1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/memory.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/memcontrol.h> 59 #include <linux/prefetch.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/div64.h> 63 #include "internal.h" 64 65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 66 DEFINE_PER_CPU(int, numa_node); 67 EXPORT_PER_CPU_SYMBOL(numa_node); 68 #endif 69 70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 71 /* 72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 75 * defined in <linux/topology.h>. 76 */ 77 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 78 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 79 #endif 80 81 /* 82 * Array of node states. 83 */ 84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 85 [N_POSSIBLE] = NODE_MASK_ALL, 86 [N_ONLINE] = { { [0] = 1UL } }, 87 #ifndef CONFIG_NUMA 88 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 89 #ifdef CONFIG_HIGHMEM 90 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 91 #endif 92 [N_CPU] = { { [0] = 1UL } }, 93 #endif /* NUMA */ 94 }; 95 EXPORT_SYMBOL(node_states); 96 97 unsigned long totalram_pages __read_mostly; 98 unsigned long totalreserve_pages __read_mostly; 99 int percpu_pagelist_fraction; 100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 101 102 #ifdef CONFIG_PM_SLEEP 103 /* 104 * The following functions are used by the suspend/hibernate code to temporarily 105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 106 * while devices are suspended. To avoid races with the suspend/hibernate code, 107 * they should always be called with pm_mutex held (gfp_allowed_mask also should 108 * only be modified with pm_mutex held, unless the suspend/hibernate code is 109 * guaranteed not to run in parallel with that modification). 110 */ 111 112 static gfp_t saved_gfp_mask; 113 114 void pm_restore_gfp_mask(void) 115 { 116 WARN_ON(!mutex_is_locked(&pm_mutex)); 117 if (saved_gfp_mask) { 118 gfp_allowed_mask = saved_gfp_mask; 119 saved_gfp_mask = 0; 120 } 121 } 122 123 void pm_restrict_gfp_mask(void) 124 { 125 WARN_ON(!mutex_is_locked(&pm_mutex)); 126 WARN_ON(saved_gfp_mask); 127 saved_gfp_mask = gfp_allowed_mask; 128 gfp_allowed_mask &= ~GFP_IOFS; 129 } 130 #endif /* CONFIG_PM_SLEEP */ 131 132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 133 int pageblock_order __read_mostly; 134 #endif 135 136 static void __free_pages_ok(struct page *page, unsigned int order); 137 138 /* 139 * results with 256, 32 in the lowmem_reserve sysctl: 140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 141 * 1G machine -> (16M dma, 784M normal, 224M high) 142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 145 * 146 * TBD: should special case ZONE_DMA32 machines here - in those we normally 147 * don't need any ZONE_NORMAL reservation 148 */ 149 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 150 #ifdef CONFIG_ZONE_DMA 151 256, 152 #endif 153 #ifdef CONFIG_ZONE_DMA32 154 256, 155 #endif 156 #ifdef CONFIG_HIGHMEM 157 32, 158 #endif 159 32, 160 }; 161 162 EXPORT_SYMBOL(totalram_pages); 163 164 static char * const zone_names[MAX_NR_ZONES] = { 165 #ifdef CONFIG_ZONE_DMA 166 "DMA", 167 #endif 168 #ifdef CONFIG_ZONE_DMA32 169 "DMA32", 170 #endif 171 "Normal", 172 #ifdef CONFIG_HIGHMEM 173 "HighMem", 174 #endif 175 "Movable", 176 }; 177 178 int min_free_kbytes = 1024; 179 180 static unsigned long __meminitdata nr_kernel_pages; 181 static unsigned long __meminitdata nr_all_pages; 182 static unsigned long __meminitdata dma_reserve; 183 184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 185 /* 186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 187 * ranges of memory (RAM) that may be registered with add_active_range(). 188 * Ranges passed to add_active_range() will be merged if possible 189 * so the number of times add_active_range() can be called is 190 * related to the number of nodes and the number of holes 191 */ 192 #ifdef CONFIG_MAX_ACTIVE_REGIONS 193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 195 #else 196 #if MAX_NUMNODES >= 32 197 /* If there can be many nodes, allow up to 50 holes per node */ 198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 199 #else 200 /* By default, allow up to 256 distinct regions */ 201 #define MAX_ACTIVE_REGIONS 256 202 #endif 203 #endif 204 205 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 206 static int __meminitdata nr_nodemap_entries; 207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 208 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 209 static unsigned long __initdata required_kernelcore; 210 static unsigned long __initdata required_movablecore; 211 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 212 213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 214 int movable_zone; 215 EXPORT_SYMBOL(movable_zone); 216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 217 218 #if MAX_NUMNODES > 1 219 int nr_node_ids __read_mostly = MAX_NUMNODES; 220 int nr_online_nodes __read_mostly = 1; 221 EXPORT_SYMBOL(nr_node_ids); 222 EXPORT_SYMBOL(nr_online_nodes); 223 #endif 224 225 int page_group_by_mobility_disabled __read_mostly; 226 227 static void set_pageblock_migratetype(struct page *page, int migratetype) 228 { 229 230 if (unlikely(page_group_by_mobility_disabled)) 231 migratetype = MIGRATE_UNMOVABLE; 232 233 set_pageblock_flags_group(page, (unsigned long)migratetype, 234 PB_migrate, PB_migrate_end); 235 } 236 237 bool oom_killer_disabled __read_mostly; 238 239 #ifdef CONFIG_DEBUG_VM 240 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 241 { 242 int ret = 0; 243 unsigned seq; 244 unsigned long pfn = page_to_pfn(page); 245 246 do { 247 seq = zone_span_seqbegin(zone); 248 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 249 ret = 1; 250 else if (pfn < zone->zone_start_pfn) 251 ret = 1; 252 } while (zone_span_seqretry(zone, seq)); 253 254 return ret; 255 } 256 257 static int page_is_consistent(struct zone *zone, struct page *page) 258 { 259 if (!pfn_valid_within(page_to_pfn(page))) 260 return 0; 261 if (zone != page_zone(page)) 262 return 0; 263 264 return 1; 265 } 266 /* 267 * Temporary debugging check for pages not lying within a given zone. 268 */ 269 static int bad_range(struct zone *zone, struct page *page) 270 { 271 if (page_outside_zone_boundaries(zone, page)) 272 return 1; 273 if (!page_is_consistent(zone, page)) 274 return 1; 275 276 return 0; 277 } 278 #else 279 static inline int bad_range(struct zone *zone, struct page *page) 280 { 281 return 0; 282 } 283 #endif 284 285 static void bad_page(struct page *page) 286 { 287 static unsigned long resume; 288 static unsigned long nr_shown; 289 static unsigned long nr_unshown; 290 291 /* Don't complain about poisoned pages */ 292 if (PageHWPoison(page)) { 293 reset_page_mapcount(page); /* remove PageBuddy */ 294 return; 295 } 296 297 /* 298 * Allow a burst of 60 reports, then keep quiet for that minute; 299 * or allow a steady drip of one report per second. 300 */ 301 if (nr_shown == 60) { 302 if (time_before(jiffies, resume)) { 303 nr_unshown++; 304 goto out; 305 } 306 if (nr_unshown) { 307 printk(KERN_ALERT 308 "BUG: Bad page state: %lu messages suppressed\n", 309 nr_unshown); 310 nr_unshown = 0; 311 } 312 nr_shown = 0; 313 } 314 if (nr_shown++ == 0) 315 resume = jiffies + 60 * HZ; 316 317 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 318 current->comm, page_to_pfn(page)); 319 dump_page(page); 320 321 dump_stack(); 322 out: 323 /* Leave bad fields for debug, except PageBuddy could make trouble */ 324 reset_page_mapcount(page); /* remove PageBuddy */ 325 add_taint(TAINT_BAD_PAGE); 326 } 327 328 /* 329 * Higher-order pages are called "compound pages". They are structured thusly: 330 * 331 * The first PAGE_SIZE page is called the "head page". 332 * 333 * The remaining PAGE_SIZE pages are called "tail pages". 334 * 335 * All pages have PG_compound set. All pages have their ->private pointing at 336 * the head page (even the head page has this). 337 * 338 * The first tail page's ->lru.next holds the address of the compound page's 339 * put_page() function. Its ->lru.prev holds the order of allocation. 340 * This usage means that zero-order pages may not be compound. 341 */ 342 343 static void free_compound_page(struct page *page) 344 { 345 __free_pages_ok(page, compound_order(page)); 346 } 347 348 void prep_compound_page(struct page *page, unsigned long order) 349 { 350 int i; 351 int nr_pages = 1 << order; 352 353 set_compound_page_dtor(page, free_compound_page); 354 set_compound_order(page, order); 355 __SetPageHead(page); 356 for (i = 1; i < nr_pages; i++) { 357 struct page *p = page + i; 358 359 __SetPageTail(p); 360 p->first_page = page; 361 } 362 } 363 364 /* update __split_huge_page_refcount if you change this function */ 365 static int destroy_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 int bad = 0; 370 371 if (unlikely(compound_order(page) != order) || 372 unlikely(!PageHead(page))) { 373 bad_page(page); 374 bad++; 375 } 376 377 __ClearPageHead(page); 378 379 for (i = 1; i < nr_pages; i++) { 380 struct page *p = page + i; 381 382 if (unlikely(!PageTail(p) || (p->first_page != page))) { 383 bad_page(page); 384 bad++; 385 } 386 __ClearPageTail(p); 387 } 388 389 return bad; 390 } 391 392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 393 { 394 int i; 395 396 /* 397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 398 * and __GFP_HIGHMEM from hard or soft interrupt context. 399 */ 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 401 for (i = 0; i < (1 << order); i++) 402 clear_highpage(page + i); 403 } 404 405 static inline void set_page_order(struct page *page, int order) 406 { 407 set_page_private(page, order); 408 __SetPageBuddy(page); 409 } 410 411 static inline void rmv_page_order(struct page *page) 412 { 413 __ClearPageBuddy(page); 414 set_page_private(page, 0); 415 } 416 417 /* 418 * Locate the struct page for both the matching buddy in our 419 * pair (buddy1) and the combined O(n+1) page they form (page). 420 * 421 * 1) Any buddy B1 will have an order O twin B2 which satisfies 422 * the following equation: 423 * B2 = B1 ^ (1 << O) 424 * For example, if the starting buddy (buddy2) is #8 its order 425 * 1 buddy is #10: 426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 427 * 428 * 2) Any buddy B will have an order O+1 parent P which 429 * satisfies the following equation: 430 * P = B & ~(1 << O) 431 * 432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 433 */ 434 static inline unsigned long 435 __find_buddy_index(unsigned long page_idx, unsigned int order) 436 { 437 return page_idx ^ (1 << order); 438 } 439 440 /* 441 * This function checks whether a page is free && is the buddy 442 * we can do coalesce a page and its buddy if 443 * (a) the buddy is not in a hole && 444 * (b) the buddy is in the buddy system && 445 * (c) a page and its buddy have the same order && 446 * (d) a page and its buddy are in the same zone. 447 * 448 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 450 * 451 * For recording page's order, we use page_private(page). 452 */ 453 static inline int page_is_buddy(struct page *page, struct page *buddy, 454 int order) 455 { 456 if (!pfn_valid_within(page_to_pfn(buddy))) 457 return 0; 458 459 if (page_zone_id(page) != page_zone_id(buddy)) 460 return 0; 461 462 if (PageBuddy(buddy) && page_order(buddy) == order) { 463 VM_BUG_ON(page_count(buddy) != 0); 464 return 1; 465 } 466 return 0; 467 } 468 469 /* 470 * Freeing function for a buddy system allocator. 471 * 472 * The concept of a buddy system is to maintain direct-mapped table 473 * (containing bit values) for memory blocks of various "orders". 474 * The bottom level table contains the map for the smallest allocatable 475 * units of memory (here, pages), and each level above it describes 476 * pairs of units from the levels below, hence, "buddies". 477 * At a high level, all that happens here is marking the table entry 478 * at the bottom level available, and propagating the changes upward 479 * as necessary, plus some accounting needed to play nicely with other 480 * parts of the VM system. 481 * At each level, we keep a list of pages, which are heads of continuous 482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 483 * order is recorded in page_private(page) field. 484 * So when we are allocating or freeing one, we can derive the state of the 485 * other. That is, if we allocate a small block, and both were 486 * free, the remainder of the region must be split into blocks. 487 * If a block is freed, and its buddy is also free, then this 488 * triggers coalescing into a block of larger size. 489 * 490 * -- wli 491 */ 492 493 static inline void __free_one_page(struct page *page, 494 struct zone *zone, unsigned int order, 495 int migratetype) 496 { 497 unsigned long page_idx; 498 unsigned long combined_idx; 499 unsigned long uninitialized_var(buddy_idx); 500 struct page *buddy; 501 502 if (unlikely(PageCompound(page))) 503 if (unlikely(destroy_compound_page(page, order))) 504 return; 505 506 VM_BUG_ON(migratetype == -1); 507 508 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 509 510 VM_BUG_ON(page_idx & ((1 << order) - 1)); 511 VM_BUG_ON(bad_range(zone, page)); 512 513 while (order < MAX_ORDER-1) { 514 buddy_idx = __find_buddy_index(page_idx, order); 515 buddy = page + (buddy_idx - page_idx); 516 if (!page_is_buddy(page, buddy, order)) 517 break; 518 519 /* Our buddy is free, merge with it and move up one order. */ 520 list_del(&buddy->lru); 521 zone->free_area[order].nr_free--; 522 rmv_page_order(buddy); 523 combined_idx = buddy_idx & page_idx; 524 page = page + (combined_idx - page_idx); 525 page_idx = combined_idx; 526 order++; 527 } 528 set_page_order(page, order); 529 530 /* 531 * If this is not the largest possible page, check if the buddy 532 * of the next-highest order is free. If it is, it's possible 533 * that pages are being freed that will coalesce soon. In case, 534 * that is happening, add the free page to the tail of the list 535 * so it's less likely to be used soon and more likely to be merged 536 * as a higher order page 537 */ 538 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 539 struct page *higher_page, *higher_buddy; 540 combined_idx = buddy_idx & page_idx; 541 higher_page = page + (combined_idx - page_idx); 542 buddy_idx = __find_buddy_index(combined_idx, order + 1); 543 higher_buddy = page + (buddy_idx - combined_idx); 544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 545 list_add_tail(&page->lru, 546 &zone->free_area[order].free_list[migratetype]); 547 goto out; 548 } 549 } 550 551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 552 out: 553 zone->free_area[order].nr_free++; 554 } 555 556 /* 557 * free_page_mlock() -- clean up attempts to free and mlocked() page. 558 * Page should not be on lru, so no need to fix that up. 559 * free_pages_check() will verify... 560 */ 561 static inline void free_page_mlock(struct page *page) 562 { 563 __dec_zone_page_state(page, NR_MLOCK); 564 __count_vm_event(UNEVICTABLE_MLOCKFREED); 565 } 566 567 static inline int free_pages_check(struct page *page) 568 { 569 if (unlikely(page_mapcount(page) | 570 (page->mapping != NULL) | 571 (atomic_read(&page->_count) != 0) | 572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 573 (mem_cgroup_bad_page_check(page)))) { 574 bad_page(page); 575 return 1; 576 } 577 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 578 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 579 return 0; 580 } 581 582 /* 583 * Frees a number of pages from the PCP lists 584 * Assumes all pages on list are in same zone, and of same order. 585 * count is the number of pages to free. 586 * 587 * If the zone was previously in an "all pages pinned" state then look to 588 * see if this freeing clears that state. 589 * 590 * And clear the zone's pages_scanned counter, to hold off the "all pages are 591 * pinned" detection logic. 592 */ 593 static void free_pcppages_bulk(struct zone *zone, int count, 594 struct per_cpu_pages *pcp) 595 { 596 int migratetype = 0; 597 int batch_free = 0; 598 int to_free = count; 599 600 spin_lock(&zone->lock); 601 zone->all_unreclaimable = 0; 602 zone->pages_scanned = 0; 603 604 while (to_free) { 605 struct page *page; 606 struct list_head *list; 607 608 /* 609 * Remove pages from lists in a round-robin fashion. A 610 * batch_free count is maintained that is incremented when an 611 * empty list is encountered. This is so more pages are freed 612 * off fuller lists instead of spinning excessively around empty 613 * lists 614 */ 615 do { 616 batch_free++; 617 if (++migratetype == MIGRATE_PCPTYPES) 618 migratetype = 0; 619 list = &pcp->lists[migratetype]; 620 } while (list_empty(list)); 621 622 /* This is the only non-empty list. Free them all. */ 623 if (batch_free == MIGRATE_PCPTYPES) 624 batch_free = to_free; 625 626 do { 627 page = list_entry(list->prev, struct page, lru); 628 /* must delete as __free_one_page list manipulates */ 629 list_del(&page->lru); 630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 631 __free_one_page(page, zone, 0, page_private(page)); 632 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 633 } while (--to_free && --batch_free && !list_empty(list)); 634 } 635 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 636 spin_unlock(&zone->lock); 637 } 638 639 static void free_one_page(struct zone *zone, struct page *page, int order, 640 int migratetype) 641 { 642 spin_lock(&zone->lock); 643 zone->all_unreclaimable = 0; 644 zone->pages_scanned = 0; 645 646 __free_one_page(page, zone, order, migratetype); 647 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 648 spin_unlock(&zone->lock); 649 } 650 651 static bool free_pages_prepare(struct page *page, unsigned int order) 652 { 653 int i; 654 int bad = 0; 655 656 trace_mm_page_free_direct(page, order); 657 kmemcheck_free_shadow(page, order); 658 659 if (PageAnon(page)) 660 page->mapping = NULL; 661 for (i = 0; i < (1 << order); i++) 662 bad += free_pages_check(page + i); 663 if (bad) 664 return false; 665 666 if (!PageHighMem(page)) { 667 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 668 debug_check_no_obj_freed(page_address(page), 669 PAGE_SIZE << order); 670 } 671 arch_free_page(page, order); 672 kernel_map_pages(page, 1 << order, 0); 673 674 return true; 675 } 676 677 static void __free_pages_ok(struct page *page, unsigned int order) 678 { 679 unsigned long flags; 680 int wasMlocked = __TestClearPageMlocked(page); 681 682 if (!free_pages_prepare(page, order)) 683 return; 684 685 local_irq_save(flags); 686 if (unlikely(wasMlocked)) 687 free_page_mlock(page); 688 __count_vm_events(PGFREE, 1 << order); 689 free_one_page(page_zone(page), page, order, 690 get_pageblock_migratetype(page)); 691 local_irq_restore(flags); 692 } 693 694 /* 695 * permit the bootmem allocator to evade page validation on high-order frees 696 */ 697 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 698 { 699 if (order == 0) { 700 __ClearPageReserved(page); 701 set_page_count(page, 0); 702 set_page_refcounted(page); 703 __free_page(page); 704 } else { 705 int loop; 706 707 prefetchw(page); 708 for (loop = 0; loop < BITS_PER_LONG; loop++) { 709 struct page *p = &page[loop]; 710 711 if (loop + 1 < BITS_PER_LONG) 712 prefetchw(p + 1); 713 __ClearPageReserved(p); 714 set_page_count(p, 0); 715 } 716 717 set_page_refcounted(page); 718 __free_pages(page, order); 719 } 720 } 721 722 723 /* 724 * The order of subdivision here is critical for the IO subsystem. 725 * Please do not alter this order without good reasons and regression 726 * testing. Specifically, as large blocks of memory are subdivided, 727 * the order in which smaller blocks are delivered depends on the order 728 * they're subdivided in this function. This is the primary factor 729 * influencing the order in which pages are delivered to the IO 730 * subsystem according to empirical testing, and this is also justified 731 * by considering the behavior of a buddy system containing a single 732 * large block of memory acted on by a series of small allocations. 733 * This behavior is a critical factor in sglist merging's success. 