xref: /linux/mm/page_alloc.c (revision 4fc4187984e5dbd7ad63c3acf0b228fa9bf298d3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static bool cond_accept_memory(struct zone *zone, unsigned int order);
290 static inline bool has_unaccepted_memory(void);
291 static bool __free_unaccepted(struct page *page);
292 
293 int page_group_by_mobility_disabled __read_mostly;
294 
295 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
296 /*
297  * During boot we initialize deferred pages on-demand, as needed, but once
298  * page_alloc_init_late() has finished, the deferred pages are all initialized,
299  * and we can permanently disable that path.
300  */
301 DEFINE_STATIC_KEY_TRUE(deferred_pages);
302 
303 static inline bool deferred_pages_enabled(void)
304 {
305 	return static_branch_unlikely(&deferred_pages);
306 }
307 
308 /*
309  * deferred_grow_zone() is __init, but it is called from
310  * get_page_from_freelist() during early boot until deferred_pages permanently
311  * disables this call. This is why we have refdata wrapper to avoid warning,
312  * and to ensure that the function body gets unloaded.
313  */
314 static bool __ref
315 _deferred_grow_zone(struct zone *zone, unsigned int order)
316 {
317 	return deferred_grow_zone(zone, order);
318 }
319 #else
320 static inline bool deferred_pages_enabled(void)
321 {
322 	return false;
323 }
324 
325 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
326 {
327 	return false;
328 }
329 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
330 
331 /* Return a pointer to the bitmap storing bits affecting a block of pages */
332 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
333 							unsigned long pfn)
334 {
335 #ifdef CONFIG_SPARSEMEM
336 	return section_to_usemap(__pfn_to_section(pfn));
337 #else
338 	return page_zone(page)->pageblock_flags;
339 #endif /* CONFIG_SPARSEMEM */
340 }
341 
342 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
343 {
344 #ifdef CONFIG_SPARSEMEM
345 	pfn &= (PAGES_PER_SECTION-1);
346 #else
347 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
348 #endif /* CONFIG_SPARSEMEM */
349 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
350 }
351 
352 /**
353  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
354  * @page: The page within the block of interest
355  * @pfn: The target page frame number
356  * @mask: mask of bits that the caller is interested in
357  *
358  * Return: pageblock_bits flags
359  */
360 unsigned long get_pfnblock_flags_mask(const struct page *page,
361 					unsigned long pfn, unsigned long mask)
362 {
363 	unsigned long *bitmap;
364 	unsigned long bitidx, word_bitidx;
365 	unsigned long word;
366 
367 	bitmap = get_pageblock_bitmap(page, pfn);
368 	bitidx = pfn_to_bitidx(page, pfn);
369 	word_bitidx = bitidx / BITS_PER_LONG;
370 	bitidx &= (BITS_PER_LONG-1);
371 	/*
372 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
373 	 * a consistent read of the memory array, so that results, even though
374 	 * racy, are not corrupted.
375 	 */
376 	word = READ_ONCE(bitmap[word_bitidx]);
377 	return (word >> bitidx) & mask;
378 }
379 
380 static __always_inline int get_pfnblock_migratetype(const struct page *page,
381 					unsigned long pfn)
382 {
383 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
384 }
385 
386 /**
387  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
388  * @page: The page within the block of interest
389  * @flags: The flags to set
390  * @pfn: The target page frame number
391  * @mask: mask of bits that the caller is interested in
392  */
393 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
394 					unsigned long pfn,
395 					unsigned long mask)
396 {
397 	unsigned long *bitmap;
398 	unsigned long bitidx, word_bitidx;
399 	unsigned long word;
400 
401 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
402 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
403 
404 	bitmap = get_pageblock_bitmap(page, pfn);
405 	bitidx = pfn_to_bitidx(page, pfn);
406 	word_bitidx = bitidx / BITS_PER_LONG;
407 	bitidx &= (BITS_PER_LONG-1);
408 
409 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
410 
411 	mask <<= bitidx;
412 	flags <<= bitidx;
413 
414 	word = READ_ONCE(bitmap[word_bitidx]);
415 	do {
416 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
417 }
418 
419 void set_pageblock_migratetype(struct page *page, int migratetype)
420 {
421 	if (unlikely(page_group_by_mobility_disabled &&
422 		     migratetype < MIGRATE_PCPTYPES))
423 		migratetype = MIGRATE_UNMOVABLE;
424 
425 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
426 				page_to_pfn(page), MIGRATETYPE_MASK);
427 }
428 
429 #ifdef CONFIG_DEBUG_VM
430 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
431 {
432 	int ret;
433 	unsigned seq;
434 	unsigned long pfn = page_to_pfn(page);
435 	unsigned long sp, start_pfn;
436 
437 	do {
438 		seq = zone_span_seqbegin(zone);
439 		start_pfn = zone->zone_start_pfn;
440 		sp = zone->spanned_pages;
441 		ret = !zone_spans_pfn(zone, pfn);
442 	} while (zone_span_seqretry(zone, seq));
443 
444 	if (ret)
445 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
446 			pfn, zone_to_nid(zone), zone->name,
447 			start_pfn, start_pfn + sp);
448 
449 	return ret;
450 }
451 
452 /*
453  * Temporary debugging check for pages not lying within a given zone.
454  */
455 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
456 {
457 	if (page_outside_zone_boundaries(zone, page))
458 		return true;
459 	if (zone != page_zone(page))
460 		return true;
461 
462 	return false;
463 }
464 #else
465 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
466 {
467 	return false;
468 }
469 #endif
470 
471 static void bad_page(struct page *page, const char *reason)
472 {
473 	static unsigned long resume;
474 	static unsigned long nr_shown;
475 	static unsigned long nr_unshown;
476 
477 	/*
478 	 * Allow a burst of 60 reports, then keep quiet for that minute;
479 	 * or allow a steady drip of one report per second.
480 	 */
481 	if (nr_shown == 60) {
482 		if (time_before(jiffies, resume)) {
483 			nr_unshown++;
484 			goto out;
485 		}
486 		if (nr_unshown) {
487 			pr_alert(
488 			      "BUG: Bad page state: %lu messages suppressed\n",
489 				nr_unshown);
490 			nr_unshown = 0;
491 		}
492 		nr_shown = 0;
493 	}
494 	if (nr_shown++ == 0)
495 		resume = jiffies + 60 * HZ;
496 
497 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
498 		current->comm, page_to_pfn(page));
499 	dump_page(page, reason);
500 
501 	print_modules();
502 	dump_stack();
503 out:
504 	/* Leave bad fields for debug, except PageBuddy could make trouble */
505 	if (PageBuddy(page))
506 		__ClearPageBuddy(page);
507 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
508 }
509 
510 static inline unsigned int order_to_pindex(int migratetype, int order)
511 {
512 	bool __maybe_unused movable;
513 
514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
515 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
516 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
517 
518 		movable = migratetype == MIGRATE_MOVABLE;
519 
520 		return NR_LOWORDER_PCP_LISTS + movable;
521 	}
522 #else
523 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
524 #endif
525 
526 	return (MIGRATE_PCPTYPES * order) + migratetype;
527 }
528 
529 static inline int pindex_to_order(unsigned int pindex)
530 {
531 	int order = pindex / MIGRATE_PCPTYPES;
532 
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 	if (pindex >= NR_LOWORDER_PCP_LISTS)
535 		order = HPAGE_PMD_ORDER;
536 #else
537 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
538 #endif
539 
540 	return order;
541 }
542 
543 static inline bool pcp_allowed_order(unsigned int order)
544 {
545 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
546 		return true;
547 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
548 	if (order == HPAGE_PMD_ORDER)
549 		return true;
550 #endif
551 	return false;
552 }
553 
554 /*
555  * Higher-order pages are called "compound pages".  They are structured thusly:
556  *
557  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
558  *
559  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
560  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
561  *
562  * The first tail page's ->compound_order holds the order of allocation.
563  * This usage means that zero-order pages may not be compound.
564  */
565 
566 void prep_compound_page(struct page *page, unsigned int order)
567 {
568 	int i;
569 	int nr_pages = 1 << order;
570 
571 	__SetPageHead(page);
572 	for (i = 1; i < nr_pages; i++)
573 		prep_compound_tail(page, i);
574 
575 	prep_compound_head(page, order);
576 }
577 
578 static inline void set_buddy_order(struct page *page, unsigned int order)
579 {
580 	set_page_private(page, order);
581 	__SetPageBuddy(page);
582 }
583 
584 #ifdef CONFIG_COMPACTION
585 static inline struct capture_control *task_capc(struct zone *zone)
586 {
587 	struct capture_control *capc = current->capture_control;
588 
589 	return unlikely(capc) &&
590 		!(current->flags & PF_KTHREAD) &&
591 		!capc->page &&
592 		capc->cc->zone == zone ? capc : NULL;
593 }
594 
595 static inline bool
596 compaction_capture(struct capture_control *capc, struct page *page,
597 		   int order, int migratetype)
598 {
599 	if (!capc || order != capc->cc->order)
600 		return false;
601 
602 	/* Do not accidentally pollute CMA or isolated regions*/
603 	if (is_migrate_cma(migratetype) ||
604 	    is_migrate_isolate(migratetype))
605 		return false;
606 
607 	/*
608 	 * Do not let lower order allocations pollute a movable pageblock
609 	 * unless compaction is also requesting movable pages.
610 	 * This might let an unmovable request use a reclaimable pageblock
611 	 * and vice-versa but no more than normal fallback logic which can
612 	 * have trouble finding a high-order free page.
613 	 */
614 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
615 	    capc->cc->migratetype != MIGRATE_MOVABLE)
616 		return false;
617 
618 	capc->page = page;
619 	return true;
620 }
621 
622 #else
623 static inline struct capture_control *task_capc(struct zone *zone)
624 {
625 	return NULL;
626 }
627 
628 static inline bool
629 compaction_capture(struct capture_control *capc, struct page *page,
630 		   int order, int migratetype)
631 {
632 	return false;
633 }
634 #endif /* CONFIG_COMPACTION */
635 
636 static inline void account_freepages(struct zone *zone, int nr_pages,
637 				     int migratetype)
638 {
639 	if (is_migrate_isolate(migratetype))
640 		return;
641 
642 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
643 
644 	if (is_migrate_cma(migratetype))
645 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
646 }
647 
648 /* Used for pages not on another list */
649 static inline void __add_to_free_list(struct page *page, struct zone *zone,
650 				      unsigned int order, int migratetype,
651 				      bool tail)
652 {
653 	struct free_area *area = &zone->free_area[order];
654 
655 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
656 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
657 		     get_pageblock_migratetype(page), migratetype, 1 << order);
658 
659 	if (tail)
660 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
661 	else
662 		list_add(&page->buddy_list, &area->free_list[migratetype]);
663 	area->nr_free++;
664 }
665 
666 /*
667  * Used for pages which are on another list. Move the pages to the tail
668  * of the list - so the moved pages won't immediately be considered for
669  * allocation again (e.g., optimization for memory onlining).
670  */
671 static inline void move_to_free_list(struct page *page, struct zone *zone,
672 				     unsigned int order, int old_mt, int new_mt)
673 {
674 	struct free_area *area = &zone->free_area[order];
675 
676 	/* Free page moving can fail, so it happens before the type update */
677 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
678 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
679 		     get_pageblock_migratetype(page), old_mt, 1 << order);
680 
681 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
682 
683 	account_freepages(zone, -(1 << order), old_mt);
684 	account_freepages(zone, 1 << order, new_mt);
685 }
686 
687 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
688 					     unsigned int order, int migratetype)
689 {
690         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
691 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
692 		     get_pageblock_migratetype(page), migratetype, 1 << order);
693 
694 	/* clear reported state and update reported page count */
695 	if (page_reported(page))
696 		__ClearPageReported(page);
697 
698 	list_del(&page->buddy_list);
699 	__ClearPageBuddy(page);
700 	set_page_private(page, 0);
701 	zone->free_area[order].nr_free--;
702 }
703 
704 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
705 					   unsigned int order, int migratetype)
706 {
707 	__del_page_from_free_list(page, zone, order, migratetype);
708 	account_freepages(zone, -(1 << order), migratetype);
709 }
710 
711 static inline struct page *get_page_from_free_area(struct free_area *area,
712 					    int migratetype)
713 {
714 	return list_first_entry_or_null(&area->free_list[migratetype],
715 					struct page, buddy_list);
716 }
717 
718 /*
719  * If this is less than the 2nd largest possible page, check if the buddy
720  * of the next-higher order is free. If it is, it's possible
721  * that pages are being freed that will coalesce soon. In case,
722  * that is happening, add the free page to the tail of the list
723  * so it's less likely to be used soon and more likely to be merged
724  * as a 2-level higher order page
725  */
726 static inline bool
727 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
728 		   struct page *page, unsigned int order)
729 {
730 	unsigned long higher_page_pfn;
731 	struct page *higher_page;
732 
733 	if (order >= MAX_PAGE_ORDER - 1)
734 		return false;
735 
736 	higher_page_pfn = buddy_pfn & pfn;
737 	higher_page = page + (higher_page_pfn - pfn);
738 
739 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
740 			NULL) != NULL;
741 }
742 
743 /*
744  * Freeing function for a buddy system allocator.
745  *
746  * The concept of a buddy system is to maintain direct-mapped table
747  * (containing bit values) for memory blocks of various "orders".
748  * The bottom level table contains the map for the smallest allocatable
749  * units of memory (here, pages), and each level above it describes
750  * pairs of units from the levels below, hence, "buddies".
751  * At a high level, all that happens here is marking the table entry
752  * at the bottom level available, and propagating the changes upward
753  * as necessary, plus some accounting needed to play nicely with other
754  * parts of the VM system.
755  * At each level, we keep a list of pages, which are heads of continuous
756  * free pages of length of (1 << order) and marked with PageBuddy.
757  * Page's order is recorded in page_private(page) field.
758  * So when we are allocating or freeing one, we can derive the state of the
759  * other.  That is, if we allocate a small block, and both were
760  * free, the remainder of the region must be split into blocks.
761  * If a block is freed, and its buddy is also free, then this
762  * triggers coalescing into a block of larger size.
763  *
764  * -- nyc
765  */
766 
767 static inline void __free_one_page(struct page *page,
768 		unsigned long pfn,
769 		struct zone *zone, unsigned int order,
770 		int migratetype, fpi_t fpi_flags)
771 {
772 	struct capture_control *capc = task_capc(zone);
773 	unsigned long buddy_pfn = 0;
774 	unsigned long combined_pfn;
775 	struct page *buddy;
776 	bool to_tail;
777 
778 	VM_BUG_ON(!zone_is_initialized(zone));
779 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
780 
781 	VM_BUG_ON(migratetype == -1);
782 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
783 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
784 
785 	account_freepages(zone, 1 << order, migratetype);
786 
787 	while (order < MAX_PAGE_ORDER) {
788 		int buddy_mt = migratetype;
789 
790 		if (compaction_capture(capc, page, order, migratetype)) {
791 			account_freepages(zone, -(1 << order), migratetype);
792 			return;
793 		}
794 
795 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
796 		if (!buddy)
797 			goto done_merging;
798 
799 		if (unlikely(order >= pageblock_order)) {
800 			/*
801 			 * We want to prevent merge between freepages on pageblock
802 			 * without fallbacks and normal pageblock. Without this,
803 			 * pageblock isolation could cause incorrect freepage or CMA
804 			 * accounting or HIGHATOMIC accounting.
805 			 */
806 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
807 
808 			if (migratetype != buddy_mt &&
809 			    (!migratetype_is_mergeable(migratetype) ||
810 			     !migratetype_is_mergeable(buddy_mt)))
811 				goto done_merging;
812 		}
813 
814 		/*
815 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
816 		 * merge with it and move up one order.
817 		 */
818 		if (page_is_guard(buddy))
819 			clear_page_guard(zone, buddy, order);
820 		else
821 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
822 
823 		if (unlikely(buddy_mt != migratetype)) {
824 			/*
825 			 * Match buddy type. This ensures that an
826 			 * expand() down the line puts the sub-blocks
827 			 * on the right freelists.
828 			 */
829 			set_pageblock_migratetype(buddy, migratetype);
830 		}
831 
832 		combined_pfn = buddy_pfn & pfn;
833 		page = page + (combined_pfn - pfn);
834 		pfn = combined_pfn;
835 		order++;
836 	}
837 
838 done_merging:
839 	set_buddy_order(page, order);
840 
841 	if (fpi_flags & FPI_TO_TAIL)
842 		to_tail = true;
843 	else if (is_shuffle_order(order))
844 		to_tail = shuffle_pick_tail();
845 	else
846 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
847 
848 	__add_to_free_list(page, zone, order, migratetype, to_tail);
849 
850 	/* Notify page reporting subsystem of freed page */
851 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
852 		page_reporting_notify_free(order);
853 }
854 
855 /*
856  * A bad page could be due to a number of fields. Instead of multiple branches,
857  * try and check multiple fields with one check. The caller must do a detailed
858  * check if necessary.
859  */
860 static inline bool page_expected_state(struct page *page,
861 					unsigned long check_flags)
862 {
863 	if (unlikely(atomic_read(&page->_mapcount) != -1))
864 		return false;
865 
866 	if (unlikely((unsigned long)page->mapping |
867 			page_ref_count(page) |
868 #ifdef CONFIG_MEMCG
869 			page->memcg_data |
870 #endif
871 #ifdef CONFIG_PAGE_POOL
872 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
873 #endif
874 			(page->flags & check_flags)))
875 		return false;
876 
877 	return true;
878 }
879 
880 static const char *page_bad_reason(struct page *page, unsigned long flags)
881 {
882 	const char *bad_reason = NULL;
883 
884 	if (unlikely(atomic_read(&page->_mapcount) != -1))
885 		bad_reason = "nonzero mapcount";
886 	if (unlikely(page->mapping != NULL))
887 		bad_reason = "non-NULL mapping";
888 	if (unlikely(page_ref_count(page) != 0))
889 		bad_reason = "nonzero _refcount";
890 	if (unlikely(page->flags & flags)) {
891 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
892 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
893 		else
894 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
895 	}
896 #ifdef CONFIG_MEMCG
897 	if (unlikely(page->memcg_data))
898 		bad_reason = "page still charged to cgroup";
899 #endif
900 #ifdef CONFIG_PAGE_POOL
901 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
902 		bad_reason = "page_pool leak";
903 #endif
904 	return bad_reason;
905 }
906 
907 static void free_page_is_bad_report(struct page *page)
908 {
909 	bad_page(page,
910 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
911 }
912 
913 static inline bool free_page_is_bad(struct page *page)
914 {
915 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
916 		return false;
917 
918 	/* Something has gone sideways, find it */
919 	free_page_is_bad_report(page);
920 	return true;
921 }
922 
923 static inline bool is_check_pages_enabled(void)
924 {
925 	return static_branch_unlikely(&check_pages_enabled);
926 }
927 
928 static int free_tail_page_prepare(struct page *head_page, struct page *page)
929 {
930 	struct folio *folio = (struct folio *)head_page;
931 	int ret = 1;
932 
933 	/*
934 	 * We rely page->lru.next never has bit 0 set, unless the page
935 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
936 	 */
937 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
938 
939 	if (!is_check_pages_enabled()) {
940 		ret = 0;
941 		goto out;
942 	}
943 	switch (page - head_page) {
944 	case 1:
945 		/* the first tail page: these may be in place of ->mapping */
946 		if (unlikely(folio_entire_mapcount(folio))) {
947 			bad_page(page, "nonzero entire_mapcount");
948 			goto out;
949 		}
950 		if (unlikely(folio_large_mapcount(folio))) {
951 			bad_page(page, "nonzero large_mapcount");
952 			goto out;
953 		}
954 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
955 			bad_page(page, "nonzero nr_pages_mapped");
956 			goto out;
957 		}
958 		if (unlikely(atomic_read(&folio->_pincount))) {
959 			bad_page(page, "nonzero pincount");
960 			goto out;
961 		}
962 		break;
963 	case 2:
964 		/* the second tail page: deferred_list overlaps ->mapping */
965 		if (unlikely(!list_empty(&folio->_deferred_list) &&
966 		    folio_test_partially_mapped(folio))) {
967 			bad_page(page, "partially mapped folio on deferred list");
968 			goto out;
969 		}
970 		break;
971 	default:
972 		if (page->mapping != TAIL_MAPPING) {
973 			bad_page(page, "corrupted mapping in tail page");
974 			goto out;
975 		}
976 		break;
977 	}
978 	if (unlikely(!PageTail(page))) {
979 		bad_page(page, "PageTail not set");
980 		goto out;
981 	}
982 	if (unlikely(compound_head(page) != head_page)) {
983 		bad_page(page, "compound_head not consistent");
984 		goto out;
985 	}
986 	ret = 0;
987 out:
988 	page->mapping = NULL;
989 	clear_compound_head(page);
990 	return ret;
991 }
992 
993 /*
994  * Skip KASAN memory poisoning when either:
995  *
996  * 1. For generic KASAN: deferred memory initialization has not yet completed.
997  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
998  *    using page tags instead (see below).
999  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1000  *    that error detection is disabled for accesses via the page address.
1001  *
1002  * Pages will have match-all tags in the following circumstances:
1003  *
1004  * 1. Pages are being initialized for the first time, including during deferred
1005  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1006  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1007  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1008  * 3. The allocation was excluded from being checked due to sampling,
1009  *    see the call to kasan_unpoison_pages.
1010  *
1011  * Poisoning pages during deferred memory init will greatly lengthen the
1012  * process and cause problem in large memory systems as the deferred pages
1013  * initialization is done with interrupt disabled.
1014  *
1015  * Assuming that there will be no reference to those newly initialized
1016  * pages before they are ever allocated, this should have no effect on
1017  * KASAN memory tracking as the poison will be properly inserted at page
1018  * allocation time. The only corner case is when pages are allocated by
1019  * on-demand allocation and then freed again before the deferred pages
1020  * initialization is done, but this is not likely to happen.
1021  */
1022 static inline bool should_skip_kasan_poison(struct page *page)
1023 {
1024 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1025 		return deferred_pages_enabled();
1026 
1027 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1028 }
1029 
1030 static void kernel_init_pages(struct page *page, int numpages)
1031 {
1032 	int i;
1033 
1034 	/* s390's use of memset() could override KASAN redzones. */
1035 	kasan_disable_current();
1036 	for (i = 0; i < numpages; i++)
1037 		clear_highpage_kasan_tagged(page + i);
1038 	kasan_enable_current();
1039 }
1040 
1041 __always_inline bool free_pages_prepare(struct page *page,
1042 			unsigned int order)
1043 {
1044 	int bad = 0;
1045 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1046 	bool init = want_init_on_free();
1047 	bool compound = PageCompound(page);
1048 
1049 	VM_BUG_ON_PAGE(PageTail(page), page);
1050 
1051 	trace_mm_page_free(page, order);
1052 	kmsan_free_page(page, order);
1053 
1054 	if (memcg_kmem_online() && PageMemcgKmem(page))
1055 		__memcg_kmem_uncharge_page(page, order);
1056 
1057 	if (unlikely(PageHWPoison(page)) && !order) {
1058 		/* Do not let hwpoison pages hit pcplists/buddy */
1059 		reset_page_owner(page, order);
1060 		page_table_check_free(page, order);
1061 		pgalloc_tag_sub(page, 1 << order);
1062 		return false;
1063 	}
1064 
1065 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1066 
1067 	/*
1068 	 * Check tail pages before head page information is cleared to
1069 	 * avoid checking PageCompound for order-0 pages.
1070 	 */
1071 	if (unlikely(order)) {
1072 		int i;
1073 
1074 		if (compound)
1075 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1076 		for (i = 1; i < (1 << order); i++) {
1077 			if (compound)
1078 				bad += free_tail_page_prepare(page, page + i);
1079 			if (is_check_pages_enabled()) {
1080 				if (free_page_is_bad(page + i)) {
1081 					bad++;
1082 					continue;
1083 				}
1084 			}
1085 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1086 		}
1087 	}
1088 	if (PageMappingFlags(page)) {
1089 		if (PageAnon(page))
1090 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1091 		page->mapping = NULL;
1092 	}
1093 	if (is_check_pages_enabled()) {
1094 		if (free_page_is_bad(page))
1095 			bad++;
1096 		if (bad)
1097 			return false;
1098 	}
1099 
1100 	page_cpupid_reset_last(page);
1101 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1102 	reset_page_owner(page, order);
1103 	page_table_check_free(page, order);
1104 	pgalloc_tag_sub(page, 1 << order);
1105 
1106 	if (!PageHighMem(page)) {
1107 		debug_check_no_locks_freed(page_address(page),
1108 					   PAGE_SIZE << order);
1109 		debug_check_no_obj_freed(page_address(page),
1110 					   PAGE_SIZE << order);
1111 	}
1112 
1113 	kernel_poison_pages(page, 1 << order);
1114 
1115 	/*
1116 	 * As memory initialization might be integrated into KASAN,
1117 	 * KASAN poisoning and memory initialization code must be
1118 	 * kept together to avoid discrepancies in behavior.
1119 	 *
1120 	 * With hardware tag-based KASAN, memory tags must be set before the
1121 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1122 	 */
1123 	if (!skip_kasan_poison) {
1124 		kasan_poison_pages(page, order, init);
1125 
1126 		/* Memory is already initialized if KASAN did it internally. */
1127 		if (kasan_has_integrated_init())
1128 			init = false;
1129 	}
1130 	if (init)
1131 		kernel_init_pages(page, 1 << order);
1132 
1133 	/*
1134 	 * arch_free_page() can make the page's contents inaccessible.  s390
1135 	 * does this.  So nothing which can access the page's contents should
1136 	 * happen after this.
1137 	 */
1138 	arch_free_page(page, order);
1139 
1140 	debug_pagealloc_unmap_pages(page, 1 << order);
1141 
1142 	return true;
1143 }
1144 
1145 /*
1146  * Frees a number of pages from the PCP lists
1147  * Assumes all pages on list are in same zone.
1148  * count is the number of pages to free.
1149  */
1150 static void free_pcppages_bulk(struct zone *zone, int count,
1151 					struct per_cpu_pages *pcp,
1152 					int pindex)
1153 {
1154 	unsigned long flags;
1155 	unsigned int order;
1156 	struct page *page;
1157 
1158 	/*
1159 	 * Ensure proper count is passed which otherwise would stuck in the
1160 	 * below while (list_empty(list)) loop.
