xref: /linux/mm/page_alloc.c (revision 497258dfafcc6b88e7c4c46a38a479721d44cf41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static bool cond_accept_memory(struct zone *zone, unsigned int order);
290 static inline bool has_unaccepted_memory(void);
291 static bool __free_unaccepted(struct page *page);
292 
293 int page_group_by_mobility_disabled __read_mostly;
294 
295 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
296 /*
297  * During boot we initialize deferred pages on-demand, as needed, but once
298  * page_alloc_init_late() has finished, the deferred pages are all initialized,
299  * and we can permanently disable that path.
300  */
301 DEFINE_STATIC_KEY_TRUE(deferred_pages);
302 
303 static inline bool deferred_pages_enabled(void)
304 {
305 	return static_branch_unlikely(&deferred_pages);
306 }
307 
308 /*
309  * deferred_grow_zone() is __init, but it is called from
310  * get_page_from_freelist() during early boot until deferred_pages permanently
311  * disables this call. This is why we have refdata wrapper to avoid warning,
312  * and to ensure that the function body gets unloaded.
313  */
314 static bool __ref
315 _deferred_grow_zone(struct zone *zone, unsigned int order)
316 {
317 	return deferred_grow_zone(zone, order);
318 }
319 #else
320 static inline bool deferred_pages_enabled(void)
321 {
322 	return false;
323 }
324 
325 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
326 {
327 	return false;
328 }
329 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
330 
331 /* Return a pointer to the bitmap storing bits affecting a block of pages */
332 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
333 							unsigned long pfn)
334 {
335 #ifdef CONFIG_SPARSEMEM
336 	return section_to_usemap(__pfn_to_section(pfn));
337 #else
338 	return page_zone(page)->pageblock_flags;
339 #endif /* CONFIG_SPARSEMEM */
340 }
341 
342 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
343 {
344 #ifdef CONFIG_SPARSEMEM
345 	pfn &= (PAGES_PER_SECTION-1);
346 #else
347 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
348 #endif /* CONFIG_SPARSEMEM */
349 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
350 }
351 
352 /**
353  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
354  * @page: The page within the block of interest
355  * @pfn: The target page frame number
356  * @mask: mask of bits that the caller is interested in
357  *
358  * Return: pageblock_bits flags
359  */
360 unsigned long get_pfnblock_flags_mask(const struct page *page,
361 					unsigned long pfn, unsigned long mask)
362 {
363 	unsigned long *bitmap;
364 	unsigned long bitidx, word_bitidx;
365 	unsigned long word;
366 
367 	bitmap = get_pageblock_bitmap(page, pfn);
368 	bitidx = pfn_to_bitidx(page, pfn);
369 	word_bitidx = bitidx / BITS_PER_LONG;
370 	bitidx &= (BITS_PER_LONG-1);
371 	/*
372 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
373 	 * a consistent read of the memory array, so that results, even though
374 	 * racy, are not corrupted.
375 	 */
376 	word = READ_ONCE(bitmap[word_bitidx]);
377 	return (word >> bitidx) & mask;
378 }
379 
380 static __always_inline int get_pfnblock_migratetype(const struct page *page,
381 					unsigned long pfn)
382 {
383 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
384 }
385 
386 /**
387  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
388  * @page: The page within the block of interest
389  * @flags: The flags to set
390  * @pfn: The target page frame number
391  * @mask: mask of bits that the caller is interested in
392  */
393 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
394 					unsigned long pfn,
395 					unsigned long mask)
396 {
397 	unsigned long *bitmap;
398 	unsigned long bitidx, word_bitidx;
399 	unsigned long word;
400 
401 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
402 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
403 
404 	bitmap = get_pageblock_bitmap(page, pfn);
405 	bitidx = pfn_to_bitidx(page, pfn);
406 	word_bitidx = bitidx / BITS_PER_LONG;
407 	bitidx &= (BITS_PER_LONG-1);
408 
409 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
410 
411 	mask <<= bitidx;
412 	flags <<= bitidx;
413 
414 	word = READ_ONCE(bitmap[word_bitidx]);
415 	do {
416 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
417 }
418 
419 void set_pageblock_migratetype(struct page *page, int migratetype)
420 {
421 	if (unlikely(page_group_by_mobility_disabled &&
422 		     migratetype < MIGRATE_PCPTYPES))
423 		migratetype = MIGRATE_UNMOVABLE;
424 
425 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
426 				page_to_pfn(page), MIGRATETYPE_MASK);
427 }
428 
429 #ifdef CONFIG_DEBUG_VM
430 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
431 {
432 	int ret;
433 	unsigned seq;
434 	unsigned long pfn = page_to_pfn(page);
435 	unsigned long sp, start_pfn;
436 
437 	do {
438 		seq = zone_span_seqbegin(zone);
439 		start_pfn = zone->zone_start_pfn;
440 		sp = zone->spanned_pages;
441 		ret = !zone_spans_pfn(zone, pfn);
442 	} while (zone_span_seqretry(zone, seq));
443 
444 	if (ret)
445 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
446 			pfn, zone_to_nid(zone), zone->name,
447 			start_pfn, start_pfn + sp);
448 
449 	return ret;
450 }
451 
452 /*
453  * Temporary debugging check for pages not lying within a given zone.
454  */
455 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
456 {
457 	if (page_outside_zone_boundaries(zone, page))
458 		return true;
459 	if (zone != page_zone(page))
460 		return true;
461 
462 	return false;
463 }
464 #else
465 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
466 {
467 	return false;
468 }
469 #endif
470 
471 static void bad_page(struct page *page, const char *reason)
472 {
473 	static unsigned long resume;
474 	static unsigned long nr_shown;
475 	static unsigned long nr_unshown;
476 
477 	/*
478 	 * Allow a burst of 60 reports, then keep quiet for that minute;
479 	 * or allow a steady drip of one report per second.
480 	 */
481 	if (nr_shown == 60) {
482 		if (time_before(jiffies, resume)) {
483 			nr_unshown++;
484 			goto out;
485 		}
486 		if (nr_unshown) {
487 			pr_alert(
488 			      "BUG: Bad page state: %lu messages suppressed\n",
489 				nr_unshown);
490 			nr_unshown = 0;
491 		}
492 		nr_shown = 0;
493 	}
494 	if (nr_shown++ == 0)
495 		resume = jiffies + 60 * HZ;
496 
497 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
498 		current->comm, page_to_pfn(page));
499 	dump_page(page, reason);
500 
501 	print_modules();
502 	dump_stack();
503 out:
504 	/* Leave bad fields for debug, except PageBuddy could make trouble */
505 	if (PageBuddy(page))
506 		__ClearPageBuddy(page);
507 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
508 }
509 
510 static inline unsigned int order_to_pindex(int migratetype, int order)
511 {
512 	bool __maybe_unused movable;
513 
514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
515 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
516 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
517 
518 		movable = migratetype == MIGRATE_MOVABLE;
519 
520 		return NR_LOWORDER_PCP_LISTS + movable;
521 	}
522 #else
523 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
524 #endif
525 
526 	return (MIGRATE_PCPTYPES * order) + migratetype;
527 }
528 
529 static inline int pindex_to_order(unsigned int pindex)
530 {
531 	int order = pindex / MIGRATE_PCPTYPES;
532 
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 	if (pindex >= NR_LOWORDER_PCP_LISTS)
535 		order = HPAGE_PMD_ORDER;
536 #else
537 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
538 #endif
539 
540 	return order;
541 }
542 
543 static inline bool pcp_allowed_order(unsigned int order)
544 {
545 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
546 		return true;
547 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
548 	if (order == HPAGE_PMD_ORDER)
549 		return true;
550 #endif
551 	return false;
552 }
553 
554 /*
555  * Higher-order pages are called "compound pages".  They are structured thusly:
556  *
557  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
558  *
559  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
560  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
561  *
562  * The first tail page's ->compound_order holds the order of allocation.
563  * This usage means that zero-order pages may not be compound.
564  */
565 
566 void prep_compound_page(struct page *page, unsigned int order)
567 {
568 	int i;
569 	int nr_pages = 1 << order;
570 
571 	__SetPageHead(page);
572 	for (i = 1; i < nr_pages; i++)
573 		prep_compound_tail(page, i);
574 
575 	prep_compound_head(page, order);
576 }
577 
578 static inline void set_buddy_order(struct page *page, unsigned int order)
579 {
580 	set_page_private(page, order);
581 	__SetPageBuddy(page);
582 }
583 
584 #ifdef CONFIG_COMPACTION
585 static inline struct capture_control *task_capc(struct zone *zone)
586 {
587 	struct capture_control *capc = current->capture_control;
588 
589 	return unlikely(capc) &&
590 		!(current->flags & PF_KTHREAD) &&
591 		!capc->page &&
592 		capc->cc->zone == zone ? capc : NULL;
593 }
594 
595 static inline bool
596 compaction_capture(struct capture_control *capc, struct page *page,
597 		   int order, int migratetype)
598 {
599 	if (!capc || order != capc->cc->order)
600 		return false;
601 
602 	/* Do not accidentally pollute CMA or isolated regions*/
603 	if (is_migrate_cma(migratetype) ||
604 	    is_migrate_isolate(migratetype))
605 		return false;
606 
607 	/*
608 	 * Do not let lower order allocations pollute a movable pageblock
609 	 * unless compaction is also requesting movable pages.
610 	 * This might let an unmovable request use a reclaimable pageblock
611 	 * and vice-versa but no more than normal fallback logic which can
612 	 * have trouble finding a high-order free page.
613 	 */
614 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
615 	    capc->cc->migratetype != MIGRATE_MOVABLE)
616 		return false;
617 
618 	capc->page = page;
619 	return true;
620 }
621 
622 #else
623 static inline struct capture_control *task_capc(struct zone *zone)
624 {
625 	return NULL;
626 }
627 
628 static inline bool
629 compaction_capture(struct capture_control *capc, struct page *page,
630 		   int order, int migratetype)
631 {
632 	return false;
633 }
634 #endif /* CONFIG_COMPACTION */
635 
636 static inline void account_freepages(struct zone *zone, int nr_pages,
637 				     int migratetype)
638 {
639 	if (is_migrate_isolate(migratetype))
640 		return;
641 
642 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
643 
644 	if (is_migrate_cma(migratetype))
645 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
646 }
647 
648 /* Used for pages not on another list */
649 static inline void __add_to_free_list(struct page *page, struct zone *zone,
650 				      unsigned int order, int migratetype,
651 				      bool tail)
652 {
653 	struct free_area *area = &zone->free_area[order];
654 
655 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
656 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
657 		     get_pageblock_migratetype(page), migratetype, 1 << order);
658 
659 	if (tail)
660 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
661 	else
662 		list_add(&page->buddy_list, &area->free_list[migratetype]);
663 	area->nr_free++;
664 }
665 
666 /*
667  * Used for pages which are on another list. Move the pages to the tail
668  * of the list - so the moved pages won't immediately be considered for
669  * allocation again (e.g., optimization for memory onlining).
670  */
671 static inline void move_to_free_list(struct page *page, struct zone *zone,
672 				     unsigned int order, int old_mt, int new_mt)
673 {
674 	struct free_area *area = &zone->free_area[order];
675 
676 	/* Free page moving can fail, so it happens before the type update */
677 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
678 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
679 		     get_pageblock_migratetype(page), old_mt, 1 << order);
680 
681 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
682 
683 	account_freepages(zone, -(1 << order), old_mt);
684 	account_freepages(zone, 1 << order, new_mt);
685 }
686 
687 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
688 					     unsigned int order, int migratetype)
689 {
690         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
691 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
692 		     get_pageblock_migratetype(page), migratetype, 1 << order);
693 
694 	/* clear reported state and update reported page count */
695 	if (page_reported(page))
696 		__ClearPageReported(page);
697 
698 	list_del(&page->buddy_list);
699 	__ClearPageBuddy(page);
700 	set_page_private(page, 0);
701 	zone->free_area[order].nr_free--;
702 }
703 
704 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
705 					   unsigned int order, int migratetype)
706 {
707 	__del_page_from_free_list(page, zone, order, migratetype);
708 	account_freepages(zone, -(1 << order), migratetype);
709 }
710 
711 static inline struct page *get_page_from_free_area(struct free_area *area,
712 					    int migratetype)
713 {
714 	return list_first_entry_or_null(&area->free_list[migratetype],
715 					struct page, buddy_list);
716 }
717 
718 /*
719  * If this is less than the 2nd largest possible page, check if the buddy
720  * of the next-higher order is free. If it is, it's possible
721  * that pages are being freed that will coalesce soon. In case,
722  * that is happening, add the free page to the tail of the list
723  * so it's less likely to be used soon and more likely to be merged
724  * as a 2-level higher order page
725  */
726 static inline bool
727 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
728 		   struct page *page, unsigned int order)
729 {
730 	unsigned long higher_page_pfn;
731 	struct page *higher_page;
732 
733 	if (order >= MAX_PAGE_ORDER - 1)
734 		return false;
735 
736 	higher_page_pfn = buddy_pfn & pfn;
737 	higher_page = page + (higher_page_pfn - pfn);
738 
739 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
740 			NULL) != NULL;
741 }
742 
743 /*
744  * Freeing function for a buddy system allocator.
745  *
746  * The concept of a buddy system is to maintain direct-mapped table
747  * (containing bit values) for memory blocks of various "orders".
748  * The bottom level table contains the map for the smallest allocatable
749  * units of memory (here, pages), and each level above it describes
750  * pairs of units from the levels below, hence, "buddies".
751  * At a high level, all that happens here is marking the table entry
752  * at the bottom level available, and propagating the changes upward
753  * as necessary, plus some accounting needed to play nicely with other
754  * parts of the VM system.
755  * At each level, we keep a list of pages, which are heads of continuous
756  * free pages of length of (1 << order) and marked with PageBuddy.
757  * Page's order is recorded in page_private(page) field.
758  * So when we are allocating or freeing one, we can derive the state of the
759  * other.  That is, if we allocate a small block, and both were
760  * free, the remainder of the region must be split into blocks.
761  * If a block is freed, and its buddy is also free, then this
762  * triggers coalescing into a block of larger size.
763  *
764  * -- nyc
765  */
766 
767 static inline void __free_one_page(struct page *page,
768 		unsigned long pfn,
769 		struct zone *zone, unsigned int order,
770 		int migratetype, fpi_t fpi_flags)
771 {
772 	struct capture_control *capc = task_capc(zone);
773 	unsigned long buddy_pfn = 0;
774 	unsigned long combined_pfn;
775 	struct page *buddy;
776 	bool to_tail;
777 
778 	VM_BUG_ON(!zone_is_initialized(zone));
779 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
780 
781 	VM_BUG_ON(migratetype == -1);
782 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
783 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
784 
785 	account_freepages(zone, 1 << order, migratetype);
786 
787 	while (order < MAX_PAGE_ORDER) {
788 		int buddy_mt = migratetype;
789 
790 		if (compaction_capture(capc, page, order, migratetype)) {
791 			account_freepages(zone, -(1 << order), migratetype);
792 			return;
793 		}
794 
795 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
796 		if (!buddy)
797 			goto done_merging;
798 
799 		if (unlikely(order >= pageblock_order)) {
800 			/*
801 			 * We want to prevent merge between freepages on pageblock
802 			 * without fallbacks and normal pageblock. Without this,
803 			 * pageblock isolation could cause incorrect freepage or CMA
804 			 * accounting or HIGHATOMIC accounting.
805 			 */
806 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
807 
808 			if (migratetype != buddy_mt &&
809 			    (!migratetype_is_mergeable(migratetype) ||
810 			     !migratetype_is_mergeable(buddy_mt)))
811 				goto done_merging;
812 		}
813 
814 		/*
815 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
816 		 * merge with it and move up one order.
817 		 */
818 		if (page_is_guard(buddy))
819 			clear_page_guard(zone, buddy, order);
820 		else
821 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
822 
823 		if (unlikely(buddy_mt != migratetype)) {
824 			/*
825 			 * Match buddy type. This ensures that an
826 			 * expand() down the line puts the sub-blocks
827 			 * on the right freelists.
828 			 */
829 			set_pageblock_migratetype(buddy, migratetype);
830 		}
831 
832 		combined_pfn = buddy_pfn & pfn;
833 		page = page + (combined_pfn - pfn);
834 		pfn = combined_pfn;
835 		order++;
836 	}
837 
838 done_merging:
839 	set_buddy_order(page, order);
840 
841 	if (fpi_flags & FPI_TO_TAIL)
842 		to_tail = true;
843 	else if (is_shuffle_order(order))
844 		to_tail = shuffle_pick_tail();
845 	else
846 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
847 
848 	__add_to_free_list(page, zone, order, migratetype, to_tail);
849 
850 	/* Notify page reporting subsystem of freed page */
851 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
852 		page_reporting_notify_free(order);
853 }
854 
855 /*
856  * A bad page could be due to a number of fields. Instead of multiple branches,
857  * try and check multiple fields with one check. The caller must do a detailed
858  * check if necessary.
859  */
860 static inline bool page_expected_state(struct page *page,
861 					unsigned long check_flags)
862 {
863 	if (unlikely(atomic_read(&page->_mapcount) != -1))
864 		return false;
865 
866 	if (unlikely((unsigned long)page->mapping |
867 			page_ref_count(page) |
868 #ifdef CONFIG_MEMCG
869 			page->memcg_data |
870 #endif
871 #ifdef CONFIG_PAGE_POOL
872 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
873 #endif
874 			(page->flags & check_flags)))
875 		return false;
876 
877 	return true;
878 }
879 
880 static const char *page_bad_reason(struct page *page, unsigned long flags)
881 {
882 	const char *bad_reason = NULL;
883 
884 	if (unlikely(atomic_read(&page->_mapcount) != -1))
885 		bad_reason = "nonzero mapcount";
886 	if (unlikely(page->mapping != NULL))
887 		bad_reason = "non-NULL mapping";
888 	if (unlikely(page_ref_count(page) != 0))
889 		bad_reason = "nonzero _refcount";
890 	if (unlikely(page->flags & flags)) {
891 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
892 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
893 		else
894 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
895 	}
896 #ifdef CONFIG_MEMCG
897 	if (unlikely(page->memcg_data))
898 		bad_reason = "page still charged to cgroup";
899 #endif
900 #ifdef CONFIG_PAGE_POOL
901 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
902 		bad_reason = "page_pool leak";
903 #endif
904 	return bad_reason;
905 }
906 
907 static void free_page_is_bad_report(struct page *page)
908 {
909 	bad_page(page,
910 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
911 }
912 
913 static inline bool free_page_is_bad(struct page *page)
914 {
915 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
916 		return false;
917 
918 	/* Something has gone sideways, find it */
919 	free_page_is_bad_report(page);
920 	return true;
921 }
922 
923 static inline bool is_check_pages_enabled(void)
924 {
925 	return static_branch_unlikely(&check_pages_enabled);
926 }
927 
928 static int free_tail_page_prepare(struct page *head_page, struct page *page)
929 {
930 	struct folio *folio = (struct folio *)head_page;
931 	int ret = 1;
932 
933 	/*
934 	 * We rely page->lru.next never has bit 0 set, unless the page
935 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
936 	 */
937 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
938 
939 	if (!is_check_pages_enabled()) {
940 		ret = 0;
941 		goto out;
942 	}
943 	switch (page - head_page) {
944 	case 1:
945 		/* the first tail page: these may be in place of ->mapping */
946 		if (unlikely(folio_entire_mapcount(folio))) {
947 			bad_page(page, "nonzero entire_mapcount");
948 			goto out;
949 		}
950 		if (unlikely(folio_large_mapcount(folio))) {
951 			bad_page(page, "nonzero large_mapcount");
952 			goto out;
953 		}
954 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
955 			bad_page(page, "nonzero nr_pages_mapped");
956 			goto out;
957 		}
958 		if (unlikely(atomic_read(&folio->_pincount))) {
959 			bad_page(page, "nonzero pincount");
960 			goto out;
961 		}
962 		break;
963 	case 2:
964 		/* the second tail page: deferred_list overlaps ->mapping */
965 		if (unlikely(!list_empty(&folio->_deferred_list))) {
966 			bad_page(page, "on deferred list");
967 			goto out;
968 		}
969 		break;
970 	default:
971 		if (page->mapping != TAIL_MAPPING) {
972 			bad_page(page, "corrupted mapping in tail page");
973 			goto out;
974 		}
975 		break;
976 	}
977 	if (unlikely(!PageTail(page))) {
978 		bad_page(page, "PageTail not set");
979 		goto out;
980 	}
981 	if (unlikely(compound_head(page) != head_page)) {
982 		bad_page(page, "compound_head not consistent");
983 		goto out;
984 	}
985 	ret = 0;
986 out:
987 	page->mapping = NULL;
988 	clear_compound_head(page);
989 	return ret;
990 }
991 
992 /*
993  * Skip KASAN memory poisoning when either:
994  *
995  * 1. For generic KASAN: deferred memory initialization has not yet completed.
996  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
997  *    using page tags instead (see below).
998  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
999  *    that error detection is disabled for accesses via the page address.
1000  *
1001  * Pages will have match-all tags in the following circumstances:
1002  *
1003  * 1. Pages are being initialized for the first time, including during deferred
1004  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1005  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1006  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1007  * 3. The allocation was excluded from being checked due to sampling,
1008  *    see the call to kasan_unpoison_pages.
1009  *
1010  * Poisoning pages during deferred memory init will greatly lengthen the
1011  * process and cause problem in large memory systems as the deferred pages
1012  * initialization is done with interrupt disabled.
1013  *
1014  * Assuming that there will be no reference to those newly initialized
1015  * pages before they are ever allocated, this should have no effect on
1016  * KASAN memory tracking as the poison will be properly inserted at page
1017  * allocation time. The only corner case is when pages are allocated by
1018  * on-demand allocation and then freed again before the deferred pages
1019  * initialization is done, but this is not likely to happen.
1020  */
1021 static inline bool should_skip_kasan_poison(struct page *page)
1022 {
1023 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1024 		return deferred_pages_enabled();
1025 
1026 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1027 }
1028 
1029 static void kernel_init_pages(struct page *page, int numpages)
1030 {
1031 	int i;
1032 
1033 	/* s390's use of memset() could override KASAN redzones. */
1034 	kasan_disable_current();
1035 	for (i = 0; i < numpages; i++)
1036 		clear_highpage_kasan_tagged(page + i);
1037 	kasan_enable_current();
1038 }
1039 
1040 __always_inline bool free_pages_prepare(struct page *page,
1041 			unsigned int order)
1042 {
1043 	int bad = 0;
1044 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1045 	bool init = want_init_on_free();
1046 	bool compound = PageCompound(page);
1047 
1048 	VM_BUG_ON_PAGE(PageTail(page), page);
1049 
1050 	trace_mm_page_free(page, order);
1051 	kmsan_free_page(page, order);
1052 
1053 	if (memcg_kmem_online() && PageMemcgKmem(page))
1054 		__memcg_kmem_uncharge_page(page, order);
1055 
1056 	if (unlikely(PageHWPoison(page)) && !order) {
1057 		/* Do not let hwpoison pages hit pcplists/buddy */
1058 		reset_page_owner(page, order);
1059 		page_table_check_free(page, order);
1060 		pgalloc_tag_sub(page, 1 << order);
1061 		return false;
1062 	}
1063 
1064 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1065 
1066 	/*
1067 	 * Check tail pages before head page information is cleared to
1068 	 * avoid checking PageCompound for order-0 pages.
1069 	 */
1070 	if (unlikely(order)) {
1071 		int i;
1072 
1073 		if (compound)
1074 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1075 		for (i = 1; i < (1 << order); i++) {
1076 			if (compound)
1077 				bad += free_tail_page_prepare(page, page + i);
1078 			if (is_check_pages_enabled()) {
1079 				if (free_page_is_bad(page + i)) {
1080 					bad++;
1081 					continue;
1082 				}
1083 			}
1084 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1085 		}
1086 	}
1087 	if (PageMappingFlags(page))
1088 		page->mapping = NULL;
1089 	if (is_check_pages_enabled()) {
1090 		if (free_page_is_bad(page))
1091 			bad++;
1092 		if (bad)
1093 			return false;
1094 	}
1095 
1096 	page_cpupid_reset_last(page);
1097 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1098 	reset_page_owner(page, order);
1099 	page_table_check_free(page, order);
1100 	pgalloc_tag_sub(page, 1 << order);
1101 
1102 	if (!PageHighMem(page)) {
1103 		debug_check_no_locks_freed(page_address(page),
1104 					   PAGE_SIZE << order);
1105 		debug_check_no_obj_freed(page_address(page),
1106 					   PAGE_SIZE << order);
1107 	}
1108 
1109 	kernel_poison_pages(page, 1 << order);
1110 
1111 	/*
1112 	 * As memory initialization might be integrated into KASAN,
1113 	 * KASAN poisoning and memory initialization code must be
1114 	 * kept together to avoid discrepancies in behavior.
1115 	 *
1116 	 * With hardware tag-based KASAN, memory tags must be set before the
1117 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1118 	 */
1119 	if (!skip_kasan_poison) {
1120 		kasan_poison_pages(page, order, init);
1121 
1122 		/* Memory is already initialized if KASAN did it internally. */
1123 		if (kasan_has_integrated_init())
1124 			init = false;
1125 	}
1126 	if (init)
1127 		kernel_init_pages(page, 1 << order);
1128 
1129 	/*
1130 	 * arch_free_page() can make the page's contents inaccessible.  s390
1131 	 * does this.  So nothing which can access the page's contents should
1132 	 * happen after this.
1133 	 */
1134 	arch_free_page(page, order);
1135 
1136 	debug_pagealloc_unmap_pages(page, 1 << order);
1137 
1138 	return true;
1139 }
1140 
1141 /*
1142  * Frees a number of pages from the PCP lists
1143  * Assumes all pages on list are in same zone.
1144  * count is the number of pages to free.
1145  */
1146 static void free_pcppages_bulk(struct zone *zone, int count,
1147 					struct per_cpu_pages *pcp,
1148 					int pindex)
1149 {
1150 	unsigned long flags;
1151 	unsigned int order;
1152 	struct page *page;
1153 
1154 	/*
1155 	 * Ensure proper count is passed which otherwise would stuck in the
1156 	 * below while (list_empty(list)) loop.
