xref: /linux/mm/page_alloc.c (revision 45bd443bfd8697a7da308c16c3e75e2bb353b3d1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* Free the page without taking locks. Rely on trylock only. */
92 #define FPI_TRYLOCK		((__force fpi_t)BIT(2))
93 
94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
95 static DEFINE_MUTEX(pcp_batch_high_lock);
96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
97 
98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
99 /*
100  * On SMP, spin_trylock is sufficient protection.
101  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
102  */
103 #define pcp_trylock_prepare(flags)	do { } while (0)
104 #define pcp_trylock_finish(flag)	do { } while (0)
105 #else
106 
107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
108 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
109 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
110 #endif
111 
112 /*
113  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
114  * a migration causing the wrong PCP to be locked and remote memory being
115  * potentially allocated, pin the task to the CPU for the lookup+lock.
116  * preempt_disable is used on !RT because it is faster than migrate_disable.
117  * migrate_disable is used on RT because otherwise RT spinlock usage is
118  * interfered with and a high priority task cannot preempt the allocator.
119  */
120 #ifndef CONFIG_PREEMPT_RT
121 #define pcpu_task_pin()		preempt_disable()
122 #define pcpu_task_unpin()	preempt_enable()
123 #else
124 #define pcpu_task_pin()		migrate_disable()
125 #define pcpu_task_unpin()	migrate_enable()
126 #endif
127 
128 /*
129  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
130  * Return value should be used with equivalent unlock helper.
131  */
132 #define pcpu_spin_lock(type, member, ptr)				\
133 ({									\
134 	type *_ret;							\
135 	pcpu_task_pin();						\
136 	_ret = this_cpu_ptr(ptr);					\
137 	spin_lock(&_ret->member);					\
138 	_ret;								\
139 })
140 
141 #define pcpu_spin_trylock(type, member, ptr)				\
142 ({									\
143 	type *_ret;							\
144 	pcpu_task_pin();						\
145 	_ret = this_cpu_ptr(ptr);					\
146 	if (!spin_trylock(&_ret->member)) {				\
147 		pcpu_task_unpin();					\
148 		_ret = NULL;						\
149 	}								\
150 	_ret;								\
151 })
152 
153 #define pcpu_spin_unlock(member, ptr)					\
154 ({									\
155 	spin_unlock(&ptr->member);					\
156 	pcpu_task_unpin();						\
157 })
158 
159 /* struct per_cpu_pages specific helpers. */
160 #define pcp_spin_lock(ptr)						\
161 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_trylock(ptr)						\
164 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
165 
166 #define pcp_spin_unlock(ptr)						\
167 	pcpu_spin_unlock(lock, ptr)
168 
169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
170 DEFINE_PER_CPU(int, numa_node);
171 EXPORT_PER_CPU_SYMBOL(numa_node);
172 #endif
173 
174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
175 
176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
177 /*
178  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
179  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
180  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
181  * defined in <linux/topology.h>.
182  */
183 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
184 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
185 #endif
186 
187 static DEFINE_MUTEX(pcpu_drain_mutex);
188 
189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
190 volatile unsigned long latent_entropy __latent_entropy;
191 EXPORT_SYMBOL(latent_entropy);
192 #endif
193 
194 /*
195  * Array of node states.
196  */
197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
198 	[N_POSSIBLE] = NODE_MASK_ALL,
199 	[N_ONLINE] = { { [0] = 1UL } },
200 #ifndef CONFIG_NUMA
201 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
202 #ifdef CONFIG_HIGHMEM
203 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
204 #endif
205 	[N_MEMORY] = { { [0] = 1UL } },
206 	[N_CPU] = { { [0] = 1UL } },
207 #endif	/* NUMA */
208 };
209 EXPORT_SYMBOL(node_states);
210 
211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
212 
213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
214 unsigned int pageblock_order __read_mostly;
215 #endif
216 
217 static void __free_pages_ok(struct page *page, unsigned int order,
218 			    fpi_t fpi_flags);
219 
220 /*
221  * results with 256, 32 in the lowmem_reserve sysctl:
222  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
223  *	1G machine -> (16M dma, 784M normal, 224M high)
224  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
225  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
226  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
227  *
228  * TBD: should special case ZONE_DMA32 machines here - in those we normally
229  * don't need any ZONE_NORMAL reservation
230  */
231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
232 #ifdef CONFIG_ZONE_DMA
233 	[ZONE_DMA] = 256,
234 #endif
235 #ifdef CONFIG_ZONE_DMA32
236 	[ZONE_DMA32] = 256,
237 #endif
238 	[ZONE_NORMAL] = 32,
239 #ifdef CONFIG_HIGHMEM
240 	[ZONE_HIGHMEM] = 0,
241 #endif
242 	[ZONE_MOVABLE] = 0,
243 };
244 
245 char * const zone_names[MAX_NR_ZONES] = {
246 #ifdef CONFIG_ZONE_DMA
247 	 "DMA",
248 #endif
249 #ifdef CONFIG_ZONE_DMA32
250 	 "DMA32",
251 #endif
252 	 "Normal",
253 #ifdef CONFIG_HIGHMEM
254 	 "HighMem",
255 #endif
256 	 "Movable",
257 #ifdef CONFIG_ZONE_DEVICE
258 	 "Device",
259 #endif
260 };
261 
262 const char * const migratetype_names[MIGRATE_TYPES] = {
263 	"Unmovable",
264 	"Movable",
265 	"Reclaimable",
266 	"HighAtomic",
267 #ifdef CONFIG_CMA
268 	"CMA",
269 #endif
270 #ifdef CONFIG_MEMORY_ISOLATION
271 	"Isolate",
272 #endif
273 };
274 
275 int min_free_kbytes = 1024;
276 int user_min_free_kbytes = -1;
277 static int watermark_boost_factor __read_mostly = 15000;
278 static int watermark_scale_factor = 10;
279 int defrag_mode;
280 
281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
282 int movable_zone;
283 EXPORT_SYMBOL(movable_zone);
284 
285 #if MAX_NUMNODES > 1
286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
287 unsigned int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291 
292 static bool page_contains_unaccepted(struct page *page, unsigned int order);
293 static bool cond_accept_memory(struct zone *zone, unsigned int order);
294 static bool __free_unaccepted(struct page *page);
295 
296 int page_group_by_mobility_disabled __read_mostly;
297 
298 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
299 /*
300  * During boot we initialize deferred pages on-demand, as needed, but once
301  * page_alloc_init_late() has finished, the deferred pages are all initialized,
302  * and we can permanently disable that path.
303  */
304 DEFINE_STATIC_KEY_TRUE(deferred_pages);
305 
306 static inline bool deferred_pages_enabled(void)
307 {
308 	return static_branch_unlikely(&deferred_pages);
309 }
310 
311 /*
312  * deferred_grow_zone() is __init, but it is called from
313  * get_page_from_freelist() during early boot until deferred_pages permanently
314  * disables this call. This is why we have refdata wrapper to avoid warning,
315  * and to ensure that the function body gets unloaded.
316  */
317 static bool __ref
318 _deferred_grow_zone(struct zone *zone, unsigned int order)
319 {
320 	return deferred_grow_zone(zone, order);
321 }
322 #else
323 static inline bool deferred_pages_enabled(void)
324 {
325 	return false;
326 }
327 
328 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
329 {
330 	return false;
331 }
332 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
333 
334 /* Return a pointer to the bitmap storing bits affecting a block of pages */
335 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
336 							unsigned long pfn)
337 {
338 #ifdef CONFIG_SPARSEMEM
339 	return section_to_usemap(__pfn_to_section(pfn));
340 #else
341 	return page_zone(page)->pageblock_flags;
342 #endif /* CONFIG_SPARSEMEM */
343 }
344 
345 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
346 {
347 #ifdef CONFIG_SPARSEMEM
348 	pfn &= (PAGES_PER_SECTION-1);
349 #else
350 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
351 #endif /* CONFIG_SPARSEMEM */
352 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
353 }
354 
355 /**
356  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
357  * @page: The page within the block of interest
358  * @pfn: The target page frame number
359  * @mask: mask of bits that the caller is interested in
360  *
361  * Return: pageblock_bits flags
362  */
363 unsigned long get_pfnblock_flags_mask(const struct page *page,
364 					unsigned long pfn, unsigned long mask)
365 {
366 	unsigned long *bitmap;
367 	unsigned long bitidx, word_bitidx;
368 	unsigned long word;
369 
370 	bitmap = get_pageblock_bitmap(page, pfn);
371 	bitidx = pfn_to_bitidx(page, pfn);
372 	word_bitidx = bitidx / BITS_PER_LONG;
373 	bitidx &= (BITS_PER_LONG-1);
374 	/*
375 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
376 	 * a consistent read of the memory array, so that results, even though
377 	 * racy, are not corrupted.
378 	 */
379 	word = READ_ONCE(bitmap[word_bitidx]);
380 	return (word >> bitidx) & mask;
381 }
382 
383 static __always_inline int get_pfnblock_migratetype(const struct page *page,
384 					unsigned long pfn)
385 {
386 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
387 }
388 
389 /**
390  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
391  * @page: The page within the block of interest
392  * @flags: The flags to set
393  * @pfn: The target page frame number
394  * @mask: mask of bits that the caller is interested in
395  */
396 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
397 					unsigned long pfn,
398 					unsigned long mask)
399 {
400 	unsigned long *bitmap;
401 	unsigned long bitidx, word_bitidx;
402 	unsigned long word;
403 
404 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
405 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
406 
407 	bitmap = get_pageblock_bitmap(page, pfn);
408 	bitidx = pfn_to_bitidx(page, pfn);
409 	word_bitidx = bitidx / BITS_PER_LONG;
410 	bitidx &= (BITS_PER_LONG-1);
411 
412 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
413 
414 	mask <<= bitidx;
415 	flags <<= bitidx;
416 
417 	word = READ_ONCE(bitmap[word_bitidx]);
418 	do {
419 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
420 }
421 
422 void set_pageblock_migratetype(struct page *page, int migratetype)
423 {
424 	if (unlikely(page_group_by_mobility_disabled &&
425 		     migratetype < MIGRATE_PCPTYPES))
426 		migratetype = MIGRATE_UNMOVABLE;
427 
428 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
429 				page_to_pfn(page), MIGRATETYPE_MASK);
430 }
431 
432 #ifdef CONFIG_DEBUG_VM
433 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
434 {
435 	int ret;
436 	unsigned seq;
437 	unsigned long pfn = page_to_pfn(page);
438 	unsigned long sp, start_pfn;
439 
440 	do {
441 		seq = zone_span_seqbegin(zone);
442 		start_pfn = zone->zone_start_pfn;
443 		sp = zone->spanned_pages;
444 		ret = !zone_spans_pfn(zone, pfn);
445 	} while (zone_span_seqretry(zone, seq));
446 
447 	if (ret)
448 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
449 			pfn, zone_to_nid(zone), zone->name,
450 			start_pfn, start_pfn + sp);
451 
452 	return ret;
453 }
454 
455 /*
456  * Temporary debugging check for pages not lying within a given zone.
457  */
458 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
459 {
460 	if (page_outside_zone_boundaries(zone, page))
461 		return true;
462 	if (zone != page_zone(page))
463 		return true;
464 
465 	return false;
466 }
467 #else
468 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
469 {
470 	return false;
471 }
472 #endif
473 
474 static void bad_page(struct page *page, const char *reason)
475 {
476 	static unsigned long resume;
477 	static unsigned long nr_shown;
478 	static unsigned long nr_unshown;
479 
480 	/*
481 	 * Allow a burst of 60 reports, then keep quiet for that minute;
482 	 * or allow a steady drip of one report per second.
483 	 */
484 	if (nr_shown == 60) {
485 		if (time_before(jiffies, resume)) {
486 			nr_unshown++;
487 			goto out;
488 		}
489 		if (nr_unshown) {
490 			pr_alert(
491 			      "BUG: Bad page state: %lu messages suppressed\n",
492 				nr_unshown);
493 			nr_unshown = 0;
494 		}
495 		nr_shown = 0;
496 	}
497 	if (nr_shown++ == 0)
498 		resume = jiffies + 60 * HZ;
499 
500 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
501 		current->comm, page_to_pfn(page));
502 	dump_page(page, reason);
503 
504 	print_modules();
505 	dump_stack();
506 out:
507 	/* Leave bad fields for debug, except PageBuddy could make trouble */
508 	if (PageBuddy(page))
509 		__ClearPageBuddy(page);
510 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
511 }
512 
513 static inline unsigned int order_to_pindex(int migratetype, int order)
514 {
515 
516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
517 	bool movable;
518 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
519 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
520 
521 		movable = migratetype == MIGRATE_MOVABLE;
522 
523 		return NR_LOWORDER_PCP_LISTS + movable;
524 	}
525 #else
526 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
527 #endif
528 
529 	return (MIGRATE_PCPTYPES * order) + migratetype;
530 }
531 
532 static inline int pindex_to_order(unsigned int pindex)
533 {
534 	int order = pindex / MIGRATE_PCPTYPES;
535 
536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
537 	if (pindex >= NR_LOWORDER_PCP_LISTS)
538 		order = HPAGE_PMD_ORDER;
539 #else
540 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
541 #endif
542 
543 	return order;
544 }
545 
546 static inline bool pcp_allowed_order(unsigned int order)
547 {
548 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
549 		return true;
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 	if (order == HPAGE_PMD_ORDER)
552 		return true;
553 #endif
554 	return false;
555 }
556 
557 /*
558  * Higher-order pages are called "compound pages".  They are structured thusly:
559  *
560  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
561  *
562  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
564  *
565  * The first tail page's ->compound_order holds the order of allocation.
566  * This usage means that zero-order pages may not be compound.
567  */
568 
569 void prep_compound_page(struct page *page, unsigned int order)
570 {
571 	int i;
572 	int nr_pages = 1 << order;
573 
574 	__SetPageHead(page);
575 	for (i = 1; i < nr_pages; i++)
576 		prep_compound_tail(page, i);
577 
578 	prep_compound_head(page, order);
579 }
580 
581 static inline void set_buddy_order(struct page *page, unsigned int order)
582 {
583 	set_page_private(page, order);
584 	__SetPageBuddy(page);
585 }
586 
587 #ifdef CONFIG_COMPACTION
588 static inline struct capture_control *task_capc(struct zone *zone)
589 {
590 	struct capture_control *capc = current->capture_control;
591 
592 	return unlikely(capc) &&
593 		!(current->flags & PF_KTHREAD) &&
594 		!capc->page &&
595 		capc->cc->zone == zone ? capc : NULL;
596 }
597 
598 static inline bool
599 compaction_capture(struct capture_control *capc, struct page *page,
600 		   int order, int migratetype)
601 {
602 	if (!capc || order != capc->cc->order)
603 		return false;
604 
605 	/* Do not accidentally pollute CMA or isolated regions*/
606 	if (is_migrate_cma(migratetype) ||
607 	    is_migrate_isolate(migratetype))
608 		return false;
609 
610 	/*
611 	 * Do not let lower order allocations pollute a movable pageblock
612 	 * unless compaction is also requesting movable pages.
613 	 * This might let an unmovable request use a reclaimable pageblock
614 	 * and vice-versa but no more than normal fallback logic which can
615 	 * have trouble finding a high-order free page.
616 	 */
617 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
618 	    capc->cc->migratetype != MIGRATE_MOVABLE)
619 		return false;
620 
621 	if (migratetype != capc->cc->migratetype)
622 		trace_mm_page_alloc_extfrag(page, capc->cc->order, order,
623 					    capc->cc->migratetype, migratetype);
624 
625 	capc->page = page;
626 	return true;
627 }
628 
629 #else
630 static inline struct capture_control *task_capc(struct zone *zone)
631 {
632 	return NULL;
633 }
634 
635 static inline bool
636 compaction_capture(struct capture_control *capc, struct page *page,
637 		   int order, int migratetype)
638 {
639 	return false;
640 }
641 #endif /* CONFIG_COMPACTION */
642 
643 static inline void account_freepages(struct zone *zone, int nr_pages,
644 				     int migratetype)
645 {
646 	lockdep_assert_held(&zone->lock);
647 
648 	if (is_migrate_isolate(migratetype))
649 		return;
650 
651 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
652 
653 	if (is_migrate_cma(migratetype))
654 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
655 	else if (is_migrate_highatomic(migratetype))
656 		WRITE_ONCE(zone->nr_free_highatomic,
657 			   zone->nr_free_highatomic + nr_pages);
658 }
659 
660 /* Used for pages not on another list */
661 static inline void __add_to_free_list(struct page *page, struct zone *zone,
662 				      unsigned int order, int migratetype,
663 				      bool tail)
664 {
665 	struct free_area *area = &zone->free_area[order];
666 	int nr_pages = 1 << order;
667 
668 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
669 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
670 		     get_pageblock_migratetype(page), migratetype, nr_pages);
671 
672 	if (tail)
673 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
674 	else
675 		list_add(&page->buddy_list, &area->free_list[migratetype]);
676 	area->nr_free++;
677 
678 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
679 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
680 }
681 
682 /*
683  * Used for pages which are on another list. Move the pages to the tail
684  * of the list - so the moved pages won't immediately be considered for
685  * allocation again (e.g., optimization for memory onlining).
686  */
687 static inline void move_to_free_list(struct page *page, struct zone *zone,
688 				     unsigned int order, int old_mt, int new_mt)
689 {
690 	struct free_area *area = &zone->free_area[order];
691 	int nr_pages = 1 << order;
692 
693 	/* Free page moving can fail, so it happens before the type update */
694 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
695 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 		     get_pageblock_migratetype(page), old_mt, nr_pages);
697 
698 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
699 
700 	account_freepages(zone, -nr_pages, old_mt);
701 	account_freepages(zone, nr_pages, new_mt);
702 
703 	if (order >= pageblock_order &&
704 	    is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) {
705 		if (!is_migrate_isolate(old_mt))
706 			nr_pages = -nr_pages;
707 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
708 	}
709 }
710 
711 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
712 					     unsigned int order, int migratetype)
713 {
714 	int nr_pages = 1 << order;
715 
716         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
717 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
718 		     get_pageblock_migratetype(page), migratetype, nr_pages);
719 
720 	/* clear reported state and update reported page count */
721 	if (page_reported(page))
722 		__ClearPageReported(page);
723 
724 	list_del(&page->buddy_list);
725 	__ClearPageBuddy(page);
726 	set_page_private(page, 0);
727 	zone->free_area[order].nr_free--;
728 
729 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
730 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages);
731 }
732 
733 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
734 					   unsigned int order, int migratetype)
735 {
736 	__del_page_from_free_list(page, zone, order, migratetype);
737 	account_freepages(zone, -(1 << order), migratetype);
738 }
739 
740 static inline struct page *get_page_from_free_area(struct free_area *area,
741 					    int migratetype)
742 {
743 	return list_first_entry_or_null(&area->free_list[migratetype],
744 					struct page, buddy_list);
745 }
746 
747 /*
748  * If this is less than the 2nd largest possible page, check if the buddy
749  * of the next-higher order is free. If it is, it's possible
750  * that pages are being freed that will coalesce soon. In case,
751  * that is happening, add the free page to the tail of the list
752  * so it's less likely to be used soon and more likely to be merged
753  * as a 2-level higher order page
754  */
755 static inline bool
756 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
757 		   struct page *page, unsigned int order)
758 {
759 	unsigned long higher_page_pfn;
760 	struct page *higher_page;
761 
762 	if (order >= MAX_PAGE_ORDER - 1)
763 		return false;
764 
765 	higher_page_pfn = buddy_pfn & pfn;
766 	higher_page = page + (higher_page_pfn - pfn);
767 
768 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
769 			NULL) != NULL;
770 }
771 
772 /*
773  * Freeing function for a buddy system allocator.
774  *
775  * The concept of a buddy system is to maintain direct-mapped table
776  * (containing bit values) for memory blocks of various "orders".
777  * The bottom level table contains the map for the smallest allocatable
778  * units of memory (here, pages), and each level above it describes
779  * pairs of units from the levels below, hence, "buddies".
780  * At a high level, all that happens here is marking the table entry
781  * at the bottom level available, and propagating the changes upward
782  * as necessary, plus some accounting needed to play nicely with other
783  * parts of the VM system.
784  * At each level, we keep a list of pages, which are heads of continuous
785  * free pages of length of (1 << order) and marked with PageBuddy.
786  * Page's order is recorded in page_private(page) field.
787  * So when we are allocating or freeing one, we can derive the state of the
788  * other.  That is, if we allocate a small block, and both were
789  * free, the remainder of the region must be split into blocks.
790  * If a block is freed, and its buddy is also free, then this
791  * triggers coalescing into a block of larger size.
792  *
793  * -- nyc
794  */
795 
796 static inline void __free_one_page(struct page *page,
797 		unsigned long pfn,
798 		struct zone *zone, unsigned int order,
799 		int migratetype, fpi_t fpi_flags)
800 {
801 	struct capture_control *capc = task_capc(zone);
802 	unsigned long buddy_pfn = 0;
803 	unsigned long combined_pfn;
804 	struct page *buddy;
805 	bool to_tail;
806 
807 	VM_BUG_ON(!zone_is_initialized(zone));
808 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
809 
810 	VM_BUG_ON(migratetype == -1);
811 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
812 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
813 
814 	account_freepages(zone, 1 << order, migratetype);
815 
816 	while (order < MAX_PAGE_ORDER) {
817 		int buddy_mt = migratetype;
818 
819 		if (compaction_capture(capc, page, order, migratetype)) {
820 			account_freepages(zone, -(1 << order), migratetype);
821 			return;
822 		}
823 
824 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
825 		if (!buddy)
826 			goto done_merging;
827 
828 		if (unlikely(order >= pageblock_order)) {
829 			/*
830 			 * We want to prevent merge between freepages on pageblock
831 			 * without fallbacks and normal pageblock. Without this,
832 			 * pageblock isolation could cause incorrect freepage or CMA
833 			 * accounting or HIGHATOMIC accounting.
834 			 */
835 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
836 
837 			if (migratetype != buddy_mt &&
838 			    (!migratetype_is_mergeable(migratetype) ||
839 			     !migratetype_is_mergeable(buddy_mt)))
840 				goto done_merging;
841 		}
842 
843 		/*
844 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
845 		 * merge with it and move up one order.
846 		 */
847 		if (page_is_guard(buddy))
848 			clear_page_guard(zone, buddy, order);
849 		else
850 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
851 
852 		if (unlikely(buddy_mt != migratetype)) {
853 			/*
854 			 * Match buddy type. This ensures that an
855 			 * expand() down the line puts the sub-blocks
856 			 * on the right freelists.
857 			 */
858 			set_pageblock_migratetype(buddy, migratetype);
859 		}
860 
861 		combined_pfn = buddy_pfn & pfn;
862 		page = page + (combined_pfn - pfn);
863 		pfn = combined_pfn;
864 		order++;
865 	}
866 
867 done_merging:
868 	set_buddy_order(page, order);
869 
870 	if (fpi_flags & FPI_TO_TAIL)
871 		to_tail = true;
872 	else if (is_shuffle_order(order))
873 		to_tail = shuffle_pick_tail();
874 	else
875 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
876 
877 	__add_to_free_list(page, zone, order, migratetype, to_tail);
878 
879 	/* Notify page reporting subsystem of freed page */
880 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
881 		page_reporting_notify_free(order);
882 }
883 
884 /*
885  * A bad page could be due to a number of fields. Instead of multiple branches,
886  * try and check multiple fields with one check. The caller must do a detailed
887  * check if necessary.
888  */
889 static inline bool page_expected_state(struct page *page,
890 					unsigned long check_flags)
891 {
892 	if (unlikely(atomic_read(&page->_mapcount) != -1))
893 		return false;
894 
895 	if (unlikely((unsigned long)page->mapping |
896 			page_ref_count(page) |
897 #ifdef CONFIG_MEMCG
898 			page->memcg_data |
899 #endif
900 			page_pool_page_is_pp(page) |
901 			(page->flags & check_flags)))
902 		return false;
903 
904 	return true;
905 }
906 
907 static const char *page_bad_reason(struct page *page, unsigned long flags)
908 {
909 	const char *bad_reason = NULL;
910 
911 	if (unlikely(atomic_read(&page->_mapcount) != -1))
912 		bad_reason = "nonzero mapcount";
913 	if (unlikely(page->mapping != NULL))
914 		bad_reason = "non-NULL mapping";
915 	if (unlikely(page_ref_count(page) != 0))
916 		bad_reason = "nonzero _refcount";
917 	if (unlikely(page->flags & flags)) {
918 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
919 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
920 		else
921 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
922 	}
923 #ifdef CONFIG_MEMCG
924 	if (unlikely(page->memcg_data))
925 		bad_reason = "page still charged to cgroup";
926 #endif
927 	if (unlikely(page_pool_page_is_pp(page)))
928 		bad_reason = "page_pool leak";
929 	return bad_reason;
930 }
931 
932 static void free_page_is_bad_report(struct page *page)
933 {
934 	bad_page(page,
935 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
936 }
937 
938 static inline bool free_page_is_bad(struct page *page)
939 {
940 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
941 		return false;
942 
943 	/* Something has gone sideways, find it */
944 	free_page_is_bad_report(page);
945 	return true;
946 }
947 
948 static inline bool is_check_pages_enabled(void)
949 {
950 	return static_branch_unlikely(&check_pages_enabled);
951 }
952 
953 static int free_tail_page_prepare(struct page *head_page, struct page *page)
954 {
955 	struct folio *folio = (struct folio *)head_page;
956 	int ret = 1;
957 
958 	/*
959 	 * We rely page->lru.next never has bit 0 set, unless the page
960 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
961 	 */
962 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
963 
964 	if (!is_check_pages_enabled()) {
965 		ret = 0;
966 		goto out;
967 	}
968 	switch (page - head_page) {
969 	case 1:
970 		/* the first tail page: these may be in place of ->mapping */
971 		if (unlikely(folio_large_mapcount(folio))) {
972 			bad_page(page, "nonzero large_mapcount");
973 			goto out;
974 		}
975 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) &&
976 		    unlikely(atomic_read(&folio->_nr_pages_mapped))) {
977 			bad_page(page, "nonzero nr_pages_mapped");
978 			goto out;
979 		}
980 		if (IS_ENABLED(CONFIG_MM_ID)) {
981 			if (unlikely(folio->_mm_id_mapcount[0] != -1)) {
982 				bad_page(page, "nonzero mm mapcount 0");
983 				goto out;
984 			}
985 			if (unlikely(folio->_mm_id_mapcount[1] != -1)) {
986 				bad_page(page, "nonzero mm mapcount 1");
987 				goto out;
988 			}
989 		}
990 		if (IS_ENABLED(CONFIG_64BIT)) {
991 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
992 				bad_page(page, "nonzero entire_mapcount");
993 				goto out;
994 			}
995 			if (unlikely(atomic_read(&folio->_pincount))) {
996 				bad_page(page, "nonzero pincount");
997 				goto out;
998 			}
999 		}
1000 		break;
1001 	case 2:
1002 		/* the second tail page: deferred_list overlaps ->mapping */
1003 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1004 			bad_page(page, "on deferred list");
1005 			goto out;
1006 		}
1007 		if (!IS_ENABLED(CONFIG_64BIT)) {
1008 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1009 				bad_page(page, "nonzero entire_mapcount");
1010 				goto out;
1011 			}
1012 			if (unlikely(atomic_read(&folio->_pincount))) {
1013 				bad_page(page, "nonzero pincount");
1014 				goto out;
1015 			}
1016 		}
1017 		break;
1018 	case 3:
1019 		/* the third tail page: hugetlb specifics overlap ->mappings */
1020 		if (IS_ENABLED(CONFIG_HUGETLB_PAGE))
1021 			break;
1022 		fallthrough;
1023 	default:
1024 		if (page->mapping != TAIL_MAPPING) {
1025 			bad_page(page, "corrupted mapping in tail page");
1026 			goto out;
1027 		}
1028 		break;
1029 	}
1030 	if (unlikely(!PageTail(page))) {
1031 		bad_page(page, "PageTail not set");
1032 		goto out;
1033 	}
1034 	if (unlikely(compound_head(page) != head_page)) {
1035 		bad_page(page, "compound_head not consistent");
1036 		goto out;
1037 	}
1038 	ret = 0;
1039 out:
1040 	page->mapping = NULL;
1041 	clear_compound_head(page);
1042 	return ret;
1043 }
1044 
1045 /*
1046  * Skip KASAN memory poisoning when either:
1047  *
1048  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1049  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1050  *    using page tags instead (see below).
1051  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1052  *    that error detection is disabled for accesses via the page address.
1053  *
1054  * Pages will have match-all tags in the following circumstances:
1055  *
1056  * 1. Pages are being initialized for the first time, including during deferred
1057  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1058  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1059  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1060  * 3. The allocation was excluded from being checked due to sampling,
1061  *    see the call to kasan_unpoison_pages.