734 * 735 * -- wli 736 */ 737 static inline void expand(struct zone *zone, struct page *page, 738 int low, int high, struct free_area *area, 739 int migratetype) 740 { 741 unsigned long size = 1 << high; 742 743 while (high > low) { 744 area--; 745 high--; 746 size >>= 1; 747 VM_BUG_ON(bad_range(zone, &page[size])); 748 list_add(&page[size].lru, &area->free_list[migratetype]); 749 area->nr_free++; 750 set_page_order(&page[size], high); 751 } 752 } 753 754 /* 755 * This page is about to be returned from the page allocator 756 */ 757 static inline int check_new_page(struct page *page) 758 { 759 if (unlikely(page_mapcount(page) | 760 (page->mapping != NULL) | 761 (atomic_read(&page->_count) != 0) | 762 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 763 (mem_cgroup_bad_page_check(page)))) { 764 bad_page(page); 765 return 1; 766 } 767 return 0; 768 } 769 770 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 771 { 772 int i; 773 774 for (i = 0; i < (1 << order); i++) { 775 struct page *p = page + i; 776 if (unlikely(check_new_page(p))) 777 return 1; 778 } 779 780 set_page_private(page, 0); 781 set_page_refcounted(page); 782 783 arch_alloc_page(page, order); 784 kernel_map_pages(page, 1 << order, 1); 785 786 if (gfp_flags & __GFP_ZERO) 787 prep_zero_page(page, order, gfp_flags); 788 789 if (order && (gfp_flags & __GFP_COMP)) 790 prep_compound_page(page, order); 791 792 return 0; 793 } 794 795 /* 796 * Go through the free lists for the given migratetype and remove 797 * the smallest available page from the freelists 798 */ 799 static inline 800 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 801 int migratetype) 802 { 803 unsigned int current_order; 804 struct free_area * area; 805 struct page *page; 806 807 /* Find a page of the appropriate size in the preferred list */ 808 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 809 area = &(zone->free_area[current_order]); 810 if (list_empty(&area->free_list[migratetype])) 811 continue; 812 813 page = list_entry(area->free_list[migratetype].next, 814 struct page, lru); 815 list_del(&page->lru); 816 rmv_page_order(page); 817 area->nr_free--; 818 expand(zone, page, order, current_order, area, migratetype); 819 return page; 820 } 821 822 return NULL; 823 } 824 825 826 /* 827 * This array describes the order lists are fallen back to when 828 * the free lists for the desirable migrate type are depleted 829 */ 830 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 831 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 832 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 833 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 834 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 835 }; 836 837 /* 838 * Move the free pages in a range to the free lists of the requested type. 839 * Note that start_page and end_pages are not aligned on a pageblock 840 * boundary. If alignment is required, use move_freepages_block() 841 */ 842 static int move_freepages(struct zone *zone, 843 struct page *start_page, struct page *end_page, 844 int migratetype) 845 { 846 struct page *page; 847 unsigned long order; 848 int pages_moved = 0; 849 850 #ifndef CONFIG_HOLES_IN_ZONE 851 /* 852 * page_zone is not safe to call in this context when 853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 854 * anyway as we check zone boundaries in move_freepages_block(). 855 * Remove at a later date when no bug reports exist related to 856 * grouping pages by mobility 857 */ 858 BUG_ON(page_zone(start_page) != page_zone(end_page)); 859 #endif 860 861 for (page = start_page; page <= end_page;) { 862 /* Make sure we are not inadvertently changing nodes */ 863 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 864 865 if (!pfn_valid_within(page_to_pfn(page))) { 866 page++; 867 continue; 868 } 869 870 if (!PageBuddy(page)) { 871 page++; 872 continue; 873 } 874 875 order = page_order(page); 876 list_move(&page->lru, 877 &zone->free_area[order].free_list[migratetype]); 878 page += 1 << order; 879 pages_moved += 1 << order; 880 } 881 882 return pages_moved; 883 } 884 885 static int move_freepages_block(struct zone *zone, struct page *page, 886 int migratetype) 887 { 888 unsigned long start_pfn, end_pfn; 889 struct page *start_page, *end_page; 890 891 start_pfn = page_to_pfn(page); 892 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 893 start_page = pfn_to_page(start_pfn); 894 end_page = start_page + pageblock_nr_pages - 1; 895 end_pfn = start_pfn + pageblock_nr_pages - 1; 896 897 /* Do not cross zone boundaries */ 898 if (start_pfn < zone->zone_start_pfn) 899 start_page = page; 900 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 901 return 0; 902 903 return move_freepages(zone, start_page, end_page, migratetype); 904 } 905 906 static void change_pageblock_range(struct page *pageblock_page, 907 int start_order, int migratetype) 908 { 909 int nr_pageblocks = 1 << (start_order - pageblock_order); 910 911 while (nr_pageblocks--) { 912 set_pageblock_migratetype(pageblock_page, migratetype); 913 pageblock_page += pageblock_nr_pages; 914 } 915 } 916 917 /* Remove an element from the buddy allocator from the fallback list */ 918 static inline struct page * 919 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 920 { 921 struct free_area * area; 922 int current_order; 923 struct page *page; 924 int migratetype, i; 925 926 /* Find the largest possible block of pages in the other list */ 927 for (current_order = MAX_ORDER-1; current_order >= order; 928 --current_order) { 929 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 930 migratetype = fallbacks[start_migratetype][i]; 931 932 /* MIGRATE_RESERVE handled later if necessary */ 933 if (migratetype == MIGRATE_RESERVE) 934 continue; 935 936 area = &(zone->free_area[current_order]); 937 if (list_empty(&area->free_list[migratetype])) 938 continue; 939 940 page = list_entry(area->free_list[migratetype].next, 941 struct page, lru); 942 area->nr_free--; 943 944 /* 945 * If breaking a large block of pages, move all free 946 * pages to the preferred allocation list. If falling 947 * back for a reclaimable kernel allocation, be more 948 * aggressive about taking ownership of free pages 949 */ 950 if (unlikely(current_order >= (pageblock_order >> 1)) || 951 start_migratetype == MIGRATE_RECLAIMABLE || 952 page_group_by_mobility_disabled) { 953 unsigned long pages; 954 pages = move_freepages_block(zone, page, 955 start_migratetype); 956 957 /* Claim the whole block if over half of it is free */ 958 if (pages >= (1 << (pageblock_order-1)) || 959 page_group_by_mobility_disabled) 960 set_pageblock_migratetype(page, 961 start_migratetype); 962 963 migratetype = start_migratetype; 964 } 965 966 /* Remove the page from the freelists */ 967 list_del(&page->lru); 968 rmv_page_order(page); 969 970 /* Take ownership for orders >= pageblock_order */ 971 if (current_order >= pageblock_order) 972 change_pageblock_range(page, current_order, 973 start_migratetype); 974 975 expand(zone, page, order, current_order, area, migratetype); 976 977 trace_mm_page_alloc_extfrag(page, order, current_order, 978 start_migratetype, migratetype); 979 980 return page; 981 } 982 } 983 984 return NULL; 985 } 986 987 /* 988 * Do the hard work of removing an element from the buddy allocator. 989 * Call me with the zone->lock already held. 990 */ 991 static struct page *__rmqueue(struct zone *zone, unsigned int order, 992 int migratetype) 993 { 994 struct page *page; 995 996 retry_reserve: 997 page = __rmqueue_smallest(zone, order, migratetype); 998 999 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1000 page = __rmqueue_fallback(zone, order, migratetype); 1001 1002 /* 1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1004 * is used because __rmqueue_smallest is an inline function 1005 * and we want just one call site 1006 */ 1007 if (!page) { 1008 migratetype = MIGRATE_RESERVE; 1009 goto retry_reserve; 1010 } 1011 } 1012 1013 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1014 return page; 1015 } 1016 1017 /* 1018 * Obtain a specified number of elements from the buddy allocator, all under 1019 * a single hold of the lock, for efficiency. Add them to the supplied list. 1020 * Returns the number of new pages which were placed at *list. 1021 */ 1022 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1023 unsigned long count, struct list_head *list, 1024 int migratetype, int cold) 1025 { 1026 int i; 1027 1028 spin_lock(&zone->lock); 1029 for (i = 0; i < count; ++i) { 1030 struct page *page = __rmqueue(zone, order, migratetype); 1031 if (unlikely(page == NULL)) 1032 break; 1033 1034 /* 1035 * Split buddy pages returned by expand() are received here 1036 * in physical page order. The page is added to the callers and 1037 * list and the list head then moves forward. From the callers 1038 * perspective, the linked list is ordered by page number in 1039 * some conditions. This is useful for IO devices that can 1040 * merge IO requests if the physical pages are ordered 1041 * properly. 1042 */ 1043 if (likely(cold == 0)) 1044 list_add(&page->lru, list); 1045 else 1046 list_add_tail(&page->lru, list); 1047 set_page_private(page, migratetype); 1048 list = &page->lru; 1049 } 1050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1051 spin_unlock(&zone->lock); 1052 return i; 1053 } 1054 1055 #ifdef CONFIG_NUMA 1056 /* 1057 * Called from the vmstat counter updater to drain pagesets of this 1058 * currently executing processor on remote nodes after they have 1059 * expired. 1060 * 1061 * Note that this function must be called with the thread pinned to 1062 * a single processor. 1063 */ 1064 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1065 { 1066 unsigned long flags; 1067 int to_drain; 1068 1069 local_irq_save(flags); 1070 if (pcp->count >= pcp->batch) 1071 to_drain = pcp->batch; 1072 else 1073 to_drain = pcp->count; 1074 free_pcppages_bulk(zone, to_drain, pcp); 1075 pcp->count -= to_drain; 1076 local_irq_restore(flags); 1077 } 1078 #endif 1079 1080 /* 1081 * Drain pages of the indicated processor. 1082 * 1083 * The processor must either be the current processor and the 1084 * thread pinned to the current processor or a processor that 1085 * is not online. 1086 */ 1087 static void drain_pages(unsigned int cpu) 1088 { 1089 unsigned long flags; 1090 struct zone *zone; 1091 1092 for_each_populated_zone(zone) { 1093 struct per_cpu_pageset *pset; 1094 struct per_cpu_pages *pcp; 1095 1096 local_irq_save(flags); 1097 pset = per_cpu_ptr(zone->pageset, cpu); 1098 1099 pcp = &pset->pcp; 1100 if (pcp->count) { 1101 free_pcppages_bulk(zone, pcp->count, pcp); 1102 pcp->count = 0; 1103 } 1104 local_irq_restore(flags); 1105 } 1106 } 1107 1108 /* 1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1110 */ 1111 void drain_local_pages(void *arg) 1112 { 1113 drain_pages(smp_processor_id()); 1114 } 1115 1116 /* 1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1118 */ 1119 void drain_all_pages(void) 1120 { 1121 on_each_cpu(drain_local_pages, NULL, 1); 1122 } 1123 1124 #ifdef CONFIG_HIBERNATION 1125 1126 void mark_free_pages(struct zone *zone) 1127 { 1128 unsigned long pfn, max_zone_pfn; 1129 unsigned long flags; 1130 int order, t; 1131 struct list_head *curr; 1132 1133 if (!zone->spanned_pages) 1134 return; 1135 1136 spin_lock_irqsave(&zone->lock, flags); 1137 1138 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1139 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1140 if (pfn_valid(pfn)) { 1141 struct page *page = pfn_to_page(pfn); 1142 1143 if (!swsusp_page_is_forbidden(page)) 1144 swsusp_unset_page_free(page); 1145 } 1146 1147 for_each_migratetype_order(order, t) { 1148 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1149 unsigned long i; 1150 1151 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1152 for (i = 0; i < (1UL << order); i++) 1153 swsusp_set_page_free(pfn_to_page(pfn + i)); 1154 } 1155 } 1156 spin_unlock_irqrestore(&zone->lock, flags); 1157 } 1158 #endif /* CONFIG_PM */ 1159 1160 /* 1161 * Free a 0-order page 1162 * cold == 1 ? free a cold page : free a hot page 1163 */ 1164 void free_hot_cold_page(struct page *page, int cold) 1165 { 1166 struct zone *zone = page_zone(page); 1167 struct per_cpu_pages *pcp; 1168 unsigned long flags; 1169 int migratetype; 1170 int wasMlocked = __TestClearPageMlocked(page); 1171 1172 if (!free_pages_prepare(page, 0)) 1173 return; 1174 1175 migratetype = get_pageblock_migratetype(page); 1176 set_page_private(page, migratetype); 1177 local_irq_save(flags); 1178 if (unlikely(wasMlocked)) 1179 free_page_mlock(page); 1180 __count_vm_event(PGFREE); 1181 1182 /* 1183 * We only track unmovable, reclaimable and movable on pcp lists. 1184 * Free ISOLATE pages back to the allocator because they are being 1185 * offlined but treat RESERVE as movable pages so we can get those 1186 * areas back if necessary. Otherwise, we may have to free 1187 * excessively into the page allocator 1188 */ 1189 if (migratetype >= MIGRATE_PCPTYPES) { 1190 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1191 free_one_page(zone, page, 0, migratetype); 1192 goto out; 1193 } 1194 migratetype = MIGRATE_MOVABLE; 1195 } 1196 1197 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1198 if (cold) 1199 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1200 else 1201 list_add(&page->lru, &pcp->lists[migratetype]); 1202 pcp->count++; 1203 if (pcp->count >= pcp->high) { 1204 free_pcppages_bulk(zone, pcp->batch, pcp); 1205 pcp->count -= pcp->batch; 1206 } 1207 1208 out: 1209 local_irq_restore(flags); 1210 } 1211 1212 /* 1213 * split_page takes a non-compound higher-order page, and splits it into 1214 * n (1<<order) sub-pages: page[0..n] 1215 * Each sub-page must be freed individually. 1216 * 1217 * Note: this is probably too low level an operation for use in drivers. 1218 * Please consult with lkml before using this in your driver. 1219 */ 1220 void split_page(struct page *page, unsigned int order) 1221 { 1222 int i; 1223 1224 VM_BUG_ON(PageCompound(page)); 1225 VM_BUG_ON(!page_count(page)); 1226 1227 #ifdef CONFIG_KMEMCHECK 1228 /* 1229 * Split shadow pages too, because free(page[0]) would 1230 * otherwise free the whole shadow. 1231 */ 1232 if (kmemcheck_page_is_tracked(page)) 1233 split_page(virt_to_page(page[0].shadow), order); 1234 #endif 1235 1236 for (i = 1; i < (1 << order); i++) 1237 set_page_refcounted(page + i); 1238 } 1239 1240 /* 1241 * Similar to split_page except the page is already free. As this is only 1242 * being used for migration, the migratetype of the block also changes. 1243 * As this is called with interrupts disabled, the caller is responsible 1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1245 * are enabled. 1246 * 1247 * Note: this is probably too low level an operation for use in drivers. 1248 * Please consult with lkml before using this in your driver. 1249 */ 1250 int split_free_page(struct page *page) 1251 { 1252 unsigned int order; 1253 unsigned long watermark; 1254 struct zone *zone; 1255 1256 BUG_ON(!PageBuddy(page)); 1257 1258 zone = page_zone(page); 1259 order = page_order(page); 1260 1261 /* Obey watermarks as if the page was being allocated */ 1262 watermark = low_wmark_pages(zone) + (1 << order); 1263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1264 return 0; 1265 1266 /* Remove page from free list */ 1267 list_del(&page->lru); 1268 zone->free_area[order].nr_free--; 1269 rmv_page_order(page); 1270 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1271 1272 /* Split into individual pages */ 1273 set_page_refcounted(page); 1274 split_page(page, order); 1275 1276 if (order >= pageblock_order - 1) { 1277 struct page *endpage = page + (1 << order) - 1; 1278 for (; page < endpage; page += pageblock_nr_pages) 1279 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1280 } 1281 1282 return 1 << order; 1283 } 1284 1285 /* 1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1288 * or two. 1289 */ 1290 static inline 1291 struct page *buffered_rmqueue(struct zone *preferred_zone, 1292 struct zone *zone, int order, gfp_t gfp_flags, 1293 int migratetype) 1294 { 1295 unsigned long flags; 1296 struct page *page; 1297 int cold = !!(gfp_flags & __GFP_COLD); 1298 1299 again: 1300 if (likely(order == 0)) { 1301 struct per_cpu_pages *pcp; 1302 struct list_head *list; 1303 1304 local_irq_save(flags); 1305 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1306 list = &pcp->lists[migratetype]; 1307 if (list_empty(list)) { 1308 pcp->count += rmqueue_bulk(zone, 0, 1309 pcp->batch, list, 1310 migratetype, cold); 1311 if (unlikely(list_empty(list))) 1312 goto failed; 1313 } 1314 1315 if (cold) 1316 page = list_entry(list->prev, struct page, lru); 1317 else 1318 page = list_entry(list->next, struct page, lru); 1319 1320 list_del(&page->lru); 1321 pcp->count--; 1322 } else { 1323 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1324 /* 1325 * __GFP_NOFAIL is not to be used in new code. 1326 * 1327 * All __GFP_NOFAIL callers should be fixed so that they 1328 * properly detect and handle allocation failures. 1329 * 1330 * We most definitely don't want callers attempting to 1331 * allocate greater than order-1 page units with 1332 * __GFP_NOFAIL. 1333 */ 1334 WARN_ON_ONCE(order > 1); 1335 } 1336 spin_lock_irqsave(&zone->lock, flags); 1337 page = __rmqueue(zone, order, migratetype); 1338 spin_unlock(&zone->lock); 1339 if (!page) 1340 goto failed; 1341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1342 } 1343 1344 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1345 zone_statistics(preferred_zone, zone, gfp_flags); 1346 local_irq_restore(flags); 1347 1348 VM_BUG_ON(bad_range(zone, page)); 1349 if (prep_new_page(page, order, gfp_flags)) 1350 goto again; 1351 return page; 1352 1353 failed: 1354 local_irq_restore(flags); 1355 return NULL; 1356 } 1357 1358 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1359 #define ALLOC_WMARK_MIN WMARK_MIN 1360 #define ALLOC_WMARK_LOW WMARK_LOW 1361 #define ALLOC_WMARK_HIGH WMARK_HIGH 1362 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1363 1364 /* Mask to get the watermark bits */ 1365 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1366 1367 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1368 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1369 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1370 1371 #ifdef CONFIG_FAIL_PAGE_ALLOC 1372 1373 static struct fail_page_alloc_attr { 1374 struct fault_attr attr; 1375 1376 u32 ignore_gfp_highmem; 1377 u32 ignore_gfp_wait; 1378 u32 min_order; 1379 1380 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1381 1382 struct dentry *ignore_gfp_highmem_file; 1383 struct dentry *ignore_gfp_wait_file; 1384 struct dentry *min_order_file; 1385 1386 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1387 1388 } fail_page_alloc = { 1389 .attr = FAULT_ATTR_INITIALIZER, 1390 .ignore_gfp_wait = 1, 1391 .ignore_gfp_highmem = 1, 1392 .min_order = 1, 1393 }; 1394 1395 static int __init setup_fail_page_alloc(char *str) 1396 { 1397 return setup_fault_attr(&fail_page_alloc.attr, str); 1398 } 1399 __setup("fail_page_alloc=", setup_fail_page_alloc); 1400 1401 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1402 { 1403 if (order < fail_page_alloc.min_order) 1404 return 0; 1405 if (gfp_mask & __GFP_NOFAIL) 1406 return 0; 1407 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1408 return 0; 1409 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1410 return 0; 1411 1412 return should_fail(&fail_page_alloc.attr, 1 << order); 1413 } 1414 1415 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1416 1417 static int __init fail_page_alloc_debugfs(void) 1418 { 1419 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1420 struct dentry *dir; 1421 int err; 1422 1423 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1424 "fail_page_alloc"); 1425 if (err) 1426 return err; 1427 dir = fail_page_alloc.attr.dentries.dir; 1428 1429 fail_page_alloc.ignore_gfp_wait_file = 1430 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1431 &fail_page_alloc.ignore_gfp_wait); 1432 1433 fail_page_alloc.ignore_gfp_highmem_file = 1434 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1435 &fail_page_alloc.ignore_gfp_highmem); 1436 fail_page_alloc.min_order_file = 1437 debugfs_create_u32("min-order", mode, dir, 1438 &fail_page_alloc.min_order); 1439 1440 if (!fail_page_alloc.ignore_gfp_wait_file || 1441 !fail_page_alloc.ignore_gfp_highmem_file || 1442 !fail_page_alloc.min_order_file) { 1443 err = -ENOMEM; 1444 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1445 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1446 debugfs_remove(fail_page_alloc.min_order_file); 1447 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1448 } 1449 1450 return err; 1451 } 1452 1453 late_initcall(fail_page_alloc_debugfs); 1454 1455 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1456 1457 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1458 1459 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1460 { 1461 return 0; 1462 } 1463 1464 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1465 1466 /* 1467 * Return true if free pages are above 'mark'. This takes into account the order 1468 * of the allocation. 1469 */ 1470 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1471 int classzone_idx, int alloc_flags, long free_pages) 1472 { 1473 /* free_pages my go negative - that's OK */ 1474 long min = mark; 1475 int o; 1476 1477 free_pages -= (1 << order) + 1; 1478 if (alloc_flags & ALLOC_HIGH) 1479 min -= min / 2; 1480 if (alloc_flags & ALLOC_HARDER) 1481 min -= min / 4; 1482 1483 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1484 return false; 1485 for (o = 0; o < order; o++) { 1486 /* At the next order, this order's pages become unavailable */ 1487 free_pages -= z->free_area[o].nr_free << o; 1488 1489 /* Require fewer higher order pages to be free */ 1490 min >>= 1; 1491 1492 if (free_pages <= min) 1493 return false; 1494 } 1495 return true; 1496 } 1497 1498 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1499 int classzone_idx, int alloc_flags) 1500 { 1501 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1502 zone_page_state(z, NR_FREE_PAGES)); 1503 } 1504 1505 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1506 int classzone_idx, int alloc_flags) 1507 { 1508 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1509 1510 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1511 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1512 1513 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1514 free_pages); 1515 } 1516 1517 #ifdef CONFIG_NUMA 1518 /* 1519 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1520 * skip over zones that are not allowed by the cpuset, or that have 1521 * been recently (in last second) found to be nearly full. See further 1522 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1523 * that have to skip over a lot of full or unallowed zones. 