1161 	 */
1162 	count = min(pcp->count, count);
1163 
1164 	/* Ensure requested pindex is drained first. */
1165 	pindex = pindex - 1;
1166 
1167 	spin_lock_irqsave(&zone->lock, flags);
1168 
1169 	while (count > 0) {
1170 		struct list_head *list;
1171 		int nr_pages;
1172 
1173 		/* Remove pages from lists in a round-robin fashion. */
1174 		do {
1175 			if (++pindex > NR_PCP_LISTS - 1)
1176 				pindex = 0;
1177 			list = &pcp->lists[pindex];
1178 		} while (list_empty(list));
1179 
1180 		order = pindex_to_order(pindex);
1181 		nr_pages = 1 << order;
1182 		do {
1183 			unsigned long pfn;
1184 			int mt;
1185 
1186 			page = list_last_entry(list, struct page, pcp_list);
1187 			pfn = page_to_pfn(page);
1188 			mt = get_pfnblock_migratetype(page, pfn);
1189 
1190 			/* must delete to avoid corrupting pcp list */
1191 			list_del(&page->pcp_list);
1192 			count -= nr_pages;
1193 			pcp->count -= nr_pages;
1194 
1195 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1196 			trace_mm_page_pcpu_drain(page, order, mt);
1197 		} while (count > 0 && !list_empty(list));
1198 	}
1199 
1200 	spin_unlock_irqrestore(&zone->lock, flags);
1201 }
1202 
1203 /* Split a multi-block free page into its individual pageblocks. */
1204 static void split_large_buddy(struct zone *zone, struct page *page,
1205 			      unsigned long pfn, int order, fpi_t fpi)
1206 {
1207 	unsigned long end = pfn + (1 << order);
1208 
1209 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1210 	/* Caller removed page from freelist, buddy info cleared! */
1211 	VM_WARN_ON_ONCE(PageBuddy(page));
1212 
1213 	if (order > pageblock_order)
1214 		order = pageblock_order;
1215 
1216 	while (pfn != end) {
1217 		int mt = get_pfnblock_migratetype(page, pfn);
1218 
1219 		__free_one_page(page, pfn, zone, order, mt, fpi);
1220 		pfn += 1 << order;
1221 		page = pfn_to_page(pfn);
1222 	}
1223 }
1224 
1225 static void free_one_page(struct zone *zone, struct page *page,
1226 			  unsigned long pfn, unsigned int order,
1227 			  fpi_t fpi_flags)
1228 {
1229 	unsigned long flags;
1230 
1231 	spin_lock_irqsave(&zone->lock, flags);
1232 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1233 	spin_unlock_irqrestore(&zone->lock, flags);
1234 }
1235 
1236 static void __free_pages_ok(struct page *page, unsigned int order,
1237 			    fpi_t fpi_flags)
1238 {
1239 	unsigned long pfn = page_to_pfn(page);
1240 	struct zone *zone = page_zone(page);
1241 
1242 	if (!free_pages_prepare(page, order))
1243 		return;
1244 
1245 	free_one_page(zone, page, pfn, order, fpi_flags);
1246 
1247 	__count_vm_events(PGFREE, 1 << order);
1248 }
1249 
1250 void __meminit __free_pages_core(struct page *page, unsigned int order,
1251 		enum meminit_context context)
1252 {
1253 	unsigned int nr_pages = 1 << order;
1254 	struct page *p = page;
1255 	unsigned int loop;
1256 
1257 	/*
1258 	 * When initializing the memmap, __init_single_page() sets the refcount
1259 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1260 	 * refcount of all involved pages to 0.
1261 	 *
1262 	 * Note that hotplugged memory pages are initialized to PageOffline().
1263 	 * Pages freed from memblock might be marked as reserved.
1264 	 */
1265 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1266 	    unlikely(context == MEMINIT_HOTPLUG)) {
1267 		for (loop = 0; loop < nr_pages; loop++, p++) {
1268 			VM_WARN_ON_ONCE(PageReserved(p));
1269 			__ClearPageOffline(p);
1270 			set_page_count(p, 0);
1271 		}
1272 
1273 		/*
1274 		 * Freeing the page with debug_pagealloc enabled will try to
1275 		 * unmap it; some archs don't like double-unmappings, so
1276 		 * map it first.
1277 		 */
1278 		debug_pagealloc_map_pages(page, nr_pages);
1279 		adjust_managed_page_count(page, nr_pages);
1280 	} else {
1281 		for (loop = 0; loop < nr_pages; loop++, p++) {
1282 			__ClearPageReserved(p);
1283 			set_page_count(p, 0);
1284 		}
1285 
1286 		/* memblock adjusts totalram_pages() manually. */
1287 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1288 	}
1289 
1290 	if (page_contains_unaccepted(page, order)) {
1291 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1292 			return;
1293 
1294 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1295 	}
1296 
1297 	/*
1298 	 * Bypass PCP and place fresh pages right to the tail, primarily
1299 	 * relevant for memory onlining.
1300 	 */
1301 	__free_pages_ok(page, order, FPI_TO_TAIL);
1302 }
1303 
1304 /*
1305  * Check that the whole (or subset of) a pageblock given by the interval of
1306  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1307  * with the migration of free compaction scanner.
1308  *
1309  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1310  *
1311  * It's possible on some configurations to have a setup like node0 node1 node0
1312  * i.e. it's possible that all pages within a zones range of pages do not
1313  * belong to a single zone. We assume that a border between node0 and node1
1314  * can occur within a single pageblock, but not a node0 node1 node0
1315  * interleaving within a single pageblock. It is therefore sufficient to check
1316  * the first and last page of a pageblock and avoid checking each individual
1317  * page in a pageblock.
1318  *
1319  * Note: the function may return non-NULL struct page even for a page block
1320  * which contains a memory hole (i.e. there is no physical memory for a subset
1321  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1322  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1323  * even though the start pfn is online and valid. This should be safe most of
1324  * the time because struct pages are still initialized via init_unavailable_range()
1325  * and pfn walkers shouldn't touch any physical memory range for which they do
1326  * not recognize any specific metadata in struct pages.
1327  */
1328 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1329 				     unsigned long end_pfn, struct zone *zone)
1330 {
1331 	struct page *start_page;
1332 	struct page *end_page;
1333 
1334 	/* end_pfn is one past the range we are checking */
1335 	end_pfn--;
1336 
1337 	if (!pfn_valid(end_pfn))
1338 		return NULL;
1339 
1340 	start_page = pfn_to_online_page(start_pfn);
1341 	if (!start_page)
1342 		return NULL;
1343 
1344 	if (page_zone(start_page) != zone)
1345 		return NULL;
1346 
1347 	end_page = pfn_to_page(end_pfn);
1348 
1349 	/* This gives a shorter code than deriving page_zone(end_page) */
1350 	if (page_zone_id(start_page) != page_zone_id(end_page))
1351 		return NULL;
1352 
1353 	return start_page;
1354 }
1355 
1356 /*
1357  * The order of subdivision here is critical for the IO subsystem.
1358  * Please do not alter this order without good reasons and regression
1359  * testing. Specifically, as large blocks of memory are subdivided,
1360  * the order in which smaller blocks are delivered depends on the order
1361  * they're subdivided in this function. This is the primary factor
1362  * influencing the order in which pages are delivered to the IO
1363  * subsystem according to empirical testing, and this is also justified
1364  * by considering the behavior of a buddy system containing a single
1365  * large block of memory acted on by a series of small allocations.
1366  * This behavior is a critical factor in sglist merging's success.
1367  *
1368  * -- nyc
1369  */
1370 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1371 				  int high, int migratetype)
1372 {
1373 	unsigned int size = 1 << high;
1374 	unsigned int nr_added = 0;
1375 
1376 	while (high > low) {
1377 		high--;
1378 		size >>= 1;
1379 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1380 
1381 		/*
1382 		 * Mark as guard pages (or page), that will allow to
1383 		 * merge back to allocator when buddy will be freed.
1384 		 * Corresponding page table entries will not be touched,
1385 		 * pages will stay not present in virtual address space
1386 		 */
1387 		if (set_page_guard(zone, &page[size], high))
1388 			continue;
1389 
1390 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1391 		set_buddy_order(&page[size], high);
1392 		nr_added += size;
1393 	}
1394 
1395 	return nr_added;
1396 }
1397 
1398 static __always_inline void page_del_and_expand(struct zone *zone,
1399 						struct page *page, int low,
1400 						int high, int migratetype)
1401 {
1402 	int nr_pages = 1 << high;
1403 
1404 	__del_page_from_free_list(page, zone, high, migratetype);
1405 	nr_pages -= expand(zone, page, low, high, migratetype);
1406 	account_freepages(zone, -nr_pages, migratetype);
1407 }
1408 
1409 static void check_new_page_bad(struct page *page)
1410 {
1411 	if (unlikely(page->flags & __PG_HWPOISON)) {
1412 		/* Don't complain about hwpoisoned pages */
1413 		if (PageBuddy(page))
1414 			__ClearPageBuddy(page);
1415 		return;
1416 	}
1417 
1418 	bad_page(page,
1419 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1420 }
1421 
1422 /*
1423  * This page is about to be returned from the page allocator
1424  */
1425 static bool check_new_page(struct page *page)
1426 {
1427 	if (likely(page_expected_state(page,
1428 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1429 		return false;
1430 
1431 	check_new_page_bad(page);
1432 	return true;
1433 }
1434 
1435 static inline bool check_new_pages(struct page *page, unsigned int order)
1436 {
1437 	if (is_check_pages_enabled()) {
1438 		for (int i = 0; i < (1 << order); i++) {
1439 			struct page *p = page + i;
1440 
1441 			if (check_new_page(p))
1442 				return true;
1443 		}
1444 	}
1445 
1446 	return false;
1447 }
1448 
1449 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1450 {
1451 	/* Don't skip if a software KASAN mode is enabled. */
1452 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1453 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1454 		return false;
1455 
1456 	/* Skip, if hardware tag-based KASAN is not enabled. */
1457 	if (!kasan_hw_tags_enabled())
1458 		return true;
1459 
1460 	/*
1461 	 * With hardware tag-based KASAN enabled, skip if this has been
1462 	 * requested via __GFP_SKIP_KASAN.
1463 	 */
1464 	return flags & __GFP_SKIP_KASAN;
1465 }
1466 
1467 static inline bool should_skip_init(gfp_t flags)
1468 {
1469 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1470 	if (!kasan_hw_tags_enabled())
1471 		return false;
1472 
1473 	/* For hardware tag-based KASAN, skip if requested. */
1474 	return (flags & __GFP_SKIP_ZERO);
1475 }
1476 
1477 inline void post_alloc_hook(struct page *page, unsigned int order,
1478 				gfp_t gfp_flags)
1479 {
1480 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1481 			!should_skip_init(gfp_flags);
1482 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1483 	int i;
1484 
1485 	set_page_private(page, 0);
1486 	set_page_refcounted(page);
1487 
1488 	arch_alloc_page(page, order);
1489 	debug_pagealloc_map_pages(page, 1 << order);
1490 
1491 	/*
1492 	 * Page unpoisoning must happen before memory initialization.
1493 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1494 	 * allocations and the page unpoisoning code will complain.
1495 	 */
1496 	kernel_unpoison_pages(page, 1 << order);
1497 
1498 	/*
1499 	 * As memory initialization might be integrated into KASAN,
1500 	 * KASAN unpoisoning and memory initializion code must be
1501 	 * kept together to avoid discrepancies in behavior.
1502 	 */
1503 
1504 	/*
1505 	 * If memory tags should be zeroed
1506 	 * (which happens only when memory should be initialized as well).
1507 	 */
1508 	if (zero_tags) {
1509 		/* Initialize both memory and memory tags. */
1510 		for (i = 0; i != 1 << order; ++i)
1511 			tag_clear_highpage(page + i);
1512 
1513 		/* Take note that memory was initialized by the loop above. */
1514 		init = false;
1515 	}
1516 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1517 	    kasan_unpoison_pages(page, order, init)) {
1518 		/* Take note that memory was initialized by KASAN. */
1519 		if (kasan_has_integrated_init())
1520 			init = false;
1521 	} else {
1522 		/*
1523 		 * If memory tags have not been set by KASAN, reset the page
1524 		 * tags to ensure page_address() dereferencing does not fault.
1525 		 */
1526 		for (i = 0; i != 1 << order; ++i)
1527 			page_kasan_tag_reset(page + i);
1528 	}
1529 	/* If memory is still not initialized, initialize it now. */
1530 	if (init)
1531 		kernel_init_pages(page, 1 << order);
1532 
1533 	set_page_owner(page, order, gfp_flags);
1534 	page_table_check_alloc(page, order);
1535 	pgalloc_tag_add(page, current, 1 << order);
1536 }
1537 
1538 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1539 							unsigned int alloc_flags)
1540 {
1541 	post_alloc_hook(page, order, gfp_flags);
1542 
1543 	if (order && (gfp_flags & __GFP_COMP))
1544 		prep_compound_page(page, order);
1545 
1546 	/*
1547 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1548 	 * allocate the page. The expectation is that the caller is taking
1549 	 * steps that will free more memory. The caller should avoid the page
1550 	 * being used for !PFMEMALLOC purposes.
1551 	 */
1552 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1553 		set_page_pfmemalloc(page);
1554 	else
1555 		clear_page_pfmemalloc(page);
1556 }
1557 
1558 /*
1559  * Go through the free lists for the given migratetype and remove
1560  * the smallest available page from the freelists
1561  */
1562 static __always_inline
1563 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1564 						int migratetype)
1565 {
1566 	unsigned int current_order;
1567 	struct free_area *area;
1568 	struct page *page;
1569 
1570 	/* Find a page of the appropriate size in the preferred list */
1571 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1572 		area = &(zone->free_area[current_order]);
1573 		page = get_page_from_free_area(area, migratetype);
1574 		if (!page)
1575 			continue;
1576 
1577 		page_del_and_expand(zone, page, order, current_order,
1578 				    migratetype);
1579 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1580 				pcp_allowed_order(order) &&
1581 				migratetype < MIGRATE_PCPTYPES);
1582 		return page;
1583 	}
1584 
1585 	return NULL;
1586 }
1587 
1588 
1589 /*
1590  * This array describes the order lists are fallen back to when
1591  * the free lists for the desirable migrate type are depleted
1592  *
1593  * The other migratetypes do not have fallbacks.
1594  */
1595 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1596 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1597 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1598 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1599 };
1600 
1601 #ifdef CONFIG_CMA
1602 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1603 					unsigned int order)
1604 {
1605 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1606 }
1607 #else
1608 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1609 					unsigned int order) { return NULL; }
1610 #endif
1611 
1612 /*
1613  * Change the type of a block and move all its free pages to that
1614  * type's freelist.
1615  */
1616 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1617 				  int old_mt, int new_mt)
1618 {
1619 	struct page *page;
1620 	unsigned long pfn, end_pfn;
1621 	unsigned int order;
1622 	int pages_moved = 0;
1623 
1624 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1625 	end_pfn = pageblock_end_pfn(start_pfn);
1626 
1627 	for (pfn = start_pfn; pfn < end_pfn;) {
1628 		page = pfn_to_page(pfn);
1629 		if (!PageBuddy(page)) {
1630 			pfn++;
1631 			continue;
1632 		}
1633 
1634 		/* Make sure we are not inadvertently changing nodes */
1635 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1636 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1637 
1638 		order = buddy_order(page);
1639 
1640 		move_to_free_list(page, zone, order, old_mt, new_mt);
1641 
1642 		pfn += 1 << order;
1643 		pages_moved += 1 << order;
1644 	}
1645 
1646 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1647 
1648 	return pages_moved;
1649 }
1650 
1651 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1652 				      unsigned long *start_pfn,
1653 				      int *num_free, int *num_movable)
1654 {
1655 	unsigned long pfn, start, end;
1656 
1657 	pfn = page_to_pfn(page);
1658 	start = pageblock_start_pfn(pfn);
1659 	end = pageblock_end_pfn(pfn);
1660 
1661 	/*
1662 	 * The caller only has the lock for @zone, don't touch ranges
1663 	 * that straddle into other zones. While we could move part of
1664 	 * the range that's inside the zone, this call is usually
1665 	 * accompanied by other operations such as migratetype updates
1666 	 * which also should be locked.
1667 	 */
1668 	if (!zone_spans_pfn(zone, start))
1669 		return false;
1670 	if (!zone_spans_pfn(zone, end - 1))
1671 		return false;
1672 
1673 	*start_pfn = start;
1674 
1675 	if (num_free) {
1676 		*num_free = 0;
1677 		*num_movable = 0;
1678 		for (pfn = start; pfn < end;) {
1679 			page = pfn_to_page(pfn);
1680 			if (PageBuddy(page)) {
1681 				int nr = 1 << buddy_order(page);
1682 
1683 				*num_free += nr;
1684 				pfn += nr;
1685 				continue;
1686 			}
1687 			/*
1688 			 * We assume that pages that could be isolated for
1689 			 * migration are movable. But we don't actually try
1690 			 * isolating, as that would be expensive.
1691 			 */
1692 			if (PageLRU(page) || __PageMovable(page))
1693 				(*num_movable)++;
1694 			pfn++;
1695 		}
1696 	}
1697 
1698 	return true;
1699 }
1700 
1701 static int move_freepages_block(struct zone *zone, struct page *page,
1702 				int old_mt, int new_mt)
1703 {
1704 	unsigned long start_pfn;
1705 
1706 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1707 		return -1;
1708 
1709 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1710 }
1711 
1712 #ifdef CONFIG_MEMORY_ISOLATION
1713 /* Look for a buddy that straddles start_pfn */
1714 static unsigned long find_large_buddy(unsigned long start_pfn)
1715 {
1716 	int order = 0;
1717 	struct page *page;
1718 	unsigned long pfn = start_pfn;
1719 
1720 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1721 		/* Nothing found */
1722 		if (++order > MAX_PAGE_ORDER)
1723 			return start_pfn;
1724 		pfn &= ~0UL << order;
1725 	}
1726 
1727 	/*
1728 	 * Found a preceding buddy, but does it straddle?
1729 	 */
1730 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1731 		return pfn;
1732 
1733 	/* Nothing found */
1734 	return start_pfn;
1735 }
1736 
1737 /**
1738  * move_freepages_block_isolate - move free pages in block for page isolation
1739  * @zone: the zone
1740  * @page: the pageblock page
1741  * @migratetype: migratetype to set on the pageblock
1742  *
1743  * This is similar to move_freepages_block(), but handles the special
1744  * case encountered in page isolation, where the block of interest
1745  * might be part of a larger buddy spanning multiple pageblocks.
1746  *
1747  * Unlike the regular page allocator path, which moves pages while
1748  * stealing buddies off the freelist, page isolation is interested in
1749  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1750  *
1751  * This function handles that. Straddling buddies are split into
1752  * individual pageblocks. Only the block of interest is moved.
1753  *
1754  * Returns %true if pages could be moved, %false otherwise.
1755  */
1756 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1757 				  int migratetype)
1758 {
1759 	unsigned long start_pfn, pfn;
1760 
1761 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1762 		return false;
1763 
1764 	/* No splits needed if buddies can't span multiple blocks */
1765 	if (pageblock_order == MAX_PAGE_ORDER)
1766 		goto move;
1767 
1768 	/* We're a tail block in a larger buddy */
1769 	pfn = find_large_buddy(start_pfn);
1770 	if (pfn != start_pfn) {
1771 		struct page *buddy = pfn_to_page(pfn);
1772 		int order = buddy_order(buddy);
1773 
1774 		del_page_from_free_list(buddy, zone, order,
1775 					get_pfnblock_migratetype(buddy, pfn));
1776 		set_pageblock_migratetype(page, migratetype);
1777 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1778 		return true;
1779 	}
1780 
1781 	/* We're the starting block of a larger buddy */
1782 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1783 		int order = buddy_order(page);
1784 
1785 		del_page_from_free_list(page, zone, order,
1786 					get_pfnblock_migratetype(page, pfn));
1787 		set_pageblock_migratetype(page, migratetype);
1788 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1789 		return true;
1790 	}
1791 move:
1792 	__move_freepages_block(zone, start_pfn,
1793 			       get_pfnblock_migratetype(page, start_pfn),
1794 			       migratetype);
1795 	return true;
1796 }
1797 #endif /* CONFIG_MEMORY_ISOLATION */
1798 
1799 static void change_pageblock_range(struct page *pageblock_page,
1800 					int start_order, int migratetype)
1801 {
1802 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1803 
1804 	while (nr_pageblocks--) {
1805 		set_pageblock_migratetype(pageblock_page, migratetype);
1806 		pageblock_page += pageblock_nr_pages;
1807 	}
1808 }
1809 
1810 /*
1811  * When we are falling back to another migratetype during allocation, try to
1812  * steal extra free pages from the same pageblocks to satisfy further
1813  * allocations, instead of polluting multiple pageblocks.
1814  *
1815  * If we are stealing a relatively large buddy page, it is likely there will
1816  * be more free pages in the pageblock, so try to steal them all. For
1817  * reclaimable and unmovable allocations, we steal regardless of page size,
1818  * as fragmentation caused by those allocations polluting movable pageblocks
1819  * is worse than movable allocations stealing from unmovable and reclaimable
1820  * pageblocks.
1821  */
1822 static bool can_steal_fallback(unsigned int order, int start_mt)
1823 {
1824 	/*
1825 	 * Leaving this order check is intended, although there is
1826 	 * relaxed order check in next check. The reason is that
1827 	 * we can actually steal whole pageblock if this condition met,
1828 	 * but, below check doesn't guarantee it and that is just heuristic
1829 	 * so could be changed anytime.
1830 	 */
1831 	if (order >= pageblock_order)
1832 		return true;
1833 
1834 	if (order >= pageblock_order / 2 ||
1835 		start_mt == MIGRATE_RECLAIMABLE ||
1836 		start_mt == MIGRATE_UNMOVABLE ||
1837 		page_group_by_mobility_disabled)
1838 		return true;
1839 
1840 	return false;
1841 }
1842 
1843 static inline bool boost_watermark(struct zone *zone)
1844 {
1845 	unsigned long max_boost;
1846 
1847 	if (!watermark_boost_factor)
1848 		return false;
1849 	/*
1850 	 * Don't bother in zones that are unlikely to produce results.
1851 	 * On small machines, including kdump capture kernels running
1852 	 * in a small area, boosting the watermark can cause an out of
1853 	 * memory situation immediately.
1854 	 */
1855 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1856 		return false;
1857 
1858 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1859 			watermark_boost_factor, 10000);
1860 
1861 	/*
1862 	 * high watermark may be uninitialised if fragmentation occurs
1863 	 * very early in boot so do not boost. We do not fall
1864 	 * through and boost by pageblock_nr_pages as failing
1865 	 * allocations that early means that reclaim is not going
1866 	 * to help and it may even be impossible to reclaim the
1867 	 * boosted watermark resulting in a hang.
1868 	 */
1869 	if (!max_boost)
1870 		return false;
1871 
1872 	max_boost = max(pageblock_nr_pages, max_boost);
1873 
1874 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1875 		max_boost);
1876 
1877 	return true;
1878 }
1879 
1880 /*
1881  * This function implements actual steal behaviour. If order is large enough, we
1882  * can claim the whole pageblock for the requested migratetype. If not, we check
1883  * the pageblock for constituent pages; if at least half of the pages are free
1884  * or compatible, we can still claim the whole block, so pages freed in the
1885  * future will be put on the correct free list. Otherwise, we isolate exactly
1886  * the order we need from the fallback block and leave its migratetype alone.
1887  */
1888 static struct page *
1889 steal_suitable_fallback(struct zone *zone, struct page *page,
1890 			int current_order, int order, int start_type,
1891 			unsigned int alloc_flags, bool whole_block)
1892 {
1893 	int free_pages, movable_pages, alike_pages;
1894 	unsigned long start_pfn;
1895 	int block_type;
1896 
1897 	block_type = get_pageblock_migratetype(page);
1898 
1899 	/*
1900 	 * This can happen due to races and we want to prevent broken
1901 	 * highatomic accounting.
1902 	 */
1903 	if (is_migrate_highatomic(block_type))
1904 		goto single_page;
1905 
1906 	/* Take ownership for orders >= pageblock_order */
1907 	if (current_order >= pageblock_order) {
1908 		unsigned int nr_added;
1909 
1910 		del_page_from_free_list(page, zone, current_order, block_type);
1911 		change_pageblock_range(page, current_order, start_type);
1912 		nr_added = expand(zone, page, order, current_order, start_type);
1913 		account_freepages(zone, nr_added, start_type);
1914 		return page;
1915 	}
1916 
1917 	/*
1918 	 * Boost watermarks to increase reclaim pressure to reduce the
1919 	 * likelihood of future fallbacks. Wake kswapd now as the node
1920 	 * may be balanced overall and kswapd will not wake naturally.
1921 	 */
1922 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1923 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1924 
1925 	/* We are not allowed to try stealing from the whole block */
1926 	if (!whole_block)
1927 		goto single_page;
1928 
1929 	/* moving whole block can fail due to zone boundary conditions */
1930 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1931 				       &movable_pages))
1932 		goto single_page;
1933 
1934 	/*
1935 	 * Determine how many pages are compatible with our allocation.
1936 	 * For movable allocation, it's the number of movable pages which
1937 	 * we just obtained. For other types it's a bit more tricky.
1938 	 */
1939 	if (start_type == MIGRATE_MOVABLE) {
1940 		alike_pages = movable_pages;
1941 	} else {
1942 		/*
1943 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1944 		 * to MOVABLE pageblock, consider all non-movable pages as
1945 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1946 		 * vice versa, be conservative since we can't distinguish the
1947 		 * exact migratetype of non-movable pages.
1948 		 */
1949 		if (block_type == MIGRATE_MOVABLE)
1950 			alike_pages = pageblock_nr_pages
1951 						- (free_pages + movable_pages);
1952 		else
1953 			alike_pages = 0;
1954 	}
1955 	/*
1956 	 * If a sufficient number of pages in the block are either free or of
1957 	 * compatible migratability as our allocation, claim the whole block.
1958 	 */
1959 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1960 			page_group_by_mobility_disabled) {
1961 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1962 		return __rmqueue_smallest(zone, order, start_type);
1963 	}
1964 
1965 single_page:
1966 	page_del_and_expand(zone, page, order, current_order, block_type);
1967 	return page;
1968 }
1969 
1970 /*
1971  * Check whether there is a suitable fallback freepage with requested order.
1972  * If only_stealable is true, this function returns fallback_mt only if
1973  * we can steal other freepages all together. This would help to reduce
1974  * fragmentation due to mixed migratetype pages in one pageblock.
