1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page_ext.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 68 #include <asm/sections.h> 69 #include <asm/tlbflush.h> 70 #include <asm/div64.h> 71 #include "internal.h" 72 73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 74 static DEFINE_MUTEX(pcp_batch_high_lock); 75 #define MIN_PERCPU_PAGELIST_FRACTION (8) 76 77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 78 DEFINE_PER_CPU(int, numa_node); 79 EXPORT_PER_CPU_SYMBOL(numa_node); 80 #endif 81 82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 83 /* 84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 87 * defined in <linux/topology.h>. 88 */ 89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 90 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 91 int _node_numa_mem_[MAX_NUMNODES]; 92 #endif 93 94 /* 95 * Array of node states. 96 */ 97 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 98 [N_POSSIBLE] = NODE_MASK_ALL, 99 [N_ONLINE] = { { [0] = 1UL } }, 100 #ifndef CONFIG_NUMA 101 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 102 #ifdef CONFIG_HIGHMEM 103 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 104 #endif 105 #ifdef CONFIG_MOVABLE_NODE 106 [N_MEMORY] = { { [0] = 1UL } }, 107 #endif 108 [N_CPU] = { { [0] = 1UL } }, 109 #endif /* NUMA */ 110 }; 111 EXPORT_SYMBOL(node_states); 112 113 /* Protect totalram_pages and zone->managed_pages */ 114 static DEFINE_SPINLOCK(managed_page_count_lock); 115 116 unsigned long totalram_pages __read_mostly; 117 unsigned long totalreserve_pages __read_mostly; 118 unsigned long totalcma_pages __read_mostly; 119 120 int percpu_pagelist_fraction; 121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 122 123 /* 124 * A cached value of the page's pageblock's migratetype, used when the page is 125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 126 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 127 * Also the migratetype set in the page does not necessarily match the pcplist 128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 129 * other index - this ensures that it will be put on the correct CMA freelist. 130 */ 131 static inline int get_pcppage_migratetype(struct page *page) 132 { 133 return page->index; 134 } 135 136 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 137 { 138 page->index = migratetype; 139 } 140 141 #ifdef CONFIG_PM_SLEEP 142 /* 143 * The following functions are used by the suspend/hibernate code to temporarily 144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 145 * while devices are suspended. To avoid races with the suspend/hibernate code, 146 * they should always be called with pm_mutex held (gfp_allowed_mask also should 147 * only be modified with pm_mutex held, unless the suspend/hibernate code is 148 * guaranteed not to run in parallel with that modification). 149 */ 150 151 static gfp_t saved_gfp_mask; 152 153 void pm_restore_gfp_mask(void) 154 { 155 WARN_ON(!mutex_is_locked(&pm_mutex)); 156 if (saved_gfp_mask) { 157 gfp_allowed_mask = saved_gfp_mask; 158 saved_gfp_mask = 0; 159 } 160 } 161 162 void pm_restrict_gfp_mask(void) 163 { 164 WARN_ON(!mutex_is_locked(&pm_mutex)); 165 WARN_ON(saved_gfp_mask); 166 saved_gfp_mask = gfp_allowed_mask; 167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 168 } 169 170 bool pm_suspended_storage(void) 171 { 172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 173 return false; 174 return true; 175 } 176 #endif /* CONFIG_PM_SLEEP */ 177 178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 179 unsigned int pageblock_order __read_mostly; 180 #endif 181 182 static void __free_pages_ok(struct page *page, unsigned int order); 183 184 /* 185 * results with 256, 32 in the lowmem_reserve sysctl: 186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 187 * 1G machine -> (16M dma, 784M normal, 224M high) 188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 191 * 192 * TBD: should special case ZONE_DMA32 machines here - in those we normally 193 * don't need any ZONE_NORMAL reservation 194 */ 195 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 196 #ifdef CONFIG_ZONE_DMA 197 256, 198 #endif 199 #ifdef CONFIG_ZONE_DMA32 200 256, 201 #endif 202 #ifdef CONFIG_HIGHMEM 203 32, 204 #endif 205 32, 206 }; 207 208 EXPORT_SYMBOL(totalram_pages); 209 210 static char * const zone_names[MAX_NR_ZONES] = { 211 #ifdef CONFIG_ZONE_DMA 212 "DMA", 213 #endif 214 #ifdef CONFIG_ZONE_DMA32 215 "DMA32", 216 #endif 217 "Normal", 218 #ifdef CONFIG_HIGHMEM 219 "HighMem", 220 #endif 221 "Movable", 222 #ifdef CONFIG_ZONE_DEVICE 223 "Device", 224 #endif 225 }; 226 227 char * const migratetype_names[MIGRATE_TYPES] = { 228 "Unmovable", 229 "Movable", 230 "Reclaimable", 231 "HighAtomic", 232 #ifdef CONFIG_CMA 233 "CMA", 234 #endif 235 #ifdef CONFIG_MEMORY_ISOLATION 236 "Isolate", 237 #endif 238 }; 239 240 compound_page_dtor * const compound_page_dtors[] = { 241 NULL, 242 free_compound_page, 243 #ifdef CONFIG_HUGETLB_PAGE 244 free_huge_page, 245 #endif 246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 247 free_transhuge_page, 248 #endif 249 }; 250 251 int min_free_kbytes = 1024; 252 int user_min_free_kbytes = -1; 253 int watermark_scale_factor = 10; 254 255 static unsigned long __meminitdata nr_kernel_pages; 256 static unsigned long __meminitdata nr_all_pages; 257 static unsigned long __meminitdata dma_reserve; 258 259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 260 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 261 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 262 static unsigned long __initdata required_kernelcore; 263 static unsigned long __initdata required_movablecore; 264 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 265 static bool mirrored_kernelcore; 266 267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 268 int movable_zone; 269 EXPORT_SYMBOL(movable_zone); 270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 271 272 #if MAX_NUMNODES > 1 273 int nr_node_ids __read_mostly = MAX_NUMNODES; 274 int nr_online_nodes __read_mostly = 1; 275 EXPORT_SYMBOL(nr_node_ids); 276 EXPORT_SYMBOL(nr_online_nodes); 277 #endif 278 279 int page_group_by_mobility_disabled __read_mostly; 280 281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 282 static inline void reset_deferred_meminit(pg_data_t *pgdat) 283 { 284 pgdat->first_deferred_pfn = ULONG_MAX; 285 } 286 287 /* Returns true if the struct page for the pfn is uninitialised */ 288 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 289 { 290 int nid = early_pfn_to_nid(pfn); 291 292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 293 return true; 294 295 return false; 296 } 297 298 /* 299 * Returns false when the remaining initialisation should be deferred until 300 * later in the boot cycle when it can be parallelised. 301 */ 302 static inline bool update_defer_init(pg_data_t *pgdat, 303 unsigned long pfn, unsigned long zone_end, 304 unsigned long *nr_initialised) 305 { 306 unsigned long max_initialise; 307 308 /* Always populate low zones for address-contrained allocations */ 309 if (zone_end < pgdat_end_pfn(pgdat)) 310 return true; 311 /* 312 * Initialise at least 2G of a node but also take into account that 313 * two large system hashes that can take up 1GB for 0.25TB/node. 314 */ 315 max_initialise = max(2UL << (30 - PAGE_SHIFT), 316 (pgdat->node_spanned_pages >> 8)); 317 318 (*nr_initialised)++; 319 if ((*nr_initialised > max_initialise) && 320 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 321 pgdat->first_deferred_pfn = pfn; 322 return false; 323 } 324 325 return true; 326 } 327 #else 328 static inline void reset_deferred_meminit(pg_data_t *pgdat) 329 { 330 } 331 332 static inline bool early_page_uninitialised(unsigned long pfn) 333 { 334 return false; 335 } 336 337 static inline bool update_defer_init(pg_data_t *pgdat, 338 unsigned long pfn, unsigned long zone_end, 339 unsigned long *nr_initialised) 340 { 341 return true; 342 } 343 #endif 344 345 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 346 static inline unsigned long *get_pageblock_bitmap(struct page *page, 347 unsigned long pfn) 348 { 349 #ifdef CONFIG_SPARSEMEM 350 return __pfn_to_section(pfn)->pageblock_flags; 351 #else 352 return page_zone(page)->pageblock_flags; 353 #endif /* CONFIG_SPARSEMEM */ 354 } 355 356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 357 { 358 #ifdef CONFIG_SPARSEMEM 359 pfn &= (PAGES_PER_SECTION-1); 360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 361 #else 362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 364 #endif /* CONFIG_SPARSEMEM */ 365 } 366 367 /** 368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 369 * @page: The page within the block of interest 370 * @pfn: The target page frame number 371 * @end_bitidx: The last bit of interest to retrieve 372 * @mask: mask of bits that the caller is interested in 373 * 374 * Return: pageblock_bits flags 375 */ 376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 377 unsigned long pfn, 378 unsigned long end_bitidx, 379 unsigned long mask) 380 { 381 unsigned long *bitmap; 382 unsigned long bitidx, word_bitidx; 383 unsigned long word; 384 385 bitmap = get_pageblock_bitmap(page, pfn); 386 bitidx = pfn_to_bitidx(page, pfn); 387 word_bitidx = bitidx / BITS_PER_LONG; 388 bitidx &= (BITS_PER_LONG-1); 389 390 word = bitmap[word_bitidx]; 391 bitidx += end_bitidx; 392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 393 } 394 395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 396 unsigned long end_bitidx, 397 unsigned long mask) 398 { 399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 400 } 401 402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 403 { 404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 405 } 406 407 /** 408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 409 * @page: The page within the block of interest 410 * @flags: The flags to set 411 * @pfn: The target page frame number 412 * @end_bitidx: The last bit of interest 413 * @mask: mask of bits that the caller is interested in 414 */ 415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 416 unsigned long pfn, 417 unsigned long end_bitidx, 418 unsigned long mask) 419 { 420 unsigned long *bitmap; 421 unsigned long bitidx, word_bitidx; 422 unsigned long old_word, word; 423 424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 425 426 bitmap = get_pageblock_bitmap(page, pfn); 427 bitidx = pfn_to_bitidx(page, pfn); 428 word_bitidx = bitidx / BITS_PER_LONG; 429 bitidx &= (BITS_PER_LONG-1); 430 431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 432 433 bitidx += end_bitidx; 434 mask <<= (BITS_PER_LONG - bitidx - 1); 435 flags <<= (BITS_PER_LONG - bitidx - 1); 436 437 word = READ_ONCE(bitmap[word_bitidx]); 438 for (;;) { 439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 440 if (word == old_word) 441 break; 442 word = old_word; 443 } 444 } 445 446 void set_pageblock_migratetype(struct page *page, int migratetype) 447 { 448 if (unlikely(page_group_by_mobility_disabled && 449 migratetype < MIGRATE_PCPTYPES)) 450 migratetype = MIGRATE_UNMOVABLE; 451 452 set_pageblock_flags_group(page, (unsigned long)migratetype, 453 PB_migrate, PB_migrate_end); 454 } 455 456 #ifdef CONFIG_DEBUG_VM 457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 458 { 459 int ret = 0; 460 unsigned seq; 461 unsigned long pfn = page_to_pfn(page); 462 unsigned long sp, start_pfn; 463 464 do { 465 seq = zone_span_seqbegin(zone); 466 start_pfn = zone->zone_start_pfn; 467 sp = zone->spanned_pages; 468 if (!zone_spans_pfn(zone, pfn)) 469 ret = 1; 470 } while (zone_span_seqretry(zone, seq)); 471 472 if (ret) 473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 474 pfn, zone_to_nid(zone), zone->name, 475 start_pfn, start_pfn + sp); 476 477 return ret; 478 } 479 480 static int page_is_consistent(struct zone *zone, struct page *page) 481 { 482 if (!pfn_valid_within(page_to_pfn(page))) 483 return 0; 484 if (zone != page_zone(page)) 485 return 0; 486 487 return 1; 488 } 489 /* 490 * Temporary debugging check for pages not lying within a given zone. 491 */ 492 static int bad_range(struct zone *zone, struct page *page) 493 { 494 if (page_outside_zone_boundaries(zone, page)) 495 return 1; 496 if (!page_is_consistent(zone, page)) 497 return 1; 498 499 return 0; 500 } 501 #else 502 static inline int bad_range(struct zone *zone, struct page *page) 503 { 504 return 0; 505 } 506 #endif 507 508 static void bad_page(struct page *page, const char *reason, 509 unsigned long bad_flags) 510 { 511 static unsigned long resume; 512 static unsigned long nr_shown; 513 static unsigned long nr_unshown; 514 515 /* 516 * Allow a burst of 60 reports, then keep quiet for that minute; 517 * or allow a steady drip of one report per second. 518 */ 519 if (nr_shown == 60) { 520 if (time_before(jiffies, resume)) { 521 nr_unshown++; 522 goto out; 523 } 524 if (nr_unshown) { 525 pr_alert( 526 "BUG: Bad page state: %lu messages suppressed\n", 527 nr_unshown); 528 nr_unshown = 0; 529 } 530 nr_shown = 0; 531 } 532 if (nr_shown++ == 0) 533 resume = jiffies + 60 * HZ; 534 535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 536 current->comm, page_to_pfn(page)); 537 __dump_page(page, reason); 538 bad_flags &= page->flags; 539 if (bad_flags) 540 pr_alert("bad because of flags: %#lx(%pGp)\n", 541 bad_flags, &bad_flags); 542 dump_page_owner(page); 543 544 print_modules(); 545 dump_stack(); 546 out: 547 /* Leave bad fields for debug, except PageBuddy could make trouble */ 548 page_mapcount_reset(page); /* remove PageBuddy */ 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 550 } 551 552 /* 553 * Higher-order pages are called "compound pages". They are structured thusly: 554 * 555 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 556 * 557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 559 * 560 * The first tail page's ->compound_dtor holds the offset in array of compound 561 * page destructors. See compound_page_dtors. 562 * 563 * The first tail page's ->compound_order holds the order of allocation. 564 * This usage means that zero-order pages may not be compound. 565 */ 566 567 void free_compound_page(struct page *page) 568 { 569 __free_pages_ok(page, compound_order(page)); 570 } 571 572 void prep_compound_page(struct page *page, unsigned int order) 573 { 574 int i; 575 int nr_pages = 1 << order; 576 577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 578 set_compound_order(page, order); 579 __SetPageHead(page); 580 for (i = 1; i < nr_pages; i++) { 581 struct page *p = page + i; 582 set_page_count(p, 0); 583 p->mapping = TAIL_MAPPING; 584 set_compound_head(p, page); 585 } 586 atomic_set(compound_mapcount_ptr(page), -1); 587 } 588 589 #ifdef CONFIG_DEBUG_PAGEALLOC 590 unsigned int _debug_guardpage_minorder; 591 bool _debug_pagealloc_enabled __read_mostly 592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 593 EXPORT_SYMBOL(_debug_pagealloc_enabled); 594 bool _debug_guardpage_enabled __read_mostly; 595 596 static int __init early_debug_pagealloc(char *buf) 597 { 598 if (!buf) 599 return -EINVAL; 600 return kstrtobool(buf, &_debug_pagealloc_enabled); 601 } 602 early_param("debug_pagealloc", early_debug_pagealloc); 603 604 static bool need_debug_guardpage(void) 605 { 606 /* If we don't use debug_pagealloc, we don't need guard page */ 607 if (!debug_pagealloc_enabled()) 608 return false; 609 610 if (!debug_guardpage_minorder()) 611 return false; 612 613 return true; 614 } 615 616 static void init_debug_guardpage(void) 617 { 618 if (!debug_pagealloc_enabled()) 619 return; 620 621 if (!debug_guardpage_minorder()) 622 return; 623 624 _debug_guardpage_enabled = true; 625 } 626 627 struct page_ext_operations debug_guardpage_ops = { 628 .need = need_debug_guardpage, 629 .init = init_debug_guardpage, 630 }; 631 632 static int __init debug_guardpage_minorder_setup(char *buf) 633 { 634 unsigned long res; 635 636 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 637 pr_err("Bad debug_guardpage_minorder value\n"); 638 return 0; 639 } 640 _debug_guardpage_minorder = res; 641 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 642 return 0; 643 } 644 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 645 646 static inline bool set_page_guard(struct zone *zone, struct page *page, 647 unsigned int order, int migratetype) 648 { 649 struct page_ext *page_ext; 650 651 if (!debug_guardpage_enabled()) 652 return false; 653 654 if (order >= debug_guardpage_minorder()) 655 return false; 656 657 page_ext = lookup_page_ext(page); 658 if (unlikely(!page_ext)) 659 return false; 660 661 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 662 663 INIT_LIST_HEAD(&page->lru); 664 set_page_private(page, order); 665 /* Guard pages are not available for any usage */ 666 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 667 668 return true; 669 } 670 671 static inline void clear_page_guard(struct zone *zone, struct page *page, 672 unsigned int order, int migratetype) 673 { 674 struct page_ext *page_ext; 675 676 if (!debug_guardpage_enabled()) 677 return; 678 679 page_ext = lookup_page_ext(page); 680 if (unlikely(!page_ext)) 681 return; 682 683 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 684 685 set_page_private(page, 0); 686 if (!is_migrate_isolate(migratetype)) 687 __mod_zone_freepage_state(zone, (1 << order), migratetype); 688 } 689 #else 690 struct page_ext_operations debug_guardpage_ops; 691 static inline bool set_page_guard(struct zone *zone, struct page *page, 692 unsigned int order, int migratetype) { return false; } 693 static inline void clear_page_guard(struct zone *zone, struct page *page, 694 unsigned int order, int migratetype) {} 695 #endif 696 697 static inline void set_page_order(struct page *page, unsigned int order) 698 { 699 set_page_private(page, order); 700 __SetPageBuddy(page); 701 } 702 703 static inline void rmv_page_order(struct page *page) 704 { 705 __ClearPageBuddy(page); 706 set_page_private(page, 0); 707 } 708 709 /* 710 * This function checks whether a page is free && is the buddy 711 * we can do coalesce a page and its buddy if 712 * (a) the buddy is not in a hole && 713 * (b) the buddy is in the buddy system && 714 * (c) a page and its buddy have the same order && 715 * (d) a page and its buddy are in the same zone. 716 * 717 * For recording whether a page is in the buddy system, we set ->_mapcount 718 * PAGE_BUDDY_MAPCOUNT_VALUE. 719 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 720 * serialized by zone->lock. 721 * 722 * For recording page's order, we use page_private(page). 723 */ 724 static inline int page_is_buddy(struct page *page, struct page *buddy, 725 unsigned int order) 726 { 727 if (!pfn_valid_within(page_to_pfn(buddy))) 728 return 0; 729 730 if (page_is_guard(buddy) && page_order(buddy) == order) { 731 if (page_zone_id(page) != page_zone_id(buddy)) 732 return 0; 733 734 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 735 736 return 1; 737 } 738 739 if (PageBuddy(buddy) && page_order(buddy) == order) { 740 /* 741 * zone check is done late to avoid uselessly 742 * calculating zone/node ids for pages that could 743 * never merge. 744 */ 745 if (page_zone_id(page) != page_zone_id(buddy)) 746 return 0; 747 748 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 749 750 return 1; 751 } 752 return 0; 753 } 754 755 /* 756 * Freeing function for a buddy system allocator. 757 * 758 * The concept of a buddy system is to maintain direct-mapped table 759 * (containing bit values) for memory blocks of various "orders". 760 * The bottom level table contains the map for the smallest allocatable 761 * units of memory (here, pages), and each level above it describes 762 * pairs of units from the levels below, hence, "buddies". 763 * At a high level, all that happens here is marking the table entry 764 * at the bottom level available, and propagating the changes upward 765 * as necessary, plus some accounting needed to play nicely with other 766 * parts of the VM system. 767 * At each level, we keep a list of pages, which are heads of continuous 768 * free pages of length of (1 << order) and marked with _mapcount 769 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 770 * field. 771 * So when we are allocating or freeing one, we can derive the state of the 772 * other. That is, if we allocate a small block, and both were 773 * free, the remainder of the region must be split into blocks. 774 * If a block is freed, and its buddy is also free, then this 775 * triggers coalescing into a block of larger size. 776 * 777 * -- nyc 778 */ 779 780 static inline void __free_one_page(struct page *page, 781 unsigned long pfn, 782 struct zone *zone, unsigned int order, 783 int migratetype) 784 { 785 unsigned long page_idx; 786 unsigned long combined_idx; 787 unsigned long uninitialized_var(buddy_idx); 788 struct page *buddy; 789 unsigned int max_order; 790 791 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 792 793 VM_BUG_ON(!zone_is_initialized(zone)); 794 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 795 796 VM_BUG_ON(migratetype == -1); 797 if (likely(!is_migrate_isolate(migratetype))) 798 __mod_zone_freepage_state(zone, 1 << order, migratetype); 799 800 page_idx = pfn & ((1 << MAX_ORDER) - 1); 801 802 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 803 VM_BUG_ON_PAGE(bad_range(zone, page), page); 804 805 continue_merging: 806 while (order < max_order - 1) { 807 buddy_idx = __find_buddy_index(page_idx, order); 808 buddy = page + (buddy_idx - page_idx); 809 if (!page_is_buddy(page, buddy, order)) 810 goto done_merging; 811 /* 812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 813 * merge with it and move up one order. 814 */ 815 if (page_is_guard(buddy)) { 816 clear_page_guard(zone, buddy, order, migratetype); 817 } else { 818 list_del(&buddy->lru); 819 zone->free_area[order].nr_free--; 820 rmv_page_order(buddy); 821 } 822 combined_idx = buddy_idx & page_idx; 823 page = page + (combined_idx - page_idx); 824 page_idx = combined_idx; 825 order++; 826 } 827 if (max_order < MAX_ORDER) { 828 /* If we are here, it means order is >= pageblock_order. 829 * We want to prevent merge between freepages on isolate 830 * pageblock and normal pageblock. Without this, pageblock 831 * isolation could cause incorrect freepage or CMA accounting. 832 * 833 * We don't want to hit this code for the more frequent 834 * low-order merging. 835 */ 836 if (unlikely(has_isolate_pageblock(zone))) { 837 int buddy_mt; 838 839 buddy_idx = __find_buddy_index(page_idx, order); 840 buddy = page + (buddy_idx - page_idx); 841 buddy_mt = get_pageblock_migratetype(buddy); 842 843 if (migratetype != buddy_mt 844 && (is_migrate_isolate(migratetype) || 845 is_migrate_isolate(buddy_mt))) 846 goto done_merging; 847 } 848 max_order++; 849 goto continue_merging; 850 } 851 852 done_merging: 853 set_page_order(page, order); 854 855 /* 856 * If this is not the largest possible page, check if the buddy 857 * of the next-highest order is free. If it is, it's possible 858 * that pages are being freed that will coalesce soon. In case, 859 * that is happening, add the free page to the tail of the list 860 * so it's less likely to be used soon and more likely to be merged 861 * as a higher order page 862 */ 863 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 864 struct page *higher_page, *higher_buddy; 865 combined_idx = buddy_idx & page_idx; 866 higher_page = page + (combined_idx - page_idx); 867 buddy_idx = __find_buddy_index(combined_idx, order + 1); 868 higher_buddy = higher_page + (buddy_idx - combined_idx); 869 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 870 list_add_tail(&page->lru, 871 &zone->free_area[order].free_list[migratetype]); 872 goto out; 873 } 874 } 875 876 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 877 out: 878 zone->free_area[order].nr_free++; 879 } 880 881 /* 882 * A bad page could be due to a number of fields. Instead of multiple branches, 883 * try and check multiple fields with one check. The caller must do a detailed 884 * check if necessary. 885 */ 886 static inline bool page_expected_state(struct page *page, 887 unsigned long check_flags) 888 { 889 if (unlikely(atomic_read(&page->_mapcount) != -1)) 890 return false; 891 892 if (unlikely((unsigned long)page->mapping | 893 page_ref_count(page) | 894 #ifdef CONFIG_MEMCG 895 (unsigned long)page->mem_cgroup | 896 #endif 897 (page->flags & check_flags))) 898 return false; 899 900 return true; 901 } 902 903 static void free_pages_check_bad(struct page *page) 904 { 905 const char *bad_reason; 906 unsigned long bad_flags; 907 908 bad_reason = NULL; 909 bad_flags = 0; 910 911 if (unlikely(atomic_read(&page->_mapcount) != -1)) 912 bad_reason = "nonzero mapcount"; 913 if (unlikely(page->mapping != NULL)) 914 bad_reason = "non-NULL mapping"; 915 if (unlikely(page_ref_count(page) != 0)) 916 bad_reason = "nonzero _refcount"; 917 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 918 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 919 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 920 } 921 #ifdef CONFIG_MEMCG 922 if (unlikely(page->mem_cgroup)) 923 bad_reason = "page still charged to cgroup"; 924 #endif 925 bad_page(page, bad_reason, bad_flags); 926 } 927 928 static inline int free_pages_check(struct page *page) 929 { 930 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 931 return 0; 932 933 /* Something has gone sideways, find it */ 934 free_pages_check_bad(page); 935 return 1; 936 } 937 938 static int free_tail_pages_check(struct page *head_page, struct page *page) 939 { 940 int ret = 1; 941 942 /* 943 * We rely page->lru.next never has bit 0 set, unless the page 944 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 945 */ 946 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 947 948 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 949 ret = 0; 950 goto out; 951 } 952 switch (page - head_page) { 953 case 1: 954 /* the first tail page: ->mapping is compound_mapcount() */ 955 if (unlikely(compound_mapcount(page))) { 956 bad_page(page, "nonzero compound_mapcount", 0); 957 goto out; 958 } 959 break; 960 case 2: 961 /* 962 * the second tail page: ->mapping is 963 * page_deferred_list().next -- ignore value. 964 */ 965 break; 966 default: 967 if (page->mapping != TAIL_MAPPING) { 968 bad_page(page, "corrupted mapping in tail page", 0); 969 goto out; 970 } 971 break; 972 } 973 if (unlikely(!PageTail(page))) { 974 bad_page(page, "PageTail not set", 0); 975 goto out; 976 } 977 if (unlikely(compound_head(page) != head_page)) { 978 bad_page(page, "compound_head not consistent", 0); 979 goto out; 980 } 981 ret = 0; 982 out: 983 page->mapping = NULL; 984 clear_compound_head(page); 985 return ret; 986 } 987 988 static __always_inline bool free_pages_prepare(struct page *page, 989 unsigned int order, bool check_free) 990 { 991 int bad = 0; 992 993 VM_BUG_ON_PAGE(PageTail(page), page); 994 995 trace_mm_page_free(page, order); 996 kmemcheck_free_shadow(page, order); 997 998 /* 999 * Check tail pages before head page information is cleared to 1000 * avoid checking PageCompound for order-0 pages. 1001 */ 1002 if (unlikely(order)) { 1003 bool compound = PageCompound(page); 1004 int i; 1005 1006 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1007 1008 if (compound) 1009 ClearPageDoubleMap(page); 1010 for (i = 1; i < (1 << order); i++) { 1011 if (compound) 1012 bad += free_tail_pages_check(page, page + i); 1013 if (unlikely(free_pages_check(page + i))) { 1014 bad++; 1015 continue; 1016 } 1017 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1018 } 1019 } 1020 if (PageMappingFlags(page)) 1021 page->mapping = NULL; 1022 if (memcg_kmem_enabled() && PageKmemcg(page)) 1023 memcg_kmem_uncharge(page, order); 1024 if (check_free) 1025 bad += free_pages_check(page); 1026 if (bad) 1027 return false; 1028 1029 page_cpupid_reset_last(page); 1030 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1031 reset_page_owner(page, order); 1032 1033 if (!PageHighMem(page)) { 1034 debug_check_no_locks_freed(page_address(page), 1035 PAGE_SIZE << order); 1036 debug_check_no_obj_freed(page_address(page), 1037 PAGE_SIZE << order); 1038 } 1039 arch_free_page(page, order); 1040 kernel_poison_pages(page, 1 << order, 0); 1041 kernel_map_pages(page, 1 << order, 0); 1042 kasan_free_pages(page, order); 1043 1044 return true; 1045 } 1046 1047 #ifdef CONFIG_DEBUG_VM 1048 static inline bool free_pcp_prepare(struct page *page) 1049 { 1050 return free_pages_prepare(page, 0, true); 1051 } 1052 1053 static inline bool bulkfree_pcp_prepare(struct page *page) 1054 { 1055 return false; 1056 } 1057 #else 1058 static bool free_pcp_prepare(struct page *page) 1059 { 1060 return free_pages_prepare(page, 0, false); 1061 } 1062 1063 static bool bulkfree_pcp_prepare(struct page *page) 1064 { 1065 return free_pages_check(page); 1066 } 1067 #endif /* CONFIG_DEBUG_VM */ 1068 1069 /* 1070 * Frees a number of pages from the PCP lists 1071 * Assumes all pages on list are in same zone, and of same order. 