xref: /linux/mm/page_alloc.c (revision 4127e13c9302f6892f73793f133ea4b4fffb2964)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static bool cond_accept_memory(struct zone *zone, unsigned int order);
290 static bool __free_unaccepted(struct page *page);
291 
292 int page_group_by_mobility_disabled __read_mostly;
293 
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 /*
296  * During boot we initialize deferred pages on-demand, as needed, but once
297  * page_alloc_init_late() has finished, the deferred pages are all initialized,
298  * and we can permanently disable that path.
299  */
300 DEFINE_STATIC_KEY_TRUE(deferred_pages);
301 
302 static inline bool deferred_pages_enabled(void)
303 {
304 	return static_branch_unlikely(&deferred_pages);
305 }
306 
307 /*
308  * deferred_grow_zone() is __init, but it is called from
309  * get_page_from_freelist() during early boot until deferred_pages permanently
310  * disables this call. This is why we have refdata wrapper to avoid warning,
311  * and to ensure that the function body gets unloaded.
312  */
313 static bool __ref
314 _deferred_grow_zone(struct zone *zone, unsigned int order)
315 {
316 	return deferred_grow_zone(zone, order);
317 }
318 #else
319 static inline bool deferred_pages_enabled(void)
320 {
321 	return false;
322 }
323 
324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
325 {
326 	return false;
327 }
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
329 
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
331 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
332 							unsigned long pfn)
333 {
334 #ifdef CONFIG_SPARSEMEM
335 	return section_to_usemap(__pfn_to_section(pfn));
336 #else
337 	return page_zone(page)->pageblock_flags;
338 #endif /* CONFIG_SPARSEMEM */
339 }
340 
341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
342 {
343 #ifdef CONFIG_SPARSEMEM
344 	pfn &= (PAGES_PER_SECTION-1);
345 #else
346 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
347 #endif /* CONFIG_SPARSEMEM */
348 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
349 }
350 
351 /**
352  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353  * @page: The page within the block of interest
354  * @pfn: The target page frame number
355  * @mask: mask of bits that the caller is interested in
356  *
357  * Return: pageblock_bits flags
358  */
359 unsigned long get_pfnblock_flags_mask(const struct page *page,
360 					unsigned long pfn, unsigned long mask)
361 {
362 	unsigned long *bitmap;
363 	unsigned long bitidx, word_bitidx;
364 	unsigned long word;
365 
366 	bitmap = get_pageblock_bitmap(page, pfn);
367 	bitidx = pfn_to_bitidx(page, pfn);
368 	word_bitidx = bitidx / BITS_PER_LONG;
369 	bitidx &= (BITS_PER_LONG-1);
370 	/*
371 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 	 * a consistent read of the memory array, so that results, even though
373 	 * racy, are not corrupted.
374 	 */
375 	word = READ_ONCE(bitmap[word_bitidx]);
376 	return (word >> bitidx) & mask;
377 }
378 
379 static __always_inline int get_pfnblock_migratetype(const struct page *page,
380 					unsigned long pfn)
381 {
382 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
383 }
384 
385 /**
386  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387  * @page: The page within the block of interest
388  * @flags: The flags to set
389  * @pfn: The target page frame number
390  * @mask: mask of bits that the caller is interested in
391  */
392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
393 					unsigned long pfn,
394 					unsigned long mask)
395 {
396 	unsigned long *bitmap;
397 	unsigned long bitidx, word_bitidx;
398 	unsigned long word;
399 
400 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
401 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
402 
403 	bitmap = get_pageblock_bitmap(page, pfn);
404 	bitidx = pfn_to_bitidx(page, pfn);
405 	word_bitidx = bitidx / BITS_PER_LONG;
406 	bitidx &= (BITS_PER_LONG-1);
407 
408 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
409 
410 	mask <<= bitidx;
411 	flags <<= bitidx;
412 
413 	word = READ_ONCE(bitmap[word_bitidx]);
414 	do {
415 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
416 }
417 
418 void set_pageblock_migratetype(struct page *page, int migratetype)
419 {
420 	if (unlikely(page_group_by_mobility_disabled &&
421 		     migratetype < MIGRATE_PCPTYPES))
422 		migratetype = MIGRATE_UNMOVABLE;
423 
424 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
425 				page_to_pfn(page), MIGRATETYPE_MASK);
426 }
427 
428 #ifdef CONFIG_DEBUG_VM
429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
430 {
431 	int ret;
432 	unsigned seq;
433 	unsigned long pfn = page_to_pfn(page);
434 	unsigned long sp, start_pfn;
435 
436 	do {
437 		seq = zone_span_seqbegin(zone);
438 		start_pfn = zone->zone_start_pfn;
439 		sp = zone->spanned_pages;
440 		ret = !zone_spans_pfn(zone, pfn);
441 	} while (zone_span_seqretry(zone, seq));
442 
443 	if (ret)
444 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 			pfn, zone_to_nid(zone), zone->name,
446 			start_pfn, start_pfn + sp);
447 
448 	return ret;
449 }
450 
451 /*
452  * Temporary debugging check for pages not lying within a given zone.
453  */
454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
455 {
456 	if (page_outside_zone_boundaries(zone, page))
457 		return true;
458 	if (zone != page_zone(page))
459 		return true;
460 
461 	return false;
462 }
463 #else
464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
465 {
466 	return false;
467 }
468 #endif
469 
470 static void bad_page(struct page *page, const char *reason)
471 {
472 	static unsigned long resume;
473 	static unsigned long nr_shown;
474 	static unsigned long nr_unshown;
475 
476 	/*
477 	 * Allow a burst of 60 reports, then keep quiet for that minute;
478 	 * or allow a steady drip of one report per second.
479 	 */
480 	if (nr_shown == 60) {
481 		if (time_before(jiffies, resume)) {
482 			nr_unshown++;
483 			goto out;
484 		}
485 		if (nr_unshown) {
486 			pr_alert(
487 			      "BUG: Bad page state: %lu messages suppressed\n",
488 				nr_unshown);
489 			nr_unshown = 0;
490 		}
491 		nr_shown = 0;
492 	}
493 	if (nr_shown++ == 0)
494 		resume = jiffies + 60 * HZ;
495 
496 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
497 		current->comm, page_to_pfn(page));
498 	dump_page(page, reason);
499 
500 	print_modules();
501 	dump_stack();
502 out:
503 	/* Leave bad fields for debug, except PageBuddy could make trouble */
504 	if (PageBuddy(page))
505 		__ClearPageBuddy(page);
506 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
507 }
508 
509 static inline unsigned int order_to_pindex(int migratetype, int order)
510 {
511 	bool __maybe_unused movable;
512 
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
515 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
516 
517 		movable = migratetype == MIGRATE_MOVABLE;
518 
519 		return NR_LOWORDER_PCP_LISTS + movable;
520 	}
521 #else
522 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
523 #endif
524 
525 	return (MIGRATE_PCPTYPES * order) + migratetype;
526 }
527 
528 static inline int pindex_to_order(unsigned int pindex)
529 {
530 	int order = pindex / MIGRATE_PCPTYPES;
531 
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 	if (pindex >= NR_LOWORDER_PCP_LISTS)
534 		order = HPAGE_PMD_ORDER;
535 #else
536 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
537 #endif
538 
539 	return order;
540 }
541 
542 static inline bool pcp_allowed_order(unsigned int order)
543 {
544 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
545 		return true;
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 	if (order == HPAGE_PMD_ORDER)
548 		return true;
549 #endif
550 	return false;
551 }
552 
553 /*
554  * Higher-order pages are called "compound pages".  They are structured thusly:
555  *
556  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
557  *
558  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
560  *
561  * The first tail page's ->compound_order holds the order of allocation.
562  * This usage means that zero-order pages may not be compound.
563  */
564 
565 void prep_compound_page(struct page *page, unsigned int order)
566 {
567 	int i;
568 	int nr_pages = 1 << order;
569 
570 	__SetPageHead(page);
571 	for (i = 1; i < nr_pages; i++)
572 		prep_compound_tail(page, i);
573 
574 	prep_compound_head(page, order);
575 }
576 
577 static inline void set_buddy_order(struct page *page, unsigned int order)
578 {
579 	set_page_private(page, order);
580 	__SetPageBuddy(page);
581 }
582 
583 #ifdef CONFIG_COMPACTION
584 static inline struct capture_control *task_capc(struct zone *zone)
585 {
586 	struct capture_control *capc = current->capture_control;
587 
588 	return unlikely(capc) &&
589 		!(current->flags & PF_KTHREAD) &&
590 		!capc->page &&
591 		capc->cc->zone == zone ? capc : NULL;
592 }
593 
594 static inline bool
595 compaction_capture(struct capture_control *capc, struct page *page,
596 		   int order, int migratetype)
597 {
598 	if (!capc || order != capc->cc->order)
599 		return false;
600 
601 	/* Do not accidentally pollute CMA or isolated regions*/
602 	if (is_migrate_cma(migratetype) ||
603 	    is_migrate_isolate(migratetype))
604 		return false;
605 
606 	/*
607 	 * Do not let lower order allocations pollute a movable pageblock
608 	 * unless compaction is also requesting movable pages.
609 	 * This might let an unmovable request use a reclaimable pageblock
610 	 * and vice-versa but no more than normal fallback logic which can
611 	 * have trouble finding a high-order free page.
612 	 */
613 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
614 	    capc->cc->migratetype != MIGRATE_MOVABLE)
615 		return false;
616 
617 	capc->page = page;
618 	return true;
619 }
620 
621 #else
622 static inline struct capture_control *task_capc(struct zone *zone)
623 {
624 	return NULL;
625 }
626 
627 static inline bool
628 compaction_capture(struct capture_control *capc, struct page *page,
629 		   int order, int migratetype)
630 {
631 	return false;
632 }
633 #endif /* CONFIG_COMPACTION */
634 
635 static inline void account_freepages(struct zone *zone, int nr_pages,
636 				     int migratetype)
637 {
638 	lockdep_assert_held(&zone->lock);
639 
640 	if (is_migrate_isolate(migratetype))
641 		return;
642 
643 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
644 
645 	if (is_migrate_cma(migratetype))
646 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
647 	else if (is_migrate_highatomic(migratetype))
648 		WRITE_ONCE(zone->nr_free_highatomic,
649 			   zone->nr_free_highatomic + nr_pages);
650 }
651 
652 /* Used for pages not on another list */
653 static inline void __add_to_free_list(struct page *page, struct zone *zone,
654 				      unsigned int order, int migratetype,
655 				      bool tail)
656 {
657 	struct free_area *area = &zone->free_area[order];
658 
659 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
660 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
661 		     get_pageblock_migratetype(page), migratetype, 1 << order);
662 
663 	if (tail)
664 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
665 	else
666 		list_add(&page->buddy_list, &area->free_list[migratetype]);
667 	area->nr_free++;
668 }
669 
670 /*
671  * Used for pages which are on another list. Move the pages to the tail
672  * of the list - so the moved pages won't immediately be considered for
673  * allocation again (e.g., optimization for memory onlining).
674  */
675 static inline void move_to_free_list(struct page *page, struct zone *zone,
676 				     unsigned int order, int old_mt, int new_mt)
677 {
678 	struct free_area *area = &zone->free_area[order];
679 
680 	/* Free page moving can fail, so it happens before the type update */
681 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
682 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
683 		     get_pageblock_migratetype(page), old_mt, 1 << order);
684 
685 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
686 
687 	account_freepages(zone, -(1 << order), old_mt);
688 	account_freepages(zone, 1 << order, new_mt);
689 }
690 
691 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
692 					     unsigned int order, int migratetype)
693 {
694         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
695 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 		     get_pageblock_migratetype(page), migratetype, 1 << order);
697 
698 	/* clear reported state and update reported page count */
699 	if (page_reported(page))
700 		__ClearPageReported(page);
701 
702 	list_del(&page->buddy_list);
703 	__ClearPageBuddy(page);
704 	set_page_private(page, 0);
705 	zone->free_area[order].nr_free--;
706 }
707 
708 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
709 					   unsigned int order, int migratetype)
710 {
711 	__del_page_from_free_list(page, zone, order, migratetype);
712 	account_freepages(zone, -(1 << order), migratetype);
713 }
714 
715 static inline struct page *get_page_from_free_area(struct free_area *area,
716 					    int migratetype)
717 {
718 	return list_first_entry_or_null(&area->free_list[migratetype],
719 					struct page, buddy_list);
720 }
721 
722 /*
723  * If this is less than the 2nd largest possible page, check if the buddy
724  * of the next-higher order is free. If it is, it's possible
725  * that pages are being freed that will coalesce soon. In case,
726  * that is happening, add the free page to the tail of the list
727  * so it's less likely to be used soon and more likely to be merged
728  * as a 2-level higher order page
729  */
730 static inline bool
731 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
732 		   struct page *page, unsigned int order)
733 {
734 	unsigned long higher_page_pfn;
735 	struct page *higher_page;
736 
737 	if (order >= MAX_PAGE_ORDER - 1)
738 		return false;
739 
740 	higher_page_pfn = buddy_pfn & pfn;
741 	higher_page = page + (higher_page_pfn - pfn);
742 
743 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
744 			NULL) != NULL;
745 }
746 
747 /*
748  * Freeing function for a buddy system allocator.
749  *
750  * The concept of a buddy system is to maintain direct-mapped table
751  * (containing bit values) for memory blocks of various "orders".
752  * The bottom level table contains the map for the smallest allocatable
753  * units of memory (here, pages), and each level above it describes
754  * pairs of units from the levels below, hence, "buddies".
755  * At a high level, all that happens here is marking the table entry
756  * at the bottom level available, and propagating the changes upward
757  * as necessary, plus some accounting needed to play nicely with other
758  * parts of the VM system.
759  * At each level, we keep a list of pages, which are heads of continuous
760  * free pages of length of (1 << order) and marked with PageBuddy.
761  * Page's order is recorded in page_private(page) field.
762  * So when we are allocating or freeing one, we can derive the state of the
763  * other.  That is, if we allocate a small block, and both were
764  * free, the remainder of the region must be split into blocks.
765  * If a block is freed, and its buddy is also free, then this
766  * triggers coalescing into a block of larger size.
767  *
768  * -- nyc
769  */
770 
771 static inline void __free_one_page(struct page *page,
772 		unsigned long pfn,
773 		struct zone *zone, unsigned int order,
774 		int migratetype, fpi_t fpi_flags)
775 {
776 	struct capture_control *capc = task_capc(zone);
777 	unsigned long buddy_pfn = 0;
778 	unsigned long combined_pfn;
779 	struct page *buddy;
780 	bool to_tail;
781 
782 	VM_BUG_ON(!zone_is_initialized(zone));
783 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784 
785 	VM_BUG_ON(migratetype == -1);
786 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
787 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
788 
789 	account_freepages(zone, 1 << order, migratetype);
790 
791 	while (order < MAX_PAGE_ORDER) {
792 		int buddy_mt = migratetype;
793 
794 		if (compaction_capture(capc, page, order, migratetype)) {
795 			account_freepages(zone, -(1 << order), migratetype);
796 			return;
797 		}
798 
799 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
800 		if (!buddy)
801 			goto done_merging;
802 
803 		if (unlikely(order >= pageblock_order)) {
804 			/*
805 			 * We want to prevent merge between freepages on pageblock
806 			 * without fallbacks and normal pageblock. Without this,
807 			 * pageblock isolation could cause incorrect freepage or CMA
808 			 * accounting or HIGHATOMIC accounting.
809 			 */
810 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
811 
812 			if (migratetype != buddy_mt &&
813 			    (!migratetype_is_mergeable(migratetype) ||
814 			     !migratetype_is_mergeable(buddy_mt)))
815 				goto done_merging;
816 		}
817 
818 		/*
819 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 		 * merge with it and move up one order.
821 		 */
822 		if (page_is_guard(buddy))
823 			clear_page_guard(zone, buddy, order);
824 		else
825 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
826 
827 		if (unlikely(buddy_mt != migratetype)) {
828 			/*
829 			 * Match buddy type. This ensures that an
830 			 * expand() down the line puts the sub-blocks
831 			 * on the right freelists.
832 			 */
833 			set_pageblock_migratetype(buddy, migratetype);
834 		}
835 
836 		combined_pfn = buddy_pfn & pfn;
837 		page = page + (combined_pfn - pfn);
838 		pfn = combined_pfn;
839 		order++;
840 	}
841 
842 done_merging:
843 	set_buddy_order(page, order);
844 
845 	if (fpi_flags & FPI_TO_TAIL)
846 		to_tail = true;
847 	else if (is_shuffle_order(order))
848 		to_tail = shuffle_pick_tail();
849 	else
850 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
851 
852 	__add_to_free_list(page, zone, order, migratetype, to_tail);
853 
854 	/* Notify page reporting subsystem of freed page */
855 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
856 		page_reporting_notify_free(order);
857 }
858 
859 /*
860  * A bad page could be due to a number of fields. Instead of multiple branches,
861  * try and check multiple fields with one check. The caller must do a detailed
862  * check if necessary.
863  */
864 static inline bool page_expected_state(struct page *page,
865 					unsigned long check_flags)
866 {
867 	if (unlikely(atomic_read(&page->_mapcount) != -1))
868 		return false;
869 
870 	if (unlikely((unsigned long)page->mapping |
871 			page_ref_count(page) |
872 #ifdef CONFIG_MEMCG
873 			page->memcg_data |
874 #endif
875 #ifdef CONFIG_PAGE_POOL
876 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
877 #endif
878 			(page->flags & check_flags)))
879 		return false;
880 
881 	return true;
882 }
883 
884 static const char *page_bad_reason(struct page *page, unsigned long flags)
885 {
886 	const char *bad_reason = NULL;
887 
888 	if (unlikely(atomic_read(&page->_mapcount) != -1))
889 		bad_reason = "nonzero mapcount";
890 	if (unlikely(page->mapping != NULL))
891 		bad_reason = "non-NULL mapping";
892 	if (unlikely(page_ref_count(page) != 0))
893 		bad_reason = "nonzero _refcount";
894 	if (unlikely(page->flags & flags)) {
895 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
896 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
897 		else
898 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
899 	}
900 #ifdef CONFIG_MEMCG
901 	if (unlikely(page->memcg_data))
902 		bad_reason = "page still charged to cgroup";
903 #endif
904 #ifdef CONFIG_PAGE_POOL
905 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
906 		bad_reason = "page_pool leak";
907 #endif
908 	return bad_reason;
909 }
910 
911 static void free_page_is_bad_report(struct page *page)
912 {
913 	bad_page(page,
914 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
915 }
916 
917 static inline bool free_page_is_bad(struct page *page)
918 {
919 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 		return false;
921 
922 	/* Something has gone sideways, find it */
923 	free_page_is_bad_report(page);
924 	return true;
925 }
926 
927 static inline bool is_check_pages_enabled(void)
928 {
929 	return static_branch_unlikely(&check_pages_enabled);
930 }
931 
932 static int free_tail_page_prepare(struct page *head_page, struct page *page)
933 {
934 	struct folio *folio = (struct folio *)head_page;
935 	int ret = 1;
936 
937 	/*
938 	 * We rely page->lru.next never has bit 0 set, unless the page
939 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
940 	 */
941 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
942 
943 	if (!is_check_pages_enabled()) {
944 		ret = 0;
945 		goto out;
946 	}
947 	switch (page - head_page) {
948 	case 1:
949 		/* the first tail page: these may be in place of ->mapping */
950 		if (unlikely(folio_entire_mapcount(folio))) {
951 			bad_page(page, "nonzero entire_mapcount");
952 			goto out;
953 		}
954 		if (unlikely(folio_large_mapcount(folio))) {
955 			bad_page(page, "nonzero large_mapcount");
956 			goto out;
957 		}
958 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
959 			bad_page(page, "nonzero nr_pages_mapped");
960 			goto out;
961 		}
962 		if (unlikely(atomic_read(&folio->_pincount))) {
963 			bad_page(page, "nonzero pincount");
964 			goto out;
965 		}
966 		break;
967 	case 2:
968 		/* the second tail page: deferred_list overlaps ->mapping */
969 		if (unlikely(!list_empty(&folio->_deferred_list))) {
970 			bad_page(page, "on deferred list");
971 			goto out;
972 		}
973 		break;
974 	default:
975 		if (page->mapping != TAIL_MAPPING) {
976 			bad_page(page, "corrupted mapping in tail page");
977 			goto out;
978 		}
979 		break;
980 	}
981 	if (unlikely(!PageTail(page))) {
982 		bad_page(page, "PageTail not set");
983 		goto out;
984 	}
985 	if (unlikely(compound_head(page) != head_page)) {
986 		bad_page(page, "compound_head not consistent");
987 		goto out;
988 	}
989 	ret = 0;
990 out:
991 	page->mapping = NULL;
992 	clear_compound_head(page);
993 	return ret;
994 }
995 
996 /*
997  * Skip KASAN memory poisoning when either:
998  *
999  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1000  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1001  *    using page tags instead (see below).
1002  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1003  *    that error detection is disabled for accesses via the page address.
1004  *
1005  * Pages will have match-all tags in the following circumstances:
1006  *
1007  * 1. Pages are being initialized for the first time, including during deferred
1008  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1009  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1010  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1011  * 3. The allocation was excluded from being checked due to sampling,
1012  *    see the call to kasan_unpoison_pages.
1013  *
1014  * Poisoning pages during deferred memory init will greatly lengthen the
1015  * process and cause problem in large memory systems as the deferred pages
1016  * initialization is done with interrupt disabled.
1017  *
1018  * Assuming that there will be no reference to those newly initialized
1019  * pages before they are ever allocated, this should have no effect on
1020  * KASAN memory tracking as the poison will be properly inserted at page
1021  * allocation time. The only corner case is when pages are allocated by
1022  * on-demand allocation and then freed again before the deferred pages
1023  * initialization is done, but this is not likely to happen.
1024  */
1025 static inline bool should_skip_kasan_poison(struct page *page)
1026 {
1027 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1028 		return deferred_pages_enabled();
1029 
1030 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1031 }
1032 
1033 static void kernel_init_pages(struct page *page, int numpages)
1034 {
1035 	int i;
1036 
1037 	/* s390's use of memset() could override KASAN redzones. */
1038 	kasan_disable_current();
1039 	for (i = 0; i < numpages; i++)
1040 		clear_highpage_kasan_tagged(page + i);
1041 	kasan_enable_current();
1042 }
1043 
1044 #ifdef CONFIG_MEM_ALLOC_PROFILING
1045 
1046 /* Should be called only if mem_alloc_profiling_enabled() */
1047 void __clear_page_tag_ref(struct page *page)
1048 {
1049 	union pgtag_ref_handle handle;
1050 	union codetag_ref ref;
1051 
1052 	if (get_page_tag_ref(page, &ref, &handle)) {
1053 		set_codetag_empty(&ref);
1054 		update_page_tag_ref(handle, &ref);
1055 		put_page_tag_ref(handle);
1056 	}
1057 }
1058 
1059 /* Should be called only if mem_alloc_profiling_enabled() */
1060 static noinline
1061 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1062 		       unsigned int nr)
1063 {
1064 	union pgtag_ref_handle handle;
1065 	union codetag_ref ref;
1066 
1067 	if (get_page_tag_ref(page, &ref, &handle)) {
1068 		alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1069 		update_page_tag_ref(handle, &ref);
1070 		put_page_tag_ref(handle);
1071 	}
1072 }
1073 
1074 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1075 				   unsigned int nr)
1076 {
1077 	if (mem_alloc_profiling_enabled())
1078 		__pgalloc_tag_add(page, task, nr);
1079 }
1080 
1081 /* Should be called only if mem_alloc_profiling_enabled() */
1082 static noinline
1083 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1084 {
1085 	union pgtag_ref_handle handle;
1086 	union codetag_ref ref;
1087 
1088 	if (get_page_tag_ref(page, &ref, &handle)) {
1089 		alloc_tag_sub(&ref, PAGE_SIZE * nr);
1090 		update_page_tag_ref(handle, &ref);
1091 		put_page_tag_ref(handle);
1092 	}
1093 }
1094 
1095 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1096 {
1097 	if (mem_alloc_profiling_enabled())
1098 		__pgalloc_tag_sub(page, nr);
1099 }
1100 
1101 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr)
1102 {
1103 	struct alloc_tag *tag;
1104 
1105 	if (!mem_alloc_profiling_enabled())
1106 		return;
1107 
1108 	tag = __pgalloc_tag_get(page);
1109 	if (tag)
1110 		this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1111 }
1112 
1113 #else /* CONFIG_MEM_ALLOC_PROFILING */
1114 
1115 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1116 				   unsigned int nr) {}
1117 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
1118 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) {}
1119 
1120 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1121 
1122 __always_inline bool free_pages_prepare(struct page *page,
1123 			unsigned int order)
1124 {
1125 	int bad = 0;
1126 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1127 	bool init = want_init_on_free();
1128 	bool compound = PageCompound(page);
1129 	struct folio *folio = page_folio(page);
1130 
1131 	VM_BUG_ON_PAGE(PageTail(page), page);
1132 
1133 	trace_mm_page_free(page, order);
1134 	kmsan_free_page(page, order);
1135 
1136 	if (memcg_kmem_online() && PageMemcgKmem(page))
1137 		__memcg_kmem_uncharge_page(page, order);
1138 
1139 	/*
1140 	 * In rare cases, when truncation or holepunching raced with
1141 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1142 	 * found set here.  This does not indicate a problem, unless
1143 	 * "unevictable_pgs_cleared" appears worryingly large.
1144 	 */
1145 	if (unlikely(folio_test_mlocked(folio))) {
1146 		long nr_pages = folio_nr_pages(folio);
1147 
1148 		__folio_clear_mlocked(folio);
1149 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1150 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1151 	}
1152 
1153 	if (unlikely(PageHWPoison(page)) && !order) {
1154 		/* Do not let hwpoison pages hit pcplists/buddy */
1155 		reset_page_owner(page, order);
1156 		page_table_check_free(page, order);
1157 		pgalloc_tag_sub(page, 1 << order);
1158 
1159 		/*
1160 		 * The page is isolated and accounted for.
1161 		 * Mark the codetag as empty to avoid accounting error
1162 		 * when the page is freed by unpoison_memory().
1163 		 */
1164 		clear_page_tag_ref(page);
1165 		return false;
1166 	}
1167 
1168 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1169 
1170 	/*
1171 	 * Check tail pages before head page information is cleared to
1172 	 * avoid checking PageCompound for order-0 pages.
