1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* Free the page without taking locks. Rely on trylock only. */ 92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) 93 94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 95 static DEFINE_MUTEX(pcp_batch_high_lock); 96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 97 98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 99 /* 100 * On SMP, spin_trylock is sufficient protection. 101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 102 */ 103 #define pcp_trylock_prepare(flags) do { } while (0) 104 #define pcp_trylock_finish(flag) do { } while (0) 105 #else 106 107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 108 #define pcp_trylock_prepare(flags) local_irq_save(flags) 109 #define pcp_trylock_finish(flags) local_irq_restore(flags) 110 #endif 111 112 /* 113 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 114 * a migration causing the wrong PCP to be locked and remote memory being 115 * potentially allocated, pin the task to the CPU for the lookup+lock. 116 * preempt_disable is used on !RT because it is faster than migrate_disable. 117 * migrate_disable is used on RT because otherwise RT spinlock usage is 118 * interfered with and a high priority task cannot preempt the allocator. 119 */ 120 #ifndef CONFIG_PREEMPT_RT 121 #define pcpu_task_pin() preempt_disable() 122 #define pcpu_task_unpin() preempt_enable() 123 #else 124 #define pcpu_task_pin() migrate_disable() 125 #define pcpu_task_unpin() migrate_enable() 126 #endif 127 128 /* 129 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 130 * Return value should be used with equivalent unlock helper. 131 */ 132 #define pcpu_spin_lock(type, member, ptr) \ 133 ({ \ 134 type *_ret; \ 135 pcpu_task_pin(); \ 136 _ret = this_cpu_ptr(ptr); \ 137 spin_lock(&_ret->member); \ 138 _ret; \ 139 }) 140 141 #define pcpu_spin_trylock(type, member, ptr) \ 142 ({ \ 143 type *_ret; \ 144 pcpu_task_pin(); \ 145 _ret = this_cpu_ptr(ptr); \ 146 if (!spin_trylock(&_ret->member)) { \ 147 pcpu_task_unpin(); \ 148 _ret = NULL; \ 149 } \ 150 _ret; \ 151 }) 152 153 #define pcpu_spin_unlock(member, ptr) \ 154 ({ \ 155 spin_unlock(&ptr->member); \ 156 pcpu_task_unpin(); \ 157 }) 158 159 /* struct per_cpu_pages specific helpers. */ 160 #define pcp_spin_lock(ptr) \ 161 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_trylock(ptr) \ 164 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 165 166 #define pcp_spin_unlock(ptr) \ 167 pcpu_spin_unlock(lock, ptr) 168 169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 170 DEFINE_PER_CPU(int, numa_node); 171 EXPORT_PER_CPU_SYMBOL(numa_node); 172 #endif 173 174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 175 176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 177 /* 178 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 179 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 180 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 181 * defined in <linux/topology.h>. 182 */ 183 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 184 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 185 #endif 186 187 static DEFINE_MUTEX(pcpu_drain_mutex); 188 189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 190 volatile unsigned long latent_entropy __latent_entropy; 191 EXPORT_SYMBOL(latent_entropy); 192 #endif 193 194 /* 195 * Array of node states. 196 */ 197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 198 [N_POSSIBLE] = NODE_MASK_ALL, 199 [N_ONLINE] = { { [0] = 1UL } }, 200 #ifndef CONFIG_NUMA 201 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 202 #ifdef CONFIG_HIGHMEM 203 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 204 #endif 205 [N_MEMORY] = { { [0] = 1UL } }, 206 [N_CPU] = { { [0] = 1UL } }, 207 #endif /* NUMA */ 208 }; 209 EXPORT_SYMBOL(node_states); 210 211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 212 213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 214 unsigned int pageblock_order __read_mostly; 215 #endif 216 217 static void __free_pages_ok(struct page *page, unsigned int order, 218 fpi_t fpi_flags); 219 220 /* 221 * results with 256, 32 in the lowmem_reserve sysctl: 222 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 223 * 1G machine -> (16M dma, 784M normal, 224M high) 224 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 225 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 226 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 227 * 228 * TBD: should special case ZONE_DMA32 machines here - in those we normally 229 * don't need any ZONE_NORMAL reservation 230 */ 231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 232 #ifdef CONFIG_ZONE_DMA 233 [ZONE_DMA] = 256, 234 #endif 235 #ifdef CONFIG_ZONE_DMA32 236 [ZONE_DMA32] = 256, 237 #endif 238 [ZONE_NORMAL] = 32, 239 #ifdef CONFIG_HIGHMEM 240 [ZONE_HIGHMEM] = 0, 241 #endif 242 [ZONE_MOVABLE] = 0, 243 }; 244 245 char * const zone_names[MAX_NR_ZONES] = { 246 #ifdef CONFIG_ZONE_DMA 247 "DMA", 248 #endif 249 #ifdef CONFIG_ZONE_DMA32 250 "DMA32", 251 #endif 252 "Normal", 253 #ifdef CONFIG_HIGHMEM 254 "HighMem", 255 #endif 256 "Movable", 257 #ifdef CONFIG_ZONE_DEVICE 258 "Device", 259 #endif 260 }; 261 262 const char * const migratetype_names[MIGRATE_TYPES] = { 263 "Unmovable", 264 "Movable", 265 "Reclaimable", 266 "HighAtomic", 267 #ifdef CONFIG_CMA 268 "CMA", 269 #endif 270 #ifdef CONFIG_MEMORY_ISOLATION 271 "Isolate", 272 #endif 273 }; 274 275 int min_free_kbytes = 1024; 276 int user_min_free_kbytes = -1; 277 static int watermark_boost_factor __read_mostly = 15000; 278 static int watermark_scale_factor = 10; 279 int defrag_mode; 280 281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 282 int movable_zone; 283 EXPORT_SYMBOL(movable_zone); 284 285 #if MAX_NUMNODES > 1 286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 287 unsigned int nr_online_nodes __read_mostly = 1; 288 EXPORT_SYMBOL(nr_node_ids); 289 EXPORT_SYMBOL(nr_online_nodes); 290 #endif 291 292 static bool page_contains_unaccepted(struct page *page, unsigned int order); 293 static bool cond_accept_memory(struct zone *zone, unsigned int order); 294 static bool __free_unaccepted(struct page *page); 295 296 int page_group_by_mobility_disabled __read_mostly; 297 298 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 299 /* 300 * During boot we initialize deferred pages on-demand, as needed, but once 301 * page_alloc_init_late() has finished, the deferred pages are all initialized, 302 * and we can permanently disable that path. 303 */ 304 DEFINE_STATIC_KEY_TRUE(deferred_pages); 305 306 static inline bool deferred_pages_enabled(void) 307 { 308 return static_branch_unlikely(&deferred_pages); 309 } 310 311 /* 312 * deferred_grow_zone() is __init, but it is called from 313 * get_page_from_freelist() during early boot until deferred_pages permanently 314 * disables this call. This is why we have refdata wrapper to avoid warning, 315 * and to ensure that the function body gets unloaded. 316 */ 317 static bool __ref 318 _deferred_grow_zone(struct zone *zone, unsigned int order) 319 { 320 return deferred_grow_zone(zone, order); 321 } 322 #else 323 static inline bool deferred_pages_enabled(void) 324 { 325 return false; 326 } 327 328 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 329 { 330 return false; 331 } 332 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 333 334 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 335 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 336 unsigned long pfn) 337 { 338 #ifdef CONFIG_SPARSEMEM 339 return section_to_usemap(__pfn_to_section(pfn)); 340 #else 341 return page_zone(page)->pageblock_flags; 342 #endif /* CONFIG_SPARSEMEM */ 343 } 344 345 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 346 { 347 #ifdef CONFIG_SPARSEMEM 348 pfn &= (PAGES_PER_SECTION-1); 349 #else 350 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 351 #endif /* CONFIG_SPARSEMEM */ 352 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 353 } 354 355 /** 356 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 357 * @page: The page within the block of interest 358 * @pfn: The target page frame number 359 * @mask: mask of bits that the caller is interested in 360 * 361 * Return: pageblock_bits flags 362 */ 363 unsigned long get_pfnblock_flags_mask(const struct page *page, 364 unsigned long pfn, unsigned long mask) 365 { 366 unsigned long *bitmap; 367 unsigned long bitidx, word_bitidx; 368 unsigned long word; 369 370 bitmap = get_pageblock_bitmap(page, pfn); 371 bitidx = pfn_to_bitidx(page, pfn); 372 word_bitidx = bitidx / BITS_PER_LONG; 373 bitidx &= (BITS_PER_LONG-1); 374 /* 375 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 376 * a consistent read of the memory array, so that results, even though 377 * racy, are not corrupted. 378 */ 379 word = READ_ONCE(bitmap[word_bitidx]); 380 return (word >> bitidx) & mask; 381 } 382 383 static __always_inline int get_pfnblock_migratetype(const struct page *page, 384 unsigned long pfn) 385 { 386 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 387 } 388 389 /** 390 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 391 * @page: The page within the block of interest 392 * @flags: The flags to set 393 * @pfn: The target page frame number 394 * @mask: mask of bits that the caller is interested in 395 */ 396 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 397 unsigned long pfn, 398 unsigned long mask) 399 { 400 unsigned long *bitmap; 401 unsigned long bitidx, word_bitidx; 402 unsigned long word; 403 404 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 405 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 406 407 bitmap = get_pageblock_bitmap(page, pfn); 408 bitidx = pfn_to_bitidx(page, pfn); 409 word_bitidx = bitidx / BITS_PER_LONG; 410 bitidx &= (BITS_PER_LONG-1); 411 412 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 413 414 mask <<= bitidx; 415 flags <<= bitidx; 416 417 word = READ_ONCE(bitmap[word_bitidx]); 418 do { 419 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 420 } 421 422 void set_pageblock_migratetype(struct page *page, int migratetype) 423 { 424 if (unlikely(page_group_by_mobility_disabled && 425 migratetype < MIGRATE_PCPTYPES)) 426 migratetype = MIGRATE_UNMOVABLE; 427 428 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 429 page_to_pfn(page), MIGRATETYPE_MASK); 430 } 431 432 #ifdef CONFIG_DEBUG_VM 433 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 434 { 435 int ret; 436 unsigned seq; 437 unsigned long pfn = page_to_pfn(page); 438 unsigned long sp, start_pfn; 439 440 do { 441 seq = zone_span_seqbegin(zone); 442 start_pfn = zone->zone_start_pfn; 443 sp = zone->spanned_pages; 444 ret = !zone_spans_pfn(zone, pfn); 445 } while (zone_span_seqretry(zone, seq)); 446 447 if (ret) 448 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 449 pfn, zone_to_nid(zone), zone->name, 450 start_pfn, start_pfn + sp); 451 452 return ret; 453 } 454 455 /* 456 * Temporary debugging check for pages not lying within a given zone. 457 */ 458 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 459 { 460 if (page_outside_zone_boundaries(zone, page)) 461 return true; 462 if (zone != page_zone(page)) 463 return true; 464 465 return false; 466 } 467 #else 468 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 469 { 470 return false; 471 } 472 #endif 473 474 static void bad_page(struct page *page, const char *reason) 475 { 476 static unsigned long resume; 477 static unsigned long nr_shown; 478 static unsigned long nr_unshown; 479 480 /* 481 * Allow a burst of 60 reports, then keep quiet for that minute; 482 * or allow a steady drip of one report per second. 483 */ 484 if (nr_shown == 60) { 485 if (time_before(jiffies, resume)) { 486 nr_unshown++; 487 goto out; 488 } 489 if (nr_unshown) { 490 pr_alert( 491 "BUG: Bad page state: %lu messages suppressed\n", 492 nr_unshown); 493 nr_unshown = 0; 494 } 495 nr_shown = 0; 496 } 497 if (nr_shown++ == 0) 498 resume = jiffies + 60 * HZ; 499 500 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 501 current->comm, page_to_pfn(page)); 502 dump_page(page, reason); 503 504 print_modules(); 505 dump_stack(); 506 out: 507 /* Leave bad fields for debug, except PageBuddy could make trouble */ 508 if (PageBuddy(page)) 509 __ClearPageBuddy(page); 510 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 511 } 512 513 static inline unsigned int order_to_pindex(int migratetype, int order) 514 { 515 516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 517 bool movable; 518 if (order > PAGE_ALLOC_COSTLY_ORDER) { 519 VM_BUG_ON(order != HPAGE_PMD_ORDER); 520 521 movable = migratetype == MIGRATE_MOVABLE; 522 523 return NR_LOWORDER_PCP_LISTS + movable; 524 } 525 #else 526 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 527 #endif 528 529 return (MIGRATE_PCPTYPES * order) + migratetype; 530 } 531 532 static inline int pindex_to_order(unsigned int pindex) 533 { 534 int order = pindex / MIGRATE_PCPTYPES; 535 536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 537 if (pindex >= NR_LOWORDER_PCP_LISTS) 538 order = HPAGE_PMD_ORDER; 539 #else 540 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 541 #endif 542 543 return order; 544 } 545 546 static inline bool pcp_allowed_order(unsigned int order) 547 { 548 if (order <= PAGE_ALLOC_COSTLY_ORDER) 549 return true; 550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 551 if (order == HPAGE_PMD_ORDER) 552 return true; 553 #endif 554 return false; 555 } 556 557 /* 558 * Higher-order pages are called "compound pages". They are structured thusly: 559 * 560 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 561 * 562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 564 * 565 * The first tail page's ->compound_order holds the order of allocation. 566 * This usage means that zero-order pages may not be compound. 567 */ 568 569 void prep_compound_page(struct page *page, unsigned int order) 570 { 571 int i; 572 int nr_pages = 1 << order; 573 574 __SetPageHead(page); 575 for (i = 1; i < nr_pages; i++) 576 prep_compound_tail(page, i); 577 578 prep_compound_head(page, order); 579 } 580 581 static inline void set_buddy_order(struct page *page, unsigned int order) 582 { 583 set_page_private(page, order); 584 __SetPageBuddy(page); 585 } 586 587 #ifdef CONFIG_COMPACTION 588 static inline struct capture_control *task_capc(struct zone *zone) 589 { 590 struct capture_control *capc = current->capture_control; 591 592 return unlikely(capc) && 593 !(current->flags & PF_KTHREAD) && 594 !capc->page && 595 capc->cc->zone == zone ? capc : NULL; 596 } 597 598 static inline bool 599 compaction_capture(struct capture_control *capc, struct page *page, 600 int order, int migratetype) 601 { 602 if (!capc || order != capc->cc->order) 603 return false; 604 605 /* Do not accidentally pollute CMA or isolated regions*/ 606 if (is_migrate_cma(migratetype) || 607 is_migrate_isolate(migratetype)) 608 return false; 609 610 /* 611 * Do not let lower order allocations pollute a movable pageblock 612 * unless compaction is also requesting movable pages. 613 * This might let an unmovable request use a reclaimable pageblock 614 * and vice-versa but no more than normal fallback logic which can 615 * have trouble finding a high-order free page. 616 */ 617 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 618 capc->cc->migratetype != MIGRATE_MOVABLE) 619 return false; 620 621 if (migratetype != capc->cc->migratetype) 622 trace_mm_page_alloc_extfrag(page, capc->cc->order, order, 623 capc->cc->migratetype, migratetype); 624 625 capc->page = page; 626 return true; 627 } 628 629 #else 630 static inline struct capture_control *task_capc(struct zone *zone) 631 { 632 return NULL; 633 } 634 635 static inline bool 636 compaction_capture(struct capture_control *capc, struct page *page, 637 int order, int migratetype) 638 { 639 return false; 640 } 641 #endif /* CONFIG_COMPACTION */ 642 643 static inline void account_freepages(struct zone *zone, int nr_pages, 644 int migratetype) 645 { 646 lockdep_assert_held(&zone->lock); 647 648 if (is_migrate_isolate(migratetype)) 649 return; 650 651 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 652 653 if (is_migrate_cma(migratetype)) 654 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 655 else if (is_migrate_highatomic(migratetype)) 656 WRITE_ONCE(zone->nr_free_highatomic, 657 zone->nr_free_highatomic + nr_pages); 658 } 659 660 /* Used for pages not on another list */ 661 static inline void __add_to_free_list(struct page *page, struct zone *zone, 662 unsigned int order, int migratetype, 663 bool tail) 664 { 665 struct free_area *area = &zone->free_area[order]; 666 int nr_pages = 1 << order; 667 668 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 669 "page type is %lu, passed migratetype is %d (nr=%d)\n", 670 get_pageblock_migratetype(page), migratetype, nr_pages); 671 672 if (tail) 673 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 674 else 675 list_add(&page->buddy_list, &area->free_list[migratetype]); 676 area->nr_free++; 677 678 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 679 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 680 } 681 682 /* 683 * Used for pages which are on another list. Move the pages to the tail 684 * of the list - so the moved pages won't immediately be considered for 685 * allocation again (e.g., optimization for memory onlining). 686 */ 687 static inline void move_to_free_list(struct page *page, struct zone *zone, 688 unsigned int order, int old_mt, int new_mt) 689 { 690 struct free_area *area = &zone->free_area[order]; 691 int nr_pages = 1 << order; 692 693 /* Free page moving can fail, so it happens before the type update */ 694 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 695 "page type is %lu, passed migratetype is %d (nr=%d)\n", 696 get_pageblock_migratetype(page), old_mt, nr_pages); 697 698 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 699 700 account_freepages(zone, -nr_pages, old_mt); 701 account_freepages(zone, nr_pages, new_mt); 702 703 if (order >= pageblock_order && 704 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { 705 if (!is_migrate_isolate(old_mt)) 706 nr_pages = -nr_pages; 707 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 708 } 709 } 710 711 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 712 unsigned int order, int migratetype) 713 { 714 int nr_pages = 1 << order; 715 716 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 717 "page type is %lu, passed migratetype is %d (nr=%d)\n", 718 get_pageblock_migratetype(page), migratetype, nr_pages); 719 720 /* clear reported state and update reported page count */ 721 if (page_reported(page)) 722 __ClearPageReported(page); 723 724 list_del(&page->buddy_list); 725 __ClearPageBuddy(page); 726 set_page_private(page, 0); 727 zone->free_area[order].nr_free--; 728 729 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 730 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); 731 } 732 733 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 734 unsigned int order, int migratetype) 735 { 736 __del_page_from_free_list(page, zone, order, migratetype); 737 account_freepages(zone, -(1 << order), migratetype); 738 } 739 740 static inline struct page *get_page_from_free_area(struct free_area *area, 741 int migratetype) 742 { 743 return list_first_entry_or_null(&area->free_list[migratetype], 744 struct page, buddy_list); 745 } 746 747 /* 748 * If this is less than the 2nd largest possible page, check if the buddy 749 * of the next-higher order is free. If it is, it's possible 750 * that pages are being freed that will coalesce soon. In case, 751 * that is happening, add the free page to the tail of the list 752 * so it's less likely to be used soon and more likely to be merged 753 * as a 2-level higher order page 754 */ 755 static inline bool 756 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 757 struct page *page, unsigned int order) 758 { 759 unsigned long higher_page_pfn; 760 struct page *higher_page; 761 762 if (order >= MAX_PAGE_ORDER - 1) 763 return false; 764 765 higher_page_pfn = buddy_pfn & pfn; 766 higher_page = page + (higher_page_pfn - pfn); 767 768 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 769 NULL) != NULL; 770 } 771 772 /* 773 * Freeing function for a buddy system allocator. 774 * 775 * The concept of a buddy system is to maintain direct-mapped table 776 * (containing bit values) for memory blocks of various "orders". 777 * The bottom level table contains the map for the smallest allocatable 778 * units of memory (here, pages), and each level above it describes 779 * pairs of units from the levels below, hence, "buddies". 780 * At a high level, all that happens here is marking the table entry 781 * at the bottom level available, and propagating the changes upward 782 * as necessary, plus some accounting needed to play nicely with other 783 * parts of the VM system. 784 * At each level, we keep a list of pages, which are heads of continuous 785 * free pages of length of (1 << order) and marked with PageBuddy. 786 * Page's order is recorded in page_private(page) field. 787 * So when we are allocating or freeing one, we can derive the state of the 788 * other. That is, if we allocate a small block, and both were 789 * free, the remainder of the region must be split into blocks. 790 * If a block is freed, and its buddy is also free, then this 791 * triggers coalescing into a block of larger size. 792 * 793 * -- nyc 794 */ 795 796 static inline void __free_one_page(struct page *page, 797 unsigned long pfn, 798 struct zone *zone, unsigned int order, 799 int migratetype, fpi_t fpi_flags) 800 { 801 struct capture_control *capc = task_capc(zone); 802 unsigned long buddy_pfn = 0; 803 unsigned long combined_pfn; 804 struct page *buddy; 805 bool to_tail; 806 807 VM_BUG_ON(!zone_is_initialized(zone)); 808 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 809 810 VM_BUG_ON(migratetype == -1); 811 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 812 VM_BUG_ON_PAGE(bad_range(zone, page), page); 813 814 account_freepages(zone, 1 << order, migratetype); 815 816 while (order < MAX_PAGE_ORDER) { 817 int buddy_mt = migratetype; 818 819 if (compaction_capture(capc, page, order, migratetype)) { 820 account_freepages(zone, -(1 << order), migratetype); 821 return; 822 } 823 824 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 825 if (!buddy) 826 goto done_merging; 827 828 if (unlikely(order >= pageblock_order)) { 829 /* 830 * We want to prevent merge between freepages on pageblock 831 * without fallbacks and normal pageblock. Without this, 832 * pageblock isolation could cause incorrect freepage or CMA 833 * accounting or HIGHATOMIC accounting. 834 */ 835 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 836 837 if (migratetype != buddy_mt && 838 (!migratetype_is_mergeable(migratetype) || 839 !migratetype_is_mergeable(buddy_mt))) 840 goto done_merging; 841 } 842 843 /* 844 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 845 * merge with it and move up one order. 846 */ 847 if (page_is_guard(buddy)) 848 clear_page_guard(zone, buddy, order); 849 else 850 __del_page_from_free_list(buddy, zone, order, buddy_mt); 851 852 if (unlikely(buddy_mt != migratetype)) { 853 /* 854 * Match buddy type. This ensures that an 855 * expand() down the line puts the sub-blocks 856 * on the right freelists. 857 */ 858 set_pageblock_migratetype(buddy, migratetype); 859 } 860 861 combined_pfn = buddy_pfn & pfn; 862 page = page + (combined_pfn - pfn); 863 pfn = combined_pfn; 864 order++; 865 } 866 867 done_merging: 868 set_buddy_order(page, order); 869 870 if (fpi_flags & FPI_TO_TAIL) 871 to_tail = true; 872 else if (is_shuffle_order(order)) 873 to_tail = shuffle_pick_tail(); 874 else 875 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 876 877 __add_to_free_list(page, zone, order, migratetype, to_tail); 878 879 /* Notify page reporting subsystem of freed page */ 880 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 881 page_reporting_notify_free(order); 882 } 883 884 /* 885 * A bad page could be due to a number of fields. Instead of multiple branches, 886 * try and check multiple fields with one check. The caller must do a detailed 887 * check if necessary. 888 */ 889 static inline bool page_expected_state(struct page *page, 890 unsigned long check_flags) 891 { 892 if (unlikely(atomic_read(&page->_mapcount) != -1)) 893 return false; 894 895 if (unlikely((unsigned long)page->mapping | 896 page_ref_count(page) | 897 #ifdef CONFIG_MEMCG 898 page->memcg_data | 899 #endif 900 page_pool_page_is_pp(page) | 901 (page->flags & check_flags))) 902 return false; 903 904 return true; 905 } 906 907 static const char *page_bad_reason(struct page *page, unsigned long flags) 908 { 909 const char *bad_reason = NULL; 910 911 if (unlikely(atomic_read(&page->_mapcount) != -1)) 912 bad_reason = "nonzero mapcount"; 913 if (unlikely(page->mapping != NULL)) 914 bad_reason = "non-NULL mapping"; 915 if (unlikely(page_ref_count(page) != 0)) 916 bad_reason = "nonzero _refcount"; 917 if (unlikely(page->flags & flags)) { 918 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 919 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 920 else 921 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 922 } 923 #ifdef CONFIG_MEMCG 924 if (unlikely(page->memcg_data)) 925 bad_reason = "page still charged to cgroup"; 926 #endif 927 if (unlikely(page_pool_page_is_pp(page))) 928 bad_reason = "page_pool leak"; 929 return bad_reason; 930 } 931 932 static void free_page_is_bad_report(struct page *page) 933 { 934 bad_page(page, 935 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 936 } 937 938 static inline bool free_page_is_bad(struct page *page) 939 { 940 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 941 return false; 942 943 /* Something has gone sideways, find it */ 944 free_page_is_bad_report(page); 945 return true; 946 } 947 948 static inline bool is_check_pages_enabled(void) 949 { 950 return static_branch_unlikely(&check_pages_enabled); 951 } 952 953 static int free_tail_page_prepare(struct page *head_page, struct page *page) 954 { 955 struct folio *folio = (struct folio *)head_page; 956 int ret = 1; 957 958 /* 959 * We rely page->lru.next never has bit 0 set, unless the page 960 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 961 */ 962 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 963 964 if (!is_check_pages_enabled()) { 965 ret = 0; 966 goto out; 967 } 968 switch (page - head_page) { 969 case 1: 970 /* the first tail page: these may be in place of ->mapping */ 971 if (unlikely(folio_large_mapcount(folio))) { 972 bad_page(page, "nonzero large_mapcount"); 973 goto out; 974 } 975 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && 976 unlikely(atomic_read(&folio->_nr_pages_mapped))) { 977 bad_page(page, "nonzero nr_pages_mapped"); 978 goto out; 979 } 980 if (IS_ENABLED(CONFIG_MM_ID)) { 981 if (unlikely(folio->_mm_id_mapcount[0] != -1)) { 982 bad_page(page, "nonzero mm mapcount 0"); 983 goto out; 984 } 985 if (unlikely(folio->_mm_id_mapcount[1] != -1)) { 986 bad_page(page, "nonzero mm mapcount 1"); 987 goto out; 988 } 989 } 990 if (IS_ENABLED(CONFIG_64BIT)) { 991 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 992 bad_page(page, "nonzero entire_mapcount"); 993 goto out; 994 } 995 if (unlikely(atomic_read(&folio->_pincount))) { 996 bad_page(page, "nonzero pincount"); 997 goto out; 998 } 999 } 1000 break; 1001 case 2: 1002 /* the second tail page: deferred_list overlaps ->mapping */ 1003 if (unlikely(!list_empty(&folio->_deferred_list))) { 1004 bad_page(page, "on deferred list"); 1005 goto out; 1006 } 1007 if (!IS_ENABLED(CONFIG_64BIT)) { 1008 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1009 bad_page(page, "nonzero entire_mapcount"); 1010 goto out; 1011 } 1012 if (unlikely(atomic_read(&folio->_pincount))) { 1013 bad_page(page, "nonzero pincount"); 1014 goto out; 1015 } 1016 } 1017 break; 1018 case 3: 1019 /* the third tail page: hugetlb specifics overlap ->mappings */ 1020 if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) 1021 break; 1022 fallthrough; 1023 default: 1024 if (page->mapping != TAIL_MAPPING) { 1025 bad_page(page, "corrupted mapping in tail page"); 1026 goto out; 1027 } 1028 break; 1029 } 1030 if (unlikely(!PageTail(page))) { 1031 bad_page(page, "PageTail not set"); 1032 goto out; 1033 } 1034 if (unlikely(compound_head(page) != head_page)) { 1035 bad_page(page, "compound_head not consistent"); 1036 goto out; 1037 } 1038 ret = 0; 1039 out: 1040 page->mapping = NULL; 1041 clear_compound_head(page); 1042 return ret; 1043 } 1044 1045 /* 1046 * Skip KASAN memory poisoning when either: 1047 * 1048 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1049 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1050 * using page tags instead (see below). 