xref: /linux/mm/page_alloc.c (revision 40840afa53bed05b990b201d749dfee3bd6e7e42)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* Free the page without taking locks. Rely on trylock only. */
92 #define FPI_TRYLOCK		((__force fpi_t)BIT(2))
93 
94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
95 static DEFINE_MUTEX(pcp_batch_high_lock);
96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
97 
98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
99 /*
100  * On SMP, spin_trylock is sufficient protection.
101  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
102  */
103 #define pcp_trylock_prepare(flags)	do { } while (0)
104 #define pcp_trylock_finish(flag)	do { } while (0)
105 #else
106 
107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
108 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
109 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
110 #endif
111 
112 /*
113  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
114  * a migration causing the wrong PCP to be locked and remote memory being
115  * potentially allocated, pin the task to the CPU for the lookup+lock.
116  * preempt_disable is used on !RT because it is faster than migrate_disable.
117  * migrate_disable is used on RT because otherwise RT spinlock usage is
118  * interfered with and a high priority task cannot preempt the allocator.
119  */
120 #ifndef CONFIG_PREEMPT_RT
121 #define pcpu_task_pin()		preempt_disable()
122 #define pcpu_task_unpin()	preempt_enable()
123 #else
124 #define pcpu_task_pin()		migrate_disable()
125 #define pcpu_task_unpin()	migrate_enable()
126 #endif
127 
128 /*
129  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
130  * Return value should be used with equivalent unlock helper.
131  */
132 #define pcpu_spin_lock(type, member, ptr)				\
133 ({									\
134 	type *_ret;							\
135 	pcpu_task_pin();						\
136 	_ret = this_cpu_ptr(ptr);					\
137 	spin_lock(&_ret->member);					\
138 	_ret;								\
139 })
140 
141 #define pcpu_spin_trylock(type, member, ptr)				\
142 ({									\
143 	type *_ret;							\
144 	pcpu_task_pin();						\
145 	_ret = this_cpu_ptr(ptr);					\
146 	if (!spin_trylock(&_ret->member)) {				\
147 		pcpu_task_unpin();					\
148 		_ret = NULL;						\
149 	}								\
150 	_ret;								\
151 })
152 
153 #define pcpu_spin_unlock(member, ptr)					\
154 ({									\
155 	spin_unlock(&ptr->member);					\
156 	pcpu_task_unpin();						\
157 })
158 
159 /* struct per_cpu_pages specific helpers. */
160 #define pcp_spin_lock(ptr)						\
161 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_trylock(ptr)						\
164 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
165 
166 #define pcp_spin_unlock(ptr)						\
167 	pcpu_spin_unlock(lock, ptr)
168 
169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
170 DEFINE_PER_CPU(int, numa_node);
171 EXPORT_PER_CPU_SYMBOL(numa_node);
172 #endif
173 
174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
175 
176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
177 /*
178  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
179  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
180  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
181  * defined in <linux/topology.h>.
182  */
183 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
184 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
185 #endif
186 
187 static DEFINE_MUTEX(pcpu_drain_mutex);
188 
189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
190 volatile unsigned long latent_entropy __latent_entropy;
191 EXPORT_SYMBOL(latent_entropy);
192 #endif
193 
194 /*
195  * Array of node states.
196  */
197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
198 	[N_POSSIBLE] = NODE_MASK_ALL,
199 	[N_ONLINE] = { { [0] = 1UL } },
200 #ifndef CONFIG_NUMA
201 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
202 #ifdef CONFIG_HIGHMEM
203 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
204 #endif
205 	[N_MEMORY] = { { [0] = 1UL } },
206 	[N_CPU] = { { [0] = 1UL } },
207 #endif	/* NUMA */
208 };
209 EXPORT_SYMBOL(node_states);
210 
211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
212 
213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
214 unsigned int pageblock_order __read_mostly;
215 #endif
216 
217 static void __free_pages_ok(struct page *page, unsigned int order,
218 			    fpi_t fpi_flags);
219 
220 /*
221  * results with 256, 32 in the lowmem_reserve sysctl:
222  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
223  *	1G machine -> (16M dma, 784M normal, 224M high)
224  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
225  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
226  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
227  *
228  * TBD: should special case ZONE_DMA32 machines here - in those we normally
229  * don't need any ZONE_NORMAL reservation
230  */
231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
232 #ifdef CONFIG_ZONE_DMA
233 	[ZONE_DMA] = 256,
234 #endif
235 #ifdef CONFIG_ZONE_DMA32
236 	[ZONE_DMA32] = 256,
237 #endif
238 	[ZONE_NORMAL] = 32,
239 #ifdef CONFIG_HIGHMEM
240 	[ZONE_HIGHMEM] = 0,
241 #endif
242 	[ZONE_MOVABLE] = 0,
243 };
244 
245 char * const zone_names[MAX_NR_ZONES] = {
246 #ifdef CONFIG_ZONE_DMA
247 	 "DMA",
248 #endif
249 #ifdef CONFIG_ZONE_DMA32
250 	 "DMA32",
251 #endif
252 	 "Normal",
253 #ifdef CONFIG_HIGHMEM
254 	 "HighMem",
255 #endif
256 	 "Movable",
257 #ifdef CONFIG_ZONE_DEVICE
258 	 "Device",
259 #endif
260 };
261 
262 const char * const migratetype_names[MIGRATE_TYPES] = {
263 	"Unmovable",
264 	"Movable",
265 	"Reclaimable",
266 	"HighAtomic",
267 #ifdef CONFIG_CMA
268 	"CMA",
269 #endif
270 #ifdef CONFIG_MEMORY_ISOLATION
271 	"Isolate",
272 #endif
273 };
274 
275 int min_free_kbytes = 1024;
276 int user_min_free_kbytes = -1;
277 static int watermark_boost_factor __read_mostly = 15000;
278 static int watermark_scale_factor = 10;
279 int defrag_mode;
280 
281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
282 int movable_zone;
283 EXPORT_SYMBOL(movable_zone);
284 
285 #if MAX_NUMNODES > 1
286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
287 unsigned int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291 
292 static bool page_contains_unaccepted(struct page *page, unsigned int order);
293 static bool cond_accept_memory(struct zone *zone, unsigned int order,
294 			       int alloc_flags);
295 static bool __free_unaccepted(struct page *page);
296 
297 int page_group_by_mobility_disabled __read_mostly;
298 
299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
300 /*
301  * During boot we initialize deferred pages on-demand, as needed, but once
302  * page_alloc_init_late() has finished, the deferred pages are all initialized,
303  * and we can permanently disable that path.
304  */
305 DEFINE_STATIC_KEY_TRUE(deferred_pages);
306 
307 static inline bool deferred_pages_enabled(void)
308 {
309 	return static_branch_unlikely(&deferred_pages);
310 }
311 
312 /*
313  * deferred_grow_zone() is __init, but it is called from
314  * get_page_from_freelist() during early boot until deferred_pages permanently
315  * disables this call. This is why we have refdata wrapper to avoid warning,
316  * and to ensure that the function body gets unloaded.
317  */
318 static bool __ref
319 _deferred_grow_zone(struct zone *zone, unsigned int order)
320 {
321 	return deferred_grow_zone(zone, order);
322 }
323 #else
324 static inline bool deferred_pages_enabled(void)
325 {
326 	return false;
327 }
328 
329 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
330 {
331 	return false;
332 }
333 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
334 
335 /* Return a pointer to the bitmap storing bits affecting a block of pages */
336 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
337 							unsigned long pfn)
338 {
339 #ifdef CONFIG_SPARSEMEM
340 	return section_to_usemap(__pfn_to_section(pfn));
341 #else
342 	return page_zone(page)->pageblock_flags;
343 #endif /* CONFIG_SPARSEMEM */
344 }
345 
346 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
347 {
348 #ifdef CONFIG_SPARSEMEM
349 	pfn &= (PAGES_PER_SECTION-1);
350 #else
351 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
352 #endif /* CONFIG_SPARSEMEM */
353 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
354 }
355 
356 /**
357  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
358  * @page: The page within the block of interest
359  * @pfn: The target page frame number
360  * @mask: mask of bits that the caller is interested in
361  *
362  * Return: pageblock_bits flags
363  */
364 unsigned long get_pfnblock_flags_mask(const struct page *page,
365 					unsigned long pfn, unsigned long mask)
366 {
367 	unsigned long *bitmap;
368 	unsigned long bitidx, word_bitidx;
369 	unsigned long word;
370 
371 	bitmap = get_pageblock_bitmap(page, pfn);
372 	bitidx = pfn_to_bitidx(page, pfn);
373 	word_bitidx = bitidx / BITS_PER_LONG;
374 	bitidx &= (BITS_PER_LONG-1);
375 	/*
376 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
377 	 * a consistent read of the memory array, so that results, even though
378 	 * racy, are not corrupted.
379 	 */
380 	word = READ_ONCE(bitmap[word_bitidx]);
381 	return (word >> bitidx) & mask;
382 }
383 
384 static __always_inline int get_pfnblock_migratetype(const struct page *page,
385 					unsigned long pfn)
386 {
387 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
388 }
389 
390 /**
391  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
392  * @page: The page within the block of interest
393  * @flags: The flags to set
394  * @pfn: The target page frame number
395  * @mask: mask of bits that the caller is interested in
396  */
397 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
398 					unsigned long pfn,
399 					unsigned long mask)
400 {
401 	unsigned long *bitmap;
402 	unsigned long bitidx, word_bitidx;
403 	unsigned long word;
404 
405 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
406 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
407 
408 	bitmap = get_pageblock_bitmap(page, pfn);
409 	bitidx = pfn_to_bitidx(page, pfn);
410 	word_bitidx = bitidx / BITS_PER_LONG;
411 	bitidx &= (BITS_PER_LONG-1);
412 
413 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
414 
415 	mask <<= bitidx;
416 	flags <<= bitidx;
417 
418 	word = READ_ONCE(bitmap[word_bitidx]);
419 	do {
420 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
421 }
422 
423 void set_pageblock_migratetype(struct page *page, int migratetype)
424 {
425 	if (unlikely(page_group_by_mobility_disabled &&
426 		     migratetype < MIGRATE_PCPTYPES))
427 		migratetype = MIGRATE_UNMOVABLE;
428 
429 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
430 				page_to_pfn(page), MIGRATETYPE_MASK);
431 }
432 
433 #ifdef CONFIG_DEBUG_VM
434 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
435 {
436 	int ret;
437 	unsigned seq;
438 	unsigned long pfn = page_to_pfn(page);
439 	unsigned long sp, start_pfn;
440 
441 	do {
442 		seq = zone_span_seqbegin(zone);
443 		start_pfn = zone->zone_start_pfn;
444 		sp = zone->spanned_pages;
445 		ret = !zone_spans_pfn(zone, pfn);
446 	} while (zone_span_seqretry(zone, seq));
447 
448 	if (ret)
449 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
450 			pfn, zone_to_nid(zone), zone->name,
451 			start_pfn, start_pfn + sp);
452 
453 	return ret;
454 }
455 
456 /*
457  * Temporary debugging check for pages not lying within a given zone.
458  */
459 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
460 {
461 	if (page_outside_zone_boundaries(zone, page))
462 		return true;
463 	if (zone != page_zone(page))
464 		return true;
465 
466 	return false;
467 }
468 #else
469 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
470 {
471 	return false;
472 }
473 #endif
474 
475 static void bad_page(struct page *page, const char *reason)
476 {
477 	static unsigned long resume;
478 	static unsigned long nr_shown;
479 	static unsigned long nr_unshown;
480 
481 	/*
482 	 * Allow a burst of 60 reports, then keep quiet for that minute;
483 	 * or allow a steady drip of one report per second.
484 	 */
485 	if (nr_shown == 60) {
486 		if (time_before(jiffies, resume)) {
487 			nr_unshown++;
488 			goto out;
489 		}
490 		if (nr_unshown) {
491 			pr_alert(
492 			      "BUG: Bad page state: %lu messages suppressed\n",
493 				nr_unshown);
494 			nr_unshown = 0;
495 		}
496 		nr_shown = 0;
497 	}
498 	if (nr_shown++ == 0)
499 		resume = jiffies + 60 * HZ;
500 
501 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
502 		current->comm, page_to_pfn(page));
503 	dump_page(page, reason);
504 
505 	print_modules();
506 	dump_stack();
507 out:
508 	/* Leave bad fields for debug, except PageBuddy could make trouble */
509 	if (PageBuddy(page))
510 		__ClearPageBuddy(page);
511 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
512 }
513 
514 static inline unsigned int order_to_pindex(int migratetype, int order)
515 {
516 
517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
518 	bool movable;
519 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
520 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
521 
522 		movable = migratetype == MIGRATE_MOVABLE;
523 
524 		return NR_LOWORDER_PCP_LISTS + movable;
525 	}
526 #else
527 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
528 #endif
529 
530 	return (MIGRATE_PCPTYPES * order) + migratetype;
531 }
532 
533 static inline int pindex_to_order(unsigned int pindex)
534 {
535 	int order = pindex / MIGRATE_PCPTYPES;
536 
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 	if (pindex >= NR_LOWORDER_PCP_LISTS)
539 		order = HPAGE_PMD_ORDER;
540 #else
541 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
542 #endif
543 
544 	return order;
545 }
546 
547 static inline bool pcp_allowed_order(unsigned int order)
548 {
549 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
550 		return true;
551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 	if (order == HPAGE_PMD_ORDER)
553 		return true;
554 #endif
555 	return false;
556 }
557 
558 /*
559  * Higher-order pages are called "compound pages".  They are structured thusly:
560  *
561  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
562  *
563  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
564  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
565  *
566  * The first tail page's ->compound_order holds the order of allocation.
567  * This usage means that zero-order pages may not be compound.
568  */
569 
570 void prep_compound_page(struct page *page, unsigned int order)
571 {
572 	int i;
573 	int nr_pages = 1 << order;
574 
575 	__SetPageHead(page);
576 	for (i = 1; i < nr_pages; i++)
577 		prep_compound_tail(page, i);
578 
579 	prep_compound_head(page, order);
580 }
581 
582 static inline void set_buddy_order(struct page *page, unsigned int order)
583 {
584 	set_page_private(page, order);
585 	__SetPageBuddy(page);
586 }
587 
588 #ifdef CONFIG_COMPACTION
589 static inline struct capture_control *task_capc(struct zone *zone)
590 {
591 	struct capture_control *capc = current->capture_control;
592 
593 	return unlikely(capc) &&
594 		!(current->flags & PF_KTHREAD) &&
595 		!capc->page &&
596 		capc->cc->zone == zone ? capc : NULL;
597 }
598 
599 static inline bool
600 compaction_capture(struct capture_control *capc, struct page *page,
601 		   int order, int migratetype)
602 {
603 	if (!capc || order != capc->cc->order)
604 		return false;
605 
606 	/* Do not accidentally pollute CMA or isolated regions*/
607 	if (is_migrate_cma(migratetype) ||
608 	    is_migrate_isolate(migratetype))
609 		return false;
610 
611 	/*
612 	 * Do not let lower order allocations pollute a movable pageblock
613 	 * unless compaction is also requesting movable pages.
614 	 * This might let an unmovable request use a reclaimable pageblock
615 	 * and vice-versa but no more than normal fallback logic which can
616 	 * have trouble finding a high-order free page.
617 	 */
618 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
619 	    capc->cc->migratetype != MIGRATE_MOVABLE)
620 		return false;
621 
622 	if (migratetype != capc->cc->migratetype)
623 		trace_mm_page_alloc_extfrag(page, capc->cc->order, order,
624 					    capc->cc->migratetype, migratetype);
625 
626 	capc->page = page;
627 	return true;
628 }
629 
630 #else
631 static inline struct capture_control *task_capc(struct zone *zone)
632 {
633 	return NULL;
634 }
635 
636 static inline bool
637 compaction_capture(struct capture_control *capc, struct page *page,
638 		   int order, int migratetype)
639 {
640 	return false;
641 }
642 #endif /* CONFIG_COMPACTION */
643 
644 static inline void account_freepages(struct zone *zone, int nr_pages,
645 				     int migratetype)
646 {
647 	lockdep_assert_held(&zone->lock);
648 
649 	if (is_migrate_isolate(migratetype))
650 		return;
651 
652 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
653 
654 	if (is_migrate_cma(migratetype))
655 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
656 	else if (is_migrate_highatomic(migratetype))
657 		WRITE_ONCE(zone->nr_free_highatomic,
658 			   zone->nr_free_highatomic + nr_pages);
659 }
660 
661 /* Used for pages not on another list */
662 static inline void __add_to_free_list(struct page *page, struct zone *zone,
663 				      unsigned int order, int migratetype,
664 				      bool tail)
665 {
666 	struct free_area *area = &zone->free_area[order];
667 	int nr_pages = 1 << order;
668 
669 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
670 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
671 		     get_pageblock_migratetype(page), migratetype, nr_pages);
672 
673 	if (tail)
674 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
675 	else
676 		list_add(&page->buddy_list, &area->free_list[migratetype]);
677 	area->nr_free++;
678 
679 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
680 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
681 }
682 
683 /*
684  * Used for pages which are on another list. Move the pages to the tail
685  * of the list - so the moved pages won't immediately be considered for
686  * allocation again (e.g., optimization for memory onlining).
687  */
688 static inline void move_to_free_list(struct page *page, struct zone *zone,
689 				     unsigned int order, int old_mt, int new_mt)
690 {
691 	struct free_area *area = &zone->free_area[order];
692 	int nr_pages = 1 << order;
693 
694 	/* Free page moving can fail, so it happens before the type update */
695 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
696 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
697 		     get_pageblock_migratetype(page), old_mt, nr_pages);
698 
699 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
700 
701 	account_freepages(zone, -nr_pages, old_mt);
702 	account_freepages(zone, nr_pages, new_mt);
703 
704 	if (order >= pageblock_order &&
705 	    is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) {
706 		if (!is_migrate_isolate(old_mt))
707 			nr_pages = -nr_pages;
708 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
709 	}
710 }
711 
712 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
713 					     unsigned int order, int migratetype)
714 {
715 	int nr_pages = 1 << order;
716 
717         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
718 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
719 		     get_pageblock_migratetype(page), migratetype, nr_pages);
720 
721 	/* clear reported state and update reported page count */
722 	if (page_reported(page))
723 		__ClearPageReported(page);
724 
725 	list_del(&page->buddy_list);
726 	__ClearPageBuddy(page);
727 	set_page_private(page, 0);
728 	zone->free_area[order].nr_free--;
729 
730 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
731 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages);
732 }
733 
734 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
735 					   unsigned int order, int migratetype)
736 {
737 	__del_page_from_free_list(page, zone, order, migratetype);
738 	account_freepages(zone, -(1 << order), migratetype);
739 }
740 
741 static inline struct page *get_page_from_free_area(struct free_area *area,
742 					    int migratetype)
743 {
744 	return list_first_entry_or_null(&area->free_list[migratetype],
745 					struct page, buddy_list);
746 }
747 
748 /*
749  * If this is less than the 2nd largest possible page, check if the buddy
750  * of the next-higher order is free. If it is, it's possible
751  * that pages are being freed that will coalesce soon. In case,
752  * that is happening, add the free page to the tail of the list
753  * so it's less likely to be used soon and more likely to be merged
754  * as a 2-level higher order page
755  */
756 static inline bool
757 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
758 		   struct page *page, unsigned int order)
759 {
760 	unsigned long higher_page_pfn;
761 	struct page *higher_page;
762 
763 	if (order >= MAX_PAGE_ORDER - 1)
764 		return false;
765 
766 	higher_page_pfn = buddy_pfn & pfn;
767 	higher_page = page + (higher_page_pfn - pfn);
768 
769 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
770 			NULL) != NULL;
771 }
772 
773 /*
774  * Freeing function for a buddy system allocator.
775  *
776  * The concept of a buddy system is to maintain direct-mapped table
777  * (containing bit values) for memory blocks of various "orders".
778  * The bottom level table contains the map for the smallest allocatable
779  * units of memory (here, pages), and each level above it describes
780  * pairs of units from the levels below, hence, "buddies".
781  * At a high level, all that happens here is marking the table entry
782  * at the bottom level available, and propagating the changes upward
783  * as necessary, plus some accounting needed to play nicely with other
784  * parts of the VM system.
785  * At each level, we keep a list of pages, which are heads of continuous
786  * free pages of length of (1 << order) and marked with PageBuddy.
787  * Page's order is recorded in page_private(page) field.
788  * So when we are allocating or freeing one, we can derive the state of the
789  * other.  That is, if we allocate a small block, and both were
790  * free, the remainder of the region must be split into blocks.
791  * If a block is freed, and its buddy is also free, then this
792  * triggers coalescing into a block of larger size.
793  *
794  * -- nyc
795  */
796 
797 static inline void __free_one_page(struct page *page,
798 		unsigned long pfn,
799 		struct zone *zone, unsigned int order,
800 		int migratetype, fpi_t fpi_flags)
801 {
802 	struct capture_control *capc = task_capc(zone);
803 	unsigned long buddy_pfn = 0;
804 	unsigned long combined_pfn;
805 	struct page *buddy;
806 	bool to_tail;
807 
808 	VM_BUG_ON(!zone_is_initialized(zone));
809 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
810 
811 	VM_BUG_ON(migratetype == -1);
812 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
813 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
814 
815 	account_freepages(zone, 1 << order, migratetype);
816 
817 	while (order < MAX_PAGE_ORDER) {
818 		int buddy_mt = migratetype;
819 
820 		if (compaction_capture(capc, page, order, migratetype)) {
821 			account_freepages(zone, -(1 << order), migratetype);
822 			return;
823 		}
824 
825 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
826 		if (!buddy)
827 			goto done_merging;
828 
829 		if (unlikely(order >= pageblock_order)) {
830 			/*
831 			 * We want to prevent merge between freepages on pageblock
832 			 * without fallbacks and normal pageblock. Without this,
833 			 * pageblock isolation could cause incorrect freepage or CMA
834 			 * accounting or HIGHATOMIC accounting.
835 			 */
836 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
837 
838 			if (migratetype != buddy_mt &&
839 			    (!migratetype_is_mergeable(migratetype) ||
840 			     !migratetype_is_mergeable(buddy_mt)))
841 				goto done_merging;
842 		}
843 
844 		/*
845 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 		 * merge with it and move up one order.
847 		 */
848 		if (page_is_guard(buddy))
849 			clear_page_guard(zone, buddy, order);
850 		else
851 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
852 
853 		if (unlikely(buddy_mt != migratetype)) {
854 			/*
855 			 * Match buddy type. This ensures that an
856 			 * expand() down the line puts the sub-blocks
857 			 * on the right freelists.
858 			 */
859 			set_pageblock_migratetype(buddy, migratetype);
860 		}
861 
862 		combined_pfn = buddy_pfn & pfn;
863 		page = page + (combined_pfn - pfn);
864 		pfn = combined_pfn;
865 		order++;
866 	}
867 
868 done_merging:
869 	set_buddy_order(page, order);
870 
871 	if (fpi_flags & FPI_TO_TAIL)
872 		to_tail = true;
873 	else if (is_shuffle_order(order))
874 		to_tail = shuffle_pick_tail();
875 	else
876 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
877 
878 	__add_to_free_list(page, zone, order, migratetype, to_tail);
879 
880 	/* Notify page reporting subsystem of freed page */
881 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
882 		page_reporting_notify_free(order);
883 }
884 
885 /*
886  * A bad page could be due to a number of fields. Instead of multiple branches,
887  * try and check multiple fields with one check. The caller must do a detailed
888  * check if necessary.
889  */
890 static inline bool page_expected_state(struct page *page,
891 					unsigned long check_flags)
892 {
893 	if (unlikely(atomic_read(&page->_mapcount) != -1))
894 		return false;
895 
896 	if (unlikely((unsigned long)page->mapping |
897 			page_ref_count(page) |
898 #ifdef CONFIG_MEMCG
899 			page->memcg_data |
900 #endif
901 			page_pool_page_is_pp(page) |
902 			(page->flags & check_flags)))
903 		return false;
904 
905 	return true;
906 }
907 
908 static const char *page_bad_reason(struct page *page, unsigned long flags)
909 {
910 	const char *bad_reason = NULL;
911 
912 	if (unlikely(atomic_read(&page->_mapcount) != -1))
913 		bad_reason = "nonzero mapcount";
914 	if (unlikely(page->mapping != NULL))
915 		bad_reason = "non-NULL mapping";
916 	if (unlikely(page_ref_count(page) != 0))
917 		bad_reason = "nonzero _refcount";
918 	if (unlikely(page->flags & flags)) {
919 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
920 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
921 		else
922 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
923 	}
924 #ifdef CONFIG_MEMCG
925 	if (unlikely(page->memcg_data))
926 		bad_reason = "page still charged to cgroup";
927 #endif
928 	if (unlikely(page_pool_page_is_pp(page)))
929 		bad_reason = "page_pool leak";
930 	return bad_reason;
931 }
932 
933 static void free_page_is_bad_report(struct page *page)
934 {
935 	bad_page(page,
936 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
937 }
938 
939 static inline bool free_page_is_bad(struct page *page)
940 {
941 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
942 		return false;
943 
944 	/* Something has gone sideways, find it */
945 	free_page_is_bad_report(page);
946 	return true;
947 }
948 
949 static inline bool is_check_pages_enabled(void)
950 {
951 	return static_branch_unlikely(&check_pages_enabled);
952 }
953 
954 static int free_tail_page_prepare(struct page *head_page, struct page *page)
955 {
956 	struct folio *folio = (struct folio *)head_page;
957 	int ret = 1;
958 
959 	/*
960 	 * We rely page->lru.next never has bit 0 set, unless the page
961 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
962 	 */
963 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
964 
965 	if (!is_check_pages_enabled()) {
966 		ret = 0;
967 		goto out;
968 	}
969 	switch (page - head_page) {
970 	case 1:
971 		/* the first tail page: these may be in place of ->mapping */
972 		if (unlikely(folio_large_mapcount(folio))) {
973 			bad_page(page, "nonzero large_mapcount");
974 			goto out;
975 		}
976 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) &&
977 		    unlikely(atomic_read(&folio->_nr_pages_mapped))) {
978 			bad_page(page, "nonzero nr_pages_mapped");
979 			goto out;
980 		}
981 		if (IS_ENABLED(CONFIG_MM_ID)) {
982 			if (unlikely(folio->_mm_id_mapcount[0] != -1)) {
983 				bad_page(page, "nonzero mm mapcount 0");
984 				goto out;
985 			}
986 			if (unlikely(folio->_mm_id_mapcount[1] != -1)) {
987 				bad_page(page, "nonzero mm mapcount 1");
988 				goto out;
989 			}
990 		}
991 		if (IS_ENABLED(CONFIG_64BIT)) {
992 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
993 				bad_page(page, "nonzero entire_mapcount");
994 				goto out;
995 			}
996 			if (unlikely(atomic_read(&folio->_pincount))) {
997 				bad_page(page, "nonzero pincount");
998 				goto out;
999 			}
1000 		}
1001 		break;
1002 	case 2:
1003 		/* the second tail page: deferred_list overlaps ->mapping */
1004 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1005 			bad_page(page, "on deferred list");
1006 			goto out;
1007 		}
1008 		if (!IS_ENABLED(CONFIG_64BIT)) {
1009 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1010 				bad_page(page, "nonzero entire_mapcount");
1011 				goto out;
1012 			}
1013 			if (unlikely(atomic_read(&folio->_pincount))) {
1014 				bad_page(page, "nonzero pincount");
1015 				goto out;
1016 			}
1017 		}
1018 		break;
1019 	case 3:
1020 		/* the third tail page: hugetlb specifics overlap ->mappings */
1021 		if (IS_ENABLED(CONFIG_HUGETLB_PAGE))
1022 			break;
1023 		fallthrough;
1024 	default:
1025 		if (page->mapping != TAIL_MAPPING) {
1026 			bad_page(page, "corrupted mapping in tail page");
1027 			goto out;
1028 		}
1029 		break;
1030 	}
1031 	if (unlikely(!PageTail(page))) {
1032 		bad_page(page, "PageTail not set");
1033 		goto out;
1034 	}
1035 	if (unlikely(compound_head(page) != head_page)) {
1036 		bad_page(page, "compound_head not consistent");
1037 		goto out;
1038 	}
1039 	ret = 0;
1040 out:
1041 	page->mapping = NULL;
1042 	clear_compound_head(page);
1043 	return ret;
1044 }
1045 
1046 /*
1047  * Skip KASAN memory poisoning when either:
1048  *
1049  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1050  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1051  *    using page tags instead (see below).
1052  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1053  *    that error detection is disabled for accesses via the page address.