1157 	 */
1158 	count = min(pcp->count, count);
1159 
1160 	/* Ensure requested pindex is drained first. */
1161 	pindex = pindex - 1;
1162 
1163 	spin_lock_irqsave(&zone->lock, flags);
1164 
1165 	while (count > 0) {
1166 		struct list_head *list;
1167 		int nr_pages;
1168 
1169 		/* Remove pages from lists in a round-robin fashion. */
1170 		do {
1171 			if (++pindex > NR_PCP_LISTS - 1)
1172 				pindex = 0;
1173 			list = &pcp->lists[pindex];
1174 		} while (list_empty(list));
1175 
1176 		order = pindex_to_order(pindex);
1177 		nr_pages = 1 << order;
1178 		do {
1179 			unsigned long pfn;
1180 			int mt;
1181 
1182 			page = list_last_entry(list, struct page, pcp_list);
1183 			pfn = page_to_pfn(page);
1184 			mt = get_pfnblock_migratetype(page, pfn);
1185 
1186 			/* must delete to avoid corrupting pcp list */
1187 			list_del(&page->pcp_list);
1188 			count -= nr_pages;
1189 			pcp->count -= nr_pages;
1190 
1191 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1192 			trace_mm_page_pcpu_drain(page, order, mt);
1193 		} while (count > 0 && !list_empty(list));
1194 	}
1195 
1196 	spin_unlock_irqrestore(&zone->lock, flags);
1197 }
1198 
1199 static void free_one_page(struct zone *zone, struct page *page,
1200 			  unsigned long pfn, unsigned int order,
1201 			  fpi_t fpi_flags)
1202 {
1203 	unsigned long flags;
1204 	int migratetype;
1205 
1206 	spin_lock_irqsave(&zone->lock, flags);
1207 	migratetype = get_pfnblock_migratetype(page, pfn);
1208 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1209 	spin_unlock_irqrestore(&zone->lock, flags);
1210 }
1211 
1212 static void __free_pages_ok(struct page *page, unsigned int order,
1213 			    fpi_t fpi_flags)
1214 {
1215 	unsigned long pfn = page_to_pfn(page);
1216 	struct zone *zone = page_zone(page);
1217 
1218 	if (!free_pages_prepare(page, order))
1219 		return;
1220 
1221 	free_one_page(zone, page, pfn, order, fpi_flags);
1222 
1223 	__count_vm_events(PGFREE, 1 << order);
1224 }
1225 
1226 void __meminit __free_pages_core(struct page *page, unsigned int order,
1227 		enum meminit_context context)
1228 {
1229 	unsigned int nr_pages = 1 << order;
1230 	struct page *p = page;
1231 	unsigned int loop;
1232 
1233 	/*
1234 	 * When initializing the memmap, __init_single_page() sets the refcount
1235 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1236 	 * refcount of all involved pages to 0.
1237 	 *
1238 	 * Note that hotplugged memory pages are initialized to PageOffline().
1239 	 * Pages freed from memblock might be marked as reserved.
1240 	 */
1241 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1242 	    unlikely(context == MEMINIT_HOTPLUG)) {
1243 		for (loop = 0; loop < nr_pages; loop++, p++) {
1244 			VM_WARN_ON_ONCE(PageReserved(p));
1245 			__ClearPageOffline(p);
1246 			set_page_count(p, 0);
1247 		}
1248 
1249 		/*
1250 		 * Freeing the page with debug_pagealloc enabled will try to
1251 		 * unmap it; some archs don't like double-unmappings, so
1252 		 * map it first.
1253 		 */
1254 		debug_pagealloc_map_pages(page, nr_pages);
1255 		adjust_managed_page_count(page, nr_pages);
1256 	} else {
1257 		for (loop = 0; loop < nr_pages; loop++, p++) {
1258 			__ClearPageReserved(p);
1259 			set_page_count(p, 0);
1260 		}
1261 
1262 		/* memblock adjusts totalram_pages() manually. */
1263 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1264 	}
1265 
1266 	if (page_contains_unaccepted(page, order)) {
1267 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1268 			return;
1269 
1270 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1271 	}
1272 
1273 	/*
1274 	 * Bypass PCP and place fresh pages right to the tail, primarily
1275 	 * relevant for memory onlining.
1276 	 */
1277 	__free_pages_ok(page, order, FPI_TO_TAIL);
1278 }
1279 
1280 /*
1281  * Check that the whole (or subset of) a pageblock given by the interval of
1282  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1283  * with the migration of free compaction scanner.
1284  *
1285  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1286  *
1287  * It's possible on some configurations to have a setup like node0 node1 node0
1288  * i.e. it's possible that all pages within a zones range of pages do not
1289  * belong to a single zone. We assume that a border between node0 and node1
1290  * can occur within a single pageblock, but not a node0 node1 node0
1291  * interleaving within a single pageblock. It is therefore sufficient to check
1292  * the first and last page of a pageblock and avoid checking each individual
1293  * page in a pageblock.
1294  *
1295  * Note: the function may return non-NULL struct page even for a page block
1296  * which contains a memory hole (i.e. there is no physical memory for a subset
1297  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1298  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1299  * even though the start pfn is online and valid. This should be safe most of
1300  * the time because struct pages are still initialized via init_unavailable_range()
1301  * and pfn walkers shouldn't touch any physical memory range for which they do
1302  * not recognize any specific metadata in struct pages.
1303  */
1304 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1305 				     unsigned long end_pfn, struct zone *zone)
1306 {
1307 	struct page *start_page;
1308 	struct page *end_page;
1309 
1310 	/* end_pfn is one past the range we are checking */
1311 	end_pfn--;
1312 
1313 	if (!pfn_valid(end_pfn))
1314 		return NULL;
1315 
1316 	start_page = pfn_to_online_page(start_pfn);
1317 	if (!start_page)
1318 		return NULL;
1319 
1320 	if (page_zone(start_page) != zone)
1321 		return NULL;
1322 
1323 	end_page = pfn_to_page(end_pfn);
1324 
1325 	/* This gives a shorter code than deriving page_zone(end_page) */
1326 	if (page_zone_id(start_page) != page_zone_id(end_page))
1327 		return NULL;
1328 
1329 	return start_page;
1330 }
1331 
1332 /*
1333  * The order of subdivision here is critical for the IO subsystem.
1334  * Please do not alter this order without good reasons and regression
1335  * testing. Specifically, as large blocks of memory are subdivided,
1336  * the order in which smaller blocks are delivered depends on the order
1337  * they're subdivided in this function. This is the primary factor
1338  * influencing the order in which pages are delivered to the IO
1339  * subsystem according to empirical testing, and this is also justified
1340  * by considering the behavior of a buddy system containing a single
1341  * large block of memory acted on by a series of small allocations.
1342  * This behavior is a critical factor in sglist merging's success.
1343  *
1344  * -- nyc
1345  */
1346 static inline void expand(struct zone *zone, struct page *page,
1347 	int low, int high, int migratetype)
1348 {
1349 	unsigned long size = 1 << high;
1350 	unsigned long nr_added = 0;
1351 
1352 	while (high > low) {
1353 		high--;
1354 		size >>= 1;
1355 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1356 
1357 		/*
1358 		 * Mark as guard pages (or page), that will allow to
1359 		 * merge back to allocator when buddy will be freed.
1360 		 * Corresponding page table entries will not be touched,
1361 		 * pages will stay not present in virtual address space
1362 		 */
1363 		if (set_page_guard(zone, &page[size], high))
1364 			continue;
1365 
1366 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1367 		set_buddy_order(&page[size], high);
1368 		nr_added += size;
1369 	}
1370 	account_freepages(zone, nr_added, migratetype);
1371 }
1372 
1373 static void check_new_page_bad(struct page *page)
1374 {
1375 	if (unlikely(page->flags & __PG_HWPOISON)) {
1376 		/* Don't complain about hwpoisoned pages */
1377 		if (PageBuddy(page))
1378 			__ClearPageBuddy(page);
1379 		return;
1380 	}
1381 
1382 	bad_page(page,
1383 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1384 }
1385 
1386 /*
1387  * This page is about to be returned from the page allocator
1388  */
1389 static bool check_new_page(struct page *page)
1390 {
1391 	if (likely(page_expected_state(page,
1392 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1393 		return false;
1394 
1395 	check_new_page_bad(page);
1396 	return true;
1397 }
1398 
1399 static inline bool check_new_pages(struct page *page, unsigned int order)
1400 {
1401 	if (is_check_pages_enabled()) {
1402 		for (int i = 0; i < (1 << order); i++) {
1403 			struct page *p = page + i;
1404 
1405 			if (check_new_page(p))
1406 				return true;
1407 		}
1408 	}
1409 
1410 	return false;
1411 }
1412 
1413 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1414 {
1415 	/* Don't skip if a software KASAN mode is enabled. */
1416 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1417 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1418 		return false;
1419 
1420 	/* Skip, if hardware tag-based KASAN is not enabled. */
1421 	if (!kasan_hw_tags_enabled())
1422 		return true;
1423 
1424 	/*
1425 	 * With hardware tag-based KASAN enabled, skip if this has been
1426 	 * requested via __GFP_SKIP_KASAN.
1427 	 */
1428 	return flags & __GFP_SKIP_KASAN;
1429 }
1430 
1431 static inline bool should_skip_init(gfp_t flags)
1432 {
1433 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1434 	if (!kasan_hw_tags_enabled())
1435 		return false;
1436 
1437 	/* For hardware tag-based KASAN, skip if requested. */
1438 	return (flags & __GFP_SKIP_ZERO);
1439 }
1440 
1441 inline void post_alloc_hook(struct page *page, unsigned int order,
1442 				gfp_t gfp_flags)
1443 {
1444 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1445 			!should_skip_init(gfp_flags);
1446 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1447 	int i;
1448 
1449 	set_page_private(page, 0);
1450 	set_page_refcounted(page);
1451 
1452 	arch_alloc_page(page, order);
1453 	debug_pagealloc_map_pages(page, 1 << order);
1454 
1455 	/*
1456 	 * Page unpoisoning must happen before memory initialization.
1457 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1458 	 * allocations and the page unpoisoning code will complain.
1459 	 */
1460 	kernel_unpoison_pages(page, 1 << order);
1461 
1462 	/*
1463 	 * As memory initialization might be integrated into KASAN,
1464 	 * KASAN unpoisoning and memory initializion code must be
1465 	 * kept together to avoid discrepancies in behavior.
1466 	 */
1467 
1468 	/*
1469 	 * If memory tags should be zeroed
1470 	 * (which happens only when memory should be initialized as well).
1471 	 */
1472 	if (zero_tags) {
1473 		/* Initialize both memory and memory tags. */
1474 		for (i = 0; i != 1 << order; ++i)
1475 			tag_clear_highpage(page + i);
1476 
1477 		/* Take note that memory was initialized by the loop above. */
1478 		init = false;
1479 	}
1480 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1481 	    kasan_unpoison_pages(page, order, init)) {
1482 		/* Take note that memory was initialized by KASAN. */
1483 		if (kasan_has_integrated_init())
1484 			init = false;
1485 	} else {
1486 		/*
1487 		 * If memory tags have not been set by KASAN, reset the page
1488 		 * tags to ensure page_address() dereferencing does not fault.
1489 		 */
1490 		for (i = 0; i != 1 << order; ++i)
1491 			page_kasan_tag_reset(page + i);
1492 	}
1493 	/* If memory is still not initialized, initialize it now. */
1494 	if (init)
1495 		kernel_init_pages(page, 1 << order);
1496 
1497 	set_page_owner(page, order, gfp_flags);
1498 	page_table_check_alloc(page, order);
1499 	pgalloc_tag_add(page, current, 1 << order);
1500 }
1501 
1502 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1503 							unsigned int alloc_flags)
1504 {
1505 	post_alloc_hook(page, order, gfp_flags);
1506 
1507 	if (order && (gfp_flags & __GFP_COMP))
1508 		prep_compound_page(page, order);
1509 
1510 	/*
1511 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1512 	 * allocate the page. The expectation is that the caller is taking
1513 	 * steps that will free more memory. The caller should avoid the page
1514 	 * being used for !PFMEMALLOC purposes.
1515 	 */
1516 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1517 		set_page_pfmemalloc(page);
1518 	else
1519 		clear_page_pfmemalloc(page);
1520 }
1521 
1522 /*
1523  * Go through the free lists for the given migratetype and remove
1524  * the smallest available page from the freelists
1525  */
1526 static __always_inline
1527 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1528 						int migratetype)
1529 {
1530 	unsigned int current_order;
1531 	struct free_area *area;
1532 	struct page *page;
1533 
1534 	/* Find a page of the appropriate size in the preferred list */
1535 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1536 		area = &(zone->free_area[current_order]);
1537 		page = get_page_from_free_area(area, migratetype);
1538 		if (!page)
1539 			continue;
1540 		del_page_from_free_list(page, zone, current_order, migratetype);
1541 		expand(zone, page, order, current_order, migratetype);
1542 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1543 				pcp_allowed_order(order) &&
1544 				migratetype < MIGRATE_PCPTYPES);
1545 		return page;
1546 	}
1547 
1548 	return NULL;
1549 }
1550 
1551 
1552 /*
1553  * This array describes the order lists are fallen back to when
1554  * the free lists for the desirable migrate type are depleted
1555  *
1556  * The other migratetypes do not have fallbacks.
1557  */
1558 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1559 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1560 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1561 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1562 };
1563 
1564 #ifdef CONFIG_CMA
1565 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1566 					unsigned int order)
1567 {
1568 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1569 }
1570 #else
1571 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1572 					unsigned int order) { return NULL; }
1573 #endif
1574 
1575 /*
1576  * Change the type of a block and move all its free pages to that
1577  * type's freelist.
1578  */
1579 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1580 				  int old_mt, int new_mt)
1581 {
1582 	struct page *page;
1583 	unsigned long pfn, end_pfn;
1584 	unsigned int order;
1585 	int pages_moved = 0;
1586 
1587 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1588 	end_pfn = pageblock_end_pfn(start_pfn);
1589 
1590 	for (pfn = start_pfn; pfn < end_pfn;) {
1591 		page = pfn_to_page(pfn);
1592 		if (!PageBuddy(page)) {
1593 			pfn++;
1594 			continue;
1595 		}
1596 
1597 		/* Make sure we are not inadvertently changing nodes */
1598 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1599 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1600 
1601 		order = buddy_order(page);
1602 
1603 		move_to_free_list(page, zone, order, old_mt, new_mt);
1604 
1605 		pfn += 1 << order;
1606 		pages_moved += 1 << order;
1607 	}
1608 
1609 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1610 
1611 	return pages_moved;
1612 }
1613 
1614 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1615 				      unsigned long *start_pfn,
1616 				      int *num_free, int *num_movable)
1617 {
1618 	unsigned long pfn, start, end;
1619 
1620 	pfn = page_to_pfn(page);
1621 	start = pageblock_start_pfn(pfn);
1622 	end = pageblock_end_pfn(pfn);
1623 
1624 	/*
1625 	 * The caller only has the lock for @zone, don't touch ranges
1626 	 * that straddle into other zones. While we could move part of
1627 	 * the range that's inside the zone, this call is usually
1628 	 * accompanied by other operations such as migratetype updates
1629 	 * which also should be locked.
1630 	 */
1631 	if (!zone_spans_pfn(zone, start))
1632 		return false;
1633 	if (!zone_spans_pfn(zone, end - 1))
1634 		return false;
1635 
1636 	*start_pfn = start;
1637 
1638 	if (num_free) {
1639 		*num_free = 0;
1640 		*num_movable = 0;
1641 		for (pfn = start; pfn < end;) {
1642 			page = pfn_to_page(pfn);
1643 			if (PageBuddy(page)) {
1644 				int nr = 1 << buddy_order(page);
1645 
1646 				*num_free += nr;
1647 				pfn += nr;
1648 				continue;
1649 			}
1650 			/*
1651 			 * We assume that pages that could be isolated for
1652 			 * migration are movable. But we don't actually try
1653 			 * isolating, as that would be expensive.
1654 			 */
1655 			if (PageLRU(page) || __PageMovable(page))
1656 				(*num_movable)++;
1657 			pfn++;
1658 		}
1659 	}
1660 
1661 	return true;
1662 }
1663 
1664 static int move_freepages_block(struct zone *zone, struct page *page,
1665 				int old_mt, int new_mt)
1666 {
1667 	unsigned long start_pfn;
1668 
1669 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1670 		return -1;
1671 
1672 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1673 }
1674 
1675 #ifdef CONFIG_MEMORY_ISOLATION
1676 /* Look for a buddy that straddles start_pfn */
1677 static unsigned long find_large_buddy(unsigned long start_pfn)
1678 {
1679 	int order = 0;
1680 	struct page *page;
1681 	unsigned long pfn = start_pfn;
1682 
1683 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1684 		/* Nothing found */
1685 		if (++order > MAX_PAGE_ORDER)
1686 			return start_pfn;
1687 		pfn &= ~0UL << order;
1688 	}
1689 
1690 	/*
1691 	 * Found a preceding buddy, but does it straddle?
1692 	 */
1693 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1694 		return pfn;
1695 
1696 	/* Nothing found */
1697 	return start_pfn;
1698 }
1699 
1700 /* Split a multi-block free page into its individual pageblocks */
1701 static void split_large_buddy(struct zone *zone, struct page *page,
1702 			      unsigned long pfn, int order)
1703 {
1704 	unsigned long end_pfn = pfn + (1 << order);
1705 
1706 	VM_WARN_ON_ONCE(order <= pageblock_order);
1707 	VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1));
1708 
1709 	/* Caller removed page from freelist, buddy info cleared! */
1710 	VM_WARN_ON_ONCE(PageBuddy(page));
1711 
1712 	while (pfn != end_pfn) {
1713 		int mt = get_pfnblock_migratetype(page, pfn);
1714 
1715 		__free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE);
1716 		pfn += pageblock_nr_pages;
1717 		page = pfn_to_page(pfn);
1718 	}
1719 }
1720 
1721 /**
1722  * move_freepages_block_isolate - move free pages in block for page isolation
1723  * @zone: the zone
1724  * @page: the pageblock page
1725  * @migratetype: migratetype to set on the pageblock
1726  *
1727  * This is similar to move_freepages_block(), but handles the special
1728  * case encountered in page isolation, where the block of interest
1729  * might be part of a larger buddy spanning multiple pageblocks.
1730  *
1731  * Unlike the regular page allocator path, which moves pages while
1732  * stealing buddies off the freelist, page isolation is interested in
1733  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1734  *
1735  * This function handles that. Straddling buddies are split into
1736  * individual pageblocks. Only the block of interest is moved.
1737  *
1738  * Returns %true if pages could be moved, %false otherwise.
1739  */
1740 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1741 				  int migratetype)
1742 {
1743 	unsigned long start_pfn, pfn;
1744 
1745 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1746 		return false;
1747 
1748 	/* No splits needed if buddies can't span multiple blocks */
1749 	if (pageblock_order == MAX_PAGE_ORDER)
1750 		goto move;
1751 
1752 	/* We're a tail block in a larger buddy */
1753 	pfn = find_large_buddy(start_pfn);
1754 	if (pfn != start_pfn) {
1755 		struct page *buddy = pfn_to_page(pfn);
1756 		int order = buddy_order(buddy);
1757 
1758 		del_page_from_free_list(buddy, zone, order,
1759 					get_pfnblock_migratetype(buddy, pfn));
1760 		set_pageblock_migratetype(page, migratetype);
1761 		split_large_buddy(zone, buddy, pfn, order);
1762 		return true;
1763 	}
1764 
1765 	/* We're the starting block of a larger buddy */
1766 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1767 		int order = buddy_order(page);
1768 
1769 		del_page_from_free_list(page, zone, order,
1770 					get_pfnblock_migratetype(page, pfn));
1771 		set_pageblock_migratetype(page, migratetype);
1772 		split_large_buddy(zone, page, pfn, order);
1773 		return true;
1774 	}
1775 move:
1776 	__move_freepages_block(zone, start_pfn,
1777 			       get_pfnblock_migratetype(page, start_pfn),
1778 			       migratetype);
1779 	return true;
1780 }
1781 #endif /* CONFIG_MEMORY_ISOLATION */
1782 
1783 static void change_pageblock_range(struct page *pageblock_page,
1784 					int start_order, int migratetype)
1785 {
1786 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1787 
1788 	while (nr_pageblocks--) {
1789 		set_pageblock_migratetype(pageblock_page, migratetype);
1790 		pageblock_page += pageblock_nr_pages;
1791 	}
1792 }
1793 
1794 /*
1795  * When we are falling back to another migratetype during allocation, try to
1796  * steal extra free pages from the same pageblocks to satisfy further
1797  * allocations, instead of polluting multiple pageblocks.
1798  *
1799  * If we are stealing a relatively large buddy page, it is likely there will
1800  * be more free pages in the pageblock, so try to steal them all. For
1801  * reclaimable and unmovable allocations, we steal regardless of page size,
1802  * as fragmentation caused by those allocations polluting movable pageblocks
1803  * is worse than movable allocations stealing from unmovable and reclaimable
1804  * pageblocks.
1805  */
1806 static bool can_steal_fallback(unsigned int order, int start_mt)
1807 {
1808 	/*
1809 	 * Leaving this order check is intended, although there is
1810 	 * relaxed order check in next check. The reason is that
1811 	 * we can actually steal whole pageblock if this condition met,
1812 	 * but, below check doesn't guarantee it and that is just heuristic
1813 	 * so could be changed anytime.
1814 	 */
1815 	if (order >= pageblock_order)
1816 		return true;
1817 
1818 	if (order >= pageblock_order / 2 ||
1819 		start_mt == MIGRATE_RECLAIMABLE ||
1820 		start_mt == MIGRATE_UNMOVABLE ||
1821 		page_group_by_mobility_disabled)
1822 		return true;
1823 
1824 	return false;
1825 }
1826 
1827 static inline bool boost_watermark(struct zone *zone)
1828 {
1829 	unsigned long max_boost;
1830 
1831 	if (!watermark_boost_factor)
1832 		return false;
1833 	/*
1834 	 * Don't bother in zones that are unlikely to produce results.
1835 	 * On small machines, including kdump capture kernels running
1836 	 * in a small area, boosting the watermark can cause an out of
1837 	 * memory situation immediately.
1838 	 */
1839 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1840 		return false;
1841 
1842 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1843 			watermark_boost_factor, 10000);
1844 
1845 	/*
1846 	 * high watermark may be uninitialised if fragmentation occurs
1847 	 * very early in boot so do not boost. We do not fall
1848 	 * through and boost by pageblock_nr_pages as failing
1849 	 * allocations that early means that reclaim is not going
1850 	 * to help and it may even be impossible to reclaim the
1851 	 * boosted watermark resulting in a hang.
1852 	 */
1853 	if (!max_boost)
1854 		return false;
1855 
1856 	max_boost = max(pageblock_nr_pages, max_boost);
1857 
1858 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1859 		max_boost);
1860 
1861 	return true;
1862 }
1863 
1864 /*
1865  * This function implements actual steal behaviour. If order is large enough, we
1866  * can claim the whole pageblock for the requested migratetype. If not, we check
1867  * the pageblock for constituent pages; if at least half of the pages are free
1868  * or compatible, we can still claim the whole block, so pages freed in the
1869  * future will be put on the correct free list. Otherwise, we isolate exactly
1870  * the order we need from the fallback block and leave its migratetype alone.
1871  */
1872 static struct page *
1873 steal_suitable_fallback(struct zone *zone, struct page *page,
1874 			int current_order, int order, int start_type,
1875 			unsigned int alloc_flags, bool whole_block)
1876 {
1877 	int free_pages, movable_pages, alike_pages;
1878 	unsigned long start_pfn;
1879 	int block_type;
1880 
1881 	block_type = get_pageblock_migratetype(page);
1882 
1883 	/*
1884 	 * This can happen due to races and we want to prevent broken
1885 	 * highatomic accounting.
1886 	 */
1887 	if (is_migrate_highatomic(block_type))
1888 		goto single_page;
1889 
1890 	/* Take ownership for orders >= pageblock_order */
1891 	if (current_order >= pageblock_order) {
1892 		del_page_from_free_list(page, zone, current_order, block_type);
1893 		change_pageblock_range(page, current_order, start_type);
1894 		expand(zone, page, order, current_order, start_type);
1895 		return page;
1896 	}
1897 
1898 	/*
1899 	 * Boost watermarks to increase reclaim pressure to reduce the
1900 	 * likelihood of future fallbacks. Wake kswapd now as the node
1901 	 * may be balanced overall and kswapd will not wake naturally.
1902 	 */
1903 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1904 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1905 
1906 	/* We are not allowed to try stealing from the whole block */
1907 	if (!whole_block)
1908 		goto single_page;
1909 
1910 	/* moving whole block can fail due to zone boundary conditions */
1911 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1912 				       &movable_pages))
1913 		goto single_page;
1914 
1915 	/*
1916 	 * Determine how many pages are compatible with our allocation.
1917 	 * For movable allocation, it's the number of movable pages which
1918 	 * we just obtained. For other types it's a bit more tricky.
1919 	 */
1920 	if (start_type == MIGRATE_MOVABLE) {
1921 		alike_pages = movable_pages;
1922 	} else {
1923 		/*
1924 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1925 		 * to MOVABLE pageblock, consider all non-movable pages as
1926 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1927 		 * vice versa, be conservative since we can't distinguish the
1928 		 * exact migratetype of non-movable pages.
1929 		 */
1930 		if (block_type == MIGRATE_MOVABLE)
1931 			alike_pages = pageblock_nr_pages
1932 						- (free_pages + movable_pages);
1933 		else
1934 			alike_pages = 0;
1935 	}
1936 	/*
1937 	 * If a sufficient number of pages in the block are either free or of
1938 	 * compatible migratability as our allocation, claim the whole block.
1939 	 */
1940 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1941 			page_group_by_mobility_disabled) {
1942 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1943 		return __rmqueue_smallest(zone, order, start_type);
1944 	}
1945 
1946 single_page:
1947 	del_page_from_free_list(page, zone, current_order, block_type);
1948 	expand(zone, page, order, current_order, block_type);
1949 	return page;
1950 }
1951 
1952 /*
1953  * Check whether there is a suitable fallback freepage with requested order.
1954  * If only_stealable is true, this function returns fallback_mt only if
1955  * we can steal other freepages all together. This would help to reduce
1956  * fragmentation due to mixed migratetype pages in one pageblock.