1051 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1052 * that error detection is disabled for accesses via the page address. 1053 * 1054 * Pages will have match-all tags in the following circumstances: 1055 * 1056 * 1. Pages are being initialized for the first time, including during deferred 1057 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1058 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1059 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1060 * 3. The allocation was excluded from being checked due to sampling, 1061 * see the call to kasan_unpoison_pages. 1062 * 1063 * Poisoning pages during deferred memory init will greatly lengthen the 1064 * process and cause problem in large memory systems as the deferred pages 1065 * initialization is done with interrupt disabled. 1066 * 1067 * Assuming that there will be no reference to those newly initialized 1068 * pages before they are ever allocated, this should have no effect on 1069 * KASAN memory tracking as the poison will be properly inserted at page 1070 * allocation time. The only corner case is when pages are allocated by 1071 * on-demand allocation and then freed again before the deferred pages 1072 * initialization is done, but this is not likely to happen. 1073 */ 1074 static inline bool should_skip_kasan_poison(struct page *page) 1075 { 1076 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1077 return deferred_pages_enabled(); 1078 1079 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1080 } 1081 1082 static void kernel_init_pages(struct page *page, int numpages) 1083 { 1084 int i; 1085 1086 /* s390's use of memset() could override KASAN redzones. */ 1087 kasan_disable_current(); 1088 for (i = 0; i < numpages; i++) 1089 clear_highpage_kasan_tagged(page + i); 1090 kasan_enable_current(); 1091 } 1092 1093 #ifdef CONFIG_MEM_ALLOC_PROFILING 1094 1095 /* Should be called only if mem_alloc_profiling_enabled() */ 1096 void __clear_page_tag_ref(struct page *page) 1097 { 1098 union pgtag_ref_handle handle; 1099 union codetag_ref ref; 1100 1101 if (get_page_tag_ref(page, &ref, &handle)) { 1102 set_codetag_empty(&ref); 1103 update_page_tag_ref(handle, &ref); 1104 put_page_tag_ref(handle); 1105 } 1106 } 1107 1108 /* Should be called only if mem_alloc_profiling_enabled() */ 1109 static noinline 1110 void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1111 unsigned int nr) 1112 { 1113 union pgtag_ref_handle handle; 1114 union codetag_ref ref; 1115 1116 if (get_page_tag_ref(page, &ref, &handle)) { 1117 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1118 update_page_tag_ref(handle, &ref); 1119 put_page_tag_ref(handle); 1120 } 1121 } 1122 1123 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1124 unsigned int nr) 1125 { 1126 if (mem_alloc_profiling_enabled()) 1127 __pgalloc_tag_add(page, task, nr); 1128 } 1129 1130 /* Should be called only if mem_alloc_profiling_enabled() */ 1131 static noinline 1132 void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1133 { 1134 union pgtag_ref_handle handle; 1135 union codetag_ref ref; 1136 1137 if (get_page_tag_ref(page, &ref, &handle)) { 1138 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1139 update_page_tag_ref(handle, &ref); 1140 put_page_tag_ref(handle); 1141 } 1142 } 1143 1144 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1145 { 1146 if (mem_alloc_profiling_enabled()) 1147 __pgalloc_tag_sub(page, nr); 1148 } 1149 1150 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) 1151 { 1152 struct alloc_tag *tag; 1153 1154 if (!mem_alloc_profiling_enabled()) 1155 return; 1156 1157 tag = __pgalloc_tag_get(page); 1158 if (tag) 1159 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1160 } 1161 1162 #else /* CONFIG_MEM_ALLOC_PROFILING */ 1163 1164 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1165 unsigned int nr) {} 1166 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1167 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) {} 1168 1169 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 1170 1171 __always_inline bool free_pages_prepare(struct page *page, 1172 unsigned int order) 1173 { 1174 int bad = 0; 1175 bool skip_kasan_poison = should_skip_kasan_poison(page); 1176 bool init = want_init_on_free(); 1177 bool compound = PageCompound(page); 1178 struct folio *folio = page_folio(page); 1179 1180 VM_BUG_ON_PAGE(PageTail(page), page); 1181 1182 trace_mm_page_free(page, order); 1183 kmsan_free_page(page, order); 1184 1185 if (memcg_kmem_online() && PageMemcgKmem(page)) 1186 __memcg_kmem_uncharge_page(page, order); 1187 1188 /* 1189 * In rare cases, when truncation or holepunching raced with 1190 * munlock after VM_LOCKED was cleared, Mlocked may still be 1191 * found set here. This does not indicate a problem, unless 1192 * "unevictable_pgs_cleared" appears worryingly large. 1193 */ 1194 if (unlikely(folio_test_mlocked(folio))) { 1195 long nr_pages = folio_nr_pages(folio); 1196 1197 __folio_clear_mlocked(folio); 1198 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1199 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1200 } 1201 1202 if (unlikely(PageHWPoison(page)) && !order) { 1203 /* Do not let hwpoison pages hit pcplists/buddy */ 1204 reset_page_owner(page, order); 1205 page_table_check_free(page, order); 1206 pgalloc_tag_sub(page, 1 << order); 1207 1208 /* 1209 * The page is isolated and accounted for. 1210 * Mark the codetag as empty to avoid accounting error 1211 * when the page is freed by unpoison_memory(). 1212 */ 1213 clear_page_tag_ref(page); 1214 return false; 1215 } 1216 1217 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1218 1219 /* 1220 * Check tail pages before head page information is cleared to 1221 * avoid checking PageCompound for order-0 pages. 1222 */ 1223 if (unlikely(order)) { 1224 int i; 1225 1226 if (compound) { 1227 page[1].flags &= ~PAGE_FLAGS_SECOND; 1228 #ifdef NR_PAGES_IN_LARGE_FOLIO 1229 folio->_nr_pages = 0; 1230 #endif 1231 } 1232 for (i = 1; i < (1 << order); i++) { 1233 if (compound) 1234 bad += free_tail_page_prepare(page, page + i); 1235 if (is_check_pages_enabled()) { 1236 if (free_page_is_bad(page + i)) { 1237 bad++; 1238 continue; 1239 } 1240 } 1241 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1242 } 1243 } 1244 if (PageMappingFlags(page)) { 1245 if (PageAnon(page)) 1246 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1247 page->mapping = NULL; 1248 } 1249 if (is_check_pages_enabled()) { 1250 if (free_page_is_bad(page)) 1251 bad++; 1252 if (bad) 1253 return false; 1254 } 1255 1256 page_cpupid_reset_last(page); 1257 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1258 reset_page_owner(page, order); 1259 page_table_check_free(page, order); 1260 pgalloc_tag_sub(page, 1 << order); 1261 1262 if (!PageHighMem(page)) { 1263 debug_check_no_locks_freed(page_address(page), 1264 PAGE_SIZE << order); 1265 debug_check_no_obj_freed(page_address(page), 1266 PAGE_SIZE << order); 1267 } 1268 1269 kernel_poison_pages(page, 1 << order); 1270 1271 /* 1272 * As memory initialization might be integrated into KASAN, 1273 * KASAN poisoning and memory initialization code must be 1274 * kept together to avoid discrepancies in behavior. 1275 * 1276 * With hardware tag-based KASAN, memory tags must be set before the 1277 * page becomes unavailable via debug_pagealloc or arch_free_page. 1278 */ 1279 if (!skip_kasan_poison) { 1280 kasan_poison_pages(page, order, init); 1281 1282 /* Memory is already initialized if KASAN did it internally. */ 1283 if (kasan_has_integrated_init()) 1284 init = false; 1285 } 1286 if (init) 1287 kernel_init_pages(page, 1 << order); 1288 1289 /* 1290 * arch_free_page() can make the page's contents inaccessible. s390 1291 * does this. So nothing which can access the page's contents should 1292 * happen after this. 1293 */ 1294 arch_free_page(page, order); 1295 1296 debug_pagealloc_unmap_pages(page, 1 << order); 1297 1298 return true; 1299 } 1300 1301 /* 1302 * Frees a number of pages from the PCP lists 1303 * Assumes all pages on list are in same zone. 1304 * count is the number of pages to free. 1305 */ 1306 static void free_pcppages_bulk(struct zone *zone, int count, 1307 struct per_cpu_pages *pcp, 1308 int pindex) 1309 { 1310 unsigned long flags; 1311 unsigned int order; 1312 struct page *page; 1313 1314 /* 1315 * Ensure proper count is passed which otherwise would stuck in the 1316 * below while (list_empty(list)) loop. 1317 */ 1318 count = min(pcp->count, count); 1319 1320 /* Ensure requested pindex is drained first. */ 1321 pindex = pindex - 1; 1322 1323 spin_lock_irqsave(&zone->lock, flags); 1324 1325 while (count > 0) { 1326 struct list_head *list; 1327 int nr_pages; 1328 1329 /* Remove pages from lists in a round-robin fashion. */ 1330 do { 1331 if (++pindex > NR_PCP_LISTS - 1) 1332 pindex = 0; 1333 list = &pcp->lists[pindex]; 1334 } while (list_empty(list)); 1335 1336 order = pindex_to_order(pindex); 1337 nr_pages = 1 << order; 1338 do { 1339 unsigned long pfn; 1340 int mt; 1341 1342 page = list_last_entry(list, struct page, pcp_list); 1343 pfn = page_to_pfn(page); 1344 mt = get_pfnblock_migratetype(page, pfn); 1345 1346 /* must delete to avoid corrupting pcp list */ 1347 list_del(&page->pcp_list); 1348 count -= nr_pages; 1349 pcp->count -= nr_pages; 1350 1351 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1352 trace_mm_page_pcpu_drain(page, order, mt); 1353 } while (count > 0 && !list_empty(list)); 1354 } 1355 1356 spin_unlock_irqrestore(&zone->lock, flags); 1357 } 1358 1359 /* Split a multi-block free page into its individual pageblocks. */ 1360 static void split_large_buddy(struct zone *zone, struct page *page, 1361 unsigned long pfn, int order, fpi_t fpi) 1362 { 1363 unsigned long end = pfn + (1 << order); 1364 1365 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1366 /* Caller removed page from freelist, buddy info cleared! */ 1367 VM_WARN_ON_ONCE(PageBuddy(page)); 1368 1369 if (order > pageblock_order) 1370 order = pageblock_order; 1371 1372 do { 1373 int mt = get_pfnblock_migratetype(page, pfn); 1374 1375 __free_one_page(page, pfn, zone, order, mt, fpi); 1376 pfn += 1 << order; 1377 if (pfn == end) 1378 break; 1379 page = pfn_to_page(pfn); 1380 } while (1); 1381 } 1382 1383 static void add_page_to_zone_llist(struct zone *zone, struct page *page, 1384 unsigned int order) 1385 { 1386 /* Remember the order */ 1387 page->order = order; 1388 /* Add the page to the free list */ 1389 llist_add(&page->pcp_llist, &zone->trylock_free_pages); 1390 } 1391 1392 static void free_one_page(struct zone *zone, struct page *page, 1393 unsigned long pfn, unsigned int order, 1394 fpi_t fpi_flags) 1395 { 1396 struct llist_head *llhead; 1397 unsigned long flags; 1398 1399 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 1400 if (!spin_trylock_irqsave(&zone->lock, flags)) { 1401 add_page_to_zone_llist(zone, page, order); 1402 return; 1403 } 1404 } else { 1405 spin_lock_irqsave(&zone->lock, flags); 1406 } 1407 1408 /* The lock succeeded. Process deferred pages. */ 1409 llhead = &zone->trylock_free_pages; 1410 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { 1411 struct llist_node *llnode; 1412 struct page *p, *tmp; 1413 1414 llnode = llist_del_all(llhead); 1415 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { 1416 unsigned int p_order = p->order; 1417 1418 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); 1419 __count_vm_events(PGFREE, 1 << p_order); 1420 } 1421 } 1422 split_large_buddy(zone, page, pfn, order, fpi_flags); 1423 spin_unlock_irqrestore(&zone->lock, flags); 1424 1425 __count_vm_events(PGFREE, 1 << order); 1426 } 1427 1428 static void __free_pages_ok(struct page *page, unsigned int order, 1429 fpi_t fpi_flags) 1430 { 1431 unsigned long pfn = page_to_pfn(page); 1432 struct zone *zone = page_zone(page); 1433 1434 if (free_pages_prepare(page, order)) 1435 free_one_page(zone, page, pfn, order, fpi_flags); 1436 } 1437 1438 void __meminit __free_pages_core(struct page *page, unsigned int order, 1439 enum meminit_context context) 1440 { 1441 unsigned int nr_pages = 1 << order; 1442 struct page *p = page; 1443 unsigned int loop; 1444 1445 /* 1446 * When initializing the memmap, __init_single_page() sets the refcount 1447 * of all pages to 1 ("allocated"/"not free"). We have to set the 1448 * refcount of all involved pages to 0. 1449 * 1450 * Note that hotplugged memory pages are initialized to PageOffline(). 1451 * Pages freed from memblock might be marked as reserved. 1452 */ 1453 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1454 unlikely(context == MEMINIT_HOTPLUG)) { 1455 for (loop = 0; loop < nr_pages; loop++, p++) { 1456 VM_WARN_ON_ONCE(PageReserved(p)); 1457 __ClearPageOffline(p); 1458 set_page_count(p, 0); 1459 } 1460 1461 adjust_managed_page_count(page, nr_pages); 1462 } else { 1463 for (loop = 0; loop < nr_pages; loop++, p++) { 1464 __ClearPageReserved(p); 1465 set_page_count(p, 0); 1466 } 1467 1468 /* memblock adjusts totalram_pages() manually. */ 1469 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1470 } 1471 1472 if (page_contains_unaccepted(page, order)) { 1473 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1474 return; 1475 1476 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1477 } 1478 1479 /* 1480 * Bypass PCP and place fresh pages right to the tail, primarily 1481 * relevant for memory onlining. 1482 */ 1483 __free_pages_ok(page, order, FPI_TO_TAIL); 1484 } 1485 1486 /* 1487 * Check that the whole (or subset of) a pageblock given by the interval of 1488 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1489 * with the migration of free compaction scanner. 1490 * 1491 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1492 * 1493 * It's possible on some configurations to have a setup like node0 node1 node0 1494 * i.e. it's possible that all pages within a zones range of pages do not 1495 * belong to a single zone. We assume that a border between node0 and node1 1496 * can occur within a single pageblock, but not a node0 node1 node0 1497 * interleaving within a single pageblock. It is therefore sufficient to check 1498 * the first and last page of a pageblock and avoid checking each individual 1499 * page in a pageblock. 1500 * 1501 * Note: the function may return non-NULL struct page even for a page block 1502 * which contains a memory hole (i.e. there is no physical memory for a subset 1503 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1504 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1505 * even though the start pfn is online and valid. This should be safe most of 1506 * the time because struct pages are still initialized via init_unavailable_range() 1507 * and pfn walkers shouldn't touch any physical memory range for which they do 1508 * not recognize any specific metadata in struct pages. 1509 */ 1510 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1511 unsigned long end_pfn, struct zone *zone) 1512 { 1513 struct page *start_page; 1514 struct page *end_page; 1515 1516 /* end_pfn is one past the range we are checking */ 1517 end_pfn--; 1518 1519 if (!pfn_valid(end_pfn)) 1520 return NULL; 1521 1522 start_page = pfn_to_online_page(start_pfn); 1523 if (!start_page) 1524 return NULL; 1525 1526 if (page_zone(start_page) != zone) 1527 return NULL; 1528 1529 end_page = pfn_to_page(end_pfn); 1530 1531 /* This gives a shorter code than deriving page_zone(end_page) */ 1532 if (page_zone_id(start_page) != page_zone_id(end_page)) 1533 return NULL; 1534 1535 return start_page; 1536 } 1537 1538 /* 1539 * The order of subdivision here is critical for the IO subsystem. 1540 * Please do not alter this order without good reasons and regression 1541 * testing. Specifically, as large blocks of memory are subdivided, 1542 * the order in which smaller blocks are delivered depends on the order 1543 * they're subdivided in this function. This is the primary factor 1544 * influencing the order in which pages are delivered to the IO 1545 * subsystem according to empirical testing, and this is also justified 1546 * by considering the behavior of a buddy system containing a single 1547 * large block of memory acted on by a series of small allocations. 1548 * This behavior is a critical factor in sglist merging's success. 1549 * 1550 * -- nyc 1551 */ 1552 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1553 int high, int migratetype) 1554 { 1555 unsigned int size = 1 << high; 1556 unsigned int nr_added = 0; 1557 1558 while (high > low) { 1559 high--; 1560 size >>= 1; 1561 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1562 1563 /* 1564 * Mark as guard pages (or page), that will allow to 1565 * merge back to allocator when buddy will be freed. 1566 * Corresponding page table entries will not be touched, 1567 * pages will stay not present in virtual address space 1568 */ 1569 if (set_page_guard(zone, &page[size], high)) 1570 continue; 1571 1572 __add_to_free_list(&page[size], zone, high, migratetype, false); 1573 set_buddy_order(&page[size], high); 1574 nr_added += size; 1575 } 1576 1577 return nr_added; 1578 } 1579 1580 static __always_inline void page_del_and_expand(struct zone *zone, 1581 struct page *page, int low, 1582 int high, int migratetype) 1583 { 1584 int nr_pages = 1 << high; 1585 1586 __del_page_from_free_list(page, zone, high, migratetype); 1587 nr_pages -= expand(zone, page, low, high, migratetype); 1588 account_freepages(zone, -nr_pages, migratetype); 1589 } 1590 1591 static void check_new_page_bad(struct page *page) 1592 { 1593 if (unlikely(PageHWPoison(page))) { 1594 /* Don't complain about hwpoisoned pages */ 1595 if (PageBuddy(page)) 1596 __ClearPageBuddy(page); 1597 return; 1598 } 1599 1600 bad_page(page, 1601 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1602 } 1603 1604 /* 1605 * This page is about to be returned from the page allocator 1606 */ 1607 static bool check_new_page(struct page *page) 1608 { 1609 if (likely(page_expected_state(page, 1610 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1611 return false; 1612 1613 check_new_page_bad(page); 1614 return true; 1615 } 1616 1617 static inline bool check_new_pages(struct page *page, unsigned int order) 1618 { 1619 if (is_check_pages_enabled()) { 1620 for (int i = 0; i < (1 << order); i++) { 1621 struct page *p = page + i; 1622 1623 if (check_new_page(p)) 1624 return true; 1625 } 1626 } 1627 1628 return false; 1629 } 1630 1631 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1632 { 1633 /* Don't skip if a software KASAN mode is enabled. */ 1634 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1635 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1636 return false; 1637 1638 /* Skip, if hardware tag-based KASAN is not enabled. */ 1639 if (!kasan_hw_tags_enabled()) 1640 return true; 1641 1642 /* 1643 * With hardware tag-based KASAN enabled, skip if this has been 1644 * requested via __GFP_SKIP_KASAN. 1645 */ 1646 return flags & __GFP_SKIP_KASAN; 1647 } 1648 1649 static inline bool should_skip_init(gfp_t flags) 1650 { 1651 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1652 if (!kasan_hw_tags_enabled()) 1653 return false; 1654 1655 /* For hardware tag-based KASAN, skip if requested. */ 1656 return (flags & __GFP_SKIP_ZERO); 1657 } 1658 1659 inline void post_alloc_hook(struct page *page, unsigned int order, 1660 gfp_t gfp_flags) 1661 { 1662 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1663 !should_skip_init(gfp_flags); 1664 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1665 int i; 1666 1667 set_page_private(page, 0); 1668 1669 arch_alloc_page(page, order); 1670 debug_pagealloc_map_pages(page, 1 << order); 1671 1672 /* 1673 * Page unpoisoning must happen before memory initialization. 1674 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1675 * allocations and the page unpoisoning code will complain. 1676 */ 1677 kernel_unpoison_pages(page, 1 << order); 1678 1679 /* 1680 * As memory initialization might be integrated into KASAN, 1681 * KASAN unpoisoning and memory initializion code must be 1682 * kept together to avoid discrepancies in behavior. 1683 */ 1684 1685 /* 1686 * If memory tags should be zeroed 1687 * (which happens only when memory should be initialized as well). 1688 */ 1689 if (zero_tags) { 1690 /* Initialize both memory and memory tags. */ 1691 for (i = 0; i != 1 << order; ++i) 1692 tag_clear_highpage(page + i); 1693 1694 /* Take note that memory was initialized by the loop above. */ 1695 init = false; 1696 } 1697 if (!should_skip_kasan_unpoison(gfp_flags) && 1698 kasan_unpoison_pages(page, order, init)) { 1699 /* Take note that memory was initialized by KASAN. */ 1700 if (kasan_has_integrated_init()) 1701 init = false; 1702 } else { 1703 /* 1704 * If memory tags have not been set by KASAN, reset the page 1705 * tags to ensure page_address() dereferencing does not fault. 1706 */ 1707 for (i = 0; i != 1 << order; ++i) 1708 page_kasan_tag_reset(page + i); 1709 } 1710 /* If memory is still not initialized, initialize it now. */ 1711 if (init) 1712 kernel_init_pages(page, 1 << order); 1713 1714 set_page_owner(page, order, gfp_flags); 1715 page_table_check_alloc(page, order); 1716 pgalloc_tag_add(page, current, 1 << order); 1717 } 1718 1719 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1720 unsigned int alloc_flags) 1721 { 1722 post_alloc_hook(page, order, gfp_flags); 1723 1724 if (order && (gfp_flags & __GFP_COMP)) 1725 prep_compound_page(page, order); 1726 1727 /* 1728 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1729 * allocate the page. The expectation is that the caller is taking 1730 * steps that will free more memory. The caller should avoid the page 1731 * being used for !PFMEMALLOC purposes. 1732 */ 1733 if (alloc_flags & ALLOC_NO_WATERMARKS) 1734 set_page_pfmemalloc(page); 1735 else 1736 clear_page_pfmemalloc(page); 1737 } 1738 1739 /* 1740 * Go through the free lists for the given migratetype and remove 1741 * the smallest available page from the freelists 1742 */ 1743 static __always_inline 1744 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1745 int migratetype) 1746 { 1747 unsigned int current_order; 1748 struct free_area *area; 1749 struct page *page; 1750 1751 /* Find a page of the appropriate size in the preferred list */ 1752 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1753 area = &(zone->free_area[current_order]); 1754 page = get_page_from_free_area(area, migratetype); 1755 if (!page) 1756 continue; 1757 1758 page_del_and_expand(zone, page, order, current_order, 1759 migratetype); 1760 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1761 pcp_allowed_order(order) && 1762 migratetype < MIGRATE_PCPTYPES); 1763 return page; 1764 } 1765 1766 return NULL; 1767 } 1768 1769 1770 /* 1771 * This array describes the order lists are fallen back to when 1772 * the free lists for the desirable migrate type are depleted 1773 * 1774 * The other migratetypes do not have fallbacks. 1775 */ 1776 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1777 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1778 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1779 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1780 }; 1781 1782 #ifdef CONFIG_CMA 1783 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1784 unsigned int order) 1785 { 1786 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1787 } 1788 #else 1789 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1790 unsigned int order) { return NULL; } 1791 #endif 1792 1793 /* 1794 * Change the type of a block and move all its free pages to that 1795 * type's freelist. 1796 */ 1797 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1798 int old_mt, int new_mt) 1799 { 1800 struct page *page; 1801 unsigned long pfn, end_pfn; 1802 unsigned int order; 1803 int pages_moved = 0; 1804 1805 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1806 end_pfn = pageblock_end_pfn(start_pfn); 1807 1808 for (pfn = start_pfn; pfn < end_pfn;) { 1809 page = pfn_to_page(pfn); 1810 if (!PageBuddy(page)) { 1811 pfn++; 1812 continue; 1813 } 1814 1815 /* Make sure we are not inadvertently changing nodes */ 1816 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1817 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1818 1819 order = buddy_order(page); 1820 1821 move_to_free_list(page, zone, order, old_mt, new_mt); 1822 1823 pfn += 1 << order; 1824 pages_moved += 1 << order; 1825 } 1826 1827 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1828 1829 return pages_moved; 1830 } 1831 1832 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1833 unsigned long *start_pfn, 1834 int *num_free, int *num_movable) 1835 { 1836 unsigned long pfn, start, end; 1837 1838 pfn = page_to_pfn(page); 1839 start = pageblock_start_pfn(pfn); 1840 end = pageblock_end_pfn(pfn); 1841 1842 /* 1843 * The caller only has the lock for @zone, don't touch ranges 1844 * that straddle into other zones. While we could move part of 1845 * the range that's inside the zone, this call is usually 1846 * accompanied by other operations such as migratetype updates 1847 * which also should be locked. 1848 */ 1849 if (!zone_spans_pfn(zone, start)) 1850 return false; 1851 if (!zone_spans_pfn(zone, end - 1)) 1852 return false; 1853 1854 *start_pfn = start; 1855 1856 if (num_free) { 1857 *num_free = 0; 1858 *num_movable = 0; 1859 for (pfn = start; pfn < end;) { 1860 page = pfn_to_page(pfn); 1861 if (PageBuddy(page)) { 1862 int nr = 1 << buddy_order(page); 1863 1864 *num_free += nr; 1865 pfn += nr; 1866 continue; 1867 } 1868 /* 1869 * We assume that pages that could be isolated for 1870 * migration are movable. But we don't actually try 1871 * isolating, as that would be expensive. 1872 */ 1873 if (PageLRU(page) || __PageMovable(page)) 1874 (*num_movable)++; 1875 pfn++; 1876 } 1877 } 1878 1879 return true; 1880 } 1881 1882 static int move_freepages_block(struct zone *zone, struct page *page, 1883 int old_mt, int new_mt) 1884 { 1885 unsigned long start_pfn; 1886 1887 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1888 return -1; 1889 1890 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1891 } 1892 1893 #ifdef CONFIG_MEMORY_ISOLATION 1894 /* Look for a buddy that straddles start_pfn */ 1895 static unsigned long find_large_buddy(unsigned long start_pfn) 1896 { 1897 int order = 0; 1898 struct page *page; 1899 unsigned long pfn = start_pfn; 1900 1901 while (!PageBuddy(page = pfn_to_page(pfn))) { 1902 /* Nothing found */ 1903 if (++order > MAX_PAGE_ORDER) 1904 return start_pfn; 1905 pfn &= ~0UL << order; 1906 } 1907 1908 /* 1909 * Found a preceding buddy, but does it straddle? 1910 */ 1911 if (pfn + (1 << buddy_order(page)) > start_pfn) 1912 return pfn; 1913 1914 /* Nothing found */ 1915 return start_pfn; 1916 } 1917 1918 /** 1919 * move_freepages_block_isolate - move free pages in block for page isolation 1920 * @zone: the zone 1921 * @page: the pageblock page 1922 * @migratetype: migratetype to set on the pageblock 1923 * 1924 * This is similar to move_freepages_block(), but handles the special 1925 * case encountered in page isolation, where the block of interest 1926 * might be part of a larger buddy spanning multiple pageblocks. 1927 * 1928 * Unlike the regular page allocator path, which moves pages while 1929 * stealing buddies off the freelist, page isolation is interested in 1930 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1931 * 1932 * This function handles that. Straddling buddies are split into 1933 * individual pageblocks. Only the block of interest is moved. 1934 * 1935 * Returns %true if pages could be moved, %false otherwise. 