xref: /linux/mm/page_alloc.c (revision 49a695ba723224875df50e327bd7b0b65dd9a56b)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <xen/xen.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 
77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78 static DEFINE_MUTEX(pcp_batch_high_lock);
79 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
80 
81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82 DEFINE_PER_CPU(int, numa_node);
83 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #endif
85 
86 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87 
88 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 /*
90  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
91  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
92  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
93  * defined in <linux/topology.h>.
94  */
95 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
96 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97 int _node_numa_mem_[MAX_NUMNODES];
98 #endif
99 
100 /* work_structs for global per-cpu drains */
101 DEFINE_MUTEX(pcpu_drain_mutex);
102 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103 
104 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105 volatile unsigned long latent_entropy __latent_entropy;
106 EXPORT_SYMBOL(latent_entropy);
107 #endif
108 
109 /*
110  * Array of node states.
111  */
112 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
113 	[N_POSSIBLE] = NODE_MASK_ALL,
114 	[N_ONLINE] = { { [0] = 1UL } },
115 #ifndef CONFIG_NUMA
116 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
117 #ifdef CONFIG_HIGHMEM
118 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
119 #endif
120 	[N_MEMORY] = { { [0] = 1UL } },
121 	[N_CPU] = { { [0] = 1UL } },
122 #endif	/* NUMA */
123 };
124 EXPORT_SYMBOL(node_states);
125 
126 /* Protect totalram_pages and zone->managed_pages */
127 static DEFINE_SPINLOCK(managed_page_count_lock);
128 
129 unsigned long totalram_pages __read_mostly;
130 unsigned long totalreserve_pages __read_mostly;
131 unsigned long totalcma_pages __read_mostly;
132 
133 int percpu_pagelist_fraction;
134 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
135 
136 /*
137  * A cached value of the page's pageblock's migratetype, used when the page is
138  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
139  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
140  * Also the migratetype set in the page does not necessarily match the pcplist
141  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
142  * other index - this ensures that it will be put on the correct CMA freelist.
143  */
144 static inline int get_pcppage_migratetype(struct page *page)
145 {
146 	return page->index;
147 }
148 
149 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150 {
151 	page->index = migratetype;
152 }
153 
154 #ifdef CONFIG_PM_SLEEP
155 /*
156  * The following functions are used by the suspend/hibernate code to temporarily
157  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
158  * while devices are suspended.  To avoid races with the suspend/hibernate code,
159  * they should always be called with pm_mutex held (gfp_allowed_mask also should
160  * only be modified with pm_mutex held, unless the suspend/hibernate code is
161  * guaranteed not to run in parallel with that modification).
162  */
163 
164 static gfp_t saved_gfp_mask;
165 
166 void pm_restore_gfp_mask(void)
167 {
168 	WARN_ON(!mutex_is_locked(&pm_mutex));
169 	if (saved_gfp_mask) {
170 		gfp_allowed_mask = saved_gfp_mask;
171 		saved_gfp_mask = 0;
172 	}
173 }
174 
175 void pm_restrict_gfp_mask(void)
176 {
177 	WARN_ON(!mutex_is_locked(&pm_mutex));
178 	WARN_ON(saved_gfp_mask);
179 	saved_gfp_mask = gfp_allowed_mask;
180 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181 }
182 
183 bool pm_suspended_storage(void)
184 {
185 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 		return false;
187 	return true;
188 }
189 #endif /* CONFIG_PM_SLEEP */
190 
191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192 unsigned int pageblock_order __read_mostly;
193 #endif
194 
195 static void __free_pages_ok(struct page *page, unsigned int order);
196 
197 /*
198  * results with 256, 32 in the lowmem_reserve sysctl:
199  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200  *	1G machine -> (16M dma, 784M normal, 224M high)
201  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204  *
205  * TBD: should special case ZONE_DMA32 machines here - in those we normally
206  * don't need any ZONE_NORMAL reservation
207  */
208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
209 #ifdef CONFIG_ZONE_DMA
210 	 256,
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 	 256,
214 #endif
215 #ifdef CONFIG_HIGHMEM
216 	 32,
217 #endif
218 	 32,
219 };
220 
221 EXPORT_SYMBOL(totalram_pages);
222 
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 	 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 	 "DMA32",
229 #endif
230 	 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 	 "HighMem",
233 #endif
234 	 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 	 "Device",
237 #endif
238 };
239 
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 	"Unmovable",
242 	"Movable",
243 	"Reclaimable",
244 	"HighAtomic",
245 #ifdef CONFIG_CMA
246 	"CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 	"Isolate",
250 #endif
251 };
252 
253 compound_page_dtor * const compound_page_dtors[] = {
254 	NULL,
255 	free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 	free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 	free_transhuge_page,
261 #endif
262 };
263 
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
267 
268 static unsigned long nr_kernel_pages __meminitdata;
269 static unsigned long nr_all_pages __meminitdata;
270 static unsigned long dma_reserve __meminitdata;
271 
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long required_kernelcore __initdata;
276 static unsigned long required_kernelcore_percent __initdata;
277 static unsigned long required_movablecore __initdata;
278 static unsigned long required_movablecore_percent __initdata;
279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280 static bool mirrored_kernelcore __meminitdata;
281 
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283 int movable_zone;
284 EXPORT_SYMBOL(movable_zone);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286 
287 #if MAX_NUMNODES > 1
288 int nr_node_ids __read_mostly = MAX_NUMNODES;
289 int nr_online_nodes __read_mostly = 1;
290 EXPORT_SYMBOL(nr_node_ids);
291 EXPORT_SYMBOL(nr_online_nodes);
292 #endif
293 
294 int page_group_by_mobility_disabled __read_mostly;
295 
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299 {
300 	int nid = early_pfn_to_nid(pfn);
301 
302 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 		return true;
304 
305 	return false;
306 }
307 
308 /*
309  * Returns false when the remaining initialisation should be deferred until
310  * later in the boot cycle when it can be parallelised.
311  */
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 				unsigned long pfn, unsigned long zone_end,
314 				unsigned long *nr_initialised)
315 {
316 	/* Always populate low zones for address-constrained allocations */
317 	if (zone_end < pgdat_end_pfn(pgdat))
318 		return true;
319 	/* Xen PV domains need page structures early */
320 	if (xen_pv_domain())
321 		return true;
322 	(*nr_initialised)++;
323 	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
324 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
325 		pgdat->first_deferred_pfn = pfn;
326 		return false;
327 	}
328 
329 	return true;
330 }
331 #else
332 static inline bool early_page_uninitialised(unsigned long pfn)
333 {
334 	return false;
335 }
336 
337 static inline bool update_defer_init(pg_data_t *pgdat,
338 				unsigned long pfn, unsigned long zone_end,
339 				unsigned long *nr_initialised)
340 {
341 	return true;
342 }
343 #endif
344 
345 /* Return a pointer to the bitmap storing bits affecting a block of pages */
346 static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 							unsigned long pfn)
348 {
349 #ifdef CONFIG_SPARSEMEM
350 	return __pfn_to_section(pfn)->pageblock_flags;
351 #else
352 	return page_zone(page)->pageblock_flags;
353 #endif /* CONFIG_SPARSEMEM */
354 }
355 
356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 	pfn &= (PAGES_PER_SECTION-1);
360 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #else
362 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366 
367 /**
368  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369  * @page: The page within the block of interest
370  * @pfn: The target page frame number
371  * @end_bitidx: The last bit of interest to retrieve
372  * @mask: mask of bits that the caller is interested in
373  *
374  * Return: pageblock_bits flags
375  */
376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 					unsigned long pfn,
378 					unsigned long end_bitidx,
379 					unsigned long mask)
380 {
381 	unsigned long *bitmap;
382 	unsigned long bitidx, word_bitidx;
383 	unsigned long word;
384 
385 	bitmap = get_pageblock_bitmap(page, pfn);
386 	bitidx = pfn_to_bitidx(page, pfn);
387 	word_bitidx = bitidx / BITS_PER_LONG;
388 	bitidx &= (BITS_PER_LONG-1);
389 
390 	word = bitmap[word_bitidx];
391 	bitidx += end_bitidx;
392 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393 }
394 
395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 					unsigned long end_bitidx,
397 					unsigned long mask)
398 {
399 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400 }
401 
402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403 {
404 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405 }
406 
407 /**
408  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409  * @page: The page within the block of interest
410  * @flags: The flags to set
411  * @pfn: The target page frame number
412  * @end_bitidx: The last bit of interest
413  * @mask: mask of bits that the caller is interested in
414  */
415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 					unsigned long pfn,
417 					unsigned long end_bitidx,
418 					unsigned long mask)
419 {
420 	unsigned long *bitmap;
421 	unsigned long bitidx, word_bitidx;
422 	unsigned long old_word, word;
423 
424 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425 
426 	bitmap = get_pageblock_bitmap(page, pfn);
427 	bitidx = pfn_to_bitidx(page, pfn);
428 	word_bitidx = bitidx / BITS_PER_LONG;
429 	bitidx &= (BITS_PER_LONG-1);
430 
431 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432 
433 	bitidx += end_bitidx;
434 	mask <<= (BITS_PER_LONG - bitidx - 1);
435 	flags <<= (BITS_PER_LONG - bitidx - 1);
436 
437 	word = READ_ONCE(bitmap[word_bitidx]);
438 	for (;;) {
439 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 		if (word == old_word)
441 			break;
442 		word = old_word;
443 	}
444 }
445 
446 void set_pageblock_migratetype(struct page *page, int migratetype)
447 {
448 	if (unlikely(page_group_by_mobility_disabled &&
449 		     migratetype < MIGRATE_PCPTYPES))
450 		migratetype = MIGRATE_UNMOVABLE;
451 
452 	set_pageblock_flags_group(page, (unsigned long)migratetype,
453 					PB_migrate, PB_migrate_end);
454 }
455 
456 #ifdef CONFIG_DEBUG_VM
457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
458 {
459 	int ret = 0;
460 	unsigned seq;
461 	unsigned long pfn = page_to_pfn(page);
462 	unsigned long sp, start_pfn;
463 
464 	do {
465 		seq = zone_span_seqbegin(zone);
466 		start_pfn = zone->zone_start_pfn;
467 		sp = zone->spanned_pages;
468 		if (!zone_spans_pfn(zone, pfn))
469 			ret = 1;
470 	} while (zone_span_seqretry(zone, seq));
471 
472 	if (ret)
473 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 			pfn, zone_to_nid(zone), zone->name,
475 			start_pfn, start_pfn + sp);
476 
477 	return ret;
478 }
479 
480 static int page_is_consistent(struct zone *zone, struct page *page)
481 {
482 	if (!pfn_valid_within(page_to_pfn(page)))
483 		return 0;
484 	if (zone != page_zone(page))
485 		return 0;
486 
487 	return 1;
488 }
489 /*
490  * Temporary debugging check for pages not lying within a given zone.
491  */
492 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
493 {
494 	if (page_outside_zone_boundaries(zone, page))
495 		return 1;
496 	if (!page_is_consistent(zone, page))
497 		return 1;
498 
499 	return 0;
500 }
501 #else
502 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
503 {
504 	return 0;
505 }
506 #endif
507 
508 static void bad_page(struct page *page, const char *reason,
509 		unsigned long bad_flags)
510 {
511 	static unsigned long resume;
512 	static unsigned long nr_shown;
513 	static unsigned long nr_unshown;
514 
515 	/*
516 	 * Allow a burst of 60 reports, then keep quiet for that minute;
517 	 * or allow a steady drip of one report per second.
518 	 */
519 	if (nr_shown == 60) {
520 		if (time_before(jiffies, resume)) {
521 			nr_unshown++;
522 			goto out;
523 		}
524 		if (nr_unshown) {
525 			pr_alert(
526 			      "BUG: Bad page state: %lu messages suppressed\n",
527 				nr_unshown);
528 			nr_unshown = 0;
529 		}
530 		nr_shown = 0;
531 	}
532 	if (nr_shown++ == 0)
533 		resume = jiffies + 60 * HZ;
534 
535 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
536 		current->comm, page_to_pfn(page));
537 	__dump_page(page, reason);
538 	bad_flags &= page->flags;
539 	if (bad_flags)
540 		pr_alert("bad because of flags: %#lx(%pGp)\n",
541 						bad_flags, &bad_flags);
542 	dump_page_owner(page);
543 
544 	print_modules();
545 	dump_stack();
546 out:
547 	/* Leave bad fields for debug, except PageBuddy could make trouble */
548 	page_mapcount_reset(page); /* remove PageBuddy */
549 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551 
552 /*
553  * Higher-order pages are called "compound pages".  They are structured thusly:
554  *
555  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
556  *
557  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
559  *
560  * The first tail page's ->compound_dtor holds the offset in array of compound
561  * page destructors. See compound_page_dtors.
562  *
563  * The first tail page's ->compound_order holds the order of allocation.
564  * This usage means that zero-order pages may not be compound.
565  */
566 
567 void free_compound_page(struct page *page)
568 {
569 	__free_pages_ok(page, compound_order(page));
570 }
571 
572 void prep_compound_page(struct page *page, unsigned int order)
573 {
574 	int i;
575 	int nr_pages = 1 << order;
576 
577 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
578 	set_compound_order(page, order);
579 	__SetPageHead(page);
580 	for (i = 1; i < nr_pages; i++) {
581 		struct page *p = page + i;
582 		set_page_count(p, 0);
583 		p->mapping = TAIL_MAPPING;
584 		set_compound_head(p, page);
585 	}
586 	atomic_set(compound_mapcount_ptr(page), -1);
587 }
588 
589 #ifdef CONFIG_DEBUG_PAGEALLOC
590 unsigned int _debug_guardpage_minorder;
591 bool _debug_pagealloc_enabled __read_mostly
592 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
593 EXPORT_SYMBOL(_debug_pagealloc_enabled);
594 bool _debug_guardpage_enabled __read_mostly;
595 
596 static int __init early_debug_pagealloc(char *buf)
597 {
598 	if (!buf)
599 		return -EINVAL;
600 	return kstrtobool(buf, &_debug_pagealloc_enabled);
601 }
602 early_param("debug_pagealloc", early_debug_pagealloc);
603 
604 static bool need_debug_guardpage(void)
605 {
606 	/* If we don't use debug_pagealloc, we don't need guard page */
607 	if (!debug_pagealloc_enabled())
608 		return false;
609 
610 	if (!debug_guardpage_minorder())
611 		return false;
612 
613 	return true;
614 }
615 
616 static void init_debug_guardpage(void)
617 {
618 	if (!debug_pagealloc_enabled())
619 		return;
620 
621 	if (!debug_guardpage_minorder())
622 		return;
623 
624 	_debug_guardpage_enabled = true;
625 }
626 
627 struct page_ext_operations debug_guardpage_ops = {
628 	.need = need_debug_guardpage,
629 	.init = init_debug_guardpage,
630 };
631 
632 static int __init debug_guardpage_minorder_setup(char *buf)
633 {
634 	unsigned long res;
635 
636 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
637 		pr_err("Bad debug_guardpage_minorder value\n");
638 		return 0;
639 	}
640 	_debug_guardpage_minorder = res;
641 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
642 	return 0;
643 }
644 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
645 
646 static inline bool set_page_guard(struct zone *zone, struct page *page,
647 				unsigned int order, int migratetype)
648 {
649 	struct page_ext *page_ext;
650 
651 	if (!debug_guardpage_enabled())
652 		return false;
653 
654 	if (order >= debug_guardpage_minorder())
655 		return false;
656 
657 	page_ext = lookup_page_ext(page);
658 	if (unlikely(!page_ext))
659 		return false;
660 
661 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
662 
663 	INIT_LIST_HEAD(&page->lru);
664 	set_page_private(page, order);
665 	/* Guard pages are not available for any usage */
666 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
667 
668 	return true;
669 }
670 
671 static inline void clear_page_guard(struct zone *zone, struct page *page,
672 				unsigned int order, int migratetype)
673 {
674 	struct page_ext *page_ext;
675 
676 	if (!debug_guardpage_enabled())
677 		return;
678 
679 	page_ext = lookup_page_ext(page);
680 	if (unlikely(!page_ext))
681 		return;
682 
683 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
684 
685 	set_page_private(page, 0);
686 	if (!is_migrate_isolate(migratetype))
687 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
688 }
689 #else
690 struct page_ext_operations debug_guardpage_ops;
691 static inline bool set_page_guard(struct zone *zone, struct page *page,
692 			unsigned int order, int migratetype) { return false; }
693 static inline void clear_page_guard(struct zone *zone, struct page *page,
694 				unsigned int order, int migratetype) {}
695 #endif
696 
697 static inline void set_page_order(struct page *page, unsigned int order)
698 {
699 	set_page_private(page, order);
700 	__SetPageBuddy(page);
701 }
702 
703 static inline void rmv_page_order(struct page *page)
704 {
705 	__ClearPageBuddy(page);
706 	set_page_private(page, 0);
707 }
708 
709 /*
710  * This function checks whether a page is free && is the buddy
711  * we can do coalesce a page and its buddy if
712  * (a) the buddy is not in a hole (check before calling!) &&
713  * (b) the buddy is in the buddy system &&
714  * (c) a page and its buddy have the same order &&
715  * (d) a page and its buddy are in the same zone.
716  *
717  * For recording whether a page is in the buddy system, we set ->_mapcount
718  * PAGE_BUDDY_MAPCOUNT_VALUE.
719  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
720  * serialized by zone->lock.
721  *
722  * For recording page's order, we use page_private(page).
723  */
724 static inline int page_is_buddy(struct page *page, struct page *buddy,
725 							unsigned int order)
726 {
727 	if (page_is_guard(buddy) && page_order(buddy) == order) {
728 		if (page_zone_id(page) != page_zone_id(buddy))
729 			return 0;
730 
731 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
732 
733 		return 1;
734 	}
735 
736 	if (PageBuddy(buddy) && page_order(buddy) == order) {
737 		/*
738 		 * zone check is done late to avoid uselessly
739 		 * calculating zone/node ids for pages that could
740 		 * never merge.
741 		 */
742 		if (page_zone_id(page) != page_zone_id(buddy))
743 			return 0;
744 
745 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
746 
747 		return 1;
748 	}
749 	return 0;
750 }
751 
752 /*
753  * Freeing function for a buddy system allocator.
754  *
755  * The concept of a buddy system is to maintain direct-mapped table
756  * (containing bit values) for memory blocks of various "orders".
757  * The bottom level table contains the map for the smallest allocatable
758  * units of memory (here, pages), and each level above it describes
759  * pairs of units from the levels below, hence, "buddies".
760  * At a high level, all that happens here is marking the table entry
761  * at the bottom level available, and propagating the changes upward
762  * as necessary, plus some accounting needed to play nicely with other
763  * parts of the VM system.
764  * At each level, we keep a list of pages, which are heads of continuous
765  * free pages of length of (1 << order) and marked with _mapcount
766  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
767  * field.
768  * So when we are allocating or freeing one, we can derive the state of the
769  * other.  That is, if we allocate a small block, and both were
770  * free, the remainder of the region must be split into blocks.
771  * If a block is freed, and its buddy is also free, then this
772  * triggers coalescing into a block of larger size.
773  *
774  * -- nyc
775  */
776 
777 static inline void __free_one_page(struct page *page,
778 		unsigned long pfn,
779 		struct zone *zone, unsigned int order,
780 		int migratetype)
781 {
782 	unsigned long combined_pfn;
783 	unsigned long uninitialized_var(buddy_pfn);
784 	struct page *buddy;
785 	unsigned int max_order;
786 
787 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
788 
789 	VM_BUG_ON(!zone_is_initialized(zone));
790 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
791 
792 	VM_BUG_ON(migratetype == -1);
793 	if (likely(!is_migrate_isolate(migratetype)))
794 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
795 
796 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
797 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
798 
799 continue_merging:
800 	while (order < max_order - 1) {
801 		buddy_pfn = __find_buddy_pfn(pfn, order);
802 		buddy = page + (buddy_pfn - pfn);
803 
804 		if (!pfn_valid_within(buddy_pfn))
805 			goto done_merging;
806 		if (!page_is_buddy(page, buddy, order))
807 			goto done_merging;
808 		/*
809 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
810 		 * merge with it and move up one order.
811 		 */
812 		if (page_is_guard(buddy)) {
813 			clear_page_guard(zone, buddy, order, migratetype);
814 		} else {
815 			list_del(&buddy->lru);
816 			zone->free_area[order].nr_free--;
817 			rmv_page_order(buddy);
818 		}
819 		combined_pfn = buddy_pfn & pfn;
820 		page = page + (combined_pfn - pfn);
821 		pfn = combined_pfn;
822 		order++;
823 	}
824 	if (max_order < MAX_ORDER) {
825 		/* If we are here, it means order is >= pageblock_order.
826 		 * We want to prevent merge between freepages on isolate
827 		 * pageblock and normal pageblock. Without this, pageblock
828 		 * isolation could cause incorrect freepage or CMA accounting.
829 		 *
830 		 * We don't want to hit this code for the more frequent
831 		 * low-order merging.
832 		 */
833 		if (unlikely(has_isolate_pageblock(zone))) {
834 			int buddy_mt;
835 
836 			buddy_pfn = __find_buddy_pfn(pfn, order);
837 			buddy = page + (buddy_pfn - pfn);
838 			buddy_mt = get_pageblock_migratetype(buddy);
839 
840 			if (migratetype != buddy_mt
841 					&& (is_migrate_isolate(migratetype) ||
842 						is_migrate_isolate(buddy_mt)))
843 				goto done_merging;
844 		}
845 		max_order++;
846 		goto continue_merging;
847 	}
848 
849 done_merging:
850 	set_page_order(page, order);
851 
852 	/*
853 	 * If this is not the largest possible page, check if the buddy
854 	 * of the next-highest order is free. If it is, it's possible
855 	 * that pages are being freed that will coalesce soon. In case,
856 	 * that is happening, add the free page to the tail of the list
857 	 * so it's less likely to be used soon and more likely to be merged
858 	 * as a higher order page
859 	 */
860 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
861 		struct page *higher_page, *higher_buddy;
862 		combined_pfn = buddy_pfn & pfn;
863 		higher_page = page + (combined_pfn - pfn);
864 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
865 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
866 		if (pfn_valid_within(buddy_pfn) &&
867 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
868 			list_add_tail(&page->lru,
869 				&zone->free_area[order].free_list[migratetype]);
870 			goto out;
871 		}
872 	}
873 
874 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
875 out:
876 	zone->free_area[order].nr_free++;
877 }
878 
879 /*
880  * A bad page could be due to a number of fields. Instead of multiple branches,
881  * try and check multiple fields with one check. The caller must do a detailed
882  * check if necessary.
883  */
884 static inline bool page_expected_state(struct page *page,
885 					unsigned long check_flags)
886 {
887 	if (unlikely(atomic_read(&page->_mapcount) != -1))
888 		return false;
889 
890 	if (unlikely((unsigned long)page->mapping |
891 			page_ref_count(page) |
892 #ifdef CONFIG_MEMCG
893 			(unsigned long)page->mem_cgroup |
894 #endif
895 			(page->flags & check_flags)))
896 		return false;
897 
898 	return true;
899 }
900 
901 static void free_pages_check_bad(struct page *page)
902 {
903 	const char *bad_reason;
904 	unsigned long bad_flags;
905 
906 	bad_reason = NULL;
907 	bad_flags = 0;
908 
909 	if (unlikely(atomic_read(&page->_mapcount) != -1))
910 		bad_reason = "nonzero mapcount";
911 	if (unlikely(page->mapping != NULL))
912 		bad_reason = "non-NULL mapping";
913 	if (unlikely(page_ref_count(page) != 0))
914 		bad_reason = "nonzero _refcount";
915 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
916 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
917 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
918 	}
919 #ifdef CONFIG_MEMCG
920 	if (unlikely(page->mem_cgroup))
921 		bad_reason = "page still charged to cgroup";
922 #endif
923 	bad_page(page, bad_reason, bad_flags);
924 }
925 
926 static inline int free_pages_check(struct page *page)
927 {
928 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
929 		return 0;
930 
931 	/* Something has gone sideways, find it */
932 	free_pages_check_bad(page);
933 	return 1;
934 }
935 
936 static int free_tail_pages_check(struct page *head_page, struct page *page)
937 {
938 	int ret = 1;
939 
940 	/*
941 	 * We rely page->lru.next never has bit 0 set, unless the page
942 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
943 	 */
944 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
945 
946 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
947 		ret = 0;
948 		goto out;
949 	}
950 	switch (page - head_page) {
951 	case 1:
952 		/* the first tail page: ->mapping is compound_mapcount() */
953 		if (unlikely(compound_mapcount(page))) {
954 			bad_page(page, "nonzero compound_mapcount", 0);
955 			goto out;
956 		}
957 		break;
958 	case 2:
959 		/*
960 		 * the second tail page: ->mapping is
961 		 * page_deferred_list().next -- ignore value.
962 		 */
963 		break;
964 	default:
965 		if (page->mapping != TAIL_MAPPING) {
966 			bad_page(page, "corrupted mapping in tail page", 0);
967 			goto out;
968 		}
969 		break;
970 	}
971 	if (unlikely(!PageTail(page))) {
972 		bad_page(page, "PageTail not set", 0);
973 		goto out;
974 	}
975 	if (unlikely(compound_head(page) != head_page)) {
976 		bad_page(page, "compound_head not consistent", 0);
977 		goto out;
978 	}
979 	ret = 0;
980 out:
981 	page->mapping = NULL;
982 	clear_compound_head(page);
983 	return ret;
984 }
985 
986 static __always_inline bool free_pages_prepare(struct page *page,
987 					unsigned int order, bool check_free)
988 {
989 	int bad = 0;
990 
991 	VM_BUG_ON_PAGE(PageTail(page), page);
992 
993 	trace_mm_page_free(page, order);
994 
995 	/*
996 	 * Check tail pages before head page information is cleared to
997 	 * avoid checking PageCompound for order-0 pages.
998 	 */
999 	if (unlikely(order)) {
1000 		bool compound = PageCompound(page);
1001 		int i;
1002 
1003 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1004 
1005 		if (compound)
1006 			ClearPageDoubleMap(page);
1007 		for (i = 1; i < (1 << order); i++) {
1008 			if (compound)
1009 				bad += free_tail_pages_check(page, page + i);
1010 			if (unlikely(free_pages_check(page + i))) {
1011 				bad++;
1012 				continue;
1013 			}
1014 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1015 		}
1016 	}
1017 	if (PageMappingFlags(page))
1018 		page->mapping = NULL;
1019 	if (memcg_kmem_enabled() && PageKmemcg(page))
1020 		memcg_kmem_uncharge(page, order);
1021 	if (check_free)
1022 		bad += free_pages_check(page);
1023 	if (bad)
1024 		return false;
1025 
1026 	page_cpupid_reset_last(page);
1027 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 	reset_page_owner(page, order);
1029 
1030 	if (!PageHighMem(page)) {
1031 		debug_check_no_locks_freed(page_address(page),
1032 					   PAGE_SIZE << order);
1033 		debug_check_no_obj_freed(page_address(page),
1034 					   PAGE_SIZE << order);
1035 	}
1036 	arch_free_page(page, order);
1037 	kernel_poison_pages(page, 1 << order, 0);
1038 	kernel_map_pages(page, 1 << order, 0);
1039 	kasan_free_pages(page, order);
1040 
1041 	return true;
1042 }
1043 
1044 #ifdef CONFIG_DEBUG_VM
1045 static inline bool free_pcp_prepare(struct page *page)
1046 {
1047 	return free_pages_prepare(page, 0, true);
1048 }
1049 
1050 static inline bool bulkfree_pcp_prepare(struct page *page)
1051 {
1052 	return false;
1053 }
1054 #else
1055 static bool free_pcp_prepare(struct page *page)
1056 {
1057 	return free_pages_prepare(page, 0, false);
1058 }
1059 
1060 static bool bulkfree_pcp_prepare(struct page *page)
1061 {
1062 	return free_pages_check(page);
1063 }
1064 #endif /* CONFIG_DEBUG_VM */
1065 
1066 static inline void prefetch_buddy(struct page *page)
1067 {
1068 	unsigned long pfn = page_to_pfn(page);
1069 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1070 	struct page *buddy = page + (buddy_pfn - pfn);
1071 
1072 	prefetch(buddy);
1073 }
1074 
1075 /*
1076  * Frees a number of pages from the PCP lists
1077  * Assumes all pages on list are in same zone, and of same order.
1078  * count is the number of pages to free.
1079  *
1080  * If the zone was previously in an "all pages pinned" state then look to
1081  * see if this freeing clears that state.
1082  *
1083  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1084  * pinned" detection logic.
1085  */
1086 static void free_pcppages_bulk(struct zone *zone, int count,
1087 					struct per_cpu_pages *pcp)
1088 {
1089 	int migratetype = 0;
1090 	int batch_free = 0;
1091 	int prefetch_nr = 0;
1092 	bool isolated_pageblocks;
1093 	struct page *page, *tmp;
1094 	LIST_HEAD(head);
1095 
1096 	while (count) {
1097 		struct list_head *list;
1098 
1099 		/*
1100 		 * Remove pages from lists in a round-robin fashion. A
1101 		 * batch_free count is maintained that is incremented when an
1102 		 * empty list is encountered.  This is so more pages are freed
1103 		 * off fuller lists instead of spinning excessively around empty
1104 		 * lists
1105 		 */
1106 		do {
1107 			batch_free++;
1108 			if (++migratetype == MIGRATE_PCPTYPES)
1109 				migratetype = 0;
1110 			list = &pcp->lists[migratetype];
1111 		} while (list_empty(list));
1112 
1113 		/* This is the only non-empty list. Free them all. */
1114 		if (batch_free == MIGRATE_PCPTYPES)
1115 			batch_free = count;
1116 
1117 		do {
1118 			page = list_last_entry(list, struct page, lru);
1119 			/* must delete to avoid corrupting pcp list */
1120 			list_del(&page->lru);
1121 			pcp->count--;
1122 
1123 			if (bulkfree_pcp_prepare(page))
1124 				continue;
1125 
1126 			list_add_tail(&page->lru, &head);
1127 
1128 			/*
1129 			 * We are going to put the page back to the global
1130 			 * pool, prefetch its buddy to speed up later access
1131 			 * under zone->lock. It is believed the overhead of
1132 			 * an additional test and calculating buddy_pfn here
1133 			 * can be offset by reduced memory latency later. To
1134 			 * avoid excessive prefetching due to large count, only
1135 			 * prefetch buddy for the first pcp->batch nr of pages.
1136 			 */
1137 			if (prefetch_nr++ < pcp->batch)
1138 				prefetch_buddy(page);
1139 		} while (--count && --batch_free && !list_empty(list));
1140 	}
1141 
1142 	spin_lock(&zone->lock);
1143 	isolated_pageblocks = has_isolate_pageblock(zone);
1144 
1145 	/*
1146 	 * Use safe version since after __free_one_page(),
1147 	 * page->lru.next will not point to original list.