1957  */
1958 int find_suitable_fallback(struct free_area *area, unsigned int order,
1959 			int migratetype, bool only_stealable, bool *can_steal)
1960 {
1961 	int i;
1962 	int fallback_mt;
1963 
1964 	if (area->nr_free == 0)
1965 		return -1;
1966 
1967 	*can_steal = false;
1968 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1969 		fallback_mt = fallbacks[migratetype][i];
1970 		if (free_area_empty(area, fallback_mt))
1971 			continue;
1972 
1973 		if (can_steal_fallback(order, migratetype))
1974 			*can_steal = true;
1975 
1976 		if (!only_stealable)
1977 			return fallback_mt;
1978 
1979 		if (*can_steal)
1980 			return fallback_mt;
1981 	}
1982 
1983 	return -1;
1984 }
1985 
1986 /*
1987  * Reserve the pageblock(s) surrounding an allocation request for
1988  * exclusive use of high-order atomic allocations if there are no
1989  * empty page blocks that contain a page with a suitable order
1990  */
1991 static void reserve_highatomic_pageblock(struct page *page, int order,
1992 					 struct zone *zone)
1993 {
1994 	int mt;
1995 	unsigned long max_managed, flags;
1996 
1997 	/*
1998 	 * The number reserved as: minimum is 1 pageblock, maximum is
1999 	 * roughly 1% of a zone. But if 1% of a zone falls below a
2000 	 * pageblock size, then don't reserve any pageblocks.
2001 	 * Check is race-prone but harmless.
2002 	 */
2003 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2004 		return;
2005 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2006 	if (zone->nr_reserved_highatomic >= max_managed)
2007 		return;
2008 
2009 	spin_lock_irqsave(&zone->lock, flags);
2010 
2011 	/* Recheck the nr_reserved_highatomic limit under the lock */
2012 	if (zone->nr_reserved_highatomic >= max_managed)
2013 		goto out_unlock;
2014 
2015 	/* Yoink! */
2016 	mt = get_pageblock_migratetype(page);
2017 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2018 	if (!migratetype_is_mergeable(mt))
2019 		goto out_unlock;
2020 
2021 	if (order < pageblock_order) {
2022 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2023 			goto out_unlock;
2024 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2025 	} else {
2026 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2027 		zone->nr_reserved_highatomic += 1 << order;
2028 	}
2029 
2030 out_unlock:
2031 	spin_unlock_irqrestore(&zone->lock, flags);
2032 }
2033 
2034 /*
2035  * Used when an allocation is about to fail under memory pressure. This
2036  * potentially hurts the reliability of high-order allocations when under
2037  * intense memory pressure but failed atomic allocations should be easier
2038  * to recover from than an OOM.
2039  *
2040  * If @force is true, try to unreserve pageblocks even though highatomic
2041  * pageblock is exhausted.
2042  */
2043 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2044 						bool force)
2045 {
2046 	struct zonelist *zonelist = ac->zonelist;
2047 	unsigned long flags;
2048 	struct zoneref *z;
2049 	struct zone *zone;
2050 	struct page *page;
2051 	int order;
2052 	int ret;
2053 
2054 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2055 								ac->nodemask) {
2056 		/*
2057 		 * Preserve at least one pageblock unless memory pressure
2058 		 * is really high.
2059 		 */
2060 		if (!force && zone->nr_reserved_highatomic <=
2061 					pageblock_nr_pages)
2062 			continue;
2063 
2064 		spin_lock_irqsave(&zone->lock, flags);
2065 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2066 			struct free_area *area = &(zone->free_area[order]);
2067 			int mt;
2068 
2069 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2070 			if (!page)
2071 				continue;
2072 
2073 			mt = get_pageblock_migratetype(page);
2074 			/*
2075 			 * In page freeing path, migratetype change is racy so
2076 			 * we can counter several free pages in a pageblock
2077 			 * in this loop although we changed the pageblock type
2078 			 * from highatomic to ac->migratetype. So we should
2079 			 * adjust the count once.
2080 			 */
2081 			if (is_migrate_highatomic(mt)) {
2082 				unsigned long size;
2083 				/*
2084 				 * It should never happen but changes to
2085 				 * locking could inadvertently allow a per-cpu
2086 				 * drain to add pages to MIGRATE_HIGHATOMIC
2087 				 * while unreserving so be safe and watch for
2088 				 * underflows.
2089 				 */
2090 				size = max(pageblock_nr_pages, 1UL << order);
2091 				size = min(size, zone->nr_reserved_highatomic);
2092 				zone->nr_reserved_highatomic -= size;
2093 			}
2094 
2095 			/*
2096 			 * Convert to ac->migratetype and avoid the normal
2097 			 * pageblock stealing heuristics. Minimally, the caller
2098 			 * is doing the work and needs the pages. More
2099 			 * importantly, if the block was always converted to
2100 			 * MIGRATE_UNMOVABLE or another type then the number
2101 			 * of pageblocks that cannot be completely freed
2102 			 * may increase.
2103 			 */
2104 			if (order < pageblock_order)
2105 				ret = move_freepages_block(zone, page, mt,
2106 							   ac->migratetype);
2107 			else {
2108 				move_to_free_list(page, zone, order, mt,
2109 						  ac->migratetype);
2110 				change_pageblock_range(page, order,
2111 						       ac->migratetype);
2112 				ret = 1;
2113 			}
2114 			/*
2115 			 * Reserving the block(s) already succeeded,
2116 			 * so this should not fail on zone boundaries.
2117 			 */
2118 			WARN_ON_ONCE(ret == -1);
2119 			if (ret > 0) {
2120 				spin_unlock_irqrestore(&zone->lock, flags);
2121 				return ret;
2122 			}
2123 		}
2124 		spin_unlock_irqrestore(&zone->lock, flags);
2125 	}
2126 
2127 	return false;
2128 }
2129 
2130 /*
2131  * Try finding a free buddy page on the fallback list and put it on the free
2132  * list of requested migratetype, possibly along with other pages from the same
2133  * block, depending on fragmentation avoidance heuristics. Returns true if
2134  * fallback was found so that __rmqueue_smallest() can grab it.
2135  *
2136  * The use of signed ints for order and current_order is a deliberate
2137  * deviation from the rest of this file, to make the for loop
2138  * condition simpler.
2139  */
2140 static __always_inline struct page *
2141 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2142 						unsigned int alloc_flags)
2143 {
2144 	struct free_area *area;
2145 	int current_order;
2146 	int min_order = order;
2147 	struct page *page;
2148 	int fallback_mt;
2149 	bool can_steal;
2150 
2151 	/*
2152 	 * Do not steal pages from freelists belonging to other pageblocks
2153 	 * i.e. orders < pageblock_order. If there are no local zones free,
2154 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2155 	 */
2156 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2157 		min_order = pageblock_order;
2158 
2159 	/*
2160 	 * Find the largest available free page in the other list. This roughly
2161 	 * approximates finding the pageblock with the most free pages, which
2162 	 * would be too costly to do exactly.
2163 	 */
2164 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2165 				--current_order) {
2166 		area = &(zone->free_area[current_order]);
2167 		fallback_mt = find_suitable_fallback(area, current_order,
2168 				start_migratetype, false, &can_steal);
2169 		if (fallback_mt == -1)
2170 			continue;
2171 
2172 		/*
2173 		 * We cannot steal all free pages from the pageblock and the
2174 		 * requested migratetype is movable. In that case it's better to
2175 		 * steal and split the smallest available page instead of the
2176 		 * largest available page, because even if the next movable
2177 		 * allocation falls back into a different pageblock than this
2178 		 * one, it won't cause permanent fragmentation.
2179 		 */
2180 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2181 					&& current_order > order)
2182 			goto find_smallest;
2183 
2184 		goto do_steal;
2185 	}
2186 
2187 	return NULL;
2188 
2189 find_smallest:
2190 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2191 		area = &(zone->free_area[current_order]);
2192 		fallback_mt = find_suitable_fallback(area, current_order,
2193 				start_migratetype, false, &can_steal);
2194 		if (fallback_mt != -1)
2195 			break;
2196 	}
2197 
2198 	/*
2199 	 * This should not happen - we already found a suitable fallback
2200 	 * when looking for the largest page.
2201 	 */
2202 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2203 
2204 do_steal:
2205 	page = get_page_from_free_area(area, fallback_mt);
2206 
2207 	/* take off list, maybe claim block, expand remainder */
2208 	page = steal_suitable_fallback(zone, page, current_order, order,
2209 				       start_migratetype, alloc_flags, can_steal);
2210 
2211 	trace_mm_page_alloc_extfrag(page, order, current_order,
2212 		start_migratetype, fallback_mt);
2213 
2214 	return page;
2215 }
2216 
2217 /*
2218  * Do the hard work of removing an element from the buddy allocator.
2219  * Call me with the zone->lock already held.
2220  */
2221 static __always_inline struct page *
2222 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2223 						unsigned int alloc_flags)
2224 {
2225 	struct page *page;
2226 
2227 	if (IS_ENABLED(CONFIG_CMA)) {
2228 		/*
2229 		 * Balance movable allocations between regular and CMA areas by
2230 		 * allocating from CMA when over half of the zone's free memory
2231 		 * is in the CMA area.
2232 		 */
2233 		if (alloc_flags & ALLOC_CMA &&
2234 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2235 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2236 			page = __rmqueue_cma_fallback(zone, order);
2237 			if (page)
2238 				return page;
2239 		}
2240 	}
2241 
2242 	page = __rmqueue_smallest(zone, order, migratetype);
2243 	if (unlikely(!page)) {
2244 		if (alloc_flags & ALLOC_CMA)
2245 			page = __rmqueue_cma_fallback(zone, order);
2246 
2247 		if (!page)
2248 			page = __rmqueue_fallback(zone, order, migratetype,
2249 						  alloc_flags);
2250 	}
2251 	return page;
2252 }
2253 
2254 /*
2255  * Obtain a specified number of elements from the buddy allocator, all under
2256  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2257  * Returns the number of new pages which were placed at *list.
2258  */
2259 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2260 			unsigned long count, struct list_head *list,
2261 			int migratetype, unsigned int alloc_flags)
2262 {
2263 	unsigned long flags;
2264 	int i;
2265 
2266 	spin_lock_irqsave(&zone->lock, flags);
2267 	for (i = 0; i < count; ++i) {
2268 		struct page *page = __rmqueue(zone, order, migratetype,
2269 								alloc_flags);
2270 		if (unlikely(page == NULL))
2271 			break;
2272 
2273 		/*
2274 		 * Split buddy pages returned by expand() are received here in
2275 		 * physical page order. The page is added to the tail of
2276 		 * caller's list. From the callers perspective, the linked list
2277 		 * is ordered by page number under some conditions. This is
2278 		 * useful for IO devices that can forward direction from the
2279 		 * head, thus also in the physical page order. This is useful
2280 		 * for IO devices that can merge IO requests if the physical
2281 		 * pages are ordered properly.
2282 		 */
2283 		list_add_tail(&page->pcp_list, list);
2284 	}
2285 	spin_unlock_irqrestore(&zone->lock, flags);
2286 
2287 	return i;
2288 }
2289 
2290 /*
2291  * Called from the vmstat counter updater to decay the PCP high.
2292  * Return whether there are addition works to do.
2293  */
2294 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2295 {
2296 	int high_min, to_drain, batch;
2297 	int todo = 0;
2298 
2299 	high_min = READ_ONCE(pcp->high_min);
2300 	batch = READ_ONCE(pcp->batch);
2301 	/*
2302 	 * Decrease pcp->high periodically to try to free possible
2303 	 * idle PCP pages.  And, avoid to free too many pages to
2304 	 * control latency.  This caps pcp->high decrement too.
2305 	 */
2306 	if (pcp->high > high_min) {
2307 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2308 				 pcp->high - (pcp->high >> 3), high_min);
2309 		if (pcp->high > high_min)
2310 			todo++;
2311 	}
2312 
2313 	to_drain = pcp->count - pcp->high;
2314 	if (to_drain > 0) {
2315 		spin_lock(&pcp->lock);
2316 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2317 		spin_unlock(&pcp->lock);
2318 		todo++;
2319 	}
2320 
2321 	return todo;
2322 }
2323 
2324 #ifdef CONFIG_NUMA
2325 /*
2326  * Called from the vmstat counter updater to drain pagesets of this
2327  * currently executing processor on remote nodes after they have
2328  * expired.
2329  */
2330 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2331 {
2332 	int to_drain, batch;
2333 
2334 	batch = READ_ONCE(pcp->batch);
2335 	to_drain = min(pcp->count, batch);
2336 	if (to_drain > 0) {
2337 		spin_lock(&pcp->lock);
2338 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2339 		spin_unlock(&pcp->lock);
2340 	}
2341 }
2342 #endif
2343 
2344 /*
2345  * Drain pcplists of the indicated processor and zone.
2346  */
2347 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2348 {
2349 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2350 	int count;
2351 
2352 	do {
2353 		spin_lock(&pcp->lock);
2354 		count = pcp->count;
2355 		if (count) {
2356 			int to_drain = min(count,
2357 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2358 
2359 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2360 			count -= to_drain;
2361 		}
2362 		spin_unlock(&pcp->lock);
2363 	} while (count);
2364 }
2365 
2366 /*
2367  * Drain pcplists of all zones on the indicated processor.
2368  */
2369 static void drain_pages(unsigned int cpu)
2370 {
2371 	struct zone *zone;
2372 
2373 	for_each_populated_zone(zone) {
2374 		drain_pages_zone(cpu, zone);
2375 	}
2376 }
2377 
2378 /*
2379  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2380  */
2381 void drain_local_pages(struct zone *zone)
2382 {
2383 	int cpu = smp_processor_id();
2384 
2385 	if (zone)
2386 		drain_pages_zone(cpu, zone);
2387 	else
2388 		drain_pages(cpu);
2389 }
2390 
2391 /*
2392  * The implementation of drain_all_pages(), exposing an extra parameter to
2393  * drain on all cpus.
2394  *
2395  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2396  * not empty. The check for non-emptiness can however race with a free to
2397  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2398  * that need the guarantee that every CPU has drained can disable the
2399  * optimizing racy check.
2400  */
2401 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2402 {
2403 	int cpu;
2404 
2405 	/*
2406 	 * Allocate in the BSS so we won't require allocation in
2407 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2408 	 */
2409 	static cpumask_t cpus_with_pcps;
2410 
2411 	/*
2412 	 * Do not drain if one is already in progress unless it's specific to
2413 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2414 	 * the drain to be complete when the call returns.
2415 	 */
2416 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2417 		if (!zone)
2418 			return;
2419 		mutex_lock(&pcpu_drain_mutex);
2420 	}
2421 
2422 	/*
2423 	 * We don't care about racing with CPU hotplug event
2424 	 * as offline notification will cause the notified
2425 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2426 	 * disables preemption as part of its processing
2427 	 */
2428 	for_each_online_cpu(cpu) {
2429 		struct per_cpu_pages *pcp;
2430 		struct zone *z;
2431 		bool has_pcps = false;
2432 
2433 		if (force_all_cpus) {
2434 			/*
2435 			 * The pcp.count check is racy, some callers need a
2436 			 * guarantee that no cpu is missed.
2437 			 */
2438 			has_pcps = true;
2439 		} else if (zone) {
2440 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2441 			if (pcp->count)
2442 				has_pcps = true;
2443 		} else {
2444 			for_each_populated_zone(z) {
2445 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2446 				if (pcp->count) {
2447 					has_pcps = true;
2448 					break;
2449 				}
2450 			}
2451 		}
2452 
2453 		if (has_pcps)
2454 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2455 		else
2456 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2457 	}
2458 
2459 	for_each_cpu(cpu, &cpus_with_pcps) {
2460 		if (zone)
2461 			drain_pages_zone(cpu, zone);
2462 		else
2463 			drain_pages(cpu);
2464 	}
2465 
2466 	mutex_unlock(&pcpu_drain_mutex);
2467 }
2468 
2469 /*
2470  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2471  *
2472  * When zone parameter is non-NULL, spill just the single zone's pages.
2473  */
2474 void drain_all_pages(struct zone *zone)
2475 {
2476 	__drain_all_pages(zone, false);
2477 }
2478 
2479 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2480 {
2481 	int min_nr_free, max_nr_free;
2482 
2483 	/* Free as much as possible if batch freeing high-order pages. */
2484 	if (unlikely(free_high))
2485 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2486 
2487 	/* Check for PCP disabled or boot pageset */
2488 	if (unlikely(high < batch))
2489 		return 1;
2490 
2491 	/* Leave at least pcp->batch pages on the list */
2492 	min_nr_free = batch;
2493 	max_nr_free = high - batch;
2494 
2495 	/*
2496 	 * Increase the batch number to the number of the consecutive
2497 	 * freed pages to reduce zone lock contention.
2498 	 */
2499 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2500 
2501 	return batch;
2502 }
2503 
2504 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2505 		       int batch, bool free_high)
2506 {
2507 	int high, high_min, high_max;
2508 
2509 	high_min = READ_ONCE(pcp->high_min);
2510 	high_max = READ_ONCE(pcp->high_max);
2511 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2512 
2513 	if (unlikely(!high))
2514 		return 0;
2515 
2516 	if (unlikely(free_high)) {
2517 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2518 				high_min);
2519 		return 0;
2520 	}
2521 
2522 	/*
2523 	 * If reclaim is active, limit the number of pages that can be
2524 	 * stored on pcp lists
2525 	 */
2526 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2527 		int free_count = max_t(int, pcp->free_count, batch);
2528 
2529 		pcp->high = max(high - free_count, high_min);
2530 		return min(batch << 2, pcp->high);
2531 	}
2532 
2533 	if (high_min == high_max)
2534 		return high;
2535 
2536 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2537 		int free_count = max_t(int, pcp->free_count, batch);
2538 
2539 		pcp->high = max(high - free_count, high_min);
2540 		high = max(pcp->count, high_min);
2541 	} else if (pcp->count >= high) {
2542 		int need_high = pcp->free_count + batch;
2543 
2544 		/* pcp->high should be large enough to hold batch freed pages */
2545 		if (pcp->high < need_high)
2546 			pcp->high = clamp(need_high, high_min, high_max);
2547 	}
2548 
2549 	return high;
2550 }
2551 
2552 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2553 				   struct page *page, int migratetype,
2554 				   unsigned int order)
2555 {
2556 	int high, batch;
2557 	int pindex;
2558 	bool free_high = false;
2559 
2560 	/*
2561 	 * On freeing, reduce the number of pages that are batch allocated.
2562 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2563 	 * allocations.
2564 	 */
2565 	pcp->alloc_factor >>= 1;
2566 	__count_vm_events(PGFREE, 1 << order);
2567 	pindex = order_to_pindex(migratetype, order);
2568 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2569 	pcp->count += 1 << order;
2570 
2571 	batch = READ_ONCE(pcp->batch);
2572 	/*
2573 	 * As high-order pages other than THP's stored on PCP can contribute
2574 	 * to fragmentation, limit the number stored when PCP is heavily
2575 	 * freeing without allocation. The remainder after bulk freeing
2576 	 * stops will be drained from vmstat refresh context.
2577 	 */
2578 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2579 		free_high = (pcp->free_count >= batch &&
2580 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2581 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2582 			      pcp->count >= READ_ONCE(batch)));
2583 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2584 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2585 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2586 	}
2587 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2588 		pcp->free_count += (1 << order);
2589 	high = nr_pcp_high(pcp, zone, batch, free_high);
2590 	if (pcp->count >= high) {
2591 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2592 				   pcp, pindex);
2593 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2594 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2595 				      ZONE_MOVABLE, 0))
2596 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2597 	}
2598 }
2599 
2600 /*
2601  * Free a pcp page
2602  */
2603 void free_unref_page(struct page *page, unsigned int order)
2604 {
2605 	unsigned long __maybe_unused UP_flags;
2606 	struct per_cpu_pages *pcp;
2607 	struct zone *zone;
2608 	unsigned long pfn = page_to_pfn(page);
2609 	int migratetype;
2610 
2611 	if (!pcp_allowed_order(order)) {
2612 		__free_pages_ok(page, order, FPI_NONE);
2613 		return;
2614 	}
2615 
2616 	if (!free_pages_prepare(page, order))
2617 		return;
2618 
2619 	/*
2620 	 * We only track unmovable, reclaimable and movable on pcp lists.
2621 	 * Place ISOLATE pages on the isolated list because they are being
2622 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2623 	 * get those areas back if necessary. Otherwise, we may have to free
2624 	 * excessively into the page allocator
2625 	 */
2626 	migratetype = get_pfnblock_migratetype(page, pfn);
2627 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2628 		if (unlikely(is_migrate_isolate(migratetype))) {
2629 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2630 			return;
2631 		}
2632 		migratetype = MIGRATE_MOVABLE;
2633 	}
2634 
2635 	zone = page_zone(page);
2636 	pcp_trylock_prepare(UP_flags);
2637 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2638 	if (pcp) {
2639 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2640 		pcp_spin_unlock(pcp);
2641 	} else {
2642 		free_one_page(zone, page, pfn, order, FPI_NONE);
2643 	}
2644 	pcp_trylock_finish(UP_flags);
2645 }
2646 
2647 /*
2648  * Free a batch of folios
2649  */
2650 void free_unref_folios(struct folio_batch *folios)
2651 {
2652 	unsigned long __maybe_unused UP_flags;
2653 	struct per_cpu_pages *pcp = NULL;
2654 	struct zone *locked_zone = NULL;
2655 	int i, j;
2656 
2657 	/* Prepare folios for freeing */
2658 	for (i = 0, j = 0; i < folios->nr; i++) {
2659 		struct folio *folio = folios->folios[i];
2660 		unsigned long pfn = folio_pfn(folio);
2661 		unsigned int order = folio_order(folio);
2662 
2663 		folio_undo_large_rmappable(folio);
2664 		if (!free_pages_prepare(&folio->page, order))
2665 			continue;
2666 		/*
2667 		 * Free orders not handled on the PCP directly to the
2668 		 * allocator.
2669 		 */
2670 		if (!pcp_allowed_order(order)) {
2671 			free_one_page(folio_zone(folio), &folio->page,
2672 				      pfn, order, FPI_NONE);
2673 			continue;
2674 		}
2675 		folio->private = (void *)(unsigned long)order;
2676 		if (j != i)
2677 			folios->folios[j] = folio;
2678 		j++;
2679 	}
2680 	folios->nr = j;
2681 
2682 	for (i = 0; i < folios->nr; i++) {
2683 		struct folio *folio = folios->folios[i];
2684 		struct zone *zone = folio_zone(folio);
2685 		unsigned long pfn = folio_pfn(folio);
2686 		unsigned int order = (unsigned long)folio->private;
2687 		int migratetype;
2688 
2689 		folio->private = NULL;
2690 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2691 
2692 		/* Different zone requires a different pcp lock */
2693 		if (zone != locked_zone ||
2694 		    is_migrate_isolate(migratetype)) {
2695 			if (pcp) {
2696 				pcp_spin_unlock(pcp);
2697 				pcp_trylock_finish(UP_flags);
2698 				locked_zone = NULL;
2699 				pcp = NULL;
2700 			}
2701 
2702 			/*
2703 			 * Free isolated pages directly to the
2704 			 * allocator, see comment in free_unref_page.
2705 			 */
2706 			if (is_migrate_isolate(migratetype)) {
2707 				free_one_page(zone, &folio->page, pfn,
2708 					      order, FPI_NONE);
2709 				continue;
2710 			}
2711 
2712 			/*
2713 			 * trylock is necessary as folios may be getting freed
2714 			 * from IRQ or SoftIRQ context after an IO completion.
2715 			 */
2716 			pcp_trylock_prepare(UP_flags);
2717 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2718 			if (unlikely(!pcp)) {
2719 				pcp_trylock_finish(UP_flags);
2720 				free_one_page(zone, &folio->page, pfn,
2721 					      order, FPI_NONE);
2722 				continue;
2723 			}
2724 			locked_zone = zone;
2725 		}
2726 
2727 		/*
2728 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2729 		 * to the MIGRATE_MOVABLE pcp list.
2730 		 */
2731 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2732 			migratetype = MIGRATE_MOVABLE;
2733 
2734 		trace_mm_page_free_batched(&folio->page);
2735 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2736 				order);
2737 	}
2738 
2739 	if (pcp) {
2740 		pcp_spin_unlock(pcp);
2741 		pcp_trylock_finish(UP_flags);
2742 	}
2743 	folio_batch_reinit(folios);
2744 }
2745 
2746 /*
2747  * split_page takes a non-compound higher-order page, and splits it into
2748  * n (1<<order) sub-pages: page[0..n]
2749  * Each sub-page must be freed individually.
2750  *
2751  * Note: this is probably too low level an operation for use in drivers.
2752  * Please consult with lkml before using this in your driver.
2753  */
2754 void split_page(struct page *page, unsigned int order)
2755 {
2756 	int i;
2757 
2758 	VM_BUG_ON_PAGE(PageCompound(page), page);
2759 	VM_BUG_ON_PAGE(!page_count(page), page);
2760 
2761 	for (i = 1; i < (1 << order); i++)
2762 		set_page_refcounted(page + i);
2763 	split_page_owner(page, order, 0);
2764 	pgalloc_tag_split(page, 1 << order);
2765 	split_page_memcg(page, order, 0);
2766 }
2767 EXPORT_SYMBOL_GPL(split_page);
2768 
2769 int __isolate_free_page(struct page *page, unsigned int order)
2770 {
2771 	struct zone *zone = page_zone(page);
2772 	int mt = get_pageblock_migratetype(page);
2773 
2774 	if (!is_migrate_isolate(mt)) {
2775 		unsigned long watermark;
2776 		/*
2777 		 * Obey watermarks as if the page was being allocated. We can
2778 		 * emulate a high-order watermark check with a raised order-0
2779 		 * watermark, because we already know our high-order page
2780 		 * exists.
2781 		 */
2782 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2783 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2784 			return 0;
2785 	}
2786 
2787 	del_page_from_free_list(page, zone, order, mt);
2788 
2789 	/*
2790 	 * Set the pageblock if the isolated page is at least half of a
2791 	 * pageblock
2792 	 */
2793 	if (order >= pageblock_order - 1) {
2794 		struct page *endpage = page + (1 << order) - 1;
2795 		for (; page < endpage; page += pageblock_nr_pages) {
2796 			int mt = get_pageblock_migratetype(page);
2797 			/*
2798 			 * Only change normal pageblocks (i.e., they can merge
2799 			 * with others)
2800 			 */
2801 			if (migratetype_is_mergeable(mt))
2802 				move_freepages_block(zone, page, mt,
2803 						     MIGRATE_MOVABLE);
2804 		}
2805 	}
2806 
2807 	return 1UL << order;
2808 }
2809 
2810 /**
2811  * __putback_isolated_page - Return a now-isolated page back where we got it
2812  * @page: Page that was isolated
2813  * @order: Order of the isolated page
2814  * @mt: The page's pageblock's migratetype
2815  *
2816  * This function is meant to return a page pulled from the free lists via
2817  * __isolate_free_page back to the free lists they were pulled from.
