1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <xen/xen.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 78 static DEFINE_MUTEX(pcp_batch_high_lock); 79 #define MIN_PERCPU_PAGELIST_FRACTION (8) 80 81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 82 DEFINE_PER_CPU(int, numa_node); 83 EXPORT_PER_CPU_SYMBOL(numa_node); 84 #endif 85 86 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 87 88 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 89 /* 90 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 91 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 92 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 93 * defined in <linux/topology.h>. 94 */ 95 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 96 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 97 int _node_numa_mem_[MAX_NUMNODES]; 98 #endif 99 100 /* work_structs for global per-cpu drains */ 101 DEFINE_MUTEX(pcpu_drain_mutex); 102 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 103 104 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 105 volatile unsigned long latent_entropy __latent_entropy; 106 EXPORT_SYMBOL(latent_entropy); 107 #endif 108 109 /* 110 * Array of node states. 111 */ 112 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 113 [N_POSSIBLE] = NODE_MASK_ALL, 114 [N_ONLINE] = { { [0] = 1UL } }, 115 #ifndef CONFIG_NUMA 116 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 117 #ifdef CONFIG_HIGHMEM 118 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 119 #endif 120 [N_MEMORY] = { { [0] = 1UL } }, 121 [N_CPU] = { { [0] = 1UL } }, 122 #endif /* NUMA */ 123 }; 124 EXPORT_SYMBOL(node_states); 125 126 /* Protect totalram_pages and zone->managed_pages */ 127 static DEFINE_SPINLOCK(managed_page_count_lock); 128 129 unsigned long totalram_pages __read_mostly; 130 unsigned long totalreserve_pages __read_mostly; 131 unsigned long totalcma_pages __read_mostly; 132 133 int percpu_pagelist_fraction; 134 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 135 136 /* 137 * A cached value of the page's pageblock's migratetype, used when the page is 138 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 139 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 140 * Also the migratetype set in the page does not necessarily match the pcplist 141 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 142 * other index - this ensures that it will be put on the correct CMA freelist. 143 */ 144 static inline int get_pcppage_migratetype(struct page *page) 145 { 146 return page->index; 147 } 148 149 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 150 { 151 page->index = migratetype; 152 } 153 154 #ifdef CONFIG_PM_SLEEP 155 /* 156 * The following functions are used by the suspend/hibernate code to temporarily 157 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 158 * while devices are suspended. To avoid races with the suspend/hibernate code, 159 * they should always be called with pm_mutex held (gfp_allowed_mask also should 160 * only be modified with pm_mutex held, unless the suspend/hibernate code is 161 * guaranteed not to run in parallel with that modification). 162 */ 163 164 static gfp_t saved_gfp_mask; 165 166 void pm_restore_gfp_mask(void) 167 { 168 WARN_ON(!mutex_is_locked(&pm_mutex)); 169 if (saved_gfp_mask) { 170 gfp_allowed_mask = saved_gfp_mask; 171 saved_gfp_mask = 0; 172 } 173 } 174 175 void pm_restrict_gfp_mask(void) 176 { 177 WARN_ON(!mutex_is_locked(&pm_mutex)); 178 WARN_ON(saved_gfp_mask); 179 saved_gfp_mask = gfp_allowed_mask; 180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 181 } 182 183 bool pm_suspended_storage(void) 184 { 185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 186 return false; 187 return true; 188 } 189 #endif /* CONFIG_PM_SLEEP */ 190 191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 192 unsigned int pageblock_order __read_mostly; 193 #endif 194 195 static void __free_pages_ok(struct page *page, unsigned int order); 196 197 /* 198 * results with 256, 32 in the lowmem_reserve sysctl: 199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 200 * 1G machine -> (16M dma, 784M normal, 224M high) 201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 204 * 205 * TBD: should special case ZONE_DMA32 machines here - in those we normally 206 * don't need any ZONE_NORMAL reservation 207 */ 208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 209 #ifdef CONFIG_ZONE_DMA 210 256, 211 #endif 212 #ifdef CONFIG_ZONE_DMA32 213 256, 214 #endif 215 #ifdef CONFIG_HIGHMEM 216 32, 217 #endif 218 32, 219 }; 220 221 EXPORT_SYMBOL(totalram_pages); 222 223 static char * const zone_names[MAX_NR_ZONES] = { 224 #ifdef CONFIG_ZONE_DMA 225 "DMA", 226 #endif 227 #ifdef CONFIG_ZONE_DMA32 228 "DMA32", 229 #endif 230 "Normal", 231 #ifdef CONFIG_HIGHMEM 232 "HighMem", 233 #endif 234 "Movable", 235 #ifdef CONFIG_ZONE_DEVICE 236 "Device", 237 #endif 238 }; 239 240 char * const migratetype_names[MIGRATE_TYPES] = { 241 "Unmovable", 242 "Movable", 243 "Reclaimable", 244 "HighAtomic", 245 #ifdef CONFIG_CMA 246 "CMA", 247 #endif 248 #ifdef CONFIG_MEMORY_ISOLATION 249 "Isolate", 250 #endif 251 }; 252 253 compound_page_dtor * const compound_page_dtors[] = { 254 NULL, 255 free_compound_page, 256 #ifdef CONFIG_HUGETLB_PAGE 257 free_huge_page, 258 #endif 259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 260 free_transhuge_page, 261 #endif 262 }; 263 264 int min_free_kbytes = 1024; 265 int user_min_free_kbytes = -1; 266 int watermark_scale_factor = 10; 267 268 static unsigned long nr_kernel_pages __meminitdata; 269 static unsigned long nr_all_pages __meminitdata; 270 static unsigned long dma_reserve __meminitdata; 271 272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata; 274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata; 275 static unsigned long required_kernelcore __initdata; 276 static unsigned long required_kernelcore_percent __initdata; 277 static unsigned long required_movablecore __initdata; 278 static unsigned long required_movablecore_percent __initdata; 279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata; 280 static bool mirrored_kernelcore __meminitdata; 281 282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 283 int movable_zone; 284 EXPORT_SYMBOL(movable_zone); 285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 286 287 #if MAX_NUMNODES > 1 288 int nr_node_ids __read_mostly = MAX_NUMNODES; 289 int nr_online_nodes __read_mostly = 1; 290 EXPORT_SYMBOL(nr_node_ids); 291 EXPORT_SYMBOL(nr_online_nodes); 292 #endif 293 294 int page_group_by_mobility_disabled __read_mostly; 295 296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 297 /* Returns true if the struct page for the pfn is uninitialised */ 298 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 299 { 300 int nid = early_pfn_to_nid(pfn); 301 302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 303 return true; 304 305 return false; 306 } 307 308 /* 309 * Returns false when the remaining initialisation should be deferred until 310 * later in the boot cycle when it can be parallelised. 311 */ 312 static inline bool update_defer_init(pg_data_t *pgdat, 313 unsigned long pfn, unsigned long zone_end, 314 unsigned long *nr_initialised) 315 { 316 /* Always populate low zones for address-constrained allocations */ 317 if (zone_end < pgdat_end_pfn(pgdat)) 318 return true; 319 /* Xen PV domains need page structures early */ 320 if (xen_pv_domain()) 321 return true; 322 (*nr_initialised)++; 323 if ((*nr_initialised > pgdat->static_init_pgcnt) && 324 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 325 pgdat->first_deferred_pfn = pfn; 326 return false; 327 } 328 329 return true; 330 } 331 #else 332 static inline bool early_page_uninitialised(unsigned long pfn) 333 { 334 return false; 335 } 336 337 static inline bool update_defer_init(pg_data_t *pgdat, 338 unsigned long pfn, unsigned long zone_end, 339 unsigned long *nr_initialised) 340 { 341 return true; 342 } 343 #endif 344 345 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 346 static inline unsigned long *get_pageblock_bitmap(struct page *page, 347 unsigned long pfn) 348 { 349 #ifdef CONFIG_SPARSEMEM 350 return __pfn_to_section(pfn)->pageblock_flags; 351 #else 352 return page_zone(page)->pageblock_flags; 353 #endif /* CONFIG_SPARSEMEM */ 354 } 355 356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 357 { 358 #ifdef CONFIG_SPARSEMEM 359 pfn &= (PAGES_PER_SECTION-1); 360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 361 #else 362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 364 #endif /* CONFIG_SPARSEMEM */ 365 } 366 367 /** 368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 369 * @page: The page within the block of interest 370 * @pfn: The target page frame number 371 * @end_bitidx: The last bit of interest to retrieve 372 * @mask: mask of bits that the caller is interested in 373 * 374 * Return: pageblock_bits flags 375 */ 376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 377 unsigned long pfn, 378 unsigned long end_bitidx, 379 unsigned long mask) 380 { 381 unsigned long *bitmap; 382 unsigned long bitidx, word_bitidx; 383 unsigned long word; 384 385 bitmap = get_pageblock_bitmap(page, pfn); 386 bitidx = pfn_to_bitidx(page, pfn); 387 word_bitidx = bitidx / BITS_PER_LONG; 388 bitidx &= (BITS_PER_LONG-1); 389 390 word = bitmap[word_bitidx]; 391 bitidx += end_bitidx; 392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 393 } 394 395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 396 unsigned long end_bitidx, 397 unsigned long mask) 398 { 399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 400 } 401 402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 403 { 404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 405 } 406 407 /** 408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 409 * @page: The page within the block of interest 410 * @flags: The flags to set 411 * @pfn: The target page frame number 412 * @end_bitidx: The last bit of interest 413 * @mask: mask of bits that the caller is interested in 414 */ 415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 416 unsigned long pfn, 417 unsigned long end_bitidx, 418 unsigned long mask) 419 { 420 unsigned long *bitmap; 421 unsigned long bitidx, word_bitidx; 422 unsigned long old_word, word; 423 424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 425 426 bitmap = get_pageblock_bitmap(page, pfn); 427 bitidx = pfn_to_bitidx(page, pfn); 428 word_bitidx = bitidx / BITS_PER_LONG; 429 bitidx &= (BITS_PER_LONG-1); 430 431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 432 433 bitidx += end_bitidx; 434 mask <<= (BITS_PER_LONG - bitidx - 1); 435 flags <<= (BITS_PER_LONG - bitidx - 1); 436 437 word = READ_ONCE(bitmap[word_bitidx]); 438 for (;;) { 439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 440 if (word == old_word) 441 break; 442 word = old_word; 443 } 444 } 445 446 void set_pageblock_migratetype(struct page *page, int migratetype) 447 { 448 if (unlikely(page_group_by_mobility_disabled && 449 migratetype < MIGRATE_PCPTYPES)) 450 migratetype = MIGRATE_UNMOVABLE; 451 452 set_pageblock_flags_group(page, (unsigned long)migratetype, 453 PB_migrate, PB_migrate_end); 454 } 455 456 #ifdef CONFIG_DEBUG_VM 457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 458 { 459 int ret = 0; 460 unsigned seq; 461 unsigned long pfn = page_to_pfn(page); 462 unsigned long sp, start_pfn; 463 464 do { 465 seq = zone_span_seqbegin(zone); 466 start_pfn = zone->zone_start_pfn; 467 sp = zone->spanned_pages; 468 if (!zone_spans_pfn(zone, pfn)) 469 ret = 1; 470 } while (zone_span_seqretry(zone, seq)); 471 472 if (ret) 473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 474 pfn, zone_to_nid(zone), zone->name, 475 start_pfn, start_pfn + sp); 476 477 return ret; 478 } 479 480 static int page_is_consistent(struct zone *zone, struct page *page) 481 { 482 if (!pfn_valid_within(page_to_pfn(page))) 483 return 0; 484 if (zone != page_zone(page)) 485 return 0; 486 487 return 1; 488 } 489 /* 490 * Temporary debugging check for pages not lying within a given zone. 491 */ 492 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 493 { 494 if (page_outside_zone_boundaries(zone, page)) 495 return 1; 496 if (!page_is_consistent(zone, page)) 497 return 1; 498 499 return 0; 500 } 501 #else 502 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 503 { 504 return 0; 505 } 506 #endif 507 508 static void bad_page(struct page *page, const char *reason, 509 unsigned long bad_flags) 510 { 511 static unsigned long resume; 512 static unsigned long nr_shown; 513 static unsigned long nr_unshown; 514 515 /* 516 * Allow a burst of 60 reports, then keep quiet for that minute; 517 * or allow a steady drip of one report per second. 518 */ 519 if (nr_shown == 60) { 520 if (time_before(jiffies, resume)) { 521 nr_unshown++; 522 goto out; 523 } 524 if (nr_unshown) { 525 pr_alert( 526 "BUG: Bad page state: %lu messages suppressed\n", 527 nr_unshown); 528 nr_unshown = 0; 529 } 530 nr_shown = 0; 531 } 532 if (nr_shown++ == 0) 533 resume = jiffies + 60 * HZ; 534 535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 536 current->comm, page_to_pfn(page)); 537 __dump_page(page, reason); 538 bad_flags &= page->flags; 539 if (bad_flags) 540 pr_alert("bad because of flags: %#lx(%pGp)\n", 541 bad_flags, &bad_flags); 542 dump_page_owner(page); 543 544 print_modules(); 545 dump_stack(); 546 out: 547 /* Leave bad fields for debug, except PageBuddy could make trouble */ 548 page_mapcount_reset(page); /* remove PageBuddy */ 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 550 } 551 552 /* 553 * Higher-order pages are called "compound pages". They are structured thusly: 554 * 555 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 556 * 557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 559 * 560 * The first tail page's ->compound_dtor holds the offset in array of compound 561 * page destructors. See compound_page_dtors. 562 * 563 * The first tail page's ->compound_order holds the order of allocation. 564 * This usage means that zero-order pages may not be compound. 565 */ 566 567 void free_compound_page(struct page *page) 568 { 569 __free_pages_ok(page, compound_order(page)); 570 } 571 572 void prep_compound_page(struct page *page, unsigned int order) 573 { 574 int i; 575 int nr_pages = 1 << order; 576 577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 578 set_compound_order(page, order); 579 __SetPageHead(page); 580 for (i = 1; i < nr_pages; i++) { 581 struct page *p = page + i; 582 set_page_count(p, 0); 583 p->mapping = TAIL_MAPPING; 584 set_compound_head(p, page); 585 } 586 atomic_set(compound_mapcount_ptr(page), -1); 587 } 588 589 #ifdef CONFIG_DEBUG_PAGEALLOC 590 unsigned int _debug_guardpage_minorder; 591 bool _debug_pagealloc_enabled __read_mostly 592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 593 EXPORT_SYMBOL(_debug_pagealloc_enabled); 594 bool _debug_guardpage_enabled __read_mostly; 595 596 static int __init early_debug_pagealloc(char *buf) 597 { 598 if (!buf) 599 return -EINVAL; 600 return kstrtobool(buf, &_debug_pagealloc_enabled); 601 } 602 early_param("debug_pagealloc", early_debug_pagealloc); 603 604 static bool need_debug_guardpage(void) 605 { 606 /* If we don't use debug_pagealloc, we don't need guard page */ 607 if (!debug_pagealloc_enabled()) 608 return false; 609 610 if (!debug_guardpage_minorder()) 611 return false; 612 613 return true; 614 } 615 616 static void init_debug_guardpage(void) 617 { 618 if (!debug_pagealloc_enabled()) 619 return; 620 621 if (!debug_guardpage_minorder()) 622 return; 623 624 _debug_guardpage_enabled = true; 625 } 626 627 struct page_ext_operations debug_guardpage_ops = { 628 .need = need_debug_guardpage, 629 .init = init_debug_guardpage, 630 }; 631 632 static int __init debug_guardpage_minorder_setup(char *buf) 633 { 634 unsigned long res; 635 636 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 637 pr_err("Bad debug_guardpage_minorder value\n"); 638 return 0; 639 } 640 _debug_guardpage_minorder = res; 641 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 642 return 0; 643 } 644 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 645 646 static inline bool set_page_guard(struct zone *zone, struct page *page, 647 unsigned int order, int migratetype) 648 { 649 struct page_ext *page_ext; 650 651 if (!debug_guardpage_enabled()) 652 return false; 653 654 if (order >= debug_guardpage_minorder()) 655 return false; 656 657 page_ext = lookup_page_ext(page); 658 if (unlikely(!page_ext)) 659 return false; 660 661 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 662 663 INIT_LIST_HEAD(&page->lru); 664 set_page_private(page, order); 665 /* Guard pages are not available for any usage */ 666 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 667 668 return true; 669 } 670 671 static inline void clear_page_guard(struct zone *zone, struct page *page, 672 unsigned int order, int migratetype) 673 { 674 struct page_ext *page_ext; 675 676 if (!debug_guardpage_enabled()) 677 return; 678 679 page_ext = lookup_page_ext(page); 680 if (unlikely(!page_ext)) 681 return; 682 683 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 684 685 set_page_private(page, 0); 686 if (!is_migrate_isolate(migratetype)) 687 __mod_zone_freepage_state(zone, (1 << order), migratetype); 688 } 689 #else 690 struct page_ext_operations debug_guardpage_ops; 691 static inline bool set_page_guard(struct zone *zone, struct page *page, 692 unsigned int order, int migratetype) { return false; } 693 static inline void clear_page_guard(struct zone *zone, struct page *page, 694 unsigned int order, int migratetype) {} 695 #endif 696 697 static inline void set_page_order(struct page *page, unsigned int order) 698 { 699 set_page_private(page, order); 700 __SetPageBuddy(page); 701 } 702 703 static inline void rmv_page_order(struct page *page) 704 { 705 __ClearPageBuddy(page); 706 set_page_private(page, 0); 707 } 708 709 /* 710 * This function checks whether a page is free && is the buddy 711 * we can do coalesce a page and its buddy if 712 * (a) the buddy is not in a hole (check before calling!) && 713 * (b) the buddy is in the buddy system && 714 * (c) a page and its buddy have the same order && 715 * (d) a page and its buddy are in the same zone. 716 * 717 * For recording whether a page is in the buddy system, we set ->_mapcount 718 * PAGE_BUDDY_MAPCOUNT_VALUE. 719 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 720 * serialized by zone->lock. 721 * 722 * For recording page's order, we use page_private(page). 723 */ 724 static inline int page_is_buddy(struct page *page, struct page *buddy, 725 unsigned int order) 726 { 727 if (page_is_guard(buddy) && page_order(buddy) == order) { 728 if (page_zone_id(page) != page_zone_id(buddy)) 729 return 0; 730 731 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 732 733 return 1; 734 } 735 736 if (PageBuddy(buddy) && page_order(buddy) == order) { 737 /* 738 * zone check is done late to avoid uselessly 739 * calculating zone/node ids for pages that could 740 * never merge. 741 */ 742 if (page_zone_id(page) != page_zone_id(buddy)) 743 return 0; 744 745 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 746 747 return 1; 748 } 749 return 0; 750 } 751 752 /* 753 * Freeing function for a buddy system allocator. 754 * 755 * The concept of a buddy system is to maintain direct-mapped table 756 * (containing bit values) for memory blocks of various "orders". 757 * The bottom level table contains the map for the smallest allocatable 758 * units of memory (here, pages), and each level above it describes 759 * pairs of units from the levels below, hence, "buddies". 760 * At a high level, all that happens here is marking the table entry 761 * at the bottom level available, and propagating the changes upward 762 * as necessary, plus some accounting needed to play nicely with other 763 * parts of the VM system. 764 * At each level, we keep a list of pages, which are heads of continuous 765 * free pages of length of (1 << order) and marked with _mapcount 766 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 767 * field. 768 * So when we are allocating or freeing one, we can derive the state of the 769 * other. That is, if we allocate a small block, and both were 770 * free, the remainder of the region must be split into blocks. 771 * If a block is freed, and its buddy is also free, then this 772 * triggers coalescing into a block of larger size. 773 * 774 * -- nyc 775 */ 776 777 static inline void __free_one_page(struct page *page, 778 unsigned long pfn, 779 struct zone *zone, unsigned int order, 780 int migratetype) 781 { 782 unsigned long combined_pfn; 783 unsigned long uninitialized_var(buddy_pfn); 784 struct page *buddy; 785 unsigned int max_order; 786 787 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 788 789 VM_BUG_ON(!zone_is_initialized(zone)); 790 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 791 792 VM_BUG_ON(migratetype == -1); 793 if (likely(!is_migrate_isolate(migratetype))) 794 __mod_zone_freepage_state(zone, 1 << order, migratetype); 795 796 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 797 VM_BUG_ON_PAGE(bad_range(zone, page), page); 798 799 continue_merging: 800 while (order < max_order - 1) { 801 buddy_pfn = __find_buddy_pfn(pfn, order); 802 buddy = page + (buddy_pfn - pfn); 803 804 if (!pfn_valid_within(buddy_pfn)) 805 goto done_merging; 806 if (!page_is_buddy(page, buddy, order)) 807 goto done_merging; 808 /* 809 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 810 * merge with it and move up one order. 811 */ 812 if (page_is_guard(buddy)) { 813 clear_page_guard(zone, buddy, order, migratetype); 814 } else { 815 list_del(&buddy->lru); 816 zone->free_area[order].nr_free--; 817 rmv_page_order(buddy); 818 } 819 combined_pfn = buddy_pfn & pfn; 820 page = page + (combined_pfn - pfn); 821 pfn = combined_pfn; 822 order++; 823 } 824 if (max_order < MAX_ORDER) { 825 /* If we are here, it means order is >= pageblock_order. 826 * We want to prevent merge between freepages on isolate 827 * pageblock and normal pageblock. Without this, pageblock 828 * isolation could cause incorrect freepage or CMA accounting. 829 * 830 * We don't want to hit this code for the more frequent 831 * low-order merging. 832 */ 833 if (unlikely(has_isolate_pageblock(zone))) { 834 int buddy_mt; 835 836 buddy_pfn = __find_buddy_pfn(pfn, order); 837 buddy = page + (buddy_pfn - pfn); 838 buddy_mt = get_pageblock_migratetype(buddy); 839 840 if (migratetype != buddy_mt 841 && (is_migrate_isolate(migratetype) || 842 is_migrate_isolate(buddy_mt))) 843 goto done_merging; 844 } 845 max_order++; 846 goto continue_merging; 847 } 848 849 done_merging: 850 set_page_order(page, order); 851 852 /* 853 * If this is not the largest possible page, check if the buddy 854 * of the next-highest order is free. If it is, it's possible 855 * that pages are being freed that will coalesce soon. In case, 856 * that is happening, add the free page to the tail of the list 857 * so it's less likely to be used soon and more likely to be merged 858 * as a higher order page 859 */ 860 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 861 struct page *higher_page, *higher_buddy; 862 combined_pfn = buddy_pfn & pfn; 863 higher_page = page + (combined_pfn - pfn); 864 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 865 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 866 if (pfn_valid_within(buddy_pfn) && 867 page_is_buddy(higher_page, higher_buddy, order + 1)) { 868 list_add_tail(&page->lru, 869 &zone->free_area[order].free_list[migratetype]); 870 goto out; 871 } 872 } 873 874 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 875 out: 876 zone->free_area[order].nr_free++; 877 } 878 879 /* 880 * A bad page could be due to a number of fields. Instead of multiple branches, 881 * try and check multiple fields with one check. The caller must do a detailed 882 * check if necessary. 883 */ 884 static inline bool page_expected_state(struct page *page, 885 unsigned long check_flags) 886 { 887 if (unlikely(atomic_read(&page->_mapcount) != -1)) 888 return false; 889 890 if (unlikely((unsigned long)page->mapping | 891 page_ref_count(page) | 892 #ifdef CONFIG_MEMCG 893 (unsigned long)page->mem_cgroup | 894 #endif 895 (page->flags & check_flags))) 896 return false; 897 898 return true; 899 } 900 901 static void free_pages_check_bad(struct page *page) 902 { 903 const char *bad_reason; 904 unsigned long bad_flags; 905 906 bad_reason = NULL; 907 bad_flags = 0; 908 909 if (unlikely(atomic_read(&page->_mapcount) != -1)) 910 bad_reason = "nonzero mapcount"; 911 if (unlikely(page->mapping != NULL)) 912 bad_reason = "non-NULL mapping"; 913 if (unlikely(page_ref_count(page) != 0)) 914 bad_reason = "nonzero _refcount"; 915 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 916 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 917 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 918 } 919 #ifdef CONFIG_MEMCG 920 if (unlikely(page->mem_cgroup)) 921 bad_reason = "page still charged to cgroup"; 922 #endif 923 bad_page(page, bad_reason, bad_flags); 924 } 925 926 static inline int free_pages_check(struct page *page) 927 { 928 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 929 return 0; 930 931 /* Something has gone sideways, find it */ 932 free_pages_check_bad(page); 933 return 1; 934 } 935 936 static int free_tail_pages_check(struct page *head_page, struct page *page) 937 { 938 int ret = 1; 939 940 /* 941 * We rely page->lru.next never has bit 0 set, unless the page 942 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 943 */ 944 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 945 946 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 947 ret = 0; 948 goto out; 949 } 950 switch (page - head_page) { 951 case 1: 952 /* the first tail page: ->mapping is compound_mapcount() */ 953 if (unlikely(compound_mapcount(page))) { 954 bad_page(page, "nonzero compound_mapcount", 0); 955 goto out; 956 } 957 break; 958 case 2: 959 /* 960 * the second tail page: ->mapping is 961 * page_deferred_list().next -- ignore value. 962 */ 963 break; 964 default: 965 if (page->mapping != TAIL_MAPPING) { 966 bad_page(page, "corrupted mapping in tail page", 0); 967 goto out; 968 } 969 break; 970 } 971 if (unlikely(!PageTail(page))) { 972 bad_page(page, "PageTail not set", 0); 973 goto out; 974 } 975 if (unlikely(compound_head(page) != head_page)) { 976 bad_page(page, "compound_head not consistent", 0); 977 goto out; 978 } 979 ret = 0; 980 out: 981 page->mapping = NULL; 982 clear_compound_head(page); 983 return ret; 984 } 985 986 static __always_inline bool free_pages_prepare(struct page *page, 987 unsigned int order, bool check_free) 988 { 989 int bad = 0; 990 991 VM_BUG_ON_PAGE(PageTail(page), page); 992 993 trace_mm_page_free(page, order); 994 995 /* 996 * Check tail pages before head page information is cleared to 997 * avoid checking PageCompound for order-0 pages. 998 */ 999 if (unlikely(order)) { 1000 bool compound = PageCompound(page); 1001 int i; 1002 1003 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1004 1005 if (compound) 1006 ClearPageDoubleMap(page); 1007 for (i = 1; i < (1 << order); i++) { 1008 if (compound) 1009 bad += free_tail_pages_check(page, page + i); 1010 if (unlikely(free_pages_check(page + i))) { 1011 bad++; 1012 continue; 1013 } 1014 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1015 } 1016 } 1017 if (PageMappingFlags(page)) 1018 page->mapping = NULL; 1019 if (memcg_kmem_enabled() && PageKmemcg(page)) 1020 memcg_kmem_uncharge(page, order); 1021 if (check_free) 1022 bad += free_pages_check(page); 1023 if (bad) 1024 return false; 1025 1026 page_cpupid_reset_last(page); 1027 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1028 reset_page_owner(page, order); 1029 1030 if (!PageHighMem(page)) { 1031 debug_check_no_locks_freed(page_address(page), 1032 PAGE_SIZE << order); 1033 debug_check_no_obj_freed(page_address(page), 1034 PAGE_SIZE << order); 1035 } 1036 arch_free_page(page, order); 1037 kernel_poison_pages(page, 1 << order, 0); 1038 kernel_map_pages(page, 1 << order, 0); 1039 kasan_free_pages(page, order); 1040 1041 return true; 1042 } 1043 1044 #ifdef CONFIG_DEBUG_VM 1045 static inline bool free_pcp_prepare(struct page *page) 1046 { 1047 return free_pages_prepare(page, 0, true); 1048 } 1049 1050 static inline bool bulkfree_pcp_prepare(struct page *page) 1051 { 1052 return false; 1053 } 1054 #else 1055 static bool free_pcp_prepare(struct page *page) 1056 { 1057 return free_pages_prepare(page, 0, false); 1058 } 1059 1060 static bool bulkfree_pcp_prepare(struct page *page) 1061 { 1062 return free_pages_check(page); 1063 } 1064 #endif /* CONFIG_DEBUG_VM */ 1065 1066 static inline void prefetch_buddy(struct page *page) 1067 { 1068 unsigned long pfn = page_to_pfn(page); 1069 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1070 struct page *buddy = page + (buddy_pfn - pfn); 1071 1072 prefetch(buddy); 1073 } 1074 1075 /* 1076 * Frees a number of pages from the PCP lists 1077 * Assumes all pages on list are in same zone, and of same order. 1078 * count is the number of pages to free. 1079 * 1080 * If the zone was previously in an "all pages pinned" state then look to 1081 * see if this freeing clears that state. 1082 * 1083 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1084 * pinned" detection logic. 1085 */ 1086 static void free_pcppages_bulk(struct zone *zone, int count, 1087 struct per_cpu_pages *pcp) 1088 { 1089 int migratetype = 0; 1090 int batch_free = 0; 1091 int prefetch_nr = 0; 1092 bool isolated_pageblocks; 1093 struct page *page, *tmp; 1094 LIST_HEAD(head); 1095 1096 while (count) { 1097 struct list_head *list; 1098 1099 /* 1100 * Remove pages from lists in a round-robin fashion. A 1101 * batch_free count is maintained that is incremented when an 1102 * empty list is encountered. This is so more pages are freed 1103 * off fuller lists instead of spinning excessively around empty 1104 * lists 1105 */ 1106 do { 1107 batch_free++; 1108 if (++migratetype == MIGRATE_PCPTYPES) 1109 migratetype = 0; 1110 list = &pcp->lists[migratetype]; 1111 } while (list_empty(list)); 1112 1113 /* This is the only non-empty list. Free them all. */ 1114 if (batch_free == MIGRATE_PCPTYPES) 1115 batch_free = count; 1116 1117 do { 1118 page = list_last_entry(list, struct page, lru); 1119 /* must delete to avoid corrupting pcp list */ 1120 list_del(&page->lru); 1121 pcp->count--; 1122 1123 if (bulkfree_pcp_prepare(page)) 1124 continue; 1125 1126 list_add_tail(&page->lru, &head); 1127 1128 /* 1129 * We are going to put the page back to the global 1130 * pool, prefetch its buddy to speed up later access 1131 * under zone->lock. It is believed the overhead of 1132 * an additional test and calculating buddy_pfn here 1133 * can be offset by reduced memory latency later. To 1134 * avoid excessive prefetching due to large count, only 1135 * prefetch buddy for the first pcp->batch nr of pages. 