1524 * 1525 * If the zonelist cache is present in the passed in zonelist, then 1526 * returns a pointer to the allowed node mask (either the current 1527 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1528 * 1529 * If the zonelist cache is not available for this zonelist, does 1530 * nothing and returns NULL. 1531 * 1532 * If the fullzones BITMAP in the zonelist cache is stale (more than 1533 * a second since last zap'd) then we zap it out (clear its bits.) 1534 * 1535 * We hold off even calling zlc_setup, until after we've checked the 1536 * first zone in the zonelist, on the theory that most allocations will 1537 * be satisfied from that first zone, so best to examine that zone as 1538 * quickly as we can. 1539 */ 1540 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1541 { 1542 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1543 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1544 1545 zlc = zonelist->zlcache_ptr; 1546 if (!zlc) 1547 return NULL; 1548 1549 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1550 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1551 zlc->last_full_zap = jiffies; 1552 } 1553 1554 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1555 &cpuset_current_mems_allowed : 1556 &node_states[N_HIGH_MEMORY]; 1557 return allowednodes; 1558 } 1559 1560 /* 1561 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1562 * if it is worth looking at further for free memory: 1563 * 1) Check that the zone isn't thought to be full (doesn't have its 1564 * bit set in the zonelist_cache fullzones BITMAP). 1565 * 2) Check that the zones node (obtained from the zonelist_cache 1566 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1567 * Return true (non-zero) if zone is worth looking at further, or 1568 * else return false (zero) if it is not. 1569 * 1570 * This check -ignores- the distinction between various watermarks, 1571 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1572 * found to be full for any variation of these watermarks, it will 1573 * be considered full for up to one second by all requests, unless 1574 * we are so low on memory on all allowed nodes that we are forced 1575 * into the second scan of the zonelist. 1576 * 1577 * In the second scan we ignore this zonelist cache and exactly 1578 * apply the watermarks to all zones, even it is slower to do so. 1579 * We are low on memory in the second scan, and should leave no stone 1580 * unturned looking for a free page. 1581 */ 1582 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1583 nodemask_t *allowednodes) 1584 { 1585 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1586 int i; /* index of *z in zonelist zones */ 1587 int n; /* node that zone *z is on */ 1588 1589 zlc = zonelist->zlcache_ptr; 1590 if (!zlc) 1591 return 1; 1592 1593 i = z - zonelist->_zonerefs; 1594 n = zlc->z_to_n[i]; 1595 1596 /* This zone is worth trying if it is allowed but not full */ 1597 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1598 } 1599 1600 /* 1601 * Given 'z' scanning a zonelist, set the corresponding bit in 1602 * zlc->fullzones, so that subsequent attempts to allocate a page 1603 * from that zone don't waste time re-examining it. 1604 */ 1605 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1606 { 1607 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1608 int i; /* index of *z in zonelist zones */ 1609 1610 zlc = zonelist->zlcache_ptr; 1611 if (!zlc) 1612 return; 1613 1614 i = z - zonelist->_zonerefs; 1615 1616 set_bit(i, zlc->fullzones); 1617 } 1618 1619 #else /* CONFIG_NUMA */ 1620 1621 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1622 { 1623 return NULL; 1624 } 1625 1626 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1627 nodemask_t *allowednodes) 1628 { 1629 return 1; 1630 } 1631 1632 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1633 { 1634 } 1635 #endif /* CONFIG_NUMA */ 1636 1637 /* 1638 * get_page_from_freelist goes through the zonelist trying to allocate 1639 * a page. 1640 */ 1641 static struct page * 1642 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1643 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1644 struct zone *preferred_zone, int migratetype) 1645 { 1646 struct zoneref *z; 1647 struct page *page = NULL; 1648 int classzone_idx; 1649 struct zone *zone; 1650 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1651 int zlc_active = 0; /* set if using zonelist_cache */ 1652 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1653 1654 classzone_idx = zone_idx(preferred_zone); 1655 zonelist_scan: 1656 /* 1657 * Scan zonelist, looking for a zone with enough free. 1658 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1659 */ 1660 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1661 high_zoneidx, nodemask) { 1662 if (NUMA_BUILD && zlc_active && 1663 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1664 continue; 1665 if ((alloc_flags & ALLOC_CPUSET) && 1666 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1667 goto try_next_zone; 1668 1669 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1670 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1671 unsigned long mark; 1672 int ret; 1673 1674 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1675 if (zone_watermark_ok(zone, order, mark, 1676 classzone_idx, alloc_flags)) 1677 goto try_this_zone; 1678 1679 if (zone_reclaim_mode == 0) 1680 goto this_zone_full; 1681 1682 ret = zone_reclaim(zone, gfp_mask, order); 1683 switch (ret) { 1684 case ZONE_RECLAIM_NOSCAN: 1685 /* did not scan */ 1686 goto try_next_zone; 1687 case ZONE_RECLAIM_FULL: 1688 /* scanned but unreclaimable */ 1689 goto this_zone_full; 1690 default: 1691 /* did we reclaim enough */ 1692 if (!zone_watermark_ok(zone, order, mark, 1693 classzone_idx, alloc_flags)) 1694 goto this_zone_full; 1695 } 1696 } 1697 1698 try_this_zone: 1699 page = buffered_rmqueue(preferred_zone, zone, order, 1700 gfp_mask, migratetype); 1701 if (page) 1702 break; 1703 this_zone_full: 1704 if (NUMA_BUILD) 1705 zlc_mark_zone_full(zonelist, z); 1706 try_next_zone: 1707 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1708 /* 1709 * we do zlc_setup after the first zone is tried but only 1710 * if there are multiple nodes make it worthwhile 1711 */ 1712 allowednodes = zlc_setup(zonelist, alloc_flags); 1713 zlc_active = 1; 1714 did_zlc_setup = 1; 1715 } 1716 } 1717 1718 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1719 /* Disable zlc cache for second zonelist scan */ 1720 zlc_active = 0; 1721 goto zonelist_scan; 1722 } 1723 return page; 1724 } 1725 1726 /* 1727 * Large machines with many possible nodes should not always dump per-node 1728 * meminfo in irq context. 1729 */ 1730 static inline bool should_suppress_show_mem(void) 1731 { 1732 bool ret = false; 1733 1734 #if NODES_SHIFT > 8 1735 ret = in_interrupt(); 1736 #endif 1737 return ret; 1738 } 1739 1740 static DEFINE_RATELIMIT_STATE(nopage_rs, 1741 DEFAULT_RATELIMIT_INTERVAL, 1742 DEFAULT_RATELIMIT_BURST); 1743 1744 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1745 { 1746 va_list args; 1747 unsigned int filter = SHOW_MEM_FILTER_NODES; 1748 1749 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 1750 return; 1751 1752 /* 1753 * This documents exceptions given to allocations in certain 1754 * contexts that are allowed to allocate outside current's set 1755 * of allowed nodes. 1756 */ 1757 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1758 if (test_thread_flag(TIF_MEMDIE) || 1759 (current->flags & (PF_MEMALLOC | PF_EXITING))) 1760 filter &= ~SHOW_MEM_FILTER_NODES; 1761 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 1762 filter &= ~SHOW_MEM_FILTER_NODES; 1763 1764 if (fmt) { 1765 printk(KERN_WARNING); 1766 va_start(args, fmt); 1767 vprintk(fmt, args); 1768 va_end(args); 1769 } 1770 1771 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n", 1772 current->comm, order, gfp_mask); 1773 1774 dump_stack(); 1775 if (!should_suppress_show_mem()) 1776 show_mem(filter); 1777 } 1778 1779 static inline int 1780 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1781 unsigned long pages_reclaimed) 1782 { 1783 /* Do not loop if specifically requested */ 1784 if (gfp_mask & __GFP_NORETRY) 1785 return 0; 1786 1787 /* 1788 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1789 * means __GFP_NOFAIL, but that may not be true in other 1790 * implementations. 1791 */ 1792 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1793 return 1; 1794 1795 /* 1796 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1797 * specified, then we retry until we no longer reclaim any pages 1798 * (above), or we've reclaimed an order of pages at least as 1799 * large as the allocation's order. In both cases, if the 1800 * allocation still fails, we stop retrying. 1801 */ 1802 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1803 return 1; 1804 1805 /* 1806 * Don't let big-order allocations loop unless the caller 1807 * explicitly requests that. 1808 */ 1809 if (gfp_mask & __GFP_NOFAIL) 1810 return 1; 1811 1812 return 0; 1813 } 1814 1815 static inline struct page * 1816 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1817 struct zonelist *zonelist, enum zone_type high_zoneidx, 1818 nodemask_t *nodemask, struct zone *preferred_zone, 1819 int migratetype) 1820 { 1821 struct page *page; 1822 1823 /* Acquire the OOM killer lock for the zones in zonelist */ 1824 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1825 schedule_timeout_uninterruptible(1); 1826 return NULL; 1827 } 1828 1829 /* 1830 * Go through the zonelist yet one more time, keep very high watermark 1831 * here, this is only to catch a parallel oom killing, we must fail if 1832 * we're still under heavy pressure. 1833 */ 1834 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1835 order, zonelist, high_zoneidx, 1836 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1837 preferred_zone, migratetype); 1838 if (page) 1839 goto out; 1840 1841 if (!(gfp_mask & __GFP_NOFAIL)) { 1842 /* The OOM killer will not help higher order allocs */ 1843 if (order > PAGE_ALLOC_COSTLY_ORDER) 1844 goto out; 1845 /* The OOM killer does not needlessly kill tasks for lowmem */ 1846 if (high_zoneidx < ZONE_NORMAL) 1847 goto out; 1848 /* 1849 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1850 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1851 * The caller should handle page allocation failure by itself if 1852 * it specifies __GFP_THISNODE. 1853 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1854 */ 1855 if (gfp_mask & __GFP_THISNODE) 1856 goto out; 1857 } 1858 /* Exhausted what can be done so it's blamo time */ 1859 out_of_memory(zonelist, gfp_mask, order, nodemask); 1860 1861 out: 1862 clear_zonelist_oom(zonelist, gfp_mask); 1863 return page; 1864 } 1865 1866 #ifdef CONFIG_COMPACTION 1867 /* Try memory compaction for high-order allocations before reclaim */ 1868 static struct page * 1869 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1870 struct zonelist *zonelist, enum zone_type high_zoneidx, 1871 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1872 int migratetype, unsigned long *did_some_progress, 1873 bool sync_migration) 1874 { 1875 struct page *page; 1876 1877 if (!order || compaction_deferred(preferred_zone)) 1878 return NULL; 1879 1880 current->flags |= PF_MEMALLOC; 1881 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1882 nodemask, sync_migration); 1883 current->flags &= ~PF_MEMALLOC; 1884 if (*did_some_progress != COMPACT_SKIPPED) { 1885 1886 /* Page migration frees to the PCP lists but we want merging */ 1887 drain_pages(get_cpu()); 1888 put_cpu(); 1889 1890 page = get_page_from_freelist(gfp_mask, nodemask, 1891 order, zonelist, high_zoneidx, 1892 alloc_flags, preferred_zone, 1893 migratetype); 1894 if (page) { 1895 preferred_zone->compact_considered = 0; 1896 preferred_zone->compact_defer_shift = 0; 1897 count_vm_event(COMPACTSUCCESS); 1898 return page; 1899 } 1900 1901 /* 1902 * It's bad if compaction run occurs and fails. 1903 * The most likely reason is that pages exist, 1904 * but not enough to satisfy watermarks. 1905 */ 1906 count_vm_event(COMPACTFAIL); 1907 defer_compaction(preferred_zone); 1908 1909 cond_resched(); 1910 } 1911 1912 return NULL; 1913 } 1914 #else 1915 static inline struct page * 1916 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1917 struct zonelist *zonelist, enum zone_type high_zoneidx, 1918 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1919 int migratetype, unsigned long *did_some_progress, 1920 bool sync_migration) 1921 { 1922 return NULL; 1923 } 1924 #endif /* CONFIG_COMPACTION */ 1925 1926 /* The really slow allocator path where we enter direct reclaim */ 1927 static inline struct page * 1928 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1929 struct zonelist *zonelist, enum zone_type high_zoneidx, 1930 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1931 int migratetype, unsigned long *did_some_progress) 1932 { 1933 struct page *page = NULL; 1934 struct reclaim_state reclaim_state; 1935 bool drained = false; 1936 1937 cond_resched(); 1938 1939 /* We now go into synchronous reclaim */ 1940 cpuset_memory_pressure_bump(); 1941 current->flags |= PF_MEMALLOC; 1942 lockdep_set_current_reclaim_state(gfp_mask); 1943 reclaim_state.reclaimed_slab = 0; 1944 current->reclaim_state = &reclaim_state; 1945 1946 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1947 1948 current->reclaim_state = NULL; 1949 lockdep_clear_current_reclaim_state(); 1950 current->flags &= ~PF_MEMALLOC; 1951 1952 cond_resched(); 1953 1954 if (unlikely(!(*did_some_progress))) 1955 return NULL; 1956 1957 retry: 1958 page = get_page_from_freelist(gfp_mask, nodemask, order, 1959 zonelist, high_zoneidx, 1960 alloc_flags, preferred_zone, 1961 migratetype); 1962 1963 /* 1964 * If an allocation failed after direct reclaim, it could be because 1965 * pages are pinned on the per-cpu lists. Drain them and try again 1966 */ 1967 if (!page && !drained) { 1968 drain_all_pages(); 1969 drained = true; 1970 goto retry; 1971 } 1972 1973 return page; 1974 } 1975 1976 /* 1977 * This is called in the allocator slow-path if the allocation request is of 1978 * sufficient urgency to ignore watermarks and take other desperate measures 1979 */ 1980 static inline struct page * 1981 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1982 struct zonelist *zonelist, enum zone_type high_zoneidx, 1983 nodemask_t *nodemask, struct zone *preferred_zone, 1984 int migratetype) 1985 { 1986 struct page *page; 1987 1988 do { 1989 page = get_page_from_freelist(gfp_mask, nodemask, order, 1990 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1991 preferred_zone, migratetype); 1992 1993 if (!page && gfp_mask & __GFP_NOFAIL) 1994 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 1995 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1996 1997 return page; 1998 } 1999 2000 static inline 2001 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2002 enum zone_type high_zoneidx, 2003 enum zone_type classzone_idx) 2004 { 2005 struct zoneref *z; 2006 struct zone *zone; 2007 2008 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2009 wakeup_kswapd(zone, order, classzone_idx); 2010 } 2011 2012 static inline int 2013 gfp_to_alloc_flags(gfp_t gfp_mask) 2014 { 2015 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2016 const gfp_t wait = gfp_mask & __GFP_WAIT; 2017 2018 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2019 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2020 2021 /* 2022 * The caller may dip into page reserves a bit more if the caller 2023 * cannot run direct reclaim, or if the caller has realtime scheduling 2024 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2025 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2026 */ 2027 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2028 2029 if (!wait) { 2030 /* 2031 * Not worth trying to allocate harder for 2032 * __GFP_NOMEMALLOC even if it can't schedule. 2033 */ 2034 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2035 alloc_flags |= ALLOC_HARDER; 2036 /* 2037 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2038 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2039 */ 2040 alloc_flags &= ~ALLOC_CPUSET; 2041 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2042 alloc_flags |= ALLOC_HARDER; 2043 2044 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2045 if (!in_interrupt() && 2046 ((current->flags & PF_MEMALLOC) || 2047 unlikely(test_thread_flag(TIF_MEMDIE)))) 2048 alloc_flags |= ALLOC_NO_WATERMARKS; 2049 } 2050 2051 return alloc_flags; 2052 } 2053 2054 static inline struct page * 2055 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2056 struct zonelist *zonelist, enum zone_type high_zoneidx, 2057 nodemask_t *nodemask, struct zone *preferred_zone, 2058 int migratetype) 2059 { 2060 const gfp_t wait = gfp_mask & __GFP_WAIT; 2061 struct page *page = NULL; 2062 int alloc_flags; 2063 unsigned long pages_reclaimed = 0; 2064 unsigned long did_some_progress; 2065 bool sync_migration = false; 2066 2067 /* 2068 * In the slowpath, we sanity check order to avoid ever trying to 2069 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2070 * be using allocators in order of preference for an area that is 2071 * too large. 2072 */ 2073 if (order >= MAX_ORDER) { 2074 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2075 return NULL; 2076 } 2077 2078 /* 2079 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2080 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2081 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2082 * using a larger set of nodes after it has established that the 2083 * allowed per node queues are empty and that nodes are 2084 * over allocated. 2085 */ 2086 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2087 goto nopage; 2088 2089 restart: 2090 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2091 wake_all_kswapd(order, zonelist, high_zoneidx, 2092 zone_idx(preferred_zone)); 2093 2094 /* 2095 * OK, we're below the kswapd watermark and have kicked background 2096 * reclaim. Now things get more complex, so set up alloc_flags according 2097 * to how we want to proceed. 2098 */ 2099 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2100 2101 /* 2102 * Find the true preferred zone if the allocation is unconstrained by 2103 * cpusets. 2104 */ 2105 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2106 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2107 &preferred_zone); 2108 2109 rebalance: 2110 /* This is the last chance, in general, before the goto nopage. */ 2111 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2112 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2113 preferred_zone, migratetype); 2114 if (page) 2115 goto got_pg; 2116 2117 /* Allocate without watermarks if the context allows */ 2118 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2119 page = __alloc_pages_high_priority(gfp_mask, order, 2120 zonelist, high_zoneidx, nodemask, 2121 preferred_zone, migratetype); 2122 if (page) 2123 goto got_pg; 2124 } 2125 2126 /* Atomic allocations - we can't balance anything */ 2127 if (!wait) 2128 goto nopage; 2129 2130 /* Avoid recursion of direct reclaim */ 2131 if (current->flags & PF_MEMALLOC) 2132 goto nopage; 2133 2134 /* Avoid allocations with no watermarks from looping endlessly */ 2135 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2136 goto nopage; 2137 2138 /* 2139 * Try direct compaction. The first pass is asynchronous. Subsequent 2140 * attempts after direct reclaim are synchronous 2141 */ 2142 page = __alloc_pages_direct_compact(gfp_mask, order, 2143 zonelist, high_zoneidx, 2144 nodemask, 2145 alloc_flags, preferred_zone, 2146 migratetype, &did_some_progress, 2147 sync_migration); 2148 if (page) 2149 goto got_pg; 2150 sync_migration = true; 2151 2152 /* Try direct reclaim and then allocating */ 2153 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2154 zonelist, high_zoneidx, 2155 nodemask, 2156 alloc_flags, preferred_zone, 2157 migratetype, &did_some_progress); 2158 if (page) 2159 goto got_pg; 2160 2161 /* 2162 * If we failed to make any progress reclaiming, then we are 2163 * running out of options and have to consider going OOM 2164 */ 2165 if (!did_some_progress) { 2166 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2167 if (oom_killer_disabled) 2168 goto nopage; 2169 page = __alloc_pages_may_oom(gfp_mask, order, 2170 zonelist, high_zoneidx, 2171 nodemask, preferred_zone, 2172 migratetype); 2173 if (page) 2174 goto got_pg; 2175 2176 if (!(gfp_mask & __GFP_NOFAIL)) { 2177 /* 2178 * The oom killer is not called for high-order 2179 * allocations that may fail, so if no progress 2180 * is being made, there are no other options and 2181 * retrying is unlikely to help. 2182 */ 2183 if (order > PAGE_ALLOC_COSTLY_ORDER) 2184 goto nopage; 2185 /* 2186 * The oom killer is not called for lowmem 2187 * allocations to prevent needlessly killing 2188 * innocent tasks. 2189 */ 2190 if (high_zoneidx < ZONE_NORMAL) 2191 goto nopage; 2192 } 2193 2194 goto restart; 2195 } 2196 } 2197 2198 /* Check if we should retry the allocation */ 2199 pages_reclaimed += did_some_progress; 2200 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 2201 /* Wait for some write requests to complete then retry */ 2202 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2203 goto rebalance; 2204 } else { 2205 /* 2206 * High-order allocations do not necessarily loop after 2207 * direct reclaim and reclaim/compaction depends on compaction 2208 * being called after reclaim so call directly if necessary 2209 */ 2210 page = __alloc_pages_direct_compact(gfp_mask, order, 2211 zonelist, high_zoneidx, 2212 nodemask, 2213 alloc_flags, preferred_zone, 2214 migratetype, &did_some_progress, 2215 sync_migration); 2216 if (page) 2217 goto got_pg; 2218 } 2219 2220 nopage: 2221 warn_alloc_failed(gfp_mask, order, NULL); 2222 return page; 2223 got_pg: 2224 if (kmemcheck_enabled) 2225 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2226 return page; 2227 2228 } 2229 2230 /* 2231 * This is the 'heart' of the zoned buddy allocator. 