INIT_COMPACT_PRIORITY, 4345 &compact_result); 4346 if (page) 4347 goto got_pg; 4348 4349 /* 4350 * Checks for costly allocations with __GFP_NORETRY, which 4351 * includes THP page fault allocations 4352 */ 4353 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4354 /* 4355 * If compaction is deferred for high-order allocations, 4356 * it is because sync compaction recently failed. If 4357 * this is the case and the caller requested a THP 4358 * allocation, we do not want to heavily disrupt the 4359 * system, so we fail the allocation instead of entering 4360 * direct reclaim. 4361 */ 4362 if (compact_result == COMPACT_DEFERRED) 4363 goto nopage; 4364 4365 /* 4366 * Looks like reclaim/compaction is worth trying, but 4367 * sync compaction could be very expensive, so keep 4368 * using async compaction. 4369 */ 4370 compact_priority = INIT_COMPACT_PRIORITY; 4371 } 4372 } 4373 4374 retry: 4375 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4376 if (alloc_flags & ALLOC_KSWAPD) 4377 wake_all_kswapds(order, gfp_mask, ac); 4378 4379 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4380 if (reserve_flags) 4381 alloc_flags = reserve_flags; 4382 4383 /* 4384 * Reset the nodemask and zonelist iterators if memory policies can be 4385 * ignored. These allocations are high priority and system rather than 4386 * user oriented. 4387 */ 4388 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4389 ac->nodemask = NULL; 4390 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4391 ac->high_zoneidx, ac->nodemask); 4392 } 4393 4394 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4395 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4396 if (page) 4397 goto got_pg; 4398 4399 /* Caller is not willing to reclaim, we can't balance anything */ 4400 if (!can_direct_reclaim) 4401 goto nopage; 4402 4403 /* Avoid recursion of direct reclaim */ 4404 if (current->flags & PF_MEMALLOC) 4405 goto nopage; 4406 4407 /* Try direct reclaim and then allocating */ 4408 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4409 &did_some_progress); 4410 if (page) 4411 goto got_pg; 4412 4413 /* Try direct compaction and then allocating */ 4414 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4415 compact_priority, &compact_result); 4416 if (page) 4417 goto got_pg; 4418 4419 /* Do not loop if specifically requested */ 4420 if (gfp_mask & __GFP_NORETRY) 4421 goto nopage; 4422 4423 /* 4424 * Do not retry costly high order allocations unless they are 4425 * __GFP_RETRY_MAYFAIL 4426 */ 4427 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4428 goto nopage; 4429 4430 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4431 did_some_progress > 0, &no_progress_loops)) 4432 goto retry; 4433 4434 /* 4435 * It doesn't make any sense to retry for the compaction if the order-0 4436 * reclaim is not able to make any progress because the current 4437 * implementation of the compaction depends on the sufficient amount 4438 * of free memory (see __compaction_suitable) 4439 */ 4440 if (did_some_progress > 0 && 4441 should_compact_retry(ac, order, alloc_flags, 4442 compact_result, &compact_priority, 4443 &compaction_retries)) 4444 goto retry; 4445 4446 4447 /* Deal with possible cpuset update races before we start OOM killing */ 4448 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4449 goto retry_cpuset; 4450 4451 /* Reclaim has failed us, start killing things */ 4452 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4453 if (page) 4454 goto got_pg; 4455 4456 /* Avoid allocations with no watermarks from looping endlessly */ 4457 if (tsk_is_oom_victim(current) && 4458 (alloc_flags == ALLOC_OOM || 4459 (gfp_mask & __GFP_NOMEMALLOC))) 4460 goto nopage; 4461 4462 /* Retry as long as the OOM killer is making progress */ 4463 if (did_some_progress) { 4464 no_progress_loops = 0; 4465 goto retry; 4466 } 4467 4468 nopage: 4469 /* Deal with possible cpuset update races before we fail */ 4470 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4471 goto retry_cpuset; 4472 4473 /* 4474 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4475 * we always retry 4476 */ 4477 if (gfp_mask & __GFP_NOFAIL) { 4478 /* 4479 * All existing users of the __GFP_NOFAIL are blockable, so warn 4480 * of any new users that actually require GFP_NOWAIT 4481 */ 4482 if (WARN_ON_ONCE(!can_direct_reclaim)) 4483 goto fail; 4484 4485 /* 4486 * PF_MEMALLOC request from this context is rather bizarre 4487 * because we cannot reclaim anything and only can loop waiting 4488 * for somebody to do a work for us 4489 */ 4490 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4491 4492 /* 4493 * non failing costly orders are a hard requirement which we 4494 * are not prepared for much so let's warn about these users 4495 * so that we can identify them and convert them to something 4496 * else. 4497 */ 4498 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4499 4500 /* 4501 * Help non-failing allocations by giving them access to memory 4502 * reserves but do not use ALLOC_NO_WATERMARKS because this 4503 * could deplete whole memory reserves which would just make 4504 * the situation worse 4505 */ 4506 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4507 if (page) 4508 goto got_pg; 4509 4510 cond_resched(); 4511 goto retry; 4512 } 4513 fail: 4514 warn_alloc(gfp_mask, ac->nodemask, 4515 "page allocation failure: order:%u", order); 4516 got_pg: 4517 return page; 4518 } 4519 4520 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4521 int preferred_nid, nodemask_t *nodemask, 4522 struct alloc_context *ac, gfp_t *alloc_mask, 4523 unsigned int *alloc_flags) 4524 { 4525 ac->high_zoneidx = gfp_zone(gfp_mask); 4526 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4527 ac->nodemask = nodemask; 4528 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4529 4530 if (cpusets_enabled()) { 4531 *alloc_mask |= __GFP_HARDWALL; 4532 if (!ac->nodemask) 4533 ac->nodemask = &cpuset_current_mems_allowed; 4534 else 4535 *alloc_flags |= ALLOC_CPUSET; 4536 } 4537 4538 fs_reclaim_acquire(gfp_mask); 4539 fs_reclaim_release(gfp_mask); 4540 4541 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4542 4543 if (should_fail_alloc_page(gfp_mask, order)) 4544 return false; 4545 4546 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4547 *alloc_flags |= ALLOC_CMA; 4548 4549 return true; 4550 } 4551 4552 /* Determine whether to spread dirty pages and what the first usable zone */ 4553 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4554 { 4555 /* Dirty zone balancing only done in the fast path */ 4556 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4557 4558 /* 4559 * The preferred zone is used for statistics but crucially it is 4560 * also used as the starting point for the zonelist iterator. It 4561 * may get reset for allocations that ignore memory policies. 4562 */ 4563 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4564 ac->high_zoneidx, ac->nodemask); 4565 } 4566 4567 /* 4568 * This is the 'heart' of the zoned buddy allocator. 4569 */ 4570 struct page * 4571 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4572 nodemask_t *nodemask) 4573 { 4574 struct page *page; 4575 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4576 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4577 struct alloc_context ac = { }; 4578 4579 /* 4580 * There are several places where we assume that the order value is sane 4581 * so bail out early if the request is out of bound. 4582 */ 4583 if (unlikely(order >= MAX_ORDER)) { 4584 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4585 return NULL; 4586 } 4587 4588 gfp_mask &= gfp_allowed_mask; 4589 alloc_mask = gfp_mask; 4590 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4591 return NULL; 4592 4593 finalise_ac(gfp_mask, &ac); 4594 4595 /* 4596 * Forbid the first pass from falling back to types that fragment 4597 * memory until all local zones are considered. 4598 */ 4599 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4600 4601 /* First allocation attempt */ 4602 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4603 if (likely(page)) 4604 goto out; 4605 4606 /* 4607 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4608 * resp. GFP_NOIO which has to be inherited for all allocation requests 4609 * from a particular context which has been marked by 4610 * memalloc_no{fs,io}_{save,restore}. 4611 */ 4612 alloc_mask = current_gfp_context(gfp_mask); 4613 ac.spread_dirty_pages = false; 4614 4615 /* 4616 * Restore the original nodemask if it was potentially replaced with 4617 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4618 */ 4619 if (unlikely(ac.nodemask != nodemask)) 4620 ac.nodemask = nodemask; 4621 4622 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4623 4624 out: 4625 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4626 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4627 __free_pages(page, order); 4628 page = NULL; 4629 } 4630 4631 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4632 4633 return page; 4634 } 4635 EXPORT_SYMBOL(__alloc_pages_nodemask); 4636 4637 /* 4638 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4639 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4640 * you need to access high mem. 4641 */ 4642 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4643 { 4644 struct page *page; 4645 4646 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4647 if (!page) 4648 return 0; 4649 return (unsigned long) page_address(page); 4650 } 4651 EXPORT_SYMBOL(__get_free_pages); 4652 4653 unsigned long get_zeroed_page(gfp_t gfp_mask) 4654 { 4655 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4656 } 4657 EXPORT_SYMBOL(get_zeroed_page); 4658 4659 static inline void free_the_page(struct page *page, unsigned int order) 4660 { 4661 if (order == 0) /* Via pcp? */ 4662 free_unref_page(page); 4663 else 4664 __free_pages_ok(page, order); 4665 } 4666 4667 void __free_pages(struct page *page, unsigned int order) 4668 { 4669 if (put_page_testzero(page)) 4670 free_the_page(page, order); 4671 } 4672 EXPORT_SYMBOL(__free_pages); 4673 4674 void free_pages(unsigned long addr, unsigned int order) 4675 { 4676 if (addr != 0) { 4677 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4678 __free_pages(virt_to_page((void *)addr), order); 4679 } 4680 } 4681 4682 EXPORT_SYMBOL(free_pages); 4683 4684 /* 4685 * Page Fragment: 4686 * An arbitrary-length arbitrary-offset area of memory which resides 4687 * within a 0 or higher order page. Multiple fragments within that page 4688 * are individually refcounted, in the page's reference counter. 4689 * 4690 * The page_frag functions below provide a simple allocation framework for 4691 * page fragments. This is used by the network stack and network device 4692 * drivers to provide a backing region of memory for use as either an 4693 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4694 */ 4695 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4696 gfp_t gfp_mask) 4697 { 4698 struct page *page = NULL; 4699 gfp_t gfp = gfp_mask; 4700 4701 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4702 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4703 __GFP_NOMEMALLOC; 4704 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4705 PAGE_FRAG_CACHE_MAX_ORDER); 4706 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4707 #endif 4708 if (unlikely(!page)) 4709 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4710 4711 nc->va = page ? page_address(page) : NULL; 4712 4713 return page; 4714 } 4715 4716 void __page_frag_cache_drain(struct page *page, unsigned int count) 4717 { 4718 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4719 4720 if (page_ref_sub_and_test(page, count)) 4721 free_the_page(page, compound_order(page)); 4722 } 4723 EXPORT_SYMBOL(__page_frag_cache_drain); 4724 4725 void *page_frag_alloc(struct page_frag_cache *nc, 4726 unsigned int fragsz, gfp_t gfp_mask) 4727 { 4728 unsigned int size = PAGE_SIZE; 4729 struct page *page; 4730 int offset; 4731 4732 if (unlikely(!nc->va)) { 4733 refill: 4734 page = __page_frag_cache_refill(nc, gfp_mask); 4735 if (!page) 4736 return NULL; 4737 4738 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4739 /* if size can vary use size else just use PAGE_SIZE */ 4740 size = nc->size; 4741 #endif 4742 /* Even if we own the page, we do not use atomic_set(). 4743 * This would break get_page_unless_zero() users. 4744 */ 4745 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4746 4747 /* reset page count bias and offset to start of new frag */ 4748 nc->pfmemalloc = page_is_pfmemalloc(page); 4749 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4750 nc->offset = size; 4751 } 4752 4753 offset = nc->offset - fragsz; 4754 if (unlikely(offset < 0)) { 4755 page = virt_to_page(nc->va); 4756 4757 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4758 goto refill; 4759 4760 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4761 /* if size can vary use size else just use PAGE_SIZE */ 4762 size = nc->size; 4763 #endif 4764 /* OK, page count is 0, we can safely set it */ 4765 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4766 4767 /* reset page count bias and offset to start of new frag */ 4768 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4769 offset = size - fragsz; 4770 } 4771 4772 nc->pagecnt_bias--; 4773 nc->offset = offset; 4774 4775 return nc->va + offset; 4776 } 4777 EXPORT_SYMBOL(page_frag_alloc); 4778 4779 /* 4780 * Frees a page fragment allocated out of either a compound or order 0 page. 4781 */ 4782 void page_frag_free(void *addr) 4783 { 4784 struct page *page = virt_to_head_page(addr); 4785 4786 if (unlikely(put_page_testzero(page))) 4787 free_the_page(page, compound_order(page)); 4788 } 4789 EXPORT_SYMBOL(page_frag_free); 4790 4791 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4792 size_t size) 4793 { 4794 if (addr) { 4795 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4796 unsigned long used = addr + PAGE_ALIGN(size); 4797 4798 split_page(virt_to_page((void *)addr), order); 4799 while (used < alloc_end) { 4800 free_page(used); 4801 used += PAGE_SIZE; 4802 } 4803 } 4804 return (void *)addr; 4805 } 4806 4807 /** 4808 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4809 * @size: the number of bytes to allocate 4810 * @gfp_mask: GFP flags for the allocation 4811 * 4812 * This function is similar to alloc_pages(), except that it allocates the 4813 * minimum number of pages to satisfy the request. alloc_pages() can only 4814 * allocate memory in power-of-two pages. 4815 * 4816 * This function is also limited by MAX_ORDER. 4817 * 4818 * Memory allocated by this function must be released by free_pages_exact(). 4819 */ 4820 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4821 { 4822 unsigned int order = get_order(size); 4823 unsigned long addr; 4824 4825 addr = __get_free_pages(gfp_mask, order); 4826 return make_alloc_exact(addr, order, size); 4827 } 4828 EXPORT_SYMBOL(alloc_pages_exact); 4829 4830 /** 4831 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4832 * pages on a node. 4833 * @nid: the preferred node ID where memory should be allocated 4834 * @size: the number of bytes to allocate 4835 * @gfp_mask: GFP flags for the allocation 4836 * 4837 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4838 * back. 4839 */ 4840 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4841 { 4842 unsigned int order = get_order(size); 4843 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4844 if (!p) 4845 return NULL; 4846 return make_alloc_exact((unsigned long)page_address(p), order, size); 4847 } 4848 4849 /** 4850 * free_pages_exact - release memory allocated via alloc_pages_exact() 4851 * @virt: the value returned by alloc_pages_exact. 4852 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4853 * 4854 * Release the memory allocated by a previous call to alloc_pages_exact. 