1072 * count is the number of pages to free. 1073 * 1074 * If the zone was previously in an "all pages pinned" state then look to 1075 * see if this freeing clears that state. 1076 * 1077 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1078 * pinned" detection logic. 1079 */ 1080 static void free_pcppages_bulk(struct zone *zone, int count, 1081 struct per_cpu_pages *pcp) 1082 { 1083 int migratetype = 0; 1084 int batch_free = 0; 1085 unsigned long nr_scanned; 1086 bool isolated_pageblocks; 1087 1088 spin_lock(&zone->lock); 1089 isolated_pageblocks = has_isolate_pageblock(zone); 1090 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); 1091 if (nr_scanned) 1092 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); 1093 1094 while (count) { 1095 struct page *page; 1096 struct list_head *list; 1097 1098 /* 1099 * Remove pages from lists in a round-robin fashion. A 1100 * batch_free count is maintained that is incremented when an 1101 * empty list is encountered. This is so more pages are freed 1102 * off fuller lists instead of spinning excessively around empty 1103 * lists 1104 */ 1105 do { 1106 batch_free++; 1107 if (++migratetype == MIGRATE_PCPTYPES) 1108 migratetype = 0; 1109 list = &pcp->lists[migratetype]; 1110 } while (list_empty(list)); 1111 1112 /* This is the only non-empty list. Free them all. */ 1113 if (batch_free == MIGRATE_PCPTYPES) 1114 batch_free = count; 1115 1116 do { 1117 int mt; /* migratetype of the to-be-freed page */ 1118 1119 page = list_last_entry(list, struct page, lru); 1120 /* must delete as __free_one_page list manipulates */ 1121 list_del(&page->lru); 1122 1123 mt = get_pcppage_migratetype(page); 1124 /* MIGRATE_ISOLATE page should not go to pcplists */ 1125 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1126 /* Pageblock could have been isolated meanwhile */ 1127 if (unlikely(isolated_pageblocks)) 1128 mt = get_pageblock_migratetype(page); 1129 1130 if (bulkfree_pcp_prepare(page)) 1131 continue; 1132 1133 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1134 trace_mm_page_pcpu_drain(page, 0, mt); 1135 } while (--count && --batch_free && !list_empty(list)); 1136 } 1137 spin_unlock(&zone->lock); 1138 } 1139 1140 static void free_one_page(struct zone *zone, 1141 struct page *page, unsigned long pfn, 1142 unsigned int order, 1143 int migratetype) 1144 { 1145 unsigned long nr_scanned; 1146 spin_lock(&zone->lock); 1147 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); 1148 if (nr_scanned) 1149 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); 1150 1151 if (unlikely(has_isolate_pageblock(zone) || 1152 is_migrate_isolate(migratetype))) { 1153 migratetype = get_pfnblock_migratetype(page, pfn); 1154 } 1155 __free_one_page(page, pfn, zone, order, migratetype); 1156 spin_unlock(&zone->lock); 1157 } 1158 1159 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1160 unsigned long zone, int nid) 1161 { 1162 set_page_links(page, zone, nid, pfn); 1163 init_page_count(page); 1164 page_mapcount_reset(page); 1165 page_cpupid_reset_last(page); 1166 1167 INIT_LIST_HEAD(&page->lru); 1168 #ifdef WANT_PAGE_VIRTUAL 1169 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1170 if (!is_highmem_idx(zone)) 1171 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1172 #endif 1173 } 1174 1175 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1176 int nid) 1177 { 1178 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 1179 } 1180 1181 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1182 static void init_reserved_page(unsigned long pfn) 1183 { 1184 pg_data_t *pgdat; 1185 int nid, zid; 1186 1187 if (!early_page_uninitialised(pfn)) 1188 return; 1189 1190 nid = early_pfn_to_nid(pfn); 1191 pgdat = NODE_DATA(nid); 1192 1193 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1194 struct zone *zone = &pgdat->node_zones[zid]; 1195 1196 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1197 break; 1198 } 1199 __init_single_pfn(pfn, zid, nid); 1200 } 1201 #else 1202 static inline void init_reserved_page(unsigned long pfn) 1203 { 1204 } 1205 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1206 1207 /* 1208 * Initialised pages do not have PageReserved set. This function is 1209 * called for each range allocated by the bootmem allocator and 1210 * marks the pages PageReserved. The remaining valid pages are later 1211 * sent to the buddy page allocator. 1212 */ 1213 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1214 { 1215 unsigned long start_pfn = PFN_DOWN(start); 1216 unsigned long end_pfn = PFN_UP(end); 1217 1218 for (; start_pfn < end_pfn; start_pfn++) { 1219 if (pfn_valid(start_pfn)) { 1220 struct page *page = pfn_to_page(start_pfn); 1221 1222 init_reserved_page(start_pfn); 1223 1224 /* Avoid false-positive PageTail() */ 1225 INIT_LIST_HEAD(&page->lru); 1226 1227 SetPageReserved(page); 1228 } 1229 } 1230 } 1231 1232 static void __free_pages_ok(struct page *page, unsigned int order) 1233 { 1234 unsigned long flags; 1235 int migratetype; 1236 unsigned long pfn = page_to_pfn(page); 1237 1238 if (!free_pages_prepare(page, order, true)) 1239 return; 1240 1241 migratetype = get_pfnblock_migratetype(page, pfn); 1242 local_irq_save(flags); 1243 __count_vm_events(PGFREE, 1 << order); 1244 free_one_page(page_zone(page), page, pfn, order, migratetype); 1245 local_irq_restore(flags); 1246 } 1247 1248 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1249 { 1250 unsigned int nr_pages = 1 << order; 1251 struct page *p = page; 1252 unsigned int loop; 1253 1254 prefetchw(p); 1255 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1256 prefetchw(p + 1); 1257 __ClearPageReserved(p); 1258 set_page_count(p, 0); 1259 } 1260 __ClearPageReserved(p); 1261 set_page_count(p, 0); 1262 1263 page_zone(page)->managed_pages += nr_pages; 1264 set_page_refcounted(page); 1265 __free_pages(page, order); 1266 } 1267 1268 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1269 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1270 1271 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1272 1273 int __meminit early_pfn_to_nid(unsigned long pfn) 1274 { 1275 static DEFINE_SPINLOCK(early_pfn_lock); 1276 int nid; 1277 1278 spin_lock(&early_pfn_lock); 1279 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1280 if (nid < 0) 1281 nid = first_online_node; 1282 spin_unlock(&early_pfn_lock); 1283 1284 return nid; 1285 } 1286 #endif 1287 1288 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1289 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1290 struct mminit_pfnnid_cache *state) 1291 { 1292 int nid; 1293 1294 nid = __early_pfn_to_nid(pfn, state); 1295 if (nid >= 0 && nid != node) 1296 return false; 1297 return true; 1298 } 1299 1300 /* Only safe to use early in boot when initialisation is single-threaded */ 1301 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1302 { 1303 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1304 } 1305 1306 #else 1307 1308 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1309 { 1310 return true; 1311 } 1312 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1313 struct mminit_pfnnid_cache *state) 1314 { 1315 return true; 1316 } 1317 #endif 1318 1319 1320 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1321 unsigned int order) 1322 { 1323 if (early_page_uninitialised(pfn)) 1324 return; 1325 return __free_pages_boot_core(page, order); 1326 } 1327 1328 /* 1329 * Check that the whole (or subset of) a pageblock given by the interval of 1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1331 * with the migration of free compaction scanner. The scanners then need to 1332 * use only pfn_valid_within() check for arches that allow holes within 1333 * pageblocks. 1334 * 1335 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1336 * 1337 * It's possible on some configurations to have a setup like node0 node1 node0 1338 * i.e. it's possible that all pages within a zones range of pages do not 1339 * belong to a single zone. We assume that a border between node0 and node1 1340 * can occur within a single pageblock, but not a node0 node1 node0 1341 * interleaving within a single pageblock. It is therefore sufficient to check 1342 * the first and last page of a pageblock and avoid checking each individual 1343 * page in a pageblock. 1344 */ 1345 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1346 unsigned long end_pfn, struct zone *zone) 1347 { 1348 struct page *start_page; 1349 struct page *end_page; 1350 1351 /* end_pfn is one past the range we are checking */ 1352 end_pfn--; 1353 1354 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1355 return NULL; 1356 1357 start_page = pfn_to_page(start_pfn); 1358 1359 if (page_zone(start_page) != zone) 1360 return NULL; 1361 1362 end_page = pfn_to_page(end_pfn); 1363 1364 /* This gives a shorter code than deriving page_zone(end_page) */ 1365 if (page_zone_id(start_page) != page_zone_id(end_page)) 1366 return NULL; 1367 1368 return start_page; 1369 } 1370 1371 void set_zone_contiguous(struct zone *zone) 1372 { 1373 unsigned long block_start_pfn = zone->zone_start_pfn; 1374 unsigned long block_end_pfn; 1375 1376 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1377 for (; block_start_pfn < zone_end_pfn(zone); 1378 block_start_pfn = block_end_pfn, 1379 block_end_pfn += pageblock_nr_pages) { 1380 1381 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1382 1383 if (!__pageblock_pfn_to_page(block_start_pfn, 1384 block_end_pfn, zone)) 1385 return; 1386 } 1387 1388 /* We confirm that there is no hole */ 1389 zone->contiguous = true; 1390 } 1391 1392 void clear_zone_contiguous(struct zone *zone) 1393 { 1394 zone->contiguous = false; 1395 } 1396 1397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1398 static void __init deferred_free_range(struct page *page, 1399 unsigned long pfn, int nr_pages) 1400 { 1401 int i; 1402 1403 if (!page) 1404 return; 1405 1406 /* Free a large naturally-aligned chunk if possible */ 1407 if (nr_pages == pageblock_nr_pages && 1408 (pfn & (pageblock_nr_pages - 1)) == 0) { 1409 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1410 __free_pages_boot_core(page, pageblock_order); 1411 return; 1412 } 1413 1414 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1415 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1416 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1417 __free_pages_boot_core(page, 0); 1418 } 1419 } 1420 1421 /* Completion tracking for deferred_init_memmap() threads */ 1422 static atomic_t pgdat_init_n_undone __initdata; 1423 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1424 1425 static inline void __init pgdat_init_report_one_done(void) 1426 { 1427 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1428 complete(&pgdat_init_all_done_comp); 1429 } 1430 1431 /* Initialise remaining memory on a node */ 1432 static int __init deferred_init_memmap(void *data) 1433 { 1434 pg_data_t *pgdat = data; 1435 int nid = pgdat->node_id; 1436 struct mminit_pfnnid_cache nid_init_state = { }; 1437 unsigned long start = jiffies; 1438 unsigned long nr_pages = 0; 1439 unsigned long walk_start, walk_end; 1440 int i, zid; 1441 struct zone *zone; 1442 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1443 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1444 1445 if (first_init_pfn == ULONG_MAX) { 1446 pgdat_init_report_one_done(); 1447 return 0; 1448 } 1449 1450 /* Bind memory initialisation thread to a local node if possible */ 1451 if (!cpumask_empty(cpumask)) 1452 set_cpus_allowed_ptr(current, cpumask); 1453 1454 /* Sanity check boundaries */ 1455 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1456 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1457 pgdat->first_deferred_pfn = ULONG_MAX; 1458 1459 /* Only the highest zone is deferred so find it */ 1460 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1461 zone = pgdat->node_zones + zid; 1462 if (first_init_pfn < zone_end_pfn(zone)) 1463 break; 1464 } 1465 1466 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1467 unsigned long pfn, end_pfn; 1468 struct page *page = NULL; 1469 struct page *free_base_page = NULL; 1470 unsigned long free_base_pfn = 0; 1471 int nr_to_free = 0; 1472 1473 end_pfn = min(walk_end, zone_end_pfn(zone)); 1474 pfn = first_init_pfn; 1475 if (pfn < walk_start) 1476 pfn = walk_start; 1477 if (pfn < zone->zone_start_pfn) 1478 pfn = zone->zone_start_pfn; 1479 1480 for (; pfn < end_pfn; pfn++) { 1481 if (!pfn_valid_within(pfn)) 1482 goto free_range; 1483 1484 /* 1485 * Ensure pfn_valid is checked every 1486 * pageblock_nr_pages for memory holes 1487 */ 1488 if ((pfn & (pageblock_nr_pages - 1)) == 0) { 1489 if (!pfn_valid(pfn)) { 1490 page = NULL; 1491 goto free_range; 1492 } 1493 } 1494 1495 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1496 page = NULL; 1497 goto free_range; 1498 } 1499 1500 /* Minimise pfn page lookups and scheduler checks */ 1501 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) { 1502 page++; 1503 } else { 1504 nr_pages += nr_to_free; 1505 deferred_free_range(free_base_page, 1506 free_base_pfn, nr_to_free); 1507 free_base_page = NULL; 1508 free_base_pfn = nr_to_free = 0; 1509 1510 page = pfn_to_page(pfn); 1511 cond_resched(); 1512 } 1513 1514 if (page->flags) { 1515 VM_BUG_ON(page_zone(page) != zone); 1516 goto free_range; 1517 } 1518 1519 __init_single_page(page, pfn, zid, nid); 1520 if (!free_base_page) { 1521 free_base_page = page; 1522 free_base_pfn = pfn; 1523 nr_to_free = 0; 1524 } 1525 nr_to_free++; 1526 1527 /* Where possible, batch up pages for a single free */ 1528 continue; 1529 free_range: 1530 /* Free the current block of pages to allocator */ 1531 nr_pages += nr_to_free; 1532 deferred_free_range(free_base_page, free_base_pfn, 1533 nr_to_free); 1534 free_base_page = NULL; 1535 free_base_pfn = nr_to_free = 0; 1536 } 1537 /* Free the last block of pages to allocator */ 1538 nr_pages += nr_to_free; 1539 deferred_free_range(free_base_page, free_base_pfn, nr_to_free); 1540 1541 first_init_pfn = max(end_pfn, first_init_pfn); 1542 } 1543 1544 /* Sanity check that the next zone really is unpopulated */ 1545 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1546 1547 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1548 jiffies_to_msecs(jiffies - start)); 1549 1550 pgdat_init_report_one_done(); 1551 return 0; 1552 } 1553 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1554 1555 void __init page_alloc_init_late(void) 1556 { 1557 struct zone *zone; 1558 1559 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1560 int nid; 1561 1562 /* There will be num_node_state(N_MEMORY) threads */ 1563 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1564 for_each_node_state(nid, N_MEMORY) { 1565 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1566 } 1567 1568 /* Block until all are initialised */ 1569 wait_for_completion(&pgdat_init_all_done_comp); 1570 1571 /* Reinit limits that are based on free pages after the kernel is up */ 1572 files_maxfiles_init(); 1573 #endif 1574 1575 for_each_populated_zone(zone) 1576 set_zone_contiguous(zone); 1577 } 1578 1579 #ifdef CONFIG_CMA 1580 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1581 void __init init_cma_reserved_pageblock(struct page *page) 1582 { 1583 unsigned i = pageblock_nr_pages; 1584 struct page *p = page; 1585 1586 do { 1587 __ClearPageReserved(p); 1588 set_page_count(p, 0); 1589 } while (++p, --i); 1590 1591 set_pageblock_migratetype(page, MIGRATE_CMA); 1592 1593 if (pageblock_order >= MAX_ORDER) { 1594 i = pageblock_nr_pages; 1595 p = page; 1596 do { 1597 set_page_refcounted(p); 1598 __free_pages(p, MAX_ORDER - 1); 1599 p += MAX_ORDER_NR_PAGES; 1600 } while (i -= MAX_ORDER_NR_PAGES); 1601 } else { 1602 set_page_refcounted(page); 1603 __free_pages(page, pageblock_order); 1604 } 1605 1606 adjust_managed_page_count(page, pageblock_nr_pages); 1607 } 1608 #endif 1609 1610 /* 1611 * The order of subdivision here is critical for the IO subsystem. 1612 * Please do not alter this order without good reasons and regression 1613 * testing. Specifically, as large blocks of memory are subdivided, 1614 * the order in which smaller blocks are delivered depends on the order 1615 * they're subdivided in this function. This is the primary factor 1616 * influencing the order in which pages are delivered to the IO 1617 * subsystem according to empirical testing, and this is also justified 1618 * by considering the behavior of a buddy system containing a single 1619 * large block of memory acted on by a series of small allocations. 1620 * This behavior is a critical factor in sglist merging's success. 1621 * 1622 * -- nyc 1623 */ 1624 static inline void expand(struct zone *zone, struct page *page, 1625 int low, int high, struct free_area *area, 1626 int migratetype) 1627 { 1628 unsigned long size = 1 << high; 1629 1630 while (high > low) { 1631 area--; 1632 high--; 1633 size >>= 1; 1634 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1635 1636 /* 1637 * Mark as guard pages (or page), that will allow to 1638 * merge back to allocator when buddy will be freed. 1639 * Corresponding page table entries will not be touched, 1640 * pages will stay not present in virtual address space 1641 */ 1642 if (set_page_guard(zone, &page[size], high, migratetype)) 1643 continue; 1644 1645 list_add(&page[size].lru, &area->free_list[migratetype]); 1646 area->nr_free++; 1647 set_page_order(&page[size], high); 1648 } 1649 } 1650 1651 static void check_new_page_bad(struct page *page) 1652 { 1653 const char *bad_reason = NULL; 1654 unsigned long bad_flags = 0; 1655 1656 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1657 bad_reason = "nonzero mapcount"; 1658 if (unlikely(page->mapping != NULL)) 1659 bad_reason = "non-NULL mapping"; 1660 if (unlikely(page_ref_count(page) != 0)) 1661 bad_reason = "nonzero _count"; 1662 if (unlikely(page->flags & __PG_HWPOISON)) { 1663 bad_reason = "HWPoisoned (hardware-corrupted)"; 1664 bad_flags = __PG_HWPOISON; 1665 /* Don't complain about hwpoisoned pages */ 1666 page_mapcount_reset(page); /* remove PageBuddy */ 1667 return; 1668 } 1669 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1670 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1671 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1672 } 1673 #ifdef CONFIG_MEMCG 1674 if (unlikely(page->mem_cgroup)) 1675 bad_reason = "page still charged to cgroup"; 1676 #endif 1677 bad_page(page, bad_reason, bad_flags); 1678 } 1679 1680 /* 1681 * This page is about to be returned from the page allocator 1682 */ 1683 static inline int check_new_page(struct page *page) 1684 { 1685 if (likely(page_expected_state(page, 1686 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1687 return 0; 1688 1689 check_new_page_bad(page); 1690 return 1; 1691 } 1692 1693 static inline bool free_pages_prezeroed(bool poisoned) 1694 { 1695 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1696 page_poisoning_enabled() && poisoned; 1697 } 1698 1699 #ifdef CONFIG_DEBUG_VM 1700 static bool check_pcp_refill(struct page *page) 1701 { 1702 return false; 1703 } 1704 1705 static bool check_new_pcp(struct page *page) 1706 { 1707 return check_new_page(page); 1708 } 1709 #else 1710 static bool check_pcp_refill(struct page *page) 1711 { 1712 return check_new_page(page); 1713 } 1714 static bool check_new_pcp(struct page *page) 1715 { 1716 return false; 1717 } 1718 #endif /* CONFIG_DEBUG_VM */ 1719 1720 static bool check_new_pages(struct page *page, unsigned int order) 1721 { 1722 int i; 1723 for (i = 0; i < (1 << order); i++) { 1724 struct page *p = page + i; 1725 1726 if (unlikely(check_new_page(p))) 1727 return true; 1728 } 1729 1730 return false; 1731 } 1732 1733 inline void post_alloc_hook(struct page *page, unsigned int order, 1734 gfp_t gfp_flags) 1735 { 1736 set_page_private(page, 0); 1737 set_page_refcounted(page); 1738 1739 arch_alloc_page(page, order); 1740 kernel_map_pages(page, 1 << order, 1); 1741 kernel_poison_pages(page, 1 << order, 1); 1742 kasan_alloc_pages(page, order); 1743 set_page_owner(page, order, gfp_flags); 1744 } 1745 1746 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1747 unsigned int alloc_flags) 1748 { 1749 int i; 1750 bool poisoned = true; 1751 1752 for (i = 0; i < (1 << order); i++) { 1753 struct page *p = page + i; 1754 if (poisoned) 1755 poisoned &= page_is_poisoned(p); 1756 } 1757 1758 post_alloc_hook(page, order, gfp_flags); 1759 1760 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO)) 1761 for (i = 0; i < (1 << order); i++) 1762 clear_highpage(page + i); 1763 1764 if (order && (gfp_flags & __GFP_COMP)) 1765 prep_compound_page(page, order); 1766 1767 /* 1768 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1769 * allocate the page. The expectation is that the caller is taking 1770 * steps that will free more memory. The caller should avoid the page 1771 * being used for !PFMEMALLOC purposes. 1772 */ 1773 if (alloc_flags & ALLOC_NO_WATERMARKS) 1774 set_page_pfmemalloc(page); 1775 else 1776 clear_page_pfmemalloc(page); 1777 } 1778 1779 /* 1780 * Go through the free lists for the given migratetype and remove 1781 * the smallest available page from the freelists 1782 */ 1783 static inline 1784 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1785 int migratetype) 1786 { 1787 unsigned int current_order; 1788 struct free_area *area; 1789 struct page *page; 1790 1791 /* Find a page of the appropriate size in the preferred list */ 1792 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1793 area = &(zone->free_area[current_order]); 1794 page = list_first_entry_or_null(&area->free_list[migratetype], 1795 struct page, lru); 1796 if (!page) 1797 continue; 1798 list_del(&page->lru); 1799 rmv_page_order(page); 1800 area->nr_free--; 1801 expand(zone, page, order, current_order, area, migratetype); 1802 set_pcppage_migratetype(page, migratetype); 1803 return page; 1804 } 1805 1806 return NULL; 1807 } 1808 1809 1810 /* 1811 * This array describes the order lists are fallen back to when 1812 * the free lists for the desirable migrate type are depleted 1813 */ 1814 static int fallbacks[MIGRATE_TYPES][4] = { 1815 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1816 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1817 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1818 #ifdef CONFIG_CMA 1819 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1820 #endif 1821 #ifdef CONFIG_MEMORY_ISOLATION 1822 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1823 #endif 1824 }; 1825 1826 #ifdef CONFIG_CMA 1827 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1828 unsigned int order) 1829 { 1830 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1831 } 1832 #else 1833 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1834 unsigned int order) { return NULL; } 1835 #endif 1836 1837 /* 1838 * Move the free pages in a range to the free lists of the requested type. 1839 * Note that start_page and end_pages are not aligned on a pageblock 1840 * boundary. If alignment is required, use move_freepages_block() 1841 */ 1842 int move_freepages(struct zone *zone, 1843 struct page *start_page, struct page *end_page, 1844 int migratetype) 1845 { 1846 struct page *page; 1847 unsigned int order; 1848 int pages_moved = 0; 1849 1850 #ifndef CONFIG_HOLES_IN_ZONE 1851 /* 1852 * page_zone is not safe to call in this context when 1853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1854 * anyway as we check zone boundaries in move_freepages_block(). 1855 * Remove at a later date when no bug reports exist related to 1856 * grouping pages by mobility 1857 */ 1858 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1859 #endif 1860 1861 for (page = start_page; page <= end_page;) { 1862 /* Make sure we are not inadvertently changing nodes */ 1863 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1864 1865 if (!pfn_valid_within(page_to_pfn(page))) { 1866 page++; 1867 continue; 1868 } 1869 1870 if (!PageBuddy(page)) { 1871 page++; 1872 continue; 1873 } 1874 1875 order = page_order(page); 1876 list_move(&page->lru, 1877 &zone->free_area[order].free_list[migratetype]); 1878 page += 1 << order; 1879 pages_moved += 1 << order; 1880 } 1881 1882 return pages_moved; 1883 } 1884 1885 int move_freepages_block(struct zone *zone, struct page *page, 1886 int migratetype) 1887 { 1888 unsigned long start_pfn, end_pfn; 1889 struct page *start_page, *end_page; 1890 1891 start_pfn = page_to_pfn(page); 1892 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1893 start_page = pfn_to_page(start_pfn); 1894 end_page = start_page + pageblock_nr_pages - 1; 1895 end_pfn = start_pfn + pageblock_nr_pages - 1; 1896 1897 /* Do not cross zone boundaries */ 1898 if (!zone_spans_pfn(zone, start_pfn)) 1899 start_page = page; 1900 if (!zone_spans_pfn(zone, end_pfn)) 1901 return 0; 1902 1903 return move_freepages(zone, start_page, end_page, migratetype); 1904 } 1905 1906 static void change_pageblock_range(struct page *pageblock_page, 1907 int start_order, int migratetype) 1908 { 1909 int nr_pageblocks = 1 << (start_order - pageblock_order); 1910 1911 while (nr_pageblocks--) { 1912 set_pageblock_migratetype(pageblock_page, migratetype); 1913 pageblock_page += pageblock_nr_pages; 1914 } 1915 } 1916 1917 /* 1918 * When we are falling back to another migratetype during allocation, try to 1919 * steal extra free pages from the same pageblocks to satisfy further 1920 * allocations, instead of polluting multiple pageblocks. 1921 * 1922 * If we are stealing a relatively large buddy page, it is likely there will 1923 * be more free pages in the pageblock, so try to steal them all. For 1924 * reclaimable and unmovable allocations, we steal regardless of page size, 1925 * as fragmentation caused by those allocations polluting movable pageblocks 1926 * is worse than movable allocations stealing from unmovable and reclaimable 1927 * pageblocks. 1928 */ 1929 static bool can_steal_fallback(unsigned int order, int start_mt) 1930 { 1931 /* 1932 * Leaving this order check is intended, although there is 1933 * relaxed order check in next check. The reason is that 1934 * we can actually steal whole pageblock if this condition met, 1935 * but, below check doesn't guarantee it and that is just heuristic 1936 * so could be changed anytime. 1937 */ 1938 if (order >= pageblock_order) 1939 return true; 1940 1941 if (order >= pageblock_order / 2 || 1942 start_mt == MIGRATE_RECLAIMABLE || 1943 start_mt == MIGRATE_UNMOVABLE || 1944 page_group_by_mobility_disabled) 1945 return true; 1946 1947 return false; 1948 } 1949 1950 /* 1951 * This function implements actual steal behaviour. If order is large enough, 1952 * we can steal whole pageblock. If not, we first move freepages in this 1953 * pageblock and check whether half of pages are moved or not. If half of 1954 * pages are moved, we can change migratetype of pageblock and permanently 1955 * use it's pages as requested migratetype in the future. 1956 */ 1957 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1958 int start_type) 1959 { 1960 unsigned int current_order = page_order(page); 1961 int pages; 1962 1963 /* Take ownership for orders >= pageblock_order */ 1964 if (current_order >= pageblock_order) { 1965 change_pageblock_range(page, current_order, start_type); 1966 return; 1967 } 1968 1969 pages = move_freepages_block(zone, page, start_type); 1970 1971 /* Claim the whole block if over half of it is free */ 1972 if (pages >= (1 << (pageblock_order-1)) || 1973 page_group_by_mobility_disabled) 1974 set_pageblock_migratetype(page, start_type); 1975 } 1976 1977 /* 1978 * Check whether there is a suitable fallback freepage with requested order. 1979 * If only_stealable is true, this function returns fallback_mt only if 1980 * we can steal other freepages all together. This would help to reduce 1981 * fragmentation due to mixed migratetype pages in one pageblock. 