1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/kmsan.h> 31 #include <linux/module.h> 32 #include <linux/suspend.h> 33 #include <linux/pagevec.h> 34 #include <linux/blkdev.h> 35 #include <linux/slab.h> 36 #include <linux/ratelimit.h> 37 #include <linux/oom.h> 38 #include <linux/topology.h> 39 #include <linux/sysctl.h> 40 #include <linux/cpu.h> 41 #include <linux/cpuset.h> 42 #include <linux/memory_hotplug.h> 43 #include <linux/nodemask.h> 44 #include <linux/vmalloc.h> 45 #include <linux/vmstat.h> 46 #include <linux/mempolicy.h> 47 #include <linux/memremap.h> 48 #include <linux/stop_machine.h> 49 #include <linux/random.h> 50 #include <linux/sort.h> 51 #include <linux/pfn.h> 52 #include <linux/backing-dev.h> 53 #include <linux/fault-inject.h> 54 #include <linux/page-isolation.h> 55 #include <linux/debugobjects.h> 56 #include <linux/kmemleak.h> 57 #include <linux/compaction.h> 58 #include <trace/events/kmem.h> 59 #include <trace/events/oom.h> 60 #include <linux/prefetch.h> 61 #include <linux/mm_inline.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/migrate.h> 64 #include <linux/hugetlb.h> 65 #include <linux/sched/rt.h> 66 #include <linux/sched/mm.h> 67 #include <linux/page_owner.h> 68 #include <linux/page_table_check.h> 69 #include <linux/kthread.h> 70 #include <linux/memcontrol.h> 71 #include <linux/ftrace.h> 72 #include <linux/lockdep.h> 73 #include <linux/nmi.h> 74 #include <linux/psi.h> 75 #include <linux/padata.h> 76 #include <linux/khugepaged.h> 77 #include <linux/buffer_head.h> 78 #include <linux/delayacct.h> 79 #include <asm/sections.h> 80 #include <asm/tlbflush.h> 81 #include <asm/div64.h> 82 #include "internal.h" 83 #include "shuffle.h" 84 #include "page_reporting.h" 85 #include "swap.h" 86 87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 88 typedef int __bitwise fpi_t; 89 90 /* No special request */ 91 #define FPI_NONE ((__force fpi_t)0) 92 93 /* 94 * Skip free page reporting notification for the (possibly merged) page. 95 * This does not hinder free page reporting from grabbing the page, 96 * reporting it and marking it "reported" - it only skips notifying 97 * the free page reporting infrastructure about a newly freed page. For 98 * example, used when temporarily pulling a page from a freelist and 99 * putting it back unmodified. 100 */ 101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 102 103 /* 104 * Place the (possibly merged) page to the tail of the freelist. Will ignore 105 * page shuffling (relevant code - e.g., memory onlining - is expected to 106 * shuffle the whole zone). 107 * 108 * Note: No code should rely on this flag for correctness - it's purely 109 * to allow for optimizations when handing back either fresh pages 110 * (memory onlining) or untouched pages (page isolation, free page 111 * reporting). 112 */ 113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 114 115 /* 116 * Don't poison memory with KASAN (only for the tag-based modes). 117 * During boot, all non-reserved memblock memory is exposed to page_alloc. 118 * Poisoning all that memory lengthens boot time, especially on systems with 119 * large amount of RAM. This flag is used to skip that poisoning. 120 * This is only done for the tag-based KASAN modes, as those are able to 121 * detect memory corruptions with the memory tags assigned by default. 122 * All memory allocated normally after boot gets poisoned as usual. 123 */ 124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 125 126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 127 static DEFINE_MUTEX(pcp_batch_high_lock); 128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 129 130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 131 /* 132 * On SMP, spin_trylock is sufficient protection. 133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 134 */ 135 #define pcp_trylock_prepare(flags) do { } while (0) 136 #define pcp_trylock_finish(flag) do { } while (0) 137 #else 138 139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 140 #define pcp_trylock_prepare(flags) local_irq_save(flags) 141 #define pcp_trylock_finish(flags) local_irq_restore(flags) 142 #endif 143 144 /* 145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 146 * a migration causing the wrong PCP to be locked and remote memory being 147 * potentially allocated, pin the task to the CPU for the lookup+lock. 148 * preempt_disable is used on !RT because it is faster than migrate_disable. 149 * migrate_disable is used on RT because otherwise RT spinlock usage is 150 * interfered with and a high priority task cannot preempt the allocator. 151 */ 152 #ifndef CONFIG_PREEMPT_RT 153 #define pcpu_task_pin() preempt_disable() 154 #define pcpu_task_unpin() preempt_enable() 155 #else 156 #define pcpu_task_pin() migrate_disable() 157 #define pcpu_task_unpin() migrate_enable() 158 #endif 159 160 /* 161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 162 * Return value should be used with equivalent unlock helper. 163 */ 164 #define pcpu_spin_lock(type, member, ptr) \ 165 ({ \ 166 type *_ret; \ 167 pcpu_task_pin(); \ 168 _ret = this_cpu_ptr(ptr); \ 169 spin_lock(&_ret->member); \ 170 _ret; \ 171 }) 172 173 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \ 174 ({ \ 175 type *_ret; \ 176 pcpu_task_pin(); \ 177 _ret = this_cpu_ptr(ptr); \ 178 spin_lock_irqsave(&_ret->member, flags); \ 179 _ret; \ 180 }) 181 182 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \ 183 ({ \ 184 type *_ret; \ 185 pcpu_task_pin(); \ 186 _ret = this_cpu_ptr(ptr); \ 187 if (!spin_trylock_irqsave(&_ret->member, flags)) { \ 188 pcpu_task_unpin(); \ 189 _ret = NULL; \ 190 } \ 191 _ret; \ 192 }) 193 194 #define pcpu_spin_unlock(member, ptr) \ 195 ({ \ 196 spin_unlock(&ptr->member); \ 197 pcpu_task_unpin(); \ 198 }) 199 200 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \ 201 ({ \ 202 spin_unlock_irqrestore(&ptr->member, flags); \ 203 pcpu_task_unpin(); \ 204 }) 205 206 /* struct per_cpu_pages specific helpers. */ 207 #define pcp_spin_lock(ptr) \ 208 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 209 210 #define pcp_spin_lock_irqsave(ptr, flags) \ 211 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags) 212 213 #define pcp_spin_trylock_irqsave(ptr, flags) \ 214 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags) 215 216 #define pcp_spin_unlock(ptr) \ 217 pcpu_spin_unlock(lock, ptr) 218 219 #define pcp_spin_unlock_irqrestore(ptr, flags) \ 220 pcpu_spin_unlock_irqrestore(lock, ptr, flags) 221 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 222 DEFINE_PER_CPU(int, numa_node); 223 EXPORT_PER_CPU_SYMBOL(numa_node); 224 #endif 225 226 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 227 228 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 229 /* 230 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 231 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 232 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 233 * defined in <linux/topology.h>. 234 */ 235 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 236 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 237 #endif 238 239 static DEFINE_MUTEX(pcpu_drain_mutex); 240 241 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 242 volatile unsigned long latent_entropy __latent_entropy; 243 EXPORT_SYMBOL(latent_entropy); 244 #endif 245 246 /* 247 * Array of node states. 248 */ 249 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 250 [N_POSSIBLE] = NODE_MASK_ALL, 251 [N_ONLINE] = { { [0] = 1UL } }, 252 #ifndef CONFIG_NUMA 253 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 254 #ifdef CONFIG_HIGHMEM 255 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 256 #endif 257 [N_MEMORY] = { { [0] = 1UL } }, 258 [N_CPU] = { { [0] = 1UL } }, 259 #endif /* NUMA */ 260 }; 261 EXPORT_SYMBOL(node_states); 262 263 atomic_long_t _totalram_pages __read_mostly; 264 EXPORT_SYMBOL(_totalram_pages); 265 unsigned long totalreserve_pages __read_mostly; 266 unsigned long totalcma_pages __read_mostly; 267 268 int percpu_pagelist_high_fraction; 269 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 270 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 271 EXPORT_SYMBOL(init_on_alloc); 272 273 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 274 EXPORT_SYMBOL(init_on_free); 275 276 static bool _init_on_alloc_enabled_early __read_mostly 277 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 278 static int __init early_init_on_alloc(char *buf) 279 { 280 281 return kstrtobool(buf, &_init_on_alloc_enabled_early); 282 } 283 early_param("init_on_alloc", early_init_on_alloc); 284 285 static bool _init_on_free_enabled_early __read_mostly 286 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 287 static int __init early_init_on_free(char *buf) 288 { 289 return kstrtobool(buf, &_init_on_free_enabled_early); 290 } 291 early_param("init_on_free", early_init_on_free); 292 293 /* 294 * A cached value of the page's pageblock's migratetype, used when the page is 295 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 296 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 297 * Also the migratetype set in the page does not necessarily match the pcplist 298 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 299 * other index - this ensures that it will be put on the correct CMA freelist. 300 */ 301 static inline int get_pcppage_migratetype(struct page *page) 302 { 303 return page->index; 304 } 305 306 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 307 { 308 page->index = migratetype; 309 } 310 311 #ifdef CONFIG_PM_SLEEP 312 /* 313 * The following functions are used by the suspend/hibernate code to temporarily 314 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 315 * while devices are suspended. To avoid races with the suspend/hibernate code, 316 * they should always be called with system_transition_mutex held 317 * (gfp_allowed_mask also should only be modified with system_transition_mutex 318 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 319 * with that modification). 320 */ 321 322 static gfp_t saved_gfp_mask; 323 324 void pm_restore_gfp_mask(void) 325 { 326 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 327 if (saved_gfp_mask) { 328 gfp_allowed_mask = saved_gfp_mask; 329 saved_gfp_mask = 0; 330 } 331 } 332 333 void pm_restrict_gfp_mask(void) 334 { 335 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 336 WARN_ON(saved_gfp_mask); 337 saved_gfp_mask = gfp_allowed_mask; 338 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 339 } 340 341 bool pm_suspended_storage(void) 342 { 343 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 344 return false; 345 return true; 346 } 347 #endif /* CONFIG_PM_SLEEP */ 348 349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 350 unsigned int pageblock_order __read_mostly; 351 #endif 352 353 static void __free_pages_ok(struct page *page, unsigned int order, 354 fpi_t fpi_flags); 355 356 /* 357 * results with 256, 32 in the lowmem_reserve sysctl: 358 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 359 * 1G machine -> (16M dma, 784M normal, 224M high) 360 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 361 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 362 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 363 * 364 * TBD: should special case ZONE_DMA32 machines here - in those we normally 365 * don't need any ZONE_NORMAL reservation 366 */ 367 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 368 #ifdef CONFIG_ZONE_DMA 369 [ZONE_DMA] = 256, 370 #endif 371 #ifdef CONFIG_ZONE_DMA32 372 [ZONE_DMA32] = 256, 373 #endif 374 [ZONE_NORMAL] = 32, 375 #ifdef CONFIG_HIGHMEM 376 [ZONE_HIGHMEM] = 0, 377 #endif 378 [ZONE_MOVABLE] = 0, 379 }; 380 381 static char * const zone_names[MAX_NR_ZONES] = { 382 #ifdef CONFIG_ZONE_DMA 383 "DMA", 384 #endif 385 #ifdef CONFIG_ZONE_DMA32 386 "DMA32", 387 #endif 388 "Normal", 389 #ifdef CONFIG_HIGHMEM 390 "HighMem", 391 #endif 392 "Movable", 393 #ifdef CONFIG_ZONE_DEVICE 394 "Device", 395 #endif 396 }; 397 398 const char * const migratetype_names[MIGRATE_TYPES] = { 399 "Unmovable", 400 "Movable", 401 "Reclaimable", 402 "HighAtomic", 403 #ifdef CONFIG_CMA 404 "CMA", 405 #endif 406 #ifdef CONFIG_MEMORY_ISOLATION 407 "Isolate", 408 #endif 409 }; 410 411 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 412 [NULL_COMPOUND_DTOR] = NULL, 413 [COMPOUND_PAGE_DTOR] = free_compound_page, 414 #ifdef CONFIG_HUGETLB_PAGE 415 [HUGETLB_PAGE_DTOR] = free_huge_page, 416 #endif 417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 418 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 419 #endif 420 }; 421 422 int min_free_kbytes = 1024; 423 int user_min_free_kbytes = -1; 424 int watermark_boost_factor __read_mostly = 15000; 425 int watermark_scale_factor = 10; 426 427 static unsigned long nr_kernel_pages __initdata; 428 static unsigned long nr_all_pages __initdata; 429 static unsigned long dma_reserve __initdata; 430 431 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 432 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 433 static unsigned long required_kernelcore __initdata; 434 static unsigned long required_kernelcore_percent __initdata; 435 static unsigned long required_movablecore __initdata; 436 static unsigned long required_movablecore_percent __initdata; 437 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 438 bool mirrored_kernelcore __initdata_memblock; 439 440 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 441 int movable_zone; 442 EXPORT_SYMBOL(movable_zone); 443 444 #if MAX_NUMNODES > 1 445 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 446 unsigned int nr_online_nodes __read_mostly = 1; 447 EXPORT_SYMBOL(nr_node_ids); 448 EXPORT_SYMBOL(nr_online_nodes); 449 #endif 450 451 int page_group_by_mobility_disabled __read_mostly; 452 453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 454 /* 455 * During boot we initialize deferred pages on-demand, as needed, but once 456 * page_alloc_init_late() has finished, the deferred pages are all initialized, 457 * and we can permanently disable that path. 458 */ 459 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 460 461 static inline bool deferred_pages_enabled(void) 462 { 463 return static_branch_unlikely(&deferred_pages); 464 } 465 466 /* Returns true if the struct page for the pfn is uninitialised */ 467 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 468 { 469 int nid = early_pfn_to_nid(pfn); 470 471 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 472 return true; 473 474 return false; 475 } 476 477 /* 478 * Returns true when the remaining initialisation should be deferred until 479 * later in the boot cycle when it can be parallelised. 480 */ 481 static bool __meminit 482 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 483 { 484 static unsigned long prev_end_pfn, nr_initialised; 485 486 if (early_page_ext_enabled()) 487 return false; 488 /* 489 * prev_end_pfn static that contains the end of previous zone 490 * No need to protect because called very early in boot before smp_init. 491 */ 492 if (prev_end_pfn != end_pfn) { 493 prev_end_pfn = end_pfn; 494 nr_initialised = 0; 495 } 496 497 /* Always populate low zones for address-constrained allocations */ 498 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 499 return false; 500 501 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 502 return true; 503 /* 504 * We start only with one section of pages, more pages are added as 505 * needed until the rest of deferred pages are initialized. 506 */ 507 nr_initialised++; 508 if ((nr_initialised > PAGES_PER_SECTION) && 509 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 510 NODE_DATA(nid)->first_deferred_pfn = pfn; 511 return true; 512 } 513 return false; 514 } 515 #else 516 static inline bool deferred_pages_enabled(void) 517 { 518 return false; 519 } 520 521 static inline bool early_page_uninitialised(unsigned long pfn) 522 { 523 return false; 524 } 525 526 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 527 { 528 return false; 529 } 530 #endif 531 532 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 533 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 534 unsigned long pfn) 535 { 536 #ifdef CONFIG_SPARSEMEM 537 return section_to_usemap(__pfn_to_section(pfn)); 538 #else 539 return page_zone(page)->pageblock_flags; 540 #endif /* CONFIG_SPARSEMEM */ 541 } 542 543 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 544 { 545 #ifdef CONFIG_SPARSEMEM 546 pfn &= (PAGES_PER_SECTION-1); 547 #else 548 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 549 #endif /* CONFIG_SPARSEMEM */ 550 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 551 } 552 553 static __always_inline 554 unsigned long __get_pfnblock_flags_mask(const struct page *page, 555 unsigned long pfn, 556 unsigned long mask) 557 { 558 unsigned long *bitmap; 559 unsigned long bitidx, word_bitidx; 560 unsigned long word; 561 562 bitmap = get_pageblock_bitmap(page, pfn); 563 bitidx = pfn_to_bitidx(page, pfn); 564 word_bitidx = bitidx / BITS_PER_LONG; 565 bitidx &= (BITS_PER_LONG-1); 566 /* 567 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 568 * a consistent read of the memory array, so that results, even though 569 * racy, are not corrupted. 570 */ 571 word = READ_ONCE(bitmap[word_bitidx]); 572 return (word >> bitidx) & mask; 573 } 574 575 /** 576 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 577 * @page: The page within the block of interest 578 * @pfn: The target page frame number 579 * @mask: mask of bits that the caller is interested in 580 * 581 * Return: pageblock_bits flags 582 */ 583 unsigned long get_pfnblock_flags_mask(const struct page *page, 584 unsigned long pfn, unsigned long mask) 585 { 586 return __get_pfnblock_flags_mask(page, pfn, mask); 587 } 588 589 static __always_inline int get_pfnblock_migratetype(const struct page *page, 590 unsigned long pfn) 591 { 592 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 593 } 594 595 /** 596 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 597 * @page: The page within the block of interest 598 * @flags: The flags to set 599 * @pfn: The target page frame number 600 * @mask: mask of bits that the caller is interested in 601 */ 602 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 603 unsigned long pfn, 604 unsigned long mask) 605 { 606 unsigned long *bitmap; 607 unsigned long bitidx, word_bitidx; 608 unsigned long word; 609 610 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 611 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 612 613 bitmap = get_pageblock_bitmap(page, pfn); 614 bitidx = pfn_to_bitidx(page, pfn); 615 word_bitidx = bitidx / BITS_PER_LONG; 616 bitidx &= (BITS_PER_LONG-1); 617 618 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 619 620 mask <<= bitidx; 621 flags <<= bitidx; 622 623 word = READ_ONCE(bitmap[word_bitidx]); 624 do { 625 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 626 } 627 628 void set_pageblock_migratetype(struct page *page, int migratetype) 629 { 630 if (unlikely(page_group_by_mobility_disabled && 631 migratetype < MIGRATE_PCPTYPES)) 632 migratetype = MIGRATE_UNMOVABLE; 633 634 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 635 page_to_pfn(page), MIGRATETYPE_MASK); 636 } 637 638 #ifdef CONFIG_DEBUG_VM 639 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 640 { 641 int ret = 0; 642 unsigned seq; 643 unsigned long pfn = page_to_pfn(page); 644 unsigned long sp, start_pfn; 645 646 do { 647 seq = zone_span_seqbegin(zone); 648 start_pfn = zone->zone_start_pfn; 649 sp = zone->spanned_pages; 650 if (!zone_spans_pfn(zone, pfn)) 651 ret = 1; 652 } while (zone_span_seqretry(zone, seq)); 653 654 if (ret) 655 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 656 pfn, zone_to_nid(zone), zone->name, 657 start_pfn, start_pfn + sp); 658 659 return ret; 660 } 661 662 static int page_is_consistent(struct zone *zone, struct page *page) 663 { 664 if (zone != page_zone(page)) 665 return 0; 666 667 return 1; 668 } 669 /* 670 * Temporary debugging check for pages not lying within a given zone. 671 */ 672 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 673 { 674 if (page_outside_zone_boundaries(zone, page)) 675 return 1; 676 if (!page_is_consistent(zone, page)) 677 return 1; 678 679 return 0; 680 } 681 #else 682 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 683 { 684 return 0; 685 } 686 #endif 687 688 static void bad_page(struct page *page, const char *reason) 689 { 690 static unsigned long resume; 691 static unsigned long nr_shown; 692 static unsigned long nr_unshown; 693 694 /* 695 * Allow a burst of 60 reports, then keep quiet for that minute; 696 * or allow a steady drip of one report per second. 697 */ 698 if (nr_shown == 60) { 699 if (time_before(jiffies, resume)) { 700 nr_unshown++; 701 goto out; 702 } 703 if (nr_unshown) { 704 pr_alert( 705 "BUG: Bad page state: %lu messages suppressed\n", 706 nr_unshown); 707 nr_unshown = 0; 708 } 709 nr_shown = 0; 710 } 711 if (nr_shown++ == 0) 712 resume = jiffies + 60 * HZ; 713 714 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 715 current->comm, page_to_pfn(page)); 716 dump_page(page, reason); 717 718 print_modules(); 719 dump_stack(); 720 out: 721 /* Leave bad fields for debug, except PageBuddy could make trouble */ 722 page_mapcount_reset(page); /* remove PageBuddy */ 723 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 724 } 725 726 static inline unsigned int order_to_pindex(int migratetype, int order) 727 { 728 int base = order; 729 730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 731 if (order > PAGE_ALLOC_COSTLY_ORDER) { 732 VM_BUG_ON(order != pageblock_order); 733 return NR_LOWORDER_PCP_LISTS; 734 } 735 #else 736 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 737 #endif 738 739 return (MIGRATE_PCPTYPES * base) + migratetype; 740 } 741 742 static inline int pindex_to_order(unsigned int pindex) 743 { 744 int order = pindex / MIGRATE_PCPTYPES; 745 746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 747 if (pindex == NR_LOWORDER_PCP_LISTS) 748 order = pageblock_order; 749 #else 750 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 751 #endif 752 753 return order; 754 } 755 756 static inline bool pcp_allowed_order(unsigned int order) 757 { 758 if (order <= PAGE_ALLOC_COSTLY_ORDER) 759 return true; 760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 761 if (order == pageblock_order) 762 return true; 763 #endif 764 return false; 765 } 766 767 static inline void free_the_page(struct page *page, unsigned int order) 768 { 769 if (pcp_allowed_order(order)) /* Via pcp? */ 770 free_unref_page(page, order); 771 else 772 __free_pages_ok(page, order, FPI_NONE); 773 } 774 775 /* 776 * Higher-order pages are called "compound pages". They are structured thusly: 777 * 778 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 779 * 780 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 781 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 782 * 783 * The first tail page's ->compound_dtor holds the offset in array of compound 784 * page destructors. See compound_page_dtors. 785 * 786 * The first tail page's ->compound_order holds the order of allocation. 787 * This usage means that zero-order pages may not be compound. 788 */ 789 790 void free_compound_page(struct page *page) 791 { 792 mem_cgroup_uncharge(page_folio(page)); 793 free_the_page(page, compound_order(page)); 794 } 795 796 static void prep_compound_head(struct page *page, unsigned int order) 797 { 798 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 799 set_compound_order(page, order); 800 atomic_set(compound_mapcount_ptr(page), -1); 801 atomic_set(compound_pincount_ptr(page), 0); 802 } 803 804 static void prep_compound_tail(struct page *head, int tail_idx) 805 { 806 struct page *p = head + tail_idx; 807 808 p->mapping = TAIL_MAPPING; 809 set_compound_head(p, head); 810 } 811 812 void prep_compound_page(struct page *page, unsigned int order) 813 { 814 int i; 815 int nr_pages = 1 << order; 816 817 __SetPageHead(page); 818 for (i = 1; i < nr_pages; i++) 819 prep_compound_tail(page, i); 820 821 prep_compound_head(page, order); 822 } 823 824 void destroy_large_folio(struct folio *folio) 825 { 826 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor; 827 828 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 829 compound_page_dtors[dtor](&folio->page); 830 } 831 832 #ifdef CONFIG_DEBUG_PAGEALLOC 833 unsigned int _debug_guardpage_minorder; 834 835 bool _debug_pagealloc_enabled_early __read_mostly 836 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 837 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 838 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 839 EXPORT_SYMBOL(_debug_pagealloc_enabled); 840 841 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 842 843 static int __init early_debug_pagealloc(char *buf) 844 { 845 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 846 } 847 early_param("debug_pagealloc", early_debug_pagealloc); 848 849 static int __init debug_guardpage_minorder_setup(char *buf) 850 { 851 unsigned long res; 852 853 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 854 pr_err("Bad debug_guardpage_minorder value\n"); 855 return 0; 856 } 857 _debug_guardpage_minorder = res; 858 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 859 return 0; 860 } 861 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 862 863 static inline bool set_page_guard(struct zone *zone, struct page *page, 864 unsigned int order, int migratetype) 865 { 866 if (!debug_guardpage_enabled()) 867 return false; 868 869 if (order >= debug_guardpage_minorder()) 870 return false; 871 872 __SetPageGuard(page); 873 INIT_LIST_HEAD(&page->buddy_list); 874 set_page_private(page, order); 875 /* Guard pages are not available for any usage */ 876 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 877 878 return true; 879 } 880 881 static inline void clear_page_guard(struct zone *zone, struct page *page, 882 unsigned int order, int migratetype) 883 { 884 if (!debug_guardpage_enabled()) 885 return; 886 887 __ClearPageGuard(page); 888 889 set_page_private(page, 0); 890 if (!is_migrate_isolate(migratetype)) 891 __mod_zone_freepage_state(zone, (1 << order), migratetype); 892 } 893 #else 894 static inline bool set_page_guard(struct zone *zone, struct page *page, 895 unsigned int order, int migratetype) { return false; } 896 static inline void clear_page_guard(struct zone *zone, struct page *page, 897 unsigned int order, int migratetype) {} 898 #endif 899 900 /* 901 * Enable static keys related to various memory debugging and hardening options. 902 * Some override others, and depend on early params that are evaluated in the 903 * order of appearance. So we need to first gather the full picture of what was 904 * enabled, and then make decisions. 905 */ 906 void init_mem_debugging_and_hardening(void) 907 { 908 bool page_poisoning_requested = false; 909 910 #ifdef CONFIG_PAGE_POISONING 911 /* 912 * Page poisoning is debug page alloc for some arches. If 913 * either of those options are enabled, enable poisoning. 914 */ 915 if (page_poisoning_enabled() || 916 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 917 debug_pagealloc_enabled())) { 918 static_branch_enable(&_page_poisoning_enabled); 919 page_poisoning_requested = true; 920 } 921 #endif 922 923 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 924 page_poisoning_requested) { 925 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 926 "will take precedence over init_on_alloc and init_on_free\n"); 927 _init_on_alloc_enabled_early = false; 928 _init_on_free_enabled_early = false; 929 } 930 931 if (_init_on_alloc_enabled_early) 932 static_branch_enable(&init_on_alloc); 933 else 934 static_branch_disable(&init_on_alloc); 935 936 if (_init_on_free_enabled_early) 937 static_branch_enable(&init_on_free); 938 else 939 static_branch_disable(&init_on_free); 940 941 #ifdef CONFIG_DEBUG_PAGEALLOC 942 if (!debug_pagealloc_enabled()) 943 return; 944 945 static_branch_enable(&_debug_pagealloc_enabled); 946 947 if (!debug_guardpage_minorder()) 948 return; 949 950 static_branch_enable(&_debug_guardpage_enabled); 951 #endif 952 } 953 954 static inline void set_buddy_order(struct page *page, unsigned int order) 955 { 956 set_page_private(page, order); 957 __SetPageBuddy(page); 958 } 959 960 #ifdef CONFIG_COMPACTION 961 static inline struct capture_control *task_capc(struct zone *zone) 962 { 963 struct capture_control *capc = current->capture_control; 964 965 return unlikely(capc) && 966 !(current->flags & PF_KTHREAD) && 967 !capc->page && 968 capc->cc->zone == zone ? capc : NULL; 969 } 970 971 static inline bool 972 compaction_capture(struct capture_control *capc, struct page *page, 973 int order, int migratetype) 974 { 975 if (!capc || order != capc->cc->order) 976 return false; 977 978 /* Do not accidentally pollute CMA or isolated regions*/ 979 if (is_migrate_cma(migratetype) || 980 is_migrate_isolate(migratetype)) 981 return false; 982 983 /* 984 * Do not let lower order allocations pollute a movable pageblock. 