1062  *
1063  * Poisoning pages during deferred memory init will greatly lengthen the
1064  * process and cause problem in large memory systems as the deferred pages
1065  * initialization is done with interrupt disabled.
1066  *
1067  * Assuming that there will be no reference to those newly initialized
1068  * pages before they are ever allocated, this should have no effect on
1069  * KASAN memory tracking as the poison will be properly inserted at page
1070  * allocation time. The only corner case is when pages are allocated by
1071  * on-demand allocation and then freed again before the deferred pages
1072  * initialization is done, but this is not likely to happen.
1073  */
1074 static inline bool should_skip_kasan_poison(struct page *page)
1075 {
1076 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1077 		return deferred_pages_enabled();
1078 
1079 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1080 }
1081 
1082 static void kernel_init_pages(struct page *page, int numpages)
1083 {
1084 	int i;
1085 
1086 	/* s390's use of memset() could override KASAN redzones. */
1087 	kasan_disable_current();
1088 	for (i = 0; i < numpages; i++)
1089 		clear_highpage_kasan_tagged(page + i);
1090 	kasan_enable_current();
1091 }
1092 
1093 #ifdef CONFIG_MEM_ALLOC_PROFILING
1094 
1095 /* Should be called only if mem_alloc_profiling_enabled() */
1096 void __clear_page_tag_ref(struct page *page)
1097 {
1098 	union pgtag_ref_handle handle;
1099 	union codetag_ref ref;
1100 
1101 	if (get_page_tag_ref(page, &ref, &handle)) {
1102 		set_codetag_empty(&ref);
1103 		update_page_tag_ref(handle, &ref);
1104 		put_page_tag_ref(handle);
1105 	}
1106 }
1107 
1108 /* Should be called only if mem_alloc_profiling_enabled() */
1109 static noinline
1110 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1111 		       unsigned int nr)
1112 {
1113 	union pgtag_ref_handle handle;
1114 	union codetag_ref ref;
1115 
1116 	if (get_page_tag_ref(page, &ref, &handle)) {
1117 		alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1118 		update_page_tag_ref(handle, &ref);
1119 		put_page_tag_ref(handle);
1120 	}
1121 }
1122 
1123 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1124 				   unsigned int nr)
1125 {
1126 	if (mem_alloc_profiling_enabled())
1127 		__pgalloc_tag_add(page, task, nr);
1128 }
1129 
1130 /* Should be called only if mem_alloc_profiling_enabled() */
1131 static noinline
1132 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1133 {
1134 	union pgtag_ref_handle handle;
1135 	union codetag_ref ref;
1136 
1137 	if (get_page_tag_ref(page, &ref, &handle)) {
1138 		alloc_tag_sub(&ref, PAGE_SIZE * nr);
1139 		update_page_tag_ref(handle, &ref);
1140 		put_page_tag_ref(handle);
1141 	}
1142 }
1143 
1144 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1145 {
1146 	if (mem_alloc_profiling_enabled())
1147 		__pgalloc_tag_sub(page, nr);
1148 }
1149 
1150 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr)
1151 {
1152 	struct alloc_tag *tag;
1153 
1154 	if (!mem_alloc_profiling_enabled())
1155 		return;
1156 
1157 	tag = __pgalloc_tag_get(page);
1158 	if (tag)
1159 		this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1160 }
1161 
1162 #else /* CONFIG_MEM_ALLOC_PROFILING */
1163 
1164 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1165 				   unsigned int nr) {}
1166 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
1167 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) {}
1168 
1169 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1170 
1171 __always_inline bool free_pages_prepare(struct page *page,
1172 			unsigned int order)
1173 {
1174 	int bad = 0;
1175 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1176 	bool init = want_init_on_free();
1177 	bool compound = PageCompound(page);
1178 	struct folio *folio = page_folio(page);
1179 
1180 	VM_BUG_ON_PAGE(PageTail(page), page);
1181 
1182 	trace_mm_page_free(page, order);
1183 	kmsan_free_page(page, order);
1184 
1185 	if (memcg_kmem_online() && PageMemcgKmem(page))
1186 		__memcg_kmem_uncharge_page(page, order);
1187 
1188 	/*
1189 	 * In rare cases, when truncation or holepunching raced with
1190 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1191 	 * found set here.  This does not indicate a problem, unless
1192 	 * "unevictable_pgs_cleared" appears worryingly large.
1193 	 */
1194 	if (unlikely(folio_test_mlocked(folio))) {
1195 		long nr_pages = folio_nr_pages(folio);
1196 
1197 		__folio_clear_mlocked(folio);
1198 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1199 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1200 	}
1201 
1202 	if (unlikely(PageHWPoison(page)) && !order) {
1203 		/* Do not let hwpoison pages hit pcplists/buddy */
1204 		reset_page_owner(page, order);
1205 		page_table_check_free(page, order);
1206 		pgalloc_tag_sub(page, 1 << order);
1207 
1208 		/*
1209 		 * The page is isolated and accounted for.
1210 		 * Mark the codetag as empty to avoid accounting error
1211 		 * when the page is freed by unpoison_memory().
1212 		 */
1213 		clear_page_tag_ref(page);
1214 		return false;
1215 	}
1216 
1217 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1218 
1219 	/*
1220 	 * Check tail pages before head page information is cleared to
1221 	 * avoid checking PageCompound for order-0 pages.
1222 	 */
1223 	if (unlikely(order)) {
1224 		int i;
1225 
1226 		if (compound) {
1227 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1228 #ifdef NR_PAGES_IN_LARGE_FOLIO
1229 			folio->_nr_pages = 0;
1230 #endif
1231 		}
1232 		for (i = 1; i < (1 << order); i++) {
1233 			if (compound)
1234 				bad += free_tail_page_prepare(page, page + i);
1235 			if (is_check_pages_enabled()) {
1236 				if (free_page_is_bad(page + i)) {
1237 					bad++;
1238 					continue;
1239 				}
1240 			}
1241 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1242 		}
1243 	}
1244 	if (PageMappingFlags(page)) {
1245 		if (PageAnon(page))
1246 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1247 		page->mapping = NULL;
1248 	}
1249 	if (is_check_pages_enabled()) {
1250 		if (free_page_is_bad(page))
1251 			bad++;
1252 		if (bad)
1253 			return false;
1254 	}
1255 
1256 	page_cpupid_reset_last(page);
1257 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1258 	reset_page_owner(page, order);
1259 	page_table_check_free(page, order);
1260 	pgalloc_tag_sub(page, 1 << order);
1261 
1262 	if (!PageHighMem(page)) {
1263 		debug_check_no_locks_freed(page_address(page),
1264 					   PAGE_SIZE << order);
1265 		debug_check_no_obj_freed(page_address(page),
1266 					   PAGE_SIZE << order);
1267 	}
1268 
1269 	kernel_poison_pages(page, 1 << order);
1270 
1271 	/*
1272 	 * As memory initialization might be integrated into KASAN,
1273 	 * KASAN poisoning and memory initialization code must be
1274 	 * kept together to avoid discrepancies in behavior.
1275 	 *
1276 	 * With hardware tag-based KASAN, memory tags must be set before the
1277 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1278 	 */
1279 	if (!skip_kasan_poison) {
1280 		kasan_poison_pages(page, order, init);
1281 
1282 		/* Memory is already initialized if KASAN did it internally. */
1283 		if (kasan_has_integrated_init())
1284 			init = false;
1285 	}
1286 	if (init)
1287 		kernel_init_pages(page, 1 << order);
1288 
1289 	/*
1290 	 * arch_free_page() can make the page's contents inaccessible.  s390
1291 	 * does this.  So nothing which can access the page's contents should
1292 	 * happen after this.
1293 	 */
1294 	arch_free_page(page, order);
1295 
1296 	debug_pagealloc_unmap_pages(page, 1 << order);
1297 
1298 	return true;
1299 }
1300 
1301 /*
1302  * Frees a number of pages from the PCP lists
1303  * Assumes all pages on list are in same zone.
1304  * count is the number of pages to free.
1305  */
1306 static void free_pcppages_bulk(struct zone *zone, int count,
1307 					struct per_cpu_pages *pcp,
1308 					int pindex)
1309 {
1310 	unsigned long flags;
1311 	unsigned int order;
1312 	struct page *page;
1313 
1314 	/*
1315 	 * Ensure proper count is passed which otherwise would stuck in the
1316 	 * below while (list_empty(list)) loop.
1317 	 */
1318 	count = min(pcp->count, count);
1319 
1320 	/* Ensure requested pindex is drained first. */
1321 	pindex = pindex - 1;
1322 
1323 	spin_lock_irqsave(&zone->lock, flags);
1324 
1325 	while (count > 0) {
1326 		struct list_head *list;
1327 		int nr_pages;
1328 
1329 		/* Remove pages from lists in a round-robin fashion. */
1330 		do {
1331 			if (++pindex > NR_PCP_LISTS - 1)
1332 				pindex = 0;
1333 			list = &pcp->lists[pindex];
1334 		} while (list_empty(list));
1335 
1336 		order = pindex_to_order(pindex);
1337 		nr_pages = 1 << order;
1338 		do {
1339 			unsigned long pfn;
1340 			int mt;
1341 
1342 			page = list_last_entry(list, struct page, pcp_list);
1343 			pfn = page_to_pfn(page);
1344 			mt = get_pfnblock_migratetype(page, pfn);
1345 
1346 			/* must delete to avoid corrupting pcp list */
1347 			list_del(&page->pcp_list);
1348 			count -= nr_pages;
1349 			pcp->count -= nr_pages;
1350 
1351 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1352 			trace_mm_page_pcpu_drain(page, order, mt);
1353 		} while (count > 0 && !list_empty(list));
1354 	}
1355 
1356 	spin_unlock_irqrestore(&zone->lock, flags);
1357 }
1358 
1359 /* Split a multi-block free page into its individual pageblocks. */
1360 static void split_large_buddy(struct zone *zone, struct page *page,
1361 			      unsigned long pfn, int order, fpi_t fpi)
1362 {
1363 	unsigned long end = pfn + (1 << order);
1364 
1365 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1366 	/* Caller removed page from freelist, buddy info cleared! */
1367 	VM_WARN_ON_ONCE(PageBuddy(page));
1368 
1369 	if (order > pageblock_order)
1370 		order = pageblock_order;
1371 
1372 	do {
1373 		int mt = get_pfnblock_migratetype(page, pfn);
1374 
1375 		__free_one_page(page, pfn, zone, order, mt, fpi);
1376 		pfn += 1 << order;
1377 		if (pfn == end)
1378 			break;
1379 		page = pfn_to_page(pfn);
1380 	} while (1);
1381 }
1382 
1383 static void add_page_to_zone_llist(struct zone *zone, struct page *page,
1384 				   unsigned int order)
1385 {
1386 	/* Remember the order */
1387 	page->order = order;
1388 	/* Add the page to the free list */
1389 	llist_add(&page->pcp_llist, &zone->trylock_free_pages);
1390 }
1391 
1392 static void free_one_page(struct zone *zone, struct page *page,
1393 			  unsigned long pfn, unsigned int order,
1394 			  fpi_t fpi_flags)
1395 {
1396 	struct llist_head *llhead;
1397 	unsigned long flags;
1398 
1399 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
1400 		if (!spin_trylock_irqsave(&zone->lock, flags)) {
1401 			add_page_to_zone_llist(zone, page, order);
1402 			return;
1403 		}
1404 	} else {
1405 		spin_lock_irqsave(&zone->lock, flags);
1406 	}
1407 
1408 	/* The lock succeeded. Process deferred pages. */
1409 	llhead = &zone->trylock_free_pages;
1410 	if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
1411 		struct llist_node *llnode;
1412 		struct page *p, *tmp;
1413 
1414 		llnode = llist_del_all(llhead);
1415 		llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
1416 			unsigned int p_order = p->order;
1417 
1418 			split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
1419 			__count_vm_events(PGFREE, 1 << p_order);
1420 		}
1421 	}
1422 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1423 	spin_unlock_irqrestore(&zone->lock, flags);
1424 
1425 	__count_vm_events(PGFREE, 1 << order);
1426 }
1427 
1428 static void __free_pages_ok(struct page *page, unsigned int order,
1429 			    fpi_t fpi_flags)
1430 {
1431 	unsigned long pfn = page_to_pfn(page);
1432 	struct zone *zone = page_zone(page);
1433 
1434 	if (free_pages_prepare(page, order))
1435 		free_one_page(zone, page, pfn, order, fpi_flags);
1436 }
1437 
1438 void __meminit __free_pages_core(struct page *page, unsigned int order,
1439 		enum meminit_context context)
1440 {
1441 	unsigned int nr_pages = 1 << order;
1442 	struct page *p = page;
1443 	unsigned int loop;
1444 
1445 	/*
1446 	 * When initializing the memmap, __init_single_page() sets the refcount
1447 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1448 	 * refcount of all involved pages to 0.
1449 	 *
1450 	 * Note that hotplugged memory pages are initialized to PageOffline().
1451 	 * Pages freed from memblock might be marked as reserved.
1452 	 */
1453 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1454 	    unlikely(context == MEMINIT_HOTPLUG)) {
1455 		for (loop = 0; loop < nr_pages; loop++, p++) {
1456 			VM_WARN_ON_ONCE(PageReserved(p));
1457 			__ClearPageOffline(p);
1458 			set_page_count(p, 0);
1459 		}
1460 
1461 		adjust_managed_page_count(page, nr_pages);
1462 	} else {
1463 		for (loop = 0; loop < nr_pages; loop++, p++) {
1464 			__ClearPageReserved(p);
1465 			set_page_count(p, 0);
1466 		}
1467 
1468 		/* memblock adjusts totalram_pages() manually. */
1469 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1470 	}
1471 
1472 	if (page_contains_unaccepted(page, order)) {
1473 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1474 			return;
1475 
1476 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1477 	}
1478 
1479 	/*
1480 	 * Bypass PCP and place fresh pages right to the tail, primarily
1481 	 * relevant for memory onlining.
1482 	 */
1483 	__free_pages_ok(page, order, FPI_TO_TAIL);
1484 }
1485 
1486 /*
1487  * Check that the whole (or subset of) a pageblock given by the interval of
1488  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1489  * with the migration of free compaction scanner.
1490  *
1491  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1492  *
1493  * It's possible on some configurations to have a setup like node0 node1 node0
1494  * i.e. it's possible that all pages within a zones range of pages do not
1495  * belong to a single zone. We assume that a border between node0 and node1
1496  * can occur within a single pageblock, but not a node0 node1 node0
1497  * interleaving within a single pageblock. It is therefore sufficient to check
1498  * the first and last page of a pageblock and avoid checking each individual
1499  * page in a pageblock.
1500  *
1501  * Note: the function may return non-NULL struct page even for a page block
1502  * which contains a memory hole (i.e. there is no physical memory for a subset
1503  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1504  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1505  * even though the start pfn is online and valid. This should be safe most of
1506  * the time because struct pages are still initialized via init_unavailable_range()
1507  * and pfn walkers shouldn't touch any physical memory range for which they do
1508  * not recognize any specific metadata in struct pages.
1509  */
1510 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1511 				     unsigned long end_pfn, struct zone *zone)
1512 {
1513 	struct page *start_page;
1514 	struct page *end_page;
1515 
1516 	/* end_pfn is one past the range we are checking */
1517 	end_pfn--;
1518 
1519 	if (!pfn_valid(end_pfn))
1520 		return NULL;
1521 
1522 	start_page = pfn_to_online_page(start_pfn);
1523 	if (!start_page)
1524 		return NULL;
1525 
1526 	if (page_zone(start_page) != zone)
1527 		return NULL;
1528 
1529 	end_page = pfn_to_page(end_pfn);
1530 
1531 	/* This gives a shorter code than deriving page_zone(end_page) */
1532 	if (page_zone_id(start_page) != page_zone_id(end_page))
1533 		return NULL;
1534 
1535 	return start_page;
1536 }
1537 
1538 /*
1539  * The order of subdivision here is critical for the IO subsystem.
1540  * Please do not alter this order without good reasons and regression
1541  * testing. Specifically, as large blocks of memory are subdivided,
1542  * the order in which smaller blocks are delivered depends on the order
1543  * they're subdivided in this function. This is the primary factor
1544  * influencing the order in which pages are delivered to the IO
1545  * subsystem according to empirical testing, and this is also justified
1546  * by considering the behavior of a buddy system containing a single
1547  * large block of memory acted on by a series of small allocations.
1548  * This behavior is a critical factor in sglist merging's success.
1549  *
1550  * -- nyc
1551  */
1552 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1553 				  int high, int migratetype)
1554 {
1555 	unsigned int size = 1 << high;
1556 	unsigned int nr_added = 0;
1557 
1558 	while (high > low) {
1559 		high--;
1560 		size >>= 1;
1561 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1562 
1563 		/*
1564 		 * Mark as guard pages (or page), that will allow to
1565 		 * merge back to allocator when buddy will be freed.
1566 		 * Corresponding page table entries will not be touched,
1567 		 * pages will stay not present in virtual address space
1568 		 */
1569 		if (set_page_guard(zone, &page[size], high))
1570 			continue;
1571 
1572 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1573 		set_buddy_order(&page[size], high);
1574 		nr_added += size;
1575 	}
1576 
1577 	return nr_added;
1578 }
1579 
1580 static __always_inline void page_del_and_expand(struct zone *zone,
1581 						struct page *page, int low,
1582 						int high, int migratetype)
1583 {
1584 	int nr_pages = 1 << high;
1585 
1586 	__del_page_from_free_list(page, zone, high, migratetype);
1587 	nr_pages -= expand(zone, page, low, high, migratetype);
1588 	account_freepages(zone, -nr_pages, migratetype);
1589 }
1590 
1591 static void check_new_page_bad(struct page *page)
1592 {
1593 	if (unlikely(PageHWPoison(page))) {
1594 		/* Don't complain about hwpoisoned pages */
1595 		if (PageBuddy(page))
1596 			__ClearPageBuddy(page);
1597 		return;
1598 	}
1599 
1600 	bad_page(page,
1601 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1602 }
1603 
1604 /*
1605  * This page is about to be returned from the page allocator
1606  */
1607 static bool check_new_page(struct page *page)
1608 {
1609 	if (likely(page_expected_state(page,
1610 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1611 		return false;
1612 
1613 	check_new_page_bad(page);
1614 	return true;
1615 }
1616 
1617 static inline bool check_new_pages(struct page *page, unsigned int order)
1618 {
1619 	if (is_check_pages_enabled()) {
1620 		for (int i = 0; i < (1 << order); i++) {
1621 			struct page *p = page + i;
1622 
1623 			if (check_new_page(p))
1624 				return true;
1625 		}
1626 	}
1627 
1628 	return false;
1629 }
1630 
1631 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1632 {
1633 	/* Don't skip if a software KASAN mode is enabled. */
1634 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1635 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1636 		return false;
1637 
1638 	/* Skip, if hardware tag-based KASAN is not enabled. */
1639 	if (!kasan_hw_tags_enabled())
1640 		return true;
1641 
1642 	/*
1643 	 * With hardware tag-based KASAN enabled, skip if this has been
1644 	 * requested via __GFP_SKIP_KASAN.
1645 	 */
1646 	return flags & __GFP_SKIP_KASAN;
1647 }
1648 
1649 static inline bool should_skip_init(gfp_t flags)
1650 {
1651 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1652 	if (!kasan_hw_tags_enabled())
1653 		return false;
1654 
1655 	/* For hardware tag-based KASAN, skip if requested. */
1656 	return (flags & __GFP_SKIP_ZERO);
1657 }
1658 
1659 inline void post_alloc_hook(struct page *page, unsigned int order,
1660 				gfp_t gfp_flags)
1661 {
1662 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1663 			!should_skip_init(gfp_flags);
1664 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1665 	int i;
1666 
1667 	set_page_private(page, 0);
1668 
1669 	arch_alloc_page(page, order);
1670 	debug_pagealloc_map_pages(page, 1 << order);
1671 
1672 	/*
1673 	 * Page unpoisoning must happen before memory initialization.
1674 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1675 	 * allocations and the page unpoisoning code will complain.
1676 	 */
1677 	kernel_unpoison_pages(page, 1 << order);
1678 
1679 	/*
1680 	 * As memory initialization might be integrated into KASAN,
1681 	 * KASAN unpoisoning and memory initializion code must be
1682 	 * kept together to avoid discrepancies in behavior.
1683 	 */
1684 
1685 	/*
1686 	 * If memory tags should be zeroed
1687 	 * (which happens only when memory should be initialized as well).
1688 	 */
1689 	if (zero_tags) {
1690 		/* Initialize both memory and memory tags. */
1691 		for (i = 0; i != 1 << order; ++i)
1692 			tag_clear_highpage(page + i);
1693 
1694 		/* Take note that memory was initialized by the loop above. */
1695 		init = false;
1696 	}
1697 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1698 	    kasan_unpoison_pages(page, order, init)) {
1699 		/* Take note that memory was initialized by KASAN. */
1700 		if (kasan_has_integrated_init())
1701 			init = false;
1702 	} else {
1703 		/*
1704 		 * If memory tags have not been set by KASAN, reset the page
1705 		 * tags to ensure page_address() dereferencing does not fault.
1706 		 */
1707 		for (i = 0; i != 1 << order; ++i)
1708 			page_kasan_tag_reset(page + i);
1709 	}
1710 	/* If memory is still not initialized, initialize it now. */
1711 	if (init)
1712 		kernel_init_pages(page, 1 << order);
1713 
1714 	set_page_owner(page, order, gfp_flags);
1715 	page_table_check_alloc(page, order);
1716 	pgalloc_tag_add(page, current, 1 << order);
1717 }
1718 
1719 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1720 							unsigned int alloc_flags)
1721 {
1722 	post_alloc_hook(page, order, gfp_flags);
1723 
1724 	if (order && (gfp_flags & __GFP_COMP))
1725 		prep_compound_page(page, order);
1726 
1727 	/*
1728 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1729 	 * allocate the page. The expectation is that the caller is taking
1730 	 * steps that will free more memory. The caller should avoid the page
1731 	 * being used for !PFMEMALLOC purposes.
1732 	 */
1733 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1734 		set_page_pfmemalloc(page);
1735 	else
1736 		clear_page_pfmemalloc(page);
1737 }
1738 
1739 /*
1740  * Go through the free lists for the given migratetype and remove
1741  * the smallest available page from the freelists
1742  */
1743 static __always_inline
1744 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1745 						int migratetype)
1746 {
1747 	unsigned int current_order;
1748 	struct free_area *area;
1749 	struct page *page;
1750 
1751 	/* Find a page of the appropriate size in the preferred list */
1752 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1753 		area = &(zone->free_area[current_order]);
1754 		page = get_page_from_free_area(area, migratetype);
1755 		if (!page)
1756 			continue;
1757 
1758 		page_del_and_expand(zone, page, order, current_order,
1759 				    migratetype);
1760 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1761 				pcp_allowed_order(order) &&
1762 				migratetype < MIGRATE_PCPTYPES);
1763 		return page;
1764 	}
1765 
1766 	return NULL;
1767 }
1768 
1769 
1770 /*
1771  * This array describes the order lists are fallen back to when
1772  * the free lists for the desirable migrate type are depleted
1773  *
1774  * The other migratetypes do not have fallbacks.
1775  */
1776 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1777 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1778 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1779 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1780 };
1781 
1782 #ifdef CONFIG_CMA
1783 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1784 					unsigned int order)
1785 {
1786 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1787 }
1788 #else
1789 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1790 					unsigned int order) { return NULL; }
1791 #endif
1792 
1793 /*
1794  * Change the type of a block and move all its free pages to that
1795  * type's freelist.
1796  */
1797 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1798 				  int old_mt, int new_mt)
1799 {
1800 	struct page *page;
1801 	unsigned long pfn, end_pfn;
1802 	unsigned int order;
1803 	int pages_moved = 0;
1804 
1805 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1806 	end_pfn = pageblock_end_pfn(start_pfn);
1807 
1808 	for (pfn = start_pfn; pfn < end_pfn;) {
1809 		page = pfn_to_page(pfn);
1810 		if (!PageBuddy(page)) {
1811 			pfn++;
1812 			continue;
1813 		}
1814 
1815 		/* Make sure we are not inadvertently changing nodes */
1816 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1817 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1818 
1819 		order = buddy_order(page);
1820 
1821 		move_to_free_list(page, zone, order, old_mt, new_mt);
1822 
1823 		pfn += 1 << order;
1824 		pages_moved += 1 << order;
1825 	}
1826 
1827 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1828 
1829 	return pages_moved;
1830 }
1831 
1832 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1833 				      unsigned long *start_pfn,
1834 				      int *num_free, int *num_movable)
1835 {
1836 	unsigned long pfn, start, end;
1837 
1838 	pfn = page_to_pfn(page);
1839 	start = pageblock_start_pfn(pfn);
1840 	end = pageblock_end_pfn(pfn);
1841 
1842 	/*
1843 	 * The caller only has the lock for @zone, don't touch ranges
1844 	 * that straddle into other zones. While we could move part of
1845 	 * the range that's inside the zone, this call is usually
1846 	 * accompanied by other operations such as migratetype updates
1847 	 * which also should be locked.
1848 	 */
1849 	if (!zone_spans_pfn(zone, start))
1850 		return false;
1851 	if (!zone_spans_pfn(zone, end - 1))
1852 		return false;
1853 
1854 	*start_pfn = start;
1855 
1856 	if (num_free) {
1857 		*num_free = 0;
1858 		*num_movable = 0;
1859 		for (pfn = start; pfn < end;) {
1860 			page = pfn_to_page(pfn);
1861 			if (PageBuddy(page)) {
1862 				int nr = 1 << buddy_order(page);
1863 
1864 				*num_free += nr;
1865 				pfn += nr;
1866 				continue;
1867 			}
1868 			/*
1869 			 * We assume that pages that could be isolated for
1870 			 * migration are movable. But we don't actually try
1871 			 * isolating, as that would be expensive.
1872 			 */
1873 			if (PageLRU(page) || __PageMovable(page))
1874 				(*num_movable)++;
1875 			pfn++;
1876 		}
1877 	}
1878 
1879 	return true;
1880 }
1881 
1882 static int move_freepages_block(struct zone *zone, struct page *page,
1883 				int old_mt, int new_mt)
1884 {
1885 	unsigned long start_pfn;
1886 
1887 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1888 		return -1;
1889 
1890 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1891 }
1892 
1893 #ifdef CONFIG_MEMORY_ISOLATION
1894 /* Look for a buddy that straddles start_pfn */
1895 static unsigned long find_large_buddy(unsigned long start_pfn)
1896 {
1897 	int order = 0;
1898 	struct page *page;
1899 	unsigned long pfn = start_pfn;
1900 
1901 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1902 		/* Nothing found */
1903 		if (++order > MAX_PAGE_ORDER)
1904 			return start_pfn;
1905 		pfn &= ~0UL << order;
1906 	}
1907 
1908 	/*
1909 	 * Found a preceding buddy, but does it straddle?
1910 	 */
1911 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1912 		return pfn;
1913 
1914 	/* Nothing found */
1915 	return start_pfn;
1916 }
1917 
1918 /**
1919  * move_freepages_block_isolate - move free pages in block for page isolation
1920  * @zone: the zone
1921  * @page: the pageblock page
1922  * @migratetype: migratetype to set on the pageblock
1923  *
1924  * This is similar to move_freepages_block(), but handles the special
1925  * case encountered in page isolation, where the block of interest
1926  * might be part of a larger buddy spanning multiple pageblocks.
1927  *
1928  * Unlike the regular page allocator path, which moves pages while
1929  * stealing buddies off the freelist, page isolation is interested in
1930  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1931  *
1932  * This function handles that. Straddling buddies are split into
1933  * individual pageblocks. Only the block of interest is moved.
1934  *
1935  * Returns %true if pages could be moved, %false otherwise.
