1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmstat.h> 38 #include <linux/fault-inject.h> 39 #include <linux/compaction.h> 40 #include <trace/events/kmem.h> 41 #include <trace/events/oom.h> 42 #include <linux/prefetch.h> 43 #include <linux/mm_inline.h> 44 #include <linux/mmu_notifier.h> 45 #include <linux/migrate.h> 46 #include <linux/sched/mm.h> 47 #include <linux/page_owner.h> 48 #include <linux/page_table_check.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/lockdep.h> 52 #include <linux/psi.h> 53 #include <linux/khugepaged.h> 54 #include <linux/delayacct.h> 55 #include <linux/cacheinfo.h> 56 #include <asm/div64.h> 57 #include "internal.h" 58 #include "shuffle.h" 59 #include "page_reporting.h" 60 61 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 62 typedef int __bitwise fpi_t; 63 64 /* No special request */ 65 #define FPI_NONE ((__force fpi_t)0) 66 67 /* 68 * Skip free page reporting notification for the (possibly merged) page. 69 * This does not hinder free page reporting from grabbing the page, 70 * reporting it and marking it "reported" - it only skips notifying 71 * the free page reporting infrastructure about a newly freed page. For 72 * example, used when temporarily pulling a page from a freelist and 73 * putting it back unmodified. 74 */ 75 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 76 77 /* 78 * Place the (possibly merged) page to the tail of the freelist. Will ignore 79 * page shuffling (relevant code - e.g., memory onlining - is expected to 80 * shuffle the whole zone). 81 * 82 * Note: No code should rely on this flag for correctness - it's purely 83 * to allow for optimizations when handing back either fresh pages 84 * (memory onlining) or untouched pages (page isolation, free page 85 * reporting). 86 */ 87 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 88 89 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 90 static DEFINE_MUTEX(pcp_batch_high_lock); 91 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 92 93 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 94 /* 95 * On SMP, spin_trylock is sufficient protection. 96 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 97 */ 98 #define pcp_trylock_prepare(flags) do { } while (0) 99 #define pcp_trylock_finish(flag) do { } while (0) 100 #else 101 102 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 103 #define pcp_trylock_prepare(flags) local_irq_save(flags) 104 #define pcp_trylock_finish(flags) local_irq_restore(flags) 105 #endif 106 107 /* 108 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 109 * a migration causing the wrong PCP to be locked and remote memory being 110 * potentially allocated, pin the task to the CPU for the lookup+lock. 111 * preempt_disable is used on !RT because it is faster than migrate_disable. 112 * migrate_disable is used on RT because otherwise RT spinlock usage is 113 * interfered with and a high priority task cannot preempt the allocator. 114 */ 115 #ifndef CONFIG_PREEMPT_RT 116 #define pcpu_task_pin() preempt_disable() 117 #define pcpu_task_unpin() preempt_enable() 118 #else 119 #define pcpu_task_pin() migrate_disable() 120 #define pcpu_task_unpin() migrate_enable() 121 #endif 122 123 /* 124 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 125 * Return value should be used with equivalent unlock helper. 126 */ 127 #define pcpu_spin_lock(type, member, ptr) \ 128 ({ \ 129 type *_ret; \ 130 pcpu_task_pin(); \ 131 _ret = this_cpu_ptr(ptr); \ 132 spin_lock(&_ret->member); \ 133 _ret; \ 134 }) 135 136 #define pcpu_spin_trylock(type, member, ptr) \ 137 ({ \ 138 type *_ret; \ 139 pcpu_task_pin(); \ 140 _ret = this_cpu_ptr(ptr); \ 141 if (!spin_trylock(&_ret->member)) { \ 142 pcpu_task_unpin(); \ 143 _ret = NULL; \ 144 } \ 145 _ret; \ 146 }) 147 148 #define pcpu_spin_unlock(member, ptr) \ 149 ({ \ 150 spin_unlock(&ptr->member); \ 151 pcpu_task_unpin(); \ 152 }) 153 154 /* struct per_cpu_pages specific helpers. */ 155 #define pcp_spin_lock(ptr) \ 156 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 157 158 #define pcp_spin_trylock(ptr) \ 159 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 160 161 #define pcp_spin_unlock(ptr) \ 162 pcpu_spin_unlock(lock, ptr) 163 164 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 165 DEFINE_PER_CPU(int, numa_node); 166 EXPORT_PER_CPU_SYMBOL(numa_node); 167 #endif 168 169 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 170 171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 172 /* 173 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 174 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 175 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 176 * defined in <linux/topology.h>. 177 */ 178 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 179 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 180 #endif 181 182 static DEFINE_MUTEX(pcpu_drain_mutex); 183 184 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 185 volatile unsigned long latent_entropy __latent_entropy; 186 EXPORT_SYMBOL(latent_entropy); 187 #endif 188 189 /* 190 * Array of node states. 191 */ 192 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 193 [N_POSSIBLE] = NODE_MASK_ALL, 194 [N_ONLINE] = { { [0] = 1UL } }, 195 #ifndef CONFIG_NUMA 196 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 197 #ifdef CONFIG_HIGHMEM 198 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 199 #endif 200 [N_MEMORY] = { { [0] = 1UL } }, 201 [N_CPU] = { { [0] = 1UL } }, 202 #endif /* NUMA */ 203 }; 204 EXPORT_SYMBOL(node_states); 205 206 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 207 208 /* 209 * A cached value of the page's pageblock's migratetype, used when the page is 210 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 211 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 212 * Also the migratetype set in the page does not necessarily match the pcplist 213 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 214 * other index - this ensures that it will be put on the correct CMA freelist. 215 */ 216 static inline int get_pcppage_migratetype(struct page *page) 217 { 218 return page->index; 219 } 220 221 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 222 { 223 page->index = migratetype; 224 } 225 226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 227 unsigned int pageblock_order __read_mostly; 228 #endif 229 230 static void __free_pages_ok(struct page *page, unsigned int order, 231 fpi_t fpi_flags); 232 233 /* 234 * results with 256, 32 in the lowmem_reserve sysctl: 235 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 236 * 1G machine -> (16M dma, 784M normal, 224M high) 237 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 238 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 239 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 240 * 241 * TBD: should special case ZONE_DMA32 machines here - in those we normally 242 * don't need any ZONE_NORMAL reservation 243 */ 244 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 245 #ifdef CONFIG_ZONE_DMA 246 [ZONE_DMA] = 256, 247 #endif 248 #ifdef CONFIG_ZONE_DMA32 249 [ZONE_DMA32] = 256, 250 #endif 251 [ZONE_NORMAL] = 32, 252 #ifdef CONFIG_HIGHMEM 253 [ZONE_HIGHMEM] = 0, 254 #endif 255 [ZONE_MOVABLE] = 0, 256 }; 257 258 char * const zone_names[MAX_NR_ZONES] = { 259 #ifdef CONFIG_ZONE_DMA 260 "DMA", 261 #endif 262 #ifdef CONFIG_ZONE_DMA32 263 "DMA32", 264 #endif 265 "Normal", 266 #ifdef CONFIG_HIGHMEM 267 "HighMem", 268 #endif 269 "Movable", 270 #ifdef CONFIG_ZONE_DEVICE 271 "Device", 272 #endif 273 }; 274 275 const char * const migratetype_names[MIGRATE_TYPES] = { 276 "Unmovable", 277 "Movable", 278 "Reclaimable", 279 "HighAtomic", 280 #ifdef CONFIG_CMA 281 "CMA", 282 #endif 283 #ifdef CONFIG_MEMORY_ISOLATION 284 "Isolate", 285 #endif 286 }; 287 288 int min_free_kbytes = 1024; 289 int user_min_free_kbytes = -1; 290 static int watermark_boost_factor __read_mostly = 15000; 291 static int watermark_scale_factor = 10; 292 293 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 294 int movable_zone; 295 EXPORT_SYMBOL(movable_zone); 296 297 #if MAX_NUMNODES > 1 298 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 299 unsigned int nr_online_nodes __read_mostly = 1; 300 EXPORT_SYMBOL(nr_node_ids); 301 EXPORT_SYMBOL(nr_online_nodes); 302 #endif 303 304 static bool page_contains_unaccepted(struct page *page, unsigned int order); 305 static void accept_page(struct page *page, unsigned int order); 306 static bool try_to_accept_memory(struct zone *zone, unsigned int order); 307 static inline bool has_unaccepted_memory(void); 308 static bool __free_unaccepted(struct page *page); 309 310 int page_group_by_mobility_disabled __read_mostly; 311 312 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 313 /* 314 * During boot we initialize deferred pages on-demand, as needed, but once 315 * page_alloc_init_late() has finished, the deferred pages are all initialized, 316 * and we can permanently disable that path. 317 */ 318 DEFINE_STATIC_KEY_TRUE(deferred_pages); 319 320 static inline bool deferred_pages_enabled(void) 321 { 322 return static_branch_unlikely(&deferred_pages); 323 } 324 325 /* 326 * deferred_grow_zone() is __init, but it is called from 327 * get_page_from_freelist() during early boot until deferred_pages permanently 328 * disables this call. This is why we have refdata wrapper to avoid warning, 329 * and to ensure that the function body gets unloaded. 330 */ 331 static bool __ref 332 _deferred_grow_zone(struct zone *zone, unsigned int order) 333 { 334 return deferred_grow_zone(zone, order); 335 } 336 #else 337 static inline bool deferred_pages_enabled(void) 338 { 339 return false; 340 } 341 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 342 343 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 344 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 345 unsigned long pfn) 346 { 347 #ifdef CONFIG_SPARSEMEM 348 return section_to_usemap(__pfn_to_section(pfn)); 349 #else 350 return page_zone(page)->pageblock_flags; 351 #endif /* CONFIG_SPARSEMEM */ 352 } 353 354 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 355 { 356 #ifdef CONFIG_SPARSEMEM 357 pfn &= (PAGES_PER_SECTION-1); 358 #else 359 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 360 #endif /* CONFIG_SPARSEMEM */ 361 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 362 } 363 364 /** 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 366 * @page: The page within the block of interest 367 * @pfn: The target page frame number 368 * @mask: mask of bits that the caller is interested in 369 * 370 * Return: pageblock_bits flags 371 */ 372 unsigned long get_pfnblock_flags_mask(const struct page *page, 373 unsigned long pfn, unsigned long mask) 374 { 375 unsigned long *bitmap; 376 unsigned long bitidx, word_bitidx; 377 unsigned long word; 378 379 bitmap = get_pageblock_bitmap(page, pfn); 380 bitidx = pfn_to_bitidx(page, pfn); 381 word_bitidx = bitidx / BITS_PER_LONG; 382 bitidx &= (BITS_PER_LONG-1); 383 /* 384 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 385 * a consistent read of the memory array, so that results, even though 386 * racy, are not corrupted. 387 */ 388 word = READ_ONCE(bitmap[word_bitidx]); 389 return (word >> bitidx) & mask; 390 } 391 392 static __always_inline int get_pfnblock_migratetype(const struct page *page, 393 unsigned long pfn) 394 { 395 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 396 } 397 398 /** 399 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 400 * @page: The page within the block of interest 401 * @flags: The flags to set 402 * @pfn: The target page frame number 403 * @mask: mask of bits that the caller is interested in 404 */ 405 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 406 unsigned long pfn, 407 unsigned long mask) 408 { 409 unsigned long *bitmap; 410 unsigned long bitidx, word_bitidx; 411 unsigned long word; 412 413 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 414 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 415 416 bitmap = get_pageblock_bitmap(page, pfn); 417 bitidx = pfn_to_bitidx(page, pfn); 418 word_bitidx = bitidx / BITS_PER_LONG; 419 bitidx &= (BITS_PER_LONG-1); 420 421 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 422 423 mask <<= bitidx; 424 flags <<= bitidx; 425 426 word = READ_ONCE(bitmap[word_bitidx]); 427 do { 428 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 429 } 430 431 void set_pageblock_migratetype(struct page *page, int migratetype) 432 { 433 if (unlikely(page_group_by_mobility_disabled && 434 migratetype < MIGRATE_PCPTYPES)) 435 migratetype = MIGRATE_UNMOVABLE; 436 437 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 438 page_to_pfn(page), MIGRATETYPE_MASK); 439 } 440 441 #ifdef CONFIG_DEBUG_VM 442 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 443 { 444 int ret; 445 unsigned seq; 446 unsigned long pfn = page_to_pfn(page); 447 unsigned long sp, start_pfn; 448 449 do { 450 seq = zone_span_seqbegin(zone); 451 start_pfn = zone->zone_start_pfn; 452 sp = zone->spanned_pages; 453 ret = !zone_spans_pfn(zone, pfn); 454 } while (zone_span_seqretry(zone, seq)); 455 456 if (ret) 457 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 458 pfn, zone_to_nid(zone), zone->name, 459 start_pfn, start_pfn + sp); 460 461 return ret; 462 } 463 464 /* 465 * Temporary debugging check for pages not lying within a given zone. 466 */ 467 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 468 { 469 if (page_outside_zone_boundaries(zone, page)) 470 return 1; 471 if (zone != page_zone(page)) 472 return 1; 473 474 return 0; 475 } 476 #else 477 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 478 { 479 return 0; 480 } 481 #endif 482 483 static void bad_page(struct page *page, const char *reason) 484 { 485 static unsigned long resume; 486 static unsigned long nr_shown; 487 static unsigned long nr_unshown; 488 489 /* 490 * Allow a burst of 60 reports, then keep quiet for that minute; 491 * or allow a steady drip of one report per second. 492 */ 493 if (nr_shown == 60) { 494 if (time_before(jiffies, resume)) { 495 nr_unshown++; 496 goto out; 497 } 498 if (nr_unshown) { 499 pr_alert( 500 "BUG: Bad page state: %lu messages suppressed\n", 501 nr_unshown); 502 nr_unshown = 0; 503 } 504 nr_shown = 0; 505 } 506 if (nr_shown++ == 0) 507 resume = jiffies + 60 * HZ; 508 509 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 510 current->comm, page_to_pfn(page)); 511 dump_page(page, reason); 512 513 print_modules(); 514 dump_stack(); 515 out: 516 /* Leave bad fields for debug, except PageBuddy could make trouble */ 517 page_mapcount_reset(page); /* remove PageBuddy */ 518 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 519 } 520 521 static inline unsigned int order_to_pindex(int migratetype, int order) 522 { 523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 524 if (order > PAGE_ALLOC_COSTLY_ORDER) { 525 VM_BUG_ON(order != pageblock_order); 526 return NR_LOWORDER_PCP_LISTS; 527 } 528 #else 529 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 530 #endif 531 532 return (MIGRATE_PCPTYPES * order) + migratetype; 533 } 534 535 static inline int pindex_to_order(unsigned int pindex) 536 { 537 int order = pindex / MIGRATE_PCPTYPES; 538 539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 540 if (pindex == NR_LOWORDER_PCP_LISTS) 541 order = pageblock_order; 542 #else 543 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 544 #endif 545 546 return order; 547 } 548 549 static inline bool pcp_allowed_order(unsigned int order) 550 { 551 if (order <= PAGE_ALLOC_COSTLY_ORDER) 552 return true; 553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 554 if (order == pageblock_order) 555 return true; 556 #endif 557 return false; 558 } 559 560 static inline void free_the_page(struct page *page, unsigned int order) 561 { 562 if (pcp_allowed_order(order)) /* Via pcp? */ 563 free_unref_page(page, order); 564 else 565 __free_pages_ok(page, order, FPI_NONE); 566 } 567 568 /* 569 * Higher-order pages are called "compound pages". They are structured thusly: 570 * 571 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 572 * 573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 575 * 576 * The first tail page's ->compound_order holds the order of allocation. 577 * This usage means that zero-order pages may not be compound. 578 */ 579 580 void prep_compound_page(struct page *page, unsigned int order) 581 { 582 int i; 583 int nr_pages = 1 << order; 584 585 __SetPageHead(page); 586 for (i = 1; i < nr_pages; i++) 587 prep_compound_tail(page, i); 588 589 prep_compound_head(page, order); 590 } 591 592 void destroy_large_folio(struct folio *folio) 593 { 594 if (folio_test_hugetlb(folio)) { 595 free_huge_folio(folio); 596 return; 597 } 598 599 if (folio_test_large_rmappable(folio)) 600 folio_undo_large_rmappable(folio); 601 602 mem_cgroup_uncharge(folio); 603 free_the_page(&folio->page, folio_order(folio)); 604 } 605 606 static inline void set_buddy_order(struct page *page, unsigned int order) 607 { 608 set_page_private(page, order); 609 __SetPageBuddy(page); 610 } 611 612 #ifdef CONFIG_COMPACTION 613 static inline struct capture_control *task_capc(struct zone *zone) 614 { 615 struct capture_control *capc = current->capture_control; 616 617 return unlikely(capc) && 618 !(current->flags & PF_KTHREAD) && 619 !capc->page && 620 capc->cc->zone == zone ? capc : NULL; 621 } 622 623 static inline bool 624 compaction_capture(struct capture_control *capc, struct page *page, 625 int order, int migratetype) 626 { 627 if (!capc || order != capc->cc->order) 628 return false; 629 630 /* Do not accidentally pollute CMA or isolated regions*/ 631 if (is_migrate_cma(migratetype) || 632 is_migrate_isolate(migratetype)) 633 return false; 634 635 /* 636 * Do not let lower order allocations pollute a movable pageblock. 637 * This might let an unmovable request use a reclaimable pageblock 638 * and vice-versa but no more than normal fallback logic which can 639 * have trouble finding a high-order free page. 640 */ 641 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 642 return false; 643 644 capc->page = page; 645 return true; 646 } 647 648 #else 649 static inline struct capture_control *task_capc(struct zone *zone) 650 { 651 return NULL; 652 } 653 654 static inline bool 655 compaction_capture(struct capture_control *capc, struct page *page, 656 int order, int migratetype) 657 { 658 return false; 659 } 660 #endif /* CONFIG_COMPACTION */ 661 662 /* Used for pages not on another list */ 663 static inline void add_to_free_list(struct page *page, struct zone *zone, 664 unsigned int order, int migratetype) 665 { 666 struct free_area *area = &zone->free_area[order]; 667 668 list_add(&page->buddy_list, &area->free_list[migratetype]); 669 area->nr_free++; 670 } 671 672 /* Used for pages not on another list */ 673 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 674 unsigned int order, int migratetype) 675 { 676 struct free_area *area = &zone->free_area[order]; 677 678 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 679 area->nr_free++; 680 } 681 682 /* 683 * Used for pages which are on another list. Move the pages to the tail 684 * of the list - so the moved pages won't immediately be considered for 685 * allocation again (e.g., optimization for memory onlining). 686 */ 687 static inline void move_to_free_list(struct page *page, struct zone *zone, 688 unsigned int order, int migratetype) 689 { 690 struct free_area *area = &zone->free_area[order]; 691 692 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 693 } 694 695 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 696 unsigned int order) 697 { 698 /* clear reported state and update reported page count */ 699 if (page_reported(page)) 700 __ClearPageReported(page); 701 702 list_del(&page->buddy_list); 703 __ClearPageBuddy(page); 704 set_page_private(page, 0); 705 zone->free_area[order].nr_free--; 706 } 707 708 static inline struct page *get_page_from_free_area(struct free_area *area, 709 int migratetype) 710 { 711 return list_first_entry_or_null(&area->free_list[migratetype], 712 struct page, buddy_list); 713 } 714 715 /* 716 * If this is not the largest possible page, check if the buddy 717 * of the next-highest order is free. If it is, it's possible 718 * that pages are being freed that will coalesce soon. In case, 719 * that is happening, add the free page to the tail of the list 720 * so it's less likely to be used soon and more likely to be merged 721 * as a higher order page 722 */ 723 static inline bool 724 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 725 struct page *page, unsigned int order) 726 { 727 unsigned long higher_page_pfn; 728 struct page *higher_page; 729 730 if (order >= MAX_ORDER - 1) 731 return false; 732 733 higher_page_pfn = buddy_pfn & pfn; 734 higher_page = page + (higher_page_pfn - pfn); 735 736 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 737 NULL) != NULL; 738 } 739 740 /* 741 * Freeing function for a buddy system allocator. 742 * 743 * The concept of a buddy system is to maintain direct-mapped table 744 * (containing bit values) for memory blocks of various "orders". 745 * The bottom level table contains the map for the smallest allocatable 746 * units of memory (here, pages), and each level above it describes 747 * pairs of units from the levels below, hence, "buddies". 748 * At a high level, all that happens here is marking the table entry 749 * at the bottom level available, and propagating the changes upward 750 * as necessary, plus some accounting needed to play nicely with other 751 * parts of the VM system. 752 * At each level, we keep a list of pages, which are heads of continuous 753 * free pages of length of (1 << order) and marked with PageBuddy. 754 * Page's order is recorded in page_private(page) field. 755 * So when we are allocating or freeing one, we can derive the state of the 756 * other. That is, if we allocate a small block, and both were 757 * free, the remainder of the region must be split into blocks. 758 * If a block is freed, and its buddy is also free, then this 759 * triggers coalescing into a block of larger size. 760 * 761 * -- nyc 762 */ 763 764 static inline void __free_one_page(struct page *page, 765 unsigned long pfn, 766 struct zone *zone, unsigned int order, 767 int migratetype, fpi_t fpi_flags) 768 { 769 struct capture_control *capc = task_capc(zone); 770 unsigned long buddy_pfn = 0; 771 unsigned long combined_pfn; 772 struct page *buddy; 773 bool to_tail; 774 775 VM_BUG_ON(!zone_is_initialized(zone)); 776 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 777 778 VM_BUG_ON(migratetype == -1); 779 if (likely(!is_migrate_isolate(migratetype))) 780 __mod_zone_freepage_state(zone, 1 << order, migratetype); 781 782 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 783 VM_BUG_ON_PAGE(bad_range(zone, page), page); 784 785 while (order < MAX_ORDER) { 786 if (compaction_capture(capc, page, order, migratetype)) { 787 __mod_zone_freepage_state(zone, -(1 << order), 788 migratetype); 789 return; 790 } 791 792 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 793 if (!buddy) 794 goto done_merging; 795 796 if (unlikely(order >= pageblock_order)) { 797 /* 798 * We want to prevent merge between freepages on pageblock 799 * without fallbacks and normal pageblock. Without this, 800 * pageblock isolation could cause incorrect freepage or CMA 801 * accounting or HIGHATOMIC accounting. 802 */ 803 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 804 805 if (migratetype != buddy_mt 806 && (!migratetype_is_mergeable(migratetype) || 807 !migratetype_is_mergeable(buddy_mt))) 808 goto done_merging; 809 } 810 811 /* 812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 813 * merge with it and move up one order. 814 */ 815 if (page_is_guard(buddy)) 816 clear_page_guard(zone, buddy, order, migratetype); 817 else 818 del_page_from_free_list(buddy, zone, order); 819 combined_pfn = buddy_pfn & pfn; 820 page = page + (combined_pfn - pfn); 821 pfn = combined_pfn; 822 order++; 823 } 824 825 done_merging: 826 set_buddy_order(page, order); 827 828 if (fpi_flags & FPI_TO_TAIL) 829 to_tail = true; 830 else if (is_shuffle_order(order)) 831 to_tail = shuffle_pick_tail(); 832 else 833 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 834 835 if (to_tail) 836 add_to_free_list_tail(page, zone, order, migratetype); 837 else 838 add_to_free_list(page, zone, order, migratetype); 839 840 /* Notify page reporting subsystem of freed page */ 841 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 842 page_reporting_notify_free(order); 843 } 844 845 /** 846 * split_free_page() -- split a free page at split_pfn_offset 847 * @free_page: the original free page 848 * @order: the order of the page 849 * @split_pfn_offset: split offset within the page 850 * 851 * Return -ENOENT if the free page is changed, otherwise 0 852 * 853 * It is used when the free page crosses two pageblocks with different migratetypes 854 * at split_pfn_offset within the page. The split free page will be put into 855 * separate migratetype lists afterwards. Otherwise, the function achieves 856 * nothing. 857 */ 858 int split_free_page(struct page *free_page, 859 unsigned int order, unsigned long split_pfn_offset) 860 { 861 struct zone *zone = page_zone(free_page); 862 unsigned long free_page_pfn = page_to_pfn(free_page); 863 unsigned long pfn; 864 unsigned long flags; 865 int free_page_order; 866 int mt; 867 int ret = 0; 868 869 if (split_pfn_offset == 0) 870 return ret; 871 872 spin_lock_irqsave(&zone->lock, flags); 873 874 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 875 ret = -ENOENT; 876 goto out; 877 } 878 879 mt = get_pfnblock_migratetype(free_page, free_page_pfn); 880 if (likely(!is_migrate_isolate(mt))) 881 __mod_zone_freepage_state(zone, -(1UL << order), mt); 882 883 del_page_from_free_list(free_page, zone, order); 884 for (pfn = free_page_pfn; 885 pfn < free_page_pfn + (1UL << order);) { 886 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 887 888 free_page_order = min_t(unsigned int, 889 pfn ? __ffs(pfn) : order, 890 __fls(split_pfn_offset)); 891 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 892 mt, FPI_NONE); 893 pfn += 1UL << free_page_order; 894 split_pfn_offset -= (1UL << free_page_order); 895 /* we have done the first part, now switch to second part */ 896 if (split_pfn_offset == 0) 897 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 898 } 899 out: 900 spin_unlock_irqrestore(&zone->lock, flags); 901 return ret; 902 } 903 /* 904 * A bad page could be due to a number of fields. Instead of multiple branches, 905 * try and check multiple fields with one check. The caller must do a detailed 906 * check if necessary. 