1982 */ 1983 int find_suitable_fallback(struct free_area *area, unsigned int order, 1984 int migratetype, bool only_stealable, bool *can_steal) 1985 { 1986 int i; 1987 int fallback_mt; 1988 1989 if (area->nr_free == 0) 1990 return -1; 1991 1992 *can_steal = false; 1993 for (i = 0;; i++) { 1994 fallback_mt = fallbacks[migratetype][i]; 1995 if (fallback_mt == MIGRATE_TYPES) 1996 break; 1997 1998 if (list_empty(&area->free_list[fallback_mt])) 1999 continue; 2000 2001 if (can_steal_fallback(order, migratetype)) 2002 *can_steal = true; 2003 2004 if (!only_stealable) 2005 return fallback_mt; 2006 2007 if (*can_steal) 2008 return fallback_mt; 2009 } 2010 2011 return -1; 2012 } 2013 2014 /* 2015 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2016 * there are no empty page blocks that contain a page with a suitable order 2017 */ 2018 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2019 unsigned int alloc_order) 2020 { 2021 int mt; 2022 unsigned long max_managed, flags; 2023 2024 /* 2025 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2026 * Check is race-prone but harmless. 2027 */ 2028 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2029 if (zone->nr_reserved_highatomic >= max_managed) 2030 return; 2031 2032 spin_lock_irqsave(&zone->lock, flags); 2033 2034 /* Recheck the nr_reserved_highatomic limit under the lock */ 2035 if (zone->nr_reserved_highatomic >= max_managed) 2036 goto out_unlock; 2037 2038 /* Yoink! */ 2039 mt = get_pageblock_migratetype(page); 2040 if (mt != MIGRATE_HIGHATOMIC && 2041 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) { 2042 zone->nr_reserved_highatomic += pageblock_nr_pages; 2043 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2044 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC); 2045 } 2046 2047 out_unlock: 2048 spin_unlock_irqrestore(&zone->lock, flags); 2049 } 2050 2051 /* 2052 * Used when an allocation is about to fail under memory pressure. This 2053 * potentially hurts the reliability of high-order allocations when under 2054 * intense memory pressure but failed atomic allocations should be easier 2055 * to recover from than an OOM. 2056 */ 2057 static void unreserve_highatomic_pageblock(const struct alloc_context *ac) 2058 { 2059 struct zonelist *zonelist = ac->zonelist; 2060 unsigned long flags; 2061 struct zoneref *z; 2062 struct zone *zone; 2063 struct page *page; 2064 int order; 2065 2066 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2067 ac->nodemask) { 2068 /* Preserve at least one pageblock */ 2069 if (zone->nr_reserved_highatomic <= pageblock_nr_pages) 2070 continue; 2071 2072 spin_lock_irqsave(&zone->lock, flags); 2073 for (order = 0; order < MAX_ORDER; order++) { 2074 struct free_area *area = &(zone->free_area[order]); 2075 2076 page = list_first_entry_or_null( 2077 &area->free_list[MIGRATE_HIGHATOMIC], 2078 struct page, lru); 2079 if (!page) 2080 continue; 2081 2082 /* 2083 * It should never happen but changes to locking could 2084 * inadvertently allow a per-cpu drain to add pages 2085 * to MIGRATE_HIGHATOMIC while unreserving so be safe 2086 * and watch for underflows. 2087 */ 2088 zone->nr_reserved_highatomic -= min(pageblock_nr_pages, 2089 zone->nr_reserved_highatomic); 2090 2091 /* 2092 * Convert to ac->migratetype and avoid the normal 2093 * pageblock stealing heuristics. Minimally, the caller 2094 * is doing the work and needs the pages. More 2095 * importantly, if the block was always converted to 2096 * MIGRATE_UNMOVABLE or another type then the number 2097 * of pageblocks that cannot be completely freed 2098 * may increase. 2099 */ 2100 set_pageblock_migratetype(page, ac->migratetype); 2101 move_freepages_block(zone, page, ac->migratetype); 2102 spin_unlock_irqrestore(&zone->lock, flags); 2103 return; 2104 } 2105 spin_unlock_irqrestore(&zone->lock, flags); 2106 } 2107 } 2108 2109 /* Remove an element from the buddy allocator from the fallback list */ 2110 static inline struct page * 2111 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 2112 { 2113 struct free_area *area; 2114 unsigned int current_order; 2115 struct page *page; 2116 int fallback_mt; 2117 bool can_steal; 2118 2119 /* Find the largest possible block of pages in the other list */ 2120 for (current_order = MAX_ORDER-1; 2121 current_order >= order && current_order <= MAX_ORDER-1; 2122 --current_order) { 2123 area = &(zone->free_area[current_order]); 2124 fallback_mt = find_suitable_fallback(area, current_order, 2125 start_migratetype, false, &can_steal); 2126 if (fallback_mt == -1) 2127 continue; 2128 2129 page = list_first_entry(&area->free_list[fallback_mt], 2130 struct page, lru); 2131 if (can_steal) 2132 steal_suitable_fallback(zone, page, start_migratetype); 2133 2134 /* Remove the page from the freelists */ 2135 area->nr_free--; 2136 list_del(&page->lru); 2137 rmv_page_order(page); 2138 2139 expand(zone, page, order, current_order, area, 2140 start_migratetype); 2141 /* 2142 * The pcppage_migratetype may differ from pageblock's 2143 * migratetype depending on the decisions in 2144 * find_suitable_fallback(). This is OK as long as it does not 2145 * differ for MIGRATE_CMA pageblocks. Those can be used as 2146 * fallback only via special __rmqueue_cma_fallback() function 2147 */ 2148 set_pcppage_migratetype(page, start_migratetype); 2149 2150 trace_mm_page_alloc_extfrag(page, order, current_order, 2151 start_migratetype, fallback_mt); 2152 2153 return page; 2154 } 2155 2156 return NULL; 2157 } 2158 2159 /* 2160 * Do the hard work of removing an element from the buddy allocator. 2161 * Call me with the zone->lock already held. 2162 */ 2163 static struct page *__rmqueue(struct zone *zone, unsigned int order, 2164 int migratetype) 2165 { 2166 struct page *page; 2167 2168 page = __rmqueue_smallest(zone, order, migratetype); 2169 if (unlikely(!page)) { 2170 if (migratetype == MIGRATE_MOVABLE) 2171 page = __rmqueue_cma_fallback(zone, order); 2172 2173 if (!page) 2174 page = __rmqueue_fallback(zone, order, migratetype); 2175 } 2176 2177 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2178 return page; 2179 } 2180 2181 /* 2182 * Obtain a specified number of elements from the buddy allocator, all under 2183 * a single hold of the lock, for efficiency. Add them to the supplied list. 2184 * Returns the number of new pages which were placed at *list. 2185 */ 2186 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2187 unsigned long count, struct list_head *list, 2188 int migratetype, bool cold) 2189 { 2190 int i; 2191 2192 spin_lock(&zone->lock); 2193 for (i = 0; i < count; ++i) { 2194 struct page *page = __rmqueue(zone, order, migratetype); 2195 if (unlikely(page == NULL)) 2196 break; 2197 2198 if (unlikely(check_pcp_refill(page))) 2199 continue; 2200 2201 /* 2202 * Split buddy pages returned by expand() are received here 2203 * in physical page order. The page is added to the callers and 2204 * list and the list head then moves forward. From the callers 2205 * perspective, the linked list is ordered by page number in 2206 * some conditions. This is useful for IO devices that can 2207 * merge IO requests if the physical pages are ordered 2208 * properly. 2209 */ 2210 if (likely(!cold)) 2211 list_add(&page->lru, list); 2212 else 2213 list_add_tail(&page->lru, list); 2214 list = &page->lru; 2215 if (is_migrate_cma(get_pcppage_migratetype(page))) 2216 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2217 -(1 << order)); 2218 } 2219 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2220 spin_unlock(&zone->lock); 2221 return i; 2222 } 2223 2224 #ifdef CONFIG_NUMA 2225 /* 2226 * Called from the vmstat counter updater to drain pagesets of this 2227 * currently executing processor on remote nodes after they have 2228 * expired. 2229 * 2230 * Note that this function must be called with the thread pinned to 2231 * a single processor. 2232 */ 2233 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2234 { 2235 unsigned long flags; 2236 int to_drain, batch; 2237 2238 local_irq_save(flags); 2239 batch = READ_ONCE(pcp->batch); 2240 to_drain = min(pcp->count, batch); 2241 if (to_drain > 0) { 2242 free_pcppages_bulk(zone, to_drain, pcp); 2243 pcp->count -= to_drain; 2244 } 2245 local_irq_restore(flags); 2246 } 2247 #endif 2248 2249 /* 2250 * Drain pcplists of the indicated processor and zone. 2251 * 2252 * The processor must either be the current processor and the 2253 * thread pinned to the current processor or a processor that 2254 * is not online. 2255 */ 2256 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2257 { 2258 unsigned long flags; 2259 struct per_cpu_pageset *pset; 2260 struct per_cpu_pages *pcp; 2261 2262 local_irq_save(flags); 2263 pset = per_cpu_ptr(zone->pageset, cpu); 2264 2265 pcp = &pset->pcp; 2266 if (pcp->count) { 2267 free_pcppages_bulk(zone, pcp->count, pcp); 2268 pcp->count = 0; 2269 } 2270 local_irq_restore(flags); 2271 } 2272 2273 /* 2274 * Drain pcplists of all zones on the indicated processor. 2275 * 2276 * The processor must either be the current processor and the 2277 * thread pinned to the current processor or a processor that 2278 * is not online. 2279 */ 2280 static void drain_pages(unsigned int cpu) 2281 { 2282 struct zone *zone; 2283 2284 for_each_populated_zone(zone) { 2285 drain_pages_zone(cpu, zone); 2286 } 2287 } 2288 2289 /* 2290 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2291 * 2292 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2293 * the single zone's pages. 2294 */ 2295 void drain_local_pages(struct zone *zone) 2296 { 2297 int cpu = smp_processor_id(); 2298 2299 if (zone) 2300 drain_pages_zone(cpu, zone); 2301 else 2302 drain_pages(cpu); 2303 } 2304 2305 /* 2306 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2307 * 2308 * When zone parameter is non-NULL, spill just the single zone's pages. 2309 * 2310 * Note that this code is protected against sending an IPI to an offline 2311 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 2312 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 2313 * nothing keeps CPUs from showing up after we populated the cpumask and 2314 * before the call to on_each_cpu_mask(). 2315 */ 2316 void drain_all_pages(struct zone *zone) 2317 { 2318 int cpu; 2319 2320 /* 2321 * Allocate in the BSS so we wont require allocation in 2322 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2323 */ 2324 static cpumask_t cpus_with_pcps; 2325 2326 /* 2327 * We don't care about racing with CPU hotplug event 2328 * as offline notification will cause the notified 2329 * cpu to drain that CPU pcps and on_each_cpu_mask 2330 * disables preemption as part of its processing 2331 */ 2332 for_each_online_cpu(cpu) { 2333 struct per_cpu_pageset *pcp; 2334 struct zone *z; 2335 bool has_pcps = false; 2336 2337 if (zone) { 2338 pcp = per_cpu_ptr(zone->pageset, cpu); 2339 if (pcp->pcp.count) 2340 has_pcps = true; 2341 } else { 2342 for_each_populated_zone(z) { 2343 pcp = per_cpu_ptr(z->pageset, cpu); 2344 if (pcp->pcp.count) { 2345 has_pcps = true; 2346 break; 2347 } 2348 } 2349 } 2350 2351 if (has_pcps) 2352 cpumask_set_cpu(cpu, &cpus_with_pcps); 2353 else 2354 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2355 } 2356 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 2357 zone, 1); 2358 } 2359 2360 #ifdef CONFIG_HIBERNATION 2361 2362 void mark_free_pages(struct zone *zone) 2363 { 2364 unsigned long pfn, max_zone_pfn; 2365 unsigned long flags; 2366 unsigned int order, t; 2367 struct page *page; 2368 2369 if (zone_is_empty(zone)) 2370 return; 2371 2372 spin_lock_irqsave(&zone->lock, flags); 2373 2374 max_zone_pfn = zone_end_pfn(zone); 2375 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2376 if (pfn_valid(pfn)) { 2377 page = pfn_to_page(pfn); 2378 2379 if (page_zone(page) != zone) 2380 continue; 2381 2382 if (!swsusp_page_is_forbidden(page)) 2383 swsusp_unset_page_free(page); 2384 } 2385 2386 for_each_migratetype_order(order, t) { 2387 list_for_each_entry(page, 2388 &zone->free_area[order].free_list[t], lru) { 2389 unsigned long i; 2390 2391 pfn = page_to_pfn(page); 2392 for (i = 0; i < (1UL << order); i++) 2393 swsusp_set_page_free(pfn_to_page(pfn + i)); 2394 } 2395 } 2396 spin_unlock_irqrestore(&zone->lock, flags); 2397 } 2398 #endif /* CONFIG_PM */ 2399 2400 /* 2401 * Free a 0-order page 2402 * cold == true ? free a cold page : free a hot page 2403 */ 2404 void free_hot_cold_page(struct page *page, bool cold) 2405 { 2406 struct zone *zone = page_zone(page); 2407 struct per_cpu_pages *pcp; 2408 unsigned long flags; 2409 unsigned long pfn = page_to_pfn(page); 2410 int migratetype; 2411 2412 if (!free_pcp_prepare(page)) 2413 return; 2414 2415 migratetype = get_pfnblock_migratetype(page, pfn); 2416 set_pcppage_migratetype(page, migratetype); 2417 local_irq_save(flags); 2418 __count_vm_event(PGFREE); 2419 2420 /* 2421 * We only track unmovable, reclaimable and movable on pcp lists. 2422 * Free ISOLATE pages back to the allocator because they are being 2423 * offlined but treat RESERVE as movable pages so we can get those 2424 * areas back if necessary. Otherwise, we may have to free 2425 * excessively into the page allocator 2426 */ 2427 if (migratetype >= MIGRATE_PCPTYPES) { 2428 if (unlikely(is_migrate_isolate(migratetype))) { 2429 free_one_page(zone, page, pfn, 0, migratetype); 2430 goto out; 2431 } 2432 migratetype = MIGRATE_MOVABLE; 2433 } 2434 2435 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2436 if (!cold) 2437 list_add(&page->lru, &pcp->lists[migratetype]); 2438 else 2439 list_add_tail(&page->lru, &pcp->lists[migratetype]); 2440 pcp->count++; 2441 if (pcp->count >= pcp->high) { 2442 unsigned long batch = READ_ONCE(pcp->batch); 2443 free_pcppages_bulk(zone, batch, pcp); 2444 pcp->count -= batch; 2445 } 2446 2447 out: 2448 local_irq_restore(flags); 2449 } 2450 2451 /* 2452 * Free a list of 0-order pages 2453 */ 2454 void free_hot_cold_page_list(struct list_head *list, bool cold) 2455 { 2456 struct page *page, *next; 2457 2458 list_for_each_entry_safe(page, next, list, lru) { 2459 trace_mm_page_free_batched(page, cold); 2460 free_hot_cold_page(page, cold); 2461 } 2462 } 2463 2464 /* 2465 * split_page takes a non-compound higher-order page, and splits it into 2466 * n (1<<order) sub-pages: page[0..n] 2467 * Each sub-page must be freed individually. 2468 * 2469 * Note: this is probably too low level an operation for use in drivers. 2470 * Please consult with lkml before using this in your driver. 2471 */ 2472 void split_page(struct page *page, unsigned int order) 2473 { 2474 int i; 2475 2476 VM_BUG_ON_PAGE(PageCompound(page), page); 2477 VM_BUG_ON_PAGE(!page_count(page), page); 2478 2479 #ifdef CONFIG_KMEMCHECK 2480 /* 2481 * Split shadow pages too, because free(page[0]) would 2482 * otherwise free the whole shadow. 2483 */ 2484 if (kmemcheck_page_is_tracked(page)) 2485 split_page(virt_to_page(page[0].shadow), order); 2486 #endif 2487 2488 for (i = 1; i < (1 << order); i++) 2489 set_page_refcounted(page + i); 2490 split_page_owner(page, order); 2491 } 2492 EXPORT_SYMBOL_GPL(split_page); 2493 2494 int __isolate_free_page(struct page *page, unsigned int order) 2495 { 2496 unsigned long watermark; 2497 struct zone *zone; 2498 int mt; 2499 2500 BUG_ON(!PageBuddy(page)); 2501 2502 zone = page_zone(page); 2503 mt = get_pageblock_migratetype(page); 2504 2505 if (!is_migrate_isolate(mt)) { 2506 /* 2507 * Obey watermarks as if the page was being allocated. We can 2508 * emulate a high-order watermark check with a raised order-0 2509 * watermark, because we already know our high-order page 2510 * exists. 2511 */ 2512 watermark = min_wmark_pages(zone) + (1UL << order); 2513 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2514 return 0; 2515 2516 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2517 } 2518 2519 /* Remove page from free list */ 2520 list_del(&page->lru); 2521 zone->free_area[order].nr_free--; 2522 rmv_page_order(page); 2523 2524 /* 2525 * Set the pageblock if the isolated page is at least half of a 2526 * pageblock 2527 */ 2528 if (order >= pageblock_order - 1) { 2529 struct page *endpage = page + (1 << order) - 1; 2530 for (; page < endpage; page += pageblock_nr_pages) { 2531 int mt = get_pageblock_migratetype(page); 2532 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 2533 set_pageblock_migratetype(page, 2534 MIGRATE_MOVABLE); 2535 } 2536 } 2537 2538 2539 return 1UL << order; 2540 } 2541 2542 /* 2543 * Update NUMA hit/miss statistics 2544 * 2545 * Must be called with interrupts disabled. 2546 * 2547 * When __GFP_OTHER_NODE is set assume the node of the preferred 2548 * zone is the local node. This is useful for daemons who allocate 2549 * memory on behalf of other processes. 2550 */ 2551 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2552 gfp_t flags) 2553 { 2554 #ifdef CONFIG_NUMA 2555 int local_nid = numa_node_id(); 2556 enum zone_stat_item local_stat = NUMA_LOCAL; 2557 2558 if (unlikely(flags & __GFP_OTHER_NODE)) { 2559 local_stat = NUMA_OTHER; 2560 local_nid = preferred_zone->node; 2561 } 2562 2563 if (z->node == local_nid) { 2564 __inc_zone_state(z, NUMA_HIT); 2565 __inc_zone_state(z, local_stat); 2566 } else { 2567 __inc_zone_state(z, NUMA_MISS); 2568 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 2569 } 2570 #endif 2571 } 2572 2573 /* 2574 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2575 */ 2576 static inline 2577 struct page *buffered_rmqueue(struct zone *preferred_zone, 2578 struct zone *zone, unsigned int order, 2579 gfp_t gfp_flags, unsigned int alloc_flags, 2580 int migratetype) 2581 { 2582 unsigned long flags; 2583 struct page *page; 2584 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2585 2586 if (likely(order == 0)) { 2587 struct per_cpu_pages *pcp; 2588 struct list_head *list; 2589 2590 local_irq_save(flags); 2591 do { 2592 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2593 list = &pcp->lists[migratetype]; 2594 if (list_empty(list)) { 2595 pcp->count += rmqueue_bulk(zone, 0, 2596 pcp->batch, list, 2597 migratetype, cold); 2598 if (unlikely(list_empty(list))) 2599 goto failed; 2600 } 2601 2602 if (cold) 2603 page = list_last_entry(list, struct page, lru); 2604 else 2605 page = list_first_entry(list, struct page, lru); 2606 2607 list_del(&page->lru); 2608 pcp->count--; 2609 2610 } while (check_new_pcp(page)); 2611 } else { 2612 /* 2613 * We most definitely don't want callers attempting to 2614 * allocate greater than order-1 page units with __GFP_NOFAIL. 2615 */ 2616 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2617 spin_lock_irqsave(&zone->lock, flags); 2618 2619 do { 2620 page = NULL; 2621 if (alloc_flags & ALLOC_HARDER) { 2622 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2623 if (page) 2624 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2625 } 2626 if (!page) 2627 page = __rmqueue(zone, order, migratetype); 2628 } while (page && check_new_pages(page, order)); 2629 spin_unlock(&zone->lock); 2630 if (!page) 2631 goto failed; 2632 __mod_zone_freepage_state(zone, -(1 << order), 2633 get_pcppage_migratetype(page)); 2634 } 2635 2636 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2637 zone_statistics(preferred_zone, zone, gfp_flags); 2638 local_irq_restore(flags); 2639 2640 VM_BUG_ON_PAGE(bad_range(zone, page), page); 2641 return page; 2642 2643 failed: 2644 local_irq_restore(flags); 2645 return NULL; 2646 } 2647 2648 #ifdef CONFIG_FAIL_PAGE_ALLOC 2649 2650 static struct { 2651 struct fault_attr attr; 2652 2653 bool ignore_gfp_highmem; 2654 bool ignore_gfp_reclaim; 2655 u32 min_order; 2656 } fail_page_alloc = { 2657 .attr = FAULT_ATTR_INITIALIZER, 2658 .ignore_gfp_reclaim = true, 2659 .ignore_gfp_highmem = true, 2660 .min_order = 1, 2661 }; 2662 2663 static int __init setup_fail_page_alloc(char *str) 2664 { 2665 return setup_fault_attr(&fail_page_alloc.attr, str); 2666 } 2667 __setup("fail_page_alloc=", setup_fail_page_alloc); 2668 2669 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2670 { 2671 if (order < fail_page_alloc.min_order) 2672 return false; 2673 if (gfp_mask & __GFP_NOFAIL) 2674 return false; 2675 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2676 return false; 2677 if (fail_page_alloc.ignore_gfp_reclaim && 2678 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2679 return false; 2680 2681 return should_fail(&fail_page_alloc.attr, 1 << order); 2682 } 2683 2684 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2685 2686 static int __init fail_page_alloc_debugfs(void) 2687 { 2688 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2689 struct dentry *dir; 2690 2691 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2692 &fail_page_alloc.attr); 2693 if (IS_ERR(dir)) 2694 return PTR_ERR(dir); 2695 2696 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2697 &fail_page_alloc.ignore_gfp_reclaim)) 2698 goto fail; 2699 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2700 &fail_page_alloc.ignore_gfp_highmem)) 2701 goto fail; 2702 if (!debugfs_create_u32("min-order", mode, dir, 2703 &fail_page_alloc.min_order)) 2704 goto fail; 2705 2706 return 0; 2707 fail: 2708 debugfs_remove_recursive(dir); 2709 2710 return -ENOMEM; 2711 } 2712 2713 late_initcall(fail_page_alloc_debugfs); 2714 2715 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2716 2717 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2718 2719 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2720 { 2721 return false; 2722 } 2723 2724 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2725 2726 /* 2727 * Return true if free base pages are above 'mark'. For high-order checks it 2728 * will return true of the order-0 watermark is reached and there is at least 2729 * one free page of a suitable size. Checking now avoids taking the zone lock 2730 * to check in the allocation paths if no pages are free. 2731 */ 2732 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2733 int classzone_idx, unsigned int alloc_flags, 2734 long free_pages) 2735 { 2736 long min = mark; 2737 int o; 2738 const bool alloc_harder = (alloc_flags & ALLOC_HARDER); 2739 2740 /* free_pages may go negative - that's OK */ 2741 free_pages -= (1 << order) - 1; 2742 2743 if (alloc_flags & ALLOC_HIGH) 2744 min -= min / 2; 2745 2746 /* 2747 * If the caller does not have rights to ALLOC_HARDER then subtract 2748 * the high-atomic reserves. This will over-estimate the size of the 2749 * atomic reserve but it avoids a search. 2750 */ 2751 if (likely(!alloc_harder)) 2752 free_pages -= z->nr_reserved_highatomic; 2753 else 2754 min -= min / 4; 2755 2756 #ifdef CONFIG_CMA 2757 /* If allocation can't use CMA areas don't use free CMA pages */ 2758 if (!(alloc_flags & ALLOC_CMA)) 2759 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 2760 #endif 2761 2762 /* 2763 * Check watermarks for an order-0 allocation request. If these 2764 * are not met, then a high-order request also cannot go ahead 2765 * even if a suitable page happened to be free. 2766 */ 2767 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 2768 return false; 2769 2770 /* If this is an order-0 request then the watermark is fine */ 2771 if (!order) 2772 return true; 2773 2774 /* For a high-order request, check at least one suitable page is free */ 2775 for (o = order; o < MAX_ORDER; o++) { 2776 struct free_area *area = &z->free_area[o]; 2777 int mt; 2778 2779 if (!area->nr_free) 2780 continue; 2781 2782 if (alloc_harder) 2783 return true; 2784 2785 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2786 if (!list_empty(&area->free_list[mt])) 2787 return true; 2788 } 2789 2790 #ifdef CONFIG_CMA 2791 if ((alloc_flags & ALLOC_CMA) && 2792 !list_empty(&area->free_list[MIGRATE_CMA])) { 2793 return true; 2794 } 2795 #endif 2796 } 2797 return false; 2798 } 2799 2800 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2801 int classzone_idx, unsigned int alloc_flags) 2802 { 2803 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2804 zone_page_state(z, NR_FREE_PAGES)); 2805 } 2806 2807 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 2808 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 2809 { 2810 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2811 long cma_pages = 0; 2812 2813 #ifdef CONFIG_CMA 2814 /* If allocation can't use CMA areas don't use free CMA pages */ 2815 if (!(alloc_flags & ALLOC_CMA)) 2816 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 2817 #endif 2818 2819 /* 2820 * Fast check for order-0 only. If this fails then the reserves 2821 * need to be calculated. There is a corner case where the check 2822 * passes but only the high-order atomic reserve are free. If 2823 * the caller is !atomic then it'll uselessly search the free 2824 * list. That corner case is then slower but it is harmless. 2825 */ 2826 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 2827 return true; 2828 2829 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2830 free_pages); 2831 } 2832 2833 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2834 unsigned long mark, int classzone_idx) 2835 { 2836 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2837 2838 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2839 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2840 2841 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 2842 free_pages); 2843 } 2844 2845 #ifdef CONFIG_NUMA 2846 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2847 { 2848 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 2849 RECLAIM_DISTANCE; 2850 } 2851 #else /* CONFIG_NUMA */ 2852 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2853 { 2854 return true; 2855 } 2856 #endif /* CONFIG_NUMA */ 2857 2858 /* 2859 * get_page_from_freelist goes through the zonelist trying to allocate 2860 * a page. 2861 */ 2862 static struct page * 2863 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2864 const struct alloc_context *ac) 2865 { 2866 struct zoneref *z = ac->preferred_zoneref; 2867 struct zone *zone; 2868 struct pglist_data *last_pgdat_dirty_limit = NULL; 2869 2870 /* 2871 * Scan zonelist, looking for a zone with enough free. 2872 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2873 */ 2874 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2875 ac->nodemask) { 2876 struct page *page; 2877 unsigned long mark; 2878 2879 if (cpusets_enabled() && 2880 (alloc_flags & ALLOC_CPUSET) && 2881 !__cpuset_zone_allowed(zone, gfp_mask)) 2882 continue; 2883 /* 2884 * When allocating a page cache page for writing, we 2885 * want to get it from a node that is within its dirty 2886 * limit, such that no single node holds more than its 2887 * proportional share of globally allowed dirty pages. 2888 * The dirty limits take into account the node's 2889 * lowmem reserves and high watermark so that kswapd 2890 * should be able to balance it without having to 2891 * write pages from its LRU list. 2892 * 2893 * XXX: For now, allow allocations to potentially 2894 * exceed the per-node dirty limit in the slowpath 2895 * (spread_dirty_pages unset) before going into reclaim, 2896 * which is important when on a NUMA setup the allowed 2897 * nodes are together not big enough to reach the 2898 * global limit. The proper fix for these situations 2899 * will require awareness of nodes in the 2900 * dirty-throttling and the flusher threads. 2901 */ 2902 if (ac->spread_dirty_pages) { 2903 if (last_pgdat_dirty_limit == zone->zone_pgdat) 2904 continue; 2905 2906 if (!node_dirty_ok(zone->zone_pgdat)) { 2907 last_pgdat_dirty_limit = zone->zone_pgdat; 2908 continue; 2909 } 2910 } 2911 2912 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2913 if (!zone_watermark_fast(zone, order, mark, 2914 ac_classzone_idx(ac), alloc_flags)) { 2915 int ret; 2916 2917 /* Checked here to keep the fast path fast */ 2918 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2919 if (alloc_flags & ALLOC_NO_WATERMARKS) 2920 goto try_this_zone; 2921 2922 if (node_reclaim_mode == 0 || 2923 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 2924 continue; 2925 2926 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 2927 switch (ret) { 2928 case NODE_RECLAIM_NOSCAN: 2929 /* did not scan */ 2930 continue; 2931 case NODE_RECLAIM_FULL: 2932 /* scanned but unreclaimable */ 2933 continue; 2934 default: 2935 /* did we reclaim enough */ 2936 if (zone_watermark_ok(zone, order, mark, 2937 ac_classzone_idx(ac), alloc_flags)) 2938 goto try_this_zone; 2939 2940 continue; 2941 } 2942 } 2943 2944 try_this_zone: 2945 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order, 2946 gfp_mask, alloc_flags, ac->migratetype); 2947 if (page) { 2948 prep_new_page(page, order, gfp_mask, alloc_flags); 2949 2950 /* 2951 * If this is a high-order atomic allocation then check 2952 * if the pageblock should be reserved for the future 2953 */ 2954 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 2955 reserve_highatomic_pageblock(page, zone, order); 2956 2957 return page; 2958 } 2959 } 2960 2961 return NULL; 2962 } 2963 2964 /* 2965 * Large machines with many possible nodes should not always dump per-node 2966 * meminfo in irq context. 