1936  */
1937 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1938 				  int migratetype)
1939 {
1940 	unsigned long start_pfn, pfn;
1941 
1942 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1943 		return false;
1944 
1945 	/* No splits needed if buddies can't span multiple blocks */
1946 	if (pageblock_order == MAX_PAGE_ORDER)
1947 		goto move;
1948 
1949 	/* We're a tail block in a larger buddy */
1950 	pfn = find_large_buddy(start_pfn);
1951 	if (pfn != start_pfn) {
1952 		struct page *buddy = pfn_to_page(pfn);
1953 		int order = buddy_order(buddy);
1954 
1955 		del_page_from_free_list(buddy, zone, order,
1956 					get_pfnblock_migratetype(buddy, pfn));
1957 		set_pageblock_migratetype(page, migratetype);
1958 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1959 		return true;
1960 	}
1961 
1962 	/* We're the starting block of a larger buddy */
1963 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1964 		int order = buddy_order(page);
1965 
1966 		del_page_from_free_list(page, zone, order,
1967 					get_pfnblock_migratetype(page, pfn));
1968 		set_pageblock_migratetype(page, migratetype);
1969 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1970 		return true;
1971 	}
1972 move:
1973 	__move_freepages_block(zone, start_pfn,
1974 			       get_pfnblock_migratetype(page, start_pfn),
1975 			       migratetype);
1976 	return true;
1977 }
1978 #endif /* CONFIG_MEMORY_ISOLATION */
1979 
1980 static void change_pageblock_range(struct page *pageblock_page,
1981 					int start_order, int migratetype)
1982 {
1983 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1984 
1985 	while (nr_pageblocks--) {
1986 		set_pageblock_migratetype(pageblock_page, migratetype);
1987 		pageblock_page += pageblock_nr_pages;
1988 	}
1989 }
1990 
1991 static inline bool boost_watermark(struct zone *zone)
1992 {
1993 	unsigned long max_boost;
1994 
1995 	if (!watermark_boost_factor)
1996 		return false;
1997 	/*
1998 	 * Don't bother in zones that are unlikely to produce results.
1999 	 * On small machines, including kdump capture kernels running
2000 	 * in a small area, boosting the watermark can cause an out of
2001 	 * memory situation immediately.
2002 	 */
2003 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2004 		return false;
2005 
2006 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2007 			watermark_boost_factor, 10000);
2008 
2009 	/*
2010 	 * high watermark may be uninitialised if fragmentation occurs
2011 	 * very early in boot so do not boost. We do not fall
2012 	 * through and boost by pageblock_nr_pages as failing
2013 	 * allocations that early means that reclaim is not going
2014 	 * to help and it may even be impossible to reclaim the
2015 	 * boosted watermark resulting in a hang.
2016 	 */
2017 	if (!max_boost)
2018 		return false;
2019 
2020 	max_boost = max(pageblock_nr_pages, max_boost);
2021 
2022 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2023 		max_boost);
2024 
2025 	return true;
2026 }
2027 
2028 /*
2029  * When we are falling back to another migratetype during allocation, should we
2030  * try to claim an entire block to satisfy further allocations, instead of
2031  * polluting multiple pageblocks?
2032  */
2033 static bool should_try_claim_block(unsigned int order, int start_mt)
2034 {
2035 	/*
2036 	 * Leaving this order check is intended, although there is
2037 	 * relaxed order check in next check. The reason is that
2038 	 * we can actually claim the whole pageblock if this condition met,
2039 	 * but, below check doesn't guarantee it and that is just heuristic
2040 	 * so could be changed anytime.
2041 	 */
2042 	if (order >= pageblock_order)
2043 		return true;
2044 
2045 	/*
2046 	 * Above a certain threshold, always try to claim, as it's likely there
2047 	 * will be more free pages in the pageblock.
2048 	 */
2049 	if (order >= pageblock_order / 2)
2050 		return true;
2051 
2052 	/*
2053 	 * Unmovable/reclaimable allocations would cause permanent
2054 	 * fragmentations if they fell back to allocating from a movable block
2055 	 * (polluting it), so we try to claim the whole block regardless of the
2056 	 * allocation size. Later movable allocations can always steal from this
2057 	 * block, which is less problematic.
2058 	 */
2059 	if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
2060 		return true;
2061 
2062 	if (page_group_by_mobility_disabled)
2063 		return true;
2064 
2065 	/*
2066 	 * Movable pages won't cause permanent fragmentation, so when you alloc
2067 	 * small pages, we just need to temporarily steal unmovable or
2068 	 * reclaimable pages that are closest to the request size. After a
2069 	 * while, memory compaction may occur to form large contiguous pages,
2070 	 * and the next movable allocation may not need to steal.
2071 	 */
2072 	return false;
2073 }
2074 
2075 /*
2076  * Check whether there is a suitable fallback freepage with requested order.
2077  * Sets *claim_block to instruct the caller whether it should convert a whole
2078  * pageblock to the returned migratetype.
2079  * If only_claim is true, this function returns fallback_mt only if
2080  * we would do this whole-block claiming. This would help to reduce
2081  * fragmentation due to mixed migratetype pages in one pageblock.
2082  */
2083 int find_suitable_fallback(struct free_area *area, unsigned int order,
2084 			int migratetype, bool only_claim, bool *claim_block)
2085 {
2086 	int i;
2087 	int fallback_mt;
2088 
2089 	if (area->nr_free == 0)
2090 		return -1;
2091 
2092 	*claim_block = false;
2093 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2094 		fallback_mt = fallbacks[migratetype][i];
2095 		if (free_area_empty(area, fallback_mt))
2096 			continue;
2097 
2098 		if (should_try_claim_block(order, migratetype))
2099 			*claim_block = true;
2100 
2101 		if (*claim_block || !only_claim)
2102 			return fallback_mt;
2103 	}
2104 
2105 	return -1;
2106 }
2107 
2108 /*
2109  * This function implements actual block claiming behaviour. If order is large
2110  * enough, we can claim the whole pageblock for the requested migratetype. If
2111  * not, we check the pageblock for constituent pages; if at least half of the
2112  * pages are free or compatible, we can still claim the whole block, so pages
2113  * freed in the future will be put on the correct free list.
2114  */
2115 static struct page *
2116 try_to_claim_block(struct zone *zone, struct page *page,
2117 		   int current_order, int order, int start_type,
2118 		   int block_type, unsigned int alloc_flags)
2119 {
2120 	int free_pages, movable_pages, alike_pages;
2121 	unsigned long start_pfn;
2122 
2123 	/* Take ownership for orders >= pageblock_order */
2124 	if (current_order >= pageblock_order) {
2125 		unsigned int nr_added;
2126 
2127 		del_page_from_free_list(page, zone, current_order, block_type);
2128 		change_pageblock_range(page, current_order, start_type);
2129 		nr_added = expand(zone, page, order, current_order, start_type);
2130 		account_freepages(zone, nr_added, start_type);
2131 		return page;
2132 	}
2133 
2134 	/*
2135 	 * Boost watermarks to increase reclaim pressure to reduce the
2136 	 * likelihood of future fallbacks. Wake kswapd now as the node
2137 	 * may be balanced overall and kswapd will not wake naturally.
2138 	 */
2139 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2140 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2141 
2142 	/* moving whole block can fail due to zone boundary conditions */
2143 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2144 				       &movable_pages))
2145 		return NULL;
2146 
2147 	/*
2148 	 * Determine how many pages are compatible with our allocation.
2149 	 * For movable allocation, it's the number of movable pages which
2150 	 * we just obtained. For other types it's a bit more tricky.
2151 	 */
2152 	if (start_type == MIGRATE_MOVABLE) {
2153 		alike_pages = movable_pages;
2154 	} else {
2155 		/*
2156 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2157 		 * to MOVABLE pageblock, consider all non-movable pages as
2158 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2159 		 * vice versa, be conservative since we can't distinguish the
2160 		 * exact migratetype of non-movable pages.
2161 		 */
2162 		if (block_type == MIGRATE_MOVABLE)
2163 			alike_pages = pageblock_nr_pages
2164 						- (free_pages + movable_pages);
2165 		else
2166 			alike_pages = 0;
2167 	}
2168 	/*
2169 	 * If a sufficient number of pages in the block are either free or of
2170 	 * compatible migratability as our allocation, claim the whole block.
2171 	 */
2172 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2173 			page_group_by_mobility_disabled) {
2174 		__move_freepages_block(zone, start_pfn, block_type, start_type);
2175 		return __rmqueue_smallest(zone, order, start_type);
2176 	}
2177 
2178 	return NULL;
2179 }
2180 
2181 /*
2182  * Try to allocate from some fallback migratetype by claiming the entire block,
2183  * i.e. converting it to the allocation's start migratetype.
2184  *
2185  * The use of signed ints for order and current_order is a deliberate
2186  * deviation from the rest of this file, to make the for loop
2187  * condition simpler.
2188  */
2189 static __always_inline struct page *
2190 __rmqueue_claim(struct zone *zone, int order, int start_migratetype,
2191 						unsigned int alloc_flags)
2192 {
2193 	struct free_area *area;
2194 	int current_order;
2195 	int min_order = order;
2196 	struct page *page;
2197 	int fallback_mt;
2198 	bool claim_block;
2199 
2200 	/*
2201 	 * Do not steal pages from freelists belonging to other pageblocks
2202 	 * i.e. orders < pageblock_order. If there are no local zones free,
2203 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2204 	 */
2205 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2206 		min_order = pageblock_order;
2207 
2208 	/*
2209 	 * Find the largest available free page in the other list. This roughly
2210 	 * approximates finding the pageblock with the most free pages, which
2211 	 * would be too costly to do exactly.
2212 	 */
2213 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2214 				--current_order) {
2215 		area = &(zone->free_area[current_order]);
2216 		fallback_mt = find_suitable_fallback(area, current_order,
2217 				start_migratetype, false, &claim_block);
2218 		if (fallback_mt == -1)
2219 			continue;
2220 
2221 		if (!claim_block)
2222 			break;
2223 
2224 		page = get_page_from_free_area(area, fallback_mt);
2225 		page = try_to_claim_block(zone, page, current_order, order,
2226 					  start_migratetype, fallback_mt,
2227 					  alloc_flags);
2228 		if (page) {
2229 			trace_mm_page_alloc_extfrag(page, order, current_order,
2230 						    start_migratetype, fallback_mt);
2231 			return page;
2232 		}
2233 	}
2234 
2235 	return NULL;
2236 }
2237 
2238 /*
2239  * Try to steal a single page from some fallback migratetype. Leave the rest of
2240  * the block as its current migratetype, potentially causing fragmentation.
2241  */
2242 static __always_inline struct page *
2243 __rmqueue_steal(struct zone *zone, int order, int start_migratetype)
2244 {
2245 	struct free_area *area;
2246 	int current_order;
2247 	struct page *page;
2248 	int fallback_mt;
2249 	bool claim_block;
2250 
2251 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2252 		area = &(zone->free_area[current_order]);
2253 		fallback_mt = find_suitable_fallback(area, current_order,
2254 				start_migratetype, false, &claim_block);
2255 		if (fallback_mt == -1)
2256 			continue;
2257 
2258 		page = get_page_from_free_area(area, fallback_mt);
2259 		page_del_and_expand(zone, page, order, current_order, fallback_mt);
2260 		trace_mm_page_alloc_extfrag(page, order, current_order,
2261 					    start_migratetype, fallback_mt);
2262 		return page;
2263 	}
2264 
2265 	return NULL;
2266 }
2267 
2268 enum rmqueue_mode {
2269 	RMQUEUE_NORMAL,
2270 	RMQUEUE_CMA,
2271 	RMQUEUE_CLAIM,
2272 	RMQUEUE_STEAL,
2273 };
2274 
2275 /*
2276  * Do the hard work of removing an element from the buddy allocator.
2277  * Call me with the zone->lock already held.
2278  */
2279 static __always_inline struct page *
2280 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2281 	  unsigned int alloc_flags, enum rmqueue_mode *mode)
2282 {
2283 	struct page *page;
2284 
2285 	if (IS_ENABLED(CONFIG_CMA)) {
2286 		/*
2287 		 * Balance movable allocations between regular and CMA areas by
2288 		 * allocating from CMA when over half of the zone's free memory
2289 		 * is in the CMA area.
2290 		 */
2291 		if (alloc_flags & ALLOC_CMA &&
2292 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2293 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2294 			page = __rmqueue_cma_fallback(zone, order);
2295 			if (page)
2296 				return page;
2297 		}
2298 	}
2299 
2300 	/*
2301 	 * First try the freelists of the requested migratetype, then try
2302 	 * fallbacks modes with increasing levels of fragmentation risk.
2303 	 *
2304 	 * The fallback logic is expensive and rmqueue_bulk() calls in
2305 	 * a loop with the zone->lock held, meaning the freelists are
2306 	 * not subject to any outside changes. Remember in *mode where
2307 	 * we found pay dirt, to save us the search on the next call.
2308 	 */
2309 	switch (*mode) {
2310 	case RMQUEUE_NORMAL:
2311 		page = __rmqueue_smallest(zone, order, migratetype);
2312 		if (page)
2313 			return page;
2314 		fallthrough;
2315 	case RMQUEUE_CMA:
2316 		if (alloc_flags & ALLOC_CMA) {
2317 			page = __rmqueue_cma_fallback(zone, order);
2318 			if (page) {
2319 				*mode = RMQUEUE_CMA;
2320 				return page;
2321 			}
2322 		}
2323 		fallthrough;
2324 	case RMQUEUE_CLAIM:
2325 		page = __rmqueue_claim(zone, order, migratetype, alloc_flags);
2326 		if (page) {
2327 			/* Replenished preferred freelist, back to normal mode. */
2328 			*mode = RMQUEUE_NORMAL;
2329 			return page;
2330 		}
2331 		fallthrough;
2332 	case RMQUEUE_STEAL:
2333 		if (!(alloc_flags & ALLOC_NOFRAGMENT)) {
2334 			page = __rmqueue_steal(zone, order, migratetype);
2335 			if (page) {
2336 				*mode = RMQUEUE_STEAL;
2337 				return page;
2338 			}
2339 		}
2340 	}
2341 	return NULL;
2342 }
2343 
2344 /*
2345  * Obtain a specified number of elements from the buddy allocator, all under
2346  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2347  * Returns the number of new pages which were placed at *list.
2348  */
2349 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2350 			unsigned long count, struct list_head *list,
2351 			int migratetype, unsigned int alloc_flags)
2352 {
2353 	enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2354 	unsigned long flags;
2355 	int i;
2356 
2357 	if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2358 		if (!spin_trylock_irqsave(&zone->lock, flags))
2359 			return 0;
2360 	} else {
2361 		spin_lock_irqsave(&zone->lock, flags);
2362 	}
2363 	for (i = 0; i < count; ++i) {
2364 		struct page *page = __rmqueue(zone, order, migratetype,
2365 					      alloc_flags, &rmqm);
2366 		if (unlikely(page == NULL))
2367 			break;
2368 
2369 		/*
2370 		 * Split buddy pages returned by expand() are received here in
2371 		 * physical page order. The page is added to the tail of
2372 		 * caller's list. From the callers perspective, the linked list
2373 		 * is ordered by page number under some conditions. This is
2374 		 * useful for IO devices that can forward direction from the
2375 		 * head, thus also in the physical page order. This is useful
2376 		 * for IO devices that can merge IO requests if the physical
2377 		 * pages are ordered properly.
2378 		 */
2379 		list_add_tail(&page->pcp_list, list);
2380 	}
2381 	spin_unlock_irqrestore(&zone->lock, flags);
2382 
2383 	return i;
2384 }
2385 
2386 /*
2387  * Called from the vmstat counter updater to decay the PCP high.
2388  * Return whether there are addition works to do.
2389  */
2390 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2391 {
2392 	int high_min, to_drain, batch;
2393 	int todo = 0;
2394 
2395 	high_min = READ_ONCE(pcp->high_min);
2396 	batch = READ_ONCE(pcp->batch);
2397 	/*
2398 	 * Decrease pcp->high periodically to try to free possible
2399 	 * idle PCP pages.  And, avoid to free too many pages to
2400 	 * control latency.  This caps pcp->high decrement too.
2401 	 */
2402 	if (pcp->high > high_min) {
2403 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2404 				 pcp->high - (pcp->high >> 3), high_min);
2405 		if (pcp->high > high_min)
2406 			todo++;
2407 	}
2408 
2409 	to_drain = pcp->count - pcp->high;
2410 	if (to_drain > 0) {
2411 		spin_lock(&pcp->lock);
2412 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2413 		spin_unlock(&pcp->lock);
2414 		todo++;
2415 	}
2416 
2417 	return todo;
2418 }
2419 
2420 #ifdef CONFIG_NUMA
2421 /*
2422  * Called from the vmstat counter updater to drain pagesets of this
2423  * currently executing processor on remote nodes after they have
2424  * expired.
2425  */
2426 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2427 {
2428 	int to_drain, batch;
2429 
2430 	batch = READ_ONCE(pcp->batch);
2431 	to_drain = min(pcp->count, batch);
2432 	if (to_drain > 0) {
2433 		spin_lock(&pcp->lock);
2434 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2435 		spin_unlock(&pcp->lock);
2436 	}
2437 }
2438 #endif
2439 
2440 /*
2441  * Drain pcplists of the indicated processor and zone.
2442  */
2443 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2444 {
2445 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2446 	int count;
2447 
2448 	do {
2449 		spin_lock(&pcp->lock);
2450 		count = pcp->count;
2451 		if (count) {
2452 			int to_drain = min(count,
2453 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2454 
2455 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2456 			count -= to_drain;
2457 		}
2458 		spin_unlock(&pcp->lock);
2459 	} while (count);
2460 }
2461 
2462 /*
2463  * Drain pcplists of all zones on the indicated processor.
2464  */
2465 static void drain_pages(unsigned int cpu)
2466 {
2467 	struct zone *zone;
2468 
2469 	for_each_populated_zone(zone) {
2470 		drain_pages_zone(cpu, zone);
2471 	}
2472 }
2473 
2474 /*
2475  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2476  */
2477 void drain_local_pages(struct zone *zone)
2478 {
2479 	int cpu = smp_processor_id();
2480 
2481 	if (zone)
2482 		drain_pages_zone(cpu, zone);
2483 	else
2484 		drain_pages(cpu);
2485 }
2486 
2487 /*
2488  * The implementation of drain_all_pages(), exposing an extra parameter to
2489  * drain on all cpus.
2490  *
2491  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2492  * not empty. The check for non-emptiness can however race with a free to
2493  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2494  * that need the guarantee that every CPU has drained can disable the
2495  * optimizing racy check.
2496  */
2497 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2498 {
2499 	int cpu;
2500 
2501 	/*
2502 	 * Allocate in the BSS so we won't require allocation in
2503 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2504 	 */
2505 	static cpumask_t cpus_with_pcps;
2506 
2507 	/*
2508 	 * Do not drain if one is already in progress unless it's specific to
2509 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2510 	 * the drain to be complete when the call returns.
2511 	 */
2512 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2513 		if (!zone)
2514 			return;
2515 		mutex_lock(&pcpu_drain_mutex);
2516 	}
2517 
2518 	/*
2519 	 * We don't care about racing with CPU hotplug event
2520 	 * as offline notification will cause the notified
2521 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2522 	 * disables preemption as part of its processing
2523 	 */
2524 	for_each_online_cpu(cpu) {
2525 		struct per_cpu_pages *pcp;
2526 		struct zone *z;
2527 		bool has_pcps = false;
2528 
2529 		if (force_all_cpus) {
2530 			/*
2531 			 * The pcp.count check is racy, some callers need a
2532 			 * guarantee that no cpu is missed.
2533 			 */
2534 			has_pcps = true;
2535 		} else if (zone) {
2536 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2537 			if (pcp->count)
2538 				has_pcps = true;
2539 		} else {
2540 			for_each_populated_zone(z) {
2541 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2542 				if (pcp->count) {
2543 					has_pcps = true;
2544 					break;
2545 				}
2546 			}
2547 		}
2548 
2549 		if (has_pcps)
2550 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2551 		else
2552 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2553 	}
2554 
2555 	for_each_cpu(cpu, &cpus_with_pcps) {
2556 		if (zone)
2557 			drain_pages_zone(cpu, zone);
2558 		else
2559 			drain_pages(cpu);
2560 	}
2561 
2562 	mutex_unlock(&pcpu_drain_mutex);
2563 }
2564 
2565 /*
2566  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2567  *
2568  * When zone parameter is non-NULL, spill just the single zone's pages.
2569  */
2570 void drain_all_pages(struct zone *zone)
2571 {
2572 	__drain_all_pages(zone, false);
2573 }
2574 
2575 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2576 {
2577 	int min_nr_free, max_nr_free;
2578 
2579 	/* Free as much as possible if batch freeing high-order pages. */
2580 	if (unlikely(free_high))
2581 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2582 
2583 	/* Check for PCP disabled or boot pageset */
2584 	if (unlikely(high < batch))
2585 		return 1;
2586 
2587 	/* Leave at least pcp->batch pages on the list */
2588 	min_nr_free = batch;
2589 	max_nr_free = high - batch;
2590 
2591 	/*
2592 	 * Increase the batch number to the number of the consecutive
2593 	 * freed pages to reduce zone lock contention.
2594 	 */
2595 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2596 
2597 	return batch;
2598 }
2599 
2600 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2601 		       int batch, bool free_high)
2602 {
2603 	int high, high_min, high_max;
2604 
2605 	high_min = READ_ONCE(pcp->high_min);
2606 	high_max = READ_ONCE(pcp->high_max);
2607 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2608 
2609 	if (unlikely(!high))
2610 		return 0;
2611 
2612 	if (unlikely(free_high)) {
2613 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2614 				high_min);
2615 		return 0;
2616 	}
2617 
2618 	/*
2619 	 * If reclaim is active, limit the number of pages that can be
2620 	 * stored on pcp lists
2621 	 */
2622 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2623 		int free_count = max_t(int, pcp->free_count, batch);
2624 
2625 		pcp->high = max(high - free_count, high_min);
2626 		return min(batch << 2, pcp->high);
2627 	}
2628 
2629 	if (high_min == high_max)
2630 		return high;
2631 
2632 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2633 		int free_count = max_t(int, pcp->free_count, batch);
2634 
2635 		pcp->high = max(high - free_count, high_min);
2636 		high = max(pcp->count, high_min);
2637 	} else if (pcp->count >= high) {
2638 		int need_high = pcp->free_count + batch;
2639 
2640 		/* pcp->high should be large enough to hold batch freed pages */
2641 		if (pcp->high < need_high)
2642 			pcp->high = clamp(need_high, high_min, high_max);
2643 	}
2644 
2645 	return high;
2646 }
2647 
2648 static void free_frozen_page_commit(struct zone *zone,
2649 		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2650 		unsigned int order, fpi_t fpi_flags)
2651 {
2652 	int high, batch;
2653 	int pindex;
2654 	bool free_high = false;
2655 
2656 	/*
2657 	 * On freeing, reduce the number of pages that are batch allocated.
2658 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2659 	 * allocations.
2660 	 */
2661 	pcp->alloc_factor >>= 1;
2662 	__count_vm_events(PGFREE, 1 << order);
2663 	pindex = order_to_pindex(migratetype, order);
2664 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2665 	pcp->count += 1 << order;
2666 
2667 	batch = READ_ONCE(pcp->batch);
2668 	/*
2669 	 * As high-order pages other than THP's stored on PCP can contribute
2670 	 * to fragmentation, limit the number stored when PCP is heavily
2671 	 * freeing without allocation. The remainder after bulk freeing
2672 	 * stops will be drained from vmstat refresh context.
2673 	 */
2674 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2675 		free_high = (pcp->free_count >= batch &&
2676 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2677 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2678 			      pcp->count >= READ_ONCE(batch)));
2679 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2680 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2681 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2682 	}
2683 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2684 		pcp->free_count += (1 << order);
2685 
2686 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
2687 		/*
2688 		 * Do not attempt to take a zone lock. Let pcp->count get
2689 		 * over high mark temporarily.
2690 		 */
2691 		return;
2692 	}
2693 	high = nr_pcp_high(pcp, zone, batch, free_high);
2694 	if (pcp->count >= high) {
2695 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2696 				   pcp, pindex);
2697 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2698 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2699 				      ZONE_MOVABLE, 0))
2700 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2701 	}
2702 }
2703 
2704 /*
2705  * Free a pcp page
2706  */
2707 static void __free_frozen_pages(struct page *page, unsigned int order,
2708 				fpi_t fpi_flags)
2709 {
2710 	unsigned long __maybe_unused UP_flags;
2711 	struct per_cpu_pages *pcp;
2712 	struct zone *zone;
2713 	unsigned long pfn = page_to_pfn(page);
2714 	int migratetype;
2715 
2716 	if (!pcp_allowed_order(order)) {
2717 		__free_pages_ok(page, order, fpi_flags);
2718 		return;
2719 	}
2720 
2721 	if (!free_pages_prepare(page, order))
2722 		return;
2723 
2724 	/*
2725 	 * We only track unmovable, reclaimable and movable on pcp lists.
2726 	 * Place ISOLATE pages on the isolated list because they are being
2727 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2728 	 * get those areas back if necessary. Otherwise, we may have to free
2729 	 * excessively into the page allocator
2730 	 */
2731 	zone = page_zone(page);
2732 	migratetype = get_pfnblock_migratetype(page, pfn);
2733 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2734 		if (unlikely(is_migrate_isolate(migratetype))) {
2735 			free_one_page(zone, page, pfn, order, fpi_flags);
2736 			return;
2737 		}
2738 		migratetype = MIGRATE_MOVABLE;
2739 	}
2740 
2741 	if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
2742 		     && (in_nmi() || in_hardirq()))) {
2743 		add_page_to_zone_llist(zone, page, order);
2744 		return;
2745 	}
2746 	pcp_trylock_prepare(UP_flags);
2747 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2748 	if (pcp) {
2749 		free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags);
2750 		pcp_spin_unlock(pcp);
2751 	} else {
2752 		free_one_page(zone, page, pfn, order, fpi_flags);
2753 	}
2754 	pcp_trylock_finish(UP_flags);
2755 }
2756 
2757 void free_frozen_pages(struct page *page, unsigned int order)
2758 {
2759 	__free_frozen_pages(page, order, FPI_NONE);
2760 }
2761 
2762 /*
2763  * Free a batch of folios
2764  */
2765 void free_unref_folios(struct folio_batch *folios)
2766 {
2767 	unsigned long __maybe_unused UP_flags;
2768 	struct per_cpu_pages *pcp = NULL;
2769 	struct zone *locked_zone = NULL;
2770 	int i, j;
2771 
2772 	/* Prepare folios for freeing */
2773 	for (i = 0, j = 0; i < folios->nr; i++) {
2774 		struct folio *folio = folios->folios[i];
2775 		unsigned long pfn = folio_pfn(folio);
2776 		unsigned int order = folio_order(folio);
2777 
2778 		if (!free_pages_prepare(&folio->page, order))
2779 			continue;
2780 		/*
2781 		 * Free orders not handled on the PCP directly to the
2782 		 * allocator.
2783 		 */
2784 		if (!pcp_allowed_order(order)) {
2785 			free_one_page(folio_zone(folio), &folio->page,
2786 				      pfn, order, FPI_NONE);
2787 			continue;
2788 		}
2789 		folio->private = (void *)(unsigned long)order;
2790 		if (j != i)
2791 			folios->folios[j] = folio;
2792 		j++;
2793 	}
2794 	folios->nr = j;
2795 
2796 	for (i = 0; i < folios->nr; i++) {
2797 		struct folio *folio = folios->folios[i];
2798 		struct zone *zone = folio_zone(folio);
2799 		unsigned long pfn = folio_pfn(folio);
2800 		unsigned int order = (unsigned long)folio->private;
2801 		int migratetype;
2802 
2803 		folio->private = NULL;
2804 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2805 
2806 		/* Different zone requires a different pcp lock */
2807 		if (zone != locked_zone ||
2808 		    is_migrate_isolate(migratetype)) {
2809 			if (pcp) {
2810 				pcp_spin_unlock(pcp);
2811 				pcp_trylock_finish(UP_flags);
2812 				locked_zone = NULL;
2813 				pcp = NULL;
2814 			}
2815 
2816 			/*
2817 			 * Free isolated pages directly to the
2818 			 * allocator, see comment in free_frozen_pages.
2819 			 */
2820 			if (is_migrate_isolate(migratetype)) {
2821 				free_one_page(zone, &folio->page, pfn,
2822 					      order, FPI_NONE);
2823 				continue;
2824 			}
2825 
2826 			/*
2827 			 * trylock is necessary as folios may be getting freed
2828 			 * from IRQ or SoftIRQ context after an IO completion.
2829 			 */
2830 			pcp_trylock_prepare(UP_flags);
2831 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2832 			if (unlikely(!pcp)) {
2833 				pcp_trylock_finish(UP_flags);
2834 				free_one_page(zone, &folio->page, pfn,
2835 					      order, FPI_NONE);
2836 				continue;
2837 			}
2838 			locked_zone = zone;
2839 		}
2840 
2841 		/*
2842 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2843 		 * to the MIGRATE_MOVABLE pcp list.
