xref: /linux/mm/page_alloc.c (revision 4f58e6dceb0e44ca8f21568ed81e1df24e55964c)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72 
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
76 
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81 
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87  * defined in <linux/topology.h>.
88  */
89 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93 
94 /*
95  * Array of node states.
96  */
97 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 	[N_POSSIBLE] = NODE_MASK_ALL,
99 	[N_ONLINE] = { { [0] = 1UL } },
100 #ifndef CONFIG_NUMA
101 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
102 #ifdef CONFIG_HIGHMEM
103 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
104 #endif
105 #ifdef CONFIG_MOVABLE_NODE
106 	[N_MEMORY] = { { [0] = 1UL } },
107 #endif
108 	[N_CPU] = { { [0] = 1UL } },
109 #endif	/* NUMA */
110 };
111 EXPORT_SYMBOL(node_states);
112 
113 /* Protect totalram_pages and zone->managed_pages */
114 static DEFINE_SPINLOCK(managed_page_count_lock);
115 
116 unsigned long totalram_pages __read_mostly;
117 unsigned long totalreserve_pages __read_mostly;
118 unsigned long totalcma_pages __read_mostly;
119 
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122 
123 /*
124  * A cached value of the page's pageblock's migratetype, used when the page is
125  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127  * Also the migratetype set in the page does not necessarily match the pcplist
128  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129  * other index - this ensures that it will be put on the correct CMA freelist.
130  */
131 static inline int get_pcppage_migratetype(struct page *page)
132 {
133 	return page->index;
134 }
135 
136 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137 {
138 	page->index = migratetype;
139 }
140 
141 #ifdef CONFIG_PM_SLEEP
142 /*
143  * The following functions are used by the suspend/hibernate code to temporarily
144  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145  * while devices are suspended.  To avoid races with the suspend/hibernate code,
146  * they should always be called with pm_mutex held (gfp_allowed_mask also should
147  * only be modified with pm_mutex held, unless the suspend/hibernate code is
148  * guaranteed not to run in parallel with that modification).
149  */
150 
151 static gfp_t saved_gfp_mask;
152 
153 void pm_restore_gfp_mask(void)
154 {
155 	WARN_ON(!mutex_is_locked(&pm_mutex));
156 	if (saved_gfp_mask) {
157 		gfp_allowed_mask = saved_gfp_mask;
158 		saved_gfp_mask = 0;
159 	}
160 }
161 
162 void pm_restrict_gfp_mask(void)
163 {
164 	WARN_ON(!mutex_is_locked(&pm_mutex));
165 	WARN_ON(saved_gfp_mask);
166 	saved_gfp_mask = gfp_allowed_mask;
167 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
168 }
169 
170 bool pm_suspended_storage(void)
171 {
172 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
173 		return false;
174 	return true;
175 }
176 #endif /* CONFIG_PM_SLEEP */
177 
178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
179 unsigned int pageblock_order __read_mostly;
180 #endif
181 
182 static void __free_pages_ok(struct page *page, unsigned int order);
183 
184 /*
185  * results with 256, 32 in the lowmem_reserve sysctl:
186  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187  *	1G machine -> (16M dma, 784M normal, 224M high)
188  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
190  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191  *
192  * TBD: should special case ZONE_DMA32 machines here - in those we normally
193  * don't need any ZONE_NORMAL reservation
194  */
195 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
196 #ifdef CONFIG_ZONE_DMA
197 	 256,
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 	 256,
201 #endif
202 #ifdef CONFIG_HIGHMEM
203 	 32,
204 #endif
205 	 32,
206 };
207 
208 EXPORT_SYMBOL(totalram_pages);
209 
210 static char * const zone_names[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 	 "DMA",
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 	 "DMA32",
216 #endif
217 	 "Normal",
218 #ifdef CONFIG_HIGHMEM
219 	 "HighMem",
220 #endif
221 	 "Movable",
222 #ifdef CONFIG_ZONE_DEVICE
223 	 "Device",
224 #endif
225 };
226 
227 char * const migratetype_names[MIGRATE_TYPES] = {
228 	"Unmovable",
229 	"Movable",
230 	"Reclaimable",
231 	"HighAtomic",
232 #ifdef CONFIG_CMA
233 	"CMA",
234 #endif
235 #ifdef CONFIG_MEMORY_ISOLATION
236 	"Isolate",
237 #endif
238 };
239 
240 compound_page_dtor * const compound_page_dtors[] = {
241 	NULL,
242 	free_compound_page,
243 #ifdef CONFIG_HUGETLB_PAGE
244 	free_huge_page,
245 #endif
246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 	free_transhuge_page,
248 #endif
249 };
250 
251 int min_free_kbytes = 1024;
252 int user_min_free_kbytes = -1;
253 int watermark_scale_factor = 10;
254 
255 static unsigned long __meminitdata nr_kernel_pages;
256 static unsigned long __meminitdata nr_all_pages;
257 static unsigned long __meminitdata dma_reserve;
258 
259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262 static unsigned long __initdata required_kernelcore;
263 static unsigned long __initdata required_movablecore;
264 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
265 static bool mirrored_kernelcore;
266 
267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 int movable_zone;
269 EXPORT_SYMBOL(movable_zone);
270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271 
272 #if MAX_NUMNODES > 1
273 int nr_node_ids __read_mostly = MAX_NUMNODES;
274 int nr_online_nodes __read_mostly = 1;
275 EXPORT_SYMBOL(nr_node_ids);
276 EXPORT_SYMBOL(nr_online_nodes);
277 #endif
278 
279 int page_group_by_mobility_disabled __read_mostly;
280 
281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282 static inline void reset_deferred_meminit(pg_data_t *pgdat)
283 {
284 	pgdat->first_deferred_pfn = ULONG_MAX;
285 }
286 
287 /* Returns true if the struct page for the pfn is uninitialised */
288 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
289 {
290 	int nid = early_pfn_to_nid(pfn);
291 
292 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
293 		return true;
294 
295 	return false;
296 }
297 
298 /*
299  * Returns false when the remaining initialisation should be deferred until
300  * later in the boot cycle when it can be parallelised.
301  */
302 static inline bool update_defer_init(pg_data_t *pgdat,
303 				unsigned long pfn, unsigned long zone_end,
304 				unsigned long *nr_initialised)
305 {
306 	unsigned long max_initialise;
307 
308 	/* Always populate low zones for address-contrained allocations */
309 	if (zone_end < pgdat_end_pfn(pgdat))
310 		return true;
311 	/*
312 	 * Initialise at least 2G of a node but also take into account that
313 	 * two large system hashes that can take up 1GB for 0.25TB/node.
314 	 */
315 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 		(pgdat->node_spanned_pages >> 8));
317 
318 	(*nr_initialised)++;
319 	if ((*nr_initialised > max_initialise) &&
320 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 		pgdat->first_deferred_pfn = pfn;
322 		return false;
323 	}
324 
325 	return true;
326 }
327 #else
328 static inline void reset_deferred_meminit(pg_data_t *pgdat)
329 {
330 }
331 
332 static inline bool early_page_uninitialised(unsigned long pfn)
333 {
334 	return false;
335 }
336 
337 static inline bool update_defer_init(pg_data_t *pgdat,
338 				unsigned long pfn, unsigned long zone_end,
339 				unsigned long *nr_initialised)
340 {
341 	return true;
342 }
343 #endif
344 
345 /* Return a pointer to the bitmap storing bits affecting a block of pages */
346 static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 							unsigned long pfn)
348 {
349 #ifdef CONFIG_SPARSEMEM
350 	return __pfn_to_section(pfn)->pageblock_flags;
351 #else
352 	return page_zone(page)->pageblock_flags;
353 #endif /* CONFIG_SPARSEMEM */
354 }
355 
356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 	pfn &= (PAGES_PER_SECTION-1);
360 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #else
362 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366 
367 /**
368  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369  * @page: The page within the block of interest
370  * @pfn: The target page frame number
371  * @end_bitidx: The last bit of interest to retrieve
372  * @mask: mask of bits that the caller is interested in
373  *
374  * Return: pageblock_bits flags
375  */
376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 					unsigned long pfn,
378 					unsigned long end_bitidx,
379 					unsigned long mask)
380 {
381 	unsigned long *bitmap;
382 	unsigned long bitidx, word_bitidx;
383 	unsigned long word;
384 
385 	bitmap = get_pageblock_bitmap(page, pfn);
386 	bitidx = pfn_to_bitidx(page, pfn);
387 	word_bitidx = bitidx / BITS_PER_LONG;
388 	bitidx &= (BITS_PER_LONG-1);
389 
390 	word = bitmap[word_bitidx];
391 	bitidx += end_bitidx;
392 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393 }
394 
395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 					unsigned long end_bitidx,
397 					unsigned long mask)
398 {
399 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400 }
401 
402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403 {
404 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405 }
406 
407 /**
408  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409  * @page: The page within the block of interest
410  * @flags: The flags to set
411  * @pfn: The target page frame number
412  * @end_bitidx: The last bit of interest
413  * @mask: mask of bits that the caller is interested in
414  */
415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 					unsigned long pfn,
417 					unsigned long end_bitidx,
418 					unsigned long mask)
419 {
420 	unsigned long *bitmap;
421 	unsigned long bitidx, word_bitidx;
422 	unsigned long old_word, word;
423 
424 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425 
426 	bitmap = get_pageblock_bitmap(page, pfn);
427 	bitidx = pfn_to_bitidx(page, pfn);
428 	word_bitidx = bitidx / BITS_PER_LONG;
429 	bitidx &= (BITS_PER_LONG-1);
430 
431 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432 
433 	bitidx += end_bitidx;
434 	mask <<= (BITS_PER_LONG - bitidx - 1);
435 	flags <<= (BITS_PER_LONG - bitidx - 1);
436 
437 	word = READ_ONCE(bitmap[word_bitidx]);
438 	for (;;) {
439 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 		if (word == old_word)
441 			break;
442 		word = old_word;
443 	}
444 }
445 
446 void set_pageblock_migratetype(struct page *page, int migratetype)
447 {
448 	if (unlikely(page_group_by_mobility_disabled &&
449 		     migratetype < MIGRATE_PCPTYPES))
450 		migratetype = MIGRATE_UNMOVABLE;
451 
452 	set_pageblock_flags_group(page, (unsigned long)migratetype,
453 					PB_migrate, PB_migrate_end);
454 }
455 
456 #ifdef CONFIG_DEBUG_VM
457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
458 {
459 	int ret = 0;
460 	unsigned seq;
461 	unsigned long pfn = page_to_pfn(page);
462 	unsigned long sp, start_pfn;
463 
464 	do {
465 		seq = zone_span_seqbegin(zone);
466 		start_pfn = zone->zone_start_pfn;
467 		sp = zone->spanned_pages;
468 		if (!zone_spans_pfn(zone, pfn))
469 			ret = 1;
470 	} while (zone_span_seqretry(zone, seq));
471 
472 	if (ret)
473 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 			pfn, zone_to_nid(zone), zone->name,
475 			start_pfn, start_pfn + sp);
476 
477 	return ret;
478 }
479 
480 static int page_is_consistent(struct zone *zone, struct page *page)
481 {
482 	if (!pfn_valid_within(page_to_pfn(page)))
483 		return 0;
484 	if (zone != page_zone(page))
485 		return 0;
486 
487 	return 1;
488 }
489 /*
490  * Temporary debugging check for pages not lying within a given zone.
491  */
492 static int bad_range(struct zone *zone, struct page *page)
493 {
494 	if (page_outside_zone_boundaries(zone, page))
495 		return 1;
496 	if (!page_is_consistent(zone, page))
497 		return 1;
498 
499 	return 0;
500 }
501 #else
502 static inline int bad_range(struct zone *zone, struct page *page)
503 {
504 	return 0;
505 }
506 #endif
507 
508 static void bad_page(struct page *page, const char *reason,
509 		unsigned long bad_flags)
510 {
511 	static unsigned long resume;
512 	static unsigned long nr_shown;
513 	static unsigned long nr_unshown;
514 
515 	/*
516 	 * Allow a burst of 60 reports, then keep quiet for that minute;
517 	 * or allow a steady drip of one report per second.
518 	 */
519 	if (nr_shown == 60) {
520 		if (time_before(jiffies, resume)) {
521 			nr_unshown++;
522 			goto out;
523 		}
524 		if (nr_unshown) {
525 			pr_alert(
526 			      "BUG: Bad page state: %lu messages suppressed\n",
527 				nr_unshown);
528 			nr_unshown = 0;
529 		}
530 		nr_shown = 0;
531 	}
532 	if (nr_shown++ == 0)
533 		resume = jiffies + 60 * HZ;
534 
535 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
536 		current->comm, page_to_pfn(page));
537 	__dump_page(page, reason);
538 	bad_flags &= page->flags;
539 	if (bad_flags)
540 		pr_alert("bad because of flags: %#lx(%pGp)\n",
541 						bad_flags, &bad_flags);
542 	dump_page_owner(page);
543 
544 	print_modules();
545 	dump_stack();
546 out:
547 	/* Leave bad fields for debug, except PageBuddy could make trouble */
548 	page_mapcount_reset(page); /* remove PageBuddy */
549 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551 
552 /*
553  * Higher-order pages are called "compound pages".  They are structured thusly:
554  *
555  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
556  *
557  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
559  *
560  * The first tail page's ->compound_dtor holds the offset in array of compound
561  * page destructors. See compound_page_dtors.
562  *
563  * The first tail page's ->compound_order holds the order of allocation.
564  * This usage means that zero-order pages may not be compound.
565  */
566 
567 void free_compound_page(struct page *page)
568 {
569 	__free_pages_ok(page, compound_order(page));
570 }
571 
572 void prep_compound_page(struct page *page, unsigned int order)
573 {
574 	int i;
575 	int nr_pages = 1 << order;
576 
577 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
578 	set_compound_order(page, order);
579 	__SetPageHead(page);
580 	for (i = 1; i < nr_pages; i++) {
581 		struct page *p = page + i;
582 		set_page_count(p, 0);
583 		p->mapping = TAIL_MAPPING;
584 		set_compound_head(p, page);
585 	}
586 	atomic_set(compound_mapcount_ptr(page), -1);
587 }
588 
589 #ifdef CONFIG_DEBUG_PAGEALLOC
590 unsigned int _debug_guardpage_minorder;
591 bool _debug_pagealloc_enabled __read_mostly
592 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
593 EXPORT_SYMBOL(_debug_pagealloc_enabled);
594 bool _debug_guardpage_enabled __read_mostly;
595 
596 static int __init early_debug_pagealloc(char *buf)
597 {
598 	if (!buf)
599 		return -EINVAL;
600 	return kstrtobool(buf, &_debug_pagealloc_enabled);
601 }
602 early_param("debug_pagealloc", early_debug_pagealloc);
603 
604 static bool need_debug_guardpage(void)
605 {
606 	/* If we don't use debug_pagealloc, we don't need guard page */
607 	if (!debug_pagealloc_enabled())
608 		return false;
609 
610 	if (!debug_guardpage_minorder())
611 		return false;
612 
613 	return true;
614 }
615 
616 static void init_debug_guardpage(void)
617 {
618 	if (!debug_pagealloc_enabled())
619 		return;
620 
621 	if (!debug_guardpage_minorder())
622 		return;
623 
624 	_debug_guardpage_enabled = true;
625 }
626 
627 struct page_ext_operations debug_guardpage_ops = {
628 	.need = need_debug_guardpage,
629 	.init = init_debug_guardpage,
630 };
631 
632 static int __init debug_guardpage_minorder_setup(char *buf)
633 {
634 	unsigned long res;
635 
636 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
637 		pr_err("Bad debug_guardpage_minorder value\n");
638 		return 0;
639 	}
640 	_debug_guardpage_minorder = res;
641 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
642 	return 0;
643 }
644 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
645 
646 static inline bool set_page_guard(struct zone *zone, struct page *page,
647 				unsigned int order, int migratetype)
648 {
649 	struct page_ext *page_ext;
650 
651 	if (!debug_guardpage_enabled())
652 		return false;
653 
654 	if (order >= debug_guardpage_minorder())
655 		return false;
656 
657 	page_ext = lookup_page_ext(page);
658 	if (unlikely(!page_ext))
659 		return false;
660 
661 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
662 
663 	INIT_LIST_HEAD(&page->lru);
664 	set_page_private(page, order);
665 	/* Guard pages are not available for any usage */
666 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
667 
668 	return true;
669 }
670 
671 static inline void clear_page_guard(struct zone *zone, struct page *page,
672 				unsigned int order, int migratetype)
673 {
674 	struct page_ext *page_ext;
675 
676 	if (!debug_guardpage_enabled())
677 		return;
678 
679 	page_ext = lookup_page_ext(page);
680 	if (unlikely(!page_ext))
681 		return;
682 
683 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
684 
685 	set_page_private(page, 0);
686 	if (!is_migrate_isolate(migratetype))
687 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
688 }
689 #else
690 struct page_ext_operations debug_guardpage_ops;
691 static inline bool set_page_guard(struct zone *zone, struct page *page,
692 			unsigned int order, int migratetype) { return false; }
693 static inline void clear_page_guard(struct zone *zone, struct page *page,
694 				unsigned int order, int migratetype) {}
695 #endif
696 
697 static inline void set_page_order(struct page *page, unsigned int order)
698 {
699 	set_page_private(page, order);
700 	__SetPageBuddy(page);
701 }
702 
703 static inline void rmv_page_order(struct page *page)
704 {
705 	__ClearPageBuddy(page);
706 	set_page_private(page, 0);
707 }
708 
709 /*
710  * This function checks whether a page is free && is the buddy
711  * we can do coalesce a page and its buddy if
712  * (a) the buddy is not in a hole &&
713  * (b) the buddy is in the buddy system &&
714  * (c) a page and its buddy have the same order &&
715  * (d) a page and its buddy are in the same zone.
716  *
717  * For recording whether a page is in the buddy system, we set ->_mapcount
718  * PAGE_BUDDY_MAPCOUNT_VALUE.
719  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
720  * serialized by zone->lock.
721  *
722  * For recording page's order, we use page_private(page).
723  */
724 static inline int page_is_buddy(struct page *page, struct page *buddy,
725 							unsigned int order)
726 {
727 	if (!pfn_valid_within(page_to_pfn(buddy)))
728 		return 0;
729 
730 	if (page_is_guard(buddy) && page_order(buddy) == order) {
731 		if (page_zone_id(page) != page_zone_id(buddy))
732 			return 0;
733 
734 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
735 
736 		return 1;
737 	}
738 
739 	if (PageBuddy(buddy) && page_order(buddy) == order) {
740 		/*
741 		 * zone check is done late to avoid uselessly
742 		 * calculating zone/node ids for pages that could
743 		 * never merge.
744 		 */
745 		if (page_zone_id(page) != page_zone_id(buddy))
746 			return 0;
747 
748 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
749 
750 		return 1;
751 	}
752 	return 0;
753 }
754 
755 /*
756  * Freeing function for a buddy system allocator.
757  *
758  * The concept of a buddy system is to maintain direct-mapped table
759  * (containing bit values) for memory blocks of various "orders".
760  * The bottom level table contains the map for the smallest allocatable
761  * units of memory (here, pages), and each level above it describes
762  * pairs of units from the levels below, hence, "buddies".
763  * At a high level, all that happens here is marking the table entry
764  * at the bottom level available, and propagating the changes upward
765  * as necessary, plus some accounting needed to play nicely with other
766  * parts of the VM system.
767  * At each level, we keep a list of pages, which are heads of continuous
768  * free pages of length of (1 << order) and marked with _mapcount
769  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
770  * field.
771  * So when we are allocating or freeing one, we can derive the state of the
772  * other.  That is, if we allocate a small block, and both were
773  * free, the remainder of the region must be split into blocks.
774  * If a block is freed, and its buddy is also free, then this
775  * triggers coalescing into a block of larger size.
776  *
777  * -- nyc
778  */
779 
780 static inline void __free_one_page(struct page *page,
781 		unsigned long pfn,
782 		struct zone *zone, unsigned int order,
783 		int migratetype)
784 {
785 	unsigned long page_idx;
786 	unsigned long combined_idx;
787 	unsigned long uninitialized_var(buddy_idx);
788 	struct page *buddy;
789 	unsigned int max_order;
790 
791 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
792 
793 	VM_BUG_ON(!zone_is_initialized(zone));
794 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
795 
796 	VM_BUG_ON(migratetype == -1);
797 	if (likely(!is_migrate_isolate(migratetype)))
798 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
799 
800 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
801 
802 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
803 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
804 
805 continue_merging:
806 	while (order < max_order - 1) {
807 		buddy_idx = __find_buddy_index(page_idx, order);
808 		buddy = page + (buddy_idx - page_idx);
809 		if (!page_is_buddy(page, buddy, order))
810 			goto done_merging;
811 		/*
812 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 		 * merge with it and move up one order.
814 		 */
815 		if (page_is_guard(buddy)) {
816 			clear_page_guard(zone, buddy, order, migratetype);
817 		} else {
818 			list_del(&buddy->lru);
819 			zone->free_area[order].nr_free--;
820 			rmv_page_order(buddy);
821 		}
822 		combined_idx = buddy_idx & page_idx;
823 		page = page + (combined_idx - page_idx);
824 		page_idx = combined_idx;
825 		order++;
826 	}
827 	if (max_order < MAX_ORDER) {
828 		/* If we are here, it means order is >= pageblock_order.
829 		 * We want to prevent merge between freepages on isolate
830 		 * pageblock and normal pageblock. Without this, pageblock
831 		 * isolation could cause incorrect freepage or CMA accounting.
832 		 *
833 		 * We don't want to hit this code for the more frequent
834 		 * low-order merging.
835 		 */
836 		if (unlikely(has_isolate_pageblock(zone))) {
837 			int buddy_mt;
838 
839 			buddy_idx = __find_buddy_index(page_idx, order);
840 			buddy = page + (buddy_idx - page_idx);
841 			buddy_mt = get_pageblock_migratetype(buddy);
842 
843 			if (migratetype != buddy_mt
844 					&& (is_migrate_isolate(migratetype) ||
845 						is_migrate_isolate(buddy_mt)))
846 				goto done_merging;
847 		}
848 		max_order++;
849 		goto continue_merging;
850 	}
851 
852 done_merging:
853 	set_page_order(page, order);
854 
855 	/*
856 	 * If this is not the largest possible page, check if the buddy
857 	 * of the next-highest order is free. If it is, it's possible
858 	 * that pages are being freed that will coalesce soon. In case,
859 	 * that is happening, add the free page to the tail of the list
860 	 * so it's less likely to be used soon and more likely to be merged
861 	 * as a higher order page
862 	 */
863 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
864 		struct page *higher_page, *higher_buddy;
865 		combined_idx = buddy_idx & page_idx;
866 		higher_page = page + (combined_idx - page_idx);
867 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
868 		higher_buddy = higher_page + (buddy_idx - combined_idx);
869 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
870 			list_add_tail(&page->lru,
871 				&zone->free_area[order].free_list[migratetype]);
872 			goto out;
873 		}
874 	}
875 
876 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
877 out:
878 	zone->free_area[order].nr_free++;
879 }
880 
881 /*
882  * A bad page could be due to a number of fields. Instead of multiple branches,
883  * try and check multiple fields with one check. The caller must do a detailed
884  * check if necessary.
885  */
886 static inline bool page_expected_state(struct page *page,
887 					unsigned long check_flags)
888 {
889 	if (unlikely(atomic_read(&page->_mapcount) != -1))
890 		return false;
891 
892 	if (unlikely((unsigned long)page->mapping |
893 			page_ref_count(page) |
894 #ifdef CONFIG_MEMCG
895 			(unsigned long)page->mem_cgroup |
896 #endif
897 			(page->flags & check_flags)))
898 		return false;
899 
900 	return true;
901 }
902 
903 static void free_pages_check_bad(struct page *page)
904 {
905 	const char *bad_reason;
906 	unsigned long bad_flags;
907 
908 	bad_reason = NULL;
909 	bad_flags = 0;
910 
911 	if (unlikely(atomic_read(&page->_mapcount) != -1))
912 		bad_reason = "nonzero mapcount";
913 	if (unlikely(page->mapping != NULL))
914 		bad_reason = "non-NULL mapping";
915 	if (unlikely(page_ref_count(page) != 0))
916 		bad_reason = "nonzero _refcount";
917 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
918 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
919 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
920 	}
921 #ifdef CONFIG_MEMCG
922 	if (unlikely(page->mem_cgroup))
923 		bad_reason = "page still charged to cgroup";
924 #endif
925 	bad_page(page, bad_reason, bad_flags);
926 }
927 
928 static inline int free_pages_check(struct page *page)
929 {
930 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
931 		return 0;
932 
933 	/* Something has gone sideways, find it */
934 	free_pages_check_bad(page);
935 	return 1;
936 }
937 
938 static int free_tail_pages_check(struct page *head_page, struct page *page)
939 {
940 	int ret = 1;
941 
942 	/*
943 	 * We rely page->lru.next never has bit 0 set, unless the page
944 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
945 	 */
946 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
947 
948 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
949 		ret = 0;
950 		goto out;
951 	}
952 	switch (page - head_page) {
953 	case 1:
954 		/* the first tail page: ->mapping is compound_mapcount() */
955 		if (unlikely(compound_mapcount(page))) {
956 			bad_page(page, "nonzero compound_mapcount", 0);
957 			goto out;
958 		}
959 		break;
960 	case 2:
961 		/*
962 		 * the second tail page: ->mapping is
963 		 * page_deferred_list().next -- ignore value.
964 		 */
965 		break;
966 	default:
967 		if (page->mapping != TAIL_MAPPING) {
968 			bad_page(page, "corrupted mapping in tail page", 0);
969 			goto out;
970 		}
971 		break;
972 	}
973 	if (unlikely(!PageTail(page))) {
974 		bad_page(page, "PageTail not set", 0);
975 		goto out;
976 	}
977 	if (unlikely(compound_head(page) != head_page)) {
978 		bad_page(page, "compound_head not consistent", 0);
979 		goto out;
980 	}
981 	ret = 0;
982 out:
983 	page->mapping = NULL;
984 	clear_compound_head(page);
985 	return ret;
986 }
987 
988 static __always_inline bool free_pages_prepare(struct page *page,
989 					unsigned int order, bool check_free)
990 {
991 	int bad = 0;
992 
993 	VM_BUG_ON_PAGE(PageTail(page), page);
994 
995 	trace_mm_page_free(page, order);
996 	kmemcheck_free_shadow(page, order);
997 
998 	/*
999 	 * Check tail pages before head page information is cleared to
1000 	 * avoid checking PageCompound for order-0 pages.
1001 	 */
1002 	if (unlikely(order)) {
1003 		bool compound = PageCompound(page);
1004 		int i;
1005 
1006 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1007 
1008 		if (compound)
1009 			ClearPageDoubleMap(page);
1010 		for (i = 1; i < (1 << order); i++) {
1011 			if (compound)
1012 				bad += free_tail_pages_check(page, page + i);
1013 			if (unlikely(free_pages_check(page + i))) {
1014 				bad++;
1015 				continue;
1016 			}
1017 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1018 		}
1019 	}
1020 	if (PageMappingFlags(page))
1021 		page->mapping = NULL;
1022 	if (memcg_kmem_enabled() && PageKmemcg(page))
1023 		memcg_kmem_uncharge(page, order);
1024 	if (check_free)
1025 		bad += free_pages_check(page);
1026 	if (bad)
1027 		return false;
1028 
1029 	page_cpupid_reset_last(page);
1030 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1031 	reset_page_owner(page, order);
1032 
1033 	if (!PageHighMem(page)) {
1034 		debug_check_no_locks_freed(page_address(page),
1035 					   PAGE_SIZE << order);
1036 		debug_check_no_obj_freed(page_address(page),
1037 					   PAGE_SIZE << order);
1038 	}
1039 	arch_free_page(page, order);
1040 	kernel_poison_pages(page, 1 << order, 0);
1041 	kernel_map_pages(page, 1 << order, 0);
1042 	kasan_free_pages(page, order);
1043 
1044 	return true;
1045 }
1046 
1047 #ifdef CONFIG_DEBUG_VM
1048 static inline bool free_pcp_prepare(struct page *page)
1049 {
1050 	return free_pages_prepare(page, 0, true);
1051 }
1052 
1053 static inline bool bulkfree_pcp_prepare(struct page *page)
1054 {
1055 	return false;
1056 }
1057 #else
1058 static bool free_pcp_prepare(struct page *page)
1059 {
1060 	return free_pages_prepare(page, 0, false);
1061 }
1062 
1063 static bool bulkfree_pcp_prepare(struct page *page)
1064 {
1065 	return free_pages_check(page);
1066 }
1067 #endif /* CONFIG_DEBUG_VM */
1068 
1069 /*
1070  * Frees a number of pages from the PCP lists
1071  * Assumes all pages on list are in same zone, and of same order.
1072  * count is the number of pages to free.
1073  *
1074  * If the zone was previously in an "all pages pinned" state then look to
1075  * see if this freeing clears that state.
1076  *
1077  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1078  * pinned" detection logic.