1173 	 */
1174 	if (unlikely(order)) {
1175 		int i;
1176 
1177 		if (compound)
1178 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1179 		for (i = 1; i < (1 << order); i++) {
1180 			if (compound)
1181 				bad += free_tail_page_prepare(page, page + i);
1182 			if (is_check_pages_enabled()) {
1183 				if (free_page_is_bad(page + i)) {
1184 					bad++;
1185 					continue;
1186 				}
1187 			}
1188 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1189 		}
1190 	}
1191 	if (PageMappingFlags(page)) {
1192 		if (PageAnon(page))
1193 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1194 		page->mapping = NULL;
1195 	}
1196 	if (is_check_pages_enabled()) {
1197 		if (free_page_is_bad(page))
1198 			bad++;
1199 		if (bad)
1200 			return false;
1201 	}
1202 
1203 	page_cpupid_reset_last(page);
1204 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1205 	reset_page_owner(page, order);
1206 	page_table_check_free(page, order);
1207 	pgalloc_tag_sub(page, 1 << order);
1208 
1209 	if (!PageHighMem(page)) {
1210 		debug_check_no_locks_freed(page_address(page),
1211 					   PAGE_SIZE << order);
1212 		debug_check_no_obj_freed(page_address(page),
1213 					   PAGE_SIZE << order);
1214 	}
1215 
1216 	kernel_poison_pages(page, 1 << order);
1217 
1218 	/*
1219 	 * As memory initialization might be integrated into KASAN,
1220 	 * KASAN poisoning and memory initialization code must be
1221 	 * kept together to avoid discrepancies in behavior.
1222 	 *
1223 	 * With hardware tag-based KASAN, memory tags must be set before the
1224 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1225 	 */
1226 	if (!skip_kasan_poison) {
1227 		kasan_poison_pages(page, order, init);
1228 
1229 		/* Memory is already initialized if KASAN did it internally. */
1230 		if (kasan_has_integrated_init())
1231 			init = false;
1232 	}
1233 	if (init)
1234 		kernel_init_pages(page, 1 << order);
1235 
1236 	/*
1237 	 * arch_free_page() can make the page's contents inaccessible.  s390
1238 	 * does this.  So nothing which can access the page's contents should
1239 	 * happen after this.
1240 	 */
1241 	arch_free_page(page, order);
1242 
1243 	debug_pagealloc_unmap_pages(page, 1 << order);
1244 
1245 	return true;
1246 }
1247 
1248 /*
1249  * Frees a number of pages from the PCP lists
1250  * Assumes all pages on list are in same zone.
1251  * count is the number of pages to free.
1252  */
1253 static void free_pcppages_bulk(struct zone *zone, int count,
1254 					struct per_cpu_pages *pcp,
1255 					int pindex)
1256 {
1257 	unsigned long flags;
1258 	unsigned int order;
1259 	struct page *page;
1260 
1261 	/*
1262 	 * Ensure proper count is passed which otherwise would stuck in the
1263 	 * below while (list_empty(list)) loop.
1264 	 */
1265 	count = min(pcp->count, count);
1266 
1267 	/* Ensure requested pindex is drained first. */
1268 	pindex = pindex - 1;
1269 
1270 	spin_lock_irqsave(&zone->lock, flags);
1271 
1272 	while (count > 0) {
1273 		struct list_head *list;
1274 		int nr_pages;
1275 
1276 		/* Remove pages from lists in a round-robin fashion. */
1277 		do {
1278 			if (++pindex > NR_PCP_LISTS - 1)
1279 				pindex = 0;
1280 			list = &pcp->lists[pindex];
1281 		} while (list_empty(list));
1282 
1283 		order = pindex_to_order(pindex);
1284 		nr_pages = 1 << order;
1285 		do {
1286 			unsigned long pfn;
1287 			int mt;
1288 
1289 			page = list_last_entry(list, struct page, pcp_list);
1290 			pfn = page_to_pfn(page);
1291 			mt = get_pfnblock_migratetype(page, pfn);
1292 
1293 			/* must delete to avoid corrupting pcp list */
1294 			list_del(&page->pcp_list);
1295 			count -= nr_pages;
1296 			pcp->count -= nr_pages;
1297 
1298 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1299 			trace_mm_page_pcpu_drain(page, order, mt);
1300 		} while (count > 0 && !list_empty(list));
1301 	}
1302 
1303 	spin_unlock_irqrestore(&zone->lock, flags);
1304 }
1305 
1306 /* Split a multi-block free page into its individual pageblocks. */
1307 static void split_large_buddy(struct zone *zone, struct page *page,
1308 			      unsigned long pfn, int order, fpi_t fpi)
1309 {
1310 	unsigned long end = pfn + (1 << order);
1311 
1312 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1313 	/* Caller removed page from freelist, buddy info cleared! */
1314 	VM_WARN_ON_ONCE(PageBuddy(page));
1315 
1316 	if (order > pageblock_order)
1317 		order = pageblock_order;
1318 
1319 	do {
1320 		int mt = get_pfnblock_migratetype(page, pfn);
1321 
1322 		__free_one_page(page, pfn, zone, order, mt, fpi);
1323 		pfn += 1 << order;
1324 		if (pfn == end)
1325 			break;
1326 		page = pfn_to_page(pfn);
1327 	} while (1);
1328 }
1329 
1330 static void free_one_page(struct zone *zone, struct page *page,
1331 			  unsigned long pfn, unsigned int order,
1332 			  fpi_t fpi_flags)
1333 {
1334 	unsigned long flags;
1335 
1336 	spin_lock_irqsave(&zone->lock, flags);
1337 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1338 	spin_unlock_irqrestore(&zone->lock, flags);
1339 
1340 	__count_vm_events(PGFREE, 1 << order);
1341 }
1342 
1343 static void __free_pages_ok(struct page *page, unsigned int order,
1344 			    fpi_t fpi_flags)
1345 {
1346 	unsigned long pfn = page_to_pfn(page);
1347 	struct zone *zone = page_zone(page);
1348 
1349 	if (free_pages_prepare(page, order))
1350 		free_one_page(zone, page, pfn, order, fpi_flags);
1351 }
1352 
1353 void __meminit __free_pages_core(struct page *page, unsigned int order,
1354 		enum meminit_context context)
1355 {
1356 	unsigned int nr_pages = 1 << order;
1357 	struct page *p = page;
1358 	unsigned int loop;
1359 
1360 	/*
1361 	 * When initializing the memmap, __init_single_page() sets the refcount
1362 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1363 	 * refcount of all involved pages to 0.
1364 	 *
1365 	 * Note that hotplugged memory pages are initialized to PageOffline().
1366 	 * Pages freed from memblock might be marked as reserved.
1367 	 */
1368 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1369 	    unlikely(context == MEMINIT_HOTPLUG)) {
1370 		for (loop = 0; loop < nr_pages; loop++, p++) {
1371 			VM_WARN_ON_ONCE(PageReserved(p));
1372 			__ClearPageOffline(p);
1373 			set_page_count(p, 0);
1374 		}
1375 
1376 		adjust_managed_page_count(page, nr_pages);
1377 	} else {
1378 		for (loop = 0; loop < nr_pages; loop++, p++) {
1379 			__ClearPageReserved(p);
1380 			set_page_count(p, 0);
1381 		}
1382 
1383 		/* memblock adjusts totalram_pages() manually. */
1384 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1385 	}
1386 
1387 	if (page_contains_unaccepted(page, order)) {
1388 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1389 			return;
1390 
1391 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1392 	}
1393 
1394 	/*
1395 	 * Bypass PCP and place fresh pages right to the tail, primarily
1396 	 * relevant for memory onlining.
1397 	 */
1398 	__free_pages_ok(page, order, FPI_TO_TAIL);
1399 }
1400 
1401 /*
1402  * Check that the whole (or subset of) a pageblock given by the interval of
1403  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1404  * with the migration of free compaction scanner.
1405  *
1406  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1407  *
1408  * It's possible on some configurations to have a setup like node0 node1 node0
1409  * i.e. it's possible that all pages within a zones range of pages do not
1410  * belong to a single zone. We assume that a border between node0 and node1
1411  * can occur within a single pageblock, but not a node0 node1 node0
1412  * interleaving within a single pageblock. It is therefore sufficient to check
1413  * the first and last page of a pageblock and avoid checking each individual
1414  * page in a pageblock.
1415  *
1416  * Note: the function may return non-NULL struct page even for a page block
1417  * which contains a memory hole (i.e. there is no physical memory for a subset
1418  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1419  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1420  * even though the start pfn is online and valid. This should be safe most of
1421  * the time because struct pages are still initialized via init_unavailable_range()
1422  * and pfn walkers shouldn't touch any physical memory range for which they do
1423  * not recognize any specific metadata in struct pages.
1424  */
1425 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1426 				     unsigned long end_pfn, struct zone *zone)
1427 {
1428 	struct page *start_page;
1429 	struct page *end_page;
1430 
1431 	/* end_pfn is one past the range we are checking */
1432 	end_pfn--;
1433 
1434 	if (!pfn_valid(end_pfn))
1435 		return NULL;
1436 
1437 	start_page = pfn_to_online_page(start_pfn);
1438 	if (!start_page)
1439 		return NULL;
1440 
1441 	if (page_zone(start_page) != zone)
1442 		return NULL;
1443 
1444 	end_page = pfn_to_page(end_pfn);
1445 
1446 	/* This gives a shorter code than deriving page_zone(end_page) */
1447 	if (page_zone_id(start_page) != page_zone_id(end_page))
1448 		return NULL;
1449 
1450 	return start_page;
1451 }
1452 
1453 /*
1454  * The order of subdivision here is critical for the IO subsystem.
1455  * Please do not alter this order without good reasons and regression
1456  * testing. Specifically, as large blocks of memory are subdivided,
1457  * the order in which smaller blocks are delivered depends on the order
1458  * they're subdivided in this function. This is the primary factor
1459  * influencing the order in which pages are delivered to the IO
1460  * subsystem according to empirical testing, and this is also justified
1461  * by considering the behavior of a buddy system containing a single
1462  * large block of memory acted on by a series of small allocations.
1463  * This behavior is a critical factor in sglist merging's success.
1464  *
1465  * -- nyc
1466  */
1467 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1468 				  int high, int migratetype)
1469 {
1470 	unsigned int size = 1 << high;
1471 	unsigned int nr_added = 0;
1472 
1473 	while (high > low) {
1474 		high--;
1475 		size >>= 1;
1476 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1477 
1478 		/*
1479 		 * Mark as guard pages (or page), that will allow to
1480 		 * merge back to allocator when buddy will be freed.
1481 		 * Corresponding page table entries will not be touched,
1482 		 * pages will stay not present in virtual address space
1483 		 */
1484 		if (set_page_guard(zone, &page[size], high))
1485 			continue;
1486 
1487 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1488 		set_buddy_order(&page[size], high);
1489 		nr_added += size;
1490 	}
1491 
1492 	return nr_added;
1493 }
1494 
1495 static __always_inline void page_del_and_expand(struct zone *zone,
1496 						struct page *page, int low,
1497 						int high, int migratetype)
1498 {
1499 	int nr_pages = 1 << high;
1500 
1501 	__del_page_from_free_list(page, zone, high, migratetype);
1502 	nr_pages -= expand(zone, page, low, high, migratetype);
1503 	account_freepages(zone, -nr_pages, migratetype);
1504 }
1505 
1506 static void check_new_page_bad(struct page *page)
1507 {
1508 	if (unlikely(page->flags & __PG_HWPOISON)) {
1509 		/* Don't complain about hwpoisoned pages */
1510 		if (PageBuddy(page))
1511 			__ClearPageBuddy(page);
1512 		return;
1513 	}
1514 
1515 	bad_page(page,
1516 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1517 }
1518 
1519 /*
1520  * This page is about to be returned from the page allocator
1521  */
1522 static bool check_new_page(struct page *page)
1523 {
1524 	if (likely(page_expected_state(page,
1525 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1526 		return false;
1527 
1528 	check_new_page_bad(page);
1529 	return true;
1530 }
1531 
1532 static inline bool check_new_pages(struct page *page, unsigned int order)
1533 {
1534 	if (is_check_pages_enabled()) {
1535 		for (int i = 0; i < (1 << order); i++) {
1536 			struct page *p = page + i;
1537 
1538 			if (check_new_page(p))
1539 				return true;
1540 		}
1541 	}
1542 
1543 	return false;
1544 }
1545 
1546 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1547 {
1548 	/* Don't skip if a software KASAN mode is enabled. */
1549 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1550 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1551 		return false;
1552 
1553 	/* Skip, if hardware tag-based KASAN is not enabled. */
1554 	if (!kasan_hw_tags_enabled())
1555 		return true;
1556 
1557 	/*
1558 	 * With hardware tag-based KASAN enabled, skip if this has been
1559 	 * requested via __GFP_SKIP_KASAN.
1560 	 */
1561 	return flags & __GFP_SKIP_KASAN;
1562 }
1563 
1564 static inline bool should_skip_init(gfp_t flags)
1565 {
1566 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1567 	if (!kasan_hw_tags_enabled())
1568 		return false;
1569 
1570 	/* For hardware tag-based KASAN, skip if requested. */
1571 	return (flags & __GFP_SKIP_ZERO);
1572 }
1573 
1574 inline void post_alloc_hook(struct page *page, unsigned int order,
1575 				gfp_t gfp_flags)
1576 {
1577 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1578 			!should_skip_init(gfp_flags);
1579 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1580 	int i;
1581 
1582 	set_page_private(page, 0);
1583 
1584 	arch_alloc_page(page, order);
1585 	debug_pagealloc_map_pages(page, 1 << order);
1586 
1587 	/*
1588 	 * Page unpoisoning must happen before memory initialization.
1589 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1590 	 * allocations and the page unpoisoning code will complain.
1591 	 */
1592 	kernel_unpoison_pages(page, 1 << order);
1593 
1594 	/*
1595 	 * As memory initialization might be integrated into KASAN,
1596 	 * KASAN unpoisoning and memory initializion code must be
1597 	 * kept together to avoid discrepancies in behavior.
1598 	 */
1599 
1600 	/*
1601 	 * If memory tags should be zeroed
1602 	 * (which happens only when memory should be initialized as well).
1603 	 */
1604 	if (zero_tags) {
1605 		/* Initialize both memory and memory tags. */
1606 		for (i = 0; i != 1 << order; ++i)
1607 			tag_clear_highpage(page + i);
1608 
1609 		/* Take note that memory was initialized by the loop above. */
1610 		init = false;
1611 	}
1612 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1613 	    kasan_unpoison_pages(page, order, init)) {
1614 		/* Take note that memory was initialized by KASAN. */
1615 		if (kasan_has_integrated_init())
1616 			init = false;
1617 	} else {
1618 		/*
1619 		 * If memory tags have not been set by KASAN, reset the page
1620 		 * tags to ensure page_address() dereferencing does not fault.
1621 		 */
1622 		for (i = 0; i != 1 << order; ++i)
1623 			page_kasan_tag_reset(page + i);
1624 	}
1625 	/* If memory is still not initialized, initialize it now. */
1626 	if (init)
1627 		kernel_init_pages(page, 1 << order);
1628 
1629 	set_page_owner(page, order, gfp_flags);
1630 	page_table_check_alloc(page, order);
1631 	pgalloc_tag_add(page, current, 1 << order);
1632 }
1633 
1634 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1635 							unsigned int alloc_flags)
1636 {
1637 	post_alloc_hook(page, order, gfp_flags);
1638 
1639 	if (order && (gfp_flags & __GFP_COMP))
1640 		prep_compound_page(page, order);
1641 
1642 	/*
1643 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1644 	 * allocate the page. The expectation is that the caller is taking
1645 	 * steps that will free more memory. The caller should avoid the page
1646 	 * being used for !PFMEMALLOC purposes.
1647 	 */
1648 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1649 		set_page_pfmemalloc(page);
1650 	else
1651 		clear_page_pfmemalloc(page);
1652 }
1653 
1654 /*
1655  * Go through the free lists for the given migratetype and remove
1656  * the smallest available page from the freelists
1657  */
1658 static __always_inline
1659 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1660 						int migratetype)
1661 {
1662 	unsigned int current_order;
1663 	struct free_area *area;
1664 	struct page *page;
1665 
1666 	/* Find a page of the appropriate size in the preferred list */
1667 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1668 		area = &(zone->free_area[current_order]);
1669 		page = get_page_from_free_area(area, migratetype);
1670 		if (!page)
1671 			continue;
1672 
1673 		page_del_and_expand(zone, page, order, current_order,
1674 				    migratetype);
1675 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1676 				pcp_allowed_order(order) &&
1677 				migratetype < MIGRATE_PCPTYPES);
1678 		return page;
1679 	}
1680 
1681 	return NULL;
1682 }
1683 
1684 
1685 /*
1686  * This array describes the order lists are fallen back to when
1687  * the free lists for the desirable migrate type are depleted
1688  *
1689  * The other migratetypes do not have fallbacks.
1690  */
1691 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1692 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1693 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1694 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1695 };
1696 
1697 #ifdef CONFIG_CMA
1698 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1699 					unsigned int order)
1700 {
1701 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1702 }
1703 #else
1704 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1705 					unsigned int order) { return NULL; }
1706 #endif
1707 
1708 /*
1709  * Change the type of a block and move all its free pages to that
1710  * type's freelist.
1711  */
1712 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1713 				  int old_mt, int new_mt)
1714 {
1715 	struct page *page;
1716 	unsigned long pfn, end_pfn;
1717 	unsigned int order;
1718 	int pages_moved = 0;
1719 
1720 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1721 	end_pfn = pageblock_end_pfn(start_pfn);
1722 
1723 	for (pfn = start_pfn; pfn < end_pfn;) {
1724 		page = pfn_to_page(pfn);
1725 		if (!PageBuddy(page)) {
1726 			pfn++;
1727 			continue;
1728 		}
1729 
1730 		/* Make sure we are not inadvertently changing nodes */
1731 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1732 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1733 
1734 		order = buddy_order(page);
1735 
1736 		move_to_free_list(page, zone, order, old_mt, new_mt);
1737 
1738 		pfn += 1 << order;
1739 		pages_moved += 1 << order;
1740 	}
1741 
1742 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1743 
1744 	return pages_moved;
1745 }
1746 
1747 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1748 				      unsigned long *start_pfn,
1749 				      int *num_free, int *num_movable)
1750 {
1751 	unsigned long pfn, start, end;
1752 
1753 	pfn = page_to_pfn(page);
1754 	start = pageblock_start_pfn(pfn);
1755 	end = pageblock_end_pfn(pfn);
1756 
1757 	/*
1758 	 * The caller only has the lock for @zone, don't touch ranges
1759 	 * that straddle into other zones. While we could move part of
1760 	 * the range that's inside the zone, this call is usually
1761 	 * accompanied by other operations such as migratetype updates
1762 	 * which also should be locked.
1763 	 */
1764 	if (!zone_spans_pfn(zone, start))
1765 		return false;
1766 	if (!zone_spans_pfn(zone, end - 1))
1767 		return false;
1768 
1769 	*start_pfn = start;
1770 
1771 	if (num_free) {
1772 		*num_free = 0;
1773 		*num_movable = 0;
1774 		for (pfn = start; pfn < end;) {
1775 			page = pfn_to_page(pfn);
1776 			if (PageBuddy(page)) {
1777 				int nr = 1 << buddy_order(page);
1778 
1779 				*num_free += nr;
1780 				pfn += nr;
1781 				continue;
1782 			}
1783 			/*
1784 			 * We assume that pages that could be isolated for
1785 			 * migration are movable. But we don't actually try
1786 			 * isolating, as that would be expensive.
1787 			 */
1788 			if (PageLRU(page) || __PageMovable(page))
1789 				(*num_movable)++;
1790 			pfn++;
1791 		}
1792 	}
1793 
1794 	return true;
1795 }
1796 
1797 static int move_freepages_block(struct zone *zone, struct page *page,
1798 				int old_mt, int new_mt)
1799 {
1800 	unsigned long start_pfn;
1801 
1802 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1803 		return -1;
1804 
1805 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1806 }
1807 
1808 #ifdef CONFIG_MEMORY_ISOLATION
1809 /* Look for a buddy that straddles start_pfn */
1810 static unsigned long find_large_buddy(unsigned long start_pfn)
1811 {
1812 	int order = 0;
1813 	struct page *page;
1814 	unsigned long pfn = start_pfn;
1815 
1816 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1817 		/* Nothing found */
1818 		if (++order > MAX_PAGE_ORDER)
1819 			return start_pfn;
1820 		pfn &= ~0UL << order;
1821 	}
1822 
1823 	/*
1824 	 * Found a preceding buddy, but does it straddle?
1825 	 */
1826 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1827 		return pfn;
1828 
1829 	/* Nothing found */
1830 	return start_pfn;
1831 }
1832 
1833 /**
1834  * move_freepages_block_isolate - move free pages in block for page isolation
1835  * @zone: the zone
1836  * @page: the pageblock page
1837  * @migratetype: migratetype to set on the pageblock
1838  *
1839  * This is similar to move_freepages_block(), but handles the special
1840  * case encountered in page isolation, where the block of interest
1841  * might be part of a larger buddy spanning multiple pageblocks.
1842  *
1843  * Unlike the regular page allocator path, which moves pages while
1844  * stealing buddies off the freelist, page isolation is interested in
1845  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1846  *
1847  * This function handles that. Straddling buddies are split into
1848  * individual pageblocks. Only the block of interest is moved.
1849  *
1850  * Returns %true if pages could be moved, %false otherwise.
1851  */
1852 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1853 				  int migratetype)
1854 {
1855 	unsigned long start_pfn, pfn;
1856 
1857 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1858 		return false;
1859 
1860 	/* No splits needed if buddies can't span multiple blocks */
1861 	if (pageblock_order == MAX_PAGE_ORDER)
1862 		goto move;
1863 
1864 	/* We're a tail block in a larger buddy */
1865 	pfn = find_large_buddy(start_pfn);
1866 	if (pfn != start_pfn) {
1867 		struct page *buddy = pfn_to_page(pfn);
1868 		int order = buddy_order(buddy);
1869 
1870 		del_page_from_free_list(buddy, zone, order,
1871 					get_pfnblock_migratetype(buddy, pfn));
1872 		set_pageblock_migratetype(page, migratetype);
1873 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1874 		return true;
1875 	}
1876 
1877 	/* We're the starting block of a larger buddy */
1878 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1879 		int order = buddy_order(page);
1880 
1881 		del_page_from_free_list(page, zone, order,
1882 					get_pfnblock_migratetype(page, pfn));
1883 		set_pageblock_migratetype(page, migratetype);
1884 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1885 		return true;
1886 	}
1887 move:
1888 	__move_freepages_block(zone, start_pfn,
1889 			       get_pfnblock_migratetype(page, start_pfn),
1890 			       migratetype);
1891 	return true;
1892 }
1893 #endif /* CONFIG_MEMORY_ISOLATION */
1894 
1895 static void change_pageblock_range(struct page *pageblock_page,
1896 					int start_order, int migratetype)
1897 {
1898 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1899 
1900 	while (nr_pageblocks--) {
1901 		set_pageblock_migratetype(pageblock_page, migratetype);
1902 		pageblock_page += pageblock_nr_pages;
1903 	}
1904 }
1905 
1906 /*
1907  * When we are falling back to another migratetype during allocation, try to
1908  * steal extra free pages from the same pageblocks to satisfy further
1909  * allocations, instead of polluting multiple pageblocks.
1910  *
1911  * If we are stealing a relatively large buddy page, it is likely there will
1912  * be more free pages in the pageblock, so try to steal them all. For
1913  * reclaimable and unmovable allocations, we steal regardless of page size,
1914  * as fragmentation caused by those allocations polluting movable pageblocks
1915  * is worse than movable allocations stealing from unmovable and reclaimable
1916  * pageblocks.
1917  */
1918 static bool can_steal_fallback(unsigned int order, int start_mt)
1919 {
1920 	/*
1921 	 * Leaving this order check is intended, although there is
1922 	 * relaxed order check in next check. The reason is that
1923 	 * we can actually steal whole pageblock if this condition met,
1924 	 * but, below check doesn't guarantee it and that is just heuristic
1925 	 * so could be changed anytime.
1926 	 */
1927 	if (order >= pageblock_order)
1928 		return true;
1929 
1930 	/*
1931 	 * Movable pages won't cause permanent fragmentation, so when you alloc
1932 	 * small pages, you just need to temporarily steal unmovable or
1933 	 * reclaimable pages that are closest to the request size.  After a
1934 	 * while, memory compaction may occur to form large contiguous pages,
1935 	 * and the next movable allocation may not need to steal.  Unmovable and
1936 	 * reclaimable allocations need to actually steal pages.
1937 	 */
1938 	if (order >= pageblock_order / 2 ||
1939 		start_mt == MIGRATE_RECLAIMABLE ||
1940 		start_mt == MIGRATE_UNMOVABLE ||
1941 		page_group_by_mobility_disabled)
1942 		return true;
1943 
1944 	return false;
1945 }
1946 
1947 static inline bool boost_watermark(struct zone *zone)
1948 {
1949 	unsigned long max_boost;
1950 
1951 	if (!watermark_boost_factor)
1952 		return false;
1953 	/*
1954 	 * Don't bother in zones that are unlikely to produce results.
1955 	 * On small machines, including kdump capture kernels running
1956 	 * in a small area, boosting the watermark can cause an out of
1957 	 * memory situation immediately.
1958 	 */
1959 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1960 		return false;
1961 
1962 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1963 			watermark_boost_factor, 10000);
1964 
1965 	/*
1966 	 * high watermark may be uninitialised if fragmentation occurs
1967 	 * very early in boot so do not boost. We do not fall
1968 	 * through and boost by pageblock_nr_pages as failing
1969 	 * allocations that early means that reclaim is not going
1970 	 * to help and it may even be impossible to reclaim the
1971 	 * boosted watermark resulting in a hang.
1972 	 */
1973 	if (!max_boost)
1974 		return false;
1975 
1976 	max_boost = max(pageblock_nr_pages, max_boost);
1977 
1978 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1979 		max_boost);
1980 
1981 	return true;
1982 }
1983 
1984 /*
1985  * This function implements actual steal behaviour. If order is large enough, we
1986  * can claim the whole pageblock for the requested migratetype. If not, we check
1987  * the pageblock for constituent pages; if at least half of the pages are free
1988  * or compatible, we can still claim the whole block, so pages freed in the
1989  * future will be put on the correct free list. Otherwise, we isolate exactly
1990  * the order we need from the fallback block and leave its migratetype alone.
1991  */
1992 static struct page *
1993 steal_suitable_fallback(struct zone *zone, struct page *page,
1994 			int current_order, int order, int start_type,
1995 			unsigned int alloc_flags, bool whole_block)
1996 {
1997 	int free_pages, movable_pages, alike_pages;
1998 	unsigned long start_pfn;
1999 	int block_type;
2000 
2001 	block_type = get_pageblock_migratetype(page);
2002 
2003 	/*
2004 	 * This can happen due to races and we want to prevent broken
2005 	 * highatomic accounting.