2967 */ 2968 static inline bool should_suppress_show_mem(void) 2969 { 2970 bool ret = false; 2971 2972 #if NODES_SHIFT > 8 2973 ret = in_interrupt(); 2974 #endif 2975 return ret; 2976 } 2977 2978 static DEFINE_RATELIMIT_STATE(nopage_rs, 2979 DEFAULT_RATELIMIT_INTERVAL, 2980 DEFAULT_RATELIMIT_BURST); 2981 2982 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...) 2983 { 2984 unsigned int filter = SHOW_MEM_FILTER_NODES; 2985 struct va_format vaf; 2986 va_list args; 2987 2988 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2989 debug_guardpage_minorder() > 0) 2990 return; 2991 2992 /* 2993 * This documents exceptions given to allocations in certain 2994 * contexts that are allowed to allocate outside current's set 2995 * of allowed nodes. 2996 */ 2997 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2998 if (test_thread_flag(TIF_MEMDIE) || 2999 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3000 filter &= ~SHOW_MEM_FILTER_NODES; 3001 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3002 filter &= ~SHOW_MEM_FILTER_NODES; 3003 3004 pr_warn("%s: ", current->comm); 3005 3006 va_start(args, fmt); 3007 vaf.fmt = fmt; 3008 vaf.va = &args; 3009 pr_cont("%pV", &vaf); 3010 va_end(args); 3011 3012 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask); 3013 3014 dump_stack(); 3015 if (!should_suppress_show_mem()) 3016 show_mem(filter); 3017 } 3018 3019 static inline struct page * 3020 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3021 const struct alloc_context *ac, unsigned long *did_some_progress) 3022 { 3023 struct oom_control oc = { 3024 .zonelist = ac->zonelist, 3025 .nodemask = ac->nodemask, 3026 .memcg = NULL, 3027 .gfp_mask = gfp_mask, 3028 .order = order, 3029 }; 3030 struct page *page; 3031 3032 *did_some_progress = 0; 3033 3034 /* 3035 * Acquire the oom lock. If that fails, somebody else is 3036 * making progress for us. 3037 */ 3038 if (!mutex_trylock(&oom_lock)) { 3039 *did_some_progress = 1; 3040 schedule_timeout_uninterruptible(1); 3041 return NULL; 3042 } 3043 3044 /* 3045 * Go through the zonelist yet one more time, keep very high watermark 3046 * here, this is only to catch a parallel oom killing, we must fail if 3047 * we're still under heavy pressure. 3048 */ 3049 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 3050 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3051 if (page) 3052 goto out; 3053 3054 if (!(gfp_mask & __GFP_NOFAIL)) { 3055 /* Coredumps can quickly deplete all memory reserves */ 3056 if (current->flags & PF_DUMPCORE) 3057 goto out; 3058 /* The OOM killer will not help higher order allocs */ 3059 if (order > PAGE_ALLOC_COSTLY_ORDER) 3060 goto out; 3061 /* The OOM killer does not needlessly kill tasks for lowmem */ 3062 if (ac->high_zoneidx < ZONE_NORMAL) 3063 goto out; 3064 if (pm_suspended_storage()) 3065 goto out; 3066 /* 3067 * XXX: GFP_NOFS allocations should rather fail than rely on 3068 * other request to make a forward progress. 3069 * We are in an unfortunate situation where out_of_memory cannot 3070 * do much for this context but let's try it to at least get 3071 * access to memory reserved if the current task is killed (see 3072 * out_of_memory). Once filesystems are ready to handle allocation 3073 * failures more gracefully we should just bail out here. 3074 */ 3075 3076 /* The OOM killer may not free memory on a specific node */ 3077 if (gfp_mask & __GFP_THISNODE) 3078 goto out; 3079 } 3080 /* Exhausted what can be done so it's blamo time */ 3081 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3082 *did_some_progress = 1; 3083 3084 if (gfp_mask & __GFP_NOFAIL) { 3085 page = get_page_from_freelist(gfp_mask, order, 3086 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac); 3087 /* 3088 * fallback to ignore cpuset restriction if our nodes 3089 * are depleted 3090 */ 3091 if (!page) 3092 page = get_page_from_freelist(gfp_mask, order, 3093 ALLOC_NO_WATERMARKS, ac); 3094 } 3095 } 3096 out: 3097 mutex_unlock(&oom_lock); 3098 return page; 3099 } 3100 3101 /* 3102 * Maximum number of compaction retries wit a progress before OOM 3103 * killer is consider as the only way to move forward. 3104 */ 3105 #define MAX_COMPACT_RETRIES 16 3106 3107 #ifdef CONFIG_COMPACTION 3108 /* Try memory compaction for high-order allocations before reclaim */ 3109 static struct page * 3110 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3111 unsigned int alloc_flags, const struct alloc_context *ac, 3112 enum compact_priority prio, enum compact_result *compact_result) 3113 { 3114 struct page *page; 3115 3116 if (!order) 3117 return NULL; 3118 3119 current->flags |= PF_MEMALLOC; 3120 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3121 prio); 3122 current->flags &= ~PF_MEMALLOC; 3123 3124 if (*compact_result <= COMPACT_INACTIVE) 3125 return NULL; 3126 3127 /* 3128 * At least in one zone compaction wasn't deferred or skipped, so let's 3129 * count a compaction stall 3130 */ 3131 count_vm_event(COMPACTSTALL); 3132 3133 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3134 3135 if (page) { 3136 struct zone *zone = page_zone(page); 3137 3138 zone->compact_blockskip_flush = false; 3139 compaction_defer_reset(zone, order, true); 3140 count_vm_event(COMPACTSUCCESS); 3141 return page; 3142 } 3143 3144 /* 3145 * It's bad if compaction run occurs and fails. The most likely reason 3146 * is that pages exist, but not enough to satisfy watermarks. 3147 */ 3148 count_vm_event(COMPACTFAIL); 3149 3150 cond_resched(); 3151 3152 return NULL; 3153 } 3154 3155 static inline bool 3156 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3157 enum compact_result compact_result, 3158 enum compact_priority *compact_priority, 3159 int *compaction_retries) 3160 { 3161 int max_retries = MAX_COMPACT_RETRIES; 3162 int min_priority; 3163 3164 if (!order) 3165 return false; 3166 3167 if (compaction_made_progress(compact_result)) 3168 (*compaction_retries)++; 3169 3170 /* 3171 * compaction considers all the zone as desperately out of memory 3172 * so it doesn't really make much sense to retry except when the 3173 * failure could be caused by insufficient priority 3174 */ 3175 if (compaction_failed(compact_result)) 3176 goto check_priority; 3177 3178 /* 3179 * make sure the compaction wasn't deferred or didn't bail out early 3180 * due to locks contention before we declare that we should give up. 3181 * But do not retry if the given zonelist is not suitable for 3182 * compaction. 3183 */ 3184 if (compaction_withdrawn(compact_result)) 3185 return compaction_zonelist_suitable(ac, order, alloc_flags); 3186 3187 /* 3188 * !costly requests are much more important than __GFP_REPEAT 3189 * costly ones because they are de facto nofail and invoke OOM 3190 * killer to move on while costly can fail and users are ready 3191 * to cope with that. 1/4 retries is rather arbitrary but we 3192 * would need much more detailed feedback from compaction to 3193 * make a better decision. 3194 */ 3195 if (order > PAGE_ALLOC_COSTLY_ORDER) 3196 max_retries /= 4; 3197 if (*compaction_retries <= max_retries) 3198 return true; 3199 3200 /* 3201 * Make sure there are attempts at the highest priority if we exhausted 3202 * all retries or failed at the lower priorities. 3203 */ 3204 check_priority: 3205 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3206 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3207 if (*compact_priority > min_priority) { 3208 (*compact_priority)--; 3209 *compaction_retries = 0; 3210 return true; 3211 } 3212 return false; 3213 } 3214 #else 3215 static inline struct page * 3216 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3217 unsigned int alloc_flags, const struct alloc_context *ac, 3218 enum compact_priority prio, enum compact_result *compact_result) 3219 { 3220 *compact_result = COMPACT_SKIPPED; 3221 return NULL; 3222 } 3223 3224 static inline bool 3225 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3226 enum compact_result compact_result, 3227 enum compact_priority *compact_priority, 3228 int *compaction_retries) 3229 { 3230 struct zone *zone; 3231 struct zoneref *z; 3232 3233 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3234 return false; 3235 3236 /* 3237 * There are setups with compaction disabled which would prefer to loop 3238 * inside the allocator rather than hit the oom killer prematurely. 3239 * Let's give them a good hope and keep retrying while the order-0 3240 * watermarks are OK. 3241 */ 3242 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3243 ac->nodemask) { 3244 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3245 ac_classzone_idx(ac), alloc_flags)) 3246 return true; 3247 } 3248 return false; 3249 } 3250 #endif /* CONFIG_COMPACTION */ 3251 3252 /* Perform direct synchronous page reclaim */ 3253 static int 3254 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3255 const struct alloc_context *ac) 3256 { 3257 struct reclaim_state reclaim_state; 3258 int progress; 3259 3260 cond_resched(); 3261 3262 /* We now go into synchronous reclaim */ 3263 cpuset_memory_pressure_bump(); 3264 current->flags |= PF_MEMALLOC; 3265 lockdep_set_current_reclaim_state(gfp_mask); 3266 reclaim_state.reclaimed_slab = 0; 3267 current->reclaim_state = &reclaim_state; 3268 3269 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3270 ac->nodemask); 3271 3272 current->reclaim_state = NULL; 3273 lockdep_clear_current_reclaim_state(); 3274 current->flags &= ~PF_MEMALLOC; 3275 3276 cond_resched(); 3277 3278 return progress; 3279 } 3280 3281 /* The really slow allocator path where we enter direct reclaim */ 3282 static inline struct page * 3283 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3284 unsigned int alloc_flags, const struct alloc_context *ac, 3285 unsigned long *did_some_progress) 3286 { 3287 struct page *page = NULL; 3288 bool drained = false; 3289 3290 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3291 if (unlikely(!(*did_some_progress))) 3292 return NULL; 3293 3294 retry: 3295 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3296 3297 /* 3298 * If an allocation failed after direct reclaim, it could be because 3299 * pages are pinned on the per-cpu lists or in high alloc reserves. 3300 * Shrink them them and try again 3301 */ 3302 if (!page && !drained) { 3303 unreserve_highatomic_pageblock(ac); 3304 drain_all_pages(NULL); 3305 drained = true; 3306 goto retry; 3307 } 3308 3309 return page; 3310 } 3311 3312 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3313 { 3314 struct zoneref *z; 3315 struct zone *zone; 3316 pg_data_t *last_pgdat = NULL; 3317 3318 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3319 ac->high_zoneidx, ac->nodemask) { 3320 if (last_pgdat != zone->zone_pgdat) 3321 wakeup_kswapd(zone, order, ac->high_zoneidx); 3322 last_pgdat = zone->zone_pgdat; 3323 } 3324 } 3325 3326 static inline unsigned int 3327 gfp_to_alloc_flags(gfp_t gfp_mask) 3328 { 3329 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3330 3331 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3332 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3333 3334 /* 3335 * The caller may dip into page reserves a bit more if the caller 3336 * cannot run direct reclaim, or if the caller has realtime scheduling 3337 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3338 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3339 */ 3340 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3341 3342 if (gfp_mask & __GFP_ATOMIC) { 3343 /* 3344 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3345 * if it can't schedule. 3346 */ 3347 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3348 alloc_flags |= ALLOC_HARDER; 3349 /* 3350 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3351 * comment for __cpuset_node_allowed(). 3352 */ 3353 alloc_flags &= ~ALLOC_CPUSET; 3354 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3355 alloc_flags |= ALLOC_HARDER; 3356 3357 #ifdef CONFIG_CMA 3358 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3359 alloc_flags |= ALLOC_CMA; 3360 #endif 3361 return alloc_flags; 3362 } 3363 3364 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3365 { 3366 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3367 return false; 3368 3369 if (gfp_mask & __GFP_MEMALLOC) 3370 return true; 3371 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3372 return true; 3373 if (!in_interrupt() && 3374 ((current->flags & PF_MEMALLOC) || 3375 unlikely(test_thread_flag(TIF_MEMDIE)))) 3376 return true; 3377 3378 return false; 3379 } 3380 3381 /* 3382 * Maximum number of reclaim retries without any progress before OOM killer 3383 * is consider as the only way to move forward. 3384 */ 3385 #define MAX_RECLAIM_RETRIES 16 3386 3387 /* 3388 * Checks whether it makes sense to retry the reclaim to make a forward progress 3389 * for the given allocation request. 3390 * The reclaim feedback represented by did_some_progress (any progress during 3391 * the last reclaim round) and no_progress_loops (number of reclaim rounds without 3392 * any progress in a row) is considered as well as the reclaimable pages on the 3393 * applicable zone list (with a backoff mechanism which is a function of 3394 * no_progress_loops). 3395 * 3396 * Returns true if a retry is viable or false to enter the oom path. 3397 */ 3398 static inline bool 3399 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3400 struct alloc_context *ac, int alloc_flags, 3401 bool did_some_progress, int *no_progress_loops) 3402 { 3403 struct zone *zone; 3404 struct zoneref *z; 3405 3406 /* 3407 * Costly allocations might have made a progress but this doesn't mean 3408 * their order will become available due to high fragmentation so 3409 * always increment the no progress counter for them 3410 */ 3411 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3412 *no_progress_loops = 0; 3413 else 3414 (*no_progress_loops)++; 3415 3416 /* 3417 * Make sure we converge to OOM if we cannot make any progress 3418 * several times in the row. 3419 */ 3420 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 3421 return false; 3422 3423 /* 3424 * Keep reclaiming pages while there is a chance this will lead 3425 * somewhere. If none of the target zones can satisfy our allocation 3426 * request even if all reclaimable pages are considered then we are 3427 * screwed and have to go OOM. 3428 */ 3429 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3430 ac->nodemask) { 3431 unsigned long available; 3432 unsigned long reclaimable; 3433 3434 available = reclaimable = zone_reclaimable_pages(zone); 3435 available -= DIV_ROUND_UP((*no_progress_loops) * available, 3436 MAX_RECLAIM_RETRIES); 3437 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3438 3439 /* 3440 * Would the allocation succeed if we reclaimed the whole 3441 * available? 3442 */ 3443 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone), 3444 ac_classzone_idx(ac), alloc_flags, available)) { 3445 /* 3446 * If we didn't make any progress and have a lot of 3447 * dirty + writeback pages then we should wait for 3448 * an IO to complete to slow down the reclaim and 3449 * prevent from pre mature OOM 3450 */ 3451 if (!did_some_progress) { 3452 unsigned long write_pending; 3453 3454 write_pending = zone_page_state_snapshot(zone, 3455 NR_ZONE_WRITE_PENDING); 3456 3457 if (2 * write_pending > reclaimable) { 3458 congestion_wait(BLK_RW_ASYNC, HZ/10); 3459 return true; 3460 } 3461 } 3462 3463 /* 3464 * Memory allocation/reclaim might be called from a WQ 3465 * context and the current implementation of the WQ 3466 * concurrency control doesn't recognize that 3467 * a particular WQ is congested if the worker thread is 3468 * looping without ever sleeping. Therefore we have to 3469 * do a short sleep here rather than calling 3470 * cond_resched(). 3471 */ 3472 if (current->flags & PF_WQ_WORKER) 3473 schedule_timeout_uninterruptible(1); 3474 else 3475 cond_resched(); 3476 3477 return true; 3478 } 3479 } 3480 3481 return false; 3482 } 3483 3484 static inline struct page * 3485 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3486 struct alloc_context *ac) 3487 { 3488 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3489 struct page *page = NULL; 3490 unsigned int alloc_flags; 3491 unsigned long did_some_progress; 3492 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY; 3493 enum compact_result compact_result; 3494 int compaction_retries = 0; 3495 int no_progress_loops = 0; 3496 unsigned long alloc_start = jiffies; 3497 unsigned int stall_timeout = 10 * HZ; 3498 3499 /* 3500 * In the slowpath, we sanity check order to avoid ever trying to 3501 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3502 * be using allocators in order of preference for an area that is 3503 * too large. 3504 */ 3505 if (order >= MAX_ORDER) { 3506 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3507 return NULL; 3508 } 3509 3510 /* 3511 * We also sanity check to catch abuse of atomic reserves being used by 3512 * callers that are not in atomic context. 3513 */ 3514 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3515 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3516 gfp_mask &= ~__GFP_ATOMIC; 3517 3518 /* 3519 * The fast path uses conservative alloc_flags to succeed only until 3520 * kswapd needs to be woken up, and to avoid the cost of setting up 3521 * alloc_flags precisely. So we do that now. 3522 */ 3523 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3524 3525 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3526 wake_all_kswapds(order, ac); 3527 3528 /* 3529 * The adjusted alloc_flags might result in immediate success, so try 3530 * that first 3531 */ 3532 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3533 if (page) 3534 goto got_pg; 3535 3536 /* 3537 * For costly allocations, try direct compaction first, as it's likely 3538 * that we have enough base pages and don't need to reclaim. Don't try 3539 * that for allocations that are allowed to ignore watermarks, as the 3540 * ALLOC_NO_WATERMARKS attempt didn't yet happen. 3541 */ 3542 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER && 3543 !gfp_pfmemalloc_allowed(gfp_mask)) { 3544 page = __alloc_pages_direct_compact(gfp_mask, order, 3545 alloc_flags, ac, 3546 INIT_COMPACT_PRIORITY, 3547 &compact_result); 3548 if (page) 3549 goto got_pg; 3550 3551 /* 3552 * Checks for costly allocations with __GFP_NORETRY, which 3553 * includes THP page fault allocations 3554 */ 3555 if (gfp_mask & __GFP_NORETRY) { 3556 /* 3557 * If compaction is deferred for high-order allocations, 3558 * it is because sync compaction recently failed. If 3559 * this is the case and the caller requested a THP 3560 * allocation, we do not want to heavily disrupt the 3561 * system, so we fail the allocation instead of entering 3562 * direct reclaim. 3563 */ 3564 if (compact_result == COMPACT_DEFERRED) 3565 goto nopage; 3566 3567 /* 3568 * Looks like reclaim/compaction is worth trying, but 3569 * sync compaction could be very expensive, so keep 3570 * using async compaction. 3571 */ 3572 compact_priority = INIT_COMPACT_PRIORITY; 3573 } 3574 } 3575 3576 retry: 3577 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 3578 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3579 wake_all_kswapds(order, ac); 3580 3581 if (gfp_pfmemalloc_allowed(gfp_mask)) 3582 alloc_flags = ALLOC_NO_WATERMARKS; 3583 3584 /* 3585 * Reset the zonelist iterators if memory policies can be ignored. 3586 * These allocations are high priority and system rather than user 3587 * orientated. 3588 */ 3589 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) { 3590 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3591 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3592 ac->high_zoneidx, ac->nodemask); 3593 } 3594 3595 /* Attempt with potentially adjusted zonelist and alloc_flags */ 3596 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3597 if (page) 3598 goto got_pg; 3599 3600 /* Caller is not willing to reclaim, we can't balance anything */ 3601 if (!can_direct_reclaim) { 3602 /* 3603 * All existing users of the __GFP_NOFAIL are blockable, so warn 3604 * of any new users that actually allow this type of allocation 3605 * to fail. 3606 */ 3607 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 3608 goto nopage; 3609 } 3610 3611 /* Avoid recursion of direct reclaim */ 3612 if (current->flags & PF_MEMALLOC) { 3613 /* 3614 * __GFP_NOFAIL request from this context is rather bizarre 3615 * because we cannot reclaim anything and only can loop waiting 3616 * for somebody to do a work for us. 3617 */ 3618 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3619 cond_resched(); 3620 goto retry; 3621 } 3622 goto nopage; 3623 } 3624 3625 /* Avoid allocations with no watermarks from looping endlessly */ 3626 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 3627 goto nopage; 3628 3629 3630 /* Try direct reclaim and then allocating */ 3631 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3632 &did_some_progress); 3633 if (page) 3634 goto got_pg; 3635 3636 /* Try direct compaction and then allocating */ 3637 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3638 compact_priority, &compact_result); 3639 if (page) 3640 goto got_pg; 3641 3642 /* Do not loop if specifically requested */ 3643 if (gfp_mask & __GFP_NORETRY) 3644 goto nopage; 3645 3646 /* 3647 * Do not retry costly high order allocations unless they are 3648 * __GFP_REPEAT 3649 */ 3650 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT)) 3651 goto nopage; 3652 3653 /* Make sure we know about allocations which stall for too long */ 3654 if (time_after(jiffies, alloc_start + stall_timeout)) { 3655 warn_alloc(gfp_mask, 3656 "page alloction stalls for %ums, order:%u\n", 3657 jiffies_to_msecs(jiffies-alloc_start), order); 3658 stall_timeout += 10 * HZ; 3659 } 3660 3661 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 3662 did_some_progress > 0, &no_progress_loops)) 3663 goto retry; 3664 3665 /* 3666 * It doesn't make any sense to retry for the compaction if the order-0 3667 * reclaim is not able to make any progress because the current 3668 * implementation of the compaction depends on the sufficient amount 3669 * of free memory (see __compaction_suitable) 3670 */ 3671 if (did_some_progress > 0 && 3672 should_compact_retry(ac, order, alloc_flags, 3673 compact_result, &compact_priority, 3674 &compaction_retries)) 3675 goto retry; 3676 3677 /* Reclaim has failed us, start killing things */ 3678 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3679 if (page) 3680 goto got_pg; 3681 3682 /* Retry as long as the OOM killer is making progress */ 3683 if (did_some_progress) { 3684 no_progress_loops = 0; 3685 goto retry; 3686 } 3687 3688 nopage: 3689 warn_alloc(gfp_mask, 3690 "page allocation failure: order:%u", order); 3691 got_pg: 3692 return page; 3693 } 3694 3695 /* 3696 * This is the 'heart' of the zoned buddy allocator. 3697 */ 3698 struct page * 3699 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 3700 struct zonelist *zonelist, nodemask_t *nodemask) 3701 { 3702 struct page *page; 3703 unsigned int cpuset_mems_cookie; 3704 unsigned int alloc_flags = ALLOC_WMARK_LOW; 3705 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */ 3706 struct alloc_context ac = { 3707 .high_zoneidx = gfp_zone(gfp_mask), 3708 .zonelist = zonelist, 3709 .nodemask = nodemask, 3710 .migratetype = gfpflags_to_migratetype(gfp_mask), 3711 }; 3712 3713 if (cpusets_enabled()) { 3714 alloc_mask |= __GFP_HARDWALL; 3715 alloc_flags |= ALLOC_CPUSET; 3716 if (!ac.nodemask) 3717 ac.nodemask = &cpuset_current_mems_allowed; 3718 } 3719 3720 gfp_mask &= gfp_allowed_mask; 3721 3722 lockdep_trace_alloc(gfp_mask); 3723 3724 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 3725 3726 if (should_fail_alloc_page(gfp_mask, order)) 3727 return NULL; 3728 3729 /* 3730 * Check the zones suitable for the gfp_mask contain at least one 3731 * valid zone. It's possible to have an empty zonelist as a result 3732 * of __GFP_THISNODE and a memoryless node 3733 */ 3734 if (unlikely(!zonelist->_zonerefs->zone)) 3735 return NULL; 3736 3737 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) 3738 alloc_flags |= ALLOC_CMA; 3739 3740 retry_cpuset: 3741 cpuset_mems_cookie = read_mems_allowed_begin(); 3742 3743 /* Dirty zone balancing only done in the fast path */ 3744 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE); 3745 3746 /* 3747 * The preferred zone is used for statistics but crucially it is 3748 * also used as the starting point for the zonelist iterator. It 3749 * may get reset for allocations that ignore memory policies. 3750 */ 3751 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist, 3752 ac.high_zoneidx, ac.nodemask); 3753 if (!ac.preferred_zoneref) { 3754 page = NULL; 3755 goto no_zone; 3756 } 3757 3758 /* First allocation attempt */ 3759 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 3760 if (likely(page)) 3761 goto out; 3762 3763 /* 3764 * Runtime PM, block IO and its error handling path can deadlock 3765 * because I/O on the device might not complete. 3766 */ 3767 alloc_mask = memalloc_noio_flags(gfp_mask); 3768 ac.spread_dirty_pages = false; 3769 3770 /* 3771 * Restore the original nodemask if it was potentially replaced with 3772 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 3773 */ 3774 if (cpusets_enabled()) 3775 ac.nodemask = nodemask; 3776 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 3777 3778 no_zone: 3779 /* 3780 * When updating a task's mems_allowed, it is possible to race with 3781 * parallel threads in such a way that an allocation can fail while 3782 * the mask is being updated. If a page allocation is about to fail, 3783 * check if the cpuset changed during allocation and if so, retry. 3784 */ 3785 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) { 3786 alloc_mask = gfp_mask; 3787 goto retry_cpuset; 3788 } 3789 3790 out: 3791 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 3792 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 3793 __free_pages(page, order); 3794 page = NULL; 3795 } 3796 3797 if (kmemcheck_enabled && page) 3798 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 3799 3800 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 3801 3802 return page; 3803 } 3804 EXPORT_SYMBOL(__alloc_pages_nodemask); 3805 3806 /* 3807 * Common helper functions. 3808 */ 3809 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 3810 { 3811 struct page *page; 3812 3813 /* 3814 * __get_free_pages() returns a 32-bit address, which cannot represent 3815 * a highmem page 3816 */ 3817 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 3818 3819 page = alloc_pages(gfp_mask, order); 3820 if (!page) 3821 return 0; 3822 return (unsigned long) page_address(page); 3823 } 3824 EXPORT_SYMBOL(__get_free_pages); 3825 3826 unsigned long get_zeroed_page(gfp_t gfp_mask) 3827 { 3828 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 3829 } 3830 EXPORT_SYMBOL(get_zeroed_page); 3831 3832 void __free_pages(struct page *page, unsigned int order) 3833 { 3834 if (put_page_testzero(page)) { 3835 if (order == 0) 3836 free_hot_cold_page(page, false); 3837 else 3838 __free_pages_ok(page, order); 3839 } 3840 } 3841 3842 EXPORT_SYMBOL(__free_pages); 3843 3844 void free_pages(unsigned long addr, unsigned int order) 3845 { 3846 if (addr != 0) { 3847 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3848 __free_pages(virt_to_page((void *)addr), order); 3849 } 3850 } 3851 3852 EXPORT_SYMBOL(free_pages); 3853 3854 /* 3855 * Page Fragment: 3856 * An arbitrary-length arbitrary-offset area of memory which resides 3857 * within a 0 or higher order page. Multiple fragments within that page 3858 * are individually refcounted, in the page's reference counter. 