xref: /linux/mm/page_alloc.c (revision 4cde72fead4cebb5b6b2fe9425904c2064739184)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <linux/cacheinfo.h>
56 #include <asm/div64.h>
57 #include "internal.h"
58 #include "shuffle.h"
59 #include "page_reporting.h"
60 
61 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
62 typedef int __bitwise fpi_t;
63 
64 /* No special request */
65 #define FPI_NONE		((__force fpi_t)0)
66 
67 /*
68  * Skip free page reporting notification for the (possibly merged) page.
69  * This does not hinder free page reporting from grabbing the page,
70  * reporting it and marking it "reported" -  it only skips notifying
71  * the free page reporting infrastructure about a newly freed page. For
72  * example, used when temporarily pulling a page from a freelist and
73  * putting it back unmodified.
74  */
75 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
76 
77 /*
78  * Place the (possibly merged) page to the tail of the freelist. Will ignore
79  * page shuffling (relevant code - e.g., memory onlining - is expected to
80  * shuffle the whole zone).
81  *
82  * Note: No code should rely on this flag for correctness - it's purely
83  *       to allow for optimizations when handing back either fresh pages
84  *       (memory onlining) or untouched pages (page isolation, free page
85  *       reporting).
86  */
87 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
88 
89 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
90 static DEFINE_MUTEX(pcp_batch_high_lock);
91 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
92 
93 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
94 /*
95  * On SMP, spin_trylock is sufficient protection.
96  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
97  */
98 #define pcp_trylock_prepare(flags)	do { } while (0)
99 #define pcp_trylock_finish(flag)	do { } while (0)
100 #else
101 
102 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
103 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
104 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
105 #endif
106 
107 /*
108  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
109  * a migration causing the wrong PCP to be locked and remote memory being
110  * potentially allocated, pin the task to the CPU for the lookup+lock.
111  * preempt_disable is used on !RT because it is faster than migrate_disable.
112  * migrate_disable is used on RT because otherwise RT spinlock usage is
113  * interfered with and a high priority task cannot preempt the allocator.
114  */
115 #ifndef CONFIG_PREEMPT_RT
116 #define pcpu_task_pin()		preempt_disable()
117 #define pcpu_task_unpin()	preempt_enable()
118 #else
119 #define pcpu_task_pin()		migrate_disable()
120 #define pcpu_task_unpin()	migrate_enable()
121 #endif
122 
123 /*
124  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
125  * Return value should be used with equivalent unlock helper.
126  */
127 #define pcpu_spin_lock(type, member, ptr)				\
128 ({									\
129 	type *_ret;							\
130 	pcpu_task_pin();						\
131 	_ret = this_cpu_ptr(ptr);					\
132 	spin_lock(&_ret->member);					\
133 	_ret;								\
134 })
135 
136 #define pcpu_spin_trylock(type, member, ptr)				\
137 ({									\
138 	type *_ret;							\
139 	pcpu_task_pin();						\
140 	_ret = this_cpu_ptr(ptr);					\
141 	if (!spin_trylock(&_ret->member)) {				\
142 		pcpu_task_unpin();					\
143 		_ret = NULL;						\
144 	}								\
145 	_ret;								\
146 })
147 
148 #define pcpu_spin_unlock(member, ptr)					\
149 ({									\
150 	spin_unlock(&ptr->member);					\
151 	pcpu_task_unpin();						\
152 })
153 
154 /* struct per_cpu_pages specific helpers. */
155 #define pcp_spin_lock(ptr)						\
156 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
157 
158 #define pcp_spin_trylock(ptr)						\
159 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
160 
161 #define pcp_spin_unlock(ptr)						\
162 	pcpu_spin_unlock(lock, ptr)
163 
164 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
165 DEFINE_PER_CPU(int, numa_node);
166 EXPORT_PER_CPU_SYMBOL(numa_node);
167 #endif
168 
169 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
170 
171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
172 /*
173  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
174  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
175  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
176  * defined in <linux/topology.h>.
177  */
178 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
179 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
180 #endif
181 
182 static DEFINE_MUTEX(pcpu_drain_mutex);
183 
184 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
185 volatile unsigned long latent_entropy __latent_entropy;
186 EXPORT_SYMBOL(latent_entropy);
187 #endif
188 
189 /*
190  * Array of node states.
191  */
192 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
193 	[N_POSSIBLE] = NODE_MASK_ALL,
194 	[N_ONLINE] = { { [0] = 1UL } },
195 #ifndef CONFIG_NUMA
196 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
197 #ifdef CONFIG_HIGHMEM
198 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
199 #endif
200 	[N_MEMORY] = { { [0] = 1UL } },
201 	[N_CPU] = { { [0] = 1UL } },
202 #endif	/* NUMA */
203 };
204 EXPORT_SYMBOL(node_states);
205 
206 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
207 
208 /*
209  * A cached value of the page's pageblock's migratetype, used when the page is
210  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
211  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
212  * Also the migratetype set in the page does not necessarily match the pcplist
213  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
214  * other index - this ensures that it will be put on the correct CMA freelist.
215  */
216 static inline int get_pcppage_migratetype(struct page *page)
217 {
218 	return page->index;
219 }
220 
221 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
222 {
223 	page->index = migratetype;
224 }
225 
226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
227 unsigned int pageblock_order __read_mostly;
228 #endif
229 
230 static void __free_pages_ok(struct page *page, unsigned int order,
231 			    fpi_t fpi_flags);
232 
233 /*
234  * results with 256, 32 in the lowmem_reserve sysctl:
235  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
236  *	1G machine -> (16M dma, 784M normal, 224M high)
237  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
238  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
239  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
240  *
241  * TBD: should special case ZONE_DMA32 machines here - in those we normally
242  * don't need any ZONE_NORMAL reservation
243  */
244 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
245 #ifdef CONFIG_ZONE_DMA
246 	[ZONE_DMA] = 256,
247 #endif
248 #ifdef CONFIG_ZONE_DMA32
249 	[ZONE_DMA32] = 256,
250 #endif
251 	[ZONE_NORMAL] = 32,
252 #ifdef CONFIG_HIGHMEM
253 	[ZONE_HIGHMEM] = 0,
254 #endif
255 	[ZONE_MOVABLE] = 0,
256 };
257 
258 char * const zone_names[MAX_NR_ZONES] = {
259 #ifdef CONFIG_ZONE_DMA
260 	 "DMA",
261 #endif
262 #ifdef CONFIG_ZONE_DMA32
263 	 "DMA32",
264 #endif
265 	 "Normal",
266 #ifdef CONFIG_HIGHMEM
267 	 "HighMem",
268 #endif
269 	 "Movable",
270 #ifdef CONFIG_ZONE_DEVICE
271 	 "Device",
272 #endif
273 };
274 
275 const char * const migratetype_names[MIGRATE_TYPES] = {
276 	"Unmovable",
277 	"Movable",
278 	"Reclaimable",
279 	"HighAtomic",
280 #ifdef CONFIG_CMA
281 	"CMA",
282 #endif
283 #ifdef CONFIG_MEMORY_ISOLATION
284 	"Isolate",
285 #endif
286 };
287 
288 int min_free_kbytes = 1024;
289 int user_min_free_kbytes = -1;
290 static int watermark_boost_factor __read_mostly = 15000;
291 static int watermark_scale_factor = 10;
292 
293 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
294 int movable_zone;
295 EXPORT_SYMBOL(movable_zone);
296 
297 #if MAX_NUMNODES > 1
298 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
299 unsigned int nr_online_nodes __read_mostly = 1;
300 EXPORT_SYMBOL(nr_node_ids);
301 EXPORT_SYMBOL(nr_online_nodes);
302 #endif
303 
304 static bool page_contains_unaccepted(struct page *page, unsigned int order);
305 static void accept_page(struct page *page, unsigned int order);
306 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
307 static inline bool has_unaccepted_memory(void);
308 static bool __free_unaccepted(struct page *page);
309 
310 int page_group_by_mobility_disabled __read_mostly;
311 
312 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
313 /*
314  * During boot we initialize deferred pages on-demand, as needed, but once
315  * page_alloc_init_late() has finished, the deferred pages are all initialized,
316  * and we can permanently disable that path.
317  */
318 DEFINE_STATIC_KEY_TRUE(deferred_pages);
319 
320 static inline bool deferred_pages_enabled(void)
321 {
322 	return static_branch_unlikely(&deferred_pages);
323 }
324 
325 /*
326  * deferred_grow_zone() is __init, but it is called from
327  * get_page_from_freelist() during early boot until deferred_pages permanently
328  * disables this call. This is why we have refdata wrapper to avoid warning,
329  * and to ensure that the function body gets unloaded.
330  */
331 static bool __ref
332 _deferred_grow_zone(struct zone *zone, unsigned int order)
333 {
334        return deferred_grow_zone(zone, order);
335 }
336 #else
337 static inline bool deferred_pages_enabled(void)
338 {
339 	return false;
340 }
341 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
342 
343 /* Return a pointer to the bitmap storing bits affecting a block of pages */
344 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
345 							unsigned long pfn)
346 {
347 #ifdef CONFIG_SPARSEMEM
348 	return section_to_usemap(__pfn_to_section(pfn));
349 #else
350 	return page_zone(page)->pageblock_flags;
351 #endif /* CONFIG_SPARSEMEM */
352 }
353 
354 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
355 {
356 #ifdef CONFIG_SPARSEMEM
357 	pfn &= (PAGES_PER_SECTION-1);
358 #else
359 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
360 #endif /* CONFIG_SPARSEMEM */
361 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
362 }
363 
364 /**
365  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366  * @page: The page within the block of interest
367  * @pfn: The target page frame number
368  * @mask: mask of bits that the caller is interested in
369  *
370  * Return: pageblock_bits flags
371  */
372 unsigned long get_pfnblock_flags_mask(const struct page *page,
373 					unsigned long pfn, unsigned long mask)
374 {
375 	unsigned long *bitmap;
376 	unsigned long bitidx, word_bitidx;
377 	unsigned long word;
378 
379 	bitmap = get_pageblock_bitmap(page, pfn);
380 	bitidx = pfn_to_bitidx(page, pfn);
381 	word_bitidx = bitidx / BITS_PER_LONG;
382 	bitidx &= (BITS_PER_LONG-1);
383 	/*
384 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
385 	 * a consistent read of the memory array, so that results, even though
386 	 * racy, are not corrupted.
387 	 */
388 	word = READ_ONCE(bitmap[word_bitidx]);
389 	return (word >> bitidx) & mask;
390 }
391 
392 static __always_inline int get_pfnblock_migratetype(const struct page *page,
393 					unsigned long pfn)
394 {
395 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
396 }
397 
398 /**
399  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
400  * @page: The page within the block of interest
401  * @flags: The flags to set
402  * @pfn: The target page frame number
403  * @mask: mask of bits that the caller is interested in
404  */
405 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
406 					unsigned long pfn,
407 					unsigned long mask)
408 {
409 	unsigned long *bitmap;
410 	unsigned long bitidx, word_bitidx;
411 	unsigned long word;
412 
413 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
414 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
415 
416 	bitmap = get_pageblock_bitmap(page, pfn);
417 	bitidx = pfn_to_bitidx(page, pfn);
418 	word_bitidx = bitidx / BITS_PER_LONG;
419 	bitidx &= (BITS_PER_LONG-1);
420 
421 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
422 
423 	mask <<= bitidx;
424 	flags <<= bitidx;
425 
426 	word = READ_ONCE(bitmap[word_bitidx]);
427 	do {
428 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
429 }
430 
431 void set_pageblock_migratetype(struct page *page, int migratetype)
432 {
433 	if (unlikely(page_group_by_mobility_disabled &&
434 		     migratetype < MIGRATE_PCPTYPES))
435 		migratetype = MIGRATE_UNMOVABLE;
436 
437 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
438 				page_to_pfn(page), MIGRATETYPE_MASK);
439 }
440 
441 #ifdef CONFIG_DEBUG_VM
442 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
443 {
444 	int ret;
445 	unsigned seq;
446 	unsigned long pfn = page_to_pfn(page);
447 	unsigned long sp, start_pfn;
448 
449 	do {
450 		seq = zone_span_seqbegin(zone);
451 		start_pfn = zone->zone_start_pfn;
452 		sp = zone->spanned_pages;
453 		ret = !zone_spans_pfn(zone, pfn);
454 	} while (zone_span_seqretry(zone, seq));
455 
456 	if (ret)
457 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
458 			pfn, zone_to_nid(zone), zone->name,
459 			start_pfn, start_pfn + sp);
460 
461 	return ret;
462 }
463 
464 /*
465  * Temporary debugging check for pages not lying within a given zone.
466  */
467 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
468 {
469 	if (page_outside_zone_boundaries(zone, page))
470 		return 1;
471 	if (zone != page_zone(page))
472 		return 1;
473 
474 	return 0;
475 }
476 #else
477 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
478 {
479 	return 0;
480 }
481 #endif
482 
483 static void bad_page(struct page *page, const char *reason)
484 {
485 	static unsigned long resume;
486 	static unsigned long nr_shown;
487 	static unsigned long nr_unshown;
488 
489 	/*
490 	 * Allow a burst of 60 reports, then keep quiet for that minute;
491 	 * or allow a steady drip of one report per second.
492 	 */
493 	if (nr_shown == 60) {
494 		if (time_before(jiffies, resume)) {
495 			nr_unshown++;
496 			goto out;
497 		}
498 		if (nr_unshown) {
499 			pr_alert(
500 			      "BUG: Bad page state: %lu messages suppressed\n",
501 				nr_unshown);
502 			nr_unshown = 0;
503 		}
504 		nr_shown = 0;
505 	}
506 	if (nr_shown++ == 0)
507 		resume = jiffies + 60 * HZ;
508 
509 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
510 		current->comm, page_to_pfn(page));
511 	dump_page(page, reason);
512 
513 	print_modules();
514 	dump_stack();
515 out:
516 	/* Leave bad fields for debug, except PageBuddy could make trouble */
517 	page_mapcount_reset(page); /* remove PageBuddy */
518 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
519 }
520 
521 static inline unsigned int order_to_pindex(int migratetype, int order)
522 {
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
525 		VM_BUG_ON(order != pageblock_order);
526 		return NR_LOWORDER_PCP_LISTS;
527 	}
528 #else
529 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
530 #endif
531 
532 	return (MIGRATE_PCPTYPES * order) + migratetype;
533 }
534 
535 static inline int pindex_to_order(unsigned int pindex)
536 {
537 	int order = pindex / MIGRATE_PCPTYPES;
538 
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540 	if (pindex == NR_LOWORDER_PCP_LISTS)
541 		order = pageblock_order;
542 #else
543 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
544 #endif
545 
546 	return order;
547 }
548 
549 static inline bool pcp_allowed_order(unsigned int order)
550 {
551 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
552 		return true;
553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
554 	if (order == pageblock_order)
555 		return true;
556 #endif
557 	return false;
558 }
559 
560 static inline void free_the_page(struct page *page, unsigned int order)
561 {
562 	if (pcp_allowed_order(order))		/* Via pcp? */
563 		free_unref_page(page, order);
564 	else
565 		__free_pages_ok(page, order, FPI_NONE);
566 }
567 
568 /*
569  * Higher-order pages are called "compound pages".  They are structured thusly:
570  *
571  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
572  *
573  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
575  *
576  * The first tail page's ->compound_order holds the order of allocation.
577  * This usage means that zero-order pages may not be compound.
578  */
579 
580 void prep_compound_page(struct page *page, unsigned int order)
581 {
582 	int i;
583 	int nr_pages = 1 << order;
584 
585 	__SetPageHead(page);
586 	for (i = 1; i < nr_pages; i++)
587 		prep_compound_tail(page, i);
588 
589 	prep_compound_head(page, order);
590 }
591 
592 void destroy_large_folio(struct folio *folio)
593 {
594 	if (folio_test_hugetlb(folio)) {
595 		free_huge_folio(folio);
596 		return;
597 	}
598 
599 	if (folio_test_large_rmappable(folio))
600 		folio_undo_large_rmappable(folio);
601 
602 	mem_cgroup_uncharge(folio);
603 	free_the_page(&folio->page, folio_order(folio));
604 }
605 
606 static inline void set_buddy_order(struct page *page, unsigned int order)
607 {
608 	set_page_private(page, order);
609 	__SetPageBuddy(page);
610 }
611 
612 #ifdef CONFIG_COMPACTION
613 static inline struct capture_control *task_capc(struct zone *zone)
614 {
615 	struct capture_control *capc = current->capture_control;
616 
617 	return unlikely(capc) &&
618 		!(current->flags & PF_KTHREAD) &&
619 		!capc->page &&
620 		capc->cc->zone == zone ? capc : NULL;
621 }
622 
623 static inline bool
624 compaction_capture(struct capture_control *capc, struct page *page,
625 		   int order, int migratetype)
626 {
627 	if (!capc || order != capc->cc->order)
628 		return false;
629 
630 	/* Do not accidentally pollute CMA or isolated regions*/
631 	if (is_migrate_cma(migratetype) ||
632 	    is_migrate_isolate(migratetype))
633 		return false;
634 
635 	/*
636 	 * Do not let lower order allocations pollute a movable pageblock.
637 	 * This might let an unmovable request use a reclaimable pageblock
638 	 * and vice-versa but no more than normal fallback logic which can
639 	 * have trouble finding a high-order free page.
640 	 */
641 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
642 		return false;
643 
644 	capc->page = page;
645 	return true;
646 }
647 
648 #else
649 static inline struct capture_control *task_capc(struct zone *zone)
650 {
651 	return NULL;
652 }
653 
654 static inline bool
655 compaction_capture(struct capture_control *capc, struct page *page,
656 		   int order, int migratetype)
657 {
658 	return false;
659 }
660 #endif /* CONFIG_COMPACTION */
661 
662 /* Used for pages not on another list */
663 static inline void add_to_free_list(struct page *page, struct zone *zone,
664 				    unsigned int order, int migratetype)
665 {
666 	struct free_area *area = &zone->free_area[order];
667 
668 	list_add(&page->buddy_list, &area->free_list[migratetype]);
669 	area->nr_free++;
670 }
671 
672 /* Used for pages not on another list */
673 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
674 					 unsigned int order, int migratetype)
675 {
676 	struct free_area *area = &zone->free_area[order];
677 
678 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
679 	area->nr_free++;
680 }
681 
682 /*
683  * Used for pages which are on another list. Move the pages to the tail
684  * of the list - so the moved pages won't immediately be considered for
685  * allocation again (e.g., optimization for memory onlining).
686  */
687 static inline void move_to_free_list(struct page *page, struct zone *zone,
688 				     unsigned int order, int migratetype)
689 {
690 	struct free_area *area = &zone->free_area[order];
691 
692 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
693 }
694 
695 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
696 					   unsigned int order)
697 {
698 	/* clear reported state and update reported page count */
699 	if (page_reported(page))
700 		__ClearPageReported(page);
701 
702 	list_del(&page->buddy_list);
703 	__ClearPageBuddy(page);
704 	set_page_private(page, 0);
705 	zone->free_area[order].nr_free--;
706 }
707 
708 static inline struct page *get_page_from_free_area(struct free_area *area,
709 					    int migratetype)
710 {
711 	return list_first_entry_or_null(&area->free_list[migratetype],
712 					struct page, buddy_list);
713 }
714 
715 /*
716  * If this is not the largest possible page, check if the buddy
717  * of the next-highest order is free. If it is, it's possible
718  * that pages are being freed that will coalesce soon. In case,
719  * that is happening, add the free page to the tail of the list
720  * so it's less likely to be used soon and more likely to be merged
721  * as a higher order page
722  */
723 static inline bool
724 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
725 		   struct page *page, unsigned int order)
726 {
727 	unsigned long higher_page_pfn;
728 	struct page *higher_page;
729 
730 	if (order >= MAX_ORDER - 1)
731 		return false;
732 
733 	higher_page_pfn = buddy_pfn & pfn;
734 	higher_page = page + (higher_page_pfn - pfn);
735 
736 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
737 			NULL) != NULL;
738 }
739 
740 /*
741  * Freeing function for a buddy system allocator.
742  *
743  * The concept of a buddy system is to maintain direct-mapped table
744  * (containing bit values) for memory blocks of various "orders".
745  * The bottom level table contains the map for the smallest allocatable
746  * units of memory (here, pages), and each level above it describes
747  * pairs of units from the levels below, hence, "buddies".
748  * At a high level, all that happens here is marking the table entry
749  * at the bottom level available, and propagating the changes upward
750  * as necessary, plus some accounting needed to play nicely with other
751  * parts of the VM system.
752  * At each level, we keep a list of pages, which are heads of continuous
753  * free pages of length of (1 << order) and marked with PageBuddy.
754  * Page's order is recorded in page_private(page) field.
755  * So when we are allocating or freeing one, we can derive the state of the
756  * other.  That is, if we allocate a small block, and both were
757  * free, the remainder of the region must be split into blocks.
758  * If a block is freed, and its buddy is also free, then this
759  * triggers coalescing into a block of larger size.
760  *
761  * -- nyc
762  */
763 
764 static inline void __free_one_page(struct page *page,
765 		unsigned long pfn,
766 		struct zone *zone, unsigned int order,
767 		int migratetype, fpi_t fpi_flags)
768 {
769 	struct capture_control *capc = task_capc(zone);
770 	unsigned long buddy_pfn = 0;
771 	unsigned long combined_pfn;
772 	struct page *buddy;
773 	bool to_tail;
774 
775 	VM_BUG_ON(!zone_is_initialized(zone));
776 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
777 
778 	VM_BUG_ON(migratetype == -1);
779 	if (likely(!is_migrate_isolate(migratetype)))
780 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
781 
782 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
783 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
784 
785 	while (order < MAX_ORDER) {
786 		if (compaction_capture(capc, page, order, migratetype)) {
787 			__mod_zone_freepage_state(zone, -(1 << order),
788 								migratetype);
789 			return;
790 		}
791 
792 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
793 		if (!buddy)
794 			goto done_merging;
795 
796 		if (unlikely(order >= pageblock_order)) {
797 			/*
798 			 * We want to prevent merge between freepages on pageblock
799 			 * without fallbacks and normal pageblock. Without this,
800 			 * pageblock isolation could cause incorrect freepage or CMA
801 			 * accounting or HIGHATOMIC accounting.
802 			 */
803 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
804 
805 			if (migratetype != buddy_mt
806 					&& (!migratetype_is_mergeable(migratetype) ||
807 						!migratetype_is_mergeable(buddy_mt)))
808 				goto done_merging;
809 		}
810 
811 		/*
812 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 		 * merge with it and move up one order.
814 		 */
815 		if (page_is_guard(buddy))
816 			clear_page_guard(zone, buddy, order, migratetype);
817 		else
818 			del_page_from_free_list(buddy, zone, order);
819 		combined_pfn = buddy_pfn & pfn;
820 		page = page + (combined_pfn - pfn);
821 		pfn = combined_pfn;
822 		order++;
823 	}
824 
825 done_merging:
826 	set_buddy_order(page, order);
827 
828 	if (fpi_flags & FPI_TO_TAIL)
829 		to_tail = true;
830 	else if (is_shuffle_order(order))
831 		to_tail = shuffle_pick_tail();
832 	else
833 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
834 
835 	if (to_tail)
836 		add_to_free_list_tail(page, zone, order, migratetype);
837 	else
838 		add_to_free_list(page, zone, order, migratetype);
839 
840 	/* Notify page reporting subsystem of freed page */
841 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
842 		page_reporting_notify_free(order);
843 }
844 
845 /**
846  * split_free_page() -- split a free page at split_pfn_offset
847  * @free_page:		the original free page
848  * @order:		the order of the page
849  * @split_pfn_offset:	split offset within the page
850  *
851  * Return -ENOENT if the free page is changed, otherwise 0
852  *
853  * It is used when the free page crosses two pageblocks with different migratetypes
854  * at split_pfn_offset within the page. The split free page will be put into
855  * separate migratetype lists afterwards. Otherwise, the function achieves
856  * nothing.
857  */
858 int split_free_page(struct page *free_page,
859 			unsigned int order, unsigned long split_pfn_offset)
860 {
861 	struct zone *zone = page_zone(free_page);
862 	unsigned long free_page_pfn = page_to_pfn(free_page);
863 	unsigned long pfn;
864 	unsigned long flags;
865 	int free_page_order;
866 	int mt;
867 	int ret = 0;
868 
869 	if (split_pfn_offset == 0)
870 		return ret;
871 
872 	spin_lock_irqsave(&zone->lock, flags);
873 
874 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
875 		ret = -ENOENT;
876 		goto out;
877 	}
878 
879 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
880 	if (likely(!is_migrate_isolate(mt)))
881 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
882 
883 	del_page_from_free_list(free_page, zone, order);
884 	for (pfn = free_page_pfn;
885 	     pfn < free_page_pfn + (1UL << order);) {
886 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
887 
888 		free_page_order = min_t(unsigned int,
889 					pfn ? __ffs(pfn) : order,
890 					__fls(split_pfn_offset));
891 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
892 				mt, FPI_NONE);
893 		pfn += 1UL << free_page_order;
894 		split_pfn_offset -= (1UL << free_page_order);
895 		/* we have done the first part, now switch to second part */
896 		if (split_pfn_offset == 0)
897 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
898 	}
899 out:
900 	spin_unlock_irqrestore(&zone->lock, flags);
901 	return ret;
902 }
903 /*
904  * A bad page could be due to a number of fields. Instead of multiple branches,
905  * try and check multiple fields with one check. The caller must do a detailed
906  * check if necessary.