2818  */
2819 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2820 {
2821 	struct zone *zone = page_zone(page);
2822 
2823 	/* zone lock should be held when this function is called */
2824 	lockdep_assert_held(&zone->lock);
2825 
2826 	/* Return isolated page to tail of freelist. */
2827 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2828 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2829 }
2830 
2831 /*
2832  * Update NUMA hit/miss statistics
2833  */
2834 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2835 				   long nr_account)
2836 {
2837 #ifdef CONFIG_NUMA
2838 	enum numa_stat_item local_stat = NUMA_LOCAL;
2839 
2840 	/* skip numa counters update if numa stats is disabled */
2841 	if (!static_branch_likely(&vm_numa_stat_key))
2842 		return;
2843 
2844 	if (zone_to_nid(z) != numa_node_id())
2845 		local_stat = NUMA_OTHER;
2846 
2847 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2848 		__count_numa_events(z, NUMA_HIT, nr_account);
2849 	else {
2850 		__count_numa_events(z, NUMA_MISS, nr_account);
2851 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2852 	}
2853 	__count_numa_events(z, local_stat, nr_account);
2854 #endif
2855 }
2856 
2857 static __always_inline
2858 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2859 			   unsigned int order, unsigned int alloc_flags,
2860 			   int migratetype)
2861 {
2862 	struct page *page;
2863 	unsigned long flags;
2864 
2865 	do {
2866 		page = NULL;
2867 		spin_lock_irqsave(&zone->lock, flags);
2868 		if (alloc_flags & ALLOC_HIGHATOMIC)
2869 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2870 		if (!page) {
2871 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2872 
2873 			/*
2874 			 * If the allocation fails, allow OOM handling access
2875 			 * to HIGHATOMIC reserves as failing now is worse than
2876 			 * failing a high-order atomic allocation in the
2877 			 * future.
2878 			 */
2879 			if (!page && (alloc_flags & ALLOC_OOM))
2880 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2881 
2882 			if (!page) {
2883 				spin_unlock_irqrestore(&zone->lock, flags);
2884 				return NULL;
2885 			}
2886 		}
2887 		spin_unlock_irqrestore(&zone->lock, flags);
2888 	} while (check_new_pages(page, order));
2889 
2890 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2891 	zone_statistics(preferred_zone, zone, 1);
2892 
2893 	return page;
2894 }
2895 
2896 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2897 {
2898 	int high, base_batch, batch, max_nr_alloc;
2899 	int high_max, high_min;
2900 
2901 	base_batch = READ_ONCE(pcp->batch);
2902 	high_min = READ_ONCE(pcp->high_min);
2903 	high_max = READ_ONCE(pcp->high_max);
2904 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2905 
2906 	/* Check for PCP disabled or boot pageset */
2907 	if (unlikely(high < base_batch))
2908 		return 1;
2909 
2910 	if (order)
2911 		batch = base_batch;
2912 	else
2913 		batch = (base_batch << pcp->alloc_factor);
2914 
2915 	/*
2916 	 * If we had larger pcp->high, we could avoid to allocate from
2917 	 * zone.
2918 	 */
2919 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2920 		high = pcp->high = min(high + batch, high_max);
2921 
2922 	if (!order) {
2923 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2924 		/*
2925 		 * Double the number of pages allocated each time there is
2926 		 * subsequent allocation of order-0 pages without any freeing.
2927 		 */
2928 		if (batch <= max_nr_alloc &&
2929 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2930 			pcp->alloc_factor++;
2931 		batch = min(batch, max_nr_alloc);
2932 	}
2933 
2934 	/*
2935 	 * Scale batch relative to order if batch implies free pages
2936 	 * can be stored on the PCP. Batch can be 1 for small zones or
2937 	 * for boot pagesets which should never store free pages as
2938 	 * the pages may belong to arbitrary zones.
2939 	 */
2940 	if (batch > 1)
2941 		batch = max(batch >> order, 2);
2942 
2943 	return batch;
2944 }
2945 
2946 /* Remove page from the per-cpu list, caller must protect the list */
2947 static inline
2948 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2949 			int migratetype,
2950 			unsigned int alloc_flags,
2951 			struct per_cpu_pages *pcp,
2952 			struct list_head *list)
2953 {
2954 	struct page *page;
2955 
2956 	do {
2957 		if (list_empty(list)) {
2958 			int batch = nr_pcp_alloc(pcp, zone, order);
2959 			int alloced;
2960 
2961 			alloced = rmqueue_bulk(zone, order,
2962 					batch, list,
2963 					migratetype, alloc_flags);
2964 
2965 			pcp->count += alloced << order;
2966 			if (unlikely(list_empty(list)))
2967 				return NULL;
2968 		}
2969 
2970 		page = list_first_entry(list, struct page, pcp_list);
2971 		list_del(&page->pcp_list);
2972 		pcp->count -= 1 << order;
2973 	} while (check_new_pages(page, order));
2974 
2975 	return page;
2976 }
2977 
2978 /* Lock and remove page from the per-cpu list */
2979 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2980 			struct zone *zone, unsigned int order,
2981 			int migratetype, unsigned int alloc_flags)
2982 {
2983 	struct per_cpu_pages *pcp;
2984 	struct list_head *list;
2985 	struct page *page;
2986 	unsigned long __maybe_unused UP_flags;
2987 
2988 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2989 	pcp_trylock_prepare(UP_flags);
2990 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2991 	if (!pcp) {
2992 		pcp_trylock_finish(UP_flags);
2993 		return NULL;
2994 	}
2995 
2996 	/*
2997 	 * On allocation, reduce the number of pages that are batch freed.
2998 	 * See nr_pcp_free() where free_factor is increased for subsequent
2999 	 * frees.
3000 	 */
3001 	pcp->free_count >>= 1;
3002 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3003 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3004 	pcp_spin_unlock(pcp);
3005 	pcp_trylock_finish(UP_flags);
3006 	if (page) {
3007 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3008 		zone_statistics(preferred_zone, zone, 1);
3009 	}
3010 	return page;
3011 }
3012 
3013 /*
3014  * Allocate a page from the given zone.
3015  * Use pcplists for THP or "cheap" high-order allocations.
3016  */
3017 
3018 /*
3019  * Do not instrument rmqueue() with KMSAN. This function may call
3020  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3021  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3022  * may call rmqueue() again, which will result in a deadlock.
3023  */
3024 __no_sanitize_memory
3025 static inline
3026 struct page *rmqueue(struct zone *preferred_zone,
3027 			struct zone *zone, unsigned int order,
3028 			gfp_t gfp_flags, unsigned int alloc_flags,
3029 			int migratetype)
3030 {
3031 	struct page *page;
3032 
3033 	/*
3034 	 * We most definitely don't want callers attempting to
3035 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3036 	 */
3037 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3038 
3039 	if (likely(pcp_allowed_order(order))) {
3040 		page = rmqueue_pcplist(preferred_zone, zone, order,
3041 				       migratetype, alloc_flags);
3042 		if (likely(page))
3043 			goto out;
3044 	}
3045 
3046 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3047 							migratetype);
3048 
3049 out:
3050 	/* Separate test+clear to avoid unnecessary atomics */
3051 	if ((alloc_flags & ALLOC_KSWAPD) &&
3052 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3053 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3054 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3055 	}
3056 
3057 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3058 	return page;
3059 }
3060 
3061 static inline long __zone_watermark_unusable_free(struct zone *z,
3062 				unsigned int order, unsigned int alloc_flags)
3063 {
3064 	long unusable_free = (1 << order) - 1;
3065 
3066 	/*
3067 	 * If the caller does not have rights to reserves below the min
3068 	 * watermark then subtract the high-atomic reserves. This will
3069 	 * over-estimate the size of the atomic reserve but it avoids a search.
3070 	 */
3071 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3072 		unusable_free += z->nr_reserved_highatomic;
3073 
3074 #ifdef CONFIG_CMA
3075 	/* If allocation can't use CMA areas don't use free CMA pages */
3076 	if (!(alloc_flags & ALLOC_CMA))
3077 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3078 #endif
3079 
3080 	return unusable_free;
3081 }
3082 
3083 /*
3084  * Return true if free base pages are above 'mark'. For high-order checks it
3085  * will return true of the order-0 watermark is reached and there is at least
3086  * one free page of a suitable size. Checking now avoids taking the zone lock
3087  * to check in the allocation paths if no pages are free.
3088  */
3089 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3090 			 int highest_zoneidx, unsigned int alloc_flags,
3091 			 long free_pages)
3092 {
3093 	long min = mark;
3094 	int o;
3095 
3096 	/* free_pages may go negative - that's OK */
3097 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3098 
3099 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3100 		/*
3101 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3102 		 * as OOM.
3103 		 */
3104 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3105 			min -= min / 2;
3106 
3107 			/*
3108 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3109 			 * access more reserves than just __GFP_HIGH. Other
3110 			 * non-blocking allocations requests such as GFP_NOWAIT
3111 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3112 			 * access to the min reserve.
3113 			 */
3114 			if (alloc_flags & ALLOC_NON_BLOCK)
3115 				min -= min / 4;
3116 		}
3117 
3118 		/*
3119 		 * OOM victims can try even harder than the normal reserve
3120 		 * users on the grounds that it's definitely going to be in
3121 		 * the exit path shortly and free memory. Any allocation it
3122 		 * makes during the free path will be small and short-lived.
3123 		 */
3124 		if (alloc_flags & ALLOC_OOM)
3125 			min -= min / 2;
3126 	}
3127 
3128 	/*
3129 	 * Check watermarks for an order-0 allocation request. If these
3130 	 * are not met, then a high-order request also cannot go ahead
3131 	 * even if a suitable page happened to be free.
3132 	 */
3133 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3134 		return false;
3135 
3136 	/* If this is an order-0 request then the watermark is fine */
3137 	if (!order)
3138 		return true;
3139 
3140 	/* For a high-order request, check at least one suitable page is free */
3141 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3142 		struct free_area *area = &z->free_area[o];
3143 		int mt;
3144 
3145 		if (!area->nr_free)
3146 			continue;
3147 
3148 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3149 			if (!free_area_empty(area, mt))
3150 				return true;
3151 		}
3152 
3153 #ifdef CONFIG_CMA
3154 		if ((alloc_flags & ALLOC_CMA) &&
3155 		    !free_area_empty(area, MIGRATE_CMA)) {
3156 			return true;
3157 		}
3158 #endif
3159 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3160 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3161 			return true;
3162 		}
3163 	}
3164 	return false;
3165 }
3166 
3167 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3168 		      int highest_zoneidx, unsigned int alloc_flags)
3169 {
3170 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3171 					zone_page_state(z, NR_FREE_PAGES));
3172 }
3173 
3174 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3175 				unsigned long mark, int highest_zoneidx,
3176 				unsigned int alloc_flags, gfp_t gfp_mask)
3177 {
3178 	long free_pages;
3179 
3180 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3181 
3182 	/*
3183 	 * Fast check for order-0 only. If this fails then the reserves
3184 	 * need to be calculated.
3185 	 */
3186 	if (!order) {
3187 		long usable_free;
3188 		long reserved;
3189 
3190 		usable_free = free_pages;
3191 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3192 
3193 		/* reserved may over estimate high-atomic reserves. */
3194 		usable_free -= min(usable_free, reserved);
3195 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3196 			return true;
3197 	}
3198 
3199 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3200 					free_pages))
3201 		return true;
3202 
3203 	/*
3204 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3205 	 * when checking the min watermark. The min watermark is the
3206 	 * point where boosting is ignored so that kswapd is woken up
3207 	 * when below the low watermark.
3208 	 */
3209 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3210 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3211 		mark = z->_watermark[WMARK_MIN];
3212 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3213 					alloc_flags, free_pages);
3214 	}
3215 
3216 	return false;
3217 }
3218 
3219 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3220 			unsigned long mark, int highest_zoneidx)
3221 {
3222 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3223 
3224 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3225 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3226 
3227 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3228 								free_pages);
3229 }
3230 
3231 #ifdef CONFIG_NUMA
3232 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3233 
3234 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3235 {
3236 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3237 				node_reclaim_distance;
3238 }
3239 #else	/* CONFIG_NUMA */
3240 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3241 {
3242 	return true;
3243 }
3244 #endif	/* CONFIG_NUMA */
3245 
3246 /*
3247  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3248  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3249  * premature use of a lower zone may cause lowmem pressure problems that
3250  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3251  * probably too small. It only makes sense to spread allocations to avoid
3252  * fragmentation between the Normal and DMA32 zones.
3253  */
3254 static inline unsigned int
3255 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3256 {
3257 	unsigned int alloc_flags;
3258 
3259 	/*
3260 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3261 	 * to save a branch.
3262 	 */
3263 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3264 
3265 #ifdef CONFIG_ZONE_DMA32
3266 	if (!zone)
3267 		return alloc_flags;
3268 
3269 	if (zone_idx(zone) != ZONE_NORMAL)
3270 		return alloc_flags;
3271 
3272 	/*
3273 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3274 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3275 	 * on UMA that if Normal is populated then so is DMA32.
3276 	 */
3277 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3278 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3279 		return alloc_flags;
3280 
3281 	alloc_flags |= ALLOC_NOFRAGMENT;
3282 #endif /* CONFIG_ZONE_DMA32 */
3283 	return alloc_flags;
3284 }
3285 
3286 /* Must be called after current_gfp_context() which can change gfp_mask */
3287 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3288 						  unsigned int alloc_flags)
3289 {
3290 #ifdef CONFIG_CMA
3291 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3292 		alloc_flags |= ALLOC_CMA;
3293 #endif
3294 	return alloc_flags;
3295 }
3296 
3297 /*
3298  * get_page_from_freelist goes through the zonelist trying to allocate
3299  * a page.
3300  */
3301 static struct page *
3302 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3303 						const struct alloc_context *ac)
3304 {
3305 	struct zoneref *z;
3306 	struct zone *zone;
3307 	struct pglist_data *last_pgdat = NULL;
3308 	bool last_pgdat_dirty_ok = false;
3309 	bool no_fallback;
3310 
3311 retry:
3312 	/*
3313 	 * Scan zonelist, looking for a zone with enough free.
3314 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3315 	 */
3316 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3317 	z = ac->preferred_zoneref;
3318 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3319 					ac->nodemask) {
3320 		struct page *page;
3321 		unsigned long mark;
3322 
3323 		if (cpusets_enabled() &&
3324 			(alloc_flags & ALLOC_CPUSET) &&
3325 			!__cpuset_zone_allowed(zone, gfp_mask))
3326 				continue;
3327 		/*
3328 		 * When allocating a page cache page for writing, we
3329 		 * want to get it from a node that is within its dirty
3330 		 * limit, such that no single node holds more than its
3331 		 * proportional share of globally allowed dirty pages.
3332 		 * The dirty limits take into account the node's
3333 		 * lowmem reserves and high watermark so that kswapd
3334 		 * should be able to balance it without having to
3335 		 * write pages from its LRU list.
3336 		 *
3337 		 * XXX: For now, allow allocations to potentially
3338 		 * exceed the per-node dirty limit in the slowpath
3339 		 * (spread_dirty_pages unset) before going into reclaim,
3340 		 * which is important when on a NUMA setup the allowed
3341 		 * nodes are together not big enough to reach the
3342 		 * global limit.  The proper fix for these situations
3343 		 * will require awareness of nodes in the
3344 		 * dirty-throttling and the flusher threads.
3345 		 */
3346 		if (ac->spread_dirty_pages) {
3347 			if (last_pgdat != zone->zone_pgdat) {
3348 				last_pgdat = zone->zone_pgdat;
3349 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3350 			}
3351 
3352 			if (!last_pgdat_dirty_ok)
3353 				continue;
3354 		}
3355 
3356 		if (no_fallback && nr_online_nodes > 1 &&
3357 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3358 			int local_nid;
3359 
3360 			/*
3361 			 * If moving to a remote node, retry but allow
3362 			 * fragmenting fallbacks. Locality is more important
3363 			 * than fragmentation avoidance.
3364 			 */
3365 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3366 			if (zone_to_nid(zone) != local_nid) {
3367 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3368 				goto retry;
3369 			}
3370 		}
3371 
3372 		cond_accept_memory(zone, order);
3373 
3374 		/*
3375 		 * Detect whether the number of free pages is below high
3376 		 * watermark.  If so, we will decrease pcp->high and free
3377 		 * PCP pages in free path to reduce the possibility of
3378 		 * premature page reclaiming.  Detection is done here to
3379 		 * avoid to do that in hotter free path.
3380 		 */
3381 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3382 			goto check_alloc_wmark;
3383 
3384 		mark = high_wmark_pages(zone);
3385 		if (zone_watermark_fast(zone, order, mark,
3386 					ac->highest_zoneidx, alloc_flags,
3387 					gfp_mask))
3388 			goto try_this_zone;
3389 		else
3390 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3391 
3392 check_alloc_wmark:
3393 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3394 		if (!zone_watermark_fast(zone, order, mark,
3395 				       ac->highest_zoneidx, alloc_flags,
3396 				       gfp_mask)) {
3397 			int ret;
3398 
3399 			if (cond_accept_memory(zone, order))
3400 				goto try_this_zone;
3401 
3402 			/*
3403 			 * Watermark failed for this zone, but see if we can
3404 			 * grow this zone if it contains deferred pages.
3405 			 */
3406 			if (deferred_pages_enabled()) {
3407 				if (_deferred_grow_zone(zone, order))
3408 					goto try_this_zone;
3409 			}
3410 			/* Checked here to keep the fast path fast */
3411 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3412 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3413 				goto try_this_zone;
3414 
3415 			if (!node_reclaim_enabled() ||
3416 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3417 				continue;
3418 
3419 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3420 			switch (ret) {
3421 			case NODE_RECLAIM_NOSCAN:
3422 				/* did not scan */
3423 				continue;
3424 			case NODE_RECLAIM_FULL:
3425 				/* scanned but unreclaimable */
3426 				continue;
3427 			default:
3428 				/* did we reclaim enough */
3429 				if (zone_watermark_ok(zone, order, mark,
3430 					ac->highest_zoneidx, alloc_flags))
3431 					goto try_this_zone;
3432 
3433 				continue;
3434 			}
3435 		}
3436 
3437 try_this_zone:
3438 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3439 				gfp_mask, alloc_flags, ac->migratetype);
3440 		if (page) {
3441 			prep_new_page(page, order, gfp_mask, alloc_flags);
3442 
3443 			/*
3444 			 * If this is a high-order atomic allocation then check
3445 			 * if the pageblock should be reserved for the future
3446 			 */
3447 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3448 				reserve_highatomic_pageblock(page, order, zone);
3449 
3450 			return page;
3451 		} else {
3452 			if (cond_accept_memory(zone, order))
3453 				goto try_this_zone;
3454 
3455 			/* Try again if zone has deferred pages */
3456 			if (deferred_pages_enabled()) {
3457 				if (_deferred_grow_zone(zone, order))
3458 					goto try_this_zone;
3459 			}
3460 		}
3461 	}
3462 
3463 	/*
3464 	 * It's possible on a UMA machine to get through all zones that are
3465 	 * fragmented. If avoiding fragmentation, reset and try again.
3466 	 */
3467 	if (no_fallback) {
3468 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3469 		goto retry;
3470 	}
3471 
3472 	return NULL;
3473 }
3474 
3475 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3476 {
3477 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3478 
3479 	/*
3480 	 * This documents exceptions given to allocations in certain
3481 	 * contexts that are allowed to allocate outside current's set
3482 	 * of allowed nodes.
3483 	 */
3484 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3485 		if (tsk_is_oom_victim(current) ||
3486 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3487 			filter &= ~SHOW_MEM_FILTER_NODES;
3488 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3489 		filter &= ~SHOW_MEM_FILTER_NODES;
3490 
3491 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3492 }
3493 
3494 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3495 {
3496 	struct va_format vaf;
3497 	va_list args;
3498 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3499 
3500 	if ((gfp_mask & __GFP_NOWARN) ||
3501 	     !__ratelimit(&nopage_rs) ||
3502 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3503 		return;
3504 
3505 	va_start(args, fmt);
3506 	vaf.fmt = fmt;
3507 	vaf.va = &args;
3508 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3509 			current->comm, &vaf, gfp_mask, &gfp_mask,
3510 			nodemask_pr_args(nodemask));
3511 	va_end(args);
3512 
3513 	cpuset_print_current_mems_allowed();
3514 	pr_cont("\n");
3515 	dump_stack();
3516 	warn_alloc_show_mem(gfp_mask, nodemask);
3517 }
3518 
3519 static inline struct page *
3520 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3521 			      unsigned int alloc_flags,
3522 			      const struct alloc_context *ac)
3523 {
3524 	struct page *page;
3525 
3526 	page = get_page_from_freelist(gfp_mask, order,
3527 			alloc_flags|ALLOC_CPUSET, ac);
3528 	/*
3529 	 * fallback to ignore cpuset restriction if our nodes
3530 	 * are depleted
3531 	 */
3532 	if (!page)
3533 		page = get_page_from_freelist(gfp_mask, order,
3534 				alloc_flags, ac);
3535 
3536 	return page;
3537 }
3538 
3539 static inline struct page *
3540 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3541 	const struct alloc_context *ac, unsigned long *did_some_progress)
3542 {
3543 	struct oom_control oc = {
3544 		.zonelist = ac->zonelist,
3545 		.nodemask = ac->nodemask,
3546 		.memcg = NULL,
3547 		.gfp_mask = gfp_mask,
3548 		.order = order,
3549 	};
3550 	struct page *page;
3551 
3552 	*did_some_progress = 0;
3553 
3554 	/*
3555 	 * Acquire the oom lock.  If that fails, somebody else is
3556 	 * making progress for us.
3557 	 */
3558 	if (!mutex_trylock(&oom_lock)) {
3559 		*did_some_progress = 1;
3560 		schedule_timeout_uninterruptible(1);
3561 		return NULL;
3562 	}
3563 
3564 	/*
3565 	 * Go through the zonelist yet one more time, keep very high watermark
3566 	 * here, this is only to catch a parallel oom killing, we must fail if
3567 	 * we're still under heavy pressure. But make sure that this reclaim
3568 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3569 	 * allocation which will never fail due to oom_lock already held.
3570 	 */
3571 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3572 				      ~__GFP_DIRECT_RECLAIM, order,
3573 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3574 	if (page)
3575 		goto out;
3576 
3577 	/* Coredumps can quickly deplete all memory reserves */
3578 	if (current->flags & PF_DUMPCORE)
3579 		goto out;
3580 	/* The OOM killer will not help higher order allocs */
3581 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3582 		goto out;
3583 	/*
3584 	 * We have already exhausted all our reclaim opportunities without any
3585 	 * success so it is time to admit defeat. We will skip the OOM killer
3586 	 * because it is very likely that the caller has a more reasonable
3587 	 * fallback than shooting a random task.
3588 	 *
3589 	 * The OOM killer may not free memory on a specific node.
3590 	 */
3591 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3592 		goto out;
3593 	/* The OOM killer does not needlessly kill tasks for lowmem */
3594 	if (ac->highest_zoneidx < ZONE_NORMAL)
3595 		goto out;
3596 	if (pm_suspended_storage())
3597 		goto out;
3598 	/*
3599 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3600 	 * other request to make a forward progress.
3601 	 * We are in an unfortunate situation where out_of_memory cannot
3602 	 * do much for this context but let's try it to at least get
3603 	 * access to memory reserved if the current task is killed (see
3604 	 * out_of_memory). Once filesystems are ready to handle allocation
3605 	 * failures more gracefully we should just bail out here.
3606 	 */
3607 
3608 	/* Exhausted what can be done so it's blame time */
3609 	if (out_of_memory(&oc) ||
3610 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3611 		*did_some_progress = 1;
3612 
3613 		/*
3614 		 * Help non-failing allocations by giving them access to memory
3615 		 * reserves
3616 		 */
3617 		if (gfp_mask & __GFP_NOFAIL)
3618 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3619 					ALLOC_NO_WATERMARKS, ac);
3620 	}
3621 out:
3622 	mutex_unlock(&oom_lock);
3623 	return page;
3624 }
3625 
3626 /*
3627  * Maximum number of compaction retries with a progress before OOM
3628  * killer is consider as the only way to move forward.
3629  */
3630 #define MAX_COMPACT_RETRIES 16
3631 
3632 #ifdef CONFIG_COMPACTION
3633 /* Try memory compaction for high-order allocations before reclaim */
3634 static struct page *
3635 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3636 		unsigned int alloc_flags, const struct alloc_context *ac,
3637 		enum compact_priority prio, enum compact_result *compact_result)
3638 {
3639 	struct page *page = NULL;
3640 	unsigned long pflags;
3641 	unsigned int noreclaim_flag;
3642 
3643 	if (!order)
3644 		return NULL;
3645 
3646 	psi_memstall_enter(&pflags);
3647 	delayacct_compact_start();
3648 	noreclaim_flag = memalloc_noreclaim_save();
3649 
3650 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3651 								prio, &page);
3652 
3653 	memalloc_noreclaim_restore(noreclaim_flag);
3654 	psi_memstall_leave(&pflags);
3655 	delayacct_compact_end();
3656 
3657 	if (*compact_result == COMPACT_SKIPPED)
3658 		return NULL;
3659 	/*
3660 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3661 	 * count a compaction stall
3662 	 */
3663 	count_vm_event(COMPACTSTALL);
3664 
3665 	/* Prep a captured page if available */
3666 	if (page)
3667 		prep_new_page(page, order, gfp_mask, alloc_flags);
3668 
3669 	/* Try get a page from the freelist if available */
3670 	if (!page)
3671 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3672 
3673 	if (page) {
3674 		struct zone *zone = page_zone(page);
3675 
3676 		zone->compact_blockskip_flush = false;
3677 		compaction_defer_reset(zone, order, true);
3678 		count_vm_event(COMPACTSUCCESS);
3679 		return page;
3680 	}
3681 
3682 	/*
3683 	 * It's bad if compaction run occurs and fails. The most likely reason
3684 	 * is that pages exist, but not enough to satisfy watermarks.