1136 */ 1137 if (prefetch_nr++ < pcp->batch) 1138 prefetch_buddy(page); 1139 } while (--count && --batch_free && !list_empty(list)); 1140 } 1141 1142 spin_lock(&zone->lock); 1143 isolated_pageblocks = has_isolate_pageblock(zone); 1144 1145 /* 1146 * Use safe version since after __free_one_page(), 1147 * page->lru.next will not point to original list. 1148 */ 1149 list_for_each_entry_safe(page, tmp, &head, lru) { 1150 int mt = get_pcppage_migratetype(page); 1151 /* MIGRATE_ISOLATE page should not go to pcplists */ 1152 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1153 /* Pageblock could have been isolated meanwhile */ 1154 if (unlikely(isolated_pageblocks)) 1155 mt = get_pageblock_migratetype(page); 1156 1157 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1158 trace_mm_page_pcpu_drain(page, 0, mt); 1159 } 1160 spin_unlock(&zone->lock); 1161 } 1162 1163 static void free_one_page(struct zone *zone, 1164 struct page *page, unsigned long pfn, 1165 unsigned int order, 1166 int migratetype) 1167 { 1168 spin_lock(&zone->lock); 1169 if (unlikely(has_isolate_pageblock(zone) || 1170 is_migrate_isolate(migratetype))) { 1171 migratetype = get_pfnblock_migratetype(page, pfn); 1172 } 1173 __free_one_page(page, pfn, zone, order, migratetype); 1174 spin_unlock(&zone->lock); 1175 } 1176 1177 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1178 unsigned long zone, int nid) 1179 { 1180 mm_zero_struct_page(page); 1181 set_page_links(page, zone, nid, pfn); 1182 init_page_count(page); 1183 page_mapcount_reset(page); 1184 page_cpupid_reset_last(page); 1185 1186 INIT_LIST_HEAD(&page->lru); 1187 #ifdef WANT_PAGE_VIRTUAL 1188 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1189 if (!is_highmem_idx(zone)) 1190 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1191 #endif 1192 } 1193 1194 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1195 static void __meminit init_reserved_page(unsigned long pfn) 1196 { 1197 pg_data_t *pgdat; 1198 int nid, zid; 1199 1200 if (!early_page_uninitialised(pfn)) 1201 return; 1202 1203 nid = early_pfn_to_nid(pfn); 1204 pgdat = NODE_DATA(nid); 1205 1206 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1207 struct zone *zone = &pgdat->node_zones[zid]; 1208 1209 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1210 break; 1211 } 1212 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1213 } 1214 #else 1215 static inline void init_reserved_page(unsigned long pfn) 1216 { 1217 } 1218 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1219 1220 /* 1221 * Initialised pages do not have PageReserved set. This function is 1222 * called for each range allocated by the bootmem allocator and 1223 * marks the pages PageReserved. The remaining valid pages are later 1224 * sent to the buddy page allocator. 1225 */ 1226 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1227 { 1228 unsigned long start_pfn = PFN_DOWN(start); 1229 unsigned long end_pfn = PFN_UP(end); 1230 1231 for (; start_pfn < end_pfn; start_pfn++) { 1232 if (pfn_valid(start_pfn)) { 1233 struct page *page = pfn_to_page(start_pfn); 1234 1235 init_reserved_page(start_pfn); 1236 1237 /* Avoid false-positive PageTail() */ 1238 INIT_LIST_HEAD(&page->lru); 1239 1240 SetPageReserved(page); 1241 } 1242 } 1243 } 1244 1245 static void __free_pages_ok(struct page *page, unsigned int order) 1246 { 1247 unsigned long flags; 1248 int migratetype; 1249 unsigned long pfn = page_to_pfn(page); 1250 1251 if (!free_pages_prepare(page, order, true)) 1252 return; 1253 1254 migratetype = get_pfnblock_migratetype(page, pfn); 1255 local_irq_save(flags); 1256 __count_vm_events(PGFREE, 1 << order); 1257 free_one_page(page_zone(page), page, pfn, order, migratetype); 1258 local_irq_restore(flags); 1259 } 1260 1261 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1262 { 1263 unsigned int nr_pages = 1 << order; 1264 struct page *p = page; 1265 unsigned int loop; 1266 1267 prefetchw(p); 1268 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1269 prefetchw(p + 1); 1270 __ClearPageReserved(p); 1271 set_page_count(p, 0); 1272 } 1273 __ClearPageReserved(p); 1274 set_page_count(p, 0); 1275 1276 page_zone(page)->managed_pages += nr_pages; 1277 set_page_refcounted(page); 1278 __free_pages(page, order); 1279 } 1280 1281 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1282 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1283 1284 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1285 1286 int __meminit early_pfn_to_nid(unsigned long pfn) 1287 { 1288 static DEFINE_SPINLOCK(early_pfn_lock); 1289 int nid; 1290 1291 spin_lock(&early_pfn_lock); 1292 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1293 if (nid < 0) 1294 nid = first_online_node; 1295 spin_unlock(&early_pfn_lock); 1296 1297 return nid; 1298 } 1299 #endif 1300 1301 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1302 static inline bool __meminit __maybe_unused 1303 meminit_pfn_in_nid(unsigned long pfn, int node, 1304 struct mminit_pfnnid_cache *state) 1305 { 1306 int nid; 1307 1308 nid = __early_pfn_to_nid(pfn, state); 1309 if (nid >= 0 && nid != node) 1310 return false; 1311 return true; 1312 } 1313 1314 /* Only safe to use early in boot when initialisation is single-threaded */ 1315 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1316 { 1317 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1318 } 1319 1320 #else 1321 1322 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1323 { 1324 return true; 1325 } 1326 static inline bool __meminit __maybe_unused 1327 meminit_pfn_in_nid(unsigned long pfn, int node, 1328 struct mminit_pfnnid_cache *state) 1329 { 1330 return true; 1331 } 1332 #endif 1333 1334 1335 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1336 unsigned int order) 1337 { 1338 if (early_page_uninitialised(pfn)) 1339 return; 1340 return __free_pages_boot_core(page, order); 1341 } 1342 1343 /* 1344 * Check that the whole (or subset of) a pageblock given by the interval of 1345 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1346 * with the migration of free compaction scanner. The scanners then need to 1347 * use only pfn_valid_within() check for arches that allow holes within 1348 * pageblocks. 1349 * 1350 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1351 * 1352 * It's possible on some configurations to have a setup like node0 node1 node0 1353 * i.e. it's possible that all pages within a zones range of pages do not 1354 * belong to a single zone. We assume that a border between node0 and node1 1355 * can occur within a single pageblock, but not a node0 node1 node0 1356 * interleaving within a single pageblock. It is therefore sufficient to check 1357 * the first and last page of a pageblock and avoid checking each individual 1358 * page in a pageblock. 1359 */ 1360 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1361 unsigned long end_pfn, struct zone *zone) 1362 { 1363 struct page *start_page; 1364 struct page *end_page; 1365 1366 /* end_pfn is one past the range we are checking */ 1367 end_pfn--; 1368 1369 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1370 return NULL; 1371 1372 start_page = pfn_to_online_page(start_pfn); 1373 if (!start_page) 1374 return NULL; 1375 1376 if (page_zone(start_page) != zone) 1377 return NULL; 1378 1379 end_page = pfn_to_page(end_pfn); 1380 1381 /* This gives a shorter code than deriving page_zone(end_page) */ 1382 if (page_zone_id(start_page) != page_zone_id(end_page)) 1383 return NULL; 1384 1385 return start_page; 1386 } 1387 1388 void set_zone_contiguous(struct zone *zone) 1389 { 1390 unsigned long block_start_pfn = zone->zone_start_pfn; 1391 unsigned long block_end_pfn; 1392 1393 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1394 for (; block_start_pfn < zone_end_pfn(zone); 1395 block_start_pfn = block_end_pfn, 1396 block_end_pfn += pageblock_nr_pages) { 1397 1398 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1399 1400 if (!__pageblock_pfn_to_page(block_start_pfn, 1401 block_end_pfn, zone)) 1402 return; 1403 } 1404 1405 /* We confirm that there is no hole */ 1406 zone->contiguous = true; 1407 } 1408 1409 void clear_zone_contiguous(struct zone *zone) 1410 { 1411 zone->contiguous = false; 1412 } 1413 1414 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1415 static void __init deferred_free_range(unsigned long pfn, 1416 unsigned long nr_pages) 1417 { 1418 struct page *page; 1419 unsigned long i; 1420 1421 if (!nr_pages) 1422 return; 1423 1424 page = pfn_to_page(pfn); 1425 1426 /* Free a large naturally-aligned chunk if possible */ 1427 if (nr_pages == pageblock_nr_pages && 1428 (pfn & (pageblock_nr_pages - 1)) == 0) { 1429 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1430 __free_pages_boot_core(page, pageblock_order); 1431 return; 1432 } 1433 1434 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1435 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1436 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1437 __free_pages_boot_core(page, 0); 1438 } 1439 } 1440 1441 /* Completion tracking for deferred_init_memmap() threads */ 1442 static atomic_t pgdat_init_n_undone __initdata; 1443 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1444 1445 static inline void __init pgdat_init_report_one_done(void) 1446 { 1447 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1448 complete(&pgdat_init_all_done_comp); 1449 } 1450 1451 /* 1452 * Returns true if page needs to be initialized or freed to buddy allocator. 1453 * 1454 * First we check if pfn is valid on architectures where it is possible to have 1455 * holes within pageblock_nr_pages. On systems where it is not possible, this 1456 * function is optimized out. 1457 * 1458 * Then, we check if a current large page is valid by only checking the validity 1459 * of the head pfn. 1460 * 1461 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave 1462 * within a node: a pfn is between start and end of a node, but does not belong 1463 * to this memory node. 1464 */ 1465 static inline bool __init 1466 deferred_pfn_valid(int nid, unsigned long pfn, 1467 struct mminit_pfnnid_cache *nid_init_state) 1468 { 1469 if (!pfn_valid_within(pfn)) 1470 return false; 1471 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1472 return false; 1473 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) 1474 return false; 1475 return true; 1476 } 1477 1478 /* 1479 * Free pages to buddy allocator. Try to free aligned pages in 1480 * pageblock_nr_pages sizes. 1481 */ 1482 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, 1483 unsigned long end_pfn) 1484 { 1485 struct mminit_pfnnid_cache nid_init_state = { }; 1486 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1487 unsigned long nr_free = 0; 1488 1489 for (; pfn < end_pfn; pfn++) { 1490 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1491 deferred_free_range(pfn - nr_free, nr_free); 1492 nr_free = 0; 1493 } else if (!(pfn & nr_pgmask)) { 1494 deferred_free_range(pfn - nr_free, nr_free); 1495 nr_free = 1; 1496 touch_nmi_watchdog(); 1497 } else { 1498 nr_free++; 1499 } 1500 } 1501 /* Free the last block of pages to allocator */ 1502 deferred_free_range(pfn - nr_free, nr_free); 1503 } 1504 1505 /* 1506 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1507 * by performing it only once every pageblock_nr_pages. 1508 * Return number of pages initialized. 1509 */ 1510 static unsigned long __init deferred_init_pages(int nid, int zid, 1511 unsigned long pfn, 1512 unsigned long end_pfn) 1513 { 1514 struct mminit_pfnnid_cache nid_init_state = { }; 1515 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1516 unsigned long nr_pages = 0; 1517 struct page *page = NULL; 1518 1519 for (; pfn < end_pfn; pfn++) { 1520 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1521 page = NULL; 1522 continue; 1523 } else if (!page || !(pfn & nr_pgmask)) { 1524 page = pfn_to_page(pfn); 1525 touch_nmi_watchdog(); 1526 } else { 1527 page++; 1528 } 1529 __init_single_page(page, pfn, zid, nid); 1530 nr_pages++; 1531 } 1532 return (nr_pages); 1533 } 1534 1535 /* Initialise remaining memory on a node */ 1536 static int __init deferred_init_memmap(void *data) 1537 { 1538 pg_data_t *pgdat = data; 1539 int nid = pgdat->node_id; 1540 unsigned long start = jiffies; 1541 unsigned long nr_pages = 0; 1542 unsigned long spfn, epfn, first_init_pfn, flags; 1543 phys_addr_t spa, epa; 1544 int zid; 1545 struct zone *zone; 1546 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1547 u64 i; 1548 1549 /* Bind memory initialisation thread to a local node if possible */ 1550 if (!cpumask_empty(cpumask)) 1551 set_cpus_allowed_ptr(current, cpumask); 1552 1553 pgdat_resize_lock(pgdat, &flags); 1554 first_init_pfn = pgdat->first_deferred_pfn; 1555 if (first_init_pfn == ULONG_MAX) { 1556 pgdat_resize_unlock(pgdat, &flags); 1557 pgdat_init_report_one_done(); 1558 return 0; 1559 } 1560 1561 /* Sanity check boundaries */ 1562 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1563 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1564 pgdat->first_deferred_pfn = ULONG_MAX; 1565 1566 /* Only the highest zone is deferred so find it */ 1567 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1568 zone = pgdat->node_zones + zid; 1569 if (first_init_pfn < zone_end_pfn(zone)) 1570 break; 1571 } 1572 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1573 1574 /* 1575 * Initialize and free pages. We do it in two loops: first we initialize 1576 * struct page, than free to buddy allocator, because while we are 1577 * freeing pages we can access pages that are ahead (computing buddy 1578 * page in __free_one_page()). 1579 */ 1580 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1581 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1582 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1583 nr_pages += deferred_init_pages(nid, zid, spfn, epfn); 1584 } 1585 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1586 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1587 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1588 deferred_free_pages(nid, zid, spfn, epfn); 1589 } 1590 pgdat_resize_unlock(pgdat, &flags); 1591 1592 /* Sanity check that the next zone really is unpopulated */ 1593 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1594 1595 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1596 jiffies_to_msecs(jiffies - start)); 1597 1598 pgdat_init_report_one_done(); 1599 return 0; 1600 } 1601 1602 /* 1603 * During boot we initialize deferred pages on-demand, as needed, but once 1604 * page_alloc_init_late() has finished, the deferred pages are all initialized, 1605 * and we can permanently disable that path. 1606 */ 1607 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 1608 1609 /* 1610 * If this zone has deferred pages, try to grow it by initializing enough 1611 * deferred pages to satisfy the allocation specified by order, rounded up to 1612 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1613 * of SECTION_SIZE bytes by initializing struct pages in increments of 1614 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1615 * 1616 * Return true when zone was grown, otherwise return false. We return true even 1617 * when we grow less than requested, to let the caller decide if there are 1618 * enough pages to satisfy the allocation. 1619 * 1620 * Note: We use noinline because this function is needed only during boot, and 1621 * it is called from a __ref function _deferred_grow_zone. This way we are 1622 * making sure that it is not inlined into permanent text section. 1623 */ 1624 static noinline bool __init 1625 deferred_grow_zone(struct zone *zone, unsigned int order) 1626 { 1627 int zid = zone_idx(zone); 1628 int nid = zone_to_nid(zone); 1629 pg_data_t *pgdat = NODE_DATA(nid); 1630 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1631 unsigned long nr_pages = 0; 1632 unsigned long first_init_pfn, spfn, epfn, t, flags; 1633 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1634 phys_addr_t spa, epa; 1635 u64 i; 1636 1637 /* Only the last zone may have deferred pages */ 1638 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1639 return false; 1640 1641 pgdat_resize_lock(pgdat, &flags); 1642 1643 /* 1644 * If deferred pages have been initialized while we were waiting for 1645 * the lock, return true, as the zone was grown. The caller will retry 1646 * this zone. We won't return to this function since the caller also 1647 * has this static branch. 1648 */ 1649 if (!static_branch_unlikely(&deferred_pages)) { 1650 pgdat_resize_unlock(pgdat, &flags); 1651 return true; 1652 } 1653 1654 /* 1655 * If someone grew this zone while we were waiting for spinlock, return 1656 * true, as there might be enough pages already. 1657 */ 1658 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1659 pgdat_resize_unlock(pgdat, &flags); 1660 return true; 1661 } 1662 1663 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn); 1664 1665 if (first_init_pfn >= pgdat_end_pfn(pgdat)) { 1666 pgdat_resize_unlock(pgdat, &flags); 1667 return false; 1668 } 1669 1670 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1671 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1672 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1673 1674 while (spfn < epfn && nr_pages < nr_pages_needed) { 1675 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION); 1676 first_deferred_pfn = min(t, epfn); 1677 nr_pages += deferred_init_pages(nid, zid, spfn, 1678 first_deferred_pfn); 1679 spfn = first_deferred_pfn; 1680 } 1681 1682 if (nr_pages >= nr_pages_needed) 1683 break; 1684 } 1685 1686 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1687 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1688 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa)); 1689 deferred_free_pages(nid, zid, spfn, epfn); 1690 1691 if (first_deferred_pfn == epfn) 1692 break; 1693 } 1694 pgdat->first_deferred_pfn = first_deferred_pfn; 1695 pgdat_resize_unlock(pgdat, &flags); 1696 1697 return nr_pages > 0; 1698 } 1699 1700 /* 1701 * deferred_grow_zone() is __init, but it is called from 1702 * get_page_from_freelist() during early boot until deferred_pages permanently 1703 * disables this call. This is why we have refdata wrapper to avoid warning, 1704 * and to ensure that the function body gets unloaded. 1705 */ 1706 static bool __ref 1707 _deferred_grow_zone(struct zone *zone, unsigned int order) 1708 { 1709 return deferred_grow_zone(zone, order); 1710 } 1711 1712 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1713 1714 void __init page_alloc_init_late(void) 1715 { 1716 struct zone *zone; 1717 1718 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1719 int nid; 1720 1721 /* There will be num_node_state(N_MEMORY) threads */ 1722 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1723 for_each_node_state(nid, N_MEMORY) { 1724 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1725 } 1726 1727 /* Block until all are initialised */ 1728 wait_for_completion(&pgdat_init_all_done_comp); 1729 1730 /* 1731 * We initialized the rest of the deferred pages. Permanently disable 1732 * on-demand struct page initialization. 1733 */ 1734 static_branch_disable(&deferred_pages); 1735 1736 /* Reinit limits that are based on free pages after the kernel is up */ 1737 files_maxfiles_init(); 1738 #endif 1739 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1740 /* Discard memblock private memory */ 1741 memblock_discard(); 1742 #endif 1743 1744 for_each_populated_zone(zone) 1745 set_zone_contiguous(zone); 1746 } 1747 1748 #ifdef CONFIG_CMA 1749 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1750 void __init init_cma_reserved_pageblock(struct page *page) 1751 { 1752 unsigned i = pageblock_nr_pages; 1753 struct page *p = page; 1754 1755 do { 1756 __ClearPageReserved(p); 1757 set_page_count(p, 0); 1758 } while (++p, --i); 1759 1760 set_pageblock_migratetype(page, MIGRATE_CMA); 1761 1762 if (pageblock_order >= MAX_ORDER) { 1763 i = pageblock_nr_pages; 1764 p = page; 1765 do { 1766 set_page_refcounted(p); 1767 __free_pages(p, MAX_ORDER - 1); 1768 p += MAX_ORDER_NR_PAGES; 1769 } while (i -= MAX_ORDER_NR_PAGES); 1770 } else { 1771 set_page_refcounted(page); 1772 __free_pages(page, pageblock_order); 1773 } 1774 1775 adjust_managed_page_count(page, pageblock_nr_pages); 1776 } 1777 #endif 1778 1779 /* 1780 * The order of subdivision here is critical for the IO subsystem. 1781 * Please do not alter this order without good reasons and regression 1782 * testing. Specifically, as large blocks of memory are subdivided, 1783 * the order in which smaller blocks are delivered depends on the order 1784 * they're subdivided in this function. This is the primary factor 1785 * influencing the order in which pages are delivered to the IO 1786 * subsystem according to empirical testing, and this is also justified 1787 * by considering the behavior of a buddy system containing a single 1788 * large block of memory acted on by a series of small allocations. 1789 * This behavior is a critical factor in sglist merging's success. 1790 * 1791 * -- nyc 1792 */ 1793 static inline void expand(struct zone *zone, struct page *page, 1794 int low, int high, struct free_area *area, 1795 int migratetype) 1796 { 1797 unsigned long size = 1 << high; 1798 1799 while (high > low) { 1800 area--; 1801 high--; 1802 size >>= 1; 1803 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1804 1805 /* 1806 * Mark as guard pages (or page), that will allow to 1807 * merge back to allocator when buddy will be freed. 1808 * Corresponding page table entries will not be touched, 1809 * pages will stay not present in virtual address space 1810 */ 1811 if (set_page_guard(zone, &page[size], high, migratetype)) 1812 continue; 1813 1814 list_add(&page[size].lru, &area->free_list[migratetype]); 1815 area->nr_free++; 1816 set_page_order(&page[size], high); 1817 } 1818 } 1819 1820 static void check_new_page_bad(struct page *page) 1821 { 1822 const char *bad_reason = NULL; 1823 unsigned long bad_flags = 0; 1824 1825 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1826 bad_reason = "nonzero mapcount"; 1827 if (unlikely(page->mapping != NULL)) 1828 bad_reason = "non-NULL mapping"; 1829 if (unlikely(page_ref_count(page) != 0)) 1830 bad_reason = "nonzero _count"; 1831 if (unlikely(page->flags & __PG_HWPOISON)) { 1832 bad_reason = "HWPoisoned (hardware-corrupted)"; 1833 bad_flags = __PG_HWPOISON; 1834 /* Don't complain about hwpoisoned pages */ 1835 page_mapcount_reset(page); /* remove PageBuddy */ 1836 return; 1837 } 1838 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1839 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1840 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1841 } 1842 #ifdef CONFIG_MEMCG 1843 if (unlikely(page->mem_cgroup)) 1844 bad_reason = "page still charged to cgroup"; 1845 #endif 1846 bad_page(page, bad_reason, bad_flags); 1847 } 1848 1849 /* 1850 * This page is about to be returned from the page allocator 1851 */ 1852 static inline int check_new_page(struct page *page) 1853 { 1854 if (likely(page_expected_state(page, 1855 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1856 return 0; 1857 1858 check_new_page_bad(page); 1859 return 1; 1860 } 1861 1862 static inline bool free_pages_prezeroed(void) 1863 { 1864 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1865 page_poisoning_enabled(); 1866 } 1867 1868 #ifdef CONFIG_DEBUG_VM 1869 static bool check_pcp_refill(struct page *page) 1870 { 1871 return false; 1872 } 1873 1874 static bool check_new_pcp(struct page *page) 1875 { 1876 return check_new_page(page); 1877 } 1878 #else 1879 static bool check_pcp_refill(struct page *page) 1880 { 1881 return check_new_page(page); 1882 } 1883 static bool check_new_pcp(struct page *page) 1884 { 1885 return false; 1886 } 1887 #endif /* CONFIG_DEBUG_VM */ 1888 1889 static bool check_new_pages(struct page *page, unsigned int order) 1890 { 1891 int i; 1892 for (i = 0; i < (1 << order); i++) { 1893 struct page *p = page + i; 1894 1895 if (unlikely(check_new_page(p))) 1896 return true; 1897 } 1898 1899 return false; 1900 } 1901 1902 inline void post_alloc_hook(struct page *page, unsigned int order, 1903 gfp_t gfp_flags) 1904 { 1905 set_page_private(page, 0); 1906 set_page_refcounted(page); 1907 1908 arch_alloc_page(page, order); 1909 kernel_map_pages(page, 1 << order, 1); 1910 kernel_poison_pages(page, 1 << order, 1); 1911 kasan_alloc_pages(page, order); 1912 set_page_owner(page, order, gfp_flags); 1913 } 1914 1915 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1916 unsigned int alloc_flags) 1917 { 1918 int i; 1919 1920 post_alloc_hook(page, order, gfp_flags); 1921 1922 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1923 for (i = 0; i < (1 << order); i++) 1924 clear_highpage(page + i); 1925 1926 if (order && (gfp_flags & __GFP_COMP)) 1927 prep_compound_page(page, order); 1928 1929 /* 1930 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1931 * allocate the page. The expectation is that the caller is taking 1932 * steps that will free more memory. The caller should avoid the page 1933 * being used for !PFMEMALLOC purposes. 1934 */ 1935 if (alloc_flags & ALLOC_NO_WATERMARKS) 1936 set_page_pfmemalloc(page); 1937 else 1938 clear_page_pfmemalloc(page); 1939 } 1940 1941 /* 1942 * Go through the free lists for the given migratetype and remove 1943 * the smallest available page from the freelists 1944 */ 1945 static __always_inline 1946 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1947 int migratetype) 1948 { 1949 unsigned int current_order; 1950 struct free_area *area; 1951 struct page *page; 1952 1953 /* Find a page of the appropriate size in the preferred list */ 1954 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1955 area = &(zone->free_area[current_order]); 1956 page = list_first_entry_or_null(&area->free_list[migratetype], 1957 struct page, lru); 1958 if (!page) 1959 continue; 1960 list_del(&page->lru); 1961 rmv_page_order(page); 1962 area->nr_free--; 1963 expand(zone, page, order, current_order, area, migratetype); 1964 set_pcppage_migratetype(page, migratetype); 1965 return page; 1966 } 1967 1968 return NULL; 1969 } 1970 1971 1972 /* 1973 * This array describes the order lists are fallen back to when 1974 * the free lists for the desirable migrate type are depleted 1975 */ 1976 static int fallbacks[MIGRATE_TYPES][4] = { 1977 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1978 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1979 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1980 #ifdef CONFIG_CMA 1981 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1982 #endif 1983 #ifdef CONFIG_MEMORY_ISOLATION 1984 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1985 #endif 1986 }; 1987 1988 #ifdef CONFIG_CMA 1989 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1990 unsigned int order) 1991 { 1992 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1993 } 1994 #else 1995 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1996 unsigned int order) { return NULL; } 1997 #endif 1998 1999 /* 2000 * Move the free pages in a range to the free lists of the requested type. 2001 * Note that start_page and end_pages are not aligned on a pageblock 2002 * boundary. If alignment is required, use move_freepages_block() 2003 */ 2004 static int move_freepages(struct zone *zone, 2005 struct page *start_page, struct page *end_page, 2006 int migratetype, int *num_movable) 2007 { 2008 struct page *page; 2009 unsigned int order; 2010 int pages_moved = 0; 2011 2012 #ifndef CONFIG_HOLES_IN_ZONE 2013 /* 2014 * page_zone is not safe to call in this context when 2015 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2016 * anyway as we check zone boundaries in move_freepages_block(). 2017 * Remove at a later date when no bug reports exist related to 2018 * grouping pages by mobility 2019 */ 2020 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2021 pfn_valid(page_to_pfn(end_page)) && 2022 page_zone(start_page) != page_zone(end_page)); 2023 #endif 2024 2025 if (num_movable) 2026 *num_movable = 0; 2027 2028 for (page = start_page; page <= end_page;) { 2029 if (!pfn_valid_within(page_to_pfn(page))) { 2030 page++; 2031 continue; 2032 } 2033 2034 /* Make sure we are not inadvertently changing nodes */ 2035 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2036 2037 if (!PageBuddy(page)) { 2038 /* 2039 * We assume that pages that could be isolated for 2040 * migration are movable. But we don't actually try 2041 * isolating, as that would be expensive. 2042 */ 2043 if (num_movable && 2044 (PageLRU(page) || __PageMovable(page))) 2045 (*num_movable)++; 2046 2047 page++; 2048 continue; 2049 } 2050 2051 order = page_order(page); 2052 list_move(&page->lru, 2053 &zone->free_area[order].free_list[migratetype]); 2054 page += 1 << order; 2055 pages_moved += 1 << order; 2056 } 2057 2058 return pages_moved; 2059 } 2060 2061 int move_freepages_block(struct zone *zone, struct page *page, 2062 int migratetype, int *num_movable) 2063 { 2064 unsigned long start_pfn, end_pfn; 2065 struct page *start_page, *end_page; 2066 2067 start_pfn = page_to_pfn(page); 2068 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2069 start_page = pfn_to_page(start_pfn); 2070 end_page = start_page + pageblock_nr_pages - 1; 2071 end_pfn = start_pfn + pageblock_nr_pages - 1; 2072 2073 /* Do not cross zone boundaries */ 2074 if (!zone_spans_pfn(zone, start_pfn)) 2075 start_page = page; 2076 if (!zone_spans_pfn(zone, end_pfn)) 2077 return 0; 2078 2079 return move_freepages(zone, start_page, end_page, migratetype, 2080 num_movable); 2081 } 2082 2083 static void change_pageblock_range(struct page *pageblock_page, 2084 int start_order, int migratetype) 2085 { 2086 int nr_pageblocks = 1 << (start_order - pageblock_order); 2087 2088 while (nr_pageblocks--) { 2089 set_pageblock_migratetype(pageblock_page, migratetype); 2090 pageblock_page += pageblock_nr_pages; 2091 } 2092 } 2093 2094 /* 2095 * When we are falling back to another migratetype during allocation, try to 2096 * steal extra free pages from the same pageblocks to satisfy further 2097 * allocations, instead of polluting multiple pageblocks. 