3859 * 3860 * The page_frag functions below provide a simple allocation framework for 3861 * page fragments. This is used by the network stack and network device 3862 * drivers to provide a backing region of memory for use as either an 3863 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 3864 */ 3865 static struct page *__page_frag_refill(struct page_frag_cache *nc, 3866 gfp_t gfp_mask) 3867 { 3868 struct page *page = NULL; 3869 gfp_t gfp = gfp_mask; 3870 3871 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3872 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 3873 __GFP_NOMEMALLOC; 3874 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 3875 PAGE_FRAG_CACHE_MAX_ORDER); 3876 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 3877 #endif 3878 if (unlikely(!page)) 3879 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 3880 3881 nc->va = page ? page_address(page) : NULL; 3882 3883 return page; 3884 } 3885 3886 void *__alloc_page_frag(struct page_frag_cache *nc, 3887 unsigned int fragsz, gfp_t gfp_mask) 3888 { 3889 unsigned int size = PAGE_SIZE; 3890 struct page *page; 3891 int offset; 3892 3893 if (unlikely(!nc->va)) { 3894 refill: 3895 page = __page_frag_refill(nc, gfp_mask); 3896 if (!page) 3897 return NULL; 3898 3899 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3900 /* if size can vary use size else just use PAGE_SIZE */ 3901 size = nc->size; 3902 #endif 3903 /* Even if we own the page, we do not use atomic_set(). 3904 * This would break get_page_unless_zero() users. 3905 */ 3906 page_ref_add(page, size - 1); 3907 3908 /* reset page count bias and offset to start of new frag */ 3909 nc->pfmemalloc = page_is_pfmemalloc(page); 3910 nc->pagecnt_bias = size; 3911 nc->offset = size; 3912 } 3913 3914 offset = nc->offset - fragsz; 3915 if (unlikely(offset < 0)) { 3916 page = virt_to_page(nc->va); 3917 3918 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 3919 goto refill; 3920 3921 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3922 /* if size can vary use size else just use PAGE_SIZE */ 3923 size = nc->size; 3924 #endif 3925 /* OK, page count is 0, we can safely set it */ 3926 set_page_count(page, size); 3927 3928 /* reset page count bias and offset to start of new frag */ 3929 nc->pagecnt_bias = size; 3930 offset = size - fragsz; 3931 } 3932 3933 nc->pagecnt_bias--; 3934 nc->offset = offset; 3935 3936 return nc->va + offset; 3937 } 3938 EXPORT_SYMBOL(__alloc_page_frag); 3939 3940 /* 3941 * Frees a page fragment allocated out of either a compound or order 0 page. 3942 */ 3943 void __free_page_frag(void *addr) 3944 { 3945 struct page *page = virt_to_head_page(addr); 3946 3947 if (unlikely(put_page_testzero(page))) 3948 __free_pages_ok(page, compound_order(page)); 3949 } 3950 EXPORT_SYMBOL(__free_page_frag); 3951 3952 static void *make_alloc_exact(unsigned long addr, unsigned int order, 3953 size_t size) 3954 { 3955 if (addr) { 3956 unsigned long alloc_end = addr + (PAGE_SIZE << order); 3957 unsigned long used = addr + PAGE_ALIGN(size); 3958 3959 split_page(virt_to_page((void *)addr), order); 3960 while (used < alloc_end) { 3961 free_page(used); 3962 used += PAGE_SIZE; 3963 } 3964 } 3965 return (void *)addr; 3966 } 3967 3968 /** 3969 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 3970 * @size: the number of bytes to allocate 3971 * @gfp_mask: GFP flags for the allocation 3972 * 3973 * This function is similar to alloc_pages(), except that it allocates the 3974 * minimum number of pages to satisfy the request. alloc_pages() can only 3975 * allocate memory in power-of-two pages. 3976 * 3977 * This function is also limited by MAX_ORDER. 3978 * 3979 * Memory allocated by this function must be released by free_pages_exact(). 3980 */ 3981 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 3982 { 3983 unsigned int order = get_order(size); 3984 unsigned long addr; 3985 3986 addr = __get_free_pages(gfp_mask, order); 3987 return make_alloc_exact(addr, order, size); 3988 } 3989 EXPORT_SYMBOL(alloc_pages_exact); 3990 3991 /** 3992 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3993 * pages on a node. 3994 * @nid: the preferred node ID where memory should be allocated 3995 * @size: the number of bytes to allocate 3996 * @gfp_mask: GFP flags for the allocation 3997 * 3998 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3999 * back. 4000 */ 4001 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4002 { 4003 unsigned int order = get_order(size); 4004 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4005 if (!p) 4006 return NULL; 4007 return make_alloc_exact((unsigned long)page_address(p), order, size); 4008 } 4009 4010 /** 4011 * free_pages_exact - release memory allocated via alloc_pages_exact() 4012 * @virt: the value returned by alloc_pages_exact. 4013 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4014 * 4015 * Release the memory allocated by a previous call to alloc_pages_exact. 4016 */ 4017 void free_pages_exact(void *virt, size_t size) 4018 { 4019 unsigned long addr = (unsigned long)virt; 4020 unsigned long end = addr + PAGE_ALIGN(size); 4021 4022 while (addr < end) { 4023 free_page(addr); 4024 addr += PAGE_SIZE; 4025 } 4026 } 4027 EXPORT_SYMBOL(free_pages_exact); 4028 4029 /** 4030 * nr_free_zone_pages - count number of pages beyond high watermark 4031 * @offset: The zone index of the highest zone 4032 * 4033 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4034 * high watermark within all zones at or below a given zone index. For each 4035 * zone, the number of pages is calculated as: 4036 * managed_pages - high_pages 4037 */ 4038 static unsigned long nr_free_zone_pages(int offset) 4039 { 4040 struct zoneref *z; 4041 struct zone *zone; 4042 4043 /* Just pick one node, since fallback list is circular */ 4044 unsigned long sum = 0; 4045 4046 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4047 4048 for_each_zone_zonelist(zone, z, zonelist, offset) { 4049 unsigned long size = zone->managed_pages; 4050 unsigned long high = high_wmark_pages(zone); 4051 if (size > high) 4052 sum += size - high; 4053 } 4054 4055 return sum; 4056 } 4057 4058 /** 4059 * nr_free_buffer_pages - count number of pages beyond high watermark 4060 * 4061 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4062 * watermark within ZONE_DMA and ZONE_NORMAL. 4063 */ 4064 unsigned long nr_free_buffer_pages(void) 4065 { 4066 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4067 } 4068 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4069 4070 /** 4071 * nr_free_pagecache_pages - count number of pages beyond high watermark 4072 * 4073 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4074 * high watermark within all zones. 4075 */ 4076 unsigned long nr_free_pagecache_pages(void) 4077 { 4078 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4079 } 4080 4081 static inline void show_node(struct zone *zone) 4082 { 4083 if (IS_ENABLED(CONFIG_NUMA)) 4084 printk("Node %d ", zone_to_nid(zone)); 4085 } 4086 4087 long si_mem_available(void) 4088 { 4089 long available; 4090 unsigned long pagecache; 4091 unsigned long wmark_low = 0; 4092 unsigned long pages[NR_LRU_LISTS]; 4093 struct zone *zone; 4094 int lru; 4095 4096 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4097 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4098 4099 for_each_zone(zone) 4100 wmark_low += zone->watermark[WMARK_LOW]; 4101 4102 /* 4103 * Estimate the amount of memory available for userspace allocations, 4104 * without causing swapping. 4105 */ 4106 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages; 4107 4108 /* 4109 * Not all the page cache can be freed, otherwise the system will 4110 * start swapping. Assume at least half of the page cache, or the 4111 * low watermark worth of cache, needs to stay. 4112 */ 4113 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4114 pagecache -= min(pagecache / 2, wmark_low); 4115 available += pagecache; 4116 4117 /* 4118 * Part of the reclaimable slab consists of items that are in use, 4119 * and cannot be freed. Cap this estimate at the low watermark. 4120 */ 4121 available += global_page_state(NR_SLAB_RECLAIMABLE) - 4122 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low); 4123 4124 if (available < 0) 4125 available = 0; 4126 return available; 4127 } 4128 EXPORT_SYMBOL_GPL(si_mem_available); 4129 4130 void si_meminfo(struct sysinfo *val) 4131 { 4132 val->totalram = totalram_pages; 4133 val->sharedram = global_node_page_state(NR_SHMEM); 4134 val->freeram = global_page_state(NR_FREE_PAGES); 4135 val->bufferram = nr_blockdev_pages(); 4136 val->totalhigh = totalhigh_pages; 4137 val->freehigh = nr_free_highpages(); 4138 val->mem_unit = PAGE_SIZE; 4139 } 4140 4141 EXPORT_SYMBOL(si_meminfo); 4142 4143 #ifdef CONFIG_NUMA 4144 void si_meminfo_node(struct sysinfo *val, int nid) 4145 { 4146 int zone_type; /* needs to be signed */ 4147 unsigned long managed_pages = 0; 4148 unsigned long managed_highpages = 0; 4149 unsigned long free_highpages = 0; 4150 pg_data_t *pgdat = NODE_DATA(nid); 4151 4152 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4153 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4154 val->totalram = managed_pages; 4155 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4156 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4157 #ifdef CONFIG_HIGHMEM 4158 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4159 struct zone *zone = &pgdat->node_zones[zone_type]; 4160 4161 if (is_highmem(zone)) { 4162 managed_highpages += zone->managed_pages; 4163 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4164 } 4165 } 4166 val->totalhigh = managed_highpages; 4167 val->freehigh = free_highpages; 4168 #else 4169 val->totalhigh = managed_highpages; 4170 val->freehigh = free_highpages; 4171 #endif 4172 val->mem_unit = PAGE_SIZE; 4173 } 4174 #endif 4175 4176 /* 4177 * Determine whether the node should be displayed or not, depending on whether 4178 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4179 */ 4180 bool skip_free_areas_node(unsigned int flags, int nid) 4181 { 4182 bool ret = false; 4183 unsigned int cpuset_mems_cookie; 4184 4185 if (!(flags & SHOW_MEM_FILTER_NODES)) 4186 goto out; 4187 4188 do { 4189 cpuset_mems_cookie = read_mems_allowed_begin(); 4190 ret = !node_isset(nid, cpuset_current_mems_allowed); 4191 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 4192 out: 4193 return ret; 4194 } 4195 4196 #define K(x) ((x) << (PAGE_SHIFT-10)) 4197 4198 static void show_migration_types(unsigned char type) 4199 { 4200 static const char types[MIGRATE_TYPES] = { 4201 [MIGRATE_UNMOVABLE] = 'U', 4202 [MIGRATE_MOVABLE] = 'M', 4203 [MIGRATE_RECLAIMABLE] = 'E', 4204 [MIGRATE_HIGHATOMIC] = 'H', 4205 #ifdef CONFIG_CMA 4206 [MIGRATE_CMA] = 'C', 4207 #endif 4208 #ifdef CONFIG_MEMORY_ISOLATION 4209 [MIGRATE_ISOLATE] = 'I', 4210 #endif 4211 }; 4212 char tmp[MIGRATE_TYPES + 1]; 4213 char *p = tmp; 4214 int i; 4215 4216 for (i = 0; i < MIGRATE_TYPES; i++) { 4217 if (type & (1 << i)) 4218 *p++ = types[i]; 4219 } 4220 4221 *p = '\0'; 4222 printk("(%s) ", tmp); 4223 } 4224 4225 /* 4226 * Show free area list (used inside shift_scroll-lock stuff) 4227 * We also calculate the percentage fragmentation. We do this by counting the 4228 * memory on each free list with the exception of the first item on the list. 4229 * 4230 * Bits in @filter: 4231 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4232 * cpuset. 4233 */ 4234 void show_free_areas(unsigned int filter) 4235 { 4236 unsigned long free_pcp = 0; 4237 int cpu; 4238 struct zone *zone; 4239 pg_data_t *pgdat; 4240 4241 for_each_populated_zone(zone) { 4242 if (skip_free_areas_node(filter, zone_to_nid(zone))) 4243 continue; 4244 4245 for_each_online_cpu(cpu) 4246 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4247 } 4248 4249 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4250 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4251 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4252 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4253 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4254 " free:%lu free_pcp:%lu free_cma:%lu\n", 4255 global_node_page_state(NR_ACTIVE_ANON), 4256 global_node_page_state(NR_INACTIVE_ANON), 4257 global_node_page_state(NR_ISOLATED_ANON), 4258 global_node_page_state(NR_ACTIVE_FILE), 4259 global_node_page_state(NR_INACTIVE_FILE), 4260 global_node_page_state(NR_ISOLATED_FILE), 4261 global_node_page_state(NR_UNEVICTABLE), 4262 global_node_page_state(NR_FILE_DIRTY), 4263 global_node_page_state(NR_WRITEBACK), 4264 global_node_page_state(NR_UNSTABLE_NFS), 4265 global_page_state(NR_SLAB_RECLAIMABLE), 4266 global_page_state(NR_SLAB_UNRECLAIMABLE), 4267 global_node_page_state(NR_FILE_MAPPED), 4268 global_node_page_state(NR_SHMEM), 4269 global_page_state(NR_PAGETABLE), 4270 global_page_state(NR_BOUNCE), 4271 global_page_state(NR_FREE_PAGES), 4272 free_pcp, 4273 global_page_state(NR_FREE_CMA_PAGES)); 4274 4275 for_each_online_pgdat(pgdat) { 4276 printk("Node %d" 4277 " active_anon:%lukB" 4278 " inactive_anon:%lukB" 4279 " active_file:%lukB" 4280 " inactive_file:%lukB" 4281 " unevictable:%lukB" 4282 " isolated(anon):%lukB" 4283 " isolated(file):%lukB" 4284 " mapped:%lukB" 4285 " dirty:%lukB" 4286 " writeback:%lukB" 4287 " shmem:%lukB" 4288 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4289 " shmem_thp: %lukB" 4290 " shmem_pmdmapped: %lukB" 4291 " anon_thp: %lukB" 4292 #endif 4293 " writeback_tmp:%lukB" 4294 " unstable:%lukB" 4295 " pages_scanned:%lu" 4296 " all_unreclaimable? %s" 4297 "\n", 4298 pgdat->node_id, 4299 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4300 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4301 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4302 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4303 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4304 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4305 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4306 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4307 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4308 K(node_page_state(pgdat, NR_WRITEBACK)), 4309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4310 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4311 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4312 * HPAGE_PMD_NR), 4313 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4314 #endif 4315 K(node_page_state(pgdat, NR_SHMEM)), 4316 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4317 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4318 node_page_state(pgdat, NR_PAGES_SCANNED), 4319 !pgdat_reclaimable(pgdat) ? "yes" : "no"); 4320 } 4321 4322 for_each_populated_zone(zone) { 4323 int i; 4324 4325 if (skip_free_areas_node(filter, zone_to_nid(zone))) 4326 continue; 4327 4328 free_pcp = 0; 4329 for_each_online_cpu(cpu) 4330 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4331 4332 show_node(zone); 4333 printk("%s" 4334 " free:%lukB" 4335 " min:%lukB" 4336 " low:%lukB" 4337 " high:%lukB" 4338 " active_anon:%lukB" 4339 " inactive_anon:%lukB" 4340 " active_file:%lukB" 4341 " inactive_file:%lukB" 4342 " unevictable:%lukB" 4343 " writepending:%lukB" 4344 " present:%lukB" 4345 " managed:%lukB" 4346 " mlocked:%lukB" 4347 " slab_reclaimable:%lukB" 4348 " slab_unreclaimable:%lukB" 4349 " kernel_stack:%lukB" 4350 " pagetables:%lukB" 4351 " bounce:%lukB" 4352 " free_pcp:%lukB" 4353 " local_pcp:%ukB" 4354 " free_cma:%lukB" 4355 "\n", 4356 zone->name, 4357 K(zone_page_state(zone, NR_FREE_PAGES)), 4358 K(min_wmark_pages(zone)), 4359 K(low_wmark_pages(zone)), 4360 K(high_wmark_pages(zone)), 4361 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4362 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4363 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4364 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4365 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4366 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4367 K(zone->present_pages), 4368 K(zone->managed_pages), 4369 K(zone_page_state(zone, NR_MLOCK)), 4370 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 4371 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 4372 zone_page_state(zone, NR_KERNEL_STACK_KB), 4373 K(zone_page_state(zone, NR_PAGETABLE)), 4374 K(zone_page_state(zone, NR_BOUNCE)), 4375 K(free_pcp), 4376 K(this_cpu_read(zone->pageset->pcp.count)), 4377 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4378 printk("lowmem_reserve[]:"); 4379 for (i = 0; i < MAX_NR_ZONES; i++) 4380 printk(" %ld", zone->lowmem_reserve[i]); 4381 printk("\n"); 4382 } 4383 4384 for_each_populated_zone(zone) { 4385 unsigned int order; 4386 unsigned long nr[MAX_ORDER], flags, total = 0; 4387 unsigned char types[MAX_ORDER]; 4388 4389 if (skip_free_areas_node(filter, zone_to_nid(zone))) 4390 continue; 4391 show_node(zone); 4392 printk("%s: ", zone->name); 4393 4394 spin_lock_irqsave(&zone->lock, flags); 4395 for (order = 0; order < MAX_ORDER; order++) { 4396 struct free_area *area = &zone->free_area[order]; 4397 int type; 4398 4399 nr[order] = area->nr_free; 4400 total += nr[order] << order; 4401 4402 types[order] = 0; 4403 for (type = 0; type < MIGRATE_TYPES; type++) { 4404 if (!list_empty(&area->free_list[type])) 4405 types[order] |= 1 << type; 4406 } 4407 } 4408 spin_unlock_irqrestore(&zone->lock, flags); 4409 for (order = 0; order < MAX_ORDER; order++) { 4410 printk("%lu*%lukB ", nr[order], K(1UL) << order); 4411 if (nr[order]) 4412 show_migration_types(types[order]); 4413 } 4414 printk("= %lukB\n", K(total)); 4415 } 4416 4417 hugetlb_show_meminfo(); 4418 4419 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4420 4421 show_swap_cache_info(); 4422 } 4423 4424 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4425 { 4426 zoneref->zone = zone; 4427 zoneref->zone_idx = zone_idx(zone); 4428 } 4429 4430 /* 4431 * Builds allocation fallback zone lists. 4432 * 4433 * Add all populated zones of a node to the zonelist. 4434 */ 4435 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 4436 int nr_zones) 4437 { 4438 struct zone *zone; 4439 enum zone_type zone_type = MAX_NR_ZONES; 4440 4441 do { 4442 zone_type--; 4443 zone = pgdat->node_zones + zone_type; 4444 if (managed_zone(zone)) { 4445 zoneref_set_zone(zone, 4446 &zonelist->_zonerefs[nr_zones++]); 4447 check_highest_zone(zone_type); 4448 } 4449 } while (zone_type); 4450 4451 return nr_zones; 4452 } 4453 4454 4455 /* 4456 * zonelist_order: 4457 * 0 = automatic detection of better ordering. 4458 * 1 = order by ([node] distance, -zonetype) 4459 * 2 = order by (-zonetype, [node] distance) 4460 * 4461 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 4462 * the same zonelist. So only NUMA can configure this param. 4463 */ 4464 #define ZONELIST_ORDER_DEFAULT 0 4465 #define ZONELIST_ORDER_NODE 1 4466 #define ZONELIST_ORDER_ZONE 2 4467 4468 /* zonelist order in the kernel. 4469 * set_zonelist_order() will set this to NODE or ZONE. 4470 */ 4471 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 4472 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 4473 4474 4475 #ifdef CONFIG_NUMA 4476 /* The value user specified ....changed by config */ 4477 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4478 /* string for sysctl */ 4479 #define NUMA_ZONELIST_ORDER_LEN 16 4480 char numa_zonelist_order[16] = "default"; 4481 4482 /* 4483 * interface for configure zonelist ordering. 4484 * command line option "numa_zonelist_order" 4485 * = "[dD]efault - default, automatic configuration. 4486 * = "[nN]ode - order by node locality, then by zone within node 4487 * = "[zZ]one - order by zone, then by locality within zone 4488 */ 4489 4490 static int __parse_numa_zonelist_order(char *s) 4491 { 4492 if (*s == 'd' || *s == 'D') { 4493 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4494 } else if (*s == 'n' || *s == 'N') { 4495 user_zonelist_order = ZONELIST_ORDER_NODE; 4496 } else if (*s == 'z' || *s == 'Z') { 4497 user_zonelist_order = ZONELIST_ORDER_ZONE; 4498 } else { 4499 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s); 4500 return -EINVAL; 4501 } 4502 return 0; 4503 } 4504 4505 static __init int setup_numa_zonelist_order(char *s) 4506 { 4507 int ret; 4508 4509 if (!s) 4510 return 0; 4511 4512 ret = __parse_numa_zonelist_order(s); 4513 if (ret == 0) 4514 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 4515 4516 return ret; 4517 } 4518 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4519 4520 /* 4521 * sysctl handler for numa_zonelist_order 4522 */ 4523 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4524 void __user *buffer, size_t *length, 4525 loff_t *ppos) 4526 { 4527 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 4528 int ret; 4529 static DEFINE_MUTEX(zl_order_mutex); 4530 4531 mutex_lock(&zl_order_mutex); 4532 if (write) { 4533 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 4534 ret = -EINVAL; 4535 goto out; 4536 } 4537 strcpy(saved_string, (char *)table->data); 4538 } 4539 ret = proc_dostring(table, write, buffer, length, ppos); 4540 if (ret) 4541 goto out; 4542 if (write) { 4543 int oldval = user_zonelist_order; 4544 4545 ret = __parse_numa_zonelist_order((char *)table->data); 4546 if (ret) { 4547 /* 4548 * bogus value. restore saved string 4549 */ 4550 strncpy((char *)table->data, saved_string, 4551 NUMA_ZONELIST_ORDER_LEN); 4552 user_zonelist_order = oldval; 4553 } else if (oldval != user_zonelist_order) { 4554 mutex_lock(&zonelists_mutex); 4555 build_all_zonelists(NULL, NULL); 4556 mutex_unlock(&zonelists_mutex); 4557 } 4558 } 4559 out: 4560 mutex_unlock(&zl_order_mutex); 4561 return ret; 4562 } 4563 4564 4565 #define MAX_NODE_LOAD (nr_online_nodes) 4566 static int node_load[MAX_NUMNODES]; 4567 4568 /** 4569 * find_next_best_node - find the next node that should appear in a given node's fallback list 4570 * @node: node whose fallback list we're appending 4571 * @used_node_mask: nodemask_t of already used nodes 4572 * 4573 * We use a number of factors to determine which is the next node that should 4574 * appear on a given node's fallback list. The node should not have appeared 4575 * already in @node's fallback list, and it should be the next closest node 4576 * according to the distance array (which contains arbitrary distance values 4577 * from each node to each node in the system), and should also prefer nodes 4578 * with no CPUs, since presumably they'll have very little allocation pressure 4579 * on them otherwise. 4580 * It returns -1 if no node is found. 4581 */ 4582 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4583 { 4584 int n, val; 4585 int min_val = INT_MAX; 4586 int best_node = NUMA_NO_NODE; 4587 const struct cpumask *tmp = cpumask_of_node(0); 4588 4589 /* Use the local node if we haven't already */ 4590 if (!node_isset(node, *used_node_mask)) { 4591 node_set(node, *used_node_mask); 4592 return node; 4593 } 4594 4595 for_each_node_state(n, N_MEMORY) { 4596 4597 /* Don't want a node to appear more than once */ 4598 if (node_isset(n, *used_node_mask)) 4599 continue; 4600 4601 /* Use the distance array to find the distance */ 4602 val = node_distance(node, n); 4603 4604 /* Penalize nodes under us ("prefer the next node") */ 4605 val += (n < node); 4606 4607 /* Give preference to headless and unused nodes */ 4608 tmp = cpumask_of_node(n); 4609 if (!cpumask_empty(tmp)) 4610 val += PENALTY_FOR_NODE_WITH_CPUS; 4611 4612 /* Slight preference for less loaded node */ 4613 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4614 val += node_load[n]; 4615 4616 if (val < min_val) { 4617 min_val = val; 4618 best_node = n; 4619 } 4620 } 4621 4622 if (best_node >= 0) 4623 node_set(best_node, *used_node_mask); 4624 4625 return best_node; 4626 } 4627 4628 4629 /* 4630 * Build zonelists ordered by node and zones within node. 4631 * This results in maximum locality--normal zone overflows into local 4632 * DMA zone, if any--but risks exhausting DMA zone. 4633 */ 4634 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 4635 { 4636 int j; 4637 struct zonelist *zonelist; 4638 4639 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4640 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 4641 ; 4642 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4643 zonelist->_zonerefs[j].zone = NULL; 4644 zonelist->_zonerefs[j].zone_idx = 0; 4645 } 4646 4647 /* 4648 * Build gfp_thisnode zonelists 4649 */ 4650 static void build_thisnode_zonelists(pg_data_t *pgdat) 4651 { 4652 int j; 4653 struct zonelist *zonelist; 4654 4655 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK]; 4656 j = build_zonelists_node(pgdat, zonelist, 0); 4657 zonelist->_zonerefs[j].zone = NULL; 4658 zonelist->_zonerefs[j].zone_idx = 0; 4659 } 4660 4661 /* 4662 * Build zonelists ordered by zone and nodes within zones. 4663 * This results in conserving DMA zone[s] until all Normal memory is 4664 * exhausted, but results in overflowing to remote node while memory 4665 * may still exist in local DMA zone. 4666 */ 4667 static int node_order[MAX_NUMNODES]; 4668 4669 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 4670 { 4671 int pos, j, node; 4672 int zone_type; /* needs to be signed */ 4673 struct zone *z; 4674 struct zonelist *zonelist; 4675 4676 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4677 pos = 0; 4678 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 4679 for (j = 0; j < nr_nodes; j++) { 4680 node = node_order[j]; 4681 z = &NODE_DATA(node)->node_zones[zone_type]; 4682 if (managed_zone(z)) { 4683 zoneref_set_zone(z, 4684 &zonelist->_zonerefs[pos++]); 4685 check_highest_zone(zone_type); 4686 } 4687 } 4688 } 4689 zonelist->_zonerefs[pos].zone = NULL; 4690 zonelist->_zonerefs[pos].zone_idx = 0; 4691 } 4692 4693 #if defined(CONFIG_64BIT) 4694 /* 4695 * Devices that require DMA32/DMA are relatively rare and do not justify a 4696 * penalty to every machine in case the specialised case applies. Default 4697 * to Node-ordering on 64-bit NUMA machines 4698 */ 4699 static int default_zonelist_order(void) 4700 { 4701 return ZONELIST_ORDER_NODE; 4702 } 4703 #else 4704 /* 4705 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 4706 * by the kernel. If processes running on node 0 deplete the low memory zone 4707 * then reclaim will occur more frequency increasing stalls and potentially 4708 * be easier to OOM if a large percentage of the zone is under writeback or 4709 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 4710 * Hence, default to zone ordering on 32-bit. 4711 */ 4712 static int default_zonelist_order(void) 4713 { 4714 return ZONELIST_ORDER_ZONE; 4715 } 4716 #endif /* CONFIG_64BIT */ 4717 4718 static void set_zonelist_order(void) 4719 { 4720 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 4721 current_zonelist_order = default_zonelist_order(); 4722 else 4723 current_zonelist_order = user_zonelist_order; 4724 } 4725 4726 static void build_zonelists(pg_data_t *pgdat) 4727 { 4728 int i, node, load; 4729 nodemask_t used_mask; 4730 int local_node, prev_node; 4731 struct zonelist *zonelist; 4732 unsigned int order = current_zonelist_order; 4733 4734 /* initialize zonelists */ 4735 for (i = 0; i < MAX_ZONELISTS; i++) { 4736 zonelist = pgdat->node_zonelists + i; 4737 zonelist->_zonerefs[0].zone = NULL; 4738 zonelist->_zonerefs[0].zone_idx = 0; 4739 } 4740 4741 /* NUMA-aware ordering of nodes */ 4742 local_node = pgdat->node_id; 4743 load = nr_online_nodes; 4744 prev_node = local_node; 4745 nodes_clear(used_mask); 4746 4747 memset(node_order, 0, sizeof(node_order)); 4748 i = 0; 4749 4750 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4751 /* 4752 * We don't want to pressure a particular node. 4753 * So adding penalty to the first node in same 4754 * distance group to make it round-robin. 4755 */ 4756 if (node_distance(local_node, node) != 4757 node_distance(local_node, prev_node)) 4758 node_load[node] = load; 4759 4760 prev_node = node; 4761 load--; 4762 if (order == ZONELIST_ORDER_NODE) 4763 build_zonelists_in_node_order(pgdat, node); 4764 else 4765 node_order[i++] = node; /* remember order */ 4766 } 4767 4768 if (order == ZONELIST_ORDER_ZONE) { 4769 /* calculate node order -- i.e., DMA last! */ 4770 build_zonelists_in_zone_order(pgdat, i); 4771 } 4772 4773 build_thisnode_zonelists(pgdat); 4774 } 4775 4776 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4777 /* 4778 * Return node id of node used for "local" allocations. 4779 * I.e., first node id of first zone in arg node's generic zonelist. 