2006 	 */
2007 	if (is_migrate_highatomic(block_type))
2008 		goto single_page;
2009 
2010 	/* Take ownership for orders >= pageblock_order */
2011 	if (current_order >= pageblock_order) {
2012 		unsigned int nr_added;
2013 
2014 		del_page_from_free_list(page, zone, current_order, block_type);
2015 		change_pageblock_range(page, current_order, start_type);
2016 		nr_added = expand(zone, page, order, current_order, start_type);
2017 		account_freepages(zone, nr_added, start_type);
2018 		return page;
2019 	}
2020 
2021 	/*
2022 	 * Boost watermarks to increase reclaim pressure to reduce the
2023 	 * likelihood of future fallbacks. Wake kswapd now as the node
2024 	 * may be balanced overall and kswapd will not wake naturally.
2025 	 */
2026 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2027 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2028 
2029 	/* We are not allowed to try stealing from the whole block */
2030 	if (!whole_block)
2031 		goto single_page;
2032 
2033 	/* moving whole block can fail due to zone boundary conditions */
2034 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2035 				       &movable_pages))
2036 		goto single_page;
2037 
2038 	/*
2039 	 * Determine how many pages are compatible with our allocation.
2040 	 * For movable allocation, it's the number of movable pages which
2041 	 * we just obtained. For other types it's a bit more tricky.
2042 	 */
2043 	if (start_type == MIGRATE_MOVABLE) {
2044 		alike_pages = movable_pages;
2045 	} else {
2046 		/*
2047 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2048 		 * to MOVABLE pageblock, consider all non-movable pages as
2049 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2050 		 * vice versa, be conservative since we can't distinguish the
2051 		 * exact migratetype of non-movable pages.
2052 		 */
2053 		if (block_type == MIGRATE_MOVABLE)
2054 			alike_pages = pageblock_nr_pages
2055 						- (free_pages + movable_pages);
2056 		else
2057 			alike_pages = 0;
2058 	}
2059 	/*
2060 	 * If a sufficient number of pages in the block are either free or of
2061 	 * compatible migratability as our allocation, claim the whole block.
2062 	 */
2063 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2064 			page_group_by_mobility_disabled) {
2065 		__move_freepages_block(zone, start_pfn, block_type, start_type);
2066 		return __rmqueue_smallest(zone, order, start_type);
2067 	}
2068 
2069 single_page:
2070 	page_del_and_expand(zone, page, order, current_order, block_type);
2071 	return page;
2072 }
2073 
2074 /*
2075  * Check whether there is a suitable fallback freepage with requested order.
2076  * If only_stealable is true, this function returns fallback_mt only if
2077  * we can steal other freepages all together. This would help to reduce
2078  * fragmentation due to mixed migratetype pages in one pageblock.
2079  */
2080 int find_suitable_fallback(struct free_area *area, unsigned int order,
2081 			int migratetype, bool only_stealable, bool *can_steal)
2082 {
2083 	int i;
2084 	int fallback_mt;
2085 
2086 	if (area->nr_free == 0)
2087 		return -1;
2088 
2089 	*can_steal = false;
2090 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2091 		fallback_mt = fallbacks[migratetype][i];
2092 		if (free_area_empty(area, fallback_mt))
2093 			continue;
2094 
2095 		if (can_steal_fallback(order, migratetype))
2096 			*can_steal = true;
2097 
2098 		if (!only_stealable)
2099 			return fallback_mt;
2100 
2101 		if (*can_steal)
2102 			return fallback_mt;
2103 	}
2104 
2105 	return -1;
2106 }
2107 
2108 /*
2109  * Reserve the pageblock(s) surrounding an allocation request for
2110  * exclusive use of high-order atomic allocations if there are no
2111  * empty page blocks that contain a page with a suitable order
2112  */
2113 static void reserve_highatomic_pageblock(struct page *page, int order,
2114 					 struct zone *zone)
2115 {
2116 	int mt;
2117 	unsigned long max_managed, flags;
2118 
2119 	/*
2120 	 * The number reserved as: minimum is 1 pageblock, maximum is
2121 	 * roughly 1% of a zone. But if 1% of a zone falls below a
2122 	 * pageblock size, then don't reserve any pageblocks.
2123 	 * Check is race-prone but harmless.
2124 	 */
2125 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2126 		return;
2127 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2128 	if (zone->nr_reserved_highatomic >= max_managed)
2129 		return;
2130 
2131 	spin_lock_irqsave(&zone->lock, flags);
2132 
2133 	/* Recheck the nr_reserved_highatomic limit under the lock */
2134 	if (zone->nr_reserved_highatomic >= max_managed)
2135 		goto out_unlock;
2136 
2137 	/* Yoink! */
2138 	mt = get_pageblock_migratetype(page);
2139 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2140 	if (!migratetype_is_mergeable(mt))
2141 		goto out_unlock;
2142 
2143 	if (order < pageblock_order) {
2144 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2145 			goto out_unlock;
2146 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2147 	} else {
2148 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2149 		zone->nr_reserved_highatomic += 1 << order;
2150 	}
2151 
2152 out_unlock:
2153 	spin_unlock_irqrestore(&zone->lock, flags);
2154 }
2155 
2156 /*
2157  * Used when an allocation is about to fail under memory pressure. This
2158  * potentially hurts the reliability of high-order allocations when under
2159  * intense memory pressure but failed atomic allocations should be easier
2160  * to recover from than an OOM.
2161  *
2162  * If @force is true, try to unreserve pageblocks even though highatomic
2163  * pageblock is exhausted.
2164  */
2165 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2166 						bool force)
2167 {
2168 	struct zonelist *zonelist = ac->zonelist;
2169 	unsigned long flags;
2170 	struct zoneref *z;
2171 	struct zone *zone;
2172 	struct page *page;
2173 	int order;
2174 	int ret;
2175 
2176 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2177 								ac->nodemask) {
2178 		/*
2179 		 * Preserve at least one pageblock unless memory pressure
2180 		 * is really high.
2181 		 */
2182 		if (!force && zone->nr_reserved_highatomic <=
2183 					pageblock_nr_pages)
2184 			continue;
2185 
2186 		spin_lock_irqsave(&zone->lock, flags);
2187 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2188 			struct free_area *area = &(zone->free_area[order]);
2189 			int mt;
2190 
2191 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2192 			if (!page)
2193 				continue;
2194 
2195 			mt = get_pageblock_migratetype(page);
2196 			/*
2197 			 * In page freeing path, migratetype change is racy so
2198 			 * we can counter several free pages in a pageblock
2199 			 * in this loop although we changed the pageblock type
2200 			 * from highatomic to ac->migratetype. So we should
2201 			 * adjust the count once.
2202 			 */
2203 			if (is_migrate_highatomic(mt)) {
2204 				unsigned long size;
2205 				/*
2206 				 * It should never happen but changes to
2207 				 * locking could inadvertently allow a per-cpu
2208 				 * drain to add pages to MIGRATE_HIGHATOMIC
2209 				 * while unreserving so be safe and watch for
2210 				 * underflows.
2211 				 */
2212 				size = max(pageblock_nr_pages, 1UL << order);
2213 				size = min(size, zone->nr_reserved_highatomic);
2214 				zone->nr_reserved_highatomic -= size;
2215 			}
2216 
2217 			/*
2218 			 * Convert to ac->migratetype and avoid the normal
2219 			 * pageblock stealing heuristics. Minimally, the caller
2220 			 * is doing the work and needs the pages. More
2221 			 * importantly, if the block was always converted to
2222 			 * MIGRATE_UNMOVABLE or another type then the number
2223 			 * of pageblocks that cannot be completely freed
2224 			 * may increase.
2225 			 */
2226 			if (order < pageblock_order)
2227 				ret = move_freepages_block(zone, page, mt,
2228 							   ac->migratetype);
2229 			else {
2230 				move_to_free_list(page, zone, order, mt,
2231 						  ac->migratetype);
2232 				change_pageblock_range(page, order,
2233 						       ac->migratetype);
2234 				ret = 1;
2235 			}
2236 			/*
2237 			 * Reserving the block(s) already succeeded,
2238 			 * so this should not fail on zone boundaries.
2239 			 */
2240 			WARN_ON_ONCE(ret == -1);
2241 			if (ret > 0) {
2242 				spin_unlock_irqrestore(&zone->lock, flags);
2243 				return ret;
2244 			}
2245 		}
2246 		spin_unlock_irqrestore(&zone->lock, flags);
2247 	}
2248 
2249 	return false;
2250 }
2251 
2252 /*
2253  * Try finding a free buddy page on the fallback list and put it on the free
2254  * list of requested migratetype, possibly along with other pages from the same
2255  * block, depending on fragmentation avoidance heuristics. Returns true if
2256  * fallback was found so that __rmqueue_smallest() can grab it.
2257  *
2258  * The use of signed ints for order and current_order is a deliberate
2259  * deviation from the rest of this file, to make the for loop
2260  * condition simpler.
2261  */
2262 static __always_inline struct page *
2263 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2264 						unsigned int alloc_flags)
2265 {
2266 	struct free_area *area;
2267 	int current_order;
2268 	int min_order = order;
2269 	struct page *page;
2270 	int fallback_mt;
2271 	bool can_steal;
2272 
2273 	/*
2274 	 * Do not steal pages from freelists belonging to other pageblocks
2275 	 * i.e. orders < pageblock_order. If there are no local zones free,
2276 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2277 	 */
2278 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2279 		min_order = pageblock_order;
2280 
2281 	/*
2282 	 * Find the largest available free page in the other list. This roughly
2283 	 * approximates finding the pageblock with the most free pages, which
2284 	 * would be too costly to do exactly.
2285 	 */
2286 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2287 				--current_order) {
2288 		area = &(zone->free_area[current_order]);
2289 		fallback_mt = find_suitable_fallback(area, current_order,
2290 				start_migratetype, false, &can_steal);
2291 		if (fallback_mt == -1)
2292 			continue;
2293 
2294 		/*
2295 		 * We cannot steal all free pages from the pageblock and the
2296 		 * requested migratetype is movable. In that case it's better to
2297 		 * steal and split the smallest available page instead of the
2298 		 * largest available page, because even if the next movable
2299 		 * allocation falls back into a different pageblock than this
2300 		 * one, it won't cause permanent fragmentation.
2301 		 */
2302 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2303 					&& current_order > order)
2304 			goto find_smallest;
2305 
2306 		goto do_steal;
2307 	}
2308 
2309 	return NULL;
2310 
2311 find_smallest:
2312 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2313 		area = &(zone->free_area[current_order]);
2314 		fallback_mt = find_suitable_fallback(area, current_order,
2315 				start_migratetype, false, &can_steal);
2316 		if (fallback_mt != -1)
2317 			break;
2318 	}
2319 
2320 	/*
2321 	 * This should not happen - we already found a suitable fallback
2322 	 * when looking for the largest page.
2323 	 */
2324 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2325 
2326 do_steal:
2327 	page = get_page_from_free_area(area, fallback_mt);
2328 
2329 	/* take off list, maybe claim block, expand remainder */
2330 	page = steal_suitable_fallback(zone, page, current_order, order,
2331 				       start_migratetype, alloc_flags, can_steal);
2332 
2333 	trace_mm_page_alloc_extfrag(page, order, current_order,
2334 		start_migratetype, fallback_mt);
2335 
2336 	return page;
2337 }
2338 
2339 /*
2340  * Do the hard work of removing an element from the buddy allocator.
2341  * Call me with the zone->lock already held.
2342  */
2343 static __always_inline struct page *
2344 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2345 						unsigned int alloc_flags)
2346 {
2347 	struct page *page;
2348 
2349 	if (IS_ENABLED(CONFIG_CMA)) {
2350 		/*
2351 		 * Balance movable allocations between regular and CMA areas by
2352 		 * allocating from CMA when over half of the zone's free memory
2353 		 * is in the CMA area.
2354 		 */
2355 		if (alloc_flags & ALLOC_CMA &&
2356 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2357 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2358 			page = __rmqueue_cma_fallback(zone, order);
2359 			if (page)
2360 				return page;
2361 		}
2362 	}
2363 
2364 	page = __rmqueue_smallest(zone, order, migratetype);
2365 	if (unlikely(!page)) {
2366 		if (alloc_flags & ALLOC_CMA)
2367 			page = __rmqueue_cma_fallback(zone, order);
2368 
2369 		if (!page)
2370 			page = __rmqueue_fallback(zone, order, migratetype,
2371 						  alloc_flags);
2372 	}
2373 	return page;
2374 }
2375 
2376 /*
2377  * Obtain a specified number of elements from the buddy allocator, all under
2378  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2379  * Returns the number of new pages which were placed at *list.
2380  */
2381 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2382 			unsigned long count, struct list_head *list,
2383 			int migratetype, unsigned int alloc_flags)
2384 {
2385 	unsigned long flags;
2386 	int i;
2387 
2388 	spin_lock_irqsave(&zone->lock, flags);
2389 	for (i = 0; i < count; ++i) {
2390 		struct page *page = __rmqueue(zone, order, migratetype,
2391 								alloc_flags);
2392 		if (unlikely(page == NULL))
2393 			break;
2394 
2395 		/*
2396 		 * Split buddy pages returned by expand() are received here in
2397 		 * physical page order. The page is added to the tail of
2398 		 * caller's list. From the callers perspective, the linked list
2399 		 * is ordered by page number under some conditions. This is
2400 		 * useful for IO devices that can forward direction from the
2401 		 * head, thus also in the physical page order. This is useful
2402 		 * for IO devices that can merge IO requests if the physical
2403 		 * pages are ordered properly.
2404 		 */
2405 		list_add_tail(&page->pcp_list, list);
2406 	}
2407 	spin_unlock_irqrestore(&zone->lock, flags);
2408 
2409 	return i;
2410 }
2411 
2412 /*
2413  * Called from the vmstat counter updater to decay the PCP high.
2414  * Return whether there are addition works to do.
2415  */
2416 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2417 {
2418 	int high_min, to_drain, batch;
2419 	int todo = 0;
2420 
2421 	high_min = READ_ONCE(pcp->high_min);
2422 	batch = READ_ONCE(pcp->batch);
2423 	/*
2424 	 * Decrease pcp->high periodically to try to free possible
2425 	 * idle PCP pages.  And, avoid to free too many pages to
2426 	 * control latency.  This caps pcp->high decrement too.
2427 	 */
2428 	if (pcp->high > high_min) {
2429 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2430 				 pcp->high - (pcp->high >> 3), high_min);
2431 		if (pcp->high > high_min)
2432 			todo++;
2433 	}
2434 
2435 	to_drain = pcp->count - pcp->high;
2436 	if (to_drain > 0) {
2437 		spin_lock(&pcp->lock);
2438 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2439 		spin_unlock(&pcp->lock);
2440 		todo++;
2441 	}
2442 
2443 	return todo;
2444 }
2445 
2446 #ifdef CONFIG_NUMA
2447 /*
2448  * Called from the vmstat counter updater to drain pagesets of this
2449  * currently executing processor on remote nodes after they have
2450  * expired.
2451  */
2452 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2453 {
2454 	int to_drain, batch;
2455 
2456 	batch = READ_ONCE(pcp->batch);
2457 	to_drain = min(pcp->count, batch);
2458 	if (to_drain > 0) {
2459 		spin_lock(&pcp->lock);
2460 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2461 		spin_unlock(&pcp->lock);
2462 	}
2463 }
2464 #endif
2465 
2466 /*
2467  * Drain pcplists of the indicated processor and zone.
2468  */
2469 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2470 {
2471 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2472 	int count;
2473 
2474 	do {
2475 		spin_lock(&pcp->lock);
2476 		count = pcp->count;
2477 		if (count) {
2478 			int to_drain = min(count,
2479 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2480 
2481 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2482 			count -= to_drain;
2483 		}
2484 		spin_unlock(&pcp->lock);
2485 	} while (count);
2486 }
2487 
2488 /*
2489  * Drain pcplists of all zones on the indicated processor.
2490  */
2491 static void drain_pages(unsigned int cpu)
2492 {
2493 	struct zone *zone;
2494 
2495 	for_each_populated_zone(zone) {
2496 		drain_pages_zone(cpu, zone);
2497 	}
2498 }
2499 
2500 /*
2501  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2502  */
2503 void drain_local_pages(struct zone *zone)
2504 {
2505 	int cpu = smp_processor_id();
2506 
2507 	if (zone)
2508 		drain_pages_zone(cpu, zone);
2509 	else
2510 		drain_pages(cpu);
2511 }
2512 
2513 /*
2514  * The implementation of drain_all_pages(), exposing an extra parameter to
2515  * drain on all cpus.
2516  *
2517  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2518  * not empty. The check for non-emptiness can however race with a free to
2519  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2520  * that need the guarantee that every CPU has drained can disable the
2521  * optimizing racy check.
2522  */
2523 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2524 {
2525 	int cpu;
2526 
2527 	/*
2528 	 * Allocate in the BSS so we won't require allocation in
2529 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2530 	 */
2531 	static cpumask_t cpus_with_pcps;
2532 
2533 	/*
2534 	 * Do not drain if one is already in progress unless it's specific to
2535 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2536 	 * the drain to be complete when the call returns.
2537 	 */
2538 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2539 		if (!zone)
2540 			return;
2541 		mutex_lock(&pcpu_drain_mutex);
2542 	}
2543 
2544 	/*
2545 	 * We don't care about racing with CPU hotplug event
2546 	 * as offline notification will cause the notified
2547 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2548 	 * disables preemption as part of its processing
2549 	 */
2550 	for_each_online_cpu(cpu) {
2551 		struct per_cpu_pages *pcp;
2552 		struct zone *z;
2553 		bool has_pcps = false;
2554 
2555 		if (force_all_cpus) {
2556 			/*
2557 			 * The pcp.count check is racy, some callers need a
2558 			 * guarantee that no cpu is missed.
2559 			 */
2560 			has_pcps = true;
2561 		} else if (zone) {
2562 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2563 			if (pcp->count)
2564 				has_pcps = true;
2565 		} else {
2566 			for_each_populated_zone(z) {
2567 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2568 				if (pcp->count) {
2569 					has_pcps = true;
2570 					break;
2571 				}
2572 			}
2573 		}
2574 
2575 		if (has_pcps)
2576 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2577 		else
2578 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2579 	}
2580 
2581 	for_each_cpu(cpu, &cpus_with_pcps) {
2582 		if (zone)
2583 			drain_pages_zone(cpu, zone);
2584 		else
2585 			drain_pages(cpu);
2586 	}
2587 
2588 	mutex_unlock(&pcpu_drain_mutex);
2589 }
2590 
2591 /*
2592  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2593  *
2594  * When zone parameter is non-NULL, spill just the single zone's pages.
2595  */
2596 void drain_all_pages(struct zone *zone)
2597 {
2598 	__drain_all_pages(zone, false);
2599 }
2600 
2601 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2602 {
2603 	int min_nr_free, max_nr_free;
2604 
2605 	/* Free as much as possible if batch freeing high-order pages. */
2606 	if (unlikely(free_high))
2607 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2608 
2609 	/* Check for PCP disabled or boot pageset */
2610 	if (unlikely(high < batch))
2611 		return 1;
2612 
2613 	/* Leave at least pcp->batch pages on the list */
2614 	min_nr_free = batch;
2615 	max_nr_free = high - batch;
2616 
2617 	/*
2618 	 * Increase the batch number to the number of the consecutive
2619 	 * freed pages to reduce zone lock contention.
2620 	 */
2621 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2622 
2623 	return batch;
2624 }
2625 
2626 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2627 		       int batch, bool free_high)
2628 {
2629 	int high, high_min, high_max;
2630 
2631 	high_min = READ_ONCE(pcp->high_min);
2632 	high_max = READ_ONCE(pcp->high_max);
2633 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2634 
2635 	if (unlikely(!high))
2636 		return 0;
2637 
2638 	if (unlikely(free_high)) {
2639 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2640 				high_min);
2641 		return 0;
2642 	}
2643 
2644 	/*
2645 	 * If reclaim is active, limit the number of pages that can be
2646 	 * stored on pcp lists
2647 	 */
2648 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2649 		int free_count = max_t(int, pcp->free_count, batch);
2650 
2651 		pcp->high = max(high - free_count, high_min);
2652 		return min(batch << 2, pcp->high);
2653 	}
2654 
2655 	if (high_min == high_max)
2656 		return high;
2657 
2658 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2659 		int free_count = max_t(int, pcp->free_count, batch);
2660 
2661 		pcp->high = max(high - free_count, high_min);
2662 		high = max(pcp->count, high_min);
2663 	} else if (pcp->count >= high) {
2664 		int need_high = pcp->free_count + batch;
2665 
2666 		/* pcp->high should be large enough to hold batch freed pages */
2667 		if (pcp->high < need_high)
2668 			pcp->high = clamp(need_high, high_min, high_max);
2669 	}
2670 
2671 	return high;
2672 }
2673 
2674 static void free_frozen_page_commit(struct zone *zone,
2675 		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2676 		unsigned int order)
2677 {
2678 	int high, batch;
2679 	int pindex;
2680 	bool free_high = false;
2681 
2682 	/*
2683 	 * On freeing, reduce the number of pages that are batch allocated.
2684 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2685 	 * allocations.
2686 	 */
2687 	pcp->alloc_factor >>= 1;
2688 	__count_vm_events(PGFREE, 1 << order);
2689 	pindex = order_to_pindex(migratetype, order);
2690 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2691 	pcp->count += 1 << order;
2692 
2693 	batch = READ_ONCE(pcp->batch);
2694 	/*
2695 	 * As high-order pages other than THP's stored on PCP can contribute
2696 	 * to fragmentation, limit the number stored when PCP is heavily
2697 	 * freeing without allocation. The remainder after bulk freeing
2698 	 * stops will be drained from vmstat refresh context.
2699 	 */
2700 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2701 		free_high = (pcp->free_count >= batch &&
2702 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2703 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2704 			      pcp->count >= READ_ONCE(batch)));
2705 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2706 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2707 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2708 	}
2709 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2710 		pcp->free_count += (1 << order);
2711 	high = nr_pcp_high(pcp, zone, batch, free_high);
2712 	if (pcp->count >= high) {
2713 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2714 				   pcp, pindex);
2715 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2716 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2717 				      ZONE_MOVABLE, 0))
2718 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2719 	}
2720 }
2721 
2722 /*
2723  * Free a pcp page
2724  */
2725 void free_frozen_pages(struct page *page, unsigned int order)
2726 {
2727 	unsigned long __maybe_unused UP_flags;
2728 	struct per_cpu_pages *pcp;
2729 	struct zone *zone;
2730 	unsigned long pfn = page_to_pfn(page);
2731 	int migratetype;
2732 
2733 	if (!pcp_allowed_order(order)) {
2734 		__free_pages_ok(page, order, FPI_NONE);
2735 		return;
2736 	}
2737 
2738 	if (!free_pages_prepare(page, order))
2739 		return;
2740 
2741 	/*
2742 	 * We only track unmovable, reclaimable and movable on pcp lists.
2743 	 * Place ISOLATE pages on the isolated list because they are being
2744 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2745 	 * get those areas back if necessary. Otherwise, we may have to free
2746 	 * excessively into the page allocator
2747 	 */
2748 	zone = page_zone(page);
2749 	migratetype = get_pfnblock_migratetype(page, pfn);
2750 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2751 		if (unlikely(is_migrate_isolate(migratetype))) {
2752 			free_one_page(zone, page, pfn, order, FPI_NONE);
2753 			return;
2754 		}
2755 		migratetype = MIGRATE_MOVABLE;
2756 	}
2757 
2758 	pcp_trylock_prepare(UP_flags);
2759 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2760 	if (pcp) {
2761 		free_frozen_page_commit(zone, pcp, page, migratetype, order);
2762 		pcp_spin_unlock(pcp);
2763 	} else {
2764 		free_one_page(zone, page, pfn, order, FPI_NONE);
2765 	}
2766 	pcp_trylock_finish(UP_flags);
2767 }
2768 
2769 /*
2770  * Free a batch of folios
2771  */
2772 void free_unref_folios(struct folio_batch *folios)
2773 {
2774 	unsigned long __maybe_unused UP_flags;
2775 	struct per_cpu_pages *pcp = NULL;
2776 	struct zone *locked_zone = NULL;
2777 	int i, j;
2778 
2779 	/* Prepare folios for freeing */
2780 	for (i = 0, j = 0; i < folios->nr; i++) {
2781 		struct folio *folio = folios->folios[i];
2782 		unsigned long pfn = folio_pfn(folio);
2783 		unsigned int order = folio_order(folio);
2784 
2785 		if (!free_pages_prepare(&folio->page, order))
2786 			continue;
2787 		/*
2788 		 * Free orders not handled on the PCP directly to the
2789 		 * allocator.
2790 		 */
2791 		if (!pcp_allowed_order(order)) {
2792 			free_one_page(folio_zone(folio), &folio->page,
2793 				      pfn, order, FPI_NONE);
2794 			continue;
2795 		}
2796 		folio->private = (void *)(unsigned long)order;
2797 		if (j != i)
2798 			folios->folios[j] = folio;
2799 		j++;
2800 	}
2801 	folios->nr = j;
2802 
2803 	for (i = 0; i < folios->nr; i++) {
2804 		struct folio *folio = folios->folios[i];
2805 		struct zone *zone = folio_zone(folio);
2806 		unsigned long pfn = folio_pfn(folio);
2807 		unsigned int order = (unsigned long)folio->private;
2808 		int migratetype;
2809 
2810 		folio->private = NULL;
2811 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2812 
2813 		/* Different zone requires a different pcp lock */
2814 		if (zone != locked_zone ||
2815 		    is_migrate_isolate(migratetype)) {
2816 			if (pcp) {
2817 				pcp_spin_unlock(pcp);
2818 				pcp_trylock_finish(UP_flags);
2819 				locked_zone = NULL;
2820 				pcp = NULL;
2821 			}
2822 
2823 			/*
2824 			 * Free isolated pages directly to the
2825 			 * allocator, see comment in free_frozen_pages.
2826 			 */
2827 			if (is_migrate_isolate(migratetype)) {
2828 				free_one_page(zone, &folio->page, pfn,
2829 					      order, FPI_NONE);
2830 				continue;
2831 			}
2832 
2833 			/*
2834 			 * trylock is necessary as folios may be getting freed
2835 			 * from IRQ or SoftIRQ context after an IO completion.
2836 			 */
2837 			pcp_trylock_prepare(UP_flags);
2838 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2839 			if (unlikely(!pcp)) {
2840 				pcp_trylock_finish(UP_flags);
2841 				free_one_page(zone, &folio->page, pfn,
2842 					      order, FPI_NONE);
2843 				continue;
2844 			}
2845 			locked_zone = zone;
2846 		}
2847 
2848 		/*
2849 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2850 		 * to the MIGRATE_MOVABLE pcp list.
