1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 #include "shuffle.h" 77 78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 79 static DEFINE_MUTEX(pcp_batch_high_lock); 80 #define MIN_PERCPU_PAGELIST_FRACTION (8) 81 82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 83 DEFINE_PER_CPU(int, numa_node); 84 EXPORT_PER_CPU_SYMBOL(numa_node); 85 #endif 86 87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 88 89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 90 /* 91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 94 * defined in <linux/topology.h>. 95 */ 96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 97 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 98 int _node_numa_mem_[MAX_NUMNODES]; 99 #endif 100 101 /* work_structs for global per-cpu drains */ 102 struct pcpu_drain { 103 struct zone *zone; 104 struct work_struct work; 105 }; 106 DEFINE_MUTEX(pcpu_drain_mutex); 107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 108 109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 110 volatile unsigned long latent_entropy __latent_entropy; 111 EXPORT_SYMBOL(latent_entropy); 112 #endif 113 114 /* 115 * Array of node states. 116 */ 117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 118 [N_POSSIBLE] = NODE_MASK_ALL, 119 [N_ONLINE] = { { [0] = 1UL } }, 120 #ifndef CONFIG_NUMA 121 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 122 #ifdef CONFIG_HIGHMEM 123 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 124 #endif 125 [N_MEMORY] = { { [0] = 1UL } }, 126 [N_CPU] = { { [0] = 1UL } }, 127 #endif /* NUMA */ 128 }; 129 EXPORT_SYMBOL(node_states); 130 131 atomic_long_t _totalram_pages __read_mostly; 132 EXPORT_SYMBOL(_totalram_pages); 133 unsigned long totalreserve_pages __read_mostly; 134 unsigned long totalcma_pages __read_mostly; 135 136 int percpu_pagelist_fraction; 137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 139 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 140 #else 141 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 142 #endif 143 EXPORT_SYMBOL(init_on_alloc); 144 145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 146 DEFINE_STATIC_KEY_TRUE(init_on_free); 147 #else 148 DEFINE_STATIC_KEY_FALSE(init_on_free); 149 #endif 150 EXPORT_SYMBOL(init_on_free); 151 152 static int __init early_init_on_alloc(char *buf) 153 { 154 int ret; 155 bool bool_result; 156 157 if (!buf) 158 return -EINVAL; 159 ret = kstrtobool(buf, &bool_result); 160 if (bool_result && page_poisoning_enabled()) 161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 162 if (bool_result) 163 static_branch_enable(&init_on_alloc); 164 else 165 static_branch_disable(&init_on_alloc); 166 return ret; 167 } 168 early_param("init_on_alloc", early_init_on_alloc); 169 170 static int __init early_init_on_free(char *buf) 171 { 172 int ret; 173 bool bool_result; 174 175 if (!buf) 176 return -EINVAL; 177 ret = kstrtobool(buf, &bool_result); 178 if (bool_result && page_poisoning_enabled()) 179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 180 if (bool_result) 181 static_branch_enable(&init_on_free); 182 else 183 static_branch_disable(&init_on_free); 184 return ret; 185 } 186 early_param("init_on_free", early_init_on_free); 187 188 /* 189 * A cached value of the page's pageblock's migratetype, used when the page is 190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 191 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 192 * Also the migratetype set in the page does not necessarily match the pcplist 193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 194 * other index - this ensures that it will be put on the correct CMA freelist. 195 */ 196 static inline int get_pcppage_migratetype(struct page *page) 197 { 198 return page->index; 199 } 200 201 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 202 { 203 page->index = migratetype; 204 } 205 206 #ifdef CONFIG_PM_SLEEP 207 /* 208 * The following functions are used by the suspend/hibernate code to temporarily 209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 210 * while devices are suspended. To avoid races with the suspend/hibernate code, 211 * they should always be called with system_transition_mutex held 212 * (gfp_allowed_mask also should only be modified with system_transition_mutex 213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 214 * with that modification). 215 */ 216 217 static gfp_t saved_gfp_mask; 218 219 void pm_restore_gfp_mask(void) 220 { 221 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 222 if (saved_gfp_mask) { 223 gfp_allowed_mask = saved_gfp_mask; 224 saved_gfp_mask = 0; 225 } 226 } 227 228 void pm_restrict_gfp_mask(void) 229 { 230 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 231 WARN_ON(saved_gfp_mask); 232 saved_gfp_mask = gfp_allowed_mask; 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 234 } 235 236 bool pm_suspended_storage(void) 237 { 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 239 return false; 240 return true; 241 } 242 #endif /* CONFIG_PM_SLEEP */ 243 244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 245 unsigned int pageblock_order __read_mostly; 246 #endif 247 248 static void __free_pages_ok(struct page *page, unsigned int order); 249 250 /* 251 * results with 256, 32 in the lowmem_reserve sysctl: 252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 253 * 1G machine -> (16M dma, 784M normal, 224M high) 254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 257 * 258 * TBD: should special case ZONE_DMA32 machines here - in those we normally 259 * don't need any ZONE_NORMAL reservation 260 */ 261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 262 #ifdef CONFIG_ZONE_DMA 263 [ZONE_DMA] = 256, 264 #endif 265 #ifdef CONFIG_ZONE_DMA32 266 [ZONE_DMA32] = 256, 267 #endif 268 [ZONE_NORMAL] = 32, 269 #ifdef CONFIG_HIGHMEM 270 [ZONE_HIGHMEM] = 0, 271 #endif 272 [ZONE_MOVABLE] = 0, 273 }; 274 275 static char * const zone_names[MAX_NR_ZONES] = { 276 #ifdef CONFIG_ZONE_DMA 277 "DMA", 278 #endif 279 #ifdef CONFIG_ZONE_DMA32 280 "DMA32", 281 #endif 282 "Normal", 283 #ifdef CONFIG_HIGHMEM 284 "HighMem", 285 #endif 286 "Movable", 287 #ifdef CONFIG_ZONE_DEVICE 288 "Device", 289 #endif 290 }; 291 292 const char * const migratetype_names[MIGRATE_TYPES] = { 293 "Unmovable", 294 "Movable", 295 "Reclaimable", 296 "HighAtomic", 297 #ifdef CONFIG_CMA 298 "CMA", 299 #endif 300 #ifdef CONFIG_MEMORY_ISOLATION 301 "Isolate", 302 #endif 303 }; 304 305 compound_page_dtor * const compound_page_dtors[] = { 306 NULL, 307 free_compound_page, 308 #ifdef CONFIG_HUGETLB_PAGE 309 free_huge_page, 310 #endif 311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 312 free_transhuge_page, 313 #endif 314 }; 315 316 int min_free_kbytes = 1024; 317 int user_min_free_kbytes = -1; 318 #ifdef CONFIG_DISCONTIGMEM 319 /* 320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 321 * are not on separate NUMA nodes. Functionally this works but with 322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 323 * quite small. By default, do not boost watermarks on discontigmem as in 324 * many cases very high-order allocations like THP are likely to be 325 * unsupported and the premature reclaim offsets the advantage of long-term 326 * fragmentation avoidance. 327 */ 328 int watermark_boost_factor __read_mostly; 329 #else 330 int watermark_boost_factor __read_mostly = 15000; 331 #endif 332 int watermark_scale_factor = 10; 333 334 static unsigned long nr_kernel_pages __initdata; 335 static unsigned long nr_all_pages __initdata; 336 static unsigned long dma_reserve __initdata; 337 338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 341 static unsigned long required_kernelcore __initdata; 342 static unsigned long required_kernelcore_percent __initdata; 343 static unsigned long required_movablecore __initdata; 344 static unsigned long required_movablecore_percent __initdata; 345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 346 static bool mirrored_kernelcore __meminitdata; 347 348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 349 int movable_zone; 350 EXPORT_SYMBOL(movable_zone); 351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 352 353 #if MAX_NUMNODES > 1 354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 355 unsigned int nr_online_nodes __read_mostly = 1; 356 EXPORT_SYMBOL(nr_node_ids); 357 EXPORT_SYMBOL(nr_online_nodes); 358 #endif 359 360 int page_group_by_mobility_disabled __read_mostly; 361 362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 363 /* 364 * During boot we initialize deferred pages on-demand, as needed, but once 365 * page_alloc_init_late() has finished, the deferred pages are all initialized, 366 * and we can permanently disable that path. 367 */ 368 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 369 370 /* 371 * Calling kasan_free_pages() only after deferred memory initialization 372 * has completed. Poisoning pages during deferred memory init will greatly 373 * lengthen the process and cause problem in large memory systems as the 374 * deferred pages initialization is done with interrupt disabled. 375 * 376 * Assuming that there will be no reference to those newly initialized 377 * pages before they are ever allocated, this should have no effect on 378 * KASAN memory tracking as the poison will be properly inserted at page 379 * allocation time. The only corner case is when pages are allocated by 380 * on-demand allocation and then freed again before the deferred pages 381 * initialization is done, but this is not likely to happen. 382 */ 383 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 384 { 385 if (!static_branch_unlikely(&deferred_pages)) 386 kasan_free_pages(page, order); 387 } 388 389 /* Returns true if the struct page for the pfn is uninitialised */ 390 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 391 { 392 int nid = early_pfn_to_nid(pfn); 393 394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 395 return true; 396 397 return false; 398 } 399 400 /* 401 * Returns true when the remaining initialisation should be deferred until 402 * later in the boot cycle when it can be parallelised. 403 */ 404 static bool __meminit 405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 406 { 407 static unsigned long prev_end_pfn, nr_initialised; 408 409 /* 410 * prev_end_pfn static that contains the end of previous zone 411 * No need to protect because called very early in boot before smp_init. 412 */ 413 if (prev_end_pfn != end_pfn) { 414 prev_end_pfn = end_pfn; 415 nr_initialised = 0; 416 } 417 418 /* Always populate low zones for address-constrained allocations */ 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 420 return false; 421 422 /* 423 * We start only with one section of pages, more pages are added as 424 * needed until the rest of deferred pages are initialized. 425 */ 426 nr_initialised++; 427 if ((nr_initialised > PAGES_PER_SECTION) && 428 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 429 NODE_DATA(nid)->first_deferred_pfn = pfn; 430 return true; 431 } 432 return false; 433 } 434 #else 435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 436 437 static inline bool early_page_uninitialised(unsigned long pfn) 438 { 439 return false; 440 } 441 442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 443 { 444 return false; 445 } 446 #endif 447 448 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 449 static inline unsigned long *get_pageblock_bitmap(struct page *page, 450 unsigned long pfn) 451 { 452 #ifdef CONFIG_SPARSEMEM 453 return section_to_usemap(__pfn_to_section(pfn)); 454 #else 455 return page_zone(page)->pageblock_flags; 456 #endif /* CONFIG_SPARSEMEM */ 457 } 458 459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 460 { 461 #ifdef CONFIG_SPARSEMEM 462 pfn &= (PAGES_PER_SECTION-1); 463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 464 #else 465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 467 #endif /* CONFIG_SPARSEMEM */ 468 } 469 470 /** 471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 472 * @page: The page within the block of interest 473 * @pfn: The target page frame number 474 * @end_bitidx: The last bit of interest to retrieve 475 * @mask: mask of bits that the caller is interested in 476 * 477 * Return: pageblock_bits flags 478 */ 479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 480 unsigned long pfn, 481 unsigned long end_bitidx, 482 unsigned long mask) 483 { 484 unsigned long *bitmap; 485 unsigned long bitidx, word_bitidx; 486 unsigned long word; 487 488 bitmap = get_pageblock_bitmap(page, pfn); 489 bitidx = pfn_to_bitidx(page, pfn); 490 word_bitidx = bitidx / BITS_PER_LONG; 491 bitidx &= (BITS_PER_LONG-1); 492 493 word = bitmap[word_bitidx]; 494 bitidx += end_bitidx; 495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 496 } 497 498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 499 unsigned long end_bitidx, 500 unsigned long mask) 501 { 502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 503 } 504 505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 506 { 507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 508 } 509 510 /** 511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 512 * @page: The page within the block of interest 513 * @flags: The flags to set 514 * @pfn: The target page frame number 515 * @end_bitidx: The last bit of interest 516 * @mask: mask of bits that the caller is interested in 517 */ 518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 519 unsigned long pfn, 520 unsigned long end_bitidx, 521 unsigned long mask) 522 { 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 bitidx += end_bitidx; 538 mask <<= (BITS_PER_LONG - bitidx - 1); 539 flags <<= (BITS_PER_LONG - bitidx - 1); 540 541 word = READ_ONCE(bitmap[word_bitidx]); 542 for (;;) { 543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 544 if (word == old_word) 545 break; 546 word = old_word; 547 } 548 } 549 550 void set_pageblock_migratetype(struct page *page, int migratetype) 551 { 552 if (unlikely(page_group_by_mobility_disabled && 553 migratetype < MIGRATE_PCPTYPES)) 554 migratetype = MIGRATE_UNMOVABLE; 555 556 set_pageblock_flags_group(page, (unsigned long)migratetype, 557 PB_migrate, PB_migrate_end); 558 } 559 560 #ifdef CONFIG_DEBUG_VM 561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 562 { 563 int ret = 0; 564 unsigned seq; 565 unsigned long pfn = page_to_pfn(page); 566 unsigned long sp, start_pfn; 567 568 do { 569 seq = zone_span_seqbegin(zone); 570 start_pfn = zone->zone_start_pfn; 571 sp = zone->spanned_pages; 572 if (!zone_spans_pfn(zone, pfn)) 573 ret = 1; 574 } while (zone_span_seqretry(zone, seq)); 575 576 if (ret) 577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 578 pfn, zone_to_nid(zone), zone->name, 579 start_pfn, start_pfn + sp); 580 581 return ret; 582 } 583 584 static int page_is_consistent(struct zone *zone, struct page *page) 585 { 586 if (!pfn_valid_within(page_to_pfn(page))) 587 return 0; 588 if (zone != page_zone(page)) 589 return 0; 590 591 return 1; 592 } 593 /* 594 * Temporary debugging check for pages not lying within a given zone. 595 */ 596 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 597 { 598 if (page_outside_zone_boundaries(zone, page)) 599 return 1; 600 if (!page_is_consistent(zone, page)) 601 return 1; 602 603 return 0; 604 } 605 #else 606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 607 { 608 return 0; 609 } 610 #endif 611 612 static void bad_page(struct page *page, const char *reason, 613 unsigned long bad_flags) 614 { 615 static unsigned long resume; 616 static unsigned long nr_shown; 617 static unsigned long nr_unshown; 618 619 /* 620 * Allow a burst of 60 reports, then keep quiet for that minute; 621 * or allow a steady drip of one report per second. 622 */ 623 if (nr_shown == 60) { 624 if (time_before(jiffies, resume)) { 625 nr_unshown++; 626 goto out; 627 } 628 if (nr_unshown) { 629 pr_alert( 630 "BUG: Bad page state: %lu messages suppressed\n", 631 nr_unshown); 632 nr_unshown = 0; 633 } 634 nr_shown = 0; 635 } 636 if (nr_shown++ == 0) 637 resume = jiffies + 60 * HZ; 638 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 640 current->comm, page_to_pfn(page)); 641 __dump_page(page, reason); 642 bad_flags &= page->flags; 643 if (bad_flags) 644 pr_alert("bad because of flags: %#lx(%pGp)\n", 645 bad_flags, &bad_flags); 646 dump_page_owner(page); 647 648 print_modules(); 649 dump_stack(); 650 out: 651 /* Leave bad fields for debug, except PageBuddy could make trouble */ 652 page_mapcount_reset(page); /* remove PageBuddy */ 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 654 } 655 656 /* 657 * Higher-order pages are called "compound pages". They are structured thusly: 658 * 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 660 * 661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 663 * 664 * The first tail page's ->compound_dtor holds the offset in array of compound 665 * page destructors. See compound_page_dtors. 666 * 667 * The first tail page's ->compound_order holds the order of allocation. 668 * This usage means that zero-order pages may not be compound. 669 */ 670 671 void free_compound_page(struct page *page) 672 { 673 mem_cgroup_uncharge(page); 674 __free_pages_ok(page, compound_order(page)); 675 } 676 677 void prep_compound_page(struct page *page, unsigned int order) 678 { 679 int i; 680 int nr_pages = 1 << order; 681 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 683 set_compound_order(page, order); 684 __SetPageHead(page); 685 for (i = 1; i < nr_pages; i++) { 686 struct page *p = page + i; 687 set_page_count(p, 0); 688 p->mapping = TAIL_MAPPING; 689 set_compound_head(p, page); 690 } 691 atomic_set(compound_mapcount_ptr(page), -1); 692 } 693 694 #ifdef CONFIG_DEBUG_PAGEALLOC 695 unsigned int _debug_guardpage_minorder; 696 697 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT 698 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled); 699 #else 700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 701 #endif 702 EXPORT_SYMBOL(_debug_pagealloc_enabled); 703 704 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 705 706 static int __init early_debug_pagealloc(char *buf) 707 { 708 bool enable = false; 709 710 if (kstrtobool(buf, &enable)) 711 return -EINVAL; 712 713 if (enable) 714 static_branch_enable(&_debug_pagealloc_enabled); 715 716 return 0; 717 } 718 early_param("debug_pagealloc", early_debug_pagealloc); 719 720 static void init_debug_guardpage(void) 721 { 722 if (!debug_pagealloc_enabled()) 723 return; 724 725 if (!debug_guardpage_minorder()) 726 return; 727 728 static_branch_enable(&_debug_guardpage_enabled); 729 } 730 731 static int __init debug_guardpage_minorder_setup(char *buf) 732 { 733 unsigned long res; 734 735 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 736 pr_err("Bad debug_guardpage_minorder value\n"); 737 return 0; 738 } 739 _debug_guardpage_minorder = res; 740 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 741 return 0; 742 } 743 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 744 745 static inline bool set_page_guard(struct zone *zone, struct page *page, 746 unsigned int order, int migratetype) 747 { 748 if (!debug_guardpage_enabled()) 749 return false; 750 751 if (order >= debug_guardpage_minorder()) 752 return false; 753 754 __SetPageGuard(page); 755 INIT_LIST_HEAD(&page->lru); 756 set_page_private(page, order); 757 /* Guard pages are not available for any usage */ 758 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 759 760 return true; 761 } 762 763 static inline void clear_page_guard(struct zone *zone, struct page *page, 764 unsigned int order, int migratetype) 765 { 766 if (!debug_guardpage_enabled()) 767 return; 768 769 __ClearPageGuard(page); 770 771 set_page_private(page, 0); 772 if (!is_migrate_isolate(migratetype)) 773 __mod_zone_freepage_state(zone, (1 << order), migratetype); 774 } 775 #else 776 static inline bool set_page_guard(struct zone *zone, struct page *page, 777 unsigned int order, int migratetype) { return false; } 778 static inline void clear_page_guard(struct zone *zone, struct page *page, 779 unsigned int order, int migratetype) {} 780 #endif 781 782 static inline void set_page_order(struct page *page, unsigned int order) 783 { 784 set_page_private(page, order); 785 __SetPageBuddy(page); 786 } 787 788 /* 789 * This function checks whether a page is free && is the buddy 790 * we can coalesce a page and its buddy if 791 * (a) the buddy is not in a hole (check before calling!) && 792 * (b) the buddy is in the buddy system && 793 * (c) a page and its buddy have the same order && 794 * (d) a page and its buddy are in the same zone. 795 * 796 * For recording whether a page is in the buddy system, we set PageBuddy. 797 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 798 * 799 * For recording page's order, we use page_private(page). 800 */ 801 static inline int page_is_buddy(struct page *page, struct page *buddy, 802 unsigned int order) 803 { 804 if (page_is_guard(buddy) && page_order(buddy) == order) { 805 if (page_zone_id(page) != page_zone_id(buddy)) 806 return 0; 807 808 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 809 810 return 1; 811 } 812 813 if (PageBuddy(buddy) && page_order(buddy) == order) { 814 /* 815 * zone check is done late to avoid uselessly 816 * calculating zone/node ids for pages that could 817 * never merge. 818 */ 819 if (page_zone_id(page) != page_zone_id(buddy)) 820 return 0; 821 822 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 823 824 return 1; 825 } 826 return 0; 827 } 828 829 #ifdef CONFIG_COMPACTION 830 static inline struct capture_control *task_capc(struct zone *zone) 831 { 832 struct capture_control *capc = current->capture_control; 833 834 return capc && 835 !(current->flags & PF_KTHREAD) && 836 !capc->page && 837 capc->cc->zone == zone && 838 capc->cc->direct_compaction ? capc : NULL; 839 } 840 841 static inline bool 842 compaction_capture(struct capture_control *capc, struct page *page, 843 int order, int migratetype) 844 { 845 if (!capc || order != capc->cc->order) 846 return false; 847 848 /* Do not accidentally pollute CMA or isolated regions*/ 849 if (is_migrate_cma(migratetype) || 850 is_migrate_isolate(migratetype)) 851 return false; 852 853 /* 854 * Do not let lower order allocations polluate a movable pageblock. 855 * This might let an unmovable request use a reclaimable pageblock 856 * and vice-versa but no more than normal fallback logic which can 857 * have trouble finding a high-order free page. 858 */ 859 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 860 return false; 861 862 capc->page = page; 863 return true; 864 } 865 866 #else 867 static inline struct capture_control *task_capc(struct zone *zone) 868 { 869 return NULL; 870 } 871 872 static inline bool 873 compaction_capture(struct capture_control *capc, struct page *page, 874 int order, int migratetype) 875 { 876 return false; 877 } 878 #endif /* CONFIG_COMPACTION */ 879 880 /* 881 * Freeing function for a buddy system allocator. 882 * 883 * The concept of a buddy system is to maintain direct-mapped table 884 * (containing bit values) for memory blocks of various "orders". 885 * The bottom level table contains the map for the smallest allocatable 886 * units of memory (here, pages), and each level above it describes 887 * pairs of units from the levels below, hence, "buddies". 888 * At a high level, all that happens here is marking the table entry 889 * at the bottom level available, and propagating the changes upward 890 * as necessary, plus some accounting needed to play nicely with other 891 * parts of the VM system. 892 * At each level, we keep a list of pages, which are heads of continuous 893 * free pages of length of (1 << order) and marked with PageBuddy. 894 * Page's order is recorded in page_private(page) field. 895 * So when we are allocating or freeing one, we can derive the state of the 896 * other. That is, if we allocate a small block, and both were 897 * free, the remainder of the region must be split into blocks. 898 * If a block is freed, and its buddy is also free, then this 899 * triggers coalescing into a block of larger size. 900 * 901 * -- nyc 902 */ 903 904 static inline void __free_one_page(struct page *page, 905 unsigned long pfn, 906 struct zone *zone, unsigned int order, 907 int migratetype) 908 { 909 unsigned long combined_pfn; 910 unsigned long uninitialized_var(buddy_pfn); 911 struct page *buddy; 912 unsigned int max_order; 913 struct capture_control *capc = task_capc(zone); 914 915 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 916 917 VM_BUG_ON(!zone_is_initialized(zone)); 918 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 919 920 VM_BUG_ON(migratetype == -1); 921 if (likely(!is_migrate_isolate(migratetype))) 922 __mod_zone_freepage_state(zone, 1 << order, migratetype); 923 924 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 925 VM_BUG_ON_PAGE(bad_range(zone, page), page); 926 927 continue_merging: 928 while (order < max_order - 1) { 929 if (compaction_capture(capc, page, order, migratetype)) { 930 __mod_zone_freepage_state(zone, -(1 << order), 931 migratetype); 932 return; 933 } 934 buddy_pfn = __find_buddy_pfn(pfn, order); 935 buddy = page + (buddy_pfn - pfn); 936 937 if (!pfn_valid_within(buddy_pfn)) 938 goto done_merging; 939 if (!page_is_buddy(page, buddy, order)) 940 goto done_merging; 941 /* 942 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 943 * merge with it and move up one order. 944 */ 945 if (page_is_guard(buddy)) 946 clear_page_guard(zone, buddy, order, migratetype); 947 else 948 del_page_from_free_area(buddy, &zone->free_area[order]); 949 combined_pfn = buddy_pfn & pfn; 950 page = page + (combined_pfn - pfn); 951 pfn = combined_pfn; 952 order++; 953 } 954 if (max_order < MAX_ORDER) { 955 /* If we are here, it means order is >= pageblock_order. 956 * We want to prevent merge between freepages on isolate 957 * pageblock and normal pageblock. Without this, pageblock 958 * isolation could cause incorrect freepage or CMA accounting. 959 * 960 * We don't want to hit this code for the more frequent 961 * low-order merging. 962 */ 963 if (unlikely(has_isolate_pageblock(zone))) { 964 int buddy_mt; 965 966 buddy_pfn = __find_buddy_pfn(pfn, order); 967 buddy = page + (buddy_pfn - pfn); 968 buddy_mt = get_pageblock_migratetype(buddy); 969 970 if (migratetype != buddy_mt 971 && (is_migrate_isolate(migratetype) || 972 is_migrate_isolate(buddy_mt))) 973 goto done_merging; 974 } 975 max_order++; 976 goto continue_merging; 977 } 978 979 done_merging: 980 set_page_order(page, order); 981 982 /* 983 * If this is not the largest possible page, check if the buddy 984 * of the next-highest order is free. If it is, it's possible 985 * that pages are being freed that will coalesce soon. In case, 986 * that is happening, add the free page to the tail of the list 987 * so it's less likely to be used soon and more likely to be merged 988 * as a higher order page 989 */ 990 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn) 991 && !is_shuffle_order(order)) { 992 struct page *higher_page, *higher_buddy; 993 combined_pfn = buddy_pfn & pfn; 994 higher_page = page + (combined_pfn - pfn); 995 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 996 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 997 if (pfn_valid_within(buddy_pfn) && 998 page_is_buddy(higher_page, higher_buddy, order + 1)) { 999 add_to_free_area_tail(page, &zone->free_area[order], 1000 migratetype); 1001 return; 1002 } 1003 } 1004 1005 if (is_shuffle_order(order)) 1006 add_to_free_area_random(page, &zone->free_area[order], 1007 migratetype); 1008 else 1009 add_to_free_area(page, &zone->free_area[order], migratetype); 1010 1011 } 1012 1013 /* 1014 * A bad page could be due to a number of fields. Instead of multiple branches, 1015 * try and check multiple fields with one check. The caller must do a detailed 1016 * check if necessary. 1017 */ 1018 static inline bool page_expected_state(struct page *page, 1019 unsigned long check_flags) 1020 { 1021 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1022 return false; 1023 1024 if (unlikely((unsigned long)page->mapping | 1025 page_ref_count(page) | 1026 #ifdef CONFIG_MEMCG 1027 (unsigned long)page->mem_cgroup | 1028 #endif 1029 (page->flags & check_flags))) 1030 return false; 1031 1032 return true; 1033 } 1034 1035 static void free_pages_check_bad(struct page *page) 1036 { 1037 const char *bad_reason; 1038 unsigned long bad_flags; 1039 1040 bad_reason = NULL; 1041 bad_flags = 0; 1042 1043 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1044 bad_reason = "nonzero mapcount"; 1045 if (unlikely(page->mapping != NULL)) 1046 bad_reason = "non-NULL mapping"; 1047 if (unlikely(page_ref_count(page) != 0)) 1048 bad_reason = "nonzero _refcount"; 1049 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1050 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1051 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1052 } 1053 #ifdef CONFIG_MEMCG 1054 if (unlikely(page->mem_cgroup)) 1055 bad_reason = "page still charged to cgroup"; 1056 #endif 1057 bad_page(page, bad_reason, bad_flags); 1058 } 1059 1060 static inline int free_pages_check(struct page *page) 1061 { 1062 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1063 return 0; 1064 1065 /* Something has gone sideways, find it */ 1066 free_pages_check_bad(page); 1067 return 1; 1068 } 1069 1070 static int free_tail_pages_check(struct page *head_page, struct page *page) 1071 { 1072 int ret = 1; 1073 1074 /* 1075 * We rely page->lru.next never has bit 0 set, unless the page 1076 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1077 */ 1078 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1079 1080 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1081 ret = 0; 1082 goto out; 1083 } 1084 switch (page - head_page) { 1085 case 1: 1086 /* the first tail page: ->mapping may be compound_mapcount() */ 1087 if (unlikely(compound_mapcount(page))) { 1088 bad_page(page, "nonzero compound_mapcount", 0); 1089 goto out; 1090 } 1091 break; 1092 case 2: 1093 /* 1094 * the second tail page: ->mapping is 1095 * deferred_list.next -- ignore value. 1096 */ 1097 break; 1098 default: 1099 if (page->mapping != TAIL_MAPPING) { 1100 bad_page(page, "corrupted mapping in tail page", 0); 1101 goto out; 1102 } 1103 break; 1104 } 1105 if (unlikely(!PageTail(page))) { 1106 bad_page(page, "PageTail not set", 0); 1107 goto out; 1108 } 1109 if (unlikely(compound_head(page) != head_page)) { 1110 bad_page(page, "compound_head not consistent", 0); 1111 goto out; 1112 } 1113 ret = 0; 1114 out: 1115 page->mapping = NULL; 1116 clear_compound_head(page); 1117 return ret; 1118 } 1119 1120 static void kernel_init_free_pages(struct page *page, int numpages) 1121 { 1122 int i; 1123 1124 for (i = 0; i < numpages; i++) 1125 clear_highpage(page + i); 1126 } 1127 1128 static __always_inline bool free_pages_prepare(struct page *page, 1129 unsigned int order, bool check_free) 1130 { 1131 int bad = 0; 1132 1133 VM_BUG_ON_PAGE(PageTail(page), page); 1134 1135 trace_mm_page_free(page, order); 1136 1137 /* 1138 * Check tail pages before head page information is cleared to 1139 * avoid checking PageCompound for order-0 pages. 1140 */ 1141 if (unlikely(order)) { 1142 bool compound = PageCompound(page); 1143 int i; 1144 1145 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1146 1147 if (compound) 1148 ClearPageDoubleMap(page); 1149 for (i = 1; i < (1 << order); i++) { 1150 if (compound) 1151 bad += free_tail_pages_check(page, page + i); 1152 if (unlikely(free_pages_check(page + i))) { 1153 bad++; 1154 continue; 1155 } 1156 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1157 } 1158 } 1159 if (PageMappingFlags(page)) 1160 page->mapping = NULL; 1161 if (memcg_kmem_enabled() && PageKmemcg(page)) 1162 __memcg_kmem_uncharge(page, order); 1163 if (check_free) 1164 bad += free_pages_check(page); 1165 if (bad) 1166 return false; 1167 1168 page_cpupid_reset_last(page); 1169 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1170 reset_page_owner(page, order); 1171 1172 if (!PageHighMem(page)) { 1173 debug_check_no_locks_freed(page_address(page), 1174 PAGE_SIZE << order); 1175 debug_check_no_obj_freed(page_address(page), 1176 PAGE_SIZE << order); 1177 } 1178 if (want_init_on_free()) 1179 kernel_init_free_pages(page, 1 << order); 1180 1181 kernel_poison_pages(page, 1 << order, 0); 1182 /* 1183 * arch_free_page() can make the page's contents inaccessible. s390 1184 * does this. So nothing which can access the page's contents should 1185 * happen after this. 1186 */ 1187 arch_free_page(page, order); 1188 1189 if (debug_pagealloc_enabled()) 1190 kernel_map_pages(page, 1 << order, 0); 1191 1192 kasan_free_nondeferred_pages(page, order); 1193 1194 return true; 1195 } 1196 1197 #ifdef CONFIG_DEBUG_VM 1198 /* 1199 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1200 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1201 * moved from pcp lists to free lists. 