2232 */ 2233 struct page * 2234 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2235 struct zonelist *zonelist, nodemask_t *nodemask) 2236 { 2237 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2238 struct zone *preferred_zone; 2239 struct page *page; 2240 int migratetype = allocflags_to_migratetype(gfp_mask); 2241 2242 gfp_mask &= gfp_allowed_mask; 2243 2244 lockdep_trace_alloc(gfp_mask); 2245 2246 might_sleep_if(gfp_mask & __GFP_WAIT); 2247 2248 if (should_fail_alloc_page(gfp_mask, order)) 2249 return NULL; 2250 #ifndef CONFIG_ZONE_DMA 2251 if (WARN_ON_ONCE(gfp_mask & __GFP_DMA)) 2252 return NULL; 2253 #endif 2254 2255 /* 2256 * Check the zones suitable for the gfp_mask contain at least one 2257 * valid zone. It's possible to have an empty zonelist as a result 2258 * of GFP_THISNODE and a memoryless node 2259 */ 2260 if (unlikely(!zonelist->_zonerefs->zone)) 2261 return NULL; 2262 2263 get_mems_allowed(); 2264 /* The preferred zone is used for statistics later */ 2265 first_zones_zonelist(zonelist, high_zoneidx, 2266 nodemask ? : &cpuset_current_mems_allowed, 2267 &preferred_zone); 2268 if (!preferred_zone) { 2269 put_mems_allowed(); 2270 return NULL; 2271 } 2272 2273 /* First allocation attempt */ 2274 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2275 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2276 preferred_zone, migratetype); 2277 if (unlikely(!page)) 2278 page = __alloc_pages_slowpath(gfp_mask, order, 2279 zonelist, high_zoneidx, nodemask, 2280 preferred_zone, migratetype); 2281 put_mems_allowed(); 2282 2283 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2284 return page; 2285 } 2286 EXPORT_SYMBOL(__alloc_pages_nodemask); 2287 2288 /* 2289 * Common helper functions. 2290 */ 2291 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2292 { 2293 struct page *page; 2294 2295 /* 2296 * __get_free_pages() returns a 32-bit address, which cannot represent 2297 * a highmem page 2298 */ 2299 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2300 2301 page = alloc_pages(gfp_mask, order); 2302 if (!page) 2303 return 0; 2304 return (unsigned long) page_address(page); 2305 } 2306 EXPORT_SYMBOL(__get_free_pages); 2307 2308 unsigned long get_zeroed_page(gfp_t gfp_mask) 2309 { 2310 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2311 } 2312 EXPORT_SYMBOL(get_zeroed_page); 2313 2314 void __pagevec_free(struct pagevec *pvec) 2315 { 2316 int i = pagevec_count(pvec); 2317 2318 while (--i >= 0) { 2319 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2320 free_hot_cold_page(pvec->pages[i], pvec->cold); 2321 } 2322 } 2323 2324 void __free_pages(struct page *page, unsigned int order) 2325 { 2326 if (put_page_testzero(page)) { 2327 if (order == 0) 2328 free_hot_cold_page(page, 0); 2329 else 2330 __free_pages_ok(page, order); 2331 } 2332 } 2333 2334 EXPORT_SYMBOL(__free_pages); 2335 2336 void free_pages(unsigned long addr, unsigned int order) 2337 { 2338 if (addr != 0) { 2339 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2340 __free_pages(virt_to_page((void *)addr), order); 2341 } 2342 } 2343 2344 EXPORT_SYMBOL(free_pages); 2345 2346 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2347 { 2348 if (addr) { 2349 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2350 unsigned long used = addr + PAGE_ALIGN(size); 2351 2352 split_page(virt_to_page((void *)addr), order); 2353 while (used < alloc_end) { 2354 free_page(used); 2355 used += PAGE_SIZE; 2356 } 2357 } 2358 return (void *)addr; 2359 } 2360 2361 /** 2362 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2363 * @size: the number of bytes to allocate 2364 * @gfp_mask: GFP flags for the allocation 2365 * 2366 * This function is similar to alloc_pages(), except that it allocates the 2367 * minimum number of pages to satisfy the request. alloc_pages() can only 2368 * allocate memory in power-of-two pages. 2369 * 2370 * This function is also limited by MAX_ORDER. 2371 * 2372 * Memory allocated by this function must be released by free_pages_exact(). 2373 */ 2374 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2375 { 2376 unsigned int order = get_order(size); 2377 unsigned long addr; 2378 2379 addr = __get_free_pages(gfp_mask, order); 2380 return make_alloc_exact(addr, order, size); 2381 } 2382 EXPORT_SYMBOL(alloc_pages_exact); 2383 2384 /** 2385 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2386 * pages on a node. 2387 * @nid: the preferred node ID where memory should be allocated 2388 * @size: the number of bytes to allocate 2389 * @gfp_mask: GFP flags for the allocation 2390 * 2391 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2392 * back. 2393 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2394 * but is not exact. 2395 */ 2396 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2397 { 2398 unsigned order = get_order(size); 2399 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2400 if (!p) 2401 return NULL; 2402 return make_alloc_exact((unsigned long)page_address(p), order, size); 2403 } 2404 EXPORT_SYMBOL(alloc_pages_exact_nid); 2405 2406 /** 2407 * free_pages_exact - release memory allocated via alloc_pages_exact() 2408 * @virt: the value returned by alloc_pages_exact. 2409 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2410 * 2411 * Release the memory allocated by a previous call to alloc_pages_exact. 2412 */ 2413 void free_pages_exact(void *virt, size_t size) 2414 { 2415 unsigned long addr = (unsigned long)virt; 2416 unsigned long end = addr + PAGE_ALIGN(size); 2417 2418 while (addr < end) { 2419 free_page(addr); 2420 addr += PAGE_SIZE; 2421 } 2422 } 2423 EXPORT_SYMBOL(free_pages_exact); 2424 2425 static unsigned int nr_free_zone_pages(int offset) 2426 { 2427 struct zoneref *z; 2428 struct zone *zone; 2429 2430 /* Just pick one node, since fallback list is circular */ 2431 unsigned int sum = 0; 2432 2433 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2434 2435 for_each_zone_zonelist(zone, z, zonelist, offset) { 2436 unsigned long size = zone->present_pages; 2437 unsigned long high = high_wmark_pages(zone); 2438 if (size > high) 2439 sum += size - high; 2440 } 2441 2442 return sum; 2443 } 2444 2445 /* 2446 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2447 */ 2448 unsigned int nr_free_buffer_pages(void) 2449 { 2450 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2451 } 2452 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2453 2454 /* 2455 * Amount of free RAM allocatable within all zones 2456 */ 2457 unsigned int nr_free_pagecache_pages(void) 2458 { 2459 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2460 } 2461 2462 static inline void show_node(struct zone *zone) 2463 { 2464 if (NUMA_BUILD) 2465 printk("Node %d ", zone_to_nid(zone)); 2466 } 2467 2468 void si_meminfo(struct sysinfo *val) 2469 { 2470 val->totalram = totalram_pages; 2471 val->sharedram = 0; 2472 val->freeram = global_page_state(NR_FREE_PAGES); 2473 val->bufferram = nr_blockdev_pages(); 2474 val->totalhigh = totalhigh_pages; 2475 val->freehigh = nr_free_highpages(); 2476 val->mem_unit = PAGE_SIZE; 2477 } 2478 2479 EXPORT_SYMBOL(si_meminfo); 2480 2481 #ifdef CONFIG_NUMA 2482 void si_meminfo_node(struct sysinfo *val, int nid) 2483 { 2484 pg_data_t *pgdat = NODE_DATA(nid); 2485 2486 val->totalram = pgdat->node_present_pages; 2487 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2488 #ifdef CONFIG_HIGHMEM 2489 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2490 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2491 NR_FREE_PAGES); 2492 #else 2493 val->totalhigh = 0; 2494 val->freehigh = 0; 2495 #endif 2496 val->mem_unit = PAGE_SIZE; 2497 } 2498 #endif 2499 2500 /* 2501 * Determine whether the node should be displayed or not, depending on whether 2502 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2503 */ 2504 bool skip_free_areas_node(unsigned int flags, int nid) 2505 { 2506 bool ret = false; 2507 2508 if (!(flags & SHOW_MEM_FILTER_NODES)) 2509 goto out; 2510 2511 get_mems_allowed(); 2512 ret = !node_isset(nid, cpuset_current_mems_allowed); 2513 put_mems_allowed(); 2514 out: 2515 return ret; 2516 } 2517 2518 #define K(x) ((x) << (PAGE_SHIFT-10)) 2519 2520 /* 2521 * Show free area list (used inside shift_scroll-lock stuff) 2522 * We also calculate the percentage fragmentation. We do this by counting the 2523 * memory on each free list with the exception of the first item on the list. 2524 * Suppresses nodes that are not allowed by current's cpuset if 2525 * SHOW_MEM_FILTER_NODES is passed. 2526 */ 2527 void show_free_areas(unsigned int filter) 2528 { 2529 int cpu; 2530 struct zone *zone; 2531 2532 for_each_populated_zone(zone) { 2533 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2534 continue; 2535 show_node(zone); 2536 printk("%s per-cpu:\n", zone->name); 2537 2538 for_each_online_cpu(cpu) { 2539 struct per_cpu_pageset *pageset; 2540 2541 pageset = per_cpu_ptr(zone->pageset, cpu); 2542 2543 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2544 cpu, pageset->pcp.high, 2545 pageset->pcp.batch, pageset->pcp.count); 2546 } 2547 } 2548 2549 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2550 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2551 " unevictable:%lu" 2552 " dirty:%lu writeback:%lu unstable:%lu\n" 2553 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2554 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2555 global_page_state(NR_ACTIVE_ANON), 2556 global_page_state(NR_INACTIVE_ANON), 2557 global_page_state(NR_ISOLATED_ANON), 2558 global_page_state(NR_ACTIVE_FILE), 2559 global_page_state(NR_INACTIVE_FILE), 2560 global_page_state(NR_ISOLATED_FILE), 2561 global_page_state(NR_UNEVICTABLE), 2562 global_page_state(NR_FILE_DIRTY), 2563 global_page_state(NR_WRITEBACK), 2564 global_page_state(NR_UNSTABLE_NFS), 2565 global_page_state(NR_FREE_PAGES), 2566 global_page_state(NR_SLAB_RECLAIMABLE), 2567 global_page_state(NR_SLAB_UNRECLAIMABLE), 2568 global_page_state(NR_FILE_MAPPED), 2569 global_page_state(NR_SHMEM), 2570 global_page_state(NR_PAGETABLE), 2571 global_page_state(NR_BOUNCE)); 2572 2573 for_each_populated_zone(zone) { 2574 int i; 2575 2576 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2577 continue; 2578 show_node(zone); 2579 printk("%s" 2580 " free:%lukB" 2581 " min:%lukB" 2582 " low:%lukB" 2583 " high:%lukB" 2584 " active_anon:%lukB" 2585 " inactive_anon:%lukB" 2586 " active_file:%lukB" 2587 " inactive_file:%lukB" 2588 " unevictable:%lukB" 2589 " isolated(anon):%lukB" 2590 " isolated(file):%lukB" 2591 " present:%lukB" 2592 " mlocked:%lukB" 2593 " dirty:%lukB" 2594 " writeback:%lukB" 2595 " mapped:%lukB" 2596 " shmem:%lukB" 2597 " slab_reclaimable:%lukB" 2598 " slab_unreclaimable:%lukB" 2599 " kernel_stack:%lukB" 2600 " pagetables:%lukB" 2601 " unstable:%lukB" 2602 " bounce:%lukB" 2603 " writeback_tmp:%lukB" 2604 " pages_scanned:%lu" 2605 " all_unreclaimable? %s" 2606 "\n", 2607 zone->name, 2608 K(zone_page_state(zone, NR_FREE_PAGES)), 2609 K(min_wmark_pages(zone)), 2610 K(low_wmark_pages(zone)), 2611 K(high_wmark_pages(zone)), 2612 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2613 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2614 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2615 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2616 K(zone_page_state(zone, NR_UNEVICTABLE)), 2617 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2618 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2619 K(zone->present_pages), 2620 K(zone_page_state(zone, NR_MLOCK)), 2621 K(zone_page_state(zone, NR_FILE_DIRTY)), 2622 K(zone_page_state(zone, NR_WRITEBACK)), 2623 K(zone_page_state(zone, NR_FILE_MAPPED)), 2624 K(zone_page_state(zone, NR_SHMEM)), 2625 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2626 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2627 zone_page_state(zone, NR_KERNEL_STACK) * 2628 THREAD_SIZE / 1024, 2629 K(zone_page_state(zone, NR_PAGETABLE)), 2630 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2631 K(zone_page_state(zone, NR_BOUNCE)), 2632 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2633 zone->pages_scanned, 2634 (zone->all_unreclaimable ? "yes" : "no") 2635 ); 2636 printk("lowmem_reserve[]:"); 2637 for (i = 0; i < MAX_NR_ZONES; i++) 2638 printk(" %lu", zone->lowmem_reserve[i]); 2639 printk("\n"); 2640 } 2641 2642 for_each_populated_zone(zone) { 2643 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2644 2645 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2646 continue; 2647 show_node(zone); 2648 printk("%s: ", zone->name); 2649 2650 spin_lock_irqsave(&zone->lock, flags); 2651 for (order = 0; order < MAX_ORDER; order++) { 2652 nr[order] = zone->free_area[order].nr_free; 2653 total += nr[order] << order; 2654 } 2655 spin_unlock_irqrestore(&zone->lock, flags); 2656 for (order = 0; order < MAX_ORDER; order++) 2657 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2658 printk("= %lukB\n", K(total)); 2659 } 2660 2661 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2662 2663 show_swap_cache_info(); 2664 } 2665 2666 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2667 { 2668 zoneref->zone = zone; 2669 zoneref->zone_idx = zone_idx(zone); 2670 } 2671 2672 /* 2673 * Builds allocation fallback zone lists. 2674 * 2675 * Add all populated zones of a node to the zonelist. 2676 */ 2677 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2678 int nr_zones, enum zone_type zone_type) 2679 { 2680 struct zone *zone; 2681 2682 BUG_ON(zone_type >= MAX_NR_ZONES); 2683 zone_type++; 2684 2685 do { 2686 zone_type--; 2687 zone = pgdat->node_zones + zone_type; 2688 if (populated_zone(zone)) { 2689 zoneref_set_zone(zone, 2690 &zonelist->_zonerefs[nr_zones++]); 2691 check_highest_zone(zone_type); 2692 } 2693 2694 } while (zone_type); 2695 return nr_zones; 2696 } 2697 2698 2699 /* 2700 * zonelist_order: 2701 * 0 = automatic detection of better ordering. 2702 * 1 = order by ([node] distance, -zonetype) 2703 * 2 = order by (-zonetype, [node] distance) 2704 * 2705 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2706 * the same zonelist. So only NUMA can configure this param. 2707 */ 2708 #define ZONELIST_ORDER_DEFAULT 0 2709 #define ZONELIST_ORDER_NODE 1 2710 #define ZONELIST_ORDER_ZONE 2 2711 2712 /* zonelist order in the kernel. 2713 * set_zonelist_order() will set this to NODE or ZONE. 2714 */ 2715 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2716 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2717 2718 2719 #ifdef CONFIG_NUMA 2720 /* The value user specified ....changed by config */ 2721 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2722 /* string for sysctl */ 2723 #define NUMA_ZONELIST_ORDER_LEN 16 2724 char numa_zonelist_order[16] = "default"; 2725 2726 /* 2727 * interface for configure zonelist ordering. 2728 * command line option "numa_zonelist_order" 2729 * = "[dD]efault - default, automatic configuration. 2730 * = "[nN]ode - order by node locality, then by zone within node 2731 * = "[zZ]one - order by zone, then by locality within zone 2732 */ 2733 2734 static int __parse_numa_zonelist_order(char *s) 2735 { 2736 if (*s == 'd' || *s == 'D') { 2737 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2738 } else if (*s == 'n' || *s == 'N') { 2739 user_zonelist_order = ZONELIST_ORDER_NODE; 2740 } else if (*s == 'z' || *s == 'Z') { 2741 user_zonelist_order = ZONELIST_ORDER_ZONE; 2742 } else { 2743 printk(KERN_WARNING 2744 "Ignoring invalid numa_zonelist_order value: " 2745 "%s\n", s); 2746 return -EINVAL; 2747 } 2748 return 0; 2749 } 2750 2751 static __init int setup_numa_zonelist_order(char *s) 2752 { 2753 int ret; 2754 2755 if (!s) 2756 return 0; 2757 2758 ret = __parse_numa_zonelist_order(s); 2759 if (ret == 0) 2760 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 2761 2762 return ret; 2763 } 2764 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2765 2766 /* 2767 * sysctl handler for numa_zonelist_order 2768 */ 2769 int numa_zonelist_order_handler(ctl_table *table, int write, 2770 void __user *buffer, size_t *length, 2771 loff_t *ppos) 2772 { 2773 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2774 int ret; 2775 static DEFINE_MUTEX(zl_order_mutex); 2776 2777 mutex_lock(&zl_order_mutex); 2778 if (write) 2779 strcpy(saved_string, (char*)table->data); 2780 ret = proc_dostring(table, write, buffer, length, ppos); 2781 if (ret) 2782 goto out; 2783 if (write) { 2784 int oldval = user_zonelist_order; 2785 if (__parse_numa_zonelist_order((char*)table->data)) { 2786 /* 2787 * bogus value. restore saved string 2788 */ 2789 strncpy((char*)table->data, saved_string, 2790 NUMA_ZONELIST_ORDER_LEN); 2791 user_zonelist_order = oldval; 2792 } else if (oldval != user_zonelist_order) { 2793 mutex_lock(&zonelists_mutex); 2794 build_all_zonelists(NULL); 2795 mutex_unlock(&zonelists_mutex); 2796 } 2797 } 2798 out: 2799 mutex_unlock(&zl_order_mutex); 2800 return ret; 2801 } 2802 2803 2804 #define MAX_NODE_LOAD (nr_online_nodes) 2805 static int node_load[MAX_NUMNODES]; 2806 2807 /** 2808 * find_next_best_node - find the next node that should appear in a given node's fallback list 2809 * @node: node whose fallback list we're appending 2810 * @used_node_mask: nodemask_t of already used nodes 2811 * 2812 * We use a number of factors to determine which is the next node that should 2813 * appear on a given node's fallback list. The node should not have appeared 2814 * already in @node's fallback list, and it should be the next closest node 2815 * according to the distance array (which contains arbitrary distance values 2816 * from each node to each node in the system), and should also prefer nodes 2817 * with no CPUs, since presumably they'll have very little allocation pressure 2818 * on them otherwise. 2819 * It returns -1 if no node is found. 2820 */ 2821 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2822 { 2823 int n, val; 2824 int min_val = INT_MAX; 2825 int best_node = -1; 2826 const struct cpumask *tmp = cpumask_of_node(0); 2827 2828 /* Use the local node if we haven't already */ 2829 if (!node_isset(node, *used_node_mask)) { 2830 node_set(node, *used_node_mask); 2831 return node; 2832 } 2833 2834 for_each_node_state(n, N_HIGH_MEMORY) { 2835 2836 /* Don't want a node to appear more than once */ 2837 if (node_isset(n, *used_node_mask)) 2838 continue; 2839 2840 /* Use the distance array to find the distance */ 2841 val = node_distance(node, n); 2842 2843 /* Penalize nodes under us ("prefer the next node") */ 2844 val += (n < node); 2845 2846 /* Give preference to headless and unused nodes */ 2847 tmp = cpumask_of_node(n); 2848 if (!cpumask_empty(tmp)) 2849 val += PENALTY_FOR_NODE_WITH_CPUS; 2850 2851 /* Slight preference for less loaded node */ 2852 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2853 val += node_load[n]; 2854 2855 if (val < min_val) { 2856 min_val = val; 2857 best_node = n; 2858 } 2859 } 2860 2861 if (best_node >= 0) 2862 node_set(best_node, *used_node_mask); 2863 2864 return best_node; 2865 } 2866 2867 2868 /* 2869 * Build zonelists ordered by node and zones within node. 2870 * This results in maximum locality--normal zone overflows into local 2871 * DMA zone, if any--but risks exhausting DMA zone. 2872 */ 2873 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2874 { 2875 int j; 2876 struct zonelist *zonelist; 2877 2878 zonelist = &pgdat->node_zonelists[0]; 2879 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2880 ; 2881 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2882 MAX_NR_ZONES - 1); 2883 zonelist->_zonerefs[j].zone = NULL; 2884 zonelist->_zonerefs[j].zone_idx = 0; 2885 } 2886 2887 /* 2888 * Build gfp_thisnode zonelists 2889 */ 2890 static void build_thisnode_zonelists(pg_data_t *pgdat) 2891 { 2892 int j; 2893 struct zonelist *zonelist; 2894 2895 zonelist = &pgdat->node_zonelists[1]; 2896 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2897 zonelist->_zonerefs[j].zone = NULL; 2898 zonelist->_zonerefs[j].zone_idx = 0; 2899 } 2900 2901 /* 2902 * Build zonelists ordered by zone and nodes within zones. 2903 * This results in conserving DMA zone[s] until all Normal memory is 2904 * exhausted, but results in overflowing to remote node while memory 2905 * may still exist in local DMA zone. 2906 */ 2907 static int node_order[MAX_NUMNODES]; 2908 2909 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2910 { 2911 int pos, j, node; 2912 int zone_type; /* needs to be signed */ 2913 struct zone *z; 2914 struct zonelist *zonelist; 2915 2916 zonelist = &pgdat->node_zonelists[0]; 2917 pos = 0; 2918 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2919 for (j = 0; j < nr_nodes; j++) { 2920 node = node_order[j]; 2921 z = &NODE_DATA(node)->node_zones[zone_type]; 2922 if (populated_zone(z)) { 2923 zoneref_set_zone(z, 2924 &zonelist->_zonerefs[pos++]); 2925 check_highest_zone(zone_type); 2926 } 2927 } 2928 } 2929 zonelist->_zonerefs[pos].zone = NULL; 2930 zonelist->_zonerefs[pos].zone_idx = 0; 2931 } 2932 2933 static int default_zonelist_order(void) 2934 { 2935 int nid, zone_type; 2936 unsigned long low_kmem_size,total_size; 2937 struct zone *z; 2938 int average_size; 2939 /* 2940 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2941 * If they are really small and used heavily, the system can fall 2942 * into OOM very easily. 2943 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2944 */ 2945 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2946 low_kmem_size = 0; 2947 total_size = 0; 2948 for_each_online_node(nid) { 2949 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2950 z = &NODE_DATA(nid)->node_zones[zone_type]; 2951 if (populated_zone(z)) { 2952 if (zone_type < ZONE_NORMAL) 2953 low_kmem_size += z->present_pages; 2954 total_size += z->present_pages; 2955 } else if (zone_type == ZONE_NORMAL) { 2956 /* 2957 * If any node has only lowmem, then node order 2958 * is preferred to allow kernel allocations 2959 * locally; otherwise, they can easily infringe 2960 * on other nodes when there is an abundance of 2961 * lowmem available to allocate from. 2962 */ 2963 return ZONELIST_ORDER_NODE; 2964 } 2965 } 2966 } 2967 if (!low_kmem_size || /* there are no DMA area. */ 2968 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2969 return ZONELIST_ORDER_NODE; 2970 /* 2971 * look into each node's config. 