1054  *
1055  * Pages will have match-all tags in the following circumstances:
1056  *
1057  * 1. Pages are being initialized for the first time, including during deferred
1058  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1059  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1060  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1061  * 3. The allocation was excluded from being checked due to sampling,
1062  *    see the call to kasan_unpoison_pages.
1063  *
1064  * Poisoning pages during deferred memory init will greatly lengthen the
1065  * process and cause problem in large memory systems as the deferred pages
1066  * initialization is done with interrupt disabled.
1067  *
1068  * Assuming that there will be no reference to those newly initialized
1069  * pages before they are ever allocated, this should have no effect on
1070  * KASAN memory tracking as the poison will be properly inserted at page
1071  * allocation time. The only corner case is when pages are allocated by
1072  * on-demand allocation and then freed again before the deferred pages
1073  * initialization is done, but this is not likely to happen.
1074  */
1075 static inline bool should_skip_kasan_poison(struct page *page)
1076 {
1077 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1078 		return deferred_pages_enabled();
1079 
1080 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1081 }
1082 
1083 static void kernel_init_pages(struct page *page, int numpages)
1084 {
1085 	int i;
1086 
1087 	/* s390's use of memset() could override KASAN redzones. */
1088 	kasan_disable_current();
1089 	for (i = 0; i < numpages; i++)
1090 		clear_highpage_kasan_tagged(page + i);
1091 	kasan_enable_current();
1092 }
1093 
1094 #ifdef CONFIG_MEM_ALLOC_PROFILING
1095 
1096 /* Should be called only if mem_alloc_profiling_enabled() */
1097 void __clear_page_tag_ref(struct page *page)
1098 {
1099 	union pgtag_ref_handle handle;
1100 	union codetag_ref ref;
1101 
1102 	if (get_page_tag_ref(page, &ref, &handle)) {
1103 		set_codetag_empty(&ref);
1104 		update_page_tag_ref(handle, &ref);
1105 		put_page_tag_ref(handle);
1106 	}
1107 }
1108 
1109 /* Should be called only if mem_alloc_profiling_enabled() */
1110 static noinline
1111 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1112 		       unsigned int nr)
1113 {
1114 	union pgtag_ref_handle handle;
1115 	union codetag_ref ref;
1116 
1117 	if (get_page_tag_ref(page, &ref, &handle)) {
1118 		alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1119 		update_page_tag_ref(handle, &ref);
1120 		put_page_tag_ref(handle);
1121 	}
1122 }
1123 
1124 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1125 				   unsigned int nr)
1126 {
1127 	if (mem_alloc_profiling_enabled())
1128 		__pgalloc_tag_add(page, task, nr);
1129 }
1130 
1131 /* Should be called only if mem_alloc_profiling_enabled() */
1132 static noinline
1133 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1134 {
1135 	union pgtag_ref_handle handle;
1136 	union codetag_ref ref;
1137 
1138 	if (get_page_tag_ref(page, &ref, &handle)) {
1139 		alloc_tag_sub(&ref, PAGE_SIZE * nr);
1140 		update_page_tag_ref(handle, &ref);
1141 		put_page_tag_ref(handle);
1142 	}
1143 }
1144 
1145 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1146 {
1147 	if (mem_alloc_profiling_enabled())
1148 		__pgalloc_tag_sub(page, nr);
1149 }
1150 
1151 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */
1152 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr)
1153 {
1154 	if (tag)
1155 		this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1156 }
1157 
1158 #else /* CONFIG_MEM_ALLOC_PROFILING */
1159 
1160 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1161 				   unsigned int nr) {}
1162 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
1163 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {}
1164 
1165 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1166 
1167 __always_inline bool free_pages_prepare(struct page *page,
1168 			unsigned int order)
1169 {
1170 	int bad = 0;
1171 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1172 	bool init = want_init_on_free();
1173 	bool compound = PageCompound(page);
1174 	struct folio *folio = page_folio(page);
1175 
1176 	VM_BUG_ON_PAGE(PageTail(page), page);
1177 
1178 	trace_mm_page_free(page, order);
1179 	kmsan_free_page(page, order);
1180 
1181 	if (memcg_kmem_online() && PageMemcgKmem(page))
1182 		__memcg_kmem_uncharge_page(page, order);
1183 
1184 	/*
1185 	 * In rare cases, when truncation or holepunching raced with
1186 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1187 	 * found set here.  This does not indicate a problem, unless
1188 	 * "unevictable_pgs_cleared" appears worryingly large.
1189 	 */
1190 	if (unlikely(folio_test_mlocked(folio))) {
1191 		long nr_pages = folio_nr_pages(folio);
1192 
1193 		__folio_clear_mlocked(folio);
1194 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1195 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1196 	}
1197 
1198 	if (unlikely(PageHWPoison(page)) && !order) {
1199 		/* Do not let hwpoison pages hit pcplists/buddy */
1200 		reset_page_owner(page, order);
1201 		page_table_check_free(page, order);
1202 		pgalloc_tag_sub(page, 1 << order);
1203 
1204 		/*
1205 		 * The page is isolated and accounted for.
1206 		 * Mark the codetag as empty to avoid accounting error
1207 		 * when the page is freed by unpoison_memory().
1208 		 */
1209 		clear_page_tag_ref(page);
1210 		return false;
1211 	}
1212 
1213 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1214 
1215 	/*
1216 	 * Check tail pages before head page information is cleared to
1217 	 * avoid checking PageCompound for order-0 pages.
1218 	 */
1219 	if (unlikely(order)) {
1220 		int i;
1221 
1222 		if (compound) {
1223 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1224 #ifdef NR_PAGES_IN_LARGE_FOLIO
1225 			folio->_nr_pages = 0;
1226 #endif
1227 		}
1228 		for (i = 1; i < (1 << order); i++) {
1229 			if (compound)
1230 				bad += free_tail_page_prepare(page, page + i);
1231 			if (is_check_pages_enabled()) {
1232 				if (free_page_is_bad(page + i)) {
1233 					bad++;
1234 					continue;
1235 				}
1236 			}
1237 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1238 		}
1239 	}
1240 	if (PageMappingFlags(page)) {
1241 		if (PageAnon(page))
1242 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1243 		page->mapping = NULL;
1244 	}
1245 	if (is_check_pages_enabled()) {
1246 		if (free_page_is_bad(page))
1247 			bad++;
1248 		if (bad)
1249 			return false;
1250 	}
1251 
1252 	page_cpupid_reset_last(page);
1253 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1254 	reset_page_owner(page, order);
1255 	page_table_check_free(page, order);
1256 	pgalloc_tag_sub(page, 1 << order);
1257 
1258 	if (!PageHighMem(page)) {
1259 		debug_check_no_locks_freed(page_address(page),
1260 					   PAGE_SIZE << order);
1261 		debug_check_no_obj_freed(page_address(page),
1262 					   PAGE_SIZE << order);
1263 	}
1264 
1265 	kernel_poison_pages(page, 1 << order);
1266 
1267 	/*
1268 	 * As memory initialization might be integrated into KASAN,
1269 	 * KASAN poisoning and memory initialization code must be
1270 	 * kept together to avoid discrepancies in behavior.
1271 	 *
1272 	 * With hardware tag-based KASAN, memory tags must be set before the
1273 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1274 	 */
1275 	if (!skip_kasan_poison) {
1276 		kasan_poison_pages(page, order, init);
1277 
1278 		/* Memory is already initialized if KASAN did it internally. */
1279 		if (kasan_has_integrated_init())
1280 			init = false;
1281 	}
1282 	if (init)
1283 		kernel_init_pages(page, 1 << order);
1284 
1285 	/*
1286 	 * arch_free_page() can make the page's contents inaccessible.  s390
1287 	 * does this.  So nothing which can access the page's contents should
1288 	 * happen after this.
1289 	 */
1290 	arch_free_page(page, order);
1291 
1292 	debug_pagealloc_unmap_pages(page, 1 << order);
1293 
1294 	return true;
1295 }
1296 
1297 /*
1298  * Frees a number of pages from the PCP lists
1299  * Assumes all pages on list are in same zone.
1300  * count is the number of pages to free.
1301  */
1302 static void free_pcppages_bulk(struct zone *zone, int count,
1303 					struct per_cpu_pages *pcp,
1304 					int pindex)
1305 {
1306 	unsigned long flags;
1307 	unsigned int order;
1308 	struct page *page;
1309 
1310 	/*
1311 	 * Ensure proper count is passed which otherwise would stuck in the
1312 	 * below while (list_empty(list)) loop.
1313 	 */
1314 	count = min(pcp->count, count);
1315 
1316 	/* Ensure requested pindex is drained first. */
1317 	pindex = pindex - 1;
1318 
1319 	spin_lock_irqsave(&zone->lock, flags);
1320 
1321 	while (count > 0) {
1322 		struct list_head *list;
1323 		int nr_pages;
1324 
1325 		/* Remove pages from lists in a round-robin fashion. */
1326 		do {
1327 			if (++pindex > NR_PCP_LISTS - 1)
1328 				pindex = 0;
1329 			list = &pcp->lists[pindex];
1330 		} while (list_empty(list));
1331 
1332 		order = pindex_to_order(pindex);
1333 		nr_pages = 1 << order;
1334 		do {
1335 			unsigned long pfn;
1336 			int mt;
1337 
1338 			page = list_last_entry(list, struct page, pcp_list);
1339 			pfn = page_to_pfn(page);
1340 			mt = get_pfnblock_migratetype(page, pfn);
1341 
1342 			/* must delete to avoid corrupting pcp list */
1343 			list_del(&page->pcp_list);
1344 			count -= nr_pages;
1345 			pcp->count -= nr_pages;
1346 
1347 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1348 			trace_mm_page_pcpu_drain(page, order, mt);
1349 		} while (count > 0 && !list_empty(list));
1350 	}
1351 
1352 	spin_unlock_irqrestore(&zone->lock, flags);
1353 }
1354 
1355 /* Split a multi-block free page into its individual pageblocks. */
1356 static void split_large_buddy(struct zone *zone, struct page *page,
1357 			      unsigned long pfn, int order, fpi_t fpi)
1358 {
1359 	unsigned long end = pfn + (1 << order);
1360 
1361 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1362 	/* Caller removed page from freelist, buddy info cleared! */
1363 	VM_WARN_ON_ONCE(PageBuddy(page));
1364 
1365 	if (order > pageblock_order)
1366 		order = pageblock_order;
1367 
1368 	do {
1369 		int mt = get_pfnblock_migratetype(page, pfn);
1370 
1371 		__free_one_page(page, pfn, zone, order, mt, fpi);
1372 		pfn += 1 << order;
1373 		if (pfn == end)
1374 			break;
1375 		page = pfn_to_page(pfn);
1376 	} while (1);
1377 }
1378 
1379 static void add_page_to_zone_llist(struct zone *zone, struct page *page,
1380 				   unsigned int order)
1381 {
1382 	/* Remember the order */
1383 	page->order = order;
1384 	/* Add the page to the free list */
1385 	llist_add(&page->pcp_llist, &zone->trylock_free_pages);
1386 }
1387 
1388 static void free_one_page(struct zone *zone, struct page *page,
1389 			  unsigned long pfn, unsigned int order,
1390 			  fpi_t fpi_flags)
1391 {
1392 	struct llist_head *llhead;
1393 	unsigned long flags;
1394 
1395 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
1396 		if (!spin_trylock_irqsave(&zone->lock, flags)) {
1397 			add_page_to_zone_llist(zone, page, order);
1398 			return;
1399 		}
1400 	} else {
1401 		spin_lock_irqsave(&zone->lock, flags);
1402 	}
1403 
1404 	/* The lock succeeded. Process deferred pages. */
1405 	llhead = &zone->trylock_free_pages;
1406 	if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
1407 		struct llist_node *llnode;
1408 		struct page *p, *tmp;
1409 
1410 		llnode = llist_del_all(llhead);
1411 		llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
1412 			unsigned int p_order = p->order;
1413 
1414 			split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
1415 			__count_vm_events(PGFREE, 1 << p_order);
1416 		}
1417 	}
1418 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1419 	spin_unlock_irqrestore(&zone->lock, flags);
1420 
1421 	__count_vm_events(PGFREE, 1 << order);
1422 }
1423 
1424 static void __free_pages_ok(struct page *page, unsigned int order,
1425 			    fpi_t fpi_flags)
1426 {
1427 	unsigned long pfn = page_to_pfn(page);
1428 	struct zone *zone = page_zone(page);
1429 
1430 	if (free_pages_prepare(page, order))
1431 		free_one_page(zone, page, pfn, order, fpi_flags);
1432 }
1433 
1434 void __meminit __free_pages_core(struct page *page, unsigned int order,
1435 		enum meminit_context context)
1436 {
1437 	unsigned int nr_pages = 1 << order;
1438 	struct page *p = page;
1439 	unsigned int loop;
1440 
1441 	/*
1442 	 * When initializing the memmap, __init_single_page() sets the refcount
1443 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1444 	 * refcount of all involved pages to 0.
1445 	 *
1446 	 * Note that hotplugged memory pages are initialized to PageOffline().
1447 	 * Pages freed from memblock might be marked as reserved.
1448 	 */
1449 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1450 	    unlikely(context == MEMINIT_HOTPLUG)) {
1451 		for (loop = 0; loop < nr_pages; loop++, p++) {
1452 			VM_WARN_ON_ONCE(PageReserved(p));
1453 			__ClearPageOffline(p);
1454 			set_page_count(p, 0);
1455 		}
1456 
1457 		adjust_managed_page_count(page, nr_pages);
1458 	} else {
1459 		for (loop = 0; loop < nr_pages; loop++, p++) {
1460 			__ClearPageReserved(p);
1461 			set_page_count(p, 0);
1462 		}
1463 
1464 		/* memblock adjusts totalram_pages() manually. */
1465 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1466 	}
1467 
1468 	if (page_contains_unaccepted(page, order)) {
1469 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1470 			return;
1471 
1472 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1473 	}
1474 
1475 	/*
1476 	 * Bypass PCP and place fresh pages right to the tail, primarily
1477 	 * relevant for memory onlining.
1478 	 */
1479 	__free_pages_ok(page, order, FPI_TO_TAIL);
1480 }
1481 
1482 /*
1483  * Check that the whole (or subset of) a pageblock given by the interval of
1484  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1485  * with the migration of free compaction scanner.
1486  *
1487  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1488  *
1489  * It's possible on some configurations to have a setup like node0 node1 node0
1490  * i.e. it's possible that all pages within a zones range of pages do not
1491  * belong to a single zone. We assume that a border between node0 and node1
1492  * can occur within a single pageblock, but not a node0 node1 node0
1493  * interleaving within a single pageblock. It is therefore sufficient to check
1494  * the first and last page of a pageblock and avoid checking each individual
1495  * page in a pageblock.
1496  *
1497  * Note: the function may return non-NULL struct page even for a page block
1498  * which contains a memory hole (i.e. there is no physical memory for a subset
1499  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1500  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1501  * even though the start pfn is online and valid. This should be safe most of
1502  * the time because struct pages are still initialized via init_unavailable_range()
1503  * and pfn walkers shouldn't touch any physical memory range for which they do
1504  * not recognize any specific metadata in struct pages.
1505  */
1506 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1507 				     unsigned long end_pfn, struct zone *zone)
1508 {
1509 	struct page *start_page;
1510 	struct page *end_page;
1511 
1512 	/* end_pfn is one past the range we are checking */
1513 	end_pfn--;
1514 
1515 	if (!pfn_valid(end_pfn))
1516 		return NULL;
1517 
1518 	start_page = pfn_to_online_page(start_pfn);
1519 	if (!start_page)
1520 		return NULL;
1521 
1522 	if (page_zone(start_page) != zone)
1523 		return NULL;
1524 
1525 	end_page = pfn_to_page(end_pfn);
1526 
1527 	/* This gives a shorter code than deriving page_zone(end_page) */
1528 	if (page_zone_id(start_page) != page_zone_id(end_page))
1529 		return NULL;
1530 
1531 	return start_page;
1532 }
1533 
1534 /*
1535  * The order of subdivision here is critical for the IO subsystem.
1536  * Please do not alter this order without good reasons and regression
1537  * testing. Specifically, as large blocks of memory are subdivided,
1538  * the order in which smaller blocks are delivered depends on the order
1539  * they're subdivided in this function. This is the primary factor
1540  * influencing the order in which pages are delivered to the IO
1541  * subsystem according to empirical testing, and this is also justified
1542  * by considering the behavior of a buddy system containing a single
1543  * large block of memory acted on by a series of small allocations.
1544  * This behavior is a critical factor in sglist merging's success.
1545  *
1546  * -- nyc
1547  */
1548 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1549 				  int high, int migratetype)
1550 {
1551 	unsigned int size = 1 << high;
1552 	unsigned int nr_added = 0;
1553 
1554 	while (high > low) {
1555 		high--;
1556 		size >>= 1;
1557 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1558 
1559 		/*
1560 		 * Mark as guard pages (or page), that will allow to
1561 		 * merge back to allocator when buddy will be freed.
1562 		 * Corresponding page table entries will not be touched,
1563 		 * pages will stay not present in virtual address space
1564 		 */
1565 		if (set_page_guard(zone, &page[size], high))
1566 			continue;
1567 
1568 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1569 		set_buddy_order(&page[size], high);
1570 		nr_added += size;
1571 	}
1572 
1573 	return nr_added;
1574 }
1575 
1576 static __always_inline void page_del_and_expand(struct zone *zone,
1577 						struct page *page, int low,
1578 						int high, int migratetype)
1579 {
1580 	int nr_pages = 1 << high;
1581 
1582 	__del_page_from_free_list(page, zone, high, migratetype);
1583 	nr_pages -= expand(zone, page, low, high, migratetype);
1584 	account_freepages(zone, -nr_pages, migratetype);
1585 }
1586 
1587 static void check_new_page_bad(struct page *page)
1588 {
1589 	if (unlikely(PageHWPoison(page))) {
1590 		/* Don't complain about hwpoisoned pages */
1591 		if (PageBuddy(page))
1592 			__ClearPageBuddy(page);
1593 		return;
1594 	}
1595 
1596 	bad_page(page,
1597 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1598 }
1599 
1600 /*
1601  * This page is about to be returned from the page allocator
1602  */
1603 static bool check_new_page(struct page *page)
1604 {
1605 	if (likely(page_expected_state(page,
1606 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1607 		return false;
1608 
1609 	check_new_page_bad(page);
1610 	return true;
1611 }
1612 
1613 static inline bool check_new_pages(struct page *page, unsigned int order)
1614 {
1615 	if (is_check_pages_enabled()) {
1616 		for (int i = 0; i < (1 << order); i++) {
1617 			struct page *p = page + i;
1618 
1619 			if (check_new_page(p))
1620 				return true;
1621 		}
1622 	}
1623 
1624 	return false;
1625 }
1626 
1627 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1628 {
1629 	/* Don't skip if a software KASAN mode is enabled. */
1630 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1631 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1632 		return false;
1633 
1634 	/* Skip, if hardware tag-based KASAN is not enabled. */
1635 	if (!kasan_hw_tags_enabled())
1636 		return true;
1637 
1638 	/*
1639 	 * With hardware tag-based KASAN enabled, skip if this has been
1640 	 * requested via __GFP_SKIP_KASAN.
1641 	 */
1642 	return flags & __GFP_SKIP_KASAN;
1643 }
1644 
1645 static inline bool should_skip_init(gfp_t flags)
1646 {
1647 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1648 	if (!kasan_hw_tags_enabled())
1649 		return false;
1650 
1651 	/* For hardware tag-based KASAN, skip if requested. */
1652 	return (flags & __GFP_SKIP_ZERO);
1653 }
1654 
1655 inline void post_alloc_hook(struct page *page, unsigned int order,
1656 				gfp_t gfp_flags)
1657 {
1658 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1659 			!should_skip_init(gfp_flags);
1660 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1661 	int i;
1662 
1663 	set_page_private(page, 0);
1664 
1665 	arch_alloc_page(page, order);
1666 	debug_pagealloc_map_pages(page, 1 << order);
1667 
1668 	/*
1669 	 * Page unpoisoning must happen before memory initialization.
1670 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1671 	 * allocations and the page unpoisoning code will complain.
1672 	 */
1673 	kernel_unpoison_pages(page, 1 << order);
1674 
1675 	/*
1676 	 * As memory initialization might be integrated into KASAN,
1677 	 * KASAN unpoisoning and memory initializion code must be
1678 	 * kept together to avoid discrepancies in behavior.
1679 	 */
1680 
1681 	/*
1682 	 * If memory tags should be zeroed
1683 	 * (which happens only when memory should be initialized as well).
1684 	 */
1685 	if (zero_tags) {
1686 		/* Initialize both memory and memory tags. */
1687 		for (i = 0; i != 1 << order; ++i)
1688 			tag_clear_highpage(page + i);
1689 
1690 		/* Take note that memory was initialized by the loop above. */
1691 		init = false;
1692 	}
1693 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1694 	    kasan_unpoison_pages(page, order, init)) {
1695 		/* Take note that memory was initialized by KASAN. */
1696 		if (kasan_has_integrated_init())
1697 			init = false;
1698 	} else {
1699 		/*
1700 		 * If memory tags have not been set by KASAN, reset the page
1701 		 * tags to ensure page_address() dereferencing does not fault.
1702 		 */
1703 		for (i = 0; i != 1 << order; ++i)
1704 			page_kasan_tag_reset(page + i);
1705 	}
1706 	/* If memory is still not initialized, initialize it now. */
1707 	if (init)
1708 		kernel_init_pages(page, 1 << order);
1709 
1710 	set_page_owner(page, order, gfp_flags);
1711 	page_table_check_alloc(page, order);
1712 	pgalloc_tag_add(page, current, 1 << order);
1713 }
1714 
1715 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1716 							unsigned int alloc_flags)
1717 {
1718 	post_alloc_hook(page, order, gfp_flags);
1719 
1720 	if (order && (gfp_flags & __GFP_COMP))
1721 		prep_compound_page(page, order);
1722 
1723 	/*
1724 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1725 	 * allocate the page. The expectation is that the caller is taking
1726 	 * steps that will free more memory. The caller should avoid the page
1727 	 * being used for !PFMEMALLOC purposes.
1728 	 */
1729 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1730 		set_page_pfmemalloc(page);
1731 	else
1732 		clear_page_pfmemalloc(page);
1733 }
1734 
1735 /*
1736  * Go through the free lists for the given migratetype and remove
1737  * the smallest available page from the freelists
1738  */
1739 static __always_inline
1740 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1741 						int migratetype)
1742 {
1743 	unsigned int current_order;
1744 	struct free_area *area;
1745 	struct page *page;
1746 
1747 	/* Find a page of the appropriate size in the preferred list */
1748 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1749 		area = &(zone->free_area[current_order]);
1750 		page = get_page_from_free_area(area, migratetype);
1751 		if (!page)
1752 			continue;
1753 
1754 		page_del_and_expand(zone, page, order, current_order,
1755 				    migratetype);
1756 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1757 				pcp_allowed_order(order) &&
1758 				migratetype < MIGRATE_PCPTYPES);
1759 		return page;
1760 	}
1761 
1762 	return NULL;
1763 }
1764 
1765 
1766 /*
1767  * This array describes the order lists are fallen back to when
1768  * the free lists for the desirable migrate type are depleted
1769  *
1770  * The other migratetypes do not have fallbacks.
1771  */
1772 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1773 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1774 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1775 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1776 };
1777 
1778 #ifdef CONFIG_CMA
1779 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1780 					unsigned int order)
1781 {
1782 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1783 }
1784 #else
1785 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1786 					unsigned int order) { return NULL; }
1787 #endif
1788 
1789 /*
1790  * Change the type of a block and move all its free pages to that
1791  * type's freelist.
1792  */
1793 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1794 				  int old_mt, int new_mt)
1795 {
1796 	struct page *page;
1797 	unsigned long pfn, end_pfn;
1798 	unsigned int order;
1799 	int pages_moved = 0;
1800 
1801 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1802 	end_pfn = pageblock_end_pfn(start_pfn);
1803 
1804 	for (pfn = start_pfn; pfn < end_pfn;) {
1805 		page = pfn_to_page(pfn);
1806 		if (!PageBuddy(page)) {
1807 			pfn++;
1808 			continue;
1809 		}
1810 
1811 		/* Make sure we are not inadvertently changing nodes */
1812 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1813 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1814 
1815 		order = buddy_order(page);
1816 
1817 		move_to_free_list(page, zone, order, old_mt, new_mt);
1818 
1819 		pfn += 1 << order;
1820 		pages_moved += 1 << order;
1821 	}
1822 
1823 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1824 
1825 	return pages_moved;
1826 }
1827 
1828 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1829 				      unsigned long *start_pfn,
1830 				      int *num_free, int *num_movable)
1831 {
1832 	unsigned long pfn, start, end;
1833 
1834 	pfn = page_to_pfn(page);
1835 	start = pageblock_start_pfn(pfn);
1836 	end = pageblock_end_pfn(pfn);
1837 
1838 	/*
1839 	 * The caller only has the lock for @zone, don't touch ranges
1840 	 * that straddle into other zones. While we could move part of
1841 	 * the range that's inside the zone, this call is usually
1842 	 * accompanied by other operations such as migratetype updates
1843 	 * which also should be locked.
1844 	 */
1845 	if (!zone_spans_pfn(zone, start))
1846 		return false;
1847 	if (!zone_spans_pfn(zone, end - 1))
1848 		return false;
1849 
1850 	*start_pfn = start;
1851 
1852 	if (num_free) {
1853 		*num_free = 0;
1854 		*num_movable = 0;
1855 		for (pfn = start; pfn < end;) {
1856 			page = pfn_to_page(pfn);
1857 			if (PageBuddy(page)) {
1858 				int nr = 1 << buddy_order(page);
1859 
1860 				*num_free += nr;
1861 				pfn += nr;
1862 				continue;
1863 			}
1864 			/*
1865 			 * We assume that pages that could be isolated for
1866 			 * migration are movable. But we don't actually try
1867 			 * isolating, as that would be expensive.
1868 			 */
1869 			if (PageLRU(page) || __PageMovable(page))
1870 				(*num_movable)++;
1871 			pfn++;
1872 		}
1873 	}
1874 
1875 	return true;
1876 }
1877 
1878 static int move_freepages_block(struct zone *zone, struct page *page,
1879 				int old_mt, int new_mt)
1880 {
1881 	unsigned long start_pfn;
1882 
1883 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1884 		return -1;
1885 
1886 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1887 }
1888 
1889 #ifdef CONFIG_MEMORY_ISOLATION
1890 /* Look for a buddy that straddles start_pfn */
1891 static unsigned long find_large_buddy(unsigned long start_pfn)
1892 {
1893 	int order = 0;
1894 	struct page *page;
1895 	unsigned long pfn = start_pfn;
1896 
1897 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1898 		/* Nothing found */
1899 		if (++order > MAX_PAGE_ORDER)
1900 			return start_pfn;
1901 		pfn &= ~0UL << order;
1902 	}
1903 
1904 	/*
1905 	 * Found a preceding buddy, but does it straddle?
1906 	 */
1907 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1908 		return pfn;
1909 
1910 	/* Nothing found */
1911 	return start_pfn;
1912 }
1913 
1914 /**
1915  * move_freepages_block_isolate - move free pages in block for page isolation
1916  * @zone: the zone
1917  * @page: the pageblock page
1918  * @migratetype: migratetype to set on the pageblock
1919  *
1920  * This is similar to move_freepages_block(), but handles the special
1921  * case encountered in page isolation, where the block of interest
1922  * might be part of a larger buddy spanning multiple pageblocks.
1923  *
1924  * Unlike the regular page allocator path, which moves pages while
1925  * stealing buddies off the freelist, page isolation is interested in
1926  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1927  *
1928  * This function handles that. Straddling buddies are split into
1929  * individual pageblocks. Only the block of interest is moved.
1930  *
1931  * Returns %true if pages could be moved, %false otherwise.