985 * This might let an unmovable request use a reclaimable pageblock 986 * and vice-versa but no more than normal fallback logic which can 987 * have trouble finding a high-order free page. 988 */ 989 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 990 return false; 991 992 capc->page = page; 993 return true; 994 } 995 996 #else 997 static inline struct capture_control *task_capc(struct zone *zone) 998 { 999 return NULL; 1000 } 1001 1002 static inline bool 1003 compaction_capture(struct capture_control *capc, struct page *page, 1004 int order, int migratetype) 1005 { 1006 return false; 1007 } 1008 #endif /* CONFIG_COMPACTION */ 1009 1010 /* Used for pages not on another list */ 1011 static inline void add_to_free_list(struct page *page, struct zone *zone, 1012 unsigned int order, int migratetype) 1013 { 1014 struct free_area *area = &zone->free_area[order]; 1015 1016 list_add(&page->buddy_list, &area->free_list[migratetype]); 1017 area->nr_free++; 1018 } 1019 1020 /* Used for pages not on another list */ 1021 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 1022 unsigned int order, int migratetype) 1023 { 1024 struct free_area *area = &zone->free_area[order]; 1025 1026 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 1027 area->nr_free++; 1028 } 1029 1030 /* 1031 * Used for pages which are on another list. Move the pages to the tail 1032 * of the list - so the moved pages won't immediately be considered for 1033 * allocation again (e.g., optimization for memory onlining). 1034 */ 1035 static inline void move_to_free_list(struct page *page, struct zone *zone, 1036 unsigned int order, int migratetype) 1037 { 1038 struct free_area *area = &zone->free_area[order]; 1039 1040 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 1041 } 1042 1043 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1044 unsigned int order) 1045 { 1046 /* clear reported state and update reported page count */ 1047 if (page_reported(page)) 1048 __ClearPageReported(page); 1049 1050 list_del(&page->buddy_list); 1051 __ClearPageBuddy(page); 1052 set_page_private(page, 0); 1053 zone->free_area[order].nr_free--; 1054 } 1055 1056 /* 1057 * If this is not the largest possible page, check if the buddy 1058 * of the next-highest order is free. If it is, it's possible 1059 * that pages are being freed that will coalesce soon. In case, 1060 * that is happening, add the free page to the tail of the list 1061 * so it's less likely to be used soon and more likely to be merged 1062 * as a higher order page 1063 */ 1064 static inline bool 1065 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1066 struct page *page, unsigned int order) 1067 { 1068 unsigned long higher_page_pfn; 1069 struct page *higher_page; 1070 1071 if (order >= MAX_ORDER - 2) 1072 return false; 1073 1074 higher_page_pfn = buddy_pfn & pfn; 1075 higher_page = page + (higher_page_pfn - pfn); 1076 1077 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 1078 NULL) != NULL; 1079 } 1080 1081 /* 1082 * Freeing function for a buddy system allocator. 1083 * 1084 * The concept of a buddy system is to maintain direct-mapped table 1085 * (containing bit values) for memory blocks of various "orders". 1086 * The bottom level table contains the map for the smallest allocatable 1087 * units of memory (here, pages), and each level above it describes 1088 * pairs of units from the levels below, hence, "buddies". 1089 * At a high level, all that happens here is marking the table entry 1090 * at the bottom level available, and propagating the changes upward 1091 * as necessary, plus some accounting needed to play nicely with other 1092 * parts of the VM system. 1093 * At each level, we keep a list of pages, which are heads of continuous 1094 * free pages of length of (1 << order) and marked with PageBuddy. 1095 * Page's order is recorded in page_private(page) field. 1096 * So when we are allocating or freeing one, we can derive the state of the 1097 * other. That is, if we allocate a small block, and both were 1098 * free, the remainder of the region must be split into blocks. 1099 * If a block is freed, and its buddy is also free, then this 1100 * triggers coalescing into a block of larger size. 1101 * 1102 * -- nyc 1103 */ 1104 1105 static inline void __free_one_page(struct page *page, 1106 unsigned long pfn, 1107 struct zone *zone, unsigned int order, 1108 int migratetype, fpi_t fpi_flags) 1109 { 1110 struct capture_control *capc = task_capc(zone); 1111 unsigned long buddy_pfn; 1112 unsigned long combined_pfn; 1113 struct page *buddy; 1114 bool to_tail; 1115 1116 VM_BUG_ON(!zone_is_initialized(zone)); 1117 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1118 1119 VM_BUG_ON(migratetype == -1); 1120 if (likely(!is_migrate_isolate(migratetype))) 1121 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1122 1123 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1124 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1125 1126 while (order < MAX_ORDER - 1) { 1127 if (compaction_capture(capc, page, order, migratetype)) { 1128 __mod_zone_freepage_state(zone, -(1 << order), 1129 migratetype); 1130 return; 1131 } 1132 1133 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1134 if (!buddy) 1135 goto done_merging; 1136 1137 if (unlikely(order >= pageblock_order)) { 1138 /* 1139 * We want to prevent merge between freepages on pageblock 1140 * without fallbacks and normal pageblock. Without this, 1141 * pageblock isolation could cause incorrect freepage or CMA 1142 * accounting or HIGHATOMIC accounting. 1143 */ 1144 int buddy_mt = get_pageblock_migratetype(buddy); 1145 1146 if (migratetype != buddy_mt 1147 && (!migratetype_is_mergeable(migratetype) || 1148 !migratetype_is_mergeable(buddy_mt))) 1149 goto done_merging; 1150 } 1151 1152 /* 1153 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1154 * merge with it and move up one order. 1155 */ 1156 if (page_is_guard(buddy)) 1157 clear_page_guard(zone, buddy, order, migratetype); 1158 else 1159 del_page_from_free_list(buddy, zone, order); 1160 combined_pfn = buddy_pfn & pfn; 1161 page = page + (combined_pfn - pfn); 1162 pfn = combined_pfn; 1163 order++; 1164 } 1165 1166 done_merging: 1167 set_buddy_order(page, order); 1168 1169 if (fpi_flags & FPI_TO_TAIL) 1170 to_tail = true; 1171 else if (is_shuffle_order(order)) 1172 to_tail = shuffle_pick_tail(); 1173 else 1174 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1175 1176 if (to_tail) 1177 add_to_free_list_tail(page, zone, order, migratetype); 1178 else 1179 add_to_free_list(page, zone, order, migratetype); 1180 1181 /* Notify page reporting subsystem of freed page */ 1182 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1183 page_reporting_notify_free(order); 1184 } 1185 1186 /** 1187 * split_free_page() -- split a free page at split_pfn_offset 1188 * @free_page: the original free page 1189 * @order: the order of the page 1190 * @split_pfn_offset: split offset within the page 1191 * 1192 * Return -ENOENT if the free page is changed, otherwise 0 1193 * 1194 * It is used when the free page crosses two pageblocks with different migratetypes 1195 * at split_pfn_offset within the page. The split free page will be put into 1196 * separate migratetype lists afterwards. Otherwise, the function achieves 1197 * nothing. 1198 */ 1199 int split_free_page(struct page *free_page, 1200 unsigned int order, unsigned long split_pfn_offset) 1201 { 1202 struct zone *zone = page_zone(free_page); 1203 unsigned long free_page_pfn = page_to_pfn(free_page); 1204 unsigned long pfn; 1205 unsigned long flags; 1206 int free_page_order; 1207 int mt; 1208 int ret = 0; 1209 1210 if (split_pfn_offset == 0) 1211 return ret; 1212 1213 spin_lock_irqsave(&zone->lock, flags); 1214 1215 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1216 ret = -ENOENT; 1217 goto out; 1218 } 1219 1220 mt = get_pageblock_migratetype(free_page); 1221 if (likely(!is_migrate_isolate(mt))) 1222 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1223 1224 del_page_from_free_list(free_page, zone, order); 1225 for (pfn = free_page_pfn; 1226 pfn < free_page_pfn + (1UL << order);) { 1227 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1228 1229 free_page_order = min_t(unsigned int, 1230 pfn ? __ffs(pfn) : order, 1231 __fls(split_pfn_offset)); 1232 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1233 mt, FPI_NONE); 1234 pfn += 1UL << free_page_order; 1235 split_pfn_offset -= (1UL << free_page_order); 1236 /* we have done the first part, now switch to second part */ 1237 if (split_pfn_offset == 0) 1238 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1239 } 1240 out: 1241 spin_unlock_irqrestore(&zone->lock, flags); 1242 return ret; 1243 } 1244 /* 1245 * A bad page could be due to a number of fields. Instead of multiple branches, 1246 * try and check multiple fields with one check. The caller must do a detailed 1247 * check if necessary. 1248 */ 1249 static inline bool page_expected_state(struct page *page, 1250 unsigned long check_flags) 1251 { 1252 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1253 return false; 1254 1255 if (unlikely((unsigned long)page->mapping | 1256 page_ref_count(page) | 1257 #ifdef CONFIG_MEMCG 1258 page->memcg_data | 1259 #endif 1260 (page->flags & check_flags))) 1261 return false; 1262 1263 return true; 1264 } 1265 1266 static const char *page_bad_reason(struct page *page, unsigned long flags) 1267 { 1268 const char *bad_reason = NULL; 1269 1270 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1271 bad_reason = "nonzero mapcount"; 1272 if (unlikely(page->mapping != NULL)) 1273 bad_reason = "non-NULL mapping"; 1274 if (unlikely(page_ref_count(page) != 0)) 1275 bad_reason = "nonzero _refcount"; 1276 if (unlikely(page->flags & flags)) { 1277 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1278 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1279 else 1280 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1281 } 1282 #ifdef CONFIG_MEMCG 1283 if (unlikely(page->memcg_data)) 1284 bad_reason = "page still charged to cgroup"; 1285 #endif 1286 return bad_reason; 1287 } 1288 1289 static void free_page_is_bad_report(struct page *page) 1290 { 1291 bad_page(page, 1292 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1293 } 1294 1295 static inline bool free_page_is_bad(struct page *page) 1296 { 1297 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1298 return false; 1299 1300 /* Something has gone sideways, find it */ 1301 free_page_is_bad_report(page); 1302 return true; 1303 } 1304 1305 static int free_tail_pages_check(struct page *head_page, struct page *page) 1306 { 1307 int ret = 1; 1308 1309 /* 1310 * We rely page->lru.next never has bit 0 set, unless the page 1311 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1312 */ 1313 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1314 1315 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1316 ret = 0; 1317 goto out; 1318 } 1319 switch (page - head_page) { 1320 case 1: 1321 /* the first tail page: ->mapping may be compound_mapcount() */ 1322 if (unlikely(compound_mapcount(page))) { 1323 bad_page(page, "nonzero compound_mapcount"); 1324 goto out; 1325 } 1326 break; 1327 case 2: 1328 /* 1329 * the second tail page: ->mapping is 1330 * deferred_list.next -- ignore value. 1331 */ 1332 break; 1333 default: 1334 if (page->mapping != TAIL_MAPPING) { 1335 bad_page(page, "corrupted mapping in tail page"); 1336 goto out; 1337 } 1338 break; 1339 } 1340 if (unlikely(!PageTail(page))) { 1341 bad_page(page, "PageTail not set"); 1342 goto out; 1343 } 1344 if (unlikely(compound_head(page) != head_page)) { 1345 bad_page(page, "compound_head not consistent"); 1346 goto out; 1347 } 1348 ret = 0; 1349 out: 1350 page->mapping = NULL; 1351 clear_compound_head(page); 1352 return ret; 1353 } 1354 1355 /* 1356 * Skip KASAN memory poisoning when either: 1357 * 1358 * 1. Deferred memory initialization has not yet completed, 1359 * see the explanation below. 1360 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1361 * see the comment next to it. 1362 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1363 * see the comment next to it. 1364 * 1365 * Poisoning pages during deferred memory init will greatly lengthen the 1366 * process and cause problem in large memory systems as the deferred pages 1367 * initialization is done with interrupt disabled. 1368 * 1369 * Assuming that there will be no reference to those newly initialized 1370 * pages before they are ever allocated, this should have no effect on 1371 * KASAN memory tracking as the poison will be properly inserted at page 1372 * allocation time. The only corner case is when pages are allocated by 1373 * on-demand allocation and then freed again before the deferred pages 1374 * initialization is done, but this is not likely to happen. 1375 */ 1376 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1377 { 1378 return deferred_pages_enabled() || 1379 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1380 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1381 PageSkipKASanPoison(page); 1382 } 1383 1384 static void kernel_init_pages(struct page *page, int numpages) 1385 { 1386 int i; 1387 1388 /* s390's use of memset() could override KASAN redzones. */ 1389 kasan_disable_current(); 1390 for (i = 0; i < numpages; i++) 1391 clear_highpage_kasan_tagged(page + i); 1392 kasan_enable_current(); 1393 } 1394 1395 static __always_inline bool free_pages_prepare(struct page *page, 1396 unsigned int order, bool check_free, fpi_t fpi_flags) 1397 { 1398 int bad = 0; 1399 bool init = want_init_on_free(); 1400 1401 VM_BUG_ON_PAGE(PageTail(page), page); 1402 1403 trace_mm_page_free(page, order); 1404 kmsan_free_page(page, order); 1405 1406 if (unlikely(PageHWPoison(page)) && !order) { 1407 /* 1408 * Do not let hwpoison pages hit pcplists/buddy 1409 * Untie memcg state and reset page's owner 1410 */ 1411 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1412 __memcg_kmem_uncharge_page(page, order); 1413 reset_page_owner(page, order); 1414 page_table_check_free(page, order); 1415 return false; 1416 } 1417 1418 /* 1419 * Check tail pages before head page information is cleared to 1420 * avoid checking PageCompound for order-0 pages. 1421 */ 1422 if (unlikely(order)) { 1423 bool compound = PageCompound(page); 1424 int i; 1425 1426 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1427 1428 if (compound) { 1429 ClearPageDoubleMap(page); 1430 ClearPageHasHWPoisoned(page); 1431 } 1432 for (i = 1; i < (1 << order); i++) { 1433 if (compound) 1434 bad += free_tail_pages_check(page, page + i); 1435 if (unlikely(free_page_is_bad(page + i))) { 1436 bad++; 1437 continue; 1438 } 1439 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1440 } 1441 } 1442 if (PageMappingFlags(page)) 1443 page->mapping = NULL; 1444 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1445 __memcg_kmem_uncharge_page(page, order); 1446 if (check_free && free_page_is_bad(page)) 1447 bad++; 1448 if (bad) 1449 return false; 1450 1451 page_cpupid_reset_last(page); 1452 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1453 reset_page_owner(page, order); 1454 page_table_check_free(page, order); 1455 1456 if (!PageHighMem(page)) { 1457 debug_check_no_locks_freed(page_address(page), 1458 PAGE_SIZE << order); 1459 debug_check_no_obj_freed(page_address(page), 1460 PAGE_SIZE << order); 1461 } 1462 1463 kernel_poison_pages(page, 1 << order); 1464 1465 /* 1466 * As memory initialization might be integrated into KASAN, 1467 * KASAN poisoning and memory initialization code must be 1468 * kept together to avoid discrepancies in behavior. 1469 * 1470 * With hardware tag-based KASAN, memory tags must be set before the 1471 * page becomes unavailable via debug_pagealloc or arch_free_page. 1472 */ 1473 if (!should_skip_kasan_poison(page, fpi_flags)) { 1474 kasan_poison_pages(page, order, init); 1475 1476 /* Memory is already initialized if KASAN did it internally. */ 1477 if (kasan_has_integrated_init()) 1478 init = false; 1479 } 1480 if (init) 1481 kernel_init_pages(page, 1 << order); 1482 1483 /* 1484 * arch_free_page() can make the page's contents inaccessible. s390 1485 * does this. So nothing which can access the page's contents should 1486 * happen after this. 1487 */ 1488 arch_free_page(page, order); 1489 1490 debug_pagealloc_unmap_pages(page, 1 << order); 1491 1492 return true; 1493 } 1494 1495 #ifdef CONFIG_DEBUG_VM 1496 /* 1497 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1498 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1499 * moved from pcp lists to free lists. 1500 */ 1501 static bool free_pcp_prepare(struct page *page, unsigned int order) 1502 { 1503 return free_pages_prepare(page, order, true, FPI_NONE); 1504 } 1505 1506 /* return true if this page has an inappropriate state */ 1507 static bool bulkfree_pcp_prepare(struct page *page) 1508 { 1509 if (debug_pagealloc_enabled_static()) 1510 return free_page_is_bad(page); 1511 else 1512 return false; 1513 } 1514 #else 1515 /* 1516 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1517 * moving from pcp lists to free list in order to reduce overhead. With 1518 * debug_pagealloc enabled, they are checked also immediately when being freed 1519 * to the pcp lists. 1520 */ 1521 static bool free_pcp_prepare(struct page *page, unsigned int order) 1522 { 1523 if (debug_pagealloc_enabled_static()) 1524 return free_pages_prepare(page, order, true, FPI_NONE); 1525 else 1526 return free_pages_prepare(page, order, false, FPI_NONE); 1527 } 1528 1529 static bool bulkfree_pcp_prepare(struct page *page) 1530 { 1531 return free_page_is_bad(page); 1532 } 1533 #endif /* CONFIG_DEBUG_VM */ 1534 1535 /* 1536 * Frees a number of pages from the PCP lists 1537 * Assumes all pages on list are in same zone. 1538 * count is the number of pages to free. 1539 */ 1540 static void free_pcppages_bulk(struct zone *zone, int count, 1541 struct per_cpu_pages *pcp, 1542 int pindex) 1543 { 1544 int min_pindex = 0; 1545 int max_pindex = NR_PCP_LISTS - 1; 1546 unsigned int order; 1547 bool isolated_pageblocks; 1548 struct page *page; 1549 1550 /* 1551 * Ensure proper count is passed which otherwise would stuck in the 1552 * below while (list_empty(list)) loop. 1553 */ 1554 count = min(pcp->count, count); 1555 1556 /* Ensure requested pindex is drained first. */ 1557 pindex = pindex - 1; 1558 1559 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ 1560 spin_lock(&zone->lock); 1561 isolated_pageblocks = has_isolate_pageblock(zone); 1562 1563 while (count > 0) { 1564 struct list_head *list; 1565 int nr_pages; 1566 1567 /* Remove pages from lists in a round-robin fashion. */ 1568 do { 1569 if (++pindex > max_pindex) 1570 pindex = min_pindex; 1571 list = &pcp->lists[pindex]; 1572 if (!list_empty(list)) 1573 break; 1574 1575 if (pindex == max_pindex) 1576 max_pindex--; 1577 if (pindex == min_pindex) 1578 min_pindex++; 1579 } while (1); 1580 1581 order = pindex_to_order(pindex); 1582 nr_pages = 1 << order; 1583 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1584 do { 1585 int mt; 1586 1587 page = list_last_entry(list, struct page, pcp_list); 1588 mt = get_pcppage_migratetype(page); 1589 1590 /* must delete to avoid corrupting pcp list */ 1591 list_del(&page->pcp_list); 1592 count -= nr_pages; 1593 pcp->count -= nr_pages; 1594 1595 if (bulkfree_pcp_prepare(page)) 1596 continue; 1597 1598 /* MIGRATE_ISOLATE page should not go to pcplists */ 1599 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1600 /* Pageblock could have been isolated meanwhile */ 1601 if (unlikely(isolated_pageblocks)) 1602 mt = get_pageblock_migratetype(page); 1603 1604 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1605 trace_mm_page_pcpu_drain(page, order, mt); 1606 } while (count > 0 && !list_empty(list)); 1607 } 1608 1609 spin_unlock(&zone->lock); 1610 } 1611 1612 static void free_one_page(struct zone *zone, 1613 struct page *page, unsigned long pfn, 1614 unsigned int order, 1615 int migratetype, fpi_t fpi_flags) 1616 { 1617 unsigned long flags; 1618 1619 spin_lock_irqsave(&zone->lock, flags); 1620 if (unlikely(has_isolate_pageblock(zone) || 1621 is_migrate_isolate(migratetype))) { 1622 migratetype = get_pfnblock_migratetype(page, pfn); 1623 } 1624 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1625 spin_unlock_irqrestore(&zone->lock, flags); 1626 } 1627 1628 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1629 unsigned long zone, int nid) 1630 { 1631 mm_zero_struct_page(page); 1632 set_page_links(page, zone, nid, pfn); 1633 init_page_count(page); 1634 page_mapcount_reset(page); 1635 page_cpupid_reset_last(page); 1636 page_kasan_tag_reset(page); 1637 1638 INIT_LIST_HEAD(&page->lru); 1639 #ifdef WANT_PAGE_VIRTUAL 1640 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1641 if (!is_highmem_idx(zone)) 1642 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1643 #endif 1644 } 1645 1646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1647 static void __meminit init_reserved_page(unsigned long pfn) 1648 { 1649 pg_data_t *pgdat; 1650 int nid, zid; 1651 1652 if (!early_page_uninitialised(pfn)) 1653 return; 1654 1655 nid = early_pfn_to_nid(pfn); 1656 pgdat = NODE_DATA(nid); 1657 1658 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1659 struct zone *zone = &pgdat->node_zones[zid]; 1660 1661 if (zone_spans_pfn(zone, pfn)) 1662 break; 1663 } 1664 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1665 } 1666 #else 1667 static inline void init_reserved_page(unsigned long pfn) 1668 { 1669 } 1670 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1671 1672 /* 1673 * Initialised pages do not have PageReserved set. This function is 1674 * called for each range allocated by the bootmem allocator and 1675 * marks the pages PageReserved. The remaining valid pages are later 1676 * sent to the buddy page allocator. 1677 */ 1678 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1679 { 1680 unsigned long start_pfn = PFN_DOWN(start); 1681 unsigned long end_pfn = PFN_UP(end); 1682 1683 for (; start_pfn < end_pfn; start_pfn++) { 1684 if (pfn_valid(start_pfn)) { 1685 struct page *page = pfn_to_page(start_pfn); 1686 1687 init_reserved_page(start_pfn); 1688 1689 /* Avoid false-positive PageTail() */ 1690 INIT_LIST_HEAD(&page->lru); 1691 1692 /* 1693 * no need for atomic set_bit because the struct 1694 * page is not visible yet so nobody should 1695 * access it yet. 1696 */ 1697 __SetPageReserved(page); 1698 } 1699 } 1700 } 1701 1702 static void __free_pages_ok(struct page *page, unsigned int order, 1703 fpi_t fpi_flags) 1704 { 1705 unsigned long flags; 1706 int migratetype; 1707 unsigned long pfn = page_to_pfn(page); 1708 struct zone *zone = page_zone(page); 1709 1710 if (!free_pages_prepare(page, order, true, fpi_flags)) 1711 return; 1712 1713 migratetype = get_pfnblock_migratetype(page, pfn); 1714 1715 spin_lock_irqsave(&zone->lock, flags); 1716 if (unlikely(has_isolate_pageblock(zone) || 1717 is_migrate_isolate(migratetype))) { 1718 migratetype = get_pfnblock_migratetype(page, pfn); 1719 } 1720 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1721 spin_unlock_irqrestore(&zone->lock, flags); 1722 1723 __count_vm_events(PGFREE, 1 << order); 1724 } 1725 1726 void __free_pages_core(struct page *page, unsigned int order) 1727 { 1728 unsigned int nr_pages = 1 << order; 1729 struct page *p = page; 1730 unsigned int loop; 1731 1732 /* 1733 * When initializing the memmap, __init_single_page() sets the refcount 1734 * of all pages to 1 ("allocated"/"not free"). We have to set the 1735 * refcount of all involved pages to 0. 1736 */ 1737 prefetchw(p); 1738 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1739 prefetchw(p + 1); 1740 __ClearPageReserved(p); 1741 set_page_count(p, 0); 1742 } 1743 __ClearPageReserved(p); 1744 set_page_count(p, 0); 1745 1746 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1747 1748 /* 1749 * Bypass PCP and place fresh pages right to the tail, primarily 1750 * relevant for memory onlining. 1751 */ 1752 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1753 } 1754 1755 #ifdef CONFIG_NUMA 1756 1757 /* 1758 * During memory init memblocks map pfns to nids. The search is expensive and 1759 * this caches recent lookups. The implementation of __early_pfn_to_nid 1760 * treats start/end as pfns. 1761 */ 1762 struct mminit_pfnnid_cache { 1763 unsigned long last_start; 1764 unsigned long last_end; 1765 int last_nid; 1766 }; 1767 1768 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1769 1770 /* 1771 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1772 */ 1773 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1774 struct mminit_pfnnid_cache *state) 1775 { 1776 unsigned long start_pfn, end_pfn; 1777 int nid; 1778 1779 if (state->last_start <= pfn && pfn < state->last_end) 1780 return state->last_nid; 1781 1782 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1783 if (nid != NUMA_NO_NODE) { 1784 state->last_start = start_pfn; 1785 state->last_end = end_pfn; 1786 state->last_nid = nid; 1787 } 1788 1789 return nid; 1790 } 1791 1792 int __meminit early_pfn_to_nid(unsigned long pfn) 1793 { 1794 static DEFINE_SPINLOCK(early_pfn_lock); 1795 int nid; 1796 1797 spin_lock(&early_pfn_lock); 1798 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1799 if (nid < 0) 1800 nid = first_online_node; 1801 spin_unlock(&early_pfn_lock); 1802 1803 return nid; 1804 } 1805 #endif /* CONFIG_NUMA */ 1806 1807 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1808 unsigned int order) 1809 { 1810 if (early_page_uninitialised(pfn)) 1811 return; 1812 if (!kmsan_memblock_free_pages(page, order)) { 1813 /* KMSAN will take care of these pages. */ 1814 return; 1815 } 1816 __free_pages_core(page, order); 1817 } 1818 1819 /* 1820 * Check that the whole (or subset of) a pageblock given by the interval of 1821 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1822 * with the migration of free compaction scanner. 1823 * 1824 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1825 * 1826 * It's possible on some configurations to have a setup like node0 node1 node0 1827 * i.e. it's possible that all pages within a zones range of pages do not 1828 * belong to a single zone. We assume that a border between node0 and node1 1829 * can occur within a single pageblock, but not a node0 node1 node0 1830 * interleaving within a single pageblock. It is therefore sufficient to check 1831 * the first and last page of a pageblock and avoid checking each individual 1832 * page in a pageblock. 1833 */ 1834 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1835 unsigned long end_pfn, struct zone *zone) 1836 { 1837 struct page *start_page; 1838 struct page *end_page; 1839 1840 /* end_pfn is one past the range we are checking */ 1841 end_pfn--; 1842 1843 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1844 return NULL; 1845 1846 start_page = pfn_to_online_page(start_pfn); 1847 if (!start_page) 1848 return NULL; 1849 1850 if (page_zone(start_page) != zone) 1851 return NULL; 1852 1853 end_page = pfn_to_page(end_pfn); 1854 1855 /* This gives a shorter code than deriving page_zone(end_page) */ 1856 if (page_zone_id(start_page) != page_zone_id(end_page)) 1857 return NULL; 1858 1859 return start_page; 1860 } 1861 1862 void set_zone_contiguous(struct zone *zone) 1863 { 1864 unsigned long block_start_pfn = zone->zone_start_pfn; 1865 unsigned long block_end_pfn; 1866 1867 block_end_pfn = pageblock_end_pfn(block_start_pfn); 1868 for (; block_start_pfn < zone_end_pfn(zone); 1869 block_start_pfn = block_end_pfn, 1870 block_end_pfn += pageblock_nr_pages) { 1871 1872 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1873 1874 if (!__pageblock_pfn_to_page(block_start_pfn, 1875 block_end_pfn, zone)) 1876 return; 1877 cond_resched(); 1878 } 1879 1880 /* We confirm that there is no hole */ 1881 zone->contiguous = true; 1882 } 1883 1884 void clear_zone_contiguous(struct zone *zone) 1885 { 1886 zone->contiguous = false; 1887 } 1888 1889 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1890 static void __init deferred_free_range(unsigned long pfn, 1891 unsigned long nr_pages) 1892 { 1893 struct page *page; 1894 unsigned long i; 1895 1896 if (!nr_pages) 1897 return; 1898 1899 page = pfn_to_page(pfn); 1900 1901 /* Free a large naturally-aligned chunk if possible */ 1902 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) { 1903 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1904 __free_pages_core(page, pageblock_order); 1905 return; 1906 } 1907 1908 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1909 if (pageblock_aligned(pfn)) 1910 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1911 __free_pages_core(page, 0); 1912 } 1913 } 1914 1915 /* Completion tracking for deferred_init_memmap() threads */ 1916 static atomic_t pgdat_init_n_undone __initdata; 1917 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1918 1919 static inline void __init pgdat_init_report_one_done(void) 1920 { 1921 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1922 complete(&pgdat_init_all_done_comp); 1923 } 1924 1925 /* 1926 * Returns true if page needs to be initialized or freed to buddy allocator. 1927 * 1928 * First we check if pfn is valid on architectures where it is possible to have 1929 * holes within pageblock_nr_pages. On systems where it is not possible, this 1930 * function is optimized out. 1931 * 1932 * Then, we check if a current large page is valid by only checking the validity 1933 * of the head pfn. 1934 */ 1935 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1936 { 1937 if (pageblock_aligned(pfn) && !pfn_valid(pfn)) 1938 return false; 1939 return true; 1940 } 1941 1942 /* 1943 * Free pages to buddy allocator. Try to free aligned pages in 1944 * pageblock_nr_pages sizes. 