3685 	 */
3686 	count_vm_event(COMPACTFAIL);
3687 
3688 	cond_resched();
3689 
3690 	return NULL;
3691 }
3692 
3693 static inline bool
3694 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3695 		     enum compact_result compact_result,
3696 		     enum compact_priority *compact_priority,
3697 		     int *compaction_retries)
3698 {
3699 	int max_retries = MAX_COMPACT_RETRIES;
3700 	int min_priority;
3701 	bool ret = false;
3702 	int retries = *compaction_retries;
3703 	enum compact_priority priority = *compact_priority;
3704 
3705 	if (!order)
3706 		return false;
3707 
3708 	if (fatal_signal_pending(current))
3709 		return false;
3710 
3711 	/*
3712 	 * Compaction was skipped due to a lack of free order-0
3713 	 * migration targets. Continue if reclaim can help.
3714 	 */
3715 	if (compact_result == COMPACT_SKIPPED) {
3716 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3717 		goto out;
3718 	}
3719 
3720 	/*
3721 	 * Compaction managed to coalesce some page blocks, but the
3722 	 * allocation failed presumably due to a race. Retry some.
3723 	 */
3724 	if (compact_result == COMPACT_SUCCESS) {
3725 		/*
3726 		 * !costly requests are much more important than
3727 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3728 		 * facto nofail and invoke OOM killer to move on while
3729 		 * costly can fail and users are ready to cope with
3730 		 * that. 1/4 retries is rather arbitrary but we would
3731 		 * need much more detailed feedback from compaction to
3732 		 * make a better decision.
3733 		 */
3734 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3735 			max_retries /= 4;
3736 
3737 		if (++(*compaction_retries) <= max_retries) {
3738 			ret = true;
3739 			goto out;
3740 		}
3741 	}
3742 
3743 	/*
3744 	 * Compaction failed. Retry with increasing priority.
3745 	 */
3746 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3747 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3748 
3749 	if (*compact_priority > min_priority) {
3750 		(*compact_priority)--;
3751 		*compaction_retries = 0;
3752 		ret = true;
3753 	}
3754 out:
3755 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3756 	return ret;
3757 }
3758 #else
3759 static inline struct page *
3760 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3761 		unsigned int alloc_flags, const struct alloc_context *ac,
3762 		enum compact_priority prio, enum compact_result *compact_result)
3763 {
3764 	*compact_result = COMPACT_SKIPPED;
3765 	return NULL;
3766 }
3767 
3768 static inline bool
3769 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3770 		     enum compact_result compact_result,
3771 		     enum compact_priority *compact_priority,
3772 		     int *compaction_retries)
3773 {
3774 	struct zone *zone;
3775 	struct zoneref *z;
3776 
3777 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3778 		return false;
3779 
3780 	/*
3781 	 * There are setups with compaction disabled which would prefer to loop
3782 	 * inside the allocator rather than hit the oom killer prematurely.
3783 	 * Let's give them a good hope and keep retrying while the order-0
3784 	 * watermarks are OK.
3785 	 */
3786 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3787 				ac->highest_zoneidx, ac->nodemask) {
3788 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3789 					ac->highest_zoneidx, alloc_flags))
3790 			return true;
3791 	}
3792 	return false;
3793 }
3794 #endif /* CONFIG_COMPACTION */
3795 
3796 #ifdef CONFIG_LOCKDEP
3797 static struct lockdep_map __fs_reclaim_map =
3798 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3799 
3800 static bool __need_reclaim(gfp_t gfp_mask)
3801 {
3802 	/* no reclaim without waiting on it */
3803 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3804 		return false;
3805 
3806 	/* this guy won't enter reclaim */
3807 	if (current->flags & PF_MEMALLOC)
3808 		return false;
3809 
3810 	if (gfp_mask & __GFP_NOLOCKDEP)
3811 		return false;
3812 
3813 	return true;
3814 }
3815 
3816 void __fs_reclaim_acquire(unsigned long ip)
3817 {
3818 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3819 }
3820 
3821 void __fs_reclaim_release(unsigned long ip)
3822 {
3823 	lock_release(&__fs_reclaim_map, ip);
3824 }
3825 
3826 void fs_reclaim_acquire(gfp_t gfp_mask)
3827 {
3828 	gfp_mask = current_gfp_context(gfp_mask);
3829 
3830 	if (__need_reclaim(gfp_mask)) {
3831 		if (gfp_mask & __GFP_FS)
3832 			__fs_reclaim_acquire(_RET_IP_);
3833 
3834 #ifdef CONFIG_MMU_NOTIFIER
3835 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3836 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3837 #endif
3838 
3839 	}
3840 }
3841 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3842 
3843 void fs_reclaim_release(gfp_t gfp_mask)
3844 {
3845 	gfp_mask = current_gfp_context(gfp_mask);
3846 
3847 	if (__need_reclaim(gfp_mask)) {
3848 		if (gfp_mask & __GFP_FS)
3849 			__fs_reclaim_release(_RET_IP_);
3850 	}
3851 }
3852 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3853 #endif
3854 
3855 /*
3856  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3857  * have been rebuilt so allocation retries. Reader side does not lock and
3858  * retries the allocation if zonelist changes. Writer side is protected by the
3859  * embedded spin_lock.
3860  */
3861 static DEFINE_SEQLOCK(zonelist_update_seq);
3862 
3863 static unsigned int zonelist_iter_begin(void)
3864 {
3865 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3866 		return read_seqbegin(&zonelist_update_seq);
3867 
3868 	return 0;
3869 }
3870 
3871 static unsigned int check_retry_zonelist(unsigned int seq)
3872 {
3873 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3874 		return read_seqretry(&zonelist_update_seq, seq);
3875 
3876 	return seq;
3877 }
3878 
3879 /* Perform direct synchronous page reclaim */
3880 static unsigned long
3881 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3882 					const struct alloc_context *ac)
3883 {
3884 	unsigned int noreclaim_flag;
3885 	unsigned long progress;
3886 
3887 	cond_resched();
3888 
3889 	/* We now go into synchronous reclaim */
3890 	cpuset_memory_pressure_bump();
3891 	fs_reclaim_acquire(gfp_mask);
3892 	noreclaim_flag = memalloc_noreclaim_save();
3893 
3894 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3895 								ac->nodemask);
3896 
3897 	memalloc_noreclaim_restore(noreclaim_flag);
3898 	fs_reclaim_release(gfp_mask);
3899 
3900 	cond_resched();
3901 
3902 	return progress;
3903 }
3904 
3905 /* The really slow allocator path where we enter direct reclaim */
3906 static inline struct page *
3907 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3908 		unsigned int alloc_flags, const struct alloc_context *ac,
3909 		unsigned long *did_some_progress)
3910 {
3911 	struct page *page = NULL;
3912 	unsigned long pflags;
3913 	bool drained = false;
3914 
3915 	psi_memstall_enter(&pflags);
3916 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3917 	if (unlikely(!(*did_some_progress)))
3918 		goto out;
3919 
3920 retry:
3921 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3922 
3923 	/*
3924 	 * If an allocation failed after direct reclaim, it could be because
3925 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3926 	 * Shrink them and try again
3927 	 */
3928 	if (!page && !drained) {
3929 		unreserve_highatomic_pageblock(ac, false);
3930 		drain_all_pages(NULL);
3931 		drained = true;
3932 		goto retry;
3933 	}
3934 out:
3935 	psi_memstall_leave(&pflags);
3936 
3937 	return page;
3938 }
3939 
3940 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3941 			     const struct alloc_context *ac)
3942 {
3943 	struct zoneref *z;
3944 	struct zone *zone;
3945 	pg_data_t *last_pgdat = NULL;
3946 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3947 
3948 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3949 					ac->nodemask) {
3950 		if (!managed_zone(zone))
3951 			continue;
3952 		if (last_pgdat != zone->zone_pgdat) {
3953 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3954 			last_pgdat = zone->zone_pgdat;
3955 		}
3956 	}
3957 }
3958 
3959 static inline unsigned int
3960 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3961 {
3962 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3963 
3964 	/*
3965 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3966 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3967 	 * to save two branches.
3968 	 */
3969 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3970 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3971 
3972 	/*
3973 	 * The caller may dip into page reserves a bit more if the caller
3974 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3975 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3976 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3977 	 */
3978 	alloc_flags |= (__force int)
3979 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3980 
3981 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3982 		/*
3983 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3984 		 * if it can't schedule.
3985 		 */
3986 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3987 			alloc_flags |= ALLOC_NON_BLOCK;
3988 
3989 			if (order > 0)
3990 				alloc_flags |= ALLOC_HIGHATOMIC;
3991 		}
3992 
3993 		/*
3994 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3995 		 * GFP_ATOMIC) rather than fail, see the comment for
3996 		 * cpuset_node_allowed().
3997 		 */
3998 		if (alloc_flags & ALLOC_MIN_RESERVE)
3999 			alloc_flags &= ~ALLOC_CPUSET;
4000 	} else if (unlikely(rt_task(current)) && in_task())
4001 		alloc_flags |= ALLOC_MIN_RESERVE;
4002 
4003 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4004 
4005 	return alloc_flags;
4006 }
4007 
4008 static bool oom_reserves_allowed(struct task_struct *tsk)
4009 {
4010 	if (!tsk_is_oom_victim(tsk))
4011 		return false;
4012 
4013 	/*
4014 	 * !MMU doesn't have oom reaper so give access to memory reserves
4015 	 * only to the thread with TIF_MEMDIE set
4016 	 */
4017 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4018 		return false;
4019 
4020 	return true;
4021 }
4022 
4023 /*
4024  * Distinguish requests which really need access to full memory
4025  * reserves from oom victims which can live with a portion of it
4026  */
4027 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4028 {
4029 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4030 		return 0;
4031 	if (gfp_mask & __GFP_MEMALLOC)
4032 		return ALLOC_NO_WATERMARKS;
4033 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4034 		return ALLOC_NO_WATERMARKS;
4035 	if (!in_interrupt()) {
4036 		if (current->flags & PF_MEMALLOC)
4037 			return ALLOC_NO_WATERMARKS;
4038 		else if (oom_reserves_allowed(current))
4039 			return ALLOC_OOM;
4040 	}
4041 
4042 	return 0;
4043 }
4044 
4045 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4046 {
4047 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4048 }
4049 
4050 /*
4051  * Checks whether it makes sense to retry the reclaim to make a forward progress
4052  * for the given allocation request.
4053  *
4054  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4055  * without success, or when we couldn't even meet the watermark if we
4056  * reclaimed all remaining pages on the LRU lists.
4057  *
4058  * Returns true if a retry is viable or false to enter the oom path.
4059  */
4060 static inline bool
4061 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4062 		     struct alloc_context *ac, int alloc_flags,
4063 		     bool did_some_progress, int *no_progress_loops)
4064 {
4065 	struct zone *zone;
4066 	struct zoneref *z;
4067 	bool ret = false;
4068 
4069 	/*
4070 	 * Costly allocations might have made a progress but this doesn't mean
4071 	 * their order will become available due to high fragmentation so
4072 	 * always increment the no progress counter for them
4073 	 */
4074 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4075 		*no_progress_loops = 0;
4076 	else
4077 		(*no_progress_loops)++;
4078 
4079 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4080 		goto out;
4081 
4082 
4083 	/*
4084 	 * Keep reclaiming pages while there is a chance this will lead
4085 	 * somewhere.  If none of the target zones can satisfy our allocation
4086 	 * request even if all reclaimable pages are considered then we are
4087 	 * screwed and have to go OOM.
4088 	 */
4089 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4090 				ac->highest_zoneidx, ac->nodemask) {
4091 		unsigned long available;
4092 		unsigned long reclaimable;
4093 		unsigned long min_wmark = min_wmark_pages(zone);
4094 		bool wmark;
4095 
4096 		available = reclaimable = zone_reclaimable_pages(zone);
4097 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4098 
4099 		/*
4100 		 * Would the allocation succeed if we reclaimed all
4101 		 * reclaimable pages?
4102 		 */
4103 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4104 				ac->highest_zoneidx, alloc_flags, available);
4105 		trace_reclaim_retry_zone(z, order, reclaimable,
4106 				available, min_wmark, *no_progress_loops, wmark);
4107 		if (wmark) {
4108 			ret = true;
4109 			break;
4110 		}
4111 	}
4112 
4113 	/*
4114 	 * Memory allocation/reclaim might be called from a WQ context and the
4115 	 * current implementation of the WQ concurrency control doesn't
4116 	 * recognize that a particular WQ is congested if the worker thread is
4117 	 * looping without ever sleeping. Therefore we have to do a short sleep
4118 	 * here rather than calling cond_resched().
4119 	 */
4120 	if (current->flags & PF_WQ_WORKER)
4121 		schedule_timeout_uninterruptible(1);
4122 	else
4123 		cond_resched();
4124 out:
4125 	/* Before OOM, exhaust highatomic_reserve */
4126 	if (!ret)
4127 		return unreserve_highatomic_pageblock(ac, true);
4128 
4129 	return ret;
4130 }
4131 
4132 static inline bool
4133 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4134 {
4135 	/*
4136 	 * It's possible that cpuset's mems_allowed and the nodemask from
4137 	 * mempolicy don't intersect. This should be normally dealt with by
4138 	 * policy_nodemask(), but it's possible to race with cpuset update in
4139 	 * such a way the check therein was true, and then it became false
4140 	 * before we got our cpuset_mems_cookie here.
4141 	 * This assumes that for all allocations, ac->nodemask can come only
4142 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4143 	 * when it does not intersect with the cpuset restrictions) or the
4144 	 * caller can deal with a violated nodemask.
4145 	 */
4146 	if (cpusets_enabled() && ac->nodemask &&
4147 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4148 		ac->nodemask = NULL;
4149 		return true;
4150 	}
4151 
4152 	/*
4153 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4154 	 * possible to race with parallel threads in such a way that our
4155 	 * allocation can fail while the mask is being updated. If we are about
4156 	 * to fail, check if the cpuset changed during allocation and if so,
4157 	 * retry.
4158 	 */
4159 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4160 		return true;
4161 
4162 	return false;
4163 }
4164 
4165 static inline struct page *
4166 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4167 						struct alloc_context *ac)
4168 {
4169 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4170 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4171 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4172 	struct page *page = NULL;
4173 	unsigned int alloc_flags;
4174 	unsigned long did_some_progress;
4175 	enum compact_priority compact_priority;
4176 	enum compact_result compact_result;
4177 	int compaction_retries;
4178 	int no_progress_loops;
4179 	unsigned int cpuset_mems_cookie;
4180 	unsigned int zonelist_iter_cookie;
4181 	int reserve_flags;
4182 
4183 restart:
4184 	compaction_retries = 0;
4185 	no_progress_loops = 0;
4186 	compact_priority = DEF_COMPACT_PRIORITY;
4187 	cpuset_mems_cookie = read_mems_allowed_begin();
4188 	zonelist_iter_cookie = zonelist_iter_begin();
4189 
4190 	/*
4191 	 * The fast path uses conservative alloc_flags to succeed only until
4192 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4193 	 * alloc_flags precisely. So we do that now.
4194 	 */
4195 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4196 
4197 	/*
4198 	 * We need to recalculate the starting point for the zonelist iterator
4199 	 * because we might have used different nodemask in the fast path, or
4200 	 * there was a cpuset modification and we are retrying - otherwise we
4201 	 * could end up iterating over non-eligible zones endlessly.
4202 	 */
4203 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4204 					ac->highest_zoneidx, ac->nodemask);
4205 	if (!zonelist_zone(ac->preferred_zoneref))
4206 		goto nopage;
4207 
4208 	/*
4209 	 * Check for insane configurations where the cpuset doesn't contain
4210 	 * any suitable zone to satisfy the request - e.g. non-movable
4211 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4212 	 */
4213 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4214 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4215 					ac->highest_zoneidx,
4216 					&cpuset_current_mems_allowed);
4217 		if (!zonelist_zone(z))
4218 			goto nopage;
4219 	}
4220 
4221 	if (alloc_flags & ALLOC_KSWAPD)
4222 		wake_all_kswapds(order, gfp_mask, ac);
4223 
4224 	/*
4225 	 * The adjusted alloc_flags might result in immediate success, so try
4226 	 * that first
4227 	 */
4228 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4229 	if (page)
4230 		goto got_pg;
4231 
4232 	/*
4233 	 * For costly allocations, try direct compaction first, as it's likely
4234 	 * that we have enough base pages and don't need to reclaim. For non-
4235 	 * movable high-order allocations, do that as well, as compaction will
4236 	 * try prevent permanent fragmentation by migrating from blocks of the
4237 	 * same migratetype.
4238 	 * Don't try this for allocations that are allowed to ignore
4239 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4240 	 */
4241 	if (can_direct_reclaim && can_compact &&
4242 			(costly_order ||
4243 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4244 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4245 		page = __alloc_pages_direct_compact(gfp_mask, order,
4246 						alloc_flags, ac,
4247 						INIT_COMPACT_PRIORITY,
4248 						&compact_result);
4249 		if (page)
4250 			goto got_pg;
4251 
4252 		/*
4253 		 * Checks for costly allocations with __GFP_NORETRY, which
4254 		 * includes some THP page fault allocations
4255 		 */
4256 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4257 			/*
4258 			 * If allocating entire pageblock(s) and compaction
4259 			 * failed because all zones are below low watermarks
4260 			 * or is prohibited because it recently failed at this
4261 			 * order, fail immediately unless the allocator has
4262 			 * requested compaction and reclaim retry.
4263 			 *
4264 			 * Reclaim is
4265 			 *  - potentially very expensive because zones are far
4266 			 *    below their low watermarks or this is part of very
4267 			 *    bursty high order allocations,
4268 			 *  - not guaranteed to help because isolate_freepages()
4269 			 *    may not iterate over freed pages as part of its
4270 			 *    linear scan, and
4271 			 *  - unlikely to make entire pageblocks free on its
4272 			 *    own.
4273 			 */
4274 			if (compact_result == COMPACT_SKIPPED ||
4275 			    compact_result == COMPACT_DEFERRED)
4276 				goto nopage;
4277 
4278 			/*
4279 			 * Looks like reclaim/compaction is worth trying, but
4280 			 * sync compaction could be very expensive, so keep
4281 			 * using async compaction.
4282 			 */
4283 			compact_priority = INIT_COMPACT_PRIORITY;
4284 		}
4285 	}
4286 
4287 retry:
4288 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4289 	if (alloc_flags & ALLOC_KSWAPD)
4290 		wake_all_kswapds(order, gfp_mask, ac);
4291 
4292 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4293 	if (reserve_flags)
4294 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4295 					  (alloc_flags & ALLOC_KSWAPD);
4296 
4297 	/*
4298 	 * Reset the nodemask and zonelist iterators if memory policies can be
4299 	 * ignored. These allocations are high priority and system rather than
4300 	 * user oriented.
4301 	 */
4302 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4303 		ac->nodemask = NULL;
4304 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4305 					ac->highest_zoneidx, ac->nodemask);
4306 	}
4307 
4308 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4309 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4310 	if (page)
4311 		goto got_pg;
4312 
4313 	/* Caller is not willing to reclaim, we can't balance anything */
4314 	if (!can_direct_reclaim)
4315 		goto nopage;
4316 
4317 	/* Avoid recursion of direct reclaim */
4318 	if (current->flags & PF_MEMALLOC)
4319 		goto nopage;
4320 
4321 	/* Try direct reclaim and then allocating */
4322 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4323 							&did_some_progress);
4324 	if (page)
4325 		goto got_pg;
4326 
4327 	/* Try direct compaction and then allocating */
4328 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4329 					compact_priority, &compact_result);
4330 	if (page)
4331 		goto got_pg;
4332 
4333 	/* Do not loop if specifically requested */
4334 	if (gfp_mask & __GFP_NORETRY)
4335 		goto nopage;
4336 
4337 	/*
4338 	 * Do not retry costly high order allocations unless they are
4339 	 * __GFP_RETRY_MAYFAIL and we can compact
4340 	 */
4341 	if (costly_order && (!can_compact ||
4342 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4343 		goto nopage;
4344 
4345 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4346 				 did_some_progress > 0, &no_progress_loops))
4347 		goto retry;
4348 
4349 	/*
4350 	 * It doesn't make any sense to retry for the compaction if the order-0
4351 	 * reclaim is not able to make any progress because the current
4352 	 * implementation of the compaction depends on the sufficient amount
4353 	 * of free memory (see __compaction_suitable)
4354 	 */
4355 	if (did_some_progress > 0 && can_compact &&
4356 			should_compact_retry(ac, order, alloc_flags,
4357 				compact_result, &compact_priority,
4358 				&compaction_retries))
4359 		goto retry;
4360 
4361 
4362 	/*
4363 	 * Deal with possible cpuset update races or zonelist updates to avoid
4364 	 * a unnecessary OOM kill.
4365 	 */
4366 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4367 	    check_retry_zonelist(zonelist_iter_cookie))
4368 		goto restart;
4369 
4370 	/* Reclaim has failed us, start killing things */
4371 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4372 	if (page)
4373 		goto got_pg;
4374 
4375 	/* Avoid allocations with no watermarks from looping endlessly */
4376 	if (tsk_is_oom_victim(current) &&
4377 	    (alloc_flags & ALLOC_OOM ||
4378 	     (gfp_mask & __GFP_NOMEMALLOC)))
4379 		goto nopage;
4380 
4381 	/* Retry as long as the OOM killer is making progress */
4382 	if (did_some_progress) {
4383 		no_progress_loops = 0;
4384 		goto retry;
4385 	}
4386 
4387 nopage:
4388 	/*
4389 	 * Deal with possible cpuset update races or zonelist updates to avoid
4390 	 * a unnecessary OOM kill.
4391 	 */
4392 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4393 	    check_retry_zonelist(zonelist_iter_cookie))
4394 		goto restart;
4395 
4396 	/*
4397 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4398 	 * we always retry
4399 	 */
4400 	if (gfp_mask & __GFP_NOFAIL) {
4401 		/*
4402 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4403 		 * of any new users that actually require GFP_NOWAIT
4404 		 */
4405 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4406 			goto fail;
4407 
4408 		/*
4409 		 * PF_MEMALLOC request from this context is rather bizarre
4410 		 * because we cannot reclaim anything and only can loop waiting
4411 		 * for somebody to do a work for us
4412 		 */
4413 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4414 
4415 		/*
4416 		 * non failing costly orders are a hard requirement which we
4417 		 * are not prepared for much so let's warn about these users
4418 		 * so that we can identify them and convert them to something
4419 		 * else.
4420 		 */
4421 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4422 
4423 		/*
4424 		 * Help non-failing allocations by giving some access to memory
4425 		 * reserves normally used for high priority non-blocking
4426 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4427 		 * could deplete whole memory reserves which would just make
4428 		 * the situation worse.
4429 		 */
4430 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4431 		if (page)
4432 			goto got_pg;
4433 
4434 		cond_resched();
4435 		goto retry;
4436 	}
4437 fail:
4438 	warn_alloc(gfp_mask, ac->nodemask,
4439 			"page allocation failure: order:%u", order);
4440 got_pg:
4441 	return page;
4442 }
4443 
4444 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4445 		int preferred_nid, nodemask_t *nodemask,
4446 		struct alloc_context *ac, gfp_t *alloc_gfp,
4447 		unsigned int *alloc_flags)
4448 {
4449 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4450 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4451 	ac->nodemask = nodemask;
4452 	ac->migratetype = gfp_migratetype(gfp_mask);
4453 
4454 	if (cpusets_enabled()) {
4455 		*alloc_gfp |= __GFP_HARDWALL;
4456 		/*
4457 		 * When we are in the interrupt context, it is irrelevant
4458 		 * to the current task context. It means that any node ok.
4459 		 */
4460 		if (in_task() && !ac->nodemask)
4461 			ac->nodemask = &cpuset_current_mems_allowed;
4462 		else
4463 			*alloc_flags |= ALLOC_CPUSET;
4464 	}
4465 
4466 	might_alloc(gfp_mask);
4467 
4468 	if (should_fail_alloc_page(gfp_mask, order))
4469 		return false;
4470 
4471 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4472 
4473 	/* Dirty zone balancing only done in the fast path */
4474 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4475 
4476 	/*
4477 	 * The preferred zone is used for statistics but crucially it is
4478 	 * also used as the starting point for the zonelist iterator. It
4479 	 * may get reset for allocations that ignore memory policies.
4480 	 */
4481 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4482 					ac->highest_zoneidx, ac->nodemask);
4483 
4484 	return true;
4485 }
4486 
4487 /*
4488  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4489  * @gfp: GFP flags for the allocation
4490  * @preferred_nid: The preferred NUMA node ID to allocate from
4491  * @nodemask: Set of nodes to allocate from, may be NULL
4492  * @nr_pages: The number of pages desired on the list or array
4493  * @page_list: Optional list to store the allocated pages
4494  * @page_array: Optional array to store the pages
4495  *
4496  * This is a batched version of the page allocator that attempts to
4497  * allocate nr_pages quickly. Pages are added to page_list if page_list
4498  * is not NULL, otherwise it is assumed that the page_array is valid.
4499  *
4500  * For lists, nr_pages is the number of pages that should be allocated.
4501  *
4502  * For arrays, only NULL elements are populated with pages and nr_pages
4503  * is the maximum number of pages that will be stored in the array.
4504  *
4505  * Returns the number of pages on the list or array.
4506  */
4507 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4508 			nodemask_t *nodemask, int nr_pages,
4509 			struct list_head *page_list,
4510 			struct page **page_array)
4511 {
4512 	struct page *page;
4513 	unsigned long __maybe_unused UP_flags;
4514 	struct zone *zone;
4515 	struct zoneref *z;
4516 	struct per_cpu_pages *pcp;
4517 	struct list_head *pcp_list;
4518 	struct alloc_context ac;
4519 	gfp_t alloc_gfp;
4520 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4521 	int nr_populated = 0, nr_account = 0;
4522 
4523 	/*
4524 	 * Skip populated array elements to determine if any pages need
4525 	 * to be allocated before disabling IRQs.