1932  */
1933 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1934 				  int migratetype)
1935 {
1936 	unsigned long start_pfn, pfn;
1937 
1938 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1939 		return false;
1940 
1941 	/* No splits needed if buddies can't span multiple blocks */
1942 	if (pageblock_order == MAX_PAGE_ORDER)
1943 		goto move;
1944 
1945 	/* We're a tail block in a larger buddy */
1946 	pfn = find_large_buddy(start_pfn);
1947 	if (pfn != start_pfn) {
1948 		struct page *buddy = pfn_to_page(pfn);
1949 		int order = buddy_order(buddy);
1950 
1951 		del_page_from_free_list(buddy, zone, order,
1952 					get_pfnblock_migratetype(buddy, pfn));
1953 		set_pageblock_migratetype(page, migratetype);
1954 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1955 		return true;
1956 	}
1957 
1958 	/* We're the starting block of a larger buddy */
1959 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1960 		int order = buddy_order(page);
1961 
1962 		del_page_from_free_list(page, zone, order,
1963 					get_pfnblock_migratetype(page, pfn));
1964 		set_pageblock_migratetype(page, migratetype);
1965 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1966 		return true;
1967 	}
1968 move:
1969 	__move_freepages_block(zone, start_pfn,
1970 			       get_pfnblock_migratetype(page, start_pfn),
1971 			       migratetype);
1972 	return true;
1973 }
1974 #endif /* CONFIG_MEMORY_ISOLATION */
1975 
1976 static void change_pageblock_range(struct page *pageblock_page,
1977 					int start_order, int migratetype)
1978 {
1979 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1980 
1981 	while (nr_pageblocks--) {
1982 		set_pageblock_migratetype(pageblock_page, migratetype);
1983 		pageblock_page += pageblock_nr_pages;
1984 	}
1985 }
1986 
1987 static inline bool boost_watermark(struct zone *zone)
1988 {
1989 	unsigned long max_boost;
1990 
1991 	if (!watermark_boost_factor)
1992 		return false;
1993 	/*
1994 	 * Don't bother in zones that are unlikely to produce results.
1995 	 * On small machines, including kdump capture kernels running
1996 	 * in a small area, boosting the watermark can cause an out of
1997 	 * memory situation immediately.
1998 	 */
1999 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2000 		return false;
2001 
2002 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2003 			watermark_boost_factor, 10000);
2004 
2005 	/*
2006 	 * high watermark may be uninitialised if fragmentation occurs
2007 	 * very early in boot so do not boost. We do not fall
2008 	 * through and boost by pageblock_nr_pages as failing
2009 	 * allocations that early means that reclaim is not going
2010 	 * to help and it may even be impossible to reclaim the
2011 	 * boosted watermark resulting in a hang.
2012 	 */
2013 	if (!max_boost)
2014 		return false;
2015 
2016 	max_boost = max(pageblock_nr_pages, max_boost);
2017 
2018 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2019 		max_boost);
2020 
2021 	return true;
2022 }
2023 
2024 /*
2025  * When we are falling back to another migratetype during allocation, should we
2026  * try to claim an entire block to satisfy further allocations, instead of
2027  * polluting multiple pageblocks?
2028  */
2029 static bool should_try_claim_block(unsigned int order, int start_mt)
2030 {
2031 	/*
2032 	 * Leaving this order check is intended, although there is
2033 	 * relaxed order check in next check. The reason is that
2034 	 * we can actually claim the whole pageblock if this condition met,
2035 	 * but, below check doesn't guarantee it and that is just heuristic
2036 	 * so could be changed anytime.
2037 	 */
2038 	if (order >= pageblock_order)
2039 		return true;
2040 
2041 	/*
2042 	 * Above a certain threshold, always try to claim, as it's likely there
2043 	 * will be more free pages in the pageblock.
2044 	 */
2045 	if (order >= pageblock_order / 2)
2046 		return true;
2047 
2048 	/*
2049 	 * Unmovable/reclaimable allocations would cause permanent
2050 	 * fragmentations if they fell back to allocating from a movable block
2051 	 * (polluting it), so we try to claim the whole block regardless of the
2052 	 * allocation size. Later movable allocations can always steal from this
2053 	 * block, which is less problematic.
2054 	 */
2055 	if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
2056 		return true;
2057 
2058 	if (page_group_by_mobility_disabled)
2059 		return true;
2060 
2061 	/*
2062 	 * Movable pages won't cause permanent fragmentation, so when you alloc
2063 	 * small pages, we just need to temporarily steal unmovable or
2064 	 * reclaimable pages that are closest to the request size. After a
2065 	 * while, memory compaction may occur to form large contiguous pages,
2066 	 * and the next movable allocation may not need to steal.
2067 	 */
2068 	return false;
2069 }
2070 
2071 /*
2072  * Check whether there is a suitable fallback freepage with requested order.
2073  * Sets *claim_block to instruct the caller whether it should convert a whole
2074  * pageblock to the returned migratetype.
2075  * If only_claim is true, this function returns fallback_mt only if
2076  * we would do this whole-block claiming. This would help to reduce
2077  * fragmentation due to mixed migratetype pages in one pageblock.
2078  */
2079 int find_suitable_fallback(struct free_area *area, unsigned int order,
2080 			int migratetype, bool only_claim, bool *claim_block)
2081 {
2082 	int i;
2083 	int fallback_mt;
2084 
2085 	if (area->nr_free == 0)
2086 		return -1;
2087 
2088 	*claim_block = false;
2089 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2090 		fallback_mt = fallbacks[migratetype][i];
2091 		if (free_area_empty(area, fallback_mt))
2092 			continue;
2093 
2094 		if (should_try_claim_block(order, migratetype))
2095 			*claim_block = true;
2096 
2097 		if (*claim_block || !only_claim)
2098 			return fallback_mt;
2099 	}
2100 
2101 	return -1;
2102 }
2103 
2104 /*
2105  * This function implements actual block claiming behaviour. If order is large
2106  * enough, we can claim the whole pageblock for the requested migratetype. If
2107  * not, we check the pageblock for constituent pages; if at least half of the
2108  * pages are free or compatible, we can still claim the whole block, so pages
2109  * freed in the future will be put on the correct free list.
2110  */
2111 static struct page *
2112 try_to_claim_block(struct zone *zone, struct page *page,
2113 		   int current_order, int order, int start_type,
2114 		   int block_type, unsigned int alloc_flags)
2115 {
2116 	int free_pages, movable_pages, alike_pages;
2117 	unsigned long start_pfn;
2118 
2119 	/* Take ownership for orders >= pageblock_order */
2120 	if (current_order >= pageblock_order) {
2121 		unsigned int nr_added;
2122 
2123 		del_page_from_free_list(page, zone, current_order, block_type);
2124 		change_pageblock_range(page, current_order, start_type);
2125 		nr_added = expand(zone, page, order, current_order, start_type);
2126 		account_freepages(zone, nr_added, start_type);
2127 		return page;
2128 	}
2129 
2130 	/*
2131 	 * Boost watermarks to increase reclaim pressure to reduce the
2132 	 * likelihood of future fallbacks. Wake kswapd now as the node
2133 	 * may be balanced overall and kswapd will not wake naturally.
2134 	 */
2135 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2136 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2137 
2138 	/* moving whole block can fail due to zone boundary conditions */
2139 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2140 				       &movable_pages))
2141 		return NULL;
2142 
2143 	/*
2144 	 * Determine how many pages are compatible with our allocation.
2145 	 * For movable allocation, it's the number of movable pages which
2146 	 * we just obtained. For other types it's a bit more tricky.
2147 	 */
2148 	if (start_type == MIGRATE_MOVABLE) {
2149 		alike_pages = movable_pages;
2150 	} else {
2151 		/*
2152 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2153 		 * to MOVABLE pageblock, consider all non-movable pages as
2154 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2155 		 * vice versa, be conservative since we can't distinguish the
2156 		 * exact migratetype of non-movable pages.
2157 		 */
2158 		if (block_type == MIGRATE_MOVABLE)
2159 			alike_pages = pageblock_nr_pages
2160 						- (free_pages + movable_pages);
2161 		else
2162 			alike_pages = 0;
2163 	}
2164 	/*
2165 	 * If a sufficient number of pages in the block are either free or of
2166 	 * compatible migratability as our allocation, claim the whole block.
2167 	 */
2168 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2169 			page_group_by_mobility_disabled) {
2170 		__move_freepages_block(zone, start_pfn, block_type, start_type);
2171 		return __rmqueue_smallest(zone, order, start_type);
2172 	}
2173 
2174 	return NULL;
2175 }
2176 
2177 /*
2178  * Try to allocate from some fallback migratetype by claiming the entire block,
2179  * i.e. converting it to the allocation's start migratetype.
2180  *
2181  * The use of signed ints for order and current_order is a deliberate
2182  * deviation from the rest of this file, to make the for loop
2183  * condition simpler.
2184  */
2185 static __always_inline struct page *
2186 __rmqueue_claim(struct zone *zone, int order, int start_migratetype,
2187 						unsigned int alloc_flags)
2188 {
2189 	struct free_area *area;
2190 	int current_order;
2191 	int min_order = order;
2192 	struct page *page;
2193 	int fallback_mt;
2194 	bool claim_block;
2195 
2196 	/*
2197 	 * Do not steal pages from freelists belonging to other pageblocks
2198 	 * i.e. orders < pageblock_order. If there are no local zones free,
2199 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2200 	 */
2201 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2202 		min_order = pageblock_order;
2203 
2204 	/*
2205 	 * Find the largest available free page in the other list. This roughly
2206 	 * approximates finding the pageblock with the most free pages, which
2207 	 * would be too costly to do exactly.
2208 	 */
2209 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2210 				--current_order) {
2211 		area = &(zone->free_area[current_order]);
2212 		fallback_mt = find_suitable_fallback(area, current_order,
2213 				start_migratetype, false, &claim_block);
2214 		if (fallback_mt == -1)
2215 			continue;
2216 
2217 		if (!claim_block)
2218 			break;
2219 
2220 		page = get_page_from_free_area(area, fallback_mt);
2221 		page = try_to_claim_block(zone, page, current_order, order,
2222 					  start_migratetype, fallback_mt,
2223 					  alloc_flags);
2224 		if (page) {
2225 			trace_mm_page_alloc_extfrag(page, order, current_order,
2226 						    start_migratetype, fallback_mt);
2227 			return page;
2228 		}
2229 	}
2230 
2231 	return NULL;
2232 }
2233 
2234 /*
2235  * Try to steal a single page from some fallback migratetype. Leave the rest of
2236  * the block as its current migratetype, potentially causing fragmentation.
2237  */
2238 static __always_inline struct page *
2239 __rmqueue_steal(struct zone *zone, int order, int start_migratetype)
2240 {
2241 	struct free_area *area;
2242 	int current_order;
2243 	struct page *page;
2244 	int fallback_mt;
2245 	bool claim_block;
2246 
2247 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2248 		area = &(zone->free_area[current_order]);
2249 		fallback_mt = find_suitable_fallback(area, current_order,
2250 				start_migratetype, false, &claim_block);
2251 		if (fallback_mt == -1)
2252 			continue;
2253 
2254 		page = get_page_from_free_area(area, fallback_mt);
2255 		page_del_and_expand(zone, page, order, current_order, fallback_mt);
2256 		trace_mm_page_alloc_extfrag(page, order, current_order,
2257 					    start_migratetype, fallback_mt);
2258 		return page;
2259 	}
2260 
2261 	return NULL;
2262 }
2263 
2264 enum rmqueue_mode {
2265 	RMQUEUE_NORMAL,
2266 	RMQUEUE_CMA,
2267 	RMQUEUE_CLAIM,
2268 	RMQUEUE_STEAL,
2269 };
2270 
2271 /*
2272  * Do the hard work of removing an element from the buddy allocator.
2273  * Call me with the zone->lock already held.
2274  */
2275 static __always_inline struct page *
2276 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2277 	  unsigned int alloc_flags, enum rmqueue_mode *mode)
2278 {
2279 	struct page *page;
2280 
2281 	if (IS_ENABLED(CONFIG_CMA)) {
2282 		/*
2283 		 * Balance movable allocations between regular and CMA areas by
2284 		 * allocating from CMA when over half of the zone's free memory
2285 		 * is in the CMA area.
2286 		 */
2287 		if (alloc_flags & ALLOC_CMA &&
2288 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2289 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2290 			page = __rmqueue_cma_fallback(zone, order);
2291 			if (page)
2292 				return page;
2293 		}
2294 	}
2295 
2296 	/*
2297 	 * First try the freelists of the requested migratetype, then try
2298 	 * fallbacks modes with increasing levels of fragmentation risk.
2299 	 *
2300 	 * The fallback logic is expensive and rmqueue_bulk() calls in
2301 	 * a loop with the zone->lock held, meaning the freelists are
2302 	 * not subject to any outside changes. Remember in *mode where
2303 	 * we found pay dirt, to save us the search on the next call.
2304 	 */
2305 	switch (*mode) {
2306 	case RMQUEUE_NORMAL:
2307 		page = __rmqueue_smallest(zone, order, migratetype);
2308 		if (page)
2309 			return page;
2310 		fallthrough;
2311 	case RMQUEUE_CMA:
2312 		if (alloc_flags & ALLOC_CMA) {
2313 			page = __rmqueue_cma_fallback(zone, order);
2314 			if (page) {
2315 				*mode = RMQUEUE_CMA;
2316 				return page;
2317 			}
2318 		}
2319 		fallthrough;
2320 	case RMQUEUE_CLAIM:
2321 		page = __rmqueue_claim(zone, order, migratetype, alloc_flags);
2322 		if (page) {
2323 			/* Replenished preferred freelist, back to normal mode. */
2324 			*mode = RMQUEUE_NORMAL;
2325 			return page;
2326 		}
2327 		fallthrough;
2328 	case RMQUEUE_STEAL:
2329 		if (!(alloc_flags & ALLOC_NOFRAGMENT)) {
2330 			page = __rmqueue_steal(zone, order, migratetype);
2331 			if (page) {
2332 				*mode = RMQUEUE_STEAL;
2333 				return page;
2334 			}
2335 		}
2336 	}
2337 	return NULL;
2338 }
2339 
2340 /*
2341  * Obtain a specified number of elements from the buddy allocator, all under
2342  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2343  * Returns the number of new pages which were placed at *list.
2344  */
2345 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2346 			unsigned long count, struct list_head *list,
2347 			int migratetype, unsigned int alloc_flags)
2348 {
2349 	enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2350 	unsigned long flags;
2351 	int i;
2352 
2353 	if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2354 		if (!spin_trylock_irqsave(&zone->lock, flags))
2355 			return 0;
2356 	} else {
2357 		spin_lock_irqsave(&zone->lock, flags);
2358 	}
2359 	for (i = 0; i < count; ++i) {
2360 		struct page *page = __rmqueue(zone, order, migratetype,
2361 					      alloc_flags, &rmqm);
2362 		if (unlikely(page == NULL))
2363 			break;
2364 
2365 		/*
2366 		 * Split buddy pages returned by expand() are received here in
2367 		 * physical page order. The page is added to the tail of
2368 		 * caller's list. From the callers perspective, the linked list
2369 		 * is ordered by page number under some conditions. This is
2370 		 * useful for IO devices that can forward direction from the
2371 		 * head, thus also in the physical page order. This is useful
2372 		 * for IO devices that can merge IO requests if the physical
2373 		 * pages are ordered properly.
2374 		 */
2375 		list_add_tail(&page->pcp_list, list);
2376 	}
2377 	spin_unlock_irqrestore(&zone->lock, flags);
2378 
2379 	return i;
2380 }
2381 
2382 /*
2383  * Called from the vmstat counter updater to decay the PCP high.
2384  * Return whether there are addition works to do.
2385  */
2386 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2387 {
2388 	int high_min, to_drain, batch;
2389 	int todo = 0;
2390 
2391 	high_min = READ_ONCE(pcp->high_min);
2392 	batch = READ_ONCE(pcp->batch);
2393 	/*
2394 	 * Decrease pcp->high periodically to try to free possible
2395 	 * idle PCP pages.  And, avoid to free too many pages to
2396 	 * control latency.  This caps pcp->high decrement too.
2397 	 */
2398 	if (pcp->high > high_min) {
2399 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2400 				 pcp->high - (pcp->high >> 3), high_min);
2401 		if (pcp->high > high_min)
2402 			todo++;
2403 	}
2404 
2405 	to_drain = pcp->count - pcp->high;
2406 	if (to_drain > 0) {
2407 		spin_lock(&pcp->lock);
2408 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2409 		spin_unlock(&pcp->lock);
2410 		todo++;
2411 	}
2412 
2413 	return todo;
2414 }
2415 
2416 #ifdef CONFIG_NUMA
2417 /*
2418  * Called from the vmstat counter updater to drain pagesets of this
2419  * currently executing processor on remote nodes after they have
2420  * expired.
2421  */
2422 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2423 {
2424 	int to_drain, batch;
2425 
2426 	batch = READ_ONCE(pcp->batch);
2427 	to_drain = min(pcp->count, batch);
2428 	if (to_drain > 0) {
2429 		spin_lock(&pcp->lock);
2430 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2431 		spin_unlock(&pcp->lock);
2432 	}
2433 }
2434 #endif
2435 
2436 /*
2437  * Drain pcplists of the indicated processor and zone.
2438  */
2439 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2440 {
2441 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2442 	int count;
2443 
2444 	do {
2445 		spin_lock(&pcp->lock);
2446 		count = pcp->count;
2447 		if (count) {
2448 			int to_drain = min(count,
2449 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2450 
2451 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2452 			count -= to_drain;
2453 		}
2454 		spin_unlock(&pcp->lock);
2455 	} while (count);
2456 }
2457 
2458 /*
2459  * Drain pcplists of all zones on the indicated processor.
2460  */
2461 static void drain_pages(unsigned int cpu)
2462 {
2463 	struct zone *zone;
2464 
2465 	for_each_populated_zone(zone) {
2466 		drain_pages_zone(cpu, zone);
2467 	}
2468 }
2469 
2470 /*
2471  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2472  */
2473 void drain_local_pages(struct zone *zone)
2474 {
2475 	int cpu = smp_processor_id();
2476 
2477 	if (zone)
2478 		drain_pages_zone(cpu, zone);
2479 	else
2480 		drain_pages(cpu);
2481 }
2482 
2483 /*
2484  * The implementation of drain_all_pages(), exposing an extra parameter to
2485  * drain on all cpus.
2486  *
2487  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2488  * not empty. The check for non-emptiness can however race with a free to
2489  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2490  * that need the guarantee that every CPU has drained can disable the
2491  * optimizing racy check.
2492  */
2493 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2494 {
2495 	int cpu;
2496 
2497 	/*
2498 	 * Allocate in the BSS so we won't require allocation in
2499 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2500 	 */
2501 	static cpumask_t cpus_with_pcps;
2502 
2503 	/*
2504 	 * Do not drain if one is already in progress unless it's specific to
2505 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2506 	 * the drain to be complete when the call returns.
2507 	 */
2508 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2509 		if (!zone)
2510 			return;
2511 		mutex_lock(&pcpu_drain_mutex);
2512 	}
2513 
2514 	/*
2515 	 * We don't care about racing with CPU hotplug event
2516 	 * as offline notification will cause the notified
2517 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2518 	 * disables preemption as part of its processing
2519 	 */
2520 	for_each_online_cpu(cpu) {
2521 		struct per_cpu_pages *pcp;
2522 		struct zone *z;
2523 		bool has_pcps = false;
2524 
2525 		if (force_all_cpus) {
2526 			/*
2527 			 * The pcp.count check is racy, some callers need a
2528 			 * guarantee that no cpu is missed.
2529 			 */
2530 			has_pcps = true;
2531 		} else if (zone) {
2532 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2533 			if (pcp->count)
2534 				has_pcps = true;
2535 		} else {
2536 			for_each_populated_zone(z) {
2537 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2538 				if (pcp->count) {
2539 					has_pcps = true;
2540 					break;
2541 				}
2542 			}
2543 		}
2544 
2545 		if (has_pcps)
2546 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2547 		else
2548 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2549 	}
2550 
2551 	for_each_cpu(cpu, &cpus_with_pcps) {
2552 		if (zone)
2553 			drain_pages_zone(cpu, zone);
2554 		else
2555 			drain_pages(cpu);
2556 	}
2557 
2558 	mutex_unlock(&pcpu_drain_mutex);
2559 }
2560 
2561 /*
2562  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2563  *
2564  * When zone parameter is non-NULL, spill just the single zone's pages.
2565  */
2566 void drain_all_pages(struct zone *zone)
2567 {
2568 	__drain_all_pages(zone, false);
2569 }
2570 
2571 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2572 {
2573 	int min_nr_free, max_nr_free;
2574 
2575 	/* Free as much as possible if batch freeing high-order pages. */
2576 	if (unlikely(free_high))
2577 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2578 
2579 	/* Check for PCP disabled or boot pageset */
2580 	if (unlikely(high < batch))
2581 		return 1;
2582 
2583 	/* Leave at least pcp->batch pages on the list */
2584 	min_nr_free = batch;
2585 	max_nr_free = high - batch;
2586 
2587 	/*
2588 	 * Increase the batch number to the number of the consecutive
2589 	 * freed pages to reduce zone lock contention.
2590 	 */
2591 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2592 
2593 	return batch;
2594 }
2595 
2596 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2597 		       int batch, bool free_high)
2598 {
2599 	int high, high_min, high_max;
2600 
2601 	high_min = READ_ONCE(pcp->high_min);
2602 	high_max = READ_ONCE(pcp->high_max);
2603 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2604 
2605 	if (unlikely(!high))
2606 		return 0;
2607 
2608 	if (unlikely(free_high)) {
2609 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2610 				high_min);
2611 		return 0;
2612 	}
2613 
2614 	/*
2615 	 * If reclaim is active, limit the number of pages that can be
2616 	 * stored on pcp lists
2617 	 */
2618 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2619 		int free_count = max_t(int, pcp->free_count, batch);
2620 
2621 		pcp->high = max(high - free_count, high_min);
2622 		return min(batch << 2, pcp->high);
2623 	}
2624 
2625 	if (high_min == high_max)
2626 		return high;
2627 
2628 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2629 		int free_count = max_t(int, pcp->free_count, batch);
2630 
2631 		pcp->high = max(high - free_count, high_min);
2632 		high = max(pcp->count, high_min);
2633 	} else if (pcp->count >= high) {
2634 		int need_high = pcp->free_count + batch;
2635 
2636 		/* pcp->high should be large enough to hold batch freed pages */
2637 		if (pcp->high < need_high)
2638 			pcp->high = clamp(need_high, high_min, high_max);
2639 	}
2640 
2641 	return high;
2642 }
2643 
2644 static void free_frozen_page_commit(struct zone *zone,
2645 		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2646 		unsigned int order, fpi_t fpi_flags)
2647 {
2648 	int high, batch;
2649 	int pindex;
2650 	bool free_high = false;
2651 
2652 	/*
2653 	 * On freeing, reduce the number of pages that are batch allocated.
2654 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2655 	 * allocations.
2656 	 */
2657 	pcp->alloc_factor >>= 1;
2658 	__count_vm_events(PGFREE, 1 << order);
2659 	pindex = order_to_pindex(migratetype, order);
2660 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2661 	pcp->count += 1 << order;
2662 
2663 	batch = READ_ONCE(pcp->batch);
2664 	/*
2665 	 * As high-order pages other than THP's stored on PCP can contribute
2666 	 * to fragmentation, limit the number stored when PCP is heavily
2667 	 * freeing without allocation. The remainder after bulk freeing
2668 	 * stops will be drained from vmstat refresh context.
2669 	 */
2670 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2671 		free_high = (pcp->free_count >= batch &&
2672 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2673 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2674 			      pcp->count >= READ_ONCE(batch)));
2675 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2676 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2677 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2678 	}
2679 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2680 		pcp->free_count += (1 << order);
2681 
2682 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
2683 		/*
2684 		 * Do not attempt to take a zone lock. Let pcp->count get
2685 		 * over high mark temporarily.
2686 		 */
2687 		return;
2688 	}
2689 	high = nr_pcp_high(pcp, zone, batch, free_high);
2690 	if (pcp->count >= high) {
2691 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2692 				   pcp, pindex);
2693 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2694 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2695 				      ZONE_MOVABLE, 0))
2696 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2697 	}
2698 }
2699 
2700 /*
2701  * Free a pcp page
2702  */
2703 static void __free_frozen_pages(struct page *page, unsigned int order,
2704 				fpi_t fpi_flags)
2705 {
2706 	unsigned long __maybe_unused UP_flags;
2707 	struct per_cpu_pages *pcp;
2708 	struct zone *zone;
2709 	unsigned long pfn = page_to_pfn(page);
2710 	int migratetype;
2711 
2712 	if (!pcp_allowed_order(order)) {
2713 		__free_pages_ok(page, order, fpi_flags);
2714 		return;
2715 	}
2716 
2717 	if (!free_pages_prepare(page, order))
2718 		return;
2719 
2720 	/*
2721 	 * We only track unmovable, reclaimable and movable on pcp lists.
2722 	 * Place ISOLATE pages on the isolated list because they are being
2723 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2724 	 * get those areas back if necessary. Otherwise, we may have to free
2725 	 * excessively into the page allocator
2726 	 */
2727 	zone = page_zone(page);
2728 	migratetype = get_pfnblock_migratetype(page, pfn);
2729 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2730 		if (unlikely(is_migrate_isolate(migratetype))) {
2731 			free_one_page(zone, page, pfn, order, fpi_flags);
2732 			return;
2733 		}
2734 		migratetype = MIGRATE_MOVABLE;
2735 	}
2736 
2737 	if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
2738 		     && (in_nmi() || in_hardirq()))) {
2739 		add_page_to_zone_llist(zone, page, order);
2740 		return;
2741 	}
2742 	pcp_trylock_prepare(UP_flags);
2743 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2744 	if (pcp) {
2745 		free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags);
2746 		pcp_spin_unlock(pcp);
2747 	} else {
2748 		free_one_page(zone, page, pfn, order, fpi_flags);
2749 	}
2750 	pcp_trylock_finish(UP_flags);
2751 }
2752 
2753 void free_frozen_pages(struct page *page, unsigned int order)
2754 {
2755 	__free_frozen_pages(page, order, FPI_NONE);
2756 }
2757 
2758 /*
2759  * Free a batch of folios
2760  */
2761 void free_unref_folios(struct folio_batch *folios)
2762 {
2763 	unsigned long __maybe_unused UP_flags;
2764 	struct per_cpu_pages *pcp = NULL;
2765 	struct zone *locked_zone = NULL;
2766 	int i, j;
2767 
2768 	/* Prepare folios for freeing */
2769 	for (i = 0, j = 0; i < folios->nr; i++) {
2770 		struct folio *folio = folios->folios[i];
2771 		unsigned long pfn = folio_pfn(folio);
2772 		unsigned int order = folio_order(folio);
2773 
2774 		if (!free_pages_prepare(&folio->page, order))
2775 			continue;
2776 		/*
2777 		 * Free orders not handled on the PCP directly to the
2778 		 * allocator.
2779 		 */
2780 		if (!pcp_allowed_order(order)) {
2781 			free_one_page(folio_zone(folio), &folio->page,
2782 				      pfn, order, FPI_NONE);
2783 			continue;
2784 		}
2785 		folio->private = (void *)(unsigned long)order;
2786 		if (j != i)
2787 			folios->folios[j] = folio;
2788 		j++;
2789 	}
2790 	folios->nr = j;
2791 
2792 	for (i = 0; i < folios->nr; i++) {
2793 		struct folio *folio = folios->folios[i];
2794 		struct zone *zone = folio_zone(folio);
2795 		unsigned long pfn = folio_pfn(folio);
2796 		unsigned int order = (unsigned long)folio->private;
2797 		int migratetype;
2798 
2799 		folio->private = NULL;
2800 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2801 
2802 		/* Different zone requires a different pcp lock */
2803 		if (zone != locked_zone ||
2804 		    is_migrate_isolate(migratetype)) {
2805 			if (pcp) {
2806 				pcp_spin_unlock(pcp);
2807 				pcp_trylock_finish(UP_flags);
2808 				locked_zone = NULL;
2809 				pcp = NULL;
2810 			}
2811 
2812 			/*
2813 			 * Free isolated pages directly to the
2814 			 * allocator, see comment in free_frozen_pages.
2815 			 */
2816 			if (is_migrate_isolate(migratetype)) {
2817 				free_one_page(zone, &folio->page, pfn,
2818 					      order, FPI_NONE);
2819 				continue;
2820 			}
2821 
2822 			/*
2823 			 * trylock is necessary as folios may be getting freed
2824 			 * from IRQ or SoftIRQ context after an IO completion.
2825 			 */
2826 			pcp_trylock_prepare(UP_flags);
2827 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2828 			if (unlikely(!pcp)) {
2829 				pcp_trylock_finish(UP_flags);
2830 				free_one_page(zone, &folio->page, pfn,
2831 					      order, FPI_NONE);
2832 				continue;
2833 			}
2834 			locked_zone = zone;
2835 		}
2836 
2837 		/*
2838 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2839 		 * to the MIGRATE_MOVABLE pcp list.