1945 */ 1946 static void __init deferred_free_pages(unsigned long pfn, 1947 unsigned long end_pfn) 1948 { 1949 unsigned long nr_free = 0; 1950 1951 for (; pfn < end_pfn; pfn++) { 1952 if (!deferred_pfn_valid(pfn)) { 1953 deferred_free_range(pfn - nr_free, nr_free); 1954 nr_free = 0; 1955 } else if (pageblock_aligned(pfn)) { 1956 deferred_free_range(pfn - nr_free, nr_free); 1957 nr_free = 1; 1958 } else { 1959 nr_free++; 1960 } 1961 } 1962 /* Free the last block of pages to allocator */ 1963 deferred_free_range(pfn - nr_free, nr_free); 1964 } 1965 1966 /* 1967 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1968 * by performing it only once every pageblock_nr_pages. 1969 * Return number of pages initialized. 1970 */ 1971 static unsigned long __init deferred_init_pages(struct zone *zone, 1972 unsigned long pfn, 1973 unsigned long end_pfn) 1974 { 1975 int nid = zone_to_nid(zone); 1976 unsigned long nr_pages = 0; 1977 int zid = zone_idx(zone); 1978 struct page *page = NULL; 1979 1980 for (; pfn < end_pfn; pfn++) { 1981 if (!deferred_pfn_valid(pfn)) { 1982 page = NULL; 1983 continue; 1984 } else if (!page || pageblock_aligned(pfn)) { 1985 page = pfn_to_page(pfn); 1986 } else { 1987 page++; 1988 } 1989 __init_single_page(page, pfn, zid, nid); 1990 nr_pages++; 1991 } 1992 return (nr_pages); 1993 } 1994 1995 /* 1996 * This function is meant to pre-load the iterator for the zone init. 1997 * Specifically it walks through the ranges until we are caught up to the 1998 * first_init_pfn value and exits there. If we never encounter the value we 1999 * return false indicating there are no valid ranges left. 2000 */ 2001 static bool __init 2002 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 2003 unsigned long *spfn, unsigned long *epfn, 2004 unsigned long first_init_pfn) 2005 { 2006 u64 j; 2007 2008 /* 2009 * Start out by walking through the ranges in this zone that have 2010 * already been initialized. We don't need to do anything with them 2011 * so we just need to flush them out of the system. 2012 */ 2013 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2014 if (*epfn <= first_init_pfn) 2015 continue; 2016 if (*spfn < first_init_pfn) 2017 *spfn = first_init_pfn; 2018 *i = j; 2019 return true; 2020 } 2021 2022 return false; 2023 } 2024 2025 /* 2026 * Initialize and free pages. We do it in two loops: first we initialize 2027 * struct page, then free to buddy allocator, because while we are 2028 * freeing pages we can access pages that are ahead (computing buddy 2029 * page in __free_one_page()). 2030 * 2031 * In order to try and keep some memory in the cache we have the loop 2032 * broken along max page order boundaries. This way we will not cause 2033 * any issues with the buddy page computation. 2034 */ 2035 static unsigned long __init 2036 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2037 unsigned long *end_pfn) 2038 { 2039 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2040 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2041 unsigned long nr_pages = 0; 2042 u64 j = *i; 2043 2044 /* First we loop through and initialize the page values */ 2045 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2046 unsigned long t; 2047 2048 if (mo_pfn <= *start_pfn) 2049 break; 2050 2051 t = min(mo_pfn, *end_pfn); 2052 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2053 2054 if (mo_pfn < *end_pfn) { 2055 *start_pfn = mo_pfn; 2056 break; 2057 } 2058 } 2059 2060 /* Reset values and now loop through freeing pages as needed */ 2061 swap(j, *i); 2062 2063 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2064 unsigned long t; 2065 2066 if (mo_pfn <= spfn) 2067 break; 2068 2069 t = min(mo_pfn, epfn); 2070 deferred_free_pages(spfn, t); 2071 2072 if (mo_pfn <= epfn) 2073 break; 2074 } 2075 2076 return nr_pages; 2077 } 2078 2079 static void __init 2080 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2081 void *arg) 2082 { 2083 unsigned long spfn, epfn; 2084 struct zone *zone = arg; 2085 u64 i; 2086 2087 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2088 2089 /* 2090 * Initialize and free pages in MAX_ORDER sized increments so that we 2091 * can avoid introducing any issues with the buddy allocator. 2092 */ 2093 while (spfn < end_pfn) { 2094 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2095 cond_resched(); 2096 } 2097 } 2098 2099 /* An arch may override for more concurrency. */ 2100 __weak int __init 2101 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2102 { 2103 return 1; 2104 } 2105 2106 /* Initialise remaining memory on a node */ 2107 static int __init deferred_init_memmap(void *data) 2108 { 2109 pg_data_t *pgdat = data; 2110 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2111 unsigned long spfn = 0, epfn = 0; 2112 unsigned long first_init_pfn, flags; 2113 unsigned long start = jiffies; 2114 struct zone *zone; 2115 int zid, max_threads; 2116 u64 i; 2117 2118 /* Bind memory initialisation thread to a local node if possible */ 2119 if (!cpumask_empty(cpumask)) 2120 set_cpus_allowed_ptr(current, cpumask); 2121 2122 pgdat_resize_lock(pgdat, &flags); 2123 first_init_pfn = pgdat->first_deferred_pfn; 2124 if (first_init_pfn == ULONG_MAX) { 2125 pgdat_resize_unlock(pgdat, &flags); 2126 pgdat_init_report_one_done(); 2127 return 0; 2128 } 2129 2130 /* Sanity check boundaries */ 2131 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2132 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2133 pgdat->first_deferred_pfn = ULONG_MAX; 2134 2135 /* 2136 * Once we unlock here, the zone cannot be grown anymore, thus if an 2137 * interrupt thread must allocate this early in boot, zone must be 2138 * pre-grown prior to start of deferred page initialization. 2139 */ 2140 pgdat_resize_unlock(pgdat, &flags); 2141 2142 /* Only the highest zone is deferred so find it */ 2143 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2144 zone = pgdat->node_zones + zid; 2145 if (first_init_pfn < zone_end_pfn(zone)) 2146 break; 2147 } 2148 2149 /* If the zone is empty somebody else may have cleared out the zone */ 2150 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2151 first_init_pfn)) 2152 goto zone_empty; 2153 2154 max_threads = deferred_page_init_max_threads(cpumask); 2155 2156 while (spfn < epfn) { 2157 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2158 struct padata_mt_job job = { 2159 .thread_fn = deferred_init_memmap_chunk, 2160 .fn_arg = zone, 2161 .start = spfn, 2162 .size = epfn_align - spfn, 2163 .align = PAGES_PER_SECTION, 2164 .min_chunk = PAGES_PER_SECTION, 2165 .max_threads = max_threads, 2166 }; 2167 2168 padata_do_multithreaded(&job); 2169 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2170 epfn_align); 2171 } 2172 zone_empty: 2173 /* Sanity check that the next zone really is unpopulated */ 2174 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2175 2176 pr_info("node %d deferred pages initialised in %ums\n", 2177 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2178 2179 pgdat_init_report_one_done(); 2180 return 0; 2181 } 2182 2183 /* 2184 * If this zone has deferred pages, try to grow it by initializing enough 2185 * deferred pages to satisfy the allocation specified by order, rounded up to 2186 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2187 * of SECTION_SIZE bytes by initializing struct pages in increments of 2188 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2189 * 2190 * Return true when zone was grown, otherwise return false. We return true even 2191 * when we grow less than requested, to let the caller decide if there are 2192 * enough pages to satisfy the allocation. 2193 * 2194 * Note: We use noinline because this function is needed only during boot, and 2195 * it is called from a __ref function _deferred_grow_zone. This way we are 2196 * making sure that it is not inlined into permanent text section. 2197 */ 2198 static noinline bool __init 2199 deferred_grow_zone(struct zone *zone, unsigned int order) 2200 { 2201 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2202 pg_data_t *pgdat = zone->zone_pgdat; 2203 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2204 unsigned long spfn, epfn, flags; 2205 unsigned long nr_pages = 0; 2206 u64 i; 2207 2208 /* Only the last zone may have deferred pages */ 2209 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2210 return false; 2211 2212 pgdat_resize_lock(pgdat, &flags); 2213 2214 /* 2215 * If someone grew this zone while we were waiting for spinlock, return 2216 * true, as there might be enough pages already. 2217 */ 2218 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2219 pgdat_resize_unlock(pgdat, &flags); 2220 return true; 2221 } 2222 2223 /* If the zone is empty somebody else may have cleared out the zone */ 2224 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2225 first_deferred_pfn)) { 2226 pgdat->first_deferred_pfn = ULONG_MAX; 2227 pgdat_resize_unlock(pgdat, &flags); 2228 /* Retry only once. */ 2229 return first_deferred_pfn != ULONG_MAX; 2230 } 2231 2232 /* 2233 * Initialize and free pages in MAX_ORDER sized increments so 2234 * that we can avoid introducing any issues with the buddy 2235 * allocator. 2236 */ 2237 while (spfn < epfn) { 2238 /* update our first deferred PFN for this section */ 2239 first_deferred_pfn = spfn; 2240 2241 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2242 touch_nmi_watchdog(); 2243 2244 /* We should only stop along section boundaries */ 2245 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2246 continue; 2247 2248 /* If our quota has been met we can stop here */ 2249 if (nr_pages >= nr_pages_needed) 2250 break; 2251 } 2252 2253 pgdat->first_deferred_pfn = spfn; 2254 pgdat_resize_unlock(pgdat, &flags); 2255 2256 return nr_pages > 0; 2257 } 2258 2259 /* 2260 * deferred_grow_zone() is __init, but it is called from 2261 * get_page_from_freelist() during early boot until deferred_pages permanently 2262 * disables this call. This is why we have refdata wrapper to avoid warning, 2263 * and to ensure that the function body gets unloaded. 2264 */ 2265 static bool __ref 2266 _deferred_grow_zone(struct zone *zone, unsigned int order) 2267 { 2268 return deferred_grow_zone(zone, order); 2269 } 2270 2271 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2272 2273 void __init page_alloc_init_late(void) 2274 { 2275 struct zone *zone; 2276 int nid; 2277 2278 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2279 2280 /* There will be num_node_state(N_MEMORY) threads */ 2281 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2282 for_each_node_state(nid, N_MEMORY) { 2283 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2284 } 2285 2286 /* Block until all are initialised */ 2287 wait_for_completion(&pgdat_init_all_done_comp); 2288 2289 /* 2290 * We initialized the rest of the deferred pages. Permanently disable 2291 * on-demand struct page initialization. 2292 */ 2293 static_branch_disable(&deferred_pages); 2294 2295 /* Reinit limits that are based on free pages after the kernel is up */ 2296 files_maxfiles_init(); 2297 #endif 2298 2299 buffer_init(); 2300 2301 /* Discard memblock private memory */ 2302 memblock_discard(); 2303 2304 for_each_node_state(nid, N_MEMORY) 2305 shuffle_free_memory(NODE_DATA(nid)); 2306 2307 for_each_populated_zone(zone) 2308 set_zone_contiguous(zone); 2309 } 2310 2311 #ifdef CONFIG_CMA 2312 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2313 void __init init_cma_reserved_pageblock(struct page *page) 2314 { 2315 unsigned i = pageblock_nr_pages; 2316 struct page *p = page; 2317 2318 do { 2319 __ClearPageReserved(p); 2320 set_page_count(p, 0); 2321 } while (++p, --i); 2322 2323 set_pageblock_migratetype(page, MIGRATE_CMA); 2324 set_page_refcounted(page); 2325 __free_pages(page, pageblock_order); 2326 2327 adjust_managed_page_count(page, pageblock_nr_pages); 2328 page_zone(page)->cma_pages += pageblock_nr_pages; 2329 } 2330 #endif 2331 2332 /* 2333 * The order of subdivision here is critical for the IO subsystem. 2334 * Please do not alter this order without good reasons and regression 2335 * testing. Specifically, as large blocks of memory are subdivided, 2336 * the order in which smaller blocks are delivered depends on the order 2337 * they're subdivided in this function. This is the primary factor 2338 * influencing the order in which pages are delivered to the IO 2339 * subsystem according to empirical testing, and this is also justified 2340 * by considering the behavior of a buddy system containing a single 2341 * large block of memory acted on by a series of small allocations. 2342 * This behavior is a critical factor in sglist merging's success. 2343 * 2344 * -- nyc 2345 */ 2346 static inline void expand(struct zone *zone, struct page *page, 2347 int low, int high, int migratetype) 2348 { 2349 unsigned long size = 1 << high; 2350 2351 while (high > low) { 2352 high--; 2353 size >>= 1; 2354 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2355 2356 /* 2357 * Mark as guard pages (or page), that will allow to 2358 * merge back to allocator when buddy will be freed. 2359 * Corresponding page table entries will not be touched, 2360 * pages will stay not present in virtual address space 2361 */ 2362 if (set_page_guard(zone, &page[size], high, migratetype)) 2363 continue; 2364 2365 add_to_free_list(&page[size], zone, high, migratetype); 2366 set_buddy_order(&page[size], high); 2367 } 2368 } 2369 2370 static void check_new_page_bad(struct page *page) 2371 { 2372 if (unlikely(page->flags & __PG_HWPOISON)) { 2373 /* Don't complain about hwpoisoned pages */ 2374 page_mapcount_reset(page); /* remove PageBuddy */ 2375 return; 2376 } 2377 2378 bad_page(page, 2379 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2380 } 2381 2382 /* 2383 * This page is about to be returned from the page allocator 2384 */ 2385 static inline int check_new_page(struct page *page) 2386 { 2387 if (likely(page_expected_state(page, 2388 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2389 return 0; 2390 2391 check_new_page_bad(page); 2392 return 1; 2393 } 2394 2395 static bool check_new_pages(struct page *page, unsigned int order) 2396 { 2397 int i; 2398 for (i = 0; i < (1 << order); i++) { 2399 struct page *p = page + i; 2400 2401 if (unlikely(check_new_page(p))) 2402 return true; 2403 } 2404 2405 return false; 2406 } 2407 2408 #ifdef CONFIG_DEBUG_VM 2409 /* 2410 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2411 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2412 * also checked when pcp lists are refilled from the free lists. 2413 */ 2414 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2415 { 2416 if (debug_pagealloc_enabled_static()) 2417 return check_new_pages(page, order); 2418 else 2419 return false; 2420 } 2421 2422 static inline bool check_new_pcp(struct page *page, unsigned int order) 2423 { 2424 return check_new_pages(page, order); 2425 } 2426 #else 2427 /* 2428 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2429 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2430 * enabled, they are also checked when being allocated from the pcp lists. 2431 */ 2432 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2433 { 2434 return check_new_pages(page, order); 2435 } 2436 static inline bool check_new_pcp(struct page *page, unsigned int order) 2437 { 2438 if (debug_pagealloc_enabled_static()) 2439 return check_new_pages(page, order); 2440 else 2441 return false; 2442 } 2443 #endif /* CONFIG_DEBUG_VM */ 2444 2445 static inline bool should_skip_kasan_unpoison(gfp_t flags) 2446 { 2447 /* Don't skip if a software KASAN mode is enabled. */ 2448 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2449 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2450 return false; 2451 2452 /* Skip, if hardware tag-based KASAN is not enabled. */ 2453 if (!kasan_hw_tags_enabled()) 2454 return true; 2455 2456 /* 2457 * With hardware tag-based KASAN enabled, skip if this has been 2458 * requested via __GFP_SKIP_KASAN_UNPOISON. 2459 */ 2460 return flags & __GFP_SKIP_KASAN_UNPOISON; 2461 } 2462 2463 static inline bool should_skip_init(gfp_t flags) 2464 { 2465 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2466 if (!kasan_hw_tags_enabled()) 2467 return false; 2468 2469 /* For hardware tag-based KASAN, skip if requested. */ 2470 return (flags & __GFP_SKIP_ZERO); 2471 } 2472 2473 inline void post_alloc_hook(struct page *page, unsigned int order, 2474 gfp_t gfp_flags) 2475 { 2476 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2477 !should_skip_init(gfp_flags); 2478 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2479 int i; 2480 2481 set_page_private(page, 0); 2482 set_page_refcounted(page); 2483 2484 arch_alloc_page(page, order); 2485 debug_pagealloc_map_pages(page, 1 << order); 2486 2487 /* 2488 * Page unpoisoning must happen before memory initialization. 2489 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2490 * allocations and the page unpoisoning code will complain. 2491 */ 2492 kernel_unpoison_pages(page, 1 << order); 2493 2494 /* 2495 * As memory initialization might be integrated into KASAN, 2496 * KASAN unpoisoning and memory initializion code must be 2497 * kept together to avoid discrepancies in behavior. 2498 */ 2499 2500 /* 2501 * If memory tags should be zeroed (which happens only when memory 2502 * should be initialized as well). 2503 */ 2504 if (init_tags) { 2505 /* Initialize both memory and tags. */ 2506 for (i = 0; i != 1 << order; ++i) 2507 tag_clear_highpage(page + i); 2508 2509 /* Note that memory is already initialized by the loop above. */ 2510 init = false; 2511 } 2512 if (!should_skip_kasan_unpoison(gfp_flags)) { 2513 /* Unpoison shadow memory or set memory tags. */ 2514 kasan_unpoison_pages(page, order, init); 2515 2516 /* Note that memory is already initialized by KASAN. */ 2517 if (kasan_has_integrated_init()) 2518 init = false; 2519 } else { 2520 /* Ensure page_address() dereferencing does not fault. */ 2521 for (i = 0; i != 1 << order; ++i) 2522 page_kasan_tag_reset(page + i); 2523 } 2524 /* If memory is still not initialized, do it now. */ 2525 if (init) 2526 kernel_init_pages(page, 1 << order); 2527 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2528 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2529 SetPageSkipKASanPoison(page); 2530 2531 set_page_owner(page, order, gfp_flags); 2532 page_table_check_alloc(page, order); 2533 } 2534 2535 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2536 unsigned int alloc_flags) 2537 { 2538 post_alloc_hook(page, order, gfp_flags); 2539 2540 if (order && (gfp_flags & __GFP_COMP)) 2541 prep_compound_page(page, order); 2542 2543 /* 2544 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2545 * allocate the page. The expectation is that the caller is taking 2546 * steps that will free more memory. The caller should avoid the page 2547 * being used for !PFMEMALLOC purposes. 2548 */ 2549 if (alloc_flags & ALLOC_NO_WATERMARKS) 2550 set_page_pfmemalloc(page); 2551 else 2552 clear_page_pfmemalloc(page); 2553 } 2554 2555 /* 2556 * Go through the free lists for the given migratetype and remove 2557 * the smallest available page from the freelists 2558 */ 2559 static __always_inline 2560 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2561 int migratetype) 2562 { 2563 unsigned int current_order; 2564 struct free_area *area; 2565 struct page *page; 2566 2567 /* Find a page of the appropriate size in the preferred list */ 2568 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2569 area = &(zone->free_area[current_order]); 2570 page = get_page_from_free_area(area, migratetype); 2571 if (!page) 2572 continue; 2573 del_page_from_free_list(page, zone, current_order); 2574 expand(zone, page, order, current_order, migratetype); 2575 set_pcppage_migratetype(page, migratetype); 2576 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2577 pcp_allowed_order(order) && 2578 migratetype < MIGRATE_PCPTYPES); 2579 return page; 2580 } 2581 2582 return NULL; 2583 } 2584 2585 2586 /* 2587 * This array describes the order lists are fallen back to when 2588 * the free lists for the desirable migrate type are depleted 2589 * 2590 * The other migratetypes do not have fallbacks. 2591 */ 2592 static int fallbacks[MIGRATE_TYPES][3] = { 2593 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2594 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2595 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2596 }; 2597 2598 #ifdef CONFIG_CMA 2599 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2600 unsigned int order) 2601 { 2602 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2603 } 2604 #else 2605 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2606 unsigned int order) { return NULL; } 2607 #endif 2608 2609 /* 2610 * Move the free pages in a range to the freelist tail of the requested type. 2611 * Note that start_page and end_pages are not aligned on a pageblock 2612 * boundary. If alignment is required, use move_freepages_block() 2613 */ 2614 static int move_freepages(struct zone *zone, 2615 unsigned long start_pfn, unsigned long end_pfn, 2616 int migratetype, int *num_movable) 2617 { 2618 struct page *page; 2619 unsigned long pfn; 2620 unsigned int order; 2621 int pages_moved = 0; 2622 2623 for (pfn = start_pfn; pfn <= end_pfn;) { 2624 page = pfn_to_page(pfn); 2625 if (!PageBuddy(page)) { 2626 /* 2627 * We assume that pages that could be isolated for 2628 * migration are movable. But we don't actually try 2629 * isolating, as that would be expensive. 2630 */ 2631 if (num_movable && 2632 (PageLRU(page) || __PageMovable(page))) 2633 (*num_movable)++; 2634 pfn++; 2635 continue; 2636 } 2637 2638 /* Make sure we are not inadvertently changing nodes */ 2639 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2640 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2641 2642 order = buddy_order(page); 2643 move_to_free_list(page, zone, order, migratetype); 2644 pfn += 1 << order; 2645 pages_moved += 1 << order; 2646 } 2647 2648 return pages_moved; 2649 } 2650 2651 int move_freepages_block(struct zone *zone, struct page *page, 2652 int migratetype, int *num_movable) 2653 { 2654 unsigned long start_pfn, end_pfn, pfn; 2655 2656 if (num_movable) 2657 *num_movable = 0; 2658 2659 pfn = page_to_pfn(page); 2660 start_pfn = pageblock_start_pfn(pfn); 2661 end_pfn = pageblock_end_pfn(pfn) - 1; 2662 2663 /* Do not cross zone boundaries */ 2664 if (!zone_spans_pfn(zone, start_pfn)) 2665 start_pfn = pfn; 2666 if (!zone_spans_pfn(zone, end_pfn)) 2667 return 0; 2668 2669 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2670 num_movable); 2671 } 2672 2673 static void change_pageblock_range(struct page *pageblock_page, 2674 int start_order, int migratetype) 2675 { 2676 int nr_pageblocks = 1 << (start_order - pageblock_order); 2677 2678 while (nr_pageblocks--) { 2679 set_pageblock_migratetype(pageblock_page, migratetype); 2680 pageblock_page += pageblock_nr_pages; 2681 } 2682 } 2683 2684 /* 2685 * When we are falling back to another migratetype during allocation, try to 2686 * steal extra free pages from the same pageblocks to satisfy further 2687 * allocations, instead of polluting multiple pageblocks. 2688 * 2689 * If we are stealing a relatively large buddy page, it is likely there will 2690 * be more free pages in the pageblock, so try to steal them all. For 2691 * reclaimable and unmovable allocations, we steal regardless of page size, 2692 * as fragmentation caused by those allocations polluting movable pageblocks 2693 * is worse than movable allocations stealing from unmovable and reclaimable 2694 * pageblocks. 2695 */ 2696 static bool can_steal_fallback(unsigned int order, int start_mt) 2697 { 2698 /* 2699 * Leaving this order check is intended, although there is 2700 * relaxed order check in next check. The reason is that 2701 * we can actually steal whole pageblock if this condition met, 2702 * but, below check doesn't guarantee it and that is just heuristic 2703 * so could be changed anytime. 2704 */ 2705 if (order >= pageblock_order) 2706 return true; 2707 2708 if (order >= pageblock_order / 2 || 2709 start_mt == MIGRATE_RECLAIMABLE || 2710 start_mt == MIGRATE_UNMOVABLE || 2711 page_group_by_mobility_disabled) 2712 return true; 2713 2714 return false; 2715 } 2716 2717 static inline bool boost_watermark(struct zone *zone) 2718 { 2719 unsigned long max_boost; 2720 2721 if (!watermark_boost_factor) 2722 return false; 2723 /* 2724 * Don't bother in zones that are unlikely to produce results. 2725 * On small machines, including kdump capture kernels running 2726 * in a small area, boosting the watermark can cause an out of 2727 * memory situation immediately. 2728 */ 2729 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2730 return false; 2731 2732 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2733 watermark_boost_factor, 10000); 2734 2735 /* 2736 * high watermark may be uninitialised if fragmentation occurs 2737 * very early in boot so do not boost. We do not fall 2738 * through and boost by pageblock_nr_pages as failing 2739 * allocations that early means that reclaim is not going 2740 * to help and it may even be impossible to reclaim the 2741 * boosted watermark resulting in a hang. 2742 */ 2743 if (!max_boost) 2744 return false; 2745 2746 max_boost = max(pageblock_nr_pages, max_boost); 2747 2748 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2749 max_boost); 2750 2751 return true; 2752 } 2753 2754 /* 2755 * This function implements actual steal behaviour. If order is large enough, 2756 * we can steal whole pageblock. If not, we first move freepages in this 2757 * pageblock to our migratetype and determine how many already-allocated pages 2758 * are there in the pageblock with a compatible migratetype. If at least half 2759 * of pages are free or compatible, we can change migratetype of the pageblock 2760 * itself, so pages freed in the future will be put on the correct free list. 2761 */ 2762 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2763 unsigned int alloc_flags, int start_type, bool whole_block) 2764 { 2765 unsigned int current_order = buddy_order(page); 2766 int free_pages, movable_pages, alike_pages; 2767 int old_block_type; 2768 2769 old_block_type = get_pageblock_migratetype(page); 2770 2771 /* 2772 * This can happen due to races and we want to prevent broken 2773 * highatomic accounting. 2774 */ 2775 if (is_migrate_highatomic(old_block_type)) 2776 goto single_page; 2777 2778 /* Take ownership for orders >= pageblock_order */ 2779 if (current_order >= pageblock_order) { 2780 change_pageblock_range(page, current_order, start_type); 2781 goto single_page; 2782 } 2783 2784 /* 2785 * Boost watermarks to increase reclaim pressure to reduce the 2786 * likelihood of future fallbacks. Wake kswapd now as the node 2787 * may be balanced overall and kswapd will not wake naturally. 2788 */ 2789 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2790 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2791 2792 /* We are not allowed to try stealing from the whole block */ 2793 if (!whole_block) 2794 goto single_page; 2795 2796 free_pages = move_freepages_block(zone, page, start_type, 2797 &movable_pages); 2798 /* 2799 * Determine how many pages are compatible with our allocation. 2800 * For movable allocation, it's the number of movable pages which 2801 * we just obtained. For other types it's a bit more tricky. 2802 */ 2803 if (start_type == MIGRATE_MOVABLE) { 2804 alike_pages = movable_pages; 2805 } else { 2806 /* 2807 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2808 * to MOVABLE pageblock, consider all non-movable pages as 2809 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2810 * vice versa, be conservative since we can't distinguish the 2811 * exact migratetype of non-movable pages. 2812 */ 2813 if (old_block_type == MIGRATE_MOVABLE) 2814 alike_pages = pageblock_nr_pages 2815 - (free_pages + movable_pages); 2816 else 2817 alike_pages = 0; 2818 } 2819 2820 /* moving whole block can fail due to zone boundary conditions */ 2821 if (!free_pages) 2822 goto single_page; 2823 2824 /* 2825 * If a sufficient number of pages in the block are either free or of 2826 * comparable migratability as our allocation, claim the whole block. 2827 */ 2828 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2829 page_group_by_mobility_disabled) 2830 set_pageblock_migratetype(page, start_type); 2831 2832 return; 2833 2834 single_page: 2835 move_to_free_list(page, zone, current_order, start_type); 2836 } 2837 2838 /* 2839 * Check whether there is a suitable fallback freepage with requested order. 2840 * If only_stealable is true, this function returns fallback_mt only if 2841 * we can steal other freepages all together. This would help to reduce 2842 * fragmentation due to mixed migratetype pages in one pageblock. 2843 */ 2844 int find_suitable_fallback(struct free_area *area, unsigned int order, 2845 int migratetype, bool only_stealable, bool *can_steal) 2846 { 2847 int i; 2848 int fallback_mt; 2849 2850 if (area->nr_free == 0) 2851 return -1; 2852 2853 *can_steal = false; 2854 for (i = 0;; i++) { 2855 fallback_mt = fallbacks[migratetype][i]; 2856 if (fallback_mt == MIGRATE_TYPES) 2857 break; 2858 2859 if (free_area_empty(area, fallback_mt)) 2860 continue; 2861 2862 if (can_steal_fallback(order, migratetype)) 2863 *can_steal = true; 2864 2865 if (!only_stealable) 2866 return fallback_mt; 2867 2868 if (*can_steal) 2869 return fallback_mt; 2870 } 2871 2872 return -1; 2873 } 2874 2875 /* 2876 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2877 * there are no empty page blocks that contain a page with a suitable order 2878 */ 2879 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2880 unsigned int alloc_order) 2881 { 2882 int mt; 2883 unsigned long max_managed, flags; 2884 2885 /* 2886 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2887 * Check is race-prone but harmless. 