2844 		 */
2845 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2846 			migratetype = MIGRATE_MOVABLE;
2847 
2848 		trace_mm_page_free_batched(&folio->page);
2849 		free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
2850 					order, FPI_NONE);
2851 	}
2852 
2853 	if (pcp) {
2854 		pcp_spin_unlock(pcp);
2855 		pcp_trylock_finish(UP_flags);
2856 	}
2857 	folio_batch_reinit(folios);
2858 }
2859 
2860 /*
2861  * split_page takes a non-compound higher-order page, and splits it into
2862  * n (1<<order) sub-pages: page[0..n]
2863  * Each sub-page must be freed individually.
2864  *
2865  * Note: this is probably too low level an operation for use in drivers.
2866  * Please consult with lkml before using this in your driver.
2867  */
2868 void split_page(struct page *page, unsigned int order)
2869 {
2870 	int i;
2871 
2872 	VM_BUG_ON_PAGE(PageCompound(page), page);
2873 	VM_BUG_ON_PAGE(!page_count(page), page);
2874 
2875 	for (i = 1; i < (1 << order); i++)
2876 		set_page_refcounted(page + i);
2877 	split_page_owner(page, order, 0);
2878 	pgalloc_tag_split(page_folio(page), order, 0);
2879 	split_page_memcg(page, order);
2880 }
2881 EXPORT_SYMBOL_GPL(split_page);
2882 
2883 int __isolate_free_page(struct page *page, unsigned int order)
2884 {
2885 	struct zone *zone = page_zone(page);
2886 	int mt = get_pageblock_migratetype(page);
2887 
2888 	if (!is_migrate_isolate(mt)) {
2889 		unsigned long watermark;
2890 		/*
2891 		 * Obey watermarks as if the page was being allocated. We can
2892 		 * emulate a high-order watermark check with a raised order-0
2893 		 * watermark, because we already know our high-order page
2894 		 * exists.
2895 		 */
2896 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2897 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2898 			return 0;
2899 	}
2900 
2901 	del_page_from_free_list(page, zone, order, mt);
2902 
2903 	/*
2904 	 * Set the pageblock if the isolated page is at least half of a
2905 	 * pageblock
2906 	 */
2907 	if (order >= pageblock_order - 1) {
2908 		struct page *endpage = page + (1 << order) - 1;
2909 		for (; page < endpage; page += pageblock_nr_pages) {
2910 			int mt = get_pageblock_migratetype(page);
2911 			/*
2912 			 * Only change normal pageblocks (i.e., they can merge
2913 			 * with others)
2914 			 */
2915 			if (migratetype_is_mergeable(mt))
2916 				move_freepages_block(zone, page, mt,
2917 						     MIGRATE_MOVABLE);
2918 		}
2919 	}
2920 
2921 	return 1UL << order;
2922 }
2923 
2924 /**
2925  * __putback_isolated_page - Return a now-isolated page back where we got it
2926  * @page: Page that was isolated
2927  * @order: Order of the isolated page
2928  * @mt: The page's pageblock's migratetype
2929  *
2930  * This function is meant to return a page pulled from the free lists via
2931  * __isolate_free_page back to the free lists they were pulled from.
2932  */
2933 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2934 {
2935 	struct zone *zone = page_zone(page);
2936 
2937 	/* zone lock should be held when this function is called */
2938 	lockdep_assert_held(&zone->lock);
2939 
2940 	/* Return isolated page to tail of freelist. */
2941 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2942 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2943 }
2944 
2945 /*
2946  * Update NUMA hit/miss statistics
2947  */
2948 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2949 				   long nr_account)
2950 {
2951 #ifdef CONFIG_NUMA
2952 	enum numa_stat_item local_stat = NUMA_LOCAL;
2953 
2954 	/* skip numa counters update if numa stats is disabled */
2955 	if (!static_branch_likely(&vm_numa_stat_key))
2956 		return;
2957 
2958 	if (zone_to_nid(z) != numa_node_id())
2959 		local_stat = NUMA_OTHER;
2960 
2961 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2962 		__count_numa_events(z, NUMA_HIT, nr_account);
2963 	else {
2964 		__count_numa_events(z, NUMA_MISS, nr_account);
2965 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2966 	}
2967 	__count_numa_events(z, local_stat, nr_account);
2968 #endif
2969 }
2970 
2971 static __always_inline
2972 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2973 			   unsigned int order, unsigned int alloc_flags,
2974 			   int migratetype)
2975 {
2976 	struct page *page;
2977 	unsigned long flags;
2978 
2979 	do {
2980 		page = NULL;
2981 		if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2982 			if (!spin_trylock_irqsave(&zone->lock, flags))
2983 				return NULL;
2984 		} else {
2985 			spin_lock_irqsave(&zone->lock, flags);
2986 		}
2987 		if (alloc_flags & ALLOC_HIGHATOMIC)
2988 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2989 		if (!page) {
2990 			enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2991 
2992 			page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm);
2993 
2994 			/*
2995 			 * If the allocation fails, allow OOM handling and
2996 			 * order-0 (atomic) allocs access to HIGHATOMIC
2997 			 * reserves as failing now is worse than failing a
2998 			 * high-order atomic allocation in the future.
2999 			 */
3000 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
3001 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3002 
3003 			if (!page) {
3004 				spin_unlock_irqrestore(&zone->lock, flags);
3005 				return NULL;
3006 			}
3007 		}
3008 		spin_unlock_irqrestore(&zone->lock, flags);
3009 	} while (check_new_pages(page, order));
3010 
3011 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3012 	zone_statistics(preferred_zone, zone, 1);
3013 
3014 	return page;
3015 }
3016 
3017 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
3018 {
3019 	int high, base_batch, batch, max_nr_alloc;
3020 	int high_max, high_min;
3021 
3022 	base_batch = READ_ONCE(pcp->batch);
3023 	high_min = READ_ONCE(pcp->high_min);
3024 	high_max = READ_ONCE(pcp->high_max);
3025 	high = pcp->high = clamp(pcp->high, high_min, high_max);
3026 
3027 	/* Check for PCP disabled or boot pageset */
3028 	if (unlikely(high < base_batch))
3029 		return 1;
3030 
3031 	if (order)
3032 		batch = base_batch;
3033 	else
3034 		batch = (base_batch << pcp->alloc_factor);
3035 
3036 	/*
3037 	 * If we had larger pcp->high, we could avoid to allocate from
3038 	 * zone.
3039 	 */
3040 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
3041 		high = pcp->high = min(high + batch, high_max);
3042 
3043 	if (!order) {
3044 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3045 		/*
3046 		 * Double the number of pages allocated each time there is
3047 		 * subsequent allocation of order-0 pages without any freeing.
3048 		 */
3049 		if (batch <= max_nr_alloc &&
3050 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3051 			pcp->alloc_factor++;
3052 		batch = min(batch, max_nr_alloc);
3053 	}
3054 
3055 	/*
3056 	 * Scale batch relative to order if batch implies free pages
3057 	 * can be stored on the PCP. Batch can be 1 for small zones or
3058 	 * for boot pagesets which should never store free pages as
3059 	 * the pages may belong to arbitrary zones.
3060 	 */
3061 	if (batch > 1)
3062 		batch = max(batch >> order, 2);
3063 
3064 	return batch;
3065 }
3066 
3067 /* Remove page from the per-cpu list, caller must protect the list */
3068 static inline
3069 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3070 			int migratetype,
3071 			unsigned int alloc_flags,
3072 			struct per_cpu_pages *pcp,
3073 			struct list_head *list)
3074 {
3075 	struct page *page;
3076 
3077 	do {
3078 		if (list_empty(list)) {
3079 			int batch = nr_pcp_alloc(pcp, zone, order);
3080 			int alloced;
3081 
3082 			alloced = rmqueue_bulk(zone, order,
3083 					batch, list,
3084 					migratetype, alloc_flags);
3085 
3086 			pcp->count += alloced << order;
3087 			if (unlikely(list_empty(list)))
3088 				return NULL;
3089 		}
3090 
3091 		page = list_first_entry(list, struct page, pcp_list);
3092 		list_del(&page->pcp_list);
3093 		pcp->count -= 1 << order;
3094 	} while (check_new_pages(page, order));
3095 
3096 	return page;
3097 }
3098 
3099 /* Lock and remove page from the per-cpu list */
3100 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3101 			struct zone *zone, unsigned int order,
3102 			int migratetype, unsigned int alloc_flags)
3103 {
3104 	struct per_cpu_pages *pcp;
3105 	struct list_head *list;
3106 	struct page *page;
3107 	unsigned long __maybe_unused UP_flags;
3108 
3109 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3110 	pcp_trylock_prepare(UP_flags);
3111 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3112 	if (!pcp) {
3113 		pcp_trylock_finish(UP_flags);
3114 		return NULL;
3115 	}
3116 
3117 	/*
3118 	 * On allocation, reduce the number of pages that are batch freed.
3119 	 * See nr_pcp_free() where free_factor is increased for subsequent
3120 	 * frees.
3121 	 */
3122 	pcp->free_count >>= 1;
3123 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3124 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3125 	pcp_spin_unlock(pcp);
3126 	pcp_trylock_finish(UP_flags);
3127 	if (page) {
3128 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3129 		zone_statistics(preferred_zone, zone, 1);
3130 	}
3131 	return page;
3132 }
3133 
3134 /*
3135  * Allocate a page from the given zone.
3136  * Use pcplists for THP or "cheap" high-order allocations.
3137  */
3138 
3139 /*
3140  * Do not instrument rmqueue() with KMSAN. This function may call
3141  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3142  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3143  * may call rmqueue() again, which will result in a deadlock.
3144  */
3145 __no_sanitize_memory
3146 static inline
3147 struct page *rmqueue(struct zone *preferred_zone,
3148 			struct zone *zone, unsigned int order,
3149 			gfp_t gfp_flags, unsigned int alloc_flags,
3150 			int migratetype)
3151 {
3152 	struct page *page;
3153 
3154 	if (likely(pcp_allowed_order(order))) {
3155 		page = rmqueue_pcplist(preferred_zone, zone, order,
3156 				       migratetype, alloc_flags);
3157 		if (likely(page))
3158 			goto out;
3159 	}
3160 
3161 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3162 							migratetype);
3163 
3164 out:
3165 	/* Separate test+clear to avoid unnecessary atomics */
3166 	if ((alloc_flags & ALLOC_KSWAPD) &&
3167 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3168 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3169 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3170 	}
3171 
3172 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3173 	return page;
3174 }
3175 
3176 /*
3177  * Reserve the pageblock(s) surrounding an allocation request for
3178  * exclusive use of high-order atomic allocations if there are no
3179  * empty page blocks that contain a page with a suitable order
3180  */
3181 static void reserve_highatomic_pageblock(struct page *page, int order,
3182 					 struct zone *zone)
3183 {
3184 	int mt;
3185 	unsigned long max_managed, flags;
3186 
3187 	/*
3188 	 * The number reserved as: minimum is 1 pageblock, maximum is
3189 	 * roughly 1% of a zone. But if 1% of a zone falls below a
3190 	 * pageblock size, then don't reserve any pageblocks.
3191 	 * Check is race-prone but harmless.
3192 	 */
3193 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3194 		return;
3195 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3196 	if (zone->nr_reserved_highatomic >= max_managed)
3197 		return;
3198 
3199 	spin_lock_irqsave(&zone->lock, flags);
3200 
3201 	/* Recheck the nr_reserved_highatomic limit under the lock */
3202 	if (zone->nr_reserved_highatomic >= max_managed)
3203 		goto out_unlock;
3204 
3205 	/* Yoink! */
3206 	mt = get_pageblock_migratetype(page);
3207 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
3208 	if (!migratetype_is_mergeable(mt))
3209 		goto out_unlock;
3210 
3211 	if (order < pageblock_order) {
3212 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3213 			goto out_unlock;
3214 		zone->nr_reserved_highatomic += pageblock_nr_pages;
3215 	} else {
3216 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3217 		zone->nr_reserved_highatomic += 1 << order;
3218 	}
3219 
3220 out_unlock:
3221 	spin_unlock_irqrestore(&zone->lock, flags);
3222 }
3223 
3224 /*
3225  * Used when an allocation is about to fail under memory pressure. This
3226  * potentially hurts the reliability of high-order allocations when under
3227  * intense memory pressure but failed atomic allocations should be easier
3228  * to recover from than an OOM.
3229  *
3230  * If @force is true, try to unreserve pageblocks even though highatomic
3231  * pageblock is exhausted.
3232  */
3233 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3234 						bool force)
3235 {
3236 	struct zonelist *zonelist = ac->zonelist;
3237 	unsigned long flags;
3238 	struct zoneref *z;
3239 	struct zone *zone;
3240 	struct page *page;
3241 	int order;
3242 	int ret;
3243 
3244 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3245 								ac->nodemask) {
3246 		/*
3247 		 * Preserve at least one pageblock unless memory pressure
3248 		 * is really high.
3249 		 */
3250 		if (!force && zone->nr_reserved_highatomic <=
3251 					pageblock_nr_pages)
3252 			continue;
3253 
3254 		spin_lock_irqsave(&zone->lock, flags);
3255 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
3256 			struct free_area *area = &(zone->free_area[order]);
3257 			unsigned long size;
3258 
3259 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3260 			if (!page)
3261 				continue;
3262 
3263 			size = max(pageblock_nr_pages, 1UL << order);
3264 			/*
3265 			 * It should never happen but changes to
3266 			 * locking could inadvertently allow a per-cpu
3267 			 * drain to add pages to MIGRATE_HIGHATOMIC
3268 			 * while unreserving so be safe and watch for
3269 			 * underflows.
3270 			 */
3271 			if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
3272 				size = zone->nr_reserved_highatomic;
3273 			zone->nr_reserved_highatomic -= size;
3274 
3275 			/*
3276 			 * Convert to ac->migratetype and avoid the normal
3277 			 * pageblock stealing heuristics. Minimally, the caller
3278 			 * is doing the work and needs the pages. More
3279 			 * importantly, if the block was always converted to
3280 			 * MIGRATE_UNMOVABLE or another type then the number
3281 			 * of pageblocks that cannot be completely freed
3282 			 * may increase.
3283 			 */
3284 			if (order < pageblock_order)
3285 				ret = move_freepages_block(zone, page,
3286 							   MIGRATE_HIGHATOMIC,
3287 							   ac->migratetype);
3288 			else {
3289 				move_to_free_list(page, zone, order,
3290 						  MIGRATE_HIGHATOMIC,
3291 						  ac->migratetype);
3292 				change_pageblock_range(page, order,
3293 						       ac->migratetype);
3294 				ret = 1;
3295 			}
3296 			/*
3297 			 * Reserving the block(s) already succeeded,
3298 			 * so this should not fail on zone boundaries.
3299 			 */
3300 			WARN_ON_ONCE(ret == -1);
3301 			if (ret > 0) {
3302 				spin_unlock_irqrestore(&zone->lock, flags);
3303 				return ret;
3304 			}
3305 		}
3306 		spin_unlock_irqrestore(&zone->lock, flags);
3307 	}
3308 
3309 	return false;
3310 }
3311 
3312 static inline long __zone_watermark_unusable_free(struct zone *z,
3313 				unsigned int order, unsigned int alloc_flags)
3314 {
3315 	long unusable_free = (1 << order) - 1;
3316 
3317 	/*
3318 	 * If the caller does not have rights to reserves below the min
3319 	 * watermark then subtract the free pages reserved for highatomic.
3320 	 */
3321 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3322 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3323 
3324 #ifdef CONFIG_CMA
3325 	/* If allocation can't use CMA areas don't use free CMA pages */
3326 	if (!(alloc_flags & ALLOC_CMA))
3327 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3328 #endif
3329 
3330 	return unusable_free;
3331 }
3332 
3333 /*
3334  * Return true if free base pages are above 'mark'. For high-order checks it
3335  * will return true of the order-0 watermark is reached and there is at least
3336  * one free page of a suitable size. Checking now avoids taking the zone lock
3337  * to check in the allocation paths if no pages are free.
3338  */
3339 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3340 			 int highest_zoneidx, unsigned int alloc_flags,
3341 			 long free_pages)
3342 {
3343 	long min = mark;
3344 	int o;
3345 
3346 	/* free_pages may go negative - that's OK */
3347 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3348 
3349 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3350 		/*
3351 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3352 		 * as OOM.
3353 		 */
3354 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3355 			min -= min / 2;
3356 
3357 			/*
3358 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3359 			 * access more reserves than just __GFP_HIGH. Other
3360 			 * non-blocking allocations requests such as GFP_NOWAIT
3361 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3362 			 * access to the min reserve.
3363 			 */
3364 			if (alloc_flags & ALLOC_NON_BLOCK)
3365 				min -= min / 4;
3366 		}
3367 
3368 		/*
3369 		 * OOM victims can try even harder than the normal reserve
3370 		 * users on the grounds that it's definitely going to be in
3371 		 * the exit path shortly and free memory. Any allocation it
3372 		 * makes during the free path will be small and short-lived.
3373 		 */
3374 		if (alloc_flags & ALLOC_OOM)
3375 			min -= min / 2;
3376 	}
3377 
3378 	/*
3379 	 * Check watermarks for an order-0 allocation request. If these
3380 	 * are not met, then a high-order request also cannot go ahead
3381 	 * even if a suitable page happened to be free.
3382 	 */
3383 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3384 		return false;
3385 
3386 	/* If this is an order-0 request then the watermark is fine */
3387 	if (!order)
3388 		return true;
3389 
3390 	/* For a high-order request, check at least one suitable page is free */
3391 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3392 		struct free_area *area = &z->free_area[o];
3393 		int mt;
3394 
3395 		if (!area->nr_free)
3396 			continue;
3397 
3398 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3399 			if (!free_area_empty(area, mt))
3400 				return true;
3401 		}
3402 
3403 #ifdef CONFIG_CMA
3404 		if ((alloc_flags & ALLOC_CMA) &&
3405 		    !free_area_empty(area, MIGRATE_CMA)) {
3406 			return true;
3407 		}
3408 #endif
3409 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3410 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3411 			return true;
3412 		}
3413 	}
3414 	return false;
3415 }
3416 
3417 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3418 		      int highest_zoneidx, unsigned int alloc_flags)
3419 {
3420 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3421 					zone_page_state(z, NR_FREE_PAGES));
3422 }
3423 
3424 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3425 				unsigned long mark, int highest_zoneidx,
3426 				unsigned int alloc_flags, gfp_t gfp_mask)
3427 {
3428 	long free_pages;
3429 
3430 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3431 
3432 	/*
3433 	 * Fast check for order-0 only. If this fails then the reserves
3434 	 * need to be calculated.
3435 	 */
3436 	if (!order) {
3437 		long usable_free;
3438 		long reserved;
3439 
3440 		usable_free = free_pages;
3441 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3442 
3443 		/* reserved may over estimate high-atomic reserves. */
3444 		usable_free -= min(usable_free, reserved);
3445 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3446 			return true;
3447 	}
3448 
3449 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3450 					free_pages))
3451 		return true;
3452 
3453 	/*
3454 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3455 	 * when checking the min watermark. The min watermark is the
3456 	 * point where boosting is ignored so that kswapd is woken up
3457 	 * when below the low watermark.
3458 	 */
3459 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3460 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3461 		mark = z->_watermark[WMARK_MIN];
3462 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3463 					alloc_flags, free_pages);
3464 	}
3465 
3466 	return false;
3467 }
3468 
3469 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3470 			unsigned long mark, int highest_zoneidx)
3471 {
3472 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3473 
3474 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3475 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3476 
3477 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3478 								free_pages);
3479 }
3480 
3481 #ifdef CONFIG_NUMA
3482 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3483 
3484 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3485 {
3486 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3487 				node_reclaim_distance;
3488 }
3489 #else	/* CONFIG_NUMA */
3490 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3491 {
3492 	return true;
3493 }
3494 #endif	/* CONFIG_NUMA */
3495 
3496 /*
3497  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3498  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3499  * premature use of a lower zone may cause lowmem pressure problems that
3500  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3501  * probably too small. It only makes sense to spread allocations to avoid
3502  * fragmentation between the Normal and DMA32 zones.
3503  */
3504 static inline unsigned int
3505 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3506 {
3507 	unsigned int alloc_flags;
3508 
3509 	/*
3510 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3511 	 * to save a branch.
3512 	 */
3513 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3514 
3515 	if (defrag_mode) {
3516 		alloc_flags |= ALLOC_NOFRAGMENT;
3517 		return alloc_flags;
3518 	}
3519 
3520 #ifdef CONFIG_ZONE_DMA32
3521 	if (!zone)
3522 		return alloc_flags;
3523 
3524 	if (zone_idx(zone) != ZONE_NORMAL)
3525 		return alloc_flags;
3526 
3527 	/*
3528 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3529 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3530 	 * on UMA that if Normal is populated then so is DMA32.
3531 	 */
3532 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3533 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3534 		return alloc_flags;
3535 
3536 	alloc_flags |= ALLOC_NOFRAGMENT;
3537 #endif /* CONFIG_ZONE_DMA32 */
3538 	return alloc_flags;
3539 }
3540 
3541 /* Must be called after current_gfp_context() which can change gfp_mask */
3542 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3543 						  unsigned int alloc_flags)
3544 {
3545 #ifdef CONFIG_CMA
3546 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3547 		alloc_flags |= ALLOC_CMA;
3548 #endif
3549 	return alloc_flags;
3550 }
3551 
3552 /*
3553  * get_page_from_freelist goes through the zonelist trying to allocate
3554  * a page.
3555  */
3556 static struct page *
3557 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3558 						const struct alloc_context *ac)
3559 {
3560 	struct zoneref *z;
3561 	struct zone *zone;
3562 	struct pglist_data *last_pgdat = NULL;
3563 	bool last_pgdat_dirty_ok = false;
3564 	bool no_fallback;
3565 
3566 retry:
3567 	/*
3568 	 * Scan zonelist, looking for a zone with enough free.
3569 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3570 	 */
3571 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3572 	z = ac->preferred_zoneref;
3573 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3574 					ac->nodemask) {
3575 		struct page *page;
3576 		unsigned long mark;
3577 
3578 		if (cpusets_enabled() &&
3579 			(alloc_flags & ALLOC_CPUSET) &&
3580 			!__cpuset_zone_allowed(zone, gfp_mask))
3581 				continue;
3582 		/*
3583 		 * When allocating a page cache page for writing, we
3584 		 * want to get it from a node that is within its dirty
3585 		 * limit, such that no single node holds more than its
3586 		 * proportional share of globally allowed dirty pages.
3587 		 * The dirty limits take into account the node's
3588 		 * lowmem reserves and high watermark so that kswapd
3589 		 * should be able to balance it without having to
3590 		 * write pages from its LRU list.
3591 		 *
3592 		 * XXX: For now, allow allocations to potentially
3593 		 * exceed the per-node dirty limit in the slowpath
3594 		 * (spread_dirty_pages unset) before going into reclaim,
3595 		 * which is important when on a NUMA setup the allowed
3596 		 * nodes are together not big enough to reach the
3597 		 * global limit.  The proper fix for these situations
3598 		 * will require awareness of nodes in the
3599 		 * dirty-throttling and the flusher threads.
3600 		 */
3601 		if (ac->spread_dirty_pages) {
3602 			if (last_pgdat != zone->zone_pgdat) {
3603 				last_pgdat = zone->zone_pgdat;
3604 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3605 			}
3606 
3607 			if (!last_pgdat_dirty_ok)
3608 				continue;
3609 		}
3610 
3611 		if (no_fallback && !defrag_mode && nr_online_nodes > 1 &&
3612 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3613 			int local_nid;
3614 
3615 			/*
3616 			 * If moving to a remote node, retry but allow
3617 			 * fragmenting fallbacks. Locality is more important
3618 			 * than fragmentation avoidance.
3619 			 */
3620 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3621 			if (zone_to_nid(zone) != local_nid) {
3622 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3623 				goto retry;
3624 			}
3625 		}
3626 
3627 		cond_accept_memory(zone, order);
3628 
3629 		/*
3630 		 * Detect whether the number of free pages is below high
3631 		 * watermark.  If so, we will decrease pcp->high and free
3632 		 * PCP pages in free path to reduce the possibility of
3633 		 * premature page reclaiming.  Detection is done here to
3634 		 * avoid to do that in hotter free path.
3635 		 */
3636 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3637 			goto check_alloc_wmark;
3638 
3639 		mark = high_wmark_pages(zone);
3640 		if (zone_watermark_fast(zone, order, mark,
3641 					ac->highest_zoneidx, alloc_flags,
3642 					gfp_mask))
3643 			goto try_this_zone;
3644 		else
3645 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3646 
3647 check_alloc_wmark:
3648 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3649 		if (!zone_watermark_fast(zone, order, mark,
3650 				       ac->highest_zoneidx, alloc_flags,
3651 				       gfp_mask)) {
3652 			int ret;
3653 
3654 			if (cond_accept_memory(zone, order))
3655 				goto try_this_zone;
3656 
3657 			/*
3658 			 * Watermark failed for this zone, but see if we can
3659 			 * grow this zone if it contains deferred pages.
3660 			 */
3661 			if (deferred_pages_enabled()) {
3662 				if (_deferred_grow_zone(zone, order))
3663 					goto try_this_zone;
3664 			}
3665 			/* Checked here to keep the fast path fast */
3666 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3667 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3668 				goto try_this_zone;
3669 
3670 			if (!node_reclaim_enabled() ||
3671 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3672 				continue;
3673 
3674 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3675 			switch (ret) {
3676 			case NODE_RECLAIM_NOSCAN:
3677 				/* did not scan */
3678 				continue;
3679 			case NODE_RECLAIM_FULL:
3680 				/* scanned but unreclaimable */
3681 				continue;
3682 			default:
3683 				/* did we reclaim enough */
3684 				if (zone_watermark_ok(zone, order, mark,
3685 					ac->highest_zoneidx, alloc_flags))
3686 					goto try_this_zone;
3687 
3688 				continue;
3689 			}
3690 		}
3691 
3692 try_this_zone:
3693 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3694 				gfp_mask, alloc_flags, ac->migratetype);
3695 		if (page) {
3696 			prep_new_page(page, order, gfp_mask, alloc_flags);
3697 
3698 			/*
3699 			 * If this is a high-order atomic allocation then check
3700 			 * if the pageblock should be reserved for the future
3701 			 */
3702 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3703 				reserve_highatomic_pageblock(page, order, zone);
3704 
3705 			return page;
3706 		} else {
3707 			if (cond_accept_memory(zone, order))
3708 				goto try_this_zone;
3709 
3710 			/* Try again if zone has deferred pages */
3711 			if (deferred_pages_enabled()) {
3712 				if (_deferred_grow_zone(zone, order))
3713 					goto try_this_zone;
3714 			}
3715 		}
3716 	}
3717 
3718 	/*
3719 	 * It's possible on a UMA machine to get through all zones that are
3720 	 * fragmented. If avoiding fragmentation, reset and try again.
3721 	 */
3722 	if (no_fallback && !defrag_mode) {
3723 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3724 		goto retry;
3725 	}
3726 
3727 	return NULL;
3728 }
3729 
3730 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3731 {
3732 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3733 
3734 	/*
3735 	 * This documents exceptions given to allocations in certain
3736 	 * contexts that are allowed to allocate outside current's set
3737 	 * of allowed nodes.
3738 	 */
3739 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3740 		if (tsk_is_oom_victim(current) ||
3741 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3742 			filter &= ~SHOW_MEM_FILTER_NODES;
3743 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3744 		filter &= ~SHOW_MEM_FILTER_NODES;
3745 
3746 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3747 }
3748 
3749 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3750 {
3751 	struct va_format vaf;
3752 	va_list args;
3753 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3754 
3755 	if ((gfp_mask & __GFP_NOWARN) ||
3756 	     !__ratelimit(&nopage_rs) ||
3757 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3758 		return;
3759 
3760 	va_start(args, fmt);
3761 	vaf.fmt = fmt;
3762 	vaf.va = &args;
3763 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3764 			current->comm, &vaf, gfp_mask, &gfp_mask,
3765 			nodemask_pr_args(nodemask));
3766 	va_end(args);
3767 
3768 	cpuset_print_current_mems_allowed();
3769 	pr_cont("\n");
3770 	dump_stack();
3771 	warn_alloc_show_mem(gfp_mask, nodemask);
3772 }
3773 
3774 static inline struct page *
3775 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3776 			      unsigned int alloc_flags,
3777 			      const struct alloc_context *ac)
3778 {
3779 	struct page *page;
3780 
3781 	page = get_page_from_freelist(gfp_mask, order,
3782 			alloc_flags|ALLOC_CPUSET, ac);
3783 	/*
3784 	 * fallback to ignore cpuset restriction if our nodes
3785 	 * are depleted
3786 	 */
3787 	if (!page)
3788 		page = get_page_from_freelist(gfp_mask, order,
3789 				alloc_flags, ac);
3790 	return page;
3791 }
3792 
3793 static inline struct page *
3794 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3795 	const struct alloc_context *ac, unsigned long *did_some_progress)
3796 {
3797 	struct oom_control oc = {
3798 		.zonelist = ac->zonelist,
3799 		.nodemask = ac->nodemask,
3800 		.memcg = NULL,
3801 		.gfp_mask = gfp_mask,
3802 		.order = order,
3803 	};
3804 	struct page *page;
3805 
3806 	*did_some_progress = 0;
3807 
3808 	/*
3809 	 * Acquire the oom lock.  If that fails, somebody else is
3810 	 * making progress for us.