2840 		 */
2841 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2842 			migratetype = MIGRATE_MOVABLE;
2843 
2844 		trace_mm_page_free_batched(&folio->page);
2845 		free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
2846 					order, FPI_NONE);
2847 	}
2848 
2849 	if (pcp) {
2850 		pcp_spin_unlock(pcp);
2851 		pcp_trylock_finish(UP_flags);
2852 	}
2853 	folio_batch_reinit(folios);
2854 }
2855 
2856 /*
2857  * split_page takes a non-compound higher-order page, and splits it into
2858  * n (1<<order) sub-pages: page[0..n]
2859  * Each sub-page must be freed individually.
2860  *
2861  * Note: this is probably too low level an operation for use in drivers.
2862  * Please consult with lkml before using this in your driver.
2863  */
2864 void split_page(struct page *page, unsigned int order)
2865 {
2866 	int i;
2867 
2868 	VM_BUG_ON_PAGE(PageCompound(page), page);
2869 	VM_BUG_ON_PAGE(!page_count(page), page);
2870 
2871 	for (i = 1; i < (1 << order); i++)
2872 		set_page_refcounted(page + i);
2873 	split_page_owner(page, order, 0);
2874 	pgalloc_tag_split(page_folio(page), order, 0);
2875 	split_page_memcg(page, order);
2876 }
2877 EXPORT_SYMBOL_GPL(split_page);
2878 
2879 int __isolate_free_page(struct page *page, unsigned int order)
2880 {
2881 	struct zone *zone = page_zone(page);
2882 	int mt = get_pageblock_migratetype(page);
2883 
2884 	if (!is_migrate_isolate(mt)) {
2885 		unsigned long watermark;
2886 		/*
2887 		 * Obey watermarks as if the page was being allocated. We can
2888 		 * emulate a high-order watermark check with a raised order-0
2889 		 * watermark, because we already know our high-order page
2890 		 * exists.
2891 		 */
2892 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2893 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2894 			return 0;
2895 	}
2896 
2897 	del_page_from_free_list(page, zone, order, mt);
2898 
2899 	/*
2900 	 * Set the pageblock if the isolated page is at least half of a
2901 	 * pageblock
2902 	 */
2903 	if (order >= pageblock_order - 1) {
2904 		struct page *endpage = page + (1 << order) - 1;
2905 		for (; page < endpage; page += pageblock_nr_pages) {
2906 			int mt = get_pageblock_migratetype(page);
2907 			/*
2908 			 * Only change normal pageblocks (i.e., they can merge
2909 			 * with others)
2910 			 */
2911 			if (migratetype_is_mergeable(mt))
2912 				move_freepages_block(zone, page, mt,
2913 						     MIGRATE_MOVABLE);
2914 		}
2915 	}
2916 
2917 	return 1UL << order;
2918 }
2919 
2920 /**
2921  * __putback_isolated_page - Return a now-isolated page back where we got it
2922  * @page: Page that was isolated
2923  * @order: Order of the isolated page
2924  * @mt: The page's pageblock's migratetype
2925  *
2926  * This function is meant to return a page pulled from the free lists via
2927  * __isolate_free_page back to the free lists they were pulled from.
2928  */
2929 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2930 {
2931 	struct zone *zone = page_zone(page);
2932 
2933 	/* zone lock should be held when this function is called */
2934 	lockdep_assert_held(&zone->lock);
2935 
2936 	/* Return isolated page to tail of freelist. */
2937 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2938 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2939 }
2940 
2941 /*
2942  * Update NUMA hit/miss statistics
2943  */
2944 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2945 				   long nr_account)
2946 {
2947 #ifdef CONFIG_NUMA
2948 	enum numa_stat_item local_stat = NUMA_LOCAL;
2949 
2950 	/* skip numa counters update if numa stats is disabled */
2951 	if (!static_branch_likely(&vm_numa_stat_key))
2952 		return;
2953 
2954 	if (zone_to_nid(z) != numa_node_id())
2955 		local_stat = NUMA_OTHER;
2956 
2957 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2958 		__count_numa_events(z, NUMA_HIT, nr_account);
2959 	else {
2960 		__count_numa_events(z, NUMA_MISS, nr_account);
2961 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2962 	}
2963 	__count_numa_events(z, local_stat, nr_account);
2964 #endif
2965 }
2966 
2967 static __always_inline
2968 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2969 			   unsigned int order, unsigned int alloc_flags,
2970 			   int migratetype)
2971 {
2972 	struct page *page;
2973 	unsigned long flags;
2974 
2975 	do {
2976 		page = NULL;
2977 		if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2978 			if (!spin_trylock_irqsave(&zone->lock, flags))
2979 				return NULL;
2980 		} else {
2981 			spin_lock_irqsave(&zone->lock, flags);
2982 		}
2983 		if (alloc_flags & ALLOC_HIGHATOMIC)
2984 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2985 		if (!page) {
2986 			enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2987 
2988 			page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm);
2989 
2990 			/*
2991 			 * If the allocation fails, allow OOM handling and
2992 			 * order-0 (atomic) allocs access to HIGHATOMIC
2993 			 * reserves as failing now is worse than failing a
2994 			 * high-order atomic allocation in the future.
2995 			 */
2996 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2997 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2998 
2999 			if (!page) {
3000 				spin_unlock_irqrestore(&zone->lock, flags);
3001 				return NULL;
3002 			}
3003 		}
3004 		spin_unlock_irqrestore(&zone->lock, flags);
3005 	} while (check_new_pages(page, order));
3006 
3007 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3008 	zone_statistics(preferred_zone, zone, 1);
3009 
3010 	return page;
3011 }
3012 
3013 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
3014 {
3015 	int high, base_batch, batch, max_nr_alloc;
3016 	int high_max, high_min;
3017 
3018 	base_batch = READ_ONCE(pcp->batch);
3019 	high_min = READ_ONCE(pcp->high_min);
3020 	high_max = READ_ONCE(pcp->high_max);
3021 	high = pcp->high = clamp(pcp->high, high_min, high_max);
3022 
3023 	/* Check for PCP disabled or boot pageset */
3024 	if (unlikely(high < base_batch))
3025 		return 1;
3026 
3027 	if (order)
3028 		batch = base_batch;
3029 	else
3030 		batch = (base_batch << pcp->alloc_factor);
3031 
3032 	/*
3033 	 * If we had larger pcp->high, we could avoid to allocate from
3034 	 * zone.
3035 	 */
3036 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
3037 		high = pcp->high = min(high + batch, high_max);
3038 
3039 	if (!order) {
3040 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3041 		/*
3042 		 * Double the number of pages allocated each time there is
3043 		 * subsequent allocation of order-0 pages without any freeing.
3044 		 */
3045 		if (batch <= max_nr_alloc &&
3046 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3047 			pcp->alloc_factor++;
3048 		batch = min(batch, max_nr_alloc);
3049 	}
3050 
3051 	/*
3052 	 * Scale batch relative to order if batch implies free pages
3053 	 * can be stored on the PCP. Batch can be 1 for small zones or
3054 	 * for boot pagesets which should never store free pages as
3055 	 * the pages may belong to arbitrary zones.
3056 	 */
3057 	if (batch > 1)
3058 		batch = max(batch >> order, 2);
3059 
3060 	return batch;
3061 }
3062 
3063 /* Remove page from the per-cpu list, caller must protect the list */
3064 static inline
3065 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3066 			int migratetype,
3067 			unsigned int alloc_flags,
3068 			struct per_cpu_pages *pcp,
3069 			struct list_head *list)
3070 {
3071 	struct page *page;
3072 
3073 	do {
3074 		if (list_empty(list)) {
3075 			int batch = nr_pcp_alloc(pcp, zone, order);
3076 			int alloced;
3077 
3078 			alloced = rmqueue_bulk(zone, order,
3079 					batch, list,
3080 					migratetype, alloc_flags);
3081 
3082 			pcp->count += alloced << order;
3083 			if (unlikely(list_empty(list)))
3084 				return NULL;
3085 		}
3086 
3087 		page = list_first_entry(list, struct page, pcp_list);
3088 		list_del(&page->pcp_list);
3089 		pcp->count -= 1 << order;
3090 	} while (check_new_pages(page, order));
3091 
3092 	return page;
3093 }
3094 
3095 /* Lock and remove page from the per-cpu list */
3096 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3097 			struct zone *zone, unsigned int order,
3098 			int migratetype, unsigned int alloc_flags)
3099 {
3100 	struct per_cpu_pages *pcp;
3101 	struct list_head *list;
3102 	struct page *page;
3103 	unsigned long __maybe_unused UP_flags;
3104 
3105 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3106 	pcp_trylock_prepare(UP_flags);
3107 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3108 	if (!pcp) {
3109 		pcp_trylock_finish(UP_flags);
3110 		return NULL;
3111 	}
3112 
3113 	/*
3114 	 * On allocation, reduce the number of pages that are batch freed.
3115 	 * See nr_pcp_free() where free_factor is increased for subsequent
3116 	 * frees.
3117 	 */
3118 	pcp->free_count >>= 1;
3119 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3120 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3121 	pcp_spin_unlock(pcp);
3122 	pcp_trylock_finish(UP_flags);
3123 	if (page) {
3124 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3125 		zone_statistics(preferred_zone, zone, 1);
3126 	}
3127 	return page;
3128 }
3129 
3130 /*
3131  * Allocate a page from the given zone.
3132  * Use pcplists for THP or "cheap" high-order allocations.
3133  */
3134 
3135 /*
3136  * Do not instrument rmqueue() with KMSAN. This function may call
3137  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3138  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3139  * may call rmqueue() again, which will result in a deadlock.
3140  */
3141 __no_sanitize_memory
3142 static inline
3143 struct page *rmqueue(struct zone *preferred_zone,
3144 			struct zone *zone, unsigned int order,
3145 			gfp_t gfp_flags, unsigned int alloc_flags,
3146 			int migratetype)
3147 {
3148 	struct page *page;
3149 
3150 	if (likely(pcp_allowed_order(order))) {
3151 		page = rmqueue_pcplist(preferred_zone, zone, order,
3152 				       migratetype, alloc_flags);
3153 		if (likely(page))
3154 			goto out;
3155 	}
3156 
3157 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3158 							migratetype);
3159 
3160 out:
3161 	/* Separate test+clear to avoid unnecessary atomics */
3162 	if ((alloc_flags & ALLOC_KSWAPD) &&
3163 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3164 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3165 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3166 	}
3167 
3168 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3169 	return page;
3170 }
3171 
3172 /*
3173  * Reserve the pageblock(s) surrounding an allocation request for
3174  * exclusive use of high-order atomic allocations if there are no
3175  * empty page blocks that contain a page with a suitable order
3176  */
3177 static void reserve_highatomic_pageblock(struct page *page, int order,
3178 					 struct zone *zone)
3179 {
3180 	int mt;
3181 	unsigned long max_managed, flags;
3182 
3183 	/*
3184 	 * The number reserved as: minimum is 1 pageblock, maximum is
3185 	 * roughly 1% of a zone. But if 1% of a zone falls below a
3186 	 * pageblock size, then don't reserve any pageblocks.
3187 	 * Check is race-prone but harmless.
3188 	 */
3189 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3190 		return;
3191 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3192 	if (zone->nr_reserved_highatomic >= max_managed)
3193 		return;
3194 
3195 	spin_lock_irqsave(&zone->lock, flags);
3196 
3197 	/* Recheck the nr_reserved_highatomic limit under the lock */
3198 	if (zone->nr_reserved_highatomic >= max_managed)
3199 		goto out_unlock;
3200 
3201 	/* Yoink! */
3202 	mt = get_pageblock_migratetype(page);
3203 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
3204 	if (!migratetype_is_mergeable(mt))
3205 		goto out_unlock;
3206 
3207 	if (order < pageblock_order) {
3208 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3209 			goto out_unlock;
3210 		zone->nr_reserved_highatomic += pageblock_nr_pages;
3211 	} else {
3212 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3213 		zone->nr_reserved_highatomic += 1 << order;
3214 	}
3215 
3216 out_unlock:
3217 	spin_unlock_irqrestore(&zone->lock, flags);
3218 }
3219 
3220 /*
3221  * Used when an allocation is about to fail under memory pressure. This
3222  * potentially hurts the reliability of high-order allocations when under
3223  * intense memory pressure but failed atomic allocations should be easier
3224  * to recover from than an OOM.
3225  *
3226  * If @force is true, try to unreserve pageblocks even though highatomic
3227  * pageblock is exhausted.
3228  */
3229 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3230 						bool force)
3231 {
3232 	struct zonelist *zonelist = ac->zonelist;
3233 	unsigned long flags;
3234 	struct zoneref *z;
3235 	struct zone *zone;
3236 	struct page *page;
3237 	int order;
3238 	int ret;
3239 
3240 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3241 								ac->nodemask) {
3242 		/*
3243 		 * Preserve at least one pageblock unless memory pressure
3244 		 * is really high.
3245 		 */
3246 		if (!force && zone->nr_reserved_highatomic <=
3247 					pageblock_nr_pages)
3248 			continue;
3249 
3250 		spin_lock_irqsave(&zone->lock, flags);
3251 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
3252 			struct free_area *area = &(zone->free_area[order]);
3253 			unsigned long size;
3254 
3255 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3256 			if (!page)
3257 				continue;
3258 
3259 			size = max(pageblock_nr_pages, 1UL << order);
3260 			/*
3261 			 * It should never happen but changes to
3262 			 * locking could inadvertently allow a per-cpu
3263 			 * drain to add pages to MIGRATE_HIGHATOMIC
3264 			 * while unreserving so be safe and watch for
3265 			 * underflows.
3266 			 */
3267 			if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
3268 				size = zone->nr_reserved_highatomic;
3269 			zone->nr_reserved_highatomic -= size;
3270 
3271 			/*
3272 			 * Convert to ac->migratetype and avoid the normal
3273 			 * pageblock stealing heuristics. Minimally, the caller
3274 			 * is doing the work and needs the pages. More
3275 			 * importantly, if the block was always converted to
3276 			 * MIGRATE_UNMOVABLE or another type then the number
3277 			 * of pageblocks that cannot be completely freed
3278 			 * may increase.
3279 			 */
3280 			if (order < pageblock_order)
3281 				ret = move_freepages_block(zone, page,
3282 							   MIGRATE_HIGHATOMIC,
3283 							   ac->migratetype);
3284 			else {
3285 				move_to_free_list(page, zone, order,
3286 						  MIGRATE_HIGHATOMIC,
3287 						  ac->migratetype);
3288 				change_pageblock_range(page, order,
3289 						       ac->migratetype);
3290 				ret = 1;
3291 			}
3292 			/*
3293 			 * Reserving the block(s) already succeeded,
3294 			 * so this should not fail on zone boundaries.
3295 			 */
3296 			WARN_ON_ONCE(ret == -1);
3297 			if (ret > 0) {
3298 				spin_unlock_irqrestore(&zone->lock, flags);
3299 				return ret;
3300 			}
3301 		}
3302 		spin_unlock_irqrestore(&zone->lock, flags);
3303 	}
3304 
3305 	return false;
3306 }
3307 
3308 static inline long __zone_watermark_unusable_free(struct zone *z,
3309 				unsigned int order, unsigned int alloc_flags)
3310 {
3311 	long unusable_free = (1 << order) - 1;
3312 
3313 	/*
3314 	 * If the caller does not have rights to reserves below the min
3315 	 * watermark then subtract the free pages reserved for highatomic.
3316 	 */
3317 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3318 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3319 
3320 #ifdef CONFIG_CMA
3321 	/* If allocation can't use CMA areas don't use free CMA pages */
3322 	if (!(alloc_flags & ALLOC_CMA))
3323 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3324 #endif
3325 
3326 	return unusable_free;
3327 }
3328 
3329 /*
3330  * Return true if free base pages are above 'mark'. For high-order checks it
3331  * will return true of the order-0 watermark is reached and there is at least
3332  * one free page of a suitable size. Checking now avoids taking the zone lock
3333  * to check in the allocation paths if no pages are free.
3334  */
3335 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3336 			 int highest_zoneidx, unsigned int alloc_flags,
3337 			 long free_pages)
3338 {
3339 	long min = mark;
3340 	int o;
3341 
3342 	/* free_pages may go negative - that's OK */
3343 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3344 
3345 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3346 		/*
3347 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3348 		 * as OOM.
3349 		 */
3350 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3351 			min -= min / 2;
3352 
3353 			/*
3354 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3355 			 * access more reserves than just __GFP_HIGH. Other
3356 			 * non-blocking allocations requests such as GFP_NOWAIT
3357 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3358 			 * access to the min reserve.
3359 			 */
3360 			if (alloc_flags & ALLOC_NON_BLOCK)
3361 				min -= min / 4;
3362 		}
3363 
3364 		/*
3365 		 * OOM victims can try even harder than the normal reserve
3366 		 * users on the grounds that it's definitely going to be in
3367 		 * the exit path shortly and free memory. Any allocation it
3368 		 * makes during the free path will be small and short-lived.
3369 		 */
3370 		if (alloc_flags & ALLOC_OOM)
3371 			min -= min / 2;
3372 	}
3373 
3374 	/*
3375 	 * Check watermarks for an order-0 allocation request. If these
3376 	 * are not met, then a high-order request also cannot go ahead
3377 	 * even if a suitable page happened to be free.
3378 	 */
3379 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3380 		return false;
3381 
3382 	/* If this is an order-0 request then the watermark is fine */
3383 	if (!order)
3384 		return true;
3385 
3386 	/* For a high-order request, check at least one suitable page is free */
3387 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3388 		struct free_area *area = &z->free_area[o];
3389 		int mt;
3390 
3391 		if (!area->nr_free)
3392 			continue;
3393 
3394 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3395 			if (!free_area_empty(area, mt))
3396 				return true;
3397 		}
3398 
3399 #ifdef CONFIG_CMA
3400 		if ((alloc_flags & ALLOC_CMA) &&
3401 		    !free_area_empty(area, MIGRATE_CMA)) {
3402 			return true;
3403 		}
3404 #endif
3405 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3406 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3407 			return true;
3408 		}
3409 	}
3410 	return false;
3411 }
3412 
3413 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3414 		      int highest_zoneidx, unsigned int alloc_flags)
3415 {
3416 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3417 					zone_page_state(z, NR_FREE_PAGES));
3418 }
3419 
3420 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3421 				unsigned long mark, int highest_zoneidx,
3422 				unsigned int alloc_flags, gfp_t gfp_mask)
3423 {
3424 	long free_pages;
3425 
3426 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3427 
3428 	/*
3429 	 * Fast check for order-0 only. If this fails then the reserves
3430 	 * need to be calculated.
3431 	 */
3432 	if (!order) {
3433 		long usable_free;
3434 		long reserved;
3435 
3436 		usable_free = free_pages;
3437 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3438 
3439 		/* reserved may over estimate high-atomic reserves. */
3440 		usable_free -= min(usable_free, reserved);
3441 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3442 			return true;
3443 	}
3444 
3445 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3446 					free_pages))
3447 		return true;
3448 
3449 	/*
3450 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3451 	 * when checking the min watermark. The min watermark is the
3452 	 * point where boosting is ignored so that kswapd is woken up
3453 	 * when below the low watermark.
3454 	 */
3455 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3456 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3457 		mark = z->_watermark[WMARK_MIN];
3458 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3459 					alloc_flags, free_pages);
3460 	}
3461 
3462 	return false;
3463 }
3464 
3465 #ifdef CONFIG_NUMA
3466 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3467 
3468 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3469 {
3470 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3471 				node_reclaim_distance;
3472 }
3473 #else	/* CONFIG_NUMA */
3474 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3475 {
3476 	return true;
3477 }
3478 #endif	/* CONFIG_NUMA */
3479 
3480 /*
3481  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3482  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3483  * premature use of a lower zone may cause lowmem pressure problems that
3484  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3485  * probably too small. It only makes sense to spread allocations to avoid
3486  * fragmentation between the Normal and DMA32 zones.
3487  */
3488 static inline unsigned int
3489 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3490 {
3491 	unsigned int alloc_flags;
3492 
3493 	/*
3494 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3495 	 * to save a branch.
3496 	 */
3497 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3498 
3499 	if (defrag_mode) {
3500 		alloc_flags |= ALLOC_NOFRAGMENT;
3501 		return alloc_flags;
3502 	}
3503 
3504 #ifdef CONFIG_ZONE_DMA32
3505 	if (!zone)
3506 		return alloc_flags;
3507 
3508 	if (zone_idx(zone) != ZONE_NORMAL)
3509 		return alloc_flags;
3510 
3511 	/*
3512 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3513 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3514 	 * on UMA that if Normal is populated then so is DMA32.
3515 	 */
3516 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3517 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3518 		return alloc_flags;
3519 
3520 	alloc_flags |= ALLOC_NOFRAGMENT;
3521 #endif /* CONFIG_ZONE_DMA32 */
3522 	return alloc_flags;
3523 }
3524 
3525 /* Must be called after current_gfp_context() which can change gfp_mask */
3526 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3527 						  unsigned int alloc_flags)
3528 {
3529 #ifdef CONFIG_CMA
3530 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3531 		alloc_flags |= ALLOC_CMA;
3532 #endif
3533 	return alloc_flags;
3534 }
3535 
3536 /*
3537  * get_page_from_freelist goes through the zonelist trying to allocate
3538  * a page.
3539  */
3540 static struct page *
3541 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3542 						const struct alloc_context *ac)
3543 {
3544 	struct zoneref *z;
3545 	struct zone *zone;
3546 	struct pglist_data *last_pgdat = NULL;
3547 	bool last_pgdat_dirty_ok = false;
3548 	bool no_fallback;
3549 
3550 retry:
3551 	/*
3552 	 * Scan zonelist, looking for a zone with enough free.
3553 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3554 	 */
3555 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3556 	z = ac->preferred_zoneref;
3557 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3558 					ac->nodemask) {
3559 		struct page *page;
3560 		unsigned long mark;
3561 
3562 		if (cpusets_enabled() &&
3563 			(alloc_flags & ALLOC_CPUSET) &&
3564 			!__cpuset_zone_allowed(zone, gfp_mask))
3565 				continue;
3566 		/*
3567 		 * When allocating a page cache page for writing, we
3568 		 * want to get it from a node that is within its dirty
3569 		 * limit, such that no single node holds more than its
3570 		 * proportional share of globally allowed dirty pages.
3571 		 * The dirty limits take into account the node's
3572 		 * lowmem reserves and high watermark so that kswapd
3573 		 * should be able to balance it without having to
3574 		 * write pages from its LRU list.
3575 		 *
3576 		 * XXX: For now, allow allocations to potentially
3577 		 * exceed the per-node dirty limit in the slowpath
3578 		 * (spread_dirty_pages unset) before going into reclaim,
3579 		 * which is important when on a NUMA setup the allowed
3580 		 * nodes are together not big enough to reach the
3581 		 * global limit.  The proper fix for these situations
3582 		 * will require awareness of nodes in the
3583 		 * dirty-throttling and the flusher threads.
3584 		 */
3585 		if (ac->spread_dirty_pages) {
3586 			if (last_pgdat != zone->zone_pgdat) {
3587 				last_pgdat = zone->zone_pgdat;
3588 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3589 			}
3590 
3591 			if (!last_pgdat_dirty_ok)
3592 				continue;
3593 		}
3594 
3595 		if (no_fallback && !defrag_mode && nr_online_nodes > 1 &&
3596 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3597 			int local_nid;
3598 
3599 			/*
3600 			 * If moving to a remote node, retry but allow
3601 			 * fragmenting fallbacks. Locality is more important
3602 			 * than fragmentation avoidance.
3603 			 */
3604 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3605 			if (zone_to_nid(zone) != local_nid) {
3606 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3607 				goto retry;
3608 			}
3609 		}
3610 
3611 		cond_accept_memory(zone, order, alloc_flags);
3612 
3613 		/*
3614 		 * Detect whether the number of free pages is below high
3615 		 * watermark.  If so, we will decrease pcp->high and free
3616 		 * PCP pages in free path to reduce the possibility of
3617 		 * premature page reclaiming.  Detection is done here to
3618 		 * avoid to do that in hotter free path.
3619 		 */
3620 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3621 			goto check_alloc_wmark;
3622 
3623 		mark = high_wmark_pages(zone);
3624 		if (zone_watermark_fast(zone, order, mark,
3625 					ac->highest_zoneidx, alloc_flags,
3626 					gfp_mask))
3627 			goto try_this_zone;
3628 		else
3629 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3630 
3631 check_alloc_wmark:
3632 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3633 		if (!zone_watermark_fast(zone, order, mark,
3634 				       ac->highest_zoneidx, alloc_flags,
3635 				       gfp_mask)) {
3636 			int ret;
3637 
3638 			if (cond_accept_memory(zone, order, alloc_flags))
3639 				goto try_this_zone;
3640 
3641 			/*
3642 			 * Watermark failed for this zone, but see if we can
3643 			 * grow this zone if it contains deferred pages.
3644 			 */
3645 			if (deferred_pages_enabled()) {
3646 				if (_deferred_grow_zone(zone, order))
3647 					goto try_this_zone;
3648 			}
3649 			/* Checked here to keep the fast path fast */
3650 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3651 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3652 				goto try_this_zone;
3653 
3654 			if (!node_reclaim_enabled() ||
3655 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3656 				continue;
3657 
3658 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3659 			switch (ret) {
3660 			case NODE_RECLAIM_NOSCAN:
3661 				/* did not scan */
3662 				continue;
3663 			case NODE_RECLAIM_FULL:
3664 				/* scanned but unreclaimable */
3665 				continue;
3666 			default:
3667 				/* did we reclaim enough */
3668 				if (zone_watermark_ok(zone, order, mark,
3669 					ac->highest_zoneidx, alloc_flags))
3670 					goto try_this_zone;
3671 
3672 				continue;
3673 			}
3674 		}
3675 
3676 try_this_zone:
3677 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3678 				gfp_mask, alloc_flags, ac->migratetype);
3679 		if (page) {
3680 			prep_new_page(page, order, gfp_mask, alloc_flags);
3681 
3682 			/*
3683 			 * If this is a high-order atomic allocation then check
3684 			 * if the pageblock should be reserved for the future
3685 			 */
3686 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3687 				reserve_highatomic_pageblock(page, order, zone);
3688 
3689 			return page;
3690 		} else {
3691 			if (cond_accept_memory(zone, order, alloc_flags))
3692 				goto try_this_zone;
3693 
3694 			/* Try again if zone has deferred pages */
3695 			if (deferred_pages_enabled()) {
3696 				if (_deferred_grow_zone(zone, order))
3697 					goto try_this_zone;
3698 			}
3699 		}
3700 	}
3701 
3702 	/*
3703 	 * It's possible on a UMA machine to get through all zones that are
3704 	 * fragmented. If avoiding fragmentation, reset and try again.
3705 	 */
3706 	if (no_fallback && !defrag_mode) {
3707 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3708 		goto retry;
3709 	}
3710 
3711 	return NULL;
3712 }
3713 
3714 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3715 {
3716 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3717 
3718 	/*
3719 	 * This documents exceptions given to allocations in certain
3720 	 * contexts that are allowed to allocate outside current's set
3721 	 * of allowed nodes.
3722 	 */
3723 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3724 		if (tsk_is_oom_victim(current) ||
3725 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3726 			filter &= ~SHOW_MEM_FILTER_NODES;
3727 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3728 		filter &= ~SHOW_MEM_FILTER_NODES;
3729 
3730 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3731 }
3732 
3733 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3734 {
3735 	struct va_format vaf;
3736 	va_list args;
3737 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3738 
3739 	if ((gfp_mask & __GFP_NOWARN) ||
3740 	     !__ratelimit(&nopage_rs) ||
3741 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3742 		return;
3743 
3744 	va_start(args, fmt);
3745 	vaf.fmt = fmt;
3746 	vaf.va = &args;
3747 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3748 			current->comm, &vaf, gfp_mask, &gfp_mask,
3749 			nodemask_pr_args(nodemask));
3750 	va_end(args);
3751 
3752 	cpuset_print_current_mems_allowed();
3753 	pr_cont("\n");
3754 	dump_stack();
3755 	warn_alloc_show_mem(gfp_mask, nodemask);
3756 }
3757 
3758 static inline struct page *
3759 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3760 			      unsigned int alloc_flags,
3761 			      const struct alloc_context *ac)
3762 {
3763 	struct page *page;
3764 
3765 	page = get_page_from_freelist(gfp_mask, order,
3766 			alloc_flags|ALLOC_CPUSET, ac);
3767 	/*
3768 	 * fallback to ignore cpuset restriction if our nodes
3769 	 * are depleted
3770 	 */
3771 	if (!page)
3772 		page = get_page_from_freelist(gfp_mask, order,
3773 				alloc_flags, ac);
3774 	return page;
3775 }
3776 
3777 static inline struct page *
3778 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3779 	const struct alloc_context *ac, unsigned long *did_some_progress)
3780 {
3781 	struct oom_control oc = {
3782 		.zonelist = ac->zonelist,
3783 		.nodemask = ac->nodemask,
3784 		.memcg = NULL,
3785 		.gfp_mask = gfp_mask,
3786 		.order = order,
3787 	};
3788 	struct page *page;
3789 
3790 	*did_some_progress = 0;
3791 
3792 	/*
3793 	 * Acquire the oom lock.  If that fails, somebody else is
3794 	 * making progress for us.