1079  */
1080 static void free_pcppages_bulk(struct zone *zone, int count,
1081 					struct per_cpu_pages *pcp)
1082 {
1083 	int migratetype = 0;
1084 	int batch_free = 0;
1085 	unsigned long nr_scanned;
1086 	bool isolated_pageblocks;
1087 
1088 	spin_lock(&zone->lock);
1089 	isolated_pageblocks = has_isolate_pageblock(zone);
1090 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1091 	if (nr_scanned)
1092 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1093 
1094 	while (count) {
1095 		struct page *page;
1096 		struct list_head *list;
1097 
1098 		/*
1099 		 * Remove pages from lists in a round-robin fashion. A
1100 		 * batch_free count is maintained that is incremented when an
1101 		 * empty list is encountered.  This is so more pages are freed
1102 		 * off fuller lists instead of spinning excessively around empty
1103 		 * lists
1104 		 */
1105 		do {
1106 			batch_free++;
1107 			if (++migratetype == MIGRATE_PCPTYPES)
1108 				migratetype = 0;
1109 			list = &pcp->lists[migratetype];
1110 		} while (list_empty(list));
1111 
1112 		/* This is the only non-empty list. Free them all. */
1113 		if (batch_free == MIGRATE_PCPTYPES)
1114 			batch_free = count;
1115 
1116 		do {
1117 			int mt;	/* migratetype of the to-be-freed page */
1118 
1119 			page = list_last_entry(list, struct page, lru);
1120 			/* must delete as __free_one_page list manipulates */
1121 			list_del(&page->lru);
1122 
1123 			mt = get_pcppage_migratetype(page);
1124 			/* MIGRATE_ISOLATE page should not go to pcplists */
1125 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1126 			/* Pageblock could have been isolated meanwhile */
1127 			if (unlikely(isolated_pageblocks))
1128 				mt = get_pageblock_migratetype(page);
1129 
1130 			if (bulkfree_pcp_prepare(page))
1131 				continue;
1132 
1133 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1134 			trace_mm_page_pcpu_drain(page, 0, mt);
1135 		} while (--count && --batch_free && !list_empty(list));
1136 	}
1137 	spin_unlock(&zone->lock);
1138 }
1139 
1140 static void free_one_page(struct zone *zone,
1141 				struct page *page, unsigned long pfn,
1142 				unsigned int order,
1143 				int migratetype)
1144 {
1145 	unsigned long nr_scanned;
1146 	spin_lock(&zone->lock);
1147 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1148 	if (nr_scanned)
1149 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1150 
1151 	if (unlikely(has_isolate_pageblock(zone) ||
1152 		is_migrate_isolate(migratetype))) {
1153 		migratetype = get_pfnblock_migratetype(page, pfn);
1154 	}
1155 	__free_one_page(page, pfn, zone, order, migratetype);
1156 	spin_unlock(&zone->lock);
1157 }
1158 
1159 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1160 				unsigned long zone, int nid)
1161 {
1162 	set_page_links(page, zone, nid, pfn);
1163 	init_page_count(page);
1164 	page_mapcount_reset(page);
1165 	page_cpupid_reset_last(page);
1166 
1167 	INIT_LIST_HEAD(&page->lru);
1168 #ifdef WANT_PAGE_VIRTUAL
1169 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1170 	if (!is_highmem_idx(zone))
1171 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1172 #endif
1173 }
1174 
1175 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1176 					int nid)
1177 {
1178 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1179 }
1180 
1181 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182 static void init_reserved_page(unsigned long pfn)
1183 {
1184 	pg_data_t *pgdat;
1185 	int nid, zid;
1186 
1187 	if (!early_page_uninitialised(pfn))
1188 		return;
1189 
1190 	nid = early_pfn_to_nid(pfn);
1191 	pgdat = NODE_DATA(nid);
1192 
1193 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1194 		struct zone *zone = &pgdat->node_zones[zid];
1195 
1196 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1197 			break;
1198 	}
1199 	__init_single_pfn(pfn, zid, nid);
1200 }
1201 #else
1202 static inline void init_reserved_page(unsigned long pfn)
1203 {
1204 }
1205 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1206 
1207 /*
1208  * Initialised pages do not have PageReserved set. This function is
1209  * called for each range allocated by the bootmem allocator and
1210  * marks the pages PageReserved. The remaining valid pages are later
1211  * sent to the buddy page allocator.
1212  */
1213 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1214 {
1215 	unsigned long start_pfn = PFN_DOWN(start);
1216 	unsigned long end_pfn = PFN_UP(end);
1217 
1218 	for (; start_pfn < end_pfn; start_pfn++) {
1219 		if (pfn_valid(start_pfn)) {
1220 			struct page *page = pfn_to_page(start_pfn);
1221 
1222 			init_reserved_page(start_pfn);
1223 
1224 			/* Avoid false-positive PageTail() */
1225 			INIT_LIST_HEAD(&page->lru);
1226 
1227 			SetPageReserved(page);
1228 		}
1229 	}
1230 }
1231 
1232 static void __free_pages_ok(struct page *page, unsigned int order)
1233 {
1234 	unsigned long flags;
1235 	int migratetype;
1236 	unsigned long pfn = page_to_pfn(page);
1237 
1238 	if (!free_pages_prepare(page, order, true))
1239 		return;
1240 
1241 	migratetype = get_pfnblock_migratetype(page, pfn);
1242 	local_irq_save(flags);
1243 	__count_vm_events(PGFREE, 1 << order);
1244 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1245 	local_irq_restore(flags);
1246 }
1247 
1248 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1249 {
1250 	unsigned int nr_pages = 1 << order;
1251 	struct page *p = page;
1252 	unsigned int loop;
1253 
1254 	prefetchw(p);
1255 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 		prefetchw(p + 1);
1257 		__ClearPageReserved(p);
1258 		set_page_count(p, 0);
1259 	}
1260 	__ClearPageReserved(p);
1261 	set_page_count(p, 0);
1262 
1263 	page_zone(page)->managed_pages += nr_pages;
1264 	set_page_refcounted(page);
1265 	__free_pages(page, order);
1266 }
1267 
1268 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1270 
1271 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272 
1273 int __meminit early_pfn_to_nid(unsigned long pfn)
1274 {
1275 	static DEFINE_SPINLOCK(early_pfn_lock);
1276 	int nid;
1277 
1278 	spin_lock(&early_pfn_lock);
1279 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1280 	if (nid < 0)
1281 		nid = first_online_node;
1282 	spin_unlock(&early_pfn_lock);
1283 
1284 	return nid;
1285 }
1286 #endif
1287 
1288 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 					struct mminit_pfnnid_cache *state)
1291 {
1292 	int nid;
1293 
1294 	nid = __early_pfn_to_nid(pfn, state);
1295 	if (nid >= 0 && nid != node)
1296 		return false;
1297 	return true;
1298 }
1299 
1300 /* Only safe to use early in boot when initialisation is single-threaded */
1301 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302 {
1303 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1304 }
1305 
1306 #else
1307 
1308 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309 {
1310 	return true;
1311 }
1312 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 					struct mminit_pfnnid_cache *state)
1314 {
1315 	return true;
1316 }
1317 #endif
1318 
1319 
1320 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1321 							unsigned int order)
1322 {
1323 	if (early_page_uninitialised(pfn))
1324 		return;
1325 	return __free_pages_boot_core(page, order);
1326 }
1327 
1328 /*
1329  * Check that the whole (or subset of) a pageblock given by the interval of
1330  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331  * with the migration of free compaction scanner. The scanners then need to
1332  * use only pfn_valid_within() check for arches that allow holes within
1333  * pageblocks.
1334  *
1335  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336  *
1337  * It's possible on some configurations to have a setup like node0 node1 node0
1338  * i.e. it's possible that all pages within a zones range of pages do not
1339  * belong to a single zone. We assume that a border between node0 and node1
1340  * can occur within a single pageblock, but not a node0 node1 node0
1341  * interleaving within a single pageblock. It is therefore sufficient to check
1342  * the first and last page of a pageblock and avoid checking each individual
1343  * page in a pageblock.
1344  */
1345 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 				     unsigned long end_pfn, struct zone *zone)
1347 {
1348 	struct page *start_page;
1349 	struct page *end_page;
1350 
1351 	/* end_pfn is one past the range we are checking */
1352 	end_pfn--;
1353 
1354 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1355 		return NULL;
1356 
1357 	start_page = pfn_to_page(start_pfn);
1358 
1359 	if (page_zone(start_page) != zone)
1360 		return NULL;
1361 
1362 	end_page = pfn_to_page(end_pfn);
1363 
1364 	/* This gives a shorter code than deriving page_zone(end_page) */
1365 	if (page_zone_id(start_page) != page_zone_id(end_page))
1366 		return NULL;
1367 
1368 	return start_page;
1369 }
1370 
1371 void set_zone_contiguous(struct zone *zone)
1372 {
1373 	unsigned long block_start_pfn = zone->zone_start_pfn;
1374 	unsigned long block_end_pfn;
1375 
1376 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 	for (; block_start_pfn < zone_end_pfn(zone);
1378 			block_start_pfn = block_end_pfn,
1379 			 block_end_pfn += pageblock_nr_pages) {
1380 
1381 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382 
1383 		if (!__pageblock_pfn_to_page(block_start_pfn,
1384 					     block_end_pfn, zone))
1385 			return;
1386 	}
1387 
1388 	/* We confirm that there is no hole */
1389 	zone->contiguous = true;
1390 }
1391 
1392 void clear_zone_contiguous(struct zone *zone)
1393 {
1394 	zone->contiguous = false;
1395 }
1396 
1397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1398 static void __init deferred_free_range(struct page *page,
1399 					unsigned long pfn, int nr_pages)
1400 {
1401 	int i;
1402 
1403 	if (!page)
1404 		return;
1405 
1406 	/* Free a large naturally-aligned chunk if possible */
1407 	if (nr_pages == pageblock_nr_pages &&
1408 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1409 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1410 		__free_pages_boot_core(page, pageblock_order);
1411 		return;
1412 	}
1413 
1414 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1417 		__free_pages_boot_core(page, 0);
1418 	}
1419 }
1420 
1421 /* Completion tracking for deferred_init_memmap() threads */
1422 static atomic_t pgdat_init_n_undone __initdata;
1423 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424 
1425 static inline void __init pgdat_init_report_one_done(void)
1426 {
1427 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 		complete(&pgdat_init_all_done_comp);
1429 }
1430 
1431 /* Initialise remaining memory on a node */
1432 static int __init deferred_init_memmap(void *data)
1433 {
1434 	pg_data_t *pgdat = data;
1435 	int nid = pgdat->node_id;
1436 	struct mminit_pfnnid_cache nid_init_state = { };
1437 	unsigned long start = jiffies;
1438 	unsigned long nr_pages = 0;
1439 	unsigned long walk_start, walk_end;
1440 	int i, zid;
1441 	struct zone *zone;
1442 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1443 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1444 
1445 	if (first_init_pfn == ULONG_MAX) {
1446 		pgdat_init_report_one_done();
1447 		return 0;
1448 	}
1449 
1450 	/* Bind memory initialisation thread to a local node if possible */
1451 	if (!cpumask_empty(cpumask))
1452 		set_cpus_allowed_ptr(current, cpumask);
1453 
1454 	/* Sanity check boundaries */
1455 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 	pgdat->first_deferred_pfn = ULONG_MAX;
1458 
1459 	/* Only the highest zone is deferred so find it */
1460 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 		zone = pgdat->node_zones + zid;
1462 		if (first_init_pfn < zone_end_pfn(zone))
1463 			break;
1464 	}
1465 
1466 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 		unsigned long pfn, end_pfn;
1468 		struct page *page = NULL;
1469 		struct page *free_base_page = NULL;
1470 		unsigned long free_base_pfn = 0;
1471 		int nr_to_free = 0;
1472 
1473 		end_pfn = min(walk_end, zone_end_pfn(zone));
1474 		pfn = first_init_pfn;
1475 		if (pfn < walk_start)
1476 			pfn = walk_start;
1477 		if (pfn < zone->zone_start_pfn)
1478 			pfn = zone->zone_start_pfn;
1479 
1480 		for (; pfn < end_pfn; pfn++) {
1481 			if (!pfn_valid_within(pfn))
1482 				goto free_range;
1483 
1484 			/*
1485 			 * Ensure pfn_valid is checked every
1486 			 * pageblock_nr_pages for memory holes
1487 			 */
1488 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1489 				if (!pfn_valid(pfn)) {
1490 					page = NULL;
1491 					goto free_range;
1492 				}
1493 			}
1494 
1495 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1496 				page = NULL;
1497 				goto free_range;
1498 			}
1499 
1500 			/* Minimise pfn page lookups and scheduler checks */
1501 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1502 				page++;
1503 			} else {
1504 				nr_pages += nr_to_free;
1505 				deferred_free_range(free_base_page,
1506 						free_base_pfn, nr_to_free);
1507 				free_base_page = NULL;
1508 				free_base_pfn = nr_to_free = 0;
1509 
1510 				page = pfn_to_page(pfn);
1511 				cond_resched();
1512 			}
1513 
1514 			if (page->flags) {
1515 				VM_BUG_ON(page_zone(page) != zone);
1516 				goto free_range;
1517 			}
1518 
1519 			__init_single_page(page, pfn, zid, nid);
1520 			if (!free_base_page) {
1521 				free_base_page = page;
1522 				free_base_pfn = pfn;
1523 				nr_to_free = 0;
1524 			}
1525 			nr_to_free++;
1526 
1527 			/* Where possible, batch up pages for a single free */
1528 			continue;
1529 free_range:
1530 			/* Free the current block of pages to allocator */
1531 			nr_pages += nr_to_free;
1532 			deferred_free_range(free_base_page, free_base_pfn,
1533 								nr_to_free);
1534 			free_base_page = NULL;
1535 			free_base_pfn = nr_to_free = 0;
1536 		}
1537 		/* Free the last block of pages to allocator */
1538 		nr_pages += nr_to_free;
1539 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1540 
1541 		first_init_pfn = max(end_pfn, first_init_pfn);
1542 	}
1543 
1544 	/* Sanity check that the next zone really is unpopulated */
1545 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546 
1547 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1548 					jiffies_to_msecs(jiffies - start));
1549 
1550 	pgdat_init_report_one_done();
1551 	return 0;
1552 }
1553 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1554 
1555 void __init page_alloc_init_late(void)
1556 {
1557 	struct zone *zone;
1558 
1559 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1560 	int nid;
1561 
1562 	/* There will be num_node_state(N_MEMORY) threads */
1563 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1564 	for_each_node_state(nid, N_MEMORY) {
1565 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1566 	}
1567 
1568 	/* Block until all are initialised */
1569 	wait_for_completion(&pgdat_init_all_done_comp);
1570 
1571 	/* Reinit limits that are based on free pages after the kernel is up */
1572 	files_maxfiles_init();
1573 #endif
1574 
1575 	for_each_populated_zone(zone)
1576 		set_zone_contiguous(zone);
1577 }
1578 
1579 #ifdef CONFIG_CMA
1580 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1581 void __init init_cma_reserved_pageblock(struct page *page)
1582 {
1583 	unsigned i = pageblock_nr_pages;
1584 	struct page *p = page;
1585 
1586 	do {
1587 		__ClearPageReserved(p);
1588 		set_page_count(p, 0);
1589 	} while (++p, --i);
1590 
1591 	set_pageblock_migratetype(page, MIGRATE_CMA);
1592 
1593 	if (pageblock_order >= MAX_ORDER) {
1594 		i = pageblock_nr_pages;
1595 		p = page;
1596 		do {
1597 			set_page_refcounted(p);
1598 			__free_pages(p, MAX_ORDER - 1);
1599 			p += MAX_ORDER_NR_PAGES;
1600 		} while (i -= MAX_ORDER_NR_PAGES);
1601 	} else {
1602 		set_page_refcounted(page);
1603 		__free_pages(page, pageblock_order);
1604 	}
1605 
1606 	adjust_managed_page_count(page, pageblock_nr_pages);
1607 }
1608 #endif
1609 
1610 /*
1611  * The order of subdivision here is critical for the IO subsystem.
1612  * Please do not alter this order without good reasons and regression
1613  * testing. Specifically, as large blocks of memory are subdivided,
1614  * the order in which smaller blocks are delivered depends on the order
1615  * they're subdivided in this function. This is the primary factor
1616  * influencing the order in which pages are delivered to the IO
1617  * subsystem according to empirical testing, and this is also justified
1618  * by considering the behavior of a buddy system containing a single
1619  * large block of memory acted on by a series of small allocations.
1620  * This behavior is a critical factor in sglist merging's success.
1621  *
1622  * -- nyc
1623  */
1624 static inline void expand(struct zone *zone, struct page *page,
1625 	int low, int high, struct free_area *area,
1626 	int migratetype)
1627 {
1628 	unsigned long size = 1 << high;
1629 
1630 	while (high > low) {
1631 		area--;
1632 		high--;
1633 		size >>= 1;
1634 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1635 
1636 		/*
1637 		 * Mark as guard pages (or page), that will allow to
1638 		 * merge back to allocator when buddy will be freed.
1639 		 * Corresponding page table entries will not be touched,
1640 		 * pages will stay not present in virtual address space
1641 		 */
1642 		if (set_page_guard(zone, &page[size], high, migratetype))
1643 			continue;
1644 
1645 		list_add(&page[size].lru, &area->free_list[migratetype]);
1646 		area->nr_free++;
1647 		set_page_order(&page[size], high);
1648 	}
1649 }
1650 
1651 static void check_new_page_bad(struct page *page)
1652 {
1653 	const char *bad_reason = NULL;
1654 	unsigned long bad_flags = 0;
1655 
1656 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1657 		bad_reason = "nonzero mapcount";
1658 	if (unlikely(page->mapping != NULL))
1659 		bad_reason = "non-NULL mapping";
1660 	if (unlikely(page_ref_count(page) != 0))
1661 		bad_reason = "nonzero _count";
1662 	if (unlikely(page->flags & __PG_HWPOISON)) {
1663 		bad_reason = "HWPoisoned (hardware-corrupted)";
1664 		bad_flags = __PG_HWPOISON;
1665 		/* Don't complain about hwpoisoned pages */
1666 		page_mapcount_reset(page); /* remove PageBuddy */
1667 		return;
1668 	}
1669 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 	}
1673 #ifdef CONFIG_MEMCG
1674 	if (unlikely(page->mem_cgroup))
1675 		bad_reason = "page still charged to cgroup";
1676 #endif
1677 	bad_page(page, bad_reason, bad_flags);
1678 }
1679 
1680 /*
1681  * This page is about to be returned from the page allocator
1682  */
1683 static inline int check_new_page(struct page *page)
1684 {
1685 	if (likely(page_expected_state(page,
1686 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1687 		return 0;
1688 
1689 	check_new_page_bad(page);
1690 	return 1;
1691 }
1692 
1693 static inline bool free_pages_prezeroed(bool poisoned)
1694 {
1695 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696 		page_poisoning_enabled() && poisoned;
1697 }
1698 
1699 #ifdef CONFIG_DEBUG_VM
1700 static bool check_pcp_refill(struct page *page)
1701 {
1702 	return false;
1703 }
1704 
1705 static bool check_new_pcp(struct page *page)
1706 {
1707 	return check_new_page(page);
1708 }
1709 #else
1710 static bool check_pcp_refill(struct page *page)
1711 {
1712 	return check_new_page(page);
1713 }
1714 static bool check_new_pcp(struct page *page)
1715 {
1716 	return false;
1717 }
1718 #endif /* CONFIG_DEBUG_VM */
1719 
1720 static bool check_new_pages(struct page *page, unsigned int order)
1721 {
1722 	int i;
1723 	for (i = 0; i < (1 << order); i++) {
1724 		struct page *p = page + i;
1725 
1726 		if (unlikely(check_new_page(p)))
1727 			return true;
1728 	}
1729 
1730 	return false;
1731 }
1732 
1733 inline void post_alloc_hook(struct page *page, unsigned int order,
1734 				gfp_t gfp_flags)
1735 {
1736 	set_page_private(page, 0);
1737 	set_page_refcounted(page);
1738 
1739 	arch_alloc_page(page, order);
1740 	kernel_map_pages(page, 1 << order, 1);
1741 	kernel_poison_pages(page, 1 << order, 1);
1742 	kasan_alloc_pages(page, order);
1743 	set_page_owner(page, order, gfp_flags);
1744 }
1745 
1746 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1747 							unsigned int alloc_flags)
1748 {
1749 	int i;
1750 	bool poisoned = true;
1751 
1752 	for (i = 0; i < (1 << order); i++) {
1753 		struct page *p = page + i;
1754 		if (poisoned)
1755 			poisoned &= page_is_poisoned(p);
1756 	}
1757 
1758 	post_alloc_hook(page, order, gfp_flags);
1759 
1760 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1761 		for (i = 0; i < (1 << order); i++)
1762 			clear_highpage(page + i);
1763 
1764 	if (order && (gfp_flags & __GFP_COMP))
1765 		prep_compound_page(page, order);
1766 
1767 	/*
1768 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1769 	 * allocate the page. The expectation is that the caller is taking
1770 	 * steps that will free more memory. The caller should avoid the page
1771 	 * being used for !PFMEMALLOC purposes.
1772 	 */
1773 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1774 		set_page_pfmemalloc(page);
1775 	else
1776 		clear_page_pfmemalloc(page);
1777 }
1778 
1779 /*
1780  * Go through the free lists for the given migratetype and remove
1781  * the smallest available page from the freelists
1782  */
1783 static inline
1784 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1785 						int migratetype)
1786 {
1787 	unsigned int current_order;
1788 	struct free_area *area;
1789 	struct page *page;
1790 
1791 	/* Find a page of the appropriate size in the preferred list */
1792 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1793 		area = &(zone->free_area[current_order]);
1794 		page = list_first_entry_or_null(&area->free_list[migratetype],
1795 							struct page, lru);
1796 		if (!page)
1797 			continue;
1798 		list_del(&page->lru);
1799 		rmv_page_order(page);
1800 		area->nr_free--;
1801 		expand(zone, page, order, current_order, area, migratetype);
1802 		set_pcppage_migratetype(page, migratetype);
1803 		return page;
1804 	}
1805 
1806 	return NULL;
1807 }
1808 
1809 
1810 /*
1811  * This array describes the order lists are fallen back to when
1812  * the free lists for the desirable migrate type are depleted
1813  */
1814 static int fallbacks[MIGRATE_TYPES][4] = {
1815 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1816 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1817 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1818 #ifdef CONFIG_CMA
1819 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1820 #endif
1821 #ifdef CONFIG_MEMORY_ISOLATION
1822 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1823 #endif
1824 };
1825 
1826 #ifdef CONFIG_CMA
1827 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1828 					unsigned int order)
1829 {
1830 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1831 }
1832 #else
1833 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1834 					unsigned int order) { return NULL; }
1835 #endif
1836 
1837 /*
1838  * Move the free pages in a range to the free lists of the requested type.
1839  * Note that start_page and end_pages are not aligned on a pageblock
1840  * boundary. If alignment is required, use move_freepages_block()
1841  */
1842 int move_freepages(struct zone *zone,
1843 			  struct page *start_page, struct page *end_page,
1844 			  int migratetype)
1845 {
1846 	struct page *page;
1847 	unsigned int order;
1848 	int pages_moved = 0;
1849 
1850 #ifndef CONFIG_HOLES_IN_ZONE
1851 	/*
1852 	 * page_zone is not safe to call in this context when
1853 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1854 	 * anyway as we check zone boundaries in move_freepages_block().
1855 	 * Remove at a later date when no bug reports exist related to
1856 	 * grouping pages by mobility
1857 	 */
1858 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1859 #endif
1860 
1861 	for (page = start_page; page <= end_page;) {
1862 		/* Make sure we are not inadvertently changing nodes */
1863 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1864 
1865 		if (!pfn_valid_within(page_to_pfn(page))) {
1866 			page++;
1867 			continue;
1868 		}
1869 
1870 		if (!PageBuddy(page)) {
1871 			page++;
1872 			continue;
1873 		}
1874 
1875 		order = page_order(page);
1876 		list_move(&page->lru,
1877 			  &zone->free_area[order].free_list[migratetype]);
1878 		page += 1 << order;
1879 		pages_moved += 1 << order;
1880 	}
1881 
1882 	return pages_moved;
1883 }
1884 
1885 int move_freepages_block(struct zone *zone, struct page *page,
1886 				int migratetype)
1887 {
1888 	unsigned long start_pfn, end_pfn;
1889 	struct page *start_page, *end_page;
1890 
1891 	start_pfn = page_to_pfn(page);
1892 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1893 	start_page = pfn_to_page(start_pfn);
1894 	end_page = start_page + pageblock_nr_pages - 1;
1895 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1896 
1897 	/* Do not cross zone boundaries */
1898 	if (!zone_spans_pfn(zone, start_pfn))
1899 		start_page = page;
1900 	if (!zone_spans_pfn(zone, end_pfn))
1901 		return 0;
1902 
1903 	return move_freepages(zone, start_page, end_page, migratetype);
1904 }
1905 
1906 static void change_pageblock_range(struct page *pageblock_page,
1907 					int start_order, int migratetype)
1908 {
1909 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1910 
1911 	while (nr_pageblocks--) {
1912 		set_pageblock_migratetype(pageblock_page, migratetype);
1913 		pageblock_page += pageblock_nr_pages;
1914 	}
1915 }
1916 
1917 /*
1918  * When we are falling back to another migratetype during allocation, try to
1919  * steal extra free pages from the same pageblocks to satisfy further
1920  * allocations, instead of polluting multiple pageblocks.
1921  *
1922  * If we are stealing a relatively large buddy page, it is likely there will
1923  * be more free pages in the pageblock, so try to steal them all. For
1924  * reclaimable and unmovable allocations, we steal regardless of page size,
1925  * as fragmentation caused by those allocations polluting movable pageblocks
1926  * is worse than movable allocations stealing from unmovable and reclaimable
1927  * pageblocks.
1928  */
1929 static bool can_steal_fallback(unsigned int order, int start_mt)
1930 {
1931 	/*
1932 	 * Leaving this order check is intended, although there is
1933 	 * relaxed order check in next check. The reason is that
1934 	 * we can actually steal whole pageblock if this condition met,
1935 	 * but, below check doesn't guarantee it and that is just heuristic
1936 	 * so could be changed anytime.
1937 	 */
1938 	if (order >= pageblock_order)
1939 		return true;
1940 
1941 	if (order >= pageblock_order / 2 ||
1942 		start_mt == MIGRATE_RECLAIMABLE ||
1943 		start_mt == MIGRATE_UNMOVABLE ||
1944 		page_group_by_mobility_disabled)
1945 		return true;
1946 
1947 	return false;
1948 }
1949 
1950 /*
1951  * This function implements actual steal behaviour. If order is large enough,
1952  * we can steal whole pageblock. If not, we first move freepages in this
1953  * pageblock and check whether half of pages are moved or not. If half of
1954  * pages are moved, we can change migratetype of pageblock and permanently
1955  * use it's pages as requested migratetype in the future.
1956  */
1957 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1958 							  int start_type)
1959 {
1960 	unsigned int current_order = page_order(page);
1961 	int pages;
1962 
1963 	/* Take ownership for orders >= pageblock_order */
1964 	if (current_order >= pageblock_order) {
1965 		change_pageblock_range(page, current_order, start_type);
1966 		return;
1967 	}
1968 
1969 	pages = move_freepages_block(zone, page, start_type);
1970 
1971 	/* Claim the whole block if over half of it is free */
1972 	if (pages >= (1 << (pageblock_order-1)) ||
1973 			page_group_by_mobility_disabled)
1974 		set_pageblock_migratetype(page, start_type);
1975 }
1976 
1977 /*
1978  * Check whether there is a suitable fallback freepage with requested order.
1979  * If only_stealable is true, this function returns fallback_mt only if
1980  * we can steal other freepages all together. This would help to reduce
1981  * fragmentation due to mixed migratetype pages in one pageblock.
1982  */
1983 int find_suitable_fallback(struct free_area *area, unsigned int order,
1984 			int migratetype, bool only_stealable, bool *can_steal)
1985 {
1986 	int i;
1987 	int fallback_mt;
1988 
1989 	if (area->nr_free == 0)
1990 		return -1;
1991 
1992 	*can_steal = false;
1993 	for (i = 0;; i++) {
1994 		fallback_mt = fallbacks[migratetype][i];
1995 		if (fallback_mt == MIGRATE_TYPES)
1996 			break;
1997 
1998 		if (list_empty(&area->free_list[fallback_mt]))
1999 			continue;
2000 
2001 		if (can_steal_fallback(order, migratetype))
2002 			*can_steal = true;
2003 
2004 		if (!only_stealable)
2005 			return fallback_mt;
2006 
2007 		if (*can_steal)
2008 			return fallback_mt;
2009 	}
2010 
2011 	return -1;
2012 }
2013 
2014 /*
2015  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2016  * there are no empty page blocks that contain a page with a suitable order
2017  */
2018 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2019 				unsigned int alloc_order)
2020 {
2021 	int mt;
2022 	unsigned long max_managed, flags;
2023 
2024 	/*
2025 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2026 	 * Check is race-prone but harmless.