2888 */ 2889 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2890 if (zone->nr_reserved_highatomic >= max_managed) 2891 return; 2892 2893 spin_lock_irqsave(&zone->lock, flags); 2894 2895 /* Recheck the nr_reserved_highatomic limit under the lock */ 2896 if (zone->nr_reserved_highatomic >= max_managed) 2897 goto out_unlock; 2898 2899 /* Yoink! */ 2900 mt = get_pageblock_migratetype(page); 2901 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2902 if (migratetype_is_mergeable(mt)) { 2903 zone->nr_reserved_highatomic += pageblock_nr_pages; 2904 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2905 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2906 } 2907 2908 out_unlock: 2909 spin_unlock_irqrestore(&zone->lock, flags); 2910 } 2911 2912 /* 2913 * Used when an allocation is about to fail under memory pressure. This 2914 * potentially hurts the reliability of high-order allocations when under 2915 * intense memory pressure but failed atomic allocations should be easier 2916 * to recover from than an OOM. 2917 * 2918 * If @force is true, try to unreserve a pageblock even though highatomic 2919 * pageblock is exhausted. 2920 */ 2921 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2922 bool force) 2923 { 2924 struct zonelist *zonelist = ac->zonelist; 2925 unsigned long flags; 2926 struct zoneref *z; 2927 struct zone *zone; 2928 struct page *page; 2929 int order; 2930 bool ret; 2931 2932 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2933 ac->nodemask) { 2934 /* 2935 * Preserve at least one pageblock unless memory pressure 2936 * is really high. 2937 */ 2938 if (!force && zone->nr_reserved_highatomic <= 2939 pageblock_nr_pages) 2940 continue; 2941 2942 spin_lock_irqsave(&zone->lock, flags); 2943 for (order = 0; order < MAX_ORDER; order++) { 2944 struct free_area *area = &(zone->free_area[order]); 2945 2946 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2947 if (!page) 2948 continue; 2949 2950 /* 2951 * In page freeing path, migratetype change is racy so 2952 * we can counter several free pages in a pageblock 2953 * in this loop although we changed the pageblock type 2954 * from highatomic to ac->migratetype. So we should 2955 * adjust the count once. 2956 */ 2957 if (is_migrate_highatomic_page(page)) { 2958 /* 2959 * It should never happen but changes to 2960 * locking could inadvertently allow a per-cpu 2961 * drain to add pages to MIGRATE_HIGHATOMIC 2962 * while unreserving so be safe and watch for 2963 * underflows. 2964 */ 2965 zone->nr_reserved_highatomic -= min( 2966 pageblock_nr_pages, 2967 zone->nr_reserved_highatomic); 2968 } 2969 2970 /* 2971 * Convert to ac->migratetype and avoid the normal 2972 * pageblock stealing heuristics. Minimally, the caller 2973 * is doing the work and needs the pages. More 2974 * importantly, if the block was always converted to 2975 * MIGRATE_UNMOVABLE or another type then the number 2976 * of pageblocks that cannot be completely freed 2977 * may increase. 2978 */ 2979 set_pageblock_migratetype(page, ac->migratetype); 2980 ret = move_freepages_block(zone, page, ac->migratetype, 2981 NULL); 2982 if (ret) { 2983 spin_unlock_irqrestore(&zone->lock, flags); 2984 return ret; 2985 } 2986 } 2987 spin_unlock_irqrestore(&zone->lock, flags); 2988 } 2989 2990 return false; 2991 } 2992 2993 /* 2994 * Try finding a free buddy page on the fallback list and put it on the free 2995 * list of requested migratetype, possibly along with other pages from the same 2996 * block, depending on fragmentation avoidance heuristics. Returns true if 2997 * fallback was found so that __rmqueue_smallest() can grab it. 2998 * 2999 * The use of signed ints for order and current_order is a deliberate 3000 * deviation from the rest of this file, to make the for loop 3001 * condition simpler. 3002 */ 3003 static __always_inline bool 3004 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 3005 unsigned int alloc_flags) 3006 { 3007 struct free_area *area; 3008 int current_order; 3009 int min_order = order; 3010 struct page *page; 3011 int fallback_mt; 3012 bool can_steal; 3013 3014 /* 3015 * Do not steal pages from freelists belonging to other pageblocks 3016 * i.e. orders < pageblock_order. If there are no local zones free, 3017 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 3018 */ 3019 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 3020 min_order = pageblock_order; 3021 3022 /* 3023 * Find the largest available free page in the other list. This roughly 3024 * approximates finding the pageblock with the most free pages, which 3025 * would be too costly to do exactly. 3026 */ 3027 for (current_order = MAX_ORDER - 1; current_order >= min_order; 3028 --current_order) { 3029 area = &(zone->free_area[current_order]); 3030 fallback_mt = find_suitable_fallback(area, current_order, 3031 start_migratetype, false, &can_steal); 3032 if (fallback_mt == -1) 3033 continue; 3034 3035 /* 3036 * We cannot steal all free pages from the pageblock and the 3037 * requested migratetype is movable. In that case it's better to 3038 * steal and split the smallest available page instead of the 3039 * largest available page, because even if the next movable 3040 * allocation falls back into a different pageblock than this 3041 * one, it won't cause permanent fragmentation. 3042 */ 3043 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 3044 && current_order > order) 3045 goto find_smallest; 3046 3047 goto do_steal; 3048 } 3049 3050 return false; 3051 3052 find_smallest: 3053 for (current_order = order; current_order < MAX_ORDER; 3054 current_order++) { 3055 area = &(zone->free_area[current_order]); 3056 fallback_mt = find_suitable_fallback(area, current_order, 3057 start_migratetype, false, &can_steal); 3058 if (fallback_mt != -1) 3059 break; 3060 } 3061 3062 /* 3063 * This should not happen - we already found a suitable fallback 3064 * when looking for the largest page. 3065 */ 3066 VM_BUG_ON(current_order == MAX_ORDER); 3067 3068 do_steal: 3069 page = get_page_from_free_area(area, fallback_mt); 3070 3071 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 3072 can_steal); 3073 3074 trace_mm_page_alloc_extfrag(page, order, current_order, 3075 start_migratetype, fallback_mt); 3076 3077 return true; 3078 3079 } 3080 3081 /* 3082 * Do the hard work of removing an element from the buddy allocator. 3083 * Call me with the zone->lock already held. 3084 */ 3085 static __always_inline struct page * 3086 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3087 unsigned int alloc_flags) 3088 { 3089 struct page *page; 3090 3091 if (IS_ENABLED(CONFIG_CMA)) { 3092 /* 3093 * Balance movable allocations between regular and CMA areas by 3094 * allocating from CMA when over half of the zone's free memory 3095 * is in the CMA area. 3096 */ 3097 if (alloc_flags & ALLOC_CMA && 3098 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3099 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3100 page = __rmqueue_cma_fallback(zone, order); 3101 if (page) 3102 return page; 3103 } 3104 } 3105 retry: 3106 page = __rmqueue_smallest(zone, order, migratetype); 3107 if (unlikely(!page)) { 3108 if (alloc_flags & ALLOC_CMA) 3109 page = __rmqueue_cma_fallback(zone, order); 3110 3111 if (!page && __rmqueue_fallback(zone, order, migratetype, 3112 alloc_flags)) 3113 goto retry; 3114 } 3115 return page; 3116 } 3117 3118 /* 3119 * Obtain a specified number of elements from the buddy allocator, all under 3120 * a single hold of the lock, for efficiency. Add them to the supplied list. 3121 * Returns the number of new pages which were placed at *list. 3122 */ 3123 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3124 unsigned long count, struct list_head *list, 3125 int migratetype, unsigned int alloc_flags) 3126 { 3127 int i, allocated = 0; 3128 3129 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ 3130 spin_lock(&zone->lock); 3131 for (i = 0; i < count; ++i) { 3132 struct page *page = __rmqueue(zone, order, migratetype, 3133 alloc_flags); 3134 if (unlikely(page == NULL)) 3135 break; 3136 3137 if (unlikely(check_pcp_refill(page, order))) 3138 continue; 3139 3140 /* 3141 * Split buddy pages returned by expand() are received here in 3142 * physical page order. The page is added to the tail of 3143 * caller's list. From the callers perspective, the linked list 3144 * is ordered by page number under some conditions. This is 3145 * useful for IO devices that can forward direction from the 3146 * head, thus also in the physical page order. This is useful 3147 * for IO devices that can merge IO requests if the physical 3148 * pages are ordered properly. 3149 */ 3150 list_add_tail(&page->pcp_list, list); 3151 allocated++; 3152 if (is_migrate_cma(get_pcppage_migratetype(page))) 3153 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3154 -(1 << order)); 3155 } 3156 3157 /* 3158 * i pages were removed from the buddy list even if some leak due 3159 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3160 * on i. Do not confuse with 'allocated' which is the number of 3161 * pages added to the pcp list. 3162 */ 3163 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3164 spin_unlock(&zone->lock); 3165 return allocated; 3166 } 3167 3168 #ifdef CONFIG_NUMA 3169 /* 3170 * Called from the vmstat counter updater to drain pagesets of this 3171 * currently executing processor on remote nodes after they have 3172 * expired. 3173 */ 3174 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3175 { 3176 int to_drain, batch; 3177 3178 batch = READ_ONCE(pcp->batch); 3179 to_drain = min(pcp->count, batch); 3180 if (to_drain > 0) { 3181 unsigned long flags; 3182 3183 /* 3184 * free_pcppages_bulk expects IRQs disabled for zone->lock 3185 * so even though pcp->lock is not intended to be IRQ-safe, 3186 * it's needed in this context. 3187 */ 3188 spin_lock_irqsave(&pcp->lock, flags); 3189 free_pcppages_bulk(zone, to_drain, pcp, 0); 3190 spin_unlock_irqrestore(&pcp->lock, flags); 3191 } 3192 } 3193 #endif 3194 3195 /* 3196 * Drain pcplists of the indicated processor and zone. 3197 */ 3198 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3199 { 3200 struct per_cpu_pages *pcp; 3201 3202 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3203 if (pcp->count) { 3204 unsigned long flags; 3205 3206 /* See drain_zone_pages on why this is disabling IRQs */ 3207 spin_lock_irqsave(&pcp->lock, flags); 3208 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3209 spin_unlock_irqrestore(&pcp->lock, flags); 3210 } 3211 } 3212 3213 /* 3214 * Drain pcplists of all zones on the indicated processor. 3215 */ 3216 static void drain_pages(unsigned int cpu) 3217 { 3218 struct zone *zone; 3219 3220 for_each_populated_zone(zone) { 3221 drain_pages_zone(cpu, zone); 3222 } 3223 } 3224 3225 /* 3226 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3227 */ 3228 void drain_local_pages(struct zone *zone) 3229 { 3230 int cpu = smp_processor_id(); 3231 3232 if (zone) 3233 drain_pages_zone(cpu, zone); 3234 else 3235 drain_pages(cpu); 3236 } 3237 3238 /* 3239 * The implementation of drain_all_pages(), exposing an extra parameter to 3240 * drain on all cpus. 3241 * 3242 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3243 * not empty. The check for non-emptiness can however race with a free to 3244 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3245 * that need the guarantee that every CPU has drained can disable the 3246 * optimizing racy check. 3247 */ 3248 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3249 { 3250 int cpu; 3251 3252 /* 3253 * Allocate in the BSS so we won't require allocation in 3254 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3255 */ 3256 static cpumask_t cpus_with_pcps; 3257 3258 /* 3259 * Do not drain if one is already in progress unless it's specific to 3260 * a zone. Such callers are primarily CMA and memory hotplug and need 3261 * the drain to be complete when the call returns. 3262 */ 3263 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3264 if (!zone) 3265 return; 3266 mutex_lock(&pcpu_drain_mutex); 3267 } 3268 3269 /* 3270 * We don't care about racing with CPU hotplug event 3271 * as offline notification will cause the notified 3272 * cpu to drain that CPU pcps and on_each_cpu_mask 3273 * disables preemption as part of its processing 3274 */ 3275 for_each_online_cpu(cpu) { 3276 struct per_cpu_pages *pcp; 3277 struct zone *z; 3278 bool has_pcps = false; 3279 3280 if (force_all_cpus) { 3281 /* 3282 * The pcp.count check is racy, some callers need a 3283 * guarantee that no cpu is missed. 3284 */ 3285 has_pcps = true; 3286 } else if (zone) { 3287 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3288 if (pcp->count) 3289 has_pcps = true; 3290 } else { 3291 for_each_populated_zone(z) { 3292 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3293 if (pcp->count) { 3294 has_pcps = true; 3295 break; 3296 } 3297 } 3298 } 3299 3300 if (has_pcps) 3301 cpumask_set_cpu(cpu, &cpus_with_pcps); 3302 else 3303 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3304 } 3305 3306 for_each_cpu(cpu, &cpus_with_pcps) { 3307 if (zone) 3308 drain_pages_zone(cpu, zone); 3309 else 3310 drain_pages(cpu); 3311 } 3312 3313 mutex_unlock(&pcpu_drain_mutex); 3314 } 3315 3316 /* 3317 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3318 * 3319 * When zone parameter is non-NULL, spill just the single zone's pages. 3320 */ 3321 void drain_all_pages(struct zone *zone) 3322 { 3323 __drain_all_pages(zone, false); 3324 } 3325 3326 #ifdef CONFIG_HIBERNATION 3327 3328 /* 3329 * Touch the watchdog for every WD_PAGE_COUNT pages. 3330 */ 3331 #define WD_PAGE_COUNT (128*1024) 3332 3333 void mark_free_pages(struct zone *zone) 3334 { 3335 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3336 unsigned long flags; 3337 unsigned int order, t; 3338 struct page *page; 3339 3340 if (zone_is_empty(zone)) 3341 return; 3342 3343 spin_lock_irqsave(&zone->lock, flags); 3344 3345 max_zone_pfn = zone_end_pfn(zone); 3346 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3347 if (pfn_valid(pfn)) { 3348 page = pfn_to_page(pfn); 3349 3350 if (!--page_count) { 3351 touch_nmi_watchdog(); 3352 page_count = WD_PAGE_COUNT; 3353 } 3354 3355 if (page_zone(page) != zone) 3356 continue; 3357 3358 if (!swsusp_page_is_forbidden(page)) 3359 swsusp_unset_page_free(page); 3360 } 3361 3362 for_each_migratetype_order(order, t) { 3363 list_for_each_entry(page, 3364 &zone->free_area[order].free_list[t], buddy_list) { 3365 unsigned long i; 3366 3367 pfn = page_to_pfn(page); 3368 for (i = 0; i < (1UL << order); i++) { 3369 if (!--page_count) { 3370 touch_nmi_watchdog(); 3371 page_count = WD_PAGE_COUNT; 3372 } 3373 swsusp_set_page_free(pfn_to_page(pfn + i)); 3374 } 3375 } 3376 } 3377 spin_unlock_irqrestore(&zone->lock, flags); 3378 } 3379 #endif /* CONFIG_PM */ 3380 3381 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3382 unsigned int order) 3383 { 3384 int migratetype; 3385 3386 if (!free_pcp_prepare(page, order)) 3387 return false; 3388 3389 migratetype = get_pfnblock_migratetype(page, pfn); 3390 set_pcppage_migratetype(page, migratetype); 3391 return true; 3392 } 3393 3394 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3395 bool free_high) 3396 { 3397 int min_nr_free, max_nr_free; 3398 3399 /* Free everything if batch freeing high-order pages. */ 3400 if (unlikely(free_high)) 3401 return pcp->count; 3402 3403 /* Check for PCP disabled or boot pageset */ 3404 if (unlikely(high < batch)) 3405 return 1; 3406 3407 /* Leave at least pcp->batch pages on the list */ 3408 min_nr_free = batch; 3409 max_nr_free = high - batch; 3410 3411 /* 3412 * Double the number of pages freed each time there is subsequent 3413 * freeing of pages without any allocation. 3414 */ 3415 batch <<= pcp->free_factor; 3416 if (batch < max_nr_free) 3417 pcp->free_factor++; 3418 batch = clamp(batch, min_nr_free, max_nr_free); 3419 3420 return batch; 3421 } 3422 3423 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3424 bool free_high) 3425 { 3426 int high = READ_ONCE(pcp->high); 3427 3428 if (unlikely(!high || free_high)) 3429 return 0; 3430 3431 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3432 return high; 3433 3434 /* 3435 * If reclaim is active, limit the number of pages that can be 3436 * stored on pcp lists 3437 */ 3438 return min(READ_ONCE(pcp->batch) << 2, high); 3439 } 3440 3441 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 3442 struct page *page, int migratetype, 3443 unsigned int order) 3444 { 3445 int high; 3446 int pindex; 3447 bool free_high; 3448 3449 __count_vm_event(PGFREE); 3450 pindex = order_to_pindex(migratetype, order); 3451 list_add(&page->pcp_list, &pcp->lists[pindex]); 3452 pcp->count += 1 << order; 3453 3454 /* 3455 * As high-order pages other than THP's stored on PCP can contribute 3456 * to fragmentation, limit the number stored when PCP is heavily 3457 * freeing without allocation. The remainder after bulk freeing 3458 * stops will be drained from vmstat refresh context. 3459 */ 3460 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3461 3462 high = nr_pcp_high(pcp, zone, free_high); 3463 if (pcp->count >= high) { 3464 int batch = READ_ONCE(pcp->batch); 3465 3466 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3467 } 3468 } 3469 3470 /* 3471 * Free a pcp page 3472 */ 3473 void free_unref_page(struct page *page, unsigned int order) 3474 { 3475 unsigned long flags; 3476 unsigned long __maybe_unused UP_flags; 3477 struct per_cpu_pages *pcp; 3478 struct zone *zone; 3479 unsigned long pfn = page_to_pfn(page); 3480 int migratetype; 3481 3482 if (!free_unref_page_prepare(page, pfn, order)) 3483 return; 3484 3485 /* 3486 * We only track unmovable, reclaimable and movable on pcp lists. 3487 * Place ISOLATE pages on the isolated list because they are being 3488 * offlined but treat HIGHATOMIC as movable pages so we can get those 3489 * areas back if necessary. Otherwise, we may have to free 3490 * excessively into the page allocator 3491 */ 3492 migratetype = get_pcppage_migratetype(page); 3493 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3494 if (unlikely(is_migrate_isolate(migratetype))) { 3495 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3496 return; 3497 } 3498 migratetype = MIGRATE_MOVABLE; 3499 } 3500 3501 zone = page_zone(page); 3502 pcp_trylock_prepare(UP_flags); 3503 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 3504 if (pcp) { 3505 free_unref_page_commit(zone, pcp, page, migratetype, order); 3506 pcp_spin_unlock_irqrestore(pcp, flags); 3507 } else { 3508 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 3509 } 3510 pcp_trylock_finish(UP_flags); 3511 } 3512 3513 /* 3514 * Free a list of 0-order pages 3515 */ 3516 void free_unref_page_list(struct list_head *list) 3517 { 3518 struct page *page, *next; 3519 struct per_cpu_pages *pcp = NULL; 3520 struct zone *locked_zone = NULL; 3521 unsigned long flags; 3522 int batch_count = 0; 3523 int migratetype; 3524 3525 /* Prepare pages for freeing */ 3526 list_for_each_entry_safe(page, next, list, lru) { 3527 unsigned long pfn = page_to_pfn(page); 3528 if (!free_unref_page_prepare(page, pfn, 0)) { 3529 list_del(&page->lru); 3530 continue; 3531 } 3532 3533 /* 3534 * Free isolated pages directly to the allocator, see 3535 * comment in free_unref_page. 3536 */ 3537 migratetype = get_pcppage_migratetype(page); 3538 if (unlikely(is_migrate_isolate(migratetype))) { 3539 list_del(&page->lru); 3540 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3541 continue; 3542 } 3543 } 3544 3545 list_for_each_entry_safe(page, next, list, lru) { 3546 struct zone *zone = page_zone(page); 3547 3548 /* Different zone, different pcp lock. */ 3549 if (zone != locked_zone) { 3550 if (pcp) 3551 pcp_spin_unlock_irqrestore(pcp, flags); 3552 3553 locked_zone = zone; 3554 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); 3555 } 3556 3557 /* 3558 * Non-isolated types over MIGRATE_PCPTYPES get added 3559 * to the MIGRATE_MOVABLE pcp list. 3560 */ 3561 migratetype = get_pcppage_migratetype(page); 3562 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3563 migratetype = MIGRATE_MOVABLE; 3564 3565 trace_mm_page_free_batched(page); 3566 free_unref_page_commit(zone, pcp, page, migratetype, 0); 3567 3568 /* 3569 * Guard against excessive IRQ disabled times when we get 3570 * a large list of pages to free. 3571 */ 3572 if (++batch_count == SWAP_CLUSTER_MAX) { 3573 pcp_spin_unlock_irqrestore(pcp, flags); 3574 batch_count = 0; 3575 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); 3576 } 3577 } 3578 3579 if (pcp) 3580 pcp_spin_unlock_irqrestore(pcp, flags); 3581 } 3582 3583 /* 3584 * split_page takes a non-compound higher-order page, and splits it into 3585 * n (1<<order) sub-pages: page[0..n] 3586 * Each sub-page must be freed individually. 3587 * 3588 * Note: this is probably too low level an operation for use in drivers. 3589 * Please consult with lkml before using this in your driver. 3590 */ 3591 void split_page(struct page *page, unsigned int order) 3592 { 3593 int i; 3594 3595 VM_BUG_ON_PAGE(PageCompound(page), page); 3596 VM_BUG_ON_PAGE(!page_count(page), page); 3597 3598 for (i = 1; i < (1 << order); i++) 3599 set_page_refcounted(page + i); 3600 split_page_owner(page, 1 << order); 3601 split_page_memcg(page, 1 << order); 3602 } 3603 EXPORT_SYMBOL_GPL(split_page); 3604 3605 int __isolate_free_page(struct page *page, unsigned int order) 3606 { 3607 struct zone *zone = page_zone(page); 3608 int mt = get_pageblock_migratetype(page); 3609 3610 if (!is_migrate_isolate(mt)) { 3611 unsigned long watermark; 3612 /* 3613 * Obey watermarks as if the page was being allocated. We can 3614 * emulate a high-order watermark check with a raised order-0 3615 * watermark, because we already know our high-order page 3616 * exists. 3617 */ 3618 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3619 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3620 return 0; 3621 3622 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3623 } 3624 3625 del_page_from_free_list(page, zone, order); 3626 3627 /* 3628 * Set the pageblock if the isolated page is at least half of a 3629 * pageblock 3630 */ 3631 if (order >= pageblock_order - 1) { 3632 struct page *endpage = page + (1 << order) - 1; 3633 for (; page < endpage; page += pageblock_nr_pages) { 3634 int mt = get_pageblock_migratetype(page); 3635 /* 3636 * Only change normal pageblocks (i.e., they can merge 3637 * with others) 3638 */ 3639 if (migratetype_is_mergeable(mt)) 3640 set_pageblock_migratetype(page, 3641 MIGRATE_MOVABLE); 3642 } 3643 } 3644 3645 return 1UL << order; 3646 } 3647 3648 /** 3649 * __putback_isolated_page - Return a now-isolated page back where we got it 3650 * @page: Page that was isolated 3651 * @order: Order of the isolated page 3652 * @mt: The page's pageblock's migratetype 3653 * 3654 * This function is meant to return a page pulled from the free lists via 3655 * __isolate_free_page back to the free lists they were pulled from. 3656 */ 3657 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3658 { 3659 struct zone *zone = page_zone(page); 3660 3661 /* zone lock should be held when this function is called */ 3662 lockdep_assert_held(&zone->lock); 3663 3664 /* Return isolated page to tail of freelist. */ 3665 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3666 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3667 } 3668 3669 /* 3670 * Update NUMA hit/miss statistics 3671 * 3672 * Must be called with interrupts disabled. 3673 */ 3674 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3675 long nr_account) 3676 { 3677 #ifdef CONFIG_NUMA 3678 enum numa_stat_item local_stat = NUMA_LOCAL; 3679 3680 /* skip numa counters update if numa stats is disabled */ 3681 if (!static_branch_likely(&vm_numa_stat_key)) 3682 return; 3683 3684 if (zone_to_nid(z) != numa_node_id()) 3685 local_stat = NUMA_OTHER; 3686 3687 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3688 __count_numa_events(z, NUMA_HIT, nr_account); 3689 else { 3690 __count_numa_events(z, NUMA_MISS, nr_account); 3691 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3692 } 3693 __count_numa_events(z, local_stat, nr_account); 3694 #endif 3695 } 3696 3697 static __always_inline 3698 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3699 unsigned int order, unsigned int alloc_flags, 3700 int migratetype) 3701 { 3702 struct page *page; 3703 unsigned long flags; 3704 3705 do { 3706 page = NULL; 3707 spin_lock_irqsave(&zone->lock, flags); 3708 /* 3709 * order-0 request can reach here when the pcplist is skipped 3710 * due to non-CMA allocation context. HIGHATOMIC area is 3711 * reserved for high-order atomic allocation, so order-0 3712 * request should skip it. 3713 */ 3714 if (order > 0 && alloc_flags & ALLOC_HARDER) 3715 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3716 if (!page) { 3717 page = __rmqueue(zone, order, migratetype, alloc_flags); 3718 if (!page) { 3719 spin_unlock_irqrestore(&zone->lock, flags); 3720 return NULL; 3721 } 3722 } 3723 __mod_zone_freepage_state(zone, -(1 << order), 3724 get_pcppage_migratetype(page)); 3725 spin_unlock_irqrestore(&zone->lock, flags); 3726 } while (check_new_pages(page, order)); 3727 3728 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3729 zone_statistics(preferred_zone, zone, 1); 3730 3731 return page; 3732 } 3733 3734 /* Remove page from the per-cpu list, caller must protect the list */ 3735 static inline 3736 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3737 int migratetype, 3738 unsigned int alloc_flags, 3739 struct per_cpu_pages *pcp, 3740 struct list_head *list) 3741 { 3742 struct page *page; 3743 3744 do { 3745 if (list_empty(list)) { 3746 int batch = READ_ONCE(pcp->batch); 3747 int alloced; 3748 3749 /* 3750 * Scale batch relative to order if batch implies 3751 * free pages can be stored on the PCP. Batch can 3752 * be 1 for small zones or for boot pagesets which 3753 * should never store free pages as the pages may 3754 * belong to arbitrary zones. 3755 */ 3756 if (batch > 1) 3757 batch = max(batch >> order, 2); 3758 alloced = rmqueue_bulk(zone, order, 3759 batch, list, 3760 migratetype, alloc_flags); 3761 3762 pcp->count += alloced << order; 3763 if (unlikely(list_empty(list))) 3764 return NULL; 3765 } 3766 3767 page = list_first_entry(list, struct page, pcp_list); 3768 list_del(&page->pcp_list); 3769 pcp->count -= 1 << order; 3770 } while (check_new_pcp(page, order)); 3771 3772 return page; 3773 } 3774 3775 /* Lock and remove page from the per-cpu list */ 3776 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3777 struct zone *zone, unsigned int order, 3778 int migratetype, unsigned int alloc_flags) 3779 { 3780 struct per_cpu_pages *pcp; 3781 struct list_head *list; 3782 struct page *page; 3783 unsigned long flags; 3784 unsigned long __maybe_unused UP_flags; 3785 3786 /* 3787 * spin_trylock may fail due to a parallel drain. In the future, the 3788 * trylock will also protect against IRQ reentrancy. 3789 */ 3790 pcp_trylock_prepare(UP_flags); 3791 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 3792 if (!pcp) { 3793 pcp_trylock_finish(UP_flags); 3794 return NULL; 3795 } 3796 3797 /* 3798 * On allocation, reduce the number of pages that are batch freed. 3799 * See nr_pcp_free() where free_factor is increased for subsequent 3800 * frees. 3801 */ 3802 pcp->free_factor >>= 1; 3803 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3804 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3805 pcp_spin_unlock_irqrestore(pcp, flags); 3806 pcp_trylock_finish(UP_flags); 3807 if (page) { 3808 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3809 zone_statistics(preferred_zone, zone, 1); 3810 } 3811 return page; 3812 } 3813 3814 /* 3815 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3816 */ 3817 3818 /* 3819 * Do not instrument rmqueue() with KMSAN. This function may call 3820 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3821 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3822 * may call rmqueue() again, which will result in a deadlock. 3823 */ 3824 __no_sanitize_memory 3825 static inline 3826 struct page *rmqueue(struct zone *preferred_zone, 3827 struct zone *zone, unsigned int order, 3828 gfp_t gfp_flags, unsigned int alloc_flags, 3829 int migratetype) 3830 { 3831 struct page *page; 3832 3833 /* 3834 * We most definitely don't want callers attempting to 3835 * allocate greater than order-1 page units with __GFP_NOFAIL. 3836 */ 3837 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3838 3839 if (likely(pcp_allowed_order(order))) { 3840 /* 3841 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3842 * we need to skip it when CMA area isn't allowed. 