2972 * If there is a node whose DMA/DMA32 memory is very big area on 2973 * local memory, NODE_ORDER may be suitable. 2974 */ 2975 average_size = total_size / 2976 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2977 for_each_online_node(nid) { 2978 low_kmem_size = 0; 2979 total_size = 0; 2980 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2981 z = &NODE_DATA(nid)->node_zones[zone_type]; 2982 if (populated_zone(z)) { 2983 if (zone_type < ZONE_NORMAL) 2984 low_kmem_size += z->present_pages; 2985 total_size += z->present_pages; 2986 } 2987 } 2988 if (low_kmem_size && 2989 total_size > average_size && /* ignore small node */ 2990 low_kmem_size > total_size * 70/100) 2991 return ZONELIST_ORDER_NODE; 2992 } 2993 return ZONELIST_ORDER_ZONE; 2994 } 2995 2996 static void set_zonelist_order(void) 2997 { 2998 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2999 current_zonelist_order = default_zonelist_order(); 3000 else 3001 current_zonelist_order = user_zonelist_order; 3002 } 3003 3004 static void build_zonelists(pg_data_t *pgdat) 3005 { 3006 int j, node, load; 3007 enum zone_type i; 3008 nodemask_t used_mask; 3009 int local_node, prev_node; 3010 struct zonelist *zonelist; 3011 int order = current_zonelist_order; 3012 3013 /* initialize zonelists */ 3014 for (i = 0; i < MAX_ZONELISTS; i++) { 3015 zonelist = pgdat->node_zonelists + i; 3016 zonelist->_zonerefs[0].zone = NULL; 3017 zonelist->_zonerefs[0].zone_idx = 0; 3018 } 3019 3020 /* NUMA-aware ordering of nodes */ 3021 local_node = pgdat->node_id; 3022 load = nr_online_nodes; 3023 prev_node = local_node; 3024 nodes_clear(used_mask); 3025 3026 memset(node_order, 0, sizeof(node_order)); 3027 j = 0; 3028 3029 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3030 int distance = node_distance(local_node, node); 3031 3032 /* 3033 * If another node is sufficiently far away then it is better 3034 * to reclaim pages in a zone before going off node. 3035 */ 3036 if (distance > RECLAIM_DISTANCE) 3037 zone_reclaim_mode = 1; 3038 3039 /* 3040 * We don't want to pressure a particular node. 3041 * So adding penalty to the first node in same 3042 * distance group to make it round-robin. 3043 */ 3044 if (distance != node_distance(local_node, prev_node)) 3045 node_load[node] = load; 3046 3047 prev_node = node; 3048 load--; 3049 if (order == ZONELIST_ORDER_NODE) 3050 build_zonelists_in_node_order(pgdat, node); 3051 else 3052 node_order[j++] = node; /* remember order */ 3053 } 3054 3055 if (order == ZONELIST_ORDER_ZONE) { 3056 /* calculate node order -- i.e., DMA last! */ 3057 build_zonelists_in_zone_order(pgdat, j); 3058 } 3059 3060 build_thisnode_zonelists(pgdat); 3061 } 3062 3063 /* Construct the zonelist performance cache - see further mmzone.h */ 3064 static void build_zonelist_cache(pg_data_t *pgdat) 3065 { 3066 struct zonelist *zonelist; 3067 struct zonelist_cache *zlc; 3068 struct zoneref *z; 3069 3070 zonelist = &pgdat->node_zonelists[0]; 3071 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3072 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3073 for (z = zonelist->_zonerefs; z->zone; z++) 3074 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3075 } 3076 3077 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3078 /* 3079 * Return node id of node used for "local" allocations. 3080 * I.e., first node id of first zone in arg node's generic zonelist. 3081 * Used for initializing percpu 'numa_mem', which is used primarily 3082 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3083 */ 3084 int local_memory_node(int node) 3085 { 3086 struct zone *zone; 3087 3088 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3089 gfp_zone(GFP_KERNEL), 3090 NULL, 3091 &zone); 3092 return zone->node; 3093 } 3094 #endif 3095 3096 #else /* CONFIG_NUMA */ 3097 3098 static void set_zonelist_order(void) 3099 { 3100 current_zonelist_order = ZONELIST_ORDER_ZONE; 3101 } 3102 3103 static void build_zonelists(pg_data_t *pgdat) 3104 { 3105 int node, local_node; 3106 enum zone_type j; 3107 struct zonelist *zonelist; 3108 3109 local_node = pgdat->node_id; 3110 3111 zonelist = &pgdat->node_zonelists[0]; 3112 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3113 3114 /* 3115 * Now we build the zonelist so that it contains the zones 3116 * of all the other nodes. 3117 * We don't want to pressure a particular node, so when 3118 * building the zones for node N, we make sure that the 3119 * zones coming right after the local ones are those from 3120 * node N+1 (modulo N) 3121 */ 3122 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3123 if (!node_online(node)) 3124 continue; 3125 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3126 MAX_NR_ZONES - 1); 3127 } 3128 for (node = 0; node < local_node; node++) { 3129 if (!node_online(node)) 3130 continue; 3131 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3132 MAX_NR_ZONES - 1); 3133 } 3134 3135 zonelist->_zonerefs[j].zone = NULL; 3136 zonelist->_zonerefs[j].zone_idx = 0; 3137 } 3138 3139 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3140 static void build_zonelist_cache(pg_data_t *pgdat) 3141 { 3142 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3143 } 3144 3145 #endif /* CONFIG_NUMA */ 3146 3147 /* 3148 * Boot pageset table. One per cpu which is going to be used for all 3149 * zones and all nodes. The parameters will be set in such a way 3150 * that an item put on a list will immediately be handed over to 3151 * the buddy list. This is safe since pageset manipulation is done 3152 * with interrupts disabled. 3153 * 3154 * The boot_pagesets must be kept even after bootup is complete for 3155 * unused processors and/or zones. They do play a role for bootstrapping 3156 * hotplugged processors. 3157 * 3158 * zoneinfo_show() and maybe other functions do 3159 * not check if the processor is online before following the pageset pointer. 3160 * Other parts of the kernel may not check if the zone is available. 3161 */ 3162 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3163 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3164 static void setup_zone_pageset(struct zone *zone); 3165 3166 /* 3167 * Global mutex to protect against size modification of zonelists 3168 * as well as to serialize pageset setup for the new populated zone. 3169 */ 3170 DEFINE_MUTEX(zonelists_mutex); 3171 3172 /* return values int ....just for stop_machine() */ 3173 static __init_refok int __build_all_zonelists(void *data) 3174 { 3175 int nid; 3176 int cpu; 3177 3178 #ifdef CONFIG_NUMA 3179 memset(node_load, 0, sizeof(node_load)); 3180 #endif 3181 for_each_online_node(nid) { 3182 pg_data_t *pgdat = NODE_DATA(nid); 3183 3184 build_zonelists(pgdat); 3185 build_zonelist_cache(pgdat); 3186 } 3187 3188 /* 3189 * Initialize the boot_pagesets that are going to be used 3190 * for bootstrapping processors. The real pagesets for 3191 * each zone will be allocated later when the per cpu 3192 * allocator is available. 3193 * 3194 * boot_pagesets are used also for bootstrapping offline 3195 * cpus if the system is already booted because the pagesets 3196 * are needed to initialize allocators on a specific cpu too. 3197 * F.e. the percpu allocator needs the page allocator which 3198 * needs the percpu allocator in order to allocate its pagesets 3199 * (a chicken-egg dilemma). 3200 */ 3201 for_each_possible_cpu(cpu) { 3202 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3203 3204 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3205 /* 3206 * We now know the "local memory node" for each node-- 3207 * i.e., the node of the first zone in the generic zonelist. 3208 * Set up numa_mem percpu variable for on-line cpus. During 3209 * boot, only the boot cpu should be on-line; we'll init the 3210 * secondary cpus' numa_mem as they come on-line. During 3211 * node/memory hotplug, we'll fixup all on-line cpus. 3212 */ 3213 if (cpu_online(cpu)) 3214 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3215 #endif 3216 } 3217 3218 return 0; 3219 } 3220 3221 /* 3222 * Called with zonelists_mutex held always 3223 * unless system_state == SYSTEM_BOOTING. 3224 */ 3225 void __ref build_all_zonelists(void *data) 3226 { 3227 set_zonelist_order(); 3228 3229 if (system_state == SYSTEM_BOOTING) { 3230 __build_all_zonelists(NULL); 3231 mminit_verify_zonelist(); 3232 cpuset_init_current_mems_allowed(); 3233 } else { 3234 /* we have to stop all cpus to guarantee there is no user 3235 of zonelist */ 3236 #ifdef CONFIG_MEMORY_HOTPLUG 3237 if (data) 3238 setup_zone_pageset((struct zone *)data); 3239 #endif 3240 stop_machine(__build_all_zonelists, NULL, NULL); 3241 /* cpuset refresh routine should be here */ 3242 } 3243 vm_total_pages = nr_free_pagecache_pages(); 3244 /* 3245 * Disable grouping by mobility if the number of pages in the 3246 * system is too low to allow the mechanism to work. It would be 3247 * more accurate, but expensive to check per-zone. This check is 3248 * made on memory-hotadd so a system can start with mobility 3249 * disabled and enable it later 3250 */ 3251 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3252 page_group_by_mobility_disabled = 1; 3253 else 3254 page_group_by_mobility_disabled = 0; 3255 3256 printk("Built %i zonelists in %s order, mobility grouping %s. " 3257 "Total pages: %ld\n", 3258 nr_online_nodes, 3259 zonelist_order_name[current_zonelist_order], 3260 page_group_by_mobility_disabled ? "off" : "on", 3261 vm_total_pages); 3262 #ifdef CONFIG_NUMA 3263 printk("Policy zone: %s\n", zone_names[policy_zone]); 3264 #endif 3265 } 3266 3267 /* 3268 * Helper functions to size the waitqueue hash table. 3269 * Essentially these want to choose hash table sizes sufficiently 3270 * large so that collisions trying to wait on pages are rare. 3271 * But in fact, the number of active page waitqueues on typical 3272 * systems is ridiculously low, less than 200. So this is even 3273 * conservative, even though it seems large. 3274 * 3275 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3276 * waitqueues, i.e. the size of the waitq table given the number of pages. 3277 */ 3278 #define PAGES_PER_WAITQUEUE 256 3279 3280 #ifndef CONFIG_MEMORY_HOTPLUG 3281 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3282 { 3283 unsigned long size = 1; 3284 3285 pages /= PAGES_PER_WAITQUEUE; 3286 3287 while (size < pages) 3288 size <<= 1; 3289 3290 /* 3291 * Once we have dozens or even hundreds of threads sleeping 3292 * on IO we've got bigger problems than wait queue collision. 3293 * Limit the size of the wait table to a reasonable size. 3294 */ 3295 size = min(size, 4096UL); 3296 3297 return max(size, 4UL); 3298 } 3299 #else 3300 /* 3301 * A zone's size might be changed by hot-add, so it is not possible to determine 3302 * a suitable size for its wait_table. So we use the maximum size now. 3303 * 3304 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3305 * 3306 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3307 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3308 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3309 * 3310 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3311 * or more by the traditional way. (See above). It equals: 3312 * 3313 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3314 * ia64(16K page size) : = ( 8G + 4M)byte. 3315 * powerpc (64K page size) : = (32G +16M)byte. 3316 */ 3317 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3318 { 3319 return 4096UL; 3320 } 3321 #endif 3322 3323 /* 3324 * This is an integer logarithm so that shifts can be used later 3325 * to extract the more random high bits from the multiplicative 3326 * hash function before the remainder is taken. 3327 */ 3328 static inline unsigned long wait_table_bits(unsigned long size) 3329 { 3330 return ffz(~size); 3331 } 3332 3333 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3334 3335 /* 3336 * Check if a pageblock contains reserved pages 3337 */ 3338 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3339 { 3340 unsigned long pfn; 3341 3342 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3343 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3344 return 1; 3345 } 3346 return 0; 3347 } 3348 3349 /* 3350 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3351 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3352 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3353 * higher will lead to a bigger reserve which will get freed as contiguous 3354 * blocks as reclaim kicks in 3355 */ 3356 static void setup_zone_migrate_reserve(struct zone *zone) 3357 { 3358 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3359 struct page *page; 3360 unsigned long block_migratetype; 3361 int reserve; 3362 3363 /* Get the start pfn, end pfn and the number of blocks to reserve */ 3364 start_pfn = zone->zone_start_pfn; 3365 end_pfn = start_pfn + zone->spanned_pages; 3366 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3367 pageblock_order; 3368 3369 /* 3370 * Reserve blocks are generally in place to help high-order atomic 3371 * allocations that are short-lived. A min_free_kbytes value that 3372 * would result in more than 2 reserve blocks for atomic allocations 3373 * is assumed to be in place to help anti-fragmentation for the 3374 * future allocation of hugepages at runtime. 3375 */ 3376 reserve = min(2, reserve); 3377 3378 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3379 if (!pfn_valid(pfn)) 3380 continue; 3381 page = pfn_to_page(pfn); 3382 3383 /* Watch out for overlapping nodes */ 3384 if (page_to_nid(page) != zone_to_nid(zone)) 3385 continue; 3386 3387 /* Blocks with reserved pages will never free, skip them. */ 3388 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3389 if (pageblock_is_reserved(pfn, block_end_pfn)) 3390 continue; 3391 3392 block_migratetype = get_pageblock_migratetype(page); 3393 3394 /* If this block is reserved, account for it */ 3395 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3396 reserve--; 3397 continue; 3398 } 3399 3400 /* Suitable for reserving if this block is movable */ 3401 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3402 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3403 move_freepages_block(zone, page, MIGRATE_RESERVE); 3404 reserve--; 3405 continue; 3406 } 3407 3408 /* 3409 * If the reserve is met and this is a previous reserved block, 3410 * take it back 3411 */ 3412 if (block_migratetype == MIGRATE_RESERVE) { 3413 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3414 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3415 } 3416 } 3417 } 3418 3419 /* 3420 * Initially all pages are reserved - free ones are freed 3421 * up by free_all_bootmem() once the early boot process is 3422 * done. Non-atomic initialization, single-pass. 3423 */ 3424 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3425 unsigned long start_pfn, enum memmap_context context) 3426 { 3427 struct page *page; 3428 unsigned long end_pfn = start_pfn + size; 3429 unsigned long pfn; 3430 struct zone *z; 3431 3432 if (highest_memmap_pfn < end_pfn - 1) 3433 highest_memmap_pfn = end_pfn - 1; 3434 3435 z = &NODE_DATA(nid)->node_zones[zone]; 3436 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3437 /* 3438 * There can be holes in boot-time mem_map[]s 3439 * handed to this function. They do not 3440 * exist on hotplugged memory. 3441 */ 3442 if (context == MEMMAP_EARLY) { 3443 if (!early_pfn_valid(pfn)) 3444 continue; 3445 if (!early_pfn_in_nid(pfn, nid)) 3446 continue; 3447 } 3448 page = pfn_to_page(pfn); 3449 set_page_links(page, zone, nid, pfn); 3450 mminit_verify_page_links(page, zone, nid, pfn); 3451 init_page_count(page); 3452 reset_page_mapcount(page); 3453 SetPageReserved(page); 3454 /* 3455 * Mark the block movable so that blocks are reserved for 3456 * movable at startup. This will force kernel allocations 3457 * to reserve their blocks rather than leaking throughout 3458 * the address space during boot when many long-lived 3459 * kernel allocations are made. Later some blocks near 3460 * the start are marked MIGRATE_RESERVE by 3461 * setup_zone_migrate_reserve() 3462 * 3463 * bitmap is created for zone's valid pfn range. but memmap 3464 * can be created for invalid pages (for alignment) 3465 * check here not to call set_pageblock_migratetype() against 3466 * pfn out of zone. 3467 */ 3468 if ((z->zone_start_pfn <= pfn) 3469 && (pfn < z->zone_start_pfn + z->spanned_pages) 3470 && !(pfn & (pageblock_nr_pages - 1))) 3471 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3472 3473 INIT_LIST_HEAD(&page->lru); 3474 #ifdef WANT_PAGE_VIRTUAL 3475 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3476 if (!is_highmem_idx(zone)) 3477 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3478 #endif 3479 } 3480 } 3481 3482 static void __meminit zone_init_free_lists(struct zone *zone) 3483 { 3484 int order, t; 3485 for_each_migratetype_order(order, t) { 3486 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3487 zone->free_area[order].nr_free = 0; 3488 } 3489 } 3490 3491 #ifndef __HAVE_ARCH_MEMMAP_INIT 3492 #define memmap_init(size, nid, zone, start_pfn) \ 3493 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3494 #endif 3495 3496 static int zone_batchsize(struct zone *zone) 3497 { 3498 #ifdef CONFIG_MMU 3499 int batch; 3500 3501 /* 3502 * The per-cpu-pages pools are set to around 1000th of the 3503 * size of the zone. But no more than 1/2 of a meg. 3504 * 3505 * OK, so we don't know how big the cache is. So guess. 3506 */ 3507 batch = zone->present_pages / 1024; 3508 if (batch * PAGE_SIZE > 512 * 1024) 3509 batch = (512 * 1024) / PAGE_SIZE; 3510 batch /= 4; /* We effectively *= 4 below */ 3511 if (batch < 1) 3512 batch = 1; 3513 3514 /* 3515 * Clamp the batch to a 2^n - 1 value. Having a power 3516 * of 2 value was found to be more likely to have 3517 * suboptimal cache aliasing properties in some cases. 3518 * 3519 * For example if 2 tasks are alternately allocating 3520 * batches of pages, one task can end up with a lot 3521 * of pages of one half of the possible page colors 3522 * and the other with pages of the other colors. 3523 */ 3524 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3525 3526 return batch; 3527 3528 #else 3529 /* The deferral and batching of frees should be suppressed under NOMMU 3530 * conditions. 3531 * 3532 * The problem is that NOMMU needs to be able to allocate large chunks 3533 * of contiguous memory as there's no hardware page translation to 3534 * assemble apparent contiguous memory from discontiguous pages. 3535 * 3536 * Queueing large contiguous runs of pages for batching, however, 3537 * causes the pages to actually be freed in smaller chunks. As there 3538 * can be a significant delay between the individual batches being 3539 * recycled, this leads to the once large chunks of space being 3540 * fragmented and becoming unavailable for high-order allocations. 3541 */ 3542 return 0; 3543 #endif 3544 } 3545 3546 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3547 { 3548 struct per_cpu_pages *pcp; 3549 int migratetype; 3550 3551 memset(p, 0, sizeof(*p)); 3552 3553 pcp = &p->pcp; 3554 pcp->count = 0; 3555 pcp->high = 6 * batch; 3556 pcp->batch = max(1UL, 1 * batch); 3557 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3558 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3559 } 3560 3561 /* 3562 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3563 * to the value high for the pageset p. 3564 */ 3565 3566 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3567 unsigned long high) 3568 { 3569 struct per_cpu_pages *pcp; 3570 3571 pcp = &p->pcp; 3572 pcp->high = high; 3573 pcp->batch = max(1UL, high/4); 3574 if ((high/4) > (PAGE_SHIFT * 8)) 3575 pcp->batch = PAGE_SHIFT * 8; 3576 } 3577 3578 static void setup_zone_pageset(struct zone *zone) 3579 { 3580 int cpu; 3581 3582 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3583 3584 for_each_possible_cpu(cpu) { 3585 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3586 3587 setup_pageset(pcp, zone_batchsize(zone)); 3588 3589 if (percpu_pagelist_fraction) 3590 setup_pagelist_highmark(pcp, 3591 (zone->present_pages / 3592 percpu_pagelist_fraction)); 3593 } 3594 } 3595 3596 /* 3597 * Allocate per cpu pagesets and initialize them. 3598 * Before this call only boot pagesets were available. 3599 */ 3600 void __init setup_per_cpu_pageset(void) 3601 { 3602 struct zone *zone; 3603 3604 for_each_populated_zone(zone) 3605 setup_zone_pageset(zone); 3606 } 3607 3608 static noinline __init_refok 3609 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3610 { 3611 int i; 3612 struct pglist_data *pgdat = zone->zone_pgdat; 3613 size_t alloc_size; 3614 3615 /* 3616 * The per-page waitqueue mechanism uses hashed waitqueues 3617 * per zone. 3618 */ 3619 zone->wait_table_hash_nr_entries = 3620 wait_table_hash_nr_entries(zone_size_pages); 3621 zone->wait_table_bits = 3622 wait_table_bits(zone->wait_table_hash_nr_entries); 3623 alloc_size = zone->wait_table_hash_nr_entries 3624 * sizeof(wait_queue_head_t); 3625 3626 if (!slab_is_available()) { 3627 zone->wait_table = (wait_queue_head_t *) 3628 alloc_bootmem_node_nopanic(pgdat, alloc_size); 3629 } else { 3630 /* 3631 * This case means that a zone whose size was 0 gets new memory 3632 * via memory hot-add. 3633 * But it may be the case that a new node was hot-added. In 3634 * this case vmalloc() will not be able to use this new node's 3635 * memory - this wait_table must be initialized to use this new 3636 * node itself as well. 3637 * To use this new node's memory, further consideration will be 3638 * necessary. 