3795 	 */
3796 	if (!mutex_trylock(&oom_lock)) {
3797 		*did_some_progress = 1;
3798 		schedule_timeout_uninterruptible(1);
3799 		return NULL;
3800 	}
3801 
3802 	/*
3803 	 * Go through the zonelist yet one more time, keep very high watermark
3804 	 * here, this is only to catch a parallel oom killing, we must fail if
3805 	 * we're still under heavy pressure. But make sure that this reclaim
3806 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3807 	 * allocation which will never fail due to oom_lock already held.
3808 	 */
3809 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3810 				      ~__GFP_DIRECT_RECLAIM, order,
3811 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3812 	if (page)
3813 		goto out;
3814 
3815 	/* Coredumps can quickly deplete all memory reserves */
3816 	if (current->flags & PF_DUMPCORE)
3817 		goto out;
3818 	/* The OOM killer will not help higher order allocs */
3819 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3820 		goto out;
3821 	/*
3822 	 * We have already exhausted all our reclaim opportunities without any
3823 	 * success so it is time to admit defeat. We will skip the OOM killer
3824 	 * because it is very likely that the caller has a more reasonable
3825 	 * fallback than shooting a random task.
3826 	 *
3827 	 * The OOM killer may not free memory on a specific node.
3828 	 */
3829 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3830 		goto out;
3831 	/* The OOM killer does not needlessly kill tasks for lowmem */
3832 	if (ac->highest_zoneidx < ZONE_NORMAL)
3833 		goto out;
3834 	if (pm_suspended_storage())
3835 		goto out;
3836 	/*
3837 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3838 	 * other request to make a forward progress.
3839 	 * We are in an unfortunate situation where out_of_memory cannot
3840 	 * do much for this context but let's try it to at least get
3841 	 * access to memory reserved if the current task is killed (see
3842 	 * out_of_memory). Once filesystems are ready to handle allocation
3843 	 * failures more gracefully we should just bail out here.
3844 	 */
3845 
3846 	/* Exhausted what can be done so it's blame time */
3847 	if (out_of_memory(&oc) ||
3848 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3849 		*did_some_progress = 1;
3850 
3851 		/*
3852 		 * Help non-failing allocations by giving them access to memory
3853 		 * reserves
3854 		 */
3855 		if (gfp_mask & __GFP_NOFAIL)
3856 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3857 					ALLOC_NO_WATERMARKS, ac);
3858 	}
3859 out:
3860 	mutex_unlock(&oom_lock);
3861 	return page;
3862 }
3863 
3864 /*
3865  * Maximum number of compaction retries with a progress before OOM
3866  * killer is consider as the only way to move forward.
3867  */
3868 #define MAX_COMPACT_RETRIES 16
3869 
3870 #ifdef CONFIG_COMPACTION
3871 /* Try memory compaction for high-order allocations before reclaim */
3872 static struct page *
3873 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3874 		unsigned int alloc_flags, const struct alloc_context *ac,
3875 		enum compact_priority prio, enum compact_result *compact_result)
3876 {
3877 	struct page *page = NULL;
3878 	unsigned long pflags;
3879 	unsigned int noreclaim_flag;
3880 
3881 	if (!order)
3882 		return NULL;
3883 
3884 	psi_memstall_enter(&pflags);
3885 	delayacct_compact_start();
3886 	noreclaim_flag = memalloc_noreclaim_save();
3887 
3888 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3889 								prio, &page);
3890 
3891 	memalloc_noreclaim_restore(noreclaim_flag);
3892 	psi_memstall_leave(&pflags);
3893 	delayacct_compact_end();
3894 
3895 	if (*compact_result == COMPACT_SKIPPED)
3896 		return NULL;
3897 	/*
3898 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3899 	 * count a compaction stall
3900 	 */
3901 	count_vm_event(COMPACTSTALL);
3902 
3903 	/* Prep a captured page if available */
3904 	if (page)
3905 		prep_new_page(page, order, gfp_mask, alloc_flags);
3906 
3907 	/* Try get a page from the freelist if available */
3908 	if (!page)
3909 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3910 
3911 	if (page) {
3912 		struct zone *zone = page_zone(page);
3913 
3914 		zone->compact_blockskip_flush = false;
3915 		compaction_defer_reset(zone, order, true);
3916 		count_vm_event(COMPACTSUCCESS);
3917 		return page;
3918 	}
3919 
3920 	/*
3921 	 * It's bad if compaction run occurs and fails. The most likely reason
3922 	 * is that pages exist, but not enough to satisfy watermarks.
3923 	 */
3924 	count_vm_event(COMPACTFAIL);
3925 
3926 	cond_resched();
3927 
3928 	return NULL;
3929 }
3930 
3931 static inline bool
3932 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3933 		     enum compact_result compact_result,
3934 		     enum compact_priority *compact_priority,
3935 		     int *compaction_retries)
3936 {
3937 	int max_retries = MAX_COMPACT_RETRIES;
3938 	int min_priority;
3939 	bool ret = false;
3940 	int retries = *compaction_retries;
3941 	enum compact_priority priority = *compact_priority;
3942 
3943 	if (!order)
3944 		return false;
3945 
3946 	if (fatal_signal_pending(current))
3947 		return false;
3948 
3949 	/*
3950 	 * Compaction was skipped due to a lack of free order-0
3951 	 * migration targets. Continue if reclaim can help.
3952 	 */
3953 	if (compact_result == COMPACT_SKIPPED) {
3954 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3955 		goto out;
3956 	}
3957 
3958 	/*
3959 	 * Compaction managed to coalesce some page blocks, but the
3960 	 * allocation failed presumably due to a race. Retry some.
3961 	 */
3962 	if (compact_result == COMPACT_SUCCESS) {
3963 		/*
3964 		 * !costly requests are much more important than
3965 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3966 		 * facto nofail and invoke OOM killer to move on while
3967 		 * costly can fail and users are ready to cope with
3968 		 * that. 1/4 retries is rather arbitrary but we would
3969 		 * need much more detailed feedback from compaction to
3970 		 * make a better decision.
3971 		 */
3972 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3973 			max_retries /= 4;
3974 
3975 		if (++(*compaction_retries) <= max_retries) {
3976 			ret = true;
3977 			goto out;
3978 		}
3979 	}
3980 
3981 	/*
3982 	 * Compaction failed. Retry with increasing priority.
3983 	 */
3984 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3985 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3986 
3987 	if (*compact_priority > min_priority) {
3988 		(*compact_priority)--;
3989 		*compaction_retries = 0;
3990 		ret = true;
3991 	}
3992 out:
3993 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3994 	return ret;
3995 }
3996 #else
3997 static inline struct page *
3998 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3999 		unsigned int alloc_flags, const struct alloc_context *ac,
4000 		enum compact_priority prio, enum compact_result *compact_result)
4001 {
4002 	*compact_result = COMPACT_SKIPPED;
4003 	return NULL;
4004 }
4005 
4006 static inline bool
4007 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4008 		     enum compact_result compact_result,
4009 		     enum compact_priority *compact_priority,
4010 		     int *compaction_retries)
4011 {
4012 	struct zone *zone;
4013 	struct zoneref *z;
4014 
4015 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4016 		return false;
4017 
4018 	/*
4019 	 * There are setups with compaction disabled which would prefer to loop
4020 	 * inside the allocator rather than hit the oom killer prematurely.
4021 	 * Let's give them a good hope and keep retrying while the order-0
4022 	 * watermarks are OK.
4023 	 */
4024 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4025 				ac->highest_zoneidx, ac->nodemask) {
4026 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4027 					ac->highest_zoneidx, alloc_flags))
4028 			return true;
4029 	}
4030 	return false;
4031 }
4032 #endif /* CONFIG_COMPACTION */
4033 
4034 #ifdef CONFIG_LOCKDEP
4035 static struct lockdep_map __fs_reclaim_map =
4036 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4037 
4038 static bool __need_reclaim(gfp_t gfp_mask)
4039 {
4040 	/* no reclaim without waiting on it */
4041 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4042 		return false;
4043 
4044 	/* this guy won't enter reclaim */
4045 	if (current->flags & PF_MEMALLOC)
4046 		return false;
4047 
4048 	if (gfp_mask & __GFP_NOLOCKDEP)
4049 		return false;
4050 
4051 	return true;
4052 }
4053 
4054 void __fs_reclaim_acquire(unsigned long ip)
4055 {
4056 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4057 }
4058 
4059 void __fs_reclaim_release(unsigned long ip)
4060 {
4061 	lock_release(&__fs_reclaim_map, ip);
4062 }
4063 
4064 void fs_reclaim_acquire(gfp_t gfp_mask)
4065 {
4066 	gfp_mask = current_gfp_context(gfp_mask);
4067 
4068 	if (__need_reclaim(gfp_mask)) {
4069 		if (gfp_mask & __GFP_FS)
4070 			__fs_reclaim_acquire(_RET_IP_);
4071 
4072 #ifdef CONFIG_MMU_NOTIFIER
4073 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4074 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4075 #endif
4076 
4077 	}
4078 }
4079 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4080 
4081 void fs_reclaim_release(gfp_t gfp_mask)
4082 {
4083 	gfp_mask = current_gfp_context(gfp_mask);
4084 
4085 	if (__need_reclaim(gfp_mask)) {
4086 		if (gfp_mask & __GFP_FS)
4087 			__fs_reclaim_release(_RET_IP_);
4088 	}
4089 }
4090 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4091 #endif
4092 
4093 /*
4094  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4095  * have been rebuilt so allocation retries. Reader side does not lock and
4096  * retries the allocation if zonelist changes. Writer side is protected by the
4097  * embedded spin_lock.
4098  */
4099 static DEFINE_SEQLOCK(zonelist_update_seq);
4100 
4101 static unsigned int zonelist_iter_begin(void)
4102 {
4103 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4104 		return read_seqbegin(&zonelist_update_seq);
4105 
4106 	return 0;
4107 }
4108 
4109 static unsigned int check_retry_zonelist(unsigned int seq)
4110 {
4111 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4112 		return read_seqretry(&zonelist_update_seq, seq);
4113 
4114 	return seq;
4115 }
4116 
4117 /* Perform direct synchronous page reclaim */
4118 static unsigned long
4119 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4120 					const struct alloc_context *ac)
4121 {
4122 	unsigned int noreclaim_flag;
4123 	unsigned long progress;
4124 
4125 	cond_resched();
4126 
4127 	/* We now go into synchronous reclaim */
4128 	cpuset_memory_pressure_bump();
4129 	fs_reclaim_acquire(gfp_mask);
4130 	noreclaim_flag = memalloc_noreclaim_save();
4131 
4132 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4133 								ac->nodemask);
4134 
4135 	memalloc_noreclaim_restore(noreclaim_flag);
4136 	fs_reclaim_release(gfp_mask);
4137 
4138 	cond_resched();
4139 
4140 	return progress;
4141 }
4142 
4143 /* The really slow allocator path where we enter direct reclaim */
4144 static inline struct page *
4145 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4146 		unsigned int alloc_flags, const struct alloc_context *ac,
4147 		unsigned long *did_some_progress)
4148 {
4149 	struct page *page = NULL;
4150 	unsigned long pflags;
4151 	bool drained = false;
4152 
4153 	psi_memstall_enter(&pflags);
4154 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4155 	if (unlikely(!(*did_some_progress)))
4156 		goto out;
4157 
4158 retry:
4159 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4160 
4161 	/*
4162 	 * If an allocation failed after direct reclaim, it could be because
4163 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4164 	 * Shrink them and try again
4165 	 */
4166 	if (!page && !drained) {
4167 		unreserve_highatomic_pageblock(ac, false);
4168 		drain_all_pages(NULL);
4169 		drained = true;
4170 		goto retry;
4171 	}
4172 out:
4173 	psi_memstall_leave(&pflags);
4174 
4175 	return page;
4176 }
4177 
4178 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4179 			     const struct alloc_context *ac)
4180 {
4181 	struct zoneref *z;
4182 	struct zone *zone;
4183 	pg_data_t *last_pgdat = NULL;
4184 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4185 	unsigned int reclaim_order;
4186 
4187 	if (defrag_mode)
4188 		reclaim_order = max(order, pageblock_order);
4189 	else
4190 		reclaim_order = order;
4191 
4192 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4193 					ac->nodemask) {
4194 		if (!managed_zone(zone))
4195 			continue;
4196 		if (last_pgdat == zone->zone_pgdat)
4197 			continue;
4198 		wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx);
4199 		last_pgdat = zone->zone_pgdat;
4200 	}
4201 }
4202 
4203 static inline unsigned int
4204 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4205 {
4206 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4207 
4208 	/*
4209 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4210 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4211 	 * to save two branches.
4212 	 */
4213 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4214 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4215 
4216 	/*
4217 	 * The caller may dip into page reserves a bit more if the caller
4218 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4219 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4220 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4221 	 */
4222 	alloc_flags |= (__force int)
4223 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4224 
4225 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4226 		/*
4227 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4228 		 * if it can't schedule.
4229 		 */
4230 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4231 			alloc_flags |= ALLOC_NON_BLOCK;
4232 
4233 			if (order > 0)
4234 				alloc_flags |= ALLOC_HIGHATOMIC;
4235 		}
4236 
4237 		/*
4238 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4239 		 * GFP_ATOMIC) rather than fail, see the comment for
4240 		 * cpuset_node_allowed().
4241 		 */
4242 		if (alloc_flags & ALLOC_MIN_RESERVE)
4243 			alloc_flags &= ~ALLOC_CPUSET;
4244 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4245 		alloc_flags |= ALLOC_MIN_RESERVE;
4246 
4247 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4248 
4249 	if (defrag_mode)
4250 		alloc_flags |= ALLOC_NOFRAGMENT;
4251 
4252 	return alloc_flags;
4253 }
4254 
4255 static bool oom_reserves_allowed(struct task_struct *tsk)
4256 {
4257 	if (!tsk_is_oom_victim(tsk))
4258 		return false;
4259 
4260 	/*
4261 	 * !MMU doesn't have oom reaper so give access to memory reserves
4262 	 * only to the thread with TIF_MEMDIE set
4263 	 */
4264 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4265 		return false;
4266 
4267 	return true;
4268 }
4269 
4270 /*
4271  * Distinguish requests which really need access to full memory
4272  * reserves from oom victims which can live with a portion of it
4273  */
4274 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4275 {
4276 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4277 		return 0;
4278 	if (gfp_mask & __GFP_MEMALLOC)
4279 		return ALLOC_NO_WATERMARKS;
4280 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4281 		return ALLOC_NO_WATERMARKS;
4282 	if (!in_interrupt()) {
4283 		if (current->flags & PF_MEMALLOC)
4284 			return ALLOC_NO_WATERMARKS;
4285 		else if (oom_reserves_allowed(current))
4286 			return ALLOC_OOM;
4287 	}
4288 
4289 	return 0;
4290 }
4291 
4292 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4293 {
4294 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4295 }
4296 
4297 /*
4298  * Checks whether it makes sense to retry the reclaim to make a forward progress
4299  * for the given allocation request.
4300  *
4301  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4302  * without success, or when we couldn't even meet the watermark if we
4303  * reclaimed all remaining pages on the LRU lists.
4304  *
4305  * Returns true if a retry is viable or false to enter the oom path.
4306  */
4307 static inline bool
4308 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4309 		     struct alloc_context *ac, int alloc_flags,
4310 		     bool did_some_progress, int *no_progress_loops)
4311 {
4312 	struct zone *zone;
4313 	struct zoneref *z;
4314 	bool ret = false;
4315 
4316 	/*
4317 	 * Costly allocations might have made a progress but this doesn't mean
4318 	 * their order will become available due to high fragmentation so
4319 	 * always increment the no progress counter for them
4320 	 */
4321 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4322 		*no_progress_loops = 0;
4323 	else
4324 		(*no_progress_loops)++;
4325 
4326 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4327 		goto out;
4328 
4329 
4330 	/*
4331 	 * Keep reclaiming pages while there is a chance this will lead
4332 	 * somewhere.  If none of the target zones can satisfy our allocation
4333 	 * request even if all reclaimable pages are considered then we are
4334 	 * screwed and have to go OOM.
4335 	 */
4336 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4337 				ac->highest_zoneidx, ac->nodemask) {
4338 		unsigned long available;
4339 		unsigned long reclaimable;
4340 		unsigned long min_wmark = min_wmark_pages(zone);
4341 		bool wmark;
4342 
4343 		if (cpusets_enabled() &&
4344 			(alloc_flags & ALLOC_CPUSET) &&
4345 			!__cpuset_zone_allowed(zone, gfp_mask))
4346 				continue;
4347 
4348 		available = reclaimable = zone_reclaimable_pages(zone);
4349 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4350 
4351 		/*
4352 		 * Would the allocation succeed if we reclaimed all
4353 		 * reclaimable pages?
4354 		 */
4355 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4356 				ac->highest_zoneidx, alloc_flags, available);
4357 		trace_reclaim_retry_zone(z, order, reclaimable,
4358 				available, min_wmark, *no_progress_loops, wmark);
4359 		if (wmark) {
4360 			ret = true;
4361 			break;
4362 		}
4363 	}
4364 
4365 	/*
4366 	 * Memory allocation/reclaim might be called from a WQ context and the
4367 	 * current implementation of the WQ concurrency control doesn't
4368 	 * recognize that a particular WQ is congested if the worker thread is
4369 	 * looping without ever sleeping. Therefore we have to do a short sleep
4370 	 * here rather than calling cond_resched().
4371 	 */
4372 	if (current->flags & PF_WQ_WORKER)
4373 		schedule_timeout_uninterruptible(1);
4374 	else
4375 		cond_resched();
4376 out:
4377 	/* Before OOM, exhaust highatomic_reserve */
4378 	if (!ret)
4379 		return unreserve_highatomic_pageblock(ac, true);
4380 
4381 	return ret;
4382 }
4383 
4384 static inline bool
4385 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4386 {
4387 	/*
4388 	 * It's possible that cpuset's mems_allowed and the nodemask from
4389 	 * mempolicy don't intersect. This should be normally dealt with by
4390 	 * policy_nodemask(), but it's possible to race with cpuset update in
4391 	 * such a way the check therein was true, and then it became false
4392 	 * before we got our cpuset_mems_cookie here.
4393 	 * This assumes that for all allocations, ac->nodemask can come only
4394 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4395 	 * when it does not intersect with the cpuset restrictions) or the
4396 	 * caller can deal with a violated nodemask.
4397 	 */
4398 	if (cpusets_enabled() && ac->nodemask &&
4399 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4400 		ac->nodemask = NULL;
4401 		return true;
4402 	}
4403 
4404 	/*
4405 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4406 	 * possible to race with parallel threads in such a way that our
4407 	 * allocation can fail while the mask is being updated. If we are about
4408 	 * to fail, check if the cpuset changed during allocation and if so,
4409 	 * retry.
4410 	 */
4411 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4412 		return true;
4413 
4414 	return false;
4415 }
4416 
4417 static inline struct page *
4418 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4419 						struct alloc_context *ac)
4420 {
4421 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4422 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4423 	bool nofail = gfp_mask & __GFP_NOFAIL;
4424 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4425 	struct page *page = NULL;
4426 	unsigned int alloc_flags;
4427 	unsigned long did_some_progress;
4428 	enum compact_priority compact_priority;
4429 	enum compact_result compact_result;
4430 	int compaction_retries;
4431 	int no_progress_loops;
4432 	unsigned int cpuset_mems_cookie;
4433 	unsigned int zonelist_iter_cookie;
4434 	int reserve_flags;
4435 
4436 	if (unlikely(nofail)) {
4437 		/*
4438 		 * We most definitely don't want callers attempting to
4439 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4440 		 */
4441 		WARN_ON_ONCE(order > 1);
4442 		/*
4443 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4444 		 * otherwise, we may result in lockup.
4445 		 */
4446 		WARN_ON_ONCE(!can_direct_reclaim);
4447 		/*
4448 		 * PF_MEMALLOC request from this context is rather bizarre
4449 		 * because we cannot reclaim anything and only can loop waiting
4450 		 * for somebody to do a work for us.
4451 		 */
4452 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4453 	}
4454 
4455 restart:
4456 	compaction_retries = 0;
4457 	no_progress_loops = 0;
4458 	compact_result = COMPACT_SKIPPED;
4459 	compact_priority = DEF_COMPACT_PRIORITY;
4460 	cpuset_mems_cookie = read_mems_allowed_begin();
4461 	zonelist_iter_cookie = zonelist_iter_begin();
4462 
4463 	/*
4464 	 * The fast path uses conservative alloc_flags to succeed only until
4465 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4466 	 * alloc_flags precisely. So we do that now.
4467 	 */
4468 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4469 
4470 	/*
4471 	 * We need to recalculate the starting point for the zonelist iterator
4472 	 * because we might have used different nodemask in the fast path, or
4473 	 * there was a cpuset modification and we are retrying - otherwise we
4474 	 * could end up iterating over non-eligible zones endlessly.
4475 	 */
4476 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4477 					ac->highest_zoneidx, ac->nodemask);
4478 	if (!zonelist_zone(ac->preferred_zoneref))
4479 		goto nopage;
4480 
4481 	/*
4482 	 * Check for insane configurations where the cpuset doesn't contain
4483 	 * any suitable zone to satisfy the request - e.g. non-movable
4484 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4485 	 */
4486 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4487 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4488 					ac->highest_zoneidx,
4489 					&cpuset_current_mems_allowed);
4490 		if (!zonelist_zone(z))
4491 			goto nopage;
4492 	}
4493 
4494 	if (alloc_flags & ALLOC_KSWAPD)
4495 		wake_all_kswapds(order, gfp_mask, ac);
4496 
4497 	/*
4498 	 * The adjusted alloc_flags might result in immediate success, so try
4499 	 * that first
4500 	 */
4501 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4502 	if (page)
4503 		goto got_pg;
4504 
4505 	/*
4506 	 * For costly allocations, try direct compaction first, as it's likely
4507 	 * that we have enough base pages and don't need to reclaim. For non-
4508 	 * movable high-order allocations, do that as well, as compaction will
4509 	 * try prevent permanent fragmentation by migrating from blocks of the
4510 	 * same migratetype.
4511 	 * Don't try this for allocations that are allowed to ignore
4512 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4513 	 */
4514 	if (can_direct_reclaim && can_compact &&
4515 			(costly_order ||
4516 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4517 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4518 		page = __alloc_pages_direct_compact(gfp_mask, order,
4519 						alloc_flags, ac,
4520 						INIT_COMPACT_PRIORITY,
4521 						&compact_result);
4522 		if (page)
4523 			goto got_pg;
4524 
4525 		/*
4526 		 * Checks for costly allocations with __GFP_NORETRY, which
4527 		 * includes some THP page fault allocations
4528 		 */
4529 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4530 			/*
4531 			 * If allocating entire pageblock(s) and compaction
4532 			 * failed because all zones are below low watermarks
4533 			 * or is prohibited because it recently failed at this
4534 			 * order, fail immediately unless the allocator has
4535 			 * requested compaction and reclaim retry.
4536 			 *
4537 			 * Reclaim is
4538 			 *  - potentially very expensive because zones are far
4539 			 *    below their low watermarks or this is part of very
4540 			 *    bursty high order allocations,
4541 			 *  - not guaranteed to help because isolate_freepages()
4542 			 *    may not iterate over freed pages as part of its
4543 			 *    linear scan, and
4544 			 *  - unlikely to make entire pageblocks free on its
4545 			 *    own.
4546 			 */
4547 			if (compact_result == COMPACT_SKIPPED ||
4548 			    compact_result == COMPACT_DEFERRED)
4549 				goto nopage;
4550 
4551 			/*
4552 			 * Looks like reclaim/compaction is worth trying, but
4553 			 * sync compaction could be very expensive, so keep
4554 			 * using async compaction.
4555 			 */
4556 			compact_priority = INIT_COMPACT_PRIORITY;
4557 		}
4558 	}
4559 
4560 retry:
4561 	/*
4562 	 * Deal with possible cpuset update races or zonelist updates to avoid
4563 	 * infinite retries.
4564 	 */
4565 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4566 	    check_retry_zonelist(zonelist_iter_cookie))
4567 		goto restart;
4568 
4569 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4570 	if (alloc_flags & ALLOC_KSWAPD)
4571 		wake_all_kswapds(order, gfp_mask, ac);
4572 
4573 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4574 	if (reserve_flags)
4575 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4576 					  (alloc_flags & ALLOC_KSWAPD);
4577 
4578 	/*
4579 	 * Reset the nodemask and zonelist iterators if memory policies can be
4580 	 * ignored. These allocations are high priority and system rather than
4581 	 * user oriented.
4582 	 */
4583 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4584 		ac->nodemask = NULL;
4585 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4586 					ac->highest_zoneidx, ac->nodemask);
4587 	}
4588 
4589 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4590 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4591 	if (page)
4592 		goto got_pg;
4593 
4594 	/* Caller is not willing to reclaim, we can't balance anything */
4595 	if (!can_direct_reclaim)
4596 		goto nopage;
4597 
4598 	/* Avoid recursion of direct reclaim */
4599 	if (current->flags & PF_MEMALLOC)
4600 		goto nopage;
4601 
4602 	/* Try direct reclaim and then allocating */
4603 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4604 							&did_some_progress);
4605 	if (page)
4606 		goto got_pg;
4607 
4608 	/* Try direct compaction and then allocating */
4609 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4610 					compact_priority, &compact_result);
4611 	if (page)
4612 		goto got_pg;
4613 
4614 	/* Do not loop if specifically requested */
4615 	if (gfp_mask & __GFP_NORETRY)
4616 		goto nopage;
4617 
4618 	/*
4619 	 * Do not retry costly high order allocations unless they are
4620 	 * __GFP_RETRY_MAYFAIL and we can compact
4621 	 */
4622 	if (costly_order && (!can_compact ||
4623 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4624 		goto nopage;
4625 
4626 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4627 				 did_some_progress > 0, &no_progress_loops))
4628 		goto retry;
4629 
4630 	/*
4631 	 * It doesn't make any sense to retry for the compaction if the order-0
4632 	 * reclaim is not able to make any progress because the current
4633 	 * implementation of the compaction depends on the sufficient amount
4634 	 * of free memory (see __compaction_suitable)
4635 	 */
4636 	if (did_some_progress > 0 && can_compact &&
4637 			should_compact_retry(ac, order, alloc_flags,
4638 				compact_result, &compact_priority,
4639 				&compaction_retries))
4640 		goto retry;
4641 
4642 	/* Reclaim/compaction failed to prevent the fallback */
4643 	if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) {
4644 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4645 		goto retry;
4646 	}
4647 
4648 	/*
4649 	 * Deal with possible cpuset update races or zonelist updates to avoid
4650 	 * a unnecessary OOM kill.
4651 	 */
4652 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4653 	    check_retry_zonelist(zonelist_iter_cookie))
4654 		goto restart;
4655 
4656 	/* Reclaim has failed us, start killing things */
4657 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4658 	if (page)
4659 		goto got_pg;
4660 
4661 	/* Avoid allocations with no watermarks from looping endlessly */
4662 	if (tsk_is_oom_victim(current) &&
4663 	    (alloc_flags & ALLOC_OOM ||
4664 	     (gfp_mask & __GFP_NOMEMALLOC)))
4665 		goto nopage;
4666 
4667 	/* Retry as long as the OOM killer is making progress */
4668 	if (did_some_progress) {
4669 		no_progress_loops = 0;
4670 		goto retry;
4671 	}
4672 
4673 nopage:
4674 	/*
4675 	 * Deal with possible cpuset update races or zonelist updates to avoid
4676 	 * a unnecessary OOM kill.
4677 	 */
4678 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4679 	    check_retry_zonelist(zonelist_iter_cookie))
4680 		goto restart;
4681 
4682 	/*
4683 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4684 	 * we always retry
4685 	 */
4686 	if (unlikely(nofail)) {
4687 		/*
4688 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4689 		 * we disregard these unreasonable nofail requests and still
4690 		 * return NULL
4691 		 */
4692 		if (!can_direct_reclaim)
4693 			goto fail;
4694 
4695 		/*
4696 		 * Help non-failing allocations by giving some access to memory
4697 		 * reserves normally used for high priority non-blocking
4698 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4699 		 * could deplete whole memory reserves which would just make
4700 		 * the situation worse.