3843 */ 3844 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3845 migratetype != MIGRATE_MOVABLE) { 3846 page = rmqueue_pcplist(preferred_zone, zone, order, 3847 migratetype, alloc_flags); 3848 if (likely(page)) 3849 goto out; 3850 } 3851 } 3852 3853 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3854 migratetype); 3855 3856 out: 3857 /* Separate test+clear to avoid unnecessary atomics */ 3858 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3859 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3860 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3861 } 3862 3863 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3864 return page; 3865 } 3866 3867 #ifdef CONFIG_FAIL_PAGE_ALLOC 3868 3869 static struct { 3870 struct fault_attr attr; 3871 3872 bool ignore_gfp_highmem; 3873 bool ignore_gfp_reclaim; 3874 u32 min_order; 3875 } fail_page_alloc = { 3876 .attr = FAULT_ATTR_INITIALIZER, 3877 .ignore_gfp_reclaim = true, 3878 .ignore_gfp_highmem = true, 3879 .min_order = 1, 3880 }; 3881 3882 static int __init setup_fail_page_alloc(char *str) 3883 { 3884 return setup_fault_attr(&fail_page_alloc.attr, str); 3885 } 3886 __setup("fail_page_alloc=", setup_fail_page_alloc); 3887 3888 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3889 { 3890 if (order < fail_page_alloc.min_order) 3891 return false; 3892 if (gfp_mask & __GFP_NOFAIL) 3893 return false; 3894 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3895 return false; 3896 if (fail_page_alloc.ignore_gfp_reclaim && 3897 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3898 return false; 3899 3900 if (gfp_mask & __GFP_NOWARN) 3901 fail_page_alloc.attr.no_warn = true; 3902 3903 return should_fail(&fail_page_alloc.attr, 1 << order); 3904 } 3905 3906 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3907 3908 static int __init fail_page_alloc_debugfs(void) 3909 { 3910 umode_t mode = S_IFREG | 0600; 3911 struct dentry *dir; 3912 3913 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3914 &fail_page_alloc.attr); 3915 3916 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3917 &fail_page_alloc.ignore_gfp_reclaim); 3918 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3919 &fail_page_alloc.ignore_gfp_highmem); 3920 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3921 3922 return 0; 3923 } 3924 3925 late_initcall(fail_page_alloc_debugfs); 3926 3927 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3928 3929 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3930 3931 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3932 { 3933 return false; 3934 } 3935 3936 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3937 3938 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3939 { 3940 return __should_fail_alloc_page(gfp_mask, order); 3941 } 3942 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3943 3944 static inline long __zone_watermark_unusable_free(struct zone *z, 3945 unsigned int order, unsigned int alloc_flags) 3946 { 3947 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3948 long unusable_free = (1 << order) - 1; 3949 3950 /* 3951 * If the caller does not have rights to ALLOC_HARDER then subtract 3952 * the high-atomic reserves. This will over-estimate the size of the 3953 * atomic reserve but it avoids a search. 3954 */ 3955 if (likely(!alloc_harder)) 3956 unusable_free += z->nr_reserved_highatomic; 3957 3958 #ifdef CONFIG_CMA 3959 /* If allocation can't use CMA areas don't use free CMA pages */ 3960 if (!(alloc_flags & ALLOC_CMA)) 3961 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3962 #endif 3963 3964 return unusable_free; 3965 } 3966 3967 /* 3968 * Return true if free base pages are above 'mark'. For high-order checks it 3969 * will return true of the order-0 watermark is reached and there is at least 3970 * one free page of a suitable size. Checking now avoids taking the zone lock 3971 * to check in the allocation paths if no pages are free. 3972 */ 3973 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3974 int highest_zoneidx, unsigned int alloc_flags, 3975 long free_pages) 3976 { 3977 long min = mark; 3978 int o; 3979 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3980 3981 /* free_pages may go negative - that's OK */ 3982 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3983 3984 if (alloc_flags & ALLOC_HIGH) 3985 min -= min / 2; 3986 3987 if (unlikely(alloc_harder)) { 3988 /* 3989 * OOM victims can try even harder than normal ALLOC_HARDER 3990 * users on the grounds that it's definitely going to be in 3991 * the exit path shortly and free memory. Any allocation it 3992 * makes during the free path will be small and short-lived. 3993 */ 3994 if (alloc_flags & ALLOC_OOM) 3995 min -= min / 2; 3996 else 3997 min -= min / 4; 3998 } 3999 4000 /* 4001 * Check watermarks for an order-0 allocation request. If these 4002 * are not met, then a high-order request also cannot go ahead 4003 * even if a suitable page happened to be free. 4004 */ 4005 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 4006 return false; 4007 4008 /* If this is an order-0 request then the watermark is fine */ 4009 if (!order) 4010 return true; 4011 4012 /* For a high-order request, check at least one suitable page is free */ 4013 for (o = order; o < MAX_ORDER; o++) { 4014 struct free_area *area = &z->free_area[o]; 4015 int mt; 4016 4017 if (!area->nr_free) 4018 continue; 4019 4020 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 4021 if (!free_area_empty(area, mt)) 4022 return true; 4023 } 4024 4025 #ifdef CONFIG_CMA 4026 if ((alloc_flags & ALLOC_CMA) && 4027 !free_area_empty(area, MIGRATE_CMA)) { 4028 return true; 4029 } 4030 #endif 4031 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 4032 return true; 4033 } 4034 return false; 4035 } 4036 4037 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 4038 int highest_zoneidx, unsigned int alloc_flags) 4039 { 4040 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4041 zone_page_state(z, NR_FREE_PAGES)); 4042 } 4043 4044 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 4045 unsigned long mark, int highest_zoneidx, 4046 unsigned int alloc_flags, gfp_t gfp_mask) 4047 { 4048 long free_pages; 4049 4050 free_pages = zone_page_state(z, NR_FREE_PAGES); 4051 4052 /* 4053 * Fast check for order-0 only. If this fails then the reserves 4054 * need to be calculated. 4055 */ 4056 if (!order) { 4057 long usable_free; 4058 long reserved; 4059 4060 usable_free = free_pages; 4061 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 4062 4063 /* reserved may over estimate high-atomic reserves. */ 4064 usable_free -= min(usable_free, reserved); 4065 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 4066 return true; 4067 } 4068 4069 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4070 free_pages)) 4071 return true; 4072 /* 4073 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 4074 * when checking the min watermark. The min watermark is the 4075 * point where boosting is ignored so that kswapd is woken up 4076 * when below the low watermark. 4077 */ 4078 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 4079 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 4080 mark = z->_watermark[WMARK_MIN]; 4081 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 4082 alloc_flags, free_pages); 4083 } 4084 4085 return false; 4086 } 4087 4088 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 4089 unsigned long mark, int highest_zoneidx) 4090 { 4091 long free_pages = zone_page_state(z, NR_FREE_PAGES); 4092 4093 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4094 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4095 4096 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4097 free_pages); 4098 } 4099 4100 #ifdef CONFIG_NUMA 4101 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4102 4103 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4104 { 4105 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4106 node_reclaim_distance; 4107 } 4108 #else /* CONFIG_NUMA */ 4109 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4110 { 4111 return true; 4112 } 4113 #endif /* CONFIG_NUMA */ 4114 4115 /* 4116 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4117 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4118 * premature use of a lower zone may cause lowmem pressure problems that 4119 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4120 * probably too small. It only makes sense to spread allocations to avoid 4121 * fragmentation between the Normal and DMA32 zones. 4122 */ 4123 static inline unsigned int 4124 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4125 { 4126 unsigned int alloc_flags; 4127 4128 /* 4129 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4130 * to save a branch. 4131 */ 4132 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4133 4134 #ifdef CONFIG_ZONE_DMA32 4135 if (!zone) 4136 return alloc_flags; 4137 4138 if (zone_idx(zone) != ZONE_NORMAL) 4139 return alloc_flags; 4140 4141 /* 4142 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4143 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4144 * on UMA that if Normal is populated then so is DMA32. 4145 */ 4146 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4147 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4148 return alloc_flags; 4149 4150 alloc_flags |= ALLOC_NOFRAGMENT; 4151 #endif /* CONFIG_ZONE_DMA32 */ 4152 return alloc_flags; 4153 } 4154 4155 /* Must be called after current_gfp_context() which can change gfp_mask */ 4156 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4157 unsigned int alloc_flags) 4158 { 4159 #ifdef CONFIG_CMA 4160 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4161 alloc_flags |= ALLOC_CMA; 4162 #endif 4163 return alloc_flags; 4164 } 4165 4166 /* 4167 * get_page_from_freelist goes through the zonelist trying to allocate 4168 * a page. 4169 */ 4170 static struct page * 4171 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4172 const struct alloc_context *ac) 4173 { 4174 struct zoneref *z; 4175 struct zone *zone; 4176 struct pglist_data *last_pgdat = NULL; 4177 bool last_pgdat_dirty_ok = false; 4178 bool no_fallback; 4179 4180 retry: 4181 /* 4182 * Scan zonelist, looking for a zone with enough free. 4183 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 4184 */ 4185 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4186 z = ac->preferred_zoneref; 4187 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4188 ac->nodemask) { 4189 struct page *page; 4190 unsigned long mark; 4191 4192 if (cpusets_enabled() && 4193 (alloc_flags & ALLOC_CPUSET) && 4194 !__cpuset_zone_allowed(zone, gfp_mask)) 4195 continue; 4196 /* 4197 * When allocating a page cache page for writing, we 4198 * want to get it from a node that is within its dirty 4199 * limit, such that no single node holds more than its 4200 * proportional share of globally allowed dirty pages. 4201 * The dirty limits take into account the node's 4202 * lowmem reserves and high watermark so that kswapd 4203 * should be able to balance it without having to 4204 * write pages from its LRU list. 4205 * 4206 * XXX: For now, allow allocations to potentially 4207 * exceed the per-node dirty limit in the slowpath 4208 * (spread_dirty_pages unset) before going into reclaim, 4209 * which is important when on a NUMA setup the allowed 4210 * nodes are together not big enough to reach the 4211 * global limit. The proper fix for these situations 4212 * will require awareness of nodes in the 4213 * dirty-throttling and the flusher threads. 4214 */ 4215 if (ac->spread_dirty_pages) { 4216 if (last_pgdat != zone->zone_pgdat) { 4217 last_pgdat = zone->zone_pgdat; 4218 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4219 } 4220 4221 if (!last_pgdat_dirty_ok) 4222 continue; 4223 } 4224 4225 if (no_fallback && nr_online_nodes > 1 && 4226 zone != ac->preferred_zoneref->zone) { 4227 int local_nid; 4228 4229 /* 4230 * If moving to a remote node, retry but allow 4231 * fragmenting fallbacks. Locality is more important 4232 * than fragmentation avoidance. 4233 */ 4234 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4235 if (zone_to_nid(zone) != local_nid) { 4236 alloc_flags &= ~ALLOC_NOFRAGMENT; 4237 goto retry; 4238 } 4239 } 4240 4241 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4242 if (!zone_watermark_fast(zone, order, mark, 4243 ac->highest_zoneidx, alloc_flags, 4244 gfp_mask)) { 4245 int ret; 4246 4247 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4248 /* 4249 * Watermark failed for this zone, but see if we can 4250 * grow this zone if it contains deferred pages. 4251 */ 4252 if (static_branch_unlikely(&deferred_pages)) { 4253 if (_deferred_grow_zone(zone, order)) 4254 goto try_this_zone; 4255 } 4256 #endif 4257 /* Checked here to keep the fast path fast */ 4258 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4259 if (alloc_flags & ALLOC_NO_WATERMARKS) 4260 goto try_this_zone; 4261 4262 if (!node_reclaim_enabled() || 4263 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4264 continue; 4265 4266 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4267 switch (ret) { 4268 case NODE_RECLAIM_NOSCAN: 4269 /* did not scan */ 4270 continue; 4271 case NODE_RECLAIM_FULL: 4272 /* scanned but unreclaimable */ 4273 continue; 4274 default: 4275 /* did we reclaim enough */ 4276 if (zone_watermark_ok(zone, order, mark, 4277 ac->highest_zoneidx, alloc_flags)) 4278 goto try_this_zone; 4279 4280 continue; 4281 } 4282 } 4283 4284 try_this_zone: 4285 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4286 gfp_mask, alloc_flags, ac->migratetype); 4287 if (page) { 4288 prep_new_page(page, order, gfp_mask, alloc_flags); 4289 4290 /* 4291 * If this is a high-order atomic allocation then check 4292 * if the pageblock should be reserved for the future 4293 */ 4294 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4295 reserve_highatomic_pageblock(page, zone, order); 4296 4297 return page; 4298 } else { 4299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4300 /* Try again if zone has deferred pages */ 4301 if (static_branch_unlikely(&deferred_pages)) { 4302 if (_deferred_grow_zone(zone, order)) 4303 goto try_this_zone; 4304 } 4305 #endif 4306 } 4307 } 4308 4309 /* 4310 * It's possible on a UMA machine to get through all zones that are 4311 * fragmented. If avoiding fragmentation, reset and try again. 4312 */ 4313 if (no_fallback) { 4314 alloc_flags &= ~ALLOC_NOFRAGMENT; 4315 goto retry; 4316 } 4317 4318 return NULL; 4319 } 4320 4321 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4322 { 4323 unsigned int filter = SHOW_MEM_FILTER_NODES; 4324 4325 /* 4326 * This documents exceptions given to allocations in certain 4327 * contexts that are allowed to allocate outside current's set 4328 * of allowed nodes. 4329 */ 4330 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4331 if (tsk_is_oom_victim(current) || 4332 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4333 filter &= ~SHOW_MEM_FILTER_NODES; 4334 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4335 filter &= ~SHOW_MEM_FILTER_NODES; 4336 4337 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 4338 } 4339 4340 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4341 { 4342 struct va_format vaf; 4343 va_list args; 4344 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4345 4346 if ((gfp_mask & __GFP_NOWARN) || 4347 !__ratelimit(&nopage_rs) || 4348 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4349 return; 4350 4351 va_start(args, fmt); 4352 vaf.fmt = fmt; 4353 vaf.va = &args; 4354 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4355 current->comm, &vaf, gfp_mask, &gfp_mask, 4356 nodemask_pr_args(nodemask)); 4357 va_end(args); 4358 4359 cpuset_print_current_mems_allowed(); 4360 pr_cont("\n"); 4361 dump_stack(); 4362 warn_alloc_show_mem(gfp_mask, nodemask); 4363 } 4364 4365 static inline struct page * 4366 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4367 unsigned int alloc_flags, 4368 const struct alloc_context *ac) 4369 { 4370 struct page *page; 4371 4372 page = get_page_from_freelist(gfp_mask, order, 4373 alloc_flags|ALLOC_CPUSET, ac); 4374 /* 4375 * fallback to ignore cpuset restriction if our nodes 4376 * are depleted 4377 */ 4378 if (!page) 4379 page = get_page_from_freelist(gfp_mask, order, 4380 alloc_flags, ac); 4381 4382 return page; 4383 } 4384 4385 static inline struct page * 4386 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4387 const struct alloc_context *ac, unsigned long *did_some_progress) 4388 { 4389 struct oom_control oc = { 4390 .zonelist = ac->zonelist, 4391 .nodemask = ac->nodemask, 4392 .memcg = NULL, 4393 .gfp_mask = gfp_mask, 4394 .order = order, 4395 }; 4396 struct page *page; 4397 4398 *did_some_progress = 0; 4399 4400 /* 4401 * Acquire the oom lock. If that fails, somebody else is 4402 * making progress for us. 4403 */ 4404 if (!mutex_trylock(&oom_lock)) { 4405 *did_some_progress = 1; 4406 schedule_timeout_uninterruptible(1); 4407 return NULL; 4408 } 4409 4410 /* 4411 * Go through the zonelist yet one more time, keep very high watermark 4412 * here, this is only to catch a parallel oom killing, we must fail if 4413 * we're still under heavy pressure. But make sure that this reclaim 4414 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4415 * allocation which will never fail due to oom_lock already held. 4416 */ 4417 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4418 ~__GFP_DIRECT_RECLAIM, order, 4419 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4420 if (page) 4421 goto out; 4422 4423 /* Coredumps can quickly deplete all memory reserves */ 4424 if (current->flags & PF_DUMPCORE) 4425 goto out; 4426 /* The OOM killer will not help higher order allocs */ 4427 if (order > PAGE_ALLOC_COSTLY_ORDER) 4428 goto out; 4429 /* 4430 * We have already exhausted all our reclaim opportunities without any 4431 * success so it is time to admit defeat. We will skip the OOM killer 4432 * because it is very likely that the caller has a more reasonable 4433 * fallback than shooting a random task. 4434 * 4435 * The OOM killer may not free memory on a specific node. 4436 */ 4437 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4438 goto out; 4439 /* The OOM killer does not needlessly kill tasks for lowmem */ 4440 if (ac->highest_zoneidx < ZONE_NORMAL) 4441 goto out; 4442 if (pm_suspended_storage()) 4443 goto out; 4444 /* 4445 * XXX: GFP_NOFS allocations should rather fail than rely on 4446 * other request to make a forward progress. 4447 * We are in an unfortunate situation where out_of_memory cannot 4448 * do much for this context but let's try it to at least get 4449 * access to memory reserved if the current task is killed (see 4450 * out_of_memory). Once filesystems are ready to handle allocation 4451 * failures more gracefully we should just bail out here. 4452 */ 4453 4454 /* Exhausted what can be done so it's blame time */ 4455 if (out_of_memory(&oc) || 4456 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4457 *did_some_progress = 1; 4458 4459 /* 4460 * Help non-failing allocations by giving them access to memory 4461 * reserves 4462 */ 4463 if (gfp_mask & __GFP_NOFAIL) 4464 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4465 ALLOC_NO_WATERMARKS, ac); 4466 } 4467 out: 4468 mutex_unlock(&oom_lock); 4469 return page; 4470 } 4471 4472 /* 4473 * Maximum number of compaction retries with a progress before OOM 4474 * killer is consider as the only way to move forward. 4475 */ 4476 #define MAX_COMPACT_RETRIES 16 4477 4478 #ifdef CONFIG_COMPACTION 4479 /* Try memory compaction for high-order allocations before reclaim */ 4480 static struct page * 4481 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4482 unsigned int alloc_flags, const struct alloc_context *ac, 4483 enum compact_priority prio, enum compact_result *compact_result) 4484 { 4485 struct page *page = NULL; 4486 unsigned long pflags; 4487 unsigned int noreclaim_flag; 4488 4489 if (!order) 4490 return NULL; 4491 4492 psi_memstall_enter(&pflags); 4493 delayacct_compact_start(); 4494 noreclaim_flag = memalloc_noreclaim_save(); 4495 4496 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4497 prio, &page); 4498 4499 memalloc_noreclaim_restore(noreclaim_flag); 4500 psi_memstall_leave(&pflags); 4501 delayacct_compact_end(); 4502 4503 if (*compact_result == COMPACT_SKIPPED) 4504 return NULL; 4505 /* 4506 * At least in one zone compaction wasn't deferred or skipped, so let's 4507 * count a compaction stall 4508 */ 4509 count_vm_event(COMPACTSTALL); 4510 4511 /* Prep a captured page if available */ 4512 if (page) 4513 prep_new_page(page, order, gfp_mask, alloc_flags); 4514 4515 /* Try get a page from the freelist if available */ 4516 if (!page) 4517 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4518 4519 if (page) { 4520 struct zone *zone = page_zone(page); 4521 4522 zone->compact_blockskip_flush = false; 4523 compaction_defer_reset(zone, order, true); 4524 count_vm_event(COMPACTSUCCESS); 4525 return page; 4526 } 4527 4528 /* 4529 * It's bad if compaction run occurs and fails. The most likely reason 4530 * is that pages exist, but not enough to satisfy watermarks. 4531 */ 4532 count_vm_event(COMPACTFAIL); 4533 4534 cond_resched(); 4535 4536 return NULL; 4537 } 4538 4539 static inline bool 4540 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4541 enum compact_result compact_result, 4542 enum compact_priority *compact_priority, 4543 int *compaction_retries) 4544 { 4545 int max_retries = MAX_COMPACT_RETRIES; 4546 int min_priority; 4547 bool ret = false; 4548 int retries = *compaction_retries; 4549 enum compact_priority priority = *compact_priority; 4550 4551 if (!order) 4552 return false; 4553 4554 if (fatal_signal_pending(current)) 4555 return false; 4556 4557 if (compaction_made_progress(compact_result)) 4558 (*compaction_retries)++; 4559 4560 /* 4561 * compaction considers all the zone as desperately out of memory 4562 * so it doesn't really make much sense to retry except when the 4563 * failure could be caused by insufficient priority 4564 */ 4565 if (compaction_failed(compact_result)) 4566 goto check_priority; 4567 4568 /* 4569 * compaction was skipped because there are not enough order-0 pages 4570 * to work with, so we retry only if it looks like reclaim can help. 4571 */ 4572 if (compaction_needs_reclaim(compact_result)) { 4573 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4574 goto out; 4575 } 4576 4577 /* 4578 * make sure the compaction wasn't deferred or didn't bail out early 4579 * due to locks contention before we declare that we should give up. 4580 * But the next retry should use a higher priority if allowed, so 4581 * we don't just keep bailing out endlessly. 4582 */ 4583 if (compaction_withdrawn(compact_result)) { 4584 goto check_priority; 4585 } 4586 4587 /* 4588 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4589 * costly ones because they are de facto nofail and invoke OOM 4590 * killer to move on while costly can fail and users are ready 4591 * to cope with that. 1/4 retries is rather arbitrary but we 4592 * would need much more detailed feedback from compaction to 4593 * make a better decision. 4594 */ 4595 if (order > PAGE_ALLOC_COSTLY_ORDER) 4596 max_retries /= 4; 4597 if (*compaction_retries <= max_retries) { 4598 ret = true; 4599 goto out; 4600 } 4601 4602 /* 4603 * Make sure there are attempts at the highest priority if we exhausted 4604 * all retries or failed at the lower priorities. 4605 */ 4606 check_priority: 4607 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4608 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4609 4610 if (*compact_priority > min_priority) { 4611 (*compact_priority)--; 4612 *compaction_retries = 0; 4613 ret = true; 4614 } 4615 out: 4616 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4617 return ret; 4618 } 4619 #else 4620 static inline struct page * 4621 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4622 unsigned int alloc_flags, const struct alloc_context *ac, 4623 enum compact_priority prio, enum compact_result *compact_result) 4624 { 4625 *compact_result = COMPACT_SKIPPED; 4626 return NULL; 4627 } 4628 4629 static inline bool 4630 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4631 enum compact_result compact_result, 4632 enum compact_priority *compact_priority, 4633 int *compaction_retries) 4634 { 4635 struct zone *zone; 4636 struct zoneref *z; 4637 4638 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4639 return false; 4640 4641 /* 4642 * There are setups with compaction disabled which would prefer to loop 4643 * inside the allocator rather than hit the oom killer prematurely. 4644 * Let's give them a good hope and keep retrying while the order-0 4645 * watermarks are OK. 4646 */ 4647 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4648 ac->highest_zoneidx, ac->nodemask) { 4649 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4650 ac->highest_zoneidx, alloc_flags)) 4651 return true; 4652 } 4653 return false; 4654 } 4655 #endif /* CONFIG_COMPACTION */ 4656 4657 #ifdef CONFIG_LOCKDEP 4658 static struct lockdep_map __fs_reclaim_map = 4659 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4660 4661 static bool __need_reclaim(gfp_t gfp_mask) 4662 { 4663 /* no reclaim without waiting on it */ 4664 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4665 return false; 4666 4667 /* this guy won't enter reclaim */ 4668 if (current->flags & PF_MEMALLOC) 4669 return false; 4670 4671 if (gfp_mask & __GFP_NOLOCKDEP) 4672 return false; 4673 4674 return true; 4675 } 4676 4677 void __fs_reclaim_acquire(unsigned long ip) 4678 { 4679 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4680 } 4681 4682 void __fs_reclaim_release(unsigned long ip) 4683 { 4684 lock_release(&__fs_reclaim_map, ip); 4685 } 4686 4687 void fs_reclaim_acquire(gfp_t gfp_mask) 4688 { 4689 gfp_mask = current_gfp_context(gfp_mask); 4690 4691 if (__need_reclaim(gfp_mask)) { 4692 if (gfp_mask & __GFP_FS) 4693 __fs_reclaim_acquire(_RET_IP_); 4694 4695 #ifdef CONFIG_MMU_NOTIFIER 4696 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4697 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4698 #endif 4699 4700 } 4701 } 4702 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4703 4704 void fs_reclaim_release(gfp_t gfp_mask) 4705 { 4706 gfp_mask = current_gfp_context(gfp_mask); 4707 4708 if (__need_reclaim(gfp_mask)) { 4709 if (gfp_mask & __GFP_FS) 4710 __fs_reclaim_release(_RET_IP_); 4711 } 4712 } 4713 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4714 #endif 4715 4716 /* 4717 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4718 * have been rebuilt so allocation retries. Reader side does not lock and 4719 * retries the allocation if zonelist changes. Writer side is protected by the 4720 * embedded spin_lock. 4721 */ 4722 static DEFINE_SEQLOCK(zonelist_update_seq); 4723 4724 static unsigned int zonelist_iter_begin(void) 4725 { 4726 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4727 return read_seqbegin(&zonelist_update_seq); 4728 4729 return 0; 4730 } 4731 4732 static unsigned int check_retry_zonelist(unsigned int seq) 4733 { 4734 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4735 return read_seqretry(&zonelist_update_seq, seq); 4736 4737 return seq; 4738 } 4739 4740 /* Perform direct synchronous page reclaim */ 4741 static unsigned long 4742 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4743 const struct alloc_context *ac) 4744 { 4745 unsigned int noreclaim_flag; 4746 unsigned long progress; 4747 4748 cond_resched(); 4749 4750 /* We now go into synchronous reclaim */ 4751 cpuset_memory_pressure_bump(); 4752 fs_reclaim_acquire(gfp_mask); 4753 noreclaim_flag = memalloc_noreclaim_save(); 4754 4755 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4756 ac->nodemask); 4757 4758 memalloc_noreclaim_restore(noreclaim_flag); 4759 fs_reclaim_release(gfp_mask); 4760 4761 cond_resched(); 4762 4763 return progress; 4764 } 4765 4766 /* The really slow allocator path where we enter direct reclaim */ 4767 static inline struct page * 4768 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4769 unsigned int alloc_flags, const struct alloc_context *ac, 4770 unsigned long *did_some_progress) 4771 { 4772 struct page *page = NULL; 4773 unsigned long pflags; 4774 bool drained = false; 4775 4776 psi_memstall_enter(&pflags); 4777 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4778 if (unlikely(!(*did_some_progress))) 4779 goto out; 4780 4781 retry: 4782 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4783 4784 /* 4785 * If an allocation failed after direct reclaim, it could be because 4786 * pages are pinned on the per-cpu lists or in high alloc reserves. 4787 * Shrink them and try again 4788 */ 4789 if (!page && !drained) { 4790 unreserve_highatomic_pageblock(ac, false); 4791 drain_all_pages(NULL); 4792 drained = true; 4793 goto retry; 4794 } 4795 out: 4796 psi_memstall_leave(&pflags); 4797 4798 return page; 4799 } 4800 4801 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4802 const struct alloc_context *ac) 4803 { 4804 struct zoneref *z; 4805 struct zone *zone; 4806 pg_data_t *last_pgdat = NULL; 4807 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4808 4809 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4810 ac->nodemask) { 4811 if (!managed_zone(zone)) 4812 continue; 4813 if (last_pgdat != zone->zone_pgdat) { 4814 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4815 last_pgdat = zone->zone_pgdat; 4816 } 4817 } 4818 } 4819 4820 static inline unsigned int 4821 gfp_to_alloc_flags(gfp_t gfp_mask) 4822 { 4823 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4824 4825 /* 4826 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4827 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4828 * to save two branches. 