1975  */
1976 int find_suitable_fallback(struct free_area *area, unsigned int order,
1977 			int migratetype, bool only_stealable, bool *can_steal)
1978 {
1979 	int i;
1980 	int fallback_mt;
1981 
1982 	if (area->nr_free == 0)
1983 		return -1;
1984 
1985 	*can_steal = false;
1986 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1987 		fallback_mt = fallbacks[migratetype][i];
1988 		if (free_area_empty(area, fallback_mt))
1989 			continue;
1990 
1991 		if (can_steal_fallback(order, migratetype))
1992 			*can_steal = true;
1993 
1994 		if (!only_stealable)
1995 			return fallback_mt;
1996 
1997 		if (*can_steal)
1998 			return fallback_mt;
1999 	}
2000 
2001 	return -1;
2002 }
2003 
2004 /*
2005  * Reserve the pageblock(s) surrounding an allocation request for
2006  * exclusive use of high-order atomic allocations if there are no
2007  * empty page blocks that contain a page with a suitable order
2008  */
2009 static void reserve_highatomic_pageblock(struct page *page, int order,
2010 					 struct zone *zone)
2011 {
2012 	int mt;
2013 	unsigned long max_managed, flags;
2014 
2015 	/*
2016 	 * The number reserved as: minimum is 1 pageblock, maximum is
2017 	 * roughly 1% of a zone. But if 1% of a zone falls below a
2018 	 * pageblock size, then don't reserve any pageblocks.
2019 	 * Check is race-prone but harmless.
2020 	 */
2021 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2022 		return;
2023 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2024 	if (zone->nr_reserved_highatomic >= max_managed)
2025 		return;
2026 
2027 	spin_lock_irqsave(&zone->lock, flags);
2028 
2029 	/* Recheck the nr_reserved_highatomic limit under the lock */
2030 	if (zone->nr_reserved_highatomic >= max_managed)
2031 		goto out_unlock;
2032 
2033 	/* Yoink! */
2034 	mt = get_pageblock_migratetype(page);
2035 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2036 	if (!migratetype_is_mergeable(mt))
2037 		goto out_unlock;
2038 
2039 	if (order < pageblock_order) {
2040 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2041 			goto out_unlock;
2042 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2043 	} else {
2044 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2045 		zone->nr_reserved_highatomic += 1 << order;
2046 	}
2047 
2048 out_unlock:
2049 	spin_unlock_irqrestore(&zone->lock, flags);
2050 }
2051 
2052 /*
2053  * Used when an allocation is about to fail under memory pressure. This
2054  * potentially hurts the reliability of high-order allocations when under
2055  * intense memory pressure but failed atomic allocations should be easier
2056  * to recover from than an OOM.
2057  *
2058  * If @force is true, try to unreserve pageblocks even though highatomic
2059  * pageblock is exhausted.
2060  */
2061 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2062 						bool force)
2063 {
2064 	struct zonelist *zonelist = ac->zonelist;
2065 	unsigned long flags;
2066 	struct zoneref *z;
2067 	struct zone *zone;
2068 	struct page *page;
2069 	int order;
2070 	int ret;
2071 
2072 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2073 								ac->nodemask) {
2074 		/*
2075 		 * Preserve at least one pageblock unless memory pressure
2076 		 * is really high.
2077 		 */
2078 		if (!force && zone->nr_reserved_highatomic <=
2079 					pageblock_nr_pages)
2080 			continue;
2081 
2082 		spin_lock_irqsave(&zone->lock, flags);
2083 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2084 			struct free_area *area = &(zone->free_area[order]);
2085 			int mt;
2086 
2087 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2088 			if (!page)
2089 				continue;
2090 
2091 			mt = get_pageblock_migratetype(page);
2092 			/*
2093 			 * In page freeing path, migratetype change is racy so
2094 			 * we can counter several free pages in a pageblock
2095 			 * in this loop although we changed the pageblock type
2096 			 * from highatomic to ac->migratetype. So we should
2097 			 * adjust the count once.
2098 			 */
2099 			if (is_migrate_highatomic(mt)) {
2100 				unsigned long size;
2101 				/*
2102 				 * It should never happen but changes to
2103 				 * locking could inadvertently allow a per-cpu
2104 				 * drain to add pages to MIGRATE_HIGHATOMIC
2105 				 * while unreserving so be safe and watch for
2106 				 * underflows.
2107 				 */
2108 				size = max(pageblock_nr_pages, 1UL << order);
2109 				size = min(size, zone->nr_reserved_highatomic);
2110 				zone->nr_reserved_highatomic -= size;
2111 			}
2112 
2113 			/*
2114 			 * Convert to ac->migratetype and avoid the normal
2115 			 * pageblock stealing heuristics. Minimally, the caller
2116 			 * is doing the work and needs the pages. More
2117 			 * importantly, if the block was always converted to
2118 			 * MIGRATE_UNMOVABLE or another type then the number
2119 			 * of pageblocks that cannot be completely freed
2120 			 * may increase.
2121 			 */
2122 			if (order < pageblock_order)
2123 				ret = move_freepages_block(zone, page, mt,
2124 							   ac->migratetype);
2125 			else {
2126 				move_to_free_list(page, zone, order, mt,
2127 						  ac->migratetype);
2128 				change_pageblock_range(page, order,
2129 						       ac->migratetype);
2130 				ret = 1;
2131 			}
2132 			/*
2133 			 * Reserving the block(s) already succeeded,
2134 			 * so this should not fail on zone boundaries.
2135 			 */
2136 			WARN_ON_ONCE(ret == -1);
2137 			if (ret > 0) {
2138 				spin_unlock_irqrestore(&zone->lock, flags);
2139 				return ret;
2140 			}
2141 		}
2142 		spin_unlock_irqrestore(&zone->lock, flags);
2143 	}
2144 
2145 	return false;
2146 }
2147 
2148 /*
2149  * Try finding a free buddy page on the fallback list and put it on the free
2150  * list of requested migratetype, possibly along with other pages from the same
2151  * block, depending on fragmentation avoidance heuristics. Returns true if
2152  * fallback was found so that __rmqueue_smallest() can grab it.
2153  *
2154  * The use of signed ints for order and current_order is a deliberate
2155  * deviation from the rest of this file, to make the for loop
2156  * condition simpler.
2157  */
2158 static __always_inline struct page *
2159 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2160 						unsigned int alloc_flags)
2161 {
2162 	struct free_area *area;
2163 	int current_order;
2164 	int min_order = order;
2165 	struct page *page;
2166 	int fallback_mt;
2167 	bool can_steal;
2168 
2169 	/*
2170 	 * Do not steal pages from freelists belonging to other pageblocks
2171 	 * i.e. orders < pageblock_order. If there are no local zones free,
2172 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2173 	 */
2174 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2175 		min_order = pageblock_order;
2176 
2177 	/*
2178 	 * Find the largest available free page in the other list. This roughly
2179 	 * approximates finding the pageblock with the most free pages, which
2180 	 * would be too costly to do exactly.
2181 	 */
2182 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2183 				--current_order) {
2184 		area = &(zone->free_area[current_order]);
2185 		fallback_mt = find_suitable_fallback(area, current_order,
2186 				start_migratetype, false, &can_steal);
2187 		if (fallback_mt == -1)
2188 			continue;
2189 
2190 		/*
2191 		 * We cannot steal all free pages from the pageblock and the
2192 		 * requested migratetype is movable. In that case it's better to
2193 		 * steal and split the smallest available page instead of the
2194 		 * largest available page, because even if the next movable
2195 		 * allocation falls back into a different pageblock than this
2196 		 * one, it won't cause permanent fragmentation.
2197 		 */
2198 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2199 					&& current_order > order)
2200 			goto find_smallest;
2201 
2202 		goto do_steal;
2203 	}
2204 
2205 	return NULL;
2206 
2207 find_smallest:
2208 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2209 		area = &(zone->free_area[current_order]);
2210 		fallback_mt = find_suitable_fallback(area, current_order,
2211 				start_migratetype, false, &can_steal);
2212 		if (fallback_mt != -1)
2213 			break;
2214 	}
2215 
2216 	/*
2217 	 * This should not happen - we already found a suitable fallback
2218 	 * when looking for the largest page.
2219 	 */
2220 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2221 
2222 do_steal:
2223 	page = get_page_from_free_area(area, fallback_mt);
2224 
2225 	/* take off list, maybe claim block, expand remainder */
2226 	page = steal_suitable_fallback(zone, page, current_order, order,
2227 				       start_migratetype, alloc_flags, can_steal);
2228 
2229 	trace_mm_page_alloc_extfrag(page, order, current_order,
2230 		start_migratetype, fallback_mt);
2231 
2232 	return page;
2233 }
2234 
2235 /*
2236  * Do the hard work of removing an element from the buddy allocator.
2237  * Call me with the zone->lock already held.
2238  */
2239 static __always_inline struct page *
2240 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2241 						unsigned int alloc_flags)
2242 {
2243 	struct page *page;
2244 
2245 	if (IS_ENABLED(CONFIG_CMA)) {
2246 		/*
2247 		 * Balance movable allocations between regular and CMA areas by
2248 		 * allocating from CMA when over half of the zone's free memory
2249 		 * is in the CMA area.
2250 		 */
2251 		if (alloc_flags & ALLOC_CMA &&
2252 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2253 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2254 			page = __rmqueue_cma_fallback(zone, order);
2255 			if (page)
2256 				return page;
2257 		}
2258 	}
2259 
2260 	page = __rmqueue_smallest(zone, order, migratetype);
2261 	if (unlikely(!page)) {
2262 		if (alloc_flags & ALLOC_CMA)
2263 			page = __rmqueue_cma_fallback(zone, order);
2264 
2265 		if (!page)
2266 			page = __rmqueue_fallback(zone, order, migratetype,
2267 						  alloc_flags);
2268 	}
2269 	return page;
2270 }
2271 
2272 /*
2273  * Obtain a specified number of elements from the buddy allocator, all under
2274  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2275  * Returns the number of new pages which were placed at *list.
2276  */
2277 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2278 			unsigned long count, struct list_head *list,
2279 			int migratetype, unsigned int alloc_flags)
2280 {
2281 	unsigned long flags;
2282 	int i;
2283 
2284 	spin_lock_irqsave(&zone->lock, flags);
2285 	for (i = 0; i < count; ++i) {
2286 		struct page *page = __rmqueue(zone, order, migratetype,
2287 								alloc_flags);
2288 		if (unlikely(page == NULL))
2289 			break;
2290 
2291 		/*
2292 		 * Split buddy pages returned by expand() are received here in
2293 		 * physical page order. The page is added to the tail of
2294 		 * caller's list. From the callers perspective, the linked list
2295 		 * is ordered by page number under some conditions. This is
2296 		 * useful for IO devices that can forward direction from the
2297 		 * head, thus also in the physical page order. This is useful
2298 		 * for IO devices that can merge IO requests if the physical
2299 		 * pages are ordered properly.
2300 		 */
2301 		list_add_tail(&page->pcp_list, list);
2302 	}
2303 	spin_unlock_irqrestore(&zone->lock, flags);
2304 
2305 	return i;
2306 }
2307 
2308 /*
2309  * Called from the vmstat counter updater to decay the PCP high.
2310  * Return whether there are addition works to do.
2311  */
2312 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2313 {
2314 	int high_min, to_drain, batch;
2315 	int todo = 0;
2316 
2317 	high_min = READ_ONCE(pcp->high_min);
2318 	batch = READ_ONCE(pcp->batch);
2319 	/*
2320 	 * Decrease pcp->high periodically to try to free possible
2321 	 * idle PCP pages.  And, avoid to free too many pages to
2322 	 * control latency.  This caps pcp->high decrement too.
2323 	 */
2324 	if (pcp->high > high_min) {
2325 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2326 				 pcp->high - (pcp->high >> 3), high_min);
2327 		if (pcp->high > high_min)
2328 			todo++;
2329 	}
2330 
2331 	to_drain = pcp->count - pcp->high;
2332 	if (to_drain > 0) {
2333 		spin_lock(&pcp->lock);
2334 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2335 		spin_unlock(&pcp->lock);
2336 		todo++;
2337 	}
2338 
2339 	return todo;
2340 }
2341 
2342 #ifdef CONFIG_NUMA
2343 /*
2344  * Called from the vmstat counter updater to drain pagesets of this
2345  * currently executing processor on remote nodes after they have
2346  * expired.
2347  */
2348 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2349 {
2350 	int to_drain, batch;
2351 
2352 	batch = READ_ONCE(pcp->batch);
2353 	to_drain = min(pcp->count, batch);
2354 	if (to_drain > 0) {
2355 		spin_lock(&pcp->lock);
2356 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2357 		spin_unlock(&pcp->lock);
2358 	}
2359 }
2360 #endif
2361 
2362 /*
2363  * Drain pcplists of the indicated processor and zone.
2364  */
2365 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2366 {
2367 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2368 	int count;
2369 
2370 	do {
2371 		spin_lock(&pcp->lock);
2372 		count = pcp->count;
2373 		if (count) {
2374 			int to_drain = min(count,
2375 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2376 
2377 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2378 			count -= to_drain;
2379 		}
2380 		spin_unlock(&pcp->lock);
2381 	} while (count);
2382 }
2383 
2384 /*
2385  * Drain pcplists of all zones on the indicated processor.
2386  */
2387 static void drain_pages(unsigned int cpu)
2388 {
2389 	struct zone *zone;
2390 
2391 	for_each_populated_zone(zone) {
2392 		drain_pages_zone(cpu, zone);
2393 	}
2394 }
2395 
2396 /*
2397  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2398  */
2399 void drain_local_pages(struct zone *zone)
2400 {
2401 	int cpu = smp_processor_id();
2402 
2403 	if (zone)
2404 		drain_pages_zone(cpu, zone);
2405 	else
2406 		drain_pages(cpu);
2407 }
2408 
2409 /*
2410  * The implementation of drain_all_pages(), exposing an extra parameter to
2411  * drain on all cpus.
2412  *
2413  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2414  * not empty. The check for non-emptiness can however race with a free to
2415  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2416  * that need the guarantee that every CPU has drained can disable the
2417  * optimizing racy check.
2418  */
2419 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2420 {
2421 	int cpu;
2422 
2423 	/*
2424 	 * Allocate in the BSS so we won't require allocation in
2425 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2426 	 */
2427 	static cpumask_t cpus_with_pcps;
2428 
2429 	/*
2430 	 * Do not drain if one is already in progress unless it's specific to
2431 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2432 	 * the drain to be complete when the call returns.
2433 	 */
2434 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2435 		if (!zone)
2436 			return;
2437 		mutex_lock(&pcpu_drain_mutex);
2438 	}
2439 
2440 	/*
2441 	 * We don't care about racing with CPU hotplug event
2442 	 * as offline notification will cause the notified
2443 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2444 	 * disables preemption as part of its processing
2445 	 */
2446 	for_each_online_cpu(cpu) {
2447 		struct per_cpu_pages *pcp;
2448 		struct zone *z;
2449 		bool has_pcps = false;
2450 
2451 		if (force_all_cpus) {
2452 			/*
2453 			 * The pcp.count check is racy, some callers need a
2454 			 * guarantee that no cpu is missed.
2455 			 */
2456 			has_pcps = true;
2457 		} else if (zone) {
2458 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2459 			if (pcp->count)
2460 				has_pcps = true;
2461 		} else {
2462 			for_each_populated_zone(z) {
2463 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2464 				if (pcp->count) {
2465 					has_pcps = true;
2466 					break;
2467 				}
2468 			}
2469 		}
2470 
2471 		if (has_pcps)
2472 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2473 		else
2474 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2475 	}
2476 
2477 	for_each_cpu(cpu, &cpus_with_pcps) {
2478 		if (zone)
2479 			drain_pages_zone(cpu, zone);
2480 		else
2481 			drain_pages(cpu);
2482 	}
2483 
2484 	mutex_unlock(&pcpu_drain_mutex);
2485 }
2486 
2487 /*
2488  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2489  *
2490  * When zone parameter is non-NULL, spill just the single zone's pages.
2491  */
2492 void drain_all_pages(struct zone *zone)
2493 {
2494 	__drain_all_pages(zone, false);
2495 }
2496 
2497 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2498 {
2499 	int min_nr_free, max_nr_free;
2500 
2501 	/* Free as much as possible if batch freeing high-order pages. */
2502 	if (unlikely(free_high))
2503 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2504 
2505 	/* Check for PCP disabled or boot pageset */
2506 	if (unlikely(high < batch))
2507 		return 1;
2508 
2509 	/* Leave at least pcp->batch pages on the list */
2510 	min_nr_free = batch;
2511 	max_nr_free = high - batch;
2512 
2513 	/*
2514 	 * Increase the batch number to the number of the consecutive
2515 	 * freed pages to reduce zone lock contention.
2516 	 */
2517 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2518 
2519 	return batch;
2520 }
2521 
2522 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2523 		       int batch, bool free_high)
2524 {
2525 	int high, high_min, high_max;
2526 
2527 	high_min = READ_ONCE(pcp->high_min);
2528 	high_max = READ_ONCE(pcp->high_max);
2529 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2530 
2531 	if (unlikely(!high))
2532 		return 0;
2533 
2534 	if (unlikely(free_high)) {
2535 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2536 				high_min);
2537 		return 0;
2538 	}
2539 
2540 	/*
2541 	 * If reclaim is active, limit the number of pages that can be
2542 	 * stored on pcp lists
2543 	 */
2544 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2545 		int free_count = max_t(int, pcp->free_count, batch);
2546 
2547 		pcp->high = max(high - free_count, high_min);
2548 		return min(batch << 2, pcp->high);
2549 	}
2550 
2551 	if (high_min == high_max)
2552 		return high;
2553 
2554 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2555 		int free_count = max_t(int, pcp->free_count, batch);
2556 
2557 		pcp->high = max(high - free_count, high_min);
2558 		high = max(pcp->count, high_min);
2559 	} else if (pcp->count >= high) {
2560 		int need_high = pcp->free_count + batch;
2561 
2562 		/* pcp->high should be large enough to hold batch freed pages */
2563 		if (pcp->high < need_high)
2564 			pcp->high = clamp(need_high, high_min, high_max);
2565 	}
2566 
2567 	return high;
2568 }
2569 
2570 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2571 				   struct page *page, int migratetype,
2572 				   unsigned int order)
2573 {
2574 	int high, batch;
2575 	int pindex;
2576 	bool free_high = false;
2577 
2578 	/*
2579 	 * On freeing, reduce the number of pages that are batch allocated.
2580 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2581 	 * allocations.
2582 	 */
2583 	pcp->alloc_factor >>= 1;
2584 	__count_vm_events(PGFREE, 1 << order);
2585 	pindex = order_to_pindex(migratetype, order);
2586 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2587 	pcp->count += 1 << order;
2588 
2589 	batch = READ_ONCE(pcp->batch);
2590 	/*
2591 	 * As high-order pages other than THP's stored on PCP can contribute
2592 	 * to fragmentation, limit the number stored when PCP is heavily
2593 	 * freeing without allocation. The remainder after bulk freeing
2594 	 * stops will be drained from vmstat refresh context.
2595 	 */
2596 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2597 		free_high = (pcp->free_count >= batch &&
2598 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2599 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2600 			      pcp->count >= READ_ONCE(batch)));
2601 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2602 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2603 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2604 	}
2605 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2606 		pcp->free_count += (1 << order);
2607 	high = nr_pcp_high(pcp, zone, batch, free_high);
2608 	if (pcp->count >= high) {
2609 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2610 				   pcp, pindex);
2611 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2612 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2613 				      ZONE_MOVABLE, 0))
2614 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2615 	}
2616 }
2617 
2618 /*
2619  * Free a pcp page
2620  */
2621 void free_unref_page(struct page *page, unsigned int order)
2622 {
2623 	unsigned long __maybe_unused UP_flags;
2624 	struct per_cpu_pages *pcp;
2625 	struct zone *zone;
2626 	unsigned long pfn = page_to_pfn(page);
2627 	int migratetype;
2628 
2629 	if (!pcp_allowed_order(order)) {
2630 		__free_pages_ok(page, order, FPI_NONE);
2631 		return;
2632 	}
2633 
2634 	if (!free_pages_prepare(page, order))
2635 		return;
2636 
2637 	/*
2638 	 * We only track unmovable, reclaimable and movable on pcp lists.
2639 	 * Place ISOLATE pages on the isolated list because they are being
2640 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2641 	 * get those areas back if necessary. Otherwise, we may have to free
2642 	 * excessively into the page allocator
2643 	 */
2644 	migratetype = get_pfnblock_migratetype(page, pfn);
2645 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2646 		if (unlikely(is_migrate_isolate(migratetype))) {
2647 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2648 			return;
2649 		}
2650 		migratetype = MIGRATE_MOVABLE;
2651 	}
2652 
2653 	zone = page_zone(page);
2654 	pcp_trylock_prepare(UP_flags);
2655 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2656 	if (pcp) {
2657 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2658 		pcp_spin_unlock(pcp);
2659 	} else {
2660 		free_one_page(zone, page, pfn, order, FPI_NONE);
2661 	}
2662 	pcp_trylock_finish(UP_flags);
2663 }
2664 
2665 /*
2666  * Free a batch of folios
2667  */
2668 void free_unref_folios(struct folio_batch *folios)
2669 {
2670 	unsigned long __maybe_unused UP_flags;
2671 	struct per_cpu_pages *pcp = NULL;
2672 	struct zone *locked_zone = NULL;
2673 	int i, j;
2674 
2675 	/* Prepare folios for freeing */
2676 	for (i = 0, j = 0; i < folios->nr; i++) {
2677 		struct folio *folio = folios->folios[i];
2678 		unsigned long pfn = folio_pfn(folio);
2679 		unsigned int order = folio_order(folio);
2680 
2681 		folio_undo_large_rmappable(folio);
2682 		if (!free_pages_prepare(&folio->page, order))
2683 			continue;
2684 		/*
2685 		 * Free orders not handled on the PCP directly to the
2686 		 * allocator.
2687 		 */
2688 		if (!pcp_allowed_order(order)) {
2689 			free_one_page(folio_zone(folio), &folio->page,
2690 				      pfn, order, FPI_NONE);
2691 			continue;
2692 		}
2693 		folio->private = (void *)(unsigned long)order;
2694 		if (j != i)
2695 			folios->folios[j] = folio;
2696 		j++;
2697 	}
2698 	folios->nr = j;
2699 
2700 	for (i = 0; i < folios->nr; i++) {
2701 		struct folio *folio = folios->folios[i];
2702 		struct zone *zone = folio_zone(folio);
2703 		unsigned long pfn = folio_pfn(folio);
2704 		unsigned int order = (unsigned long)folio->private;
2705 		int migratetype;
2706 
2707 		folio->private = NULL;
2708 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2709 
2710 		/* Different zone requires a different pcp lock */
2711 		if (zone != locked_zone ||
2712 		    is_migrate_isolate(migratetype)) {
2713 			if (pcp) {
2714 				pcp_spin_unlock(pcp);
2715 				pcp_trylock_finish(UP_flags);
2716 				locked_zone = NULL;
2717 				pcp = NULL;
2718 			}
2719 
2720 			/*
2721 			 * Free isolated pages directly to the
2722 			 * allocator, see comment in free_unref_page.
2723 			 */
2724 			if (is_migrate_isolate(migratetype)) {
2725 				free_one_page(zone, &folio->page, pfn,
2726 					      order, FPI_NONE);
2727 				continue;
2728 			}
2729 
2730 			/*
2731 			 * trylock is necessary as folios may be getting freed
2732 			 * from IRQ or SoftIRQ context after an IO completion.
2733 			 */
2734 			pcp_trylock_prepare(UP_flags);
2735 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2736 			if (unlikely(!pcp)) {
2737 				pcp_trylock_finish(UP_flags);
2738 				free_one_page(zone, &folio->page, pfn,
2739 					      order, FPI_NONE);
2740 				continue;
2741 			}
2742 			locked_zone = zone;
2743 		}
2744 
2745 		/*
2746 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2747 		 * to the MIGRATE_MOVABLE pcp list.
2748 		 */
2749 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2750 			migratetype = MIGRATE_MOVABLE;
2751 
2752 		trace_mm_page_free_batched(&folio->page);
2753 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2754 				order);
2755 	}
2756 
2757 	if (pcp) {
2758 		pcp_spin_unlock(pcp);
2759 		pcp_trylock_finish(UP_flags);
2760 	}
2761 	folio_batch_reinit(folios);
2762 }
2763 
2764 /*
2765  * split_page takes a non-compound higher-order page, and splits it into
2766  * n (1<<order) sub-pages: page[0..n]
2767  * Each sub-page must be freed individually.
2768  *
2769  * Note: this is probably too low level an operation for use in drivers.
2770  * Please consult with lkml before using this in your driver.
2771  */
2772 void split_page(struct page *page, unsigned int order)
2773 {
2774 	int i;
2775 
2776 	VM_BUG_ON_PAGE(PageCompound(page), page);
2777 	VM_BUG_ON_PAGE(!page_count(page), page);
2778 
2779 	for (i = 1; i < (1 << order); i++)
2780 		set_page_refcounted(page + i);
2781 	split_page_owner(page, order, 0);
2782 	pgalloc_tag_split(page, 1 << order);
2783 	split_page_memcg(page, order, 0);
2784 }
2785 EXPORT_SYMBOL_GPL(split_page);
2786 
2787 int __isolate_free_page(struct page *page, unsigned int order)
2788 {
2789 	struct zone *zone = page_zone(page);
2790 	int mt = get_pageblock_migratetype(page);
2791 
2792 	if (!is_migrate_isolate(mt)) {
2793 		unsigned long watermark;
2794 		/*
2795 		 * Obey watermarks as if the page was being allocated. We can
2796 		 * emulate a high-order watermark check with a raised order-0
2797 		 * watermark, because we already know our high-order page
2798 		 * exists.
2799 		 */
2800 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2801 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2802 			return 0;
2803 	}
2804 
2805 	del_page_from_free_list(page, zone, order, mt);
2806 
2807 	/*
2808 	 * Set the pageblock if the isolated page is at least half of a
2809 	 * pageblock
2810 	 */
2811 	if (order >= pageblock_order - 1) {
2812 		struct page *endpage = page + (1 << order) - 1;
2813 		for (; page < endpage; page += pageblock_nr_pages) {
2814 			int mt = get_pageblock_migratetype(page);
2815 			/*
2816 			 * Only change normal pageblocks (i.e., they can merge
2817 			 * with others)
2818 			 */
2819 			if (migratetype_is_mergeable(mt))
2820 				move_freepages_block(zone, page, mt,
2821 						     MIGRATE_MOVABLE);
2822 		}
2823 	}
2824 
2825 	return 1UL << order;
2826 }
2827 
2828 /**
2829  * __putback_isolated_page - Return a now-isolated page back where we got it
2830  * @page: Page that was isolated
2831  * @order: Order of the isolated page
2832  * @mt: The page's pageblock's migratetype
2833  *
2834  * This function is meant to return a page pulled from the free lists via
2835  * __isolate_free_page back to the free lists they were pulled from.