907  */
908 static inline bool page_expected_state(struct page *page,
909 					unsigned long check_flags)
910 {
911 	if (unlikely(atomic_read(&page->_mapcount) != -1))
912 		return false;
913 
914 	if (unlikely((unsigned long)page->mapping |
915 			page_ref_count(page) |
916 #ifdef CONFIG_MEMCG
917 			page->memcg_data |
918 #endif
919 #ifdef CONFIG_PAGE_POOL
920 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
921 #endif
922 			(page->flags & check_flags)))
923 		return false;
924 
925 	return true;
926 }
927 
928 static const char *page_bad_reason(struct page *page, unsigned long flags)
929 {
930 	const char *bad_reason = NULL;
931 
932 	if (unlikely(atomic_read(&page->_mapcount) != -1))
933 		bad_reason = "nonzero mapcount";
934 	if (unlikely(page->mapping != NULL))
935 		bad_reason = "non-NULL mapping";
936 	if (unlikely(page_ref_count(page) != 0))
937 		bad_reason = "nonzero _refcount";
938 	if (unlikely(page->flags & flags)) {
939 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
940 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
941 		else
942 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
943 	}
944 #ifdef CONFIG_MEMCG
945 	if (unlikely(page->memcg_data))
946 		bad_reason = "page still charged to cgroup";
947 #endif
948 #ifdef CONFIG_PAGE_POOL
949 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
950 		bad_reason = "page_pool leak";
951 #endif
952 	return bad_reason;
953 }
954 
955 static void free_page_is_bad_report(struct page *page)
956 {
957 	bad_page(page,
958 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
959 }
960 
961 static inline bool free_page_is_bad(struct page *page)
962 {
963 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
964 		return false;
965 
966 	/* Something has gone sideways, find it */
967 	free_page_is_bad_report(page);
968 	return true;
969 }
970 
971 static inline bool is_check_pages_enabled(void)
972 {
973 	return static_branch_unlikely(&check_pages_enabled);
974 }
975 
976 static int free_tail_page_prepare(struct page *head_page, struct page *page)
977 {
978 	struct folio *folio = (struct folio *)head_page;
979 	int ret = 1;
980 
981 	/*
982 	 * We rely page->lru.next never has bit 0 set, unless the page
983 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
984 	 */
985 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
986 
987 	if (!is_check_pages_enabled()) {
988 		ret = 0;
989 		goto out;
990 	}
991 	switch (page - head_page) {
992 	case 1:
993 		/* the first tail page: these may be in place of ->mapping */
994 		if (unlikely(folio_entire_mapcount(folio))) {
995 			bad_page(page, "nonzero entire_mapcount");
996 			goto out;
997 		}
998 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
999 			bad_page(page, "nonzero nr_pages_mapped");
1000 			goto out;
1001 		}
1002 		if (unlikely(atomic_read(&folio->_pincount))) {
1003 			bad_page(page, "nonzero pincount");
1004 			goto out;
1005 		}
1006 		break;
1007 	case 2:
1008 		/*
1009 		 * the second tail page: ->mapping is
1010 		 * deferred_list.next -- ignore value.
1011 		 */
1012 		break;
1013 	default:
1014 		if (page->mapping != TAIL_MAPPING) {
1015 			bad_page(page, "corrupted mapping in tail page");
1016 			goto out;
1017 		}
1018 		break;
1019 	}
1020 	if (unlikely(!PageTail(page))) {
1021 		bad_page(page, "PageTail not set");
1022 		goto out;
1023 	}
1024 	if (unlikely(compound_head(page) != head_page)) {
1025 		bad_page(page, "compound_head not consistent");
1026 		goto out;
1027 	}
1028 	ret = 0;
1029 out:
1030 	page->mapping = NULL;
1031 	clear_compound_head(page);
1032 	return ret;
1033 }
1034 
1035 /*
1036  * Skip KASAN memory poisoning when either:
1037  *
1038  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1039  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1040  *    using page tags instead (see below).
1041  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1042  *    that error detection is disabled for accesses via the page address.
1043  *
1044  * Pages will have match-all tags in the following circumstances:
1045  *
1046  * 1. Pages are being initialized for the first time, including during deferred
1047  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1048  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1049  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1050  * 3. The allocation was excluded from being checked due to sampling,
1051  *    see the call to kasan_unpoison_pages.
1052  *
1053  * Poisoning pages during deferred memory init will greatly lengthen the
1054  * process and cause problem in large memory systems as the deferred pages
1055  * initialization is done with interrupt disabled.
1056  *
1057  * Assuming that there will be no reference to those newly initialized
1058  * pages before they are ever allocated, this should have no effect on
1059  * KASAN memory tracking as the poison will be properly inserted at page
1060  * allocation time. The only corner case is when pages are allocated by
1061  * on-demand allocation and then freed again before the deferred pages
1062  * initialization is done, but this is not likely to happen.
1063  */
1064 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1065 {
1066 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1067 		return deferred_pages_enabled();
1068 
1069 	return page_kasan_tag(page) == 0xff;
1070 }
1071 
1072 static void kernel_init_pages(struct page *page, int numpages)
1073 {
1074 	int i;
1075 
1076 	/* s390's use of memset() could override KASAN redzones. */
1077 	kasan_disable_current();
1078 	for (i = 0; i < numpages; i++)
1079 		clear_highpage_kasan_tagged(page + i);
1080 	kasan_enable_current();
1081 }
1082 
1083 static __always_inline bool free_pages_prepare(struct page *page,
1084 			unsigned int order, fpi_t fpi_flags)
1085 {
1086 	int bad = 0;
1087 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1088 	bool init = want_init_on_free();
1089 	bool compound = PageCompound(page);
1090 
1091 	VM_BUG_ON_PAGE(PageTail(page), page);
1092 
1093 	trace_mm_page_free(page, order);
1094 	kmsan_free_page(page, order);
1095 
1096 	if (unlikely(PageHWPoison(page)) && !order) {
1097 		/*
1098 		 * Do not let hwpoison pages hit pcplists/buddy
1099 		 * Untie memcg state and reset page's owner
1100 		 */
1101 		if (memcg_kmem_online() && PageMemcgKmem(page))
1102 			__memcg_kmem_uncharge_page(page, order);
1103 		reset_page_owner(page, order);
1104 		page_table_check_free(page, order);
1105 		return false;
1106 	}
1107 
1108 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1109 
1110 	/*
1111 	 * Check tail pages before head page information is cleared to
1112 	 * avoid checking PageCompound for order-0 pages.
1113 	 */
1114 	if (unlikely(order)) {
1115 		int i;
1116 
1117 		if (compound)
1118 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1119 		for (i = 1; i < (1 << order); i++) {
1120 			if (compound)
1121 				bad += free_tail_page_prepare(page, page + i);
1122 			if (is_check_pages_enabled()) {
1123 				if (free_page_is_bad(page + i)) {
1124 					bad++;
1125 					continue;
1126 				}
1127 			}
1128 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1129 		}
1130 	}
1131 	if (PageMappingFlags(page))
1132 		page->mapping = NULL;
1133 	if (memcg_kmem_online() && PageMemcgKmem(page))
1134 		__memcg_kmem_uncharge_page(page, order);
1135 	if (is_check_pages_enabled()) {
1136 		if (free_page_is_bad(page))
1137 			bad++;
1138 		if (bad)
1139 			return false;
1140 	}
1141 
1142 	page_cpupid_reset_last(page);
1143 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1144 	reset_page_owner(page, order);
1145 	page_table_check_free(page, order);
1146 
1147 	if (!PageHighMem(page)) {
1148 		debug_check_no_locks_freed(page_address(page),
1149 					   PAGE_SIZE << order);
1150 		debug_check_no_obj_freed(page_address(page),
1151 					   PAGE_SIZE << order);
1152 	}
1153 
1154 	kernel_poison_pages(page, 1 << order);
1155 
1156 	/*
1157 	 * As memory initialization might be integrated into KASAN,
1158 	 * KASAN poisoning and memory initialization code must be
1159 	 * kept together to avoid discrepancies in behavior.
1160 	 *
1161 	 * With hardware tag-based KASAN, memory tags must be set before the
1162 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1163 	 */
1164 	if (!skip_kasan_poison) {
1165 		kasan_poison_pages(page, order, init);
1166 
1167 		/* Memory is already initialized if KASAN did it internally. */
1168 		if (kasan_has_integrated_init())
1169 			init = false;
1170 	}
1171 	if (init)
1172 		kernel_init_pages(page, 1 << order);
1173 
1174 	/*
1175 	 * arch_free_page() can make the page's contents inaccessible.  s390
1176 	 * does this.  So nothing which can access the page's contents should
1177 	 * happen after this.
1178 	 */
1179 	arch_free_page(page, order);
1180 
1181 	debug_pagealloc_unmap_pages(page, 1 << order);
1182 
1183 	return true;
1184 }
1185 
1186 /*
1187  * Frees a number of pages from the PCP lists
1188  * Assumes all pages on list are in same zone.
1189  * count is the number of pages to free.
1190  */
1191 static void free_pcppages_bulk(struct zone *zone, int count,
1192 					struct per_cpu_pages *pcp,
1193 					int pindex)
1194 {
1195 	unsigned long flags;
1196 	unsigned int order;
1197 	bool isolated_pageblocks;
1198 	struct page *page;
1199 
1200 	/*
1201 	 * Ensure proper count is passed which otherwise would stuck in the
1202 	 * below while (list_empty(list)) loop.
1203 	 */
1204 	count = min(pcp->count, count);
1205 
1206 	/* Ensure requested pindex is drained first. */
1207 	pindex = pindex - 1;
1208 
1209 	spin_lock_irqsave(&zone->lock, flags);
1210 	isolated_pageblocks = has_isolate_pageblock(zone);
1211 
1212 	while (count > 0) {
1213 		struct list_head *list;
1214 		int nr_pages;
1215 
1216 		/* Remove pages from lists in a round-robin fashion. */
1217 		do {
1218 			if (++pindex > NR_PCP_LISTS - 1)
1219 				pindex = 0;
1220 			list = &pcp->lists[pindex];
1221 		} while (list_empty(list));
1222 
1223 		order = pindex_to_order(pindex);
1224 		nr_pages = 1 << order;
1225 		do {
1226 			int mt;
1227 
1228 			page = list_last_entry(list, struct page, pcp_list);
1229 			mt = get_pcppage_migratetype(page);
1230 
1231 			/* must delete to avoid corrupting pcp list */
1232 			list_del(&page->pcp_list);
1233 			count -= nr_pages;
1234 			pcp->count -= nr_pages;
1235 
1236 			/* MIGRATE_ISOLATE page should not go to pcplists */
1237 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1238 			/* Pageblock could have been isolated meanwhile */
1239 			if (unlikely(isolated_pageblocks))
1240 				mt = get_pageblock_migratetype(page);
1241 
1242 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1243 			trace_mm_page_pcpu_drain(page, order, mt);
1244 		} while (count > 0 && !list_empty(list));
1245 	}
1246 
1247 	spin_unlock_irqrestore(&zone->lock, flags);
1248 }
1249 
1250 static void free_one_page(struct zone *zone,
1251 				struct page *page, unsigned long pfn,
1252 				unsigned int order,
1253 				int migratetype, fpi_t fpi_flags)
1254 {
1255 	unsigned long flags;
1256 
1257 	spin_lock_irqsave(&zone->lock, flags);
1258 	if (unlikely(has_isolate_pageblock(zone) ||
1259 		is_migrate_isolate(migratetype))) {
1260 		migratetype = get_pfnblock_migratetype(page, pfn);
1261 	}
1262 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1263 	spin_unlock_irqrestore(&zone->lock, flags);
1264 }
1265 
1266 static void __free_pages_ok(struct page *page, unsigned int order,
1267 			    fpi_t fpi_flags)
1268 {
1269 	unsigned long flags;
1270 	int migratetype;
1271 	unsigned long pfn = page_to_pfn(page);
1272 	struct zone *zone = page_zone(page);
1273 
1274 	if (!free_pages_prepare(page, order, fpi_flags))
1275 		return;
1276 
1277 	/*
1278 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1279 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1280 	 * This will reduce the lock holding time.
1281 	 */
1282 	migratetype = get_pfnblock_migratetype(page, pfn);
1283 
1284 	spin_lock_irqsave(&zone->lock, flags);
1285 	if (unlikely(has_isolate_pageblock(zone) ||
1286 		is_migrate_isolate(migratetype))) {
1287 		migratetype = get_pfnblock_migratetype(page, pfn);
1288 	}
1289 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1290 	spin_unlock_irqrestore(&zone->lock, flags);
1291 
1292 	__count_vm_events(PGFREE, 1 << order);
1293 }
1294 
1295 void __free_pages_core(struct page *page, unsigned int order)
1296 {
1297 	unsigned int nr_pages = 1 << order;
1298 	struct page *p = page;
1299 	unsigned int loop;
1300 
1301 	/*
1302 	 * When initializing the memmap, __init_single_page() sets the refcount
1303 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1304 	 * refcount of all involved pages to 0.
1305 	 */
1306 	prefetchw(p);
1307 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1308 		prefetchw(p + 1);
1309 		__ClearPageReserved(p);
1310 		set_page_count(p, 0);
1311 	}
1312 	__ClearPageReserved(p);
1313 	set_page_count(p, 0);
1314 
1315 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1316 
1317 	if (page_contains_unaccepted(page, order)) {
1318 		if (order == MAX_ORDER && __free_unaccepted(page))
1319 			return;
1320 
1321 		accept_page(page, order);
1322 	}
1323 
1324 	/*
1325 	 * Bypass PCP and place fresh pages right to the tail, primarily
1326 	 * relevant for memory onlining.
1327 	 */
1328 	__free_pages_ok(page, order, FPI_TO_TAIL);
1329 }
1330 
1331 /*
1332  * Check that the whole (or subset of) a pageblock given by the interval of
1333  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1334  * with the migration of free compaction scanner.
1335  *
1336  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1337  *
1338  * It's possible on some configurations to have a setup like node0 node1 node0
1339  * i.e. it's possible that all pages within a zones range of pages do not
1340  * belong to a single zone. We assume that a border between node0 and node1
1341  * can occur within a single pageblock, but not a node0 node1 node0
1342  * interleaving within a single pageblock. It is therefore sufficient to check
1343  * the first and last page of a pageblock and avoid checking each individual
1344  * page in a pageblock.
1345  *
1346  * Note: the function may return non-NULL struct page even for a page block
1347  * which contains a memory hole (i.e. there is no physical memory for a subset
1348  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1349  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1350  * even though the start pfn is online and valid. This should be safe most of
1351  * the time because struct pages are still initialized via init_unavailable_range()
1352  * and pfn walkers shouldn't touch any physical memory range for which they do
1353  * not recognize any specific metadata in struct pages.
1354  */
1355 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1356 				     unsigned long end_pfn, struct zone *zone)
1357 {
1358 	struct page *start_page;
1359 	struct page *end_page;
1360 
1361 	/* end_pfn is one past the range we are checking */
1362 	end_pfn--;
1363 
1364 	if (!pfn_valid(end_pfn))
1365 		return NULL;
1366 
1367 	start_page = pfn_to_online_page(start_pfn);
1368 	if (!start_page)
1369 		return NULL;
1370 
1371 	if (page_zone(start_page) != zone)
1372 		return NULL;
1373 
1374 	end_page = pfn_to_page(end_pfn);
1375 
1376 	/* This gives a shorter code than deriving page_zone(end_page) */
1377 	if (page_zone_id(start_page) != page_zone_id(end_page))
1378 		return NULL;
1379 
1380 	return start_page;
1381 }
1382 
1383 /*
1384  * The order of subdivision here is critical for the IO subsystem.
1385  * Please do not alter this order without good reasons and regression
1386  * testing. Specifically, as large blocks of memory are subdivided,
1387  * the order in which smaller blocks are delivered depends on the order
1388  * they're subdivided in this function. This is the primary factor
1389  * influencing the order in which pages are delivered to the IO
1390  * subsystem according to empirical testing, and this is also justified
1391  * by considering the behavior of a buddy system containing a single
1392  * large block of memory acted on by a series of small allocations.
1393  * This behavior is a critical factor in sglist merging's success.
1394  *
1395  * -- nyc
1396  */
1397 static inline void expand(struct zone *zone, struct page *page,
1398 	int low, int high, int migratetype)
1399 {
1400 	unsigned long size = 1 << high;
1401 
1402 	while (high > low) {
1403 		high--;
1404 		size >>= 1;
1405 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1406 
1407 		/*
1408 		 * Mark as guard pages (or page), that will allow to
1409 		 * merge back to allocator when buddy will be freed.
1410 		 * Corresponding page table entries will not be touched,
1411 		 * pages will stay not present in virtual address space
1412 		 */
1413 		if (set_page_guard(zone, &page[size], high, migratetype))
1414 			continue;
1415 
1416 		add_to_free_list(&page[size], zone, high, migratetype);
1417 		set_buddy_order(&page[size], high);
1418 	}
1419 }
1420 
1421 static void check_new_page_bad(struct page *page)
1422 {
1423 	if (unlikely(page->flags & __PG_HWPOISON)) {
1424 		/* Don't complain about hwpoisoned pages */
1425 		page_mapcount_reset(page); /* remove PageBuddy */
1426 		return;
1427 	}
1428 
1429 	bad_page(page,
1430 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1431 }
1432 
1433 /*
1434  * This page is about to be returned from the page allocator
1435  */
1436 static int check_new_page(struct page *page)
1437 {
1438 	if (likely(page_expected_state(page,
1439 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1440 		return 0;
1441 
1442 	check_new_page_bad(page);
1443 	return 1;
1444 }
1445 
1446 static inline bool check_new_pages(struct page *page, unsigned int order)
1447 {
1448 	if (is_check_pages_enabled()) {
1449 		for (int i = 0; i < (1 << order); i++) {
1450 			struct page *p = page + i;
1451 
1452 			if (check_new_page(p))
1453 				return true;
1454 		}
1455 	}
1456 
1457 	return false;
1458 }
1459 
1460 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1461 {
1462 	/* Don't skip if a software KASAN mode is enabled. */
1463 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1464 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1465 		return false;
1466 
1467 	/* Skip, if hardware tag-based KASAN is not enabled. */
1468 	if (!kasan_hw_tags_enabled())
1469 		return true;
1470 
1471 	/*
1472 	 * With hardware tag-based KASAN enabled, skip if this has been
1473 	 * requested via __GFP_SKIP_KASAN.
1474 	 */
1475 	return flags & __GFP_SKIP_KASAN;
1476 }
1477 
1478 static inline bool should_skip_init(gfp_t flags)
1479 {
1480 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1481 	if (!kasan_hw_tags_enabled())
1482 		return false;
1483 
1484 	/* For hardware tag-based KASAN, skip if requested. */
1485 	return (flags & __GFP_SKIP_ZERO);
1486 }
1487 
1488 inline void post_alloc_hook(struct page *page, unsigned int order,
1489 				gfp_t gfp_flags)
1490 {
1491 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1492 			!should_skip_init(gfp_flags);
1493 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1494 	int i;
1495 
1496 	set_page_private(page, 0);
1497 	set_page_refcounted(page);
1498 
1499 	arch_alloc_page(page, order);
1500 	debug_pagealloc_map_pages(page, 1 << order);
1501 
1502 	/*
1503 	 * Page unpoisoning must happen before memory initialization.
1504 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1505 	 * allocations and the page unpoisoning code will complain.
1506 	 */
1507 	kernel_unpoison_pages(page, 1 << order);
1508 
1509 	/*
1510 	 * As memory initialization might be integrated into KASAN,
1511 	 * KASAN unpoisoning and memory initializion code must be
1512 	 * kept together to avoid discrepancies in behavior.
1513 	 */
1514 
1515 	/*
1516 	 * If memory tags should be zeroed
1517 	 * (which happens only when memory should be initialized as well).
1518 	 */
1519 	if (zero_tags) {
1520 		/* Initialize both memory and memory tags. */
1521 		for (i = 0; i != 1 << order; ++i)
1522 			tag_clear_highpage(page + i);
1523 
1524 		/* Take note that memory was initialized by the loop above. */
1525 		init = false;
1526 	}
1527 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1528 	    kasan_unpoison_pages(page, order, init)) {
1529 		/* Take note that memory was initialized by KASAN. */
1530 		if (kasan_has_integrated_init())
1531 			init = false;
1532 	} else {
1533 		/*
1534 		 * If memory tags have not been set by KASAN, reset the page
1535 		 * tags to ensure page_address() dereferencing does not fault.
1536 		 */
1537 		for (i = 0; i != 1 << order; ++i)
1538 			page_kasan_tag_reset(page + i);
1539 	}
1540 	/* If memory is still not initialized, initialize it now. */
1541 	if (init)
1542 		kernel_init_pages(page, 1 << order);
1543 
1544 	set_page_owner(page, order, gfp_flags);
1545 	page_table_check_alloc(page, order);
1546 }
1547 
1548 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1549 							unsigned int alloc_flags)
1550 {
1551 	post_alloc_hook(page, order, gfp_flags);
1552 
1553 	if (order && (gfp_flags & __GFP_COMP))
1554 		prep_compound_page(page, order);
1555 
1556 	/*
1557 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1558 	 * allocate the page. The expectation is that the caller is taking
1559 	 * steps that will free more memory. The caller should avoid the page
1560 	 * being used for !PFMEMALLOC purposes.
1561 	 */
1562 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1563 		set_page_pfmemalloc(page);
1564 	else
1565 		clear_page_pfmemalloc(page);
1566 }
1567 
1568 /*
1569  * Go through the free lists for the given migratetype and remove
1570  * the smallest available page from the freelists
1571  */
1572 static __always_inline
1573 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1574 						int migratetype)
1575 {
1576 	unsigned int current_order;
1577 	struct free_area *area;
1578 	struct page *page;
1579 
1580 	/* Find a page of the appropriate size in the preferred list */
1581 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1582 		area = &(zone->free_area[current_order]);
1583 		page = get_page_from_free_area(area, migratetype);
1584 		if (!page)
1585 			continue;
1586 		del_page_from_free_list(page, zone, current_order);
1587 		expand(zone, page, order, current_order, migratetype);
1588 		set_pcppage_migratetype(page, migratetype);
1589 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1590 				pcp_allowed_order(order) &&
1591 				migratetype < MIGRATE_PCPTYPES);
1592 		return page;
1593 	}
1594 
1595 	return NULL;
1596 }
1597 
1598 
1599 /*
1600  * This array describes the order lists are fallen back to when
1601  * the free lists for the desirable migrate type are depleted
1602  *
1603  * The other migratetypes do not have fallbacks.
1604  */
1605 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1606 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1607 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1608 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1609 };
1610 
1611 #ifdef CONFIG_CMA
1612 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1613 					unsigned int order)
1614 {
1615 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1616 }
1617 #else
1618 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1619 					unsigned int order) { return NULL; }
1620 #endif
1621 
1622 /*
1623  * Move the free pages in a range to the freelist tail of the requested type.
1624  * Note that start_page and end_pages are not aligned on a pageblock
1625  * boundary. If alignment is required, use move_freepages_block()
1626  */
1627 static int move_freepages(struct zone *zone,
1628 			  unsigned long start_pfn, unsigned long end_pfn,
1629 			  int migratetype, int *num_movable)
1630 {
1631 	struct page *page;
1632 	unsigned long pfn;
1633 	unsigned int order;
1634 	int pages_moved = 0;
1635 
1636 	for (pfn = start_pfn; pfn <= end_pfn;) {
1637 		page = pfn_to_page(pfn);
1638 		if (!PageBuddy(page)) {
1639 			/*
1640 			 * We assume that pages that could be isolated for
1641 			 * migration are movable. But we don't actually try
1642 			 * isolating, as that would be expensive.
1643 			 */
1644 			if (num_movable &&
1645 					(PageLRU(page) || __PageMovable(page)))
1646 				(*num_movable)++;
1647 			pfn++;
1648 			continue;
1649 		}
1650 
1651 		/* Make sure we are not inadvertently changing nodes */
1652 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1653 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1654 
1655 		order = buddy_order(page);
1656 		move_to_free_list(page, zone, order, migratetype);
1657 		pfn += 1 << order;
1658 		pages_moved += 1 << order;
1659 	}
1660 
1661 	return pages_moved;
1662 }
1663 
1664 int move_freepages_block(struct zone *zone, struct page *page,
1665 				int migratetype, int *num_movable)
1666 {
1667 	unsigned long start_pfn, end_pfn, pfn;
1668 
1669 	if (num_movable)
1670 		*num_movable = 0;
1671 
1672 	pfn = page_to_pfn(page);
1673 	start_pfn = pageblock_start_pfn(pfn);
1674 	end_pfn = pageblock_end_pfn(pfn) - 1;
1675 
1676 	/* Do not cross zone boundaries */
1677 	if (!zone_spans_pfn(zone, start_pfn))
1678 		start_pfn = pfn;
1679 	if (!zone_spans_pfn(zone, end_pfn))
1680 		return 0;
1681 
1682 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1683 								num_movable);
1684 }
1685 
1686 static void change_pageblock_range(struct page *pageblock_page,
1687 					int start_order, int migratetype)
1688 {
1689 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1690 
1691 	while (nr_pageblocks--) {
1692 		set_pageblock_migratetype(pageblock_page, migratetype);
1693 		pageblock_page += pageblock_nr_pages;
1694 	}
1695 }
1696 
1697 /*
1698  * When we are falling back to another migratetype during allocation, try to
1699  * steal extra free pages from the same pageblocks to satisfy further
1700  * allocations, instead of polluting multiple pageblocks.
1701  *
1702  * If we are stealing a relatively large buddy page, it is likely there will
1703  * be more free pages in the pageblock, so try to steal them all. For
1704  * reclaimable and unmovable allocations, we steal regardless of page size,
1705  * as fragmentation caused by those allocations polluting movable pageblocks
1706  * is worse than movable allocations stealing from unmovable and reclaimable
1707  * pageblocks.
1708  */
1709 static bool can_steal_fallback(unsigned int order, int start_mt)
1710 {
1711 	/*
1712 	 * Leaving this order check is intended, although there is
1713 	 * relaxed order check in next check. The reason is that
1714 	 * we can actually steal whole pageblock if this condition met,
1715 	 * but, below check doesn't guarantee it and that is just heuristic
1716 	 * so could be changed anytime.
1717 	 */
1718 	if (order >= pageblock_order)
1719 		return true;
1720 
1721 	if (order >= pageblock_order / 2 ||
1722 		start_mt == MIGRATE_RECLAIMABLE ||
1723 		start_mt == MIGRATE_UNMOVABLE ||
1724 		page_group_by_mobility_disabled)
1725 		return true;
1726 
1727 	return false;
1728 }
1729 
1730 static inline bool boost_watermark(struct zone *zone)
1731 {
1732 	unsigned long max_boost;
1733 
1734 	if (!watermark_boost_factor)
1735 		return false;
1736 	/*
1737 	 * Don't bother in zones that are unlikely to produce results.
1738 	 * On small machines, including kdump capture kernels running
1739 	 * in a small area, boosting the watermark can cause an out of
1740 	 * memory situation immediately.
1741 	 */
1742 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1743 		return false;
1744 
1745 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1746 			watermark_boost_factor, 10000);
1747 
1748 	/*
1749 	 * high watermark may be uninitialised if fragmentation occurs
1750 	 * very early in boot so do not boost. We do not fall
1751 	 * through and boost by pageblock_nr_pages as failing
1752 	 * allocations that early means that reclaim is not going
1753 	 * to help and it may even be impossible to reclaim the
1754 	 * boosted watermark resulting in a hang.