4701 		 */
4702 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4703 		if (page)
4704 			goto got_pg;
4705 
4706 		cond_resched();
4707 		goto retry;
4708 	}
4709 fail:
4710 	warn_alloc(gfp_mask, ac->nodemask,
4711 			"page allocation failure: order:%u", order);
4712 got_pg:
4713 	return page;
4714 }
4715 
4716 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4717 		int preferred_nid, nodemask_t *nodemask,
4718 		struct alloc_context *ac, gfp_t *alloc_gfp,
4719 		unsigned int *alloc_flags)
4720 {
4721 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4722 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4723 	ac->nodemask = nodemask;
4724 	ac->migratetype = gfp_migratetype(gfp_mask);
4725 
4726 	if (cpusets_enabled()) {
4727 		*alloc_gfp |= __GFP_HARDWALL;
4728 		/*
4729 		 * When we are in the interrupt context, it is irrelevant
4730 		 * to the current task context. It means that any node ok.
4731 		 */
4732 		if (in_task() && !ac->nodemask)
4733 			ac->nodemask = &cpuset_current_mems_allowed;
4734 		else
4735 			*alloc_flags |= ALLOC_CPUSET;
4736 	}
4737 
4738 	might_alloc(gfp_mask);
4739 
4740 	/*
4741 	 * Don't invoke should_fail logic, since it may call
4742 	 * get_random_u32() and printk() which need to spin_lock.
4743 	 */
4744 	if (!(*alloc_flags & ALLOC_TRYLOCK) &&
4745 	    should_fail_alloc_page(gfp_mask, order))
4746 		return false;
4747 
4748 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4749 
4750 	/* Dirty zone balancing only done in the fast path */
4751 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4752 
4753 	/*
4754 	 * The preferred zone is used for statistics but crucially it is
4755 	 * also used as the starting point for the zonelist iterator. It
4756 	 * may get reset for allocations that ignore memory policies.
4757 	 */
4758 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4759 					ac->highest_zoneidx, ac->nodemask);
4760 
4761 	return true;
4762 }
4763 
4764 /*
4765  * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4766  * @gfp: GFP flags for the allocation
4767  * @preferred_nid: The preferred NUMA node ID to allocate from
4768  * @nodemask: Set of nodes to allocate from, may be NULL
4769  * @nr_pages: The number of pages desired in the array
4770  * @page_array: Array to store the pages
4771  *
4772  * This is a batched version of the page allocator that attempts to
4773  * allocate nr_pages quickly. Pages are added to the page_array.
4774  *
4775  * Note that only NULL elements are populated with pages and nr_pages
4776  * is the maximum number of pages that will be stored in the array.
4777  *
4778  * Returns the number of pages in the array.
4779  */
4780 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4781 			nodemask_t *nodemask, int nr_pages,
4782 			struct page **page_array)
4783 {
4784 	struct page *page;
4785 	unsigned long __maybe_unused UP_flags;
4786 	struct zone *zone;
4787 	struct zoneref *z;
4788 	struct per_cpu_pages *pcp;
4789 	struct list_head *pcp_list;
4790 	struct alloc_context ac;
4791 	gfp_t alloc_gfp;
4792 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4793 	int nr_populated = 0, nr_account = 0;
4794 
4795 	/*
4796 	 * Skip populated array elements to determine if any pages need
4797 	 * to be allocated before disabling IRQs.
4798 	 */
4799 	while (nr_populated < nr_pages && page_array[nr_populated])
4800 		nr_populated++;
4801 
4802 	/* No pages requested? */
4803 	if (unlikely(nr_pages <= 0))
4804 		goto out;
4805 
4806 	/* Already populated array? */
4807 	if (unlikely(nr_pages - nr_populated == 0))
4808 		goto out;
4809 
4810 	/* Bulk allocator does not support memcg accounting. */
4811 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4812 		goto failed;
4813 
4814 	/* Use the single page allocator for one page. */
4815 	if (nr_pages - nr_populated == 1)
4816 		goto failed;
4817 
4818 #ifdef CONFIG_PAGE_OWNER
4819 	/*
4820 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4821 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4822 	 * removes much of the performance benefit of bulk allocation so
4823 	 * force the caller to allocate one page at a time as it'll have
4824 	 * similar performance to added complexity to the bulk allocator.
4825 	 */
4826 	if (static_branch_unlikely(&page_owner_inited))
4827 		goto failed;
4828 #endif
4829 
4830 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4831 	gfp &= gfp_allowed_mask;
4832 	alloc_gfp = gfp;
4833 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4834 		goto out;
4835 	gfp = alloc_gfp;
4836 
4837 	/* Find an allowed local zone that meets the low watermark. */
4838 	z = ac.preferred_zoneref;
4839 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4840 		unsigned long mark;
4841 
4842 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4843 		    !__cpuset_zone_allowed(zone, gfp)) {
4844 			continue;
4845 		}
4846 
4847 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4848 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4849 			goto failed;
4850 		}
4851 
4852 		cond_accept_memory(zone, 0, alloc_flags);
4853 retry_this_zone:
4854 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4855 		if (zone_watermark_fast(zone, 0,  mark,
4856 				zonelist_zone_idx(ac.preferred_zoneref),
4857 				alloc_flags, gfp)) {
4858 			break;
4859 		}
4860 
4861 		if (cond_accept_memory(zone, 0, alloc_flags))
4862 			goto retry_this_zone;
4863 
4864 		/* Try again if zone has deferred pages */
4865 		if (deferred_pages_enabled()) {
4866 			if (_deferred_grow_zone(zone, 0))
4867 				goto retry_this_zone;
4868 		}
4869 	}
4870 
4871 	/*
4872 	 * If there are no allowed local zones that meets the watermarks then
4873 	 * try to allocate a single page and reclaim if necessary.
4874 	 */
4875 	if (unlikely(!zone))
4876 		goto failed;
4877 
4878 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4879 	pcp_trylock_prepare(UP_flags);
4880 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4881 	if (!pcp)
4882 		goto failed_irq;
4883 
4884 	/* Attempt the batch allocation */
4885 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4886 	while (nr_populated < nr_pages) {
4887 
4888 		/* Skip existing pages */
4889 		if (page_array[nr_populated]) {
4890 			nr_populated++;
4891 			continue;
4892 		}
4893 
4894 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4895 								pcp, pcp_list);
4896 		if (unlikely(!page)) {
4897 			/* Try and allocate at least one page */
4898 			if (!nr_account) {
4899 				pcp_spin_unlock(pcp);
4900 				goto failed_irq;
4901 			}
4902 			break;
4903 		}
4904 		nr_account++;
4905 
4906 		prep_new_page(page, 0, gfp, 0);
4907 		set_page_refcounted(page);
4908 		page_array[nr_populated++] = page;
4909 	}
4910 
4911 	pcp_spin_unlock(pcp);
4912 	pcp_trylock_finish(UP_flags);
4913 
4914 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4915 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4916 
4917 out:
4918 	return nr_populated;
4919 
4920 failed_irq:
4921 	pcp_trylock_finish(UP_flags);
4922 
4923 failed:
4924 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4925 	if (page)
4926 		page_array[nr_populated++] = page;
4927 	goto out;
4928 }
4929 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4930 
4931 /*
4932  * This is the 'heart' of the zoned buddy allocator.
4933  */
4934 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
4935 		int preferred_nid, nodemask_t *nodemask)
4936 {
4937 	struct page *page;
4938 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4939 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4940 	struct alloc_context ac = { };
4941 
4942 	/*
4943 	 * There are several places where we assume that the order value is sane
4944 	 * so bail out early if the request is out of bound.
4945 	 */
4946 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4947 		return NULL;
4948 
4949 	gfp &= gfp_allowed_mask;
4950 	/*
4951 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4952 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4953 	 * from a particular context which has been marked by
4954 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4955 	 * movable zones are not used during allocation.
4956 	 */
4957 	gfp = current_gfp_context(gfp);
4958 	alloc_gfp = gfp;
4959 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4960 			&alloc_gfp, &alloc_flags))
4961 		return NULL;
4962 
4963 	/*
4964 	 * Forbid the first pass from falling back to types that fragment
4965 	 * memory until all local zones are considered.
4966 	 */
4967 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4968 
4969 	/* First allocation attempt */
4970 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4971 	if (likely(page))
4972 		goto out;
4973 
4974 	alloc_gfp = gfp;
4975 	ac.spread_dirty_pages = false;
4976 
4977 	/*
4978 	 * Restore the original nodemask if it was potentially replaced with
4979 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4980 	 */
4981 	ac.nodemask = nodemask;
4982 
4983 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4984 
4985 out:
4986 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4987 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4988 		free_frozen_pages(page, order);
4989 		page = NULL;
4990 	}
4991 
4992 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4993 	kmsan_alloc_page(page, order, alloc_gfp);
4994 
4995 	return page;
4996 }
4997 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
4998 
4999 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
5000 		int preferred_nid, nodemask_t *nodemask)
5001 {
5002 	struct page *page;
5003 
5004 	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
5005 	if (page)
5006 		set_page_refcounted(page);
5007 	return page;
5008 }
5009 EXPORT_SYMBOL(__alloc_pages_noprof);
5010 
5011 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
5012 		nodemask_t *nodemask)
5013 {
5014 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
5015 					preferred_nid, nodemask);
5016 	return page_rmappable_folio(page);
5017 }
5018 EXPORT_SYMBOL(__folio_alloc_noprof);
5019 
5020 /*
5021  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5022  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5023  * you need to access high mem.
5024  */
5025 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
5026 {
5027 	struct page *page;
5028 
5029 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
5030 	if (!page)
5031 		return 0;
5032 	return (unsigned long) page_address(page);
5033 }
5034 EXPORT_SYMBOL(get_free_pages_noprof);
5035 
5036 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
5037 {
5038 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
5039 }
5040 EXPORT_SYMBOL(get_zeroed_page_noprof);
5041 
5042 /**
5043  * ___free_pages - Free pages allocated with alloc_pages().
5044  * @page: The page pointer returned from alloc_pages().
5045  * @order: The order of the allocation.
5046  * @fpi_flags: Free Page Internal flags.
5047  *
5048  * This function can free multi-page allocations that are not compound
5049  * pages.  It does not check that the @order passed in matches that of
5050  * the allocation, so it is easy to leak memory.  Freeing more memory
5051  * than was allocated will probably emit a warning.
5052  *
5053  * If the last reference to this page is speculative, it will be released
5054  * by put_page() which only frees the first page of a non-compound
5055  * allocation.  To prevent the remaining pages from being leaked, we free
5056  * the subsequent pages here.  If you want to use the page's reference
5057  * count to decide when to free the allocation, you should allocate a
5058  * compound page, and use put_page() instead of __free_pages().
5059  *
5060  * Context: May be called in interrupt context or while holding a normal
5061  * spinlock, but not in NMI context or while holding a raw spinlock.
5062  */
5063 static void ___free_pages(struct page *page, unsigned int order,
5064 			  fpi_t fpi_flags)
5065 {
5066 	/* get PageHead before we drop reference */
5067 	int head = PageHead(page);
5068 	/* get alloc tag in case the page is released by others */
5069 	struct alloc_tag *tag = pgalloc_tag_get(page);
5070 
5071 	if (put_page_testzero(page))
5072 		__free_frozen_pages(page, order, fpi_flags);
5073 	else if (!head) {
5074 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
5075 		while (order-- > 0)
5076 			__free_frozen_pages(page + (1 << order), order,
5077 					    fpi_flags);
5078 	}
5079 }
5080 void __free_pages(struct page *page, unsigned int order)
5081 {
5082 	___free_pages(page, order, FPI_NONE);
5083 }
5084 EXPORT_SYMBOL(__free_pages);
5085 
5086 /*
5087  * Can be called while holding raw_spin_lock or from IRQ and NMI for any
5088  * page type (not only those that came from try_alloc_pages)
5089  */
5090 void free_pages_nolock(struct page *page, unsigned int order)
5091 {
5092 	___free_pages(page, order, FPI_TRYLOCK);
5093 }
5094 
5095 void free_pages(unsigned long addr, unsigned int order)
5096 {
5097 	if (addr != 0) {
5098 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5099 		__free_pages(virt_to_page((void *)addr), order);
5100 	}
5101 }
5102 
5103 EXPORT_SYMBOL(free_pages);
5104 
5105 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5106 		size_t size)
5107 {
5108 	if (addr) {
5109 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5110 		struct page *page = virt_to_page((void *)addr);
5111 		struct page *last = page + nr;
5112 
5113 		split_page_owner(page, order, 0);
5114 		pgalloc_tag_split(page_folio(page), order, 0);
5115 		split_page_memcg(page, order);
5116 		while (page < --last)
5117 			set_page_refcounted(last);
5118 
5119 		last = page + (1UL << order);
5120 		for (page += nr; page < last; page++)
5121 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5122 	}
5123 	return (void *)addr;
5124 }
5125 
5126 /**
5127  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5128  * @size: the number of bytes to allocate
5129  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5130  *
5131  * This function is similar to alloc_pages(), except that it allocates the
5132  * minimum number of pages to satisfy the request.  alloc_pages() can only
5133  * allocate memory in power-of-two pages.
5134  *
5135  * This function is also limited by MAX_PAGE_ORDER.
5136  *
5137  * Memory allocated by this function must be released by free_pages_exact().
5138  *
5139  * Return: pointer to the allocated area or %NULL in case of error.
5140  */
5141 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5142 {
5143 	unsigned int order = get_order(size);
5144 	unsigned long addr;
5145 
5146 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5147 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5148 
5149 	addr = get_free_pages_noprof(gfp_mask, order);
5150 	return make_alloc_exact(addr, order, size);
5151 }
5152 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5153 
5154 /**
5155  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5156  *			   pages on a node.
5157  * @nid: the preferred node ID where memory should be allocated
5158  * @size: the number of bytes to allocate
5159  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5160  *
5161  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5162  * back.
5163  *
5164  * Return: pointer to the allocated area or %NULL in case of error.
5165  */
5166 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5167 {
5168 	unsigned int order = get_order(size);
5169 	struct page *p;
5170 
5171 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5172 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5173 
5174 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5175 	if (!p)
5176 		return NULL;
5177 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5178 }
5179 
5180 /**
5181  * free_pages_exact - release memory allocated via alloc_pages_exact()
5182  * @virt: the value returned by alloc_pages_exact.
5183  * @size: size of allocation, same value as passed to alloc_pages_exact().
5184  *
5185  * Release the memory allocated by a previous call to alloc_pages_exact.
5186  */
5187 void free_pages_exact(void *virt, size_t size)
5188 {
5189 	unsigned long addr = (unsigned long)virt;
5190 	unsigned long end = addr + PAGE_ALIGN(size);
5191 
5192 	while (addr < end) {
5193 		free_page(addr);
5194 		addr += PAGE_SIZE;
5195 	}
5196 }
5197 EXPORT_SYMBOL(free_pages_exact);
5198 
5199 /**
5200  * nr_free_zone_pages - count number of pages beyond high watermark
5201  * @offset: The zone index of the highest zone
5202  *
5203  * nr_free_zone_pages() counts the number of pages which are beyond the
5204  * high watermark within all zones at or below a given zone index.  For each
5205  * zone, the number of pages is calculated as:
5206  *
5207  *     nr_free_zone_pages = managed_pages - high_pages
5208  *
5209  * Return: number of pages beyond high watermark.
5210  */
5211 static unsigned long nr_free_zone_pages(int offset)
5212 {
5213 	struct zoneref *z;
5214 	struct zone *zone;
5215 
5216 	/* Just pick one node, since fallback list is circular */
5217 	unsigned long sum = 0;
5218 
5219 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5220 
5221 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5222 		unsigned long size = zone_managed_pages(zone);
5223 		unsigned long high = high_wmark_pages(zone);
5224 		if (size > high)
5225 			sum += size - high;
5226 	}
5227 
5228 	return sum;
5229 }
5230 
5231 /**
5232  * nr_free_buffer_pages - count number of pages beyond high watermark
5233  *
5234  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5235  * watermark within ZONE_DMA and ZONE_NORMAL.
5236  *
5237  * Return: number of pages beyond high watermark within ZONE_DMA and
5238  * ZONE_NORMAL.
5239  */
5240 unsigned long nr_free_buffer_pages(void)
5241 {
5242 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5243 }
5244 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5245 
5246 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5247 {
5248 	zoneref->zone = zone;
5249 	zoneref->zone_idx = zone_idx(zone);
5250 }
5251 
5252 /*
5253  * Builds allocation fallback zone lists.
5254  *
5255  * Add all populated zones of a node to the zonelist.
5256  */
5257 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5258 {
5259 	struct zone *zone;
5260 	enum zone_type zone_type = MAX_NR_ZONES;
5261 	int nr_zones = 0;
5262 
5263 	do {
5264 		zone_type--;
5265 		zone = pgdat->node_zones + zone_type;
5266 		if (populated_zone(zone)) {
5267 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5268 			check_highest_zone(zone_type);
5269 		}
5270 	} while (zone_type);
5271 
5272 	return nr_zones;
5273 }
5274 
5275 #ifdef CONFIG_NUMA
5276 
5277 static int __parse_numa_zonelist_order(char *s)
5278 {
5279 	/*
5280 	 * We used to support different zonelists modes but they turned
5281 	 * out to be just not useful. Let's keep the warning in place
5282 	 * if somebody still use the cmd line parameter so that we do
5283 	 * not fail it silently
5284 	 */
5285 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5286 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5287 		return -EINVAL;
5288 	}
5289 	return 0;
5290 }
5291 
5292 static char numa_zonelist_order[] = "Node";
5293 #define NUMA_ZONELIST_ORDER_LEN	16
5294 /*
5295  * sysctl handler for numa_zonelist_order
5296  */
5297 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5298 		void *buffer, size_t *length, loff_t *ppos)
5299 {
5300 	if (write)
5301 		return __parse_numa_zonelist_order(buffer);
5302 	return proc_dostring(table, write, buffer, length, ppos);
5303 }
5304 
5305 static int node_load[MAX_NUMNODES];
5306 
5307 /**
5308  * find_next_best_node - find the next node that should appear in a given node's fallback list
5309  * @node: node whose fallback list we're appending
5310  * @used_node_mask: nodemask_t of already used nodes
5311  *
5312  * We use a number of factors to determine which is the next node that should
5313  * appear on a given node's fallback list.  The node should not have appeared
5314  * already in @node's fallback list, and it should be the next closest node
5315  * according to the distance array (which contains arbitrary distance values
5316  * from each node to each node in the system), and should also prefer nodes
5317  * with no CPUs, since presumably they'll have very little allocation pressure
5318  * on them otherwise.
5319  *
5320  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5321  */
5322 int find_next_best_node(int node, nodemask_t *used_node_mask)
5323 {
5324 	int n, val;
5325 	int min_val = INT_MAX;
5326 	int best_node = NUMA_NO_NODE;
5327 
5328 	/*
5329 	 * Use the local node if we haven't already, but for memoryless local
5330 	 * node, we should skip it and fall back to other nodes.
5331 	 */
5332 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5333 		node_set(node, *used_node_mask);
5334 		return node;
5335 	}
5336 
5337 	for_each_node_state(n, N_MEMORY) {
5338 
5339 		/* Don't want a node to appear more than once */
5340 		if (node_isset(n, *used_node_mask))
5341 			continue;
5342 
5343 		/* Use the distance array to find the distance */
5344 		val = node_distance(node, n);
5345 
5346 		/* Penalize nodes under us ("prefer the next node") */
5347 		val += (n < node);
5348 
5349 		/* Give preference to headless and unused nodes */
5350 		if (!cpumask_empty(cpumask_of_node(n)))
5351 			val += PENALTY_FOR_NODE_WITH_CPUS;
5352 
5353 		/* Slight preference for less loaded node */
5354 		val *= MAX_NUMNODES;
5355 		val += node_load[n];
5356 
5357 		if (val < min_val) {
5358 			min_val = val;
5359 			best_node = n;
5360 		}
5361 	}
5362 
5363 	if (best_node >= 0)
5364 		node_set(best_node, *used_node_mask);
5365 
5366 	return best_node;
5367 }
5368 
5369 
5370 /*
5371  * Build zonelists ordered by node and zones within node.
5372  * This results in maximum locality--normal zone overflows into local
5373  * DMA zone, if any--but risks exhausting DMA zone.
5374  */
5375 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5376 		unsigned nr_nodes)
5377 {
5378 	struct zoneref *zonerefs;
5379 	int i;
5380 
5381 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5382 
5383 	for (i = 0; i < nr_nodes; i++) {
5384 		int nr_zones;
5385 
5386 		pg_data_t *node = NODE_DATA(node_order[i]);
5387 
5388 		nr_zones = build_zonerefs_node(node, zonerefs);
5389 		zonerefs += nr_zones;
5390 	}
5391 	zonerefs->zone = NULL;
5392 	zonerefs->zone_idx = 0;
5393 }
5394 
5395 /*
5396  * Build __GFP_THISNODE zonelists
5397  */
5398 static void build_thisnode_zonelists(pg_data_t *pgdat)
5399 {
5400 	struct zoneref *zonerefs;
5401 	int nr_zones;
5402 
5403 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5404 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5405 	zonerefs += nr_zones;
5406 	zonerefs->zone = NULL;
5407 	zonerefs->zone_idx = 0;
5408 }
5409 
5410 static void build_zonelists(pg_data_t *pgdat)
5411 {
5412 	static int node_order[MAX_NUMNODES];
5413 	int node, nr_nodes = 0;
5414 	nodemask_t used_mask = NODE_MASK_NONE;
5415 	int local_node, prev_node;
5416 
5417 	/* NUMA-aware ordering of nodes */
5418 	local_node = pgdat->node_id;
5419 	prev_node = local_node;
5420 
5421 	memset(node_order, 0, sizeof(node_order));
5422 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5423 		/*
5424 		 * We don't want to pressure a particular node.
5425 		 * So adding penalty to the first node in same
5426 		 * distance group to make it round-robin.
5427 		 */
5428 		if (node_distance(local_node, node) !=
5429 		    node_distance(local_node, prev_node))
5430 			node_load[node] += 1;
5431 
5432 		node_order[nr_nodes++] = node;
5433 		prev_node = node;
5434 	}
5435 
5436 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5437 	build_thisnode_zonelists(pgdat);
5438 	pr_info("Fallback order for Node %d: ", local_node);
5439 	for (node = 0; node < nr_nodes; node++)
5440 		pr_cont("%d ", node_order[node]);
5441 	pr_cont("\n");
5442 }
5443 
5444 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5445 /*
5446  * Return node id of node used for "local" allocations.
5447  * I.e., first node id of first zone in arg node's generic zonelist.
5448  * Used for initializing percpu 'numa_mem', which is used primarily
5449  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5450  */
5451 int local_memory_node(int node)
5452 {
5453 	struct zoneref *z;
5454 
5455 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5456 				   gfp_zone(GFP_KERNEL),
5457 				   NULL);
5458 	return zonelist_node_idx(z);
5459 }
5460 #endif
5461 
5462 static void setup_min_unmapped_ratio(void);
5463 static void setup_min_slab_ratio(void);
5464 #else	/* CONFIG_NUMA */
5465 
5466 static void build_zonelists(pg_data_t *pgdat)
5467 {
5468 	struct zoneref *zonerefs;
5469 	int nr_zones;
5470 
5471 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5472 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5473 	zonerefs += nr_zones;
5474 
5475 	zonerefs->zone = NULL;
5476 	zonerefs->zone_idx = 0;
5477 }
5478 
5479 #endif	/* CONFIG_NUMA */
5480 
5481 /*
5482  * Boot pageset table. One per cpu which is going to be used for all
5483  * zones and all nodes. The parameters will be set in such a way
5484  * that an item put on a list will immediately be handed over to
5485  * the buddy list. This is safe since pageset manipulation is done
5486  * with interrupts disabled.
5487  *
5488  * The boot_pagesets must be kept even after bootup is complete for
5489  * unused processors and/or zones. They do play a role for bootstrapping
5490  * hotplugged processors.
5491  *
5492  * zoneinfo_show() and maybe other functions do
5493  * not check if the processor is online before following the pageset pointer.
5494  * Other parts of the kernel may not check if the zone is available.
5495  */
5496 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5497 /* These effectively disable the pcplists in the boot pageset completely */
5498 #define BOOT_PAGESET_HIGH	0
5499 #define BOOT_PAGESET_BATCH	1
5500 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5501 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5502 
5503 static void __build_all_zonelists(void *data)
5504 {
5505 	int nid;
5506 	int __maybe_unused cpu;
5507 	pg_data_t *self = data;
5508 	unsigned long flags;
5509 
5510 	/*
5511 	 * The zonelist_update_seq must be acquired with irqsave because the
5512 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5513 	 */
5514 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5515 	/*
5516 	 * Also disable synchronous printk() to prevent any printk() from
5517 	 * trying to hold port->lock, for
5518 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5519 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5520 	 */
5521 	printk_deferred_enter();
5522 
5523 #ifdef CONFIG_NUMA
5524 	memset(node_load, 0, sizeof(node_load));
5525 #endif
5526 
5527 	/*
5528 	 * This node is hotadded and no memory is yet present.   So just
5529 	 * building zonelists is fine - no need to touch other nodes.
5530 	 */
5531 	if (self && !node_online(self->node_id)) {
5532 		build_zonelists(self);
5533 	} else {
5534 		/*
5535 		 * All possible nodes have pgdat preallocated
5536 		 * in free_area_init
5537 		 */
5538 		for_each_node(nid) {
5539 			pg_data_t *pgdat = NODE_DATA(nid);
5540 
5541 			build_zonelists(pgdat);
5542 		}
5543 
5544 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5545 		/*
5546 		 * We now know the "local memory node" for each node--
5547 		 * i.e., the node of the first zone in the generic zonelist.
5548 		 * Set up numa_mem percpu variable for on-line cpus.  During
5549 		 * boot, only the boot cpu should be on-line;  we'll init the
5550 		 * secondary cpus' numa_mem as they come on-line.  During
5551 		 * node/memory hotplug, we'll fixup all on-line cpus.
5552 		 */
5553 		for_each_online_cpu(cpu)
5554 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5555 #endif
5556 	}
5557 
5558 	printk_deferred_exit();
5559 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5560 }
5561 
5562 static noinline void __init
5563 build_all_zonelists_init(void)
5564 {
5565 	int cpu;
5566 
5567 	__build_all_zonelists(NULL);
5568 
5569 	/*
5570 	 * Initialize the boot_pagesets that are going to be used
5571 	 * for bootstrapping processors. The real pagesets for
5572 	 * each zone will be allocated later when the per cpu
5573 	 * allocator is available.
5574 	 *
5575 	 * boot_pagesets are used also for bootstrapping offline
5576 	 * cpus if the system is already booted because the pagesets
5577 	 * are needed to initialize allocators on a specific cpu too.
5578 	 * F.e. the percpu allocator needs the page allocator which
5579 	 * needs the percpu allocator in order to allocate its pagesets
5580 	 * (a chicken-egg dilemma).
5581 	 */
5582 	for_each_possible_cpu(cpu)
5583 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5584 
5585 	mminit_verify_zonelist();
5586 	cpuset_init_current_mems_allowed();
5587 }
5588 
5589 /*
5590  * unless system_state == SYSTEM_BOOTING.
5591  *
5592  * __ref due to call of __init annotated helper build_all_zonelists_init
5593  * [protected by SYSTEM_BOOTING].
5594  */
5595 void __ref build_all_zonelists(pg_data_t *pgdat)
5596 {
5597 	unsigned long vm_total_pages;
5598 
5599 	if (system_state == SYSTEM_BOOTING) {
5600 		build_all_zonelists_init();
5601 	} else {
5602 		__build_all_zonelists(pgdat);
5603 		/* cpuset refresh routine should be here */
5604 	}
5605 	/* Get the number of free pages beyond high watermark in all zones. */
5606 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5607 	/*
5608 	 * Disable grouping by mobility if the number of pages in the
5609 	 * system is too low to allow the mechanism to work. It would be
5610 	 * more accurate, but expensive to check per-zone. This check is
5611 	 * made on memory-hotadd so a system can start with mobility
5612 	 * disabled and enable it later
5613 	 */
5614 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5615 		page_group_by_mobility_disabled = 1;
5616 	else
5617 		page_group_by_mobility_disabled = 0;
5618 
5619 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5620 		nr_online_nodes,
5621 		str_off_on(page_group_by_mobility_disabled),
5622 		vm_total_pages);
5623 #ifdef CONFIG_NUMA
5624 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5625 #endif
5626 }
5627 
5628 static int zone_batchsize(struct zone *zone)
5629 {
5630 #ifdef CONFIG_MMU
5631 	int batch;
5632 
5633 	/*
5634 	 * The number of pages to batch allocate is either ~0.1%
5635 	 * of the zone or 1MB, whichever is smaller. The batch
5636 	 * size is striking a balance between allocation latency
5637 	 * and zone lock contention.