1148 	 */
1149 	list_for_each_entry_safe(page, tmp, &head, lru) {
1150 		int mt = get_pcppage_migratetype(page);
1151 		/* MIGRATE_ISOLATE page should not go to pcplists */
1152 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1153 		/* Pageblock could have been isolated meanwhile */
1154 		if (unlikely(isolated_pageblocks))
1155 			mt = get_pageblock_migratetype(page);
1156 
1157 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1158 		trace_mm_page_pcpu_drain(page, 0, mt);
1159 	}
1160 	spin_unlock(&zone->lock);
1161 }
1162 
1163 static void free_one_page(struct zone *zone,
1164 				struct page *page, unsigned long pfn,
1165 				unsigned int order,
1166 				int migratetype)
1167 {
1168 	spin_lock(&zone->lock);
1169 	if (unlikely(has_isolate_pageblock(zone) ||
1170 		is_migrate_isolate(migratetype))) {
1171 		migratetype = get_pfnblock_migratetype(page, pfn);
1172 	}
1173 	__free_one_page(page, pfn, zone, order, migratetype);
1174 	spin_unlock(&zone->lock);
1175 }
1176 
1177 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1178 				unsigned long zone, int nid)
1179 {
1180 	mm_zero_struct_page(page);
1181 	set_page_links(page, zone, nid, pfn);
1182 	init_page_count(page);
1183 	page_mapcount_reset(page);
1184 	page_cpupid_reset_last(page);
1185 
1186 	INIT_LIST_HEAD(&page->lru);
1187 #ifdef WANT_PAGE_VIRTUAL
1188 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1189 	if (!is_highmem_idx(zone))
1190 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1191 #endif
1192 }
1193 
1194 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1195 static void __meminit init_reserved_page(unsigned long pfn)
1196 {
1197 	pg_data_t *pgdat;
1198 	int nid, zid;
1199 
1200 	if (!early_page_uninitialised(pfn))
1201 		return;
1202 
1203 	nid = early_pfn_to_nid(pfn);
1204 	pgdat = NODE_DATA(nid);
1205 
1206 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1207 		struct zone *zone = &pgdat->node_zones[zid];
1208 
1209 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1210 			break;
1211 	}
1212 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1213 }
1214 #else
1215 static inline void init_reserved_page(unsigned long pfn)
1216 {
1217 }
1218 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1219 
1220 /*
1221  * Initialised pages do not have PageReserved set. This function is
1222  * called for each range allocated by the bootmem allocator and
1223  * marks the pages PageReserved. The remaining valid pages are later
1224  * sent to the buddy page allocator.
1225  */
1226 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1227 {
1228 	unsigned long start_pfn = PFN_DOWN(start);
1229 	unsigned long end_pfn = PFN_UP(end);
1230 
1231 	for (; start_pfn < end_pfn; start_pfn++) {
1232 		if (pfn_valid(start_pfn)) {
1233 			struct page *page = pfn_to_page(start_pfn);
1234 
1235 			init_reserved_page(start_pfn);
1236 
1237 			/* Avoid false-positive PageTail() */
1238 			INIT_LIST_HEAD(&page->lru);
1239 
1240 			SetPageReserved(page);
1241 		}
1242 	}
1243 }
1244 
1245 static void __free_pages_ok(struct page *page, unsigned int order)
1246 {
1247 	unsigned long flags;
1248 	int migratetype;
1249 	unsigned long pfn = page_to_pfn(page);
1250 
1251 	if (!free_pages_prepare(page, order, true))
1252 		return;
1253 
1254 	migratetype = get_pfnblock_migratetype(page, pfn);
1255 	local_irq_save(flags);
1256 	__count_vm_events(PGFREE, 1 << order);
1257 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1258 	local_irq_restore(flags);
1259 }
1260 
1261 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1262 {
1263 	unsigned int nr_pages = 1 << order;
1264 	struct page *p = page;
1265 	unsigned int loop;
1266 
1267 	prefetchw(p);
1268 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1269 		prefetchw(p + 1);
1270 		__ClearPageReserved(p);
1271 		set_page_count(p, 0);
1272 	}
1273 	__ClearPageReserved(p);
1274 	set_page_count(p, 0);
1275 
1276 	page_zone(page)->managed_pages += nr_pages;
1277 	set_page_refcounted(page);
1278 	__free_pages(page, order);
1279 }
1280 
1281 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1282 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1283 
1284 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1285 
1286 int __meminit early_pfn_to_nid(unsigned long pfn)
1287 {
1288 	static DEFINE_SPINLOCK(early_pfn_lock);
1289 	int nid;
1290 
1291 	spin_lock(&early_pfn_lock);
1292 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1293 	if (nid < 0)
1294 		nid = first_online_node;
1295 	spin_unlock(&early_pfn_lock);
1296 
1297 	return nid;
1298 }
1299 #endif
1300 
1301 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1302 static inline bool __meminit __maybe_unused
1303 meminit_pfn_in_nid(unsigned long pfn, int node,
1304 		   struct mminit_pfnnid_cache *state)
1305 {
1306 	int nid;
1307 
1308 	nid = __early_pfn_to_nid(pfn, state);
1309 	if (nid >= 0 && nid != node)
1310 		return false;
1311 	return true;
1312 }
1313 
1314 /* Only safe to use early in boot when initialisation is single-threaded */
1315 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1316 {
1317 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1318 }
1319 
1320 #else
1321 
1322 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1323 {
1324 	return true;
1325 }
1326 static inline bool __meminit  __maybe_unused
1327 meminit_pfn_in_nid(unsigned long pfn, int node,
1328 		   struct mminit_pfnnid_cache *state)
1329 {
1330 	return true;
1331 }
1332 #endif
1333 
1334 
1335 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1336 							unsigned int order)
1337 {
1338 	if (early_page_uninitialised(pfn))
1339 		return;
1340 	return __free_pages_boot_core(page, order);
1341 }
1342 
1343 /*
1344  * Check that the whole (or subset of) a pageblock given by the interval of
1345  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1346  * with the migration of free compaction scanner. The scanners then need to
1347  * use only pfn_valid_within() check for arches that allow holes within
1348  * pageblocks.
1349  *
1350  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1351  *
1352  * It's possible on some configurations to have a setup like node0 node1 node0
1353  * i.e. it's possible that all pages within a zones range of pages do not
1354  * belong to a single zone. We assume that a border between node0 and node1
1355  * can occur within a single pageblock, but not a node0 node1 node0
1356  * interleaving within a single pageblock. It is therefore sufficient to check
1357  * the first and last page of a pageblock and avoid checking each individual
1358  * page in a pageblock.
1359  */
1360 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1361 				     unsigned long end_pfn, struct zone *zone)
1362 {
1363 	struct page *start_page;
1364 	struct page *end_page;
1365 
1366 	/* end_pfn is one past the range we are checking */
1367 	end_pfn--;
1368 
1369 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1370 		return NULL;
1371 
1372 	start_page = pfn_to_online_page(start_pfn);
1373 	if (!start_page)
1374 		return NULL;
1375 
1376 	if (page_zone(start_page) != zone)
1377 		return NULL;
1378 
1379 	end_page = pfn_to_page(end_pfn);
1380 
1381 	/* This gives a shorter code than deriving page_zone(end_page) */
1382 	if (page_zone_id(start_page) != page_zone_id(end_page))
1383 		return NULL;
1384 
1385 	return start_page;
1386 }
1387 
1388 void set_zone_contiguous(struct zone *zone)
1389 {
1390 	unsigned long block_start_pfn = zone->zone_start_pfn;
1391 	unsigned long block_end_pfn;
1392 
1393 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1394 	for (; block_start_pfn < zone_end_pfn(zone);
1395 			block_start_pfn = block_end_pfn,
1396 			 block_end_pfn += pageblock_nr_pages) {
1397 
1398 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1399 
1400 		if (!__pageblock_pfn_to_page(block_start_pfn,
1401 					     block_end_pfn, zone))
1402 			return;
1403 	}
1404 
1405 	/* We confirm that there is no hole */
1406 	zone->contiguous = true;
1407 }
1408 
1409 void clear_zone_contiguous(struct zone *zone)
1410 {
1411 	zone->contiguous = false;
1412 }
1413 
1414 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1415 static void __init deferred_free_range(unsigned long pfn,
1416 				       unsigned long nr_pages)
1417 {
1418 	struct page *page;
1419 	unsigned long i;
1420 
1421 	if (!nr_pages)
1422 		return;
1423 
1424 	page = pfn_to_page(pfn);
1425 
1426 	/* Free a large naturally-aligned chunk if possible */
1427 	if (nr_pages == pageblock_nr_pages &&
1428 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1429 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1430 		__free_pages_boot_core(page, pageblock_order);
1431 		return;
1432 	}
1433 
1434 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1435 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1436 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1437 		__free_pages_boot_core(page, 0);
1438 	}
1439 }
1440 
1441 /* Completion tracking for deferred_init_memmap() threads */
1442 static atomic_t pgdat_init_n_undone __initdata;
1443 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1444 
1445 static inline void __init pgdat_init_report_one_done(void)
1446 {
1447 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1448 		complete(&pgdat_init_all_done_comp);
1449 }
1450 
1451 /*
1452  * Returns true if page needs to be initialized or freed to buddy allocator.
1453  *
1454  * First we check if pfn is valid on architectures where it is possible to have
1455  * holes within pageblock_nr_pages. On systems where it is not possible, this
1456  * function is optimized out.
1457  *
1458  * Then, we check if a current large page is valid by only checking the validity
1459  * of the head pfn.
1460  *
1461  * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1462  * within a node: a pfn is between start and end of a node, but does not belong
1463  * to this memory node.
1464  */
1465 static inline bool __init
1466 deferred_pfn_valid(int nid, unsigned long pfn,
1467 		   struct mminit_pfnnid_cache *nid_init_state)
1468 {
1469 	if (!pfn_valid_within(pfn))
1470 		return false;
1471 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1472 		return false;
1473 	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1474 		return false;
1475 	return true;
1476 }
1477 
1478 /*
1479  * Free pages to buddy allocator. Try to free aligned pages in
1480  * pageblock_nr_pages sizes.
1481  */
1482 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1483 				       unsigned long end_pfn)
1484 {
1485 	struct mminit_pfnnid_cache nid_init_state = { };
1486 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1487 	unsigned long nr_free = 0;
1488 
1489 	for (; pfn < end_pfn; pfn++) {
1490 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1491 			deferred_free_range(pfn - nr_free, nr_free);
1492 			nr_free = 0;
1493 		} else if (!(pfn & nr_pgmask)) {
1494 			deferred_free_range(pfn - nr_free, nr_free);
1495 			nr_free = 1;
1496 			touch_nmi_watchdog();
1497 		} else {
1498 			nr_free++;
1499 		}
1500 	}
1501 	/* Free the last block of pages to allocator */
1502 	deferred_free_range(pfn - nr_free, nr_free);
1503 }
1504 
1505 /*
1506  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1507  * by performing it only once every pageblock_nr_pages.
1508  * Return number of pages initialized.
1509  */
1510 static unsigned long  __init deferred_init_pages(int nid, int zid,
1511 						 unsigned long pfn,
1512 						 unsigned long end_pfn)
1513 {
1514 	struct mminit_pfnnid_cache nid_init_state = { };
1515 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1516 	unsigned long nr_pages = 0;
1517 	struct page *page = NULL;
1518 
1519 	for (; pfn < end_pfn; pfn++) {
1520 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1521 			page = NULL;
1522 			continue;
1523 		} else if (!page || !(pfn & nr_pgmask)) {
1524 			page = pfn_to_page(pfn);
1525 			touch_nmi_watchdog();
1526 		} else {
1527 			page++;
1528 		}
1529 		__init_single_page(page, pfn, zid, nid);
1530 		nr_pages++;
1531 	}
1532 	return (nr_pages);
1533 }
1534 
1535 /* Initialise remaining memory on a node */
1536 static int __init deferred_init_memmap(void *data)
1537 {
1538 	pg_data_t *pgdat = data;
1539 	int nid = pgdat->node_id;
1540 	unsigned long start = jiffies;
1541 	unsigned long nr_pages = 0;
1542 	unsigned long spfn, epfn, first_init_pfn, flags;
1543 	phys_addr_t spa, epa;
1544 	int zid;
1545 	struct zone *zone;
1546 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1547 	u64 i;
1548 
1549 	/* Bind memory initialisation thread to a local node if possible */
1550 	if (!cpumask_empty(cpumask))
1551 		set_cpus_allowed_ptr(current, cpumask);
1552 
1553 	pgdat_resize_lock(pgdat, &flags);
1554 	first_init_pfn = pgdat->first_deferred_pfn;
1555 	if (first_init_pfn == ULONG_MAX) {
1556 		pgdat_resize_unlock(pgdat, &flags);
1557 		pgdat_init_report_one_done();
1558 		return 0;
1559 	}
1560 
1561 	/* Sanity check boundaries */
1562 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1563 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1564 	pgdat->first_deferred_pfn = ULONG_MAX;
1565 
1566 	/* Only the highest zone is deferred so find it */
1567 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1568 		zone = pgdat->node_zones + zid;
1569 		if (first_init_pfn < zone_end_pfn(zone))
1570 			break;
1571 	}
1572 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1573 
1574 	/*
1575 	 * Initialize and free pages. We do it in two loops: first we initialize
1576 	 * struct page, than free to buddy allocator, because while we are
1577 	 * freeing pages we can access pages that are ahead (computing buddy
1578 	 * page in __free_one_page()).
1579 	 */
1580 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1581 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1582 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1583 		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1584 	}
1585 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1586 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1587 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1588 		deferred_free_pages(nid, zid, spfn, epfn);
1589 	}
1590 	pgdat_resize_unlock(pgdat, &flags);
1591 
1592 	/* Sanity check that the next zone really is unpopulated */
1593 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1594 
1595 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1596 					jiffies_to_msecs(jiffies - start));
1597 
1598 	pgdat_init_report_one_done();
1599 	return 0;
1600 }
1601 
1602 /*
1603  * During boot we initialize deferred pages on-demand, as needed, but once
1604  * page_alloc_init_late() has finished, the deferred pages are all initialized,
1605  * and we can permanently disable that path.
1606  */
1607 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1608 
1609 /*
1610  * If this zone has deferred pages, try to grow it by initializing enough
1611  * deferred pages to satisfy the allocation specified by order, rounded up to
1612  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1613  * of SECTION_SIZE bytes by initializing struct pages in increments of
1614  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1615  *
1616  * Return true when zone was grown, otherwise return false. We return true even
1617  * when we grow less than requested, to let the caller decide if there are
1618  * enough pages to satisfy the allocation.
1619  *
1620  * Note: We use noinline because this function is needed only during boot, and
1621  * it is called from a __ref function _deferred_grow_zone. This way we are
1622  * making sure that it is not inlined into permanent text section.
1623  */
1624 static noinline bool __init
1625 deferred_grow_zone(struct zone *zone, unsigned int order)
1626 {
1627 	int zid = zone_idx(zone);
1628 	int nid = zone_to_nid(zone);
1629 	pg_data_t *pgdat = NODE_DATA(nid);
1630 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1631 	unsigned long nr_pages = 0;
1632 	unsigned long first_init_pfn, spfn, epfn, t, flags;
1633 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1634 	phys_addr_t spa, epa;
1635 	u64 i;
1636 
1637 	/* Only the last zone may have deferred pages */
1638 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1639 		return false;
1640 
1641 	pgdat_resize_lock(pgdat, &flags);
1642 
1643 	/*
1644 	 * If deferred pages have been initialized while we were waiting for
1645 	 * the lock, return true, as the zone was grown.  The caller will retry
1646 	 * this zone.  We won't return to this function since the caller also
1647 	 * has this static branch.
1648 	 */
1649 	if (!static_branch_unlikely(&deferred_pages)) {
1650 		pgdat_resize_unlock(pgdat, &flags);
1651 		return true;
1652 	}
1653 
1654 	/*
1655 	 * If someone grew this zone while we were waiting for spinlock, return
1656 	 * true, as there might be enough pages already.
1657 	 */
1658 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1659 		pgdat_resize_unlock(pgdat, &flags);
1660 		return true;
1661 	}
1662 
1663 	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1664 
1665 	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1666 		pgdat_resize_unlock(pgdat, &flags);
1667 		return false;
1668 	}
1669 
1670 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1671 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1672 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1673 
1674 		while (spfn < epfn && nr_pages < nr_pages_needed) {
1675 			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1676 			first_deferred_pfn = min(t, epfn);
1677 			nr_pages += deferred_init_pages(nid, zid, spfn,
1678 							first_deferred_pfn);
1679 			spfn = first_deferred_pfn;
1680 		}
1681 
1682 		if (nr_pages >= nr_pages_needed)
1683 			break;
1684 	}
1685 
1686 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1687 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1688 		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1689 		deferred_free_pages(nid, zid, spfn, epfn);
1690 
1691 		if (first_deferred_pfn == epfn)
1692 			break;
1693 	}
1694 	pgdat->first_deferred_pfn = first_deferred_pfn;
1695 	pgdat_resize_unlock(pgdat, &flags);
1696 
1697 	return nr_pages > 0;
1698 }
1699 
1700 /*
1701  * deferred_grow_zone() is __init, but it is called from
1702  * get_page_from_freelist() during early boot until deferred_pages permanently
1703  * disables this call. This is why we have refdata wrapper to avoid warning,
1704  * and to ensure that the function body gets unloaded.
1705  */
1706 static bool __ref
1707 _deferred_grow_zone(struct zone *zone, unsigned int order)
1708 {
1709 	return deferred_grow_zone(zone, order);
1710 }
1711 
1712 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1713 
1714 void __init page_alloc_init_late(void)
1715 {
1716 	struct zone *zone;
1717 
1718 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1719 	int nid;
1720 
1721 	/* There will be num_node_state(N_MEMORY) threads */
1722 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1723 	for_each_node_state(nid, N_MEMORY) {
1724 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1725 	}
1726 
1727 	/* Block until all are initialised */
1728 	wait_for_completion(&pgdat_init_all_done_comp);
1729 
1730 	/*
1731 	 * We initialized the rest of the deferred pages.  Permanently disable
1732 	 * on-demand struct page initialization.
1733 	 */
1734 	static_branch_disable(&deferred_pages);
1735 
1736 	/* Reinit limits that are based on free pages after the kernel is up */
1737 	files_maxfiles_init();
1738 #endif
1739 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1740 	/* Discard memblock private memory */
1741 	memblock_discard();
1742 #endif
1743 
1744 	for_each_populated_zone(zone)
1745 		set_zone_contiguous(zone);
1746 }
1747 
1748 #ifdef CONFIG_CMA
1749 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1750 void __init init_cma_reserved_pageblock(struct page *page)
1751 {
1752 	unsigned i = pageblock_nr_pages;
1753 	struct page *p = page;
1754 
1755 	do {
1756 		__ClearPageReserved(p);
1757 		set_page_count(p, 0);
1758 	} while (++p, --i);
1759 
1760 	set_pageblock_migratetype(page, MIGRATE_CMA);
1761 
1762 	if (pageblock_order >= MAX_ORDER) {
1763 		i = pageblock_nr_pages;
1764 		p = page;
1765 		do {
1766 			set_page_refcounted(p);
1767 			__free_pages(p, MAX_ORDER - 1);
1768 			p += MAX_ORDER_NR_PAGES;
1769 		} while (i -= MAX_ORDER_NR_PAGES);
1770 	} else {
1771 		set_page_refcounted(page);
1772 		__free_pages(page, pageblock_order);
1773 	}
1774 
1775 	adjust_managed_page_count(page, pageblock_nr_pages);
1776 }
1777 #endif
1778 
1779 /*
1780  * The order of subdivision here is critical for the IO subsystem.
1781  * Please do not alter this order without good reasons and regression
1782  * testing. Specifically, as large blocks of memory are subdivided,
1783  * the order in which smaller blocks are delivered depends on the order
1784  * they're subdivided in this function. This is the primary factor
1785  * influencing the order in which pages are delivered to the IO
1786  * subsystem according to empirical testing, and this is also justified
1787  * by considering the behavior of a buddy system containing a single
1788  * large block of memory acted on by a series of small allocations.
1789  * This behavior is a critical factor in sglist merging's success.
1790  *
1791  * -- nyc
1792  */
1793 static inline void expand(struct zone *zone, struct page *page,
1794 	int low, int high, struct free_area *area,
1795 	int migratetype)
1796 {
1797 	unsigned long size = 1 << high;
1798 
1799 	while (high > low) {
1800 		area--;
1801 		high--;
1802 		size >>= 1;
1803 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1804 
1805 		/*
1806 		 * Mark as guard pages (or page), that will allow to
1807 		 * merge back to allocator when buddy will be freed.
1808 		 * Corresponding page table entries will not be touched,
1809 		 * pages will stay not present in virtual address space
1810 		 */
1811 		if (set_page_guard(zone, &page[size], high, migratetype))
1812 			continue;
1813 
1814 		list_add(&page[size].lru, &area->free_list[migratetype]);
1815 		area->nr_free++;
1816 		set_page_order(&page[size], high);
1817 	}
1818 }
1819 
1820 static void check_new_page_bad(struct page *page)
1821 {
1822 	const char *bad_reason = NULL;
1823 	unsigned long bad_flags = 0;
1824 
1825 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1826 		bad_reason = "nonzero mapcount";
1827 	if (unlikely(page->mapping != NULL))
1828 		bad_reason = "non-NULL mapping";
1829 	if (unlikely(page_ref_count(page) != 0))
1830 		bad_reason = "nonzero _count";
1831 	if (unlikely(page->flags & __PG_HWPOISON)) {
1832 		bad_reason = "HWPoisoned (hardware-corrupted)";
1833 		bad_flags = __PG_HWPOISON;
1834 		/* Don't complain about hwpoisoned pages */
1835 		page_mapcount_reset(page); /* remove PageBuddy */
1836 		return;
1837 	}
1838 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1839 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1840 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1841 	}
1842 #ifdef CONFIG_MEMCG
1843 	if (unlikely(page->mem_cgroup))
1844 		bad_reason = "page still charged to cgroup";
1845 #endif
1846 	bad_page(page, bad_reason, bad_flags);
1847 }
1848 
1849 /*
1850  * This page is about to be returned from the page allocator
1851  */
1852 static inline int check_new_page(struct page *page)
1853 {
1854 	if (likely(page_expected_state(page,
1855 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1856 		return 0;
1857 
1858 	check_new_page_bad(page);
1859 	return 1;
1860 }
1861 
1862 static inline bool free_pages_prezeroed(void)
1863 {
1864 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1865 		page_poisoning_enabled();
1866 }
1867 
1868 #ifdef CONFIG_DEBUG_VM
1869 static bool check_pcp_refill(struct page *page)
1870 {
1871 	return false;
1872 }
1873 
1874 static bool check_new_pcp(struct page *page)
1875 {
1876 	return check_new_page(page);
1877 }
1878 #else
1879 static bool check_pcp_refill(struct page *page)
1880 {
1881 	return check_new_page(page);
1882 }
1883 static bool check_new_pcp(struct page *page)
1884 {
1885 	return false;
1886 }
1887 #endif /* CONFIG_DEBUG_VM */
1888 
1889 static bool check_new_pages(struct page *page, unsigned int order)
1890 {
1891 	int i;
1892 	for (i = 0; i < (1 << order); i++) {
1893 		struct page *p = page + i;
1894 
1895 		if (unlikely(check_new_page(p)))
1896 			return true;
1897 	}
1898 
1899 	return false;
1900 }
1901 
1902 inline void post_alloc_hook(struct page *page, unsigned int order,
1903 				gfp_t gfp_flags)
1904 {
1905 	set_page_private(page, 0);
1906 	set_page_refcounted(page);
1907 
1908 	arch_alloc_page(page, order);
1909 	kernel_map_pages(page, 1 << order, 1);
1910 	kernel_poison_pages(page, 1 << order, 1);
1911 	kasan_alloc_pages(page, order);
1912 	set_page_owner(page, order, gfp_flags);
1913 }
1914 
1915 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1916 							unsigned int alloc_flags)
1917 {
1918 	int i;
1919 
1920 	post_alloc_hook(page, order, gfp_flags);
1921 
1922 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1923 		for (i = 0; i < (1 << order); i++)
1924 			clear_highpage(page + i);
1925 
1926 	if (order && (gfp_flags & __GFP_COMP))
1927 		prep_compound_page(page, order);
1928 
1929 	/*
1930 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1931 	 * allocate the page. The expectation is that the caller is taking
1932 	 * steps that will free more memory. The caller should avoid the page
1933 	 * being used for !PFMEMALLOC purposes.
1934 	 */
1935 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1936 		set_page_pfmemalloc(page);
1937 	else
1938 		clear_page_pfmemalloc(page);
1939 }
1940 
1941 /*
1942  * Go through the free lists for the given migratetype and remove
1943  * the smallest available page from the freelists
1944  */
1945 static __always_inline
1946 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1947 						int migratetype)
1948 {
1949 	unsigned int current_order;
1950 	struct free_area *area;
1951 	struct page *page;
1952 
1953 	/* Find a page of the appropriate size in the preferred list */
1954 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1955 		area = &(zone->free_area[current_order]);
1956 		page = list_first_entry_or_null(&area->free_list[migratetype],
1957 							struct page, lru);
1958 		if (!page)
1959 			continue;
1960 		list_del(&page->lru);
1961 		rmv_page_order(page);
1962 		area->nr_free--;
1963 		expand(zone, page, order, current_order, area, migratetype);
1964 		set_pcppage_migratetype(page, migratetype);
1965 		return page;
1966 	}
1967 
1968 	return NULL;
1969 }
1970 
1971 
1972 /*
1973  * This array describes the order lists are fallen back to when
1974  * the free lists for the desirable migrate type are depleted
1975  */
1976 static int fallbacks[MIGRATE_TYPES][4] = {
1977 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1978 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1979 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1980 #ifdef CONFIG_CMA
1981 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1982 #endif
1983 #ifdef CONFIG_MEMORY_ISOLATION
1984 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1985 #endif
1986 };
1987 
1988 #ifdef CONFIG_CMA
1989 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1990 					unsigned int order)
1991 {
1992 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1993 }
1994 #else
1995 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1996 					unsigned int order) { return NULL; }
1997 #endif
1998 
1999 /*
2000  * Move the free pages in a range to the free lists of the requested type.
2001  * Note that start_page and end_pages are not aligned on a pageblock
2002  * boundary. If alignment is required, use move_freepages_block()
2003  */
2004 static int move_freepages(struct zone *zone,
2005 			  struct page *start_page, struct page *end_page,
2006 			  int migratetype, int *num_movable)
2007 {
2008 	struct page *page;
2009 	unsigned int order;
2010 	int pages_moved = 0;
2011 
2012 #ifndef CONFIG_HOLES_IN_ZONE
2013 	/*
2014 	 * page_zone is not safe to call in this context when
2015 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2016 	 * anyway as we check zone boundaries in move_freepages_block().
2017 	 * Remove at a later date when no bug reports exist related to
2018 	 * grouping pages by mobility
2019 	 */
2020 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2021 	          pfn_valid(page_to_pfn(end_page)) &&
2022 	          page_zone(start_page) != page_zone(end_page));
2023 #endif
2024 
2025 	if (num_movable)
2026 		*num_movable = 0;
2027 
2028 	for (page = start_page; page <= end_page;) {
2029 		if (!pfn_valid_within(page_to_pfn(page))) {
2030 			page++;
2031 			continue;
2032 		}
2033 
2034 		/* Make sure we are not inadvertently changing nodes */
2035 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2036 
2037 		if (!PageBuddy(page)) {
2038 			/*
2039 			 * We assume that pages that could be isolated for
2040 			 * migration are movable. But we don't actually try
2041 			 * isolating, as that would be expensive.
2042 			 */
2043 			if (num_movable &&
2044 					(PageLRU(page) || __PageMovable(page)))
2045 				(*num_movable)++;
2046 
2047 			page++;
2048 			continue;
2049 		}
2050 
2051 		order = page_order(page);
2052 		list_move(&page->lru,
2053 			  &zone->free_area[order].free_list[migratetype]);
2054 		page += 1 << order;
2055 		pages_moved += 1 << order;
2056 	}
2057 
2058 	return pages_moved;
2059 }
2060 
2061 int move_freepages_block(struct zone *zone, struct page *page,
2062 				int migratetype, int *num_movable)
2063 {
2064 	unsigned long start_pfn, end_pfn;
2065 	struct page *start_page, *end_page;
2066 
2067 	start_pfn = page_to_pfn(page);
2068 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2069 	start_page = pfn_to_page(start_pfn);
2070 	end_page = start_page + pageblock_nr_pages - 1;
2071 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2072 
2073 	/* Do not cross zone boundaries */
2074 	if (!zone_spans_pfn(zone, start_pfn))
2075 		start_page = page;
2076 	if (!zone_spans_pfn(zone, end_pfn))
2077 		return 0;
2078 
2079 	return move_freepages(zone, start_page, end_page, migratetype,
2080 								num_movable);
2081 }
2082 
2083 static void change_pageblock_range(struct page *pageblock_page,
2084 					int start_order, int migratetype)
2085 {
2086 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2087 
2088 	while (nr_pageblocks--) {
2089 		set_pageblock_migratetype(pageblock_page, migratetype);
2090 		pageblock_page += pageblock_nr_pages;
2091 	}
2092 }
2093 
2094 /*
2095  * When we are falling back to another migratetype during allocation, try to
2096  * steal extra free pages from the same pageblocks to satisfy further
2097  * allocations, instead of polluting multiple pageblocks.
2098  *
2099  * If we are stealing a relatively large buddy page, it is likely there will
2100  * be more free pages in the pageblock, so try to steal them all. For
2101  * reclaimable and unmovable allocations, we steal regardless of page size,
2102  * as fragmentation caused by those allocations polluting movable pageblocks
2103  * is worse than movable allocations stealing from unmovable and reclaimable
2104  * pageblocks.
2105  */
2106 static bool can_steal_fallback(unsigned int order, int start_mt)
2107 {
2108 	/*
2109 	 * Leaving this order check is intended, although there is
2110 	 * relaxed order check in next check. The reason is that
2111 	 * we can actually steal whole pageblock if this condition met,
2112 	 * but, below check doesn't guarantee it and that is just heuristic
2113 	 * so could be changed anytime.
2114 	 */
2115 	if (order >= pageblock_order)
2116 		return true;
2117 
2118 	if (order >= pageblock_order / 2 ||
2119 		start_mt == MIGRATE_RECLAIMABLE ||
2120 		start_mt == MIGRATE_UNMOVABLE ||
2121 		page_group_by_mobility_disabled)
2122 		return true;
2123 
2124 	return false;
2125 }
2126 
2127 /*
2128  * This function implements actual steal behaviour. If order is large enough,
2129  * we can steal whole pageblock. If not, we first move freepages in this
2130  * pageblock to our migratetype and determine how many already-allocated pages
2131  * are there in the pageblock with a compatible migratetype. If at least half
2132  * of pages are free or compatible, we can change migratetype of the pageblock
2133  * itself, so pages freed in the future will be put on the correct free list.