907 */ 908 static inline bool page_expected_state(struct page *page, 909 unsigned long check_flags) 910 { 911 if (unlikely(atomic_read(&page->_mapcount) != -1)) 912 return false; 913 914 if (unlikely((unsigned long)page->mapping | 915 page_ref_count(page) | 916 #ifdef CONFIG_MEMCG 917 page->memcg_data | 918 #endif 919 #ifdef CONFIG_PAGE_POOL 920 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 921 #endif 922 (page->flags & check_flags))) 923 return false; 924 925 return true; 926 } 927 928 static const char *page_bad_reason(struct page *page, unsigned long flags) 929 { 930 const char *bad_reason = NULL; 931 932 if (unlikely(atomic_read(&page->_mapcount) != -1)) 933 bad_reason = "nonzero mapcount"; 934 if (unlikely(page->mapping != NULL)) 935 bad_reason = "non-NULL mapping"; 936 if (unlikely(page_ref_count(page) != 0)) 937 bad_reason = "nonzero _refcount"; 938 if (unlikely(page->flags & flags)) { 939 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 940 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 941 else 942 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 943 } 944 #ifdef CONFIG_MEMCG 945 if (unlikely(page->memcg_data)) 946 bad_reason = "page still charged to cgroup"; 947 #endif 948 #ifdef CONFIG_PAGE_POOL 949 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 950 bad_reason = "page_pool leak"; 951 #endif 952 return bad_reason; 953 } 954 955 static void free_page_is_bad_report(struct page *page) 956 { 957 bad_page(page, 958 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 959 } 960 961 static inline bool free_page_is_bad(struct page *page) 962 { 963 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 964 return false; 965 966 /* Something has gone sideways, find it */ 967 free_page_is_bad_report(page); 968 return true; 969 } 970 971 static inline bool is_check_pages_enabled(void) 972 { 973 return static_branch_unlikely(&check_pages_enabled); 974 } 975 976 static int free_tail_page_prepare(struct page *head_page, struct page *page) 977 { 978 struct folio *folio = (struct folio *)head_page; 979 int ret = 1; 980 981 /* 982 * We rely page->lru.next never has bit 0 set, unless the page 983 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 984 */ 985 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 986 987 if (!is_check_pages_enabled()) { 988 ret = 0; 989 goto out; 990 } 991 switch (page - head_page) { 992 case 1: 993 /* the first tail page: these may be in place of ->mapping */ 994 if (unlikely(folio_entire_mapcount(folio))) { 995 bad_page(page, "nonzero entire_mapcount"); 996 goto out; 997 } 998 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 999 bad_page(page, "nonzero nr_pages_mapped"); 1000 goto out; 1001 } 1002 if (unlikely(atomic_read(&folio->_pincount))) { 1003 bad_page(page, "nonzero pincount"); 1004 goto out; 1005 } 1006 break; 1007 case 2: 1008 /* 1009 * the second tail page: ->mapping is 1010 * deferred_list.next -- ignore value. 1011 */ 1012 break; 1013 default: 1014 if (page->mapping != TAIL_MAPPING) { 1015 bad_page(page, "corrupted mapping in tail page"); 1016 goto out; 1017 } 1018 break; 1019 } 1020 if (unlikely(!PageTail(page))) { 1021 bad_page(page, "PageTail not set"); 1022 goto out; 1023 } 1024 if (unlikely(compound_head(page) != head_page)) { 1025 bad_page(page, "compound_head not consistent"); 1026 goto out; 1027 } 1028 ret = 0; 1029 out: 1030 page->mapping = NULL; 1031 clear_compound_head(page); 1032 return ret; 1033 } 1034 1035 /* 1036 * Skip KASAN memory poisoning when either: 1037 * 1038 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1039 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1040 * using page tags instead (see below). 1041 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1042 * that error detection is disabled for accesses via the page address. 1043 * 1044 * Pages will have match-all tags in the following circumstances: 1045 * 1046 * 1. Pages are being initialized for the first time, including during deferred 1047 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1048 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1049 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1050 * 3. The allocation was excluded from being checked due to sampling, 1051 * see the call to kasan_unpoison_pages. 1052 * 1053 * Poisoning pages during deferred memory init will greatly lengthen the 1054 * process and cause problem in large memory systems as the deferred pages 1055 * initialization is done with interrupt disabled. 1056 * 1057 * Assuming that there will be no reference to those newly initialized 1058 * pages before they are ever allocated, this should have no effect on 1059 * KASAN memory tracking as the poison will be properly inserted at page 1060 * allocation time. The only corner case is when pages are allocated by 1061 * on-demand allocation and then freed again before the deferred pages 1062 * initialization is done, but this is not likely to happen. 1063 */ 1064 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1065 { 1066 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1067 return deferred_pages_enabled(); 1068 1069 return page_kasan_tag(page) == 0xff; 1070 } 1071 1072 static void kernel_init_pages(struct page *page, int numpages) 1073 { 1074 int i; 1075 1076 /* s390's use of memset() could override KASAN redzones. */ 1077 kasan_disable_current(); 1078 for (i = 0; i < numpages; i++) 1079 clear_highpage_kasan_tagged(page + i); 1080 kasan_enable_current(); 1081 } 1082 1083 static __always_inline bool free_pages_prepare(struct page *page, 1084 unsigned int order, fpi_t fpi_flags) 1085 { 1086 int bad = 0; 1087 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1088 bool init = want_init_on_free(); 1089 bool compound = PageCompound(page); 1090 1091 VM_BUG_ON_PAGE(PageTail(page), page); 1092 1093 trace_mm_page_free(page, order); 1094 kmsan_free_page(page, order); 1095 1096 if (unlikely(PageHWPoison(page)) && !order) { 1097 /* 1098 * Do not let hwpoison pages hit pcplists/buddy 1099 * Untie memcg state and reset page's owner 1100 */ 1101 if (memcg_kmem_online() && PageMemcgKmem(page)) 1102 __memcg_kmem_uncharge_page(page, order); 1103 reset_page_owner(page, order); 1104 page_table_check_free(page, order); 1105 return false; 1106 } 1107 1108 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1109 1110 /* 1111 * Check tail pages before head page information is cleared to 1112 * avoid checking PageCompound for order-0 pages. 1113 */ 1114 if (unlikely(order)) { 1115 int i; 1116 1117 if (compound) 1118 page[1].flags &= ~PAGE_FLAGS_SECOND; 1119 for (i = 1; i < (1 << order); i++) { 1120 if (compound) 1121 bad += free_tail_page_prepare(page, page + i); 1122 if (is_check_pages_enabled()) { 1123 if (free_page_is_bad(page + i)) { 1124 bad++; 1125 continue; 1126 } 1127 } 1128 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1129 } 1130 } 1131 if (PageMappingFlags(page)) 1132 page->mapping = NULL; 1133 if (memcg_kmem_online() && PageMemcgKmem(page)) 1134 __memcg_kmem_uncharge_page(page, order); 1135 if (is_check_pages_enabled()) { 1136 if (free_page_is_bad(page)) 1137 bad++; 1138 if (bad) 1139 return false; 1140 } 1141 1142 page_cpupid_reset_last(page); 1143 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1144 reset_page_owner(page, order); 1145 page_table_check_free(page, order); 1146 1147 if (!PageHighMem(page)) { 1148 debug_check_no_locks_freed(page_address(page), 1149 PAGE_SIZE << order); 1150 debug_check_no_obj_freed(page_address(page), 1151 PAGE_SIZE << order); 1152 } 1153 1154 kernel_poison_pages(page, 1 << order); 1155 1156 /* 1157 * As memory initialization might be integrated into KASAN, 1158 * KASAN poisoning and memory initialization code must be 1159 * kept together to avoid discrepancies in behavior. 1160 * 1161 * With hardware tag-based KASAN, memory tags must be set before the 1162 * page becomes unavailable via debug_pagealloc or arch_free_page. 1163 */ 1164 if (!skip_kasan_poison) { 1165 kasan_poison_pages(page, order, init); 1166 1167 /* Memory is already initialized if KASAN did it internally. */ 1168 if (kasan_has_integrated_init()) 1169 init = false; 1170 } 1171 if (init) 1172 kernel_init_pages(page, 1 << order); 1173 1174 /* 1175 * arch_free_page() can make the page's contents inaccessible. s390 1176 * does this. So nothing which can access the page's contents should 1177 * happen after this. 1178 */ 1179 arch_free_page(page, order); 1180 1181 debug_pagealloc_unmap_pages(page, 1 << order); 1182 1183 return true; 1184 } 1185 1186 /* 1187 * Frees a number of pages from the PCP lists 1188 * Assumes all pages on list are in same zone. 1189 * count is the number of pages to free. 1190 */ 1191 static void free_pcppages_bulk(struct zone *zone, int count, 1192 struct per_cpu_pages *pcp, 1193 int pindex) 1194 { 1195 unsigned long flags; 1196 unsigned int order; 1197 bool isolated_pageblocks; 1198 struct page *page; 1199 1200 /* 1201 * Ensure proper count is passed which otherwise would stuck in the 1202 * below while (list_empty(list)) loop. 1203 */ 1204 count = min(pcp->count, count); 1205 1206 /* Ensure requested pindex is drained first. */ 1207 pindex = pindex - 1; 1208 1209 spin_lock_irqsave(&zone->lock, flags); 1210 isolated_pageblocks = has_isolate_pageblock(zone); 1211 1212 while (count > 0) { 1213 struct list_head *list; 1214 int nr_pages; 1215 1216 /* Remove pages from lists in a round-robin fashion. */ 1217 do { 1218 if (++pindex > NR_PCP_LISTS - 1) 1219 pindex = 0; 1220 list = &pcp->lists[pindex]; 1221 } while (list_empty(list)); 1222 1223 order = pindex_to_order(pindex); 1224 nr_pages = 1 << order; 1225 do { 1226 int mt; 1227 1228 page = list_last_entry(list, struct page, pcp_list); 1229 mt = get_pcppage_migratetype(page); 1230 1231 /* must delete to avoid corrupting pcp list */ 1232 list_del(&page->pcp_list); 1233 count -= nr_pages; 1234 pcp->count -= nr_pages; 1235 1236 /* MIGRATE_ISOLATE page should not go to pcplists */ 1237 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1238 /* Pageblock could have been isolated meanwhile */ 1239 if (unlikely(isolated_pageblocks)) 1240 mt = get_pageblock_migratetype(page); 1241 1242 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1243 trace_mm_page_pcpu_drain(page, order, mt); 1244 } while (count > 0 && !list_empty(list)); 1245 } 1246 1247 spin_unlock_irqrestore(&zone->lock, flags); 1248 } 1249 1250 static void free_one_page(struct zone *zone, 1251 struct page *page, unsigned long pfn, 1252 unsigned int order, 1253 int migratetype, fpi_t fpi_flags) 1254 { 1255 unsigned long flags; 1256 1257 spin_lock_irqsave(&zone->lock, flags); 1258 if (unlikely(has_isolate_pageblock(zone) || 1259 is_migrate_isolate(migratetype))) { 1260 migratetype = get_pfnblock_migratetype(page, pfn); 1261 } 1262 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1263 spin_unlock_irqrestore(&zone->lock, flags); 1264 } 1265 1266 static void __free_pages_ok(struct page *page, unsigned int order, 1267 fpi_t fpi_flags) 1268 { 1269 unsigned long flags; 1270 int migratetype; 1271 unsigned long pfn = page_to_pfn(page); 1272 struct zone *zone = page_zone(page); 1273 1274 if (!free_pages_prepare(page, order, fpi_flags)) 1275 return; 1276 1277 /* 1278 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1279 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1280 * This will reduce the lock holding time. 1281 */ 1282 migratetype = get_pfnblock_migratetype(page, pfn); 1283 1284 spin_lock_irqsave(&zone->lock, flags); 1285 if (unlikely(has_isolate_pageblock(zone) || 1286 is_migrate_isolate(migratetype))) { 1287 migratetype = get_pfnblock_migratetype(page, pfn); 1288 } 1289 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1290 spin_unlock_irqrestore(&zone->lock, flags); 1291 1292 __count_vm_events(PGFREE, 1 << order); 1293 } 1294 1295 void __free_pages_core(struct page *page, unsigned int order) 1296 { 1297 unsigned int nr_pages = 1 << order; 1298 struct page *p = page; 1299 unsigned int loop; 1300 1301 /* 1302 * When initializing the memmap, __init_single_page() sets the refcount 1303 * of all pages to 1 ("allocated"/"not free"). We have to set the 1304 * refcount of all involved pages to 0. 1305 */ 1306 prefetchw(p); 1307 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1308 prefetchw(p + 1); 1309 __ClearPageReserved(p); 1310 set_page_count(p, 0); 1311 } 1312 __ClearPageReserved(p); 1313 set_page_count(p, 0); 1314 1315 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1316 1317 if (page_contains_unaccepted(page, order)) { 1318 if (order == MAX_ORDER && __free_unaccepted(page)) 1319 return; 1320 1321 accept_page(page, order); 1322 } 1323 1324 /* 1325 * Bypass PCP and place fresh pages right to the tail, primarily 1326 * relevant for memory onlining. 1327 */ 1328 __free_pages_ok(page, order, FPI_TO_TAIL); 1329 } 1330 1331 /* 1332 * Check that the whole (or subset of) a pageblock given by the interval of 1333 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1334 * with the migration of free compaction scanner. 1335 * 1336 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1337 * 1338 * It's possible on some configurations to have a setup like node0 node1 node0 1339 * i.e. it's possible that all pages within a zones range of pages do not 1340 * belong to a single zone. We assume that a border between node0 and node1 1341 * can occur within a single pageblock, but not a node0 node1 node0 1342 * interleaving within a single pageblock. It is therefore sufficient to check 1343 * the first and last page of a pageblock and avoid checking each individual 1344 * page in a pageblock. 1345 * 1346 * Note: the function may return non-NULL struct page even for a page block 1347 * which contains a memory hole (i.e. there is no physical memory for a subset 1348 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which 1349 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1350 * even though the start pfn is online and valid. This should be safe most of 1351 * the time because struct pages are still initialized via init_unavailable_range() 1352 * and pfn walkers shouldn't touch any physical memory range for which they do 1353 * not recognize any specific metadata in struct pages. 1354 */ 1355 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1356 unsigned long end_pfn, struct zone *zone) 1357 { 1358 struct page *start_page; 1359 struct page *end_page; 1360 1361 /* end_pfn is one past the range we are checking */ 1362 end_pfn--; 1363 1364 if (!pfn_valid(end_pfn)) 1365 return NULL; 1366 1367 start_page = pfn_to_online_page(start_pfn); 1368 if (!start_page) 1369 return NULL; 1370 1371 if (page_zone(start_page) != zone) 1372 return NULL; 1373 1374 end_page = pfn_to_page(end_pfn); 1375 1376 /* This gives a shorter code than deriving page_zone(end_page) */ 1377 if (page_zone_id(start_page) != page_zone_id(end_page)) 1378 return NULL; 1379 1380 return start_page; 1381 } 1382 1383 /* 1384 * The order of subdivision here is critical for the IO subsystem. 1385 * Please do not alter this order without good reasons and regression 1386 * testing. Specifically, as large blocks of memory are subdivided, 1387 * the order in which smaller blocks are delivered depends on the order 1388 * they're subdivided in this function. This is the primary factor 1389 * influencing the order in which pages are delivered to the IO 1390 * subsystem according to empirical testing, and this is also justified 1391 * by considering the behavior of a buddy system containing a single 1392 * large block of memory acted on by a series of small allocations. 1393 * This behavior is a critical factor in sglist merging's success. 1394 * 1395 * -- nyc 1396 */ 1397 static inline void expand(struct zone *zone, struct page *page, 1398 int low, int high, int migratetype) 1399 { 1400 unsigned long size = 1 << high; 1401 1402 while (high > low) { 1403 high--; 1404 size >>= 1; 1405 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1406 1407 /* 1408 * Mark as guard pages (or page), that will allow to 1409 * merge back to allocator when buddy will be freed. 1410 * Corresponding page table entries will not be touched, 1411 * pages will stay not present in virtual address space 1412 */ 1413 if (set_page_guard(zone, &page[size], high, migratetype)) 1414 continue; 1415 1416 add_to_free_list(&page[size], zone, high, migratetype); 1417 set_buddy_order(&page[size], high); 1418 } 1419 } 1420 1421 static void check_new_page_bad(struct page *page) 1422 { 1423 if (unlikely(page->flags & __PG_HWPOISON)) { 1424 /* Don't complain about hwpoisoned pages */ 1425 page_mapcount_reset(page); /* remove PageBuddy */ 1426 return; 1427 } 1428 1429 bad_page(page, 1430 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1431 } 1432 1433 /* 1434 * This page is about to be returned from the page allocator 1435 */ 1436 static int check_new_page(struct page *page) 1437 { 1438 if (likely(page_expected_state(page, 1439 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1440 return 0; 1441 1442 check_new_page_bad(page); 1443 return 1; 1444 } 1445 1446 static inline bool check_new_pages(struct page *page, unsigned int order) 1447 { 1448 if (is_check_pages_enabled()) { 1449 for (int i = 0; i < (1 << order); i++) { 1450 struct page *p = page + i; 1451 1452 if (check_new_page(p)) 1453 return true; 1454 } 1455 } 1456 1457 return false; 1458 } 1459 1460 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1461 { 1462 /* Don't skip if a software KASAN mode is enabled. */ 1463 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1464 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1465 return false; 1466 1467 /* Skip, if hardware tag-based KASAN is not enabled. */ 1468 if (!kasan_hw_tags_enabled()) 1469 return true; 1470 1471 /* 1472 * With hardware tag-based KASAN enabled, skip if this has been 1473 * requested via __GFP_SKIP_KASAN. 1474 */ 1475 return flags & __GFP_SKIP_KASAN; 1476 } 1477 1478 static inline bool should_skip_init(gfp_t flags) 1479 { 1480 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1481 if (!kasan_hw_tags_enabled()) 1482 return false; 1483 1484 /* For hardware tag-based KASAN, skip if requested. */ 1485 return (flags & __GFP_SKIP_ZERO); 1486 } 1487 1488 inline void post_alloc_hook(struct page *page, unsigned int order, 1489 gfp_t gfp_flags) 1490 { 1491 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1492 !should_skip_init(gfp_flags); 1493 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1494 int i; 1495 1496 set_page_private(page, 0); 1497 set_page_refcounted(page); 1498 1499 arch_alloc_page(page, order); 1500 debug_pagealloc_map_pages(page, 1 << order); 1501 1502 /* 1503 * Page unpoisoning must happen before memory initialization. 1504 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1505 * allocations and the page unpoisoning code will complain. 1506 */ 1507 kernel_unpoison_pages(page, 1 << order); 1508 1509 /* 1510 * As memory initialization might be integrated into KASAN, 1511 * KASAN unpoisoning and memory initializion code must be 1512 * kept together to avoid discrepancies in behavior. 1513 */ 1514 1515 /* 1516 * If memory tags should be zeroed 1517 * (which happens only when memory should be initialized as well). 1518 */ 1519 if (zero_tags) { 1520 /* Initialize both memory and memory tags. */ 1521 for (i = 0; i != 1 << order; ++i) 1522 tag_clear_highpage(page + i); 1523 1524 /* Take note that memory was initialized by the loop above. */ 1525 init = false; 1526 } 1527 if (!should_skip_kasan_unpoison(gfp_flags) && 1528 kasan_unpoison_pages(page, order, init)) { 1529 /* Take note that memory was initialized by KASAN. */ 1530 if (kasan_has_integrated_init()) 1531 init = false; 1532 } else { 1533 /* 1534 * If memory tags have not been set by KASAN, reset the page 1535 * tags to ensure page_address() dereferencing does not fault. 1536 */ 1537 for (i = 0; i != 1 << order; ++i) 1538 page_kasan_tag_reset(page + i); 1539 } 1540 /* If memory is still not initialized, initialize it now. */ 1541 if (init) 1542 kernel_init_pages(page, 1 << order); 1543 1544 set_page_owner(page, order, gfp_flags); 1545 page_table_check_alloc(page, order); 1546 } 1547 1548 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1549 unsigned int alloc_flags) 1550 { 1551 post_alloc_hook(page, order, gfp_flags); 1552 1553 if (order && (gfp_flags & __GFP_COMP)) 1554 prep_compound_page(page, order); 1555 1556 /* 1557 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1558 * allocate the page. The expectation is that the caller is taking 1559 * steps that will free more memory. The caller should avoid the page 1560 * being used for !PFMEMALLOC purposes. 1561 */ 1562 if (alloc_flags & ALLOC_NO_WATERMARKS) 1563 set_page_pfmemalloc(page); 1564 else 1565 clear_page_pfmemalloc(page); 1566 } 1567 1568 /* 1569 * Go through the free lists for the given migratetype and remove 1570 * the smallest available page from the freelists 1571 */ 1572 static __always_inline 1573 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1574 int migratetype) 1575 { 1576 unsigned int current_order; 1577 struct free_area *area; 1578 struct page *page; 1579 1580 /* Find a page of the appropriate size in the preferred list */ 1581 for (current_order = order; current_order <= MAX_ORDER; ++current_order) { 1582 area = &(zone->free_area[current_order]); 1583 page = get_page_from_free_area(area, migratetype); 1584 if (!page) 1585 continue; 1586 del_page_from_free_list(page, zone, current_order); 1587 expand(zone, page, order, current_order, migratetype); 1588 set_pcppage_migratetype(page, migratetype); 1589 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1590 pcp_allowed_order(order) && 1591 migratetype < MIGRATE_PCPTYPES); 1592 return page; 1593 } 1594 1595 return NULL; 1596 } 1597 1598 1599 /* 1600 * This array describes the order lists are fallen back to when 1601 * the free lists for the desirable migrate type are depleted 1602 * 1603 * The other migratetypes do not have fallbacks. 1604 */ 1605 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 1606 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1607 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1608 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1609 }; 1610 1611 #ifdef CONFIG_CMA 1612 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1613 unsigned int order) 1614 { 1615 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1616 } 1617 #else 1618 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1619 unsigned int order) { return NULL; } 1620 #endif 1621 1622 /* 1623 * Move the free pages in a range to the freelist tail of the requested type. 1624 * Note that start_page and end_pages are not aligned on a pageblock 1625 * boundary. If alignment is required, use move_freepages_block() 1626 */ 1627 static int move_freepages(struct zone *zone, 1628 unsigned long start_pfn, unsigned long end_pfn, 1629 int migratetype, int *num_movable) 1630 { 1631 struct page *page; 1632 unsigned long pfn; 1633 unsigned int order; 1634 int pages_moved = 0; 1635 1636 for (pfn = start_pfn; pfn <= end_pfn;) { 1637 page = pfn_to_page(pfn); 1638 if (!PageBuddy(page)) { 1639 /* 1640 * We assume that pages that could be isolated for 1641 * migration are movable. But we don't actually try 1642 * isolating, as that would be expensive. 1643 */ 1644 if (num_movable && 1645 (PageLRU(page) || __PageMovable(page))) 1646 (*num_movable)++; 1647 pfn++; 1648 continue; 1649 } 1650 1651 /* Make sure we are not inadvertently changing nodes */ 1652 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1653 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1654 1655 order = buddy_order(page); 1656 move_to_free_list(page, zone, order, migratetype); 1657 pfn += 1 << order; 1658 pages_moved += 1 << order; 1659 } 1660 1661 return pages_moved; 1662 } 1663 1664 int move_freepages_block(struct zone *zone, struct page *page, 1665 int migratetype, int *num_movable) 1666 { 1667 unsigned long start_pfn, end_pfn, pfn; 1668 1669 if (num_movable) 1670 *num_movable = 0; 1671 1672 pfn = page_to_pfn(page); 1673 start_pfn = pageblock_start_pfn(pfn); 1674 end_pfn = pageblock_end_pfn(pfn) - 1; 1675 1676 /* Do not cross zone boundaries */ 1677 if (!zone_spans_pfn(zone, start_pfn)) 1678 start_pfn = pfn; 1679 if (!zone_spans_pfn(zone, end_pfn)) 1680 return 0; 1681 1682 return move_freepages(zone, start_pfn, end_pfn, migratetype, 1683 num_movable); 1684 } 1685 1686 static void change_pageblock_range(struct page *pageblock_page, 1687 int start_order, int migratetype) 1688 { 1689 int nr_pageblocks = 1 << (start_order - pageblock_order); 1690 1691 while (nr_pageblocks--) { 1692 set_pageblock_migratetype(pageblock_page, migratetype); 1693 pageblock_page += pageblock_nr_pages; 1694 } 1695 } 1696 1697 /* 1698 * When we are falling back to another migratetype during allocation, try to 1699 * steal extra free pages from the same pageblocks to satisfy further 1700 * allocations, instead of polluting multiple pageblocks. 1701 * 1702 * If we are stealing a relatively large buddy page, it is likely there will 1703 * be more free pages in the pageblock, so try to steal them all. For 1704 * reclaimable and unmovable allocations, we steal regardless of page size, 1705 * as fragmentation caused by those allocations polluting movable pageblocks 1706 * is worse than movable allocations stealing from unmovable and reclaimable 1707 * pageblocks. 1708 */ 1709 static bool can_steal_fallback(unsigned int order, int start_mt) 1710 { 1711 /* 1712 * Leaving this order check is intended, although there is 1713 * relaxed order check in next check. The reason is that 1714 * we can actually steal whole pageblock if this condition met, 1715 * but, below check doesn't guarantee it and that is just heuristic 1716 * so could be changed anytime. 1717 */ 1718 if (order >= pageblock_order) 1719 return true; 1720 1721 if (order >= pageblock_order / 2 || 1722 start_mt == MIGRATE_RECLAIMABLE || 1723 start_mt == MIGRATE_UNMOVABLE || 1724 page_group_by_mobility_disabled) 1725 return true; 1726 1727 return false; 1728 } 1729 1730 static inline bool boost_watermark(struct zone *zone) 1731 { 1732 unsigned long max_boost; 1733 1734 if (!watermark_boost_factor) 1735 return false; 1736 /* 1737 * Don't bother in zones that are unlikely to produce results. 