2851 		 */
2852 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2853 			migratetype = MIGRATE_MOVABLE;
2854 
2855 		trace_mm_page_free_batched(&folio->page);
2856 		free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
2857 				order);
2858 	}
2859 
2860 	if (pcp) {
2861 		pcp_spin_unlock(pcp);
2862 		pcp_trylock_finish(UP_flags);
2863 	}
2864 	folio_batch_reinit(folios);
2865 }
2866 
2867 /*
2868  * split_page takes a non-compound higher-order page, and splits it into
2869  * n (1<<order) sub-pages: page[0..n]
2870  * Each sub-page must be freed individually.
2871  *
2872  * Note: this is probably too low level an operation for use in drivers.
2873  * Please consult with lkml before using this in your driver.
2874  */
2875 void split_page(struct page *page, unsigned int order)
2876 {
2877 	int i;
2878 
2879 	VM_BUG_ON_PAGE(PageCompound(page), page);
2880 	VM_BUG_ON_PAGE(!page_count(page), page);
2881 
2882 	for (i = 1; i < (1 << order); i++)
2883 		set_page_refcounted(page + i);
2884 	split_page_owner(page, order, 0);
2885 	pgalloc_tag_split(page_folio(page), order, 0);
2886 	split_page_memcg(page, order, 0);
2887 }
2888 EXPORT_SYMBOL_GPL(split_page);
2889 
2890 int __isolate_free_page(struct page *page, unsigned int order)
2891 {
2892 	struct zone *zone = page_zone(page);
2893 	int mt = get_pageblock_migratetype(page);
2894 
2895 	if (!is_migrate_isolate(mt)) {
2896 		unsigned long watermark;
2897 		/*
2898 		 * Obey watermarks as if the page was being allocated. We can
2899 		 * emulate a high-order watermark check with a raised order-0
2900 		 * watermark, because we already know our high-order page
2901 		 * exists.
2902 		 */
2903 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2904 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2905 			return 0;
2906 	}
2907 
2908 	del_page_from_free_list(page, zone, order, mt);
2909 
2910 	/*
2911 	 * Set the pageblock if the isolated page is at least half of a
2912 	 * pageblock
2913 	 */
2914 	if (order >= pageblock_order - 1) {
2915 		struct page *endpage = page + (1 << order) - 1;
2916 		for (; page < endpage; page += pageblock_nr_pages) {
2917 			int mt = get_pageblock_migratetype(page);
2918 			/*
2919 			 * Only change normal pageblocks (i.e., they can merge
2920 			 * with others)
2921 			 */
2922 			if (migratetype_is_mergeable(mt))
2923 				move_freepages_block(zone, page, mt,
2924 						     MIGRATE_MOVABLE);
2925 		}
2926 	}
2927 
2928 	return 1UL << order;
2929 }
2930 
2931 /**
2932  * __putback_isolated_page - Return a now-isolated page back where we got it
2933  * @page: Page that was isolated
2934  * @order: Order of the isolated page
2935  * @mt: The page's pageblock's migratetype
2936  *
2937  * This function is meant to return a page pulled from the free lists via
2938  * __isolate_free_page back to the free lists they were pulled from.
2939  */
2940 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2941 {
2942 	struct zone *zone = page_zone(page);
2943 
2944 	/* zone lock should be held when this function is called */
2945 	lockdep_assert_held(&zone->lock);
2946 
2947 	/* Return isolated page to tail of freelist. */
2948 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2949 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2950 }
2951 
2952 /*
2953  * Update NUMA hit/miss statistics
2954  */
2955 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2956 				   long nr_account)
2957 {
2958 #ifdef CONFIG_NUMA
2959 	enum numa_stat_item local_stat = NUMA_LOCAL;
2960 
2961 	/* skip numa counters update if numa stats is disabled */
2962 	if (!static_branch_likely(&vm_numa_stat_key))
2963 		return;
2964 
2965 	if (zone_to_nid(z) != numa_node_id())
2966 		local_stat = NUMA_OTHER;
2967 
2968 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2969 		__count_numa_events(z, NUMA_HIT, nr_account);
2970 	else {
2971 		__count_numa_events(z, NUMA_MISS, nr_account);
2972 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2973 	}
2974 	__count_numa_events(z, local_stat, nr_account);
2975 #endif
2976 }
2977 
2978 static __always_inline
2979 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2980 			   unsigned int order, unsigned int alloc_flags,
2981 			   int migratetype)
2982 {
2983 	struct page *page;
2984 	unsigned long flags;
2985 
2986 	do {
2987 		page = NULL;
2988 		spin_lock_irqsave(&zone->lock, flags);
2989 		if (alloc_flags & ALLOC_HIGHATOMIC)
2990 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2991 		if (!page) {
2992 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2993 
2994 			/*
2995 			 * If the allocation fails, allow OOM handling and
2996 			 * order-0 (atomic) allocs access to HIGHATOMIC
2997 			 * reserves as failing now is worse than failing a
2998 			 * high-order atomic allocation in the future.
2999 			 */
3000 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
3001 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3002 
3003 			if (!page) {
3004 				spin_unlock_irqrestore(&zone->lock, flags);
3005 				return NULL;
3006 			}
3007 		}
3008 		spin_unlock_irqrestore(&zone->lock, flags);
3009 	} while (check_new_pages(page, order));
3010 
3011 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3012 	zone_statistics(preferred_zone, zone, 1);
3013 
3014 	return page;
3015 }
3016 
3017 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
3018 {
3019 	int high, base_batch, batch, max_nr_alloc;
3020 	int high_max, high_min;
3021 
3022 	base_batch = READ_ONCE(pcp->batch);
3023 	high_min = READ_ONCE(pcp->high_min);
3024 	high_max = READ_ONCE(pcp->high_max);
3025 	high = pcp->high = clamp(pcp->high, high_min, high_max);
3026 
3027 	/* Check for PCP disabled or boot pageset */
3028 	if (unlikely(high < base_batch))
3029 		return 1;
3030 
3031 	if (order)
3032 		batch = base_batch;
3033 	else
3034 		batch = (base_batch << pcp->alloc_factor);
3035 
3036 	/*
3037 	 * If we had larger pcp->high, we could avoid to allocate from
3038 	 * zone.
3039 	 */
3040 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
3041 		high = pcp->high = min(high + batch, high_max);
3042 
3043 	if (!order) {
3044 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3045 		/*
3046 		 * Double the number of pages allocated each time there is
3047 		 * subsequent allocation of order-0 pages without any freeing.
3048 		 */
3049 		if (batch <= max_nr_alloc &&
3050 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3051 			pcp->alloc_factor++;
3052 		batch = min(batch, max_nr_alloc);
3053 	}
3054 
3055 	/*
3056 	 * Scale batch relative to order if batch implies free pages
3057 	 * can be stored on the PCP. Batch can be 1 for small zones or
3058 	 * for boot pagesets which should never store free pages as
3059 	 * the pages may belong to arbitrary zones.
3060 	 */
3061 	if (batch > 1)
3062 		batch = max(batch >> order, 2);
3063 
3064 	return batch;
3065 }
3066 
3067 /* Remove page from the per-cpu list, caller must protect the list */
3068 static inline
3069 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3070 			int migratetype,
3071 			unsigned int alloc_flags,
3072 			struct per_cpu_pages *pcp,
3073 			struct list_head *list)
3074 {
3075 	struct page *page;
3076 
3077 	do {
3078 		if (list_empty(list)) {
3079 			int batch = nr_pcp_alloc(pcp, zone, order);
3080 			int alloced;
3081 
3082 			alloced = rmqueue_bulk(zone, order,
3083 					batch, list,
3084 					migratetype, alloc_flags);
3085 
3086 			pcp->count += alloced << order;
3087 			if (unlikely(list_empty(list)))
3088 				return NULL;
3089 		}
3090 
3091 		page = list_first_entry(list, struct page, pcp_list);
3092 		list_del(&page->pcp_list);
3093 		pcp->count -= 1 << order;
3094 	} while (check_new_pages(page, order));
3095 
3096 	return page;
3097 }
3098 
3099 /* Lock and remove page from the per-cpu list */
3100 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3101 			struct zone *zone, unsigned int order,
3102 			int migratetype, unsigned int alloc_flags)
3103 {
3104 	struct per_cpu_pages *pcp;
3105 	struct list_head *list;
3106 	struct page *page;
3107 	unsigned long __maybe_unused UP_flags;
3108 
3109 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3110 	pcp_trylock_prepare(UP_flags);
3111 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3112 	if (!pcp) {
3113 		pcp_trylock_finish(UP_flags);
3114 		return NULL;
3115 	}
3116 
3117 	/*
3118 	 * On allocation, reduce the number of pages that are batch freed.
3119 	 * See nr_pcp_free() where free_factor is increased for subsequent
3120 	 * frees.
3121 	 */
3122 	pcp->free_count >>= 1;
3123 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3124 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3125 	pcp_spin_unlock(pcp);
3126 	pcp_trylock_finish(UP_flags);
3127 	if (page) {
3128 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3129 		zone_statistics(preferred_zone, zone, 1);
3130 	}
3131 	return page;
3132 }
3133 
3134 /*
3135  * Allocate a page from the given zone.
3136  * Use pcplists for THP or "cheap" high-order allocations.
3137  */
3138 
3139 /*
3140  * Do not instrument rmqueue() with KMSAN. This function may call
3141  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3142  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3143  * may call rmqueue() again, which will result in a deadlock.
3144  */
3145 __no_sanitize_memory
3146 static inline
3147 struct page *rmqueue(struct zone *preferred_zone,
3148 			struct zone *zone, unsigned int order,
3149 			gfp_t gfp_flags, unsigned int alloc_flags,
3150 			int migratetype)
3151 {
3152 	struct page *page;
3153 
3154 	if (likely(pcp_allowed_order(order))) {
3155 		page = rmqueue_pcplist(preferred_zone, zone, order,
3156 				       migratetype, alloc_flags);
3157 		if (likely(page))
3158 			goto out;
3159 	}
3160 
3161 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3162 							migratetype);
3163 
3164 out:
3165 	/* Separate test+clear to avoid unnecessary atomics */
3166 	if ((alloc_flags & ALLOC_KSWAPD) &&
3167 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3168 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3169 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3170 	}
3171 
3172 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3173 	return page;
3174 }
3175 
3176 static inline long __zone_watermark_unusable_free(struct zone *z,
3177 				unsigned int order, unsigned int alloc_flags)
3178 {
3179 	long unusable_free = (1 << order) - 1;
3180 
3181 	/*
3182 	 * If the caller does not have rights to reserves below the min
3183 	 * watermark then subtract the free pages reserved for highatomic.
3184 	 */
3185 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3186 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3187 
3188 #ifdef CONFIG_CMA
3189 	/* If allocation can't use CMA areas don't use free CMA pages */
3190 	if (!(alloc_flags & ALLOC_CMA))
3191 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3192 #endif
3193 
3194 	return unusable_free;
3195 }
3196 
3197 /*
3198  * Return true if free base pages are above 'mark'. For high-order checks it
3199  * will return true of the order-0 watermark is reached and there is at least
3200  * one free page of a suitable size. Checking now avoids taking the zone lock
3201  * to check in the allocation paths if no pages are free.
3202  */
3203 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3204 			 int highest_zoneidx, unsigned int alloc_flags,
3205 			 long free_pages)
3206 {
3207 	long min = mark;
3208 	int o;
3209 
3210 	/* free_pages may go negative - that's OK */
3211 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3212 
3213 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3214 		/*
3215 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3216 		 * as OOM.
3217 		 */
3218 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3219 			min -= min / 2;
3220 
3221 			/*
3222 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3223 			 * access more reserves than just __GFP_HIGH. Other
3224 			 * non-blocking allocations requests such as GFP_NOWAIT
3225 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3226 			 * access to the min reserve.
3227 			 */
3228 			if (alloc_flags & ALLOC_NON_BLOCK)
3229 				min -= min / 4;
3230 		}
3231 
3232 		/*
3233 		 * OOM victims can try even harder than the normal reserve
3234 		 * users on the grounds that it's definitely going to be in
3235 		 * the exit path shortly and free memory. Any allocation it
3236 		 * makes during the free path will be small and short-lived.
3237 		 */
3238 		if (alloc_flags & ALLOC_OOM)
3239 			min -= min / 2;
3240 	}
3241 
3242 	/*
3243 	 * Check watermarks for an order-0 allocation request. If these
3244 	 * are not met, then a high-order request also cannot go ahead
3245 	 * even if a suitable page happened to be free.
3246 	 */
3247 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3248 		return false;
3249 
3250 	/* If this is an order-0 request then the watermark is fine */
3251 	if (!order)
3252 		return true;
3253 
3254 	/* For a high-order request, check at least one suitable page is free */
3255 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3256 		struct free_area *area = &z->free_area[o];
3257 		int mt;
3258 
3259 		if (!area->nr_free)
3260 			continue;
3261 
3262 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3263 			if (!free_area_empty(area, mt))
3264 				return true;
3265 		}
3266 
3267 #ifdef CONFIG_CMA
3268 		if ((alloc_flags & ALLOC_CMA) &&
3269 		    !free_area_empty(area, MIGRATE_CMA)) {
3270 			return true;
3271 		}
3272 #endif
3273 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3274 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3275 			return true;
3276 		}
3277 	}
3278 	return false;
3279 }
3280 
3281 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3282 		      int highest_zoneidx, unsigned int alloc_flags)
3283 {
3284 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3285 					zone_page_state(z, NR_FREE_PAGES));
3286 }
3287 
3288 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3289 				unsigned long mark, int highest_zoneidx,
3290 				unsigned int alloc_flags, gfp_t gfp_mask)
3291 {
3292 	long free_pages;
3293 
3294 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3295 
3296 	/*
3297 	 * Fast check for order-0 only. If this fails then the reserves
3298 	 * need to be calculated.
3299 	 */
3300 	if (!order) {
3301 		long usable_free;
3302 		long reserved;
3303 
3304 		usable_free = free_pages;
3305 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3306 
3307 		/* reserved may over estimate high-atomic reserves. */
3308 		usable_free -= min(usable_free, reserved);
3309 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3310 			return true;
3311 	}
3312 
3313 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3314 					free_pages))
3315 		return true;
3316 
3317 	/*
3318 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3319 	 * when checking the min watermark. The min watermark is the
3320 	 * point where boosting is ignored so that kswapd is woken up
3321 	 * when below the low watermark.
3322 	 */
3323 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3324 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3325 		mark = z->_watermark[WMARK_MIN];
3326 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3327 					alloc_flags, free_pages);
3328 	}
3329 
3330 	return false;
3331 }
3332 
3333 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3334 			unsigned long mark, int highest_zoneidx)
3335 {
3336 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3337 
3338 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3339 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3340 
3341 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3342 								free_pages);
3343 }
3344 
3345 #ifdef CONFIG_NUMA
3346 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3347 
3348 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3349 {
3350 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3351 				node_reclaim_distance;
3352 }
3353 #else	/* CONFIG_NUMA */
3354 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3355 {
3356 	return true;
3357 }
3358 #endif	/* CONFIG_NUMA */
3359 
3360 /*
3361  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3362  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3363  * premature use of a lower zone may cause lowmem pressure problems that
3364  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3365  * probably too small. It only makes sense to spread allocations to avoid
3366  * fragmentation between the Normal and DMA32 zones.
3367  */
3368 static inline unsigned int
3369 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3370 {
3371 	unsigned int alloc_flags;
3372 
3373 	/*
3374 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3375 	 * to save a branch.
3376 	 */
3377 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3378 
3379 #ifdef CONFIG_ZONE_DMA32
3380 	if (!zone)
3381 		return alloc_flags;
3382 
3383 	if (zone_idx(zone) != ZONE_NORMAL)
3384 		return alloc_flags;
3385 
3386 	/*
3387 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3388 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3389 	 * on UMA that if Normal is populated then so is DMA32.
3390 	 */
3391 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3392 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3393 		return alloc_flags;
3394 
3395 	alloc_flags |= ALLOC_NOFRAGMENT;
3396 #endif /* CONFIG_ZONE_DMA32 */
3397 	return alloc_flags;
3398 }
3399 
3400 /* Must be called after current_gfp_context() which can change gfp_mask */
3401 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3402 						  unsigned int alloc_flags)
3403 {
3404 #ifdef CONFIG_CMA
3405 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3406 		alloc_flags |= ALLOC_CMA;
3407 #endif
3408 	return alloc_flags;
3409 }
3410 
3411 /*
3412  * get_page_from_freelist goes through the zonelist trying to allocate
3413  * a page.
3414  */
3415 static struct page *
3416 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3417 						const struct alloc_context *ac)
3418 {
3419 	struct zoneref *z;
3420 	struct zone *zone;
3421 	struct pglist_data *last_pgdat = NULL;
3422 	bool last_pgdat_dirty_ok = false;
3423 	bool no_fallback;
3424 
3425 retry:
3426 	/*
3427 	 * Scan zonelist, looking for a zone with enough free.
3428 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3429 	 */
3430 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3431 	z = ac->preferred_zoneref;
3432 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3433 					ac->nodemask) {
3434 		struct page *page;
3435 		unsigned long mark;
3436 
3437 		if (cpusets_enabled() &&
3438 			(alloc_flags & ALLOC_CPUSET) &&
3439 			!__cpuset_zone_allowed(zone, gfp_mask))
3440 				continue;
3441 		/*
3442 		 * When allocating a page cache page for writing, we
3443 		 * want to get it from a node that is within its dirty
3444 		 * limit, such that no single node holds more than its
3445 		 * proportional share of globally allowed dirty pages.
3446 		 * The dirty limits take into account the node's
3447 		 * lowmem reserves and high watermark so that kswapd
3448 		 * should be able to balance it without having to
3449 		 * write pages from its LRU list.
3450 		 *
3451 		 * XXX: For now, allow allocations to potentially
3452 		 * exceed the per-node dirty limit in the slowpath
3453 		 * (spread_dirty_pages unset) before going into reclaim,
3454 		 * which is important when on a NUMA setup the allowed
3455 		 * nodes are together not big enough to reach the
3456 		 * global limit.  The proper fix for these situations
3457 		 * will require awareness of nodes in the
3458 		 * dirty-throttling and the flusher threads.
3459 		 */
3460 		if (ac->spread_dirty_pages) {
3461 			if (last_pgdat != zone->zone_pgdat) {
3462 				last_pgdat = zone->zone_pgdat;
3463 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3464 			}
3465 
3466 			if (!last_pgdat_dirty_ok)
3467 				continue;
3468 		}
3469 
3470 		if (no_fallback && nr_online_nodes > 1 &&
3471 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3472 			int local_nid;
3473 
3474 			/*
3475 			 * If moving to a remote node, retry but allow
3476 			 * fragmenting fallbacks. Locality is more important
3477 			 * than fragmentation avoidance.
3478 			 */
3479 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3480 			if (zone_to_nid(zone) != local_nid) {
3481 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3482 				goto retry;
3483 			}
3484 		}
3485 
3486 		cond_accept_memory(zone, order);
3487 
3488 		/*
3489 		 * Detect whether the number of free pages is below high
3490 		 * watermark.  If so, we will decrease pcp->high and free
3491 		 * PCP pages in free path to reduce the possibility of
3492 		 * premature page reclaiming.  Detection is done here to
3493 		 * avoid to do that in hotter free path.
3494 		 */
3495 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3496 			goto check_alloc_wmark;
3497 
3498 		mark = high_wmark_pages(zone);
3499 		if (zone_watermark_fast(zone, order, mark,
3500 					ac->highest_zoneidx, alloc_flags,
3501 					gfp_mask))
3502 			goto try_this_zone;
3503 		else
3504 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3505 
3506 check_alloc_wmark:
3507 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3508 		if (!zone_watermark_fast(zone, order, mark,
3509 				       ac->highest_zoneidx, alloc_flags,
3510 				       gfp_mask)) {
3511 			int ret;
3512 
3513 			if (cond_accept_memory(zone, order))
3514 				goto try_this_zone;
3515 
3516 			/*
3517 			 * Watermark failed for this zone, but see if we can
3518 			 * grow this zone if it contains deferred pages.
3519 			 */
3520 			if (deferred_pages_enabled()) {
3521 				if (_deferred_grow_zone(zone, order))
3522 					goto try_this_zone;
3523 			}
3524 			/* Checked here to keep the fast path fast */
3525 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3526 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3527 				goto try_this_zone;
3528 
3529 			if (!node_reclaim_enabled() ||
3530 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3531 				continue;
3532 
3533 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3534 			switch (ret) {
3535 			case NODE_RECLAIM_NOSCAN:
3536 				/* did not scan */
3537 				continue;
3538 			case NODE_RECLAIM_FULL:
3539 				/* scanned but unreclaimable */
3540 				continue;
3541 			default:
3542 				/* did we reclaim enough */
3543 				if (zone_watermark_ok(zone, order, mark,
3544 					ac->highest_zoneidx, alloc_flags))
3545 					goto try_this_zone;
3546 
3547 				continue;
3548 			}
3549 		}
3550 
3551 try_this_zone:
3552 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3553 				gfp_mask, alloc_flags, ac->migratetype);
3554 		if (page) {
3555 			prep_new_page(page, order, gfp_mask, alloc_flags);
3556 
3557 			/*
3558 			 * If this is a high-order atomic allocation then check
3559 			 * if the pageblock should be reserved for the future
3560 			 */
3561 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3562 				reserve_highatomic_pageblock(page, order, zone);
3563 
3564 			return page;
3565 		} else {
3566 			if (cond_accept_memory(zone, order))
3567 				goto try_this_zone;
3568 
3569 			/* Try again if zone has deferred pages */
3570 			if (deferred_pages_enabled()) {
3571 				if (_deferred_grow_zone(zone, order))
3572 					goto try_this_zone;
3573 			}
3574 		}
3575 	}
3576 
3577 	/*
3578 	 * It's possible on a UMA machine to get through all zones that are
3579 	 * fragmented. If avoiding fragmentation, reset and try again.
3580 	 */
3581 	if (no_fallback) {
3582 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3583 		goto retry;
3584 	}
3585 
3586 	return NULL;
3587 }
3588 
3589 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3590 {
3591 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3592 
3593 	/*
3594 	 * This documents exceptions given to allocations in certain
3595 	 * contexts that are allowed to allocate outside current's set
3596 	 * of allowed nodes.
3597 	 */
3598 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3599 		if (tsk_is_oom_victim(current) ||
3600 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3601 			filter &= ~SHOW_MEM_FILTER_NODES;
3602 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3603 		filter &= ~SHOW_MEM_FILTER_NODES;
3604 
3605 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3606 }
3607 
3608 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3609 {
3610 	struct va_format vaf;
3611 	va_list args;
3612 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3613 
3614 	if ((gfp_mask & __GFP_NOWARN) ||
3615 	     !__ratelimit(&nopage_rs) ||
3616 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3617 		return;
3618 
3619 	va_start(args, fmt);
3620 	vaf.fmt = fmt;
3621 	vaf.va = &args;
3622 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3623 			current->comm, &vaf, gfp_mask, &gfp_mask,
3624 			nodemask_pr_args(nodemask));
3625 	va_end(args);
3626 
3627 	cpuset_print_current_mems_allowed();
3628 	pr_cont("\n");
3629 	dump_stack();
3630 	warn_alloc_show_mem(gfp_mask, nodemask);
3631 }
3632 
3633 static inline struct page *
3634 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3635 			      unsigned int alloc_flags,
3636 			      const struct alloc_context *ac)
3637 {
3638 	struct page *page;
3639 
3640 	page = get_page_from_freelist(gfp_mask, order,
3641 			alloc_flags|ALLOC_CPUSET, ac);
3642 	/*
3643 	 * fallback to ignore cpuset restriction if our nodes
3644 	 * are depleted
3645 	 */
3646 	if (!page)
3647 		page = get_page_from_freelist(gfp_mask, order,
3648 				alloc_flags, ac);
3649 	return page;
3650 }
3651 
3652 static inline struct page *
3653 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3654 	const struct alloc_context *ac, unsigned long *did_some_progress)
3655 {
3656 	struct oom_control oc = {
3657 		.zonelist = ac->zonelist,
3658 		.nodemask = ac->nodemask,
3659 		.memcg = NULL,
3660 		.gfp_mask = gfp_mask,
3661 		.order = order,
3662 	};
3663 	struct page *page;
3664 
3665 	*did_some_progress = 0;
3666 
3667 	/*
3668 	 * Acquire the oom lock.  If that fails, somebody else is
3669 	 * making progress for us.
3670 	 */
3671 	if (!mutex_trylock(&oom_lock)) {
3672 		*did_some_progress = 1;
3673 		schedule_timeout_uninterruptible(1);
3674 		return NULL;
3675 	}
3676 
3677 	/*
3678 	 * Go through the zonelist yet one more time, keep very high watermark
3679 	 * here, this is only to catch a parallel oom killing, we must fail if
3680 	 * we're still under heavy pressure. But make sure that this reclaim
3681 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3682 	 * allocation which will never fail due to oom_lock already held.
3683 	 */
3684 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3685 				      ~__GFP_DIRECT_RECLAIM, order,
3686 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3687 	if (page)
3688 		goto out;
3689 
3690 	/* Coredumps can quickly deplete all memory reserves */
3691 	if (current->flags & PF_DUMPCORE)
3692 		goto out;
3693 	/* The OOM killer will not help higher order allocs */
3694 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3695 		goto out;
3696 	/*
3697 	 * We have already exhausted all our reclaim opportunities without any
3698 	 * success so it is time to admit defeat. We will skip the OOM killer
3699 	 * because it is very likely that the caller has a more reasonable
3700 	 * fallback than shooting a random task.
3701 	 *
3702 	 * The OOM killer may not free memory on a specific node.
3703 	 */
3704 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3705 		goto out;
3706 	/* The OOM killer does not needlessly kill tasks for lowmem */
3707 	if (ac->highest_zoneidx < ZONE_NORMAL)
3708 		goto out;
3709 	if (pm_suspended_storage())
3710 		goto out;
3711 	/*
3712 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3713 	 * other request to make a forward progress.
3714 	 * We are in an unfortunate situation where out_of_memory cannot
3715 	 * do much for this context but let's try it to at least get
3716 	 * access to memory reserved if the current task is killed (see
3717 	 * out_of_memory). Once filesystems are ready to handle allocation
3718 	 * failures more gracefully we should just bail out here.