3639 */ 3640 zone->wait_table = vmalloc(alloc_size); 3641 } 3642 if (!zone->wait_table) 3643 return -ENOMEM; 3644 3645 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3646 init_waitqueue_head(zone->wait_table + i); 3647 3648 return 0; 3649 } 3650 3651 static int __zone_pcp_update(void *data) 3652 { 3653 struct zone *zone = data; 3654 int cpu; 3655 unsigned long batch = zone_batchsize(zone), flags; 3656 3657 for_each_possible_cpu(cpu) { 3658 struct per_cpu_pageset *pset; 3659 struct per_cpu_pages *pcp; 3660 3661 pset = per_cpu_ptr(zone->pageset, cpu); 3662 pcp = &pset->pcp; 3663 3664 local_irq_save(flags); 3665 free_pcppages_bulk(zone, pcp->count, pcp); 3666 setup_pageset(pset, batch); 3667 local_irq_restore(flags); 3668 } 3669 return 0; 3670 } 3671 3672 void zone_pcp_update(struct zone *zone) 3673 { 3674 stop_machine(__zone_pcp_update, zone, NULL); 3675 } 3676 3677 static __meminit void zone_pcp_init(struct zone *zone) 3678 { 3679 /* 3680 * per cpu subsystem is not up at this point. The following code 3681 * relies on the ability of the linker to provide the 3682 * offset of a (static) per cpu variable into the per cpu area. 3683 */ 3684 zone->pageset = &boot_pageset; 3685 3686 if (zone->present_pages) 3687 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3688 zone->name, zone->present_pages, 3689 zone_batchsize(zone)); 3690 } 3691 3692 __meminit int init_currently_empty_zone(struct zone *zone, 3693 unsigned long zone_start_pfn, 3694 unsigned long size, 3695 enum memmap_context context) 3696 { 3697 struct pglist_data *pgdat = zone->zone_pgdat; 3698 int ret; 3699 ret = zone_wait_table_init(zone, size); 3700 if (ret) 3701 return ret; 3702 pgdat->nr_zones = zone_idx(zone) + 1; 3703 3704 zone->zone_start_pfn = zone_start_pfn; 3705 3706 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3707 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3708 pgdat->node_id, 3709 (unsigned long)zone_idx(zone), 3710 zone_start_pfn, (zone_start_pfn + size)); 3711 3712 zone_init_free_lists(zone); 3713 3714 return 0; 3715 } 3716 3717 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3718 /* 3719 * Basic iterator support. Return the first range of PFNs for a node 3720 * Note: nid == MAX_NUMNODES returns first region regardless of node 3721 */ 3722 static int __meminit first_active_region_index_in_nid(int nid) 3723 { 3724 int i; 3725 3726 for (i = 0; i < nr_nodemap_entries; i++) 3727 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3728 return i; 3729 3730 return -1; 3731 } 3732 3733 /* 3734 * Basic iterator support. Return the next active range of PFNs for a node 3735 * Note: nid == MAX_NUMNODES returns next region regardless of node 3736 */ 3737 static int __meminit next_active_region_index_in_nid(int index, int nid) 3738 { 3739 for (index = index + 1; index < nr_nodemap_entries; index++) 3740 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3741 return index; 3742 3743 return -1; 3744 } 3745 3746 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3747 /* 3748 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3749 * Architectures may implement their own version but if add_active_range() 3750 * was used and there are no special requirements, this is a convenient 3751 * alternative 3752 */ 3753 int __meminit __early_pfn_to_nid(unsigned long pfn) 3754 { 3755 int i; 3756 3757 for (i = 0; i < nr_nodemap_entries; i++) { 3758 unsigned long start_pfn = early_node_map[i].start_pfn; 3759 unsigned long end_pfn = early_node_map[i].end_pfn; 3760 3761 if (start_pfn <= pfn && pfn < end_pfn) 3762 return early_node_map[i].nid; 3763 } 3764 /* This is a memory hole */ 3765 return -1; 3766 } 3767 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3768 3769 int __meminit early_pfn_to_nid(unsigned long pfn) 3770 { 3771 int nid; 3772 3773 nid = __early_pfn_to_nid(pfn); 3774 if (nid >= 0) 3775 return nid; 3776 /* just returns 0 */ 3777 return 0; 3778 } 3779 3780 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3781 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3782 { 3783 int nid; 3784 3785 nid = __early_pfn_to_nid(pfn); 3786 if (nid >= 0 && nid != node) 3787 return false; 3788 return true; 3789 } 3790 #endif 3791 3792 /* Basic iterator support to walk early_node_map[] */ 3793 #define for_each_active_range_index_in_nid(i, nid) \ 3794 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3795 i = next_active_region_index_in_nid(i, nid)) 3796 3797 /** 3798 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3799 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3800 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3801 * 3802 * If an architecture guarantees that all ranges registered with 3803 * add_active_ranges() contain no holes and may be freed, this 3804 * this function may be used instead of calling free_bootmem() manually. 3805 */ 3806 void __init free_bootmem_with_active_regions(int nid, 3807 unsigned long max_low_pfn) 3808 { 3809 int i; 3810 3811 for_each_active_range_index_in_nid(i, nid) { 3812 unsigned long size_pages = 0; 3813 unsigned long end_pfn = early_node_map[i].end_pfn; 3814 3815 if (early_node_map[i].start_pfn >= max_low_pfn) 3816 continue; 3817 3818 if (end_pfn > max_low_pfn) 3819 end_pfn = max_low_pfn; 3820 3821 size_pages = end_pfn - early_node_map[i].start_pfn; 3822 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3823 PFN_PHYS(early_node_map[i].start_pfn), 3824 size_pages << PAGE_SHIFT); 3825 } 3826 } 3827 3828 #ifdef CONFIG_HAVE_MEMBLOCK 3829 /* 3830 * Basic iterator support. Return the last range of PFNs for a node 3831 * Note: nid == MAX_NUMNODES returns last region regardless of node 3832 */ 3833 static int __meminit last_active_region_index_in_nid(int nid) 3834 { 3835 int i; 3836 3837 for (i = nr_nodemap_entries - 1; i >= 0; i--) 3838 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3839 return i; 3840 3841 return -1; 3842 } 3843 3844 /* 3845 * Basic iterator support. Return the previous active range of PFNs for a node 3846 * Note: nid == MAX_NUMNODES returns next region regardless of node 3847 */ 3848 static int __meminit previous_active_region_index_in_nid(int index, int nid) 3849 { 3850 for (index = index - 1; index >= 0; index--) 3851 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3852 return index; 3853 3854 return -1; 3855 } 3856 3857 #define for_each_active_range_index_in_nid_reverse(i, nid) \ 3858 for (i = last_active_region_index_in_nid(nid); i != -1; \ 3859 i = previous_active_region_index_in_nid(i, nid)) 3860 3861 u64 __init find_memory_core_early(int nid, u64 size, u64 align, 3862 u64 goal, u64 limit) 3863 { 3864 int i; 3865 3866 /* Need to go over early_node_map to find out good range for node */ 3867 for_each_active_range_index_in_nid_reverse(i, nid) { 3868 u64 addr; 3869 u64 ei_start, ei_last; 3870 u64 final_start, final_end; 3871 3872 ei_last = early_node_map[i].end_pfn; 3873 ei_last <<= PAGE_SHIFT; 3874 ei_start = early_node_map[i].start_pfn; 3875 ei_start <<= PAGE_SHIFT; 3876 3877 final_start = max(ei_start, goal); 3878 final_end = min(ei_last, limit); 3879 3880 if (final_start >= final_end) 3881 continue; 3882 3883 addr = memblock_find_in_range(final_start, final_end, size, align); 3884 3885 if (addr == MEMBLOCK_ERROR) 3886 continue; 3887 3888 return addr; 3889 } 3890 3891 return MEMBLOCK_ERROR; 3892 } 3893 #endif 3894 3895 int __init add_from_early_node_map(struct range *range, int az, 3896 int nr_range, int nid) 3897 { 3898 int i; 3899 u64 start, end; 3900 3901 /* need to go over early_node_map to find out good range for node */ 3902 for_each_active_range_index_in_nid(i, nid) { 3903 start = early_node_map[i].start_pfn; 3904 end = early_node_map[i].end_pfn; 3905 nr_range = add_range(range, az, nr_range, start, end); 3906 } 3907 return nr_range; 3908 } 3909 3910 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3911 { 3912 int i; 3913 int ret; 3914 3915 for_each_active_range_index_in_nid(i, nid) { 3916 ret = work_fn(early_node_map[i].start_pfn, 3917 early_node_map[i].end_pfn, data); 3918 if (ret) 3919 break; 3920 } 3921 } 3922 /** 3923 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3924 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3925 * 3926 * If an architecture guarantees that all ranges registered with 3927 * add_active_ranges() contain no holes and may be freed, this 3928 * function may be used instead of calling memory_present() manually. 3929 */ 3930 void __init sparse_memory_present_with_active_regions(int nid) 3931 { 3932 int i; 3933 3934 for_each_active_range_index_in_nid(i, nid) 3935 memory_present(early_node_map[i].nid, 3936 early_node_map[i].start_pfn, 3937 early_node_map[i].end_pfn); 3938 } 3939 3940 /** 3941 * get_pfn_range_for_nid - Return the start and end page frames for a node 3942 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3943 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3944 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3945 * 3946 * It returns the start and end page frame of a node based on information 3947 * provided by an arch calling add_active_range(). If called for a node 3948 * with no available memory, a warning is printed and the start and end 3949 * PFNs will be 0. 3950 */ 3951 void __meminit get_pfn_range_for_nid(unsigned int nid, 3952 unsigned long *start_pfn, unsigned long *end_pfn) 3953 { 3954 int i; 3955 *start_pfn = -1UL; 3956 *end_pfn = 0; 3957 3958 for_each_active_range_index_in_nid(i, nid) { 3959 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3960 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3961 } 3962 3963 if (*start_pfn == -1UL) 3964 *start_pfn = 0; 3965 } 3966 3967 /* 3968 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3969 * assumption is made that zones within a node are ordered in monotonic 3970 * increasing memory addresses so that the "highest" populated zone is used 3971 */ 3972 static void __init find_usable_zone_for_movable(void) 3973 { 3974 int zone_index; 3975 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3976 if (zone_index == ZONE_MOVABLE) 3977 continue; 3978 3979 if (arch_zone_highest_possible_pfn[zone_index] > 3980 arch_zone_lowest_possible_pfn[zone_index]) 3981 break; 3982 } 3983 3984 VM_BUG_ON(zone_index == -1); 3985 movable_zone = zone_index; 3986 } 3987 3988 /* 3989 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3990 * because it is sized independent of architecture. Unlike the other zones, 3991 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3992 * in each node depending on the size of each node and how evenly kernelcore 3993 * is distributed. This helper function adjusts the zone ranges 3994 * provided by the architecture for a given node by using the end of the 3995 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3996 * zones within a node are in order of monotonic increases memory addresses 3997 */ 3998 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3999 unsigned long zone_type, 4000 unsigned long node_start_pfn, 4001 unsigned long node_end_pfn, 4002 unsigned long *zone_start_pfn, 4003 unsigned long *zone_end_pfn) 4004 { 4005 /* Only adjust if ZONE_MOVABLE is on this node */ 4006 if (zone_movable_pfn[nid]) { 4007 /* Size ZONE_MOVABLE */ 4008 if (zone_type == ZONE_MOVABLE) { 4009 *zone_start_pfn = zone_movable_pfn[nid]; 4010 *zone_end_pfn = min(node_end_pfn, 4011 arch_zone_highest_possible_pfn[movable_zone]); 4012 4013 /* Adjust for ZONE_MOVABLE starting within this range */ 4014 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4015 *zone_end_pfn > zone_movable_pfn[nid]) { 4016 *zone_end_pfn = zone_movable_pfn[nid]; 4017 4018 /* Check if this whole range is within ZONE_MOVABLE */ 4019 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4020 *zone_start_pfn = *zone_end_pfn; 4021 } 4022 } 4023 4024 /* 4025 * Return the number of pages a zone spans in a node, including holes 4026 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4027 */ 4028 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4029 unsigned long zone_type, 4030 unsigned long *ignored) 4031 { 4032 unsigned long node_start_pfn, node_end_pfn; 4033 unsigned long zone_start_pfn, zone_end_pfn; 4034 4035 /* Get the start and end of the node and zone */ 4036 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4037 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4038 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4039 adjust_zone_range_for_zone_movable(nid, zone_type, 4040 node_start_pfn, node_end_pfn, 4041 &zone_start_pfn, &zone_end_pfn); 4042 4043 /* Check that this node has pages within the zone's required range */ 4044 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4045 return 0; 4046 4047 /* Move the zone boundaries inside the node if necessary */ 4048 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4049 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4050 4051 /* Return the spanned pages */ 4052 return zone_end_pfn - zone_start_pfn; 4053 } 4054 4055 /* 4056 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4057 * then all holes in the requested range will be accounted for. 4058 */ 4059 unsigned long __meminit __absent_pages_in_range(int nid, 4060 unsigned long range_start_pfn, 4061 unsigned long range_end_pfn) 4062 { 4063 int i = 0; 4064 unsigned long prev_end_pfn = 0, hole_pages = 0; 4065 unsigned long start_pfn; 4066 4067 /* Find the end_pfn of the first active range of pfns in the node */ 4068 i = first_active_region_index_in_nid(nid); 4069 if (i == -1) 4070 return 0; 4071 4072 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 4073 4074 /* Account for ranges before physical memory on this node */ 4075 if (early_node_map[i].start_pfn > range_start_pfn) 4076 hole_pages = prev_end_pfn - range_start_pfn; 4077 4078 /* Find all holes for the zone within the node */ 4079 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 4080 4081 /* No need to continue if prev_end_pfn is outside the zone */ 4082 if (prev_end_pfn >= range_end_pfn) 4083 break; 4084 4085 /* Make sure the end of the zone is not within the hole */ 4086 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 4087 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 4088 4089 /* Update the hole size cound and move on */ 4090 if (start_pfn > range_start_pfn) { 4091 BUG_ON(prev_end_pfn > start_pfn); 4092 hole_pages += start_pfn - prev_end_pfn; 4093 } 4094 prev_end_pfn = early_node_map[i].end_pfn; 4095 } 4096 4097 /* Account for ranges past physical memory on this node */ 4098 if (range_end_pfn > prev_end_pfn) 4099 hole_pages += range_end_pfn - 4100 max(range_start_pfn, prev_end_pfn); 4101 4102 return hole_pages; 4103 } 4104 4105 /** 4106 * absent_pages_in_range - Return number of page frames in holes within a range 4107 * @start_pfn: The start PFN to start searching for holes 4108 * @end_pfn: The end PFN to stop searching for holes 4109 * 4110 * It returns the number of pages frames in memory holes within a range. 4111 */ 4112 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4113 unsigned long end_pfn) 4114 { 4115 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4116 } 4117 4118 /* Return the number of page frames in holes in a zone on a node */ 4119 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4120 unsigned long zone_type, 4121 unsigned long *ignored) 4122 { 4123 unsigned long node_start_pfn, node_end_pfn; 4124 unsigned long zone_start_pfn, zone_end_pfn; 4125 4126 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4127 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 4128 node_start_pfn); 4129 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 4130 node_end_pfn); 4131 4132 adjust_zone_range_for_zone_movable(nid, zone_type, 4133 node_start_pfn, node_end_pfn, 4134 &zone_start_pfn, &zone_end_pfn); 4135 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4136 } 4137 4138 #else 4139 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4140 unsigned long zone_type, 4141 unsigned long *zones_size) 4142 { 4143 return zones_size[zone_type]; 4144 } 4145 4146 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4147 unsigned long zone_type, 4148 unsigned long *zholes_size) 4149 { 4150 if (!zholes_size) 4151 return 0; 4152 4153 return zholes_size[zone_type]; 4154 } 4155 4156 #endif 4157 4158 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4159 unsigned long *zones_size, unsigned long *zholes_size) 4160 { 4161 unsigned long realtotalpages, totalpages = 0; 4162 enum zone_type i; 4163 4164 for (i = 0; i < MAX_NR_ZONES; i++) 4165 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4166 zones_size); 4167 pgdat->node_spanned_pages = totalpages; 4168 4169 realtotalpages = totalpages; 4170 for (i = 0; i < MAX_NR_ZONES; i++) 4171 realtotalpages -= 4172 zone_absent_pages_in_node(pgdat->node_id, i, 4173 zholes_size); 4174 pgdat->node_present_pages = realtotalpages; 4175 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4176 realtotalpages); 4177 } 4178 4179 #ifndef CONFIG_SPARSEMEM 4180 /* 4181 * Calculate the size of the zone->blockflags rounded to an unsigned long 4182 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4183 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4184 * round what is now in bits to nearest long in bits, then return it in 4185 * bytes. 4186 */ 4187 static unsigned long __init usemap_size(unsigned long zonesize) 4188 { 4189 unsigned long usemapsize; 4190 4191 usemapsize = roundup(zonesize, pageblock_nr_pages); 4192 usemapsize = usemapsize >> pageblock_order; 4193 usemapsize *= NR_PAGEBLOCK_BITS; 4194 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4195 4196 return usemapsize / 8; 4197 } 4198 4199 static void __init setup_usemap(struct pglist_data *pgdat, 4200 struct zone *zone, unsigned long zonesize) 4201 { 4202 unsigned long usemapsize = usemap_size(zonesize); 4203 zone->pageblock_flags = NULL; 4204 if (usemapsize) 4205 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4206 usemapsize); 4207 } 4208 #else 4209 static inline void setup_usemap(struct pglist_data *pgdat, 4210 struct zone *zone, unsigned long zonesize) {} 4211 #endif /* CONFIG_SPARSEMEM */ 4212 4213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4214 4215 /* Return a sensible default order for the pageblock size. */ 4216 static inline int pageblock_default_order(void) 4217 { 4218 if (HPAGE_SHIFT > PAGE_SHIFT) 4219 return HUGETLB_PAGE_ORDER; 4220 4221 return MAX_ORDER-1; 4222 } 4223 4224 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4225 static inline void __init set_pageblock_order(unsigned int order) 4226 { 4227 /* Check that pageblock_nr_pages has not already been setup */ 4228 if (pageblock_order) 4229 return; 4230 4231 /* 4232 * Assume the largest contiguous order of interest is a huge page. 4233 * This value may be variable depending on boot parameters on IA64 4234 */ 4235 pageblock_order = order; 4236 } 4237 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4238 4239 /* 4240 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4241 * and pageblock_default_order() are unused as pageblock_order is set 4242 * at compile-time. See include/linux/pageblock-flags.h for the values of 4243 * pageblock_order based on the kernel config 4244 */ 4245 static inline int pageblock_default_order(unsigned int order) 4246 { 4247 return MAX_ORDER-1; 4248 } 4249 #define set_pageblock_order(x) do {} while (0) 4250 4251 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4252 4253 /* 4254 * Set up the zone data structures: 4255 * - mark all pages reserved 4256 * - mark all memory queues empty 4257 * - clear the memory bitmaps 4258 */ 4259 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4260 unsigned long *zones_size, unsigned long *zholes_size) 4261 { 4262 enum zone_type j; 4263 int nid = pgdat->node_id; 4264 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4265 int ret; 4266 4267 pgdat_resize_init(pgdat); 4268 pgdat->nr_zones = 0; 4269 init_waitqueue_head(&pgdat->kswapd_wait); 4270 pgdat->kswapd_max_order = 0; 4271 pgdat_page_cgroup_init(pgdat); 4272 4273 for (j = 0; j < MAX_NR_ZONES; j++) { 4274 struct zone *zone = pgdat->node_zones + j; 4275 unsigned long size, realsize, memmap_pages; 4276 enum lru_list l; 4277 4278 size = zone_spanned_pages_in_node(nid, j, zones_size); 4279 realsize = size - zone_absent_pages_in_node(nid, j, 4280 zholes_size); 4281 4282 /* 4283 * Adjust realsize so that it accounts for how much memory 4284 * is used by this zone for memmap. This affects the watermark 4285 * and per-cpu initialisations 4286 */ 4287 memmap_pages = 4288 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4289 if (realsize >= memmap_pages) { 4290 realsize -= memmap_pages; 4291 if (memmap_pages) 4292 printk(KERN_DEBUG 4293 " %s zone: %lu pages used for memmap\n", 4294 zone_names[j], memmap_pages); 4295 } else 4296 printk(KERN_WARNING 4297 " %s zone: %lu pages exceeds realsize %lu\n", 4298 zone_names[j], memmap_pages, realsize); 4299 4300 /* Account for reserved pages */ 4301 if (j == 0 && realsize > dma_reserve) { 4302 realsize -= dma_reserve; 4303 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4304 zone_names[0], dma_reserve); 4305 } 4306 4307 if (!is_highmem_idx(j)) 4308 nr_kernel_pages += realsize; 4309 nr_all_pages += realsize; 4310 4311 zone->spanned_pages = size; 4312 zone->present_pages = realsize; 4313 #ifdef CONFIG_NUMA 4314 zone->node = nid; 4315 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4316 / 100; 4317 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4318 #endif 4319 zone->name = zone_names[j]; 4320 spin_lock_init(&zone->lock); 4321 spin_lock_init(&zone->lru_lock); 4322 zone_seqlock_init(zone); 4323 zone->zone_pgdat = pgdat; 4324 4325 zone_pcp_init(zone); 4326 for_each_lru(l) 4327 INIT_LIST_HEAD(&zone->lru[l].list); 4328 zone->reclaim_stat.recent_rotated[0] = 0; 4329 zone->reclaim_stat.recent_rotated[1] = 0; 4330 zone->reclaim_stat.recent_scanned[0] = 0; 4331 zone->reclaim_stat.recent_scanned[1] = 0; 4332 zap_zone_vm_stats(zone); 4333 zone->flags = 0; 4334 if (!size) 4335 continue; 4336 4337 set_pageblock_order(pageblock_default_order()); 4338 setup_usemap(pgdat, zone, size); 4339 ret = init_currently_empty_zone(zone, zone_start_pfn, 4340 size, MEMMAP_EARLY); 4341 BUG_ON(ret); 4342 memmap_init(size, nid, j, zone_start_pfn); 4343 zone_start_pfn += size; 4344 } 4345 } 4346 4347 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4348 { 4349 /* Skip empty nodes */ 4350 if (!pgdat->node_spanned_pages) 4351 return; 4352 4353 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4354 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4355 if (!pgdat->node_mem_map) { 4356 unsigned long size, start, end; 4357 struct page *map; 4358 4359 /* 4360 * The zone's endpoints aren't required to be MAX_ORDER 4361 * aligned but the node_mem_map endpoints must be in order 4362 * for the buddy allocator to function correctly. 