1755 	 */
1756 	if (!max_boost)
1757 		return false;
1758 
1759 	max_boost = max(pageblock_nr_pages, max_boost);
1760 
1761 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1762 		max_boost);
1763 
1764 	return true;
1765 }
1766 
1767 /*
1768  * This function implements actual steal behaviour. If order is large enough,
1769  * we can steal whole pageblock. If not, we first move freepages in this
1770  * pageblock to our migratetype and determine how many already-allocated pages
1771  * are there in the pageblock with a compatible migratetype. If at least half
1772  * of pages are free or compatible, we can change migratetype of the pageblock
1773  * itself, so pages freed in the future will be put on the correct free list.
1774  */
1775 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1776 		unsigned int alloc_flags, int start_type, bool whole_block)
1777 {
1778 	unsigned int current_order = buddy_order(page);
1779 	int free_pages, movable_pages, alike_pages;
1780 	int old_block_type;
1781 
1782 	old_block_type = get_pageblock_migratetype(page);
1783 
1784 	/*
1785 	 * This can happen due to races and we want to prevent broken
1786 	 * highatomic accounting.
1787 	 */
1788 	if (is_migrate_highatomic(old_block_type))
1789 		goto single_page;
1790 
1791 	/* Take ownership for orders >= pageblock_order */
1792 	if (current_order >= pageblock_order) {
1793 		change_pageblock_range(page, current_order, start_type);
1794 		goto single_page;
1795 	}
1796 
1797 	/*
1798 	 * Boost watermarks to increase reclaim pressure to reduce the
1799 	 * likelihood of future fallbacks. Wake kswapd now as the node
1800 	 * may be balanced overall and kswapd will not wake naturally.
1801 	 */
1802 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1803 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1804 
1805 	/* We are not allowed to try stealing from the whole block */
1806 	if (!whole_block)
1807 		goto single_page;
1808 
1809 	free_pages = move_freepages_block(zone, page, start_type,
1810 						&movable_pages);
1811 	/* moving whole block can fail due to zone boundary conditions */
1812 	if (!free_pages)
1813 		goto single_page;
1814 
1815 	/*
1816 	 * Determine how many pages are compatible with our allocation.
1817 	 * For movable allocation, it's the number of movable pages which
1818 	 * we just obtained. For other types it's a bit more tricky.
1819 	 */
1820 	if (start_type == MIGRATE_MOVABLE) {
1821 		alike_pages = movable_pages;
1822 	} else {
1823 		/*
1824 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1825 		 * to MOVABLE pageblock, consider all non-movable pages as
1826 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1827 		 * vice versa, be conservative since we can't distinguish the
1828 		 * exact migratetype of non-movable pages.
1829 		 */
1830 		if (old_block_type == MIGRATE_MOVABLE)
1831 			alike_pages = pageblock_nr_pages
1832 						- (free_pages + movable_pages);
1833 		else
1834 			alike_pages = 0;
1835 	}
1836 	/*
1837 	 * If a sufficient number of pages in the block are either free or of
1838 	 * compatible migratability as our allocation, claim the whole block.
1839 	 */
1840 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1841 			page_group_by_mobility_disabled)
1842 		set_pageblock_migratetype(page, start_type);
1843 
1844 	return;
1845 
1846 single_page:
1847 	move_to_free_list(page, zone, current_order, start_type);
1848 }
1849 
1850 /*
1851  * Check whether there is a suitable fallback freepage with requested order.
1852  * If only_stealable is true, this function returns fallback_mt only if
1853  * we can steal other freepages all together. This would help to reduce
1854  * fragmentation due to mixed migratetype pages in one pageblock.
1855  */
1856 int find_suitable_fallback(struct free_area *area, unsigned int order,
1857 			int migratetype, bool only_stealable, bool *can_steal)
1858 {
1859 	int i;
1860 	int fallback_mt;
1861 
1862 	if (area->nr_free == 0)
1863 		return -1;
1864 
1865 	*can_steal = false;
1866 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1867 		fallback_mt = fallbacks[migratetype][i];
1868 		if (free_area_empty(area, fallback_mt))
1869 			continue;
1870 
1871 		if (can_steal_fallback(order, migratetype))
1872 			*can_steal = true;
1873 
1874 		if (!only_stealable)
1875 			return fallback_mt;
1876 
1877 		if (*can_steal)
1878 			return fallback_mt;
1879 	}
1880 
1881 	return -1;
1882 }
1883 
1884 /*
1885  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1886  * there are no empty page blocks that contain a page with a suitable order
1887  */
1888 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1889 {
1890 	int mt;
1891 	unsigned long max_managed, flags;
1892 
1893 	/*
1894 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1895 	 * Check is race-prone but harmless.
1896 	 */
1897 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1898 	if (zone->nr_reserved_highatomic >= max_managed)
1899 		return;
1900 
1901 	spin_lock_irqsave(&zone->lock, flags);
1902 
1903 	/* Recheck the nr_reserved_highatomic limit under the lock */
1904 	if (zone->nr_reserved_highatomic >= max_managed)
1905 		goto out_unlock;
1906 
1907 	/* Yoink! */
1908 	mt = get_pageblock_migratetype(page);
1909 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1910 	if (migratetype_is_mergeable(mt)) {
1911 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1912 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1913 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1914 	}
1915 
1916 out_unlock:
1917 	spin_unlock_irqrestore(&zone->lock, flags);
1918 }
1919 
1920 /*
1921  * Used when an allocation is about to fail under memory pressure. This
1922  * potentially hurts the reliability of high-order allocations when under
1923  * intense memory pressure but failed atomic allocations should be easier
1924  * to recover from than an OOM.
1925  *
1926  * If @force is true, try to unreserve a pageblock even though highatomic
1927  * pageblock is exhausted.
1928  */
1929 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1930 						bool force)
1931 {
1932 	struct zonelist *zonelist = ac->zonelist;
1933 	unsigned long flags;
1934 	struct zoneref *z;
1935 	struct zone *zone;
1936 	struct page *page;
1937 	int order;
1938 	bool ret;
1939 
1940 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1941 								ac->nodemask) {
1942 		/*
1943 		 * Preserve at least one pageblock unless memory pressure
1944 		 * is really high.
1945 		 */
1946 		if (!force && zone->nr_reserved_highatomic <=
1947 					pageblock_nr_pages)
1948 			continue;
1949 
1950 		spin_lock_irqsave(&zone->lock, flags);
1951 		for (order = 0; order <= MAX_ORDER; order++) {
1952 			struct free_area *area = &(zone->free_area[order]);
1953 
1954 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1955 			if (!page)
1956 				continue;
1957 
1958 			/*
1959 			 * In page freeing path, migratetype change is racy so
1960 			 * we can counter several free pages in a pageblock
1961 			 * in this loop although we changed the pageblock type
1962 			 * from highatomic to ac->migratetype. So we should
1963 			 * adjust the count once.
1964 			 */
1965 			if (is_migrate_highatomic_page(page)) {
1966 				/*
1967 				 * It should never happen but changes to
1968 				 * locking could inadvertently allow a per-cpu
1969 				 * drain to add pages to MIGRATE_HIGHATOMIC
1970 				 * while unreserving so be safe and watch for
1971 				 * underflows.
1972 				 */
1973 				zone->nr_reserved_highatomic -= min(
1974 						pageblock_nr_pages,
1975 						zone->nr_reserved_highatomic);
1976 			}
1977 
1978 			/*
1979 			 * Convert to ac->migratetype and avoid the normal
1980 			 * pageblock stealing heuristics. Minimally, the caller
1981 			 * is doing the work and needs the pages. More
1982 			 * importantly, if the block was always converted to
1983 			 * MIGRATE_UNMOVABLE or another type then the number
1984 			 * of pageblocks that cannot be completely freed
1985 			 * may increase.
1986 			 */
1987 			set_pageblock_migratetype(page, ac->migratetype);
1988 			ret = move_freepages_block(zone, page, ac->migratetype,
1989 									NULL);
1990 			if (ret) {
1991 				spin_unlock_irqrestore(&zone->lock, flags);
1992 				return ret;
1993 			}
1994 		}
1995 		spin_unlock_irqrestore(&zone->lock, flags);
1996 	}
1997 
1998 	return false;
1999 }
2000 
2001 /*
2002  * Try finding a free buddy page on the fallback list and put it on the free
2003  * list of requested migratetype, possibly along with other pages from the same
2004  * block, depending on fragmentation avoidance heuristics. Returns true if
2005  * fallback was found so that __rmqueue_smallest() can grab it.
2006  *
2007  * The use of signed ints for order and current_order is a deliberate
2008  * deviation from the rest of this file, to make the for loop
2009  * condition simpler.
2010  */
2011 static __always_inline bool
2012 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2013 						unsigned int alloc_flags)
2014 {
2015 	struct free_area *area;
2016 	int current_order;
2017 	int min_order = order;
2018 	struct page *page;
2019 	int fallback_mt;
2020 	bool can_steal;
2021 
2022 	/*
2023 	 * Do not steal pages from freelists belonging to other pageblocks
2024 	 * i.e. orders < pageblock_order. If there are no local zones free,
2025 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2026 	 */
2027 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2028 		min_order = pageblock_order;
2029 
2030 	/*
2031 	 * Find the largest available free page in the other list. This roughly
2032 	 * approximates finding the pageblock with the most free pages, which
2033 	 * would be too costly to do exactly.
2034 	 */
2035 	for (current_order = MAX_ORDER; current_order >= min_order;
2036 				--current_order) {
2037 		area = &(zone->free_area[current_order]);
2038 		fallback_mt = find_suitable_fallback(area, current_order,
2039 				start_migratetype, false, &can_steal);
2040 		if (fallback_mt == -1)
2041 			continue;
2042 
2043 		/*
2044 		 * We cannot steal all free pages from the pageblock and the
2045 		 * requested migratetype is movable. In that case it's better to
2046 		 * steal and split the smallest available page instead of the
2047 		 * largest available page, because even if the next movable
2048 		 * allocation falls back into a different pageblock than this
2049 		 * one, it won't cause permanent fragmentation.
2050 		 */
2051 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2052 					&& current_order > order)
2053 			goto find_smallest;
2054 
2055 		goto do_steal;
2056 	}
2057 
2058 	return false;
2059 
2060 find_smallest:
2061 	for (current_order = order; current_order <= MAX_ORDER;
2062 							current_order++) {
2063 		area = &(zone->free_area[current_order]);
2064 		fallback_mt = find_suitable_fallback(area, current_order,
2065 				start_migratetype, false, &can_steal);
2066 		if (fallback_mt != -1)
2067 			break;
2068 	}
2069 
2070 	/*
2071 	 * This should not happen - we already found a suitable fallback
2072 	 * when looking for the largest page.
2073 	 */
2074 	VM_BUG_ON(current_order > MAX_ORDER);
2075 
2076 do_steal:
2077 	page = get_page_from_free_area(area, fallback_mt);
2078 
2079 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2080 								can_steal);
2081 
2082 	trace_mm_page_alloc_extfrag(page, order, current_order,
2083 		start_migratetype, fallback_mt);
2084 
2085 	return true;
2086 
2087 }
2088 
2089 /*
2090  * Do the hard work of removing an element from the buddy allocator.
2091  * Call me with the zone->lock already held.
2092  */
2093 static __always_inline struct page *
2094 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2095 						unsigned int alloc_flags)
2096 {
2097 	struct page *page;
2098 
2099 	if (IS_ENABLED(CONFIG_CMA)) {
2100 		/*
2101 		 * Balance movable allocations between regular and CMA areas by
2102 		 * allocating from CMA when over half of the zone's free memory
2103 		 * is in the CMA area.
2104 		 */
2105 		if (alloc_flags & ALLOC_CMA &&
2106 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2107 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2108 			page = __rmqueue_cma_fallback(zone, order);
2109 			if (page)
2110 				return page;
2111 		}
2112 	}
2113 retry:
2114 	page = __rmqueue_smallest(zone, order, migratetype);
2115 	if (unlikely(!page)) {
2116 		if (alloc_flags & ALLOC_CMA)
2117 			page = __rmqueue_cma_fallback(zone, order);
2118 
2119 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2120 								alloc_flags))
2121 			goto retry;
2122 	}
2123 	return page;
2124 }
2125 
2126 /*
2127  * Obtain a specified number of elements from the buddy allocator, all under
2128  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2129  * Returns the number of new pages which were placed at *list.
2130  */
2131 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2132 			unsigned long count, struct list_head *list,
2133 			int migratetype, unsigned int alloc_flags)
2134 {
2135 	unsigned long flags;
2136 	int i;
2137 
2138 	spin_lock_irqsave(&zone->lock, flags);
2139 	for (i = 0; i < count; ++i) {
2140 		struct page *page = __rmqueue(zone, order, migratetype,
2141 								alloc_flags);
2142 		if (unlikely(page == NULL))
2143 			break;
2144 
2145 		/*
2146 		 * Split buddy pages returned by expand() are received here in
2147 		 * physical page order. The page is added to the tail of
2148 		 * caller's list. From the callers perspective, the linked list
2149 		 * is ordered by page number under some conditions. This is
2150 		 * useful for IO devices that can forward direction from the
2151 		 * head, thus also in the physical page order. This is useful
2152 		 * for IO devices that can merge IO requests if the physical
2153 		 * pages are ordered properly.
2154 		 */
2155 		list_add_tail(&page->pcp_list, list);
2156 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2157 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2158 					      -(1 << order));
2159 	}
2160 
2161 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2162 	spin_unlock_irqrestore(&zone->lock, flags);
2163 
2164 	return i;
2165 }
2166 
2167 /*
2168  * Called from the vmstat counter updater to decay the PCP high.
2169  * Return whether there are addition works to do.
2170  */
2171 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2172 {
2173 	int high_min, to_drain, batch;
2174 	int todo = 0;
2175 
2176 	high_min = READ_ONCE(pcp->high_min);
2177 	batch = READ_ONCE(pcp->batch);
2178 	/*
2179 	 * Decrease pcp->high periodically to try to free possible
2180 	 * idle PCP pages.  And, avoid to free too many pages to
2181 	 * control latency.  This caps pcp->high decrement too.
2182 	 */
2183 	if (pcp->high > high_min) {
2184 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2185 				 pcp->high - (pcp->high >> 3), high_min);
2186 		if (pcp->high > high_min)
2187 			todo++;
2188 	}
2189 
2190 	to_drain = pcp->count - pcp->high;
2191 	if (to_drain > 0) {
2192 		spin_lock(&pcp->lock);
2193 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2194 		spin_unlock(&pcp->lock);
2195 		todo++;
2196 	}
2197 
2198 	return todo;
2199 }
2200 
2201 #ifdef CONFIG_NUMA
2202 /*
2203  * Called from the vmstat counter updater to drain pagesets of this
2204  * currently executing processor on remote nodes after they have
2205  * expired.
2206  */
2207 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2208 {
2209 	int to_drain, batch;
2210 
2211 	batch = READ_ONCE(pcp->batch);
2212 	to_drain = min(pcp->count, batch);
2213 	if (to_drain > 0) {
2214 		spin_lock(&pcp->lock);
2215 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2216 		spin_unlock(&pcp->lock);
2217 	}
2218 }
2219 #endif
2220 
2221 /*
2222  * Drain pcplists of the indicated processor and zone.
2223  */
2224 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2225 {
2226 	struct per_cpu_pages *pcp;
2227 
2228 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2229 	if (pcp->count) {
2230 		spin_lock(&pcp->lock);
2231 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2232 		spin_unlock(&pcp->lock);
2233 	}
2234 }
2235 
2236 /*
2237  * Drain pcplists of all zones on the indicated processor.
2238  */
2239 static void drain_pages(unsigned int cpu)
2240 {
2241 	struct zone *zone;
2242 
2243 	for_each_populated_zone(zone) {
2244 		drain_pages_zone(cpu, zone);
2245 	}
2246 }
2247 
2248 /*
2249  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2250  */
2251 void drain_local_pages(struct zone *zone)
2252 {
2253 	int cpu = smp_processor_id();
2254 
2255 	if (zone)
2256 		drain_pages_zone(cpu, zone);
2257 	else
2258 		drain_pages(cpu);
2259 }
2260 
2261 /*
2262  * The implementation of drain_all_pages(), exposing an extra parameter to
2263  * drain on all cpus.
2264  *
2265  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2266  * not empty. The check for non-emptiness can however race with a free to
2267  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2268  * that need the guarantee that every CPU has drained can disable the
2269  * optimizing racy check.
2270  */
2271 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2272 {
2273 	int cpu;
2274 
2275 	/*
2276 	 * Allocate in the BSS so we won't require allocation in
2277 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2278 	 */
2279 	static cpumask_t cpus_with_pcps;
2280 
2281 	/*
2282 	 * Do not drain if one is already in progress unless it's specific to
2283 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2284 	 * the drain to be complete when the call returns.
2285 	 */
2286 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2287 		if (!zone)
2288 			return;
2289 		mutex_lock(&pcpu_drain_mutex);
2290 	}
2291 
2292 	/*
2293 	 * We don't care about racing with CPU hotplug event
2294 	 * as offline notification will cause the notified
2295 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2296 	 * disables preemption as part of its processing
2297 	 */
2298 	for_each_online_cpu(cpu) {
2299 		struct per_cpu_pages *pcp;
2300 		struct zone *z;
2301 		bool has_pcps = false;
2302 
2303 		if (force_all_cpus) {
2304 			/*
2305 			 * The pcp.count check is racy, some callers need a
2306 			 * guarantee that no cpu is missed.
2307 			 */
2308 			has_pcps = true;
2309 		} else if (zone) {
2310 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2311 			if (pcp->count)
2312 				has_pcps = true;
2313 		} else {
2314 			for_each_populated_zone(z) {
2315 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2316 				if (pcp->count) {
2317 					has_pcps = true;
2318 					break;
2319 				}
2320 			}
2321 		}
2322 
2323 		if (has_pcps)
2324 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2325 		else
2326 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2327 	}
2328 
2329 	for_each_cpu(cpu, &cpus_with_pcps) {
2330 		if (zone)
2331 			drain_pages_zone(cpu, zone);
2332 		else
2333 			drain_pages(cpu);
2334 	}
2335 
2336 	mutex_unlock(&pcpu_drain_mutex);
2337 }
2338 
2339 /*
2340  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2341  *
2342  * When zone parameter is non-NULL, spill just the single zone's pages.
2343  */
2344 void drain_all_pages(struct zone *zone)
2345 {
2346 	__drain_all_pages(zone, false);
2347 }
2348 
2349 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2350 							unsigned int order)
2351 {
2352 	int migratetype;
2353 
2354 	if (!free_pages_prepare(page, order, FPI_NONE))
2355 		return false;
2356 
2357 	migratetype = get_pfnblock_migratetype(page, pfn);
2358 	set_pcppage_migratetype(page, migratetype);
2359 	return true;
2360 }
2361 
2362 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2363 {
2364 	int min_nr_free, max_nr_free;
2365 
2366 	/* Free as much as possible if batch freeing high-order pages. */
2367 	if (unlikely(free_high))
2368 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2369 
2370 	/* Check for PCP disabled or boot pageset */
2371 	if (unlikely(high < batch))
2372 		return 1;
2373 
2374 	/* Leave at least pcp->batch pages on the list */
2375 	min_nr_free = batch;
2376 	max_nr_free = high - batch;
2377 
2378 	/*
2379 	 * Increase the batch number to the number of the consecutive
2380 	 * freed pages to reduce zone lock contention.
2381 	 */
2382 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2383 
2384 	return batch;
2385 }
2386 
2387 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2388 		       int batch, bool free_high)
2389 {
2390 	int high, high_min, high_max;
2391 
2392 	high_min = READ_ONCE(pcp->high_min);
2393 	high_max = READ_ONCE(pcp->high_max);
2394 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2395 
2396 	if (unlikely(!high))
2397 		return 0;
2398 
2399 	if (unlikely(free_high)) {
2400 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2401 				high_min);
2402 		return 0;
2403 	}
2404 
2405 	/*
2406 	 * If reclaim is active, limit the number of pages that can be
2407 	 * stored on pcp lists
2408 	 */
2409 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2410 		int free_count = max_t(int, pcp->free_count, batch);
2411 
2412 		pcp->high = max(high - free_count, high_min);
2413 		return min(batch << 2, pcp->high);
2414 	}
2415 
2416 	if (high_min == high_max)
2417 		return high;
2418 
2419 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2420 		int free_count = max_t(int, pcp->free_count, batch);
2421 
2422 		pcp->high = max(high - free_count, high_min);
2423 		high = max(pcp->count, high_min);
2424 	} else if (pcp->count >= high) {
2425 		int need_high = pcp->free_count + batch;
2426 
2427 		/* pcp->high should be large enough to hold batch freed pages */
2428 		if (pcp->high < need_high)
2429 			pcp->high = clamp(need_high, high_min, high_max);
2430 	}
2431 
2432 	return high;
2433 }
2434 
2435 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2436 				   struct page *page, int migratetype,
2437 				   unsigned int order)
2438 {
2439 	int high, batch;
2440 	int pindex;
2441 	bool free_high = false;
2442 
2443 	/*
2444 	 * On freeing, reduce the number of pages that are batch allocated.
2445 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2446 	 * allocations.
2447 	 */
2448 	pcp->alloc_factor >>= 1;
2449 	__count_vm_events(PGFREE, 1 << order);
2450 	pindex = order_to_pindex(migratetype, order);
2451 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2452 	pcp->count += 1 << order;
2453 
2454 	batch = READ_ONCE(pcp->batch);
2455 	/*
2456 	 * As high-order pages other than THP's stored on PCP can contribute
2457 	 * to fragmentation, limit the number stored when PCP is heavily
2458 	 * freeing without allocation. The remainder after bulk freeing
2459 	 * stops will be drained from vmstat refresh context.
2460 	 */
2461 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2462 		free_high = (pcp->free_count >= batch &&
2463 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2464 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2465 			      pcp->count >= READ_ONCE(batch)));
2466 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2467 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2468 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2469 	}
2470 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2471 		pcp->free_count += (1 << order);
2472 	high = nr_pcp_high(pcp, zone, batch, free_high);
2473 	if (pcp->count >= high) {
2474 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2475 				   pcp, pindex);
2476 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2477 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2478 				      ZONE_MOVABLE, 0))
2479 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2480 	}
2481 }
2482 
2483 /*
2484  * Free a pcp page
2485  */
2486 void free_unref_page(struct page *page, unsigned int order)
2487 {
2488 	unsigned long __maybe_unused UP_flags;
2489 	struct per_cpu_pages *pcp;
2490 	struct zone *zone;
2491 	unsigned long pfn = page_to_pfn(page);
2492 	int migratetype, pcpmigratetype;
2493 
2494 	if (!free_unref_page_prepare(page, pfn, order))
2495 		return;
2496 
2497 	/*
2498 	 * We only track unmovable, reclaimable and movable on pcp lists.
2499 	 * Place ISOLATE pages on the isolated list because they are being
2500 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2501 	 * get those areas back if necessary. Otherwise, we may have to free
2502 	 * excessively into the page allocator
2503 	 */
2504 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2505 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2506 		if (unlikely(is_migrate_isolate(migratetype))) {
2507 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2508 			return;
2509 		}
2510 		pcpmigratetype = MIGRATE_MOVABLE;
2511 	}
2512 
2513 	zone = page_zone(page);
2514 	pcp_trylock_prepare(UP_flags);
2515 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2516 	if (pcp) {
2517 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2518 		pcp_spin_unlock(pcp);
2519 	} else {
2520 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2521 	}
2522 	pcp_trylock_finish(UP_flags);
2523 }
2524 
2525 /*
2526  * Free a list of 0-order pages
2527  */
2528 void free_unref_page_list(struct list_head *list)
2529 {
2530 	unsigned long __maybe_unused UP_flags;
2531 	struct page *page, *next;
2532 	struct per_cpu_pages *pcp = NULL;
2533 	struct zone *locked_zone = NULL;
2534 	int batch_count = 0;
2535 	int migratetype;
2536 
2537 	/* Prepare pages for freeing */
2538 	list_for_each_entry_safe(page, next, list, lru) {
2539 		unsigned long pfn = page_to_pfn(page);
2540 		if (!free_unref_page_prepare(page, pfn, 0)) {
2541 			list_del(&page->lru);
2542 			continue;
2543 		}
2544 
2545 		/*
2546 		 * Free isolated pages directly to the allocator, see
2547 		 * comment in free_unref_page.
2548 		 */
2549 		migratetype = get_pcppage_migratetype(page);
2550 		if (unlikely(is_migrate_isolate(migratetype))) {
2551 			list_del(&page->lru);
2552 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2553 			continue;
2554 		}
2555 	}
2556 
2557 	list_for_each_entry_safe(page, next, list, lru) {
2558 		struct zone *zone = page_zone(page);
2559 
2560 		list_del(&page->lru);
2561 		migratetype = get_pcppage_migratetype(page);
2562 
2563 		/*
2564 		 * Either different zone requiring a different pcp lock or
2565 		 * excessive lock hold times when freeing a large list of
2566 		 * pages.
2567 		 */
2568 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2569 			if (pcp) {
2570 				pcp_spin_unlock(pcp);
2571 				pcp_trylock_finish(UP_flags);
2572 			}
2573 
2574 			batch_count = 0;
2575 
2576 			/*
2577 			 * trylock is necessary as pages may be getting freed
2578 			 * from IRQ or SoftIRQ context after an IO completion.
2579 			 */
2580 			pcp_trylock_prepare(UP_flags);
2581 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2582 			if (unlikely(!pcp)) {
2583 				pcp_trylock_finish(UP_flags);
2584 				free_one_page(zone, page, page_to_pfn(page),
2585 					      0, migratetype, FPI_NONE);
2586 				locked_zone = NULL;
2587 				continue;
2588 			}
2589 			locked_zone = zone;
2590 		}
2591 
2592 		/*
2593 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2594 		 * to the MIGRATE_MOVABLE pcp list.
2595 		 */
2596 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2597 			migratetype = MIGRATE_MOVABLE;
2598 
2599 		trace_mm_page_free_batched(page);
2600 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2601 		batch_count++;
2602 	}
2603 
2604 	if (pcp) {
2605 		pcp_spin_unlock(pcp);
2606 		pcp_trylock_finish(UP_flags);
2607 	}
2608 }
2609 
2610 /*
2611  * split_page takes a non-compound higher-order page, and splits it into
2612  * n (1<<order) sub-pages: page[0..n]
2613  * Each sub-page must be freed individually.
2614  *
2615  * Note: this is probably too low level an operation for use in drivers.
2616  * Please consult with lkml before using this in your driver.