2098 * 2099 * If we are stealing a relatively large buddy page, it is likely there will 2100 * be more free pages in the pageblock, so try to steal them all. For 2101 * reclaimable and unmovable allocations, we steal regardless of page size, 2102 * as fragmentation caused by those allocations polluting movable pageblocks 2103 * is worse than movable allocations stealing from unmovable and reclaimable 2104 * pageblocks. 2105 */ 2106 static bool can_steal_fallback(unsigned int order, int start_mt) 2107 { 2108 /* 2109 * Leaving this order check is intended, although there is 2110 * relaxed order check in next check. The reason is that 2111 * we can actually steal whole pageblock if this condition met, 2112 * but, below check doesn't guarantee it and that is just heuristic 2113 * so could be changed anytime. 2114 */ 2115 if (order >= pageblock_order) 2116 return true; 2117 2118 if (order >= pageblock_order / 2 || 2119 start_mt == MIGRATE_RECLAIMABLE || 2120 start_mt == MIGRATE_UNMOVABLE || 2121 page_group_by_mobility_disabled) 2122 return true; 2123 2124 return false; 2125 } 2126 2127 /* 2128 * This function implements actual steal behaviour. If order is large enough, 2129 * we can steal whole pageblock. If not, we first move freepages in this 2130 * pageblock to our migratetype and determine how many already-allocated pages 2131 * are there in the pageblock with a compatible migratetype. If at least half 2132 * of pages are free or compatible, we can change migratetype of the pageblock 2133 * itself, so pages freed in the future will be put on the correct free list. 2134 */ 2135 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2136 int start_type, bool whole_block) 2137 { 2138 unsigned int current_order = page_order(page); 2139 struct free_area *area; 2140 int free_pages, movable_pages, alike_pages; 2141 int old_block_type; 2142 2143 old_block_type = get_pageblock_migratetype(page); 2144 2145 /* 2146 * This can happen due to races and we want to prevent broken 2147 * highatomic accounting. 2148 */ 2149 if (is_migrate_highatomic(old_block_type)) 2150 goto single_page; 2151 2152 /* Take ownership for orders >= pageblock_order */ 2153 if (current_order >= pageblock_order) { 2154 change_pageblock_range(page, current_order, start_type); 2155 goto single_page; 2156 } 2157 2158 /* We are not allowed to try stealing from the whole block */ 2159 if (!whole_block) 2160 goto single_page; 2161 2162 free_pages = move_freepages_block(zone, page, start_type, 2163 &movable_pages); 2164 /* 2165 * Determine how many pages are compatible with our allocation. 2166 * For movable allocation, it's the number of movable pages which 2167 * we just obtained. For other types it's a bit more tricky. 2168 */ 2169 if (start_type == MIGRATE_MOVABLE) { 2170 alike_pages = movable_pages; 2171 } else { 2172 /* 2173 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2174 * to MOVABLE pageblock, consider all non-movable pages as 2175 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2176 * vice versa, be conservative since we can't distinguish the 2177 * exact migratetype of non-movable pages. 2178 */ 2179 if (old_block_type == MIGRATE_MOVABLE) 2180 alike_pages = pageblock_nr_pages 2181 - (free_pages + movable_pages); 2182 else 2183 alike_pages = 0; 2184 } 2185 2186 /* moving whole block can fail due to zone boundary conditions */ 2187 if (!free_pages) 2188 goto single_page; 2189 2190 /* 2191 * If a sufficient number of pages in the block are either free or of 2192 * comparable migratability as our allocation, claim the whole block. 2193 */ 2194 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2195 page_group_by_mobility_disabled) 2196 set_pageblock_migratetype(page, start_type); 2197 2198 return; 2199 2200 single_page: 2201 area = &zone->free_area[current_order]; 2202 list_move(&page->lru, &area->free_list[start_type]); 2203 } 2204 2205 /* 2206 * Check whether there is a suitable fallback freepage with requested order. 2207 * If only_stealable is true, this function returns fallback_mt only if 2208 * we can steal other freepages all together. This would help to reduce 2209 * fragmentation due to mixed migratetype pages in one pageblock. 2210 */ 2211 int find_suitable_fallback(struct free_area *area, unsigned int order, 2212 int migratetype, bool only_stealable, bool *can_steal) 2213 { 2214 int i; 2215 int fallback_mt; 2216 2217 if (area->nr_free == 0) 2218 return -1; 2219 2220 *can_steal = false; 2221 for (i = 0;; i++) { 2222 fallback_mt = fallbacks[migratetype][i]; 2223 if (fallback_mt == MIGRATE_TYPES) 2224 break; 2225 2226 if (list_empty(&area->free_list[fallback_mt])) 2227 continue; 2228 2229 if (can_steal_fallback(order, migratetype)) 2230 *can_steal = true; 2231 2232 if (!only_stealable) 2233 return fallback_mt; 2234 2235 if (*can_steal) 2236 return fallback_mt; 2237 } 2238 2239 return -1; 2240 } 2241 2242 /* 2243 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2244 * there are no empty page blocks that contain a page with a suitable order 2245 */ 2246 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2247 unsigned int alloc_order) 2248 { 2249 int mt; 2250 unsigned long max_managed, flags; 2251 2252 /* 2253 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2254 * Check is race-prone but harmless. 2255 */ 2256 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2257 if (zone->nr_reserved_highatomic >= max_managed) 2258 return; 2259 2260 spin_lock_irqsave(&zone->lock, flags); 2261 2262 /* Recheck the nr_reserved_highatomic limit under the lock */ 2263 if (zone->nr_reserved_highatomic >= max_managed) 2264 goto out_unlock; 2265 2266 /* Yoink! */ 2267 mt = get_pageblock_migratetype(page); 2268 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2269 && !is_migrate_cma(mt)) { 2270 zone->nr_reserved_highatomic += pageblock_nr_pages; 2271 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2272 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2273 } 2274 2275 out_unlock: 2276 spin_unlock_irqrestore(&zone->lock, flags); 2277 } 2278 2279 /* 2280 * Used when an allocation is about to fail under memory pressure. This 2281 * potentially hurts the reliability of high-order allocations when under 2282 * intense memory pressure but failed atomic allocations should be easier 2283 * to recover from than an OOM. 2284 * 2285 * If @force is true, try to unreserve a pageblock even though highatomic 2286 * pageblock is exhausted. 2287 */ 2288 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2289 bool force) 2290 { 2291 struct zonelist *zonelist = ac->zonelist; 2292 unsigned long flags; 2293 struct zoneref *z; 2294 struct zone *zone; 2295 struct page *page; 2296 int order; 2297 bool ret; 2298 2299 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2300 ac->nodemask) { 2301 /* 2302 * Preserve at least one pageblock unless memory pressure 2303 * is really high. 2304 */ 2305 if (!force && zone->nr_reserved_highatomic <= 2306 pageblock_nr_pages) 2307 continue; 2308 2309 spin_lock_irqsave(&zone->lock, flags); 2310 for (order = 0; order < MAX_ORDER; order++) { 2311 struct free_area *area = &(zone->free_area[order]); 2312 2313 page = list_first_entry_or_null( 2314 &area->free_list[MIGRATE_HIGHATOMIC], 2315 struct page, lru); 2316 if (!page) 2317 continue; 2318 2319 /* 2320 * In page freeing path, migratetype change is racy so 2321 * we can counter several free pages in a pageblock 2322 * in this loop althoug we changed the pageblock type 2323 * from highatomic to ac->migratetype. So we should 2324 * adjust the count once. 2325 */ 2326 if (is_migrate_highatomic_page(page)) { 2327 /* 2328 * It should never happen but changes to 2329 * locking could inadvertently allow a per-cpu 2330 * drain to add pages to MIGRATE_HIGHATOMIC 2331 * while unreserving so be safe and watch for 2332 * underflows. 2333 */ 2334 zone->nr_reserved_highatomic -= min( 2335 pageblock_nr_pages, 2336 zone->nr_reserved_highatomic); 2337 } 2338 2339 /* 2340 * Convert to ac->migratetype and avoid the normal 2341 * pageblock stealing heuristics. Minimally, the caller 2342 * is doing the work and needs the pages. More 2343 * importantly, if the block was always converted to 2344 * MIGRATE_UNMOVABLE or another type then the number 2345 * of pageblocks that cannot be completely freed 2346 * may increase. 2347 */ 2348 set_pageblock_migratetype(page, ac->migratetype); 2349 ret = move_freepages_block(zone, page, ac->migratetype, 2350 NULL); 2351 if (ret) { 2352 spin_unlock_irqrestore(&zone->lock, flags); 2353 return ret; 2354 } 2355 } 2356 spin_unlock_irqrestore(&zone->lock, flags); 2357 } 2358 2359 return false; 2360 } 2361 2362 /* 2363 * Try finding a free buddy page on the fallback list and put it on the free 2364 * list of requested migratetype, possibly along with other pages from the same 2365 * block, depending on fragmentation avoidance heuristics. Returns true if 2366 * fallback was found so that __rmqueue_smallest() can grab it. 2367 * 2368 * The use of signed ints for order and current_order is a deliberate 2369 * deviation from the rest of this file, to make the for loop 2370 * condition simpler. 2371 */ 2372 static __always_inline bool 2373 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2374 { 2375 struct free_area *area; 2376 int current_order; 2377 struct page *page; 2378 int fallback_mt; 2379 bool can_steal; 2380 2381 /* 2382 * Find the largest available free page in the other list. This roughly 2383 * approximates finding the pageblock with the most free pages, which 2384 * would be too costly to do exactly. 2385 */ 2386 for (current_order = MAX_ORDER - 1; current_order >= order; 2387 --current_order) { 2388 area = &(zone->free_area[current_order]); 2389 fallback_mt = find_suitable_fallback(area, current_order, 2390 start_migratetype, false, &can_steal); 2391 if (fallback_mt == -1) 2392 continue; 2393 2394 /* 2395 * We cannot steal all free pages from the pageblock and the 2396 * requested migratetype is movable. In that case it's better to 2397 * steal and split the smallest available page instead of the 2398 * largest available page, because even if the next movable 2399 * allocation falls back into a different pageblock than this 2400 * one, it won't cause permanent fragmentation. 2401 */ 2402 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2403 && current_order > order) 2404 goto find_smallest; 2405 2406 goto do_steal; 2407 } 2408 2409 return false; 2410 2411 find_smallest: 2412 for (current_order = order; current_order < MAX_ORDER; 2413 current_order++) { 2414 area = &(zone->free_area[current_order]); 2415 fallback_mt = find_suitable_fallback(area, current_order, 2416 start_migratetype, false, &can_steal); 2417 if (fallback_mt != -1) 2418 break; 2419 } 2420 2421 /* 2422 * This should not happen - we already found a suitable fallback 2423 * when looking for the largest page. 2424 */ 2425 VM_BUG_ON(current_order == MAX_ORDER); 2426 2427 do_steal: 2428 page = list_first_entry(&area->free_list[fallback_mt], 2429 struct page, lru); 2430 2431 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2432 2433 trace_mm_page_alloc_extfrag(page, order, current_order, 2434 start_migratetype, fallback_mt); 2435 2436 return true; 2437 2438 } 2439 2440 /* 2441 * Do the hard work of removing an element from the buddy allocator. 2442 * Call me with the zone->lock already held. 2443 */ 2444 static __always_inline struct page * 2445 __rmqueue(struct zone *zone, unsigned int order, int migratetype) 2446 { 2447 struct page *page; 2448 2449 retry: 2450 page = __rmqueue_smallest(zone, order, migratetype); 2451 if (unlikely(!page)) { 2452 if (migratetype == MIGRATE_MOVABLE) 2453 page = __rmqueue_cma_fallback(zone, order); 2454 2455 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2456 goto retry; 2457 } 2458 2459 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2460 return page; 2461 } 2462 2463 /* 2464 * Obtain a specified number of elements from the buddy allocator, all under 2465 * a single hold of the lock, for efficiency. Add them to the supplied list. 2466 * Returns the number of new pages which were placed at *list. 2467 */ 2468 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2469 unsigned long count, struct list_head *list, 2470 int migratetype) 2471 { 2472 int i, alloced = 0; 2473 2474 spin_lock(&zone->lock); 2475 for (i = 0; i < count; ++i) { 2476 struct page *page = __rmqueue(zone, order, migratetype); 2477 if (unlikely(page == NULL)) 2478 break; 2479 2480 if (unlikely(check_pcp_refill(page))) 2481 continue; 2482 2483 /* 2484 * Split buddy pages returned by expand() are received here in 2485 * physical page order. The page is added to the tail of 2486 * caller's list. From the callers perspective, the linked list 2487 * is ordered by page number under some conditions. This is 2488 * useful for IO devices that can forward direction from the 2489 * head, thus also in the physical page order. This is useful 2490 * for IO devices that can merge IO requests if the physical 2491 * pages are ordered properly. 2492 */ 2493 list_add_tail(&page->lru, list); 2494 alloced++; 2495 if (is_migrate_cma(get_pcppage_migratetype(page))) 2496 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2497 -(1 << order)); 2498 } 2499 2500 /* 2501 * i pages were removed from the buddy list even if some leak due 2502 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2503 * on i. Do not confuse with 'alloced' which is the number of 2504 * pages added to the pcp list. 2505 */ 2506 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2507 spin_unlock(&zone->lock); 2508 return alloced; 2509 } 2510 2511 #ifdef CONFIG_NUMA 2512 /* 2513 * Called from the vmstat counter updater to drain pagesets of this 2514 * currently executing processor on remote nodes after they have 2515 * expired. 2516 * 2517 * Note that this function must be called with the thread pinned to 2518 * a single processor. 2519 */ 2520 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2521 { 2522 unsigned long flags; 2523 int to_drain, batch; 2524 2525 local_irq_save(flags); 2526 batch = READ_ONCE(pcp->batch); 2527 to_drain = min(pcp->count, batch); 2528 if (to_drain > 0) 2529 free_pcppages_bulk(zone, to_drain, pcp); 2530 local_irq_restore(flags); 2531 } 2532 #endif 2533 2534 /* 2535 * Drain pcplists of the indicated processor and zone. 2536 * 2537 * The processor must either be the current processor and the 2538 * thread pinned to the current processor or a processor that 2539 * is not online. 2540 */ 2541 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2542 { 2543 unsigned long flags; 2544 struct per_cpu_pageset *pset; 2545 struct per_cpu_pages *pcp; 2546 2547 local_irq_save(flags); 2548 pset = per_cpu_ptr(zone->pageset, cpu); 2549 2550 pcp = &pset->pcp; 2551 if (pcp->count) 2552 free_pcppages_bulk(zone, pcp->count, pcp); 2553 local_irq_restore(flags); 2554 } 2555 2556 /* 2557 * Drain pcplists of all zones on the indicated processor. 2558 * 2559 * The processor must either be the current processor and the 2560 * thread pinned to the current processor or a processor that 2561 * is not online. 2562 */ 2563 static void drain_pages(unsigned int cpu) 2564 { 2565 struct zone *zone; 2566 2567 for_each_populated_zone(zone) { 2568 drain_pages_zone(cpu, zone); 2569 } 2570 } 2571 2572 /* 2573 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2574 * 2575 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2576 * the single zone's pages. 2577 */ 2578 void drain_local_pages(struct zone *zone) 2579 { 2580 int cpu = smp_processor_id(); 2581 2582 if (zone) 2583 drain_pages_zone(cpu, zone); 2584 else 2585 drain_pages(cpu); 2586 } 2587 2588 static void drain_local_pages_wq(struct work_struct *work) 2589 { 2590 /* 2591 * drain_all_pages doesn't use proper cpu hotplug protection so 2592 * we can race with cpu offline when the WQ can move this from 2593 * a cpu pinned worker to an unbound one. We can operate on a different 2594 * cpu which is allright but we also have to make sure to not move to 2595 * a different one. 2596 */ 2597 preempt_disable(); 2598 drain_local_pages(NULL); 2599 preempt_enable(); 2600 } 2601 2602 /* 2603 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2604 * 2605 * When zone parameter is non-NULL, spill just the single zone's pages. 2606 * 2607 * Note that this can be extremely slow as the draining happens in a workqueue. 2608 */ 2609 void drain_all_pages(struct zone *zone) 2610 { 2611 int cpu; 2612 2613 /* 2614 * Allocate in the BSS so we wont require allocation in 2615 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2616 */ 2617 static cpumask_t cpus_with_pcps; 2618 2619 /* 2620 * Make sure nobody triggers this path before mm_percpu_wq is fully 2621 * initialized. 2622 */ 2623 if (WARN_ON_ONCE(!mm_percpu_wq)) 2624 return; 2625 2626 /* 2627 * Do not drain if one is already in progress unless it's specific to 2628 * a zone. Such callers are primarily CMA and memory hotplug and need 2629 * the drain to be complete when the call returns. 2630 */ 2631 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2632 if (!zone) 2633 return; 2634 mutex_lock(&pcpu_drain_mutex); 2635 } 2636 2637 /* 2638 * We don't care about racing with CPU hotplug event 2639 * as offline notification will cause the notified 2640 * cpu to drain that CPU pcps and on_each_cpu_mask 2641 * disables preemption as part of its processing 2642 */ 2643 for_each_online_cpu(cpu) { 2644 struct per_cpu_pageset *pcp; 2645 struct zone *z; 2646 bool has_pcps = false; 2647 2648 if (zone) { 2649 pcp = per_cpu_ptr(zone->pageset, cpu); 2650 if (pcp->pcp.count) 2651 has_pcps = true; 2652 } else { 2653 for_each_populated_zone(z) { 2654 pcp = per_cpu_ptr(z->pageset, cpu); 2655 if (pcp->pcp.count) { 2656 has_pcps = true; 2657 break; 2658 } 2659 } 2660 } 2661 2662 if (has_pcps) 2663 cpumask_set_cpu(cpu, &cpus_with_pcps); 2664 else 2665 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2666 } 2667 2668 for_each_cpu(cpu, &cpus_with_pcps) { 2669 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2670 INIT_WORK(work, drain_local_pages_wq); 2671 queue_work_on(cpu, mm_percpu_wq, work); 2672 } 2673 for_each_cpu(cpu, &cpus_with_pcps) 2674 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2675 2676 mutex_unlock(&pcpu_drain_mutex); 2677 } 2678 2679 #ifdef CONFIG_HIBERNATION 2680 2681 /* 2682 * Touch the watchdog for every WD_PAGE_COUNT pages. 2683 */ 2684 #define WD_PAGE_COUNT (128*1024) 2685 2686 void mark_free_pages(struct zone *zone) 2687 { 2688 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2689 unsigned long flags; 2690 unsigned int order, t; 2691 struct page *page; 2692 2693 if (zone_is_empty(zone)) 2694 return; 2695 2696 spin_lock_irqsave(&zone->lock, flags); 2697 2698 max_zone_pfn = zone_end_pfn(zone); 2699 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2700 if (pfn_valid(pfn)) { 2701 page = pfn_to_page(pfn); 2702 2703 if (!--page_count) { 2704 touch_nmi_watchdog(); 2705 page_count = WD_PAGE_COUNT; 2706 } 2707 2708 if (page_zone(page) != zone) 2709 continue; 2710 2711 if (!swsusp_page_is_forbidden(page)) 2712 swsusp_unset_page_free(page); 2713 } 2714 2715 for_each_migratetype_order(order, t) { 2716 list_for_each_entry(page, 2717 &zone->free_area[order].free_list[t], lru) { 2718 unsigned long i; 2719 2720 pfn = page_to_pfn(page); 2721 for (i = 0; i < (1UL << order); i++) { 2722 if (!--page_count) { 2723 touch_nmi_watchdog(); 2724 page_count = WD_PAGE_COUNT; 2725 } 2726 swsusp_set_page_free(pfn_to_page(pfn + i)); 2727 } 2728 } 2729 } 2730 spin_unlock_irqrestore(&zone->lock, flags); 2731 } 2732 #endif /* CONFIG_PM */ 2733 2734 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2735 { 2736 int migratetype; 2737 2738 if (!free_pcp_prepare(page)) 2739 return false; 2740 2741 migratetype = get_pfnblock_migratetype(page, pfn); 2742 set_pcppage_migratetype(page, migratetype); 2743 return true; 2744 } 2745 2746 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2747 { 2748 struct zone *zone = page_zone(page); 2749 struct per_cpu_pages *pcp; 2750 int migratetype; 2751 2752 migratetype = get_pcppage_migratetype(page); 2753 __count_vm_event(PGFREE); 2754 2755 /* 2756 * We only track unmovable, reclaimable and movable on pcp lists. 2757 * Free ISOLATE pages back to the allocator because they are being 2758 * offlined but treat HIGHATOMIC as movable pages so we can get those 2759 * areas back if necessary. Otherwise, we may have to free 2760 * excessively into the page allocator 2761 */ 2762 if (migratetype >= MIGRATE_PCPTYPES) { 2763 if (unlikely(is_migrate_isolate(migratetype))) { 2764 free_one_page(zone, page, pfn, 0, migratetype); 2765 return; 2766 } 2767 migratetype = MIGRATE_MOVABLE; 2768 } 2769 2770 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2771 list_add(&page->lru, &pcp->lists[migratetype]); 2772 pcp->count++; 2773 if (pcp->count >= pcp->high) { 2774 unsigned long batch = READ_ONCE(pcp->batch); 2775 free_pcppages_bulk(zone, batch, pcp); 2776 } 2777 } 2778 2779 /* 2780 * Free a 0-order page 2781 */ 2782 void free_unref_page(struct page *page) 2783 { 2784 unsigned long flags; 2785 unsigned long pfn = page_to_pfn(page); 2786 2787 if (!free_unref_page_prepare(page, pfn)) 2788 return; 2789 2790 local_irq_save(flags); 2791 free_unref_page_commit(page, pfn); 2792 local_irq_restore(flags); 2793 } 2794 2795 /* 2796 * Free a list of 0-order pages 2797 */ 2798 void free_unref_page_list(struct list_head *list) 2799 { 2800 struct page *page, *next; 2801 unsigned long flags, pfn; 2802 int batch_count = 0; 2803 2804 /* Prepare pages for freeing */ 2805 list_for_each_entry_safe(page, next, list, lru) { 2806 pfn = page_to_pfn(page); 2807 if (!free_unref_page_prepare(page, pfn)) 2808 list_del(&page->lru); 2809 set_page_private(page, pfn); 2810 } 2811 2812 local_irq_save(flags); 2813 list_for_each_entry_safe(page, next, list, lru) { 2814 unsigned long pfn = page_private(page); 2815 2816 set_page_private(page, 0); 2817 trace_mm_page_free_batched(page); 2818 free_unref_page_commit(page, pfn); 2819 2820 /* 2821 * Guard against excessive IRQ disabled times when we get 2822 * a large list of pages to free. 2823 */ 2824 if (++batch_count == SWAP_CLUSTER_MAX) { 2825 local_irq_restore(flags); 2826 batch_count = 0; 2827 local_irq_save(flags); 2828 } 2829 } 2830 local_irq_restore(flags); 2831 } 2832 2833 /* 2834 * split_page takes a non-compound higher-order page, and splits it into 2835 * n (1<<order) sub-pages: page[0..n] 2836 * Each sub-page must be freed individually. 2837 * 2838 * Note: this is probably too low level an operation for use in drivers. 2839 * Please consult with lkml before using this in your driver. 2840 */ 2841 void split_page(struct page *page, unsigned int order) 2842 { 2843 int i; 2844 2845 VM_BUG_ON_PAGE(PageCompound(page), page); 2846 VM_BUG_ON_PAGE(!page_count(page), page); 2847 2848 for (i = 1; i < (1 << order); i++) 2849 set_page_refcounted(page + i); 2850 split_page_owner(page, order); 2851 } 2852 EXPORT_SYMBOL_GPL(split_page); 2853 2854 int __isolate_free_page(struct page *page, unsigned int order) 2855 { 2856 unsigned long watermark; 2857 struct zone *zone; 2858 int mt; 2859 2860 BUG_ON(!PageBuddy(page)); 2861 2862 zone = page_zone(page); 2863 mt = get_pageblock_migratetype(page); 2864 2865 if (!is_migrate_isolate(mt)) { 2866 /* 2867 * Obey watermarks as if the page was being allocated. We can 2868 * emulate a high-order watermark check with a raised order-0 2869 * watermark, because we already know our high-order page 2870 * exists. 2871 */ 2872 watermark = min_wmark_pages(zone) + (1UL << order); 2873 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2874 return 0; 2875 2876 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2877 } 2878 2879 /* Remove page from free list */ 2880 list_del(&page->lru); 2881 zone->free_area[order].nr_free--; 2882 rmv_page_order(page); 2883 2884 /* 2885 * Set the pageblock if the isolated page is at least half of a 2886 * pageblock 2887 */ 2888 if (order >= pageblock_order - 1) { 2889 struct page *endpage = page + (1 << order) - 1; 2890 for (; page < endpage; page += pageblock_nr_pages) { 2891 int mt = get_pageblock_migratetype(page); 2892 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2893 && !is_migrate_highatomic(mt)) 2894 set_pageblock_migratetype(page, 2895 MIGRATE_MOVABLE); 2896 } 2897 } 2898 2899 2900 return 1UL << order; 2901 } 2902 2903 /* 2904 * Update NUMA hit/miss statistics 2905 * 2906 * Must be called with interrupts disabled. 2907 */ 2908 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2909 { 2910 #ifdef CONFIG_NUMA 2911 enum numa_stat_item local_stat = NUMA_LOCAL; 2912 2913 /* skip numa counters update if numa stats is disabled */ 2914 if (!static_branch_likely(&vm_numa_stat_key)) 2915 return; 2916 2917 if (z->node != numa_node_id()) 2918 local_stat = NUMA_OTHER; 2919 2920 if (z->node == preferred_zone->node) 2921 __inc_numa_state(z, NUMA_HIT); 2922 else { 2923 __inc_numa_state(z, NUMA_MISS); 2924 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 2925 } 2926 __inc_numa_state(z, local_stat); 2927 #endif 2928 } 2929 2930 /* Remove page from the per-cpu list, caller must protect the list */ 2931 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2932 struct per_cpu_pages *pcp, 2933 struct list_head *list) 2934 { 2935 struct page *page; 2936 2937 do { 2938 if (list_empty(list)) { 2939 pcp->count += rmqueue_bulk(zone, 0, 2940 pcp->batch, list, 2941 migratetype); 2942 if (unlikely(list_empty(list))) 2943 return NULL; 2944 } 2945 2946 page = list_first_entry(list, struct page, lru); 2947 list_del(&page->lru); 2948 pcp->count--; 2949 } while (check_new_pcp(page)); 2950 2951 return page; 2952 } 2953 2954 /* Lock and remove page from the per-cpu list */ 2955 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2956 struct zone *zone, unsigned int order, 2957 gfp_t gfp_flags, int migratetype) 2958 { 2959 struct per_cpu_pages *pcp; 2960 struct list_head *list; 2961 struct page *page; 2962 unsigned long flags; 2963 2964 local_irq_save(flags); 2965 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2966 list = &pcp->lists[migratetype]; 2967 page = __rmqueue_pcplist(zone, migratetype, pcp, list); 2968 if (page) { 2969 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2970 zone_statistics(preferred_zone, zone); 2971 } 2972 local_irq_restore(flags); 2973 return page; 2974 } 2975 2976 /* 2977 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2978 */ 2979 static inline 2980 struct page *rmqueue(struct zone *preferred_zone, 2981 struct zone *zone, unsigned int order, 2982 gfp_t gfp_flags, unsigned int alloc_flags, 2983 int migratetype) 2984 { 2985 unsigned long flags; 2986 struct page *page; 2987 2988 if (likely(order == 0)) { 2989 page = rmqueue_pcplist(preferred_zone, zone, order, 2990 gfp_flags, migratetype); 2991 goto out; 2992 } 2993 2994 /* 2995 * We most definitely don't want callers attempting to 2996 * allocate greater than order-1 page units with __GFP_NOFAIL. 2997 */ 2998 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2999 spin_lock_irqsave(&zone->lock, flags); 3000 3001 do { 3002 page = NULL; 3003 if (alloc_flags & ALLOC_HARDER) { 3004 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3005 if (page) 3006 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3007 } 3008 if (!page) 3009 page = __rmqueue(zone, order, migratetype); 3010 } while (page && check_new_pages(page, order)); 3011 spin_unlock(&zone->lock); 3012 if (!page) 3013 goto failed; 3014 __mod_zone_freepage_state(zone, -(1 << order), 3015 get_pcppage_migratetype(page)); 3016 3017 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3018 zone_statistics(preferred_zone, zone); 3019 local_irq_restore(flags); 3020 3021 out: 3022 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3023 return page; 3024 3025 failed: 3026 local_irq_restore(flags); 3027 return NULL; 3028 } 3029 3030 #ifdef CONFIG_FAIL_PAGE_ALLOC 3031 3032 static struct { 3033 struct fault_attr attr; 3034 3035 bool ignore_gfp_highmem; 3036 bool ignore_gfp_reclaim; 3037 u32 min_order; 3038 } fail_page_alloc = { 3039 .attr = FAULT_ATTR_INITIALIZER, 3040 .ignore_gfp_reclaim = true, 3041 .ignore_gfp_highmem = true, 3042 .min_order = 1, 3043 }; 3044 3045 static int __init setup_fail_page_alloc(char *str) 3046 { 3047 return setup_fault_attr(&fail_page_alloc.attr, str); 3048 } 3049 __setup("fail_page_alloc=", setup_fail_page_alloc); 3050 3051 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3052 { 3053 if (order < fail_page_alloc.min_order) 3054 return false; 3055 if (gfp_mask & __GFP_NOFAIL) 3056 return false; 3057 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3058 return false; 3059 if (fail_page_alloc.ignore_gfp_reclaim && 3060 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3061 return false; 3062 3063 return should_fail(&fail_page_alloc.attr, 1 << order); 3064 } 3065 3066 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3067 3068 static int __init fail_page_alloc_debugfs(void) 3069 { 3070 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 3071 struct dentry *dir; 3072 3073 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3074 &fail_page_alloc.attr); 3075 if (IS_ERR(dir)) 3076 return PTR_ERR(dir); 3077 3078 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 3079 &fail_page_alloc.ignore_gfp_reclaim)) 3080 goto fail; 3081 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3082 &fail_page_alloc.ignore_gfp_highmem)) 3083 goto fail; 3084 if (!debugfs_create_u32("min-order", mode, dir, 3085 &fail_page_alloc.min_order)) 3086 goto fail; 3087 3088 return 0; 3089 fail: 3090 debugfs_remove_recursive(dir); 3091 3092 return -ENOMEM; 3093 } 3094 3095 late_initcall(fail_page_alloc_debugfs); 3096 3097 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3098 3099 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3100 3101 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3102 { 3103 return false; 3104 } 3105 3106 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3107 3108 /* 3109 * Return true if free base pages are above 'mark'. For high-order checks it 3110 * will return true of the order-0 watermark is reached and there is at least 3111 * one free page of a suitable size. Checking now avoids taking the zone lock 3112 * to check in the allocation paths if no pages are free. 3113 */ 3114 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3115 int classzone_idx, unsigned int alloc_flags, 3116 long free_pages) 3117 { 3118 long min = mark; 3119 int o; 3120 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3121 3122 /* free_pages may go negative - that's OK */ 3123 free_pages -= (1 << order) - 1; 3124 3125 if (alloc_flags & ALLOC_HIGH) 3126 min -= min / 2; 3127 3128 /* 3129 * If the caller does not have rights to ALLOC_HARDER then subtract 3130 * the high-atomic reserves. This will over-estimate the size of the 3131 * atomic reserve but it avoids a search. 