2836  */
2837 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2838 {
2839 	struct zone *zone = page_zone(page);
2840 
2841 	/* zone lock should be held when this function is called */
2842 	lockdep_assert_held(&zone->lock);
2843 
2844 	/* Return isolated page to tail of freelist. */
2845 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2846 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2847 }
2848 
2849 /*
2850  * Update NUMA hit/miss statistics
2851  */
2852 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2853 				   long nr_account)
2854 {
2855 #ifdef CONFIG_NUMA
2856 	enum numa_stat_item local_stat = NUMA_LOCAL;
2857 
2858 	/* skip numa counters update if numa stats is disabled */
2859 	if (!static_branch_likely(&vm_numa_stat_key))
2860 		return;
2861 
2862 	if (zone_to_nid(z) != numa_node_id())
2863 		local_stat = NUMA_OTHER;
2864 
2865 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2866 		__count_numa_events(z, NUMA_HIT, nr_account);
2867 	else {
2868 		__count_numa_events(z, NUMA_MISS, nr_account);
2869 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2870 	}
2871 	__count_numa_events(z, local_stat, nr_account);
2872 #endif
2873 }
2874 
2875 static __always_inline
2876 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2877 			   unsigned int order, unsigned int alloc_flags,
2878 			   int migratetype)
2879 {
2880 	struct page *page;
2881 	unsigned long flags;
2882 
2883 	do {
2884 		page = NULL;
2885 		spin_lock_irqsave(&zone->lock, flags);
2886 		if (alloc_flags & ALLOC_HIGHATOMIC)
2887 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2888 		if (!page) {
2889 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2890 
2891 			/*
2892 			 * If the allocation fails, allow OOM handling access
2893 			 * to HIGHATOMIC reserves as failing now is worse than
2894 			 * failing a high-order atomic allocation in the
2895 			 * future.
2896 			 */
2897 			if (!page && (alloc_flags & ALLOC_OOM))
2898 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2899 
2900 			if (!page) {
2901 				spin_unlock_irqrestore(&zone->lock, flags);
2902 				return NULL;
2903 			}
2904 		}
2905 		spin_unlock_irqrestore(&zone->lock, flags);
2906 	} while (check_new_pages(page, order));
2907 
2908 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2909 	zone_statistics(preferred_zone, zone, 1);
2910 
2911 	return page;
2912 }
2913 
2914 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2915 {
2916 	int high, base_batch, batch, max_nr_alloc;
2917 	int high_max, high_min;
2918 
2919 	base_batch = READ_ONCE(pcp->batch);
2920 	high_min = READ_ONCE(pcp->high_min);
2921 	high_max = READ_ONCE(pcp->high_max);
2922 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2923 
2924 	/* Check for PCP disabled or boot pageset */
2925 	if (unlikely(high < base_batch))
2926 		return 1;
2927 
2928 	if (order)
2929 		batch = base_batch;
2930 	else
2931 		batch = (base_batch << pcp->alloc_factor);
2932 
2933 	/*
2934 	 * If we had larger pcp->high, we could avoid to allocate from
2935 	 * zone.
2936 	 */
2937 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2938 		high = pcp->high = min(high + batch, high_max);
2939 
2940 	if (!order) {
2941 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2942 		/*
2943 		 * Double the number of pages allocated each time there is
2944 		 * subsequent allocation of order-0 pages without any freeing.
2945 		 */
2946 		if (batch <= max_nr_alloc &&
2947 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2948 			pcp->alloc_factor++;
2949 		batch = min(batch, max_nr_alloc);
2950 	}
2951 
2952 	/*
2953 	 * Scale batch relative to order if batch implies free pages
2954 	 * can be stored on the PCP. Batch can be 1 for small zones or
2955 	 * for boot pagesets which should never store free pages as
2956 	 * the pages may belong to arbitrary zones.
2957 	 */
2958 	if (batch > 1)
2959 		batch = max(batch >> order, 2);
2960 
2961 	return batch;
2962 }
2963 
2964 /* Remove page from the per-cpu list, caller must protect the list */
2965 static inline
2966 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2967 			int migratetype,
2968 			unsigned int alloc_flags,
2969 			struct per_cpu_pages *pcp,
2970 			struct list_head *list)
2971 {
2972 	struct page *page;
2973 
2974 	do {
2975 		if (list_empty(list)) {
2976 			int batch = nr_pcp_alloc(pcp, zone, order);
2977 			int alloced;
2978 
2979 			alloced = rmqueue_bulk(zone, order,
2980 					batch, list,
2981 					migratetype, alloc_flags);
2982 
2983 			pcp->count += alloced << order;
2984 			if (unlikely(list_empty(list)))
2985 				return NULL;
2986 		}
2987 
2988 		page = list_first_entry(list, struct page, pcp_list);
2989 		list_del(&page->pcp_list);
2990 		pcp->count -= 1 << order;
2991 	} while (check_new_pages(page, order));
2992 
2993 	return page;
2994 }
2995 
2996 /* Lock and remove page from the per-cpu list */
2997 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2998 			struct zone *zone, unsigned int order,
2999 			int migratetype, unsigned int alloc_flags)
3000 {
3001 	struct per_cpu_pages *pcp;
3002 	struct list_head *list;
3003 	struct page *page;
3004 	unsigned long __maybe_unused UP_flags;
3005 
3006 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3007 	pcp_trylock_prepare(UP_flags);
3008 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3009 	if (!pcp) {
3010 		pcp_trylock_finish(UP_flags);
3011 		return NULL;
3012 	}
3013 
3014 	/*
3015 	 * On allocation, reduce the number of pages that are batch freed.
3016 	 * See nr_pcp_free() where free_factor is increased for subsequent
3017 	 * frees.
3018 	 */
3019 	pcp->free_count >>= 1;
3020 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3021 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3022 	pcp_spin_unlock(pcp);
3023 	pcp_trylock_finish(UP_flags);
3024 	if (page) {
3025 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3026 		zone_statistics(preferred_zone, zone, 1);
3027 	}
3028 	return page;
3029 }
3030 
3031 /*
3032  * Allocate a page from the given zone.
3033  * Use pcplists for THP or "cheap" high-order allocations.
3034  */
3035 
3036 /*
3037  * Do not instrument rmqueue() with KMSAN. This function may call
3038  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3039  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3040  * may call rmqueue() again, which will result in a deadlock.
3041  */
3042 __no_sanitize_memory
3043 static inline
3044 struct page *rmqueue(struct zone *preferred_zone,
3045 			struct zone *zone, unsigned int order,
3046 			gfp_t gfp_flags, unsigned int alloc_flags,
3047 			int migratetype)
3048 {
3049 	struct page *page;
3050 
3051 	if (likely(pcp_allowed_order(order))) {
3052 		page = rmqueue_pcplist(preferred_zone, zone, order,
3053 				       migratetype, alloc_flags);
3054 		if (likely(page))
3055 			goto out;
3056 	}
3057 
3058 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3059 							migratetype);
3060 
3061 out:
3062 	/* Separate test+clear to avoid unnecessary atomics */
3063 	if ((alloc_flags & ALLOC_KSWAPD) &&
3064 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3065 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3066 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3067 	}
3068 
3069 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3070 	return page;
3071 }
3072 
3073 static inline long __zone_watermark_unusable_free(struct zone *z,
3074 				unsigned int order, unsigned int alloc_flags)
3075 {
3076 	long unusable_free = (1 << order) - 1;
3077 
3078 	/*
3079 	 * If the caller does not have rights to reserves below the min
3080 	 * watermark then subtract the high-atomic reserves. This will
3081 	 * over-estimate the size of the atomic reserve but it avoids a search.
3082 	 */
3083 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3084 		unusable_free += z->nr_reserved_highatomic;
3085 
3086 #ifdef CONFIG_CMA
3087 	/* If allocation can't use CMA areas don't use free CMA pages */
3088 	if (!(alloc_flags & ALLOC_CMA))
3089 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3090 #endif
3091 
3092 	return unusable_free;
3093 }
3094 
3095 /*
3096  * Return true if free base pages are above 'mark'. For high-order checks it
3097  * will return true of the order-0 watermark is reached and there is at least
3098  * one free page of a suitable size. Checking now avoids taking the zone lock
3099  * to check in the allocation paths if no pages are free.
3100  */
3101 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3102 			 int highest_zoneidx, unsigned int alloc_flags,
3103 			 long free_pages)
3104 {
3105 	long min = mark;
3106 	int o;
3107 
3108 	/* free_pages may go negative - that's OK */
3109 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3110 
3111 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3112 		/*
3113 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3114 		 * as OOM.
3115 		 */
3116 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3117 			min -= min / 2;
3118 
3119 			/*
3120 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3121 			 * access more reserves than just __GFP_HIGH. Other
3122 			 * non-blocking allocations requests such as GFP_NOWAIT
3123 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3124 			 * access to the min reserve.
3125 			 */
3126 			if (alloc_flags & ALLOC_NON_BLOCK)
3127 				min -= min / 4;
3128 		}
3129 
3130 		/*
3131 		 * OOM victims can try even harder than the normal reserve
3132 		 * users on the grounds that it's definitely going to be in
3133 		 * the exit path shortly and free memory. Any allocation it
3134 		 * makes during the free path will be small and short-lived.
3135 		 */
3136 		if (alloc_flags & ALLOC_OOM)
3137 			min -= min / 2;
3138 	}
3139 
3140 	/*
3141 	 * Check watermarks for an order-0 allocation request. If these
3142 	 * are not met, then a high-order request also cannot go ahead
3143 	 * even if a suitable page happened to be free.
3144 	 */
3145 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3146 		return false;
3147 
3148 	/* If this is an order-0 request then the watermark is fine */
3149 	if (!order)
3150 		return true;
3151 
3152 	/* For a high-order request, check at least one suitable page is free */
3153 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3154 		struct free_area *area = &z->free_area[o];
3155 		int mt;
3156 
3157 		if (!area->nr_free)
3158 			continue;
3159 
3160 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3161 			if (!free_area_empty(area, mt))
3162 				return true;
3163 		}
3164 
3165 #ifdef CONFIG_CMA
3166 		if ((alloc_flags & ALLOC_CMA) &&
3167 		    !free_area_empty(area, MIGRATE_CMA)) {
3168 			return true;
3169 		}
3170 #endif
3171 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3172 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3173 			return true;
3174 		}
3175 	}
3176 	return false;
3177 }
3178 
3179 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3180 		      int highest_zoneidx, unsigned int alloc_flags)
3181 {
3182 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3183 					zone_page_state(z, NR_FREE_PAGES));
3184 }
3185 
3186 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3187 				unsigned long mark, int highest_zoneidx,
3188 				unsigned int alloc_flags, gfp_t gfp_mask)
3189 {
3190 	long free_pages;
3191 
3192 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3193 
3194 	/*
3195 	 * Fast check for order-0 only. If this fails then the reserves
3196 	 * need to be calculated.
3197 	 */
3198 	if (!order) {
3199 		long usable_free;
3200 		long reserved;
3201 
3202 		usable_free = free_pages;
3203 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3204 
3205 		/* reserved may over estimate high-atomic reserves. */
3206 		usable_free -= min(usable_free, reserved);
3207 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3208 			return true;
3209 	}
3210 
3211 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3212 					free_pages))
3213 		return true;
3214 
3215 	/*
3216 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3217 	 * when checking the min watermark. The min watermark is the
3218 	 * point where boosting is ignored so that kswapd is woken up
3219 	 * when below the low watermark.
3220 	 */
3221 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3222 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3223 		mark = z->_watermark[WMARK_MIN];
3224 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3225 					alloc_flags, free_pages);
3226 	}
3227 
3228 	return false;
3229 }
3230 
3231 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3232 			unsigned long mark, int highest_zoneidx)
3233 {
3234 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3235 
3236 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3237 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3238 
3239 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3240 								free_pages);
3241 }
3242 
3243 #ifdef CONFIG_NUMA
3244 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3245 
3246 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3247 {
3248 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3249 				node_reclaim_distance;
3250 }
3251 #else	/* CONFIG_NUMA */
3252 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3253 {
3254 	return true;
3255 }
3256 #endif	/* CONFIG_NUMA */
3257 
3258 /*
3259  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3260  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3261  * premature use of a lower zone may cause lowmem pressure problems that
3262  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3263  * probably too small. It only makes sense to spread allocations to avoid
3264  * fragmentation between the Normal and DMA32 zones.
3265  */
3266 static inline unsigned int
3267 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3268 {
3269 	unsigned int alloc_flags;
3270 
3271 	/*
3272 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3273 	 * to save a branch.
3274 	 */
3275 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3276 
3277 #ifdef CONFIG_ZONE_DMA32
3278 	if (!zone)
3279 		return alloc_flags;
3280 
3281 	if (zone_idx(zone) != ZONE_NORMAL)
3282 		return alloc_flags;
3283 
3284 	/*
3285 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3286 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3287 	 * on UMA that if Normal is populated then so is DMA32.
3288 	 */
3289 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3290 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3291 		return alloc_flags;
3292 
3293 	alloc_flags |= ALLOC_NOFRAGMENT;
3294 #endif /* CONFIG_ZONE_DMA32 */
3295 	return alloc_flags;
3296 }
3297 
3298 /* Must be called after current_gfp_context() which can change gfp_mask */
3299 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3300 						  unsigned int alloc_flags)
3301 {
3302 #ifdef CONFIG_CMA
3303 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3304 		alloc_flags |= ALLOC_CMA;
3305 #endif
3306 	return alloc_flags;
3307 }
3308 
3309 /*
3310  * get_page_from_freelist goes through the zonelist trying to allocate
3311  * a page.
3312  */
3313 static struct page *
3314 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3315 						const struct alloc_context *ac)
3316 {
3317 	struct zoneref *z;
3318 	struct zone *zone;
3319 	struct pglist_data *last_pgdat = NULL;
3320 	bool last_pgdat_dirty_ok = false;
3321 	bool no_fallback;
3322 
3323 retry:
3324 	/*
3325 	 * Scan zonelist, looking for a zone with enough free.
3326 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3327 	 */
3328 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3329 	z = ac->preferred_zoneref;
3330 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3331 					ac->nodemask) {
3332 		struct page *page;
3333 		unsigned long mark;
3334 
3335 		if (cpusets_enabled() &&
3336 			(alloc_flags & ALLOC_CPUSET) &&
3337 			!__cpuset_zone_allowed(zone, gfp_mask))
3338 				continue;
3339 		/*
3340 		 * When allocating a page cache page for writing, we
3341 		 * want to get it from a node that is within its dirty
3342 		 * limit, such that no single node holds more than its
3343 		 * proportional share of globally allowed dirty pages.
3344 		 * The dirty limits take into account the node's
3345 		 * lowmem reserves and high watermark so that kswapd
3346 		 * should be able to balance it without having to
3347 		 * write pages from its LRU list.
3348 		 *
3349 		 * XXX: For now, allow allocations to potentially
3350 		 * exceed the per-node dirty limit in the slowpath
3351 		 * (spread_dirty_pages unset) before going into reclaim,
3352 		 * which is important when on a NUMA setup the allowed
3353 		 * nodes are together not big enough to reach the
3354 		 * global limit.  The proper fix for these situations
3355 		 * will require awareness of nodes in the
3356 		 * dirty-throttling and the flusher threads.
3357 		 */
3358 		if (ac->spread_dirty_pages) {
3359 			if (last_pgdat != zone->zone_pgdat) {
3360 				last_pgdat = zone->zone_pgdat;
3361 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3362 			}
3363 
3364 			if (!last_pgdat_dirty_ok)
3365 				continue;
3366 		}
3367 
3368 		if (no_fallback && nr_online_nodes > 1 &&
3369 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3370 			int local_nid;
3371 
3372 			/*
3373 			 * If moving to a remote node, retry but allow
3374 			 * fragmenting fallbacks. Locality is more important
3375 			 * than fragmentation avoidance.
3376 			 */
3377 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3378 			if (zone_to_nid(zone) != local_nid) {
3379 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3380 				goto retry;
3381 			}
3382 		}
3383 
3384 		cond_accept_memory(zone, order);
3385 
3386 		/*
3387 		 * Detect whether the number of free pages is below high
3388 		 * watermark.  If so, we will decrease pcp->high and free
3389 		 * PCP pages in free path to reduce the possibility of
3390 		 * premature page reclaiming.  Detection is done here to
3391 		 * avoid to do that in hotter free path.
3392 		 */
3393 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3394 			goto check_alloc_wmark;
3395 
3396 		mark = high_wmark_pages(zone);
3397 		if (zone_watermark_fast(zone, order, mark,
3398 					ac->highest_zoneidx, alloc_flags,
3399 					gfp_mask))
3400 			goto try_this_zone;
3401 		else
3402 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3403 
3404 check_alloc_wmark:
3405 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3406 		if (!zone_watermark_fast(zone, order, mark,
3407 				       ac->highest_zoneidx, alloc_flags,
3408 				       gfp_mask)) {
3409 			int ret;
3410 
3411 			if (cond_accept_memory(zone, order))
3412 				goto try_this_zone;
3413 
3414 			/*
3415 			 * Watermark failed for this zone, but see if we can
3416 			 * grow this zone if it contains deferred pages.
3417 			 */
3418 			if (deferred_pages_enabled()) {
3419 				if (_deferred_grow_zone(zone, order))
3420 					goto try_this_zone;
3421 			}
3422 			/* Checked here to keep the fast path fast */
3423 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3424 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3425 				goto try_this_zone;
3426 
3427 			if (!node_reclaim_enabled() ||
3428 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3429 				continue;
3430 
3431 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3432 			switch (ret) {
3433 			case NODE_RECLAIM_NOSCAN:
3434 				/* did not scan */
3435 				continue;
3436 			case NODE_RECLAIM_FULL:
3437 				/* scanned but unreclaimable */
3438 				continue;
3439 			default:
3440 				/* did we reclaim enough */
3441 				if (zone_watermark_ok(zone, order, mark,
3442 					ac->highest_zoneidx, alloc_flags))
3443 					goto try_this_zone;
3444 
3445 				continue;
3446 			}
3447 		}
3448 
3449 try_this_zone:
3450 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3451 				gfp_mask, alloc_flags, ac->migratetype);
3452 		if (page) {
3453 			prep_new_page(page, order, gfp_mask, alloc_flags);
3454 
3455 			/*
3456 			 * If this is a high-order atomic allocation then check
3457 			 * if the pageblock should be reserved for the future
3458 			 */
3459 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3460 				reserve_highatomic_pageblock(page, order, zone);
3461 
3462 			return page;
3463 		} else {
3464 			if (cond_accept_memory(zone, order))
3465 				goto try_this_zone;
3466 
3467 			/* Try again if zone has deferred pages */
3468 			if (deferred_pages_enabled()) {
3469 				if (_deferred_grow_zone(zone, order))
3470 					goto try_this_zone;
3471 			}
3472 		}
3473 	}
3474 
3475 	/*
3476 	 * It's possible on a UMA machine to get through all zones that are
3477 	 * fragmented. If avoiding fragmentation, reset and try again.
3478 	 */
3479 	if (no_fallback) {
3480 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3481 		goto retry;
3482 	}
3483 
3484 	return NULL;
3485 }
3486 
3487 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3488 {
3489 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3490 
3491 	/*
3492 	 * This documents exceptions given to allocations in certain
3493 	 * contexts that are allowed to allocate outside current's set
3494 	 * of allowed nodes.
3495 	 */
3496 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3497 		if (tsk_is_oom_victim(current) ||
3498 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3499 			filter &= ~SHOW_MEM_FILTER_NODES;
3500 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3501 		filter &= ~SHOW_MEM_FILTER_NODES;
3502 
3503 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3504 }
3505 
3506 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3507 {
3508 	struct va_format vaf;
3509 	va_list args;
3510 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3511 
3512 	if ((gfp_mask & __GFP_NOWARN) ||
3513 	     !__ratelimit(&nopage_rs) ||
3514 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3515 		return;
3516 
3517 	va_start(args, fmt);
3518 	vaf.fmt = fmt;
3519 	vaf.va = &args;
3520 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3521 			current->comm, &vaf, gfp_mask, &gfp_mask,
3522 			nodemask_pr_args(nodemask));
3523 	va_end(args);
3524 
3525 	cpuset_print_current_mems_allowed();
3526 	pr_cont("\n");
3527 	dump_stack();
3528 	warn_alloc_show_mem(gfp_mask, nodemask);
3529 }
3530 
3531 static inline struct page *
3532 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3533 			      unsigned int alloc_flags,
3534 			      const struct alloc_context *ac)
3535 {
3536 	struct page *page;
3537 
3538 	page = get_page_from_freelist(gfp_mask, order,
3539 			alloc_flags|ALLOC_CPUSET, ac);
3540 	/*
3541 	 * fallback to ignore cpuset restriction if our nodes
3542 	 * are depleted
3543 	 */
3544 	if (!page)
3545 		page = get_page_from_freelist(gfp_mask, order,
3546 				alloc_flags, ac);
3547 
3548 	return page;
3549 }
3550 
3551 static inline struct page *
3552 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3553 	const struct alloc_context *ac, unsigned long *did_some_progress)
3554 {
3555 	struct oom_control oc = {
3556 		.zonelist = ac->zonelist,
3557 		.nodemask = ac->nodemask,
3558 		.memcg = NULL,
3559 		.gfp_mask = gfp_mask,
3560 		.order = order,
3561 	};
3562 	struct page *page;
3563 
3564 	*did_some_progress = 0;
3565 
3566 	/*
3567 	 * Acquire the oom lock.  If that fails, somebody else is
3568 	 * making progress for us.
3569 	 */
3570 	if (!mutex_trylock(&oom_lock)) {
3571 		*did_some_progress = 1;
3572 		schedule_timeout_uninterruptible(1);
3573 		return NULL;
3574 	}
3575 
3576 	/*
3577 	 * Go through the zonelist yet one more time, keep very high watermark
3578 	 * here, this is only to catch a parallel oom killing, we must fail if
3579 	 * we're still under heavy pressure. But make sure that this reclaim
3580 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3581 	 * allocation which will never fail due to oom_lock already held.
3582 	 */
3583 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3584 				      ~__GFP_DIRECT_RECLAIM, order,
3585 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3586 	if (page)
3587 		goto out;
3588 
3589 	/* Coredumps can quickly deplete all memory reserves */
3590 	if (current->flags & PF_DUMPCORE)
3591 		goto out;
3592 	/* The OOM killer will not help higher order allocs */
3593 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3594 		goto out;
3595 	/*
3596 	 * We have already exhausted all our reclaim opportunities without any
3597 	 * success so it is time to admit defeat. We will skip the OOM killer
3598 	 * because it is very likely that the caller has a more reasonable
3599 	 * fallback than shooting a random task.
3600 	 *
3601 	 * The OOM killer may not free memory on a specific node.
3602 	 */
3603 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3604 		goto out;
3605 	/* The OOM killer does not needlessly kill tasks for lowmem */
3606 	if (ac->highest_zoneidx < ZONE_NORMAL)
3607 		goto out;
3608 	if (pm_suspended_storage())
3609 		goto out;
3610 	/*
3611 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3612 	 * other request to make a forward progress.
3613 	 * We are in an unfortunate situation where out_of_memory cannot
3614 	 * do much for this context but let's try it to at least get
3615 	 * access to memory reserved if the current task is killed (see
3616 	 * out_of_memory). Once filesystems are ready to handle allocation
3617 	 * failures more gracefully we should just bail out here.
3618 	 */
3619 
3620 	/* Exhausted what can be done so it's blame time */
3621 	if (out_of_memory(&oc) ||
3622 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3623 		*did_some_progress = 1;
3624 
3625 		/*
3626 		 * Help non-failing allocations by giving them access to memory
3627 		 * reserves
3628 		 */
3629 		if (gfp_mask & __GFP_NOFAIL)
3630 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3631 					ALLOC_NO_WATERMARKS, ac);
3632 	}
3633 out:
3634 	mutex_unlock(&oom_lock);
3635 	return page;
3636 }
3637 
3638 /*
3639  * Maximum number of compaction retries with a progress before OOM
3640  * killer is consider as the only way to move forward.
3641  */
3642 #define MAX_COMPACT_RETRIES 16
3643 
3644 #ifdef CONFIG_COMPACTION
3645 /* Try memory compaction for high-order allocations before reclaim */
3646 static struct page *
3647 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3648 		unsigned int alloc_flags, const struct alloc_context *ac,
3649 		enum compact_priority prio, enum compact_result *compact_result)
3650 {
3651 	struct page *page = NULL;
3652 	unsigned long pflags;
3653 	unsigned int noreclaim_flag;
3654 
3655 	if (!order)
3656 		return NULL;
3657 
3658 	psi_memstall_enter(&pflags);
3659 	delayacct_compact_start();
3660 	noreclaim_flag = memalloc_noreclaim_save();
3661 
3662 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3663 								prio, &page);
3664 
3665 	memalloc_noreclaim_restore(noreclaim_flag);
3666 	psi_memstall_leave(&pflags);
3667 	delayacct_compact_end();
3668 
3669 	if (*compact_result == COMPACT_SKIPPED)
3670 		return NULL;
3671 	/*
3672 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3673 	 * count a compaction stall
3674 	 */
3675 	count_vm_event(COMPACTSTALL);
3676 
3677 	/* Prep a captured page if available */
3678 	if (page)
3679 		prep_new_page(page, order, gfp_mask, alloc_flags);
3680 
3681 	/* Try get a page from the freelist if available */
3682 	if (!page)
3683 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3684 
3685 	if (page) {
3686 		struct zone *zone = page_zone(page);
3687 
3688 		zone->compact_blockskip_flush = false;
3689 		compaction_defer_reset(zone, order, true);
3690 		count_vm_event(COMPACTSUCCESS);
3691 		return page;
3692 	}
3693 
3694 	/*
3695 	 * It's bad if compaction run occurs and fails. The most likely reason
3696 	 * is that pages exist, but not enough to satisfy watermarks.
3697 	 */
3698 	count_vm_event(COMPACTFAIL);
3699 
3700 	cond_resched();
3701 
3702 	return NULL;
3703 }
3704 
3705 static inline bool
3706 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3707 		     enum compact_result compact_result,
3708 		     enum compact_priority *compact_priority,
3709 		     int *compaction_retries)
3710 {
3711 	int max_retries = MAX_COMPACT_RETRIES;
3712 	int min_priority;
3713 	bool ret = false;
3714 	int retries = *compaction_retries;
3715 	enum compact_priority priority = *compact_priority;
3716 
3717 	if (!order)
3718 		return false;
3719 
3720 	if (fatal_signal_pending(current))
3721 		return false;
3722 
3723 	/*
3724 	 * Compaction was skipped due to a lack of free order-0
3725 	 * migration targets. Continue if reclaim can help.