4829 */ 4830 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4831 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4832 4833 /* 4834 * The caller may dip into page reserves a bit more if the caller 4835 * cannot run direct reclaim, or if the caller has realtime scheduling 4836 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4837 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4838 */ 4839 alloc_flags |= (__force int) 4840 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4841 4842 if (gfp_mask & __GFP_ATOMIC) { 4843 /* 4844 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4845 * if it can't schedule. 4846 */ 4847 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4848 alloc_flags |= ALLOC_HARDER; 4849 /* 4850 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4851 * comment for __cpuset_node_allowed(). 4852 */ 4853 alloc_flags &= ~ALLOC_CPUSET; 4854 } else if (unlikely(rt_task(current)) && in_task()) 4855 alloc_flags |= ALLOC_HARDER; 4856 4857 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4858 4859 return alloc_flags; 4860 } 4861 4862 static bool oom_reserves_allowed(struct task_struct *tsk) 4863 { 4864 if (!tsk_is_oom_victim(tsk)) 4865 return false; 4866 4867 /* 4868 * !MMU doesn't have oom reaper so give access to memory reserves 4869 * only to the thread with TIF_MEMDIE set 4870 */ 4871 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4872 return false; 4873 4874 return true; 4875 } 4876 4877 /* 4878 * Distinguish requests which really need access to full memory 4879 * reserves from oom victims which can live with a portion of it 4880 */ 4881 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4882 { 4883 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4884 return 0; 4885 if (gfp_mask & __GFP_MEMALLOC) 4886 return ALLOC_NO_WATERMARKS; 4887 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4888 return ALLOC_NO_WATERMARKS; 4889 if (!in_interrupt()) { 4890 if (current->flags & PF_MEMALLOC) 4891 return ALLOC_NO_WATERMARKS; 4892 else if (oom_reserves_allowed(current)) 4893 return ALLOC_OOM; 4894 } 4895 4896 return 0; 4897 } 4898 4899 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4900 { 4901 return !!__gfp_pfmemalloc_flags(gfp_mask); 4902 } 4903 4904 /* 4905 * Checks whether it makes sense to retry the reclaim to make a forward progress 4906 * for the given allocation request. 4907 * 4908 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4909 * without success, or when we couldn't even meet the watermark if we 4910 * reclaimed all remaining pages on the LRU lists. 4911 * 4912 * Returns true if a retry is viable or false to enter the oom path. 4913 */ 4914 static inline bool 4915 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4916 struct alloc_context *ac, int alloc_flags, 4917 bool did_some_progress, int *no_progress_loops) 4918 { 4919 struct zone *zone; 4920 struct zoneref *z; 4921 bool ret = false; 4922 4923 /* 4924 * Costly allocations might have made a progress but this doesn't mean 4925 * their order will become available due to high fragmentation so 4926 * always increment the no progress counter for them 4927 */ 4928 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4929 *no_progress_loops = 0; 4930 else 4931 (*no_progress_loops)++; 4932 4933 /* 4934 * Make sure we converge to OOM if we cannot make any progress 4935 * several times in the row. 4936 */ 4937 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4938 /* Before OOM, exhaust highatomic_reserve */ 4939 return unreserve_highatomic_pageblock(ac, true); 4940 } 4941 4942 /* 4943 * Keep reclaiming pages while there is a chance this will lead 4944 * somewhere. If none of the target zones can satisfy our allocation 4945 * request even if all reclaimable pages are considered then we are 4946 * screwed and have to go OOM. 4947 */ 4948 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4949 ac->highest_zoneidx, ac->nodemask) { 4950 unsigned long available; 4951 unsigned long reclaimable; 4952 unsigned long min_wmark = min_wmark_pages(zone); 4953 bool wmark; 4954 4955 available = reclaimable = zone_reclaimable_pages(zone); 4956 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4957 4958 /* 4959 * Would the allocation succeed if we reclaimed all 4960 * reclaimable pages? 4961 */ 4962 wmark = __zone_watermark_ok(zone, order, min_wmark, 4963 ac->highest_zoneidx, alloc_flags, available); 4964 trace_reclaim_retry_zone(z, order, reclaimable, 4965 available, min_wmark, *no_progress_loops, wmark); 4966 if (wmark) { 4967 ret = true; 4968 break; 4969 } 4970 } 4971 4972 /* 4973 * Memory allocation/reclaim might be called from a WQ context and the 4974 * current implementation of the WQ concurrency control doesn't 4975 * recognize that a particular WQ is congested if the worker thread is 4976 * looping without ever sleeping. Therefore we have to do a short sleep 4977 * here rather than calling cond_resched(). 4978 */ 4979 if (current->flags & PF_WQ_WORKER) 4980 schedule_timeout_uninterruptible(1); 4981 else 4982 cond_resched(); 4983 return ret; 4984 } 4985 4986 static inline bool 4987 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4988 { 4989 /* 4990 * It's possible that cpuset's mems_allowed and the nodemask from 4991 * mempolicy don't intersect. This should be normally dealt with by 4992 * policy_nodemask(), but it's possible to race with cpuset update in 4993 * such a way the check therein was true, and then it became false 4994 * before we got our cpuset_mems_cookie here. 4995 * This assumes that for all allocations, ac->nodemask can come only 4996 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4997 * when it does not intersect with the cpuset restrictions) or the 4998 * caller can deal with a violated nodemask. 4999 */ 5000 if (cpusets_enabled() && ac->nodemask && 5001 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 5002 ac->nodemask = NULL; 5003 return true; 5004 } 5005 5006 /* 5007 * When updating a task's mems_allowed or mempolicy nodemask, it is 5008 * possible to race with parallel threads in such a way that our 5009 * allocation can fail while the mask is being updated. If we are about 5010 * to fail, check if the cpuset changed during allocation and if so, 5011 * retry. 5012 */ 5013 if (read_mems_allowed_retry(cpuset_mems_cookie)) 5014 return true; 5015 5016 return false; 5017 } 5018 5019 static inline struct page * 5020 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 5021 struct alloc_context *ac) 5022 { 5023 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 5024 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 5025 struct page *page = NULL; 5026 unsigned int alloc_flags; 5027 unsigned long did_some_progress; 5028 enum compact_priority compact_priority; 5029 enum compact_result compact_result; 5030 int compaction_retries; 5031 int no_progress_loops; 5032 unsigned int cpuset_mems_cookie; 5033 unsigned int zonelist_iter_cookie; 5034 int reserve_flags; 5035 5036 /* 5037 * We also sanity check to catch abuse of atomic reserves being used by 5038 * callers that are not in atomic context. 5039 */ 5040 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 5041 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 5042 gfp_mask &= ~__GFP_ATOMIC; 5043 5044 restart: 5045 compaction_retries = 0; 5046 no_progress_loops = 0; 5047 compact_priority = DEF_COMPACT_PRIORITY; 5048 cpuset_mems_cookie = read_mems_allowed_begin(); 5049 zonelist_iter_cookie = zonelist_iter_begin(); 5050 5051 /* 5052 * The fast path uses conservative alloc_flags to succeed only until 5053 * kswapd needs to be woken up, and to avoid the cost of setting up 5054 * alloc_flags precisely. So we do that now. 5055 */ 5056 alloc_flags = gfp_to_alloc_flags(gfp_mask); 5057 5058 /* 5059 * We need to recalculate the starting point for the zonelist iterator 5060 * because we might have used different nodemask in the fast path, or 5061 * there was a cpuset modification and we are retrying - otherwise we 5062 * could end up iterating over non-eligible zones endlessly. 5063 */ 5064 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5065 ac->highest_zoneidx, ac->nodemask); 5066 if (!ac->preferred_zoneref->zone) 5067 goto nopage; 5068 5069 /* 5070 * Check for insane configurations where the cpuset doesn't contain 5071 * any suitable zone to satisfy the request - e.g. non-movable 5072 * GFP_HIGHUSER allocations from MOVABLE nodes only. 5073 */ 5074 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 5075 struct zoneref *z = first_zones_zonelist(ac->zonelist, 5076 ac->highest_zoneidx, 5077 &cpuset_current_mems_allowed); 5078 if (!z->zone) 5079 goto nopage; 5080 } 5081 5082 if (alloc_flags & ALLOC_KSWAPD) 5083 wake_all_kswapds(order, gfp_mask, ac); 5084 5085 /* 5086 * The adjusted alloc_flags might result in immediate success, so try 5087 * that first 5088 */ 5089 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5090 if (page) 5091 goto got_pg; 5092 5093 /* 5094 * For costly allocations, try direct compaction first, as it's likely 5095 * that we have enough base pages and don't need to reclaim. For non- 5096 * movable high-order allocations, do that as well, as compaction will 5097 * try prevent permanent fragmentation by migrating from blocks of the 5098 * same migratetype. 5099 * Don't try this for allocations that are allowed to ignore 5100 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 5101 */ 5102 if (can_direct_reclaim && 5103 (costly_order || 5104 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 5105 && !gfp_pfmemalloc_allowed(gfp_mask)) { 5106 page = __alloc_pages_direct_compact(gfp_mask, order, 5107 alloc_flags, ac, 5108 INIT_COMPACT_PRIORITY, 5109 &compact_result); 5110 if (page) 5111 goto got_pg; 5112 5113 /* 5114 * Checks for costly allocations with __GFP_NORETRY, which 5115 * includes some THP page fault allocations 5116 */ 5117 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 5118 /* 5119 * If allocating entire pageblock(s) and compaction 5120 * failed because all zones are below low watermarks 5121 * or is prohibited because it recently failed at this 5122 * order, fail immediately unless the allocator has 5123 * requested compaction and reclaim retry. 5124 * 5125 * Reclaim is 5126 * - potentially very expensive because zones are far 5127 * below their low watermarks or this is part of very 5128 * bursty high order allocations, 5129 * - not guaranteed to help because isolate_freepages() 5130 * may not iterate over freed pages as part of its 5131 * linear scan, and 5132 * - unlikely to make entire pageblocks free on its 5133 * own. 5134 */ 5135 if (compact_result == COMPACT_SKIPPED || 5136 compact_result == COMPACT_DEFERRED) 5137 goto nopage; 5138 5139 /* 5140 * Looks like reclaim/compaction is worth trying, but 5141 * sync compaction could be very expensive, so keep 5142 * using async compaction. 5143 */ 5144 compact_priority = INIT_COMPACT_PRIORITY; 5145 } 5146 } 5147 5148 retry: 5149 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5150 if (alloc_flags & ALLOC_KSWAPD) 5151 wake_all_kswapds(order, gfp_mask, ac); 5152 5153 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5154 if (reserve_flags) 5155 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 5156 5157 /* 5158 * Reset the nodemask and zonelist iterators if memory policies can be 5159 * ignored. These allocations are high priority and system rather than 5160 * user oriented. 5161 */ 5162 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5163 ac->nodemask = NULL; 5164 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5165 ac->highest_zoneidx, ac->nodemask); 5166 } 5167 5168 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5169 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5170 if (page) 5171 goto got_pg; 5172 5173 /* Caller is not willing to reclaim, we can't balance anything */ 5174 if (!can_direct_reclaim) 5175 goto nopage; 5176 5177 /* Avoid recursion of direct reclaim */ 5178 if (current->flags & PF_MEMALLOC) 5179 goto nopage; 5180 5181 /* Try direct reclaim and then allocating */ 5182 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5183 &did_some_progress); 5184 if (page) 5185 goto got_pg; 5186 5187 /* Try direct compaction and then allocating */ 5188 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5189 compact_priority, &compact_result); 5190 if (page) 5191 goto got_pg; 5192 5193 /* Do not loop if specifically requested */ 5194 if (gfp_mask & __GFP_NORETRY) 5195 goto nopage; 5196 5197 /* 5198 * Do not retry costly high order allocations unless they are 5199 * __GFP_RETRY_MAYFAIL 5200 */ 5201 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5202 goto nopage; 5203 5204 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5205 did_some_progress > 0, &no_progress_loops)) 5206 goto retry; 5207 5208 /* 5209 * It doesn't make any sense to retry for the compaction if the order-0 5210 * reclaim is not able to make any progress because the current 5211 * implementation of the compaction depends on the sufficient amount 5212 * of free memory (see __compaction_suitable) 5213 */ 5214 if (did_some_progress > 0 && 5215 should_compact_retry(ac, order, alloc_flags, 5216 compact_result, &compact_priority, 5217 &compaction_retries)) 5218 goto retry; 5219 5220 5221 /* 5222 * Deal with possible cpuset update races or zonelist updates to avoid 5223 * a unnecessary OOM kill. 5224 */ 5225 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5226 check_retry_zonelist(zonelist_iter_cookie)) 5227 goto restart; 5228 5229 /* Reclaim has failed us, start killing things */ 5230 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5231 if (page) 5232 goto got_pg; 5233 5234 /* Avoid allocations with no watermarks from looping endlessly */ 5235 if (tsk_is_oom_victim(current) && 5236 (alloc_flags & ALLOC_OOM || 5237 (gfp_mask & __GFP_NOMEMALLOC))) 5238 goto nopage; 5239 5240 /* Retry as long as the OOM killer is making progress */ 5241 if (did_some_progress) { 5242 no_progress_loops = 0; 5243 goto retry; 5244 } 5245 5246 nopage: 5247 /* 5248 * Deal with possible cpuset update races or zonelist updates to avoid 5249 * a unnecessary OOM kill. 5250 */ 5251 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5252 check_retry_zonelist(zonelist_iter_cookie)) 5253 goto restart; 5254 5255 /* 5256 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5257 * we always retry 5258 */ 5259 if (gfp_mask & __GFP_NOFAIL) { 5260 /* 5261 * All existing users of the __GFP_NOFAIL are blockable, so warn 5262 * of any new users that actually require GFP_NOWAIT 5263 */ 5264 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5265 goto fail; 5266 5267 /* 5268 * PF_MEMALLOC request from this context is rather bizarre 5269 * because we cannot reclaim anything and only can loop waiting 5270 * for somebody to do a work for us 5271 */ 5272 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5273 5274 /* 5275 * non failing costly orders are a hard requirement which we 5276 * are not prepared for much so let's warn about these users 5277 * so that we can identify them and convert them to something 5278 * else. 5279 */ 5280 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask); 5281 5282 /* 5283 * Help non-failing allocations by giving them access to memory 5284 * reserves but do not use ALLOC_NO_WATERMARKS because this 5285 * could deplete whole memory reserves which would just make 5286 * the situation worse 5287 */ 5288 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5289 if (page) 5290 goto got_pg; 5291 5292 cond_resched(); 5293 goto retry; 5294 } 5295 fail: 5296 warn_alloc(gfp_mask, ac->nodemask, 5297 "page allocation failure: order:%u", order); 5298 got_pg: 5299 return page; 5300 } 5301 5302 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5303 int preferred_nid, nodemask_t *nodemask, 5304 struct alloc_context *ac, gfp_t *alloc_gfp, 5305 unsigned int *alloc_flags) 5306 { 5307 ac->highest_zoneidx = gfp_zone(gfp_mask); 5308 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5309 ac->nodemask = nodemask; 5310 ac->migratetype = gfp_migratetype(gfp_mask); 5311 5312 if (cpusets_enabled()) { 5313 *alloc_gfp |= __GFP_HARDWALL; 5314 /* 5315 * When we are in the interrupt context, it is irrelevant 5316 * to the current task context. It means that any node ok. 5317 */ 5318 if (in_task() && !ac->nodemask) 5319 ac->nodemask = &cpuset_current_mems_allowed; 5320 else 5321 *alloc_flags |= ALLOC_CPUSET; 5322 } 5323 5324 might_alloc(gfp_mask); 5325 5326 if (should_fail_alloc_page(gfp_mask, order)) 5327 return false; 5328 5329 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5330 5331 /* Dirty zone balancing only done in the fast path */ 5332 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5333 5334 /* 5335 * The preferred zone is used for statistics but crucially it is 5336 * also used as the starting point for the zonelist iterator. It 5337 * may get reset for allocations that ignore memory policies. 5338 */ 5339 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5340 ac->highest_zoneidx, ac->nodemask); 5341 5342 return true; 5343 } 5344 5345 /* 5346 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5347 * @gfp: GFP flags for the allocation 5348 * @preferred_nid: The preferred NUMA node ID to allocate from 5349 * @nodemask: Set of nodes to allocate from, may be NULL 5350 * @nr_pages: The number of pages desired on the list or array 5351 * @page_list: Optional list to store the allocated pages 5352 * @page_array: Optional array to store the pages 5353 * 5354 * This is a batched version of the page allocator that attempts to 5355 * allocate nr_pages quickly. Pages are added to page_list if page_list 5356 * is not NULL, otherwise it is assumed that the page_array is valid. 5357 * 5358 * For lists, nr_pages is the number of pages that should be allocated. 5359 * 5360 * For arrays, only NULL elements are populated with pages and nr_pages 5361 * is the maximum number of pages that will be stored in the array. 5362 * 5363 * Returns the number of pages on the list or array. 5364 */ 5365 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5366 nodemask_t *nodemask, int nr_pages, 5367 struct list_head *page_list, 5368 struct page **page_array) 5369 { 5370 struct page *page; 5371 unsigned long flags; 5372 unsigned long __maybe_unused UP_flags; 5373 struct zone *zone; 5374 struct zoneref *z; 5375 struct per_cpu_pages *pcp; 5376 struct list_head *pcp_list; 5377 struct alloc_context ac; 5378 gfp_t alloc_gfp; 5379 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5380 int nr_populated = 0, nr_account = 0; 5381 5382 /* 5383 * Skip populated array elements to determine if any pages need 5384 * to be allocated before disabling IRQs. 5385 */ 5386 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5387 nr_populated++; 5388 5389 /* No pages requested? */ 5390 if (unlikely(nr_pages <= 0)) 5391 goto out; 5392 5393 /* Already populated array? */ 5394 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5395 goto out; 5396 5397 /* Bulk allocator does not support memcg accounting. */ 5398 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5399 goto failed; 5400 5401 /* Use the single page allocator for one page. */ 5402 if (nr_pages - nr_populated == 1) 5403 goto failed; 5404 5405 #ifdef CONFIG_PAGE_OWNER 5406 /* 5407 * PAGE_OWNER may recurse into the allocator to allocate space to 5408 * save the stack with pagesets.lock held. Releasing/reacquiring 5409 * removes much of the performance benefit of bulk allocation so 5410 * force the caller to allocate one page at a time as it'll have 5411 * similar performance to added complexity to the bulk allocator. 5412 */ 5413 if (static_branch_unlikely(&page_owner_inited)) 5414 goto failed; 5415 #endif 5416 5417 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5418 gfp &= gfp_allowed_mask; 5419 alloc_gfp = gfp; 5420 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5421 goto out; 5422 gfp = alloc_gfp; 5423 5424 /* Find an allowed local zone that meets the low watermark. */ 5425 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5426 unsigned long mark; 5427 5428 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5429 !__cpuset_zone_allowed(zone, gfp)) { 5430 continue; 5431 } 5432 5433 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5434 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5435 goto failed; 5436 } 5437 5438 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5439 if (zone_watermark_fast(zone, 0, mark, 5440 zonelist_zone_idx(ac.preferred_zoneref), 5441 alloc_flags, gfp)) { 5442 break; 5443 } 5444 } 5445 5446 /* 5447 * If there are no allowed local zones that meets the watermarks then 5448 * try to allocate a single page and reclaim if necessary. 5449 */ 5450 if (unlikely(!zone)) 5451 goto failed; 5452 5453 /* Is a parallel drain in progress? */ 5454 pcp_trylock_prepare(UP_flags); 5455 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 5456 if (!pcp) 5457 goto failed_irq; 5458 5459 /* Attempt the batch allocation */ 5460 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5461 while (nr_populated < nr_pages) { 5462 5463 /* Skip existing pages */ 5464 if (page_array && page_array[nr_populated]) { 5465 nr_populated++; 5466 continue; 5467 } 5468 5469 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5470 pcp, pcp_list); 5471 if (unlikely(!page)) { 5472 /* Try and allocate at least one page */ 5473 if (!nr_account) { 5474 pcp_spin_unlock_irqrestore(pcp, flags); 5475 goto failed_irq; 5476 } 5477 break; 5478 } 5479 nr_account++; 5480 5481 prep_new_page(page, 0, gfp, 0); 5482 if (page_list) 5483 list_add(&page->lru, page_list); 5484 else 5485 page_array[nr_populated] = page; 5486 nr_populated++; 5487 } 5488 5489 pcp_spin_unlock_irqrestore(pcp, flags); 5490 pcp_trylock_finish(UP_flags); 5491 5492 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5493 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5494 5495 out: 5496 return nr_populated; 5497 5498 failed_irq: 5499 pcp_trylock_finish(UP_flags); 5500 5501 failed: 5502 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5503 if (page) { 5504 if (page_list) 5505 list_add(&page->lru, page_list); 5506 else 5507 page_array[nr_populated] = page; 5508 nr_populated++; 5509 } 5510 5511 goto out; 5512 } 5513 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5514 5515 /* 5516 * This is the 'heart' of the zoned buddy allocator. 5517 */ 5518 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5519 nodemask_t *nodemask) 5520 { 5521 struct page *page; 5522 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5523 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5524 struct alloc_context ac = { }; 5525 5526 /* 5527 * There are several places where we assume that the order value is sane 5528 * so bail out early if the request is out of bound. 5529 */ 5530 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5531 return NULL; 5532 5533 gfp &= gfp_allowed_mask; 5534 /* 5535 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5536 * resp. GFP_NOIO which has to be inherited for all allocation requests 5537 * from a particular context which has been marked by 5538 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5539 * movable zones are not used during allocation. 5540 */ 5541 gfp = current_gfp_context(gfp); 5542 alloc_gfp = gfp; 5543 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5544 &alloc_gfp, &alloc_flags)) 5545 return NULL; 5546 5547 /* 5548 * Forbid the first pass from falling back to types that fragment 5549 * memory until all local zones are considered. 5550 */ 5551 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5552 5553 /* First allocation attempt */ 5554 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5555 if (likely(page)) 5556 goto out; 5557 5558 alloc_gfp = gfp; 5559 ac.spread_dirty_pages = false; 5560 5561 /* 5562 * Restore the original nodemask if it was potentially replaced with 5563 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5564 */ 5565 ac.nodemask = nodemask; 5566 5567 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5568 5569 out: 5570 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5571 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5572 __free_pages(page, order); 5573 page = NULL; 5574 } 5575 5576 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5577 kmsan_alloc_page(page, order, alloc_gfp); 5578 5579 return page; 5580 } 5581 EXPORT_SYMBOL(__alloc_pages); 5582 5583 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5584 nodemask_t *nodemask) 5585 { 5586 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5587 preferred_nid, nodemask); 5588 5589 if (page && order > 1) 5590 prep_transhuge_page(page); 5591 return (struct folio *)page; 5592 } 5593 EXPORT_SYMBOL(__folio_alloc); 5594 5595 /* 5596 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5597 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5598 * you need to access high mem. 5599 */ 5600 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5601 { 5602 struct page *page; 5603 5604 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5605 if (!page) 5606 return 0; 5607 return (unsigned long) page_address(page); 5608 } 5609 EXPORT_SYMBOL(__get_free_pages); 5610 5611 unsigned long get_zeroed_page(gfp_t gfp_mask) 5612 { 5613 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5614 } 5615 EXPORT_SYMBOL(get_zeroed_page); 5616 5617 /** 5618 * __free_pages - Free pages allocated with alloc_pages(). 5619 * @page: The page pointer returned from alloc_pages(). 5620 * @order: The order of the allocation. 5621 * 5622 * This function can free multi-page allocations that are not compound 5623 * pages. It does not check that the @order passed in matches that of 5624 * the allocation, so it is easy to leak memory. Freeing more memory 5625 * than was allocated will probably emit a warning. 5626 * 5627 * If the last reference to this page is speculative, it will be released 5628 * by put_page() which only frees the first page of a non-compound 5629 * allocation. To prevent the remaining pages from being leaked, we free 5630 * the subsequent pages here. If you want to use the page's reference 5631 * count to decide when to free the allocation, you should allocate a 5632 * compound page, and use put_page() instead of __free_pages(). 5633 * 5634 * Context: May be called in interrupt context or while holding a normal 5635 * spinlock, but not in NMI context or while holding a raw spinlock. 5636 */ 5637 void __free_pages(struct page *page, unsigned int order) 5638 { 5639 if (put_page_testzero(page)) 5640 free_the_page(page, order); 5641 else if (!PageHead(page)) 5642 while (order-- > 0) 5643 free_the_page(page + (1 << order), order); 5644 } 5645 EXPORT_SYMBOL(__free_pages); 5646 5647 void free_pages(unsigned long addr, unsigned int order) 5648 { 5649 if (addr != 0) { 5650 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5651 __free_pages(virt_to_page((void *)addr), order); 5652 } 5653 } 5654 5655 EXPORT_SYMBOL(free_pages); 5656 5657 /* 5658 * Page Fragment: 5659 * An arbitrary-length arbitrary-offset area of memory which resides 5660 * within a 0 or higher order page. Multiple fragments within that page 5661 * are individually refcounted, in the page's reference counter. 5662 * 5663 * The page_frag functions below provide a simple allocation framework for 5664 * page fragments. This is used by the network stack and network device 5665 * drivers to provide a backing region of memory for use as either an 5666 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5667 */ 5668 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5669 gfp_t gfp_mask) 5670 { 5671 struct page *page = NULL; 5672 gfp_t gfp = gfp_mask; 5673 5674 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5675 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5676 __GFP_NOMEMALLOC; 5677 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5678 PAGE_FRAG_CACHE_MAX_ORDER); 5679 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5680 #endif 5681 if (unlikely(!page)) 5682 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5683 5684 nc->va = page ? page_address(page) : NULL; 5685 5686 return page; 5687 } 5688 5689 void __page_frag_cache_drain(struct page *page, unsigned int count) 5690 { 5691 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5692 5693 if (page_ref_sub_and_test(page, count)) 5694 free_the_page(page, compound_order(page)); 5695 } 5696 EXPORT_SYMBOL(__page_frag_cache_drain); 5697 5698 void *page_frag_alloc_align(struct page_frag_cache *nc, 5699 unsigned int fragsz, gfp_t gfp_mask, 5700 unsigned int align_mask) 5701 { 5702 unsigned int size = PAGE_SIZE; 5703 struct page *page; 5704 int offset; 5705 5706 if (unlikely(!nc->va)) { 5707 refill: 5708 page = __page_frag_cache_refill(nc, gfp_mask); 5709 if (!page) 5710 return NULL; 5711 5712 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5713 /* if size can vary use size else just use PAGE_SIZE */ 5714 size = nc->size; 5715 #endif 5716 /* Even if we own the page, we do not use atomic_set(). 5717 * This would break get_page_unless_zero() users. 