4855 */ 4856 void free_pages_exact(void *virt, size_t size) 4857 { 4858 unsigned long addr = (unsigned long)virt; 4859 unsigned long end = addr + PAGE_ALIGN(size); 4860 4861 while (addr < end) { 4862 free_page(addr); 4863 addr += PAGE_SIZE; 4864 } 4865 } 4866 EXPORT_SYMBOL(free_pages_exact); 4867 4868 /** 4869 * nr_free_zone_pages - count number of pages beyond high watermark 4870 * @offset: The zone index of the highest zone 4871 * 4872 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4873 * high watermark within all zones at or below a given zone index. For each 4874 * zone, the number of pages is calculated as: 4875 * 4876 * nr_free_zone_pages = managed_pages - high_pages 4877 */ 4878 static unsigned long nr_free_zone_pages(int offset) 4879 { 4880 struct zoneref *z; 4881 struct zone *zone; 4882 4883 /* Just pick one node, since fallback list is circular */ 4884 unsigned long sum = 0; 4885 4886 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4887 4888 for_each_zone_zonelist(zone, z, zonelist, offset) { 4889 unsigned long size = zone_managed_pages(zone); 4890 unsigned long high = high_wmark_pages(zone); 4891 if (size > high) 4892 sum += size - high; 4893 } 4894 4895 return sum; 4896 } 4897 4898 /** 4899 * nr_free_buffer_pages - count number of pages beyond high watermark 4900 * 4901 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4902 * watermark within ZONE_DMA and ZONE_NORMAL. 4903 */ 4904 unsigned long nr_free_buffer_pages(void) 4905 { 4906 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4907 } 4908 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4909 4910 /** 4911 * nr_free_pagecache_pages - count number of pages beyond high watermark 4912 * 4913 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4914 * high watermark within all zones. 4915 */ 4916 unsigned long nr_free_pagecache_pages(void) 4917 { 4918 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4919 } 4920 4921 static inline void show_node(struct zone *zone) 4922 { 4923 if (IS_ENABLED(CONFIG_NUMA)) 4924 printk("Node %d ", zone_to_nid(zone)); 4925 } 4926 4927 long si_mem_available(void) 4928 { 4929 long available; 4930 unsigned long pagecache; 4931 unsigned long wmark_low = 0; 4932 unsigned long pages[NR_LRU_LISTS]; 4933 unsigned long reclaimable; 4934 struct zone *zone; 4935 int lru; 4936 4937 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4938 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4939 4940 for_each_zone(zone) 4941 wmark_low += low_wmark_pages(zone); 4942 4943 /* 4944 * Estimate the amount of memory available for userspace allocations, 4945 * without causing swapping. 4946 */ 4947 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4948 4949 /* 4950 * Not all the page cache can be freed, otherwise the system will 4951 * start swapping. Assume at least half of the page cache, or the 4952 * low watermark worth of cache, needs to stay. 4953 */ 4954 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4955 pagecache -= min(pagecache / 2, wmark_low); 4956 available += pagecache; 4957 4958 /* 4959 * Part of the reclaimable slab and other kernel memory consists of 4960 * items that are in use, and cannot be freed. Cap this estimate at the 4961 * low watermark. 4962 */ 4963 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 4964 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 4965 available += reclaimable - min(reclaimable / 2, wmark_low); 4966 4967 if (available < 0) 4968 available = 0; 4969 return available; 4970 } 4971 EXPORT_SYMBOL_GPL(si_mem_available); 4972 4973 void si_meminfo(struct sysinfo *val) 4974 { 4975 val->totalram = totalram_pages(); 4976 val->sharedram = global_node_page_state(NR_SHMEM); 4977 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4978 val->bufferram = nr_blockdev_pages(); 4979 val->totalhigh = totalhigh_pages(); 4980 val->freehigh = nr_free_highpages(); 4981 val->mem_unit = PAGE_SIZE; 4982 } 4983 4984 EXPORT_SYMBOL(si_meminfo); 4985 4986 #ifdef CONFIG_NUMA 4987 void si_meminfo_node(struct sysinfo *val, int nid) 4988 { 4989 int zone_type; /* needs to be signed */ 4990 unsigned long managed_pages = 0; 4991 unsigned long managed_highpages = 0; 4992 unsigned long free_highpages = 0; 4993 pg_data_t *pgdat = NODE_DATA(nid); 4994 4995 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4996 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 4997 val->totalram = managed_pages; 4998 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4999 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5000 #ifdef CONFIG_HIGHMEM 5001 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5002 struct zone *zone = &pgdat->node_zones[zone_type]; 5003 5004 if (is_highmem(zone)) { 5005 managed_highpages += zone_managed_pages(zone); 5006 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5007 } 5008 } 5009 val->totalhigh = managed_highpages; 5010 val->freehigh = free_highpages; 5011 #else 5012 val->totalhigh = managed_highpages; 5013 val->freehigh = free_highpages; 5014 #endif 5015 val->mem_unit = PAGE_SIZE; 5016 } 5017 #endif 5018 5019 /* 5020 * Determine whether the node should be displayed or not, depending on whether 5021 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5022 */ 5023 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5024 { 5025 if (!(flags & SHOW_MEM_FILTER_NODES)) 5026 return false; 5027 5028 /* 5029 * no node mask - aka implicit memory numa policy. Do not bother with 5030 * the synchronization - read_mems_allowed_begin - because we do not 5031 * have to be precise here. 5032 */ 5033 if (!nodemask) 5034 nodemask = &cpuset_current_mems_allowed; 5035 5036 return !node_isset(nid, *nodemask); 5037 } 5038 5039 #define K(x) ((x) << (PAGE_SHIFT-10)) 5040 5041 static void show_migration_types(unsigned char type) 5042 { 5043 static const char types[MIGRATE_TYPES] = { 5044 [MIGRATE_UNMOVABLE] = 'U', 5045 [MIGRATE_MOVABLE] = 'M', 5046 [MIGRATE_RECLAIMABLE] = 'E', 5047 [MIGRATE_HIGHATOMIC] = 'H', 5048 #ifdef CONFIG_CMA 5049 [MIGRATE_CMA] = 'C', 5050 #endif 5051 #ifdef CONFIG_MEMORY_ISOLATION 5052 [MIGRATE_ISOLATE] = 'I', 5053 #endif 5054 }; 5055 char tmp[MIGRATE_TYPES + 1]; 5056 char *p = tmp; 5057 int i; 5058 5059 for (i = 0; i < MIGRATE_TYPES; i++) { 5060 if (type & (1 << i)) 5061 *p++ = types[i]; 5062 } 5063 5064 *p = '\0'; 5065 printk(KERN_CONT "(%s) ", tmp); 5066 } 5067 5068 /* 5069 * Show free area list (used inside shift_scroll-lock stuff) 5070 * We also calculate the percentage fragmentation. We do this by counting the 5071 * memory on each free list with the exception of the first item on the list. 5072 * 5073 * Bits in @filter: 5074 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5075 * cpuset. 5076 */ 5077 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5078 { 5079 unsigned long free_pcp = 0; 5080 int cpu; 5081 struct zone *zone; 5082 pg_data_t *pgdat; 5083 5084 for_each_populated_zone(zone) { 5085 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5086 continue; 5087 5088 for_each_online_cpu(cpu) 5089 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5090 } 5091 5092 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5093 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5094 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5095 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5096 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5097 " free:%lu free_pcp:%lu free_cma:%lu\n", 5098 global_node_page_state(NR_ACTIVE_ANON), 5099 global_node_page_state(NR_INACTIVE_ANON), 5100 global_node_page_state(NR_ISOLATED_ANON), 5101 global_node_page_state(NR_ACTIVE_FILE), 5102 global_node_page_state(NR_INACTIVE_FILE), 5103 global_node_page_state(NR_ISOLATED_FILE), 5104 global_node_page_state(NR_UNEVICTABLE), 5105 global_node_page_state(NR_FILE_DIRTY), 5106 global_node_page_state(NR_WRITEBACK), 5107 global_node_page_state(NR_UNSTABLE_NFS), 5108 global_node_page_state(NR_SLAB_RECLAIMABLE), 5109 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5110 global_node_page_state(NR_FILE_MAPPED), 5111 global_node_page_state(NR_SHMEM), 5112 global_zone_page_state(NR_PAGETABLE), 5113 global_zone_page_state(NR_BOUNCE), 5114 global_zone_page_state(NR_FREE_PAGES), 5115 free_pcp, 5116 global_zone_page_state(NR_FREE_CMA_PAGES)); 5117 5118 for_each_online_pgdat(pgdat) { 5119 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5120 continue; 5121 5122 printk("Node %d" 5123 " active_anon:%lukB" 5124 " inactive_anon:%lukB" 5125 " active_file:%lukB" 5126 " inactive_file:%lukB" 5127 " unevictable:%lukB" 5128 " isolated(anon):%lukB" 5129 " isolated(file):%lukB" 5130 " mapped:%lukB" 5131 " dirty:%lukB" 5132 " writeback:%lukB" 5133 " shmem:%lukB" 5134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5135 " shmem_thp: %lukB" 5136 " shmem_pmdmapped: %lukB" 5137 " anon_thp: %lukB" 5138 #endif 5139 " writeback_tmp:%lukB" 5140 " unstable:%lukB" 5141 " all_unreclaimable? %s" 5142 "\n", 5143 pgdat->node_id, 5144 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5145 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5146 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5147 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5148 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5149 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5150 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5151 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5152 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5153 K(node_page_state(pgdat, NR_WRITEBACK)), 5154 K(node_page_state(pgdat, NR_SHMEM)), 5155 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5156 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5157 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5158 * HPAGE_PMD_NR), 5159 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5160 #endif 5161 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5162 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5163 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5164 "yes" : "no"); 5165 } 5166 5167 for_each_populated_zone(zone) { 5168 int i; 5169 5170 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5171 continue; 5172 5173 free_pcp = 0; 5174 for_each_online_cpu(cpu) 5175 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5176 5177 show_node(zone); 5178 printk(KERN_CONT 5179 "%s" 5180 " free:%lukB" 5181 " min:%lukB" 5182 " low:%lukB" 5183 " high:%lukB" 5184 " active_anon:%lukB" 5185 " inactive_anon:%lukB" 5186 " active_file:%lukB" 5187 " inactive_file:%lukB" 5188 " unevictable:%lukB" 5189 " writepending:%lukB" 5190 " present:%lukB" 5191 " managed:%lukB" 5192 " mlocked:%lukB" 5193 " kernel_stack:%lukB" 5194 " pagetables:%lukB" 5195 " bounce:%lukB" 5196 " free_pcp:%lukB" 5197 " local_pcp:%ukB" 5198 " free_cma:%lukB" 5199 "\n", 5200 zone->name, 5201 K(zone_page_state(zone, NR_FREE_PAGES)), 5202 K(min_wmark_pages(zone)), 5203 K(low_wmark_pages(zone)), 5204 K(high_wmark_pages(zone)), 5205 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5206 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5207 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5208 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5209 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5210 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5211 K(zone->present_pages), 5212 K(zone_managed_pages(zone)), 5213 K(zone_page_state(zone, NR_MLOCK)), 5214 zone_page_state(zone, NR_KERNEL_STACK_KB), 5215 K(zone_page_state(zone, NR_PAGETABLE)), 5216 K(zone_page_state(zone, NR_BOUNCE)), 5217 K(free_pcp), 5218 K(this_cpu_read(zone->pageset->pcp.count)), 5219 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5220 printk("lowmem_reserve[]:"); 5221 for (i = 0; i < MAX_NR_ZONES; i++) 5222 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5223 printk(KERN_CONT "\n"); 5224 } 5225 5226 for_each_populated_zone(zone) { 5227 unsigned int order; 5228 unsigned long nr[MAX_ORDER], flags, total = 0; 5229 unsigned char types[MAX_ORDER]; 5230 5231 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5232 continue; 5233 show_node(zone); 5234 printk(KERN_CONT "%s: ", zone->name); 5235 5236 spin_lock_irqsave(&zone->lock, flags); 5237 for (order = 0; order < MAX_ORDER; order++) { 5238 struct free_area *area = &zone->free_area[order]; 5239 int type; 5240 5241 nr[order] = area->nr_free; 5242 total += nr[order] << order; 5243 5244 types[order] = 0; 5245 for (type = 0; type < MIGRATE_TYPES; type++) { 5246 if (!list_empty(&area->free_list[type])) 5247 types[order] |= 1 << type; 5248 } 5249 } 5250 spin_unlock_irqrestore(&zone->lock, flags); 5251 for (order = 0; order < MAX_ORDER; order++) { 5252 printk(KERN_CONT "%lu*%lukB ", 5253 nr[order], K(1UL) << order); 5254 if (nr[order]) 5255 show_migration_types(types[order]); 5256 } 5257 printk(KERN_CONT "= %lukB\n", K(total)); 5258 } 5259 5260 hugetlb_show_meminfo(); 5261 5262 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5263 5264 show_swap_cache_info(); 5265 } 5266 5267 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5268 { 5269 zoneref->zone = zone; 5270 zoneref->zone_idx = zone_idx(zone); 5271 } 5272 5273 /* 5274 * Builds allocation fallback zone lists. 5275 * 5276 * Add all populated zones of a node to the zonelist. 5277 */ 5278 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5279 { 5280 struct zone *zone; 5281 enum zone_type zone_type = MAX_NR_ZONES; 5282 int nr_zones = 0; 5283 5284 do { 5285 zone_type--; 5286 zone = pgdat->node_zones + zone_type; 5287 if (managed_zone(zone)) { 5288 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5289 check_highest_zone(zone_type); 5290 } 5291 } while (zone_type); 5292 5293 return nr_zones; 5294 } 5295 5296 #ifdef CONFIG_NUMA 5297 5298 static int __parse_numa_zonelist_order(char *s) 5299 { 5300 /* 5301 * We used to support different zonlists modes but they turned 5302 * out to be just not useful. Let's keep the warning in place 5303 * if somebody still use the cmd line parameter so that we do 5304 * not fail it silently 5305 */ 5306 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5307 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5308 return -EINVAL; 5309 } 5310 return 0; 5311 } 5312 5313 static __init int setup_numa_zonelist_order(char *s) 5314 { 5315 if (!s) 5316 return 0; 5317 5318 return __parse_numa_zonelist_order(s); 5319 } 5320 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5321 5322 char numa_zonelist_order[] = "Node"; 5323 5324 /* 5325 * sysctl handler for numa_zonelist_order 5326 */ 5327 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5328 void __user *buffer, size_t *length, 5329 loff_t *ppos) 5330 { 5331 char *str; 5332 int ret; 5333 5334 if (!write) 5335 return proc_dostring(table, write, buffer, length, ppos); 5336 str = memdup_user_nul(buffer, 16); 5337 if (IS_ERR(str)) 5338 return PTR_ERR(str); 5339 5340 ret = __parse_numa_zonelist_order(str); 5341 kfree(str); 5342 return ret; 5343 } 5344 5345 5346 #define MAX_NODE_LOAD (nr_online_nodes) 5347 static int node_load[MAX_NUMNODES]; 5348 5349 /** 5350 * find_next_best_node - find the next node that should appear in a given node's fallback list 5351 * @node: node whose fallback list we're appending 5352 * @used_node_mask: nodemask_t of already used nodes 5353 * 5354 * We use a number of factors to determine which is the next node that should 5355 * appear on a given node's fallback list. The node should not have appeared 5356 * already in @node's fallback list, and it should be the next closest node 5357 * according to the distance array (which contains arbitrary distance values 5358 * from each node to each node in the system), and should also prefer nodes 5359 * with no CPUs, since presumably they'll have very little allocation pressure 5360 * on them otherwise. 5361 * It returns -1 if no node is found. 