1936 */ 1937 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1938 int migratetype) 1939 { 1940 unsigned long start_pfn, pfn; 1941 1942 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1943 return false; 1944 1945 /* No splits needed if buddies can't span multiple blocks */ 1946 if (pageblock_order == MAX_PAGE_ORDER) 1947 goto move; 1948 1949 /* We're a tail block in a larger buddy */ 1950 pfn = find_large_buddy(start_pfn); 1951 if (pfn != start_pfn) { 1952 struct page *buddy = pfn_to_page(pfn); 1953 int order = buddy_order(buddy); 1954 1955 del_page_from_free_list(buddy, zone, order, 1956 get_pfnblock_migratetype(buddy, pfn)); 1957 set_pageblock_migratetype(page, migratetype); 1958 split_large_buddy(zone, buddy, pfn, order, FPI_NONE); 1959 return true; 1960 } 1961 1962 /* We're the starting block of a larger buddy */ 1963 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1964 int order = buddy_order(page); 1965 1966 del_page_from_free_list(page, zone, order, 1967 get_pfnblock_migratetype(page, pfn)); 1968 set_pageblock_migratetype(page, migratetype); 1969 split_large_buddy(zone, page, pfn, order, FPI_NONE); 1970 return true; 1971 } 1972 move: 1973 __move_freepages_block(zone, start_pfn, 1974 get_pfnblock_migratetype(page, start_pfn), 1975 migratetype); 1976 return true; 1977 } 1978 #endif /* CONFIG_MEMORY_ISOLATION */ 1979 1980 static void change_pageblock_range(struct page *pageblock_page, 1981 int start_order, int migratetype) 1982 { 1983 int nr_pageblocks = 1 << (start_order - pageblock_order); 1984 1985 while (nr_pageblocks--) { 1986 set_pageblock_migratetype(pageblock_page, migratetype); 1987 pageblock_page += pageblock_nr_pages; 1988 } 1989 } 1990 1991 static inline bool boost_watermark(struct zone *zone) 1992 { 1993 unsigned long max_boost; 1994 1995 if (!watermark_boost_factor) 1996 return false; 1997 /* 1998 * Don't bother in zones that are unlikely to produce results. 1999 * On small machines, including kdump capture kernels running 2000 * in a small area, boosting the watermark can cause an out of 2001 * memory situation immediately. 2002 */ 2003 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2004 return false; 2005 2006 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2007 watermark_boost_factor, 10000); 2008 2009 /* 2010 * high watermark may be uninitialised if fragmentation occurs 2011 * very early in boot so do not boost. We do not fall 2012 * through and boost by pageblock_nr_pages as failing 2013 * allocations that early means that reclaim is not going 2014 * to help and it may even be impossible to reclaim the 2015 * boosted watermark resulting in a hang. 2016 */ 2017 if (!max_boost) 2018 return false; 2019 2020 max_boost = max(pageblock_nr_pages, max_boost); 2021 2022 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2023 max_boost); 2024 2025 return true; 2026 } 2027 2028 /* 2029 * When we are falling back to another migratetype during allocation, should we 2030 * try to claim an entire block to satisfy further allocations, instead of 2031 * polluting multiple pageblocks? 2032 */ 2033 static bool should_try_claim_block(unsigned int order, int start_mt) 2034 { 2035 /* 2036 * Leaving this order check is intended, although there is 2037 * relaxed order check in next check. The reason is that 2038 * we can actually claim the whole pageblock if this condition met, 2039 * but, below check doesn't guarantee it and that is just heuristic 2040 * so could be changed anytime. 2041 */ 2042 if (order >= pageblock_order) 2043 return true; 2044 2045 /* 2046 * Above a certain threshold, always try to claim, as it's likely there 2047 * will be more free pages in the pageblock. 2048 */ 2049 if (order >= pageblock_order / 2) 2050 return true; 2051 2052 /* 2053 * Unmovable/reclaimable allocations would cause permanent 2054 * fragmentations if they fell back to allocating from a movable block 2055 * (polluting it), so we try to claim the whole block regardless of the 2056 * allocation size. Later movable allocations can always steal from this 2057 * block, which is less problematic. 2058 */ 2059 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) 2060 return true; 2061 2062 if (page_group_by_mobility_disabled) 2063 return true; 2064 2065 /* 2066 * Movable pages won't cause permanent fragmentation, so when you alloc 2067 * small pages, we just need to temporarily steal unmovable or 2068 * reclaimable pages that are closest to the request size. After a 2069 * while, memory compaction may occur to form large contiguous pages, 2070 * and the next movable allocation may not need to steal. 2071 */ 2072 return false; 2073 } 2074 2075 /* 2076 * Check whether there is a suitable fallback freepage with requested order. 2077 * Sets *claim_block to instruct the caller whether it should convert a whole 2078 * pageblock to the returned migratetype. 2079 * If only_claim is true, this function returns fallback_mt only if 2080 * we would do this whole-block claiming. This would help to reduce 2081 * fragmentation due to mixed migratetype pages in one pageblock. 2082 */ 2083 int find_suitable_fallback(struct free_area *area, unsigned int order, 2084 int migratetype, bool only_claim, bool *claim_block) 2085 { 2086 int i; 2087 int fallback_mt; 2088 2089 if (area->nr_free == 0) 2090 return -1; 2091 2092 *claim_block = false; 2093 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2094 fallback_mt = fallbacks[migratetype][i]; 2095 if (free_area_empty(area, fallback_mt)) 2096 continue; 2097 2098 if (should_try_claim_block(order, migratetype)) 2099 *claim_block = true; 2100 2101 if (*claim_block || !only_claim) 2102 return fallback_mt; 2103 } 2104 2105 return -1; 2106 } 2107 2108 /* 2109 * This function implements actual block claiming behaviour. If order is large 2110 * enough, we can claim the whole pageblock for the requested migratetype. If 2111 * not, we check the pageblock for constituent pages; if at least half of the 2112 * pages are free or compatible, we can still claim the whole block, so pages 2113 * freed in the future will be put on the correct free list. 2114 */ 2115 static struct page * 2116 try_to_claim_block(struct zone *zone, struct page *page, 2117 int current_order, int order, int start_type, 2118 int block_type, unsigned int alloc_flags) 2119 { 2120 int free_pages, movable_pages, alike_pages; 2121 unsigned long start_pfn; 2122 2123 /* Take ownership for orders >= pageblock_order */ 2124 if (current_order >= pageblock_order) { 2125 unsigned int nr_added; 2126 2127 del_page_from_free_list(page, zone, current_order, block_type); 2128 change_pageblock_range(page, current_order, start_type); 2129 nr_added = expand(zone, page, order, current_order, start_type); 2130 account_freepages(zone, nr_added, start_type); 2131 return page; 2132 } 2133 2134 /* 2135 * Boost watermarks to increase reclaim pressure to reduce the 2136 * likelihood of future fallbacks. Wake kswapd now as the node 2137 * may be balanced overall and kswapd will not wake naturally. 2138 */ 2139 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2140 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2141 2142 /* moving whole block can fail due to zone boundary conditions */ 2143 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2144 &movable_pages)) 2145 return NULL; 2146 2147 /* 2148 * Determine how many pages are compatible with our allocation. 2149 * For movable allocation, it's the number of movable pages which 2150 * we just obtained. For other types it's a bit more tricky. 2151 */ 2152 if (start_type == MIGRATE_MOVABLE) { 2153 alike_pages = movable_pages; 2154 } else { 2155 /* 2156 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2157 * to MOVABLE pageblock, consider all non-movable pages as 2158 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2159 * vice versa, be conservative since we can't distinguish the 2160 * exact migratetype of non-movable pages. 2161 */ 2162 if (block_type == MIGRATE_MOVABLE) 2163 alike_pages = pageblock_nr_pages 2164 - (free_pages + movable_pages); 2165 else 2166 alike_pages = 0; 2167 } 2168 /* 2169 * If a sufficient number of pages in the block are either free or of 2170 * compatible migratability as our allocation, claim the whole block. 2171 */ 2172 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2173 page_group_by_mobility_disabled) { 2174 __move_freepages_block(zone, start_pfn, block_type, start_type); 2175 return __rmqueue_smallest(zone, order, start_type); 2176 } 2177 2178 return NULL; 2179 } 2180 2181 /* 2182 * Try to allocate from some fallback migratetype by claiming the entire block, 2183 * i.e. converting it to the allocation's start migratetype. 2184 * 2185 * The use of signed ints for order and current_order is a deliberate 2186 * deviation from the rest of this file, to make the for loop 2187 * condition simpler. 2188 */ 2189 static __always_inline struct page * 2190 __rmqueue_claim(struct zone *zone, int order, int start_migratetype, 2191 unsigned int alloc_flags) 2192 { 2193 struct free_area *area; 2194 int current_order; 2195 int min_order = order; 2196 struct page *page; 2197 int fallback_mt; 2198 bool claim_block; 2199 2200 /* 2201 * Do not steal pages from freelists belonging to other pageblocks 2202 * i.e. orders < pageblock_order. If there are no local zones free, 2203 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2204 */ 2205 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2206 min_order = pageblock_order; 2207 2208 /* 2209 * Find the largest available free page in the other list. This roughly 2210 * approximates finding the pageblock with the most free pages, which 2211 * would be too costly to do exactly. 2212 */ 2213 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2214 --current_order) { 2215 area = &(zone->free_area[current_order]); 2216 fallback_mt = find_suitable_fallback(area, current_order, 2217 start_migratetype, false, &claim_block); 2218 if (fallback_mt == -1) 2219 continue; 2220 2221 if (!claim_block) 2222 break; 2223 2224 page = get_page_from_free_area(area, fallback_mt); 2225 page = try_to_claim_block(zone, page, current_order, order, 2226 start_migratetype, fallback_mt, 2227 alloc_flags); 2228 if (page) { 2229 trace_mm_page_alloc_extfrag(page, order, current_order, 2230 start_migratetype, fallback_mt); 2231 return page; 2232 } 2233 } 2234 2235 return NULL; 2236 } 2237 2238 /* 2239 * Try to steal a single page from some fallback migratetype. Leave the rest of 2240 * the block as its current migratetype, potentially causing fragmentation. 2241 */ 2242 static __always_inline struct page * 2243 __rmqueue_steal(struct zone *zone, int order, int start_migratetype) 2244 { 2245 struct free_area *area; 2246 int current_order; 2247 struct page *page; 2248 int fallback_mt; 2249 bool claim_block; 2250 2251 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2252 area = &(zone->free_area[current_order]); 2253 fallback_mt = find_suitable_fallback(area, current_order, 2254 start_migratetype, false, &claim_block); 2255 if (fallback_mt == -1) 2256 continue; 2257 2258 page = get_page_from_free_area(area, fallback_mt); 2259 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2260 trace_mm_page_alloc_extfrag(page, order, current_order, 2261 start_migratetype, fallback_mt); 2262 return page; 2263 } 2264 2265 return NULL; 2266 } 2267 2268 enum rmqueue_mode { 2269 RMQUEUE_NORMAL, 2270 RMQUEUE_CMA, 2271 RMQUEUE_CLAIM, 2272 RMQUEUE_STEAL, 2273 }; 2274 2275 /* 2276 * Do the hard work of removing an element from the buddy allocator. 2277 * Call me with the zone->lock already held. 2278 */ 2279 static __always_inline struct page * 2280 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2281 unsigned int alloc_flags, enum rmqueue_mode *mode) 2282 { 2283 struct page *page; 2284 2285 if (IS_ENABLED(CONFIG_CMA)) { 2286 /* 2287 * Balance movable allocations between regular and CMA areas by 2288 * allocating from CMA when over half of the zone's free memory 2289 * is in the CMA area. 2290 */ 2291 if (alloc_flags & ALLOC_CMA && 2292 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2293 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2294 page = __rmqueue_cma_fallback(zone, order); 2295 if (page) 2296 return page; 2297 } 2298 } 2299 2300 /* 2301 * First try the freelists of the requested migratetype, then try 2302 * fallbacks modes with increasing levels of fragmentation risk. 2303 * 2304 * The fallback logic is expensive and rmqueue_bulk() calls in 2305 * a loop with the zone->lock held, meaning the freelists are 2306 * not subject to any outside changes. Remember in *mode where 2307 * we found pay dirt, to save us the search on the next call. 2308 */ 2309 switch (*mode) { 2310 case RMQUEUE_NORMAL: 2311 page = __rmqueue_smallest(zone, order, migratetype); 2312 if (page) 2313 return page; 2314 fallthrough; 2315 case RMQUEUE_CMA: 2316 if (alloc_flags & ALLOC_CMA) { 2317 page = __rmqueue_cma_fallback(zone, order); 2318 if (page) { 2319 *mode = RMQUEUE_CMA; 2320 return page; 2321 } 2322 } 2323 fallthrough; 2324 case RMQUEUE_CLAIM: 2325 page = __rmqueue_claim(zone, order, migratetype, alloc_flags); 2326 if (page) { 2327 /* Replenished preferred freelist, back to normal mode. */ 2328 *mode = RMQUEUE_NORMAL; 2329 return page; 2330 } 2331 fallthrough; 2332 case RMQUEUE_STEAL: 2333 if (!(alloc_flags & ALLOC_NOFRAGMENT)) { 2334 page = __rmqueue_steal(zone, order, migratetype); 2335 if (page) { 2336 *mode = RMQUEUE_STEAL; 2337 return page; 2338 } 2339 } 2340 } 2341 return NULL; 2342 } 2343 2344 /* 2345 * Obtain a specified number of elements from the buddy allocator, all under 2346 * a single hold of the lock, for efficiency. Add them to the supplied list. 2347 * Returns the number of new pages which were placed at *list. 2348 */ 2349 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2350 unsigned long count, struct list_head *list, 2351 int migratetype, unsigned int alloc_flags) 2352 { 2353 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2354 unsigned long flags; 2355 int i; 2356 2357 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2358 if (!spin_trylock_irqsave(&zone->lock, flags)) 2359 return 0; 2360 } else { 2361 spin_lock_irqsave(&zone->lock, flags); 2362 } 2363 for (i = 0; i < count; ++i) { 2364 struct page *page = __rmqueue(zone, order, migratetype, 2365 alloc_flags, &rmqm); 2366 if (unlikely(page == NULL)) 2367 break; 2368 2369 /* 2370 * Split buddy pages returned by expand() are received here in 2371 * physical page order. The page is added to the tail of 2372 * caller's list. From the callers perspective, the linked list 2373 * is ordered by page number under some conditions. This is 2374 * useful for IO devices that can forward direction from the 2375 * head, thus also in the physical page order. This is useful 2376 * for IO devices that can merge IO requests if the physical 2377 * pages are ordered properly. 2378 */ 2379 list_add_tail(&page->pcp_list, list); 2380 } 2381 spin_unlock_irqrestore(&zone->lock, flags); 2382 2383 return i; 2384 } 2385 2386 /* 2387 * Called from the vmstat counter updater to decay the PCP high. 2388 * Return whether there are addition works to do. 2389 */ 2390 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2391 { 2392 int high_min, to_drain, batch; 2393 int todo = 0; 2394 2395 high_min = READ_ONCE(pcp->high_min); 2396 batch = READ_ONCE(pcp->batch); 2397 /* 2398 * Decrease pcp->high periodically to try to free possible 2399 * idle PCP pages. And, avoid to free too many pages to 2400 * control latency. This caps pcp->high decrement too. 2401 */ 2402 if (pcp->high > high_min) { 2403 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2404 pcp->high - (pcp->high >> 3), high_min); 2405 if (pcp->high > high_min) 2406 todo++; 2407 } 2408 2409 to_drain = pcp->count - pcp->high; 2410 if (to_drain > 0) { 2411 spin_lock(&pcp->lock); 2412 free_pcppages_bulk(zone, to_drain, pcp, 0); 2413 spin_unlock(&pcp->lock); 2414 todo++; 2415 } 2416 2417 return todo; 2418 } 2419 2420 #ifdef CONFIG_NUMA 2421 /* 2422 * Called from the vmstat counter updater to drain pagesets of this 2423 * currently executing processor on remote nodes after they have 2424 * expired. 2425 */ 2426 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2427 { 2428 int to_drain, batch; 2429 2430 batch = READ_ONCE(pcp->batch); 2431 to_drain = min(pcp->count, batch); 2432 if (to_drain > 0) { 2433 spin_lock(&pcp->lock); 2434 free_pcppages_bulk(zone, to_drain, pcp, 0); 2435 spin_unlock(&pcp->lock); 2436 } 2437 } 2438 #endif 2439 2440 /* 2441 * Drain pcplists of the indicated processor and zone. 2442 */ 2443 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2444 { 2445 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2446 int count; 2447 2448 do { 2449 spin_lock(&pcp->lock); 2450 count = pcp->count; 2451 if (count) { 2452 int to_drain = min(count, 2453 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2454 2455 free_pcppages_bulk(zone, to_drain, pcp, 0); 2456 count -= to_drain; 2457 } 2458 spin_unlock(&pcp->lock); 2459 } while (count); 2460 } 2461 2462 /* 2463 * Drain pcplists of all zones on the indicated processor. 2464 */ 2465 static void drain_pages(unsigned int cpu) 2466 { 2467 struct zone *zone; 2468 2469 for_each_populated_zone(zone) { 2470 drain_pages_zone(cpu, zone); 2471 } 2472 } 2473 2474 /* 2475 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2476 */ 2477 void drain_local_pages(struct zone *zone) 2478 { 2479 int cpu = smp_processor_id(); 2480 2481 if (zone) 2482 drain_pages_zone(cpu, zone); 2483 else 2484 drain_pages(cpu); 2485 } 2486 2487 /* 2488 * The implementation of drain_all_pages(), exposing an extra parameter to 2489 * drain on all cpus. 2490 * 2491 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2492 * not empty. The check for non-emptiness can however race with a free to 2493 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2494 * that need the guarantee that every CPU has drained can disable the 2495 * optimizing racy check. 2496 */ 2497 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2498 { 2499 int cpu; 2500 2501 /* 2502 * Allocate in the BSS so we won't require allocation in 2503 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2504 */ 2505 static cpumask_t cpus_with_pcps; 2506 2507 /* 2508 * Do not drain if one is already in progress unless it's specific to 2509 * a zone. Such callers are primarily CMA and memory hotplug and need 2510 * the drain to be complete when the call returns. 2511 */ 2512 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2513 if (!zone) 2514 return; 2515 mutex_lock(&pcpu_drain_mutex); 2516 } 2517 2518 /* 2519 * We don't care about racing with CPU hotplug event 2520 * as offline notification will cause the notified 2521 * cpu to drain that CPU pcps and on_each_cpu_mask 2522 * disables preemption as part of its processing 2523 */ 2524 for_each_online_cpu(cpu) { 2525 struct per_cpu_pages *pcp; 2526 struct zone *z; 2527 bool has_pcps = false; 2528 2529 if (force_all_cpus) { 2530 /* 2531 * The pcp.count check is racy, some callers need a 2532 * guarantee that no cpu is missed. 2533 */ 2534 has_pcps = true; 2535 } else if (zone) { 2536 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2537 if (pcp->count) 2538 has_pcps = true; 2539 } else { 2540 for_each_populated_zone(z) { 2541 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2542 if (pcp->count) { 2543 has_pcps = true; 2544 break; 2545 } 2546 } 2547 } 2548 2549 if (has_pcps) 2550 cpumask_set_cpu(cpu, &cpus_with_pcps); 2551 else 2552 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2553 } 2554 2555 for_each_cpu(cpu, &cpus_with_pcps) { 2556 if (zone) 2557 drain_pages_zone(cpu, zone); 2558 else 2559 drain_pages(cpu); 2560 } 2561 2562 mutex_unlock(&pcpu_drain_mutex); 2563 } 2564 2565 /* 2566 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2567 * 2568 * When zone parameter is non-NULL, spill just the single zone's pages. 2569 */ 2570 void drain_all_pages(struct zone *zone) 2571 { 2572 __drain_all_pages(zone, false); 2573 } 2574 2575 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2576 { 2577 int min_nr_free, max_nr_free; 2578 2579 /* Free as much as possible if batch freeing high-order pages. */ 2580 if (unlikely(free_high)) 2581 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2582 2583 /* Check for PCP disabled or boot pageset */ 2584 if (unlikely(high < batch)) 2585 return 1; 2586 2587 /* Leave at least pcp->batch pages on the list */ 2588 min_nr_free = batch; 2589 max_nr_free = high - batch; 2590 2591 /* 2592 * Increase the batch number to the number of the consecutive 2593 * freed pages to reduce zone lock contention. 2594 */ 2595 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2596 2597 return batch; 2598 } 2599 2600 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2601 int batch, bool free_high) 2602 { 2603 int high, high_min, high_max; 2604 2605 high_min = READ_ONCE(pcp->high_min); 2606 high_max = READ_ONCE(pcp->high_max); 2607 high = pcp->high = clamp(pcp->high, high_min, high_max); 2608 2609 if (unlikely(!high)) 2610 return 0; 2611 2612 if (unlikely(free_high)) { 2613 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2614 high_min); 2615 return 0; 2616 } 2617 2618 /* 2619 * If reclaim is active, limit the number of pages that can be 2620 * stored on pcp lists 2621 */ 2622 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2623 int free_count = max_t(int, pcp->free_count, batch); 2624 2625 pcp->high = max(high - free_count, high_min); 2626 return min(batch << 2, pcp->high); 2627 } 2628 2629 if (high_min == high_max) 2630 return high; 2631 2632 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2633 int free_count = max_t(int, pcp->free_count, batch); 2634 2635 pcp->high = max(high - free_count, high_min); 2636 high = max(pcp->count, high_min); 2637 } else if (pcp->count >= high) { 2638 int need_high = pcp->free_count + batch; 2639 2640 /* pcp->high should be large enough to hold batch freed pages */ 2641 if (pcp->high < need_high) 2642 pcp->high = clamp(need_high, high_min, high_max); 2643 } 2644 2645 return high; 2646 } 2647 2648 static void free_frozen_page_commit(struct zone *zone, 2649 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2650 unsigned int order, fpi_t fpi_flags) 2651 { 2652 int high, batch; 2653 int pindex; 2654 bool free_high = false; 2655 2656 /* 2657 * On freeing, reduce the number of pages that are batch allocated. 2658 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2659 * allocations. 2660 */ 2661 pcp->alloc_factor >>= 1; 2662 __count_vm_events(PGFREE, 1 << order); 2663 pindex = order_to_pindex(migratetype, order); 2664 list_add(&page->pcp_list, &pcp->lists[pindex]); 2665 pcp->count += 1 << order; 2666 2667 batch = READ_ONCE(pcp->batch); 2668 /* 2669 * As high-order pages other than THP's stored on PCP can contribute 2670 * to fragmentation, limit the number stored when PCP is heavily 2671 * freeing without allocation. The remainder after bulk freeing 2672 * stops will be drained from vmstat refresh context. 2673 */ 2674 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2675 free_high = (pcp->free_count >= batch && 2676 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2677 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2678 pcp->count >= READ_ONCE(batch))); 2679 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2680 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2681 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2682 } 2683 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2684 pcp->free_count += (1 << order); 2685 2686 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 2687 /* 2688 * Do not attempt to take a zone lock. Let pcp->count get 2689 * over high mark temporarily. 2690 */ 2691 return; 2692 } 2693 high = nr_pcp_high(pcp, zone, batch, free_high); 2694 if (pcp->count >= high) { 2695 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2696 pcp, pindex); 2697 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2698 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2699 ZONE_MOVABLE, 0)) 2700 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2701 } 2702 } 2703 2704 /* 2705 * Free a pcp page 2706 */ 2707 static void __free_frozen_pages(struct page *page, unsigned int order, 2708 fpi_t fpi_flags) 2709 { 2710 unsigned long __maybe_unused UP_flags; 2711 struct per_cpu_pages *pcp; 2712 struct zone *zone; 2713 unsigned long pfn = page_to_pfn(page); 2714 int migratetype; 2715 2716 if (!pcp_allowed_order(order)) { 2717 __free_pages_ok(page, order, fpi_flags); 2718 return; 2719 } 2720 2721 if (!free_pages_prepare(page, order)) 2722 return; 2723 2724 /* 2725 * We only track unmovable, reclaimable and movable on pcp lists. 2726 * Place ISOLATE pages on the isolated list because they are being 2727 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2728 * get those areas back if necessary. Otherwise, we may have to free 2729 * excessively into the page allocator 2730 */ 2731 zone = page_zone(page); 2732 migratetype = get_pfnblock_migratetype(page, pfn); 2733 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2734 if (unlikely(is_migrate_isolate(migratetype))) { 2735 free_one_page(zone, page, pfn, order, fpi_flags); 2736 return; 2737 } 2738 migratetype = MIGRATE_MOVABLE; 2739 } 2740 2741 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) 2742 && (in_nmi() || in_hardirq()))) { 2743 add_page_to_zone_llist(zone, page, order); 2744 return; 2745 } 2746 pcp_trylock_prepare(UP_flags); 2747 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2748 if (pcp) { 2749 free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags); 2750 pcp_spin_unlock(pcp); 2751 } else { 2752 free_one_page(zone, page, pfn, order, fpi_flags); 2753 } 2754 pcp_trylock_finish(UP_flags); 2755 } 2756 2757 void free_frozen_pages(struct page *page, unsigned int order) 2758 { 2759 __free_frozen_pages(page, order, FPI_NONE); 2760 } 2761 2762 /* 2763 * Free a batch of folios 2764 */ 2765 void free_unref_folios(struct folio_batch *folios) 2766 { 2767 unsigned long __maybe_unused UP_flags; 2768 struct per_cpu_pages *pcp = NULL; 2769 struct zone *locked_zone = NULL; 2770 int i, j; 2771 2772 /* Prepare folios for freeing */ 2773 for (i = 0, j = 0; i < folios->nr; i++) { 2774 struct folio *folio = folios->folios[i]; 2775 unsigned long pfn = folio_pfn(folio); 2776 unsigned int order = folio_order(folio); 2777 2778 if (!free_pages_prepare(&folio->page, order)) 2779 continue; 2780 /* 2781 * Free orders not handled on the PCP directly to the 2782 * allocator. 2783 */ 2784 if (!pcp_allowed_order(order)) { 2785 free_one_page(folio_zone(folio), &folio->page, 2786 pfn, order, FPI_NONE); 2787 continue; 2788 } 2789 folio->private = (void *)(unsigned long)order; 2790 if (j != i) 2791 folios->folios[j] = folio; 2792 j++; 2793 } 2794 folios->nr = j; 2795 2796 for (i = 0; i < folios->nr; i++) { 2797 struct folio *folio = folios->folios[i]; 2798 struct zone *zone = folio_zone(folio); 2799 unsigned long pfn = folio_pfn(folio); 2800 unsigned int order = (unsigned long)folio->private; 2801 int migratetype; 2802 2803 folio->private = NULL; 2804 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2805 2806 /* Different zone requires a different pcp lock */ 2807 if (zone != locked_zone || 2808 is_migrate_isolate(migratetype)) { 2809 if (pcp) { 2810 pcp_spin_unlock(pcp); 2811 pcp_trylock_finish(UP_flags); 2812 locked_zone = NULL; 2813 pcp = NULL; 2814 } 2815 2816 /* 2817 * Free isolated pages directly to the 2818 * allocator, see comment in free_frozen_pages. 2819 */ 2820 if (is_migrate_isolate(migratetype)) { 2821 free_one_page(zone, &folio->page, pfn, 2822 order, FPI_NONE); 2823 continue; 2824 } 2825 2826 /* 2827 * trylock is necessary as folios may be getting freed 2828 * from IRQ or SoftIRQ context after an IO completion. 2829 */ 2830 pcp_trylock_prepare(UP_flags); 2831 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2832 if (unlikely(!pcp)) { 2833 pcp_trylock_finish(UP_flags); 2834 free_one_page(zone, &folio->page, pfn, 2835 order, FPI_NONE); 2836 continue; 2837 } 2838 locked_zone = zone; 2839 } 2840 2841 /* 2842 * Non-isolated types over MIGRATE_PCPTYPES get added 2843 * to the MIGRATE_MOVABLE pcp list. 2844 */ 2845 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2846 migratetype = MIGRATE_MOVABLE; 2847 2848 trace_mm_page_free_batched(&folio->page); 2849 free_frozen_page_commit(zone, pcp, &folio->page, migratetype, 2850 order, FPI_NONE); 2851 } 2852 2853 if (pcp) { 2854 pcp_spin_unlock(pcp); 2855 pcp_trylock_finish(UP_flags); 2856 } 2857 folio_batch_reinit(folios); 2858 } 2859 2860 /* 2861 * split_page takes a non-compound higher-order page, and splits it into 2862 * n (1<<order) sub-pages: page[0..n] 2863 * Each sub-page must be freed individually. 