2027 	 */
2028 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2029 	if (zone->nr_reserved_highatomic >= max_managed)
2030 		return;
2031 
2032 	spin_lock_irqsave(&zone->lock, flags);
2033 
2034 	/* Recheck the nr_reserved_highatomic limit under the lock */
2035 	if (zone->nr_reserved_highatomic >= max_managed)
2036 		goto out_unlock;
2037 
2038 	/* Yoink! */
2039 	mt = get_pageblock_migratetype(page);
2040 	if (mt != MIGRATE_HIGHATOMIC &&
2041 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2042 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2043 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2044 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2045 	}
2046 
2047 out_unlock:
2048 	spin_unlock_irqrestore(&zone->lock, flags);
2049 }
2050 
2051 /*
2052  * Used when an allocation is about to fail under memory pressure. This
2053  * potentially hurts the reliability of high-order allocations when under
2054  * intense memory pressure but failed atomic allocations should be easier
2055  * to recover from than an OOM.
2056  */
2057 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2058 {
2059 	struct zonelist *zonelist = ac->zonelist;
2060 	unsigned long flags;
2061 	struct zoneref *z;
2062 	struct zone *zone;
2063 	struct page *page;
2064 	int order;
2065 
2066 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2067 								ac->nodemask) {
2068 		/* Preserve at least one pageblock */
2069 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2070 			continue;
2071 
2072 		spin_lock_irqsave(&zone->lock, flags);
2073 		for (order = 0; order < MAX_ORDER; order++) {
2074 			struct free_area *area = &(zone->free_area[order]);
2075 
2076 			page = list_first_entry_or_null(
2077 					&area->free_list[MIGRATE_HIGHATOMIC],
2078 					struct page, lru);
2079 			if (!page)
2080 				continue;
2081 
2082 			/*
2083 			 * It should never happen but changes to locking could
2084 			 * inadvertently allow a per-cpu drain to add pages
2085 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2086 			 * and watch for underflows.
2087 			 */
2088 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2089 				zone->nr_reserved_highatomic);
2090 
2091 			/*
2092 			 * Convert to ac->migratetype and avoid the normal
2093 			 * pageblock stealing heuristics. Minimally, the caller
2094 			 * is doing the work and needs the pages. More
2095 			 * importantly, if the block was always converted to
2096 			 * MIGRATE_UNMOVABLE or another type then the number
2097 			 * of pageblocks that cannot be completely freed
2098 			 * may increase.
2099 			 */
2100 			set_pageblock_migratetype(page, ac->migratetype);
2101 			move_freepages_block(zone, page, ac->migratetype);
2102 			spin_unlock_irqrestore(&zone->lock, flags);
2103 			return;
2104 		}
2105 		spin_unlock_irqrestore(&zone->lock, flags);
2106 	}
2107 }
2108 
2109 /* Remove an element from the buddy allocator from the fallback list */
2110 static inline struct page *
2111 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2112 {
2113 	struct free_area *area;
2114 	unsigned int current_order;
2115 	struct page *page;
2116 	int fallback_mt;
2117 	bool can_steal;
2118 
2119 	/* Find the largest possible block of pages in the other list */
2120 	for (current_order = MAX_ORDER-1;
2121 				current_order >= order && current_order <= MAX_ORDER-1;
2122 				--current_order) {
2123 		area = &(zone->free_area[current_order]);
2124 		fallback_mt = find_suitable_fallback(area, current_order,
2125 				start_migratetype, false, &can_steal);
2126 		if (fallback_mt == -1)
2127 			continue;
2128 
2129 		page = list_first_entry(&area->free_list[fallback_mt],
2130 						struct page, lru);
2131 		if (can_steal)
2132 			steal_suitable_fallback(zone, page, start_migratetype);
2133 
2134 		/* Remove the page from the freelists */
2135 		area->nr_free--;
2136 		list_del(&page->lru);
2137 		rmv_page_order(page);
2138 
2139 		expand(zone, page, order, current_order, area,
2140 					start_migratetype);
2141 		/*
2142 		 * The pcppage_migratetype may differ from pageblock's
2143 		 * migratetype depending on the decisions in
2144 		 * find_suitable_fallback(). This is OK as long as it does not
2145 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2146 		 * fallback only via special __rmqueue_cma_fallback() function
2147 		 */
2148 		set_pcppage_migratetype(page, start_migratetype);
2149 
2150 		trace_mm_page_alloc_extfrag(page, order, current_order,
2151 			start_migratetype, fallback_mt);
2152 
2153 		return page;
2154 	}
2155 
2156 	return NULL;
2157 }
2158 
2159 /*
2160  * Do the hard work of removing an element from the buddy allocator.
2161  * Call me with the zone->lock already held.
2162  */
2163 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2164 				int migratetype)
2165 {
2166 	struct page *page;
2167 
2168 	page = __rmqueue_smallest(zone, order, migratetype);
2169 	if (unlikely(!page)) {
2170 		if (migratetype == MIGRATE_MOVABLE)
2171 			page = __rmqueue_cma_fallback(zone, order);
2172 
2173 		if (!page)
2174 			page = __rmqueue_fallback(zone, order, migratetype);
2175 	}
2176 
2177 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2178 	return page;
2179 }
2180 
2181 /*
2182  * Obtain a specified number of elements from the buddy allocator, all under
2183  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2184  * Returns the number of new pages which were placed at *list.
2185  */
2186 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2187 			unsigned long count, struct list_head *list,
2188 			int migratetype, bool cold)
2189 {
2190 	int i;
2191 
2192 	spin_lock(&zone->lock);
2193 	for (i = 0; i < count; ++i) {
2194 		struct page *page = __rmqueue(zone, order, migratetype);
2195 		if (unlikely(page == NULL))
2196 			break;
2197 
2198 		if (unlikely(check_pcp_refill(page)))
2199 			continue;
2200 
2201 		/*
2202 		 * Split buddy pages returned by expand() are received here
2203 		 * in physical page order. The page is added to the callers and
2204 		 * list and the list head then moves forward. From the callers
2205 		 * perspective, the linked list is ordered by page number in
2206 		 * some conditions. This is useful for IO devices that can
2207 		 * merge IO requests if the physical pages are ordered
2208 		 * properly.
2209 		 */
2210 		if (likely(!cold))
2211 			list_add(&page->lru, list);
2212 		else
2213 			list_add_tail(&page->lru, list);
2214 		list = &page->lru;
2215 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2216 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2217 					      -(1 << order));
2218 	}
2219 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2220 	spin_unlock(&zone->lock);
2221 	return i;
2222 }
2223 
2224 #ifdef CONFIG_NUMA
2225 /*
2226  * Called from the vmstat counter updater to drain pagesets of this
2227  * currently executing processor on remote nodes after they have
2228  * expired.
2229  *
2230  * Note that this function must be called with the thread pinned to
2231  * a single processor.
2232  */
2233 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2234 {
2235 	unsigned long flags;
2236 	int to_drain, batch;
2237 
2238 	local_irq_save(flags);
2239 	batch = READ_ONCE(pcp->batch);
2240 	to_drain = min(pcp->count, batch);
2241 	if (to_drain > 0) {
2242 		free_pcppages_bulk(zone, to_drain, pcp);
2243 		pcp->count -= to_drain;
2244 	}
2245 	local_irq_restore(flags);
2246 }
2247 #endif
2248 
2249 /*
2250  * Drain pcplists of the indicated processor and zone.
2251  *
2252  * The processor must either be the current processor and the
2253  * thread pinned to the current processor or a processor that
2254  * is not online.
2255  */
2256 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2257 {
2258 	unsigned long flags;
2259 	struct per_cpu_pageset *pset;
2260 	struct per_cpu_pages *pcp;
2261 
2262 	local_irq_save(flags);
2263 	pset = per_cpu_ptr(zone->pageset, cpu);
2264 
2265 	pcp = &pset->pcp;
2266 	if (pcp->count) {
2267 		free_pcppages_bulk(zone, pcp->count, pcp);
2268 		pcp->count = 0;
2269 	}
2270 	local_irq_restore(flags);
2271 }
2272 
2273 /*
2274  * Drain pcplists of all zones on the indicated processor.
2275  *
2276  * The processor must either be the current processor and the
2277  * thread pinned to the current processor or a processor that
2278  * is not online.
2279  */
2280 static void drain_pages(unsigned int cpu)
2281 {
2282 	struct zone *zone;
2283 
2284 	for_each_populated_zone(zone) {
2285 		drain_pages_zone(cpu, zone);
2286 	}
2287 }
2288 
2289 /*
2290  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2291  *
2292  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2293  * the single zone's pages.
2294  */
2295 void drain_local_pages(struct zone *zone)
2296 {
2297 	int cpu = smp_processor_id();
2298 
2299 	if (zone)
2300 		drain_pages_zone(cpu, zone);
2301 	else
2302 		drain_pages(cpu);
2303 }
2304 
2305 /*
2306  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2307  *
2308  * When zone parameter is non-NULL, spill just the single zone's pages.
2309  *
2310  * Note that this code is protected against sending an IPI to an offline
2311  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2312  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2313  * nothing keeps CPUs from showing up after we populated the cpumask and
2314  * before the call to on_each_cpu_mask().
2315  */
2316 void drain_all_pages(struct zone *zone)
2317 {
2318 	int cpu;
2319 
2320 	/*
2321 	 * Allocate in the BSS so we wont require allocation in
2322 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2323 	 */
2324 	static cpumask_t cpus_with_pcps;
2325 
2326 	/*
2327 	 * We don't care about racing with CPU hotplug event
2328 	 * as offline notification will cause the notified
2329 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2330 	 * disables preemption as part of its processing
2331 	 */
2332 	for_each_online_cpu(cpu) {
2333 		struct per_cpu_pageset *pcp;
2334 		struct zone *z;
2335 		bool has_pcps = false;
2336 
2337 		if (zone) {
2338 			pcp = per_cpu_ptr(zone->pageset, cpu);
2339 			if (pcp->pcp.count)
2340 				has_pcps = true;
2341 		} else {
2342 			for_each_populated_zone(z) {
2343 				pcp = per_cpu_ptr(z->pageset, cpu);
2344 				if (pcp->pcp.count) {
2345 					has_pcps = true;
2346 					break;
2347 				}
2348 			}
2349 		}
2350 
2351 		if (has_pcps)
2352 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2353 		else
2354 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2355 	}
2356 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2357 								zone, 1);
2358 }
2359 
2360 #ifdef CONFIG_HIBERNATION
2361 
2362 void mark_free_pages(struct zone *zone)
2363 {
2364 	unsigned long pfn, max_zone_pfn;
2365 	unsigned long flags;
2366 	unsigned int order, t;
2367 	struct page *page;
2368 
2369 	if (zone_is_empty(zone))
2370 		return;
2371 
2372 	spin_lock_irqsave(&zone->lock, flags);
2373 
2374 	max_zone_pfn = zone_end_pfn(zone);
2375 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2376 		if (pfn_valid(pfn)) {
2377 			page = pfn_to_page(pfn);
2378 
2379 			if (page_zone(page) != zone)
2380 				continue;
2381 
2382 			if (!swsusp_page_is_forbidden(page))
2383 				swsusp_unset_page_free(page);
2384 		}
2385 
2386 	for_each_migratetype_order(order, t) {
2387 		list_for_each_entry(page,
2388 				&zone->free_area[order].free_list[t], lru) {
2389 			unsigned long i;
2390 
2391 			pfn = page_to_pfn(page);
2392 			for (i = 0; i < (1UL << order); i++)
2393 				swsusp_set_page_free(pfn_to_page(pfn + i));
2394 		}
2395 	}
2396 	spin_unlock_irqrestore(&zone->lock, flags);
2397 }
2398 #endif /* CONFIG_PM */
2399 
2400 /*
2401  * Free a 0-order page
2402  * cold == true ? free a cold page : free a hot page
2403  */
2404 void free_hot_cold_page(struct page *page, bool cold)
2405 {
2406 	struct zone *zone = page_zone(page);
2407 	struct per_cpu_pages *pcp;
2408 	unsigned long flags;
2409 	unsigned long pfn = page_to_pfn(page);
2410 	int migratetype;
2411 
2412 	if (!free_pcp_prepare(page))
2413 		return;
2414 
2415 	migratetype = get_pfnblock_migratetype(page, pfn);
2416 	set_pcppage_migratetype(page, migratetype);
2417 	local_irq_save(flags);
2418 	__count_vm_event(PGFREE);
2419 
2420 	/*
2421 	 * We only track unmovable, reclaimable and movable on pcp lists.
2422 	 * Free ISOLATE pages back to the allocator because they are being
2423 	 * offlined but treat RESERVE as movable pages so we can get those
2424 	 * areas back if necessary. Otherwise, we may have to free
2425 	 * excessively into the page allocator
2426 	 */
2427 	if (migratetype >= MIGRATE_PCPTYPES) {
2428 		if (unlikely(is_migrate_isolate(migratetype))) {
2429 			free_one_page(zone, page, pfn, 0, migratetype);
2430 			goto out;
2431 		}
2432 		migratetype = MIGRATE_MOVABLE;
2433 	}
2434 
2435 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2436 	if (!cold)
2437 		list_add(&page->lru, &pcp->lists[migratetype]);
2438 	else
2439 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2440 	pcp->count++;
2441 	if (pcp->count >= pcp->high) {
2442 		unsigned long batch = READ_ONCE(pcp->batch);
2443 		free_pcppages_bulk(zone, batch, pcp);
2444 		pcp->count -= batch;
2445 	}
2446 
2447 out:
2448 	local_irq_restore(flags);
2449 }
2450 
2451 /*
2452  * Free a list of 0-order pages
2453  */
2454 void free_hot_cold_page_list(struct list_head *list, bool cold)
2455 {
2456 	struct page *page, *next;
2457 
2458 	list_for_each_entry_safe(page, next, list, lru) {
2459 		trace_mm_page_free_batched(page, cold);
2460 		free_hot_cold_page(page, cold);
2461 	}
2462 }
2463 
2464 /*
2465  * split_page takes a non-compound higher-order page, and splits it into
2466  * n (1<<order) sub-pages: page[0..n]
2467  * Each sub-page must be freed individually.
2468  *
2469  * Note: this is probably too low level an operation for use in drivers.
2470  * Please consult with lkml before using this in your driver.
2471  */
2472 void split_page(struct page *page, unsigned int order)
2473 {
2474 	int i;
2475 
2476 	VM_BUG_ON_PAGE(PageCompound(page), page);
2477 	VM_BUG_ON_PAGE(!page_count(page), page);
2478 
2479 #ifdef CONFIG_KMEMCHECK
2480 	/*
2481 	 * Split shadow pages too, because free(page[0]) would
2482 	 * otherwise free the whole shadow.
2483 	 */
2484 	if (kmemcheck_page_is_tracked(page))
2485 		split_page(virt_to_page(page[0].shadow), order);
2486 #endif
2487 
2488 	for (i = 1; i < (1 << order); i++)
2489 		set_page_refcounted(page + i);
2490 	split_page_owner(page, order);
2491 }
2492 EXPORT_SYMBOL_GPL(split_page);
2493 
2494 int __isolate_free_page(struct page *page, unsigned int order)
2495 {
2496 	unsigned long watermark;
2497 	struct zone *zone;
2498 	int mt;
2499 
2500 	BUG_ON(!PageBuddy(page));
2501 
2502 	zone = page_zone(page);
2503 	mt = get_pageblock_migratetype(page);
2504 
2505 	if (!is_migrate_isolate(mt)) {
2506 		/*
2507 		 * Obey watermarks as if the page was being allocated. We can
2508 		 * emulate a high-order watermark check with a raised order-0
2509 		 * watermark, because we already know our high-order page
2510 		 * exists.
2511 		 */
2512 		watermark = min_wmark_pages(zone) + (1UL << order);
2513 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2514 			return 0;
2515 
2516 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2517 	}
2518 
2519 	/* Remove page from free list */
2520 	list_del(&page->lru);
2521 	zone->free_area[order].nr_free--;
2522 	rmv_page_order(page);
2523 
2524 	/*
2525 	 * Set the pageblock if the isolated page is at least half of a
2526 	 * pageblock
2527 	 */
2528 	if (order >= pageblock_order - 1) {
2529 		struct page *endpage = page + (1 << order) - 1;
2530 		for (; page < endpage; page += pageblock_nr_pages) {
2531 			int mt = get_pageblock_migratetype(page);
2532 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2533 				set_pageblock_migratetype(page,
2534 							  MIGRATE_MOVABLE);
2535 		}
2536 	}
2537 
2538 
2539 	return 1UL << order;
2540 }
2541 
2542 /*
2543  * Update NUMA hit/miss statistics
2544  *
2545  * Must be called with interrupts disabled.
2546  *
2547  * When __GFP_OTHER_NODE is set assume the node of the preferred
2548  * zone is the local node. This is useful for daemons who allocate
2549  * memory on behalf of other processes.
2550  */
2551 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2552 								gfp_t flags)
2553 {
2554 #ifdef CONFIG_NUMA
2555 	int local_nid = numa_node_id();
2556 	enum zone_stat_item local_stat = NUMA_LOCAL;
2557 
2558 	if (unlikely(flags & __GFP_OTHER_NODE)) {
2559 		local_stat = NUMA_OTHER;
2560 		local_nid = preferred_zone->node;
2561 	}
2562 
2563 	if (z->node == local_nid) {
2564 		__inc_zone_state(z, NUMA_HIT);
2565 		__inc_zone_state(z, local_stat);
2566 	} else {
2567 		__inc_zone_state(z, NUMA_MISS);
2568 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2569 	}
2570 #endif
2571 }
2572 
2573 /*
2574  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2575  */
2576 static inline
2577 struct page *buffered_rmqueue(struct zone *preferred_zone,
2578 			struct zone *zone, unsigned int order,
2579 			gfp_t gfp_flags, unsigned int alloc_flags,
2580 			int migratetype)
2581 {
2582 	unsigned long flags;
2583 	struct page *page;
2584 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2585 
2586 	if (likely(order == 0)) {
2587 		struct per_cpu_pages *pcp;
2588 		struct list_head *list;
2589 
2590 		local_irq_save(flags);
2591 		do {
2592 			pcp = &this_cpu_ptr(zone->pageset)->pcp;
2593 			list = &pcp->lists[migratetype];
2594 			if (list_empty(list)) {
2595 				pcp->count += rmqueue_bulk(zone, 0,
2596 						pcp->batch, list,
2597 						migratetype, cold);
2598 				if (unlikely(list_empty(list)))
2599 					goto failed;
2600 			}
2601 
2602 			if (cold)
2603 				page = list_last_entry(list, struct page, lru);
2604 			else
2605 				page = list_first_entry(list, struct page, lru);
2606 
2607 			list_del(&page->lru);
2608 			pcp->count--;
2609 
2610 		} while (check_new_pcp(page));
2611 	} else {
2612 		/*
2613 		 * We most definitely don't want callers attempting to
2614 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2615 		 */
2616 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2617 		spin_lock_irqsave(&zone->lock, flags);
2618 
2619 		do {
2620 			page = NULL;
2621 			if (alloc_flags & ALLOC_HARDER) {
2622 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2623 				if (page)
2624 					trace_mm_page_alloc_zone_locked(page, order, migratetype);
2625 			}
2626 			if (!page)
2627 				page = __rmqueue(zone, order, migratetype);
2628 		} while (page && check_new_pages(page, order));
2629 		spin_unlock(&zone->lock);
2630 		if (!page)
2631 			goto failed;
2632 		__mod_zone_freepage_state(zone, -(1 << order),
2633 					  get_pcppage_migratetype(page));
2634 	}
2635 
2636 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2637 	zone_statistics(preferred_zone, zone, gfp_flags);
2638 	local_irq_restore(flags);
2639 
2640 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2641 	return page;
2642 
2643 failed:
2644 	local_irq_restore(flags);
2645 	return NULL;
2646 }
2647 
2648 #ifdef CONFIG_FAIL_PAGE_ALLOC
2649 
2650 static struct {
2651 	struct fault_attr attr;
2652 
2653 	bool ignore_gfp_highmem;
2654 	bool ignore_gfp_reclaim;
2655 	u32 min_order;
2656 } fail_page_alloc = {
2657 	.attr = FAULT_ATTR_INITIALIZER,
2658 	.ignore_gfp_reclaim = true,
2659 	.ignore_gfp_highmem = true,
2660 	.min_order = 1,
2661 };
2662 
2663 static int __init setup_fail_page_alloc(char *str)
2664 {
2665 	return setup_fault_attr(&fail_page_alloc.attr, str);
2666 }
2667 __setup("fail_page_alloc=", setup_fail_page_alloc);
2668 
2669 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2670 {
2671 	if (order < fail_page_alloc.min_order)
2672 		return false;
2673 	if (gfp_mask & __GFP_NOFAIL)
2674 		return false;
2675 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2676 		return false;
2677 	if (fail_page_alloc.ignore_gfp_reclaim &&
2678 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2679 		return false;
2680 
2681 	return should_fail(&fail_page_alloc.attr, 1 << order);
2682 }
2683 
2684 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2685 
2686 static int __init fail_page_alloc_debugfs(void)
2687 {
2688 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2689 	struct dentry *dir;
2690 
2691 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2692 					&fail_page_alloc.attr);
2693 	if (IS_ERR(dir))
2694 		return PTR_ERR(dir);
2695 
2696 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2697 				&fail_page_alloc.ignore_gfp_reclaim))
2698 		goto fail;
2699 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2700 				&fail_page_alloc.ignore_gfp_highmem))
2701 		goto fail;
2702 	if (!debugfs_create_u32("min-order", mode, dir,
2703 				&fail_page_alloc.min_order))
2704 		goto fail;
2705 
2706 	return 0;
2707 fail:
2708 	debugfs_remove_recursive(dir);
2709 
2710 	return -ENOMEM;
2711 }
2712 
2713 late_initcall(fail_page_alloc_debugfs);
2714 
2715 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2716 
2717 #else /* CONFIG_FAIL_PAGE_ALLOC */
2718 
2719 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2720 {
2721 	return false;
2722 }
2723 
2724 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2725 
2726 /*
2727  * Return true if free base pages are above 'mark'. For high-order checks it
2728  * will return true of the order-0 watermark is reached and there is at least
2729  * one free page of a suitable size. Checking now avoids taking the zone lock
2730  * to check in the allocation paths if no pages are free.
2731  */
2732 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2733 			 int classzone_idx, unsigned int alloc_flags,
2734 			 long free_pages)
2735 {
2736 	long min = mark;
2737 	int o;
2738 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2739 
2740 	/* free_pages may go negative - that's OK */
2741 	free_pages -= (1 << order) - 1;
2742 
2743 	if (alloc_flags & ALLOC_HIGH)
2744 		min -= min / 2;
2745 
2746 	/*
2747 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2748 	 * the high-atomic reserves. This will over-estimate the size of the
2749 	 * atomic reserve but it avoids a search.
2750 	 */
2751 	if (likely(!alloc_harder))
2752 		free_pages -= z->nr_reserved_highatomic;
2753 	else
2754 		min -= min / 4;
2755 
2756 #ifdef CONFIG_CMA
2757 	/* If allocation can't use CMA areas don't use free CMA pages */
2758 	if (!(alloc_flags & ALLOC_CMA))
2759 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2760 #endif
2761 
2762 	/*
2763 	 * Check watermarks for an order-0 allocation request. If these
2764 	 * are not met, then a high-order request also cannot go ahead
2765 	 * even if a suitable page happened to be free.
2766 	 */
2767 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2768 		return false;
2769 
2770 	/* If this is an order-0 request then the watermark is fine */
2771 	if (!order)
2772 		return true;
2773 
2774 	/* For a high-order request, check at least one suitable page is free */
2775 	for (o = order; o < MAX_ORDER; o++) {
2776 		struct free_area *area = &z->free_area[o];
2777 		int mt;
2778 
2779 		if (!area->nr_free)
2780 			continue;
2781 
2782 		if (alloc_harder)
2783 			return true;
2784 
2785 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2786 			if (!list_empty(&area->free_list[mt]))
2787 				return true;
2788 		}
2789 
2790 #ifdef CONFIG_CMA
2791 		if ((alloc_flags & ALLOC_CMA) &&
2792 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2793 			return true;
2794 		}
2795 #endif
2796 	}
2797 	return false;
2798 }
2799 
2800 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2801 		      int classzone_idx, unsigned int alloc_flags)
2802 {
2803 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2804 					zone_page_state(z, NR_FREE_PAGES));
2805 }
2806 
2807 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2808 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2809 {
2810 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2811 	long cma_pages = 0;
2812 
2813 #ifdef CONFIG_CMA
2814 	/* If allocation can't use CMA areas don't use free CMA pages */
2815 	if (!(alloc_flags & ALLOC_CMA))
2816 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2817 #endif
2818 
2819 	/*
2820 	 * Fast check for order-0 only. If this fails then the reserves
2821 	 * need to be calculated. There is a corner case where the check
2822 	 * passes but only the high-order atomic reserve are free. If
2823 	 * the caller is !atomic then it'll uselessly search the free
2824 	 * list. That corner case is then slower but it is harmless.
2825 	 */
2826 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2827 		return true;
2828 
2829 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2830 					free_pages);
2831 }
2832 
2833 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2834 			unsigned long mark, int classzone_idx)
2835 {
2836 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2837 
2838 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2839 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2840 
2841 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2842 								free_pages);
2843 }
2844 
2845 #ifdef CONFIG_NUMA
2846 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2847 {
2848 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2849 				RECLAIM_DISTANCE;
2850 }
2851 #else	/* CONFIG_NUMA */
2852 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2853 {
2854 	return true;
2855 }
2856 #endif	/* CONFIG_NUMA */
2857 
2858 /*
2859  * get_page_from_freelist goes through the zonelist trying to allocate
2860  * a page.
2861  */
2862 static struct page *
2863 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2864 						const struct alloc_context *ac)
2865 {
2866 	struct zoneref *z = ac->preferred_zoneref;
2867 	struct zone *zone;
2868 	struct pglist_data *last_pgdat_dirty_limit = NULL;
2869 
2870 	/*
2871 	 * Scan zonelist, looking for a zone with enough free.
2872 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2873 	 */
2874 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2875 								ac->nodemask) {
2876 		struct page *page;
2877 		unsigned long mark;
2878 
2879 		if (cpusets_enabled() &&
2880 			(alloc_flags & ALLOC_CPUSET) &&
2881 			!__cpuset_zone_allowed(zone, gfp_mask))
2882 				continue;
2883 		/*
2884 		 * When allocating a page cache page for writing, we
2885 		 * want to get it from a node that is within its dirty
2886 		 * limit, such that no single node holds more than its
2887 		 * proportional share of globally allowed dirty pages.
2888 		 * The dirty limits take into account the node's
2889 		 * lowmem reserves and high watermark so that kswapd
2890 		 * should be able to balance it without having to
2891 		 * write pages from its LRU list.
2892 		 *
2893 		 * XXX: For now, allow allocations to potentially
2894 		 * exceed the per-node dirty limit in the slowpath
2895 		 * (spread_dirty_pages unset) before going into reclaim,
2896 		 * which is important when on a NUMA setup the allowed
2897 		 * nodes are together not big enough to reach the
2898 		 * global limit.  The proper fix for these situations
2899 		 * will require awareness of nodes in the
2900 		 * dirty-throttling and the flusher threads.
2901 		 */
2902 		if (ac->spread_dirty_pages) {
2903 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
2904 				continue;
2905 
2906 			if (!node_dirty_ok(zone->zone_pgdat)) {
2907 				last_pgdat_dirty_limit = zone->zone_pgdat;
2908 				continue;
2909 			}
2910 		}
2911 
2912 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2913 		if (!zone_watermark_fast(zone, order, mark,
2914 				       ac_classzone_idx(ac), alloc_flags)) {
2915 			int ret;
2916 
2917 			/* Checked here to keep the fast path fast */
2918 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2919 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2920 				goto try_this_zone;
2921 
2922 			if (node_reclaim_mode == 0 ||
2923 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2924 				continue;
2925 
2926 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2927 			switch (ret) {
2928 			case NODE_RECLAIM_NOSCAN:
2929 				/* did not scan */
2930 				continue;
2931 			case NODE_RECLAIM_FULL:
2932 				/* scanned but unreclaimable */
2933 				continue;
2934 			default:
2935 				/* did we reclaim enough */
2936 				if (zone_watermark_ok(zone, order, mark,
2937 						ac_classzone_idx(ac), alloc_flags))
2938 					goto try_this_zone;
2939 
2940 				continue;
2941 			}
2942 		}
2943 
2944 try_this_zone:
2945 		page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2946 				gfp_mask, alloc_flags, ac->migratetype);
2947 		if (page) {
2948 			prep_new_page(page, order, gfp_mask, alloc_flags);
2949 
2950 			/*
2951 			 * If this is a high-order atomic allocation then check
2952 			 * if the pageblock should be reserved for the future
2953 			 */
2954 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2955 				reserve_highatomic_pageblock(page, zone, order);
2956 
2957 			return page;
2958 		}
2959 	}
2960 
2961 	return NULL;
2962 }
2963 
2964 /*
2965  * Large machines with many possible nodes should not always dump per-node
2966  * meminfo in irq context.