5362 */ 5363 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5364 { 5365 int n, val; 5366 int min_val = INT_MAX; 5367 int best_node = NUMA_NO_NODE; 5368 const struct cpumask *tmp = cpumask_of_node(0); 5369 5370 /* Use the local node if we haven't already */ 5371 if (!node_isset(node, *used_node_mask)) { 5372 node_set(node, *used_node_mask); 5373 return node; 5374 } 5375 5376 for_each_node_state(n, N_MEMORY) { 5377 5378 /* Don't want a node to appear more than once */ 5379 if (node_isset(n, *used_node_mask)) 5380 continue; 5381 5382 /* Use the distance array to find the distance */ 5383 val = node_distance(node, n); 5384 5385 /* Penalize nodes under us ("prefer the next node") */ 5386 val += (n < node); 5387 5388 /* Give preference to headless and unused nodes */ 5389 tmp = cpumask_of_node(n); 5390 if (!cpumask_empty(tmp)) 5391 val += PENALTY_FOR_NODE_WITH_CPUS; 5392 5393 /* Slight preference for less loaded node */ 5394 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5395 val += node_load[n]; 5396 5397 if (val < min_val) { 5398 min_val = val; 5399 best_node = n; 5400 } 5401 } 5402 5403 if (best_node >= 0) 5404 node_set(best_node, *used_node_mask); 5405 5406 return best_node; 5407 } 5408 5409 5410 /* 5411 * Build zonelists ordered by node and zones within node. 5412 * This results in maximum locality--normal zone overflows into local 5413 * DMA zone, if any--but risks exhausting DMA zone. 5414 */ 5415 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5416 unsigned nr_nodes) 5417 { 5418 struct zoneref *zonerefs; 5419 int i; 5420 5421 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5422 5423 for (i = 0; i < nr_nodes; i++) { 5424 int nr_zones; 5425 5426 pg_data_t *node = NODE_DATA(node_order[i]); 5427 5428 nr_zones = build_zonerefs_node(node, zonerefs); 5429 zonerefs += nr_zones; 5430 } 5431 zonerefs->zone = NULL; 5432 zonerefs->zone_idx = 0; 5433 } 5434 5435 /* 5436 * Build gfp_thisnode zonelists 5437 */ 5438 static void build_thisnode_zonelists(pg_data_t *pgdat) 5439 { 5440 struct zoneref *zonerefs; 5441 int nr_zones; 5442 5443 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5444 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5445 zonerefs += nr_zones; 5446 zonerefs->zone = NULL; 5447 zonerefs->zone_idx = 0; 5448 } 5449 5450 /* 5451 * Build zonelists ordered by zone and nodes within zones. 5452 * This results in conserving DMA zone[s] until all Normal memory is 5453 * exhausted, but results in overflowing to remote node while memory 5454 * may still exist in local DMA zone. 5455 */ 5456 5457 static void build_zonelists(pg_data_t *pgdat) 5458 { 5459 static int node_order[MAX_NUMNODES]; 5460 int node, load, nr_nodes = 0; 5461 nodemask_t used_mask; 5462 int local_node, prev_node; 5463 5464 /* NUMA-aware ordering of nodes */ 5465 local_node = pgdat->node_id; 5466 load = nr_online_nodes; 5467 prev_node = local_node; 5468 nodes_clear(used_mask); 5469 5470 memset(node_order, 0, sizeof(node_order)); 5471 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5472 /* 5473 * We don't want to pressure a particular node. 5474 * So adding penalty to the first node in same 5475 * distance group to make it round-robin. 5476 */ 5477 if (node_distance(local_node, node) != 5478 node_distance(local_node, prev_node)) 5479 node_load[node] = load; 5480 5481 node_order[nr_nodes++] = node; 5482 prev_node = node; 5483 load--; 5484 } 5485 5486 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5487 build_thisnode_zonelists(pgdat); 5488 } 5489 5490 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5491 /* 5492 * Return node id of node used for "local" allocations. 5493 * I.e., first node id of first zone in arg node's generic zonelist. 5494 * Used for initializing percpu 'numa_mem', which is used primarily 5495 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5496 */ 5497 int local_memory_node(int node) 5498 { 5499 struct zoneref *z; 5500 5501 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5502 gfp_zone(GFP_KERNEL), 5503 NULL); 5504 return zone_to_nid(z->zone); 5505 } 5506 #endif 5507 5508 static void setup_min_unmapped_ratio(void); 5509 static void setup_min_slab_ratio(void); 5510 #else /* CONFIG_NUMA */ 5511 5512 static void build_zonelists(pg_data_t *pgdat) 5513 { 5514 int node, local_node; 5515 struct zoneref *zonerefs; 5516 int nr_zones; 5517 5518 local_node = pgdat->node_id; 5519 5520 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5521 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5522 zonerefs += nr_zones; 5523 5524 /* 5525 * Now we build the zonelist so that it contains the zones 5526 * of all the other nodes. 5527 * We don't want to pressure a particular node, so when 5528 * building the zones for node N, we make sure that the 5529 * zones coming right after the local ones are those from 5530 * node N+1 (modulo N) 5531 */ 5532 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5533 if (!node_online(node)) 5534 continue; 5535 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5536 zonerefs += nr_zones; 5537 } 5538 for (node = 0; node < local_node; node++) { 5539 if (!node_online(node)) 5540 continue; 5541 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5542 zonerefs += nr_zones; 5543 } 5544 5545 zonerefs->zone = NULL; 5546 zonerefs->zone_idx = 0; 5547 } 5548 5549 #endif /* CONFIG_NUMA */ 5550 5551 /* 5552 * Boot pageset table. One per cpu which is going to be used for all 5553 * zones and all nodes. The parameters will be set in such a way 5554 * that an item put on a list will immediately be handed over to 5555 * the buddy list. This is safe since pageset manipulation is done 5556 * with interrupts disabled. 5557 * 5558 * The boot_pagesets must be kept even after bootup is complete for 5559 * unused processors and/or zones. They do play a role for bootstrapping 5560 * hotplugged processors. 5561 * 5562 * zoneinfo_show() and maybe other functions do 5563 * not check if the processor is online before following the pageset pointer. 5564 * Other parts of the kernel may not check if the zone is available. 5565 */ 5566 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5567 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5568 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5569 5570 static void __build_all_zonelists(void *data) 5571 { 5572 int nid; 5573 int __maybe_unused cpu; 5574 pg_data_t *self = data; 5575 static DEFINE_SPINLOCK(lock); 5576 5577 spin_lock(&lock); 5578 5579 #ifdef CONFIG_NUMA 5580 memset(node_load, 0, sizeof(node_load)); 5581 #endif 5582 5583 /* 5584 * This node is hotadded and no memory is yet present. So just 5585 * building zonelists is fine - no need to touch other nodes. 5586 */ 5587 if (self && !node_online(self->node_id)) { 5588 build_zonelists(self); 5589 } else { 5590 for_each_online_node(nid) { 5591 pg_data_t *pgdat = NODE_DATA(nid); 5592 5593 build_zonelists(pgdat); 5594 } 5595 5596 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5597 /* 5598 * We now know the "local memory node" for each node-- 5599 * i.e., the node of the first zone in the generic zonelist. 5600 * Set up numa_mem percpu variable for on-line cpus. During 5601 * boot, only the boot cpu should be on-line; we'll init the 5602 * secondary cpus' numa_mem as they come on-line. During 5603 * node/memory hotplug, we'll fixup all on-line cpus. 5604 */ 5605 for_each_online_cpu(cpu) 5606 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5607 #endif 5608 } 5609 5610 spin_unlock(&lock); 5611 } 5612 5613 static noinline void __init 5614 build_all_zonelists_init(void) 5615 { 5616 int cpu; 5617 5618 __build_all_zonelists(NULL); 5619 5620 /* 5621 * Initialize the boot_pagesets that are going to be used 5622 * for bootstrapping processors. The real pagesets for 5623 * each zone will be allocated later when the per cpu 5624 * allocator is available. 5625 * 5626 * boot_pagesets are used also for bootstrapping offline 5627 * cpus if the system is already booted because the pagesets 5628 * are needed to initialize allocators on a specific cpu too. 5629 * F.e. the percpu allocator needs the page allocator which 5630 * needs the percpu allocator in order to allocate its pagesets 5631 * (a chicken-egg dilemma). 5632 */ 5633 for_each_possible_cpu(cpu) 5634 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5635 5636 mminit_verify_zonelist(); 5637 cpuset_init_current_mems_allowed(); 5638 } 5639 5640 /* 5641 * unless system_state == SYSTEM_BOOTING. 5642 * 5643 * __ref due to call of __init annotated helper build_all_zonelists_init 5644 * [protected by SYSTEM_BOOTING]. 5645 */ 5646 void __ref build_all_zonelists(pg_data_t *pgdat) 5647 { 5648 if (system_state == SYSTEM_BOOTING) { 5649 build_all_zonelists_init(); 5650 } else { 5651 __build_all_zonelists(pgdat); 5652 /* cpuset refresh routine should be here */ 5653 } 5654 vm_total_pages = nr_free_pagecache_pages(); 5655 /* 5656 * Disable grouping by mobility if the number of pages in the 5657 * system is too low to allow the mechanism to work. It would be 5658 * more accurate, but expensive to check per-zone. This check is 5659 * made on memory-hotadd so a system can start with mobility 5660 * disabled and enable it later 5661 */ 5662 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5663 page_group_by_mobility_disabled = 1; 5664 else 5665 page_group_by_mobility_disabled = 0; 5666 5667 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5668 nr_online_nodes, 5669 page_group_by_mobility_disabled ? "off" : "on", 5670 vm_total_pages); 5671 #ifdef CONFIG_NUMA 5672 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5673 #endif 5674 } 5675 5676 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5677 static bool __meminit 5678 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5679 { 5680 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5681 static struct memblock_region *r; 5682 5683 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5684 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5685 for_each_memblock(memory, r) { 5686 if (*pfn < memblock_region_memory_end_pfn(r)) 5687 break; 5688 } 5689 } 5690 if (*pfn >= memblock_region_memory_base_pfn(r) && 5691 memblock_is_mirror(r)) { 5692 *pfn = memblock_region_memory_end_pfn(r); 5693 return true; 5694 } 5695 } 5696 #endif 5697 return false; 5698 } 5699 5700 /* 5701 * Initially all pages are reserved - free ones are freed 5702 * up by memblock_free_all() once the early boot process is 5703 * done. Non-atomic initialization, single-pass. 5704 */ 5705 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5706 unsigned long start_pfn, enum memmap_context context, 5707 struct vmem_altmap *altmap) 5708 { 5709 unsigned long pfn, end_pfn = start_pfn + size; 5710 struct page *page; 5711 5712 if (highest_memmap_pfn < end_pfn - 1) 5713 highest_memmap_pfn = end_pfn - 1; 5714 5715 #ifdef CONFIG_ZONE_DEVICE 5716 /* 5717 * Honor reservation requested by the driver for this ZONE_DEVICE 5718 * memory. We limit the total number of pages to initialize to just 5719 * those that might contain the memory mapping. We will defer the 5720 * ZONE_DEVICE page initialization until after we have released 5721 * the hotplug lock. 5722 */ 5723 if (zone == ZONE_DEVICE) { 5724 if (!altmap) 5725 return; 5726 5727 if (start_pfn == altmap->base_pfn) 5728 start_pfn += altmap->reserve; 5729 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5730 } 5731 #endif 5732 5733 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5734 /* 5735 * There can be holes in boot-time mem_map[]s handed to this 5736 * function. They do not exist on hotplugged memory. 5737 */ 5738 if (context == MEMMAP_EARLY) { 5739 if (!early_pfn_valid(pfn)) 5740 continue; 5741 if (!early_pfn_in_nid(pfn, nid)) 5742 continue; 5743 if (overlap_memmap_init(zone, &pfn)) 5744 continue; 5745 if (defer_init(nid, pfn, end_pfn)) 5746 break; 5747 } 5748 5749 page = pfn_to_page(pfn); 5750 __init_single_page(page, pfn, zone, nid); 5751 if (context == MEMMAP_HOTPLUG) 5752 __SetPageReserved(page); 5753 5754 /* 5755 * Mark the block movable so that blocks are reserved for 5756 * movable at startup. This will force kernel allocations 5757 * to reserve their blocks rather than leaking throughout 5758 * the address space during boot when many long-lived 5759 * kernel allocations are made. 5760 * 5761 * bitmap is created for zone's valid pfn range. but memmap 5762 * can be created for invalid pages (for alignment) 5763 * check here not to call set_pageblock_migratetype() against 5764 * pfn out of zone. 5765 */ 5766 if (!(pfn & (pageblock_nr_pages - 1))) { 5767 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5768 cond_resched(); 5769 } 5770 } 5771 } 5772 5773 #ifdef CONFIG_ZONE_DEVICE 5774 void __ref memmap_init_zone_device(struct zone *zone, 5775 unsigned long start_pfn, 5776 unsigned long size, 5777 struct dev_pagemap *pgmap) 5778 { 5779 unsigned long pfn, end_pfn = start_pfn + size; 5780 struct pglist_data *pgdat = zone->zone_pgdat; 5781 unsigned long zone_idx = zone_idx(zone); 5782 unsigned long start = jiffies; 5783 int nid = pgdat->node_id; 5784 5785 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone))) 5786 return; 5787 5788 /* 5789 * The call to memmap_init_zone should have already taken care 5790 * of the pages reserved for the memmap, so we can just jump to 5791 * the end of that region and start processing the device pages. 5792 */ 5793 if (pgmap->altmap_valid) { 5794 struct vmem_altmap *altmap = &pgmap->altmap; 5795 5796 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5797 size = end_pfn - start_pfn; 5798 } 5799 5800 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5801 struct page *page = pfn_to_page(pfn); 5802 5803 __init_single_page(page, pfn, zone_idx, nid); 5804 5805 /* 5806 * Mark page reserved as it will need to wait for onlining 5807 * phase for it to be fully associated with a zone. 5808 * 5809 * We can use the non-atomic __set_bit operation for setting 5810 * the flag as we are still initializing the pages. 5811 */ 5812 __SetPageReserved(page); 5813 5814 /* 5815 * ZONE_DEVICE pages union ->lru with a ->pgmap back 5816 * pointer and hmm_data. It is a bug if a ZONE_DEVICE 5817 * page is ever freed or placed on a driver-private list. 5818 */ 5819 page->pgmap = pgmap; 5820 page->hmm_data = 0; 5821 5822 /* 5823 * Mark the block movable so that blocks are reserved for 5824 * movable at startup. This will force kernel allocations 5825 * to reserve their blocks rather than leaking throughout 5826 * the address space during boot when many long-lived 5827 * kernel allocations are made. 5828 * 5829 * bitmap is created for zone's valid pfn range. but memmap 5830 * can be created for invalid pages (for alignment) 5831 * check here not to call set_pageblock_migratetype() against 5832 * pfn out of zone. 5833 * 5834 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5835 * because this is done early in sparse_add_one_section 5836 */ 5837 if (!(pfn & (pageblock_nr_pages - 1))) { 5838 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5839 cond_resched(); 5840 } 5841 } 5842 5843 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev), 5844 size, jiffies_to_msecs(jiffies - start)); 5845 } 5846 5847 #endif 5848 static void __meminit zone_init_free_lists(struct zone *zone) 5849 { 5850 unsigned int order, t; 5851 for_each_migratetype_order(order, t) { 5852 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5853 zone->free_area[order].nr_free = 0; 5854 } 5855 } 5856 5857 void __meminit __weak memmap_init(unsigned long size, int nid, 5858 unsigned long zone, unsigned long start_pfn) 5859 { 5860 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 5861 } 5862 5863 static int zone_batchsize(struct zone *zone) 5864 { 5865 #ifdef CONFIG_MMU 5866 int batch; 5867 5868 /* 5869 * The per-cpu-pages pools are set to around 1000th of the 5870 * size of the zone. 5871 */ 5872 batch = zone_managed_pages(zone) / 1024; 5873 /* But no more than a meg. */ 5874 if (batch * PAGE_SIZE > 1024 * 1024) 5875 batch = (1024 * 1024) / PAGE_SIZE; 5876 batch /= 4; /* We effectively *= 4 below */ 5877 if (batch < 1) 5878 batch = 1; 5879 5880 /* 5881 * Clamp the batch to a 2^n - 1 value. Having a power 5882 * of 2 value was found to be more likely to have 5883 * suboptimal cache aliasing properties in some cases. 