3811 	 */
3812 	if (!mutex_trylock(&oom_lock)) {
3813 		*did_some_progress = 1;
3814 		schedule_timeout_uninterruptible(1);
3815 		return NULL;
3816 	}
3817 
3818 	/*
3819 	 * Go through the zonelist yet one more time, keep very high watermark
3820 	 * here, this is only to catch a parallel oom killing, we must fail if
3821 	 * we're still under heavy pressure. But make sure that this reclaim
3822 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3823 	 * allocation which will never fail due to oom_lock already held.
3824 	 */
3825 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3826 				      ~__GFP_DIRECT_RECLAIM, order,
3827 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3828 	if (page)
3829 		goto out;
3830 
3831 	/* Coredumps can quickly deplete all memory reserves */
3832 	if (current->flags & PF_DUMPCORE)
3833 		goto out;
3834 	/* The OOM killer will not help higher order allocs */
3835 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3836 		goto out;
3837 	/*
3838 	 * We have already exhausted all our reclaim opportunities without any
3839 	 * success so it is time to admit defeat. We will skip the OOM killer
3840 	 * because it is very likely that the caller has a more reasonable
3841 	 * fallback than shooting a random task.
3842 	 *
3843 	 * The OOM killer may not free memory on a specific node.
3844 	 */
3845 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3846 		goto out;
3847 	/* The OOM killer does not needlessly kill tasks for lowmem */
3848 	if (ac->highest_zoneidx < ZONE_NORMAL)
3849 		goto out;
3850 	if (pm_suspended_storage())
3851 		goto out;
3852 	/*
3853 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3854 	 * other request to make a forward progress.
3855 	 * We are in an unfortunate situation where out_of_memory cannot
3856 	 * do much for this context but let's try it to at least get
3857 	 * access to memory reserved if the current task is killed (see
3858 	 * out_of_memory). Once filesystems are ready to handle allocation
3859 	 * failures more gracefully we should just bail out here.
3860 	 */
3861 
3862 	/* Exhausted what can be done so it's blame time */
3863 	if (out_of_memory(&oc) ||
3864 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3865 		*did_some_progress = 1;
3866 
3867 		/*
3868 		 * Help non-failing allocations by giving them access to memory
3869 		 * reserves
3870 		 */
3871 		if (gfp_mask & __GFP_NOFAIL)
3872 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3873 					ALLOC_NO_WATERMARKS, ac);
3874 	}
3875 out:
3876 	mutex_unlock(&oom_lock);
3877 	return page;
3878 }
3879 
3880 /*
3881  * Maximum number of compaction retries with a progress before OOM
3882  * killer is consider as the only way to move forward.
3883  */
3884 #define MAX_COMPACT_RETRIES 16
3885 
3886 #ifdef CONFIG_COMPACTION
3887 /* Try memory compaction for high-order allocations before reclaim */
3888 static struct page *
3889 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3890 		unsigned int alloc_flags, const struct alloc_context *ac,
3891 		enum compact_priority prio, enum compact_result *compact_result)
3892 {
3893 	struct page *page = NULL;
3894 	unsigned long pflags;
3895 	unsigned int noreclaim_flag;
3896 
3897 	if (!order)
3898 		return NULL;
3899 
3900 	psi_memstall_enter(&pflags);
3901 	delayacct_compact_start();
3902 	noreclaim_flag = memalloc_noreclaim_save();
3903 
3904 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3905 								prio, &page);
3906 
3907 	memalloc_noreclaim_restore(noreclaim_flag);
3908 	psi_memstall_leave(&pflags);
3909 	delayacct_compact_end();
3910 
3911 	if (*compact_result == COMPACT_SKIPPED)
3912 		return NULL;
3913 	/*
3914 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3915 	 * count a compaction stall
3916 	 */
3917 	count_vm_event(COMPACTSTALL);
3918 
3919 	/* Prep a captured page if available */
3920 	if (page)
3921 		prep_new_page(page, order, gfp_mask, alloc_flags);
3922 
3923 	/* Try get a page from the freelist if available */
3924 	if (!page)
3925 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3926 
3927 	if (page) {
3928 		struct zone *zone = page_zone(page);
3929 
3930 		zone->compact_blockskip_flush = false;
3931 		compaction_defer_reset(zone, order, true);
3932 		count_vm_event(COMPACTSUCCESS);
3933 		return page;
3934 	}
3935 
3936 	/*
3937 	 * It's bad if compaction run occurs and fails. The most likely reason
3938 	 * is that pages exist, but not enough to satisfy watermarks.
3939 	 */
3940 	count_vm_event(COMPACTFAIL);
3941 
3942 	cond_resched();
3943 
3944 	return NULL;
3945 }
3946 
3947 static inline bool
3948 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3949 		     enum compact_result compact_result,
3950 		     enum compact_priority *compact_priority,
3951 		     int *compaction_retries)
3952 {
3953 	int max_retries = MAX_COMPACT_RETRIES;
3954 	int min_priority;
3955 	bool ret = false;
3956 	int retries = *compaction_retries;
3957 	enum compact_priority priority = *compact_priority;
3958 
3959 	if (!order)
3960 		return false;
3961 
3962 	if (fatal_signal_pending(current))
3963 		return false;
3964 
3965 	/*
3966 	 * Compaction was skipped due to a lack of free order-0
3967 	 * migration targets. Continue if reclaim can help.
3968 	 */
3969 	if (compact_result == COMPACT_SKIPPED) {
3970 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3971 		goto out;
3972 	}
3973 
3974 	/*
3975 	 * Compaction managed to coalesce some page blocks, but the
3976 	 * allocation failed presumably due to a race. Retry some.
3977 	 */
3978 	if (compact_result == COMPACT_SUCCESS) {
3979 		/*
3980 		 * !costly requests are much more important than
3981 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3982 		 * facto nofail and invoke OOM killer to move on while
3983 		 * costly can fail and users are ready to cope with
3984 		 * that. 1/4 retries is rather arbitrary but we would
3985 		 * need much more detailed feedback from compaction to
3986 		 * make a better decision.
3987 		 */
3988 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3989 			max_retries /= 4;
3990 
3991 		if (++(*compaction_retries) <= max_retries) {
3992 			ret = true;
3993 			goto out;
3994 		}
3995 	}
3996 
3997 	/*
3998 	 * Compaction failed. Retry with increasing priority.
3999 	 */
4000 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4001 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4002 
4003 	if (*compact_priority > min_priority) {
4004 		(*compact_priority)--;
4005 		*compaction_retries = 0;
4006 		ret = true;
4007 	}
4008 out:
4009 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4010 	return ret;
4011 }
4012 #else
4013 static inline struct page *
4014 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4015 		unsigned int alloc_flags, const struct alloc_context *ac,
4016 		enum compact_priority prio, enum compact_result *compact_result)
4017 {
4018 	*compact_result = COMPACT_SKIPPED;
4019 	return NULL;
4020 }
4021 
4022 static inline bool
4023 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4024 		     enum compact_result compact_result,
4025 		     enum compact_priority *compact_priority,
4026 		     int *compaction_retries)
4027 {
4028 	struct zone *zone;
4029 	struct zoneref *z;
4030 
4031 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4032 		return false;
4033 
4034 	/*
4035 	 * There are setups with compaction disabled which would prefer to loop
4036 	 * inside the allocator rather than hit the oom killer prematurely.
4037 	 * Let's give them a good hope and keep retrying while the order-0
4038 	 * watermarks are OK.
4039 	 */
4040 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4041 				ac->highest_zoneidx, ac->nodemask) {
4042 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4043 					ac->highest_zoneidx, alloc_flags))
4044 			return true;
4045 	}
4046 	return false;
4047 }
4048 #endif /* CONFIG_COMPACTION */
4049 
4050 #ifdef CONFIG_LOCKDEP
4051 static struct lockdep_map __fs_reclaim_map =
4052 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4053 
4054 static bool __need_reclaim(gfp_t gfp_mask)
4055 {
4056 	/* no reclaim without waiting on it */
4057 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4058 		return false;
4059 
4060 	/* this guy won't enter reclaim */
4061 	if (current->flags & PF_MEMALLOC)
4062 		return false;
4063 
4064 	if (gfp_mask & __GFP_NOLOCKDEP)
4065 		return false;
4066 
4067 	return true;
4068 }
4069 
4070 void __fs_reclaim_acquire(unsigned long ip)
4071 {
4072 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4073 }
4074 
4075 void __fs_reclaim_release(unsigned long ip)
4076 {
4077 	lock_release(&__fs_reclaim_map, ip);
4078 }
4079 
4080 void fs_reclaim_acquire(gfp_t gfp_mask)
4081 {
4082 	gfp_mask = current_gfp_context(gfp_mask);
4083 
4084 	if (__need_reclaim(gfp_mask)) {
4085 		if (gfp_mask & __GFP_FS)
4086 			__fs_reclaim_acquire(_RET_IP_);
4087 
4088 #ifdef CONFIG_MMU_NOTIFIER
4089 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4090 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4091 #endif
4092 
4093 	}
4094 }
4095 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4096 
4097 void fs_reclaim_release(gfp_t gfp_mask)
4098 {
4099 	gfp_mask = current_gfp_context(gfp_mask);
4100 
4101 	if (__need_reclaim(gfp_mask)) {
4102 		if (gfp_mask & __GFP_FS)
4103 			__fs_reclaim_release(_RET_IP_);
4104 	}
4105 }
4106 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4107 #endif
4108 
4109 /*
4110  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4111  * have been rebuilt so allocation retries. Reader side does not lock and
4112  * retries the allocation if zonelist changes. Writer side is protected by the
4113  * embedded spin_lock.
4114  */
4115 static DEFINE_SEQLOCK(zonelist_update_seq);
4116 
4117 static unsigned int zonelist_iter_begin(void)
4118 {
4119 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4120 		return read_seqbegin(&zonelist_update_seq);
4121 
4122 	return 0;
4123 }
4124 
4125 static unsigned int check_retry_zonelist(unsigned int seq)
4126 {
4127 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4128 		return read_seqretry(&zonelist_update_seq, seq);
4129 
4130 	return seq;
4131 }
4132 
4133 /* Perform direct synchronous page reclaim */
4134 static unsigned long
4135 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4136 					const struct alloc_context *ac)
4137 {
4138 	unsigned int noreclaim_flag;
4139 	unsigned long progress;
4140 
4141 	cond_resched();
4142 
4143 	/* We now go into synchronous reclaim */
4144 	cpuset_memory_pressure_bump();
4145 	fs_reclaim_acquire(gfp_mask);
4146 	noreclaim_flag = memalloc_noreclaim_save();
4147 
4148 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4149 								ac->nodemask);
4150 
4151 	memalloc_noreclaim_restore(noreclaim_flag);
4152 	fs_reclaim_release(gfp_mask);
4153 
4154 	cond_resched();
4155 
4156 	return progress;
4157 }
4158 
4159 /* The really slow allocator path where we enter direct reclaim */
4160 static inline struct page *
4161 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4162 		unsigned int alloc_flags, const struct alloc_context *ac,
4163 		unsigned long *did_some_progress)
4164 {
4165 	struct page *page = NULL;
4166 	unsigned long pflags;
4167 	bool drained = false;
4168 
4169 	psi_memstall_enter(&pflags);
4170 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4171 	if (unlikely(!(*did_some_progress)))
4172 		goto out;
4173 
4174 retry:
4175 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4176 
4177 	/*
4178 	 * If an allocation failed after direct reclaim, it could be because
4179 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4180 	 * Shrink them and try again
4181 	 */
4182 	if (!page && !drained) {
4183 		unreserve_highatomic_pageblock(ac, false);
4184 		drain_all_pages(NULL);
4185 		drained = true;
4186 		goto retry;
4187 	}
4188 out:
4189 	psi_memstall_leave(&pflags);
4190 
4191 	return page;
4192 }
4193 
4194 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4195 			     const struct alloc_context *ac)
4196 {
4197 	struct zoneref *z;
4198 	struct zone *zone;
4199 	pg_data_t *last_pgdat = NULL;
4200 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4201 	unsigned int reclaim_order;
4202 
4203 	if (defrag_mode)
4204 		reclaim_order = max(order, pageblock_order);
4205 	else
4206 		reclaim_order = order;
4207 
4208 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4209 					ac->nodemask) {
4210 		if (!managed_zone(zone))
4211 			continue;
4212 		if (last_pgdat == zone->zone_pgdat)
4213 			continue;
4214 		wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx);
4215 		last_pgdat = zone->zone_pgdat;
4216 	}
4217 }
4218 
4219 static inline unsigned int
4220 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4221 {
4222 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4223 
4224 	/*
4225 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4226 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4227 	 * to save two branches.
4228 	 */
4229 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4230 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4231 
4232 	/*
4233 	 * The caller may dip into page reserves a bit more if the caller
4234 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4235 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4236 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4237 	 */
4238 	alloc_flags |= (__force int)
4239 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4240 
4241 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4242 		/*
4243 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4244 		 * if it can't schedule.
4245 		 */
4246 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4247 			alloc_flags |= ALLOC_NON_BLOCK;
4248 
4249 			if (order > 0)
4250 				alloc_flags |= ALLOC_HIGHATOMIC;
4251 		}
4252 
4253 		/*
4254 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4255 		 * GFP_ATOMIC) rather than fail, see the comment for
4256 		 * cpuset_node_allowed().
4257 		 */
4258 		if (alloc_flags & ALLOC_MIN_RESERVE)
4259 			alloc_flags &= ~ALLOC_CPUSET;
4260 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4261 		alloc_flags |= ALLOC_MIN_RESERVE;
4262 
4263 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4264 
4265 	if (defrag_mode)
4266 		alloc_flags |= ALLOC_NOFRAGMENT;
4267 
4268 	return alloc_flags;
4269 }
4270 
4271 static bool oom_reserves_allowed(struct task_struct *tsk)
4272 {
4273 	if (!tsk_is_oom_victim(tsk))
4274 		return false;
4275 
4276 	/*
4277 	 * !MMU doesn't have oom reaper so give access to memory reserves
4278 	 * only to the thread with TIF_MEMDIE set
4279 	 */
4280 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4281 		return false;
4282 
4283 	return true;
4284 }
4285 
4286 /*
4287  * Distinguish requests which really need access to full memory
4288  * reserves from oom victims which can live with a portion of it
4289  */
4290 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4291 {
4292 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4293 		return 0;
4294 	if (gfp_mask & __GFP_MEMALLOC)
4295 		return ALLOC_NO_WATERMARKS;
4296 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4297 		return ALLOC_NO_WATERMARKS;
4298 	if (!in_interrupt()) {
4299 		if (current->flags & PF_MEMALLOC)
4300 			return ALLOC_NO_WATERMARKS;
4301 		else if (oom_reserves_allowed(current))
4302 			return ALLOC_OOM;
4303 	}
4304 
4305 	return 0;
4306 }
4307 
4308 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4309 {
4310 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4311 }
4312 
4313 /*
4314  * Checks whether it makes sense to retry the reclaim to make a forward progress
4315  * for the given allocation request.
4316  *
4317  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4318  * without success, or when we couldn't even meet the watermark if we
4319  * reclaimed all remaining pages on the LRU lists.
4320  *
4321  * Returns true if a retry is viable or false to enter the oom path.
4322  */
4323 static inline bool
4324 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4325 		     struct alloc_context *ac, int alloc_flags,
4326 		     bool did_some_progress, int *no_progress_loops)
4327 {
4328 	struct zone *zone;
4329 	struct zoneref *z;
4330 	bool ret = false;
4331 
4332 	/*
4333 	 * Costly allocations might have made a progress but this doesn't mean
4334 	 * their order will become available due to high fragmentation so
4335 	 * always increment the no progress counter for them
4336 	 */
4337 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4338 		*no_progress_loops = 0;
4339 	else
4340 		(*no_progress_loops)++;
4341 
4342 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4343 		goto out;
4344 
4345 
4346 	/*
4347 	 * Keep reclaiming pages while there is a chance this will lead
4348 	 * somewhere.  If none of the target zones can satisfy our allocation
4349 	 * request even if all reclaimable pages are considered then we are
4350 	 * screwed and have to go OOM.
4351 	 */
4352 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4353 				ac->highest_zoneidx, ac->nodemask) {
4354 		unsigned long available;
4355 		unsigned long reclaimable;
4356 		unsigned long min_wmark = min_wmark_pages(zone);
4357 		bool wmark;
4358 
4359 		if (cpusets_enabled() &&
4360 			(alloc_flags & ALLOC_CPUSET) &&
4361 			!__cpuset_zone_allowed(zone, gfp_mask))
4362 				continue;
4363 
4364 		available = reclaimable = zone_reclaimable_pages(zone);
4365 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4366 
4367 		/*
4368 		 * Would the allocation succeed if we reclaimed all
4369 		 * reclaimable pages?
4370 		 */
4371 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4372 				ac->highest_zoneidx, alloc_flags, available);
4373 		trace_reclaim_retry_zone(z, order, reclaimable,
4374 				available, min_wmark, *no_progress_loops, wmark);
4375 		if (wmark) {
4376 			ret = true;
4377 			break;
4378 		}
4379 	}
4380 
4381 	/*
4382 	 * Memory allocation/reclaim might be called from a WQ context and the
4383 	 * current implementation of the WQ concurrency control doesn't
4384 	 * recognize that a particular WQ is congested if the worker thread is
4385 	 * looping without ever sleeping. Therefore we have to do a short sleep
4386 	 * here rather than calling cond_resched().
4387 	 */
4388 	if (current->flags & PF_WQ_WORKER)
4389 		schedule_timeout_uninterruptible(1);
4390 	else
4391 		cond_resched();
4392 out:
4393 	/* Before OOM, exhaust highatomic_reserve */
4394 	if (!ret)
4395 		return unreserve_highatomic_pageblock(ac, true);
4396 
4397 	return ret;
4398 }
4399 
4400 static inline bool
4401 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4402 {
4403 	/*
4404 	 * It's possible that cpuset's mems_allowed and the nodemask from
4405 	 * mempolicy don't intersect. This should be normally dealt with by
4406 	 * policy_nodemask(), but it's possible to race with cpuset update in
4407 	 * such a way the check therein was true, and then it became false
4408 	 * before we got our cpuset_mems_cookie here.
4409 	 * This assumes that for all allocations, ac->nodemask can come only
4410 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4411 	 * when it does not intersect with the cpuset restrictions) or the
4412 	 * caller can deal with a violated nodemask.
4413 	 */
4414 	if (cpusets_enabled() && ac->nodemask &&
4415 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4416 		ac->nodemask = NULL;
4417 		return true;
4418 	}
4419 
4420 	/*
4421 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4422 	 * possible to race with parallel threads in such a way that our
4423 	 * allocation can fail while the mask is being updated. If we are about
4424 	 * to fail, check if the cpuset changed during allocation and if so,
4425 	 * retry.
4426 	 */
4427 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4428 		return true;
4429 
4430 	return false;
4431 }
4432 
4433 static inline struct page *
4434 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4435 						struct alloc_context *ac)
4436 {
4437 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4438 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4439 	bool nofail = gfp_mask & __GFP_NOFAIL;
4440 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4441 	struct page *page = NULL;
4442 	unsigned int alloc_flags;
4443 	unsigned long did_some_progress;
4444 	enum compact_priority compact_priority;
4445 	enum compact_result compact_result;
4446 	int compaction_retries;
4447 	int no_progress_loops;
4448 	unsigned int cpuset_mems_cookie;
4449 	unsigned int zonelist_iter_cookie;
4450 	int reserve_flags;
4451 
4452 	if (unlikely(nofail)) {
4453 		/*
4454 		 * We most definitely don't want callers attempting to
4455 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4456 		 */
4457 		WARN_ON_ONCE(order > 1);
4458 		/*
4459 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4460 		 * otherwise, we may result in lockup.
4461 		 */
4462 		WARN_ON_ONCE(!can_direct_reclaim);
4463 		/*
4464 		 * PF_MEMALLOC request from this context is rather bizarre
4465 		 * because we cannot reclaim anything and only can loop waiting
4466 		 * for somebody to do a work for us.
4467 		 */
4468 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4469 	}
4470 
4471 restart:
4472 	compaction_retries = 0;
4473 	no_progress_loops = 0;
4474 	compact_result = COMPACT_SKIPPED;
4475 	compact_priority = DEF_COMPACT_PRIORITY;
4476 	cpuset_mems_cookie = read_mems_allowed_begin();
4477 	zonelist_iter_cookie = zonelist_iter_begin();
4478 
4479 	/*
4480 	 * The fast path uses conservative alloc_flags to succeed only until
4481 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4482 	 * alloc_flags precisely. So we do that now.
4483 	 */
4484 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4485 
4486 	/*
4487 	 * We need to recalculate the starting point for the zonelist iterator
4488 	 * because we might have used different nodemask in the fast path, or
4489 	 * there was a cpuset modification and we are retrying - otherwise we
4490 	 * could end up iterating over non-eligible zones endlessly.
4491 	 */
4492 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4493 					ac->highest_zoneidx, ac->nodemask);
4494 	if (!zonelist_zone(ac->preferred_zoneref))
4495 		goto nopage;
4496 
4497 	/*
4498 	 * Check for insane configurations where the cpuset doesn't contain
4499 	 * any suitable zone to satisfy the request - e.g. non-movable
4500 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4501 	 */
4502 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4503 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4504 					ac->highest_zoneidx,
4505 					&cpuset_current_mems_allowed);
4506 		if (!zonelist_zone(z))
4507 			goto nopage;
4508 	}
4509 
4510 	if (alloc_flags & ALLOC_KSWAPD)
4511 		wake_all_kswapds(order, gfp_mask, ac);
4512 
4513 	/*
4514 	 * The adjusted alloc_flags might result in immediate success, so try
4515 	 * that first
4516 	 */
4517 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4518 	if (page)
4519 		goto got_pg;
4520 
4521 	/*
4522 	 * For costly allocations, try direct compaction first, as it's likely
4523 	 * that we have enough base pages and don't need to reclaim. For non-
4524 	 * movable high-order allocations, do that as well, as compaction will
4525 	 * try prevent permanent fragmentation by migrating from blocks of the
4526 	 * same migratetype.
4527 	 * Don't try this for allocations that are allowed to ignore
4528 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4529 	 */
4530 	if (can_direct_reclaim && can_compact &&
4531 			(costly_order ||
4532 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4533 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4534 		page = __alloc_pages_direct_compact(gfp_mask, order,
4535 						alloc_flags, ac,
4536 						INIT_COMPACT_PRIORITY,
4537 						&compact_result);
4538 		if (page)
4539 			goto got_pg;
4540 
4541 		/*
4542 		 * Checks for costly allocations with __GFP_NORETRY, which
4543 		 * includes some THP page fault allocations
4544 		 */
4545 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4546 			/*
4547 			 * If allocating entire pageblock(s) and compaction
4548 			 * failed because all zones are below low watermarks
4549 			 * or is prohibited because it recently failed at this
4550 			 * order, fail immediately unless the allocator has
4551 			 * requested compaction and reclaim retry.
4552 			 *
4553 			 * Reclaim is
4554 			 *  - potentially very expensive because zones are far
4555 			 *    below their low watermarks or this is part of very
4556 			 *    bursty high order allocations,
4557 			 *  - not guaranteed to help because isolate_freepages()
4558 			 *    may not iterate over freed pages as part of its
4559 			 *    linear scan, and
4560 			 *  - unlikely to make entire pageblocks free on its
4561 			 *    own.
4562 			 */
4563 			if (compact_result == COMPACT_SKIPPED ||
4564 			    compact_result == COMPACT_DEFERRED)
4565 				goto nopage;
4566 
4567 			/*
4568 			 * Looks like reclaim/compaction is worth trying, but
4569 			 * sync compaction could be very expensive, so keep
4570 			 * using async compaction.
4571 			 */
4572 			compact_priority = INIT_COMPACT_PRIORITY;
4573 		}
4574 	}
4575 
4576 retry:
4577 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4578 	if (alloc_flags & ALLOC_KSWAPD)
4579 		wake_all_kswapds(order, gfp_mask, ac);
4580 
4581 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4582 	if (reserve_flags)
4583 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4584 					  (alloc_flags & ALLOC_KSWAPD);
4585 
4586 	/*
4587 	 * Reset the nodemask and zonelist iterators if memory policies can be
4588 	 * ignored. These allocations are high priority and system rather than
4589 	 * user oriented.
4590 	 */
4591 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4592 		ac->nodemask = NULL;
4593 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4594 					ac->highest_zoneidx, ac->nodemask);
4595 	}
4596 
4597 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4598 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4599 	if (page)
4600 		goto got_pg;
4601 
4602 	/* Caller is not willing to reclaim, we can't balance anything */
4603 	if (!can_direct_reclaim)
4604 		goto nopage;
4605 
4606 	/* Avoid recursion of direct reclaim */
4607 	if (current->flags & PF_MEMALLOC)
4608 		goto nopage;
4609 
4610 	/* Try direct reclaim and then allocating */
4611 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4612 							&did_some_progress);
4613 	if (page)
4614 		goto got_pg;
4615 
4616 	/* Try direct compaction and then allocating */
4617 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4618 					compact_priority, &compact_result);
4619 	if (page)
4620 		goto got_pg;
4621 
4622 	/* Do not loop if specifically requested */
4623 	if (gfp_mask & __GFP_NORETRY)
4624 		goto nopage;
4625 
4626 	/*
4627 	 * Do not retry costly high order allocations unless they are
4628 	 * __GFP_RETRY_MAYFAIL and we can compact
4629 	 */
4630 	if (costly_order && (!can_compact ||
4631 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4632 		goto nopage;
4633 
4634 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4635 				 did_some_progress > 0, &no_progress_loops))
4636 		goto retry;
4637 
4638 	/*
4639 	 * It doesn't make any sense to retry for the compaction if the order-0
4640 	 * reclaim is not able to make any progress because the current
4641 	 * implementation of the compaction depends on the sufficient amount
4642 	 * of free memory (see __compaction_suitable)
4643 	 */
4644 	if (did_some_progress > 0 && can_compact &&
4645 			should_compact_retry(ac, order, alloc_flags,
4646 				compact_result, &compact_priority,
4647 				&compaction_retries))
4648 		goto retry;
4649 
4650 	/* Reclaim/compaction failed to prevent the fallback */
4651 	if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) {
4652 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4653 		goto retry;
4654 	}
4655 
4656 	/*
4657 	 * Deal with possible cpuset update races or zonelist updates to avoid
4658 	 * a unnecessary OOM kill.
4659 	 */
4660 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4661 	    check_retry_zonelist(zonelist_iter_cookie))
4662 		goto restart;
4663 
4664 	/* Reclaim has failed us, start killing things */
4665 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4666 	if (page)
4667 		goto got_pg;
4668 
4669 	/* Avoid allocations with no watermarks from looping endlessly */
4670 	if (tsk_is_oom_victim(current) &&
4671 	    (alloc_flags & ALLOC_OOM ||
4672 	     (gfp_mask & __GFP_NOMEMALLOC)))
4673 		goto nopage;
4674 
4675 	/* Retry as long as the OOM killer is making progress */
4676 	if (did_some_progress) {
4677 		no_progress_loops = 0;
4678 		goto retry;
4679 	}
4680 
4681 nopage:
4682 	/*
4683 	 * Deal with possible cpuset update races or zonelist updates to avoid
4684 	 * a unnecessary OOM kill.
4685 	 */
4686 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4687 	    check_retry_zonelist(zonelist_iter_cookie))
4688 		goto restart;
4689 
4690 	/*
4691 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4692 	 * we always retry
4693 	 */
4694 	if (unlikely(nofail)) {
4695 		/*
4696 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4697 		 * we disregard these unreasonable nofail requests and still
4698 		 * return NULL
4699 		 */
4700 		if (!can_direct_reclaim)
4701 			goto fail;
4702 
4703 		/*
4704 		 * Help non-failing allocations by giving some access to memory
4705 		 * reserves normally used for high priority non-blocking
4706 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4707 		 * could deplete whole memory reserves which would just make
4708 		 * the situation worse.