4526 	 */
4527 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4528 		nr_populated++;
4529 
4530 	/* No pages requested? */
4531 	if (unlikely(nr_pages <= 0))
4532 		goto out;
4533 
4534 	/* Already populated array? */
4535 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4536 		goto out;
4537 
4538 	/* Bulk allocator does not support memcg accounting. */
4539 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4540 		goto failed;
4541 
4542 	/* Use the single page allocator for one page. */
4543 	if (nr_pages - nr_populated == 1)
4544 		goto failed;
4545 
4546 #ifdef CONFIG_PAGE_OWNER
4547 	/*
4548 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4549 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4550 	 * removes much of the performance benefit of bulk allocation so
4551 	 * force the caller to allocate one page at a time as it'll have
4552 	 * similar performance to added complexity to the bulk allocator.
4553 	 */
4554 	if (static_branch_unlikely(&page_owner_inited))
4555 		goto failed;
4556 #endif
4557 
4558 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4559 	gfp &= gfp_allowed_mask;
4560 	alloc_gfp = gfp;
4561 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4562 		goto out;
4563 	gfp = alloc_gfp;
4564 
4565 	/* Find an allowed local zone that meets the low watermark. */
4566 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4567 		unsigned long mark;
4568 
4569 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4570 		    !__cpuset_zone_allowed(zone, gfp)) {
4571 			continue;
4572 		}
4573 
4574 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4575 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4576 			goto failed;
4577 		}
4578 
4579 		cond_accept_memory(zone, 0);
4580 retry_this_zone:
4581 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4582 		if (zone_watermark_fast(zone, 0,  mark,
4583 				zonelist_zone_idx(ac.preferred_zoneref),
4584 				alloc_flags, gfp)) {
4585 			break;
4586 		}
4587 
4588 		if (cond_accept_memory(zone, 0))
4589 			goto retry_this_zone;
4590 
4591 		/* Try again if zone has deferred pages */
4592 		if (deferred_pages_enabled()) {
4593 			if (_deferred_grow_zone(zone, 0))
4594 				goto retry_this_zone;
4595 		}
4596 	}
4597 
4598 	/*
4599 	 * If there are no allowed local zones that meets the watermarks then
4600 	 * try to allocate a single page and reclaim if necessary.
4601 	 */
4602 	if (unlikely(!zone))
4603 		goto failed;
4604 
4605 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4606 	pcp_trylock_prepare(UP_flags);
4607 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4608 	if (!pcp)
4609 		goto failed_irq;
4610 
4611 	/* Attempt the batch allocation */
4612 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4613 	while (nr_populated < nr_pages) {
4614 
4615 		/* Skip existing pages */
4616 		if (page_array && page_array[nr_populated]) {
4617 			nr_populated++;
4618 			continue;
4619 		}
4620 
4621 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4622 								pcp, pcp_list);
4623 		if (unlikely(!page)) {
4624 			/* Try and allocate at least one page */
4625 			if (!nr_account) {
4626 				pcp_spin_unlock(pcp);
4627 				goto failed_irq;
4628 			}
4629 			break;
4630 		}
4631 		nr_account++;
4632 
4633 		prep_new_page(page, 0, gfp, 0);
4634 		if (page_list)
4635 			list_add(&page->lru, page_list);
4636 		else
4637 			page_array[nr_populated] = page;
4638 		nr_populated++;
4639 	}
4640 
4641 	pcp_spin_unlock(pcp);
4642 	pcp_trylock_finish(UP_flags);
4643 
4644 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4645 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4646 
4647 out:
4648 	return nr_populated;
4649 
4650 failed_irq:
4651 	pcp_trylock_finish(UP_flags);
4652 
4653 failed:
4654 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4655 	if (page) {
4656 		if (page_list)
4657 			list_add(&page->lru, page_list);
4658 		else
4659 			page_array[nr_populated] = page;
4660 		nr_populated++;
4661 	}
4662 
4663 	goto out;
4664 }
4665 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4666 
4667 /*
4668  * This is the 'heart' of the zoned buddy allocator.
4669  */
4670 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4671 				      int preferred_nid, nodemask_t *nodemask)
4672 {
4673 	struct page *page;
4674 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4675 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4676 	struct alloc_context ac = { };
4677 
4678 	/*
4679 	 * There are several places where we assume that the order value is sane
4680 	 * so bail out early if the request is out of bound.
4681 	 */
4682 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4683 		return NULL;
4684 
4685 	gfp &= gfp_allowed_mask;
4686 	/*
4687 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4688 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4689 	 * from a particular context which has been marked by
4690 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4691 	 * movable zones are not used during allocation.
4692 	 */
4693 	gfp = current_gfp_context(gfp);
4694 	alloc_gfp = gfp;
4695 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4696 			&alloc_gfp, &alloc_flags))
4697 		return NULL;
4698 
4699 	/*
4700 	 * Forbid the first pass from falling back to types that fragment
4701 	 * memory until all local zones are considered.
4702 	 */
4703 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4704 
4705 	/* First allocation attempt */
4706 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4707 	if (likely(page))
4708 		goto out;
4709 
4710 	alloc_gfp = gfp;
4711 	ac.spread_dirty_pages = false;
4712 
4713 	/*
4714 	 * Restore the original nodemask if it was potentially replaced with
4715 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4716 	 */
4717 	ac.nodemask = nodemask;
4718 
4719 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4720 
4721 out:
4722 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4723 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4724 		__free_pages(page, order);
4725 		page = NULL;
4726 	}
4727 
4728 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4729 	kmsan_alloc_page(page, order, alloc_gfp);
4730 
4731 	return page;
4732 }
4733 EXPORT_SYMBOL(__alloc_pages_noprof);
4734 
4735 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4736 		nodemask_t *nodemask)
4737 {
4738 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4739 					preferred_nid, nodemask);
4740 	return page_rmappable_folio(page);
4741 }
4742 EXPORT_SYMBOL(__folio_alloc_noprof);
4743 
4744 /*
4745  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4746  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4747  * you need to access high mem.
4748  */
4749 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4750 {
4751 	struct page *page;
4752 
4753 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4754 	if (!page)
4755 		return 0;
4756 	return (unsigned long) page_address(page);
4757 }
4758 EXPORT_SYMBOL(get_free_pages_noprof);
4759 
4760 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4761 {
4762 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4763 }
4764 EXPORT_SYMBOL(get_zeroed_page_noprof);
4765 
4766 /**
4767  * __free_pages - Free pages allocated with alloc_pages().
4768  * @page: The page pointer returned from alloc_pages().
4769  * @order: The order of the allocation.
4770  *
4771  * This function can free multi-page allocations that are not compound
4772  * pages.  It does not check that the @order passed in matches that of
4773  * the allocation, so it is easy to leak memory.  Freeing more memory
4774  * than was allocated will probably emit a warning.
4775  *
4776  * If the last reference to this page is speculative, it will be released
4777  * by put_page() which only frees the first page of a non-compound
4778  * allocation.  To prevent the remaining pages from being leaked, we free
4779  * the subsequent pages here.  If you want to use the page's reference
4780  * count to decide when to free the allocation, you should allocate a
4781  * compound page, and use put_page() instead of __free_pages().
4782  *
4783  * Context: May be called in interrupt context or while holding a normal
4784  * spinlock, but not in NMI context or while holding a raw spinlock.
4785  */
4786 void __free_pages(struct page *page, unsigned int order)
4787 {
4788 	/* get PageHead before we drop reference */
4789 	int head = PageHead(page);
4790 	struct alloc_tag *tag = pgalloc_tag_get(page);
4791 
4792 	if (put_page_testzero(page))
4793 		free_unref_page(page, order);
4794 	else if (!head) {
4795 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4796 		while (order-- > 0)
4797 			free_unref_page(page + (1 << order), order);
4798 	}
4799 }
4800 EXPORT_SYMBOL(__free_pages);
4801 
4802 void free_pages(unsigned long addr, unsigned int order)
4803 {
4804 	if (addr != 0) {
4805 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4806 		__free_pages(virt_to_page((void *)addr), order);
4807 	}
4808 }
4809 
4810 EXPORT_SYMBOL(free_pages);
4811 
4812 /*
4813  * Page Fragment:
4814  *  An arbitrary-length arbitrary-offset area of memory which resides
4815  *  within a 0 or higher order page.  Multiple fragments within that page
4816  *  are individually refcounted, in the page's reference counter.
4817  *
4818  * The page_frag functions below provide a simple allocation framework for
4819  * page fragments.  This is used by the network stack and network device
4820  * drivers to provide a backing region of memory for use as either an
4821  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4822  */
4823 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4824 					     gfp_t gfp_mask)
4825 {
4826 	struct page *page = NULL;
4827 	gfp_t gfp = gfp_mask;
4828 
4829 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4830 	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4831 		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4832 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4833 				PAGE_FRAG_CACHE_MAX_ORDER);
4834 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4835 #endif
4836 	if (unlikely(!page))
4837 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4838 
4839 	nc->va = page ? page_address(page) : NULL;
4840 
4841 	return page;
4842 }
4843 
4844 void page_frag_cache_drain(struct page_frag_cache *nc)
4845 {
4846 	if (!nc->va)
4847 		return;
4848 
4849 	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4850 	nc->va = NULL;
4851 }
4852 EXPORT_SYMBOL(page_frag_cache_drain);
4853 
4854 void __page_frag_cache_drain(struct page *page, unsigned int count)
4855 {
4856 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4857 
4858 	if (page_ref_sub_and_test(page, count))
4859 		free_unref_page(page, compound_order(page));
4860 }
4861 EXPORT_SYMBOL(__page_frag_cache_drain);
4862 
4863 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4864 			      unsigned int fragsz, gfp_t gfp_mask,
4865 			      unsigned int align_mask)
4866 {
4867 	unsigned int size = PAGE_SIZE;
4868 	struct page *page;
4869 	int offset;
4870 
4871 	if (unlikely(!nc->va)) {
4872 refill:
4873 		page = __page_frag_cache_refill(nc, gfp_mask);
4874 		if (!page)
4875 			return NULL;
4876 
4877 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4878 		/* if size can vary use size else just use PAGE_SIZE */
4879 		size = nc->size;
4880 #endif
4881 		/* Even if we own the page, we do not use atomic_set().
4882 		 * This would break get_page_unless_zero() users.
4883 		 */
4884 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4885 
4886 		/* reset page count bias and offset to start of new frag */
4887 		nc->pfmemalloc = page_is_pfmemalloc(page);
4888 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4889 		nc->offset = size;
4890 	}
4891 
4892 	offset = nc->offset - fragsz;
4893 	if (unlikely(offset < 0)) {
4894 		page = virt_to_page(nc->va);
4895 
4896 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4897 			goto refill;
4898 
4899 		if (unlikely(nc->pfmemalloc)) {
4900 			free_unref_page(page, compound_order(page));
4901 			goto refill;
4902 		}
4903 
4904 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4905 		/* if size can vary use size else just use PAGE_SIZE */
4906 		size = nc->size;
4907 #endif
4908 		/* OK, page count is 0, we can safely set it */
4909 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4910 
4911 		/* reset page count bias and offset to start of new frag */
4912 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4913 		offset = size - fragsz;
4914 		if (unlikely(offset < 0)) {
4915 			/*
4916 			 * The caller is trying to allocate a fragment
4917 			 * with fragsz > PAGE_SIZE but the cache isn't big
4918 			 * enough to satisfy the request, this may
4919 			 * happen in low memory conditions.
4920 			 * We don't release the cache page because
4921 			 * it could make memory pressure worse
4922 			 * so we simply return NULL here.
4923 			 */
4924 			return NULL;
4925 		}
4926 	}
4927 
4928 	nc->pagecnt_bias--;
4929 	offset &= align_mask;
4930 	nc->offset = offset;
4931 
4932 	return nc->va + offset;
4933 }
4934 EXPORT_SYMBOL(__page_frag_alloc_align);
4935 
4936 /*
4937  * Frees a page fragment allocated out of either a compound or order 0 page.
4938  */
4939 void page_frag_free(void *addr)
4940 {
4941 	struct page *page = virt_to_head_page(addr);
4942 
4943 	if (unlikely(put_page_testzero(page)))
4944 		free_unref_page(page, compound_order(page));
4945 }
4946 EXPORT_SYMBOL(page_frag_free);
4947 
4948 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4949 		size_t size)
4950 {
4951 	if (addr) {
4952 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4953 		struct page *page = virt_to_page((void *)addr);
4954 		struct page *last = page + nr;
4955 
4956 		split_page_owner(page, order, 0);
4957 		pgalloc_tag_split(page, 1 << order);
4958 		split_page_memcg(page, order, 0);
4959 		while (page < --last)
4960 			set_page_refcounted(last);
4961 
4962 		last = page + (1UL << order);
4963 		for (page += nr; page < last; page++)
4964 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4965 	}
4966 	return (void *)addr;
4967 }
4968 
4969 /**
4970  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4971  * @size: the number of bytes to allocate
4972  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4973  *
4974  * This function is similar to alloc_pages(), except that it allocates the
4975  * minimum number of pages to satisfy the request.  alloc_pages() can only
4976  * allocate memory in power-of-two pages.
4977  *
4978  * This function is also limited by MAX_PAGE_ORDER.
4979  *
4980  * Memory allocated by this function must be released by free_pages_exact().
4981  *
4982  * Return: pointer to the allocated area or %NULL in case of error.
4983  */
4984 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4985 {
4986 	unsigned int order = get_order(size);
4987 	unsigned long addr;
4988 
4989 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4990 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4991 
4992 	addr = get_free_pages_noprof(gfp_mask, order);
4993 	return make_alloc_exact(addr, order, size);
4994 }
4995 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4996 
4997 /**
4998  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4999  *			   pages on a node.
5000  * @nid: the preferred node ID where memory should be allocated
5001  * @size: the number of bytes to allocate
5002  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5003  *
5004  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5005  * back.
5006  *
5007  * Return: pointer to the allocated area or %NULL in case of error.
5008  */
5009 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5010 {
5011 	unsigned int order = get_order(size);
5012 	struct page *p;
5013 
5014 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5015 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5016 
5017 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5018 	if (!p)
5019 		return NULL;
5020 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5021 }
5022 
5023 /**
5024  * free_pages_exact - release memory allocated via alloc_pages_exact()
5025  * @virt: the value returned by alloc_pages_exact.
5026  * @size: size of allocation, same value as passed to alloc_pages_exact().
5027  *
5028  * Release the memory allocated by a previous call to alloc_pages_exact.
5029  */
5030 void free_pages_exact(void *virt, size_t size)
5031 {
5032 	unsigned long addr = (unsigned long)virt;
5033 	unsigned long end = addr + PAGE_ALIGN(size);
5034 
5035 	while (addr < end) {
5036 		free_page(addr);
5037 		addr += PAGE_SIZE;
5038 	}
5039 }
5040 EXPORT_SYMBOL(free_pages_exact);
5041 
5042 /**
5043  * nr_free_zone_pages - count number of pages beyond high watermark
5044  * @offset: The zone index of the highest zone
5045  *
5046  * nr_free_zone_pages() counts the number of pages which are beyond the
5047  * high watermark within all zones at or below a given zone index.  For each
5048  * zone, the number of pages is calculated as:
5049  *
5050  *     nr_free_zone_pages = managed_pages - high_pages
5051  *
5052  * Return: number of pages beyond high watermark.
5053  */
5054 static unsigned long nr_free_zone_pages(int offset)
5055 {
5056 	struct zoneref *z;
5057 	struct zone *zone;
5058 
5059 	/* Just pick one node, since fallback list is circular */
5060 	unsigned long sum = 0;
5061 
5062 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5063 
5064 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5065 		unsigned long size = zone_managed_pages(zone);
5066 		unsigned long high = high_wmark_pages(zone);
5067 		if (size > high)
5068 			sum += size - high;
5069 	}
5070 
5071 	return sum;
5072 }
5073 
5074 /**
5075  * nr_free_buffer_pages - count number of pages beyond high watermark
5076  *
5077  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5078  * watermark within ZONE_DMA and ZONE_NORMAL.
5079  *
5080  * Return: number of pages beyond high watermark within ZONE_DMA and
5081  * ZONE_NORMAL.
5082  */
5083 unsigned long nr_free_buffer_pages(void)
5084 {
5085 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5086 }
5087 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5088 
5089 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5090 {
5091 	zoneref->zone = zone;
5092 	zoneref->zone_idx = zone_idx(zone);
5093 }
5094 
5095 /*
5096  * Builds allocation fallback zone lists.
5097  *
5098  * Add all populated zones of a node to the zonelist.
5099  */
5100 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5101 {
5102 	struct zone *zone;
5103 	enum zone_type zone_type = MAX_NR_ZONES;
5104 	int nr_zones = 0;
5105 
5106 	do {
5107 		zone_type--;
5108 		zone = pgdat->node_zones + zone_type;
5109 		if (populated_zone(zone)) {
5110 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5111 			check_highest_zone(zone_type);
5112 		}
5113 	} while (zone_type);
5114 
5115 	return nr_zones;
5116 }
5117 
5118 #ifdef CONFIG_NUMA
5119 
5120 static int __parse_numa_zonelist_order(char *s)
5121 {
5122 	/*
5123 	 * We used to support different zonelists modes but they turned
5124 	 * out to be just not useful. Let's keep the warning in place
5125 	 * if somebody still use the cmd line parameter so that we do
5126 	 * not fail it silently
5127 	 */
5128 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5129 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5130 		return -EINVAL;
5131 	}
5132 	return 0;
5133 }
5134 
5135 static char numa_zonelist_order[] = "Node";
5136 #define NUMA_ZONELIST_ORDER_LEN	16
5137 /*
5138  * sysctl handler for numa_zonelist_order
5139  */
5140 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5141 		void *buffer, size_t *length, loff_t *ppos)
5142 {
5143 	if (write)
5144 		return __parse_numa_zonelist_order(buffer);
5145 	return proc_dostring(table, write, buffer, length, ppos);
5146 }
5147 
5148 static int node_load[MAX_NUMNODES];
5149 
5150 /**
5151  * find_next_best_node - find the next node that should appear in a given node's fallback list
5152  * @node: node whose fallback list we're appending
5153  * @used_node_mask: nodemask_t of already used nodes
5154  *
5155  * We use a number of factors to determine which is the next node that should
5156  * appear on a given node's fallback list.  The node should not have appeared
5157  * already in @node's fallback list, and it should be the next closest node
5158  * according to the distance array (which contains arbitrary distance values
5159  * from each node to each node in the system), and should also prefer nodes
5160  * with no CPUs, since presumably they'll have very little allocation pressure
5161  * on them otherwise.
5162  *
5163  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5164  */
5165 int find_next_best_node(int node, nodemask_t *used_node_mask)
5166 {
5167 	int n, val;
5168 	int min_val = INT_MAX;
5169 	int best_node = NUMA_NO_NODE;
5170 
5171 	/*
5172 	 * Use the local node if we haven't already, but for memoryless local
5173 	 * node, we should skip it and fall back to other nodes.
5174 	 */
5175 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5176 		node_set(node, *used_node_mask);
5177 		return node;
5178 	}
5179 
5180 	for_each_node_state(n, N_MEMORY) {
5181 
5182 		/* Don't want a node to appear more than once */
5183 		if (node_isset(n, *used_node_mask))
5184 			continue;
5185 
5186 		/* Use the distance array to find the distance */
5187 		val = node_distance(node, n);
5188 
5189 		/* Penalize nodes under us ("prefer the next node") */
5190 		val += (n < node);
5191 
5192 		/* Give preference to headless and unused nodes */
5193 		if (!cpumask_empty(cpumask_of_node(n)))
5194 			val += PENALTY_FOR_NODE_WITH_CPUS;
5195 
5196 		/* Slight preference for less loaded node */
5197 		val *= MAX_NUMNODES;
5198 		val += node_load[n];
5199 
5200 		if (val < min_val) {
5201 			min_val = val;
5202 			best_node = n;
5203 		}
5204 	}
5205 
5206 	if (best_node >= 0)
5207 		node_set(best_node, *used_node_mask);
5208 
5209 	return best_node;
5210 }
5211 
5212 
5213 /*
5214  * Build zonelists ordered by node and zones within node.
5215  * This results in maximum locality--normal zone overflows into local
5216  * DMA zone, if any--but risks exhausting DMA zone.
5217  */
5218 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5219 		unsigned nr_nodes)
5220 {
5221 	struct zoneref *zonerefs;
5222 	int i;
5223 
5224 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5225 
5226 	for (i = 0; i < nr_nodes; i++) {
5227 		int nr_zones;
5228 
5229 		pg_data_t *node = NODE_DATA(node_order[i]);
5230 
5231 		nr_zones = build_zonerefs_node(node, zonerefs);
5232 		zonerefs += nr_zones;
5233 	}
5234 	zonerefs->zone = NULL;
5235 	zonerefs->zone_idx = 0;
5236 }
5237 
5238 /*
5239  * Build __GFP_THISNODE zonelists
5240  */
5241 static void build_thisnode_zonelists(pg_data_t *pgdat)
5242 {
5243 	struct zoneref *zonerefs;
5244 	int nr_zones;
5245 
5246 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5247 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5248 	zonerefs += nr_zones;
5249 	zonerefs->zone = NULL;
5250 	zonerefs->zone_idx = 0;
5251 }
5252 
5253 /*
5254  * Build zonelists ordered by zone and nodes within zones.
5255  * This results in conserving DMA zone[s] until all Normal memory is
5256  * exhausted, but results in overflowing to remote node while memory
5257  * may still exist in local DMA zone.
5258  */
5259 
5260 static void build_zonelists(pg_data_t *pgdat)
5261 {
5262 	static int node_order[MAX_NUMNODES];
5263 	int node, nr_nodes = 0;
5264 	nodemask_t used_mask = NODE_MASK_NONE;
5265 	int local_node, prev_node;
5266 
5267 	/* NUMA-aware ordering of nodes */
5268 	local_node = pgdat->node_id;
5269 	prev_node = local_node;
5270 
5271 	memset(node_order, 0, sizeof(node_order));
5272 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5273 		/*
5274 		 * We don't want to pressure a particular node.
5275 		 * So adding penalty to the first node in same
5276 		 * distance group to make it round-robin.
5277 		 */
5278 		if (node_distance(local_node, node) !=
5279 		    node_distance(local_node, prev_node))
5280 			node_load[node] += 1;
5281 
5282 		node_order[nr_nodes++] = node;
5283 		prev_node = node;
5284 	}
5285 
5286 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5287 	build_thisnode_zonelists(pgdat);
5288 	pr_info("Fallback order for Node %d: ", local_node);
5289 	for (node = 0; node < nr_nodes; node++)
5290 		pr_cont("%d ", node_order[node]);
5291 	pr_cont("\n");
5292 }
5293 
5294 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5295 /*
5296  * Return node id of node used for "local" allocations.
5297  * I.e., first node id of first zone in arg node's generic zonelist.
5298  * Used for initializing percpu 'numa_mem', which is used primarily
5299  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5300  */
5301 int local_memory_node(int node)
5302 {
5303 	struct zoneref *z;
5304 
5305 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5306 				   gfp_zone(GFP_KERNEL),
5307 				   NULL);
5308 	return zonelist_node_idx(z);
5309 }
5310 #endif
5311 
5312 static void setup_min_unmapped_ratio(void);
5313 static void setup_min_slab_ratio(void);
5314 #else	/* CONFIG_NUMA */
5315 
5316 static void build_zonelists(pg_data_t *pgdat)
5317 {
5318 	struct zoneref *zonerefs;
5319 	int nr_zones;
5320 
5321 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5322 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5323 	zonerefs += nr_zones;
5324 
5325 	zonerefs->zone = NULL;
5326 	zonerefs->zone_idx = 0;
5327 }
5328 
5329 #endif	/* CONFIG_NUMA */
5330 
5331 /*
5332  * Boot pageset table. One per cpu which is going to be used for all
5333  * zones and all nodes. The parameters will be set in such a way
5334  * that an item put on a list will immediately be handed over to
5335  * the buddy list. This is safe since pageset manipulation is done
5336  * with interrupts disabled.
5337  *
5338  * The boot_pagesets must be kept even after bootup is complete for
5339  * unused processors and/or zones. They do play a role for bootstrapping
5340  * hotplugged processors.
5341  *
5342  * zoneinfo_show() and maybe other functions do
5343  * not check if the processor is online before following the pageset pointer.
5344  * Other parts of the kernel may not check if the zone is available.
5345  */
5346 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5347 /* These effectively disable the pcplists in the boot pageset completely */
5348 #define BOOT_PAGESET_HIGH	0
5349 #define BOOT_PAGESET_BATCH	1
5350 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5351 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5352 
5353 static void __build_all_zonelists(void *data)
5354 {
5355 	int nid;
5356 	int __maybe_unused cpu;
5357 	pg_data_t *self = data;
5358 	unsigned long flags;
5359 
5360 	/*
5361 	 * The zonelist_update_seq must be acquired with irqsave because the
5362 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5363 	 */
5364 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5365 	/*
5366 	 * Also disable synchronous printk() to prevent any printk() from
5367 	 * trying to hold port->lock, for
5368 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5369 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5370 	 */
5371 	printk_deferred_enter();
5372 
5373 #ifdef CONFIG_NUMA
5374 	memset(node_load, 0, sizeof(node_load));
5375 #endif
5376 
5377 	/*
5378 	 * This node is hotadded and no memory is yet present.   So just
5379 	 * building zonelists is fine - no need to touch other nodes.
5380 	 */
5381 	if (self && !node_online(self->node_id)) {
5382 		build_zonelists(self);
5383 	} else {
5384 		/*
5385 		 * All possible nodes have pgdat preallocated
5386 		 * in free_area_init
5387 		 */
5388 		for_each_node(nid) {
5389 			pg_data_t *pgdat = NODE_DATA(nid);
5390 
5391 			build_zonelists(pgdat);
5392 		}
5393 
5394 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5395 		/*
5396 		 * We now know the "local memory node" for each node--
5397 		 * i.e., the node of the first zone in the generic zonelist.
5398 		 * Set up numa_mem percpu variable for on-line cpus.  During
5399 		 * boot, only the boot cpu should be on-line;  we'll init the
5400 		 * secondary cpus' numa_mem as they come on-line.  During
5401 		 * node/memory hotplug, we'll fixup all on-line cpus.
5402 		 */
5403 		for_each_online_cpu(cpu)
5404 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5405 #endif
5406 	}
5407 
5408 	printk_deferred_exit();
5409 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5410 }
5411 
5412 static noinline void __init
5413 build_all_zonelists_init(void)
5414 {
5415 	int cpu;
5416 
5417 	__build_all_zonelists(NULL);
5418 
5419 	/*
5420 	 * Initialize the boot_pagesets that are going to be used
5421 	 * for bootstrapping processors. The real pagesets for
5422 	 * each zone will be allocated later when the per cpu
5423 	 * allocator is available.