2617  */
2618 void split_page(struct page *page, unsigned int order)
2619 {
2620 	int i;
2621 
2622 	VM_BUG_ON_PAGE(PageCompound(page), page);
2623 	VM_BUG_ON_PAGE(!page_count(page), page);
2624 
2625 	for (i = 1; i < (1 << order); i++)
2626 		set_page_refcounted(page + i);
2627 	split_page_owner(page, 1 << order);
2628 	split_page_memcg(page, 1 << order);
2629 }
2630 EXPORT_SYMBOL_GPL(split_page);
2631 
2632 int __isolate_free_page(struct page *page, unsigned int order)
2633 {
2634 	struct zone *zone = page_zone(page);
2635 	int mt = get_pageblock_migratetype(page);
2636 
2637 	if (!is_migrate_isolate(mt)) {
2638 		unsigned long watermark;
2639 		/*
2640 		 * Obey watermarks as if the page was being allocated. We can
2641 		 * emulate a high-order watermark check with a raised order-0
2642 		 * watermark, because we already know our high-order page
2643 		 * exists.
2644 		 */
2645 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2646 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2647 			return 0;
2648 
2649 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2650 	}
2651 
2652 	del_page_from_free_list(page, zone, order);
2653 
2654 	/*
2655 	 * Set the pageblock if the isolated page is at least half of a
2656 	 * pageblock
2657 	 */
2658 	if (order >= pageblock_order - 1) {
2659 		struct page *endpage = page + (1 << order) - 1;
2660 		for (; page < endpage; page += pageblock_nr_pages) {
2661 			int mt = get_pageblock_migratetype(page);
2662 			/*
2663 			 * Only change normal pageblocks (i.e., they can merge
2664 			 * with others)
2665 			 */
2666 			if (migratetype_is_mergeable(mt))
2667 				set_pageblock_migratetype(page,
2668 							  MIGRATE_MOVABLE);
2669 		}
2670 	}
2671 
2672 	return 1UL << order;
2673 }
2674 
2675 /**
2676  * __putback_isolated_page - Return a now-isolated page back where we got it
2677  * @page: Page that was isolated
2678  * @order: Order of the isolated page
2679  * @mt: The page's pageblock's migratetype
2680  *
2681  * This function is meant to return a page pulled from the free lists via
2682  * __isolate_free_page back to the free lists they were pulled from.
2683  */
2684 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2685 {
2686 	struct zone *zone = page_zone(page);
2687 
2688 	/* zone lock should be held when this function is called */
2689 	lockdep_assert_held(&zone->lock);
2690 
2691 	/* Return isolated page to tail of freelist. */
2692 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2693 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2694 }
2695 
2696 /*
2697  * Update NUMA hit/miss statistics
2698  */
2699 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2700 				   long nr_account)
2701 {
2702 #ifdef CONFIG_NUMA
2703 	enum numa_stat_item local_stat = NUMA_LOCAL;
2704 
2705 	/* skip numa counters update if numa stats is disabled */
2706 	if (!static_branch_likely(&vm_numa_stat_key))
2707 		return;
2708 
2709 	if (zone_to_nid(z) != numa_node_id())
2710 		local_stat = NUMA_OTHER;
2711 
2712 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2713 		__count_numa_events(z, NUMA_HIT, nr_account);
2714 	else {
2715 		__count_numa_events(z, NUMA_MISS, nr_account);
2716 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2717 	}
2718 	__count_numa_events(z, local_stat, nr_account);
2719 #endif
2720 }
2721 
2722 static __always_inline
2723 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2724 			   unsigned int order, unsigned int alloc_flags,
2725 			   int migratetype)
2726 {
2727 	struct page *page;
2728 	unsigned long flags;
2729 
2730 	do {
2731 		page = NULL;
2732 		spin_lock_irqsave(&zone->lock, flags);
2733 		if (alloc_flags & ALLOC_HIGHATOMIC)
2734 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2735 		if (!page) {
2736 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2737 
2738 			/*
2739 			 * If the allocation fails, allow OOM handling access
2740 			 * to HIGHATOMIC reserves as failing now is worse than
2741 			 * failing a high-order atomic allocation in the
2742 			 * future.
2743 			 */
2744 			if (!page && (alloc_flags & ALLOC_OOM))
2745 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2746 
2747 			if (!page) {
2748 				spin_unlock_irqrestore(&zone->lock, flags);
2749 				return NULL;
2750 			}
2751 		}
2752 		__mod_zone_freepage_state(zone, -(1 << order),
2753 					  get_pcppage_migratetype(page));
2754 		spin_unlock_irqrestore(&zone->lock, flags);
2755 	} while (check_new_pages(page, order));
2756 
2757 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2758 	zone_statistics(preferred_zone, zone, 1);
2759 
2760 	return page;
2761 }
2762 
2763 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2764 {
2765 	int high, base_batch, batch, max_nr_alloc;
2766 	int high_max, high_min;
2767 
2768 	base_batch = READ_ONCE(pcp->batch);
2769 	high_min = READ_ONCE(pcp->high_min);
2770 	high_max = READ_ONCE(pcp->high_max);
2771 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2772 
2773 	/* Check for PCP disabled or boot pageset */
2774 	if (unlikely(high < base_batch))
2775 		return 1;
2776 
2777 	if (order)
2778 		batch = base_batch;
2779 	else
2780 		batch = (base_batch << pcp->alloc_factor);
2781 
2782 	/*
2783 	 * If we had larger pcp->high, we could avoid to allocate from
2784 	 * zone.
2785 	 */
2786 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2787 		high = pcp->high = min(high + batch, high_max);
2788 
2789 	if (!order) {
2790 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2791 		/*
2792 		 * Double the number of pages allocated each time there is
2793 		 * subsequent allocation of order-0 pages without any freeing.
2794 		 */
2795 		if (batch <= max_nr_alloc &&
2796 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2797 			pcp->alloc_factor++;
2798 		batch = min(batch, max_nr_alloc);
2799 	}
2800 
2801 	/*
2802 	 * Scale batch relative to order if batch implies free pages
2803 	 * can be stored on the PCP. Batch can be 1 for small zones or
2804 	 * for boot pagesets which should never store free pages as
2805 	 * the pages may belong to arbitrary zones.
2806 	 */
2807 	if (batch > 1)
2808 		batch = max(batch >> order, 2);
2809 
2810 	return batch;
2811 }
2812 
2813 /* Remove page from the per-cpu list, caller must protect the list */
2814 static inline
2815 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2816 			int migratetype,
2817 			unsigned int alloc_flags,
2818 			struct per_cpu_pages *pcp,
2819 			struct list_head *list)
2820 {
2821 	struct page *page;
2822 
2823 	do {
2824 		if (list_empty(list)) {
2825 			int batch = nr_pcp_alloc(pcp, zone, order);
2826 			int alloced;
2827 
2828 			alloced = rmqueue_bulk(zone, order,
2829 					batch, list,
2830 					migratetype, alloc_flags);
2831 
2832 			pcp->count += alloced << order;
2833 			if (unlikely(list_empty(list)))
2834 				return NULL;
2835 		}
2836 
2837 		page = list_first_entry(list, struct page, pcp_list);
2838 		list_del(&page->pcp_list);
2839 		pcp->count -= 1 << order;
2840 	} while (check_new_pages(page, order));
2841 
2842 	return page;
2843 }
2844 
2845 /* Lock and remove page from the per-cpu list */
2846 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2847 			struct zone *zone, unsigned int order,
2848 			int migratetype, unsigned int alloc_flags)
2849 {
2850 	struct per_cpu_pages *pcp;
2851 	struct list_head *list;
2852 	struct page *page;
2853 	unsigned long __maybe_unused UP_flags;
2854 
2855 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2856 	pcp_trylock_prepare(UP_flags);
2857 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2858 	if (!pcp) {
2859 		pcp_trylock_finish(UP_flags);
2860 		return NULL;
2861 	}
2862 
2863 	/*
2864 	 * On allocation, reduce the number of pages that are batch freed.
2865 	 * See nr_pcp_free() where free_factor is increased for subsequent
2866 	 * frees.
2867 	 */
2868 	pcp->free_count >>= 1;
2869 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2870 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2871 	pcp_spin_unlock(pcp);
2872 	pcp_trylock_finish(UP_flags);
2873 	if (page) {
2874 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2875 		zone_statistics(preferred_zone, zone, 1);
2876 	}
2877 	return page;
2878 }
2879 
2880 /*
2881  * Allocate a page from the given zone.
2882  * Use pcplists for THP or "cheap" high-order allocations.
2883  */
2884 
2885 /*
2886  * Do not instrument rmqueue() with KMSAN. This function may call
2887  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2888  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2889  * may call rmqueue() again, which will result in a deadlock.
2890  */
2891 __no_sanitize_memory
2892 static inline
2893 struct page *rmqueue(struct zone *preferred_zone,
2894 			struct zone *zone, unsigned int order,
2895 			gfp_t gfp_flags, unsigned int alloc_flags,
2896 			int migratetype)
2897 {
2898 	struct page *page;
2899 
2900 	/*
2901 	 * We most definitely don't want callers attempting to
2902 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2903 	 */
2904 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2905 
2906 	if (likely(pcp_allowed_order(order))) {
2907 		page = rmqueue_pcplist(preferred_zone, zone, order,
2908 				       migratetype, alloc_flags);
2909 		if (likely(page))
2910 			goto out;
2911 	}
2912 
2913 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2914 							migratetype);
2915 
2916 out:
2917 	/* Separate test+clear to avoid unnecessary atomics */
2918 	if ((alloc_flags & ALLOC_KSWAPD) &&
2919 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2920 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2921 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2922 	}
2923 
2924 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2925 	return page;
2926 }
2927 
2928 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2929 {
2930 	return __should_fail_alloc_page(gfp_mask, order);
2931 }
2932 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2933 
2934 static inline long __zone_watermark_unusable_free(struct zone *z,
2935 				unsigned int order, unsigned int alloc_flags)
2936 {
2937 	long unusable_free = (1 << order) - 1;
2938 
2939 	/*
2940 	 * If the caller does not have rights to reserves below the min
2941 	 * watermark then subtract the high-atomic reserves. This will
2942 	 * over-estimate the size of the atomic reserve but it avoids a search.
2943 	 */
2944 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2945 		unusable_free += z->nr_reserved_highatomic;
2946 
2947 #ifdef CONFIG_CMA
2948 	/* If allocation can't use CMA areas don't use free CMA pages */
2949 	if (!(alloc_flags & ALLOC_CMA))
2950 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2951 #endif
2952 #ifdef CONFIG_UNACCEPTED_MEMORY
2953 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2954 #endif
2955 
2956 	return unusable_free;
2957 }
2958 
2959 /*
2960  * Return true if free base pages are above 'mark'. For high-order checks it
2961  * will return true of the order-0 watermark is reached and there is at least
2962  * one free page of a suitable size. Checking now avoids taking the zone lock
2963  * to check in the allocation paths if no pages are free.
2964  */
2965 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2966 			 int highest_zoneidx, unsigned int alloc_flags,
2967 			 long free_pages)
2968 {
2969 	long min = mark;
2970 	int o;
2971 
2972 	/* free_pages may go negative - that's OK */
2973 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2974 
2975 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2976 		/*
2977 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2978 		 * as OOM.
2979 		 */
2980 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2981 			min -= min / 2;
2982 
2983 			/*
2984 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2985 			 * access more reserves than just __GFP_HIGH. Other
2986 			 * non-blocking allocations requests such as GFP_NOWAIT
2987 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2988 			 * access to the min reserve.
2989 			 */
2990 			if (alloc_flags & ALLOC_NON_BLOCK)
2991 				min -= min / 4;
2992 		}
2993 
2994 		/*
2995 		 * OOM victims can try even harder than the normal reserve
2996 		 * users on the grounds that it's definitely going to be in
2997 		 * the exit path shortly and free memory. Any allocation it
2998 		 * makes during the free path will be small and short-lived.
2999 		 */
3000 		if (alloc_flags & ALLOC_OOM)
3001 			min -= min / 2;
3002 	}
3003 
3004 	/*
3005 	 * Check watermarks for an order-0 allocation request. If these
3006 	 * are not met, then a high-order request also cannot go ahead
3007 	 * even if a suitable page happened to be free.
3008 	 */
3009 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3010 		return false;
3011 
3012 	/* If this is an order-0 request then the watermark is fine */
3013 	if (!order)
3014 		return true;
3015 
3016 	/* For a high-order request, check at least one suitable page is free */
3017 	for (o = order; o <= MAX_ORDER; o++) {
3018 		struct free_area *area = &z->free_area[o];
3019 		int mt;
3020 
3021 		if (!area->nr_free)
3022 			continue;
3023 
3024 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3025 			if (!free_area_empty(area, mt))
3026 				return true;
3027 		}
3028 
3029 #ifdef CONFIG_CMA
3030 		if ((alloc_flags & ALLOC_CMA) &&
3031 		    !free_area_empty(area, MIGRATE_CMA)) {
3032 			return true;
3033 		}
3034 #endif
3035 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3036 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3037 			return true;
3038 		}
3039 	}
3040 	return false;
3041 }
3042 
3043 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3044 		      int highest_zoneidx, unsigned int alloc_flags)
3045 {
3046 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3047 					zone_page_state(z, NR_FREE_PAGES));
3048 }
3049 
3050 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3051 				unsigned long mark, int highest_zoneidx,
3052 				unsigned int alloc_flags, gfp_t gfp_mask)
3053 {
3054 	long free_pages;
3055 
3056 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3057 
3058 	/*
3059 	 * Fast check for order-0 only. If this fails then the reserves
3060 	 * need to be calculated.
3061 	 */
3062 	if (!order) {
3063 		long usable_free;
3064 		long reserved;
3065 
3066 		usable_free = free_pages;
3067 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3068 
3069 		/* reserved may over estimate high-atomic reserves. */
3070 		usable_free -= min(usable_free, reserved);
3071 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3072 			return true;
3073 	}
3074 
3075 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3076 					free_pages))
3077 		return true;
3078 
3079 	/*
3080 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3081 	 * when checking the min watermark. The min watermark is the
3082 	 * point where boosting is ignored so that kswapd is woken up
3083 	 * when below the low watermark.
3084 	 */
3085 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3086 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3087 		mark = z->_watermark[WMARK_MIN];
3088 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3089 					alloc_flags, free_pages);
3090 	}
3091 
3092 	return false;
3093 }
3094 
3095 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3096 			unsigned long mark, int highest_zoneidx)
3097 {
3098 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3099 
3100 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3101 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3102 
3103 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3104 								free_pages);
3105 }
3106 
3107 #ifdef CONFIG_NUMA
3108 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3109 
3110 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3111 {
3112 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3113 				node_reclaim_distance;
3114 }
3115 #else	/* CONFIG_NUMA */
3116 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3117 {
3118 	return true;
3119 }
3120 #endif	/* CONFIG_NUMA */
3121 
3122 /*
3123  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3124  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3125  * premature use of a lower zone may cause lowmem pressure problems that
3126  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3127  * probably too small. It only makes sense to spread allocations to avoid
3128  * fragmentation between the Normal and DMA32 zones.
3129  */
3130 static inline unsigned int
3131 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3132 {
3133 	unsigned int alloc_flags;
3134 
3135 	/*
3136 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3137 	 * to save a branch.
3138 	 */
3139 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3140 
3141 #ifdef CONFIG_ZONE_DMA32
3142 	if (!zone)
3143 		return alloc_flags;
3144 
3145 	if (zone_idx(zone) != ZONE_NORMAL)
3146 		return alloc_flags;
3147 
3148 	/*
3149 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3150 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3151 	 * on UMA that if Normal is populated then so is DMA32.
3152 	 */
3153 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3154 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3155 		return alloc_flags;
3156 
3157 	alloc_flags |= ALLOC_NOFRAGMENT;
3158 #endif /* CONFIG_ZONE_DMA32 */
3159 	return alloc_flags;
3160 }
3161 
3162 /* Must be called after current_gfp_context() which can change gfp_mask */
3163 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3164 						  unsigned int alloc_flags)
3165 {
3166 #ifdef CONFIG_CMA
3167 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3168 		alloc_flags |= ALLOC_CMA;
3169 #endif
3170 	return alloc_flags;
3171 }
3172 
3173 /*
3174  * get_page_from_freelist goes through the zonelist trying to allocate
3175  * a page.
3176  */
3177 static struct page *
3178 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3179 						const struct alloc_context *ac)
3180 {
3181 	struct zoneref *z;
3182 	struct zone *zone;
3183 	struct pglist_data *last_pgdat = NULL;
3184 	bool last_pgdat_dirty_ok = false;
3185 	bool no_fallback;
3186 
3187 retry:
3188 	/*
3189 	 * Scan zonelist, looking for a zone with enough free.
3190 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3191 	 */
3192 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3193 	z = ac->preferred_zoneref;
3194 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3195 					ac->nodemask) {
3196 		struct page *page;
3197 		unsigned long mark;
3198 
3199 		if (cpusets_enabled() &&
3200 			(alloc_flags & ALLOC_CPUSET) &&
3201 			!__cpuset_zone_allowed(zone, gfp_mask))
3202 				continue;
3203 		/*
3204 		 * When allocating a page cache page for writing, we
3205 		 * want to get it from a node that is within its dirty
3206 		 * limit, such that no single node holds more than its
3207 		 * proportional share of globally allowed dirty pages.
3208 		 * The dirty limits take into account the node's
3209 		 * lowmem reserves and high watermark so that kswapd
3210 		 * should be able to balance it without having to
3211 		 * write pages from its LRU list.
3212 		 *
3213 		 * XXX: For now, allow allocations to potentially
3214 		 * exceed the per-node dirty limit in the slowpath
3215 		 * (spread_dirty_pages unset) before going into reclaim,
3216 		 * which is important when on a NUMA setup the allowed
3217 		 * nodes are together not big enough to reach the
3218 		 * global limit.  The proper fix for these situations
3219 		 * will require awareness of nodes in the
3220 		 * dirty-throttling and the flusher threads.
3221 		 */
3222 		if (ac->spread_dirty_pages) {
3223 			if (last_pgdat != zone->zone_pgdat) {
3224 				last_pgdat = zone->zone_pgdat;
3225 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3226 			}
3227 
3228 			if (!last_pgdat_dirty_ok)
3229 				continue;
3230 		}
3231 
3232 		if (no_fallback && nr_online_nodes > 1 &&
3233 		    zone != ac->preferred_zoneref->zone) {
3234 			int local_nid;
3235 
3236 			/*
3237 			 * If moving to a remote node, retry but allow
3238 			 * fragmenting fallbacks. Locality is more important
3239 			 * than fragmentation avoidance.
3240 			 */
3241 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3242 			if (zone_to_nid(zone) != local_nid) {
3243 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3244 				goto retry;
3245 			}
3246 		}
3247 
3248 		/*
3249 		 * Detect whether the number of free pages is below high
3250 		 * watermark.  If so, we will decrease pcp->high and free
3251 		 * PCP pages in free path to reduce the possibility of
3252 		 * premature page reclaiming.  Detection is done here to
3253 		 * avoid to do that in hotter free path.
3254 		 */
3255 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3256 			goto check_alloc_wmark;
3257 
3258 		mark = high_wmark_pages(zone);
3259 		if (zone_watermark_fast(zone, order, mark,
3260 					ac->highest_zoneidx, alloc_flags,
3261 					gfp_mask))
3262 			goto try_this_zone;
3263 		else
3264 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3265 
3266 check_alloc_wmark:
3267 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3268 		if (!zone_watermark_fast(zone, order, mark,
3269 				       ac->highest_zoneidx, alloc_flags,
3270 				       gfp_mask)) {
3271 			int ret;
3272 
3273 			if (has_unaccepted_memory()) {
3274 				if (try_to_accept_memory(zone, order))
3275 					goto try_this_zone;
3276 			}
3277 
3278 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3279 			/*
3280 			 * Watermark failed for this zone, but see if we can
3281 			 * grow this zone if it contains deferred pages.
3282 			 */
3283 			if (deferred_pages_enabled()) {
3284 				if (_deferred_grow_zone(zone, order))
3285 					goto try_this_zone;
3286 			}
3287 #endif
3288 			/* Checked here to keep the fast path fast */
3289 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3290 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3291 				goto try_this_zone;
3292 
3293 			if (!node_reclaim_enabled() ||
3294 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3295 				continue;
3296 
3297 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3298 			switch (ret) {
3299 			case NODE_RECLAIM_NOSCAN:
3300 				/* did not scan */
3301 				continue;
3302 			case NODE_RECLAIM_FULL:
3303 				/* scanned but unreclaimable */
3304 				continue;
3305 			default:
3306 				/* did we reclaim enough */
3307 				if (zone_watermark_ok(zone, order, mark,
3308 					ac->highest_zoneidx, alloc_flags))
3309 					goto try_this_zone;
3310 
3311 				continue;
3312 			}
3313 		}
3314 
3315 try_this_zone:
3316 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3317 				gfp_mask, alloc_flags, ac->migratetype);
3318 		if (page) {
3319 			prep_new_page(page, order, gfp_mask, alloc_flags);
3320 
3321 			/*
3322 			 * If this is a high-order atomic allocation then check
3323 			 * if the pageblock should be reserved for the future
3324 			 */
3325 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3326 				reserve_highatomic_pageblock(page, zone);
3327 
3328 			return page;
3329 		} else {
3330 			if (has_unaccepted_memory()) {
3331 				if (try_to_accept_memory(zone, order))
3332 					goto try_this_zone;
3333 			}
3334 
3335 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3336 			/* Try again if zone has deferred pages */
3337 			if (deferred_pages_enabled()) {
3338 				if (_deferred_grow_zone(zone, order))
3339 					goto try_this_zone;
3340 			}
3341 #endif
3342 		}
3343 	}
3344 
3345 	/*
3346 	 * It's possible on a UMA machine to get through all zones that are
3347 	 * fragmented. If avoiding fragmentation, reset and try again.
3348 	 */
3349 	if (no_fallback) {
3350 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3351 		goto retry;
3352 	}
3353 
3354 	return NULL;
3355 }
3356 
3357 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3358 {
3359 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3360 
3361 	/*
3362 	 * This documents exceptions given to allocations in certain
3363 	 * contexts that are allowed to allocate outside current's set
3364 	 * of allowed nodes.
3365 	 */
3366 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3367 		if (tsk_is_oom_victim(current) ||
3368 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3369 			filter &= ~SHOW_MEM_FILTER_NODES;
3370 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3371 		filter &= ~SHOW_MEM_FILTER_NODES;
3372 
3373 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3374 }
3375 
3376 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3377 {
3378 	struct va_format vaf;
3379 	va_list args;
3380 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3381 
3382 	if ((gfp_mask & __GFP_NOWARN) ||
3383 	     !__ratelimit(&nopage_rs) ||
3384 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3385 		return;
3386 
3387 	va_start(args, fmt);
3388 	vaf.fmt = fmt;
3389 	vaf.va = &args;
3390 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3391 			current->comm, &vaf, gfp_mask, &gfp_mask,
3392 			nodemask_pr_args(nodemask));
3393 	va_end(args);
3394 
3395 	cpuset_print_current_mems_allowed();
3396 	pr_cont("\n");
3397 	dump_stack();
3398 	warn_alloc_show_mem(gfp_mask, nodemask);
3399 }
3400 
3401 static inline struct page *
3402 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3403 			      unsigned int alloc_flags,
3404 			      const struct alloc_context *ac)
3405 {
3406 	struct page *page;
3407 
3408 	page = get_page_from_freelist(gfp_mask, order,
3409 			alloc_flags|ALLOC_CPUSET, ac);
3410 	/*
3411 	 * fallback to ignore cpuset restriction if our nodes
3412 	 * are depleted
3413 	 */
3414 	if (!page)
3415 		page = get_page_from_freelist(gfp_mask, order,
3416 				alloc_flags, ac);
3417 
3418 	return page;
3419 }
3420 
3421 static inline struct page *
3422 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3423 	const struct alloc_context *ac, unsigned long *did_some_progress)
3424 {
3425 	struct oom_control oc = {
3426 		.zonelist = ac->zonelist,
3427 		.nodemask = ac->nodemask,
3428 		.memcg = NULL,
3429 		.gfp_mask = gfp_mask,
3430 		.order = order,
3431 	};
3432 	struct page *page;
3433 
3434 	*did_some_progress = 0;
3435 
3436 	/*
3437 	 * Acquire the oom lock.  If that fails, somebody else is
3438 	 * making progress for us.
3439 	 */
3440 	if (!mutex_trylock(&oom_lock)) {
3441 		*did_some_progress = 1;
3442 		schedule_timeout_uninterruptible(1);
3443 		return NULL;
3444 	}
3445 
3446 	/*
3447 	 * Go through the zonelist yet one more time, keep very high watermark
3448 	 * here, this is only to catch a parallel oom killing, we must fail if
3449 	 * we're still under heavy pressure. But make sure that this reclaim
3450 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3451 	 * allocation which will never fail due to oom_lock already held.
3452 	 */
3453 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3454 				      ~__GFP_DIRECT_RECLAIM, order,
3455 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3456 	if (page)
3457 		goto out;
3458 
3459 	/* Coredumps can quickly deplete all memory reserves */
3460 	if (current->flags & PF_DUMPCORE)
3461 		goto out;
3462 	/* The OOM killer will not help higher order allocs */
3463 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3464 		goto out;
3465 	/*
3466 	 * We have already exhausted all our reclaim opportunities without any
3467 	 * success so it is time to admit defeat. We will skip the OOM killer
3468 	 * because it is very likely that the caller has a more reasonable
3469 	 * fallback than shooting a random task.
3470 	 *
3471 	 * The OOM killer may not free memory on a specific node.
3472 	 */
3473 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3474 		goto out;
3475 	/* The OOM killer does not needlessly kill tasks for lowmem */
3476 	if (ac->highest_zoneidx < ZONE_NORMAL)
3477 		goto out;
3478 	if (pm_suspended_storage())
3479 		goto out;
3480 	/*
3481 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3482 	 * other request to make a forward progress.
3483 	 * We are in an unfortunate situation where out_of_memory cannot
3484 	 * do much for this context but let's try it to at least get
3485 	 * access to memory reserved if the current task is killed (see
3486 	 * out_of_memory). Once filesystems are ready to handle allocation
3487 	 * failures more gracefully we should just bail out here.
3488 	 */
3489 
3490 	/* Exhausted what can be done so it's blame time */
3491 	if (out_of_memory(&oc) ||
3492 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3493 		*did_some_progress = 1;
3494 
3495 		/*
3496 		 * Help non-failing allocations by giving them access to memory
3497 		 * reserves
3498 		 */
3499 		if (gfp_mask & __GFP_NOFAIL)
3500 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3501 					ALLOC_NO_WATERMARKS, ac);
3502 	}
3503 out:
3504 	mutex_unlock(&oom_lock);
3505 	return page;
3506 }
3507 
3508 /*
3509  * Maximum number of compaction retries with a progress before OOM
3510  * killer is consider as the only way to move forward.