4780 * Used for initializing percpu 'numa_mem', which is used primarily 4781 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 4782 */ 4783 int local_memory_node(int node) 4784 { 4785 struct zoneref *z; 4786 4787 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 4788 gfp_zone(GFP_KERNEL), 4789 NULL); 4790 return z->zone->node; 4791 } 4792 #endif 4793 4794 static void setup_min_unmapped_ratio(void); 4795 static void setup_min_slab_ratio(void); 4796 #else /* CONFIG_NUMA */ 4797 4798 static void set_zonelist_order(void) 4799 { 4800 current_zonelist_order = ZONELIST_ORDER_ZONE; 4801 } 4802 4803 static void build_zonelists(pg_data_t *pgdat) 4804 { 4805 int node, local_node; 4806 enum zone_type j; 4807 struct zonelist *zonelist; 4808 4809 local_node = pgdat->node_id; 4810 4811 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4812 j = build_zonelists_node(pgdat, zonelist, 0); 4813 4814 /* 4815 * Now we build the zonelist so that it contains the zones 4816 * of all the other nodes. 4817 * We don't want to pressure a particular node, so when 4818 * building the zones for node N, we make sure that the 4819 * zones coming right after the local ones are those from 4820 * node N+1 (modulo N) 4821 */ 4822 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 4823 if (!node_online(node)) 4824 continue; 4825 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4826 } 4827 for (node = 0; node < local_node; node++) { 4828 if (!node_online(node)) 4829 continue; 4830 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4831 } 4832 4833 zonelist->_zonerefs[j].zone = NULL; 4834 zonelist->_zonerefs[j].zone_idx = 0; 4835 } 4836 4837 #endif /* CONFIG_NUMA */ 4838 4839 /* 4840 * Boot pageset table. One per cpu which is going to be used for all 4841 * zones and all nodes. The parameters will be set in such a way 4842 * that an item put on a list will immediately be handed over to 4843 * the buddy list. This is safe since pageset manipulation is done 4844 * with interrupts disabled. 4845 * 4846 * The boot_pagesets must be kept even after bootup is complete for 4847 * unused processors and/or zones. They do play a role for bootstrapping 4848 * hotplugged processors. 4849 * 4850 * zoneinfo_show() and maybe other functions do 4851 * not check if the processor is online before following the pageset pointer. 4852 * Other parts of the kernel may not check if the zone is available. 4853 */ 4854 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 4855 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 4856 static void setup_zone_pageset(struct zone *zone); 4857 4858 /* 4859 * Global mutex to protect against size modification of zonelists 4860 * as well as to serialize pageset setup for the new populated zone. 4861 */ 4862 DEFINE_MUTEX(zonelists_mutex); 4863 4864 /* return values int ....just for stop_machine() */ 4865 static int __build_all_zonelists(void *data) 4866 { 4867 int nid; 4868 int cpu; 4869 pg_data_t *self = data; 4870 4871 #ifdef CONFIG_NUMA 4872 memset(node_load, 0, sizeof(node_load)); 4873 #endif 4874 4875 if (self && !node_online(self->node_id)) { 4876 build_zonelists(self); 4877 } 4878 4879 for_each_online_node(nid) { 4880 pg_data_t *pgdat = NODE_DATA(nid); 4881 4882 build_zonelists(pgdat); 4883 } 4884 4885 /* 4886 * Initialize the boot_pagesets that are going to be used 4887 * for bootstrapping processors. The real pagesets for 4888 * each zone will be allocated later when the per cpu 4889 * allocator is available. 4890 * 4891 * boot_pagesets are used also for bootstrapping offline 4892 * cpus if the system is already booted because the pagesets 4893 * are needed to initialize allocators on a specific cpu too. 4894 * F.e. the percpu allocator needs the page allocator which 4895 * needs the percpu allocator in order to allocate its pagesets 4896 * (a chicken-egg dilemma). 4897 */ 4898 for_each_possible_cpu(cpu) { 4899 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 4900 4901 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4902 /* 4903 * We now know the "local memory node" for each node-- 4904 * i.e., the node of the first zone in the generic zonelist. 4905 * Set up numa_mem percpu variable for on-line cpus. During 4906 * boot, only the boot cpu should be on-line; we'll init the 4907 * secondary cpus' numa_mem as they come on-line. During 4908 * node/memory hotplug, we'll fixup all on-line cpus. 4909 */ 4910 if (cpu_online(cpu)) 4911 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 4912 #endif 4913 } 4914 4915 return 0; 4916 } 4917 4918 static noinline void __init 4919 build_all_zonelists_init(void) 4920 { 4921 __build_all_zonelists(NULL); 4922 mminit_verify_zonelist(); 4923 cpuset_init_current_mems_allowed(); 4924 } 4925 4926 /* 4927 * Called with zonelists_mutex held always 4928 * unless system_state == SYSTEM_BOOTING. 4929 * 4930 * __ref due to (1) call of __meminit annotated setup_zone_pageset 4931 * [we're only called with non-NULL zone through __meminit paths] and 4932 * (2) call of __init annotated helper build_all_zonelists_init 4933 * [protected by SYSTEM_BOOTING]. 4934 */ 4935 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 4936 { 4937 set_zonelist_order(); 4938 4939 if (system_state == SYSTEM_BOOTING) { 4940 build_all_zonelists_init(); 4941 } else { 4942 #ifdef CONFIG_MEMORY_HOTPLUG 4943 if (zone) 4944 setup_zone_pageset(zone); 4945 #endif 4946 /* we have to stop all cpus to guarantee there is no user 4947 of zonelist */ 4948 stop_machine(__build_all_zonelists, pgdat, NULL); 4949 /* cpuset refresh routine should be here */ 4950 } 4951 vm_total_pages = nr_free_pagecache_pages(); 4952 /* 4953 * Disable grouping by mobility if the number of pages in the 4954 * system is too low to allow the mechanism to work. It would be 4955 * more accurate, but expensive to check per-zone. This check is 4956 * made on memory-hotadd so a system can start with mobility 4957 * disabled and enable it later 4958 */ 4959 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 4960 page_group_by_mobility_disabled = 1; 4961 else 4962 page_group_by_mobility_disabled = 0; 4963 4964 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n", 4965 nr_online_nodes, 4966 zonelist_order_name[current_zonelist_order], 4967 page_group_by_mobility_disabled ? "off" : "on", 4968 vm_total_pages); 4969 #ifdef CONFIG_NUMA 4970 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 4971 #endif 4972 } 4973 4974 /* 4975 * Helper functions to size the waitqueue hash table. 4976 * Essentially these want to choose hash table sizes sufficiently 4977 * large so that collisions trying to wait on pages are rare. 4978 * But in fact, the number of active page waitqueues on typical 4979 * systems is ridiculously low, less than 200. So this is even 4980 * conservative, even though it seems large. 4981 * 4982 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 4983 * waitqueues, i.e. the size of the waitq table given the number of pages. 4984 */ 4985 #define PAGES_PER_WAITQUEUE 256 4986 4987 #ifndef CONFIG_MEMORY_HOTPLUG 4988 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4989 { 4990 unsigned long size = 1; 4991 4992 pages /= PAGES_PER_WAITQUEUE; 4993 4994 while (size < pages) 4995 size <<= 1; 4996 4997 /* 4998 * Once we have dozens or even hundreds of threads sleeping 4999 * on IO we've got bigger problems than wait queue collision. 5000 * Limit the size of the wait table to a reasonable size. 5001 */ 5002 size = min(size, 4096UL); 5003 5004 return max(size, 4UL); 5005 } 5006 #else 5007 /* 5008 * A zone's size might be changed by hot-add, so it is not possible to determine 5009 * a suitable size for its wait_table. So we use the maximum size now. 5010 * 5011 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 5012 * 5013 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 5014 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 5015 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 5016 * 5017 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 5018 * or more by the traditional way. (See above). It equals: 5019 * 5020 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 5021 * ia64(16K page size) : = ( 8G + 4M)byte. 5022 * powerpc (64K page size) : = (32G +16M)byte. 5023 */ 5024 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 5025 { 5026 return 4096UL; 5027 } 5028 #endif 5029 5030 /* 5031 * This is an integer logarithm so that shifts can be used later 5032 * to extract the more random high bits from the multiplicative 5033 * hash function before the remainder is taken. 5034 */ 5035 static inline unsigned long wait_table_bits(unsigned long size) 5036 { 5037 return ffz(~size); 5038 } 5039 5040 /* 5041 * Initially all pages are reserved - free ones are freed 5042 * up by free_all_bootmem() once the early boot process is 5043 * done. Non-atomic initialization, single-pass. 5044 */ 5045 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5046 unsigned long start_pfn, enum memmap_context context) 5047 { 5048 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 5049 unsigned long end_pfn = start_pfn + size; 5050 pg_data_t *pgdat = NODE_DATA(nid); 5051 unsigned long pfn; 5052 unsigned long nr_initialised = 0; 5053 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5054 struct memblock_region *r = NULL, *tmp; 5055 #endif 5056 5057 if (highest_memmap_pfn < end_pfn - 1) 5058 highest_memmap_pfn = end_pfn - 1; 5059 5060 /* 5061 * Honor reservation requested by the driver for this ZONE_DEVICE 5062 * memory 5063 */ 5064 if (altmap && start_pfn == altmap->base_pfn) 5065 start_pfn += altmap->reserve; 5066 5067 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5068 /* 5069 * There can be holes in boot-time mem_map[]s handed to this 5070 * function. They do not exist on hotplugged memory. 5071 */ 5072 if (context != MEMMAP_EARLY) 5073 goto not_early; 5074 5075 if (!early_pfn_valid(pfn)) 5076 continue; 5077 if (!early_pfn_in_nid(pfn, nid)) 5078 continue; 5079 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5080 break; 5081 5082 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5083 /* 5084 * Check given memblock attribute by firmware which can affect 5085 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5086 * mirrored, it's an overlapped memmap init. skip it. 5087 */ 5088 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5089 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5090 for_each_memblock(memory, tmp) 5091 if (pfn < memblock_region_memory_end_pfn(tmp)) 5092 break; 5093 r = tmp; 5094 } 5095 if (pfn >= memblock_region_memory_base_pfn(r) && 5096 memblock_is_mirror(r)) { 5097 /* already initialized as NORMAL */ 5098 pfn = memblock_region_memory_end_pfn(r); 5099 continue; 5100 } 5101 } 5102 #endif 5103 5104 not_early: 5105 /* 5106 * Mark the block movable so that blocks are reserved for 5107 * movable at startup. This will force kernel allocations 5108 * to reserve their blocks rather than leaking throughout 5109 * the address space during boot when many long-lived 5110 * kernel allocations are made. 5111 * 5112 * bitmap is created for zone's valid pfn range. but memmap 5113 * can be created for invalid pages (for alignment) 5114 * check here not to call set_pageblock_migratetype() against 5115 * pfn out of zone. 5116 */ 5117 if (!(pfn & (pageblock_nr_pages - 1))) { 5118 struct page *page = pfn_to_page(pfn); 5119 5120 __init_single_page(page, pfn, zone, nid); 5121 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5122 } else { 5123 __init_single_pfn(pfn, zone, nid); 5124 } 5125 } 5126 } 5127 5128 static void __meminit zone_init_free_lists(struct zone *zone) 5129 { 5130 unsigned int order, t; 5131 for_each_migratetype_order(order, t) { 5132 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5133 zone->free_area[order].nr_free = 0; 5134 } 5135 } 5136 5137 #ifndef __HAVE_ARCH_MEMMAP_INIT 5138 #define memmap_init(size, nid, zone, start_pfn) \ 5139 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 5140 #endif 5141 5142 static int zone_batchsize(struct zone *zone) 5143 { 5144 #ifdef CONFIG_MMU 5145 int batch; 5146 5147 /* 5148 * The per-cpu-pages pools are set to around 1000th of the 5149 * size of the zone. But no more than 1/2 of a meg. 5150 * 5151 * OK, so we don't know how big the cache is. So guess. 5152 */ 5153 batch = zone->managed_pages / 1024; 5154 if (batch * PAGE_SIZE > 512 * 1024) 5155 batch = (512 * 1024) / PAGE_SIZE; 5156 batch /= 4; /* We effectively *= 4 below */ 5157 if (batch < 1) 5158 batch = 1; 5159 5160 /* 5161 * Clamp the batch to a 2^n - 1 value. Having a power 5162 * of 2 value was found to be more likely to have 5163 * suboptimal cache aliasing properties in some cases. 5164 * 5165 * For example if 2 tasks are alternately allocating 5166 * batches of pages, one task can end up with a lot 5167 * of pages of one half of the possible page colors 5168 * and the other with pages of the other colors. 5169 */ 5170 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5171 5172 return batch; 5173 5174 #else 5175 /* The deferral and batching of frees should be suppressed under NOMMU 5176 * conditions. 5177 * 5178 * The problem is that NOMMU needs to be able to allocate large chunks 5179 * of contiguous memory as there's no hardware page translation to 5180 * assemble apparent contiguous memory from discontiguous pages. 5181 * 5182 * Queueing large contiguous runs of pages for batching, however, 5183 * causes the pages to actually be freed in smaller chunks. As there 5184 * can be a significant delay between the individual batches being 5185 * recycled, this leads to the once large chunks of space being 5186 * fragmented and becoming unavailable for high-order allocations. 5187 */ 5188 return 0; 5189 #endif 5190 } 5191 5192 /* 5193 * pcp->high and pcp->batch values are related and dependent on one another: 5194 * ->batch must never be higher then ->high. 5195 * The following function updates them in a safe manner without read side 5196 * locking. 5197 * 5198 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5199 * those fields changing asynchronously (acording the the above rule). 5200 * 5201 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5202 * outside of boot time (or some other assurance that no concurrent updaters 5203 * exist). 5204 */ 5205 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5206 unsigned long batch) 5207 { 5208 /* start with a fail safe value for batch */ 5209 pcp->batch = 1; 5210 smp_wmb(); 5211 5212 /* Update high, then batch, in order */ 5213 pcp->high = high; 5214 smp_wmb(); 5215 5216 pcp->batch = batch; 5217 } 5218 5219 /* a companion to pageset_set_high() */ 5220 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5221 { 5222 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5223 } 5224 5225 static void pageset_init(struct per_cpu_pageset *p) 5226 { 5227 struct per_cpu_pages *pcp; 5228 int migratetype; 5229 5230 memset(p, 0, sizeof(*p)); 5231 5232 pcp = &p->pcp; 5233 pcp->count = 0; 5234 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5235 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5236 } 5237 5238 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5239 { 5240 pageset_init(p); 5241 pageset_set_batch(p, batch); 5242 } 5243 5244 /* 5245 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5246 * to the value high for the pageset p. 5247 */ 5248 static void pageset_set_high(struct per_cpu_pageset *p, 5249 unsigned long high) 5250 { 5251 unsigned long batch = max(1UL, high / 4); 5252 if ((high / 4) > (PAGE_SHIFT * 8)) 5253 batch = PAGE_SHIFT * 8; 5254 5255 pageset_update(&p->pcp, high, batch); 5256 } 5257 5258 static void pageset_set_high_and_batch(struct zone *zone, 5259 struct per_cpu_pageset *pcp) 5260 { 5261 if (percpu_pagelist_fraction) 5262 pageset_set_high(pcp, 5263 (zone->managed_pages / 5264 percpu_pagelist_fraction)); 5265 else 5266 pageset_set_batch(pcp, zone_batchsize(zone)); 5267 } 5268 5269 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5270 { 5271 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5272 5273 pageset_init(pcp); 5274 pageset_set_high_and_batch(zone, pcp); 5275 } 5276 5277 static void __meminit setup_zone_pageset(struct zone *zone) 5278 { 5279 int cpu; 5280 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5281 for_each_possible_cpu(cpu) 5282 zone_pageset_init(zone, cpu); 5283 } 5284 5285 /* 5286 * Allocate per cpu pagesets and initialize them. 5287 * Before this call only boot pagesets were available. 5288 */ 5289 void __init setup_per_cpu_pageset(void) 5290 { 5291 struct pglist_data *pgdat; 5292 struct zone *zone; 5293 5294 for_each_populated_zone(zone) 5295 setup_zone_pageset(zone); 5296 5297 for_each_online_pgdat(pgdat) 5298 pgdat->per_cpu_nodestats = 5299 alloc_percpu(struct per_cpu_nodestat); 5300 } 5301 5302 static noinline __ref 5303 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 5304 { 5305 int i; 5306 size_t alloc_size; 5307 5308 /* 5309 * The per-page waitqueue mechanism uses hashed waitqueues 5310 * per zone. 5311 */ 5312 zone->wait_table_hash_nr_entries = 5313 wait_table_hash_nr_entries(zone_size_pages); 5314 zone->wait_table_bits = 5315 wait_table_bits(zone->wait_table_hash_nr_entries); 5316 alloc_size = zone->wait_table_hash_nr_entries 5317 * sizeof(wait_queue_head_t); 5318 5319 if (!slab_is_available()) { 5320 zone->wait_table = (wait_queue_head_t *) 5321 memblock_virt_alloc_node_nopanic( 5322 alloc_size, zone->zone_pgdat->node_id); 5323 } else { 5324 /* 5325 * This case means that a zone whose size was 0 gets new memory 5326 * via memory hot-add. 5327 * But it may be the case that a new node was hot-added. In 5328 * this case vmalloc() will not be able to use this new node's 5329 * memory - this wait_table must be initialized to use this new 5330 * node itself as well. 5331 * To use this new node's memory, further consideration will be 5332 * necessary. 5333 */ 5334 zone->wait_table = vmalloc(alloc_size); 5335 } 5336 if (!zone->wait_table) 5337 return -ENOMEM; 5338 5339 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 5340 init_waitqueue_head(zone->wait_table + i); 5341 5342 return 0; 5343 } 5344 5345 static __meminit void zone_pcp_init(struct zone *zone) 5346 { 5347 /* 5348 * per cpu subsystem is not up at this point. The following code 5349 * relies on the ability of the linker to provide the 5350 * offset of a (static) per cpu variable into the per cpu area. 5351 */ 5352 zone->pageset = &boot_pageset; 5353 5354 if (populated_zone(zone)) 5355 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5356 zone->name, zone->present_pages, 5357 zone_batchsize(zone)); 5358 } 5359 5360 int __meminit init_currently_empty_zone(struct zone *zone, 5361 unsigned long zone_start_pfn, 5362 unsigned long size) 5363 { 5364 struct pglist_data *pgdat = zone->zone_pgdat; 5365 int ret; 5366 ret = zone_wait_table_init(zone, size); 5367 if (ret) 5368 return ret; 5369 pgdat->nr_zones = zone_idx(zone) + 1; 5370 5371 zone->zone_start_pfn = zone_start_pfn; 5372 5373 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5374 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5375 pgdat->node_id, 5376 (unsigned long)zone_idx(zone), 5377 zone_start_pfn, (zone_start_pfn + size)); 5378 5379 zone_init_free_lists(zone); 5380 5381 return 0; 5382 } 5383 5384 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5385 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5386 5387 /* 5388 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5389 */ 5390 int __meminit __early_pfn_to_nid(unsigned long pfn, 5391 struct mminit_pfnnid_cache *state) 5392 { 5393 unsigned long start_pfn, end_pfn; 5394 int nid; 5395 5396 if (state->last_start <= pfn && pfn < state->last_end) 5397 return state->last_nid; 5398 5399 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5400 if (nid != -1) { 5401 state->last_start = start_pfn; 5402 state->last_end = end_pfn; 5403 state->last_nid = nid; 5404 } 5405 5406 return nid; 5407 } 5408 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5409 5410 /** 5411 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5412 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5413 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5414 * 5415 * If an architecture guarantees that all ranges registered contain no holes 5416 * and may be freed, this this function may be used instead of calling 5417 * memblock_free_early_nid() manually. 5418 */ 5419 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5420 { 5421 unsigned long start_pfn, end_pfn; 5422 int i, this_nid; 5423 5424 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5425 start_pfn = min(start_pfn, max_low_pfn); 5426 end_pfn = min(end_pfn, max_low_pfn); 5427 5428 if (start_pfn < end_pfn) 5429 memblock_free_early_nid(PFN_PHYS(start_pfn), 5430 (end_pfn - start_pfn) << PAGE_SHIFT, 5431 this_nid); 5432 } 5433 } 5434 5435 /** 5436 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5437 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5438 * 5439 * If an architecture guarantees that all ranges registered contain no holes and may 5440 * be freed, this function may be used instead of calling memory_present() manually. 5441 */ 5442 void __init sparse_memory_present_with_active_regions(int nid) 5443 { 5444 unsigned long start_pfn, end_pfn; 5445 int i, this_nid; 5446 5447 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5448 memory_present(this_nid, start_pfn, end_pfn); 5449 } 5450 5451 /** 5452 * get_pfn_range_for_nid - Return the start and end page frames for a node 5453 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5454 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5455 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5456 * 5457 * It returns the start and end page frame of a node based on information 5458 * provided by memblock_set_node(). If called for a node 5459 * with no available memory, a warning is printed and the start and end 5460 * PFNs will be 0. 5461 */ 5462 void __meminit get_pfn_range_for_nid(unsigned int nid, 5463 unsigned long *start_pfn, unsigned long *end_pfn) 5464 { 5465 unsigned long this_start_pfn, this_end_pfn; 5466 int i; 5467 5468 *start_pfn = -1UL; 5469 *end_pfn = 0; 5470 5471 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5472 *start_pfn = min(*start_pfn, this_start_pfn); 5473 *end_pfn = max(*end_pfn, this_end_pfn); 5474 } 5475 5476 if (*start_pfn == -1UL) 5477 *start_pfn = 0; 5478 } 5479 5480 /* 5481 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5482 * assumption is made that zones within a node are ordered in monotonic 5483 * increasing memory addresses so that the "highest" populated zone is used 5484 */ 5485 static void __init find_usable_zone_for_movable(void) 5486 { 5487 int zone_index; 5488 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5489 if (zone_index == ZONE_MOVABLE) 5490 continue; 5491 5492 if (arch_zone_highest_possible_pfn[zone_index] > 5493 arch_zone_lowest_possible_pfn[zone_index]) 5494 break; 5495 } 5496 5497 VM_BUG_ON(zone_index == -1); 5498 movable_zone = zone_index; 5499 } 5500 5501 /* 5502 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5503 * because it is sized independent of architecture. Unlike the other zones, 5504 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5505 * in each node depending on the size of each node and how evenly kernelcore 5506 * is distributed. This helper function adjusts the zone ranges 5507 * provided by the architecture for a given node by using the end of the 5508 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5509 * zones within a node are in order of monotonic increases memory addresses 5510 */ 5511 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5512 unsigned long zone_type, 5513 unsigned long node_start_pfn, 5514 unsigned long node_end_pfn, 5515 unsigned long *zone_start_pfn, 5516 unsigned long *zone_end_pfn) 5517 { 5518 /* Only adjust if ZONE_MOVABLE is on this node */ 5519 if (zone_movable_pfn[nid]) { 5520 /* Size ZONE_MOVABLE */ 5521 if (zone_type == ZONE_MOVABLE) { 5522 *zone_start_pfn = zone_movable_pfn[nid]; 5523 *zone_end_pfn = min(node_end_pfn, 5524 arch_zone_highest_possible_pfn[movable_zone]); 5525 5526 /* Adjust for ZONE_MOVABLE starting within this range */ 5527 } else if (!mirrored_kernelcore && 5528 *zone_start_pfn < zone_movable_pfn[nid] && 5529 *zone_end_pfn > zone_movable_pfn[nid]) { 5530 *zone_end_pfn = zone_movable_pfn[nid]; 5531 5532 /* Check if this whole range is within ZONE_MOVABLE */ 5533 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5534 *zone_start_pfn = *zone_end_pfn; 5535 } 5536 } 5537 5538 /* 5539 * Return the number of pages a zone spans in a node, including holes 5540 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5541 */ 5542 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5543 unsigned long zone_type, 5544 unsigned long node_start_pfn, 5545 unsigned long node_end_pfn, 5546 unsigned long *zone_start_pfn, 5547 unsigned long *zone_end_pfn, 5548 unsigned long *ignored) 5549 { 5550 /* When hotadd a new node from cpu_up(), the node should be empty */ 5551 if (!node_start_pfn && !node_end_pfn) 5552 return 0; 5553 5554 /* Get the start and end of the zone */ 5555 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5556 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5557 adjust_zone_range_for_zone_movable(nid, zone_type, 5558 node_start_pfn, node_end_pfn, 5559 zone_start_pfn, zone_end_pfn); 5560 5561 /* Check that this node has pages within the zone's required range */ 5562 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5563 return 0; 5564 5565 /* Move the zone boundaries inside the node if necessary */ 5566 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5567 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5568 5569 /* Return the spanned pages */ 5570 return *zone_end_pfn - *zone_start_pfn; 5571 } 5572 5573 /* 5574 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5575 * then all holes in the requested range will be accounted for. 5576 */ 5577 unsigned long __meminit __absent_pages_in_range(int nid, 5578 unsigned long range_start_pfn, 5579 unsigned long range_end_pfn) 5580 { 5581 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5582 unsigned long start_pfn, end_pfn; 5583 int i; 5584 5585 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5586 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5587 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5588 nr_absent -= end_pfn - start_pfn; 5589 } 5590 return nr_absent; 5591 } 5592 5593 /** 5594 * absent_pages_in_range - Return number of page frames in holes within a range 5595 * @start_pfn: The start PFN to start searching for holes 5596 * @end_pfn: The end PFN to stop searching for holes 5597 * 5598 * It returns the number of pages frames in memory holes within a range. 5599 */ 5600 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5601 unsigned long end_pfn) 5602 { 5603 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5604 } 5605 5606 /* Return the number of page frames in holes in a zone on a node */ 5607 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5608 unsigned long zone_type, 5609 unsigned long node_start_pfn, 5610 unsigned long node_end_pfn, 5611 unsigned long *ignored) 5612 { 5613 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5614 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5615 unsigned long zone_start_pfn, zone_end_pfn; 5616 unsigned long nr_absent; 5617 5618 /* When hotadd a new node from cpu_up(), the node should be empty */ 5619 if (!node_start_pfn && !node_end_pfn) 5620 return 0; 5621 5622 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5623 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5624 5625 adjust_zone_range_for_zone_movable(nid, zone_type, 5626 node_start_pfn, node_end_pfn, 5627 &zone_start_pfn, &zone_end_pfn); 5628 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5629 5630 /* 5631 * ZONE_MOVABLE handling. 5632 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5633 * and vice versa. 