1738 * On small machines, including kdump capture kernels running 1739 * in a small area, boosting the watermark can cause an out of 1740 * memory situation immediately. 1741 */ 1742 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1743 return false; 1744 1745 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1746 watermark_boost_factor, 10000); 1747 1748 /* 1749 * high watermark may be uninitialised if fragmentation occurs 1750 * very early in boot so do not boost. We do not fall 1751 * through and boost by pageblock_nr_pages as failing 1752 * allocations that early means that reclaim is not going 1753 * to help and it may even be impossible to reclaim the 1754 * boosted watermark resulting in a hang. 1755 */ 1756 if (!max_boost) 1757 return false; 1758 1759 max_boost = max(pageblock_nr_pages, max_boost); 1760 1761 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1762 max_boost); 1763 1764 return true; 1765 } 1766 1767 /* 1768 * This function implements actual steal behaviour. If order is large enough, 1769 * we can steal whole pageblock. If not, we first move freepages in this 1770 * pageblock to our migratetype and determine how many already-allocated pages 1771 * are there in the pageblock with a compatible migratetype. If at least half 1772 * of pages are free or compatible, we can change migratetype of the pageblock 1773 * itself, so pages freed in the future will be put on the correct free list. 1774 */ 1775 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1776 unsigned int alloc_flags, int start_type, bool whole_block) 1777 { 1778 unsigned int current_order = buddy_order(page); 1779 int free_pages, movable_pages, alike_pages; 1780 int old_block_type; 1781 1782 old_block_type = get_pageblock_migratetype(page); 1783 1784 /* 1785 * This can happen due to races and we want to prevent broken 1786 * highatomic accounting. 1787 */ 1788 if (is_migrate_highatomic(old_block_type)) 1789 goto single_page; 1790 1791 /* Take ownership for orders >= pageblock_order */ 1792 if (current_order >= pageblock_order) { 1793 change_pageblock_range(page, current_order, start_type); 1794 goto single_page; 1795 } 1796 1797 /* 1798 * Boost watermarks to increase reclaim pressure to reduce the 1799 * likelihood of future fallbacks. Wake kswapd now as the node 1800 * may be balanced overall and kswapd will not wake naturally. 1801 */ 1802 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1803 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1804 1805 /* We are not allowed to try stealing from the whole block */ 1806 if (!whole_block) 1807 goto single_page; 1808 1809 free_pages = move_freepages_block(zone, page, start_type, 1810 &movable_pages); 1811 /* moving whole block can fail due to zone boundary conditions */ 1812 if (!free_pages) 1813 goto single_page; 1814 1815 /* 1816 * Determine how many pages are compatible with our allocation. 1817 * For movable allocation, it's the number of movable pages which 1818 * we just obtained. For other types it's a bit more tricky. 1819 */ 1820 if (start_type == MIGRATE_MOVABLE) { 1821 alike_pages = movable_pages; 1822 } else { 1823 /* 1824 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1825 * to MOVABLE pageblock, consider all non-movable pages as 1826 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1827 * vice versa, be conservative since we can't distinguish the 1828 * exact migratetype of non-movable pages. 1829 */ 1830 if (old_block_type == MIGRATE_MOVABLE) 1831 alike_pages = pageblock_nr_pages 1832 - (free_pages + movable_pages); 1833 else 1834 alike_pages = 0; 1835 } 1836 /* 1837 * If a sufficient number of pages in the block are either free or of 1838 * compatible migratability as our allocation, claim the whole block. 1839 */ 1840 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1841 page_group_by_mobility_disabled) 1842 set_pageblock_migratetype(page, start_type); 1843 1844 return; 1845 1846 single_page: 1847 move_to_free_list(page, zone, current_order, start_type); 1848 } 1849 1850 /* 1851 * Check whether there is a suitable fallback freepage with requested order. 1852 * If only_stealable is true, this function returns fallback_mt only if 1853 * we can steal other freepages all together. This would help to reduce 1854 * fragmentation due to mixed migratetype pages in one pageblock. 1855 */ 1856 int find_suitable_fallback(struct free_area *area, unsigned int order, 1857 int migratetype, bool only_stealable, bool *can_steal) 1858 { 1859 int i; 1860 int fallback_mt; 1861 1862 if (area->nr_free == 0) 1863 return -1; 1864 1865 *can_steal = false; 1866 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1867 fallback_mt = fallbacks[migratetype][i]; 1868 if (free_area_empty(area, fallback_mt)) 1869 continue; 1870 1871 if (can_steal_fallback(order, migratetype)) 1872 *can_steal = true; 1873 1874 if (!only_stealable) 1875 return fallback_mt; 1876 1877 if (*can_steal) 1878 return fallback_mt; 1879 } 1880 1881 return -1; 1882 } 1883 1884 /* 1885 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1886 * there are no empty page blocks that contain a page with a suitable order 1887 */ 1888 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone) 1889 { 1890 int mt; 1891 unsigned long max_managed, flags; 1892 1893 /* 1894 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 1895 * Check is race-prone but harmless. 1896 */ 1897 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 1898 if (zone->nr_reserved_highatomic >= max_managed) 1899 return; 1900 1901 spin_lock_irqsave(&zone->lock, flags); 1902 1903 /* Recheck the nr_reserved_highatomic limit under the lock */ 1904 if (zone->nr_reserved_highatomic >= max_managed) 1905 goto out_unlock; 1906 1907 /* Yoink! */ 1908 mt = get_pageblock_migratetype(page); 1909 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 1910 if (migratetype_is_mergeable(mt)) { 1911 zone->nr_reserved_highatomic += pageblock_nr_pages; 1912 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 1913 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 1914 } 1915 1916 out_unlock: 1917 spin_unlock_irqrestore(&zone->lock, flags); 1918 } 1919 1920 /* 1921 * Used when an allocation is about to fail under memory pressure. This 1922 * potentially hurts the reliability of high-order allocations when under 1923 * intense memory pressure but failed atomic allocations should be easier 1924 * to recover from than an OOM. 1925 * 1926 * If @force is true, try to unreserve a pageblock even though highatomic 1927 * pageblock is exhausted. 1928 */ 1929 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 1930 bool force) 1931 { 1932 struct zonelist *zonelist = ac->zonelist; 1933 unsigned long flags; 1934 struct zoneref *z; 1935 struct zone *zone; 1936 struct page *page; 1937 int order; 1938 bool ret; 1939 1940 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 1941 ac->nodemask) { 1942 /* 1943 * Preserve at least one pageblock unless memory pressure 1944 * is really high. 1945 */ 1946 if (!force && zone->nr_reserved_highatomic <= 1947 pageblock_nr_pages) 1948 continue; 1949 1950 spin_lock_irqsave(&zone->lock, flags); 1951 for (order = 0; order <= MAX_ORDER; order++) { 1952 struct free_area *area = &(zone->free_area[order]); 1953 1954 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 1955 if (!page) 1956 continue; 1957 1958 /* 1959 * In page freeing path, migratetype change is racy so 1960 * we can counter several free pages in a pageblock 1961 * in this loop although we changed the pageblock type 1962 * from highatomic to ac->migratetype. So we should 1963 * adjust the count once. 1964 */ 1965 if (is_migrate_highatomic_page(page)) { 1966 /* 1967 * It should never happen but changes to 1968 * locking could inadvertently allow a per-cpu 1969 * drain to add pages to MIGRATE_HIGHATOMIC 1970 * while unreserving so be safe and watch for 1971 * underflows. 1972 */ 1973 zone->nr_reserved_highatomic -= min( 1974 pageblock_nr_pages, 1975 zone->nr_reserved_highatomic); 1976 } 1977 1978 /* 1979 * Convert to ac->migratetype and avoid the normal 1980 * pageblock stealing heuristics. Minimally, the caller 1981 * is doing the work and needs the pages. More 1982 * importantly, if the block was always converted to 1983 * MIGRATE_UNMOVABLE or another type then the number 1984 * of pageblocks that cannot be completely freed 1985 * may increase. 1986 */ 1987 set_pageblock_migratetype(page, ac->migratetype); 1988 ret = move_freepages_block(zone, page, ac->migratetype, 1989 NULL); 1990 if (ret) { 1991 spin_unlock_irqrestore(&zone->lock, flags); 1992 return ret; 1993 } 1994 } 1995 spin_unlock_irqrestore(&zone->lock, flags); 1996 } 1997 1998 return false; 1999 } 2000 2001 /* 2002 * Try finding a free buddy page on the fallback list and put it on the free 2003 * list of requested migratetype, possibly along with other pages from the same 2004 * block, depending on fragmentation avoidance heuristics. Returns true if 2005 * fallback was found so that __rmqueue_smallest() can grab it. 2006 * 2007 * The use of signed ints for order and current_order is a deliberate 2008 * deviation from the rest of this file, to make the for loop 2009 * condition simpler. 2010 */ 2011 static __always_inline bool 2012 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2013 unsigned int alloc_flags) 2014 { 2015 struct free_area *area; 2016 int current_order; 2017 int min_order = order; 2018 struct page *page; 2019 int fallback_mt; 2020 bool can_steal; 2021 2022 /* 2023 * Do not steal pages from freelists belonging to other pageblocks 2024 * i.e. orders < pageblock_order. If there are no local zones free, 2025 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2026 */ 2027 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2028 min_order = pageblock_order; 2029 2030 /* 2031 * Find the largest available free page in the other list. This roughly 2032 * approximates finding the pageblock with the most free pages, which 2033 * would be too costly to do exactly. 2034 */ 2035 for (current_order = MAX_ORDER; current_order >= min_order; 2036 --current_order) { 2037 area = &(zone->free_area[current_order]); 2038 fallback_mt = find_suitable_fallback(area, current_order, 2039 start_migratetype, false, &can_steal); 2040 if (fallback_mt == -1) 2041 continue; 2042 2043 /* 2044 * We cannot steal all free pages from the pageblock and the 2045 * requested migratetype is movable. In that case it's better to 2046 * steal and split the smallest available page instead of the 2047 * largest available page, because even if the next movable 2048 * allocation falls back into a different pageblock than this 2049 * one, it won't cause permanent fragmentation. 2050 */ 2051 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2052 && current_order > order) 2053 goto find_smallest; 2054 2055 goto do_steal; 2056 } 2057 2058 return false; 2059 2060 find_smallest: 2061 for (current_order = order; current_order <= MAX_ORDER; 2062 current_order++) { 2063 area = &(zone->free_area[current_order]); 2064 fallback_mt = find_suitable_fallback(area, current_order, 2065 start_migratetype, false, &can_steal); 2066 if (fallback_mt != -1) 2067 break; 2068 } 2069 2070 /* 2071 * This should not happen - we already found a suitable fallback 2072 * when looking for the largest page. 2073 */ 2074 VM_BUG_ON(current_order > MAX_ORDER); 2075 2076 do_steal: 2077 page = get_page_from_free_area(area, fallback_mt); 2078 2079 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2080 can_steal); 2081 2082 trace_mm_page_alloc_extfrag(page, order, current_order, 2083 start_migratetype, fallback_mt); 2084 2085 return true; 2086 2087 } 2088 2089 /* 2090 * Do the hard work of removing an element from the buddy allocator. 2091 * Call me with the zone->lock already held. 2092 */ 2093 static __always_inline struct page * 2094 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2095 unsigned int alloc_flags) 2096 { 2097 struct page *page; 2098 2099 if (IS_ENABLED(CONFIG_CMA)) { 2100 /* 2101 * Balance movable allocations between regular and CMA areas by 2102 * allocating from CMA when over half of the zone's free memory 2103 * is in the CMA area. 2104 */ 2105 if (alloc_flags & ALLOC_CMA && 2106 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2107 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2108 page = __rmqueue_cma_fallback(zone, order); 2109 if (page) 2110 return page; 2111 } 2112 } 2113 retry: 2114 page = __rmqueue_smallest(zone, order, migratetype); 2115 if (unlikely(!page)) { 2116 if (alloc_flags & ALLOC_CMA) 2117 page = __rmqueue_cma_fallback(zone, order); 2118 2119 if (!page && __rmqueue_fallback(zone, order, migratetype, 2120 alloc_flags)) 2121 goto retry; 2122 } 2123 return page; 2124 } 2125 2126 /* 2127 * Obtain a specified number of elements from the buddy allocator, all under 2128 * a single hold of the lock, for efficiency. Add them to the supplied list. 2129 * Returns the number of new pages which were placed at *list. 2130 */ 2131 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2132 unsigned long count, struct list_head *list, 2133 int migratetype, unsigned int alloc_flags) 2134 { 2135 unsigned long flags; 2136 int i; 2137 2138 spin_lock_irqsave(&zone->lock, flags); 2139 for (i = 0; i < count; ++i) { 2140 struct page *page = __rmqueue(zone, order, migratetype, 2141 alloc_flags); 2142 if (unlikely(page == NULL)) 2143 break; 2144 2145 /* 2146 * Split buddy pages returned by expand() are received here in 2147 * physical page order. The page is added to the tail of 2148 * caller's list. From the callers perspective, the linked list 2149 * is ordered by page number under some conditions. This is 2150 * useful for IO devices that can forward direction from the 2151 * head, thus also in the physical page order. This is useful 2152 * for IO devices that can merge IO requests if the physical 2153 * pages are ordered properly. 2154 */ 2155 list_add_tail(&page->pcp_list, list); 2156 if (is_migrate_cma(get_pcppage_migratetype(page))) 2157 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2158 -(1 << order)); 2159 } 2160 2161 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2162 spin_unlock_irqrestore(&zone->lock, flags); 2163 2164 return i; 2165 } 2166 2167 /* 2168 * Called from the vmstat counter updater to decay the PCP high. 2169 * Return whether there are addition works to do. 2170 */ 2171 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2172 { 2173 int high_min, to_drain, batch; 2174 int todo = 0; 2175 2176 high_min = READ_ONCE(pcp->high_min); 2177 batch = READ_ONCE(pcp->batch); 2178 /* 2179 * Decrease pcp->high periodically to try to free possible 2180 * idle PCP pages. And, avoid to free too many pages to 2181 * control latency. This caps pcp->high decrement too. 2182 */ 2183 if (pcp->high > high_min) { 2184 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2185 pcp->high - (pcp->high >> 3), high_min); 2186 if (pcp->high > high_min) 2187 todo++; 2188 } 2189 2190 to_drain = pcp->count - pcp->high; 2191 if (to_drain > 0) { 2192 spin_lock(&pcp->lock); 2193 free_pcppages_bulk(zone, to_drain, pcp, 0); 2194 spin_unlock(&pcp->lock); 2195 todo++; 2196 } 2197 2198 return todo; 2199 } 2200 2201 #ifdef CONFIG_NUMA 2202 /* 2203 * Called from the vmstat counter updater to drain pagesets of this 2204 * currently executing processor on remote nodes after they have 2205 * expired. 2206 */ 2207 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2208 { 2209 int to_drain, batch; 2210 2211 batch = READ_ONCE(pcp->batch); 2212 to_drain = min(pcp->count, batch); 2213 if (to_drain > 0) { 2214 spin_lock(&pcp->lock); 2215 free_pcppages_bulk(zone, to_drain, pcp, 0); 2216 spin_unlock(&pcp->lock); 2217 } 2218 } 2219 #endif 2220 2221 /* 2222 * Drain pcplists of the indicated processor and zone. 2223 */ 2224 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2225 { 2226 struct per_cpu_pages *pcp; 2227 2228 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2229 if (pcp->count) { 2230 spin_lock(&pcp->lock); 2231 free_pcppages_bulk(zone, pcp->count, pcp, 0); 2232 spin_unlock(&pcp->lock); 2233 } 2234 } 2235 2236 /* 2237 * Drain pcplists of all zones on the indicated processor. 2238 */ 2239 static void drain_pages(unsigned int cpu) 2240 { 2241 struct zone *zone; 2242 2243 for_each_populated_zone(zone) { 2244 drain_pages_zone(cpu, zone); 2245 } 2246 } 2247 2248 /* 2249 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2250 */ 2251 void drain_local_pages(struct zone *zone) 2252 { 2253 int cpu = smp_processor_id(); 2254 2255 if (zone) 2256 drain_pages_zone(cpu, zone); 2257 else 2258 drain_pages(cpu); 2259 } 2260 2261 /* 2262 * The implementation of drain_all_pages(), exposing an extra parameter to 2263 * drain on all cpus. 2264 * 2265 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2266 * not empty. The check for non-emptiness can however race with a free to 2267 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2268 * that need the guarantee that every CPU has drained can disable the 2269 * optimizing racy check. 2270 */ 2271 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2272 { 2273 int cpu; 2274 2275 /* 2276 * Allocate in the BSS so we won't require allocation in 2277 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2278 */ 2279 static cpumask_t cpus_with_pcps; 2280 2281 /* 2282 * Do not drain if one is already in progress unless it's specific to 2283 * a zone. Such callers are primarily CMA and memory hotplug and need 2284 * the drain to be complete when the call returns. 2285 */ 2286 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2287 if (!zone) 2288 return; 2289 mutex_lock(&pcpu_drain_mutex); 2290 } 2291 2292 /* 2293 * We don't care about racing with CPU hotplug event 2294 * as offline notification will cause the notified 2295 * cpu to drain that CPU pcps and on_each_cpu_mask 2296 * disables preemption as part of its processing 2297 */ 2298 for_each_online_cpu(cpu) { 2299 struct per_cpu_pages *pcp; 2300 struct zone *z; 2301 bool has_pcps = false; 2302 2303 if (force_all_cpus) { 2304 /* 2305 * The pcp.count check is racy, some callers need a 2306 * guarantee that no cpu is missed. 2307 */ 2308 has_pcps = true; 2309 } else if (zone) { 2310 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2311 if (pcp->count) 2312 has_pcps = true; 2313 } else { 2314 for_each_populated_zone(z) { 2315 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2316 if (pcp->count) { 2317 has_pcps = true; 2318 break; 2319 } 2320 } 2321 } 2322 2323 if (has_pcps) 2324 cpumask_set_cpu(cpu, &cpus_with_pcps); 2325 else 2326 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2327 } 2328 2329 for_each_cpu(cpu, &cpus_with_pcps) { 2330 if (zone) 2331 drain_pages_zone(cpu, zone); 2332 else 2333 drain_pages(cpu); 2334 } 2335 2336 mutex_unlock(&pcpu_drain_mutex); 2337 } 2338 2339 /* 2340 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2341 * 2342 * When zone parameter is non-NULL, spill just the single zone's pages. 2343 */ 2344 void drain_all_pages(struct zone *zone) 2345 { 2346 __drain_all_pages(zone, false); 2347 } 2348 2349 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 2350 unsigned int order) 2351 { 2352 int migratetype; 2353 2354 if (!free_pages_prepare(page, order, FPI_NONE)) 2355 return false; 2356 2357 migratetype = get_pfnblock_migratetype(page, pfn); 2358 set_pcppage_migratetype(page, migratetype); 2359 return true; 2360 } 2361 2362 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2363 { 2364 int min_nr_free, max_nr_free; 2365 2366 /* Free as much as possible if batch freeing high-order pages. */ 2367 if (unlikely(free_high)) 2368 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2369 2370 /* Check for PCP disabled or boot pageset */ 2371 if (unlikely(high < batch)) 2372 return 1; 2373 2374 /* Leave at least pcp->batch pages on the list */ 2375 min_nr_free = batch; 2376 max_nr_free = high - batch; 2377 2378 /* 2379 * Increase the batch number to the number of the consecutive 2380 * freed pages to reduce zone lock contention. 2381 */ 2382 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2383 2384 return batch; 2385 } 2386 2387 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2388 int batch, bool free_high) 2389 { 2390 int high, high_min, high_max; 2391 2392 high_min = READ_ONCE(pcp->high_min); 2393 high_max = READ_ONCE(pcp->high_max); 2394 high = pcp->high = clamp(pcp->high, high_min, high_max); 2395 2396 if (unlikely(!high)) 2397 return 0; 2398 2399 if (unlikely(free_high)) { 2400 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2401 high_min); 2402 return 0; 2403 } 2404 2405 /* 2406 * If reclaim is active, limit the number of pages that can be 2407 * stored on pcp lists 2408 */ 2409 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2410 int free_count = max_t(int, pcp->free_count, batch); 2411 2412 pcp->high = max(high - free_count, high_min); 2413 return min(batch << 2, pcp->high); 2414 } 2415 2416 if (high_min == high_max) 2417 return high; 2418 2419 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2420 int free_count = max_t(int, pcp->free_count, batch); 2421 2422 pcp->high = max(high - free_count, high_min); 2423 high = max(pcp->count, high_min); 2424 } else if (pcp->count >= high) { 2425 int need_high = pcp->free_count + batch; 2426 2427 /* pcp->high should be large enough to hold batch freed pages */ 2428 if (pcp->high < need_high) 2429 pcp->high = clamp(need_high, high_min, high_max); 2430 } 2431 2432 return high; 2433 } 2434 2435 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2436 struct page *page, int migratetype, 2437 unsigned int order) 2438 { 2439 int high, batch; 2440 int pindex; 2441 bool free_high = false; 2442 2443 /* 2444 * On freeing, reduce the number of pages that are batch allocated. 2445 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2446 * allocations. 2447 */ 2448 pcp->alloc_factor >>= 1; 2449 __count_vm_events(PGFREE, 1 << order); 2450 pindex = order_to_pindex(migratetype, order); 2451 list_add(&page->pcp_list, &pcp->lists[pindex]); 2452 pcp->count += 1 << order; 2453 2454 batch = READ_ONCE(pcp->batch); 2455 /* 2456 * As high-order pages other than THP's stored on PCP can contribute 2457 * to fragmentation, limit the number stored when PCP is heavily 2458 * freeing without allocation. The remainder after bulk freeing 2459 * stops will be drained from vmstat refresh context. 2460 */ 2461 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2462 free_high = (pcp->free_count >= batch && 2463 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2464 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2465 pcp->count >= READ_ONCE(batch))); 2466 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2467 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2468 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2469 } 2470 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2471 pcp->free_count += (1 << order); 2472 high = nr_pcp_high(pcp, zone, batch, free_high); 2473 if (pcp->count >= high) { 2474 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2475 pcp, pindex); 2476 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2477 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2478 ZONE_MOVABLE, 0)) 2479 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2480 } 2481 } 2482 2483 /* 2484 * Free a pcp page 2485 */ 2486 void free_unref_page(struct page *page, unsigned int order) 2487 { 2488 unsigned long __maybe_unused UP_flags; 2489 struct per_cpu_pages *pcp; 2490 struct zone *zone; 2491 unsigned long pfn = page_to_pfn(page); 2492 int migratetype, pcpmigratetype; 2493 2494 if (!free_unref_page_prepare(page, pfn, order)) 2495 return; 2496 2497 /* 2498 * We only track unmovable, reclaimable and movable on pcp lists. 2499 * Place ISOLATE pages on the isolated list because they are being 2500 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2501 * get those areas back if necessary. Otherwise, we may have to free 2502 * excessively into the page allocator 2503 */ 2504 migratetype = pcpmigratetype = get_pcppage_migratetype(page); 2505 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2506 if (unlikely(is_migrate_isolate(migratetype))) { 2507 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 2508 return; 2509 } 2510 pcpmigratetype = MIGRATE_MOVABLE; 2511 } 2512 2513 zone = page_zone(page); 2514 pcp_trylock_prepare(UP_flags); 2515 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2516 if (pcp) { 2517 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order); 2518 pcp_spin_unlock(pcp); 2519 } else { 2520 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 2521 } 2522 pcp_trylock_finish(UP_flags); 2523 } 2524 2525 /* 2526 * Free a list of 0-order pages 2527 */ 2528 void free_unref_page_list(struct list_head *list) 2529 { 2530 unsigned long __maybe_unused UP_flags; 2531 struct page *page, *next; 2532 struct per_cpu_pages *pcp = NULL; 2533 struct zone *locked_zone = NULL; 2534 int batch_count = 0; 2535 int migratetype; 2536 2537 /* Prepare pages for freeing */ 2538 list_for_each_entry_safe(page, next, list, lru) { 2539 unsigned long pfn = page_to_pfn(page); 2540 if (!free_unref_page_prepare(page, pfn, 0)) { 2541 list_del(&page->lru); 2542 continue; 2543 } 2544 2545 /* 2546 * Free isolated pages directly to the allocator, see 2547 * comment in free_unref_page. 2548 */ 2549 migratetype = get_pcppage_migratetype(page); 2550 if (unlikely(is_migrate_isolate(migratetype))) { 2551 list_del(&page->lru); 2552 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 2553 continue; 2554 } 2555 } 2556 2557 list_for_each_entry_safe(page, next, list, lru) { 2558 struct zone *zone = page_zone(page); 2559 2560 list_del(&page->lru); 2561 migratetype = get_pcppage_migratetype(page); 2562 2563 /* 2564 * Either different zone requiring a different pcp lock or 2565 * excessive lock hold times when freeing a large list of 2566 * pages. 2567 */ 2568 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 2569 if (pcp) { 2570 pcp_spin_unlock(pcp); 2571 pcp_trylock_finish(UP_flags); 2572 } 2573 2574 batch_count = 0; 2575 2576 /* 2577 * trylock is necessary as pages may be getting freed 2578 * from IRQ or SoftIRQ context after an IO completion. 