5718 */ 5719 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5720 5721 /* reset page count bias and offset to start of new frag */ 5722 nc->pfmemalloc = page_is_pfmemalloc(page); 5723 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5724 nc->offset = size; 5725 } 5726 5727 offset = nc->offset - fragsz; 5728 if (unlikely(offset < 0)) { 5729 page = virt_to_page(nc->va); 5730 5731 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5732 goto refill; 5733 5734 if (unlikely(nc->pfmemalloc)) { 5735 free_the_page(page, compound_order(page)); 5736 goto refill; 5737 } 5738 5739 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5740 /* if size can vary use size else just use PAGE_SIZE */ 5741 size = nc->size; 5742 #endif 5743 /* OK, page count is 0, we can safely set it */ 5744 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5745 5746 /* reset page count bias and offset to start of new frag */ 5747 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5748 offset = size - fragsz; 5749 if (unlikely(offset < 0)) { 5750 /* 5751 * The caller is trying to allocate a fragment 5752 * with fragsz > PAGE_SIZE but the cache isn't big 5753 * enough to satisfy the request, this may 5754 * happen in low memory conditions. 5755 * We don't release the cache page because 5756 * it could make memory pressure worse 5757 * so we simply return NULL here. 5758 */ 5759 return NULL; 5760 } 5761 } 5762 5763 nc->pagecnt_bias--; 5764 offset &= align_mask; 5765 nc->offset = offset; 5766 5767 return nc->va + offset; 5768 } 5769 EXPORT_SYMBOL(page_frag_alloc_align); 5770 5771 /* 5772 * Frees a page fragment allocated out of either a compound or order 0 page. 5773 */ 5774 void page_frag_free(void *addr) 5775 { 5776 struct page *page = virt_to_head_page(addr); 5777 5778 if (unlikely(put_page_testzero(page))) 5779 free_the_page(page, compound_order(page)); 5780 } 5781 EXPORT_SYMBOL(page_frag_free); 5782 5783 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5784 size_t size) 5785 { 5786 if (addr) { 5787 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5788 unsigned long used = addr + PAGE_ALIGN(size); 5789 5790 split_page(virt_to_page((void *)addr), order); 5791 while (used < alloc_end) { 5792 free_page(used); 5793 used += PAGE_SIZE; 5794 } 5795 } 5796 return (void *)addr; 5797 } 5798 5799 /** 5800 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5801 * @size: the number of bytes to allocate 5802 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5803 * 5804 * This function is similar to alloc_pages(), except that it allocates the 5805 * minimum number of pages to satisfy the request. alloc_pages() can only 5806 * allocate memory in power-of-two pages. 5807 * 5808 * This function is also limited by MAX_ORDER. 5809 * 5810 * Memory allocated by this function must be released by free_pages_exact(). 5811 * 5812 * Return: pointer to the allocated area or %NULL in case of error. 5813 */ 5814 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5815 { 5816 unsigned int order = get_order(size); 5817 unsigned long addr; 5818 5819 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5820 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5821 5822 addr = __get_free_pages(gfp_mask, order); 5823 return make_alloc_exact(addr, order, size); 5824 } 5825 EXPORT_SYMBOL(alloc_pages_exact); 5826 5827 /** 5828 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5829 * pages on a node. 5830 * @nid: the preferred node ID where memory should be allocated 5831 * @size: the number of bytes to allocate 5832 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5833 * 5834 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5835 * back. 5836 * 5837 * Return: pointer to the allocated area or %NULL in case of error. 5838 */ 5839 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5840 { 5841 unsigned int order = get_order(size); 5842 struct page *p; 5843 5844 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5845 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5846 5847 p = alloc_pages_node(nid, gfp_mask, order); 5848 if (!p) 5849 return NULL; 5850 return make_alloc_exact((unsigned long)page_address(p), order, size); 5851 } 5852 5853 /** 5854 * free_pages_exact - release memory allocated via alloc_pages_exact() 5855 * @virt: the value returned by alloc_pages_exact. 5856 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5857 * 5858 * Release the memory allocated by a previous call to alloc_pages_exact. 5859 */ 5860 void free_pages_exact(void *virt, size_t size) 5861 { 5862 unsigned long addr = (unsigned long)virt; 5863 unsigned long end = addr + PAGE_ALIGN(size); 5864 5865 while (addr < end) { 5866 free_page(addr); 5867 addr += PAGE_SIZE; 5868 } 5869 } 5870 EXPORT_SYMBOL(free_pages_exact); 5871 5872 /** 5873 * nr_free_zone_pages - count number of pages beyond high watermark 5874 * @offset: The zone index of the highest zone 5875 * 5876 * nr_free_zone_pages() counts the number of pages which are beyond the 5877 * high watermark within all zones at or below a given zone index. For each 5878 * zone, the number of pages is calculated as: 5879 * 5880 * nr_free_zone_pages = managed_pages - high_pages 5881 * 5882 * Return: number of pages beyond high watermark. 5883 */ 5884 static unsigned long nr_free_zone_pages(int offset) 5885 { 5886 struct zoneref *z; 5887 struct zone *zone; 5888 5889 /* Just pick one node, since fallback list is circular */ 5890 unsigned long sum = 0; 5891 5892 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5893 5894 for_each_zone_zonelist(zone, z, zonelist, offset) { 5895 unsigned long size = zone_managed_pages(zone); 5896 unsigned long high = high_wmark_pages(zone); 5897 if (size > high) 5898 sum += size - high; 5899 } 5900 5901 return sum; 5902 } 5903 5904 /** 5905 * nr_free_buffer_pages - count number of pages beyond high watermark 5906 * 5907 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5908 * watermark within ZONE_DMA and ZONE_NORMAL. 5909 * 5910 * Return: number of pages beyond high watermark within ZONE_DMA and 5911 * ZONE_NORMAL. 5912 */ 5913 unsigned long nr_free_buffer_pages(void) 5914 { 5915 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5916 } 5917 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5918 5919 static inline void show_node(struct zone *zone) 5920 { 5921 if (IS_ENABLED(CONFIG_NUMA)) 5922 printk("Node %d ", zone_to_nid(zone)); 5923 } 5924 5925 long si_mem_available(void) 5926 { 5927 long available; 5928 unsigned long pagecache; 5929 unsigned long wmark_low = 0; 5930 unsigned long pages[NR_LRU_LISTS]; 5931 unsigned long reclaimable; 5932 struct zone *zone; 5933 int lru; 5934 5935 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5936 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5937 5938 for_each_zone(zone) 5939 wmark_low += low_wmark_pages(zone); 5940 5941 /* 5942 * Estimate the amount of memory available for userspace allocations, 5943 * without causing swapping or OOM. 5944 */ 5945 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5946 5947 /* 5948 * Not all the page cache can be freed, otherwise the system will 5949 * start swapping or thrashing. Assume at least half of the page 5950 * cache, or the low watermark worth of cache, needs to stay. 5951 */ 5952 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5953 pagecache -= min(pagecache / 2, wmark_low); 5954 available += pagecache; 5955 5956 /* 5957 * Part of the reclaimable slab and other kernel memory consists of 5958 * items that are in use, and cannot be freed. Cap this estimate at the 5959 * low watermark. 5960 */ 5961 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5962 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5963 available += reclaimable - min(reclaimable / 2, wmark_low); 5964 5965 if (available < 0) 5966 available = 0; 5967 return available; 5968 } 5969 EXPORT_SYMBOL_GPL(si_mem_available); 5970 5971 void si_meminfo(struct sysinfo *val) 5972 { 5973 val->totalram = totalram_pages(); 5974 val->sharedram = global_node_page_state(NR_SHMEM); 5975 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5976 val->bufferram = nr_blockdev_pages(); 5977 val->totalhigh = totalhigh_pages(); 5978 val->freehigh = nr_free_highpages(); 5979 val->mem_unit = PAGE_SIZE; 5980 } 5981 5982 EXPORT_SYMBOL(si_meminfo); 5983 5984 #ifdef CONFIG_NUMA 5985 void si_meminfo_node(struct sysinfo *val, int nid) 5986 { 5987 int zone_type; /* needs to be signed */ 5988 unsigned long managed_pages = 0; 5989 unsigned long managed_highpages = 0; 5990 unsigned long free_highpages = 0; 5991 pg_data_t *pgdat = NODE_DATA(nid); 5992 5993 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5994 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5995 val->totalram = managed_pages; 5996 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5997 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5998 #ifdef CONFIG_HIGHMEM 5999 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 6000 struct zone *zone = &pgdat->node_zones[zone_type]; 6001 6002 if (is_highmem(zone)) { 6003 managed_highpages += zone_managed_pages(zone); 6004 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 6005 } 6006 } 6007 val->totalhigh = managed_highpages; 6008 val->freehigh = free_highpages; 6009 #else 6010 val->totalhigh = managed_highpages; 6011 val->freehigh = free_highpages; 6012 #endif 6013 val->mem_unit = PAGE_SIZE; 6014 } 6015 #endif 6016 6017 /* 6018 * Determine whether the node should be displayed or not, depending on whether 6019 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 6020 */ 6021 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 6022 { 6023 if (!(flags & SHOW_MEM_FILTER_NODES)) 6024 return false; 6025 6026 /* 6027 * no node mask - aka implicit memory numa policy. Do not bother with 6028 * the synchronization - read_mems_allowed_begin - because we do not 6029 * have to be precise here. 6030 */ 6031 if (!nodemask) 6032 nodemask = &cpuset_current_mems_allowed; 6033 6034 return !node_isset(nid, *nodemask); 6035 } 6036 6037 #define K(x) ((x) << (PAGE_SHIFT-10)) 6038 6039 static void show_migration_types(unsigned char type) 6040 { 6041 static const char types[MIGRATE_TYPES] = { 6042 [MIGRATE_UNMOVABLE] = 'U', 6043 [MIGRATE_MOVABLE] = 'M', 6044 [MIGRATE_RECLAIMABLE] = 'E', 6045 [MIGRATE_HIGHATOMIC] = 'H', 6046 #ifdef CONFIG_CMA 6047 [MIGRATE_CMA] = 'C', 6048 #endif 6049 #ifdef CONFIG_MEMORY_ISOLATION 6050 [MIGRATE_ISOLATE] = 'I', 6051 #endif 6052 }; 6053 char tmp[MIGRATE_TYPES + 1]; 6054 char *p = tmp; 6055 int i; 6056 6057 for (i = 0; i < MIGRATE_TYPES; i++) { 6058 if (type & (1 << i)) 6059 *p++ = types[i]; 6060 } 6061 6062 *p = '\0'; 6063 printk(KERN_CONT "(%s) ", tmp); 6064 } 6065 6066 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) 6067 { 6068 int zone_idx; 6069 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) 6070 if (zone_managed_pages(pgdat->node_zones + zone_idx)) 6071 return true; 6072 return false; 6073 } 6074 6075 /* 6076 * Show free area list (used inside shift_scroll-lock stuff) 6077 * We also calculate the percentage fragmentation. We do this by counting the 6078 * memory on each free list with the exception of the first item on the list. 6079 * 6080 * Bits in @filter: 6081 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 6082 * cpuset. 6083 */ 6084 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) 6085 { 6086 unsigned long free_pcp = 0; 6087 int cpu, nid; 6088 struct zone *zone; 6089 pg_data_t *pgdat; 6090 6091 for_each_populated_zone(zone) { 6092 if (zone_idx(zone) > max_zone_idx) 6093 continue; 6094 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6095 continue; 6096 6097 for_each_online_cpu(cpu) 6098 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6099 } 6100 6101 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 6102 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 6103 " unevictable:%lu dirty:%lu writeback:%lu\n" 6104 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 6105 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 6106 " kernel_misc_reclaimable:%lu\n" 6107 " free:%lu free_pcp:%lu free_cma:%lu\n", 6108 global_node_page_state(NR_ACTIVE_ANON), 6109 global_node_page_state(NR_INACTIVE_ANON), 6110 global_node_page_state(NR_ISOLATED_ANON), 6111 global_node_page_state(NR_ACTIVE_FILE), 6112 global_node_page_state(NR_INACTIVE_FILE), 6113 global_node_page_state(NR_ISOLATED_FILE), 6114 global_node_page_state(NR_UNEVICTABLE), 6115 global_node_page_state(NR_FILE_DIRTY), 6116 global_node_page_state(NR_WRITEBACK), 6117 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 6118 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 6119 global_node_page_state(NR_FILE_MAPPED), 6120 global_node_page_state(NR_SHMEM), 6121 global_node_page_state(NR_PAGETABLE), 6122 global_zone_page_state(NR_BOUNCE), 6123 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 6124 global_zone_page_state(NR_FREE_PAGES), 6125 free_pcp, 6126 global_zone_page_state(NR_FREE_CMA_PAGES)); 6127 6128 for_each_online_pgdat(pgdat) { 6129 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 6130 continue; 6131 if (!node_has_managed_zones(pgdat, max_zone_idx)) 6132 continue; 6133 6134 printk("Node %d" 6135 " active_anon:%lukB" 6136 " inactive_anon:%lukB" 6137 " active_file:%lukB" 6138 " inactive_file:%lukB" 6139 " unevictable:%lukB" 6140 " isolated(anon):%lukB" 6141 " isolated(file):%lukB" 6142 " mapped:%lukB" 6143 " dirty:%lukB" 6144 " writeback:%lukB" 6145 " shmem:%lukB" 6146 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6147 " shmem_thp: %lukB" 6148 " shmem_pmdmapped: %lukB" 6149 " anon_thp: %lukB" 6150 #endif 6151 " writeback_tmp:%lukB" 6152 " kernel_stack:%lukB" 6153 #ifdef CONFIG_SHADOW_CALL_STACK 6154 " shadow_call_stack:%lukB" 6155 #endif 6156 " pagetables:%lukB" 6157 " all_unreclaimable? %s" 6158 "\n", 6159 pgdat->node_id, 6160 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6161 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6162 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6163 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6164 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6165 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6166 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6167 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6168 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6169 K(node_page_state(pgdat, NR_WRITEBACK)), 6170 K(node_page_state(pgdat, NR_SHMEM)), 6171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6172 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6173 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6174 K(node_page_state(pgdat, NR_ANON_THPS)), 6175 #endif 6176 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6177 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6178 #ifdef CONFIG_SHADOW_CALL_STACK 6179 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6180 #endif 6181 K(node_page_state(pgdat, NR_PAGETABLE)), 6182 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6183 "yes" : "no"); 6184 } 6185 6186 for_each_populated_zone(zone) { 6187 int i; 6188 6189 if (zone_idx(zone) > max_zone_idx) 6190 continue; 6191 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6192 continue; 6193 6194 free_pcp = 0; 6195 for_each_online_cpu(cpu) 6196 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6197 6198 show_node(zone); 6199 printk(KERN_CONT 6200 "%s" 6201 " free:%lukB" 6202 " boost:%lukB" 6203 " min:%lukB" 6204 " low:%lukB" 6205 " high:%lukB" 6206 " reserved_highatomic:%luKB" 6207 " active_anon:%lukB" 6208 " inactive_anon:%lukB" 6209 " active_file:%lukB" 6210 " inactive_file:%lukB" 6211 " unevictable:%lukB" 6212 " writepending:%lukB" 6213 " present:%lukB" 6214 " managed:%lukB" 6215 " mlocked:%lukB" 6216 " bounce:%lukB" 6217 " free_pcp:%lukB" 6218 " local_pcp:%ukB" 6219 " free_cma:%lukB" 6220 "\n", 6221 zone->name, 6222 K(zone_page_state(zone, NR_FREE_PAGES)), 6223 K(zone->watermark_boost), 6224 K(min_wmark_pages(zone)), 6225 K(low_wmark_pages(zone)), 6226 K(high_wmark_pages(zone)), 6227 K(zone->nr_reserved_highatomic), 6228 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6229 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6230 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6231 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6232 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6233 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6234 K(zone->present_pages), 6235 K(zone_managed_pages(zone)), 6236 K(zone_page_state(zone, NR_MLOCK)), 6237 K(zone_page_state(zone, NR_BOUNCE)), 6238 K(free_pcp), 6239 K(this_cpu_read(zone->per_cpu_pageset->count)), 6240 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6241 printk("lowmem_reserve[]:"); 6242 for (i = 0; i < MAX_NR_ZONES; i++) 6243 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6244 printk(KERN_CONT "\n"); 6245 } 6246 6247 for_each_populated_zone(zone) { 6248 unsigned int order; 6249 unsigned long nr[MAX_ORDER], flags, total = 0; 6250 unsigned char types[MAX_ORDER]; 6251 6252 if (zone_idx(zone) > max_zone_idx) 6253 continue; 6254 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6255 continue; 6256 show_node(zone); 6257 printk(KERN_CONT "%s: ", zone->name); 6258 6259 spin_lock_irqsave(&zone->lock, flags); 6260 for (order = 0; order < MAX_ORDER; order++) { 6261 struct free_area *area = &zone->free_area[order]; 6262 int type; 6263 6264 nr[order] = area->nr_free; 6265 total += nr[order] << order; 6266 6267 types[order] = 0; 6268 for (type = 0; type < MIGRATE_TYPES; type++) { 6269 if (!free_area_empty(area, type)) 6270 types[order] |= 1 << type; 6271 } 6272 } 6273 spin_unlock_irqrestore(&zone->lock, flags); 6274 for (order = 0; order < MAX_ORDER; order++) { 6275 printk(KERN_CONT "%lu*%lukB ", 6276 nr[order], K(1UL) << order); 6277 if (nr[order]) 6278 show_migration_types(types[order]); 6279 } 6280 printk(KERN_CONT "= %lukB\n", K(total)); 6281 } 6282 6283 for_each_online_node(nid) { 6284 if (show_mem_node_skip(filter, nid, nodemask)) 6285 continue; 6286 hugetlb_show_meminfo_node(nid); 6287 } 6288 6289 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6290 6291 show_swap_cache_info(); 6292 } 6293 6294 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6295 { 6296 zoneref->zone = zone; 6297 zoneref->zone_idx = zone_idx(zone); 6298 } 6299 6300 /* 6301 * Builds allocation fallback zone lists. 6302 * 6303 * Add all populated zones of a node to the zonelist. 6304 */ 6305 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6306 { 6307 struct zone *zone; 6308 enum zone_type zone_type = MAX_NR_ZONES; 6309 int nr_zones = 0; 6310 6311 do { 6312 zone_type--; 6313 zone = pgdat->node_zones + zone_type; 6314 if (populated_zone(zone)) { 6315 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6316 check_highest_zone(zone_type); 6317 } 6318 } while (zone_type); 6319 6320 return nr_zones; 6321 } 6322 6323 #ifdef CONFIG_NUMA 6324 6325 static int __parse_numa_zonelist_order(char *s) 6326 { 6327 /* 6328 * We used to support different zonelists modes but they turned 6329 * out to be just not useful. Let's keep the warning in place 6330 * if somebody still use the cmd line parameter so that we do 6331 * not fail it silently 6332 */ 6333 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6334 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6335 return -EINVAL; 6336 } 6337 return 0; 6338 } 6339 6340 char numa_zonelist_order[] = "Node"; 6341 6342 /* 6343 * sysctl handler for numa_zonelist_order 6344 */ 6345 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6346 void *buffer, size_t *length, loff_t *ppos) 6347 { 6348 if (write) 6349 return __parse_numa_zonelist_order(buffer); 6350 return proc_dostring(table, write, buffer, length, ppos); 6351 } 6352 6353 6354 static int node_load[MAX_NUMNODES]; 6355 6356 /** 6357 * find_next_best_node - find the next node that should appear in a given node's fallback list 6358 * @node: node whose fallback list we're appending 6359 * @used_node_mask: nodemask_t of already used nodes 6360 * 6361 * We use a number of factors to determine which is the next node that should 6362 * appear on a given node's fallback list. The node should not have appeared 6363 * already in @node's fallback list, and it should be the next closest node 6364 * according to the distance array (which contains arbitrary distance values 6365 * from each node to each node in the system), and should also prefer nodes 6366 * with no CPUs, since presumably they'll have very little allocation pressure 6367 * on them otherwise. 6368 * 6369 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6370 */ 6371 int find_next_best_node(int node, nodemask_t *used_node_mask) 6372 { 6373 int n, val; 6374 int min_val = INT_MAX; 6375 int best_node = NUMA_NO_NODE; 6376 6377 /* Use the local node if we haven't already */ 6378 if (!node_isset(node, *used_node_mask)) { 6379 node_set(node, *used_node_mask); 6380 return node; 6381 } 6382 6383 for_each_node_state(n, N_MEMORY) { 6384 6385 /* Don't want a node to appear more than once */ 6386 if (node_isset(n, *used_node_mask)) 6387 continue; 6388 6389 /* Use the distance array to find the distance */ 6390 val = node_distance(node, n); 6391 6392 /* Penalize nodes under us ("prefer the next node") */ 6393 val += (n < node); 6394 6395 /* Give preference to headless and unused nodes */ 6396 if (!cpumask_empty(cpumask_of_node(n))) 6397 val += PENALTY_FOR_NODE_WITH_CPUS; 6398 6399 /* Slight preference for less loaded node */ 6400 val *= MAX_NUMNODES; 6401 val += node_load[n]; 6402 6403 if (val < min_val) { 6404 min_val = val; 6405 best_node = n; 6406 } 6407 } 6408 6409 if (best_node >= 0) 6410 node_set(best_node, *used_node_mask); 6411 6412 return best_node; 6413 } 6414 6415 6416 /* 6417 * Build zonelists ordered by node and zones within node. 6418 * This results in maximum locality--normal zone overflows into local 6419 * DMA zone, if any--but risks exhausting DMA zone. 6420 */ 6421 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6422 unsigned nr_nodes) 6423 { 6424 struct zoneref *zonerefs; 6425 int i; 6426 6427 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6428 6429 for (i = 0; i < nr_nodes; i++) { 6430 int nr_zones; 6431 6432 pg_data_t *node = NODE_DATA(node_order[i]); 6433 6434 nr_zones = build_zonerefs_node(node, zonerefs); 6435 zonerefs += nr_zones; 6436 } 6437 zonerefs->zone = NULL; 6438 zonerefs->zone_idx = 0; 6439 } 6440 6441 /* 6442 * Build gfp_thisnode zonelists 6443 */ 6444 static void build_thisnode_zonelists(pg_data_t *pgdat) 6445 { 6446 struct zoneref *zonerefs; 6447 int nr_zones; 6448 6449 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6450 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6451 zonerefs += nr_zones; 6452 zonerefs->zone = NULL; 6453 zonerefs->zone_idx = 0; 6454 } 6455 6456 /* 6457 * Build zonelists ordered by zone and nodes within zones. 6458 * This results in conserving DMA zone[s] until all Normal memory is 6459 * exhausted, but results in overflowing to remote node while memory 6460 * may still exist in local DMA zone. 6461 */ 6462 6463 static void build_zonelists(pg_data_t *pgdat) 6464 { 6465 static int node_order[MAX_NUMNODES]; 6466 int node, nr_nodes = 0; 6467 nodemask_t used_mask = NODE_MASK_NONE; 6468 int local_node, prev_node; 6469 6470 /* NUMA-aware ordering of nodes */ 6471 local_node = pgdat->node_id; 6472 prev_node = local_node; 6473 6474 memset(node_order, 0, sizeof(node_order)); 6475 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6476 /* 6477 * We don't want to pressure a particular node. 6478 * So adding penalty to the first node in same 6479 * distance group to make it round-robin. 6480 */ 6481 if (node_distance(local_node, node) != 6482 node_distance(local_node, prev_node)) 6483 node_load[node] += 1; 6484 6485 node_order[nr_nodes++] = node; 6486 prev_node = node; 6487 } 6488 6489 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6490 build_thisnode_zonelists(pgdat); 6491 pr_info("Fallback order for Node %d: ", local_node); 6492 for (node = 0; node < nr_nodes; node++) 6493 pr_cont("%d ", node_order[node]); 6494 pr_cont("\n"); 6495 } 6496 6497 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6498 /* 6499 * Return node id of node used for "local" allocations. 6500 * I.e., first node id of first zone in arg node's generic zonelist. 6501 * Used for initializing percpu 'numa_mem', which is used primarily 6502 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6503 */ 6504 int local_memory_node(int node) 6505 { 6506 struct zoneref *z; 6507 6508 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6509 gfp_zone(GFP_KERNEL), 6510 NULL); 6511 return zone_to_nid(z->zone); 6512 } 6513 #endif 6514 6515 static void setup_min_unmapped_ratio(void); 6516 static void setup_min_slab_ratio(void); 6517 #else /* CONFIG_NUMA */ 6518 6519 static void build_zonelists(pg_data_t *pgdat) 6520 { 6521 int node, local_node; 6522 struct zoneref *zonerefs; 6523 int nr_zones; 6524 6525 local_node = pgdat->node_id; 6526 6527 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6528 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6529 zonerefs += nr_zones; 6530 6531 /* 6532 * Now we build the zonelist so that it contains the zones 6533 * of all the other nodes. 6534 * We don't want to pressure a particular node, so when 6535 * building the zones for node N, we make sure that the 6536 * zones coming right after the local ones are those from 6537 * node N+1 (modulo N) 6538 */ 6539 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6540 if (!node_online(node)) 6541 continue; 6542 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6543 zonerefs += nr_zones; 6544 } 6545 for (node = 0; node < local_node; node++) { 6546 if (!node_online(node)) 6547 continue; 6548 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6549 zonerefs += nr_zones; 6550 } 6551 6552 zonerefs->zone = NULL; 6553 zonerefs->zone_idx = 0; 6554 } 6555 6556 #endif /* CONFIG_NUMA */ 6557 6558 /* 6559 * Boot pageset table. One per cpu which is going to be used for all 6560 * zones and all nodes. The parameters will be set in such a way 6561 * that an item put on a list will immediately be handed over to 6562 * the buddy list. This is safe since pageset manipulation is done 6563 * with interrupts disabled. 6564 * 6565 * The boot_pagesets must be kept even after bootup is complete for 6566 * unused processors and/or zones. They do play a role for bootstrapping 6567 * hotplugged processors. 6568 * 6569 * zoneinfo_show() and maybe other functions do 6570 * not check if the processor is online before following the pageset pointer. 6571 * Other parts of the kernel may not check if the zone is available. 6572 */ 6573 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6574 /* These effectively disable the pcplists in the boot pageset completely */ 6575 #define BOOT_PAGESET_HIGH 0 6576 #define BOOT_PAGESET_BATCH 1 6577 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6578 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6579 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6580 6581 static void __build_all_zonelists(void *data) 6582 { 6583 int nid; 6584 int __maybe_unused cpu; 6585 pg_data_t *self = data; 6586 6587 write_seqlock(&zonelist_update_seq); 6588 6589 #ifdef CONFIG_NUMA 6590 memset(node_load, 0, sizeof(node_load)); 6591 #endif 6592 6593 /* 6594 * This node is hotadded and no memory is yet present. So just 6595 * building zonelists is fine - no need to touch other nodes. 6596 */ 6597 if (self && !node_online(self->node_id)) { 6598 build_zonelists(self); 6599 } else { 6600 /* 6601 * All possible nodes have pgdat preallocated 6602 * in free_area_init 6603 */ 6604 for_each_node(nid) { 6605 pg_data_t *pgdat = NODE_DATA(nid); 6606 6607 build_zonelists(pgdat); 6608 } 6609 6610 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6611 /* 6612 * We now know the "local memory node" for each node-- 6613 * i.e., the node of the first zone in the generic zonelist. 6614 * Set up numa_mem percpu variable for on-line cpus. During 6615 * boot, only the boot cpu should be on-line; we'll init the 6616 * secondary cpus' numa_mem as they come on-line. During 6617 * node/memory hotplug, we'll fixup all on-line cpus. 6618 */ 6619 for_each_online_cpu(cpu) 6620 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6621 #endif 6622 } 6623 6624 write_sequnlock(&zonelist_update_seq); 6625 } 6626 6627 static noinline void __init 6628 build_all_zonelists_init(void) 6629 { 6630 int cpu; 6631 6632 __build_all_zonelists(NULL); 6633 6634 /* 6635 * Initialize the boot_pagesets that are going to be used 6636 * for bootstrapping processors. The real pagesets for 6637 * each zone will be allocated later when the per cpu 6638 * allocator is available. 6639 * 6640 * boot_pagesets are used also for bootstrapping offline 6641 * cpus if the system is already booted because the pagesets 6642 * are needed to initialize allocators on a specific cpu too. 6643 * F.e. the percpu allocator needs the page allocator which 6644 * needs the percpu allocator in order to allocate its pagesets 6645 * (a chicken-egg dilemma). 6646 */ 6647 for_each_possible_cpu(cpu) 6648 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6649 6650 mminit_verify_zonelist(); 6651 cpuset_init_current_mems_allowed(); 6652 } 6653 6654 /* 6655 * unless system_state == SYSTEM_BOOTING. 6656 * 6657 * __ref due to call of __init annotated helper build_all_zonelists_init 6658 * [protected by SYSTEM_BOOTING]. 