5884 * 5885 * For example if 2 tasks are alternately allocating 5886 * batches of pages, one task can end up with a lot 5887 * of pages of one half of the possible page colors 5888 * and the other with pages of the other colors. 5889 */ 5890 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5891 5892 return batch; 5893 5894 #else 5895 /* The deferral and batching of frees should be suppressed under NOMMU 5896 * conditions. 5897 * 5898 * The problem is that NOMMU needs to be able to allocate large chunks 5899 * of contiguous memory as there's no hardware page translation to 5900 * assemble apparent contiguous memory from discontiguous pages. 5901 * 5902 * Queueing large contiguous runs of pages for batching, however, 5903 * causes the pages to actually be freed in smaller chunks. As there 5904 * can be a significant delay between the individual batches being 5905 * recycled, this leads to the once large chunks of space being 5906 * fragmented and becoming unavailable for high-order allocations. 5907 */ 5908 return 0; 5909 #endif 5910 } 5911 5912 /* 5913 * pcp->high and pcp->batch values are related and dependent on one another: 5914 * ->batch must never be higher then ->high. 5915 * The following function updates them in a safe manner without read side 5916 * locking. 5917 * 5918 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5919 * those fields changing asynchronously (acording the the above rule). 5920 * 5921 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5922 * outside of boot time (or some other assurance that no concurrent updaters 5923 * exist). 5924 */ 5925 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5926 unsigned long batch) 5927 { 5928 /* start with a fail safe value for batch */ 5929 pcp->batch = 1; 5930 smp_wmb(); 5931 5932 /* Update high, then batch, in order */ 5933 pcp->high = high; 5934 smp_wmb(); 5935 5936 pcp->batch = batch; 5937 } 5938 5939 /* a companion to pageset_set_high() */ 5940 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5941 { 5942 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5943 } 5944 5945 static void pageset_init(struct per_cpu_pageset *p) 5946 { 5947 struct per_cpu_pages *pcp; 5948 int migratetype; 5949 5950 memset(p, 0, sizeof(*p)); 5951 5952 pcp = &p->pcp; 5953 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5954 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5955 } 5956 5957 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5958 { 5959 pageset_init(p); 5960 pageset_set_batch(p, batch); 5961 } 5962 5963 /* 5964 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5965 * to the value high for the pageset p. 5966 */ 5967 static void pageset_set_high(struct per_cpu_pageset *p, 5968 unsigned long high) 5969 { 5970 unsigned long batch = max(1UL, high / 4); 5971 if ((high / 4) > (PAGE_SHIFT * 8)) 5972 batch = PAGE_SHIFT * 8; 5973 5974 pageset_update(&p->pcp, high, batch); 5975 } 5976 5977 static void pageset_set_high_and_batch(struct zone *zone, 5978 struct per_cpu_pageset *pcp) 5979 { 5980 if (percpu_pagelist_fraction) 5981 pageset_set_high(pcp, 5982 (zone_managed_pages(zone) / 5983 percpu_pagelist_fraction)); 5984 else 5985 pageset_set_batch(pcp, zone_batchsize(zone)); 5986 } 5987 5988 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5989 { 5990 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5991 5992 pageset_init(pcp); 5993 pageset_set_high_and_batch(zone, pcp); 5994 } 5995 5996 void __meminit setup_zone_pageset(struct zone *zone) 5997 { 5998 int cpu; 5999 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6000 for_each_possible_cpu(cpu) 6001 zone_pageset_init(zone, cpu); 6002 } 6003 6004 /* 6005 * Allocate per cpu pagesets and initialize them. 6006 * Before this call only boot pagesets were available. 6007 */ 6008 void __init setup_per_cpu_pageset(void) 6009 { 6010 struct pglist_data *pgdat; 6011 struct zone *zone; 6012 6013 for_each_populated_zone(zone) 6014 setup_zone_pageset(zone); 6015 6016 for_each_online_pgdat(pgdat) 6017 pgdat->per_cpu_nodestats = 6018 alloc_percpu(struct per_cpu_nodestat); 6019 } 6020 6021 static __meminit void zone_pcp_init(struct zone *zone) 6022 { 6023 /* 6024 * per cpu subsystem is not up at this point. The following code 6025 * relies on the ability of the linker to provide the 6026 * offset of a (static) per cpu variable into the per cpu area. 6027 */ 6028 zone->pageset = &boot_pageset; 6029 6030 if (populated_zone(zone)) 6031 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6032 zone->name, zone->present_pages, 6033 zone_batchsize(zone)); 6034 } 6035 6036 void __meminit init_currently_empty_zone(struct zone *zone, 6037 unsigned long zone_start_pfn, 6038 unsigned long size) 6039 { 6040 struct pglist_data *pgdat = zone->zone_pgdat; 6041 int zone_idx = zone_idx(zone) + 1; 6042 6043 if (zone_idx > pgdat->nr_zones) 6044 pgdat->nr_zones = zone_idx; 6045 6046 zone->zone_start_pfn = zone_start_pfn; 6047 6048 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6049 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6050 pgdat->node_id, 6051 (unsigned long)zone_idx(zone), 6052 zone_start_pfn, (zone_start_pfn + size)); 6053 6054 zone_init_free_lists(zone); 6055 zone->initialized = 1; 6056 } 6057 6058 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6059 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6060 6061 /* 6062 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6063 */ 6064 int __meminit __early_pfn_to_nid(unsigned long pfn, 6065 struct mminit_pfnnid_cache *state) 6066 { 6067 unsigned long start_pfn, end_pfn; 6068 int nid; 6069 6070 if (state->last_start <= pfn && pfn < state->last_end) 6071 return state->last_nid; 6072 6073 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6074 if (nid != NUMA_NO_NODE) { 6075 state->last_start = start_pfn; 6076 state->last_end = end_pfn; 6077 state->last_nid = nid; 6078 } 6079 6080 return nid; 6081 } 6082 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6083 6084 /** 6085 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6086 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6087 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6088 * 6089 * If an architecture guarantees that all ranges registered contain no holes 6090 * and may be freed, this this function may be used instead of calling 6091 * memblock_free_early_nid() manually. 6092 */ 6093 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6094 { 6095 unsigned long start_pfn, end_pfn; 6096 int i, this_nid; 6097 6098 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6099 start_pfn = min(start_pfn, max_low_pfn); 6100 end_pfn = min(end_pfn, max_low_pfn); 6101 6102 if (start_pfn < end_pfn) 6103 memblock_free_early_nid(PFN_PHYS(start_pfn), 6104 (end_pfn - start_pfn) << PAGE_SHIFT, 6105 this_nid); 6106 } 6107 } 6108 6109 /** 6110 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6111 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6112 * 6113 * If an architecture guarantees that all ranges registered contain no holes and may 6114 * be freed, this function may be used instead of calling memory_present() manually. 6115 */ 6116 void __init sparse_memory_present_with_active_regions(int nid) 6117 { 6118 unsigned long start_pfn, end_pfn; 6119 int i, this_nid; 6120 6121 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6122 memory_present(this_nid, start_pfn, end_pfn); 6123 } 6124 6125 /** 6126 * get_pfn_range_for_nid - Return the start and end page frames for a node 6127 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6128 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6129 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6130 * 6131 * It returns the start and end page frame of a node based on information 6132 * provided by memblock_set_node(). If called for a node 6133 * with no available memory, a warning is printed and the start and end 6134 * PFNs will be 0. 6135 */ 6136 void __init get_pfn_range_for_nid(unsigned int nid, 6137 unsigned long *start_pfn, unsigned long *end_pfn) 6138 { 6139 unsigned long this_start_pfn, this_end_pfn; 6140 int i; 6141 6142 *start_pfn = -1UL; 6143 *end_pfn = 0; 6144 6145 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6146 *start_pfn = min(*start_pfn, this_start_pfn); 6147 *end_pfn = max(*end_pfn, this_end_pfn); 6148 } 6149 6150 if (*start_pfn == -1UL) 6151 *start_pfn = 0; 6152 } 6153 6154 /* 6155 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6156 * assumption is made that zones within a node are ordered in monotonic 6157 * increasing memory addresses so that the "highest" populated zone is used 6158 */ 6159 static void __init find_usable_zone_for_movable(void) 6160 { 6161 int zone_index; 6162 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6163 if (zone_index == ZONE_MOVABLE) 6164 continue; 6165 6166 if (arch_zone_highest_possible_pfn[zone_index] > 6167 arch_zone_lowest_possible_pfn[zone_index]) 6168 break; 6169 } 6170 6171 VM_BUG_ON(zone_index == -1); 6172 movable_zone = zone_index; 6173 } 6174 6175 /* 6176 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6177 * because it is sized independent of architecture. Unlike the other zones, 6178 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6179 * in each node depending on the size of each node and how evenly kernelcore 6180 * is distributed. This helper function adjusts the zone ranges 6181 * provided by the architecture for a given node by using the end of the 6182 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6183 * zones within a node are in order of monotonic increases memory addresses 6184 */ 6185 static void __init adjust_zone_range_for_zone_movable(int nid, 6186 unsigned long zone_type, 6187 unsigned long node_start_pfn, 6188 unsigned long node_end_pfn, 6189 unsigned long *zone_start_pfn, 6190 unsigned long *zone_end_pfn) 6191 { 6192 /* Only adjust if ZONE_MOVABLE is on this node */ 6193 if (zone_movable_pfn[nid]) { 6194 /* Size ZONE_MOVABLE */ 6195 if (zone_type == ZONE_MOVABLE) { 6196 *zone_start_pfn = zone_movable_pfn[nid]; 6197 *zone_end_pfn = min(node_end_pfn, 6198 arch_zone_highest_possible_pfn[movable_zone]); 6199 6200 /* Adjust for ZONE_MOVABLE starting within this range */ 6201 } else if (!mirrored_kernelcore && 6202 *zone_start_pfn < zone_movable_pfn[nid] && 6203 *zone_end_pfn > zone_movable_pfn[nid]) { 6204 *zone_end_pfn = zone_movable_pfn[nid]; 6205 6206 /* Check if this whole range is within ZONE_MOVABLE */ 6207 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6208 *zone_start_pfn = *zone_end_pfn; 6209 } 6210 } 6211 6212 /* 6213 * Return the number of pages a zone spans in a node, including holes 6214 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6215 */ 6216 static unsigned long __init zone_spanned_pages_in_node(int nid, 6217 unsigned long zone_type, 6218 unsigned long node_start_pfn, 6219 unsigned long node_end_pfn, 6220 unsigned long *zone_start_pfn, 6221 unsigned long *zone_end_pfn, 6222 unsigned long *ignored) 6223 { 6224 /* When hotadd a new node from cpu_up(), the node should be empty */ 6225 if (!node_start_pfn && !node_end_pfn) 6226 return 0; 6227 6228 /* Get the start and end of the zone */ 6229 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 6230 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 6231 adjust_zone_range_for_zone_movable(nid, zone_type, 6232 node_start_pfn, node_end_pfn, 6233 zone_start_pfn, zone_end_pfn); 6234 6235 /* Check that this node has pages within the zone's required range */ 6236 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6237 return 0; 6238 6239 /* Move the zone boundaries inside the node if necessary */ 6240 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6241 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6242 6243 /* Return the spanned pages */ 6244 return *zone_end_pfn - *zone_start_pfn; 6245 } 6246 6247 /* 6248 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6249 * then all holes in the requested range will be accounted for. 6250 */ 6251 unsigned long __init __absent_pages_in_range(int nid, 6252 unsigned long range_start_pfn, 6253 unsigned long range_end_pfn) 6254 { 6255 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6256 unsigned long start_pfn, end_pfn; 6257 int i; 6258 6259 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6260 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6261 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6262 nr_absent -= end_pfn - start_pfn; 6263 } 6264 return nr_absent; 6265 } 6266 6267 /** 6268 * absent_pages_in_range - Return number of page frames in holes within a range 6269 * @start_pfn: The start PFN to start searching for holes 6270 * @end_pfn: The end PFN to stop searching for holes 6271 * 6272 * It returns the number of pages frames in memory holes within a range. 6273 */ 6274 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6275 unsigned long end_pfn) 6276 { 6277 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6278 } 6279 6280 /* Return the number of page frames in holes in a zone on a node */ 6281 static unsigned long __init zone_absent_pages_in_node(int nid, 6282 unsigned long zone_type, 6283 unsigned long node_start_pfn, 6284 unsigned long node_end_pfn, 6285 unsigned long *ignored) 6286 { 6287 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6288 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6289 unsigned long zone_start_pfn, zone_end_pfn; 6290 unsigned long nr_absent; 6291 6292 /* When hotadd a new node from cpu_up(), the node should be empty */ 6293 if (!node_start_pfn && !node_end_pfn) 6294 return 0; 6295 6296 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6297 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6298 6299 adjust_zone_range_for_zone_movable(nid, zone_type, 6300 node_start_pfn, node_end_pfn, 6301 &zone_start_pfn, &zone_end_pfn); 6302 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6303 6304 /* 6305 * ZONE_MOVABLE handling. 6306 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6307 * and vice versa. 6308 */ 6309 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6310 unsigned long start_pfn, end_pfn; 6311 struct memblock_region *r; 6312 6313 for_each_memblock(memory, r) { 6314 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6315 zone_start_pfn, zone_end_pfn); 6316 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6317 zone_start_pfn, zone_end_pfn); 6318 6319 if (zone_type == ZONE_MOVABLE && 6320 memblock_is_mirror(r)) 6321 nr_absent += end_pfn - start_pfn; 6322 6323 if (zone_type == ZONE_NORMAL && 6324 !memblock_is_mirror(r)) 6325 nr_absent += end_pfn - start_pfn; 6326 } 6327 } 6328 6329 return nr_absent; 6330 } 6331 6332 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6333 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6334 unsigned long zone_type, 6335 unsigned long node_start_pfn, 6336 unsigned long node_end_pfn, 6337 unsigned long *zone_start_pfn, 6338 unsigned long *zone_end_pfn, 6339 unsigned long *zones_size) 6340 { 6341 unsigned int zone; 6342 6343 *zone_start_pfn = node_start_pfn; 6344 for (zone = 0; zone < zone_type; zone++) 6345 *zone_start_pfn += zones_size[zone]; 6346 6347 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6348 6349 return zones_size[zone_type]; 6350 } 6351 6352 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6353 unsigned long zone_type, 6354 unsigned long node_start_pfn, 6355 unsigned long node_end_pfn, 6356 unsigned long *zholes_size) 6357 { 6358 if (!zholes_size) 6359 return 0; 6360 6361 return zholes_size[zone_type]; 6362 } 6363 6364 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6365 6366 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6367 unsigned long node_start_pfn, 6368 unsigned long node_end_pfn, 6369 unsigned long *zones_size, 6370 unsigned long *zholes_size) 6371 { 6372 unsigned long realtotalpages = 0, totalpages = 0; 6373 enum zone_type i; 6374 6375 for (i = 0; i < MAX_NR_ZONES; i++) { 6376 struct zone *zone = pgdat->node_zones + i; 6377 unsigned long zone_start_pfn, zone_end_pfn; 6378 unsigned long size, real_size; 6379 6380 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6381 node_start_pfn, 6382 node_end_pfn, 6383 &zone_start_pfn, 6384 &zone_end_pfn, 6385 zones_size); 6386 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6387 node_start_pfn, node_end_pfn, 6388 zholes_size); 6389 if (size) 6390 zone->zone_start_pfn = zone_start_pfn; 6391 else 6392 zone->zone_start_pfn = 0; 6393 zone->spanned_pages = size; 6394 zone->present_pages = real_size; 6395 6396 totalpages += size; 6397 realtotalpages += real_size; 6398 } 6399 6400 pgdat->node_spanned_pages = totalpages; 6401 pgdat->node_present_pages = realtotalpages; 6402 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6403 realtotalpages); 6404 } 6405 6406 #ifndef CONFIG_SPARSEMEM 6407 /* 6408 * Calculate the size of the zone->blockflags rounded to an unsigned long 6409 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6410 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6411 * round what is now in bits to nearest long in bits, then return it in 6412 * bytes. 