2864 * 2865 * Note: this is probably too low level an operation for use in drivers. 2866 * Please consult with lkml before using this in your driver. 2867 */ 2868 void split_page(struct page *page, unsigned int order) 2869 { 2870 int i; 2871 2872 VM_BUG_ON_PAGE(PageCompound(page), page); 2873 VM_BUG_ON_PAGE(!page_count(page), page); 2874 2875 for (i = 1; i < (1 << order); i++) 2876 set_page_refcounted(page + i); 2877 split_page_owner(page, order, 0); 2878 pgalloc_tag_split(page_folio(page), order, 0); 2879 split_page_memcg(page, order); 2880 } 2881 EXPORT_SYMBOL_GPL(split_page); 2882 2883 int __isolate_free_page(struct page *page, unsigned int order) 2884 { 2885 struct zone *zone = page_zone(page); 2886 int mt = get_pageblock_migratetype(page); 2887 2888 if (!is_migrate_isolate(mt)) { 2889 unsigned long watermark; 2890 /* 2891 * Obey watermarks as if the page was being allocated. We can 2892 * emulate a high-order watermark check with a raised order-0 2893 * watermark, because we already know our high-order page 2894 * exists. 2895 */ 2896 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2897 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2898 return 0; 2899 } 2900 2901 del_page_from_free_list(page, zone, order, mt); 2902 2903 /* 2904 * Set the pageblock if the isolated page is at least half of a 2905 * pageblock 2906 */ 2907 if (order >= pageblock_order - 1) { 2908 struct page *endpage = page + (1 << order) - 1; 2909 for (; page < endpage; page += pageblock_nr_pages) { 2910 int mt = get_pageblock_migratetype(page); 2911 /* 2912 * Only change normal pageblocks (i.e., they can merge 2913 * with others) 2914 */ 2915 if (migratetype_is_mergeable(mt)) 2916 move_freepages_block(zone, page, mt, 2917 MIGRATE_MOVABLE); 2918 } 2919 } 2920 2921 return 1UL << order; 2922 } 2923 2924 /** 2925 * __putback_isolated_page - Return a now-isolated page back where we got it 2926 * @page: Page that was isolated 2927 * @order: Order of the isolated page 2928 * @mt: The page's pageblock's migratetype 2929 * 2930 * This function is meant to return a page pulled from the free lists via 2931 * __isolate_free_page back to the free lists they were pulled from. 2932 */ 2933 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2934 { 2935 struct zone *zone = page_zone(page); 2936 2937 /* zone lock should be held when this function is called */ 2938 lockdep_assert_held(&zone->lock); 2939 2940 /* Return isolated page to tail of freelist. */ 2941 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2942 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2943 } 2944 2945 /* 2946 * Update NUMA hit/miss statistics 2947 */ 2948 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2949 long nr_account) 2950 { 2951 #ifdef CONFIG_NUMA 2952 enum numa_stat_item local_stat = NUMA_LOCAL; 2953 2954 /* skip numa counters update if numa stats is disabled */ 2955 if (!static_branch_likely(&vm_numa_stat_key)) 2956 return; 2957 2958 if (zone_to_nid(z) != numa_node_id()) 2959 local_stat = NUMA_OTHER; 2960 2961 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2962 __count_numa_events(z, NUMA_HIT, nr_account); 2963 else { 2964 __count_numa_events(z, NUMA_MISS, nr_account); 2965 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2966 } 2967 __count_numa_events(z, local_stat, nr_account); 2968 #endif 2969 } 2970 2971 static __always_inline 2972 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2973 unsigned int order, unsigned int alloc_flags, 2974 int migratetype) 2975 { 2976 struct page *page; 2977 unsigned long flags; 2978 2979 do { 2980 page = NULL; 2981 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2982 if (!spin_trylock_irqsave(&zone->lock, flags)) 2983 return NULL; 2984 } else { 2985 spin_lock_irqsave(&zone->lock, flags); 2986 } 2987 if (alloc_flags & ALLOC_HIGHATOMIC) 2988 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2989 if (!page) { 2990 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2991 2992 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); 2993 2994 /* 2995 * If the allocation fails, allow OOM handling and 2996 * order-0 (atomic) allocs access to HIGHATOMIC 2997 * reserves as failing now is worse than failing a 2998 * high-order atomic allocation in the future. 2999 */ 3000 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 3001 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3002 3003 if (!page) { 3004 spin_unlock_irqrestore(&zone->lock, flags); 3005 return NULL; 3006 } 3007 } 3008 spin_unlock_irqrestore(&zone->lock, flags); 3009 } while (check_new_pages(page, order)); 3010 3011 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3012 zone_statistics(preferred_zone, zone, 1); 3013 3014 return page; 3015 } 3016 3017 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 3018 { 3019 int high, base_batch, batch, max_nr_alloc; 3020 int high_max, high_min; 3021 3022 base_batch = READ_ONCE(pcp->batch); 3023 high_min = READ_ONCE(pcp->high_min); 3024 high_max = READ_ONCE(pcp->high_max); 3025 high = pcp->high = clamp(pcp->high, high_min, high_max); 3026 3027 /* Check for PCP disabled or boot pageset */ 3028 if (unlikely(high < base_batch)) 3029 return 1; 3030 3031 if (order) 3032 batch = base_batch; 3033 else 3034 batch = (base_batch << pcp->alloc_factor); 3035 3036 /* 3037 * If we had larger pcp->high, we could avoid to allocate from 3038 * zone. 3039 */ 3040 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3041 high = pcp->high = min(high + batch, high_max); 3042 3043 if (!order) { 3044 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 3045 /* 3046 * Double the number of pages allocated each time there is 3047 * subsequent allocation of order-0 pages without any freeing. 3048 */ 3049 if (batch <= max_nr_alloc && 3050 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 3051 pcp->alloc_factor++; 3052 batch = min(batch, max_nr_alloc); 3053 } 3054 3055 /* 3056 * Scale batch relative to order if batch implies free pages 3057 * can be stored on the PCP. Batch can be 1 for small zones or 3058 * for boot pagesets which should never store free pages as 3059 * the pages may belong to arbitrary zones. 3060 */ 3061 if (batch > 1) 3062 batch = max(batch >> order, 2); 3063 3064 return batch; 3065 } 3066 3067 /* Remove page from the per-cpu list, caller must protect the list */ 3068 static inline 3069 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3070 int migratetype, 3071 unsigned int alloc_flags, 3072 struct per_cpu_pages *pcp, 3073 struct list_head *list) 3074 { 3075 struct page *page; 3076 3077 do { 3078 if (list_empty(list)) { 3079 int batch = nr_pcp_alloc(pcp, zone, order); 3080 int alloced; 3081 3082 alloced = rmqueue_bulk(zone, order, 3083 batch, list, 3084 migratetype, alloc_flags); 3085 3086 pcp->count += alloced << order; 3087 if (unlikely(list_empty(list))) 3088 return NULL; 3089 } 3090 3091 page = list_first_entry(list, struct page, pcp_list); 3092 list_del(&page->pcp_list); 3093 pcp->count -= 1 << order; 3094 } while (check_new_pages(page, order)); 3095 3096 return page; 3097 } 3098 3099 /* Lock and remove page from the per-cpu list */ 3100 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3101 struct zone *zone, unsigned int order, 3102 int migratetype, unsigned int alloc_flags) 3103 { 3104 struct per_cpu_pages *pcp; 3105 struct list_head *list; 3106 struct page *page; 3107 unsigned long __maybe_unused UP_flags; 3108 3109 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3110 pcp_trylock_prepare(UP_flags); 3111 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3112 if (!pcp) { 3113 pcp_trylock_finish(UP_flags); 3114 return NULL; 3115 } 3116 3117 /* 3118 * On allocation, reduce the number of pages that are batch freed. 3119 * See nr_pcp_free() where free_factor is increased for subsequent 3120 * frees. 3121 */ 3122 pcp->free_count >>= 1; 3123 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3124 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3125 pcp_spin_unlock(pcp); 3126 pcp_trylock_finish(UP_flags); 3127 if (page) { 3128 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3129 zone_statistics(preferred_zone, zone, 1); 3130 } 3131 return page; 3132 } 3133 3134 /* 3135 * Allocate a page from the given zone. 3136 * Use pcplists for THP or "cheap" high-order allocations. 3137 */ 3138 3139 /* 3140 * Do not instrument rmqueue() with KMSAN. This function may call 3141 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3142 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3143 * may call rmqueue() again, which will result in a deadlock. 3144 */ 3145 __no_sanitize_memory 3146 static inline 3147 struct page *rmqueue(struct zone *preferred_zone, 3148 struct zone *zone, unsigned int order, 3149 gfp_t gfp_flags, unsigned int alloc_flags, 3150 int migratetype) 3151 { 3152 struct page *page; 3153 3154 if (likely(pcp_allowed_order(order))) { 3155 page = rmqueue_pcplist(preferred_zone, zone, order, 3156 migratetype, alloc_flags); 3157 if (likely(page)) 3158 goto out; 3159 } 3160 3161 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3162 migratetype); 3163 3164 out: 3165 /* Separate test+clear to avoid unnecessary atomics */ 3166 if ((alloc_flags & ALLOC_KSWAPD) && 3167 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3168 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3169 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3170 } 3171 3172 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3173 return page; 3174 } 3175 3176 /* 3177 * Reserve the pageblock(s) surrounding an allocation request for 3178 * exclusive use of high-order atomic allocations if there are no 3179 * empty page blocks that contain a page with a suitable order 3180 */ 3181 static void reserve_highatomic_pageblock(struct page *page, int order, 3182 struct zone *zone) 3183 { 3184 int mt; 3185 unsigned long max_managed, flags; 3186 3187 /* 3188 * The number reserved as: minimum is 1 pageblock, maximum is 3189 * roughly 1% of a zone. But if 1% of a zone falls below a 3190 * pageblock size, then don't reserve any pageblocks. 3191 * Check is race-prone but harmless. 3192 */ 3193 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3194 return; 3195 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3196 if (zone->nr_reserved_highatomic >= max_managed) 3197 return; 3198 3199 spin_lock_irqsave(&zone->lock, flags); 3200 3201 /* Recheck the nr_reserved_highatomic limit under the lock */ 3202 if (zone->nr_reserved_highatomic >= max_managed) 3203 goto out_unlock; 3204 3205 /* Yoink! */ 3206 mt = get_pageblock_migratetype(page); 3207 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3208 if (!migratetype_is_mergeable(mt)) 3209 goto out_unlock; 3210 3211 if (order < pageblock_order) { 3212 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3213 goto out_unlock; 3214 zone->nr_reserved_highatomic += pageblock_nr_pages; 3215 } else { 3216 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3217 zone->nr_reserved_highatomic += 1 << order; 3218 } 3219 3220 out_unlock: 3221 spin_unlock_irqrestore(&zone->lock, flags); 3222 } 3223 3224 /* 3225 * Used when an allocation is about to fail under memory pressure. This 3226 * potentially hurts the reliability of high-order allocations when under 3227 * intense memory pressure but failed atomic allocations should be easier 3228 * to recover from than an OOM. 3229 * 3230 * If @force is true, try to unreserve pageblocks even though highatomic 3231 * pageblock is exhausted. 3232 */ 3233 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3234 bool force) 3235 { 3236 struct zonelist *zonelist = ac->zonelist; 3237 unsigned long flags; 3238 struct zoneref *z; 3239 struct zone *zone; 3240 struct page *page; 3241 int order; 3242 int ret; 3243 3244 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3245 ac->nodemask) { 3246 /* 3247 * Preserve at least one pageblock unless memory pressure 3248 * is really high. 3249 */ 3250 if (!force && zone->nr_reserved_highatomic <= 3251 pageblock_nr_pages) 3252 continue; 3253 3254 spin_lock_irqsave(&zone->lock, flags); 3255 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3256 struct free_area *area = &(zone->free_area[order]); 3257 unsigned long size; 3258 3259 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3260 if (!page) 3261 continue; 3262 3263 size = max(pageblock_nr_pages, 1UL << order); 3264 /* 3265 * It should never happen but changes to 3266 * locking could inadvertently allow a per-cpu 3267 * drain to add pages to MIGRATE_HIGHATOMIC 3268 * while unreserving so be safe and watch for 3269 * underflows. 3270 */ 3271 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3272 size = zone->nr_reserved_highatomic; 3273 zone->nr_reserved_highatomic -= size; 3274 3275 /* 3276 * Convert to ac->migratetype and avoid the normal 3277 * pageblock stealing heuristics. Minimally, the caller 3278 * is doing the work and needs the pages. More 3279 * importantly, if the block was always converted to 3280 * MIGRATE_UNMOVABLE or another type then the number 3281 * of pageblocks that cannot be completely freed 3282 * may increase. 3283 */ 3284 if (order < pageblock_order) 3285 ret = move_freepages_block(zone, page, 3286 MIGRATE_HIGHATOMIC, 3287 ac->migratetype); 3288 else { 3289 move_to_free_list(page, zone, order, 3290 MIGRATE_HIGHATOMIC, 3291 ac->migratetype); 3292 change_pageblock_range(page, order, 3293 ac->migratetype); 3294 ret = 1; 3295 } 3296 /* 3297 * Reserving the block(s) already succeeded, 3298 * so this should not fail on zone boundaries. 3299 */ 3300 WARN_ON_ONCE(ret == -1); 3301 if (ret > 0) { 3302 spin_unlock_irqrestore(&zone->lock, flags); 3303 return ret; 3304 } 3305 } 3306 spin_unlock_irqrestore(&zone->lock, flags); 3307 } 3308 3309 return false; 3310 } 3311 3312 static inline long __zone_watermark_unusable_free(struct zone *z, 3313 unsigned int order, unsigned int alloc_flags) 3314 { 3315 long unusable_free = (1 << order) - 1; 3316 3317 /* 3318 * If the caller does not have rights to reserves below the min 3319 * watermark then subtract the free pages reserved for highatomic. 3320 */ 3321 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3322 unusable_free += READ_ONCE(z->nr_free_highatomic); 3323 3324 #ifdef CONFIG_CMA 3325 /* If allocation can't use CMA areas don't use free CMA pages */ 3326 if (!(alloc_flags & ALLOC_CMA)) 3327 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3328 #endif 3329 3330 return unusable_free; 3331 } 3332 3333 /* 3334 * Return true if free base pages are above 'mark'. For high-order checks it 3335 * will return true of the order-0 watermark is reached and there is at least 3336 * one free page of a suitable size. Checking now avoids taking the zone lock 3337 * to check in the allocation paths if no pages are free. 3338 */ 3339 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3340 int highest_zoneidx, unsigned int alloc_flags, 3341 long free_pages) 3342 { 3343 long min = mark; 3344 int o; 3345 3346 /* free_pages may go negative - that's OK */ 3347 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3348 3349 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3350 /* 3351 * __GFP_HIGH allows access to 50% of the min reserve as well 3352 * as OOM. 3353 */ 3354 if (alloc_flags & ALLOC_MIN_RESERVE) { 3355 min -= min / 2; 3356 3357 /* 3358 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3359 * access more reserves than just __GFP_HIGH. Other 3360 * non-blocking allocations requests such as GFP_NOWAIT 3361 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3362 * access to the min reserve. 3363 */ 3364 if (alloc_flags & ALLOC_NON_BLOCK) 3365 min -= min / 4; 3366 } 3367 3368 /* 3369 * OOM victims can try even harder than the normal reserve 3370 * users on the grounds that it's definitely going to be in 3371 * the exit path shortly and free memory. Any allocation it 3372 * makes during the free path will be small and short-lived. 3373 */ 3374 if (alloc_flags & ALLOC_OOM) 3375 min -= min / 2; 3376 } 3377 3378 /* 3379 * Check watermarks for an order-0 allocation request. If these 3380 * are not met, then a high-order request also cannot go ahead 3381 * even if a suitable page happened to be free. 3382 */ 3383 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3384 return false; 3385 3386 /* If this is an order-0 request then the watermark is fine */ 3387 if (!order) 3388 return true; 3389 3390 /* For a high-order request, check at least one suitable page is free */ 3391 for (o = order; o < NR_PAGE_ORDERS; o++) { 3392 struct free_area *area = &z->free_area[o]; 3393 int mt; 3394 3395 if (!area->nr_free) 3396 continue; 3397 3398 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3399 if (!free_area_empty(area, mt)) 3400 return true; 3401 } 3402 3403 #ifdef CONFIG_CMA 3404 if ((alloc_flags & ALLOC_CMA) && 3405 !free_area_empty(area, MIGRATE_CMA)) { 3406 return true; 3407 } 3408 #endif 3409 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3410 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3411 return true; 3412 } 3413 } 3414 return false; 3415 } 3416 3417 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3418 int highest_zoneidx, unsigned int alloc_flags) 3419 { 3420 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3421 zone_page_state(z, NR_FREE_PAGES)); 3422 } 3423 3424 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3425 unsigned long mark, int highest_zoneidx, 3426 unsigned int alloc_flags, gfp_t gfp_mask) 3427 { 3428 long free_pages; 3429 3430 free_pages = zone_page_state(z, NR_FREE_PAGES); 3431 3432 /* 3433 * Fast check for order-0 only. If this fails then the reserves 3434 * need to be calculated. 3435 */ 3436 if (!order) { 3437 long usable_free; 3438 long reserved; 3439 3440 usable_free = free_pages; 3441 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3442 3443 /* reserved may over estimate high-atomic reserves. */ 3444 usable_free -= min(usable_free, reserved); 3445 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3446 return true; 3447 } 3448 3449 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3450 free_pages)) 3451 return true; 3452 3453 /* 3454 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3455 * when checking the min watermark. The min watermark is the 3456 * point where boosting is ignored so that kswapd is woken up 3457 * when below the low watermark. 3458 */ 3459 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3460 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3461 mark = z->_watermark[WMARK_MIN]; 3462 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3463 alloc_flags, free_pages); 3464 } 3465 3466 return false; 3467 } 3468 3469 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3470 unsigned long mark, int highest_zoneidx) 3471 { 3472 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3473 3474 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3475 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3476 3477 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3478 free_pages); 3479 } 3480 3481 #ifdef CONFIG_NUMA 3482 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3483 3484 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3485 { 3486 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3487 node_reclaim_distance; 3488 } 3489 #else /* CONFIG_NUMA */ 3490 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3491 { 3492 return true; 3493 } 3494 #endif /* CONFIG_NUMA */ 3495 3496 /* 3497 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3498 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3499 * premature use of a lower zone may cause lowmem pressure problems that 3500 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3501 * probably too small. It only makes sense to spread allocations to avoid 3502 * fragmentation between the Normal and DMA32 zones. 3503 */ 3504 static inline unsigned int 3505 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3506 { 3507 unsigned int alloc_flags; 3508 3509 /* 3510 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3511 * to save a branch. 3512 */ 3513 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3514 3515 if (defrag_mode) { 3516 alloc_flags |= ALLOC_NOFRAGMENT; 3517 return alloc_flags; 3518 } 3519 3520 #ifdef CONFIG_ZONE_DMA32 3521 if (!zone) 3522 return alloc_flags; 3523 3524 if (zone_idx(zone) != ZONE_NORMAL) 3525 return alloc_flags; 3526 3527 /* 3528 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3529 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3530 * on UMA that if Normal is populated then so is DMA32. 3531 */ 3532 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3533 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3534 return alloc_flags; 3535 3536 alloc_flags |= ALLOC_NOFRAGMENT; 3537 #endif /* CONFIG_ZONE_DMA32 */ 3538 return alloc_flags; 3539 } 3540 3541 /* Must be called after current_gfp_context() which can change gfp_mask */ 3542 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3543 unsigned int alloc_flags) 3544 { 3545 #ifdef CONFIG_CMA 3546 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3547 alloc_flags |= ALLOC_CMA; 3548 #endif 3549 return alloc_flags; 3550 } 3551 3552 /* 3553 * get_page_from_freelist goes through the zonelist trying to allocate 3554 * a page. 3555 */ 3556 static struct page * 3557 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3558 const struct alloc_context *ac) 3559 { 3560 struct zoneref *z; 3561 struct zone *zone; 3562 struct pglist_data *last_pgdat = NULL; 3563 bool last_pgdat_dirty_ok = false; 3564 bool no_fallback; 3565 3566 retry: 3567 /* 3568 * Scan zonelist, looking for a zone with enough free. 3569 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3570 */ 3571 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3572 z = ac->preferred_zoneref; 3573 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3574 ac->nodemask) { 3575 struct page *page; 3576 unsigned long mark; 3577 3578 if (cpusets_enabled() && 3579 (alloc_flags & ALLOC_CPUSET) && 3580 !__cpuset_zone_allowed(zone, gfp_mask)) 3581 continue; 3582 /* 3583 * When allocating a page cache page for writing, we 3584 * want to get it from a node that is within its dirty 3585 * limit, such that no single node holds more than its 3586 * proportional share of globally allowed dirty pages. 3587 * The dirty limits take into account the node's 3588 * lowmem reserves and high watermark so that kswapd 3589 * should be able to balance it without having to 3590 * write pages from its LRU list. 3591 * 3592 * XXX: For now, allow allocations to potentially 3593 * exceed the per-node dirty limit in the slowpath 3594 * (spread_dirty_pages unset) before going into reclaim, 3595 * which is important when on a NUMA setup the allowed 3596 * nodes are together not big enough to reach the 3597 * global limit. The proper fix for these situations 3598 * will require awareness of nodes in the 3599 * dirty-throttling and the flusher threads. 3600 */ 3601 if (ac->spread_dirty_pages) { 3602 if (last_pgdat != zone->zone_pgdat) { 3603 last_pgdat = zone->zone_pgdat; 3604 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3605 } 3606 3607 if (!last_pgdat_dirty_ok) 3608 continue; 3609 } 3610 3611 if (no_fallback && !defrag_mode && nr_online_nodes > 1 && 3612 zone != zonelist_zone(ac->preferred_zoneref)) { 3613 int local_nid; 3614 3615 /* 3616 * If moving to a remote node, retry but allow 3617 * fragmenting fallbacks. Locality is more important 3618 * than fragmentation avoidance. 3619 */ 3620 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3621 if (zone_to_nid(zone) != local_nid) { 3622 alloc_flags &= ~ALLOC_NOFRAGMENT; 3623 goto retry; 3624 } 3625 } 3626 3627 cond_accept_memory(zone, order); 3628 3629 /* 3630 * Detect whether the number of free pages is below high 3631 * watermark. If so, we will decrease pcp->high and free 3632 * PCP pages in free path to reduce the possibility of 3633 * premature page reclaiming. Detection is done here to 3634 * avoid to do that in hotter free path. 3635 */ 3636 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3637 goto check_alloc_wmark; 3638 3639 mark = high_wmark_pages(zone); 3640 if (zone_watermark_fast(zone, order, mark, 3641 ac->highest_zoneidx, alloc_flags, 3642 gfp_mask)) 3643 goto try_this_zone; 3644 else 3645 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3646 3647 check_alloc_wmark: 3648 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3649 if (!zone_watermark_fast(zone, order, mark, 3650 ac->highest_zoneidx, alloc_flags, 3651 gfp_mask)) { 3652 int ret; 3653 3654 if (cond_accept_memory(zone, order)) 3655 goto try_this_zone; 3656 3657 /* 3658 * Watermark failed for this zone, but see if we can 3659 * grow this zone if it contains deferred pages. 3660 */ 3661 if (deferred_pages_enabled()) { 3662 if (_deferred_grow_zone(zone, order)) 3663 goto try_this_zone; 3664 } 3665 /* Checked here to keep the fast path fast */ 3666 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3667 if (alloc_flags & ALLOC_NO_WATERMARKS) 3668 goto try_this_zone; 3669 3670 if (!node_reclaim_enabled() || 3671 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3672 continue; 3673 3674 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3675 switch (ret) { 3676 case NODE_RECLAIM_NOSCAN: 3677 /* did not scan */ 3678 continue; 3679 case NODE_RECLAIM_FULL: 3680 /* scanned but unreclaimable */ 3681 continue; 3682 default: 3683 /* did we reclaim enough */ 3684 if (zone_watermark_ok(zone, order, mark, 3685 ac->highest_zoneidx, alloc_flags)) 3686 goto try_this_zone; 3687 3688 continue; 3689 } 3690 } 3691 3692 try_this_zone: 3693 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3694 gfp_mask, alloc_flags, ac->migratetype); 3695 if (page) { 3696 prep_new_page(page, order, gfp_mask, alloc_flags); 3697 3698 /* 3699 * If this is a high-order atomic allocation then check 3700 * if the pageblock should be reserved for the future 3701 */ 3702 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3703 reserve_highatomic_pageblock(page, order, zone); 3704 3705 return page; 3706 } else { 3707 if (cond_accept_memory(zone, order)) 3708 goto try_this_zone; 3709 3710 /* Try again if zone has deferred pages */ 3711 if (deferred_pages_enabled()) { 3712 if (_deferred_grow_zone(zone, order)) 3713 goto try_this_zone; 3714 } 3715 } 3716 } 3717 3718 /* 3719 * It's possible on a UMA machine to get through all zones that are 3720 * fragmented. If avoiding fragmentation, reset and try again. 3721 */ 3722 if (no_fallback && !defrag_mode) { 3723 alloc_flags &= ~ALLOC_NOFRAGMENT; 3724 goto retry; 3725 } 3726 3727 return NULL; 3728 } 3729 3730 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3731 { 3732 unsigned int filter = SHOW_MEM_FILTER_NODES; 3733 3734 /* 3735 * This documents exceptions given to allocations in certain 3736 * contexts that are allowed to allocate outside current's set 3737 * of allowed nodes. 3738 */ 3739 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3740 if (tsk_is_oom_victim(current) || 3741 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3742 filter &= ~SHOW_MEM_FILTER_NODES; 3743 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3744 filter &= ~SHOW_MEM_FILTER_NODES; 3745 3746 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3747 } 3748 3749 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3750 { 3751 struct va_format vaf; 3752 va_list args; 3753 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3754 3755 if ((gfp_mask & __GFP_NOWARN) || 3756 !