1202 */ 1203 static bool free_pcp_prepare(struct page *page) 1204 { 1205 return free_pages_prepare(page, 0, true); 1206 } 1207 1208 static bool bulkfree_pcp_prepare(struct page *page) 1209 { 1210 if (debug_pagealloc_enabled()) 1211 return free_pages_check(page); 1212 else 1213 return false; 1214 } 1215 #else 1216 /* 1217 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1218 * moving from pcp lists to free list in order to reduce overhead. With 1219 * debug_pagealloc enabled, they are checked also immediately when being freed 1220 * to the pcp lists. 1221 */ 1222 static bool free_pcp_prepare(struct page *page) 1223 { 1224 if (debug_pagealloc_enabled()) 1225 return free_pages_prepare(page, 0, true); 1226 else 1227 return free_pages_prepare(page, 0, false); 1228 } 1229 1230 static bool bulkfree_pcp_prepare(struct page *page) 1231 { 1232 return free_pages_check(page); 1233 } 1234 #endif /* CONFIG_DEBUG_VM */ 1235 1236 static inline void prefetch_buddy(struct page *page) 1237 { 1238 unsigned long pfn = page_to_pfn(page); 1239 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1240 struct page *buddy = page + (buddy_pfn - pfn); 1241 1242 prefetch(buddy); 1243 } 1244 1245 /* 1246 * Frees a number of pages from the PCP lists 1247 * Assumes all pages on list are in same zone, and of same order. 1248 * count is the number of pages to free. 1249 * 1250 * If the zone was previously in an "all pages pinned" state then look to 1251 * see if this freeing clears that state. 1252 * 1253 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1254 * pinned" detection logic. 1255 */ 1256 static void free_pcppages_bulk(struct zone *zone, int count, 1257 struct per_cpu_pages *pcp) 1258 { 1259 int migratetype = 0; 1260 int batch_free = 0; 1261 int prefetch_nr = 0; 1262 bool isolated_pageblocks; 1263 struct page *page, *tmp; 1264 LIST_HEAD(head); 1265 1266 while (count) { 1267 struct list_head *list; 1268 1269 /* 1270 * Remove pages from lists in a round-robin fashion. A 1271 * batch_free count is maintained that is incremented when an 1272 * empty list is encountered. This is so more pages are freed 1273 * off fuller lists instead of spinning excessively around empty 1274 * lists 1275 */ 1276 do { 1277 batch_free++; 1278 if (++migratetype == MIGRATE_PCPTYPES) 1279 migratetype = 0; 1280 list = &pcp->lists[migratetype]; 1281 } while (list_empty(list)); 1282 1283 /* This is the only non-empty list. Free them all. */ 1284 if (batch_free == MIGRATE_PCPTYPES) 1285 batch_free = count; 1286 1287 do { 1288 page = list_last_entry(list, struct page, lru); 1289 /* must delete to avoid corrupting pcp list */ 1290 list_del(&page->lru); 1291 pcp->count--; 1292 1293 if (bulkfree_pcp_prepare(page)) 1294 continue; 1295 1296 list_add_tail(&page->lru, &head); 1297 1298 /* 1299 * We are going to put the page back to the global 1300 * pool, prefetch its buddy to speed up later access 1301 * under zone->lock. It is believed the overhead of 1302 * an additional test and calculating buddy_pfn here 1303 * can be offset by reduced memory latency later. To 1304 * avoid excessive prefetching due to large count, only 1305 * prefetch buddy for the first pcp->batch nr of pages. 1306 */ 1307 if (prefetch_nr++ < pcp->batch) 1308 prefetch_buddy(page); 1309 } while (--count && --batch_free && !list_empty(list)); 1310 } 1311 1312 spin_lock(&zone->lock); 1313 isolated_pageblocks = has_isolate_pageblock(zone); 1314 1315 /* 1316 * Use safe version since after __free_one_page(), 1317 * page->lru.next will not point to original list. 1318 */ 1319 list_for_each_entry_safe(page, tmp, &head, lru) { 1320 int mt = get_pcppage_migratetype(page); 1321 /* MIGRATE_ISOLATE page should not go to pcplists */ 1322 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1323 /* Pageblock could have been isolated meanwhile */ 1324 if (unlikely(isolated_pageblocks)) 1325 mt = get_pageblock_migratetype(page); 1326 1327 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1328 trace_mm_page_pcpu_drain(page, 0, mt); 1329 } 1330 spin_unlock(&zone->lock); 1331 } 1332 1333 static void free_one_page(struct zone *zone, 1334 struct page *page, unsigned long pfn, 1335 unsigned int order, 1336 int migratetype) 1337 { 1338 spin_lock(&zone->lock); 1339 if (unlikely(has_isolate_pageblock(zone) || 1340 is_migrate_isolate(migratetype))) { 1341 migratetype = get_pfnblock_migratetype(page, pfn); 1342 } 1343 __free_one_page(page, pfn, zone, order, migratetype); 1344 spin_unlock(&zone->lock); 1345 } 1346 1347 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1348 unsigned long zone, int nid) 1349 { 1350 mm_zero_struct_page(page); 1351 set_page_links(page, zone, nid, pfn); 1352 init_page_count(page); 1353 page_mapcount_reset(page); 1354 page_cpupid_reset_last(page); 1355 page_kasan_tag_reset(page); 1356 1357 INIT_LIST_HEAD(&page->lru); 1358 #ifdef WANT_PAGE_VIRTUAL 1359 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1360 if (!is_highmem_idx(zone)) 1361 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1362 #endif 1363 } 1364 1365 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1366 static void __meminit init_reserved_page(unsigned long pfn) 1367 { 1368 pg_data_t *pgdat; 1369 int nid, zid; 1370 1371 if (!early_page_uninitialised(pfn)) 1372 return; 1373 1374 nid = early_pfn_to_nid(pfn); 1375 pgdat = NODE_DATA(nid); 1376 1377 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1378 struct zone *zone = &pgdat->node_zones[zid]; 1379 1380 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1381 break; 1382 } 1383 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1384 } 1385 #else 1386 static inline void init_reserved_page(unsigned long pfn) 1387 { 1388 } 1389 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1390 1391 /* 1392 * Initialised pages do not have PageReserved set. This function is 1393 * called for each range allocated by the bootmem allocator and 1394 * marks the pages PageReserved. The remaining valid pages are later 1395 * sent to the buddy page allocator. 1396 */ 1397 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1398 { 1399 unsigned long start_pfn = PFN_DOWN(start); 1400 unsigned long end_pfn = PFN_UP(end); 1401 1402 for (; start_pfn < end_pfn; start_pfn++) { 1403 if (pfn_valid(start_pfn)) { 1404 struct page *page = pfn_to_page(start_pfn); 1405 1406 init_reserved_page(start_pfn); 1407 1408 /* Avoid false-positive PageTail() */ 1409 INIT_LIST_HEAD(&page->lru); 1410 1411 /* 1412 * no need for atomic set_bit because the struct 1413 * page is not visible yet so nobody should 1414 * access it yet. 1415 */ 1416 __SetPageReserved(page); 1417 } 1418 } 1419 } 1420 1421 static void __free_pages_ok(struct page *page, unsigned int order) 1422 { 1423 unsigned long flags; 1424 int migratetype; 1425 unsigned long pfn = page_to_pfn(page); 1426 1427 if (!free_pages_prepare(page, order, true)) 1428 return; 1429 1430 migratetype = get_pfnblock_migratetype(page, pfn); 1431 local_irq_save(flags); 1432 __count_vm_events(PGFREE, 1 << order); 1433 free_one_page(page_zone(page), page, pfn, order, migratetype); 1434 local_irq_restore(flags); 1435 } 1436 1437 void __free_pages_core(struct page *page, unsigned int order) 1438 { 1439 unsigned int nr_pages = 1 << order; 1440 struct page *p = page; 1441 unsigned int loop; 1442 1443 prefetchw(p); 1444 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1445 prefetchw(p + 1); 1446 __ClearPageReserved(p); 1447 set_page_count(p, 0); 1448 } 1449 __ClearPageReserved(p); 1450 set_page_count(p, 0); 1451 1452 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1453 set_page_refcounted(page); 1454 __free_pages(page, order); 1455 } 1456 1457 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1458 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1459 1460 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1461 1462 int __meminit early_pfn_to_nid(unsigned long pfn) 1463 { 1464 static DEFINE_SPINLOCK(early_pfn_lock); 1465 int nid; 1466 1467 spin_lock(&early_pfn_lock); 1468 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1469 if (nid < 0) 1470 nid = first_online_node; 1471 spin_unlock(&early_pfn_lock); 1472 1473 return nid; 1474 } 1475 #endif 1476 1477 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1478 /* Only safe to use early in boot when initialisation is single-threaded */ 1479 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1480 { 1481 int nid; 1482 1483 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1484 if (nid >= 0 && nid != node) 1485 return false; 1486 return true; 1487 } 1488 1489 #else 1490 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1491 { 1492 return true; 1493 } 1494 #endif 1495 1496 1497 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1498 unsigned int order) 1499 { 1500 if (early_page_uninitialised(pfn)) 1501 return; 1502 __free_pages_core(page, order); 1503 } 1504 1505 /* 1506 * Check that the whole (or subset of) a pageblock given by the interval of 1507 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1508 * with the migration of free compaction scanner. The scanners then need to 1509 * use only pfn_valid_within() check for arches that allow holes within 1510 * pageblocks. 1511 * 1512 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1513 * 1514 * It's possible on some configurations to have a setup like node0 node1 node0 1515 * i.e. it's possible that all pages within a zones range of pages do not 1516 * belong to a single zone. We assume that a border between node0 and node1 1517 * can occur within a single pageblock, but not a node0 node1 node0 1518 * interleaving within a single pageblock. It is therefore sufficient to check 1519 * the first and last page of a pageblock and avoid checking each individual 1520 * page in a pageblock. 1521 */ 1522 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1523 unsigned long end_pfn, struct zone *zone) 1524 { 1525 struct page *start_page; 1526 struct page *end_page; 1527 1528 /* end_pfn is one past the range we are checking */ 1529 end_pfn--; 1530 1531 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1532 return NULL; 1533 1534 start_page = pfn_to_online_page(start_pfn); 1535 if (!start_page) 1536 return NULL; 1537 1538 if (page_zone(start_page) != zone) 1539 return NULL; 1540 1541 end_page = pfn_to_page(end_pfn); 1542 1543 /* This gives a shorter code than deriving page_zone(end_page) */ 1544 if (page_zone_id(start_page) != page_zone_id(end_page)) 1545 return NULL; 1546 1547 return start_page; 1548 } 1549 1550 void set_zone_contiguous(struct zone *zone) 1551 { 1552 unsigned long block_start_pfn = zone->zone_start_pfn; 1553 unsigned long block_end_pfn; 1554 1555 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1556 for (; block_start_pfn < zone_end_pfn(zone); 1557 block_start_pfn = block_end_pfn, 1558 block_end_pfn += pageblock_nr_pages) { 1559 1560 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1561 1562 if (!__pageblock_pfn_to_page(block_start_pfn, 1563 block_end_pfn, zone)) 1564 return; 1565 } 1566 1567 /* We confirm that there is no hole */ 1568 zone->contiguous = true; 1569 } 1570 1571 void clear_zone_contiguous(struct zone *zone) 1572 { 1573 zone->contiguous = false; 1574 } 1575 1576 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1577 static void __init deferred_free_range(unsigned long pfn, 1578 unsigned long nr_pages) 1579 { 1580 struct page *page; 1581 unsigned long i; 1582 1583 if (!nr_pages) 1584 return; 1585 1586 page = pfn_to_page(pfn); 1587 1588 /* Free a large naturally-aligned chunk if possible */ 1589 if (nr_pages == pageblock_nr_pages && 1590 (pfn & (pageblock_nr_pages - 1)) == 0) { 1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1592 __free_pages_core(page, pageblock_order); 1593 return; 1594 } 1595 1596 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1597 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1598 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1599 __free_pages_core(page, 0); 1600 } 1601 } 1602 1603 /* Completion tracking for deferred_init_memmap() threads */ 1604 static atomic_t pgdat_init_n_undone __initdata; 1605 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1606 1607 static inline void __init pgdat_init_report_one_done(void) 1608 { 1609 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1610 complete(&pgdat_init_all_done_comp); 1611 } 1612 1613 /* 1614 * Returns true if page needs to be initialized or freed to buddy allocator. 1615 * 1616 * First we check if pfn is valid on architectures where it is possible to have 1617 * holes within pageblock_nr_pages. On systems where it is not possible, this 1618 * function is optimized out. 1619 * 1620 * Then, we check if a current large page is valid by only checking the validity 1621 * of the head pfn. 1622 */ 1623 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1624 { 1625 if (!pfn_valid_within(pfn)) 1626 return false; 1627 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1628 return false; 1629 return true; 1630 } 1631 1632 /* 1633 * Free pages to buddy allocator. Try to free aligned pages in 1634 * pageblock_nr_pages sizes. 1635 */ 1636 static void __init deferred_free_pages(unsigned long pfn, 1637 unsigned long end_pfn) 1638 { 1639 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1640 unsigned long nr_free = 0; 1641 1642 for (; pfn < end_pfn; pfn++) { 1643 if (!deferred_pfn_valid(pfn)) { 1644 deferred_free_range(pfn - nr_free, nr_free); 1645 nr_free = 0; 1646 } else if (!(pfn & nr_pgmask)) { 1647 deferred_free_range(pfn - nr_free, nr_free); 1648 nr_free = 1; 1649 touch_nmi_watchdog(); 1650 } else { 1651 nr_free++; 1652 } 1653 } 1654 /* Free the last block of pages to allocator */ 1655 deferred_free_range(pfn - nr_free, nr_free); 1656 } 1657 1658 /* 1659 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1660 * by performing it only once every pageblock_nr_pages. 1661 * Return number of pages initialized. 1662 */ 1663 static unsigned long __init deferred_init_pages(struct zone *zone, 1664 unsigned long pfn, 1665 unsigned long end_pfn) 1666 { 1667 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1668 int nid = zone_to_nid(zone); 1669 unsigned long nr_pages = 0; 1670 int zid = zone_idx(zone); 1671 struct page *page = NULL; 1672 1673 for (; pfn < end_pfn; pfn++) { 1674 if (!deferred_pfn_valid(pfn)) { 1675 page = NULL; 1676 continue; 1677 } else if (!page || !(pfn & nr_pgmask)) { 1678 page = pfn_to_page(pfn); 1679 touch_nmi_watchdog(); 1680 } else { 1681 page++; 1682 } 1683 __init_single_page(page, pfn, zid, nid); 1684 nr_pages++; 1685 } 1686 return (nr_pages); 1687 } 1688 1689 /* 1690 * This function is meant to pre-load the iterator for the zone init. 1691 * Specifically it walks through the ranges until we are caught up to the 1692 * first_init_pfn value and exits there. If we never encounter the value we 1693 * return false indicating there are no valid ranges left. 1694 */ 1695 static bool __init 1696 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1697 unsigned long *spfn, unsigned long *epfn, 1698 unsigned long first_init_pfn) 1699 { 1700 u64 j; 1701 1702 /* 1703 * Start out by walking through the ranges in this zone that have 1704 * already been initialized. We don't need to do anything with them 1705 * so we just need to flush them out of the system. 1706 */ 1707 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1708 if (*epfn <= first_init_pfn) 1709 continue; 1710 if (*spfn < first_init_pfn) 1711 *spfn = first_init_pfn; 1712 *i = j; 1713 return true; 1714 } 1715 1716 return false; 1717 } 1718 1719 /* 1720 * Initialize and free pages. We do it in two loops: first we initialize 1721 * struct page, then free to buddy allocator, because while we are 1722 * freeing pages we can access pages that are ahead (computing buddy 1723 * page in __free_one_page()). 1724 * 1725 * In order to try and keep some memory in the cache we have the loop 1726 * broken along max page order boundaries. This way we will not cause 1727 * any issues with the buddy page computation. 1728 */ 1729 static unsigned long __init 1730 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1731 unsigned long *end_pfn) 1732 { 1733 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1734 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1735 unsigned long nr_pages = 0; 1736 u64 j = *i; 1737 1738 /* First we loop through and initialize the page values */ 1739 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1740 unsigned long t; 1741 1742 if (mo_pfn <= *start_pfn) 1743 break; 1744 1745 t = min(mo_pfn, *end_pfn); 1746 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1747 1748 if (mo_pfn < *end_pfn) { 1749 *start_pfn = mo_pfn; 1750 break; 1751 } 1752 } 1753 1754 /* Reset values and now loop through freeing pages as needed */ 1755 swap(j, *i); 1756 1757 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1758 unsigned long t; 1759 1760 if (mo_pfn <= spfn) 1761 break; 1762 1763 t = min(mo_pfn, epfn); 1764 deferred_free_pages(spfn, t); 1765 1766 if (mo_pfn <= epfn) 1767 break; 1768 } 1769 1770 return nr_pages; 1771 } 1772 1773 /* Initialise remaining memory on a node */ 1774 static int __init deferred_init_memmap(void *data) 1775 { 1776 pg_data_t *pgdat = data; 1777 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1778 unsigned long spfn = 0, epfn = 0, nr_pages = 0; 1779 unsigned long first_init_pfn, flags; 1780 unsigned long start = jiffies; 1781 struct zone *zone; 1782 int zid; 1783 u64 i; 1784 1785 /* Bind memory initialisation thread to a local node if possible */ 1786 if (!cpumask_empty(cpumask)) 1787 set_cpus_allowed_ptr(current, cpumask); 1788 1789 pgdat_resize_lock(pgdat, &flags); 1790 first_init_pfn = pgdat->first_deferred_pfn; 1791 if (first_init_pfn == ULONG_MAX) { 1792 pgdat_resize_unlock(pgdat, &flags); 1793 pgdat_init_report_one_done(); 1794 return 0; 1795 } 1796 1797 /* Sanity check boundaries */ 1798 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1799 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1800 pgdat->first_deferred_pfn = ULONG_MAX; 1801 1802 /* Only the highest zone is deferred so find it */ 1803 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1804 zone = pgdat->node_zones + zid; 1805 if (first_init_pfn < zone_end_pfn(zone)) 1806 break; 1807 } 1808 1809 /* If the zone is empty somebody else may have cleared out the zone */ 1810 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1811 first_init_pfn)) 1812 goto zone_empty; 1813 1814 /* 1815 * Initialize and free pages in MAX_ORDER sized increments so 1816 * that we can avoid introducing any issues with the buddy 1817 * allocator. 1818 */ 1819 while (spfn < epfn) 1820 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1821 zone_empty: 1822 pgdat_resize_unlock(pgdat, &flags); 1823 1824 /* Sanity check that the next zone really is unpopulated */ 1825 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1826 1827 pr_info("node %d initialised, %lu pages in %ums\n", 1828 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start)); 1829 1830 pgdat_init_report_one_done(); 1831 return 0; 1832 } 1833 1834 /* 1835 * If this zone has deferred pages, try to grow it by initializing enough 1836 * deferred pages to satisfy the allocation specified by order, rounded up to 1837 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1838 * of SECTION_SIZE bytes by initializing struct pages in increments of 1839 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1840 * 1841 * Return true when zone was grown, otherwise return false. We return true even 1842 * when we grow less than requested, to let the caller decide if there are 1843 * enough pages to satisfy the allocation. 1844 * 1845 * Note: We use noinline because this function is needed only during boot, and 1846 * it is called from a __ref function _deferred_grow_zone. This way we are 1847 * making sure that it is not inlined into permanent text section. 1848 */ 1849 static noinline bool __init 1850 deferred_grow_zone(struct zone *zone, unsigned int order) 1851 { 1852 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1853 pg_data_t *pgdat = zone->zone_pgdat; 1854 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1855 unsigned long spfn, epfn, flags; 1856 unsigned long nr_pages = 0; 1857 u64 i; 1858 1859 /* Only the last zone may have deferred pages */ 1860 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1861 return false; 1862 1863 pgdat_resize_lock(pgdat, &flags); 1864 1865 /* 1866 * If deferred pages have been initialized while we were waiting for 1867 * the lock, return true, as the zone was grown. The caller will retry 1868 * this zone. We won't return to this function since the caller also 1869 * has this static branch. 1870 */ 1871 if (!static_branch_unlikely(&deferred_pages)) { 1872 pgdat_resize_unlock(pgdat, &flags); 1873 return true; 1874 } 1875 1876 /* 1877 * If someone grew this zone while we were waiting for spinlock, return 1878 * true, as there might be enough pages already. 1879 */ 1880 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1881 pgdat_resize_unlock(pgdat, &flags); 1882 return true; 1883 } 1884 1885 /* If the zone is empty somebody else may have cleared out the zone */ 1886 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1887 first_deferred_pfn)) { 1888 pgdat->first_deferred_pfn = ULONG_MAX; 1889 pgdat_resize_unlock(pgdat, &flags); 1890 /* Retry only once. */ 1891 return first_deferred_pfn != ULONG_MAX; 1892 } 1893 1894 /* 1895 * Initialize and free pages in MAX_ORDER sized increments so 1896 * that we can avoid introducing any issues with the buddy 1897 * allocator. 1898 */ 1899 while (spfn < epfn) { 1900 /* update our first deferred PFN for this section */ 1901 first_deferred_pfn = spfn; 1902 1903 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1904 1905 /* We should only stop along section boundaries */ 1906 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1907 continue; 1908 1909 /* If our quota has been met we can stop here */ 1910 if (nr_pages >= nr_pages_needed) 1911 break; 1912 } 1913 1914 pgdat->first_deferred_pfn = spfn; 1915 pgdat_resize_unlock(pgdat, &flags); 1916 1917 return nr_pages > 0; 1918 } 1919 1920 /* 1921 * deferred_grow_zone() is __init, but it is called from 1922 * get_page_from_freelist() during early boot until deferred_pages permanently 1923 * disables this call. This is why we have refdata wrapper to avoid warning, 1924 * and to ensure that the function body gets unloaded. 1925 */ 1926 static bool __ref 1927 _deferred_grow_zone(struct zone *zone, unsigned int order) 1928 { 1929 return deferred_grow_zone(zone, order); 1930 } 1931 1932 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1933 1934 void __init page_alloc_init_late(void) 1935 { 1936 struct zone *zone; 1937 int nid; 1938 1939 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1940 1941 /* There will be num_node_state(N_MEMORY) threads */ 1942 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1943 for_each_node_state(nid, N_MEMORY) { 1944 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1945 } 1946 1947 /* Block until all are initialised */ 1948 wait_for_completion(&pgdat_init_all_done_comp); 1949 1950 /* 1951 * We initialized the rest of the deferred pages. Permanently disable 1952 * on-demand struct page initialization. 1953 */ 1954 static_branch_disable(&deferred_pages); 1955 1956 /* Reinit limits that are based on free pages after the kernel is up */ 1957 files_maxfiles_init(); 1958 #endif 1959 1960 /* Discard memblock private memory */ 1961 memblock_discard(); 1962 1963 for_each_node_state(nid, N_MEMORY) 1964 shuffle_free_memory(NODE_DATA(nid)); 1965 1966 for_each_populated_zone(zone) 1967 set_zone_contiguous(zone); 1968 1969 #ifdef CONFIG_DEBUG_PAGEALLOC 1970 init_debug_guardpage(); 1971 #endif 1972 } 1973 1974 #ifdef CONFIG_CMA 1975 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1976 void __init init_cma_reserved_pageblock(struct page *page) 1977 { 1978 unsigned i = pageblock_nr_pages; 1979 struct page *p = page; 1980 1981 do { 1982 __ClearPageReserved(p); 1983 set_page_count(p, 0); 1984 } while (++p, --i); 1985 1986 set_pageblock_migratetype(page, MIGRATE_CMA); 1987 1988 if (pageblock_order >= MAX_ORDER) { 1989 i = pageblock_nr_pages; 1990 p = page; 1991 do { 1992 set_page_refcounted(p); 1993 __free_pages(p, MAX_ORDER - 1); 1994 p += MAX_ORDER_NR_PAGES; 1995 } while (i -= MAX_ORDER_NR_PAGES); 1996 } else { 1997 set_page_refcounted(page); 1998 __free_pages(page, pageblock_order); 1999 } 2000 2001 adjust_managed_page_count(page, pageblock_nr_pages); 2002 } 2003 #endif 2004 2005 /* 2006 * The order of subdivision here is critical for the IO subsystem. 2007 * Please do not alter this order without good reasons and regression 2008 * testing. Specifically, as large blocks of memory are subdivided, 2009 * the order in which smaller blocks are delivered depends on the order 2010 * they're subdivided in this function. This is the primary factor 2011 * influencing the order in which pages are delivered to the IO 2012 * subsystem according to empirical testing, and this is also justified 2013 * by considering the behavior of a buddy system containing a single 2014 * large block of memory acted on by a series of small allocations. 2015 * This behavior is a critical factor in sglist merging's success. 2016 * 2017 * -- nyc 2018 */ 2019 static inline void expand(struct zone *zone, struct page *page, 2020 int low, int high, struct free_area *area, 2021 int migratetype) 2022 { 2023 unsigned long size = 1 << high; 2024 2025 while (high > low) { 2026 area--; 2027 high--; 2028 size >>= 1; 2029 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2030 2031 /* 2032 * Mark as guard pages (or page), that will allow to 2033 * merge back to allocator when buddy will be freed. 2034 * Corresponding page table entries will not be touched, 2035 * pages will stay not present in virtual address space 2036 */ 2037 if (set_page_guard(zone, &page[size], high, migratetype)) 2038 continue; 2039 2040 add_to_free_area(&page[size], area, migratetype); 2041 set_page_order(&page[size], high); 2042 } 2043 } 2044 2045 static void check_new_page_bad(struct page *page) 2046 { 2047 const char *bad_reason = NULL; 2048 unsigned long bad_flags = 0; 2049 2050 if (unlikely(atomic_read(&page->_mapcount) != -1)) 2051 bad_reason = "nonzero mapcount"; 2052 if (unlikely(page->mapping != NULL)) 2053 bad_reason = "non-NULL mapping"; 2054 if (unlikely(page_ref_count(page) != 0)) 2055 bad_reason = "nonzero _refcount"; 2056 if (unlikely(page->flags & __PG_HWPOISON)) { 2057 bad_reason = "HWPoisoned (hardware-corrupted)"; 2058 bad_flags = __PG_HWPOISON; 2059 /* Don't complain about hwpoisoned pages */ 2060 page_mapcount_reset(page); /* remove PageBuddy */ 2061 return; 2062 } 2063 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 2064 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 2065 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 2066 } 2067 #ifdef CONFIG_MEMCG 2068 if (unlikely(page->mem_cgroup)) 2069 bad_reason = "page still charged to cgroup"; 2070 #endif 2071 bad_page(page, bad_reason, bad_flags); 2072 } 2073 2074 /* 2075 * This page is about to be returned from the page allocator 2076 */ 2077 static inline int check_new_page(struct page *page) 2078 { 2079 if (likely(page_expected_state(page, 2080 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2081 return 0; 2082 2083 check_new_page_bad(page); 2084 return 1; 2085 } 2086 2087 static inline bool free_pages_prezeroed(void) 2088 { 2089 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2090 page_poisoning_enabled()) || want_init_on_free(); 2091 } 2092 2093 #ifdef CONFIG_DEBUG_VM 2094 /* 2095 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2096 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2097 * also checked when pcp lists are refilled from the free lists. 2098 */ 2099 static inline bool check_pcp_refill(struct page *page) 2100 { 2101 if (debug_pagealloc_enabled()) 2102 return check_new_page(page); 2103 else 2104 return false; 2105 } 2106 2107 static inline bool check_new_pcp(struct page *page) 2108 { 2109 return check_new_page(page); 2110 } 2111 #else 2112 /* 2113 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2114 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2115 * enabled, they are also checked when being allocated from the pcp lists. 2116 */ 2117 static inline bool check_pcp_refill(struct page *page) 2118 { 2119 return check_new_page(page); 2120 } 2121 static inline bool check_new_pcp(struct page *page) 2122 { 2123 if (debug_pagealloc_enabled()) 2124 return check_new_page(page); 2125 else 2126 return false; 2127 } 2128 #endif /* CONFIG_DEBUG_VM */ 2129 2130 static bool check_new_pages(struct page *page, unsigned int order) 2131 { 2132 int i; 2133 for (i = 0; i < (1 << order); i++) { 2134 struct page *p = page + i; 2135 2136 if (unlikely(check_new_page(p))) 2137 return true; 2138 } 2139 2140 return false; 2141 } 2142 2143 inline void post_alloc_hook(struct page *page, unsigned int order, 2144 gfp_t gfp_flags) 2145 { 2146 set_page_private(page, 0); 2147 set_page_refcounted(page); 2148 2149 arch_alloc_page(page, order); 2150 if (debug_pagealloc_enabled()) 2151 kernel_map_pages(page, 1 << order, 1); 2152 kasan_alloc_pages(page, order); 2153 kernel_poison_pages(page, 1 << order, 1); 2154 set_page_owner(page, order, gfp_flags); 2155 } 2156 2157 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2158 unsigned int alloc_flags) 2159 { 2160 post_alloc_hook(page, order, gfp_flags); 2161 2162 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2163 kernel_init_free_pages(page, 1 << order); 2164 2165 if (order && (gfp_flags & __GFP_COMP)) 2166 prep_compound_page(page, order); 2167 2168 /* 2169 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2170 * allocate the page. The expectation is that the caller is taking 2171 * steps that will free more memory. The caller should avoid the page 2172 * being used for !PFMEMALLOC purposes. 2173 */ 2174 if (alloc_flags & ALLOC_NO_WATERMARKS) 2175 set_page_pfmemalloc(page); 2176 else 2177 clear_page_pfmemalloc(page); 2178 } 2179 2180 /* 2181 * Go through the free lists for the given migratetype and remove 2182 * the smallest available page from the freelists 2183 */ 2184 static __always_inline 2185 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2186 int migratetype) 2187 { 2188 unsigned int current_order; 2189 struct free_area *area; 2190 struct page *page; 2191 2192 /* Find a page of the appropriate size in the preferred list */ 2193 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2194 area = &(zone->free_area[current_order]); 2195 page = get_page_from_free_area(area, migratetype); 2196 if (!page) 2197 continue; 2198 del_page_from_free_area(page, area); 2199 expand(zone, page, order, current_order, area, migratetype); 2200 set_pcppage_migratetype(page, migratetype); 2201 return page; 2202 } 2203 2204 return NULL; 2205 } 2206 2207 2208 /* 2209 * This array describes the order lists are fallen back to when 2210 * the free lists for the desirable migrate type are depleted 2211 */ 2212 static int fallbacks[MIGRATE_TYPES][4] = { 2213 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2214 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2215 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2216 #ifdef CONFIG_CMA 2217 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2218 #endif 2219 #ifdef CONFIG_MEMORY_ISOLATION 2220 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2221 #endif 2222 }; 2223 2224 #ifdef CONFIG_CMA 2225 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2226 unsigned int order) 2227 { 2228 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2229 } 2230 #else 2231 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2232 unsigned int order) { return NULL; } 2233 #endif 2234 2235 /* 2236 * Move the free pages in a range to the free lists of the requested type. 2237 * Note that start_page and end_pages are not aligned on a pageblock 2238 * boundary. If alignment is required, use move_freepages_block() 2239 */ 2240 static int move_freepages(struct zone *zone, 2241 struct page *start_page, struct page *end_page, 2242 int migratetype, int *num_movable) 2243 { 2244 struct page *page; 2245 unsigned int order; 2246 int pages_moved = 0; 2247 2248 for (page = start_page; page <= end_page;) { 2249 if (!pfn_valid_within(page_to_pfn(page))) { 2250 page++; 2251 continue; 2252 } 2253 2254 if (!PageBuddy(page)) { 2255 /* 2256 * We assume that pages that could be isolated for 2257 * migration are movable. But we don't actually try 2258 * isolating, as that would be expensive. 