2134  */
2135 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2136 					int start_type, bool whole_block)
2137 {
2138 	unsigned int current_order = page_order(page);
2139 	struct free_area *area;
2140 	int free_pages, movable_pages, alike_pages;
2141 	int old_block_type;
2142 
2143 	old_block_type = get_pageblock_migratetype(page);
2144 
2145 	/*
2146 	 * This can happen due to races and we want to prevent broken
2147 	 * highatomic accounting.
2148 	 */
2149 	if (is_migrate_highatomic(old_block_type))
2150 		goto single_page;
2151 
2152 	/* Take ownership for orders >= pageblock_order */
2153 	if (current_order >= pageblock_order) {
2154 		change_pageblock_range(page, current_order, start_type);
2155 		goto single_page;
2156 	}
2157 
2158 	/* We are not allowed to try stealing from the whole block */
2159 	if (!whole_block)
2160 		goto single_page;
2161 
2162 	free_pages = move_freepages_block(zone, page, start_type,
2163 						&movable_pages);
2164 	/*
2165 	 * Determine how many pages are compatible with our allocation.
2166 	 * For movable allocation, it's the number of movable pages which
2167 	 * we just obtained. For other types it's a bit more tricky.
2168 	 */
2169 	if (start_type == MIGRATE_MOVABLE) {
2170 		alike_pages = movable_pages;
2171 	} else {
2172 		/*
2173 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2174 		 * to MOVABLE pageblock, consider all non-movable pages as
2175 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2176 		 * vice versa, be conservative since we can't distinguish the
2177 		 * exact migratetype of non-movable pages.
2178 		 */
2179 		if (old_block_type == MIGRATE_MOVABLE)
2180 			alike_pages = pageblock_nr_pages
2181 						- (free_pages + movable_pages);
2182 		else
2183 			alike_pages = 0;
2184 	}
2185 
2186 	/* moving whole block can fail due to zone boundary conditions */
2187 	if (!free_pages)
2188 		goto single_page;
2189 
2190 	/*
2191 	 * If a sufficient number of pages in the block are either free or of
2192 	 * comparable migratability as our allocation, claim the whole block.
2193 	 */
2194 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2195 			page_group_by_mobility_disabled)
2196 		set_pageblock_migratetype(page, start_type);
2197 
2198 	return;
2199 
2200 single_page:
2201 	area = &zone->free_area[current_order];
2202 	list_move(&page->lru, &area->free_list[start_type]);
2203 }
2204 
2205 /*
2206  * Check whether there is a suitable fallback freepage with requested order.
2207  * If only_stealable is true, this function returns fallback_mt only if
2208  * we can steal other freepages all together. This would help to reduce
2209  * fragmentation due to mixed migratetype pages in one pageblock.
2210  */
2211 int find_suitable_fallback(struct free_area *area, unsigned int order,
2212 			int migratetype, bool only_stealable, bool *can_steal)
2213 {
2214 	int i;
2215 	int fallback_mt;
2216 
2217 	if (area->nr_free == 0)
2218 		return -1;
2219 
2220 	*can_steal = false;
2221 	for (i = 0;; i++) {
2222 		fallback_mt = fallbacks[migratetype][i];
2223 		if (fallback_mt == MIGRATE_TYPES)
2224 			break;
2225 
2226 		if (list_empty(&area->free_list[fallback_mt]))
2227 			continue;
2228 
2229 		if (can_steal_fallback(order, migratetype))
2230 			*can_steal = true;
2231 
2232 		if (!only_stealable)
2233 			return fallback_mt;
2234 
2235 		if (*can_steal)
2236 			return fallback_mt;
2237 	}
2238 
2239 	return -1;
2240 }
2241 
2242 /*
2243  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2244  * there are no empty page blocks that contain a page with a suitable order
2245  */
2246 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2247 				unsigned int alloc_order)
2248 {
2249 	int mt;
2250 	unsigned long max_managed, flags;
2251 
2252 	/*
2253 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2254 	 * Check is race-prone but harmless.
2255 	 */
2256 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2257 	if (zone->nr_reserved_highatomic >= max_managed)
2258 		return;
2259 
2260 	spin_lock_irqsave(&zone->lock, flags);
2261 
2262 	/* Recheck the nr_reserved_highatomic limit under the lock */
2263 	if (zone->nr_reserved_highatomic >= max_managed)
2264 		goto out_unlock;
2265 
2266 	/* Yoink! */
2267 	mt = get_pageblock_migratetype(page);
2268 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2269 	    && !is_migrate_cma(mt)) {
2270 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2271 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2272 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2273 	}
2274 
2275 out_unlock:
2276 	spin_unlock_irqrestore(&zone->lock, flags);
2277 }
2278 
2279 /*
2280  * Used when an allocation is about to fail under memory pressure. This
2281  * potentially hurts the reliability of high-order allocations when under
2282  * intense memory pressure but failed atomic allocations should be easier
2283  * to recover from than an OOM.
2284  *
2285  * If @force is true, try to unreserve a pageblock even though highatomic
2286  * pageblock is exhausted.
2287  */
2288 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2289 						bool force)
2290 {
2291 	struct zonelist *zonelist = ac->zonelist;
2292 	unsigned long flags;
2293 	struct zoneref *z;
2294 	struct zone *zone;
2295 	struct page *page;
2296 	int order;
2297 	bool ret;
2298 
2299 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2300 								ac->nodemask) {
2301 		/*
2302 		 * Preserve at least one pageblock unless memory pressure
2303 		 * is really high.
2304 		 */
2305 		if (!force && zone->nr_reserved_highatomic <=
2306 					pageblock_nr_pages)
2307 			continue;
2308 
2309 		spin_lock_irqsave(&zone->lock, flags);
2310 		for (order = 0; order < MAX_ORDER; order++) {
2311 			struct free_area *area = &(zone->free_area[order]);
2312 
2313 			page = list_first_entry_or_null(
2314 					&area->free_list[MIGRATE_HIGHATOMIC],
2315 					struct page, lru);
2316 			if (!page)
2317 				continue;
2318 
2319 			/*
2320 			 * In page freeing path, migratetype change is racy so
2321 			 * we can counter several free pages in a pageblock
2322 			 * in this loop althoug we changed the pageblock type
2323 			 * from highatomic to ac->migratetype. So we should
2324 			 * adjust the count once.
2325 			 */
2326 			if (is_migrate_highatomic_page(page)) {
2327 				/*
2328 				 * It should never happen but changes to
2329 				 * locking could inadvertently allow a per-cpu
2330 				 * drain to add pages to MIGRATE_HIGHATOMIC
2331 				 * while unreserving so be safe and watch for
2332 				 * underflows.
2333 				 */
2334 				zone->nr_reserved_highatomic -= min(
2335 						pageblock_nr_pages,
2336 						zone->nr_reserved_highatomic);
2337 			}
2338 
2339 			/*
2340 			 * Convert to ac->migratetype and avoid the normal
2341 			 * pageblock stealing heuristics. Minimally, the caller
2342 			 * is doing the work and needs the pages. More
2343 			 * importantly, if the block was always converted to
2344 			 * MIGRATE_UNMOVABLE or another type then the number
2345 			 * of pageblocks that cannot be completely freed
2346 			 * may increase.
2347 			 */
2348 			set_pageblock_migratetype(page, ac->migratetype);
2349 			ret = move_freepages_block(zone, page, ac->migratetype,
2350 									NULL);
2351 			if (ret) {
2352 				spin_unlock_irqrestore(&zone->lock, flags);
2353 				return ret;
2354 			}
2355 		}
2356 		spin_unlock_irqrestore(&zone->lock, flags);
2357 	}
2358 
2359 	return false;
2360 }
2361 
2362 /*
2363  * Try finding a free buddy page on the fallback list and put it on the free
2364  * list of requested migratetype, possibly along with other pages from the same
2365  * block, depending on fragmentation avoidance heuristics. Returns true if
2366  * fallback was found so that __rmqueue_smallest() can grab it.
2367  *
2368  * The use of signed ints for order and current_order is a deliberate
2369  * deviation from the rest of this file, to make the for loop
2370  * condition simpler.
2371  */
2372 static __always_inline bool
2373 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2374 {
2375 	struct free_area *area;
2376 	int current_order;
2377 	struct page *page;
2378 	int fallback_mt;
2379 	bool can_steal;
2380 
2381 	/*
2382 	 * Find the largest available free page in the other list. This roughly
2383 	 * approximates finding the pageblock with the most free pages, which
2384 	 * would be too costly to do exactly.
2385 	 */
2386 	for (current_order = MAX_ORDER - 1; current_order >= order;
2387 				--current_order) {
2388 		area = &(zone->free_area[current_order]);
2389 		fallback_mt = find_suitable_fallback(area, current_order,
2390 				start_migratetype, false, &can_steal);
2391 		if (fallback_mt == -1)
2392 			continue;
2393 
2394 		/*
2395 		 * We cannot steal all free pages from the pageblock and the
2396 		 * requested migratetype is movable. In that case it's better to
2397 		 * steal and split the smallest available page instead of the
2398 		 * largest available page, because even if the next movable
2399 		 * allocation falls back into a different pageblock than this
2400 		 * one, it won't cause permanent fragmentation.
2401 		 */
2402 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2403 					&& current_order > order)
2404 			goto find_smallest;
2405 
2406 		goto do_steal;
2407 	}
2408 
2409 	return false;
2410 
2411 find_smallest:
2412 	for (current_order = order; current_order < MAX_ORDER;
2413 							current_order++) {
2414 		area = &(zone->free_area[current_order]);
2415 		fallback_mt = find_suitable_fallback(area, current_order,
2416 				start_migratetype, false, &can_steal);
2417 		if (fallback_mt != -1)
2418 			break;
2419 	}
2420 
2421 	/*
2422 	 * This should not happen - we already found a suitable fallback
2423 	 * when looking for the largest page.
2424 	 */
2425 	VM_BUG_ON(current_order == MAX_ORDER);
2426 
2427 do_steal:
2428 	page = list_first_entry(&area->free_list[fallback_mt],
2429 							struct page, lru);
2430 
2431 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2432 
2433 	trace_mm_page_alloc_extfrag(page, order, current_order,
2434 		start_migratetype, fallback_mt);
2435 
2436 	return true;
2437 
2438 }
2439 
2440 /*
2441  * Do the hard work of removing an element from the buddy allocator.
2442  * Call me with the zone->lock already held.
2443  */
2444 static __always_inline struct page *
2445 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2446 {
2447 	struct page *page;
2448 
2449 retry:
2450 	page = __rmqueue_smallest(zone, order, migratetype);
2451 	if (unlikely(!page)) {
2452 		if (migratetype == MIGRATE_MOVABLE)
2453 			page = __rmqueue_cma_fallback(zone, order);
2454 
2455 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2456 			goto retry;
2457 	}
2458 
2459 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2460 	return page;
2461 }
2462 
2463 /*
2464  * Obtain a specified number of elements from the buddy allocator, all under
2465  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2466  * Returns the number of new pages which were placed at *list.
2467  */
2468 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2469 			unsigned long count, struct list_head *list,
2470 			int migratetype)
2471 {
2472 	int i, alloced = 0;
2473 
2474 	spin_lock(&zone->lock);
2475 	for (i = 0; i < count; ++i) {
2476 		struct page *page = __rmqueue(zone, order, migratetype);
2477 		if (unlikely(page == NULL))
2478 			break;
2479 
2480 		if (unlikely(check_pcp_refill(page)))
2481 			continue;
2482 
2483 		/*
2484 		 * Split buddy pages returned by expand() are received here in
2485 		 * physical page order. The page is added to the tail of
2486 		 * caller's list. From the callers perspective, the linked list
2487 		 * is ordered by page number under some conditions. This is
2488 		 * useful for IO devices that can forward direction from the
2489 		 * head, thus also in the physical page order. This is useful
2490 		 * for IO devices that can merge IO requests if the physical
2491 		 * pages are ordered properly.
2492 		 */
2493 		list_add_tail(&page->lru, list);
2494 		alloced++;
2495 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2496 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2497 					      -(1 << order));
2498 	}
2499 
2500 	/*
2501 	 * i pages were removed from the buddy list even if some leak due
2502 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2503 	 * on i. Do not confuse with 'alloced' which is the number of
2504 	 * pages added to the pcp list.
2505 	 */
2506 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2507 	spin_unlock(&zone->lock);
2508 	return alloced;
2509 }
2510 
2511 #ifdef CONFIG_NUMA
2512 /*
2513  * Called from the vmstat counter updater to drain pagesets of this
2514  * currently executing processor on remote nodes after they have
2515  * expired.
2516  *
2517  * Note that this function must be called with the thread pinned to
2518  * a single processor.
2519  */
2520 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2521 {
2522 	unsigned long flags;
2523 	int to_drain, batch;
2524 
2525 	local_irq_save(flags);
2526 	batch = READ_ONCE(pcp->batch);
2527 	to_drain = min(pcp->count, batch);
2528 	if (to_drain > 0)
2529 		free_pcppages_bulk(zone, to_drain, pcp);
2530 	local_irq_restore(flags);
2531 }
2532 #endif
2533 
2534 /*
2535  * Drain pcplists of the indicated processor and zone.
2536  *
2537  * The processor must either be the current processor and the
2538  * thread pinned to the current processor or a processor that
2539  * is not online.
2540  */
2541 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2542 {
2543 	unsigned long flags;
2544 	struct per_cpu_pageset *pset;
2545 	struct per_cpu_pages *pcp;
2546 
2547 	local_irq_save(flags);
2548 	pset = per_cpu_ptr(zone->pageset, cpu);
2549 
2550 	pcp = &pset->pcp;
2551 	if (pcp->count)
2552 		free_pcppages_bulk(zone, pcp->count, pcp);
2553 	local_irq_restore(flags);
2554 }
2555 
2556 /*
2557  * Drain pcplists of all zones on the indicated processor.
2558  *
2559  * The processor must either be the current processor and the
2560  * thread pinned to the current processor or a processor that
2561  * is not online.
2562  */
2563 static void drain_pages(unsigned int cpu)
2564 {
2565 	struct zone *zone;
2566 
2567 	for_each_populated_zone(zone) {
2568 		drain_pages_zone(cpu, zone);
2569 	}
2570 }
2571 
2572 /*
2573  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2574  *
2575  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2576  * the single zone's pages.
2577  */
2578 void drain_local_pages(struct zone *zone)
2579 {
2580 	int cpu = smp_processor_id();
2581 
2582 	if (zone)
2583 		drain_pages_zone(cpu, zone);
2584 	else
2585 		drain_pages(cpu);
2586 }
2587 
2588 static void drain_local_pages_wq(struct work_struct *work)
2589 {
2590 	/*
2591 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2592 	 * we can race with cpu offline when the WQ can move this from
2593 	 * a cpu pinned worker to an unbound one. We can operate on a different
2594 	 * cpu which is allright but we also have to make sure to not move to
2595 	 * a different one.
2596 	 */
2597 	preempt_disable();
2598 	drain_local_pages(NULL);
2599 	preempt_enable();
2600 }
2601 
2602 /*
2603  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2604  *
2605  * When zone parameter is non-NULL, spill just the single zone's pages.
2606  *
2607  * Note that this can be extremely slow as the draining happens in a workqueue.
2608  */
2609 void drain_all_pages(struct zone *zone)
2610 {
2611 	int cpu;
2612 
2613 	/*
2614 	 * Allocate in the BSS so we wont require allocation in
2615 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2616 	 */
2617 	static cpumask_t cpus_with_pcps;
2618 
2619 	/*
2620 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2621 	 * initialized.
2622 	 */
2623 	if (WARN_ON_ONCE(!mm_percpu_wq))
2624 		return;
2625 
2626 	/*
2627 	 * Do not drain if one is already in progress unless it's specific to
2628 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2629 	 * the drain to be complete when the call returns.
2630 	 */
2631 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2632 		if (!zone)
2633 			return;
2634 		mutex_lock(&pcpu_drain_mutex);
2635 	}
2636 
2637 	/*
2638 	 * We don't care about racing with CPU hotplug event
2639 	 * as offline notification will cause the notified
2640 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2641 	 * disables preemption as part of its processing
2642 	 */
2643 	for_each_online_cpu(cpu) {
2644 		struct per_cpu_pageset *pcp;
2645 		struct zone *z;
2646 		bool has_pcps = false;
2647 
2648 		if (zone) {
2649 			pcp = per_cpu_ptr(zone->pageset, cpu);
2650 			if (pcp->pcp.count)
2651 				has_pcps = true;
2652 		} else {
2653 			for_each_populated_zone(z) {
2654 				pcp = per_cpu_ptr(z->pageset, cpu);
2655 				if (pcp->pcp.count) {
2656 					has_pcps = true;
2657 					break;
2658 				}
2659 			}
2660 		}
2661 
2662 		if (has_pcps)
2663 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2664 		else
2665 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2666 	}
2667 
2668 	for_each_cpu(cpu, &cpus_with_pcps) {
2669 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2670 		INIT_WORK(work, drain_local_pages_wq);
2671 		queue_work_on(cpu, mm_percpu_wq, work);
2672 	}
2673 	for_each_cpu(cpu, &cpus_with_pcps)
2674 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2675 
2676 	mutex_unlock(&pcpu_drain_mutex);
2677 }
2678 
2679 #ifdef CONFIG_HIBERNATION
2680 
2681 /*
2682  * Touch the watchdog for every WD_PAGE_COUNT pages.
2683  */
2684 #define WD_PAGE_COUNT	(128*1024)
2685 
2686 void mark_free_pages(struct zone *zone)
2687 {
2688 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2689 	unsigned long flags;
2690 	unsigned int order, t;
2691 	struct page *page;
2692 
2693 	if (zone_is_empty(zone))
2694 		return;
2695 
2696 	spin_lock_irqsave(&zone->lock, flags);
2697 
2698 	max_zone_pfn = zone_end_pfn(zone);
2699 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2700 		if (pfn_valid(pfn)) {
2701 			page = pfn_to_page(pfn);
2702 
2703 			if (!--page_count) {
2704 				touch_nmi_watchdog();
2705 				page_count = WD_PAGE_COUNT;
2706 			}
2707 
2708 			if (page_zone(page) != zone)
2709 				continue;
2710 
2711 			if (!swsusp_page_is_forbidden(page))
2712 				swsusp_unset_page_free(page);
2713 		}
2714 
2715 	for_each_migratetype_order(order, t) {
2716 		list_for_each_entry(page,
2717 				&zone->free_area[order].free_list[t], lru) {
2718 			unsigned long i;
2719 
2720 			pfn = page_to_pfn(page);
2721 			for (i = 0; i < (1UL << order); i++) {
2722 				if (!--page_count) {
2723 					touch_nmi_watchdog();
2724 					page_count = WD_PAGE_COUNT;
2725 				}
2726 				swsusp_set_page_free(pfn_to_page(pfn + i));
2727 			}
2728 		}
2729 	}
2730 	spin_unlock_irqrestore(&zone->lock, flags);
2731 }
2732 #endif /* CONFIG_PM */
2733 
2734 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2735 {
2736 	int migratetype;
2737 
2738 	if (!free_pcp_prepare(page))
2739 		return false;
2740 
2741 	migratetype = get_pfnblock_migratetype(page, pfn);
2742 	set_pcppage_migratetype(page, migratetype);
2743 	return true;
2744 }
2745 
2746 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2747 {
2748 	struct zone *zone = page_zone(page);
2749 	struct per_cpu_pages *pcp;
2750 	int migratetype;
2751 
2752 	migratetype = get_pcppage_migratetype(page);
2753 	__count_vm_event(PGFREE);
2754 
2755 	/*
2756 	 * We only track unmovable, reclaimable and movable on pcp lists.
2757 	 * Free ISOLATE pages back to the allocator because they are being
2758 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2759 	 * areas back if necessary. Otherwise, we may have to free
2760 	 * excessively into the page allocator
2761 	 */
2762 	if (migratetype >= MIGRATE_PCPTYPES) {
2763 		if (unlikely(is_migrate_isolate(migratetype))) {
2764 			free_one_page(zone, page, pfn, 0, migratetype);
2765 			return;
2766 		}
2767 		migratetype = MIGRATE_MOVABLE;
2768 	}
2769 
2770 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2771 	list_add(&page->lru, &pcp->lists[migratetype]);
2772 	pcp->count++;
2773 	if (pcp->count >= pcp->high) {
2774 		unsigned long batch = READ_ONCE(pcp->batch);
2775 		free_pcppages_bulk(zone, batch, pcp);
2776 	}
2777 }
2778 
2779 /*
2780  * Free a 0-order page
2781  */
2782 void free_unref_page(struct page *page)
2783 {
2784 	unsigned long flags;
2785 	unsigned long pfn = page_to_pfn(page);
2786 
2787 	if (!free_unref_page_prepare(page, pfn))
2788 		return;
2789 
2790 	local_irq_save(flags);
2791 	free_unref_page_commit(page, pfn);
2792 	local_irq_restore(flags);
2793 }
2794 
2795 /*
2796  * Free a list of 0-order pages
2797  */
2798 void free_unref_page_list(struct list_head *list)
2799 {
2800 	struct page *page, *next;
2801 	unsigned long flags, pfn;
2802 	int batch_count = 0;
2803 
2804 	/* Prepare pages for freeing */
2805 	list_for_each_entry_safe(page, next, list, lru) {
2806 		pfn = page_to_pfn(page);
2807 		if (!free_unref_page_prepare(page, pfn))
2808 			list_del(&page->lru);
2809 		set_page_private(page, pfn);
2810 	}
2811 
2812 	local_irq_save(flags);
2813 	list_for_each_entry_safe(page, next, list, lru) {
2814 		unsigned long pfn = page_private(page);
2815 
2816 		set_page_private(page, 0);
2817 		trace_mm_page_free_batched(page);
2818 		free_unref_page_commit(page, pfn);
2819 
2820 		/*
2821 		 * Guard against excessive IRQ disabled times when we get
2822 		 * a large list of pages to free.
2823 		 */
2824 		if (++batch_count == SWAP_CLUSTER_MAX) {
2825 			local_irq_restore(flags);
2826 			batch_count = 0;
2827 			local_irq_save(flags);
2828 		}
2829 	}
2830 	local_irq_restore(flags);
2831 }
2832 
2833 /*
2834  * split_page takes a non-compound higher-order page, and splits it into
2835  * n (1<<order) sub-pages: page[0..n]
2836  * Each sub-page must be freed individually.
2837  *
2838  * Note: this is probably too low level an operation for use in drivers.
2839  * Please consult with lkml before using this in your driver.
2840  */
2841 void split_page(struct page *page, unsigned int order)
2842 {
2843 	int i;
2844 
2845 	VM_BUG_ON_PAGE(PageCompound(page), page);
2846 	VM_BUG_ON_PAGE(!page_count(page), page);
2847 
2848 	for (i = 1; i < (1 << order); i++)
2849 		set_page_refcounted(page + i);
2850 	split_page_owner(page, order);
2851 }
2852 EXPORT_SYMBOL_GPL(split_page);
2853 
2854 int __isolate_free_page(struct page *page, unsigned int order)
2855 {
2856 	unsigned long watermark;
2857 	struct zone *zone;
2858 	int mt;
2859 
2860 	BUG_ON(!PageBuddy(page));
2861 
2862 	zone = page_zone(page);
2863 	mt = get_pageblock_migratetype(page);
2864 
2865 	if (!is_migrate_isolate(mt)) {
2866 		/*
2867 		 * Obey watermarks as if the page was being allocated. We can
2868 		 * emulate a high-order watermark check with a raised order-0
2869 		 * watermark, because we already know our high-order page
2870 		 * exists.
2871 		 */
2872 		watermark = min_wmark_pages(zone) + (1UL << order);
2873 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2874 			return 0;
2875 
2876 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2877 	}
2878 
2879 	/* Remove page from free list */
2880 	list_del(&page->lru);
2881 	zone->free_area[order].nr_free--;
2882 	rmv_page_order(page);
2883 
2884 	/*
2885 	 * Set the pageblock if the isolated page is at least half of a
2886 	 * pageblock
2887 	 */
2888 	if (order >= pageblock_order - 1) {
2889 		struct page *endpage = page + (1 << order) - 1;
2890 		for (; page < endpage; page += pageblock_nr_pages) {
2891 			int mt = get_pageblock_migratetype(page);
2892 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2893 			    && !is_migrate_highatomic(mt))
2894 				set_pageblock_migratetype(page,
2895 							  MIGRATE_MOVABLE);
2896 		}
2897 	}
2898 
2899 
2900 	return 1UL << order;
2901 }
2902 
2903 /*
2904  * Update NUMA hit/miss statistics
2905  *
2906  * Must be called with interrupts disabled.
2907  */
2908 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2909 {
2910 #ifdef CONFIG_NUMA
2911 	enum numa_stat_item local_stat = NUMA_LOCAL;
2912 
2913 	/* skip numa counters update if numa stats is disabled */
2914 	if (!static_branch_likely(&vm_numa_stat_key))
2915 		return;
2916 
2917 	if (z->node != numa_node_id())
2918 		local_stat = NUMA_OTHER;
2919 
2920 	if (z->node == preferred_zone->node)
2921 		__inc_numa_state(z, NUMA_HIT);
2922 	else {
2923 		__inc_numa_state(z, NUMA_MISS);
2924 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2925 	}
2926 	__inc_numa_state(z, local_stat);
2927 #endif
2928 }
2929 
2930 /* Remove page from the per-cpu list, caller must protect the list */
2931 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2932 			struct per_cpu_pages *pcp,
2933 			struct list_head *list)
2934 {
2935 	struct page *page;
2936 
2937 	do {
2938 		if (list_empty(list)) {
2939 			pcp->count += rmqueue_bulk(zone, 0,
2940 					pcp->batch, list,
2941 					migratetype);
2942 			if (unlikely(list_empty(list)))
2943 				return NULL;
2944 		}
2945 
2946 		page = list_first_entry(list, struct page, lru);
2947 		list_del(&page->lru);
2948 		pcp->count--;
2949 	} while (check_new_pcp(page));
2950 
2951 	return page;
2952 }
2953 
2954 /* Lock and remove page from the per-cpu list */
2955 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2956 			struct zone *zone, unsigned int order,
2957 			gfp_t gfp_flags, int migratetype)
2958 {
2959 	struct per_cpu_pages *pcp;
2960 	struct list_head *list;
2961 	struct page *page;
2962 	unsigned long flags;
2963 
2964 	local_irq_save(flags);
2965 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2966 	list = &pcp->lists[migratetype];
2967 	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2968 	if (page) {
2969 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2970 		zone_statistics(preferred_zone, zone);
2971 	}
2972 	local_irq_restore(flags);
2973 	return page;
2974 }
2975 
2976 /*
2977  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2978  */
2979 static inline
2980 struct page *rmqueue(struct zone *preferred_zone,
2981 			struct zone *zone, unsigned int order,
2982 			gfp_t gfp_flags, unsigned int alloc_flags,
2983 			int migratetype)
2984 {
2985 	unsigned long flags;
2986 	struct page *page;
2987 
2988 	if (likely(order == 0)) {
2989 		page = rmqueue_pcplist(preferred_zone, zone, order,
2990 				gfp_flags, migratetype);
2991 		goto out;
2992 	}
2993 
2994 	/*
2995 	 * We most definitely don't want callers attempting to
2996 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2997 	 */
2998 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2999 	spin_lock_irqsave(&zone->lock, flags);
3000 
3001 	do {
3002 		page = NULL;
3003 		if (alloc_flags & ALLOC_HARDER) {
3004 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3005 			if (page)
3006 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3007 		}
3008 		if (!page)
3009 			page = __rmqueue(zone, order, migratetype);
3010 	} while (page && check_new_pages(page, order));
3011 	spin_unlock(&zone->lock);
3012 	if (!page)
3013 		goto failed;
3014 	__mod_zone_freepage_state(zone, -(1 << order),
3015 				  get_pcppage_migratetype(page));
3016 
3017 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3018 	zone_statistics(preferred_zone, zone);
3019 	local_irq_restore(flags);
3020 
3021 out:
3022 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3023 	return page;
3024 
3025 failed:
3026 	local_irq_restore(flags);
3027 	return NULL;
3028 }
3029 
3030 #ifdef CONFIG_FAIL_PAGE_ALLOC
3031 
3032 static struct {
3033 	struct fault_attr attr;
3034 
3035 	bool ignore_gfp_highmem;
3036 	bool ignore_gfp_reclaim;
3037 	u32 min_order;
3038 } fail_page_alloc = {
3039 	.attr = FAULT_ATTR_INITIALIZER,
3040 	.ignore_gfp_reclaim = true,
3041 	.ignore_gfp_highmem = true,
3042 	.min_order = 1,
3043 };
3044 
3045 static int __init setup_fail_page_alloc(char *str)
3046 {
3047 	return setup_fault_attr(&fail_page_alloc.attr, str);
3048 }
3049 __setup("fail_page_alloc=", setup_fail_page_alloc);
3050 
3051 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3052 {
3053 	if (order < fail_page_alloc.min_order)
3054 		return false;
3055 	if (gfp_mask & __GFP_NOFAIL)
3056 		return false;
3057 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3058 		return false;
3059 	if (fail_page_alloc.ignore_gfp_reclaim &&
3060 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3061 		return false;
3062 
3063 	return should_fail(&fail_page_alloc.attr, 1 << order);
3064 }
3065 
3066 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3067 
3068 static int __init fail_page_alloc_debugfs(void)
3069 {
3070 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3071 	struct dentry *dir;
3072 
3073 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3074 					&fail_page_alloc.attr);
3075 	if (IS_ERR(dir))
3076 		return PTR_ERR(dir);
3077 
3078 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3079 				&fail_page_alloc.ignore_gfp_reclaim))
3080 		goto fail;
3081 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3082 				&fail_page_alloc.ignore_gfp_highmem))
3083 		goto fail;
3084 	if (!debugfs_create_u32("min-order", mode, dir,
3085 				&fail_page_alloc.min_order))
3086 		goto fail;
3087 
3088 	return 0;
3089 fail:
3090 	debugfs_remove_recursive(dir);
3091 
3092 	return -ENOMEM;
3093 }
3094 
3095 late_initcall(fail_page_alloc_debugfs);
3096 
3097 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3098 
3099 #else /* CONFIG_FAIL_PAGE_ALLOC */
3100 
3101 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3102 {
3103 	return false;
3104 }
3105 
3106 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3107 
3108 /*
3109  * Return true if free base pages are above 'mark'. For high-order checks it
3110  * will return true of the order-0 watermark is reached and there is at least
3111  * one free page of a suitable size. Checking now avoids taking the zone lock
3112  * to check in the allocation paths if no pages are free.
3113  */
3114 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3115 			 int classzone_idx, unsigned int alloc_flags,
3116 			 long free_pages)
3117 {
3118 	long min = mark;
3119 	int o;
3120 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3121 
3122 	/* free_pages may go negative - that's OK */
3123 	free_pages -= (1 << order) - 1;
3124 
3125 	if (alloc_flags & ALLOC_HIGH)
3126 		min -= min / 2;
3127 
3128 	/*
3129 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3130 	 * the high-atomic reserves. This will over-estimate the size of the
3131 	 * atomic reserve but it avoids a search.