3132 */ 3133 if (likely(!alloc_harder)) { 3134 free_pages -= z->nr_reserved_highatomic; 3135 } else { 3136 /* 3137 * OOM victims can try even harder than normal ALLOC_HARDER 3138 * users on the grounds that it's definitely going to be in 3139 * the exit path shortly and free memory. Any allocation it 3140 * makes during the free path will be small and short-lived. 3141 */ 3142 if (alloc_flags & ALLOC_OOM) 3143 min -= min / 2; 3144 else 3145 min -= min / 4; 3146 } 3147 3148 3149 #ifdef CONFIG_CMA 3150 /* If allocation can't use CMA areas don't use free CMA pages */ 3151 if (!(alloc_flags & ALLOC_CMA)) 3152 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3153 #endif 3154 3155 /* 3156 * Check watermarks for an order-0 allocation request. If these 3157 * are not met, then a high-order request also cannot go ahead 3158 * even if a suitable page happened to be free. 3159 */ 3160 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3161 return false; 3162 3163 /* If this is an order-0 request then the watermark is fine */ 3164 if (!order) 3165 return true; 3166 3167 /* For a high-order request, check at least one suitable page is free */ 3168 for (o = order; o < MAX_ORDER; o++) { 3169 struct free_area *area = &z->free_area[o]; 3170 int mt; 3171 3172 if (!area->nr_free) 3173 continue; 3174 3175 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3176 if (!list_empty(&area->free_list[mt])) 3177 return true; 3178 } 3179 3180 #ifdef CONFIG_CMA 3181 if ((alloc_flags & ALLOC_CMA) && 3182 !list_empty(&area->free_list[MIGRATE_CMA])) { 3183 return true; 3184 } 3185 #endif 3186 if (alloc_harder && 3187 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3188 return true; 3189 } 3190 return false; 3191 } 3192 3193 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3194 int classzone_idx, unsigned int alloc_flags) 3195 { 3196 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3197 zone_page_state(z, NR_FREE_PAGES)); 3198 } 3199 3200 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3201 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3202 { 3203 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3204 long cma_pages = 0; 3205 3206 #ifdef CONFIG_CMA 3207 /* If allocation can't use CMA areas don't use free CMA pages */ 3208 if (!(alloc_flags & ALLOC_CMA)) 3209 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3210 #endif 3211 3212 /* 3213 * Fast check for order-0 only. If this fails then the reserves 3214 * need to be calculated. There is a corner case where the check 3215 * passes but only the high-order atomic reserve are free. If 3216 * the caller is !atomic then it'll uselessly search the free 3217 * list. That corner case is then slower but it is harmless. 3218 */ 3219 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3220 return true; 3221 3222 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3223 free_pages); 3224 } 3225 3226 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3227 unsigned long mark, int classzone_idx) 3228 { 3229 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3230 3231 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3232 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3233 3234 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3235 free_pages); 3236 } 3237 3238 #ifdef CONFIG_NUMA 3239 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3240 { 3241 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3242 RECLAIM_DISTANCE; 3243 } 3244 #else /* CONFIG_NUMA */ 3245 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3246 { 3247 return true; 3248 } 3249 #endif /* CONFIG_NUMA */ 3250 3251 /* 3252 * get_page_from_freelist goes through the zonelist trying to allocate 3253 * a page. 3254 */ 3255 static struct page * 3256 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3257 const struct alloc_context *ac) 3258 { 3259 struct zoneref *z = ac->preferred_zoneref; 3260 struct zone *zone; 3261 struct pglist_data *last_pgdat_dirty_limit = NULL; 3262 3263 /* 3264 * Scan zonelist, looking for a zone with enough free. 3265 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3266 */ 3267 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3268 ac->nodemask) { 3269 struct page *page; 3270 unsigned long mark; 3271 3272 if (cpusets_enabled() && 3273 (alloc_flags & ALLOC_CPUSET) && 3274 !__cpuset_zone_allowed(zone, gfp_mask)) 3275 continue; 3276 /* 3277 * When allocating a page cache page for writing, we 3278 * want to get it from a node that is within its dirty 3279 * limit, such that no single node holds more than its 3280 * proportional share of globally allowed dirty pages. 3281 * The dirty limits take into account the node's 3282 * lowmem reserves and high watermark so that kswapd 3283 * should be able to balance it without having to 3284 * write pages from its LRU list. 3285 * 3286 * XXX: For now, allow allocations to potentially 3287 * exceed the per-node dirty limit in the slowpath 3288 * (spread_dirty_pages unset) before going into reclaim, 3289 * which is important when on a NUMA setup the allowed 3290 * nodes are together not big enough to reach the 3291 * global limit. The proper fix for these situations 3292 * will require awareness of nodes in the 3293 * dirty-throttling and the flusher threads. 3294 */ 3295 if (ac->spread_dirty_pages) { 3296 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3297 continue; 3298 3299 if (!node_dirty_ok(zone->zone_pgdat)) { 3300 last_pgdat_dirty_limit = zone->zone_pgdat; 3301 continue; 3302 } 3303 } 3304 3305 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3306 if (!zone_watermark_fast(zone, order, mark, 3307 ac_classzone_idx(ac), alloc_flags)) { 3308 int ret; 3309 3310 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3311 /* 3312 * Watermark failed for this zone, but see if we can 3313 * grow this zone if it contains deferred pages. 3314 */ 3315 if (static_branch_unlikely(&deferred_pages)) { 3316 if (_deferred_grow_zone(zone, order)) 3317 goto try_this_zone; 3318 } 3319 #endif 3320 /* Checked here to keep the fast path fast */ 3321 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3322 if (alloc_flags & ALLOC_NO_WATERMARKS) 3323 goto try_this_zone; 3324 3325 if (node_reclaim_mode == 0 || 3326 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3327 continue; 3328 3329 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3330 switch (ret) { 3331 case NODE_RECLAIM_NOSCAN: 3332 /* did not scan */ 3333 continue; 3334 case NODE_RECLAIM_FULL: 3335 /* scanned but unreclaimable */ 3336 continue; 3337 default: 3338 /* did we reclaim enough */ 3339 if (zone_watermark_ok(zone, order, mark, 3340 ac_classzone_idx(ac), alloc_flags)) 3341 goto try_this_zone; 3342 3343 continue; 3344 } 3345 } 3346 3347 try_this_zone: 3348 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3349 gfp_mask, alloc_flags, ac->migratetype); 3350 if (page) { 3351 prep_new_page(page, order, gfp_mask, alloc_flags); 3352 3353 /* 3354 * If this is a high-order atomic allocation then check 3355 * if the pageblock should be reserved for the future 3356 */ 3357 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3358 reserve_highatomic_pageblock(page, zone, order); 3359 3360 return page; 3361 } else { 3362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3363 /* Try again if zone has deferred pages */ 3364 if (static_branch_unlikely(&deferred_pages)) { 3365 if (_deferred_grow_zone(zone, order)) 3366 goto try_this_zone; 3367 } 3368 #endif 3369 } 3370 } 3371 3372 return NULL; 3373 } 3374 3375 /* 3376 * Large machines with many possible nodes should not always dump per-node 3377 * meminfo in irq context. 3378 */ 3379 static inline bool should_suppress_show_mem(void) 3380 { 3381 bool ret = false; 3382 3383 #if NODES_SHIFT > 8 3384 ret = in_interrupt(); 3385 #endif 3386 return ret; 3387 } 3388 3389 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3390 { 3391 unsigned int filter = SHOW_MEM_FILTER_NODES; 3392 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3393 3394 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3395 return; 3396 3397 /* 3398 * This documents exceptions given to allocations in certain 3399 * contexts that are allowed to allocate outside current's set 3400 * of allowed nodes. 3401 */ 3402 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3403 if (tsk_is_oom_victim(current) || 3404 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3405 filter &= ~SHOW_MEM_FILTER_NODES; 3406 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3407 filter &= ~SHOW_MEM_FILTER_NODES; 3408 3409 show_mem(filter, nodemask); 3410 } 3411 3412 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3413 { 3414 struct va_format vaf; 3415 va_list args; 3416 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3417 DEFAULT_RATELIMIT_BURST); 3418 3419 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3420 return; 3421 3422 va_start(args, fmt); 3423 vaf.fmt = fmt; 3424 vaf.va = &args; 3425 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", 3426 current->comm, &vaf, gfp_mask, &gfp_mask, 3427 nodemask_pr_args(nodemask)); 3428 va_end(args); 3429 3430 cpuset_print_current_mems_allowed(); 3431 3432 dump_stack(); 3433 warn_alloc_show_mem(gfp_mask, nodemask); 3434 } 3435 3436 static inline struct page * 3437 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3438 unsigned int alloc_flags, 3439 const struct alloc_context *ac) 3440 { 3441 struct page *page; 3442 3443 page = get_page_from_freelist(gfp_mask, order, 3444 alloc_flags|ALLOC_CPUSET, ac); 3445 /* 3446 * fallback to ignore cpuset restriction if our nodes 3447 * are depleted 3448 */ 3449 if (!page) 3450 page = get_page_from_freelist(gfp_mask, order, 3451 alloc_flags, ac); 3452 3453 return page; 3454 } 3455 3456 static inline struct page * 3457 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3458 const struct alloc_context *ac, unsigned long *did_some_progress) 3459 { 3460 struct oom_control oc = { 3461 .zonelist = ac->zonelist, 3462 .nodemask = ac->nodemask, 3463 .memcg = NULL, 3464 .gfp_mask = gfp_mask, 3465 .order = order, 3466 }; 3467 struct page *page; 3468 3469 *did_some_progress = 0; 3470 3471 /* 3472 * Acquire the oom lock. If that fails, somebody else is 3473 * making progress for us. 3474 */ 3475 if (!mutex_trylock(&oom_lock)) { 3476 *did_some_progress = 1; 3477 schedule_timeout_uninterruptible(1); 3478 return NULL; 3479 } 3480 3481 /* 3482 * Go through the zonelist yet one more time, keep very high watermark 3483 * here, this is only to catch a parallel oom killing, we must fail if 3484 * we're still under heavy pressure. But make sure that this reclaim 3485 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3486 * allocation which will never fail due to oom_lock already held. 3487 */ 3488 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3489 ~__GFP_DIRECT_RECLAIM, order, 3490 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3491 if (page) 3492 goto out; 3493 3494 /* Coredumps can quickly deplete all memory reserves */ 3495 if (current->flags & PF_DUMPCORE) 3496 goto out; 3497 /* The OOM killer will not help higher order allocs */ 3498 if (order > PAGE_ALLOC_COSTLY_ORDER) 3499 goto out; 3500 /* 3501 * We have already exhausted all our reclaim opportunities without any 3502 * success so it is time to admit defeat. We will skip the OOM killer 3503 * because it is very likely that the caller has a more reasonable 3504 * fallback than shooting a random task. 3505 */ 3506 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3507 goto out; 3508 /* The OOM killer does not needlessly kill tasks for lowmem */ 3509 if (ac->high_zoneidx < ZONE_NORMAL) 3510 goto out; 3511 if (pm_suspended_storage()) 3512 goto out; 3513 /* 3514 * XXX: GFP_NOFS allocations should rather fail than rely on 3515 * other request to make a forward progress. 3516 * We are in an unfortunate situation where out_of_memory cannot 3517 * do much for this context but let's try it to at least get 3518 * access to memory reserved if the current task is killed (see 3519 * out_of_memory). Once filesystems are ready to handle allocation 3520 * failures more gracefully we should just bail out here. 3521 */ 3522 3523 /* The OOM killer may not free memory on a specific node */ 3524 if (gfp_mask & __GFP_THISNODE) 3525 goto out; 3526 3527 /* Exhausted what can be done so it's blame time */ 3528 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3529 *did_some_progress = 1; 3530 3531 /* 3532 * Help non-failing allocations by giving them access to memory 3533 * reserves 3534 */ 3535 if (gfp_mask & __GFP_NOFAIL) 3536 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3537 ALLOC_NO_WATERMARKS, ac); 3538 } 3539 out: 3540 mutex_unlock(&oom_lock); 3541 return page; 3542 } 3543 3544 /* 3545 * Maximum number of compaction retries wit a progress before OOM 3546 * killer is consider as the only way to move forward. 3547 */ 3548 #define MAX_COMPACT_RETRIES 16 3549 3550 #ifdef CONFIG_COMPACTION 3551 /* Try memory compaction for high-order allocations before reclaim */ 3552 static struct page * 3553 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3554 unsigned int alloc_flags, const struct alloc_context *ac, 3555 enum compact_priority prio, enum compact_result *compact_result) 3556 { 3557 struct page *page; 3558 unsigned int noreclaim_flag; 3559 3560 if (!order) 3561 return NULL; 3562 3563 noreclaim_flag = memalloc_noreclaim_save(); 3564 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3565 prio); 3566 memalloc_noreclaim_restore(noreclaim_flag); 3567 3568 if (*compact_result <= COMPACT_INACTIVE) 3569 return NULL; 3570 3571 /* 3572 * At least in one zone compaction wasn't deferred or skipped, so let's 3573 * count a compaction stall 3574 */ 3575 count_vm_event(COMPACTSTALL); 3576 3577 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3578 3579 if (page) { 3580 struct zone *zone = page_zone(page); 3581 3582 zone->compact_blockskip_flush = false; 3583 compaction_defer_reset(zone, order, true); 3584 count_vm_event(COMPACTSUCCESS); 3585 return page; 3586 } 3587 3588 /* 3589 * It's bad if compaction run occurs and fails. The most likely reason 3590 * is that pages exist, but not enough to satisfy watermarks. 3591 */ 3592 count_vm_event(COMPACTFAIL); 3593 3594 cond_resched(); 3595 3596 return NULL; 3597 } 3598 3599 static inline bool 3600 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3601 enum compact_result compact_result, 3602 enum compact_priority *compact_priority, 3603 int *compaction_retries) 3604 { 3605 int max_retries = MAX_COMPACT_RETRIES; 3606 int min_priority; 3607 bool ret = false; 3608 int retries = *compaction_retries; 3609 enum compact_priority priority = *compact_priority; 3610 3611 if (!order) 3612 return false; 3613 3614 if (compaction_made_progress(compact_result)) 3615 (*compaction_retries)++; 3616 3617 /* 3618 * compaction considers all the zone as desperately out of memory 3619 * so it doesn't really make much sense to retry except when the 3620 * failure could be caused by insufficient priority 3621 */ 3622 if (compaction_failed(compact_result)) 3623 goto check_priority; 3624 3625 /* 3626 * make sure the compaction wasn't deferred or didn't bail out early 3627 * due to locks contention before we declare that we should give up. 3628 * But do not retry if the given zonelist is not suitable for 3629 * compaction. 3630 */ 3631 if (compaction_withdrawn(compact_result)) { 3632 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3633 goto out; 3634 } 3635 3636 /* 3637 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3638 * costly ones because they are de facto nofail and invoke OOM 3639 * killer to move on while costly can fail and users are ready 3640 * to cope with that. 1/4 retries is rather arbitrary but we 3641 * would need much more detailed feedback from compaction to 3642 * make a better decision. 3643 */ 3644 if (order > PAGE_ALLOC_COSTLY_ORDER) 3645 max_retries /= 4; 3646 if (*compaction_retries <= max_retries) { 3647 ret = true; 3648 goto out; 3649 } 3650 3651 /* 3652 * Make sure there are attempts at the highest priority if we exhausted 3653 * all retries or failed at the lower priorities. 3654 */ 3655 check_priority: 3656 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3657 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3658 3659 if (*compact_priority > min_priority) { 3660 (*compact_priority)--; 3661 *compaction_retries = 0; 3662 ret = true; 3663 } 3664 out: 3665 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3666 return ret; 3667 } 3668 #else 3669 static inline struct page * 3670 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3671 unsigned int alloc_flags, const struct alloc_context *ac, 3672 enum compact_priority prio, enum compact_result *compact_result) 3673 { 3674 *compact_result = COMPACT_SKIPPED; 3675 return NULL; 3676 } 3677 3678 static inline bool 3679 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3680 enum compact_result compact_result, 3681 enum compact_priority *compact_priority, 3682 int *compaction_retries) 3683 { 3684 struct zone *zone; 3685 struct zoneref *z; 3686 3687 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3688 return false; 3689 3690 /* 3691 * There are setups with compaction disabled which would prefer to loop 3692 * inside the allocator rather than hit the oom killer prematurely. 3693 * Let's give them a good hope and keep retrying while the order-0 3694 * watermarks are OK. 3695 */ 3696 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3697 ac->nodemask) { 3698 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3699 ac_classzone_idx(ac), alloc_flags)) 3700 return true; 3701 } 3702 return false; 3703 } 3704 #endif /* CONFIG_COMPACTION */ 3705 3706 #ifdef CONFIG_LOCKDEP 3707 struct lockdep_map __fs_reclaim_map = 3708 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3709 3710 static bool __need_fs_reclaim(gfp_t gfp_mask) 3711 { 3712 gfp_mask = current_gfp_context(gfp_mask); 3713 3714 /* no reclaim without waiting on it */ 3715 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3716 return false; 3717 3718 /* this guy won't enter reclaim */ 3719 if (current->flags & PF_MEMALLOC) 3720 return false; 3721 3722 /* We're only interested __GFP_FS allocations for now */ 3723 if (!(gfp_mask & __GFP_FS)) 3724 return false; 3725 3726 if (gfp_mask & __GFP_NOLOCKDEP) 3727 return false; 3728 3729 return true; 3730 } 3731 3732 void fs_reclaim_acquire(gfp_t gfp_mask) 3733 { 3734 if (__need_fs_reclaim(gfp_mask)) 3735 lock_map_acquire(&__fs_reclaim_map); 3736 } 3737 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3738 3739 void fs_reclaim_release(gfp_t gfp_mask) 3740 { 3741 if (__need_fs_reclaim(gfp_mask)) 3742 lock_map_release(&__fs_reclaim_map); 3743 } 3744 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3745 #endif 3746 3747 /* Perform direct synchronous page reclaim */ 3748 static int 3749 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3750 const struct alloc_context *ac) 3751 { 3752 struct reclaim_state reclaim_state; 3753 int progress; 3754 unsigned int noreclaim_flag; 3755 3756 cond_resched(); 3757 3758 /* We now go into synchronous reclaim */ 3759 cpuset_memory_pressure_bump(); 3760 noreclaim_flag = memalloc_noreclaim_save(); 3761 fs_reclaim_acquire(gfp_mask); 3762 reclaim_state.reclaimed_slab = 0; 3763 current->reclaim_state = &reclaim_state; 3764 3765 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3766 ac->nodemask); 3767 3768 current->reclaim_state = NULL; 3769 fs_reclaim_release(gfp_mask); 3770 memalloc_noreclaim_restore(noreclaim_flag); 3771 3772 cond_resched(); 3773 3774 return progress; 3775 } 3776 3777 /* The really slow allocator path where we enter direct reclaim */ 3778 static inline struct page * 3779 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3780 unsigned int alloc_flags, const struct alloc_context *ac, 3781 unsigned long *did_some_progress) 3782 { 3783 struct page *page = NULL; 3784 bool drained = false; 3785 3786 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3787 if (unlikely(!(*did_some_progress))) 3788 return NULL; 3789 3790 retry: 3791 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3792 3793 /* 3794 * If an allocation failed after direct reclaim, it could be because 3795 * pages are pinned on the per-cpu lists or in high alloc reserves. 3796 * Shrink them them and try again 3797 */ 3798 if (!page && !drained) { 3799 unreserve_highatomic_pageblock(ac, false); 3800 drain_all_pages(NULL); 3801 drained = true; 3802 goto retry; 3803 } 3804 3805 return page; 3806 } 3807 3808 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3809 const struct alloc_context *ac) 3810 { 3811 struct zoneref *z; 3812 struct zone *zone; 3813 pg_data_t *last_pgdat = NULL; 3814 enum zone_type high_zoneidx = ac->high_zoneidx; 3815 3816 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 3817 ac->nodemask) { 3818 if (last_pgdat != zone->zone_pgdat) 3819 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 3820 last_pgdat = zone->zone_pgdat; 3821 } 3822 } 3823 3824 static inline unsigned int 3825 gfp_to_alloc_flags(gfp_t gfp_mask) 3826 { 3827 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3828 3829 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3830 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3831 3832 /* 3833 * The caller may dip into page reserves a bit more if the caller 3834 * cannot run direct reclaim, or if the caller has realtime scheduling 3835 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3836 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3837 */ 3838 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3839 3840 if (gfp_mask & __GFP_ATOMIC) { 3841 /* 3842 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3843 * if it can't schedule. 3844 */ 3845 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3846 alloc_flags |= ALLOC_HARDER; 3847 /* 3848 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3849 * comment for __cpuset_node_allowed(). 3850 */ 3851 alloc_flags &= ~ALLOC_CPUSET; 3852 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3853 alloc_flags |= ALLOC_HARDER; 3854 3855 #ifdef CONFIG_CMA 3856 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3857 alloc_flags |= ALLOC_CMA; 3858 #endif 3859 return alloc_flags; 3860 } 3861 3862 static bool oom_reserves_allowed(struct task_struct *tsk) 3863 { 3864 if (!tsk_is_oom_victim(tsk)) 3865 return false; 3866 3867 /* 3868 * !MMU doesn't have oom reaper so give access to memory reserves 3869 * only to the thread with TIF_MEMDIE set 3870 */ 3871 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3872 return false; 3873 3874 return true; 3875 } 3876 3877 /* 3878 * Distinguish requests which really need access to full memory 3879 * reserves from oom victims which can live with a portion of it 3880 */ 3881 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3882 { 3883 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3884 return 0; 3885 if (gfp_mask & __GFP_MEMALLOC) 3886 return ALLOC_NO_WATERMARKS; 3887 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3888 return ALLOC_NO_WATERMARKS; 3889 if (!in_interrupt()) { 3890 if (current->flags & PF_MEMALLOC) 3891 return ALLOC_NO_WATERMARKS; 3892 else if (oom_reserves_allowed(current)) 3893 return ALLOC_OOM; 3894 } 3895 3896 return 0; 3897 } 3898 3899 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3900 { 3901 return !!__gfp_pfmemalloc_flags(gfp_mask); 3902 } 3903 3904 /* 3905 * Checks whether it makes sense to retry the reclaim to make a forward progress 3906 * for the given allocation request. 3907 * 3908 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3909 * without success, or when we couldn't even meet the watermark if we 3910 * reclaimed all remaining pages on the LRU lists. 3911 * 3912 * Returns true if a retry is viable or false to enter the oom path. 3913 */ 3914 static inline bool 3915 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3916 struct alloc_context *ac, int alloc_flags, 3917 bool did_some_progress, int *no_progress_loops) 3918 { 3919 struct zone *zone; 3920 struct zoneref *z; 3921 3922 /* 3923 * Costly allocations might have made a progress but this doesn't mean 3924 * their order will become available due to high fragmentation so 3925 * always increment the no progress counter for them 3926 */ 3927 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3928 *no_progress_loops = 0; 3929 else 3930 (*no_progress_loops)++; 3931 3932 /* 3933 * Make sure we converge to OOM if we cannot make any progress 3934 * several times in the row. 3935 */ 3936 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3937 /* Before OOM, exhaust highatomic_reserve */ 3938 return unreserve_highatomic_pageblock(ac, true); 3939 } 3940 3941 /* 3942 * Keep reclaiming pages while there is a chance this will lead 3943 * somewhere. If none of the target zones can satisfy our allocation 3944 * request even if all reclaimable pages are considered then we are 3945 * screwed and have to go OOM. 3946 */ 3947 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3948 ac->nodemask) { 3949 unsigned long available; 3950 unsigned long reclaimable; 3951 unsigned long min_wmark = min_wmark_pages(zone); 3952 bool wmark; 3953 3954 available = reclaimable = zone_reclaimable_pages(zone); 3955 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3956 3957 /* 3958 * Would the allocation succeed if we reclaimed all 3959 * reclaimable pages? 3960 */ 3961 wmark = __zone_watermark_ok(zone, order, min_wmark, 3962 ac_classzone_idx(ac), alloc_flags, available); 3963 trace_reclaim_retry_zone(z, order, reclaimable, 3964 available, min_wmark, *no_progress_loops, wmark); 3965 if (wmark) { 3966 /* 3967 * If we didn't make any progress and have a lot of 3968 * dirty + writeback pages then we should wait for 3969 * an IO to complete to slow down the reclaim and 3970 * prevent from pre mature OOM 3971 */ 3972 if (!did_some_progress) { 3973 unsigned long write_pending; 3974 3975 write_pending = zone_page_state_snapshot(zone, 3976 NR_ZONE_WRITE_PENDING); 3977 3978 if (2 * write_pending > reclaimable) { 3979 congestion_wait(BLK_RW_ASYNC, HZ/10); 3980 return true; 3981 } 3982 } 3983 3984 /* 3985 * Memory allocation/reclaim might be called from a WQ 3986 * context and the current implementation of the WQ 3987 * concurrency control doesn't recognize that 3988 * a particular WQ is congested if the worker thread is 3989 * looping without ever sleeping. Therefore we have to 3990 * do a short sleep here rather than calling 3991 * cond_resched(). 3992 */ 3993 if (current->flags & PF_WQ_WORKER) 3994 schedule_timeout_uninterruptible(1); 3995 else 3996 cond_resched(); 3997 3998 return true; 3999 } 4000 } 4001 4002 return false; 4003 } 4004 4005 static inline bool 4006 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4007 { 4008 /* 4009 * It's possible that cpuset's mems_allowed and the nodemask from 4010 * mempolicy don't intersect. This should be normally dealt with by 4011 * policy_nodemask(), but it's possible to race with cpuset update in 4012 * such a way the check therein was true, and then it became false 4013 * before we got our cpuset_mems_cookie here. 4014 * This assumes that for all allocations, ac->nodemask can come only 4015 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4016 * when it does not intersect with the cpuset restrictions) or the 4017 * caller can deal with a violated nodemask. 4018 */ 4019 if (cpusets_enabled() && ac->nodemask && 4020 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4021 ac->nodemask = NULL; 4022 return true; 4023 } 4024 4025 /* 4026 * When updating a task's mems_allowed or mempolicy nodemask, it is 4027 * possible to race with parallel threads in such a way that our 4028 * allocation can fail while the mask is being updated. If we are about 4029 * to fail, check if the cpuset changed during allocation and if so, 4030 * retry. 4031 */ 4032 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4033 return true; 4034 4035 return false; 4036 } 4037 4038 static inline struct page * 4039 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4040 struct alloc_context *ac) 4041 { 4042 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4043 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4044 struct page *page = NULL; 4045 unsigned int alloc_flags; 4046 unsigned long did_some_progress; 4047 enum compact_priority compact_priority; 4048 enum compact_result compact_result; 4049 int compaction_retries; 4050 int no_progress_loops; 4051 unsigned int cpuset_mems_cookie; 4052 int reserve_flags; 4053 4054 /* 4055 * In the slowpath, we sanity check order to avoid ever trying to 4056 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 4057 * be using allocators in order of preference for an area that is 4058 * too large. 4059 */ 4060 if (order >= MAX_ORDER) { 4061 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4062 return NULL; 4063 } 4064 4065 /* 4066 * We also sanity check to catch abuse of atomic reserves being used by 4067 * callers that are not in atomic context. 4068 */ 4069 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4070 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4071 gfp_mask &= ~__GFP_ATOMIC; 4072 4073 retry_cpuset: 4074 compaction_retries = 0; 4075 no_progress_loops = 0; 4076 compact_priority = DEF_COMPACT_PRIORITY; 4077 cpuset_mems_cookie = read_mems_allowed_begin(); 4078 4079 /* 4080 * The fast path uses conservative alloc_flags to succeed only until 4081 * kswapd needs to be woken up, and to avoid the cost of setting up 4082 * alloc_flags precisely. So we do that now. 4083 */ 4084 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4085 4086 /* 4087 * We need to recalculate the starting point for the zonelist iterator 4088 * because we might have used different nodemask in the fast path, or 4089 * there was a cpuset modification and we are retrying - otherwise we 4090 * could end up iterating over non-eligible zones endlessly. 