5424 	 *
5425 	 * boot_pagesets are used also for bootstrapping offline
5426 	 * cpus if the system is already booted because the pagesets
5427 	 * are needed to initialize allocators on a specific cpu too.
5428 	 * F.e. the percpu allocator needs the page allocator which
5429 	 * needs the percpu allocator in order to allocate its pagesets
5430 	 * (a chicken-egg dilemma).
5431 	 */
5432 	for_each_possible_cpu(cpu)
5433 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5434 
5435 	mminit_verify_zonelist();
5436 	cpuset_init_current_mems_allowed();
5437 }
5438 
5439 /*
5440  * unless system_state == SYSTEM_BOOTING.
5441  *
5442  * __ref due to call of __init annotated helper build_all_zonelists_init
5443  * [protected by SYSTEM_BOOTING].
5444  */
5445 void __ref build_all_zonelists(pg_data_t *pgdat)
5446 {
5447 	unsigned long vm_total_pages;
5448 
5449 	if (system_state == SYSTEM_BOOTING) {
5450 		build_all_zonelists_init();
5451 	} else {
5452 		__build_all_zonelists(pgdat);
5453 		/* cpuset refresh routine should be here */
5454 	}
5455 	/* Get the number of free pages beyond high watermark in all zones. */
5456 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5457 	/*
5458 	 * Disable grouping by mobility if the number of pages in the
5459 	 * system is too low to allow the mechanism to work. It would be
5460 	 * more accurate, but expensive to check per-zone. This check is
5461 	 * made on memory-hotadd so a system can start with mobility
5462 	 * disabled and enable it later
5463 	 */
5464 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5465 		page_group_by_mobility_disabled = 1;
5466 	else
5467 		page_group_by_mobility_disabled = 0;
5468 
5469 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5470 		nr_online_nodes,
5471 		page_group_by_mobility_disabled ? "off" : "on",
5472 		vm_total_pages);
5473 #ifdef CONFIG_NUMA
5474 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5475 #endif
5476 }
5477 
5478 static int zone_batchsize(struct zone *zone)
5479 {
5480 #ifdef CONFIG_MMU
5481 	int batch;
5482 
5483 	/*
5484 	 * The number of pages to batch allocate is either ~0.1%
5485 	 * of the zone or 1MB, whichever is smaller. The batch
5486 	 * size is striking a balance between allocation latency
5487 	 * and zone lock contention.
5488 	 */
5489 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5490 	batch /= 4;		/* We effectively *= 4 below */
5491 	if (batch < 1)
5492 		batch = 1;
5493 
5494 	/*
5495 	 * Clamp the batch to a 2^n - 1 value. Having a power
5496 	 * of 2 value was found to be more likely to have
5497 	 * suboptimal cache aliasing properties in some cases.
5498 	 *
5499 	 * For example if 2 tasks are alternately allocating
5500 	 * batches of pages, one task can end up with a lot
5501 	 * of pages of one half of the possible page colors
5502 	 * and the other with pages of the other colors.
5503 	 */
5504 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5505 
5506 	return batch;
5507 
5508 #else
5509 	/* The deferral and batching of frees should be suppressed under NOMMU
5510 	 * conditions.
5511 	 *
5512 	 * The problem is that NOMMU needs to be able to allocate large chunks
5513 	 * of contiguous memory as there's no hardware page translation to
5514 	 * assemble apparent contiguous memory from discontiguous pages.
5515 	 *
5516 	 * Queueing large contiguous runs of pages for batching, however,
5517 	 * causes the pages to actually be freed in smaller chunks.  As there
5518 	 * can be a significant delay between the individual batches being
5519 	 * recycled, this leads to the once large chunks of space being
5520 	 * fragmented and becoming unavailable for high-order allocations.
5521 	 */
5522 	return 0;
5523 #endif
5524 }
5525 
5526 static int percpu_pagelist_high_fraction;
5527 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5528 			 int high_fraction)
5529 {
5530 #ifdef CONFIG_MMU
5531 	int high;
5532 	int nr_split_cpus;
5533 	unsigned long total_pages;
5534 
5535 	if (!high_fraction) {
5536 		/*
5537 		 * By default, the high value of the pcp is based on the zone
5538 		 * low watermark so that if they are full then background
5539 		 * reclaim will not be started prematurely.
5540 		 */
5541 		total_pages = low_wmark_pages(zone);
5542 	} else {
5543 		/*
5544 		 * If percpu_pagelist_high_fraction is configured, the high
5545 		 * value is based on a fraction of the managed pages in the
5546 		 * zone.
5547 		 */
5548 		total_pages = zone_managed_pages(zone) / high_fraction;
5549 	}
5550 
5551 	/*
5552 	 * Split the high value across all online CPUs local to the zone. Note
5553 	 * that early in boot that CPUs may not be online yet and that during
5554 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5555 	 * onlined. For memory nodes that have no CPUs, split the high value
5556 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5557 	 * prematurely due to pages stored on pcp lists.
5558 	 */
5559 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5560 	if (!nr_split_cpus)
5561 		nr_split_cpus = num_online_cpus();
5562 	high = total_pages / nr_split_cpus;
5563 
5564 	/*
5565 	 * Ensure high is at least batch*4. The multiple is based on the
5566 	 * historical relationship between high and batch.
5567 	 */
5568 	high = max(high, batch << 2);
5569 
5570 	return high;
5571 #else
5572 	return 0;
5573 #endif
5574 }
5575 
5576 /*
5577  * pcp->high and pcp->batch values are related and generally batch is lower
5578  * than high. They are also related to pcp->count such that count is lower
5579  * than high, and as soon as it reaches high, the pcplist is flushed.
5580  *
5581  * However, guaranteeing these relations at all times would require e.g. write
5582  * barriers here but also careful usage of read barriers at the read side, and
5583  * thus be prone to error and bad for performance. Thus the update only prevents
5584  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5585  * should ensure they can cope with those fields changing asynchronously, and
5586  * fully trust only the pcp->count field on the local CPU with interrupts
5587  * disabled.
5588  *
5589  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5590  * outside of boot time (or some other assurance that no concurrent updaters
5591  * exist).
5592  */
5593 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5594 			   unsigned long high_max, unsigned long batch)
5595 {
5596 	WRITE_ONCE(pcp->batch, batch);
5597 	WRITE_ONCE(pcp->high_min, high_min);
5598 	WRITE_ONCE(pcp->high_max, high_max);
5599 }
5600 
5601 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5602 {
5603 	int pindex;
5604 
5605 	memset(pcp, 0, sizeof(*pcp));
5606 	memset(pzstats, 0, sizeof(*pzstats));
5607 
5608 	spin_lock_init(&pcp->lock);
5609 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5610 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5611 
5612 	/*
5613 	 * Set batch and high values safe for a boot pageset. A true percpu
5614 	 * pageset's initialization will update them subsequently. Here we don't
5615 	 * need to be as careful as pageset_update() as nobody can access the
5616 	 * pageset yet.
5617 	 */
5618 	pcp->high_min = BOOT_PAGESET_HIGH;
5619 	pcp->high_max = BOOT_PAGESET_HIGH;
5620 	pcp->batch = BOOT_PAGESET_BATCH;
5621 	pcp->free_count = 0;
5622 }
5623 
5624 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5625 					      unsigned long high_max, unsigned long batch)
5626 {
5627 	struct per_cpu_pages *pcp;
5628 	int cpu;
5629 
5630 	for_each_possible_cpu(cpu) {
5631 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5632 		pageset_update(pcp, high_min, high_max, batch);
5633 	}
5634 }
5635 
5636 /*
5637  * Calculate and set new high and batch values for all per-cpu pagesets of a
5638  * zone based on the zone's size.
5639  */
5640 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5641 {
5642 	int new_high_min, new_high_max, new_batch;
5643 
5644 	new_batch = max(1, zone_batchsize(zone));
5645 	if (percpu_pagelist_high_fraction) {
5646 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5647 					     percpu_pagelist_high_fraction);
5648 		/*
5649 		 * PCP high is tuned manually, disable auto-tuning via
5650 		 * setting high_min and high_max to the manual value.
5651 		 */
5652 		new_high_max = new_high_min;
5653 	} else {
5654 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5655 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5656 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5657 	}
5658 
5659 	if (zone->pageset_high_min == new_high_min &&
5660 	    zone->pageset_high_max == new_high_max &&
5661 	    zone->pageset_batch == new_batch)
5662 		return;
5663 
5664 	zone->pageset_high_min = new_high_min;
5665 	zone->pageset_high_max = new_high_max;
5666 	zone->pageset_batch = new_batch;
5667 
5668 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5669 					  new_batch);
5670 }
5671 
5672 void __meminit setup_zone_pageset(struct zone *zone)
5673 {
5674 	int cpu;
5675 
5676 	/* Size may be 0 on !SMP && !NUMA */
5677 	if (sizeof(struct per_cpu_zonestat) > 0)
5678 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5679 
5680 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5681 	for_each_possible_cpu(cpu) {
5682 		struct per_cpu_pages *pcp;
5683 		struct per_cpu_zonestat *pzstats;
5684 
5685 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5686 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5687 		per_cpu_pages_init(pcp, pzstats);
5688 	}
5689 
5690 	zone_set_pageset_high_and_batch(zone, 0);
5691 }
5692 
5693 /*
5694  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5695  * page high values need to be recalculated.
5696  */
5697 static void zone_pcp_update(struct zone *zone, int cpu_online)
5698 {
5699 	mutex_lock(&pcp_batch_high_lock);
5700 	zone_set_pageset_high_and_batch(zone, cpu_online);
5701 	mutex_unlock(&pcp_batch_high_lock);
5702 }
5703 
5704 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5705 {
5706 	struct per_cpu_pages *pcp;
5707 	struct cpu_cacheinfo *cci;
5708 
5709 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5710 	cci = get_cpu_cacheinfo(cpu);
5711 	/*
5712 	 * If data cache slice of CPU is large enough, "pcp->batch"
5713 	 * pages can be preserved in PCP before draining PCP for
5714 	 * consecutive high-order pages freeing without allocation.
5715 	 * This can reduce zone lock contention without hurting
5716 	 * cache-hot pages sharing.
5717 	 */
5718 	spin_lock(&pcp->lock);
5719 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5720 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5721 	else
5722 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5723 	spin_unlock(&pcp->lock);
5724 }
5725 
5726 void setup_pcp_cacheinfo(unsigned int cpu)
5727 {
5728 	struct zone *zone;
5729 
5730 	for_each_populated_zone(zone)
5731 		zone_pcp_update_cacheinfo(zone, cpu);
5732 }
5733 
5734 /*
5735  * Allocate per cpu pagesets and initialize them.
5736  * Before this call only boot pagesets were available.
5737  */
5738 void __init setup_per_cpu_pageset(void)
5739 {
5740 	struct pglist_data *pgdat;
5741 	struct zone *zone;
5742 	int __maybe_unused cpu;
5743 
5744 	for_each_populated_zone(zone)
5745 		setup_zone_pageset(zone);
5746 
5747 #ifdef CONFIG_NUMA
5748 	/*
5749 	 * Unpopulated zones continue using the boot pagesets.
5750 	 * The numa stats for these pagesets need to be reset.
5751 	 * Otherwise, they will end up skewing the stats of
5752 	 * the nodes these zones are associated with.
5753 	 */
5754 	for_each_possible_cpu(cpu) {
5755 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5756 		memset(pzstats->vm_numa_event, 0,
5757 		       sizeof(pzstats->vm_numa_event));
5758 	}
5759 #endif
5760 
5761 	for_each_online_pgdat(pgdat)
5762 		pgdat->per_cpu_nodestats =
5763 			alloc_percpu(struct per_cpu_nodestat);
5764 }
5765 
5766 __meminit void zone_pcp_init(struct zone *zone)
5767 {
5768 	/*
5769 	 * per cpu subsystem is not up at this point. The following code
5770 	 * relies on the ability of the linker to provide the
5771 	 * offset of a (static) per cpu variable into the per cpu area.
5772 	 */
5773 	zone->per_cpu_pageset = &boot_pageset;
5774 	zone->per_cpu_zonestats = &boot_zonestats;
5775 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5776 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5777 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5778 
5779 	if (populated_zone(zone))
5780 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5781 			 zone->present_pages, zone_batchsize(zone));
5782 }
5783 
5784 void adjust_managed_page_count(struct page *page, long count)
5785 {
5786 	atomic_long_add(count, &page_zone(page)->managed_pages);
5787 	totalram_pages_add(count);
5788 }
5789 EXPORT_SYMBOL(adjust_managed_page_count);
5790 
5791 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5792 {
5793 	void *pos;
5794 	unsigned long pages = 0;
5795 
5796 	start = (void *)PAGE_ALIGN((unsigned long)start);
5797 	end = (void *)((unsigned long)end & PAGE_MASK);
5798 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5799 		struct page *page = virt_to_page(pos);
5800 		void *direct_map_addr;
5801 
5802 		/*
5803 		 * 'direct_map_addr' might be different from 'pos'
5804 		 * because some architectures' virt_to_page()
5805 		 * work with aliases.  Getting the direct map
5806 		 * address ensures that we get a _writeable_
5807 		 * alias for the memset().
5808 		 */
5809 		direct_map_addr = page_address(page);
5810 		/*
5811 		 * Perform a kasan-unchecked memset() since this memory
5812 		 * has not been initialized.
5813 		 */
5814 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5815 		if ((unsigned int)poison <= 0xFF)
5816 			memset(direct_map_addr, poison, PAGE_SIZE);
5817 
5818 		free_reserved_page(page);
5819 	}
5820 
5821 	if (pages && s)
5822 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5823 
5824 	return pages;
5825 }
5826 
5827 void free_reserved_page(struct page *page)
5828 {
5829 	clear_page_tag_ref(page);
5830 	ClearPageReserved(page);
5831 	init_page_count(page);
5832 	__free_page(page);
5833 	adjust_managed_page_count(page, 1);
5834 }
5835 EXPORT_SYMBOL(free_reserved_page);
5836 
5837 static int page_alloc_cpu_dead(unsigned int cpu)
5838 {
5839 	struct zone *zone;
5840 
5841 	lru_add_drain_cpu(cpu);
5842 	mlock_drain_remote(cpu);
5843 	drain_pages(cpu);
5844 
5845 	/*
5846 	 * Spill the event counters of the dead processor
5847 	 * into the current processors event counters.
5848 	 * This artificially elevates the count of the current
5849 	 * processor.
5850 	 */
5851 	vm_events_fold_cpu(cpu);
5852 
5853 	/*
5854 	 * Zero the differential counters of the dead processor
5855 	 * so that the vm statistics are consistent.
5856 	 *
5857 	 * This is only okay since the processor is dead and cannot
5858 	 * race with what we are doing.
5859 	 */
5860 	cpu_vm_stats_fold(cpu);
5861 
5862 	for_each_populated_zone(zone)
5863 		zone_pcp_update(zone, 0);
5864 
5865 	return 0;
5866 }
5867 
5868 static int page_alloc_cpu_online(unsigned int cpu)
5869 {
5870 	struct zone *zone;
5871 
5872 	for_each_populated_zone(zone)
5873 		zone_pcp_update(zone, 1);
5874 	return 0;
5875 }
5876 
5877 void __init page_alloc_init_cpuhp(void)
5878 {
5879 	int ret;
5880 
5881 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5882 					"mm/page_alloc:pcp",
5883 					page_alloc_cpu_online,
5884 					page_alloc_cpu_dead);
5885 	WARN_ON(ret < 0);
5886 }
5887 
5888 /*
5889  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5890  *	or min_free_kbytes changes.
5891  */
5892 static void calculate_totalreserve_pages(void)
5893 {
5894 	struct pglist_data *pgdat;
5895 	unsigned long reserve_pages = 0;
5896 	enum zone_type i, j;
5897 
5898 	for_each_online_pgdat(pgdat) {
5899 
5900 		pgdat->totalreserve_pages = 0;
5901 
5902 		for (i = 0; i < MAX_NR_ZONES; i++) {
5903 			struct zone *zone = pgdat->node_zones + i;
5904 			long max = 0;
5905 			unsigned long managed_pages = zone_managed_pages(zone);
5906 
5907 			/* Find valid and maximum lowmem_reserve in the zone */
5908 			for (j = i; j < MAX_NR_ZONES; j++) {
5909 				if (zone->lowmem_reserve[j] > max)
5910 					max = zone->lowmem_reserve[j];
5911 			}
5912 
5913 			/* we treat the high watermark as reserved pages. */
5914 			max += high_wmark_pages(zone);
5915 
5916 			if (max > managed_pages)
5917 				max = managed_pages;
5918 
5919 			pgdat->totalreserve_pages += max;
5920 
5921 			reserve_pages += max;
5922 		}
5923 	}
5924 	totalreserve_pages = reserve_pages;
5925 }
5926 
5927 /*
5928  * setup_per_zone_lowmem_reserve - called whenever
5929  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5930  *	has a correct pages reserved value, so an adequate number of
5931  *	pages are left in the zone after a successful __alloc_pages().
5932  */
5933 static void setup_per_zone_lowmem_reserve(void)
5934 {
5935 	struct pglist_data *pgdat;
5936 	enum zone_type i, j;
5937 
5938 	for_each_online_pgdat(pgdat) {
5939 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5940 			struct zone *zone = &pgdat->node_zones[i];
5941 			int ratio = sysctl_lowmem_reserve_ratio[i];
5942 			bool clear = !ratio || !zone_managed_pages(zone);
5943 			unsigned long managed_pages = 0;
5944 
5945 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5946 				struct zone *upper_zone = &pgdat->node_zones[j];
5947 				bool empty = !zone_managed_pages(upper_zone);
5948 
5949 				managed_pages += zone_managed_pages(upper_zone);
5950 
5951 				if (clear || empty)
5952 					zone->lowmem_reserve[j] = 0;
5953 				else
5954 					zone->lowmem_reserve[j] = managed_pages / ratio;
5955 			}
5956 		}
5957 	}
5958 
5959 	/* update totalreserve_pages */
5960 	calculate_totalreserve_pages();
5961 }
5962 
5963 static void __setup_per_zone_wmarks(void)
5964 {
5965 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5966 	unsigned long lowmem_pages = 0;
5967 	struct zone *zone;
5968 	unsigned long flags;
5969 
5970 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5971 	for_each_zone(zone) {
5972 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5973 			lowmem_pages += zone_managed_pages(zone);
5974 	}
5975 
5976 	for_each_zone(zone) {
5977 		u64 tmp;
5978 
5979 		spin_lock_irqsave(&zone->lock, flags);
5980 		tmp = (u64)pages_min * zone_managed_pages(zone);
5981 		tmp = div64_ul(tmp, lowmem_pages);
5982 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5983 			/*
5984 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5985 			 * need highmem and movable zones pages, so cap pages_min
5986 			 * to a small  value here.
5987 			 *
5988 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5989 			 * deltas control async page reclaim, and so should
5990 			 * not be capped for highmem and movable zones.
5991 			 */
5992 			unsigned long min_pages;
5993 
5994 			min_pages = zone_managed_pages(zone) / 1024;
5995 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5996 			zone->_watermark[WMARK_MIN] = min_pages;
5997 		} else {
5998 			/*
5999 			 * If it's a lowmem zone, reserve a number of pages
6000 			 * proportionate to the zone's size.
6001 			 */
6002 			zone->_watermark[WMARK_MIN] = tmp;
6003 		}
6004 
6005 		/*
6006 		 * Set the kswapd watermarks distance according to the
6007 		 * scale factor in proportion to available memory, but
6008 		 * ensure a minimum size on small systems.
6009 		 */
6010 		tmp = max_t(u64, tmp >> 2,
6011 			    mult_frac(zone_managed_pages(zone),
6012 				      watermark_scale_factor, 10000));
6013 
6014 		zone->watermark_boost = 0;
6015 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6016 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6017 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6018 
6019 		spin_unlock_irqrestore(&zone->lock, flags);
6020 	}
6021 
6022 	/* update totalreserve_pages */
6023 	calculate_totalreserve_pages();
6024 }
6025 
6026 /**
6027  * setup_per_zone_wmarks - called when min_free_kbytes changes
6028  * or when memory is hot-{added|removed}
6029  *
6030  * Ensures that the watermark[min,low,high] values for each zone are set
6031  * correctly with respect to min_free_kbytes.
6032  */
6033 void setup_per_zone_wmarks(void)
6034 {
6035 	struct zone *zone;
6036 	static DEFINE_SPINLOCK(lock);
6037 
6038 	spin_lock(&lock);
6039 	__setup_per_zone_wmarks();
6040 	spin_unlock(&lock);
6041 
6042 	/*
6043 	 * The watermark size have changed so update the pcpu batch
6044 	 * and high limits or the limits may be inappropriate.
6045 	 */
6046 	for_each_zone(zone)
6047 		zone_pcp_update(zone, 0);
6048 }
6049 
6050 /*
6051  * Initialise min_free_kbytes.
6052  *
6053  * For small machines we want it small (128k min).  For large machines
6054  * we want it large (256MB max).  But it is not linear, because network
6055  * bandwidth does not increase linearly with machine size.  We use
6056  *
6057  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6058  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6059  *
6060  * which yields
6061  *
6062  * 16MB:	512k
6063  * 32MB:	724k
6064  * 64MB:	1024k
6065  * 128MB:	1448k
6066  * 256MB:	2048k
6067  * 512MB:	2896k
6068  * 1024MB:	4096k
6069  * 2048MB:	5792k
6070  * 4096MB:	8192k
6071  * 8192MB:	11584k
6072  * 16384MB:	16384k
6073  */
6074 void calculate_min_free_kbytes(void)
6075 {
6076 	unsigned long lowmem_kbytes;
6077 	int new_min_free_kbytes;
6078 
6079 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6080 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6081 
6082 	if (new_min_free_kbytes > user_min_free_kbytes)
6083 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6084 	else
6085 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6086 				new_min_free_kbytes, user_min_free_kbytes);
6087 
6088 }
6089 
6090 int __meminit init_per_zone_wmark_min(void)
6091 {
6092 	calculate_min_free_kbytes();
6093 	setup_per_zone_wmarks();
6094 	refresh_zone_stat_thresholds();
6095 	setup_per_zone_lowmem_reserve();
6096 
6097 #ifdef CONFIG_NUMA
6098 	setup_min_unmapped_ratio();
6099 	setup_min_slab_ratio();
6100 #endif
6101 
6102 	khugepaged_min_free_kbytes_update();
6103 
6104 	return 0;
6105 }
6106 postcore_initcall(init_per_zone_wmark_min)
6107 
6108 /*
6109  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6110  *	that we can call two helper functions whenever min_free_kbytes
6111  *	changes.
6112  */
6113 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6114 		void *buffer, size_t *length, loff_t *ppos)
6115 {
6116 	int rc;
6117 
6118 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6119 	if (rc)
6120 		return rc;
6121 
6122 	if (write) {
6123 		user_min_free_kbytes = min_free_kbytes;
6124 		setup_per_zone_wmarks();
6125 	}
6126 	return 0;
6127 }
6128 
6129 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6130 		void *buffer, size_t *length, loff_t *ppos)
6131 {
6132 	int rc;
6133 
6134 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6135 	if (rc)
6136 		return rc;
6137 
6138 	if (write)
6139 		setup_per_zone_wmarks();
6140 
6141 	return 0;
6142 }
6143 
6144 #ifdef CONFIG_NUMA
6145 static void setup_min_unmapped_ratio(void)
6146 {
6147 	pg_data_t *pgdat;
6148 	struct zone *zone;
6149 
6150 	for_each_online_pgdat(pgdat)
6151 		pgdat->min_unmapped_pages = 0;
6152 
6153 	for_each_zone(zone)
6154 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6155 						         sysctl_min_unmapped_ratio) / 100;
6156 }
6157 
6158 
6159 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6160 		void *buffer, size_t *length, loff_t *ppos)
6161 {
6162 	int rc;
6163 
6164 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6165 	if (rc)
6166 		return rc;
6167 
6168 	setup_min_unmapped_ratio();
6169 
6170 	return 0;
6171 }
6172 
6173 static void setup_min_slab_ratio(void)
6174 {
6175 	pg_data_t *pgdat;
6176 	struct zone *zone;
6177 
6178 	for_each_online_pgdat(pgdat)
6179 		pgdat->min_slab_pages = 0;
6180 
6181 	for_each_zone(zone)
6182 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6183 						     sysctl_min_slab_ratio) / 100;
6184 }
6185 
6186 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6187 		void *buffer, size_t *length, loff_t *ppos)
6188 {
6189 	int rc;
6190 
6191 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6192 	if (rc)
6193 		return rc;
6194 
6195 	setup_min_slab_ratio();
6196 
6197 	return 0;
6198 }
6199 #endif
6200 
6201 /*
6202  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6203  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6204  *	whenever sysctl_lowmem_reserve_ratio changes.
6205  *
6206  * The reserve ratio obviously has absolutely no relation with the
6207  * minimum watermarks. The lowmem reserve ratio can only make sense
6208  * if in function of the boot time zone sizes.
6209  */
6210 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6211 		int write, void *buffer, size_t *length, loff_t *ppos)
6212 {
6213 	int i;
6214 
6215 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6216 
6217 	for (i = 0; i < MAX_NR_ZONES; i++) {
6218 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6219 			sysctl_lowmem_reserve_ratio[i] = 0;
6220 	}
6221 
6222 	setup_per_zone_lowmem_reserve();
6223 	return 0;
6224 }
6225 
6226 /*
6227  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6228  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6229  * pagelist can have before it gets flushed back to buddy allocator.