3132 	 */
3133 	if (likely(!alloc_harder)) {
3134 		free_pages -= z->nr_reserved_highatomic;
3135 	} else {
3136 		/*
3137 		 * OOM victims can try even harder than normal ALLOC_HARDER
3138 		 * users on the grounds that it's definitely going to be in
3139 		 * the exit path shortly and free memory. Any allocation it
3140 		 * makes during the free path will be small and short-lived.
3141 		 */
3142 		if (alloc_flags & ALLOC_OOM)
3143 			min -= min / 2;
3144 		else
3145 			min -= min / 4;
3146 	}
3147 
3148 
3149 #ifdef CONFIG_CMA
3150 	/* If allocation can't use CMA areas don't use free CMA pages */
3151 	if (!(alloc_flags & ALLOC_CMA))
3152 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3153 #endif
3154 
3155 	/*
3156 	 * Check watermarks for an order-0 allocation request. If these
3157 	 * are not met, then a high-order request also cannot go ahead
3158 	 * even if a suitable page happened to be free.
3159 	 */
3160 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3161 		return false;
3162 
3163 	/* If this is an order-0 request then the watermark is fine */
3164 	if (!order)
3165 		return true;
3166 
3167 	/* For a high-order request, check at least one suitable page is free */
3168 	for (o = order; o < MAX_ORDER; o++) {
3169 		struct free_area *area = &z->free_area[o];
3170 		int mt;
3171 
3172 		if (!area->nr_free)
3173 			continue;
3174 
3175 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3176 			if (!list_empty(&area->free_list[mt]))
3177 				return true;
3178 		}
3179 
3180 #ifdef CONFIG_CMA
3181 		if ((alloc_flags & ALLOC_CMA) &&
3182 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3183 			return true;
3184 		}
3185 #endif
3186 		if (alloc_harder &&
3187 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3188 			return true;
3189 	}
3190 	return false;
3191 }
3192 
3193 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3194 		      int classzone_idx, unsigned int alloc_flags)
3195 {
3196 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3197 					zone_page_state(z, NR_FREE_PAGES));
3198 }
3199 
3200 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3201 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3202 {
3203 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3204 	long cma_pages = 0;
3205 
3206 #ifdef CONFIG_CMA
3207 	/* If allocation can't use CMA areas don't use free CMA pages */
3208 	if (!(alloc_flags & ALLOC_CMA))
3209 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3210 #endif
3211 
3212 	/*
3213 	 * Fast check for order-0 only. If this fails then the reserves
3214 	 * need to be calculated. There is a corner case where the check
3215 	 * passes but only the high-order atomic reserve are free. If
3216 	 * the caller is !atomic then it'll uselessly search the free
3217 	 * list. That corner case is then slower but it is harmless.
3218 	 */
3219 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3220 		return true;
3221 
3222 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3223 					free_pages);
3224 }
3225 
3226 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3227 			unsigned long mark, int classzone_idx)
3228 {
3229 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3230 
3231 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3232 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3233 
3234 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3235 								free_pages);
3236 }
3237 
3238 #ifdef CONFIG_NUMA
3239 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3240 {
3241 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3242 				RECLAIM_DISTANCE;
3243 }
3244 #else	/* CONFIG_NUMA */
3245 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3246 {
3247 	return true;
3248 }
3249 #endif	/* CONFIG_NUMA */
3250 
3251 /*
3252  * get_page_from_freelist goes through the zonelist trying to allocate
3253  * a page.
3254  */
3255 static struct page *
3256 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3257 						const struct alloc_context *ac)
3258 {
3259 	struct zoneref *z = ac->preferred_zoneref;
3260 	struct zone *zone;
3261 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3262 
3263 	/*
3264 	 * Scan zonelist, looking for a zone with enough free.
3265 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3266 	 */
3267 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3268 								ac->nodemask) {
3269 		struct page *page;
3270 		unsigned long mark;
3271 
3272 		if (cpusets_enabled() &&
3273 			(alloc_flags & ALLOC_CPUSET) &&
3274 			!__cpuset_zone_allowed(zone, gfp_mask))
3275 				continue;
3276 		/*
3277 		 * When allocating a page cache page for writing, we
3278 		 * want to get it from a node that is within its dirty
3279 		 * limit, such that no single node holds more than its
3280 		 * proportional share of globally allowed dirty pages.
3281 		 * The dirty limits take into account the node's
3282 		 * lowmem reserves and high watermark so that kswapd
3283 		 * should be able to balance it without having to
3284 		 * write pages from its LRU list.
3285 		 *
3286 		 * XXX: For now, allow allocations to potentially
3287 		 * exceed the per-node dirty limit in the slowpath
3288 		 * (spread_dirty_pages unset) before going into reclaim,
3289 		 * which is important when on a NUMA setup the allowed
3290 		 * nodes are together not big enough to reach the
3291 		 * global limit.  The proper fix for these situations
3292 		 * will require awareness of nodes in the
3293 		 * dirty-throttling and the flusher threads.
3294 		 */
3295 		if (ac->spread_dirty_pages) {
3296 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3297 				continue;
3298 
3299 			if (!node_dirty_ok(zone->zone_pgdat)) {
3300 				last_pgdat_dirty_limit = zone->zone_pgdat;
3301 				continue;
3302 			}
3303 		}
3304 
3305 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3306 		if (!zone_watermark_fast(zone, order, mark,
3307 				       ac_classzone_idx(ac), alloc_flags)) {
3308 			int ret;
3309 
3310 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3311 			/*
3312 			 * Watermark failed for this zone, but see if we can
3313 			 * grow this zone if it contains deferred pages.
3314 			 */
3315 			if (static_branch_unlikely(&deferred_pages)) {
3316 				if (_deferred_grow_zone(zone, order))
3317 					goto try_this_zone;
3318 			}
3319 #endif
3320 			/* Checked here to keep the fast path fast */
3321 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3322 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3323 				goto try_this_zone;
3324 
3325 			if (node_reclaim_mode == 0 ||
3326 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3327 				continue;
3328 
3329 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3330 			switch (ret) {
3331 			case NODE_RECLAIM_NOSCAN:
3332 				/* did not scan */
3333 				continue;
3334 			case NODE_RECLAIM_FULL:
3335 				/* scanned but unreclaimable */
3336 				continue;
3337 			default:
3338 				/* did we reclaim enough */
3339 				if (zone_watermark_ok(zone, order, mark,
3340 						ac_classzone_idx(ac), alloc_flags))
3341 					goto try_this_zone;
3342 
3343 				continue;
3344 			}
3345 		}
3346 
3347 try_this_zone:
3348 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3349 				gfp_mask, alloc_flags, ac->migratetype);
3350 		if (page) {
3351 			prep_new_page(page, order, gfp_mask, alloc_flags);
3352 
3353 			/*
3354 			 * If this is a high-order atomic allocation then check
3355 			 * if the pageblock should be reserved for the future
3356 			 */
3357 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3358 				reserve_highatomic_pageblock(page, zone, order);
3359 
3360 			return page;
3361 		} else {
3362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3363 			/* Try again if zone has deferred pages */
3364 			if (static_branch_unlikely(&deferred_pages)) {
3365 				if (_deferred_grow_zone(zone, order))
3366 					goto try_this_zone;
3367 			}
3368 #endif
3369 		}
3370 	}
3371 
3372 	return NULL;
3373 }
3374 
3375 /*
3376  * Large machines with many possible nodes should not always dump per-node
3377  * meminfo in irq context.
3378  */
3379 static inline bool should_suppress_show_mem(void)
3380 {
3381 	bool ret = false;
3382 
3383 #if NODES_SHIFT > 8
3384 	ret = in_interrupt();
3385 #endif
3386 	return ret;
3387 }
3388 
3389 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3390 {
3391 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3392 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3393 
3394 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3395 		return;
3396 
3397 	/*
3398 	 * This documents exceptions given to allocations in certain
3399 	 * contexts that are allowed to allocate outside current's set
3400 	 * of allowed nodes.
3401 	 */
3402 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3403 		if (tsk_is_oom_victim(current) ||
3404 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3405 			filter &= ~SHOW_MEM_FILTER_NODES;
3406 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3407 		filter &= ~SHOW_MEM_FILTER_NODES;
3408 
3409 	show_mem(filter, nodemask);
3410 }
3411 
3412 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3413 {
3414 	struct va_format vaf;
3415 	va_list args;
3416 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3417 				      DEFAULT_RATELIMIT_BURST);
3418 
3419 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3420 		return;
3421 
3422 	va_start(args, fmt);
3423 	vaf.fmt = fmt;
3424 	vaf.va = &args;
3425 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3426 			current->comm, &vaf, gfp_mask, &gfp_mask,
3427 			nodemask_pr_args(nodemask));
3428 	va_end(args);
3429 
3430 	cpuset_print_current_mems_allowed();
3431 
3432 	dump_stack();
3433 	warn_alloc_show_mem(gfp_mask, nodemask);
3434 }
3435 
3436 static inline struct page *
3437 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3438 			      unsigned int alloc_flags,
3439 			      const struct alloc_context *ac)
3440 {
3441 	struct page *page;
3442 
3443 	page = get_page_from_freelist(gfp_mask, order,
3444 			alloc_flags|ALLOC_CPUSET, ac);
3445 	/*
3446 	 * fallback to ignore cpuset restriction if our nodes
3447 	 * are depleted
3448 	 */
3449 	if (!page)
3450 		page = get_page_from_freelist(gfp_mask, order,
3451 				alloc_flags, ac);
3452 
3453 	return page;
3454 }
3455 
3456 static inline struct page *
3457 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3458 	const struct alloc_context *ac, unsigned long *did_some_progress)
3459 {
3460 	struct oom_control oc = {
3461 		.zonelist = ac->zonelist,
3462 		.nodemask = ac->nodemask,
3463 		.memcg = NULL,
3464 		.gfp_mask = gfp_mask,
3465 		.order = order,
3466 	};
3467 	struct page *page;
3468 
3469 	*did_some_progress = 0;
3470 
3471 	/*
3472 	 * Acquire the oom lock.  If that fails, somebody else is
3473 	 * making progress for us.
3474 	 */
3475 	if (!mutex_trylock(&oom_lock)) {
3476 		*did_some_progress = 1;
3477 		schedule_timeout_uninterruptible(1);
3478 		return NULL;
3479 	}
3480 
3481 	/*
3482 	 * Go through the zonelist yet one more time, keep very high watermark
3483 	 * here, this is only to catch a parallel oom killing, we must fail if
3484 	 * we're still under heavy pressure. But make sure that this reclaim
3485 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3486 	 * allocation which will never fail due to oom_lock already held.
3487 	 */
3488 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3489 				      ~__GFP_DIRECT_RECLAIM, order,
3490 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3491 	if (page)
3492 		goto out;
3493 
3494 	/* Coredumps can quickly deplete all memory reserves */
3495 	if (current->flags & PF_DUMPCORE)
3496 		goto out;
3497 	/* The OOM killer will not help higher order allocs */
3498 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3499 		goto out;
3500 	/*
3501 	 * We have already exhausted all our reclaim opportunities without any
3502 	 * success so it is time to admit defeat. We will skip the OOM killer
3503 	 * because it is very likely that the caller has a more reasonable
3504 	 * fallback than shooting a random task.
3505 	 */
3506 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3507 		goto out;
3508 	/* The OOM killer does not needlessly kill tasks for lowmem */
3509 	if (ac->high_zoneidx < ZONE_NORMAL)
3510 		goto out;
3511 	if (pm_suspended_storage())
3512 		goto out;
3513 	/*
3514 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3515 	 * other request to make a forward progress.
3516 	 * We are in an unfortunate situation where out_of_memory cannot
3517 	 * do much for this context but let's try it to at least get
3518 	 * access to memory reserved if the current task is killed (see
3519 	 * out_of_memory). Once filesystems are ready to handle allocation
3520 	 * failures more gracefully we should just bail out here.
3521 	 */
3522 
3523 	/* The OOM killer may not free memory on a specific node */
3524 	if (gfp_mask & __GFP_THISNODE)
3525 		goto out;
3526 
3527 	/* Exhausted what can be done so it's blame time */
3528 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3529 		*did_some_progress = 1;
3530 
3531 		/*
3532 		 * Help non-failing allocations by giving them access to memory
3533 		 * reserves
3534 		 */
3535 		if (gfp_mask & __GFP_NOFAIL)
3536 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3537 					ALLOC_NO_WATERMARKS, ac);
3538 	}
3539 out:
3540 	mutex_unlock(&oom_lock);
3541 	return page;
3542 }
3543 
3544 /*
3545  * Maximum number of compaction retries wit a progress before OOM
3546  * killer is consider as the only way to move forward.
3547  */
3548 #define MAX_COMPACT_RETRIES 16
3549 
3550 #ifdef CONFIG_COMPACTION
3551 /* Try memory compaction for high-order allocations before reclaim */
3552 static struct page *
3553 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3554 		unsigned int alloc_flags, const struct alloc_context *ac,
3555 		enum compact_priority prio, enum compact_result *compact_result)
3556 {
3557 	struct page *page;
3558 	unsigned int noreclaim_flag;
3559 
3560 	if (!order)
3561 		return NULL;
3562 
3563 	noreclaim_flag = memalloc_noreclaim_save();
3564 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3565 									prio);
3566 	memalloc_noreclaim_restore(noreclaim_flag);
3567 
3568 	if (*compact_result <= COMPACT_INACTIVE)
3569 		return NULL;
3570 
3571 	/*
3572 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3573 	 * count a compaction stall
3574 	 */
3575 	count_vm_event(COMPACTSTALL);
3576 
3577 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3578 
3579 	if (page) {
3580 		struct zone *zone = page_zone(page);
3581 
3582 		zone->compact_blockskip_flush = false;
3583 		compaction_defer_reset(zone, order, true);
3584 		count_vm_event(COMPACTSUCCESS);
3585 		return page;
3586 	}
3587 
3588 	/*
3589 	 * It's bad if compaction run occurs and fails. The most likely reason
3590 	 * is that pages exist, but not enough to satisfy watermarks.
3591 	 */
3592 	count_vm_event(COMPACTFAIL);
3593 
3594 	cond_resched();
3595 
3596 	return NULL;
3597 }
3598 
3599 static inline bool
3600 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3601 		     enum compact_result compact_result,
3602 		     enum compact_priority *compact_priority,
3603 		     int *compaction_retries)
3604 {
3605 	int max_retries = MAX_COMPACT_RETRIES;
3606 	int min_priority;
3607 	bool ret = false;
3608 	int retries = *compaction_retries;
3609 	enum compact_priority priority = *compact_priority;
3610 
3611 	if (!order)
3612 		return false;
3613 
3614 	if (compaction_made_progress(compact_result))
3615 		(*compaction_retries)++;
3616 
3617 	/*
3618 	 * compaction considers all the zone as desperately out of memory
3619 	 * so it doesn't really make much sense to retry except when the
3620 	 * failure could be caused by insufficient priority
3621 	 */
3622 	if (compaction_failed(compact_result))
3623 		goto check_priority;
3624 
3625 	/*
3626 	 * make sure the compaction wasn't deferred or didn't bail out early
3627 	 * due to locks contention before we declare that we should give up.
3628 	 * But do not retry if the given zonelist is not suitable for
3629 	 * compaction.
3630 	 */
3631 	if (compaction_withdrawn(compact_result)) {
3632 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3633 		goto out;
3634 	}
3635 
3636 	/*
3637 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3638 	 * costly ones because they are de facto nofail and invoke OOM
3639 	 * killer to move on while costly can fail and users are ready
3640 	 * to cope with that. 1/4 retries is rather arbitrary but we
3641 	 * would need much more detailed feedback from compaction to
3642 	 * make a better decision.
3643 	 */
3644 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3645 		max_retries /= 4;
3646 	if (*compaction_retries <= max_retries) {
3647 		ret = true;
3648 		goto out;
3649 	}
3650 
3651 	/*
3652 	 * Make sure there are attempts at the highest priority if we exhausted
3653 	 * all retries or failed at the lower priorities.
3654 	 */
3655 check_priority:
3656 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3657 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3658 
3659 	if (*compact_priority > min_priority) {
3660 		(*compact_priority)--;
3661 		*compaction_retries = 0;
3662 		ret = true;
3663 	}
3664 out:
3665 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3666 	return ret;
3667 }
3668 #else
3669 static inline struct page *
3670 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3671 		unsigned int alloc_flags, const struct alloc_context *ac,
3672 		enum compact_priority prio, enum compact_result *compact_result)
3673 {
3674 	*compact_result = COMPACT_SKIPPED;
3675 	return NULL;
3676 }
3677 
3678 static inline bool
3679 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3680 		     enum compact_result compact_result,
3681 		     enum compact_priority *compact_priority,
3682 		     int *compaction_retries)
3683 {
3684 	struct zone *zone;
3685 	struct zoneref *z;
3686 
3687 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3688 		return false;
3689 
3690 	/*
3691 	 * There are setups with compaction disabled which would prefer to loop
3692 	 * inside the allocator rather than hit the oom killer prematurely.
3693 	 * Let's give them a good hope and keep retrying while the order-0
3694 	 * watermarks are OK.
3695 	 */
3696 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3697 					ac->nodemask) {
3698 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3699 					ac_classzone_idx(ac), alloc_flags))
3700 			return true;
3701 	}
3702 	return false;
3703 }
3704 #endif /* CONFIG_COMPACTION */
3705 
3706 #ifdef CONFIG_LOCKDEP
3707 struct lockdep_map __fs_reclaim_map =
3708 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3709 
3710 static bool __need_fs_reclaim(gfp_t gfp_mask)
3711 {
3712 	gfp_mask = current_gfp_context(gfp_mask);
3713 
3714 	/* no reclaim without waiting on it */
3715 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3716 		return false;
3717 
3718 	/* this guy won't enter reclaim */
3719 	if (current->flags & PF_MEMALLOC)
3720 		return false;
3721 
3722 	/* We're only interested __GFP_FS allocations for now */
3723 	if (!(gfp_mask & __GFP_FS))
3724 		return false;
3725 
3726 	if (gfp_mask & __GFP_NOLOCKDEP)
3727 		return false;
3728 
3729 	return true;
3730 }
3731 
3732 void fs_reclaim_acquire(gfp_t gfp_mask)
3733 {
3734 	if (__need_fs_reclaim(gfp_mask))
3735 		lock_map_acquire(&__fs_reclaim_map);
3736 }
3737 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3738 
3739 void fs_reclaim_release(gfp_t gfp_mask)
3740 {
3741 	if (__need_fs_reclaim(gfp_mask))
3742 		lock_map_release(&__fs_reclaim_map);
3743 }
3744 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3745 #endif
3746 
3747 /* Perform direct synchronous page reclaim */
3748 static int
3749 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3750 					const struct alloc_context *ac)
3751 {
3752 	struct reclaim_state reclaim_state;
3753 	int progress;
3754 	unsigned int noreclaim_flag;
3755 
3756 	cond_resched();
3757 
3758 	/* We now go into synchronous reclaim */
3759 	cpuset_memory_pressure_bump();
3760 	noreclaim_flag = memalloc_noreclaim_save();
3761 	fs_reclaim_acquire(gfp_mask);
3762 	reclaim_state.reclaimed_slab = 0;
3763 	current->reclaim_state = &reclaim_state;
3764 
3765 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3766 								ac->nodemask);
3767 
3768 	current->reclaim_state = NULL;
3769 	fs_reclaim_release(gfp_mask);
3770 	memalloc_noreclaim_restore(noreclaim_flag);
3771 
3772 	cond_resched();
3773 
3774 	return progress;
3775 }
3776 
3777 /* The really slow allocator path where we enter direct reclaim */
3778 static inline struct page *
3779 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3780 		unsigned int alloc_flags, const struct alloc_context *ac,
3781 		unsigned long *did_some_progress)
3782 {
3783 	struct page *page = NULL;
3784 	bool drained = false;
3785 
3786 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3787 	if (unlikely(!(*did_some_progress)))
3788 		return NULL;
3789 
3790 retry:
3791 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3792 
3793 	/*
3794 	 * If an allocation failed after direct reclaim, it could be because
3795 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3796 	 * Shrink them them and try again
3797 	 */
3798 	if (!page && !drained) {
3799 		unreserve_highatomic_pageblock(ac, false);
3800 		drain_all_pages(NULL);
3801 		drained = true;
3802 		goto retry;
3803 	}
3804 
3805 	return page;
3806 }
3807 
3808 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3809 			     const struct alloc_context *ac)
3810 {
3811 	struct zoneref *z;
3812 	struct zone *zone;
3813 	pg_data_t *last_pgdat = NULL;
3814 	enum zone_type high_zoneidx = ac->high_zoneidx;
3815 
3816 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3817 					ac->nodemask) {
3818 		if (last_pgdat != zone->zone_pgdat)
3819 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3820 		last_pgdat = zone->zone_pgdat;
3821 	}
3822 }
3823 
3824 static inline unsigned int
3825 gfp_to_alloc_flags(gfp_t gfp_mask)
3826 {
3827 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3828 
3829 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3830 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3831 
3832 	/*
3833 	 * The caller may dip into page reserves a bit more if the caller
3834 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3835 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3836 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3837 	 */
3838 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3839 
3840 	if (gfp_mask & __GFP_ATOMIC) {
3841 		/*
3842 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3843 		 * if it can't schedule.
3844 		 */
3845 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3846 			alloc_flags |= ALLOC_HARDER;
3847 		/*
3848 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3849 		 * comment for __cpuset_node_allowed().
3850 		 */
3851 		alloc_flags &= ~ALLOC_CPUSET;
3852 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3853 		alloc_flags |= ALLOC_HARDER;
3854 
3855 #ifdef CONFIG_CMA
3856 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3857 		alloc_flags |= ALLOC_CMA;
3858 #endif
3859 	return alloc_flags;
3860 }
3861 
3862 static bool oom_reserves_allowed(struct task_struct *tsk)
3863 {
3864 	if (!tsk_is_oom_victim(tsk))
3865 		return false;
3866 
3867 	/*
3868 	 * !MMU doesn't have oom reaper so give access to memory reserves
3869 	 * only to the thread with TIF_MEMDIE set
3870 	 */
3871 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3872 		return false;
3873 
3874 	return true;
3875 }
3876 
3877 /*
3878  * Distinguish requests which really need access to full memory
3879  * reserves from oom victims which can live with a portion of it
3880  */
3881 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3882 {
3883 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3884 		return 0;
3885 	if (gfp_mask & __GFP_MEMALLOC)
3886 		return ALLOC_NO_WATERMARKS;
3887 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3888 		return ALLOC_NO_WATERMARKS;
3889 	if (!in_interrupt()) {
3890 		if (current->flags & PF_MEMALLOC)
3891 			return ALLOC_NO_WATERMARKS;
3892 		else if (oom_reserves_allowed(current))
3893 			return ALLOC_OOM;
3894 	}
3895 
3896 	return 0;
3897 }
3898 
3899 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3900 {
3901 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3902 }
3903 
3904 /*
3905  * Checks whether it makes sense to retry the reclaim to make a forward progress
3906  * for the given allocation request.
3907  *
3908  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3909  * without success, or when we couldn't even meet the watermark if we
3910  * reclaimed all remaining pages on the LRU lists.
3911  *
3912  * Returns true if a retry is viable or false to enter the oom path.
3913  */
3914 static inline bool
3915 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3916 		     struct alloc_context *ac, int alloc_flags,
3917 		     bool did_some_progress, int *no_progress_loops)
3918 {
3919 	struct zone *zone;
3920 	struct zoneref *z;
3921 
3922 	/*
3923 	 * Costly allocations might have made a progress but this doesn't mean
3924 	 * their order will become available due to high fragmentation so
3925 	 * always increment the no progress counter for them
3926 	 */
3927 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3928 		*no_progress_loops = 0;
3929 	else
3930 		(*no_progress_loops)++;
3931 
3932 	/*
3933 	 * Make sure we converge to OOM if we cannot make any progress
3934 	 * several times in the row.
3935 	 */
3936 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3937 		/* Before OOM, exhaust highatomic_reserve */
3938 		return unreserve_highatomic_pageblock(ac, true);
3939 	}
3940 
3941 	/*
3942 	 * Keep reclaiming pages while there is a chance this will lead
3943 	 * somewhere.  If none of the target zones can satisfy our allocation
3944 	 * request even if all reclaimable pages are considered then we are
3945 	 * screwed and have to go OOM.
3946 	 */
3947 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3948 					ac->nodemask) {
3949 		unsigned long available;
3950 		unsigned long reclaimable;
3951 		unsigned long min_wmark = min_wmark_pages(zone);
3952 		bool wmark;
3953 
3954 		available = reclaimable = zone_reclaimable_pages(zone);
3955 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3956 
3957 		/*
3958 		 * Would the allocation succeed if we reclaimed all
3959 		 * reclaimable pages?
3960 		 */
3961 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3962 				ac_classzone_idx(ac), alloc_flags, available);
3963 		trace_reclaim_retry_zone(z, order, reclaimable,
3964 				available, min_wmark, *no_progress_loops, wmark);
3965 		if (wmark) {
3966 			/*
3967 			 * If we didn't make any progress and have a lot of
3968 			 * dirty + writeback pages then we should wait for
3969 			 * an IO to complete to slow down the reclaim and
3970 			 * prevent from pre mature OOM
3971 			 */
3972 			if (!did_some_progress) {
3973 				unsigned long write_pending;
3974 
3975 				write_pending = zone_page_state_snapshot(zone,
3976 							NR_ZONE_WRITE_PENDING);
3977 
3978 				if (2 * write_pending > reclaimable) {
3979 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3980 					return true;
3981 				}
3982 			}
3983 
3984 			/*
3985 			 * Memory allocation/reclaim might be called from a WQ
3986 			 * context and the current implementation of the WQ
3987 			 * concurrency control doesn't recognize that
3988 			 * a particular WQ is congested if the worker thread is
3989 			 * looping without ever sleeping. Therefore we have to
3990 			 * do a short sleep here rather than calling
3991 			 * cond_resched().
3992 			 */
3993 			if (current->flags & PF_WQ_WORKER)
3994 				schedule_timeout_uninterruptible(1);
3995 			else
3996 				cond_resched();
3997 
3998 			return true;
3999 		}
4000 	}
4001 
4002 	return false;
4003 }
4004 
4005 static inline bool
4006 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4007 {
4008 	/*
4009 	 * It's possible that cpuset's mems_allowed and the nodemask from
4010 	 * mempolicy don't intersect. This should be normally dealt with by
4011 	 * policy_nodemask(), but it's possible to race with cpuset update in
4012 	 * such a way the check therein was true, and then it became false
4013 	 * before we got our cpuset_mems_cookie here.
4014 	 * This assumes that for all allocations, ac->nodemask can come only
4015 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4016 	 * when it does not intersect with the cpuset restrictions) or the
4017 	 * caller can deal with a violated nodemask.
4018 	 */
4019 	if (cpusets_enabled() && ac->nodemask &&
4020 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4021 		ac->nodemask = NULL;
4022 		return true;
4023 	}
4024 
4025 	/*
4026 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4027 	 * possible to race with parallel threads in such a way that our
4028 	 * allocation can fail while the mask is being updated. If we are about
4029 	 * to fail, check if the cpuset changed during allocation and if so,
4030 	 * retry.
4031 	 */
4032 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4033 		return true;
4034 
4035 	return false;
4036 }
4037 
4038 static inline struct page *
4039 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4040 						struct alloc_context *ac)
4041 {
4042 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4043 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4044 	struct page *page = NULL;
4045 	unsigned int alloc_flags;
4046 	unsigned long did_some_progress;
4047 	enum compact_priority compact_priority;
4048 	enum compact_result compact_result;
4049 	int compaction_retries;
4050 	int no_progress_loops;
4051 	unsigned int cpuset_mems_cookie;
4052 	int reserve_flags;
4053 
4054 	/*
4055 	 * In the slowpath, we sanity check order to avoid ever trying to
4056 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4057 	 * be using allocators in order of preference for an area that is
4058 	 * too large.
4059 	 */
4060 	if (order >= MAX_ORDER) {
4061 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4062 		return NULL;
4063 	}
4064 
4065 	/*
4066 	 * We also sanity check to catch abuse of atomic reserves being used by
4067 	 * callers that are not in atomic context.
4068 	 */
4069 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4070 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4071 		gfp_mask &= ~__GFP_ATOMIC;
4072 
4073 retry_cpuset:
4074 	compaction_retries = 0;
4075 	no_progress_loops = 0;
4076 	compact_priority = DEF_COMPACT_PRIORITY;
4077 	cpuset_mems_cookie = read_mems_allowed_begin();
4078 
4079 	/*
4080 	 * The fast path uses conservative alloc_flags to succeed only until
4081 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4082 	 * alloc_flags precisely. So we do that now.
4083 	 */
4084 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4085 
4086 	/*
4087 	 * We need to recalculate the starting point for the zonelist iterator
4088 	 * because we might have used different nodemask in the fast path, or
4089 	 * there was a cpuset modification and we are retrying - otherwise we
4090 	 * could end up iterating over non-eligible zones endlessly.
4091 	 */
4092 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4093 					ac->high_zoneidx, ac->nodemask);
4094 	if (!ac->preferred_zoneref->zone)
4095 		goto nopage;
4096 
4097 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4098 		wake_all_kswapds(order, gfp_mask, ac);
4099 
4100 	/*
4101 	 * The adjusted alloc_flags might result in immediate success, so try
4102 	 * that first
4103 	 */
4104 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4105 	if (page)
4106 		goto got_pg;
4107 
4108 	/*
4109 	 * For costly allocations, try direct compaction first, as it's likely
4110 	 * that we have enough base pages and don't need to reclaim. For non-
4111 	 * movable high-order allocations, do that as well, as compaction will
4112 	 * try prevent permanent fragmentation by migrating from blocks of the
4113 	 * same migratetype.
4114 	 * Don't try this for allocations that are allowed to ignore
4115 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4116 	 */
4117 	if (can_direct_reclaim &&
4118 			(costly_order ||
4119 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4120 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4121 		page = __alloc_pages_direct_compact(gfp_mask, order,
4122 						alloc_flags, ac,
4123 						INIT_COMPACT_PRIORITY,
4124 						&compact_result);
4125 		if (page)
4126 			goto got_pg;
4127 
4128 		/*
4129 		 * Checks for costly allocations with __GFP_NORETRY, which
4130 		 * includes THP page fault allocations
4131 		 */
4132 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4133 			/*
4134 			 * If compaction is deferred for high-order allocations,
4135 			 * it is because sync compaction recently failed. If
4136 			 * this is the case and the caller requested a THP
4137 			 * allocation, we do not want to heavily disrupt the
4138 			 * system, so we fail the allocation instead of entering
4139 			 * direct reclaim.