4091 */ 4092 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4093 ac->high_zoneidx, ac->nodemask); 4094 if (!ac->preferred_zoneref->zone) 4095 goto nopage; 4096 4097 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4098 wake_all_kswapds(order, gfp_mask, ac); 4099 4100 /* 4101 * The adjusted alloc_flags might result in immediate success, so try 4102 * that first 4103 */ 4104 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4105 if (page) 4106 goto got_pg; 4107 4108 /* 4109 * For costly allocations, try direct compaction first, as it's likely 4110 * that we have enough base pages and don't need to reclaim. For non- 4111 * movable high-order allocations, do that as well, as compaction will 4112 * try prevent permanent fragmentation by migrating from blocks of the 4113 * same migratetype. 4114 * Don't try this for allocations that are allowed to ignore 4115 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4116 */ 4117 if (can_direct_reclaim && 4118 (costly_order || 4119 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4120 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4121 page = __alloc_pages_direct_compact(gfp_mask, order, 4122 alloc_flags, ac, 4123 INIT_COMPACT_PRIORITY, 4124 &compact_result); 4125 if (page) 4126 goto got_pg; 4127 4128 /* 4129 * Checks for costly allocations with __GFP_NORETRY, which 4130 * includes THP page fault allocations 4131 */ 4132 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4133 /* 4134 * If compaction is deferred for high-order allocations, 4135 * it is because sync compaction recently failed. If 4136 * this is the case and the caller requested a THP 4137 * allocation, we do not want to heavily disrupt the 4138 * system, so we fail the allocation instead of entering 4139 * direct reclaim. 4140 */ 4141 if (compact_result == COMPACT_DEFERRED) 4142 goto nopage; 4143 4144 /* 4145 * Looks like reclaim/compaction is worth trying, but 4146 * sync compaction could be very expensive, so keep 4147 * using async compaction. 4148 */ 4149 compact_priority = INIT_COMPACT_PRIORITY; 4150 } 4151 } 4152 4153 retry: 4154 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4155 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4156 wake_all_kswapds(order, gfp_mask, ac); 4157 4158 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4159 if (reserve_flags) 4160 alloc_flags = reserve_flags; 4161 4162 /* 4163 * Reset the zonelist iterators if memory policies can be ignored. 4164 * These allocations are high priority and system rather than user 4165 * orientated. 4166 */ 4167 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4168 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 4169 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4170 ac->high_zoneidx, ac->nodemask); 4171 } 4172 4173 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4174 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4175 if (page) 4176 goto got_pg; 4177 4178 /* Caller is not willing to reclaim, we can't balance anything */ 4179 if (!can_direct_reclaim) 4180 goto nopage; 4181 4182 /* Avoid recursion of direct reclaim */ 4183 if (current->flags & PF_MEMALLOC) 4184 goto nopage; 4185 4186 /* Try direct reclaim and then allocating */ 4187 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4188 &did_some_progress); 4189 if (page) 4190 goto got_pg; 4191 4192 /* Try direct compaction and then allocating */ 4193 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4194 compact_priority, &compact_result); 4195 if (page) 4196 goto got_pg; 4197 4198 /* Do not loop if specifically requested */ 4199 if (gfp_mask & __GFP_NORETRY) 4200 goto nopage; 4201 4202 /* 4203 * Do not retry costly high order allocations unless they are 4204 * __GFP_RETRY_MAYFAIL 4205 */ 4206 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4207 goto nopage; 4208 4209 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4210 did_some_progress > 0, &no_progress_loops)) 4211 goto retry; 4212 4213 /* 4214 * It doesn't make any sense to retry for the compaction if the order-0 4215 * reclaim is not able to make any progress because the current 4216 * implementation of the compaction depends on the sufficient amount 4217 * of free memory (see __compaction_suitable) 4218 */ 4219 if (did_some_progress > 0 && 4220 should_compact_retry(ac, order, alloc_flags, 4221 compact_result, &compact_priority, 4222 &compaction_retries)) 4223 goto retry; 4224 4225 4226 /* Deal with possible cpuset update races before we start OOM killing */ 4227 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4228 goto retry_cpuset; 4229 4230 /* Reclaim has failed us, start killing things */ 4231 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4232 if (page) 4233 goto got_pg; 4234 4235 /* Avoid allocations with no watermarks from looping endlessly */ 4236 if (tsk_is_oom_victim(current) && 4237 (alloc_flags == ALLOC_OOM || 4238 (gfp_mask & __GFP_NOMEMALLOC))) 4239 goto nopage; 4240 4241 /* Retry as long as the OOM killer is making progress */ 4242 if (did_some_progress) { 4243 no_progress_loops = 0; 4244 goto retry; 4245 } 4246 4247 nopage: 4248 /* Deal with possible cpuset update races before we fail */ 4249 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4250 goto retry_cpuset; 4251 4252 /* 4253 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4254 * we always retry 4255 */ 4256 if (gfp_mask & __GFP_NOFAIL) { 4257 /* 4258 * All existing users of the __GFP_NOFAIL are blockable, so warn 4259 * of any new users that actually require GFP_NOWAIT 4260 */ 4261 if (WARN_ON_ONCE(!can_direct_reclaim)) 4262 goto fail; 4263 4264 /* 4265 * PF_MEMALLOC request from this context is rather bizarre 4266 * because we cannot reclaim anything and only can loop waiting 4267 * for somebody to do a work for us 4268 */ 4269 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4270 4271 /* 4272 * non failing costly orders are a hard requirement which we 4273 * are not prepared for much so let's warn about these users 4274 * so that we can identify them and convert them to something 4275 * else. 4276 */ 4277 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4278 4279 /* 4280 * Help non-failing allocations by giving them access to memory 4281 * reserves but do not use ALLOC_NO_WATERMARKS because this 4282 * could deplete whole memory reserves which would just make 4283 * the situation worse 4284 */ 4285 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4286 if (page) 4287 goto got_pg; 4288 4289 cond_resched(); 4290 goto retry; 4291 } 4292 fail: 4293 warn_alloc(gfp_mask, ac->nodemask, 4294 "page allocation failure: order:%u", order); 4295 got_pg: 4296 return page; 4297 } 4298 4299 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4300 int preferred_nid, nodemask_t *nodemask, 4301 struct alloc_context *ac, gfp_t *alloc_mask, 4302 unsigned int *alloc_flags) 4303 { 4304 ac->high_zoneidx = gfp_zone(gfp_mask); 4305 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4306 ac->nodemask = nodemask; 4307 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4308 4309 if (cpusets_enabled()) { 4310 *alloc_mask |= __GFP_HARDWALL; 4311 if (!ac->nodemask) 4312 ac->nodemask = &cpuset_current_mems_allowed; 4313 else 4314 *alloc_flags |= ALLOC_CPUSET; 4315 } 4316 4317 fs_reclaim_acquire(gfp_mask); 4318 fs_reclaim_release(gfp_mask); 4319 4320 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4321 4322 if (should_fail_alloc_page(gfp_mask, order)) 4323 return false; 4324 4325 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4326 *alloc_flags |= ALLOC_CMA; 4327 4328 return true; 4329 } 4330 4331 /* Determine whether to spread dirty pages and what the first usable zone */ 4332 static inline void finalise_ac(gfp_t gfp_mask, 4333 unsigned int order, struct alloc_context *ac) 4334 { 4335 /* Dirty zone balancing only done in the fast path */ 4336 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4337 4338 /* 4339 * The preferred zone is used for statistics but crucially it is 4340 * also used as the starting point for the zonelist iterator. It 4341 * may get reset for allocations that ignore memory policies. 4342 */ 4343 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4344 ac->high_zoneidx, ac->nodemask); 4345 } 4346 4347 /* 4348 * This is the 'heart' of the zoned buddy allocator. 4349 */ 4350 struct page * 4351 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4352 nodemask_t *nodemask) 4353 { 4354 struct page *page; 4355 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4356 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4357 struct alloc_context ac = { }; 4358 4359 gfp_mask &= gfp_allowed_mask; 4360 alloc_mask = gfp_mask; 4361 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4362 return NULL; 4363 4364 finalise_ac(gfp_mask, order, &ac); 4365 4366 /* First allocation attempt */ 4367 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4368 if (likely(page)) 4369 goto out; 4370 4371 /* 4372 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4373 * resp. GFP_NOIO which has to be inherited for all allocation requests 4374 * from a particular context which has been marked by 4375 * memalloc_no{fs,io}_{save,restore}. 4376 */ 4377 alloc_mask = current_gfp_context(gfp_mask); 4378 ac.spread_dirty_pages = false; 4379 4380 /* 4381 * Restore the original nodemask if it was potentially replaced with 4382 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4383 */ 4384 if (unlikely(ac.nodemask != nodemask)) 4385 ac.nodemask = nodemask; 4386 4387 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4388 4389 out: 4390 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4391 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4392 __free_pages(page, order); 4393 page = NULL; 4394 } 4395 4396 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4397 4398 return page; 4399 } 4400 EXPORT_SYMBOL(__alloc_pages_nodemask); 4401 4402 /* 4403 * Common helper functions. 4404 */ 4405 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4406 { 4407 struct page *page; 4408 4409 /* 4410 * __get_free_pages() returns a virtual address, which cannot represent 4411 * a highmem page 4412 */ 4413 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4414 4415 page = alloc_pages(gfp_mask, order); 4416 if (!page) 4417 return 0; 4418 return (unsigned long) page_address(page); 4419 } 4420 EXPORT_SYMBOL(__get_free_pages); 4421 4422 unsigned long get_zeroed_page(gfp_t gfp_mask) 4423 { 4424 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4425 } 4426 EXPORT_SYMBOL(get_zeroed_page); 4427 4428 void __free_pages(struct page *page, unsigned int order) 4429 { 4430 if (put_page_testzero(page)) { 4431 if (order == 0) 4432 free_unref_page(page); 4433 else 4434 __free_pages_ok(page, order); 4435 } 4436 } 4437 4438 EXPORT_SYMBOL(__free_pages); 4439 4440 void free_pages(unsigned long addr, unsigned int order) 4441 { 4442 if (addr != 0) { 4443 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4444 __free_pages(virt_to_page((void *)addr), order); 4445 } 4446 } 4447 4448 EXPORT_SYMBOL(free_pages); 4449 4450 /* 4451 * Page Fragment: 4452 * An arbitrary-length arbitrary-offset area of memory which resides 4453 * within a 0 or higher order page. Multiple fragments within that page 4454 * are individually refcounted, in the page's reference counter. 4455 * 4456 * The page_frag functions below provide a simple allocation framework for 4457 * page fragments. This is used by the network stack and network device 4458 * drivers to provide a backing region of memory for use as either an 4459 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4460 */ 4461 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4462 gfp_t gfp_mask) 4463 { 4464 struct page *page = NULL; 4465 gfp_t gfp = gfp_mask; 4466 4467 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4468 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4469 __GFP_NOMEMALLOC; 4470 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4471 PAGE_FRAG_CACHE_MAX_ORDER); 4472 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4473 #endif 4474 if (unlikely(!page)) 4475 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4476 4477 nc->va = page ? page_address(page) : NULL; 4478 4479 return page; 4480 } 4481 4482 void __page_frag_cache_drain(struct page *page, unsigned int count) 4483 { 4484 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4485 4486 if (page_ref_sub_and_test(page, count)) { 4487 unsigned int order = compound_order(page); 4488 4489 if (order == 0) 4490 free_unref_page(page); 4491 else 4492 __free_pages_ok(page, order); 4493 } 4494 } 4495 EXPORT_SYMBOL(__page_frag_cache_drain); 4496 4497 void *page_frag_alloc(struct page_frag_cache *nc, 4498 unsigned int fragsz, gfp_t gfp_mask) 4499 { 4500 unsigned int size = PAGE_SIZE; 4501 struct page *page; 4502 int offset; 4503 4504 if (unlikely(!nc->va)) { 4505 refill: 4506 page = __page_frag_cache_refill(nc, gfp_mask); 4507 if (!page) 4508 return NULL; 4509 4510 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4511 /* if size can vary use size else just use PAGE_SIZE */ 4512 size = nc->size; 4513 #endif 4514 /* Even if we own the page, we do not use atomic_set(). 4515 * This would break get_page_unless_zero() users. 4516 */ 4517 page_ref_add(page, size - 1); 4518 4519 /* reset page count bias and offset to start of new frag */ 4520 nc->pfmemalloc = page_is_pfmemalloc(page); 4521 nc->pagecnt_bias = size; 4522 nc->offset = size; 4523 } 4524 4525 offset = nc->offset - fragsz; 4526 if (unlikely(offset < 0)) { 4527 page = virt_to_page(nc->va); 4528 4529 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4530 goto refill; 4531 4532 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4533 /* if size can vary use size else just use PAGE_SIZE */ 4534 size = nc->size; 4535 #endif 4536 /* OK, page count is 0, we can safely set it */ 4537 set_page_count(page, size); 4538 4539 /* reset page count bias and offset to start of new frag */ 4540 nc->pagecnt_bias = size; 4541 offset = size - fragsz; 4542 } 4543 4544 nc->pagecnt_bias--; 4545 nc->offset = offset; 4546 4547 return nc->va + offset; 4548 } 4549 EXPORT_SYMBOL(page_frag_alloc); 4550 4551 /* 4552 * Frees a page fragment allocated out of either a compound or order 0 page. 4553 */ 4554 void page_frag_free(void *addr) 4555 { 4556 struct page *page = virt_to_head_page(addr); 4557 4558 if (unlikely(put_page_testzero(page))) 4559 __free_pages_ok(page, compound_order(page)); 4560 } 4561 EXPORT_SYMBOL(page_frag_free); 4562 4563 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4564 size_t size) 4565 { 4566 if (addr) { 4567 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4568 unsigned long used = addr + PAGE_ALIGN(size); 4569 4570 split_page(virt_to_page((void *)addr), order); 4571 while (used < alloc_end) { 4572 free_page(used); 4573 used += PAGE_SIZE; 4574 } 4575 } 4576 return (void *)addr; 4577 } 4578 4579 /** 4580 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4581 * @size: the number of bytes to allocate 4582 * @gfp_mask: GFP flags for the allocation 4583 * 4584 * This function is similar to alloc_pages(), except that it allocates the 4585 * minimum number of pages to satisfy the request. alloc_pages() can only 4586 * allocate memory in power-of-two pages. 4587 * 4588 * This function is also limited by MAX_ORDER. 4589 * 4590 * Memory allocated by this function must be released by free_pages_exact(). 4591 */ 4592 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4593 { 4594 unsigned int order = get_order(size); 4595 unsigned long addr; 4596 4597 addr = __get_free_pages(gfp_mask, order); 4598 return make_alloc_exact(addr, order, size); 4599 } 4600 EXPORT_SYMBOL(alloc_pages_exact); 4601 4602 /** 4603 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4604 * pages on a node. 4605 * @nid: the preferred node ID where memory should be allocated 4606 * @size: the number of bytes to allocate 4607 * @gfp_mask: GFP flags for the allocation 4608 * 4609 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4610 * back. 4611 */ 4612 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4613 { 4614 unsigned int order = get_order(size); 4615 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4616 if (!p) 4617 return NULL; 4618 return make_alloc_exact((unsigned long)page_address(p), order, size); 4619 } 4620 4621 /** 4622 * free_pages_exact - release memory allocated via alloc_pages_exact() 4623 * @virt: the value returned by alloc_pages_exact. 4624 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4625 * 4626 * Release the memory allocated by a previous call to alloc_pages_exact. 4627 */ 4628 void free_pages_exact(void *virt, size_t size) 4629 { 4630 unsigned long addr = (unsigned long)virt; 4631 unsigned long end = addr + PAGE_ALIGN(size); 4632 4633 while (addr < end) { 4634 free_page(addr); 4635 addr += PAGE_SIZE; 4636 } 4637 } 4638 EXPORT_SYMBOL(free_pages_exact); 4639 4640 /** 4641 * nr_free_zone_pages - count number of pages beyond high watermark 4642 * @offset: The zone index of the highest zone 4643 * 4644 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4645 * high watermark within all zones at or below a given zone index. For each 4646 * zone, the number of pages is calculated as: 4647 * 4648 * nr_free_zone_pages = managed_pages - high_pages 4649 */ 4650 static unsigned long nr_free_zone_pages(int offset) 4651 { 4652 struct zoneref *z; 4653 struct zone *zone; 4654 4655 /* Just pick one node, since fallback list is circular */ 4656 unsigned long sum = 0; 4657 4658 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4659 4660 for_each_zone_zonelist(zone, z, zonelist, offset) { 4661 unsigned long size = zone->managed_pages; 4662 unsigned long high = high_wmark_pages(zone); 4663 if (size > high) 4664 sum += size - high; 4665 } 4666 4667 return sum; 4668 } 4669 4670 /** 4671 * nr_free_buffer_pages - count number of pages beyond high watermark 4672 * 4673 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4674 * watermark within ZONE_DMA and ZONE_NORMAL. 4675 */ 4676 unsigned long nr_free_buffer_pages(void) 4677 { 4678 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4679 } 4680 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4681 4682 /** 4683 * nr_free_pagecache_pages - count number of pages beyond high watermark 4684 * 4685 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4686 * high watermark within all zones. 4687 */ 4688 unsigned long nr_free_pagecache_pages(void) 4689 { 4690 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4691 } 4692 4693 static inline void show_node(struct zone *zone) 4694 { 4695 if (IS_ENABLED(CONFIG_NUMA)) 4696 printk("Node %d ", zone_to_nid(zone)); 4697 } 4698 4699 long si_mem_available(void) 4700 { 4701 long available; 4702 unsigned long pagecache; 4703 unsigned long wmark_low = 0; 4704 unsigned long pages[NR_LRU_LISTS]; 4705 struct zone *zone; 4706 int lru; 4707 4708 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4709 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4710 4711 for_each_zone(zone) 4712 wmark_low += zone->watermark[WMARK_LOW]; 4713 4714 /* 4715 * Estimate the amount of memory available for userspace allocations, 4716 * without causing swapping. 4717 */ 4718 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4719 4720 /* 4721 * Not all the page cache can be freed, otherwise the system will 4722 * start swapping. Assume at least half of the page cache, or the 4723 * low watermark worth of cache, needs to stay. 4724 */ 4725 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4726 pagecache -= min(pagecache / 2, wmark_low); 4727 available += pagecache; 4728 4729 /* 4730 * Part of the reclaimable slab consists of items that are in use, 4731 * and cannot be freed. Cap this estimate at the low watermark. 4732 */ 4733 available += global_node_page_state(NR_SLAB_RECLAIMABLE) - 4734 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, 4735 wmark_low); 4736 4737 if (available < 0) 4738 available = 0; 4739 return available; 4740 } 4741 EXPORT_SYMBOL_GPL(si_mem_available); 4742 4743 void si_meminfo(struct sysinfo *val) 4744 { 4745 val->totalram = totalram_pages; 4746 val->sharedram = global_node_page_state(NR_SHMEM); 4747 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4748 val->bufferram = nr_blockdev_pages(); 4749 val->totalhigh = totalhigh_pages; 4750 val->freehigh = nr_free_highpages(); 4751 val->mem_unit = PAGE_SIZE; 4752 } 4753 4754 EXPORT_SYMBOL(si_meminfo); 4755 4756 #ifdef CONFIG_NUMA 4757 void si_meminfo_node(struct sysinfo *val, int nid) 4758 { 4759 int zone_type; /* needs to be signed */ 4760 unsigned long managed_pages = 0; 4761 unsigned long managed_highpages = 0; 4762 unsigned long free_highpages = 0; 4763 pg_data_t *pgdat = NODE_DATA(nid); 4764 4765 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4766 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4767 val->totalram = managed_pages; 4768 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4769 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4770 #ifdef CONFIG_HIGHMEM 4771 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4772 struct zone *zone = &pgdat->node_zones[zone_type]; 4773 4774 if (is_highmem(zone)) { 4775 managed_highpages += zone->managed_pages; 4776 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4777 } 4778 } 4779 val->totalhigh = managed_highpages; 4780 val->freehigh = free_highpages; 4781 #else 4782 val->totalhigh = managed_highpages; 4783 val->freehigh = free_highpages; 4784 #endif 4785 val->mem_unit = PAGE_SIZE; 4786 } 4787 #endif 4788 4789 /* 4790 * Determine whether the node should be displayed or not, depending on whether 4791 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4792 */ 4793 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4794 { 4795 if (!(flags & SHOW_MEM_FILTER_NODES)) 4796 return false; 4797 4798 /* 4799 * no node mask - aka implicit memory numa policy. Do not bother with 4800 * the synchronization - read_mems_allowed_begin - because we do not 4801 * have to be precise here. 4802 */ 4803 if (!nodemask) 4804 nodemask = &cpuset_current_mems_allowed; 4805 4806 return !node_isset(nid, *nodemask); 4807 } 4808 4809 #define K(x) ((x) << (PAGE_SHIFT-10)) 4810 4811 static void show_migration_types(unsigned char type) 4812 { 4813 static const char types[MIGRATE_TYPES] = { 4814 [MIGRATE_UNMOVABLE] = 'U', 4815 [MIGRATE_MOVABLE] = 'M', 4816 [MIGRATE_RECLAIMABLE] = 'E', 4817 [MIGRATE_HIGHATOMIC] = 'H', 4818 #ifdef CONFIG_CMA 4819 [MIGRATE_CMA] = 'C', 4820 #endif 4821 #ifdef CONFIG_MEMORY_ISOLATION 4822 [MIGRATE_ISOLATE] = 'I', 4823 #endif 4824 }; 4825 char tmp[MIGRATE_TYPES + 1]; 4826 char *p = tmp; 4827 int i; 4828 4829 for (i = 0; i < MIGRATE_TYPES; i++) { 4830 if (type & (1 << i)) 4831 *p++ = types[i]; 4832 } 4833 4834 *p = '\0'; 4835 printk(KERN_CONT "(%s) ", tmp); 4836 } 4837 4838 /* 4839 * Show free area list (used inside shift_scroll-lock stuff) 4840 * We also calculate the percentage fragmentation. We do this by counting the 4841 * memory on each free list with the exception of the first item on the list. 4842 * 4843 * Bits in @filter: 4844 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4845 * cpuset. 4846 */ 4847 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4848 { 4849 unsigned long free_pcp = 0; 4850 int cpu; 4851 struct zone *zone; 4852 pg_data_t *pgdat; 4853 4854 for_each_populated_zone(zone) { 4855 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4856 continue; 4857 4858 for_each_online_cpu(cpu) 4859 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4860 } 4861 4862 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4863 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4864 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4865 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4866 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4867 " free:%lu free_pcp:%lu free_cma:%lu\n", 4868 global_node_page_state(NR_ACTIVE_ANON), 4869 global_node_page_state(NR_INACTIVE_ANON), 4870 global_node_page_state(NR_ISOLATED_ANON), 4871 global_node_page_state(NR_ACTIVE_FILE), 4872 global_node_page_state(NR_INACTIVE_FILE), 4873 global_node_page_state(NR_ISOLATED_FILE), 4874 global_node_page_state(NR_UNEVICTABLE), 4875 global_node_page_state(NR_FILE_DIRTY), 4876 global_node_page_state(NR_WRITEBACK), 4877 global_node_page_state(NR_UNSTABLE_NFS), 4878 global_node_page_state(NR_SLAB_RECLAIMABLE), 4879 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4880 global_node_page_state(NR_FILE_MAPPED), 4881 global_node_page_state(NR_SHMEM), 4882 global_zone_page_state(NR_PAGETABLE), 4883 global_zone_page_state(NR_BOUNCE), 4884 global_zone_page_state(NR_FREE_PAGES), 4885 free_pcp, 4886 global_zone_page_state(NR_FREE_CMA_PAGES)); 4887 4888 for_each_online_pgdat(pgdat) { 4889 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4890 continue; 4891 4892 printk("Node %d" 4893 " active_anon:%lukB" 4894 " inactive_anon:%lukB" 4895 " active_file:%lukB" 4896 " inactive_file:%lukB" 4897 " unevictable:%lukB" 4898 " isolated(anon):%lukB" 4899 " isolated(file):%lukB" 4900 " mapped:%lukB" 4901 " dirty:%lukB" 4902 " writeback:%lukB" 4903 " shmem:%lukB" 4904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4905 " shmem_thp: %lukB" 4906 " shmem_pmdmapped: %lukB" 4907 " anon_thp: %lukB" 4908 #endif 4909 " writeback_tmp:%lukB" 4910 " unstable:%lukB" 4911 " all_unreclaimable? %s" 4912 "\n", 4913 pgdat->node_id, 4914 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4915 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4916 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4917 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4918 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4919 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4920 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4921 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4922 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4923 K(node_page_state(pgdat, NR_WRITEBACK)), 4924 K(node_page_state(pgdat, NR_SHMEM)), 4925 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4926 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4927 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4928 * HPAGE_PMD_NR), 4929 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4930 #endif 4931 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4932 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4933 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4934 "yes" : "no"); 4935 } 4936 4937 for_each_populated_zone(zone) { 4938 int i; 4939 4940 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4941 continue; 4942 4943 free_pcp = 0; 4944 for_each_online_cpu(cpu) 4945 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4946 4947 show_node(zone); 4948 printk(KERN_CONT 4949 "%s" 4950 " free:%lukB" 4951 " min:%lukB" 4952 " low:%lukB" 4953 " high:%lukB" 4954 " active_anon:%lukB" 4955 " inactive_anon:%lukB" 4956 " active_file:%lukB" 4957 " inactive_file:%lukB" 4958 " unevictable:%lukB" 4959 " writepending:%lukB" 4960 " present:%lukB" 4961 " managed:%lukB" 4962 " mlocked:%lukB" 4963 " kernel_stack:%lukB" 4964 " pagetables:%lukB" 4965 " bounce:%lukB" 4966 " free_pcp:%lukB" 4967 " local_pcp:%ukB" 4968 " free_cma:%lukB" 4969 "\n", 4970 zone->name, 4971 K(zone_page_state(zone, NR_FREE_PAGES)), 4972 K(min_wmark_pages(zone)), 4973 K(low_wmark_pages(zone)), 4974 K(high_wmark_pages(zone)), 4975 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4976 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4977 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4978 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4979 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4980 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4981 K(zone->present_pages), 4982 K(zone->managed_pages), 4983 K(zone_page_state(zone, NR_MLOCK)), 4984 zone_page_state(zone, NR_KERNEL_STACK_KB), 4985 K(zone_page_state(zone, NR_PAGETABLE)), 4986 K(zone_page_state(zone, NR_BOUNCE)), 4987 K(free_pcp), 4988 K(this_cpu_read(zone->pageset->pcp.count)), 4989 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4990 printk("lowmem_reserve[]:"); 4991 for (i = 0; i < MAX_NR_ZONES; i++) 4992 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4993 printk(KERN_CONT "\n"); 4994 } 4995 4996 for_each_populated_zone(zone) { 4997 unsigned int order; 4998 unsigned long nr[MAX_ORDER], flags, total = 0; 4999 unsigned char types[MAX_ORDER]; 5000 5001 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5002 continue; 5003 show_node(zone); 5004 printk(KERN_CONT "%s: ", zone->name); 5005 5006 spin_lock_irqsave(&zone->lock, flags); 5007 for (order = 0; order < MAX_ORDER; order++) { 5008 struct free_area *area = &zone->free_area[order]; 5009 int type; 5010 5011 nr[order] = area->nr_free; 5012 total += nr[order] << order; 5013 5014 types[order] = 0; 5015 for (type = 0; type < MIGRATE_TYPES; type++) { 5016 if (!list_empty(&area->free_list[type])) 5017 types[order] |= 1 << type; 5018 } 5019 } 5020 spin_unlock_irqrestore(&zone->lock, flags); 5021 for (order = 0; order < MAX_ORDER; order++) { 5022 printk(KERN_CONT "%lu*%lukB ", 5023 nr[order], K(1UL) << order); 5024 if (nr[order]) 5025 show_migration_types(types[order]); 5026 } 5027 printk(KERN_CONT "= %lukB\n", K(total)); 5028 } 5029 5030 hugetlb_show_meminfo(); 5031 5032 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5033 5034 show_swap_cache_info(); 5035 } 5036 5037 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5038 { 5039 zoneref->zone = zone; 5040 zoneref->zone_idx = zone_idx(zone); 5041 } 5042 5043 /* 5044 * Builds allocation fallback zone lists. 5045 * 5046 * Add all populated zones of a node to the zonelist. 