2579 */ 2580 pcp_trylock_prepare(UP_flags); 2581 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2582 if (unlikely(!pcp)) { 2583 pcp_trylock_finish(UP_flags); 2584 free_one_page(zone, page, page_to_pfn(page), 2585 0, migratetype, FPI_NONE); 2586 locked_zone = NULL; 2587 continue; 2588 } 2589 locked_zone = zone; 2590 } 2591 2592 /* 2593 * Non-isolated types over MIGRATE_PCPTYPES get added 2594 * to the MIGRATE_MOVABLE pcp list. 2595 */ 2596 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2597 migratetype = MIGRATE_MOVABLE; 2598 2599 trace_mm_page_free_batched(page); 2600 free_unref_page_commit(zone, pcp, page, migratetype, 0); 2601 batch_count++; 2602 } 2603 2604 if (pcp) { 2605 pcp_spin_unlock(pcp); 2606 pcp_trylock_finish(UP_flags); 2607 } 2608 } 2609 2610 /* 2611 * split_page takes a non-compound higher-order page, and splits it into 2612 * n (1<<order) sub-pages: page[0..n] 2613 * Each sub-page must be freed individually. 2614 * 2615 * Note: this is probably too low level an operation for use in drivers. 2616 * Please consult with lkml before using this in your driver. 2617 */ 2618 void split_page(struct page *page, unsigned int order) 2619 { 2620 int i; 2621 2622 VM_BUG_ON_PAGE(PageCompound(page), page); 2623 VM_BUG_ON_PAGE(!page_count(page), page); 2624 2625 for (i = 1; i < (1 << order); i++) 2626 set_page_refcounted(page + i); 2627 split_page_owner(page, 1 << order); 2628 split_page_memcg(page, 1 << order); 2629 } 2630 EXPORT_SYMBOL_GPL(split_page); 2631 2632 int __isolate_free_page(struct page *page, unsigned int order) 2633 { 2634 struct zone *zone = page_zone(page); 2635 int mt = get_pageblock_migratetype(page); 2636 2637 if (!is_migrate_isolate(mt)) { 2638 unsigned long watermark; 2639 /* 2640 * Obey watermarks as if the page was being allocated. We can 2641 * emulate a high-order watermark check with a raised order-0 2642 * watermark, because we already know our high-order page 2643 * exists. 2644 */ 2645 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2646 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2647 return 0; 2648 2649 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2650 } 2651 2652 del_page_from_free_list(page, zone, order); 2653 2654 /* 2655 * Set the pageblock if the isolated page is at least half of a 2656 * pageblock 2657 */ 2658 if (order >= pageblock_order - 1) { 2659 struct page *endpage = page + (1 << order) - 1; 2660 for (; page < endpage; page += pageblock_nr_pages) { 2661 int mt = get_pageblock_migratetype(page); 2662 /* 2663 * Only change normal pageblocks (i.e., they can merge 2664 * with others) 2665 */ 2666 if (migratetype_is_mergeable(mt)) 2667 set_pageblock_migratetype(page, 2668 MIGRATE_MOVABLE); 2669 } 2670 } 2671 2672 return 1UL << order; 2673 } 2674 2675 /** 2676 * __putback_isolated_page - Return a now-isolated page back where we got it 2677 * @page: Page that was isolated 2678 * @order: Order of the isolated page 2679 * @mt: The page's pageblock's migratetype 2680 * 2681 * This function is meant to return a page pulled from the free lists via 2682 * __isolate_free_page back to the free lists they were pulled from. 2683 */ 2684 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2685 { 2686 struct zone *zone = page_zone(page); 2687 2688 /* zone lock should be held when this function is called */ 2689 lockdep_assert_held(&zone->lock); 2690 2691 /* Return isolated page to tail of freelist. */ 2692 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2693 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2694 } 2695 2696 /* 2697 * Update NUMA hit/miss statistics 2698 */ 2699 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2700 long nr_account) 2701 { 2702 #ifdef CONFIG_NUMA 2703 enum numa_stat_item local_stat = NUMA_LOCAL; 2704 2705 /* skip numa counters update if numa stats is disabled */ 2706 if (!static_branch_likely(&vm_numa_stat_key)) 2707 return; 2708 2709 if (zone_to_nid(z) != numa_node_id()) 2710 local_stat = NUMA_OTHER; 2711 2712 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2713 __count_numa_events(z, NUMA_HIT, nr_account); 2714 else { 2715 __count_numa_events(z, NUMA_MISS, nr_account); 2716 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2717 } 2718 __count_numa_events(z, local_stat, nr_account); 2719 #endif 2720 } 2721 2722 static __always_inline 2723 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2724 unsigned int order, unsigned int alloc_flags, 2725 int migratetype) 2726 { 2727 struct page *page; 2728 unsigned long flags; 2729 2730 do { 2731 page = NULL; 2732 spin_lock_irqsave(&zone->lock, flags); 2733 if (alloc_flags & ALLOC_HIGHATOMIC) 2734 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2735 if (!page) { 2736 page = __rmqueue(zone, order, migratetype, alloc_flags); 2737 2738 /* 2739 * If the allocation fails, allow OOM handling access 2740 * to HIGHATOMIC reserves as failing now is worse than 2741 * failing a high-order atomic allocation in the 2742 * future. 2743 */ 2744 if (!page && (alloc_flags & ALLOC_OOM)) 2745 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2746 2747 if (!page) { 2748 spin_unlock_irqrestore(&zone->lock, flags); 2749 return NULL; 2750 } 2751 } 2752 __mod_zone_freepage_state(zone, -(1 << order), 2753 get_pcppage_migratetype(page)); 2754 spin_unlock_irqrestore(&zone->lock, flags); 2755 } while (check_new_pages(page, order)); 2756 2757 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2758 zone_statistics(preferred_zone, zone, 1); 2759 2760 return page; 2761 } 2762 2763 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2764 { 2765 int high, base_batch, batch, max_nr_alloc; 2766 int high_max, high_min; 2767 2768 base_batch = READ_ONCE(pcp->batch); 2769 high_min = READ_ONCE(pcp->high_min); 2770 high_max = READ_ONCE(pcp->high_max); 2771 high = pcp->high = clamp(pcp->high, high_min, high_max); 2772 2773 /* Check for PCP disabled or boot pageset */ 2774 if (unlikely(high < base_batch)) 2775 return 1; 2776 2777 if (order) 2778 batch = base_batch; 2779 else 2780 batch = (base_batch << pcp->alloc_factor); 2781 2782 /* 2783 * If we had larger pcp->high, we could avoid to allocate from 2784 * zone. 2785 */ 2786 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2787 high = pcp->high = min(high + batch, high_max); 2788 2789 if (!order) { 2790 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2791 /* 2792 * Double the number of pages allocated each time there is 2793 * subsequent allocation of order-0 pages without any freeing. 2794 */ 2795 if (batch <= max_nr_alloc && 2796 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2797 pcp->alloc_factor++; 2798 batch = min(batch, max_nr_alloc); 2799 } 2800 2801 /* 2802 * Scale batch relative to order if batch implies free pages 2803 * can be stored on the PCP. Batch can be 1 for small zones or 2804 * for boot pagesets which should never store free pages as 2805 * the pages may belong to arbitrary zones. 2806 */ 2807 if (batch > 1) 2808 batch = max(batch >> order, 2); 2809 2810 return batch; 2811 } 2812 2813 /* Remove page from the per-cpu list, caller must protect the list */ 2814 static inline 2815 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2816 int migratetype, 2817 unsigned int alloc_flags, 2818 struct per_cpu_pages *pcp, 2819 struct list_head *list) 2820 { 2821 struct page *page; 2822 2823 do { 2824 if (list_empty(list)) { 2825 int batch = nr_pcp_alloc(pcp, zone, order); 2826 int alloced; 2827 2828 alloced = rmqueue_bulk(zone, order, 2829 batch, list, 2830 migratetype, alloc_flags); 2831 2832 pcp->count += alloced << order; 2833 if (unlikely(list_empty(list))) 2834 return NULL; 2835 } 2836 2837 page = list_first_entry(list, struct page, pcp_list); 2838 list_del(&page->pcp_list); 2839 pcp->count -= 1 << order; 2840 } while (check_new_pages(page, order)); 2841 2842 return page; 2843 } 2844 2845 /* Lock and remove page from the per-cpu list */ 2846 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2847 struct zone *zone, unsigned int order, 2848 int migratetype, unsigned int alloc_flags) 2849 { 2850 struct per_cpu_pages *pcp; 2851 struct list_head *list; 2852 struct page *page; 2853 unsigned long __maybe_unused UP_flags; 2854 2855 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2856 pcp_trylock_prepare(UP_flags); 2857 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2858 if (!pcp) { 2859 pcp_trylock_finish(UP_flags); 2860 return NULL; 2861 } 2862 2863 /* 2864 * On allocation, reduce the number of pages that are batch freed. 2865 * See nr_pcp_free() where free_factor is increased for subsequent 2866 * frees. 2867 */ 2868 pcp->free_count >>= 1; 2869 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2870 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2871 pcp_spin_unlock(pcp); 2872 pcp_trylock_finish(UP_flags); 2873 if (page) { 2874 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2875 zone_statistics(preferred_zone, zone, 1); 2876 } 2877 return page; 2878 } 2879 2880 /* 2881 * Allocate a page from the given zone. 2882 * Use pcplists for THP or "cheap" high-order allocations. 2883 */ 2884 2885 /* 2886 * Do not instrument rmqueue() with KMSAN. This function may call 2887 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2888 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2889 * may call rmqueue() again, which will result in a deadlock. 2890 */ 2891 __no_sanitize_memory 2892 static inline 2893 struct page *rmqueue(struct zone *preferred_zone, 2894 struct zone *zone, unsigned int order, 2895 gfp_t gfp_flags, unsigned int alloc_flags, 2896 int migratetype) 2897 { 2898 struct page *page; 2899 2900 /* 2901 * We most definitely don't want callers attempting to 2902 * allocate greater than order-1 page units with __GFP_NOFAIL. 2903 */ 2904 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2905 2906 if (likely(pcp_allowed_order(order))) { 2907 page = rmqueue_pcplist(preferred_zone, zone, order, 2908 migratetype, alloc_flags); 2909 if (likely(page)) 2910 goto out; 2911 } 2912 2913 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 2914 migratetype); 2915 2916 out: 2917 /* Separate test+clear to avoid unnecessary atomics */ 2918 if ((alloc_flags & ALLOC_KSWAPD) && 2919 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 2920 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2921 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 2922 } 2923 2924 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2925 return page; 2926 } 2927 2928 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2929 { 2930 return __should_fail_alloc_page(gfp_mask, order); 2931 } 2932 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 2933 2934 static inline long __zone_watermark_unusable_free(struct zone *z, 2935 unsigned int order, unsigned int alloc_flags) 2936 { 2937 long unusable_free = (1 << order) - 1; 2938 2939 /* 2940 * If the caller does not have rights to reserves below the min 2941 * watermark then subtract the high-atomic reserves. This will 2942 * over-estimate the size of the atomic reserve but it avoids a search. 2943 */ 2944 if (likely(!(alloc_flags & ALLOC_RESERVES))) 2945 unusable_free += z->nr_reserved_highatomic; 2946 2947 #ifdef CONFIG_CMA 2948 /* If allocation can't use CMA areas don't use free CMA pages */ 2949 if (!(alloc_flags & ALLOC_CMA)) 2950 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 2951 #endif 2952 #ifdef CONFIG_UNACCEPTED_MEMORY 2953 unusable_free += zone_page_state(z, NR_UNACCEPTED); 2954 #endif 2955 2956 return unusable_free; 2957 } 2958 2959 /* 2960 * Return true if free base pages are above 'mark'. For high-order checks it 2961 * will return true of the order-0 watermark is reached and there is at least 2962 * one free page of a suitable size. Checking now avoids taking the zone lock 2963 * to check in the allocation paths if no pages are free. 2964 */ 2965 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2966 int highest_zoneidx, unsigned int alloc_flags, 2967 long free_pages) 2968 { 2969 long min = mark; 2970 int o; 2971 2972 /* free_pages may go negative - that's OK */ 2973 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 2974 2975 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 2976 /* 2977 * __GFP_HIGH allows access to 50% of the min reserve as well 2978 * as OOM. 2979 */ 2980 if (alloc_flags & ALLOC_MIN_RESERVE) { 2981 min -= min / 2; 2982 2983 /* 2984 * Non-blocking allocations (e.g. GFP_ATOMIC) can 2985 * access more reserves than just __GFP_HIGH. Other 2986 * non-blocking allocations requests such as GFP_NOWAIT 2987 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 2988 * access to the min reserve. 2989 */ 2990 if (alloc_flags & ALLOC_NON_BLOCK) 2991 min -= min / 4; 2992 } 2993 2994 /* 2995 * OOM victims can try even harder than the normal reserve 2996 * users on the grounds that it's definitely going to be in 2997 * the exit path shortly and free memory. Any allocation it 2998 * makes during the free path will be small and short-lived. 2999 */ 3000 if (alloc_flags & ALLOC_OOM) 3001 min -= min / 2; 3002 } 3003 3004 /* 3005 * Check watermarks for an order-0 allocation request. If these 3006 * are not met, then a high-order request also cannot go ahead 3007 * even if a suitable page happened to be free. 3008 */ 3009 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3010 return false; 3011 3012 /* If this is an order-0 request then the watermark is fine */ 3013 if (!order) 3014 return true; 3015 3016 /* For a high-order request, check at least one suitable page is free */ 3017 for (o = order; o <= MAX_ORDER; o++) { 3018 struct free_area *area = &z->free_area[o]; 3019 int mt; 3020 3021 if (!area->nr_free) 3022 continue; 3023 3024 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3025 if (!free_area_empty(area, mt)) 3026 return true; 3027 } 3028 3029 #ifdef CONFIG_CMA 3030 if ((alloc_flags & ALLOC_CMA) && 3031 !free_area_empty(area, MIGRATE_CMA)) { 3032 return true; 3033 } 3034 #endif 3035 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3036 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3037 return true; 3038 } 3039 } 3040 return false; 3041 } 3042 3043 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3044 int highest_zoneidx, unsigned int alloc_flags) 3045 { 3046 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3047 zone_page_state(z, NR_FREE_PAGES)); 3048 } 3049 3050 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3051 unsigned long mark, int highest_zoneidx, 3052 unsigned int alloc_flags, gfp_t gfp_mask) 3053 { 3054 long free_pages; 3055 3056 free_pages = zone_page_state(z, NR_FREE_PAGES); 3057 3058 /* 3059 * Fast check for order-0 only. If this fails then the reserves 3060 * need to be calculated. 3061 */ 3062 if (!order) { 3063 long usable_free; 3064 long reserved; 3065 3066 usable_free = free_pages; 3067 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3068 3069 /* reserved may over estimate high-atomic reserves. */ 3070 usable_free -= min(usable_free, reserved); 3071 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3072 return true; 3073 } 3074 3075 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3076 free_pages)) 3077 return true; 3078 3079 /* 3080 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3081 * when checking the min watermark. The min watermark is the 3082 * point where boosting is ignored so that kswapd is woken up 3083 * when below the low watermark. 3084 */ 3085 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3086 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3087 mark = z->_watermark[WMARK_MIN]; 3088 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3089 alloc_flags, free_pages); 3090 } 3091 3092 return false; 3093 } 3094 3095 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3096 unsigned long mark, int highest_zoneidx) 3097 { 3098 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3099 3100 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3101 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3102 3103 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3104 free_pages); 3105 } 3106 3107 #ifdef CONFIG_NUMA 3108 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3109 3110 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3111 { 3112 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3113 node_reclaim_distance; 3114 } 3115 #else /* CONFIG_NUMA */ 3116 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3117 { 3118 return true; 3119 } 3120 #endif /* CONFIG_NUMA */ 3121 3122 /* 3123 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3124 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3125 * premature use of a lower zone may cause lowmem pressure problems that 3126 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3127 * probably too small. It only makes sense to spread allocations to avoid 3128 * fragmentation between the Normal and DMA32 zones. 3129 */ 3130 static inline unsigned int 3131 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3132 { 3133 unsigned int alloc_flags; 3134 3135 /* 3136 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3137 * to save a branch. 3138 */ 3139 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3140 3141 #ifdef CONFIG_ZONE_DMA32 3142 if (!zone) 3143 return alloc_flags; 3144 3145 if (zone_idx(zone) != ZONE_NORMAL) 3146 return alloc_flags; 3147 3148 /* 3149 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3150 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3151 * on UMA that if Normal is populated then so is DMA32. 3152 */ 3153 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3154 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3155 return alloc_flags; 3156 3157 alloc_flags |= ALLOC_NOFRAGMENT; 3158 #endif /* CONFIG_ZONE_DMA32 */ 3159 return alloc_flags; 3160 } 3161 3162 /* Must be called after current_gfp_context() which can change gfp_mask */ 3163 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3164 unsigned int alloc_flags) 3165 { 3166 #ifdef CONFIG_CMA 3167 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3168 alloc_flags |= ALLOC_CMA; 3169 #endif 3170 return alloc_flags; 3171 } 3172 3173 /* 3174 * get_page_from_freelist goes through the zonelist trying to allocate 3175 * a page. 3176 */ 3177 static struct page * 3178 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3179 const struct alloc_context *ac) 3180 { 3181 struct zoneref *z; 3182 struct zone *zone; 3183 struct pglist_data *last_pgdat = NULL; 3184 bool last_pgdat_dirty_ok = false; 3185 bool no_fallback; 3186 3187 retry: 3188 /* 3189 * Scan zonelist, looking for a zone with enough free. 3190 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3191 */ 3192 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3193 z = ac->preferred_zoneref; 3194 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3195 ac->nodemask) { 3196 struct page *page; 3197 unsigned long mark; 3198 3199 if (cpusets_enabled() && 3200 (alloc_flags & ALLOC_CPUSET) && 3201 !__cpuset_zone_allowed(zone, gfp_mask)) 3202 continue; 3203 /* 3204 * When allocating a page cache page for writing, we 3205 * want to get it from a node that is within its dirty 3206 * limit, such that no single node holds more than its 3207 * proportional share of globally allowed dirty pages. 3208 * The dirty limits take into account the node's 3209 * lowmem reserves and high watermark so that kswapd 3210 * should be able to balance it without having to 3211 * write pages from its LRU list. 3212 * 3213 * XXX: For now, allow allocations to potentially 3214 * exceed the per-node dirty limit in the slowpath 3215 * (spread_dirty_pages unset) before going into reclaim, 3216 * which is important when on a NUMA setup the allowed 3217 * nodes are together not big enough to reach the 3218 * global limit. The proper fix for these situations 3219 * will require awareness of nodes in the 3220 * dirty-throttling and the flusher threads. 3221 */ 3222 if (ac->spread_dirty_pages) { 3223 if (last_pgdat != zone->zone_pgdat) { 3224 last_pgdat = zone->zone_pgdat; 3225 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3226 } 3227 3228 if (!last_pgdat_dirty_ok) 3229 continue; 3230 } 3231 3232 if (no_fallback && nr_online_nodes > 1 && 3233 zone != ac->preferred_zoneref->zone) { 3234 int local_nid; 3235 3236 /* 3237 * If moving to a remote node, retry but allow 3238 * fragmenting fallbacks. Locality is more important 3239 * than fragmentation avoidance. 3240 */ 3241 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3242 if (zone_to_nid(zone) != local_nid) { 3243 alloc_flags &= ~ALLOC_NOFRAGMENT; 3244 goto retry; 3245 } 3246 } 3247 3248 /* 3249 * Detect whether the number of free pages is below high 3250 * watermark. If so, we will decrease pcp->high and free 3251 * PCP pages in free path to reduce the possibility of 3252 * premature page reclaiming. Detection is done here to 3253 * avoid to do that in hotter free path. 3254 */ 3255 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3256 goto check_alloc_wmark; 3257 3258 mark = high_wmark_pages(zone); 3259 if (zone_watermark_fast(zone, order, mark, 3260 ac->highest_zoneidx, alloc_flags, 3261 gfp_mask)) 3262 goto try_this_zone; 3263 else 3264 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3265 3266 check_alloc_wmark: 3267 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3268 if (!zone_watermark_fast(zone, order, mark, 3269 ac->highest_zoneidx, alloc_flags, 3270 gfp_mask)) { 3271 int ret; 3272 3273 if (has_unaccepted_memory()) { 3274 if (try_to_accept_memory(zone, order)) 3275 goto try_this_zone; 3276 } 3277 3278 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3279 /* 3280 * Watermark failed for this zone, but see if we can 3281 * grow this zone if it contains deferred pages. 3282 */ 3283 if (deferred_pages_enabled()) { 3284 if (_deferred_grow_zone(zone, order)) 3285 goto try_this_zone; 3286 } 3287 #endif 3288 /* Checked here to keep the fast path fast */ 3289 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3290 if (alloc_flags & ALLOC_NO_WATERMARKS) 3291 goto try_this_zone; 3292 3293 if (!node_reclaim_enabled() || 3294 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3295 continue; 3296 3297 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3298 switch (ret) { 3299 case NODE_RECLAIM_NOSCAN: 3300 /* did not scan */ 3301 continue; 3302 case NODE_RECLAIM_FULL: 3303 /* scanned but unreclaimable */ 3304 continue; 3305 default: 3306 /* did we reclaim enough */ 3307 if (zone_watermark_ok(zone, order, mark, 3308 ac->highest_zoneidx, alloc_flags)) 3309 goto try_this_zone; 3310 3311 continue; 3312 } 3313 } 3314 3315 try_this_zone: 3316 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3317 gfp_mask, alloc_flags, ac->migratetype); 3318 if (page) { 3319 prep_new_page(page, order, gfp_mask, alloc_flags); 3320 3321 /* 3322 * If this is a high-order atomic allocation then check 3323 * if the pageblock should be reserved for the future 3324 */ 3325 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3326 reserve_highatomic_pageblock(page, zone); 3327 3328 return page; 3329 } else { 3330 if (has_unaccepted_memory()) { 3331 if (try_to_accept_memory(zone, order)) 3332 goto try_this_zone; 3333 } 3334 3335 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3336 /* Try again if zone has deferred pages */ 3337 if (deferred_pages_enabled()) { 3338 if (_deferred_grow_zone(zone, order)) 3339 goto try_this_zone; 3340 } 3341 #endif 3342 } 3343 } 3344 3345 /* 3346 * It's possible on a UMA machine to get through all zones that are 3347 * fragmented. If avoiding fragmentation, reset and try again. 3348 */ 3349 if (no_fallback) { 3350 alloc_flags &= ~ALLOC_NOFRAGMENT; 3351 goto retry; 3352 } 3353 3354 return NULL; 3355 } 3356 3357 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3358 { 3359 unsigned int filter = SHOW_MEM_FILTER_NODES; 3360 3361 /* 3362 * This documents exceptions given to allocations in certain 3363 * contexts that are allowed to allocate outside current's set 3364 * of allowed nodes. 3365 */ 3366 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3367 if (tsk_is_oom_victim(current) || 3368 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3369 filter &= ~SHOW_MEM_FILTER_NODES; 3370 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3371 filter &= ~SHOW_MEM_FILTER_NODES; 3372 3373 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3374 } 3375 3376 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3377 { 3378 struct va_format vaf; 3379 va_list args; 3380 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3381 3382 if ((gfp_mask & __GFP_NOWARN) || 3383 !__ratelimit(&nopage_rs) || 3384 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3385 return; 3386 3387 va_start(args, fmt); 3388 vaf.fmt = fmt; 3389 vaf.va = &args; 3390 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3391 current->comm, &vaf, gfp_mask, &gfp_mask, 3392 nodemask_pr_args(nodemask)); 3393 va_end(args); 3394 3395 cpuset_print_current_mems_allowed(); 3396 pr_cont("\n"); 3397 dump_stack(); 3398 warn_alloc_show_mem(gfp_mask, nodemask); 3399 } 3400 3401 static inline struct page * 3402 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3403 unsigned int alloc_flags, 3404 const struct alloc_context *ac) 3405 { 3406 struct page *page; 3407 3408 page = get_page_from_freelist(gfp_mask, order, 3409 alloc_flags|ALLOC_CPUSET, ac); 3410 /* 3411 * fallback to ignore cpuset restriction if our nodes 3412 * are depleted 3413 */ 3414 if (!page) 3415 page = get_page_from_freelist(gfp_mask, order, 3416 alloc_flags, ac); 3417 3418 return page; 3419 } 3420 3421 static inline struct page * 3422 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3423 const struct alloc_context *ac, unsigned long *did_some_progress) 3424 { 3425 struct oom_control oc = { 3426 .zonelist = ac->zonelist, 3427 .nodemask = ac->nodemask, 3428 .memcg = NULL, 3429 .gfp_mask = gfp_mask, 3430 .order = order, 3431 }; 3432 struct page *page; 3433 3434 *did_some_progress = 0; 3435 3436 /* 3437 * Acquire the oom lock. If that fails, somebody else is 3438 * making progress for us. 3439 */ 3440 if (!mutex_trylock(&oom_lock)) { 3441 *did_some_progress = 1; 3442 schedule_timeout_uninterruptible(1); 3443 return NULL; 3444 } 3445 3446 /* 3447 * Go through the zonelist yet one more time, keep very high watermark 3448 * here, this is only to catch a parallel oom killing, we must fail if 3449 * we're still under heavy pressure. But make sure that this reclaim 3450 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3451 * allocation which will never fail due to oom_lock already held. 3452 */ 3453 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3454 ~__GFP_DIRECT_RECLAIM, order, 3455 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3456 if (page) 3457 goto out; 3458 3459 /* Coredumps can quickly deplete all memory reserves */ 3460 if (current->flags & PF_DUMPCORE) 3461 goto out; 3462 /* The OOM killer will not help higher order allocs */ 3463 if (order > PAGE_ALLOC_COSTLY_ORDER) 3464 goto out; 3465 /* 3466 * We have already exhausted all our reclaim opportunities without any 3467 * success so it is time to admit defeat. We will skip the OOM killer 3468 * because it is very likely that the caller has a more reasonable 3469 * fallback than shooting a random task. 3470 * 3471 * The OOM killer may not free memory on a specific node. 3472 */ 3473 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3474 goto out; 3475 /* The OOM killer does not needlessly kill tasks for lowmem */ 3476 if (ac->highest_zoneidx < ZONE_NORMAL) 3477 goto out; 3478 if (pm_suspended_storage()) 3479 goto out; 3480 /* 3481 * XXX: GFP_NOFS allocations should rather fail than rely on 3482 * other request to make a forward progress. 