3719 	 */
3720 
3721 	/* Exhausted what can be done so it's blame time */
3722 	if (out_of_memory(&oc) ||
3723 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3724 		*did_some_progress = 1;
3725 
3726 		/*
3727 		 * Help non-failing allocations by giving them access to memory
3728 		 * reserves
3729 		 */
3730 		if (gfp_mask & __GFP_NOFAIL)
3731 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3732 					ALLOC_NO_WATERMARKS, ac);
3733 	}
3734 out:
3735 	mutex_unlock(&oom_lock);
3736 	return page;
3737 }
3738 
3739 /*
3740  * Maximum number of compaction retries with a progress before OOM
3741  * killer is consider as the only way to move forward.
3742  */
3743 #define MAX_COMPACT_RETRIES 16
3744 
3745 #ifdef CONFIG_COMPACTION
3746 /* Try memory compaction for high-order allocations before reclaim */
3747 static struct page *
3748 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3749 		unsigned int alloc_flags, const struct alloc_context *ac,
3750 		enum compact_priority prio, enum compact_result *compact_result)
3751 {
3752 	struct page *page = NULL;
3753 	unsigned long pflags;
3754 	unsigned int noreclaim_flag;
3755 
3756 	if (!order)
3757 		return NULL;
3758 
3759 	psi_memstall_enter(&pflags);
3760 	delayacct_compact_start();
3761 	noreclaim_flag = memalloc_noreclaim_save();
3762 
3763 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3764 								prio, &page);
3765 
3766 	memalloc_noreclaim_restore(noreclaim_flag);
3767 	psi_memstall_leave(&pflags);
3768 	delayacct_compact_end();
3769 
3770 	if (*compact_result == COMPACT_SKIPPED)
3771 		return NULL;
3772 	/*
3773 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3774 	 * count a compaction stall
3775 	 */
3776 	count_vm_event(COMPACTSTALL);
3777 
3778 	/* Prep a captured page if available */
3779 	if (page)
3780 		prep_new_page(page, order, gfp_mask, alloc_flags);
3781 
3782 	/* Try get a page from the freelist if available */
3783 	if (!page)
3784 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3785 
3786 	if (page) {
3787 		struct zone *zone = page_zone(page);
3788 
3789 		zone->compact_blockskip_flush = false;
3790 		compaction_defer_reset(zone, order, true);
3791 		count_vm_event(COMPACTSUCCESS);
3792 		return page;
3793 	}
3794 
3795 	/*
3796 	 * It's bad if compaction run occurs and fails. The most likely reason
3797 	 * is that pages exist, but not enough to satisfy watermarks.
3798 	 */
3799 	count_vm_event(COMPACTFAIL);
3800 
3801 	cond_resched();
3802 
3803 	return NULL;
3804 }
3805 
3806 static inline bool
3807 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3808 		     enum compact_result compact_result,
3809 		     enum compact_priority *compact_priority,
3810 		     int *compaction_retries)
3811 {
3812 	int max_retries = MAX_COMPACT_RETRIES;
3813 	int min_priority;
3814 	bool ret = false;
3815 	int retries = *compaction_retries;
3816 	enum compact_priority priority = *compact_priority;
3817 
3818 	if (!order)
3819 		return false;
3820 
3821 	if (fatal_signal_pending(current))
3822 		return false;
3823 
3824 	/*
3825 	 * Compaction was skipped due to a lack of free order-0
3826 	 * migration targets. Continue if reclaim can help.
3827 	 */
3828 	if (compact_result == COMPACT_SKIPPED) {
3829 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3830 		goto out;
3831 	}
3832 
3833 	/*
3834 	 * Compaction managed to coalesce some page blocks, but the
3835 	 * allocation failed presumably due to a race. Retry some.
3836 	 */
3837 	if (compact_result == COMPACT_SUCCESS) {
3838 		/*
3839 		 * !costly requests are much more important than
3840 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3841 		 * facto nofail and invoke OOM killer to move on while
3842 		 * costly can fail and users are ready to cope with
3843 		 * that. 1/4 retries is rather arbitrary but we would
3844 		 * need much more detailed feedback from compaction to
3845 		 * make a better decision.
3846 		 */
3847 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3848 			max_retries /= 4;
3849 
3850 		if (++(*compaction_retries) <= max_retries) {
3851 			ret = true;
3852 			goto out;
3853 		}
3854 	}
3855 
3856 	/*
3857 	 * Compaction failed. Retry with increasing priority.
3858 	 */
3859 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3860 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3861 
3862 	if (*compact_priority > min_priority) {
3863 		(*compact_priority)--;
3864 		*compaction_retries = 0;
3865 		ret = true;
3866 	}
3867 out:
3868 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3869 	return ret;
3870 }
3871 #else
3872 static inline struct page *
3873 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3874 		unsigned int alloc_flags, const struct alloc_context *ac,
3875 		enum compact_priority prio, enum compact_result *compact_result)
3876 {
3877 	*compact_result = COMPACT_SKIPPED;
3878 	return NULL;
3879 }
3880 
3881 static inline bool
3882 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3883 		     enum compact_result compact_result,
3884 		     enum compact_priority *compact_priority,
3885 		     int *compaction_retries)
3886 {
3887 	struct zone *zone;
3888 	struct zoneref *z;
3889 
3890 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3891 		return false;
3892 
3893 	/*
3894 	 * There are setups with compaction disabled which would prefer to loop
3895 	 * inside the allocator rather than hit the oom killer prematurely.
3896 	 * Let's give them a good hope and keep retrying while the order-0
3897 	 * watermarks are OK.
3898 	 */
3899 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3900 				ac->highest_zoneidx, ac->nodemask) {
3901 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3902 					ac->highest_zoneidx, alloc_flags))
3903 			return true;
3904 	}
3905 	return false;
3906 }
3907 #endif /* CONFIG_COMPACTION */
3908 
3909 #ifdef CONFIG_LOCKDEP
3910 static struct lockdep_map __fs_reclaim_map =
3911 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3912 
3913 static bool __need_reclaim(gfp_t gfp_mask)
3914 {
3915 	/* no reclaim without waiting on it */
3916 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3917 		return false;
3918 
3919 	/* this guy won't enter reclaim */
3920 	if (current->flags & PF_MEMALLOC)
3921 		return false;
3922 
3923 	if (gfp_mask & __GFP_NOLOCKDEP)
3924 		return false;
3925 
3926 	return true;
3927 }
3928 
3929 void __fs_reclaim_acquire(unsigned long ip)
3930 {
3931 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3932 }
3933 
3934 void __fs_reclaim_release(unsigned long ip)
3935 {
3936 	lock_release(&__fs_reclaim_map, ip);
3937 }
3938 
3939 void fs_reclaim_acquire(gfp_t gfp_mask)
3940 {
3941 	gfp_mask = current_gfp_context(gfp_mask);
3942 
3943 	if (__need_reclaim(gfp_mask)) {
3944 		if (gfp_mask & __GFP_FS)
3945 			__fs_reclaim_acquire(_RET_IP_);
3946 
3947 #ifdef CONFIG_MMU_NOTIFIER
3948 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3949 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3950 #endif
3951 
3952 	}
3953 }
3954 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3955 
3956 void fs_reclaim_release(gfp_t gfp_mask)
3957 {
3958 	gfp_mask = current_gfp_context(gfp_mask);
3959 
3960 	if (__need_reclaim(gfp_mask)) {
3961 		if (gfp_mask & __GFP_FS)
3962 			__fs_reclaim_release(_RET_IP_);
3963 	}
3964 }
3965 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3966 #endif
3967 
3968 /*
3969  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3970  * have been rebuilt so allocation retries. Reader side does not lock and
3971  * retries the allocation if zonelist changes. Writer side is protected by the
3972  * embedded spin_lock.
3973  */
3974 static DEFINE_SEQLOCK(zonelist_update_seq);
3975 
3976 static unsigned int zonelist_iter_begin(void)
3977 {
3978 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3979 		return read_seqbegin(&zonelist_update_seq);
3980 
3981 	return 0;
3982 }
3983 
3984 static unsigned int check_retry_zonelist(unsigned int seq)
3985 {
3986 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3987 		return read_seqretry(&zonelist_update_seq, seq);
3988 
3989 	return seq;
3990 }
3991 
3992 /* Perform direct synchronous page reclaim */
3993 static unsigned long
3994 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3995 					const struct alloc_context *ac)
3996 {
3997 	unsigned int noreclaim_flag;
3998 	unsigned long progress;
3999 
4000 	cond_resched();
4001 
4002 	/* We now go into synchronous reclaim */
4003 	cpuset_memory_pressure_bump();
4004 	fs_reclaim_acquire(gfp_mask);
4005 	noreclaim_flag = memalloc_noreclaim_save();
4006 
4007 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4008 								ac->nodemask);
4009 
4010 	memalloc_noreclaim_restore(noreclaim_flag);
4011 	fs_reclaim_release(gfp_mask);
4012 
4013 	cond_resched();
4014 
4015 	return progress;
4016 }
4017 
4018 /* The really slow allocator path where we enter direct reclaim */
4019 static inline struct page *
4020 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4021 		unsigned int alloc_flags, const struct alloc_context *ac,
4022 		unsigned long *did_some_progress)
4023 {
4024 	struct page *page = NULL;
4025 	unsigned long pflags;
4026 	bool drained = false;
4027 
4028 	psi_memstall_enter(&pflags);
4029 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4030 	if (unlikely(!(*did_some_progress)))
4031 		goto out;
4032 
4033 retry:
4034 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4035 
4036 	/*
4037 	 * If an allocation failed after direct reclaim, it could be because
4038 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4039 	 * Shrink them and try again
4040 	 */
4041 	if (!page && !drained) {
4042 		unreserve_highatomic_pageblock(ac, false);
4043 		drain_all_pages(NULL);
4044 		drained = true;
4045 		goto retry;
4046 	}
4047 out:
4048 	psi_memstall_leave(&pflags);
4049 
4050 	return page;
4051 }
4052 
4053 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4054 			     const struct alloc_context *ac)
4055 {
4056 	struct zoneref *z;
4057 	struct zone *zone;
4058 	pg_data_t *last_pgdat = NULL;
4059 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4060 
4061 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4062 					ac->nodemask) {
4063 		if (!managed_zone(zone))
4064 			continue;
4065 		if (last_pgdat != zone->zone_pgdat) {
4066 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4067 			last_pgdat = zone->zone_pgdat;
4068 		}
4069 	}
4070 }
4071 
4072 static inline unsigned int
4073 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4074 {
4075 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4076 
4077 	/*
4078 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4079 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4080 	 * to save two branches.
4081 	 */
4082 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4083 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4084 
4085 	/*
4086 	 * The caller may dip into page reserves a bit more if the caller
4087 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4088 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4089 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4090 	 */
4091 	alloc_flags |= (__force int)
4092 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4093 
4094 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4095 		/*
4096 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4097 		 * if it can't schedule.
4098 		 */
4099 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4100 			alloc_flags |= ALLOC_NON_BLOCK;
4101 
4102 			if (order > 0)
4103 				alloc_flags |= ALLOC_HIGHATOMIC;
4104 		}
4105 
4106 		/*
4107 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4108 		 * GFP_ATOMIC) rather than fail, see the comment for
4109 		 * cpuset_node_allowed().
4110 		 */
4111 		if (alloc_flags & ALLOC_MIN_RESERVE)
4112 			alloc_flags &= ~ALLOC_CPUSET;
4113 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4114 		alloc_flags |= ALLOC_MIN_RESERVE;
4115 
4116 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4117 
4118 	return alloc_flags;
4119 }
4120 
4121 static bool oom_reserves_allowed(struct task_struct *tsk)
4122 {
4123 	if (!tsk_is_oom_victim(tsk))
4124 		return false;
4125 
4126 	/*
4127 	 * !MMU doesn't have oom reaper so give access to memory reserves
4128 	 * only to the thread with TIF_MEMDIE set
4129 	 */
4130 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4131 		return false;
4132 
4133 	return true;
4134 }
4135 
4136 /*
4137  * Distinguish requests which really need access to full memory
4138  * reserves from oom victims which can live with a portion of it
4139  */
4140 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4141 {
4142 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4143 		return 0;
4144 	if (gfp_mask & __GFP_MEMALLOC)
4145 		return ALLOC_NO_WATERMARKS;
4146 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4147 		return ALLOC_NO_WATERMARKS;
4148 	if (!in_interrupt()) {
4149 		if (current->flags & PF_MEMALLOC)
4150 			return ALLOC_NO_WATERMARKS;
4151 		else if (oom_reserves_allowed(current))
4152 			return ALLOC_OOM;
4153 	}
4154 
4155 	return 0;
4156 }
4157 
4158 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4159 {
4160 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4161 }
4162 
4163 /*
4164  * Checks whether it makes sense to retry the reclaim to make a forward progress
4165  * for the given allocation request.
4166  *
4167  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4168  * without success, or when we couldn't even meet the watermark if we
4169  * reclaimed all remaining pages on the LRU lists.
4170  *
4171  * Returns true if a retry is viable or false to enter the oom path.
4172  */
4173 static inline bool
4174 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4175 		     struct alloc_context *ac, int alloc_flags,
4176 		     bool did_some_progress, int *no_progress_loops)
4177 {
4178 	struct zone *zone;
4179 	struct zoneref *z;
4180 	bool ret = false;
4181 
4182 	/*
4183 	 * Costly allocations might have made a progress but this doesn't mean
4184 	 * their order will become available due to high fragmentation so
4185 	 * always increment the no progress counter for them
4186 	 */
4187 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4188 		*no_progress_loops = 0;
4189 	else
4190 		(*no_progress_loops)++;
4191 
4192 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4193 		goto out;
4194 
4195 
4196 	/*
4197 	 * Keep reclaiming pages while there is a chance this will lead
4198 	 * somewhere.  If none of the target zones can satisfy our allocation
4199 	 * request even if all reclaimable pages are considered then we are
4200 	 * screwed and have to go OOM.
4201 	 */
4202 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4203 				ac->highest_zoneidx, ac->nodemask) {
4204 		unsigned long available;
4205 		unsigned long reclaimable;
4206 		unsigned long min_wmark = min_wmark_pages(zone);
4207 		bool wmark;
4208 
4209 		if (cpusets_enabled() &&
4210 			(alloc_flags & ALLOC_CPUSET) &&
4211 			!__cpuset_zone_allowed(zone, gfp_mask))
4212 				continue;
4213 
4214 		available = reclaimable = zone_reclaimable_pages(zone);
4215 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4216 
4217 		/*
4218 		 * Would the allocation succeed if we reclaimed all
4219 		 * reclaimable pages?
4220 		 */
4221 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4222 				ac->highest_zoneidx, alloc_flags, available);
4223 		trace_reclaim_retry_zone(z, order, reclaimable,
4224 				available, min_wmark, *no_progress_loops, wmark);
4225 		if (wmark) {
4226 			ret = true;
4227 			break;
4228 		}
4229 	}
4230 
4231 	/*
4232 	 * Memory allocation/reclaim might be called from a WQ context and the
4233 	 * current implementation of the WQ concurrency control doesn't
4234 	 * recognize that a particular WQ is congested if the worker thread is
4235 	 * looping without ever sleeping. Therefore we have to do a short sleep
4236 	 * here rather than calling cond_resched().
4237 	 */
4238 	if (current->flags & PF_WQ_WORKER)
4239 		schedule_timeout_uninterruptible(1);
4240 	else
4241 		cond_resched();
4242 out:
4243 	/* Before OOM, exhaust highatomic_reserve */
4244 	if (!ret)
4245 		return unreserve_highatomic_pageblock(ac, true);
4246 
4247 	return ret;
4248 }
4249 
4250 static inline bool
4251 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4252 {
4253 	/*
4254 	 * It's possible that cpuset's mems_allowed and the nodemask from
4255 	 * mempolicy don't intersect. This should be normally dealt with by
4256 	 * policy_nodemask(), but it's possible to race with cpuset update in
4257 	 * such a way the check therein was true, and then it became false
4258 	 * before we got our cpuset_mems_cookie here.
4259 	 * This assumes that for all allocations, ac->nodemask can come only
4260 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4261 	 * when it does not intersect with the cpuset restrictions) or the
4262 	 * caller can deal with a violated nodemask.
4263 	 */
4264 	if (cpusets_enabled() && ac->nodemask &&
4265 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4266 		ac->nodemask = NULL;
4267 		return true;
4268 	}
4269 
4270 	/*
4271 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4272 	 * possible to race with parallel threads in such a way that our
4273 	 * allocation can fail while the mask is being updated. If we are about
4274 	 * to fail, check if the cpuset changed during allocation and if so,
4275 	 * retry.
4276 	 */
4277 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4278 		return true;
4279 
4280 	return false;
4281 }
4282 
4283 static inline struct page *
4284 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4285 						struct alloc_context *ac)
4286 {
4287 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4288 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4289 	bool nofail = gfp_mask & __GFP_NOFAIL;
4290 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4291 	struct page *page = NULL;
4292 	unsigned int alloc_flags;
4293 	unsigned long did_some_progress;
4294 	enum compact_priority compact_priority;
4295 	enum compact_result compact_result;
4296 	int compaction_retries;
4297 	int no_progress_loops;
4298 	unsigned int cpuset_mems_cookie;
4299 	unsigned int zonelist_iter_cookie;
4300 	int reserve_flags;
4301 
4302 	if (unlikely(nofail)) {
4303 		/*
4304 		 * We most definitely don't want callers attempting to
4305 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4306 		 */
4307 		WARN_ON_ONCE(order > 1);
4308 		/*
4309 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4310 		 * otherwise, we may result in lockup.
4311 		 */
4312 		WARN_ON_ONCE(!can_direct_reclaim);
4313 		/*
4314 		 * PF_MEMALLOC request from this context is rather bizarre
4315 		 * because we cannot reclaim anything and only can loop waiting
4316 		 * for somebody to do a work for us.
4317 		 */
4318 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4319 	}
4320 
4321 restart:
4322 	compaction_retries = 0;
4323 	no_progress_loops = 0;
4324 	compact_result = COMPACT_SKIPPED;
4325 	compact_priority = DEF_COMPACT_PRIORITY;
4326 	cpuset_mems_cookie = read_mems_allowed_begin();
4327 	zonelist_iter_cookie = zonelist_iter_begin();
4328 
4329 	/*
4330 	 * The fast path uses conservative alloc_flags to succeed only until
4331 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4332 	 * alloc_flags precisely. So we do that now.
4333 	 */
4334 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4335 
4336 	/*
4337 	 * We need to recalculate the starting point for the zonelist iterator
4338 	 * because we might have used different nodemask in the fast path, or
4339 	 * there was a cpuset modification and we are retrying - otherwise we
4340 	 * could end up iterating over non-eligible zones endlessly.
4341 	 */
4342 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4343 					ac->highest_zoneidx, ac->nodemask);
4344 	if (!zonelist_zone(ac->preferred_zoneref))
4345 		goto nopage;
4346 
4347 	/*
4348 	 * Check for insane configurations where the cpuset doesn't contain
4349 	 * any suitable zone to satisfy the request - e.g. non-movable
4350 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4351 	 */
4352 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4353 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4354 					ac->highest_zoneidx,
4355 					&cpuset_current_mems_allowed);
4356 		if (!zonelist_zone(z))
4357 			goto nopage;
4358 	}
4359 
4360 	if (alloc_flags & ALLOC_KSWAPD)
4361 		wake_all_kswapds(order, gfp_mask, ac);
4362 
4363 	/*
4364 	 * The adjusted alloc_flags might result in immediate success, so try
4365 	 * that first
4366 	 */
4367 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4368 	if (page)
4369 		goto got_pg;
4370 
4371 	/*
4372 	 * For costly allocations, try direct compaction first, as it's likely
4373 	 * that we have enough base pages and don't need to reclaim. For non-
4374 	 * movable high-order allocations, do that as well, as compaction will
4375 	 * try prevent permanent fragmentation by migrating from blocks of the
4376 	 * same migratetype.
4377 	 * Don't try this for allocations that are allowed to ignore
4378 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4379 	 */
4380 	if (can_direct_reclaim && can_compact &&
4381 			(costly_order ||
4382 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4383 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4384 		page = __alloc_pages_direct_compact(gfp_mask, order,
4385 						alloc_flags, ac,
4386 						INIT_COMPACT_PRIORITY,
4387 						&compact_result);
4388 		if (page)
4389 			goto got_pg;
4390 
4391 		/*
4392 		 * Checks for costly allocations with __GFP_NORETRY, which
4393 		 * includes some THP page fault allocations
4394 		 */
4395 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4396 			/*
4397 			 * If allocating entire pageblock(s) and compaction
4398 			 * failed because all zones are below low watermarks
4399 			 * or is prohibited because it recently failed at this
4400 			 * order, fail immediately unless the allocator has
4401 			 * requested compaction and reclaim retry.
4402 			 *
4403 			 * Reclaim is
4404 			 *  - potentially very expensive because zones are far
4405 			 *    below their low watermarks or this is part of very
4406 			 *    bursty high order allocations,
4407 			 *  - not guaranteed to help because isolate_freepages()
4408 			 *    may not iterate over freed pages as part of its
4409 			 *    linear scan, and
4410 			 *  - unlikely to make entire pageblocks free on its
4411 			 *    own.
4412 			 */
4413 			if (compact_result == COMPACT_SKIPPED ||
4414 			    compact_result == COMPACT_DEFERRED)
4415 				goto nopage;
4416 
4417 			/*
4418 			 * Looks like reclaim/compaction is worth trying, but
4419 			 * sync compaction could be very expensive, so keep
4420 			 * using async compaction.
4421 			 */
4422 			compact_priority = INIT_COMPACT_PRIORITY;
4423 		}
4424 	}
4425 
4426 retry:
4427 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4428 	if (alloc_flags & ALLOC_KSWAPD)
4429 		wake_all_kswapds(order, gfp_mask, ac);
4430 
4431 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4432 	if (reserve_flags)
4433 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4434 					  (alloc_flags & ALLOC_KSWAPD);
4435 
4436 	/*
4437 	 * Reset the nodemask and zonelist iterators if memory policies can be
4438 	 * ignored. These allocations are high priority and system rather than
4439 	 * user oriented.
4440 	 */
4441 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4442 		ac->nodemask = NULL;
4443 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4444 					ac->highest_zoneidx, ac->nodemask);
4445 	}
4446 
4447 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4448 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4449 	if (page)
4450 		goto got_pg;
4451 
4452 	/* Caller is not willing to reclaim, we can't balance anything */
4453 	if (!can_direct_reclaim)
4454 		goto nopage;
4455 
4456 	/* Avoid recursion of direct reclaim */
4457 	if (current->flags & PF_MEMALLOC)
4458 		goto nopage;
4459 
4460 	/* Try direct reclaim and then allocating */
4461 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4462 							&did_some_progress);
4463 	if (page)
4464 		goto got_pg;
4465 
4466 	/* Try direct compaction and then allocating */
4467 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4468 					compact_priority, &compact_result);
4469 	if (page)
4470 		goto got_pg;
4471 
4472 	/* Do not loop if specifically requested */
4473 	if (gfp_mask & __GFP_NORETRY)
4474 		goto nopage;
4475 
4476 	/*
4477 	 * Do not retry costly high order allocations unless they are
4478 	 * __GFP_RETRY_MAYFAIL and we can compact
4479 	 */
4480 	if (costly_order && (!can_compact ||
4481 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4482 		goto nopage;
4483 
4484 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4485 				 did_some_progress > 0, &no_progress_loops))
4486 		goto retry;
4487 
4488 	/*
4489 	 * It doesn't make any sense to retry for the compaction if the order-0
4490 	 * reclaim is not able to make any progress because the current
4491 	 * implementation of the compaction depends on the sufficient amount
4492 	 * of free memory (see __compaction_suitable)
4493 	 */
4494 	if (did_some_progress > 0 && can_compact &&
4495 			should_compact_retry(ac, order, alloc_flags,
4496 				compact_result, &compact_priority,
4497 				&compaction_retries))
4498 		goto retry;
4499 
4500 
4501 	/*
4502 	 * Deal with possible cpuset update races or zonelist updates to avoid
4503 	 * a unnecessary OOM kill.
4504 	 */
4505 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4506 	    check_retry_zonelist(zonelist_iter_cookie))
4507 		goto restart;
4508 
4509 	/* Reclaim has failed us, start killing things */
4510 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4511 	if (page)
4512 		goto got_pg;
4513 
4514 	/* Avoid allocations with no watermarks from looping endlessly */
4515 	if (tsk_is_oom_victim(current) &&
4516 	    (alloc_flags & ALLOC_OOM ||
4517 	     (gfp_mask & __GFP_NOMEMALLOC)))
4518 		goto nopage;
4519 
4520 	/* Retry as long as the OOM killer is making progress */
4521 	if (did_some_progress) {
4522 		no_progress_loops = 0;
4523 		goto retry;
4524 	}
4525 
4526 nopage:
4527 	/*
4528 	 * Deal with possible cpuset update races or zonelist updates to avoid
4529 	 * a unnecessary OOM kill.
4530 	 */
4531 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4532 	    check_retry_zonelist(zonelist_iter_cookie))
4533 		goto restart;
4534 
4535 	/*
4536 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4537 	 * we always retry
4538 	 */
4539 	if (unlikely(nofail)) {
4540 		/*
4541 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4542 		 * we disregard these unreasonable nofail requests and still
4543 		 * return NULL
4544 		 */
4545 		if (!can_direct_reclaim)
4546 			goto fail;
4547 
4548 		/*
4549 		 * Help non-failing allocations by giving some access to memory
4550 		 * reserves normally used for high priority non-blocking
4551 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4552 		 * could deplete whole memory reserves which would just make
4553 		 * the situation worse.
4554 		 */
4555 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4556 		if (page)
4557 			goto got_pg;
4558 
4559 		cond_resched();
4560 		goto retry;
4561 	}
4562 fail:
4563 	warn_alloc(gfp_mask, ac->nodemask,
4564 			"page allocation failure: order:%u", order);
4565 got_pg:
4566 	return page;
4567 }
4568 
4569 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4570 		int preferred_nid, nodemask_t *nodemask,
4571 		struct alloc_context *ac, gfp_t *alloc_gfp,
4572 		unsigned int *alloc_flags)
4573 {
4574 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4575 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4576 	ac->nodemask = nodemask;
4577 	ac->migratetype = gfp_migratetype(gfp_mask);
4578 
4579 	if (cpusets_enabled()) {
4580 		*alloc_gfp |= __GFP_HARDWALL;
4581 		/*
4582 		 * When we are in the interrupt context, it is irrelevant
4583 		 * to the current task context. It means that any node ok.
4584 		 */
4585 		if (in_task() && !ac->nodemask)
4586 			ac->nodemask = &cpuset_current_mems_allowed;
4587 		else
4588 			*alloc_flags |= ALLOC_CPUSET;
4589 	}
4590 
4591 	might_alloc(gfp_mask);
4592 
4593 	if (should_fail_alloc_page(gfp_mask, order))
4594 		return false;
4595 
4596 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4597 
4598 	/* Dirty zone balancing only done in the fast path */
4599 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4600 
4601 	/*
4602 	 * The preferred zone is used for statistics but crucially it is
4603 	 * also used as the starting point for the zonelist iterator. It
4604 	 * may get reset for allocations that ignore memory policies.