5047 */ 5048 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5049 { 5050 struct zone *zone; 5051 enum zone_type zone_type = MAX_NR_ZONES; 5052 int nr_zones = 0; 5053 5054 do { 5055 zone_type--; 5056 zone = pgdat->node_zones + zone_type; 5057 if (managed_zone(zone)) { 5058 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5059 check_highest_zone(zone_type); 5060 } 5061 } while (zone_type); 5062 5063 return nr_zones; 5064 } 5065 5066 #ifdef CONFIG_NUMA 5067 5068 static int __parse_numa_zonelist_order(char *s) 5069 { 5070 /* 5071 * We used to support different zonlists modes but they turned 5072 * out to be just not useful. Let's keep the warning in place 5073 * if somebody still use the cmd line parameter so that we do 5074 * not fail it silently 5075 */ 5076 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5077 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5078 return -EINVAL; 5079 } 5080 return 0; 5081 } 5082 5083 static __init int setup_numa_zonelist_order(char *s) 5084 { 5085 if (!s) 5086 return 0; 5087 5088 return __parse_numa_zonelist_order(s); 5089 } 5090 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5091 5092 char numa_zonelist_order[] = "Node"; 5093 5094 /* 5095 * sysctl handler for numa_zonelist_order 5096 */ 5097 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5098 void __user *buffer, size_t *length, 5099 loff_t *ppos) 5100 { 5101 char *str; 5102 int ret; 5103 5104 if (!write) 5105 return proc_dostring(table, write, buffer, length, ppos); 5106 str = memdup_user_nul(buffer, 16); 5107 if (IS_ERR(str)) 5108 return PTR_ERR(str); 5109 5110 ret = __parse_numa_zonelist_order(str); 5111 kfree(str); 5112 return ret; 5113 } 5114 5115 5116 #define MAX_NODE_LOAD (nr_online_nodes) 5117 static int node_load[MAX_NUMNODES]; 5118 5119 /** 5120 * find_next_best_node - find the next node that should appear in a given node's fallback list 5121 * @node: node whose fallback list we're appending 5122 * @used_node_mask: nodemask_t of already used nodes 5123 * 5124 * We use a number of factors to determine which is the next node that should 5125 * appear on a given node's fallback list. The node should not have appeared 5126 * already in @node's fallback list, and it should be the next closest node 5127 * according to the distance array (which contains arbitrary distance values 5128 * from each node to each node in the system), and should also prefer nodes 5129 * with no CPUs, since presumably they'll have very little allocation pressure 5130 * on them otherwise. 5131 * It returns -1 if no node is found. 5132 */ 5133 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5134 { 5135 int n, val; 5136 int min_val = INT_MAX; 5137 int best_node = NUMA_NO_NODE; 5138 const struct cpumask *tmp = cpumask_of_node(0); 5139 5140 /* Use the local node if we haven't already */ 5141 if (!node_isset(node, *used_node_mask)) { 5142 node_set(node, *used_node_mask); 5143 return node; 5144 } 5145 5146 for_each_node_state(n, N_MEMORY) { 5147 5148 /* Don't want a node to appear more than once */ 5149 if (node_isset(n, *used_node_mask)) 5150 continue; 5151 5152 /* Use the distance array to find the distance */ 5153 val = node_distance(node, n); 5154 5155 /* Penalize nodes under us ("prefer the next node") */ 5156 val += (n < node); 5157 5158 /* Give preference to headless and unused nodes */ 5159 tmp = cpumask_of_node(n); 5160 if (!cpumask_empty(tmp)) 5161 val += PENALTY_FOR_NODE_WITH_CPUS; 5162 5163 /* Slight preference for less loaded node */ 5164 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5165 val += node_load[n]; 5166 5167 if (val < min_val) { 5168 min_val = val; 5169 best_node = n; 5170 } 5171 } 5172 5173 if (best_node >= 0) 5174 node_set(best_node, *used_node_mask); 5175 5176 return best_node; 5177 } 5178 5179 5180 /* 5181 * Build zonelists ordered by node and zones within node. 5182 * This results in maximum locality--normal zone overflows into local 5183 * DMA zone, if any--but risks exhausting DMA zone. 5184 */ 5185 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5186 unsigned nr_nodes) 5187 { 5188 struct zoneref *zonerefs; 5189 int i; 5190 5191 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5192 5193 for (i = 0; i < nr_nodes; i++) { 5194 int nr_zones; 5195 5196 pg_data_t *node = NODE_DATA(node_order[i]); 5197 5198 nr_zones = build_zonerefs_node(node, zonerefs); 5199 zonerefs += nr_zones; 5200 } 5201 zonerefs->zone = NULL; 5202 zonerefs->zone_idx = 0; 5203 } 5204 5205 /* 5206 * Build gfp_thisnode zonelists 5207 */ 5208 static void build_thisnode_zonelists(pg_data_t *pgdat) 5209 { 5210 struct zoneref *zonerefs; 5211 int nr_zones; 5212 5213 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5214 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5215 zonerefs += nr_zones; 5216 zonerefs->zone = NULL; 5217 zonerefs->zone_idx = 0; 5218 } 5219 5220 /* 5221 * Build zonelists ordered by zone and nodes within zones. 5222 * This results in conserving DMA zone[s] until all Normal memory is 5223 * exhausted, but results in overflowing to remote node while memory 5224 * may still exist in local DMA zone. 5225 */ 5226 5227 static void build_zonelists(pg_data_t *pgdat) 5228 { 5229 static int node_order[MAX_NUMNODES]; 5230 int node, load, nr_nodes = 0; 5231 nodemask_t used_mask; 5232 int local_node, prev_node; 5233 5234 /* NUMA-aware ordering of nodes */ 5235 local_node = pgdat->node_id; 5236 load = nr_online_nodes; 5237 prev_node = local_node; 5238 nodes_clear(used_mask); 5239 5240 memset(node_order, 0, sizeof(node_order)); 5241 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5242 /* 5243 * We don't want to pressure a particular node. 5244 * So adding penalty to the first node in same 5245 * distance group to make it round-robin. 5246 */ 5247 if (node_distance(local_node, node) != 5248 node_distance(local_node, prev_node)) 5249 node_load[node] = load; 5250 5251 node_order[nr_nodes++] = node; 5252 prev_node = node; 5253 load--; 5254 } 5255 5256 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5257 build_thisnode_zonelists(pgdat); 5258 } 5259 5260 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5261 /* 5262 * Return node id of node used for "local" allocations. 5263 * I.e., first node id of first zone in arg node's generic zonelist. 5264 * Used for initializing percpu 'numa_mem', which is used primarily 5265 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5266 */ 5267 int local_memory_node(int node) 5268 { 5269 struct zoneref *z; 5270 5271 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5272 gfp_zone(GFP_KERNEL), 5273 NULL); 5274 return z->zone->node; 5275 } 5276 #endif 5277 5278 static void setup_min_unmapped_ratio(void); 5279 static void setup_min_slab_ratio(void); 5280 #else /* CONFIG_NUMA */ 5281 5282 static void build_zonelists(pg_data_t *pgdat) 5283 { 5284 int node, local_node; 5285 struct zoneref *zonerefs; 5286 int nr_zones; 5287 5288 local_node = pgdat->node_id; 5289 5290 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5291 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5292 zonerefs += nr_zones; 5293 5294 /* 5295 * Now we build the zonelist so that it contains the zones 5296 * of all the other nodes. 5297 * We don't want to pressure a particular node, so when 5298 * building the zones for node N, we make sure that the 5299 * zones coming right after the local ones are those from 5300 * node N+1 (modulo N) 5301 */ 5302 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5303 if (!node_online(node)) 5304 continue; 5305 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5306 zonerefs += nr_zones; 5307 } 5308 for (node = 0; node < local_node; node++) { 5309 if (!node_online(node)) 5310 continue; 5311 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5312 zonerefs += nr_zones; 5313 } 5314 5315 zonerefs->zone = NULL; 5316 zonerefs->zone_idx = 0; 5317 } 5318 5319 #endif /* CONFIG_NUMA */ 5320 5321 /* 5322 * Boot pageset table. One per cpu which is going to be used for all 5323 * zones and all nodes. The parameters will be set in such a way 5324 * that an item put on a list will immediately be handed over to 5325 * the buddy list. This is safe since pageset manipulation is done 5326 * with interrupts disabled. 5327 * 5328 * The boot_pagesets must be kept even after bootup is complete for 5329 * unused processors and/or zones. They do play a role for bootstrapping 5330 * hotplugged processors. 5331 * 5332 * zoneinfo_show() and maybe other functions do 5333 * not check if the processor is online before following the pageset pointer. 5334 * Other parts of the kernel may not check if the zone is available. 5335 */ 5336 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5337 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5338 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5339 5340 static void __build_all_zonelists(void *data) 5341 { 5342 int nid; 5343 int __maybe_unused cpu; 5344 pg_data_t *self = data; 5345 static DEFINE_SPINLOCK(lock); 5346 5347 spin_lock(&lock); 5348 5349 #ifdef CONFIG_NUMA 5350 memset(node_load, 0, sizeof(node_load)); 5351 #endif 5352 5353 /* 5354 * This node is hotadded and no memory is yet present. So just 5355 * building zonelists is fine - no need to touch other nodes. 5356 */ 5357 if (self && !node_online(self->node_id)) { 5358 build_zonelists(self); 5359 } else { 5360 for_each_online_node(nid) { 5361 pg_data_t *pgdat = NODE_DATA(nid); 5362 5363 build_zonelists(pgdat); 5364 } 5365 5366 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5367 /* 5368 * We now know the "local memory node" for each node-- 5369 * i.e., the node of the first zone in the generic zonelist. 5370 * Set up numa_mem percpu variable for on-line cpus. During 5371 * boot, only the boot cpu should be on-line; we'll init the 5372 * secondary cpus' numa_mem as they come on-line. During 5373 * node/memory hotplug, we'll fixup all on-line cpus. 5374 */ 5375 for_each_online_cpu(cpu) 5376 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5377 #endif 5378 } 5379 5380 spin_unlock(&lock); 5381 } 5382 5383 static noinline void __init 5384 build_all_zonelists_init(void) 5385 { 5386 int cpu; 5387 5388 __build_all_zonelists(NULL); 5389 5390 /* 5391 * Initialize the boot_pagesets that are going to be used 5392 * for bootstrapping processors. The real pagesets for 5393 * each zone will be allocated later when the per cpu 5394 * allocator is available. 5395 * 5396 * boot_pagesets are used also for bootstrapping offline 5397 * cpus if the system is already booted because the pagesets 5398 * are needed to initialize allocators on a specific cpu too. 5399 * F.e. the percpu allocator needs the page allocator which 5400 * needs the percpu allocator in order to allocate its pagesets 5401 * (a chicken-egg dilemma). 5402 */ 5403 for_each_possible_cpu(cpu) 5404 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5405 5406 mminit_verify_zonelist(); 5407 cpuset_init_current_mems_allowed(); 5408 } 5409 5410 /* 5411 * unless system_state == SYSTEM_BOOTING. 5412 * 5413 * __ref due to call of __init annotated helper build_all_zonelists_init 5414 * [protected by SYSTEM_BOOTING]. 5415 */ 5416 void __ref build_all_zonelists(pg_data_t *pgdat) 5417 { 5418 if (system_state == SYSTEM_BOOTING) { 5419 build_all_zonelists_init(); 5420 } else { 5421 __build_all_zonelists(pgdat); 5422 /* cpuset refresh routine should be here */ 5423 } 5424 vm_total_pages = nr_free_pagecache_pages(); 5425 /* 5426 * Disable grouping by mobility if the number of pages in the 5427 * system is too low to allow the mechanism to work. It would be 5428 * more accurate, but expensive to check per-zone. This check is 5429 * made on memory-hotadd so a system can start with mobility 5430 * disabled and enable it later 5431 */ 5432 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5433 page_group_by_mobility_disabled = 1; 5434 else 5435 page_group_by_mobility_disabled = 0; 5436 5437 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5438 nr_online_nodes, 5439 page_group_by_mobility_disabled ? "off" : "on", 5440 vm_total_pages); 5441 #ifdef CONFIG_NUMA 5442 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5443 #endif 5444 } 5445 5446 /* 5447 * Initially all pages are reserved - free ones are freed 5448 * up by free_all_bootmem() once the early boot process is 5449 * done. Non-atomic initialization, single-pass. 5450 */ 5451 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5452 unsigned long start_pfn, enum memmap_context context, 5453 struct vmem_altmap *altmap) 5454 { 5455 unsigned long end_pfn = start_pfn + size; 5456 pg_data_t *pgdat = NODE_DATA(nid); 5457 unsigned long pfn; 5458 unsigned long nr_initialised = 0; 5459 struct page *page; 5460 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5461 struct memblock_region *r = NULL, *tmp; 5462 #endif 5463 5464 if (highest_memmap_pfn < end_pfn - 1) 5465 highest_memmap_pfn = end_pfn - 1; 5466 5467 /* 5468 * Honor reservation requested by the driver for this ZONE_DEVICE 5469 * memory 5470 */ 5471 if (altmap && start_pfn == altmap->base_pfn) 5472 start_pfn += altmap->reserve; 5473 5474 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5475 /* 5476 * There can be holes in boot-time mem_map[]s handed to this 5477 * function. They do not exist on hotplugged memory. 5478 */ 5479 if (context != MEMMAP_EARLY) 5480 goto not_early; 5481 5482 if (!early_pfn_valid(pfn)) 5483 continue; 5484 if (!early_pfn_in_nid(pfn, nid)) 5485 continue; 5486 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5487 break; 5488 5489 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5490 /* 5491 * Check given memblock attribute by firmware which can affect 5492 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5493 * mirrored, it's an overlapped memmap init. skip it. 5494 */ 5495 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5496 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5497 for_each_memblock(memory, tmp) 5498 if (pfn < memblock_region_memory_end_pfn(tmp)) 5499 break; 5500 r = tmp; 5501 } 5502 if (pfn >= memblock_region_memory_base_pfn(r) && 5503 memblock_is_mirror(r)) { 5504 /* already initialized as NORMAL */ 5505 pfn = memblock_region_memory_end_pfn(r); 5506 continue; 5507 } 5508 } 5509 #endif 5510 5511 not_early: 5512 page = pfn_to_page(pfn); 5513 __init_single_page(page, pfn, zone, nid); 5514 if (context == MEMMAP_HOTPLUG) 5515 SetPageReserved(page); 5516 5517 /* 5518 * Mark the block movable so that blocks are reserved for 5519 * movable at startup. This will force kernel allocations 5520 * to reserve their blocks rather than leaking throughout 5521 * the address space during boot when many long-lived 5522 * kernel allocations are made. 5523 * 5524 * bitmap is created for zone's valid pfn range. but memmap 5525 * can be created for invalid pages (for alignment) 5526 * check here not to call set_pageblock_migratetype() against 5527 * pfn out of zone. 5528 * 5529 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5530 * because this is done early in sparse_add_one_section 5531 */ 5532 if (!(pfn & (pageblock_nr_pages - 1))) { 5533 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5534 cond_resched(); 5535 } 5536 } 5537 } 5538 5539 static void __meminit zone_init_free_lists(struct zone *zone) 5540 { 5541 unsigned int order, t; 5542 for_each_migratetype_order(order, t) { 5543 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5544 zone->free_area[order].nr_free = 0; 5545 } 5546 } 5547 5548 #ifndef __HAVE_ARCH_MEMMAP_INIT 5549 #define memmap_init(size, nid, zone, start_pfn) \ 5550 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL) 5551 #endif 5552 5553 static int zone_batchsize(struct zone *zone) 5554 { 5555 #ifdef CONFIG_MMU 5556 int batch; 5557 5558 /* 5559 * The per-cpu-pages pools are set to around 1000th of the 5560 * size of the zone. But no more than 1/2 of a meg. 5561 * 5562 * OK, so we don't know how big the cache is. So guess. 5563 */ 5564 batch = zone->managed_pages / 1024; 5565 if (batch * PAGE_SIZE > 512 * 1024) 5566 batch = (512 * 1024) / PAGE_SIZE; 5567 batch /= 4; /* We effectively *= 4 below */ 5568 if (batch < 1) 5569 batch = 1; 5570 5571 /* 5572 * Clamp the batch to a 2^n - 1 value. Having a power 5573 * of 2 value was found to be more likely to have 5574 * suboptimal cache aliasing properties in some cases. 5575 * 5576 * For example if 2 tasks are alternately allocating 5577 * batches of pages, one task can end up with a lot 5578 * of pages of one half of the possible page colors 5579 * and the other with pages of the other colors. 5580 */ 5581 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5582 5583 return batch; 5584 5585 #else 5586 /* The deferral and batching of frees should be suppressed under NOMMU 5587 * conditions. 5588 * 5589 * The problem is that NOMMU needs to be able to allocate large chunks 5590 * of contiguous memory as there's no hardware page translation to 5591 * assemble apparent contiguous memory from discontiguous pages. 5592 * 5593 * Queueing large contiguous runs of pages for batching, however, 5594 * causes the pages to actually be freed in smaller chunks. As there 5595 * can be a significant delay between the individual batches being 5596 * recycled, this leads to the once large chunks of space being 5597 * fragmented and becoming unavailable for high-order allocations. 5598 */ 5599 return 0; 5600 #endif 5601 } 5602 5603 /* 5604 * pcp->high and pcp->batch values are related and dependent on one another: 5605 * ->batch must never be higher then ->high. 5606 * The following function updates them in a safe manner without read side 5607 * locking. 5608 * 5609 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5610 * those fields changing asynchronously (acording the the above rule). 5611 * 5612 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5613 * outside of boot time (or some other assurance that no concurrent updaters 5614 * exist). 5615 */ 5616 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5617 unsigned long batch) 5618 { 5619 /* start with a fail safe value for batch */ 5620 pcp->batch = 1; 5621 smp_wmb(); 5622 5623 /* Update high, then batch, in order */ 5624 pcp->high = high; 5625 smp_wmb(); 5626 5627 pcp->batch = batch; 5628 } 5629 5630 /* a companion to pageset_set_high() */ 5631 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5632 { 5633 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5634 } 5635 5636 static void pageset_init(struct per_cpu_pageset *p) 5637 { 5638 struct per_cpu_pages *pcp; 5639 int migratetype; 5640 5641 memset(p, 0, sizeof(*p)); 5642 5643 pcp = &p->pcp; 5644 pcp->count = 0; 5645 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5646 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5647 } 5648 5649 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5650 { 5651 pageset_init(p); 5652 pageset_set_batch(p, batch); 5653 } 5654 5655 /* 5656 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5657 * to the value high for the pageset p. 5658 */ 5659 static void pageset_set_high(struct per_cpu_pageset *p, 5660 unsigned long high) 5661 { 5662 unsigned long batch = max(1UL, high / 4); 5663 if ((high / 4) > (PAGE_SHIFT * 8)) 5664 batch = PAGE_SHIFT * 8; 5665 5666 pageset_update(&p->pcp, high, batch); 5667 } 5668 5669 static void pageset_set_high_and_batch(struct zone *zone, 5670 struct per_cpu_pageset *pcp) 5671 { 5672 if (percpu_pagelist_fraction) 5673 pageset_set_high(pcp, 5674 (zone->managed_pages / 5675 percpu_pagelist_fraction)); 5676 else 5677 pageset_set_batch(pcp, zone_batchsize(zone)); 5678 } 5679 5680 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5681 { 5682 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5683 5684 pageset_init(pcp); 5685 pageset_set_high_and_batch(zone, pcp); 5686 } 5687 5688 void __meminit setup_zone_pageset(struct zone *zone) 5689 { 5690 int cpu; 5691 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5692 for_each_possible_cpu(cpu) 5693 zone_pageset_init(zone, cpu); 5694 } 5695 5696 /* 5697 * Allocate per cpu pagesets and initialize them. 5698 * Before this call only boot pagesets were available. 5699 */ 5700 void __init setup_per_cpu_pageset(void) 5701 { 5702 struct pglist_data *pgdat; 5703 struct zone *zone; 5704 5705 for_each_populated_zone(zone) 5706 setup_zone_pageset(zone); 5707 5708 for_each_online_pgdat(pgdat) 5709 pgdat->per_cpu_nodestats = 5710 alloc_percpu(struct per_cpu_nodestat); 5711 } 5712 5713 static __meminit void zone_pcp_init(struct zone *zone) 5714 { 5715 /* 5716 * per cpu subsystem is not up at this point. The following code 5717 * relies on the ability of the linker to provide the 5718 * offset of a (static) per cpu variable into the per cpu area. 5719 */ 5720 zone->pageset = &boot_pageset; 5721 5722 if (populated_zone(zone)) 5723 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5724 zone->name, zone->present_pages, 5725 zone_batchsize(zone)); 5726 } 5727 5728 void __meminit init_currently_empty_zone(struct zone *zone, 5729 unsigned long zone_start_pfn, 5730 unsigned long size) 5731 { 5732 struct pglist_data *pgdat = zone->zone_pgdat; 5733 5734 pgdat->nr_zones = zone_idx(zone) + 1; 5735 5736 zone->zone_start_pfn = zone_start_pfn; 5737 5738 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5739 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5740 pgdat->node_id, 5741 (unsigned long)zone_idx(zone), 5742 zone_start_pfn, (zone_start_pfn + size)); 5743 5744 zone_init_free_lists(zone); 5745 zone->initialized = 1; 5746 } 5747 5748 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5749 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5750 5751 /* 5752 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5753 */ 5754 int __meminit __early_pfn_to_nid(unsigned long pfn, 5755 struct mminit_pfnnid_cache *state) 5756 { 5757 unsigned long start_pfn, end_pfn; 5758 int nid; 5759 5760 if (state->last_start <= pfn && pfn < state->last_end) 5761 return state->last_nid; 5762 5763 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5764 if (nid != -1) { 5765 state->last_start = start_pfn; 5766 state->last_end = end_pfn; 5767 state->last_nid = nid; 5768 } 5769 5770 return nid; 5771 } 5772 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5773 5774 /** 5775 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5776 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5777 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5778 * 5779 * If an architecture guarantees that all ranges registered contain no holes 5780 * and may be freed, this this function may be used instead of calling 5781 * memblock_free_early_nid() manually. 5782 */ 5783 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5784 { 5785 unsigned long start_pfn, end_pfn; 5786 int i, this_nid; 5787 5788 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5789 start_pfn = min(start_pfn, max_low_pfn); 5790 end_pfn = min(end_pfn, max_low_pfn); 5791 5792 if (start_pfn < end_pfn) 5793 memblock_free_early_nid(PFN_PHYS(start_pfn), 5794 (end_pfn - start_pfn) << PAGE_SHIFT, 5795 this_nid); 5796 } 5797 } 5798 5799 /** 5800 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5801 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5802 * 5803 * If an architecture guarantees that all ranges registered contain no holes and may 5804 * be freed, this function may be used instead of calling memory_present() manually. 5805 */ 5806 void __init sparse_memory_present_with_active_regions(int nid) 5807 { 5808 unsigned long start_pfn, end_pfn; 5809 int i, this_nid; 5810 5811 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5812 memory_present(this_nid, start_pfn, end_pfn); 5813 } 5814 5815 /** 5816 * get_pfn_range_for_nid - Return the start and end page frames for a node 5817 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5818 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5819 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5820 * 5821 * It returns the start and end page frame of a node based on information 5822 * provided by memblock_set_node(). If called for a node 5823 * with no available memory, a warning is printed and the start and end 5824 * PFNs will be 0. 5825 */ 5826 void __meminit get_pfn_range_for_nid(unsigned int nid, 5827 unsigned long *start_pfn, unsigned long *end_pfn) 5828 { 5829 unsigned long this_start_pfn, this_end_pfn; 5830 int i; 5831 5832 *start_pfn = -1UL; 5833 *end_pfn = 0; 5834 5835 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5836 *start_pfn = min(*start_pfn, this_start_pfn); 5837 *end_pfn = max(*end_pfn, this_end_pfn); 5838 } 5839 5840 if (*start_pfn == -1UL) 5841 *start_pfn = 0; 5842 } 5843 5844 /* 5845 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5846 * assumption is made that zones within a node are ordered in monotonic 5847 * increasing memory addresses so that the "highest" populated zone is used 5848 */ 5849 static void __init find_usable_zone_for_movable(void) 5850 { 5851 int zone_index; 5852 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5853 if (zone_index == ZONE_MOVABLE) 5854 continue; 5855 5856 if (arch_zone_highest_possible_pfn[zone_index] > 5857 arch_zone_lowest_possible_pfn[zone_index]) 5858 break; 5859 } 5860 5861 VM_BUG_ON(zone_index == -1); 5862 movable_zone = zone_index; 5863 } 5864 5865 /* 5866 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5867 * because it is sized independent of architecture. Unlike the other zones, 5868 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5869 * in each node depending on the size of each node and how evenly kernelcore 5870 * is distributed. This helper function adjusts the zone ranges 5871 * provided by the architecture for a given node by using the end of the 5872 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5873 * zones within a node are in order of monotonic increases memory addresses 5874 */ 5875 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5876 unsigned long zone_type, 5877 unsigned long node_start_pfn, 5878 unsigned long node_end_pfn, 5879 unsigned long *zone_start_pfn, 5880 unsigned long *zone_end_pfn) 5881 { 5882 /* Only adjust if ZONE_MOVABLE is on this node */ 5883 if (zone_movable_pfn[nid]) { 5884 /* Size ZONE_MOVABLE */ 5885 if (zone_type == ZONE_MOVABLE) { 5886 *zone_start_pfn = zone_movable_pfn[nid]; 5887 *zone_end_pfn = min(node_end_pfn, 5888 arch_zone_highest_possible_pfn[movable_zone]); 5889 5890 /* Adjust for ZONE_MOVABLE starting within this range */ 5891 } else if (!mirrored_kernelcore && 5892 *zone_start_pfn < zone_movable_pfn[nid] && 5893 *zone_end_pfn > zone_movable_pfn[nid]) { 5894 *zone_end_pfn = zone_movable_pfn[nid]; 5895 5896 /* Check if this whole range is within ZONE_MOVABLE */ 5897 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5898 *zone_start_pfn = *zone_end_pfn; 5899 } 5900 } 5901 5902 /* 5903 * Return the number of pages a zone spans in a node, including holes 5904 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5905 */ 5906 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5907 unsigned long zone_type, 5908 unsigned long node_start_pfn, 5909 unsigned long node_end_pfn, 5910 unsigned long *zone_start_pfn, 5911 unsigned long *zone_end_pfn, 5912 unsigned long *ignored) 5913 { 5914 /* When hotadd a new node from cpu_up(), the node should be empty */ 5915 if (!node_start_pfn && !node_end_pfn) 5916 return 0; 5917 5918 /* Get the start and end of the zone */ 5919 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5920 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5921 adjust_zone_range_for_zone_movable(nid, zone_type, 5922 node_start_pfn, node_end_pfn, 5923 zone_start_pfn, zone_end_pfn); 5924 5925 /* Check that this node has pages within the zone's required range */ 5926 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5927 return 0; 5928 5929 /* Move the zone boundaries inside the node if necessary */ 5930 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5931 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5932 5933 /* Return the spanned pages */ 5934 return *zone_end_pfn - *zone_start_pfn; 5935 } 5936 5937 /* 5938 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5939 * then all holes in the requested range will be accounted for. 5940 */ 5941 unsigned long __meminit __absent_pages_in_range(int nid, 5942 unsigned long range_start_pfn, 5943 unsigned long range_end_pfn) 5944 { 5945 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5946 unsigned long start_pfn, end_pfn; 5947 int i; 5948 5949 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5950 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5951 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5952 nr_absent -= end_pfn - start_pfn; 5953 } 5954 return nr_absent; 5955 } 5956 5957 /** 5958 * absent_pages_in_range - Return number of page frames in holes within a range 5959 * @start_pfn: The start PFN to start searching for holes 5960 * @end_pfn: The end PFN to stop searching for holes 5961 * 5962 * It returns the number of pages frames in memory holes within a range. 5963 */ 5964 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5965 unsigned long end_pfn) 5966 { 5967 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5968 } 5969 5970 /* Return the number of page frames in holes in a zone on a node */ 5971 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5972 unsigned long zone_type, 5973 unsigned long node_start_pfn, 5974 unsigned long node_end_pfn, 5975 unsigned long *ignored) 5976 { 5977 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5978 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5979 unsigned long zone_start_pfn, zone_end_pfn; 5980 unsigned long nr_absent; 5981 5982 /* When hotadd a new node from cpu_up(), the node should be empty */ 5983 if (!node_start_pfn && !node_end_pfn) 5984 return 0; 5985 5986 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5987 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5988 5989 adjust_zone_range_for_zone_movable(nid, zone_type, 5990 node_start_pfn, node_end_pfn, 5991 &zone_start_pfn, &zone_end_pfn); 5992 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5993 5994 /* 5995 * ZONE_MOVABLE handling. 5996 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5997 * and vice versa. 