4140 			 */
4141 			if (compact_result == COMPACT_DEFERRED)
4142 				goto nopage;
4143 
4144 			/*
4145 			 * Looks like reclaim/compaction is worth trying, but
4146 			 * sync compaction could be very expensive, so keep
4147 			 * using async compaction.
4148 			 */
4149 			compact_priority = INIT_COMPACT_PRIORITY;
4150 		}
4151 	}
4152 
4153 retry:
4154 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4155 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4156 		wake_all_kswapds(order, gfp_mask, ac);
4157 
4158 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4159 	if (reserve_flags)
4160 		alloc_flags = reserve_flags;
4161 
4162 	/*
4163 	 * Reset the zonelist iterators if memory policies can be ignored.
4164 	 * These allocations are high priority and system rather than user
4165 	 * orientated.
4166 	 */
4167 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4168 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4169 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4170 					ac->high_zoneidx, ac->nodemask);
4171 	}
4172 
4173 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4174 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4175 	if (page)
4176 		goto got_pg;
4177 
4178 	/* Caller is not willing to reclaim, we can't balance anything */
4179 	if (!can_direct_reclaim)
4180 		goto nopage;
4181 
4182 	/* Avoid recursion of direct reclaim */
4183 	if (current->flags & PF_MEMALLOC)
4184 		goto nopage;
4185 
4186 	/* Try direct reclaim and then allocating */
4187 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4188 							&did_some_progress);
4189 	if (page)
4190 		goto got_pg;
4191 
4192 	/* Try direct compaction and then allocating */
4193 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4194 					compact_priority, &compact_result);
4195 	if (page)
4196 		goto got_pg;
4197 
4198 	/* Do not loop if specifically requested */
4199 	if (gfp_mask & __GFP_NORETRY)
4200 		goto nopage;
4201 
4202 	/*
4203 	 * Do not retry costly high order allocations unless they are
4204 	 * __GFP_RETRY_MAYFAIL
4205 	 */
4206 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4207 		goto nopage;
4208 
4209 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4210 				 did_some_progress > 0, &no_progress_loops))
4211 		goto retry;
4212 
4213 	/*
4214 	 * It doesn't make any sense to retry for the compaction if the order-0
4215 	 * reclaim is not able to make any progress because the current
4216 	 * implementation of the compaction depends on the sufficient amount
4217 	 * of free memory (see __compaction_suitable)
4218 	 */
4219 	if (did_some_progress > 0 &&
4220 			should_compact_retry(ac, order, alloc_flags,
4221 				compact_result, &compact_priority,
4222 				&compaction_retries))
4223 		goto retry;
4224 
4225 
4226 	/* Deal with possible cpuset update races before we start OOM killing */
4227 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4228 		goto retry_cpuset;
4229 
4230 	/* Reclaim has failed us, start killing things */
4231 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4232 	if (page)
4233 		goto got_pg;
4234 
4235 	/* Avoid allocations with no watermarks from looping endlessly */
4236 	if (tsk_is_oom_victim(current) &&
4237 	    (alloc_flags == ALLOC_OOM ||
4238 	     (gfp_mask & __GFP_NOMEMALLOC)))
4239 		goto nopage;
4240 
4241 	/* Retry as long as the OOM killer is making progress */
4242 	if (did_some_progress) {
4243 		no_progress_loops = 0;
4244 		goto retry;
4245 	}
4246 
4247 nopage:
4248 	/* Deal with possible cpuset update races before we fail */
4249 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4250 		goto retry_cpuset;
4251 
4252 	/*
4253 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4254 	 * we always retry
4255 	 */
4256 	if (gfp_mask & __GFP_NOFAIL) {
4257 		/*
4258 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4259 		 * of any new users that actually require GFP_NOWAIT
4260 		 */
4261 		if (WARN_ON_ONCE(!can_direct_reclaim))
4262 			goto fail;
4263 
4264 		/*
4265 		 * PF_MEMALLOC request from this context is rather bizarre
4266 		 * because we cannot reclaim anything and only can loop waiting
4267 		 * for somebody to do a work for us
4268 		 */
4269 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4270 
4271 		/*
4272 		 * non failing costly orders are a hard requirement which we
4273 		 * are not prepared for much so let's warn about these users
4274 		 * so that we can identify them and convert them to something
4275 		 * else.
4276 		 */
4277 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4278 
4279 		/*
4280 		 * Help non-failing allocations by giving them access to memory
4281 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4282 		 * could deplete whole memory reserves which would just make
4283 		 * the situation worse
4284 		 */
4285 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4286 		if (page)
4287 			goto got_pg;
4288 
4289 		cond_resched();
4290 		goto retry;
4291 	}
4292 fail:
4293 	warn_alloc(gfp_mask, ac->nodemask,
4294 			"page allocation failure: order:%u", order);
4295 got_pg:
4296 	return page;
4297 }
4298 
4299 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4300 		int preferred_nid, nodemask_t *nodemask,
4301 		struct alloc_context *ac, gfp_t *alloc_mask,
4302 		unsigned int *alloc_flags)
4303 {
4304 	ac->high_zoneidx = gfp_zone(gfp_mask);
4305 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4306 	ac->nodemask = nodemask;
4307 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4308 
4309 	if (cpusets_enabled()) {
4310 		*alloc_mask |= __GFP_HARDWALL;
4311 		if (!ac->nodemask)
4312 			ac->nodemask = &cpuset_current_mems_allowed;
4313 		else
4314 			*alloc_flags |= ALLOC_CPUSET;
4315 	}
4316 
4317 	fs_reclaim_acquire(gfp_mask);
4318 	fs_reclaim_release(gfp_mask);
4319 
4320 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4321 
4322 	if (should_fail_alloc_page(gfp_mask, order))
4323 		return false;
4324 
4325 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4326 		*alloc_flags |= ALLOC_CMA;
4327 
4328 	return true;
4329 }
4330 
4331 /* Determine whether to spread dirty pages and what the first usable zone */
4332 static inline void finalise_ac(gfp_t gfp_mask,
4333 		unsigned int order, struct alloc_context *ac)
4334 {
4335 	/* Dirty zone balancing only done in the fast path */
4336 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4337 
4338 	/*
4339 	 * The preferred zone is used for statistics but crucially it is
4340 	 * also used as the starting point for the zonelist iterator. It
4341 	 * may get reset for allocations that ignore memory policies.
4342 	 */
4343 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4344 					ac->high_zoneidx, ac->nodemask);
4345 }
4346 
4347 /*
4348  * This is the 'heart' of the zoned buddy allocator.
4349  */
4350 struct page *
4351 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4352 							nodemask_t *nodemask)
4353 {
4354 	struct page *page;
4355 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4356 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4357 	struct alloc_context ac = { };
4358 
4359 	gfp_mask &= gfp_allowed_mask;
4360 	alloc_mask = gfp_mask;
4361 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4362 		return NULL;
4363 
4364 	finalise_ac(gfp_mask, order, &ac);
4365 
4366 	/* First allocation attempt */
4367 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4368 	if (likely(page))
4369 		goto out;
4370 
4371 	/*
4372 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4373 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4374 	 * from a particular context which has been marked by
4375 	 * memalloc_no{fs,io}_{save,restore}.
4376 	 */
4377 	alloc_mask = current_gfp_context(gfp_mask);
4378 	ac.spread_dirty_pages = false;
4379 
4380 	/*
4381 	 * Restore the original nodemask if it was potentially replaced with
4382 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4383 	 */
4384 	if (unlikely(ac.nodemask != nodemask))
4385 		ac.nodemask = nodemask;
4386 
4387 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4388 
4389 out:
4390 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4391 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4392 		__free_pages(page, order);
4393 		page = NULL;
4394 	}
4395 
4396 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4397 
4398 	return page;
4399 }
4400 EXPORT_SYMBOL(__alloc_pages_nodemask);
4401 
4402 /*
4403  * Common helper functions.
4404  */
4405 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4406 {
4407 	struct page *page;
4408 
4409 	/*
4410 	 * __get_free_pages() returns a virtual address, which cannot represent
4411 	 * a highmem page
4412 	 */
4413 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4414 
4415 	page = alloc_pages(gfp_mask, order);
4416 	if (!page)
4417 		return 0;
4418 	return (unsigned long) page_address(page);
4419 }
4420 EXPORT_SYMBOL(__get_free_pages);
4421 
4422 unsigned long get_zeroed_page(gfp_t gfp_mask)
4423 {
4424 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4425 }
4426 EXPORT_SYMBOL(get_zeroed_page);
4427 
4428 void __free_pages(struct page *page, unsigned int order)
4429 {
4430 	if (put_page_testzero(page)) {
4431 		if (order == 0)
4432 			free_unref_page(page);
4433 		else
4434 			__free_pages_ok(page, order);
4435 	}
4436 }
4437 
4438 EXPORT_SYMBOL(__free_pages);
4439 
4440 void free_pages(unsigned long addr, unsigned int order)
4441 {
4442 	if (addr != 0) {
4443 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4444 		__free_pages(virt_to_page((void *)addr), order);
4445 	}
4446 }
4447 
4448 EXPORT_SYMBOL(free_pages);
4449 
4450 /*
4451  * Page Fragment:
4452  *  An arbitrary-length arbitrary-offset area of memory which resides
4453  *  within a 0 or higher order page.  Multiple fragments within that page
4454  *  are individually refcounted, in the page's reference counter.
4455  *
4456  * The page_frag functions below provide a simple allocation framework for
4457  * page fragments.  This is used by the network stack and network device
4458  * drivers to provide a backing region of memory for use as either an
4459  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4460  */
4461 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4462 					     gfp_t gfp_mask)
4463 {
4464 	struct page *page = NULL;
4465 	gfp_t gfp = gfp_mask;
4466 
4467 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4468 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4469 		    __GFP_NOMEMALLOC;
4470 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4471 				PAGE_FRAG_CACHE_MAX_ORDER);
4472 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4473 #endif
4474 	if (unlikely(!page))
4475 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4476 
4477 	nc->va = page ? page_address(page) : NULL;
4478 
4479 	return page;
4480 }
4481 
4482 void __page_frag_cache_drain(struct page *page, unsigned int count)
4483 {
4484 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4485 
4486 	if (page_ref_sub_and_test(page, count)) {
4487 		unsigned int order = compound_order(page);
4488 
4489 		if (order == 0)
4490 			free_unref_page(page);
4491 		else
4492 			__free_pages_ok(page, order);
4493 	}
4494 }
4495 EXPORT_SYMBOL(__page_frag_cache_drain);
4496 
4497 void *page_frag_alloc(struct page_frag_cache *nc,
4498 		      unsigned int fragsz, gfp_t gfp_mask)
4499 {
4500 	unsigned int size = PAGE_SIZE;
4501 	struct page *page;
4502 	int offset;
4503 
4504 	if (unlikely(!nc->va)) {
4505 refill:
4506 		page = __page_frag_cache_refill(nc, gfp_mask);
4507 		if (!page)
4508 			return NULL;
4509 
4510 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4511 		/* if size can vary use size else just use PAGE_SIZE */
4512 		size = nc->size;
4513 #endif
4514 		/* Even if we own the page, we do not use atomic_set().
4515 		 * This would break get_page_unless_zero() users.
4516 		 */
4517 		page_ref_add(page, size - 1);
4518 
4519 		/* reset page count bias and offset to start of new frag */
4520 		nc->pfmemalloc = page_is_pfmemalloc(page);
4521 		nc->pagecnt_bias = size;
4522 		nc->offset = size;
4523 	}
4524 
4525 	offset = nc->offset - fragsz;
4526 	if (unlikely(offset < 0)) {
4527 		page = virt_to_page(nc->va);
4528 
4529 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4530 			goto refill;
4531 
4532 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4533 		/* if size can vary use size else just use PAGE_SIZE */
4534 		size = nc->size;
4535 #endif
4536 		/* OK, page count is 0, we can safely set it */
4537 		set_page_count(page, size);
4538 
4539 		/* reset page count bias and offset to start of new frag */
4540 		nc->pagecnt_bias = size;
4541 		offset = size - fragsz;
4542 	}
4543 
4544 	nc->pagecnt_bias--;
4545 	nc->offset = offset;
4546 
4547 	return nc->va + offset;
4548 }
4549 EXPORT_SYMBOL(page_frag_alloc);
4550 
4551 /*
4552  * Frees a page fragment allocated out of either a compound or order 0 page.
4553  */
4554 void page_frag_free(void *addr)
4555 {
4556 	struct page *page = virt_to_head_page(addr);
4557 
4558 	if (unlikely(put_page_testzero(page)))
4559 		__free_pages_ok(page, compound_order(page));
4560 }
4561 EXPORT_SYMBOL(page_frag_free);
4562 
4563 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4564 		size_t size)
4565 {
4566 	if (addr) {
4567 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4568 		unsigned long used = addr + PAGE_ALIGN(size);
4569 
4570 		split_page(virt_to_page((void *)addr), order);
4571 		while (used < alloc_end) {
4572 			free_page(used);
4573 			used += PAGE_SIZE;
4574 		}
4575 	}
4576 	return (void *)addr;
4577 }
4578 
4579 /**
4580  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4581  * @size: the number of bytes to allocate
4582  * @gfp_mask: GFP flags for the allocation
4583  *
4584  * This function is similar to alloc_pages(), except that it allocates the
4585  * minimum number of pages to satisfy the request.  alloc_pages() can only
4586  * allocate memory in power-of-two pages.
4587  *
4588  * This function is also limited by MAX_ORDER.
4589  *
4590  * Memory allocated by this function must be released by free_pages_exact().
4591  */
4592 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4593 {
4594 	unsigned int order = get_order(size);
4595 	unsigned long addr;
4596 
4597 	addr = __get_free_pages(gfp_mask, order);
4598 	return make_alloc_exact(addr, order, size);
4599 }
4600 EXPORT_SYMBOL(alloc_pages_exact);
4601 
4602 /**
4603  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4604  *			   pages on a node.
4605  * @nid: the preferred node ID where memory should be allocated
4606  * @size: the number of bytes to allocate
4607  * @gfp_mask: GFP flags for the allocation
4608  *
4609  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4610  * back.
4611  */
4612 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4613 {
4614 	unsigned int order = get_order(size);
4615 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4616 	if (!p)
4617 		return NULL;
4618 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4619 }
4620 
4621 /**
4622  * free_pages_exact - release memory allocated via alloc_pages_exact()
4623  * @virt: the value returned by alloc_pages_exact.
4624  * @size: size of allocation, same value as passed to alloc_pages_exact().
4625  *
4626  * Release the memory allocated by a previous call to alloc_pages_exact.
4627  */
4628 void free_pages_exact(void *virt, size_t size)
4629 {
4630 	unsigned long addr = (unsigned long)virt;
4631 	unsigned long end = addr + PAGE_ALIGN(size);
4632 
4633 	while (addr < end) {
4634 		free_page(addr);
4635 		addr += PAGE_SIZE;
4636 	}
4637 }
4638 EXPORT_SYMBOL(free_pages_exact);
4639 
4640 /**
4641  * nr_free_zone_pages - count number of pages beyond high watermark
4642  * @offset: The zone index of the highest zone
4643  *
4644  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4645  * high watermark within all zones at or below a given zone index.  For each
4646  * zone, the number of pages is calculated as:
4647  *
4648  *     nr_free_zone_pages = managed_pages - high_pages
4649  */
4650 static unsigned long nr_free_zone_pages(int offset)
4651 {
4652 	struct zoneref *z;
4653 	struct zone *zone;
4654 
4655 	/* Just pick one node, since fallback list is circular */
4656 	unsigned long sum = 0;
4657 
4658 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4659 
4660 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4661 		unsigned long size = zone->managed_pages;
4662 		unsigned long high = high_wmark_pages(zone);
4663 		if (size > high)
4664 			sum += size - high;
4665 	}
4666 
4667 	return sum;
4668 }
4669 
4670 /**
4671  * nr_free_buffer_pages - count number of pages beyond high watermark
4672  *
4673  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4674  * watermark within ZONE_DMA and ZONE_NORMAL.
4675  */
4676 unsigned long nr_free_buffer_pages(void)
4677 {
4678 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4679 }
4680 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4681 
4682 /**
4683  * nr_free_pagecache_pages - count number of pages beyond high watermark
4684  *
4685  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4686  * high watermark within all zones.
4687  */
4688 unsigned long nr_free_pagecache_pages(void)
4689 {
4690 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4691 }
4692 
4693 static inline void show_node(struct zone *zone)
4694 {
4695 	if (IS_ENABLED(CONFIG_NUMA))
4696 		printk("Node %d ", zone_to_nid(zone));
4697 }
4698 
4699 long si_mem_available(void)
4700 {
4701 	long available;
4702 	unsigned long pagecache;
4703 	unsigned long wmark_low = 0;
4704 	unsigned long pages[NR_LRU_LISTS];
4705 	struct zone *zone;
4706 	int lru;
4707 
4708 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4709 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4710 
4711 	for_each_zone(zone)
4712 		wmark_low += zone->watermark[WMARK_LOW];
4713 
4714 	/*
4715 	 * Estimate the amount of memory available for userspace allocations,
4716 	 * without causing swapping.
4717 	 */
4718 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4719 
4720 	/*
4721 	 * Not all the page cache can be freed, otherwise the system will
4722 	 * start swapping. Assume at least half of the page cache, or the
4723 	 * low watermark worth of cache, needs to stay.
4724 	 */
4725 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4726 	pagecache -= min(pagecache / 2, wmark_low);
4727 	available += pagecache;
4728 
4729 	/*
4730 	 * Part of the reclaimable slab consists of items that are in use,
4731 	 * and cannot be freed. Cap this estimate at the low watermark.
4732 	 */
4733 	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4734 		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4735 			 wmark_low);
4736 
4737 	if (available < 0)
4738 		available = 0;
4739 	return available;
4740 }
4741 EXPORT_SYMBOL_GPL(si_mem_available);
4742 
4743 void si_meminfo(struct sysinfo *val)
4744 {
4745 	val->totalram = totalram_pages;
4746 	val->sharedram = global_node_page_state(NR_SHMEM);
4747 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4748 	val->bufferram = nr_blockdev_pages();
4749 	val->totalhigh = totalhigh_pages;
4750 	val->freehigh = nr_free_highpages();
4751 	val->mem_unit = PAGE_SIZE;
4752 }
4753 
4754 EXPORT_SYMBOL(si_meminfo);
4755 
4756 #ifdef CONFIG_NUMA
4757 void si_meminfo_node(struct sysinfo *val, int nid)
4758 {
4759 	int zone_type;		/* needs to be signed */
4760 	unsigned long managed_pages = 0;
4761 	unsigned long managed_highpages = 0;
4762 	unsigned long free_highpages = 0;
4763 	pg_data_t *pgdat = NODE_DATA(nid);
4764 
4765 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4766 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4767 	val->totalram = managed_pages;
4768 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4769 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4770 #ifdef CONFIG_HIGHMEM
4771 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4772 		struct zone *zone = &pgdat->node_zones[zone_type];
4773 
4774 		if (is_highmem(zone)) {
4775 			managed_highpages += zone->managed_pages;
4776 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4777 		}
4778 	}
4779 	val->totalhigh = managed_highpages;
4780 	val->freehigh = free_highpages;
4781 #else
4782 	val->totalhigh = managed_highpages;
4783 	val->freehigh = free_highpages;
4784 #endif
4785 	val->mem_unit = PAGE_SIZE;
4786 }
4787 #endif
4788 
4789 /*
4790  * Determine whether the node should be displayed or not, depending on whether
4791  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4792  */
4793 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4794 {
4795 	if (!(flags & SHOW_MEM_FILTER_NODES))
4796 		return false;
4797 
4798 	/*
4799 	 * no node mask - aka implicit memory numa policy. Do not bother with
4800 	 * the synchronization - read_mems_allowed_begin - because we do not
4801 	 * have to be precise here.
4802 	 */
4803 	if (!nodemask)
4804 		nodemask = &cpuset_current_mems_allowed;
4805 
4806 	return !node_isset(nid, *nodemask);
4807 }
4808 
4809 #define K(x) ((x) << (PAGE_SHIFT-10))
4810 
4811 static void show_migration_types(unsigned char type)
4812 {
4813 	static const char types[MIGRATE_TYPES] = {
4814 		[MIGRATE_UNMOVABLE]	= 'U',
4815 		[MIGRATE_MOVABLE]	= 'M',
4816 		[MIGRATE_RECLAIMABLE]	= 'E',
4817 		[MIGRATE_HIGHATOMIC]	= 'H',
4818 #ifdef CONFIG_CMA
4819 		[MIGRATE_CMA]		= 'C',
4820 #endif
4821 #ifdef CONFIG_MEMORY_ISOLATION
4822 		[MIGRATE_ISOLATE]	= 'I',
4823 #endif
4824 	};
4825 	char tmp[MIGRATE_TYPES + 1];
4826 	char *p = tmp;
4827 	int i;
4828 
4829 	for (i = 0; i < MIGRATE_TYPES; i++) {
4830 		if (type & (1 << i))
4831 			*p++ = types[i];
4832 	}
4833 
4834 	*p = '\0';
4835 	printk(KERN_CONT "(%s) ", tmp);
4836 }
4837 
4838 /*
4839  * Show free area list (used inside shift_scroll-lock stuff)
4840  * We also calculate the percentage fragmentation. We do this by counting the
4841  * memory on each free list with the exception of the first item on the list.
4842  *
4843  * Bits in @filter:
4844  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4845  *   cpuset.
4846  */
4847 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4848 {
4849 	unsigned long free_pcp = 0;
4850 	int cpu;
4851 	struct zone *zone;
4852 	pg_data_t *pgdat;
4853 
4854 	for_each_populated_zone(zone) {
4855 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4856 			continue;
4857 
4858 		for_each_online_cpu(cpu)
4859 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4860 	}
4861 
4862 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4863 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4864 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4865 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4866 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4867 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4868 		global_node_page_state(NR_ACTIVE_ANON),
4869 		global_node_page_state(NR_INACTIVE_ANON),
4870 		global_node_page_state(NR_ISOLATED_ANON),
4871 		global_node_page_state(NR_ACTIVE_FILE),
4872 		global_node_page_state(NR_INACTIVE_FILE),
4873 		global_node_page_state(NR_ISOLATED_FILE),
4874 		global_node_page_state(NR_UNEVICTABLE),
4875 		global_node_page_state(NR_FILE_DIRTY),
4876 		global_node_page_state(NR_WRITEBACK),
4877 		global_node_page_state(NR_UNSTABLE_NFS),
4878 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4879 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4880 		global_node_page_state(NR_FILE_MAPPED),
4881 		global_node_page_state(NR_SHMEM),
4882 		global_zone_page_state(NR_PAGETABLE),
4883 		global_zone_page_state(NR_BOUNCE),
4884 		global_zone_page_state(NR_FREE_PAGES),
4885 		free_pcp,
4886 		global_zone_page_state(NR_FREE_CMA_PAGES));
4887 
4888 	for_each_online_pgdat(pgdat) {
4889 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4890 			continue;
4891 
4892 		printk("Node %d"
4893 			" active_anon:%lukB"
4894 			" inactive_anon:%lukB"
4895 			" active_file:%lukB"
4896 			" inactive_file:%lukB"
4897 			" unevictable:%lukB"
4898 			" isolated(anon):%lukB"
4899 			" isolated(file):%lukB"
4900 			" mapped:%lukB"
4901 			" dirty:%lukB"
4902 			" writeback:%lukB"
4903 			" shmem:%lukB"
4904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4905 			" shmem_thp: %lukB"
4906 			" shmem_pmdmapped: %lukB"
4907 			" anon_thp: %lukB"
4908 #endif
4909 			" writeback_tmp:%lukB"
4910 			" unstable:%lukB"
4911 			" all_unreclaimable? %s"
4912 			"\n",
4913 			pgdat->node_id,
4914 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4915 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4916 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4917 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4918 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4919 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4920 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4921 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4922 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4923 			K(node_page_state(pgdat, NR_WRITEBACK)),
4924 			K(node_page_state(pgdat, NR_SHMEM)),
4925 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4926 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4927 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4928 					* HPAGE_PMD_NR),
4929 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4930 #endif
4931 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4932 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4933 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4934 				"yes" : "no");
4935 	}
4936 
4937 	for_each_populated_zone(zone) {
4938 		int i;
4939 
4940 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4941 			continue;
4942 
4943 		free_pcp = 0;
4944 		for_each_online_cpu(cpu)
4945 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4946 
4947 		show_node(zone);
4948 		printk(KERN_CONT
4949 			"%s"
4950 			" free:%lukB"
4951 			" min:%lukB"
4952 			" low:%lukB"
4953 			" high:%lukB"
4954 			" active_anon:%lukB"
4955 			" inactive_anon:%lukB"
4956 			" active_file:%lukB"
4957 			" inactive_file:%lukB"
4958 			" unevictable:%lukB"
4959 			" writepending:%lukB"
4960 			" present:%lukB"
4961 			" managed:%lukB"
4962 			" mlocked:%lukB"
4963 			" kernel_stack:%lukB"
4964 			" pagetables:%lukB"
4965 			" bounce:%lukB"
4966 			" free_pcp:%lukB"
4967 			" local_pcp:%ukB"
4968 			" free_cma:%lukB"
4969 			"\n",
4970 			zone->name,
4971 			K(zone_page_state(zone, NR_FREE_PAGES)),
4972 			K(min_wmark_pages(zone)),
4973 			K(low_wmark_pages(zone)),
4974 			K(high_wmark_pages(zone)),
4975 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4976 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4977 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4978 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4979 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4980 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4981 			K(zone->present_pages),
4982 			K(zone->managed_pages),
4983 			K(zone_page_state(zone, NR_MLOCK)),
4984 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4985 			K(zone_page_state(zone, NR_PAGETABLE)),
4986 			K(zone_page_state(zone, NR_BOUNCE)),
4987 			K(free_pcp),
4988 			K(this_cpu_read(zone->pageset->pcp.count)),
4989 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4990 		printk("lowmem_reserve[]:");
4991 		for (i = 0; i < MAX_NR_ZONES; i++)
4992 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4993 		printk(KERN_CONT "\n");
4994 	}
4995 
4996 	for_each_populated_zone(zone) {
4997 		unsigned int order;
4998 		unsigned long nr[MAX_ORDER], flags, total = 0;
4999 		unsigned char types[MAX_ORDER];
5000 
5001 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5002 			continue;
5003 		show_node(zone);
5004 		printk(KERN_CONT "%s: ", zone->name);
5005 
5006 		spin_lock_irqsave(&zone->lock, flags);
5007 		for (order = 0; order < MAX_ORDER; order++) {
5008 			struct free_area *area = &zone->free_area[order];
5009 			int type;
5010 
5011 			nr[order] = area->nr_free;
5012 			total += nr[order] << order;
5013 
5014 			types[order] = 0;
5015 			for (type = 0; type < MIGRATE_TYPES; type++) {
5016 				if (!list_empty(&area->free_list[type]))
5017 					types[order] |= 1 << type;
5018 			}
5019 		}
5020 		spin_unlock_irqrestore(&zone->lock, flags);
5021 		for (order = 0; order < MAX_ORDER; order++) {
5022 			printk(KERN_CONT "%lu*%lukB ",
5023 			       nr[order], K(1UL) << order);
5024 			if (nr[order])
5025 				show_migration_types(types[order]);
5026 		}
5027 		printk(KERN_CONT "= %lukB\n", K(total));
5028 	}
5029 
5030 	hugetlb_show_meminfo();
5031 
5032 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5033 
5034 	show_swap_cache_info();
5035 }
5036 
5037 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5038 {
5039 	zoneref->zone = zone;
5040 	zoneref->zone_idx = zone_idx(zone);
5041 }
5042 
5043 /*
5044  * Builds allocation fallback zone lists.
5045  *
5046  * Add all populated zones of a node to the zonelist.
5047  */
5048 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5049 {
5050 	struct zone *zone;
5051 	enum zone_type zone_type = MAX_NR_ZONES;
5052 	int nr_zones = 0;
5053 
5054 	do {
5055 		zone_type--;
5056 		zone = pgdat->node_zones + zone_type;
5057 		if (managed_zone(zone)) {
5058 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5059 			check_highest_zone(zone_type);
5060 		}
5061 	} while (zone_type);
5062 
5063 	return nr_zones;
5064 }
5065 
5066 #ifdef CONFIG_NUMA
5067 
5068 static int __parse_numa_zonelist_order(char *s)
5069 {
5070 	/*
5071 	 * We used to support different zonlists modes but they turned
5072 	 * out to be just not useful. Let's keep the warning in place
5073 	 * if somebody still use the cmd line parameter so that we do
5074 	 * not fail it silently
5075 	 */
5076 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5077 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5078 		return -EINVAL;
5079 	}
5080 	return 0;
5081 }
5082 
5083 static __init int setup_numa_zonelist_order(char *s)
5084 {
5085 	if (!s)
5086 		return 0;
5087 
5088 	return __parse_numa_zonelist_order(s);
5089 }
5090 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5091 
5092 char numa_zonelist_order[] = "Node";
5093 
5094 /*
5095  * sysctl handler for numa_zonelist_order
5096  */
5097 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5098 		void __user *buffer, size_t *length,
5099 		loff_t *ppos)
5100 {
5101 	char *str;
5102 	int ret;
5103 
5104 	if (!write)
5105 		return proc_dostring(table, write, buffer, length, ppos);
5106 	str = memdup_user_nul(buffer, 16);
5107 	if (IS_ERR(str))
5108 		return PTR_ERR(str);
5109 
5110 	ret = __parse_numa_zonelist_order(str);
5111 	kfree(str);
5112 	return ret;
5113 }
5114 
5115 
5116 #define MAX_NODE_LOAD (nr_online_nodes)
5117 static int node_load[MAX_NUMNODES];
5118 
5119 /**
5120  * find_next_best_node - find the next node that should appear in a given node's fallback list
5121  * @node: node whose fallback list we're appending
5122  * @used_node_mask: nodemask_t of already used nodes
5123  *
5124  * We use a number of factors to determine which is the next node that should
5125  * appear on a given node's fallback list.  The node should not have appeared
5126  * already in @node's fallback list, and it should be the next closest node
5127  * according to the distance array (which contains arbitrary distance values
5128  * from each node to each node in the system), and should also prefer nodes
5129  * with no CPUs, since presumably they'll have very little allocation pressure
5130  * on them otherwise.
5131  * It returns -1 if no node is found.
5132  */
5133 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5134 {
5135 	int n, val;
5136 	int min_val = INT_MAX;
5137 	int best_node = NUMA_NO_NODE;
5138 	const struct cpumask *tmp = cpumask_of_node(0);
5139 
5140 	/* Use the local node if we haven't already */
5141 	if (!node_isset(node, *used_node_mask)) {
5142 		node_set(node, *used_node_mask);
5143 		return node;
5144 	}
5145 
5146 	for_each_node_state(n, N_MEMORY) {
5147 
5148 		/* Don't want a node to appear more than once */
5149 		if (node_isset(n, *used_node_mask))
5150 			continue;
5151 
5152 		/* Use the distance array to find the distance */
5153 		val = node_distance(node, n);
5154 
5155 		/* Penalize nodes under us ("prefer the next node") */
5156 		val += (n < node);
5157 
5158 		/* Give preference to headless and unused nodes */
5159 		tmp = cpumask_of_node(n);
5160 		if (!cpumask_empty(tmp))
5161 			val += PENALTY_FOR_NODE_WITH_CPUS;
5162 
5163 		/* Slight preference for less loaded node */
5164 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5165 		val += node_load[n];
5166 
5167 		if (val < min_val) {
5168 			min_val = val;
5169 			best_node = n;
5170 		}
5171 	}
5172 
5173 	if (best_node >= 0)
5174 		node_set(best_node, *used_node_mask);
5175 
5176 	return best_node;
5177 }
5178 
5179 
5180 /*
5181  * Build zonelists ordered by node and zones within node.