4605 	 */
4606 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4607 					ac->highest_zoneidx, ac->nodemask);
4608 
4609 	return true;
4610 }
4611 
4612 /*
4613  * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4614  * @gfp: GFP flags for the allocation
4615  * @preferred_nid: The preferred NUMA node ID to allocate from
4616  * @nodemask: Set of nodes to allocate from, may be NULL
4617  * @nr_pages: The number of pages desired in the array
4618  * @page_array: Array to store the pages
4619  *
4620  * This is a batched version of the page allocator that attempts to
4621  * allocate nr_pages quickly. Pages are added to the page_array.
4622  *
4623  * Note that only NULL elements are populated with pages and nr_pages
4624  * is the maximum number of pages that will be stored in the array.
4625  *
4626  * Returns the number of pages in the array.
4627  */
4628 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4629 			nodemask_t *nodemask, int nr_pages,
4630 			struct page **page_array)
4631 {
4632 	struct page *page;
4633 	unsigned long __maybe_unused UP_flags;
4634 	struct zone *zone;
4635 	struct zoneref *z;
4636 	struct per_cpu_pages *pcp;
4637 	struct list_head *pcp_list;
4638 	struct alloc_context ac;
4639 	gfp_t alloc_gfp;
4640 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4641 	int nr_populated = 0, nr_account = 0;
4642 
4643 	/*
4644 	 * Skip populated array elements to determine if any pages need
4645 	 * to be allocated before disabling IRQs.
4646 	 */
4647 	while (nr_populated < nr_pages && page_array[nr_populated])
4648 		nr_populated++;
4649 
4650 	/* No pages requested? */
4651 	if (unlikely(nr_pages <= 0))
4652 		goto out;
4653 
4654 	/* Already populated array? */
4655 	if (unlikely(nr_pages - nr_populated == 0))
4656 		goto out;
4657 
4658 	/* Bulk allocator does not support memcg accounting. */
4659 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4660 		goto failed;
4661 
4662 	/* Use the single page allocator for one page. */
4663 	if (nr_pages - nr_populated == 1)
4664 		goto failed;
4665 
4666 #ifdef CONFIG_PAGE_OWNER
4667 	/*
4668 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4669 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4670 	 * removes much of the performance benefit of bulk allocation so
4671 	 * force the caller to allocate one page at a time as it'll have
4672 	 * similar performance to added complexity to the bulk allocator.
4673 	 */
4674 	if (static_branch_unlikely(&page_owner_inited))
4675 		goto failed;
4676 #endif
4677 
4678 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4679 	gfp &= gfp_allowed_mask;
4680 	alloc_gfp = gfp;
4681 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4682 		goto out;
4683 	gfp = alloc_gfp;
4684 
4685 	/* Find an allowed local zone that meets the low watermark. */
4686 	z = ac.preferred_zoneref;
4687 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4688 		unsigned long mark;
4689 
4690 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4691 		    !__cpuset_zone_allowed(zone, gfp)) {
4692 			continue;
4693 		}
4694 
4695 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4696 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4697 			goto failed;
4698 		}
4699 
4700 		cond_accept_memory(zone, 0);
4701 retry_this_zone:
4702 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4703 		if (zone_watermark_fast(zone, 0,  mark,
4704 				zonelist_zone_idx(ac.preferred_zoneref),
4705 				alloc_flags, gfp)) {
4706 			break;
4707 		}
4708 
4709 		if (cond_accept_memory(zone, 0))
4710 			goto retry_this_zone;
4711 
4712 		/* Try again if zone has deferred pages */
4713 		if (deferred_pages_enabled()) {
4714 			if (_deferred_grow_zone(zone, 0))
4715 				goto retry_this_zone;
4716 		}
4717 	}
4718 
4719 	/*
4720 	 * If there are no allowed local zones that meets the watermarks then
4721 	 * try to allocate a single page and reclaim if necessary.
4722 	 */
4723 	if (unlikely(!zone))
4724 		goto failed;
4725 
4726 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4727 	pcp_trylock_prepare(UP_flags);
4728 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4729 	if (!pcp)
4730 		goto failed_irq;
4731 
4732 	/* Attempt the batch allocation */
4733 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4734 	while (nr_populated < nr_pages) {
4735 
4736 		/* Skip existing pages */
4737 		if (page_array[nr_populated]) {
4738 			nr_populated++;
4739 			continue;
4740 		}
4741 
4742 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4743 								pcp, pcp_list);
4744 		if (unlikely(!page)) {
4745 			/* Try and allocate at least one page */
4746 			if (!nr_account) {
4747 				pcp_spin_unlock(pcp);
4748 				goto failed_irq;
4749 			}
4750 			break;
4751 		}
4752 		nr_account++;
4753 
4754 		prep_new_page(page, 0, gfp, 0);
4755 		set_page_refcounted(page);
4756 		page_array[nr_populated++] = page;
4757 	}
4758 
4759 	pcp_spin_unlock(pcp);
4760 	pcp_trylock_finish(UP_flags);
4761 
4762 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4763 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4764 
4765 out:
4766 	return nr_populated;
4767 
4768 failed_irq:
4769 	pcp_trylock_finish(UP_flags);
4770 
4771 failed:
4772 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4773 	if (page)
4774 		page_array[nr_populated++] = page;
4775 	goto out;
4776 }
4777 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4778 
4779 /*
4780  * This is the 'heart' of the zoned buddy allocator.
4781  */
4782 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
4783 		int preferred_nid, nodemask_t *nodemask)
4784 {
4785 	struct page *page;
4786 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4787 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4788 	struct alloc_context ac = { };
4789 
4790 	/*
4791 	 * There are several places where we assume that the order value is sane
4792 	 * so bail out early if the request is out of bound.
4793 	 */
4794 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4795 		return NULL;
4796 
4797 	gfp &= gfp_allowed_mask;
4798 	/*
4799 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4800 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4801 	 * from a particular context which has been marked by
4802 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4803 	 * movable zones are not used during allocation.
4804 	 */
4805 	gfp = current_gfp_context(gfp);
4806 	alloc_gfp = gfp;
4807 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4808 			&alloc_gfp, &alloc_flags))
4809 		return NULL;
4810 
4811 	/*
4812 	 * Forbid the first pass from falling back to types that fragment
4813 	 * memory until all local zones are considered.
4814 	 */
4815 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4816 
4817 	/* First allocation attempt */
4818 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4819 	if (likely(page))
4820 		goto out;
4821 
4822 	alloc_gfp = gfp;
4823 	ac.spread_dirty_pages = false;
4824 
4825 	/*
4826 	 * Restore the original nodemask if it was potentially replaced with
4827 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4828 	 */
4829 	ac.nodemask = nodemask;
4830 
4831 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4832 
4833 out:
4834 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4835 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4836 		free_frozen_pages(page, order);
4837 		page = NULL;
4838 	}
4839 
4840 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4841 	kmsan_alloc_page(page, order, alloc_gfp);
4842 
4843 	return page;
4844 }
4845 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
4846 
4847 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4848 		int preferred_nid, nodemask_t *nodemask)
4849 {
4850 	struct page *page;
4851 
4852 	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
4853 	if (page)
4854 		set_page_refcounted(page);
4855 	return page;
4856 }
4857 EXPORT_SYMBOL(__alloc_pages_noprof);
4858 
4859 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4860 		nodemask_t *nodemask)
4861 {
4862 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4863 					preferred_nid, nodemask);
4864 	return page_rmappable_folio(page);
4865 }
4866 EXPORT_SYMBOL(__folio_alloc_noprof);
4867 
4868 /*
4869  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4870  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4871  * you need to access high mem.
4872  */
4873 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4874 {
4875 	struct page *page;
4876 
4877 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4878 	if (!page)
4879 		return 0;
4880 	return (unsigned long) page_address(page);
4881 }
4882 EXPORT_SYMBOL(get_free_pages_noprof);
4883 
4884 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4885 {
4886 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4887 }
4888 EXPORT_SYMBOL(get_zeroed_page_noprof);
4889 
4890 /**
4891  * __free_pages - Free pages allocated with alloc_pages().
4892  * @page: The page pointer returned from alloc_pages().
4893  * @order: The order of the allocation.
4894  *
4895  * This function can free multi-page allocations that are not compound
4896  * pages.  It does not check that the @order passed in matches that of
4897  * the allocation, so it is easy to leak memory.  Freeing more memory
4898  * than was allocated will probably emit a warning.
4899  *
4900  * If the last reference to this page is speculative, it will be released
4901  * by put_page() which only frees the first page of a non-compound
4902  * allocation.  To prevent the remaining pages from being leaked, we free
4903  * the subsequent pages here.  If you want to use the page's reference
4904  * count to decide when to free the allocation, you should allocate a
4905  * compound page, and use put_page() instead of __free_pages().
4906  *
4907  * Context: May be called in interrupt context or while holding a normal
4908  * spinlock, but not in NMI context or while holding a raw spinlock.
4909  */
4910 void __free_pages(struct page *page, unsigned int order)
4911 {
4912 	/* get PageHead before we drop reference */
4913 	int head = PageHead(page);
4914 
4915 	if (put_page_testzero(page))
4916 		free_frozen_pages(page, order);
4917 	else if (!head) {
4918 		pgalloc_tag_sub_pages(page, (1 << order) - 1);
4919 		while (order-- > 0)
4920 			free_frozen_pages(page + (1 << order), order);
4921 	}
4922 }
4923 EXPORT_SYMBOL(__free_pages);
4924 
4925 void free_pages(unsigned long addr, unsigned int order)
4926 {
4927 	if (addr != 0) {
4928 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4929 		__free_pages(virt_to_page((void *)addr), order);
4930 	}
4931 }
4932 
4933 EXPORT_SYMBOL(free_pages);
4934 
4935 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4936 		size_t size)
4937 {
4938 	if (addr) {
4939 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4940 		struct page *page = virt_to_page((void *)addr);
4941 		struct page *last = page + nr;
4942 
4943 		split_page_owner(page, order, 0);
4944 		pgalloc_tag_split(page_folio(page), order, 0);
4945 		split_page_memcg(page, order, 0);
4946 		while (page < --last)
4947 			set_page_refcounted(last);
4948 
4949 		last = page + (1UL << order);
4950 		for (page += nr; page < last; page++)
4951 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4952 	}
4953 	return (void *)addr;
4954 }
4955 
4956 /**
4957  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4958  * @size: the number of bytes to allocate
4959  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4960  *
4961  * This function is similar to alloc_pages(), except that it allocates the
4962  * minimum number of pages to satisfy the request.  alloc_pages() can only
4963  * allocate memory in power-of-two pages.
4964  *
4965  * This function is also limited by MAX_PAGE_ORDER.
4966  *
4967  * Memory allocated by this function must be released by free_pages_exact().
4968  *
4969  * Return: pointer to the allocated area or %NULL in case of error.
4970  */
4971 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4972 {
4973 	unsigned int order = get_order(size);
4974 	unsigned long addr;
4975 
4976 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4977 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4978 
4979 	addr = get_free_pages_noprof(gfp_mask, order);
4980 	return make_alloc_exact(addr, order, size);
4981 }
4982 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4983 
4984 /**
4985  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4986  *			   pages on a node.
4987  * @nid: the preferred node ID where memory should be allocated
4988  * @size: the number of bytes to allocate
4989  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4990  *
4991  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4992  * back.
4993  *
4994  * Return: pointer to the allocated area or %NULL in case of error.
4995  */
4996 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4997 {
4998 	unsigned int order = get_order(size);
4999 	struct page *p;
5000 
5001 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5002 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5003 
5004 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5005 	if (!p)
5006 		return NULL;
5007 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5008 }
5009 
5010 /**
5011  * free_pages_exact - release memory allocated via alloc_pages_exact()
5012  * @virt: the value returned by alloc_pages_exact.
5013  * @size: size of allocation, same value as passed to alloc_pages_exact().
5014  *
5015  * Release the memory allocated by a previous call to alloc_pages_exact.
5016  */
5017 void free_pages_exact(void *virt, size_t size)
5018 {
5019 	unsigned long addr = (unsigned long)virt;
5020 	unsigned long end = addr + PAGE_ALIGN(size);
5021 
5022 	while (addr < end) {
5023 		free_page(addr);
5024 		addr += PAGE_SIZE;
5025 	}
5026 }
5027 EXPORT_SYMBOL(free_pages_exact);
5028 
5029 /**
5030  * nr_free_zone_pages - count number of pages beyond high watermark
5031  * @offset: The zone index of the highest zone
5032  *
5033  * nr_free_zone_pages() counts the number of pages which are beyond the
5034  * high watermark within all zones at or below a given zone index.  For each
5035  * zone, the number of pages is calculated as:
5036  *
5037  *     nr_free_zone_pages = managed_pages - high_pages
5038  *
5039  * Return: number of pages beyond high watermark.
5040  */
5041 static unsigned long nr_free_zone_pages(int offset)
5042 {
5043 	struct zoneref *z;
5044 	struct zone *zone;
5045 
5046 	/* Just pick one node, since fallback list is circular */
5047 	unsigned long sum = 0;
5048 
5049 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5050 
5051 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5052 		unsigned long size = zone_managed_pages(zone);
5053 		unsigned long high = high_wmark_pages(zone);
5054 		if (size > high)
5055 			sum += size - high;
5056 	}
5057 
5058 	return sum;
5059 }
5060 
5061 /**
5062  * nr_free_buffer_pages - count number of pages beyond high watermark
5063  *
5064  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5065  * watermark within ZONE_DMA and ZONE_NORMAL.
5066  *
5067  * Return: number of pages beyond high watermark within ZONE_DMA and
5068  * ZONE_NORMAL.
5069  */
5070 unsigned long nr_free_buffer_pages(void)
5071 {
5072 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5073 }
5074 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5075 
5076 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5077 {
5078 	zoneref->zone = zone;
5079 	zoneref->zone_idx = zone_idx(zone);
5080 }
5081 
5082 /*
5083  * Builds allocation fallback zone lists.
5084  *
5085  * Add all populated zones of a node to the zonelist.
5086  */
5087 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5088 {
5089 	struct zone *zone;
5090 	enum zone_type zone_type = MAX_NR_ZONES;
5091 	int nr_zones = 0;
5092 
5093 	do {
5094 		zone_type--;
5095 		zone = pgdat->node_zones + zone_type;
5096 		if (populated_zone(zone)) {
5097 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5098 			check_highest_zone(zone_type);
5099 		}
5100 	} while (zone_type);
5101 
5102 	return nr_zones;
5103 }
5104 
5105 #ifdef CONFIG_NUMA
5106 
5107 static int __parse_numa_zonelist_order(char *s)
5108 {
5109 	/*
5110 	 * We used to support different zonelists modes but they turned
5111 	 * out to be just not useful. Let's keep the warning in place
5112 	 * if somebody still use the cmd line parameter so that we do
5113 	 * not fail it silently
5114 	 */
5115 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5116 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5117 		return -EINVAL;
5118 	}
5119 	return 0;
5120 }
5121 
5122 static char numa_zonelist_order[] = "Node";
5123 #define NUMA_ZONELIST_ORDER_LEN	16
5124 /*
5125  * sysctl handler for numa_zonelist_order
5126  */
5127 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5128 		void *buffer, size_t *length, loff_t *ppos)
5129 {
5130 	if (write)
5131 		return __parse_numa_zonelist_order(buffer);
5132 	return proc_dostring(table, write, buffer, length, ppos);
5133 }
5134 
5135 static int node_load[MAX_NUMNODES];
5136 
5137 /**
5138  * find_next_best_node - find the next node that should appear in a given node's fallback list
5139  * @node: node whose fallback list we're appending
5140  * @used_node_mask: nodemask_t of already used nodes
5141  *
5142  * We use a number of factors to determine which is the next node that should
5143  * appear on a given node's fallback list.  The node should not have appeared
5144  * already in @node's fallback list, and it should be the next closest node
5145  * according to the distance array (which contains arbitrary distance values
5146  * from each node to each node in the system), and should also prefer nodes
5147  * with no CPUs, since presumably they'll have very little allocation pressure
5148  * on them otherwise.
5149  *
5150  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5151  */
5152 int find_next_best_node(int node, nodemask_t *used_node_mask)
5153 {
5154 	int n, val;
5155 	int min_val = INT_MAX;
5156 	int best_node = NUMA_NO_NODE;
5157 
5158 	/*
5159 	 * Use the local node if we haven't already, but for memoryless local
5160 	 * node, we should skip it and fall back to other nodes.
5161 	 */
5162 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5163 		node_set(node, *used_node_mask);
5164 		return node;
5165 	}
5166 
5167 	for_each_node_state(n, N_MEMORY) {
5168 
5169 		/* Don't want a node to appear more than once */
5170 		if (node_isset(n, *used_node_mask))
5171 			continue;
5172 
5173 		/* Use the distance array to find the distance */
5174 		val = node_distance(node, n);
5175 
5176 		/* Penalize nodes under us ("prefer the next node") */
5177 		val += (n < node);
5178 
5179 		/* Give preference to headless and unused nodes */
5180 		if (!cpumask_empty(cpumask_of_node(n)))
5181 			val += PENALTY_FOR_NODE_WITH_CPUS;
5182 
5183 		/* Slight preference for less loaded node */
5184 		val *= MAX_NUMNODES;
5185 		val += node_load[n];
5186 
5187 		if (val < min_val) {
5188 			min_val = val;
5189 			best_node = n;
5190 		}
5191 	}
5192 
5193 	if (best_node >= 0)
5194 		node_set(best_node, *used_node_mask);
5195 
5196 	return best_node;
5197 }
5198 
5199 
5200 /*
5201  * Build zonelists ordered by node and zones within node.
5202  * This results in maximum locality--normal zone overflows into local
5203  * DMA zone, if any--but risks exhausting DMA zone.
5204  */
5205 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5206 		unsigned nr_nodes)
5207 {
5208 	struct zoneref *zonerefs;
5209 	int i;
5210 
5211 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5212 
5213 	for (i = 0; i < nr_nodes; i++) {
5214 		int nr_zones;
5215 
5216 		pg_data_t *node = NODE_DATA(node_order[i]);
5217 
5218 		nr_zones = build_zonerefs_node(node, zonerefs);
5219 		zonerefs += nr_zones;
5220 	}
5221 	zonerefs->zone = NULL;
5222 	zonerefs->zone_idx = 0;
5223 }
5224 
5225 /*
5226  * Build __GFP_THISNODE zonelists
5227  */
5228 static void build_thisnode_zonelists(pg_data_t *pgdat)
5229 {
5230 	struct zoneref *zonerefs;
5231 	int nr_zones;
5232 
5233 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5234 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5235 	zonerefs += nr_zones;
5236 	zonerefs->zone = NULL;
5237 	zonerefs->zone_idx = 0;
5238 }
5239 
5240 static void build_zonelists(pg_data_t *pgdat)
5241 {
5242 	static int node_order[MAX_NUMNODES];
5243 	int node, nr_nodes = 0;
5244 	nodemask_t used_mask = NODE_MASK_NONE;
5245 	int local_node, prev_node;
5246 
5247 	/* NUMA-aware ordering of nodes */
5248 	local_node = pgdat->node_id;
5249 	prev_node = local_node;
5250 
5251 	memset(node_order, 0, sizeof(node_order));
5252 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5253 		/*
5254 		 * We don't want to pressure a particular node.
5255 		 * So adding penalty to the first node in same
5256 		 * distance group to make it round-robin.
5257 		 */
5258 		if (node_distance(local_node, node) !=
5259 		    node_distance(local_node, prev_node))
5260 			node_load[node] += 1;
5261 
5262 		node_order[nr_nodes++] = node;
5263 		prev_node = node;
5264 	}
5265 
5266 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5267 	build_thisnode_zonelists(pgdat);
5268 	pr_info("Fallback order for Node %d: ", local_node);
5269 	for (node = 0; node < nr_nodes; node++)
5270 		pr_cont("%d ", node_order[node]);
5271 	pr_cont("\n");
5272 }
5273 
5274 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5275 /*
5276  * Return node id of node used for "local" allocations.
5277  * I.e., first node id of first zone in arg node's generic zonelist.
5278  * Used for initializing percpu 'numa_mem', which is used primarily
5279  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5280  */
5281 int local_memory_node(int node)
5282 {
5283 	struct zoneref *z;
5284 
5285 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5286 				   gfp_zone(GFP_KERNEL),
5287 				   NULL);
5288 	return zonelist_node_idx(z);
5289 }
5290 #endif
5291 
5292 static void setup_min_unmapped_ratio(void);
5293 static void setup_min_slab_ratio(void);
5294 #else	/* CONFIG_NUMA */
5295 
5296 static void build_zonelists(pg_data_t *pgdat)
5297 {
5298 	struct zoneref *zonerefs;
5299 	int nr_zones;
5300 
5301 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5302 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5303 	zonerefs += nr_zones;
5304 
5305 	zonerefs->zone = NULL;
5306 	zonerefs->zone_idx = 0;
5307 }
5308 
5309 #endif	/* CONFIG_NUMA */
5310 
5311 /*
5312  * Boot pageset table. One per cpu which is going to be used for all
5313  * zones and all nodes. The parameters will be set in such a way
5314  * that an item put on a list will immediately be handed over to
5315  * the buddy list. This is safe since pageset manipulation is done
5316  * with interrupts disabled.
5317  *
5318  * The boot_pagesets must be kept even after bootup is complete for
5319  * unused processors and/or zones. They do play a role for bootstrapping
5320  * hotplugged processors.
5321  *
5322  * zoneinfo_show() and maybe other functions do
5323  * not check if the processor is online before following the pageset pointer.
5324  * Other parts of the kernel may not check if the zone is available.
5325  */
5326 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5327 /* These effectively disable the pcplists in the boot pageset completely */
5328 #define BOOT_PAGESET_HIGH	0
5329 #define BOOT_PAGESET_BATCH	1
5330 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5331 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5332 
5333 static void __build_all_zonelists(void *data)
5334 {
5335 	int nid;
5336 	int __maybe_unused cpu;
5337 	pg_data_t *self = data;
5338 	unsigned long flags;
5339 
5340 	/*
5341 	 * The zonelist_update_seq must be acquired with irqsave because the
5342 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5343 	 */
5344 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5345 	/*
5346 	 * Also disable synchronous printk() to prevent any printk() from
5347 	 * trying to hold port->lock, for
5348 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5349 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5350 	 */
5351 	printk_deferred_enter();
5352 
5353 #ifdef CONFIG_NUMA
5354 	memset(node_load, 0, sizeof(node_load));
5355 #endif
5356 
5357 	/*
5358 	 * This node is hotadded and no memory is yet present.   So just
5359 	 * building zonelists is fine - no need to touch other nodes.
5360 	 */
5361 	if (self && !node_online(self->node_id)) {
5362 		build_zonelists(self);
5363 	} else {
5364 		/*
5365 		 * All possible nodes have pgdat preallocated
5366 		 * in free_area_init
5367 		 */
5368 		for_each_node(nid) {
5369 			pg_data_t *pgdat = NODE_DATA(nid);
5370 
5371 			build_zonelists(pgdat);
5372 		}
5373 
5374 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5375 		/*
5376 		 * We now know the "local memory node" for each node--
5377 		 * i.e., the node of the first zone in the generic zonelist.
5378 		 * Set up numa_mem percpu variable for on-line cpus.  During
5379 		 * boot, only the boot cpu should be on-line;  we'll init the
5380 		 * secondary cpus' numa_mem as they come on-line.  During
5381 		 * node/memory hotplug, we'll fixup all on-line cpus.
5382 		 */
5383 		for_each_online_cpu(cpu)
5384 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5385 #endif
5386 	}
5387 
5388 	printk_deferred_exit();
5389 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5390 }
5391 
5392 static noinline void __init
5393 build_all_zonelists_init(void)
5394 {
5395 	int cpu;
5396 
5397 	__build_all_zonelists(NULL);
5398 
5399 	/*
5400 	 * Initialize the boot_pagesets that are going to be used
5401 	 * for bootstrapping processors. The real pagesets for
5402 	 * each zone will be allocated later when the per cpu
5403 	 * allocator is available.
5404 	 *
5405 	 * boot_pagesets are used also for bootstrapping offline
5406 	 * cpus if the system is already booted because the pagesets
5407 	 * are needed to initialize allocators on a specific cpu too.
5408 	 * F.e. the percpu allocator needs the page allocator which
5409 	 * needs the percpu allocator in order to allocate its pagesets
5410 	 * (a chicken-egg dilemma).
5411 	 */
5412 	for_each_possible_cpu(cpu)
5413 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5414 
5415 	mminit_verify_zonelist();
5416 	cpuset_init_current_mems_allowed();
5417 }
5418 
5419 /*
5420  * unless system_state == SYSTEM_BOOTING.
5421  *
5422  * __ref due to call of __init annotated helper build_all_zonelists_init
5423  * [protected by SYSTEM_BOOTING].
5424  */
5425 void __ref build_all_zonelists(pg_data_t *pgdat)
5426 {
5427 	unsigned long vm_total_pages;
5428 
5429 	if (system_state == SYSTEM_BOOTING) {
5430 		build_all_zonelists_init();
5431 	} else {
5432 		__build_all_zonelists(pgdat);
5433 		/* cpuset refresh routine should be here */
5434 	}
5435 	/* Get the number of free pages beyond high watermark in all zones. */
5436 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5437 	/*
5438 	 * Disable grouping by mobility if the number of pages in the
5439 	 * system is too low to allow the mechanism to work. It would be
5440 	 * more accurate, but expensive to check per-zone. This check is
5441 	 * made on memory-hotadd so a system can start with mobility
5442 	 * disabled and enable it later
5443 	 */
5444 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5445 		page_group_by_mobility_disabled = 1;
5446 	else
5447 		page_group_by_mobility_disabled = 0;
5448 
5449 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5450 		nr_online_nodes,
5451 		str_off_on(page_group_by_mobility_disabled),
5452 		vm_total_pages);
5453 #ifdef CONFIG_NUMA
5454 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5455 #endif
5456 }
5457 
5458 static int zone_batchsize(struct zone *zone)
5459 {
5460 #ifdef CONFIG_MMU
5461 	int batch;
5462 
5463 	/*
5464 	 * The number of pages to batch allocate is either ~0.1%
5465 	 * of the zone or 1MB, whichever is smaller. The batch
5466 	 * size is striking a balance between allocation latency
5467 	 * and zone lock contention.