6413 */ 6414 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6415 { 6416 unsigned long usemapsize; 6417 6418 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6419 usemapsize = roundup(zonesize, pageblock_nr_pages); 6420 usemapsize = usemapsize >> pageblock_order; 6421 usemapsize *= NR_PAGEBLOCK_BITS; 6422 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6423 6424 return usemapsize / 8; 6425 } 6426 6427 static void __ref setup_usemap(struct pglist_data *pgdat, 6428 struct zone *zone, 6429 unsigned long zone_start_pfn, 6430 unsigned long zonesize) 6431 { 6432 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6433 zone->pageblock_flags = NULL; 6434 if (usemapsize) { 6435 zone->pageblock_flags = 6436 memblock_alloc_node_nopanic(usemapsize, 6437 pgdat->node_id); 6438 if (!zone->pageblock_flags) 6439 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6440 usemapsize, zone->name, pgdat->node_id); 6441 } 6442 } 6443 #else 6444 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6445 unsigned long zone_start_pfn, unsigned long zonesize) {} 6446 #endif /* CONFIG_SPARSEMEM */ 6447 6448 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6449 6450 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6451 void __init set_pageblock_order(void) 6452 { 6453 unsigned int order; 6454 6455 /* Check that pageblock_nr_pages has not already been setup */ 6456 if (pageblock_order) 6457 return; 6458 6459 if (HPAGE_SHIFT > PAGE_SHIFT) 6460 order = HUGETLB_PAGE_ORDER; 6461 else 6462 order = MAX_ORDER - 1; 6463 6464 /* 6465 * Assume the largest contiguous order of interest is a huge page. 6466 * This value may be variable depending on boot parameters on IA64 and 6467 * powerpc. 6468 */ 6469 pageblock_order = order; 6470 } 6471 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6472 6473 /* 6474 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6475 * is unused as pageblock_order is set at compile-time. See 6476 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6477 * the kernel config 6478 */ 6479 void __init set_pageblock_order(void) 6480 { 6481 } 6482 6483 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6484 6485 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6486 unsigned long present_pages) 6487 { 6488 unsigned long pages = spanned_pages; 6489 6490 /* 6491 * Provide a more accurate estimation if there are holes within 6492 * the zone and SPARSEMEM is in use. If there are holes within the 6493 * zone, each populated memory region may cost us one or two extra 6494 * memmap pages due to alignment because memmap pages for each 6495 * populated regions may not be naturally aligned on page boundary. 6496 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6497 */ 6498 if (spanned_pages > present_pages + (present_pages >> 4) && 6499 IS_ENABLED(CONFIG_SPARSEMEM)) 6500 pages = present_pages; 6501 6502 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6503 } 6504 6505 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6506 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6507 { 6508 spin_lock_init(&pgdat->split_queue_lock); 6509 INIT_LIST_HEAD(&pgdat->split_queue); 6510 pgdat->split_queue_len = 0; 6511 } 6512 #else 6513 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6514 #endif 6515 6516 #ifdef CONFIG_COMPACTION 6517 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6518 { 6519 init_waitqueue_head(&pgdat->kcompactd_wait); 6520 } 6521 #else 6522 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6523 #endif 6524 6525 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6526 { 6527 pgdat_resize_init(pgdat); 6528 6529 pgdat_init_split_queue(pgdat); 6530 pgdat_init_kcompactd(pgdat); 6531 6532 init_waitqueue_head(&pgdat->kswapd_wait); 6533 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6534 6535 pgdat_page_ext_init(pgdat); 6536 spin_lock_init(&pgdat->lru_lock); 6537 lruvec_init(node_lruvec(pgdat)); 6538 } 6539 6540 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6541 unsigned long remaining_pages) 6542 { 6543 atomic_long_set(&zone->managed_pages, remaining_pages); 6544 zone_set_nid(zone, nid); 6545 zone->name = zone_names[idx]; 6546 zone->zone_pgdat = NODE_DATA(nid); 6547 spin_lock_init(&zone->lock); 6548 zone_seqlock_init(zone); 6549 zone_pcp_init(zone); 6550 } 6551 6552 /* 6553 * Set up the zone data structures 6554 * - init pgdat internals 6555 * - init all zones belonging to this node 6556 * 6557 * NOTE: this function is only called during memory hotplug 6558 */ 6559 #ifdef CONFIG_MEMORY_HOTPLUG 6560 void __ref free_area_init_core_hotplug(int nid) 6561 { 6562 enum zone_type z; 6563 pg_data_t *pgdat = NODE_DATA(nid); 6564 6565 pgdat_init_internals(pgdat); 6566 for (z = 0; z < MAX_NR_ZONES; z++) 6567 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6568 } 6569 #endif 6570 6571 /* 6572 * Set up the zone data structures: 6573 * - mark all pages reserved 6574 * - mark all memory queues empty 6575 * - clear the memory bitmaps 6576 * 6577 * NOTE: pgdat should get zeroed by caller. 6578 * NOTE: this function is only called during early init. 6579 */ 6580 static void __init free_area_init_core(struct pglist_data *pgdat) 6581 { 6582 enum zone_type j; 6583 int nid = pgdat->node_id; 6584 6585 pgdat_init_internals(pgdat); 6586 pgdat->per_cpu_nodestats = &boot_nodestats; 6587 6588 for (j = 0; j < MAX_NR_ZONES; j++) { 6589 struct zone *zone = pgdat->node_zones + j; 6590 unsigned long size, freesize, memmap_pages; 6591 unsigned long zone_start_pfn = zone->zone_start_pfn; 6592 6593 size = zone->spanned_pages; 6594 freesize = zone->present_pages; 6595 6596 /* 6597 * Adjust freesize so that it accounts for how much memory 6598 * is used by this zone for memmap. This affects the watermark 6599 * and per-cpu initialisations 6600 */ 6601 memmap_pages = calc_memmap_size(size, freesize); 6602 if (!is_highmem_idx(j)) { 6603 if (freesize >= memmap_pages) { 6604 freesize -= memmap_pages; 6605 if (memmap_pages) 6606 printk(KERN_DEBUG 6607 " %s zone: %lu pages used for memmap\n", 6608 zone_names[j], memmap_pages); 6609 } else 6610 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6611 zone_names[j], memmap_pages, freesize); 6612 } 6613 6614 /* Account for reserved pages */ 6615 if (j == 0 && freesize > dma_reserve) { 6616 freesize -= dma_reserve; 6617 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6618 zone_names[0], dma_reserve); 6619 } 6620 6621 if (!is_highmem_idx(j)) 6622 nr_kernel_pages += freesize; 6623 /* Charge for highmem memmap if there are enough kernel pages */ 6624 else if (nr_kernel_pages > memmap_pages * 2) 6625 nr_kernel_pages -= memmap_pages; 6626 nr_all_pages += freesize; 6627 6628 /* 6629 * Set an approximate value for lowmem here, it will be adjusted 6630 * when the bootmem allocator frees pages into the buddy system. 6631 * And all highmem pages will be managed by the buddy system. 6632 */ 6633 zone_init_internals(zone, j, nid, freesize); 6634 6635 if (!size) 6636 continue; 6637 6638 set_pageblock_order(); 6639 setup_usemap(pgdat, zone, zone_start_pfn, size); 6640 init_currently_empty_zone(zone, zone_start_pfn, size); 6641 memmap_init(size, nid, j, zone_start_pfn); 6642 } 6643 } 6644 6645 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6646 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6647 { 6648 unsigned long __maybe_unused start = 0; 6649 unsigned long __maybe_unused offset = 0; 6650 6651 /* Skip empty nodes */ 6652 if (!pgdat->node_spanned_pages) 6653 return; 6654 6655 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6656 offset = pgdat->node_start_pfn - start; 6657 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6658 if (!pgdat->node_mem_map) { 6659 unsigned long size, end; 6660 struct page *map; 6661 6662 /* 6663 * The zone's endpoints aren't required to be MAX_ORDER 6664 * aligned but the node_mem_map endpoints must be in order 6665 * for the buddy allocator to function correctly. 6666 */ 6667 end = pgdat_end_pfn(pgdat); 6668 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6669 size = (end - start) * sizeof(struct page); 6670 map = memblock_alloc_node_nopanic(size, pgdat->node_id); 6671 if (!map) 6672 panic("Failed to allocate %ld bytes for node %d memory map\n", 6673 size, pgdat->node_id); 6674 pgdat->node_mem_map = map + offset; 6675 } 6676 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6677 __func__, pgdat->node_id, (unsigned long)pgdat, 6678 (unsigned long)pgdat->node_mem_map); 6679 #ifndef CONFIG_NEED_MULTIPLE_NODES 6680 /* 6681 * With no DISCONTIG, the global mem_map is just set as node 0's 6682 */ 6683 if (pgdat == NODE_DATA(0)) { 6684 mem_map = NODE_DATA(0)->node_mem_map; 6685 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6686 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6687 mem_map -= offset; 6688 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6689 } 6690 #endif 6691 } 6692 #else 6693 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6694 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6695 6696 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6697 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6698 { 6699 pgdat->first_deferred_pfn = ULONG_MAX; 6700 } 6701 #else 6702 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6703 #endif 6704 6705 void __init free_area_init_node(int nid, unsigned long *zones_size, 6706 unsigned long node_start_pfn, 6707 unsigned long *zholes_size) 6708 { 6709 pg_data_t *pgdat = NODE_DATA(nid); 6710 unsigned long start_pfn = 0; 6711 unsigned long end_pfn = 0; 6712 6713 /* pg_data_t should be reset to zero when it's allocated */ 6714 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6715 6716 pgdat->node_id = nid; 6717 pgdat->node_start_pfn = node_start_pfn; 6718 pgdat->per_cpu_nodestats = NULL; 6719 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6720 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6721 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6722 (u64)start_pfn << PAGE_SHIFT, 6723 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6724 #else 6725 start_pfn = node_start_pfn; 6726 #endif 6727 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6728 zones_size, zholes_size); 6729 6730 alloc_node_mem_map(pgdat); 6731 pgdat_set_deferred_range(pgdat); 6732 6733 free_area_init_core(pgdat); 6734 } 6735 6736 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6737 /* 6738 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6739 * pages zeroed 6740 */ 6741 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6742 { 6743 unsigned long pfn; 6744 u64 pgcnt = 0; 6745 6746 for (pfn = spfn; pfn < epfn; pfn++) { 6747 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6748 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6749 + pageblock_nr_pages - 1; 6750 continue; 6751 } 6752 mm_zero_struct_page(pfn_to_page(pfn)); 6753 pgcnt++; 6754 } 6755 6756 return pgcnt; 6757 } 6758 6759 /* 6760 * Only struct pages that are backed by physical memory are zeroed and 6761 * initialized by going through __init_single_page(). But, there are some 6762 * struct pages which are reserved in memblock allocator and their fields 6763 * may be accessed (for example page_to_pfn() on some configuration accesses 6764 * flags). We must explicitly zero those struct pages. 6765 * 6766 * This function also addresses a similar issue where struct pages are left 6767 * uninitialized because the physical address range is not covered by 6768 * memblock.memory or memblock.reserved. That could happen when memblock 6769 * layout is manually configured via memmap=. 6770 */ 6771 void __init zero_resv_unavail(void) 6772 { 6773 phys_addr_t start, end; 6774 u64 i, pgcnt; 6775 phys_addr_t next = 0; 6776 6777 /* 6778 * Loop through unavailable ranges not covered by memblock.memory. 6779 */ 6780 pgcnt = 0; 6781 for_each_mem_range(i, &memblock.memory, NULL, 6782 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6783 if (next < start) 6784 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6785 next = end; 6786 } 6787 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6788 6789 /* 6790 * Struct pages that do not have backing memory. This could be because 6791 * firmware is using some of this memory, or for some other reasons. 6792 */ 6793 if (pgcnt) 6794 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6795 } 6796 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6797 6798 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6799 6800 #if MAX_NUMNODES > 1 6801 /* 6802 * Figure out the number of possible node ids. 6803 */ 6804 void __init setup_nr_node_ids(void) 6805 { 6806 unsigned int highest; 6807 6808 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6809 nr_node_ids = highest + 1; 6810 } 6811 #endif 6812 6813 /** 6814 * node_map_pfn_alignment - determine the maximum internode alignment 6815 * 6816 * This function should be called after node map is populated and sorted. 6817 * It calculates the maximum power of two alignment which can distinguish 6818 * all the nodes. 6819 * 6820 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6821 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6822 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6823 * shifted, 1GiB is enough and this function will indicate so. 6824 * 6825 * This is used to test whether pfn -> nid mapping of the chosen memory 6826 * model has fine enough granularity to avoid incorrect mapping for the 6827 * populated node map. 6828 * 6829 * Returns the determined alignment in pfn's. 0 if there is no alignment 6830 * requirement (single node). 6831 */ 6832 unsigned long __init node_map_pfn_alignment(void) 6833 { 6834 unsigned long accl_mask = 0, last_end = 0; 6835 unsigned long start, end, mask; 6836 int last_nid = NUMA_NO_NODE; 6837 int i, nid; 6838 6839 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6840 if (!start || last_nid < 0 || last_nid == nid) { 6841 last_nid = nid; 6842 last_end = end; 6843 continue; 6844 } 6845 6846 /* 6847 * Start with a mask granular enough to pin-point to the 6848 * start pfn and tick off bits one-by-one until it becomes 6849 * too coarse to separate the current node from the last. 6850 */ 6851 mask = ~((1 << __ffs(start)) - 1); 6852 while (mask && last_end <= (start & (mask << 1))) 6853 mask <<= 1; 6854 6855 /* accumulate all internode masks */ 6856 accl_mask |= mask; 6857 } 6858 6859 /* convert mask to number of pages */ 6860 return ~accl_mask + 1; 6861 } 6862 6863 /* Find the lowest pfn for a node */ 6864 static unsigned long __init find_min_pfn_for_node(int nid) 6865 { 6866 unsigned long min_pfn = ULONG_MAX; 6867 unsigned long start_pfn; 6868 int i; 6869 6870 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6871 min_pfn = min(min_pfn, start_pfn); 6872 6873 if (min_pfn == ULONG_MAX) { 6874 pr_warn("Could not find start_pfn for node %d\n", nid); 6875 return 0; 6876 } 6877 6878 return min_pfn; 6879 } 6880 6881 /** 6882 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6883 * 6884 * It returns the minimum PFN based on information provided via 6885 * memblock_set_node(). 