3511  */
3512 #define MAX_COMPACT_RETRIES 16
3513 
3514 #ifdef CONFIG_COMPACTION
3515 /* Try memory compaction for high-order allocations before reclaim */
3516 static struct page *
3517 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3518 		unsigned int alloc_flags, const struct alloc_context *ac,
3519 		enum compact_priority prio, enum compact_result *compact_result)
3520 {
3521 	struct page *page = NULL;
3522 	unsigned long pflags;
3523 	unsigned int noreclaim_flag;
3524 
3525 	if (!order)
3526 		return NULL;
3527 
3528 	psi_memstall_enter(&pflags);
3529 	delayacct_compact_start();
3530 	noreclaim_flag = memalloc_noreclaim_save();
3531 
3532 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3533 								prio, &page);
3534 
3535 	memalloc_noreclaim_restore(noreclaim_flag);
3536 	psi_memstall_leave(&pflags);
3537 	delayacct_compact_end();
3538 
3539 	if (*compact_result == COMPACT_SKIPPED)
3540 		return NULL;
3541 	/*
3542 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3543 	 * count a compaction stall
3544 	 */
3545 	count_vm_event(COMPACTSTALL);
3546 
3547 	/* Prep a captured page if available */
3548 	if (page)
3549 		prep_new_page(page, order, gfp_mask, alloc_flags);
3550 
3551 	/* Try get a page from the freelist if available */
3552 	if (!page)
3553 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3554 
3555 	if (page) {
3556 		struct zone *zone = page_zone(page);
3557 
3558 		zone->compact_blockskip_flush = false;
3559 		compaction_defer_reset(zone, order, true);
3560 		count_vm_event(COMPACTSUCCESS);
3561 		return page;
3562 	}
3563 
3564 	/*
3565 	 * It's bad if compaction run occurs and fails. The most likely reason
3566 	 * is that pages exist, but not enough to satisfy watermarks.
3567 	 */
3568 	count_vm_event(COMPACTFAIL);
3569 
3570 	cond_resched();
3571 
3572 	return NULL;
3573 }
3574 
3575 static inline bool
3576 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3577 		     enum compact_result compact_result,
3578 		     enum compact_priority *compact_priority,
3579 		     int *compaction_retries)
3580 {
3581 	int max_retries = MAX_COMPACT_RETRIES;
3582 	int min_priority;
3583 	bool ret = false;
3584 	int retries = *compaction_retries;
3585 	enum compact_priority priority = *compact_priority;
3586 
3587 	if (!order)
3588 		return false;
3589 
3590 	if (fatal_signal_pending(current))
3591 		return false;
3592 
3593 	/*
3594 	 * Compaction was skipped due to a lack of free order-0
3595 	 * migration targets. Continue if reclaim can help.
3596 	 */
3597 	if (compact_result == COMPACT_SKIPPED) {
3598 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3599 		goto out;
3600 	}
3601 
3602 	/*
3603 	 * Compaction managed to coalesce some page blocks, but the
3604 	 * allocation failed presumably due to a race. Retry some.
3605 	 */
3606 	if (compact_result == COMPACT_SUCCESS) {
3607 		/*
3608 		 * !costly requests are much more important than
3609 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3610 		 * facto nofail and invoke OOM killer to move on while
3611 		 * costly can fail and users are ready to cope with
3612 		 * that. 1/4 retries is rather arbitrary but we would
3613 		 * need much more detailed feedback from compaction to
3614 		 * make a better decision.
3615 		 */
3616 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3617 			max_retries /= 4;
3618 
3619 		if (++(*compaction_retries) <= max_retries) {
3620 			ret = true;
3621 			goto out;
3622 		}
3623 	}
3624 
3625 	/*
3626 	 * Compaction failed. Retry with increasing priority.
3627 	 */
3628 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3629 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3630 
3631 	if (*compact_priority > min_priority) {
3632 		(*compact_priority)--;
3633 		*compaction_retries = 0;
3634 		ret = true;
3635 	}
3636 out:
3637 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3638 	return ret;
3639 }
3640 #else
3641 static inline struct page *
3642 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3643 		unsigned int alloc_flags, const struct alloc_context *ac,
3644 		enum compact_priority prio, enum compact_result *compact_result)
3645 {
3646 	*compact_result = COMPACT_SKIPPED;
3647 	return NULL;
3648 }
3649 
3650 static inline bool
3651 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3652 		     enum compact_result compact_result,
3653 		     enum compact_priority *compact_priority,
3654 		     int *compaction_retries)
3655 {
3656 	struct zone *zone;
3657 	struct zoneref *z;
3658 
3659 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3660 		return false;
3661 
3662 	/*
3663 	 * There are setups with compaction disabled which would prefer to loop
3664 	 * inside the allocator rather than hit the oom killer prematurely.
3665 	 * Let's give them a good hope and keep retrying while the order-0
3666 	 * watermarks are OK.
3667 	 */
3668 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3669 				ac->highest_zoneidx, ac->nodemask) {
3670 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3671 					ac->highest_zoneidx, alloc_flags))
3672 			return true;
3673 	}
3674 	return false;
3675 }
3676 #endif /* CONFIG_COMPACTION */
3677 
3678 #ifdef CONFIG_LOCKDEP
3679 static struct lockdep_map __fs_reclaim_map =
3680 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3681 
3682 static bool __need_reclaim(gfp_t gfp_mask)
3683 {
3684 	/* no reclaim without waiting on it */
3685 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3686 		return false;
3687 
3688 	/* this guy won't enter reclaim */
3689 	if (current->flags & PF_MEMALLOC)
3690 		return false;
3691 
3692 	if (gfp_mask & __GFP_NOLOCKDEP)
3693 		return false;
3694 
3695 	return true;
3696 }
3697 
3698 void __fs_reclaim_acquire(unsigned long ip)
3699 {
3700 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3701 }
3702 
3703 void __fs_reclaim_release(unsigned long ip)
3704 {
3705 	lock_release(&__fs_reclaim_map, ip);
3706 }
3707 
3708 void fs_reclaim_acquire(gfp_t gfp_mask)
3709 {
3710 	gfp_mask = current_gfp_context(gfp_mask);
3711 
3712 	if (__need_reclaim(gfp_mask)) {
3713 		if (gfp_mask & __GFP_FS)
3714 			__fs_reclaim_acquire(_RET_IP_);
3715 
3716 #ifdef CONFIG_MMU_NOTIFIER
3717 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3718 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3719 #endif
3720 
3721 	}
3722 }
3723 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3724 
3725 void fs_reclaim_release(gfp_t gfp_mask)
3726 {
3727 	gfp_mask = current_gfp_context(gfp_mask);
3728 
3729 	if (__need_reclaim(gfp_mask)) {
3730 		if (gfp_mask & __GFP_FS)
3731 			__fs_reclaim_release(_RET_IP_);
3732 	}
3733 }
3734 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3735 #endif
3736 
3737 /*
3738  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3739  * have been rebuilt so allocation retries. Reader side does not lock and
3740  * retries the allocation if zonelist changes. Writer side is protected by the
3741  * embedded spin_lock.
3742  */
3743 static DEFINE_SEQLOCK(zonelist_update_seq);
3744 
3745 static unsigned int zonelist_iter_begin(void)
3746 {
3747 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3748 		return read_seqbegin(&zonelist_update_seq);
3749 
3750 	return 0;
3751 }
3752 
3753 static unsigned int check_retry_zonelist(unsigned int seq)
3754 {
3755 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3756 		return read_seqretry(&zonelist_update_seq, seq);
3757 
3758 	return seq;
3759 }
3760 
3761 /* Perform direct synchronous page reclaim */
3762 static unsigned long
3763 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3764 					const struct alloc_context *ac)
3765 {
3766 	unsigned int noreclaim_flag;
3767 	unsigned long progress;
3768 
3769 	cond_resched();
3770 
3771 	/* We now go into synchronous reclaim */
3772 	cpuset_memory_pressure_bump();
3773 	fs_reclaim_acquire(gfp_mask);
3774 	noreclaim_flag = memalloc_noreclaim_save();
3775 
3776 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3777 								ac->nodemask);
3778 
3779 	memalloc_noreclaim_restore(noreclaim_flag);
3780 	fs_reclaim_release(gfp_mask);
3781 
3782 	cond_resched();
3783 
3784 	return progress;
3785 }
3786 
3787 /* The really slow allocator path where we enter direct reclaim */
3788 static inline struct page *
3789 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3790 		unsigned int alloc_flags, const struct alloc_context *ac,
3791 		unsigned long *did_some_progress)
3792 {
3793 	struct page *page = NULL;
3794 	unsigned long pflags;
3795 	bool drained = false;
3796 
3797 	psi_memstall_enter(&pflags);
3798 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3799 	if (unlikely(!(*did_some_progress)))
3800 		goto out;
3801 
3802 retry:
3803 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3804 
3805 	/*
3806 	 * If an allocation failed after direct reclaim, it could be because
3807 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3808 	 * Shrink them and try again
3809 	 */
3810 	if (!page && !drained) {
3811 		unreserve_highatomic_pageblock(ac, false);
3812 		drain_all_pages(NULL);
3813 		drained = true;
3814 		goto retry;
3815 	}
3816 out:
3817 	psi_memstall_leave(&pflags);
3818 
3819 	return page;
3820 }
3821 
3822 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3823 			     const struct alloc_context *ac)
3824 {
3825 	struct zoneref *z;
3826 	struct zone *zone;
3827 	pg_data_t *last_pgdat = NULL;
3828 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3829 
3830 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3831 					ac->nodemask) {
3832 		if (!managed_zone(zone))
3833 			continue;
3834 		if (last_pgdat != zone->zone_pgdat) {
3835 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3836 			last_pgdat = zone->zone_pgdat;
3837 		}
3838 	}
3839 }
3840 
3841 static inline unsigned int
3842 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3843 {
3844 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3845 
3846 	/*
3847 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3848 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3849 	 * to save two branches.
3850 	 */
3851 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3852 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3853 
3854 	/*
3855 	 * The caller may dip into page reserves a bit more if the caller
3856 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3857 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3858 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3859 	 */
3860 	alloc_flags |= (__force int)
3861 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3862 
3863 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3864 		/*
3865 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3866 		 * if it can't schedule.
3867 		 */
3868 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3869 			alloc_flags |= ALLOC_NON_BLOCK;
3870 
3871 			if (order > 0)
3872 				alloc_flags |= ALLOC_HIGHATOMIC;
3873 		}
3874 
3875 		/*
3876 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3877 		 * GFP_ATOMIC) rather than fail, see the comment for
3878 		 * cpuset_node_allowed().
3879 		 */
3880 		if (alloc_flags & ALLOC_MIN_RESERVE)
3881 			alloc_flags &= ~ALLOC_CPUSET;
3882 	} else if (unlikely(rt_task(current)) && in_task())
3883 		alloc_flags |= ALLOC_MIN_RESERVE;
3884 
3885 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3886 
3887 	return alloc_flags;
3888 }
3889 
3890 static bool oom_reserves_allowed(struct task_struct *tsk)
3891 {
3892 	if (!tsk_is_oom_victim(tsk))
3893 		return false;
3894 
3895 	/*
3896 	 * !MMU doesn't have oom reaper so give access to memory reserves
3897 	 * only to the thread with TIF_MEMDIE set
3898 	 */
3899 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3900 		return false;
3901 
3902 	return true;
3903 }
3904 
3905 /*
3906  * Distinguish requests which really need access to full memory
3907  * reserves from oom victims which can live with a portion of it
3908  */
3909 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3910 {
3911 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3912 		return 0;
3913 	if (gfp_mask & __GFP_MEMALLOC)
3914 		return ALLOC_NO_WATERMARKS;
3915 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3916 		return ALLOC_NO_WATERMARKS;
3917 	if (!in_interrupt()) {
3918 		if (current->flags & PF_MEMALLOC)
3919 			return ALLOC_NO_WATERMARKS;
3920 		else if (oom_reserves_allowed(current))
3921 			return ALLOC_OOM;
3922 	}
3923 
3924 	return 0;
3925 }
3926 
3927 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3928 {
3929 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3930 }
3931 
3932 /*
3933  * Checks whether it makes sense to retry the reclaim to make a forward progress
3934  * for the given allocation request.
3935  *
3936  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3937  * without success, or when we couldn't even meet the watermark if we
3938  * reclaimed all remaining pages on the LRU lists.
3939  *
3940  * Returns true if a retry is viable or false to enter the oom path.
3941  */
3942 static inline bool
3943 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3944 		     struct alloc_context *ac, int alloc_flags,
3945 		     bool did_some_progress, int *no_progress_loops)
3946 {
3947 	struct zone *zone;
3948 	struct zoneref *z;
3949 	bool ret = false;
3950 
3951 	/*
3952 	 * Costly allocations might have made a progress but this doesn't mean
3953 	 * their order will become available due to high fragmentation so
3954 	 * always increment the no progress counter for them
3955 	 */
3956 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3957 		*no_progress_loops = 0;
3958 	else
3959 		(*no_progress_loops)++;
3960 
3961 	/*
3962 	 * Make sure we converge to OOM if we cannot make any progress
3963 	 * several times in the row.
3964 	 */
3965 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3966 		/* Before OOM, exhaust highatomic_reserve */
3967 		return unreserve_highatomic_pageblock(ac, true);
3968 	}
3969 
3970 	/*
3971 	 * Keep reclaiming pages while there is a chance this will lead
3972 	 * somewhere.  If none of the target zones can satisfy our allocation
3973 	 * request even if all reclaimable pages are considered then we are
3974 	 * screwed and have to go OOM.
3975 	 */
3976 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3977 				ac->highest_zoneidx, ac->nodemask) {
3978 		unsigned long available;
3979 		unsigned long reclaimable;
3980 		unsigned long min_wmark = min_wmark_pages(zone);
3981 		bool wmark;
3982 
3983 		available = reclaimable = zone_reclaimable_pages(zone);
3984 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3985 
3986 		/*
3987 		 * Would the allocation succeed if we reclaimed all
3988 		 * reclaimable pages?
3989 		 */
3990 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3991 				ac->highest_zoneidx, alloc_flags, available);
3992 		trace_reclaim_retry_zone(z, order, reclaimable,
3993 				available, min_wmark, *no_progress_loops, wmark);
3994 		if (wmark) {
3995 			ret = true;
3996 			break;
3997 		}
3998 	}
3999 
4000 	/*
4001 	 * Memory allocation/reclaim might be called from a WQ context and the
4002 	 * current implementation of the WQ concurrency control doesn't
4003 	 * recognize that a particular WQ is congested if the worker thread is
4004 	 * looping without ever sleeping. Therefore we have to do a short sleep
4005 	 * here rather than calling cond_resched().
4006 	 */
4007 	if (current->flags & PF_WQ_WORKER)
4008 		schedule_timeout_uninterruptible(1);
4009 	else
4010 		cond_resched();
4011 	return ret;
4012 }
4013 
4014 static inline bool
4015 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4016 {
4017 	/*
4018 	 * It's possible that cpuset's mems_allowed and the nodemask from
4019 	 * mempolicy don't intersect. This should be normally dealt with by
4020 	 * policy_nodemask(), but it's possible to race with cpuset update in
4021 	 * such a way the check therein was true, and then it became false
4022 	 * before we got our cpuset_mems_cookie here.
4023 	 * This assumes that for all allocations, ac->nodemask can come only
4024 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4025 	 * when it does not intersect with the cpuset restrictions) or the
4026 	 * caller can deal with a violated nodemask.
4027 	 */
4028 	if (cpusets_enabled() && ac->nodemask &&
4029 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4030 		ac->nodemask = NULL;
4031 		return true;
4032 	}
4033 
4034 	/*
4035 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4036 	 * possible to race with parallel threads in such a way that our
4037 	 * allocation can fail while the mask is being updated. If we are about
4038 	 * to fail, check if the cpuset changed during allocation and if so,
4039 	 * retry.
4040 	 */
4041 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4042 		return true;
4043 
4044 	return false;
4045 }
4046 
4047 static inline struct page *
4048 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4049 						struct alloc_context *ac)
4050 {
4051 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4052 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4053 	struct page *page = NULL;
4054 	unsigned int alloc_flags;
4055 	unsigned long did_some_progress;
4056 	enum compact_priority compact_priority;
4057 	enum compact_result compact_result;
4058 	int compaction_retries;
4059 	int no_progress_loops;
4060 	unsigned int cpuset_mems_cookie;
4061 	unsigned int zonelist_iter_cookie;
4062 	int reserve_flags;
4063 
4064 restart:
4065 	compaction_retries = 0;
4066 	no_progress_loops = 0;
4067 	compact_priority = DEF_COMPACT_PRIORITY;
4068 	cpuset_mems_cookie = read_mems_allowed_begin();
4069 	zonelist_iter_cookie = zonelist_iter_begin();
4070 
4071 	/*
4072 	 * The fast path uses conservative alloc_flags to succeed only until
4073 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4074 	 * alloc_flags precisely. So we do that now.
4075 	 */
4076 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4077 
4078 	/*
4079 	 * We need to recalculate the starting point for the zonelist iterator
4080 	 * because we might have used different nodemask in the fast path, or
4081 	 * there was a cpuset modification and we are retrying - otherwise we
4082 	 * could end up iterating over non-eligible zones endlessly.
4083 	 */
4084 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4085 					ac->highest_zoneidx, ac->nodemask);
4086 	if (!ac->preferred_zoneref->zone)
4087 		goto nopage;
4088 
4089 	/*
4090 	 * Check for insane configurations where the cpuset doesn't contain
4091 	 * any suitable zone to satisfy the request - e.g. non-movable
4092 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4093 	 */
4094 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4095 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4096 					ac->highest_zoneidx,
4097 					&cpuset_current_mems_allowed);
4098 		if (!z->zone)
4099 			goto nopage;
4100 	}
4101 
4102 	if (alloc_flags & ALLOC_KSWAPD)
4103 		wake_all_kswapds(order, gfp_mask, ac);
4104 
4105 	/*
4106 	 * The adjusted alloc_flags might result in immediate success, so try
4107 	 * that first
4108 	 */
4109 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4110 	if (page)
4111 		goto got_pg;
4112 
4113 	/*
4114 	 * For costly allocations, try direct compaction first, as it's likely
4115 	 * that we have enough base pages and don't need to reclaim. For non-
4116 	 * movable high-order allocations, do that as well, as compaction will
4117 	 * try prevent permanent fragmentation by migrating from blocks of the
4118 	 * same migratetype.
4119 	 * Don't try this for allocations that are allowed to ignore
4120 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4121 	 */
4122 	if (can_direct_reclaim &&
4123 			(costly_order ||
4124 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4125 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4126 		page = __alloc_pages_direct_compact(gfp_mask, order,
4127 						alloc_flags, ac,
4128 						INIT_COMPACT_PRIORITY,
4129 						&compact_result);
4130 		if (page)
4131 			goto got_pg;
4132 
4133 		/*
4134 		 * Checks for costly allocations with __GFP_NORETRY, which
4135 		 * includes some THP page fault allocations
4136 		 */
4137 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4138 			/*
4139 			 * If allocating entire pageblock(s) and compaction
4140 			 * failed because all zones are below low watermarks
4141 			 * or is prohibited because it recently failed at this
4142 			 * order, fail immediately unless the allocator has
4143 			 * requested compaction and reclaim retry.
4144 			 *
4145 			 * Reclaim is
4146 			 *  - potentially very expensive because zones are far
4147 			 *    below their low watermarks or this is part of very
4148 			 *    bursty high order allocations,
4149 			 *  - not guaranteed to help because isolate_freepages()
4150 			 *    may not iterate over freed pages as part of its
4151 			 *    linear scan, and
4152 			 *  - unlikely to make entire pageblocks free on its
4153 			 *    own.
4154 			 */
4155 			if (compact_result == COMPACT_SKIPPED ||
4156 			    compact_result == COMPACT_DEFERRED)
4157 				goto nopage;
4158 
4159 			/*
4160 			 * Looks like reclaim/compaction is worth trying, but
4161 			 * sync compaction could be very expensive, so keep
4162 			 * using async compaction.
4163 			 */
4164 			compact_priority = INIT_COMPACT_PRIORITY;
4165 		}
4166 	}
4167 
4168 retry:
4169 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4170 	if (alloc_flags & ALLOC_KSWAPD)
4171 		wake_all_kswapds(order, gfp_mask, ac);
4172 
4173 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4174 	if (reserve_flags)
4175 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4176 					  (alloc_flags & ALLOC_KSWAPD);
4177 
4178 	/*
4179 	 * Reset the nodemask and zonelist iterators if memory policies can be
4180 	 * ignored. These allocations are high priority and system rather than
4181 	 * user oriented.
4182 	 */
4183 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4184 		ac->nodemask = NULL;
4185 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4186 					ac->highest_zoneidx, ac->nodemask);
4187 	}
4188 
4189 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4190 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4191 	if (page)
4192 		goto got_pg;
4193 
4194 	/* Caller is not willing to reclaim, we can't balance anything */
4195 	if (!can_direct_reclaim)
4196 		goto nopage;
4197 
4198 	/* Avoid recursion of direct reclaim */
4199 	if (current->flags & PF_MEMALLOC)
4200 		goto nopage;
4201 
4202 	/* Try direct reclaim and then allocating */
4203 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4204 							&did_some_progress);
4205 	if (page)
4206 		goto got_pg;
4207 
4208 	/* Try direct compaction and then allocating */
4209 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4210 					compact_priority, &compact_result);
4211 	if (page)
4212 		goto got_pg;
4213 
4214 	/* Do not loop if specifically requested */
4215 	if (gfp_mask & __GFP_NORETRY)
4216 		goto nopage;
4217 
4218 	/*
4219 	 * Do not retry costly high order allocations unless they are
4220 	 * __GFP_RETRY_MAYFAIL
4221 	 */
4222 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4223 		goto nopage;
4224 
4225 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4226 				 did_some_progress > 0, &no_progress_loops))
4227 		goto retry;
4228 
4229 	/*
4230 	 * It doesn't make any sense to retry for the compaction if the order-0
4231 	 * reclaim is not able to make any progress because the current
4232 	 * implementation of the compaction depends on the sufficient amount
4233 	 * of free memory (see __compaction_suitable)
4234 	 */
4235 	if (did_some_progress > 0 &&
4236 			should_compact_retry(ac, order, alloc_flags,
4237 				compact_result, &compact_priority,
4238 				&compaction_retries))
4239 		goto retry;
4240 
4241 
4242 	/*
4243 	 * Deal with possible cpuset update races or zonelist updates to avoid
4244 	 * a unnecessary OOM kill.
4245 	 */
4246 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4247 	    check_retry_zonelist(zonelist_iter_cookie))
4248 		goto restart;
4249 
4250 	/* Reclaim has failed us, start killing things */
4251 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4252 	if (page)
4253 		goto got_pg;
4254 
4255 	/* Avoid allocations with no watermarks from looping endlessly */
4256 	if (tsk_is_oom_victim(current) &&
4257 	    (alloc_flags & ALLOC_OOM ||
4258 	     (gfp_mask & __GFP_NOMEMALLOC)))
4259 		goto nopage;
4260 
4261 	/* Retry as long as the OOM killer is making progress */
4262 	if (did_some_progress) {
4263 		no_progress_loops = 0;
4264 		goto retry;
4265 	}
4266 
4267 nopage:
4268 	/*
4269 	 * Deal with possible cpuset update races or zonelist updates to avoid
4270 	 * a unnecessary OOM kill.
4271 	 */
4272 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4273 	    check_retry_zonelist(zonelist_iter_cookie))
4274 		goto restart;
4275 
4276 	/*
4277 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4278 	 * we always retry
4279 	 */
4280 	if (gfp_mask & __GFP_NOFAIL) {
4281 		/*
4282 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4283 		 * of any new users that actually require GFP_NOWAIT
4284 		 */
4285 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4286 			goto fail;
4287 
4288 		/*
4289 		 * PF_MEMALLOC request from this context is rather bizarre
4290 		 * because we cannot reclaim anything and only can loop waiting
4291 		 * for somebody to do a work for us
4292 		 */
4293 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4294 
4295 		/*
4296 		 * non failing costly orders are a hard requirement which we
4297 		 * are not prepared for much so let's warn about these users
4298 		 * so that we can identify them and convert them to something
4299 		 * else.
4300 		 */
4301 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4302 
4303 		/*
4304 		 * Help non-failing allocations by giving some access to memory
4305 		 * reserves normally used for high priority non-blocking
4306 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4307 		 * could deplete whole memory reserves which would just make
4308 		 * the situation worse.
4309 		 */
4310 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4311 		if (page)
4312 			goto got_pg;
4313 
4314 		cond_resched();
4315 		goto retry;
4316 	}
4317 fail:
4318 	warn_alloc(gfp_mask, ac->nodemask,
4319 			"page allocation failure: order:%u", order);
4320 got_pg:
4321 	return page;
4322 }
4323 
4324 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4325 		int preferred_nid, nodemask_t *nodemask,
4326 		struct alloc_context *ac, gfp_t *alloc_gfp,
4327 		unsigned int *alloc_flags)
4328 {
4329 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4330 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4331 	ac->nodemask = nodemask;
4332 	ac->migratetype = gfp_migratetype(gfp_mask);
4333 
4334 	if (cpusets_enabled()) {
4335 		*alloc_gfp |= __GFP_HARDWALL;
4336 		/*
4337 		 * When we are in the interrupt context, it is irrelevant
4338 		 * to the current task context. It means that any node ok.
4339 		 */
4340 		if (in_task() && !ac->nodemask)
4341 			ac->nodemask = &cpuset_current_mems_allowed;
4342 		else
4343 			*alloc_flags |= ALLOC_CPUSET;
4344 	}
4345 
4346 	might_alloc(gfp_mask);
4347 
4348 	if (should_fail_alloc_page(gfp_mask, order))
4349 		return false;
4350 
4351 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4352 
4353 	/* Dirty zone balancing only done in the fast path */
4354 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4355 
4356 	/*
4357 	 * The preferred zone is used for statistics but crucially it is
4358 	 * also used as the starting point for the zonelist iterator. It
4359 	 * may get reset for allocations that ignore memory policies.