3483 * We are in an unfortunate situation where out_of_memory cannot 3484 * do much for this context but let's try it to at least get 3485 * access to memory reserved if the current task is killed (see 3486 * out_of_memory). Once filesystems are ready to handle allocation 3487 * failures more gracefully we should just bail out here. 3488 */ 3489 3490 /* Exhausted what can be done so it's blame time */ 3491 if (out_of_memory(&oc) || 3492 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3493 *did_some_progress = 1; 3494 3495 /* 3496 * Help non-failing allocations by giving them access to memory 3497 * reserves 3498 */ 3499 if (gfp_mask & __GFP_NOFAIL) 3500 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3501 ALLOC_NO_WATERMARKS, ac); 3502 } 3503 out: 3504 mutex_unlock(&oom_lock); 3505 return page; 3506 } 3507 3508 /* 3509 * Maximum number of compaction retries with a progress before OOM 3510 * killer is consider as the only way to move forward. 3511 */ 3512 #define MAX_COMPACT_RETRIES 16 3513 3514 #ifdef CONFIG_COMPACTION 3515 /* Try memory compaction for high-order allocations before reclaim */ 3516 static struct page * 3517 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3518 unsigned int alloc_flags, const struct alloc_context *ac, 3519 enum compact_priority prio, enum compact_result *compact_result) 3520 { 3521 struct page *page = NULL; 3522 unsigned long pflags; 3523 unsigned int noreclaim_flag; 3524 3525 if (!order) 3526 return NULL; 3527 3528 psi_memstall_enter(&pflags); 3529 delayacct_compact_start(); 3530 noreclaim_flag = memalloc_noreclaim_save(); 3531 3532 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3533 prio, &page); 3534 3535 memalloc_noreclaim_restore(noreclaim_flag); 3536 psi_memstall_leave(&pflags); 3537 delayacct_compact_end(); 3538 3539 if (*compact_result == COMPACT_SKIPPED) 3540 return NULL; 3541 /* 3542 * At least in one zone compaction wasn't deferred or skipped, so let's 3543 * count a compaction stall 3544 */ 3545 count_vm_event(COMPACTSTALL); 3546 3547 /* Prep a captured page if available */ 3548 if (page) 3549 prep_new_page(page, order, gfp_mask, alloc_flags); 3550 3551 /* Try get a page from the freelist if available */ 3552 if (!page) 3553 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3554 3555 if (page) { 3556 struct zone *zone = page_zone(page); 3557 3558 zone->compact_blockskip_flush = false; 3559 compaction_defer_reset(zone, order, true); 3560 count_vm_event(COMPACTSUCCESS); 3561 return page; 3562 } 3563 3564 /* 3565 * It's bad if compaction run occurs and fails. The most likely reason 3566 * is that pages exist, but not enough to satisfy watermarks. 3567 */ 3568 count_vm_event(COMPACTFAIL); 3569 3570 cond_resched(); 3571 3572 return NULL; 3573 } 3574 3575 static inline bool 3576 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3577 enum compact_result compact_result, 3578 enum compact_priority *compact_priority, 3579 int *compaction_retries) 3580 { 3581 int max_retries = MAX_COMPACT_RETRIES; 3582 int min_priority; 3583 bool ret = false; 3584 int retries = *compaction_retries; 3585 enum compact_priority priority = *compact_priority; 3586 3587 if (!order) 3588 return false; 3589 3590 if (fatal_signal_pending(current)) 3591 return false; 3592 3593 /* 3594 * Compaction was skipped due to a lack of free order-0 3595 * migration targets. Continue if reclaim can help. 3596 */ 3597 if (compact_result == COMPACT_SKIPPED) { 3598 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3599 goto out; 3600 } 3601 3602 /* 3603 * Compaction managed to coalesce some page blocks, but the 3604 * allocation failed presumably due to a race. Retry some. 3605 */ 3606 if (compact_result == COMPACT_SUCCESS) { 3607 /* 3608 * !costly requests are much more important than 3609 * __GFP_RETRY_MAYFAIL costly ones because they are de 3610 * facto nofail and invoke OOM killer to move on while 3611 * costly can fail and users are ready to cope with 3612 * that. 1/4 retries is rather arbitrary but we would 3613 * need much more detailed feedback from compaction to 3614 * make a better decision. 3615 */ 3616 if (order > PAGE_ALLOC_COSTLY_ORDER) 3617 max_retries /= 4; 3618 3619 if (++(*compaction_retries) <= max_retries) { 3620 ret = true; 3621 goto out; 3622 } 3623 } 3624 3625 /* 3626 * Compaction failed. Retry with increasing priority. 3627 */ 3628 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3629 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3630 3631 if (*compact_priority > min_priority) { 3632 (*compact_priority)--; 3633 *compaction_retries = 0; 3634 ret = true; 3635 } 3636 out: 3637 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3638 return ret; 3639 } 3640 #else 3641 static inline struct page * 3642 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3643 unsigned int alloc_flags, const struct alloc_context *ac, 3644 enum compact_priority prio, enum compact_result *compact_result) 3645 { 3646 *compact_result = COMPACT_SKIPPED; 3647 return NULL; 3648 } 3649 3650 static inline bool 3651 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3652 enum compact_result compact_result, 3653 enum compact_priority *compact_priority, 3654 int *compaction_retries) 3655 { 3656 struct zone *zone; 3657 struct zoneref *z; 3658 3659 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3660 return false; 3661 3662 /* 3663 * There are setups with compaction disabled which would prefer to loop 3664 * inside the allocator rather than hit the oom killer prematurely. 3665 * Let's give them a good hope and keep retrying while the order-0 3666 * watermarks are OK. 3667 */ 3668 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3669 ac->highest_zoneidx, ac->nodemask) { 3670 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3671 ac->highest_zoneidx, alloc_flags)) 3672 return true; 3673 } 3674 return false; 3675 } 3676 #endif /* CONFIG_COMPACTION */ 3677 3678 #ifdef CONFIG_LOCKDEP 3679 static struct lockdep_map __fs_reclaim_map = 3680 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3681 3682 static bool __need_reclaim(gfp_t gfp_mask) 3683 { 3684 /* no reclaim without waiting on it */ 3685 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3686 return false; 3687 3688 /* this guy won't enter reclaim */ 3689 if (current->flags & PF_MEMALLOC) 3690 return false; 3691 3692 if (gfp_mask & __GFP_NOLOCKDEP) 3693 return false; 3694 3695 return true; 3696 } 3697 3698 void __fs_reclaim_acquire(unsigned long ip) 3699 { 3700 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3701 } 3702 3703 void __fs_reclaim_release(unsigned long ip) 3704 { 3705 lock_release(&__fs_reclaim_map, ip); 3706 } 3707 3708 void fs_reclaim_acquire(gfp_t gfp_mask) 3709 { 3710 gfp_mask = current_gfp_context(gfp_mask); 3711 3712 if (__need_reclaim(gfp_mask)) { 3713 if (gfp_mask & __GFP_FS) 3714 __fs_reclaim_acquire(_RET_IP_); 3715 3716 #ifdef CONFIG_MMU_NOTIFIER 3717 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3718 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3719 #endif 3720 3721 } 3722 } 3723 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3724 3725 void fs_reclaim_release(gfp_t gfp_mask) 3726 { 3727 gfp_mask = current_gfp_context(gfp_mask); 3728 3729 if (__need_reclaim(gfp_mask)) { 3730 if (gfp_mask & __GFP_FS) 3731 __fs_reclaim_release(_RET_IP_); 3732 } 3733 } 3734 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3735 #endif 3736 3737 /* 3738 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3739 * have been rebuilt so allocation retries. Reader side does not lock and 3740 * retries the allocation if zonelist changes. Writer side is protected by the 3741 * embedded spin_lock. 3742 */ 3743 static DEFINE_SEQLOCK(zonelist_update_seq); 3744 3745 static unsigned int zonelist_iter_begin(void) 3746 { 3747 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3748 return read_seqbegin(&zonelist_update_seq); 3749 3750 return 0; 3751 } 3752 3753 static unsigned int check_retry_zonelist(unsigned int seq) 3754 { 3755 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3756 return read_seqretry(&zonelist_update_seq, seq); 3757 3758 return seq; 3759 } 3760 3761 /* Perform direct synchronous page reclaim */ 3762 static unsigned long 3763 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3764 const struct alloc_context *ac) 3765 { 3766 unsigned int noreclaim_flag; 3767 unsigned long progress; 3768 3769 cond_resched(); 3770 3771 /* We now go into synchronous reclaim */ 3772 cpuset_memory_pressure_bump(); 3773 fs_reclaim_acquire(gfp_mask); 3774 noreclaim_flag = memalloc_noreclaim_save(); 3775 3776 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3777 ac->nodemask); 3778 3779 memalloc_noreclaim_restore(noreclaim_flag); 3780 fs_reclaim_release(gfp_mask); 3781 3782 cond_resched(); 3783 3784 return progress; 3785 } 3786 3787 /* The really slow allocator path where we enter direct reclaim */ 3788 static inline struct page * 3789 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3790 unsigned int alloc_flags, const struct alloc_context *ac, 3791 unsigned long *did_some_progress) 3792 { 3793 struct page *page = NULL; 3794 unsigned long pflags; 3795 bool drained = false; 3796 3797 psi_memstall_enter(&pflags); 3798 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3799 if (unlikely(!(*did_some_progress))) 3800 goto out; 3801 3802 retry: 3803 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3804 3805 /* 3806 * If an allocation failed after direct reclaim, it could be because 3807 * pages are pinned on the per-cpu lists or in high alloc reserves. 3808 * Shrink them and try again 3809 */ 3810 if (!page && !drained) { 3811 unreserve_highatomic_pageblock(ac, false); 3812 drain_all_pages(NULL); 3813 drained = true; 3814 goto retry; 3815 } 3816 out: 3817 psi_memstall_leave(&pflags); 3818 3819 return page; 3820 } 3821 3822 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3823 const struct alloc_context *ac) 3824 { 3825 struct zoneref *z; 3826 struct zone *zone; 3827 pg_data_t *last_pgdat = NULL; 3828 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3829 3830 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3831 ac->nodemask) { 3832 if (!managed_zone(zone)) 3833 continue; 3834 if (last_pgdat != zone->zone_pgdat) { 3835 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3836 last_pgdat = zone->zone_pgdat; 3837 } 3838 } 3839 } 3840 3841 static inline unsigned int 3842 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3843 { 3844 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3845 3846 /* 3847 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3848 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3849 * to save two branches. 3850 */ 3851 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3852 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3853 3854 /* 3855 * The caller may dip into page reserves a bit more if the caller 3856 * cannot run direct reclaim, or if the caller has realtime scheduling 3857 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3858 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3859 */ 3860 alloc_flags |= (__force int) 3861 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3862 3863 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3864 /* 3865 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3866 * if it can't schedule. 3867 */ 3868 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3869 alloc_flags |= ALLOC_NON_BLOCK; 3870 3871 if (order > 0) 3872 alloc_flags |= ALLOC_HIGHATOMIC; 3873 } 3874 3875 /* 3876 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3877 * GFP_ATOMIC) rather than fail, see the comment for 3878 * cpuset_node_allowed(). 3879 */ 3880 if (alloc_flags & ALLOC_MIN_RESERVE) 3881 alloc_flags &= ~ALLOC_CPUSET; 3882 } else if (unlikely(rt_task(current)) && in_task()) 3883 alloc_flags |= ALLOC_MIN_RESERVE; 3884 3885 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 3886 3887 return alloc_flags; 3888 } 3889 3890 static bool oom_reserves_allowed(struct task_struct *tsk) 3891 { 3892 if (!tsk_is_oom_victim(tsk)) 3893 return false; 3894 3895 /* 3896 * !MMU doesn't have oom reaper so give access to memory reserves 3897 * only to the thread with TIF_MEMDIE set 3898 */ 3899 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3900 return false; 3901 3902 return true; 3903 } 3904 3905 /* 3906 * Distinguish requests which really need access to full memory 3907 * reserves from oom victims which can live with a portion of it 3908 */ 3909 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3910 { 3911 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3912 return 0; 3913 if (gfp_mask & __GFP_MEMALLOC) 3914 return ALLOC_NO_WATERMARKS; 3915 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3916 return ALLOC_NO_WATERMARKS; 3917 if (!in_interrupt()) { 3918 if (current->flags & PF_MEMALLOC) 3919 return ALLOC_NO_WATERMARKS; 3920 else if (oom_reserves_allowed(current)) 3921 return ALLOC_OOM; 3922 } 3923 3924 return 0; 3925 } 3926 3927 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3928 { 3929 return !!__gfp_pfmemalloc_flags(gfp_mask); 3930 } 3931 3932 /* 3933 * Checks whether it makes sense to retry the reclaim to make a forward progress 3934 * for the given allocation request. 3935 * 3936 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3937 * without success, or when we couldn't even meet the watermark if we 3938 * reclaimed all remaining pages on the LRU lists. 3939 * 3940 * Returns true if a retry is viable or false to enter the oom path. 3941 */ 3942 static inline bool 3943 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3944 struct alloc_context *ac, int alloc_flags, 3945 bool did_some_progress, int *no_progress_loops) 3946 { 3947 struct zone *zone; 3948 struct zoneref *z; 3949 bool ret = false; 3950 3951 /* 3952 * Costly allocations might have made a progress but this doesn't mean 3953 * their order will become available due to high fragmentation so 3954 * always increment the no progress counter for them 3955 */ 3956 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3957 *no_progress_loops = 0; 3958 else 3959 (*no_progress_loops)++; 3960 3961 /* 3962 * Make sure we converge to OOM if we cannot make any progress 3963 * several times in the row. 3964 */ 3965 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3966 /* Before OOM, exhaust highatomic_reserve */ 3967 return unreserve_highatomic_pageblock(ac, true); 3968 } 3969 3970 /* 3971 * Keep reclaiming pages while there is a chance this will lead 3972 * somewhere. If none of the target zones can satisfy our allocation 3973 * request even if all reclaimable pages are considered then we are 3974 * screwed and have to go OOM. 3975 */ 3976 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3977 ac->highest_zoneidx, ac->nodemask) { 3978 unsigned long available; 3979 unsigned long reclaimable; 3980 unsigned long min_wmark = min_wmark_pages(zone); 3981 bool wmark; 3982 3983 available = reclaimable = zone_reclaimable_pages(zone); 3984 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3985 3986 /* 3987 * Would the allocation succeed if we reclaimed all 3988 * reclaimable pages? 3989 */ 3990 wmark = __zone_watermark_ok(zone, order, min_wmark, 3991 ac->highest_zoneidx, alloc_flags, available); 3992 trace_reclaim_retry_zone(z, order, reclaimable, 3993 available, min_wmark, *no_progress_loops, wmark); 3994 if (wmark) { 3995 ret = true; 3996 break; 3997 } 3998 } 3999 4000 /* 4001 * Memory allocation/reclaim might be called from a WQ context and the 4002 * current implementation of the WQ concurrency control doesn't 4003 * recognize that a particular WQ is congested if the worker thread is 4004 * looping without ever sleeping. Therefore we have to do a short sleep 4005 * here rather than calling cond_resched(). 4006 */ 4007 if (current->flags & PF_WQ_WORKER) 4008 schedule_timeout_uninterruptible(1); 4009 else 4010 cond_resched(); 4011 return ret; 4012 } 4013 4014 static inline bool 4015 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4016 { 4017 /* 4018 * It's possible that cpuset's mems_allowed and the nodemask from 4019 * mempolicy don't intersect. This should be normally dealt with by 4020 * policy_nodemask(), but it's possible to race with cpuset update in 4021 * such a way the check therein was true, and then it became false 4022 * before we got our cpuset_mems_cookie here. 4023 * This assumes that for all allocations, ac->nodemask can come only 4024 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4025 * when it does not intersect with the cpuset restrictions) or the 4026 * caller can deal with a violated nodemask. 4027 */ 4028 if (cpusets_enabled() && ac->nodemask && 4029 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4030 ac->nodemask = NULL; 4031 return true; 4032 } 4033 4034 /* 4035 * When updating a task's mems_allowed or mempolicy nodemask, it is 4036 * possible to race with parallel threads in such a way that our 4037 * allocation can fail while the mask is being updated. If we are about 4038 * to fail, check if the cpuset changed during allocation and if so, 4039 * retry. 4040 */ 4041 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4042 return true; 4043 4044 return false; 4045 } 4046 4047 static inline struct page * 4048 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4049 struct alloc_context *ac) 4050 { 4051 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4052 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4053 struct page *page = NULL; 4054 unsigned int alloc_flags; 4055 unsigned long did_some_progress; 4056 enum compact_priority compact_priority; 4057 enum compact_result compact_result; 4058 int compaction_retries; 4059 int no_progress_loops; 4060 unsigned int cpuset_mems_cookie; 4061 unsigned int zonelist_iter_cookie; 4062 int reserve_flags; 4063 4064 restart: 4065 compaction_retries = 0; 4066 no_progress_loops = 0; 4067 compact_priority = DEF_COMPACT_PRIORITY; 4068 cpuset_mems_cookie = read_mems_allowed_begin(); 4069 zonelist_iter_cookie = zonelist_iter_begin(); 4070 4071 /* 4072 * The fast path uses conservative alloc_flags to succeed only until 4073 * kswapd needs to be woken up, and to avoid the cost of setting up 4074 * alloc_flags precisely. So we do that now. 4075 */ 4076 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4077 4078 /* 4079 * We need to recalculate the starting point for the zonelist iterator 4080 * because we might have used different nodemask in the fast path, or 4081 * there was a cpuset modification and we are retrying - otherwise we 4082 * could end up iterating over non-eligible zones endlessly. 4083 */ 4084 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4085 ac->highest_zoneidx, ac->nodemask); 4086 if (!ac->preferred_zoneref->zone) 4087 goto nopage; 4088 4089 /* 4090 * Check for insane configurations where the cpuset doesn't contain 4091 * any suitable zone to satisfy the request - e.g. non-movable 4092 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4093 */ 4094 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4095 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4096 ac->highest_zoneidx, 4097 &cpuset_current_mems_allowed); 4098 if (!z->zone) 4099 goto nopage; 4100 } 4101 4102 if (alloc_flags & ALLOC_KSWAPD) 4103 wake_all_kswapds(order, gfp_mask, ac); 4104 4105 /* 4106 * The adjusted alloc_flags might result in immediate success, so try 4107 * that first 4108 */ 4109 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4110 if (page) 4111 goto got_pg; 4112 4113 /* 4114 * For costly allocations, try direct compaction first, as it's likely 4115 * that we have enough base pages and don't need to reclaim. For non- 4116 * movable high-order allocations, do that as well, as compaction will 4117 * try prevent permanent fragmentation by migrating from blocks of the 4118 * same migratetype. 4119 * Don't try this for allocations that are allowed to ignore 4120 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4121 */ 4122 if (can_direct_reclaim && 4123 (costly_order || 4124 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4125 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4126 page = __alloc_pages_direct_compact(gfp_mask, order, 4127 alloc_flags, ac, 4128 INIT_COMPACT_PRIORITY, 4129 &compact_result); 4130 if (page) 4131 goto got_pg; 4132 4133 /* 4134 * Checks for costly allocations with __GFP_NORETRY, which 4135 * includes some THP page fault allocations 4136 */ 4137 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4138 /* 4139 * If allocating entire pageblock(s) and compaction 4140 * failed because all zones are below low watermarks 4141 * or is prohibited because it recently failed at this 4142 * order, fail immediately unless the allocator has 4143 * requested compaction and reclaim retry. 4144 * 4145 * Reclaim is 4146 * - potentially very expensive because zones are far 4147 * below their low watermarks or this is part of very 4148 * bursty high order allocations, 4149 * - not guaranteed to help because isolate_freepages() 4150 * may not iterate over freed pages as part of its 4151 * linear scan, and 4152 * - unlikely to make entire pageblocks free on its 4153 * own. 4154 */ 4155 if (compact_result == COMPACT_SKIPPED || 4156 compact_result == COMPACT_DEFERRED) 4157 goto nopage; 4158 4159 /* 4160 * Looks like reclaim/compaction is worth trying, but 4161 * sync compaction could be very expensive, so keep 4162 * using async compaction. 4163 */ 4164 compact_priority = INIT_COMPACT_PRIORITY; 4165 } 4166 } 4167 4168 retry: 4169 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4170 if (alloc_flags & ALLOC_KSWAPD) 4171 wake_all_kswapds(order, gfp_mask, ac); 4172 4173 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4174 if (reserve_flags) 4175 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4176 (alloc_flags & ALLOC_KSWAPD); 4177 4178 /* 4179 * Reset the nodemask and zonelist iterators if memory policies can be 4180 * ignored. These allocations are high priority and system rather than 4181 * user oriented. 4182 */ 4183 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4184 ac->nodemask = NULL; 4185 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4186 ac->highest_zoneidx, ac->nodemask); 4187 } 4188 4189 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4190 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4191 if (page) 4192 goto got_pg; 4193 4194 /* Caller is not willing to reclaim, we can't balance anything */ 4195 if (!can_direct_reclaim) 4196 goto nopage; 4197 4198 /* Avoid recursion of direct reclaim */ 4199 if (current->flags & PF_MEMALLOC) 4200 goto nopage; 4201 4202 /* Try direct reclaim and then allocating */ 4203 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4204 &did_some_progress); 4205 if (page) 4206 goto got_pg; 4207 4208 /* Try direct compaction and then allocating */ 4209 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4210 compact_priority, &compact_result); 4211 if (page) 4212 goto got_pg; 4213 4214 /* Do not loop if specifically requested */ 4215 if (gfp_mask & __GFP_NORETRY) 4216 goto nopage; 4217 4218 /* 4219 * Do not retry costly high order allocations unless they are 4220 * __GFP_RETRY_MAYFAIL 4221 */ 4222 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4223 goto nopage; 4224 4225 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4226 did_some_progress > 0, &no_progress_loops)) 4227 goto retry; 4228 4229 /* 4230 * It doesn't make any sense to retry for the compaction if the order-0 4231 * reclaim is not able to make any progress because the current 4232 * implementation of the compaction depends on the sufficient amount 4233 * of free memory (see __compaction_suitable) 4234 */ 4235 if (did_some_progress > 0 && 4236 should_compact_retry(ac, order, alloc_flags, 4237 compact_result, &compact_priority, 4238 &compaction_retries)) 4239 goto retry; 4240 4241 4242 /* 4243 * Deal with possible cpuset update races or zonelist updates to avoid 4244 * a unnecessary OOM kill. 4245 */ 4246 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4247 check_retry_zonelist(zonelist_iter_cookie)) 4248 goto restart; 4249 4250 /* Reclaim has failed us, start killing things */ 4251 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4252 if (page) 4253 goto got_pg; 4254 4255 /* Avoid allocations with no watermarks from looping endlessly */ 4256 if (tsk_is_oom_victim(current) && 4257 (alloc_flags & ALLOC_OOM || 4258 (gfp_mask & __GFP_NOMEMALLOC))) 4259 goto nopage; 4260 4261 /* Retry as long as the OOM killer is making progress */ 4262 if (did_some_progress) { 4263 no_progress_loops = 0; 4264 goto retry; 4265 } 4266 4267 nopage: 4268 /* 4269 * Deal with possible cpuset update races or zonelist updates to avoid 4270 * a unnecessary OOM kill. 4271 */ 4272 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4273 check_retry_zonelist(zonelist_iter_cookie)) 4274 goto restart; 4275 4276 /* 4277 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4278 * we always retry 4279 */ 4280 if (gfp_mask & __GFP_NOFAIL) { 4281 /* 4282 * All existing users of the __GFP_NOFAIL are blockable, so warn 4283 * of any new users that actually require GFP_NOWAIT 4284 */ 4285 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4286 goto fail; 4287 4288 /* 4289 * PF_MEMALLOC request from this context is rather bizarre 4290 * because we cannot reclaim anything and only can loop waiting 4291 * for somebody to do a work for us 4292 */ 4293 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4294 4295 /* 4296 * non failing costly orders are a hard requirement which we 4297 * are not prepared for much so let's warn about these users 4298 * so that we can identify them and convert them to something 4299 * else. 4300 */ 4301 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4302 4303 /* 4304 * Help non-failing allocations by giving some access to memory 4305 * reserves normally used for high priority non-blocking 4306 * allocations but do not use ALLOC_NO_WATERMARKS because this 4307 * could deplete whole memory reserves which would just make 4308 * the situation worse. 