2259 */ 2260 if (num_movable && 2261 (PageLRU(page) || __PageMovable(page))) 2262 (*num_movable)++; 2263 2264 page++; 2265 continue; 2266 } 2267 2268 /* Make sure we are not inadvertently changing nodes */ 2269 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2270 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2271 2272 order = page_order(page); 2273 move_to_free_area(page, &zone->free_area[order], migratetype); 2274 page += 1 << order; 2275 pages_moved += 1 << order; 2276 } 2277 2278 return pages_moved; 2279 } 2280 2281 int move_freepages_block(struct zone *zone, struct page *page, 2282 int migratetype, int *num_movable) 2283 { 2284 unsigned long start_pfn, end_pfn; 2285 struct page *start_page, *end_page; 2286 2287 if (num_movable) 2288 *num_movable = 0; 2289 2290 start_pfn = page_to_pfn(page); 2291 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2292 start_page = pfn_to_page(start_pfn); 2293 end_page = start_page + pageblock_nr_pages - 1; 2294 end_pfn = start_pfn + pageblock_nr_pages - 1; 2295 2296 /* Do not cross zone boundaries */ 2297 if (!zone_spans_pfn(zone, start_pfn)) 2298 start_page = page; 2299 if (!zone_spans_pfn(zone, end_pfn)) 2300 return 0; 2301 2302 return move_freepages(zone, start_page, end_page, migratetype, 2303 num_movable); 2304 } 2305 2306 static void change_pageblock_range(struct page *pageblock_page, 2307 int start_order, int migratetype) 2308 { 2309 int nr_pageblocks = 1 << (start_order - pageblock_order); 2310 2311 while (nr_pageblocks--) { 2312 set_pageblock_migratetype(pageblock_page, migratetype); 2313 pageblock_page += pageblock_nr_pages; 2314 } 2315 } 2316 2317 /* 2318 * When we are falling back to another migratetype during allocation, try to 2319 * steal extra free pages from the same pageblocks to satisfy further 2320 * allocations, instead of polluting multiple pageblocks. 2321 * 2322 * If we are stealing a relatively large buddy page, it is likely there will 2323 * be more free pages in the pageblock, so try to steal them all. For 2324 * reclaimable and unmovable allocations, we steal regardless of page size, 2325 * as fragmentation caused by those allocations polluting movable pageblocks 2326 * is worse than movable allocations stealing from unmovable and reclaimable 2327 * pageblocks. 2328 */ 2329 static bool can_steal_fallback(unsigned int order, int start_mt) 2330 { 2331 /* 2332 * Leaving this order check is intended, although there is 2333 * relaxed order check in next check. The reason is that 2334 * we can actually steal whole pageblock if this condition met, 2335 * but, below check doesn't guarantee it and that is just heuristic 2336 * so could be changed anytime. 2337 */ 2338 if (order >= pageblock_order) 2339 return true; 2340 2341 if (order >= pageblock_order / 2 || 2342 start_mt == MIGRATE_RECLAIMABLE || 2343 start_mt == MIGRATE_UNMOVABLE || 2344 page_group_by_mobility_disabled) 2345 return true; 2346 2347 return false; 2348 } 2349 2350 static inline void boost_watermark(struct zone *zone) 2351 { 2352 unsigned long max_boost; 2353 2354 if (!watermark_boost_factor) 2355 return; 2356 2357 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2358 watermark_boost_factor, 10000); 2359 2360 /* 2361 * high watermark may be uninitialised if fragmentation occurs 2362 * very early in boot so do not boost. We do not fall 2363 * through and boost by pageblock_nr_pages as failing 2364 * allocations that early means that reclaim is not going 2365 * to help and it may even be impossible to reclaim the 2366 * boosted watermark resulting in a hang. 2367 */ 2368 if (!max_boost) 2369 return; 2370 2371 max_boost = max(pageblock_nr_pages, max_boost); 2372 2373 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2374 max_boost); 2375 } 2376 2377 /* 2378 * This function implements actual steal behaviour. If order is large enough, 2379 * we can steal whole pageblock. If not, we first move freepages in this 2380 * pageblock to our migratetype and determine how many already-allocated pages 2381 * are there in the pageblock with a compatible migratetype. If at least half 2382 * of pages are free or compatible, we can change migratetype of the pageblock 2383 * itself, so pages freed in the future will be put on the correct free list. 2384 */ 2385 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2386 unsigned int alloc_flags, int start_type, bool whole_block) 2387 { 2388 unsigned int current_order = page_order(page); 2389 struct free_area *area; 2390 int free_pages, movable_pages, alike_pages; 2391 int old_block_type; 2392 2393 old_block_type = get_pageblock_migratetype(page); 2394 2395 /* 2396 * This can happen due to races and we want to prevent broken 2397 * highatomic accounting. 2398 */ 2399 if (is_migrate_highatomic(old_block_type)) 2400 goto single_page; 2401 2402 /* Take ownership for orders >= pageblock_order */ 2403 if (current_order >= pageblock_order) { 2404 change_pageblock_range(page, current_order, start_type); 2405 goto single_page; 2406 } 2407 2408 /* 2409 * Boost watermarks to increase reclaim pressure to reduce the 2410 * likelihood of future fallbacks. Wake kswapd now as the node 2411 * may be balanced overall and kswapd will not wake naturally. 2412 */ 2413 boost_watermark(zone); 2414 if (alloc_flags & ALLOC_KSWAPD) 2415 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2416 2417 /* We are not allowed to try stealing from the whole block */ 2418 if (!whole_block) 2419 goto single_page; 2420 2421 free_pages = move_freepages_block(zone, page, start_type, 2422 &movable_pages); 2423 /* 2424 * Determine how many pages are compatible with our allocation. 2425 * For movable allocation, it's the number of movable pages which 2426 * we just obtained. For other types it's a bit more tricky. 2427 */ 2428 if (start_type == MIGRATE_MOVABLE) { 2429 alike_pages = movable_pages; 2430 } else { 2431 /* 2432 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2433 * to MOVABLE pageblock, consider all non-movable pages as 2434 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2435 * vice versa, be conservative since we can't distinguish the 2436 * exact migratetype of non-movable pages. 2437 */ 2438 if (old_block_type == MIGRATE_MOVABLE) 2439 alike_pages = pageblock_nr_pages 2440 - (free_pages + movable_pages); 2441 else 2442 alike_pages = 0; 2443 } 2444 2445 /* moving whole block can fail due to zone boundary conditions */ 2446 if (!free_pages) 2447 goto single_page; 2448 2449 /* 2450 * If a sufficient number of pages in the block are either free or of 2451 * comparable migratability as our allocation, claim the whole block. 2452 */ 2453 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2454 page_group_by_mobility_disabled) 2455 set_pageblock_migratetype(page, start_type); 2456 2457 return; 2458 2459 single_page: 2460 area = &zone->free_area[current_order]; 2461 move_to_free_area(page, area, start_type); 2462 } 2463 2464 /* 2465 * Check whether there is a suitable fallback freepage with requested order. 2466 * If only_stealable is true, this function returns fallback_mt only if 2467 * we can steal other freepages all together. This would help to reduce 2468 * fragmentation due to mixed migratetype pages in one pageblock. 2469 */ 2470 int find_suitable_fallback(struct free_area *area, unsigned int order, 2471 int migratetype, bool only_stealable, bool *can_steal) 2472 { 2473 int i; 2474 int fallback_mt; 2475 2476 if (area->nr_free == 0) 2477 return -1; 2478 2479 *can_steal = false; 2480 for (i = 0;; i++) { 2481 fallback_mt = fallbacks[migratetype][i]; 2482 if (fallback_mt == MIGRATE_TYPES) 2483 break; 2484 2485 if (free_area_empty(area, fallback_mt)) 2486 continue; 2487 2488 if (can_steal_fallback(order, migratetype)) 2489 *can_steal = true; 2490 2491 if (!only_stealable) 2492 return fallback_mt; 2493 2494 if (*can_steal) 2495 return fallback_mt; 2496 } 2497 2498 return -1; 2499 } 2500 2501 /* 2502 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2503 * there are no empty page blocks that contain a page with a suitable order 2504 */ 2505 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2506 unsigned int alloc_order) 2507 { 2508 int mt; 2509 unsigned long max_managed, flags; 2510 2511 /* 2512 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2513 * Check is race-prone but harmless. 2514 */ 2515 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2516 if (zone->nr_reserved_highatomic >= max_managed) 2517 return; 2518 2519 spin_lock_irqsave(&zone->lock, flags); 2520 2521 /* Recheck the nr_reserved_highatomic limit under the lock */ 2522 if (zone->nr_reserved_highatomic >= max_managed) 2523 goto out_unlock; 2524 2525 /* Yoink! */ 2526 mt = get_pageblock_migratetype(page); 2527 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2528 && !is_migrate_cma(mt)) { 2529 zone->nr_reserved_highatomic += pageblock_nr_pages; 2530 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2531 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2532 } 2533 2534 out_unlock: 2535 spin_unlock_irqrestore(&zone->lock, flags); 2536 } 2537 2538 /* 2539 * Used when an allocation is about to fail under memory pressure. This 2540 * potentially hurts the reliability of high-order allocations when under 2541 * intense memory pressure but failed atomic allocations should be easier 2542 * to recover from than an OOM. 2543 * 2544 * If @force is true, try to unreserve a pageblock even though highatomic 2545 * pageblock is exhausted. 2546 */ 2547 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2548 bool force) 2549 { 2550 struct zonelist *zonelist = ac->zonelist; 2551 unsigned long flags; 2552 struct zoneref *z; 2553 struct zone *zone; 2554 struct page *page; 2555 int order; 2556 bool ret; 2557 2558 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2559 ac->nodemask) { 2560 /* 2561 * Preserve at least one pageblock unless memory pressure 2562 * is really high. 2563 */ 2564 if (!force && zone->nr_reserved_highatomic <= 2565 pageblock_nr_pages) 2566 continue; 2567 2568 spin_lock_irqsave(&zone->lock, flags); 2569 for (order = 0; order < MAX_ORDER; order++) { 2570 struct free_area *area = &(zone->free_area[order]); 2571 2572 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2573 if (!page) 2574 continue; 2575 2576 /* 2577 * In page freeing path, migratetype change is racy so 2578 * we can counter several free pages in a pageblock 2579 * in this loop althoug we changed the pageblock type 2580 * from highatomic to ac->migratetype. So we should 2581 * adjust the count once. 2582 */ 2583 if (is_migrate_highatomic_page(page)) { 2584 /* 2585 * It should never happen but changes to 2586 * locking could inadvertently allow a per-cpu 2587 * drain to add pages to MIGRATE_HIGHATOMIC 2588 * while unreserving so be safe and watch for 2589 * underflows. 2590 */ 2591 zone->nr_reserved_highatomic -= min( 2592 pageblock_nr_pages, 2593 zone->nr_reserved_highatomic); 2594 } 2595 2596 /* 2597 * Convert to ac->migratetype and avoid the normal 2598 * pageblock stealing heuristics. Minimally, the caller 2599 * is doing the work and needs the pages. More 2600 * importantly, if the block was always converted to 2601 * MIGRATE_UNMOVABLE or another type then the number 2602 * of pageblocks that cannot be completely freed 2603 * may increase. 2604 */ 2605 set_pageblock_migratetype(page, ac->migratetype); 2606 ret = move_freepages_block(zone, page, ac->migratetype, 2607 NULL); 2608 if (ret) { 2609 spin_unlock_irqrestore(&zone->lock, flags); 2610 return ret; 2611 } 2612 } 2613 spin_unlock_irqrestore(&zone->lock, flags); 2614 } 2615 2616 return false; 2617 } 2618 2619 /* 2620 * Try finding a free buddy page on the fallback list and put it on the free 2621 * list of requested migratetype, possibly along with other pages from the same 2622 * block, depending on fragmentation avoidance heuristics. Returns true if 2623 * fallback was found so that __rmqueue_smallest() can grab it. 2624 * 2625 * The use of signed ints for order and current_order is a deliberate 2626 * deviation from the rest of this file, to make the for loop 2627 * condition simpler. 2628 */ 2629 static __always_inline bool 2630 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2631 unsigned int alloc_flags) 2632 { 2633 struct free_area *area; 2634 int current_order; 2635 int min_order = order; 2636 struct page *page; 2637 int fallback_mt; 2638 bool can_steal; 2639 2640 /* 2641 * Do not steal pages from freelists belonging to other pageblocks 2642 * i.e. orders < pageblock_order. If there are no local zones free, 2643 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2644 */ 2645 if (alloc_flags & ALLOC_NOFRAGMENT) 2646 min_order = pageblock_order; 2647 2648 /* 2649 * Find the largest available free page in the other list. This roughly 2650 * approximates finding the pageblock with the most free pages, which 2651 * would be too costly to do exactly. 2652 */ 2653 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2654 --current_order) { 2655 area = &(zone->free_area[current_order]); 2656 fallback_mt = find_suitable_fallback(area, current_order, 2657 start_migratetype, false, &can_steal); 2658 if (fallback_mt == -1) 2659 continue; 2660 2661 /* 2662 * We cannot steal all free pages from the pageblock and the 2663 * requested migratetype is movable. In that case it's better to 2664 * steal and split the smallest available page instead of the 2665 * largest available page, because even if the next movable 2666 * allocation falls back into a different pageblock than this 2667 * one, it won't cause permanent fragmentation. 2668 */ 2669 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2670 && current_order > order) 2671 goto find_smallest; 2672 2673 goto do_steal; 2674 } 2675 2676 return false; 2677 2678 find_smallest: 2679 for (current_order = order; current_order < MAX_ORDER; 2680 current_order++) { 2681 area = &(zone->free_area[current_order]); 2682 fallback_mt = find_suitable_fallback(area, current_order, 2683 start_migratetype, false, &can_steal); 2684 if (fallback_mt != -1) 2685 break; 2686 } 2687 2688 /* 2689 * This should not happen - we already found a suitable fallback 2690 * when looking for the largest page. 2691 */ 2692 VM_BUG_ON(current_order == MAX_ORDER); 2693 2694 do_steal: 2695 page = get_page_from_free_area(area, fallback_mt); 2696 2697 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2698 can_steal); 2699 2700 trace_mm_page_alloc_extfrag(page, order, current_order, 2701 start_migratetype, fallback_mt); 2702 2703 return true; 2704 2705 } 2706 2707 /* 2708 * Do the hard work of removing an element from the buddy allocator. 2709 * Call me with the zone->lock already held. 2710 */ 2711 static __always_inline struct page * 2712 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2713 unsigned int alloc_flags) 2714 { 2715 struct page *page; 2716 2717 retry: 2718 page = __rmqueue_smallest(zone, order, migratetype); 2719 if (unlikely(!page)) { 2720 if (migratetype == MIGRATE_MOVABLE) 2721 page = __rmqueue_cma_fallback(zone, order); 2722 2723 if (!page && __rmqueue_fallback(zone, order, migratetype, 2724 alloc_flags)) 2725 goto retry; 2726 } 2727 2728 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2729 return page; 2730 } 2731 2732 /* 2733 * Obtain a specified number of elements from the buddy allocator, all under 2734 * a single hold of the lock, for efficiency. Add them to the supplied list. 2735 * Returns the number of new pages which were placed at *list. 2736 */ 2737 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2738 unsigned long count, struct list_head *list, 2739 int migratetype, unsigned int alloc_flags) 2740 { 2741 int i, alloced = 0; 2742 2743 spin_lock(&zone->lock); 2744 for (i = 0; i < count; ++i) { 2745 struct page *page = __rmqueue(zone, order, migratetype, 2746 alloc_flags); 2747 if (unlikely(page == NULL)) 2748 break; 2749 2750 if (unlikely(check_pcp_refill(page))) 2751 continue; 2752 2753 /* 2754 * Split buddy pages returned by expand() are received here in 2755 * physical page order. The page is added to the tail of 2756 * caller's list. From the callers perspective, the linked list 2757 * is ordered by page number under some conditions. This is 2758 * useful for IO devices that can forward direction from the 2759 * head, thus also in the physical page order. This is useful 2760 * for IO devices that can merge IO requests if the physical 2761 * pages are ordered properly. 2762 */ 2763 list_add_tail(&page->lru, list); 2764 alloced++; 2765 if (is_migrate_cma(get_pcppage_migratetype(page))) 2766 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2767 -(1 << order)); 2768 } 2769 2770 /* 2771 * i pages were removed from the buddy list even if some leak due 2772 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2773 * on i. Do not confuse with 'alloced' which is the number of 2774 * pages added to the pcp list. 2775 */ 2776 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2777 spin_unlock(&zone->lock); 2778 return alloced; 2779 } 2780 2781 #ifdef CONFIG_NUMA 2782 /* 2783 * Called from the vmstat counter updater to drain pagesets of this 2784 * currently executing processor on remote nodes after they have 2785 * expired. 2786 * 2787 * Note that this function must be called with the thread pinned to 2788 * a single processor. 2789 */ 2790 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2791 { 2792 unsigned long flags; 2793 int to_drain, batch; 2794 2795 local_irq_save(flags); 2796 batch = READ_ONCE(pcp->batch); 2797 to_drain = min(pcp->count, batch); 2798 if (to_drain > 0) 2799 free_pcppages_bulk(zone, to_drain, pcp); 2800 local_irq_restore(flags); 2801 } 2802 #endif 2803 2804 /* 2805 * Drain pcplists of the indicated processor and zone. 2806 * 2807 * The processor must either be the current processor and the 2808 * thread pinned to the current processor or a processor that 2809 * is not online. 2810 */ 2811 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2812 { 2813 unsigned long flags; 2814 struct per_cpu_pageset *pset; 2815 struct per_cpu_pages *pcp; 2816 2817 local_irq_save(flags); 2818 pset = per_cpu_ptr(zone->pageset, cpu); 2819 2820 pcp = &pset->pcp; 2821 if (pcp->count) 2822 free_pcppages_bulk(zone, pcp->count, pcp); 2823 local_irq_restore(flags); 2824 } 2825 2826 /* 2827 * Drain pcplists of all zones on the indicated processor. 2828 * 2829 * The processor must either be the current processor and the 2830 * thread pinned to the current processor or a processor that 2831 * is not online. 2832 */ 2833 static void drain_pages(unsigned int cpu) 2834 { 2835 struct zone *zone; 2836 2837 for_each_populated_zone(zone) { 2838 drain_pages_zone(cpu, zone); 2839 } 2840 } 2841 2842 /* 2843 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2844 * 2845 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2846 * the single zone's pages. 2847 */ 2848 void drain_local_pages(struct zone *zone) 2849 { 2850 int cpu = smp_processor_id(); 2851 2852 if (zone) 2853 drain_pages_zone(cpu, zone); 2854 else 2855 drain_pages(cpu); 2856 } 2857 2858 static void drain_local_pages_wq(struct work_struct *work) 2859 { 2860 struct pcpu_drain *drain; 2861 2862 drain = container_of(work, struct pcpu_drain, work); 2863 2864 /* 2865 * drain_all_pages doesn't use proper cpu hotplug protection so 2866 * we can race with cpu offline when the WQ can move this from 2867 * a cpu pinned worker to an unbound one. We can operate on a different 2868 * cpu which is allright but we also have to make sure to not move to 2869 * a different one. 2870 */ 2871 preempt_disable(); 2872 drain_local_pages(drain->zone); 2873 preempt_enable(); 2874 } 2875 2876 /* 2877 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2878 * 2879 * When zone parameter is non-NULL, spill just the single zone's pages. 2880 * 2881 * Note that this can be extremely slow as the draining happens in a workqueue. 2882 */ 2883 void drain_all_pages(struct zone *zone) 2884 { 2885 int cpu; 2886 2887 /* 2888 * Allocate in the BSS so we wont require allocation in 2889 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2890 */ 2891 static cpumask_t cpus_with_pcps; 2892 2893 /* 2894 * Make sure nobody triggers this path before mm_percpu_wq is fully 2895 * initialized. 2896 */ 2897 if (WARN_ON_ONCE(!mm_percpu_wq)) 2898 return; 2899 2900 /* 2901 * Do not drain if one is already in progress unless it's specific to 2902 * a zone. Such callers are primarily CMA and memory hotplug and need 2903 * the drain to be complete when the call returns. 2904 */ 2905 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2906 if (!zone) 2907 return; 2908 mutex_lock(&pcpu_drain_mutex); 2909 } 2910 2911 /* 2912 * We don't care about racing with CPU hotplug event 2913 * as offline notification will cause the notified 2914 * cpu to drain that CPU pcps and on_each_cpu_mask 2915 * disables preemption as part of its processing 2916 */ 2917 for_each_online_cpu(cpu) { 2918 struct per_cpu_pageset *pcp; 2919 struct zone *z; 2920 bool has_pcps = false; 2921 2922 if (zone) { 2923 pcp = per_cpu_ptr(zone->pageset, cpu); 2924 if (pcp->pcp.count) 2925 has_pcps = true; 2926 } else { 2927 for_each_populated_zone(z) { 2928 pcp = per_cpu_ptr(z->pageset, cpu); 2929 if (pcp->pcp.count) { 2930 has_pcps = true; 2931 break; 2932 } 2933 } 2934 } 2935 2936 if (has_pcps) 2937 cpumask_set_cpu(cpu, &cpus_with_pcps); 2938 else 2939 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2940 } 2941 2942 for_each_cpu(cpu, &cpus_with_pcps) { 2943 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2944 2945 drain->zone = zone; 2946 INIT_WORK(&drain->work, drain_local_pages_wq); 2947 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2948 } 2949 for_each_cpu(cpu, &cpus_with_pcps) 2950 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2951 2952 mutex_unlock(&pcpu_drain_mutex); 2953 } 2954 2955 #ifdef CONFIG_HIBERNATION 2956 2957 /* 2958 * Touch the watchdog for every WD_PAGE_COUNT pages. 2959 */ 2960 #define WD_PAGE_COUNT (128*1024) 2961 2962 void mark_free_pages(struct zone *zone) 2963 { 2964 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2965 unsigned long flags; 2966 unsigned int order, t; 2967 struct page *page; 2968 2969 if (zone_is_empty(zone)) 2970 return; 2971 2972 spin_lock_irqsave(&zone->lock, flags); 2973 2974 max_zone_pfn = zone_end_pfn(zone); 2975 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2976 if (pfn_valid(pfn)) { 2977 page = pfn_to_page(pfn); 2978 2979 if (!--page_count) { 2980 touch_nmi_watchdog(); 2981 page_count = WD_PAGE_COUNT; 2982 } 2983 2984 if (page_zone(page) != zone) 2985 continue; 2986 2987 if (!swsusp_page_is_forbidden(page)) 2988 swsusp_unset_page_free(page); 2989 } 2990 2991 for_each_migratetype_order(order, t) { 2992 list_for_each_entry(page, 2993 &zone->free_area[order].free_list[t], lru) { 2994 unsigned long i; 2995 2996 pfn = page_to_pfn(page); 2997 for (i = 0; i < (1UL << order); i++) { 2998 if (!--page_count) { 2999 touch_nmi_watchdog(); 3000 page_count = WD_PAGE_COUNT; 3001 } 3002 swsusp_set_page_free(pfn_to_page(pfn + i)); 3003 } 3004 } 3005 } 3006 spin_unlock_irqrestore(&zone->lock, flags); 3007 } 3008 #endif /* CONFIG_PM */ 3009 3010 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3011 { 3012 int migratetype; 3013 3014 if (!free_pcp_prepare(page)) 3015 return false; 3016 3017 migratetype = get_pfnblock_migratetype(page, pfn); 3018 set_pcppage_migratetype(page, migratetype); 3019 return true; 3020 } 3021 3022 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3023 { 3024 struct zone *zone = page_zone(page); 3025 struct per_cpu_pages *pcp; 3026 int migratetype; 3027 3028 migratetype = get_pcppage_migratetype(page); 3029 __count_vm_event(PGFREE); 3030 3031 /* 3032 * We only track unmovable, reclaimable and movable on pcp lists. 3033 * Free ISOLATE pages back to the allocator because they are being 3034 * offlined but treat HIGHATOMIC as movable pages so we can get those 3035 * areas back if necessary. Otherwise, we may have to free 3036 * excessively into the page allocator 3037 */ 3038 if (migratetype >= MIGRATE_PCPTYPES) { 3039 if (unlikely(is_migrate_isolate(migratetype))) { 3040 free_one_page(zone, page, pfn, 0, migratetype); 3041 return; 3042 } 3043 migratetype = MIGRATE_MOVABLE; 3044 } 3045 3046 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3047 list_add(&page->lru, &pcp->lists[migratetype]); 3048 pcp->count++; 3049 if (pcp->count >= pcp->high) { 3050 unsigned long batch = READ_ONCE(pcp->batch); 3051 free_pcppages_bulk(zone, batch, pcp); 3052 } 3053 } 3054 3055 /* 3056 * Free a 0-order page 3057 */ 3058 void free_unref_page(struct page *page) 3059 { 3060 unsigned long flags; 3061 unsigned long pfn = page_to_pfn(page); 3062 3063 if (!free_unref_page_prepare(page, pfn)) 3064 return; 3065 3066 local_irq_save(flags); 3067 free_unref_page_commit(page, pfn); 3068 local_irq_restore(flags); 3069 } 3070 3071 /* 3072 * Free a list of 0-order pages 3073 */ 3074 void free_unref_page_list(struct list_head *list) 3075 { 3076 struct page *page, *next; 3077 unsigned long flags, pfn; 3078 int batch_count = 0; 3079 3080 /* Prepare pages for freeing */ 3081 list_for_each_entry_safe(page, next, list, lru) { 3082 pfn = page_to_pfn(page); 3083 if (!free_unref_page_prepare(page, pfn)) 3084 list_del(&page->lru); 3085 set_page_private(page, pfn); 3086 } 3087 3088 local_irq_save(flags); 3089 list_for_each_entry_safe(page, next, list, lru) { 3090 unsigned long pfn = page_private(page); 3091 3092 set_page_private(page, 0); 3093 trace_mm_page_free_batched(page); 3094 free_unref_page_commit(page, pfn); 3095 3096 /* 3097 * Guard against excessive IRQ disabled times when we get 3098 * a large list of pages to free. 3099 */ 3100 if (++batch_count == SWAP_CLUSTER_MAX) { 3101 local_irq_restore(flags); 3102 batch_count = 0; 3103 local_irq_save(flags); 3104 } 3105 } 3106 local_irq_restore(flags); 3107 } 3108 3109 /* 3110 * split_page takes a non-compound higher-order page, and splits it into 3111 * n (1<<order) sub-pages: page[0..n] 3112 * Each sub-page must be freed individually. 3113 * 3114 * Note: this is probably too low level an operation for use in drivers. 3115 * Please consult with lkml before using this in your driver. 3116 */ 3117 void split_page(struct page *page, unsigned int order) 3118 { 3119 int i; 3120 3121 VM_BUG_ON_PAGE(PageCompound(page), page); 3122 VM_BUG_ON_PAGE(!page_count(page), page); 3123 3124 for (i = 1; i < (1 << order); i++) 3125 set_page_refcounted(page + i); 3126 split_page_owner(page, order); 3127 } 3128 EXPORT_SYMBOL_GPL(split_page); 3129 3130 int __isolate_free_page(struct page *page, unsigned int order) 3131 { 3132 struct free_area *area = &page_zone(page)->free_area[order]; 3133 unsigned long watermark; 3134 struct zone *zone; 3135 int mt; 3136 3137 BUG_ON(!PageBuddy(page)); 3138 3139 zone = page_zone(page); 3140 mt = get_pageblock_migratetype(page); 3141 3142 if (!is_migrate_isolate(mt)) { 3143 /* 3144 * Obey watermarks as if the page was being allocated. We can 3145 * emulate a high-order watermark check with a raised order-0 3146 * watermark, because we already know our high-order page 3147 * exists. 3148 */ 3149 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3150 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3151 return 0; 3152 3153 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3154 } 3155 3156 /* Remove page from free list */ 3157 3158 del_page_from_free_area(page, area); 3159 3160 /* 3161 * Set the pageblock if the isolated page is at least half of a 3162 * pageblock 3163 */ 3164 if (order >= pageblock_order - 1) { 3165 struct page *endpage = page + (1 << order) - 1; 3166 for (; page < endpage; page += pageblock_nr_pages) { 3167 int mt = get_pageblock_migratetype(page); 3168 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3169 && !is_migrate_highatomic(mt)) 3170 set_pageblock_migratetype(page, 3171 MIGRATE_MOVABLE); 3172 } 3173 } 3174 3175 3176 return 1UL << order; 3177 } 3178 3179 /* 3180 * Update NUMA hit/miss statistics 3181 * 3182 * Must be called with interrupts disabled. 3183 */ 3184 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3185 { 3186 #ifdef CONFIG_NUMA 3187 enum numa_stat_item local_stat = NUMA_LOCAL; 3188 3189 /* skip numa counters update if numa stats is disabled */ 3190 if (!static_branch_likely(&vm_numa_stat_key)) 3191 return; 3192 3193 if (zone_to_nid(z) != numa_node_id()) 3194 local_stat = NUMA_OTHER; 3195 3196 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3197 __inc_numa_state(z, NUMA_HIT); 3198 else { 3199 __inc_numa_state(z, NUMA_MISS); 3200 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3201 } 3202 __inc_numa_state(z, local_stat); 3203 #endif 3204 } 3205 3206 /* Remove page from the per-cpu list, caller must protect the list */ 3207 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3208 unsigned int alloc_flags, 3209 struct per_cpu_pages *pcp, 3210 struct list_head *list) 3211 { 3212 struct page *page; 3213 3214 do { 3215 if (list_empty(list)) { 3216 pcp->count += rmqueue_bulk(zone, 0, 3217 pcp->batch, list, 3218 migratetype, alloc_flags); 3219 if (unlikely(list_empty(list))) 3220 return NULL; 3221 } 3222 3223 page = list_first_entry(list, struct page, lru); 3224 list_del(&page->lru); 3225 pcp->count--; 3226 } while (check_new_pcp(page)); 3227 3228 return page; 3229 } 3230 3231 /* Lock and remove page from the per-cpu list */ 3232 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3233 struct zone *zone, gfp_t gfp_flags, 3234 int migratetype, unsigned int alloc_flags) 3235 { 3236 struct per_cpu_pages *pcp; 3237 struct list_head *list; 3238 struct page *page; 3239 unsigned long flags; 3240 3241 local_irq_save(flags); 3242 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3243 list = &pcp->lists[migratetype]; 3244 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3245 if (page) { 3246 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3247 zone_statistics(preferred_zone, zone); 3248 } 3249 local_irq_restore(flags); 3250 return page; 3251 } 3252 3253 /* 3254 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3255 */ 3256 static inline 3257 struct page *rmqueue(struct zone *preferred_zone, 3258 struct zone *zone, unsigned int order, 3259 gfp_t gfp_flags, unsigned int alloc_flags, 3260 int migratetype) 3261 { 3262 unsigned long flags; 3263 struct page *page; 3264 3265 if (likely(order == 0)) { 3266 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3267 migratetype, alloc_flags); 3268 goto out; 3269 } 3270 3271 /* 3272 * We most definitely don't want callers attempting to 3273 * allocate greater than order-1 page units with __GFP_NOFAIL. 3274 */ 3275 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3276 spin_lock_irqsave(&zone->lock, flags); 3277 3278 do { 3279 page = NULL; 3280 if (alloc_flags & ALLOC_HARDER) { 3281 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3282 if (page) 3283 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3284 } 3285 if (!page) 3286 page = __rmqueue(zone, order, migratetype, alloc_flags); 3287 } while (page && check_new_pages(page, order)); 3288 spin_unlock(&zone->lock); 3289 if (!page) 3290 goto failed; 3291 __mod_zone_freepage_state(zone, -(1 << order), 3292 get_pcppage_migratetype(page)); 3293 3294 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3295 zone_statistics(preferred_zone, zone); 3296 local_irq_restore(flags); 3297 3298 out: 3299 /* Separate test+clear to avoid unnecessary atomics */ 3300 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3301 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3302 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3303 } 3304 3305 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3306 return page; 3307 3308 failed: 3309 local_irq_restore(flags); 3310 return NULL; 3311 } 3312 3313 #ifdef CONFIG_FAIL_PAGE_ALLOC 3314 3315 static struct { 3316 struct fault_attr attr; 3317 3318 bool ignore_gfp_highmem; 3319 bool ignore_gfp_reclaim; 3320 u32 min_order; 3321 } fail_page_alloc = { 3322 .attr = FAULT_ATTR_INITIALIZER, 3323 .ignore_gfp_reclaim = true, 3324 .ignore_gfp_highmem = true, 3325 .min_order = 1, 3326 }; 3327 3328 static int __init setup_fail_page_alloc(char *str) 3329 { 3330 return setup_fault_attr(&fail_page_alloc.attr, str); 3331 } 3332 __setup("fail_page_alloc=", setup_fail_page_alloc); 3333 3334 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3335 { 3336 if (order < fail_page_alloc.min_order) 3337 return false; 3338 if (gfp_mask & __GFP_NOFAIL) 3339 return false; 3340 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3341 return false; 3342 if (fail_page_alloc.ignore_gfp_reclaim && 3343 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3344 return false; 3345 3346 return should_fail(&fail_page_alloc.attr, 1 << order); 3347 } 3348 3349 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3350 3351 static int __init fail_page_alloc_debugfs(void) 3352 { 3353 umode_t mode = S_IFREG | 0600; 3354 struct dentry *dir; 3355 3356 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3357 &fail_page_alloc.attr); 3358 3359 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3360 &fail_page_alloc.ignore_gfp_reclaim); 3361 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3362 &fail_page_alloc.ignore_gfp_highmem); 3363 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3364 3365 return 0; 3366 } 3367 3368 late_initcall(fail_page_alloc_debugfs); 3369 3370 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3371 3372 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3373 3374 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3375 { 3376 return false; 3377 } 3378 3379 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3380 3381 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3382 { 3383 return __should_fail_alloc_page(gfp_mask, order); 3384 } 3385 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3386 3387 /* 3388 * Return true if free base pages are above 'mark'. For high-order checks it 3389 * will return true of the order-0 watermark is reached and there is at least 3390 * one free page of a suitable size. Checking now avoids taking the zone lock 3391 * to check in the allocation paths if no pages are free. 3392 */ 3393 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3394 int classzone_idx, unsigned int alloc_flags, 3395 long free_pages) 3396 { 3397 long min = mark; 3398 int o; 3399 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3400 3401 /* free_pages may go negative - that's OK */ 3402 free_pages -= (1 << order) - 1; 3403 3404 if (alloc_flags & ALLOC_HIGH) 3405 min -= min / 2; 3406 3407 /* 3408 * If the caller does not have rights to ALLOC_HARDER then subtract 3409 * the high-atomic reserves. This will over-estimate the size of the 3410 * atomic reserve but it avoids a search. 