5634 */ 5635 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5636 unsigned long start_pfn, end_pfn; 5637 struct memblock_region *r; 5638 5639 for_each_memblock(memory, r) { 5640 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5641 zone_start_pfn, zone_end_pfn); 5642 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5643 zone_start_pfn, zone_end_pfn); 5644 5645 if (zone_type == ZONE_MOVABLE && 5646 memblock_is_mirror(r)) 5647 nr_absent += end_pfn - start_pfn; 5648 5649 if (zone_type == ZONE_NORMAL && 5650 !memblock_is_mirror(r)) 5651 nr_absent += end_pfn - start_pfn; 5652 } 5653 } 5654 5655 return nr_absent; 5656 } 5657 5658 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5659 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5660 unsigned long zone_type, 5661 unsigned long node_start_pfn, 5662 unsigned long node_end_pfn, 5663 unsigned long *zone_start_pfn, 5664 unsigned long *zone_end_pfn, 5665 unsigned long *zones_size) 5666 { 5667 unsigned int zone; 5668 5669 *zone_start_pfn = node_start_pfn; 5670 for (zone = 0; zone < zone_type; zone++) 5671 *zone_start_pfn += zones_size[zone]; 5672 5673 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5674 5675 return zones_size[zone_type]; 5676 } 5677 5678 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5679 unsigned long zone_type, 5680 unsigned long node_start_pfn, 5681 unsigned long node_end_pfn, 5682 unsigned long *zholes_size) 5683 { 5684 if (!zholes_size) 5685 return 0; 5686 5687 return zholes_size[zone_type]; 5688 } 5689 5690 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5691 5692 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5693 unsigned long node_start_pfn, 5694 unsigned long node_end_pfn, 5695 unsigned long *zones_size, 5696 unsigned long *zholes_size) 5697 { 5698 unsigned long realtotalpages = 0, totalpages = 0; 5699 enum zone_type i; 5700 5701 for (i = 0; i < MAX_NR_ZONES; i++) { 5702 struct zone *zone = pgdat->node_zones + i; 5703 unsigned long zone_start_pfn, zone_end_pfn; 5704 unsigned long size, real_size; 5705 5706 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5707 node_start_pfn, 5708 node_end_pfn, 5709 &zone_start_pfn, 5710 &zone_end_pfn, 5711 zones_size); 5712 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5713 node_start_pfn, node_end_pfn, 5714 zholes_size); 5715 if (size) 5716 zone->zone_start_pfn = zone_start_pfn; 5717 else 5718 zone->zone_start_pfn = 0; 5719 zone->spanned_pages = size; 5720 zone->present_pages = real_size; 5721 5722 totalpages += size; 5723 realtotalpages += real_size; 5724 } 5725 5726 pgdat->node_spanned_pages = totalpages; 5727 pgdat->node_present_pages = realtotalpages; 5728 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5729 realtotalpages); 5730 } 5731 5732 #ifndef CONFIG_SPARSEMEM 5733 /* 5734 * Calculate the size of the zone->blockflags rounded to an unsigned long 5735 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5736 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5737 * round what is now in bits to nearest long in bits, then return it in 5738 * bytes. 5739 */ 5740 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5741 { 5742 unsigned long usemapsize; 5743 5744 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5745 usemapsize = roundup(zonesize, pageblock_nr_pages); 5746 usemapsize = usemapsize >> pageblock_order; 5747 usemapsize *= NR_PAGEBLOCK_BITS; 5748 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5749 5750 return usemapsize / 8; 5751 } 5752 5753 static void __init setup_usemap(struct pglist_data *pgdat, 5754 struct zone *zone, 5755 unsigned long zone_start_pfn, 5756 unsigned long zonesize) 5757 { 5758 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5759 zone->pageblock_flags = NULL; 5760 if (usemapsize) 5761 zone->pageblock_flags = 5762 memblock_virt_alloc_node_nopanic(usemapsize, 5763 pgdat->node_id); 5764 } 5765 #else 5766 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5767 unsigned long zone_start_pfn, unsigned long zonesize) {} 5768 #endif /* CONFIG_SPARSEMEM */ 5769 5770 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5771 5772 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 5773 void __paginginit set_pageblock_order(void) 5774 { 5775 unsigned int order; 5776 5777 /* Check that pageblock_nr_pages has not already been setup */ 5778 if (pageblock_order) 5779 return; 5780 5781 if (HPAGE_SHIFT > PAGE_SHIFT) 5782 order = HUGETLB_PAGE_ORDER; 5783 else 5784 order = MAX_ORDER - 1; 5785 5786 /* 5787 * Assume the largest contiguous order of interest is a huge page. 5788 * This value may be variable depending on boot parameters on IA64 and 5789 * powerpc. 5790 */ 5791 pageblock_order = order; 5792 } 5793 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5794 5795 /* 5796 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 5797 * is unused as pageblock_order is set at compile-time. See 5798 * include/linux/pageblock-flags.h for the values of pageblock_order based on 5799 * the kernel config 5800 */ 5801 void __paginginit set_pageblock_order(void) 5802 { 5803 } 5804 5805 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5806 5807 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 5808 unsigned long present_pages) 5809 { 5810 unsigned long pages = spanned_pages; 5811 5812 /* 5813 * Provide a more accurate estimation if there are holes within 5814 * the zone and SPARSEMEM is in use. If there are holes within the 5815 * zone, each populated memory region may cost us one or two extra 5816 * memmap pages due to alignment because memmap pages for each 5817 * populated regions may not naturally algined on page boundary. 5818 * So the (present_pages >> 4) heuristic is a tradeoff for that. 5819 */ 5820 if (spanned_pages > present_pages + (present_pages >> 4) && 5821 IS_ENABLED(CONFIG_SPARSEMEM)) 5822 pages = present_pages; 5823 5824 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 5825 } 5826 5827 /* 5828 * Set up the zone data structures: 5829 * - mark all pages reserved 5830 * - mark all memory queues empty 5831 * - clear the memory bitmaps 5832 * 5833 * NOTE: pgdat should get zeroed by caller. 5834 */ 5835 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 5836 { 5837 enum zone_type j; 5838 int nid = pgdat->node_id; 5839 int ret; 5840 5841 pgdat_resize_init(pgdat); 5842 #ifdef CONFIG_NUMA_BALANCING 5843 spin_lock_init(&pgdat->numabalancing_migrate_lock); 5844 pgdat->numabalancing_migrate_nr_pages = 0; 5845 pgdat->numabalancing_migrate_next_window = jiffies; 5846 #endif 5847 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5848 spin_lock_init(&pgdat->split_queue_lock); 5849 INIT_LIST_HEAD(&pgdat->split_queue); 5850 pgdat->split_queue_len = 0; 5851 #endif 5852 init_waitqueue_head(&pgdat->kswapd_wait); 5853 init_waitqueue_head(&pgdat->pfmemalloc_wait); 5854 #ifdef CONFIG_COMPACTION 5855 init_waitqueue_head(&pgdat->kcompactd_wait); 5856 #endif 5857 pgdat_page_ext_init(pgdat); 5858 spin_lock_init(&pgdat->lru_lock); 5859 lruvec_init(node_lruvec(pgdat)); 5860 5861 for (j = 0; j < MAX_NR_ZONES; j++) { 5862 struct zone *zone = pgdat->node_zones + j; 5863 unsigned long size, realsize, freesize, memmap_pages; 5864 unsigned long zone_start_pfn = zone->zone_start_pfn; 5865 5866 size = zone->spanned_pages; 5867 realsize = freesize = zone->present_pages; 5868 5869 /* 5870 * Adjust freesize so that it accounts for how much memory 5871 * is used by this zone for memmap. This affects the watermark 5872 * and per-cpu initialisations 5873 */ 5874 memmap_pages = calc_memmap_size(size, realsize); 5875 if (!is_highmem_idx(j)) { 5876 if (freesize >= memmap_pages) { 5877 freesize -= memmap_pages; 5878 if (memmap_pages) 5879 printk(KERN_DEBUG 5880 " %s zone: %lu pages used for memmap\n", 5881 zone_names[j], memmap_pages); 5882 } else 5883 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 5884 zone_names[j], memmap_pages, freesize); 5885 } 5886 5887 /* Account for reserved pages */ 5888 if (j == 0 && freesize > dma_reserve) { 5889 freesize -= dma_reserve; 5890 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 5891 zone_names[0], dma_reserve); 5892 } 5893 5894 if (!is_highmem_idx(j)) 5895 nr_kernel_pages += freesize; 5896 /* Charge for highmem memmap if there are enough kernel pages */ 5897 else if (nr_kernel_pages > memmap_pages * 2) 5898 nr_kernel_pages -= memmap_pages; 5899 nr_all_pages += freesize; 5900 5901 /* 5902 * Set an approximate value for lowmem here, it will be adjusted 5903 * when the bootmem allocator frees pages into the buddy system. 5904 * And all highmem pages will be managed by the buddy system. 5905 */ 5906 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 5907 #ifdef CONFIG_NUMA 5908 zone->node = nid; 5909 #endif 5910 zone->name = zone_names[j]; 5911 zone->zone_pgdat = pgdat; 5912 spin_lock_init(&zone->lock); 5913 zone_seqlock_init(zone); 5914 zone_pcp_init(zone); 5915 5916 if (!size) 5917 continue; 5918 5919 set_pageblock_order(); 5920 setup_usemap(pgdat, zone, zone_start_pfn, size); 5921 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 5922 BUG_ON(ret); 5923 memmap_init(size, nid, j, zone_start_pfn); 5924 } 5925 } 5926 5927 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 5928 { 5929 unsigned long __maybe_unused start = 0; 5930 unsigned long __maybe_unused offset = 0; 5931 5932 /* Skip empty nodes */ 5933 if (!pgdat->node_spanned_pages) 5934 return; 5935 5936 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5937 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 5938 offset = pgdat->node_start_pfn - start; 5939 /* ia64 gets its own node_mem_map, before this, without bootmem */ 5940 if (!pgdat->node_mem_map) { 5941 unsigned long size, end; 5942 struct page *map; 5943 5944 /* 5945 * The zone's endpoints aren't required to be MAX_ORDER 5946 * aligned but the node_mem_map endpoints must be in order 5947 * for the buddy allocator to function correctly. 5948 */ 5949 end = pgdat_end_pfn(pgdat); 5950 end = ALIGN(end, MAX_ORDER_NR_PAGES); 5951 size = (end - start) * sizeof(struct page); 5952 map = alloc_remap(pgdat->node_id, size); 5953 if (!map) 5954 map = memblock_virt_alloc_node_nopanic(size, 5955 pgdat->node_id); 5956 pgdat->node_mem_map = map + offset; 5957 } 5958 #ifndef CONFIG_NEED_MULTIPLE_NODES 5959 /* 5960 * With no DISCONTIG, the global mem_map is just set as node 0's 5961 */ 5962 if (pgdat == NODE_DATA(0)) { 5963 mem_map = NODE_DATA(0)->node_mem_map; 5964 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 5965 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 5966 mem_map -= offset; 5967 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5968 } 5969 #endif 5970 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 5971 } 5972 5973 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 5974 unsigned long node_start_pfn, unsigned long *zholes_size) 5975 { 5976 pg_data_t *pgdat = NODE_DATA(nid); 5977 unsigned long start_pfn = 0; 5978 unsigned long end_pfn = 0; 5979 5980 /* pg_data_t should be reset to zero when it's allocated */ 5981 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 5982 5983 reset_deferred_meminit(pgdat); 5984 pgdat->node_id = nid; 5985 pgdat->node_start_pfn = node_start_pfn; 5986 pgdat->per_cpu_nodestats = NULL; 5987 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5988 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5989 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 5990 (u64)start_pfn << PAGE_SHIFT, 5991 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 5992 #else 5993 start_pfn = node_start_pfn; 5994 #endif 5995 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5996 zones_size, zholes_size); 5997 5998 alloc_node_mem_map(pgdat); 5999 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6000 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 6001 nid, (unsigned long)pgdat, 6002 (unsigned long)pgdat->node_mem_map); 6003 #endif 6004 6005 free_area_init_core(pgdat); 6006 } 6007 6008 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6009 6010 #if MAX_NUMNODES > 1 6011 /* 6012 * Figure out the number of possible node ids. 6013 */ 6014 void __init setup_nr_node_ids(void) 6015 { 6016 unsigned int highest; 6017 6018 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6019 nr_node_ids = highest + 1; 6020 } 6021 #endif 6022 6023 /** 6024 * node_map_pfn_alignment - determine the maximum internode alignment 6025 * 6026 * This function should be called after node map is populated and sorted. 6027 * It calculates the maximum power of two alignment which can distinguish 6028 * all the nodes. 6029 * 6030 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6031 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6032 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6033 * shifted, 1GiB is enough and this function will indicate so. 6034 * 6035 * This is used to test whether pfn -> nid mapping of the chosen memory 6036 * model has fine enough granularity to avoid incorrect mapping for the 6037 * populated node map. 6038 * 6039 * Returns the determined alignment in pfn's. 0 if there is no alignment 6040 * requirement (single node). 6041 */ 6042 unsigned long __init node_map_pfn_alignment(void) 6043 { 6044 unsigned long accl_mask = 0, last_end = 0; 6045 unsigned long start, end, mask; 6046 int last_nid = -1; 6047 int i, nid; 6048 6049 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6050 if (!start || last_nid < 0 || last_nid == nid) { 6051 last_nid = nid; 6052 last_end = end; 6053 continue; 6054 } 6055 6056 /* 6057 * Start with a mask granular enough to pin-point to the 6058 * start pfn and tick off bits one-by-one until it becomes 6059 * too coarse to separate the current node from the last. 6060 */ 6061 mask = ~((1 << __ffs(start)) - 1); 6062 while (mask && last_end <= (start & (mask << 1))) 6063 mask <<= 1; 6064 6065 /* accumulate all internode masks */ 6066 accl_mask |= mask; 6067 } 6068 6069 /* convert mask to number of pages */ 6070 return ~accl_mask + 1; 6071 } 6072 6073 /* Find the lowest pfn for a node */ 6074 static unsigned long __init find_min_pfn_for_node(int nid) 6075 { 6076 unsigned long min_pfn = ULONG_MAX; 6077 unsigned long start_pfn; 6078 int i; 6079 6080 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6081 min_pfn = min(min_pfn, start_pfn); 6082 6083 if (min_pfn == ULONG_MAX) { 6084 pr_warn("Could not find start_pfn for node %d\n", nid); 6085 return 0; 6086 } 6087 6088 return min_pfn; 6089 } 6090 6091 /** 6092 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6093 * 6094 * It returns the minimum PFN based on information provided via 6095 * memblock_set_node(). 6096 */ 6097 unsigned long __init find_min_pfn_with_active_regions(void) 6098 { 6099 return find_min_pfn_for_node(MAX_NUMNODES); 6100 } 6101 6102 /* 6103 * early_calculate_totalpages() 6104 * Sum pages in active regions for movable zone. 6105 * Populate N_MEMORY for calculating usable_nodes. 6106 */ 6107 static unsigned long __init early_calculate_totalpages(void) 6108 { 6109 unsigned long totalpages = 0; 6110 unsigned long start_pfn, end_pfn; 6111 int i, nid; 6112 6113 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6114 unsigned long pages = end_pfn - start_pfn; 6115 6116 totalpages += pages; 6117 if (pages) 6118 node_set_state(nid, N_MEMORY); 6119 } 6120 return totalpages; 6121 } 6122 6123 /* 6124 * Find the PFN the Movable zone begins in each node. Kernel memory 6125 * is spread evenly between nodes as long as the nodes have enough 6126 * memory. When they don't, some nodes will have more kernelcore than 6127 * others 6128 */ 6129 static void __init find_zone_movable_pfns_for_nodes(void) 6130 { 6131 int i, nid; 6132 unsigned long usable_startpfn; 6133 unsigned long kernelcore_node, kernelcore_remaining; 6134 /* save the state before borrow the nodemask */ 6135 nodemask_t saved_node_state = node_states[N_MEMORY]; 6136 unsigned long totalpages = early_calculate_totalpages(); 6137 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6138 struct memblock_region *r; 6139 6140 /* Need to find movable_zone earlier when movable_node is specified. */ 6141 find_usable_zone_for_movable(); 6142 6143 /* 6144 * If movable_node is specified, ignore kernelcore and movablecore 6145 * options. 6146 */ 6147 if (movable_node_is_enabled()) { 6148 for_each_memblock(memory, r) { 6149 if (!memblock_is_hotpluggable(r)) 6150 continue; 6151 6152 nid = r->nid; 6153 6154 usable_startpfn = PFN_DOWN(r->base); 6155 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6156 min(usable_startpfn, zone_movable_pfn[nid]) : 6157 usable_startpfn; 6158 } 6159 6160 goto out2; 6161 } 6162 6163 /* 6164 * If kernelcore=mirror is specified, ignore movablecore option 6165 */ 6166 if (mirrored_kernelcore) { 6167 bool mem_below_4gb_not_mirrored = false; 6168 6169 for_each_memblock(memory, r) { 6170 if (memblock_is_mirror(r)) 6171 continue; 6172 6173 nid = r->nid; 6174 6175 usable_startpfn = memblock_region_memory_base_pfn(r); 6176 6177 if (usable_startpfn < 0x100000) { 6178 mem_below_4gb_not_mirrored = true; 6179 continue; 6180 } 6181 6182 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6183 min(usable_startpfn, zone_movable_pfn[nid]) : 6184 usable_startpfn; 6185 } 6186 6187 if (mem_below_4gb_not_mirrored) 6188 pr_warn("This configuration results in unmirrored kernel memory."); 6189 6190 goto out2; 6191 } 6192 6193 /* 6194 * If movablecore=nn[KMG] was specified, calculate what size of 6195 * kernelcore that corresponds so that memory usable for 6196 * any allocation type is evenly spread. If both kernelcore 6197 * and movablecore are specified, then the value of kernelcore 6198 * will be used for required_kernelcore if it's greater than 6199 * what movablecore would have allowed. 6200 */ 6201 if (required_movablecore) { 6202 unsigned long corepages; 6203 6204 /* 6205 * Round-up so that ZONE_MOVABLE is at least as large as what 6206 * was requested by the user 6207 */ 6208 required_movablecore = 6209 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6210 required_movablecore = min(totalpages, required_movablecore); 6211 corepages = totalpages - required_movablecore; 6212 6213 required_kernelcore = max(required_kernelcore, corepages); 6214 } 6215 6216 /* 6217 * If kernelcore was not specified or kernelcore size is larger 6218 * than totalpages, there is no ZONE_MOVABLE. 6219 */ 6220 if (!required_kernelcore || required_kernelcore >= totalpages) 6221 goto out; 6222 6223 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6224 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6225 6226 restart: 6227 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6228 kernelcore_node = required_kernelcore / usable_nodes; 6229 for_each_node_state(nid, N_MEMORY) { 6230 unsigned long start_pfn, end_pfn; 6231 6232 /* 6233 * Recalculate kernelcore_node if the division per node 6234 * now exceeds what is necessary to satisfy the requested 6235 * amount of memory for the kernel 6236 */ 6237 if (required_kernelcore < kernelcore_node) 6238 kernelcore_node = required_kernelcore / usable_nodes; 6239 6240 /* 6241 * As the map is walked, we track how much memory is usable 6242 * by the kernel using kernelcore_remaining. When it is 6243 * 0, the rest of the node is usable by ZONE_MOVABLE 6244 */ 6245 kernelcore_remaining = kernelcore_node; 6246 6247 /* Go through each range of PFNs within this node */ 6248 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6249 unsigned long size_pages; 6250 6251 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6252 if (start_pfn >= end_pfn) 6253 continue; 6254 6255 /* Account for what is only usable for kernelcore */ 6256 if (start_pfn < usable_startpfn) { 6257 unsigned long kernel_pages; 6258 kernel_pages = min(end_pfn, usable_startpfn) 6259 - start_pfn; 6260 6261 kernelcore_remaining -= min(kernel_pages, 6262 kernelcore_remaining); 6263 required_kernelcore -= min(kernel_pages, 6264 required_kernelcore); 6265 6266 /* Continue if range is now fully accounted */ 6267 if (end_pfn <= usable_startpfn) { 6268 6269 /* 6270 * Push zone_movable_pfn to the end so 6271 * that if we have to rebalance 6272 * kernelcore across nodes, we will 6273 * not double account here 6274 */ 6275 zone_movable_pfn[nid] = end_pfn; 6276 continue; 6277 } 6278 start_pfn = usable_startpfn; 6279 } 6280 6281 /* 6282 * The usable PFN range for ZONE_MOVABLE is from 6283 * start_pfn->end_pfn. Calculate size_pages as the 6284 * number of pages used as kernelcore 6285 */ 6286 size_pages = end_pfn - start_pfn; 6287 if (size_pages > kernelcore_remaining) 6288 size_pages = kernelcore_remaining; 6289 zone_movable_pfn[nid] = start_pfn + size_pages; 6290 6291 /* 6292 * Some kernelcore has been met, update counts and 6293 * break if the kernelcore for this node has been 6294 * satisfied 6295 */ 6296 required_kernelcore -= min(required_kernelcore, 6297 size_pages); 6298 kernelcore_remaining -= size_pages; 6299 if (!kernelcore_remaining) 6300 break; 6301 } 6302 } 6303 6304 /* 6305 * If there is still required_kernelcore, we do another pass with one 6306 * less node in the count. This will push zone_movable_pfn[nid] further 6307 * along on the nodes that still have memory until kernelcore is 6308 * satisfied 6309 */ 6310 usable_nodes--; 6311 if (usable_nodes && required_kernelcore > usable_nodes) 6312 goto restart; 6313 6314 out2: 6315 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6316 for (nid = 0; nid < MAX_NUMNODES; nid++) 6317 zone_movable_pfn[nid] = 6318 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6319 6320 out: 6321 /* restore the node_state */ 6322 node_states[N_MEMORY] = saved_node_state; 6323 } 6324 6325 /* Any regular or high memory on that node ? */ 6326 static void check_for_memory(pg_data_t *pgdat, int nid) 6327 { 6328 enum zone_type zone_type; 6329 6330 if (N_MEMORY == N_NORMAL_MEMORY) 6331 return; 6332 6333 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6334 struct zone *zone = &pgdat->node_zones[zone_type]; 6335 if (populated_zone(zone)) { 6336 node_set_state(nid, N_HIGH_MEMORY); 6337 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6338 zone_type <= ZONE_NORMAL) 6339 node_set_state(nid, N_NORMAL_MEMORY); 6340 break; 6341 } 6342 } 6343 } 6344 6345 /** 6346 * free_area_init_nodes - Initialise all pg_data_t and zone data 6347 * @max_zone_pfn: an array of max PFNs for each zone 6348 * 6349 * This will call free_area_init_node() for each active node in the system. 6350 * Using the page ranges provided by memblock_set_node(), the size of each 6351 * zone in each node and their holes is calculated. If the maximum PFN 6352 * between two adjacent zones match, it is assumed that the zone is empty. 6353 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6354 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6355 * starts where the previous one ended. For example, ZONE_DMA32 starts 6356 * at arch_max_dma_pfn. 6357 */ 6358 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6359 { 6360 unsigned long start_pfn, end_pfn; 6361 int i, nid; 6362 6363 /* Record where the zone boundaries are */ 6364 memset(arch_zone_lowest_possible_pfn, 0, 6365 sizeof(arch_zone_lowest_possible_pfn)); 6366 memset(arch_zone_highest_possible_pfn, 0, 6367 sizeof(arch_zone_highest_possible_pfn)); 6368 6369 start_pfn = find_min_pfn_with_active_regions(); 6370 6371 for (i = 0; i < MAX_NR_ZONES; i++) { 6372 if (i == ZONE_MOVABLE) 6373 continue; 6374 6375 end_pfn = max(max_zone_pfn[i], start_pfn); 6376 arch_zone_lowest_possible_pfn[i] = start_pfn; 6377 arch_zone_highest_possible_pfn[i] = end_pfn; 6378 6379 start_pfn = end_pfn; 6380 } 6381 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 6382 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 6383 6384 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6385 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6386 find_zone_movable_pfns_for_nodes(); 6387 6388 /* Print out the zone ranges */ 6389 pr_info("Zone ranges:\n"); 6390 for (i = 0; i < MAX_NR_ZONES; i++) { 6391 if (i == ZONE_MOVABLE) 6392 continue; 6393 pr_info(" %-8s ", zone_names[i]); 6394 if (arch_zone_lowest_possible_pfn[i] == 6395 arch_zone_highest_possible_pfn[i]) 6396 pr_cont("empty\n"); 6397 else 6398 pr_cont("[mem %#018Lx-%#018Lx]\n", 6399 (u64)arch_zone_lowest_possible_pfn[i] 6400 << PAGE_SHIFT, 6401 ((u64)arch_zone_highest_possible_pfn[i] 6402 << PAGE_SHIFT) - 1); 6403 } 6404 6405 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6406 pr_info("Movable zone start for each node\n"); 6407 for (i = 0; i < MAX_NUMNODES; i++) { 6408 if (zone_movable_pfn[i]) 6409 pr_info(" Node %d: %#018Lx\n", i, 6410 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6411 } 6412 6413 /* Print out the early node map */ 6414 pr_info("Early memory node ranges\n"); 6415 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6416 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6417 (u64)start_pfn << PAGE_SHIFT, 6418 ((u64)end_pfn << PAGE_SHIFT) - 1); 6419 6420 /* Initialise every node */ 6421 mminit_verify_pageflags_layout(); 6422 setup_nr_node_ids(); 6423 for_each_online_node(nid) { 6424 pg_data_t *pgdat = NODE_DATA(nid); 6425 free_area_init_node(nid, NULL, 6426 find_min_pfn_for_node(nid), NULL); 6427 6428 /* Any memory on that node */ 6429 if (pgdat->node_present_pages) 6430 node_set_state(nid, N_MEMORY); 6431 check_for_memory(pgdat, nid); 6432 } 6433 } 6434 6435 static int __init cmdline_parse_core(char *p, unsigned long *core) 6436 { 6437 unsigned long long coremem; 6438 if (!p) 6439 return -EINVAL; 6440 6441 coremem = memparse(p, &p); 6442 *core = coremem >> PAGE_SHIFT; 6443 6444 /* Paranoid check that UL is enough for the coremem value */ 6445 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6446 6447 return 0; 6448 } 6449 6450 /* 6451 * kernelcore=size sets the amount of memory for use for allocations that 6452 * cannot be reclaimed or migrated. 6453 */ 6454 static int __init cmdline_parse_kernelcore(char *p) 6455 { 6456 /* parse kernelcore=mirror */ 6457 if (parse_option_str(p, "mirror")) { 6458 mirrored_kernelcore = true; 6459 return 0; 6460 } 6461 6462 return cmdline_parse_core(p, &required_kernelcore); 6463 } 6464 6465 /* 6466 * movablecore=size sets the amount of memory for use for allocations that 6467 * can be reclaimed or migrated. 6468 */ 6469 static int __init cmdline_parse_movablecore(char *p) 6470 { 6471 return cmdline_parse_core(p, &required_movablecore); 6472 } 6473 6474 early_param("kernelcore", cmdline_parse_kernelcore); 6475 early_param("movablecore", cmdline_parse_movablecore); 6476 6477 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6478 6479 void adjust_managed_page_count(struct page *page, long count) 6480 { 6481 spin_lock(&managed_page_count_lock); 6482 page_zone(page)->managed_pages += count; 6483 totalram_pages += count; 6484 #ifdef CONFIG_HIGHMEM 6485 if (PageHighMem(page)) 6486 totalhigh_pages += count; 6487 #endif 6488 spin_unlock(&managed_page_count_lock); 6489 } 6490 EXPORT_SYMBOL(adjust_managed_page_count); 6491 6492 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6493 { 6494 void *pos; 6495 unsigned long pages = 0; 6496 6497 start = (void *)PAGE_ALIGN((unsigned long)start); 6498 end = (void *)((unsigned long)end & PAGE_MASK); 6499 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6500 if ((unsigned int)poison <= 0xFF) 6501 memset(pos, poison, PAGE_SIZE); 6502 free_reserved_page(virt_to_page(pos)); 6503 } 6504 6505 if (pages && s) 6506 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 6507 s, pages << (PAGE_SHIFT - 10), start, end); 6508 6509 return pages; 6510 } 6511 EXPORT_SYMBOL(free_reserved_area); 6512 6513 #ifdef CONFIG_HIGHMEM 6514 void free_highmem_page(struct page *page) 6515 { 6516 __free_reserved_page(page); 6517 totalram_pages++; 6518 page_zone(page)->managed_pages++; 6519 totalhigh_pages++; 6520 } 6521 #endif 6522 6523 6524 void __init mem_init_print_info(const char *str) 6525 { 6526 unsigned long physpages, codesize, datasize, rosize, bss_size; 6527 unsigned long init_code_size, init_data_size; 6528 6529 physpages = get_num_physpages(); 6530 codesize = _etext - _stext; 6531 datasize = _edata - _sdata; 6532 rosize = __end_rodata - __start_rodata; 6533 bss_size = __bss_stop - __bss_start; 6534 init_data_size = __init_end - __init_begin; 6535 init_code_size = _einittext - _sinittext; 6536 6537 /* 6538 * Detect special cases and adjust section sizes accordingly: 6539 * 1) .init.* may be embedded into .data sections 6540 * 2) .init.text.* may be out of [__init_begin, __init_end], 6541 * please refer to arch/tile/kernel/vmlinux.lds.S. 6542 * 3) .rodata.* may be embedded into .text or .data sections. 6543 */ 6544 #define adj_init_size(start, end, size, pos, adj) \ 6545 do { \ 6546 if (start <= pos && pos < end && size > adj) \ 6547 size -= adj; \ 6548 } while (0) 6549 6550 adj_init_size(__init_begin, __init_end, init_data_size, 6551 _sinittext, init_code_size); 6552 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6553 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6554 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6555 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6556 6557 #undef adj_init_size 6558 6559 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6560 #ifdef CONFIG_HIGHMEM 6561 ", %luK highmem" 6562 #endif 6563 "%s%s)\n", 6564 nr_free_pages() << (PAGE_SHIFT - 10), 6565 physpages << (PAGE_SHIFT - 10), 6566 codesize >> 10, datasize >> 10, rosize >> 10, 6567 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6568 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6569 totalcma_pages << (PAGE_SHIFT - 10), 6570 #ifdef CONFIG_HIGHMEM 6571 totalhigh_pages << (PAGE_SHIFT - 10), 6572 #endif 6573 str ? ", " : "", str ? str : ""); 6574 } 6575 6576 /** 6577 * set_dma_reserve - set the specified number of pages reserved in the first zone 6578 * @new_dma_reserve: The number of pages to mark reserved 6579 * 6580 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6581 * In the DMA zone, a significant percentage may be consumed by kernel image 6582 * and other unfreeable allocations which can skew the watermarks badly. This 6583 * function may optionally be used to account for unfreeable pages in the 6584 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6585 * smaller per-cpu batchsize. 