4709 		 */
4710 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4711 		if (page)
4712 			goto got_pg;
4713 
4714 		cond_resched();
4715 		goto retry;
4716 	}
4717 fail:
4718 	warn_alloc(gfp_mask, ac->nodemask,
4719 			"page allocation failure: order:%u", order);
4720 got_pg:
4721 	return page;
4722 }
4723 
4724 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4725 		int preferred_nid, nodemask_t *nodemask,
4726 		struct alloc_context *ac, gfp_t *alloc_gfp,
4727 		unsigned int *alloc_flags)
4728 {
4729 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4730 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4731 	ac->nodemask = nodemask;
4732 	ac->migratetype = gfp_migratetype(gfp_mask);
4733 
4734 	if (cpusets_enabled()) {
4735 		*alloc_gfp |= __GFP_HARDWALL;
4736 		/*
4737 		 * When we are in the interrupt context, it is irrelevant
4738 		 * to the current task context. It means that any node ok.
4739 		 */
4740 		if (in_task() && !ac->nodemask)
4741 			ac->nodemask = &cpuset_current_mems_allowed;
4742 		else
4743 			*alloc_flags |= ALLOC_CPUSET;
4744 	}
4745 
4746 	might_alloc(gfp_mask);
4747 
4748 	/*
4749 	 * Don't invoke should_fail logic, since it may call
4750 	 * get_random_u32() and printk() which need to spin_lock.
4751 	 */
4752 	if (!(*alloc_flags & ALLOC_TRYLOCK) &&
4753 	    should_fail_alloc_page(gfp_mask, order))
4754 		return false;
4755 
4756 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4757 
4758 	/* Dirty zone balancing only done in the fast path */
4759 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4760 
4761 	/*
4762 	 * The preferred zone is used for statistics but crucially it is
4763 	 * also used as the starting point for the zonelist iterator. It
4764 	 * may get reset for allocations that ignore memory policies.
4765 	 */
4766 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4767 					ac->highest_zoneidx, ac->nodemask);
4768 
4769 	return true;
4770 }
4771 
4772 /*
4773  * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4774  * @gfp: GFP flags for the allocation
4775  * @preferred_nid: The preferred NUMA node ID to allocate from
4776  * @nodemask: Set of nodes to allocate from, may be NULL
4777  * @nr_pages: The number of pages desired in the array
4778  * @page_array: Array to store the pages
4779  *
4780  * This is a batched version of the page allocator that attempts to
4781  * allocate nr_pages quickly. Pages are added to the page_array.
4782  *
4783  * Note that only NULL elements are populated with pages and nr_pages
4784  * is the maximum number of pages that will be stored in the array.
4785  *
4786  * Returns the number of pages in the array.
4787  */
4788 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4789 			nodemask_t *nodemask, int nr_pages,
4790 			struct page **page_array)
4791 {
4792 	struct page *page;
4793 	unsigned long __maybe_unused UP_flags;
4794 	struct zone *zone;
4795 	struct zoneref *z;
4796 	struct per_cpu_pages *pcp;
4797 	struct list_head *pcp_list;
4798 	struct alloc_context ac;
4799 	gfp_t alloc_gfp;
4800 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4801 	int nr_populated = 0, nr_account = 0;
4802 
4803 	/*
4804 	 * Skip populated array elements to determine if any pages need
4805 	 * to be allocated before disabling IRQs.
4806 	 */
4807 	while (nr_populated < nr_pages && page_array[nr_populated])
4808 		nr_populated++;
4809 
4810 	/* No pages requested? */
4811 	if (unlikely(nr_pages <= 0))
4812 		goto out;
4813 
4814 	/* Already populated array? */
4815 	if (unlikely(nr_pages - nr_populated == 0))
4816 		goto out;
4817 
4818 	/* Bulk allocator does not support memcg accounting. */
4819 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4820 		goto failed;
4821 
4822 	/* Use the single page allocator for one page. */
4823 	if (nr_pages - nr_populated == 1)
4824 		goto failed;
4825 
4826 #ifdef CONFIG_PAGE_OWNER
4827 	/*
4828 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4829 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4830 	 * removes much of the performance benefit of bulk allocation so
4831 	 * force the caller to allocate one page at a time as it'll have
4832 	 * similar performance to added complexity to the bulk allocator.
4833 	 */
4834 	if (static_branch_unlikely(&page_owner_inited))
4835 		goto failed;
4836 #endif
4837 
4838 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4839 	gfp &= gfp_allowed_mask;
4840 	alloc_gfp = gfp;
4841 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4842 		goto out;
4843 	gfp = alloc_gfp;
4844 
4845 	/* Find an allowed local zone that meets the low watermark. */
4846 	z = ac.preferred_zoneref;
4847 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4848 		unsigned long mark;
4849 
4850 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4851 		    !__cpuset_zone_allowed(zone, gfp)) {
4852 			continue;
4853 		}
4854 
4855 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4856 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4857 			goto failed;
4858 		}
4859 
4860 		cond_accept_memory(zone, 0);
4861 retry_this_zone:
4862 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4863 		if (zone_watermark_fast(zone, 0,  mark,
4864 				zonelist_zone_idx(ac.preferred_zoneref),
4865 				alloc_flags, gfp)) {
4866 			break;
4867 		}
4868 
4869 		if (cond_accept_memory(zone, 0))
4870 			goto retry_this_zone;
4871 
4872 		/* Try again if zone has deferred pages */
4873 		if (deferred_pages_enabled()) {
4874 			if (_deferred_grow_zone(zone, 0))
4875 				goto retry_this_zone;
4876 		}
4877 	}
4878 
4879 	/*
4880 	 * If there are no allowed local zones that meets the watermarks then
4881 	 * try to allocate a single page and reclaim if necessary.
4882 	 */
4883 	if (unlikely(!zone))
4884 		goto failed;
4885 
4886 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4887 	pcp_trylock_prepare(UP_flags);
4888 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4889 	if (!pcp)
4890 		goto failed_irq;
4891 
4892 	/* Attempt the batch allocation */
4893 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4894 	while (nr_populated < nr_pages) {
4895 
4896 		/* Skip existing pages */
4897 		if (page_array[nr_populated]) {
4898 			nr_populated++;
4899 			continue;
4900 		}
4901 
4902 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4903 								pcp, pcp_list);
4904 		if (unlikely(!page)) {
4905 			/* Try and allocate at least one page */
4906 			if (!nr_account) {
4907 				pcp_spin_unlock(pcp);
4908 				goto failed_irq;
4909 			}
4910 			break;
4911 		}
4912 		nr_account++;
4913 
4914 		prep_new_page(page, 0, gfp, 0);
4915 		set_page_refcounted(page);
4916 		page_array[nr_populated++] = page;
4917 	}
4918 
4919 	pcp_spin_unlock(pcp);
4920 	pcp_trylock_finish(UP_flags);
4921 
4922 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4923 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4924 
4925 out:
4926 	return nr_populated;
4927 
4928 failed_irq:
4929 	pcp_trylock_finish(UP_flags);
4930 
4931 failed:
4932 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4933 	if (page)
4934 		page_array[nr_populated++] = page;
4935 	goto out;
4936 }
4937 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4938 
4939 /*
4940  * This is the 'heart' of the zoned buddy allocator.
4941  */
4942 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
4943 		int preferred_nid, nodemask_t *nodemask)
4944 {
4945 	struct page *page;
4946 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4947 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4948 	struct alloc_context ac = { };
4949 
4950 	/*
4951 	 * There are several places where we assume that the order value is sane
4952 	 * so bail out early if the request is out of bound.
4953 	 */
4954 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4955 		return NULL;
4956 
4957 	gfp &= gfp_allowed_mask;
4958 	/*
4959 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4960 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4961 	 * from a particular context which has been marked by
4962 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4963 	 * movable zones are not used during allocation.
4964 	 */
4965 	gfp = current_gfp_context(gfp);
4966 	alloc_gfp = gfp;
4967 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4968 			&alloc_gfp, &alloc_flags))
4969 		return NULL;
4970 
4971 	/*
4972 	 * Forbid the first pass from falling back to types that fragment
4973 	 * memory until all local zones are considered.
4974 	 */
4975 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4976 
4977 	/* First allocation attempt */
4978 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4979 	if (likely(page))
4980 		goto out;
4981 
4982 	alloc_gfp = gfp;
4983 	ac.spread_dirty_pages = false;
4984 
4985 	/*
4986 	 * Restore the original nodemask if it was potentially replaced with
4987 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4988 	 */
4989 	ac.nodemask = nodemask;
4990 
4991 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4992 
4993 out:
4994 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4995 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4996 		free_frozen_pages(page, order);
4997 		page = NULL;
4998 	}
4999 
5000 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5001 	kmsan_alloc_page(page, order, alloc_gfp);
5002 
5003 	return page;
5004 }
5005 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
5006 
5007 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
5008 		int preferred_nid, nodemask_t *nodemask)
5009 {
5010 	struct page *page;
5011 
5012 	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
5013 	if (page)
5014 		set_page_refcounted(page);
5015 	return page;
5016 }
5017 EXPORT_SYMBOL(__alloc_pages_noprof);
5018 
5019 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
5020 		nodemask_t *nodemask)
5021 {
5022 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
5023 					preferred_nid, nodemask);
5024 	return page_rmappable_folio(page);
5025 }
5026 EXPORT_SYMBOL(__folio_alloc_noprof);
5027 
5028 /*
5029  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5030  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5031  * you need to access high mem.
5032  */
5033 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
5034 {
5035 	struct page *page;
5036 
5037 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
5038 	if (!page)
5039 		return 0;
5040 	return (unsigned long) page_address(page);
5041 }
5042 EXPORT_SYMBOL(get_free_pages_noprof);
5043 
5044 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
5045 {
5046 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
5047 }
5048 EXPORT_SYMBOL(get_zeroed_page_noprof);
5049 
5050 /**
5051  * ___free_pages - Free pages allocated with alloc_pages().
5052  * @page: The page pointer returned from alloc_pages().
5053  * @order: The order of the allocation.
5054  * @fpi_flags: Free Page Internal flags.
5055  *
5056  * This function can free multi-page allocations that are not compound
5057  * pages.  It does not check that the @order passed in matches that of
5058  * the allocation, so it is easy to leak memory.  Freeing more memory
5059  * than was allocated will probably emit a warning.
5060  *
5061  * If the last reference to this page is speculative, it will be released
5062  * by put_page() which only frees the first page of a non-compound
5063  * allocation.  To prevent the remaining pages from being leaked, we free
5064  * the subsequent pages here.  If you want to use the page's reference
5065  * count to decide when to free the allocation, you should allocate a
5066  * compound page, and use put_page() instead of __free_pages().
5067  *
5068  * Context: May be called in interrupt context or while holding a normal
5069  * spinlock, but not in NMI context or while holding a raw spinlock.
5070  */
5071 static void ___free_pages(struct page *page, unsigned int order,
5072 			  fpi_t fpi_flags)
5073 {
5074 	/* get PageHead before we drop reference */
5075 	int head = PageHead(page);
5076 
5077 	if (put_page_testzero(page))
5078 		__free_frozen_pages(page, order, fpi_flags);
5079 	else if (!head) {
5080 		pgalloc_tag_sub_pages(page, (1 << order) - 1);
5081 		while (order-- > 0)
5082 			__free_frozen_pages(page + (1 << order), order,
5083 					    fpi_flags);
5084 	}
5085 }
5086 void __free_pages(struct page *page, unsigned int order)
5087 {
5088 	___free_pages(page, order, FPI_NONE);
5089 }
5090 EXPORT_SYMBOL(__free_pages);
5091 
5092 /*
5093  * Can be called while holding raw_spin_lock or from IRQ and NMI for any
5094  * page type (not only those that came from try_alloc_pages)
5095  */
5096 void free_pages_nolock(struct page *page, unsigned int order)
5097 {
5098 	___free_pages(page, order, FPI_TRYLOCK);
5099 }
5100 
5101 void free_pages(unsigned long addr, unsigned int order)
5102 {
5103 	if (addr != 0) {
5104 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5105 		__free_pages(virt_to_page((void *)addr), order);
5106 	}
5107 }
5108 
5109 EXPORT_SYMBOL(free_pages);
5110 
5111 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5112 		size_t size)
5113 {
5114 	if (addr) {
5115 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5116 		struct page *page = virt_to_page((void *)addr);
5117 		struct page *last = page + nr;
5118 
5119 		split_page_owner(page, order, 0);
5120 		pgalloc_tag_split(page_folio(page), order, 0);
5121 		split_page_memcg(page, order);
5122 		while (page < --last)
5123 			set_page_refcounted(last);
5124 
5125 		last = page + (1UL << order);
5126 		for (page += nr; page < last; page++)
5127 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5128 	}
5129 	return (void *)addr;
5130 }
5131 
5132 /**
5133  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5134  * @size: the number of bytes to allocate
5135  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5136  *
5137  * This function is similar to alloc_pages(), except that it allocates the
5138  * minimum number of pages to satisfy the request.  alloc_pages() can only
5139  * allocate memory in power-of-two pages.
5140  *
5141  * This function is also limited by MAX_PAGE_ORDER.
5142  *
5143  * Memory allocated by this function must be released by free_pages_exact().
5144  *
5145  * Return: pointer to the allocated area or %NULL in case of error.
5146  */
5147 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5148 {
5149 	unsigned int order = get_order(size);
5150 	unsigned long addr;
5151 
5152 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5153 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5154 
5155 	addr = get_free_pages_noprof(gfp_mask, order);
5156 	return make_alloc_exact(addr, order, size);
5157 }
5158 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5159 
5160 /**
5161  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5162  *			   pages on a node.
5163  * @nid: the preferred node ID where memory should be allocated
5164  * @size: the number of bytes to allocate
5165  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5166  *
5167  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5168  * back.
5169  *
5170  * Return: pointer to the allocated area or %NULL in case of error.
5171  */
5172 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5173 {
5174 	unsigned int order = get_order(size);
5175 	struct page *p;
5176 
5177 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5178 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5179 
5180 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5181 	if (!p)
5182 		return NULL;
5183 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5184 }
5185 
5186 /**
5187  * free_pages_exact - release memory allocated via alloc_pages_exact()
5188  * @virt: the value returned by alloc_pages_exact.
5189  * @size: size of allocation, same value as passed to alloc_pages_exact().
5190  *
5191  * Release the memory allocated by a previous call to alloc_pages_exact.
5192  */
5193 void free_pages_exact(void *virt, size_t size)
5194 {
5195 	unsigned long addr = (unsigned long)virt;
5196 	unsigned long end = addr + PAGE_ALIGN(size);
5197 
5198 	while (addr < end) {
5199 		free_page(addr);
5200 		addr += PAGE_SIZE;
5201 	}
5202 }
5203 EXPORT_SYMBOL(free_pages_exact);
5204 
5205 /**
5206  * nr_free_zone_pages - count number of pages beyond high watermark
5207  * @offset: The zone index of the highest zone
5208  *
5209  * nr_free_zone_pages() counts the number of pages which are beyond the
5210  * high watermark within all zones at or below a given zone index.  For each
5211  * zone, the number of pages is calculated as:
5212  *
5213  *     nr_free_zone_pages = managed_pages - high_pages
5214  *
5215  * Return: number of pages beyond high watermark.
5216  */
5217 static unsigned long nr_free_zone_pages(int offset)
5218 {
5219 	struct zoneref *z;
5220 	struct zone *zone;
5221 
5222 	/* Just pick one node, since fallback list is circular */
5223 	unsigned long sum = 0;
5224 
5225 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5226 
5227 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5228 		unsigned long size = zone_managed_pages(zone);
5229 		unsigned long high = high_wmark_pages(zone);
5230 		if (size > high)
5231 			sum += size - high;
5232 	}
5233 
5234 	return sum;
5235 }
5236 
5237 /**
5238  * nr_free_buffer_pages - count number of pages beyond high watermark
5239  *
5240  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5241  * watermark within ZONE_DMA and ZONE_NORMAL.
5242  *
5243  * Return: number of pages beyond high watermark within ZONE_DMA and
5244  * ZONE_NORMAL.
5245  */
5246 unsigned long nr_free_buffer_pages(void)
5247 {
5248 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5249 }
5250 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5251 
5252 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5253 {
5254 	zoneref->zone = zone;
5255 	zoneref->zone_idx = zone_idx(zone);
5256 }
5257 
5258 /*
5259  * Builds allocation fallback zone lists.
5260  *
5261  * Add all populated zones of a node to the zonelist.
5262  */
5263 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5264 {
5265 	struct zone *zone;
5266 	enum zone_type zone_type = MAX_NR_ZONES;
5267 	int nr_zones = 0;
5268 
5269 	do {
5270 		zone_type--;
5271 		zone = pgdat->node_zones + zone_type;
5272 		if (populated_zone(zone)) {
5273 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5274 			check_highest_zone(zone_type);
5275 		}
5276 	} while (zone_type);
5277 
5278 	return nr_zones;
5279 }
5280 
5281 #ifdef CONFIG_NUMA
5282 
5283 static int __parse_numa_zonelist_order(char *s)
5284 {
5285 	/*
5286 	 * We used to support different zonelists modes but they turned
5287 	 * out to be just not useful. Let's keep the warning in place
5288 	 * if somebody still use the cmd line parameter so that we do
5289 	 * not fail it silently
5290 	 */
5291 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5292 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5293 		return -EINVAL;
5294 	}
5295 	return 0;
5296 }
5297 
5298 static char numa_zonelist_order[] = "Node";
5299 #define NUMA_ZONELIST_ORDER_LEN	16
5300 /*
5301  * sysctl handler for numa_zonelist_order
5302  */
5303 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5304 		void *buffer, size_t *length, loff_t *ppos)
5305 {
5306 	if (write)
5307 		return __parse_numa_zonelist_order(buffer);
5308 	return proc_dostring(table, write, buffer, length, ppos);
5309 }
5310 
5311 static int node_load[MAX_NUMNODES];
5312 
5313 /**
5314  * find_next_best_node - find the next node that should appear in a given node's fallback list
5315  * @node: node whose fallback list we're appending
5316  * @used_node_mask: nodemask_t of already used nodes
5317  *
5318  * We use a number of factors to determine which is the next node that should
5319  * appear on a given node's fallback list.  The node should not have appeared
5320  * already in @node's fallback list, and it should be the next closest node
5321  * according to the distance array (which contains arbitrary distance values
5322  * from each node to each node in the system), and should also prefer nodes
5323  * with no CPUs, since presumably they'll have very little allocation pressure
5324  * on them otherwise.
5325  *
5326  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5327  */
5328 int find_next_best_node(int node, nodemask_t *used_node_mask)
5329 {
5330 	int n, val;
5331 	int min_val = INT_MAX;
5332 	int best_node = NUMA_NO_NODE;
5333 
5334 	/*
5335 	 * Use the local node if we haven't already, but for memoryless local
5336 	 * node, we should skip it and fall back to other nodes.
5337 	 */
5338 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5339 		node_set(node, *used_node_mask);
5340 		return node;
5341 	}
5342 
5343 	for_each_node_state(n, N_MEMORY) {
5344 
5345 		/* Don't want a node to appear more than once */
5346 		if (node_isset(n, *used_node_mask))
5347 			continue;
5348 
5349 		/* Use the distance array to find the distance */
5350 		val = node_distance(node, n);
5351 
5352 		/* Penalize nodes under us ("prefer the next node") */
5353 		val += (n < node);
5354 
5355 		/* Give preference to headless and unused nodes */
5356 		if (!cpumask_empty(cpumask_of_node(n)))
5357 			val += PENALTY_FOR_NODE_WITH_CPUS;
5358 
5359 		/* Slight preference for less loaded node */
5360 		val *= MAX_NUMNODES;
5361 		val += node_load[n];
5362 
5363 		if (val < min_val) {
5364 			min_val = val;
5365 			best_node = n;
5366 		}
5367 	}
5368 
5369 	if (best_node >= 0)
5370 		node_set(best_node, *used_node_mask);
5371 
5372 	return best_node;
5373 }
5374 
5375 
5376 /*
5377  * Build zonelists ordered by node and zones within node.
5378  * This results in maximum locality--normal zone overflows into local
5379  * DMA zone, if any--but risks exhausting DMA zone.
5380  */
5381 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5382 		unsigned nr_nodes)
5383 {
5384 	struct zoneref *zonerefs;
5385 	int i;
5386 
5387 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5388 
5389 	for (i = 0; i < nr_nodes; i++) {
5390 		int nr_zones;
5391 
5392 		pg_data_t *node = NODE_DATA(node_order[i]);
5393 
5394 		nr_zones = build_zonerefs_node(node, zonerefs);
5395 		zonerefs += nr_zones;
5396 	}
5397 	zonerefs->zone = NULL;
5398 	zonerefs->zone_idx = 0;
5399 }
5400 
5401 /*
5402  * Build __GFP_THISNODE zonelists
5403  */
5404 static void build_thisnode_zonelists(pg_data_t *pgdat)
5405 {
5406 	struct zoneref *zonerefs;
5407 	int nr_zones;
5408 
5409 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5410 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5411 	zonerefs += nr_zones;
5412 	zonerefs->zone = NULL;
5413 	zonerefs->zone_idx = 0;
5414 }
5415 
5416 static void build_zonelists(pg_data_t *pgdat)
5417 {
5418 	static int node_order[MAX_NUMNODES];
5419 	int node, nr_nodes = 0;
5420 	nodemask_t used_mask = NODE_MASK_NONE;
5421 	int local_node, prev_node;
5422 
5423 	/* NUMA-aware ordering of nodes */
5424 	local_node = pgdat->node_id;
5425 	prev_node = local_node;
5426 
5427 	memset(node_order, 0, sizeof(node_order));
5428 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5429 		/*
5430 		 * We don't want to pressure a particular node.
5431 		 * So adding penalty to the first node in same
5432 		 * distance group to make it round-robin.
5433 		 */
5434 		if (node_distance(local_node, node) !=
5435 		    node_distance(local_node, prev_node))
5436 			node_load[node] += 1;
5437 
5438 		node_order[nr_nodes++] = node;
5439 		prev_node = node;
5440 	}
5441 
5442 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5443 	build_thisnode_zonelists(pgdat);
5444 	pr_info("Fallback order for Node %d: ", local_node);
5445 	for (node = 0; node < nr_nodes; node++)
5446 		pr_cont("%d ", node_order[node]);
5447 	pr_cont("\n");
5448 }
5449 
5450 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5451 /*
5452  * Return node id of node used for "local" allocations.
5453  * I.e., first node id of first zone in arg node's generic zonelist.
5454  * Used for initializing percpu 'numa_mem', which is used primarily
5455  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5456  */
5457 int local_memory_node(int node)
5458 {
5459 	struct zoneref *z;
5460 
5461 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5462 				   gfp_zone(GFP_KERNEL),
5463 				   NULL);
5464 	return zonelist_node_idx(z);
5465 }
5466 #endif
5467 
5468 static void setup_min_unmapped_ratio(void);
5469 static void setup_min_slab_ratio(void);
5470 #else	/* CONFIG_NUMA */
5471 
5472 static void build_zonelists(pg_data_t *pgdat)
5473 {
5474 	struct zoneref *zonerefs;
5475 	int nr_zones;
5476 
5477 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5478 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5479 	zonerefs += nr_zones;
5480 
5481 	zonerefs->zone = NULL;
5482 	zonerefs->zone_idx = 0;
5483 }
5484 
5485 #endif	/* CONFIG_NUMA */
5486 
5487 /*
5488  * Boot pageset table. One per cpu which is going to be used for all
5489  * zones and all nodes. The parameters will be set in such a way
5490  * that an item put on a list will immediately be handed over to
5491  * the buddy list. This is safe since pageset manipulation is done
5492  * with interrupts disabled.
5493  *
5494  * The boot_pagesets must be kept even after bootup is complete for
5495  * unused processors and/or zones. They do play a role for bootstrapping
5496  * hotplugged processors.
5497  *
5498  * zoneinfo_show() and maybe other functions do
5499  * not check if the processor is online before following the pageset pointer.
5500  * Other parts of the kernel may not check if the zone is available.
5501  */
5502 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5503 /* These effectively disable the pcplists in the boot pageset completely */
5504 #define BOOT_PAGESET_HIGH	0
5505 #define BOOT_PAGESET_BATCH	1
5506 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5507 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5508 
5509 static void __build_all_zonelists(void *data)
5510 {
5511 	int nid;
5512 	int __maybe_unused cpu;
5513 	pg_data_t *self = data;
5514 	unsigned long flags;
5515 
5516 	/*
5517 	 * The zonelist_update_seq must be acquired with irqsave because the
5518 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5519 	 */
5520 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5521 	/*
5522 	 * Also disable synchronous printk() to prevent any printk() from
5523 	 * trying to hold port->lock, for
5524 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5525 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5526 	 */
5527 	printk_deferred_enter();
5528 
5529 #ifdef CONFIG_NUMA
5530 	memset(node_load, 0, sizeof(node_load));
5531 #endif
5532 
5533 	/*
5534 	 * This node is hotadded and no memory is yet present.   So just
5535 	 * building zonelists is fine - no need to touch other nodes.
5536 	 */
5537 	if (self && !node_online(self->node_id)) {
5538 		build_zonelists(self);
5539 	} else {
5540 		/*
5541 		 * All possible nodes have pgdat preallocated
5542 		 * in free_area_init
5543 		 */
5544 		for_each_node(nid) {
5545 			pg_data_t *pgdat = NODE_DATA(nid);
5546 
5547 			build_zonelists(pgdat);
5548 		}
5549 
5550 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5551 		/*
5552 		 * We now know the "local memory node" for each node--
5553 		 * i.e., the node of the first zone in the generic zonelist.
5554 		 * Set up numa_mem percpu variable for on-line cpus.  During
5555 		 * boot, only the boot cpu should be on-line;  we'll init the
5556 		 * secondary cpus' numa_mem as they come on-line.  During
5557 		 * node/memory hotplug, we'll fixup all on-line cpus.
5558 		 */
5559 		for_each_online_cpu(cpu)
5560 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5561 #endif
5562 	}
5563 
5564 	printk_deferred_exit();
5565 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5566 }
5567 
5568 static noinline void __init
5569 build_all_zonelists_init(void)
5570 {
5571 	int cpu;
5572 
5573 	__build_all_zonelists(NULL);
5574 
5575 	/*
5576 	 * Initialize the boot_pagesets that are going to be used
5577 	 * for bootstrapping processors. The real pagesets for
5578 	 * each zone will be allocated later when the per cpu
5579 	 * allocator is available.
5580 	 *
5581 	 * boot_pagesets are used also for bootstrapping offline
5582 	 * cpus if the system is already booted because the pagesets
5583 	 * are needed to initialize allocators on a specific cpu too.
5584 	 * F.e. the percpu allocator needs the page allocator which
5585 	 * needs the percpu allocator in order to allocate its pagesets
5586 	 * (a chicken-egg dilemma).
5587 	 */
5588 	for_each_possible_cpu(cpu)
5589 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5590 
5591 	mminit_verify_zonelist();
5592 	cpuset_init_current_mems_allowed();
5593 }
5594 
5595 /*
5596  * unless system_state == SYSTEM_BOOTING.
5597  *
5598  * __ref due to call of __init annotated helper build_all_zonelists_init
5599  * [protected by SYSTEM_BOOTING].
5600  */
5601 void __ref build_all_zonelists(pg_data_t *pgdat)
5602 {
5603 	unsigned long vm_total_pages;
5604 
5605 	if (system_state == SYSTEM_BOOTING) {
5606 		build_all_zonelists_init();
5607 	} else {
5608 		__build_all_zonelists(pgdat);
5609 		/* cpuset refresh routine should be here */
5610 	}
5611 	/* Get the number of free pages beyond high watermark in all zones. */
5612 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5613 	/*
5614 	 * Disable grouping by mobility if the number of pages in the
5615 	 * system is too low to allow the mechanism to work. It would be
5616 	 * more accurate, but expensive to check per-zone. This check is
5617 	 * made on memory-hotadd so a system can start with mobility
5618 	 * disabled and enable it later
5619 	 */
5620 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5621 		page_group_by_mobility_disabled = 1;
5622 	else
5623 		page_group_by_mobility_disabled = 0;
5624 
5625 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5626 		nr_online_nodes,
5627 		str_off_on(page_group_by_mobility_disabled),
5628 		vm_total_pages);
5629 #ifdef CONFIG_NUMA
5630 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5631 #endif
5632 }
5633 
5634 static int zone_batchsize(struct zone *zone)
5635 {
5636 #ifdef CONFIG_MMU
5637 	int batch;
5638 
5639 	/*
5640 	 * The number of pages to batch allocate is either ~0.1%
5641 	 * of the zone or 1MB, whichever is smaller. The batch
5642 	 * size is striking a balance between allocation latency
5643 	 * and zone lock contention.
5644 	 */
5645 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5646 	batch /= 4;		/* We effectively *= 4 below */
5647 	if (batch < 1)
5648 		batch = 1;
5649 
5650 	/*
5651 	 * Clamp the batch to a 2^n - 1 value. Having a power
5652 	 * of 2 value was found to be more likely to have
5653 	 * suboptimal cache aliasing properties in some cases.