3411 */ 3412 if (likely(!alloc_harder)) { 3413 free_pages -= z->nr_reserved_highatomic; 3414 } else { 3415 /* 3416 * OOM victims can try even harder than normal ALLOC_HARDER 3417 * users on the grounds that it's definitely going to be in 3418 * the exit path shortly and free memory. Any allocation it 3419 * makes during the free path will be small and short-lived. 3420 */ 3421 if (alloc_flags & ALLOC_OOM) 3422 min -= min / 2; 3423 else 3424 min -= min / 4; 3425 } 3426 3427 3428 #ifdef CONFIG_CMA 3429 /* If allocation can't use CMA areas don't use free CMA pages */ 3430 if (!(alloc_flags & ALLOC_CMA)) 3431 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3432 #endif 3433 3434 /* 3435 * Check watermarks for an order-0 allocation request. If these 3436 * are not met, then a high-order request also cannot go ahead 3437 * even if a suitable page happened to be free. 3438 */ 3439 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3440 return false; 3441 3442 /* If this is an order-0 request then the watermark is fine */ 3443 if (!order) 3444 return true; 3445 3446 /* For a high-order request, check at least one suitable page is free */ 3447 for (o = order; o < MAX_ORDER; o++) { 3448 struct free_area *area = &z->free_area[o]; 3449 int mt; 3450 3451 if (!area->nr_free) 3452 continue; 3453 3454 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3455 if (!free_area_empty(area, mt)) 3456 return true; 3457 } 3458 3459 #ifdef CONFIG_CMA 3460 if ((alloc_flags & ALLOC_CMA) && 3461 !free_area_empty(area, MIGRATE_CMA)) { 3462 return true; 3463 } 3464 #endif 3465 if (alloc_harder && 3466 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3467 return true; 3468 } 3469 return false; 3470 } 3471 3472 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3473 int classzone_idx, unsigned int alloc_flags) 3474 { 3475 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3476 zone_page_state(z, NR_FREE_PAGES)); 3477 } 3478 3479 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3480 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3481 { 3482 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3483 long cma_pages = 0; 3484 3485 #ifdef CONFIG_CMA 3486 /* If allocation can't use CMA areas don't use free CMA pages */ 3487 if (!(alloc_flags & ALLOC_CMA)) 3488 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3489 #endif 3490 3491 /* 3492 * Fast check for order-0 only. If this fails then the reserves 3493 * need to be calculated. There is a corner case where the check 3494 * passes but only the high-order atomic reserve are free. If 3495 * the caller is !atomic then it'll uselessly search the free 3496 * list. That corner case is then slower but it is harmless. 3497 */ 3498 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3499 return true; 3500 3501 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3502 free_pages); 3503 } 3504 3505 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3506 unsigned long mark, int classzone_idx) 3507 { 3508 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3509 3510 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3511 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3512 3513 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3514 free_pages); 3515 } 3516 3517 #ifdef CONFIG_NUMA 3518 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3519 { 3520 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3521 node_reclaim_distance; 3522 } 3523 #else /* CONFIG_NUMA */ 3524 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3525 { 3526 return true; 3527 } 3528 #endif /* CONFIG_NUMA */ 3529 3530 /* 3531 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3532 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3533 * premature use of a lower zone may cause lowmem pressure problems that 3534 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3535 * probably too small. It only makes sense to spread allocations to avoid 3536 * fragmentation between the Normal and DMA32 zones. 3537 */ 3538 static inline unsigned int 3539 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3540 { 3541 unsigned int alloc_flags = 0; 3542 3543 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3544 alloc_flags |= ALLOC_KSWAPD; 3545 3546 #ifdef CONFIG_ZONE_DMA32 3547 if (!zone) 3548 return alloc_flags; 3549 3550 if (zone_idx(zone) != ZONE_NORMAL) 3551 return alloc_flags; 3552 3553 /* 3554 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3555 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3556 * on UMA that if Normal is populated then so is DMA32. 3557 */ 3558 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3559 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3560 return alloc_flags; 3561 3562 alloc_flags |= ALLOC_NOFRAGMENT; 3563 #endif /* CONFIG_ZONE_DMA32 */ 3564 return alloc_flags; 3565 } 3566 3567 /* 3568 * get_page_from_freelist goes through the zonelist trying to allocate 3569 * a page. 3570 */ 3571 static struct page * 3572 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3573 const struct alloc_context *ac) 3574 { 3575 struct zoneref *z; 3576 struct zone *zone; 3577 struct pglist_data *last_pgdat_dirty_limit = NULL; 3578 bool no_fallback; 3579 3580 retry: 3581 /* 3582 * Scan zonelist, looking for a zone with enough free. 3583 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3584 */ 3585 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3586 z = ac->preferred_zoneref; 3587 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3588 ac->nodemask) { 3589 struct page *page; 3590 unsigned long mark; 3591 3592 if (cpusets_enabled() && 3593 (alloc_flags & ALLOC_CPUSET) && 3594 !__cpuset_zone_allowed(zone, gfp_mask)) 3595 continue; 3596 /* 3597 * When allocating a page cache page for writing, we 3598 * want to get it from a node that is within its dirty 3599 * limit, such that no single node holds more than its 3600 * proportional share of globally allowed dirty pages. 3601 * The dirty limits take into account the node's 3602 * lowmem reserves and high watermark so that kswapd 3603 * should be able to balance it without having to 3604 * write pages from its LRU list. 3605 * 3606 * XXX: For now, allow allocations to potentially 3607 * exceed the per-node dirty limit in the slowpath 3608 * (spread_dirty_pages unset) before going into reclaim, 3609 * which is important when on a NUMA setup the allowed 3610 * nodes are together not big enough to reach the 3611 * global limit. The proper fix for these situations 3612 * will require awareness of nodes in the 3613 * dirty-throttling and the flusher threads. 3614 */ 3615 if (ac->spread_dirty_pages) { 3616 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3617 continue; 3618 3619 if (!node_dirty_ok(zone->zone_pgdat)) { 3620 last_pgdat_dirty_limit = zone->zone_pgdat; 3621 continue; 3622 } 3623 } 3624 3625 if (no_fallback && nr_online_nodes > 1 && 3626 zone != ac->preferred_zoneref->zone) { 3627 int local_nid; 3628 3629 /* 3630 * If moving to a remote node, retry but allow 3631 * fragmenting fallbacks. Locality is more important 3632 * than fragmentation avoidance. 3633 */ 3634 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3635 if (zone_to_nid(zone) != local_nid) { 3636 alloc_flags &= ~ALLOC_NOFRAGMENT; 3637 goto retry; 3638 } 3639 } 3640 3641 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3642 if (!zone_watermark_fast(zone, order, mark, 3643 ac_classzone_idx(ac), alloc_flags)) { 3644 int ret; 3645 3646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3647 /* 3648 * Watermark failed for this zone, but see if we can 3649 * grow this zone if it contains deferred pages. 3650 */ 3651 if (static_branch_unlikely(&deferred_pages)) { 3652 if (_deferred_grow_zone(zone, order)) 3653 goto try_this_zone; 3654 } 3655 #endif 3656 /* Checked here to keep the fast path fast */ 3657 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3658 if (alloc_flags & ALLOC_NO_WATERMARKS) 3659 goto try_this_zone; 3660 3661 if (node_reclaim_mode == 0 || 3662 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3663 continue; 3664 3665 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3666 switch (ret) { 3667 case NODE_RECLAIM_NOSCAN: 3668 /* did not scan */ 3669 continue; 3670 case NODE_RECLAIM_FULL: 3671 /* scanned but unreclaimable */ 3672 continue; 3673 default: 3674 /* did we reclaim enough */ 3675 if (zone_watermark_ok(zone, order, mark, 3676 ac_classzone_idx(ac), alloc_flags)) 3677 goto try_this_zone; 3678 3679 continue; 3680 } 3681 } 3682 3683 try_this_zone: 3684 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3685 gfp_mask, alloc_flags, ac->migratetype); 3686 if (page) { 3687 prep_new_page(page, order, gfp_mask, alloc_flags); 3688 3689 /* 3690 * If this is a high-order atomic allocation then check 3691 * if the pageblock should be reserved for the future 3692 */ 3693 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3694 reserve_highatomic_pageblock(page, zone, order); 3695 3696 return page; 3697 } else { 3698 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3699 /* Try again if zone has deferred pages */ 3700 if (static_branch_unlikely(&deferred_pages)) { 3701 if (_deferred_grow_zone(zone, order)) 3702 goto try_this_zone; 3703 } 3704 #endif 3705 } 3706 } 3707 3708 /* 3709 * It's possible on a UMA machine to get through all zones that are 3710 * fragmented. If avoiding fragmentation, reset and try again. 3711 */ 3712 if (no_fallback) { 3713 alloc_flags &= ~ALLOC_NOFRAGMENT; 3714 goto retry; 3715 } 3716 3717 return NULL; 3718 } 3719 3720 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3721 { 3722 unsigned int filter = SHOW_MEM_FILTER_NODES; 3723 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3724 3725 if (!__ratelimit(&show_mem_rs)) 3726 return; 3727 3728 /* 3729 * This documents exceptions given to allocations in certain 3730 * contexts that are allowed to allocate outside current's set 3731 * of allowed nodes. 3732 */ 3733 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3734 if (tsk_is_oom_victim(current) || 3735 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3736 filter &= ~SHOW_MEM_FILTER_NODES; 3737 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3738 filter &= ~SHOW_MEM_FILTER_NODES; 3739 3740 show_mem(filter, nodemask); 3741 } 3742 3743 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3744 { 3745 struct va_format vaf; 3746 va_list args; 3747 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3748 DEFAULT_RATELIMIT_BURST); 3749 3750 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3751 return; 3752 3753 va_start(args, fmt); 3754 vaf.fmt = fmt; 3755 vaf.va = &args; 3756 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3757 current->comm, &vaf, gfp_mask, &gfp_mask, 3758 nodemask_pr_args(nodemask)); 3759 va_end(args); 3760 3761 cpuset_print_current_mems_allowed(); 3762 pr_cont("\n"); 3763 dump_stack(); 3764 warn_alloc_show_mem(gfp_mask, nodemask); 3765 } 3766 3767 static inline struct page * 3768 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3769 unsigned int alloc_flags, 3770 const struct alloc_context *ac) 3771 { 3772 struct page *page; 3773 3774 page = get_page_from_freelist(gfp_mask, order, 3775 alloc_flags|ALLOC_CPUSET, ac); 3776 /* 3777 * fallback to ignore cpuset restriction if our nodes 3778 * are depleted 3779 */ 3780 if (!page) 3781 page = get_page_from_freelist(gfp_mask, order, 3782 alloc_flags, ac); 3783 3784 return page; 3785 } 3786 3787 static inline struct page * 3788 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3789 const struct alloc_context *ac, unsigned long *did_some_progress) 3790 { 3791 struct oom_control oc = { 3792 .zonelist = ac->zonelist, 3793 .nodemask = ac->nodemask, 3794 .memcg = NULL, 3795 .gfp_mask = gfp_mask, 3796 .order = order, 3797 }; 3798 struct page *page; 3799 3800 *did_some_progress = 0; 3801 3802 /* 3803 * Acquire the oom lock. If that fails, somebody else is 3804 * making progress for us. 3805 */ 3806 if (!mutex_trylock(&oom_lock)) { 3807 *did_some_progress = 1; 3808 schedule_timeout_uninterruptible(1); 3809 return NULL; 3810 } 3811 3812 /* 3813 * Go through the zonelist yet one more time, keep very high watermark 3814 * here, this is only to catch a parallel oom killing, we must fail if 3815 * we're still under heavy pressure. But make sure that this reclaim 3816 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3817 * allocation which will never fail due to oom_lock already held. 3818 */ 3819 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3820 ~__GFP_DIRECT_RECLAIM, order, 3821 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3822 if (page) 3823 goto out; 3824 3825 /* Coredumps can quickly deplete all memory reserves */ 3826 if (current->flags & PF_DUMPCORE) 3827 goto out; 3828 /* The OOM killer will not help higher order allocs */ 3829 if (order > PAGE_ALLOC_COSTLY_ORDER) 3830 goto out; 3831 /* 3832 * We have already exhausted all our reclaim opportunities without any 3833 * success so it is time to admit defeat. We will skip the OOM killer 3834 * because it is very likely that the caller has a more reasonable 3835 * fallback than shooting a random task. 3836 */ 3837 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3838 goto out; 3839 /* The OOM killer does not needlessly kill tasks for lowmem */ 3840 if (ac->high_zoneidx < ZONE_NORMAL) 3841 goto out; 3842 if (pm_suspended_storage()) 3843 goto out; 3844 /* 3845 * XXX: GFP_NOFS allocations should rather fail than rely on 3846 * other request to make a forward progress. 3847 * We are in an unfortunate situation where out_of_memory cannot 3848 * do much for this context but let's try it to at least get 3849 * access to memory reserved if the current task is killed (see 3850 * out_of_memory). Once filesystems are ready to handle allocation 3851 * failures more gracefully we should just bail out here. 3852 */ 3853 3854 /* The OOM killer may not free memory on a specific node */ 3855 if (gfp_mask & __GFP_THISNODE) 3856 goto out; 3857 3858 /* Exhausted what can be done so it's blame time */ 3859 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3860 *did_some_progress = 1; 3861 3862 /* 3863 * Help non-failing allocations by giving them access to memory 3864 * reserves 3865 */ 3866 if (gfp_mask & __GFP_NOFAIL) 3867 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3868 ALLOC_NO_WATERMARKS, ac); 3869 } 3870 out: 3871 mutex_unlock(&oom_lock); 3872 return page; 3873 } 3874 3875 /* 3876 * Maximum number of compaction retries wit a progress before OOM 3877 * killer is consider as the only way to move forward. 3878 */ 3879 #define MAX_COMPACT_RETRIES 16 3880 3881 #ifdef CONFIG_COMPACTION 3882 /* Try memory compaction for high-order allocations before reclaim */ 3883 static struct page * 3884 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3885 unsigned int alloc_flags, const struct alloc_context *ac, 3886 enum compact_priority prio, enum compact_result *compact_result) 3887 { 3888 struct page *page = NULL; 3889 unsigned long pflags; 3890 unsigned int noreclaim_flag; 3891 3892 if (!order) 3893 return NULL; 3894 3895 psi_memstall_enter(&pflags); 3896 noreclaim_flag = memalloc_noreclaim_save(); 3897 3898 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3899 prio, &page); 3900 3901 memalloc_noreclaim_restore(noreclaim_flag); 3902 psi_memstall_leave(&pflags); 3903 3904 /* 3905 * At least in one zone compaction wasn't deferred or skipped, so let's 3906 * count a compaction stall 3907 */ 3908 count_vm_event(COMPACTSTALL); 3909 3910 /* Prep a captured page if available */ 3911 if (page) 3912 prep_new_page(page, order, gfp_mask, alloc_flags); 3913 3914 /* Try get a page from the freelist if available */ 3915 if (!page) 3916 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3917 3918 if (page) { 3919 struct zone *zone = page_zone(page); 3920 3921 zone->compact_blockskip_flush = false; 3922 compaction_defer_reset(zone, order, true); 3923 count_vm_event(COMPACTSUCCESS); 3924 return page; 3925 } 3926 3927 /* 3928 * It's bad if compaction run occurs and fails. The most likely reason 3929 * is that pages exist, but not enough to satisfy watermarks. 3930 */ 3931 count_vm_event(COMPACTFAIL); 3932 3933 cond_resched(); 3934 3935 return NULL; 3936 } 3937 3938 static inline bool 3939 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3940 enum compact_result compact_result, 3941 enum compact_priority *compact_priority, 3942 int *compaction_retries) 3943 { 3944 int max_retries = MAX_COMPACT_RETRIES; 3945 int min_priority; 3946 bool ret = false; 3947 int retries = *compaction_retries; 3948 enum compact_priority priority = *compact_priority; 3949 3950 if (!order) 3951 return false; 3952 3953 if (compaction_made_progress(compact_result)) 3954 (*compaction_retries)++; 3955 3956 /* 3957 * compaction considers all the zone as desperately out of memory 3958 * so it doesn't really make much sense to retry except when the 3959 * failure could be caused by insufficient priority 3960 */ 3961 if (compaction_failed(compact_result)) 3962 goto check_priority; 3963 3964 /* 3965 * compaction was skipped because there are not enough order-0 pages 3966 * to work with, so we retry only if it looks like reclaim can help. 3967 */ 3968 if (compaction_needs_reclaim(compact_result)) { 3969 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3970 goto out; 3971 } 3972 3973 /* 3974 * make sure the compaction wasn't deferred or didn't bail out early 3975 * due to locks contention before we declare that we should give up. 3976 * But the next retry should use a higher priority if allowed, so 3977 * we don't just keep bailing out endlessly. 3978 */ 3979 if (compaction_withdrawn(compact_result)) { 3980 goto check_priority; 3981 } 3982 3983 /* 3984 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3985 * costly ones because they are de facto nofail and invoke OOM 3986 * killer to move on while costly can fail and users are ready 3987 * to cope with that. 1/4 retries is rather arbitrary but we 3988 * would need much more detailed feedback from compaction to 3989 * make a better decision. 3990 */ 3991 if (order > PAGE_ALLOC_COSTLY_ORDER) 3992 max_retries /= 4; 3993 if (*compaction_retries <= max_retries) { 3994 ret = true; 3995 goto out; 3996 } 3997 3998 /* 3999 * Make sure there are attempts at the highest priority if we exhausted 4000 * all retries or failed at the lower priorities. 4001 */ 4002 check_priority: 4003 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4004 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4005 4006 if (*compact_priority > min_priority) { 4007 (*compact_priority)--; 4008 *compaction_retries = 0; 4009 ret = true; 4010 } 4011 out: 4012 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4013 return ret; 4014 } 4015 #else 4016 static inline struct page * 4017 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4018 unsigned int alloc_flags, const struct alloc_context *ac, 4019 enum compact_priority prio, enum compact_result *compact_result) 4020 { 4021 *compact_result = COMPACT_SKIPPED; 4022 return NULL; 4023 } 4024 4025 static inline bool 4026 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4027 enum compact_result compact_result, 4028 enum compact_priority *compact_priority, 4029 int *compaction_retries) 4030 { 4031 struct zone *zone; 4032 struct zoneref *z; 4033 4034 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4035 return false; 4036 4037 /* 4038 * There are setups with compaction disabled which would prefer to loop 4039 * inside the allocator rather than hit the oom killer prematurely. 4040 * Let's give them a good hope and keep retrying while the order-0 4041 * watermarks are OK. 4042 */ 4043 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4044 ac->nodemask) { 4045 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4046 ac_classzone_idx(ac), alloc_flags)) 4047 return true; 4048 } 4049 return false; 4050 } 4051 #endif /* CONFIG_COMPACTION */ 4052 4053 #ifdef CONFIG_LOCKDEP 4054 static struct lockdep_map __fs_reclaim_map = 4055 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4056 4057 static bool __need_fs_reclaim(gfp_t gfp_mask) 4058 { 4059 gfp_mask = current_gfp_context(gfp_mask); 4060 4061 /* no reclaim without waiting on it */ 4062 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4063 return false; 4064 4065 /* this guy won't enter reclaim */ 4066 if (current->flags & PF_MEMALLOC) 4067 return false; 4068 4069 /* We're only interested __GFP_FS allocations for now */ 4070 if (!(gfp_mask & __GFP_FS)) 4071 return false; 4072 4073 if (gfp_mask & __GFP_NOLOCKDEP) 4074 return false; 4075 4076 return true; 4077 } 4078 4079 void __fs_reclaim_acquire(void) 4080 { 4081 lock_map_acquire(&__fs_reclaim_map); 4082 } 4083 4084 void __fs_reclaim_release(void) 4085 { 4086 lock_map_release(&__fs_reclaim_map); 4087 } 4088 4089 void fs_reclaim_acquire(gfp_t gfp_mask) 4090 { 4091 if (__need_fs_reclaim(gfp_mask)) 4092 __fs_reclaim_acquire(); 4093 } 4094 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4095 4096 void fs_reclaim_release(gfp_t gfp_mask) 4097 { 4098 if (__need_fs_reclaim(gfp_mask)) 4099 __fs_reclaim_release(); 4100 } 4101 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4102 #endif 4103 4104 /* Perform direct synchronous page reclaim */ 4105 static int 4106 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4107 const struct alloc_context *ac) 4108 { 4109 int progress; 4110 unsigned int noreclaim_flag; 4111 unsigned long pflags; 4112 4113 cond_resched(); 4114 4115 /* We now go into synchronous reclaim */ 4116 cpuset_memory_pressure_bump(); 4117 psi_memstall_enter(&pflags); 4118 fs_reclaim_acquire(gfp_mask); 4119 noreclaim_flag = memalloc_noreclaim_save(); 4120 4121 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4122 ac->nodemask); 4123 4124 memalloc_noreclaim_restore(noreclaim_flag); 4125 fs_reclaim_release(gfp_mask); 4126 psi_memstall_leave(&pflags); 4127 4128 cond_resched(); 4129 4130 return progress; 4131 } 4132 4133 /* The really slow allocator path where we enter direct reclaim */ 4134 static inline struct page * 4135 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4136 unsigned int alloc_flags, const struct alloc_context *ac, 4137 unsigned long *did_some_progress) 4138 { 4139 struct page *page = NULL; 4140 bool drained = false; 4141 4142 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4143 if (unlikely(!(*did_some_progress))) 4144 return NULL; 4145 4146 retry: 4147 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4148 4149 /* 4150 * If an allocation failed after direct reclaim, it could be because 4151 * pages are pinned on the per-cpu lists or in high alloc reserves. 4152 * Shrink them them and try again 4153 */ 4154 if (!page && !drained) { 4155 unreserve_highatomic_pageblock(ac, false); 4156 drain_all_pages(NULL); 4157 drained = true; 4158 goto retry; 4159 } 4160 4161 return page; 4162 } 4163 4164 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4165 const struct alloc_context *ac) 4166 { 4167 struct zoneref *z; 4168 struct zone *zone; 4169 pg_data_t *last_pgdat = NULL; 4170 enum zone_type high_zoneidx = ac->high_zoneidx; 4171 4172 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4173 ac->nodemask) { 4174 if (last_pgdat != zone->zone_pgdat) 4175 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4176 last_pgdat = zone->zone_pgdat; 4177 } 4178 } 4179 4180 static inline unsigned int 4181 gfp_to_alloc_flags(gfp_t gfp_mask) 4182 { 4183 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4184 4185 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 4186 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4187 4188 /* 4189 * The caller may dip into page reserves a bit more if the caller 4190 * cannot run direct reclaim, or if the caller has realtime scheduling 4191 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4192 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4193 */ 4194 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 4195 4196 if (gfp_mask & __GFP_ATOMIC) { 4197 /* 4198 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4199 * if it can't schedule. 4200 */ 4201 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4202 alloc_flags |= ALLOC_HARDER; 4203 /* 4204 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4205 * comment for __cpuset_node_allowed(). 4206 */ 4207 alloc_flags &= ~ALLOC_CPUSET; 4208 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4209 alloc_flags |= ALLOC_HARDER; 4210 4211 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4212 alloc_flags |= ALLOC_KSWAPD; 4213 4214 #ifdef CONFIG_CMA 4215 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4216 alloc_flags |= ALLOC_CMA; 4217 #endif 4218 return alloc_flags; 4219 } 4220 4221 static bool oom_reserves_allowed(struct task_struct *tsk) 4222 { 4223 if (!tsk_is_oom_victim(tsk)) 4224 return false; 4225 4226 /* 4227 * !MMU doesn't have oom reaper so give access to memory reserves 4228 * only to the thread with TIF_MEMDIE set 4229 */ 4230 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4231 return false; 4232 4233 return true; 4234 } 4235 4236 /* 4237 * Distinguish requests which really need access to full memory 4238 * reserves from oom victims which can live with a portion of it 4239 */ 4240 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4241 { 4242 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4243 return 0; 4244 if (gfp_mask & __GFP_MEMALLOC) 4245 return ALLOC_NO_WATERMARKS; 4246 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4247 return ALLOC_NO_WATERMARKS; 4248 if (!in_interrupt()) { 4249 if (current->flags & PF_MEMALLOC) 4250 return ALLOC_NO_WATERMARKS; 4251 else if (oom_reserves_allowed(current)) 4252 return ALLOC_OOM; 4253 } 4254 4255 return 0; 4256 } 4257 4258 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4259 { 4260 return !!__gfp_pfmemalloc_flags(gfp_mask); 4261 } 4262 4263 /* 4264 * Checks whether it makes sense to retry the reclaim to make a forward progress 4265 * for the given allocation request. 4266 * 4267 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4268 * without success, or when we couldn't even meet the watermark if we 4269 * reclaimed all remaining pages on the LRU lists. 4270 * 4271 * Returns true if a retry is viable or false to enter the oom path. 4272 */ 4273 static inline bool 4274 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4275 struct alloc_context *ac, int alloc_flags, 4276 bool did_some_progress, int *no_progress_loops) 4277 { 4278 struct zone *zone; 4279 struct zoneref *z; 4280 bool ret = false; 4281 4282 /* 4283 * Costly allocations might have made a progress but this doesn't mean 4284 * their order will become available due to high fragmentation so 4285 * always increment the no progress counter for them 4286 */ 4287 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4288 *no_progress_loops = 0; 4289 else 4290 (*no_progress_loops)++; 4291 4292 /* 4293 * Make sure we converge to OOM if we cannot make any progress 4294 * several times in the row. 4295 */ 4296 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4297 /* Before OOM, exhaust highatomic_reserve */ 4298 return unreserve_highatomic_pageblock(ac, true); 4299 } 4300 4301 /* 4302 * Keep reclaiming pages while there is a chance this will lead 4303 * somewhere. If none of the target zones can satisfy our allocation 4304 * request even if all reclaimable pages are considered then we are 4305 * screwed and have to go OOM. 4306 */ 4307 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4308 ac->nodemask) { 4309 unsigned long available; 4310 unsigned long reclaimable; 4311 unsigned long min_wmark = min_wmark_pages(zone); 4312 bool wmark; 4313 4314 available = reclaimable = zone_reclaimable_pages(zone); 4315 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4316 4317 /* 4318 * Would the allocation succeed if we reclaimed all 4319 * reclaimable pages? 4320 */ 4321 wmark = __zone_watermark_ok(zone, order, min_wmark, 4322 ac_classzone_idx(ac), alloc_flags, available); 4323 trace_reclaim_retry_zone(z, order, reclaimable, 4324 available, min_wmark, *no_progress_loops, wmark); 4325 if (wmark) { 4326 /* 4327 * If we didn't make any progress and have a lot of 4328 * dirty + writeback pages then we should wait for 4329 * an IO to complete to slow down the reclaim and 4330 * prevent from pre mature OOM 4331 */ 4332 if (!did_some_progress) { 4333 unsigned long write_pending; 4334 4335 write_pending = zone_page_state_snapshot(zone, 4336 NR_ZONE_WRITE_PENDING); 4337 4338 if (2 * write_pending > reclaimable) { 4339 congestion_wait(BLK_RW_ASYNC, HZ/10); 4340 return true; 4341 } 4342 } 4343 4344 ret = true; 4345 goto out; 4346 } 4347 } 4348 4349 out: 4350 /* 4351 * Memory allocation/reclaim might be called from a WQ context and the 4352 * current implementation of the WQ concurrency control doesn't 4353 * recognize that a particular WQ is congested if the worker thread is 4354 * looping without ever sleeping. Therefore we have to do a short sleep 4355 * here rather than calling cond_resched(). 4356 */ 4357 if (current->flags & PF_WQ_WORKER) 4358 schedule_timeout_uninterruptible(1); 4359 else 4360 cond_resched(); 4361 return ret; 4362 } 4363 4364 static inline bool 4365 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4366 { 4367 /* 4368 * It's possible that cpuset's mems_allowed and the nodemask from 4369 * mempolicy don't intersect. This should be normally dealt with by 4370 * policy_nodemask(), but it's possible to race with cpuset update in 4371 * such a way the check therein was true, and then it became false 4372 * before we got our cpuset_mems_cookie here. 4373 * This assumes that for all allocations, ac->nodemask can come only 4374 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4375 * when it does not intersect with the cpuset restrictions) or the 4376 * caller can deal with a violated nodemask. 4377 */ 4378 if (cpusets_enabled() && ac->nodemask && 4379 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4380 ac->nodemask = NULL; 4381 return true; 4382 } 4383 4384 /* 4385 * When updating a task's mems_allowed or mempolicy nodemask, it is 4386 * possible to race with parallel threads in such a way that our 4387 * allocation can fail while the mask is being updated. If we are about 4388 * to fail, check if the cpuset changed during allocation and if so, 4389 * retry. 4390 */ 4391 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4392 return true; 4393 4394 return false; 4395 } 4396 4397 static inline struct page * 4398 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4399 struct alloc_context *ac) 4400 { 4401 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4402 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4403 struct page *page = NULL; 4404 unsigned int alloc_flags; 4405 unsigned long did_some_progress; 4406 enum compact_priority compact_priority; 4407 enum compact_result compact_result; 4408 int compaction_retries; 4409 int no_progress_loops; 4410 unsigned int cpuset_mems_cookie; 4411 int reserve_flags; 4412 4413 /* 4414 * We also sanity check to catch abuse of atomic reserves being used by 4415 * callers that are not in atomic context. 