5998 */ 5999 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6000 unsigned long start_pfn, end_pfn; 6001 struct memblock_region *r; 6002 6003 for_each_memblock(memory, r) { 6004 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6005 zone_start_pfn, zone_end_pfn); 6006 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6007 zone_start_pfn, zone_end_pfn); 6008 6009 if (zone_type == ZONE_MOVABLE && 6010 memblock_is_mirror(r)) 6011 nr_absent += end_pfn - start_pfn; 6012 6013 if (zone_type == ZONE_NORMAL && 6014 !memblock_is_mirror(r)) 6015 nr_absent += end_pfn - start_pfn; 6016 } 6017 } 6018 6019 return nr_absent; 6020 } 6021 6022 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6023 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 6024 unsigned long zone_type, 6025 unsigned long node_start_pfn, 6026 unsigned long node_end_pfn, 6027 unsigned long *zone_start_pfn, 6028 unsigned long *zone_end_pfn, 6029 unsigned long *zones_size) 6030 { 6031 unsigned int zone; 6032 6033 *zone_start_pfn = node_start_pfn; 6034 for (zone = 0; zone < zone_type; zone++) 6035 *zone_start_pfn += zones_size[zone]; 6036 6037 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6038 6039 return zones_size[zone_type]; 6040 } 6041 6042 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 6043 unsigned long zone_type, 6044 unsigned long node_start_pfn, 6045 unsigned long node_end_pfn, 6046 unsigned long *zholes_size) 6047 { 6048 if (!zholes_size) 6049 return 0; 6050 6051 return zholes_size[zone_type]; 6052 } 6053 6054 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6055 6056 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 6057 unsigned long node_start_pfn, 6058 unsigned long node_end_pfn, 6059 unsigned long *zones_size, 6060 unsigned long *zholes_size) 6061 { 6062 unsigned long realtotalpages = 0, totalpages = 0; 6063 enum zone_type i; 6064 6065 for (i = 0; i < MAX_NR_ZONES; i++) { 6066 struct zone *zone = pgdat->node_zones + i; 6067 unsigned long zone_start_pfn, zone_end_pfn; 6068 unsigned long size, real_size; 6069 6070 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6071 node_start_pfn, 6072 node_end_pfn, 6073 &zone_start_pfn, 6074 &zone_end_pfn, 6075 zones_size); 6076 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6077 node_start_pfn, node_end_pfn, 6078 zholes_size); 6079 if (size) 6080 zone->zone_start_pfn = zone_start_pfn; 6081 else 6082 zone->zone_start_pfn = 0; 6083 zone->spanned_pages = size; 6084 zone->present_pages = real_size; 6085 6086 totalpages += size; 6087 realtotalpages += real_size; 6088 } 6089 6090 pgdat->node_spanned_pages = totalpages; 6091 pgdat->node_present_pages = realtotalpages; 6092 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6093 realtotalpages); 6094 } 6095 6096 #ifndef CONFIG_SPARSEMEM 6097 /* 6098 * Calculate the size of the zone->blockflags rounded to an unsigned long 6099 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6100 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6101 * round what is now in bits to nearest long in bits, then return it in 6102 * bytes. 6103 */ 6104 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6105 { 6106 unsigned long usemapsize; 6107 6108 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6109 usemapsize = roundup(zonesize, pageblock_nr_pages); 6110 usemapsize = usemapsize >> pageblock_order; 6111 usemapsize *= NR_PAGEBLOCK_BITS; 6112 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6113 6114 return usemapsize / 8; 6115 } 6116 6117 static void __init setup_usemap(struct pglist_data *pgdat, 6118 struct zone *zone, 6119 unsigned long zone_start_pfn, 6120 unsigned long zonesize) 6121 { 6122 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6123 zone->pageblock_flags = NULL; 6124 if (usemapsize) 6125 zone->pageblock_flags = 6126 memblock_virt_alloc_node_nopanic(usemapsize, 6127 pgdat->node_id); 6128 } 6129 #else 6130 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6131 unsigned long zone_start_pfn, unsigned long zonesize) {} 6132 #endif /* CONFIG_SPARSEMEM */ 6133 6134 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6135 6136 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6137 void __paginginit set_pageblock_order(void) 6138 { 6139 unsigned int order; 6140 6141 /* Check that pageblock_nr_pages has not already been setup */ 6142 if (pageblock_order) 6143 return; 6144 6145 if (HPAGE_SHIFT > PAGE_SHIFT) 6146 order = HUGETLB_PAGE_ORDER; 6147 else 6148 order = MAX_ORDER - 1; 6149 6150 /* 6151 * Assume the largest contiguous order of interest is a huge page. 6152 * This value may be variable depending on boot parameters on IA64 and 6153 * powerpc. 6154 */ 6155 pageblock_order = order; 6156 } 6157 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6158 6159 /* 6160 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6161 * is unused as pageblock_order is set at compile-time. See 6162 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6163 * the kernel config 6164 */ 6165 void __paginginit set_pageblock_order(void) 6166 { 6167 } 6168 6169 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6170 6171 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 6172 unsigned long present_pages) 6173 { 6174 unsigned long pages = spanned_pages; 6175 6176 /* 6177 * Provide a more accurate estimation if there are holes within 6178 * the zone and SPARSEMEM is in use. If there are holes within the 6179 * zone, each populated memory region may cost us one or two extra 6180 * memmap pages due to alignment because memmap pages for each 6181 * populated regions may not be naturally aligned on page boundary. 6182 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6183 */ 6184 if (spanned_pages > present_pages + (present_pages >> 4) && 6185 IS_ENABLED(CONFIG_SPARSEMEM)) 6186 pages = present_pages; 6187 6188 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6189 } 6190 6191 /* 6192 * Set up the zone data structures: 6193 * - mark all pages reserved 6194 * - mark all memory queues empty 6195 * - clear the memory bitmaps 6196 * 6197 * NOTE: pgdat should get zeroed by caller. 6198 */ 6199 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 6200 { 6201 enum zone_type j; 6202 int nid = pgdat->node_id; 6203 6204 pgdat_resize_init(pgdat); 6205 #ifdef CONFIG_NUMA_BALANCING 6206 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6207 pgdat->numabalancing_migrate_nr_pages = 0; 6208 pgdat->numabalancing_migrate_next_window = jiffies; 6209 #endif 6210 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6211 spin_lock_init(&pgdat->split_queue_lock); 6212 INIT_LIST_HEAD(&pgdat->split_queue); 6213 pgdat->split_queue_len = 0; 6214 #endif 6215 init_waitqueue_head(&pgdat->kswapd_wait); 6216 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6217 #ifdef CONFIG_COMPACTION 6218 init_waitqueue_head(&pgdat->kcompactd_wait); 6219 #endif 6220 pgdat_page_ext_init(pgdat); 6221 spin_lock_init(&pgdat->lru_lock); 6222 lruvec_init(node_lruvec(pgdat)); 6223 6224 pgdat->per_cpu_nodestats = &boot_nodestats; 6225 6226 for (j = 0; j < MAX_NR_ZONES; j++) { 6227 struct zone *zone = pgdat->node_zones + j; 6228 unsigned long size, realsize, freesize, memmap_pages; 6229 unsigned long zone_start_pfn = zone->zone_start_pfn; 6230 6231 size = zone->spanned_pages; 6232 realsize = freesize = zone->present_pages; 6233 6234 /* 6235 * Adjust freesize so that it accounts for how much memory 6236 * is used by this zone for memmap. This affects the watermark 6237 * and per-cpu initialisations 6238 */ 6239 memmap_pages = calc_memmap_size(size, realsize); 6240 if (!is_highmem_idx(j)) { 6241 if (freesize >= memmap_pages) { 6242 freesize -= memmap_pages; 6243 if (memmap_pages) 6244 printk(KERN_DEBUG 6245 " %s zone: %lu pages used for memmap\n", 6246 zone_names[j], memmap_pages); 6247 } else 6248 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6249 zone_names[j], memmap_pages, freesize); 6250 } 6251 6252 /* Account for reserved pages */ 6253 if (j == 0 && freesize > dma_reserve) { 6254 freesize -= dma_reserve; 6255 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6256 zone_names[0], dma_reserve); 6257 } 6258 6259 if (!is_highmem_idx(j)) 6260 nr_kernel_pages += freesize; 6261 /* Charge for highmem memmap if there are enough kernel pages */ 6262 else if (nr_kernel_pages > memmap_pages * 2) 6263 nr_kernel_pages -= memmap_pages; 6264 nr_all_pages += freesize; 6265 6266 /* 6267 * Set an approximate value for lowmem here, it will be adjusted 6268 * when the bootmem allocator frees pages into the buddy system. 6269 * And all highmem pages will be managed by the buddy system. 6270 */ 6271 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6272 #ifdef CONFIG_NUMA 6273 zone->node = nid; 6274 #endif 6275 zone->name = zone_names[j]; 6276 zone->zone_pgdat = pgdat; 6277 spin_lock_init(&zone->lock); 6278 zone_seqlock_init(zone); 6279 zone_pcp_init(zone); 6280 6281 if (!size) 6282 continue; 6283 6284 set_pageblock_order(); 6285 setup_usemap(pgdat, zone, zone_start_pfn, size); 6286 init_currently_empty_zone(zone, zone_start_pfn, size); 6287 memmap_init(size, nid, j, zone_start_pfn); 6288 } 6289 } 6290 6291 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6292 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6293 { 6294 unsigned long __maybe_unused start = 0; 6295 unsigned long __maybe_unused offset = 0; 6296 6297 /* Skip empty nodes */ 6298 if (!pgdat->node_spanned_pages) 6299 return; 6300 6301 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6302 offset = pgdat->node_start_pfn - start; 6303 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6304 if (!pgdat->node_mem_map) { 6305 unsigned long size, end; 6306 struct page *map; 6307 6308 /* 6309 * The zone's endpoints aren't required to be MAX_ORDER 6310 * aligned but the node_mem_map endpoints must be in order 6311 * for the buddy allocator to function correctly. 6312 */ 6313 end = pgdat_end_pfn(pgdat); 6314 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6315 size = (end - start) * sizeof(struct page); 6316 map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 6317 pgdat->node_mem_map = map + offset; 6318 } 6319 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6320 __func__, pgdat->node_id, (unsigned long)pgdat, 6321 (unsigned long)pgdat->node_mem_map); 6322 #ifndef CONFIG_NEED_MULTIPLE_NODES 6323 /* 6324 * With no DISCONTIG, the global mem_map is just set as node 0's 6325 */ 6326 if (pgdat == NODE_DATA(0)) { 6327 mem_map = NODE_DATA(0)->node_mem_map; 6328 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6329 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6330 mem_map -= offset; 6331 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6332 } 6333 #endif 6334 } 6335 #else 6336 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6337 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6338 6339 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6340 unsigned long node_start_pfn, unsigned long *zholes_size) 6341 { 6342 pg_data_t *pgdat = NODE_DATA(nid); 6343 unsigned long start_pfn = 0; 6344 unsigned long end_pfn = 0; 6345 6346 /* pg_data_t should be reset to zero when it's allocated */ 6347 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6348 6349 pgdat->node_id = nid; 6350 pgdat->node_start_pfn = node_start_pfn; 6351 pgdat->per_cpu_nodestats = NULL; 6352 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6353 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6354 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6355 (u64)start_pfn << PAGE_SHIFT, 6356 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6357 #else 6358 start_pfn = node_start_pfn; 6359 #endif 6360 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6361 zones_size, zholes_size); 6362 6363 alloc_node_mem_map(pgdat); 6364 6365 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6366 /* 6367 * We start only with one section of pages, more pages are added as 6368 * needed until the rest of deferred pages are initialized. 6369 */ 6370 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION, 6371 pgdat->node_spanned_pages); 6372 pgdat->first_deferred_pfn = ULONG_MAX; 6373 #endif 6374 free_area_init_core(pgdat); 6375 } 6376 6377 #ifdef CONFIG_HAVE_MEMBLOCK 6378 /* 6379 * Only struct pages that are backed by physical memory are zeroed and 6380 * initialized by going through __init_single_page(). But, there are some 6381 * struct pages which are reserved in memblock allocator and their fields 6382 * may be accessed (for example page_to_pfn() on some configuration accesses 6383 * flags). We must explicitly zero those struct pages. 6384 */ 6385 void __paginginit zero_resv_unavail(void) 6386 { 6387 phys_addr_t start, end; 6388 unsigned long pfn; 6389 u64 i, pgcnt; 6390 6391 /* 6392 * Loop through ranges that are reserved, but do not have reported 6393 * physical memory backing. 6394 */ 6395 pgcnt = 0; 6396 for_each_resv_unavail_range(i, &start, &end) { 6397 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) { 6398 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) 6399 continue; 6400 mm_zero_struct_page(pfn_to_page(pfn)); 6401 pgcnt++; 6402 } 6403 } 6404 6405 /* 6406 * Struct pages that do not have backing memory. This could be because 6407 * firmware is using some of this memory, or for some other reasons. 6408 * Once memblock is changed so such behaviour is not allowed: i.e. 6409 * list of "reserved" memory must be a subset of list of "memory", then 6410 * this code can be removed. 6411 */ 6412 if (pgcnt) 6413 pr_info("Reserved but unavailable: %lld pages", pgcnt); 6414 } 6415 #endif /* CONFIG_HAVE_MEMBLOCK */ 6416 6417 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6418 6419 #if MAX_NUMNODES > 1 6420 /* 6421 * Figure out the number of possible node ids. 6422 */ 6423 void __init setup_nr_node_ids(void) 6424 { 6425 unsigned int highest; 6426 6427 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6428 nr_node_ids = highest + 1; 6429 } 6430 #endif 6431 6432 /** 6433 * node_map_pfn_alignment - determine the maximum internode alignment 6434 * 6435 * This function should be called after node map is populated and sorted. 6436 * It calculates the maximum power of two alignment which can distinguish 6437 * all the nodes. 6438 * 6439 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6440 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6441 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6442 * shifted, 1GiB is enough and this function will indicate so. 6443 * 6444 * This is used to test whether pfn -> nid mapping of the chosen memory 6445 * model has fine enough granularity to avoid incorrect mapping for the 6446 * populated node map. 6447 * 6448 * Returns the determined alignment in pfn's. 0 if there is no alignment 6449 * requirement (single node). 6450 */ 6451 unsigned long __init node_map_pfn_alignment(void) 6452 { 6453 unsigned long accl_mask = 0, last_end = 0; 6454 unsigned long start, end, mask; 6455 int last_nid = -1; 6456 int i, nid; 6457 6458 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6459 if (!start || last_nid < 0 || last_nid == nid) { 6460 last_nid = nid; 6461 last_end = end; 6462 continue; 6463 } 6464 6465 /* 6466 * Start with a mask granular enough to pin-point to the 6467 * start pfn and tick off bits one-by-one until it becomes 6468 * too coarse to separate the current node from the last. 6469 */ 6470 mask = ~((1 << __ffs(start)) - 1); 6471 while (mask && last_end <= (start & (mask << 1))) 6472 mask <<= 1; 6473 6474 /* accumulate all internode masks */ 6475 accl_mask |= mask; 6476 } 6477 6478 /* convert mask to number of pages */ 6479 return ~accl_mask + 1; 6480 } 6481 6482 /* Find the lowest pfn for a node */ 6483 static unsigned long __init find_min_pfn_for_node(int nid) 6484 { 6485 unsigned long min_pfn = ULONG_MAX; 6486 unsigned long start_pfn; 6487 int i; 6488 6489 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6490 min_pfn = min(min_pfn, start_pfn); 6491 6492 if (min_pfn == ULONG_MAX) { 6493 pr_warn("Could not find start_pfn for node %d\n", nid); 6494 return 0; 6495 } 6496 6497 return min_pfn; 6498 } 6499 6500 /** 6501 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6502 * 6503 * It returns the minimum PFN based on information provided via 6504 * memblock_set_node(). 6505 */ 6506 unsigned long __init find_min_pfn_with_active_regions(void) 6507 { 6508 return find_min_pfn_for_node(MAX_NUMNODES); 6509 } 6510 6511 /* 6512 * early_calculate_totalpages() 6513 * Sum pages in active regions for movable zone. 6514 * Populate N_MEMORY for calculating usable_nodes. 6515 */ 6516 static unsigned long __init early_calculate_totalpages(void) 6517 { 6518 unsigned long totalpages = 0; 6519 unsigned long start_pfn, end_pfn; 6520 int i, nid; 6521 6522 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6523 unsigned long pages = end_pfn - start_pfn; 6524 6525 totalpages += pages; 6526 if (pages) 6527 node_set_state(nid, N_MEMORY); 6528 } 6529 return totalpages; 6530 } 6531 6532 /* 6533 * Find the PFN the Movable zone begins in each node. Kernel memory 6534 * is spread evenly between nodes as long as the nodes have enough 6535 * memory. When they don't, some nodes will have more kernelcore than 6536 * others 6537 */ 6538 static void __init find_zone_movable_pfns_for_nodes(void) 6539 { 6540 int i, nid; 6541 unsigned long usable_startpfn; 6542 unsigned long kernelcore_node, kernelcore_remaining; 6543 /* save the state before borrow the nodemask */ 6544 nodemask_t saved_node_state = node_states[N_MEMORY]; 6545 unsigned long totalpages = early_calculate_totalpages(); 6546 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6547 struct memblock_region *r; 6548 6549 /* Need to find movable_zone earlier when movable_node is specified. */ 6550 find_usable_zone_for_movable(); 6551 6552 /* 6553 * If movable_node is specified, ignore kernelcore and movablecore 6554 * options. 6555 */ 6556 if (movable_node_is_enabled()) { 6557 for_each_memblock(memory, r) { 6558 if (!memblock_is_hotpluggable(r)) 6559 continue; 6560 6561 nid = r->nid; 6562 6563 usable_startpfn = PFN_DOWN(r->base); 6564 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6565 min(usable_startpfn, zone_movable_pfn[nid]) : 6566 usable_startpfn; 6567 } 6568 6569 goto out2; 6570 } 6571 6572 /* 6573 * If kernelcore=mirror is specified, ignore movablecore option 6574 */ 6575 if (mirrored_kernelcore) { 6576 bool mem_below_4gb_not_mirrored = false; 6577 6578 for_each_memblock(memory, r) { 6579 if (memblock_is_mirror(r)) 6580 continue; 6581 6582 nid = r->nid; 6583 6584 usable_startpfn = memblock_region_memory_base_pfn(r); 6585 6586 if (usable_startpfn < 0x100000) { 6587 mem_below_4gb_not_mirrored = true; 6588 continue; 6589 } 6590 6591 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6592 min(usable_startpfn, zone_movable_pfn[nid]) : 6593 usable_startpfn; 6594 } 6595 6596 if (mem_below_4gb_not_mirrored) 6597 pr_warn("This configuration results in unmirrored kernel memory."); 6598 6599 goto out2; 6600 } 6601 6602 /* 6603 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 6604 * amount of necessary memory. 6605 */ 6606 if (required_kernelcore_percent) 6607 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 6608 10000UL; 6609 if (required_movablecore_percent) 6610 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 6611 10000UL; 6612 6613 /* 6614 * If movablecore= was specified, calculate what size of 6615 * kernelcore that corresponds so that memory usable for 6616 * any allocation type is evenly spread. If both kernelcore 6617 * and movablecore are specified, then the value of kernelcore 6618 * will be used for required_kernelcore if it's greater than 6619 * what movablecore would have allowed. 6620 */ 6621 if (required_movablecore) { 6622 unsigned long corepages; 6623 6624 /* 6625 * Round-up so that ZONE_MOVABLE is at least as large as what 6626 * was requested by the user 6627 */ 6628 required_movablecore = 6629 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6630 required_movablecore = min(totalpages, required_movablecore); 6631 corepages = totalpages - required_movablecore; 6632 6633 required_kernelcore = max(required_kernelcore, corepages); 6634 } 6635 6636 /* 6637 * If kernelcore was not specified or kernelcore size is larger 6638 * than totalpages, there is no ZONE_MOVABLE. 6639 */ 6640 if (!required_kernelcore || required_kernelcore >= totalpages) 6641 goto out; 6642 6643 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6644 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6645 6646 restart: 6647 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6648 kernelcore_node = required_kernelcore / usable_nodes; 6649 for_each_node_state(nid, N_MEMORY) { 6650 unsigned long start_pfn, end_pfn; 6651 6652 /* 6653 * Recalculate kernelcore_node if the division per node 6654 * now exceeds what is necessary to satisfy the requested 6655 * amount of memory for the kernel 6656 */ 6657 if (required_kernelcore < kernelcore_node) 6658 kernelcore_node = required_kernelcore / usable_nodes; 6659 6660 /* 6661 * As the map is walked, we track how much memory is usable 6662 * by the kernel using kernelcore_remaining. When it is 6663 * 0, the rest of the node is usable by ZONE_MOVABLE 6664 */ 6665 kernelcore_remaining = kernelcore_node; 6666 6667 /* Go through each range of PFNs within this node */ 6668 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6669 unsigned long size_pages; 6670 6671 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6672 if (start_pfn >= end_pfn) 6673 continue; 6674 6675 /* Account for what is only usable for kernelcore */ 6676 if (start_pfn < usable_startpfn) { 6677 unsigned long kernel_pages; 6678 kernel_pages = min(end_pfn, usable_startpfn) 6679 - start_pfn; 6680 6681 kernelcore_remaining -= min(kernel_pages, 6682 kernelcore_remaining); 6683 required_kernelcore -= min(kernel_pages, 6684 required_kernelcore); 6685 6686 /* Continue if range is now fully accounted */ 6687 if (end_pfn <= usable_startpfn) { 6688 6689 /* 6690 * Push zone_movable_pfn to the end so 6691 * that if we have to rebalance 6692 * kernelcore across nodes, we will 6693 * not double account here 6694 */ 6695 zone_movable_pfn[nid] = end_pfn; 6696 continue; 6697 } 6698 start_pfn = usable_startpfn; 6699 } 6700 6701 /* 6702 * The usable PFN range for ZONE_MOVABLE is from 6703 * start_pfn->end_pfn. Calculate size_pages as the 6704 * number of pages used as kernelcore 6705 */ 6706 size_pages = end_pfn - start_pfn; 6707 if (size_pages > kernelcore_remaining) 6708 size_pages = kernelcore_remaining; 6709 zone_movable_pfn[nid] = start_pfn + size_pages; 6710 6711 /* 6712 * Some kernelcore has been met, update counts and 6713 * break if the kernelcore for this node has been 6714 * satisfied 6715 */ 6716 required_kernelcore -= min(required_kernelcore, 6717 size_pages); 6718 kernelcore_remaining -= size_pages; 6719 if (!kernelcore_remaining) 6720 break; 6721 } 6722 } 6723 6724 /* 6725 * If there is still required_kernelcore, we do another pass with one 6726 * less node in the count. This will push zone_movable_pfn[nid] further 6727 * along on the nodes that still have memory until kernelcore is 6728 * satisfied 6729 */ 6730 usable_nodes--; 6731 if (usable_nodes && required_kernelcore > usable_nodes) 6732 goto restart; 6733 6734 out2: 6735 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6736 for (nid = 0; nid < MAX_NUMNODES; nid++) 6737 zone_movable_pfn[nid] = 6738 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6739 6740 out: 6741 /* restore the node_state */ 6742 node_states[N_MEMORY] = saved_node_state; 6743 } 6744 6745 /* Any regular or high memory on that node ? */ 6746 static void check_for_memory(pg_data_t *pgdat, int nid) 6747 { 6748 enum zone_type zone_type; 6749 6750 if (N_MEMORY == N_NORMAL_MEMORY) 6751 return; 6752 6753 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6754 struct zone *zone = &pgdat->node_zones[zone_type]; 6755 if (populated_zone(zone)) { 6756 node_set_state(nid, N_HIGH_MEMORY); 6757 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6758 zone_type <= ZONE_NORMAL) 6759 node_set_state(nid, N_NORMAL_MEMORY); 6760 break; 6761 } 6762 } 6763 } 6764 6765 /** 6766 * free_area_init_nodes - Initialise all pg_data_t and zone data 6767 * @max_zone_pfn: an array of max PFNs for each zone 6768 * 6769 * This will call free_area_init_node() for each active node in the system. 6770 * Using the page ranges provided by memblock_set_node(), the size of each 6771 * zone in each node and their holes is calculated. If the maximum PFN 6772 * between two adjacent zones match, it is assumed that the zone is empty. 6773 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6774 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6775 * starts where the previous one ended. For example, ZONE_DMA32 starts 6776 * at arch_max_dma_pfn. 6777 */ 6778 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6779 { 6780 unsigned long start_pfn, end_pfn; 6781 int i, nid; 6782 6783 /* Record where the zone boundaries are */ 6784 memset(arch_zone_lowest_possible_pfn, 0, 6785 sizeof(arch_zone_lowest_possible_pfn)); 6786 memset(arch_zone_highest_possible_pfn, 0, 6787 sizeof(arch_zone_highest_possible_pfn)); 6788 6789 start_pfn = find_min_pfn_with_active_regions(); 6790 6791 for (i = 0; i < MAX_NR_ZONES; i++) { 6792 if (i == ZONE_MOVABLE) 6793 continue; 6794 6795 end_pfn = max(max_zone_pfn[i], start_pfn); 6796 arch_zone_lowest_possible_pfn[i] = start_pfn; 6797 arch_zone_highest_possible_pfn[i] = end_pfn; 6798 6799 start_pfn = end_pfn; 6800 } 6801 6802 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6803 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6804 find_zone_movable_pfns_for_nodes(); 6805 6806 /* Print out the zone ranges */ 6807 pr_info("Zone ranges:\n"); 6808 for (i = 0; i < MAX_NR_ZONES; i++) { 6809 if (i == ZONE_MOVABLE) 6810 continue; 6811 pr_info(" %-8s ", zone_names[i]); 6812 if (arch_zone_lowest_possible_pfn[i] == 6813 arch_zone_highest_possible_pfn[i]) 6814 pr_cont("empty\n"); 6815 else 6816 pr_cont("[mem %#018Lx-%#018Lx]\n", 6817 (u64)arch_zone_lowest_possible_pfn[i] 6818 << PAGE_SHIFT, 6819 ((u64)arch_zone_highest_possible_pfn[i] 6820 << PAGE_SHIFT) - 1); 6821 } 6822 6823 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6824 pr_info("Movable zone start for each node\n"); 6825 for (i = 0; i < MAX_NUMNODES; i++) { 6826 if (zone_movable_pfn[i]) 6827 pr_info(" Node %d: %#018Lx\n", i, 6828 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6829 } 6830 6831 /* Print out the early node map */ 6832 pr_info("Early memory node ranges\n"); 6833 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6834 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6835 (u64)start_pfn << PAGE_SHIFT, 6836 ((u64)end_pfn << PAGE_SHIFT) - 1); 6837 6838 /* Initialise every node */ 6839 mminit_verify_pageflags_layout(); 6840 setup_nr_node_ids(); 6841 for_each_online_node(nid) { 6842 pg_data_t *pgdat = NODE_DATA(nid); 6843 free_area_init_node(nid, NULL, 6844 find_min_pfn_for_node(nid), NULL); 6845 6846 /* Any memory on that node */ 6847 if (pgdat->node_present_pages) 6848 node_set_state(nid, N_MEMORY); 6849 check_for_memory(pgdat, nid); 6850 } 6851 zero_resv_unavail(); 6852 } 6853 6854 static int __init cmdline_parse_core(char *p, unsigned long *core, 6855 unsigned long *percent) 6856 { 6857 unsigned long long coremem; 6858 char *endptr; 6859 6860 if (!p) 6861 return -EINVAL; 6862 6863 /* Value may be a percentage of total memory, otherwise bytes */ 6864 coremem = simple_strtoull(p, &endptr, 0); 6865 if (*endptr == '%') { 6866 /* Paranoid check for percent values greater than 100 */ 6867 WARN_ON(coremem > 100); 6868 6869 *percent = coremem; 6870 } else { 6871 coremem = memparse(p, &p); 6872 /* Paranoid check that UL is enough for the coremem value */ 6873 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6874 6875 *core = coremem >> PAGE_SHIFT; 6876 *percent = 0UL; 6877 } 6878 return 0; 6879 } 6880 6881 /* 6882 * kernelcore=size sets the amount of memory for use for allocations that 6883 * cannot be reclaimed or migrated. 6884 */ 6885 static int __init cmdline_parse_kernelcore(char *p) 6886 { 6887 /* parse kernelcore=mirror */ 6888 if (parse_option_str(p, "mirror")) { 6889 mirrored_kernelcore = true; 6890 return 0; 6891 } 6892 6893 return cmdline_parse_core(p, &required_kernelcore, 6894 &required_kernelcore_percent); 6895 } 6896 6897 /* 6898 * movablecore=size sets the amount of memory for use for allocations that 6899 * can be reclaimed or migrated. 6900 */ 6901 static int __init cmdline_parse_movablecore(char *p) 6902 { 6903 return cmdline_parse_core(p, &required_movablecore, 6904 &required_movablecore_percent); 6905 } 6906 6907 early_param("kernelcore", cmdline_parse_kernelcore); 6908 early_param("movablecore", cmdline_parse_movablecore); 6909 6910 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6911 6912 void adjust_managed_page_count(struct page *page, long count) 6913 { 6914 spin_lock(&managed_page_count_lock); 6915 page_zone(page)->managed_pages += count; 6916 totalram_pages += count; 6917 #ifdef CONFIG_HIGHMEM 6918 if (PageHighMem(page)) 6919 totalhigh_pages += count; 6920 #endif 6921 spin_unlock(&managed_page_count_lock); 6922 } 6923 EXPORT_SYMBOL(adjust_managed_page_count); 6924 6925 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6926 { 6927 void *pos; 6928 unsigned long pages = 0; 6929 6930 start = (void *)PAGE_ALIGN((unsigned long)start); 6931 end = (void *)((unsigned long)end & PAGE_MASK); 6932 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6933 if ((unsigned int)poison <= 0xFF) 6934 memset(pos, poison, PAGE_SIZE); 6935 free_reserved_page(virt_to_page(pos)); 6936 } 6937 6938 if (pages && s) 6939 pr_info("Freeing %s memory: %ldK\n", 6940 s, pages << (PAGE_SHIFT - 10)); 6941 6942 return pages; 6943 } 6944 EXPORT_SYMBOL(free_reserved_area); 6945 6946 #ifdef CONFIG_HIGHMEM 6947 void free_highmem_page(struct page *page) 6948 { 6949 __free_reserved_page(page); 6950 totalram_pages++; 6951 page_zone(page)->managed_pages++; 6952 totalhigh_pages++; 6953 } 6954 #endif 6955 6956 6957 void __init mem_init_print_info(const char *str) 6958 { 6959 unsigned long physpages, codesize, datasize, rosize, bss_size; 6960 unsigned long init_code_size, init_data_size; 6961 6962 physpages = get_num_physpages(); 6963 codesize = _etext - _stext; 6964 datasize = _edata - _sdata; 6965 rosize = __end_rodata - __start_rodata; 6966 bss_size = __bss_stop - __bss_start; 6967 init_data_size = __init_end - __init_begin; 6968 init_code_size = _einittext - _sinittext; 6969 6970 /* 6971 * Detect special cases and adjust section sizes accordingly: 6972 * 1) .init.* may be embedded into .data sections 6973 * 2) .init.text.* may be out of [__init_begin, __init_end], 6974 * please refer to arch/tile/kernel/vmlinux.lds.S. 6975 * 3) .rodata.* may be embedded into .text or .data sections. 