5654 	 *
5655 	 * For example if 2 tasks are alternately allocating
5656 	 * batches of pages, one task can end up with a lot
5657 	 * of pages of one half of the possible page colors
5658 	 * and the other with pages of the other colors.
5659 	 */
5660 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5661 
5662 	return batch;
5663 
5664 #else
5665 	/* The deferral and batching of frees should be suppressed under NOMMU
5666 	 * conditions.
5667 	 *
5668 	 * The problem is that NOMMU needs to be able to allocate large chunks
5669 	 * of contiguous memory as there's no hardware page translation to
5670 	 * assemble apparent contiguous memory from discontiguous pages.
5671 	 *
5672 	 * Queueing large contiguous runs of pages for batching, however,
5673 	 * causes the pages to actually be freed in smaller chunks.  As there
5674 	 * can be a significant delay between the individual batches being
5675 	 * recycled, this leads to the once large chunks of space being
5676 	 * fragmented and becoming unavailable for high-order allocations.
5677 	 */
5678 	return 0;
5679 #endif
5680 }
5681 
5682 static int percpu_pagelist_high_fraction;
5683 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5684 			 int high_fraction)
5685 {
5686 #ifdef CONFIG_MMU
5687 	int high;
5688 	int nr_split_cpus;
5689 	unsigned long total_pages;
5690 
5691 	if (!high_fraction) {
5692 		/*
5693 		 * By default, the high value of the pcp is based on the zone
5694 		 * low watermark so that if they are full then background
5695 		 * reclaim will not be started prematurely.
5696 		 */
5697 		total_pages = low_wmark_pages(zone);
5698 	} else {
5699 		/*
5700 		 * If percpu_pagelist_high_fraction is configured, the high
5701 		 * value is based on a fraction of the managed pages in the
5702 		 * zone.
5703 		 */
5704 		total_pages = zone_managed_pages(zone) / high_fraction;
5705 	}
5706 
5707 	/*
5708 	 * Split the high value across all online CPUs local to the zone. Note
5709 	 * that early in boot that CPUs may not be online yet and that during
5710 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5711 	 * onlined. For memory nodes that have no CPUs, split the high value
5712 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5713 	 * prematurely due to pages stored on pcp lists.
5714 	 */
5715 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5716 	if (!nr_split_cpus)
5717 		nr_split_cpus = num_online_cpus();
5718 	high = total_pages / nr_split_cpus;
5719 
5720 	/*
5721 	 * Ensure high is at least batch*4. The multiple is based on the
5722 	 * historical relationship between high and batch.
5723 	 */
5724 	high = max(high, batch << 2);
5725 
5726 	return high;
5727 #else
5728 	return 0;
5729 #endif
5730 }
5731 
5732 /*
5733  * pcp->high and pcp->batch values are related and generally batch is lower
5734  * than high. They are also related to pcp->count such that count is lower
5735  * than high, and as soon as it reaches high, the pcplist is flushed.
5736  *
5737  * However, guaranteeing these relations at all times would require e.g. write
5738  * barriers here but also careful usage of read barriers at the read side, and
5739  * thus be prone to error and bad for performance. Thus the update only prevents
5740  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5741  * should ensure they can cope with those fields changing asynchronously, and
5742  * fully trust only the pcp->count field on the local CPU with interrupts
5743  * disabled.
5744  *
5745  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5746  * outside of boot time (or some other assurance that no concurrent updaters
5747  * exist).
5748  */
5749 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5750 			   unsigned long high_max, unsigned long batch)
5751 {
5752 	WRITE_ONCE(pcp->batch, batch);
5753 	WRITE_ONCE(pcp->high_min, high_min);
5754 	WRITE_ONCE(pcp->high_max, high_max);
5755 }
5756 
5757 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5758 {
5759 	int pindex;
5760 
5761 	memset(pcp, 0, sizeof(*pcp));
5762 	memset(pzstats, 0, sizeof(*pzstats));
5763 
5764 	spin_lock_init(&pcp->lock);
5765 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5766 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5767 
5768 	/*
5769 	 * Set batch and high values safe for a boot pageset. A true percpu
5770 	 * pageset's initialization will update them subsequently. Here we don't
5771 	 * need to be as careful as pageset_update() as nobody can access the
5772 	 * pageset yet.
5773 	 */
5774 	pcp->high_min = BOOT_PAGESET_HIGH;
5775 	pcp->high_max = BOOT_PAGESET_HIGH;
5776 	pcp->batch = BOOT_PAGESET_BATCH;
5777 	pcp->free_count = 0;
5778 }
5779 
5780 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5781 					      unsigned long high_max, unsigned long batch)
5782 {
5783 	struct per_cpu_pages *pcp;
5784 	int cpu;
5785 
5786 	for_each_possible_cpu(cpu) {
5787 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5788 		pageset_update(pcp, high_min, high_max, batch);
5789 	}
5790 }
5791 
5792 /*
5793  * Calculate and set new high and batch values for all per-cpu pagesets of a
5794  * zone based on the zone's size.
5795  */
5796 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5797 {
5798 	int new_high_min, new_high_max, new_batch;
5799 
5800 	new_batch = max(1, zone_batchsize(zone));
5801 	if (percpu_pagelist_high_fraction) {
5802 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5803 					     percpu_pagelist_high_fraction);
5804 		/*
5805 		 * PCP high is tuned manually, disable auto-tuning via
5806 		 * setting high_min and high_max to the manual value.
5807 		 */
5808 		new_high_max = new_high_min;
5809 	} else {
5810 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5811 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5812 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5813 	}
5814 
5815 	if (zone->pageset_high_min == new_high_min &&
5816 	    zone->pageset_high_max == new_high_max &&
5817 	    zone->pageset_batch == new_batch)
5818 		return;
5819 
5820 	zone->pageset_high_min = new_high_min;
5821 	zone->pageset_high_max = new_high_max;
5822 	zone->pageset_batch = new_batch;
5823 
5824 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5825 					  new_batch);
5826 }
5827 
5828 void __meminit setup_zone_pageset(struct zone *zone)
5829 {
5830 	int cpu;
5831 
5832 	/* Size may be 0 on !SMP && !NUMA */
5833 	if (sizeof(struct per_cpu_zonestat) > 0)
5834 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5835 
5836 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5837 	for_each_possible_cpu(cpu) {
5838 		struct per_cpu_pages *pcp;
5839 		struct per_cpu_zonestat *pzstats;
5840 
5841 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5842 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5843 		per_cpu_pages_init(pcp, pzstats);
5844 	}
5845 
5846 	zone_set_pageset_high_and_batch(zone, 0);
5847 }
5848 
5849 /*
5850  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5851  * page high values need to be recalculated.
5852  */
5853 static void zone_pcp_update(struct zone *zone, int cpu_online)
5854 {
5855 	mutex_lock(&pcp_batch_high_lock);
5856 	zone_set_pageset_high_and_batch(zone, cpu_online);
5857 	mutex_unlock(&pcp_batch_high_lock);
5858 }
5859 
5860 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5861 {
5862 	struct per_cpu_pages *pcp;
5863 	struct cpu_cacheinfo *cci;
5864 
5865 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5866 	cci = get_cpu_cacheinfo(cpu);
5867 	/*
5868 	 * If data cache slice of CPU is large enough, "pcp->batch"
5869 	 * pages can be preserved in PCP before draining PCP for
5870 	 * consecutive high-order pages freeing without allocation.
5871 	 * This can reduce zone lock contention without hurting
5872 	 * cache-hot pages sharing.
5873 	 */
5874 	spin_lock(&pcp->lock);
5875 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5876 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5877 	else
5878 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5879 	spin_unlock(&pcp->lock);
5880 }
5881 
5882 void setup_pcp_cacheinfo(unsigned int cpu)
5883 {
5884 	struct zone *zone;
5885 
5886 	for_each_populated_zone(zone)
5887 		zone_pcp_update_cacheinfo(zone, cpu);
5888 }
5889 
5890 /*
5891  * Allocate per cpu pagesets and initialize them.
5892  * Before this call only boot pagesets were available.
5893  */
5894 void __init setup_per_cpu_pageset(void)
5895 {
5896 	struct pglist_data *pgdat;
5897 	struct zone *zone;
5898 	int __maybe_unused cpu;
5899 
5900 	for_each_populated_zone(zone)
5901 		setup_zone_pageset(zone);
5902 
5903 #ifdef CONFIG_NUMA
5904 	/*
5905 	 * Unpopulated zones continue using the boot pagesets.
5906 	 * The numa stats for these pagesets need to be reset.
5907 	 * Otherwise, they will end up skewing the stats of
5908 	 * the nodes these zones are associated with.
5909 	 */
5910 	for_each_possible_cpu(cpu) {
5911 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5912 		memset(pzstats->vm_numa_event, 0,
5913 		       sizeof(pzstats->vm_numa_event));
5914 	}
5915 #endif
5916 
5917 	for_each_online_pgdat(pgdat)
5918 		pgdat->per_cpu_nodestats =
5919 			alloc_percpu(struct per_cpu_nodestat);
5920 }
5921 
5922 __meminit void zone_pcp_init(struct zone *zone)
5923 {
5924 	/*
5925 	 * per cpu subsystem is not up at this point. The following code
5926 	 * relies on the ability of the linker to provide the
5927 	 * offset of a (static) per cpu variable into the per cpu area.
5928 	 */
5929 	zone->per_cpu_pageset = &boot_pageset;
5930 	zone->per_cpu_zonestats = &boot_zonestats;
5931 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5932 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5933 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5934 
5935 	if (populated_zone(zone))
5936 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5937 			 zone->present_pages, zone_batchsize(zone));
5938 }
5939 
5940 static void setup_per_zone_lowmem_reserve(void);
5941 
5942 void adjust_managed_page_count(struct page *page, long count)
5943 {
5944 	atomic_long_add(count, &page_zone(page)->managed_pages);
5945 	totalram_pages_add(count);
5946 	setup_per_zone_lowmem_reserve();
5947 }
5948 EXPORT_SYMBOL(adjust_managed_page_count);
5949 
5950 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5951 {
5952 	void *pos;
5953 	unsigned long pages = 0;
5954 
5955 	start = (void *)PAGE_ALIGN((unsigned long)start);
5956 	end = (void *)((unsigned long)end & PAGE_MASK);
5957 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5958 		struct page *page = virt_to_page(pos);
5959 		void *direct_map_addr;
5960 
5961 		/*
5962 		 * 'direct_map_addr' might be different from 'pos'
5963 		 * because some architectures' virt_to_page()
5964 		 * work with aliases.  Getting the direct map
5965 		 * address ensures that we get a _writeable_
5966 		 * alias for the memset().
5967 		 */
5968 		direct_map_addr = page_address(page);
5969 		/*
5970 		 * Perform a kasan-unchecked memset() since this memory
5971 		 * has not been initialized.
5972 		 */
5973 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5974 		if ((unsigned int)poison <= 0xFF)
5975 			memset(direct_map_addr, poison, PAGE_SIZE);
5976 
5977 		free_reserved_page(page);
5978 	}
5979 
5980 	if (pages && s)
5981 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5982 
5983 	return pages;
5984 }
5985 
5986 void free_reserved_page(struct page *page)
5987 {
5988 	clear_page_tag_ref(page);
5989 	ClearPageReserved(page);
5990 	init_page_count(page);
5991 	__free_page(page);
5992 	adjust_managed_page_count(page, 1);
5993 }
5994 EXPORT_SYMBOL(free_reserved_page);
5995 
5996 static int page_alloc_cpu_dead(unsigned int cpu)
5997 {
5998 	struct zone *zone;
5999 
6000 	lru_add_drain_cpu(cpu);
6001 	mlock_drain_remote(cpu);
6002 	drain_pages(cpu);
6003 
6004 	/*
6005 	 * Spill the event counters of the dead processor
6006 	 * into the current processors event counters.
6007 	 * This artificially elevates the count of the current
6008 	 * processor.
6009 	 */
6010 	vm_events_fold_cpu(cpu);
6011 
6012 	/*
6013 	 * Zero the differential counters of the dead processor
6014 	 * so that the vm statistics are consistent.
6015 	 *
6016 	 * This is only okay since the processor is dead and cannot
6017 	 * race with what we are doing.
6018 	 */
6019 	cpu_vm_stats_fold(cpu);
6020 
6021 	for_each_populated_zone(zone)
6022 		zone_pcp_update(zone, 0);
6023 
6024 	return 0;
6025 }
6026 
6027 static int page_alloc_cpu_online(unsigned int cpu)
6028 {
6029 	struct zone *zone;
6030 
6031 	for_each_populated_zone(zone)
6032 		zone_pcp_update(zone, 1);
6033 	return 0;
6034 }
6035 
6036 void __init page_alloc_init_cpuhp(void)
6037 {
6038 	int ret;
6039 
6040 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6041 					"mm/page_alloc:pcp",
6042 					page_alloc_cpu_online,
6043 					page_alloc_cpu_dead);
6044 	WARN_ON(ret < 0);
6045 }
6046 
6047 /*
6048  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6049  *	or min_free_kbytes changes.
6050  */
6051 static void calculate_totalreserve_pages(void)
6052 {
6053 	struct pglist_data *pgdat;
6054 	unsigned long reserve_pages = 0;
6055 	enum zone_type i, j;
6056 
6057 	for_each_online_pgdat(pgdat) {
6058 
6059 		pgdat->totalreserve_pages = 0;
6060 
6061 		for (i = 0; i < MAX_NR_ZONES; i++) {
6062 			struct zone *zone = pgdat->node_zones + i;
6063 			long max = 0;
6064 			unsigned long managed_pages = zone_managed_pages(zone);
6065 
6066 			/* Find valid and maximum lowmem_reserve in the zone */
6067 			for (j = i; j < MAX_NR_ZONES; j++) {
6068 				if (zone->lowmem_reserve[j] > max)
6069 					max = zone->lowmem_reserve[j];
6070 			}
6071 
6072 			/* we treat the high watermark as reserved pages. */
6073 			max += high_wmark_pages(zone);
6074 
6075 			if (max > managed_pages)
6076 				max = managed_pages;
6077 
6078 			pgdat->totalreserve_pages += max;
6079 
6080 			reserve_pages += max;
6081 		}
6082 	}
6083 	totalreserve_pages = reserve_pages;
6084 	trace_mm_calculate_totalreserve_pages(totalreserve_pages);
6085 }
6086 
6087 /*
6088  * setup_per_zone_lowmem_reserve - called whenever
6089  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6090  *	has a correct pages reserved value, so an adequate number of
6091  *	pages are left in the zone after a successful __alloc_pages().
6092  */
6093 static void setup_per_zone_lowmem_reserve(void)
6094 {
6095 	struct pglist_data *pgdat;
6096 	enum zone_type i, j;
6097 
6098 	for_each_online_pgdat(pgdat) {
6099 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6100 			struct zone *zone = &pgdat->node_zones[i];
6101 			int ratio = sysctl_lowmem_reserve_ratio[i];
6102 			bool clear = !ratio || !zone_managed_pages(zone);
6103 			unsigned long managed_pages = 0;
6104 
6105 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
6106 				struct zone *upper_zone = &pgdat->node_zones[j];
6107 
6108 				managed_pages += zone_managed_pages(upper_zone);
6109 
6110 				if (clear)
6111 					zone->lowmem_reserve[j] = 0;
6112 				else
6113 					zone->lowmem_reserve[j] = managed_pages / ratio;
6114 				trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
6115 								       zone->lowmem_reserve[j]);
6116 			}
6117 		}
6118 	}
6119 
6120 	/* update totalreserve_pages */
6121 	calculate_totalreserve_pages();
6122 }
6123 
6124 static void __setup_per_zone_wmarks(void)
6125 {
6126 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6127 	unsigned long lowmem_pages = 0;
6128 	struct zone *zone;
6129 	unsigned long flags;
6130 
6131 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6132 	for_each_zone(zone) {
6133 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6134 			lowmem_pages += zone_managed_pages(zone);
6135 	}
6136 
6137 	for_each_zone(zone) {
6138 		u64 tmp;
6139 
6140 		spin_lock_irqsave(&zone->lock, flags);
6141 		tmp = (u64)pages_min * zone_managed_pages(zone);
6142 		tmp = div64_ul(tmp, lowmem_pages);
6143 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6144 			/*
6145 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6146 			 * need highmem and movable zones pages, so cap pages_min
6147 			 * to a small  value here.
6148 			 *
6149 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6150 			 * deltas control async page reclaim, and so should
6151 			 * not be capped for highmem and movable zones.
6152 			 */
6153 			unsigned long min_pages;
6154 
6155 			min_pages = zone_managed_pages(zone) / 1024;
6156 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6157 			zone->_watermark[WMARK_MIN] = min_pages;
6158 		} else {
6159 			/*
6160 			 * If it's a lowmem zone, reserve a number of pages
6161 			 * proportionate to the zone's size.
6162 			 */
6163 			zone->_watermark[WMARK_MIN] = tmp;
6164 		}
6165 
6166 		/*
6167 		 * Set the kswapd watermarks distance according to the
6168 		 * scale factor in proportion to available memory, but
6169 		 * ensure a minimum size on small systems.
6170 		 */
6171 		tmp = max_t(u64, tmp >> 2,
6172 			    mult_frac(zone_managed_pages(zone),
6173 				      watermark_scale_factor, 10000));
6174 
6175 		zone->watermark_boost = 0;
6176 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6177 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6178 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6179 		trace_mm_setup_per_zone_wmarks(zone);
6180 
6181 		spin_unlock_irqrestore(&zone->lock, flags);
6182 	}
6183 
6184 	/* update totalreserve_pages */
6185 	calculate_totalreserve_pages();
6186 }
6187 
6188 /**
6189  * setup_per_zone_wmarks - called when min_free_kbytes changes
6190  * or when memory is hot-{added|removed}
6191  *
6192  * Ensures that the watermark[min,low,high] values for each zone are set
6193  * correctly with respect to min_free_kbytes.
6194  */
6195 void setup_per_zone_wmarks(void)
6196 {
6197 	struct zone *zone;
6198 	static DEFINE_SPINLOCK(lock);
6199 
6200 	spin_lock(&lock);
6201 	__setup_per_zone_wmarks();
6202 	spin_unlock(&lock);
6203 
6204 	/*
6205 	 * The watermark size have changed so update the pcpu batch
6206 	 * and high limits or the limits may be inappropriate.
6207 	 */
6208 	for_each_zone(zone)
6209 		zone_pcp_update(zone, 0);
6210 }
6211 
6212 /*
6213  * Initialise min_free_kbytes.
6214  *
6215  * For small machines we want it small (128k min).  For large machines
6216  * we want it large (256MB max).  But it is not linear, because network
6217  * bandwidth does not increase linearly with machine size.  We use
6218  *
6219  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6220  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6221  *
6222  * which yields
6223  *
6224  * 16MB:	512k
6225  * 32MB:	724k
6226  * 64MB:	1024k
6227  * 128MB:	1448k
6228  * 256MB:	2048k
6229  * 512MB:	2896k
6230  * 1024MB:	4096k
6231  * 2048MB:	5792k
6232  * 4096MB:	8192k
6233  * 8192MB:	11584k
6234  * 16384MB:	16384k
6235  */
6236 void calculate_min_free_kbytes(void)
6237 {
6238 	unsigned long lowmem_kbytes;
6239 	int new_min_free_kbytes;
6240 
6241 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6242 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6243 
6244 	if (new_min_free_kbytes > user_min_free_kbytes)
6245 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6246 	else
6247 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6248 				new_min_free_kbytes, user_min_free_kbytes);
6249 
6250 }
6251 
6252 int __meminit init_per_zone_wmark_min(void)
6253 {
6254 	calculate_min_free_kbytes();
6255 	setup_per_zone_wmarks();
6256 	refresh_zone_stat_thresholds();
6257 	setup_per_zone_lowmem_reserve();
6258 
6259 #ifdef CONFIG_NUMA
6260 	setup_min_unmapped_ratio();
6261 	setup_min_slab_ratio();
6262 #endif
6263 
6264 	khugepaged_min_free_kbytes_update();
6265 
6266 	return 0;
6267 }
6268 postcore_initcall(init_per_zone_wmark_min)
6269 
6270 /*
6271  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6272  *	that we can call two helper functions whenever min_free_kbytes
6273  *	changes.
6274  */
6275 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6276 		void *buffer, size_t *length, loff_t *ppos)
6277 {
6278 	int rc;
6279 
6280 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6281 	if (rc)
6282 		return rc;
6283 
6284 	if (write) {
6285 		user_min_free_kbytes = min_free_kbytes;
6286 		setup_per_zone_wmarks();
6287 	}
6288 	return 0;
6289 }
6290 
6291 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6292 		void *buffer, size_t *length, loff_t *ppos)
6293 {
6294 	int rc;
6295 
6296 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6297 	if (rc)
6298 		return rc;
6299 
6300 	if (write)
6301 		setup_per_zone_wmarks();
6302 
6303 	return 0;
6304 }
6305 
6306 #ifdef CONFIG_NUMA
6307 static void setup_min_unmapped_ratio(void)
6308 {
6309 	pg_data_t *pgdat;
6310 	struct zone *zone;
6311 
6312 	for_each_online_pgdat(pgdat)
6313 		pgdat->min_unmapped_pages = 0;
6314 
6315 	for_each_zone(zone)
6316 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6317 						         sysctl_min_unmapped_ratio) / 100;
6318 }
6319 
6320 
6321 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6322 		void *buffer, size_t *length, loff_t *ppos)
6323 {
6324 	int rc;
6325 
6326 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6327 	if (rc)
6328 		return rc;
6329 
6330 	setup_min_unmapped_ratio();
6331 
6332 	return 0;
6333 }
6334 
6335 static void setup_min_slab_ratio(void)
6336 {
6337 	pg_data_t *pgdat;
6338 	struct zone *zone;
6339 
6340 	for_each_online_pgdat(pgdat)
6341 		pgdat->min_slab_pages = 0;
6342 
6343 	for_each_zone(zone)
6344 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6345 						     sysctl_min_slab_ratio) / 100;
6346 }
6347 
6348 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6349 		void *buffer, size_t *length, loff_t *ppos)
6350 {
6351 	int rc;
6352 
6353 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6354 	if (rc)
6355 		return rc;
6356 
6357 	setup_min_slab_ratio();
6358 
6359 	return 0;
6360 }
6361 #endif
6362 
6363 /*
6364  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6365  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6366  *	whenever sysctl_lowmem_reserve_ratio changes.
6367  *
6368  * The reserve ratio obviously has absolutely no relation with the
6369  * minimum watermarks. The lowmem reserve ratio can only make sense
6370  * if in function of the boot time zone sizes.
6371  */
6372 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6373 		int write, void *buffer, size_t *length, loff_t *ppos)
6374 {
6375 	int i;
6376 
6377 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6378 
6379 	for (i = 0; i < MAX_NR_ZONES; i++) {
6380 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6381 			sysctl_lowmem_reserve_ratio[i] = 0;
6382 	}
6383 
6384 	setup_per_zone_lowmem_reserve();
6385 	return 0;
6386 }
6387 
6388 /*
6389  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6390  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6391  * pagelist can have before it gets flushed back to buddy allocator.
6392  */
6393 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6394 		int write, void *buffer, size_t *length, loff_t *ppos)
6395 {
6396 	struct zone *zone;
6397 	int old_percpu_pagelist_high_fraction;
6398 	int ret;
6399 
6400 	mutex_lock(&pcp_batch_high_lock);
6401 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6402 
6403 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6404 	if (!write || ret < 0)
6405 		goto out;
6406 
6407 	/* Sanity checking to avoid pcp imbalance */
6408 	if (percpu_pagelist_high_fraction &&
6409 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6410 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6411 		ret = -EINVAL;
6412 		goto out;
6413 	}
6414 
6415 	/* No change? */
6416 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6417 		goto out;
6418 
6419 	for_each_populated_zone(zone)
6420 		zone_set_pageset_high_and_batch(zone, 0);
6421 out:
6422 	mutex_unlock(&pcp_batch_high_lock);
6423 	return ret;
6424 }
6425 
6426 static const struct ctl_table page_alloc_sysctl_table[] = {
6427 	{
6428 		.procname	= "min_free_kbytes",
6429 		.data		= &min_free_kbytes,
6430 		.maxlen		= sizeof(min_free_kbytes),
6431 		.mode		= 0644,
6432 		.proc_handler	= min_free_kbytes_sysctl_handler,
6433 		.extra1		= SYSCTL_ZERO,
6434 	},
6435 	{
6436 		.procname	= "watermark_boost_factor",
6437 		.data		= &watermark_boost_factor,
6438 		.maxlen		= sizeof(watermark_boost_factor),
6439 		.mode		= 0644,
6440 		.proc_handler	= proc_dointvec_minmax,
6441 		.extra1		= SYSCTL_ZERO,
6442 	},
6443 	{
6444 		.procname	= "watermark_scale_factor",
6445 		.data		= &watermark_scale_factor,
6446 		.maxlen		= sizeof(watermark_scale_factor),
6447 		.mode		= 0644,
6448 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6449 		.extra1		= SYSCTL_ONE,
6450 		.extra2		= SYSCTL_THREE_THOUSAND,
6451 	},
6452 	{
6453 		.procname	= "defrag_mode",
6454 		.data		= &defrag_mode,
6455 		.maxlen		= sizeof(defrag_mode),
6456 		.mode		= 0644,
6457 		.proc_handler	= proc_dointvec_minmax,
6458 		.extra1		= SYSCTL_ZERO,
6459 		.extra2		= SYSCTL_ONE,
6460 	},
6461 	{
6462 		.procname	= "percpu_pagelist_high_fraction",
6463 		.data		= &percpu_pagelist_high_fraction,
6464 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6465 		.mode		= 0644,
6466 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6467 		.extra1		= SYSCTL_ZERO,
6468 	},
6469 	{
6470 		.procname	= "lowmem_reserve_ratio",
6471 		.data		= &sysctl_lowmem_reserve_ratio,
6472 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6473 		.mode		= 0644,
6474 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6475 	},
6476 #ifdef CONFIG_NUMA
6477 	{
6478 		.procname	= "numa_zonelist_order",
6479 		.data		= &numa_zonelist_order,
6480 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6481 		.mode		= 0644,
6482 		.proc_handler	= numa_zonelist_order_handler,
6483 	},
6484 	{
6485 		.procname	= "min_unmapped_ratio",
6486 		.data		= &sysctl_min_unmapped_ratio,
6487 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6488 		.mode		= 0644,
6489 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6490 		.extra1		= SYSCTL_ZERO,
6491 		.extra2		= SYSCTL_ONE_HUNDRED,
6492 	},
6493 	{
6494 		.procname	= "min_slab_ratio",
6495 		.data		= &sysctl_min_slab_ratio,
6496 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6497 		.mode		= 0644,
6498 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6499 		.extra1		= SYSCTL_ZERO,
6500 		.extra2		= SYSCTL_ONE_HUNDRED,
6501 	},
6502 #endif
6503 };
6504 
6505 void __init page_alloc_sysctl_init(void)
6506 {
6507 	register_sysctl_init("vm", page_alloc_sysctl_table);
6508 }
6509 
6510 #ifdef CONFIG_CONTIG_ALLOC
6511 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6512 static void alloc_contig_dump_pages(struct list_head *page_list)
6513 {
6514 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6515 
6516 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6517 		struct page *page;
6518 
6519 		dump_stack();
6520 		list_for_each_entry(page, page_list, lru)
6521 			dump_page(page, "migration failure");
6522 	}
6523 }
6524 
6525 /*
6526  * [start, end) must belong to a single zone.
6527  * @migratetype: using migratetype to filter the type of migration in
6528  *		trace_mm_alloc_contig_migrate_range_info.