4416 */ 4417 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4418 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4419 gfp_mask &= ~__GFP_ATOMIC; 4420 4421 retry_cpuset: 4422 compaction_retries = 0; 4423 no_progress_loops = 0; 4424 compact_priority = DEF_COMPACT_PRIORITY; 4425 cpuset_mems_cookie = read_mems_allowed_begin(); 4426 4427 /* 4428 * The fast path uses conservative alloc_flags to succeed only until 4429 * kswapd needs to be woken up, and to avoid the cost of setting up 4430 * alloc_flags precisely. So we do that now. 4431 */ 4432 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4433 4434 /* 4435 * We need to recalculate the starting point for the zonelist iterator 4436 * because we might have used different nodemask in the fast path, or 4437 * there was a cpuset modification and we are retrying - otherwise we 4438 * could end up iterating over non-eligible zones endlessly. 4439 */ 4440 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4441 ac->high_zoneidx, ac->nodemask); 4442 if (!ac->preferred_zoneref->zone) 4443 goto nopage; 4444 4445 if (alloc_flags & ALLOC_KSWAPD) 4446 wake_all_kswapds(order, gfp_mask, ac); 4447 4448 /* 4449 * The adjusted alloc_flags might result in immediate success, so try 4450 * that first 4451 */ 4452 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4453 if (page) 4454 goto got_pg; 4455 4456 /* 4457 * For costly allocations, try direct compaction first, as it's likely 4458 * that we have enough base pages and don't need to reclaim. For non- 4459 * movable high-order allocations, do that as well, as compaction will 4460 * try prevent permanent fragmentation by migrating from blocks of the 4461 * same migratetype. 4462 * Don't try this for allocations that are allowed to ignore 4463 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4464 */ 4465 if (can_direct_reclaim && 4466 (costly_order || 4467 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4468 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4469 page = __alloc_pages_direct_compact(gfp_mask, order, 4470 alloc_flags, ac, 4471 INIT_COMPACT_PRIORITY, 4472 &compact_result); 4473 if (page) 4474 goto got_pg; 4475 4476 if (order >= pageblock_order && (gfp_mask & __GFP_IO) && 4477 !(gfp_mask & __GFP_RETRY_MAYFAIL)) { 4478 /* 4479 * If allocating entire pageblock(s) and compaction 4480 * failed because all zones are below low watermarks 4481 * or is prohibited because it recently failed at this 4482 * order, fail immediately unless the allocator has 4483 * requested compaction and reclaim retry. 4484 * 4485 * Reclaim is 4486 * - potentially very expensive because zones are far 4487 * below their low watermarks or this is part of very 4488 * bursty high order allocations, 4489 * - not guaranteed to help because isolate_freepages() 4490 * may not iterate over freed pages as part of its 4491 * linear scan, and 4492 * - unlikely to make entire pageblocks free on its 4493 * own. 4494 */ 4495 if (compact_result == COMPACT_SKIPPED || 4496 compact_result == COMPACT_DEFERRED) 4497 goto nopage; 4498 } 4499 4500 /* 4501 * Checks for costly allocations with __GFP_NORETRY, which 4502 * includes THP page fault allocations 4503 */ 4504 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4505 /* 4506 * If compaction is deferred for high-order allocations, 4507 * it is because sync compaction recently failed. If 4508 * this is the case and the caller requested a THP 4509 * allocation, we do not want to heavily disrupt the 4510 * system, so we fail the allocation instead of entering 4511 * direct reclaim. 4512 */ 4513 if (compact_result == COMPACT_DEFERRED) 4514 goto nopage; 4515 4516 /* 4517 * Looks like reclaim/compaction is worth trying, but 4518 * sync compaction could be very expensive, so keep 4519 * using async compaction. 4520 */ 4521 compact_priority = INIT_COMPACT_PRIORITY; 4522 } 4523 } 4524 4525 retry: 4526 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4527 if (alloc_flags & ALLOC_KSWAPD) 4528 wake_all_kswapds(order, gfp_mask, ac); 4529 4530 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4531 if (reserve_flags) 4532 alloc_flags = reserve_flags; 4533 4534 /* 4535 * Reset the nodemask and zonelist iterators if memory policies can be 4536 * ignored. These allocations are high priority and system rather than 4537 * user oriented. 4538 */ 4539 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4540 ac->nodemask = NULL; 4541 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4542 ac->high_zoneidx, ac->nodemask); 4543 } 4544 4545 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4546 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4547 if (page) 4548 goto got_pg; 4549 4550 /* Caller is not willing to reclaim, we can't balance anything */ 4551 if (!can_direct_reclaim) 4552 goto nopage; 4553 4554 /* Avoid recursion of direct reclaim */ 4555 if (current->flags & PF_MEMALLOC) 4556 goto nopage; 4557 4558 /* Try direct reclaim and then allocating */ 4559 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4560 &did_some_progress); 4561 if (page) 4562 goto got_pg; 4563 4564 /* Try direct compaction and then allocating */ 4565 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4566 compact_priority, &compact_result); 4567 if (page) 4568 goto got_pg; 4569 4570 /* Do not loop if specifically requested */ 4571 if (gfp_mask & __GFP_NORETRY) 4572 goto nopage; 4573 4574 /* 4575 * Do not retry costly high order allocations unless they are 4576 * __GFP_RETRY_MAYFAIL 4577 */ 4578 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4579 goto nopage; 4580 4581 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4582 did_some_progress > 0, &no_progress_loops)) 4583 goto retry; 4584 4585 /* 4586 * It doesn't make any sense to retry for the compaction if the order-0 4587 * reclaim is not able to make any progress because the current 4588 * implementation of the compaction depends on the sufficient amount 4589 * of free memory (see __compaction_suitable) 4590 */ 4591 if (did_some_progress > 0 && 4592 should_compact_retry(ac, order, alloc_flags, 4593 compact_result, &compact_priority, 4594 &compaction_retries)) 4595 goto retry; 4596 4597 4598 /* Deal with possible cpuset update races before we start OOM killing */ 4599 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4600 goto retry_cpuset; 4601 4602 /* Reclaim has failed us, start killing things */ 4603 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4604 if (page) 4605 goto got_pg; 4606 4607 /* Avoid allocations with no watermarks from looping endlessly */ 4608 if (tsk_is_oom_victim(current) && 4609 (alloc_flags == ALLOC_OOM || 4610 (gfp_mask & __GFP_NOMEMALLOC))) 4611 goto nopage; 4612 4613 /* Retry as long as the OOM killer is making progress */ 4614 if (did_some_progress) { 4615 no_progress_loops = 0; 4616 goto retry; 4617 } 4618 4619 nopage: 4620 /* Deal with possible cpuset update races before we fail */ 4621 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4622 goto retry_cpuset; 4623 4624 /* 4625 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4626 * we always retry 4627 */ 4628 if (gfp_mask & __GFP_NOFAIL) { 4629 /* 4630 * All existing users of the __GFP_NOFAIL are blockable, so warn 4631 * of any new users that actually require GFP_NOWAIT 4632 */ 4633 if (WARN_ON_ONCE(!can_direct_reclaim)) 4634 goto fail; 4635 4636 /* 4637 * PF_MEMALLOC request from this context is rather bizarre 4638 * because we cannot reclaim anything and only can loop waiting 4639 * for somebody to do a work for us 4640 */ 4641 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4642 4643 /* 4644 * non failing costly orders are a hard requirement which we 4645 * are not prepared for much so let's warn about these users 4646 * so that we can identify them and convert them to something 4647 * else. 4648 */ 4649 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4650 4651 /* 4652 * Help non-failing allocations by giving them access to memory 4653 * reserves but do not use ALLOC_NO_WATERMARKS because this 4654 * could deplete whole memory reserves which would just make 4655 * the situation worse 4656 */ 4657 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4658 if (page) 4659 goto got_pg; 4660 4661 cond_resched(); 4662 goto retry; 4663 } 4664 fail: 4665 warn_alloc(gfp_mask, ac->nodemask, 4666 "page allocation failure: order:%u", order); 4667 got_pg: 4668 return page; 4669 } 4670 4671 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4672 int preferred_nid, nodemask_t *nodemask, 4673 struct alloc_context *ac, gfp_t *alloc_mask, 4674 unsigned int *alloc_flags) 4675 { 4676 ac->high_zoneidx = gfp_zone(gfp_mask); 4677 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4678 ac->nodemask = nodemask; 4679 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4680 4681 if (cpusets_enabled()) { 4682 *alloc_mask |= __GFP_HARDWALL; 4683 if (!ac->nodemask) 4684 ac->nodemask = &cpuset_current_mems_allowed; 4685 else 4686 *alloc_flags |= ALLOC_CPUSET; 4687 } 4688 4689 fs_reclaim_acquire(gfp_mask); 4690 fs_reclaim_release(gfp_mask); 4691 4692 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4693 4694 if (should_fail_alloc_page(gfp_mask, order)) 4695 return false; 4696 4697 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4698 *alloc_flags |= ALLOC_CMA; 4699 4700 return true; 4701 } 4702 4703 /* Determine whether to spread dirty pages and what the first usable zone */ 4704 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4705 { 4706 /* Dirty zone balancing only done in the fast path */ 4707 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4708 4709 /* 4710 * The preferred zone is used for statistics but crucially it is 4711 * also used as the starting point for the zonelist iterator. It 4712 * may get reset for allocations that ignore memory policies. 4713 */ 4714 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4715 ac->high_zoneidx, ac->nodemask); 4716 } 4717 4718 /* 4719 * This is the 'heart' of the zoned buddy allocator. 4720 */ 4721 struct page * 4722 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4723 nodemask_t *nodemask) 4724 { 4725 struct page *page; 4726 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4727 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4728 struct alloc_context ac = { }; 4729 4730 /* 4731 * There are several places where we assume that the order value is sane 4732 * so bail out early if the request is out of bound. 4733 */ 4734 if (unlikely(order >= MAX_ORDER)) { 4735 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4736 return NULL; 4737 } 4738 4739 gfp_mask &= gfp_allowed_mask; 4740 alloc_mask = gfp_mask; 4741 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4742 return NULL; 4743 4744 finalise_ac(gfp_mask, &ac); 4745 4746 /* 4747 * Forbid the first pass from falling back to types that fragment 4748 * memory until all local zones are considered. 4749 */ 4750 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4751 4752 /* First allocation attempt */ 4753 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4754 if (likely(page)) 4755 goto out; 4756 4757 /* 4758 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4759 * resp. GFP_NOIO which has to be inherited for all allocation requests 4760 * from a particular context which has been marked by 4761 * memalloc_no{fs,io}_{save,restore}. 4762 */ 4763 alloc_mask = current_gfp_context(gfp_mask); 4764 ac.spread_dirty_pages = false; 4765 4766 /* 4767 * Restore the original nodemask if it was potentially replaced with 4768 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4769 */ 4770 if (unlikely(ac.nodemask != nodemask)) 4771 ac.nodemask = nodemask; 4772 4773 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4774 4775 out: 4776 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4777 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4778 __free_pages(page, order); 4779 page = NULL; 4780 } 4781 4782 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4783 4784 return page; 4785 } 4786 EXPORT_SYMBOL(__alloc_pages_nodemask); 4787 4788 /* 4789 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4790 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4791 * you need to access high mem. 4792 */ 4793 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4794 { 4795 struct page *page; 4796 4797 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4798 if (!page) 4799 return 0; 4800 return (unsigned long) page_address(page); 4801 } 4802 EXPORT_SYMBOL(__get_free_pages); 4803 4804 unsigned long get_zeroed_page(gfp_t gfp_mask) 4805 { 4806 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4807 } 4808 EXPORT_SYMBOL(get_zeroed_page); 4809 4810 static inline void free_the_page(struct page *page, unsigned int order) 4811 { 4812 if (order == 0) /* Via pcp? */ 4813 free_unref_page(page); 4814 else 4815 __free_pages_ok(page, order); 4816 } 4817 4818 void __free_pages(struct page *page, unsigned int order) 4819 { 4820 if (put_page_testzero(page)) 4821 free_the_page(page, order); 4822 } 4823 EXPORT_SYMBOL(__free_pages); 4824 4825 void free_pages(unsigned long addr, unsigned int order) 4826 { 4827 if (addr != 0) { 4828 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4829 __free_pages(virt_to_page((void *)addr), order); 4830 } 4831 } 4832 4833 EXPORT_SYMBOL(free_pages); 4834 4835 /* 4836 * Page Fragment: 4837 * An arbitrary-length arbitrary-offset area of memory which resides 4838 * within a 0 or higher order page. Multiple fragments within that page 4839 * are individually refcounted, in the page's reference counter. 4840 * 4841 * The page_frag functions below provide a simple allocation framework for 4842 * page fragments. This is used by the network stack and network device 4843 * drivers to provide a backing region of memory for use as either an 4844 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4845 */ 4846 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4847 gfp_t gfp_mask) 4848 { 4849 struct page *page = NULL; 4850 gfp_t gfp = gfp_mask; 4851 4852 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4853 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4854 __GFP_NOMEMALLOC; 4855 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4856 PAGE_FRAG_CACHE_MAX_ORDER); 4857 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4858 #endif 4859 if (unlikely(!page)) 4860 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4861 4862 nc->va = page ? page_address(page) : NULL; 4863 4864 return page; 4865 } 4866 4867 void __page_frag_cache_drain(struct page *page, unsigned int count) 4868 { 4869 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4870 4871 if (page_ref_sub_and_test(page, count)) 4872 free_the_page(page, compound_order(page)); 4873 } 4874 EXPORT_SYMBOL(__page_frag_cache_drain); 4875 4876 void *page_frag_alloc(struct page_frag_cache *nc, 4877 unsigned int fragsz, gfp_t gfp_mask) 4878 { 4879 unsigned int size = PAGE_SIZE; 4880 struct page *page; 4881 int offset; 4882 4883 if (unlikely(!nc->va)) { 4884 refill: 4885 page = __page_frag_cache_refill(nc, gfp_mask); 4886 if (!page) 4887 return NULL; 4888 4889 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4890 /* if size can vary use size else just use PAGE_SIZE */ 4891 size = nc->size; 4892 #endif 4893 /* Even if we own the page, we do not use atomic_set(). 4894 * This would break get_page_unless_zero() users. 4895 */ 4896 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4897 4898 /* reset page count bias and offset to start of new frag */ 4899 nc->pfmemalloc = page_is_pfmemalloc(page); 4900 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4901 nc->offset = size; 4902 } 4903 4904 offset = nc->offset - fragsz; 4905 if (unlikely(offset < 0)) { 4906 page = virt_to_page(nc->va); 4907 4908 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4909 goto refill; 4910 4911 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4912 /* if size can vary use size else just use PAGE_SIZE */ 4913 size = nc->size; 4914 #endif 4915 /* OK, page count is 0, we can safely set it */ 4916 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4917 4918 /* reset page count bias and offset to start of new frag */ 4919 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4920 offset = size - fragsz; 4921 } 4922 4923 nc->pagecnt_bias--; 4924 nc->offset = offset; 4925 4926 return nc->va + offset; 4927 } 4928 EXPORT_SYMBOL(page_frag_alloc); 4929 4930 /* 4931 * Frees a page fragment allocated out of either a compound or order 0 page. 4932 */ 4933 void page_frag_free(void *addr) 4934 { 4935 struct page *page = virt_to_head_page(addr); 4936 4937 if (unlikely(put_page_testzero(page))) 4938 free_the_page(page, compound_order(page)); 4939 } 4940 EXPORT_SYMBOL(page_frag_free); 4941 4942 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4943 size_t size) 4944 { 4945 if (addr) { 4946 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4947 unsigned long used = addr + PAGE_ALIGN(size); 4948 4949 split_page(virt_to_page((void *)addr), order); 4950 while (used < alloc_end) { 4951 free_page(used); 4952 used += PAGE_SIZE; 4953 } 4954 } 4955 return (void *)addr; 4956 } 4957 4958 /** 4959 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4960 * @size: the number of bytes to allocate 4961 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4962 * 4963 * This function is similar to alloc_pages(), except that it allocates the 4964 * minimum number of pages to satisfy the request. alloc_pages() can only 4965 * allocate memory in power-of-two pages. 4966 * 4967 * This function is also limited by MAX_ORDER. 4968 * 4969 * Memory allocated by this function must be released by free_pages_exact(). 4970 * 4971 * Return: pointer to the allocated area or %NULL in case of error. 4972 */ 4973 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4974 { 4975 unsigned int order = get_order(size); 4976 unsigned long addr; 4977 4978 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4979 gfp_mask &= ~__GFP_COMP; 4980 4981 addr = __get_free_pages(gfp_mask, order); 4982 return make_alloc_exact(addr, order, size); 4983 } 4984 EXPORT_SYMBOL(alloc_pages_exact); 4985 4986 /** 4987 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4988 * pages on a node. 4989 * @nid: the preferred node ID where memory should be allocated 4990 * @size: the number of bytes to allocate 4991 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4992 * 4993 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4994 * back. 4995 * 4996 * Return: pointer to the allocated area or %NULL in case of error. 4997 */ 4998 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4999 { 5000 unsigned int order = get_order(size); 5001 struct page *p; 5002 5003 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5004 gfp_mask &= ~__GFP_COMP; 5005 5006 p = alloc_pages_node(nid, gfp_mask, order); 5007 if (!p) 5008 return NULL; 5009 return make_alloc_exact((unsigned long)page_address(p), order, size); 5010 } 5011 5012 /** 5013 * free_pages_exact - release memory allocated via alloc_pages_exact() 5014 * @virt: the value returned by alloc_pages_exact. 5015 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5016 * 5017 * Release the memory allocated by a previous call to alloc_pages_exact. 5018 */ 5019 void free_pages_exact(void *virt, size_t size) 5020 { 5021 unsigned long addr = (unsigned long)virt; 5022 unsigned long end = addr + PAGE_ALIGN(size); 5023 5024 while (addr < end) { 5025 free_page(addr); 5026 addr += PAGE_SIZE; 5027 } 5028 } 5029 EXPORT_SYMBOL(free_pages_exact); 5030 5031 /** 5032 * nr_free_zone_pages - count number of pages beyond high watermark 5033 * @offset: The zone index of the highest zone 5034 * 5035 * nr_free_zone_pages() counts the number of pages which are beyond the 5036 * high watermark within all zones at or below a given zone index. For each 5037 * zone, the number of pages is calculated as: 5038 * 5039 * nr_free_zone_pages = managed_pages - high_pages 5040 * 5041 * Return: number of pages beyond high watermark. 5042 */ 5043 static unsigned long nr_free_zone_pages(int offset) 5044 { 5045 struct zoneref *z; 5046 struct zone *zone; 5047 5048 /* Just pick one node, since fallback list is circular */ 5049 unsigned long sum = 0; 5050 5051 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5052 5053 for_each_zone_zonelist(zone, z, zonelist, offset) { 5054 unsigned long size = zone_managed_pages(zone); 5055 unsigned long high = high_wmark_pages(zone); 5056 if (size > high) 5057 sum += size - high; 5058 } 5059 5060 return sum; 5061 } 5062 5063 /** 5064 * nr_free_buffer_pages - count number of pages beyond high watermark 5065 * 5066 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5067 * watermark within ZONE_DMA and ZONE_NORMAL. 5068 * 5069 * Return: number of pages beyond high watermark within ZONE_DMA and 5070 * ZONE_NORMAL. 5071 */ 5072 unsigned long nr_free_buffer_pages(void) 5073 { 5074 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5075 } 5076 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5077 5078 /** 5079 * nr_free_pagecache_pages - count number of pages beyond high watermark 5080 * 5081 * nr_free_pagecache_pages() counts the number of pages which are beyond the 5082 * high watermark within all zones. 5083 * 5084 * Return: number of pages beyond high watermark within all zones. 5085 */ 5086 unsigned long nr_free_pagecache_pages(void) 5087 { 5088 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5089 } 5090 5091 static inline void show_node(struct zone *zone) 5092 { 5093 if (IS_ENABLED(CONFIG_NUMA)) 5094 printk("Node %d ", zone_to_nid(zone)); 5095 } 5096 5097 long si_mem_available(void) 5098 { 5099 long available; 5100 unsigned long pagecache; 5101 unsigned long wmark_low = 0; 5102 unsigned long pages[NR_LRU_LISTS]; 5103 unsigned long reclaimable; 5104 struct zone *zone; 5105 int lru; 5106 5107 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5108 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5109 5110 for_each_zone(zone) 5111 wmark_low += low_wmark_pages(zone); 5112 5113 /* 5114 * Estimate the amount of memory available for userspace allocations, 5115 * without causing swapping. 5116 */ 5117 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5118 5119 /* 5120 * Not all the page cache can be freed, otherwise the system will 5121 * start swapping. Assume at least half of the page cache, or the 5122 * low watermark worth of cache, needs to stay. 5123 */ 5124 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5125 pagecache -= min(pagecache / 2, wmark_low); 5126 available += pagecache; 5127 5128 /* 5129 * Part of the reclaimable slab and other kernel memory consists of 5130 * items that are in use, and cannot be freed. Cap this estimate at the 5131 * low watermark. 5132 */ 5133 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5134 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5135 available += reclaimable - min(reclaimable / 2, wmark_low); 5136 5137 if (available < 0) 5138 available = 0; 5139 return available; 5140 } 5141 EXPORT_SYMBOL_GPL(si_mem_available); 5142 5143 void si_meminfo(struct sysinfo *val) 5144 { 5145 val->totalram = totalram_pages(); 5146 val->sharedram = global_node_page_state(NR_SHMEM); 5147 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5148 val->bufferram = nr_blockdev_pages(); 5149 val->totalhigh = totalhigh_pages(); 5150 val->freehigh = nr_free_highpages(); 5151 val->mem_unit = PAGE_SIZE; 5152 } 5153 5154 EXPORT_SYMBOL(si_meminfo); 5155 5156 #ifdef CONFIG_NUMA 5157 void si_meminfo_node(struct sysinfo *val, int nid) 5158 { 5159 int zone_type; /* needs to be signed */ 5160 unsigned long managed_pages = 0; 5161 unsigned long managed_highpages = 0; 5162 unsigned long free_highpages = 0; 5163 pg_data_t *pgdat = NODE_DATA(nid); 5164 5165 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5166 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5167 val->totalram = managed_pages; 5168 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5169 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5170 #ifdef CONFIG_HIGHMEM 5171 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5172 struct zone *zone = &pgdat->node_zones[zone_type]; 5173 5174 if (is_highmem(zone)) { 5175 managed_highpages += zone_managed_pages(zone); 5176 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5177 } 5178 } 5179 val->totalhigh = managed_highpages; 5180 val->freehigh = free_highpages; 5181 #else 5182 val->totalhigh = managed_highpages; 5183 val->freehigh = free_highpages; 5184 #endif 5185 val->mem_unit = PAGE_SIZE; 5186 } 5187 #endif 5188 5189 /* 5190 * Determine whether the node should be displayed or not, depending on whether 5191 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5192 */ 5193 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5194 { 5195 if (!(flags & SHOW_MEM_FILTER_NODES)) 5196 return false; 5197 5198 /* 5199 * no node mask - aka implicit memory numa policy. Do not bother with 5200 * the synchronization - read_mems_allowed_begin - because we do not 5201 * have to be precise here. 5202 */ 5203 if (!nodemask) 5204 nodemask = &cpuset_current_mems_allowed; 5205 5206 return !node_isset(nid, *nodemask); 5207 } 5208 5209 #define K(x) ((x) << (PAGE_SHIFT-10)) 5210 5211 static void show_migration_types(unsigned char type) 5212 { 5213 static const char types[MIGRATE_TYPES] = { 5214 [MIGRATE_UNMOVABLE] = 'U', 5215 [MIGRATE_MOVABLE] = 'M', 5216 [MIGRATE_RECLAIMABLE] = 'E', 5217 [MIGRATE_HIGHATOMIC] = 'H', 5218 #ifdef CONFIG_CMA 5219 [MIGRATE_CMA] = 'C', 5220 #endif 5221 #ifdef CONFIG_MEMORY_ISOLATION 5222 [MIGRATE_ISOLATE] = 'I', 5223 #endif 5224 }; 5225 char tmp[MIGRATE_TYPES + 1]; 5226 char *p = tmp; 5227 int i; 5228 5229 for (i = 0; i < MIGRATE_TYPES; i++) { 5230 if (type & (1 << i)) 5231 *p++ = types[i]; 5232 } 5233 5234 *p = '\0'; 5235 printk(KERN_CONT "(%s) ", tmp); 5236 } 5237 5238 /* 5239 * Show free area list (used inside shift_scroll-lock stuff) 5240 * We also calculate the percentage fragmentation. We do this by counting the 5241 * memory on each free list with the exception of the first item on the list. 5242 * 5243 * Bits in @filter: 5244 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5245 * cpuset. 5246 */ 5247 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5248 { 5249 unsigned long free_pcp = 0; 5250 int cpu; 5251 struct zone *zone; 5252 pg_data_t *pgdat; 5253 5254 for_each_populated_zone(zone) { 5255 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5256 continue; 5257 5258 for_each_online_cpu(cpu) 5259 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5260 } 5261 5262 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5263 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5264 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5265 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5266 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5267 " free:%lu free_pcp:%lu free_cma:%lu\n", 5268 global_node_page_state(NR_ACTIVE_ANON), 5269 global_node_page_state(NR_INACTIVE_ANON), 5270 global_node_page_state(NR_ISOLATED_ANON), 5271 global_node_page_state(NR_ACTIVE_FILE), 5272 global_node_page_state(NR_INACTIVE_FILE), 5273 global_node_page_state(NR_ISOLATED_FILE), 5274 global_node_page_state(NR_UNEVICTABLE), 5275 global_node_page_state(NR_FILE_DIRTY), 5276 global_node_page_state(NR_WRITEBACK), 5277 global_node_page_state(NR_UNSTABLE_NFS), 5278 global_node_page_state(NR_SLAB_RECLAIMABLE), 5279 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5280 global_node_page_state(NR_FILE_MAPPED), 5281 global_node_page_state(NR_SHMEM), 5282 global_zone_page_state(NR_PAGETABLE), 5283 global_zone_page_state(NR_BOUNCE), 5284 global_zone_page_state(NR_FREE_PAGES), 5285 free_pcp, 5286 global_zone_page_state(NR_FREE_CMA_PAGES)); 5287 5288 for_each_online_pgdat(pgdat) { 5289 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5290 continue; 5291 5292 printk("Node %d" 5293 " active_anon:%lukB" 5294 " inactive_anon:%lukB" 5295 " active_file:%lukB" 5296 " inactive_file:%lukB" 5297 " unevictable:%lukB" 5298 " isolated(anon):%lukB" 5299 " isolated(file):%lukB" 5300 " mapped:%lukB" 5301 " dirty:%lukB" 5302 " writeback:%lukB" 5303 " shmem:%lukB" 5304 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5305 " shmem_thp: %lukB" 5306 " shmem_pmdmapped: %lukB" 5307 " anon_thp: %lukB" 5308 #endif 5309 " writeback_tmp:%lukB" 5310 " unstable:%lukB" 5311 " all_unreclaimable? %s" 5312 "\n", 5313 pgdat->node_id, 5314 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5315 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5316 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5317 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5318 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5319 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5320 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5321 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5322 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5323 K(node_page_state(pgdat, NR_WRITEBACK)), 5324 K(node_page_state(pgdat, NR_SHMEM)), 5325 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5326 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5327 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5328 * HPAGE_PMD_NR), 5329 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5330 #endif 5331 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5332 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5333 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5334 "yes" : "no"); 5335 } 5336 5337 for_each_populated_zone(zone) { 5338 int i; 5339 5340 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5341 continue; 5342 5343 free_pcp = 0; 5344 for_each_online_cpu(cpu) 5345 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5346 5347 show_node(zone); 5348 printk(KERN_CONT 5349 "%s" 5350 " free:%lukB" 5351 " min:%lukB" 5352 " low:%lukB" 5353 " high:%lukB" 5354 " active_anon:%lukB" 5355 " inactive_anon:%lukB" 5356 " active_file:%lukB" 5357 " inactive_file:%lukB" 5358 " unevictable:%lukB" 5359 " writepending:%lukB" 5360 " present:%lukB" 5361 " managed:%lukB" 5362 " mlocked:%lukB" 5363 " kernel_stack:%lukB" 5364 " pagetables:%lukB" 5365 " bounce:%lukB" 5366 " free_pcp:%lukB" 5367 " local_pcp:%ukB" 5368 " free_cma:%lukB" 5369 "\n", 5370 zone->name, 5371 K(zone_page_state(zone, NR_FREE_PAGES)), 5372 K(min_wmark_pages(zone)), 5373 K(low_wmark_pages(zone)), 5374 K(high_wmark_pages(zone)), 5375 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5376 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5377 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5378 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5379 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5380 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5381 K(zone->present_pages), 5382 K(zone_managed_pages(zone)), 5383 K(zone_page_state(zone, NR_MLOCK)), 5384 zone_page_state(zone, NR_KERNEL_STACK_KB), 5385 K(zone_page_state(zone, NR_PAGETABLE)), 5386 K(zone_page_state(zone, NR_BOUNCE)), 5387 K(free_pcp), 5388 K(this_cpu_read(zone->pageset->pcp.count)), 5389 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5390 printk("lowmem_reserve[]:"); 5391 for (i = 0; i < MAX_NR_ZONES; i++) 5392 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5393 printk(KERN_CONT "\n"); 5394 } 5395 5396 for_each_populated_zone(zone) { 5397 unsigned int order; 5398 unsigned long nr[MAX_ORDER], flags, total = 0; 5399 unsigned char types[MAX_ORDER]; 5400 5401 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5402 continue; 5403 show_node(zone); 5404 printk(KERN_CONT "%s: ", zone->name); 5405 5406 spin_lock_irqsave(&zone->lock, flags); 5407 for (order = 0; order < MAX_ORDER; order++) { 5408 struct free_area *area = &zone->free_area[order]; 5409 int type; 5410 5411 nr[order] = area->nr_free; 5412 total += nr[order] << order; 5413 5414 types[order] = 0; 5415 for (type = 0; type < MIGRATE_TYPES; type++) { 5416 if (!free_area_empty(area, type)) 5417 types[order] |= 1 << type; 5418 } 5419 } 5420 spin_unlock_irqrestore(&zone->lock, flags); 5421 for (order = 0; order < MAX_ORDER; order++) { 5422 printk(KERN_CONT "%lu*%lukB ", 5423 nr[order], K(1UL) << order); 5424 if (nr[order]) 5425 show_migration_types(types[order]); 5426 } 5427 printk(KERN_CONT "= %lukB\n", K(total)); 5428 } 5429 5430 hugetlb_show_meminfo(); 5431 5432 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5433 5434 show_swap_cache_info(); 5435 } 5436 5437 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5438 { 5439 zoneref->zone = zone; 5440 zoneref->zone_idx = zone_idx(zone); 5441 } 5442 5443 /* 5444 * Builds allocation fallback zone lists. 5445 * 5446 * Add all populated zones of a node to the zonelist. 