4360 	 */
4361 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4362 					ac->highest_zoneidx, ac->nodemask);
4363 
4364 	return true;
4365 }
4366 
4367 /*
4368  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4369  * @gfp: GFP flags for the allocation
4370  * @preferred_nid: The preferred NUMA node ID to allocate from
4371  * @nodemask: Set of nodes to allocate from, may be NULL
4372  * @nr_pages: The number of pages desired on the list or array
4373  * @page_list: Optional list to store the allocated pages
4374  * @page_array: Optional array to store the pages
4375  *
4376  * This is a batched version of the page allocator that attempts to
4377  * allocate nr_pages quickly. Pages are added to page_list if page_list
4378  * is not NULL, otherwise it is assumed that the page_array is valid.
4379  *
4380  * For lists, nr_pages is the number of pages that should be allocated.
4381  *
4382  * For arrays, only NULL elements are populated with pages and nr_pages
4383  * is the maximum number of pages that will be stored in the array.
4384  *
4385  * Returns the number of pages on the list or array.
4386  */
4387 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4388 			nodemask_t *nodemask, int nr_pages,
4389 			struct list_head *page_list,
4390 			struct page **page_array)
4391 {
4392 	struct page *page;
4393 	unsigned long __maybe_unused UP_flags;
4394 	struct zone *zone;
4395 	struct zoneref *z;
4396 	struct per_cpu_pages *pcp;
4397 	struct list_head *pcp_list;
4398 	struct alloc_context ac;
4399 	gfp_t alloc_gfp;
4400 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4401 	int nr_populated = 0, nr_account = 0;
4402 
4403 	/*
4404 	 * Skip populated array elements to determine if any pages need
4405 	 * to be allocated before disabling IRQs.
4406 	 */
4407 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4408 		nr_populated++;
4409 
4410 	/* No pages requested? */
4411 	if (unlikely(nr_pages <= 0))
4412 		goto out;
4413 
4414 	/* Already populated array? */
4415 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4416 		goto out;
4417 
4418 	/* Bulk allocator does not support memcg accounting. */
4419 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4420 		goto failed;
4421 
4422 	/* Use the single page allocator for one page. */
4423 	if (nr_pages - nr_populated == 1)
4424 		goto failed;
4425 
4426 #ifdef CONFIG_PAGE_OWNER
4427 	/*
4428 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4429 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4430 	 * removes much of the performance benefit of bulk allocation so
4431 	 * force the caller to allocate one page at a time as it'll have
4432 	 * similar performance to added complexity to the bulk allocator.
4433 	 */
4434 	if (static_branch_unlikely(&page_owner_inited))
4435 		goto failed;
4436 #endif
4437 
4438 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4439 	gfp &= gfp_allowed_mask;
4440 	alloc_gfp = gfp;
4441 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4442 		goto out;
4443 	gfp = alloc_gfp;
4444 
4445 	/* Find an allowed local zone that meets the low watermark. */
4446 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4447 		unsigned long mark;
4448 
4449 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4450 		    !__cpuset_zone_allowed(zone, gfp)) {
4451 			continue;
4452 		}
4453 
4454 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4455 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4456 			goto failed;
4457 		}
4458 
4459 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4460 		if (zone_watermark_fast(zone, 0,  mark,
4461 				zonelist_zone_idx(ac.preferred_zoneref),
4462 				alloc_flags, gfp)) {
4463 			break;
4464 		}
4465 	}
4466 
4467 	/*
4468 	 * If there are no allowed local zones that meets the watermarks then
4469 	 * try to allocate a single page and reclaim if necessary.
4470 	 */
4471 	if (unlikely(!zone))
4472 		goto failed;
4473 
4474 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4475 	pcp_trylock_prepare(UP_flags);
4476 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4477 	if (!pcp)
4478 		goto failed_irq;
4479 
4480 	/* Attempt the batch allocation */
4481 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4482 	while (nr_populated < nr_pages) {
4483 
4484 		/* Skip existing pages */
4485 		if (page_array && page_array[nr_populated]) {
4486 			nr_populated++;
4487 			continue;
4488 		}
4489 
4490 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4491 								pcp, pcp_list);
4492 		if (unlikely(!page)) {
4493 			/* Try and allocate at least one page */
4494 			if (!nr_account) {
4495 				pcp_spin_unlock(pcp);
4496 				goto failed_irq;
4497 			}
4498 			break;
4499 		}
4500 		nr_account++;
4501 
4502 		prep_new_page(page, 0, gfp, 0);
4503 		if (page_list)
4504 			list_add(&page->lru, page_list);
4505 		else
4506 			page_array[nr_populated] = page;
4507 		nr_populated++;
4508 	}
4509 
4510 	pcp_spin_unlock(pcp);
4511 	pcp_trylock_finish(UP_flags);
4512 
4513 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4514 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4515 
4516 out:
4517 	return nr_populated;
4518 
4519 failed_irq:
4520 	pcp_trylock_finish(UP_flags);
4521 
4522 failed:
4523 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4524 	if (page) {
4525 		if (page_list)
4526 			list_add(&page->lru, page_list);
4527 		else
4528 			page_array[nr_populated] = page;
4529 		nr_populated++;
4530 	}
4531 
4532 	goto out;
4533 }
4534 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4535 
4536 /*
4537  * This is the 'heart' of the zoned buddy allocator.
4538  */
4539 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4540 							nodemask_t *nodemask)
4541 {
4542 	struct page *page;
4543 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4544 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4545 	struct alloc_context ac = { };
4546 
4547 	/*
4548 	 * There are several places where we assume that the order value is sane
4549 	 * so bail out early if the request is out of bound.
4550 	 */
4551 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4552 		return NULL;
4553 
4554 	gfp &= gfp_allowed_mask;
4555 	/*
4556 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4557 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4558 	 * from a particular context which has been marked by
4559 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4560 	 * movable zones are not used during allocation.
4561 	 */
4562 	gfp = current_gfp_context(gfp);
4563 	alloc_gfp = gfp;
4564 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4565 			&alloc_gfp, &alloc_flags))
4566 		return NULL;
4567 
4568 	/*
4569 	 * Forbid the first pass from falling back to types that fragment
4570 	 * memory until all local zones are considered.
4571 	 */
4572 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4573 
4574 	/* First allocation attempt */
4575 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4576 	if (likely(page))
4577 		goto out;
4578 
4579 	alloc_gfp = gfp;
4580 	ac.spread_dirty_pages = false;
4581 
4582 	/*
4583 	 * Restore the original nodemask if it was potentially replaced with
4584 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4585 	 */
4586 	ac.nodemask = nodemask;
4587 
4588 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4589 
4590 out:
4591 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4592 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4593 		__free_pages(page, order);
4594 		page = NULL;
4595 	}
4596 
4597 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4598 	kmsan_alloc_page(page, order, alloc_gfp);
4599 
4600 	return page;
4601 }
4602 EXPORT_SYMBOL(__alloc_pages);
4603 
4604 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4605 		nodemask_t *nodemask)
4606 {
4607 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4608 					preferred_nid, nodemask);
4609 	return page_rmappable_folio(page);
4610 }
4611 EXPORT_SYMBOL(__folio_alloc);
4612 
4613 /*
4614  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4615  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4616  * you need to access high mem.
4617  */
4618 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4619 {
4620 	struct page *page;
4621 
4622 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4623 	if (!page)
4624 		return 0;
4625 	return (unsigned long) page_address(page);
4626 }
4627 EXPORT_SYMBOL(__get_free_pages);
4628 
4629 unsigned long get_zeroed_page(gfp_t gfp_mask)
4630 {
4631 	return __get_free_page(gfp_mask | __GFP_ZERO);
4632 }
4633 EXPORT_SYMBOL(get_zeroed_page);
4634 
4635 /**
4636  * __free_pages - Free pages allocated with alloc_pages().
4637  * @page: The page pointer returned from alloc_pages().
4638  * @order: The order of the allocation.
4639  *
4640  * This function can free multi-page allocations that are not compound
4641  * pages.  It does not check that the @order passed in matches that of
4642  * the allocation, so it is easy to leak memory.  Freeing more memory
4643  * than was allocated will probably emit a warning.
4644  *
4645  * If the last reference to this page is speculative, it will be released
4646  * by put_page() which only frees the first page of a non-compound
4647  * allocation.  To prevent the remaining pages from being leaked, we free
4648  * the subsequent pages here.  If you want to use the page's reference
4649  * count to decide when to free the allocation, you should allocate a
4650  * compound page, and use put_page() instead of __free_pages().
4651  *
4652  * Context: May be called in interrupt context or while holding a normal
4653  * spinlock, but not in NMI context or while holding a raw spinlock.
4654  */
4655 void __free_pages(struct page *page, unsigned int order)
4656 {
4657 	/* get PageHead before we drop reference */
4658 	int head = PageHead(page);
4659 
4660 	if (put_page_testzero(page))
4661 		free_the_page(page, order);
4662 	else if (!head)
4663 		while (order-- > 0)
4664 			free_the_page(page + (1 << order), order);
4665 }
4666 EXPORT_SYMBOL(__free_pages);
4667 
4668 void free_pages(unsigned long addr, unsigned int order)
4669 {
4670 	if (addr != 0) {
4671 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4672 		__free_pages(virt_to_page((void *)addr), order);
4673 	}
4674 }
4675 
4676 EXPORT_SYMBOL(free_pages);
4677 
4678 /*
4679  * Page Fragment:
4680  *  An arbitrary-length arbitrary-offset area of memory which resides
4681  *  within a 0 or higher order page.  Multiple fragments within that page
4682  *  are individually refcounted, in the page's reference counter.
4683  *
4684  * The page_frag functions below provide a simple allocation framework for
4685  * page fragments.  This is used by the network stack and network device
4686  * drivers to provide a backing region of memory for use as either an
4687  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4688  */
4689 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4690 					     gfp_t gfp_mask)
4691 {
4692 	struct page *page = NULL;
4693 	gfp_t gfp = gfp_mask;
4694 
4695 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4696 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4697 		    __GFP_NOMEMALLOC;
4698 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4699 				PAGE_FRAG_CACHE_MAX_ORDER);
4700 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4701 #endif
4702 	if (unlikely(!page))
4703 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4704 
4705 	nc->va = page ? page_address(page) : NULL;
4706 
4707 	return page;
4708 }
4709 
4710 void __page_frag_cache_drain(struct page *page, unsigned int count)
4711 {
4712 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4713 
4714 	if (page_ref_sub_and_test(page, count))
4715 		free_the_page(page, compound_order(page));
4716 }
4717 EXPORT_SYMBOL(__page_frag_cache_drain);
4718 
4719 void *page_frag_alloc_align(struct page_frag_cache *nc,
4720 		      unsigned int fragsz, gfp_t gfp_mask,
4721 		      unsigned int align_mask)
4722 {
4723 	unsigned int size = PAGE_SIZE;
4724 	struct page *page;
4725 	int offset;
4726 
4727 	if (unlikely(!nc->va)) {
4728 refill:
4729 		page = __page_frag_cache_refill(nc, gfp_mask);
4730 		if (!page)
4731 			return NULL;
4732 
4733 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4734 		/* if size can vary use size else just use PAGE_SIZE */
4735 		size = nc->size;
4736 #endif
4737 		/* Even if we own the page, we do not use atomic_set().
4738 		 * This would break get_page_unless_zero() users.
4739 		 */
4740 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4741 
4742 		/* reset page count bias and offset to start of new frag */
4743 		nc->pfmemalloc = page_is_pfmemalloc(page);
4744 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4745 		nc->offset = size;
4746 	}
4747 
4748 	offset = nc->offset - fragsz;
4749 	if (unlikely(offset < 0)) {
4750 		page = virt_to_page(nc->va);
4751 
4752 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4753 			goto refill;
4754 
4755 		if (unlikely(nc->pfmemalloc)) {
4756 			free_the_page(page, compound_order(page));
4757 			goto refill;
4758 		}
4759 
4760 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4761 		/* if size can vary use size else just use PAGE_SIZE */
4762 		size = nc->size;
4763 #endif
4764 		/* OK, page count is 0, we can safely set it */
4765 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4766 
4767 		/* reset page count bias and offset to start of new frag */
4768 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4769 		offset = size - fragsz;
4770 		if (unlikely(offset < 0)) {
4771 			/*
4772 			 * The caller is trying to allocate a fragment
4773 			 * with fragsz > PAGE_SIZE but the cache isn't big
4774 			 * enough to satisfy the request, this may
4775 			 * happen in low memory conditions.
4776 			 * We don't release the cache page because
4777 			 * it could make memory pressure worse
4778 			 * so we simply return NULL here.
4779 			 */
4780 			return NULL;
4781 		}
4782 	}
4783 
4784 	nc->pagecnt_bias--;
4785 	offset &= align_mask;
4786 	nc->offset = offset;
4787 
4788 	return nc->va + offset;
4789 }
4790 EXPORT_SYMBOL(page_frag_alloc_align);
4791 
4792 /*
4793  * Frees a page fragment allocated out of either a compound or order 0 page.
4794  */
4795 void page_frag_free(void *addr)
4796 {
4797 	struct page *page = virt_to_head_page(addr);
4798 
4799 	if (unlikely(put_page_testzero(page)))
4800 		free_the_page(page, compound_order(page));
4801 }
4802 EXPORT_SYMBOL(page_frag_free);
4803 
4804 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4805 		size_t size)
4806 {
4807 	if (addr) {
4808 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4809 		struct page *page = virt_to_page((void *)addr);
4810 		struct page *last = page + nr;
4811 
4812 		split_page_owner(page, 1 << order);
4813 		split_page_memcg(page, 1 << order);
4814 		while (page < --last)
4815 			set_page_refcounted(last);
4816 
4817 		last = page + (1UL << order);
4818 		for (page += nr; page < last; page++)
4819 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4820 	}
4821 	return (void *)addr;
4822 }
4823 
4824 /**
4825  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4826  * @size: the number of bytes to allocate
4827  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4828  *
4829  * This function is similar to alloc_pages(), except that it allocates the
4830  * minimum number of pages to satisfy the request.  alloc_pages() can only
4831  * allocate memory in power-of-two pages.
4832  *
4833  * This function is also limited by MAX_ORDER.
4834  *
4835  * Memory allocated by this function must be released by free_pages_exact().
4836  *
4837  * Return: pointer to the allocated area or %NULL in case of error.
4838  */
4839 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4840 {
4841 	unsigned int order = get_order(size);
4842 	unsigned long addr;
4843 
4844 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4845 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4846 
4847 	addr = __get_free_pages(gfp_mask, order);
4848 	return make_alloc_exact(addr, order, size);
4849 }
4850 EXPORT_SYMBOL(alloc_pages_exact);
4851 
4852 /**
4853  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4854  *			   pages on a node.
4855  * @nid: the preferred node ID where memory should be allocated
4856  * @size: the number of bytes to allocate
4857  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4858  *
4859  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4860  * back.
4861  *
4862  * Return: pointer to the allocated area or %NULL in case of error.
4863  */
4864 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4865 {
4866 	unsigned int order = get_order(size);
4867 	struct page *p;
4868 
4869 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4870 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4871 
4872 	p = alloc_pages_node(nid, gfp_mask, order);
4873 	if (!p)
4874 		return NULL;
4875 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4876 }
4877 
4878 /**
4879  * free_pages_exact - release memory allocated via alloc_pages_exact()
4880  * @virt: the value returned by alloc_pages_exact.
4881  * @size: size of allocation, same value as passed to alloc_pages_exact().
4882  *
4883  * Release the memory allocated by a previous call to alloc_pages_exact.
4884  */
4885 void free_pages_exact(void *virt, size_t size)
4886 {
4887 	unsigned long addr = (unsigned long)virt;
4888 	unsigned long end = addr + PAGE_ALIGN(size);
4889 
4890 	while (addr < end) {
4891 		free_page(addr);
4892 		addr += PAGE_SIZE;
4893 	}
4894 }
4895 EXPORT_SYMBOL(free_pages_exact);
4896 
4897 /**
4898  * nr_free_zone_pages - count number of pages beyond high watermark
4899  * @offset: The zone index of the highest zone
4900  *
4901  * nr_free_zone_pages() counts the number of pages which are beyond the
4902  * high watermark within all zones at or below a given zone index.  For each
4903  * zone, the number of pages is calculated as:
4904  *
4905  *     nr_free_zone_pages = managed_pages - high_pages
4906  *
4907  * Return: number of pages beyond high watermark.
4908  */
4909 static unsigned long nr_free_zone_pages(int offset)
4910 {
4911 	struct zoneref *z;
4912 	struct zone *zone;
4913 
4914 	/* Just pick one node, since fallback list is circular */
4915 	unsigned long sum = 0;
4916 
4917 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4918 
4919 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4920 		unsigned long size = zone_managed_pages(zone);
4921 		unsigned long high = high_wmark_pages(zone);
4922 		if (size > high)
4923 			sum += size - high;
4924 	}
4925 
4926 	return sum;
4927 }
4928 
4929 /**
4930  * nr_free_buffer_pages - count number of pages beyond high watermark
4931  *
4932  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4933  * watermark within ZONE_DMA and ZONE_NORMAL.
4934  *
4935  * Return: number of pages beyond high watermark within ZONE_DMA and
4936  * ZONE_NORMAL.
4937  */
4938 unsigned long nr_free_buffer_pages(void)
4939 {
4940 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4941 }
4942 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4943 
4944 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4945 {
4946 	zoneref->zone = zone;
4947 	zoneref->zone_idx = zone_idx(zone);
4948 }
4949 
4950 /*
4951  * Builds allocation fallback zone lists.
4952  *
4953  * Add all populated zones of a node to the zonelist.
4954  */
4955 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4956 {
4957 	struct zone *zone;
4958 	enum zone_type zone_type = MAX_NR_ZONES;
4959 	int nr_zones = 0;
4960 
4961 	do {
4962 		zone_type--;
4963 		zone = pgdat->node_zones + zone_type;
4964 		if (populated_zone(zone)) {
4965 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4966 			check_highest_zone(zone_type);
4967 		}
4968 	} while (zone_type);
4969 
4970 	return nr_zones;
4971 }
4972 
4973 #ifdef CONFIG_NUMA
4974 
4975 static int __parse_numa_zonelist_order(char *s)
4976 {
4977 	/*
4978 	 * We used to support different zonelists modes but they turned
4979 	 * out to be just not useful. Let's keep the warning in place
4980 	 * if somebody still use the cmd line parameter so that we do
4981 	 * not fail it silently
4982 	 */
4983 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4984 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4985 		return -EINVAL;
4986 	}
4987 	return 0;
4988 }
4989 
4990 static char numa_zonelist_order[] = "Node";
4991 #define NUMA_ZONELIST_ORDER_LEN	16
4992 /*
4993  * sysctl handler for numa_zonelist_order
4994  */
4995 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4996 		void *buffer, size_t *length, loff_t *ppos)
4997 {
4998 	if (write)
4999 		return __parse_numa_zonelist_order(buffer);
5000 	return proc_dostring(table, write, buffer, length, ppos);
5001 }
5002 
5003 static int node_load[MAX_NUMNODES];
5004 
5005 /**
5006  * find_next_best_node - find the next node that should appear in a given node's fallback list
5007  * @node: node whose fallback list we're appending
5008  * @used_node_mask: nodemask_t of already used nodes
5009  *
5010  * We use a number of factors to determine which is the next node that should
5011  * appear on a given node's fallback list.  The node should not have appeared
5012  * already in @node's fallback list, and it should be the next closest node
5013  * according to the distance array (which contains arbitrary distance values
5014  * from each node to each node in the system), and should also prefer nodes
5015  * with no CPUs, since presumably they'll have very little allocation pressure
5016  * on them otherwise.
5017  *
5018  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5019  */
5020 int find_next_best_node(int node, nodemask_t *used_node_mask)
5021 {
5022 	int n, val;
5023 	int min_val = INT_MAX;
5024 	int best_node = NUMA_NO_NODE;
5025 
5026 	/*
5027 	 * Use the local node if we haven't already, but for memoryless local
5028 	 * node, we should skip it and fall back to other nodes.
5029 	 */
5030 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5031 		node_set(node, *used_node_mask);
5032 		return node;
5033 	}
5034 
5035 	for_each_node_state(n, N_MEMORY) {
5036 
5037 		/* Don't want a node to appear more than once */
5038 		if (node_isset(n, *used_node_mask))
5039 			continue;
5040 
5041 		/* Use the distance array to find the distance */
5042 		val = node_distance(node, n);
5043 
5044 		/* Penalize nodes under us ("prefer the next node") */
5045 		val += (n < node);
5046 
5047 		/* Give preference to headless and unused nodes */
5048 		if (!cpumask_empty(cpumask_of_node(n)))
5049 			val += PENALTY_FOR_NODE_WITH_CPUS;
5050 
5051 		/* Slight preference for less loaded node */
5052 		val *= MAX_NUMNODES;
5053 		val += node_load[n];
5054 
5055 		if (val < min_val) {
5056 			min_val = val;
5057 			best_node = n;
5058 		}
5059 	}
5060 
5061 	if (best_node >= 0)
5062 		node_set(best_node, *used_node_mask);
5063 
5064 	return best_node;
5065 }
5066 
5067 
5068 /*
5069  * Build zonelists ordered by node and zones within node.
5070  * This results in maximum locality--normal zone overflows into local
5071  * DMA zone, if any--but risks exhausting DMA zone.
5072  */
5073 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5074 		unsigned nr_nodes)
5075 {
5076 	struct zoneref *zonerefs;
5077 	int i;
5078 
5079 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5080 
5081 	for (i = 0; i < nr_nodes; i++) {
5082 		int nr_zones;
5083 
5084 		pg_data_t *node = NODE_DATA(node_order[i]);
5085 
5086 		nr_zones = build_zonerefs_node(node, zonerefs);
5087 		zonerefs += nr_zones;
5088 	}
5089 	zonerefs->zone = NULL;
5090 	zonerefs->zone_idx = 0;
5091 }
5092 
5093 /*
5094  * Build gfp_thisnode zonelists
5095  */
5096 static void build_thisnode_zonelists(pg_data_t *pgdat)
5097 {
5098 	struct zoneref *zonerefs;
5099 	int nr_zones;
5100 
5101 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5102 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5103 	zonerefs += nr_zones;
5104 	zonerefs->zone = NULL;
5105 	zonerefs->zone_idx = 0;
5106 }
5107 
5108 /*
5109  * Build zonelists ordered by zone and nodes within zones.
5110  * This results in conserving DMA zone[s] until all Normal memory is
5111  * exhausted, but results in overflowing to remote node while memory
5112  * may still exist in local DMA zone.
5113  */
5114 
5115 static void build_zonelists(pg_data_t *pgdat)
5116 {
5117 	static int node_order[MAX_NUMNODES];
5118 	int node, nr_nodes = 0;
5119 	nodemask_t used_mask = NODE_MASK_NONE;
5120 	int local_node, prev_node;
5121 
5122 	/* NUMA-aware ordering of nodes */
5123 	local_node = pgdat->node_id;
5124 	prev_node = local_node;
5125 
5126 	memset(node_order, 0, sizeof(node_order));
5127 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5128 		/*
5129 		 * We don't want to pressure a particular node.
5130 		 * So adding penalty to the first node in same
5131 		 * distance group to make it round-robin.
5132 		 */
5133 		if (node_distance(local_node, node) !=
5134 		    node_distance(local_node, prev_node))
5135 			node_load[node] += 1;
5136 
5137 		node_order[nr_nodes++] = node;
5138 		prev_node = node;
5139 	}
5140 
5141 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5142 	build_thisnode_zonelists(pgdat);
5143 	pr_info("Fallback order for Node %d: ", local_node);
5144 	for (node = 0; node < nr_nodes; node++)
5145 		pr_cont("%d ", node_order[node]);
5146 	pr_cont("\n");
5147 }
5148 
5149 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5150 /*
5151  * Return node id of node used for "local" allocations.
5152  * I.e., first node id of first zone in arg node's generic zonelist.
5153  * Used for initializing percpu 'numa_mem', which is used primarily
5154  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5155  */
5156 int local_memory_node(int node)
5157 {
5158 	struct zoneref *z;
5159 
5160 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5161 				   gfp_zone(GFP_KERNEL),
5162 				   NULL);
5163 	return zone_to_nid(z->zone);
5164 }
5165 #endif
5166 
5167 static void setup_min_unmapped_ratio(void);
5168 static void setup_min_slab_ratio(void);
5169 #else	/* CONFIG_NUMA */
5170 
5171 static void build_zonelists(pg_data_t *pgdat)
5172 {
5173 	int node, local_node;
5174 	struct zoneref *zonerefs;
5175 	int nr_zones;
5176 
5177 	local_node = pgdat->node_id;
5178 
5179 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5180 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5181 	zonerefs += nr_zones;
5182 
5183 	/*
5184 	 * Now we build the zonelist so that it contains the zones
5185 	 * of all the other nodes.
5186 	 * We don't want to pressure a particular node, so when
5187 	 * building the zones for node N, we make sure that the
5188 	 * zones coming right after the local ones are those from
5189 	 * node N+1 (modulo N)
5190 	 */
5191 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5192 		if (!node_online(node))
5193 			continue;
5194 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5195 		zonerefs += nr_zones;
5196 	}
5197 	for (node = 0; node < local_node; node++) {
5198 		if (!node_online(node))
5199 			continue;
5200 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5201 		zonerefs += nr_zones;
5202 	}
5203 
5204 	zonerefs->zone = NULL;
5205 	zonerefs->zone_idx = 0;
5206 }
5207 
5208 #endif	/* CONFIG_NUMA */
5209 
5210 /*
5211  * Boot pageset table. One per cpu which is going to be used for all
5212  * zones and all nodes. The parameters will be set in such a way
5213  * that an item put on a list will immediately be handed over to
5214  * the buddy list. This is safe since pageset manipulation is done
5215  * with interrupts disabled.
5216  *
5217  * The boot_pagesets must be kept even after bootup is complete for
5218  * unused processors and/or zones. They do play a role for bootstrapping
5219  * hotplugged processors.
5220  *
5221  * zoneinfo_show() and maybe other functions do
5222  * not check if the processor is online before following the pageset pointer.
5223  * Other parts of the kernel may not check if the zone is available.
5224  */
5225 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5226 /* These effectively disable the pcplists in the boot pageset completely */
5227 #define BOOT_PAGESET_HIGH	0
5228 #define BOOT_PAGESET_BATCH	1
5229 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5230 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5231 
5232 static void __build_all_zonelists(void *data)
5233 {
5234 	int nid;
5235 	int __maybe_unused cpu;
5236 	pg_data_t *self = data;
5237 	unsigned long flags;
5238 
5239 	/*
5240 	 * The zonelist_update_seq must be acquired with irqsave because the
5241 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5242 	 */
5243 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5244 	/*
5245 	 * Also disable synchronous printk() to prevent any printk() from
5246 	 * trying to hold port->lock, for
5247 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5248 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5249 	 */
5250 	printk_deferred_enter();
5251 
5252 #ifdef CONFIG_NUMA
5253 	memset(node_load, 0, sizeof(node_load));
5254 #endif
5255 
5256 	/*
5257 	 * This node is hotadded and no memory is yet present.   So just
5258 	 * building zonelists is fine - no need to touch other nodes.