2967  */
2968 static inline bool should_suppress_show_mem(void)
2969 {
2970 	bool ret = false;
2971 
2972 #if NODES_SHIFT > 8
2973 	ret = in_interrupt();
2974 #endif
2975 	return ret;
2976 }
2977 
2978 static DEFINE_RATELIMIT_STATE(nopage_rs,
2979 		DEFAULT_RATELIMIT_INTERVAL,
2980 		DEFAULT_RATELIMIT_BURST);
2981 
2982 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
2983 {
2984 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2985 	struct va_format vaf;
2986 	va_list args;
2987 
2988 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2989 	    debug_guardpage_minorder() > 0)
2990 		return;
2991 
2992 	/*
2993 	 * This documents exceptions given to allocations in certain
2994 	 * contexts that are allowed to allocate outside current's set
2995 	 * of allowed nodes.
2996 	 */
2997 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2998 		if (test_thread_flag(TIF_MEMDIE) ||
2999 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3000 			filter &= ~SHOW_MEM_FILTER_NODES;
3001 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3002 		filter &= ~SHOW_MEM_FILTER_NODES;
3003 
3004 	pr_warn("%s: ", current->comm);
3005 
3006 	va_start(args, fmt);
3007 	vaf.fmt = fmt;
3008 	vaf.va = &args;
3009 	pr_cont("%pV", &vaf);
3010 	va_end(args);
3011 
3012 	pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3013 
3014 	dump_stack();
3015 	if (!should_suppress_show_mem())
3016 		show_mem(filter);
3017 }
3018 
3019 static inline struct page *
3020 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3021 	const struct alloc_context *ac, unsigned long *did_some_progress)
3022 {
3023 	struct oom_control oc = {
3024 		.zonelist = ac->zonelist,
3025 		.nodemask = ac->nodemask,
3026 		.memcg = NULL,
3027 		.gfp_mask = gfp_mask,
3028 		.order = order,
3029 	};
3030 	struct page *page;
3031 
3032 	*did_some_progress = 0;
3033 
3034 	/*
3035 	 * Acquire the oom lock.  If that fails, somebody else is
3036 	 * making progress for us.
3037 	 */
3038 	if (!mutex_trylock(&oom_lock)) {
3039 		*did_some_progress = 1;
3040 		schedule_timeout_uninterruptible(1);
3041 		return NULL;
3042 	}
3043 
3044 	/*
3045 	 * Go through the zonelist yet one more time, keep very high watermark
3046 	 * here, this is only to catch a parallel oom killing, we must fail if
3047 	 * we're still under heavy pressure.
3048 	 */
3049 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3050 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3051 	if (page)
3052 		goto out;
3053 
3054 	if (!(gfp_mask & __GFP_NOFAIL)) {
3055 		/* Coredumps can quickly deplete all memory reserves */
3056 		if (current->flags & PF_DUMPCORE)
3057 			goto out;
3058 		/* The OOM killer will not help higher order allocs */
3059 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3060 			goto out;
3061 		/* The OOM killer does not needlessly kill tasks for lowmem */
3062 		if (ac->high_zoneidx < ZONE_NORMAL)
3063 			goto out;
3064 		if (pm_suspended_storage())
3065 			goto out;
3066 		/*
3067 		 * XXX: GFP_NOFS allocations should rather fail than rely on
3068 		 * other request to make a forward progress.
3069 		 * We are in an unfortunate situation where out_of_memory cannot
3070 		 * do much for this context but let's try it to at least get
3071 		 * access to memory reserved if the current task is killed (see
3072 		 * out_of_memory). Once filesystems are ready to handle allocation
3073 		 * failures more gracefully we should just bail out here.
3074 		 */
3075 
3076 		/* The OOM killer may not free memory on a specific node */
3077 		if (gfp_mask & __GFP_THISNODE)
3078 			goto out;
3079 	}
3080 	/* Exhausted what can be done so it's blamo time */
3081 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3082 		*did_some_progress = 1;
3083 
3084 		if (gfp_mask & __GFP_NOFAIL) {
3085 			page = get_page_from_freelist(gfp_mask, order,
3086 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3087 			/*
3088 			 * fallback to ignore cpuset restriction if our nodes
3089 			 * are depleted
3090 			 */
3091 			if (!page)
3092 				page = get_page_from_freelist(gfp_mask, order,
3093 					ALLOC_NO_WATERMARKS, ac);
3094 		}
3095 	}
3096 out:
3097 	mutex_unlock(&oom_lock);
3098 	return page;
3099 }
3100 
3101 /*
3102  * Maximum number of compaction retries wit a progress before OOM
3103  * killer is consider as the only way to move forward.
3104  */
3105 #define MAX_COMPACT_RETRIES 16
3106 
3107 #ifdef CONFIG_COMPACTION
3108 /* Try memory compaction for high-order allocations before reclaim */
3109 static struct page *
3110 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3111 		unsigned int alloc_flags, const struct alloc_context *ac,
3112 		enum compact_priority prio, enum compact_result *compact_result)
3113 {
3114 	struct page *page;
3115 
3116 	if (!order)
3117 		return NULL;
3118 
3119 	current->flags |= PF_MEMALLOC;
3120 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3121 									prio);
3122 	current->flags &= ~PF_MEMALLOC;
3123 
3124 	if (*compact_result <= COMPACT_INACTIVE)
3125 		return NULL;
3126 
3127 	/*
3128 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3129 	 * count a compaction stall
3130 	 */
3131 	count_vm_event(COMPACTSTALL);
3132 
3133 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3134 
3135 	if (page) {
3136 		struct zone *zone = page_zone(page);
3137 
3138 		zone->compact_blockskip_flush = false;
3139 		compaction_defer_reset(zone, order, true);
3140 		count_vm_event(COMPACTSUCCESS);
3141 		return page;
3142 	}
3143 
3144 	/*
3145 	 * It's bad if compaction run occurs and fails. The most likely reason
3146 	 * is that pages exist, but not enough to satisfy watermarks.
3147 	 */
3148 	count_vm_event(COMPACTFAIL);
3149 
3150 	cond_resched();
3151 
3152 	return NULL;
3153 }
3154 
3155 static inline bool
3156 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3157 		     enum compact_result compact_result,
3158 		     enum compact_priority *compact_priority,
3159 		     int *compaction_retries)
3160 {
3161 	int max_retries = MAX_COMPACT_RETRIES;
3162 	int min_priority;
3163 
3164 	if (!order)
3165 		return false;
3166 
3167 	if (compaction_made_progress(compact_result))
3168 		(*compaction_retries)++;
3169 
3170 	/*
3171 	 * compaction considers all the zone as desperately out of memory
3172 	 * so it doesn't really make much sense to retry except when the
3173 	 * failure could be caused by insufficient priority
3174 	 */
3175 	if (compaction_failed(compact_result))
3176 		goto check_priority;
3177 
3178 	/*
3179 	 * make sure the compaction wasn't deferred or didn't bail out early
3180 	 * due to locks contention before we declare that we should give up.
3181 	 * But do not retry if the given zonelist is not suitable for
3182 	 * compaction.
3183 	 */
3184 	if (compaction_withdrawn(compact_result))
3185 		return compaction_zonelist_suitable(ac, order, alloc_flags);
3186 
3187 	/*
3188 	 * !costly requests are much more important than __GFP_REPEAT
3189 	 * costly ones because they are de facto nofail and invoke OOM
3190 	 * killer to move on while costly can fail and users are ready
3191 	 * to cope with that. 1/4 retries is rather arbitrary but we
3192 	 * would need much more detailed feedback from compaction to
3193 	 * make a better decision.
3194 	 */
3195 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3196 		max_retries /= 4;
3197 	if (*compaction_retries <= max_retries)
3198 		return true;
3199 
3200 	/*
3201 	 * Make sure there are attempts at the highest priority if we exhausted
3202 	 * all retries or failed at the lower priorities.
3203 	 */
3204 check_priority:
3205 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3206 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3207 	if (*compact_priority > min_priority) {
3208 		(*compact_priority)--;
3209 		*compaction_retries = 0;
3210 		return true;
3211 	}
3212 	return false;
3213 }
3214 #else
3215 static inline struct page *
3216 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3217 		unsigned int alloc_flags, const struct alloc_context *ac,
3218 		enum compact_priority prio, enum compact_result *compact_result)
3219 {
3220 	*compact_result = COMPACT_SKIPPED;
3221 	return NULL;
3222 }
3223 
3224 static inline bool
3225 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3226 		     enum compact_result compact_result,
3227 		     enum compact_priority *compact_priority,
3228 		     int *compaction_retries)
3229 {
3230 	struct zone *zone;
3231 	struct zoneref *z;
3232 
3233 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3234 		return false;
3235 
3236 	/*
3237 	 * There are setups with compaction disabled which would prefer to loop
3238 	 * inside the allocator rather than hit the oom killer prematurely.
3239 	 * Let's give them a good hope and keep retrying while the order-0
3240 	 * watermarks are OK.
3241 	 */
3242 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3243 					ac->nodemask) {
3244 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3245 					ac_classzone_idx(ac), alloc_flags))
3246 			return true;
3247 	}
3248 	return false;
3249 }
3250 #endif /* CONFIG_COMPACTION */
3251 
3252 /* Perform direct synchronous page reclaim */
3253 static int
3254 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3255 					const struct alloc_context *ac)
3256 {
3257 	struct reclaim_state reclaim_state;
3258 	int progress;
3259 
3260 	cond_resched();
3261 
3262 	/* We now go into synchronous reclaim */
3263 	cpuset_memory_pressure_bump();
3264 	current->flags |= PF_MEMALLOC;
3265 	lockdep_set_current_reclaim_state(gfp_mask);
3266 	reclaim_state.reclaimed_slab = 0;
3267 	current->reclaim_state = &reclaim_state;
3268 
3269 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3270 								ac->nodemask);
3271 
3272 	current->reclaim_state = NULL;
3273 	lockdep_clear_current_reclaim_state();
3274 	current->flags &= ~PF_MEMALLOC;
3275 
3276 	cond_resched();
3277 
3278 	return progress;
3279 }
3280 
3281 /* The really slow allocator path where we enter direct reclaim */
3282 static inline struct page *
3283 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3284 		unsigned int alloc_flags, const struct alloc_context *ac,
3285 		unsigned long *did_some_progress)
3286 {
3287 	struct page *page = NULL;
3288 	bool drained = false;
3289 
3290 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3291 	if (unlikely(!(*did_some_progress)))
3292 		return NULL;
3293 
3294 retry:
3295 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3296 
3297 	/*
3298 	 * If an allocation failed after direct reclaim, it could be because
3299 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3300 	 * Shrink them them and try again
3301 	 */
3302 	if (!page && !drained) {
3303 		unreserve_highatomic_pageblock(ac);
3304 		drain_all_pages(NULL);
3305 		drained = true;
3306 		goto retry;
3307 	}
3308 
3309 	return page;
3310 }
3311 
3312 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3313 {
3314 	struct zoneref *z;
3315 	struct zone *zone;
3316 	pg_data_t *last_pgdat = NULL;
3317 
3318 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3319 					ac->high_zoneidx, ac->nodemask) {
3320 		if (last_pgdat != zone->zone_pgdat)
3321 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3322 		last_pgdat = zone->zone_pgdat;
3323 	}
3324 }
3325 
3326 static inline unsigned int
3327 gfp_to_alloc_flags(gfp_t gfp_mask)
3328 {
3329 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3330 
3331 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3332 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3333 
3334 	/*
3335 	 * The caller may dip into page reserves a bit more if the caller
3336 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3337 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3338 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3339 	 */
3340 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3341 
3342 	if (gfp_mask & __GFP_ATOMIC) {
3343 		/*
3344 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3345 		 * if it can't schedule.
3346 		 */
3347 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3348 			alloc_flags |= ALLOC_HARDER;
3349 		/*
3350 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3351 		 * comment for __cpuset_node_allowed().
3352 		 */
3353 		alloc_flags &= ~ALLOC_CPUSET;
3354 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3355 		alloc_flags |= ALLOC_HARDER;
3356 
3357 #ifdef CONFIG_CMA
3358 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3359 		alloc_flags |= ALLOC_CMA;
3360 #endif
3361 	return alloc_flags;
3362 }
3363 
3364 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3365 {
3366 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3367 		return false;
3368 
3369 	if (gfp_mask & __GFP_MEMALLOC)
3370 		return true;
3371 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3372 		return true;
3373 	if (!in_interrupt() &&
3374 			((current->flags & PF_MEMALLOC) ||
3375 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3376 		return true;
3377 
3378 	return false;
3379 }
3380 
3381 /*
3382  * Maximum number of reclaim retries without any progress before OOM killer
3383  * is consider as the only way to move forward.
3384  */
3385 #define MAX_RECLAIM_RETRIES 16
3386 
3387 /*
3388  * Checks whether it makes sense to retry the reclaim to make a forward progress
3389  * for the given allocation request.
3390  * The reclaim feedback represented by did_some_progress (any progress during
3391  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3392  * any progress in a row) is considered as well as the reclaimable pages on the
3393  * applicable zone list (with a backoff mechanism which is a function of
3394  * no_progress_loops).
3395  *
3396  * Returns true if a retry is viable or false to enter the oom path.
3397  */
3398 static inline bool
3399 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3400 		     struct alloc_context *ac, int alloc_flags,
3401 		     bool did_some_progress, int *no_progress_loops)
3402 {
3403 	struct zone *zone;
3404 	struct zoneref *z;
3405 
3406 	/*
3407 	 * Costly allocations might have made a progress but this doesn't mean
3408 	 * their order will become available due to high fragmentation so
3409 	 * always increment the no progress counter for them
3410 	 */
3411 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3412 		*no_progress_loops = 0;
3413 	else
3414 		(*no_progress_loops)++;
3415 
3416 	/*
3417 	 * Make sure we converge to OOM if we cannot make any progress
3418 	 * several times in the row.
3419 	 */
3420 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3421 		return false;
3422 
3423 	/*
3424 	 * Keep reclaiming pages while there is a chance this will lead
3425 	 * somewhere.  If none of the target zones can satisfy our allocation
3426 	 * request even if all reclaimable pages are considered then we are
3427 	 * screwed and have to go OOM.
3428 	 */
3429 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3430 					ac->nodemask) {
3431 		unsigned long available;
3432 		unsigned long reclaimable;
3433 
3434 		available = reclaimable = zone_reclaimable_pages(zone);
3435 		available -= DIV_ROUND_UP((*no_progress_loops) * available,
3436 					  MAX_RECLAIM_RETRIES);
3437 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3438 
3439 		/*
3440 		 * Would the allocation succeed if we reclaimed the whole
3441 		 * available?
3442 		 */
3443 		if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3444 				ac_classzone_idx(ac), alloc_flags, available)) {
3445 			/*
3446 			 * If we didn't make any progress and have a lot of
3447 			 * dirty + writeback pages then we should wait for
3448 			 * an IO to complete to slow down the reclaim and
3449 			 * prevent from pre mature OOM
3450 			 */
3451 			if (!did_some_progress) {
3452 				unsigned long write_pending;
3453 
3454 				write_pending = zone_page_state_snapshot(zone,
3455 							NR_ZONE_WRITE_PENDING);
3456 
3457 				if (2 * write_pending > reclaimable) {
3458 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3459 					return true;
3460 				}
3461 			}
3462 
3463 			/*
3464 			 * Memory allocation/reclaim might be called from a WQ
3465 			 * context and the current implementation of the WQ
3466 			 * concurrency control doesn't recognize that
3467 			 * a particular WQ is congested if the worker thread is
3468 			 * looping without ever sleeping. Therefore we have to
3469 			 * do a short sleep here rather than calling
3470 			 * cond_resched().
3471 			 */
3472 			if (current->flags & PF_WQ_WORKER)
3473 				schedule_timeout_uninterruptible(1);
3474 			else
3475 				cond_resched();
3476 
3477 			return true;
3478 		}
3479 	}
3480 
3481 	return false;
3482 }
3483 
3484 static inline struct page *
3485 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3486 						struct alloc_context *ac)
3487 {
3488 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3489 	struct page *page = NULL;
3490 	unsigned int alloc_flags;
3491 	unsigned long did_some_progress;
3492 	enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3493 	enum compact_result compact_result;
3494 	int compaction_retries = 0;
3495 	int no_progress_loops = 0;
3496 	unsigned long alloc_start = jiffies;
3497 	unsigned int stall_timeout = 10 * HZ;
3498 
3499 	/*
3500 	 * In the slowpath, we sanity check order to avoid ever trying to
3501 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3502 	 * be using allocators in order of preference for an area that is
3503 	 * too large.
3504 	 */
3505 	if (order >= MAX_ORDER) {
3506 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3507 		return NULL;
3508 	}
3509 
3510 	/*
3511 	 * We also sanity check to catch abuse of atomic reserves being used by
3512 	 * callers that are not in atomic context.
3513 	 */
3514 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3515 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3516 		gfp_mask &= ~__GFP_ATOMIC;
3517 
3518 	/*
3519 	 * The fast path uses conservative alloc_flags to succeed only until
3520 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3521 	 * alloc_flags precisely. So we do that now.
3522 	 */
3523 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3524 
3525 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3526 		wake_all_kswapds(order, ac);
3527 
3528 	/*
3529 	 * The adjusted alloc_flags might result in immediate success, so try
3530 	 * that first
3531 	 */
3532 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3533 	if (page)
3534 		goto got_pg;
3535 
3536 	/*
3537 	 * For costly allocations, try direct compaction first, as it's likely
3538 	 * that we have enough base pages and don't need to reclaim. Don't try
3539 	 * that for allocations that are allowed to ignore watermarks, as the
3540 	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3541 	 */
3542 	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3543 		!gfp_pfmemalloc_allowed(gfp_mask)) {
3544 		page = __alloc_pages_direct_compact(gfp_mask, order,
3545 						alloc_flags, ac,
3546 						INIT_COMPACT_PRIORITY,
3547 						&compact_result);
3548 		if (page)
3549 			goto got_pg;
3550 
3551 		/*
3552 		 * Checks for costly allocations with __GFP_NORETRY, which
3553 		 * includes THP page fault allocations
3554 		 */
3555 		if (gfp_mask & __GFP_NORETRY) {
3556 			/*
3557 			 * If compaction is deferred for high-order allocations,
3558 			 * it is because sync compaction recently failed. If
3559 			 * this is the case and the caller requested a THP
3560 			 * allocation, we do not want to heavily disrupt the
3561 			 * system, so we fail the allocation instead of entering
3562 			 * direct reclaim.
3563 			 */
3564 			if (compact_result == COMPACT_DEFERRED)
3565 				goto nopage;
3566 
3567 			/*
3568 			 * Looks like reclaim/compaction is worth trying, but
3569 			 * sync compaction could be very expensive, so keep
3570 			 * using async compaction.
3571 			 */
3572 			compact_priority = INIT_COMPACT_PRIORITY;
3573 		}
3574 	}
3575 
3576 retry:
3577 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3578 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3579 		wake_all_kswapds(order, ac);
3580 
3581 	if (gfp_pfmemalloc_allowed(gfp_mask))
3582 		alloc_flags = ALLOC_NO_WATERMARKS;
3583 
3584 	/*
3585 	 * Reset the zonelist iterators if memory policies can be ignored.
3586 	 * These allocations are high priority and system rather than user
3587 	 * orientated.
3588 	 */
3589 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3590 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3591 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3592 					ac->high_zoneidx, ac->nodemask);
3593 	}
3594 
3595 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3596 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3597 	if (page)
3598 		goto got_pg;
3599 
3600 	/* Caller is not willing to reclaim, we can't balance anything */
3601 	if (!can_direct_reclaim) {
3602 		/*
3603 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3604 		 * of any new users that actually allow this type of allocation
3605 		 * to fail.
3606 		 */
3607 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3608 		goto nopage;
3609 	}
3610 
3611 	/* Avoid recursion of direct reclaim */
3612 	if (current->flags & PF_MEMALLOC) {
3613 		/*
3614 		 * __GFP_NOFAIL request from this context is rather bizarre
3615 		 * because we cannot reclaim anything and only can loop waiting
3616 		 * for somebody to do a work for us.
3617 		 */
3618 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3619 			cond_resched();
3620 			goto retry;
3621 		}
3622 		goto nopage;
3623 	}
3624 
3625 	/* Avoid allocations with no watermarks from looping endlessly */
3626 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3627 		goto nopage;
3628 
3629 
3630 	/* Try direct reclaim and then allocating */
3631 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3632 							&did_some_progress);
3633 	if (page)
3634 		goto got_pg;
3635 
3636 	/* Try direct compaction and then allocating */
3637 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3638 					compact_priority, &compact_result);
3639 	if (page)
3640 		goto got_pg;
3641 
3642 	/* Do not loop if specifically requested */
3643 	if (gfp_mask & __GFP_NORETRY)
3644 		goto nopage;
3645 
3646 	/*
3647 	 * Do not retry costly high order allocations unless they are
3648 	 * __GFP_REPEAT
3649 	 */
3650 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3651 		goto nopage;
3652 
3653 	/* Make sure we know about allocations which stall for too long */
3654 	if (time_after(jiffies, alloc_start + stall_timeout)) {
3655 		warn_alloc(gfp_mask,
3656 			"page alloction stalls for %ums, order:%u\n",
3657 			jiffies_to_msecs(jiffies-alloc_start), order);
3658 		stall_timeout += 10 * HZ;
3659 	}
3660 
3661 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3662 				 did_some_progress > 0, &no_progress_loops))
3663 		goto retry;
3664 
3665 	/*
3666 	 * It doesn't make any sense to retry for the compaction if the order-0
3667 	 * reclaim is not able to make any progress because the current
3668 	 * implementation of the compaction depends on the sufficient amount
3669 	 * of free memory (see __compaction_suitable)
3670 	 */
3671 	if (did_some_progress > 0 &&
3672 			should_compact_retry(ac, order, alloc_flags,
3673 				compact_result, &compact_priority,
3674 				&compaction_retries))
3675 		goto retry;
3676 
3677 	/* Reclaim has failed us, start killing things */
3678 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3679 	if (page)
3680 		goto got_pg;
3681 
3682 	/* Retry as long as the OOM killer is making progress */
3683 	if (did_some_progress) {
3684 		no_progress_loops = 0;
3685 		goto retry;
3686 	}
3687 
3688 nopage:
3689 	warn_alloc(gfp_mask,
3690 			"page allocation failure: order:%u", order);
3691 got_pg:
3692 	return page;
3693 }
3694 
3695 /*
3696  * This is the 'heart' of the zoned buddy allocator.
3697  */
3698 struct page *
3699 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3700 			struct zonelist *zonelist, nodemask_t *nodemask)
3701 {
3702 	struct page *page;
3703 	unsigned int cpuset_mems_cookie;
3704 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3705 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3706 	struct alloc_context ac = {
3707 		.high_zoneidx = gfp_zone(gfp_mask),
3708 		.zonelist = zonelist,
3709 		.nodemask = nodemask,
3710 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3711 	};
3712 
3713 	if (cpusets_enabled()) {
3714 		alloc_mask |= __GFP_HARDWALL;
3715 		alloc_flags |= ALLOC_CPUSET;
3716 		if (!ac.nodemask)
3717 			ac.nodemask = &cpuset_current_mems_allowed;
3718 	}
3719 
3720 	gfp_mask &= gfp_allowed_mask;
3721 
3722 	lockdep_trace_alloc(gfp_mask);
3723 
3724 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3725 
3726 	if (should_fail_alloc_page(gfp_mask, order))
3727 		return NULL;
3728 
3729 	/*
3730 	 * Check the zones suitable for the gfp_mask contain at least one
3731 	 * valid zone. It's possible to have an empty zonelist as a result
3732 	 * of __GFP_THISNODE and a memoryless node
3733 	 */
3734 	if (unlikely(!zonelist->_zonerefs->zone))
3735 		return NULL;
3736 
3737 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3738 		alloc_flags |= ALLOC_CMA;
3739 
3740 retry_cpuset:
3741 	cpuset_mems_cookie = read_mems_allowed_begin();
3742 
3743 	/* Dirty zone balancing only done in the fast path */
3744 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3745 
3746 	/*
3747 	 * The preferred zone is used for statistics but crucially it is
3748 	 * also used as the starting point for the zonelist iterator. It
3749 	 * may get reset for allocations that ignore memory policies.
3750 	 */
3751 	ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3752 					ac.high_zoneidx, ac.nodemask);
3753 	if (!ac.preferred_zoneref) {
3754 		page = NULL;
3755 		goto no_zone;
3756 	}
3757 
3758 	/* First allocation attempt */
3759 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3760 	if (likely(page))
3761 		goto out;
3762 
3763 	/*
3764 	 * Runtime PM, block IO and its error handling path can deadlock
3765 	 * because I/O on the device might not complete.
3766 	 */
3767 	alloc_mask = memalloc_noio_flags(gfp_mask);
3768 	ac.spread_dirty_pages = false;
3769 
3770 	/*
3771 	 * Restore the original nodemask if it was potentially replaced with
3772 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3773 	 */
3774 	if (cpusets_enabled())
3775 		ac.nodemask = nodemask;
3776 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3777 
3778 no_zone:
3779 	/*
3780 	 * When updating a task's mems_allowed, it is possible to race with
3781 	 * parallel threads in such a way that an allocation can fail while
3782 	 * the mask is being updated. If a page allocation is about to fail,
3783 	 * check if the cpuset changed during allocation and if so, retry.
3784 	 */
3785 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3786 		alloc_mask = gfp_mask;
3787 		goto retry_cpuset;
3788 	}
3789 
3790 out:
3791 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3792 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3793 		__free_pages(page, order);
3794 		page = NULL;
3795 	}
3796 
3797 	if (kmemcheck_enabled && page)
3798 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3799 
3800 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3801 
3802 	return page;
3803 }
3804 EXPORT_SYMBOL(__alloc_pages_nodemask);
3805 
3806 /*
3807  * Common helper functions.
3808  */
3809 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3810 {
3811 	struct page *page;
3812 
3813 	/*
3814 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3815 	 * a highmem page
3816 	 */
3817 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3818 
3819 	page = alloc_pages(gfp_mask, order);
3820 	if (!page)
3821 		return 0;
3822 	return (unsigned long) page_address(page);
3823 }
3824 EXPORT_SYMBOL(__get_free_pages);
3825 
3826 unsigned long get_zeroed_page(gfp_t gfp_mask)
3827 {
3828 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3829 }
3830 EXPORT_SYMBOL(get_zeroed_page);
3831 
3832 void __free_pages(struct page *page, unsigned int order)
3833 {
3834 	if (put_page_testzero(page)) {
3835 		if (order == 0)
3836 			free_hot_cold_page(page, false);
3837 		else
3838 			__free_pages_ok(page, order);
3839 	}
3840 }
3841 
3842 EXPORT_SYMBOL(__free_pages);
3843 
3844 void free_pages(unsigned long addr, unsigned int order)
3845 {
3846 	if (addr != 0) {
3847 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3848 		__free_pages(virt_to_page((void *)addr), order);
3849 	}
3850 }
3851 
3852 EXPORT_SYMBOL(free_pages);
3853 
3854 /*
3855  * Page Fragment:
3856  *  An arbitrary-length arbitrary-offset area of memory which resides
3857  *  within a 0 or higher order page.  Multiple fragments within that page
3858  *  are individually refcounted, in the page's reference counter.
3859  *
3860  * The page_frag functions below provide a simple allocation framework for
3861  * page fragments.  This is used by the network stack and network device
3862  * drivers to provide a backing region of memory for use as either an
3863  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3864  */
3865 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3866 				       gfp_t gfp_mask)
3867 {
3868 	struct page *page = NULL;
3869 	gfp_t gfp = gfp_mask;
3870 
3871 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3872 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3873 		    __GFP_NOMEMALLOC;
3874 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3875 				PAGE_FRAG_CACHE_MAX_ORDER);
3876 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3877 #endif
3878 	if (unlikely(!page))
3879 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3880 
3881 	nc->va = page ? page_address(page) : NULL;
3882 
3883 	return page;
3884 }
3885 
3886 void *__alloc_page_frag(struct page_frag_cache *nc,
3887 			unsigned int fragsz, gfp_t gfp_mask)
3888 {
3889 	unsigned int size = PAGE_SIZE;
3890 	struct page *page;
3891 	int offset;
3892 
3893 	if (unlikely(!nc->va)) {
3894 refill:
3895 		page = __page_frag_refill(nc, gfp_mask);
3896 		if (!page)
3897 			return NULL;
3898 
3899 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3900 		/* if size can vary use size else just use PAGE_SIZE */
3901 		size = nc->size;
3902 #endif
3903 		/* Even if we own the page, we do not use atomic_set().
3904 		 * This would break get_page_unless_zero() users.