5447 */ 5448 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5449 { 5450 struct zone *zone; 5451 enum zone_type zone_type = MAX_NR_ZONES; 5452 int nr_zones = 0; 5453 5454 do { 5455 zone_type--; 5456 zone = pgdat->node_zones + zone_type; 5457 if (managed_zone(zone)) { 5458 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5459 check_highest_zone(zone_type); 5460 } 5461 } while (zone_type); 5462 5463 return nr_zones; 5464 } 5465 5466 #ifdef CONFIG_NUMA 5467 5468 static int __parse_numa_zonelist_order(char *s) 5469 { 5470 /* 5471 * We used to support different zonlists modes but they turned 5472 * out to be just not useful. Let's keep the warning in place 5473 * if somebody still use the cmd line parameter so that we do 5474 * not fail it silently 5475 */ 5476 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5477 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5478 return -EINVAL; 5479 } 5480 return 0; 5481 } 5482 5483 static __init int setup_numa_zonelist_order(char *s) 5484 { 5485 if (!s) 5486 return 0; 5487 5488 return __parse_numa_zonelist_order(s); 5489 } 5490 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5491 5492 char numa_zonelist_order[] = "Node"; 5493 5494 /* 5495 * sysctl handler for numa_zonelist_order 5496 */ 5497 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5498 void __user *buffer, size_t *length, 5499 loff_t *ppos) 5500 { 5501 char *str; 5502 int ret; 5503 5504 if (!write) 5505 return proc_dostring(table, write, buffer, length, ppos); 5506 str = memdup_user_nul(buffer, 16); 5507 if (IS_ERR(str)) 5508 return PTR_ERR(str); 5509 5510 ret = __parse_numa_zonelist_order(str); 5511 kfree(str); 5512 return ret; 5513 } 5514 5515 5516 #define MAX_NODE_LOAD (nr_online_nodes) 5517 static int node_load[MAX_NUMNODES]; 5518 5519 /** 5520 * find_next_best_node - find the next node that should appear in a given node's fallback list 5521 * @node: node whose fallback list we're appending 5522 * @used_node_mask: nodemask_t of already used nodes 5523 * 5524 * We use a number of factors to determine which is the next node that should 5525 * appear on a given node's fallback list. The node should not have appeared 5526 * already in @node's fallback list, and it should be the next closest node 5527 * according to the distance array (which contains arbitrary distance values 5528 * from each node to each node in the system), and should also prefer nodes 5529 * with no CPUs, since presumably they'll have very little allocation pressure 5530 * on them otherwise. 5531 * 5532 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5533 */ 5534 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5535 { 5536 int n, val; 5537 int min_val = INT_MAX; 5538 int best_node = NUMA_NO_NODE; 5539 const struct cpumask *tmp = cpumask_of_node(0); 5540 5541 /* Use the local node if we haven't already */ 5542 if (!node_isset(node, *used_node_mask)) { 5543 node_set(node, *used_node_mask); 5544 return node; 5545 } 5546 5547 for_each_node_state(n, N_MEMORY) { 5548 5549 /* Don't want a node to appear more than once */ 5550 if (node_isset(n, *used_node_mask)) 5551 continue; 5552 5553 /* Use the distance array to find the distance */ 5554 val = node_distance(node, n); 5555 5556 /* Penalize nodes under us ("prefer the next node") */ 5557 val += (n < node); 5558 5559 /* Give preference to headless and unused nodes */ 5560 tmp = cpumask_of_node(n); 5561 if (!cpumask_empty(tmp)) 5562 val += PENALTY_FOR_NODE_WITH_CPUS; 5563 5564 /* Slight preference for less loaded node */ 5565 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5566 val += node_load[n]; 5567 5568 if (val < min_val) { 5569 min_val = val; 5570 best_node = n; 5571 } 5572 } 5573 5574 if (best_node >= 0) 5575 node_set(best_node, *used_node_mask); 5576 5577 return best_node; 5578 } 5579 5580 5581 /* 5582 * Build zonelists ordered by node and zones within node. 5583 * This results in maximum locality--normal zone overflows into local 5584 * DMA zone, if any--but risks exhausting DMA zone. 5585 */ 5586 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5587 unsigned nr_nodes) 5588 { 5589 struct zoneref *zonerefs; 5590 int i; 5591 5592 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5593 5594 for (i = 0; i < nr_nodes; i++) { 5595 int nr_zones; 5596 5597 pg_data_t *node = NODE_DATA(node_order[i]); 5598 5599 nr_zones = build_zonerefs_node(node, zonerefs); 5600 zonerefs += nr_zones; 5601 } 5602 zonerefs->zone = NULL; 5603 zonerefs->zone_idx = 0; 5604 } 5605 5606 /* 5607 * Build gfp_thisnode zonelists 5608 */ 5609 static void build_thisnode_zonelists(pg_data_t *pgdat) 5610 { 5611 struct zoneref *zonerefs; 5612 int nr_zones; 5613 5614 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5615 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5616 zonerefs += nr_zones; 5617 zonerefs->zone = NULL; 5618 zonerefs->zone_idx = 0; 5619 } 5620 5621 /* 5622 * Build zonelists ordered by zone and nodes within zones. 5623 * This results in conserving DMA zone[s] until all Normal memory is 5624 * exhausted, but results in overflowing to remote node while memory 5625 * may still exist in local DMA zone. 5626 */ 5627 5628 static void build_zonelists(pg_data_t *pgdat) 5629 { 5630 static int node_order[MAX_NUMNODES]; 5631 int node, load, nr_nodes = 0; 5632 nodemask_t used_mask; 5633 int local_node, prev_node; 5634 5635 /* NUMA-aware ordering of nodes */ 5636 local_node = pgdat->node_id; 5637 load = nr_online_nodes; 5638 prev_node = local_node; 5639 nodes_clear(used_mask); 5640 5641 memset(node_order, 0, sizeof(node_order)); 5642 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5643 /* 5644 * We don't want to pressure a particular node. 5645 * So adding penalty to the first node in same 5646 * distance group to make it round-robin. 5647 */ 5648 if (node_distance(local_node, node) != 5649 node_distance(local_node, prev_node)) 5650 node_load[node] = load; 5651 5652 node_order[nr_nodes++] = node; 5653 prev_node = node; 5654 load--; 5655 } 5656 5657 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5658 build_thisnode_zonelists(pgdat); 5659 } 5660 5661 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5662 /* 5663 * Return node id of node used for "local" allocations. 5664 * I.e., first node id of first zone in arg node's generic zonelist. 5665 * Used for initializing percpu 'numa_mem', which is used primarily 5666 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5667 */ 5668 int local_memory_node(int node) 5669 { 5670 struct zoneref *z; 5671 5672 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5673 gfp_zone(GFP_KERNEL), 5674 NULL); 5675 return zone_to_nid(z->zone); 5676 } 5677 #endif 5678 5679 static void setup_min_unmapped_ratio(void); 5680 static void setup_min_slab_ratio(void); 5681 #else /* CONFIG_NUMA */ 5682 5683 static void build_zonelists(pg_data_t *pgdat) 5684 { 5685 int node, local_node; 5686 struct zoneref *zonerefs; 5687 int nr_zones; 5688 5689 local_node = pgdat->node_id; 5690 5691 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5692 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5693 zonerefs += nr_zones; 5694 5695 /* 5696 * Now we build the zonelist so that it contains the zones 5697 * of all the other nodes. 5698 * We don't want to pressure a particular node, so when 5699 * building the zones for node N, we make sure that the 5700 * zones coming right after the local ones are those from 5701 * node N+1 (modulo N) 5702 */ 5703 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5704 if (!node_online(node)) 5705 continue; 5706 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5707 zonerefs += nr_zones; 5708 } 5709 for (node = 0; node < local_node; node++) { 5710 if (!node_online(node)) 5711 continue; 5712 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5713 zonerefs += nr_zones; 5714 } 5715 5716 zonerefs->zone = NULL; 5717 zonerefs->zone_idx = 0; 5718 } 5719 5720 #endif /* CONFIG_NUMA */ 5721 5722 /* 5723 * Boot pageset table. One per cpu which is going to be used for all 5724 * zones and all nodes. The parameters will be set in such a way 5725 * that an item put on a list will immediately be handed over to 5726 * the buddy list. This is safe since pageset manipulation is done 5727 * with interrupts disabled. 5728 * 5729 * The boot_pagesets must be kept even after bootup is complete for 5730 * unused processors and/or zones. They do play a role for bootstrapping 5731 * hotplugged processors. 5732 * 5733 * zoneinfo_show() and maybe other functions do 5734 * not check if the processor is online before following the pageset pointer. 5735 * Other parts of the kernel may not check if the zone is available. 5736 */ 5737 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5738 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5739 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5740 5741 static void __build_all_zonelists(void *data) 5742 { 5743 int nid; 5744 int __maybe_unused cpu; 5745 pg_data_t *self = data; 5746 static DEFINE_SPINLOCK(lock); 5747 5748 spin_lock(&lock); 5749 5750 #ifdef CONFIG_NUMA 5751 memset(node_load, 0, sizeof(node_load)); 5752 #endif 5753 5754 /* 5755 * This node is hotadded and no memory is yet present. So just 5756 * building zonelists is fine - no need to touch other nodes. 5757 */ 5758 if (self && !node_online(self->node_id)) { 5759 build_zonelists(self); 5760 } else { 5761 for_each_online_node(nid) { 5762 pg_data_t *pgdat = NODE_DATA(nid); 5763 5764 build_zonelists(pgdat); 5765 } 5766 5767 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5768 /* 5769 * We now know the "local memory node" for each node-- 5770 * i.e., the node of the first zone in the generic zonelist. 5771 * Set up numa_mem percpu variable for on-line cpus. During 5772 * boot, only the boot cpu should be on-line; we'll init the 5773 * secondary cpus' numa_mem as they come on-line. During 5774 * node/memory hotplug, we'll fixup all on-line cpus. 5775 */ 5776 for_each_online_cpu(cpu) 5777 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5778 #endif 5779 } 5780 5781 spin_unlock(&lock); 5782 } 5783 5784 static noinline void __init 5785 build_all_zonelists_init(void) 5786 { 5787 int cpu; 5788 5789 __build_all_zonelists(NULL); 5790 5791 /* 5792 * Initialize the boot_pagesets that are going to be used 5793 * for bootstrapping processors. The real pagesets for 5794 * each zone will be allocated later when the per cpu 5795 * allocator is available. 5796 * 5797 * boot_pagesets are used also for bootstrapping offline 5798 * cpus if the system is already booted because the pagesets 5799 * are needed to initialize allocators on a specific cpu too. 5800 * F.e. the percpu allocator needs the page allocator which 5801 * needs the percpu allocator in order to allocate its pagesets 5802 * (a chicken-egg dilemma). 5803 */ 5804 for_each_possible_cpu(cpu) 5805 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5806 5807 mminit_verify_zonelist(); 5808 cpuset_init_current_mems_allowed(); 5809 } 5810 5811 /* 5812 * unless system_state == SYSTEM_BOOTING. 5813 * 5814 * __ref due to call of __init annotated helper build_all_zonelists_init 5815 * [protected by SYSTEM_BOOTING]. 5816 */ 5817 void __ref build_all_zonelists(pg_data_t *pgdat) 5818 { 5819 if (system_state == SYSTEM_BOOTING) { 5820 build_all_zonelists_init(); 5821 } else { 5822 __build_all_zonelists(pgdat); 5823 /* cpuset refresh routine should be here */ 5824 } 5825 vm_total_pages = nr_free_pagecache_pages(); 5826 /* 5827 * Disable grouping by mobility if the number of pages in the 5828 * system is too low to allow the mechanism to work. It would be 5829 * more accurate, but expensive to check per-zone. This check is 5830 * made on memory-hotadd so a system can start with mobility 5831 * disabled and enable it later 5832 */ 5833 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5834 page_group_by_mobility_disabled = 1; 5835 else 5836 page_group_by_mobility_disabled = 0; 5837 5838 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5839 nr_online_nodes, 5840 page_group_by_mobility_disabled ? "off" : "on", 5841 vm_total_pages); 5842 #ifdef CONFIG_NUMA 5843 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5844 #endif 5845 } 5846 5847 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5848 static bool __meminit 5849 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5850 { 5851 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5852 static struct memblock_region *r; 5853 5854 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5855 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5856 for_each_memblock(memory, r) { 5857 if (*pfn < memblock_region_memory_end_pfn(r)) 5858 break; 5859 } 5860 } 5861 if (*pfn >= memblock_region_memory_base_pfn(r) && 5862 memblock_is_mirror(r)) { 5863 *pfn = memblock_region_memory_end_pfn(r); 5864 return true; 5865 } 5866 } 5867 #endif 5868 return false; 5869 } 5870 5871 /* 5872 * Initially all pages are reserved - free ones are freed 5873 * up by memblock_free_all() once the early boot process is 5874 * done. Non-atomic initialization, single-pass. 5875 */ 5876 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5877 unsigned long start_pfn, enum memmap_context context, 5878 struct vmem_altmap *altmap) 5879 { 5880 unsigned long pfn, end_pfn = start_pfn + size; 5881 struct page *page; 5882 5883 if (highest_memmap_pfn < end_pfn - 1) 5884 highest_memmap_pfn = end_pfn - 1; 5885 5886 #ifdef CONFIG_ZONE_DEVICE 5887 /* 5888 * Honor reservation requested by the driver for this ZONE_DEVICE 5889 * memory. We limit the total number of pages to initialize to just 5890 * those that might contain the memory mapping. We will defer the 5891 * ZONE_DEVICE page initialization until after we have released 5892 * the hotplug lock. 5893 */ 5894 if (zone == ZONE_DEVICE) { 5895 if (!altmap) 5896 return; 5897 5898 if (start_pfn == altmap->base_pfn) 5899 start_pfn += altmap->reserve; 5900 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5901 } 5902 #endif 5903 5904 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5905 /* 5906 * There can be holes in boot-time mem_map[]s handed to this 5907 * function. They do not exist on hotplugged memory. 5908 */ 5909 if (context == MEMMAP_EARLY) { 5910 if (!early_pfn_valid(pfn)) 5911 continue; 5912 if (!early_pfn_in_nid(pfn, nid)) 5913 continue; 5914 if (overlap_memmap_init(zone, &pfn)) 5915 continue; 5916 if (defer_init(nid, pfn, end_pfn)) 5917 break; 5918 } 5919 5920 page = pfn_to_page(pfn); 5921 __init_single_page(page, pfn, zone, nid); 5922 if (context == MEMMAP_HOTPLUG) 5923 __SetPageReserved(page); 5924 5925 /* 5926 * Mark the block movable so that blocks are reserved for 5927 * movable at startup. This will force kernel allocations 5928 * to reserve their blocks rather than leaking throughout 5929 * the address space during boot when many long-lived 5930 * kernel allocations are made. 5931 * 5932 * bitmap is created for zone's valid pfn range. but memmap 5933 * can be created for invalid pages (for alignment) 5934 * check here not to call set_pageblock_migratetype() against 5935 * pfn out of zone. 5936 */ 5937 if (!(pfn & (pageblock_nr_pages - 1))) { 5938 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5939 cond_resched(); 5940 } 5941 } 5942 } 5943 5944 #ifdef CONFIG_ZONE_DEVICE 5945 void __ref memmap_init_zone_device(struct zone *zone, 5946 unsigned long start_pfn, 5947 unsigned long size, 5948 struct dev_pagemap *pgmap) 5949 { 5950 unsigned long pfn, end_pfn = start_pfn + size; 5951 struct pglist_data *pgdat = zone->zone_pgdat; 5952 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 5953 unsigned long zone_idx = zone_idx(zone); 5954 unsigned long start = jiffies; 5955 int nid = pgdat->node_id; 5956 5957 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 5958 return; 5959 5960 /* 5961 * The call to memmap_init_zone should have already taken care 5962 * of the pages reserved for the memmap, so we can just jump to 5963 * the end of that region and start processing the device pages. 5964 */ 5965 if (altmap) { 5966 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5967 size = end_pfn - start_pfn; 5968 } 5969 5970 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5971 struct page *page = pfn_to_page(pfn); 5972 5973 __init_single_page(page, pfn, zone_idx, nid); 5974 5975 /* 5976 * Mark page reserved as it will need to wait for onlining 5977 * phase for it to be fully associated with a zone. 5978 * 5979 * We can use the non-atomic __set_bit operation for setting 5980 * the flag as we are still initializing the pages. 5981 */ 5982 __SetPageReserved(page); 5983 5984 /* 5985 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 5986 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 5987 * ever freed or placed on a driver-private list. 5988 */ 5989 page->pgmap = pgmap; 5990 page->zone_device_data = NULL; 5991 5992 /* 5993 * Mark the block movable so that blocks are reserved for 5994 * movable at startup. This will force kernel allocations 5995 * to reserve their blocks rather than leaking throughout 5996 * the address space during boot when many long-lived 5997 * kernel allocations are made. 5998 * 5999 * bitmap is created for zone's valid pfn range. but memmap 6000 * can be created for invalid pages (for alignment) 6001 * check here not to call set_pageblock_migratetype() against 6002 * pfn out of zone. 6003 * 6004 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 6005 * because this is done early in section_activate() 6006 */ 6007 if (!(pfn & (pageblock_nr_pages - 1))) { 6008 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6009 cond_resched(); 6010 } 6011 } 6012 6013 pr_info("%s initialised %lu pages in %ums\n", __func__, 6014 size, jiffies_to_msecs(jiffies - start)); 6015 } 6016 6017 #endif 6018 static void __meminit zone_init_free_lists(struct zone *zone) 6019 { 6020 unsigned int order, t; 6021 for_each_migratetype_order(order, t) { 6022 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6023 zone->free_area[order].nr_free = 0; 6024 } 6025 } 6026 6027 void __meminit __weak memmap_init(unsigned long size, int nid, 6028 unsigned long zone, unsigned long start_pfn) 6029 { 6030 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 6031 } 6032 6033 static int zone_batchsize(struct zone *zone) 6034 { 6035 #ifdef CONFIG_MMU 6036 int batch; 6037 6038 /* 6039 * The per-cpu-pages pools are set to around 1000th of the 6040 * size of the zone. 6041 */ 6042 batch = zone_managed_pages(zone) / 1024; 6043 /* But no more than a meg. */ 6044 if (batch * PAGE_SIZE > 1024 * 1024) 6045 batch = (1024 * 1024) / PAGE_SIZE; 6046 batch /= 4; /* We effectively *= 4 below */ 6047 if (batch < 1) 6048 batch = 1; 6049 6050 /* 6051 * Clamp the batch to a 2^n - 1 value. Having a power 6052 * of 2 value was found to be more likely to have 6053 * suboptimal cache aliasing properties in some cases. 6054 * 6055 * For example if 2 tasks are alternately allocating 6056 * batches of pages, one task can end up with a lot 6057 * of pages of one half of the possible page colors 6058 * and the other with pages of the other colors. 6059 */ 6060 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6061 6062 return batch; 6063 6064 #else 6065 /* The deferral and batching of frees should be suppressed under NOMMU 6066 * conditions. 6067 * 6068 * The problem is that NOMMU needs to be able to allocate large chunks 6069 * of contiguous memory as there's no hardware page translation to 6070 * assemble apparent contiguous memory from discontiguous pages. 6071 * 6072 * Queueing large contiguous runs of pages for batching, however, 6073 * causes the pages to actually be freed in smaller chunks. As there 6074 * can be a significant delay between the individual batches being 6075 * recycled, this leads to the once large chunks of space being 6076 * fragmented and becoming unavailable for high-order allocations. 6077 */ 6078 return 0; 6079 #endif 6080 } 6081 6082 /* 6083 * pcp->high and pcp->batch values are related and dependent on one another: 6084 * ->batch must never be higher then ->high. 6085 * The following function updates them in a safe manner without read side 6086 * locking. 6087 * 6088 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6089 * those fields changing asynchronously (acording the the above rule). 6090 * 6091 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6092 * outside of boot time (or some other assurance that no concurrent updaters 6093 * exist). 6094 */ 6095 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6096 unsigned long batch) 6097 { 6098 /* start with a fail safe value for batch */ 6099 pcp->batch = 1; 6100 smp_wmb(); 6101 6102 /* Update high, then batch, in order */ 6103 pcp->high = high; 6104 smp_wmb(); 6105 6106 pcp->batch = batch; 6107 } 6108 6109 /* a companion to pageset_set_high() */ 6110 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6111 { 6112 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6113 } 6114 6115 static void pageset_init(struct per_cpu_pageset *p) 6116 { 6117 struct per_cpu_pages *pcp; 6118 int migratetype; 6119 6120 memset(p, 0, sizeof(*p)); 6121 6122 pcp = &p->pcp; 6123 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6124 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6125 } 6126 6127 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6128 { 6129 pageset_init(p); 6130 pageset_set_batch(p, batch); 6131 } 6132 6133 /* 6134 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6135 * to the value high for the pageset p. 6136 */ 6137 static void pageset_set_high(struct per_cpu_pageset *p, 6138 unsigned long high) 6139 { 6140 unsigned long batch = max(1UL, high / 4); 6141 if ((high / 4) > (PAGE_SHIFT * 8)) 6142 batch = PAGE_SHIFT * 8; 6143 6144 pageset_update(&p->pcp, high, batch); 6145 } 6146 6147 static void pageset_set_high_and_batch(struct zone *zone, 6148 struct per_cpu_pageset *pcp) 6149 { 6150 if (percpu_pagelist_fraction) 6151 pageset_set_high(pcp, 6152 (zone_managed_pages(zone) / 6153 percpu_pagelist_fraction)); 6154 else 6155 pageset_set_batch(pcp, zone_batchsize(zone)); 6156 } 6157 6158 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6159 { 6160 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6161 6162 pageset_init(pcp); 6163 pageset_set_high_and_batch(zone, pcp); 6164 } 6165 6166 void __meminit setup_zone_pageset(struct zone *zone) 6167 { 6168 int cpu; 6169 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6170 for_each_possible_cpu(cpu) 6171 zone_pageset_init(zone, cpu); 6172 } 6173 6174 /* 6175 * Allocate per cpu pagesets and initialize them. 6176 * Before this call only boot pagesets were available. 6177 */ 6178 void __init setup_per_cpu_pageset(void) 6179 { 6180 struct pglist_data *pgdat; 6181 struct zone *zone; 6182 6183 for_each_populated_zone(zone) 6184 setup_zone_pageset(zone); 6185 6186 for_each_online_pgdat(pgdat) 6187 pgdat->per_cpu_nodestats = 6188 alloc_percpu(struct per_cpu_nodestat); 6189 } 6190 6191 static __meminit void zone_pcp_init(struct zone *zone) 6192 { 6193 /* 6194 * per cpu subsystem is not up at this point. The following code 6195 * relies on the ability of the linker to provide the 6196 * offset of a (static) per cpu variable into the per cpu area. 6197 */ 6198 zone->pageset = &boot_pageset; 6199 6200 if (populated_zone(zone)) 6201 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6202 zone->name, zone->present_pages, 6203 zone_batchsize(zone)); 6204 } 6205 6206 void __meminit init_currently_empty_zone(struct zone *zone, 6207 unsigned long zone_start_pfn, 6208 unsigned long size) 6209 { 6210 struct pglist_data *pgdat = zone->zone_pgdat; 6211 int zone_idx = zone_idx(zone) + 1; 6212 6213 if (zone_idx > pgdat->nr_zones) 6214 pgdat->nr_zones = zone_idx; 6215 6216 zone->zone_start_pfn = zone_start_pfn; 6217 6218 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6219 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6220 pgdat->node_id, 6221 (unsigned long)zone_idx(zone), 6222 zone_start_pfn, (zone_start_pfn + size)); 6223 6224 zone_init_free_lists(zone); 6225 zone->initialized = 1; 6226 } 6227 6228 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6229 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6230 6231 /* 6232 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6233 */ 6234 int __meminit __early_pfn_to_nid(unsigned long pfn, 6235 struct mminit_pfnnid_cache *state) 6236 { 6237 unsigned long start_pfn, end_pfn; 6238 int nid; 6239 6240 if (state->last_start <= pfn && pfn < state->last_end) 6241 return state->last_nid; 6242 6243 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6244 if (nid != NUMA_NO_NODE) { 6245 state->last_start = start_pfn; 6246 state->last_end = end_pfn; 6247 state->last_nid = nid; 6248 } 6249 6250 return nid; 6251 } 6252 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6253 6254 /** 6255 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6256 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6257 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6258 * 6259 * If an architecture guarantees that all ranges registered contain no holes 6260 * and may be freed, this this function may be used instead of calling 6261 * memblock_free_early_nid() manually. 6262 */ 6263 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6264 { 6265 unsigned long start_pfn, end_pfn; 6266 int i, this_nid; 6267 6268 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6269 start_pfn = min(start_pfn, max_low_pfn); 6270 end_pfn = min(end_pfn, max_low_pfn); 6271 6272 if (start_pfn < end_pfn) 6273 memblock_free_early_nid(PFN_PHYS(start_pfn), 6274 (end_pfn - start_pfn) << PAGE_SHIFT, 6275 this_nid); 6276 } 6277 } 6278 6279 /** 6280 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6281 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6282 * 6283 * If an architecture guarantees that all ranges registered contain no holes and may 6284 * be freed, this function may be used instead of calling memory_present() manually. 6285 */ 6286 void __init sparse_memory_present_with_active_regions(int nid) 6287 { 6288 unsigned long start_pfn, end_pfn; 6289 int i, this_nid; 6290 6291 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6292 memory_present(this_nid, start_pfn, end_pfn); 6293 } 6294 6295 /** 6296 * get_pfn_range_for_nid - Return the start and end page frames for a node 6297 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6298 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6299 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6300 * 6301 * It returns the start and end page frame of a node based on information 6302 * provided by memblock_set_node(). If called for a node 6303 * with no available memory, a warning is printed and the start and end 6304 * PFNs will be 0. 6305 */ 6306 void __init get_pfn_range_for_nid(unsigned int nid, 6307 unsigned long *start_pfn, unsigned long *end_pfn) 6308 { 6309 unsigned long this_start_pfn, this_end_pfn; 6310 int i; 6311 6312 *start_pfn = -1UL; 6313 *end_pfn = 0; 6314 6315 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6316 *start_pfn = min(*start_pfn, this_start_pfn); 6317 *end_pfn = max(*end_pfn, this_end_pfn); 6318 } 6319 6320 if (*start_pfn == -1UL) 6321 *start_pfn = 0; 6322 } 6323 6324 /* 6325 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6326 * assumption is made that zones within a node are ordered in monotonic 6327 * increasing memory addresses so that the "highest" populated zone is used 6328 */ 6329 static void __init find_usable_zone_for_movable(void) 6330 { 6331 int zone_index; 6332 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6333 if (zone_index == ZONE_MOVABLE) 6334 continue; 6335 6336 if (arch_zone_highest_possible_pfn[zone_index] > 6337 arch_zone_lowest_possible_pfn[zone_index]) 6338 break; 6339 } 6340 6341 VM_BUG_ON(zone_index == -1); 6342 movable_zone = zone_index; 6343 } 6344 6345 /* 6346 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6347 * because it is sized independent of architecture. Unlike the other zones, 6348 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6349 * in each node depending on the size of each node and how evenly kernelcore 6350 * is distributed. This helper function adjusts the zone ranges 6351 * provided by the architecture for a given node by using the end of the 6352 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6353 * zones within a node are in order of monotonic increases memory addresses 6354 */ 6355 static void __init adjust_zone_range_for_zone_movable(int nid, 6356 unsigned long zone_type, 6357 unsigned long node_start_pfn, 6358 unsigned long node_end_pfn, 6359 unsigned long *zone_start_pfn, 6360 unsigned long *zone_end_pfn) 6361 { 6362 /* Only adjust if ZONE_MOVABLE is on this node */ 6363 if (zone_movable_pfn[nid]) { 6364 /* Size ZONE_MOVABLE */ 6365 if (zone_type == ZONE_MOVABLE) { 6366 *zone_start_pfn = zone_movable_pfn[nid]; 6367 *zone_end_pfn = min(node_end_pfn, 6368 arch_zone_highest_possible_pfn[movable_zone]); 6369 6370 /* Adjust for ZONE_MOVABLE starting within this range */ 6371 } else if (!mirrored_kernelcore && 6372 *zone_start_pfn < zone_movable_pfn[nid] && 6373 *zone_end_pfn > zone_movable_pfn[nid]) { 6374 *zone_end_pfn = zone_movable_pfn[nid]; 6375 6376 /* Check if this whole range is within ZONE_MOVABLE */ 6377 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6378 *zone_start_pfn = *zone_end_pfn; 6379 } 6380 } 6381 6382 /* 6383 * Return the number of pages a zone spans in a node, including holes 6384 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6385 */ 6386 static unsigned long __init zone_spanned_pages_in_node(int nid, 6387 unsigned long zone_type, 6388 unsigned long node_start_pfn, 6389 unsigned long node_end_pfn, 6390 unsigned long *zone_start_pfn, 6391 unsigned long *zone_end_pfn, 6392 unsigned long *ignored) 6393 { 6394 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6395 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6396 /* When hotadd a new node from cpu_up(), the node should be empty */ 6397 if (!node_start_pfn && !node_end_pfn) 6398 return 0; 6399 6400 /* Get the start and end of the zone */ 6401 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6402 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6403 adjust_zone_range_for_zone_movable(nid, zone_type, 6404 node_start_pfn, node_end_pfn, 6405 zone_start_pfn, zone_end_pfn); 6406 6407 /* Check that this node has pages within the zone's required range */ 6408 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6409 return 0; 6410 6411 /* Move the zone boundaries inside the node if necessary */ 6412 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6413 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6414 6415 /* Return the spanned pages */ 6416 return *zone_end_pfn - *zone_start_pfn; 6417 } 6418 6419 /* 6420 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6421 * then all holes in the requested range will be accounted for. 6422 */ 6423 unsigned long __init __absent_pages_in_range(int nid, 6424 unsigned long range_start_pfn, 6425 unsigned long range_end_pfn) 6426 { 6427 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6428 unsigned long start_pfn, end_pfn; 6429 int i; 6430 6431 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6432 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6433 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6434 nr_absent -= end_pfn - start_pfn; 6435 } 6436 return nr_absent; 6437 } 6438 6439 /** 6440 * absent_pages_in_range - Return number of page frames in holes within a range 6441 * @start_pfn: The start PFN to start searching for holes 6442 * @end_pfn: The end PFN to stop searching for holes 6443 * 6444 * Return: the number of pages frames in memory holes within a range. 6445 */ 6446 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6447 unsigned long end_pfn) 6448 { 6449 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6450 } 6451 6452 /* Return the number of page frames in holes in a zone on a node */ 6453 static unsigned long __init zone_absent_pages_in_node(int nid, 6454 unsigned long zone_type, 6455 unsigned long node_start_pfn, 6456 unsigned long node_end_pfn, 6457 unsigned long *ignored) 6458 { 6459 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6460 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6461 unsigned long zone_start_pfn, zone_end_pfn; 6462 unsigned long nr_absent; 6463 6464 /* When hotadd a new node from cpu_up(), the node should be empty */ 6465 if (!node_start_pfn && !node_end_pfn) 6466 return 0; 6467 6468 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6469 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6470 6471 adjust_zone_range_for_zone_movable(nid, zone_type, 6472 node_start_pfn, node_end_pfn, 6473 &zone_start_pfn, &zone_end_pfn); 6474 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6475 6476 /* 6477 * ZONE_MOVABLE handling. 6478 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6479 * and vice versa. 