5182  * This results in maximum locality--normal zone overflows into local
5183  * DMA zone, if any--but risks exhausting DMA zone.
5184  */
5185 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5186 		unsigned nr_nodes)
5187 {
5188 	struct zoneref *zonerefs;
5189 	int i;
5190 
5191 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5192 
5193 	for (i = 0; i < nr_nodes; i++) {
5194 		int nr_zones;
5195 
5196 		pg_data_t *node = NODE_DATA(node_order[i]);
5197 
5198 		nr_zones = build_zonerefs_node(node, zonerefs);
5199 		zonerefs += nr_zones;
5200 	}
5201 	zonerefs->zone = NULL;
5202 	zonerefs->zone_idx = 0;
5203 }
5204 
5205 /*
5206  * Build gfp_thisnode zonelists
5207  */
5208 static void build_thisnode_zonelists(pg_data_t *pgdat)
5209 {
5210 	struct zoneref *zonerefs;
5211 	int nr_zones;
5212 
5213 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5214 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5215 	zonerefs += nr_zones;
5216 	zonerefs->zone = NULL;
5217 	zonerefs->zone_idx = 0;
5218 }
5219 
5220 /*
5221  * Build zonelists ordered by zone and nodes within zones.
5222  * This results in conserving DMA zone[s] until all Normal memory is
5223  * exhausted, but results in overflowing to remote node while memory
5224  * may still exist in local DMA zone.
5225  */
5226 
5227 static void build_zonelists(pg_data_t *pgdat)
5228 {
5229 	static int node_order[MAX_NUMNODES];
5230 	int node, load, nr_nodes = 0;
5231 	nodemask_t used_mask;
5232 	int local_node, prev_node;
5233 
5234 	/* NUMA-aware ordering of nodes */
5235 	local_node = pgdat->node_id;
5236 	load = nr_online_nodes;
5237 	prev_node = local_node;
5238 	nodes_clear(used_mask);
5239 
5240 	memset(node_order, 0, sizeof(node_order));
5241 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5242 		/*
5243 		 * We don't want to pressure a particular node.
5244 		 * So adding penalty to the first node in same
5245 		 * distance group to make it round-robin.
5246 		 */
5247 		if (node_distance(local_node, node) !=
5248 		    node_distance(local_node, prev_node))
5249 			node_load[node] = load;
5250 
5251 		node_order[nr_nodes++] = node;
5252 		prev_node = node;
5253 		load--;
5254 	}
5255 
5256 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5257 	build_thisnode_zonelists(pgdat);
5258 }
5259 
5260 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5261 /*
5262  * Return node id of node used for "local" allocations.
5263  * I.e., first node id of first zone in arg node's generic zonelist.
5264  * Used for initializing percpu 'numa_mem', which is used primarily
5265  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5266  */
5267 int local_memory_node(int node)
5268 {
5269 	struct zoneref *z;
5270 
5271 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5272 				   gfp_zone(GFP_KERNEL),
5273 				   NULL);
5274 	return z->zone->node;
5275 }
5276 #endif
5277 
5278 static void setup_min_unmapped_ratio(void);
5279 static void setup_min_slab_ratio(void);
5280 #else	/* CONFIG_NUMA */
5281 
5282 static void build_zonelists(pg_data_t *pgdat)
5283 {
5284 	int node, local_node;
5285 	struct zoneref *zonerefs;
5286 	int nr_zones;
5287 
5288 	local_node = pgdat->node_id;
5289 
5290 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5291 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5292 	zonerefs += nr_zones;
5293 
5294 	/*
5295 	 * Now we build the zonelist so that it contains the zones
5296 	 * of all the other nodes.
5297 	 * We don't want to pressure a particular node, so when
5298 	 * building the zones for node N, we make sure that the
5299 	 * zones coming right after the local ones are those from
5300 	 * node N+1 (modulo N)
5301 	 */
5302 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5303 		if (!node_online(node))
5304 			continue;
5305 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5306 		zonerefs += nr_zones;
5307 	}
5308 	for (node = 0; node < local_node; node++) {
5309 		if (!node_online(node))
5310 			continue;
5311 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5312 		zonerefs += nr_zones;
5313 	}
5314 
5315 	zonerefs->zone = NULL;
5316 	zonerefs->zone_idx = 0;
5317 }
5318 
5319 #endif	/* CONFIG_NUMA */
5320 
5321 /*
5322  * Boot pageset table. One per cpu which is going to be used for all
5323  * zones and all nodes. The parameters will be set in such a way
5324  * that an item put on a list will immediately be handed over to
5325  * the buddy list. This is safe since pageset manipulation is done
5326  * with interrupts disabled.
5327  *
5328  * The boot_pagesets must be kept even after bootup is complete for
5329  * unused processors and/or zones. They do play a role for bootstrapping
5330  * hotplugged processors.
5331  *
5332  * zoneinfo_show() and maybe other functions do
5333  * not check if the processor is online before following the pageset pointer.
5334  * Other parts of the kernel may not check if the zone is available.
5335  */
5336 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5337 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5338 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5339 
5340 static void __build_all_zonelists(void *data)
5341 {
5342 	int nid;
5343 	int __maybe_unused cpu;
5344 	pg_data_t *self = data;
5345 	static DEFINE_SPINLOCK(lock);
5346 
5347 	spin_lock(&lock);
5348 
5349 #ifdef CONFIG_NUMA
5350 	memset(node_load, 0, sizeof(node_load));
5351 #endif
5352 
5353 	/*
5354 	 * This node is hotadded and no memory is yet present.   So just
5355 	 * building zonelists is fine - no need to touch other nodes.
5356 	 */
5357 	if (self && !node_online(self->node_id)) {
5358 		build_zonelists(self);
5359 	} else {
5360 		for_each_online_node(nid) {
5361 			pg_data_t *pgdat = NODE_DATA(nid);
5362 
5363 			build_zonelists(pgdat);
5364 		}
5365 
5366 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5367 		/*
5368 		 * We now know the "local memory node" for each node--
5369 		 * i.e., the node of the first zone in the generic zonelist.
5370 		 * Set up numa_mem percpu variable for on-line cpus.  During
5371 		 * boot, only the boot cpu should be on-line;  we'll init the
5372 		 * secondary cpus' numa_mem as they come on-line.  During
5373 		 * node/memory hotplug, we'll fixup all on-line cpus.
5374 		 */
5375 		for_each_online_cpu(cpu)
5376 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5377 #endif
5378 	}
5379 
5380 	spin_unlock(&lock);
5381 }
5382 
5383 static noinline void __init
5384 build_all_zonelists_init(void)
5385 {
5386 	int cpu;
5387 
5388 	__build_all_zonelists(NULL);
5389 
5390 	/*
5391 	 * Initialize the boot_pagesets that are going to be used
5392 	 * for bootstrapping processors. The real pagesets for
5393 	 * each zone will be allocated later when the per cpu
5394 	 * allocator is available.
5395 	 *
5396 	 * boot_pagesets are used also for bootstrapping offline
5397 	 * cpus if the system is already booted because the pagesets
5398 	 * are needed to initialize allocators on a specific cpu too.
5399 	 * F.e. the percpu allocator needs the page allocator which
5400 	 * needs the percpu allocator in order to allocate its pagesets
5401 	 * (a chicken-egg dilemma).
5402 	 */
5403 	for_each_possible_cpu(cpu)
5404 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5405 
5406 	mminit_verify_zonelist();
5407 	cpuset_init_current_mems_allowed();
5408 }
5409 
5410 /*
5411  * unless system_state == SYSTEM_BOOTING.
5412  *
5413  * __ref due to call of __init annotated helper build_all_zonelists_init
5414  * [protected by SYSTEM_BOOTING].
5415  */
5416 void __ref build_all_zonelists(pg_data_t *pgdat)
5417 {
5418 	if (system_state == SYSTEM_BOOTING) {
5419 		build_all_zonelists_init();
5420 	} else {
5421 		__build_all_zonelists(pgdat);
5422 		/* cpuset refresh routine should be here */
5423 	}
5424 	vm_total_pages = nr_free_pagecache_pages();
5425 	/*
5426 	 * Disable grouping by mobility if the number of pages in the
5427 	 * system is too low to allow the mechanism to work. It would be
5428 	 * more accurate, but expensive to check per-zone. This check is
5429 	 * made on memory-hotadd so a system can start with mobility
5430 	 * disabled and enable it later
5431 	 */
5432 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5433 		page_group_by_mobility_disabled = 1;
5434 	else
5435 		page_group_by_mobility_disabled = 0;
5436 
5437 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5438 		nr_online_nodes,
5439 		page_group_by_mobility_disabled ? "off" : "on",
5440 		vm_total_pages);
5441 #ifdef CONFIG_NUMA
5442 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5443 #endif
5444 }
5445 
5446 /*
5447  * Initially all pages are reserved - free ones are freed
5448  * up by free_all_bootmem() once the early boot process is
5449  * done. Non-atomic initialization, single-pass.
5450  */
5451 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5452 		unsigned long start_pfn, enum memmap_context context,
5453 		struct vmem_altmap *altmap)
5454 {
5455 	unsigned long end_pfn = start_pfn + size;
5456 	pg_data_t *pgdat = NODE_DATA(nid);
5457 	unsigned long pfn;
5458 	unsigned long nr_initialised = 0;
5459 	struct page *page;
5460 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5461 	struct memblock_region *r = NULL, *tmp;
5462 #endif
5463 
5464 	if (highest_memmap_pfn < end_pfn - 1)
5465 		highest_memmap_pfn = end_pfn - 1;
5466 
5467 	/*
5468 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5469 	 * memory
5470 	 */
5471 	if (altmap && start_pfn == altmap->base_pfn)
5472 		start_pfn += altmap->reserve;
5473 
5474 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5475 		/*
5476 		 * There can be holes in boot-time mem_map[]s handed to this
5477 		 * function.  They do not exist on hotplugged memory.
5478 		 */
5479 		if (context != MEMMAP_EARLY)
5480 			goto not_early;
5481 
5482 		if (!early_pfn_valid(pfn))
5483 			continue;
5484 		if (!early_pfn_in_nid(pfn, nid))
5485 			continue;
5486 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5487 			break;
5488 
5489 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5490 		/*
5491 		 * Check given memblock attribute by firmware which can affect
5492 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5493 		 * mirrored, it's an overlapped memmap init. skip it.
5494 		 */
5495 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5496 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5497 				for_each_memblock(memory, tmp)
5498 					if (pfn < memblock_region_memory_end_pfn(tmp))
5499 						break;
5500 				r = tmp;
5501 			}
5502 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5503 			    memblock_is_mirror(r)) {
5504 				/* already initialized as NORMAL */
5505 				pfn = memblock_region_memory_end_pfn(r);
5506 				continue;
5507 			}
5508 		}
5509 #endif
5510 
5511 not_early:
5512 		page = pfn_to_page(pfn);
5513 		__init_single_page(page, pfn, zone, nid);
5514 		if (context == MEMMAP_HOTPLUG)
5515 			SetPageReserved(page);
5516 
5517 		/*
5518 		 * Mark the block movable so that blocks are reserved for
5519 		 * movable at startup. This will force kernel allocations
5520 		 * to reserve their blocks rather than leaking throughout
5521 		 * the address space during boot when many long-lived
5522 		 * kernel allocations are made.
5523 		 *
5524 		 * bitmap is created for zone's valid pfn range. but memmap
5525 		 * can be created for invalid pages (for alignment)
5526 		 * check here not to call set_pageblock_migratetype() against
5527 		 * pfn out of zone.
5528 		 *
5529 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5530 		 * because this is done early in sparse_add_one_section
5531 		 */
5532 		if (!(pfn & (pageblock_nr_pages - 1))) {
5533 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5534 			cond_resched();
5535 		}
5536 	}
5537 }
5538 
5539 static void __meminit zone_init_free_lists(struct zone *zone)
5540 {
5541 	unsigned int order, t;
5542 	for_each_migratetype_order(order, t) {
5543 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5544 		zone->free_area[order].nr_free = 0;
5545 	}
5546 }
5547 
5548 #ifndef __HAVE_ARCH_MEMMAP_INIT
5549 #define memmap_init(size, nid, zone, start_pfn) \
5550 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5551 #endif
5552 
5553 static int zone_batchsize(struct zone *zone)
5554 {
5555 #ifdef CONFIG_MMU
5556 	int batch;
5557 
5558 	/*
5559 	 * The per-cpu-pages pools are set to around 1000th of the
5560 	 * size of the zone.  But no more than 1/2 of a meg.
5561 	 *
5562 	 * OK, so we don't know how big the cache is.  So guess.
5563 	 */
5564 	batch = zone->managed_pages / 1024;
5565 	if (batch * PAGE_SIZE > 512 * 1024)
5566 		batch = (512 * 1024) / PAGE_SIZE;
5567 	batch /= 4;		/* We effectively *= 4 below */
5568 	if (batch < 1)
5569 		batch = 1;
5570 
5571 	/*
5572 	 * Clamp the batch to a 2^n - 1 value. Having a power
5573 	 * of 2 value was found to be more likely to have
5574 	 * suboptimal cache aliasing properties in some cases.
5575 	 *
5576 	 * For example if 2 tasks are alternately allocating
5577 	 * batches of pages, one task can end up with a lot
5578 	 * of pages of one half of the possible page colors
5579 	 * and the other with pages of the other colors.
5580 	 */
5581 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5582 
5583 	return batch;
5584 
5585 #else
5586 	/* The deferral and batching of frees should be suppressed under NOMMU
5587 	 * conditions.
5588 	 *
5589 	 * The problem is that NOMMU needs to be able to allocate large chunks
5590 	 * of contiguous memory as there's no hardware page translation to
5591 	 * assemble apparent contiguous memory from discontiguous pages.
5592 	 *
5593 	 * Queueing large contiguous runs of pages for batching, however,
5594 	 * causes the pages to actually be freed in smaller chunks.  As there
5595 	 * can be a significant delay between the individual batches being
5596 	 * recycled, this leads to the once large chunks of space being
5597 	 * fragmented and becoming unavailable for high-order allocations.
5598 	 */
5599 	return 0;
5600 #endif
5601 }
5602 
5603 /*
5604  * pcp->high and pcp->batch values are related and dependent on one another:
5605  * ->batch must never be higher then ->high.
5606  * The following function updates them in a safe manner without read side
5607  * locking.
5608  *
5609  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5610  * those fields changing asynchronously (acording the the above rule).
5611  *
5612  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5613  * outside of boot time (or some other assurance that no concurrent updaters
5614  * exist).
5615  */
5616 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5617 		unsigned long batch)
5618 {
5619        /* start with a fail safe value for batch */
5620 	pcp->batch = 1;
5621 	smp_wmb();
5622 
5623        /* Update high, then batch, in order */
5624 	pcp->high = high;
5625 	smp_wmb();
5626 
5627 	pcp->batch = batch;
5628 }
5629 
5630 /* a companion to pageset_set_high() */
5631 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5632 {
5633 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5634 }
5635 
5636 static void pageset_init(struct per_cpu_pageset *p)
5637 {
5638 	struct per_cpu_pages *pcp;
5639 	int migratetype;
5640 
5641 	memset(p, 0, sizeof(*p));
5642 
5643 	pcp = &p->pcp;
5644 	pcp->count = 0;
5645 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5646 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5647 }
5648 
5649 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5650 {
5651 	pageset_init(p);
5652 	pageset_set_batch(p, batch);
5653 }
5654 
5655 /*
5656  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5657  * to the value high for the pageset p.
5658  */
5659 static void pageset_set_high(struct per_cpu_pageset *p,
5660 				unsigned long high)
5661 {
5662 	unsigned long batch = max(1UL, high / 4);
5663 	if ((high / 4) > (PAGE_SHIFT * 8))
5664 		batch = PAGE_SHIFT * 8;
5665 
5666 	pageset_update(&p->pcp, high, batch);
5667 }
5668 
5669 static void pageset_set_high_and_batch(struct zone *zone,
5670 				       struct per_cpu_pageset *pcp)
5671 {
5672 	if (percpu_pagelist_fraction)
5673 		pageset_set_high(pcp,
5674 			(zone->managed_pages /
5675 				percpu_pagelist_fraction));
5676 	else
5677 		pageset_set_batch(pcp, zone_batchsize(zone));
5678 }
5679 
5680 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5681 {
5682 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5683 
5684 	pageset_init(pcp);
5685 	pageset_set_high_and_batch(zone, pcp);
5686 }
5687 
5688 void __meminit setup_zone_pageset(struct zone *zone)
5689 {
5690 	int cpu;
5691 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5692 	for_each_possible_cpu(cpu)
5693 		zone_pageset_init(zone, cpu);
5694 }
5695 
5696 /*
5697  * Allocate per cpu pagesets and initialize them.
5698  * Before this call only boot pagesets were available.
5699  */
5700 void __init setup_per_cpu_pageset(void)
5701 {
5702 	struct pglist_data *pgdat;
5703 	struct zone *zone;
5704 
5705 	for_each_populated_zone(zone)
5706 		setup_zone_pageset(zone);
5707 
5708 	for_each_online_pgdat(pgdat)
5709 		pgdat->per_cpu_nodestats =
5710 			alloc_percpu(struct per_cpu_nodestat);
5711 }
5712 
5713 static __meminit void zone_pcp_init(struct zone *zone)
5714 {
5715 	/*
5716 	 * per cpu subsystem is not up at this point. The following code
5717 	 * relies on the ability of the linker to provide the
5718 	 * offset of a (static) per cpu variable into the per cpu area.
5719 	 */
5720 	zone->pageset = &boot_pageset;
5721 
5722 	if (populated_zone(zone))
5723 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5724 			zone->name, zone->present_pages,
5725 					 zone_batchsize(zone));
5726 }
5727 
5728 void __meminit init_currently_empty_zone(struct zone *zone,
5729 					unsigned long zone_start_pfn,
5730 					unsigned long size)
5731 {
5732 	struct pglist_data *pgdat = zone->zone_pgdat;
5733 
5734 	pgdat->nr_zones = zone_idx(zone) + 1;
5735 
5736 	zone->zone_start_pfn = zone_start_pfn;
5737 
5738 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5739 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5740 			pgdat->node_id,
5741 			(unsigned long)zone_idx(zone),
5742 			zone_start_pfn, (zone_start_pfn + size));
5743 
5744 	zone_init_free_lists(zone);
5745 	zone->initialized = 1;
5746 }
5747 
5748 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5749 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5750 
5751 /*
5752  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5753  */
5754 int __meminit __early_pfn_to_nid(unsigned long pfn,
5755 					struct mminit_pfnnid_cache *state)
5756 {
5757 	unsigned long start_pfn, end_pfn;
5758 	int nid;
5759 
5760 	if (state->last_start <= pfn && pfn < state->last_end)
5761 		return state->last_nid;
5762 
5763 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5764 	if (nid != -1) {
5765 		state->last_start = start_pfn;
5766 		state->last_end = end_pfn;
5767 		state->last_nid = nid;
5768 	}
5769 
5770 	return nid;
5771 }
5772 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5773 
5774 /**
5775  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5776  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5777  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5778  *
5779  * If an architecture guarantees that all ranges registered contain no holes
5780  * and may be freed, this this function may be used instead of calling
5781  * memblock_free_early_nid() manually.
5782  */
5783 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5784 {
5785 	unsigned long start_pfn, end_pfn;
5786 	int i, this_nid;
5787 
5788 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5789 		start_pfn = min(start_pfn, max_low_pfn);
5790 		end_pfn = min(end_pfn, max_low_pfn);
5791 
5792 		if (start_pfn < end_pfn)
5793 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5794 					(end_pfn - start_pfn) << PAGE_SHIFT,
5795 					this_nid);
5796 	}
5797 }
5798 
5799 /**
5800  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5801  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5802  *
5803  * If an architecture guarantees that all ranges registered contain no holes and may
5804  * be freed, this function may be used instead of calling memory_present() manually.
5805  */
5806 void __init sparse_memory_present_with_active_regions(int nid)
5807 {
5808 	unsigned long start_pfn, end_pfn;
5809 	int i, this_nid;
5810 
5811 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5812 		memory_present(this_nid, start_pfn, end_pfn);
5813 }
5814 
5815 /**
5816  * get_pfn_range_for_nid - Return the start and end page frames for a node
5817  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5818  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5819  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5820  *
5821  * It returns the start and end page frame of a node based on information
5822  * provided by memblock_set_node(). If called for a node
5823  * with no available memory, a warning is printed and the start and end
5824  * PFNs will be 0.
5825  */
5826 void __meminit get_pfn_range_for_nid(unsigned int nid,
5827 			unsigned long *start_pfn, unsigned long *end_pfn)
5828 {
5829 	unsigned long this_start_pfn, this_end_pfn;
5830 	int i;
5831 
5832 	*start_pfn = -1UL;
5833 	*end_pfn = 0;
5834 
5835 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5836 		*start_pfn = min(*start_pfn, this_start_pfn);
5837 		*end_pfn = max(*end_pfn, this_end_pfn);
5838 	}
5839 
5840 	if (*start_pfn == -1UL)
5841 		*start_pfn = 0;
5842 }
5843 
5844 /*
5845  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5846  * assumption is made that zones within a node are ordered in monotonic
5847  * increasing memory addresses so that the "highest" populated zone is used
5848  */
5849 static void __init find_usable_zone_for_movable(void)
5850 {
5851 	int zone_index;
5852 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5853 		if (zone_index == ZONE_MOVABLE)
5854 			continue;
5855 
5856 		if (arch_zone_highest_possible_pfn[zone_index] >
5857 				arch_zone_lowest_possible_pfn[zone_index])
5858 			break;
5859 	}
5860 
5861 	VM_BUG_ON(zone_index == -1);
5862 	movable_zone = zone_index;
5863 }
5864 
5865 /*
5866  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5867  * because it is sized independent of architecture. Unlike the other zones,
5868  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5869  * in each node depending on the size of each node and how evenly kernelcore
5870  * is distributed. This helper function adjusts the zone ranges
5871  * provided by the architecture for a given node by using the end of the
5872  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5873  * zones within a node are in order of monotonic increases memory addresses
5874  */
5875 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5876 					unsigned long zone_type,
5877 					unsigned long node_start_pfn,
5878 					unsigned long node_end_pfn,
5879 					unsigned long *zone_start_pfn,
5880 					unsigned long *zone_end_pfn)
5881 {
5882 	/* Only adjust if ZONE_MOVABLE is on this node */
5883 	if (zone_movable_pfn[nid]) {
5884 		/* Size ZONE_MOVABLE */
5885 		if (zone_type == ZONE_MOVABLE) {
5886 			*zone_start_pfn = zone_movable_pfn[nid];
5887 			*zone_end_pfn = min(node_end_pfn,
5888 				arch_zone_highest_possible_pfn[movable_zone]);
5889 
5890 		/* Adjust for ZONE_MOVABLE starting within this range */
5891 		} else if (!mirrored_kernelcore &&
5892 			*zone_start_pfn < zone_movable_pfn[nid] &&
5893 			*zone_end_pfn > zone_movable_pfn[nid]) {
5894 			*zone_end_pfn = zone_movable_pfn[nid];
5895 
5896 		/* Check if this whole range is within ZONE_MOVABLE */
5897 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5898 			*zone_start_pfn = *zone_end_pfn;
5899 	}
5900 }
5901 
5902 /*
5903  * Return the number of pages a zone spans in a node, including holes
5904  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5905  */
5906 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5907 					unsigned long zone_type,
5908 					unsigned long node_start_pfn,
5909 					unsigned long node_end_pfn,
5910 					unsigned long *zone_start_pfn,
5911 					unsigned long *zone_end_pfn,
5912 					unsigned long *ignored)
5913 {
5914 	/* When hotadd a new node from cpu_up(), the node should be empty */
5915 	if (!node_start_pfn && !node_end_pfn)
5916 		return 0;
5917 
5918 	/* Get the start and end of the zone */
5919 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5920 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5921 	adjust_zone_range_for_zone_movable(nid, zone_type,
5922 				node_start_pfn, node_end_pfn,
5923 				zone_start_pfn, zone_end_pfn);
5924 
5925 	/* Check that this node has pages within the zone's required range */
5926 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5927 		return 0;
5928 
5929 	/* Move the zone boundaries inside the node if necessary */
5930 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5931 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5932 
5933 	/* Return the spanned pages */
5934 	return *zone_end_pfn - *zone_start_pfn;
5935 }
5936 
5937 /*
5938  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5939  * then all holes in the requested range will be accounted for.
5940  */
5941 unsigned long __meminit __absent_pages_in_range(int nid,
5942 				unsigned long range_start_pfn,
5943 				unsigned long range_end_pfn)
5944 {
5945 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5946 	unsigned long start_pfn, end_pfn;
5947 	int i;
5948 
5949 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5950 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5951 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5952 		nr_absent -= end_pfn - start_pfn;
5953 	}
5954 	return nr_absent;
5955 }
5956 
5957 /**
5958  * absent_pages_in_range - Return number of page frames in holes within a range
5959  * @start_pfn: The start PFN to start searching for holes
5960  * @end_pfn: The end PFN to stop searching for holes
5961  *
5962  * It returns the number of pages frames in memory holes within a range.
5963  */
5964 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5965 							unsigned long end_pfn)
5966 {
5967 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5968 }
5969 
5970 /* Return the number of page frames in holes in a zone on a node */
5971 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5972 					unsigned long zone_type,
5973 					unsigned long node_start_pfn,
5974 					unsigned long node_end_pfn,
5975 					unsigned long *ignored)
5976 {
5977 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5978 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5979 	unsigned long zone_start_pfn, zone_end_pfn;
5980 	unsigned long nr_absent;
5981 
5982 	/* When hotadd a new node from cpu_up(), the node should be empty */
5983 	if (!node_start_pfn && !node_end_pfn)
5984 		return 0;
5985 
5986 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5987 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5988 
5989 	adjust_zone_range_for_zone_movable(nid, zone_type,
5990 			node_start_pfn, node_end_pfn,
5991 			&zone_start_pfn, &zone_end_pfn);
5992 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5993 
5994 	/*
5995 	 * ZONE_MOVABLE handling.
5996 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5997 	 * and vice versa.
5998 	 */
5999 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6000 		unsigned long start_pfn, end_pfn;
6001 		struct memblock_region *r;
6002 
6003 		for_each_memblock(memory, r) {
6004 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6005 					  zone_start_pfn, zone_end_pfn);
6006 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6007 					zone_start_pfn, zone_end_pfn);
6008 
6009 			if (zone_type == ZONE_MOVABLE &&
6010 			    memblock_is_mirror(r))
6011 				nr_absent += end_pfn - start_pfn;
6012 
6013 			if (zone_type == ZONE_NORMAL &&
6014 			    !memblock_is_mirror(r))
6015 				nr_absent += end_pfn - start_pfn;
6016 		}
6017 	}
6018 
6019 	return nr_absent;
6020 }
6021 
6022 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6023 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6024 					unsigned long zone_type,
6025 					unsigned long node_start_pfn,
6026 					unsigned long node_end_pfn,
6027 					unsigned long *zone_start_pfn,
6028 					unsigned long *zone_end_pfn,
6029 					unsigned long *zones_size)
6030 {
6031 	unsigned int zone;
6032 
6033 	*zone_start_pfn = node_start_pfn;
6034 	for (zone = 0; zone < zone_type; zone++)
6035 		*zone_start_pfn += zones_size[zone];
6036 
6037 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6038 
6039 	return zones_size[zone_type];
6040 }
6041 
6042 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6043 						unsigned long zone_type,
6044 						unsigned long node_start_pfn,
6045 						unsigned long node_end_pfn,
6046 						unsigned long *zholes_size)
6047 {
6048 	if (!zholes_size)
6049 		return 0;
6050 
6051 	return zholes_size[zone_type];
6052 }
6053 
6054 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6055 
6056 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6057 						unsigned long node_start_pfn,
6058 						unsigned long node_end_pfn,
6059 						unsigned long *zones_size,
6060 						unsigned long *zholes_size)
6061 {
6062 	unsigned long realtotalpages = 0, totalpages = 0;
6063 	enum zone_type i;
6064 
6065 	for (i = 0; i < MAX_NR_ZONES; i++) {
6066 		struct zone *zone = pgdat->node_zones + i;
6067 		unsigned long zone_start_pfn, zone_end_pfn;
6068 		unsigned long size, real_size;
6069 
6070 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6071 						  node_start_pfn,
6072 						  node_end_pfn,
6073 						  &zone_start_pfn,
6074 						  &zone_end_pfn,
6075 						  zones_size);
6076 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6077 						  node_start_pfn, node_end_pfn,
6078 						  zholes_size);
6079 		if (size)
6080 			zone->zone_start_pfn = zone_start_pfn;
6081 		else
6082 			zone->zone_start_pfn = 0;
6083 		zone->spanned_pages = size;
6084 		zone->present_pages = real_size;
6085 
6086 		totalpages += size;
6087 		realtotalpages += real_size;
6088 	}
6089 
6090 	pgdat->node_spanned_pages = totalpages;
6091 	pgdat->node_present_pages = realtotalpages;
6092 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6093 							realtotalpages);
6094 }
6095 
6096 #ifndef CONFIG_SPARSEMEM
6097 /*
6098  * Calculate the size of the zone->blockflags rounded to an unsigned long
6099  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6100  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6101  * round what is now in bits to nearest long in bits, then return it in
6102  * bytes.
6103  */
6104 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6105 {
6106 	unsigned long usemapsize;
6107 
6108 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6109 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6110 	usemapsize = usemapsize >> pageblock_order;
6111 	usemapsize *= NR_PAGEBLOCK_BITS;
6112 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6113 
6114 	return usemapsize / 8;
6115 }
6116 
6117 static void __init setup_usemap(struct pglist_data *pgdat,
6118 				struct zone *zone,
6119 				unsigned long zone_start_pfn,
6120 				unsigned long zonesize)
6121 {
6122 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6123 	zone->pageblock_flags = NULL;
6124 	if (usemapsize)
6125 		zone->pageblock_flags =
6126 			memblock_virt_alloc_node_nopanic(usemapsize,
6127 							 pgdat->node_id);
6128 }
6129 #else
6130 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6131 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6132 #endif /* CONFIG_SPARSEMEM */
6133 
6134 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6135 
6136 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6137 void __paginginit set_pageblock_order(void)
6138 {
6139 	unsigned int order;
6140 
6141 	/* Check that pageblock_nr_pages has not already been setup */
6142 	if (pageblock_order)
6143 		return;
6144 
6145 	if (HPAGE_SHIFT > PAGE_SHIFT)
6146 		order = HUGETLB_PAGE_ORDER;
6147 	else
6148 		order = MAX_ORDER - 1;
6149 
6150 	/*
6151 	 * Assume the largest contiguous order of interest is a huge page.