6529  */
6530 static int __alloc_contig_migrate_range(struct compact_control *cc,
6531 		unsigned long start, unsigned long end, int migratetype)
6532 {
6533 	/* This function is based on compact_zone() from compaction.c. */
6534 	unsigned int nr_reclaimed;
6535 	unsigned long pfn = start;
6536 	unsigned int tries = 0;
6537 	int ret = 0;
6538 	struct migration_target_control mtc = {
6539 		.nid = zone_to_nid(cc->zone),
6540 		.gfp_mask = cc->gfp_mask,
6541 		.reason = MR_CONTIG_RANGE,
6542 	};
6543 	struct page *page;
6544 	unsigned long total_mapped = 0;
6545 	unsigned long total_migrated = 0;
6546 	unsigned long total_reclaimed = 0;
6547 
6548 	lru_cache_disable();
6549 
6550 	while (pfn < end || !list_empty(&cc->migratepages)) {
6551 		if (fatal_signal_pending(current)) {
6552 			ret = -EINTR;
6553 			break;
6554 		}
6555 
6556 		if (list_empty(&cc->migratepages)) {
6557 			cc->nr_migratepages = 0;
6558 			ret = isolate_migratepages_range(cc, pfn, end);
6559 			if (ret && ret != -EAGAIN)
6560 				break;
6561 			pfn = cc->migrate_pfn;
6562 			tries = 0;
6563 		} else if (++tries == 5) {
6564 			ret = -EBUSY;
6565 			break;
6566 		}
6567 
6568 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6569 							&cc->migratepages);
6570 		cc->nr_migratepages -= nr_reclaimed;
6571 
6572 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6573 			total_reclaimed += nr_reclaimed;
6574 			list_for_each_entry(page, &cc->migratepages, lru) {
6575 				struct folio *folio = page_folio(page);
6576 
6577 				total_mapped += folio_mapped(folio) *
6578 						folio_nr_pages(folio);
6579 			}
6580 		}
6581 
6582 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6583 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6584 
6585 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6586 			total_migrated += cc->nr_migratepages;
6587 
6588 		/*
6589 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6590 		 * to retry again over this error, so do the same here.
6591 		 */
6592 		if (ret == -ENOMEM)
6593 			break;
6594 	}
6595 
6596 	lru_cache_enable();
6597 	if (ret < 0) {
6598 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6599 			alloc_contig_dump_pages(&cc->migratepages);
6600 		putback_movable_pages(&cc->migratepages);
6601 	}
6602 
6603 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6604 						 total_migrated,
6605 						 total_reclaimed,
6606 						 total_mapped);
6607 	return (ret < 0) ? ret : 0;
6608 }
6609 
6610 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6611 {
6612 	int order;
6613 
6614 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6615 		struct page *page, *next;
6616 		int nr_pages = 1 << order;
6617 
6618 		list_for_each_entry_safe(page, next, &list[order], lru) {
6619 			int i;
6620 
6621 			post_alloc_hook(page, order, gfp_mask);
6622 			set_page_refcounted(page);
6623 			if (!order)
6624 				continue;
6625 
6626 			split_page(page, order);
6627 
6628 			/* Add all subpages to the order-0 head, in sequence. */
6629 			list_del(&page->lru);
6630 			for (i = 0; i < nr_pages; i++)
6631 				list_add_tail(&page[i].lru, &list[0]);
6632 		}
6633 	}
6634 }
6635 
6636 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6637 {
6638 	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6639 	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6640 				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6641 	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6642 
6643 	/*
6644 	 * We are given the range to allocate; node, mobility and placement
6645 	 * hints are irrelevant at this point. We'll simply ignore them.
6646 	 */
6647 	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6648 		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6649 
6650 	/*
6651 	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6652 	 * selected action flags.
6653 	 */
6654 	if (gfp_mask & ~(reclaim_mask | action_mask))
6655 		return -EINVAL;
6656 
6657 	/*
6658 	 * Flags to control page compaction/migration/reclaim, to free up our
6659 	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6660 	 * for them.
6661 	 *
6662 	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6663 	 * to not degrade callers.
6664 	 */
6665 	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6666 			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6667 	return 0;
6668 }
6669 
6670 /**
6671  * alloc_contig_range() -- tries to allocate given range of pages
6672  * @start:	start PFN to allocate
6673  * @end:	one-past-the-last PFN to allocate
6674  * @migratetype:	migratetype of the underlying pageblocks (either
6675  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6676  *			in range must have the same migratetype and it must
6677  *			be either of the two.
6678  * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6679  *		action and reclaim modifiers are supported. Reclaim modifiers
6680  *		control allocation behavior during compaction/migration/reclaim.
6681  *
6682  * The PFN range does not have to be pageblock aligned. The PFN range must
6683  * belong to a single zone.
6684  *
6685  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6686  * pageblocks in the range.  Once isolated, the pageblocks should not
6687  * be modified by others.
6688  *
6689  * Return: zero on success or negative error code.  On success all
6690  * pages which PFN is in [start, end) are allocated for the caller and
6691  * need to be freed with free_contig_range().
6692  */
6693 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6694 		       unsigned migratetype, gfp_t gfp_mask)
6695 {
6696 	unsigned long outer_start, outer_end;
6697 	int ret = 0;
6698 
6699 	struct compact_control cc = {
6700 		.nr_migratepages = 0,
6701 		.order = -1,
6702 		.zone = page_zone(pfn_to_page(start)),
6703 		.mode = MIGRATE_SYNC,
6704 		.ignore_skip_hint = true,
6705 		.no_set_skip_hint = true,
6706 		.alloc_contig = true,
6707 	};
6708 	INIT_LIST_HEAD(&cc.migratepages);
6709 
6710 	gfp_mask = current_gfp_context(gfp_mask);
6711 	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6712 		return -EINVAL;
6713 
6714 	/*
6715 	 * What we do here is we mark all pageblocks in range as
6716 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6717 	 * have different sizes, and due to the way page allocator
6718 	 * work, start_isolate_page_range() has special handlings for this.
6719 	 *
6720 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6721 	 * migrate the pages from an unaligned range (ie. pages that
6722 	 * we are interested in). This will put all the pages in
6723 	 * range back to page allocator as MIGRATE_ISOLATE.
6724 	 *
6725 	 * When this is done, we take the pages in range from page
6726 	 * allocator removing them from the buddy system.  This way
6727 	 * page allocator will never consider using them.
6728 	 *
6729 	 * This lets us mark the pageblocks back as
6730 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6731 	 * aligned range but not in the unaligned, original range are
6732 	 * put back to page allocator so that buddy can use them.
6733 	 */
6734 
6735 	ret = start_isolate_page_range(start, end, migratetype, 0);
6736 	if (ret)
6737 		goto done;
6738 
6739 	drain_all_pages(cc.zone);
6740 
6741 	/*
6742 	 * In case of -EBUSY, we'd like to know which page causes problem.
6743 	 * So, just fall through. test_pages_isolated() has a tracepoint
6744 	 * which will report the busy page.
6745 	 *
6746 	 * It is possible that busy pages could become available before
6747 	 * the call to test_pages_isolated, and the range will actually be
6748 	 * allocated.  So, if we fall through be sure to clear ret so that
6749 	 * -EBUSY is not accidentally used or returned to caller.
6750 	 */
6751 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6752 	if (ret && ret != -EBUSY)
6753 		goto done;
6754 
6755 	/*
6756 	 * When in-use hugetlb pages are migrated, they may simply be released
6757 	 * back into the free hugepage pool instead of being returned to the
6758 	 * buddy system.  After the migration of in-use huge pages is completed,
6759 	 * we will invoke replace_free_hugepage_folios() to ensure that these
6760 	 * hugepages are properly released to the buddy system.
6761 	 */
6762 	ret = replace_free_hugepage_folios(start, end);
6763 	if (ret)
6764 		goto done;
6765 
6766 	/*
6767 	 * Pages from [start, end) are within a pageblock_nr_pages
6768 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6769 	 * more, all pages in [start, end) are free in page allocator.
6770 	 * What we are going to do is to allocate all pages from
6771 	 * [start, end) (that is remove them from page allocator).
6772 	 *
6773 	 * The only problem is that pages at the beginning and at the
6774 	 * end of interesting range may be not aligned with pages that
6775 	 * page allocator holds, ie. they can be part of higher order
6776 	 * pages.  Because of this, we reserve the bigger range and
6777 	 * once this is done free the pages we are not interested in.
6778 	 *
6779 	 * We don't have to hold zone->lock here because the pages are
6780 	 * isolated thus they won't get removed from buddy.
6781 	 */
6782 	outer_start = find_large_buddy(start);
6783 
6784 	/* Make sure the range is really isolated. */
6785 	if (test_pages_isolated(outer_start, end, 0)) {
6786 		ret = -EBUSY;
6787 		goto done;
6788 	}
6789 
6790 	/* Grab isolated pages from freelists. */
6791 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6792 	if (!outer_end) {
6793 		ret = -EBUSY;
6794 		goto done;
6795 	}
6796 
6797 	if (!(gfp_mask & __GFP_COMP)) {
6798 		split_free_pages(cc.freepages, gfp_mask);
6799 
6800 		/* Free head and tail (if any) */
6801 		if (start != outer_start)
6802 			free_contig_range(outer_start, start - outer_start);
6803 		if (end != outer_end)
6804 			free_contig_range(end, outer_end - end);
6805 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6806 		struct page *head = pfn_to_page(start);
6807 		int order = ilog2(end - start);
6808 
6809 		check_new_pages(head, order);
6810 		prep_new_page(head, order, gfp_mask, 0);
6811 		set_page_refcounted(head);
6812 	} else {
6813 		ret = -EINVAL;
6814 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6815 		     start, end, outer_start, outer_end);
6816 	}
6817 done:
6818 	undo_isolate_page_range(start, end, migratetype);
6819 	return ret;
6820 }
6821 EXPORT_SYMBOL(alloc_contig_range_noprof);
6822 
6823 static int __alloc_contig_pages(unsigned long start_pfn,
6824 				unsigned long nr_pages, gfp_t gfp_mask)
6825 {
6826 	unsigned long end_pfn = start_pfn + nr_pages;
6827 
6828 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6829 				   gfp_mask);
6830 }
6831 
6832 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6833 				   unsigned long nr_pages)
6834 {
6835 	unsigned long i, end_pfn = start_pfn + nr_pages;
6836 	struct page *page;
6837 
6838 	for (i = start_pfn; i < end_pfn; i++) {
6839 		page = pfn_to_online_page(i);
6840 		if (!page)
6841 			return false;
6842 
6843 		if (page_zone(page) != z)
6844 			return false;
6845 
6846 		if (PageReserved(page))
6847 			return false;
6848 
6849 		if (PageHuge(page))
6850 			return false;
6851 	}
6852 	return true;
6853 }
6854 
6855 static bool zone_spans_last_pfn(const struct zone *zone,
6856 				unsigned long start_pfn, unsigned long nr_pages)
6857 {
6858 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6859 
6860 	return zone_spans_pfn(zone, last_pfn);
6861 }
6862 
6863 /**
6864  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6865  * @nr_pages:	Number of contiguous pages to allocate
6866  * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
6867  *		action and reclaim modifiers are supported. Reclaim modifiers
6868  *		control allocation behavior during compaction/migration/reclaim.
6869  * @nid:	Target node
6870  * @nodemask:	Mask for other possible nodes
6871  *
6872  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6873  * on an applicable zonelist to find a contiguous pfn range which can then be
6874  * tried for allocation with alloc_contig_range(). This routine is intended
6875  * for allocation requests which can not be fulfilled with the buddy allocator.
6876  *
6877  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6878  * power of two, then allocated range is also guaranteed to be aligned to same
6879  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6880  *
6881  * Allocated pages can be freed with free_contig_range() or by manually calling
6882  * __free_page() on each allocated page.
6883  *
6884  * Return: pointer to contiguous pages on success, or NULL if not successful.
6885  */
6886 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6887 				 int nid, nodemask_t *nodemask)
6888 {
6889 	unsigned long ret, pfn, flags;
6890 	struct zonelist *zonelist;
6891 	struct zone *zone;
6892 	struct zoneref *z;
6893 
6894 	zonelist = node_zonelist(nid, gfp_mask);
6895 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6896 					gfp_zone(gfp_mask), nodemask) {
6897 		spin_lock_irqsave(&zone->lock, flags);
6898 
6899 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6900 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6901 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6902 				/*
6903 				 * We release the zone lock here because
6904 				 * alloc_contig_range() will also lock the zone
6905 				 * at some point. If there's an allocation
6906 				 * spinning on this lock, it may win the race
6907 				 * and cause alloc_contig_range() to fail...
6908 				 */
6909 				spin_unlock_irqrestore(&zone->lock, flags);
6910 				ret = __alloc_contig_pages(pfn, nr_pages,
6911 							gfp_mask);
6912 				if (!ret)
6913 					return pfn_to_page(pfn);
6914 				spin_lock_irqsave(&zone->lock, flags);
6915 			}
6916 			pfn += nr_pages;
6917 		}
6918 		spin_unlock_irqrestore(&zone->lock, flags);
6919 	}
6920 	return NULL;
6921 }
6922 #endif /* CONFIG_CONTIG_ALLOC */
6923 
6924 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6925 {
6926 	unsigned long count = 0;
6927 	struct folio *folio = pfn_folio(pfn);
6928 
6929 	if (folio_test_large(folio)) {
6930 		int expected = folio_nr_pages(folio);
6931 
6932 		if (nr_pages == expected)
6933 			folio_put(folio);
6934 		else
6935 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6936 			     pfn, nr_pages, expected);
6937 		return;
6938 	}
6939 
6940 	for (; nr_pages--; pfn++) {
6941 		struct page *page = pfn_to_page(pfn);
6942 
6943 		count += page_count(page) != 1;
6944 		__free_page(page);
6945 	}
6946 	WARN(count != 0, "%lu pages are still in use!\n", count);
6947 }
6948 EXPORT_SYMBOL(free_contig_range);
6949 
6950 /*
6951  * Effectively disable pcplists for the zone by setting the high limit to 0
6952  * and draining all cpus. A concurrent page freeing on another CPU that's about
6953  * to put the page on pcplist will either finish before the drain and the page
6954  * will be drained, or observe the new high limit and skip the pcplist.
6955  *
6956  * Must be paired with a call to zone_pcp_enable().
6957  */
6958 void zone_pcp_disable(struct zone *zone)
6959 {
6960 	mutex_lock(&pcp_batch_high_lock);
6961 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6962 	__drain_all_pages(zone, true);
6963 }
6964 
6965 void zone_pcp_enable(struct zone *zone)
6966 {
6967 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6968 		zone->pageset_high_max, zone->pageset_batch);
6969 	mutex_unlock(&pcp_batch_high_lock);
6970 }
6971 
6972 void zone_pcp_reset(struct zone *zone)
6973 {
6974 	int cpu;
6975 	struct per_cpu_zonestat *pzstats;
6976 
6977 	if (zone->per_cpu_pageset != &boot_pageset) {
6978 		for_each_online_cpu(cpu) {
6979 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6980 			drain_zonestat(zone, pzstats);
6981 		}
6982 		free_percpu(zone->per_cpu_pageset);
6983 		zone->per_cpu_pageset = &boot_pageset;
6984 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6985 			free_percpu(zone->per_cpu_zonestats);
6986 			zone->per_cpu_zonestats = &boot_zonestats;
6987 		}
6988 	}
6989 }
6990 
6991 #ifdef CONFIG_MEMORY_HOTREMOVE
6992 /*
6993  * All pages in the range must be in a single zone, must not contain holes,
6994  * must span full sections, and must be isolated before calling this function.
6995  *
6996  * Returns the number of managed (non-PageOffline()) pages in the range: the
6997  * number of pages for which memory offlining code must adjust managed page
6998  * counters using adjust_managed_page_count().
6999  */
7000 unsigned long __offline_isolated_pages(unsigned long start_pfn,
7001 		unsigned long end_pfn)
7002 {
7003 	unsigned long already_offline = 0, flags;
7004 	unsigned long pfn = start_pfn;
7005 	struct page *page;
7006 	struct zone *zone;
7007 	unsigned int order;
7008 
7009 	offline_mem_sections(pfn, end_pfn);
7010 	zone = page_zone(pfn_to_page(pfn));
7011 	spin_lock_irqsave(&zone->lock, flags);
7012 	while (pfn < end_pfn) {
7013 		page = pfn_to_page(pfn);
7014 		/*
7015 		 * The HWPoisoned page may be not in buddy system, and
7016 		 * page_count() is not 0.
7017 		 */
7018 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7019 			pfn++;
7020 			continue;
7021 		}
7022 		/*
7023 		 * At this point all remaining PageOffline() pages have a
7024 		 * reference count of 0 and can simply be skipped.
7025 		 */
7026 		if (PageOffline(page)) {
7027 			BUG_ON(page_count(page));
7028 			BUG_ON(PageBuddy(page));
7029 			already_offline++;
7030 			pfn++;
7031 			continue;
7032 		}
7033 
7034 		BUG_ON(page_count(page));
7035 		BUG_ON(!PageBuddy(page));
7036 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
7037 		order = buddy_order(page);
7038 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
7039 		pfn += (1 << order);
7040 	}
7041 	spin_unlock_irqrestore(&zone->lock, flags);
7042 
7043 	return end_pfn - start_pfn - already_offline;
7044 }
7045 #endif
7046 
7047 /*
7048  * This function returns a stable result only if called under zone lock.
7049  */
7050 bool is_free_buddy_page(const struct page *page)
7051 {
7052 	unsigned long pfn = page_to_pfn(page);
7053 	unsigned int order;
7054 
7055 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7056 		const struct page *head = page - (pfn & ((1 << order) - 1));
7057 
7058 		if (PageBuddy(head) &&
7059 		    buddy_order_unsafe(head) >= order)
7060 			break;
7061 	}
7062 
7063 	return order <= MAX_PAGE_ORDER;
7064 }
7065 EXPORT_SYMBOL(is_free_buddy_page);
7066 
7067 #ifdef CONFIG_MEMORY_FAILURE
7068 static inline void add_to_free_list(struct page *page, struct zone *zone,
7069 				    unsigned int order, int migratetype,
7070 				    bool tail)
7071 {
7072 	__add_to_free_list(page, zone, order, migratetype, tail);
7073 	account_freepages(zone, 1 << order, migratetype);
7074 }
7075 
7076 /*
7077  * Break down a higher-order page in sub-pages, and keep our target out of
7078  * buddy allocator.
7079  */
7080 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7081 				   struct page *target, int low, int high,
7082 				   int migratetype)
7083 {
7084 	unsigned long size = 1 << high;
7085 	struct page *current_buddy;
7086 
7087 	while (high > low) {
7088 		high--;
7089 		size >>= 1;
7090 
7091 		if (target >= &page[size]) {
7092 			current_buddy = page;
7093 			page = page + size;
7094 		} else {
7095 			current_buddy = page + size;
7096 		}
7097 
7098 		if (set_page_guard(zone, current_buddy, high))
7099 			continue;
7100 
7101 		add_to_free_list(current_buddy, zone, high, migratetype, false);
7102 		set_buddy_order(current_buddy, high);
7103 	}
7104 }
7105 
7106 /*
7107  * Take a page that will be marked as poisoned off the buddy allocator.
7108  */
7109 bool take_page_off_buddy(struct page *page)
7110 {
7111 	struct zone *zone = page_zone(page);
7112 	unsigned long pfn = page_to_pfn(page);
7113 	unsigned long flags;
7114 	unsigned int order;
7115 	bool ret = false;
7116 
7117 	spin_lock_irqsave(&zone->lock, flags);
7118 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7119 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7120 		int page_order = buddy_order(page_head);
7121 
7122 		if (PageBuddy(page_head) && page_order >= order) {
7123 			unsigned long pfn_head = page_to_pfn(page_head);
7124 			int migratetype = get_pfnblock_migratetype(page_head,
7125 								   pfn_head);
7126 
7127 			del_page_from_free_list(page_head, zone, page_order,
7128 						migratetype);
7129 			break_down_buddy_pages(zone, page_head, page, 0,
7130 						page_order, migratetype);
7131 			SetPageHWPoisonTakenOff(page);
7132 			ret = true;
7133 			break;
7134 		}
7135 		if (page_count(page_head) > 0)
7136 			break;
7137 	}
7138 	spin_unlock_irqrestore(&zone->lock, flags);
7139 	return ret;
7140 }
7141 
7142 /*
7143  * Cancel takeoff done by take_page_off_buddy().
7144  */
7145 bool put_page_back_buddy(struct page *page)
7146 {
7147 	struct zone *zone = page_zone(page);
7148 	unsigned long flags;
7149 	bool ret = false;
7150 
7151 	spin_lock_irqsave(&zone->lock, flags);
7152 	if (put_page_testzero(page)) {
7153 		unsigned long pfn = page_to_pfn(page);
7154 		int migratetype = get_pfnblock_migratetype(page, pfn);
7155 
7156 		ClearPageHWPoisonTakenOff(page);
7157 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7158 		if (TestClearPageHWPoison(page)) {
7159 			ret = true;
7160 		}
7161 	}
7162 	spin_unlock_irqrestore(&zone->lock, flags);
7163 
7164 	return ret;
7165 }
7166 #endif
7167 
7168 #ifdef CONFIG_ZONE_DMA
7169 bool has_managed_dma(void)
7170 {
7171 	struct pglist_data *pgdat;
7172 
7173 	for_each_online_pgdat(pgdat) {
7174 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7175 
7176 		if (managed_zone(zone))
7177 			return true;
7178 	}
7179 	return false;
7180 }
7181 #endif /* CONFIG_ZONE_DMA */
7182 
7183 #ifdef CONFIG_UNACCEPTED_MEMORY
7184 
7185 /* Counts number of zones with unaccepted pages. */
7186 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
7187 
7188 static bool lazy_accept = true;
7189 
7190 static int __init accept_memory_parse(char *p)
7191 {
7192 	if (!strcmp(p, "lazy")) {
7193 		lazy_accept = true;
7194 		return 0;
7195 	} else if (!strcmp(p, "eager")) {
7196 		lazy_accept = false;
7197 		return 0;
7198 	} else {
7199 		return -EINVAL;
7200 	}
7201 }
7202 early_param("accept_memory", accept_memory_parse);
7203 
7204 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7205 {
7206 	phys_addr_t start = page_to_phys(page);
7207 
7208 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7209 }
7210 
7211 static void __accept_page(struct zone *zone, unsigned long *flags,
7212 			  struct page *page)
7213 {
7214 	bool last;
7215 
7216 	list_del(&page->lru);
7217 	last = list_empty(&zone->unaccepted_pages);
7218 
7219 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7220 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7221 	__ClearPageUnaccepted(page);
7222 	spin_unlock_irqrestore(&zone->lock, *flags);
7223 
7224 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7225 
7226 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7227 
7228 	if (last)
7229 		static_branch_dec(&zones_with_unaccepted_pages);
7230 }
7231 
7232 void accept_page(struct page *page)
7233 {
7234 	struct zone *zone = page_zone(page);
7235 	unsigned long flags;
7236 
7237 	spin_lock_irqsave(&zone->lock, flags);
7238 	if (!PageUnaccepted(page)) {
7239 		spin_unlock_irqrestore(&zone->lock, flags);
7240 		return;
7241 	}
7242 
7243 	/* Unlocks zone->lock */
7244 	__accept_page(zone, &flags, page);
7245 }
7246 
7247 static bool try_to_accept_memory_one(struct zone *zone)
7248 {
7249 	unsigned long flags;
7250 	struct page *page;
7251 
7252 	spin_lock_irqsave(&zone->lock, flags);
7253 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7254 					struct page, lru);
7255 	if (!page) {
7256 		spin_unlock_irqrestore(&zone->lock, flags);
7257 		return false;
7258 	}
7259 
7260 	/* Unlocks zone->lock */
7261 	__accept_page(zone, &flags, page);
7262 
7263 	return true;
7264 }
7265 
7266 static inline bool has_unaccepted_memory(void)
7267 {
7268 	return static_branch_unlikely(&zones_with_unaccepted_pages);
7269 }
7270 
7271 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7272 {
7273 	long to_accept, wmark;
7274 	bool ret = false;
7275 
7276 	if (!has_unaccepted_memory())
7277 		return false;
7278 
7279 	if (list_empty(&zone->unaccepted_pages))
7280 		return false;
7281 
7282 	wmark = promo_wmark_pages(zone);
7283 
7284 	/*
7285 	 * Watermarks have not been initialized yet.
7286 	 *
7287 	 * Accepting one MAX_ORDER page to ensure progress.
7288 	 */
7289 	if (!wmark)
7290 		return try_to_accept_memory_one(zone);
7291 
7292 	/* How much to accept to get to promo watermark? */
7293 	to_accept = wmark -
7294 		    (zone_page_state(zone, NR_FREE_PAGES) -
7295 		    __zone_watermark_unusable_free(zone, order, 0) -
7296 		    zone_page_state(zone, NR_UNACCEPTED));
7297 
7298 	while (to_accept > 0) {
7299 		if (!try_to_accept_memory_one(zone))
7300 			break;
7301 		ret = true;
7302 		to_accept -= MAX_ORDER_NR_PAGES;
7303 	}
7304 
7305 	return ret;
7306 }
7307 
7308 static bool __free_unaccepted(struct page *page)
7309 {
7310 	struct zone *zone = page_zone(page);
7311 	unsigned long flags;
7312 	bool first = false;
7313 
7314 	if (!lazy_accept)
7315 		return false;
7316 
7317 	spin_lock_irqsave(&zone->lock, flags);
7318 	first = list_empty(&zone->unaccepted_pages);
7319 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7320 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7321 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7322 	__SetPageUnaccepted(page);
7323 	spin_unlock_irqrestore(&zone->lock, flags);
7324 
7325 	if (first)
7326 		static_branch_inc(&zones_with_unaccepted_pages);
7327 
7328 	return true;
7329 }
7330 
7331 #else
7332 
7333 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7334 {
7335 	return false;
7336 }
7337 
7338 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7339 {
7340 	return false;
7341 }
7342 
7343 static bool __free_unaccepted(struct page *page)
7344 {
7345 	BUILD_BUG();
7346 	return false;
7347 }
7348 
7349 #endif /* CONFIG_UNACCEPTED_MEMORY */
7350 
7351 /**
7352  * try_alloc_pages - opportunistic reentrant allocation from any context
7353  * @nid: node to allocate from
7354  * @order: allocation order size
7355  *
7356  * Allocates pages of a given order from the given node. This is safe to
7357  * call from any context (from atomic, NMI, and also reentrant
7358  * allocator -> tracepoint -> try_alloc_pages_noprof).
7359  * Allocation is best effort and to be expected to fail easily so nobody should
7360  * rely on the success. Failures are not reported via warn_alloc().
7361  * See always fail conditions below.
7362  *
7363  * Return: allocated page or NULL on failure.
7364  */
7365 struct page *try_alloc_pages_noprof(int nid, unsigned int order)
7366 {
7367 	/*
7368 	 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
7369 	 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
7370 	 * is not safe in arbitrary context.
7371 	 *
7372 	 * These two are the conditions for gfpflags_allow_spinning() being true.
7373 	 *
7374 	 * Specify __GFP_NOWARN since failing try_alloc_pages() is not a reason
7375 	 * to warn. Also warn would trigger printk() which is unsafe from
7376 	 * various contexts. We cannot use printk_deferred_enter() to mitigate,
7377 	 * since the running context is unknown.
7378 	 *
7379 	 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
7380 	 * is safe in any context. Also zeroing the page is mandatory for
7381 	 * BPF use cases.
7382 	 *
7383 	 * Though __GFP_NOMEMALLOC is not checked in the code path below,
7384 	 * specify it here to highlight that try_alloc_pages()
7385 	 * doesn't want to deplete reserves.
7386 	 */
7387 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC
7388 			| __GFP_ACCOUNT;
7389 	unsigned int alloc_flags = ALLOC_TRYLOCK;
7390 	struct alloc_context ac = { };
7391 	struct page *page;
7392 
7393 	/*
7394 	 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
7395 	 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
7396 	 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
7397 	 * mark the task as the owner of another rt_spin_lock which will
7398 	 * confuse PI logic, so return immediately if called form hard IRQ or
7399 	 * NMI.
7400 	 *
7401 	 * Note, irqs_disabled() case is ok. This function can be called
7402 	 * from raw_spin_lock_irqsave region.
7403 	 */
7404 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
7405 		return NULL;
7406 	if (!pcp_allowed_order(order))
7407 		return NULL;
7408 
7409 #ifdef CONFIG_UNACCEPTED_MEMORY
7410 	/* Bailout, since try_to_accept_memory_one() needs to take a lock */
7411 	if (has_unaccepted_memory())
7412 		return NULL;
7413 #endif
7414 	/* Bailout, since _deferred_grow_zone() needs to take a lock */
7415 	if (deferred_pages_enabled())
7416 		return NULL;
7417 
7418 	if (nid == NUMA_NO_NODE)
7419 		nid = numa_node_id();
7420 
7421 	prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
7422 			    &alloc_gfp, &alloc_flags);
7423 
7424 	/*
7425 	 * Best effort allocation from percpu free list.
7426 	 * If it's empty attempt to spin_trylock zone->lock.
7427 	 */
7428 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
7429 
7430 	/* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
7431 
7432 	if (page)
7433 		set_page_refcounted(page);
7434 
7435 	if (memcg_kmem_online() && page &&
7436 	    unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
7437 		free_pages_nolock(page, order);
7438 		page = NULL;
7439 	}
7440 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
7441 	kmsan_alloc_page(page, order, alloc_gfp);
7442 	return page;
7443 }
7444