6886 */ 6887 unsigned long __init find_min_pfn_with_active_regions(void) 6888 { 6889 return find_min_pfn_for_node(MAX_NUMNODES); 6890 } 6891 6892 /* 6893 * early_calculate_totalpages() 6894 * Sum pages in active regions for movable zone. 6895 * Populate N_MEMORY for calculating usable_nodes. 6896 */ 6897 static unsigned long __init early_calculate_totalpages(void) 6898 { 6899 unsigned long totalpages = 0; 6900 unsigned long start_pfn, end_pfn; 6901 int i, nid; 6902 6903 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6904 unsigned long pages = end_pfn - start_pfn; 6905 6906 totalpages += pages; 6907 if (pages) 6908 node_set_state(nid, N_MEMORY); 6909 } 6910 return totalpages; 6911 } 6912 6913 /* 6914 * Find the PFN the Movable zone begins in each node. Kernel memory 6915 * is spread evenly between nodes as long as the nodes have enough 6916 * memory. When they don't, some nodes will have more kernelcore than 6917 * others 6918 */ 6919 static void __init find_zone_movable_pfns_for_nodes(void) 6920 { 6921 int i, nid; 6922 unsigned long usable_startpfn; 6923 unsigned long kernelcore_node, kernelcore_remaining; 6924 /* save the state before borrow the nodemask */ 6925 nodemask_t saved_node_state = node_states[N_MEMORY]; 6926 unsigned long totalpages = early_calculate_totalpages(); 6927 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6928 struct memblock_region *r; 6929 6930 /* Need to find movable_zone earlier when movable_node is specified. */ 6931 find_usable_zone_for_movable(); 6932 6933 /* 6934 * If movable_node is specified, ignore kernelcore and movablecore 6935 * options. 6936 */ 6937 if (movable_node_is_enabled()) { 6938 for_each_memblock(memory, r) { 6939 if (!memblock_is_hotpluggable(r)) 6940 continue; 6941 6942 nid = r->nid; 6943 6944 usable_startpfn = PFN_DOWN(r->base); 6945 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6946 min(usable_startpfn, zone_movable_pfn[nid]) : 6947 usable_startpfn; 6948 } 6949 6950 goto out2; 6951 } 6952 6953 /* 6954 * If kernelcore=mirror is specified, ignore movablecore option 6955 */ 6956 if (mirrored_kernelcore) { 6957 bool mem_below_4gb_not_mirrored = false; 6958 6959 for_each_memblock(memory, r) { 6960 if (memblock_is_mirror(r)) 6961 continue; 6962 6963 nid = r->nid; 6964 6965 usable_startpfn = memblock_region_memory_base_pfn(r); 6966 6967 if (usable_startpfn < 0x100000) { 6968 mem_below_4gb_not_mirrored = true; 6969 continue; 6970 } 6971 6972 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6973 min(usable_startpfn, zone_movable_pfn[nid]) : 6974 usable_startpfn; 6975 } 6976 6977 if (mem_below_4gb_not_mirrored) 6978 pr_warn("This configuration results in unmirrored kernel memory."); 6979 6980 goto out2; 6981 } 6982 6983 /* 6984 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 6985 * amount of necessary memory. 6986 */ 6987 if (required_kernelcore_percent) 6988 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 6989 10000UL; 6990 if (required_movablecore_percent) 6991 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 6992 10000UL; 6993 6994 /* 6995 * If movablecore= was specified, calculate what size of 6996 * kernelcore that corresponds so that memory usable for 6997 * any allocation type is evenly spread. If both kernelcore 6998 * and movablecore are specified, then the value of kernelcore 6999 * will be used for required_kernelcore if it's greater than 7000 * what movablecore would have allowed. 7001 */ 7002 if (required_movablecore) { 7003 unsigned long corepages; 7004 7005 /* 7006 * Round-up so that ZONE_MOVABLE is at least as large as what 7007 * was requested by the user 7008 */ 7009 required_movablecore = 7010 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7011 required_movablecore = min(totalpages, required_movablecore); 7012 corepages = totalpages - required_movablecore; 7013 7014 required_kernelcore = max(required_kernelcore, corepages); 7015 } 7016 7017 /* 7018 * If kernelcore was not specified or kernelcore size is larger 7019 * than totalpages, there is no ZONE_MOVABLE. 7020 */ 7021 if (!required_kernelcore || required_kernelcore >= totalpages) 7022 goto out; 7023 7024 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7025 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7026 7027 restart: 7028 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7029 kernelcore_node = required_kernelcore / usable_nodes; 7030 for_each_node_state(nid, N_MEMORY) { 7031 unsigned long start_pfn, end_pfn; 7032 7033 /* 7034 * Recalculate kernelcore_node if the division per node 7035 * now exceeds what is necessary to satisfy the requested 7036 * amount of memory for the kernel 7037 */ 7038 if (required_kernelcore < kernelcore_node) 7039 kernelcore_node = required_kernelcore / usable_nodes; 7040 7041 /* 7042 * As the map is walked, we track how much memory is usable 7043 * by the kernel using kernelcore_remaining. When it is 7044 * 0, the rest of the node is usable by ZONE_MOVABLE 7045 */ 7046 kernelcore_remaining = kernelcore_node; 7047 7048 /* Go through each range of PFNs within this node */ 7049 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7050 unsigned long size_pages; 7051 7052 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7053 if (start_pfn >= end_pfn) 7054 continue; 7055 7056 /* Account for what is only usable for kernelcore */ 7057 if (start_pfn < usable_startpfn) { 7058 unsigned long kernel_pages; 7059 kernel_pages = min(end_pfn, usable_startpfn) 7060 - start_pfn; 7061 7062 kernelcore_remaining -= min(kernel_pages, 7063 kernelcore_remaining); 7064 required_kernelcore -= min(kernel_pages, 7065 required_kernelcore); 7066 7067 /* Continue if range is now fully accounted */ 7068 if (end_pfn <= usable_startpfn) { 7069 7070 /* 7071 * Push zone_movable_pfn to the end so 7072 * that if we have to rebalance 7073 * kernelcore across nodes, we will 7074 * not double account here 7075 */ 7076 zone_movable_pfn[nid] = end_pfn; 7077 continue; 7078 } 7079 start_pfn = usable_startpfn; 7080 } 7081 7082 /* 7083 * The usable PFN range for ZONE_MOVABLE is from 7084 * start_pfn->end_pfn. Calculate size_pages as the 7085 * number of pages used as kernelcore 7086 */ 7087 size_pages = end_pfn - start_pfn; 7088 if (size_pages > kernelcore_remaining) 7089 size_pages = kernelcore_remaining; 7090 zone_movable_pfn[nid] = start_pfn + size_pages; 7091 7092 /* 7093 * Some kernelcore has been met, update counts and 7094 * break if the kernelcore for this node has been 7095 * satisfied 7096 */ 7097 required_kernelcore -= min(required_kernelcore, 7098 size_pages); 7099 kernelcore_remaining -= size_pages; 7100 if (!kernelcore_remaining) 7101 break; 7102 } 7103 } 7104 7105 /* 7106 * If there is still required_kernelcore, we do another pass with one 7107 * less node in the count. This will push zone_movable_pfn[nid] further 7108 * along on the nodes that still have memory until kernelcore is 7109 * satisfied 7110 */ 7111 usable_nodes--; 7112 if (usable_nodes && required_kernelcore > usable_nodes) 7113 goto restart; 7114 7115 out2: 7116 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7117 for (nid = 0; nid < MAX_NUMNODES; nid++) 7118 zone_movable_pfn[nid] = 7119 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7120 7121 out: 7122 /* restore the node_state */ 7123 node_states[N_MEMORY] = saved_node_state; 7124 } 7125 7126 /* Any regular or high memory on that node ? */ 7127 static void check_for_memory(pg_data_t *pgdat, int nid) 7128 { 7129 enum zone_type zone_type; 7130 7131 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7132 struct zone *zone = &pgdat->node_zones[zone_type]; 7133 if (populated_zone(zone)) { 7134 if (IS_ENABLED(CONFIG_HIGHMEM)) 7135 node_set_state(nid, N_HIGH_MEMORY); 7136 if (zone_type <= ZONE_NORMAL) 7137 node_set_state(nid, N_NORMAL_MEMORY); 7138 break; 7139 } 7140 } 7141 } 7142 7143 /** 7144 * free_area_init_nodes - Initialise all pg_data_t and zone data 7145 * @max_zone_pfn: an array of max PFNs for each zone 7146 * 7147 * This will call free_area_init_node() for each active node in the system. 7148 * Using the page ranges provided by memblock_set_node(), the size of each 7149 * zone in each node and their holes is calculated. If the maximum PFN 7150 * between two adjacent zones match, it is assumed that the zone is empty. 7151 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7152 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7153 * starts where the previous one ended. For example, ZONE_DMA32 starts 7154 * at arch_max_dma_pfn. 7155 */ 7156 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7157 { 7158 unsigned long start_pfn, end_pfn; 7159 int i, nid; 7160 7161 /* Record where the zone boundaries are */ 7162 memset(arch_zone_lowest_possible_pfn, 0, 7163 sizeof(arch_zone_lowest_possible_pfn)); 7164 memset(arch_zone_highest_possible_pfn, 0, 7165 sizeof(arch_zone_highest_possible_pfn)); 7166 7167 start_pfn = find_min_pfn_with_active_regions(); 7168 7169 for (i = 0; i < MAX_NR_ZONES; i++) { 7170 if (i == ZONE_MOVABLE) 7171 continue; 7172 7173 end_pfn = max(max_zone_pfn[i], start_pfn); 7174 arch_zone_lowest_possible_pfn[i] = start_pfn; 7175 arch_zone_highest_possible_pfn[i] = end_pfn; 7176 7177 start_pfn = end_pfn; 7178 } 7179 7180 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7181 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7182 find_zone_movable_pfns_for_nodes(); 7183 7184 /* Print out the zone ranges */ 7185 pr_info("Zone ranges:\n"); 7186 for (i = 0; i < MAX_NR_ZONES; i++) { 7187 if (i == ZONE_MOVABLE) 7188 continue; 7189 pr_info(" %-8s ", zone_names[i]); 7190 if (arch_zone_lowest_possible_pfn[i] == 7191 arch_zone_highest_possible_pfn[i]) 7192 pr_cont("empty\n"); 7193 else 7194 pr_cont("[mem %#018Lx-%#018Lx]\n", 7195 (u64)arch_zone_lowest_possible_pfn[i] 7196 << PAGE_SHIFT, 7197 ((u64)arch_zone_highest_possible_pfn[i] 7198 << PAGE_SHIFT) - 1); 7199 } 7200 7201 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7202 pr_info("Movable zone start for each node\n"); 7203 for (i = 0; i < MAX_NUMNODES; i++) { 7204 if (zone_movable_pfn[i]) 7205 pr_info(" Node %d: %#018Lx\n", i, 7206 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7207 } 7208 7209 /* Print out the early node map */ 7210 pr_info("Early memory node ranges\n"); 7211 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 7212 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7213 (u64)start_pfn << PAGE_SHIFT, 7214 ((u64)end_pfn << PAGE_SHIFT) - 1); 7215 7216 /* Initialise every node */ 7217 mminit_verify_pageflags_layout(); 7218 setup_nr_node_ids(); 7219 zero_resv_unavail(); 7220 for_each_online_node(nid) { 7221 pg_data_t *pgdat = NODE_DATA(nid); 7222 free_area_init_node(nid, NULL, 7223 find_min_pfn_for_node(nid), NULL); 7224 7225 /* Any memory on that node */ 7226 if (pgdat->node_present_pages) 7227 node_set_state(nid, N_MEMORY); 7228 check_for_memory(pgdat, nid); 7229 } 7230 } 7231 7232 static int __init cmdline_parse_core(char *p, unsigned long *core, 7233 unsigned long *percent) 7234 { 7235 unsigned long long coremem; 7236 char *endptr; 7237 7238 if (!p) 7239 return -EINVAL; 7240 7241 /* Value may be a percentage of total memory, otherwise bytes */ 7242 coremem = simple_strtoull(p, &endptr, 0); 7243 if (*endptr == '%') { 7244 /* Paranoid check for percent values greater than 100 */ 7245 WARN_ON(coremem > 100); 7246 7247 *percent = coremem; 7248 } else { 7249 coremem = memparse(p, &p); 7250 /* Paranoid check that UL is enough for the coremem value */ 7251 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7252 7253 *core = coremem >> PAGE_SHIFT; 7254 *percent = 0UL; 7255 } 7256 return 0; 7257 } 7258 7259 /* 7260 * kernelcore=size sets the amount of memory for use for allocations that 7261 * cannot be reclaimed or migrated. 7262 */ 7263 static int __init cmdline_parse_kernelcore(char *p) 7264 { 7265 /* parse kernelcore=mirror */ 7266 if (parse_option_str(p, "mirror")) { 7267 mirrored_kernelcore = true; 7268 return 0; 7269 } 7270 7271 return cmdline_parse_core(p, &required_kernelcore, 7272 &required_kernelcore_percent); 7273 } 7274 7275 /* 7276 * movablecore=size sets the amount of memory for use for allocations that 7277 * can be reclaimed or migrated. 7278 */ 7279 static int __init cmdline_parse_movablecore(char *p) 7280 { 7281 return cmdline_parse_core(p, &required_movablecore, 7282 &required_movablecore_percent); 7283 } 7284 7285 early_param("kernelcore", cmdline_parse_kernelcore); 7286 early_param("movablecore", cmdline_parse_movablecore); 7287 7288 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7289 7290 void adjust_managed_page_count(struct page *page, long count) 7291 { 7292 atomic_long_add(count, &page_zone(page)->managed_pages); 7293 totalram_pages_add(count); 7294 #ifdef CONFIG_HIGHMEM 7295 if (PageHighMem(page)) 7296 totalhigh_pages_add(count); 7297 #endif 7298 } 7299 EXPORT_SYMBOL(adjust_managed_page_count); 7300 7301 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7302 { 7303 void *pos; 7304 unsigned long pages = 0; 7305 7306 start = (void *)PAGE_ALIGN((unsigned long)start); 7307 end = (void *)((unsigned long)end & PAGE_MASK); 7308 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7309 struct page *page = virt_to_page(pos); 7310 void *direct_map_addr; 7311 7312 /* 7313 * 'direct_map_addr' might be different from 'pos' 7314 * because some architectures' virt_to_page() 7315 * work with aliases. Getting the direct map 7316 * address ensures that we get a _writeable_ 7317 * alias for the memset(). 7318 */ 7319 direct_map_addr = page_address(page); 7320 if ((unsigned int)poison <= 0xFF) 7321 memset(direct_map_addr, poison, PAGE_SIZE); 7322 7323 free_reserved_page(page); 7324 } 7325 7326 if (pages && s) 7327 pr_info("Freeing %s memory: %ldK\n", 7328 s, pages << (PAGE_SHIFT - 10)); 7329 7330 return pages; 7331 } 7332 EXPORT_SYMBOL(free_reserved_area); 7333 7334 #ifdef CONFIG_HIGHMEM 7335 void free_highmem_page(struct page *page) 7336 { 7337 __free_reserved_page(page); 7338 totalram_pages_inc(); 7339 atomic_long_inc(&page_zone(page)->managed_pages); 7340 totalhigh_pages_inc(); 7341 } 7342 #endif 7343 7344 7345 void __init mem_init_print_info(const char *str) 7346 { 7347 unsigned long physpages, codesize, datasize, rosize, bss_size; 7348 unsigned long init_code_size, init_data_size; 7349 7350 physpages = get_num_physpages(); 7351 codesize = _etext - _stext; 7352 datasize = _edata - _sdata; 7353 rosize = __end_rodata - __start_rodata; 7354 bss_size = __bss_stop - __bss_start; 7355 init_data_size = __init_end - __init_begin; 7356 init_code_size = _einittext - _sinittext; 7357 7358 /* 7359 * Detect special cases and adjust section sizes accordingly: 7360 * 1) .init.* may be embedded into .data sections 7361 * 2) .init.text.* may be out of [__init_begin, __init_end], 7362 * please refer to arch/tile/kernel/vmlinux.lds.S. 7363 * 3) .rodata.* may be embedded into .text or .data sections. 