5259 	 */
5260 	if (self && !node_online(self->node_id)) {
5261 		build_zonelists(self);
5262 	} else {
5263 		/*
5264 		 * All possible nodes have pgdat preallocated
5265 		 * in free_area_init
5266 		 */
5267 		for_each_node(nid) {
5268 			pg_data_t *pgdat = NODE_DATA(nid);
5269 
5270 			build_zonelists(pgdat);
5271 		}
5272 
5273 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5274 		/*
5275 		 * We now know the "local memory node" for each node--
5276 		 * i.e., the node of the first zone in the generic zonelist.
5277 		 * Set up numa_mem percpu variable for on-line cpus.  During
5278 		 * boot, only the boot cpu should be on-line;  we'll init the
5279 		 * secondary cpus' numa_mem as they come on-line.  During
5280 		 * node/memory hotplug, we'll fixup all on-line cpus.
5281 		 */
5282 		for_each_online_cpu(cpu)
5283 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5284 #endif
5285 	}
5286 
5287 	printk_deferred_exit();
5288 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5289 }
5290 
5291 static noinline void __init
5292 build_all_zonelists_init(void)
5293 {
5294 	int cpu;
5295 
5296 	__build_all_zonelists(NULL);
5297 
5298 	/*
5299 	 * Initialize the boot_pagesets that are going to be used
5300 	 * for bootstrapping processors. The real pagesets for
5301 	 * each zone will be allocated later when the per cpu
5302 	 * allocator is available.
5303 	 *
5304 	 * boot_pagesets are used also for bootstrapping offline
5305 	 * cpus if the system is already booted because the pagesets
5306 	 * are needed to initialize allocators on a specific cpu too.
5307 	 * F.e. the percpu allocator needs the page allocator which
5308 	 * needs the percpu allocator in order to allocate its pagesets
5309 	 * (a chicken-egg dilemma).
5310 	 */
5311 	for_each_possible_cpu(cpu)
5312 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5313 
5314 	mminit_verify_zonelist();
5315 	cpuset_init_current_mems_allowed();
5316 }
5317 
5318 /*
5319  * unless system_state == SYSTEM_BOOTING.
5320  *
5321  * __ref due to call of __init annotated helper build_all_zonelists_init
5322  * [protected by SYSTEM_BOOTING].
5323  */
5324 void __ref build_all_zonelists(pg_data_t *pgdat)
5325 {
5326 	unsigned long vm_total_pages;
5327 
5328 	if (system_state == SYSTEM_BOOTING) {
5329 		build_all_zonelists_init();
5330 	} else {
5331 		__build_all_zonelists(pgdat);
5332 		/* cpuset refresh routine should be here */
5333 	}
5334 	/* Get the number of free pages beyond high watermark in all zones. */
5335 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5336 	/*
5337 	 * Disable grouping by mobility if the number of pages in the
5338 	 * system is too low to allow the mechanism to work. It would be
5339 	 * more accurate, but expensive to check per-zone. This check is
5340 	 * made on memory-hotadd so a system can start with mobility
5341 	 * disabled and enable it later
5342 	 */
5343 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5344 		page_group_by_mobility_disabled = 1;
5345 	else
5346 		page_group_by_mobility_disabled = 0;
5347 
5348 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5349 		nr_online_nodes,
5350 		page_group_by_mobility_disabled ? "off" : "on",
5351 		vm_total_pages);
5352 #ifdef CONFIG_NUMA
5353 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5354 #endif
5355 }
5356 
5357 static int zone_batchsize(struct zone *zone)
5358 {
5359 #ifdef CONFIG_MMU
5360 	int batch;
5361 
5362 	/*
5363 	 * The number of pages to batch allocate is either ~0.1%
5364 	 * of the zone or 1MB, whichever is smaller. The batch
5365 	 * size is striking a balance between allocation latency
5366 	 * and zone lock contention.
5367 	 */
5368 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5369 	batch /= 4;		/* We effectively *= 4 below */
5370 	if (batch < 1)
5371 		batch = 1;
5372 
5373 	/*
5374 	 * Clamp the batch to a 2^n - 1 value. Having a power
5375 	 * of 2 value was found to be more likely to have
5376 	 * suboptimal cache aliasing properties in some cases.
5377 	 *
5378 	 * For example if 2 tasks are alternately allocating
5379 	 * batches of pages, one task can end up with a lot
5380 	 * of pages of one half of the possible page colors
5381 	 * and the other with pages of the other colors.
5382 	 */
5383 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5384 
5385 	return batch;
5386 
5387 #else
5388 	/* The deferral and batching of frees should be suppressed under NOMMU
5389 	 * conditions.
5390 	 *
5391 	 * The problem is that NOMMU needs to be able to allocate large chunks
5392 	 * of contiguous memory as there's no hardware page translation to
5393 	 * assemble apparent contiguous memory from discontiguous pages.
5394 	 *
5395 	 * Queueing large contiguous runs of pages for batching, however,
5396 	 * causes the pages to actually be freed in smaller chunks.  As there
5397 	 * can be a significant delay between the individual batches being
5398 	 * recycled, this leads to the once large chunks of space being
5399 	 * fragmented and becoming unavailable for high-order allocations.
5400 	 */
5401 	return 0;
5402 #endif
5403 }
5404 
5405 static int percpu_pagelist_high_fraction;
5406 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5407 			 int high_fraction)
5408 {
5409 #ifdef CONFIG_MMU
5410 	int high;
5411 	int nr_split_cpus;
5412 	unsigned long total_pages;
5413 
5414 	if (!high_fraction) {
5415 		/*
5416 		 * By default, the high value of the pcp is based on the zone
5417 		 * low watermark so that if they are full then background
5418 		 * reclaim will not be started prematurely.
5419 		 */
5420 		total_pages = low_wmark_pages(zone);
5421 	} else {
5422 		/*
5423 		 * If percpu_pagelist_high_fraction is configured, the high
5424 		 * value is based on a fraction of the managed pages in the
5425 		 * zone.
5426 		 */
5427 		total_pages = zone_managed_pages(zone) / high_fraction;
5428 	}
5429 
5430 	/*
5431 	 * Split the high value across all online CPUs local to the zone. Note
5432 	 * that early in boot that CPUs may not be online yet and that during
5433 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5434 	 * onlined. For memory nodes that have no CPUs, split the high value
5435 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5436 	 * prematurely due to pages stored on pcp lists.
5437 	 */
5438 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5439 	if (!nr_split_cpus)
5440 		nr_split_cpus = num_online_cpus();
5441 	high = total_pages / nr_split_cpus;
5442 
5443 	/*
5444 	 * Ensure high is at least batch*4. The multiple is based on the
5445 	 * historical relationship between high and batch.
5446 	 */
5447 	high = max(high, batch << 2);
5448 
5449 	return high;
5450 #else
5451 	return 0;
5452 #endif
5453 }
5454 
5455 /*
5456  * pcp->high and pcp->batch values are related and generally batch is lower
5457  * than high. They are also related to pcp->count such that count is lower
5458  * than high, and as soon as it reaches high, the pcplist is flushed.
5459  *
5460  * However, guaranteeing these relations at all times would require e.g. write
5461  * barriers here but also careful usage of read barriers at the read side, and
5462  * thus be prone to error and bad for performance. Thus the update only prevents
5463  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5464  * should ensure they can cope with those fields changing asynchronously, and
5465  * fully trust only the pcp->count field on the local CPU with interrupts
5466  * disabled.
5467  *
5468  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5469  * outside of boot time (or some other assurance that no concurrent updaters
5470  * exist).
5471  */
5472 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5473 			   unsigned long high_max, unsigned long batch)
5474 {
5475 	WRITE_ONCE(pcp->batch, batch);
5476 	WRITE_ONCE(pcp->high_min, high_min);
5477 	WRITE_ONCE(pcp->high_max, high_max);
5478 }
5479 
5480 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5481 {
5482 	int pindex;
5483 
5484 	memset(pcp, 0, sizeof(*pcp));
5485 	memset(pzstats, 0, sizeof(*pzstats));
5486 
5487 	spin_lock_init(&pcp->lock);
5488 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5489 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5490 
5491 	/*
5492 	 * Set batch and high values safe for a boot pageset. A true percpu
5493 	 * pageset's initialization will update them subsequently. Here we don't
5494 	 * need to be as careful as pageset_update() as nobody can access the
5495 	 * pageset yet.
5496 	 */
5497 	pcp->high_min = BOOT_PAGESET_HIGH;
5498 	pcp->high_max = BOOT_PAGESET_HIGH;
5499 	pcp->batch = BOOT_PAGESET_BATCH;
5500 	pcp->free_count = 0;
5501 }
5502 
5503 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5504 					      unsigned long high_max, unsigned long batch)
5505 {
5506 	struct per_cpu_pages *pcp;
5507 	int cpu;
5508 
5509 	for_each_possible_cpu(cpu) {
5510 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5511 		pageset_update(pcp, high_min, high_max, batch);
5512 	}
5513 }
5514 
5515 /*
5516  * Calculate and set new high and batch values for all per-cpu pagesets of a
5517  * zone based on the zone's size.
5518  */
5519 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5520 {
5521 	int new_high_min, new_high_max, new_batch;
5522 
5523 	new_batch = max(1, zone_batchsize(zone));
5524 	if (percpu_pagelist_high_fraction) {
5525 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5526 					     percpu_pagelist_high_fraction);
5527 		/*
5528 		 * PCP high is tuned manually, disable auto-tuning via
5529 		 * setting high_min and high_max to the manual value.
5530 		 */
5531 		new_high_max = new_high_min;
5532 	} else {
5533 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5534 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5535 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5536 	}
5537 
5538 	if (zone->pageset_high_min == new_high_min &&
5539 	    zone->pageset_high_max == new_high_max &&
5540 	    zone->pageset_batch == new_batch)
5541 		return;
5542 
5543 	zone->pageset_high_min = new_high_min;
5544 	zone->pageset_high_max = new_high_max;
5545 	zone->pageset_batch = new_batch;
5546 
5547 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5548 					  new_batch);
5549 }
5550 
5551 void __meminit setup_zone_pageset(struct zone *zone)
5552 {
5553 	int cpu;
5554 
5555 	/* Size may be 0 on !SMP && !NUMA */
5556 	if (sizeof(struct per_cpu_zonestat) > 0)
5557 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5558 
5559 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5560 	for_each_possible_cpu(cpu) {
5561 		struct per_cpu_pages *pcp;
5562 		struct per_cpu_zonestat *pzstats;
5563 
5564 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5565 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5566 		per_cpu_pages_init(pcp, pzstats);
5567 	}
5568 
5569 	zone_set_pageset_high_and_batch(zone, 0);
5570 }
5571 
5572 /*
5573  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5574  * page high values need to be recalculated.
5575  */
5576 static void zone_pcp_update(struct zone *zone, int cpu_online)
5577 {
5578 	mutex_lock(&pcp_batch_high_lock);
5579 	zone_set_pageset_high_and_batch(zone, cpu_online);
5580 	mutex_unlock(&pcp_batch_high_lock);
5581 }
5582 
5583 static void zone_pcp_update_cacheinfo(struct zone *zone)
5584 {
5585 	int cpu;
5586 	struct per_cpu_pages *pcp;
5587 	struct cpu_cacheinfo *cci;
5588 
5589 	for_each_online_cpu(cpu) {
5590 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5591 		cci = get_cpu_cacheinfo(cpu);
5592 		/*
5593 		 * If data cache slice of CPU is large enough, "pcp->batch"
5594 		 * pages can be preserved in PCP before draining PCP for
5595 		 * consecutive high-order pages freeing without allocation.
5596 		 * This can reduce zone lock contention without hurting
5597 		 * cache-hot pages sharing.
5598 		 */
5599 		spin_lock(&pcp->lock);
5600 		if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5601 			pcp->flags |= PCPF_FREE_HIGH_BATCH;
5602 		else
5603 			pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5604 		spin_unlock(&pcp->lock);
5605 	}
5606 }
5607 
5608 void setup_pcp_cacheinfo(void)
5609 {
5610 	struct zone *zone;
5611 
5612 	for_each_populated_zone(zone)
5613 		zone_pcp_update_cacheinfo(zone);
5614 }
5615 
5616 /*
5617  * Allocate per cpu pagesets and initialize them.
5618  * Before this call only boot pagesets were available.
5619  */
5620 void __init setup_per_cpu_pageset(void)
5621 {
5622 	struct pglist_data *pgdat;
5623 	struct zone *zone;
5624 	int __maybe_unused cpu;
5625 
5626 	for_each_populated_zone(zone)
5627 		setup_zone_pageset(zone);
5628 
5629 #ifdef CONFIG_NUMA
5630 	/*
5631 	 * Unpopulated zones continue using the boot pagesets.
5632 	 * The numa stats for these pagesets need to be reset.
5633 	 * Otherwise, they will end up skewing the stats of
5634 	 * the nodes these zones are associated with.
5635 	 */
5636 	for_each_possible_cpu(cpu) {
5637 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5638 		memset(pzstats->vm_numa_event, 0,
5639 		       sizeof(pzstats->vm_numa_event));
5640 	}
5641 #endif
5642 
5643 	for_each_online_pgdat(pgdat)
5644 		pgdat->per_cpu_nodestats =
5645 			alloc_percpu(struct per_cpu_nodestat);
5646 }
5647 
5648 __meminit void zone_pcp_init(struct zone *zone)
5649 {
5650 	/*
5651 	 * per cpu subsystem is not up at this point. The following code
5652 	 * relies on the ability of the linker to provide the
5653 	 * offset of a (static) per cpu variable into the per cpu area.
5654 	 */
5655 	zone->per_cpu_pageset = &boot_pageset;
5656 	zone->per_cpu_zonestats = &boot_zonestats;
5657 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5658 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5659 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5660 
5661 	if (populated_zone(zone))
5662 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5663 			 zone->present_pages, zone_batchsize(zone));
5664 }
5665 
5666 void adjust_managed_page_count(struct page *page, long count)
5667 {
5668 	atomic_long_add(count, &page_zone(page)->managed_pages);
5669 	totalram_pages_add(count);
5670 #ifdef CONFIG_HIGHMEM
5671 	if (PageHighMem(page))
5672 		totalhigh_pages_add(count);
5673 #endif
5674 }
5675 EXPORT_SYMBOL(adjust_managed_page_count);
5676 
5677 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5678 {
5679 	void *pos;
5680 	unsigned long pages = 0;
5681 
5682 	start = (void *)PAGE_ALIGN((unsigned long)start);
5683 	end = (void *)((unsigned long)end & PAGE_MASK);
5684 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5685 		struct page *page = virt_to_page(pos);
5686 		void *direct_map_addr;
5687 
5688 		/*
5689 		 * 'direct_map_addr' might be different from 'pos'
5690 		 * because some architectures' virt_to_page()
5691 		 * work with aliases.  Getting the direct map
5692 		 * address ensures that we get a _writeable_
5693 		 * alias for the memset().
5694 		 */
5695 		direct_map_addr = page_address(page);
5696 		/*
5697 		 * Perform a kasan-unchecked memset() since this memory
5698 		 * has not been initialized.
5699 		 */
5700 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5701 		if ((unsigned int)poison <= 0xFF)
5702 			memset(direct_map_addr, poison, PAGE_SIZE);
5703 
5704 		free_reserved_page(page);
5705 	}
5706 
5707 	if (pages && s)
5708 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5709 
5710 	return pages;
5711 }
5712 
5713 static int page_alloc_cpu_dead(unsigned int cpu)
5714 {
5715 	struct zone *zone;
5716 
5717 	lru_add_drain_cpu(cpu);
5718 	mlock_drain_remote(cpu);
5719 	drain_pages(cpu);
5720 
5721 	/*
5722 	 * Spill the event counters of the dead processor
5723 	 * into the current processors event counters.
5724 	 * This artificially elevates the count of the current
5725 	 * processor.
5726 	 */
5727 	vm_events_fold_cpu(cpu);
5728 
5729 	/*
5730 	 * Zero the differential counters of the dead processor
5731 	 * so that the vm statistics are consistent.
5732 	 *
5733 	 * This is only okay since the processor is dead and cannot
5734 	 * race with what we are doing.
5735 	 */
5736 	cpu_vm_stats_fold(cpu);
5737 
5738 	for_each_populated_zone(zone)
5739 		zone_pcp_update(zone, 0);
5740 
5741 	return 0;
5742 }
5743 
5744 static int page_alloc_cpu_online(unsigned int cpu)
5745 {
5746 	struct zone *zone;
5747 
5748 	for_each_populated_zone(zone)
5749 		zone_pcp_update(zone, 1);
5750 	return 0;
5751 }
5752 
5753 void __init page_alloc_init_cpuhp(void)
5754 {
5755 	int ret;
5756 
5757 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5758 					"mm/page_alloc:pcp",
5759 					page_alloc_cpu_online,
5760 					page_alloc_cpu_dead);
5761 	WARN_ON(ret < 0);
5762 }
5763 
5764 /*
5765  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5766  *	or min_free_kbytes changes.
5767  */
5768 static void calculate_totalreserve_pages(void)
5769 {
5770 	struct pglist_data *pgdat;
5771 	unsigned long reserve_pages = 0;
5772 	enum zone_type i, j;
5773 
5774 	for_each_online_pgdat(pgdat) {
5775 
5776 		pgdat->totalreserve_pages = 0;
5777 
5778 		for (i = 0; i < MAX_NR_ZONES; i++) {
5779 			struct zone *zone = pgdat->node_zones + i;
5780 			long max = 0;
5781 			unsigned long managed_pages = zone_managed_pages(zone);
5782 
5783 			/* Find valid and maximum lowmem_reserve in the zone */
5784 			for (j = i; j < MAX_NR_ZONES; j++) {
5785 				if (zone->lowmem_reserve[j] > max)
5786 					max = zone->lowmem_reserve[j];
5787 			}
5788 
5789 			/* we treat the high watermark as reserved pages. */
5790 			max += high_wmark_pages(zone);
5791 
5792 			if (max > managed_pages)
5793 				max = managed_pages;
5794 
5795 			pgdat->totalreserve_pages += max;
5796 
5797 			reserve_pages += max;
5798 		}
5799 	}
5800 	totalreserve_pages = reserve_pages;
5801 }
5802 
5803 /*
5804  * setup_per_zone_lowmem_reserve - called whenever
5805  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5806  *	has a correct pages reserved value, so an adequate number of
5807  *	pages are left in the zone after a successful __alloc_pages().
5808  */
5809 static void setup_per_zone_lowmem_reserve(void)
5810 {
5811 	struct pglist_data *pgdat;
5812 	enum zone_type i, j;
5813 
5814 	for_each_online_pgdat(pgdat) {
5815 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5816 			struct zone *zone = &pgdat->node_zones[i];
5817 			int ratio = sysctl_lowmem_reserve_ratio[i];
5818 			bool clear = !ratio || !zone_managed_pages(zone);
5819 			unsigned long managed_pages = 0;
5820 
5821 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5822 				struct zone *upper_zone = &pgdat->node_zones[j];
5823 
5824 				managed_pages += zone_managed_pages(upper_zone);
5825 
5826 				if (clear)
5827 					zone->lowmem_reserve[j] = 0;
5828 				else
5829 					zone->lowmem_reserve[j] = managed_pages / ratio;
5830 			}
5831 		}
5832 	}
5833 
5834 	/* update totalreserve_pages */
5835 	calculate_totalreserve_pages();
5836 }
5837 
5838 static void __setup_per_zone_wmarks(void)
5839 {
5840 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5841 	unsigned long lowmem_pages = 0;
5842 	struct zone *zone;
5843 	unsigned long flags;
5844 
5845 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5846 	for_each_zone(zone) {
5847 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5848 			lowmem_pages += zone_managed_pages(zone);
5849 	}
5850 
5851 	for_each_zone(zone) {
5852 		u64 tmp;
5853 
5854 		spin_lock_irqsave(&zone->lock, flags);
5855 		tmp = (u64)pages_min * zone_managed_pages(zone);
5856 		do_div(tmp, lowmem_pages);
5857 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5858 			/*
5859 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5860 			 * need highmem and movable zones pages, so cap pages_min
5861 			 * to a small  value here.
5862 			 *
5863 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5864 			 * deltas control async page reclaim, and so should
5865 			 * not be capped for highmem and movable zones.
5866 			 */
5867 			unsigned long min_pages;
5868 
5869 			min_pages = zone_managed_pages(zone) / 1024;
5870 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5871 			zone->_watermark[WMARK_MIN] = min_pages;
5872 		} else {
5873 			/*
5874 			 * If it's a lowmem zone, reserve a number of pages
5875 			 * proportionate to the zone's size.
5876 			 */
5877 			zone->_watermark[WMARK_MIN] = tmp;
5878 		}
5879 
5880 		/*
5881 		 * Set the kswapd watermarks distance according to the
5882 		 * scale factor in proportion to available memory, but
5883 		 * ensure a minimum size on small systems.
5884 		 */
5885 		tmp = max_t(u64, tmp >> 2,
5886 			    mult_frac(zone_managed_pages(zone),
5887 				      watermark_scale_factor, 10000));
5888 
5889 		zone->watermark_boost = 0;
5890 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5891 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5892 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5893 
5894 		spin_unlock_irqrestore(&zone->lock, flags);
5895 	}
5896 
5897 	/* update totalreserve_pages */
5898 	calculate_totalreserve_pages();
5899 }
5900 
5901 /**
5902  * setup_per_zone_wmarks - called when min_free_kbytes changes
5903  * or when memory is hot-{added|removed}
5904  *
5905  * Ensures that the watermark[min,low,high] values for each zone are set
5906  * correctly with respect to min_free_kbytes.
5907  */
5908 void setup_per_zone_wmarks(void)
5909 {
5910 	struct zone *zone;
5911 	static DEFINE_SPINLOCK(lock);
5912 
5913 	spin_lock(&lock);
5914 	__setup_per_zone_wmarks();
5915 	spin_unlock(&lock);
5916 
5917 	/*
5918 	 * The watermark size have changed so update the pcpu batch
5919 	 * and high limits or the limits may be inappropriate.
5920 	 */
5921 	for_each_zone(zone)
5922 		zone_pcp_update(zone, 0);
5923 }
5924 
5925 /*
5926  * Initialise min_free_kbytes.
5927  *
5928  * For small machines we want it small (128k min).  For large machines
5929  * we want it large (256MB max).  But it is not linear, because network
5930  * bandwidth does not increase linearly with machine size.  We use
5931  *
5932  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5933  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5934  *
5935  * which yields
5936  *
5937  * 16MB:	512k
5938  * 32MB:	724k
5939  * 64MB:	1024k
5940  * 128MB:	1448k
5941  * 256MB:	2048k
5942  * 512MB:	2896k
5943  * 1024MB:	4096k
5944  * 2048MB:	5792k
5945  * 4096MB:	8192k
5946  * 8192MB:	11584k
5947  * 16384MB:	16384k
5948  */
5949 void calculate_min_free_kbytes(void)
5950 {
5951 	unsigned long lowmem_kbytes;
5952 	int new_min_free_kbytes;
5953 
5954 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5955 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5956 
5957 	if (new_min_free_kbytes > user_min_free_kbytes)
5958 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5959 	else
5960 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5961 				new_min_free_kbytes, user_min_free_kbytes);
5962 
5963 }
5964 
5965 int __meminit init_per_zone_wmark_min(void)
5966 {
5967 	calculate_min_free_kbytes();
5968 	setup_per_zone_wmarks();
5969 	refresh_zone_stat_thresholds();
5970 	setup_per_zone_lowmem_reserve();
5971 
5972 #ifdef CONFIG_NUMA
5973 	setup_min_unmapped_ratio();
5974 	setup_min_slab_ratio();
5975 #endif
5976 
5977 	khugepaged_min_free_kbytes_update();
5978 
5979 	return 0;
5980 }
5981 postcore_initcall(init_per_zone_wmark_min)
5982 
5983 /*
5984  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5985  *	that we can call two helper functions whenever min_free_kbytes
5986  *	changes.
5987  */
5988 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5989 		void *buffer, size_t *length, loff_t *ppos)
5990 {
5991 	int rc;
5992 
5993 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5994 	if (rc)
5995 		return rc;
5996 
5997 	if (write) {
5998 		user_min_free_kbytes = min_free_kbytes;
5999 		setup_per_zone_wmarks();
6000 	}
6001 	return 0;
6002 }
6003 
6004 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6005 		void *buffer, size_t *length, loff_t *ppos)
6006 {
6007 	int rc;
6008 
6009 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6010 	if (rc)
6011 		return rc;
6012 
6013 	if (write)
6014 		setup_per_zone_wmarks();
6015 
6016 	return 0;
6017 }
6018 
6019 #ifdef CONFIG_NUMA
6020 static void setup_min_unmapped_ratio(void)
6021 {
6022 	pg_data_t *pgdat;
6023 	struct zone *zone;
6024 
6025 	for_each_online_pgdat(pgdat)
6026 		pgdat->min_unmapped_pages = 0;
6027 
6028 	for_each_zone(zone)
6029 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6030 						         sysctl_min_unmapped_ratio) / 100;
6031 }
6032 
6033 
6034 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6035 		void *buffer, size_t *length, loff_t *ppos)
6036 {
6037 	int rc;
6038 
6039 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6040 	if (rc)
6041 		return rc;
6042 
6043 	setup_min_unmapped_ratio();
6044 
6045 	return 0;
6046 }
6047 
6048 static void setup_min_slab_ratio(void)
6049 {
6050 	pg_data_t *pgdat;
6051 	struct zone *zone;
6052 
6053 	for_each_online_pgdat(pgdat)
6054 		pgdat->min_slab_pages = 0;
6055 
6056 	for_each_zone(zone)
6057 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6058 						     sysctl_min_slab_ratio) / 100;
6059 }
6060 
6061 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6062 		void *buffer, size_t *length, loff_t *ppos)
6063 {
6064 	int rc;
6065 
6066 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6067 	if (rc)
6068 		return rc;
6069 
6070 	setup_min_slab_ratio();
6071 
6072 	return 0;
6073 }
6074 #endif
6075 
6076 /*
6077  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6078  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6079  *	whenever sysctl_lowmem_reserve_ratio changes.
6080  *
6081  * The reserve ratio obviously has absolutely no relation with the
6082  * minimum watermarks. The lowmem reserve ratio can only make sense
6083  * if in function of the boot time zone sizes.