5638 	 */
5639 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5640 	batch /= 4;		/* We effectively *= 4 below */
5641 	if (batch < 1)
5642 		batch = 1;
5643 
5644 	/*
5645 	 * Clamp the batch to a 2^n - 1 value. Having a power
5646 	 * of 2 value was found to be more likely to have
5647 	 * suboptimal cache aliasing properties in some cases.
5648 	 *
5649 	 * For example if 2 tasks are alternately allocating
5650 	 * batches of pages, one task can end up with a lot
5651 	 * of pages of one half of the possible page colors
5652 	 * and the other with pages of the other colors.
5653 	 */
5654 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5655 
5656 	return batch;
5657 
5658 #else
5659 	/* The deferral and batching of frees should be suppressed under NOMMU
5660 	 * conditions.
5661 	 *
5662 	 * The problem is that NOMMU needs to be able to allocate large chunks
5663 	 * of contiguous memory as there's no hardware page translation to
5664 	 * assemble apparent contiguous memory from discontiguous pages.
5665 	 *
5666 	 * Queueing large contiguous runs of pages for batching, however,
5667 	 * causes the pages to actually be freed in smaller chunks.  As there
5668 	 * can be a significant delay between the individual batches being
5669 	 * recycled, this leads to the once large chunks of space being
5670 	 * fragmented and becoming unavailable for high-order allocations.
5671 	 */
5672 	return 0;
5673 #endif
5674 }
5675 
5676 static int percpu_pagelist_high_fraction;
5677 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5678 			 int high_fraction)
5679 {
5680 #ifdef CONFIG_MMU
5681 	int high;
5682 	int nr_split_cpus;
5683 	unsigned long total_pages;
5684 
5685 	if (!high_fraction) {
5686 		/*
5687 		 * By default, the high value of the pcp is based on the zone
5688 		 * low watermark so that if they are full then background
5689 		 * reclaim will not be started prematurely.
5690 		 */
5691 		total_pages = low_wmark_pages(zone);
5692 	} else {
5693 		/*
5694 		 * If percpu_pagelist_high_fraction is configured, the high
5695 		 * value is based on a fraction of the managed pages in the
5696 		 * zone.
5697 		 */
5698 		total_pages = zone_managed_pages(zone) / high_fraction;
5699 	}
5700 
5701 	/*
5702 	 * Split the high value across all online CPUs local to the zone. Note
5703 	 * that early in boot that CPUs may not be online yet and that during
5704 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5705 	 * onlined. For memory nodes that have no CPUs, split the high value
5706 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5707 	 * prematurely due to pages stored on pcp lists.
5708 	 */
5709 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5710 	if (!nr_split_cpus)
5711 		nr_split_cpus = num_online_cpus();
5712 	high = total_pages / nr_split_cpus;
5713 
5714 	/*
5715 	 * Ensure high is at least batch*4. The multiple is based on the
5716 	 * historical relationship between high and batch.
5717 	 */
5718 	high = max(high, batch << 2);
5719 
5720 	return high;
5721 #else
5722 	return 0;
5723 #endif
5724 }
5725 
5726 /*
5727  * pcp->high and pcp->batch values are related and generally batch is lower
5728  * than high. They are also related to pcp->count such that count is lower
5729  * than high, and as soon as it reaches high, the pcplist is flushed.
5730  *
5731  * However, guaranteeing these relations at all times would require e.g. write
5732  * barriers here but also careful usage of read barriers at the read side, and
5733  * thus be prone to error and bad for performance. Thus the update only prevents
5734  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5735  * should ensure they can cope with those fields changing asynchronously, and
5736  * fully trust only the pcp->count field on the local CPU with interrupts
5737  * disabled.
5738  *
5739  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5740  * outside of boot time (or some other assurance that no concurrent updaters
5741  * exist).
5742  */
5743 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5744 			   unsigned long high_max, unsigned long batch)
5745 {
5746 	WRITE_ONCE(pcp->batch, batch);
5747 	WRITE_ONCE(pcp->high_min, high_min);
5748 	WRITE_ONCE(pcp->high_max, high_max);
5749 }
5750 
5751 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5752 {
5753 	int pindex;
5754 
5755 	memset(pcp, 0, sizeof(*pcp));
5756 	memset(pzstats, 0, sizeof(*pzstats));
5757 
5758 	spin_lock_init(&pcp->lock);
5759 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5760 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5761 
5762 	/*
5763 	 * Set batch and high values safe for a boot pageset. A true percpu
5764 	 * pageset's initialization will update them subsequently. Here we don't
5765 	 * need to be as careful as pageset_update() as nobody can access the
5766 	 * pageset yet.
5767 	 */
5768 	pcp->high_min = BOOT_PAGESET_HIGH;
5769 	pcp->high_max = BOOT_PAGESET_HIGH;
5770 	pcp->batch = BOOT_PAGESET_BATCH;
5771 	pcp->free_count = 0;
5772 }
5773 
5774 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5775 					      unsigned long high_max, unsigned long batch)
5776 {
5777 	struct per_cpu_pages *pcp;
5778 	int cpu;
5779 
5780 	for_each_possible_cpu(cpu) {
5781 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5782 		pageset_update(pcp, high_min, high_max, batch);
5783 	}
5784 }
5785 
5786 /*
5787  * Calculate and set new high and batch values for all per-cpu pagesets of a
5788  * zone based on the zone's size.
5789  */
5790 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5791 {
5792 	int new_high_min, new_high_max, new_batch;
5793 
5794 	new_batch = max(1, zone_batchsize(zone));
5795 	if (percpu_pagelist_high_fraction) {
5796 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5797 					     percpu_pagelist_high_fraction);
5798 		/*
5799 		 * PCP high is tuned manually, disable auto-tuning via
5800 		 * setting high_min and high_max to the manual value.
5801 		 */
5802 		new_high_max = new_high_min;
5803 	} else {
5804 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5805 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5806 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5807 	}
5808 
5809 	if (zone->pageset_high_min == new_high_min &&
5810 	    zone->pageset_high_max == new_high_max &&
5811 	    zone->pageset_batch == new_batch)
5812 		return;
5813 
5814 	zone->pageset_high_min = new_high_min;
5815 	zone->pageset_high_max = new_high_max;
5816 	zone->pageset_batch = new_batch;
5817 
5818 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5819 					  new_batch);
5820 }
5821 
5822 void __meminit setup_zone_pageset(struct zone *zone)
5823 {
5824 	int cpu;
5825 
5826 	/* Size may be 0 on !SMP && !NUMA */
5827 	if (sizeof(struct per_cpu_zonestat) > 0)
5828 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5829 
5830 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5831 	for_each_possible_cpu(cpu) {
5832 		struct per_cpu_pages *pcp;
5833 		struct per_cpu_zonestat *pzstats;
5834 
5835 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5836 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5837 		per_cpu_pages_init(pcp, pzstats);
5838 	}
5839 
5840 	zone_set_pageset_high_and_batch(zone, 0);
5841 }
5842 
5843 /*
5844  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5845  * page high values need to be recalculated.
5846  */
5847 static void zone_pcp_update(struct zone *zone, int cpu_online)
5848 {
5849 	mutex_lock(&pcp_batch_high_lock);
5850 	zone_set_pageset_high_and_batch(zone, cpu_online);
5851 	mutex_unlock(&pcp_batch_high_lock);
5852 }
5853 
5854 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5855 {
5856 	struct per_cpu_pages *pcp;
5857 	struct cpu_cacheinfo *cci;
5858 
5859 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5860 	cci = get_cpu_cacheinfo(cpu);
5861 	/*
5862 	 * If data cache slice of CPU is large enough, "pcp->batch"
5863 	 * pages can be preserved in PCP before draining PCP for
5864 	 * consecutive high-order pages freeing without allocation.
5865 	 * This can reduce zone lock contention without hurting
5866 	 * cache-hot pages sharing.
5867 	 */
5868 	spin_lock(&pcp->lock);
5869 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5870 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5871 	else
5872 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5873 	spin_unlock(&pcp->lock);
5874 }
5875 
5876 void setup_pcp_cacheinfo(unsigned int cpu)
5877 {
5878 	struct zone *zone;
5879 
5880 	for_each_populated_zone(zone)
5881 		zone_pcp_update_cacheinfo(zone, cpu);
5882 }
5883 
5884 /*
5885  * Allocate per cpu pagesets and initialize them.
5886  * Before this call only boot pagesets were available.
5887  */
5888 void __init setup_per_cpu_pageset(void)
5889 {
5890 	struct pglist_data *pgdat;
5891 	struct zone *zone;
5892 	int __maybe_unused cpu;
5893 
5894 	for_each_populated_zone(zone)
5895 		setup_zone_pageset(zone);
5896 
5897 #ifdef CONFIG_NUMA
5898 	/*
5899 	 * Unpopulated zones continue using the boot pagesets.
5900 	 * The numa stats for these pagesets need to be reset.
5901 	 * Otherwise, they will end up skewing the stats of
5902 	 * the nodes these zones are associated with.
5903 	 */
5904 	for_each_possible_cpu(cpu) {
5905 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5906 		memset(pzstats->vm_numa_event, 0,
5907 		       sizeof(pzstats->vm_numa_event));
5908 	}
5909 #endif
5910 
5911 	for_each_online_pgdat(pgdat)
5912 		pgdat->per_cpu_nodestats =
5913 			alloc_percpu(struct per_cpu_nodestat);
5914 }
5915 
5916 __meminit void zone_pcp_init(struct zone *zone)
5917 {
5918 	/*
5919 	 * per cpu subsystem is not up at this point. The following code
5920 	 * relies on the ability of the linker to provide the
5921 	 * offset of a (static) per cpu variable into the per cpu area.
5922 	 */
5923 	zone->per_cpu_pageset = &boot_pageset;
5924 	zone->per_cpu_zonestats = &boot_zonestats;
5925 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5926 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5927 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5928 
5929 	if (populated_zone(zone))
5930 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5931 			 zone->present_pages, zone_batchsize(zone));
5932 }
5933 
5934 static void setup_per_zone_lowmem_reserve(void);
5935 
5936 void adjust_managed_page_count(struct page *page, long count)
5937 {
5938 	atomic_long_add(count, &page_zone(page)->managed_pages);
5939 	totalram_pages_add(count);
5940 	setup_per_zone_lowmem_reserve();
5941 }
5942 EXPORT_SYMBOL(adjust_managed_page_count);
5943 
5944 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5945 {
5946 	void *pos;
5947 	unsigned long pages = 0;
5948 
5949 	start = (void *)PAGE_ALIGN((unsigned long)start);
5950 	end = (void *)((unsigned long)end & PAGE_MASK);
5951 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5952 		struct page *page = virt_to_page(pos);
5953 		void *direct_map_addr;
5954 
5955 		/*
5956 		 * 'direct_map_addr' might be different from 'pos'
5957 		 * because some architectures' virt_to_page()
5958 		 * work with aliases.  Getting the direct map
5959 		 * address ensures that we get a _writeable_
5960 		 * alias for the memset().
5961 		 */
5962 		direct_map_addr = page_address(page);
5963 		/*
5964 		 * Perform a kasan-unchecked memset() since this memory
5965 		 * has not been initialized.
5966 		 */
5967 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5968 		if ((unsigned int)poison <= 0xFF)
5969 			memset(direct_map_addr, poison, PAGE_SIZE);
5970 
5971 		free_reserved_page(page);
5972 	}
5973 
5974 	if (pages && s)
5975 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5976 
5977 	return pages;
5978 }
5979 
5980 void free_reserved_page(struct page *page)
5981 {
5982 	clear_page_tag_ref(page);
5983 	ClearPageReserved(page);
5984 	init_page_count(page);
5985 	__free_page(page);
5986 	adjust_managed_page_count(page, 1);
5987 }
5988 EXPORT_SYMBOL(free_reserved_page);
5989 
5990 static int page_alloc_cpu_dead(unsigned int cpu)
5991 {
5992 	struct zone *zone;
5993 
5994 	lru_add_drain_cpu(cpu);
5995 	mlock_drain_remote(cpu);
5996 	drain_pages(cpu);
5997 
5998 	/*
5999 	 * Spill the event counters of the dead processor
6000 	 * into the current processors event counters.
6001 	 * This artificially elevates the count of the current
6002 	 * processor.
6003 	 */
6004 	vm_events_fold_cpu(cpu);
6005 
6006 	/*
6007 	 * Zero the differential counters of the dead processor
6008 	 * so that the vm statistics are consistent.
6009 	 *
6010 	 * This is only okay since the processor is dead and cannot
6011 	 * race with what we are doing.
6012 	 */
6013 	cpu_vm_stats_fold(cpu);
6014 
6015 	for_each_populated_zone(zone)
6016 		zone_pcp_update(zone, 0);
6017 
6018 	return 0;
6019 }
6020 
6021 static int page_alloc_cpu_online(unsigned int cpu)
6022 {
6023 	struct zone *zone;
6024 
6025 	for_each_populated_zone(zone)
6026 		zone_pcp_update(zone, 1);
6027 	return 0;
6028 }
6029 
6030 void __init page_alloc_init_cpuhp(void)
6031 {
6032 	int ret;
6033 
6034 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6035 					"mm/page_alloc:pcp",
6036 					page_alloc_cpu_online,
6037 					page_alloc_cpu_dead);
6038 	WARN_ON(ret < 0);
6039 }
6040 
6041 /*
6042  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6043  *	or min_free_kbytes changes.
6044  */
6045 static void calculate_totalreserve_pages(void)
6046 {
6047 	struct pglist_data *pgdat;
6048 	unsigned long reserve_pages = 0;
6049 	enum zone_type i, j;
6050 
6051 	for_each_online_pgdat(pgdat) {
6052 
6053 		pgdat->totalreserve_pages = 0;
6054 
6055 		for (i = 0; i < MAX_NR_ZONES; i++) {
6056 			struct zone *zone = pgdat->node_zones + i;
6057 			long max = 0;
6058 			unsigned long managed_pages = zone_managed_pages(zone);
6059 
6060 			/* Find valid and maximum lowmem_reserve in the zone */
6061 			for (j = i; j < MAX_NR_ZONES; j++) {
6062 				if (zone->lowmem_reserve[j] > max)
6063 					max = zone->lowmem_reserve[j];
6064 			}
6065 
6066 			/* we treat the high watermark as reserved pages. */
6067 			max += high_wmark_pages(zone);
6068 
6069 			if (max > managed_pages)
6070 				max = managed_pages;
6071 
6072 			pgdat->totalreserve_pages += max;
6073 
6074 			reserve_pages += max;
6075 		}
6076 	}
6077 	totalreserve_pages = reserve_pages;
6078 	trace_mm_calculate_totalreserve_pages(totalreserve_pages);
6079 }
6080 
6081 /*
6082  * setup_per_zone_lowmem_reserve - called whenever
6083  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6084  *	has a correct pages reserved value, so an adequate number of
6085  *	pages are left in the zone after a successful __alloc_pages().
6086  */
6087 static void setup_per_zone_lowmem_reserve(void)
6088 {
6089 	struct pglist_data *pgdat;
6090 	enum zone_type i, j;
6091 
6092 	for_each_online_pgdat(pgdat) {
6093 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6094 			struct zone *zone = &pgdat->node_zones[i];
6095 			int ratio = sysctl_lowmem_reserve_ratio[i];
6096 			bool clear = !ratio || !zone_managed_pages(zone);
6097 			unsigned long managed_pages = 0;
6098 
6099 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
6100 				struct zone *upper_zone = &pgdat->node_zones[j];
6101 
6102 				managed_pages += zone_managed_pages(upper_zone);
6103 
6104 				if (clear)
6105 					zone->lowmem_reserve[j] = 0;
6106 				else
6107 					zone->lowmem_reserve[j] = managed_pages / ratio;
6108 				trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
6109 								       zone->lowmem_reserve[j]);
6110 			}
6111 		}
6112 	}
6113 
6114 	/* update totalreserve_pages */
6115 	calculate_totalreserve_pages();
6116 }
6117 
6118 static void __setup_per_zone_wmarks(void)
6119 {
6120 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6121 	unsigned long lowmem_pages = 0;
6122 	struct zone *zone;
6123 	unsigned long flags;
6124 
6125 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6126 	for_each_zone(zone) {
6127 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6128 			lowmem_pages += zone_managed_pages(zone);
6129 	}
6130 
6131 	for_each_zone(zone) {
6132 		u64 tmp;
6133 
6134 		spin_lock_irqsave(&zone->lock, flags);
6135 		tmp = (u64)pages_min * zone_managed_pages(zone);
6136 		tmp = div64_ul(tmp, lowmem_pages);
6137 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6138 			/*
6139 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6140 			 * need highmem and movable zones pages, so cap pages_min
6141 			 * to a small  value here.
6142 			 *
6143 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6144 			 * deltas control async page reclaim, and so should
6145 			 * not be capped for highmem and movable zones.
6146 			 */
6147 			unsigned long min_pages;
6148 
6149 			min_pages = zone_managed_pages(zone) / 1024;
6150 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6151 			zone->_watermark[WMARK_MIN] = min_pages;
6152 		} else {
6153 			/*
6154 			 * If it's a lowmem zone, reserve a number of pages
6155 			 * proportionate to the zone's size.
6156 			 */
6157 			zone->_watermark[WMARK_MIN] = tmp;
6158 		}
6159 
6160 		/*
6161 		 * Set the kswapd watermarks distance according to the
6162 		 * scale factor in proportion to available memory, but
6163 		 * ensure a minimum size on small systems.
6164 		 */
6165 		tmp = max_t(u64, tmp >> 2,
6166 			    mult_frac(zone_managed_pages(zone),
6167 				      watermark_scale_factor, 10000));
6168 
6169 		zone->watermark_boost = 0;
6170 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6171 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6172 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6173 		trace_mm_setup_per_zone_wmarks(zone);
6174 
6175 		spin_unlock_irqrestore(&zone->lock, flags);
6176 	}
6177 
6178 	/* update totalreserve_pages */
6179 	calculate_totalreserve_pages();
6180 }
6181 
6182 /**
6183  * setup_per_zone_wmarks - called when min_free_kbytes changes
6184  * or when memory is hot-{added|removed}
6185  *
6186  * Ensures that the watermark[min,low,high] values for each zone are set
6187  * correctly with respect to min_free_kbytes.
6188  */
6189 void setup_per_zone_wmarks(void)
6190 {
6191 	struct zone *zone;
6192 	static DEFINE_SPINLOCK(lock);
6193 
6194 	spin_lock(&lock);
6195 	__setup_per_zone_wmarks();
6196 	spin_unlock(&lock);
6197 
6198 	/*
6199 	 * The watermark size have changed so update the pcpu batch
6200 	 * and high limits or the limits may be inappropriate.
6201 	 */
6202 	for_each_zone(zone)
6203 		zone_pcp_update(zone, 0);
6204 }
6205 
6206 /*
6207  * Initialise min_free_kbytes.
6208  *
6209  * For small machines we want it small (128k min).  For large machines
6210  * we want it large (256MB max).  But it is not linear, because network
6211  * bandwidth does not increase linearly with machine size.  We use
6212  *
6213  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6214  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6215  *
6216  * which yields
6217  *
6218  * 16MB:	512k
6219  * 32MB:	724k
6220  * 64MB:	1024k
6221  * 128MB:	1448k
6222  * 256MB:	2048k
6223  * 512MB:	2896k
6224  * 1024MB:	4096k
6225  * 2048MB:	5792k
6226  * 4096MB:	8192k
6227  * 8192MB:	11584k
6228  * 16384MB:	16384k
6229  */
6230 void calculate_min_free_kbytes(void)
6231 {
6232 	unsigned long lowmem_kbytes;
6233 	int new_min_free_kbytes;
6234 
6235 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6236 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6237 
6238 	if (new_min_free_kbytes > user_min_free_kbytes)
6239 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6240 	else
6241 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6242 				new_min_free_kbytes, user_min_free_kbytes);
6243 
6244 }
6245 
6246 int __meminit init_per_zone_wmark_min(void)
6247 {
6248 	calculate_min_free_kbytes();
6249 	setup_per_zone_wmarks();
6250 	refresh_zone_stat_thresholds();
6251 	setup_per_zone_lowmem_reserve();
6252 
6253 #ifdef CONFIG_NUMA
6254 	setup_min_unmapped_ratio();
6255 	setup_min_slab_ratio();
6256 #endif
6257 
6258 	khugepaged_min_free_kbytes_update();
6259 
6260 	return 0;
6261 }
6262 postcore_initcall(init_per_zone_wmark_min)
6263 
6264 /*
6265  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6266  *	that we can call two helper functions whenever min_free_kbytes
6267  *	changes.
6268  */
6269 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6270 		void *buffer, size_t *length, loff_t *ppos)
6271 {
6272 	int rc;
6273 
6274 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6275 	if (rc)
6276 		return rc;
6277 
6278 	if (write) {
6279 		user_min_free_kbytes = min_free_kbytes;
6280 		setup_per_zone_wmarks();
6281 	}
6282 	return 0;
6283 }
6284 
6285 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6286 		void *buffer, size_t *length, loff_t *ppos)
6287 {
6288 	int rc;
6289 
6290 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6291 	if (rc)
6292 		return rc;
6293 
6294 	if (write)
6295 		setup_per_zone_wmarks();
6296 
6297 	return 0;
6298 }
6299 
6300 #ifdef CONFIG_NUMA
6301 static void setup_min_unmapped_ratio(void)
6302 {
6303 	pg_data_t *pgdat;
6304 	struct zone *zone;
6305 
6306 	for_each_online_pgdat(pgdat)
6307 		pgdat->min_unmapped_pages = 0;
6308 
6309 	for_each_zone(zone)
6310 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6311 						         sysctl_min_unmapped_ratio) / 100;
6312 }
6313 
6314 
6315 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6316 		void *buffer, size_t *length, loff_t *ppos)
6317 {
6318 	int rc;
6319 
6320 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6321 	if (rc)
6322 		return rc;
6323 
6324 	setup_min_unmapped_ratio();
6325 
6326 	return 0;
6327 }
6328 
6329 static void setup_min_slab_ratio(void)
6330 {
6331 	pg_data_t *pgdat;
6332 	struct zone *zone;
6333 
6334 	for_each_online_pgdat(pgdat)
6335 		pgdat->min_slab_pages = 0;
6336 
6337 	for_each_zone(zone)
6338 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6339 						     sysctl_min_slab_ratio) / 100;
6340 }
6341 
6342 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6343 		void *buffer, size_t *length, loff_t *ppos)
6344 {
6345 	int rc;
6346 
6347 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6348 	if (rc)
6349 		return rc;
6350 
6351 	setup_min_slab_ratio();
6352 
6353 	return 0;
6354 }
6355 #endif
6356 
6357 /*
6358  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6359  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6360  *	whenever sysctl_lowmem_reserve_ratio changes.
6361  *
6362  * The reserve ratio obviously has absolutely no relation with the
6363  * minimum watermarks. The lowmem reserve ratio can only make sense
6364  * if in function of the boot time zone sizes.
6365  */
6366 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6367 		int write, void *buffer, size_t *length, loff_t *ppos)
6368 {
6369 	int i;
6370 
6371 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6372 
6373 	for (i = 0; i < MAX_NR_ZONES; i++) {
6374 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6375 			sysctl_lowmem_reserve_ratio[i] = 0;
6376 	}
6377 
6378 	setup_per_zone_lowmem_reserve();
6379 	return 0;
6380 }
6381 
6382 /*
6383  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6384  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6385  * pagelist can have before it gets flushed back to buddy allocator.
6386  */
6387 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6388 		int write, void *buffer, size_t *length, loff_t *ppos)
6389 {
6390 	struct zone *zone;
6391 	int old_percpu_pagelist_high_fraction;
6392 	int ret;
6393 
6394 	mutex_lock(&pcp_batch_high_lock);
6395 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6396 
6397 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6398 	if (!write || ret < 0)
6399 		goto out;
6400 
6401 	/* Sanity checking to avoid pcp imbalance */
6402 	if (percpu_pagelist_high_fraction &&
6403 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6404 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6405 		ret = -EINVAL;
6406 		goto out;
6407 	}
6408 
6409 	/* No change? */
6410 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6411 		goto out;
6412 
6413 	for_each_populated_zone(zone)
6414 		zone_set_pageset_high_and_batch(zone, 0);
6415 out:
6416 	mutex_unlock(&pcp_batch_high_lock);
6417 	return ret;
6418 }
6419 
6420 static const struct ctl_table page_alloc_sysctl_table[] = {
6421 	{
6422 		.procname	= "min_free_kbytes",
6423 		.data		= &min_free_kbytes,
6424 		.maxlen		= sizeof(min_free_kbytes),
6425 		.mode		= 0644,
6426 		.proc_handler	= min_free_kbytes_sysctl_handler,
6427 		.extra1		= SYSCTL_ZERO,
6428 	},
6429 	{
6430 		.procname	= "watermark_boost_factor",
6431 		.data		= &watermark_boost_factor,
6432 		.maxlen		= sizeof(watermark_boost_factor),
6433 		.mode		= 0644,
6434 		.proc_handler	= proc_dointvec_minmax,
6435 		.extra1		= SYSCTL_ZERO,
6436 	},
6437 	{
6438 		.procname	= "watermark_scale_factor",
6439 		.data		= &watermark_scale_factor,
6440 		.maxlen		= sizeof(watermark_scale_factor),
6441 		.mode		= 0644,
6442 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6443 		.extra1		= SYSCTL_ONE,
6444 		.extra2		= SYSCTL_THREE_THOUSAND,
6445 	},
6446 	{
6447 		.procname	= "defrag_mode",
6448 		.data		= &defrag_mode,
6449 		.maxlen		= sizeof(defrag_mode),
6450 		.mode		= 0644,
6451 		.proc_handler	= proc_dointvec_minmax,
6452 		.extra1		= SYSCTL_ZERO,
6453 		.extra2		= SYSCTL_ONE,
6454 	},
6455 	{
6456 		.procname	= "percpu_pagelist_high_fraction",
6457 		.data		= &percpu_pagelist_high_fraction,
6458 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6459 		.mode		= 0644,
6460 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6461 		.extra1		= SYSCTL_ZERO,
6462 	},
6463 	{
6464 		.procname	= "lowmem_reserve_ratio",
6465 		.data		= &sysctl_lowmem_reserve_ratio,
6466 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6467 		.mode		= 0644,
6468 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6469 	},
6470 #ifdef CONFIG_NUMA
6471 	{
6472 		.procname	= "numa_zonelist_order",
6473 		.data		= &numa_zonelist_order,
6474 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6475 		.mode		= 0644,
6476 		.proc_handler	= numa_zonelist_order_handler,
6477 	},
6478 	{
6479 		.procname	= "min_unmapped_ratio",
6480 		.data		= &sysctl_min_unmapped_ratio,
6481 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6482 		.mode		= 0644,
6483 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6484 		.extra1		= SYSCTL_ZERO,
6485 		.extra2		= SYSCTL_ONE_HUNDRED,
6486 	},
6487 	{
6488 		.procname	= "min_slab_ratio",
6489 		.data		= &sysctl_min_slab_ratio,
6490 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6491 		.mode		= 0644,
6492 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6493 		.extra1		= SYSCTL_ZERO,
6494 		.extra2		= SYSCTL_ONE_HUNDRED,
6495 	},
6496 #endif
6497 };
6498 
6499 void __init page_alloc_sysctl_init(void)
6500 {
6501 	register_sysctl_init("vm", page_alloc_sysctl_table);
6502 }
6503 
6504 #ifdef CONFIG_CONTIG_ALLOC
6505 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6506 static void alloc_contig_dump_pages(struct list_head *page_list)
6507 {
6508 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6509 
6510 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6511 		struct page *page;
6512 
6513 		dump_stack();
6514 		list_for_each_entry(page, page_list, lru)
6515 			dump_page(page, "migration failure");
6516 	}
6517 }
6518 
6519 /*
6520  * [start, end) must belong to a single zone.
6521  * @migratetype: using migratetype to filter the type of migration in
6522  *		trace_mm_alloc_contig_migrate_range_info.