4363 */ 4364 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4365 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4366 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4367 size = (end - start) * sizeof(struct page); 4368 map = alloc_remap(pgdat->node_id, size); 4369 if (!map) 4370 map = alloc_bootmem_node_nopanic(pgdat, size); 4371 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4372 } 4373 #ifndef CONFIG_NEED_MULTIPLE_NODES 4374 /* 4375 * With no DISCONTIG, the global mem_map is just set as node 0's 4376 */ 4377 if (pgdat == NODE_DATA(0)) { 4378 mem_map = NODE_DATA(0)->node_mem_map; 4379 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4380 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4381 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4382 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4383 } 4384 #endif 4385 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4386 } 4387 4388 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4389 unsigned long node_start_pfn, unsigned long *zholes_size) 4390 { 4391 pg_data_t *pgdat = NODE_DATA(nid); 4392 4393 pgdat->node_id = nid; 4394 pgdat->node_start_pfn = node_start_pfn; 4395 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4396 4397 alloc_node_mem_map(pgdat); 4398 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4399 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4400 nid, (unsigned long)pgdat, 4401 (unsigned long)pgdat->node_mem_map); 4402 #endif 4403 4404 free_area_init_core(pgdat, zones_size, zholes_size); 4405 } 4406 4407 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4408 4409 #if MAX_NUMNODES > 1 4410 /* 4411 * Figure out the number of possible node ids. 4412 */ 4413 static void __init setup_nr_node_ids(void) 4414 { 4415 unsigned int node; 4416 unsigned int highest = 0; 4417 4418 for_each_node_mask(node, node_possible_map) 4419 highest = node; 4420 nr_node_ids = highest + 1; 4421 } 4422 #else 4423 static inline void setup_nr_node_ids(void) 4424 { 4425 } 4426 #endif 4427 4428 /** 4429 * add_active_range - Register a range of PFNs backed by physical memory 4430 * @nid: The node ID the range resides on 4431 * @start_pfn: The start PFN of the available physical memory 4432 * @end_pfn: The end PFN of the available physical memory 4433 * 4434 * These ranges are stored in an early_node_map[] and later used by 4435 * free_area_init_nodes() to calculate zone sizes and holes. If the 4436 * range spans a memory hole, it is up to the architecture to ensure 4437 * the memory is not freed by the bootmem allocator. If possible 4438 * the range being registered will be merged with existing ranges. 4439 */ 4440 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4441 unsigned long end_pfn) 4442 { 4443 int i; 4444 4445 mminit_dprintk(MMINIT_TRACE, "memory_register", 4446 "Entering add_active_range(%d, %#lx, %#lx) " 4447 "%d entries of %d used\n", 4448 nid, start_pfn, end_pfn, 4449 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4450 4451 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4452 4453 /* Merge with existing active regions if possible */ 4454 for (i = 0; i < nr_nodemap_entries; i++) { 4455 if (early_node_map[i].nid != nid) 4456 continue; 4457 4458 /* Skip if an existing region covers this new one */ 4459 if (start_pfn >= early_node_map[i].start_pfn && 4460 end_pfn <= early_node_map[i].end_pfn) 4461 return; 4462 4463 /* Merge forward if suitable */ 4464 if (start_pfn <= early_node_map[i].end_pfn && 4465 end_pfn > early_node_map[i].end_pfn) { 4466 early_node_map[i].end_pfn = end_pfn; 4467 return; 4468 } 4469 4470 /* Merge backward if suitable */ 4471 if (start_pfn < early_node_map[i].start_pfn && 4472 end_pfn >= early_node_map[i].start_pfn) { 4473 early_node_map[i].start_pfn = start_pfn; 4474 return; 4475 } 4476 } 4477 4478 /* Check that early_node_map is large enough */ 4479 if (i >= MAX_ACTIVE_REGIONS) { 4480 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4481 MAX_ACTIVE_REGIONS); 4482 return; 4483 } 4484 4485 early_node_map[i].nid = nid; 4486 early_node_map[i].start_pfn = start_pfn; 4487 early_node_map[i].end_pfn = end_pfn; 4488 nr_nodemap_entries = i + 1; 4489 } 4490 4491 /** 4492 * remove_active_range - Shrink an existing registered range of PFNs 4493 * @nid: The node id the range is on that should be shrunk 4494 * @start_pfn: The new PFN of the range 4495 * @end_pfn: The new PFN of the range 4496 * 4497 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4498 * The map is kept near the end physical page range that has already been 4499 * registered. This function allows an arch to shrink an existing registered 4500 * range. 4501 */ 4502 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4503 unsigned long end_pfn) 4504 { 4505 int i, j; 4506 int removed = 0; 4507 4508 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4509 nid, start_pfn, end_pfn); 4510 4511 /* Find the old active region end and shrink */ 4512 for_each_active_range_index_in_nid(i, nid) { 4513 if (early_node_map[i].start_pfn >= start_pfn && 4514 early_node_map[i].end_pfn <= end_pfn) { 4515 /* clear it */ 4516 early_node_map[i].start_pfn = 0; 4517 early_node_map[i].end_pfn = 0; 4518 removed = 1; 4519 continue; 4520 } 4521 if (early_node_map[i].start_pfn < start_pfn && 4522 early_node_map[i].end_pfn > start_pfn) { 4523 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4524 early_node_map[i].end_pfn = start_pfn; 4525 if (temp_end_pfn > end_pfn) 4526 add_active_range(nid, end_pfn, temp_end_pfn); 4527 continue; 4528 } 4529 if (early_node_map[i].start_pfn >= start_pfn && 4530 early_node_map[i].end_pfn > end_pfn && 4531 early_node_map[i].start_pfn < end_pfn) { 4532 early_node_map[i].start_pfn = end_pfn; 4533 continue; 4534 } 4535 } 4536 4537 if (!removed) 4538 return; 4539 4540 /* remove the blank ones */ 4541 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4542 if (early_node_map[i].nid != nid) 4543 continue; 4544 if (early_node_map[i].end_pfn) 4545 continue; 4546 /* we found it, get rid of it */ 4547 for (j = i; j < nr_nodemap_entries - 1; j++) 4548 memcpy(&early_node_map[j], &early_node_map[j+1], 4549 sizeof(early_node_map[j])); 4550 j = nr_nodemap_entries - 1; 4551 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4552 nr_nodemap_entries--; 4553 } 4554 } 4555 4556 /** 4557 * remove_all_active_ranges - Remove all currently registered regions 4558 * 4559 * During discovery, it may be found that a table like SRAT is invalid 4560 * and an alternative discovery method must be used. This function removes 4561 * all currently registered regions. 4562 */ 4563 void __init remove_all_active_ranges(void) 4564 { 4565 memset(early_node_map, 0, sizeof(early_node_map)); 4566 nr_nodemap_entries = 0; 4567 } 4568 4569 /* Compare two active node_active_regions */ 4570 static int __init cmp_node_active_region(const void *a, const void *b) 4571 { 4572 struct node_active_region *arange = (struct node_active_region *)a; 4573 struct node_active_region *brange = (struct node_active_region *)b; 4574 4575 /* Done this way to avoid overflows */ 4576 if (arange->start_pfn > brange->start_pfn) 4577 return 1; 4578 if (arange->start_pfn < brange->start_pfn) 4579 return -1; 4580 4581 return 0; 4582 } 4583 4584 /* sort the node_map by start_pfn */ 4585 void __init sort_node_map(void) 4586 { 4587 sort(early_node_map, (size_t)nr_nodemap_entries, 4588 sizeof(struct node_active_region), 4589 cmp_node_active_region, NULL); 4590 } 4591 4592 /* Find the lowest pfn for a node */ 4593 static unsigned long __init find_min_pfn_for_node(int nid) 4594 { 4595 int i; 4596 unsigned long min_pfn = ULONG_MAX; 4597 4598 /* Assuming a sorted map, the first range found has the starting pfn */ 4599 for_each_active_range_index_in_nid(i, nid) 4600 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4601 4602 if (min_pfn == ULONG_MAX) { 4603 printk(KERN_WARNING 4604 "Could not find start_pfn for node %d\n", nid); 4605 return 0; 4606 } 4607 4608 return min_pfn; 4609 } 4610 4611 /** 4612 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4613 * 4614 * It returns the minimum PFN based on information provided via 4615 * add_active_range(). 4616 */ 4617 unsigned long __init find_min_pfn_with_active_regions(void) 4618 { 4619 return find_min_pfn_for_node(MAX_NUMNODES); 4620 } 4621 4622 /* 4623 * early_calculate_totalpages() 4624 * Sum pages in active regions for movable zone. 4625 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4626 */ 4627 static unsigned long __init early_calculate_totalpages(void) 4628 { 4629 int i; 4630 unsigned long totalpages = 0; 4631 4632 for (i = 0; i < nr_nodemap_entries; i++) { 4633 unsigned long pages = early_node_map[i].end_pfn - 4634 early_node_map[i].start_pfn; 4635 totalpages += pages; 4636 if (pages) 4637 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4638 } 4639 return totalpages; 4640 } 4641 4642 /* 4643 * Find the PFN the Movable zone begins in each node. Kernel memory 4644 * is spread evenly between nodes as long as the nodes have enough 4645 * memory. When they don't, some nodes will have more kernelcore than 4646 * others 4647 */ 4648 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4649 { 4650 int i, nid; 4651 unsigned long usable_startpfn; 4652 unsigned long kernelcore_node, kernelcore_remaining; 4653 /* save the state before borrow the nodemask */ 4654 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4655 unsigned long totalpages = early_calculate_totalpages(); 4656 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4657 4658 /* 4659 * If movablecore was specified, calculate what size of 4660 * kernelcore that corresponds so that memory usable for 4661 * any allocation type is evenly spread. If both kernelcore 4662 * and movablecore are specified, then the value of kernelcore 4663 * will be used for required_kernelcore if it's greater than 4664 * what movablecore would have allowed. 4665 */ 4666 if (required_movablecore) { 4667 unsigned long corepages; 4668 4669 /* 4670 * Round-up so that ZONE_MOVABLE is at least as large as what 4671 * was requested by the user 4672 */ 4673 required_movablecore = 4674 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4675 corepages = totalpages - required_movablecore; 4676 4677 required_kernelcore = max(required_kernelcore, corepages); 4678 } 4679 4680 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4681 if (!required_kernelcore) 4682 goto out; 4683 4684 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4685 find_usable_zone_for_movable(); 4686 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4687 4688 restart: 4689 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4690 kernelcore_node = required_kernelcore / usable_nodes; 4691 for_each_node_state(nid, N_HIGH_MEMORY) { 4692 /* 4693 * Recalculate kernelcore_node if the division per node 4694 * now exceeds what is necessary to satisfy the requested 4695 * amount of memory for the kernel 4696 */ 4697 if (required_kernelcore < kernelcore_node) 4698 kernelcore_node = required_kernelcore / usable_nodes; 4699 4700 /* 4701 * As the map is walked, we track how much memory is usable 4702 * by the kernel using kernelcore_remaining. When it is 4703 * 0, the rest of the node is usable by ZONE_MOVABLE 4704 */ 4705 kernelcore_remaining = kernelcore_node; 4706 4707 /* Go through each range of PFNs within this node */ 4708 for_each_active_range_index_in_nid(i, nid) { 4709 unsigned long start_pfn, end_pfn; 4710 unsigned long size_pages; 4711 4712 start_pfn = max(early_node_map[i].start_pfn, 4713 zone_movable_pfn[nid]); 4714 end_pfn = early_node_map[i].end_pfn; 4715 if (start_pfn >= end_pfn) 4716 continue; 4717 4718 /* Account for what is only usable for kernelcore */ 4719 if (start_pfn < usable_startpfn) { 4720 unsigned long kernel_pages; 4721 kernel_pages = min(end_pfn, usable_startpfn) 4722 - start_pfn; 4723 4724 kernelcore_remaining -= min(kernel_pages, 4725 kernelcore_remaining); 4726 required_kernelcore -= min(kernel_pages, 4727 required_kernelcore); 4728 4729 /* Continue if range is now fully accounted */ 4730 if (end_pfn <= usable_startpfn) { 4731 4732 /* 4733 * Push zone_movable_pfn to the end so 4734 * that if we have to rebalance 4735 * kernelcore across nodes, we will 4736 * not double account here 4737 */ 4738 zone_movable_pfn[nid] = end_pfn; 4739 continue; 4740 } 4741 start_pfn = usable_startpfn; 4742 } 4743 4744 /* 4745 * The usable PFN range for ZONE_MOVABLE is from 4746 * start_pfn->end_pfn. Calculate size_pages as the 4747 * number of pages used as kernelcore 4748 */ 4749 size_pages = end_pfn - start_pfn; 4750 if (size_pages > kernelcore_remaining) 4751 size_pages = kernelcore_remaining; 4752 zone_movable_pfn[nid] = start_pfn + size_pages; 4753 4754 /* 4755 * Some kernelcore has been met, update counts and 4756 * break if the kernelcore for this node has been 4757 * satisified 4758 */ 4759 required_kernelcore -= min(required_kernelcore, 4760 size_pages); 4761 kernelcore_remaining -= size_pages; 4762 if (!kernelcore_remaining) 4763 break; 4764 } 4765 } 4766 4767 /* 4768 * If there is still required_kernelcore, we do another pass with one 4769 * less node in the count. This will push zone_movable_pfn[nid] further 4770 * along on the nodes that still have memory until kernelcore is 4771 * satisified 4772 */ 4773 usable_nodes--; 4774 if (usable_nodes && required_kernelcore > usable_nodes) 4775 goto restart; 4776 4777 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4778 for (nid = 0; nid < MAX_NUMNODES; nid++) 4779 zone_movable_pfn[nid] = 4780 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4781 4782 out: 4783 /* restore the node_state */ 4784 node_states[N_HIGH_MEMORY] = saved_node_state; 4785 } 4786 4787 /* Any regular memory on that node ? */ 4788 static void check_for_regular_memory(pg_data_t *pgdat) 4789 { 4790 #ifdef CONFIG_HIGHMEM 4791 enum zone_type zone_type; 4792 4793 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4794 struct zone *zone = &pgdat->node_zones[zone_type]; 4795 if (zone->present_pages) 4796 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4797 } 4798 #endif 4799 } 4800 4801 /** 4802 * free_area_init_nodes - Initialise all pg_data_t and zone data 4803 * @max_zone_pfn: an array of max PFNs for each zone 4804 * 4805 * This will call free_area_init_node() for each active node in the system. 4806 * Using the page ranges provided by add_active_range(), the size of each 4807 * zone in each node and their holes is calculated. If the maximum PFN 4808 * between two adjacent zones match, it is assumed that the zone is empty. 4809 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4810 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4811 * starts where the previous one ended. For example, ZONE_DMA32 starts 4812 * at arch_max_dma_pfn. 4813 */ 4814 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4815 { 4816 unsigned long nid; 4817 int i; 4818 4819 /* Sort early_node_map as initialisation assumes it is sorted */ 4820 sort_node_map(); 4821 4822 /* Record where the zone boundaries are */ 4823 memset(arch_zone_lowest_possible_pfn, 0, 4824 sizeof(arch_zone_lowest_possible_pfn)); 4825 memset(arch_zone_highest_possible_pfn, 0, 4826 sizeof(arch_zone_highest_possible_pfn)); 4827 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4828 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4829 for (i = 1; i < MAX_NR_ZONES; i++) { 4830 if (i == ZONE_MOVABLE) 4831 continue; 4832 arch_zone_lowest_possible_pfn[i] = 4833 arch_zone_highest_possible_pfn[i-1]; 4834 arch_zone_highest_possible_pfn[i] = 4835 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4836 } 4837 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4838 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4839 4840 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4841 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4842 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4843 4844 /* Print out the zone ranges */ 4845 printk("Zone PFN ranges:\n"); 4846 for (i = 0; i < MAX_NR_ZONES; i++) { 4847 if (i == ZONE_MOVABLE) 4848 continue; 4849 printk(" %-8s ", zone_names[i]); 4850 if (arch_zone_lowest_possible_pfn[i] == 4851 arch_zone_highest_possible_pfn[i]) 4852 printk("empty\n"); 4853 else 4854 printk("%0#10lx -> %0#10lx\n", 4855 arch_zone_lowest_possible_pfn[i], 4856 arch_zone_highest_possible_pfn[i]); 4857 } 4858 4859 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4860 printk("Movable zone start PFN for each node\n"); 4861 for (i = 0; i < MAX_NUMNODES; i++) { 4862 if (zone_movable_pfn[i]) 4863 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4864 } 4865 4866 /* Print out the early_node_map[] */ 4867 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4868 for (i = 0; i < nr_nodemap_entries; i++) 4869 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4870 early_node_map[i].start_pfn, 4871 early_node_map[i].end_pfn); 4872 4873 /* Initialise every node */ 4874 mminit_verify_pageflags_layout(); 4875 setup_nr_node_ids(); 4876 for_each_online_node(nid) { 4877 pg_data_t *pgdat = NODE_DATA(nid); 4878 free_area_init_node(nid, NULL, 4879 find_min_pfn_for_node(nid), NULL); 4880 4881 /* Any memory on that node */ 4882 if (pgdat->node_present_pages) 4883 node_set_state(nid, N_HIGH_MEMORY); 4884 check_for_regular_memory(pgdat); 4885 } 4886 } 4887 4888 static int __init cmdline_parse_core(char *p, unsigned long *core) 4889 { 4890 unsigned long long coremem; 4891 if (!p) 4892 return -EINVAL; 4893 4894 coremem = memparse(p, &p); 4895 *core = coremem >> PAGE_SHIFT; 4896 4897 /* Paranoid check that UL is enough for the coremem value */ 4898 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4899 4900 return 0; 4901 } 4902 4903 /* 4904 * kernelcore=size sets the amount of memory for use for allocations that 4905 * cannot be reclaimed or migrated. 4906 */ 4907 static int __init cmdline_parse_kernelcore(char *p) 4908 { 4909 return cmdline_parse_core(p, &required_kernelcore); 4910 } 4911 4912 /* 4913 * movablecore=size sets the amount of memory for use for allocations that 4914 * can be reclaimed or migrated. 4915 */ 4916 static int __init cmdline_parse_movablecore(char *p) 4917 { 4918 return cmdline_parse_core(p, &required_movablecore); 4919 } 4920 4921 early_param("kernelcore", cmdline_parse_kernelcore); 4922 early_param("movablecore", cmdline_parse_movablecore); 4923 4924 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4925 4926 /** 4927 * set_dma_reserve - set the specified number of pages reserved in the first zone 4928 * @new_dma_reserve: The number of pages to mark reserved 4929 * 4930 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4931 * In the DMA zone, a significant percentage may be consumed by kernel image 4932 * and other unfreeable allocations which can skew the watermarks badly. This 4933 * function may optionally be used to account for unfreeable pages in the 4934 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4935 * smaller per-cpu batchsize. 4936 */ 4937 void __init set_dma_reserve(unsigned long new_dma_reserve) 4938 { 4939 dma_reserve = new_dma_reserve; 4940 } 4941 4942 void __init free_area_init(unsigned long *zones_size) 4943 { 4944 free_area_init_node(0, zones_size, 4945 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4946 } 4947 4948 static int page_alloc_cpu_notify(struct notifier_block *self, 4949 unsigned long action, void *hcpu) 4950 { 4951 int cpu = (unsigned long)hcpu; 4952 4953 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4954 drain_pages(cpu); 4955 4956 /* 4957 * Spill the event counters of the dead processor 4958 * into the current processors event counters. 4959 * This artificially elevates the count of the current 4960 * processor. 4961 */ 4962 vm_events_fold_cpu(cpu); 4963 4964 /* 4965 * Zero the differential counters of the dead processor 4966 * so that the vm statistics are consistent. 4967 * 4968 * This is only okay since the processor is dead and cannot 4969 * race with what we are doing. 4970 */ 4971 refresh_cpu_vm_stats(cpu); 4972 } 4973 return NOTIFY_OK; 4974 } 4975 4976 void __init page_alloc_init(void) 4977 { 4978 hotcpu_notifier(page_alloc_cpu_notify, 0); 4979 } 4980 4981 /* 4982 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4983 * or min_free_kbytes changes. 4984 */ 4985 static void calculate_totalreserve_pages(void) 4986 { 4987 struct pglist_data *pgdat; 4988 unsigned long reserve_pages = 0; 4989 enum zone_type i, j; 4990 4991 for_each_online_pgdat(pgdat) { 4992 for (i = 0; i < MAX_NR_ZONES; i++) { 4993 struct zone *zone = pgdat->node_zones + i; 4994 unsigned long max = 0; 4995 4996 /* Find valid and maximum lowmem_reserve in the zone */ 4997 for (j = i; j < MAX_NR_ZONES; j++) { 4998 if (zone->lowmem_reserve[j] > max) 4999 max = zone->lowmem_reserve[j]; 5000 } 5001 5002 /* we treat the high watermark as reserved pages. */ 5003 max += high_wmark_pages(zone); 5004 5005 if (max > zone->present_pages) 5006 max = zone->present_pages; 5007 reserve_pages += max; 5008 } 5009 } 5010 totalreserve_pages = reserve_pages; 5011 } 5012 5013 /* 5014 * setup_per_zone_lowmem_reserve - called whenever 5015 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5016 * has a correct pages reserved value, so an adequate number of 5017 * pages are left in the zone after a successful __alloc_pages(). 