7364 */ 7365 #define adj_init_size(start, end, size, pos, adj) \ 7366 do { \ 7367 if (start <= pos && pos < end && size > adj) \ 7368 size -= adj; \ 7369 } while (0) 7370 7371 adj_init_size(__init_begin, __init_end, init_data_size, 7372 _sinittext, init_code_size); 7373 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7374 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7375 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7376 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7377 7378 #undef adj_init_size 7379 7380 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7381 #ifdef CONFIG_HIGHMEM 7382 ", %luK highmem" 7383 #endif 7384 "%s%s)\n", 7385 nr_free_pages() << (PAGE_SHIFT - 10), 7386 physpages << (PAGE_SHIFT - 10), 7387 codesize >> 10, datasize >> 10, rosize >> 10, 7388 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7389 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7390 totalcma_pages << (PAGE_SHIFT - 10), 7391 #ifdef CONFIG_HIGHMEM 7392 totalhigh_pages() << (PAGE_SHIFT - 10), 7393 #endif 7394 str ? ", " : "", str ? str : ""); 7395 } 7396 7397 /** 7398 * set_dma_reserve - set the specified number of pages reserved in the first zone 7399 * @new_dma_reserve: The number of pages to mark reserved 7400 * 7401 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7402 * In the DMA zone, a significant percentage may be consumed by kernel image 7403 * and other unfreeable allocations which can skew the watermarks badly. This 7404 * function may optionally be used to account for unfreeable pages in the 7405 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7406 * smaller per-cpu batchsize. 7407 */ 7408 void __init set_dma_reserve(unsigned long new_dma_reserve) 7409 { 7410 dma_reserve = new_dma_reserve; 7411 } 7412 7413 void __init free_area_init(unsigned long *zones_size) 7414 { 7415 zero_resv_unavail(); 7416 free_area_init_node(0, zones_size, 7417 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7418 } 7419 7420 static int page_alloc_cpu_dead(unsigned int cpu) 7421 { 7422 7423 lru_add_drain_cpu(cpu); 7424 drain_pages(cpu); 7425 7426 /* 7427 * Spill the event counters of the dead processor 7428 * into the current processors event counters. 7429 * This artificially elevates the count of the current 7430 * processor. 7431 */ 7432 vm_events_fold_cpu(cpu); 7433 7434 /* 7435 * Zero the differential counters of the dead processor 7436 * so that the vm statistics are consistent. 7437 * 7438 * This is only okay since the processor is dead and cannot 7439 * race with what we are doing. 7440 */ 7441 cpu_vm_stats_fold(cpu); 7442 return 0; 7443 } 7444 7445 void __init page_alloc_init(void) 7446 { 7447 int ret; 7448 7449 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7450 "mm/page_alloc:dead", NULL, 7451 page_alloc_cpu_dead); 7452 WARN_ON(ret < 0); 7453 } 7454 7455 /* 7456 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7457 * or min_free_kbytes changes. 7458 */ 7459 static void calculate_totalreserve_pages(void) 7460 { 7461 struct pglist_data *pgdat; 7462 unsigned long reserve_pages = 0; 7463 enum zone_type i, j; 7464 7465 for_each_online_pgdat(pgdat) { 7466 7467 pgdat->totalreserve_pages = 0; 7468 7469 for (i = 0; i < MAX_NR_ZONES; i++) { 7470 struct zone *zone = pgdat->node_zones + i; 7471 long max = 0; 7472 unsigned long managed_pages = zone_managed_pages(zone); 7473 7474 /* Find valid and maximum lowmem_reserve in the zone */ 7475 for (j = i; j < MAX_NR_ZONES; j++) { 7476 if (zone->lowmem_reserve[j] > max) 7477 max = zone->lowmem_reserve[j]; 7478 } 7479 7480 /* we treat the high watermark as reserved pages. */ 7481 max += high_wmark_pages(zone); 7482 7483 if (max > managed_pages) 7484 max = managed_pages; 7485 7486 pgdat->totalreserve_pages += max; 7487 7488 reserve_pages += max; 7489 } 7490 } 7491 totalreserve_pages = reserve_pages; 7492 } 7493 7494 /* 7495 * setup_per_zone_lowmem_reserve - called whenever 7496 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7497 * has a correct pages reserved value, so an adequate number of 7498 * pages are left in the zone after a successful __alloc_pages(). 7499 */ 7500 static void setup_per_zone_lowmem_reserve(void) 7501 { 7502 struct pglist_data *pgdat; 7503 enum zone_type j, idx; 7504 7505 for_each_online_pgdat(pgdat) { 7506 for (j = 0; j < MAX_NR_ZONES; j++) { 7507 struct zone *zone = pgdat->node_zones + j; 7508 unsigned long managed_pages = zone_managed_pages(zone); 7509 7510 zone->lowmem_reserve[j] = 0; 7511 7512 idx = j; 7513 while (idx) { 7514 struct zone *lower_zone; 7515 7516 idx--; 7517 lower_zone = pgdat->node_zones + idx; 7518 7519 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7520 sysctl_lowmem_reserve_ratio[idx] = 0; 7521 lower_zone->lowmem_reserve[j] = 0; 7522 } else { 7523 lower_zone->lowmem_reserve[j] = 7524 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7525 } 7526 managed_pages += zone_managed_pages(lower_zone); 7527 } 7528 } 7529 } 7530 7531 /* update totalreserve_pages */ 7532 calculate_totalreserve_pages(); 7533 } 7534 7535 static void __setup_per_zone_wmarks(void) 7536 { 7537 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7538 unsigned long lowmem_pages = 0; 7539 struct zone *zone; 7540 unsigned long flags; 7541 7542 /* Calculate total number of !ZONE_HIGHMEM pages */ 7543 for_each_zone(zone) { 7544 if (!is_highmem(zone)) 7545 lowmem_pages += zone_managed_pages(zone); 7546 } 7547 7548 for_each_zone(zone) { 7549 u64 tmp; 7550 7551 spin_lock_irqsave(&zone->lock, flags); 7552 tmp = (u64)pages_min * zone_managed_pages(zone); 7553 do_div(tmp, lowmem_pages); 7554 if (is_highmem(zone)) { 7555 /* 7556 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7557 * need highmem pages, so cap pages_min to a small 7558 * value here. 7559 * 7560 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7561 * deltas control async page reclaim, and so should 7562 * not be capped for highmem. 7563 */ 7564 unsigned long min_pages; 7565 7566 min_pages = zone_managed_pages(zone) / 1024; 7567 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7568 zone->_watermark[WMARK_MIN] = min_pages; 7569 } else { 7570 /* 7571 * If it's a lowmem zone, reserve a number of pages 7572 * proportionate to the zone's size. 7573 */ 7574 zone->_watermark[WMARK_MIN] = tmp; 7575 } 7576 7577 /* 7578 * Set the kswapd watermarks distance according to the 7579 * scale factor in proportion to available memory, but 7580 * ensure a minimum size on small systems. 7581 */ 7582 tmp = max_t(u64, tmp >> 2, 7583 mult_frac(zone_managed_pages(zone), 7584 watermark_scale_factor, 10000)); 7585 7586 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7587 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7588 zone->watermark_boost = 0; 7589 7590 spin_unlock_irqrestore(&zone->lock, flags); 7591 } 7592 7593 /* update totalreserve_pages */ 7594 calculate_totalreserve_pages(); 7595 } 7596 7597 /** 7598 * setup_per_zone_wmarks - called when min_free_kbytes changes 7599 * or when memory is hot-{added|removed} 7600 * 7601 * Ensures that the watermark[min,low,high] values for each zone are set 7602 * correctly with respect to min_free_kbytes. 7603 */ 7604 void setup_per_zone_wmarks(void) 7605 { 7606 static DEFINE_SPINLOCK(lock); 7607 7608 spin_lock(&lock); 7609 __setup_per_zone_wmarks(); 7610 spin_unlock(&lock); 7611 } 7612 7613 /* 7614 * Initialise min_free_kbytes. 7615 * 7616 * For small machines we want it small (128k min). For large machines 7617 * we want it large (64MB max). But it is not linear, because network 7618 * bandwidth does not increase linearly with machine size. We use 7619 * 7620 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7621 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7622 * 7623 * which yields 7624 * 7625 * 16MB: 512k 7626 * 32MB: 724k 7627 * 64MB: 1024k 7628 * 128MB: 1448k 7629 * 256MB: 2048k 7630 * 512MB: 2896k 7631 * 1024MB: 4096k 7632 * 2048MB: 5792k 7633 * 4096MB: 8192k 7634 * 8192MB: 11584k 7635 * 16384MB: 16384k 7636 */ 7637 int __meminit init_per_zone_wmark_min(void) 7638 { 7639 unsigned long lowmem_kbytes; 7640 int new_min_free_kbytes; 7641 7642 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7643 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7644 7645 if (new_min_free_kbytes > user_min_free_kbytes) { 7646 min_free_kbytes = new_min_free_kbytes; 7647 if (min_free_kbytes < 128) 7648 min_free_kbytes = 128; 7649 if (min_free_kbytes > 65536) 7650 min_free_kbytes = 65536; 7651 } else { 7652 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7653 new_min_free_kbytes, user_min_free_kbytes); 7654 } 7655 setup_per_zone_wmarks(); 7656 refresh_zone_stat_thresholds(); 7657 setup_per_zone_lowmem_reserve(); 7658 7659 #ifdef CONFIG_NUMA 7660 setup_min_unmapped_ratio(); 7661 setup_min_slab_ratio(); 7662 #endif 7663 7664 return 0; 7665 } 7666 core_initcall(init_per_zone_wmark_min) 7667 7668 /* 7669 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7670 * that we can call two helper functions whenever min_free_kbytes 7671 * changes. 7672 */ 7673 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7674 void __user *buffer, size_t *length, loff_t *ppos) 7675 { 7676 int rc; 7677 7678 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7679 if (rc) 7680 return rc; 7681 7682 if (write) { 7683 user_min_free_kbytes = min_free_kbytes; 7684 setup_per_zone_wmarks(); 7685 } 7686 return 0; 7687 } 7688 7689 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7690 void __user *buffer, size_t *length, loff_t *ppos) 7691 { 7692 int rc; 7693 7694 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7695 if (rc) 7696 return rc; 7697 7698 return 0; 7699 } 7700 7701 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7702 void __user *buffer, size_t *length, loff_t *ppos) 7703 { 7704 int rc; 7705 7706 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7707 if (rc) 7708 return rc; 7709 7710 if (write) 7711 setup_per_zone_wmarks(); 7712 7713 return 0; 7714 } 7715 7716 #ifdef CONFIG_NUMA 7717 static void setup_min_unmapped_ratio(void) 7718 { 7719 pg_data_t *pgdat; 7720 struct zone *zone; 7721 7722 for_each_online_pgdat(pgdat) 7723 pgdat->min_unmapped_pages = 0; 7724 7725 for_each_zone(zone) 7726 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7727 sysctl_min_unmapped_ratio) / 100; 7728 } 7729 7730 7731 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7732 void __user *buffer, size_t *length, loff_t *ppos) 7733 { 7734 int rc; 7735 7736 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7737 if (rc) 7738 return rc; 7739 7740 setup_min_unmapped_ratio(); 7741 7742 return 0; 7743 } 7744 7745 static void setup_min_slab_ratio(void) 7746 { 7747 pg_data_t *pgdat; 7748 struct zone *zone; 7749 7750 for_each_online_pgdat(pgdat) 7751 pgdat->min_slab_pages = 0; 7752 7753 for_each_zone(zone) 7754 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7755 sysctl_min_slab_ratio) / 100; 7756 } 7757 7758 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7759 void __user *buffer, size_t *length, loff_t *ppos) 7760 { 7761 int rc; 7762 7763 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7764 if (rc) 7765 return rc; 7766 7767 setup_min_slab_ratio(); 7768 7769 return 0; 7770 } 7771 #endif 7772 7773 /* 7774 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7775 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7776 * whenever sysctl_lowmem_reserve_ratio changes. 7777 * 7778 * The reserve ratio obviously has absolutely no relation with the 7779 * minimum watermarks. The lowmem reserve ratio can only make sense 7780 * if in function of the boot time zone sizes. 7781 */ 7782 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7783 void __user *buffer, size_t *length, loff_t *ppos) 7784 { 7785 proc_dointvec_minmax(table, write, buffer, length, ppos); 7786 setup_per_zone_lowmem_reserve(); 7787 return 0; 7788 } 7789 7790 /* 7791 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7792 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7793 * pagelist can have before it gets flushed back to buddy allocator. 7794 */ 7795 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7796 void __user *buffer, size_t *length, loff_t *ppos) 7797 { 7798 struct zone *zone; 7799 int old_percpu_pagelist_fraction; 7800 int ret; 7801 7802 mutex_lock(&pcp_batch_high_lock); 7803 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7804 7805 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7806 if (!write || ret < 0) 7807 goto out; 7808 7809 /* Sanity checking to avoid pcp imbalance */ 7810 if (percpu_pagelist_fraction && 7811 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7812 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7813 ret = -EINVAL; 7814 goto out; 7815 } 7816 7817 /* No change? */ 7818 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7819 goto out; 7820 7821 for_each_populated_zone(zone) { 7822 unsigned int cpu; 7823 7824 for_each_possible_cpu(cpu) 7825 pageset_set_high_and_batch(zone, 7826 per_cpu_ptr(zone->pageset, cpu)); 7827 } 7828 out: 7829 mutex_unlock(&pcp_batch_high_lock); 7830 return ret; 7831 } 7832 7833 #ifdef CONFIG_NUMA 7834 int hashdist = HASHDIST_DEFAULT; 7835 7836 static int __init set_hashdist(char *str) 7837 { 7838 if (!str) 7839 return 0; 7840 hashdist = simple_strtoul(str, &str, 0); 7841 return 1; 7842 } 7843 __setup("hashdist=", set_hashdist); 7844 #endif 7845 7846 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7847 /* 7848 * Returns the number of pages that arch has reserved but 7849 * is not known to alloc_large_system_hash(). 7850 */ 7851 static unsigned long __init arch_reserved_kernel_pages(void) 7852 { 7853 return 0; 7854 } 7855 #endif 7856 7857 /* 7858 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7859 * machines. As memory size is increased the scale is also increased but at 7860 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7861 * quadruples the scale is increased by one, which means the size of hash table 7862 * only doubles, instead of quadrupling as well. 7863 * Because 32-bit systems cannot have large physical memory, where this scaling 7864 * makes sense, it is disabled on such platforms. 7865 */ 7866 #if __BITS_PER_LONG > 32 7867 #define ADAPT_SCALE_BASE (64ul << 30) 7868 #define ADAPT_SCALE_SHIFT 2 7869 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7870 #endif 7871 7872 /* 7873 * allocate a large system hash table from bootmem 7874 * - it is assumed that the hash table must contain an exact power-of-2 7875 * quantity of entries 7876 * - limit is the number of hash buckets, not the total allocation size 7877 */ 7878 void *__init alloc_large_system_hash(const char *tablename, 7879 unsigned long bucketsize, 7880 unsigned long numentries, 7881 int scale, 7882 int flags, 7883 unsigned int *_hash_shift, 7884 unsigned int *_hash_mask, 7885 unsigned long low_limit, 7886 unsigned long high_limit) 7887 { 7888 unsigned long long max = high_limit; 7889 unsigned long log2qty, size; 7890 void *table = NULL; 7891 gfp_t gfp_flags; 7892 7893 /* allow the kernel cmdline to have a say */ 7894 if (!numentries) { 7895 /* round applicable memory size up to nearest megabyte */ 7896 numentries = nr_kernel_pages; 7897 numentries -= arch_reserved_kernel_pages(); 7898 7899 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7900 if (PAGE_SHIFT < 20) 7901 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7902 7903 #if __BITS_PER_LONG > 32 7904 if (!high_limit) { 7905 unsigned long adapt; 7906 7907 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7908 adapt <<= ADAPT_SCALE_SHIFT) 7909 scale++; 7910 } 7911 #endif 7912 7913 /* limit to 1 bucket per 2^scale bytes of low memory */ 7914 if (scale > PAGE_SHIFT) 7915 numentries >>= (scale - PAGE_SHIFT); 7916 else 7917 numentries <<= (PAGE_SHIFT - scale); 7918 7919 /* Make sure we've got at least a 0-order allocation.. */ 7920 if (unlikely(flags & HASH_SMALL)) { 7921 /* Makes no sense without HASH_EARLY */ 7922 WARN_ON(!(flags & HASH_EARLY)); 7923 if (!