4309 */ 4310 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4311 if (page) 4312 goto got_pg; 4313 4314 cond_resched(); 4315 goto retry; 4316 } 4317 fail: 4318 warn_alloc(gfp_mask, ac->nodemask, 4319 "page allocation failure: order:%u", order); 4320 got_pg: 4321 return page; 4322 } 4323 4324 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4325 int preferred_nid, nodemask_t *nodemask, 4326 struct alloc_context *ac, gfp_t *alloc_gfp, 4327 unsigned int *alloc_flags) 4328 { 4329 ac->highest_zoneidx = gfp_zone(gfp_mask); 4330 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4331 ac->nodemask = nodemask; 4332 ac->migratetype = gfp_migratetype(gfp_mask); 4333 4334 if (cpusets_enabled()) { 4335 *alloc_gfp |= __GFP_HARDWALL; 4336 /* 4337 * When we are in the interrupt context, it is irrelevant 4338 * to the current task context. It means that any node ok. 4339 */ 4340 if (in_task() && !ac->nodemask) 4341 ac->nodemask = &cpuset_current_mems_allowed; 4342 else 4343 *alloc_flags |= ALLOC_CPUSET; 4344 } 4345 4346 might_alloc(gfp_mask); 4347 4348 if (should_fail_alloc_page(gfp_mask, order)) 4349 return false; 4350 4351 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4352 4353 /* Dirty zone balancing only done in the fast path */ 4354 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4355 4356 /* 4357 * The preferred zone is used for statistics but crucially it is 4358 * also used as the starting point for the zonelist iterator. It 4359 * may get reset for allocations that ignore memory policies. 4360 */ 4361 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4362 ac->highest_zoneidx, ac->nodemask); 4363 4364 return true; 4365 } 4366 4367 /* 4368 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4369 * @gfp: GFP flags for the allocation 4370 * @preferred_nid: The preferred NUMA node ID to allocate from 4371 * @nodemask: Set of nodes to allocate from, may be NULL 4372 * @nr_pages: The number of pages desired on the list or array 4373 * @page_list: Optional list to store the allocated pages 4374 * @page_array: Optional array to store the pages 4375 * 4376 * This is a batched version of the page allocator that attempts to 4377 * allocate nr_pages quickly. Pages are added to page_list if page_list 4378 * is not NULL, otherwise it is assumed that the page_array is valid. 4379 * 4380 * For lists, nr_pages is the number of pages that should be allocated. 4381 * 4382 * For arrays, only NULL elements are populated with pages and nr_pages 4383 * is the maximum number of pages that will be stored in the array. 4384 * 4385 * Returns the number of pages on the list or array. 4386 */ 4387 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 4388 nodemask_t *nodemask, int nr_pages, 4389 struct list_head *page_list, 4390 struct page **page_array) 4391 { 4392 struct page *page; 4393 unsigned long __maybe_unused UP_flags; 4394 struct zone *zone; 4395 struct zoneref *z; 4396 struct per_cpu_pages *pcp; 4397 struct list_head *pcp_list; 4398 struct alloc_context ac; 4399 gfp_t alloc_gfp; 4400 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4401 int nr_populated = 0, nr_account = 0; 4402 4403 /* 4404 * Skip populated array elements to determine if any pages need 4405 * to be allocated before disabling IRQs. 4406 */ 4407 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4408 nr_populated++; 4409 4410 /* No pages requested? */ 4411 if (unlikely(nr_pages <= 0)) 4412 goto out; 4413 4414 /* Already populated array? */ 4415 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4416 goto out; 4417 4418 /* Bulk allocator does not support memcg accounting. */ 4419 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4420 goto failed; 4421 4422 /* Use the single page allocator for one page. */ 4423 if (nr_pages - nr_populated == 1) 4424 goto failed; 4425 4426 #ifdef CONFIG_PAGE_OWNER 4427 /* 4428 * PAGE_OWNER may recurse into the allocator to allocate space to 4429 * save the stack with pagesets.lock held. Releasing/reacquiring 4430 * removes much of the performance benefit of bulk allocation so 4431 * force the caller to allocate one page at a time as it'll have 4432 * similar performance to added complexity to the bulk allocator. 4433 */ 4434 if (static_branch_unlikely(&page_owner_inited)) 4435 goto failed; 4436 #endif 4437 4438 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4439 gfp &= gfp_allowed_mask; 4440 alloc_gfp = gfp; 4441 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4442 goto out; 4443 gfp = alloc_gfp; 4444 4445 /* Find an allowed local zone that meets the low watermark. */ 4446 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4447 unsigned long mark; 4448 4449 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4450 !__cpuset_zone_allowed(zone, gfp)) { 4451 continue; 4452 } 4453 4454 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4455 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4456 goto failed; 4457 } 4458 4459 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4460 if (zone_watermark_fast(zone, 0, mark, 4461 zonelist_zone_idx(ac.preferred_zoneref), 4462 alloc_flags, gfp)) { 4463 break; 4464 } 4465 } 4466 4467 /* 4468 * If there are no allowed local zones that meets the watermarks then 4469 * try to allocate a single page and reclaim if necessary. 4470 */ 4471 if (unlikely(!zone)) 4472 goto failed; 4473 4474 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4475 pcp_trylock_prepare(UP_flags); 4476 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4477 if (!pcp) 4478 goto failed_irq; 4479 4480 /* Attempt the batch allocation */ 4481 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4482 while (nr_populated < nr_pages) { 4483 4484 /* Skip existing pages */ 4485 if (page_array && page_array[nr_populated]) { 4486 nr_populated++; 4487 continue; 4488 } 4489 4490 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4491 pcp, pcp_list); 4492 if (unlikely(!page)) { 4493 /* Try and allocate at least one page */ 4494 if (!nr_account) { 4495 pcp_spin_unlock(pcp); 4496 goto failed_irq; 4497 } 4498 break; 4499 } 4500 nr_account++; 4501 4502 prep_new_page(page, 0, gfp, 0); 4503 if (page_list) 4504 list_add(&page->lru, page_list); 4505 else 4506 page_array[nr_populated] = page; 4507 nr_populated++; 4508 } 4509 4510 pcp_spin_unlock(pcp); 4511 pcp_trylock_finish(UP_flags); 4512 4513 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4514 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4515 4516 out: 4517 return nr_populated; 4518 4519 failed_irq: 4520 pcp_trylock_finish(UP_flags); 4521 4522 failed: 4523 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 4524 if (page) { 4525 if (page_list) 4526 list_add(&page->lru, page_list); 4527 else 4528 page_array[nr_populated] = page; 4529 nr_populated++; 4530 } 4531 4532 goto out; 4533 } 4534 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 4535 4536 /* 4537 * This is the 'heart' of the zoned buddy allocator. 4538 */ 4539 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 4540 nodemask_t *nodemask) 4541 { 4542 struct page *page; 4543 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4544 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4545 struct alloc_context ac = { }; 4546 4547 /* 4548 * There are several places where we assume that the order value is sane 4549 * so bail out early if the request is out of bound. 4550 */ 4551 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp)) 4552 return NULL; 4553 4554 gfp &= gfp_allowed_mask; 4555 /* 4556 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4557 * resp. GFP_NOIO which has to be inherited for all allocation requests 4558 * from a particular context which has been marked by 4559 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4560 * movable zones are not used during allocation. 4561 */ 4562 gfp = current_gfp_context(gfp); 4563 alloc_gfp = gfp; 4564 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4565 &alloc_gfp, &alloc_flags)) 4566 return NULL; 4567 4568 /* 4569 * Forbid the first pass from falling back to types that fragment 4570 * memory until all local zones are considered. 4571 */ 4572 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4573 4574 /* First allocation attempt */ 4575 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4576 if (likely(page)) 4577 goto out; 4578 4579 alloc_gfp = gfp; 4580 ac.spread_dirty_pages = false; 4581 4582 /* 4583 * Restore the original nodemask if it was potentially replaced with 4584 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4585 */ 4586 ac.nodemask = nodemask; 4587 4588 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4589 4590 out: 4591 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4592 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4593 __free_pages(page, order); 4594 page = NULL; 4595 } 4596 4597 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4598 kmsan_alloc_page(page, order, alloc_gfp); 4599 4600 return page; 4601 } 4602 EXPORT_SYMBOL(__alloc_pages); 4603 4604 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 4605 nodemask_t *nodemask) 4606 { 4607 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 4608 preferred_nid, nodemask); 4609 return page_rmappable_folio(page); 4610 } 4611 EXPORT_SYMBOL(__folio_alloc); 4612 4613 /* 4614 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4615 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4616 * you need to access high mem. 4617 */ 4618 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4619 { 4620 struct page *page; 4621 4622 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4623 if (!page) 4624 return 0; 4625 return (unsigned long) page_address(page); 4626 } 4627 EXPORT_SYMBOL(__get_free_pages); 4628 4629 unsigned long get_zeroed_page(gfp_t gfp_mask) 4630 { 4631 return __get_free_page(gfp_mask | __GFP_ZERO); 4632 } 4633 EXPORT_SYMBOL(get_zeroed_page); 4634 4635 /** 4636 * __free_pages - Free pages allocated with alloc_pages(). 4637 * @page: The page pointer returned from alloc_pages(). 4638 * @order: The order of the allocation. 4639 * 4640 * This function can free multi-page allocations that are not compound 4641 * pages. It does not check that the @order passed in matches that of 4642 * the allocation, so it is easy to leak memory. Freeing more memory 4643 * than was allocated will probably emit a warning. 4644 * 4645 * If the last reference to this page is speculative, it will be released 4646 * by put_page() which only frees the first page of a non-compound 4647 * allocation. To prevent the remaining pages from being leaked, we free 4648 * the subsequent pages here. If you want to use the page's reference 4649 * count to decide when to free the allocation, you should allocate a 4650 * compound page, and use put_page() instead of __free_pages(). 4651 * 4652 * Context: May be called in interrupt context or while holding a normal 4653 * spinlock, but not in NMI context or while holding a raw spinlock. 4654 */ 4655 void __free_pages(struct page *page, unsigned int order) 4656 { 4657 /* get PageHead before we drop reference */ 4658 int head = PageHead(page); 4659 4660 if (put_page_testzero(page)) 4661 free_the_page(page, order); 4662 else if (!head) 4663 while (order-- > 0) 4664 free_the_page(page + (1 << order), order); 4665 } 4666 EXPORT_SYMBOL(__free_pages); 4667 4668 void free_pages(unsigned long addr, unsigned int order) 4669 { 4670 if (addr != 0) { 4671 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4672 __free_pages(virt_to_page((void *)addr), order); 4673 } 4674 } 4675 4676 EXPORT_SYMBOL(free_pages); 4677 4678 /* 4679 * Page Fragment: 4680 * An arbitrary-length arbitrary-offset area of memory which resides 4681 * within a 0 or higher order page. Multiple fragments within that page 4682 * are individually refcounted, in the page's reference counter. 4683 * 4684 * The page_frag functions below provide a simple allocation framework for 4685 * page fragments. This is used by the network stack and network device 4686 * drivers to provide a backing region of memory for use as either an 4687 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4688 */ 4689 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4690 gfp_t gfp_mask) 4691 { 4692 struct page *page = NULL; 4693 gfp_t gfp = gfp_mask; 4694 4695 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4696 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4697 __GFP_NOMEMALLOC; 4698 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4699 PAGE_FRAG_CACHE_MAX_ORDER); 4700 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4701 #endif 4702 if (unlikely(!page)) 4703 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4704 4705 nc->va = page ? page_address(page) : NULL; 4706 4707 return page; 4708 } 4709 4710 void __page_frag_cache_drain(struct page *page, unsigned int count) 4711 { 4712 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4713 4714 if (page_ref_sub_and_test(page, count)) 4715 free_the_page(page, compound_order(page)); 4716 } 4717 EXPORT_SYMBOL(__page_frag_cache_drain); 4718 4719 void *page_frag_alloc_align(struct page_frag_cache *nc, 4720 unsigned int fragsz, gfp_t gfp_mask, 4721 unsigned int align_mask) 4722 { 4723 unsigned int size = PAGE_SIZE; 4724 struct page *page; 4725 int offset; 4726 4727 if (unlikely(!nc->va)) { 4728 refill: 4729 page = __page_frag_cache_refill(nc, gfp_mask); 4730 if (!page) 4731 return NULL; 4732 4733 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4734 /* if size can vary use size else just use PAGE_SIZE */ 4735 size = nc->size; 4736 #endif 4737 /* Even if we own the page, we do not use atomic_set(). 4738 * This would break get_page_unless_zero() users. 4739 */ 4740 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4741 4742 /* reset page count bias and offset to start of new frag */ 4743 nc->pfmemalloc = page_is_pfmemalloc(page); 4744 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4745 nc->offset = size; 4746 } 4747 4748 offset = nc->offset - fragsz; 4749 if (unlikely(offset < 0)) { 4750 page = virt_to_page(nc->va); 4751 4752 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4753 goto refill; 4754 4755 if (unlikely(nc->pfmemalloc)) { 4756 free_the_page(page, compound_order(page)); 4757 goto refill; 4758 } 4759 4760 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4761 /* if size can vary use size else just use PAGE_SIZE */ 4762 size = nc->size; 4763 #endif 4764 /* OK, page count is 0, we can safely set it */ 4765 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4766 4767 /* reset page count bias and offset to start of new frag */ 4768 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4769 offset = size - fragsz; 4770 if (unlikely(offset < 0)) { 4771 /* 4772 * The caller is trying to allocate a fragment 4773 * with fragsz > PAGE_SIZE but the cache isn't big 4774 * enough to satisfy the request, this may 4775 * happen in low memory conditions. 4776 * We don't release the cache page because 4777 * it could make memory pressure worse 4778 * so we simply return NULL here. 4779 */ 4780 return NULL; 4781 } 4782 } 4783 4784 nc->pagecnt_bias--; 4785 offset &= align_mask; 4786 nc->offset = offset; 4787 4788 return nc->va + offset; 4789 } 4790 EXPORT_SYMBOL(page_frag_alloc_align); 4791 4792 /* 4793 * Frees a page fragment allocated out of either a compound or order 0 page. 4794 */ 4795 void page_frag_free(void *addr) 4796 { 4797 struct page *page = virt_to_head_page(addr); 4798 4799 if (unlikely(put_page_testzero(page))) 4800 free_the_page(page, compound_order(page)); 4801 } 4802 EXPORT_SYMBOL(page_frag_free); 4803 4804 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4805 size_t size) 4806 { 4807 if (addr) { 4808 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4809 struct page *page = virt_to_page((void *)addr); 4810 struct page *last = page + nr; 4811 4812 split_page_owner(page, 1 << order); 4813 split_page_memcg(page, 1 << order); 4814 while (page < --last) 4815 set_page_refcounted(last); 4816 4817 last = page + (1UL << order); 4818 for (page += nr; page < last; page++) 4819 __free_pages_ok(page, 0, FPI_TO_TAIL); 4820 } 4821 return (void *)addr; 4822 } 4823 4824 /** 4825 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4826 * @size: the number of bytes to allocate 4827 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4828 * 4829 * This function is similar to alloc_pages(), except that it allocates the 4830 * minimum number of pages to satisfy the request. alloc_pages() can only 4831 * allocate memory in power-of-two pages. 4832 * 4833 * This function is also limited by MAX_ORDER. 4834 * 4835 * Memory allocated by this function must be released by free_pages_exact(). 4836 * 4837 * Return: pointer to the allocated area or %NULL in case of error. 4838 */ 4839 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4840 { 4841 unsigned int order = get_order(size); 4842 unsigned long addr; 4843 4844 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4845 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4846 4847 addr = __get_free_pages(gfp_mask, order); 4848 return make_alloc_exact(addr, order, size); 4849 } 4850 EXPORT_SYMBOL(alloc_pages_exact); 4851 4852 /** 4853 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4854 * pages on a node. 4855 * @nid: the preferred node ID where memory should be allocated 4856 * @size: the number of bytes to allocate 4857 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4858 * 4859 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4860 * back. 4861 * 4862 * Return: pointer to the allocated area or %NULL in case of error. 4863 */ 4864 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4865 { 4866 unsigned int order = get_order(size); 4867 struct page *p; 4868 4869 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4870 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4871 4872 p = alloc_pages_node(nid, gfp_mask, order); 4873 if (!p) 4874 return NULL; 4875 return make_alloc_exact((unsigned long)page_address(p), order, size); 4876 } 4877 4878 /** 4879 * free_pages_exact - release memory allocated via alloc_pages_exact() 4880 * @virt: the value returned by alloc_pages_exact. 4881 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4882 * 4883 * Release the memory allocated by a previous call to alloc_pages_exact. 4884 */ 4885 void free_pages_exact(void *virt, size_t size) 4886 { 4887 unsigned long addr = (unsigned long)virt; 4888 unsigned long end = addr + PAGE_ALIGN(size); 4889 4890 while (addr < end) { 4891 free_page(addr); 4892 addr += PAGE_SIZE; 4893 } 4894 } 4895 EXPORT_SYMBOL(free_pages_exact); 4896 4897 /** 4898 * nr_free_zone_pages - count number of pages beyond high watermark 4899 * @offset: The zone index of the highest zone 4900 * 4901 * nr_free_zone_pages() counts the number of pages which are beyond the 4902 * high watermark within all zones at or below a given zone index. For each 4903 * zone, the number of pages is calculated as: 4904 * 4905 * nr_free_zone_pages = managed_pages - high_pages 4906 * 4907 * Return: number of pages beyond high watermark. 4908 */ 4909 static unsigned long nr_free_zone_pages(int offset) 4910 { 4911 struct zoneref *z; 4912 struct zone *zone; 4913 4914 /* Just pick one node, since fallback list is circular */ 4915 unsigned long sum = 0; 4916 4917 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4918 4919 for_each_zone_zonelist(zone, z, zonelist, offset) { 4920 unsigned long size = zone_managed_pages(zone); 4921 unsigned long high = high_wmark_pages(zone); 4922 if (size > high) 4923 sum += size - high; 4924 } 4925 4926 return sum; 4927 } 4928 4929 /** 4930 * nr_free_buffer_pages - count number of pages beyond high watermark 4931 * 4932 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4933 * watermark within ZONE_DMA and ZONE_NORMAL. 4934 * 4935 * Return: number of pages beyond high watermark within ZONE_DMA and 4936 * ZONE_NORMAL. 4937 */ 4938 unsigned long nr_free_buffer_pages(void) 4939 { 4940 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4941 } 4942 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4943 4944 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4945 { 4946 zoneref->zone = zone; 4947 zoneref->zone_idx = zone_idx(zone); 4948 } 4949 4950 /* 4951 * Builds allocation fallback zone lists. 4952 * 4953 * Add all populated zones of a node to the zonelist. 4954 */ 4955 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4956 { 4957 struct zone *zone; 4958 enum zone_type zone_type = MAX_NR_ZONES; 4959 int nr_zones = 0; 4960 4961 do { 4962 zone_type--; 4963 zone = pgdat->node_zones + zone_type; 4964 if (populated_zone(zone)) { 4965 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4966 check_highest_zone(zone_type); 4967 } 4968 } while (zone_type); 4969 4970 return nr_zones; 4971 } 4972 4973 #ifdef CONFIG_NUMA 4974 4975 static int __parse_numa_zonelist_order(char *s) 4976 { 4977 /* 4978 * We used to support different zonelists modes but they turned 4979 * out to be just not useful. Let's keep the warning in place 4980 * if somebody still use the cmd line parameter so that we do 4981 * not fail it silently 4982 */ 4983 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4984 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4985 return -EINVAL; 4986 } 4987 return 0; 4988 } 4989 4990 static char numa_zonelist_order[] = "Node"; 4991 #define NUMA_ZONELIST_ORDER_LEN 16 4992 /* 4993 * sysctl handler for numa_zonelist_order 4994 */ 4995 static int numa_zonelist_order_handler(struct ctl_table *table, int write, 4996 void *buffer, size_t *length, loff_t *ppos) 4997 { 4998 if (write) 4999 return __parse_numa_zonelist_order(buffer); 5000 return proc_dostring(table, write, buffer, length, ppos); 5001 } 5002 5003 static int node_load[MAX_NUMNODES]; 5004 5005 /** 5006 * find_next_best_node - find the next node that should appear in a given node's fallback list 5007 * @node: node whose fallback list we're appending 5008 * @used_node_mask: nodemask_t of already used nodes 5009 * 5010 * We use a number of factors to determine which is the next node that should 5011 * appear on a given node's fallback list. The node should not have appeared 5012 * already in @node's fallback list, and it should be the next closest node 5013 * according to the distance array (which contains arbitrary distance values 5014 * from each node to each node in the system), and should also prefer nodes 5015 * with no CPUs, since presumably they'll have very little allocation pressure 5016 * on them otherwise. 5017 * 5018 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5019 */ 5020 int find_next_best_node(int node, nodemask_t *used_node_mask) 5021 { 5022 int n, val; 5023 int min_val = INT_MAX; 5024 int best_node = NUMA_NO_NODE; 5025 5026 /* 5027 * Use the local node if we haven't already, but for memoryless local 5028 * node, we should skip it and fall back to other nodes. 5029 */ 5030 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5031 node_set(node, *used_node_mask); 5032 return node; 5033 } 5034 5035 for_each_node_state(n, N_MEMORY) { 5036 5037 /* Don't want a node to appear more than once */ 5038 if (node_isset(n, *used_node_mask)) 5039 continue; 5040 5041 /* Use the distance array to find the distance */ 5042 val = node_distance(node, n); 5043 5044 /* Penalize nodes under us ("prefer the next node") */ 5045 val += (n < node); 5046 5047 /* Give preference to headless and unused nodes */ 5048 if (!cpumask_empty(cpumask_of_node(n))) 5049 val += PENALTY_FOR_NODE_WITH_CPUS; 5050 5051 /* Slight preference for less loaded node */ 5052 val *= MAX_NUMNODES; 5053 val += node_load[n]; 5054 5055 if (val < min_val) { 5056 min_val = val; 5057 best_node = n; 5058 } 5059 } 5060 5061 if (best_node >= 0) 5062 node_set(best_node, *used_node_mask); 5063 5064 return best_node; 5065 } 5066 5067 5068 /* 5069 * Build zonelists ordered by node and zones within node. 5070 * This results in maximum locality--normal zone overflows into local 5071 * DMA zone, if any--but risks exhausting DMA zone. 5072 */ 5073 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5074 unsigned nr_nodes) 5075 { 5076 struct zoneref *zonerefs; 5077 int i; 5078 5079 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5080 5081 for (i = 0; i < nr_nodes; i++) { 5082 int nr_zones; 5083 5084 pg_data_t *node = NODE_DATA(node_order[i]); 5085 5086 nr_zones = build_zonerefs_node(node, zonerefs); 5087 zonerefs += nr_zones; 5088 } 5089 zonerefs->zone = NULL; 5090 zonerefs->zone_idx = 0; 5091 } 5092 5093 /* 5094 * Build gfp_thisnode zonelists 5095 */ 5096 static void build_thisnode_zonelists(pg_data_t *pgdat) 5097 { 5098 struct zoneref *zonerefs; 5099 int nr_zones; 5100 5101 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5102 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5103 zonerefs += nr_zones; 5104 zonerefs->zone = NULL; 5105 zonerefs->zone_idx = 0; 5106 } 5107 5108 /* 5109 * Build zonelists ordered by zone and nodes within zones. 5110 * This results in conserving DMA zone[s] until all Normal memory is 5111 * exhausted, but results in overflowing to remote node while memory 5112 * may still exist in local DMA zone. 5113 */ 5114 5115 static void build_zonelists(pg_data_t *pgdat) 5116 { 5117 static int node_order[MAX_NUMNODES]; 5118 int node, nr_nodes = 0; 5119 nodemask_t used_mask = NODE_MASK_NONE; 5120 int local_node, prev_node; 5121 5122 /* NUMA-aware ordering of nodes */ 5123 local_node = pgdat->node_id; 5124 prev_node = local_node; 5125 5126 memset(node_order, 0, sizeof(node_order)); 5127 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5128 /* 5129 * We don't want to pressure a particular node. 5130 * So adding penalty to the first node in same 5131 * distance group to make it round-robin. 5132 */ 5133 if (node_distance(local_node, node) != 5134 node_distance(local_node, prev_node)) 5135 node_load[node] += 1; 5136 5137 node_order[nr_nodes++] = node; 5138 prev_node = node; 5139 } 5140 5141 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5142 build_thisnode_zonelists(pgdat); 5143 pr_info("Fallback order for Node %d: ", local_node); 5144 for (node = 0; node < nr_nodes; node++) 5145 pr_cont("%d ", node_order[node]); 5146 pr_cont("\n"); 5147 } 5148 5149 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5150 /* 5151 * Return node id of node used for "local" allocations. 