6152 	 * This value may be variable depending on boot parameters on IA64 and
6153 	 * powerpc.
6154 	 */
6155 	pageblock_order = order;
6156 }
6157 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6158 
6159 /*
6160  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6161  * is unused as pageblock_order is set at compile-time. See
6162  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6163  * the kernel config
6164  */
6165 void __paginginit set_pageblock_order(void)
6166 {
6167 }
6168 
6169 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6170 
6171 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6172 						   unsigned long present_pages)
6173 {
6174 	unsigned long pages = spanned_pages;
6175 
6176 	/*
6177 	 * Provide a more accurate estimation if there are holes within
6178 	 * the zone and SPARSEMEM is in use. If there are holes within the
6179 	 * zone, each populated memory region may cost us one or two extra
6180 	 * memmap pages due to alignment because memmap pages for each
6181 	 * populated regions may not be naturally aligned on page boundary.
6182 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6183 	 */
6184 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6185 	    IS_ENABLED(CONFIG_SPARSEMEM))
6186 		pages = present_pages;
6187 
6188 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6189 }
6190 
6191 /*
6192  * Set up the zone data structures:
6193  *   - mark all pages reserved
6194  *   - mark all memory queues empty
6195  *   - clear the memory bitmaps
6196  *
6197  * NOTE: pgdat should get zeroed by caller.
6198  */
6199 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6200 {
6201 	enum zone_type j;
6202 	int nid = pgdat->node_id;
6203 
6204 	pgdat_resize_init(pgdat);
6205 #ifdef CONFIG_NUMA_BALANCING
6206 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6207 	pgdat->numabalancing_migrate_nr_pages = 0;
6208 	pgdat->numabalancing_migrate_next_window = jiffies;
6209 #endif
6210 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6211 	spin_lock_init(&pgdat->split_queue_lock);
6212 	INIT_LIST_HEAD(&pgdat->split_queue);
6213 	pgdat->split_queue_len = 0;
6214 #endif
6215 	init_waitqueue_head(&pgdat->kswapd_wait);
6216 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6217 #ifdef CONFIG_COMPACTION
6218 	init_waitqueue_head(&pgdat->kcompactd_wait);
6219 #endif
6220 	pgdat_page_ext_init(pgdat);
6221 	spin_lock_init(&pgdat->lru_lock);
6222 	lruvec_init(node_lruvec(pgdat));
6223 
6224 	pgdat->per_cpu_nodestats = &boot_nodestats;
6225 
6226 	for (j = 0; j < MAX_NR_ZONES; j++) {
6227 		struct zone *zone = pgdat->node_zones + j;
6228 		unsigned long size, realsize, freesize, memmap_pages;
6229 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6230 
6231 		size = zone->spanned_pages;
6232 		realsize = freesize = zone->present_pages;
6233 
6234 		/*
6235 		 * Adjust freesize so that it accounts for how much memory
6236 		 * is used by this zone for memmap. This affects the watermark
6237 		 * and per-cpu initialisations
6238 		 */
6239 		memmap_pages = calc_memmap_size(size, realsize);
6240 		if (!is_highmem_idx(j)) {
6241 			if (freesize >= memmap_pages) {
6242 				freesize -= memmap_pages;
6243 				if (memmap_pages)
6244 					printk(KERN_DEBUG
6245 					       "  %s zone: %lu pages used for memmap\n",
6246 					       zone_names[j], memmap_pages);
6247 			} else
6248 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6249 					zone_names[j], memmap_pages, freesize);
6250 		}
6251 
6252 		/* Account for reserved pages */
6253 		if (j == 0 && freesize > dma_reserve) {
6254 			freesize -= dma_reserve;
6255 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6256 					zone_names[0], dma_reserve);
6257 		}
6258 
6259 		if (!is_highmem_idx(j))
6260 			nr_kernel_pages += freesize;
6261 		/* Charge for highmem memmap if there are enough kernel pages */
6262 		else if (nr_kernel_pages > memmap_pages * 2)
6263 			nr_kernel_pages -= memmap_pages;
6264 		nr_all_pages += freesize;
6265 
6266 		/*
6267 		 * Set an approximate value for lowmem here, it will be adjusted
6268 		 * when the bootmem allocator frees pages into the buddy system.
6269 		 * And all highmem pages will be managed by the buddy system.
6270 		 */
6271 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6272 #ifdef CONFIG_NUMA
6273 		zone->node = nid;
6274 #endif
6275 		zone->name = zone_names[j];
6276 		zone->zone_pgdat = pgdat;
6277 		spin_lock_init(&zone->lock);
6278 		zone_seqlock_init(zone);
6279 		zone_pcp_init(zone);
6280 
6281 		if (!size)
6282 			continue;
6283 
6284 		set_pageblock_order();
6285 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6286 		init_currently_empty_zone(zone, zone_start_pfn, size);
6287 		memmap_init(size, nid, j, zone_start_pfn);
6288 	}
6289 }
6290 
6291 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6292 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6293 {
6294 	unsigned long __maybe_unused start = 0;
6295 	unsigned long __maybe_unused offset = 0;
6296 
6297 	/* Skip empty nodes */
6298 	if (!pgdat->node_spanned_pages)
6299 		return;
6300 
6301 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6302 	offset = pgdat->node_start_pfn - start;
6303 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6304 	if (!pgdat->node_mem_map) {
6305 		unsigned long size, end;
6306 		struct page *map;
6307 
6308 		/*
6309 		 * The zone's endpoints aren't required to be MAX_ORDER
6310 		 * aligned but the node_mem_map endpoints must be in order
6311 		 * for the buddy allocator to function correctly.
6312 		 */
6313 		end = pgdat_end_pfn(pgdat);
6314 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6315 		size =  (end - start) * sizeof(struct page);
6316 		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6317 		pgdat->node_mem_map = map + offset;
6318 	}
6319 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6320 				__func__, pgdat->node_id, (unsigned long)pgdat,
6321 				(unsigned long)pgdat->node_mem_map);
6322 #ifndef CONFIG_NEED_MULTIPLE_NODES
6323 	/*
6324 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6325 	 */
6326 	if (pgdat == NODE_DATA(0)) {
6327 		mem_map = NODE_DATA(0)->node_mem_map;
6328 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6329 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6330 			mem_map -= offset;
6331 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6332 	}
6333 #endif
6334 }
6335 #else
6336 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6337 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6338 
6339 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6340 		unsigned long node_start_pfn, unsigned long *zholes_size)
6341 {
6342 	pg_data_t *pgdat = NODE_DATA(nid);
6343 	unsigned long start_pfn = 0;
6344 	unsigned long end_pfn = 0;
6345 
6346 	/* pg_data_t should be reset to zero when it's allocated */
6347 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6348 
6349 	pgdat->node_id = nid;
6350 	pgdat->node_start_pfn = node_start_pfn;
6351 	pgdat->per_cpu_nodestats = NULL;
6352 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6353 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6354 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6355 		(u64)start_pfn << PAGE_SHIFT,
6356 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6357 #else
6358 	start_pfn = node_start_pfn;
6359 #endif
6360 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6361 				  zones_size, zholes_size);
6362 
6363 	alloc_node_mem_map(pgdat);
6364 
6365 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6366 	/*
6367 	 * We start only with one section of pages, more pages are added as
6368 	 * needed until the rest of deferred pages are initialized.
6369 	 */
6370 	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6371 					 pgdat->node_spanned_pages);
6372 	pgdat->first_deferred_pfn = ULONG_MAX;
6373 #endif
6374 	free_area_init_core(pgdat);
6375 }
6376 
6377 #ifdef CONFIG_HAVE_MEMBLOCK
6378 /*
6379  * Only struct pages that are backed by physical memory are zeroed and
6380  * initialized by going through __init_single_page(). But, there are some
6381  * struct pages which are reserved in memblock allocator and their fields
6382  * may be accessed (for example page_to_pfn() on some configuration accesses
6383  * flags). We must explicitly zero those struct pages.
6384  */
6385 void __paginginit zero_resv_unavail(void)
6386 {
6387 	phys_addr_t start, end;
6388 	unsigned long pfn;
6389 	u64 i, pgcnt;
6390 
6391 	/*
6392 	 * Loop through ranges that are reserved, but do not have reported
6393 	 * physical memory backing.
6394 	 */
6395 	pgcnt = 0;
6396 	for_each_resv_unavail_range(i, &start, &end) {
6397 		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6398 			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6399 				continue;
6400 			mm_zero_struct_page(pfn_to_page(pfn));
6401 			pgcnt++;
6402 		}
6403 	}
6404 
6405 	/*
6406 	 * Struct pages that do not have backing memory. This could be because
6407 	 * firmware is using some of this memory, or for some other reasons.
6408 	 * Once memblock is changed so such behaviour is not allowed: i.e.
6409 	 * list of "reserved" memory must be a subset of list of "memory", then
6410 	 * this code can be removed.
6411 	 */
6412 	if (pgcnt)
6413 		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6414 }
6415 #endif /* CONFIG_HAVE_MEMBLOCK */
6416 
6417 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6418 
6419 #if MAX_NUMNODES > 1
6420 /*
6421  * Figure out the number of possible node ids.
6422  */
6423 void __init setup_nr_node_ids(void)
6424 {
6425 	unsigned int highest;
6426 
6427 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6428 	nr_node_ids = highest + 1;
6429 }
6430 #endif
6431 
6432 /**
6433  * node_map_pfn_alignment - determine the maximum internode alignment
6434  *
6435  * This function should be called after node map is populated and sorted.
6436  * It calculates the maximum power of two alignment which can distinguish
6437  * all the nodes.
6438  *
6439  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6440  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6441  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6442  * shifted, 1GiB is enough and this function will indicate so.
6443  *
6444  * This is used to test whether pfn -> nid mapping of the chosen memory
6445  * model has fine enough granularity to avoid incorrect mapping for the
6446  * populated node map.
6447  *
6448  * Returns the determined alignment in pfn's.  0 if there is no alignment
6449  * requirement (single node).
6450  */
6451 unsigned long __init node_map_pfn_alignment(void)
6452 {
6453 	unsigned long accl_mask = 0, last_end = 0;
6454 	unsigned long start, end, mask;
6455 	int last_nid = -1;
6456 	int i, nid;
6457 
6458 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6459 		if (!start || last_nid < 0 || last_nid == nid) {
6460 			last_nid = nid;
6461 			last_end = end;
6462 			continue;
6463 		}
6464 
6465 		/*
6466 		 * Start with a mask granular enough to pin-point to the
6467 		 * start pfn and tick off bits one-by-one until it becomes
6468 		 * too coarse to separate the current node from the last.
6469 		 */
6470 		mask = ~((1 << __ffs(start)) - 1);
6471 		while (mask && last_end <= (start & (mask << 1)))
6472 			mask <<= 1;
6473 
6474 		/* accumulate all internode masks */
6475 		accl_mask |= mask;
6476 	}
6477 
6478 	/* convert mask to number of pages */
6479 	return ~accl_mask + 1;
6480 }
6481 
6482 /* Find the lowest pfn for a node */
6483 static unsigned long __init find_min_pfn_for_node(int nid)
6484 {
6485 	unsigned long min_pfn = ULONG_MAX;
6486 	unsigned long start_pfn;
6487 	int i;
6488 
6489 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6490 		min_pfn = min(min_pfn, start_pfn);
6491 
6492 	if (min_pfn == ULONG_MAX) {
6493 		pr_warn("Could not find start_pfn for node %d\n", nid);
6494 		return 0;
6495 	}
6496 
6497 	return min_pfn;
6498 }
6499 
6500 /**
6501  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6502  *
6503  * It returns the minimum PFN based on information provided via
6504  * memblock_set_node().
6505  */
6506 unsigned long __init find_min_pfn_with_active_regions(void)
6507 {
6508 	return find_min_pfn_for_node(MAX_NUMNODES);
6509 }
6510 
6511 /*
6512  * early_calculate_totalpages()
6513  * Sum pages in active regions for movable zone.
6514  * Populate N_MEMORY for calculating usable_nodes.
6515  */
6516 static unsigned long __init early_calculate_totalpages(void)
6517 {
6518 	unsigned long totalpages = 0;
6519 	unsigned long start_pfn, end_pfn;
6520 	int i, nid;
6521 
6522 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6523 		unsigned long pages = end_pfn - start_pfn;
6524 
6525 		totalpages += pages;
6526 		if (pages)
6527 			node_set_state(nid, N_MEMORY);
6528 	}
6529 	return totalpages;
6530 }
6531 
6532 /*
6533  * Find the PFN the Movable zone begins in each node. Kernel memory
6534  * is spread evenly between nodes as long as the nodes have enough
6535  * memory. When they don't, some nodes will have more kernelcore than
6536  * others
6537  */
6538 static void __init find_zone_movable_pfns_for_nodes(void)
6539 {
6540 	int i, nid;
6541 	unsigned long usable_startpfn;
6542 	unsigned long kernelcore_node, kernelcore_remaining;
6543 	/* save the state before borrow the nodemask */
6544 	nodemask_t saved_node_state = node_states[N_MEMORY];
6545 	unsigned long totalpages = early_calculate_totalpages();
6546 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6547 	struct memblock_region *r;
6548 
6549 	/* Need to find movable_zone earlier when movable_node is specified. */
6550 	find_usable_zone_for_movable();
6551 
6552 	/*
6553 	 * If movable_node is specified, ignore kernelcore and movablecore
6554 	 * options.
6555 	 */
6556 	if (movable_node_is_enabled()) {
6557 		for_each_memblock(memory, r) {
6558 			if (!memblock_is_hotpluggable(r))
6559 				continue;
6560 
6561 			nid = r->nid;
6562 
6563 			usable_startpfn = PFN_DOWN(r->base);
6564 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6565 				min(usable_startpfn, zone_movable_pfn[nid]) :
6566 				usable_startpfn;
6567 		}
6568 
6569 		goto out2;
6570 	}
6571 
6572 	/*
6573 	 * If kernelcore=mirror is specified, ignore movablecore option
6574 	 */
6575 	if (mirrored_kernelcore) {
6576 		bool mem_below_4gb_not_mirrored = false;
6577 
6578 		for_each_memblock(memory, r) {
6579 			if (memblock_is_mirror(r))
6580 				continue;
6581 
6582 			nid = r->nid;
6583 
6584 			usable_startpfn = memblock_region_memory_base_pfn(r);
6585 
6586 			if (usable_startpfn < 0x100000) {
6587 				mem_below_4gb_not_mirrored = true;
6588 				continue;
6589 			}
6590 
6591 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6592 				min(usable_startpfn, zone_movable_pfn[nid]) :
6593 				usable_startpfn;
6594 		}
6595 
6596 		if (mem_below_4gb_not_mirrored)
6597 			pr_warn("This configuration results in unmirrored kernel memory.");
6598 
6599 		goto out2;
6600 	}
6601 
6602 	/*
6603 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6604 	 * amount of necessary memory.
6605 	 */
6606 	if (required_kernelcore_percent)
6607 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6608 				       10000UL;
6609 	if (required_movablecore_percent)
6610 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6611 					10000UL;
6612 
6613 	/*
6614 	 * If movablecore= was specified, calculate what size of
6615 	 * kernelcore that corresponds so that memory usable for
6616 	 * any allocation type is evenly spread. If both kernelcore
6617 	 * and movablecore are specified, then the value of kernelcore
6618 	 * will be used for required_kernelcore if it's greater than
6619 	 * what movablecore would have allowed.
6620 	 */
6621 	if (required_movablecore) {
6622 		unsigned long corepages;
6623 
6624 		/*
6625 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6626 		 * was requested by the user
6627 		 */
6628 		required_movablecore =
6629 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6630 		required_movablecore = min(totalpages, required_movablecore);
6631 		corepages = totalpages - required_movablecore;
6632 
6633 		required_kernelcore = max(required_kernelcore, corepages);
6634 	}
6635 
6636 	/*
6637 	 * If kernelcore was not specified or kernelcore size is larger
6638 	 * than totalpages, there is no ZONE_MOVABLE.
6639 	 */
6640 	if (!required_kernelcore || required_kernelcore >= totalpages)
6641 		goto out;
6642 
6643 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6644 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6645 
6646 restart:
6647 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6648 	kernelcore_node = required_kernelcore / usable_nodes;
6649 	for_each_node_state(nid, N_MEMORY) {
6650 		unsigned long start_pfn, end_pfn;
6651 
6652 		/*
6653 		 * Recalculate kernelcore_node if the division per node
6654 		 * now exceeds what is necessary to satisfy the requested
6655 		 * amount of memory for the kernel
6656 		 */
6657 		if (required_kernelcore < kernelcore_node)
6658 			kernelcore_node = required_kernelcore / usable_nodes;
6659 
6660 		/*
6661 		 * As the map is walked, we track how much memory is usable
6662 		 * by the kernel using kernelcore_remaining. When it is
6663 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6664 		 */
6665 		kernelcore_remaining = kernelcore_node;
6666 
6667 		/* Go through each range of PFNs within this node */
6668 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6669 			unsigned long size_pages;
6670 
6671 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6672 			if (start_pfn >= end_pfn)
6673 				continue;
6674 
6675 			/* Account for what is only usable for kernelcore */
6676 			if (start_pfn < usable_startpfn) {
6677 				unsigned long kernel_pages;
6678 				kernel_pages = min(end_pfn, usable_startpfn)
6679 								- start_pfn;
6680 
6681 				kernelcore_remaining -= min(kernel_pages,
6682 							kernelcore_remaining);
6683 				required_kernelcore -= min(kernel_pages,
6684 							required_kernelcore);
6685 
6686 				/* Continue if range is now fully accounted */
6687 				if (end_pfn <= usable_startpfn) {
6688 
6689 					/*
6690 					 * Push zone_movable_pfn to the end so
6691 					 * that if we have to rebalance
6692 					 * kernelcore across nodes, we will
6693 					 * not double account here
6694 					 */
6695 					zone_movable_pfn[nid] = end_pfn;
6696 					continue;
6697 				}
6698 				start_pfn = usable_startpfn;
6699 			}
6700 
6701 			/*
6702 			 * The usable PFN range for ZONE_MOVABLE is from
6703 			 * start_pfn->end_pfn. Calculate size_pages as the
6704 			 * number of pages used as kernelcore
6705 			 */
6706 			size_pages = end_pfn - start_pfn;
6707 			if (size_pages > kernelcore_remaining)
6708 				size_pages = kernelcore_remaining;
6709 			zone_movable_pfn[nid] = start_pfn + size_pages;
6710 
6711 			/*
6712 			 * Some kernelcore has been met, update counts and
6713 			 * break if the kernelcore for this node has been
6714 			 * satisfied
6715 			 */
6716 			required_kernelcore -= min(required_kernelcore,
6717 								size_pages);
6718 			kernelcore_remaining -= size_pages;
6719 			if (!kernelcore_remaining)
6720 				break;
6721 		}
6722 	}
6723 
6724 	/*
6725 	 * If there is still required_kernelcore, we do another pass with one
6726 	 * less node in the count. This will push zone_movable_pfn[nid] further
6727 	 * along on the nodes that still have memory until kernelcore is
6728 	 * satisfied
6729 	 */
6730 	usable_nodes--;
6731 	if (usable_nodes && required_kernelcore > usable_nodes)
6732 		goto restart;
6733 
6734 out2:
6735 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6736 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6737 		zone_movable_pfn[nid] =
6738 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6739 
6740 out:
6741 	/* restore the node_state */
6742 	node_states[N_MEMORY] = saved_node_state;
6743 }
6744 
6745 /* Any regular or high memory on that node ? */
6746 static void check_for_memory(pg_data_t *pgdat, int nid)
6747 {
6748 	enum zone_type zone_type;
6749 
6750 	if (N_MEMORY == N_NORMAL_MEMORY)
6751 		return;
6752 
6753 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6754 		struct zone *zone = &pgdat->node_zones[zone_type];
6755 		if (populated_zone(zone)) {
6756 			node_set_state(nid, N_HIGH_MEMORY);
6757 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6758 			    zone_type <= ZONE_NORMAL)
6759 				node_set_state(nid, N_NORMAL_MEMORY);
6760 			break;
6761 		}
6762 	}
6763 }
6764 
6765 /**
6766  * free_area_init_nodes - Initialise all pg_data_t and zone data
6767  * @max_zone_pfn: an array of max PFNs for each zone
6768  *
6769  * This will call free_area_init_node() for each active node in the system.
6770  * Using the page ranges provided by memblock_set_node(), the size of each
6771  * zone in each node and their holes is calculated. If the maximum PFN
6772  * between two adjacent zones match, it is assumed that the zone is empty.
6773  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6774  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6775  * starts where the previous one ended. For example, ZONE_DMA32 starts
6776  * at arch_max_dma_pfn.
6777  */
6778 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6779 {
6780 	unsigned long start_pfn, end_pfn;
6781 	int i, nid;
6782 
6783 	/* Record where the zone boundaries are */
6784 	memset(arch_zone_lowest_possible_pfn, 0,
6785 				sizeof(arch_zone_lowest_possible_pfn));
6786 	memset(arch_zone_highest_possible_pfn, 0,
6787 				sizeof(arch_zone_highest_possible_pfn));
6788 
6789 	start_pfn = find_min_pfn_with_active_regions();
6790 
6791 	for (i = 0; i < MAX_NR_ZONES; i++) {
6792 		if (i == ZONE_MOVABLE)
6793 			continue;
6794 
6795 		end_pfn = max(max_zone_pfn[i], start_pfn);
6796 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6797 		arch_zone_highest_possible_pfn[i] = end_pfn;
6798 
6799 		start_pfn = end_pfn;
6800 	}
6801 
6802 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6803 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6804 	find_zone_movable_pfns_for_nodes();
6805 
6806 	/* Print out the zone ranges */
6807 	pr_info("Zone ranges:\n");
6808 	for (i = 0; i < MAX_NR_ZONES; i++) {
6809 		if (i == ZONE_MOVABLE)
6810 			continue;
6811 		pr_info("  %-8s ", zone_names[i]);
6812 		if (arch_zone_lowest_possible_pfn[i] ==
6813 				arch_zone_highest_possible_pfn[i])
6814 			pr_cont("empty\n");
6815 		else
6816 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6817 				(u64)arch_zone_lowest_possible_pfn[i]
6818 					<< PAGE_SHIFT,
6819 				((u64)arch_zone_highest_possible_pfn[i]
6820 					<< PAGE_SHIFT) - 1);
6821 	}
6822 
6823 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6824 	pr_info("Movable zone start for each node\n");
6825 	for (i = 0; i < MAX_NUMNODES; i++) {
6826 		if (zone_movable_pfn[i])
6827 			pr_info("  Node %d: %#018Lx\n", i,
6828 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6829 	}
6830 
6831 	/* Print out the early node map */
6832 	pr_info("Early memory node ranges\n");
6833 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6834 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6835 			(u64)start_pfn << PAGE_SHIFT,
6836 			((u64)end_pfn << PAGE_SHIFT) - 1);
6837 
6838 	/* Initialise every node */
6839 	mminit_verify_pageflags_layout();
6840 	setup_nr_node_ids();
6841 	for_each_online_node(nid) {
6842 		pg_data_t *pgdat = NODE_DATA(nid);
6843 		free_area_init_node(nid, NULL,
6844 				find_min_pfn_for_node(nid), NULL);
6845 
6846 		/* Any memory on that node */
6847 		if (pgdat->node_present_pages)
6848 			node_set_state(nid, N_MEMORY);
6849 		check_for_memory(pgdat, nid);
6850 	}
6851 	zero_resv_unavail();
6852 }
6853 
6854 static int __init cmdline_parse_core(char *p, unsigned long *core,
6855 				     unsigned long *percent)
6856 {
6857 	unsigned long long coremem;
6858 	char *endptr;
6859 
6860 	if (!p)
6861 		return -EINVAL;
6862 
6863 	/* Value may be a percentage of total memory, otherwise bytes */
6864 	coremem = simple_strtoull(p, &endptr, 0);
6865 	if (*endptr == '%') {
6866 		/* Paranoid check for percent values greater than 100 */
6867 		WARN_ON(coremem > 100);
6868 
6869 		*percent = coremem;
6870 	} else {
6871 		coremem = memparse(p, &p);
6872 		/* Paranoid check that UL is enough for the coremem value */
6873 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6874 
6875 		*core = coremem >> PAGE_SHIFT;
6876 		*percent = 0UL;
6877 	}
6878 	return 0;
6879 }
6880 
6881 /*
6882  * kernelcore=size sets the amount of memory for use for allocations that
6883  * cannot be reclaimed or migrated.
6884  */
6885 static int __init cmdline_parse_kernelcore(char *p)
6886 {
6887 	/* parse kernelcore=mirror */
6888 	if (parse_option_str(p, "mirror")) {
6889 		mirrored_kernelcore = true;
6890 		return 0;
6891 	}
6892 
6893 	return cmdline_parse_core(p, &required_kernelcore,
6894 				  &required_kernelcore_percent);
6895 }
6896 
6897 /*
6898  * movablecore=size sets the amount of memory for use for allocations that
6899  * can be reclaimed or migrated.
6900  */
6901 static int __init cmdline_parse_movablecore(char *p)
6902 {
6903 	return cmdline_parse_core(p, &required_movablecore,
6904 				  &required_movablecore_percent);
6905 }
6906 
6907 early_param("kernelcore", cmdline_parse_kernelcore);
6908 early_param("movablecore", cmdline_parse_movablecore);
6909 
6910 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6911 
6912 void adjust_managed_page_count(struct page *page, long count)
6913 {
6914 	spin_lock(&managed_page_count_lock);
6915 	page_zone(page)->managed_pages += count;
6916 	totalram_pages += count;
6917 #ifdef CONFIG_HIGHMEM
6918 	if (PageHighMem(page))
6919 		totalhigh_pages += count;
6920 #endif
6921 	spin_unlock(&managed_page_count_lock);
6922 }
6923 EXPORT_SYMBOL(adjust_managed_page_count);
6924 
6925 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6926 {
6927 	void *pos;
6928 	unsigned long pages = 0;
6929 
6930 	start = (void *)PAGE_ALIGN((unsigned long)start);
6931 	end = (void *)((unsigned long)end & PAGE_MASK);
6932 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6933 		if ((unsigned int)poison <= 0xFF)
6934 			memset(pos, poison, PAGE_SIZE);
6935 		free_reserved_page(virt_to_page(pos));
6936 	}
6937 
6938 	if (pages && s)
6939 		pr_info("Freeing %s memory: %ldK\n",
6940 			s, pages << (PAGE_SHIFT - 10));
6941 
6942 	return pages;
6943 }
6944 EXPORT_SYMBOL(free_reserved_area);
6945 
6946 #ifdef	CONFIG_HIGHMEM
6947 void free_highmem_page(struct page *page)
6948 {
6949 	__free_reserved_page(page);
6950 	totalram_pages++;
6951 	page_zone(page)->managed_pages++;
6952 	totalhigh_pages++;
6953 }
6954 #endif
6955 
6956 
6957 void __init mem_init_print_info(const char *str)
6958 {
6959 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6960 	unsigned long init_code_size, init_data_size;
6961 
6962 	physpages = get_num_physpages();
6963 	codesize = _etext - _stext;
6964 	datasize = _edata - _sdata;
6965 	rosize = __end_rodata - __start_rodata;
6966 	bss_size = __bss_stop - __bss_start;
6967 	init_data_size = __init_end - __init_begin;
6968 	init_code_size = _einittext - _sinittext;
6969 
6970 	/*
6971 	 * Detect special cases and adjust section sizes accordingly:
6972 	 * 1) .init.* may be embedded into .data sections
6973 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6974 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6975 	 * 3) .rodata.* may be embedded into .text or .data sections.
6976 	 */
6977 #define adj_init_size(start, end, size, pos, adj) \
6978 	do { \
6979 		if (start <= pos && pos < end && size > adj) \
6980 			size -= adj; \
6981 	} while (0)
6982 
6983 	adj_init_size(__init_begin, __init_end, init_data_size,
6984 		     _sinittext, init_code_size);
6985 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6986 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6987 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6988 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6989 
6990 #undef	adj_init_size
6991 
6992 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6993 #ifdef	CONFIG_HIGHMEM
6994 		", %luK highmem"
6995 #endif
6996 		"%s%s)\n",
6997 		nr_free_pages() << (PAGE_SHIFT - 10),
6998 		physpages << (PAGE_SHIFT - 10),
6999 		codesize >> 10, datasize >> 10, rosize >> 10,
7000 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7001 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7002 		totalcma_pages << (PAGE_SHIFT - 10),
7003 #ifdef	CONFIG_HIGHMEM
7004 		totalhigh_pages << (PAGE_SHIFT - 10),
7005 #endif
7006 		str ? ", " : "", str ? str : "");
7007 }
7008 
7009 /**
7010  * set_dma_reserve - set the specified number of pages reserved in the first zone
7011  * @new_dma_reserve: The number of pages to mark reserved
7012  *
7013  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7014  * In the DMA zone, a significant percentage may be consumed by kernel image
7015  * and other unfreeable allocations which can skew the watermarks badly. This
7016  * function may optionally be used to account for unfreeable pages in the
7017  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7018  * smaller per-cpu batchsize.
7019  */
7020 void __init set_dma_reserve(unsigned long new_dma_reserve)
7021 {
7022 	dma_reserve = new_dma_reserve;
7023 }
7024 
7025 void __init free_area_init(unsigned long *zones_size)
7026 {
7027 	free_area_init_node(0, zones_size,
7028 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7029 	zero_resv_unavail();
7030 }
7031 
7032 static int page_alloc_cpu_dead(unsigned int cpu)
7033 {
7034 
7035 	lru_add_drain_cpu(cpu);
7036 	drain_pages(cpu);
7037 
7038 	/*
7039 	 * Spill the event counters of the dead processor
7040 	 * into the current processors event counters.
7041 	 * This artificially elevates the count of the current
7042 	 * processor.
7043 	 */
7044 	vm_events_fold_cpu(cpu);
7045 
7046 	/*
7047 	 * Zero the differential counters of the dead processor
7048 	 * so that the vm statistics are consistent.
7049 	 *
7050 	 * This is only okay since the processor is dead and cannot
7051 	 * race with what we are doing.
7052 	 */
7053 	cpu_vm_stats_fold(cpu);
7054 	return 0;
7055 }
7056 
7057 void __init page_alloc_init(void)
7058 {
7059 	int ret;
7060 
7061 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7062 					"mm/page_alloc:dead", NULL,
7063 					page_alloc_cpu_dead);
7064 	WARN_ON(ret < 0);
7065 }
7066 
7067 /*
7068  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7069  *	or min_free_kbytes changes.