6586 */ 6587 void __init set_dma_reserve(unsigned long new_dma_reserve) 6588 { 6589 dma_reserve = new_dma_reserve; 6590 } 6591 6592 void __init free_area_init(unsigned long *zones_size) 6593 { 6594 free_area_init_node(0, zones_size, 6595 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6596 } 6597 6598 static int page_alloc_cpu_notify(struct notifier_block *self, 6599 unsigned long action, void *hcpu) 6600 { 6601 int cpu = (unsigned long)hcpu; 6602 6603 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 6604 lru_add_drain_cpu(cpu); 6605 drain_pages(cpu); 6606 6607 /* 6608 * Spill the event counters of the dead processor 6609 * into the current processors event counters. 6610 * This artificially elevates the count of the current 6611 * processor. 6612 */ 6613 vm_events_fold_cpu(cpu); 6614 6615 /* 6616 * Zero the differential counters of the dead processor 6617 * so that the vm statistics are consistent. 6618 * 6619 * This is only okay since the processor is dead and cannot 6620 * race with what we are doing. 6621 */ 6622 cpu_vm_stats_fold(cpu); 6623 } 6624 return NOTIFY_OK; 6625 } 6626 6627 void __init page_alloc_init(void) 6628 { 6629 hotcpu_notifier(page_alloc_cpu_notify, 0); 6630 } 6631 6632 /* 6633 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6634 * or min_free_kbytes changes. 6635 */ 6636 static void calculate_totalreserve_pages(void) 6637 { 6638 struct pglist_data *pgdat; 6639 unsigned long reserve_pages = 0; 6640 enum zone_type i, j; 6641 6642 for_each_online_pgdat(pgdat) { 6643 6644 pgdat->totalreserve_pages = 0; 6645 6646 for (i = 0; i < MAX_NR_ZONES; i++) { 6647 struct zone *zone = pgdat->node_zones + i; 6648 long max = 0; 6649 6650 /* Find valid and maximum lowmem_reserve in the zone */ 6651 for (j = i; j < MAX_NR_ZONES; j++) { 6652 if (zone->lowmem_reserve[j] > max) 6653 max = zone->lowmem_reserve[j]; 6654 } 6655 6656 /* we treat the high watermark as reserved pages. */ 6657 max += high_wmark_pages(zone); 6658 6659 if (max > zone->managed_pages) 6660 max = zone->managed_pages; 6661 6662 pgdat->totalreserve_pages += max; 6663 6664 reserve_pages += max; 6665 } 6666 } 6667 totalreserve_pages = reserve_pages; 6668 } 6669 6670 /* 6671 * setup_per_zone_lowmem_reserve - called whenever 6672 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6673 * has a correct pages reserved value, so an adequate number of 6674 * pages are left in the zone after a successful __alloc_pages(). 6675 */ 6676 static void setup_per_zone_lowmem_reserve(void) 6677 { 6678 struct pglist_data *pgdat; 6679 enum zone_type j, idx; 6680 6681 for_each_online_pgdat(pgdat) { 6682 for (j = 0; j < MAX_NR_ZONES; j++) { 6683 struct zone *zone = pgdat->node_zones + j; 6684 unsigned long managed_pages = zone->managed_pages; 6685 6686 zone->lowmem_reserve[j] = 0; 6687 6688 idx = j; 6689 while (idx) { 6690 struct zone *lower_zone; 6691 6692 idx--; 6693 6694 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6695 sysctl_lowmem_reserve_ratio[idx] = 1; 6696 6697 lower_zone = pgdat->node_zones + idx; 6698 lower_zone->lowmem_reserve[j] = managed_pages / 6699 sysctl_lowmem_reserve_ratio[idx]; 6700 managed_pages += lower_zone->managed_pages; 6701 } 6702 } 6703 } 6704 6705 /* update totalreserve_pages */ 6706 calculate_totalreserve_pages(); 6707 } 6708 6709 static void __setup_per_zone_wmarks(void) 6710 { 6711 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6712 unsigned long lowmem_pages = 0; 6713 struct zone *zone; 6714 unsigned long flags; 6715 6716 /* Calculate total number of !ZONE_HIGHMEM pages */ 6717 for_each_zone(zone) { 6718 if (!is_highmem(zone)) 6719 lowmem_pages += zone->managed_pages; 6720 } 6721 6722 for_each_zone(zone) { 6723 u64 tmp; 6724 6725 spin_lock_irqsave(&zone->lock, flags); 6726 tmp = (u64)pages_min * zone->managed_pages; 6727 do_div(tmp, lowmem_pages); 6728 if (is_highmem(zone)) { 6729 /* 6730 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6731 * need highmem pages, so cap pages_min to a small 6732 * value here. 6733 * 6734 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6735 * deltas control asynch page reclaim, and so should 6736 * not be capped for highmem. 6737 */ 6738 unsigned long min_pages; 6739 6740 min_pages = zone->managed_pages / 1024; 6741 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6742 zone->watermark[WMARK_MIN] = min_pages; 6743 } else { 6744 /* 6745 * If it's a lowmem zone, reserve a number of pages 6746 * proportionate to the zone's size. 6747 */ 6748 zone->watermark[WMARK_MIN] = tmp; 6749 } 6750 6751 /* 6752 * Set the kswapd watermarks distance according to the 6753 * scale factor in proportion to available memory, but 6754 * ensure a minimum size on small systems. 6755 */ 6756 tmp = max_t(u64, tmp >> 2, 6757 mult_frac(zone->managed_pages, 6758 watermark_scale_factor, 10000)); 6759 6760 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6761 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 6762 6763 spin_unlock_irqrestore(&zone->lock, flags); 6764 } 6765 6766 /* update totalreserve_pages */ 6767 calculate_totalreserve_pages(); 6768 } 6769 6770 /** 6771 * setup_per_zone_wmarks - called when min_free_kbytes changes 6772 * or when memory is hot-{added|removed} 6773 * 6774 * Ensures that the watermark[min,low,high] values for each zone are set 6775 * correctly with respect to min_free_kbytes. 6776 */ 6777 void setup_per_zone_wmarks(void) 6778 { 6779 mutex_lock(&zonelists_mutex); 6780 __setup_per_zone_wmarks(); 6781 mutex_unlock(&zonelists_mutex); 6782 } 6783 6784 /* 6785 * Initialise min_free_kbytes. 6786 * 6787 * For small machines we want it small (128k min). For large machines 6788 * we want it large (64MB max). But it is not linear, because network 6789 * bandwidth does not increase linearly with machine size. We use 6790 * 6791 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6792 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6793 * 6794 * which yields 6795 * 6796 * 16MB: 512k 6797 * 32MB: 724k 6798 * 64MB: 1024k 6799 * 128MB: 1448k 6800 * 256MB: 2048k 6801 * 512MB: 2896k 6802 * 1024MB: 4096k 6803 * 2048MB: 5792k 6804 * 4096MB: 8192k 6805 * 8192MB: 11584k 6806 * 16384MB: 16384k 6807 */ 6808 int __meminit init_per_zone_wmark_min(void) 6809 { 6810 unsigned long lowmem_kbytes; 6811 int new_min_free_kbytes; 6812 6813 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6814 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6815 6816 if (new_min_free_kbytes > user_min_free_kbytes) { 6817 min_free_kbytes = new_min_free_kbytes; 6818 if (min_free_kbytes < 128) 6819 min_free_kbytes = 128; 6820 if (min_free_kbytes > 65536) 6821 min_free_kbytes = 65536; 6822 } else { 6823 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6824 new_min_free_kbytes, user_min_free_kbytes); 6825 } 6826 setup_per_zone_wmarks(); 6827 refresh_zone_stat_thresholds(); 6828 setup_per_zone_lowmem_reserve(); 6829 6830 #ifdef CONFIG_NUMA 6831 setup_min_unmapped_ratio(); 6832 setup_min_slab_ratio(); 6833 #endif 6834 6835 return 0; 6836 } 6837 core_initcall(init_per_zone_wmark_min) 6838 6839 /* 6840 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6841 * that we can call two helper functions whenever min_free_kbytes 6842 * changes. 6843 */ 6844 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6845 void __user *buffer, size_t *length, loff_t *ppos) 6846 { 6847 int rc; 6848 6849 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6850 if (rc) 6851 return rc; 6852 6853 if (write) { 6854 user_min_free_kbytes = min_free_kbytes; 6855 setup_per_zone_wmarks(); 6856 } 6857 return 0; 6858 } 6859 6860 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6861 void __user *buffer, size_t *length, loff_t *ppos) 6862 { 6863 int rc; 6864 6865 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6866 if (rc) 6867 return rc; 6868 6869 if (write) 6870 setup_per_zone_wmarks(); 6871 6872 return 0; 6873 } 6874 6875 #ifdef CONFIG_NUMA 6876 static void setup_min_unmapped_ratio(void) 6877 { 6878 pg_data_t *pgdat; 6879 struct zone *zone; 6880 6881 for_each_online_pgdat(pgdat) 6882 pgdat->min_unmapped_pages = 0; 6883 6884 for_each_zone(zone) 6885 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 6886 sysctl_min_unmapped_ratio) / 100; 6887 } 6888 6889 6890 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6891 void __user *buffer, size_t *length, loff_t *ppos) 6892 { 6893 int rc; 6894 6895 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6896 if (rc) 6897 return rc; 6898 6899 setup_min_unmapped_ratio(); 6900 6901 return 0; 6902 } 6903 6904 static void setup_min_slab_ratio(void) 6905 { 6906 pg_data_t *pgdat; 6907 struct zone *zone; 6908 6909 for_each_online_pgdat(pgdat) 6910 pgdat->min_slab_pages = 0; 6911 6912 for_each_zone(zone) 6913 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 6914 sysctl_min_slab_ratio) / 100; 6915 } 6916 6917 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6918 void __user *buffer, size_t *length, loff_t *ppos) 6919 { 6920 int rc; 6921 6922 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6923 if (rc) 6924 return rc; 6925 6926 setup_min_slab_ratio(); 6927 6928 return 0; 6929 } 6930 #endif 6931 6932 /* 6933 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6934 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6935 * whenever sysctl_lowmem_reserve_ratio changes. 6936 * 6937 * The reserve ratio obviously has absolutely no relation with the 6938 * minimum watermarks. The lowmem reserve ratio can only make sense 6939 * if in function of the boot time zone sizes. 6940 */ 6941 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 6942 void __user *buffer, size_t *length, loff_t *ppos) 6943 { 6944 proc_dointvec_minmax(table, write, buffer, length, ppos); 6945 setup_per_zone_lowmem_reserve(); 6946 return 0; 6947 } 6948 6949 /* 6950 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 6951 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6952 * pagelist can have before it gets flushed back to buddy allocator. 6953 */ 6954 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 6955 void __user *buffer, size_t *length, loff_t *ppos) 6956 { 6957 struct zone *zone; 6958 int old_percpu_pagelist_fraction; 6959 int ret; 6960 6961 mutex_lock(&pcp_batch_high_lock); 6962 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 6963 6964 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6965 if (!write || ret < 0) 6966 goto out; 6967 6968 /* Sanity checking to avoid pcp imbalance */ 6969 if (percpu_pagelist_fraction && 6970 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 6971 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 6972 ret = -EINVAL; 6973 goto out; 6974 } 6975 6976 /* No change? */ 6977 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 6978 goto out; 6979 6980 for_each_populated_zone(zone) { 6981 unsigned int cpu; 6982 6983 for_each_possible_cpu(cpu) 6984 pageset_set_high_and_batch(zone, 6985 per_cpu_ptr(zone->pageset, cpu)); 6986 } 6987 out: 6988 mutex_unlock(&pcp_batch_high_lock); 6989 return ret; 6990 } 6991 6992 #ifdef CONFIG_NUMA 6993 int hashdist = HASHDIST_DEFAULT; 6994 6995 static int __init set_hashdist(char *str) 6996 { 6997 if (!str) 6998 return 0; 6999 hashdist = simple_strtoul(str, &str, 0); 7000 return 1; 7001 } 7002 __setup("hashdist=", set_hashdist); 7003 #endif 7004 7005 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7006 /* 7007 * Returns the number of pages that arch has reserved but 7008 * is not known to alloc_large_system_hash(). 7009 */ 7010 static unsigned long __init arch_reserved_kernel_pages(void) 7011 { 7012 return 0; 7013 } 7014 #endif 7015 7016 /* 7017 * allocate a large system hash table from bootmem 7018 * - it is assumed that the hash table must contain an exact power-of-2 7019 * quantity of entries 7020 * - limit is the number of hash buckets, not the total allocation size 7021 */ 7022 void *__init alloc_large_system_hash(const char *tablename, 7023 unsigned long bucketsize, 7024 unsigned long numentries, 7025 int scale, 7026 int flags, 7027 unsigned int *_hash_shift, 7028 unsigned int *_hash_mask, 7029 unsigned long low_limit, 7030 unsigned long high_limit) 7031 { 7032 unsigned long long max = high_limit; 7033 unsigned long log2qty, size; 7034 void *table = NULL; 7035 7036 /* allow the kernel cmdline to have a say */ 7037 if (!numentries) { 7038 /* round applicable memory size up to nearest megabyte */ 7039 numentries = nr_kernel_pages; 7040 numentries -= arch_reserved_kernel_pages(); 7041 7042 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7043 if (PAGE_SHIFT < 20) 7044 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7045 7046 /* limit to 1 bucket per 2^scale bytes of low memory */ 7047 if (scale > PAGE_SHIFT) 7048 numentries >>= (scale - PAGE_SHIFT); 7049 else 7050 numentries <<= (PAGE_SHIFT - scale); 7051 7052 /* Make sure we've got at least a 0-order allocation.. */ 7053 if (unlikely(flags & HASH_SMALL)) { 7054 /* Makes no sense without HASH_EARLY */ 7055 WARN_ON(!(flags & HASH_EARLY)); 7056 if (!(numentries >> *_hash_shift)) { 7057 numentries = 1UL << *_hash_shift; 7058 BUG_ON(!numentries); 7059 } 7060 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7061 numentries = PAGE_SIZE / bucketsize; 7062 } 7063 numentries = roundup_pow_of_two(numentries); 7064 7065 /* limit allocation size to 1/16 total memory by default */ 7066 if (max == 0) { 7067 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7068 do_div(max, bucketsize); 7069 } 7070 max = min(max, 0x80000000ULL); 7071 7072 if (numentries < low_limit) 7073 numentries = low_limit; 7074 if (numentries > max) 7075 numentries = max; 7076 7077 log2qty = ilog2(numentries); 7078 7079 do { 7080 size = bucketsize << log2qty; 7081 if (flags & HASH_EARLY) 7082 table = memblock_virt_alloc_nopanic(size, 0); 7083 else if (hashdist) 7084 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 7085 else { 7086 /* 7087 * If bucketsize is not a power-of-two, we may free 7088 * some pages at the end of hash table which 7089 * alloc_pages_exact() automatically does 7090 */ 7091 if (get_order(size) < MAX_ORDER) { 7092 table = alloc_pages_exact(size, GFP_ATOMIC); 7093 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 7094 } 7095 } 7096 } while (!table && size > PAGE_SIZE && --log2qty); 7097 7098 if (!table) 7099 panic("Failed to allocate %s hash table\n", tablename); 7100 7101 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7102 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7103 7104 if (_hash_shift) 7105 *_hash_shift = log2qty; 7106 if (_hash_mask) 7107 *_hash_mask = (1 << log2qty) - 1; 7108 7109 return table; 7110 } 7111 7112 /* 7113 * This function checks whether pageblock includes unmovable pages or not. 7114 * If @count is not zero, it is okay to include less @count unmovable pages 7115 * 7116 * PageLRU check without isolation or lru_lock could race so that 7117 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 7118 * expect this function should be exact. 7119 */ 7120 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7121 bool skip_hwpoisoned_pages) 7122 { 7123 unsigned long pfn, iter, found; 7124 int mt; 7125 7126 /* 7127 * For avoiding noise data, lru_add_drain_all() should be called 7128 * If ZONE_MOVABLE, the zone never contains unmovable pages 7129 */ 7130 if (zone_idx(zone) == ZONE_MOVABLE) 7131 return false; 7132 mt = get_pageblock_migratetype(page); 7133 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 7134 return false; 7135 7136 pfn = page_to_pfn(page); 7137 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7138 unsigned long check = pfn + iter; 7139 7140 if (!pfn_valid_within(check)) 7141 continue; 7142 7143 page = pfn_to_page(check); 7144 7145 /* 7146 * Hugepages are not in LRU lists, but they're movable. 7147 * We need not scan over tail pages bacause we don't 7148 * handle each tail page individually in migration. 7149 */ 7150 if (PageHuge(page)) { 7151 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7152 continue; 7153 } 7154 7155 /* 7156 * We can't use page_count without pin a page 7157 * because another CPU can free compound page. 7158 * This check already skips compound tails of THP 7159 * because their page->_refcount is zero at all time. 7160 */ 7161 if (!page_ref_count(page)) { 7162 if (PageBuddy(page)) 7163 iter += (1 << page_order(page)) - 1; 7164 continue; 7165 } 7166 7167 /* 7168 * The HWPoisoned page may be not in buddy system, and 7169 * page_count() is not 0. 7170 */ 7171 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7172 continue; 7173 7174 if (!PageLRU(page)) 7175 found++; 7176 /* 7177 * If there are RECLAIMABLE pages, we need to check 7178 * it. But now, memory offline itself doesn't call 7179 * shrink_node_slabs() and it still to be fixed. 7180 */ 7181 /* 7182 * If the page is not RAM, page_count()should be 0. 7183 * we don't need more check. This is an _used_ not-movable page. 7184 * 7185 * The problematic thing here is PG_reserved pages. PG_reserved 7186 * is set to both of a memory hole page and a _used_ kernel 7187 * page at boot. 7188 */ 7189 if (found > count) 7190 return true; 7191 } 7192 return false; 7193 } 7194 7195 bool is_pageblock_removable_nolock(struct page *page) 7196 { 7197 struct zone *zone; 7198 unsigned long pfn; 7199 7200 /* 7201 * We have to be careful here because we are iterating over memory 7202 * sections which are not zone aware so we might end up outside of 7203 * the zone but still within the section. 7204 * We have to take care about the node as well. If the node is offline 7205 * its NODE_DATA will be NULL - see page_zone. 7206 */ 7207 if (!node_online(page_to_nid(page))) 7208 return false; 7209 7210 zone = page_zone(page); 7211 pfn = page_to_pfn(page); 7212 if (!zone_spans_pfn(zone, pfn)) 7213 return false; 7214 7215 return !has_unmovable_pages(zone, page, 0, true); 7216 } 7217 7218 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7219 7220 static unsigned long pfn_max_align_down(unsigned long pfn) 7221 { 7222 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7223 pageblock_nr_pages) - 1); 7224 } 7225 7226 static unsigned long pfn_max_align_up(unsigned long pfn) 7227 { 7228 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7229 pageblock_nr_pages)); 7230 } 7231 7232 /* [start, end) must belong to a single zone. */ 7233 static int __alloc_contig_migrate_range(struct compact_control *cc, 7234 unsigned long start, unsigned long end) 7235 { 7236 /* This function is based on compact_zone() from compaction.c. */ 7237 unsigned long nr_reclaimed; 7238 unsigned long pfn = start; 7239 unsigned int tries = 0; 7240 int ret = 0; 7241 7242 migrate_prep(); 7243 7244 while (pfn < end || !list_empty(&cc->migratepages)) { 7245 if (fatal_signal_pending(current)) { 7246 ret = -EINTR; 7247 break; 7248 } 7249 7250 if (list_empty(&cc->migratepages)) { 7251 cc->nr_migratepages = 0; 7252 pfn = isolate_migratepages_range(cc, pfn, end); 7253 if (!pfn) { 7254 ret = -EINTR; 7255 break; 7256 } 7257 tries = 0; 7258 } else if (++tries == 5) { 7259 ret = ret < 0 ? ret : -EBUSY; 7260 break; 7261 } 7262 7263 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7264 &cc->migratepages); 7265 cc->nr_migratepages -= nr_reclaimed; 7266 7267 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7268 NULL, 0, cc->mode, MR_CMA); 7269 } 7270 if (ret < 0) { 7271 putback_movable_pages(&cc->migratepages); 7272 return ret; 7273 } 7274 return 0; 7275 } 7276 7277 /** 7278 * alloc_contig_range() -- tries to allocate given range of pages 7279 * @start: start PFN to allocate 7280 * @end: one-past-the-last PFN to allocate 7281 * @migratetype: migratetype of the underlaying pageblocks (either 7282 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7283 * in range must have the same migratetype and it must 7284 * be either of the two. 7285 * 7286 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7287 * aligned, however it's the caller's responsibility to guarantee that 7288 * we are the only thread that changes migrate type of pageblocks the 7289 * pages fall in. 7290 * 7291 * The PFN range must belong to a single zone. 7292 * 7293 * Returns zero on success or negative error code. On success all 7294 * pages which PFN is in [start, end) are allocated for the caller and 7295 * need to be freed with free_contig_range(). 7296 */ 7297 int alloc_contig_range(unsigned long start, unsigned long end, 7298 unsigned migratetype) 7299 { 7300 unsigned long outer_start, outer_end; 7301 unsigned int order; 7302 int ret = 0; 7303 7304 struct compact_control cc = { 7305 .nr_migratepages = 0, 7306 .order = -1, 7307 .zone = page_zone(pfn_to_page(start)), 7308 .mode = MIGRATE_SYNC, 7309 .ignore_skip_hint = true, 7310 }; 7311 INIT_LIST_HEAD(&cc.migratepages); 7312 7313 /* 7314 * What we do here is we mark all pageblocks in range as 7315 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7316 * have different sizes, and due to the way page allocator 7317 * work, we align the range to biggest of the two pages so 7318 * that page allocator won't try to merge buddies from 7319 * different pageblocks and change MIGRATE_ISOLATE to some 7320 * other migration type. 7321 * 7322 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7323 * migrate the pages from an unaligned range (ie. pages that 7324 * we are interested in). This will put all the pages in 7325 * range back to page allocator as MIGRATE_ISOLATE. 7326 * 7327 * When this is done, we take the pages in range from page 7328 * allocator removing them from the buddy system. This way 7329 * page allocator will never consider using them. 7330 * 7331 * This lets us mark the pageblocks back as 7332 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7333 * aligned range but not in the unaligned, original range are 7334 * put back to page allocator so that buddy can use them. 7335 */ 7336 7337 ret = start_isolate_page_range(pfn_max_align_down(start), 7338 pfn_max_align_up(end), migratetype, 7339 false); 7340 if (ret) 7341 return ret; 7342 7343 /* 7344 * In case of -EBUSY, we'd like to know which page causes problem. 7345 * So, just fall through. We will check it in test_pages_isolated(). 7346 */ 7347 ret = __alloc_contig_migrate_range(&cc, start, end); 7348 if (ret && ret != -EBUSY) 7349 goto done; 7350 7351 /* 7352 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7353 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7354 * more, all pages in [start, end) are free in page allocator. 7355 * What we are going to do is to allocate all pages from 7356 * [start, end) (that is remove them from page allocator). 7357 * 7358 * The only problem is that pages at the beginning and at the 7359 * end of interesting range may be not aligned with pages that 7360 * page allocator holds, ie. they can be part of higher order 7361 * pages. Because of this, we reserve the bigger range and 7362 * once this is done free the pages we are not interested in. 7363 * 7364 * We don't have to hold zone->lock here because the pages are 7365 * isolated thus they won't get removed from buddy. 7366 */ 7367 7368 lru_add_drain_all(); 7369 drain_all_pages(cc.zone); 7370 7371 order = 0; 7372 outer_start = start; 7373 while (!PageBuddy(pfn_to_page(outer_start))) { 7374 if (++order >= MAX_ORDER) { 7375 outer_start = start; 7376 break; 7377 } 7378 outer_start &= ~0UL << order; 7379 } 7380 7381 if (outer_start != start) { 7382 order = page_order(pfn_to_page(outer_start)); 7383 7384 /* 7385 * outer_start page could be small order buddy page and 7386 * it doesn't include start page. Adjust outer_start 7387 * in this case to report failed page properly 7388 * on tracepoint in test_pages_isolated() 7389 */ 7390 if (outer_start + (1UL << order) <= start) 7391 outer_start = start; 7392 } 7393 7394 /* Make sure the range is really isolated. */ 7395 if (test_pages_isolated(outer_start, end, false)) { 7396 pr_info("%s: [%lx, %lx) PFNs busy\n", 7397 __func__, outer_start, end); 7398 ret = -EBUSY; 7399 goto done; 7400 } 7401 7402 /* Grab isolated pages from freelists. */ 7403 outer_end = isolate_freepages_range(&cc, outer_start, end); 7404 if (!outer_end) { 7405 ret = -EBUSY; 7406 goto done; 7407 } 7408 7409 /* Free head and tail (if any) */ 7410 if (start != outer_start) 7411 free_contig_range(outer_start, start - outer_start); 7412 if (end != outer_end) 7413 free_contig_range(end, outer_end - end); 7414 7415 done: 7416 undo_isolate_page_range(pfn_max_align_down(start), 7417 pfn_max_align_up(end), migratetype); 7418 return ret; 7419 } 7420 7421 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7422 { 7423 unsigned int count = 0; 7424 7425 for (; nr_pages--; pfn++) { 7426 struct page *page = pfn_to_page(pfn); 7427 7428 count += page_count(page) != 1; 7429 __free_page(page); 7430 } 7431 WARN(count != 0, "%d pages are still in use!\n", count); 7432 } 7433 #endif 7434 7435 #ifdef CONFIG_MEMORY_HOTPLUG 7436 /* 7437 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7438 * page high values need to be recalulated. 7439 */ 7440 void __meminit zone_pcp_update(struct zone *zone) 7441 { 7442 unsigned cpu; 7443 mutex_lock(&pcp_batch_high_lock); 7444 for_each_possible_cpu(cpu) 7445 pageset_set_high_and_batch(zone, 7446 per_cpu_ptr(zone->pageset, cpu)); 7447 mutex_unlock(&pcp_batch_high_lock); 7448 } 7449 #endif 7450 7451 void zone_pcp_reset(struct zone *zone) 7452 { 7453 unsigned long flags; 7454 int cpu; 7455 struct per_cpu_pageset *pset; 7456 7457 /* avoid races with drain_pages() */ 7458 local_irq_save(flags); 7459 if (zone->pageset != &boot_pageset) { 7460 for_each_online_cpu(cpu) { 7461 pset = per_cpu_ptr(zone->pageset, cpu); 7462 drain_zonestat(zone, pset); 7463 } 7464 free_percpu(zone->pageset); 7465 zone->pageset = &boot_pageset; 7466 } 7467 local_irq_restore(flags); 7468 } 7469 7470 #ifdef CONFIG_MEMORY_HOTREMOVE 7471 /* 7472 * All pages in the range must be in a single zone and isolated 7473 * before calling this. 7474 */ 7475 void 7476 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7477 { 7478 struct page *page; 7479 struct zone *zone; 7480 unsigned int order, i; 7481 unsigned long pfn; 7482 unsigned long flags; 7483 /* find the first valid pfn */ 7484 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7485 if (pfn_valid(pfn)) 7486 break; 7487 if (pfn == end_pfn) 7488 return; 7489 zone = page_zone(pfn_to_page(pfn)); 7490 spin_lock_irqsave(&zone->lock, flags); 7491 pfn = start_pfn; 7492 while (pfn < end_pfn) { 7493 if (!pfn_valid(pfn)) { 7494 pfn++; 7495 continue; 7496 } 7497 page = pfn_to_page(pfn); 7498 /* 7499 * The HWPoisoned page may be not in buddy system, and 7500 * page_count() is not 0. 7501 */ 7502 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7503 pfn++; 7504 SetPageReserved(page); 7505 continue; 7506 } 7507 7508 BUG_ON(page_count(page)); 7509 BUG_ON(!PageBuddy(page)); 7510 order = page_order(page); 7511 #ifdef CONFIG_DEBUG_VM 7512 pr_info("remove from free list %lx %d %lx\n", 7513 pfn, 1 << order, end_pfn); 7514 #endif 7515 list_del(&page->lru); 7516 rmv_page_order(page); 7517 zone->free_area[order].nr_free--; 7518 for (i = 0; i < (1 << order); i++) 7519 SetPageReserved((page+i)); 7520 pfn += (1 << order); 7521 } 7522 spin_unlock_irqrestore(&zone->lock, flags); 7523 } 7524 #endif 7525 7526 bool is_free_buddy_page(struct page *page) 7527 { 7528 struct zone *zone = page_zone(page); 7529 unsigned long pfn = page_to_pfn(page); 7530 unsigned long flags; 7531 unsigned int order; 7532 7533 spin_lock_irqsave(&zone->lock, flags); 7534 for (order = 0; order < MAX_ORDER; order++) { 7535 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7536 7537 if (PageBuddy(page_head) && page_order(page_head) >= order) 7538 break; 7539 } 7540 spin_unlock_irqrestore(&zone->lock, flags); 7541 7542 return order < MAX_ORDER; 7543 } 7544