3905 		 */
3906 		page_ref_add(page, size - 1);
3907 
3908 		/* reset page count bias and offset to start of new frag */
3909 		nc->pfmemalloc = page_is_pfmemalloc(page);
3910 		nc->pagecnt_bias = size;
3911 		nc->offset = size;
3912 	}
3913 
3914 	offset = nc->offset - fragsz;
3915 	if (unlikely(offset < 0)) {
3916 		page = virt_to_page(nc->va);
3917 
3918 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3919 			goto refill;
3920 
3921 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3922 		/* if size can vary use size else just use PAGE_SIZE */
3923 		size = nc->size;
3924 #endif
3925 		/* OK, page count is 0, we can safely set it */
3926 		set_page_count(page, size);
3927 
3928 		/* reset page count bias and offset to start of new frag */
3929 		nc->pagecnt_bias = size;
3930 		offset = size - fragsz;
3931 	}
3932 
3933 	nc->pagecnt_bias--;
3934 	nc->offset = offset;
3935 
3936 	return nc->va + offset;
3937 }
3938 EXPORT_SYMBOL(__alloc_page_frag);
3939 
3940 /*
3941  * Frees a page fragment allocated out of either a compound or order 0 page.
3942  */
3943 void __free_page_frag(void *addr)
3944 {
3945 	struct page *page = virt_to_head_page(addr);
3946 
3947 	if (unlikely(put_page_testzero(page)))
3948 		__free_pages_ok(page, compound_order(page));
3949 }
3950 EXPORT_SYMBOL(__free_page_frag);
3951 
3952 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3953 		size_t size)
3954 {
3955 	if (addr) {
3956 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3957 		unsigned long used = addr + PAGE_ALIGN(size);
3958 
3959 		split_page(virt_to_page((void *)addr), order);
3960 		while (used < alloc_end) {
3961 			free_page(used);
3962 			used += PAGE_SIZE;
3963 		}
3964 	}
3965 	return (void *)addr;
3966 }
3967 
3968 /**
3969  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3970  * @size: the number of bytes to allocate
3971  * @gfp_mask: GFP flags for the allocation
3972  *
3973  * This function is similar to alloc_pages(), except that it allocates the
3974  * minimum number of pages to satisfy the request.  alloc_pages() can only
3975  * allocate memory in power-of-two pages.
3976  *
3977  * This function is also limited by MAX_ORDER.
3978  *
3979  * Memory allocated by this function must be released by free_pages_exact().
3980  */
3981 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3982 {
3983 	unsigned int order = get_order(size);
3984 	unsigned long addr;
3985 
3986 	addr = __get_free_pages(gfp_mask, order);
3987 	return make_alloc_exact(addr, order, size);
3988 }
3989 EXPORT_SYMBOL(alloc_pages_exact);
3990 
3991 /**
3992  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3993  *			   pages on a node.
3994  * @nid: the preferred node ID where memory should be allocated
3995  * @size: the number of bytes to allocate
3996  * @gfp_mask: GFP flags for the allocation
3997  *
3998  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3999  * back.
4000  */
4001 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4002 {
4003 	unsigned int order = get_order(size);
4004 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4005 	if (!p)
4006 		return NULL;
4007 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4008 }
4009 
4010 /**
4011  * free_pages_exact - release memory allocated via alloc_pages_exact()
4012  * @virt: the value returned by alloc_pages_exact.
4013  * @size: size of allocation, same value as passed to alloc_pages_exact().
4014  *
4015  * Release the memory allocated by a previous call to alloc_pages_exact.
4016  */
4017 void free_pages_exact(void *virt, size_t size)
4018 {
4019 	unsigned long addr = (unsigned long)virt;
4020 	unsigned long end = addr + PAGE_ALIGN(size);
4021 
4022 	while (addr < end) {
4023 		free_page(addr);
4024 		addr += PAGE_SIZE;
4025 	}
4026 }
4027 EXPORT_SYMBOL(free_pages_exact);
4028 
4029 /**
4030  * nr_free_zone_pages - count number of pages beyond high watermark
4031  * @offset: The zone index of the highest zone
4032  *
4033  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4034  * high watermark within all zones at or below a given zone index.  For each
4035  * zone, the number of pages is calculated as:
4036  *     managed_pages - high_pages
4037  */
4038 static unsigned long nr_free_zone_pages(int offset)
4039 {
4040 	struct zoneref *z;
4041 	struct zone *zone;
4042 
4043 	/* Just pick one node, since fallback list is circular */
4044 	unsigned long sum = 0;
4045 
4046 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4047 
4048 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4049 		unsigned long size = zone->managed_pages;
4050 		unsigned long high = high_wmark_pages(zone);
4051 		if (size > high)
4052 			sum += size - high;
4053 	}
4054 
4055 	return sum;
4056 }
4057 
4058 /**
4059  * nr_free_buffer_pages - count number of pages beyond high watermark
4060  *
4061  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4062  * watermark within ZONE_DMA and ZONE_NORMAL.
4063  */
4064 unsigned long nr_free_buffer_pages(void)
4065 {
4066 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4067 }
4068 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4069 
4070 /**
4071  * nr_free_pagecache_pages - count number of pages beyond high watermark
4072  *
4073  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4074  * high watermark within all zones.
4075  */
4076 unsigned long nr_free_pagecache_pages(void)
4077 {
4078 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4079 }
4080 
4081 static inline void show_node(struct zone *zone)
4082 {
4083 	if (IS_ENABLED(CONFIG_NUMA))
4084 		printk("Node %d ", zone_to_nid(zone));
4085 }
4086 
4087 long si_mem_available(void)
4088 {
4089 	long available;
4090 	unsigned long pagecache;
4091 	unsigned long wmark_low = 0;
4092 	unsigned long pages[NR_LRU_LISTS];
4093 	struct zone *zone;
4094 	int lru;
4095 
4096 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4097 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4098 
4099 	for_each_zone(zone)
4100 		wmark_low += zone->watermark[WMARK_LOW];
4101 
4102 	/*
4103 	 * Estimate the amount of memory available for userspace allocations,
4104 	 * without causing swapping.
4105 	 */
4106 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4107 
4108 	/*
4109 	 * Not all the page cache can be freed, otherwise the system will
4110 	 * start swapping. Assume at least half of the page cache, or the
4111 	 * low watermark worth of cache, needs to stay.
4112 	 */
4113 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4114 	pagecache -= min(pagecache / 2, wmark_low);
4115 	available += pagecache;
4116 
4117 	/*
4118 	 * Part of the reclaimable slab consists of items that are in use,
4119 	 * and cannot be freed. Cap this estimate at the low watermark.
4120 	 */
4121 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4122 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4123 
4124 	if (available < 0)
4125 		available = 0;
4126 	return available;
4127 }
4128 EXPORT_SYMBOL_GPL(si_mem_available);
4129 
4130 void si_meminfo(struct sysinfo *val)
4131 {
4132 	val->totalram = totalram_pages;
4133 	val->sharedram = global_node_page_state(NR_SHMEM);
4134 	val->freeram = global_page_state(NR_FREE_PAGES);
4135 	val->bufferram = nr_blockdev_pages();
4136 	val->totalhigh = totalhigh_pages;
4137 	val->freehigh = nr_free_highpages();
4138 	val->mem_unit = PAGE_SIZE;
4139 }
4140 
4141 EXPORT_SYMBOL(si_meminfo);
4142 
4143 #ifdef CONFIG_NUMA
4144 void si_meminfo_node(struct sysinfo *val, int nid)
4145 {
4146 	int zone_type;		/* needs to be signed */
4147 	unsigned long managed_pages = 0;
4148 	unsigned long managed_highpages = 0;
4149 	unsigned long free_highpages = 0;
4150 	pg_data_t *pgdat = NODE_DATA(nid);
4151 
4152 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4153 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4154 	val->totalram = managed_pages;
4155 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4156 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4157 #ifdef CONFIG_HIGHMEM
4158 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4159 		struct zone *zone = &pgdat->node_zones[zone_type];
4160 
4161 		if (is_highmem(zone)) {
4162 			managed_highpages += zone->managed_pages;
4163 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4164 		}
4165 	}
4166 	val->totalhigh = managed_highpages;
4167 	val->freehigh = free_highpages;
4168 #else
4169 	val->totalhigh = managed_highpages;
4170 	val->freehigh = free_highpages;
4171 #endif
4172 	val->mem_unit = PAGE_SIZE;
4173 }
4174 #endif
4175 
4176 /*
4177  * Determine whether the node should be displayed or not, depending on whether
4178  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4179  */
4180 bool skip_free_areas_node(unsigned int flags, int nid)
4181 {
4182 	bool ret = false;
4183 	unsigned int cpuset_mems_cookie;
4184 
4185 	if (!(flags & SHOW_MEM_FILTER_NODES))
4186 		goto out;
4187 
4188 	do {
4189 		cpuset_mems_cookie = read_mems_allowed_begin();
4190 		ret = !node_isset(nid, cpuset_current_mems_allowed);
4191 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
4192 out:
4193 	return ret;
4194 }
4195 
4196 #define K(x) ((x) << (PAGE_SHIFT-10))
4197 
4198 static void show_migration_types(unsigned char type)
4199 {
4200 	static const char types[MIGRATE_TYPES] = {
4201 		[MIGRATE_UNMOVABLE]	= 'U',
4202 		[MIGRATE_MOVABLE]	= 'M',
4203 		[MIGRATE_RECLAIMABLE]	= 'E',
4204 		[MIGRATE_HIGHATOMIC]	= 'H',
4205 #ifdef CONFIG_CMA
4206 		[MIGRATE_CMA]		= 'C',
4207 #endif
4208 #ifdef CONFIG_MEMORY_ISOLATION
4209 		[MIGRATE_ISOLATE]	= 'I',
4210 #endif
4211 	};
4212 	char tmp[MIGRATE_TYPES + 1];
4213 	char *p = tmp;
4214 	int i;
4215 
4216 	for (i = 0; i < MIGRATE_TYPES; i++) {
4217 		if (type & (1 << i))
4218 			*p++ = types[i];
4219 	}
4220 
4221 	*p = '\0';
4222 	printk("(%s) ", tmp);
4223 }
4224 
4225 /*
4226  * Show free area list (used inside shift_scroll-lock stuff)
4227  * We also calculate the percentage fragmentation. We do this by counting the
4228  * memory on each free list with the exception of the first item on the list.
4229  *
4230  * Bits in @filter:
4231  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4232  *   cpuset.
4233  */
4234 void show_free_areas(unsigned int filter)
4235 {
4236 	unsigned long free_pcp = 0;
4237 	int cpu;
4238 	struct zone *zone;
4239 	pg_data_t *pgdat;
4240 
4241 	for_each_populated_zone(zone) {
4242 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4243 			continue;
4244 
4245 		for_each_online_cpu(cpu)
4246 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4247 	}
4248 
4249 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4250 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4251 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4252 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4253 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4254 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4255 		global_node_page_state(NR_ACTIVE_ANON),
4256 		global_node_page_state(NR_INACTIVE_ANON),
4257 		global_node_page_state(NR_ISOLATED_ANON),
4258 		global_node_page_state(NR_ACTIVE_FILE),
4259 		global_node_page_state(NR_INACTIVE_FILE),
4260 		global_node_page_state(NR_ISOLATED_FILE),
4261 		global_node_page_state(NR_UNEVICTABLE),
4262 		global_node_page_state(NR_FILE_DIRTY),
4263 		global_node_page_state(NR_WRITEBACK),
4264 		global_node_page_state(NR_UNSTABLE_NFS),
4265 		global_page_state(NR_SLAB_RECLAIMABLE),
4266 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4267 		global_node_page_state(NR_FILE_MAPPED),
4268 		global_node_page_state(NR_SHMEM),
4269 		global_page_state(NR_PAGETABLE),
4270 		global_page_state(NR_BOUNCE),
4271 		global_page_state(NR_FREE_PAGES),
4272 		free_pcp,
4273 		global_page_state(NR_FREE_CMA_PAGES));
4274 
4275 	for_each_online_pgdat(pgdat) {
4276 		printk("Node %d"
4277 			" active_anon:%lukB"
4278 			" inactive_anon:%lukB"
4279 			" active_file:%lukB"
4280 			" inactive_file:%lukB"
4281 			" unevictable:%lukB"
4282 			" isolated(anon):%lukB"
4283 			" isolated(file):%lukB"
4284 			" mapped:%lukB"
4285 			" dirty:%lukB"
4286 			" writeback:%lukB"
4287 			" shmem:%lukB"
4288 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4289 			" shmem_thp: %lukB"
4290 			" shmem_pmdmapped: %lukB"
4291 			" anon_thp: %lukB"
4292 #endif
4293 			" writeback_tmp:%lukB"
4294 			" unstable:%lukB"
4295 			" pages_scanned:%lu"
4296 			" all_unreclaimable? %s"
4297 			"\n",
4298 			pgdat->node_id,
4299 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4300 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4301 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4302 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4303 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4304 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4305 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4306 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4307 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4308 			K(node_page_state(pgdat, NR_WRITEBACK)),
4309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4310 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4311 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4312 					* HPAGE_PMD_NR),
4313 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4314 #endif
4315 			K(node_page_state(pgdat, NR_SHMEM)),
4316 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4317 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4318 			node_page_state(pgdat, NR_PAGES_SCANNED),
4319 			!pgdat_reclaimable(pgdat) ? "yes" : "no");
4320 	}
4321 
4322 	for_each_populated_zone(zone) {
4323 		int i;
4324 
4325 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4326 			continue;
4327 
4328 		free_pcp = 0;
4329 		for_each_online_cpu(cpu)
4330 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4331 
4332 		show_node(zone);
4333 		printk("%s"
4334 			" free:%lukB"
4335 			" min:%lukB"
4336 			" low:%lukB"
4337 			" high:%lukB"
4338 			" active_anon:%lukB"
4339 			" inactive_anon:%lukB"
4340 			" active_file:%lukB"
4341 			" inactive_file:%lukB"
4342 			" unevictable:%lukB"
4343 			" writepending:%lukB"
4344 			" present:%lukB"
4345 			" managed:%lukB"
4346 			" mlocked:%lukB"
4347 			" slab_reclaimable:%lukB"
4348 			" slab_unreclaimable:%lukB"
4349 			" kernel_stack:%lukB"
4350 			" pagetables:%lukB"
4351 			" bounce:%lukB"
4352 			" free_pcp:%lukB"
4353 			" local_pcp:%ukB"
4354 			" free_cma:%lukB"
4355 			"\n",
4356 			zone->name,
4357 			K(zone_page_state(zone, NR_FREE_PAGES)),
4358 			K(min_wmark_pages(zone)),
4359 			K(low_wmark_pages(zone)),
4360 			K(high_wmark_pages(zone)),
4361 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4362 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4363 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4364 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4365 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4366 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4367 			K(zone->present_pages),
4368 			K(zone->managed_pages),
4369 			K(zone_page_state(zone, NR_MLOCK)),
4370 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4371 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4372 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4373 			K(zone_page_state(zone, NR_PAGETABLE)),
4374 			K(zone_page_state(zone, NR_BOUNCE)),
4375 			K(free_pcp),
4376 			K(this_cpu_read(zone->pageset->pcp.count)),
4377 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4378 		printk("lowmem_reserve[]:");
4379 		for (i = 0; i < MAX_NR_ZONES; i++)
4380 			printk(" %ld", zone->lowmem_reserve[i]);
4381 		printk("\n");
4382 	}
4383 
4384 	for_each_populated_zone(zone) {
4385 		unsigned int order;
4386 		unsigned long nr[MAX_ORDER], flags, total = 0;
4387 		unsigned char types[MAX_ORDER];
4388 
4389 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4390 			continue;
4391 		show_node(zone);
4392 		printk("%s: ", zone->name);
4393 
4394 		spin_lock_irqsave(&zone->lock, flags);
4395 		for (order = 0; order < MAX_ORDER; order++) {
4396 			struct free_area *area = &zone->free_area[order];
4397 			int type;
4398 
4399 			nr[order] = area->nr_free;
4400 			total += nr[order] << order;
4401 
4402 			types[order] = 0;
4403 			for (type = 0; type < MIGRATE_TYPES; type++) {
4404 				if (!list_empty(&area->free_list[type]))
4405 					types[order] |= 1 << type;
4406 			}
4407 		}
4408 		spin_unlock_irqrestore(&zone->lock, flags);
4409 		for (order = 0; order < MAX_ORDER; order++) {
4410 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
4411 			if (nr[order])
4412 				show_migration_types(types[order]);
4413 		}
4414 		printk("= %lukB\n", K(total));
4415 	}
4416 
4417 	hugetlb_show_meminfo();
4418 
4419 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4420 
4421 	show_swap_cache_info();
4422 }
4423 
4424 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4425 {
4426 	zoneref->zone = zone;
4427 	zoneref->zone_idx = zone_idx(zone);
4428 }
4429 
4430 /*
4431  * Builds allocation fallback zone lists.
4432  *
4433  * Add all populated zones of a node to the zonelist.
4434  */
4435 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4436 				int nr_zones)
4437 {
4438 	struct zone *zone;
4439 	enum zone_type zone_type = MAX_NR_ZONES;
4440 
4441 	do {
4442 		zone_type--;
4443 		zone = pgdat->node_zones + zone_type;
4444 		if (managed_zone(zone)) {
4445 			zoneref_set_zone(zone,
4446 				&zonelist->_zonerefs[nr_zones++]);
4447 			check_highest_zone(zone_type);
4448 		}
4449 	} while (zone_type);
4450 
4451 	return nr_zones;
4452 }
4453 
4454 
4455 /*
4456  *  zonelist_order:
4457  *  0 = automatic detection of better ordering.
4458  *  1 = order by ([node] distance, -zonetype)
4459  *  2 = order by (-zonetype, [node] distance)
4460  *
4461  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4462  *  the same zonelist. So only NUMA can configure this param.
4463  */
4464 #define ZONELIST_ORDER_DEFAULT  0
4465 #define ZONELIST_ORDER_NODE     1
4466 #define ZONELIST_ORDER_ZONE     2
4467 
4468 /* zonelist order in the kernel.
4469  * set_zonelist_order() will set this to NODE or ZONE.
4470  */
4471 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4472 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4473 
4474 
4475 #ifdef CONFIG_NUMA
4476 /* The value user specified ....changed by config */
4477 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4478 /* string for sysctl */
4479 #define NUMA_ZONELIST_ORDER_LEN	16
4480 char numa_zonelist_order[16] = "default";
4481 
4482 /*
4483  * interface for configure zonelist ordering.
4484  * command line option "numa_zonelist_order"
4485  *	= "[dD]efault	- default, automatic configuration.
4486  *	= "[nN]ode 	- order by node locality, then by zone within node
4487  *	= "[zZ]one      - order by zone, then by locality within zone
4488  */
4489 
4490 static int __parse_numa_zonelist_order(char *s)
4491 {
4492 	if (*s == 'd' || *s == 'D') {
4493 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4494 	} else if (*s == 'n' || *s == 'N') {
4495 		user_zonelist_order = ZONELIST_ORDER_NODE;
4496 	} else if (*s == 'z' || *s == 'Z') {
4497 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4498 	} else {
4499 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4500 		return -EINVAL;
4501 	}
4502 	return 0;
4503 }
4504 
4505 static __init int setup_numa_zonelist_order(char *s)
4506 {
4507 	int ret;
4508 
4509 	if (!s)
4510 		return 0;
4511 
4512 	ret = __parse_numa_zonelist_order(s);
4513 	if (ret == 0)
4514 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4515 
4516 	return ret;
4517 }
4518 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4519 
4520 /*
4521  * sysctl handler for numa_zonelist_order
4522  */
4523 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4524 		void __user *buffer, size_t *length,
4525 		loff_t *ppos)
4526 {
4527 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4528 	int ret;
4529 	static DEFINE_MUTEX(zl_order_mutex);
4530 
4531 	mutex_lock(&zl_order_mutex);
4532 	if (write) {
4533 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4534 			ret = -EINVAL;
4535 			goto out;
4536 		}
4537 		strcpy(saved_string, (char *)table->data);
4538 	}
4539 	ret = proc_dostring(table, write, buffer, length, ppos);
4540 	if (ret)
4541 		goto out;
4542 	if (write) {
4543 		int oldval = user_zonelist_order;
4544 
4545 		ret = __parse_numa_zonelist_order((char *)table->data);
4546 		if (ret) {
4547 			/*
4548 			 * bogus value.  restore saved string
4549 			 */
4550 			strncpy((char *)table->data, saved_string,
4551 				NUMA_ZONELIST_ORDER_LEN);
4552 			user_zonelist_order = oldval;
4553 		} else if (oldval != user_zonelist_order) {
4554 			mutex_lock(&zonelists_mutex);
4555 			build_all_zonelists(NULL, NULL);
4556 			mutex_unlock(&zonelists_mutex);
4557 		}
4558 	}
4559 out:
4560 	mutex_unlock(&zl_order_mutex);
4561 	return ret;
4562 }
4563 
4564 
4565 #define MAX_NODE_LOAD (nr_online_nodes)
4566 static int node_load[MAX_NUMNODES];
4567 
4568 /**
4569  * find_next_best_node - find the next node that should appear in a given node's fallback list
4570  * @node: node whose fallback list we're appending
4571  * @used_node_mask: nodemask_t of already used nodes
4572  *
4573  * We use a number of factors to determine which is the next node that should
4574  * appear on a given node's fallback list.  The node should not have appeared
4575  * already in @node's fallback list, and it should be the next closest node
4576  * according to the distance array (which contains arbitrary distance values
4577  * from each node to each node in the system), and should also prefer nodes
4578  * with no CPUs, since presumably they'll have very little allocation pressure
4579  * on them otherwise.
4580  * It returns -1 if no node is found.
4581  */
4582 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4583 {
4584 	int n, val;
4585 	int min_val = INT_MAX;
4586 	int best_node = NUMA_NO_NODE;
4587 	const struct cpumask *tmp = cpumask_of_node(0);
4588 
4589 	/* Use the local node if we haven't already */
4590 	if (!node_isset(node, *used_node_mask)) {
4591 		node_set(node, *used_node_mask);
4592 		return node;
4593 	}
4594 
4595 	for_each_node_state(n, N_MEMORY) {
4596 
4597 		/* Don't want a node to appear more than once */
4598 		if (node_isset(n, *used_node_mask))
4599 			continue;
4600 
4601 		/* Use the distance array to find the distance */
4602 		val = node_distance(node, n);
4603 
4604 		/* Penalize nodes under us ("prefer the next node") */
4605 		val += (n < node);
4606 
4607 		/* Give preference to headless and unused nodes */
4608 		tmp = cpumask_of_node(n);
4609 		if (!cpumask_empty(tmp))
4610 			val += PENALTY_FOR_NODE_WITH_CPUS;
4611 
4612 		/* Slight preference for less loaded node */
4613 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4614 		val += node_load[n];
4615 
4616 		if (val < min_val) {
4617 			min_val = val;
4618 			best_node = n;
4619 		}
4620 	}
4621 
4622 	if (best_node >= 0)
4623 		node_set(best_node, *used_node_mask);
4624 
4625 	return best_node;
4626 }
4627 
4628 
4629 /*
4630  * Build zonelists ordered by node and zones within node.
4631  * This results in maximum locality--normal zone overflows into local
4632  * DMA zone, if any--but risks exhausting DMA zone.
4633  */
4634 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4635 {
4636 	int j;
4637 	struct zonelist *zonelist;
4638 
4639 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4640 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4641 		;
4642 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4643 	zonelist->_zonerefs[j].zone = NULL;
4644 	zonelist->_zonerefs[j].zone_idx = 0;
4645 }
4646 
4647 /*
4648  * Build gfp_thisnode zonelists
4649  */
4650 static void build_thisnode_zonelists(pg_data_t *pgdat)
4651 {
4652 	int j;
4653 	struct zonelist *zonelist;
4654 
4655 	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4656 	j = build_zonelists_node(pgdat, zonelist, 0);
4657 	zonelist->_zonerefs[j].zone = NULL;
4658 	zonelist->_zonerefs[j].zone_idx = 0;
4659 }
4660 
4661 /*
4662  * Build zonelists ordered by zone and nodes within zones.
4663  * This results in conserving DMA zone[s] until all Normal memory is
4664  * exhausted, but results in overflowing to remote node while memory
4665  * may still exist in local DMA zone.
4666  */
4667 static int node_order[MAX_NUMNODES];
4668 
4669 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4670 {
4671 	int pos, j, node;
4672 	int zone_type;		/* needs to be signed */
4673 	struct zone *z;
4674 	struct zonelist *zonelist;
4675 
4676 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4677 	pos = 0;
4678 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4679 		for (j = 0; j < nr_nodes; j++) {
4680 			node = node_order[j];
4681 			z = &NODE_DATA(node)->node_zones[zone_type];
4682 			if (managed_zone(z)) {
4683 				zoneref_set_zone(z,
4684 					&zonelist->_zonerefs[pos++]);
4685 				check_highest_zone(zone_type);
4686 			}
4687 		}
4688 	}
4689 	zonelist->_zonerefs[pos].zone = NULL;
4690 	zonelist->_zonerefs[pos].zone_idx = 0;
4691 }
4692 
4693 #if defined(CONFIG_64BIT)
4694 /*
4695  * Devices that require DMA32/DMA are relatively rare and do not justify a
4696  * penalty to every machine in case the specialised case applies. Default
4697  * to Node-ordering on 64-bit NUMA machines
4698  */
4699 static int default_zonelist_order(void)
4700 {
4701 	return ZONELIST_ORDER_NODE;
4702 }
4703 #else
4704 /*
4705  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4706  * by the kernel. If processes running on node 0 deplete the low memory zone
4707  * then reclaim will occur more frequency increasing stalls and potentially
4708  * be easier to OOM if a large percentage of the zone is under writeback or
4709  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4710  * Hence, default to zone ordering on 32-bit.
4711  */
4712 static int default_zonelist_order(void)
4713 {
4714 	return ZONELIST_ORDER_ZONE;
4715 }
4716 #endif /* CONFIG_64BIT */
4717 
4718 static void set_zonelist_order(void)
4719 {
4720 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4721 		current_zonelist_order = default_zonelist_order();
4722 	else
4723 		current_zonelist_order = user_zonelist_order;
4724 }
4725 
4726 static void build_zonelists(pg_data_t *pgdat)
4727 {
4728 	int i, node, load;
4729 	nodemask_t used_mask;
4730 	int local_node, prev_node;
4731 	struct zonelist *zonelist;
4732 	unsigned int order = current_zonelist_order;
4733 
4734 	/* initialize zonelists */
4735 	for (i = 0; i < MAX_ZONELISTS; i++) {
4736 		zonelist = pgdat->node_zonelists + i;
4737 		zonelist->_zonerefs[0].zone = NULL;
4738 		zonelist->_zonerefs[0].zone_idx = 0;
4739 	}
4740 
4741 	/* NUMA-aware ordering of nodes */
4742 	local_node = pgdat->node_id;
4743 	load = nr_online_nodes;
4744 	prev_node = local_node;
4745 	nodes_clear(used_mask);
4746 
4747 	memset(node_order, 0, sizeof(node_order));
4748 	i = 0;
4749 
4750 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4751 		/*
4752 		 * We don't want to pressure a particular node.
4753 		 * So adding penalty to the first node in same
4754 		 * distance group to make it round-robin.
4755 		 */
4756 		if (node_distance(local_node, node) !=
4757 		    node_distance(local_node, prev_node))
4758 			node_load[node] = load;
4759 
4760 		prev_node = node;
4761 		load--;
4762 		if (order == ZONELIST_ORDER_NODE)
4763 			build_zonelists_in_node_order(pgdat, node);
4764 		else
4765 			node_order[i++] = node;	/* remember order */
4766 	}
4767 
4768 	if (order == ZONELIST_ORDER_ZONE) {
4769 		/* calculate node order -- i.e., DMA last! */
4770 		build_zonelists_in_zone_order(pgdat, i);
4771 	}
4772 
4773 	build_thisnode_zonelists(pgdat);
4774 }
4775 
4776 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4777 /*
4778  * Return node id of node used for "local" allocations.
4779  * I.e., first node id of first zone in arg node's generic zonelist.
4780  * Used for initializing percpu 'numa_mem', which is used primarily
4781  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4782  */
4783 int local_memory_node(int node)
4784 {
4785 	struct zoneref *z;
4786 
4787 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4788 				   gfp_zone(GFP_KERNEL),
4789 				   NULL);
4790 	return z->zone->node;
4791 }
4792 #endif
4793 
4794 static void setup_min_unmapped_ratio(void);
4795 static void setup_min_slab_ratio(void);
4796 #else	/* CONFIG_NUMA */
4797 
4798 static void set_zonelist_order(void)
4799 {
4800 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4801 }
4802 
4803 static void build_zonelists(pg_data_t *pgdat)
4804 {
4805 	int node, local_node;
4806 	enum zone_type j;
4807 	struct zonelist *zonelist;
4808 
4809 	local_node = pgdat->node_id;
4810 
4811 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4812 	j = build_zonelists_node(pgdat, zonelist, 0);
4813 
4814 	/*
4815 	 * Now we build the zonelist so that it contains the zones
4816 	 * of all the other nodes.
4817 	 * We don't want to pressure a particular node, so when
4818 	 * building the zones for node N, we make sure that the
4819 	 * zones coming right after the local ones are those from
4820 	 * node N+1 (modulo N)
4821 	 */
4822 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4823 		if (!node_online(node))
4824 			continue;
4825 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4826 	}
4827 	for (node = 0; node < local_node; node++) {
4828 		if (!node_online(node))
4829 			continue;
4830 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4831 	}
4832 
4833 	zonelist->_zonerefs[j].zone = NULL;
4834 	zonelist->_zonerefs[j].zone_idx = 0;
4835 }
4836 
4837 #endif	/* CONFIG_NUMA */
4838 
4839 /*
4840  * Boot pageset table. One per cpu which is going to be used for all
4841  * zones and all nodes. The parameters will be set in such a way
4842  * that an item put on a list will immediately be handed over to
4843  * the buddy list. This is safe since pageset manipulation is done
4844  * with interrupts disabled.