3726 	 */
3727 	if (compact_result == COMPACT_SKIPPED) {
3728 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3729 		goto out;
3730 	}
3731 
3732 	/*
3733 	 * Compaction managed to coalesce some page blocks, but the
3734 	 * allocation failed presumably due to a race. Retry some.
3735 	 */
3736 	if (compact_result == COMPACT_SUCCESS) {
3737 		/*
3738 		 * !costly requests are much more important than
3739 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3740 		 * facto nofail and invoke OOM killer to move on while
3741 		 * costly can fail and users are ready to cope with
3742 		 * that. 1/4 retries is rather arbitrary but we would
3743 		 * need much more detailed feedback from compaction to
3744 		 * make a better decision.
3745 		 */
3746 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3747 			max_retries /= 4;
3748 
3749 		if (++(*compaction_retries) <= max_retries) {
3750 			ret = true;
3751 			goto out;
3752 		}
3753 	}
3754 
3755 	/*
3756 	 * Compaction failed. Retry with increasing priority.
3757 	 */
3758 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3759 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3760 
3761 	if (*compact_priority > min_priority) {
3762 		(*compact_priority)--;
3763 		*compaction_retries = 0;
3764 		ret = true;
3765 	}
3766 out:
3767 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3768 	return ret;
3769 }
3770 #else
3771 static inline struct page *
3772 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3773 		unsigned int alloc_flags, const struct alloc_context *ac,
3774 		enum compact_priority prio, enum compact_result *compact_result)
3775 {
3776 	*compact_result = COMPACT_SKIPPED;
3777 	return NULL;
3778 }
3779 
3780 static inline bool
3781 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3782 		     enum compact_result compact_result,
3783 		     enum compact_priority *compact_priority,
3784 		     int *compaction_retries)
3785 {
3786 	struct zone *zone;
3787 	struct zoneref *z;
3788 
3789 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3790 		return false;
3791 
3792 	/*
3793 	 * There are setups with compaction disabled which would prefer to loop
3794 	 * inside the allocator rather than hit the oom killer prematurely.
3795 	 * Let's give them a good hope and keep retrying while the order-0
3796 	 * watermarks are OK.
3797 	 */
3798 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3799 				ac->highest_zoneidx, ac->nodemask) {
3800 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3801 					ac->highest_zoneidx, alloc_flags))
3802 			return true;
3803 	}
3804 	return false;
3805 }
3806 #endif /* CONFIG_COMPACTION */
3807 
3808 #ifdef CONFIG_LOCKDEP
3809 static struct lockdep_map __fs_reclaim_map =
3810 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3811 
3812 static bool __need_reclaim(gfp_t gfp_mask)
3813 {
3814 	/* no reclaim without waiting on it */
3815 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3816 		return false;
3817 
3818 	/* this guy won't enter reclaim */
3819 	if (current->flags & PF_MEMALLOC)
3820 		return false;
3821 
3822 	if (gfp_mask & __GFP_NOLOCKDEP)
3823 		return false;
3824 
3825 	return true;
3826 }
3827 
3828 void __fs_reclaim_acquire(unsigned long ip)
3829 {
3830 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3831 }
3832 
3833 void __fs_reclaim_release(unsigned long ip)
3834 {
3835 	lock_release(&__fs_reclaim_map, ip);
3836 }
3837 
3838 void fs_reclaim_acquire(gfp_t gfp_mask)
3839 {
3840 	gfp_mask = current_gfp_context(gfp_mask);
3841 
3842 	if (__need_reclaim(gfp_mask)) {
3843 		if (gfp_mask & __GFP_FS)
3844 			__fs_reclaim_acquire(_RET_IP_);
3845 
3846 #ifdef CONFIG_MMU_NOTIFIER
3847 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3848 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3849 #endif
3850 
3851 	}
3852 }
3853 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3854 
3855 void fs_reclaim_release(gfp_t gfp_mask)
3856 {
3857 	gfp_mask = current_gfp_context(gfp_mask);
3858 
3859 	if (__need_reclaim(gfp_mask)) {
3860 		if (gfp_mask & __GFP_FS)
3861 			__fs_reclaim_release(_RET_IP_);
3862 	}
3863 }
3864 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3865 #endif
3866 
3867 /*
3868  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3869  * have been rebuilt so allocation retries. Reader side does not lock and
3870  * retries the allocation if zonelist changes. Writer side is protected by the
3871  * embedded spin_lock.
3872  */
3873 static DEFINE_SEQLOCK(zonelist_update_seq);
3874 
3875 static unsigned int zonelist_iter_begin(void)
3876 {
3877 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3878 		return read_seqbegin(&zonelist_update_seq);
3879 
3880 	return 0;
3881 }
3882 
3883 static unsigned int check_retry_zonelist(unsigned int seq)
3884 {
3885 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3886 		return read_seqretry(&zonelist_update_seq, seq);
3887 
3888 	return seq;
3889 }
3890 
3891 /* Perform direct synchronous page reclaim */
3892 static unsigned long
3893 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3894 					const struct alloc_context *ac)
3895 {
3896 	unsigned int noreclaim_flag;
3897 	unsigned long progress;
3898 
3899 	cond_resched();
3900 
3901 	/* We now go into synchronous reclaim */
3902 	cpuset_memory_pressure_bump();
3903 	fs_reclaim_acquire(gfp_mask);
3904 	noreclaim_flag = memalloc_noreclaim_save();
3905 
3906 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3907 								ac->nodemask);
3908 
3909 	memalloc_noreclaim_restore(noreclaim_flag);
3910 	fs_reclaim_release(gfp_mask);
3911 
3912 	cond_resched();
3913 
3914 	return progress;
3915 }
3916 
3917 /* The really slow allocator path where we enter direct reclaim */
3918 static inline struct page *
3919 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3920 		unsigned int alloc_flags, const struct alloc_context *ac,
3921 		unsigned long *did_some_progress)
3922 {
3923 	struct page *page = NULL;
3924 	unsigned long pflags;
3925 	bool drained = false;
3926 
3927 	psi_memstall_enter(&pflags);
3928 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3929 	if (unlikely(!(*did_some_progress)))
3930 		goto out;
3931 
3932 retry:
3933 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3934 
3935 	/*
3936 	 * If an allocation failed after direct reclaim, it could be because
3937 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3938 	 * Shrink them and try again
3939 	 */
3940 	if (!page && !drained) {
3941 		unreserve_highatomic_pageblock(ac, false);
3942 		drain_all_pages(NULL);
3943 		drained = true;
3944 		goto retry;
3945 	}
3946 out:
3947 	psi_memstall_leave(&pflags);
3948 
3949 	return page;
3950 }
3951 
3952 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3953 			     const struct alloc_context *ac)
3954 {
3955 	struct zoneref *z;
3956 	struct zone *zone;
3957 	pg_data_t *last_pgdat = NULL;
3958 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3959 
3960 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3961 					ac->nodemask) {
3962 		if (!managed_zone(zone))
3963 			continue;
3964 		if (last_pgdat != zone->zone_pgdat) {
3965 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3966 			last_pgdat = zone->zone_pgdat;
3967 		}
3968 	}
3969 }
3970 
3971 static inline unsigned int
3972 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3973 {
3974 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3975 
3976 	/*
3977 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3978 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3979 	 * to save two branches.
3980 	 */
3981 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3982 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3983 
3984 	/*
3985 	 * The caller may dip into page reserves a bit more if the caller
3986 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3987 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3988 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3989 	 */
3990 	alloc_flags |= (__force int)
3991 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3992 
3993 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3994 		/*
3995 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3996 		 * if it can't schedule.
3997 		 */
3998 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3999 			alloc_flags |= ALLOC_NON_BLOCK;
4000 
4001 			if (order > 0)
4002 				alloc_flags |= ALLOC_HIGHATOMIC;
4003 		}
4004 
4005 		/*
4006 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4007 		 * GFP_ATOMIC) rather than fail, see the comment for
4008 		 * cpuset_node_allowed().
4009 		 */
4010 		if (alloc_flags & ALLOC_MIN_RESERVE)
4011 			alloc_flags &= ~ALLOC_CPUSET;
4012 	} else if (unlikely(rt_task(current)) && in_task())
4013 		alloc_flags |= ALLOC_MIN_RESERVE;
4014 
4015 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4016 
4017 	return alloc_flags;
4018 }
4019 
4020 static bool oom_reserves_allowed(struct task_struct *tsk)
4021 {
4022 	if (!tsk_is_oom_victim(tsk))
4023 		return false;
4024 
4025 	/*
4026 	 * !MMU doesn't have oom reaper so give access to memory reserves
4027 	 * only to the thread with TIF_MEMDIE set
4028 	 */
4029 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4030 		return false;
4031 
4032 	return true;
4033 }
4034 
4035 /*
4036  * Distinguish requests which really need access to full memory
4037  * reserves from oom victims which can live with a portion of it
4038  */
4039 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4040 {
4041 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4042 		return 0;
4043 	if (gfp_mask & __GFP_MEMALLOC)
4044 		return ALLOC_NO_WATERMARKS;
4045 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4046 		return ALLOC_NO_WATERMARKS;
4047 	if (!in_interrupt()) {
4048 		if (current->flags & PF_MEMALLOC)
4049 			return ALLOC_NO_WATERMARKS;
4050 		else if (oom_reserves_allowed(current))
4051 			return ALLOC_OOM;
4052 	}
4053 
4054 	return 0;
4055 }
4056 
4057 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4058 {
4059 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4060 }
4061 
4062 /*
4063  * Checks whether it makes sense to retry the reclaim to make a forward progress
4064  * for the given allocation request.
4065  *
4066  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4067  * without success, or when we couldn't even meet the watermark if we
4068  * reclaimed all remaining pages on the LRU lists.
4069  *
4070  * Returns true if a retry is viable or false to enter the oom path.
4071  */
4072 static inline bool
4073 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4074 		     struct alloc_context *ac, int alloc_flags,
4075 		     bool did_some_progress, int *no_progress_loops)
4076 {
4077 	struct zone *zone;
4078 	struct zoneref *z;
4079 	bool ret = false;
4080 
4081 	/*
4082 	 * Costly allocations might have made a progress but this doesn't mean
4083 	 * their order will become available due to high fragmentation so
4084 	 * always increment the no progress counter for them
4085 	 */
4086 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4087 		*no_progress_loops = 0;
4088 	else
4089 		(*no_progress_loops)++;
4090 
4091 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4092 		goto out;
4093 
4094 
4095 	/*
4096 	 * Keep reclaiming pages while there is a chance this will lead
4097 	 * somewhere.  If none of the target zones can satisfy our allocation
4098 	 * request even if all reclaimable pages are considered then we are
4099 	 * screwed and have to go OOM.
4100 	 */
4101 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4102 				ac->highest_zoneidx, ac->nodemask) {
4103 		unsigned long available;
4104 		unsigned long reclaimable;
4105 		unsigned long min_wmark = min_wmark_pages(zone);
4106 		bool wmark;
4107 
4108 		if (cpusets_enabled() &&
4109 			(alloc_flags & ALLOC_CPUSET) &&
4110 			!__cpuset_zone_allowed(zone, gfp_mask))
4111 				continue;
4112 
4113 		available = reclaimable = zone_reclaimable_pages(zone);
4114 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4115 
4116 		/*
4117 		 * Would the allocation succeed if we reclaimed all
4118 		 * reclaimable pages?
4119 		 */
4120 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4121 				ac->highest_zoneidx, alloc_flags, available);
4122 		trace_reclaim_retry_zone(z, order, reclaimable,
4123 				available, min_wmark, *no_progress_loops, wmark);
4124 		if (wmark) {
4125 			ret = true;
4126 			break;
4127 		}
4128 	}
4129 
4130 	/*
4131 	 * Memory allocation/reclaim might be called from a WQ context and the
4132 	 * current implementation of the WQ concurrency control doesn't
4133 	 * recognize that a particular WQ is congested if the worker thread is
4134 	 * looping without ever sleeping. Therefore we have to do a short sleep
4135 	 * here rather than calling cond_resched().
4136 	 */
4137 	if (current->flags & PF_WQ_WORKER)
4138 		schedule_timeout_uninterruptible(1);
4139 	else
4140 		cond_resched();
4141 out:
4142 	/* Before OOM, exhaust highatomic_reserve */
4143 	if (!ret)
4144 		return unreserve_highatomic_pageblock(ac, true);
4145 
4146 	return ret;
4147 }
4148 
4149 static inline bool
4150 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4151 {
4152 	/*
4153 	 * It's possible that cpuset's mems_allowed and the nodemask from
4154 	 * mempolicy don't intersect. This should be normally dealt with by
4155 	 * policy_nodemask(), but it's possible to race with cpuset update in
4156 	 * such a way the check therein was true, and then it became false
4157 	 * before we got our cpuset_mems_cookie here.
4158 	 * This assumes that for all allocations, ac->nodemask can come only
4159 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4160 	 * when it does not intersect with the cpuset restrictions) or the
4161 	 * caller can deal with a violated nodemask.
4162 	 */
4163 	if (cpusets_enabled() && ac->nodemask &&
4164 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4165 		ac->nodemask = NULL;
4166 		return true;
4167 	}
4168 
4169 	/*
4170 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4171 	 * possible to race with parallel threads in such a way that our
4172 	 * allocation can fail while the mask is being updated. If we are about
4173 	 * to fail, check if the cpuset changed during allocation and if so,
4174 	 * retry.
4175 	 */
4176 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4177 		return true;
4178 
4179 	return false;
4180 }
4181 
4182 static inline struct page *
4183 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4184 						struct alloc_context *ac)
4185 {
4186 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4187 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4188 	bool nofail = gfp_mask & __GFP_NOFAIL;
4189 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4190 	struct page *page = NULL;
4191 	unsigned int alloc_flags;
4192 	unsigned long did_some_progress;
4193 	enum compact_priority compact_priority;
4194 	enum compact_result compact_result;
4195 	int compaction_retries;
4196 	int no_progress_loops;
4197 	unsigned int cpuset_mems_cookie;
4198 	unsigned int zonelist_iter_cookie;
4199 	int reserve_flags;
4200 
4201 	if (unlikely(nofail)) {
4202 		/*
4203 		 * We most definitely don't want callers attempting to
4204 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4205 		 */
4206 		WARN_ON_ONCE(order > 1);
4207 		/*
4208 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4209 		 * otherwise, we may result in lockup.
4210 		 */
4211 		WARN_ON_ONCE(!can_direct_reclaim);
4212 		/*
4213 		 * PF_MEMALLOC request from this context is rather bizarre
4214 		 * because we cannot reclaim anything and only can loop waiting
4215 		 * for somebody to do a work for us.
4216 		 */
4217 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4218 	}
4219 
4220 restart:
4221 	compaction_retries = 0;
4222 	no_progress_loops = 0;
4223 	compact_priority = DEF_COMPACT_PRIORITY;
4224 	cpuset_mems_cookie = read_mems_allowed_begin();
4225 	zonelist_iter_cookie = zonelist_iter_begin();
4226 
4227 	/*
4228 	 * The fast path uses conservative alloc_flags to succeed only until
4229 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4230 	 * alloc_flags precisely. So we do that now.
4231 	 */
4232 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4233 
4234 	/*
4235 	 * We need to recalculate the starting point for the zonelist iterator
4236 	 * because we might have used different nodemask in the fast path, or
4237 	 * there was a cpuset modification and we are retrying - otherwise we
4238 	 * could end up iterating over non-eligible zones endlessly.
4239 	 */
4240 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4241 					ac->highest_zoneidx, ac->nodemask);
4242 	if (!zonelist_zone(ac->preferred_zoneref))
4243 		goto nopage;
4244 
4245 	/*
4246 	 * Check for insane configurations where the cpuset doesn't contain
4247 	 * any suitable zone to satisfy the request - e.g. non-movable
4248 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4249 	 */
4250 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4251 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4252 					ac->highest_zoneidx,
4253 					&cpuset_current_mems_allowed);
4254 		if (!zonelist_zone(z))
4255 			goto nopage;
4256 	}
4257 
4258 	if (alloc_flags & ALLOC_KSWAPD)
4259 		wake_all_kswapds(order, gfp_mask, ac);
4260 
4261 	/*
4262 	 * The adjusted alloc_flags might result in immediate success, so try
4263 	 * that first
4264 	 */
4265 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4266 	if (page)
4267 		goto got_pg;
4268 
4269 	/*
4270 	 * For costly allocations, try direct compaction first, as it's likely
4271 	 * that we have enough base pages and don't need to reclaim. For non-
4272 	 * movable high-order allocations, do that as well, as compaction will
4273 	 * try prevent permanent fragmentation by migrating from blocks of the
4274 	 * same migratetype.
4275 	 * Don't try this for allocations that are allowed to ignore
4276 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4277 	 */
4278 	if (can_direct_reclaim && can_compact &&
4279 			(costly_order ||
4280 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4281 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4282 		page = __alloc_pages_direct_compact(gfp_mask, order,
4283 						alloc_flags, ac,
4284 						INIT_COMPACT_PRIORITY,
4285 						&compact_result);
4286 		if (page)
4287 			goto got_pg;
4288 
4289 		/*
4290 		 * Checks for costly allocations with __GFP_NORETRY, which
4291 		 * includes some THP page fault allocations
4292 		 */
4293 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4294 			/*
4295 			 * If allocating entire pageblock(s) and compaction
4296 			 * failed because all zones are below low watermarks
4297 			 * or is prohibited because it recently failed at this
4298 			 * order, fail immediately unless the allocator has
4299 			 * requested compaction and reclaim retry.
4300 			 *
4301 			 * Reclaim is
4302 			 *  - potentially very expensive because zones are far
4303 			 *    below their low watermarks or this is part of very
4304 			 *    bursty high order allocations,
4305 			 *  - not guaranteed to help because isolate_freepages()
4306 			 *    may not iterate over freed pages as part of its
4307 			 *    linear scan, and
4308 			 *  - unlikely to make entire pageblocks free on its
4309 			 *    own.
4310 			 */
4311 			if (compact_result == COMPACT_SKIPPED ||
4312 			    compact_result == COMPACT_DEFERRED)
4313 				goto nopage;
4314 
4315 			/*
4316 			 * Looks like reclaim/compaction is worth trying, but
4317 			 * sync compaction could be very expensive, so keep
4318 			 * using async compaction.
4319 			 */
4320 			compact_priority = INIT_COMPACT_PRIORITY;
4321 		}
4322 	}
4323 
4324 retry:
4325 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4326 	if (alloc_flags & ALLOC_KSWAPD)
4327 		wake_all_kswapds(order, gfp_mask, ac);
4328 
4329 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4330 	if (reserve_flags)
4331 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4332 					  (alloc_flags & ALLOC_KSWAPD);
4333 
4334 	/*
4335 	 * Reset the nodemask and zonelist iterators if memory policies can be
4336 	 * ignored. These allocations are high priority and system rather than
4337 	 * user oriented.
4338 	 */
4339 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4340 		ac->nodemask = NULL;
4341 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4342 					ac->highest_zoneidx, ac->nodemask);
4343 	}
4344 
4345 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4346 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4347 	if (page)
4348 		goto got_pg;
4349 
4350 	/* Caller is not willing to reclaim, we can't balance anything */
4351 	if (!can_direct_reclaim)
4352 		goto nopage;
4353 
4354 	/* Avoid recursion of direct reclaim */
4355 	if (current->flags & PF_MEMALLOC)
4356 		goto nopage;
4357 
4358 	/* Try direct reclaim and then allocating */
4359 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4360 							&did_some_progress);
4361 	if (page)
4362 		goto got_pg;
4363 
4364 	/* Try direct compaction and then allocating */
4365 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4366 					compact_priority, &compact_result);
4367 	if (page)
4368 		goto got_pg;
4369 
4370 	/* Do not loop if specifically requested */
4371 	if (gfp_mask & __GFP_NORETRY)
4372 		goto nopage;
4373 
4374 	/*
4375 	 * Do not retry costly high order allocations unless they are
4376 	 * __GFP_RETRY_MAYFAIL and we can compact
4377 	 */
4378 	if (costly_order && (!can_compact ||
4379 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4380 		goto nopage;
4381 
4382 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4383 				 did_some_progress > 0, &no_progress_loops))
4384 		goto retry;
4385 
4386 	/*
4387 	 * It doesn't make any sense to retry for the compaction if the order-0
4388 	 * reclaim is not able to make any progress because the current
4389 	 * implementation of the compaction depends on the sufficient amount
4390 	 * of free memory (see __compaction_suitable)
4391 	 */
4392 	if (did_some_progress > 0 && can_compact &&
4393 			should_compact_retry(ac, order, alloc_flags,
4394 				compact_result, &compact_priority,
4395 				&compaction_retries))
4396 		goto retry;
4397 
4398 
4399 	/*
4400 	 * Deal with possible cpuset update races or zonelist updates to avoid
4401 	 * a unnecessary OOM kill.
4402 	 */
4403 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4404 	    check_retry_zonelist(zonelist_iter_cookie))
4405 		goto restart;
4406 
4407 	/* Reclaim has failed us, start killing things */
4408 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4409 	if (page)
4410 		goto got_pg;
4411 
4412 	/* Avoid allocations with no watermarks from looping endlessly */
4413 	if (tsk_is_oom_victim(current) &&
4414 	    (alloc_flags & ALLOC_OOM ||
4415 	     (gfp_mask & __GFP_NOMEMALLOC)))
4416 		goto nopage;
4417 
4418 	/* Retry as long as the OOM killer is making progress */
4419 	if (did_some_progress) {
4420 		no_progress_loops = 0;
4421 		goto retry;
4422 	}
4423 
4424 nopage:
4425 	/*
4426 	 * Deal with possible cpuset update races or zonelist updates to avoid
4427 	 * a unnecessary OOM kill.
4428 	 */
4429 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4430 	    check_retry_zonelist(zonelist_iter_cookie))
4431 		goto restart;
4432 
4433 	/*
4434 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4435 	 * we always retry
4436 	 */
4437 	if (unlikely(nofail)) {
4438 		/*
4439 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4440 		 * we disregard these unreasonable nofail requests and still
4441 		 * return NULL
4442 		 */
4443 		if (!can_direct_reclaim)
4444 			goto fail;
4445 
4446 		/*
4447 		 * Help non-failing allocations by giving some access to memory
4448 		 * reserves normally used for high priority non-blocking
4449 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4450 		 * could deplete whole memory reserves which would just make
4451 		 * the situation worse.
4452 		 */
4453 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4454 		if (page)
4455 			goto got_pg;
4456 
4457 		cond_resched();
4458 		goto retry;
4459 	}
4460 fail:
4461 	warn_alloc(gfp_mask, ac->nodemask,
4462 			"page allocation failure: order:%u", order);
4463 got_pg:
4464 	return page;
4465 }
4466 
4467 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4468 		int preferred_nid, nodemask_t *nodemask,
4469 		struct alloc_context *ac, gfp_t *alloc_gfp,
4470 		unsigned int *alloc_flags)
4471 {
4472 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4473 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4474 	ac->nodemask = nodemask;
4475 	ac->migratetype = gfp_migratetype(gfp_mask);
4476 
4477 	if (cpusets_enabled()) {
4478 		*alloc_gfp |= __GFP_HARDWALL;
4479 		/*
4480 		 * When we are in the interrupt context, it is irrelevant
4481 		 * to the current task context. It means that any node ok.
4482 		 */
4483 		if (in_task() && !ac->nodemask)
4484 			ac->nodemask = &cpuset_current_mems_allowed;
4485 		else
4486 			*alloc_flags |= ALLOC_CPUSET;
4487 	}
4488 
4489 	might_alloc(gfp_mask);
4490 
4491 	if (should_fail_alloc_page(gfp_mask, order))
4492 		return false;
4493 
4494 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4495 
4496 	/* Dirty zone balancing only done in the fast path */
4497 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4498 
4499 	/*
4500 	 * The preferred zone is used for statistics but crucially it is
4501 	 * also used as the starting point for the zonelist iterator. It
4502 	 * may get reset for allocations that ignore memory policies.
4503 	 */
4504 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4505 					ac->highest_zoneidx, ac->nodemask);
4506 
4507 	return true;
4508 }
4509 
4510 /*
4511  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4512  * @gfp: GFP flags for the allocation
4513  * @preferred_nid: The preferred NUMA node ID to allocate from
4514  * @nodemask: Set of nodes to allocate from, may be NULL
4515  * @nr_pages: The number of pages desired on the list or array
4516  * @page_list: Optional list to store the allocated pages
4517  * @page_array: Optional array to store the pages
4518  *
4519  * This is a batched version of the page allocator that attempts to
4520  * allocate nr_pages quickly. Pages are added to page_list if page_list
4521  * is not NULL, otherwise it is assumed that the page_array is valid.
4522  *
4523  * For lists, nr_pages is the number of pages that should be allocated.
4524  *
4525  * For arrays, only NULL elements are populated with pages and nr_pages
4526  * is the maximum number of pages that will be stored in the array.
4527  *
4528  * Returns the number of pages on the list or array.
4529  */
4530 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4531 			nodemask_t *nodemask, int nr_pages,
4532 			struct list_head *page_list,
4533 			struct page **page_array)
4534 {
4535 	struct page *page;
4536 	unsigned long __maybe_unused UP_flags;
4537 	struct zone *zone;
4538 	struct zoneref *z;
4539 	struct per_cpu_pages *pcp;
4540 	struct list_head *pcp_list;
4541 	struct alloc_context ac;
4542 	gfp_t alloc_gfp;
4543 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4544 	int nr_populated = 0, nr_account = 0;
4545 
4546 	/*
4547 	 * Skip populated array elements to determine if any pages need
4548 	 * to be allocated before disabling IRQs.
4549 	 */
4550 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4551 		nr_populated++;
4552 
4553 	/* No pages requested? */
4554 	if (unlikely(nr_pages <= 0))
4555 		goto out;
4556 
4557 	/* Already populated array? */
4558 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4559 		goto out;
4560 
4561 	/* Bulk allocator does not support memcg accounting. */
4562 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4563 		goto failed;
4564 
4565 	/* Use the single page allocator for one page. */
4566 	if (nr_pages - nr_populated == 1)
4567 		goto failed;
4568 
4569 #ifdef CONFIG_PAGE_OWNER
4570 	/*
4571 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4572 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4573 	 * removes much of the performance benefit of bulk allocation so
4574 	 * force the caller to allocate one page at a time as it'll have
4575 	 * similar performance to added complexity to the bulk allocator.