7070  */
7071 static void calculate_totalreserve_pages(void)
7072 {
7073 	struct pglist_data *pgdat;
7074 	unsigned long reserve_pages = 0;
7075 	enum zone_type i, j;
7076 
7077 	for_each_online_pgdat(pgdat) {
7078 
7079 		pgdat->totalreserve_pages = 0;
7080 
7081 		for (i = 0; i < MAX_NR_ZONES; i++) {
7082 			struct zone *zone = pgdat->node_zones + i;
7083 			long max = 0;
7084 
7085 			/* Find valid and maximum lowmem_reserve in the zone */
7086 			for (j = i; j < MAX_NR_ZONES; j++) {
7087 				if (zone->lowmem_reserve[j] > max)
7088 					max = zone->lowmem_reserve[j];
7089 			}
7090 
7091 			/* we treat the high watermark as reserved pages. */
7092 			max += high_wmark_pages(zone);
7093 
7094 			if (max > zone->managed_pages)
7095 				max = zone->managed_pages;
7096 
7097 			pgdat->totalreserve_pages += max;
7098 
7099 			reserve_pages += max;
7100 		}
7101 	}
7102 	totalreserve_pages = reserve_pages;
7103 }
7104 
7105 /*
7106  * setup_per_zone_lowmem_reserve - called whenever
7107  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7108  *	has a correct pages reserved value, so an adequate number of
7109  *	pages are left in the zone after a successful __alloc_pages().
7110  */
7111 static void setup_per_zone_lowmem_reserve(void)
7112 {
7113 	struct pglist_data *pgdat;
7114 	enum zone_type j, idx;
7115 
7116 	for_each_online_pgdat(pgdat) {
7117 		for (j = 0; j < MAX_NR_ZONES; j++) {
7118 			struct zone *zone = pgdat->node_zones + j;
7119 			unsigned long managed_pages = zone->managed_pages;
7120 
7121 			zone->lowmem_reserve[j] = 0;
7122 
7123 			idx = j;
7124 			while (idx) {
7125 				struct zone *lower_zone;
7126 
7127 				idx--;
7128 
7129 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
7130 					sysctl_lowmem_reserve_ratio[idx] = 1;
7131 
7132 				lower_zone = pgdat->node_zones + idx;
7133 				lower_zone->lowmem_reserve[j] = managed_pages /
7134 					sysctl_lowmem_reserve_ratio[idx];
7135 				managed_pages += lower_zone->managed_pages;
7136 			}
7137 		}
7138 	}
7139 
7140 	/* update totalreserve_pages */
7141 	calculate_totalreserve_pages();
7142 }
7143 
7144 static void __setup_per_zone_wmarks(void)
7145 {
7146 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7147 	unsigned long lowmem_pages = 0;
7148 	struct zone *zone;
7149 	unsigned long flags;
7150 
7151 	/* Calculate total number of !ZONE_HIGHMEM pages */
7152 	for_each_zone(zone) {
7153 		if (!is_highmem(zone))
7154 			lowmem_pages += zone->managed_pages;
7155 	}
7156 
7157 	for_each_zone(zone) {
7158 		u64 tmp;
7159 
7160 		spin_lock_irqsave(&zone->lock, flags);
7161 		tmp = (u64)pages_min * zone->managed_pages;
7162 		do_div(tmp, lowmem_pages);
7163 		if (is_highmem(zone)) {
7164 			/*
7165 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7166 			 * need highmem pages, so cap pages_min to a small
7167 			 * value here.
7168 			 *
7169 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7170 			 * deltas control asynch page reclaim, and so should
7171 			 * not be capped for highmem.
7172 			 */
7173 			unsigned long min_pages;
7174 
7175 			min_pages = zone->managed_pages / 1024;
7176 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7177 			zone->watermark[WMARK_MIN] = min_pages;
7178 		} else {
7179 			/*
7180 			 * If it's a lowmem zone, reserve a number of pages
7181 			 * proportionate to the zone's size.
7182 			 */
7183 			zone->watermark[WMARK_MIN] = tmp;
7184 		}
7185 
7186 		/*
7187 		 * Set the kswapd watermarks distance according to the
7188 		 * scale factor in proportion to available memory, but
7189 		 * ensure a minimum size on small systems.
7190 		 */
7191 		tmp = max_t(u64, tmp >> 2,
7192 			    mult_frac(zone->managed_pages,
7193 				      watermark_scale_factor, 10000));
7194 
7195 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7196 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7197 
7198 		spin_unlock_irqrestore(&zone->lock, flags);
7199 	}
7200 
7201 	/* update totalreserve_pages */
7202 	calculate_totalreserve_pages();
7203 }
7204 
7205 /**
7206  * setup_per_zone_wmarks - called when min_free_kbytes changes
7207  * or when memory is hot-{added|removed}
7208  *
7209  * Ensures that the watermark[min,low,high] values for each zone are set
7210  * correctly with respect to min_free_kbytes.
7211  */
7212 void setup_per_zone_wmarks(void)
7213 {
7214 	static DEFINE_SPINLOCK(lock);
7215 
7216 	spin_lock(&lock);
7217 	__setup_per_zone_wmarks();
7218 	spin_unlock(&lock);
7219 }
7220 
7221 /*
7222  * Initialise min_free_kbytes.
7223  *
7224  * For small machines we want it small (128k min).  For large machines
7225  * we want it large (64MB max).  But it is not linear, because network
7226  * bandwidth does not increase linearly with machine size.  We use
7227  *
7228  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7229  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7230  *
7231  * which yields
7232  *
7233  * 16MB:	512k
7234  * 32MB:	724k
7235  * 64MB:	1024k
7236  * 128MB:	1448k
7237  * 256MB:	2048k
7238  * 512MB:	2896k
7239  * 1024MB:	4096k
7240  * 2048MB:	5792k
7241  * 4096MB:	8192k
7242  * 8192MB:	11584k
7243  * 16384MB:	16384k
7244  */
7245 int __meminit init_per_zone_wmark_min(void)
7246 {
7247 	unsigned long lowmem_kbytes;
7248 	int new_min_free_kbytes;
7249 
7250 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7251 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7252 
7253 	if (new_min_free_kbytes > user_min_free_kbytes) {
7254 		min_free_kbytes = new_min_free_kbytes;
7255 		if (min_free_kbytes < 128)
7256 			min_free_kbytes = 128;
7257 		if (min_free_kbytes > 65536)
7258 			min_free_kbytes = 65536;
7259 	} else {
7260 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7261 				new_min_free_kbytes, user_min_free_kbytes);
7262 	}
7263 	setup_per_zone_wmarks();
7264 	refresh_zone_stat_thresholds();
7265 	setup_per_zone_lowmem_reserve();
7266 
7267 #ifdef CONFIG_NUMA
7268 	setup_min_unmapped_ratio();
7269 	setup_min_slab_ratio();
7270 #endif
7271 
7272 	return 0;
7273 }
7274 core_initcall(init_per_zone_wmark_min)
7275 
7276 /*
7277  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7278  *	that we can call two helper functions whenever min_free_kbytes
7279  *	changes.
7280  */
7281 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7282 	void __user *buffer, size_t *length, loff_t *ppos)
7283 {
7284 	int rc;
7285 
7286 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7287 	if (rc)
7288 		return rc;
7289 
7290 	if (write) {
7291 		user_min_free_kbytes = min_free_kbytes;
7292 		setup_per_zone_wmarks();
7293 	}
7294 	return 0;
7295 }
7296 
7297 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7298 	void __user *buffer, size_t *length, loff_t *ppos)
7299 {
7300 	int rc;
7301 
7302 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7303 	if (rc)
7304 		return rc;
7305 
7306 	if (write)
7307 		setup_per_zone_wmarks();
7308 
7309 	return 0;
7310 }
7311 
7312 #ifdef CONFIG_NUMA
7313 static void setup_min_unmapped_ratio(void)
7314 {
7315 	pg_data_t *pgdat;
7316 	struct zone *zone;
7317 
7318 	for_each_online_pgdat(pgdat)
7319 		pgdat->min_unmapped_pages = 0;
7320 
7321 	for_each_zone(zone)
7322 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7323 				sysctl_min_unmapped_ratio) / 100;
7324 }
7325 
7326 
7327 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7328 	void __user *buffer, size_t *length, loff_t *ppos)
7329 {
7330 	int rc;
7331 
7332 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7333 	if (rc)
7334 		return rc;
7335 
7336 	setup_min_unmapped_ratio();
7337 
7338 	return 0;
7339 }
7340 
7341 static void setup_min_slab_ratio(void)
7342 {
7343 	pg_data_t *pgdat;
7344 	struct zone *zone;
7345 
7346 	for_each_online_pgdat(pgdat)
7347 		pgdat->min_slab_pages = 0;
7348 
7349 	for_each_zone(zone)
7350 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7351 				sysctl_min_slab_ratio) / 100;
7352 }
7353 
7354 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7355 	void __user *buffer, size_t *length, loff_t *ppos)
7356 {
7357 	int rc;
7358 
7359 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7360 	if (rc)
7361 		return rc;
7362 
7363 	setup_min_slab_ratio();
7364 
7365 	return 0;
7366 }
7367 #endif
7368 
7369 /*
7370  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7371  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7372  *	whenever sysctl_lowmem_reserve_ratio changes.
7373  *
7374  * The reserve ratio obviously has absolutely no relation with the
7375  * minimum watermarks. The lowmem reserve ratio can only make sense
7376  * if in function of the boot time zone sizes.
7377  */
7378 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7379 	void __user *buffer, size_t *length, loff_t *ppos)
7380 {
7381 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7382 	setup_per_zone_lowmem_reserve();
7383 	return 0;
7384 }
7385 
7386 /*
7387  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7388  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7389  * pagelist can have before it gets flushed back to buddy allocator.
7390  */
7391 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7392 	void __user *buffer, size_t *length, loff_t *ppos)
7393 {
7394 	struct zone *zone;
7395 	int old_percpu_pagelist_fraction;
7396 	int ret;
7397 
7398 	mutex_lock(&pcp_batch_high_lock);
7399 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7400 
7401 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7402 	if (!write || ret < 0)
7403 		goto out;
7404 
7405 	/* Sanity checking to avoid pcp imbalance */
7406 	if (percpu_pagelist_fraction &&
7407 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7408 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7409 		ret = -EINVAL;
7410 		goto out;
7411 	}
7412 
7413 	/* No change? */
7414 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7415 		goto out;
7416 
7417 	for_each_populated_zone(zone) {
7418 		unsigned int cpu;
7419 
7420 		for_each_possible_cpu(cpu)
7421 			pageset_set_high_and_batch(zone,
7422 					per_cpu_ptr(zone->pageset, cpu));
7423 	}
7424 out:
7425 	mutex_unlock(&pcp_batch_high_lock);
7426 	return ret;
7427 }
7428 
7429 #ifdef CONFIG_NUMA
7430 int hashdist = HASHDIST_DEFAULT;
7431 
7432 static int __init set_hashdist(char *str)
7433 {
7434 	if (!str)
7435 		return 0;
7436 	hashdist = simple_strtoul(str, &str, 0);
7437 	return 1;
7438 }
7439 __setup("hashdist=", set_hashdist);
7440 #endif
7441 
7442 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7443 /*
7444  * Returns the number of pages that arch has reserved but
7445  * is not known to alloc_large_system_hash().
7446  */
7447 static unsigned long __init arch_reserved_kernel_pages(void)
7448 {
7449 	return 0;
7450 }
7451 #endif
7452 
7453 /*
7454  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7455  * machines. As memory size is increased the scale is also increased but at
7456  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7457  * quadruples the scale is increased by one, which means the size of hash table
7458  * only doubles, instead of quadrupling as well.
7459  * Because 32-bit systems cannot have large physical memory, where this scaling
7460  * makes sense, it is disabled on such platforms.
7461  */
7462 #if __BITS_PER_LONG > 32
7463 #define ADAPT_SCALE_BASE	(64ul << 30)
7464 #define ADAPT_SCALE_SHIFT	2
7465 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7466 #endif
7467 
7468 /*
7469  * allocate a large system hash table from bootmem
7470  * - it is assumed that the hash table must contain an exact power-of-2
7471  *   quantity of entries
7472  * - limit is the number of hash buckets, not the total allocation size
7473  */
7474 void *__init alloc_large_system_hash(const char *tablename,
7475 				     unsigned long bucketsize,
7476 				     unsigned long numentries,
7477 				     int scale,
7478 				     int flags,
7479 				     unsigned int *_hash_shift,
7480 				     unsigned int *_hash_mask,
7481 				     unsigned long low_limit,
7482 				     unsigned long high_limit)
7483 {
7484 	unsigned long long max = high_limit;
7485 	unsigned long log2qty, size;
7486 	void *table = NULL;
7487 	gfp_t gfp_flags;
7488 
7489 	/* allow the kernel cmdline to have a say */
7490 	if (!numentries) {
7491 		/* round applicable memory size up to nearest megabyte */
7492 		numentries = nr_kernel_pages;
7493 		numentries -= arch_reserved_kernel_pages();
7494 
7495 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7496 		if (PAGE_SHIFT < 20)
7497 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7498 
7499 #if __BITS_PER_LONG > 32
7500 		if (!high_limit) {
7501 			unsigned long adapt;
7502 
7503 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7504 			     adapt <<= ADAPT_SCALE_SHIFT)
7505 				scale++;
7506 		}
7507 #endif
7508 
7509 		/* limit to 1 bucket per 2^scale bytes of low memory */
7510 		if (scale > PAGE_SHIFT)
7511 			numentries >>= (scale - PAGE_SHIFT);
7512 		else
7513 			numentries <<= (PAGE_SHIFT - scale);
7514 
7515 		/* Make sure we've got at least a 0-order allocation.. */
7516 		if (unlikely(flags & HASH_SMALL)) {
7517 			/* Makes no sense without HASH_EARLY */
7518 			WARN_ON(!(flags & HASH_EARLY));
7519 			if (!(numentries >> *_hash_shift)) {
7520 				numentries = 1UL << *_hash_shift;
7521 				BUG_ON(!numentries);
7522 			}
7523 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7524 			numentries = PAGE_SIZE / bucketsize;
7525 	}
7526 	numentries = roundup_pow_of_two(numentries);
7527 
7528 	/* limit allocation size to 1/16 total memory by default */
7529 	if (max == 0) {
7530 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7531 		do_div(max, bucketsize);
7532 	}
7533 	max = min(max, 0x80000000ULL);
7534 
7535 	if (numentries < low_limit)
7536 		numentries = low_limit;
7537 	if (numentries > max)
7538 		numentries = max;
7539 
7540 	log2qty = ilog2(numentries);
7541 
7542 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7543 	do {
7544 		size = bucketsize << log2qty;
7545 		if (flags & HASH_EARLY) {
7546 			if (flags & HASH_ZERO)
7547 				table = memblock_virt_alloc_nopanic(size, 0);
7548 			else
7549 				table = memblock_virt_alloc_raw(size, 0);
7550 		} else if (hashdist) {
7551 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7552 		} else {
7553 			/*
7554 			 * If bucketsize is not a power-of-two, we may free
7555 			 * some pages at the end of hash table which
7556 			 * alloc_pages_exact() automatically does
7557 			 */
7558 			if (get_order(size) < MAX_ORDER) {
7559 				table = alloc_pages_exact(size, gfp_flags);
7560 				kmemleak_alloc(table, size, 1, gfp_flags);
7561 			}
7562 		}
7563 	} while (!table && size > PAGE_SIZE && --log2qty);
7564 
7565 	if (!table)
7566 		panic("Failed to allocate %s hash table\n", tablename);
7567 
7568 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7569 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7570 
7571 	if (_hash_shift)
7572 		*_hash_shift = log2qty;
7573 	if (_hash_mask)
7574 		*_hash_mask = (1 << log2qty) - 1;
7575 
7576 	return table;
7577 }
7578 
7579 /*
7580  * This function checks whether pageblock includes unmovable pages or not.
7581  * If @count is not zero, it is okay to include less @count unmovable pages
7582  *
7583  * PageLRU check without isolation or lru_lock could race so that
7584  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7585  * check without lock_page also may miss some movable non-lru pages at
7586  * race condition. So you can't expect this function should be exact.
7587  */
7588 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7589 			 int migratetype,
7590 			 bool skip_hwpoisoned_pages)
7591 {
7592 	unsigned long pfn, iter, found;
7593 
7594 	/*
7595 	 * For avoiding noise data, lru_add_drain_all() should be called
7596 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7597 	 */
7598 	if (zone_idx(zone) == ZONE_MOVABLE)
7599 		return false;
7600 
7601 	/*
7602 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7603 	 * CMA pageblocks even when they are not movable in fact so consider
7604 	 * them movable here.
7605 	 */
7606 	if (is_migrate_cma(migratetype) &&
7607 			is_migrate_cma(get_pageblock_migratetype(page)))
7608 		return false;
7609 
7610 	pfn = page_to_pfn(page);
7611 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7612 		unsigned long check = pfn + iter;
7613 
7614 		if (!pfn_valid_within(check))
7615 			continue;
7616 
7617 		page = pfn_to_page(check);
7618 
7619 		if (PageReserved(page))
7620 			return true;
7621 
7622 		/*
7623 		 * Hugepages are not in LRU lists, but they're movable.
7624 		 * We need not scan over tail pages bacause we don't
7625 		 * handle each tail page individually in migration.
7626 		 */
7627 		if (PageHuge(page)) {
7628 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7629 			continue;
7630 		}
7631 
7632 		/*
7633 		 * We can't use page_count without pin a page
7634 		 * because another CPU can free compound page.
7635 		 * This check already skips compound tails of THP
7636 		 * because their page->_refcount is zero at all time.
7637 		 */
7638 		if (!page_ref_count(page)) {
7639 			if (PageBuddy(page))
7640 				iter += (1 << page_order(page)) - 1;
7641 			continue;
7642 		}
7643 
7644 		/*
7645 		 * The HWPoisoned page may be not in buddy system, and
7646 		 * page_count() is not 0.
7647 		 */
7648 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7649 			continue;
7650 
7651 		if (__PageMovable(page))
7652 			continue;
7653 
7654 		if (!PageLRU(page))
7655 			found++;
7656 		/*
7657 		 * If there are RECLAIMABLE pages, we need to check
7658 		 * it.  But now, memory offline itself doesn't call
7659 		 * shrink_node_slabs() and it still to be fixed.
7660 		 */
7661 		/*
7662 		 * If the page is not RAM, page_count()should be 0.
7663 		 * we don't need more check. This is an _used_ not-movable page.
7664 		 *
7665 		 * The problematic thing here is PG_reserved pages. PG_reserved
7666 		 * is set to both of a memory hole page and a _used_ kernel
7667 		 * page at boot.
7668 		 */
7669 		if (found > count)
7670 			return true;
7671 	}
7672 	return false;
7673 }
7674 
7675 bool is_pageblock_removable_nolock(struct page *page)
7676 {
7677 	struct zone *zone;
7678 	unsigned long pfn;
7679 
7680 	/*
7681 	 * We have to be careful here because we are iterating over memory
7682 	 * sections which are not zone aware so we might end up outside of
7683 	 * the zone but still within the section.
7684 	 * We have to take care about the node as well. If the node is offline
7685 	 * its NODE_DATA will be NULL - see page_zone.
7686 	 */
7687 	if (!node_online(page_to_nid(page)))
7688 		return false;
7689 
7690 	zone = page_zone(page);
7691 	pfn = page_to_pfn(page);
7692 	if (!zone_spans_pfn(zone, pfn))
7693 		return false;
7694 
7695 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7696 }
7697 
7698 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7699 
7700 static unsigned long pfn_max_align_down(unsigned long pfn)
7701 {
7702 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7703 			     pageblock_nr_pages) - 1);
7704 }
7705 
7706 static unsigned long pfn_max_align_up(unsigned long pfn)
7707 {
7708 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7709 				pageblock_nr_pages));
7710 }
7711 
7712 /* [start, end) must belong to a single zone. */
7713 static int __alloc_contig_migrate_range(struct compact_control *cc,
7714 					unsigned long start, unsigned long end)
7715 {
7716 	/* This function is based on compact_zone() from compaction.c. */
7717 	unsigned long nr_reclaimed;
7718 	unsigned long pfn = start;
7719 	unsigned int tries = 0;
7720 	int ret = 0;
7721 
7722 	migrate_prep();
7723 
7724 	while (pfn < end || !list_empty(&cc->migratepages)) {
7725 		if (fatal_signal_pending(current)) {
7726 			ret = -EINTR;
7727 			break;
7728 		}
7729 
7730 		if (list_empty(&cc->migratepages)) {
7731 			cc->nr_migratepages = 0;
7732 			pfn = isolate_migratepages_range(cc, pfn, end);
7733 			if (!pfn) {
7734 				ret = -EINTR;
7735 				break;
7736 			}
7737 			tries = 0;
7738 		} else if (++tries == 5) {
7739 			ret = ret < 0 ? ret : -EBUSY;
7740 			break;
7741 		}
7742 
7743 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7744 							&cc->migratepages);
7745 		cc->nr_migratepages -= nr_reclaimed;
7746 
7747 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7748 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7749 	}
7750 	if (ret < 0) {
7751 		putback_movable_pages(&cc->migratepages);
7752 		return ret;
7753 	}
7754 	return 0;
7755 }
7756 
7757 /**
7758  * alloc_contig_range() -- tries to allocate given range of pages
7759  * @start:	start PFN to allocate
7760  * @end:	one-past-the-last PFN to allocate
7761  * @migratetype:	migratetype of the underlaying pageblocks (either
7762  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7763  *			in range must have the same migratetype and it must
7764  *			be either of the two.
7765  * @gfp_mask:	GFP mask to use during compaction
7766  *
7767  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7768  * aligned.  The PFN range must belong to a single zone.
7769  *
7770  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7771  * pageblocks in the range.  Once isolated, the pageblocks should not
7772  * be modified by others.
7773  *
7774  * Returns zero on success or negative error code.  On success all
7775  * pages which PFN is in [start, end) are allocated for the caller and
7776  * need to be freed with free_contig_range().
7777  */
7778 int alloc_contig_range(unsigned long start, unsigned long end,
7779 		       unsigned migratetype, gfp_t gfp_mask)
7780 {
7781 	unsigned long outer_start, outer_end;
7782 	unsigned int order;
7783 	int ret = 0;
7784 
7785 	struct compact_control cc = {
7786 		.nr_migratepages = 0,
7787 		.order = -1,
7788 		.zone = page_zone(pfn_to_page(start)),
7789 		.mode = MIGRATE_SYNC,
7790 		.ignore_skip_hint = true,
7791 		.no_set_skip_hint = true,
7792 		.gfp_mask = current_gfp_context(gfp_mask),
7793 	};
7794 	INIT_LIST_HEAD(&cc.migratepages);
7795 
7796 	/*
7797 	 * What we do here is we mark all pageblocks in range as
7798 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7799 	 * have different sizes, and due to the way page allocator
7800 	 * work, we align the range to biggest of the two pages so
7801 	 * that page allocator won't try to merge buddies from
7802 	 * different pageblocks and change MIGRATE_ISOLATE to some
7803 	 * other migration type.
7804 	 *
7805 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7806 	 * migrate the pages from an unaligned range (ie. pages that
7807 	 * we are interested in).  This will put all the pages in
7808 	 * range back to page allocator as MIGRATE_ISOLATE.
7809 	 *
7810 	 * When this is done, we take the pages in range from page
7811 	 * allocator removing them from the buddy system.  This way
7812 	 * page allocator will never consider using them.
7813 	 *
7814 	 * This lets us mark the pageblocks back as
7815 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7816 	 * aligned range but not in the unaligned, original range are
7817 	 * put back to page allocator so that buddy can use them.
7818 	 */
7819 
7820 	ret = start_isolate_page_range(pfn_max_align_down(start),
7821 				       pfn_max_align_up(end), migratetype,
7822 				       false);
7823 	if (ret)
7824 		return ret;
7825 
7826 	/*
7827 	 * In case of -EBUSY, we'd like to know which page causes problem.
7828 	 * So, just fall through. test_pages_isolated() has a tracepoint
7829 	 * which will report the busy page.
7830 	 *
7831 	 * It is possible that busy pages could become available before
7832 	 * the call to test_pages_isolated, and the range will actually be
7833 	 * allocated.  So, if we fall through be sure to clear ret so that
7834 	 * -EBUSY is not accidentally used or returned to caller.
7835 	 */
7836 	ret = __alloc_contig_migrate_range(&cc, start, end);
7837 	if (ret && ret != -EBUSY)
7838 		goto done;
7839 	ret =0;
7840 
7841 	/*
7842 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7843 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7844 	 * more, all pages in [start, end) are free in page allocator.
7845 	 * What we are going to do is to allocate all pages from
7846 	 * [start, end) (that is remove them from page allocator).
7847 	 *
7848 	 * The only problem is that pages at the beginning and at the
7849 	 * end of interesting range may be not aligned with pages that
7850 	 * page allocator holds, ie. they can be part of higher order
7851 	 * pages.  Because of this, we reserve the bigger range and
7852 	 * once this is done free the pages we are not interested in.
7853 	 *
7854 	 * We don't have to hold zone->lock here because the pages are
7855 	 * isolated thus they won't get removed from buddy.
7856 	 */
7857 
7858 	lru_add_drain_all();
7859 	drain_all_pages(cc.zone);
7860 
7861 	order = 0;
7862 	outer_start = start;
7863 	while (!PageBuddy(pfn_to_page(outer_start))) {
7864 		if (++order >= MAX_ORDER) {
7865 			outer_start = start;
7866 			break;
7867 		}
7868 		outer_start &= ~0UL << order;
7869 	}
7870 
7871 	if (outer_start != start) {
7872 		order = page_order(pfn_to_page(outer_start));
7873 
7874 		/*
7875 		 * outer_start page could be small order buddy page and
7876 		 * it doesn't include start page. Adjust outer_start
7877 		 * in this case to report failed page properly
7878 		 * on tracepoint in test_pages_isolated()
7879 		 */
7880 		if (outer_start + (1UL << order) <= start)
7881 			outer_start = start;
7882 	}
7883 
7884 	/* Make sure the range is really isolated. */
7885 	if (test_pages_isolated(outer_start, end, false)) {
7886 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7887 			__func__, outer_start, end);
7888 		ret = -EBUSY;
7889 		goto done;
7890 	}
7891 
7892 	/* Grab isolated pages from freelists. */
7893 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7894 	if (!outer_end) {
7895 		ret = -EBUSY;
7896 		goto done;
7897 	}
7898 
7899 	/* Free head and tail (if any) */
7900 	if (start != outer_start)
7901 		free_contig_range(outer_start, start - outer_start);
7902 	if (end != outer_end)
7903 		free_contig_range(end, outer_end - end);
7904 
7905 done:
7906 	undo_isolate_page_range(pfn_max_align_down(start),
7907 				pfn_max_align_up(end), migratetype);
7908 	return ret;
7909 }
7910 
7911 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7912 {
7913 	unsigned int count = 0;
7914 
7915 	for (; nr_pages--; pfn++) {
7916 		struct page *page = pfn_to_page(pfn);
7917 
7918 		count += page_count(page) != 1;
7919 		__free_page(page);
7920 	}
7921 	WARN(count != 0, "%d pages are still in use!\n", count);
7922 }
7923 #endif
7924 
7925 #ifdef CONFIG_MEMORY_HOTPLUG
7926 /*
7927  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7928  * page high values need to be recalulated.
7929  */
7930 void __meminit zone_pcp_update(struct zone *zone)
7931 {
7932 	unsigned cpu;
7933 	mutex_lock(&pcp_batch_high_lock);
7934 	for_each_possible_cpu(cpu)
7935 		pageset_set_high_and_batch(zone,
7936 				per_cpu_ptr(zone->pageset, cpu));
7937 	mutex_unlock(&pcp_batch_high_lock);
7938 }
7939 #endif
7940 
7941 void zone_pcp_reset(struct zone *zone)
7942 {
7943 	unsigned long flags;
7944 	int cpu;
7945 	struct per_cpu_pageset *pset;
7946 
7947 	/* avoid races with drain_pages()  */
7948 	local_irq_save(flags);
7949 	if (zone->pageset != &boot_pageset) {
7950 		for_each_online_cpu(cpu) {
7951 			pset = per_cpu_ptr(zone->pageset, cpu);
7952 			drain_zonestat(zone, pset);
7953 		}
7954 		free_percpu(zone->pageset);
7955 		zone->pageset = &boot_pageset;
7956 	}
7957 	local_irq_restore(flags);
7958 }
7959 
7960 #ifdef CONFIG_MEMORY_HOTREMOVE
7961 /*
7962  * All pages in the range must be in a single zone and isolated
7963  * before calling this.
7964  */
7965 void
7966 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7967 {
7968 	struct page *page;
7969 	struct zone *zone;
7970 	unsigned int order, i;
7971 	unsigned long pfn;
7972 	unsigned long flags;
7973 	/* find the first valid pfn */
7974 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7975 		if (pfn_valid(pfn))
7976 			break;
7977 	if (pfn == end_pfn)
7978 		return;
7979 	offline_mem_sections(pfn, end_pfn);
7980 	zone = page_zone(pfn_to_page(pfn));
7981 	spin_lock_irqsave(&zone->lock, flags);
7982 	pfn = start_pfn;
7983 	while (pfn < end_pfn) {
7984 		if (!pfn_valid(pfn)) {
7985 			pfn++;
7986 			continue;
7987 		}
7988 		page = pfn_to_page(pfn);
7989 		/*
7990 		 * The HWPoisoned page may be not in buddy system, and
7991 		 * page_count() is not 0.
7992 		 */
7993 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7994 			pfn++;
7995 			SetPageReserved(page);
7996 			continue;
7997 		}
7998 
7999 		BUG_ON(page_count(page));
8000 		BUG_ON(!PageBuddy(page));
8001 		order = page_order(page);
8002 #ifdef CONFIG_DEBUG_VM
8003 		pr_info("remove from free list %lx %d %lx\n",
8004 			pfn, 1 << order, end_pfn);
8005 #endif
8006 		list_del(&page->lru);
8007 		rmv_page_order(page);
8008 		zone->free_area[order].nr_free--;
8009 		for (i = 0; i < (1 << order); i++)
8010 			SetPageReserved((page+i));
8011 		pfn += (1 << order);
8012 	}
8013 	spin_unlock_irqrestore(&zone->lock, flags);
8014 }
8015 #endif
8016 
8017 bool is_free_buddy_page(struct page *page)
8018 {
8019 	struct zone *zone = page_zone(page);
8020 	unsigned long pfn = page_to_pfn(page);
8021 	unsigned long flags;
8022 	unsigned int order;
8023 
8024 	spin_lock_irqsave(&zone->lock, flags);
8025 	for (order = 0; order < MAX_ORDER; order++) {
8026 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8027 
8028 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8029 			break;
8030 	}
8031 	spin_unlock_irqrestore(&zone->lock, flags);
8032 
8033 	return order < MAX_ORDER;
8034 }
8035