4845  *
4846  * The boot_pagesets must be kept even after bootup is complete for
4847  * unused processors and/or zones. They do play a role for bootstrapping
4848  * hotplugged processors.
4849  *
4850  * zoneinfo_show() and maybe other functions do
4851  * not check if the processor is online before following the pageset pointer.
4852  * Other parts of the kernel may not check if the zone is available.
4853  */
4854 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4855 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4856 static void setup_zone_pageset(struct zone *zone);
4857 
4858 /*
4859  * Global mutex to protect against size modification of zonelists
4860  * as well as to serialize pageset setup for the new populated zone.
4861  */
4862 DEFINE_MUTEX(zonelists_mutex);
4863 
4864 /* return values int ....just for stop_machine() */
4865 static int __build_all_zonelists(void *data)
4866 {
4867 	int nid;
4868 	int cpu;
4869 	pg_data_t *self = data;
4870 
4871 #ifdef CONFIG_NUMA
4872 	memset(node_load, 0, sizeof(node_load));
4873 #endif
4874 
4875 	if (self && !node_online(self->node_id)) {
4876 		build_zonelists(self);
4877 	}
4878 
4879 	for_each_online_node(nid) {
4880 		pg_data_t *pgdat = NODE_DATA(nid);
4881 
4882 		build_zonelists(pgdat);
4883 	}
4884 
4885 	/*
4886 	 * Initialize the boot_pagesets that are going to be used
4887 	 * for bootstrapping processors. The real pagesets for
4888 	 * each zone will be allocated later when the per cpu
4889 	 * allocator is available.
4890 	 *
4891 	 * boot_pagesets are used also for bootstrapping offline
4892 	 * cpus if the system is already booted because the pagesets
4893 	 * are needed to initialize allocators on a specific cpu too.
4894 	 * F.e. the percpu allocator needs the page allocator which
4895 	 * needs the percpu allocator in order to allocate its pagesets
4896 	 * (a chicken-egg dilemma).
4897 	 */
4898 	for_each_possible_cpu(cpu) {
4899 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4900 
4901 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4902 		/*
4903 		 * We now know the "local memory node" for each node--
4904 		 * i.e., the node of the first zone in the generic zonelist.
4905 		 * Set up numa_mem percpu variable for on-line cpus.  During
4906 		 * boot, only the boot cpu should be on-line;  we'll init the
4907 		 * secondary cpus' numa_mem as they come on-line.  During
4908 		 * node/memory hotplug, we'll fixup all on-line cpus.
4909 		 */
4910 		if (cpu_online(cpu))
4911 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4912 #endif
4913 	}
4914 
4915 	return 0;
4916 }
4917 
4918 static noinline void __init
4919 build_all_zonelists_init(void)
4920 {
4921 	__build_all_zonelists(NULL);
4922 	mminit_verify_zonelist();
4923 	cpuset_init_current_mems_allowed();
4924 }
4925 
4926 /*
4927  * Called with zonelists_mutex held always
4928  * unless system_state == SYSTEM_BOOTING.
4929  *
4930  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4931  * [we're only called with non-NULL zone through __meminit paths] and
4932  * (2) call of __init annotated helper build_all_zonelists_init
4933  * [protected by SYSTEM_BOOTING].
4934  */
4935 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4936 {
4937 	set_zonelist_order();
4938 
4939 	if (system_state == SYSTEM_BOOTING) {
4940 		build_all_zonelists_init();
4941 	} else {
4942 #ifdef CONFIG_MEMORY_HOTPLUG
4943 		if (zone)
4944 			setup_zone_pageset(zone);
4945 #endif
4946 		/* we have to stop all cpus to guarantee there is no user
4947 		   of zonelist */
4948 		stop_machine(__build_all_zonelists, pgdat, NULL);
4949 		/* cpuset refresh routine should be here */
4950 	}
4951 	vm_total_pages = nr_free_pagecache_pages();
4952 	/*
4953 	 * Disable grouping by mobility if the number of pages in the
4954 	 * system is too low to allow the mechanism to work. It would be
4955 	 * more accurate, but expensive to check per-zone. This check is
4956 	 * made on memory-hotadd so a system can start with mobility
4957 	 * disabled and enable it later
4958 	 */
4959 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4960 		page_group_by_mobility_disabled = 1;
4961 	else
4962 		page_group_by_mobility_disabled = 0;
4963 
4964 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
4965 		nr_online_nodes,
4966 		zonelist_order_name[current_zonelist_order],
4967 		page_group_by_mobility_disabled ? "off" : "on",
4968 		vm_total_pages);
4969 #ifdef CONFIG_NUMA
4970 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4971 #endif
4972 }
4973 
4974 /*
4975  * Helper functions to size the waitqueue hash table.
4976  * Essentially these want to choose hash table sizes sufficiently
4977  * large so that collisions trying to wait on pages are rare.
4978  * But in fact, the number of active page waitqueues on typical
4979  * systems is ridiculously low, less than 200. So this is even
4980  * conservative, even though it seems large.
4981  *
4982  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4983  * waitqueues, i.e. the size of the waitq table given the number of pages.
4984  */
4985 #define PAGES_PER_WAITQUEUE	256
4986 
4987 #ifndef CONFIG_MEMORY_HOTPLUG
4988 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4989 {
4990 	unsigned long size = 1;
4991 
4992 	pages /= PAGES_PER_WAITQUEUE;
4993 
4994 	while (size < pages)
4995 		size <<= 1;
4996 
4997 	/*
4998 	 * Once we have dozens or even hundreds of threads sleeping
4999 	 * on IO we've got bigger problems than wait queue collision.
5000 	 * Limit the size of the wait table to a reasonable size.
5001 	 */
5002 	size = min(size, 4096UL);
5003 
5004 	return max(size, 4UL);
5005 }
5006 #else
5007 /*
5008  * A zone's size might be changed by hot-add, so it is not possible to determine
5009  * a suitable size for its wait_table.  So we use the maximum size now.
5010  *
5011  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
5012  *
5013  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
5014  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5015  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
5016  *
5017  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5018  * or more by the traditional way. (See above).  It equals:
5019  *
5020  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
5021  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
5022  *    powerpc (64K page size)             : =  (32G +16M)byte.
5023  */
5024 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5025 {
5026 	return 4096UL;
5027 }
5028 #endif
5029 
5030 /*
5031  * This is an integer logarithm so that shifts can be used later
5032  * to extract the more random high bits from the multiplicative
5033  * hash function before the remainder is taken.
5034  */
5035 static inline unsigned long wait_table_bits(unsigned long size)
5036 {
5037 	return ffz(~size);
5038 }
5039 
5040 /*
5041  * Initially all pages are reserved - free ones are freed
5042  * up by free_all_bootmem() once the early boot process is
5043  * done. Non-atomic initialization, single-pass.
5044  */
5045 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5046 		unsigned long start_pfn, enum memmap_context context)
5047 {
5048 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5049 	unsigned long end_pfn = start_pfn + size;
5050 	pg_data_t *pgdat = NODE_DATA(nid);
5051 	unsigned long pfn;
5052 	unsigned long nr_initialised = 0;
5053 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5054 	struct memblock_region *r = NULL, *tmp;
5055 #endif
5056 
5057 	if (highest_memmap_pfn < end_pfn - 1)
5058 		highest_memmap_pfn = end_pfn - 1;
5059 
5060 	/*
5061 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5062 	 * memory
5063 	 */
5064 	if (altmap && start_pfn == altmap->base_pfn)
5065 		start_pfn += altmap->reserve;
5066 
5067 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5068 		/*
5069 		 * There can be holes in boot-time mem_map[]s handed to this
5070 		 * function.  They do not exist on hotplugged memory.
5071 		 */
5072 		if (context != MEMMAP_EARLY)
5073 			goto not_early;
5074 
5075 		if (!early_pfn_valid(pfn))
5076 			continue;
5077 		if (!early_pfn_in_nid(pfn, nid))
5078 			continue;
5079 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5080 			break;
5081 
5082 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5083 		/*
5084 		 * Check given memblock attribute by firmware which can affect
5085 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5086 		 * mirrored, it's an overlapped memmap init. skip it.
5087 		 */
5088 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5089 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5090 				for_each_memblock(memory, tmp)
5091 					if (pfn < memblock_region_memory_end_pfn(tmp))
5092 						break;
5093 				r = tmp;
5094 			}
5095 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5096 			    memblock_is_mirror(r)) {
5097 				/* already initialized as NORMAL */
5098 				pfn = memblock_region_memory_end_pfn(r);
5099 				continue;
5100 			}
5101 		}
5102 #endif
5103 
5104 not_early:
5105 		/*
5106 		 * Mark the block movable so that blocks are reserved for
5107 		 * movable at startup. This will force kernel allocations
5108 		 * to reserve their blocks rather than leaking throughout
5109 		 * the address space during boot when many long-lived
5110 		 * kernel allocations are made.
5111 		 *
5112 		 * bitmap is created for zone's valid pfn range. but memmap
5113 		 * can be created for invalid pages (for alignment)
5114 		 * check here not to call set_pageblock_migratetype() against
5115 		 * pfn out of zone.
5116 		 */
5117 		if (!(pfn & (pageblock_nr_pages - 1))) {
5118 			struct page *page = pfn_to_page(pfn);
5119 
5120 			__init_single_page(page, pfn, zone, nid);
5121 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5122 		} else {
5123 			__init_single_pfn(pfn, zone, nid);
5124 		}
5125 	}
5126 }
5127 
5128 static void __meminit zone_init_free_lists(struct zone *zone)
5129 {
5130 	unsigned int order, t;
5131 	for_each_migratetype_order(order, t) {
5132 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5133 		zone->free_area[order].nr_free = 0;
5134 	}
5135 }
5136 
5137 #ifndef __HAVE_ARCH_MEMMAP_INIT
5138 #define memmap_init(size, nid, zone, start_pfn) \
5139 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5140 #endif
5141 
5142 static int zone_batchsize(struct zone *zone)
5143 {
5144 #ifdef CONFIG_MMU
5145 	int batch;
5146 
5147 	/*
5148 	 * The per-cpu-pages pools are set to around 1000th of the
5149 	 * size of the zone.  But no more than 1/2 of a meg.
5150 	 *
5151 	 * OK, so we don't know how big the cache is.  So guess.
5152 	 */
5153 	batch = zone->managed_pages / 1024;
5154 	if (batch * PAGE_SIZE > 512 * 1024)
5155 		batch = (512 * 1024) / PAGE_SIZE;
5156 	batch /= 4;		/* We effectively *= 4 below */
5157 	if (batch < 1)
5158 		batch = 1;
5159 
5160 	/*
5161 	 * Clamp the batch to a 2^n - 1 value. Having a power
5162 	 * of 2 value was found to be more likely to have
5163 	 * suboptimal cache aliasing properties in some cases.
5164 	 *
5165 	 * For example if 2 tasks are alternately allocating
5166 	 * batches of pages, one task can end up with a lot
5167 	 * of pages of one half of the possible page colors
5168 	 * and the other with pages of the other colors.
5169 	 */
5170 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5171 
5172 	return batch;
5173 
5174 #else
5175 	/* The deferral and batching of frees should be suppressed under NOMMU
5176 	 * conditions.
5177 	 *
5178 	 * The problem is that NOMMU needs to be able to allocate large chunks
5179 	 * of contiguous memory as there's no hardware page translation to
5180 	 * assemble apparent contiguous memory from discontiguous pages.
5181 	 *
5182 	 * Queueing large contiguous runs of pages for batching, however,
5183 	 * causes the pages to actually be freed in smaller chunks.  As there
5184 	 * can be a significant delay between the individual batches being
5185 	 * recycled, this leads to the once large chunks of space being
5186 	 * fragmented and becoming unavailable for high-order allocations.
5187 	 */
5188 	return 0;
5189 #endif
5190 }
5191 
5192 /*
5193  * pcp->high and pcp->batch values are related and dependent on one another:
5194  * ->batch must never be higher then ->high.
5195  * The following function updates them in a safe manner without read side
5196  * locking.
5197  *
5198  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5199  * those fields changing asynchronously (acording the the above rule).
5200  *
5201  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5202  * outside of boot time (or some other assurance that no concurrent updaters
5203  * exist).
5204  */
5205 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5206 		unsigned long batch)
5207 {
5208        /* start with a fail safe value for batch */
5209 	pcp->batch = 1;
5210 	smp_wmb();
5211 
5212        /* Update high, then batch, in order */
5213 	pcp->high = high;
5214 	smp_wmb();
5215 
5216 	pcp->batch = batch;
5217 }
5218 
5219 /* a companion to pageset_set_high() */
5220 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5221 {
5222 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5223 }
5224 
5225 static void pageset_init(struct per_cpu_pageset *p)
5226 {
5227 	struct per_cpu_pages *pcp;
5228 	int migratetype;
5229 
5230 	memset(p, 0, sizeof(*p));
5231 
5232 	pcp = &p->pcp;
5233 	pcp->count = 0;
5234 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5235 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5236 }
5237 
5238 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5239 {
5240 	pageset_init(p);
5241 	pageset_set_batch(p, batch);
5242 }
5243 
5244 /*
5245  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5246  * to the value high for the pageset p.
5247  */
5248 static void pageset_set_high(struct per_cpu_pageset *p,
5249 				unsigned long high)
5250 {
5251 	unsigned long batch = max(1UL, high / 4);
5252 	if ((high / 4) > (PAGE_SHIFT * 8))
5253 		batch = PAGE_SHIFT * 8;
5254 
5255 	pageset_update(&p->pcp, high, batch);
5256 }
5257 
5258 static void pageset_set_high_and_batch(struct zone *zone,
5259 				       struct per_cpu_pageset *pcp)
5260 {
5261 	if (percpu_pagelist_fraction)
5262 		pageset_set_high(pcp,
5263 			(zone->managed_pages /
5264 				percpu_pagelist_fraction));
5265 	else
5266 		pageset_set_batch(pcp, zone_batchsize(zone));
5267 }
5268 
5269 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5270 {
5271 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5272 
5273 	pageset_init(pcp);
5274 	pageset_set_high_and_batch(zone, pcp);
5275 }
5276 
5277 static void __meminit setup_zone_pageset(struct zone *zone)
5278 {
5279 	int cpu;
5280 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5281 	for_each_possible_cpu(cpu)
5282 		zone_pageset_init(zone, cpu);
5283 }
5284 
5285 /*
5286  * Allocate per cpu pagesets and initialize them.
5287  * Before this call only boot pagesets were available.
5288  */
5289 void __init setup_per_cpu_pageset(void)
5290 {
5291 	struct pglist_data *pgdat;
5292 	struct zone *zone;
5293 
5294 	for_each_populated_zone(zone)
5295 		setup_zone_pageset(zone);
5296 
5297 	for_each_online_pgdat(pgdat)
5298 		pgdat->per_cpu_nodestats =
5299 			alloc_percpu(struct per_cpu_nodestat);
5300 }
5301 
5302 static noinline __ref
5303 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5304 {
5305 	int i;
5306 	size_t alloc_size;
5307 
5308 	/*
5309 	 * The per-page waitqueue mechanism uses hashed waitqueues
5310 	 * per zone.
5311 	 */
5312 	zone->wait_table_hash_nr_entries =
5313 		 wait_table_hash_nr_entries(zone_size_pages);
5314 	zone->wait_table_bits =
5315 		wait_table_bits(zone->wait_table_hash_nr_entries);
5316 	alloc_size = zone->wait_table_hash_nr_entries
5317 					* sizeof(wait_queue_head_t);
5318 
5319 	if (!slab_is_available()) {
5320 		zone->wait_table = (wait_queue_head_t *)
5321 			memblock_virt_alloc_node_nopanic(
5322 				alloc_size, zone->zone_pgdat->node_id);
5323 	} else {
5324 		/*
5325 		 * This case means that a zone whose size was 0 gets new memory
5326 		 * via memory hot-add.
5327 		 * But it may be the case that a new node was hot-added.  In
5328 		 * this case vmalloc() will not be able to use this new node's
5329 		 * memory - this wait_table must be initialized to use this new
5330 		 * node itself as well.
5331 		 * To use this new node's memory, further consideration will be
5332 		 * necessary.
5333 		 */
5334 		zone->wait_table = vmalloc(alloc_size);
5335 	}
5336 	if (!zone->wait_table)
5337 		return -ENOMEM;
5338 
5339 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5340 		init_waitqueue_head(zone->wait_table + i);
5341 
5342 	return 0;
5343 }
5344 
5345 static __meminit void zone_pcp_init(struct zone *zone)
5346 {
5347 	/*
5348 	 * per cpu subsystem is not up at this point. The following code
5349 	 * relies on the ability of the linker to provide the
5350 	 * offset of a (static) per cpu variable into the per cpu area.
5351 	 */
5352 	zone->pageset = &boot_pageset;
5353 
5354 	if (populated_zone(zone))
5355 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5356 			zone->name, zone->present_pages,
5357 					 zone_batchsize(zone));
5358 }
5359 
5360 int __meminit init_currently_empty_zone(struct zone *zone,
5361 					unsigned long zone_start_pfn,
5362 					unsigned long size)
5363 {
5364 	struct pglist_data *pgdat = zone->zone_pgdat;
5365 	int ret;
5366 	ret = zone_wait_table_init(zone, size);
5367 	if (ret)
5368 		return ret;
5369 	pgdat->nr_zones = zone_idx(zone) + 1;
5370 
5371 	zone->zone_start_pfn = zone_start_pfn;
5372 
5373 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5374 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5375 			pgdat->node_id,
5376 			(unsigned long)zone_idx(zone),
5377 			zone_start_pfn, (zone_start_pfn + size));
5378 
5379 	zone_init_free_lists(zone);
5380 
5381 	return 0;
5382 }
5383 
5384 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5385 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5386 
5387 /*
5388  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5389  */
5390 int __meminit __early_pfn_to_nid(unsigned long pfn,
5391 					struct mminit_pfnnid_cache *state)
5392 {
5393 	unsigned long start_pfn, end_pfn;
5394 	int nid;
5395 
5396 	if (state->last_start <= pfn && pfn < state->last_end)
5397 		return state->last_nid;
5398 
5399 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5400 	if (nid != -1) {
5401 		state->last_start = start_pfn;
5402 		state->last_end = end_pfn;
5403 		state->last_nid = nid;
5404 	}
5405 
5406 	return nid;
5407 }
5408 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5409 
5410 /**
5411  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5412  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5413  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5414  *
5415  * If an architecture guarantees that all ranges registered contain no holes
5416  * and may be freed, this this function may be used instead of calling
5417  * memblock_free_early_nid() manually.
5418  */
5419 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5420 {
5421 	unsigned long start_pfn, end_pfn;
5422 	int i, this_nid;
5423 
5424 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5425 		start_pfn = min(start_pfn, max_low_pfn);
5426 		end_pfn = min(end_pfn, max_low_pfn);
5427 
5428 		if (start_pfn < end_pfn)
5429 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5430 					(end_pfn - start_pfn) << PAGE_SHIFT,
5431 					this_nid);
5432 	}
5433 }
5434 
5435 /**
5436  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5437  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5438  *
5439  * If an architecture guarantees that all ranges registered contain no holes and may
5440  * be freed, this function may be used instead of calling memory_present() manually.
5441  */
5442 void __init sparse_memory_present_with_active_regions(int nid)
5443 {
5444 	unsigned long start_pfn, end_pfn;
5445 	int i, this_nid;
5446 
5447 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5448 		memory_present(this_nid, start_pfn, end_pfn);
5449 }
5450 
5451 /**
5452  * get_pfn_range_for_nid - Return the start and end page frames for a node
5453  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5454  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5455  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5456  *
5457  * It returns the start and end page frame of a node based on information
5458  * provided by memblock_set_node(). If called for a node
5459  * with no available memory, a warning is printed and the start and end
5460  * PFNs will be 0.
5461  */
5462 void __meminit get_pfn_range_for_nid(unsigned int nid,
5463 			unsigned long *start_pfn, unsigned long *end_pfn)
5464 {
5465 	unsigned long this_start_pfn, this_end_pfn;
5466 	int i;
5467 
5468 	*start_pfn = -1UL;
5469 	*end_pfn = 0;
5470 
5471 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5472 		*start_pfn = min(*start_pfn, this_start_pfn);
5473 		*end_pfn = max(*end_pfn, this_end_pfn);
5474 	}
5475 
5476 	if (*start_pfn == -1UL)
5477 		*start_pfn = 0;
5478 }
5479 
5480 /*
5481  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5482  * assumption is made that zones within a node are ordered in monotonic
5483  * increasing memory addresses so that the "highest" populated zone is used
5484  */
5485 static void __init find_usable_zone_for_movable(void)
5486 {
5487 	int zone_index;
5488 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5489 		if (zone_index == ZONE_MOVABLE)
5490 			continue;
5491 
5492 		if (arch_zone_highest_possible_pfn[zone_index] >
5493 				arch_zone_lowest_possible_pfn[zone_index])
5494 			break;
5495 	}
5496 
5497 	VM_BUG_ON(zone_index == -1);
5498 	movable_zone = zone_index;
5499 }
5500 
5501 /*
5502  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5503  * because it is sized independent of architecture. Unlike the other zones,
5504  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5505  * in each node depending on the size of each node and how evenly kernelcore
5506  * is distributed. This helper function adjusts the zone ranges
5507  * provided by the architecture for a given node by using the end of the
5508  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5509  * zones within a node are in order of monotonic increases memory addresses
5510  */
5511 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5512 					unsigned long zone_type,
5513 					unsigned long node_start_pfn,
5514 					unsigned long node_end_pfn,
5515 					unsigned long *zone_start_pfn,
5516 					unsigned long *zone_end_pfn)
5517 {
5518 	/* Only adjust if ZONE_MOVABLE is on this node */
5519 	if (zone_movable_pfn[nid]) {
5520 		/* Size ZONE_MOVABLE */
5521 		if (zone_type == ZONE_MOVABLE) {
5522 			*zone_start_pfn = zone_movable_pfn[nid];
5523 			*zone_end_pfn = min(node_end_pfn,
5524 				arch_zone_highest_possible_pfn[movable_zone]);
5525 
5526 		/* Adjust for ZONE_MOVABLE starting within this range */
5527 		} else if (!mirrored_kernelcore &&
5528 			*zone_start_pfn < zone_movable_pfn[nid] &&
5529 			*zone_end_pfn > zone_movable_pfn[nid]) {
5530 			*zone_end_pfn = zone_movable_pfn[nid];
5531 
5532 		/* Check if this whole range is within ZONE_MOVABLE */
5533 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5534 			*zone_start_pfn = *zone_end_pfn;
5535 	}
5536 }
5537 
5538 /*
5539  * Return the number of pages a zone spans in a node, including holes
5540  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5541  */
5542 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5543 					unsigned long zone_type,
5544 					unsigned long node_start_pfn,
5545 					unsigned long node_end_pfn,
5546 					unsigned long *zone_start_pfn,
5547 					unsigned long *zone_end_pfn,
5548 					unsigned long *ignored)
5549 {
5550 	/* When hotadd a new node from cpu_up(), the node should be empty */
5551 	if (!node_start_pfn && !node_end_pfn)
5552 		return 0;
5553 
5554 	/* Get the start and end of the zone */
5555 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5556 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5557 	adjust_zone_range_for_zone_movable(nid, zone_type,
5558 				node_start_pfn, node_end_pfn,
5559 				zone_start_pfn, zone_end_pfn);
5560 
5561 	/* Check that this node has pages within the zone's required range */
5562 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5563 		return 0;
5564 
5565 	/* Move the zone boundaries inside the node if necessary */
5566 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5567 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5568 
5569 	/* Return the spanned pages */
5570 	return *zone_end_pfn - *zone_start_pfn;
5571 }
5572 
5573 /*
5574  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5575  * then all holes in the requested range will be accounted for.
5576  */
5577 unsigned long __meminit __absent_pages_in_range(int nid,
5578 				unsigned long range_start_pfn,
5579 				unsigned long range_end_pfn)
5580 {
5581 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5582 	unsigned long start_pfn, end_pfn;
5583 	int i;
5584 
5585 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5586 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5587 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5588 		nr_absent -= end_pfn - start_pfn;
5589 	}
5590 	return nr_absent;
5591 }
5592 
5593 /**
5594  * absent_pages_in_range - Return number of page frames in holes within a range
5595  * @start_pfn: The start PFN to start searching for holes
5596  * @end_pfn: The end PFN to stop searching for holes
5597  *
5598  * It returns the number of pages frames in memory holes within a range.
5599  */
5600 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5601 							unsigned long end_pfn)
5602 {
5603 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5604 }
5605 
5606 /* Return the number of page frames in holes in a zone on a node */
5607 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5608 					unsigned long zone_type,
5609 					unsigned long node_start_pfn,
5610 					unsigned long node_end_pfn,
5611 					unsigned long *ignored)
5612 {
5613 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5614 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5615 	unsigned long zone_start_pfn, zone_end_pfn;
5616 	unsigned long nr_absent;
5617 
5618 	/* When hotadd a new node from cpu_up(), the node should be empty */
5619 	if (!node_start_pfn && !node_end_pfn)
5620 		return 0;
5621 
5622 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5623 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5624 
5625 	adjust_zone_range_for_zone_movable(nid, zone_type,
5626 			node_start_pfn, node_end_pfn,
5627 			&zone_start_pfn, &zone_end_pfn);
5628 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5629 
5630 	/*
5631 	 * ZONE_MOVABLE handling.
5632 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5633 	 * and vice versa.
5634 	 */
5635 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5636 		unsigned long start_pfn, end_pfn;
5637 		struct memblock_region *r;
5638 
5639 		for_each_memblock(memory, r) {
5640 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5641 					  zone_start_pfn, zone_end_pfn);
5642 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5643 					zone_start_pfn, zone_end_pfn);
5644 
5645 			if (zone_type == ZONE_MOVABLE &&
5646 			    memblock_is_mirror(r))
5647 				nr_absent += end_pfn - start_pfn;
5648 
5649 			if (zone_type == ZONE_NORMAL &&
5650 			    !memblock_is_mirror(r))
5651 				nr_absent += end_pfn - start_pfn;
5652 		}
5653 	}
5654 
5655 	return nr_absent;
5656 }
5657 
5658 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5659 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5660 					unsigned long zone_type,
5661 					unsigned long node_start_pfn,
5662 					unsigned long node_end_pfn,
5663 					unsigned long *zone_start_pfn,
5664 					unsigned long *zone_end_pfn,
5665 					unsigned long *zones_size)
5666 {
5667 	unsigned int zone;
5668 
5669 	*zone_start_pfn = node_start_pfn;
5670 	for (zone = 0; zone < zone_type; zone++)
5671 		*zone_start_pfn += zones_size[zone];
5672 
5673 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5674 
5675 	return zones_size[zone_type];
5676 }
5677 
5678 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5679 						unsigned long zone_type,
5680 						unsigned long node_start_pfn,
5681 						unsigned long node_end_pfn,
5682 						unsigned long *zholes_size)
5683 {
5684 	if (!zholes_size)
5685 		return 0;
5686 
5687 	return zholes_size[zone_type];
5688 }
5689 
5690 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5691 
5692 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5693 						unsigned long node_start_pfn,
5694 						unsigned long node_end_pfn,
5695 						unsigned long *zones_size,
5696 						unsigned long *zholes_size)
5697 {
5698 	unsigned long realtotalpages = 0, totalpages = 0;
5699 	enum zone_type i;
5700 
5701 	for (i = 0; i < MAX_NR_ZONES; i++) {
5702 		struct zone *zone = pgdat->node_zones + i;
5703 		unsigned long zone_start_pfn, zone_end_pfn;
5704 		unsigned long size, real_size;
5705 
5706 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5707 						  node_start_pfn,
5708 						  node_end_pfn,
5709 						  &zone_start_pfn,
5710 						  &zone_end_pfn,
5711 						  zones_size);
5712 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5713 						  node_start_pfn, node_end_pfn,
5714 						  zholes_size);
5715 		if (size)
5716 			zone->zone_start_pfn = zone_start_pfn;
5717 		else
5718 			zone->zone_start_pfn = 0;
5719 		zone->spanned_pages = size;
5720 		zone->present_pages = real_size;
5721 
5722 		totalpages += size;
5723 		realtotalpages += real_size;
5724 	}
5725 
5726 	pgdat->node_spanned_pages = totalpages;
5727 	pgdat->node_present_pages = realtotalpages;
5728 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5729 							realtotalpages);
5730 }
5731 
5732 #ifndef CONFIG_SPARSEMEM
5733 /*
5734  * Calculate the size of the zone->blockflags rounded to an unsigned long
5735  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5736  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5737  * round what is now in bits to nearest long in bits, then return it in
5738  * bytes.