4576 	 */
4577 	if (static_branch_unlikely(&page_owner_inited))
4578 		goto failed;
4579 #endif
4580 
4581 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4582 	gfp &= gfp_allowed_mask;
4583 	alloc_gfp = gfp;
4584 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4585 		goto out;
4586 	gfp = alloc_gfp;
4587 
4588 	/* Find an allowed local zone that meets the low watermark. */
4589 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4590 		unsigned long mark;
4591 
4592 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4593 		    !__cpuset_zone_allowed(zone, gfp)) {
4594 			continue;
4595 		}
4596 
4597 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4598 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4599 			goto failed;
4600 		}
4601 
4602 		cond_accept_memory(zone, 0);
4603 retry_this_zone:
4604 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4605 		if (zone_watermark_fast(zone, 0,  mark,
4606 				zonelist_zone_idx(ac.preferred_zoneref),
4607 				alloc_flags, gfp)) {
4608 			break;
4609 		}
4610 
4611 		if (cond_accept_memory(zone, 0))
4612 			goto retry_this_zone;
4613 
4614 		/* Try again if zone has deferred pages */
4615 		if (deferred_pages_enabled()) {
4616 			if (_deferred_grow_zone(zone, 0))
4617 				goto retry_this_zone;
4618 		}
4619 	}
4620 
4621 	/*
4622 	 * If there are no allowed local zones that meets the watermarks then
4623 	 * try to allocate a single page and reclaim if necessary.
4624 	 */
4625 	if (unlikely(!zone))
4626 		goto failed;
4627 
4628 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4629 	pcp_trylock_prepare(UP_flags);
4630 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4631 	if (!pcp)
4632 		goto failed_irq;
4633 
4634 	/* Attempt the batch allocation */
4635 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4636 	while (nr_populated < nr_pages) {
4637 
4638 		/* Skip existing pages */
4639 		if (page_array && page_array[nr_populated]) {
4640 			nr_populated++;
4641 			continue;
4642 		}
4643 
4644 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4645 								pcp, pcp_list);
4646 		if (unlikely(!page)) {
4647 			/* Try and allocate at least one page */
4648 			if (!nr_account) {
4649 				pcp_spin_unlock(pcp);
4650 				goto failed_irq;
4651 			}
4652 			break;
4653 		}
4654 		nr_account++;
4655 
4656 		prep_new_page(page, 0, gfp, 0);
4657 		if (page_list)
4658 			list_add(&page->lru, page_list);
4659 		else
4660 			page_array[nr_populated] = page;
4661 		nr_populated++;
4662 	}
4663 
4664 	pcp_spin_unlock(pcp);
4665 	pcp_trylock_finish(UP_flags);
4666 
4667 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4668 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4669 
4670 out:
4671 	return nr_populated;
4672 
4673 failed_irq:
4674 	pcp_trylock_finish(UP_flags);
4675 
4676 failed:
4677 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4678 	if (page) {
4679 		if (page_list)
4680 			list_add(&page->lru, page_list);
4681 		else
4682 			page_array[nr_populated] = page;
4683 		nr_populated++;
4684 	}
4685 
4686 	goto out;
4687 }
4688 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4689 
4690 /*
4691  * This is the 'heart' of the zoned buddy allocator.
4692  */
4693 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4694 				      int preferred_nid, nodemask_t *nodemask)
4695 {
4696 	struct page *page;
4697 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4698 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4699 	struct alloc_context ac = { };
4700 
4701 	/*
4702 	 * There are several places where we assume that the order value is sane
4703 	 * so bail out early if the request is out of bound.
4704 	 */
4705 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4706 		return NULL;
4707 
4708 	gfp &= gfp_allowed_mask;
4709 	/*
4710 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4711 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4712 	 * from a particular context which has been marked by
4713 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4714 	 * movable zones are not used during allocation.
4715 	 */
4716 	gfp = current_gfp_context(gfp);
4717 	alloc_gfp = gfp;
4718 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4719 			&alloc_gfp, &alloc_flags))
4720 		return NULL;
4721 
4722 	/*
4723 	 * Forbid the first pass from falling back to types that fragment
4724 	 * memory until all local zones are considered.
4725 	 */
4726 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4727 
4728 	/* First allocation attempt */
4729 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4730 	if (likely(page))
4731 		goto out;
4732 
4733 	alloc_gfp = gfp;
4734 	ac.spread_dirty_pages = false;
4735 
4736 	/*
4737 	 * Restore the original nodemask if it was potentially replaced with
4738 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4739 	 */
4740 	ac.nodemask = nodemask;
4741 
4742 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4743 
4744 out:
4745 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4746 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4747 		__free_pages(page, order);
4748 		page = NULL;
4749 	}
4750 
4751 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4752 	kmsan_alloc_page(page, order, alloc_gfp);
4753 
4754 	return page;
4755 }
4756 EXPORT_SYMBOL(__alloc_pages_noprof);
4757 
4758 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4759 		nodemask_t *nodemask)
4760 {
4761 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4762 					preferred_nid, nodemask);
4763 	return page_rmappable_folio(page);
4764 }
4765 EXPORT_SYMBOL(__folio_alloc_noprof);
4766 
4767 /*
4768  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4769  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4770  * you need to access high mem.
4771  */
4772 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4773 {
4774 	struct page *page;
4775 
4776 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4777 	if (!page)
4778 		return 0;
4779 	return (unsigned long) page_address(page);
4780 }
4781 EXPORT_SYMBOL(get_free_pages_noprof);
4782 
4783 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4784 {
4785 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4786 }
4787 EXPORT_SYMBOL(get_zeroed_page_noprof);
4788 
4789 /**
4790  * __free_pages - Free pages allocated with alloc_pages().
4791  * @page: The page pointer returned from alloc_pages().
4792  * @order: The order of the allocation.
4793  *
4794  * This function can free multi-page allocations that are not compound
4795  * pages.  It does not check that the @order passed in matches that of
4796  * the allocation, so it is easy to leak memory.  Freeing more memory
4797  * than was allocated will probably emit a warning.
4798  *
4799  * If the last reference to this page is speculative, it will be released
4800  * by put_page() which only frees the first page of a non-compound
4801  * allocation.  To prevent the remaining pages from being leaked, we free
4802  * the subsequent pages here.  If you want to use the page's reference
4803  * count to decide when to free the allocation, you should allocate a
4804  * compound page, and use put_page() instead of __free_pages().
4805  *
4806  * Context: May be called in interrupt context or while holding a normal
4807  * spinlock, but not in NMI context or while holding a raw spinlock.
4808  */
4809 void __free_pages(struct page *page, unsigned int order)
4810 {
4811 	/* get PageHead before we drop reference */
4812 	int head = PageHead(page);
4813 	struct alloc_tag *tag = pgalloc_tag_get(page);
4814 
4815 	if (put_page_testzero(page))
4816 		free_unref_page(page, order);
4817 	else if (!head) {
4818 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4819 		while (order-- > 0)
4820 			free_unref_page(page + (1 << order), order);
4821 	}
4822 }
4823 EXPORT_SYMBOL(__free_pages);
4824 
4825 void free_pages(unsigned long addr, unsigned int order)
4826 {
4827 	if (addr != 0) {
4828 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4829 		__free_pages(virt_to_page((void *)addr), order);
4830 	}
4831 }
4832 
4833 EXPORT_SYMBOL(free_pages);
4834 
4835 /*
4836  * Page Fragment:
4837  *  An arbitrary-length arbitrary-offset area of memory which resides
4838  *  within a 0 or higher order page.  Multiple fragments within that page
4839  *  are individually refcounted, in the page's reference counter.
4840  *
4841  * The page_frag functions below provide a simple allocation framework for
4842  * page fragments.  This is used by the network stack and network device
4843  * drivers to provide a backing region of memory for use as either an
4844  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4845  */
4846 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4847 					     gfp_t gfp_mask)
4848 {
4849 	struct page *page = NULL;
4850 	gfp_t gfp = gfp_mask;
4851 
4852 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4853 	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4854 		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4855 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4856 				PAGE_FRAG_CACHE_MAX_ORDER);
4857 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4858 #endif
4859 	if (unlikely(!page))
4860 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4861 
4862 	nc->va = page ? page_address(page) : NULL;
4863 
4864 	return page;
4865 }
4866 
4867 void page_frag_cache_drain(struct page_frag_cache *nc)
4868 {
4869 	if (!nc->va)
4870 		return;
4871 
4872 	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4873 	nc->va = NULL;
4874 }
4875 EXPORT_SYMBOL(page_frag_cache_drain);
4876 
4877 void __page_frag_cache_drain(struct page *page, unsigned int count)
4878 {
4879 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4880 
4881 	if (page_ref_sub_and_test(page, count))
4882 		free_unref_page(page, compound_order(page));
4883 }
4884 EXPORT_SYMBOL(__page_frag_cache_drain);
4885 
4886 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4887 			      unsigned int fragsz, gfp_t gfp_mask,
4888 			      unsigned int align_mask)
4889 {
4890 	unsigned int size = PAGE_SIZE;
4891 	struct page *page;
4892 	int offset;
4893 
4894 	if (unlikely(!nc->va)) {
4895 refill:
4896 		page = __page_frag_cache_refill(nc, gfp_mask);
4897 		if (!page)
4898 			return NULL;
4899 
4900 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4901 		/* if size can vary use size else just use PAGE_SIZE */
4902 		size = nc->size;
4903 #endif
4904 		/* Even if we own the page, we do not use atomic_set().
4905 		 * This would break get_page_unless_zero() users.
4906 		 */
4907 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4908 
4909 		/* reset page count bias and offset to start of new frag */
4910 		nc->pfmemalloc = page_is_pfmemalloc(page);
4911 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4912 		nc->offset = size;
4913 	}
4914 
4915 	offset = nc->offset - fragsz;
4916 	if (unlikely(offset < 0)) {
4917 		page = virt_to_page(nc->va);
4918 
4919 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4920 			goto refill;
4921 
4922 		if (unlikely(nc->pfmemalloc)) {
4923 			free_unref_page(page, compound_order(page));
4924 			goto refill;
4925 		}
4926 
4927 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4928 		/* if size can vary use size else just use PAGE_SIZE */
4929 		size = nc->size;
4930 #endif
4931 		/* OK, page count is 0, we can safely set it */
4932 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4933 
4934 		/* reset page count bias and offset to start of new frag */
4935 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4936 		offset = size - fragsz;
4937 		if (unlikely(offset < 0)) {
4938 			/*
4939 			 * The caller is trying to allocate a fragment
4940 			 * with fragsz > PAGE_SIZE but the cache isn't big
4941 			 * enough to satisfy the request, this may
4942 			 * happen in low memory conditions.
4943 			 * We don't release the cache page because
4944 			 * it could make memory pressure worse
4945 			 * so we simply return NULL here.
4946 			 */
4947 			return NULL;
4948 		}
4949 	}
4950 
4951 	nc->pagecnt_bias--;
4952 	offset &= align_mask;
4953 	nc->offset = offset;
4954 
4955 	return nc->va + offset;
4956 }
4957 EXPORT_SYMBOL(__page_frag_alloc_align);
4958 
4959 /*
4960  * Frees a page fragment allocated out of either a compound or order 0 page.
4961  */
4962 void page_frag_free(void *addr)
4963 {
4964 	struct page *page = virt_to_head_page(addr);
4965 
4966 	if (unlikely(put_page_testzero(page)))
4967 		free_unref_page(page, compound_order(page));
4968 }
4969 EXPORT_SYMBOL(page_frag_free);
4970 
4971 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4972 		size_t size)
4973 {
4974 	if (addr) {
4975 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4976 		struct page *page = virt_to_page((void *)addr);
4977 		struct page *last = page + nr;
4978 
4979 		split_page_owner(page, order, 0);
4980 		pgalloc_tag_split(page, 1 << order);
4981 		split_page_memcg(page, order, 0);
4982 		while (page < --last)
4983 			set_page_refcounted(last);
4984 
4985 		last = page + (1UL << order);
4986 		for (page += nr; page < last; page++)
4987 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4988 	}
4989 	return (void *)addr;
4990 }
4991 
4992 /**
4993  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4994  * @size: the number of bytes to allocate
4995  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4996  *
4997  * This function is similar to alloc_pages(), except that it allocates the
4998  * minimum number of pages to satisfy the request.  alloc_pages() can only
4999  * allocate memory in power-of-two pages.
5000  *
5001  * This function is also limited by MAX_PAGE_ORDER.
5002  *
5003  * Memory allocated by this function must be released by free_pages_exact().
5004  *
5005  * Return: pointer to the allocated area or %NULL in case of error.
5006  */
5007 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5008 {
5009 	unsigned int order = get_order(size);
5010 	unsigned long addr;
5011 
5012 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5013 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5014 
5015 	addr = get_free_pages_noprof(gfp_mask, order);
5016 	return make_alloc_exact(addr, order, size);
5017 }
5018 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5019 
5020 /**
5021  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5022  *			   pages on a node.
5023  * @nid: the preferred node ID where memory should be allocated
5024  * @size: the number of bytes to allocate
5025  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5026  *
5027  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5028  * back.
5029  *
5030  * Return: pointer to the allocated area or %NULL in case of error.
5031  */
5032 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5033 {
5034 	unsigned int order = get_order(size);
5035 	struct page *p;
5036 
5037 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5038 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5039 
5040 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5041 	if (!p)
5042 		return NULL;
5043 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5044 }
5045 
5046 /**
5047  * free_pages_exact - release memory allocated via alloc_pages_exact()
5048  * @virt: the value returned by alloc_pages_exact.
5049  * @size: size of allocation, same value as passed to alloc_pages_exact().
5050  *
5051  * Release the memory allocated by a previous call to alloc_pages_exact.
5052  */
5053 void free_pages_exact(void *virt, size_t size)
5054 {
5055 	unsigned long addr = (unsigned long)virt;
5056 	unsigned long end = addr + PAGE_ALIGN(size);
5057 
5058 	while (addr < end) {
5059 		free_page(addr);
5060 		addr += PAGE_SIZE;
5061 	}
5062 }
5063 EXPORT_SYMBOL(free_pages_exact);
5064 
5065 /**
5066  * nr_free_zone_pages - count number of pages beyond high watermark
5067  * @offset: The zone index of the highest zone
5068  *
5069  * nr_free_zone_pages() counts the number of pages which are beyond the
5070  * high watermark within all zones at or below a given zone index.  For each
5071  * zone, the number of pages is calculated as:
5072  *
5073  *     nr_free_zone_pages = managed_pages - high_pages
5074  *
5075  * Return: number of pages beyond high watermark.
5076  */
5077 static unsigned long nr_free_zone_pages(int offset)
5078 {
5079 	struct zoneref *z;
5080 	struct zone *zone;
5081 
5082 	/* Just pick one node, since fallback list is circular */
5083 	unsigned long sum = 0;
5084 
5085 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5086 
5087 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5088 		unsigned long size = zone_managed_pages(zone);
5089 		unsigned long high = high_wmark_pages(zone);
5090 		if (size > high)
5091 			sum += size - high;
5092 	}
5093 
5094 	return sum;
5095 }
5096 
5097 /**
5098  * nr_free_buffer_pages - count number of pages beyond high watermark
5099  *
5100  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5101  * watermark within ZONE_DMA and ZONE_NORMAL.
5102  *
5103  * Return: number of pages beyond high watermark within ZONE_DMA and
5104  * ZONE_NORMAL.
5105  */
5106 unsigned long nr_free_buffer_pages(void)
5107 {
5108 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5109 }
5110 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5111 
5112 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5113 {
5114 	zoneref->zone = zone;
5115 	zoneref->zone_idx = zone_idx(zone);
5116 }
5117 
5118 /*
5119  * Builds allocation fallback zone lists.
5120  *
5121  * Add all populated zones of a node to the zonelist.
5122  */
5123 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5124 {
5125 	struct zone *zone;
5126 	enum zone_type zone_type = MAX_NR_ZONES;
5127 	int nr_zones = 0;
5128 
5129 	do {
5130 		zone_type--;
5131 		zone = pgdat->node_zones + zone_type;
5132 		if (populated_zone(zone)) {
5133 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5134 			check_highest_zone(zone_type);
5135 		}
5136 	} while (zone_type);
5137 
5138 	return nr_zones;
5139 }
5140 
5141 #ifdef CONFIG_NUMA
5142 
5143 static int __parse_numa_zonelist_order(char *s)
5144 {
5145 	/*
5146 	 * We used to support different zonelists modes but they turned
5147 	 * out to be just not useful. Let's keep the warning in place
5148 	 * if somebody still use the cmd line parameter so that we do
5149 	 * not fail it silently
5150 	 */
5151 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5152 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5153 		return -EINVAL;
5154 	}
5155 	return 0;
5156 }
5157 
5158 static char numa_zonelist_order[] = "Node";
5159 #define NUMA_ZONELIST_ORDER_LEN	16
5160 /*
5161  * sysctl handler for numa_zonelist_order
5162  */
5163 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5164 		void *buffer, size_t *length, loff_t *ppos)
5165 {
5166 	if (write)
5167 		return __parse_numa_zonelist_order(buffer);
5168 	return proc_dostring(table, write, buffer, length, ppos);
5169 }
5170 
5171 static int node_load[MAX_NUMNODES];
5172 
5173 /**
5174  * find_next_best_node - find the next node that should appear in a given node's fallback list
5175  * @node: node whose fallback list we're appending
5176  * @used_node_mask: nodemask_t of already used nodes
5177  *
5178  * We use a number of factors to determine which is the next node that should
5179  * appear on a given node's fallback list.  The node should not have appeared
5180  * already in @node's fallback list, and it should be the next closest node
5181  * according to the distance array (which contains arbitrary distance values
5182  * from each node to each node in the system), and should also prefer nodes
5183  * with no CPUs, since presumably they'll have very little allocation pressure
5184  * on them otherwise.
5185  *
5186  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5187  */
5188 int find_next_best_node(int node, nodemask_t *used_node_mask)
5189 {
5190 	int n, val;
5191 	int min_val = INT_MAX;
5192 	int best_node = NUMA_NO_NODE;
5193 
5194 	/*
5195 	 * Use the local node if we haven't already, but for memoryless local
5196 	 * node, we should skip it and fall back to other nodes.
5197 	 */
5198 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5199 		node_set(node, *used_node_mask);
5200 		return node;
5201 	}
5202 
5203 	for_each_node_state(n, N_MEMORY) {
5204 
5205 		/* Don't want a node to appear more than once */
5206 		if (node_isset(n, *used_node_mask))
5207 			continue;
5208 
5209 		/* Use the distance array to find the distance */
5210 		val = node_distance(node, n);
5211 
5212 		/* Penalize nodes under us ("prefer the next node") */
5213 		val += (n < node);
5214 
5215 		/* Give preference to headless and unused nodes */
5216 		if (!cpumask_empty(cpumask_of_node(n)))
5217 			val += PENALTY_FOR_NODE_WITH_CPUS;
5218 
5219 		/* Slight preference for less loaded node */
5220 		val *= MAX_NUMNODES;
5221 		val += node_load[n];
5222 
5223 		if (val < min_val) {
5224 			min_val = val;
5225 			best_node = n;
5226 		}
5227 	}
5228 
5229 	if (best_node >= 0)
5230 		node_set(best_node, *used_node_mask);
5231 
5232 	return best_node;
5233 }
5234 
5235 
5236 /*
5237  * Build zonelists ordered by node and zones within node.
5238  * This results in maximum locality--normal zone overflows into local
5239  * DMA zone, if any--but risks exhausting DMA zone.
5240  */
5241 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5242 		unsigned nr_nodes)
5243 {
5244 	struct zoneref *zonerefs;
5245 	int i;
5246 
5247 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5248 
5249 	for (i = 0; i < nr_nodes; i++) {
5250 		int nr_zones;
5251 
5252 		pg_data_t *node = NODE_DATA(node_order[i]);
5253 
5254 		nr_zones = build_zonerefs_node(node, zonerefs);
5255 		zonerefs += nr_zones;
5256 	}
5257 	zonerefs->zone = NULL;
5258 	zonerefs->zone_idx = 0;
5259 }
5260 
5261 /*
5262  * Build __GFP_THISNODE zonelists
5263  */
5264 static void build_thisnode_zonelists(pg_data_t *pgdat)
5265 {
5266 	struct zoneref *zonerefs;
5267 	int nr_zones;
5268 
5269 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5270 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5271 	zonerefs += nr_zones;
5272 	zonerefs->zone = NULL;
5273 	zonerefs->zone_idx = 0;
5274 }
5275 
5276 /*
5277  * Build zonelists ordered by zone and nodes within zones.
5278  * This results in conserving DMA zone[s] until all Normal memory is
5279  * exhausted, but results in overflowing to remote node while memory
5280  * may still exist in local DMA zone.
5281  */
5282 
5283 static void build_zonelists(pg_data_t *pgdat)
5284 {
5285 	static int node_order[MAX_NUMNODES];
5286 	int node, nr_nodes = 0;
5287 	nodemask_t used_mask = NODE_MASK_NONE;
5288 	int local_node, prev_node;
5289 
5290 	/* NUMA-aware ordering of nodes */
5291 	local_node = pgdat->node_id;
5292 	prev_node = local_node;
5293 
5294 	memset(node_order, 0, sizeof(node_order));
5295 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5296 		/*
5297 		 * We don't want to pressure a particular node.
5298 		 * So adding penalty to the first node in same
5299 		 * distance group to make it round-robin.
5300 		 */
5301 		if (node_distance(local_node, node) !=
5302 		    node_distance(local_node, prev_node))
5303 			node_load[node] += 1;
5304 
5305 		node_order[nr_nodes++] = node;
5306 		prev_node = node;
5307 	}
5308 
5309 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5310 	build_thisnode_zonelists(pgdat);
5311 	pr_info("Fallback order for Node %d: ", local_node);
5312 	for (node = 0; node < nr_nodes; node++)
5313 		pr_cont("%d ", node_order[node]);
5314 	pr_cont("\n");
5315 }
5316 
5317 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5318 /*
5319  * Return node id of node used for "local" allocations.
5320  * I.e., first node id of first zone in arg node's generic zonelist.
5321  * Used for initializing percpu 'numa_mem', which is used primarily
5322  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5323  */
5324 int local_memory_node(int node)
5325 {
5326 	struct zoneref *z;
5327 
5328 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5329 				   gfp_zone(GFP_KERNEL),
5330 				   NULL);
5331 	return zonelist_node_idx(z);
5332 }
5333 #endif
5334 
5335 static void setup_min_unmapped_ratio(void);
5336 static void setup_min_slab_ratio(void);
5337 #else	/* CONFIG_NUMA */
5338 
5339 static void build_zonelists(pg_data_t *pgdat)
5340 {
5341 	struct zoneref *zonerefs;
5342 	int nr_zones;
5343 
5344 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5345 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5346 	zonerefs += nr_zones;
5347 
5348 	zonerefs->zone = NULL;
5349 	zonerefs->zone_idx = 0;
5350 }
5351 
5352 #endif	/* CONFIG_NUMA */
5353 
5354 /*
5355  * Boot pageset table. One per cpu which is going to be used for all
5356  * zones and all nodes. The parameters will be set in such a way
5357  * that an item put on a list will immediately be handed over to
5358  * the buddy list. This is safe since pageset manipulation is done
5359  * with interrupts disabled.
5360  *
5361  * The boot_pagesets must be kept even after bootup is complete for
5362  * unused processors and/or zones. They do play a role for bootstrapping
5363  * hotplugged processors.
5364  *
5365  * zoneinfo_show() and maybe other functions do
5366  * not check if the processor is online before following the pageset pointer.
5367  * Other parts of the kernel may not check if the zone is available.
5368  */
5369 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5370 /* These effectively disable the pcplists in the boot pageset completely */
5371 #define BOOT_PAGESET_HIGH	0
5372 #define BOOT_PAGESET_BATCH	1
5373 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5374 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5375 
5376 static void __build_all_zonelists(void *data)
5377 {
5378 	int nid;
5379 	int __maybe_unused cpu;
5380 	pg_data_t *self = data;
5381 	unsigned long flags;
5382 
5383 	/*
5384 	 * The zonelist_update_seq must be acquired with irqsave because the
5385 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5386 	 */
5387 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5388 	/*
5389 	 * Also disable synchronous printk() to prevent any printk() from
5390 	 * trying to hold port->lock, for
5391 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5392 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5393 	 */
5394 	printk_deferred_enter();
5395 
5396 #ifdef CONFIG_NUMA
5397 	memset(node_load, 0, sizeof(node_load));
5398 #endif
5399 
5400 	/*
5401 	 * This node is hotadded and no memory is yet present.   So just
5402 	 * building zonelists is fine - no need to touch other nodes.
5403 	 */
5404 	if (self && !node_online(self->node_id)) {
5405 		build_zonelists(self);
5406 	} else {
5407 		/*
5408 		 * All possible nodes have pgdat preallocated
5409 		 * in free_area_init
5410 		 */
5411 		for_each_node(nid) {
5412 			pg_data_t *pgdat = NODE_DATA(nid);
5413 
5414 			build_zonelists(pgdat);
5415 		}
5416 
5417 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5418 		/*
5419 		 * We now know the "local memory node" for each node--
5420 		 * i.e., the node of the first zone in the generic zonelist.
5421 		 * Set up numa_mem percpu variable for on-line cpus.  During
5422 		 * boot, only the boot cpu should be on-line;  we'll init the
5423 		 * secondary cpus' numa_mem as they come on-line.  During
5424 		 * node/memory hotplug, we'll fixup all on-line cpus.
5425 		 */
5426 		for_each_online_cpu(cpu)
5427 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5428 #endif
5429 	}
5430 
5431 	printk_deferred_exit();
5432 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5433 }
5434 
5435 static noinline void __init
5436 build_all_zonelists_init(void)
5437 {
5438 	int cpu;
5439 
5440 	__build_all_zonelists(NULL);
5441 
5442 	/*
5443 	 * Initialize the boot_pagesets that are going to be used
5444 	 * for bootstrapping processors. The real pagesets for
5445 	 * each zone will be allocated later when the per cpu
5446 	 * allocator is available.
5447 	 *
5448 	 * boot_pagesets are used also for bootstrapping offline
5449 	 * cpus if the system is already booted because the pagesets
5450 	 * are needed to initialize allocators on a specific cpu too.
5451 	 * F.e. the percpu allocator needs the page allocator which
5452 	 * needs the percpu allocator in order to allocate its pagesets
5453 	 * (a chicken-egg dilemma).
5454 	 */
5455 	for_each_possible_cpu(cpu)
5456 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5457 
5458 	mminit_verify_zonelist();
5459 	cpuset_init_current_mems_allowed();
5460 }
5461 
5462 /*
5463  * unless system_state == SYSTEM_BOOTING.
5464  *
5465  * __ref due to call of __init annotated helper build_all_zonelists_init
5466  * [protected by SYSTEM_BOOTING].