5468 	 */
5469 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5470 	batch /= 4;		/* We effectively *= 4 below */
5471 	if (batch < 1)
5472 		batch = 1;
5473 
5474 	/*
5475 	 * Clamp the batch to a 2^n - 1 value. Having a power
5476 	 * of 2 value was found to be more likely to have
5477 	 * suboptimal cache aliasing properties in some cases.
5478 	 *
5479 	 * For example if 2 tasks are alternately allocating
5480 	 * batches of pages, one task can end up with a lot
5481 	 * of pages of one half of the possible page colors
5482 	 * and the other with pages of the other colors.
5483 	 */
5484 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5485 
5486 	return batch;
5487 
5488 #else
5489 	/* The deferral and batching of frees should be suppressed under NOMMU
5490 	 * conditions.
5491 	 *
5492 	 * The problem is that NOMMU needs to be able to allocate large chunks
5493 	 * of contiguous memory as there's no hardware page translation to
5494 	 * assemble apparent contiguous memory from discontiguous pages.
5495 	 *
5496 	 * Queueing large contiguous runs of pages for batching, however,
5497 	 * causes the pages to actually be freed in smaller chunks.  As there
5498 	 * can be a significant delay between the individual batches being
5499 	 * recycled, this leads to the once large chunks of space being
5500 	 * fragmented and becoming unavailable for high-order allocations.
5501 	 */
5502 	return 0;
5503 #endif
5504 }
5505 
5506 static int percpu_pagelist_high_fraction;
5507 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5508 			 int high_fraction)
5509 {
5510 #ifdef CONFIG_MMU
5511 	int high;
5512 	int nr_split_cpus;
5513 	unsigned long total_pages;
5514 
5515 	if (!high_fraction) {
5516 		/*
5517 		 * By default, the high value of the pcp is based on the zone
5518 		 * low watermark so that if they are full then background
5519 		 * reclaim will not be started prematurely.
5520 		 */
5521 		total_pages = low_wmark_pages(zone);
5522 	} else {
5523 		/*
5524 		 * If percpu_pagelist_high_fraction is configured, the high
5525 		 * value is based on a fraction of the managed pages in the
5526 		 * zone.
5527 		 */
5528 		total_pages = zone_managed_pages(zone) / high_fraction;
5529 	}
5530 
5531 	/*
5532 	 * Split the high value across all online CPUs local to the zone. Note
5533 	 * that early in boot that CPUs may not be online yet and that during
5534 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5535 	 * onlined. For memory nodes that have no CPUs, split the high value
5536 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5537 	 * prematurely due to pages stored on pcp lists.
5538 	 */
5539 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5540 	if (!nr_split_cpus)
5541 		nr_split_cpus = num_online_cpus();
5542 	high = total_pages / nr_split_cpus;
5543 
5544 	/*
5545 	 * Ensure high is at least batch*4. The multiple is based on the
5546 	 * historical relationship between high and batch.
5547 	 */
5548 	high = max(high, batch << 2);
5549 
5550 	return high;
5551 #else
5552 	return 0;
5553 #endif
5554 }
5555 
5556 /*
5557  * pcp->high and pcp->batch values are related and generally batch is lower
5558  * than high. They are also related to pcp->count such that count is lower
5559  * than high, and as soon as it reaches high, the pcplist is flushed.
5560  *
5561  * However, guaranteeing these relations at all times would require e.g. write
5562  * barriers here but also careful usage of read barriers at the read side, and
5563  * thus be prone to error and bad for performance. Thus the update only prevents
5564  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5565  * should ensure they can cope with those fields changing asynchronously, and
5566  * fully trust only the pcp->count field on the local CPU with interrupts
5567  * disabled.
5568  *
5569  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5570  * outside of boot time (or some other assurance that no concurrent updaters
5571  * exist).
5572  */
5573 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5574 			   unsigned long high_max, unsigned long batch)
5575 {
5576 	WRITE_ONCE(pcp->batch, batch);
5577 	WRITE_ONCE(pcp->high_min, high_min);
5578 	WRITE_ONCE(pcp->high_max, high_max);
5579 }
5580 
5581 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5582 {
5583 	int pindex;
5584 
5585 	memset(pcp, 0, sizeof(*pcp));
5586 	memset(pzstats, 0, sizeof(*pzstats));
5587 
5588 	spin_lock_init(&pcp->lock);
5589 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5590 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5591 
5592 	/*
5593 	 * Set batch and high values safe for a boot pageset. A true percpu
5594 	 * pageset's initialization will update them subsequently. Here we don't
5595 	 * need to be as careful as pageset_update() as nobody can access the
5596 	 * pageset yet.
5597 	 */
5598 	pcp->high_min = BOOT_PAGESET_HIGH;
5599 	pcp->high_max = BOOT_PAGESET_HIGH;
5600 	pcp->batch = BOOT_PAGESET_BATCH;
5601 	pcp->free_count = 0;
5602 }
5603 
5604 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5605 					      unsigned long high_max, unsigned long batch)
5606 {
5607 	struct per_cpu_pages *pcp;
5608 	int cpu;
5609 
5610 	for_each_possible_cpu(cpu) {
5611 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5612 		pageset_update(pcp, high_min, high_max, batch);
5613 	}
5614 }
5615 
5616 /*
5617  * Calculate and set new high and batch values for all per-cpu pagesets of a
5618  * zone based on the zone's size.
5619  */
5620 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5621 {
5622 	int new_high_min, new_high_max, new_batch;
5623 
5624 	new_batch = max(1, zone_batchsize(zone));
5625 	if (percpu_pagelist_high_fraction) {
5626 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5627 					     percpu_pagelist_high_fraction);
5628 		/*
5629 		 * PCP high is tuned manually, disable auto-tuning via
5630 		 * setting high_min and high_max to the manual value.
5631 		 */
5632 		new_high_max = new_high_min;
5633 	} else {
5634 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5635 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5636 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5637 	}
5638 
5639 	if (zone->pageset_high_min == new_high_min &&
5640 	    zone->pageset_high_max == new_high_max &&
5641 	    zone->pageset_batch == new_batch)
5642 		return;
5643 
5644 	zone->pageset_high_min = new_high_min;
5645 	zone->pageset_high_max = new_high_max;
5646 	zone->pageset_batch = new_batch;
5647 
5648 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5649 					  new_batch);
5650 }
5651 
5652 void __meminit setup_zone_pageset(struct zone *zone)
5653 {
5654 	int cpu;
5655 
5656 	/* Size may be 0 on !SMP && !NUMA */
5657 	if (sizeof(struct per_cpu_zonestat) > 0)
5658 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5659 
5660 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5661 	for_each_possible_cpu(cpu) {
5662 		struct per_cpu_pages *pcp;
5663 		struct per_cpu_zonestat *pzstats;
5664 
5665 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5666 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5667 		per_cpu_pages_init(pcp, pzstats);
5668 	}
5669 
5670 	zone_set_pageset_high_and_batch(zone, 0);
5671 }
5672 
5673 /*
5674  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5675  * page high values need to be recalculated.
5676  */
5677 static void zone_pcp_update(struct zone *zone, int cpu_online)
5678 {
5679 	mutex_lock(&pcp_batch_high_lock);
5680 	zone_set_pageset_high_and_batch(zone, cpu_online);
5681 	mutex_unlock(&pcp_batch_high_lock);
5682 }
5683 
5684 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5685 {
5686 	struct per_cpu_pages *pcp;
5687 	struct cpu_cacheinfo *cci;
5688 
5689 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5690 	cci = get_cpu_cacheinfo(cpu);
5691 	/*
5692 	 * If data cache slice of CPU is large enough, "pcp->batch"
5693 	 * pages can be preserved in PCP before draining PCP for
5694 	 * consecutive high-order pages freeing without allocation.
5695 	 * This can reduce zone lock contention without hurting
5696 	 * cache-hot pages sharing.
5697 	 */
5698 	spin_lock(&pcp->lock);
5699 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5700 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5701 	else
5702 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5703 	spin_unlock(&pcp->lock);
5704 }
5705 
5706 void setup_pcp_cacheinfo(unsigned int cpu)
5707 {
5708 	struct zone *zone;
5709 
5710 	for_each_populated_zone(zone)
5711 		zone_pcp_update_cacheinfo(zone, cpu);
5712 }
5713 
5714 /*
5715  * Allocate per cpu pagesets and initialize them.
5716  * Before this call only boot pagesets were available.
5717  */
5718 void __init setup_per_cpu_pageset(void)
5719 {
5720 	struct pglist_data *pgdat;
5721 	struct zone *zone;
5722 	int __maybe_unused cpu;
5723 
5724 	for_each_populated_zone(zone)
5725 		setup_zone_pageset(zone);
5726 
5727 #ifdef CONFIG_NUMA
5728 	/*
5729 	 * Unpopulated zones continue using the boot pagesets.
5730 	 * The numa stats for these pagesets need to be reset.
5731 	 * Otherwise, they will end up skewing the stats of
5732 	 * the nodes these zones are associated with.
5733 	 */
5734 	for_each_possible_cpu(cpu) {
5735 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5736 		memset(pzstats->vm_numa_event, 0,
5737 		       sizeof(pzstats->vm_numa_event));
5738 	}
5739 #endif
5740 
5741 	for_each_online_pgdat(pgdat)
5742 		pgdat->per_cpu_nodestats =
5743 			alloc_percpu(struct per_cpu_nodestat);
5744 }
5745 
5746 __meminit void zone_pcp_init(struct zone *zone)
5747 {
5748 	/*
5749 	 * per cpu subsystem is not up at this point. The following code
5750 	 * relies on the ability of the linker to provide the
5751 	 * offset of a (static) per cpu variable into the per cpu area.
5752 	 */
5753 	zone->per_cpu_pageset = &boot_pageset;
5754 	zone->per_cpu_zonestats = &boot_zonestats;
5755 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5756 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5757 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5758 
5759 	if (populated_zone(zone))
5760 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5761 			 zone->present_pages, zone_batchsize(zone));
5762 }
5763 
5764 static void setup_per_zone_lowmem_reserve(void);
5765 
5766 void adjust_managed_page_count(struct page *page, long count)
5767 {
5768 	atomic_long_add(count, &page_zone(page)->managed_pages);
5769 	totalram_pages_add(count);
5770 	setup_per_zone_lowmem_reserve();
5771 }
5772 EXPORT_SYMBOL(adjust_managed_page_count);
5773 
5774 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5775 {
5776 	void *pos;
5777 	unsigned long pages = 0;
5778 
5779 	start = (void *)PAGE_ALIGN((unsigned long)start);
5780 	end = (void *)((unsigned long)end & PAGE_MASK);
5781 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5782 		struct page *page = virt_to_page(pos);
5783 		void *direct_map_addr;
5784 
5785 		/*
5786 		 * 'direct_map_addr' might be different from 'pos'
5787 		 * because some architectures' virt_to_page()
5788 		 * work with aliases.  Getting the direct map
5789 		 * address ensures that we get a _writeable_
5790 		 * alias for the memset().
5791 		 */
5792 		direct_map_addr = page_address(page);
5793 		/*
5794 		 * Perform a kasan-unchecked memset() since this memory
5795 		 * has not been initialized.
5796 		 */
5797 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5798 		if ((unsigned int)poison <= 0xFF)
5799 			memset(direct_map_addr, poison, PAGE_SIZE);
5800 
5801 		free_reserved_page(page);
5802 	}
5803 
5804 	if (pages && s)
5805 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5806 
5807 	return pages;
5808 }
5809 
5810 void free_reserved_page(struct page *page)
5811 {
5812 	clear_page_tag_ref(page);
5813 	ClearPageReserved(page);
5814 	init_page_count(page);
5815 	__free_page(page);
5816 	adjust_managed_page_count(page, 1);
5817 }
5818 EXPORT_SYMBOL(free_reserved_page);
5819 
5820 static int page_alloc_cpu_dead(unsigned int cpu)
5821 {
5822 	struct zone *zone;
5823 
5824 	lru_add_drain_cpu(cpu);
5825 	mlock_drain_remote(cpu);
5826 	drain_pages(cpu);
5827 
5828 	/*
5829 	 * Spill the event counters of the dead processor
5830 	 * into the current processors event counters.
5831 	 * This artificially elevates the count of the current
5832 	 * processor.
5833 	 */
5834 	vm_events_fold_cpu(cpu);
5835 
5836 	/*
5837 	 * Zero the differential counters of the dead processor
5838 	 * so that the vm statistics are consistent.
5839 	 *
5840 	 * This is only okay since the processor is dead and cannot
5841 	 * race with what we are doing.
5842 	 */
5843 	cpu_vm_stats_fold(cpu);
5844 
5845 	for_each_populated_zone(zone)
5846 		zone_pcp_update(zone, 0);
5847 
5848 	return 0;
5849 }
5850 
5851 static int page_alloc_cpu_online(unsigned int cpu)
5852 {
5853 	struct zone *zone;
5854 
5855 	for_each_populated_zone(zone)
5856 		zone_pcp_update(zone, 1);
5857 	return 0;
5858 }
5859 
5860 void __init page_alloc_init_cpuhp(void)
5861 {
5862 	int ret;
5863 
5864 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5865 					"mm/page_alloc:pcp",
5866 					page_alloc_cpu_online,
5867 					page_alloc_cpu_dead);
5868 	WARN_ON(ret < 0);
5869 }
5870 
5871 /*
5872  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5873  *	or min_free_kbytes changes.
5874  */
5875 static void calculate_totalreserve_pages(void)
5876 {
5877 	struct pglist_data *pgdat;
5878 	unsigned long reserve_pages = 0;
5879 	enum zone_type i, j;
5880 
5881 	for_each_online_pgdat(pgdat) {
5882 
5883 		pgdat->totalreserve_pages = 0;
5884 
5885 		for (i = 0; i < MAX_NR_ZONES; i++) {
5886 			struct zone *zone = pgdat->node_zones + i;
5887 			long max = 0;
5888 			unsigned long managed_pages = zone_managed_pages(zone);
5889 
5890 			/* Find valid and maximum lowmem_reserve in the zone */
5891 			for (j = i; j < MAX_NR_ZONES; j++) {
5892 				if (zone->lowmem_reserve[j] > max)
5893 					max = zone->lowmem_reserve[j];
5894 			}
5895 
5896 			/* we treat the high watermark as reserved pages. */
5897 			max += high_wmark_pages(zone);
5898 
5899 			if (max > managed_pages)
5900 				max = managed_pages;
5901 
5902 			pgdat->totalreserve_pages += max;
5903 
5904 			reserve_pages += max;
5905 		}
5906 	}
5907 	totalreserve_pages = reserve_pages;
5908 }
5909 
5910 /*
5911  * setup_per_zone_lowmem_reserve - called whenever
5912  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5913  *	has a correct pages reserved value, so an adequate number of
5914  *	pages are left in the zone after a successful __alloc_pages().
5915  */
5916 static void setup_per_zone_lowmem_reserve(void)
5917 {
5918 	struct pglist_data *pgdat;
5919 	enum zone_type i, j;
5920 
5921 	for_each_online_pgdat(pgdat) {
5922 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5923 			struct zone *zone = &pgdat->node_zones[i];
5924 			int ratio = sysctl_lowmem_reserve_ratio[i];
5925 			bool clear = !ratio || !zone_managed_pages(zone);
5926 			unsigned long managed_pages = 0;
5927 
5928 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5929 				struct zone *upper_zone = &pgdat->node_zones[j];
5930 
5931 				managed_pages += zone_managed_pages(upper_zone);
5932 
5933 				if (clear)
5934 					zone->lowmem_reserve[j] = 0;
5935 				else
5936 					zone->lowmem_reserve[j] = managed_pages / ratio;
5937 			}
5938 		}
5939 	}
5940 
5941 	/* update totalreserve_pages */
5942 	calculate_totalreserve_pages();
5943 }
5944 
5945 static void __setup_per_zone_wmarks(void)
5946 {
5947 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5948 	unsigned long lowmem_pages = 0;
5949 	struct zone *zone;
5950 	unsigned long flags;
5951 
5952 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5953 	for_each_zone(zone) {
5954 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5955 			lowmem_pages += zone_managed_pages(zone);
5956 	}
5957 
5958 	for_each_zone(zone) {
5959 		u64 tmp;
5960 
5961 		spin_lock_irqsave(&zone->lock, flags);
5962 		tmp = (u64)pages_min * zone_managed_pages(zone);
5963 		tmp = div64_ul(tmp, lowmem_pages);
5964 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5965 			/*
5966 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5967 			 * need highmem and movable zones pages, so cap pages_min
5968 			 * to a small  value here.
5969 			 *
5970 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5971 			 * deltas control async page reclaim, and so should
5972 			 * not be capped for highmem and movable zones.
5973 			 */
5974 			unsigned long min_pages;
5975 
5976 			min_pages = zone_managed_pages(zone) / 1024;
5977 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5978 			zone->_watermark[WMARK_MIN] = min_pages;
5979 		} else {
5980 			/*
5981 			 * If it's a lowmem zone, reserve a number of pages
5982 			 * proportionate to the zone's size.
5983 			 */
5984 			zone->_watermark[WMARK_MIN] = tmp;
5985 		}
5986 
5987 		/*
5988 		 * Set the kswapd watermarks distance according to the
5989 		 * scale factor in proportion to available memory, but
5990 		 * ensure a minimum size on small systems.
5991 		 */
5992 		tmp = max_t(u64, tmp >> 2,
5993 			    mult_frac(zone_managed_pages(zone),
5994 				      watermark_scale_factor, 10000));
5995 
5996 		zone->watermark_boost = 0;
5997 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5998 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5999 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6000 
6001 		spin_unlock_irqrestore(&zone->lock, flags);
6002 	}
6003 
6004 	/* update totalreserve_pages */
6005 	calculate_totalreserve_pages();
6006 }
6007 
6008 /**
6009  * setup_per_zone_wmarks - called when min_free_kbytes changes
6010  * or when memory is hot-{added|removed}
6011  *
6012  * Ensures that the watermark[min,low,high] values for each zone are set
6013  * correctly with respect to min_free_kbytes.
6014  */
6015 void setup_per_zone_wmarks(void)
6016 {
6017 	struct zone *zone;
6018 	static DEFINE_SPINLOCK(lock);
6019 
6020 	spin_lock(&lock);
6021 	__setup_per_zone_wmarks();
6022 	spin_unlock(&lock);
6023 
6024 	/*
6025 	 * The watermark size have changed so update the pcpu batch
6026 	 * and high limits or the limits may be inappropriate.
6027 	 */
6028 	for_each_zone(zone)
6029 		zone_pcp_update(zone, 0);
6030 }
6031 
6032 /*
6033  * Initialise min_free_kbytes.
6034  *
6035  * For small machines we want it small (128k min).  For large machines
6036  * we want it large (256MB max).  But it is not linear, because network
6037  * bandwidth does not increase linearly with machine size.  We use
6038  *
6039  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6040  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6041  *
6042  * which yields
6043  *
6044  * 16MB:	512k
6045  * 32MB:	724k
6046  * 64MB:	1024k
6047  * 128MB:	1448k
6048  * 256MB:	2048k
6049  * 512MB:	2896k
6050  * 1024MB:	4096k
6051  * 2048MB:	5792k
6052  * 4096MB:	8192k
6053  * 8192MB:	11584k
6054  * 16384MB:	16384k
6055  */
6056 void calculate_min_free_kbytes(void)
6057 {
6058 	unsigned long lowmem_kbytes;
6059 	int new_min_free_kbytes;
6060 
6061 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6062 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6063 
6064 	if (new_min_free_kbytes > user_min_free_kbytes)
6065 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6066 	else
6067 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6068 				new_min_free_kbytes, user_min_free_kbytes);
6069 
6070 }
6071 
6072 int __meminit init_per_zone_wmark_min(void)
6073 {
6074 	calculate_min_free_kbytes();
6075 	setup_per_zone_wmarks();
6076 	refresh_zone_stat_thresholds();
6077 	setup_per_zone_lowmem_reserve();
6078 
6079 #ifdef CONFIG_NUMA
6080 	setup_min_unmapped_ratio();
6081 	setup_min_slab_ratio();
6082 #endif
6083 
6084 	khugepaged_min_free_kbytes_update();
6085 
6086 	return 0;
6087 }
6088 postcore_initcall(init_per_zone_wmark_min)
6089 
6090 /*
6091  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6092  *	that we can call two helper functions whenever min_free_kbytes
6093  *	changes.
6094  */
6095 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6096 		void *buffer, size_t *length, loff_t *ppos)
6097 {
6098 	int rc;
6099 
6100 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6101 	if (rc)
6102 		return rc;
6103 
6104 	if (write) {
6105 		user_min_free_kbytes = min_free_kbytes;
6106 		setup_per_zone_wmarks();
6107 	}
6108 	return 0;
6109 }
6110 
6111 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6112 		void *buffer, size_t *length, loff_t *ppos)
6113 {
6114 	int rc;
6115 
6116 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6117 	if (rc)
6118 		return rc;
6119 
6120 	if (write)
6121 		setup_per_zone_wmarks();
6122 
6123 	return 0;
6124 }
6125 
6126 #ifdef CONFIG_NUMA
6127 static void setup_min_unmapped_ratio(void)
6128 {
6129 	pg_data_t *pgdat;
6130 	struct zone *zone;
6131 
6132 	for_each_online_pgdat(pgdat)
6133 		pgdat->min_unmapped_pages = 0;
6134 
6135 	for_each_zone(zone)
6136 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6137 						         sysctl_min_unmapped_ratio) / 100;
6138 }
6139 
6140 
6141 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6142 		void *buffer, size_t *length, loff_t *ppos)
6143 {
6144 	int rc;
6145 
6146 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6147 	if (rc)
6148 		return rc;
6149 
6150 	setup_min_unmapped_ratio();
6151 
6152 	return 0;
6153 }
6154 
6155 static void setup_min_slab_ratio(void)
6156 {
6157 	pg_data_t *pgdat;
6158 	struct zone *zone;
6159 
6160 	for_each_online_pgdat(pgdat)
6161 		pgdat->min_slab_pages = 0;
6162 
6163 	for_each_zone(zone)
6164 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6165 						     sysctl_min_slab_ratio) / 100;
6166 }
6167 
6168 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6169 		void *buffer, size_t *length, loff_t *ppos)
6170 {
6171 	int rc;
6172 
6173 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6174 	if (rc)
6175 		return rc;
6176 
6177 	setup_min_slab_ratio();
6178 
6179 	return 0;
6180 }
6181 #endif
6182 
6183 /*
6184  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6185  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6186  *	whenever sysctl_lowmem_reserve_ratio changes.
6187  *
6188  * The reserve ratio obviously has absolutely no relation with the
6189  * minimum watermarks. The lowmem reserve ratio can only make sense
6190  * if in function of the boot time zone sizes.
6191  */
6192 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6193 		int write, void *buffer, size_t *length, loff_t *ppos)
6194 {
6195 	int i;
6196 
6197 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6198 
6199 	for (i = 0; i < MAX_NR_ZONES; i++) {
6200 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6201 			sysctl_lowmem_reserve_ratio[i] = 0;
6202 	}
6203 
6204 	setup_per_zone_lowmem_reserve();
6205 	return 0;
6206 }
6207 
6208 /*
6209  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6210  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6211  * pagelist can have before it gets flushed back to buddy allocator.
6212  */
6213 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6214 		int write, void *buffer, size_t *length, loff_t *ppos)
6215 {
6216 	struct zone *zone;
6217 	int old_percpu_pagelist_high_fraction;
6218 	int ret;
6219 
6220 	mutex_lock(&pcp_batch_high_lock);
6221 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6222 
6223 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6224 	if (!write || ret < 0)
6225 		goto out;
6226 
6227 	/* Sanity checking to avoid pcp imbalance */
6228 	if (percpu_pagelist_high_fraction &&
6229 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6230 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6231 		ret = -EINVAL;
6232 		goto out;
6233 	}
6234 
6235 	/* No change? */
6236 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6237 		goto out;
6238 
6239 	for_each_populated_zone(zone)
6240 		zone_set_pageset_high_and_batch(zone, 0);
6241 out:
6242 	mutex_unlock(&pcp_batch_high_lock);
6243 	return ret;
6244 }
6245 
6246 static const struct ctl_table page_alloc_sysctl_table[] = {
6247 	{
6248 		.procname	= "min_free_kbytes",
6249 		.data		= &min_free_kbytes,
6250 		.maxlen		= sizeof(min_free_kbytes),
6251 		.mode		= 0644,
6252 		.proc_handler	= min_free_kbytes_sysctl_handler,
6253 		.extra1		= SYSCTL_ZERO,
6254 	},
6255 	{
6256 		.procname	= "watermark_boost_factor",
6257 		.data		= &watermark_boost_factor,
6258 		.maxlen		= sizeof(watermark_boost_factor),
6259 		.mode		= 0644,
6260 		.proc_handler	= proc_dointvec_minmax,
6261 		.extra1		= SYSCTL_ZERO,
6262 	},
6263 	{
6264 		.procname	= "watermark_scale_factor",
6265 		.data		= &watermark_scale_factor,
6266 		.maxlen		= sizeof(watermark_scale_factor),
6267 		.mode		= 0644,
6268 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6269 		.extra1		= SYSCTL_ONE,
6270 		.extra2		= SYSCTL_THREE_THOUSAND,
6271 	},
6272 	{
6273 		.procname	= "percpu_pagelist_high_fraction",
6274 		.data		= &percpu_pagelist_high_fraction,
6275 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6276 		.mode		= 0644,
6277 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6278 		.extra1		= SYSCTL_ZERO,
6279 	},
6280 	{
6281 		.procname	= "lowmem_reserve_ratio",
6282 		.data		= &sysctl_lowmem_reserve_ratio,
6283 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6284 		.mode		= 0644,
6285 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6286 	},
6287 #ifdef CONFIG_NUMA
6288 	{
6289 		.procname	= "numa_zonelist_order",
6290 		.data		= &numa_zonelist_order,
6291 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6292 		.mode		= 0644,
6293 		.proc_handler	= numa_zonelist_order_handler,
6294 	},
6295 	{
6296 		.procname	= "min_unmapped_ratio",
6297 		.data		= &sysctl_min_unmapped_ratio,
6298 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6299 		.mode		= 0644,
6300 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6301 		.extra1		= SYSCTL_ZERO,
6302 		.extra2		= SYSCTL_ONE_HUNDRED,
6303 	},
6304 	{
6305 		.procname	= "min_slab_ratio",
6306 		.data		= &sysctl_min_slab_ratio,
6307 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6308 		.mode		= 0644,
6309 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6310 		.extra1		= SYSCTL_ZERO,
6311 		.extra2		= SYSCTL_ONE_HUNDRED,
6312 	},
6313 #endif
6314 };
6315 
6316 void __init page_alloc_sysctl_init(void)
6317 {
6318 	register_sysctl_init("vm", page_alloc_sysctl_table);
6319 }
6320 
6321 #ifdef CONFIG_CONTIG_ALLOC
6322 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6323 static void alloc_contig_dump_pages(struct list_head *page_list)
6324 {
6325 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6326 
6327 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6328 		struct page *page;
6329 
6330 		dump_stack();
6331 		list_for_each_entry(page, page_list, lru)
6332 			dump_page(page, "migration failure");
6333 	}
6334 }
6335 
6336 /*
6337  * [start, end) must belong to a single zone.