__ratelimit(&nopage_rs) || 3757 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3758 return; 3759 3760 va_start(args, fmt); 3761 vaf.fmt = fmt; 3762 vaf.va = &args; 3763 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3764 current->comm, &vaf, gfp_mask, &gfp_mask, 3765 nodemask_pr_args(nodemask)); 3766 va_end(args); 3767 3768 cpuset_print_current_mems_allowed(); 3769 pr_cont("\n"); 3770 dump_stack(); 3771 warn_alloc_show_mem(gfp_mask, nodemask); 3772 } 3773 3774 static inline struct page * 3775 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3776 unsigned int alloc_flags, 3777 const struct alloc_context *ac) 3778 { 3779 struct page *page; 3780 3781 page = get_page_from_freelist(gfp_mask, order, 3782 alloc_flags|ALLOC_CPUSET, ac); 3783 /* 3784 * fallback to ignore cpuset restriction if our nodes 3785 * are depleted 3786 */ 3787 if (!page) 3788 page = get_page_from_freelist(gfp_mask, order, 3789 alloc_flags, ac); 3790 return page; 3791 } 3792 3793 static inline struct page * 3794 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3795 const struct alloc_context *ac, unsigned long *did_some_progress) 3796 { 3797 struct oom_control oc = { 3798 .zonelist = ac->zonelist, 3799 .nodemask = ac->nodemask, 3800 .memcg = NULL, 3801 .gfp_mask = gfp_mask, 3802 .order = order, 3803 }; 3804 struct page *page; 3805 3806 *did_some_progress = 0; 3807 3808 /* 3809 * Acquire the oom lock. If that fails, somebody else is 3810 * making progress for us. 3811 */ 3812 if (!mutex_trylock(&oom_lock)) { 3813 *did_some_progress = 1; 3814 schedule_timeout_uninterruptible(1); 3815 return NULL; 3816 } 3817 3818 /* 3819 * Go through the zonelist yet one more time, keep very high watermark 3820 * here, this is only to catch a parallel oom killing, we must fail if 3821 * we're still under heavy pressure. But make sure that this reclaim 3822 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3823 * allocation which will never fail due to oom_lock already held. 3824 */ 3825 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3826 ~__GFP_DIRECT_RECLAIM, order, 3827 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3828 if (page) 3829 goto out; 3830 3831 /* Coredumps can quickly deplete all memory reserves */ 3832 if (current->flags & PF_DUMPCORE) 3833 goto out; 3834 /* The OOM killer will not help higher order allocs */ 3835 if (order > PAGE_ALLOC_COSTLY_ORDER) 3836 goto out; 3837 /* 3838 * We have already exhausted all our reclaim opportunities without any 3839 * success so it is time to admit defeat. We will skip the OOM killer 3840 * because it is very likely that the caller has a more reasonable 3841 * fallback than shooting a random task. 3842 * 3843 * The OOM killer may not free memory on a specific node. 3844 */ 3845 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3846 goto out; 3847 /* The OOM killer does not needlessly kill tasks for lowmem */ 3848 if (ac->highest_zoneidx < ZONE_NORMAL) 3849 goto out; 3850 if (pm_suspended_storage()) 3851 goto out; 3852 /* 3853 * XXX: GFP_NOFS allocations should rather fail than rely on 3854 * other request to make a forward progress. 3855 * We are in an unfortunate situation where out_of_memory cannot 3856 * do much for this context but let's try it to at least get 3857 * access to memory reserved if the current task is killed (see 3858 * out_of_memory). Once filesystems are ready to handle allocation 3859 * failures more gracefully we should just bail out here. 3860 */ 3861 3862 /* Exhausted what can be done so it's blame time */ 3863 if (out_of_memory(&oc) || 3864 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3865 *did_some_progress = 1; 3866 3867 /* 3868 * Help non-failing allocations by giving them access to memory 3869 * reserves 3870 */ 3871 if (gfp_mask & __GFP_NOFAIL) 3872 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3873 ALLOC_NO_WATERMARKS, ac); 3874 } 3875 out: 3876 mutex_unlock(&oom_lock); 3877 return page; 3878 } 3879 3880 /* 3881 * Maximum number of compaction retries with a progress before OOM 3882 * killer is consider as the only way to move forward. 3883 */ 3884 #define MAX_COMPACT_RETRIES 16 3885 3886 #ifdef CONFIG_COMPACTION 3887 /* Try memory compaction for high-order allocations before reclaim */ 3888 static struct page * 3889 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3890 unsigned int alloc_flags, const struct alloc_context *ac, 3891 enum compact_priority prio, enum compact_result *compact_result) 3892 { 3893 struct page *page = NULL; 3894 unsigned long pflags; 3895 unsigned int noreclaim_flag; 3896 3897 if (!order) 3898 return NULL; 3899 3900 psi_memstall_enter(&pflags); 3901 delayacct_compact_start(); 3902 noreclaim_flag = memalloc_noreclaim_save(); 3903 3904 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3905 prio, &page); 3906 3907 memalloc_noreclaim_restore(noreclaim_flag); 3908 psi_memstall_leave(&pflags); 3909 delayacct_compact_end(); 3910 3911 if (*compact_result == COMPACT_SKIPPED) 3912 return NULL; 3913 /* 3914 * At least in one zone compaction wasn't deferred or skipped, so let's 3915 * count a compaction stall 3916 */ 3917 count_vm_event(COMPACTSTALL); 3918 3919 /* Prep a captured page if available */ 3920 if (page) 3921 prep_new_page(page, order, gfp_mask, alloc_flags); 3922 3923 /* Try get a page from the freelist if available */ 3924 if (!page) 3925 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3926 3927 if (page) { 3928 struct zone *zone = page_zone(page); 3929 3930 zone->compact_blockskip_flush = false; 3931 compaction_defer_reset(zone, order, true); 3932 count_vm_event(COMPACTSUCCESS); 3933 return page; 3934 } 3935 3936 /* 3937 * It's bad if compaction run occurs and fails. The most likely reason 3938 * is that pages exist, but not enough to satisfy watermarks. 3939 */ 3940 count_vm_event(COMPACTFAIL); 3941 3942 cond_resched(); 3943 3944 return NULL; 3945 } 3946 3947 static inline bool 3948 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3949 enum compact_result compact_result, 3950 enum compact_priority *compact_priority, 3951 int *compaction_retries) 3952 { 3953 int max_retries = MAX_COMPACT_RETRIES; 3954 int min_priority; 3955 bool ret = false; 3956 int retries = *compaction_retries; 3957 enum compact_priority priority = *compact_priority; 3958 3959 if (!order) 3960 return false; 3961 3962 if (fatal_signal_pending(current)) 3963 return false; 3964 3965 /* 3966 * Compaction was skipped due to a lack of free order-0 3967 * migration targets. Continue if reclaim can help. 3968 */ 3969 if (compact_result == COMPACT_SKIPPED) { 3970 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3971 goto out; 3972 } 3973 3974 /* 3975 * Compaction managed to coalesce some page blocks, but the 3976 * allocation failed presumably due to a race. Retry some. 3977 */ 3978 if (compact_result == COMPACT_SUCCESS) { 3979 /* 3980 * !costly requests are much more important than 3981 * __GFP_RETRY_MAYFAIL costly ones because they are de 3982 * facto nofail and invoke OOM killer to move on while 3983 * costly can fail and users are ready to cope with 3984 * that. 1/4 retries is rather arbitrary but we would 3985 * need much more detailed feedback from compaction to 3986 * make a better decision. 3987 */ 3988 if (order > PAGE_ALLOC_COSTLY_ORDER) 3989 max_retries /= 4; 3990 3991 if (++(*compaction_retries) <= max_retries) { 3992 ret = true; 3993 goto out; 3994 } 3995 } 3996 3997 /* 3998 * Compaction failed. Retry with increasing priority. 3999 */ 4000 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4001 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4002 4003 if (*compact_priority > min_priority) { 4004 (*compact_priority)--; 4005 *compaction_retries = 0; 4006 ret = true; 4007 } 4008 out: 4009 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4010 return ret; 4011 } 4012 #else 4013 static inline struct page * 4014 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4015 unsigned int alloc_flags, const struct alloc_context *ac, 4016 enum compact_priority prio, enum compact_result *compact_result) 4017 { 4018 *compact_result = COMPACT_SKIPPED; 4019 return NULL; 4020 } 4021 4022 static inline bool 4023 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4024 enum compact_result compact_result, 4025 enum compact_priority *compact_priority, 4026 int *compaction_retries) 4027 { 4028 struct zone *zone; 4029 struct zoneref *z; 4030 4031 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4032 return false; 4033 4034 /* 4035 * There are setups with compaction disabled which would prefer to loop 4036 * inside the allocator rather than hit the oom killer prematurely. 4037 * Let's give them a good hope and keep retrying while the order-0 4038 * watermarks are OK. 4039 */ 4040 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4041 ac->highest_zoneidx, ac->nodemask) { 4042 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4043 ac->highest_zoneidx, alloc_flags)) 4044 return true; 4045 } 4046 return false; 4047 } 4048 #endif /* CONFIG_COMPACTION */ 4049 4050 #ifdef CONFIG_LOCKDEP 4051 static struct lockdep_map __fs_reclaim_map = 4052 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4053 4054 static bool __need_reclaim(gfp_t gfp_mask) 4055 { 4056 /* no reclaim without waiting on it */ 4057 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4058 return false; 4059 4060 /* this guy won't enter reclaim */ 4061 if (current->flags & PF_MEMALLOC) 4062 return false; 4063 4064 if (gfp_mask & __GFP_NOLOCKDEP) 4065 return false; 4066 4067 return true; 4068 } 4069 4070 void __fs_reclaim_acquire(unsigned long ip) 4071 { 4072 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4073 } 4074 4075 void __fs_reclaim_release(unsigned long ip) 4076 { 4077 lock_release(&__fs_reclaim_map, ip); 4078 } 4079 4080 void fs_reclaim_acquire(gfp_t gfp_mask) 4081 { 4082 gfp_mask = current_gfp_context(gfp_mask); 4083 4084 if (__need_reclaim(gfp_mask)) { 4085 if (gfp_mask & __GFP_FS) 4086 __fs_reclaim_acquire(_RET_IP_); 4087 4088 #ifdef CONFIG_MMU_NOTIFIER 4089 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4090 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4091 #endif 4092 4093 } 4094 } 4095 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4096 4097 void fs_reclaim_release(gfp_t gfp_mask) 4098 { 4099 gfp_mask = current_gfp_context(gfp_mask); 4100 4101 if (__need_reclaim(gfp_mask)) { 4102 if (gfp_mask & __GFP_FS) 4103 __fs_reclaim_release(_RET_IP_); 4104 } 4105 } 4106 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4107 #endif 4108 4109 /* 4110 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4111 * have been rebuilt so allocation retries. Reader side does not lock and 4112 * retries the allocation if zonelist changes. Writer side is protected by the 4113 * embedded spin_lock. 4114 */ 4115 static DEFINE_SEQLOCK(zonelist_update_seq); 4116 4117 static unsigned int zonelist_iter_begin(void) 4118 { 4119 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4120 return read_seqbegin(&zonelist_update_seq); 4121 4122 return 0; 4123 } 4124 4125 static unsigned int check_retry_zonelist(unsigned int seq) 4126 { 4127 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4128 return read_seqretry(&zonelist_update_seq, seq); 4129 4130 return seq; 4131 } 4132 4133 /* Perform direct synchronous page reclaim */ 4134 static unsigned long 4135 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4136 const struct alloc_context *ac) 4137 { 4138 unsigned int noreclaim_flag; 4139 unsigned long progress; 4140 4141 cond_resched(); 4142 4143 /* We now go into synchronous reclaim */ 4144 cpuset_memory_pressure_bump(); 4145 fs_reclaim_acquire(gfp_mask); 4146 noreclaim_flag = memalloc_noreclaim_save(); 4147 4148 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4149 ac->nodemask); 4150 4151 memalloc_noreclaim_restore(noreclaim_flag); 4152 fs_reclaim_release(gfp_mask); 4153 4154 cond_resched(); 4155 4156 return progress; 4157 } 4158 4159 /* The really slow allocator path where we enter direct reclaim */ 4160 static inline struct page * 4161 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4162 unsigned int alloc_flags, const struct alloc_context *ac, 4163 unsigned long *did_some_progress) 4164 { 4165 struct page *page = NULL; 4166 unsigned long pflags; 4167 bool drained = false; 4168 4169 psi_memstall_enter(&pflags); 4170 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4171 if (unlikely(!(*did_some_progress))) 4172 goto out; 4173 4174 retry: 4175 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4176 4177 /* 4178 * If an allocation failed after direct reclaim, it could be because 4179 * pages are pinned on the per-cpu lists or in high alloc reserves. 4180 * Shrink them and try again 4181 */ 4182 if (!page && !drained) { 4183 unreserve_highatomic_pageblock(ac, false); 4184 drain_all_pages(NULL); 4185 drained = true; 4186 goto retry; 4187 } 4188 out: 4189 psi_memstall_leave(&pflags); 4190 4191 return page; 4192 } 4193 4194 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4195 const struct alloc_context *ac) 4196 { 4197 struct zoneref *z; 4198 struct zone *zone; 4199 pg_data_t *last_pgdat = NULL; 4200 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4201 unsigned int reclaim_order; 4202 4203 if (defrag_mode) 4204 reclaim_order = max(order, pageblock_order); 4205 else 4206 reclaim_order = order; 4207 4208 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4209 ac->nodemask) { 4210 if (!managed_zone(zone)) 4211 continue; 4212 if (last_pgdat == zone->zone_pgdat) 4213 continue; 4214 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); 4215 last_pgdat = zone->zone_pgdat; 4216 } 4217 } 4218 4219 static inline unsigned int 4220 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4221 { 4222 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4223 4224 /* 4225 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4226 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4227 * to save two branches. 4228 */ 4229 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4230 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4231 4232 /* 4233 * The caller may dip into page reserves a bit more if the caller 4234 * cannot run direct reclaim, or if the caller has realtime scheduling 4235 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4236 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4237 */ 4238 alloc_flags |= (__force int) 4239 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4240 4241 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4242 /* 4243 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4244 * if it can't schedule. 4245 */ 4246 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4247 alloc_flags |= ALLOC_NON_BLOCK; 4248 4249 if (order > 0) 4250 alloc_flags |= ALLOC_HIGHATOMIC; 4251 } 4252 4253 /* 4254 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4255 * GFP_ATOMIC) rather than fail, see the comment for 4256 * cpuset_node_allowed(). 4257 */ 4258 if (alloc_flags & ALLOC_MIN_RESERVE) 4259 alloc_flags &= ~ALLOC_CPUSET; 4260 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4261 alloc_flags |= ALLOC_MIN_RESERVE; 4262 4263 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4264 4265 if (defrag_mode) 4266 alloc_flags |= ALLOC_NOFRAGMENT; 4267 4268 return alloc_flags; 4269 } 4270 4271 static bool oom_reserves_allowed(struct task_struct *tsk) 4272 { 4273 if (!tsk_is_oom_victim(tsk)) 4274 return false; 4275 4276 /* 4277 * !MMU doesn't have oom reaper so give access to memory reserves 4278 * only to the thread with TIF_MEMDIE set 4279 */ 4280 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4281 return false; 4282 4283 return true; 4284 } 4285 4286 /* 4287 * Distinguish requests which really need access to full memory 4288 * reserves from oom victims which can live with a portion of it 4289 */ 4290 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4291 { 4292 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4293 return 0; 4294 if (gfp_mask & __GFP_MEMALLOC) 4295 return ALLOC_NO_WATERMARKS; 4296 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4297 return ALLOC_NO_WATERMARKS; 4298 if (!in_interrupt()) { 4299 if (current->flags & PF_MEMALLOC) 4300 return ALLOC_NO_WATERMARKS; 4301 else if (oom_reserves_allowed(current)) 4302 return ALLOC_OOM; 4303 } 4304 4305 return 0; 4306 } 4307 4308 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4309 { 4310 return !!__gfp_pfmemalloc_flags(gfp_mask); 4311 } 4312 4313 /* 4314 * Checks whether it makes sense to retry the reclaim to make a forward progress 4315 * for the given allocation request. 4316 * 4317 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4318 * without success, or when we couldn't even meet the watermark if we 4319 * reclaimed all remaining pages on the LRU lists. 4320 * 4321 * Returns true if a retry is viable or false to enter the oom path. 4322 */ 4323 static inline bool 4324 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4325 struct alloc_context *ac, int alloc_flags, 4326 bool did_some_progress, int *no_progress_loops) 4327 { 4328 struct zone *zone; 4329 struct zoneref *z; 4330 bool ret = false; 4331 4332 /* 4333 * Costly allocations might have made a progress but this doesn't mean 4334 * their order will become available due to high fragmentation so 4335 * always increment the no progress counter for them 4336 */ 4337 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4338 *no_progress_loops = 0; 4339 else 4340 (*no_progress_loops)++; 4341 4342 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4343 goto out; 4344 4345 4346 /* 4347 * Keep reclaiming pages while there is a chance this will lead 4348 * somewhere. If none of the target zones can satisfy our allocation 4349 * request even if all reclaimable pages are considered then we are 4350 * screwed and have to go OOM. 4351 */ 4352 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4353 ac->highest_zoneidx, ac->nodemask) { 4354 unsigned long available; 4355 unsigned long reclaimable; 4356 unsigned long min_wmark = min_wmark_pages(zone); 4357 bool wmark; 4358 4359 if (cpusets_enabled() && 4360 (alloc_flags & ALLOC_CPUSET) && 4361 !__cpuset_zone_allowed(zone, gfp_mask)) 4362 continue; 4363 4364 available = reclaimable = zone_reclaimable_pages(zone); 4365 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4366 4367 /* 4368 * Would the allocation succeed if we reclaimed all 4369 * reclaimable pages? 4370 */ 4371 wmark = __zone_watermark_ok(zone, order, min_wmark, 4372 ac->highest_zoneidx, alloc_flags, available); 4373 trace_reclaim_retry_zone(z, order, reclaimable, 4374 available, min_wmark, *no_progress_loops, wmark); 4375 if (wmark) { 4376 ret = true; 4377 break; 4378 } 4379 } 4380 4381 /* 4382 * Memory allocation/reclaim might be called from a WQ context and the 4383 * current implementation of the WQ concurrency control doesn't 4384 * recognize that a particular WQ is congested if the worker thread is 4385 * looping without ever sleeping. Therefore we have to do a short sleep 4386 * here rather than calling cond_resched(). 4387 */ 4388 if (current->flags & PF_WQ_WORKER) 4389 schedule_timeout_uninterruptible(1); 4390 else 4391 cond_resched(); 4392 out: 4393 /* Before OOM, exhaust highatomic_reserve */ 4394 if (!ret) 4395 return unreserve_highatomic_pageblock(ac, true); 4396 4397 return ret; 4398 } 4399 4400 static inline bool 4401 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4402 { 4403 /* 4404 * It's possible that cpuset's mems_allowed and the nodemask from 4405 * mempolicy don't intersect. This should be normally dealt with by 4406 * policy_nodemask(), but it's possible to race with cpuset update in 4407 * such a way the check therein was true, and then it became false 4408 * before we got our cpuset_mems_cookie here. 4409 * This assumes that for all allocations, ac->nodemask can come only 4410 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4411 * when it does not intersect with the cpuset restrictions) or the 4412 * caller can deal with a violated nodemask. 4413 */ 4414 if (cpusets_enabled() && ac->nodemask && 4415 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4416 ac->nodemask = NULL; 4417 return true; 4418 } 4419 4420 /* 4421 * When updating a task's mems_allowed or mempolicy nodemask, it is 4422 * possible to race with parallel threads in such a way that our 4423 * allocation can fail while the mask is being updated. If we are about 4424 * to fail, check if the cpuset changed during allocation and if so, 4425 * retry. 4426 */ 4427 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4428 return true; 4429 4430 return false; 4431 } 4432 4433 static inline struct page * 4434 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4435 struct alloc_context *ac) 4436 { 4437 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4438 bool can_compact = gfp_compaction_allowed(gfp_mask); 4439 bool nofail = gfp_mask & __GFP_NOFAIL; 4440 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4441 struct page *page = NULL; 4442 unsigned int alloc_flags; 4443 unsigned long did_some_progress; 4444 enum compact_priority compact_priority; 4445 enum compact_result compact_result; 4446 int compaction_retries; 4447 int no_progress_loops; 4448 unsigned int cpuset_mems_cookie; 4449 unsigned int zonelist_iter_cookie; 4450 int reserve_flags; 4451 4452 if (unlikely(nofail)) { 4453 /* 4454 * We most definitely don't want callers attempting to 4455 * allocate greater than order-1 page units with __GFP_NOFAIL. 4456 */ 4457 WARN_ON_ONCE(order > 1); 4458 /* 4459 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4460 * otherwise, we may result in lockup. 4461 */ 4462 WARN_ON_ONCE(!can_direct_reclaim); 4463 /* 4464 * PF_MEMALLOC request from this context is rather bizarre 4465 * because we cannot reclaim anything and only can loop waiting 4466 * for somebody to do a work for us. 4467 */ 4468 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4469 } 4470 4471 restart: 4472 compaction_retries = 0; 4473 no_progress_loops = 0; 4474 compact_result = COMPACT_SKIPPED; 4475 compact_priority = DEF_COMPACT_PRIORITY; 4476 cpuset_mems_cookie = read_mems_allowed_begin(); 4477 zonelist_iter_cookie = zonelist_iter_begin(); 4478 4479 /* 4480 * The fast path uses conservative alloc_flags to succeed only until 4481 * kswapd needs to be woken up, and to avoid the cost of setting up 4482 * alloc_flags precisely. So we do that now. 4483 */ 4484 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4485 4486 /* 4487 * We need to recalculate the starting point for the zonelist iterator 4488 * because we might have used different nodemask in the fast path, or 4489 * there was a cpuset modification and we are retrying - otherwise we 4490 * could end up iterating over non-eligible zones endlessly. 4491 */ 4492 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4493 ac->highest_zoneidx, ac->nodemask); 4494 if (!zonelist_zone(ac->preferred_zoneref)) 4495 goto nopage; 4496 4497 /* 4498 * Check for insane configurations where the cpuset doesn't contain 4499 * any suitable zone to satisfy the request - e.g. non-movable 4500 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4501 */ 4502 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4503 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4504 ac->highest_zoneidx, 4505 &cpuset_current_mems_allowed); 4506 if (!zonelist_zone(z)) 4507 goto nopage; 4508 } 4509 4510 if (alloc_flags & ALLOC_KSWAPD) 4511 wake_all_kswapds(order, gfp_mask, ac); 4512 4513 /* 4514 * The adjusted alloc_flags might result in immediate success, so try 4515 * that first 4516 */ 4517 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4518 if (page) 4519 goto got_pg; 4520 4521 /* 4522 * For costly allocations, try direct compaction first, as it's likely 4523 * that we have enough base pages and don't need to reclaim. For non- 4524 * movable high-order allocations, do that as well, as compaction will 4525 * try prevent permanent fragmentation by migrating from blocks of the 4526 * same migratetype. 4527 * Don't try this for allocations that are allowed to ignore 4528 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4529 */ 4530 if (can_direct_reclaim && can_compact && 4531 (costly_order || 4532 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4533 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4534 page = __alloc_pages_direct_compact(gfp_mask, order, 4535 alloc_flags, ac, 4536 INIT_COMPACT_PRIORITY, 4537 &compact_result); 4538 if (page) 4539 goto got_pg; 4540 4541 /* 4542 * Checks for costly allocations with __GFP_NORETRY, which 4543 * includes some THP page fault allocations 4544 */ 4545 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4546 /* 4547 * If allocating entire pageblock(s) and compaction 4548 * failed because all zones are below low watermarks 4549 * or is prohibited because it recently failed at this 4550 * order, fail immediately unless the allocator has 4551 * requested compaction and reclaim retry. 4552 * 4553 * Reclaim is 4554 * - potentially very expensive because zones are far 4555 * below their low watermarks or this is part of very 4556 * bursty high order allocations, 4557 * - not guaranteed to help because isolate_freepages() 4558 * may not iterate over freed pages as part of its 4559 * linear scan, and 4560 * - unlikely to make entire pageblocks free on its 4561 * own. 4562 */ 4563 if (compact_result == COMPACT_SKIPPED || 4564 compact_result == COMPACT_DEFERRED) 4565 goto nopage; 4566 4567 /* 4568 * Looks like reclaim/compaction is worth trying, but 4569 * sync compaction could be very expensive, so keep 4570 * using async compaction. 4571 */ 4572 compact_priority = INIT_COMPACT_PRIORITY; 4573 } 4574 } 4575 4576 retry: 4577 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4578 if (alloc_flags & ALLOC_KSWAPD) 4579 wake_all_kswapds(order, gfp_mask, ac); 4580 4581 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4582 if (reserve_flags) 4583 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4584 (alloc_flags & ALLOC_KSWAPD); 4585 4586 /* 4587 * Reset the nodemask and zonelist iterators if memory policies can be 4588 * ignored. These allocations are high priority and system rather than 4589 * user oriented. 4590 */ 4591 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4592 ac->nodemask = NULL; 4593 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4594 ac->highest_zoneidx, ac->nodemask); 4595 } 4596 4597 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4598 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4599 if (page) 4600 goto got_pg; 4601 4602 /* Caller is not willing to reclaim, we can't balance anything */ 4603 if (!can_direct_reclaim) 4604 goto nopage; 4605 4606 /* Avoid recursion of direct reclaim */ 4607 if (current->flags & PF_MEMALLOC) 4608 goto nopage; 4609 4610 /* Try direct reclaim and then allocating */ 4611 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4612 &did_some_progress); 4613 if (page) 4614 goto got_pg; 4615 4616 /* Try direct compaction and then allocating */ 4617 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4618 compact_priority, &compact_result); 4619 if (page) 4620 goto got_pg; 4621 4622 /* Do not loop if specifically requested */ 4623 if (gfp_mask & __GFP_NORETRY) 4624 goto nopage; 4625 4626 /* 4627 * Do not retry costly high order allocations unless they are 4628 * __GFP_RETRY_MAYFAIL and we can compact 4629 */ 4630 if (costly_order && (!can_compact || 4631 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4632 goto nopage; 4633 4634 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4635 did_some_progress > 0, &no_progress_loops)) 4636 goto retry; 4637 4638 /* 4639 * It doesn't make any sense to retry for the compaction if the order-0 4640 * reclaim is not able to make any progress because the current 4641 * implementation of the compaction depends on the sufficient amount 4642 * of free memory (see __compaction_suitable) 4643 */ 4644 if (did_some_progress > 0 && can_compact && 4645 should_compact_retry(ac, order, alloc_flags, 4646 compact_result, &compact_priority, 4647 &compaction_retries)) 4648 goto retry; 4649 4650 /* Reclaim/compaction failed to prevent the fallback */ 4651 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { 4652 alloc_flags &= ~ALLOC_NOFRAGMENT; 4653 goto retry; 4654 } 4655 4656 /* 4657 * Deal with possible cpuset update races or zonelist updates to avoid 4658 * a unnecessary OOM kill. 4659 */ 4660 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4661 check_retry_zonelist(zonelist_iter_cookie)) 4662 goto restart; 4663 4664 /* Reclaim has failed us, start killing things */ 4665 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4666 if (page) 4667 goto got_pg; 4668 4669 /* Avoid allocations with no watermarks from looping endlessly */ 4670 if (tsk_is_oom_victim(current) && 4671 (alloc_flags & ALLOC_OOM || 4672 (gfp_mask & __GFP_NOMEMALLOC))) 4673 goto nopage; 4674 4675 /* Retry as long as the OOM killer is making progress */ 4676 if (did_some_progress) { 4677 no_progress_loops = 0; 4678 goto retry; 4679 } 4680 4681 nopage: 4682 /* 4683 * Deal with possible cpuset update races or zonelist updates to avoid 4684 * a unnecessary OOM kill. 4685 */ 4686 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4687 check_retry_zonelist(zonelist_iter_cookie)) 4688 goto restart; 4689 4690 /* 4691 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4692 * we always retry 4693 */ 4694 if (unlikely(nofail)) { 4695 /* 4696 * Lacking direct_reclaim we can't do anything to reclaim memory, 4697 * we disregard these unreasonable nofail requests and still 4698 * return NULL 4699 */ 4700 if (!can_direct_reclaim) 4701 goto fail; 4702 4703 /* 4704 * Help non-failing allocations by giving some access to memory 4705 * reserves normally used for high priority non-blocking 4706 * allocations but do not use ALLOC_NO_WATERMARKS because this 4707 * could deplete whole memory reserves which would just make 4708 * the situation worse. 