5152 * I.e., first node id of first zone in arg node's generic zonelist. 5153 * Used for initializing percpu 'numa_mem', which is used primarily 5154 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5155 */ 5156 int local_memory_node(int node) 5157 { 5158 struct zoneref *z; 5159 5160 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5161 gfp_zone(GFP_KERNEL), 5162 NULL); 5163 return zone_to_nid(z->zone); 5164 } 5165 #endif 5166 5167 static void setup_min_unmapped_ratio(void); 5168 static void setup_min_slab_ratio(void); 5169 #else /* CONFIG_NUMA */ 5170 5171 static void build_zonelists(pg_data_t *pgdat) 5172 { 5173 int node, local_node; 5174 struct zoneref *zonerefs; 5175 int nr_zones; 5176 5177 local_node = pgdat->node_id; 5178 5179 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5180 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5181 zonerefs += nr_zones; 5182 5183 /* 5184 * Now we build the zonelist so that it contains the zones 5185 * of all the other nodes. 5186 * We don't want to pressure a particular node, so when 5187 * building the zones for node N, we make sure that the 5188 * zones coming right after the local ones are those from 5189 * node N+1 (modulo N) 5190 */ 5191 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5192 if (!node_online(node)) 5193 continue; 5194 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5195 zonerefs += nr_zones; 5196 } 5197 for (node = 0; node < local_node; node++) { 5198 if (!node_online(node)) 5199 continue; 5200 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5201 zonerefs += nr_zones; 5202 } 5203 5204 zonerefs->zone = NULL; 5205 zonerefs->zone_idx = 0; 5206 } 5207 5208 #endif /* CONFIG_NUMA */ 5209 5210 /* 5211 * Boot pageset table. One per cpu which is going to be used for all 5212 * zones and all nodes. The parameters will be set in such a way 5213 * that an item put on a list will immediately be handed over to 5214 * the buddy list. This is safe since pageset manipulation is done 5215 * with interrupts disabled. 5216 * 5217 * The boot_pagesets must be kept even after bootup is complete for 5218 * unused processors and/or zones. They do play a role for bootstrapping 5219 * hotplugged processors. 5220 * 5221 * zoneinfo_show() and maybe other functions do 5222 * not check if the processor is online before following the pageset pointer. 5223 * Other parts of the kernel may not check if the zone is available. 5224 */ 5225 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5226 /* These effectively disable the pcplists in the boot pageset completely */ 5227 #define BOOT_PAGESET_HIGH 0 5228 #define BOOT_PAGESET_BATCH 1 5229 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5230 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5231 5232 static void __build_all_zonelists(void *data) 5233 { 5234 int nid; 5235 int __maybe_unused cpu; 5236 pg_data_t *self = data; 5237 unsigned long flags; 5238 5239 /* 5240 * The zonelist_update_seq must be acquired with irqsave because the 5241 * reader can be invoked from IRQ with GFP_ATOMIC. 5242 */ 5243 write_seqlock_irqsave(&zonelist_update_seq, flags); 5244 /* 5245 * Also disable synchronous printk() to prevent any printk() from 5246 * trying to hold port->lock, for 5247 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5248 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5249 */ 5250 printk_deferred_enter(); 5251 5252 #ifdef CONFIG_NUMA 5253 memset(node_load, 0, sizeof(node_load)); 5254 #endif 5255 5256 /* 5257 * This node is hotadded and no memory is yet present. So just 5258 * building zonelists is fine - no need to touch other nodes. 5259 */ 5260 if (self && !node_online(self->node_id)) { 5261 build_zonelists(self); 5262 } else { 5263 /* 5264 * All possible nodes have pgdat preallocated 5265 * in free_area_init 5266 */ 5267 for_each_node(nid) { 5268 pg_data_t *pgdat = NODE_DATA(nid); 5269 5270 build_zonelists(pgdat); 5271 } 5272 5273 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5274 /* 5275 * We now know the "local memory node" for each node-- 5276 * i.e., the node of the first zone in the generic zonelist. 5277 * Set up numa_mem percpu variable for on-line cpus. During 5278 * boot, only the boot cpu should be on-line; we'll init the 5279 * secondary cpus' numa_mem as they come on-line. During 5280 * node/memory hotplug, we'll fixup all on-line cpus. 5281 */ 5282 for_each_online_cpu(cpu) 5283 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5284 #endif 5285 } 5286 5287 printk_deferred_exit(); 5288 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5289 } 5290 5291 static noinline void __init 5292 build_all_zonelists_init(void) 5293 { 5294 int cpu; 5295 5296 __build_all_zonelists(NULL); 5297 5298 /* 5299 * Initialize the boot_pagesets that are going to be used 5300 * for bootstrapping processors. The real pagesets for 5301 * each zone will be allocated later when the per cpu 5302 * allocator is available. 5303 * 5304 * boot_pagesets are used also for bootstrapping offline 5305 * cpus if the system is already booted because the pagesets 5306 * are needed to initialize allocators on a specific cpu too. 5307 * F.e. the percpu allocator needs the page allocator which 5308 * needs the percpu allocator in order to allocate its pagesets 5309 * (a chicken-egg dilemma). 5310 */ 5311 for_each_possible_cpu(cpu) 5312 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5313 5314 mminit_verify_zonelist(); 5315 cpuset_init_current_mems_allowed(); 5316 } 5317 5318 /* 5319 * unless system_state == SYSTEM_BOOTING. 5320 * 5321 * __ref due to call of __init annotated helper build_all_zonelists_init 5322 * [protected by SYSTEM_BOOTING]. 5323 */ 5324 void __ref build_all_zonelists(pg_data_t *pgdat) 5325 { 5326 unsigned long vm_total_pages; 5327 5328 if (system_state == SYSTEM_BOOTING) { 5329 build_all_zonelists_init(); 5330 } else { 5331 __build_all_zonelists(pgdat); 5332 /* cpuset refresh routine should be here */ 5333 } 5334 /* Get the number of free pages beyond high watermark in all zones. */ 5335 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5336 /* 5337 * Disable grouping by mobility if the number of pages in the 5338 * system is too low to allow the mechanism to work. It would be 5339 * more accurate, but expensive to check per-zone. This check is 5340 * made on memory-hotadd so a system can start with mobility 5341 * disabled and enable it later 5342 */ 5343 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5344 page_group_by_mobility_disabled = 1; 5345 else 5346 page_group_by_mobility_disabled = 0; 5347 5348 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5349 nr_online_nodes, 5350 page_group_by_mobility_disabled ? "off" : "on", 5351 vm_total_pages); 5352 #ifdef CONFIG_NUMA 5353 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5354 #endif 5355 } 5356 5357 static int zone_batchsize(struct zone *zone) 5358 { 5359 #ifdef CONFIG_MMU 5360 int batch; 5361 5362 /* 5363 * The number of pages to batch allocate is either ~0.1% 5364 * of the zone or 1MB, whichever is smaller. The batch 5365 * size is striking a balance between allocation latency 5366 * and zone lock contention. 5367 */ 5368 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5369 batch /= 4; /* We effectively *= 4 below */ 5370 if (batch < 1) 5371 batch = 1; 5372 5373 /* 5374 * Clamp the batch to a 2^n - 1 value. Having a power 5375 * of 2 value was found to be more likely to have 5376 * suboptimal cache aliasing properties in some cases. 5377 * 5378 * For example if 2 tasks are alternately allocating 5379 * batches of pages, one task can end up with a lot 5380 * of pages of one half of the possible page colors 5381 * and the other with pages of the other colors. 5382 */ 5383 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5384 5385 return batch; 5386 5387 #else 5388 /* The deferral and batching of frees should be suppressed under NOMMU 5389 * conditions. 5390 * 5391 * The problem is that NOMMU needs to be able to allocate large chunks 5392 * of contiguous memory as there's no hardware page translation to 5393 * assemble apparent contiguous memory from discontiguous pages. 5394 * 5395 * Queueing large contiguous runs of pages for batching, however, 5396 * causes the pages to actually be freed in smaller chunks. As there 5397 * can be a significant delay between the individual batches being 5398 * recycled, this leads to the once large chunks of space being 5399 * fragmented and becoming unavailable for high-order allocations. 5400 */ 5401 return 0; 5402 #endif 5403 } 5404 5405 static int percpu_pagelist_high_fraction; 5406 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5407 int high_fraction) 5408 { 5409 #ifdef CONFIG_MMU 5410 int high; 5411 int nr_split_cpus; 5412 unsigned long total_pages; 5413 5414 if (!high_fraction) { 5415 /* 5416 * By default, the high value of the pcp is based on the zone 5417 * low watermark so that if they are full then background 5418 * reclaim will not be started prematurely. 5419 */ 5420 total_pages = low_wmark_pages(zone); 5421 } else { 5422 /* 5423 * If percpu_pagelist_high_fraction is configured, the high 5424 * value is based on a fraction of the managed pages in the 5425 * zone. 5426 */ 5427 total_pages = zone_managed_pages(zone) / high_fraction; 5428 } 5429 5430 /* 5431 * Split the high value across all online CPUs local to the zone. Note 5432 * that early in boot that CPUs may not be online yet and that during 5433 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5434 * onlined. For memory nodes that have no CPUs, split the high value 5435 * across all online CPUs to mitigate the risk that reclaim is triggered 5436 * prematurely due to pages stored on pcp lists. 5437 */ 5438 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5439 if (!nr_split_cpus) 5440 nr_split_cpus = num_online_cpus(); 5441 high = total_pages / nr_split_cpus; 5442 5443 /* 5444 * Ensure high is at least batch*4. The multiple is based on the 5445 * historical relationship between high and batch. 5446 */ 5447 high = max(high, batch << 2); 5448 5449 return high; 5450 #else 5451 return 0; 5452 #endif 5453 } 5454 5455 /* 5456 * pcp->high and pcp->batch values are related and generally batch is lower 5457 * than high. They are also related to pcp->count such that count is lower 5458 * than high, and as soon as it reaches high, the pcplist is flushed. 5459 * 5460 * However, guaranteeing these relations at all times would require e.g. write 5461 * barriers here but also careful usage of read barriers at the read side, and 5462 * thus be prone to error and bad for performance. Thus the update only prevents 5463 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5464 * should ensure they can cope with those fields changing asynchronously, and 5465 * fully trust only the pcp->count field on the local CPU with interrupts 5466 * disabled. 5467 * 5468 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5469 * outside of boot time (or some other assurance that no concurrent updaters 5470 * exist). 5471 */ 5472 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5473 unsigned long high_max, unsigned long batch) 5474 { 5475 WRITE_ONCE(pcp->batch, batch); 5476 WRITE_ONCE(pcp->high_min, high_min); 5477 WRITE_ONCE(pcp->high_max, high_max); 5478 } 5479 5480 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5481 { 5482 int pindex; 5483 5484 memset(pcp, 0, sizeof(*pcp)); 5485 memset(pzstats, 0, sizeof(*pzstats)); 5486 5487 spin_lock_init(&pcp->lock); 5488 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5489 INIT_LIST_HEAD(&pcp->lists[pindex]); 5490 5491 /* 5492 * Set batch and high values safe for a boot pageset. A true percpu 5493 * pageset's initialization will update them subsequently. Here we don't 5494 * need to be as careful as pageset_update() as nobody can access the 5495 * pageset yet. 5496 */ 5497 pcp->high_min = BOOT_PAGESET_HIGH; 5498 pcp->high_max = BOOT_PAGESET_HIGH; 5499 pcp->batch = BOOT_PAGESET_BATCH; 5500 pcp->free_count = 0; 5501 } 5502 5503 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5504 unsigned long high_max, unsigned long batch) 5505 { 5506 struct per_cpu_pages *pcp; 5507 int cpu; 5508 5509 for_each_possible_cpu(cpu) { 5510 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5511 pageset_update(pcp, high_min, high_max, batch); 5512 } 5513 } 5514 5515 /* 5516 * Calculate and set new high and batch values for all per-cpu pagesets of a 5517 * zone based on the zone's size. 5518 */ 5519 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5520 { 5521 int new_high_min, new_high_max, new_batch; 5522 5523 new_batch = max(1, zone_batchsize(zone)); 5524 if (percpu_pagelist_high_fraction) { 5525 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5526 percpu_pagelist_high_fraction); 5527 /* 5528 * PCP high is tuned manually, disable auto-tuning via 5529 * setting high_min and high_max to the manual value. 5530 */ 5531 new_high_max = new_high_min; 5532 } else { 5533 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5534 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5535 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5536 } 5537 5538 if (zone->pageset_high_min == new_high_min && 5539 zone->pageset_high_max == new_high_max && 5540 zone->pageset_batch == new_batch) 5541 return; 5542 5543 zone->pageset_high_min = new_high_min; 5544 zone->pageset_high_max = new_high_max; 5545 zone->pageset_batch = new_batch; 5546 5547 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5548 new_batch); 5549 } 5550 5551 void __meminit setup_zone_pageset(struct zone *zone) 5552 { 5553 int cpu; 5554 5555 /* Size may be 0 on !SMP && !NUMA */ 5556 if (sizeof(struct per_cpu_zonestat) > 0) 5557 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5558 5559 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5560 for_each_possible_cpu(cpu) { 5561 struct per_cpu_pages *pcp; 5562 struct per_cpu_zonestat *pzstats; 5563 5564 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5565 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5566 per_cpu_pages_init(pcp, pzstats); 5567 } 5568 5569 zone_set_pageset_high_and_batch(zone, 0); 5570 } 5571 5572 /* 5573 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5574 * page high values need to be recalculated. 5575 */ 5576 static void zone_pcp_update(struct zone *zone, int cpu_online) 5577 { 5578 mutex_lock(&pcp_batch_high_lock); 5579 zone_set_pageset_high_and_batch(zone, cpu_online); 5580 mutex_unlock(&pcp_batch_high_lock); 5581 } 5582 5583 static void zone_pcp_update_cacheinfo(struct zone *zone) 5584 { 5585 int cpu; 5586 struct per_cpu_pages *pcp; 5587 struct cpu_cacheinfo *cci; 5588 5589 for_each_online_cpu(cpu) { 5590 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5591 cci = get_cpu_cacheinfo(cpu); 5592 /* 5593 * If data cache slice of CPU is large enough, "pcp->batch" 5594 * pages can be preserved in PCP before draining PCP for 5595 * consecutive high-order pages freeing without allocation. 5596 * This can reduce zone lock contention without hurting 5597 * cache-hot pages sharing. 5598 */ 5599 spin_lock(&pcp->lock); 5600 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5601 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5602 else 5603 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5604 spin_unlock(&pcp->lock); 5605 } 5606 } 5607 5608 void setup_pcp_cacheinfo(void) 5609 { 5610 struct zone *zone; 5611 5612 for_each_populated_zone(zone) 5613 zone_pcp_update_cacheinfo(zone); 5614 } 5615 5616 /* 5617 * Allocate per cpu pagesets and initialize them. 5618 * Before this call only boot pagesets were available. 5619 */ 5620 void __init setup_per_cpu_pageset(void) 5621 { 5622 struct pglist_data *pgdat; 5623 struct zone *zone; 5624 int __maybe_unused cpu; 5625 5626 for_each_populated_zone(zone) 5627 setup_zone_pageset(zone); 5628 5629 #ifdef CONFIG_NUMA 5630 /* 5631 * Unpopulated zones continue using the boot pagesets. 5632 * The numa stats for these pagesets need to be reset. 5633 * Otherwise, they will end up skewing the stats of 5634 * the nodes these zones are associated with. 5635 */ 5636 for_each_possible_cpu(cpu) { 5637 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5638 memset(pzstats->vm_numa_event, 0, 5639 sizeof(pzstats->vm_numa_event)); 5640 } 5641 #endif 5642 5643 for_each_online_pgdat(pgdat) 5644 pgdat->per_cpu_nodestats = 5645 alloc_percpu(struct per_cpu_nodestat); 5646 } 5647 5648 __meminit void zone_pcp_init(struct zone *zone) 5649 { 5650 /* 5651 * per cpu subsystem is not up at this point. The following code 5652 * relies on the ability of the linker to provide the 5653 * offset of a (static) per cpu variable into the per cpu area. 5654 */ 5655 zone->per_cpu_pageset = &boot_pageset; 5656 zone->per_cpu_zonestats = &boot_zonestats; 5657 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5658 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5659 zone->pageset_batch = BOOT_PAGESET_BATCH; 5660 5661 if (populated_zone(zone)) 5662 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5663 zone->present_pages, zone_batchsize(zone)); 5664 } 5665 5666 void adjust_managed_page_count(struct page *page, long count) 5667 { 5668 atomic_long_add(count, &page_zone(page)->managed_pages); 5669 totalram_pages_add(count); 5670 #ifdef CONFIG_HIGHMEM 5671 if (PageHighMem(page)) 5672 totalhigh_pages_add(count); 5673 #endif 5674 } 5675 EXPORT_SYMBOL(adjust_managed_page_count); 5676 5677 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5678 { 5679 void *pos; 5680 unsigned long pages = 0; 5681 5682 start = (void *)PAGE_ALIGN((unsigned long)start); 5683 end = (void *)((unsigned long)end & PAGE_MASK); 5684 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5685 struct page *page = virt_to_page(pos); 5686 void *direct_map_addr; 5687 5688 /* 5689 * 'direct_map_addr' might be different from 'pos' 5690 * because some architectures' virt_to_page() 5691 * work with aliases. Getting the direct map 5692 * address ensures that we get a _writeable_ 5693 * alias for the memset(). 5694 */ 5695 direct_map_addr = page_address(page); 5696 /* 5697 * Perform a kasan-unchecked memset() since this memory 5698 * has not been initialized. 5699 */ 5700 direct_map_addr = kasan_reset_tag(direct_map_addr); 5701 if ((unsigned int)poison <= 0xFF) 5702 memset(direct_map_addr, poison, PAGE_SIZE); 5703 5704 free_reserved_page(page); 5705 } 5706 5707 if (pages && s) 5708 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5709 5710 return pages; 5711 } 5712 5713 static int page_alloc_cpu_dead(unsigned int cpu) 5714 { 5715 struct zone *zone; 5716 5717 lru_add_drain_cpu(cpu); 5718 mlock_drain_remote(cpu); 5719 drain_pages(cpu); 5720 5721 /* 5722 * Spill the event counters of the dead processor 5723 * into the current processors event counters. 5724 * This artificially elevates the count of the current 5725 * processor. 5726 */ 5727 vm_events_fold_cpu(cpu); 5728 5729 /* 5730 * Zero the differential counters of the dead processor 5731 * so that the vm statistics are consistent. 5732 * 5733 * This is only okay since the processor is dead and cannot 5734 * race with what we are doing. 5735 */ 5736 cpu_vm_stats_fold(cpu); 5737 5738 for_each_populated_zone(zone) 5739 zone_pcp_update(zone, 0); 5740 5741 return 0; 5742 } 5743 5744 static int page_alloc_cpu_online(unsigned int cpu) 5745 { 5746 struct zone *zone; 5747 5748 for_each_populated_zone(zone) 5749 zone_pcp_update(zone, 1); 5750 return 0; 5751 } 5752 5753 void __init page_alloc_init_cpuhp(void) 5754 { 5755 int ret; 5756 5757 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5758 "mm/page_alloc:pcp", 5759 page_alloc_cpu_online, 5760 page_alloc_cpu_dead); 5761 WARN_ON(ret < 0); 5762 } 5763 5764 /* 5765 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5766 * or min_free_kbytes changes. 5767 */ 5768 static void calculate_totalreserve_pages(void) 5769 { 5770 struct pglist_data *pgdat; 5771 unsigned long reserve_pages = 0; 5772 enum zone_type i, j; 5773 5774 for_each_online_pgdat(pgdat) { 5775 5776 pgdat->totalreserve_pages = 0; 5777 5778 for (i = 0; i < MAX_NR_ZONES; i++) { 5779 struct zone *zone = pgdat->node_zones + i; 5780 long max = 0; 5781 unsigned long managed_pages = zone_managed_pages(zone); 5782 5783 /* Find valid and maximum lowmem_reserve in the zone */ 5784 for (j = i; j < MAX_NR_ZONES; j++) { 5785 if (zone->lowmem_reserve[j] > max) 5786 max = zone->lowmem_reserve[j]; 5787 } 5788 5789 /* we treat the high watermark as reserved pages. */ 5790 max += high_wmark_pages(zone); 5791 5792 if (max > managed_pages) 5793 max = managed_pages; 5794 5795 pgdat->totalreserve_pages += max; 5796 5797 reserve_pages += max; 5798 } 5799 } 5800 totalreserve_pages = reserve_pages; 5801 } 5802 5803 /* 5804 * setup_per_zone_lowmem_reserve - called whenever 5805 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5806 * has a correct pages reserved value, so an adequate number of 5807 * pages are left in the zone after a successful __alloc_pages(). 5808 */ 5809 static void setup_per_zone_lowmem_reserve(void) 5810 { 5811 struct pglist_data *pgdat; 5812 enum zone_type i, j; 5813 5814 for_each_online_pgdat(pgdat) { 5815 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5816 struct zone *zone = &pgdat->node_zones[i]; 5817 int ratio = sysctl_lowmem_reserve_ratio[i]; 5818 bool clear = !ratio || !zone_managed_pages(zone); 5819 unsigned long managed_pages = 0; 5820 5821 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5822 struct zone *upper_zone = &pgdat->node_zones[j]; 5823 5824 managed_pages += zone_managed_pages(upper_zone); 5825 5826 if (clear) 5827 zone->lowmem_reserve[j] = 0; 5828 else 5829 zone->lowmem_reserve[j] = managed_pages / ratio; 5830 } 5831 } 5832 } 5833 5834 /* update totalreserve_pages */ 5835 calculate_totalreserve_pages(); 5836 } 5837 5838 static void __setup_per_zone_wmarks(void) 5839 { 5840 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5841 unsigned long lowmem_pages = 0; 5842 struct zone *zone; 5843 unsigned long flags; 5844 5845 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5846 for_each_zone(zone) { 5847 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5848 lowmem_pages += zone_managed_pages(zone); 5849 } 5850 5851 for_each_zone(zone) { 5852 u64 tmp; 5853 5854 spin_lock_irqsave(&zone->lock, flags); 5855 tmp = (u64)pages_min * zone_managed_pages(zone); 5856 do_div(tmp, lowmem_pages); 5857 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5858 /* 5859 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5860 * need highmem and movable zones pages, so cap pages_min 5861 * to a small value here. 5862 * 5863 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5864 * deltas control async page reclaim, and so should 5865 * not be capped for highmem and movable zones. 5866 */ 5867 unsigned long min_pages; 5868 5869 min_pages = zone_managed_pages(zone) / 1024; 5870 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5871 zone->_watermark[WMARK_MIN] = min_pages; 5872 } else { 5873 /* 5874 * If it's a lowmem zone, reserve a number of pages 5875 * proportionate to the zone's size. 5876 */ 5877 zone->_watermark[WMARK_MIN] = tmp; 5878 } 5879 5880 /* 5881 * Set the kswapd watermarks distance according to the 5882 * scale factor in proportion to available memory, but 5883 * ensure a minimum size on small systems. 5884 */ 5885 tmp = max_t(u64, tmp >> 2, 5886 mult_frac(zone_managed_pages(zone), 5887 watermark_scale_factor, 10000)); 5888 5889 zone->watermark_boost = 0; 5890 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5891 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5892 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5893 5894 spin_unlock_irqrestore(&zone->lock, flags); 5895 } 5896 5897 /* update totalreserve_pages */ 5898 calculate_totalreserve_pages(); 5899 } 5900 5901 /** 5902 * setup_per_zone_wmarks - called when min_free_kbytes changes 5903 * or when memory is hot-{added|removed} 5904 * 5905 * Ensures that the watermark[min,low,high] values for each zone are set 5906 * correctly with respect to min_free_kbytes. 5907 */ 5908 void setup_per_zone_wmarks(void) 5909 { 5910 struct zone *zone; 5911 static DEFINE_SPINLOCK(lock); 5912 5913 spin_lock(&lock); 5914 __setup_per_zone_wmarks(); 5915 spin_unlock(&lock); 5916 5917 /* 5918 * The watermark size have changed so update the pcpu batch 5919 * and high limits or the limits may be inappropriate. 5920 */ 5921 for_each_zone(zone) 5922 zone_pcp_update(zone, 0); 5923 } 5924 5925 /* 5926 * Initialise min_free_kbytes. 5927 * 5928 * For small machines we want it small (128k min). For large machines 5929 * we want it large (256MB max). But it is not linear, because network 5930 * bandwidth does not increase linearly with machine size. We use 5931 * 5932 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5933 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5934 * 5935 * which yields 5936 * 5937 * 16MB: 512k 5938 * 32MB: 724k 5939 * 64MB: 1024k 5940 * 128MB: 1448k 5941 * 256MB: 2048k 5942 * 512MB: 2896k 5943 * 1024MB: 4096k 5944 * 2048MB: 5792k 5945 * 4096MB: 8192k 5946 * 8192MB: 11584k 5947 * 16384MB: 16384k 5948 */ 5949 void calculate_min_free_kbytes(void) 5950 { 5951 unsigned long lowmem_kbytes; 5952 int new_min_free_kbytes; 5953 5954 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5955 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5956 5957 if (new_min_free_kbytes > user_min_free_kbytes) 5958 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 5959 else 5960 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5961 new_min_free_kbytes, user_min_free_kbytes); 5962 5963 } 5964 5965 int __meminit init_per_zone_wmark_min(void) 5966 { 5967 calculate_min_free_kbytes(); 5968 setup_per_zone_wmarks(); 5969 refresh_zone_stat_thresholds(); 5970 setup_per_zone_lowmem_reserve(); 5971 5972 #ifdef CONFIG_NUMA 5973 setup_min_unmapped_ratio(); 5974 setup_min_slab_ratio(); 5975 #endif 5976 5977 khugepaged_min_free_kbytes_update(); 5978 5979 return 0; 5980 } 5981 postcore_initcall(init_per_zone_wmark_min) 5982 5983 /* 5984 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5985 * that we can call two helper functions whenever min_free_kbytes 5986 * changes. 