6480 */ 6481 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6482 unsigned long start_pfn, end_pfn; 6483 struct memblock_region *r; 6484 6485 for_each_memblock(memory, r) { 6486 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6487 zone_start_pfn, zone_end_pfn); 6488 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6489 zone_start_pfn, zone_end_pfn); 6490 6491 if (zone_type == ZONE_MOVABLE && 6492 memblock_is_mirror(r)) 6493 nr_absent += end_pfn - start_pfn; 6494 6495 if (zone_type == ZONE_NORMAL && 6496 !memblock_is_mirror(r)) 6497 nr_absent += end_pfn - start_pfn; 6498 } 6499 } 6500 6501 return nr_absent; 6502 } 6503 6504 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6505 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6506 unsigned long zone_type, 6507 unsigned long node_start_pfn, 6508 unsigned long node_end_pfn, 6509 unsigned long *zone_start_pfn, 6510 unsigned long *zone_end_pfn, 6511 unsigned long *zones_size) 6512 { 6513 unsigned int zone; 6514 6515 *zone_start_pfn = node_start_pfn; 6516 for (zone = 0; zone < zone_type; zone++) 6517 *zone_start_pfn += zones_size[zone]; 6518 6519 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6520 6521 return zones_size[zone_type]; 6522 } 6523 6524 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6525 unsigned long zone_type, 6526 unsigned long node_start_pfn, 6527 unsigned long node_end_pfn, 6528 unsigned long *zholes_size) 6529 { 6530 if (!zholes_size) 6531 return 0; 6532 6533 return zholes_size[zone_type]; 6534 } 6535 6536 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6537 6538 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6539 unsigned long node_start_pfn, 6540 unsigned long node_end_pfn, 6541 unsigned long *zones_size, 6542 unsigned long *zholes_size) 6543 { 6544 unsigned long realtotalpages = 0, totalpages = 0; 6545 enum zone_type i; 6546 6547 for (i = 0; i < MAX_NR_ZONES; i++) { 6548 struct zone *zone = pgdat->node_zones + i; 6549 unsigned long zone_start_pfn, zone_end_pfn; 6550 unsigned long size, real_size; 6551 6552 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6553 node_start_pfn, 6554 node_end_pfn, 6555 &zone_start_pfn, 6556 &zone_end_pfn, 6557 zones_size); 6558 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6559 node_start_pfn, node_end_pfn, 6560 zholes_size); 6561 if (size) 6562 zone->zone_start_pfn = zone_start_pfn; 6563 else 6564 zone->zone_start_pfn = 0; 6565 zone->spanned_pages = size; 6566 zone->present_pages = real_size; 6567 6568 totalpages += size; 6569 realtotalpages += real_size; 6570 } 6571 6572 pgdat->node_spanned_pages = totalpages; 6573 pgdat->node_present_pages = realtotalpages; 6574 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6575 realtotalpages); 6576 } 6577 6578 #ifndef CONFIG_SPARSEMEM 6579 /* 6580 * Calculate the size of the zone->blockflags rounded to an unsigned long 6581 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6582 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6583 * round what is now in bits to nearest long in bits, then return it in 6584 * bytes. 6585 */ 6586 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6587 { 6588 unsigned long usemapsize; 6589 6590 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6591 usemapsize = roundup(zonesize, pageblock_nr_pages); 6592 usemapsize = usemapsize >> pageblock_order; 6593 usemapsize *= NR_PAGEBLOCK_BITS; 6594 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6595 6596 return usemapsize / 8; 6597 } 6598 6599 static void __ref setup_usemap(struct pglist_data *pgdat, 6600 struct zone *zone, 6601 unsigned long zone_start_pfn, 6602 unsigned long zonesize) 6603 { 6604 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6605 zone->pageblock_flags = NULL; 6606 if (usemapsize) { 6607 zone->pageblock_flags = 6608 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6609 pgdat->node_id); 6610 if (!zone->pageblock_flags) 6611 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6612 usemapsize, zone->name, pgdat->node_id); 6613 } 6614 } 6615 #else 6616 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6617 unsigned long zone_start_pfn, unsigned long zonesize) {} 6618 #endif /* CONFIG_SPARSEMEM */ 6619 6620 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6621 6622 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6623 void __init set_pageblock_order(void) 6624 { 6625 unsigned int order; 6626 6627 /* Check that pageblock_nr_pages has not already been setup */ 6628 if (pageblock_order) 6629 return; 6630 6631 if (HPAGE_SHIFT > PAGE_SHIFT) 6632 order = HUGETLB_PAGE_ORDER; 6633 else 6634 order = MAX_ORDER - 1; 6635 6636 /* 6637 * Assume the largest contiguous order of interest is a huge page. 6638 * This value may be variable depending on boot parameters on IA64 and 6639 * powerpc. 6640 */ 6641 pageblock_order = order; 6642 } 6643 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6644 6645 /* 6646 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6647 * is unused as pageblock_order is set at compile-time. See 6648 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6649 * the kernel config 6650 */ 6651 void __init set_pageblock_order(void) 6652 { 6653 } 6654 6655 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6656 6657 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6658 unsigned long present_pages) 6659 { 6660 unsigned long pages = spanned_pages; 6661 6662 /* 6663 * Provide a more accurate estimation if there are holes within 6664 * the zone and SPARSEMEM is in use. If there are holes within the 6665 * zone, each populated memory region may cost us one or two extra 6666 * memmap pages due to alignment because memmap pages for each 6667 * populated regions may not be naturally aligned on page boundary. 6668 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6669 */ 6670 if (spanned_pages > present_pages + (present_pages >> 4) && 6671 IS_ENABLED(CONFIG_SPARSEMEM)) 6672 pages = present_pages; 6673 6674 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6675 } 6676 6677 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6678 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6679 { 6680 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6681 6682 spin_lock_init(&ds_queue->split_queue_lock); 6683 INIT_LIST_HEAD(&ds_queue->split_queue); 6684 ds_queue->split_queue_len = 0; 6685 } 6686 #else 6687 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6688 #endif 6689 6690 #ifdef CONFIG_COMPACTION 6691 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6692 { 6693 init_waitqueue_head(&pgdat->kcompactd_wait); 6694 } 6695 #else 6696 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6697 #endif 6698 6699 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6700 { 6701 pgdat_resize_init(pgdat); 6702 6703 pgdat_init_split_queue(pgdat); 6704 pgdat_init_kcompactd(pgdat); 6705 6706 init_waitqueue_head(&pgdat->kswapd_wait); 6707 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6708 6709 pgdat_page_ext_init(pgdat); 6710 spin_lock_init(&pgdat->lru_lock); 6711 lruvec_init(node_lruvec(pgdat)); 6712 } 6713 6714 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6715 unsigned long remaining_pages) 6716 { 6717 atomic_long_set(&zone->managed_pages, remaining_pages); 6718 zone_set_nid(zone, nid); 6719 zone->name = zone_names[idx]; 6720 zone->zone_pgdat = NODE_DATA(nid); 6721 spin_lock_init(&zone->lock); 6722 zone_seqlock_init(zone); 6723 zone_pcp_init(zone); 6724 } 6725 6726 /* 6727 * Set up the zone data structures 6728 * - init pgdat internals 6729 * - init all zones belonging to this node 6730 * 6731 * NOTE: this function is only called during memory hotplug 6732 */ 6733 #ifdef CONFIG_MEMORY_HOTPLUG 6734 void __ref free_area_init_core_hotplug(int nid) 6735 { 6736 enum zone_type z; 6737 pg_data_t *pgdat = NODE_DATA(nid); 6738 6739 pgdat_init_internals(pgdat); 6740 for (z = 0; z < MAX_NR_ZONES; z++) 6741 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6742 } 6743 #endif 6744 6745 /* 6746 * Set up the zone data structures: 6747 * - mark all pages reserved 6748 * - mark all memory queues empty 6749 * - clear the memory bitmaps 6750 * 6751 * NOTE: pgdat should get zeroed by caller. 6752 * NOTE: this function is only called during early init. 6753 */ 6754 static void __init free_area_init_core(struct pglist_data *pgdat) 6755 { 6756 enum zone_type j; 6757 int nid = pgdat->node_id; 6758 6759 pgdat_init_internals(pgdat); 6760 pgdat->per_cpu_nodestats = &boot_nodestats; 6761 6762 for (j = 0; j < MAX_NR_ZONES; j++) { 6763 struct zone *zone = pgdat->node_zones + j; 6764 unsigned long size, freesize, memmap_pages; 6765 unsigned long zone_start_pfn = zone->zone_start_pfn; 6766 6767 size = zone->spanned_pages; 6768 freesize = zone->present_pages; 6769 6770 /* 6771 * Adjust freesize so that it accounts for how much memory 6772 * is used by this zone for memmap. This affects the watermark 6773 * and per-cpu initialisations 6774 */ 6775 memmap_pages = calc_memmap_size(size, freesize); 6776 if (!is_highmem_idx(j)) { 6777 if (freesize >= memmap_pages) { 6778 freesize -= memmap_pages; 6779 if (memmap_pages) 6780 printk(KERN_DEBUG 6781 " %s zone: %lu pages used for memmap\n", 6782 zone_names[j], memmap_pages); 6783 } else 6784 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6785 zone_names[j], memmap_pages, freesize); 6786 } 6787 6788 /* Account for reserved pages */ 6789 if (j == 0 && freesize > dma_reserve) { 6790 freesize -= dma_reserve; 6791 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6792 zone_names[0], dma_reserve); 6793 } 6794 6795 if (!is_highmem_idx(j)) 6796 nr_kernel_pages += freesize; 6797 /* Charge for highmem memmap if there are enough kernel pages */ 6798 else if (nr_kernel_pages > memmap_pages * 2) 6799 nr_kernel_pages -= memmap_pages; 6800 nr_all_pages += freesize; 6801 6802 /* 6803 * Set an approximate value for lowmem here, it will be adjusted 6804 * when the bootmem allocator frees pages into the buddy system. 6805 * And all highmem pages will be managed by the buddy system. 6806 */ 6807 zone_init_internals(zone, j, nid, freesize); 6808 6809 if (!size) 6810 continue; 6811 6812 set_pageblock_order(); 6813 setup_usemap(pgdat, zone, zone_start_pfn, size); 6814 init_currently_empty_zone(zone, zone_start_pfn, size); 6815 memmap_init(size, nid, j, zone_start_pfn); 6816 } 6817 } 6818 6819 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6820 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6821 { 6822 unsigned long __maybe_unused start = 0; 6823 unsigned long __maybe_unused offset = 0; 6824 6825 /* Skip empty nodes */ 6826 if (!pgdat->node_spanned_pages) 6827 return; 6828 6829 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6830 offset = pgdat->node_start_pfn - start; 6831 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6832 if (!pgdat->node_mem_map) { 6833 unsigned long size, end; 6834 struct page *map; 6835 6836 /* 6837 * The zone's endpoints aren't required to be MAX_ORDER 6838 * aligned but the node_mem_map endpoints must be in order 6839 * for the buddy allocator to function correctly. 6840 */ 6841 end = pgdat_end_pfn(pgdat); 6842 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6843 size = (end - start) * sizeof(struct page); 6844 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6845 pgdat->node_id); 6846 if (!map) 6847 panic("Failed to allocate %ld bytes for node %d memory map\n", 6848 size, pgdat->node_id); 6849 pgdat->node_mem_map = map + offset; 6850 } 6851 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6852 __func__, pgdat->node_id, (unsigned long)pgdat, 6853 (unsigned long)pgdat->node_mem_map); 6854 #ifndef CONFIG_NEED_MULTIPLE_NODES 6855 /* 6856 * With no DISCONTIG, the global mem_map is just set as node 0's 6857 */ 6858 if (pgdat == NODE_DATA(0)) { 6859 mem_map = NODE_DATA(0)->node_mem_map; 6860 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6861 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6862 mem_map -= offset; 6863 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6864 } 6865 #endif 6866 } 6867 #else 6868 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6869 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6870 6871 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6872 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6873 { 6874 pgdat->first_deferred_pfn = ULONG_MAX; 6875 } 6876 #else 6877 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6878 #endif 6879 6880 void __init free_area_init_node(int nid, unsigned long *zones_size, 6881 unsigned long node_start_pfn, 6882 unsigned long *zholes_size) 6883 { 6884 pg_data_t *pgdat = NODE_DATA(nid); 6885 unsigned long start_pfn = 0; 6886 unsigned long end_pfn = 0; 6887 6888 /* pg_data_t should be reset to zero when it's allocated */ 6889 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6890 6891 pgdat->node_id = nid; 6892 pgdat->node_start_pfn = node_start_pfn; 6893 pgdat->per_cpu_nodestats = NULL; 6894 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6895 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6896 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6897 (u64)start_pfn << PAGE_SHIFT, 6898 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6899 #else 6900 start_pfn = node_start_pfn; 6901 #endif 6902 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6903 zones_size, zholes_size); 6904 6905 alloc_node_mem_map(pgdat); 6906 pgdat_set_deferred_range(pgdat); 6907 6908 free_area_init_core(pgdat); 6909 } 6910 6911 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6912 /* 6913 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6914 * pages zeroed 6915 */ 6916 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6917 { 6918 unsigned long pfn; 6919 u64 pgcnt = 0; 6920 6921 for (pfn = spfn; pfn < epfn; pfn++) { 6922 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6923 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6924 + pageblock_nr_pages - 1; 6925 continue; 6926 } 6927 mm_zero_struct_page(pfn_to_page(pfn)); 6928 pgcnt++; 6929 } 6930 6931 return pgcnt; 6932 } 6933 6934 /* 6935 * Only struct pages that are backed by physical memory are zeroed and 6936 * initialized by going through __init_single_page(). But, there are some 6937 * struct pages which are reserved in memblock allocator and their fields 6938 * may be accessed (for example page_to_pfn() on some configuration accesses 6939 * flags). We must explicitly zero those struct pages. 6940 * 6941 * This function also addresses a similar issue where struct pages are left 6942 * uninitialized because the physical address range is not covered by 6943 * memblock.memory or memblock.reserved. That could happen when memblock 6944 * layout is manually configured via memmap=. 6945 */ 6946 void __init zero_resv_unavail(void) 6947 { 6948 phys_addr_t start, end; 6949 u64 i, pgcnt; 6950 phys_addr_t next = 0; 6951 6952 /* 6953 * Loop through unavailable ranges not covered by memblock.memory. 6954 */ 6955 pgcnt = 0; 6956 for_each_mem_range(i, &memblock.memory, NULL, 6957 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6958 if (next < start) 6959 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6960 next = end; 6961 } 6962 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6963 6964 /* 6965 * Struct pages that do not have backing memory. This could be because 6966 * firmware is using some of this memory, or for some other reasons. 6967 */ 6968 if (pgcnt) 6969 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6970 } 6971 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6972 6973 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6974 6975 #if MAX_NUMNODES > 1 6976 /* 6977 * Figure out the number of possible node ids. 6978 */ 6979 void __init setup_nr_node_ids(void) 6980 { 6981 unsigned int highest; 6982 6983 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6984 nr_node_ids = highest + 1; 6985 } 6986 #endif 6987 6988 /** 6989 * node_map_pfn_alignment - determine the maximum internode alignment 6990 * 6991 * This function should be called after node map is populated and sorted. 6992 * It calculates the maximum power of two alignment which can distinguish 6993 * all the nodes. 6994 * 6995 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6996 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6997 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6998 * shifted, 1GiB is enough and this function will indicate so. 6999 * 7000 * This is used to test whether pfn -> nid mapping of the chosen memory 7001 * model has fine enough granularity to avoid incorrect mapping for the 7002 * populated node map. 7003 * 7004 * Return: the determined alignment in pfn's. 0 if there is no alignment 7005 * requirement (single node). 7006 */ 7007 unsigned long __init node_map_pfn_alignment(void) 7008 { 7009 unsigned long accl_mask = 0, last_end = 0; 7010 unsigned long start, end, mask; 7011 int last_nid = NUMA_NO_NODE; 7012 int i, nid; 7013 7014 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7015 if (!start || last_nid < 0 || last_nid == nid) { 7016 last_nid = nid; 7017 last_end = end; 7018 continue; 7019 } 7020 7021 /* 7022 * Start with a mask granular enough to pin-point to the 7023 * start pfn and tick off bits one-by-one until it becomes 7024 * too coarse to separate the current node from the last. 7025 */ 7026 mask = ~((1 << __ffs(start)) - 1); 7027 while (mask && last_end <= (start & (mask << 1))) 7028 mask <<= 1; 7029 7030 /* accumulate all internode masks */ 7031 accl_mask |= mask; 7032 } 7033 7034 /* convert mask to number of pages */ 7035 return ~accl_mask + 1; 7036 } 7037 7038 /* Find the lowest pfn for a node */ 7039 static unsigned long __init find_min_pfn_for_node(int nid) 7040 { 7041 unsigned long min_pfn = ULONG_MAX; 7042 unsigned long start_pfn; 7043 int i; 7044 7045 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 7046 min_pfn = min(min_pfn, start_pfn); 7047 7048 if (min_pfn == ULONG_MAX) { 7049 pr_warn("Could not find start_pfn for node %d\n", nid); 7050 return 0; 7051 } 7052 7053 return min_pfn; 7054 } 7055 7056 /** 7057 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7058 * 7059 * Return: the minimum PFN based on information provided via 7060 * memblock_set_node(). 7061 */ 7062 unsigned long __init find_min_pfn_with_active_regions(void) 7063 { 7064 return find_min_pfn_for_node(MAX_NUMNODES); 7065 } 7066 7067 /* 7068 * early_calculate_totalpages() 7069 * Sum pages in active regions for movable zone. 7070 * Populate N_MEMORY for calculating usable_nodes. 7071 */ 7072 static unsigned long __init early_calculate_totalpages(void) 7073 { 7074 unsigned long totalpages = 0; 7075 unsigned long start_pfn, end_pfn; 7076 int i, nid; 7077 7078 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7079 unsigned long pages = end_pfn - start_pfn; 7080 7081 totalpages += pages; 7082 if (pages) 7083 node_set_state(nid, N_MEMORY); 7084 } 7085 return totalpages; 7086 } 7087 7088 /* 7089 * Find the PFN the Movable zone begins in each node. Kernel memory 7090 * is spread evenly between nodes as long as the nodes have enough 7091 * memory. When they don't, some nodes will have more kernelcore than 7092 * others 7093 */ 7094 static void __init find_zone_movable_pfns_for_nodes(void) 7095 { 7096 int i, nid; 7097 unsigned long usable_startpfn; 7098 unsigned long kernelcore_node, kernelcore_remaining; 7099 /* save the state before borrow the nodemask */ 7100 nodemask_t saved_node_state = node_states[N_MEMORY]; 7101 unsigned long totalpages = early_calculate_totalpages(); 7102 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7103 struct memblock_region *r; 7104 7105 /* Need to find movable_zone earlier when movable_node is specified. */ 7106 find_usable_zone_for_movable(); 7107 7108 /* 7109 * If movable_node is specified, ignore kernelcore and movablecore 7110 * options. 7111 */ 7112 if (movable_node_is_enabled()) { 7113 for_each_memblock(memory, r) { 7114 if (!memblock_is_hotpluggable(r)) 7115 continue; 7116 7117 nid = r->nid; 7118 7119 usable_startpfn = PFN_DOWN(r->base); 7120 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7121 min(usable_startpfn, zone_movable_pfn[nid]) : 7122 usable_startpfn; 7123 } 7124 7125 goto out2; 7126 } 7127 7128 /* 7129 * If kernelcore=mirror is specified, ignore movablecore option 7130 */ 7131 if (mirrored_kernelcore) { 7132 bool mem_below_4gb_not_mirrored = false; 7133 7134 for_each_memblock(memory, r) { 7135 if (memblock_is_mirror(r)) 7136 continue; 7137 7138 nid = r->nid; 7139 7140 usable_startpfn = memblock_region_memory_base_pfn(r); 7141 7142 if (usable_startpfn < 0x100000) { 7143 mem_below_4gb_not_mirrored = true; 7144 continue; 7145 } 7146 7147 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7148 min(usable_startpfn, zone_movable_pfn[nid]) : 7149 usable_startpfn; 7150 } 7151 7152 if (mem_below_4gb_not_mirrored) 7153 pr_warn("This configuration results in unmirrored kernel memory."); 7154 7155 goto out2; 7156 } 7157 7158 /* 7159 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7160 * amount of necessary memory. 7161 */ 7162 if (required_kernelcore_percent) 7163 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7164 10000UL; 7165 if (required_movablecore_percent) 7166 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7167 10000UL; 7168 7169 /* 7170 * If movablecore= was specified, calculate what size of 7171 * kernelcore that corresponds so that memory usable for 7172 * any allocation type is evenly spread. If both kernelcore 7173 * and movablecore are specified, then the value of kernelcore 7174 * will be used for required_kernelcore if it's greater than 7175 * what movablecore would have allowed. 7176 */ 7177 if (required_movablecore) { 7178 unsigned long corepages; 7179 7180 /* 7181 * Round-up so that ZONE_MOVABLE is at least as large as what 7182 * was requested by the user 7183 */ 7184 required_movablecore = 7185 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7186 required_movablecore = min(totalpages, required_movablecore); 7187 corepages = totalpages - required_movablecore; 7188 7189 required_kernelcore = max(required_kernelcore, corepages); 7190 } 7191 7192 /* 7193 * If kernelcore was not specified or kernelcore size is larger 7194 * than totalpages, there is no ZONE_MOVABLE. 7195 */ 7196 if (!required_kernelcore || required_kernelcore >= totalpages) 7197 goto out; 7198 7199 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7200 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7201 7202 restart: 7203 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7204 kernelcore_node = required_kernelcore / usable_nodes; 7205 for_each_node_state(nid, N_MEMORY) { 7206 unsigned long start_pfn, end_pfn; 7207 7208 /* 7209 * Recalculate kernelcore_node if the division per node 7210 * now exceeds what is necessary to satisfy the requested 7211 * amount of memory for the kernel 7212 */ 7213 if (required_kernelcore < kernelcore_node) 7214 kernelcore_node = required_kernelcore / usable_nodes; 7215 7216 /* 7217 * As the map is walked, we track how much memory is usable 7218 * by the kernel using kernelcore_remaining. When it is 7219 * 0, the rest of the node is usable by ZONE_MOVABLE 7220 */ 7221 kernelcore_remaining = kernelcore_node; 7222 7223 /* Go through each range of PFNs within this node */ 7224 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7225 unsigned long size_pages; 7226 7227 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7228 if (start_pfn >= end_pfn) 7229 continue; 7230 7231 /* Account for what is only usable for kernelcore */ 7232 if (start_pfn < usable_startpfn) { 7233 unsigned long kernel_pages; 7234 kernel_pages = min(end_pfn, usable_startpfn) 7235 - start_pfn; 7236 7237 kernelcore_remaining -= min(kernel_pages, 7238 kernelcore_remaining); 7239 required_kernelcore -= min(kernel_pages, 7240 required_kernelcore); 7241 7242 /* Continue if range is now fully accounted */ 7243 if (end_pfn <= usable_startpfn) { 7244 7245 /* 7246 * Push zone_movable_pfn to the end so 7247 * that if we have to rebalance 7248 * kernelcore across nodes, we will 7249 * not double account here 7250 */ 7251 zone_movable_pfn[nid] = end_pfn; 7252 continue; 7253 } 7254 start_pfn = usable_startpfn; 7255 } 7256 7257 /* 7258 * The usable PFN range for ZONE_MOVABLE is from 7259 * start_pfn->end_pfn. Calculate size_pages as the 7260 * number of pages used as kernelcore 7261 */ 7262 size_pages = end_pfn - start_pfn; 7263 if (size_pages > kernelcore_remaining) 7264 size_pages = kernelcore_remaining; 7265 zone_movable_pfn[nid] = start_pfn + size_pages; 7266 7267 /* 7268 * Some kernelcore has been met, update counts and 7269 * break if the kernelcore for this node has been 7270 * satisfied 7271 */ 7272 required_kernelcore -= min(required_kernelcore, 7273 size_pages); 7274 kernelcore_remaining -= size_pages; 7275 if (!kernelcore_remaining) 7276 break; 7277 } 7278 } 7279 7280 /* 7281 * If there is still required_kernelcore, we do another pass with one 7282 * less node in the count. This will push zone_movable_pfn[nid] further 7283 * along on the nodes that still have memory until kernelcore is 7284 * satisfied 7285 */ 7286 usable_nodes--; 7287 if (usable_nodes && required_kernelcore > usable_nodes) 7288 goto restart; 7289 7290 out2: 7291 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7292 for (nid = 0; nid < MAX_NUMNODES; nid++) 7293 zone_movable_pfn[nid] = 7294 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7295 7296 out: 7297 /* restore the node_state */ 7298 node_states[N_MEMORY] = saved_node_state; 7299 } 7300 7301 /* Any regular or high memory on that node ? */ 7302 static void check_for_memory(pg_data_t *pgdat, int nid) 7303 { 7304 enum zone_type zone_type; 7305 7306 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7307 struct zone *zone = &pgdat->node_zones[zone_type]; 7308 if (populated_zone(zone)) { 7309 if (IS_ENABLED(CONFIG_HIGHMEM)) 7310 node_set_state(nid, N_HIGH_MEMORY); 7311 if (zone_type <= ZONE_NORMAL) 7312 node_set_state(nid, N_NORMAL_MEMORY); 7313 break; 7314 } 7315 } 7316 } 7317 7318 /** 7319 * free_area_init_nodes - Initialise all pg_data_t and zone data 7320 * @max_zone_pfn: an array of max PFNs for each zone 7321 * 7322 * This will call free_area_init_node() for each active node in the system. 7323 * Using the page ranges provided by memblock_set_node(), the size of each 7324 * zone in each node and their holes is calculated. If the maximum PFN 7325 * between two adjacent zones match, it is assumed that the zone is empty. 7326 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7327 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7328 * starts where the previous one ended. For example, ZONE_DMA32 starts 7329 * at arch_max_dma_pfn. 7330 */ 7331 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7332 { 7333 unsigned long start_pfn, end_pfn; 7334 int i, nid; 7335 7336 /* Record where the zone boundaries are */ 7337 memset(arch_zone_lowest_possible_pfn, 0, 7338 sizeof(arch_zone_lowest_possible_pfn)); 7339 memset(arch_zone_highest_possible_pfn, 0, 7340 sizeof(arch_zone_highest_possible_pfn)); 7341 7342 start_pfn = find_min_pfn_with_active_regions(); 7343 7344 for (i = 0; i < MAX_NR_ZONES; i++) { 7345 if (i == ZONE_MOVABLE) 7346 continue; 7347 7348 end_pfn = max(max_zone_pfn[i], start_pfn); 7349 arch_zone_lowest_possible_pfn[i] = start_pfn; 7350 arch_zone_highest_possible_pfn[i] = end_pfn; 7351 7352 start_pfn = end_pfn; 7353 } 7354 7355 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7356 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7357 find_zone_movable_pfns_for_nodes(); 7358 7359 /* Print out the zone ranges */ 7360 pr_info("Zone ranges:\n"); 7361 for (i = 0; i < MAX_NR_ZONES; i++) { 7362 if (i == ZONE_MOVABLE) 7363 continue; 7364 pr_info(" %-8s ", zone_names[i]); 7365 if (arch_zone_lowest_possible_pfn[i] == 7366 arch_zone_highest_possible_pfn[i]) 7367 pr_cont("empty\n"); 7368 else 7369 pr_cont("[mem %#018Lx-%#018Lx]\n", 7370 (u64)arch_zone_lowest_possible_pfn[i] 7371 << PAGE_SHIFT, 7372 ((u64)arch_zone_highest_possible_pfn[i] 7373 << PAGE_SHIFT) - 1); 7374 } 7375 7376 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7377 pr_info("Movable zone start for each node\n"); 7378 for (i = 0; i < MAX_NUMNODES; i++) { 7379 if (zone_movable_pfn[i]) 7380 pr_info(" Node %d: %#018Lx\n", i, 7381 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7382 } 7383 7384 /* 7385 * Print out the early node map, and initialize the 7386 * subsection-map relative to active online memory ranges to 7387 * enable future "sub-section" extensions of the memory map. 7388 */ 7389 pr_info("Early memory node ranges\n"); 7390 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7391 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7392 (u64)start_pfn << PAGE_SHIFT, 7393 ((u64)end_pfn << PAGE_SHIFT) - 1); 7394 subsection_map_init(start_pfn, end_pfn - start_pfn); 7395 } 7396 7397 /* Initialise every node */ 7398 mminit_verify_pageflags_layout(); 7399 setup_nr_node_ids(); 7400 zero_resv_unavail(); 7401 for_each_online_node(nid) { 7402 pg_data_t *pgdat = NODE_DATA(nid); 7403 free_area_init_node(nid, NULL, 7404 find_min_pfn_for_node(nid), NULL); 7405 7406 /* Any memory on that node */ 7407 if (pgdat->node_present_pages) 7408 node_set_state(nid, N_MEMORY); 7409 check_for_memory(pgdat, nid); 7410 } 7411 } 7412 7413 static int __init cmdline_parse_core(char *p, unsigned long *core, 7414 unsigned long *percent) 7415 { 7416 unsigned long long coremem; 7417 char *endptr; 7418 7419 if (!p) 7420 return -EINVAL; 7421 7422 /* Value may be a percentage of total memory, otherwise bytes */ 7423 coremem = simple_strtoull(p, &endptr, 0); 7424 if (*endptr == '%') { 7425 /* Paranoid check for percent values greater than 100 */ 7426 WARN_ON(coremem > 100); 7427 7428 *percent = coremem; 7429 } else { 7430 coremem = memparse(p, &p); 7431 /* Paranoid check that UL is enough for the coremem value */ 7432 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7433 7434 *core = coremem >> PAGE_SHIFT; 7435 *percent = 0UL; 7436 } 7437 return 0; 7438 } 7439 7440 /* 7441 * kernelcore=size sets the amount of memory for use for allocations that 7442 * cannot be reclaimed or migrated. 7443 */ 7444 static int __init cmdline_parse_kernelcore(char *p) 7445 { 7446 /* parse kernelcore=mirror */ 7447 if (parse_option_str(p, "mirror")) { 7448 mirrored_kernelcore = true; 7449 return 0; 7450 } 7451 7452 return cmdline_parse_core(p, &required_kernelcore, 7453 &required_kernelcore_percent); 7454 } 7455 7456 /* 7457 * movablecore=size sets the amount of memory for use for allocations that 7458 * can be reclaimed or migrated. 7459 */ 7460 static int __init cmdline_parse_movablecore(char *p) 7461 { 7462 return cmdline_parse_core(p, &required_movablecore, 7463 &required_movablecore_percent); 7464 } 7465 7466 early_param("kernelcore", cmdline_parse_kernelcore); 7467 early_param("movablecore", cmdline_parse_movablecore); 7468 7469 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7470 7471 void adjust_managed_page_count(struct page *page, long count) 7472 { 7473 atomic_long_add(count, &page_zone(page)->managed_pages); 7474 totalram_pages_add(count); 7475 #ifdef CONFIG_HIGHMEM 7476 if (PageHighMem(page)) 7477 totalhigh_pages_add(count); 7478 #endif 7479 } 7480 EXPORT_SYMBOL(adjust_managed_page_count); 7481 7482 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7483 { 7484 void *pos; 7485 unsigned long pages = 0; 7486 7487 start = (void *)PAGE_ALIGN((unsigned long)start); 7488 end = (void *)((unsigned long)end & PAGE_MASK); 7489 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7490 struct page *page = virt_to_page(pos); 7491 void *direct_map_addr; 7492 7493 /* 7494 * 'direct_map_addr' might be different from 'pos' 7495 * because some architectures' virt_to_page() 7496 * work with aliases. Getting the direct map 7497 * address ensures that we get a _writeable_ 7498 * alias for the memset(). 7499 */ 7500 direct_map_addr = page_address(page); 7501 if ((unsigned int)poison <= 0xFF) 7502 memset(direct_map_addr, poison, PAGE_SIZE); 7503 7504 free_reserved_page(page); 7505 } 7506 7507 if (pages && s) 7508 pr_info("Freeing %s memory: %ldK\n", 7509 s, pages << (PAGE_SHIFT - 10)); 7510 7511 return pages; 7512 } 7513 7514 #ifdef CONFIG_HIGHMEM 7515 void free_highmem_page(struct page *page) 7516 { 7517 __free_reserved_page(page); 7518 totalram_pages_inc(); 7519 atomic_long_inc(&page_zone(page)->managed_pages); 7520 totalhigh_pages_inc(); 7521 } 7522 #endif 7523 7524 7525 void __init mem_init_print_info(const char *str) 7526 { 7527 unsigned long physpages, codesize, datasize, rosize, bss_size; 7528 unsigned long init_code_size, init_data_size; 7529 7530 physpages = get_num_physpages(); 7531 codesize = _etext - _stext; 7532 datasize = _edata - _sdata; 7533 rosize = __end_rodata - __start_rodata; 7534 bss_size = __bss_stop - __bss_start; 7535 init_data_size = __init_end - __init_begin; 7536 init_code_size = _einittext - _sinittext; 7537 7538 /* 7539 * Detect special cases and adjust section sizes accordingly: 7540 * 1) .init.* may be embedded into .data sections 7541 * 2) .init.text.* may be out of [__init_begin, __init_end], 7542 * please refer to arch/tile/kernel/vmlinux.lds.S. 7543 * 3) .rodata.* may be embedded into .text or .data sections. 