6084  */
6085 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6086 		int write, void *buffer, size_t *length, loff_t *ppos)
6087 {
6088 	int i;
6089 
6090 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6091 
6092 	for (i = 0; i < MAX_NR_ZONES; i++) {
6093 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6094 			sysctl_lowmem_reserve_ratio[i] = 0;
6095 	}
6096 
6097 	setup_per_zone_lowmem_reserve();
6098 	return 0;
6099 }
6100 
6101 /*
6102  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6103  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6104  * pagelist can have before it gets flushed back to buddy allocator.
6105  */
6106 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6107 		int write, void *buffer, size_t *length, loff_t *ppos)
6108 {
6109 	struct zone *zone;
6110 	int old_percpu_pagelist_high_fraction;
6111 	int ret;
6112 
6113 	mutex_lock(&pcp_batch_high_lock);
6114 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6115 
6116 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6117 	if (!write || ret < 0)
6118 		goto out;
6119 
6120 	/* Sanity checking to avoid pcp imbalance */
6121 	if (percpu_pagelist_high_fraction &&
6122 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6123 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6124 		ret = -EINVAL;
6125 		goto out;
6126 	}
6127 
6128 	/* No change? */
6129 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6130 		goto out;
6131 
6132 	for_each_populated_zone(zone)
6133 		zone_set_pageset_high_and_batch(zone, 0);
6134 out:
6135 	mutex_unlock(&pcp_batch_high_lock);
6136 	return ret;
6137 }
6138 
6139 static struct ctl_table page_alloc_sysctl_table[] = {
6140 	{
6141 		.procname	= "min_free_kbytes",
6142 		.data		= &min_free_kbytes,
6143 		.maxlen		= sizeof(min_free_kbytes),
6144 		.mode		= 0644,
6145 		.proc_handler	= min_free_kbytes_sysctl_handler,
6146 		.extra1		= SYSCTL_ZERO,
6147 	},
6148 	{
6149 		.procname	= "watermark_boost_factor",
6150 		.data		= &watermark_boost_factor,
6151 		.maxlen		= sizeof(watermark_boost_factor),
6152 		.mode		= 0644,
6153 		.proc_handler	= proc_dointvec_minmax,
6154 		.extra1		= SYSCTL_ZERO,
6155 	},
6156 	{
6157 		.procname	= "watermark_scale_factor",
6158 		.data		= &watermark_scale_factor,
6159 		.maxlen		= sizeof(watermark_scale_factor),
6160 		.mode		= 0644,
6161 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6162 		.extra1		= SYSCTL_ONE,
6163 		.extra2		= SYSCTL_THREE_THOUSAND,
6164 	},
6165 	{
6166 		.procname	= "percpu_pagelist_high_fraction",
6167 		.data		= &percpu_pagelist_high_fraction,
6168 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6169 		.mode		= 0644,
6170 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6171 		.extra1		= SYSCTL_ZERO,
6172 	},
6173 	{
6174 		.procname	= "lowmem_reserve_ratio",
6175 		.data		= &sysctl_lowmem_reserve_ratio,
6176 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6177 		.mode		= 0644,
6178 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6179 	},
6180 #ifdef CONFIG_NUMA
6181 	{
6182 		.procname	= "numa_zonelist_order",
6183 		.data		= &numa_zonelist_order,
6184 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6185 		.mode		= 0644,
6186 		.proc_handler	= numa_zonelist_order_handler,
6187 	},
6188 	{
6189 		.procname	= "min_unmapped_ratio",
6190 		.data		= &sysctl_min_unmapped_ratio,
6191 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6192 		.mode		= 0644,
6193 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6194 		.extra1		= SYSCTL_ZERO,
6195 		.extra2		= SYSCTL_ONE_HUNDRED,
6196 	},
6197 	{
6198 		.procname	= "min_slab_ratio",
6199 		.data		= &sysctl_min_slab_ratio,
6200 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6201 		.mode		= 0644,
6202 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6203 		.extra1		= SYSCTL_ZERO,
6204 		.extra2		= SYSCTL_ONE_HUNDRED,
6205 	},
6206 #endif
6207 	{}
6208 };
6209 
6210 void __init page_alloc_sysctl_init(void)
6211 {
6212 	register_sysctl_init("vm", page_alloc_sysctl_table);
6213 }
6214 
6215 #ifdef CONFIG_CONTIG_ALLOC
6216 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6217 static void alloc_contig_dump_pages(struct list_head *page_list)
6218 {
6219 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6220 
6221 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6222 		struct page *page;
6223 
6224 		dump_stack();
6225 		list_for_each_entry(page, page_list, lru)
6226 			dump_page(page, "migration failure");
6227 	}
6228 }
6229 
6230 /* [start, end) must belong to a single zone. */
6231 int __alloc_contig_migrate_range(struct compact_control *cc,
6232 					unsigned long start, unsigned long end)
6233 {
6234 	/* This function is based on compact_zone() from compaction.c. */
6235 	unsigned int nr_reclaimed;
6236 	unsigned long pfn = start;
6237 	unsigned int tries = 0;
6238 	int ret = 0;
6239 	struct migration_target_control mtc = {
6240 		.nid = zone_to_nid(cc->zone),
6241 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6242 	};
6243 
6244 	lru_cache_disable();
6245 
6246 	while (pfn < end || !list_empty(&cc->migratepages)) {
6247 		if (fatal_signal_pending(current)) {
6248 			ret = -EINTR;
6249 			break;
6250 		}
6251 
6252 		if (list_empty(&cc->migratepages)) {
6253 			cc->nr_migratepages = 0;
6254 			ret = isolate_migratepages_range(cc, pfn, end);
6255 			if (ret && ret != -EAGAIN)
6256 				break;
6257 			pfn = cc->migrate_pfn;
6258 			tries = 0;
6259 		} else if (++tries == 5) {
6260 			ret = -EBUSY;
6261 			break;
6262 		}
6263 
6264 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6265 							&cc->migratepages);
6266 		cc->nr_migratepages -= nr_reclaimed;
6267 
6268 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6269 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6270 
6271 		/*
6272 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6273 		 * to retry again over this error, so do the same here.
6274 		 */
6275 		if (ret == -ENOMEM)
6276 			break;
6277 	}
6278 
6279 	lru_cache_enable();
6280 	if (ret < 0) {
6281 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6282 			alloc_contig_dump_pages(&cc->migratepages);
6283 		putback_movable_pages(&cc->migratepages);
6284 		return ret;
6285 	}
6286 	return 0;
6287 }
6288 
6289 /**
6290  * alloc_contig_range() -- tries to allocate given range of pages
6291  * @start:	start PFN to allocate
6292  * @end:	one-past-the-last PFN to allocate
6293  * @migratetype:	migratetype of the underlying pageblocks (either
6294  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6295  *			in range must have the same migratetype and it must
6296  *			be either of the two.
6297  * @gfp_mask:	GFP mask to use during compaction
6298  *
6299  * The PFN range does not have to be pageblock aligned. The PFN range must
6300  * belong to a single zone.
6301  *
6302  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6303  * pageblocks in the range.  Once isolated, the pageblocks should not
6304  * be modified by others.
6305  *
6306  * Return: zero on success or negative error code.  On success all
6307  * pages which PFN is in [start, end) are allocated for the caller and
6308  * need to be freed with free_contig_range().
6309  */
6310 int alloc_contig_range(unsigned long start, unsigned long end,
6311 		       unsigned migratetype, gfp_t gfp_mask)
6312 {
6313 	unsigned long outer_start, outer_end;
6314 	int order;
6315 	int ret = 0;
6316 
6317 	struct compact_control cc = {
6318 		.nr_migratepages = 0,
6319 		.order = -1,
6320 		.zone = page_zone(pfn_to_page(start)),
6321 		.mode = MIGRATE_SYNC,
6322 		.ignore_skip_hint = true,
6323 		.no_set_skip_hint = true,
6324 		.gfp_mask = current_gfp_context(gfp_mask),
6325 		.alloc_contig = true,
6326 	};
6327 	INIT_LIST_HEAD(&cc.migratepages);
6328 
6329 	/*
6330 	 * What we do here is we mark all pageblocks in range as
6331 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6332 	 * have different sizes, and due to the way page allocator
6333 	 * work, start_isolate_page_range() has special handlings for this.
6334 	 *
6335 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6336 	 * migrate the pages from an unaligned range (ie. pages that
6337 	 * we are interested in). This will put all the pages in
6338 	 * range back to page allocator as MIGRATE_ISOLATE.
6339 	 *
6340 	 * When this is done, we take the pages in range from page
6341 	 * allocator removing them from the buddy system.  This way
6342 	 * page allocator will never consider using them.
6343 	 *
6344 	 * This lets us mark the pageblocks back as
6345 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6346 	 * aligned range but not in the unaligned, original range are
6347 	 * put back to page allocator so that buddy can use them.
6348 	 */
6349 
6350 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6351 	if (ret)
6352 		goto done;
6353 
6354 	drain_all_pages(cc.zone);
6355 
6356 	/*
6357 	 * In case of -EBUSY, we'd like to know which page causes problem.
6358 	 * So, just fall through. test_pages_isolated() has a tracepoint
6359 	 * which will report the busy page.
6360 	 *
6361 	 * It is possible that busy pages could become available before
6362 	 * the call to test_pages_isolated, and the range will actually be
6363 	 * allocated.  So, if we fall through be sure to clear ret so that
6364 	 * -EBUSY is not accidentally used or returned to caller.
6365 	 */
6366 	ret = __alloc_contig_migrate_range(&cc, start, end);
6367 	if (ret && ret != -EBUSY)
6368 		goto done;
6369 	ret = 0;
6370 
6371 	/*
6372 	 * Pages from [start, end) are within a pageblock_nr_pages
6373 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6374 	 * more, all pages in [start, end) are free in page allocator.
6375 	 * What we are going to do is to allocate all pages from
6376 	 * [start, end) (that is remove them from page allocator).
6377 	 *
6378 	 * The only problem is that pages at the beginning and at the
6379 	 * end of interesting range may be not aligned with pages that
6380 	 * page allocator holds, ie. they can be part of higher order
6381 	 * pages.  Because of this, we reserve the bigger range and
6382 	 * once this is done free the pages we are not interested in.
6383 	 *
6384 	 * We don't have to hold zone->lock here because the pages are
6385 	 * isolated thus they won't get removed from buddy.
6386 	 */
6387 
6388 	order = 0;
6389 	outer_start = start;
6390 	while (!PageBuddy(pfn_to_page(outer_start))) {
6391 		if (++order > MAX_ORDER) {
6392 			outer_start = start;
6393 			break;
6394 		}
6395 		outer_start &= ~0UL << order;
6396 	}
6397 
6398 	if (outer_start != start) {
6399 		order = buddy_order(pfn_to_page(outer_start));
6400 
6401 		/*
6402 		 * outer_start page could be small order buddy page and
6403 		 * it doesn't include start page. Adjust outer_start
6404 		 * in this case to report failed page properly
6405 		 * on tracepoint in test_pages_isolated()
6406 		 */
6407 		if (outer_start + (1UL << order) <= start)
6408 			outer_start = start;
6409 	}
6410 
6411 	/* Make sure the range is really isolated. */
6412 	if (test_pages_isolated(outer_start, end, 0)) {
6413 		ret = -EBUSY;
6414 		goto done;
6415 	}
6416 
6417 	/* Grab isolated pages from freelists. */
6418 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6419 	if (!outer_end) {
6420 		ret = -EBUSY;
6421 		goto done;
6422 	}
6423 
6424 	/* Free head and tail (if any) */
6425 	if (start != outer_start)
6426 		free_contig_range(outer_start, start - outer_start);
6427 	if (end != outer_end)
6428 		free_contig_range(end, outer_end - end);
6429 
6430 done:
6431 	undo_isolate_page_range(start, end, migratetype);
6432 	return ret;
6433 }
6434 EXPORT_SYMBOL(alloc_contig_range);
6435 
6436 static int __alloc_contig_pages(unsigned long start_pfn,
6437 				unsigned long nr_pages, gfp_t gfp_mask)
6438 {
6439 	unsigned long end_pfn = start_pfn + nr_pages;
6440 
6441 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6442 				  gfp_mask);
6443 }
6444 
6445 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6446 				   unsigned long nr_pages)
6447 {
6448 	unsigned long i, end_pfn = start_pfn + nr_pages;
6449 	struct page *page;
6450 
6451 	for (i = start_pfn; i < end_pfn; i++) {
6452 		page = pfn_to_online_page(i);
6453 		if (!page)
6454 			return false;
6455 
6456 		if (page_zone(page) != z)
6457 			return false;
6458 
6459 		if (PageReserved(page))
6460 			return false;
6461 
6462 		if (PageHuge(page))
6463 			return false;
6464 	}
6465 	return true;
6466 }
6467 
6468 static bool zone_spans_last_pfn(const struct zone *zone,
6469 				unsigned long start_pfn, unsigned long nr_pages)
6470 {
6471 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6472 
6473 	return zone_spans_pfn(zone, last_pfn);
6474 }
6475 
6476 /**
6477  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6478  * @nr_pages:	Number of contiguous pages to allocate
6479  * @gfp_mask:	GFP mask to limit search and used during compaction
6480  * @nid:	Target node
6481  * @nodemask:	Mask for other possible nodes
6482  *
6483  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6484  * on an applicable zonelist to find a contiguous pfn range which can then be
6485  * tried for allocation with alloc_contig_range(). This routine is intended
6486  * for allocation requests which can not be fulfilled with the buddy allocator.
6487  *
6488  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6489  * power of two, then allocated range is also guaranteed to be aligned to same
6490  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6491  *
6492  * Allocated pages can be freed with free_contig_range() or by manually calling
6493  * __free_page() on each allocated page.
6494  *
6495  * Return: pointer to contiguous pages on success, or NULL if not successful.
6496  */
6497 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6498 				int nid, nodemask_t *nodemask)
6499 {
6500 	unsigned long ret, pfn, flags;
6501 	struct zonelist *zonelist;
6502 	struct zone *zone;
6503 	struct zoneref *z;
6504 
6505 	zonelist = node_zonelist(nid, gfp_mask);
6506 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6507 					gfp_zone(gfp_mask), nodemask) {
6508 		spin_lock_irqsave(&zone->lock, flags);
6509 
6510 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6511 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6512 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6513 				/*
6514 				 * We release the zone lock here because
6515 				 * alloc_contig_range() will also lock the zone
6516 				 * at some point. If there's an allocation
6517 				 * spinning on this lock, it may win the race
6518 				 * and cause alloc_contig_range() to fail...
6519 				 */
6520 				spin_unlock_irqrestore(&zone->lock, flags);
6521 				ret = __alloc_contig_pages(pfn, nr_pages,
6522 							gfp_mask);
6523 				if (!ret)
6524 					return pfn_to_page(pfn);
6525 				spin_lock_irqsave(&zone->lock, flags);
6526 			}
6527 			pfn += nr_pages;
6528 		}
6529 		spin_unlock_irqrestore(&zone->lock, flags);
6530 	}
6531 	return NULL;
6532 }
6533 #endif /* CONFIG_CONTIG_ALLOC */
6534 
6535 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6536 {
6537 	unsigned long count = 0;
6538 
6539 	for (; nr_pages--; pfn++) {
6540 		struct page *page = pfn_to_page(pfn);
6541 
6542 		count += page_count(page) != 1;
6543 		__free_page(page);
6544 	}
6545 	WARN(count != 0, "%lu pages are still in use!\n", count);
6546 }
6547 EXPORT_SYMBOL(free_contig_range);
6548 
6549 /*
6550  * Effectively disable pcplists for the zone by setting the high limit to 0
6551  * and draining all cpus. A concurrent page freeing on another CPU that's about
6552  * to put the page on pcplist will either finish before the drain and the page
6553  * will be drained, or observe the new high limit and skip the pcplist.
6554  *
6555  * Must be paired with a call to zone_pcp_enable().
6556  */
6557 void zone_pcp_disable(struct zone *zone)
6558 {
6559 	mutex_lock(&pcp_batch_high_lock);
6560 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6561 	__drain_all_pages(zone, true);
6562 }
6563 
6564 void zone_pcp_enable(struct zone *zone)
6565 {
6566 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6567 		zone->pageset_high_max, zone->pageset_batch);
6568 	mutex_unlock(&pcp_batch_high_lock);
6569 }
6570 
6571 void zone_pcp_reset(struct zone *zone)
6572 {
6573 	int cpu;
6574 	struct per_cpu_zonestat *pzstats;
6575 
6576 	if (zone->per_cpu_pageset != &boot_pageset) {
6577 		for_each_online_cpu(cpu) {
6578 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6579 			drain_zonestat(zone, pzstats);
6580 		}
6581 		free_percpu(zone->per_cpu_pageset);
6582 		zone->per_cpu_pageset = &boot_pageset;
6583 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6584 			free_percpu(zone->per_cpu_zonestats);
6585 			zone->per_cpu_zonestats = &boot_zonestats;
6586 		}
6587 	}
6588 }
6589 
6590 #ifdef CONFIG_MEMORY_HOTREMOVE
6591 /*
6592  * All pages in the range must be in a single zone, must not contain holes,
6593  * must span full sections, and must be isolated before calling this function.
6594  */
6595 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6596 {
6597 	unsigned long pfn = start_pfn;
6598 	struct page *page;
6599 	struct zone *zone;
6600 	unsigned int order;
6601 	unsigned long flags;
6602 
6603 	offline_mem_sections(pfn, end_pfn);
6604 	zone = page_zone(pfn_to_page(pfn));
6605 	spin_lock_irqsave(&zone->lock, flags);
6606 	while (pfn < end_pfn) {
6607 		page = pfn_to_page(pfn);
6608 		/*
6609 		 * The HWPoisoned page may be not in buddy system, and
6610 		 * page_count() is not 0.
6611 		 */
6612 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6613 			pfn++;
6614 			continue;
6615 		}
6616 		/*
6617 		 * At this point all remaining PageOffline() pages have a
6618 		 * reference count of 0 and can simply be skipped.
6619 		 */
6620 		if (PageOffline(page)) {
6621 			BUG_ON(page_count(page));
6622 			BUG_ON(PageBuddy(page));
6623 			pfn++;
6624 			continue;
6625 		}
6626 
6627 		BUG_ON(page_count(page));
6628 		BUG_ON(!PageBuddy(page));
6629 		order = buddy_order(page);
6630 		del_page_from_free_list(page, zone, order);
6631 		pfn += (1 << order);
6632 	}
6633 	spin_unlock_irqrestore(&zone->lock, flags);
6634 }
6635 #endif
6636 
6637 /*
6638  * This function returns a stable result only if called under zone lock.
6639  */
6640 bool is_free_buddy_page(struct page *page)
6641 {
6642 	unsigned long pfn = page_to_pfn(page);
6643 	unsigned int order;
6644 
6645 	for (order = 0; order <= MAX_ORDER; order++) {
6646 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6647 
6648 		if (PageBuddy(page_head) &&
6649 		    buddy_order_unsafe(page_head) >= order)
6650 			break;
6651 	}
6652 
6653 	return order <= MAX_ORDER;
6654 }
6655 EXPORT_SYMBOL(is_free_buddy_page);
6656 
6657 #ifdef CONFIG_MEMORY_FAILURE
6658 /*
6659  * Break down a higher-order page in sub-pages, and keep our target out of
6660  * buddy allocator.
6661  */
6662 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6663 				   struct page *target, int low, int high,
6664 				   int migratetype)
6665 {
6666 	unsigned long size = 1 << high;
6667 	struct page *current_buddy;
6668 
6669 	while (high > low) {
6670 		high--;
6671 		size >>= 1;
6672 
6673 		if (target >= &page[size]) {
6674 			current_buddy = page;
6675 			page = page + size;
6676 		} else {
6677 			current_buddy = page + size;
6678 		}
6679 
6680 		if (set_page_guard(zone, current_buddy, high, migratetype))
6681 			continue;
6682 
6683 		add_to_free_list(current_buddy, zone, high, migratetype);
6684 		set_buddy_order(current_buddy, high);
6685 	}
6686 }
6687 
6688 /*
6689  * Take a page that will be marked as poisoned off the buddy allocator.
6690  */
6691 bool take_page_off_buddy(struct page *page)
6692 {
6693 	struct zone *zone = page_zone(page);
6694 	unsigned long pfn = page_to_pfn(page);
6695 	unsigned long flags;
6696 	unsigned int order;
6697 	bool ret = false;
6698 
6699 	spin_lock_irqsave(&zone->lock, flags);
6700 	for (order = 0; order <= MAX_ORDER; order++) {
6701 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6702 		int page_order = buddy_order(page_head);
6703 
6704 		if (PageBuddy(page_head) && page_order >= order) {
6705 			unsigned long pfn_head = page_to_pfn(page_head);
6706 			int migratetype = get_pfnblock_migratetype(page_head,
6707 								   pfn_head);
6708 
6709 			del_page_from_free_list(page_head, zone, page_order);
6710 			break_down_buddy_pages(zone, page_head, page, 0,
6711 						page_order, migratetype);
6712 			SetPageHWPoisonTakenOff(page);
6713 			if (!is_migrate_isolate(migratetype))
6714 				__mod_zone_freepage_state(zone, -1, migratetype);
6715 			ret = true;
6716 			break;
6717 		}
6718 		if (page_count(page_head) > 0)
6719 			break;
6720 	}
6721 	spin_unlock_irqrestore(&zone->lock, flags);
6722 	return ret;
6723 }
6724 
6725 /*
6726  * Cancel takeoff done by take_page_off_buddy().
6727  */
6728 bool put_page_back_buddy(struct page *page)
6729 {
6730 	struct zone *zone = page_zone(page);
6731 	unsigned long pfn = page_to_pfn(page);
6732 	unsigned long flags;
6733 	int migratetype = get_pfnblock_migratetype(page, pfn);
6734 	bool ret = false;
6735 
6736 	spin_lock_irqsave(&zone->lock, flags);
6737 	if (put_page_testzero(page)) {
6738 		ClearPageHWPoisonTakenOff(page);
6739 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6740 		if (TestClearPageHWPoison(page)) {
6741 			ret = true;
6742 		}
6743 	}
6744 	spin_unlock_irqrestore(&zone->lock, flags);
6745 
6746 	return ret;
6747 }
6748 #endif
6749 
6750 #ifdef CONFIG_ZONE_DMA
6751 bool has_managed_dma(void)
6752 {
6753 	struct pglist_data *pgdat;
6754 
6755 	for_each_online_pgdat(pgdat) {
6756 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6757 
6758 		if (managed_zone(zone))
6759 			return true;
6760 	}
6761 	return false;
6762 }
6763 #endif /* CONFIG_ZONE_DMA */
6764 
6765 #ifdef CONFIG_UNACCEPTED_MEMORY
6766 
6767 /* Counts number of zones with unaccepted pages. */
6768 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6769 
6770 static bool lazy_accept = true;
6771 
6772 static int __init accept_memory_parse(char *p)
6773 {
6774 	if (!strcmp(p, "lazy")) {
6775 		lazy_accept = true;
6776 		return 0;
6777 	} else if (!strcmp(p, "eager")) {
6778 		lazy_accept = false;
6779 		return 0;
6780 	} else {
6781 		return -EINVAL;
6782 	}
6783 }
6784 early_param("accept_memory", accept_memory_parse);
6785 
6786 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6787 {
6788 	phys_addr_t start = page_to_phys(page);
6789 	phys_addr_t end = start + (PAGE_SIZE << order);
6790 
6791 	return range_contains_unaccepted_memory(start, end);
6792 }
6793 
6794 static void accept_page(struct page *page, unsigned int order)
6795 {
6796 	phys_addr_t start = page_to_phys(page);
6797 
6798 	accept_memory(start, start + (PAGE_SIZE << order));
6799 }
6800 
6801 static bool try_to_accept_memory_one(struct zone *zone)
6802 {
6803 	unsigned long flags;
6804 	struct page *page;
6805 	bool last;
6806 
6807 	if (list_empty(&zone->unaccepted_pages))
6808 		return false;
6809 
6810 	spin_lock_irqsave(&zone->lock, flags);
6811 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6812 					struct page, lru);
6813 	if (!page) {
6814 		spin_unlock_irqrestore(&zone->lock, flags);
6815 		return false;
6816 	}
6817 
6818 	list_del(&page->lru);
6819 	last = list_empty(&zone->unaccepted_pages);
6820 
6821 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6822 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6823 	spin_unlock_irqrestore(&zone->lock, flags);
6824 
6825 	accept_page(page, MAX_ORDER);
6826 
6827 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6828 
6829 	if (last)
6830 		static_branch_dec(&zones_with_unaccepted_pages);
6831 
6832 	return true;
6833 }
6834 
6835 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6836 {
6837 	long to_accept;
6838 	int ret = false;
6839 
6840 	/* How much to accept to get to high watermark? */
6841 	to_accept = high_wmark_pages(zone) -
6842 		    (zone_page_state(zone, NR_FREE_PAGES) -
6843 		    __zone_watermark_unusable_free(zone, order, 0));
6844 
6845 	/* Accept at least one page */
6846 	do {
6847 		if (!try_to_accept_memory_one(zone))
6848 			break;
6849 		ret = true;
6850 		to_accept -= MAX_ORDER_NR_PAGES;
6851 	} while (to_accept > 0);
6852 
6853 	return ret;
6854 }
6855 
6856 static inline bool has_unaccepted_memory(void)
6857 {
6858 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6859 }
6860 
6861 static bool __free_unaccepted(struct page *page)
6862 {
6863 	struct zone *zone = page_zone(page);
6864 	unsigned long flags;
6865 	bool first = false;
6866 
6867 	if (!lazy_accept)
6868 		return false;
6869 
6870 	spin_lock_irqsave(&zone->lock, flags);
6871 	first = list_empty(&zone->unaccepted_pages);
6872 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6873 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6874 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6875 	spin_unlock_irqrestore(&zone->lock, flags);
6876 
6877 	if (first)
6878 		static_branch_inc(&zones_with_unaccepted_pages);
6879 
6880 	return true;
6881 }
6882 
6883 #else
6884 
6885 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6886 {
6887 	return false;
6888 }
6889 
6890 static void accept_page(struct page *page, unsigned int order)
6891 {
6892 }
6893 
6894 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6895 {
6896 	return false;
6897 }
6898 
6899 static inline bool has_unaccepted_memory(void)
6900 {
6901 	return false;
6902 }
6903 
6904 static bool __free_unaccepted(struct page *page)
6905 {
6906 	BUILD_BUG();
6907 	return false;
6908 }
6909 
6910 #endif /* CONFIG_UNACCEPTED_MEMORY */
6911