6338  * @migratetype: using migratetype to filter the type of migration in
6339  *		trace_mm_alloc_contig_migrate_range_info.
6340  */
6341 static int __alloc_contig_migrate_range(struct compact_control *cc,
6342 		unsigned long start, unsigned long end, int migratetype)
6343 {
6344 	/* This function is based on compact_zone() from compaction.c. */
6345 	unsigned int nr_reclaimed;
6346 	unsigned long pfn = start;
6347 	unsigned int tries = 0;
6348 	int ret = 0;
6349 	struct migration_target_control mtc = {
6350 		.nid = zone_to_nid(cc->zone),
6351 		.gfp_mask = cc->gfp_mask,
6352 		.reason = MR_CONTIG_RANGE,
6353 	};
6354 	struct page *page;
6355 	unsigned long total_mapped = 0;
6356 	unsigned long total_migrated = 0;
6357 	unsigned long total_reclaimed = 0;
6358 
6359 	lru_cache_disable();
6360 
6361 	while (pfn < end || !list_empty(&cc->migratepages)) {
6362 		if (fatal_signal_pending(current)) {
6363 			ret = -EINTR;
6364 			break;
6365 		}
6366 
6367 		if (list_empty(&cc->migratepages)) {
6368 			cc->nr_migratepages = 0;
6369 			ret = isolate_migratepages_range(cc, pfn, end);
6370 			if (ret && ret != -EAGAIN)
6371 				break;
6372 			pfn = cc->migrate_pfn;
6373 			tries = 0;
6374 		} else if (++tries == 5) {
6375 			ret = -EBUSY;
6376 			break;
6377 		}
6378 
6379 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6380 							&cc->migratepages);
6381 		cc->nr_migratepages -= nr_reclaimed;
6382 
6383 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6384 			total_reclaimed += nr_reclaimed;
6385 			list_for_each_entry(page, &cc->migratepages, lru) {
6386 				struct folio *folio = page_folio(page);
6387 
6388 				total_mapped += folio_mapped(folio) *
6389 						folio_nr_pages(folio);
6390 			}
6391 		}
6392 
6393 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6394 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6395 
6396 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6397 			total_migrated += cc->nr_migratepages;
6398 
6399 		/*
6400 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6401 		 * to retry again over this error, so do the same here.
6402 		 */
6403 		if (ret == -ENOMEM)
6404 			break;
6405 	}
6406 
6407 	lru_cache_enable();
6408 	if (ret < 0) {
6409 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6410 			alloc_contig_dump_pages(&cc->migratepages);
6411 		putback_movable_pages(&cc->migratepages);
6412 	}
6413 
6414 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6415 						 total_migrated,
6416 						 total_reclaimed,
6417 						 total_mapped);
6418 	return (ret < 0) ? ret : 0;
6419 }
6420 
6421 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6422 {
6423 	int order;
6424 
6425 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6426 		struct page *page, *next;
6427 		int nr_pages = 1 << order;
6428 
6429 		list_for_each_entry_safe(page, next, &list[order], lru) {
6430 			int i;
6431 
6432 			post_alloc_hook(page, order, gfp_mask);
6433 			set_page_refcounted(page);
6434 			if (!order)
6435 				continue;
6436 
6437 			split_page(page, order);
6438 
6439 			/* Add all subpages to the order-0 head, in sequence. */
6440 			list_del(&page->lru);
6441 			for (i = 0; i < nr_pages; i++)
6442 				list_add_tail(&page[i].lru, &list[0]);
6443 		}
6444 	}
6445 }
6446 
6447 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6448 {
6449 	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6450 	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6451 				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6452 	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6453 
6454 	/*
6455 	 * We are given the range to allocate; node, mobility and placement
6456 	 * hints are irrelevant at this point. We'll simply ignore them.
6457 	 */
6458 	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6459 		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6460 
6461 	/*
6462 	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6463 	 * selected action flags.
6464 	 */
6465 	if (gfp_mask & ~(reclaim_mask | action_mask))
6466 		return -EINVAL;
6467 
6468 	/*
6469 	 * Flags to control page compaction/migration/reclaim, to free up our
6470 	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6471 	 * for them.
6472 	 *
6473 	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6474 	 * to not degrade callers.
6475 	 */
6476 	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6477 			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6478 	return 0;
6479 }
6480 
6481 /**
6482  * alloc_contig_range() -- tries to allocate given range of pages
6483  * @start:	start PFN to allocate
6484  * @end:	one-past-the-last PFN to allocate
6485  * @migratetype:	migratetype of the underlying pageblocks (either
6486  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6487  *			in range must have the same migratetype and it must
6488  *			be either of the two.
6489  * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6490  *		action and reclaim modifiers are supported. Reclaim modifiers
6491  *		control allocation behavior during compaction/migration/reclaim.
6492  *
6493  * The PFN range does not have to be pageblock aligned. The PFN range must
6494  * belong to a single zone.
6495  *
6496  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6497  * pageblocks in the range.  Once isolated, the pageblocks should not
6498  * be modified by others.
6499  *
6500  * Return: zero on success or negative error code.  On success all
6501  * pages which PFN is in [start, end) are allocated for the caller and
6502  * need to be freed with free_contig_range().
6503  */
6504 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6505 		       unsigned migratetype, gfp_t gfp_mask)
6506 {
6507 	unsigned long outer_start, outer_end;
6508 	int ret = 0;
6509 
6510 	struct compact_control cc = {
6511 		.nr_migratepages = 0,
6512 		.order = -1,
6513 		.zone = page_zone(pfn_to_page(start)),
6514 		.mode = MIGRATE_SYNC,
6515 		.ignore_skip_hint = true,
6516 		.no_set_skip_hint = true,
6517 		.alloc_contig = true,
6518 	};
6519 	INIT_LIST_HEAD(&cc.migratepages);
6520 
6521 	gfp_mask = current_gfp_context(gfp_mask);
6522 	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6523 		return -EINVAL;
6524 
6525 	/*
6526 	 * What we do here is we mark all pageblocks in range as
6527 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6528 	 * have different sizes, and due to the way page allocator
6529 	 * work, start_isolate_page_range() has special handlings for this.
6530 	 *
6531 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6532 	 * migrate the pages from an unaligned range (ie. pages that
6533 	 * we are interested in). This will put all the pages in
6534 	 * range back to page allocator as MIGRATE_ISOLATE.
6535 	 *
6536 	 * When this is done, we take the pages in range from page
6537 	 * allocator removing them from the buddy system.  This way
6538 	 * page allocator will never consider using them.
6539 	 *
6540 	 * This lets us mark the pageblocks back as
6541 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6542 	 * aligned range but not in the unaligned, original range are
6543 	 * put back to page allocator so that buddy can use them.
6544 	 */
6545 
6546 	ret = start_isolate_page_range(start, end, migratetype, 0);
6547 	if (ret)
6548 		goto done;
6549 
6550 	drain_all_pages(cc.zone);
6551 
6552 	/*
6553 	 * In case of -EBUSY, we'd like to know which page causes problem.
6554 	 * So, just fall through. test_pages_isolated() has a tracepoint
6555 	 * which will report the busy page.
6556 	 *
6557 	 * It is possible that busy pages could become available before
6558 	 * the call to test_pages_isolated, and the range will actually be
6559 	 * allocated.  So, if we fall through be sure to clear ret so that
6560 	 * -EBUSY is not accidentally used or returned to caller.
6561 	 */
6562 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6563 	if (ret && ret != -EBUSY)
6564 		goto done;
6565 
6566 	/*
6567 	 * When in-use hugetlb pages are migrated, they may simply be released
6568 	 * back into the free hugepage pool instead of being returned to the
6569 	 * buddy system.  After the migration of in-use huge pages is completed,
6570 	 * we will invoke replace_free_hugepage_folios() to ensure that these
6571 	 * hugepages are properly released to the buddy system.
6572 	 */
6573 	ret = replace_free_hugepage_folios(start, end);
6574 	if (ret)
6575 		goto done;
6576 
6577 	/*
6578 	 * Pages from [start, end) are within a pageblock_nr_pages
6579 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6580 	 * more, all pages in [start, end) are free in page allocator.
6581 	 * What we are going to do is to allocate all pages from
6582 	 * [start, end) (that is remove them from page allocator).
6583 	 *
6584 	 * The only problem is that pages at the beginning and at the
6585 	 * end of interesting range may be not aligned with pages that
6586 	 * page allocator holds, ie. they can be part of higher order
6587 	 * pages.  Because of this, we reserve the bigger range and
6588 	 * once this is done free the pages we are not interested in.
6589 	 *
6590 	 * We don't have to hold zone->lock here because the pages are
6591 	 * isolated thus they won't get removed from buddy.
6592 	 */
6593 	outer_start = find_large_buddy(start);
6594 
6595 	/* Make sure the range is really isolated. */
6596 	if (test_pages_isolated(outer_start, end, 0)) {
6597 		ret = -EBUSY;
6598 		goto done;
6599 	}
6600 
6601 	/* Grab isolated pages from freelists. */
6602 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6603 	if (!outer_end) {
6604 		ret = -EBUSY;
6605 		goto done;
6606 	}
6607 
6608 	if (!(gfp_mask & __GFP_COMP)) {
6609 		split_free_pages(cc.freepages, gfp_mask);
6610 
6611 		/* Free head and tail (if any) */
6612 		if (start != outer_start)
6613 			free_contig_range(outer_start, start - outer_start);
6614 		if (end != outer_end)
6615 			free_contig_range(end, outer_end - end);
6616 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6617 		struct page *head = pfn_to_page(start);
6618 		int order = ilog2(end - start);
6619 
6620 		check_new_pages(head, order);
6621 		prep_new_page(head, order, gfp_mask, 0);
6622 		set_page_refcounted(head);
6623 	} else {
6624 		ret = -EINVAL;
6625 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6626 		     start, end, outer_start, outer_end);
6627 	}
6628 done:
6629 	undo_isolate_page_range(start, end, migratetype);
6630 	return ret;
6631 }
6632 EXPORT_SYMBOL(alloc_contig_range_noprof);
6633 
6634 static int __alloc_contig_pages(unsigned long start_pfn,
6635 				unsigned long nr_pages, gfp_t gfp_mask)
6636 {
6637 	unsigned long end_pfn = start_pfn + nr_pages;
6638 
6639 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6640 				   gfp_mask);
6641 }
6642 
6643 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6644 				   unsigned long nr_pages)
6645 {
6646 	unsigned long i, end_pfn = start_pfn + nr_pages;
6647 	struct page *page;
6648 
6649 	for (i = start_pfn; i < end_pfn; i++) {
6650 		page = pfn_to_online_page(i);
6651 		if (!page)
6652 			return false;
6653 
6654 		if (page_zone(page) != z)
6655 			return false;
6656 
6657 		if (PageReserved(page))
6658 			return false;
6659 
6660 		if (PageHuge(page))
6661 			return false;
6662 	}
6663 	return true;
6664 }
6665 
6666 static bool zone_spans_last_pfn(const struct zone *zone,
6667 				unsigned long start_pfn, unsigned long nr_pages)
6668 {
6669 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6670 
6671 	return zone_spans_pfn(zone, last_pfn);
6672 }
6673 
6674 /**
6675  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6676  * @nr_pages:	Number of contiguous pages to allocate
6677  * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
6678  *		action and reclaim modifiers are supported. Reclaim modifiers
6679  *		control allocation behavior during compaction/migration/reclaim.
6680  * @nid:	Target node
6681  * @nodemask:	Mask for other possible nodes
6682  *
6683  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6684  * on an applicable zonelist to find a contiguous pfn range which can then be
6685  * tried for allocation with alloc_contig_range(). This routine is intended
6686  * for allocation requests which can not be fulfilled with the buddy allocator.
6687  *
6688  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6689  * power of two, then allocated range is also guaranteed to be aligned to same
6690  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6691  *
6692  * Allocated pages can be freed with free_contig_range() or by manually calling
6693  * __free_page() on each allocated page.
6694  *
6695  * Return: pointer to contiguous pages on success, or NULL if not successful.
6696  */
6697 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6698 				 int nid, nodemask_t *nodemask)
6699 {
6700 	unsigned long ret, pfn, flags;
6701 	struct zonelist *zonelist;
6702 	struct zone *zone;
6703 	struct zoneref *z;
6704 
6705 	zonelist = node_zonelist(nid, gfp_mask);
6706 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6707 					gfp_zone(gfp_mask), nodemask) {
6708 		spin_lock_irqsave(&zone->lock, flags);
6709 
6710 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6711 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6712 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6713 				/*
6714 				 * We release the zone lock here because
6715 				 * alloc_contig_range() will also lock the zone
6716 				 * at some point. If there's an allocation
6717 				 * spinning on this lock, it may win the race
6718 				 * and cause alloc_contig_range() to fail...
6719 				 */
6720 				spin_unlock_irqrestore(&zone->lock, flags);
6721 				ret = __alloc_contig_pages(pfn, nr_pages,
6722 							gfp_mask);
6723 				if (!ret)
6724 					return pfn_to_page(pfn);
6725 				spin_lock_irqsave(&zone->lock, flags);
6726 			}
6727 			pfn += nr_pages;
6728 		}
6729 		spin_unlock_irqrestore(&zone->lock, flags);
6730 	}
6731 	return NULL;
6732 }
6733 #endif /* CONFIG_CONTIG_ALLOC */
6734 
6735 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6736 {
6737 	unsigned long count = 0;
6738 	struct folio *folio = pfn_folio(pfn);
6739 
6740 	if (folio_test_large(folio)) {
6741 		int expected = folio_nr_pages(folio);
6742 
6743 		if (nr_pages == expected)
6744 			folio_put(folio);
6745 		else
6746 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6747 			     pfn, nr_pages, expected);
6748 		return;
6749 	}
6750 
6751 	for (; nr_pages--; pfn++) {
6752 		struct page *page = pfn_to_page(pfn);
6753 
6754 		count += page_count(page) != 1;
6755 		__free_page(page);
6756 	}
6757 	WARN(count != 0, "%lu pages are still in use!\n", count);
6758 }
6759 EXPORT_SYMBOL(free_contig_range);
6760 
6761 /*
6762  * Effectively disable pcplists for the zone by setting the high limit to 0
6763  * and draining all cpus. A concurrent page freeing on another CPU that's about
6764  * to put the page on pcplist will either finish before the drain and the page
6765  * will be drained, or observe the new high limit and skip the pcplist.
6766  *
6767  * Must be paired with a call to zone_pcp_enable().
6768  */
6769 void zone_pcp_disable(struct zone *zone)
6770 {
6771 	mutex_lock(&pcp_batch_high_lock);
6772 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6773 	__drain_all_pages(zone, true);
6774 }
6775 
6776 void zone_pcp_enable(struct zone *zone)
6777 {
6778 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6779 		zone->pageset_high_max, zone->pageset_batch);
6780 	mutex_unlock(&pcp_batch_high_lock);
6781 }
6782 
6783 void zone_pcp_reset(struct zone *zone)
6784 {
6785 	int cpu;
6786 	struct per_cpu_zonestat *pzstats;
6787 
6788 	if (zone->per_cpu_pageset != &boot_pageset) {
6789 		for_each_online_cpu(cpu) {
6790 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6791 			drain_zonestat(zone, pzstats);
6792 		}
6793 		free_percpu(zone->per_cpu_pageset);
6794 		zone->per_cpu_pageset = &boot_pageset;
6795 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6796 			free_percpu(zone->per_cpu_zonestats);
6797 			zone->per_cpu_zonestats = &boot_zonestats;
6798 		}
6799 	}
6800 }
6801 
6802 #ifdef CONFIG_MEMORY_HOTREMOVE
6803 /*
6804  * All pages in the range must be in a single zone, must not contain holes,
6805  * must span full sections, and must be isolated before calling this function.
6806  *
6807  * Returns the number of managed (non-PageOffline()) pages in the range: the
6808  * number of pages for which memory offlining code must adjust managed page
6809  * counters using adjust_managed_page_count().
6810  */
6811 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6812 		unsigned long end_pfn)
6813 {
6814 	unsigned long already_offline = 0, flags;
6815 	unsigned long pfn = start_pfn;
6816 	struct page *page;
6817 	struct zone *zone;
6818 	unsigned int order;
6819 
6820 	offline_mem_sections(pfn, end_pfn);
6821 	zone = page_zone(pfn_to_page(pfn));
6822 	spin_lock_irqsave(&zone->lock, flags);
6823 	while (pfn < end_pfn) {
6824 		page = pfn_to_page(pfn);
6825 		/*
6826 		 * The HWPoisoned page may be not in buddy system, and
6827 		 * page_count() is not 0.
6828 		 */
6829 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6830 			pfn++;
6831 			continue;
6832 		}
6833 		/*
6834 		 * At this point all remaining PageOffline() pages have a
6835 		 * reference count of 0 and can simply be skipped.
6836 		 */
6837 		if (PageOffline(page)) {
6838 			BUG_ON(page_count(page));
6839 			BUG_ON(PageBuddy(page));
6840 			already_offline++;
6841 			pfn++;
6842 			continue;
6843 		}
6844 
6845 		BUG_ON(page_count(page));
6846 		BUG_ON(!PageBuddy(page));
6847 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6848 		order = buddy_order(page);
6849 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6850 		pfn += (1 << order);
6851 	}
6852 	spin_unlock_irqrestore(&zone->lock, flags);
6853 
6854 	return end_pfn - start_pfn - already_offline;
6855 }
6856 #endif
6857 
6858 /*
6859  * This function returns a stable result only if called under zone lock.
6860  */
6861 bool is_free_buddy_page(const struct page *page)
6862 {
6863 	unsigned long pfn = page_to_pfn(page);
6864 	unsigned int order;
6865 
6866 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6867 		const struct page *head = page - (pfn & ((1 << order) - 1));
6868 
6869 		if (PageBuddy(head) &&
6870 		    buddy_order_unsafe(head) >= order)
6871 			break;
6872 	}
6873 
6874 	return order <= MAX_PAGE_ORDER;
6875 }
6876 EXPORT_SYMBOL(is_free_buddy_page);
6877 
6878 #ifdef CONFIG_MEMORY_FAILURE
6879 static inline void add_to_free_list(struct page *page, struct zone *zone,
6880 				    unsigned int order, int migratetype,
6881 				    bool tail)
6882 {
6883 	__add_to_free_list(page, zone, order, migratetype, tail);
6884 	account_freepages(zone, 1 << order, migratetype);
6885 }
6886 
6887 /*
6888  * Break down a higher-order page in sub-pages, and keep our target out of
6889  * buddy allocator.
6890  */
6891 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6892 				   struct page *target, int low, int high,
6893 				   int migratetype)
6894 {
6895 	unsigned long size = 1 << high;
6896 	struct page *current_buddy;
6897 
6898 	while (high > low) {
6899 		high--;
6900 		size >>= 1;
6901 
6902 		if (target >= &page[size]) {
6903 			current_buddy = page;
6904 			page = page + size;
6905 		} else {
6906 			current_buddy = page + size;
6907 		}
6908 
6909 		if (set_page_guard(zone, current_buddy, high))
6910 			continue;
6911 
6912 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6913 		set_buddy_order(current_buddy, high);
6914 	}
6915 }
6916 
6917 /*
6918  * Take a page that will be marked as poisoned off the buddy allocator.
6919  */
6920 bool take_page_off_buddy(struct page *page)
6921 {
6922 	struct zone *zone = page_zone(page);
6923 	unsigned long pfn = page_to_pfn(page);
6924 	unsigned long flags;
6925 	unsigned int order;
6926 	bool ret = false;
6927 
6928 	spin_lock_irqsave(&zone->lock, flags);
6929 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6930 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6931 		int page_order = buddy_order(page_head);
6932 
6933 		if (PageBuddy(page_head) && page_order >= order) {
6934 			unsigned long pfn_head = page_to_pfn(page_head);
6935 			int migratetype = get_pfnblock_migratetype(page_head,
6936 								   pfn_head);
6937 
6938 			del_page_from_free_list(page_head, zone, page_order,
6939 						migratetype);
6940 			break_down_buddy_pages(zone, page_head, page, 0,
6941 						page_order, migratetype);
6942 			SetPageHWPoisonTakenOff(page);
6943 			ret = true;
6944 			break;
6945 		}
6946 		if (page_count(page_head) > 0)
6947 			break;
6948 	}
6949 	spin_unlock_irqrestore(&zone->lock, flags);
6950 	return ret;
6951 }
6952 
6953 /*
6954  * Cancel takeoff done by take_page_off_buddy().
6955  */
6956 bool put_page_back_buddy(struct page *page)
6957 {
6958 	struct zone *zone = page_zone(page);
6959 	unsigned long flags;
6960 	bool ret = false;
6961 
6962 	spin_lock_irqsave(&zone->lock, flags);
6963 	if (put_page_testzero(page)) {
6964 		unsigned long pfn = page_to_pfn(page);
6965 		int migratetype = get_pfnblock_migratetype(page, pfn);
6966 
6967 		ClearPageHWPoisonTakenOff(page);
6968 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6969 		if (TestClearPageHWPoison(page)) {
6970 			ret = true;
6971 		}
6972 	}
6973 	spin_unlock_irqrestore(&zone->lock, flags);
6974 
6975 	return ret;
6976 }
6977 #endif
6978 
6979 #ifdef CONFIG_ZONE_DMA
6980 bool has_managed_dma(void)
6981 {
6982 	struct pglist_data *pgdat;
6983 
6984 	for_each_online_pgdat(pgdat) {
6985 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6986 
6987 		if (managed_zone(zone))
6988 			return true;
6989 	}
6990 	return false;
6991 }
6992 #endif /* CONFIG_ZONE_DMA */
6993 
6994 #ifdef CONFIG_UNACCEPTED_MEMORY
6995 
6996 /* Counts number of zones with unaccepted pages. */
6997 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6998 
6999 static bool lazy_accept = true;
7000 
7001 static int __init accept_memory_parse(char *p)
7002 {
7003 	if (!strcmp(p, "lazy")) {
7004 		lazy_accept = true;
7005 		return 0;
7006 	} else if (!strcmp(p, "eager")) {
7007 		lazy_accept = false;
7008 		return 0;
7009 	} else {
7010 		return -EINVAL;
7011 	}
7012 }
7013 early_param("accept_memory", accept_memory_parse);
7014 
7015 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7016 {
7017 	phys_addr_t start = page_to_phys(page);
7018 
7019 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7020 }
7021 
7022 static void __accept_page(struct zone *zone, unsigned long *flags,
7023 			  struct page *page)
7024 {
7025 	bool last;
7026 
7027 	list_del(&page->lru);
7028 	last = list_empty(&zone->unaccepted_pages);
7029 
7030 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7031 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7032 	__ClearPageUnaccepted(page);
7033 	spin_unlock_irqrestore(&zone->lock, *flags);
7034 
7035 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7036 
7037 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7038 
7039 	if (last)
7040 		static_branch_dec(&zones_with_unaccepted_pages);
7041 }
7042 
7043 void accept_page(struct page *page)
7044 {
7045 	struct zone *zone = page_zone(page);
7046 	unsigned long flags;
7047 
7048 	spin_lock_irqsave(&zone->lock, flags);
7049 	if (!PageUnaccepted(page)) {
7050 		spin_unlock_irqrestore(&zone->lock, flags);
7051 		return;
7052 	}
7053 
7054 	/* Unlocks zone->lock */
7055 	__accept_page(zone, &flags, page);
7056 }
7057 
7058 static bool try_to_accept_memory_one(struct zone *zone)
7059 {
7060 	unsigned long flags;
7061 	struct page *page;
7062 
7063 	spin_lock_irqsave(&zone->lock, flags);
7064 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7065 					struct page, lru);
7066 	if (!page) {
7067 		spin_unlock_irqrestore(&zone->lock, flags);
7068 		return false;
7069 	}
7070 
7071 	/* Unlocks zone->lock */
7072 	__accept_page(zone, &flags, page);
7073 
7074 	return true;
7075 }
7076 
7077 static inline bool has_unaccepted_memory(void)
7078 {
7079 	return static_branch_unlikely(&zones_with_unaccepted_pages);
7080 }
7081 
7082 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7083 {
7084 	long to_accept, wmark;
7085 	bool ret = false;
7086 
7087 	if (!has_unaccepted_memory())
7088 		return false;
7089 
7090 	if (list_empty(&zone->unaccepted_pages))
7091 		return false;
7092 
7093 	wmark = promo_wmark_pages(zone);
7094 
7095 	/*
7096 	 * Watermarks have not been initialized yet.
7097 	 *
7098 	 * Accepting one MAX_ORDER page to ensure progress.
7099 	 */
7100 	if (!wmark)
7101 		return try_to_accept_memory_one(zone);
7102 
7103 	/* How much to accept to get to promo watermark? */
7104 	to_accept = wmark -
7105 		    (zone_page_state(zone, NR_FREE_PAGES) -
7106 		    __zone_watermark_unusable_free(zone, order, 0) -
7107 		    zone_page_state(zone, NR_UNACCEPTED));
7108 
7109 	while (to_accept > 0) {
7110 		if (!try_to_accept_memory_one(zone))
7111 			break;
7112 		ret = true;
7113 		to_accept -= MAX_ORDER_NR_PAGES;
7114 	}
7115 
7116 	return ret;
7117 }
7118 
7119 static bool __free_unaccepted(struct page *page)
7120 {
7121 	struct zone *zone = page_zone(page);
7122 	unsigned long flags;
7123 	bool first = false;
7124 
7125 	if (!lazy_accept)
7126 		return false;
7127 
7128 	spin_lock_irqsave(&zone->lock, flags);
7129 	first = list_empty(&zone->unaccepted_pages);
7130 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7131 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7132 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7133 	__SetPageUnaccepted(page);
7134 	spin_unlock_irqrestore(&zone->lock, flags);
7135 
7136 	if (first)
7137 		static_branch_inc(&zones_with_unaccepted_pages);
7138 
7139 	return true;
7140 }
7141 
7142 #else
7143 
7144 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7145 {
7146 	return false;
7147 }
7148 
7149 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7150 {
7151 	return false;
7152 }
7153 
7154 static bool __free_unaccepted(struct page *page)
7155 {
7156 	BUILD_BUG();
7157 	return false;
7158 }
7159 
7160 #endif /* CONFIG_UNACCEPTED_MEMORY */
7161