4709 */ 4710 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4711 if (page) 4712 goto got_pg; 4713 4714 cond_resched(); 4715 goto retry; 4716 } 4717 fail: 4718 warn_alloc(gfp_mask, ac->nodemask, 4719 "page allocation failure: order:%u", order); 4720 got_pg: 4721 return page; 4722 } 4723 4724 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4725 int preferred_nid, nodemask_t *nodemask, 4726 struct alloc_context *ac, gfp_t *alloc_gfp, 4727 unsigned int *alloc_flags) 4728 { 4729 ac->highest_zoneidx = gfp_zone(gfp_mask); 4730 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4731 ac->nodemask = nodemask; 4732 ac->migratetype = gfp_migratetype(gfp_mask); 4733 4734 if (cpusets_enabled()) { 4735 *alloc_gfp |= __GFP_HARDWALL; 4736 /* 4737 * When we are in the interrupt context, it is irrelevant 4738 * to the current task context. It means that any node ok. 4739 */ 4740 if (in_task() && !ac->nodemask) 4741 ac->nodemask = &cpuset_current_mems_allowed; 4742 else 4743 *alloc_flags |= ALLOC_CPUSET; 4744 } 4745 4746 might_alloc(gfp_mask); 4747 4748 /* 4749 * Don't invoke should_fail logic, since it may call 4750 * get_random_u32() and printk() which need to spin_lock. 4751 */ 4752 if (!(*alloc_flags & ALLOC_TRYLOCK) && 4753 should_fail_alloc_page(gfp_mask, order)) 4754 return false; 4755 4756 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4757 4758 /* Dirty zone balancing only done in the fast path */ 4759 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4760 4761 /* 4762 * The preferred zone is used for statistics but crucially it is 4763 * also used as the starting point for the zonelist iterator. It 4764 * may get reset for allocations that ignore memory policies. 4765 */ 4766 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4767 ac->highest_zoneidx, ac->nodemask); 4768 4769 return true; 4770 } 4771 4772 /* 4773 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 4774 * @gfp: GFP flags for the allocation 4775 * @preferred_nid: The preferred NUMA node ID to allocate from 4776 * @nodemask: Set of nodes to allocate from, may be NULL 4777 * @nr_pages: The number of pages desired in the array 4778 * @page_array: Array to store the pages 4779 * 4780 * This is a batched version of the page allocator that attempts to 4781 * allocate nr_pages quickly. Pages are added to the page_array. 4782 * 4783 * Note that only NULL elements are populated with pages and nr_pages 4784 * is the maximum number of pages that will be stored in the array. 4785 * 4786 * Returns the number of pages in the array. 4787 */ 4788 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4789 nodemask_t *nodemask, int nr_pages, 4790 struct page **page_array) 4791 { 4792 struct page *page; 4793 unsigned long __maybe_unused UP_flags; 4794 struct zone *zone; 4795 struct zoneref *z; 4796 struct per_cpu_pages *pcp; 4797 struct list_head *pcp_list; 4798 struct alloc_context ac; 4799 gfp_t alloc_gfp; 4800 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4801 int nr_populated = 0, nr_account = 0; 4802 4803 /* 4804 * Skip populated array elements to determine if any pages need 4805 * to be allocated before disabling IRQs. 4806 */ 4807 while (nr_populated < nr_pages && page_array[nr_populated]) 4808 nr_populated++; 4809 4810 /* No pages requested? */ 4811 if (unlikely(nr_pages <= 0)) 4812 goto out; 4813 4814 /* Already populated array? */ 4815 if (unlikely(nr_pages - nr_populated == 0)) 4816 goto out; 4817 4818 /* Bulk allocator does not support memcg accounting. */ 4819 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4820 goto failed; 4821 4822 /* Use the single page allocator for one page. */ 4823 if (nr_pages - nr_populated == 1) 4824 goto failed; 4825 4826 #ifdef CONFIG_PAGE_OWNER 4827 /* 4828 * PAGE_OWNER may recurse into the allocator to allocate space to 4829 * save the stack with pagesets.lock held. Releasing/reacquiring 4830 * removes much of the performance benefit of bulk allocation so 4831 * force the caller to allocate one page at a time as it'll have 4832 * similar performance to added complexity to the bulk allocator. 4833 */ 4834 if (static_branch_unlikely(&page_owner_inited)) 4835 goto failed; 4836 #endif 4837 4838 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4839 gfp &= gfp_allowed_mask; 4840 alloc_gfp = gfp; 4841 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4842 goto out; 4843 gfp = alloc_gfp; 4844 4845 /* Find an allowed local zone that meets the low watermark. */ 4846 z = ac.preferred_zoneref; 4847 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 4848 unsigned long mark; 4849 4850 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4851 !__cpuset_zone_allowed(zone, gfp)) { 4852 continue; 4853 } 4854 4855 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 4856 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 4857 goto failed; 4858 } 4859 4860 cond_accept_memory(zone, 0); 4861 retry_this_zone: 4862 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4863 if (zone_watermark_fast(zone, 0, mark, 4864 zonelist_zone_idx(ac.preferred_zoneref), 4865 alloc_flags, gfp)) { 4866 break; 4867 } 4868 4869 if (cond_accept_memory(zone, 0)) 4870 goto retry_this_zone; 4871 4872 /* Try again if zone has deferred pages */ 4873 if (deferred_pages_enabled()) { 4874 if (_deferred_grow_zone(zone, 0)) 4875 goto retry_this_zone; 4876 } 4877 } 4878 4879 /* 4880 * If there are no allowed local zones that meets the watermarks then 4881 * try to allocate a single page and reclaim if necessary. 4882 */ 4883 if (unlikely(!zone)) 4884 goto failed; 4885 4886 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4887 pcp_trylock_prepare(UP_flags); 4888 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4889 if (!pcp) 4890 goto failed_irq; 4891 4892 /* Attempt the batch allocation */ 4893 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4894 while (nr_populated < nr_pages) { 4895 4896 /* Skip existing pages */ 4897 if (page_array[nr_populated]) { 4898 nr_populated++; 4899 continue; 4900 } 4901 4902 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4903 pcp, pcp_list); 4904 if (unlikely(!page)) { 4905 /* Try and allocate at least one page */ 4906 if (!nr_account) { 4907 pcp_spin_unlock(pcp); 4908 goto failed_irq; 4909 } 4910 break; 4911 } 4912 nr_account++; 4913 4914 prep_new_page(page, 0, gfp, 0); 4915 set_page_refcounted(page); 4916 page_array[nr_populated++] = page; 4917 } 4918 4919 pcp_spin_unlock(pcp); 4920 pcp_trylock_finish(UP_flags); 4921 4922 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4923 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 4924 4925 out: 4926 return nr_populated; 4927 4928 failed_irq: 4929 pcp_trylock_finish(UP_flags); 4930 4931 failed: 4932 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4933 if (page) 4934 page_array[nr_populated++] = page; 4935 goto out; 4936 } 4937 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4938 4939 /* 4940 * This is the 'heart' of the zoned buddy allocator. 4941 */ 4942 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 4943 int preferred_nid, nodemask_t *nodemask) 4944 { 4945 struct page *page; 4946 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4947 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4948 struct alloc_context ac = { }; 4949 4950 /* 4951 * There are several places where we assume that the order value is sane 4952 * so bail out early if the request is out of bound. 4953 */ 4954 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4955 return NULL; 4956 4957 gfp &= gfp_allowed_mask; 4958 /* 4959 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4960 * resp. GFP_NOIO which has to be inherited for all allocation requests 4961 * from a particular context which has been marked by 4962 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4963 * movable zones are not used during allocation. 4964 */ 4965 gfp = current_gfp_context(gfp); 4966 alloc_gfp = gfp; 4967 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4968 &alloc_gfp, &alloc_flags)) 4969 return NULL; 4970 4971 /* 4972 * Forbid the first pass from falling back to types that fragment 4973 * memory until all local zones are considered. 4974 */ 4975 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 4976 4977 /* First allocation attempt */ 4978 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4979 if (likely(page)) 4980 goto out; 4981 4982 alloc_gfp = gfp; 4983 ac.spread_dirty_pages = false; 4984 4985 /* 4986 * Restore the original nodemask if it was potentially replaced with 4987 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4988 */ 4989 ac.nodemask = nodemask; 4990 4991 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4992 4993 out: 4994 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4995 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4996 free_frozen_pages(page, order); 4997 page = NULL; 4998 } 4999 5000 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5001 kmsan_alloc_page(page, order, alloc_gfp); 5002 5003 return page; 5004 } 5005 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 5006 5007 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 5008 int preferred_nid, nodemask_t *nodemask) 5009 { 5010 struct page *page; 5011 5012 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 5013 if (page) 5014 set_page_refcounted(page); 5015 return page; 5016 } 5017 EXPORT_SYMBOL(__alloc_pages_noprof); 5018 5019 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 5020 nodemask_t *nodemask) 5021 { 5022 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 5023 preferred_nid, nodemask); 5024 return page_rmappable_folio(page); 5025 } 5026 EXPORT_SYMBOL(__folio_alloc_noprof); 5027 5028 /* 5029 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5030 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5031 * you need to access high mem. 5032 */ 5033 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 5034 { 5035 struct page *page; 5036 5037 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 5038 if (!page) 5039 return 0; 5040 return (unsigned long) page_address(page); 5041 } 5042 EXPORT_SYMBOL(get_free_pages_noprof); 5043 5044 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 5045 { 5046 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 5047 } 5048 EXPORT_SYMBOL(get_zeroed_page_noprof); 5049 5050 /** 5051 * ___free_pages - Free pages allocated with alloc_pages(). 5052 * @page: The page pointer returned from alloc_pages(). 5053 * @order: The order of the allocation. 5054 * @fpi_flags: Free Page Internal flags. 5055 * 5056 * This function can free multi-page allocations that are not compound 5057 * pages. It does not check that the @order passed in matches that of 5058 * the allocation, so it is easy to leak memory. Freeing more memory 5059 * than was allocated will probably emit a warning. 5060 * 5061 * If the last reference to this page is speculative, it will be released 5062 * by put_page() which only frees the first page of a non-compound 5063 * allocation. To prevent the remaining pages from being leaked, we free 5064 * the subsequent pages here. If you want to use the page's reference 5065 * count to decide when to free the allocation, you should allocate a 5066 * compound page, and use put_page() instead of __free_pages(). 5067 * 5068 * Context: May be called in interrupt context or while holding a normal 5069 * spinlock, but not in NMI context or while holding a raw spinlock. 5070 */ 5071 static void ___free_pages(struct page *page, unsigned int order, 5072 fpi_t fpi_flags) 5073 { 5074 /* get PageHead before we drop reference */ 5075 int head = PageHead(page); 5076 5077 if (put_page_testzero(page)) 5078 __free_frozen_pages(page, order, fpi_flags); 5079 else if (!head) { 5080 pgalloc_tag_sub_pages(page, (1 << order) - 1); 5081 while (order-- > 0) 5082 __free_frozen_pages(page + (1 << order), order, 5083 fpi_flags); 5084 } 5085 } 5086 void __free_pages(struct page *page, unsigned int order) 5087 { 5088 ___free_pages(page, order, FPI_NONE); 5089 } 5090 EXPORT_SYMBOL(__free_pages); 5091 5092 /* 5093 * Can be called while holding raw_spin_lock or from IRQ and NMI for any 5094 * page type (not only those that came from try_alloc_pages) 5095 */ 5096 void free_pages_nolock(struct page *page, unsigned int order) 5097 { 5098 ___free_pages(page, order, FPI_TRYLOCK); 5099 } 5100 5101 void free_pages(unsigned long addr, unsigned int order) 5102 { 5103 if (addr != 0) { 5104 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5105 __free_pages(virt_to_page((void *)addr), order); 5106 } 5107 } 5108 5109 EXPORT_SYMBOL(free_pages); 5110 5111 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5112 size_t size) 5113 { 5114 if (addr) { 5115 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5116 struct page *page = virt_to_page((void *)addr); 5117 struct page *last = page + nr; 5118 5119 split_page_owner(page, order, 0); 5120 pgalloc_tag_split(page_folio(page), order, 0); 5121 split_page_memcg(page, order); 5122 while (page < --last) 5123 set_page_refcounted(last); 5124 5125 last = page + (1UL << order); 5126 for (page += nr; page < last; page++) 5127 __free_pages_ok(page, 0, FPI_TO_TAIL); 5128 } 5129 return (void *)addr; 5130 } 5131 5132 /** 5133 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5134 * @size: the number of bytes to allocate 5135 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5136 * 5137 * This function is similar to alloc_pages(), except that it allocates the 5138 * minimum number of pages to satisfy the request. alloc_pages() can only 5139 * allocate memory in power-of-two pages. 5140 * 5141 * This function is also limited by MAX_PAGE_ORDER. 5142 * 5143 * Memory allocated by this function must be released by free_pages_exact(). 5144 * 5145 * Return: pointer to the allocated area or %NULL in case of error. 5146 */ 5147 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5148 { 5149 unsigned int order = get_order(size); 5150 unsigned long addr; 5151 5152 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5153 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5154 5155 addr = get_free_pages_noprof(gfp_mask, order); 5156 return make_alloc_exact(addr, order, size); 5157 } 5158 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5159 5160 /** 5161 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5162 * pages on a node. 5163 * @nid: the preferred node ID where memory should be allocated 5164 * @size: the number of bytes to allocate 5165 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5166 * 5167 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5168 * back. 5169 * 5170 * Return: pointer to the allocated area or %NULL in case of error. 5171 */ 5172 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5173 { 5174 unsigned int order = get_order(size); 5175 struct page *p; 5176 5177 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5178 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5179 5180 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5181 if (!p) 5182 return NULL; 5183 return make_alloc_exact((unsigned long)page_address(p), order, size); 5184 } 5185 5186 /** 5187 * free_pages_exact - release memory allocated via alloc_pages_exact() 5188 * @virt: the value returned by alloc_pages_exact. 5189 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5190 * 5191 * Release the memory allocated by a previous call to alloc_pages_exact. 5192 */ 5193 void free_pages_exact(void *virt, size_t size) 5194 { 5195 unsigned long addr = (unsigned long)virt; 5196 unsigned long end = addr + PAGE_ALIGN(size); 5197 5198 while (addr < end) { 5199 free_page(addr); 5200 addr += PAGE_SIZE; 5201 } 5202 } 5203 EXPORT_SYMBOL(free_pages_exact); 5204 5205 /** 5206 * nr_free_zone_pages - count number of pages beyond high watermark 5207 * @offset: The zone index of the highest zone 5208 * 5209 * nr_free_zone_pages() counts the number of pages which are beyond the 5210 * high watermark within all zones at or below a given zone index. For each 5211 * zone, the number of pages is calculated as: 5212 * 5213 * nr_free_zone_pages = managed_pages - high_pages 5214 * 5215 * Return: number of pages beyond high watermark. 5216 */ 5217 static unsigned long nr_free_zone_pages(int offset) 5218 { 5219 struct zoneref *z; 5220 struct zone *zone; 5221 5222 /* Just pick one node, since fallback list is circular */ 5223 unsigned long sum = 0; 5224 5225 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5226 5227 for_each_zone_zonelist(zone, z, zonelist, offset) { 5228 unsigned long size = zone_managed_pages(zone); 5229 unsigned long high = high_wmark_pages(zone); 5230 if (size > high) 5231 sum += size - high; 5232 } 5233 5234 return sum; 5235 } 5236 5237 /** 5238 * nr_free_buffer_pages - count number of pages beyond high watermark 5239 * 5240 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5241 * watermark within ZONE_DMA and ZONE_NORMAL. 5242 * 5243 * Return: number of pages beyond high watermark within ZONE_DMA and 5244 * ZONE_NORMAL. 5245 */ 5246 unsigned long nr_free_buffer_pages(void) 5247 { 5248 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5249 } 5250 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5251 5252 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5253 { 5254 zoneref->zone = zone; 5255 zoneref->zone_idx = zone_idx(zone); 5256 } 5257 5258 /* 5259 * Builds allocation fallback zone lists. 5260 * 5261 * Add all populated zones of a node to the zonelist. 5262 */ 5263 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5264 { 5265 struct zone *zone; 5266 enum zone_type zone_type = MAX_NR_ZONES; 5267 int nr_zones = 0; 5268 5269 do { 5270 zone_type--; 5271 zone = pgdat->node_zones + zone_type; 5272 if (populated_zone(zone)) { 5273 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5274 check_highest_zone(zone_type); 5275 } 5276 } while (zone_type); 5277 5278 return nr_zones; 5279 } 5280 5281 #ifdef CONFIG_NUMA 5282 5283 static int __parse_numa_zonelist_order(char *s) 5284 { 5285 /* 5286 * We used to support different zonelists modes but they turned 5287 * out to be just not useful. Let's keep the warning in place 5288 * if somebody still use the cmd line parameter so that we do 5289 * not fail it silently 5290 */ 5291 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5292 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5293 return -EINVAL; 5294 } 5295 return 0; 5296 } 5297 5298 static char numa_zonelist_order[] = "Node"; 5299 #define NUMA_ZONELIST_ORDER_LEN 16 5300 /* 5301 * sysctl handler for numa_zonelist_order 5302 */ 5303 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5304 void *buffer, size_t *length, loff_t *ppos) 5305 { 5306 if (write) 5307 return __parse_numa_zonelist_order(buffer); 5308 return proc_dostring(table, write, buffer, length, ppos); 5309 } 5310 5311 static int node_load[MAX_NUMNODES]; 5312 5313 /** 5314 * find_next_best_node - find the next node that should appear in a given node's fallback list 5315 * @node: node whose fallback list we're appending 5316 * @used_node_mask: nodemask_t of already used nodes 5317 * 5318 * We use a number of factors to determine which is the next node that should 5319 * appear on a given node's fallback list. The node should not have appeared 5320 * already in @node's fallback list, and it should be the next closest node 5321 * according to the distance array (which contains arbitrary distance values 5322 * from each node to each node in the system), and should also prefer nodes 5323 * with no CPUs, since presumably they'll have very little allocation pressure 5324 * on them otherwise. 5325 * 5326 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5327 */ 5328 int find_next_best_node(int node, nodemask_t *used_node_mask) 5329 { 5330 int n, val; 5331 int min_val = INT_MAX; 5332 int best_node = NUMA_NO_NODE; 5333 5334 /* 5335 * Use the local node if we haven't already, but for memoryless local 5336 * node, we should skip it and fall back to other nodes. 5337 */ 5338 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5339 node_set(node, *used_node_mask); 5340 return node; 5341 } 5342 5343 for_each_node_state(n, N_MEMORY) { 5344 5345 /* Don't want a node to appear more than once */ 5346 if (node_isset(n, *used_node_mask)) 5347 continue; 5348 5349 /* Use the distance array to find the distance */ 5350 val = node_distance(node, n); 5351 5352 /* Penalize nodes under us ("prefer the next node") */ 5353 val += (n < node); 5354 5355 /* Give preference to headless and unused nodes */ 5356 if (!cpumask_empty(cpumask_of_node(n))) 5357 val += PENALTY_FOR_NODE_WITH_CPUS; 5358 5359 /* Slight preference for less loaded node */ 5360 val *= MAX_NUMNODES; 5361 val += node_load[n]; 5362 5363 if (val < min_val) { 5364 min_val = val; 5365 best_node = n; 5366 } 5367 } 5368 5369 if (best_node >= 0) 5370 node_set(best_node, *used_node_mask); 5371 5372 return best_node; 5373 } 5374 5375 5376 /* 5377 * Build zonelists ordered by node and zones within node. 5378 * This results in maximum locality--normal zone overflows into local 5379 * DMA zone, if any--but risks exhausting DMA zone. 5380 */ 5381 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5382 unsigned nr_nodes) 5383 { 5384 struct zoneref *zonerefs; 5385 int i; 5386 5387 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5388 5389 for (i = 0; i < nr_nodes; i++) { 5390 int nr_zones; 5391 5392 pg_data_t *node = NODE_DATA(node_order[i]); 5393 5394 nr_zones = build_zonerefs_node(node, zonerefs); 5395 zonerefs += nr_zones; 5396 } 5397 zonerefs->zone = NULL; 5398 zonerefs->zone_idx = 0; 5399 } 5400 5401 /* 5402 * Build __GFP_THISNODE zonelists 5403 */ 5404 static void build_thisnode_zonelists(pg_data_t *pgdat) 5405 { 5406 struct zoneref *zonerefs; 5407 int nr_zones; 5408 5409 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5410 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5411 zonerefs += nr_zones; 5412 zonerefs->zone = NULL; 5413 zonerefs->zone_idx = 0; 5414 } 5415 5416 static void build_zonelists(pg_data_t *pgdat) 5417 { 5418 static int node_order[MAX_NUMNODES]; 5419 int node, nr_nodes = 0; 5420 nodemask_t used_mask = NODE_MASK_NONE; 5421 int local_node, prev_node; 5422 5423 /* NUMA-aware ordering of nodes */ 5424 local_node = pgdat->node_id; 5425 prev_node = local_node; 5426 5427 memset(node_order, 0, sizeof(node_order)); 5428 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5429 /* 5430 * We don't want to pressure a particular node. 5431 * So adding penalty to the first node in same 5432 * distance group to make it round-robin. 5433 */ 5434 if (node_distance(local_node, node) != 5435 node_distance(local_node, prev_node)) 5436 node_load[node] += 1; 5437 5438 node_order[nr_nodes++] = node; 5439 prev_node = node; 5440 } 5441 5442 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5443 build_thisnode_zonelists(pgdat); 5444 pr_info("Fallback order for Node %d: ", local_node); 5445 for (node = 0; node < nr_nodes; node++) 5446 pr_cont("%d ", node_order[node]); 5447 pr_cont("\n"); 5448 } 5449 5450 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5451 /* 5452 * Return node id of node used for "local" allocations. 5453 * I.e., first node id of first zone in arg node's generic zonelist. 5454 * Used for initializing percpu 'numa_mem', which is used primarily 5455 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5456 */ 5457 int local_memory_node(int node) 5458 { 5459 struct zoneref *z; 5460 5461 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5462 gfp_zone(GFP_KERNEL), 5463 NULL); 5464 return zonelist_node_idx(z); 5465 } 5466 #endif 5467 5468 static void setup_min_unmapped_ratio(void); 5469 static void setup_min_slab_ratio(void); 5470 #else /* CONFIG_NUMA */ 5471 5472 static void build_zonelists(pg_data_t *pgdat) 5473 { 5474 struct zoneref *zonerefs; 5475 int nr_zones; 5476 5477 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5478 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5479 zonerefs += nr_zones; 5480 5481 zonerefs->zone = NULL; 5482 zonerefs->zone_idx = 0; 5483 } 5484 5485 #endif /* CONFIG_NUMA */ 5486 5487 /* 5488 * Boot pageset table. One per cpu which is going to be used for all 5489 * zones and all nodes. The parameters will be set in such a way 5490 * that an item put on a list will immediately be handed over to 5491 * the buddy list. This is safe since pageset manipulation is done 5492 * with interrupts disabled. 5493 * 5494 * The boot_pagesets must be kept even after bootup is complete for 5495 * unused processors and/or zones. They do play a role for bootstrapping 5496 * hotplugged processors. 5497 * 5498 * zoneinfo_show() and maybe other functions do 5499 * not check if the processor is online before following the pageset pointer. 5500 * Other parts of the kernel may not check if the zone is available. 5501 */ 5502 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5503 /* These effectively disable the pcplists in the boot pageset completely */ 5504 #define BOOT_PAGESET_HIGH 0 5505 #define BOOT_PAGESET_BATCH 1 5506 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5507 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5508 5509 static void __build_all_zonelists(void *data) 5510 { 5511 int nid; 5512 int __maybe_unused cpu; 5513 pg_data_t *self = data; 5514 unsigned long flags; 5515 5516 /* 5517 * The zonelist_update_seq must be acquired with irqsave because the 5518 * reader can be invoked from IRQ with GFP_ATOMIC. 5519 */ 5520 write_seqlock_irqsave(&zonelist_update_seq, flags); 5521 /* 5522 * Also disable synchronous printk() to prevent any printk() from 5523 * trying to hold port->lock, for 5524 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5525 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5526 */ 5527 printk_deferred_enter(); 5528 5529 #ifdef CONFIG_NUMA 5530 memset(node_load, 0, sizeof(node_load)); 5531 #endif 5532 5533 /* 5534 * This node is hotadded and no memory is yet present. So just 5535 * building zonelists is fine - no need to touch other nodes. 5536 */ 5537 if (self && !node_online(self->node_id)) { 5538 build_zonelists(self); 5539 } else { 5540 /* 5541 * All possible nodes have pgdat preallocated 5542 * in free_area_init 5543 */ 5544 for_each_node(nid) { 5545 pg_data_t *pgdat = NODE_DATA(nid); 5546 5547 build_zonelists(pgdat); 5548 } 5549 5550 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5551 /* 5552 * We now know the "local memory node" for each node-- 5553 * i.e., the node of the first zone in the generic zonelist. 5554 * Set up numa_mem percpu variable for on-line cpus. During 5555 * boot, only the boot cpu should be on-line; we'll init the 5556 * secondary cpus' numa_mem as they come on-line. During 5557 * node/memory hotplug, we'll fixup all on-line cpus. 5558 */ 5559 for_each_online_cpu(cpu) 5560 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5561 #endif 5562 } 5563 5564 printk_deferred_exit(); 5565 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5566 } 5567 5568 static noinline void __init 5569 build_all_zonelists_init(void) 5570 { 5571 int cpu; 5572 5573 __build_all_zonelists(NULL); 5574 5575 /* 5576 * Initialize the boot_pagesets that are going to be used 5577 * for bootstrapping processors. The real pagesets for 5578 * each zone will be allocated later when the per cpu 5579 * allocator is available. 5580 * 5581 * boot_pagesets are used also for bootstrapping offline 5582 * cpus if the system is already booted because the pagesets 5583 * are needed to initialize allocators on a specific cpu too. 5584 * F.e. the percpu allocator needs the page allocator which 5585 * needs the percpu allocator in order to allocate its pagesets 5586 * (a chicken-egg dilemma). 