(numentries >> *_hash_shift)) { 7924 numentries = 1UL << *_hash_shift; 7925 BUG_ON(!numentries); 7926 } 7927 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7928 numentries = PAGE_SIZE / bucketsize; 7929 } 7930 numentries = roundup_pow_of_two(numentries); 7931 7932 /* limit allocation size to 1/16 total memory by default */ 7933 if (max == 0) { 7934 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7935 do_div(max, bucketsize); 7936 } 7937 max = min(max, 0x80000000ULL); 7938 7939 if (numentries < low_limit) 7940 numentries = low_limit; 7941 if (numentries > max) 7942 numentries = max; 7943 7944 log2qty = ilog2(numentries); 7945 7946 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7947 do { 7948 size = bucketsize << log2qty; 7949 if (flags & HASH_EARLY) { 7950 if (flags & HASH_ZERO) 7951 table = memblock_alloc_nopanic(size, 7952 SMP_CACHE_BYTES); 7953 else 7954 table = memblock_alloc_raw(size, 7955 SMP_CACHE_BYTES); 7956 } else if (hashdist) { 7957 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7958 } else { 7959 /* 7960 * If bucketsize is not a power-of-two, we may free 7961 * some pages at the end of hash table which 7962 * alloc_pages_exact() automatically does 7963 */ 7964 if (get_order(size) < MAX_ORDER) { 7965 table = alloc_pages_exact(size, gfp_flags); 7966 kmemleak_alloc(table, size, 1, gfp_flags); 7967 } 7968 } 7969 } while (!table && size > PAGE_SIZE && --log2qty); 7970 7971 if (!table) 7972 panic("Failed to allocate %s hash table\n", tablename); 7973 7974 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7975 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7976 7977 if (_hash_shift) 7978 *_hash_shift = log2qty; 7979 if (_hash_mask) 7980 *_hash_mask = (1 << log2qty) - 1; 7981 7982 return table; 7983 } 7984 7985 /* 7986 * This function checks whether pageblock includes unmovable pages or not. 7987 * If @count is not zero, it is okay to include less @count unmovable pages 7988 * 7989 * PageLRU check without isolation or lru_lock could race so that 7990 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7991 * check without lock_page also may miss some movable non-lru pages at 7992 * race condition. So you can't expect this function should be exact. 7993 */ 7994 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7995 int migratetype, int flags) 7996 { 7997 unsigned long pfn, iter, found; 7998 7999 /* 8000 * TODO we could make this much more efficient by not checking every 8001 * page in the range if we know all of them are in MOVABLE_ZONE and 8002 * that the movable zone guarantees that pages are migratable but 8003 * the later is not the case right now unfortunatelly. E.g. movablecore 8004 * can still lead to having bootmem allocations in zone_movable. 8005 */ 8006 8007 /* 8008 * CMA allocations (alloc_contig_range) really need to mark isolate 8009 * CMA pageblocks even when they are not movable in fact so consider 8010 * them movable here. 8011 */ 8012 if (is_migrate_cma(migratetype) && 8013 is_migrate_cma(get_pageblock_migratetype(page))) 8014 return false; 8015 8016 pfn = page_to_pfn(page); 8017 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 8018 unsigned long check = pfn + iter; 8019 8020 if (!pfn_valid_within(check)) 8021 continue; 8022 8023 page = pfn_to_page(check); 8024 8025 if (PageReserved(page)) 8026 goto unmovable; 8027 8028 /* 8029 * If the zone is movable and we have ruled out all reserved 8030 * pages then it should be reasonably safe to assume the rest 8031 * is movable. 8032 */ 8033 if (zone_idx(zone) == ZONE_MOVABLE) 8034 continue; 8035 8036 /* 8037 * Hugepages are not in LRU lists, but they're movable. 8038 * We need not scan over tail pages because we don't 8039 * handle each tail page individually in migration. 8040 */ 8041 if (PageHuge(page)) { 8042 struct page *head = compound_head(page); 8043 unsigned int skip_pages; 8044 8045 if (!hugepage_migration_supported(page_hstate(head))) 8046 goto unmovable; 8047 8048 skip_pages = (1 << compound_order(head)) - (page - head); 8049 iter += skip_pages - 1; 8050 continue; 8051 } 8052 8053 /* 8054 * We can't use page_count without pin a page 8055 * because another CPU can free compound page. 8056 * This check already skips compound tails of THP 8057 * because their page->_refcount is zero at all time. 8058 */ 8059 if (!page_ref_count(page)) { 8060 if (PageBuddy(page)) 8061 iter += (1 << page_order(page)) - 1; 8062 continue; 8063 } 8064 8065 /* 8066 * The HWPoisoned page may be not in buddy system, and 8067 * page_count() is not 0. 8068 */ 8069 if ((flags & SKIP_HWPOISON) && PageHWPoison(page)) 8070 continue; 8071 8072 if (__PageMovable(page)) 8073 continue; 8074 8075 if (!PageLRU(page)) 8076 found++; 8077 /* 8078 * If there are RECLAIMABLE pages, we need to check 8079 * it. But now, memory offline itself doesn't call 8080 * shrink_node_slabs() and it still to be fixed. 8081 */ 8082 /* 8083 * If the page is not RAM, page_count()should be 0. 8084 * we don't need more check. This is an _used_ not-movable page. 8085 * 8086 * The problematic thing here is PG_reserved pages. PG_reserved 8087 * is set to both of a memory hole page and a _used_ kernel 8088 * page at boot. 8089 */ 8090 if (found > count) 8091 goto unmovable; 8092 } 8093 return false; 8094 unmovable: 8095 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 8096 if (flags & REPORT_FAILURE) 8097 dump_page(pfn_to_page(pfn+iter), "unmovable page"); 8098 return true; 8099 } 8100 8101 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 8102 8103 static unsigned long pfn_max_align_down(unsigned long pfn) 8104 { 8105 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8106 pageblock_nr_pages) - 1); 8107 } 8108 8109 static unsigned long pfn_max_align_up(unsigned long pfn) 8110 { 8111 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8112 pageblock_nr_pages)); 8113 } 8114 8115 /* [start, end) must belong to a single zone. */ 8116 static int __alloc_contig_migrate_range(struct compact_control *cc, 8117 unsigned long start, unsigned long end) 8118 { 8119 /* This function is based on compact_zone() from compaction.c. */ 8120 unsigned long nr_reclaimed; 8121 unsigned long pfn = start; 8122 unsigned int tries = 0; 8123 int ret = 0; 8124 8125 migrate_prep(); 8126 8127 while (pfn < end || !list_empty(&cc->migratepages)) { 8128 if (fatal_signal_pending(current)) { 8129 ret = -EINTR; 8130 break; 8131 } 8132 8133 if (list_empty(&cc->migratepages)) { 8134 cc->nr_migratepages = 0; 8135 pfn = isolate_migratepages_range(cc, pfn, end); 8136 if (!pfn) { 8137 ret = -EINTR; 8138 break; 8139 } 8140 tries = 0; 8141 } else if (++tries == 5) { 8142 ret = ret < 0 ? ret : -EBUSY; 8143 break; 8144 } 8145 8146 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8147 &cc->migratepages); 8148 cc->nr_migratepages -= nr_reclaimed; 8149 8150 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8151 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8152 } 8153 if (ret < 0) { 8154 putback_movable_pages(&cc->migratepages); 8155 return ret; 8156 } 8157 return 0; 8158 } 8159 8160 /** 8161 * alloc_contig_range() -- tries to allocate given range of pages 8162 * @start: start PFN to allocate 8163 * @end: one-past-the-last PFN to allocate 8164 * @migratetype: migratetype of the underlaying pageblocks (either 8165 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8166 * in range must have the same migratetype and it must 8167 * be either of the two. 8168 * @gfp_mask: GFP mask to use during compaction 8169 * 8170 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8171 * aligned. The PFN range must belong to a single zone. 8172 * 8173 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8174 * pageblocks in the range. Once isolated, the pageblocks should not 8175 * be modified by others. 8176 * 8177 * Returns zero on success or negative error code. On success all 8178 * pages which PFN is in [start, end) are allocated for the caller and 8179 * need to be freed with free_contig_range(). 8180 */ 8181 int alloc_contig_range(unsigned long start, unsigned long end, 8182 unsigned migratetype, gfp_t gfp_mask) 8183 { 8184 unsigned long outer_start, outer_end; 8185 unsigned int order; 8186 int ret = 0; 8187 8188 struct compact_control cc = { 8189 .nr_migratepages = 0, 8190 .order = -1, 8191 .zone = page_zone(pfn_to_page(start)), 8192 .mode = MIGRATE_SYNC, 8193 .ignore_skip_hint = true, 8194 .no_set_skip_hint = true, 8195 .gfp_mask = current_gfp_context(gfp_mask), 8196 }; 8197 INIT_LIST_HEAD(&cc.migratepages); 8198 8199 /* 8200 * What we do here is we mark all pageblocks in range as 8201 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8202 * have different sizes, and due to the way page allocator 8203 * work, we align the range to biggest of the two pages so 8204 * that page allocator won't try to merge buddies from 8205 * different pageblocks and change MIGRATE_ISOLATE to some 8206 * other migration type. 8207 * 8208 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8209 * migrate the pages from an unaligned range (ie. pages that 8210 * we are interested in). This will put all the pages in 8211 * range back to page allocator as MIGRATE_ISOLATE. 8212 * 8213 * When this is done, we take the pages in range from page 8214 * allocator removing them from the buddy system. This way 8215 * page allocator will never consider using them. 8216 * 8217 * This lets us mark the pageblocks back as 8218 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8219 * aligned range but not in the unaligned, original range are 8220 * put back to page allocator so that buddy can use them. 8221 */ 8222 8223 ret = start_isolate_page_range(pfn_max_align_down(start), 8224 pfn_max_align_up(end), migratetype, 0); 8225 if (ret) 8226 return ret; 8227 8228 /* 8229 * In case of -EBUSY, we'd like to know which page causes problem. 8230 * So, just fall through. test_pages_isolated() has a tracepoint 8231 * which will report the busy page. 8232 * 8233 * It is possible that busy pages could become available before 8234 * the call to test_pages_isolated, and the range will actually be 8235 * allocated. So, if we fall through be sure to clear ret so that 8236 * -EBUSY is not accidentally used or returned to caller. 8237 */ 8238 ret = __alloc_contig_migrate_range(&cc, start, end); 8239 if (ret && ret != -EBUSY) 8240 goto done; 8241 ret =0; 8242 8243 /* 8244 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8245 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8246 * more, all pages in [start, end) are free in page allocator. 8247 * What we are going to do is to allocate all pages from 8248 * [start, end) (that is remove them from page allocator). 8249 * 8250 * The only problem is that pages at the beginning and at the 8251 * end of interesting range may be not aligned with pages that 8252 * page allocator holds, ie. they can be part of higher order 8253 * pages. Because of this, we reserve the bigger range and 8254 * once this is done free the pages we are not interested in. 8255 * 8256 * We don't have to hold zone->lock here because the pages are 8257 * isolated thus they won't get removed from buddy. 8258 */ 8259 8260 lru_add_drain_all(); 8261 8262 order = 0; 8263 outer_start = start; 8264 while (!PageBuddy(pfn_to_page(outer_start))) { 8265 if (++order >= MAX_ORDER) { 8266 outer_start = start; 8267 break; 8268 } 8269 outer_start &= ~0UL << order; 8270 } 8271 8272 if (outer_start != start) { 8273 order = page_order(pfn_to_page(outer_start)); 8274 8275 /* 8276 * outer_start page could be small order buddy page and 8277 * it doesn't include start page. Adjust outer_start 8278 * in this case to report failed page properly 8279 * on tracepoint in test_pages_isolated() 8280 */ 8281 if (outer_start + (1UL << order) <= start) 8282 outer_start = start; 8283 } 8284 8285 /* Make sure the range is really isolated. */ 8286 if (test_pages_isolated(outer_start, end, false)) { 8287 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8288 __func__, outer_start, end); 8289 ret = -EBUSY; 8290 goto done; 8291 } 8292 8293 /* Grab isolated pages from freelists. */ 8294 outer_end = isolate_freepages_range(&cc, outer_start, end); 8295 if (!outer_end) { 8296 ret = -EBUSY; 8297 goto done; 8298 } 8299 8300 /* Free head and tail (if any) */ 8301 if (start != outer_start) 8302 free_contig_range(outer_start, start - outer_start); 8303 if (end != outer_end) 8304 free_contig_range(end, outer_end - end); 8305 8306 done: 8307 undo_isolate_page_range(pfn_max_align_down(start), 8308 pfn_max_align_up(end), migratetype); 8309 return ret; 8310 } 8311 8312 void free_contig_range(unsigned long pfn, unsigned nr_pages) 8313 { 8314 unsigned int count = 0; 8315 8316 for (; nr_pages--; pfn++) { 8317 struct page *page = pfn_to_page(pfn); 8318 8319 count += page_count(page) != 1; 8320 __free_page(page); 8321 } 8322 WARN(count != 0, "%d pages are still in use!\n", count); 8323 } 8324 #endif 8325 8326 #ifdef CONFIG_MEMORY_HOTPLUG 8327 /* 8328 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8329 * page high values need to be recalulated. 8330 */ 8331 void __meminit zone_pcp_update(struct zone *zone) 8332 { 8333 unsigned cpu; 8334 mutex_lock(&pcp_batch_high_lock); 8335 for_each_possible_cpu(cpu) 8336 pageset_set_high_and_batch(zone, 8337 per_cpu_ptr(zone->pageset, cpu)); 8338 mutex_unlock(&pcp_batch_high_lock); 8339 } 8340 #endif 8341 8342 void zone_pcp_reset(struct zone *zone) 8343 { 8344 unsigned long flags; 8345 int cpu; 8346 struct per_cpu_pageset *pset; 8347 8348 /* avoid races with drain_pages() */ 8349 local_irq_save(flags); 8350 if (zone->pageset != &boot_pageset) { 8351 for_each_online_cpu(cpu) { 8352 pset = per_cpu_ptr(zone->pageset, cpu); 8353 drain_zonestat(zone, pset); 8354 } 8355 free_percpu(zone->pageset); 8356 zone->pageset = &boot_pageset; 8357 } 8358 local_irq_restore(flags); 8359 } 8360 8361 #ifdef CONFIG_MEMORY_HOTREMOVE 8362 /* 8363 * All pages in the range must be in a single zone and isolated 8364 * before calling this. 8365 */ 8366 void 8367 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8368 { 8369 struct page *page; 8370 struct zone *zone; 8371 unsigned int order, i; 8372 unsigned long pfn; 8373 unsigned long flags; 8374 /* find the first valid pfn */ 8375 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8376 if (pfn_valid(pfn)) 8377 break; 8378 if (pfn == end_pfn) 8379 return; 8380 offline_mem_sections(pfn, end_pfn); 8381 zone = page_zone(pfn_to_page(pfn)); 8382 spin_lock_irqsave(&zone->lock, flags); 8383 pfn = start_pfn; 8384 while (pfn < end_pfn) { 8385 if (!pfn_valid(pfn)) { 8386 pfn++; 8387 continue; 8388 } 8389 page = pfn_to_page(pfn); 8390 /* 8391 * The HWPoisoned page may be not in buddy system, and 8392 * page_count() is not 0. 8393 */ 8394 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8395 pfn++; 8396 SetPageReserved(page); 8397 continue; 8398 } 8399 8400 BUG_ON(page_count(page)); 8401 BUG_ON(!PageBuddy(page)); 8402 order = page_order(page); 8403 #ifdef CONFIG_DEBUG_VM 8404 pr_info("remove from free list %lx %d %lx\n", 8405 pfn, 1 << order, end_pfn); 8406 #endif 8407 list_del(&page->lru); 8408 rmv_page_order(page); 8409 zone->free_area[order].nr_free--; 8410 for (i = 0; i < (1 << order); i++) 8411 SetPageReserved((page+i)); 8412 pfn += (1 << order); 8413 } 8414 spin_unlock_irqrestore(&zone->lock, flags); 8415 } 8416 #endif 8417 8418 bool is_free_buddy_page(struct page *page) 8419 { 8420 struct zone *zone = page_zone(page); 8421 unsigned long pfn = page_to_pfn(page); 8422 unsigned long flags; 8423 unsigned int order; 8424 8425 spin_lock_irqsave(&zone->lock, flags); 8426 for (order = 0; order < MAX_ORDER; order++) { 8427 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8428 8429 if (PageBuddy(page_head) && page_order(page_head) >= order) 8430 break; 8431 } 8432 spin_unlock_irqrestore(&zone->lock, flags); 8433 8434 return order < MAX_ORDER; 8435 } 8436 8437 #ifdef CONFIG_MEMORY_FAILURE 8438 /* 8439 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8440 * test is performed under the zone lock to prevent a race against page 8441 * allocation. 8442 */ 8443 bool set_hwpoison_free_buddy_page(struct page *page) 8444 { 8445 struct zone *zone = page_zone(page); 8446 unsigned long pfn = page_to_pfn(page); 8447 unsigned long flags; 8448 unsigned int order; 8449 bool hwpoisoned = false; 8450 8451 spin_lock_irqsave(&zone->lock, flags); 8452 for (order = 0; order < MAX_ORDER; order++) { 8453 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8454 8455 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8456 if (!TestSetPageHWPoison(page)) 8457 hwpoisoned = true; 8458 break; 8459 } 8460 } 8461 spin_unlock_irqrestore(&zone->lock, flags); 8462 8463 return hwpoisoned; 8464 } 8465 #endif 8466