5018 */ 5019 static void setup_per_zone_lowmem_reserve(void) 5020 { 5021 struct pglist_data *pgdat; 5022 enum zone_type j, idx; 5023 5024 for_each_online_pgdat(pgdat) { 5025 for (j = 0; j < MAX_NR_ZONES; j++) { 5026 struct zone *zone = pgdat->node_zones + j; 5027 unsigned long present_pages = zone->present_pages; 5028 5029 zone->lowmem_reserve[j] = 0; 5030 5031 idx = j; 5032 while (idx) { 5033 struct zone *lower_zone; 5034 5035 idx--; 5036 5037 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5038 sysctl_lowmem_reserve_ratio[idx] = 1; 5039 5040 lower_zone = pgdat->node_zones + idx; 5041 lower_zone->lowmem_reserve[j] = present_pages / 5042 sysctl_lowmem_reserve_ratio[idx]; 5043 present_pages += lower_zone->present_pages; 5044 } 5045 } 5046 } 5047 5048 /* update totalreserve_pages */ 5049 calculate_totalreserve_pages(); 5050 } 5051 5052 /** 5053 * setup_per_zone_wmarks - called when min_free_kbytes changes 5054 * or when memory is hot-{added|removed} 5055 * 5056 * Ensures that the watermark[min,low,high] values for each zone are set 5057 * correctly with respect to min_free_kbytes. 5058 */ 5059 void setup_per_zone_wmarks(void) 5060 { 5061 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5062 unsigned long lowmem_pages = 0; 5063 struct zone *zone; 5064 unsigned long flags; 5065 5066 /* Calculate total number of !ZONE_HIGHMEM pages */ 5067 for_each_zone(zone) { 5068 if (!is_highmem(zone)) 5069 lowmem_pages += zone->present_pages; 5070 } 5071 5072 for_each_zone(zone) { 5073 u64 tmp; 5074 5075 spin_lock_irqsave(&zone->lock, flags); 5076 tmp = (u64)pages_min * zone->present_pages; 5077 do_div(tmp, lowmem_pages); 5078 if (is_highmem(zone)) { 5079 /* 5080 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5081 * need highmem pages, so cap pages_min to a small 5082 * value here. 5083 * 5084 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5085 * deltas controls asynch page reclaim, and so should 5086 * not be capped for highmem. 5087 */ 5088 int min_pages; 5089 5090 min_pages = zone->present_pages / 1024; 5091 if (min_pages < SWAP_CLUSTER_MAX) 5092 min_pages = SWAP_CLUSTER_MAX; 5093 if (min_pages > 128) 5094 min_pages = 128; 5095 zone->watermark[WMARK_MIN] = min_pages; 5096 } else { 5097 /* 5098 * If it's a lowmem zone, reserve a number of pages 5099 * proportionate to the zone's size. 5100 */ 5101 zone->watermark[WMARK_MIN] = tmp; 5102 } 5103 5104 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5105 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5106 setup_zone_migrate_reserve(zone); 5107 spin_unlock_irqrestore(&zone->lock, flags); 5108 } 5109 5110 /* update totalreserve_pages */ 5111 calculate_totalreserve_pages(); 5112 } 5113 5114 /* 5115 * The inactive anon list should be small enough that the VM never has to 5116 * do too much work, but large enough that each inactive page has a chance 5117 * to be referenced again before it is swapped out. 5118 * 5119 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5120 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5121 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5122 * the anonymous pages are kept on the inactive list. 5123 * 5124 * total target max 5125 * memory ratio inactive anon 5126 * ------------------------------------- 5127 * 10MB 1 5MB 5128 * 100MB 1 50MB 5129 * 1GB 3 250MB 5130 * 10GB 10 0.9GB 5131 * 100GB 31 3GB 5132 * 1TB 101 10GB 5133 * 10TB 320 32GB 5134 */ 5135 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5136 { 5137 unsigned int gb, ratio; 5138 5139 /* Zone size in gigabytes */ 5140 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5141 if (gb) 5142 ratio = int_sqrt(10 * gb); 5143 else 5144 ratio = 1; 5145 5146 zone->inactive_ratio = ratio; 5147 } 5148 5149 static void __meminit setup_per_zone_inactive_ratio(void) 5150 { 5151 struct zone *zone; 5152 5153 for_each_zone(zone) 5154 calculate_zone_inactive_ratio(zone); 5155 } 5156 5157 /* 5158 * Initialise min_free_kbytes. 5159 * 5160 * For small machines we want it small (128k min). For large machines 5161 * we want it large (64MB max). But it is not linear, because network 5162 * bandwidth does not increase linearly with machine size. We use 5163 * 5164 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5165 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5166 * 5167 * which yields 5168 * 5169 * 16MB: 512k 5170 * 32MB: 724k 5171 * 64MB: 1024k 5172 * 128MB: 1448k 5173 * 256MB: 2048k 5174 * 512MB: 2896k 5175 * 1024MB: 4096k 5176 * 2048MB: 5792k 5177 * 4096MB: 8192k 5178 * 8192MB: 11584k 5179 * 16384MB: 16384k 5180 */ 5181 int __meminit init_per_zone_wmark_min(void) 5182 { 5183 unsigned long lowmem_kbytes; 5184 5185 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5186 5187 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5188 if (min_free_kbytes < 128) 5189 min_free_kbytes = 128; 5190 if (min_free_kbytes > 65536) 5191 min_free_kbytes = 65536; 5192 setup_per_zone_wmarks(); 5193 refresh_zone_stat_thresholds(); 5194 setup_per_zone_lowmem_reserve(); 5195 setup_per_zone_inactive_ratio(); 5196 return 0; 5197 } 5198 module_init(init_per_zone_wmark_min) 5199 5200 /* 5201 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5202 * that we can call two helper functions whenever min_free_kbytes 5203 * changes. 5204 */ 5205 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5206 void __user *buffer, size_t *length, loff_t *ppos) 5207 { 5208 proc_dointvec(table, write, buffer, length, ppos); 5209 if (write) 5210 setup_per_zone_wmarks(); 5211 return 0; 5212 } 5213 5214 #ifdef CONFIG_NUMA 5215 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5216 void __user *buffer, size_t *length, loff_t *ppos) 5217 { 5218 struct zone *zone; 5219 int rc; 5220 5221 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5222 if (rc) 5223 return rc; 5224 5225 for_each_zone(zone) 5226 zone->min_unmapped_pages = (zone->present_pages * 5227 sysctl_min_unmapped_ratio) / 100; 5228 return 0; 5229 } 5230 5231 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5232 void __user *buffer, size_t *length, loff_t *ppos) 5233 { 5234 struct zone *zone; 5235 int rc; 5236 5237 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5238 if (rc) 5239 return rc; 5240 5241 for_each_zone(zone) 5242 zone->min_slab_pages = (zone->present_pages * 5243 sysctl_min_slab_ratio) / 100; 5244 return 0; 5245 } 5246 #endif 5247 5248 /* 5249 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5250 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5251 * whenever sysctl_lowmem_reserve_ratio changes. 5252 * 5253 * The reserve ratio obviously has absolutely no relation with the 5254 * minimum watermarks. The lowmem reserve ratio can only make sense 5255 * if in function of the boot time zone sizes. 5256 */ 5257 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5258 void __user *buffer, size_t *length, loff_t *ppos) 5259 { 5260 proc_dointvec_minmax(table, write, buffer, length, ppos); 5261 setup_per_zone_lowmem_reserve(); 5262 return 0; 5263 } 5264 5265 /* 5266 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5267 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5268 * can have before it gets flushed back to buddy allocator. 5269 */ 5270 5271 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5272 void __user *buffer, size_t *length, loff_t *ppos) 5273 { 5274 struct zone *zone; 5275 unsigned int cpu; 5276 int ret; 5277 5278 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5279 if (!write || (ret == -EINVAL)) 5280 return ret; 5281 for_each_populated_zone(zone) { 5282 for_each_possible_cpu(cpu) { 5283 unsigned long high; 5284 high = zone->present_pages / percpu_pagelist_fraction; 5285 setup_pagelist_highmark( 5286 per_cpu_ptr(zone->pageset, cpu), high); 5287 } 5288 } 5289 return 0; 5290 } 5291 5292 int hashdist = HASHDIST_DEFAULT; 5293 5294 #ifdef CONFIG_NUMA 5295 static int __init set_hashdist(char *str) 5296 { 5297 if (!str) 5298 return 0; 5299 hashdist = simple_strtoul(str, &str, 0); 5300 return 1; 5301 } 5302 __setup("hashdist=", set_hashdist); 5303 #endif 5304 5305 /* 5306 * allocate a large system hash table from bootmem 5307 * - it is assumed that the hash table must contain an exact power-of-2 5308 * quantity of entries 5309 * - limit is the number of hash buckets, not the total allocation size 5310 */ 5311 void *__init alloc_large_system_hash(const char *tablename, 5312 unsigned long bucketsize, 5313 unsigned long numentries, 5314 int scale, 5315 int flags, 5316 unsigned int *_hash_shift, 5317 unsigned int *_hash_mask, 5318 unsigned long limit) 5319 { 5320 unsigned long long max = limit; 5321 unsigned long log2qty, size; 5322 void *table = NULL; 5323 5324 /* allow the kernel cmdline to have a say */ 5325 if (!numentries) { 5326 /* round applicable memory size up to nearest megabyte */ 5327 numentries = nr_kernel_pages; 5328 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5329 numentries >>= 20 - PAGE_SHIFT; 5330 numentries <<= 20 - PAGE_SHIFT; 5331 5332 /* limit to 1 bucket per 2^scale bytes of low memory */ 5333 if (scale > PAGE_SHIFT) 5334 numentries >>= (scale - PAGE_SHIFT); 5335 else 5336 numentries <<= (PAGE_SHIFT - scale); 5337 5338 /* Make sure we've got at least a 0-order allocation.. */ 5339 if (unlikely(flags & HASH_SMALL)) { 5340 /* Makes no sense without HASH_EARLY */ 5341 WARN_ON(!(flags & HASH_EARLY)); 5342 if (!(numentries >> *_hash_shift)) { 5343 numentries = 1UL << *_hash_shift; 5344 BUG_ON(!numentries); 5345 } 5346 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5347 numentries = PAGE_SIZE / bucketsize; 5348 } 5349 numentries = roundup_pow_of_two(numentries); 5350 5351 /* limit allocation size to 1/16 total memory by default */ 5352 if (max == 0) { 5353 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5354 do_div(max, bucketsize); 5355 } 5356 5357 if (numentries > max) 5358 numentries = max; 5359 5360 log2qty = ilog2(numentries); 5361 5362 do { 5363 size = bucketsize << log2qty; 5364 if (flags & HASH_EARLY) 5365 table = alloc_bootmem_nopanic(size); 5366 else if (hashdist) 5367 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5368 else { 5369 /* 5370 * If bucketsize is not a power-of-two, we may free 5371 * some pages at the end of hash table which 5372 * alloc_pages_exact() automatically does 5373 */ 5374 if (get_order(size) < MAX_ORDER) { 5375 table = alloc_pages_exact(size, GFP_ATOMIC); 5376 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5377 } 5378 } 5379 } while (!table && size > PAGE_SIZE && --log2qty); 5380 5381 if (!table) 5382 panic("Failed to allocate %s hash table\n", tablename); 5383 5384 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5385 tablename, 5386 (1UL << log2qty), 5387 ilog2(size) - PAGE_SHIFT, 5388 size); 5389 5390 if (_hash_shift) 5391 *_hash_shift = log2qty; 5392 if (_hash_mask) 5393 *_hash_mask = (1 << log2qty) - 1; 5394 5395 return table; 5396 } 5397 5398 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5399 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5400 unsigned long pfn) 5401 { 5402 #ifdef CONFIG_SPARSEMEM 5403 return __pfn_to_section(pfn)->pageblock_flags; 5404 #else 5405 return zone->pageblock_flags; 5406 #endif /* CONFIG_SPARSEMEM */ 5407 } 5408 5409 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5410 { 5411 #ifdef CONFIG_SPARSEMEM 5412 pfn &= (PAGES_PER_SECTION-1); 5413 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5414 #else 5415 pfn = pfn - zone->zone_start_pfn; 5416 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5417 #endif /* CONFIG_SPARSEMEM */ 5418 } 5419 5420 /** 5421 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5422 * @page: The page within the block of interest 5423 * @start_bitidx: The first bit of interest to retrieve 5424 * @end_bitidx: The last bit of interest 5425 * returns pageblock_bits flags 5426 */ 5427 unsigned long get_pageblock_flags_group(struct page *page, 5428 int start_bitidx, int end_bitidx) 5429 { 5430 struct zone *zone; 5431 unsigned long *bitmap; 5432 unsigned long pfn, bitidx; 5433 unsigned long flags = 0; 5434 unsigned long value = 1; 5435 5436 zone = page_zone(page); 5437 pfn = page_to_pfn(page); 5438 bitmap = get_pageblock_bitmap(zone, pfn); 5439 bitidx = pfn_to_bitidx(zone, pfn); 5440 5441 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5442 if (test_bit(bitidx + start_bitidx, bitmap)) 5443 flags |= value; 5444 5445 return flags; 5446 } 5447 5448 /** 5449 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5450 * @page: The page within the block of interest 5451 * @start_bitidx: The first bit of interest 5452 * @end_bitidx: The last bit of interest 5453 * @flags: The flags to set 5454 */ 5455 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5456 int start_bitidx, int end_bitidx) 5457 { 5458 struct zone *zone; 5459 unsigned long *bitmap; 5460 unsigned long pfn, bitidx; 5461 unsigned long value = 1; 5462 5463 zone = page_zone(page); 5464 pfn = page_to_pfn(page); 5465 bitmap = get_pageblock_bitmap(zone, pfn); 5466 bitidx = pfn_to_bitidx(zone, pfn); 5467 VM_BUG_ON(pfn < zone->zone_start_pfn); 5468 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5469 5470 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5471 if (flags & value) 5472 __set_bit(bitidx + start_bitidx, bitmap); 5473 else 5474 __clear_bit(bitidx + start_bitidx, bitmap); 5475 } 5476 5477 /* 5478 * This is designed as sub function...plz see page_isolation.c also. 5479 * set/clear page block's type to be ISOLATE. 5480 * page allocater never alloc memory from ISOLATE block. 5481 */ 5482 5483 static int 5484 __count_immobile_pages(struct zone *zone, struct page *page, int count) 5485 { 5486 unsigned long pfn, iter, found; 5487 /* 5488 * For avoiding noise data, lru_add_drain_all() should be called 5489 * If ZONE_MOVABLE, the zone never contains immobile pages 5490 */ 5491 if (zone_idx(zone) == ZONE_MOVABLE) 5492 return true; 5493 5494 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) 5495 return true; 5496 5497 pfn = page_to_pfn(page); 5498 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5499 unsigned long check = pfn + iter; 5500 5501 if (!pfn_valid_within(check)) 5502 continue; 5503 5504 page = pfn_to_page(check); 5505 if (!page_count(page)) { 5506 if (PageBuddy(page)) 5507 iter += (1 << page_order(page)) - 1; 5508 continue; 5509 } 5510 if (!PageLRU(page)) 5511 found++; 5512 /* 5513 * If there are RECLAIMABLE pages, we need to check it. 5514 * But now, memory offline itself doesn't call shrink_slab() 5515 * and it still to be fixed. 5516 */ 5517 /* 5518 * If the page is not RAM, page_count()should be 0. 5519 * we don't need more check. This is an _used_ not-movable page. 5520 * 5521 * The problematic thing here is PG_reserved pages. PG_reserved 5522 * is set to both of a memory hole page and a _used_ kernel 5523 * page at boot. 5524 */ 5525 if (found > count) 5526 return false; 5527 } 5528 return true; 5529 } 5530 5531 bool is_pageblock_removable_nolock(struct page *page) 5532 { 5533 struct zone *zone = page_zone(page); 5534 return __count_immobile_pages(zone, page, 0); 5535 } 5536 5537 int set_migratetype_isolate(struct page *page) 5538 { 5539 struct zone *zone; 5540 unsigned long flags, pfn; 5541 struct memory_isolate_notify arg; 5542 int notifier_ret; 5543 int ret = -EBUSY; 5544 5545 zone = page_zone(page); 5546 5547 spin_lock_irqsave(&zone->lock, flags); 5548 5549 pfn = page_to_pfn(page); 5550 arg.start_pfn = pfn; 5551 arg.nr_pages = pageblock_nr_pages; 5552 arg.pages_found = 0; 5553 5554 /* 5555 * It may be possible to isolate a pageblock even if the 5556 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5557 * notifier chain is used by balloon drivers to return the 5558 * number of pages in a range that are held by the balloon 5559 * driver to shrink memory. If all the pages are accounted for 5560 * by balloons, are free, or on the LRU, isolation can continue. 5561 * Later, for example, when memory hotplug notifier runs, these 5562 * pages reported as "can be isolated" should be isolated(freed) 5563 * by the balloon driver through the memory notifier chain. 5564 */ 5565 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5566 notifier_ret = notifier_to_errno(notifier_ret); 5567 if (notifier_ret) 5568 goto out; 5569 /* 5570 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 5571 * We just check MOVABLE pages. 5572 */ 5573 if (__count_immobile_pages(zone, page, arg.pages_found)) 5574 ret = 0; 5575 5576 /* 5577 * immobile means "not-on-lru" paes. If immobile is larger than 5578 * removable-by-driver pages reported by notifier, we'll fail. 5579 */ 5580 5581 out: 5582 if (!ret) { 5583 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5584 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5585 } 5586 5587 spin_unlock_irqrestore(&zone->lock, flags); 5588 if (!ret) 5589 drain_all_pages(); 5590 return ret; 5591 } 5592 5593 void unset_migratetype_isolate(struct page *page) 5594 { 5595 struct zone *zone; 5596 unsigned long flags; 5597 zone = page_zone(page); 5598 spin_lock_irqsave(&zone->lock, flags); 5599 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5600 goto out; 5601 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5602 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5603 out: 5604 spin_unlock_irqrestore(&zone->lock, flags); 5605 } 5606 5607 #ifdef CONFIG_MEMORY_HOTREMOVE 5608 /* 5609 * All pages in the range must be isolated before calling this. 5610 */ 5611 void 5612 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5613 { 5614 struct page *page; 5615 struct zone *zone; 5616 int order, i; 5617 unsigned long pfn; 5618 unsigned long flags; 5619 /* find the first valid pfn */ 5620 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5621 if (pfn_valid(pfn)) 5622 break; 5623 if (pfn == end_pfn) 5624 return; 5625 zone = page_zone(pfn_to_page(pfn)); 5626 spin_lock_irqsave(&zone->lock, flags); 5627 pfn = start_pfn; 5628 while (pfn < end_pfn) { 5629 if (!pfn_valid(pfn)) { 5630 pfn++; 5631 continue; 5632 } 5633 page = pfn_to_page(pfn); 5634 BUG_ON(page_count(page)); 5635 BUG_ON(!PageBuddy(page)); 5636 order = page_order(page); 5637 #ifdef CONFIG_DEBUG_VM 5638 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5639 pfn, 1 << order, end_pfn); 5640 #endif 5641 list_del(&page->lru); 5642 rmv_page_order(page); 5643 zone->free_area[order].nr_free--; 5644 __mod_zone_page_state(zone, NR_FREE_PAGES, 5645 - (1UL << order)); 5646 for (i = 0; i < (1 << order); i++) 5647 SetPageReserved((page+i)); 5648 pfn += (1 << order); 5649 } 5650 spin_unlock_irqrestore(&zone->lock, flags); 5651 } 5652 #endif 5653 5654 #ifdef CONFIG_MEMORY_FAILURE 5655 bool is_free_buddy_page(struct page *page) 5656 { 5657 struct zone *zone = page_zone(page); 5658 unsigned long pfn = page_to_pfn(page); 5659 unsigned long flags; 5660 int order; 5661 5662 spin_lock_irqsave(&zone->lock, flags); 5663 for (order = 0; order < MAX_ORDER; order++) { 5664 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5665 5666 if (PageBuddy(page_head) && page_order(page_head) >= order) 5667 break; 5668 } 5669 spin_unlock_irqrestore(&zone->lock, flags); 5670 5671 return order < MAX_ORDER; 5672 } 5673 #endif 5674 5675 static struct trace_print_flags pageflag_names[] = { 5676 {1UL << PG_locked, "locked" }, 5677 {1UL << PG_error, "error" }, 5678 {1UL << PG_referenced, "referenced" }, 5679 {1UL << PG_uptodate, "uptodate" }, 5680 {1UL << PG_dirty, "dirty" }, 5681 {1UL << PG_lru, "lru" }, 5682 {1UL << PG_active, "active" }, 5683 {1UL << PG_slab, "slab" }, 5684 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5685 {1UL << PG_arch_1, "arch_1" }, 5686 {1UL << PG_reserved, "reserved" }, 5687 {1UL << PG_private, "private" }, 5688 {1UL << PG_private_2, "private_2" }, 5689 {1UL << PG_writeback, "writeback" }, 5690 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5691 {1UL << PG_head, "head" }, 5692 {1UL << PG_tail, "tail" }, 5693 #else 5694 {1UL << PG_compound, "compound" }, 5695 #endif 5696 {1UL << PG_swapcache, "swapcache" }, 5697 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5698 {1UL << PG_reclaim, "reclaim" }, 5699 {1UL << PG_swapbacked, "swapbacked" }, 5700 {1UL << PG_unevictable, "unevictable" }, 5701 #ifdef CONFIG_MMU 5702 {1UL << PG_mlocked, "mlocked" }, 5703 #endif 5704 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5705 {1UL << PG_uncached, "uncached" }, 5706 #endif 5707 #ifdef CONFIG_MEMORY_FAILURE 5708 {1UL << PG_hwpoison, "hwpoison" }, 5709 #endif 5710 {-1UL, NULL }, 5711 }; 5712 5713 static void dump_page_flags(unsigned long flags) 5714 { 5715 const char *delim = ""; 5716 unsigned long mask; 5717 int i; 5718 5719 printk(KERN_ALERT "page flags: %#lx(", flags); 5720 5721 /* remove zone id */ 5722 flags &= (1UL << NR_PAGEFLAGS) - 1; 5723 5724 for (i = 0; pageflag_names[i].name && flags; i++) { 5725 5726 mask = pageflag_names[i].mask; 5727 if ((flags & mask) != mask) 5728 continue; 5729 5730 flags &= ~mask; 5731 printk("%s%s", delim, pageflag_names[i].name); 5732 delim = "|"; 5733 } 5734 5735 /* check for left over flags */ 5736 if (flags) 5737 printk("%s%#lx", delim, flags); 5738 5739 printk(")\n"); 5740 } 5741 5742 void dump_page(struct page *page) 5743 { 5744 printk(KERN_ALERT 5745 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5746 page, atomic_read(&page->_count), page_mapcount(page), 5747 page->mapping, page->index); 5748 dump_page_flags(page->flags); 5749 mem_cgroup_print_bad_page(page); 5750 } 5751