5739  */
5740 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5741 {
5742 	unsigned long usemapsize;
5743 
5744 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5745 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5746 	usemapsize = usemapsize >> pageblock_order;
5747 	usemapsize *= NR_PAGEBLOCK_BITS;
5748 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5749 
5750 	return usemapsize / 8;
5751 }
5752 
5753 static void __init setup_usemap(struct pglist_data *pgdat,
5754 				struct zone *zone,
5755 				unsigned long zone_start_pfn,
5756 				unsigned long zonesize)
5757 {
5758 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5759 	zone->pageblock_flags = NULL;
5760 	if (usemapsize)
5761 		zone->pageblock_flags =
5762 			memblock_virt_alloc_node_nopanic(usemapsize,
5763 							 pgdat->node_id);
5764 }
5765 #else
5766 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5767 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5768 #endif /* CONFIG_SPARSEMEM */
5769 
5770 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5771 
5772 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5773 void __paginginit set_pageblock_order(void)
5774 {
5775 	unsigned int order;
5776 
5777 	/* Check that pageblock_nr_pages has not already been setup */
5778 	if (pageblock_order)
5779 		return;
5780 
5781 	if (HPAGE_SHIFT > PAGE_SHIFT)
5782 		order = HUGETLB_PAGE_ORDER;
5783 	else
5784 		order = MAX_ORDER - 1;
5785 
5786 	/*
5787 	 * Assume the largest contiguous order of interest is a huge page.
5788 	 * This value may be variable depending on boot parameters on IA64 and
5789 	 * powerpc.
5790 	 */
5791 	pageblock_order = order;
5792 }
5793 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5794 
5795 /*
5796  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5797  * is unused as pageblock_order is set at compile-time. See
5798  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5799  * the kernel config
5800  */
5801 void __paginginit set_pageblock_order(void)
5802 {
5803 }
5804 
5805 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5806 
5807 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5808 						   unsigned long present_pages)
5809 {
5810 	unsigned long pages = spanned_pages;
5811 
5812 	/*
5813 	 * Provide a more accurate estimation if there are holes within
5814 	 * the zone and SPARSEMEM is in use. If there are holes within the
5815 	 * zone, each populated memory region may cost us one or two extra
5816 	 * memmap pages due to alignment because memmap pages for each
5817 	 * populated regions may not naturally algined on page boundary.
5818 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5819 	 */
5820 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5821 	    IS_ENABLED(CONFIG_SPARSEMEM))
5822 		pages = present_pages;
5823 
5824 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5825 }
5826 
5827 /*
5828  * Set up the zone data structures:
5829  *   - mark all pages reserved
5830  *   - mark all memory queues empty
5831  *   - clear the memory bitmaps
5832  *
5833  * NOTE: pgdat should get zeroed by caller.
5834  */
5835 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5836 {
5837 	enum zone_type j;
5838 	int nid = pgdat->node_id;
5839 	int ret;
5840 
5841 	pgdat_resize_init(pgdat);
5842 #ifdef CONFIG_NUMA_BALANCING
5843 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5844 	pgdat->numabalancing_migrate_nr_pages = 0;
5845 	pgdat->numabalancing_migrate_next_window = jiffies;
5846 #endif
5847 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5848 	spin_lock_init(&pgdat->split_queue_lock);
5849 	INIT_LIST_HEAD(&pgdat->split_queue);
5850 	pgdat->split_queue_len = 0;
5851 #endif
5852 	init_waitqueue_head(&pgdat->kswapd_wait);
5853 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5854 #ifdef CONFIG_COMPACTION
5855 	init_waitqueue_head(&pgdat->kcompactd_wait);
5856 #endif
5857 	pgdat_page_ext_init(pgdat);
5858 	spin_lock_init(&pgdat->lru_lock);
5859 	lruvec_init(node_lruvec(pgdat));
5860 
5861 	for (j = 0; j < MAX_NR_ZONES; j++) {
5862 		struct zone *zone = pgdat->node_zones + j;
5863 		unsigned long size, realsize, freesize, memmap_pages;
5864 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5865 
5866 		size = zone->spanned_pages;
5867 		realsize = freesize = zone->present_pages;
5868 
5869 		/*
5870 		 * Adjust freesize so that it accounts for how much memory
5871 		 * is used by this zone for memmap. This affects the watermark
5872 		 * and per-cpu initialisations
5873 		 */
5874 		memmap_pages = calc_memmap_size(size, realsize);
5875 		if (!is_highmem_idx(j)) {
5876 			if (freesize >= memmap_pages) {
5877 				freesize -= memmap_pages;
5878 				if (memmap_pages)
5879 					printk(KERN_DEBUG
5880 					       "  %s zone: %lu pages used for memmap\n",
5881 					       zone_names[j], memmap_pages);
5882 			} else
5883 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5884 					zone_names[j], memmap_pages, freesize);
5885 		}
5886 
5887 		/* Account for reserved pages */
5888 		if (j == 0 && freesize > dma_reserve) {
5889 			freesize -= dma_reserve;
5890 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5891 					zone_names[0], dma_reserve);
5892 		}
5893 
5894 		if (!is_highmem_idx(j))
5895 			nr_kernel_pages += freesize;
5896 		/* Charge for highmem memmap if there are enough kernel pages */
5897 		else if (nr_kernel_pages > memmap_pages * 2)
5898 			nr_kernel_pages -= memmap_pages;
5899 		nr_all_pages += freesize;
5900 
5901 		/*
5902 		 * Set an approximate value for lowmem here, it will be adjusted
5903 		 * when the bootmem allocator frees pages into the buddy system.
5904 		 * And all highmem pages will be managed by the buddy system.
5905 		 */
5906 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5907 #ifdef CONFIG_NUMA
5908 		zone->node = nid;
5909 #endif
5910 		zone->name = zone_names[j];
5911 		zone->zone_pgdat = pgdat;
5912 		spin_lock_init(&zone->lock);
5913 		zone_seqlock_init(zone);
5914 		zone_pcp_init(zone);
5915 
5916 		if (!size)
5917 			continue;
5918 
5919 		set_pageblock_order();
5920 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5921 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5922 		BUG_ON(ret);
5923 		memmap_init(size, nid, j, zone_start_pfn);
5924 	}
5925 }
5926 
5927 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5928 {
5929 	unsigned long __maybe_unused start = 0;
5930 	unsigned long __maybe_unused offset = 0;
5931 
5932 	/* Skip empty nodes */
5933 	if (!pgdat->node_spanned_pages)
5934 		return;
5935 
5936 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5937 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5938 	offset = pgdat->node_start_pfn - start;
5939 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5940 	if (!pgdat->node_mem_map) {
5941 		unsigned long size, end;
5942 		struct page *map;
5943 
5944 		/*
5945 		 * The zone's endpoints aren't required to be MAX_ORDER
5946 		 * aligned but the node_mem_map endpoints must be in order
5947 		 * for the buddy allocator to function correctly.
5948 		 */
5949 		end = pgdat_end_pfn(pgdat);
5950 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5951 		size =  (end - start) * sizeof(struct page);
5952 		map = alloc_remap(pgdat->node_id, size);
5953 		if (!map)
5954 			map = memblock_virt_alloc_node_nopanic(size,
5955 							       pgdat->node_id);
5956 		pgdat->node_mem_map = map + offset;
5957 	}
5958 #ifndef CONFIG_NEED_MULTIPLE_NODES
5959 	/*
5960 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5961 	 */
5962 	if (pgdat == NODE_DATA(0)) {
5963 		mem_map = NODE_DATA(0)->node_mem_map;
5964 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5965 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5966 			mem_map -= offset;
5967 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5968 	}
5969 #endif
5970 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5971 }
5972 
5973 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5974 		unsigned long node_start_pfn, unsigned long *zholes_size)
5975 {
5976 	pg_data_t *pgdat = NODE_DATA(nid);
5977 	unsigned long start_pfn = 0;
5978 	unsigned long end_pfn = 0;
5979 
5980 	/* pg_data_t should be reset to zero when it's allocated */
5981 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5982 
5983 	reset_deferred_meminit(pgdat);
5984 	pgdat->node_id = nid;
5985 	pgdat->node_start_pfn = node_start_pfn;
5986 	pgdat->per_cpu_nodestats = NULL;
5987 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5988 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5989 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5990 		(u64)start_pfn << PAGE_SHIFT,
5991 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5992 #else
5993 	start_pfn = node_start_pfn;
5994 #endif
5995 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5996 				  zones_size, zholes_size);
5997 
5998 	alloc_node_mem_map(pgdat);
5999 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6000 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6001 		nid, (unsigned long)pgdat,
6002 		(unsigned long)pgdat->node_mem_map);
6003 #endif
6004 
6005 	free_area_init_core(pgdat);
6006 }
6007 
6008 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6009 
6010 #if MAX_NUMNODES > 1
6011 /*
6012  * Figure out the number of possible node ids.
6013  */
6014 void __init setup_nr_node_ids(void)
6015 {
6016 	unsigned int highest;
6017 
6018 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6019 	nr_node_ids = highest + 1;
6020 }
6021 #endif
6022 
6023 /**
6024  * node_map_pfn_alignment - determine the maximum internode alignment
6025  *
6026  * This function should be called after node map is populated and sorted.
6027  * It calculates the maximum power of two alignment which can distinguish
6028  * all the nodes.
6029  *
6030  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6031  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6032  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6033  * shifted, 1GiB is enough and this function will indicate so.
6034  *
6035  * This is used to test whether pfn -> nid mapping of the chosen memory
6036  * model has fine enough granularity to avoid incorrect mapping for the
6037  * populated node map.
6038  *
6039  * Returns the determined alignment in pfn's.  0 if there is no alignment
6040  * requirement (single node).
6041  */
6042 unsigned long __init node_map_pfn_alignment(void)
6043 {
6044 	unsigned long accl_mask = 0, last_end = 0;
6045 	unsigned long start, end, mask;
6046 	int last_nid = -1;
6047 	int i, nid;
6048 
6049 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6050 		if (!start || last_nid < 0 || last_nid == nid) {
6051 			last_nid = nid;
6052 			last_end = end;
6053 			continue;
6054 		}
6055 
6056 		/*
6057 		 * Start with a mask granular enough to pin-point to the
6058 		 * start pfn and tick off bits one-by-one until it becomes
6059 		 * too coarse to separate the current node from the last.
6060 		 */
6061 		mask = ~((1 << __ffs(start)) - 1);
6062 		while (mask && last_end <= (start & (mask << 1)))
6063 			mask <<= 1;
6064 
6065 		/* accumulate all internode masks */
6066 		accl_mask |= mask;
6067 	}
6068 
6069 	/* convert mask to number of pages */
6070 	return ~accl_mask + 1;
6071 }
6072 
6073 /* Find the lowest pfn for a node */
6074 static unsigned long __init find_min_pfn_for_node(int nid)
6075 {
6076 	unsigned long min_pfn = ULONG_MAX;
6077 	unsigned long start_pfn;
6078 	int i;
6079 
6080 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6081 		min_pfn = min(min_pfn, start_pfn);
6082 
6083 	if (min_pfn == ULONG_MAX) {
6084 		pr_warn("Could not find start_pfn for node %d\n", nid);
6085 		return 0;
6086 	}
6087 
6088 	return min_pfn;
6089 }
6090 
6091 /**
6092  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6093  *
6094  * It returns the minimum PFN based on information provided via
6095  * memblock_set_node().
6096  */
6097 unsigned long __init find_min_pfn_with_active_regions(void)
6098 {
6099 	return find_min_pfn_for_node(MAX_NUMNODES);
6100 }
6101 
6102 /*
6103  * early_calculate_totalpages()
6104  * Sum pages in active regions for movable zone.
6105  * Populate N_MEMORY for calculating usable_nodes.
6106  */
6107 static unsigned long __init early_calculate_totalpages(void)
6108 {
6109 	unsigned long totalpages = 0;
6110 	unsigned long start_pfn, end_pfn;
6111 	int i, nid;
6112 
6113 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6114 		unsigned long pages = end_pfn - start_pfn;
6115 
6116 		totalpages += pages;
6117 		if (pages)
6118 			node_set_state(nid, N_MEMORY);
6119 	}
6120 	return totalpages;
6121 }
6122 
6123 /*
6124  * Find the PFN the Movable zone begins in each node. Kernel memory
6125  * is spread evenly between nodes as long as the nodes have enough
6126  * memory. When they don't, some nodes will have more kernelcore than
6127  * others
6128  */
6129 static void __init find_zone_movable_pfns_for_nodes(void)
6130 {
6131 	int i, nid;
6132 	unsigned long usable_startpfn;
6133 	unsigned long kernelcore_node, kernelcore_remaining;
6134 	/* save the state before borrow the nodemask */
6135 	nodemask_t saved_node_state = node_states[N_MEMORY];
6136 	unsigned long totalpages = early_calculate_totalpages();
6137 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6138 	struct memblock_region *r;
6139 
6140 	/* Need to find movable_zone earlier when movable_node is specified. */
6141 	find_usable_zone_for_movable();
6142 
6143 	/*
6144 	 * If movable_node is specified, ignore kernelcore and movablecore
6145 	 * options.
6146 	 */
6147 	if (movable_node_is_enabled()) {
6148 		for_each_memblock(memory, r) {
6149 			if (!memblock_is_hotpluggable(r))
6150 				continue;
6151 
6152 			nid = r->nid;
6153 
6154 			usable_startpfn = PFN_DOWN(r->base);
6155 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6156 				min(usable_startpfn, zone_movable_pfn[nid]) :
6157 				usable_startpfn;
6158 		}
6159 
6160 		goto out2;
6161 	}
6162 
6163 	/*
6164 	 * If kernelcore=mirror is specified, ignore movablecore option
6165 	 */
6166 	if (mirrored_kernelcore) {
6167 		bool mem_below_4gb_not_mirrored = false;
6168 
6169 		for_each_memblock(memory, r) {
6170 			if (memblock_is_mirror(r))
6171 				continue;
6172 
6173 			nid = r->nid;
6174 
6175 			usable_startpfn = memblock_region_memory_base_pfn(r);
6176 
6177 			if (usable_startpfn < 0x100000) {
6178 				mem_below_4gb_not_mirrored = true;
6179 				continue;
6180 			}
6181 
6182 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6183 				min(usable_startpfn, zone_movable_pfn[nid]) :
6184 				usable_startpfn;
6185 		}
6186 
6187 		if (mem_below_4gb_not_mirrored)
6188 			pr_warn("This configuration results in unmirrored kernel memory.");
6189 
6190 		goto out2;
6191 	}
6192 
6193 	/*
6194 	 * If movablecore=nn[KMG] was specified, calculate what size of
6195 	 * kernelcore that corresponds so that memory usable for
6196 	 * any allocation type is evenly spread. If both kernelcore
6197 	 * and movablecore are specified, then the value of kernelcore
6198 	 * will be used for required_kernelcore if it's greater than
6199 	 * what movablecore would have allowed.
6200 	 */
6201 	if (required_movablecore) {
6202 		unsigned long corepages;
6203 
6204 		/*
6205 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6206 		 * was requested by the user
6207 		 */
6208 		required_movablecore =
6209 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6210 		required_movablecore = min(totalpages, required_movablecore);
6211 		corepages = totalpages - required_movablecore;
6212 
6213 		required_kernelcore = max(required_kernelcore, corepages);
6214 	}
6215 
6216 	/*
6217 	 * If kernelcore was not specified or kernelcore size is larger
6218 	 * than totalpages, there is no ZONE_MOVABLE.
6219 	 */
6220 	if (!required_kernelcore || required_kernelcore >= totalpages)
6221 		goto out;
6222 
6223 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6224 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6225 
6226 restart:
6227 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6228 	kernelcore_node = required_kernelcore / usable_nodes;
6229 	for_each_node_state(nid, N_MEMORY) {
6230 		unsigned long start_pfn, end_pfn;
6231 
6232 		/*
6233 		 * Recalculate kernelcore_node if the division per node
6234 		 * now exceeds what is necessary to satisfy the requested
6235 		 * amount of memory for the kernel
6236 		 */
6237 		if (required_kernelcore < kernelcore_node)
6238 			kernelcore_node = required_kernelcore / usable_nodes;
6239 
6240 		/*
6241 		 * As the map is walked, we track how much memory is usable
6242 		 * by the kernel using kernelcore_remaining. When it is
6243 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6244 		 */
6245 		kernelcore_remaining = kernelcore_node;
6246 
6247 		/* Go through each range of PFNs within this node */
6248 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6249 			unsigned long size_pages;
6250 
6251 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6252 			if (start_pfn >= end_pfn)
6253 				continue;
6254 
6255 			/* Account for what is only usable for kernelcore */
6256 			if (start_pfn < usable_startpfn) {
6257 				unsigned long kernel_pages;
6258 				kernel_pages = min(end_pfn, usable_startpfn)
6259 								- start_pfn;
6260 
6261 				kernelcore_remaining -= min(kernel_pages,
6262 							kernelcore_remaining);
6263 				required_kernelcore -= min(kernel_pages,
6264 							required_kernelcore);
6265 
6266 				/* Continue if range is now fully accounted */
6267 				if (end_pfn <= usable_startpfn) {
6268 
6269 					/*
6270 					 * Push zone_movable_pfn to the end so
6271 					 * that if we have to rebalance
6272 					 * kernelcore across nodes, we will
6273 					 * not double account here
6274 					 */
6275 					zone_movable_pfn[nid] = end_pfn;
6276 					continue;
6277 				}
6278 				start_pfn = usable_startpfn;
6279 			}
6280 
6281 			/*
6282 			 * The usable PFN range for ZONE_MOVABLE is from
6283 			 * start_pfn->end_pfn. Calculate size_pages as the
6284 			 * number of pages used as kernelcore
6285 			 */
6286 			size_pages = end_pfn - start_pfn;
6287 			if (size_pages > kernelcore_remaining)
6288 				size_pages = kernelcore_remaining;
6289 			zone_movable_pfn[nid] = start_pfn + size_pages;
6290 
6291 			/*
6292 			 * Some kernelcore has been met, update counts and
6293 			 * break if the kernelcore for this node has been
6294 			 * satisfied
6295 			 */
6296 			required_kernelcore -= min(required_kernelcore,
6297 								size_pages);
6298 			kernelcore_remaining -= size_pages;
6299 			if (!kernelcore_remaining)
6300 				break;
6301 		}
6302 	}
6303 
6304 	/*
6305 	 * If there is still required_kernelcore, we do another pass with one
6306 	 * less node in the count. This will push zone_movable_pfn[nid] further
6307 	 * along on the nodes that still have memory until kernelcore is
6308 	 * satisfied
6309 	 */
6310 	usable_nodes--;
6311 	if (usable_nodes && required_kernelcore > usable_nodes)
6312 		goto restart;
6313 
6314 out2:
6315 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6316 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6317 		zone_movable_pfn[nid] =
6318 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6319 
6320 out:
6321 	/* restore the node_state */
6322 	node_states[N_MEMORY] = saved_node_state;
6323 }
6324 
6325 /* Any regular or high memory on that node ? */
6326 static void check_for_memory(pg_data_t *pgdat, int nid)
6327 {
6328 	enum zone_type zone_type;
6329 
6330 	if (N_MEMORY == N_NORMAL_MEMORY)
6331 		return;
6332 
6333 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6334 		struct zone *zone = &pgdat->node_zones[zone_type];
6335 		if (populated_zone(zone)) {
6336 			node_set_state(nid, N_HIGH_MEMORY);
6337 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6338 			    zone_type <= ZONE_NORMAL)
6339 				node_set_state(nid, N_NORMAL_MEMORY);
6340 			break;
6341 		}
6342 	}
6343 }
6344 
6345 /**
6346  * free_area_init_nodes - Initialise all pg_data_t and zone data
6347  * @max_zone_pfn: an array of max PFNs for each zone
6348  *
6349  * This will call free_area_init_node() for each active node in the system.
6350  * Using the page ranges provided by memblock_set_node(), the size of each
6351  * zone in each node and their holes is calculated. If the maximum PFN
6352  * between two adjacent zones match, it is assumed that the zone is empty.
6353  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6354  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6355  * starts where the previous one ended. For example, ZONE_DMA32 starts
6356  * at arch_max_dma_pfn.
6357  */
6358 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6359 {
6360 	unsigned long start_pfn, end_pfn;
6361 	int i, nid;
6362 
6363 	/* Record where the zone boundaries are */
6364 	memset(arch_zone_lowest_possible_pfn, 0,
6365 				sizeof(arch_zone_lowest_possible_pfn));
6366 	memset(arch_zone_highest_possible_pfn, 0,
6367 				sizeof(arch_zone_highest_possible_pfn));
6368 
6369 	start_pfn = find_min_pfn_with_active_regions();
6370 
6371 	for (i = 0; i < MAX_NR_ZONES; i++) {
6372 		if (i == ZONE_MOVABLE)
6373 			continue;
6374 
6375 		end_pfn = max(max_zone_pfn[i], start_pfn);
6376 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6377 		arch_zone_highest_possible_pfn[i] = end_pfn;
6378 
6379 		start_pfn = end_pfn;
6380 	}
6381 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6382 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6383 
6384 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6385 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6386 	find_zone_movable_pfns_for_nodes();
6387 
6388 	/* Print out the zone ranges */
6389 	pr_info("Zone ranges:\n");
6390 	for (i = 0; i < MAX_NR_ZONES; i++) {
6391 		if (i == ZONE_MOVABLE)
6392 			continue;
6393 		pr_info("  %-8s ", zone_names[i]);
6394 		if (arch_zone_lowest_possible_pfn[i] ==
6395 				arch_zone_highest_possible_pfn[i])
6396 			pr_cont("empty\n");
6397 		else
6398 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6399 				(u64)arch_zone_lowest_possible_pfn[i]
6400 					<< PAGE_SHIFT,
6401 				((u64)arch_zone_highest_possible_pfn[i]
6402 					<< PAGE_SHIFT) - 1);
6403 	}
6404 
6405 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6406 	pr_info("Movable zone start for each node\n");
6407 	for (i = 0; i < MAX_NUMNODES; i++) {
6408 		if (zone_movable_pfn[i])
6409 			pr_info("  Node %d: %#018Lx\n", i,
6410 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6411 	}
6412 
6413 	/* Print out the early node map */
6414 	pr_info("Early memory node ranges\n");
6415 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6416 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6417 			(u64)start_pfn << PAGE_SHIFT,
6418 			((u64)end_pfn << PAGE_SHIFT) - 1);
6419 
6420 	/* Initialise every node */
6421 	mminit_verify_pageflags_layout();
6422 	setup_nr_node_ids();
6423 	for_each_online_node(nid) {
6424 		pg_data_t *pgdat = NODE_DATA(nid);
6425 		free_area_init_node(nid, NULL,
6426 				find_min_pfn_for_node(nid), NULL);
6427 
6428 		/* Any memory on that node */
6429 		if (pgdat->node_present_pages)
6430 			node_set_state(nid, N_MEMORY);
6431 		check_for_memory(pgdat, nid);
6432 	}
6433 }
6434 
6435 static int __init cmdline_parse_core(char *p, unsigned long *core)
6436 {
6437 	unsigned long long coremem;
6438 	if (!p)
6439 		return -EINVAL;
6440 
6441 	coremem = memparse(p, &p);
6442 	*core = coremem >> PAGE_SHIFT;
6443 
6444 	/* Paranoid check that UL is enough for the coremem value */
6445 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6446 
6447 	return 0;
6448 }
6449 
6450 /*
6451  * kernelcore=size sets the amount of memory for use for allocations that
6452  * cannot be reclaimed or migrated.
6453  */
6454 static int __init cmdline_parse_kernelcore(char *p)
6455 {
6456 	/* parse kernelcore=mirror */
6457 	if (parse_option_str(p, "mirror")) {
6458 		mirrored_kernelcore = true;
6459 		return 0;
6460 	}
6461 
6462 	return cmdline_parse_core(p, &required_kernelcore);
6463 }
6464 
6465 /*
6466  * movablecore=size sets the amount of memory for use for allocations that
6467  * can be reclaimed or migrated.
6468  */
6469 static int __init cmdline_parse_movablecore(char *p)
6470 {
6471 	return cmdline_parse_core(p, &required_movablecore);
6472 }
6473 
6474 early_param("kernelcore", cmdline_parse_kernelcore);
6475 early_param("movablecore", cmdline_parse_movablecore);
6476 
6477 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6478 
6479 void adjust_managed_page_count(struct page *page, long count)
6480 {
6481 	spin_lock(&managed_page_count_lock);
6482 	page_zone(page)->managed_pages += count;
6483 	totalram_pages += count;
6484 #ifdef CONFIG_HIGHMEM
6485 	if (PageHighMem(page))
6486 		totalhigh_pages += count;
6487 #endif
6488 	spin_unlock(&managed_page_count_lock);
6489 }
6490 EXPORT_SYMBOL(adjust_managed_page_count);
6491 
6492 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6493 {
6494 	void *pos;
6495 	unsigned long pages = 0;
6496 
6497 	start = (void *)PAGE_ALIGN((unsigned long)start);
6498 	end = (void *)((unsigned long)end & PAGE_MASK);
6499 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6500 		if ((unsigned int)poison <= 0xFF)
6501 			memset(pos, poison, PAGE_SIZE);
6502 		free_reserved_page(virt_to_page(pos));
6503 	}
6504 
6505 	if (pages && s)
6506 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6507 			s, pages << (PAGE_SHIFT - 10), start, end);
6508 
6509 	return pages;
6510 }
6511 EXPORT_SYMBOL(free_reserved_area);
6512 
6513 #ifdef	CONFIG_HIGHMEM
6514 void free_highmem_page(struct page *page)
6515 {
6516 	__free_reserved_page(page);
6517 	totalram_pages++;
6518 	page_zone(page)->managed_pages++;
6519 	totalhigh_pages++;
6520 }
6521 #endif
6522 
6523 
6524 void __init mem_init_print_info(const char *str)
6525 {
6526 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6527 	unsigned long init_code_size, init_data_size;
6528 
6529 	physpages = get_num_physpages();
6530 	codesize = _etext - _stext;
6531 	datasize = _edata - _sdata;
6532 	rosize = __end_rodata - __start_rodata;
6533 	bss_size = __bss_stop - __bss_start;
6534 	init_data_size = __init_end - __init_begin;
6535 	init_code_size = _einittext - _sinittext;
6536 
6537 	/*
6538 	 * Detect special cases and adjust section sizes accordingly:
6539 	 * 1) .init.* may be embedded into .data sections
6540 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6541 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6542 	 * 3) .rodata.* may be embedded into .text or .data sections.
6543 	 */
6544 #define adj_init_size(start, end, size, pos, adj) \
6545 	do { \
6546 		if (start <= pos && pos < end && size > adj) \
6547 			size -= adj; \
6548 	} while (0)
6549 
6550 	adj_init_size(__init_begin, __init_end, init_data_size,
6551 		     _sinittext, init_code_size);
6552 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6553 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6554 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6555 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6556 
6557 #undef	adj_init_size
6558 
6559 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6560 #ifdef	CONFIG_HIGHMEM
6561 		", %luK highmem"
6562 #endif
6563 		"%s%s)\n",
6564 		nr_free_pages() << (PAGE_SHIFT - 10),
6565 		physpages << (PAGE_SHIFT - 10),
6566 		codesize >> 10, datasize >> 10, rosize >> 10,
6567 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6568 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6569 		totalcma_pages << (PAGE_SHIFT - 10),
6570 #ifdef	CONFIG_HIGHMEM
6571 		totalhigh_pages << (PAGE_SHIFT - 10),
6572 #endif
6573 		str ? ", " : "", str ? str : "");
6574 }
6575 
6576 /**
6577  * set_dma_reserve - set the specified number of pages reserved in the first zone
6578  * @new_dma_reserve: The number of pages to mark reserved
6579  *
6580  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6581  * In the DMA zone, a significant percentage may be consumed by kernel image
6582  * and other unfreeable allocations which can skew the watermarks badly. This
6583  * function may optionally be used to account for unfreeable pages in the
6584  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6585  * smaller per-cpu batchsize.
6586  */
6587 void __init set_dma_reserve(unsigned long new_dma_reserve)
6588 {
6589 	dma_reserve = new_dma_reserve;
6590 }
6591 
6592 void __init free_area_init(unsigned long *zones_size)
6593 {
6594 	free_area_init_node(0, zones_size,
6595 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6596 }
6597 
6598 static int page_alloc_cpu_notify(struct notifier_block *self,
6599 				 unsigned long action, void *hcpu)
6600 {
6601 	int cpu = (unsigned long)hcpu;
6602 
6603 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6604 		lru_add_drain_cpu(cpu);
6605 		drain_pages(cpu);
6606 
6607 		/*
6608 		 * Spill the event counters of the dead processor
6609 		 * into the current processors event counters.
6610 		 * This artificially elevates the count of the current
6611 		 * processor.
6612 		 */
6613 		vm_events_fold_cpu(cpu);
6614 
6615 		/*
6616 		 * Zero the differential counters of the dead processor
6617 		 * so that the vm statistics are consistent.
6618 		 *
6619 		 * This is only okay since the processor is dead and cannot
6620 		 * race with what we are doing.