6976 */ 6977 #define adj_init_size(start, end, size, pos, adj) \ 6978 do { \ 6979 if (start <= pos && pos < end && size > adj) \ 6980 size -= adj; \ 6981 } while (0) 6982 6983 adj_init_size(__init_begin, __init_end, init_data_size, 6984 _sinittext, init_code_size); 6985 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6986 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6987 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6988 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6989 6990 #undef adj_init_size 6991 6992 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6993 #ifdef CONFIG_HIGHMEM 6994 ", %luK highmem" 6995 #endif 6996 "%s%s)\n", 6997 nr_free_pages() << (PAGE_SHIFT - 10), 6998 physpages << (PAGE_SHIFT - 10), 6999 codesize >> 10, datasize >> 10, rosize >> 10, 7000 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7001 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 7002 totalcma_pages << (PAGE_SHIFT - 10), 7003 #ifdef CONFIG_HIGHMEM 7004 totalhigh_pages << (PAGE_SHIFT - 10), 7005 #endif 7006 str ? ", " : "", str ? str : ""); 7007 } 7008 7009 /** 7010 * set_dma_reserve - set the specified number of pages reserved in the first zone 7011 * @new_dma_reserve: The number of pages to mark reserved 7012 * 7013 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7014 * In the DMA zone, a significant percentage may be consumed by kernel image 7015 * and other unfreeable allocations which can skew the watermarks badly. This 7016 * function may optionally be used to account for unfreeable pages in the 7017 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7018 * smaller per-cpu batchsize. 7019 */ 7020 void __init set_dma_reserve(unsigned long new_dma_reserve) 7021 { 7022 dma_reserve = new_dma_reserve; 7023 } 7024 7025 void __init free_area_init(unsigned long *zones_size) 7026 { 7027 free_area_init_node(0, zones_size, 7028 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7029 zero_resv_unavail(); 7030 } 7031 7032 static int page_alloc_cpu_dead(unsigned int cpu) 7033 { 7034 7035 lru_add_drain_cpu(cpu); 7036 drain_pages(cpu); 7037 7038 /* 7039 * Spill the event counters of the dead processor 7040 * into the current processors event counters. 7041 * This artificially elevates the count of the current 7042 * processor. 7043 */ 7044 vm_events_fold_cpu(cpu); 7045 7046 /* 7047 * Zero the differential counters of the dead processor 7048 * so that the vm statistics are consistent. 7049 * 7050 * This is only okay since the processor is dead and cannot 7051 * race with what we are doing. 7052 */ 7053 cpu_vm_stats_fold(cpu); 7054 return 0; 7055 } 7056 7057 void __init page_alloc_init(void) 7058 { 7059 int ret; 7060 7061 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7062 "mm/page_alloc:dead", NULL, 7063 page_alloc_cpu_dead); 7064 WARN_ON(ret < 0); 7065 } 7066 7067 /* 7068 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7069 * or min_free_kbytes changes. 7070 */ 7071 static void calculate_totalreserve_pages(void) 7072 { 7073 struct pglist_data *pgdat; 7074 unsigned long reserve_pages = 0; 7075 enum zone_type i, j; 7076 7077 for_each_online_pgdat(pgdat) { 7078 7079 pgdat->totalreserve_pages = 0; 7080 7081 for (i = 0; i < MAX_NR_ZONES; i++) { 7082 struct zone *zone = pgdat->node_zones + i; 7083 long max = 0; 7084 7085 /* Find valid and maximum lowmem_reserve in the zone */ 7086 for (j = i; j < MAX_NR_ZONES; j++) { 7087 if (zone->lowmem_reserve[j] > max) 7088 max = zone->lowmem_reserve[j]; 7089 } 7090 7091 /* we treat the high watermark as reserved pages. */ 7092 max += high_wmark_pages(zone); 7093 7094 if (max > zone->managed_pages) 7095 max = zone->managed_pages; 7096 7097 pgdat->totalreserve_pages += max; 7098 7099 reserve_pages += max; 7100 } 7101 } 7102 totalreserve_pages = reserve_pages; 7103 } 7104 7105 /* 7106 * setup_per_zone_lowmem_reserve - called whenever 7107 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7108 * has a correct pages reserved value, so an adequate number of 7109 * pages are left in the zone after a successful __alloc_pages(). 7110 */ 7111 static void setup_per_zone_lowmem_reserve(void) 7112 { 7113 struct pglist_data *pgdat; 7114 enum zone_type j, idx; 7115 7116 for_each_online_pgdat(pgdat) { 7117 for (j = 0; j < MAX_NR_ZONES; j++) { 7118 struct zone *zone = pgdat->node_zones + j; 7119 unsigned long managed_pages = zone->managed_pages; 7120 7121 zone->lowmem_reserve[j] = 0; 7122 7123 idx = j; 7124 while (idx) { 7125 struct zone *lower_zone; 7126 7127 idx--; 7128 7129 if (sysctl_lowmem_reserve_ratio[idx] < 1) 7130 sysctl_lowmem_reserve_ratio[idx] = 1; 7131 7132 lower_zone = pgdat->node_zones + idx; 7133 lower_zone->lowmem_reserve[j] = managed_pages / 7134 sysctl_lowmem_reserve_ratio[idx]; 7135 managed_pages += lower_zone->managed_pages; 7136 } 7137 } 7138 } 7139 7140 /* update totalreserve_pages */ 7141 calculate_totalreserve_pages(); 7142 } 7143 7144 static void __setup_per_zone_wmarks(void) 7145 { 7146 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7147 unsigned long lowmem_pages = 0; 7148 struct zone *zone; 7149 unsigned long flags; 7150 7151 /* Calculate total number of !ZONE_HIGHMEM pages */ 7152 for_each_zone(zone) { 7153 if (!is_highmem(zone)) 7154 lowmem_pages += zone->managed_pages; 7155 } 7156 7157 for_each_zone(zone) { 7158 u64 tmp; 7159 7160 spin_lock_irqsave(&zone->lock, flags); 7161 tmp = (u64)pages_min * zone->managed_pages; 7162 do_div(tmp, lowmem_pages); 7163 if (is_highmem(zone)) { 7164 /* 7165 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7166 * need highmem pages, so cap pages_min to a small 7167 * value here. 7168 * 7169 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7170 * deltas control asynch page reclaim, and so should 7171 * not be capped for highmem. 7172 */ 7173 unsigned long min_pages; 7174 7175 min_pages = zone->managed_pages / 1024; 7176 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7177 zone->watermark[WMARK_MIN] = min_pages; 7178 } else { 7179 /* 7180 * If it's a lowmem zone, reserve a number of pages 7181 * proportionate to the zone's size. 7182 */ 7183 zone->watermark[WMARK_MIN] = tmp; 7184 } 7185 7186 /* 7187 * Set the kswapd watermarks distance according to the 7188 * scale factor in proportion to available memory, but 7189 * ensure a minimum size on small systems. 7190 */ 7191 tmp = max_t(u64, tmp >> 2, 7192 mult_frac(zone->managed_pages, 7193 watermark_scale_factor, 10000)); 7194 7195 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7196 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7197 7198 spin_unlock_irqrestore(&zone->lock, flags); 7199 } 7200 7201 /* update totalreserve_pages */ 7202 calculate_totalreserve_pages(); 7203 } 7204 7205 /** 7206 * setup_per_zone_wmarks - called when min_free_kbytes changes 7207 * or when memory is hot-{added|removed} 7208 * 7209 * Ensures that the watermark[min,low,high] values for each zone are set 7210 * correctly with respect to min_free_kbytes. 7211 */ 7212 void setup_per_zone_wmarks(void) 7213 { 7214 static DEFINE_SPINLOCK(lock); 7215 7216 spin_lock(&lock); 7217 __setup_per_zone_wmarks(); 7218 spin_unlock(&lock); 7219 } 7220 7221 /* 7222 * Initialise min_free_kbytes. 7223 * 7224 * For small machines we want it small (128k min). For large machines 7225 * we want it large (64MB max). But it is not linear, because network 7226 * bandwidth does not increase linearly with machine size. We use 7227 * 7228 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7229 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7230 * 7231 * which yields 7232 * 7233 * 16MB: 512k 7234 * 32MB: 724k 7235 * 64MB: 1024k 7236 * 128MB: 1448k 7237 * 256MB: 2048k 7238 * 512MB: 2896k 7239 * 1024MB: 4096k 7240 * 2048MB: 5792k 7241 * 4096MB: 8192k 7242 * 8192MB: 11584k 7243 * 16384MB: 16384k 7244 */ 7245 int __meminit init_per_zone_wmark_min(void) 7246 { 7247 unsigned long lowmem_kbytes; 7248 int new_min_free_kbytes; 7249 7250 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7251 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7252 7253 if (new_min_free_kbytes > user_min_free_kbytes) { 7254 min_free_kbytes = new_min_free_kbytes; 7255 if (min_free_kbytes < 128) 7256 min_free_kbytes = 128; 7257 if (min_free_kbytes > 65536) 7258 min_free_kbytes = 65536; 7259 } else { 7260 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7261 new_min_free_kbytes, user_min_free_kbytes); 7262 } 7263 setup_per_zone_wmarks(); 7264 refresh_zone_stat_thresholds(); 7265 setup_per_zone_lowmem_reserve(); 7266 7267 #ifdef CONFIG_NUMA 7268 setup_min_unmapped_ratio(); 7269 setup_min_slab_ratio(); 7270 #endif 7271 7272 return 0; 7273 } 7274 core_initcall(init_per_zone_wmark_min) 7275 7276 /* 7277 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7278 * that we can call two helper functions whenever min_free_kbytes 7279 * changes. 7280 */ 7281 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7282 void __user *buffer, size_t *length, loff_t *ppos) 7283 { 7284 int rc; 7285 7286 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7287 if (rc) 7288 return rc; 7289 7290 if (write) { 7291 user_min_free_kbytes = min_free_kbytes; 7292 setup_per_zone_wmarks(); 7293 } 7294 return 0; 7295 } 7296 7297 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7298 void __user *buffer, size_t *length, loff_t *ppos) 7299 { 7300 int rc; 7301 7302 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7303 if (rc) 7304 return rc; 7305 7306 if (write) 7307 setup_per_zone_wmarks(); 7308 7309 return 0; 7310 } 7311 7312 #ifdef CONFIG_NUMA 7313 static void setup_min_unmapped_ratio(void) 7314 { 7315 pg_data_t *pgdat; 7316 struct zone *zone; 7317 7318 for_each_online_pgdat(pgdat) 7319 pgdat->min_unmapped_pages = 0; 7320 7321 for_each_zone(zone) 7322 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7323 sysctl_min_unmapped_ratio) / 100; 7324 } 7325 7326 7327 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7328 void __user *buffer, size_t *length, loff_t *ppos) 7329 { 7330 int rc; 7331 7332 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7333 if (rc) 7334 return rc; 7335 7336 setup_min_unmapped_ratio(); 7337 7338 return 0; 7339 } 7340 7341 static void setup_min_slab_ratio(void) 7342 { 7343 pg_data_t *pgdat; 7344 struct zone *zone; 7345 7346 for_each_online_pgdat(pgdat) 7347 pgdat->min_slab_pages = 0; 7348 7349 for_each_zone(zone) 7350 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7351 sysctl_min_slab_ratio) / 100; 7352 } 7353 7354 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7355 void __user *buffer, size_t *length, loff_t *ppos) 7356 { 7357 int rc; 7358 7359 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7360 if (rc) 7361 return rc; 7362 7363 setup_min_slab_ratio(); 7364 7365 return 0; 7366 } 7367 #endif 7368 7369 /* 7370 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7371 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7372 * whenever sysctl_lowmem_reserve_ratio changes. 7373 * 7374 * The reserve ratio obviously has absolutely no relation with the 7375 * minimum watermarks. The lowmem reserve ratio can only make sense 7376 * if in function of the boot time zone sizes. 7377 */ 7378 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7379 void __user *buffer, size_t *length, loff_t *ppos) 7380 { 7381 proc_dointvec_minmax(table, write, buffer, length, ppos); 7382 setup_per_zone_lowmem_reserve(); 7383 return 0; 7384 } 7385 7386 /* 7387 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7388 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7389 * pagelist can have before it gets flushed back to buddy allocator. 7390 */ 7391 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7392 void __user *buffer, size_t *length, loff_t *ppos) 7393 { 7394 struct zone *zone; 7395 int old_percpu_pagelist_fraction; 7396 int ret; 7397 7398 mutex_lock(&pcp_batch_high_lock); 7399 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7400 7401 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7402 if (!write || ret < 0) 7403 goto out; 7404 7405 /* Sanity checking to avoid pcp imbalance */ 7406 if (percpu_pagelist_fraction && 7407 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7408 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7409 ret = -EINVAL; 7410 goto out; 7411 } 7412 7413 /* No change? */ 7414 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7415 goto out; 7416 7417 for_each_populated_zone(zone) { 7418 unsigned int cpu; 7419 7420 for_each_possible_cpu(cpu) 7421 pageset_set_high_and_batch(zone, 7422 per_cpu_ptr(zone->pageset, cpu)); 7423 } 7424 out: 7425 mutex_unlock(&pcp_batch_high_lock); 7426 return ret; 7427 } 7428 7429 #ifdef CONFIG_NUMA 7430 int hashdist = HASHDIST_DEFAULT; 7431 7432 static int __init set_hashdist(char *str) 7433 { 7434 if (!str) 7435 return 0; 7436 hashdist = simple_strtoul(str, &str, 0); 7437 return 1; 7438 } 7439 __setup("hashdist=", set_hashdist); 7440 #endif 7441 7442 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7443 /* 7444 * Returns the number of pages that arch has reserved but 7445 * is not known to alloc_large_system_hash(). 7446 */ 7447 static unsigned long __init arch_reserved_kernel_pages(void) 7448 { 7449 return 0; 7450 } 7451 #endif 7452 7453 /* 7454 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7455 * machines. As memory size is increased the scale is also increased but at 7456 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7457 * quadruples the scale is increased by one, which means the size of hash table 7458 * only doubles, instead of quadrupling as well. 7459 * Because 32-bit systems cannot have large physical memory, where this scaling 7460 * makes sense, it is disabled on such platforms. 7461 */ 7462 #if __BITS_PER_LONG > 32 7463 #define ADAPT_SCALE_BASE (64ul << 30) 7464 #define ADAPT_SCALE_SHIFT 2 7465 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7466 #endif 7467 7468 /* 7469 * allocate a large system hash table from bootmem 7470 * - it is assumed that the hash table must contain an exact power-of-2 7471 * quantity of entries 7472 * - limit is the number of hash buckets, not the total allocation size 7473 */ 7474 void *__init alloc_large_system_hash(const char *tablename, 7475 unsigned long bucketsize, 7476 unsigned long numentries, 7477 int scale, 7478 int flags, 7479 unsigned int *_hash_shift, 7480 unsigned int *_hash_mask, 7481 unsigned long low_limit, 7482 unsigned long high_limit) 7483 { 7484 unsigned long long max = high_limit; 7485 unsigned long log2qty, size; 7486 void *table = NULL; 7487 gfp_t gfp_flags; 7488 7489 /* allow the kernel cmdline to have a say */ 7490 if (!numentries) { 7491 /* round applicable memory size up to nearest megabyte */ 7492 numentries = nr_kernel_pages; 7493 numentries -= arch_reserved_kernel_pages(); 7494 7495 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7496 if (PAGE_SHIFT < 20) 7497 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7498 7499 #if __BITS_PER_LONG > 32 7500 if (!high_limit) { 7501 unsigned long adapt; 7502 7503 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7504 adapt <<= ADAPT_SCALE_SHIFT) 7505 scale++; 7506 } 7507 #endif 7508 7509 /* limit to 1 bucket per 2^scale bytes of low memory */ 7510 if (scale > PAGE_SHIFT) 7511 numentries >>= (scale - PAGE_SHIFT); 7512 else 7513 numentries <<= (PAGE_SHIFT - scale); 7514 7515 /* Make sure we've got at least a 0-order allocation.. */ 7516 if (unlikely(flags & HASH_SMALL)) { 7517 /* Makes no sense without HASH_EARLY */ 7518 WARN_ON(!(flags & HASH_EARLY)); 7519 if (!(numentries >> *_hash_shift)) { 7520 numentries = 1UL << *_hash_shift; 7521 BUG_ON(!numentries); 7522 } 7523 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7524 numentries = PAGE_SIZE / bucketsize; 7525 } 7526 numentries = roundup_pow_of_two(numentries); 7527 7528 /* limit allocation size to 1/16 total memory by default */ 7529 if (max == 0) { 7530 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7531 do_div(max, bucketsize); 7532 } 7533 max = min(max, 0x80000000ULL); 7534 7535 if (numentries < low_limit) 7536 numentries = low_limit; 7537 if (numentries > max) 7538 numentries = max; 7539 7540 log2qty = ilog2(numentries); 7541 7542 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7543 do { 7544 size = bucketsize << log2qty; 7545 if (flags & HASH_EARLY) { 7546 if (flags & HASH_ZERO) 7547 table = memblock_virt_alloc_nopanic(size, 0); 7548 else 7549 table = memblock_virt_alloc_raw(size, 0); 7550 } else if (hashdist) { 7551 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7552 } else { 7553 /* 7554 * If bucketsize is not a power-of-two, we may free 7555 * some pages at the end of hash table which 7556 * alloc_pages_exact() automatically does 7557 */ 7558 if (get_order(size) < MAX_ORDER) { 7559 table = alloc_pages_exact(size, gfp_flags); 7560 kmemleak_alloc(table, size, 1, gfp_flags); 7561 } 7562 } 7563 } while (!table && size > PAGE_SIZE && --log2qty); 7564 7565 if (!table) 7566 panic("Failed to allocate %s hash table\n", tablename); 7567 7568 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7569 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7570 7571 if (_hash_shift) 7572 *_hash_shift = log2qty; 7573 if (_hash_mask) 7574 *_hash_mask = (1 << log2qty) - 1; 7575 7576 return table; 7577 } 7578 7579 /* 7580 * This function checks whether pageblock includes unmovable pages or not. 7581 * If @count is not zero, it is okay to include less @count unmovable pages 7582 * 7583 * PageLRU check without isolation or lru_lock could race so that 7584 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7585 * check without lock_page also may miss some movable non-lru pages at 7586 * race condition. So you can't expect this function should be exact. 7587 */ 7588 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7589 int migratetype, 7590 bool skip_hwpoisoned_pages) 7591 { 7592 unsigned long pfn, iter, found; 7593 7594 /* 7595 * For avoiding noise data, lru_add_drain_all() should be called 7596 * If ZONE_MOVABLE, the zone never contains unmovable pages 7597 */ 7598 if (zone_idx(zone) == ZONE_MOVABLE) 7599 return false; 7600 7601 /* 7602 * CMA allocations (alloc_contig_range) really need to mark isolate 7603 * CMA pageblocks even when they are not movable in fact so consider 7604 * them movable here. 7605 */ 7606 if (is_migrate_cma(migratetype) && 7607 is_migrate_cma(get_pageblock_migratetype(page))) 7608 return false; 7609 7610 pfn = page_to_pfn(page); 7611 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7612 unsigned long check = pfn + iter; 7613 7614 if (!pfn_valid_within(check)) 7615 continue; 7616 7617 page = pfn_to_page(check); 7618 7619 if (PageReserved(page)) 7620 return true; 7621 7622 /* 7623 * Hugepages are not in LRU lists, but they're movable. 7624 * We need not scan over tail pages bacause we don't 7625 * handle each tail page individually in migration. 7626 */ 7627 if (PageHuge(page)) { 7628 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7629 continue; 7630 } 7631 7632 /* 7633 * We can't use page_count without pin a page 7634 * because another CPU can free compound page. 7635 * This check already skips compound tails of THP 7636 * because their page->_refcount is zero at all time. 7637 */ 7638 if (!page_ref_count(page)) { 7639 if (PageBuddy(page)) 7640 iter += (1 << page_order(page)) - 1; 7641 continue; 7642 } 7643 7644 /* 7645 * The HWPoisoned page may be not in buddy system, and 7646 * page_count() is not 0. 7647 */ 7648 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7649 continue; 7650 7651 if (__PageMovable(page)) 7652 continue; 7653 7654 if (!PageLRU(page)) 7655 found++; 7656 /* 7657 * If there are RECLAIMABLE pages, we need to check 7658 * it. But now, memory offline itself doesn't call 7659 * shrink_node_slabs() and it still to be fixed. 7660 */ 7661 /* 7662 * If the page is not RAM, page_count()should be 0. 7663 * we don't need more check. This is an _used_ not-movable page. 7664 * 7665 * The problematic thing here is PG_reserved pages. PG_reserved 7666 * is set to both of a memory hole page and a _used_ kernel 7667 * page at boot. 7668 */ 7669 if (found > count) 7670 return true; 7671 } 7672 return false; 7673 } 7674 7675 bool is_pageblock_removable_nolock(struct page *page) 7676 { 7677 struct zone *zone; 7678 unsigned long pfn; 7679 7680 /* 7681 * We have to be careful here because we are iterating over memory 7682 * sections which are not zone aware so we might end up outside of 7683 * the zone but still within the section. 7684 * We have to take care about the node as well. If the node is offline 7685 * its NODE_DATA will be NULL - see page_zone. 7686 */ 7687 if (!node_online(page_to_nid(page))) 7688 return false; 7689 7690 zone = page_zone(page); 7691 pfn = page_to_pfn(page); 7692 if (!zone_spans_pfn(zone, pfn)) 7693 return false; 7694 7695 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true); 7696 } 7697 7698 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7699 7700 static unsigned long pfn_max_align_down(unsigned long pfn) 7701 { 7702 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7703 pageblock_nr_pages) - 1); 7704 } 7705 7706 static unsigned long pfn_max_align_up(unsigned long pfn) 7707 { 7708 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7709 pageblock_nr_pages)); 7710 } 7711 7712 /* [start, end) must belong to a single zone. */ 7713 static int __alloc_contig_migrate_range(struct compact_control *cc, 7714 unsigned long start, unsigned long end) 7715 { 7716 /* This function is based on compact_zone() from compaction.c. */ 7717 unsigned long nr_reclaimed; 7718 unsigned long pfn = start; 7719 unsigned int tries = 0; 7720 int ret = 0; 7721 7722 migrate_prep(); 7723 7724 while (pfn < end || !list_empty(&cc->migratepages)) { 7725 if (fatal_signal_pending(current)) { 7726 ret = -EINTR; 7727 break; 7728 } 7729 7730 if (list_empty(&cc->migratepages)) { 7731 cc->nr_migratepages = 0; 7732 pfn = isolate_migratepages_range(cc, pfn, end); 7733 if (!pfn) { 7734 ret = -EINTR; 7735 break; 7736 } 7737 tries = 0; 7738 } else if (++tries == 5) { 7739 ret = ret < 0 ? ret : -EBUSY; 7740 break; 7741 } 7742 7743 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7744 &cc->migratepages); 7745 cc->nr_migratepages -= nr_reclaimed; 7746 7747 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7748 NULL, 0, cc->mode, MR_CONTIG_RANGE); 7749 } 7750 if (ret < 0) { 7751 putback_movable_pages(&cc->migratepages); 7752 return ret; 7753 } 7754 return 0; 7755 } 7756 7757 /** 7758 * alloc_contig_range() -- tries to allocate given range of pages 7759 * @start: start PFN to allocate 7760 * @end: one-past-the-last PFN to allocate 7761 * @migratetype: migratetype of the underlaying pageblocks (either 7762 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7763 * in range must have the same migratetype and it must 7764 * be either of the two. 7765 * @gfp_mask: GFP mask to use during compaction 7766 * 7767 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7768 * aligned. The PFN range must belong to a single zone. 7769 * 7770 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 7771 * pageblocks in the range. Once isolated, the pageblocks should not 7772 * be modified by others. 7773 * 7774 * Returns zero on success or negative error code. On success all 7775 * pages which PFN is in [start, end) are allocated for the caller and 7776 * need to be freed with free_contig_range(). 7777 */ 7778 int alloc_contig_range(unsigned long start, unsigned long end, 7779 unsigned migratetype, gfp_t gfp_mask) 7780 { 7781 unsigned long outer_start, outer_end; 7782 unsigned int order; 7783 int ret = 0; 7784 7785 struct compact_control cc = { 7786 .nr_migratepages = 0, 7787 .order = -1, 7788 .zone = page_zone(pfn_to_page(start)), 7789 .mode = MIGRATE_SYNC, 7790 .ignore_skip_hint = true, 7791 .no_set_skip_hint = true, 7792 .gfp_mask = current_gfp_context(gfp_mask), 7793 }; 7794 INIT_LIST_HEAD(&cc.migratepages); 7795 7796 /* 7797 * What we do here is we mark all pageblocks in range as 7798 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7799 * have different sizes, and due to the way page allocator 7800 * work, we align the range to biggest of the two pages so 7801 * that page allocator won't try to merge buddies from 7802 * different pageblocks and change MIGRATE_ISOLATE to some 7803 * other migration type. 7804 * 7805 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7806 * migrate the pages from an unaligned range (ie. pages that 7807 * we are interested in). This will put all the pages in 7808 * range back to page allocator as MIGRATE_ISOLATE. 7809 * 7810 * When this is done, we take the pages in range from page 7811 * allocator removing them from the buddy system. This way 7812 * page allocator will never consider using them. 7813 * 7814 * This lets us mark the pageblocks back as 7815 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7816 * aligned range but not in the unaligned, original range are 7817 * put back to page allocator so that buddy can use them. 7818 */ 7819 7820 ret = start_isolate_page_range(pfn_max_align_down(start), 7821 pfn_max_align_up(end), migratetype, 7822 false); 7823 if (ret) 7824 return ret; 7825 7826 /* 7827 * In case of -EBUSY, we'd like to know which page causes problem. 7828 * So, just fall through. test_pages_isolated() has a tracepoint 7829 * which will report the busy page. 7830 * 7831 * It is possible that busy pages could become available before 7832 * the call to test_pages_isolated, and the range will actually be 7833 * allocated. So, if we fall through be sure to clear ret so that 7834 * -EBUSY is not accidentally used or returned to caller. 7835 */ 7836 ret = __alloc_contig_migrate_range(&cc, start, end); 7837 if (ret && ret != -EBUSY) 7838 goto done; 7839 ret =0; 7840 7841 /* 7842 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7843 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7844 * more, all pages in [start, end) are free in page allocator. 7845 * What we are going to do is to allocate all pages from 7846 * [start, end) (that is remove them from page allocator). 7847 * 7848 * The only problem is that pages at the beginning and at the 7849 * end of interesting range may be not aligned with pages that 7850 * page allocator holds, ie. they can be part of higher order 7851 * pages. Because of this, we reserve the bigger range and 7852 * once this is done free the pages we are not interested in. 7853 * 7854 * We don't have to hold zone->lock here because the pages are 7855 * isolated thus they won't get removed from buddy. 7856 */ 7857 7858 lru_add_drain_all(); 7859 drain_all_pages(cc.zone); 7860 7861 order = 0; 7862 outer_start = start; 7863 while (!PageBuddy(pfn_to_page(outer_start))) { 7864 if (++order >= MAX_ORDER) { 7865 outer_start = start; 7866 break; 7867 } 7868 outer_start &= ~0UL << order; 7869 } 7870 7871 if (outer_start != start) { 7872 order = page_order(pfn_to_page(outer_start)); 7873 7874 /* 7875 * outer_start page could be small order buddy page and 7876 * it doesn't include start page. Adjust outer_start 7877 * in this case to report failed page properly 7878 * on tracepoint in test_pages_isolated() 7879 */ 7880 if (outer_start + (1UL << order) <= start) 7881 outer_start = start; 7882 } 7883 7884 /* Make sure the range is really isolated. */ 7885 if (test_pages_isolated(outer_start, end, false)) { 7886 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 7887 __func__, outer_start, end); 7888 ret = -EBUSY; 7889 goto done; 7890 } 7891 7892 /* Grab isolated pages from freelists. */ 7893 outer_end = isolate_freepages_range(&cc, outer_start, end); 7894 if (!outer_end) { 7895 ret = -EBUSY; 7896 goto done; 7897 } 7898 7899 /* Free head and tail (if any) */ 7900 if (start != outer_start) 7901 free_contig_range(outer_start, start - outer_start); 7902 if (end != outer_end) 7903 free_contig_range(end, outer_end - end); 7904 7905 done: 7906 undo_isolate_page_range(pfn_max_align_down(start), 7907 pfn_max_align_up(end), migratetype); 7908 return ret; 7909 } 7910 7911 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7912 { 7913 unsigned int count = 0; 7914 7915 for (; nr_pages--; pfn++) { 7916 struct page *page = pfn_to_page(pfn); 7917 7918 count += page_count(page) != 1; 7919 __free_page(page); 7920 } 7921 WARN(count != 0, "%d pages are still in use!\n", count); 7922 } 7923 #endif 7924 7925 #ifdef CONFIG_MEMORY_HOTPLUG 7926 /* 7927 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7928 * page high values need to be recalulated. 7929 */ 7930 void __meminit zone_pcp_update(struct zone *zone) 7931 { 7932 unsigned cpu; 7933 mutex_lock(&pcp_batch_high_lock); 7934 for_each_possible_cpu(cpu) 7935 pageset_set_high_and_batch(zone, 7936 per_cpu_ptr(zone->pageset, cpu)); 7937 mutex_unlock(&pcp_batch_high_lock); 7938 } 7939 #endif 7940 7941 void zone_pcp_reset(struct zone *zone) 7942 { 7943 unsigned long flags; 7944 int cpu; 7945 struct per_cpu_pageset *pset; 7946 7947 /* avoid races with drain_pages() */ 7948 local_irq_save(flags); 7949 if (zone->pageset != &boot_pageset) { 7950 for_each_online_cpu(cpu) { 7951 pset = per_cpu_ptr(zone->pageset, cpu); 7952 drain_zonestat(zone, pset); 7953 } 7954 free_percpu(zone->pageset); 7955 zone->pageset = &boot_pageset; 7956 } 7957 local_irq_restore(flags); 7958 } 7959 7960 #ifdef CONFIG_MEMORY_HOTREMOVE 7961 /* 7962 * All pages in the range must be in a single zone and isolated 7963 * before calling this. 7964 */ 7965 void 7966 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7967 { 7968 struct page *page; 7969 struct zone *zone; 7970 unsigned int order, i; 7971 unsigned long pfn; 7972 unsigned long flags; 7973 /* find the first valid pfn */ 7974 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7975 if (pfn_valid(pfn)) 7976 break; 7977 if (pfn == end_pfn) 7978 return; 7979 offline_mem_sections(pfn, end_pfn); 7980 zone = page_zone(pfn_to_page(pfn)); 7981 spin_lock_irqsave(&zone->lock, flags); 7982 pfn = start_pfn; 7983 while (pfn < end_pfn) { 7984 if (!pfn_valid(pfn)) { 7985 pfn++; 7986 continue; 7987 } 7988 page = pfn_to_page(pfn); 7989 /* 7990 * The HWPoisoned page may be not in buddy system, and 7991 * page_count() is not 0. 7992 */ 7993 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7994 pfn++; 7995 SetPageReserved(page); 7996 continue; 7997 } 7998 7999 BUG_ON(page_count(page)); 8000 BUG_ON(!PageBuddy(page)); 8001 order = page_order(page); 8002 #ifdef CONFIG_DEBUG_VM 8003 pr_info("remove from free list %lx %d %lx\n", 8004 pfn, 1 << order, end_pfn); 8005 #endif 8006 list_del(&page->lru); 8007 rmv_page_order(page); 8008 zone->free_area[order].nr_free--; 8009 for (i = 0; i < (1 << order); i++) 8010 SetPageReserved((page+i)); 8011 pfn += (1 << order); 8012 } 8013 spin_unlock_irqrestore(&zone->lock, flags); 8014 } 8015 #endif 8016 8017 bool is_free_buddy_page(struct page *page) 8018 { 8019 struct zone *zone = page_zone(page); 8020 unsigned long pfn = page_to_pfn(page); 8021 unsigned long flags; 8022 unsigned int order; 8023 8024 spin_lock_irqsave(&zone->lock, flags); 8025 for (order = 0; order < MAX_ORDER; order++) { 8026 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8027 8028 if (PageBuddy(page_head) && page_order(page_head) >= order) 8029 break; 8030 } 8031 spin_unlock_irqrestore(&zone->lock, flags); 8032 8033 return order < MAX_ORDER; 8034 } 8035