5467  */
5468 void __ref build_all_zonelists(pg_data_t *pgdat)
5469 {
5470 	unsigned long vm_total_pages;
5471 
5472 	if (system_state == SYSTEM_BOOTING) {
5473 		build_all_zonelists_init();
5474 	} else {
5475 		__build_all_zonelists(pgdat);
5476 		/* cpuset refresh routine should be here */
5477 	}
5478 	/* Get the number of free pages beyond high watermark in all zones. */
5479 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5480 	/*
5481 	 * Disable grouping by mobility if the number of pages in the
5482 	 * system is too low to allow the mechanism to work. It would be
5483 	 * more accurate, but expensive to check per-zone. This check is
5484 	 * made on memory-hotadd so a system can start with mobility
5485 	 * disabled and enable it later
5486 	 */
5487 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5488 		page_group_by_mobility_disabled = 1;
5489 	else
5490 		page_group_by_mobility_disabled = 0;
5491 
5492 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5493 		nr_online_nodes,
5494 		page_group_by_mobility_disabled ? "off" : "on",
5495 		vm_total_pages);
5496 #ifdef CONFIG_NUMA
5497 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5498 #endif
5499 }
5500 
5501 static int zone_batchsize(struct zone *zone)
5502 {
5503 #ifdef CONFIG_MMU
5504 	int batch;
5505 
5506 	/*
5507 	 * The number of pages to batch allocate is either ~0.1%
5508 	 * of the zone or 1MB, whichever is smaller. The batch
5509 	 * size is striking a balance between allocation latency
5510 	 * and zone lock contention.
5511 	 */
5512 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5513 	batch /= 4;		/* We effectively *= 4 below */
5514 	if (batch < 1)
5515 		batch = 1;
5516 
5517 	/*
5518 	 * Clamp the batch to a 2^n - 1 value. Having a power
5519 	 * of 2 value was found to be more likely to have
5520 	 * suboptimal cache aliasing properties in some cases.
5521 	 *
5522 	 * For example if 2 tasks are alternately allocating
5523 	 * batches of pages, one task can end up with a lot
5524 	 * of pages of one half of the possible page colors
5525 	 * and the other with pages of the other colors.
5526 	 */
5527 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5528 
5529 	return batch;
5530 
5531 #else
5532 	/* The deferral and batching of frees should be suppressed under NOMMU
5533 	 * conditions.
5534 	 *
5535 	 * The problem is that NOMMU needs to be able to allocate large chunks
5536 	 * of contiguous memory as there's no hardware page translation to
5537 	 * assemble apparent contiguous memory from discontiguous pages.
5538 	 *
5539 	 * Queueing large contiguous runs of pages for batching, however,
5540 	 * causes the pages to actually be freed in smaller chunks.  As there
5541 	 * can be a significant delay between the individual batches being
5542 	 * recycled, this leads to the once large chunks of space being
5543 	 * fragmented and becoming unavailable for high-order allocations.
5544 	 */
5545 	return 0;
5546 #endif
5547 }
5548 
5549 static int percpu_pagelist_high_fraction;
5550 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5551 			 int high_fraction)
5552 {
5553 #ifdef CONFIG_MMU
5554 	int high;
5555 	int nr_split_cpus;
5556 	unsigned long total_pages;
5557 
5558 	if (!high_fraction) {
5559 		/*
5560 		 * By default, the high value of the pcp is based on the zone
5561 		 * low watermark so that if they are full then background
5562 		 * reclaim will not be started prematurely.
5563 		 */
5564 		total_pages = low_wmark_pages(zone);
5565 	} else {
5566 		/*
5567 		 * If percpu_pagelist_high_fraction is configured, the high
5568 		 * value is based on a fraction of the managed pages in the
5569 		 * zone.
5570 		 */
5571 		total_pages = zone_managed_pages(zone) / high_fraction;
5572 	}
5573 
5574 	/*
5575 	 * Split the high value across all online CPUs local to the zone. Note
5576 	 * that early in boot that CPUs may not be online yet and that during
5577 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5578 	 * onlined. For memory nodes that have no CPUs, split the high value
5579 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5580 	 * prematurely due to pages stored on pcp lists.
5581 	 */
5582 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5583 	if (!nr_split_cpus)
5584 		nr_split_cpus = num_online_cpus();
5585 	high = total_pages / nr_split_cpus;
5586 
5587 	/*
5588 	 * Ensure high is at least batch*4. The multiple is based on the
5589 	 * historical relationship between high and batch.
5590 	 */
5591 	high = max(high, batch << 2);
5592 
5593 	return high;
5594 #else
5595 	return 0;
5596 #endif
5597 }
5598 
5599 /*
5600  * pcp->high and pcp->batch values are related and generally batch is lower
5601  * than high. They are also related to pcp->count such that count is lower
5602  * than high, and as soon as it reaches high, the pcplist is flushed.
5603  *
5604  * However, guaranteeing these relations at all times would require e.g. write
5605  * barriers here but also careful usage of read barriers at the read side, and
5606  * thus be prone to error and bad for performance. Thus the update only prevents
5607  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5608  * should ensure they can cope with those fields changing asynchronously, and
5609  * fully trust only the pcp->count field on the local CPU with interrupts
5610  * disabled.
5611  *
5612  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5613  * outside of boot time (or some other assurance that no concurrent updaters
5614  * exist).
5615  */
5616 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5617 			   unsigned long high_max, unsigned long batch)
5618 {
5619 	WRITE_ONCE(pcp->batch, batch);
5620 	WRITE_ONCE(pcp->high_min, high_min);
5621 	WRITE_ONCE(pcp->high_max, high_max);
5622 }
5623 
5624 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5625 {
5626 	int pindex;
5627 
5628 	memset(pcp, 0, sizeof(*pcp));
5629 	memset(pzstats, 0, sizeof(*pzstats));
5630 
5631 	spin_lock_init(&pcp->lock);
5632 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5633 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5634 
5635 	/*
5636 	 * Set batch and high values safe for a boot pageset. A true percpu
5637 	 * pageset's initialization will update them subsequently. Here we don't
5638 	 * need to be as careful as pageset_update() as nobody can access the
5639 	 * pageset yet.
5640 	 */
5641 	pcp->high_min = BOOT_PAGESET_HIGH;
5642 	pcp->high_max = BOOT_PAGESET_HIGH;
5643 	pcp->batch = BOOT_PAGESET_BATCH;
5644 	pcp->free_count = 0;
5645 }
5646 
5647 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5648 					      unsigned long high_max, unsigned long batch)
5649 {
5650 	struct per_cpu_pages *pcp;
5651 	int cpu;
5652 
5653 	for_each_possible_cpu(cpu) {
5654 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5655 		pageset_update(pcp, high_min, high_max, batch);
5656 	}
5657 }
5658 
5659 /*
5660  * Calculate and set new high and batch values for all per-cpu pagesets of a
5661  * zone based on the zone's size.
5662  */
5663 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5664 {
5665 	int new_high_min, new_high_max, new_batch;
5666 
5667 	new_batch = max(1, zone_batchsize(zone));
5668 	if (percpu_pagelist_high_fraction) {
5669 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5670 					     percpu_pagelist_high_fraction);
5671 		/*
5672 		 * PCP high is tuned manually, disable auto-tuning via
5673 		 * setting high_min and high_max to the manual value.
5674 		 */
5675 		new_high_max = new_high_min;
5676 	} else {
5677 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5678 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5679 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5680 	}
5681 
5682 	if (zone->pageset_high_min == new_high_min &&
5683 	    zone->pageset_high_max == new_high_max &&
5684 	    zone->pageset_batch == new_batch)
5685 		return;
5686 
5687 	zone->pageset_high_min = new_high_min;
5688 	zone->pageset_high_max = new_high_max;
5689 	zone->pageset_batch = new_batch;
5690 
5691 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5692 					  new_batch);
5693 }
5694 
5695 void __meminit setup_zone_pageset(struct zone *zone)
5696 {
5697 	int cpu;
5698 
5699 	/* Size may be 0 on !SMP && !NUMA */
5700 	if (sizeof(struct per_cpu_zonestat) > 0)
5701 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5702 
5703 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5704 	for_each_possible_cpu(cpu) {
5705 		struct per_cpu_pages *pcp;
5706 		struct per_cpu_zonestat *pzstats;
5707 
5708 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5709 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5710 		per_cpu_pages_init(pcp, pzstats);
5711 	}
5712 
5713 	zone_set_pageset_high_and_batch(zone, 0);
5714 }
5715 
5716 /*
5717  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5718  * page high values need to be recalculated.
5719  */
5720 static void zone_pcp_update(struct zone *zone, int cpu_online)
5721 {
5722 	mutex_lock(&pcp_batch_high_lock);
5723 	zone_set_pageset_high_and_batch(zone, cpu_online);
5724 	mutex_unlock(&pcp_batch_high_lock);
5725 }
5726 
5727 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5728 {
5729 	struct per_cpu_pages *pcp;
5730 	struct cpu_cacheinfo *cci;
5731 
5732 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5733 	cci = get_cpu_cacheinfo(cpu);
5734 	/*
5735 	 * If data cache slice of CPU is large enough, "pcp->batch"
5736 	 * pages can be preserved in PCP before draining PCP for
5737 	 * consecutive high-order pages freeing without allocation.
5738 	 * This can reduce zone lock contention without hurting
5739 	 * cache-hot pages sharing.
5740 	 */
5741 	spin_lock(&pcp->lock);
5742 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5743 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5744 	else
5745 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5746 	spin_unlock(&pcp->lock);
5747 }
5748 
5749 void setup_pcp_cacheinfo(unsigned int cpu)
5750 {
5751 	struct zone *zone;
5752 
5753 	for_each_populated_zone(zone)
5754 		zone_pcp_update_cacheinfo(zone, cpu);
5755 }
5756 
5757 /*
5758  * Allocate per cpu pagesets and initialize them.
5759  * Before this call only boot pagesets were available.
5760  */
5761 void __init setup_per_cpu_pageset(void)
5762 {
5763 	struct pglist_data *pgdat;
5764 	struct zone *zone;
5765 	int __maybe_unused cpu;
5766 
5767 	for_each_populated_zone(zone)
5768 		setup_zone_pageset(zone);
5769 
5770 #ifdef CONFIG_NUMA
5771 	/*
5772 	 * Unpopulated zones continue using the boot pagesets.
5773 	 * The numa stats for these pagesets need to be reset.
5774 	 * Otherwise, they will end up skewing the stats of
5775 	 * the nodes these zones are associated with.
5776 	 */
5777 	for_each_possible_cpu(cpu) {
5778 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5779 		memset(pzstats->vm_numa_event, 0,
5780 		       sizeof(pzstats->vm_numa_event));
5781 	}
5782 #endif
5783 
5784 	for_each_online_pgdat(pgdat)
5785 		pgdat->per_cpu_nodestats =
5786 			alloc_percpu(struct per_cpu_nodestat);
5787 }
5788 
5789 __meminit void zone_pcp_init(struct zone *zone)
5790 {
5791 	/*
5792 	 * per cpu subsystem is not up at this point. The following code
5793 	 * relies on the ability of the linker to provide the
5794 	 * offset of a (static) per cpu variable into the per cpu area.
5795 	 */
5796 	zone->per_cpu_pageset = &boot_pageset;
5797 	zone->per_cpu_zonestats = &boot_zonestats;
5798 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5799 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5800 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5801 
5802 	if (populated_zone(zone))
5803 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5804 			 zone->present_pages, zone_batchsize(zone));
5805 }
5806 
5807 void adjust_managed_page_count(struct page *page, long count)
5808 {
5809 	atomic_long_add(count, &page_zone(page)->managed_pages);
5810 	totalram_pages_add(count);
5811 }
5812 EXPORT_SYMBOL(adjust_managed_page_count);
5813 
5814 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5815 {
5816 	void *pos;
5817 	unsigned long pages = 0;
5818 
5819 	start = (void *)PAGE_ALIGN((unsigned long)start);
5820 	end = (void *)((unsigned long)end & PAGE_MASK);
5821 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5822 		struct page *page = virt_to_page(pos);
5823 		void *direct_map_addr;
5824 
5825 		/*
5826 		 * 'direct_map_addr' might be different from 'pos'
5827 		 * because some architectures' virt_to_page()
5828 		 * work with aliases.  Getting the direct map
5829 		 * address ensures that we get a _writeable_
5830 		 * alias for the memset().
5831 		 */
5832 		direct_map_addr = page_address(page);
5833 		/*
5834 		 * Perform a kasan-unchecked memset() since this memory
5835 		 * has not been initialized.
5836 		 */
5837 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5838 		if ((unsigned int)poison <= 0xFF)
5839 			memset(direct_map_addr, poison, PAGE_SIZE);
5840 
5841 		free_reserved_page(page);
5842 	}
5843 
5844 	if (pages && s)
5845 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5846 
5847 	return pages;
5848 }
5849 
5850 void free_reserved_page(struct page *page)
5851 {
5852 	clear_page_tag_ref(page);
5853 	ClearPageReserved(page);
5854 	init_page_count(page);
5855 	__free_page(page);
5856 	adjust_managed_page_count(page, 1);
5857 }
5858 EXPORT_SYMBOL(free_reserved_page);
5859 
5860 static int page_alloc_cpu_dead(unsigned int cpu)
5861 {
5862 	struct zone *zone;
5863 
5864 	lru_add_drain_cpu(cpu);
5865 	mlock_drain_remote(cpu);
5866 	drain_pages(cpu);
5867 
5868 	/*
5869 	 * Spill the event counters of the dead processor
5870 	 * into the current processors event counters.
5871 	 * This artificially elevates the count of the current
5872 	 * processor.
5873 	 */
5874 	vm_events_fold_cpu(cpu);
5875 
5876 	/*
5877 	 * Zero the differential counters of the dead processor
5878 	 * so that the vm statistics are consistent.
5879 	 *
5880 	 * This is only okay since the processor is dead and cannot
5881 	 * race with what we are doing.
5882 	 */
5883 	cpu_vm_stats_fold(cpu);
5884 
5885 	for_each_populated_zone(zone)
5886 		zone_pcp_update(zone, 0);
5887 
5888 	return 0;
5889 }
5890 
5891 static int page_alloc_cpu_online(unsigned int cpu)
5892 {
5893 	struct zone *zone;
5894 
5895 	for_each_populated_zone(zone)
5896 		zone_pcp_update(zone, 1);
5897 	return 0;
5898 }
5899 
5900 void __init page_alloc_init_cpuhp(void)
5901 {
5902 	int ret;
5903 
5904 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5905 					"mm/page_alloc:pcp",
5906 					page_alloc_cpu_online,
5907 					page_alloc_cpu_dead);
5908 	WARN_ON(ret < 0);
5909 }
5910 
5911 /*
5912  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5913  *	or min_free_kbytes changes.
5914  */
5915 static void calculate_totalreserve_pages(void)
5916 {
5917 	struct pglist_data *pgdat;
5918 	unsigned long reserve_pages = 0;
5919 	enum zone_type i, j;
5920 
5921 	for_each_online_pgdat(pgdat) {
5922 
5923 		pgdat->totalreserve_pages = 0;
5924 
5925 		for (i = 0; i < MAX_NR_ZONES; i++) {
5926 			struct zone *zone = pgdat->node_zones + i;
5927 			long max = 0;
5928 			unsigned long managed_pages = zone_managed_pages(zone);
5929 
5930 			/* Find valid and maximum lowmem_reserve in the zone */
5931 			for (j = i; j < MAX_NR_ZONES; j++) {
5932 				if (zone->lowmem_reserve[j] > max)
5933 					max = zone->lowmem_reserve[j];
5934 			}
5935 
5936 			/* we treat the high watermark as reserved pages. */
5937 			max += high_wmark_pages(zone);
5938 
5939 			if (max > managed_pages)
5940 				max = managed_pages;
5941 
5942 			pgdat->totalreserve_pages += max;
5943 
5944 			reserve_pages += max;
5945 		}
5946 	}
5947 	totalreserve_pages = reserve_pages;
5948 }
5949 
5950 /*
5951  * setup_per_zone_lowmem_reserve - called whenever
5952  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5953  *	has a correct pages reserved value, so an adequate number of
5954  *	pages are left in the zone after a successful __alloc_pages().
5955  */
5956 static void setup_per_zone_lowmem_reserve(void)
5957 {
5958 	struct pglist_data *pgdat;
5959 	enum zone_type i, j;
5960 
5961 	for_each_online_pgdat(pgdat) {
5962 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5963 			struct zone *zone = &pgdat->node_zones[i];
5964 			int ratio = sysctl_lowmem_reserve_ratio[i];
5965 			bool clear = !ratio || !zone_managed_pages(zone);
5966 			unsigned long managed_pages = 0;
5967 
5968 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5969 				struct zone *upper_zone = &pgdat->node_zones[j];
5970 				bool empty = !zone_managed_pages(upper_zone);
5971 
5972 				managed_pages += zone_managed_pages(upper_zone);
5973 
5974 				if (clear || empty)
5975 					zone->lowmem_reserve[j] = 0;
5976 				else
5977 					zone->lowmem_reserve[j] = managed_pages / ratio;
5978 			}
5979 		}
5980 	}
5981 
5982 	/* update totalreserve_pages */
5983 	calculate_totalreserve_pages();
5984 }
5985 
5986 static void __setup_per_zone_wmarks(void)
5987 {
5988 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5989 	unsigned long lowmem_pages = 0;
5990 	struct zone *zone;
5991 	unsigned long flags;
5992 
5993 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5994 	for_each_zone(zone) {
5995 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5996 			lowmem_pages += zone_managed_pages(zone);
5997 	}
5998 
5999 	for_each_zone(zone) {
6000 		u64 tmp;
6001 
6002 		spin_lock_irqsave(&zone->lock, flags);
6003 		tmp = (u64)pages_min * zone_managed_pages(zone);
6004 		tmp = div64_ul(tmp, lowmem_pages);
6005 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6006 			/*
6007 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6008 			 * need highmem and movable zones pages, so cap pages_min
6009 			 * to a small  value here.
6010 			 *
6011 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6012 			 * deltas control async page reclaim, and so should
6013 			 * not be capped for highmem and movable zones.
6014 			 */
6015 			unsigned long min_pages;
6016 
6017 			min_pages = zone_managed_pages(zone) / 1024;
6018 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6019 			zone->_watermark[WMARK_MIN] = min_pages;
6020 		} else {
6021 			/*
6022 			 * If it's a lowmem zone, reserve a number of pages
6023 			 * proportionate to the zone's size.
6024 			 */
6025 			zone->_watermark[WMARK_MIN] = tmp;
6026 		}
6027 
6028 		/*
6029 		 * Set the kswapd watermarks distance according to the
6030 		 * scale factor in proportion to available memory, but
6031 		 * ensure a minimum size on small systems.
6032 		 */
6033 		tmp = max_t(u64, tmp >> 2,
6034 			    mult_frac(zone_managed_pages(zone),
6035 				      watermark_scale_factor, 10000));
6036 
6037 		zone->watermark_boost = 0;
6038 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6039 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6040 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6041 
6042 		spin_unlock_irqrestore(&zone->lock, flags);
6043 	}
6044 
6045 	/* update totalreserve_pages */
6046 	calculate_totalreserve_pages();
6047 }
6048 
6049 /**
6050  * setup_per_zone_wmarks - called when min_free_kbytes changes
6051  * or when memory is hot-{added|removed}
6052  *
6053  * Ensures that the watermark[min,low,high] values for each zone are set
6054  * correctly with respect to min_free_kbytes.
6055  */
6056 void setup_per_zone_wmarks(void)
6057 {
6058 	struct zone *zone;
6059 	static DEFINE_SPINLOCK(lock);
6060 
6061 	spin_lock(&lock);
6062 	__setup_per_zone_wmarks();
6063 	spin_unlock(&lock);
6064 
6065 	/*
6066 	 * The watermark size have changed so update the pcpu batch
6067 	 * and high limits or the limits may be inappropriate.
6068 	 */
6069 	for_each_zone(zone)
6070 		zone_pcp_update(zone, 0);
6071 }
6072 
6073 /*
6074  * Initialise min_free_kbytes.
6075  *
6076  * For small machines we want it small (128k min).  For large machines
6077  * we want it large (256MB max).  But it is not linear, because network
6078  * bandwidth does not increase linearly with machine size.  We use
6079  *
6080  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6081  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6082  *
6083  * which yields
6084  *
6085  * 16MB:	512k
6086  * 32MB:	724k
6087  * 64MB:	1024k
6088  * 128MB:	1448k
6089  * 256MB:	2048k
6090  * 512MB:	2896k
6091  * 1024MB:	4096k
6092  * 2048MB:	5792k
6093  * 4096MB:	8192k
6094  * 8192MB:	11584k
6095  * 16384MB:	16384k
6096  */
6097 void calculate_min_free_kbytes(void)
6098 {
6099 	unsigned long lowmem_kbytes;
6100 	int new_min_free_kbytes;
6101 
6102 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6103 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6104 
6105 	if (new_min_free_kbytes > user_min_free_kbytes)
6106 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6107 	else
6108 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6109 				new_min_free_kbytes, user_min_free_kbytes);
6110 
6111 }
6112 
6113 int __meminit init_per_zone_wmark_min(void)
6114 {
6115 	calculate_min_free_kbytes();
6116 	setup_per_zone_wmarks();
6117 	refresh_zone_stat_thresholds();
6118 	setup_per_zone_lowmem_reserve();
6119 
6120 #ifdef CONFIG_NUMA
6121 	setup_min_unmapped_ratio();
6122 	setup_min_slab_ratio();
6123 #endif
6124 
6125 	khugepaged_min_free_kbytes_update();
6126 
6127 	return 0;
6128 }
6129 postcore_initcall(init_per_zone_wmark_min)
6130 
6131 /*
6132  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6133  *	that we can call two helper functions whenever min_free_kbytes
6134  *	changes.
6135  */
6136 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6137 		void *buffer, size_t *length, loff_t *ppos)
6138 {
6139 	int rc;
6140 
6141 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6142 	if (rc)
6143 		return rc;
6144 
6145 	if (write) {
6146 		user_min_free_kbytes = min_free_kbytes;
6147 		setup_per_zone_wmarks();
6148 	}
6149 	return 0;
6150 }
6151 
6152 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6153 		void *buffer, size_t *length, loff_t *ppos)
6154 {
6155 	int rc;
6156 
6157 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6158 	if (rc)
6159 		return rc;
6160 
6161 	if (write)
6162 		setup_per_zone_wmarks();
6163 
6164 	return 0;
6165 }
6166 
6167 #ifdef CONFIG_NUMA
6168 static void setup_min_unmapped_ratio(void)
6169 {
6170 	pg_data_t *pgdat;
6171 	struct zone *zone;
6172 
6173 	for_each_online_pgdat(pgdat)
6174 		pgdat->min_unmapped_pages = 0;
6175 
6176 	for_each_zone(zone)
6177 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6178 						         sysctl_min_unmapped_ratio) / 100;
6179 }
6180 
6181 
6182 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6183 		void *buffer, size_t *length, loff_t *ppos)
6184 {
6185 	int rc;
6186 
6187 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6188 	if (rc)
6189 		return rc;
6190 
6191 	setup_min_unmapped_ratio();
6192 
6193 	return 0;
6194 }
6195 
6196 static void setup_min_slab_ratio(void)
6197 {
6198 	pg_data_t *pgdat;
6199 	struct zone *zone;
6200 
6201 	for_each_online_pgdat(pgdat)
6202 		pgdat->min_slab_pages = 0;
6203 
6204 	for_each_zone(zone)
6205 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6206 						     sysctl_min_slab_ratio) / 100;
6207 }
6208 
6209 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6210 		void *buffer, size_t *length, loff_t *ppos)
6211 {
6212 	int rc;
6213 
6214 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6215 	if (rc)
6216 		return rc;
6217 
6218 	setup_min_slab_ratio();
6219 
6220 	return 0;
6221 }
6222 #endif
6223 
6224 /*
6225  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6226  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6227  *	whenever sysctl_lowmem_reserve_ratio changes.
6228  *
6229  * The reserve ratio obviously has absolutely no relation with the
6230  * minimum watermarks. The lowmem reserve ratio can only make sense
6231  * if in function of the boot time zone sizes.
6232  */
6233 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6234 		int write, void *buffer, size_t *length, loff_t *ppos)
6235 {
6236 	int i;
6237 
6238 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6239 
6240 	for (i = 0; i < MAX_NR_ZONES; i++) {
6241 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6242 			sysctl_lowmem_reserve_ratio[i] = 0;
6243 	}
6244 
6245 	setup_per_zone_lowmem_reserve();
6246 	return 0;
6247 }
6248 
6249 /*
6250  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6251  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6252  * pagelist can have before it gets flushed back to buddy allocator.