6621 		 */
6622 		cpu_vm_stats_fold(cpu);
6623 	}
6624 	return NOTIFY_OK;
6625 }
6626 
6627 void __init page_alloc_init(void)
6628 {
6629 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6630 }
6631 
6632 /*
6633  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6634  *	or min_free_kbytes changes.
6635  */
6636 static void calculate_totalreserve_pages(void)
6637 {
6638 	struct pglist_data *pgdat;
6639 	unsigned long reserve_pages = 0;
6640 	enum zone_type i, j;
6641 
6642 	for_each_online_pgdat(pgdat) {
6643 
6644 		pgdat->totalreserve_pages = 0;
6645 
6646 		for (i = 0; i < MAX_NR_ZONES; i++) {
6647 			struct zone *zone = pgdat->node_zones + i;
6648 			long max = 0;
6649 
6650 			/* Find valid and maximum lowmem_reserve in the zone */
6651 			for (j = i; j < MAX_NR_ZONES; j++) {
6652 				if (zone->lowmem_reserve[j] > max)
6653 					max = zone->lowmem_reserve[j];
6654 			}
6655 
6656 			/* we treat the high watermark as reserved pages. */
6657 			max += high_wmark_pages(zone);
6658 
6659 			if (max > zone->managed_pages)
6660 				max = zone->managed_pages;
6661 
6662 			pgdat->totalreserve_pages += max;
6663 
6664 			reserve_pages += max;
6665 		}
6666 	}
6667 	totalreserve_pages = reserve_pages;
6668 }
6669 
6670 /*
6671  * setup_per_zone_lowmem_reserve - called whenever
6672  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6673  *	has a correct pages reserved value, so an adequate number of
6674  *	pages are left in the zone after a successful __alloc_pages().
6675  */
6676 static void setup_per_zone_lowmem_reserve(void)
6677 {
6678 	struct pglist_data *pgdat;
6679 	enum zone_type j, idx;
6680 
6681 	for_each_online_pgdat(pgdat) {
6682 		for (j = 0; j < MAX_NR_ZONES; j++) {
6683 			struct zone *zone = pgdat->node_zones + j;
6684 			unsigned long managed_pages = zone->managed_pages;
6685 
6686 			zone->lowmem_reserve[j] = 0;
6687 
6688 			idx = j;
6689 			while (idx) {
6690 				struct zone *lower_zone;
6691 
6692 				idx--;
6693 
6694 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6695 					sysctl_lowmem_reserve_ratio[idx] = 1;
6696 
6697 				lower_zone = pgdat->node_zones + idx;
6698 				lower_zone->lowmem_reserve[j] = managed_pages /
6699 					sysctl_lowmem_reserve_ratio[idx];
6700 				managed_pages += lower_zone->managed_pages;
6701 			}
6702 		}
6703 	}
6704 
6705 	/* update totalreserve_pages */
6706 	calculate_totalreserve_pages();
6707 }
6708 
6709 static void __setup_per_zone_wmarks(void)
6710 {
6711 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6712 	unsigned long lowmem_pages = 0;
6713 	struct zone *zone;
6714 	unsigned long flags;
6715 
6716 	/* Calculate total number of !ZONE_HIGHMEM pages */
6717 	for_each_zone(zone) {
6718 		if (!is_highmem(zone))
6719 			lowmem_pages += zone->managed_pages;
6720 	}
6721 
6722 	for_each_zone(zone) {
6723 		u64 tmp;
6724 
6725 		spin_lock_irqsave(&zone->lock, flags);
6726 		tmp = (u64)pages_min * zone->managed_pages;
6727 		do_div(tmp, lowmem_pages);
6728 		if (is_highmem(zone)) {
6729 			/*
6730 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6731 			 * need highmem pages, so cap pages_min to a small
6732 			 * value here.
6733 			 *
6734 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6735 			 * deltas control asynch page reclaim, and so should
6736 			 * not be capped for highmem.
6737 			 */
6738 			unsigned long min_pages;
6739 
6740 			min_pages = zone->managed_pages / 1024;
6741 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6742 			zone->watermark[WMARK_MIN] = min_pages;
6743 		} else {
6744 			/*
6745 			 * If it's a lowmem zone, reserve a number of pages
6746 			 * proportionate to the zone's size.
6747 			 */
6748 			zone->watermark[WMARK_MIN] = tmp;
6749 		}
6750 
6751 		/*
6752 		 * Set the kswapd watermarks distance according to the
6753 		 * scale factor in proportion to available memory, but
6754 		 * ensure a minimum size on small systems.
6755 		 */
6756 		tmp = max_t(u64, tmp >> 2,
6757 			    mult_frac(zone->managed_pages,
6758 				      watermark_scale_factor, 10000));
6759 
6760 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6761 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6762 
6763 		spin_unlock_irqrestore(&zone->lock, flags);
6764 	}
6765 
6766 	/* update totalreserve_pages */
6767 	calculate_totalreserve_pages();
6768 }
6769 
6770 /**
6771  * setup_per_zone_wmarks - called when min_free_kbytes changes
6772  * or when memory is hot-{added|removed}
6773  *
6774  * Ensures that the watermark[min,low,high] values for each zone are set
6775  * correctly with respect to min_free_kbytes.
6776  */
6777 void setup_per_zone_wmarks(void)
6778 {
6779 	mutex_lock(&zonelists_mutex);
6780 	__setup_per_zone_wmarks();
6781 	mutex_unlock(&zonelists_mutex);
6782 }
6783 
6784 /*
6785  * Initialise min_free_kbytes.
6786  *
6787  * For small machines we want it small (128k min).  For large machines
6788  * we want it large (64MB max).  But it is not linear, because network
6789  * bandwidth does not increase linearly with machine size.  We use
6790  *
6791  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6792  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6793  *
6794  * which yields
6795  *
6796  * 16MB:	512k
6797  * 32MB:	724k
6798  * 64MB:	1024k
6799  * 128MB:	1448k
6800  * 256MB:	2048k
6801  * 512MB:	2896k
6802  * 1024MB:	4096k
6803  * 2048MB:	5792k
6804  * 4096MB:	8192k
6805  * 8192MB:	11584k
6806  * 16384MB:	16384k
6807  */
6808 int __meminit init_per_zone_wmark_min(void)
6809 {
6810 	unsigned long lowmem_kbytes;
6811 	int new_min_free_kbytes;
6812 
6813 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6814 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6815 
6816 	if (new_min_free_kbytes > user_min_free_kbytes) {
6817 		min_free_kbytes = new_min_free_kbytes;
6818 		if (min_free_kbytes < 128)
6819 			min_free_kbytes = 128;
6820 		if (min_free_kbytes > 65536)
6821 			min_free_kbytes = 65536;
6822 	} else {
6823 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6824 				new_min_free_kbytes, user_min_free_kbytes);
6825 	}
6826 	setup_per_zone_wmarks();
6827 	refresh_zone_stat_thresholds();
6828 	setup_per_zone_lowmem_reserve();
6829 
6830 #ifdef CONFIG_NUMA
6831 	setup_min_unmapped_ratio();
6832 	setup_min_slab_ratio();
6833 #endif
6834 
6835 	return 0;
6836 }
6837 core_initcall(init_per_zone_wmark_min)
6838 
6839 /*
6840  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6841  *	that we can call two helper functions whenever min_free_kbytes
6842  *	changes.
6843  */
6844 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6845 	void __user *buffer, size_t *length, loff_t *ppos)
6846 {
6847 	int rc;
6848 
6849 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6850 	if (rc)
6851 		return rc;
6852 
6853 	if (write) {
6854 		user_min_free_kbytes = min_free_kbytes;
6855 		setup_per_zone_wmarks();
6856 	}
6857 	return 0;
6858 }
6859 
6860 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6861 	void __user *buffer, size_t *length, loff_t *ppos)
6862 {
6863 	int rc;
6864 
6865 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6866 	if (rc)
6867 		return rc;
6868 
6869 	if (write)
6870 		setup_per_zone_wmarks();
6871 
6872 	return 0;
6873 }
6874 
6875 #ifdef CONFIG_NUMA
6876 static void setup_min_unmapped_ratio(void)
6877 {
6878 	pg_data_t *pgdat;
6879 	struct zone *zone;
6880 
6881 	for_each_online_pgdat(pgdat)
6882 		pgdat->min_unmapped_pages = 0;
6883 
6884 	for_each_zone(zone)
6885 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6886 				sysctl_min_unmapped_ratio) / 100;
6887 }
6888 
6889 
6890 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6891 	void __user *buffer, size_t *length, loff_t *ppos)
6892 {
6893 	int rc;
6894 
6895 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6896 	if (rc)
6897 		return rc;
6898 
6899 	setup_min_unmapped_ratio();
6900 
6901 	return 0;
6902 }
6903 
6904 static void setup_min_slab_ratio(void)
6905 {
6906 	pg_data_t *pgdat;
6907 	struct zone *zone;
6908 
6909 	for_each_online_pgdat(pgdat)
6910 		pgdat->min_slab_pages = 0;
6911 
6912 	for_each_zone(zone)
6913 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6914 				sysctl_min_slab_ratio) / 100;
6915 }
6916 
6917 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6918 	void __user *buffer, size_t *length, loff_t *ppos)
6919 {
6920 	int rc;
6921 
6922 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6923 	if (rc)
6924 		return rc;
6925 
6926 	setup_min_slab_ratio();
6927 
6928 	return 0;
6929 }
6930 #endif
6931 
6932 /*
6933  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6934  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6935  *	whenever sysctl_lowmem_reserve_ratio changes.
6936  *
6937  * The reserve ratio obviously has absolutely no relation with the
6938  * minimum watermarks. The lowmem reserve ratio can only make sense
6939  * if in function of the boot time zone sizes.
6940  */
6941 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6942 	void __user *buffer, size_t *length, loff_t *ppos)
6943 {
6944 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6945 	setup_per_zone_lowmem_reserve();
6946 	return 0;
6947 }
6948 
6949 /*
6950  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6951  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6952  * pagelist can have before it gets flushed back to buddy allocator.
6953  */
6954 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6955 	void __user *buffer, size_t *length, loff_t *ppos)
6956 {
6957 	struct zone *zone;
6958 	int old_percpu_pagelist_fraction;
6959 	int ret;
6960 
6961 	mutex_lock(&pcp_batch_high_lock);
6962 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6963 
6964 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6965 	if (!write || ret < 0)
6966 		goto out;
6967 
6968 	/* Sanity checking to avoid pcp imbalance */
6969 	if (percpu_pagelist_fraction &&
6970 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6971 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6972 		ret = -EINVAL;
6973 		goto out;
6974 	}
6975 
6976 	/* No change? */
6977 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6978 		goto out;
6979 
6980 	for_each_populated_zone(zone) {
6981 		unsigned int cpu;
6982 
6983 		for_each_possible_cpu(cpu)
6984 			pageset_set_high_and_batch(zone,
6985 					per_cpu_ptr(zone->pageset, cpu));
6986 	}
6987 out:
6988 	mutex_unlock(&pcp_batch_high_lock);
6989 	return ret;
6990 }
6991 
6992 #ifdef CONFIG_NUMA
6993 int hashdist = HASHDIST_DEFAULT;
6994 
6995 static int __init set_hashdist(char *str)
6996 {
6997 	if (!str)
6998 		return 0;
6999 	hashdist = simple_strtoul(str, &str, 0);
7000 	return 1;
7001 }
7002 __setup("hashdist=", set_hashdist);
7003 #endif
7004 
7005 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7006 /*
7007  * Returns the number of pages that arch has reserved but
7008  * is not known to alloc_large_system_hash().
7009  */
7010 static unsigned long __init arch_reserved_kernel_pages(void)
7011 {
7012 	return 0;
7013 }
7014 #endif
7015 
7016 /*
7017  * allocate a large system hash table from bootmem
7018  * - it is assumed that the hash table must contain an exact power-of-2
7019  *   quantity of entries
7020  * - limit is the number of hash buckets, not the total allocation size
7021  */
7022 void *__init alloc_large_system_hash(const char *tablename,
7023 				     unsigned long bucketsize,
7024 				     unsigned long numentries,
7025 				     int scale,
7026 				     int flags,
7027 				     unsigned int *_hash_shift,
7028 				     unsigned int *_hash_mask,
7029 				     unsigned long low_limit,
7030 				     unsigned long high_limit)
7031 {
7032 	unsigned long long max = high_limit;
7033 	unsigned long log2qty, size;
7034 	void *table = NULL;
7035 
7036 	/* allow the kernel cmdline to have a say */
7037 	if (!numentries) {
7038 		/* round applicable memory size up to nearest megabyte */
7039 		numentries = nr_kernel_pages;
7040 		numentries -= arch_reserved_kernel_pages();
7041 
7042 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7043 		if (PAGE_SHIFT < 20)
7044 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7045 
7046 		/* limit to 1 bucket per 2^scale bytes of low memory */
7047 		if (scale > PAGE_SHIFT)
7048 			numentries >>= (scale - PAGE_SHIFT);
7049 		else
7050 			numentries <<= (PAGE_SHIFT - scale);
7051 
7052 		/* Make sure we've got at least a 0-order allocation.. */
7053 		if (unlikely(flags & HASH_SMALL)) {
7054 			/* Makes no sense without HASH_EARLY */
7055 			WARN_ON(!(flags & HASH_EARLY));
7056 			if (!(numentries >> *_hash_shift)) {
7057 				numentries = 1UL << *_hash_shift;
7058 				BUG_ON(!numentries);
7059 			}
7060 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7061 			numentries = PAGE_SIZE / bucketsize;
7062 	}
7063 	numentries = roundup_pow_of_two(numentries);
7064 
7065 	/* limit allocation size to 1/16 total memory by default */
7066 	if (max == 0) {
7067 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7068 		do_div(max, bucketsize);
7069 	}
7070 	max = min(max, 0x80000000ULL);
7071 
7072 	if (numentries < low_limit)
7073 		numentries = low_limit;
7074 	if (numentries > max)
7075 		numentries = max;
7076 
7077 	log2qty = ilog2(numentries);
7078 
7079 	do {
7080 		size = bucketsize << log2qty;
7081 		if (flags & HASH_EARLY)
7082 			table = memblock_virt_alloc_nopanic(size, 0);
7083 		else if (hashdist)
7084 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7085 		else {
7086 			/*
7087 			 * If bucketsize is not a power-of-two, we may free
7088 			 * some pages at the end of hash table which
7089 			 * alloc_pages_exact() automatically does
7090 			 */
7091 			if (get_order(size) < MAX_ORDER) {
7092 				table = alloc_pages_exact(size, GFP_ATOMIC);
7093 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7094 			}
7095 		}
7096 	} while (!table && size > PAGE_SIZE && --log2qty);
7097 
7098 	if (!table)
7099 		panic("Failed to allocate %s hash table\n", tablename);
7100 
7101 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7102 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7103 
7104 	if (_hash_shift)
7105 		*_hash_shift = log2qty;
7106 	if (_hash_mask)
7107 		*_hash_mask = (1 << log2qty) - 1;
7108 
7109 	return table;
7110 }
7111 
7112 /*
7113  * This function checks whether pageblock includes unmovable pages or not.
7114  * If @count is not zero, it is okay to include less @count unmovable pages
7115  *
7116  * PageLRU check without isolation or lru_lock could race so that
7117  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7118  * expect this function should be exact.
7119  */
7120 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7121 			 bool skip_hwpoisoned_pages)
7122 {
7123 	unsigned long pfn, iter, found;
7124 	int mt;
7125 
7126 	/*
7127 	 * For avoiding noise data, lru_add_drain_all() should be called
7128 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7129 	 */
7130 	if (zone_idx(zone) == ZONE_MOVABLE)
7131 		return false;
7132 	mt = get_pageblock_migratetype(page);
7133 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7134 		return false;
7135 
7136 	pfn = page_to_pfn(page);
7137 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7138 		unsigned long check = pfn + iter;
7139 
7140 		if (!pfn_valid_within(check))
7141 			continue;
7142 
7143 		page = pfn_to_page(check);
7144 
7145 		/*
7146 		 * Hugepages are not in LRU lists, but they're movable.
7147 		 * We need not scan over tail pages bacause we don't
7148 		 * handle each tail page individually in migration.
7149 		 */
7150 		if (PageHuge(page)) {
7151 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7152 			continue;
7153 		}
7154 
7155 		/*
7156 		 * We can't use page_count without pin a page
7157 		 * because another CPU can free compound page.
7158 		 * This check already skips compound tails of THP
7159 		 * because their page->_refcount is zero at all time.
7160 		 */
7161 		if (!page_ref_count(page)) {
7162 			if (PageBuddy(page))
7163 				iter += (1 << page_order(page)) - 1;
7164 			continue;
7165 		}
7166 
7167 		/*
7168 		 * The HWPoisoned page may be not in buddy system, and
7169 		 * page_count() is not 0.
7170 		 */
7171 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7172 			continue;
7173 
7174 		if (!PageLRU(page))
7175 			found++;
7176 		/*
7177 		 * If there are RECLAIMABLE pages, we need to check
7178 		 * it.  But now, memory offline itself doesn't call
7179 		 * shrink_node_slabs() and it still to be fixed.
7180 		 */
7181 		/*
7182 		 * If the page is not RAM, page_count()should be 0.
7183 		 * we don't need more check. This is an _used_ not-movable page.
7184 		 *
7185 		 * The problematic thing here is PG_reserved pages. PG_reserved
7186 		 * is set to both of a memory hole page and a _used_ kernel
7187 		 * page at boot.
7188 		 */
7189 		if (found > count)
7190 			return true;
7191 	}
7192 	return false;
7193 }
7194 
7195 bool is_pageblock_removable_nolock(struct page *page)
7196 {
7197 	struct zone *zone;
7198 	unsigned long pfn;
7199 
7200 	/*
7201 	 * We have to be careful here because we are iterating over memory
7202 	 * sections which are not zone aware so we might end up outside of
7203 	 * the zone but still within the section.
7204 	 * We have to take care about the node as well. If the node is offline
7205 	 * its NODE_DATA will be NULL - see page_zone.
7206 	 */
7207 	if (!node_online(page_to_nid(page)))
7208 		return false;
7209 
7210 	zone = page_zone(page);
7211 	pfn = page_to_pfn(page);
7212 	if (!zone_spans_pfn(zone, pfn))
7213 		return false;
7214 
7215 	return !has_unmovable_pages(zone, page, 0, true);
7216 }
7217 
7218 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7219 
7220 static unsigned long pfn_max_align_down(unsigned long pfn)
7221 {
7222 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7223 			     pageblock_nr_pages) - 1);
7224 }
7225 
7226 static unsigned long pfn_max_align_up(unsigned long pfn)
7227 {
7228 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7229 				pageblock_nr_pages));
7230 }
7231 
7232 /* [start, end) must belong to a single zone. */
7233 static int __alloc_contig_migrate_range(struct compact_control *cc,
7234 					unsigned long start, unsigned long end)
7235 {
7236 	/* This function is based on compact_zone() from compaction.c. */
7237 	unsigned long nr_reclaimed;
7238 	unsigned long pfn = start;
7239 	unsigned int tries = 0;
7240 	int ret = 0;
7241 
7242 	migrate_prep();
7243 
7244 	while (pfn < end || !list_empty(&cc->migratepages)) {
7245 		if (fatal_signal_pending(current)) {
7246 			ret = -EINTR;
7247 			break;
7248 		}
7249 
7250 		if (list_empty(&cc->migratepages)) {
7251 			cc->nr_migratepages = 0;
7252 			pfn = isolate_migratepages_range(cc, pfn, end);
7253 			if (!pfn) {
7254 				ret = -EINTR;
7255 				break;
7256 			}
7257 			tries = 0;
7258 		} else if (++tries == 5) {
7259 			ret = ret < 0 ? ret : -EBUSY;
7260 			break;
7261 		}
7262 
7263 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7264 							&cc->migratepages);
7265 		cc->nr_migratepages -= nr_reclaimed;
7266 
7267 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7268 				    NULL, 0, cc->mode, MR_CMA);
7269 	}
7270 	if (ret < 0) {
7271 		putback_movable_pages(&cc->migratepages);
7272 		return ret;
7273 	}
7274 	return 0;
7275 }
7276 
7277 /**
7278  * alloc_contig_range() -- tries to allocate given range of pages
7279  * @start:	start PFN to allocate
7280  * @end:	one-past-the-last PFN to allocate
7281  * @migratetype:	migratetype of the underlaying pageblocks (either
7282  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7283  *			in range must have the same migratetype and it must
7284  *			be either of the two.
7285  *
7286  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7287  * aligned, however it's the caller's responsibility to guarantee that
7288  * we are the only thread that changes migrate type of pageblocks the
7289  * pages fall in.
7290  *
7291  * The PFN range must belong to a single zone.
7292  *
7293  * Returns zero on success or negative error code.  On success all
7294  * pages which PFN is in [start, end) are allocated for the caller and
7295  * need to be freed with free_contig_range().
7296  */
7297 int alloc_contig_range(unsigned long start, unsigned long end,
7298 		       unsigned migratetype)
7299 {
7300 	unsigned long outer_start, outer_end;
7301 	unsigned int order;
7302 	int ret = 0;
7303 
7304 	struct compact_control cc = {
7305 		.nr_migratepages = 0,
7306 		.order = -1,
7307 		.zone = page_zone(pfn_to_page(start)),
7308 		.mode = MIGRATE_SYNC,
7309 		.ignore_skip_hint = true,
7310 	};
7311 	INIT_LIST_HEAD(&cc.migratepages);
7312 
7313 	/*
7314 	 * What we do here is we mark all pageblocks in range as
7315 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7316 	 * have different sizes, and due to the way page allocator
7317 	 * work, we align the range to biggest of the two pages so
7318 	 * that page allocator won't try to merge buddies from
7319 	 * different pageblocks and change MIGRATE_ISOLATE to some
7320 	 * other migration type.
7321 	 *
7322 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7323 	 * migrate the pages from an unaligned range (ie. pages that
7324 	 * we are interested in).  This will put all the pages in
7325 	 * range back to page allocator as MIGRATE_ISOLATE.
7326 	 *
7327 	 * When this is done, we take the pages in range from page
7328 	 * allocator removing them from the buddy system.  This way
7329 	 * page allocator will never consider using them.
7330 	 *
7331 	 * This lets us mark the pageblocks back as
7332 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7333 	 * aligned range but not in the unaligned, original range are
7334 	 * put back to page allocator so that buddy can use them.
7335 	 */
7336 
7337 	ret = start_isolate_page_range(pfn_max_align_down(start),
7338 				       pfn_max_align_up(end), migratetype,
7339 				       false);
7340 	if (ret)
7341 		return ret;
7342 
7343 	/*
7344 	 * In case of -EBUSY, we'd like to know which page causes problem.
7345 	 * So, just fall through. We will check it in test_pages_isolated().
7346 	 */
7347 	ret = __alloc_contig_migrate_range(&cc, start, end);
7348 	if (ret && ret != -EBUSY)
7349 		goto done;
7350 
7351 	/*
7352 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7353 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7354 	 * more, all pages in [start, end) are free in page allocator.
7355 	 * What we are going to do is to allocate all pages from
7356 	 * [start, end) (that is remove them from page allocator).
7357 	 *
7358 	 * The only problem is that pages at the beginning and at the
7359 	 * end of interesting range may be not aligned with pages that
7360 	 * page allocator holds, ie. they can be part of higher order
7361 	 * pages.  Because of this, we reserve the bigger range and
7362 	 * once this is done free the pages we are not interested in.
7363 	 *
7364 	 * We don't have to hold zone->lock here because the pages are
7365 	 * isolated thus they won't get removed from buddy.
7366 	 */
7367 
7368 	lru_add_drain_all();
7369 	drain_all_pages(cc.zone);
7370 
7371 	order = 0;
7372 	outer_start = start;
7373 	while (!PageBuddy(pfn_to_page(outer_start))) {
7374 		if (++order >= MAX_ORDER) {
7375 			outer_start = start;
7376 			break;
7377 		}
7378 		outer_start &= ~0UL << order;
7379 	}
7380 
7381 	if (outer_start != start) {
7382 		order = page_order(pfn_to_page(outer_start));
7383 
7384 		/*
7385 		 * outer_start page could be small order buddy page and
7386 		 * it doesn't include start page. Adjust outer_start
7387 		 * in this case to report failed page properly
7388 		 * on tracepoint in test_pages_isolated()
7389 		 */
7390 		if (outer_start + (1UL << order) <= start)
7391 			outer_start = start;
7392 	}
7393 
7394 	/* Make sure the range is really isolated. */
7395 	if (test_pages_isolated(outer_start, end, false)) {
7396 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7397 			__func__, outer_start, end);
7398 		ret = -EBUSY;
7399 		goto done;
7400 	}
7401 
7402 	/* Grab isolated pages from freelists. */
7403 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7404 	if (!outer_end) {
7405 		ret = -EBUSY;
7406 		goto done;
7407 	}
7408 
7409 	/* Free head and tail (if any) */
7410 	if (start != outer_start)
7411 		free_contig_range(outer_start, start - outer_start);
7412 	if (end != outer_end)
7413 		free_contig_range(end, outer_end - end);
7414 
7415 done:
7416 	undo_isolate_page_range(pfn_max_align_down(start),
7417 				pfn_max_align_up(end), migratetype);
7418 	return ret;
7419 }
7420 
7421 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7422 {
7423 	unsigned int count = 0;
7424 
7425 	for (; nr_pages--; pfn++) {
7426 		struct page *page = pfn_to_page(pfn);
7427 
7428 		count += page_count(page) != 1;
7429 		__free_page(page);
7430 	}
7431 	WARN(count != 0, "%d pages are still in use!\n", count);
7432 }
7433 #endif
7434 
7435 #ifdef CONFIG_MEMORY_HOTPLUG
7436 /*
7437  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7438  * page high values need to be recalulated.
7439  */
7440 void __meminit zone_pcp_update(struct zone *zone)
7441 {
7442 	unsigned cpu;
7443 	mutex_lock(&pcp_batch_high_lock);
7444 	for_each_possible_cpu(cpu)
7445 		pageset_set_high_and_batch(zone,
7446 				per_cpu_ptr(zone->pageset, cpu));
7447 	mutex_unlock(&pcp_batch_high_lock);
7448 }
7449 #endif
7450 
7451 void zone_pcp_reset(struct zone *zone)
7452 {
7453 	unsigned long flags;
7454 	int cpu;
7455 	struct per_cpu_pageset *pset;
7456 
7457 	/* avoid races with drain_pages()  */
7458 	local_irq_save(flags);
7459 	if (zone->pageset != &boot_pageset) {
7460 		for_each_online_cpu(cpu) {
7461 			pset = per_cpu_ptr(zone->pageset, cpu);
7462 			drain_zonestat(zone, pset);
7463 		}
7464 		free_percpu(zone->pageset);
7465 		zone->pageset = &boot_pageset;
7466 	}
7467 	local_irq_restore(flags);
7468 }
7469 
7470 #ifdef CONFIG_MEMORY_HOTREMOVE
7471 /*
7472  * All pages in the range must be in a single zone and isolated
7473  * before calling this.
7474  */
7475 void
7476 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7477 {
7478 	struct page *page;
7479 	struct zone *zone;
7480 	unsigned int order, i;
7481 	unsigned long pfn;
7482 	unsigned long flags;
7483 	/* find the first valid pfn */
7484 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7485 		if (pfn_valid(pfn))
7486 			break;
7487 	if (pfn == end_pfn)
7488 		return;
7489 	zone = page_zone(pfn_to_page(pfn));
7490 	spin_lock_irqsave(&zone->lock, flags);
7491 	pfn = start_pfn;
7492 	while (pfn < end_pfn) {
7493 		if (!pfn_valid(pfn)) {
7494 			pfn++;
7495 			continue;
7496 		}
7497 		page = pfn_to_page(pfn);
7498 		/*
7499 		 * The HWPoisoned page may be not in buddy system, and
7500 		 * page_count() is not 0.
7501 		 */
7502 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7503 			pfn++;
7504 			SetPageReserved(page);
7505 			continue;
7506 		}
7507 
7508 		BUG_ON(page_count(page));
7509 		BUG_ON(!PageBuddy(page));
7510 		order = page_order(page);
7511 #ifdef CONFIG_DEBUG_VM
7512 		pr_info("remove from free list %lx %d %lx\n",
7513 			pfn, 1 << order, end_pfn);
7514 #endif
7515 		list_del(&page->lru);
7516 		rmv_page_order(page);
7517 		zone->free_area[order].nr_free--;
7518 		for (i = 0; i < (1 << order); i++)
7519 			SetPageReserved((page+i));
7520 		pfn += (1 << order);
7521 	}
7522 	spin_unlock_irqrestore(&zone->lock, flags);
7523 }
7524 #endif
7525 
7526 bool is_free_buddy_page(struct page *page)
7527 {
7528 	struct zone *zone = page_zone(page);
7529 	unsigned long pfn = page_to_pfn(page);
7530 	unsigned long flags;
7531 	unsigned int order;
7532 
7533 	spin_lock_irqsave(&zone->lock, flags);
7534 	for (order = 0; order < MAX_ORDER; order++) {
7535 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7536 
7537 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7538 			break;
7539 	}
7540 	spin_unlock_irqrestore(&zone->lock, flags);
7541 
7542 	return order < MAX_ORDER;
7543 }
7544