6523  */
6524 static int __alloc_contig_migrate_range(struct compact_control *cc,
6525 		unsigned long start, unsigned long end, int migratetype)
6526 {
6527 	/* This function is based on compact_zone() from compaction.c. */
6528 	unsigned int nr_reclaimed;
6529 	unsigned long pfn = start;
6530 	unsigned int tries = 0;
6531 	int ret = 0;
6532 	struct migration_target_control mtc = {
6533 		.nid = zone_to_nid(cc->zone),
6534 		.gfp_mask = cc->gfp_mask,
6535 		.reason = MR_CONTIG_RANGE,
6536 	};
6537 	struct page *page;
6538 	unsigned long total_mapped = 0;
6539 	unsigned long total_migrated = 0;
6540 	unsigned long total_reclaimed = 0;
6541 
6542 	lru_cache_disable();
6543 
6544 	while (pfn < end || !list_empty(&cc->migratepages)) {
6545 		if (fatal_signal_pending(current)) {
6546 			ret = -EINTR;
6547 			break;
6548 		}
6549 
6550 		if (list_empty(&cc->migratepages)) {
6551 			cc->nr_migratepages = 0;
6552 			ret = isolate_migratepages_range(cc, pfn, end);
6553 			if (ret && ret != -EAGAIN)
6554 				break;
6555 			pfn = cc->migrate_pfn;
6556 			tries = 0;
6557 		} else if (++tries == 5) {
6558 			ret = -EBUSY;
6559 			break;
6560 		}
6561 
6562 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6563 							&cc->migratepages);
6564 		cc->nr_migratepages -= nr_reclaimed;
6565 
6566 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6567 			total_reclaimed += nr_reclaimed;
6568 			list_for_each_entry(page, &cc->migratepages, lru) {
6569 				struct folio *folio = page_folio(page);
6570 
6571 				total_mapped += folio_mapped(folio) *
6572 						folio_nr_pages(folio);
6573 			}
6574 		}
6575 
6576 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6577 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6578 
6579 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6580 			total_migrated += cc->nr_migratepages;
6581 
6582 		/*
6583 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6584 		 * to retry again over this error, so do the same here.
6585 		 */
6586 		if (ret == -ENOMEM)
6587 			break;
6588 	}
6589 
6590 	lru_cache_enable();
6591 	if (ret < 0) {
6592 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6593 			alloc_contig_dump_pages(&cc->migratepages);
6594 		putback_movable_pages(&cc->migratepages);
6595 	}
6596 
6597 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6598 						 total_migrated,
6599 						 total_reclaimed,
6600 						 total_mapped);
6601 	return (ret < 0) ? ret : 0;
6602 }
6603 
6604 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6605 {
6606 	int order;
6607 
6608 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6609 		struct page *page, *next;
6610 		int nr_pages = 1 << order;
6611 
6612 		list_for_each_entry_safe(page, next, &list[order], lru) {
6613 			int i;
6614 
6615 			post_alloc_hook(page, order, gfp_mask);
6616 			set_page_refcounted(page);
6617 			if (!order)
6618 				continue;
6619 
6620 			split_page(page, order);
6621 
6622 			/* Add all subpages to the order-0 head, in sequence. */
6623 			list_del(&page->lru);
6624 			for (i = 0; i < nr_pages; i++)
6625 				list_add_tail(&page[i].lru, &list[0]);
6626 		}
6627 	}
6628 }
6629 
6630 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6631 {
6632 	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6633 	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6634 				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6635 	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6636 
6637 	/*
6638 	 * We are given the range to allocate; node, mobility and placement
6639 	 * hints are irrelevant at this point. We'll simply ignore them.
6640 	 */
6641 	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6642 		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6643 
6644 	/*
6645 	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6646 	 * selected action flags.
6647 	 */
6648 	if (gfp_mask & ~(reclaim_mask | action_mask))
6649 		return -EINVAL;
6650 
6651 	/*
6652 	 * Flags to control page compaction/migration/reclaim, to free up our
6653 	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6654 	 * for them.
6655 	 *
6656 	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6657 	 * to not degrade callers.
6658 	 */
6659 	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6660 			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6661 	return 0;
6662 }
6663 
6664 /**
6665  * alloc_contig_range() -- tries to allocate given range of pages
6666  * @start:	start PFN to allocate
6667  * @end:	one-past-the-last PFN to allocate
6668  * @migratetype:	migratetype of the underlying pageblocks (either
6669  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6670  *			in range must have the same migratetype and it must
6671  *			be either of the two.
6672  * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6673  *		action and reclaim modifiers are supported. Reclaim modifiers
6674  *		control allocation behavior during compaction/migration/reclaim.
6675  *
6676  * The PFN range does not have to be pageblock aligned. The PFN range must
6677  * belong to a single zone.
6678  *
6679  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6680  * pageblocks in the range.  Once isolated, the pageblocks should not
6681  * be modified by others.
6682  *
6683  * Return: zero on success or negative error code.  On success all
6684  * pages which PFN is in [start, end) are allocated for the caller and
6685  * need to be freed with free_contig_range().
6686  */
6687 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6688 		       unsigned migratetype, gfp_t gfp_mask)
6689 {
6690 	unsigned long outer_start, outer_end;
6691 	int ret = 0;
6692 
6693 	struct compact_control cc = {
6694 		.nr_migratepages = 0,
6695 		.order = -1,
6696 		.zone = page_zone(pfn_to_page(start)),
6697 		.mode = MIGRATE_SYNC,
6698 		.ignore_skip_hint = true,
6699 		.no_set_skip_hint = true,
6700 		.alloc_contig = true,
6701 	};
6702 	INIT_LIST_HEAD(&cc.migratepages);
6703 
6704 	gfp_mask = current_gfp_context(gfp_mask);
6705 	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6706 		return -EINVAL;
6707 
6708 	/*
6709 	 * What we do here is we mark all pageblocks in range as
6710 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6711 	 * have different sizes, and due to the way page allocator
6712 	 * work, start_isolate_page_range() has special handlings for this.
6713 	 *
6714 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6715 	 * migrate the pages from an unaligned range (ie. pages that
6716 	 * we are interested in). This will put all the pages in
6717 	 * range back to page allocator as MIGRATE_ISOLATE.
6718 	 *
6719 	 * When this is done, we take the pages in range from page
6720 	 * allocator removing them from the buddy system.  This way
6721 	 * page allocator will never consider using them.
6722 	 *
6723 	 * This lets us mark the pageblocks back as
6724 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6725 	 * aligned range but not in the unaligned, original range are
6726 	 * put back to page allocator so that buddy can use them.
6727 	 */
6728 
6729 	ret = start_isolate_page_range(start, end, migratetype, 0);
6730 	if (ret)
6731 		goto done;
6732 
6733 	drain_all_pages(cc.zone);
6734 
6735 	/*
6736 	 * In case of -EBUSY, we'd like to know which page causes problem.
6737 	 * So, just fall through. test_pages_isolated() has a tracepoint
6738 	 * which will report the busy page.
6739 	 *
6740 	 * It is possible that busy pages could become available before
6741 	 * the call to test_pages_isolated, and the range will actually be
6742 	 * allocated.  So, if we fall through be sure to clear ret so that
6743 	 * -EBUSY is not accidentally used or returned to caller.
6744 	 */
6745 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6746 	if (ret && ret != -EBUSY)
6747 		goto done;
6748 
6749 	/*
6750 	 * When in-use hugetlb pages are migrated, they may simply be released
6751 	 * back into the free hugepage pool instead of being returned to the
6752 	 * buddy system.  After the migration of in-use huge pages is completed,
6753 	 * we will invoke replace_free_hugepage_folios() to ensure that these
6754 	 * hugepages are properly released to the buddy system.
6755 	 */
6756 	ret = replace_free_hugepage_folios(start, end);
6757 	if (ret)
6758 		goto done;
6759 
6760 	/*
6761 	 * Pages from [start, end) are within a pageblock_nr_pages
6762 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6763 	 * more, all pages in [start, end) are free in page allocator.
6764 	 * What we are going to do is to allocate all pages from
6765 	 * [start, end) (that is remove them from page allocator).
6766 	 *
6767 	 * The only problem is that pages at the beginning and at the
6768 	 * end of interesting range may be not aligned with pages that
6769 	 * page allocator holds, ie. they can be part of higher order
6770 	 * pages.  Because of this, we reserve the bigger range and
6771 	 * once this is done free the pages we are not interested in.
6772 	 *
6773 	 * We don't have to hold zone->lock here because the pages are
6774 	 * isolated thus they won't get removed from buddy.
6775 	 */
6776 	outer_start = find_large_buddy(start);
6777 
6778 	/* Make sure the range is really isolated. */
6779 	if (test_pages_isolated(outer_start, end, 0)) {
6780 		ret = -EBUSY;
6781 		goto done;
6782 	}
6783 
6784 	/* Grab isolated pages from freelists. */
6785 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6786 	if (!outer_end) {
6787 		ret = -EBUSY;
6788 		goto done;
6789 	}
6790 
6791 	if (!(gfp_mask & __GFP_COMP)) {
6792 		split_free_pages(cc.freepages, gfp_mask);
6793 
6794 		/* Free head and tail (if any) */
6795 		if (start != outer_start)
6796 			free_contig_range(outer_start, start - outer_start);
6797 		if (end != outer_end)
6798 			free_contig_range(end, outer_end - end);
6799 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6800 		struct page *head = pfn_to_page(start);
6801 		int order = ilog2(end - start);
6802 
6803 		check_new_pages(head, order);
6804 		prep_new_page(head, order, gfp_mask, 0);
6805 		set_page_refcounted(head);
6806 	} else {
6807 		ret = -EINVAL;
6808 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6809 		     start, end, outer_start, outer_end);
6810 	}
6811 done:
6812 	undo_isolate_page_range(start, end, migratetype);
6813 	return ret;
6814 }
6815 EXPORT_SYMBOL(alloc_contig_range_noprof);
6816 
6817 static int __alloc_contig_pages(unsigned long start_pfn,
6818 				unsigned long nr_pages, gfp_t gfp_mask)
6819 {
6820 	unsigned long end_pfn = start_pfn + nr_pages;
6821 
6822 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6823 				   gfp_mask);
6824 }
6825 
6826 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6827 				   unsigned long nr_pages)
6828 {
6829 	unsigned long i, end_pfn = start_pfn + nr_pages;
6830 	struct page *page;
6831 
6832 	for (i = start_pfn; i < end_pfn; i++) {
6833 		page = pfn_to_online_page(i);
6834 		if (!page)
6835 			return false;
6836 
6837 		if (page_zone(page) != z)
6838 			return false;
6839 
6840 		if (PageReserved(page))
6841 			return false;
6842 
6843 		if (PageHuge(page))
6844 			return false;
6845 	}
6846 	return true;
6847 }
6848 
6849 static bool zone_spans_last_pfn(const struct zone *zone,
6850 				unsigned long start_pfn, unsigned long nr_pages)
6851 {
6852 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6853 
6854 	return zone_spans_pfn(zone, last_pfn);
6855 }
6856 
6857 /**
6858  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6859  * @nr_pages:	Number of contiguous pages to allocate
6860  * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
6861  *		action and reclaim modifiers are supported. Reclaim modifiers
6862  *		control allocation behavior during compaction/migration/reclaim.
6863  * @nid:	Target node
6864  * @nodemask:	Mask for other possible nodes
6865  *
6866  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6867  * on an applicable zonelist to find a contiguous pfn range which can then be
6868  * tried for allocation with alloc_contig_range(). This routine is intended
6869  * for allocation requests which can not be fulfilled with the buddy allocator.
6870  *
6871  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6872  * power of two, then allocated range is also guaranteed to be aligned to same
6873  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6874  *
6875  * Allocated pages can be freed with free_contig_range() or by manually calling
6876  * __free_page() on each allocated page.
6877  *
6878  * Return: pointer to contiguous pages on success, or NULL if not successful.
6879  */
6880 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6881 				 int nid, nodemask_t *nodemask)
6882 {
6883 	unsigned long ret, pfn, flags;
6884 	struct zonelist *zonelist;
6885 	struct zone *zone;
6886 	struct zoneref *z;
6887 
6888 	zonelist = node_zonelist(nid, gfp_mask);
6889 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6890 					gfp_zone(gfp_mask), nodemask) {
6891 		spin_lock_irqsave(&zone->lock, flags);
6892 
6893 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6894 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6895 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6896 				/*
6897 				 * We release the zone lock here because
6898 				 * alloc_contig_range() will also lock the zone
6899 				 * at some point. If there's an allocation
6900 				 * spinning on this lock, it may win the race
6901 				 * and cause alloc_contig_range() to fail...
6902 				 */
6903 				spin_unlock_irqrestore(&zone->lock, flags);
6904 				ret = __alloc_contig_pages(pfn, nr_pages,
6905 							gfp_mask);
6906 				if (!ret)
6907 					return pfn_to_page(pfn);
6908 				spin_lock_irqsave(&zone->lock, flags);
6909 			}
6910 			pfn += nr_pages;
6911 		}
6912 		spin_unlock_irqrestore(&zone->lock, flags);
6913 	}
6914 	return NULL;
6915 }
6916 #endif /* CONFIG_CONTIG_ALLOC */
6917 
6918 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6919 {
6920 	unsigned long count = 0;
6921 	struct folio *folio = pfn_folio(pfn);
6922 
6923 	if (folio_test_large(folio)) {
6924 		int expected = folio_nr_pages(folio);
6925 
6926 		if (nr_pages == expected)
6927 			folio_put(folio);
6928 		else
6929 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6930 			     pfn, nr_pages, expected);
6931 		return;
6932 	}
6933 
6934 	for (; nr_pages--; pfn++) {
6935 		struct page *page = pfn_to_page(pfn);
6936 
6937 		count += page_count(page) != 1;
6938 		__free_page(page);
6939 	}
6940 	WARN(count != 0, "%lu pages are still in use!\n", count);
6941 }
6942 EXPORT_SYMBOL(free_contig_range);
6943 
6944 /*
6945  * Effectively disable pcplists for the zone by setting the high limit to 0
6946  * and draining all cpus. A concurrent page freeing on another CPU that's about
6947  * to put the page on pcplist will either finish before the drain and the page
6948  * will be drained, or observe the new high limit and skip the pcplist.
6949  *
6950  * Must be paired with a call to zone_pcp_enable().
6951  */
6952 void zone_pcp_disable(struct zone *zone)
6953 {
6954 	mutex_lock(&pcp_batch_high_lock);
6955 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6956 	__drain_all_pages(zone, true);
6957 }
6958 
6959 void zone_pcp_enable(struct zone *zone)
6960 {
6961 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6962 		zone->pageset_high_max, zone->pageset_batch);
6963 	mutex_unlock(&pcp_batch_high_lock);
6964 }
6965 
6966 void zone_pcp_reset(struct zone *zone)
6967 {
6968 	int cpu;
6969 	struct per_cpu_zonestat *pzstats;
6970 
6971 	if (zone->per_cpu_pageset != &boot_pageset) {
6972 		for_each_online_cpu(cpu) {
6973 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6974 			drain_zonestat(zone, pzstats);
6975 		}
6976 		free_percpu(zone->per_cpu_pageset);
6977 		zone->per_cpu_pageset = &boot_pageset;
6978 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6979 			free_percpu(zone->per_cpu_zonestats);
6980 			zone->per_cpu_zonestats = &boot_zonestats;
6981 		}
6982 	}
6983 }
6984 
6985 #ifdef CONFIG_MEMORY_HOTREMOVE
6986 /*
6987  * All pages in the range must be in a single zone, must not contain holes,
6988  * must span full sections, and must be isolated before calling this function.
6989  *
6990  * Returns the number of managed (non-PageOffline()) pages in the range: the
6991  * number of pages for which memory offlining code must adjust managed page
6992  * counters using adjust_managed_page_count().
6993  */
6994 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6995 		unsigned long end_pfn)
6996 {
6997 	unsigned long already_offline = 0, flags;
6998 	unsigned long pfn = start_pfn;
6999 	struct page *page;
7000 	struct zone *zone;
7001 	unsigned int order;
7002 
7003 	offline_mem_sections(pfn, end_pfn);
7004 	zone = page_zone(pfn_to_page(pfn));
7005 	spin_lock_irqsave(&zone->lock, flags);
7006 	while (pfn < end_pfn) {
7007 		page = pfn_to_page(pfn);
7008 		/*
7009 		 * The HWPoisoned page may be not in buddy system, and
7010 		 * page_count() is not 0.
7011 		 */
7012 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7013 			pfn++;
7014 			continue;
7015 		}
7016 		/*
7017 		 * At this point all remaining PageOffline() pages have a
7018 		 * reference count of 0 and can simply be skipped.
7019 		 */
7020 		if (PageOffline(page)) {
7021 			BUG_ON(page_count(page));
7022 			BUG_ON(PageBuddy(page));
7023 			already_offline++;
7024 			pfn++;
7025 			continue;
7026 		}
7027 
7028 		BUG_ON(page_count(page));
7029 		BUG_ON(!PageBuddy(page));
7030 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
7031 		order = buddy_order(page);
7032 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
7033 		pfn += (1 << order);
7034 	}
7035 	spin_unlock_irqrestore(&zone->lock, flags);
7036 
7037 	return end_pfn - start_pfn - already_offline;
7038 }
7039 #endif
7040 
7041 /*
7042  * This function returns a stable result only if called under zone lock.
7043  */
7044 bool is_free_buddy_page(const struct page *page)
7045 {
7046 	unsigned long pfn = page_to_pfn(page);
7047 	unsigned int order;
7048 
7049 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7050 		const struct page *head = page - (pfn & ((1 << order) - 1));
7051 
7052 		if (PageBuddy(head) &&
7053 		    buddy_order_unsafe(head) >= order)
7054 			break;
7055 	}
7056 
7057 	return order <= MAX_PAGE_ORDER;
7058 }
7059 EXPORT_SYMBOL(is_free_buddy_page);
7060 
7061 #ifdef CONFIG_MEMORY_FAILURE
7062 static inline void add_to_free_list(struct page *page, struct zone *zone,
7063 				    unsigned int order, int migratetype,
7064 				    bool tail)
7065 {
7066 	__add_to_free_list(page, zone, order, migratetype, tail);
7067 	account_freepages(zone, 1 << order, migratetype);
7068 }
7069 
7070 /*
7071  * Break down a higher-order page in sub-pages, and keep our target out of
7072  * buddy allocator.
7073  */
7074 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7075 				   struct page *target, int low, int high,
7076 				   int migratetype)
7077 {
7078 	unsigned long size = 1 << high;
7079 	struct page *current_buddy;
7080 
7081 	while (high > low) {
7082 		high--;
7083 		size >>= 1;
7084 
7085 		if (target >= &page[size]) {
7086 			current_buddy = page;
7087 			page = page + size;
7088 		} else {
7089 			current_buddy = page + size;
7090 		}
7091 
7092 		if (set_page_guard(zone, current_buddy, high))
7093 			continue;
7094 
7095 		add_to_free_list(current_buddy, zone, high, migratetype, false);
7096 		set_buddy_order(current_buddy, high);
7097 	}
7098 }
7099 
7100 /*
7101  * Take a page that will be marked as poisoned off the buddy allocator.
7102  */
7103 bool take_page_off_buddy(struct page *page)
7104 {
7105 	struct zone *zone = page_zone(page);
7106 	unsigned long pfn = page_to_pfn(page);
7107 	unsigned long flags;
7108 	unsigned int order;
7109 	bool ret = false;
7110 
7111 	spin_lock_irqsave(&zone->lock, flags);
7112 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7113 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7114 		int page_order = buddy_order(page_head);
7115 
7116 		if (PageBuddy(page_head) && page_order >= order) {
7117 			unsigned long pfn_head = page_to_pfn(page_head);
7118 			int migratetype = get_pfnblock_migratetype(page_head,
7119 								   pfn_head);
7120 
7121 			del_page_from_free_list(page_head, zone, page_order,
7122 						migratetype);
7123 			break_down_buddy_pages(zone, page_head, page, 0,
7124 						page_order, migratetype);
7125 			SetPageHWPoisonTakenOff(page);
7126 			ret = true;
7127 			break;
7128 		}
7129 		if (page_count(page_head) > 0)
7130 			break;
7131 	}
7132 	spin_unlock_irqrestore(&zone->lock, flags);
7133 	return ret;
7134 }
7135 
7136 /*
7137  * Cancel takeoff done by take_page_off_buddy().
7138  */
7139 bool put_page_back_buddy(struct page *page)
7140 {
7141 	struct zone *zone = page_zone(page);
7142 	unsigned long flags;
7143 	bool ret = false;
7144 
7145 	spin_lock_irqsave(&zone->lock, flags);
7146 	if (put_page_testzero(page)) {
7147 		unsigned long pfn = page_to_pfn(page);
7148 		int migratetype = get_pfnblock_migratetype(page, pfn);
7149 
7150 		ClearPageHWPoisonTakenOff(page);
7151 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7152 		if (TestClearPageHWPoison(page)) {
7153 			ret = true;
7154 		}
7155 	}
7156 	spin_unlock_irqrestore(&zone->lock, flags);
7157 
7158 	return ret;
7159 }
7160 #endif
7161 
7162 #ifdef CONFIG_ZONE_DMA
7163 bool has_managed_dma(void)
7164 {
7165 	struct pglist_data *pgdat;
7166 
7167 	for_each_online_pgdat(pgdat) {
7168 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7169 
7170 		if (managed_zone(zone))
7171 			return true;
7172 	}
7173 	return false;
7174 }
7175 #endif /* CONFIG_ZONE_DMA */
7176 
7177 #ifdef CONFIG_UNACCEPTED_MEMORY
7178 
7179 static bool lazy_accept = true;
7180 
7181 static int __init accept_memory_parse(char *p)
7182 {
7183 	if (!strcmp(p, "lazy")) {
7184 		lazy_accept = true;
7185 		return 0;
7186 	} else if (!strcmp(p, "eager")) {
7187 		lazy_accept = false;
7188 		return 0;
7189 	} else {
7190 		return -EINVAL;
7191 	}
7192 }
7193 early_param("accept_memory", accept_memory_parse);
7194 
7195 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7196 {
7197 	phys_addr_t start = page_to_phys(page);
7198 
7199 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7200 }
7201 
7202 static void __accept_page(struct zone *zone, unsigned long *flags,
7203 			  struct page *page)
7204 {
7205 	list_del(&page->lru);
7206 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7207 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7208 	__ClearPageUnaccepted(page);
7209 	spin_unlock_irqrestore(&zone->lock, *flags);
7210 
7211 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7212 
7213 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7214 }
7215 
7216 void accept_page(struct page *page)
7217 {
7218 	struct zone *zone = page_zone(page);
7219 	unsigned long flags;
7220 
7221 	spin_lock_irqsave(&zone->lock, flags);
7222 	if (!PageUnaccepted(page)) {
7223 		spin_unlock_irqrestore(&zone->lock, flags);
7224 		return;
7225 	}
7226 
7227 	/* Unlocks zone->lock */
7228 	__accept_page(zone, &flags, page);
7229 }
7230 
7231 static bool try_to_accept_memory_one(struct zone *zone)
7232 {
7233 	unsigned long flags;
7234 	struct page *page;
7235 
7236 	spin_lock_irqsave(&zone->lock, flags);
7237 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7238 					struct page, lru);
7239 	if (!page) {
7240 		spin_unlock_irqrestore(&zone->lock, flags);
7241 		return false;
7242 	}
7243 
7244 	/* Unlocks zone->lock */
7245 	__accept_page(zone, &flags, page);
7246 
7247 	return true;
7248 }
7249 
7250 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7251 			       int alloc_flags)
7252 {
7253 	long to_accept, wmark;
7254 	bool ret = false;
7255 
7256 	if (list_empty(&zone->unaccepted_pages))
7257 		return false;
7258 
7259 	/* Bailout, since try_to_accept_memory_one() needs to take a lock */
7260 	if (alloc_flags & ALLOC_TRYLOCK)
7261 		return false;
7262 
7263 	wmark = promo_wmark_pages(zone);
7264 
7265 	/*
7266 	 * Watermarks have not been initialized yet.
7267 	 *
7268 	 * Accepting one MAX_ORDER page to ensure progress.
7269 	 */
7270 	if (!wmark)
7271 		return try_to_accept_memory_one(zone);
7272 
7273 	/* How much to accept to get to promo watermark? */
7274 	to_accept = wmark -
7275 		    (zone_page_state(zone, NR_FREE_PAGES) -
7276 		    __zone_watermark_unusable_free(zone, order, 0) -
7277 		    zone_page_state(zone, NR_UNACCEPTED));
7278 
7279 	while (to_accept > 0) {
7280 		if (!try_to_accept_memory_one(zone))
7281 			break;
7282 		ret = true;
7283 		to_accept -= MAX_ORDER_NR_PAGES;
7284 	}
7285 
7286 	return ret;
7287 }
7288 
7289 static bool __free_unaccepted(struct page *page)
7290 {
7291 	struct zone *zone = page_zone(page);
7292 	unsigned long flags;
7293 
7294 	if (!lazy_accept)
7295 		return false;
7296 
7297 	spin_lock_irqsave(&zone->lock, flags);
7298 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7299 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7300 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7301 	__SetPageUnaccepted(page);
7302 	spin_unlock_irqrestore(&zone->lock, flags);
7303 
7304 	return true;
7305 }
7306 
7307 #else
7308 
7309 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7310 {
7311 	return false;
7312 }
7313 
7314 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7315 			       int alloc_flags)
7316 {
7317 	return false;
7318 }
7319 
7320 static bool __free_unaccepted(struct page *page)
7321 {
7322 	BUILD_BUG();
7323 	return false;
7324 }
7325 
7326 #endif /* CONFIG_UNACCEPTED_MEMORY */
7327 
7328 /**
7329  * try_alloc_pages - opportunistic reentrant allocation from any context
7330  * @nid: node to allocate from
7331  * @order: allocation order size
7332  *
7333  * Allocates pages of a given order from the given node. This is safe to
7334  * call from any context (from atomic, NMI, and also reentrant
7335  * allocator -> tracepoint -> try_alloc_pages_noprof).
7336  * Allocation is best effort and to be expected to fail easily so nobody should
7337  * rely on the success. Failures are not reported via warn_alloc().
7338  * See always fail conditions below.
7339  *
7340  * Return: allocated page or NULL on failure.
7341  */
7342 struct page *try_alloc_pages_noprof(int nid, unsigned int order)
7343 {
7344 	/*
7345 	 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
7346 	 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
7347 	 * is not safe in arbitrary context.
7348 	 *
7349 	 * These two are the conditions for gfpflags_allow_spinning() being true.
7350 	 *
7351 	 * Specify __GFP_NOWARN since failing try_alloc_pages() is not a reason
7352 	 * to warn. Also warn would trigger printk() which is unsafe from
7353 	 * various contexts. We cannot use printk_deferred_enter() to mitigate,
7354 	 * since the running context is unknown.
7355 	 *
7356 	 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
7357 	 * is safe in any context. Also zeroing the page is mandatory for
7358 	 * BPF use cases.
7359 	 *
7360 	 * Though __GFP_NOMEMALLOC is not checked in the code path below,
7361 	 * specify it here to highlight that try_alloc_pages()
7362 	 * doesn't want to deplete reserves.
7363 	 */
7364 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC
7365 			| __GFP_ACCOUNT;
7366 	unsigned int alloc_flags = ALLOC_TRYLOCK;
7367 	struct alloc_context ac = { };
7368 	struct page *page;
7369 
7370 	/*
7371 	 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
7372 	 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
7373 	 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
7374 	 * mark the task as the owner of another rt_spin_lock which will
7375 	 * confuse PI logic, so return immediately if called form hard IRQ or
7376 	 * NMI.
7377 	 *
7378 	 * Note, irqs_disabled() case is ok. This function can be called
7379 	 * from raw_spin_lock_irqsave region.
7380 	 */
7381 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
7382 		return NULL;
7383 	if (!pcp_allowed_order(order))
7384 		return NULL;
7385 
7386 	/* Bailout, since _deferred_grow_zone() needs to take a lock */
7387 	if (deferred_pages_enabled())
7388 		return NULL;
7389 
7390 	if (nid == NUMA_NO_NODE)
7391 		nid = numa_node_id();
7392 
7393 	prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
7394 			    &alloc_gfp, &alloc_flags);
7395 
7396 	/*
7397 	 * Best effort allocation from percpu free list.
7398 	 * If it's empty attempt to spin_trylock zone->lock.
7399 	 */
7400 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
7401 
7402 	/* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
7403 
7404 	if (page)
7405 		set_page_refcounted(page);
7406 
7407 	if (memcg_kmem_online() && page &&
7408 	    unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
7409 		free_pages_nolock(page, order);
7410 		page = NULL;
7411 	}
7412 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
7413 	kmsan_alloc_page(page, order, alloc_gfp);
7414 	return page;
7415 }
7416