7544 */ 7545 #define adj_init_size(start, end, size, pos, adj) \ 7546 do { \ 7547 if (start <= pos && pos < end && size > adj) \ 7548 size -= adj; \ 7549 } while (0) 7550 7551 adj_init_size(__init_begin, __init_end, init_data_size, 7552 _sinittext, init_code_size); 7553 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7554 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7555 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7556 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7557 7558 #undef adj_init_size 7559 7560 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7561 #ifdef CONFIG_HIGHMEM 7562 ", %luK highmem" 7563 #endif 7564 "%s%s)\n", 7565 nr_free_pages() << (PAGE_SHIFT - 10), 7566 physpages << (PAGE_SHIFT - 10), 7567 codesize >> 10, datasize >> 10, rosize >> 10, 7568 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7569 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7570 totalcma_pages << (PAGE_SHIFT - 10), 7571 #ifdef CONFIG_HIGHMEM 7572 totalhigh_pages() << (PAGE_SHIFT - 10), 7573 #endif 7574 str ? ", " : "", str ? str : ""); 7575 } 7576 7577 /** 7578 * set_dma_reserve - set the specified number of pages reserved in the first zone 7579 * @new_dma_reserve: The number of pages to mark reserved 7580 * 7581 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7582 * In the DMA zone, a significant percentage may be consumed by kernel image 7583 * and other unfreeable allocations which can skew the watermarks badly. This 7584 * function may optionally be used to account for unfreeable pages in the 7585 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7586 * smaller per-cpu batchsize. 7587 */ 7588 void __init set_dma_reserve(unsigned long new_dma_reserve) 7589 { 7590 dma_reserve = new_dma_reserve; 7591 } 7592 7593 void __init free_area_init(unsigned long *zones_size) 7594 { 7595 zero_resv_unavail(); 7596 free_area_init_node(0, zones_size, 7597 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7598 } 7599 7600 static int page_alloc_cpu_dead(unsigned int cpu) 7601 { 7602 7603 lru_add_drain_cpu(cpu); 7604 drain_pages(cpu); 7605 7606 /* 7607 * Spill the event counters of the dead processor 7608 * into the current processors event counters. 7609 * This artificially elevates the count of the current 7610 * processor. 7611 */ 7612 vm_events_fold_cpu(cpu); 7613 7614 /* 7615 * Zero the differential counters of the dead processor 7616 * so that the vm statistics are consistent. 7617 * 7618 * This is only okay since the processor is dead and cannot 7619 * race with what we are doing. 7620 */ 7621 cpu_vm_stats_fold(cpu); 7622 return 0; 7623 } 7624 7625 #ifdef CONFIG_NUMA 7626 int hashdist = HASHDIST_DEFAULT; 7627 7628 static int __init set_hashdist(char *str) 7629 { 7630 if (!str) 7631 return 0; 7632 hashdist = simple_strtoul(str, &str, 0); 7633 return 1; 7634 } 7635 __setup("hashdist=", set_hashdist); 7636 #endif 7637 7638 void __init page_alloc_init(void) 7639 { 7640 int ret; 7641 7642 #ifdef CONFIG_NUMA 7643 if (num_node_state(N_MEMORY) == 1) 7644 hashdist = 0; 7645 #endif 7646 7647 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7648 "mm/page_alloc:dead", NULL, 7649 page_alloc_cpu_dead); 7650 WARN_ON(ret < 0); 7651 } 7652 7653 /* 7654 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7655 * or min_free_kbytes changes. 7656 */ 7657 static void calculate_totalreserve_pages(void) 7658 { 7659 struct pglist_data *pgdat; 7660 unsigned long reserve_pages = 0; 7661 enum zone_type i, j; 7662 7663 for_each_online_pgdat(pgdat) { 7664 7665 pgdat->totalreserve_pages = 0; 7666 7667 for (i = 0; i < MAX_NR_ZONES; i++) { 7668 struct zone *zone = pgdat->node_zones + i; 7669 long max = 0; 7670 unsigned long managed_pages = zone_managed_pages(zone); 7671 7672 /* Find valid and maximum lowmem_reserve in the zone */ 7673 for (j = i; j < MAX_NR_ZONES; j++) { 7674 if (zone->lowmem_reserve[j] > max) 7675 max = zone->lowmem_reserve[j]; 7676 } 7677 7678 /* we treat the high watermark as reserved pages. */ 7679 max += high_wmark_pages(zone); 7680 7681 if (max > managed_pages) 7682 max = managed_pages; 7683 7684 pgdat->totalreserve_pages += max; 7685 7686 reserve_pages += max; 7687 } 7688 } 7689 totalreserve_pages = reserve_pages; 7690 } 7691 7692 /* 7693 * setup_per_zone_lowmem_reserve - called whenever 7694 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7695 * has a correct pages reserved value, so an adequate number of 7696 * pages are left in the zone after a successful __alloc_pages(). 7697 */ 7698 static void setup_per_zone_lowmem_reserve(void) 7699 { 7700 struct pglist_data *pgdat; 7701 enum zone_type j, idx; 7702 7703 for_each_online_pgdat(pgdat) { 7704 for (j = 0; j < MAX_NR_ZONES; j++) { 7705 struct zone *zone = pgdat->node_zones + j; 7706 unsigned long managed_pages = zone_managed_pages(zone); 7707 7708 zone->lowmem_reserve[j] = 0; 7709 7710 idx = j; 7711 while (idx) { 7712 struct zone *lower_zone; 7713 7714 idx--; 7715 lower_zone = pgdat->node_zones + idx; 7716 7717 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7718 sysctl_lowmem_reserve_ratio[idx] = 0; 7719 lower_zone->lowmem_reserve[j] = 0; 7720 } else { 7721 lower_zone->lowmem_reserve[j] = 7722 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7723 } 7724 managed_pages += zone_managed_pages(lower_zone); 7725 } 7726 } 7727 } 7728 7729 /* update totalreserve_pages */ 7730 calculate_totalreserve_pages(); 7731 } 7732 7733 static void __setup_per_zone_wmarks(void) 7734 { 7735 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7736 unsigned long lowmem_pages = 0; 7737 struct zone *zone; 7738 unsigned long flags; 7739 7740 /* Calculate total number of !ZONE_HIGHMEM pages */ 7741 for_each_zone(zone) { 7742 if (!is_highmem(zone)) 7743 lowmem_pages += zone_managed_pages(zone); 7744 } 7745 7746 for_each_zone(zone) { 7747 u64 tmp; 7748 7749 spin_lock_irqsave(&zone->lock, flags); 7750 tmp = (u64)pages_min * zone_managed_pages(zone); 7751 do_div(tmp, lowmem_pages); 7752 if (is_highmem(zone)) { 7753 /* 7754 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7755 * need highmem pages, so cap pages_min to a small 7756 * value here. 7757 * 7758 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7759 * deltas control async page reclaim, and so should 7760 * not be capped for highmem. 7761 */ 7762 unsigned long min_pages; 7763 7764 min_pages = zone_managed_pages(zone) / 1024; 7765 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7766 zone->_watermark[WMARK_MIN] = min_pages; 7767 } else { 7768 /* 7769 * If it's a lowmem zone, reserve a number of pages 7770 * proportionate to the zone's size. 7771 */ 7772 zone->_watermark[WMARK_MIN] = tmp; 7773 } 7774 7775 /* 7776 * Set the kswapd watermarks distance according to the 7777 * scale factor in proportion to available memory, but 7778 * ensure a minimum size on small systems. 7779 */ 7780 tmp = max_t(u64, tmp >> 2, 7781 mult_frac(zone_managed_pages(zone), 7782 watermark_scale_factor, 10000)); 7783 7784 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7785 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7786 zone->watermark_boost = 0; 7787 7788 spin_unlock_irqrestore(&zone->lock, flags); 7789 } 7790 7791 /* update totalreserve_pages */ 7792 calculate_totalreserve_pages(); 7793 } 7794 7795 /** 7796 * setup_per_zone_wmarks - called when min_free_kbytes changes 7797 * or when memory is hot-{added|removed} 7798 * 7799 * Ensures that the watermark[min,low,high] values for each zone are set 7800 * correctly with respect to min_free_kbytes. 7801 */ 7802 void setup_per_zone_wmarks(void) 7803 { 7804 static DEFINE_SPINLOCK(lock); 7805 7806 spin_lock(&lock); 7807 __setup_per_zone_wmarks(); 7808 spin_unlock(&lock); 7809 } 7810 7811 /* 7812 * Initialise min_free_kbytes. 7813 * 7814 * For small machines we want it small (128k min). For large machines 7815 * we want it large (64MB max). But it is not linear, because network 7816 * bandwidth does not increase linearly with machine size. We use 7817 * 7818 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7819 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7820 * 7821 * which yields 7822 * 7823 * 16MB: 512k 7824 * 32MB: 724k 7825 * 64MB: 1024k 7826 * 128MB: 1448k 7827 * 256MB: 2048k 7828 * 512MB: 2896k 7829 * 1024MB: 4096k 7830 * 2048MB: 5792k 7831 * 4096MB: 8192k 7832 * 8192MB: 11584k 7833 * 16384MB: 16384k 7834 */ 7835 int __meminit init_per_zone_wmark_min(void) 7836 { 7837 unsigned long lowmem_kbytes; 7838 int new_min_free_kbytes; 7839 7840 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7841 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7842 7843 if (new_min_free_kbytes > user_min_free_kbytes) { 7844 min_free_kbytes = new_min_free_kbytes; 7845 if (min_free_kbytes < 128) 7846 min_free_kbytes = 128; 7847 if (min_free_kbytes > 65536) 7848 min_free_kbytes = 65536; 7849 } else { 7850 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7851 new_min_free_kbytes, user_min_free_kbytes); 7852 } 7853 setup_per_zone_wmarks(); 7854 refresh_zone_stat_thresholds(); 7855 setup_per_zone_lowmem_reserve(); 7856 7857 #ifdef CONFIG_NUMA 7858 setup_min_unmapped_ratio(); 7859 setup_min_slab_ratio(); 7860 #endif 7861 7862 return 0; 7863 } 7864 core_initcall(init_per_zone_wmark_min) 7865 7866 /* 7867 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7868 * that we can call two helper functions whenever min_free_kbytes 7869 * changes. 7870 */ 7871 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7872 void __user *buffer, size_t *length, loff_t *ppos) 7873 { 7874 int rc; 7875 7876 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7877 if (rc) 7878 return rc; 7879 7880 if (write) { 7881 user_min_free_kbytes = min_free_kbytes; 7882 setup_per_zone_wmarks(); 7883 } 7884 return 0; 7885 } 7886 7887 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7888 void __user *buffer, size_t *length, loff_t *ppos) 7889 { 7890 int rc; 7891 7892 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7893 if (rc) 7894 return rc; 7895 7896 return 0; 7897 } 7898 7899 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7900 void __user *buffer, size_t *length, loff_t *ppos) 7901 { 7902 int rc; 7903 7904 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7905 if (rc) 7906 return rc; 7907 7908 if (write) 7909 setup_per_zone_wmarks(); 7910 7911 return 0; 7912 } 7913 7914 #ifdef CONFIG_NUMA 7915 static void setup_min_unmapped_ratio(void) 7916 { 7917 pg_data_t *pgdat; 7918 struct zone *zone; 7919 7920 for_each_online_pgdat(pgdat) 7921 pgdat->min_unmapped_pages = 0; 7922 7923 for_each_zone(zone) 7924 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7925 sysctl_min_unmapped_ratio) / 100; 7926 } 7927 7928 7929 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7930 void __user *buffer, size_t *length, loff_t *ppos) 7931 { 7932 int rc; 7933 7934 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7935 if (rc) 7936 return rc; 7937 7938 setup_min_unmapped_ratio(); 7939 7940 return 0; 7941 } 7942 7943 static void setup_min_slab_ratio(void) 7944 { 7945 pg_data_t *pgdat; 7946 struct zone *zone; 7947 7948 for_each_online_pgdat(pgdat) 7949 pgdat->min_slab_pages = 0; 7950 7951 for_each_zone(zone) 7952 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7953 sysctl_min_slab_ratio) / 100; 7954 } 7955 7956 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7957 void __user *buffer, size_t *length, loff_t *ppos) 7958 { 7959 int rc; 7960 7961 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7962 if (rc) 7963 return rc; 7964 7965 setup_min_slab_ratio(); 7966 7967 return 0; 7968 } 7969 #endif 7970 7971 /* 7972 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7973 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7974 * whenever sysctl_lowmem_reserve_ratio changes. 7975 * 7976 * The reserve ratio obviously has absolutely no relation with the 7977 * minimum watermarks. The lowmem reserve ratio can only make sense 7978 * if in function of the boot time zone sizes. 7979 */ 7980 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7981 void __user *buffer, size_t *length, loff_t *ppos) 7982 { 7983 proc_dointvec_minmax(table, write, buffer, length, ppos); 7984 setup_per_zone_lowmem_reserve(); 7985 return 0; 7986 } 7987 7988 /* 7989 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7990 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7991 * pagelist can have before it gets flushed back to buddy allocator. 7992 */ 7993 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7994 void __user *buffer, size_t *length, loff_t *ppos) 7995 { 7996 struct zone *zone; 7997 int old_percpu_pagelist_fraction; 7998 int ret; 7999 8000 mutex_lock(&pcp_batch_high_lock); 8001 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8002 8003 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8004 if (!write || ret < 0) 8005 goto out; 8006 8007 /* Sanity checking to avoid pcp imbalance */ 8008 if (percpu_pagelist_fraction && 8009 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8010 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8011 ret = -EINVAL; 8012 goto out; 8013 } 8014 8015 /* No change? */ 8016 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8017 goto out; 8018 8019 for_each_populated_zone(zone) { 8020 unsigned int cpu; 8021 8022 for_each_possible_cpu(cpu) 8023 pageset_set_high_and_batch(zone, 8024 per_cpu_ptr(zone->pageset, cpu)); 8025 } 8026 out: 8027 mutex_unlock(&pcp_batch_high_lock); 8028 return ret; 8029 } 8030 8031 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8032 /* 8033 * Returns the number of pages that arch has reserved but 8034 * is not known to alloc_large_system_hash(). 8035 */ 8036 static unsigned long __init arch_reserved_kernel_pages(void) 8037 { 8038 return 0; 8039 } 8040 #endif 8041 8042 /* 8043 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8044 * machines. As memory size is increased the scale is also increased but at 8045 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8046 * quadruples the scale is increased by one, which means the size of hash table 8047 * only doubles, instead of quadrupling as well. 8048 * Because 32-bit systems cannot have large physical memory, where this scaling 8049 * makes sense, it is disabled on such platforms. 8050 */ 8051 #if __BITS_PER_LONG > 32 8052 #define ADAPT_SCALE_BASE (64ul << 30) 8053 #define ADAPT_SCALE_SHIFT 2 8054 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8055 #endif 8056 8057 /* 8058 * allocate a large system hash table from bootmem 8059 * - it is assumed that the hash table must contain an exact power-of-2 8060 * quantity of entries 8061 * - limit is the number of hash buckets, not the total allocation size 8062 */ 8063 void *__init alloc_large_system_hash(const char *tablename, 8064 unsigned long bucketsize, 8065 unsigned long numentries, 8066 int scale, 8067 int flags, 8068 unsigned int *_hash_shift, 8069 unsigned int *_hash_mask, 8070 unsigned long low_limit, 8071 unsigned long high_limit) 8072 { 8073 unsigned long long max = high_limit; 8074 unsigned long log2qty, size; 8075 void *table = NULL; 8076 gfp_t gfp_flags; 8077 bool virt; 8078 8079 /* allow the kernel cmdline to have a say */ 8080 if (!numentries) { 8081 /* round applicable memory size up to nearest megabyte */ 8082 numentries = nr_kernel_pages; 8083 numentries -= arch_reserved_kernel_pages(); 8084 8085 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8086 if (PAGE_SHIFT < 20) 8087 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8088 8089 #if __BITS_PER_LONG > 32 8090 if (!high_limit) { 8091 unsigned long adapt; 8092 8093 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8094 adapt <<= ADAPT_SCALE_SHIFT) 8095 scale++; 8096 } 8097 #endif 8098 8099 /* limit to 1 bucket per 2^scale bytes of low memory */ 8100 if (scale > PAGE_SHIFT) 8101 numentries >>= (scale - PAGE_SHIFT); 8102 else 8103 numentries <<= (PAGE_SHIFT - scale); 8104 8105 /* Make sure we've got at least a 0-order allocation.. */ 8106 if (unlikely(flags & HASH_SMALL)) { 8107 /* Makes no sense without HASH_EARLY */ 8108 WARN_ON(!(flags & HASH_EARLY)); 8109 if (!(numentries >> *_hash_shift)) { 8110 numentries = 1UL << *_hash_shift; 8111 BUG_ON(!numentries); 8112 } 8113 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8114 numentries = PAGE_SIZE / bucketsize; 8115 } 8116 numentries = roundup_pow_of_two(numentries); 8117 8118 /* limit allocation size to 1/16 total memory by default */ 8119 if (max == 0) { 8120 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8121 do_div(max, bucketsize); 8122 } 8123 max = min(max, 0x80000000ULL); 8124 8125 if (numentries < low_limit) 8126 numentries = low_limit; 8127 if (numentries > max) 8128 numentries = max; 8129 8130 log2qty = ilog2(numentries); 8131 8132 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8133 do { 8134 virt = false; 8135 size = bucketsize << log2qty; 8136 if (flags & HASH_EARLY) { 8137 if (flags & HASH_ZERO) 8138 table = memblock_alloc(size, SMP_CACHE_BYTES); 8139 else 8140 table = memblock_alloc_raw(size, 8141 SMP_CACHE_BYTES); 8142 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8143 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 8144 virt = true; 8145 } else { 8146 /* 8147 * If bucketsize is not a power-of-two, we may free 8148 * some pages at the end of hash table which 8149 * alloc_pages_exact() automatically does 8150 */ 8151 table = alloc_pages_exact(size, gfp_flags); 8152 kmemleak_alloc(table, size, 1, gfp_flags); 8153 } 8154 } while (!table && size > PAGE_SIZE && --log2qty); 8155 8156 if (!table) 8157 panic("Failed to allocate %s hash table\n", tablename); 8158 8159 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8160 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8161 virt ? "vmalloc" : "linear"); 8162 8163 if (_hash_shift) 8164 *_hash_shift = log2qty; 8165 if (_hash_mask) 8166 *_hash_mask = (1 << log2qty) - 1; 8167 8168 return table; 8169 } 8170 8171 /* 8172 * This function checks whether pageblock includes unmovable pages or not. 8173 * If @count is not zero, it is okay to include less @count unmovable pages 8174 * 8175 * PageLRU check without isolation or lru_lock could race so that 8176 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8177 * check without lock_page also may miss some movable non-lru pages at 8178 * race condition. So you can't expect this function should be exact. 8179 */ 8180 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 8181 int migratetype, int flags) 8182 { 8183 unsigned long found; 8184 unsigned long iter = 0; 8185 unsigned long pfn = page_to_pfn(page); 8186 const char *reason = "unmovable page"; 8187 8188 /* 8189 * TODO we could make this much more efficient by not checking every 8190 * page in the range if we know all of them are in MOVABLE_ZONE and 8191 * that the movable zone guarantees that pages are migratable but 8192 * the later is not the case right now unfortunatelly. E.g. movablecore 8193 * can still lead to having bootmem allocations in zone_movable. 8194 */ 8195 8196 if (is_migrate_cma_page(page)) { 8197 /* 8198 * CMA allocations (alloc_contig_range) really need to mark 8199 * isolate CMA pageblocks even when they are not movable in fact 8200 * so consider them movable here. 8201 */ 8202 if (is_migrate_cma(migratetype)) 8203 return false; 8204 8205 reason = "CMA page"; 8206 goto unmovable; 8207 } 8208 8209 for (found = 0; iter < pageblock_nr_pages; iter++) { 8210 unsigned long check = pfn + iter; 8211 8212 if (!pfn_valid_within(check)) 8213 continue; 8214 8215 page = pfn_to_page(check); 8216 8217 if (PageReserved(page)) 8218 goto unmovable; 8219 8220 /* 8221 * If the zone is movable and we have ruled out all reserved 8222 * pages then it should be reasonably safe to assume the rest 8223 * is movable. 8224 */ 8225 if (zone_idx(zone) == ZONE_MOVABLE) 8226 continue; 8227 8228 /* 8229 * Hugepages are not in LRU lists, but they're movable. 8230 * We need not scan over tail pages because we don't 8231 * handle each tail page individually in migration. 8232 */ 8233 if (PageHuge(page)) { 8234 struct page *head = compound_head(page); 8235 unsigned int skip_pages; 8236 8237 if (!hugepage_migration_supported(page_hstate(head))) 8238 goto unmovable; 8239 8240 skip_pages = compound_nr(head) - (page - head); 8241 iter += skip_pages - 1; 8242 continue; 8243 } 8244 8245 /* 8246 * We can't use page_count without pin a page 8247 * because another CPU can free compound page. 8248 * This check already skips compound tails of THP 8249 * because their page->_refcount is zero at all time. 8250 */ 8251 if (!page_ref_count(page)) { 8252 if (PageBuddy(page)) 8253 iter += (1 << page_order(page)) - 1; 8254 continue; 8255 } 8256 8257 /* 8258 * The HWPoisoned page may be not in buddy system, and 8259 * page_count() is not 0. 8260 */ 8261 if ((flags & SKIP_HWPOISON) && PageHWPoison(page)) 8262 continue; 8263 8264 if (__PageMovable(page)) 8265 continue; 8266 8267 if (!PageLRU(page)) 8268 found++; 8269 /* 8270 * If there are RECLAIMABLE pages, we need to check 8271 * it. But now, memory offline itself doesn't call 8272 * shrink_node_slabs() and it still to be fixed. 8273 */ 8274 /* 8275 * If the page is not RAM, page_count()should be 0. 8276 * we don't need more check. This is an _used_ not-movable page. 8277 * 8278 * The problematic thing here is PG_reserved pages. PG_reserved 8279 * is set to both of a memory hole page and a _used_ kernel 8280 * page at boot. 8281 */ 8282 if (found > count) 8283 goto unmovable; 8284 } 8285 return false; 8286 unmovable: 8287 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 8288 if (flags & REPORT_FAILURE) 8289 dump_page(pfn_to_page(pfn + iter), reason); 8290 return true; 8291 } 8292 8293 #ifdef CONFIG_CONTIG_ALLOC 8294 static unsigned long pfn_max_align_down(unsigned long pfn) 8295 { 8296 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8297 pageblock_nr_pages) - 1); 8298 } 8299 8300 static unsigned long pfn_max_align_up(unsigned long pfn) 8301 { 8302 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8303 pageblock_nr_pages)); 8304 } 8305 8306 /* [start, end) must belong to a single zone. */ 8307 static int __alloc_contig_migrate_range(struct compact_control *cc, 8308 unsigned long start, unsigned long end) 8309 { 8310 /* This function is based on compact_zone() from compaction.c. */ 8311 unsigned long nr_reclaimed; 8312 unsigned long pfn = start; 8313 unsigned int tries = 0; 8314 int ret = 0; 8315 8316 migrate_prep(); 8317 8318 while (pfn < end || !list_empty(&cc->migratepages)) { 8319 if (fatal_signal_pending(current)) { 8320 ret = -EINTR; 8321 break; 8322 } 8323 8324 if (list_empty(&cc->migratepages)) { 8325 cc->nr_migratepages = 0; 8326 pfn = isolate_migratepages_range(cc, pfn, end); 8327 if (!pfn) { 8328 ret = -EINTR; 8329 break; 8330 } 8331 tries = 0; 8332 } else if (++tries == 5) { 8333 ret = ret < 0 ? ret : -EBUSY; 8334 break; 8335 } 8336 8337 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8338 &cc->migratepages); 8339 cc->nr_migratepages -= nr_reclaimed; 8340 8341 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8342 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8343 } 8344 if (ret < 0) { 8345 putback_movable_pages(&cc->migratepages); 8346 return ret; 8347 } 8348 return 0; 8349 } 8350 8351 /** 8352 * alloc_contig_range() -- tries to allocate given range of pages 8353 * @start: start PFN to allocate 8354 * @end: one-past-the-last PFN to allocate 8355 * @migratetype: migratetype of the underlaying pageblocks (either 8356 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8357 * in range must have the same migratetype and it must 8358 * be either of the two. 8359 * @gfp_mask: GFP mask to use during compaction 8360 * 8361 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8362 * aligned. The PFN range must belong to a single zone. 8363 * 8364 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8365 * pageblocks in the range. Once isolated, the pageblocks should not 8366 * be modified by others. 8367 * 8368 * Return: zero on success or negative error code. On success all 8369 * pages which PFN is in [start, end) are allocated for the caller and 8370 * need to be freed with free_contig_range(). 8371 */ 8372 int alloc_contig_range(unsigned long start, unsigned long end, 8373 unsigned migratetype, gfp_t gfp_mask) 8374 { 8375 unsigned long outer_start, outer_end; 8376 unsigned int order; 8377 int ret = 0; 8378 8379 struct compact_control cc = { 8380 .nr_migratepages = 0, 8381 .order = -1, 8382 .zone = page_zone(pfn_to_page(start)), 8383 .mode = MIGRATE_SYNC, 8384 .ignore_skip_hint = true, 8385 .no_set_skip_hint = true, 8386 .gfp_mask = current_gfp_context(gfp_mask), 8387 }; 8388 INIT_LIST_HEAD(&cc.migratepages); 8389 8390 /* 8391 * What we do here is we mark all pageblocks in range as 8392 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8393 * have different sizes, and due to the way page allocator 8394 * work, we align the range to biggest of the two pages so 8395 * that page allocator won't try to merge buddies from 8396 * different pageblocks and change MIGRATE_ISOLATE to some 8397 * other migration type. 8398 * 8399 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8400 * migrate the pages from an unaligned range (ie. pages that 8401 * we are interested in). This will put all the pages in 8402 * range back to page allocator as MIGRATE_ISOLATE. 8403 * 8404 * When this is done, we take the pages in range from page 8405 * allocator removing them from the buddy system. This way 8406 * page allocator will never consider using them. 8407 * 8408 * This lets us mark the pageblocks back as 8409 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8410 * aligned range but not in the unaligned, original range are 8411 * put back to page allocator so that buddy can use them. 8412 */ 8413 8414 ret = start_isolate_page_range(pfn_max_align_down(start), 8415 pfn_max_align_up(end), migratetype, 0); 8416 if (ret < 0) 8417 return ret; 8418 8419 /* 8420 * In case of -EBUSY, we'd like to know which page causes problem. 8421 * So, just fall through. test_pages_isolated() has a tracepoint 8422 * which will report the busy page. 8423 * 8424 * It is possible that busy pages could become available before 8425 * the call to test_pages_isolated, and the range will actually be 8426 * allocated. So, if we fall through be sure to clear ret so that 8427 * -EBUSY is not accidentally used or returned to caller. 8428 */ 8429 ret = __alloc_contig_migrate_range(&cc, start, end); 8430 if (ret && ret != -EBUSY) 8431 goto done; 8432 ret =0; 8433 8434 /* 8435 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8436 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8437 * more, all pages in [start, end) are free in page allocator. 8438 * What we are going to do is to allocate all pages from 8439 * [start, end) (that is remove them from page allocator). 8440 * 8441 * The only problem is that pages at the beginning and at the 8442 * end of interesting range may be not aligned with pages that 8443 * page allocator holds, ie. they can be part of higher order 8444 * pages. Because of this, we reserve the bigger range and 8445 * once this is done free the pages we are not interested in. 8446 * 8447 * We don't have to hold zone->lock here because the pages are 8448 * isolated thus they won't get removed from buddy. 8449 */ 8450 8451 lru_add_drain_all(); 8452 8453 order = 0; 8454 outer_start = start; 8455 while (!PageBuddy(pfn_to_page(outer_start))) { 8456 if (++order >= MAX_ORDER) { 8457 outer_start = start; 8458 break; 8459 } 8460 outer_start &= ~0UL << order; 8461 } 8462 8463 if (outer_start != start) { 8464 order = page_order(pfn_to_page(outer_start)); 8465 8466 /* 8467 * outer_start page could be small order buddy page and 8468 * it doesn't include start page. Adjust outer_start 8469 * in this case to report failed page properly 8470 * on tracepoint in test_pages_isolated() 8471 */ 8472 if (outer_start + (1UL << order) <= start) 8473 outer_start = start; 8474 } 8475 8476 /* Make sure the range is really isolated. */ 8477 if (test_pages_isolated(outer_start, end, false)) { 8478 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8479 __func__, outer_start, end); 8480 ret = -EBUSY; 8481 goto done; 8482 } 8483 8484 /* Grab isolated pages from freelists. */ 8485 outer_end = isolate_freepages_range(&cc, outer_start, end); 8486 if (!outer_end) { 8487 ret = -EBUSY; 8488 goto done; 8489 } 8490 8491 /* Free head and tail (if any) */ 8492 if (start != outer_start) 8493 free_contig_range(outer_start, start - outer_start); 8494 if (end != outer_end) 8495 free_contig_range(end, outer_end - end); 8496 8497 done: 8498 undo_isolate_page_range(pfn_max_align_down(start), 8499 pfn_max_align_up(end), migratetype); 8500 return ret; 8501 } 8502 #endif /* CONFIG_CONTIG_ALLOC */ 8503 8504 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8505 { 8506 unsigned int count = 0; 8507 8508 for (; nr_pages--; pfn++) { 8509 struct page *page = pfn_to_page(pfn); 8510 8511 count += page_count(page) != 1; 8512 __free_page(page); 8513 } 8514 WARN(count != 0, "%d pages are still in use!\n", count); 8515 } 8516 8517 #ifdef CONFIG_MEMORY_HOTPLUG 8518 /* 8519 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8520 * page high values need to be recalulated. 8521 */ 8522 void __meminit zone_pcp_update(struct zone *zone) 8523 { 8524 unsigned cpu; 8525 mutex_lock(&pcp_batch_high_lock); 8526 for_each_possible_cpu(cpu) 8527 pageset_set_high_and_batch(zone, 8528 per_cpu_ptr(zone->pageset, cpu)); 8529 mutex_unlock(&pcp_batch_high_lock); 8530 } 8531 #endif 8532 8533 void zone_pcp_reset(struct zone *zone) 8534 { 8535 unsigned long flags; 8536 int cpu; 8537 struct per_cpu_pageset *pset; 8538 8539 /* avoid races with drain_pages() */ 8540 local_irq_save(flags); 8541 if (zone->pageset != &boot_pageset) { 8542 for_each_online_cpu(cpu) { 8543 pset = per_cpu_ptr(zone->pageset, cpu); 8544 drain_zonestat(zone, pset); 8545 } 8546 free_percpu(zone->pageset); 8547 zone->pageset = &boot_pageset; 8548 } 8549 local_irq_restore(flags); 8550 } 8551 8552 #ifdef CONFIG_MEMORY_HOTREMOVE 8553 /* 8554 * All pages in the range must be in a single zone and isolated 8555 * before calling this. 8556 */ 8557 unsigned long 8558 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8559 { 8560 struct page *page; 8561 struct zone *zone; 8562 unsigned int order, i; 8563 unsigned long pfn; 8564 unsigned long flags; 8565 unsigned long offlined_pages = 0; 8566 8567 /* find the first valid pfn */ 8568 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8569 if (pfn_valid(pfn)) 8570 break; 8571 if (pfn == end_pfn) 8572 return offlined_pages; 8573 8574 offline_mem_sections(pfn, end_pfn); 8575 zone = page_zone(pfn_to_page(pfn)); 8576 spin_lock_irqsave(&zone->lock, flags); 8577 pfn = start_pfn; 8578 while (pfn < end_pfn) { 8579 if (!pfn_valid(pfn)) { 8580 pfn++; 8581 continue; 8582 } 8583 page = pfn_to_page(pfn); 8584 /* 8585 * The HWPoisoned page may be not in buddy system, and 8586 * page_count() is not 0. 8587 */ 8588 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8589 pfn++; 8590 SetPageReserved(page); 8591 offlined_pages++; 8592 continue; 8593 } 8594 8595 BUG_ON(page_count(page)); 8596 BUG_ON(!PageBuddy(page)); 8597 order = page_order(page); 8598 offlined_pages += 1 << order; 8599 #ifdef CONFIG_DEBUG_VM 8600 pr_info("remove from free list %lx %d %lx\n", 8601 pfn, 1 << order, end_pfn); 8602 #endif 8603 del_page_from_free_area(page, &zone->free_area[order]); 8604 for (i = 0; i < (1 << order); i++) 8605 SetPageReserved((page+i)); 8606 pfn += (1 << order); 8607 } 8608 spin_unlock_irqrestore(&zone->lock, flags); 8609 8610 return offlined_pages; 8611 } 8612 #endif 8613 8614 bool is_free_buddy_page(struct page *page) 8615 { 8616 struct zone *zone = page_zone(page); 8617 unsigned long pfn = page_to_pfn(page); 8618 unsigned long flags; 8619 unsigned int order; 8620 8621 spin_lock_irqsave(&zone->lock, flags); 8622 for (order = 0; order < MAX_ORDER; order++) { 8623 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8624 8625 if (PageBuddy(page_head) && page_order(page_head) >= order) 8626 break; 8627 } 8628 spin_unlock_irqrestore(&zone->lock, flags); 8629 8630 return order < MAX_ORDER; 8631 } 8632 8633 #ifdef CONFIG_MEMORY_FAILURE 8634 /* 8635 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8636 * test is performed under the zone lock to prevent a race against page 8637 * allocation. 8638 */ 8639 bool set_hwpoison_free_buddy_page(struct page *page) 8640 { 8641 struct zone *zone = page_zone(page); 8642 unsigned long pfn = page_to_pfn(page); 8643 unsigned long flags; 8644 unsigned int order; 8645 bool hwpoisoned = false; 8646 8647 spin_lock_irqsave(&zone->lock, flags); 8648 for (order = 0; order < MAX_ORDER; order++) { 8649 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8650 8651 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8652 if (!TestSetPageHWPoison(page)) 8653 hwpoisoned = true; 8654 break; 8655 } 8656 } 8657 spin_unlock_irqrestore(&zone->lock, flags); 8658 8659 return hwpoisoned; 8660 } 8661 #endif 8662