6230  */
6231 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6232 		int write, void *buffer, size_t *length, loff_t *ppos)
6233 {
6234 	struct zone *zone;
6235 	int old_percpu_pagelist_high_fraction;
6236 	int ret;
6237 
6238 	mutex_lock(&pcp_batch_high_lock);
6239 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6240 
6241 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6242 	if (!write || ret < 0)
6243 		goto out;
6244 
6245 	/* Sanity checking to avoid pcp imbalance */
6246 	if (percpu_pagelist_high_fraction &&
6247 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6248 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6249 		ret = -EINVAL;
6250 		goto out;
6251 	}
6252 
6253 	/* No change? */
6254 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6255 		goto out;
6256 
6257 	for_each_populated_zone(zone)
6258 		zone_set_pageset_high_and_batch(zone, 0);
6259 out:
6260 	mutex_unlock(&pcp_batch_high_lock);
6261 	return ret;
6262 }
6263 
6264 static struct ctl_table page_alloc_sysctl_table[] = {
6265 	{
6266 		.procname	= "min_free_kbytes",
6267 		.data		= &min_free_kbytes,
6268 		.maxlen		= sizeof(min_free_kbytes),
6269 		.mode		= 0644,
6270 		.proc_handler	= min_free_kbytes_sysctl_handler,
6271 		.extra1		= SYSCTL_ZERO,
6272 	},
6273 	{
6274 		.procname	= "watermark_boost_factor",
6275 		.data		= &watermark_boost_factor,
6276 		.maxlen		= sizeof(watermark_boost_factor),
6277 		.mode		= 0644,
6278 		.proc_handler	= proc_dointvec_minmax,
6279 		.extra1		= SYSCTL_ZERO,
6280 	},
6281 	{
6282 		.procname	= "watermark_scale_factor",
6283 		.data		= &watermark_scale_factor,
6284 		.maxlen		= sizeof(watermark_scale_factor),
6285 		.mode		= 0644,
6286 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6287 		.extra1		= SYSCTL_ONE,
6288 		.extra2		= SYSCTL_THREE_THOUSAND,
6289 	},
6290 	{
6291 		.procname	= "percpu_pagelist_high_fraction",
6292 		.data		= &percpu_pagelist_high_fraction,
6293 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6294 		.mode		= 0644,
6295 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6296 		.extra1		= SYSCTL_ZERO,
6297 	},
6298 	{
6299 		.procname	= "lowmem_reserve_ratio",
6300 		.data		= &sysctl_lowmem_reserve_ratio,
6301 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6302 		.mode		= 0644,
6303 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6304 	},
6305 #ifdef CONFIG_NUMA
6306 	{
6307 		.procname	= "numa_zonelist_order",
6308 		.data		= &numa_zonelist_order,
6309 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6310 		.mode		= 0644,
6311 		.proc_handler	= numa_zonelist_order_handler,
6312 	},
6313 	{
6314 		.procname	= "min_unmapped_ratio",
6315 		.data		= &sysctl_min_unmapped_ratio,
6316 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6317 		.mode		= 0644,
6318 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6319 		.extra1		= SYSCTL_ZERO,
6320 		.extra2		= SYSCTL_ONE_HUNDRED,
6321 	},
6322 	{
6323 		.procname	= "min_slab_ratio",
6324 		.data		= &sysctl_min_slab_ratio,
6325 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6326 		.mode		= 0644,
6327 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6328 		.extra1		= SYSCTL_ZERO,
6329 		.extra2		= SYSCTL_ONE_HUNDRED,
6330 	},
6331 #endif
6332 };
6333 
6334 void __init page_alloc_sysctl_init(void)
6335 {
6336 	register_sysctl_init("vm", page_alloc_sysctl_table);
6337 }
6338 
6339 #ifdef CONFIG_CONTIG_ALLOC
6340 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6341 static void alloc_contig_dump_pages(struct list_head *page_list)
6342 {
6343 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6344 
6345 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6346 		struct page *page;
6347 
6348 		dump_stack();
6349 		list_for_each_entry(page, page_list, lru)
6350 			dump_page(page, "migration failure");
6351 	}
6352 }
6353 
6354 /*
6355  * [start, end) must belong to a single zone.
6356  * @migratetype: using migratetype to filter the type of migration in
6357  *		trace_mm_alloc_contig_migrate_range_info.
6358  */
6359 int __alloc_contig_migrate_range(struct compact_control *cc,
6360 					unsigned long start, unsigned long end,
6361 					int migratetype)
6362 {
6363 	/* This function is based on compact_zone() from compaction.c. */
6364 	unsigned int nr_reclaimed;
6365 	unsigned long pfn = start;
6366 	unsigned int tries = 0;
6367 	int ret = 0;
6368 	struct migration_target_control mtc = {
6369 		.nid = zone_to_nid(cc->zone),
6370 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6371 		.reason = MR_CONTIG_RANGE,
6372 	};
6373 	struct page *page;
6374 	unsigned long total_mapped = 0;
6375 	unsigned long total_migrated = 0;
6376 	unsigned long total_reclaimed = 0;
6377 
6378 	lru_cache_disable();
6379 
6380 	while (pfn < end || !list_empty(&cc->migratepages)) {
6381 		if (fatal_signal_pending(current)) {
6382 			ret = -EINTR;
6383 			break;
6384 		}
6385 
6386 		if (list_empty(&cc->migratepages)) {
6387 			cc->nr_migratepages = 0;
6388 			ret = isolate_migratepages_range(cc, pfn, end);
6389 			if (ret && ret != -EAGAIN)
6390 				break;
6391 			pfn = cc->migrate_pfn;
6392 			tries = 0;
6393 		} else if (++tries == 5) {
6394 			ret = -EBUSY;
6395 			break;
6396 		}
6397 
6398 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6399 							&cc->migratepages);
6400 		cc->nr_migratepages -= nr_reclaimed;
6401 
6402 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6403 			total_reclaimed += nr_reclaimed;
6404 			list_for_each_entry(page, &cc->migratepages, lru) {
6405 				struct folio *folio = page_folio(page);
6406 
6407 				total_mapped += folio_mapped(folio) *
6408 						folio_nr_pages(folio);
6409 			}
6410 		}
6411 
6412 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6413 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6414 
6415 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6416 			total_migrated += cc->nr_migratepages;
6417 
6418 		/*
6419 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6420 		 * to retry again over this error, so do the same here.
6421 		 */
6422 		if (ret == -ENOMEM)
6423 			break;
6424 	}
6425 
6426 	lru_cache_enable();
6427 	if (ret < 0) {
6428 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6429 			alloc_contig_dump_pages(&cc->migratepages);
6430 		putback_movable_pages(&cc->migratepages);
6431 	}
6432 
6433 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6434 						 total_migrated,
6435 						 total_reclaimed,
6436 						 total_mapped);
6437 	return (ret < 0) ? ret : 0;
6438 }
6439 
6440 /**
6441  * alloc_contig_range() -- tries to allocate given range of pages
6442  * @start:	start PFN to allocate
6443  * @end:	one-past-the-last PFN to allocate
6444  * @migratetype:	migratetype of the underlying pageblocks (either
6445  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6446  *			in range must have the same migratetype and it must
6447  *			be either of the two.
6448  * @gfp_mask:	GFP mask to use during compaction
6449  *
6450  * The PFN range does not have to be pageblock aligned. The PFN range must
6451  * belong to a single zone.
6452  *
6453  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6454  * pageblocks in the range.  Once isolated, the pageblocks should not
6455  * be modified by others.
6456  *
6457  * Return: zero on success or negative error code.  On success all
6458  * pages which PFN is in [start, end) are allocated for the caller and
6459  * need to be freed with free_contig_range().
6460  */
6461 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6462 		       unsigned migratetype, gfp_t gfp_mask)
6463 {
6464 	unsigned long outer_start, outer_end;
6465 	int ret = 0;
6466 
6467 	struct compact_control cc = {
6468 		.nr_migratepages = 0,
6469 		.order = -1,
6470 		.zone = page_zone(pfn_to_page(start)),
6471 		.mode = MIGRATE_SYNC,
6472 		.ignore_skip_hint = true,
6473 		.no_set_skip_hint = true,
6474 		.gfp_mask = current_gfp_context(gfp_mask),
6475 		.alloc_contig = true,
6476 	};
6477 	INIT_LIST_HEAD(&cc.migratepages);
6478 
6479 	/*
6480 	 * What we do here is we mark all pageblocks in range as
6481 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6482 	 * have different sizes, and due to the way page allocator
6483 	 * work, start_isolate_page_range() has special handlings for this.
6484 	 *
6485 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6486 	 * migrate the pages from an unaligned range (ie. pages that
6487 	 * we are interested in). This will put all the pages in
6488 	 * range back to page allocator as MIGRATE_ISOLATE.
6489 	 *
6490 	 * When this is done, we take the pages in range from page
6491 	 * allocator removing them from the buddy system.  This way
6492 	 * page allocator will never consider using them.
6493 	 *
6494 	 * This lets us mark the pageblocks back as
6495 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6496 	 * aligned range but not in the unaligned, original range are
6497 	 * put back to page allocator so that buddy can use them.
6498 	 */
6499 
6500 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6501 	if (ret)
6502 		goto done;
6503 
6504 	drain_all_pages(cc.zone);
6505 
6506 	/*
6507 	 * In case of -EBUSY, we'd like to know which page causes problem.
6508 	 * So, just fall through. test_pages_isolated() has a tracepoint
6509 	 * which will report the busy page.
6510 	 *
6511 	 * It is possible that busy pages could become available before
6512 	 * the call to test_pages_isolated, and the range will actually be
6513 	 * allocated.  So, if we fall through be sure to clear ret so that
6514 	 * -EBUSY is not accidentally used or returned to caller.
6515 	 */
6516 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6517 	if (ret && ret != -EBUSY)
6518 		goto done;
6519 	ret = 0;
6520 
6521 	/*
6522 	 * Pages from [start, end) are within a pageblock_nr_pages
6523 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6524 	 * more, all pages in [start, end) are free in page allocator.
6525 	 * What we are going to do is to allocate all pages from
6526 	 * [start, end) (that is remove them from page allocator).
6527 	 *
6528 	 * The only problem is that pages at the beginning and at the
6529 	 * end of interesting range may be not aligned with pages that
6530 	 * page allocator holds, ie. they can be part of higher order
6531 	 * pages.  Because of this, we reserve the bigger range and
6532 	 * once this is done free the pages we are not interested in.
6533 	 *
6534 	 * We don't have to hold zone->lock here because the pages are
6535 	 * isolated thus they won't get removed from buddy.
6536 	 */
6537 	outer_start = find_large_buddy(start);
6538 
6539 	/* Make sure the range is really isolated. */
6540 	if (test_pages_isolated(outer_start, end, 0)) {
6541 		ret = -EBUSY;
6542 		goto done;
6543 	}
6544 
6545 	/* Grab isolated pages from freelists. */
6546 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6547 	if (!outer_end) {
6548 		ret = -EBUSY;
6549 		goto done;
6550 	}
6551 
6552 	/* Free head and tail (if any) */
6553 	if (start != outer_start)
6554 		free_contig_range(outer_start, start - outer_start);
6555 	if (end != outer_end)
6556 		free_contig_range(end, outer_end - end);
6557 
6558 done:
6559 	undo_isolate_page_range(start, end, migratetype);
6560 	return ret;
6561 }
6562 EXPORT_SYMBOL(alloc_contig_range_noprof);
6563 
6564 static int __alloc_contig_pages(unsigned long start_pfn,
6565 				unsigned long nr_pages, gfp_t gfp_mask)
6566 {
6567 	unsigned long end_pfn = start_pfn + nr_pages;
6568 
6569 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6570 				   gfp_mask);
6571 }
6572 
6573 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6574 				   unsigned long nr_pages)
6575 {
6576 	unsigned long i, end_pfn = start_pfn + nr_pages;
6577 	struct page *page;
6578 
6579 	for (i = start_pfn; i < end_pfn; i++) {
6580 		page = pfn_to_online_page(i);
6581 		if (!page)
6582 			return false;
6583 
6584 		if (page_zone(page) != z)
6585 			return false;
6586 
6587 		if (PageReserved(page))
6588 			return false;
6589 
6590 		if (PageHuge(page))
6591 			return false;
6592 	}
6593 	return true;
6594 }
6595 
6596 static bool zone_spans_last_pfn(const struct zone *zone,
6597 				unsigned long start_pfn, unsigned long nr_pages)
6598 {
6599 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6600 
6601 	return zone_spans_pfn(zone, last_pfn);
6602 }
6603 
6604 /**
6605  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6606  * @nr_pages:	Number of contiguous pages to allocate
6607  * @gfp_mask:	GFP mask to limit search and used during compaction
6608  * @nid:	Target node
6609  * @nodemask:	Mask for other possible nodes
6610  *
6611  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6612  * on an applicable zonelist to find a contiguous pfn range which can then be
6613  * tried for allocation with alloc_contig_range(). This routine is intended
6614  * for allocation requests which can not be fulfilled with the buddy allocator.
6615  *
6616  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6617  * power of two, then allocated range is also guaranteed to be aligned to same
6618  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6619  *
6620  * Allocated pages can be freed with free_contig_range() or by manually calling
6621  * __free_page() on each allocated page.
6622  *
6623  * Return: pointer to contiguous pages on success, or NULL if not successful.
6624  */
6625 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6626 				 int nid, nodemask_t *nodemask)
6627 {
6628 	unsigned long ret, pfn, flags;
6629 	struct zonelist *zonelist;
6630 	struct zone *zone;
6631 	struct zoneref *z;
6632 
6633 	zonelist = node_zonelist(nid, gfp_mask);
6634 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6635 					gfp_zone(gfp_mask), nodemask) {
6636 		spin_lock_irqsave(&zone->lock, flags);
6637 
6638 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6639 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6640 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6641 				/*
6642 				 * We release the zone lock here because
6643 				 * alloc_contig_range() will also lock the zone
6644 				 * at some point. If there's an allocation
6645 				 * spinning on this lock, it may win the race
6646 				 * and cause alloc_contig_range() to fail...
6647 				 */
6648 				spin_unlock_irqrestore(&zone->lock, flags);
6649 				ret = __alloc_contig_pages(pfn, nr_pages,
6650 							gfp_mask);
6651 				if (!ret)
6652 					return pfn_to_page(pfn);
6653 				spin_lock_irqsave(&zone->lock, flags);
6654 			}
6655 			pfn += nr_pages;
6656 		}
6657 		spin_unlock_irqrestore(&zone->lock, flags);
6658 	}
6659 	return NULL;
6660 }
6661 #endif /* CONFIG_CONTIG_ALLOC */
6662 
6663 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6664 {
6665 	unsigned long count = 0;
6666 
6667 	for (; nr_pages--; pfn++) {
6668 		struct page *page = pfn_to_page(pfn);
6669 
6670 		count += page_count(page) != 1;
6671 		__free_page(page);
6672 	}
6673 	WARN(count != 0, "%lu pages are still in use!\n", count);
6674 }
6675 EXPORT_SYMBOL(free_contig_range);
6676 
6677 /*
6678  * Effectively disable pcplists for the zone by setting the high limit to 0
6679  * and draining all cpus. A concurrent page freeing on another CPU that's about
6680  * to put the page on pcplist will either finish before the drain and the page
6681  * will be drained, or observe the new high limit and skip the pcplist.
6682  *
6683  * Must be paired with a call to zone_pcp_enable().
6684  */
6685 void zone_pcp_disable(struct zone *zone)
6686 {
6687 	mutex_lock(&pcp_batch_high_lock);
6688 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6689 	__drain_all_pages(zone, true);
6690 }
6691 
6692 void zone_pcp_enable(struct zone *zone)
6693 {
6694 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6695 		zone->pageset_high_max, zone->pageset_batch);
6696 	mutex_unlock(&pcp_batch_high_lock);
6697 }
6698 
6699 void zone_pcp_reset(struct zone *zone)
6700 {
6701 	int cpu;
6702 	struct per_cpu_zonestat *pzstats;
6703 
6704 	if (zone->per_cpu_pageset != &boot_pageset) {
6705 		for_each_online_cpu(cpu) {
6706 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6707 			drain_zonestat(zone, pzstats);
6708 		}
6709 		free_percpu(zone->per_cpu_pageset);
6710 		zone->per_cpu_pageset = &boot_pageset;
6711 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6712 			free_percpu(zone->per_cpu_zonestats);
6713 			zone->per_cpu_zonestats = &boot_zonestats;
6714 		}
6715 	}
6716 }
6717 
6718 #ifdef CONFIG_MEMORY_HOTREMOVE
6719 /*
6720  * All pages in the range must be in a single zone, must not contain holes,
6721  * must span full sections, and must be isolated before calling this function.
6722  *
6723  * Returns the number of managed (non-PageOffline()) pages in the range: the
6724  * number of pages for which memory offlining code must adjust managed page
6725  * counters using adjust_managed_page_count().
6726  */
6727 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6728 		unsigned long end_pfn)
6729 {
6730 	unsigned long already_offline = 0, flags;
6731 	unsigned long pfn = start_pfn;
6732 	struct page *page;
6733 	struct zone *zone;
6734 	unsigned int order;
6735 
6736 	offline_mem_sections(pfn, end_pfn);
6737 	zone = page_zone(pfn_to_page(pfn));
6738 	spin_lock_irqsave(&zone->lock, flags);
6739 	while (pfn < end_pfn) {
6740 		page = pfn_to_page(pfn);
6741 		/*
6742 		 * The HWPoisoned page may be not in buddy system, and
6743 		 * page_count() is not 0.
6744 		 */
6745 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6746 			pfn++;
6747 			continue;
6748 		}
6749 		/*
6750 		 * At this point all remaining PageOffline() pages have a
6751 		 * reference count of 0 and can simply be skipped.
6752 		 */
6753 		if (PageOffline(page)) {
6754 			BUG_ON(page_count(page));
6755 			BUG_ON(PageBuddy(page));
6756 			already_offline++;
6757 			pfn++;
6758 			continue;
6759 		}
6760 
6761 		BUG_ON(page_count(page));
6762 		BUG_ON(!PageBuddy(page));
6763 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6764 		order = buddy_order(page);
6765 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6766 		pfn += (1 << order);
6767 	}
6768 	spin_unlock_irqrestore(&zone->lock, flags);
6769 
6770 	return end_pfn - start_pfn - already_offline;
6771 }
6772 #endif
6773 
6774 /*
6775  * This function returns a stable result only if called under zone lock.
6776  */
6777 bool is_free_buddy_page(const struct page *page)
6778 {
6779 	unsigned long pfn = page_to_pfn(page);
6780 	unsigned int order;
6781 
6782 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6783 		const struct page *head = page - (pfn & ((1 << order) - 1));
6784 
6785 		if (PageBuddy(head) &&
6786 		    buddy_order_unsafe(head) >= order)
6787 			break;
6788 	}
6789 
6790 	return order <= MAX_PAGE_ORDER;
6791 }
6792 EXPORT_SYMBOL(is_free_buddy_page);
6793 
6794 #ifdef CONFIG_MEMORY_FAILURE
6795 static inline void add_to_free_list(struct page *page, struct zone *zone,
6796 				    unsigned int order, int migratetype,
6797 				    bool tail)
6798 {
6799 	__add_to_free_list(page, zone, order, migratetype, tail);
6800 	account_freepages(zone, 1 << order, migratetype);
6801 }
6802 
6803 /*
6804  * Break down a higher-order page in sub-pages, and keep our target out of
6805  * buddy allocator.
6806  */
6807 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6808 				   struct page *target, int low, int high,
6809 				   int migratetype)
6810 {
6811 	unsigned long size = 1 << high;
6812 	struct page *current_buddy;
6813 
6814 	while (high > low) {
6815 		high--;
6816 		size >>= 1;
6817 
6818 		if (target >= &page[size]) {
6819 			current_buddy = page;
6820 			page = page + size;
6821 		} else {
6822 			current_buddy = page + size;
6823 		}
6824 
6825 		if (set_page_guard(zone, current_buddy, high))
6826 			continue;
6827 
6828 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6829 		set_buddy_order(current_buddy, high);
6830 	}
6831 }
6832 
6833 /*
6834  * Take a page that will be marked as poisoned off the buddy allocator.
6835  */
6836 bool take_page_off_buddy(struct page *page)
6837 {
6838 	struct zone *zone = page_zone(page);
6839 	unsigned long pfn = page_to_pfn(page);
6840 	unsigned long flags;
6841 	unsigned int order;
6842 	bool ret = false;
6843 
6844 	spin_lock_irqsave(&zone->lock, flags);
6845 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6846 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6847 		int page_order = buddy_order(page_head);
6848 
6849 		if (PageBuddy(page_head) && page_order >= order) {
6850 			unsigned long pfn_head = page_to_pfn(page_head);
6851 			int migratetype = get_pfnblock_migratetype(page_head,
6852 								   pfn_head);
6853 
6854 			del_page_from_free_list(page_head, zone, page_order,
6855 						migratetype);
6856 			break_down_buddy_pages(zone, page_head, page, 0,
6857 						page_order, migratetype);
6858 			SetPageHWPoisonTakenOff(page);
6859 			ret = true;
6860 			break;
6861 		}
6862 		if (page_count(page_head) > 0)
6863 			break;
6864 	}
6865 	spin_unlock_irqrestore(&zone->lock, flags);
6866 	return ret;
6867 }
6868 
6869 /*
6870  * Cancel takeoff done by take_page_off_buddy().
6871  */
6872 bool put_page_back_buddy(struct page *page)
6873 {
6874 	struct zone *zone = page_zone(page);
6875 	unsigned long flags;
6876 	bool ret = false;
6877 
6878 	spin_lock_irqsave(&zone->lock, flags);
6879 	if (put_page_testzero(page)) {
6880 		unsigned long pfn = page_to_pfn(page);
6881 		int migratetype = get_pfnblock_migratetype(page, pfn);
6882 
6883 		ClearPageHWPoisonTakenOff(page);
6884 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6885 		if (TestClearPageHWPoison(page)) {
6886 			ret = true;
6887 		}
6888 	}
6889 	spin_unlock_irqrestore(&zone->lock, flags);
6890 
6891 	return ret;
6892 }
6893 #endif
6894 
6895 #ifdef CONFIG_ZONE_DMA
6896 bool has_managed_dma(void)
6897 {
6898 	struct pglist_data *pgdat;
6899 
6900 	for_each_online_pgdat(pgdat) {
6901 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6902 
6903 		if (managed_zone(zone))
6904 			return true;
6905 	}
6906 	return false;
6907 }
6908 #endif /* CONFIG_ZONE_DMA */
6909 
6910 #ifdef CONFIG_UNACCEPTED_MEMORY
6911 
6912 /* Counts number of zones with unaccepted pages. */
6913 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6914 
6915 static bool lazy_accept = true;
6916 
6917 static int __init accept_memory_parse(char *p)
6918 {
6919 	if (!strcmp(p, "lazy")) {
6920 		lazy_accept = true;
6921 		return 0;
6922 	} else if (!strcmp(p, "eager")) {
6923 		lazy_accept = false;
6924 		return 0;
6925 	} else {
6926 		return -EINVAL;
6927 	}
6928 }
6929 early_param("accept_memory", accept_memory_parse);
6930 
6931 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6932 {
6933 	phys_addr_t start = page_to_phys(page);
6934 
6935 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
6936 }
6937 
6938 static void __accept_page(struct zone *zone, unsigned long *flags,
6939 			  struct page *page)
6940 {
6941 	bool last;
6942 
6943 	list_del(&page->lru);
6944 	last = list_empty(&zone->unaccepted_pages);
6945 
6946 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6947 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6948 	__ClearPageUnaccepted(page);
6949 	spin_unlock_irqrestore(&zone->lock, *flags);
6950 
6951 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
6952 
6953 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6954 
6955 	if (last)
6956 		static_branch_dec(&zones_with_unaccepted_pages);
6957 }
6958 
6959 void accept_page(struct page *page)
6960 {
6961 	struct zone *zone = page_zone(page);
6962 	unsigned long flags;
6963 
6964 	spin_lock_irqsave(&zone->lock, flags);
6965 	if (!PageUnaccepted(page)) {
6966 		spin_unlock_irqrestore(&zone->lock, flags);
6967 		return;
6968 	}
6969 
6970 	/* Unlocks zone->lock */
6971 	__accept_page(zone, &flags, page);
6972 }
6973 
6974 static bool try_to_accept_memory_one(struct zone *zone)
6975 {
6976 	unsigned long flags;
6977 	struct page *page;
6978 
6979 	spin_lock_irqsave(&zone->lock, flags);
6980 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6981 					struct page, lru);
6982 	if (!page) {
6983 		spin_unlock_irqrestore(&zone->lock, flags);
6984 		return false;
6985 	}
6986 
6987 	/* Unlocks zone->lock */
6988 	__accept_page(zone, &flags, page);
6989 
6990 	return true;
6991 }
6992 
6993 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6994 {
6995 	long to_accept;
6996 	bool ret = false;
6997 
6998 	if (!has_unaccepted_memory())
6999 		return false;
7000 
7001 	if (list_empty(&zone->unaccepted_pages))
7002 		return false;
7003 
7004 	/* How much to accept to get to promo watermark? */
7005 	to_accept = promo_wmark_pages(zone) -
7006 		    (zone_page_state(zone, NR_FREE_PAGES) -
7007 		    __zone_watermark_unusable_free(zone, order, 0) -
7008 		    zone_page_state(zone, NR_UNACCEPTED));
7009 
7010 	while (to_accept > 0) {
7011 		if (!try_to_accept_memory_one(zone))
7012 			break;
7013 		ret = true;
7014 		to_accept -= MAX_ORDER_NR_PAGES;
7015 	}
7016 
7017 	return ret;
7018 }
7019 
7020 static inline bool has_unaccepted_memory(void)
7021 {
7022 	return static_branch_unlikely(&zones_with_unaccepted_pages);
7023 }
7024 
7025 static bool __free_unaccepted(struct page *page)
7026 {
7027 	struct zone *zone = page_zone(page);
7028 	unsigned long flags;
7029 	bool first = false;
7030 
7031 	if (!lazy_accept)
7032 		return false;
7033 
7034 	spin_lock_irqsave(&zone->lock, flags);
7035 	first = list_empty(&zone->unaccepted_pages);
7036 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7037 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7038 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7039 	__SetPageUnaccepted(page);
7040 	spin_unlock_irqrestore(&zone->lock, flags);
7041 
7042 	if (first)
7043 		static_branch_inc(&zones_with_unaccepted_pages);
7044 
7045 	return true;
7046 }
7047 
7048 #else
7049 
7050 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7051 {
7052 	return false;
7053 }
7054 
7055 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7056 {
7057 	return false;
7058 }
7059 
7060 static inline bool has_unaccepted_memory(void)
7061 {
7062 	return false;
7063 }
7064 
7065 static bool __free_unaccepted(struct page *page)
7066 {
7067 	BUILD_BUG();
7068 	return false;
7069 }
7070 
7071 #endif /* CONFIG_UNACCEPTED_MEMORY */
7072