5987 */ 5988 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5989 void *buffer, size_t *length, loff_t *ppos) 5990 { 5991 int rc; 5992 5993 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5994 if (rc) 5995 return rc; 5996 5997 if (write) { 5998 user_min_free_kbytes = min_free_kbytes; 5999 setup_per_zone_wmarks(); 6000 } 6001 return 0; 6002 } 6003 6004 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6005 void *buffer, size_t *length, loff_t *ppos) 6006 { 6007 int rc; 6008 6009 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6010 if (rc) 6011 return rc; 6012 6013 if (write) 6014 setup_per_zone_wmarks(); 6015 6016 return 0; 6017 } 6018 6019 #ifdef CONFIG_NUMA 6020 static void setup_min_unmapped_ratio(void) 6021 { 6022 pg_data_t *pgdat; 6023 struct zone *zone; 6024 6025 for_each_online_pgdat(pgdat) 6026 pgdat->min_unmapped_pages = 0; 6027 6028 for_each_zone(zone) 6029 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6030 sysctl_min_unmapped_ratio) / 100; 6031 } 6032 6033 6034 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6035 void *buffer, size_t *length, loff_t *ppos) 6036 { 6037 int rc; 6038 6039 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6040 if (rc) 6041 return rc; 6042 6043 setup_min_unmapped_ratio(); 6044 6045 return 0; 6046 } 6047 6048 static void setup_min_slab_ratio(void) 6049 { 6050 pg_data_t *pgdat; 6051 struct zone *zone; 6052 6053 for_each_online_pgdat(pgdat) 6054 pgdat->min_slab_pages = 0; 6055 6056 for_each_zone(zone) 6057 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6058 sysctl_min_slab_ratio) / 100; 6059 } 6060 6061 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6062 void *buffer, size_t *length, loff_t *ppos) 6063 { 6064 int rc; 6065 6066 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6067 if (rc) 6068 return rc; 6069 6070 setup_min_slab_ratio(); 6071 6072 return 0; 6073 } 6074 #endif 6075 6076 /* 6077 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6078 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6079 * whenever sysctl_lowmem_reserve_ratio changes. 6080 * 6081 * The reserve ratio obviously has absolutely no relation with the 6082 * minimum watermarks. The lowmem reserve ratio can only make sense 6083 * if in function of the boot time zone sizes. 6084 */ 6085 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, 6086 int write, void *buffer, size_t *length, loff_t *ppos) 6087 { 6088 int i; 6089 6090 proc_dointvec_minmax(table, write, buffer, length, ppos); 6091 6092 for (i = 0; i < MAX_NR_ZONES; i++) { 6093 if (sysctl_lowmem_reserve_ratio[i] < 1) 6094 sysctl_lowmem_reserve_ratio[i] = 0; 6095 } 6096 6097 setup_per_zone_lowmem_reserve(); 6098 return 0; 6099 } 6100 6101 /* 6102 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6103 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6104 * pagelist can have before it gets flushed back to buddy allocator. 6105 */ 6106 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 6107 int write, void *buffer, size_t *length, loff_t *ppos) 6108 { 6109 struct zone *zone; 6110 int old_percpu_pagelist_high_fraction; 6111 int ret; 6112 6113 mutex_lock(&pcp_batch_high_lock); 6114 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6115 6116 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6117 if (!write || ret < 0) 6118 goto out; 6119 6120 /* Sanity checking to avoid pcp imbalance */ 6121 if (percpu_pagelist_high_fraction && 6122 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6123 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6124 ret = -EINVAL; 6125 goto out; 6126 } 6127 6128 /* No change? */ 6129 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6130 goto out; 6131 6132 for_each_populated_zone(zone) 6133 zone_set_pageset_high_and_batch(zone, 0); 6134 out: 6135 mutex_unlock(&pcp_batch_high_lock); 6136 return ret; 6137 } 6138 6139 static struct ctl_table page_alloc_sysctl_table[] = { 6140 { 6141 .procname = "min_free_kbytes", 6142 .data = &min_free_kbytes, 6143 .maxlen = sizeof(min_free_kbytes), 6144 .mode = 0644, 6145 .proc_handler = min_free_kbytes_sysctl_handler, 6146 .extra1 = SYSCTL_ZERO, 6147 }, 6148 { 6149 .procname = "watermark_boost_factor", 6150 .data = &watermark_boost_factor, 6151 .maxlen = sizeof(watermark_boost_factor), 6152 .mode = 0644, 6153 .proc_handler = proc_dointvec_minmax, 6154 .extra1 = SYSCTL_ZERO, 6155 }, 6156 { 6157 .procname = "watermark_scale_factor", 6158 .data = &watermark_scale_factor, 6159 .maxlen = sizeof(watermark_scale_factor), 6160 .mode = 0644, 6161 .proc_handler = watermark_scale_factor_sysctl_handler, 6162 .extra1 = SYSCTL_ONE, 6163 .extra2 = SYSCTL_THREE_THOUSAND, 6164 }, 6165 { 6166 .procname = "percpu_pagelist_high_fraction", 6167 .data = &percpu_pagelist_high_fraction, 6168 .maxlen = sizeof(percpu_pagelist_high_fraction), 6169 .mode = 0644, 6170 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6171 .extra1 = SYSCTL_ZERO, 6172 }, 6173 { 6174 .procname = "lowmem_reserve_ratio", 6175 .data = &sysctl_lowmem_reserve_ratio, 6176 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6177 .mode = 0644, 6178 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6179 }, 6180 #ifdef CONFIG_NUMA 6181 { 6182 .procname = "numa_zonelist_order", 6183 .data = &numa_zonelist_order, 6184 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6185 .mode = 0644, 6186 .proc_handler = numa_zonelist_order_handler, 6187 }, 6188 { 6189 .procname = "min_unmapped_ratio", 6190 .data = &sysctl_min_unmapped_ratio, 6191 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6192 .mode = 0644, 6193 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6194 .extra1 = SYSCTL_ZERO, 6195 .extra2 = SYSCTL_ONE_HUNDRED, 6196 }, 6197 { 6198 .procname = "min_slab_ratio", 6199 .data = &sysctl_min_slab_ratio, 6200 .maxlen = sizeof(sysctl_min_slab_ratio), 6201 .mode = 0644, 6202 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6203 .extra1 = SYSCTL_ZERO, 6204 .extra2 = SYSCTL_ONE_HUNDRED, 6205 }, 6206 #endif 6207 {} 6208 }; 6209 6210 void __init page_alloc_sysctl_init(void) 6211 { 6212 register_sysctl_init("vm", page_alloc_sysctl_table); 6213 } 6214 6215 #ifdef CONFIG_CONTIG_ALLOC 6216 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6217 static void alloc_contig_dump_pages(struct list_head *page_list) 6218 { 6219 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6220 6221 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6222 struct page *page; 6223 6224 dump_stack(); 6225 list_for_each_entry(page, page_list, lru) 6226 dump_page(page, "migration failure"); 6227 } 6228 } 6229 6230 /* [start, end) must belong to a single zone. */ 6231 int __alloc_contig_migrate_range(struct compact_control *cc, 6232 unsigned long start, unsigned long end) 6233 { 6234 /* This function is based on compact_zone() from compaction.c. */ 6235 unsigned int nr_reclaimed; 6236 unsigned long pfn = start; 6237 unsigned int tries = 0; 6238 int ret = 0; 6239 struct migration_target_control mtc = { 6240 .nid = zone_to_nid(cc->zone), 6241 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6242 }; 6243 6244 lru_cache_disable(); 6245 6246 while (pfn < end || !list_empty(&cc->migratepages)) { 6247 if (fatal_signal_pending(current)) { 6248 ret = -EINTR; 6249 break; 6250 } 6251 6252 if (list_empty(&cc->migratepages)) { 6253 cc->nr_migratepages = 0; 6254 ret = isolate_migratepages_range(cc, pfn, end); 6255 if (ret && ret != -EAGAIN) 6256 break; 6257 pfn = cc->migrate_pfn; 6258 tries = 0; 6259 } else if (++tries == 5) { 6260 ret = -EBUSY; 6261 break; 6262 } 6263 6264 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6265 &cc->migratepages); 6266 cc->nr_migratepages -= nr_reclaimed; 6267 6268 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6269 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6270 6271 /* 6272 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6273 * to retry again over this error, so do the same here. 6274 */ 6275 if (ret == -ENOMEM) 6276 break; 6277 } 6278 6279 lru_cache_enable(); 6280 if (ret < 0) { 6281 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6282 alloc_contig_dump_pages(&cc->migratepages); 6283 putback_movable_pages(&cc->migratepages); 6284 return ret; 6285 } 6286 return 0; 6287 } 6288 6289 /** 6290 * alloc_contig_range() -- tries to allocate given range of pages 6291 * @start: start PFN to allocate 6292 * @end: one-past-the-last PFN to allocate 6293 * @migratetype: migratetype of the underlying pageblocks (either 6294 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6295 * in range must have the same migratetype and it must 6296 * be either of the two. 6297 * @gfp_mask: GFP mask to use during compaction 6298 * 6299 * The PFN range does not have to be pageblock aligned. The PFN range must 6300 * belong to a single zone. 6301 * 6302 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6303 * pageblocks in the range. Once isolated, the pageblocks should not 6304 * be modified by others. 6305 * 6306 * Return: zero on success or negative error code. On success all 6307 * pages which PFN is in [start, end) are allocated for the caller and 6308 * need to be freed with free_contig_range(). 6309 */ 6310 int alloc_contig_range(unsigned long start, unsigned long end, 6311 unsigned migratetype, gfp_t gfp_mask) 6312 { 6313 unsigned long outer_start, outer_end; 6314 int order; 6315 int ret = 0; 6316 6317 struct compact_control cc = { 6318 .nr_migratepages = 0, 6319 .order = -1, 6320 .zone = page_zone(pfn_to_page(start)), 6321 .mode = MIGRATE_SYNC, 6322 .ignore_skip_hint = true, 6323 .no_set_skip_hint = true, 6324 .gfp_mask = current_gfp_context(gfp_mask), 6325 .alloc_contig = true, 6326 }; 6327 INIT_LIST_HEAD(&cc.migratepages); 6328 6329 /* 6330 * What we do here is we mark all pageblocks in range as 6331 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6332 * have different sizes, and due to the way page allocator 6333 * work, start_isolate_page_range() has special handlings for this. 6334 * 6335 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6336 * migrate the pages from an unaligned range (ie. pages that 6337 * we are interested in). This will put all the pages in 6338 * range back to page allocator as MIGRATE_ISOLATE. 6339 * 6340 * When this is done, we take the pages in range from page 6341 * allocator removing them from the buddy system. This way 6342 * page allocator will never consider using them. 6343 * 6344 * This lets us mark the pageblocks back as 6345 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6346 * aligned range but not in the unaligned, original range are 6347 * put back to page allocator so that buddy can use them. 6348 */ 6349 6350 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6351 if (ret) 6352 goto done; 6353 6354 drain_all_pages(cc.zone); 6355 6356 /* 6357 * In case of -EBUSY, we'd like to know which page causes problem. 6358 * So, just fall through. test_pages_isolated() has a tracepoint 6359 * which will report the busy page. 6360 * 6361 * It is possible that busy pages could become available before 6362 * the call to test_pages_isolated, and the range will actually be 6363 * allocated. So, if we fall through be sure to clear ret so that 6364 * -EBUSY is not accidentally used or returned to caller. 6365 */ 6366 ret = __alloc_contig_migrate_range(&cc, start, end); 6367 if (ret && ret != -EBUSY) 6368 goto done; 6369 ret = 0; 6370 6371 /* 6372 * Pages from [start, end) are within a pageblock_nr_pages 6373 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6374 * more, all pages in [start, end) are free in page allocator. 6375 * What we are going to do is to allocate all pages from 6376 * [start, end) (that is remove them from page allocator). 6377 * 6378 * The only problem is that pages at the beginning and at the 6379 * end of interesting range may be not aligned with pages that 6380 * page allocator holds, ie. they can be part of higher order 6381 * pages. Because of this, we reserve the bigger range and 6382 * once this is done free the pages we are not interested in. 6383 * 6384 * We don't have to hold zone->lock here because the pages are 6385 * isolated thus they won't get removed from buddy. 6386 */ 6387 6388 order = 0; 6389 outer_start = start; 6390 while (!PageBuddy(pfn_to_page(outer_start))) { 6391 if (++order > MAX_ORDER) { 6392 outer_start = start; 6393 break; 6394 } 6395 outer_start &= ~0UL << order; 6396 } 6397 6398 if (outer_start != start) { 6399 order = buddy_order(pfn_to_page(outer_start)); 6400 6401 /* 6402 * outer_start page could be small order buddy page and 6403 * it doesn't include start page. Adjust outer_start 6404 * in this case to report failed page properly 6405 * on tracepoint in test_pages_isolated() 6406 */ 6407 if (outer_start + (1UL << order) <= start) 6408 outer_start = start; 6409 } 6410 6411 /* Make sure the range is really isolated. */ 6412 if (test_pages_isolated(outer_start, end, 0)) { 6413 ret = -EBUSY; 6414 goto done; 6415 } 6416 6417 /* Grab isolated pages from freelists. */ 6418 outer_end = isolate_freepages_range(&cc, outer_start, end); 6419 if (!outer_end) { 6420 ret = -EBUSY; 6421 goto done; 6422 } 6423 6424 /* Free head and tail (if any) */ 6425 if (start != outer_start) 6426 free_contig_range(outer_start, start - outer_start); 6427 if (end != outer_end) 6428 free_contig_range(end, outer_end - end); 6429 6430 done: 6431 undo_isolate_page_range(start, end, migratetype); 6432 return ret; 6433 } 6434 EXPORT_SYMBOL(alloc_contig_range); 6435 6436 static int __alloc_contig_pages(unsigned long start_pfn, 6437 unsigned long nr_pages, gfp_t gfp_mask) 6438 { 6439 unsigned long end_pfn = start_pfn + nr_pages; 6440 6441 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 6442 gfp_mask); 6443 } 6444 6445 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6446 unsigned long nr_pages) 6447 { 6448 unsigned long i, end_pfn = start_pfn + nr_pages; 6449 struct page *page; 6450 6451 for (i = start_pfn; i < end_pfn; i++) { 6452 page = pfn_to_online_page(i); 6453 if (!page) 6454 return false; 6455 6456 if (page_zone(page) != z) 6457 return false; 6458 6459 if (PageReserved(page)) 6460 return false; 6461 6462 if (PageHuge(page)) 6463 return false; 6464 } 6465 return true; 6466 } 6467 6468 static bool zone_spans_last_pfn(const struct zone *zone, 6469 unsigned long start_pfn, unsigned long nr_pages) 6470 { 6471 unsigned long last_pfn = start_pfn + nr_pages - 1; 6472 6473 return zone_spans_pfn(zone, last_pfn); 6474 } 6475 6476 /** 6477 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6478 * @nr_pages: Number of contiguous pages to allocate 6479 * @gfp_mask: GFP mask to limit search and used during compaction 6480 * @nid: Target node 6481 * @nodemask: Mask for other possible nodes 6482 * 6483 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6484 * on an applicable zonelist to find a contiguous pfn range which can then be 6485 * tried for allocation with alloc_contig_range(). This routine is intended 6486 * for allocation requests which can not be fulfilled with the buddy allocator. 6487 * 6488 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6489 * power of two, then allocated range is also guaranteed to be aligned to same 6490 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6491 * 6492 * Allocated pages can be freed with free_contig_range() or by manually calling 6493 * __free_page() on each allocated page. 6494 * 6495 * Return: pointer to contiguous pages on success, or NULL if not successful. 6496 */ 6497 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 6498 int nid, nodemask_t *nodemask) 6499 { 6500 unsigned long ret, pfn, flags; 6501 struct zonelist *zonelist; 6502 struct zone *zone; 6503 struct zoneref *z; 6504 6505 zonelist = node_zonelist(nid, gfp_mask); 6506 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6507 gfp_zone(gfp_mask), nodemask) { 6508 spin_lock_irqsave(&zone->lock, flags); 6509 6510 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6511 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6512 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6513 /* 6514 * We release the zone lock here because 6515 * alloc_contig_range() will also lock the zone 6516 * at some point. If there's an allocation 6517 * spinning on this lock, it may win the race 6518 * and cause alloc_contig_range() to fail... 6519 */ 6520 spin_unlock_irqrestore(&zone->lock, flags); 6521 ret = __alloc_contig_pages(pfn, nr_pages, 6522 gfp_mask); 6523 if (!ret) 6524 return pfn_to_page(pfn); 6525 spin_lock_irqsave(&zone->lock, flags); 6526 } 6527 pfn += nr_pages; 6528 } 6529 spin_unlock_irqrestore(&zone->lock, flags); 6530 } 6531 return NULL; 6532 } 6533 #endif /* CONFIG_CONTIG_ALLOC */ 6534 6535 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6536 { 6537 unsigned long count = 0; 6538 6539 for (; nr_pages--; pfn++) { 6540 struct page *page = pfn_to_page(pfn); 6541 6542 count += page_count(page) != 1; 6543 __free_page(page); 6544 } 6545 WARN(count != 0, "%lu pages are still in use!\n", count); 6546 } 6547 EXPORT_SYMBOL(free_contig_range); 6548 6549 /* 6550 * Effectively disable pcplists for the zone by setting the high limit to 0 6551 * and draining all cpus. A concurrent page freeing on another CPU that's about 6552 * to put the page on pcplist will either finish before the drain and the page 6553 * will be drained, or observe the new high limit and skip the pcplist. 6554 * 6555 * Must be paired with a call to zone_pcp_enable(). 6556 */ 6557 void zone_pcp_disable(struct zone *zone) 6558 { 6559 mutex_lock(&pcp_batch_high_lock); 6560 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6561 __drain_all_pages(zone, true); 6562 } 6563 6564 void zone_pcp_enable(struct zone *zone) 6565 { 6566 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6567 zone->pageset_high_max, zone->pageset_batch); 6568 mutex_unlock(&pcp_batch_high_lock); 6569 } 6570 6571 void zone_pcp_reset(struct zone *zone) 6572 { 6573 int cpu; 6574 struct per_cpu_zonestat *pzstats; 6575 6576 if (zone->per_cpu_pageset != &boot_pageset) { 6577 for_each_online_cpu(cpu) { 6578 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6579 drain_zonestat(zone, pzstats); 6580 } 6581 free_percpu(zone->per_cpu_pageset); 6582 zone->per_cpu_pageset = &boot_pageset; 6583 if (zone->per_cpu_zonestats != &boot_zonestats) { 6584 free_percpu(zone->per_cpu_zonestats); 6585 zone->per_cpu_zonestats = &boot_zonestats; 6586 } 6587 } 6588 } 6589 6590 #ifdef CONFIG_MEMORY_HOTREMOVE 6591 /* 6592 * All pages in the range must be in a single zone, must not contain holes, 6593 * must span full sections, and must be isolated before calling this function. 6594 */ 6595 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6596 { 6597 unsigned long pfn = start_pfn; 6598 struct page *page; 6599 struct zone *zone; 6600 unsigned int order; 6601 unsigned long flags; 6602 6603 offline_mem_sections(pfn, end_pfn); 6604 zone = page_zone(pfn_to_page(pfn)); 6605 spin_lock_irqsave(&zone->lock, flags); 6606 while (pfn < end_pfn) { 6607 page = pfn_to_page(pfn); 6608 /* 6609 * The HWPoisoned page may be not in buddy system, and 6610 * page_count() is not 0. 6611 */ 6612 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6613 pfn++; 6614 continue; 6615 } 6616 /* 6617 * At this point all remaining PageOffline() pages have a 6618 * reference count of 0 and can simply be skipped. 6619 */ 6620 if (PageOffline(page)) { 6621 BUG_ON(page_count(page)); 6622 BUG_ON(PageBuddy(page)); 6623 pfn++; 6624 continue; 6625 } 6626 6627 BUG_ON(page_count(page)); 6628 BUG_ON(!PageBuddy(page)); 6629 order = buddy_order(page); 6630 del_page_from_free_list(page, zone, order); 6631 pfn += (1 << order); 6632 } 6633 spin_unlock_irqrestore(&zone->lock, flags); 6634 } 6635 #endif 6636 6637 /* 6638 * This function returns a stable result only if called under zone lock. 6639 */ 6640 bool is_free_buddy_page(struct page *page) 6641 { 6642 unsigned long pfn = page_to_pfn(page); 6643 unsigned int order; 6644 6645 for (order = 0; order <= MAX_ORDER; order++) { 6646 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6647 6648 if (PageBuddy(page_head) && 6649 buddy_order_unsafe(page_head) >= order) 6650 break; 6651 } 6652 6653 return order <= MAX_ORDER; 6654 } 6655 EXPORT_SYMBOL(is_free_buddy_page); 6656 6657 #ifdef CONFIG_MEMORY_FAILURE 6658 /* 6659 * Break down a higher-order page in sub-pages, and keep our target out of 6660 * buddy allocator. 6661 */ 6662 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6663 struct page *target, int low, int high, 6664 int migratetype) 6665 { 6666 unsigned long size = 1 << high; 6667 struct page *current_buddy; 6668 6669 while (high > low) { 6670 high--; 6671 size >>= 1; 6672 6673 if (target >= &page[size]) { 6674 current_buddy = page; 6675 page = page + size; 6676 } else { 6677 current_buddy = page + size; 6678 } 6679 6680 if (set_page_guard(zone, current_buddy, high, migratetype)) 6681 continue; 6682 6683 add_to_free_list(current_buddy, zone, high, migratetype); 6684 set_buddy_order(current_buddy, high); 6685 } 6686 } 6687 6688 /* 6689 * Take a page that will be marked as poisoned off the buddy allocator. 6690 */ 6691 bool take_page_off_buddy(struct page *page) 6692 { 6693 struct zone *zone = page_zone(page); 6694 unsigned long pfn = page_to_pfn(page); 6695 unsigned long flags; 6696 unsigned int order; 6697 bool ret = false; 6698 6699 spin_lock_irqsave(&zone->lock, flags); 6700 for (order = 0; order <= MAX_ORDER; order++) { 6701 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6702 int page_order = buddy_order(page_head); 6703 6704 if (PageBuddy(page_head) && page_order >= order) { 6705 unsigned long pfn_head = page_to_pfn(page_head); 6706 int migratetype = get_pfnblock_migratetype(page_head, 6707 pfn_head); 6708 6709 del_page_from_free_list(page_head, zone, page_order); 6710 break_down_buddy_pages(zone, page_head, page, 0, 6711 page_order, migratetype); 6712 SetPageHWPoisonTakenOff(page); 6713 if (!is_migrate_isolate(migratetype)) 6714 __mod_zone_freepage_state(zone, -1, migratetype); 6715 ret = true; 6716 break; 6717 } 6718 if (page_count(page_head) > 0) 6719 break; 6720 } 6721 spin_unlock_irqrestore(&zone->lock, flags); 6722 return ret; 6723 } 6724 6725 /* 6726 * Cancel takeoff done by take_page_off_buddy(). 6727 */ 6728 bool put_page_back_buddy(struct page *page) 6729 { 6730 struct zone *zone = page_zone(page); 6731 unsigned long pfn = page_to_pfn(page); 6732 unsigned long flags; 6733 int migratetype = get_pfnblock_migratetype(page, pfn); 6734 bool ret = false; 6735 6736 spin_lock_irqsave(&zone->lock, flags); 6737 if (put_page_testzero(page)) { 6738 ClearPageHWPoisonTakenOff(page); 6739 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6740 if (TestClearPageHWPoison(page)) { 6741 ret = true; 6742 } 6743 } 6744 spin_unlock_irqrestore(&zone->lock, flags); 6745 6746 return ret; 6747 } 6748 #endif 6749 6750 #ifdef CONFIG_ZONE_DMA 6751 bool has_managed_dma(void) 6752 { 6753 struct pglist_data *pgdat; 6754 6755 for_each_online_pgdat(pgdat) { 6756 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6757 6758 if (managed_zone(zone)) 6759 return true; 6760 } 6761 return false; 6762 } 6763 #endif /* CONFIG_ZONE_DMA */ 6764 6765 #ifdef CONFIG_UNACCEPTED_MEMORY 6766 6767 /* Counts number of zones with unaccepted pages. */ 6768 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6769 6770 static bool lazy_accept = true; 6771 6772 static int __init accept_memory_parse(char *p) 6773 { 6774 if (!strcmp(p, "lazy")) { 6775 lazy_accept = true; 6776 return 0; 6777 } else if (!strcmp(p, "eager")) { 6778 lazy_accept = false; 6779 return 0; 6780 } else { 6781 return -EINVAL; 6782 } 6783 } 6784 early_param("accept_memory", accept_memory_parse); 6785 6786 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6787 { 6788 phys_addr_t start = page_to_phys(page); 6789 phys_addr_t end = start + (PAGE_SIZE << order); 6790 6791 return range_contains_unaccepted_memory(start, end); 6792 } 6793 6794 static void accept_page(struct page *page, unsigned int order) 6795 { 6796 phys_addr_t start = page_to_phys(page); 6797 6798 accept_memory(start, start + (PAGE_SIZE << order)); 6799 } 6800 6801 static bool try_to_accept_memory_one(struct zone *zone) 6802 { 6803 unsigned long flags; 6804 struct page *page; 6805 bool last; 6806 6807 if (list_empty(&zone->unaccepted_pages)) 6808 return false; 6809 6810 spin_lock_irqsave(&zone->lock, flags); 6811 page = list_first_entry_or_null(&zone->unaccepted_pages, 6812 struct page, lru); 6813 if (!page) { 6814 spin_unlock_irqrestore(&zone->lock, flags); 6815 return false; 6816 } 6817 6818 list_del(&page->lru); 6819 last = list_empty(&zone->unaccepted_pages); 6820 6821 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6822 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6823 spin_unlock_irqrestore(&zone->lock, flags); 6824 6825 accept_page(page, MAX_ORDER); 6826 6827 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL); 6828 6829 if (last) 6830 static_branch_dec(&zones_with_unaccepted_pages); 6831 6832 return true; 6833 } 6834 6835 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6836 { 6837 long to_accept; 6838 int ret = false; 6839 6840 /* How much to accept to get to high watermark? */ 6841 to_accept = high_wmark_pages(zone) - 6842 (zone_page_state(zone, NR_FREE_PAGES) - 6843 __zone_watermark_unusable_free(zone, order, 0)); 6844 6845 /* Accept at least one page */ 6846 do { 6847 if (!try_to_accept_memory_one(zone)) 6848 break; 6849 ret = true; 6850 to_accept -= MAX_ORDER_NR_PAGES; 6851 } while (to_accept > 0); 6852 6853 return ret; 6854 } 6855 6856 static inline bool has_unaccepted_memory(void) 6857 { 6858 return static_branch_unlikely(&zones_with_unaccepted_pages); 6859 } 6860 6861 static bool __free_unaccepted(struct page *page) 6862 { 6863 struct zone *zone = page_zone(page); 6864 unsigned long flags; 6865 bool first = false; 6866 6867 if (!lazy_accept) 6868 return false; 6869 6870 spin_lock_irqsave(&zone->lock, flags); 6871 first = list_empty(&zone->unaccepted_pages); 6872 list_add_tail(&page->lru, &zone->unaccepted_pages); 6873 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6874 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 6875 spin_unlock_irqrestore(&zone->lock, flags); 6876 6877 if (first) 6878 static_branch_inc(&zones_with_unaccepted_pages); 6879 6880 return true; 6881 } 6882 6883 #else 6884 6885 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6886 { 6887 return false; 6888 } 6889 6890 static void accept_page(struct page *page, unsigned int order) 6891 { 6892 } 6893 6894 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6895 { 6896 return false; 6897 } 6898 6899 static inline bool has_unaccepted_memory(void) 6900 { 6901 return false; 6902 } 6903 6904 static bool __free_unaccepted(struct page *page) 6905 { 6906 BUILD_BUG(); 6907 return false; 6908 } 6909 6910 #endif /* CONFIG_UNACCEPTED_MEMORY */ 6911