5587 */ 5588 for_each_possible_cpu(cpu) 5589 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5590 5591 mminit_verify_zonelist(); 5592 cpuset_init_current_mems_allowed(); 5593 } 5594 5595 /* 5596 * unless system_state == SYSTEM_BOOTING. 5597 * 5598 * __ref due to call of __init annotated helper build_all_zonelists_init 5599 * [protected by SYSTEM_BOOTING]. 5600 */ 5601 void __ref build_all_zonelists(pg_data_t *pgdat) 5602 { 5603 unsigned long vm_total_pages; 5604 5605 if (system_state == SYSTEM_BOOTING) { 5606 build_all_zonelists_init(); 5607 } else { 5608 __build_all_zonelists(pgdat); 5609 /* cpuset refresh routine should be here */ 5610 } 5611 /* Get the number of free pages beyond high watermark in all zones. */ 5612 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5613 /* 5614 * Disable grouping by mobility if the number of pages in the 5615 * system is too low to allow the mechanism to work. It would be 5616 * more accurate, but expensive to check per-zone. This check is 5617 * made on memory-hotadd so a system can start with mobility 5618 * disabled and enable it later 5619 */ 5620 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5621 page_group_by_mobility_disabled = 1; 5622 else 5623 page_group_by_mobility_disabled = 0; 5624 5625 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5626 nr_online_nodes, 5627 str_off_on(page_group_by_mobility_disabled), 5628 vm_total_pages); 5629 #ifdef CONFIG_NUMA 5630 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5631 #endif 5632 } 5633 5634 static int zone_batchsize(struct zone *zone) 5635 { 5636 #ifdef CONFIG_MMU 5637 int batch; 5638 5639 /* 5640 * The number of pages to batch allocate is either ~0.1% 5641 * of the zone or 1MB, whichever is smaller. The batch 5642 * size is striking a balance between allocation latency 5643 * and zone lock contention. 5644 */ 5645 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5646 batch /= 4; /* We effectively *= 4 below */ 5647 if (batch < 1) 5648 batch = 1; 5649 5650 /* 5651 * Clamp the batch to a 2^n - 1 value. Having a power 5652 * of 2 value was found to be more likely to have 5653 * suboptimal cache aliasing properties in some cases. 5654 * 5655 * For example if 2 tasks are alternately allocating 5656 * batches of pages, one task can end up with a lot 5657 * of pages of one half of the possible page colors 5658 * and the other with pages of the other colors. 5659 */ 5660 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5661 5662 return batch; 5663 5664 #else 5665 /* The deferral and batching of frees should be suppressed under NOMMU 5666 * conditions. 5667 * 5668 * The problem is that NOMMU needs to be able to allocate large chunks 5669 * of contiguous memory as there's no hardware page translation to 5670 * assemble apparent contiguous memory from discontiguous pages. 5671 * 5672 * Queueing large contiguous runs of pages for batching, however, 5673 * causes the pages to actually be freed in smaller chunks. As there 5674 * can be a significant delay between the individual batches being 5675 * recycled, this leads to the once large chunks of space being 5676 * fragmented and becoming unavailable for high-order allocations. 5677 */ 5678 return 0; 5679 #endif 5680 } 5681 5682 static int percpu_pagelist_high_fraction; 5683 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5684 int high_fraction) 5685 { 5686 #ifdef CONFIG_MMU 5687 int high; 5688 int nr_split_cpus; 5689 unsigned long total_pages; 5690 5691 if (!high_fraction) { 5692 /* 5693 * By default, the high value of the pcp is based on the zone 5694 * low watermark so that if they are full then background 5695 * reclaim will not be started prematurely. 5696 */ 5697 total_pages = low_wmark_pages(zone); 5698 } else { 5699 /* 5700 * If percpu_pagelist_high_fraction is configured, the high 5701 * value is based on a fraction of the managed pages in the 5702 * zone. 5703 */ 5704 total_pages = zone_managed_pages(zone) / high_fraction; 5705 } 5706 5707 /* 5708 * Split the high value across all online CPUs local to the zone. Note 5709 * that early in boot that CPUs may not be online yet and that during 5710 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5711 * onlined. For memory nodes that have no CPUs, split the high value 5712 * across all online CPUs to mitigate the risk that reclaim is triggered 5713 * prematurely due to pages stored on pcp lists. 5714 */ 5715 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5716 if (!nr_split_cpus) 5717 nr_split_cpus = num_online_cpus(); 5718 high = total_pages / nr_split_cpus; 5719 5720 /* 5721 * Ensure high is at least batch*4. The multiple is based on the 5722 * historical relationship between high and batch. 5723 */ 5724 high = max(high, batch << 2); 5725 5726 return high; 5727 #else 5728 return 0; 5729 #endif 5730 } 5731 5732 /* 5733 * pcp->high and pcp->batch values are related and generally batch is lower 5734 * than high. They are also related to pcp->count such that count is lower 5735 * than high, and as soon as it reaches high, the pcplist is flushed. 5736 * 5737 * However, guaranteeing these relations at all times would require e.g. write 5738 * barriers here but also careful usage of read barriers at the read side, and 5739 * thus be prone to error and bad for performance. Thus the update only prevents 5740 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5741 * should ensure they can cope with those fields changing asynchronously, and 5742 * fully trust only the pcp->count field on the local CPU with interrupts 5743 * disabled. 5744 * 5745 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5746 * outside of boot time (or some other assurance that no concurrent updaters 5747 * exist). 5748 */ 5749 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5750 unsigned long high_max, unsigned long batch) 5751 { 5752 WRITE_ONCE(pcp->batch, batch); 5753 WRITE_ONCE(pcp->high_min, high_min); 5754 WRITE_ONCE(pcp->high_max, high_max); 5755 } 5756 5757 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5758 { 5759 int pindex; 5760 5761 memset(pcp, 0, sizeof(*pcp)); 5762 memset(pzstats, 0, sizeof(*pzstats)); 5763 5764 spin_lock_init(&pcp->lock); 5765 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5766 INIT_LIST_HEAD(&pcp->lists[pindex]); 5767 5768 /* 5769 * Set batch and high values safe for a boot pageset. A true percpu 5770 * pageset's initialization will update them subsequently. Here we don't 5771 * need to be as careful as pageset_update() as nobody can access the 5772 * pageset yet. 5773 */ 5774 pcp->high_min = BOOT_PAGESET_HIGH; 5775 pcp->high_max = BOOT_PAGESET_HIGH; 5776 pcp->batch = BOOT_PAGESET_BATCH; 5777 pcp->free_count = 0; 5778 } 5779 5780 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5781 unsigned long high_max, unsigned long batch) 5782 { 5783 struct per_cpu_pages *pcp; 5784 int cpu; 5785 5786 for_each_possible_cpu(cpu) { 5787 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5788 pageset_update(pcp, high_min, high_max, batch); 5789 } 5790 } 5791 5792 /* 5793 * Calculate and set new high and batch values for all per-cpu pagesets of a 5794 * zone based on the zone's size. 5795 */ 5796 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5797 { 5798 int new_high_min, new_high_max, new_batch; 5799 5800 new_batch = max(1, zone_batchsize(zone)); 5801 if (percpu_pagelist_high_fraction) { 5802 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5803 percpu_pagelist_high_fraction); 5804 /* 5805 * PCP high is tuned manually, disable auto-tuning via 5806 * setting high_min and high_max to the manual value. 5807 */ 5808 new_high_max = new_high_min; 5809 } else { 5810 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5811 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5812 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5813 } 5814 5815 if (zone->pageset_high_min == new_high_min && 5816 zone->pageset_high_max == new_high_max && 5817 zone->pageset_batch == new_batch) 5818 return; 5819 5820 zone->pageset_high_min = new_high_min; 5821 zone->pageset_high_max = new_high_max; 5822 zone->pageset_batch = new_batch; 5823 5824 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5825 new_batch); 5826 } 5827 5828 void __meminit setup_zone_pageset(struct zone *zone) 5829 { 5830 int cpu; 5831 5832 /* Size may be 0 on !SMP && !NUMA */ 5833 if (sizeof(struct per_cpu_zonestat) > 0) 5834 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5835 5836 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5837 for_each_possible_cpu(cpu) { 5838 struct per_cpu_pages *pcp; 5839 struct per_cpu_zonestat *pzstats; 5840 5841 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5842 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5843 per_cpu_pages_init(pcp, pzstats); 5844 } 5845 5846 zone_set_pageset_high_and_batch(zone, 0); 5847 } 5848 5849 /* 5850 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5851 * page high values need to be recalculated. 5852 */ 5853 static void zone_pcp_update(struct zone *zone, int cpu_online) 5854 { 5855 mutex_lock(&pcp_batch_high_lock); 5856 zone_set_pageset_high_and_batch(zone, cpu_online); 5857 mutex_unlock(&pcp_batch_high_lock); 5858 } 5859 5860 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5861 { 5862 struct per_cpu_pages *pcp; 5863 struct cpu_cacheinfo *cci; 5864 5865 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5866 cci = get_cpu_cacheinfo(cpu); 5867 /* 5868 * If data cache slice of CPU is large enough, "pcp->batch" 5869 * pages can be preserved in PCP before draining PCP for 5870 * consecutive high-order pages freeing without allocation. 5871 * This can reduce zone lock contention without hurting 5872 * cache-hot pages sharing. 5873 */ 5874 spin_lock(&pcp->lock); 5875 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5876 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5877 else 5878 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5879 spin_unlock(&pcp->lock); 5880 } 5881 5882 void setup_pcp_cacheinfo(unsigned int cpu) 5883 { 5884 struct zone *zone; 5885 5886 for_each_populated_zone(zone) 5887 zone_pcp_update_cacheinfo(zone, cpu); 5888 } 5889 5890 /* 5891 * Allocate per cpu pagesets and initialize them. 5892 * Before this call only boot pagesets were available. 5893 */ 5894 void __init setup_per_cpu_pageset(void) 5895 { 5896 struct pglist_data *pgdat; 5897 struct zone *zone; 5898 int __maybe_unused cpu; 5899 5900 for_each_populated_zone(zone) 5901 setup_zone_pageset(zone); 5902 5903 #ifdef CONFIG_NUMA 5904 /* 5905 * Unpopulated zones continue using the boot pagesets. 5906 * The numa stats for these pagesets need to be reset. 5907 * Otherwise, they will end up skewing the stats of 5908 * the nodes these zones are associated with. 5909 */ 5910 for_each_possible_cpu(cpu) { 5911 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5912 memset(pzstats->vm_numa_event, 0, 5913 sizeof(pzstats->vm_numa_event)); 5914 } 5915 #endif 5916 5917 for_each_online_pgdat(pgdat) 5918 pgdat->per_cpu_nodestats = 5919 alloc_percpu(struct per_cpu_nodestat); 5920 } 5921 5922 __meminit void zone_pcp_init(struct zone *zone) 5923 { 5924 /* 5925 * per cpu subsystem is not up at this point. The following code 5926 * relies on the ability of the linker to provide the 5927 * offset of a (static) per cpu variable into the per cpu area. 5928 */ 5929 zone->per_cpu_pageset = &boot_pageset; 5930 zone->per_cpu_zonestats = &boot_zonestats; 5931 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5932 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5933 zone->pageset_batch = BOOT_PAGESET_BATCH; 5934 5935 if (populated_zone(zone)) 5936 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5937 zone->present_pages, zone_batchsize(zone)); 5938 } 5939 5940 static void setup_per_zone_lowmem_reserve(void); 5941 5942 void adjust_managed_page_count(struct page *page, long count) 5943 { 5944 atomic_long_add(count, &page_zone(page)->managed_pages); 5945 totalram_pages_add(count); 5946 setup_per_zone_lowmem_reserve(); 5947 } 5948 EXPORT_SYMBOL(adjust_managed_page_count); 5949 5950 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5951 { 5952 void *pos; 5953 unsigned long pages = 0; 5954 5955 start = (void *)PAGE_ALIGN((unsigned long)start); 5956 end = (void *)((unsigned long)end & PAGE_MASK); 5957 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5958 struct page *page = virt_to_page(pos); 5959 void *direct_map_addr; 5960 5961 /* 5962 * 'direct_map_addr' might be different from 'pos' 5963 * because some architectures' virt_to_page() 5964 * work with aliases. Getting the direct map 5965 * address ensures that we get a _writeable_ 5966 * alias for the memset(). 5967 */ 5968 direct_map_addr = page_address(page); 5969 /* 5970 * Perform a kasan-unchecked memset() since this memory 5971 * has not been initialized. 5972 */ 5973 direct_map_addr = kasan_reset_tag(direct_map_addr); 5974 if ((unsigned int)poison <= 0xFF) 5975 memset(direct_map_addr, poison, PAGE_SIZE); 5976 5977 free_reserved_page(page); 5978 } 5979 5980 if (pages && s) 5981 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5982 5983 return pages; 5984 } 5985 5986 void free_reserved_page(struct page *page) 5987 { 5988 clear_page_tag_ref(page); 5989 ClearPageReserved(page); 5990 init_page_count(page); 5991 __free_page(page); 5992 adjust_managed_page_count(page, 1); 5993 } 5994 EXPORT_SYMBOL(free_reserved_page); 5995 5996 static int page_alloc_cpu_dead(unsigned int cpu) 5997 { 5998 struct zone *zone; 5999 6000 lru_add_drain_cpu(cpu); 6001 mlock_drain_remote(cpu); 6002 drain_pages(cpu); 6003 6004 /* 6005 * Spill the event counters of the dead processor 6006 * into the current processors event counters. 6007 * This artificially elevates the count of the current 6008 * processor. 6009 */ 6010 vm_events_fold_cpu(cpu); 6011 6012 /* 6013 * Zero the differential counters of the dead processor 6014 * so that the vm statistics are consistent. 6015 * 6016 * This is only okay since the processor is dead and cannot 6017 * race with what we are doing. 6018 */ 6019 cpu_vm_stats_fold(cpu); 6020 6021 for_each_populated_zone(zone) 6022 zone_pcp_update(zone, 0); 6023 6024 return 0; 6025 } 6026 6027 static int page_alloc_cpu_online(unsigned int cpu) 6028 { 6029 struct zone *zone; 6030 6031 for_each_populated_zone(zone) 6032 zone_pcp_update(zone, 1); 6033 return 0; 6034 } 6035 6036 void __init page_alloc_init_cpuhp(void) 6037 { 6038 int ret; 6039 6040 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6041 "mm/page_alloc:pcp", 6042 page_alloc_cpu_online, 6043 page_alloc_cpu_dead); 6044 WARN_ON(ret < 0); 6045 } 6046 6047 /* 6048 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6049 * or min_free_kbytes changes. 6050 */ 6051 static void calculate_totalreserve_pages(void) 6052 { 6053 struct pglist_data *pgdat; 6054 unsigned long reserve_pages = 0; 6055 enum zone_type i, j; 6056 6057 for_each_online_pgdat(pgdat) { 6058 6059 pgdat->totalreserve_pages = 0; 6060 6061 for (i = 0; i < MAX_NR_ZONES; i++) { 6062 struct zone *zone = pgdat->node_zones + i; 6063 long max = 0; 6064 unsigned long managed_pages = zone_managed_pages(zone); 6065 6066 /* Find valid and maximum lowmem_reserve in the zone */ 6067 for (j = i; j < MAX_NR_ZONES; j++) { 6068 if (zone->lowmem_reserve[j] > max) 6069 max = zone->lowmem_reserve[j]; 6070 } 6071 6072 /* we treat the high watermark as reserved pages. */ 6073 max += high_wmark_pages(zone); 6074 6075 if (max > managed_pages) 6076 max = managed_pages; 6077 6078 pgdat->totalreserve_pages += max; 6079 6080 reserve_pages += max; 6081 } 6082 } 6083 totalreserve_pages = reserve_pages; 6084 trace_mm_calculate_totalreserve_pages(totalreserve_pages); 6085 } 6086 6087 /* 6088 * setup_per_zone_lowmem_reserve - called whenever 6089 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6090 * has a correct pages reserved value, so an adequate number of 6091 * pages are left in the zone after a successful __alloc_pages(). 6092 */ 6093 static void setup_per_zone_lowmem_reserve(void) 6094 { 6095 struct pglist_data *pgdat; 6096 enum zone_type i, j; 6097 6098 for_each_online_pgdat(pgdat) { 6099 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6100 struct zone *zone = &pgdat->node_zones[i]; 6101 int ratio = sysctl_lowmem_reserve_ratio[i]; 6102 bool clear = !ratio || !zone_managed_pages(zone); 6103 unsigned long managed_pages = 0; 6104 6105 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6106 struct zone *upper_zone = &pgdat->node_zones[j]; 6107 6108 managed_pages += zone_managed_pages(upper_zone); 6109 6110 if (clear) 6111 zone->lowmem_reserve[j] = 0; 6112 else 6113 zone->lowmem_reserve[j] = managed_pages / ratio; 6114 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, 6115 zone->lowmem_reserve[j]); 6116 } 6117 } 6118 } 6119 6120 /* update totalreserve_pages */ 6121 calculate_totalreserve_pages(); 6122 } 6123 6124 static void __setup_per_zone_wmarks(void) 6125 { 6126 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6127 unsigned long lowmem_pages = 0; 6128 struct zone *zone; 6129 unsigned long flags; 6130 6131 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6132 for_each_zone(zone) { 6133 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6134 lowmem_pages += zone_managed_pages(zone); 6135 } 6136 6137 for_each_zone(zone) { 6138 u64 tmp; 6139 6140 spin_lock_irqsave(&zone->lock, flags); 6141 tmp = (u64)pages_min * zone_managed_pages(zone); 6142 tmp = div64_ul(tmp, lowmem_pages); 6143 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6144 /* 6145 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6146 * need highmem and movable zones pages, so cap pages_min 6147 * to a small value here. 6148 * 6149 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6150 * deltas control async page reclaim, and so should 6151 * not be capped for highmem and movable zones. 6152 */ 6153 unsigned long min_pages; 6154 6155 min_pages = zone_managed_pages(zone) / 1024; 6156 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6157 zone->_watermark[WMARK_MIN] = min_pages; 6158 } else { 6159 /* 6160 * If it's a lowmem zone, reserve a number of pages 6161 * proportionate to the zone's size. 6162 */ 6163 zone->_watermark[WMARK_MIN] = tmp; 6164 } 6165 6166 /* 6167 * Set the kswapd watermarks distance according to the 6168 * scale factor in proportion to available memory, but 6169 * ensure a minimum size on small systems. 6170 */ 6171 tmp = max_t(u64, tmp >> 2, 6172 mult_frac(zone_managed_pages(zone), 6173 watermark_scale_factor, 10000)); 6174 6175 zone->watermark_boost = 0; 6176 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6177 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6178 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6179 trace_mm_setup_per_zone_wmarks(zone); 6180 6181 spin_unlock_irqrestore(&zone->lock, flags); 6182 } 6183 6184 /* update totalreserve_pages */ 6185 calculate_totalreserve_pages(); 6186 } 6187 6188 /** 6189 * setup_per_zone_wmarks - called when min_free_kbytes changes 6190 * or when memory is hot-{added|removed} 6191 * 6192 * Ensures that the watermark[min,low,high] values for each zone are set 6193 * correctly with respect to min_free_kbytes. 6194 */ 6195 void setup_per_zone_wmarks(void) 6196 { 6197 struct zone *zone; 6198 static DEFINE_SPINLOCK(lock); 6199 6200 spin_lock(&lock); 6201 __setup_per_zone_wmarks(); 6202 spin_unlock(&lock); 6203 6204 /* 6205 * The watermark size have changed so update the pcpu batch 6206 * and high limits or the limits may be inappropriate. 6207 */ 6208 for_each_zone(zone) 6209 zone_pcp_update(zone, 0); 6210 } 6211 6212 /* 6213 * Initialise min_free_kbytes. 6214 * 6215 * For small machines we want it small (128k min). For large machines 6216 * we want it large (256MB max). But it is not linear, because network 6217 * bandwidth does not increase linearly with machine size. We use 6218 * 6219 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6220 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6221 * 6222 * which yields 6223 * 6224 * 16MB: 512k 6225 * 32MB: 724k 6226 * 64MB: 1024k 6227 * 128MB: 1448k 6228 * 256MB: 2048k 6229 * 512MB: 2896k 6230 * 1024MB: 4096k 6231 * 2048MB: 5792k 6232 * 4096MB: 8192k 6233 * 8192MB: 11584k 6234 * 16384MB: 16384k 6235 */ 6236 void calculate_min_free_kbytes(void) 6237 { 6238 unsigned long lowmem_kbytes; 6239 int new_min_free_kbytes; 6240 6241 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6242 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6243 6244 if (new_min_free_kbytes > user_min_free_kbytes) 6245 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6246 else 6247 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6248 new_min_free_kbytes, user_min_free_kbytes); 6249 6250 } 6251 6252 int __meminit init_per_zone_wmark_min(void) 6253 { 6254 calculate_min_free_kbytes(); 6255 setup_per_zone_wmarks(); 6256 refresh_zone_stat_thresholds(); 6257 setup_per_zone_lowmem_reserve(); 6258 6259 #ifdef CONFIG_NUMA 6260 setup_min_unmapped_ratio(); 6261 setup_min_slab_ratio(); 6262 #endif 6263 6264 khugepaged_min_free_kbytes_update(); 6265 6266 return 0; 6267 } 6268 postcore_initcall(init_per_zone_wmark_min) 6269 6270 /* 6271 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6272 * that we can call two helper functions whenever min_free_kbytes 6273 * changes. 6274 */ 6275 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6276 void *buffer, size_t *length, loff_t *ppos) 6277 { 6278 int rc; 6279 6280 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6281 if (rc) 6282 return rc; 6283 6284 if (write) { 6285 user_min_free_kbytes = min_free_kbytes; 6286 setup_per_zone_wmarks(); 6287 } 6288 return 0; 6289 } 6290 6291 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6292 void *buffer, size_t *length, loff_t *ppos) 6293 { 6294 int rc; 6295 6296 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6297 if (rc) 6298 return rc; 6299 6300 if (write) 6301 setup_per_zone_wmarks(); 6302 6303 return 0; 6304 } 6305 6306 #ifdef CONFIG_NUMA 6307 static void setup_min_unmapped_ratio(void) 6308 { 6309 pg_data_t *pgdat; 6310 struct zone *zone; 6311 6312 for_each_online_pgdat(pgdat) 6313 pgdat->min_unmapped_pages = 0; 6314 6315 for_each_zone(zone) 6316 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6317 sysctl_min_unmapped_ratio) / 100; 6318 } 6319 6320 6321 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6322 void *buffer, size_t *length, loff_t *ppos) 6323 { 6324 int rc; 6325 6326 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6327 if (rc) 6328 return rc; 6329 6330 setup_min_unmapped_ratio(); 6331 6332 return 0; 6333 } 6334 6335 static void setup_min_slab_ratio(void) 6336 { 6337 pg_data_t *pgdat; 6338 struct zone *zone; 6339 6340 for_each_online_pgdat(pgdat) 6341 pgdat->min_slab_pages = 0; 6342 6343 for_each_zone(zone) 6344 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6345 sysctl_min_slab_ratio) / 100; 6346 } 6347 6348 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6349 void *buffer, size_t *length, loff_t *ppos) 6350 { 6351 int rc; 6352 6353 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6354 if (rc) 6355 return rc; 6356 6357 setup_min_slab_ratio(); 6358 6359 return 0; 6360 } 6361 #endif 6362 6363 /* 6364 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6365 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6366 * whenever sysctl_lowmem_reserve_ratio changes. 6367 * 6368 * The reserve ratio obviously has absolutely no relation with the 6369 * minimum watermarks. The lowmem reserve ratio can only make sense 6370 * if in function of the boot time zone sizes. 6371 */ 6372 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6373 int write, void *buffer, size_t *length, loff_t *ppos) 6374 { 6375 int i; 6376 6377 proc_dointvec_minmax(table, write, buffer, length, ppos); 6378 6379 for (i = 0; i < MAX_NR_ZONES; i++) { 6380 if (sysctl_lowmem_reserve_ratio[i] < 1) 6381 sysctl_lowmem_reserve_ratio[i] = 0; 6382 } 6383 6384 setup_per_zone_lowmem_reserve(); 6385 return 0; 6386 } 6387 6388 /* 6389 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6390 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6391 * pagelist can have before it gets flushed back to buddy allocator. 6392 */ 6393 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6394 int write, void *buffer, size_t *length, loff_t *ppos) 6395 { 6396 struct zone *zone; 6397 int old_percpu_pagelist_high_fraction; 6398 int ret; 6399 6400 mutex_lock(&pcp_batch_high_lock); 6401 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6402 6403 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6404 if (!write || ret < 0) 6405 goto out; 6406 6407 /* Sanity checking to avoid pcp imbalance */ 6408 if (percpu_pagelist_high_fraction && 6409 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6410 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6411 ret = -EINVAL; 6412 goto out; 6413 } 6414 6415 /* No change? */ 6416 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6417 goto out; 6418 6419 for_each_populated_zone(zone) 6420 zone_set_pageset_high_and_batch(zone, 0); 6421 out: 6422 mutex_unlock(&pcp_batch_high_lock); 6423 return ret; 6424 } 6425 6426 static const struct ctl_table page_alloc_sysctl_table[] = { 6427 { 6428 .procname = "min_free_kbytes", 6429 .data = &min_free_kbytes, 6430 .maxlen = sizeof(min_free_kbytes), 6431 .mode = 0644, 6432 .proc_handler = min_free_kbytes_sysctl_handler, 6433 .extra1 = SYSCTL_ZERO, 6434 }, 6435 { 6436 .procname = "watermark_boost_factor", 6437 .data = &watermark_boost_factor, 6438 .maxlen = sizeof(watermark_boost_factor), 6439 .mode = 0644, 6440 .proc_handler = proc_dointvec_minmax, 6441 .extra1 = SYSCTL_ZERO, 6442 }, 6443 { 6444 .procname = "watermark_scale_factor", 6445 .data = &watermark_scale_factor, 6446 .maxlen = sizeof(watermark_scale_factor), 6447 .mode = 0644, 6448 .proc_handler = watermark_scale_factor_sysctl_handler, 6449 .extra1 = SYSCTL_ONE, 6450 .extra2 = SYSCTL_THREE_THOUSAND, 6451 }, 6452 { 6453 .procname = "defrag_mode", 6454 .data = &defrag_mode, 6455 .maxlen = sizeof(defrag_mode), 6456 .mode = 0644, 6457 .proc_handler = proc_dointvec_minmax, 6458 .extra1 = SYSCTL_ZERO, 6459 .extra2 = SYSCTL_ONE, 6460 }, 6461 { 6462 .procname = "percpu_pagelist_high_fraction", 6463 .data = &percpu_pagelist_high_fraction, 6464 .maxlen = sizeof(percpu_pagelist_high_fraction), 6465 .mode = 0644, 6466 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6467 .extra1 = SYSCTL_ZERO, 6468 }, 6469 { 6470 .procname = "lowmem_reserve_ratio", 6471 .data = &sysctl_lowmem_reserve_ratio, 6472 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6473 .mode = 0644, 6474 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6475 }, 6476 #ifdef CONFIG_NUMA 6477 { 6478 .procname = "numa_zonelist_order", 6479 .data = &numa_zonelist_order, 6480 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6481 .mode = 0644, 6482 .proc_handler = numa_zonelist_order_handler, 6483 }, 6484 { 6485 .procname = "min_unmapped_ratio", 6486 .data = &sysctl_min_unmapped_ratio, 6487 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6488 .mode = 0644, 6489 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6490 .extra1 = SYSCTL_ZERO, 6491 .extra2 = SYSCTL_ONE_HUNDRED, 6492 }, 6493 { 6494 .procname = "min_slab_ratio", 6495 .data = &sysctl_min_slab_ratio, 6496 .maxlen = sizeof(sysctl_min_slab_ratio), 6497 .mode = 0644, 6498 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6499 .extra1 = SYSCTL_ZERO, 6500 .extra2 = SYSCTL_ONE_HUNDRED, 6501 }, 6502 #endif 6503 }; 6504 6505 void __init page_alloc_sysctl_init(void) 6506 { 6507 register_sysctl_init("vm", page_alloc_sysctl_table); 6508 } 6509 6510 #ifdef CONFIG_CONTIG_ALLOC 6511 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6512 static void alloc_contig_dump_pages(struct list_head *page_list) 6513 { 6514 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6515 6516 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6517 struct page *page; 6518 6519 dump_stack(); 6520 list_for_each_entry(page, page_list, lru) 6521 dump_page(page, "migration failure"); 6522 } 6523 } 6524 6525 /* 6526 * [start, end) must belong to a single zone. 6527 * @migratetype: using migratetype to filter the type of migration in 6528 * trace_mm_alloc_contig_migrate_range_info. 6529 */ 6530 static int __alloc_contig_migrate_range(struct compact_control *cc, 6531 unsigned long start, unsigned long end, int migratetype) 6532 { 6533 /* This function is based on compact_zone() from compaction.c. */ 6534 unsigned int nr_reclaimed; 6535 unsigned long pfn = start; 6536 unsigned int tries = 0; 6537 int ret = 0; 6538 struct migration_target_control mtc = { 6539 .nid = zone_to_nid(cc->zone), 6540 .gfp_mask = cc->gfp_mask, 6541 .reason = MR_CONTIG_RANGE, 6542 }; 6543 struct page *page; 6544 unsigned long total_mapped = 0; 6545 unsigned long total_migrated = 0; 6546 unsigned long total_reclaimed = 0; 6547 6548 lru_cache_disable(); 6549 6550 while (pfn < end || !list_empty(&cc->migratepages)) { 6551 if (fatal_signal_pending(current)) { 6552 ret = -EINTR; 6553 break; 6554 } 6555 6556 if (list_empty(&cc->migratepages)) { 6557 cc->nr_migratepages = 0; 6558 ret = isolate_migratepages_range(cc, pfn, end); 6559 if (ret && ret != -EAGAIN) 6560 break; 6561 pfn = cc->migrate_pfn; 6562 tries = 0; 6563 } else if (++tries == 5) { 6564 ret = -EBUSY; 6565 break; 6566 } 6567 6568 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6569 &cc->migratepages); 6570 cc->nr_migratepages -= nr_reclaimed; 6571 6572 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6573 total_reclaimed += nr_reclaimed; 6574 list_for_each_entry(page, &cc->migratepages, lru) { 6575 struct folio *folio = page_folio(page); 6576 6577 total_mapped += folio_mapped(folio) * 6578 folio_nr_pages(folio); 6579 } 6580 } 6581 6582 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6583 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6584 6585 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6586 total_migrated += cc->nr_migratepages; 6587 6588 /* 6589 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6590 * to retry again over this error, so do the same here. 6591 */ 6592 if (ret == -ENOMEM) 6593 break; 6594 } 6595 6596 lru_cache_enable(); 6597 if (ret < 0) { 6598 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6599 alloc_contig_dump_pages(&cc->migratepages); 6600 putback_movable_pages(&cc->migratepages); 6601 } 6602 6603 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6604 total_migrated, 6605 total_reclaimed, 6606 total_mapped); 6607 return (ret < 0) ? ret : 0; 6608 } 6609 6610 static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6611 { 6612 int order; 6613 6614 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6615 struct page *page, *next; 6616 int nr_pages = 1 << order; 6617 6618 list_for_each_entry_safe(page, next, &list[order], lru) { 6619 int i; 6620 6621 post_alloc_hook(page, order, gfp_mask); 6622 set_page_refcounted(page); 6623 if (!order) 6624 continue; 6625 6626 split_page(page, order); 6627 6628 /* Add all subpages to the order-0 head, in sequence. */ 6629 list_del(&page->lru); 6630 for (i = 0; i < nr_pages; i++) 6631 list_add_tail(&page[i].lru, &list[0]); 6632 } 6633 } 6634 } 6635 6636 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6637 { 6638 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6639 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6640 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6641 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6642 6643 /* 6644 * We are given the range to allocate; node, mobility and placement 6645 * hints are irrelevant at this point. We'll simply ignore them. 6646 */ 6647 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6648 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6649 6650 /* 6651 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6652 * selected action flags. 