6253  */
6254 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6255 		int write, void *buffer, size_t *length, loff_t *ppos)
6256 {
6257 	struct zone *zone;
6258 	int old_percpu_pagelist_high_fraction;
6259 	int ret;
6260 
6261 	mutex_lock(&pcp_batch_high_lock);
6262 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6263 
6264 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6265 	if (!write || ret < 0)
6266 		goto out;
6267 
6268 	/* Sanity checking to avoid pcp imbalance */
6269 	if (percpu_pagelist_high_fraction &&
6270 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6271 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6272 		ret = -EINVAL;
6273 		goto out;
6274 	}
6275 
6276 	/* No change? */
6277 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6278 		goto out;
6279 
6280 	for_each_populated_zone(zone)
6281 		zone_set_pageset_high_and_batch(zone, 0);
6282 out:
6283 	mutex_unlock(&pcp_batch_high_lock);
6284 	return ret;
6285 }
6286 
6287 static struct ctl_table page_alloc_sysctl_table[] = {
6288 	{
6289 		.procname	= "min_free_kbytes",
6290 		.data		= &min_free_kbytes,
6291 		.maxlen		= sizeof(min_free_kbytes),
6292 		.mode		= 0644,
6293 		.proc_handler	= min_free_kbytes_sysctl_handler,
6294 		.extra1		= SYSCTL_ZERO,
6295 	},
6296 	{
6297 		.procname	= "watermark_boost_factor",
6298 		.data		= &watermark_boost_factor,
6299 		.maxlen		= sizeof(watermark_boost_factor),
6300 		.mode		= 0644,
6301 		.proc_handler	= proc_dointvec_minmax,
6302 		.extra1		= SYSCTL_ZERO,
6303 	},
6304 	{
6305 		.procname	= "watermark_scale_factor",
6306 		.data		= &watermark_scale_factor,
6307 		.maxlen		= sizeof(watermark_scale_factor),
6308 		.mode		= 0644,
6309 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6310 		.extra1		= SYSCTL_ONE,
6311 		.extra2		= SYSCTL_THREE_THOUSAND,
6312 	},
6313 	{
6314 		.procname	= "percpu_pagelist_high_fraction",
6315 		.data		= &percpu_pagelist_high_fraction,
6316 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6317 		.mode		= 0644,
6318 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6319 		.extra1		= SYSCTL_ZERO,
6320 	},
6321 	{
6322 		.procname	= "lowmem_reserve_ratio",
6323 		.data		= &sysctl_lowmem_reserve_ratio,
6324 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6325 		.mode		= 0644,
6326 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6327 	},
6328 #ifdef CONFIG_NUMA
6329 	{
6330 		.procname	= "numa_zonelist_order",
6331 		.data		= &numa_zonelist_order,
6332 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6333 		.mode		= 0644,
6334 		.proc_handler	= numa_zonelist_order_handler,
6335 	},
6336 	{
6337 		.procname	= "min_unmapped_ratio",
6338 		.data		= &sysctl_min_unmapped_ratio,
6339 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6340 		.mode		= 0644,
6341 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6342 		.extra1		= SYSCTL_ZERO,
6343 		.extra2		= SYSCTL_ONE_HUNDRED,
6344 	},
6345 	{
6346 		.procname	= "min_slab_ratio",
6347 		.data		= &sysctl_min_slab_ratio,
6348 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6349 		.mode		= 0644,
6350 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6351 		.extra1		= SYSCTL_ZERO,
6352 		.extra2		= SYSCTL_ONE_HUNDRED,
6353 	},
6354 #endif
6355 };
6356 
6357 void __init page_alloc_sysctl_init(void)
6358 {
6359 	register_sysctl_init("vm", page_alloc_sysctl_table);
6360 }
6361 
6362 #ifdef CONFIG_CONTIG_ALLOC
6363 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6364 static void alloc_contig_dump_pages(struct list_head *page_list)
6365 {
6366 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6367 
6368 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6369 		struct page *page;
6370 
6371 		dump_stack();
6372 		list_for_each_entry(page, page_list, lru)
6373 			dump_page(page, "migration failure");
6374 	}
6375 }
6376 
6377 /*
6378  * [start, end) must belong to a single zone.
6379  * @migratetype: using migratetype to filter the type of migration in
6380  *		trace_mm_alloc_contig_migrate_range_info.
6381  */
6382 int __alloc_contig_migrate_range(struct compact_control *cc,
6383 					unsigned long start, unsigned long end,
6384 					int migratetype)
6385 {
6386 	/* This function is based on compact_zone() from compaction.c. */
6387 	unsigned int nr_reclaimed;
6388 	unsigned long pfn = start;
6389 	unsigned int tries = 0;
6390 	int ret = 0;
6391 	struct migration_target_control mtc = {
6392 		.nid = zone_to_nid(cc->zone),
6393 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6394 		.reason = MR_CONTIG_RANGE,
6395 	};
6396 	struct page *page;
6397 	unsigned long total_mapped = 0;
6398 	unsigned long total_migrated = 0;
6399 	unsigned long total_reclaimed = 0;
6400 
6401 	lru_cache_disable();
6402 
6403 	while (pfn < end || !list_empty(&cc->migratepages)) {
6404 		if (fatal_signal_pending(current)) {
6405 			ret = -EINTR;
6406 			break;
6407 		}
6408 
6409 		if (list_empty(&cc->migratepages)) {
6410 			cc->nr_migratepages = 0;
6411 			ret = isolate_migratepages_range(cc, pfn, end);
6412 			if (ret && ret != -EAGAIN)
6413 				break;
6414 			pfn = cc->migrate_pfn;
6415 			tries = 0;
6416 		} else if (++tries == 5) {
6417 			ret = -EBUSY;
6418 			break;
6419 		}
6420 
6421 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6422 							&cc->migratepages);
6423 		cc->nr_migratepages -= nr_reclaimed;
6424 
6425 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6426 			total_reclaimed += nr_reclaimed;
6427 			list_for_each_entry(page, &cc->migratepages, lru) {
6428 				struct folio *folio = page_folio(page);
6429 
6430 				total_mapped += folio_mapped(folio) *
6431 						folio_nr_pages(folio);
6432 			}
6433 		}
6434 
6435 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6436 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6437 
6438 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6439 			total_migrated += cc->nr_migratepages;
6440 
6441 		/*
6442 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6443 		 * to retry again over this error, so do the same here.
6444 		 */
6445 		if (ret == -ENOMEM)
6446 			break;
6447 	}
6448 
6449 	lru_cache_enable();
6450 	if (ret < 0) {
6451 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6452 			alloc_contig_dump_pages(&cc->migratepages);
6453 		putback_movable_pages(&cc->migratepages);
6454 	}
6455 
6456 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6457 						 total_migrated,
6458 						 total_reclaimed,
6459 						 total_mapped);
6460 	return (ret < 0) ? ret : 0;
6461 }
6462 
6463 static void split_free_pages(struct list_head *list)
6464 {
6465 	int order;
6466 
6467 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6468 		struct page *page, *next;
6469 		int nr_pages = 1 << order;
6470 
6471 		list_for_each_entry_safe(page, next, &list[order], lru) {
6472 			int i;
6473 
6474 			post_alloc_hook(page, order, __GFP_MOVABLE);
6475 			if (!order)
6476 				continue;
6477 
6478 			split_page(page, order);
6479 
6480 			/* Add all subpages to the order-0 head, in sequence. */
6481 			list_del(&page->lru);
6482 			for (i = 0; i < nr_pages; i++)
6483 				list_add_tail(&page[i].lru, &list[0]);
6484 		}
6485 	}
6486 }
6487 
6488 /**
6489  * alloc_contig_range() -- tries to allocate given range of pages
6490  * @start:	start PFN to allocate
6491  * @end:	one-past-the-last PFN to allocate
6492  * @migratetype:	migratetype of the underlying pageblocks (either
6493  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6494  *			in range must have the same migratetype and it must
6495  *			be either of the two.
6496  * @gfp_mask:	GFP mask to use during compaction
6497  *
6498  * The PFN range does not have to be pageblock aligned. The PFN range must
6499  * belong to a single zone.
6500  *
6501  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6502  * pageblocks in the range.  Once isolated, the pageblocks should not
6503  * be modified by others.
6504  *
6505  * Return: zero on success or negative error code.  On success all
6506  * pages which PFN is in [start, end) are allocated for the caller and
6507  * need to be freed with free_contig_range().
6508  */
6509 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6510 		       unsigned migratetype, gfp_t gfp_mask)
6511 {
6512 	unsigned long outer_start, outer_end;
6513 	int ret = 0;
6514 
6515 	struct compact_control cc = {
6516 		.nr_migratepages = 0,
6517 		.order = -1,
6518 		.zone = page_zone(pfn_to_page(start)),
6519 		.mode = MIGRATE_SYNC,
6520 		.ignore_skip_hint = true,
6521 		.no_set_skip_hint = true,
6522 		.gfp_mask = current_gfp_context(gfp_mask),
6523 		.alloc_contig = true,
6524 	};
6525 	INIT_LIST_HEAD(&cc.migratepages);
6526 
6527 	/*
6528 	 * What we do here is we mark all pageblocks in range as
6529 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6530 	 * have different sizes, and due to the way page allocator
6531 	 * work, start_isolate_page_range() has special handlings for this.
6532 	 *
6533 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6534 	 * migrate the pages from an unaligned range (ie. pages that
6535 	 * we are interested in). This will put all the pages in
6536 	 * range back to page allocator as MIGRATE_ISOLATE.
6537 	 *
6538 	 * When this is done, we take the pages in range from page
6539 	 * allocator removing them from the buddy system.  This way
6540 	 * page allocator will never consider using them.
6541 	 *
6542 	 * This lets us mark the pageblocks back as
6543 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6544 	 * aligned range but not in the unaligned, original range are
6545 	 * put back to page allocator so that buddy can use them.
6546 	 */
6547 
6548 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6549 	if (ret)
6550 		goto done;
6551 
6552 	drain_all_pages(cc.zone);
6553 
6554 	/*
6555 	 * In case of -EBUSY, we'd like to know which page causes problem.
6556 	 * So, just fall through. test_pages_isolated() has a tracepoint
6557 	 * which will report the busy page.
6558 	 *
6559 	 * It is possible that busy pages could become available before
6560 	 * the call to test_pages_isolated, and the range will actually be
6561 	 * allocated.  So, if we fall through be sure to clear ret so that
6562 	 * -EBUSY is not accidentally used or returned to caller.
6563 	 */
6564 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6565 	if (ret && ret != -EBUSY)
6566 		goto done;
6567 	ret = 0;
6568 
6569 	/*
6570 	 * Pages from [start, end) are within a pageblock_nr_pages
6571 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6572 	 * more, all pages in [start, end) are free in page allocator.
6573 	 * What we are going to do is to allocate all pages from
6574 	 * [start, end) (that is remove them from page allocator).
6575 	 *
6576 	 * The only problem is that pages at the beginning and at the
6577 	 * end of interesting range may be not aligned with pages that
6578 	 * page allocator holds, ie. they can be part of higher order
6579 	 * pages.  Because of this, we reserve the bigger range and
6580 	 * once this is done free the pages we are not interested in.
6581 	 *
6582 	 * We don't have to hold zone->lock here because the pages are
6583 	 * isolated thus they won't get removed from buddy.
6584 	 */
6585 	outer_start = find_large_buddy(start);
6586 
6587 	/* Make sure the range is really isolated. */
6588 	if (test_pages_isolated(outer_start, end, 0)) {
6589 		ret = -EBUSY;
6590 		goto done;
6591 	}
6592 
6593 	/* Grab isolated pages from freelists. */
6594 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6595 	if (!outer_end) {
6596 		ret = -EBUSY;
6597 		goto done;
6598 	}
6599 
6600 	if (!(gfp_mask & __GFP_COMP)) {
6601 		split_free_pages(cc.freepages);
6602 
6603 		/* Free head and tail (if any) */
6604 		if (start != outer_start)
6605 			free_contig_range(outer_start, start - outer_start);
6606 		if (end != outer_end)
6607 			free_contig_range(end, outer_end - end);
6608 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6609 		struct page *head = pfn_to_page(start);
6610 		int order = ilog2(end - start);
6611 
6612 		check_new_pages(head, order);
6613 		prep_new_page(head, order, gfp_mask, 0);
6614 	} else {
6615 		ret = -EINVAL;
6616 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6617 		     start, end, outer_start, outer_end);
6618 	}
6619 done:
6620 	undo_isolate_page_range(start, end, migratetype);
6621 	return ret;
6622 }
6623 EXPORT_SYMBOL(alloc_contig_range_noprof);
6624 
6625 static int __alloc_contig_pages(unsigned long start_pfn,
6626 				unsigned long nr_pages, gfp_t gfp_mask)
6627 {
6628 	unsigned long end_pfn = start_pfn + nr_pages;
6629 
6630 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6631 				   gfp_mask);
6632 }
6633 
6634 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6635 				   unsigned long nr_pages)
6636 {
6637 	unsigned long i, end_pfn = start_pfn + nr_pages;
6638 	struct page *page;
6639 
6640 	for (i = start_pfn; i < end_pfn; i++) {
6641 		page = pfn_to_online_page(i);
6642 		if (!page)
6643 			return false;
6644 
6645 		if (page_zone(page) != z)
6646 			return false;
6647 
6648 		if (PageReserved(page))
6649 			return false;
6650 
6651 		if (PageHuge(page))
6652 			return false;
6653 	}
6654 	return true;
6655 }
6656 
6657 static bool zone_spans_last_pfn(const struct zone *zone,
6658 				unsigned long start_pfn, unsigned long nr_pages)
6659 {
6660 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6661 
6662 	return zone_spans_pfn(zone, last_pfn);
6663 }
6664 
6665 /**
6666  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6667  * @nr_pages:	Number of contiguous pages to allocate
6668  * @gfp_mask:	GFP mask to limit search and used during compaction
6669  * @nid:	Target node
6670  * @nodemask:	Mask for other possible nodes
6671  *
6672  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6673  * on an applicable zonelist to find a contiguous pfn range which can then be
6674  * tried for allocation with alloc_contig_range(). This routine is intended
6675  * for allocation requests which can not be fulfilled with the buddy allocator.
6676  *
6677  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6678  * power of two, then allocated range is also guaranteed to be aligned to same
6679  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6680  *
6681  * Allocated pages can be freed with free_contig_range() or by manually calling
6682  * __free_page() on each allocated page.
6683  *
6684  * Return: pointer to contiguous pages on success, or NULL if not successful.
6685  */
6686 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6687 				 int nid, nodemask_t *nodemask)
6688 {
6689 	unsigned long ret, pfn, flags;
6690 	struct zonelist *zonelist;
6691 	struct zone *zone;
6692 	struct zoneref *z;
6693 
6694 	zonelist = node_zonelist(nid, gfp_mask);
6695 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6696 					gfp_zone(gfp_mask), nodemask) {
6697 		spin_lock_irqsave(&zone->lock, flags);
6698 
6699 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6700 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6701 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6702 				/*
6703 				 * We release the zone lock here because
6704 				 * alloc_contig_range() will also lock the zone
6705 				 * at some point. If there's an allocation
6706 				 * spinning on this lock, it may win the race
6707 				 * and cause alloc_contig_range() to fail...
6708 				 */
6709 				spin_unlock_irqrestore(&zone->lock, flags);
6710 				ret = __alloc_contig_pages(pfn, nr_pages,
6711 							gfp_mask);
6712 				if (!ret)
6713 					return pfn_to_page(pfn);
6714 				spin_lock_irqsave(&zone->lock, flags);
6715 			}
6716 			pfn += nr_pages;
6717 		}
6718 		spin_unlock_irqrestore(&zone->lock, flags);
6719 	}
6720 	return NULL;
6721 }
6722 #endif /* CONFIG_CONTIG_ALLOC */
6723 
6724 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6725 {
6726 	unsigned long count = 0;
6727 	struct folio *folio = pfn_folio(pfn);
6728 
6729 	if (folio_test_large(folio)) {
6730 		int expected = folio_nr_pages(folio);
6731 
6732 		if (nr_pages == expected)
6733 			folio_put(folio);
6734 		else
6735 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6736 			     pfn, nr_pages, expected);
6737 		return;
6738 	}
6739 
6740 	for (; nr_pages--; pfn++) {
6741 		struct page *page = pfn_to_page(pfn);
6742 
6743 		count += page_count(page) != 1;
6744 		__free_page(page);
6745 	}
6746 	WARN(count != 0, "%lu pages are still in use!\n", count);
6747 }
6748 EXPORT_SYMBOL(free_contig_range);
6749 
6750 /*
6751  * Effectively disable pcplists for the zone by setting the high limit to 0
6752  * and draining all cpus. A concurrent page freeing on another CPU that's about
6753  * to put the page on pcplist will either finish before the drain and the page
6754  * will be drained, or observe the new high limit and skip the pcplist.
6755  *
6756  * Must be paired with a call to zone_pcp_enable().
6757  */
6758 void zone_pcp_disable(struct zone *zone)
6759 {
6760 	mutex_lock(&pcp_batch_high_lock);
6761 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6762 	__drain_all_pages(zone, true);
6763 }
6764 
6765 void zone_pcp_enable(struct zone *zone)
6766 {
6767 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6768 		zone->pageset_high_max, zone->pageset_batch);
6769 	mutex_unlock(&pcp_batch_high_lock);
6770 }
6771 
6772 void zone_pcp_reset(struct zone *zone)
6773 {
6774 	int cpu;
6775 	struct per_cpu_zonestat *pzstats;
6776 
6777 	if (zone->per_cpu_pageset != &boot_pageset) {
6778 		for_each_online_cpu(cpu) {
6779 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6780 			drain_zonestat(zone, pzstats);
6781 		}
6782 		free_percpu(zone->per_cpu_pageset);
6783 		zone->per_cpu_pageset = &boot_pageset;
6784 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6785 			free_percpu(zone->per_cpu_zonestats);
6786 			zone->per_cpu_zonestats = &boot_zonestats;
6787 		}
6788 	}
6789 }
6790 
6791 #ifdef CONFIG_MEMORY_HOTREMOVE
6792 /*
6793  * All pages in the range must be in a single zone, must not contain holes,
6794  * must span full sections, and must be isolated before calling this function.
6795  *
6796  * Returns the number of managed (non-PageOffline()) pages in the range: the
6797  * number of pages for which memory offlining code must adjust managed page
6798  * counters using adjust_managed_page_count().
6799  */
6800 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6801 		unsigned long end_pfn)
6802 {
6803 	unsigned long already_offline = 0, flags;
6804 	unsigned long pfn = start_pfn;
6805 	struct page *page;
6806 	struct zone *zone;
6807 	unsigned int order;
6808 
6809 	offline_mem_sections(pfn, end_pfn);
6810 	zone = page_zone(pfn_to_page(pfn));
6811 	spin_lock_irqsave(&zone->lock, flags);
6812 	while (pfn < end_pfn) {
6813 		page = pfn_to_page(pfn);
6814 		/*
6815 		 * The HWPoisoned page may be not in buddy system, and
6816 		 * page_count() is not 0.
6817 		 */
6818 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6819 			pfn++;
6820 			continue;
6821 		}
6822 		/*
6823 		 * At this point all remaining PageOffline() pages have a
6824 		 * reference count of 0 and can simply be skipped.
6825 		 */
6826 		if (PageOffline(page)) {
6827 			BUG_ON(page_count(page));
6828 			BUG_ON(PageBuddy(page));
6829 			already_offline++;
6830 			pfn++;
6831 			continue;
6832 		}
6833 
6834 		BUG_ON(page_count(page));
6835 		BUG_ON(!PageBuddy(page));
6836 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6837 		order = buddy_order(page);
6838 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6839 		pfn += (1 << order);
6840 	}
6841 	spin_unlock_irqrestore(&zone->lock, flags);
6842 
6843 	return end_pfn - start_pfn - already_offline;
6844 }
6845 #endif
6846 
6847 /*
6848  * This function returns a stable result only if called under zone lock.
6849  */
6850 bool is_free_buddy_page(const struct page *page)
6851 {
6852 	unsigned long pfn = page_to_pfn(page);
6853 	unsigned int order;
6854 
6855 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6856 		const struct page *head = page - (pfn & ((1 << order) - 1));
6857 
6858 		if (PageBuddy(head) &&
6859 		    buddy_order_unsafe(head) >= order)
6860 			break;
6861 	}
6862 
6863 	return order <= MAX_PAGE_ORDER;
6864 }
6865 EXPORT_SYMBOL(is_free_buddy_page);
6866 
6867 #ifdef CONFIG_MEMORY_FAILURE
6868 static inline void add_to_free_list(struct page *page, struct zone *zone,
6869 				    unsigned int order, int migratetype,
6870 				    bool tail)
6871 {
6872 	__add_to_free_list(page, zone, order, migratetype, tail);
6873 	account_freepages(zone, 1 << order, migratetype);
6874 }
6875 
6876 /*
6877  * Break down a higher-order page in sub-pages, and keep our target out of
6878  * buddy allocator.
6879  */
6880 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6881 				   struct page *target, int low, int high,
6882 				   int migratetype)
6883 {
6884 	unsigned long size = 1 << high;
6885 	struct page *current_buddy;
6886 
6887 	while (high > low) {
6888 		high--;
6889 		size >>= 1;
6890 
6891 		if (target >= &page[size]) {
6892 			current_buddy = page;
6893 			page = page + size;
6894 		} else {
6895 			current_buddy = page + size;
6896 		}
6897 
6898 		if (set_page_guard(zone, current_buddy, high))
6899 			continue;
6900 
6901 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6902 		set_buddy_order(current_buddy, high);
6903 	}
6904 }
6905 
6906 /*
6907  * Take a page that will be marked as poisoned off the buddy allocator.
6908  */
6909 bool take_page_off_buddy(struct page *page)
6910 {
6911 	struct zone *zone = page_zone(page);
6912 	unsigned long pfn = page_to_pfn(page);
6913 	unsigned long flags;
6914 	unsigned int order;
6915 	bool ret = false;
6916 
6917 	spin_lock_irqsave(&zone->lock, flags);
6918 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6919 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6920 		int page_order = buddy_order(page_head);
6921 
6922 		if (PageBuddy(page_head) && page_order >= order) {
6923 			unsigned long pfn_head = page_to_pfn(page_head);
6924 			int migratetype = get_pfnblock_migratetype(page_head,
6925 								   pfn_head);
6926 
6927 			del_page_from_free_list(page_head, zone, page_order,
6928 						migratetype);
6929 			break_down_buddy_pages(zone, page_head, page, 0,
6930 						page_order, migratetype);
6931 			SetPageHWPoisonTakenOff(page);
6932 			ret = true;
6933 			break;
6934 		}
6935 		if (page_count(page_head) > 0)
6936 			break;
6937 	}
6938 	spin_unlock_irqrestore(&zone->lock, flags);
6939 	return ret;
6940 }
6941 
6942 /*
6943  * Cancel takeoff done by take_page_off_buddy().
6944  */
6945 bool put_page_back_buddy(struct page *page)
6946 {
6947 	struct zone *zone = page_zone(page);
6948 	unsigned long flags;
6949 	bool ret = false;
6950 
6951 	spin_lock_irqsave(&zone->lock, flags);
6952 	if (put_page_testzero(page)) {
6953 		unsigned long pfn = page_to_pfn(page);
6954 		int migratetype = get_pfnblock_migratetype(page, pfn);
6955 
6956 		ClearPageHWPoisonTakenOff(page);
6957 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6958 		if (TestClearPageHWPoison(page)) {
6959 			ret = true;
6960 		}
6961 	}
6962 	spin_unlock_irqrestore(&zone->lock, flags);
6963 
6964 	return ret;
6965 }
6966 #endif
6967 
6968 #ifdef CONFIG_ZONE_DMA
6969 bool has_managed_dma(void)
6970 {
6971 	struct pglist_data *pgdat;
6972 
6973 	for_each_online_pgdat(pgdat) {
6974 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6975 
6976 		if (managed_zone(zone))
6977 			return true;
6978 	}
6979 	return false;
6980 }
6981 #endif /* CONFIG_ZONE_DMA */
6982 
6983 #ifdef CONFIG_UNACCEPTED_MEMORY
6984 
6985 /* Counts number of zones with unaccepted pages. */
6986 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6987 
6988 static bool lazy_accept = true;
6989 
6990 static int __init accept_memory_parse(char *p)
6991 {
6992 	if (!strcmp(p, "lazy")) {
6993 		lazy_accept = true;
6994 		return 0;
6995 	} else if (!strcmp(p, "eager")) {
6996 		lazy_accept = false;
6997 		return 0;
6998 	} else {
6999 		return -EINVAL;
7000 	}
7001 }
7002 early_param("accept_memory", accept_memory_parse);
7003 
7004 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7005 {
7006 	phys_addr_t start = page_to_phys(page);
7007 
7008 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7009 }
7010 
7011 static void __accept_page(struct zone *zone, unsigned long *flags,
7012 			  struct page *page)
7013 {
7014 	bool last;
7015 
7016 	list_del(&page->lru);
7017 	last = list_empty(&zone->unaccepted_pages);
7018 
7019 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7020 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7021 	__ClearPageUnaccepted(page);
7022 	spin_unlock_irqrestore(&zone->lock, *flags);
7023 
7024 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7025 
7026 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7027 
7028 	if (last)
7029 		static_branch_dec(&zones_with_unaccepted_pages);
7030 }
7031 
7032 void accept_page(struct page *page)
7033 {
7034 	struct zone *zone = page_zone(page);
7035 	unsigned long flags;
7036 
7037 	spin_lock_irqsave(&zone->lock, flags);
7038 	if (!PageUnaccepted(page)) {
7039 		spin_unlock_irqrestore(&zone->lock, flags);
7040 		return;
7041 	}
7042 
7043 	/* Unlocks zone->lock */
7044 	__accept_page(zone, &flags, page);
7045 }
7046 
7047 static bool try_to_accept_memory_one(struct zone *zone)
7048 {
7049 	unsigned long flags;
7050 	struct page *page;
7051 
7052 	spin_lock_irqsave(&zone->lock, flags);
7053 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7054 					struct page, lru);
7055 	if (!page) {
7056 		spin_unlock_irqrestore(&zone->lock, flags);
7057 		return false;
7058 	}
7059 
7060 	/* Unlocks zone->lock */
7061 	__accept_page(zone, &flags, page);
7062 
7063 	return true;
7064 }
7065 
7066 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7067 {
7068 	long to_accept;
7069 	bool ret = false;
7070 
7071 	if (!has_unaccepted_memory())
7072 		return false;
7073 
7074 	if (list_empty(&zone->unaccepted_pages))
7075 		return false;
7076 
7077 	/* How much to accept to get to promo watermark? */
7078 	to_accept = promo_wmark_pages(zone) -
7079 		    (zone_page_state(zone, NR_FREE_PAGES) -
7080 		    __zone_watermark_unusable_free(zone, order, 0) -
7081 		    zone_page_state(zone, NR_UNACCEPTED));
7082 
7083 	while (to_accept > 0) {
7084 		if (!try_to_accept_memory_one(zone))
7085 			break;
7086 		ret = true;
7087 		to_accept -= MAX_ORDER_NR_PAGES;
7088 	}
7089 
7090 	return ret;
7091 }
7092 
7093 static inline bool has_unaccepted_memory(void)
7094 {
7095 	return static_branch_unlikely(&zones_with_unaccepted_pages);
7096 }
7097 
7098 static bool __free_unaccepted(struct page *page)
7099 {
7100 	struct zone *zone = page_zone(page);
7101 	unsigned long flags;
7102 	bool first = false;
7103 
7104 	if (!lazy_accept)
7105 		return false;
7106 
7107 	spin_lock_irqsave(&zone->lock, flags);
7108 	first = list_empty(&zone->unaccepted_pages);
7109 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7110 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7111 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7112 	__SetPageUnaccepted(page);
7113 	spin_unlock_irqrestore(&zone->lock, flags);
7114 
7115 	if (first)
7116 		static_branch_inc(&zones_with_unaccepted_pages);
7117 
7118 	return true;
7119 }
7120 
7121 #else
7122 
7123 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7124 {
7125 	return false;
7126 }
7127 
7128 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7129 {
7130 	return false;
7131 }
7132 
7133 static inline bool has_unaccepted_memory(void)
7134 {
7135 	return false;
7136 }
7137 
7138 static bool __free_unaccepted(struct page *page)
7139 {
7140 	BUILD_BUG();
7141 	return false;
7142 }
7143 
7144 #endif /* CONFIG_UNACCEPTED_MEMORY */
7145