6653 */ 6654 if (gfp_mask & ~(reclaim_mask | action_mask)) 6655 return -EINVAL; 6656 6657 /* 6658 * Flags to control page compaction/migration/reclaim, to free up our 6659 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6660 * for them. 6661 * 6662 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6663 * to not degrade callers. 6664 */ 6665 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6666 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6667 return 0; 6668 } 6669 6670 /** 6671 * alloc_contig_range() -- tries to allocate given range of pages 6672 * @start: start PFN to allocate 6673 * @end: one-past-the-last PFN to allocate 6674 * @migratetype: migratetype of the underlying pageblocks (either 6675 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6676 * in range must have the same migratetype and it must 6677 * be either of the two. 6678 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6679 * action and reclaim modifiers are supported. Reclaim modifiers 6680 * control allocation behavior during compaction/migration/reclaim. 6681 * 6682 * The PFN range does not have to be pageblock aligned. The PFN range must 6683 * belong to a single zone. 6684 * 6685 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6686 * pageblocks in the range. Once isolated, the pageblocks should not 6687 * be modified by others. 6688 * 6689 * Return: zero on success or negative error code. On success all 6690 * pages which PFN is in [start, end) are allocated for the caller and 6691 * need to be freed with free_contig_range(). 6692 */ 6693 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6694 unsigned migratetype, gfp_t gfp_mask) 6695 { 6696 unsigned long outer_start, outer_end; 6697 int ret = 0; 6698 6699 struct compact_control cc = { 6700 .nr_migratepages = 0, 6701 .order = -1, 6702 .zone = page_zone(pfn_to_page(start)), 6703 .mode = MIGRATE_SYNC, 6704 .ignore_skip_hint = true, 6705 .no_set_skip_hint = true, 6706 .alloc_contig = true, 6707 }; 6708 INIT_LIST_HEAD(&cc.migratepages); 6709 6710 gfp_mask = current_gfp_context(gfp_mask); 6711 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 6712 return -EINVAL; 6713 6714 /* 6715 * What we do here is we mark all pageblocks in range as 6716 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6717 * have different sizes, and due to the way page allocator 6718 * work, start_isolate_page_range() has special handlings for this. 6719 * 6720 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6721 * migrate the pages from an unaligned range (ie. pages that 6722 * we are interested in). This will put all the pages in 6723 * range back to page allocator as MIGRATE_ISOLATE. 6724 * 6725 * When this is done, we take the pages in range from page 6726 * allocator removing them from the buddy system. This way 6727 * page allocator will never consider using them. 6728 * 6729 * This lets us mark the pageblocks back as 6730 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6731 * aligned range but not in the unaligned, original range are 6732 * put back to page allocator so that buddy can use them. 6733 */ 6734 6735 ret = start_isolate_page_range(start, end, migratetype, 0); 6736 if (ret) 6737 goto done; 6738 6739 drain_all_pages(cc.zone); 6740 6741 /* 6742 * In case of -EBUSY, we'd like to know which page causes problem. 6743 * So, just fall through. test_pages_isolated() has a tracepoint 6744 * which will report the busy page. 6745 * 6746 * It is possible that busy pages could become available before 6747 * the call to test_pages_isolated, and the range will actually be 6748 * allocated. So, if we fall through be sure to clear ret so that 6749 * -EBUSY is not accidentally used or returned to caller. 6750 */ 6751 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6752 if (ret && ret != -EBUSY) 6753 goto done; 6754 6755 /* 6756 * When in-use hugetlb pages are migrated, they may simply be released 6757 * back into the free hugepage pool instead of being returned to the 6758 * buddy system. After the migration of in-use huge pages is completed, 6759 * we will invoke replace_free_hugepage_folios() to ensure that these 6760 * hugepages are properly released to the buddy system. 6761 */ 6762 ret = replace_free_hugepage_folios(start, end); 6763 if (ret) 6764 goto done; 6765 6766 /* 6767 * Pages from [start, end) are within a pageblock_nr_pages 6768 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6769 * more, all pages in [start, end) are free in page allocator. 6770 * What we are going to do is to allocate all pages from 6771 * [start, end) (that is remove them from page allocator). 6772 * 6773 * The only problem is that pages at the beginning and at the 6774 * end of interesting range may be not aligned with pages that 6775 * page allocator holds, ie. they can be part of higher order 6776 * pages. Because of this, we reserve the bigger range and 6777 * once this is done free the pages we are not interested in. 6778 * 6779 * We don't have to hold zone->lock here because the pages are 6780 * isolated thus they won't get removed from buddy. 6781 */ 6782 outer_start = find_large_buddy(start); 6783 6784 /* Make sure the range is really isolated. */ 6785 if (test_pages_isolated(outer_start, end, 0)) { 6786 ret = -EBUSY; 6787 goto done; 6788 } 6789 6790 /* Grab isolated pages from freelists. */ 6791 outer_end = isolate_freepages_range(&cc, outer_start, end); 6792 if (!outer_end) { 6793 ret = -EBUSY; 6794 goto done; 6795 } 6796 6797 if (!(gfp_mask & __GFP_COMP)) { 6798 split_free_pages(cc.freepages, gfp_mask); 6799 6800 /* Free head and tail (if any) */ 6801 if (start != outer_start) 6802 free_contig_range(outer_start, start - outer_start); 6803 if (end != outer_end) 6804 free_contig_range(end, outer_end - end); 6805 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6806 struct page *head = pfn_to_page(start); 6807 int order = ilog2(end - start); 6808 6809 check_new_pages(head, order); 6810 prep_new_page(head, order, gfp_mask, 0); 6811 set_page_refcounted(head); 6812 } else { 6813 ret = -EINVAL; 6814 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6815 start, end, outer_start, outer_end); 6816 } 6817 done: 6818 undo_isolate_page_range(start, end, migratetype); 6819 return ret; 6820 } 6821 EXPORT_SYMBOL(alloc_contig_range_noprof); 6822 6823 static int __alloc_contig_pages(unsigned long start_pfn, 6824 unsigned long nr_pages, gfp_t gfp_mask) 6825 { 6826 unsigned long end_pfn = start_pfn + nr_pages; 6827 6828 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6829 gfp_mask); 6830 } 6831 6832 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6833 unsigned long nr_pages) 6834 { 6835 unsigned long i, end_pfn = start_pfn + nr_pages; 6836 struct page *page; 6837 6838 for (i = start_pfn; i < end_pfn; i++) { 6839 page = pfn_to_online_page(i); 6840 if (!page) 6841 return false; 6842 6843 if (page_zone(page) != z) 6844 return false; 6845 6846 if (PageReserved(page)) 6847 return false; 6848 6849 if (PageHuge(page)) 6850 return false; 6851 } 6852 return true; 6853 } 6854 6855 static bool zone_spans_last_pfn(const struct zone *zone, 6856 unsigned long start_pfn, unsigned long nr_pages) 6857 { 6858 unsigned long last_pfn = start_pfn + nr_pages - 1; 6859 6860 return zone_spans_pfn(zone, last_pfn); 6861 } 6862 6863 /** 6864 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6865 * @nr_pages: Number of contiguous pages to allocate 6866 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 6867 * action and reclaim modifiers are supported. Reclaim modifiers 6868 * control allocation behavior during compaction/migration/reclaim. 6869 * @nid: Target node 6870 * @nodemask: Mask for other possible nodes 6871 * 6872 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6873 * on an applicable zonelist to find a contiguous pfn range which can then be 6874 * tried for allocation with alloc_contig_range(). This routine is intended 6875 * for allocation requests which can not be fulfilled with the buddy allocator. 6876 * 6877 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6878 * power of two, then allocated range is also guaranteed to be aligned to same 6879 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6880 * 6881 * Allocated pages can be freed with free_contig_range() or by manually calling 6882 * __free_page() on each allocated page. 6883 * 6884 * Return: pointer to contiguous pages on success, or NULL if not successful. 6885 */ 6886 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6887 int nid, nodemask_t *nodemask) 6888 { 6889 unsigned long ret, pfn, flags; 6890 struct zonelist *zonelist; 6891 struct zone *zone; 6892 struct zoneref *z; 6893 6894 zonelist = node_zonelist(nid, gfp_mask); 6895 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6896 gfp_zone(gfp_mask), nodemask) { 6897 spin_lock_irqsave(&zone->lock, flags); 6898 6899 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6900 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6901 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6902 /* 6903 * We release the zone lock here because 6904 * alloc_contig_range() will also lock the zone 6905 * at some point. If there's an allocation 6906 * spinning on this lock, it may win the race 6907 * and cause alloc_contig_range() to fail... 6908 */ 6909 spin_unlock_irqrestore(&zone->lock, flags); 6910 ret = __alloc_contig_pages(pfn, nr_pages, 6911 gfp_mask); 6912 if (!ret) 6913 return pfn_to_page(pfn); 6914 spin_lock_irqsave(&zone->lock, flags); 6915 } 6916 pfn += nr_pages; 6917 } 6918 spin_unlock_irqrestore(&zone->lock, flags); 6919 } 6920 return NULL; 6921 } 6922 #endif /* CONFIG_CONTIG_ALLOC */ 6923 6924 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6925 { 6926 unsigned long count = 0; 6927 struct folio *folio = pfn_folio(pfn); 6928 6929 if (folio_test_large(folio)) { 6930 int expected = folio_nr_pages(folio); 6931 6932 if (nr_pages == expected) 6933 folio_put(folio); 6934 else 6935 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 6936 pfn, nr_pages, expected); 6937 return; 6938 } 6939 6940 for (; nr_pages--; pfn++) { 6941 struct page *page = pfn_to_page(pfn); 6942 6943 count += page_count(page) != 1; 6944 __free_page(page); 6945 } 6946 WARN(count != 0, "%lu pages are still in use!\n", count); 6947 } 6948 EXPORT_SYMBOL(free_contig_range); 6949 6950 /* 6951 * Effectively disable pcplists for the zone by setting the high limit to 0 6952 * and draining all cpus. A concurrent page freeing on another CPU that's about 6953 * to put the page on pcplist will either finish before the drain and the page 6954 * will be drained, or observe the new high limit and skip the pcplist. 6955 * 6956 * Must be paired with a call to zone_pcp_enable(). 6957 */ 6958 void zone_pcp_disable(struct zone *zone) 6959 { 6960 mutex_lock(&pcp_batch_high_lock); 6961 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6962 __drain_all_pages(zone, true); 6963 } 6964 6965 void zone_pcp_enable(struct zone *zone) 6966 { 6967 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6968 zone->pageset_high_max, zone->pageset_batch); 6969 mutex_unlock(&pcp_batch_high_lock); 6970 } 6971 6972 void zone_pcp_reset(struct zone *zone) 6973 { 6974 int cpu; 6975 struct per_cpu_zonestat *pzstats; 6976 6977 if (zone->per_cpu_pageset != &boot_pageset) { 6978 for_each_online_cpu(cpu) { 6979 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6980 drain_zonestat(zone, pzstats); 6981 } 6982 free_percpu(zone->per_cpu_pageset); 6983 zone->per_cpu_pageset = &boot_pageset; 6984 if (zone->per_cpu_zonestats != &boot_zonestats) { 6985 free_percpu(zone->per_cpu_zonestats); 6986 zone->per_cpu_zonestats = &boot_zonestats; 6987 } 6988 } 6989 } 6990 6991 #ifdef CONFIG_MEMORY_HOTREMOVE 6992 /* 6993 * All pages in the range must be in a single zone, must not contain holes, 6994 * must span full sections, and must be isolated before calling this function. 6995 * 6996 * Returns the number of managed (non-PageOffline()) pages in the range: the 6997 * number of pages for which memory offlining code must adjust managed page 6998 * counters using adjust_managed_page_count(). 6999 */ 7000 unsigned long __offline_isolated_pages(unsigned long start_pfn, 7001 unsigned long end_pfn) 7002 { 7003 unsigned long already_offline = 0, flags; 7004 unsigned long pfn = start_pfn; 7005 struct page *page; 7006 struct zone *zone; 7007 unsigned int order; 7008 7009 offline_mem_sections(pfn, end_pfn); 7010 zone = page_zone(pfn_to_page(pfn)); 7011 spin_lock_irqsave(&zone->lock, flags); 7012 while (pfn < end_pfn) { 7013 page = pfn_to_page(pfn); 7014 /* 7015 * The HWPoisoned page may be not in buddy system, and 7016 * page_count() is not 0. 7017 */ 7018 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7019 pfn++; 7020 continue; 7021 } 7022 /* 7023 * At this point all remaining PageOffline() pages have a 7024 * reference count of 0 and can simply be skipped. 7025 */ 7026 if (PageOffline(page)) { 7027 BUG_ON(page_count(page)); 7028 BUG_ON(PageBuddy(page)); 7029 already_offline++; 7030 pfn++; 7031 continue; 7032 } 7033 7034 BUG_ON(page_count(page)); 7035 BUG_ON(!PageBuddy(page)); 7036 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 7037 order = buddy_order(page); 7038 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 7039 pfn += (1 << order); 7040 } 7041 spin_unlock_irqrestore(&zone->lock, flags); 7042 7043 return end_pfn - start_pfn - already_offline; 7044 } 7045 #endif 7046 7047 /* 7048 * This function returns a stable result only if called under zone lock. 7049 */ 7050 bool is_free_buddy_page(const struct page *page) 7051 { 7052 unsigned long pfn = page_to_pfn(page); 7053 unsigned int order; 7054 7055 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7056 const struct page *head = page - (pfn & ((1 << order) - 1)); 7057 7058 if (PageBuddy(head) && 7059 buddy_order_unsafe(head) >= order) 7060 break; 7061 } 7062 7063 return order <= MAX_PAGE_ORDER; 7064 } 7065 EXPORT_SYMBOL(is_free_buddy_page); 7066 7067 #ifdef CONFIG_MEMORY_FAILURE 7068 static inline void add_to_free_list(struct page *page, struct zone *zone, 7069 unsigned int order, int migratetype, 7070 bool tail) 7071 { 7072 __add_to_free_list(page, zone, order, migratetype, tail); 7073 account_freepages(zone, 1 << order, migratetype); 7074 } 7075 7076 /* 7077 * Break down a higher-order page in sub-pages, and keep our target out of 7078 * buddy allocator. 7079 */ 7080 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7081 struct page *target, int low, int high, 7082 int migratetype) 7083 { 7084 unsigned long size = 1 << high; 7085 struct page *current_buddy; 7086 7087 while (high > low) { 7088 high--; 7089 size >>= 1; 7090 7091 if (target >= &page[size]) { 7092 current_buddy = page; 7093 page = page + size; 7094 } else { 7095 current_buddy = page + size; 7096 } 7097 7098 if (set_page_guard(zone, current_buddy, high)) 7099 continue; 7100 7101 add_to_free_list(current_buddy, zone, high, migratetype, false); 7102 set_buddy_order(current_buddy, high); 7103 } 7104 } 7105 7106 /* 7107 * Take a page that will be marked as poisoned off the buddy allocator. 7108 */ 7109 bool take_page_off_buddy(struct page *page) 7110 { 7111 struct zone *zone = page_zone(page); 7112 unsigned long pfn = page_to_pfn(page); 7113 unsigned long flags; 7114 unsigned int order; 7115 bool ret = false; 7116 7117 spin_lock_irqsave(&zone->lock, flags); 7118 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7119 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7120 int page_order = buddy_order(page_head); 7121 7122 if (PageBuddy(page_head) && page_order >= order) { 7123 unsigned long pfn_head = page_to_pfn(page_head); 7124 int migratetype = get_pfnblock_migratetype(page_head, 7125 pfn_head); 7126 7127 del_page_from_free_list(page_head, zone, page_order, 7128 migratetype); 7129 break_down_buddy_pages(zone, page_head, page, 0, 7130 page_order, migratetype); 7131 SetPageHWPoisonTakenOff(page); 7132 ret = true; 7133 break; 7134 } 7135 if (page_count(page_head) > 0) 7136 break; 7137 } 7138 spin_unlock_irqrestore(&zone->lock, flags); 7139 return ret; 7140 } 7141 7142 /* 7143 * Cancel takeoff done by take_page_off_buddy(). 7144 */ 7145 bool put_page_back_buddy(struct page *page) 7146 { 7147 struct zone *zone = page_zone(page); 7148 unsigned long flags; 7149 bool ret = false; 7150 7151 spin_lock_irqsave(&zone->lock, flags); 7152 if (put_page_testzero(page)) { 7153 unsigned long pfn = page_to_pfn(page); 7154 int migratetype = get_pfnblock_migratetype(page, pfn); 7155 7156 ClearPageHWPoisonTakenOff(page); 7157 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7158 if (TestClearPageHWPoison(page)) { 7159 ret = true; 7160 } 7161 } 7162 spin_unlock_irqrestore(&zone->lock, flags); 7163 7164 return ret; 7165 } 7166 #endif 7167 7168 #ifdef CONFIG_ZONE_DMA 7169 bool has_managed_dma(void) 7170 { 7171 struct pglist_data *pgdat; 7172 7173 for_each_online_pgdat(pgdat) { 7174 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 7175 7176 if (managed_zone(zone)) 7177 return true; 7178 } 7179 return false; 7180 } 7181 #endif /* CONFIG_ZONE_DMA */ 7182 7183 #ifdef CONFIG_UNACCEPTED_MEMORY 7184 7185 /* Counts number of zones with unaccepted pages. */ 7186 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 7187 7188 static bool lazy_accept = true; 7189 7190 static int __init accept_memory_parse(char *p) 7191 { 7192 if (!strcmp(p, "lazy")) { 7193 lazy_accept = true; 7194 return 0; 7195 } else if (!strcmp(p, "eager")) { 7196 lazy_accept = false; 7197 return 0; 7198 } else { 7199 return -EINVAL; 7200 } 7201 } 7202 early_param("accept_memory", accept_memory_parse); 7203 7204 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7205 { 7206 phys_addr_t start = page_to_phys(page); 7207 7208 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7209 } 7210 7211 static void __accept_page(struct zone *zone, unsigned long *flags, 7212 struct page *page) 7213 { 7214 bool last; 7215 7216 list_del(&page->lru); 7217 last = list_empty(&zone->unaccepted_pages); 7218 7219 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7220 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7221 __ClearPageUnaccepted(page); 7222 spin_unlock_irqrestore(&zone->lock, *flags); 7223 7224 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7225 7226 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7227 7228 if (last) 7229 static_branch_dec(&zones_with_unaccepted_pages); 7230 } 7231 7232 void accept_page(struct page *page) 7233 { 7234 struct zone *zone = page_zone(page); 7235 unsigned long flags; 7236 7237 spin_lock_irqsave(&zone->lock, flags); 7238 if (!PageUnaccepted(page)) { 7239 spin_unlock_irqrestore(&zone->lock, flags); 7240 return; 7241 } 7242 7243 /* Unlocks zone->lock */ 7244 __accept_page(zone, &flags, page); 7245 } 7246 7247 static bool try_to_accept_memory_one(struct zone *zone) 7248 { 7249 unsigned long flags; 7250 struct page *page; 7251 7252 spin_lock_irqsave(&zone->lock, flags); 7253 page = list_first_entry_or_null(&zone->unaccepted_pages, 7254 struct page, lru); 7255 if (!page) { 7256 spin_unlock_irqrestore(&zone->lock, flags); 7257 return false; 7258 } 7259 7260 /* Unlocks zone->lock */ 7261 __accept_page(zone, &flags, page); 7262 7263 return true; 7264 } 7265 7266 static inline bool has_unaccepted_memory(void) 7267 { 7268 return static_branch_unlikely(&zones_with_unaccepted_pages); 7269 } 7270 7271 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7272 { 7273 long to_accept, wmark; 7274 bool ret = false; 7275 7276 if (!has_unaccepted_memory()) 7277 return false; 7278 7279 if (list_empty(&zone->unaccepted_pages)) 7280 return false; 7281 7282 wmark = promo_wmark_pages(zone); 7283 7284 /* 7285 * Watermarks have not been initialized yet. 7286 * 7287 * Accepting one MAX_ORDER page to ensure progress. 7288 */ 7289 if (!wmark) 7290 return try_to_accept_memory_one(zone); 7291 7292 /* How much to accept to get to promo watermark? */ 7293 to_accept = wmark - 7294 (zone_page_state(zone, NR_FREE_PAGES) - 7295 __zone_watermark_unusable_free(zone, order, 0) - 7296 zone_page_state(zone, NR_UNACCEPTED)); 7297 7298 while (to_accept > 0) { 7299 if (!try_to_accept_memory_one(zone)) 7300 break; 7301 ret = true; 7302 to_accept -= MAX_ORDER_NR_PAGES; 7303 } 7304 7305 return ret; 7306 } 7307 7308 static bool __free_unaccepted(struct page *page) 7309 { 7310 struct zone *zone = page_zone(page); 7311 unsigned long flags; 7312 bool first = false; 7313 7314 if (!lazy_accept) 7315 return false; 7316 7317 spin_lock_irqsave(&zone->lock, flags); 7318 first = list_empty(&zone->unaccepted_pages); 7319 list_add_tail(&page->lru, &zone->unaccepted_pages); 7320 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7321 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7322 __SetPageUnaccepted(page); 7323 spin_unlock_irqrestore(&zone->lock, flags); 7324 7325 if (first) 7326 static_branch_inc(&zones_with_unaccepted_pages); 7327 7328 return true; 7329 } 7330 7331 #else 7332 7333 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7334 { 7335 return false; 7336 } 7337 7338 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7339 { 7340 return false; 7341 } 7342 7343 static bool __free_unaccepted(struct page *page) 7344 { 7345 BUILD_BUG(); 7346 return false; 7347 } 7348 7349 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7350 7351 /** 7352 * try_alloc_pages - opportunistic reentrant allocation from any context 7353 * @nid: node to allocate from 7354 * @order: allocation order size 7355 * 7356 * Allocates pages of a given order from the given node. This is safe to 7357 * call from any context (from atomic, NMI, and also reentrant 7358 * allocator -> tracepoint -> try_alloc_pages_noprof). 7359 * Allocation is best effort and to be expected to fail easily so nobody should 7360 * rely on the success. Failures are not reported via warn_alloc(). 7361 * See always fail conditions below. 7362 * 7363 * Return: allocated page or NULL on failure. 7364 */ 7365 struct page *try_alloc_pages_noprof(int nid, unsigned int order) 7366 { 7367 /* 7368 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. 7369 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd 7370 * is not safe in arbitrary context. 7371 * 7372 * These two are the conditions for gfpflags_allow_spinning() being true. 7373 * 7374 * Specify __GFP_NOWARN since failing try_alloc_pages() is not a reason 7375 * to warn. Also warn would trigger printk() which is unsafe from 7376 * various contexts. We cannot use printk_deferred_enter() to mitigate, 7377 * since the running context is unknown. 7378 * 7379 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below 7380 * is safe in any context. Also zeroing the page is mandatory for 7381 * BPF use cases. 7382 * 7383 * Though __GFP_NOMEMALLOC is not checked in the code path below, 7384 * specify it here to highlight that try_alloc_pages() 7385 * doesn't want to deplete reserves. 7386 */ 7387 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC 7388 | __GFP_ACCOUNT; 7389 unsigned int alloc_flags = ALLOC_TRYLOCK; 7390 struct alloc_context ac = { }; 7391 struct page *page; 7392 7393 /* 7394 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is 7395 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current 7396 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will 7397 * mark the task as the owner of another rt_spin_lock which will 7398 * confuse PI logic, so return immediately if called form hard IRQ or 7399 * NMI. 7400 * 7401 * Note, irqs_disabled() case is ok. This function can be called 7402 * from raw_spin_lock_irqsave region. 7403 */ 7404 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 7405 return NULL; 7406 if (!pcp_allowed_order(order)) 7407 return NULL; 7408 7409 #ifdef CONFIG_UNACCEPTED_MEMORY 7410 /* Bailout, since try_to_accept_memory_one() needs to take a lock */ 7411 if (has_unaccepted_memory()) 7412 return NULL; 7413 #endif 7414 /* Bailout, since _deferred_grow_zone() needs to take a lock */ 7415 if (deferred_pages_enabled()) 7416 return NULL; 7417 7418 if (nid == NUMA_NO_NODE) 7419 nid = numa_node_id(); 7420 7421 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, 7422 &alloc_gfp, &alloc_flags); 7423 7424 /* 7425 * Best effort allocation from percpu free list. 7426 * If it's empty attempt to spin_trylock zone->lock. 7427 */ 7428 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 7429 7430 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ 7431 7432 if (page) 7433 set_page_refcounted(page); 7434 7435 if (memcg_kmem_online() && page && 7436 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { 7437 free_pages_nolock(page, order); 7438 page = NULL; 7439 } 7440 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 7441 kmsan_alloc_page(page, order, alloc_gfp); 7442 return page; 7443 } 7444