6659 */ 6660 void __ref build_all_zonelists(pg_data_t *pgdat) 6661 { 6662 unsigned long vm_total_pages; 6663 6664 if (system_state == SYSTEM_BOOTING) { 6665 build_all_zonelists_init(); 6666 } else { 6667 __build_all_zonelists(pgdat); 6668 /* cpuset refresh routine should be here */ 6669 } 6670 /* Get the number of free pages beyond high watermark in all zones. */ 6671 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6672 /* 6673 * Disable grouping by mobility if the number of pages in the 6674 * system is too low to allow the mechanism to work. It would be 6675 * more accurate, but expensive to check per-zone. This check is 6676 * made on memory-hotadd so a system can start with mobility 6677 * disabled and enable it later 6678 */ 6679 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6680 page_group_by_mobility_disabled = 1; 6681 else 6682 page_group_by_mobility_disabled = 0; 6683 6684 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6685 nr_online_nodes, 6686 page_group_by_mobility_disabled ? "off" : "on", 6687 vm_total_pages); 6688 #ifdef CONFIG_NUMA 6689 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6690 #endif 6691 } 6692 6693 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6694 static bool __meminit 6695 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6696 { 6697 static struct memblock_region *r; 6698 6699 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6700 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6701 for_each_mem_region(r) { 6702 if (*pfn < memblock_region_memory_end_pfn(r)) 6703 break; 6704 } 6705 } 6706 if (*pfn >= memblock_region_memory_base_pfn(r) && 6707 memblock_is_mirror(r)) { 6708 *pfn = memblock_region_memory_end_pfn(r); 6709 return true; 6710 } 6711 } 6712 return false; 6713 } 6714 6715 /* 6716 * Initially all pages are reserved - free ones are freed 6717 * up by memblock_free_all() once the early boot process is 6718 * done. Non-atomic initialization, single-pass. 6719 * 6720 * All aligned pageblocks are initialized to the specified migratetype 6721 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6722 * zone stats (e.g., nr_isolate_pageblock) are touched. 6723 */ 6724 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6725 unsigned long start_pfn, unsigned long zone_end_pfn, 6726 enum meminit_context context, 6727 struct vmem_altmap *altmap, int migratetype) 6728 { 6729 unsigned long pfn, end_pfn = start_pfn + size; 6730 struct page *page; 6731 6732 if (highest_memmap_pfn < end_pfn - 1) 6733 highest_memmap_pfn = end_pfn - 1; 6734 6735 #ifdef CONFIG_ZONE_DEVICE 6736 /* 6737 * Honor reservation requested by the driver for this ZONE_DEVICE 6738 * memory. We limit the total number of pages to initialize to just 6739 * those that might contain the memory mapping. We will defer the 6740 * ZONE_DEVICE page initialization until after we have released 6741 * the hotplug lock. 6742 */ 6743 if (zone == ZONE_DEVICE) { 6744 if (!altmap) 6745 return; 6746 6747 if (start_pfn == altmap->base_pfn) 6748 start_pfn += altmap->reserve; 6749 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6750 } 6751 #endif 6752 6753 for (pfn = start_pfn; pfn < end_pfn; ) { 6754 /* 6755 * There can be holes in boot-time mem_map[]s handed to this 6756 * function. They do not exist on hotplugged memory. 6757 */ 6758 if (context == MEMINIT_EARLY) { 6759 if (overlap_memmap_init(zone, &pfn)) 6760 continue; 6761 if (defer_init(nid, pfn, zone_end_pfn)) 6762 break; 6763 } 6764 6765 page = pfn_to_page(pfn); 6766 __init_single_page(page, pfn, zone, nid); 6767 if (context == MEMINIT_HOTPLUG) 6768 __SetPageReserved(page); 6769 6770 /* 6771 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6772 * such that unmovable allocations won't be scattered all 6773 * over the place during system boot. 6774 */ 6775 if (pageblock_aligned(pfn)) { 6776 set_pageblock_migratetype(page, migratetype); 6777 cond_resched(); 6778 } 6779 pfn++; 6780 } 6781 } 6782 6783 #ifdef CONFIG_ZONE_DEVICE 6784 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6785 unsigned long zone_idx, int nid, 6786 struct dev_pagemap *pgmap) 6787 { 6788 6789 __init_single_page(page, pfn, zone_idx, nid); 6790 6791 /* 6792 * Mark page reserved as it will need to wait for onlining 6793 * phase for it to be fully associated with a zone. 6794 * 6795 * We can use the non-atomic __set_bit operation for setting 6796 * the flag as we are still initializing the pages. 6797 */ 6798 __SetPageReserved(page); 6799 6800 /* 6801 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6802 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6803 * ever freed or placed on a driver-private list. 6804 */ 6805 page->pgmap = pgmap; 6806 page->zone_device_data = NULL; 6807 6808 /* 6809 * Mark the block movable so that blocks are reserved for 6810 * movable at startup. This will force kernel allocations 6811 * to reserve their blocks rather than leaking throughout 6812 * the address space during boot when many long-lived 6813 * kernel allocations are made. 6814 * 6815 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6816 * because this is done early in section_activate() 6817 */ 6818 if (pageblock_aligned(pfn)) { 6819 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6820 cond_resched(); 6821 } 6822 } 6823 6824 /* 6825 * With compound page geometry and when struct pages are stored in ram most 6826 * tail pages are reused. Consequently, the amount of unique struct pages to 6827 * initialize is a lot smaller that the total amount of struct pages being 6828 * mapped. This is a paired / mild layering violation with explicit knowledge 6829 * of how the sparse_vmemmap internals handle compound pages in the lack 6830 * of an altmap. See vmemmap_populate_compound_pages(). 6831 */ 6832 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6833 unsigned long nr_pages) 6834 { 6835 return is_power_of_2(sizeof(struct page)) && 6836 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6837 } 6838 6839 static void __ref memmap_init_compound(struct page *head, 6840 unsigned long head_pfn, 6841 unsigned long zone_idx, int nid, 6842 struct dev_pagemap *pgmap, 6843 unsigned long nr_pages) 6844 { 6845 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6846 unsigned int order = pgmap->vmemmap_shift; 6847 6848 __SetPageHead(head); 6849 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6850 struct page *page = pfn_to_page(pfn); 6851 6852 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6853 prep_compound_tail(head, pfn - head_pfn); 6854 set_page_count(page, 0); 6855 6856 /* 6857 * The first tail page stores compound_mapcount_ptr() and 6858 * compound_order() and the second tail page stores 6859 * compound_pincount_ptr(). Call prep_compound_head() after 6860 * the first and second tail pages have been initialized to 6861 * not have the data overwritten. 6862 */ 6863 if (pfn == head_pfn + 2) 6864 prep_compound_head(head, order); 6865 } 6866 } 6867 6868 void __ref memmap_init_zone_device(struct zone *zone, 6869 unsigned long start_pfn, 6870 unsigned long nr_pages, 6871 struct dev_pagemap *pgmap) 6872 { 6873 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6874 struct pglist_data *pgdat = zone->zone_pgdat; 6875 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6876 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6877 unsigned long zone_idx = zone_idx(zone); 6878 unsigned long start = jiffies; 6879 int nid = pgdat->node_id; 6880 6881 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6882 return; 6883 6884 /* 6885 * The call to memmap_init should have already taken care 6886 * of the pages reserved for the memmap, so we can just jump to 6887 * the end of that region and start processing the device pages. 6888 */ 6889 if (altmap) { 6890 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6891 nr_pages = end_pfn - start_pfn; 6892 } 6893 6894 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6895 struct page *page = pfn_to_page(pfn); 6896 6897 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6898 6899 if (pfns_per_compound == 1) 6900 continue; 6901 6902 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6903 compound_nr_pages(altmap, pfns_per_compound)); 6904 } 6905 6906 pr_info("%s initialised %lu pages in %ums\n", __func__, 6907 nr_pages, jiffies_to_msecs(jiffies - start)); 6908 } 6909 6910 #endif 6911 static void __meminit zone_init_free_lists(struct zone *zone) 6912 { 6913 unsigned int order, t; 6914 for_each_migratetype_order(order, t) { 6915 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6916 zone->free_area[order].nr_free = 0; 6917 } 6918 } 6919 6920 /* 6921 * Only struct pages that correspond to ranges defined by memblock.memory 6922 * are zeroed and initialized by going through __init_single_page() during 6923 * memmap_init_zone_range(). 6924 * 6925 * But, there could be struct pages that correspond to holes in 6926 * memblock.memory. This can happen because of the following reasons: 6927 * - physical memory bank size is not necessarily the exact multiple of the 6928 * arbitrary section size 6929 * - early reserved memory may not be listed in memblock.memory 6930 * - memory layouts defined with memmap= kernel parameter may not align 6931 * nicely with memmap sections 6932 * 6933 * Explicitly initialize those struct pages so that: 6934 * - PG_Reserved is set 6935 * - zone and node links point to zone and node that span the page if the 6936 * hole is in the middle of a zone 6937 * - zone and node links point to adjacent zone/node if the hole falls on 6938 * the zone boundary; the pages in such holes will be prepended to the 6939 * zone/node above the hole except for the trailing pages in the last 6940 * section that will be appended to the zone/node below. 6941 */ 6942 static void __init init_unavailable_range(unsigned long spfn, 6943 unsigned long epfn, 6944 int zone, int node) 6945 { 6946 unsigned long pfn; 6947 u64 pgcnt = 0; 6948 6949 for (pfn = spfn; pfn < epfn; pfn++) { 6950 if (!pfn_valid(pageblock_start_pfn(pfn))) { 6951 pfn = pageblock_end_pfn(pfn) - 1; 6952 continue; 6953 } 6954 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6955 __SetPageReserved(pfn_to_page(pfn)); 6956 pgcnt++; 6957 } 6958 6959 if (pgcnt) 6960 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6961 node, zone_names[zone], pgcnt); 6962 } 6963 6964 static void __init memmap_init_zone_range(struct zone *zone, 6965 unsigned long start_pfn, 6966 unsigned long end_pfn, 6967 unsigned long *hole_pfn) 6968 { 6969 unsigned long zone_start_pfn = zone->zone_start_pfn; 6970 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6971 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6972 6973 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6974 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6975 6976 if (start_pfn >= end_pfn) 6977 return; 6978 6979 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6980 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6981 6982 if (*hole_pfn < start_pfn) 6983 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6984 6985 *hole_pfn = end_pfn; 6986 } 6987 6988 static void __init memmap_init(void) 6989 { 6990 unsigned long start_pfn, end_pfn; 6991 unsigned long hole_pfn = 0; 6992 int i, j, zone_id = 0, nid; 6993 6994 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6995 struct pglist_data *node = NODE_DATA(nid); 6996 6997 for (j = 0; j < MAX_NR_ZONES; j++) { 6998 struct zone *zone = node->node_zones + j; 6999 7000 if (!populated_zone(zone)) 7001 continue; 7002 7003 memmap_init_zone_range(zone, start_pfn, end_pfn, 7004 &hole_pfn); 7005 zone_id = j; 7006 } 7007 } 7008 7009 #ifdef CONFIG_SPARSEMEM 7010 /* 7011 * Initialize the memory map for hole in the range [memory_end, 7012 * section_end]. 7013 * Append the pages in this hole to the highest zone in the last 7014 * node. 7015 * The call to init_unavailable_range() is outside the ifdef to 7016 * silence the compiler warining about zone_id set but not used; 7017 * for FLATMEM it is a nop anyway 7018 */ 7019 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 7020 if (hole_pfn < end_pfn) 7021 #endif 7022 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 7023 } 7024 7025 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 7026 phys_addr_t min_addr, int nid, bool exact_nid) 7027 { 7028 void *ptr; 7029 7030 if (exact_nid) 7031 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 7032 MEMBLOCK_ALLOC_ACCESSIBLE, 7033 nid); 7034 else 7035 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 7036 MEMBLOCK_ALLOC_ACCESSIBLE, 7037 nid); 7038 7039 if (ptr && size > 0) 7040 page_init_poison(ptr, size); 7041 7042 return ptr; 7043 } 7044 7045 static int zone_batchsize(struct zone *zone) 7046 { 7047 #ifdef CONFIG_MMU 7048 int batch; 7049 7050 /* 7051 * The number of pages to batch allocate is either ~0.1% 7052 * of the zone or 1MB, whichever is smaller. The batch 7053 * size is striking a balance between allocation latency 7054 * and zone lock contention. 7055 */ 7056 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 7057 batch /= 4; /* We effectively *= 4 below */ 7058 if (batch < 1) 7059 batch = 1; 7060 7061 /* 7062 * Clamp the batch to a 2^n - 1 value. Having a power 7063 * of 2 value was found to be more likely to have 7064 * suboptimal cache aliasing properties in some cases. 7065 * 7066 * For example if 2 tasks are alternately allocating 7067 * batches of pages, one task can end up with a lot 7068 * of pages of one half of the possible page colors 7069 * and the other with pages of the other colors. 7070 */ 7071 batch = rounddown_pow_of_two(batch + batch/2) - 1; 7072 7073 return batch; 7074 7075 #else 7076 /* The deferral and batching of frees should be suppressed under NOMMU 7077 * conditions. 7078 * 7079 * The problem is that NOMMU needs to be able to allocate large chunks 7080 * of contiguous memory as there's no hardware page translation to 7081 * assemble apparent contiguous memory from discontiguous pages. 7082 * 7083 * Queueing large contiguous runs of pages for batching, however, 7084 * causes the pages to actually be freed in smaller chunks. As there 7085 * can be a significant delay between the individual batches being 7086 * recycled, this leads to the once large chunks of space being 7087 * fragmented and becoming unavailable for high-order allocations. 7088 */ 7089 return 0; 7090 #endif 7091 } 7092 7093 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 7094 { 7095 #ifdef CONFIG_MMU 7096 int high; 7097 int nr_split_cpus; 7098 unsigned long total_pages; 7099 7100 if (!percpu_pagelist_high_fraction) { 7101 /* 7102 * By default, the high value of the pcp is based on the zone 7103 * low watermark so that if they are full then background 7104 * reclaim will not be started prematurely. 7105 */ 7106 total_pages = low_wmark_pages(zone); 7107 } else { 7108 /* 7109 * If percpu_pagelist_high_fraction is configured, the high 7110 * value is based on a fraction of the managed pages in the 7111 * zone. 7112 */ 7113 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 7114 } 7115 7116 /* 7117 * Split the high value across all online CPUs local to the zone. Note 7118 * that early in boot that CPUs may not be online yet and that during 7119 * CPU hotplug that the cpumask is not yet updated when a CPU is being 7120 * onlined. For memory nodes that have no CPUs, split pcp->high across 7121 * all online CPUs to mitigate the risk that reclaim is triggered 7122 * prematurely due to pages stored on pcp lists. 7123 */ 7124 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 7125 if (!nr_split_cpus) 7126 nr_split_cpus = num_online_cpus(); 7127 high = total_pages / nr_split_cpus; 7128 7129 /* 7130 * Ensure high is at least batch*4. The multiple is based on the 7131 * historical relationship between high and batch. 7132 */ 7133 high = max(high, batch << 2); 7134 7135 return high; 7136 #else 7137 return 0; 7138 #endif 7139 } 7140 7141 /* 7142 * pcp->high and pcp->batch values are related and generally batch is lower 7143 * than high. They are also related to pcp->count such that count is lower 7144 * than high, and as soon as it reaches high, the pcplist is flushed. 7145 * 7146 * However, guaranteeing these relations at all times would require e.g. write 7147 * barriers here but also careful usage of read barriers at the read side, and 7148 * thus be prone to error and bad for performance. Thus the update only prevents 7149 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 7150 * can cope with those fields changing asynchronously, and fully trust only the 7151 * pcp->count field on the local CPU with interrupts disabled. 7152 * 7153 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 7154 * outside of boot time (or some other assurance that no concurrent updaters 7155 * exist). 7156 */ 7157 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 7158 unsigned long batch) 7159 { 7160 WRITE_ONCE(pcp->batch, batch); 7161 WRITE_ONCE(pcp->high, high); 7162 } 7163 7164 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 7165 { 7166 int pindex; 7167 7168 memset(pcp, 0, sizeof(*pcp)); 7169 memset(pzstats, 0, sizeof(*pzstats)); 7170 7171 spin_lock_init(&pcp->lock); 7172 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7173 INIT_LIST_HEAD(&pcp->lists[pindex]); 7174 7175 /* 7176 * Set batch and high values safe for a boot pageset. A true percpu 7177 * pageset's initialization will update them subsequently. Here we don't 7178 * need to be as careful as pageset_update() as nobody can access the 7179 * pageset yet. 7180 */ 7181 pcp->high = BOOT_PAGESET_HIGH; 7182 pcp->batch = BOOT_PAGESET_BATCH; 7183 pcp->free_factor = 0; 7184 } 7185 7186 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7187 unsigned long batch) 7188 { 7189 struct per_cpu_pages *pcp; 7190 int cpu; 7191 7192 for_each_possible_cpu(cpu) { 7193 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7194 pageset_update(pcp, high, batch); 7195 } 7196 } 7197 7198 /* 7199 * Calculate and set new high and batch values for all per-cpu pagesets of a 7200 * zone based on the zone's size. 7201 */ 7202 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7203 { 7204 int new_high, new_batch; 7205 7206 new_batch = max(1, zone_batchsize(zone)); 7207 new_high = zone_highsize(zone, new_batch, cpu_online); 7208 7209 if (zone->pageset_high == new_high && 7210 zone->pageset_batch == new_batch) 7211 return; 7212 7213 zone->pageset_high = new_high; 7214 zone->pageset_batch = new_batch; 7215 7216 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7217 } 7218 7219 void __meminit setup_zone_pageset(struct zone *zone) 7220 { 7221 int cpu; 7222 7223 /* Size may be 0 on !SMP && !NUMA */ 7224 if (sizeof(struct per_cpu_zonestat) > 0) 7225 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7226 7227 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7228 for_each_possible_cpu(cpu) { 7229 struct per_cpu_pages *pcp; 7230 struct per_cpu_zonestat *pzstats; 7231 7232 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7233 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7234 per_cpu_pages_init(pcp, pzstats); 7235 } 7236 7237 zone_set_pageset_high_and_batch(zone, 0); 7238 } 7239 7240 /* 7241 * Allocate per cpu pagesets and initialize them. 7242 * Before this call only boot pagesets were available. 7243 */ 7244 void __init setup_per_cpu_pageset(void) 7245 { 7246 struct pglist_data *pgdat; 7247 struct zone *zone; 7248 int __maybe_unused cpu; 7249 7250 for_each_populated_zone(zone) 7251 setup_zone_pageset(zone); 7252 7253 #ifdef CONFIG_NUMA 7254 /* 7255 * Unpopulated zones continue using the boot pagesets. 7256 * The numa stats for these pagesets need to be reset. 7257 * Otherwise, they will end up skewing the stats of 7258 * the nodes these zones are associated with. 7259 */ 7260 for_each_possible_cpu(cpu) { 7261 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7262 memset(pzstats->vm_numa_event, 0, 7263 sizeof(pzstats->vm_numa_event)); 7264 } 7265 #endif 7266 7267 for_each_online_pgdat(pgdat) 7268 pgdat->per_cpu_nodestats = 7269 alloc_percpu(struct per_cpu_nodestat); 7270 } 7271 7272 static __meminit void zone_pcp_init(struct zone *zone) 7273 { 7274 /* 7275 * per cpu subsystem is not up at this point. The following code 7276 * relies on the ability of the linker to provide the 7277 * offset of a (static) per cpu variable into the per cpu area. 7278 */ 7279 zone->per_cpu_pageset = &boot_pageset; 7280 zone->per_cpu_zonestats = &boot_zonestats; 7281 zone->pageset_high = BOOT_PAGESET_HIGH; 7282 zone->pageset_batch = BOOT_PAGESET_BATCH; 7283 7284 if (populated_zone(zone)) 7285 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7286 zone->present_pages, zone_batchsize(zone)); 7287 } 7288 7289 void __meminit init_currently_empty_zone(struct zone *zone, 7290 unsigned long zone_start_pfn, 7291 unsigned long size) 7292 { 7293 struct pglist_data *pgdat = zone->zone_pgdat; 7294 int zone_idx = zone_idx(zone) + 1; 7295 7296 if (zone_idx > pgdat->nr_zones) 7297 pgdat->nr_zones = zone_idx; 7298 7299 zone->zone_start_pfn = zone_start_pfn; 7300 7301 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7302 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7303 pgdat->node_id, 7304 (unsigned long)zone_idx(zone), 7305 zone_start_pfn, (zone_start_pfn + size)); 7306 7307 zone_init_free_lists(zone); 7308 zone->initialized = 1; 7309 } 7310 7311 /** 7312 * get_pfn_range_for_nid - Return the start and end page frames for a node 7313 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7314 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7315 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7316 * 7317 * It returns the start and end page frame of a node based on information 7318 * provided by memblock_set_node(). If called for a node 7319 * with no available memory, a warning is printed and the start and end 7320 * PFNs will be 0. 7321 */ 7322 void __init get_pfn_range_for_nid(unsigned int nid, 7323 unsigned long *start_pfn, unsigned long *end_pfn) 7324 { 7325 unsigned long this_start_pfn, this_end_pfn; 7326 int i; 7327 7328 *start_pfn = -1UL; 7329 *end_pfn = 0; 7330 7331 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7332 *start_pfn = min(*start_pfn, this_start_pfn); 7333 *end_pfn = max(*end_pfn, this_end_pfn); 7334 } 7335 7336 if (*start_pfn == -1UL) 7337 *start_pfn = 0; 7338 } 7339 7340 /* 7341 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7342 * assumption is made that zones within a node are ordered in monotonic 7343 * increasing memory addresses so that the "highest" populated zone is used 7344 */ 7345 static void __init find_usable_zone_for_movable(void) 7346 { 7347 int zone_index; 7348 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7349 if (zone_index == ZONE_MOVABLE) 7350 continue; 7351 7352 if (arch_zone_highest_possible_pfn[zone_index] > 7353 arch_zone_lowest_possible_pfn[zone_index]) 7354 break; 7355 } 7356 7357 VM_BUG_ON(zone_index == -1); 7358 movable_zone = zone_index; 7359 } 7360 7361 /* 7362 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7363 * because it is sized independent of architecture. Unlike the other zones, 7364 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7365 * in each node depending on the size of each node and how evenly kernelcore 7366 * is distributed. This helper function adjusts the zone ranges 7367 * provided by the architecture for a given node by using the end of the 7368 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7369 * zones within a node are in order of monotonic increases memory addresses 7370 */ 7371 static void __init adjust_zone_range_for_zone_movable(int nid, 7372 unsigned long zone_type, 7373 unsigned long node_start_pfn, 7374 unsigned long node_end_pfn, 7375 unsigned long *zone_start_pfn, 7376 unsigned long *zone_end_pfn) 7377 { 7378 /* Only adjust if ZONE_MOVABLE is on this node */ 7379 if (zone_movable_pfn[nid]) { 7380 /* Size ZONE_MOVABLE */ 7381 if (zone_type == ZONE_MOVABLE) { 7382 *zone_start_pfn = zone_movable_pfn[nid]; 7383 *zone_end_pfn = min(node_end_pfn, 7384 arch_zone_highest_possible_pfn[movable_zone]); 7385 7386 /* Adjust for ZONE_MOVABLE starting within this range */ 7387 } else if (!mirrored_kernelcore && 7388 *zone_start_pfn < zone_movable_pfn[nid] && 7389 *zone_end_pfn > zone_movable_pfn[nid]) { 7390 *zone_end_pfn = zone_movable_pfn[nid]; 7391 7392 /* Check if this whole range is within ZONE_MOVABLE */ 7393 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7394 *zone_start_pfn = *zone_end_pfn; 7395 } 7396 } 7397 7398 /* 7399 * Return the number of pages a zone spans in a node, including holes 7400 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7401 */ 7402 static unsigned long __init zone_spanned_pages_in_node(int nid, 7403 unsigned long zone_type, 7404 unsigned long node_start_pfn, 7405 unsigned long node_end_pfn, 7406 unsigned long *zone_start_pfn, 7407 unsigned long *zone_end_pfn) 7408 { 7409 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7410 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7411 /* When hotadd a new node from cpu_up(), the node should be empty */ 7412 if (!node_start_pfn && !node_end_pfn) 7413 return 0; 7414 7415 /* Get the start and end of the zone */ 7416 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7417 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7418 adjust_zone_range_for_zone_movable(nid, zone_type, 7419 node_start_pfn, node_end_pfn, 7420 zone_start_pfn, zone_end_pfn); 7421 7422 /* Check that this node has pages within the zone's required range */ 7423 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7424 return 0; 7425 7426 /* Move the zone boundaries inside the node if necessary */ 7427 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7428 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7429 7430 /* Return the spanned pages */ 7431 return *zone_end_pfn - *zone_start_pfn; 7432 } 7433 7434 /* 7435 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7436 * then all holes in the requested range will be accounted for. 7437 */ 7438 unsigned long __init __absent_pages_in_range(int nid, 7439 unsigned long range_start_pfn, 7440 unsigned long range_end_pfn) 7441 { 7442 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7443 unsigned long start_pfn, end_pfn; 7444 int i; 7445 7446 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7447 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7448 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7449 nr_absent -= end_pfn - start_pfn; 7450 } 7451 return nr_absent; 7452 } 7453 7454 /** 7455 * absent_pages_in_range - Return number of page frames in holes within a range 7456 * @start_pfn: The start PFN to start searching for holes 7457 * @end_pfn: The end PFN to stop searching for holes 7458 * 7459 * Return: the number of pages frames in memory holes within a range. 7460 */ 7461 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7462 unsigned long end_pfn) 7463 { 7464 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7465 } 7466 7467 /* Return the number of page frames in holes in a zone on a node */ 7468 static unsigned long __init zone_absent_pages_in_node(int nid, 7469 unsigned long zone_type, 7470 unsigned long node_start_pfn, 7471 unsigned long node_end_pfn) 7472 { 7473 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7474 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7475 unsigned long zone_start_pfn, zone_end_pfn; 7476 unsigned long nr_absent; 7477 7478 /* When hotadd a new node from cpu_up(), the node should be empty */ 7479 if (!node_start_pfn && !node_end_pfn) 7480 return 0; 7481 7482 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7483 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7484 7485 adjust_zone_range_for_zone_movable(nid, zone_type, 7486 node_start_pfn, node_end_pfn, 7487 &zone_start_pfn, &zone_end_pfn); 7488 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7489 7490 /* 7491 * ZONE_MOVABLE handling. 7492 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7493 * and vice versa. 7494 */ 7495 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7496 unsigned long start_pfn, end_pfn; 7497 struct memblock_region *r; 7498 7499 for_each_mem_region(r) { 7500 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7501 zone_start_pfn, zone_end_pfn); 7502 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7503 zone_start_pfn, zone_end_pfn); 7504 7505 if (zone_type == ZONE_MOVABLE && 7506 memblock_is_mirror(r)) 7507 nr_absent += end_pfn - start_pfn; 7508 7509 if (zone_type == ZONE_NORMAL && 7510 !memblock_is_mirror(r)) 7511 nr_absent += end_pfn - start_pfn; 7512 } 7513 } 7514 7515 return nr_absent; 7516 } 7517 7518 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7519 unsigned long node_start_pfn, 7520 unsigned long node_end_pfn) 7521 { 7522 unsigned long realtotalpages = 0, totalpages = 0; 7523 enum zone_type i; 7524 7525 for (i = 0; i < MAX_NR_ZONES; i++) { 7526 struct zone *zone = pgdat->node_zones + i; 7527 unsigned long zone_start_pfn, zone_end_pfn; 7528 unsigned long spanned, absent; 7529 unsigned long size, real_size; 7530 7531 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7532 node_start_pfn, 7533 node_end_pfn, 7534 &zone_start_pfn, 7535 &zone_end_pfn); 7536 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7537 node_start_pfn, 7538 node_end_pfn); 7539 7540 size = spanned; 7541 real_size = size - absent; 7542 7543 if (size) 7544 zone->zone_start_pfn = zone_start_pfn; 7545 else 7546 zone->zone_start_pfn = 0; 7547 zone->spanned_pages = size; 7548 zone->present_pages = real_size; 7549 #if defined(CONFIG_MEMORY_HOTPLUG) 7550 zone->present_early_pages = real_size; 7551 #endif 7552 7553 totalpages += size; 7554 realtotalpages += real_size; 7555 } 7556 7557 pgdat->node_spanned_pages = totalpages; 7558 pgdat->node_present_pages = realtotalpages; 7559 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7560 } 7561 7562 #ifndef CONFIG_SPARSEMEM 7563 /* 7564 * Calculate the size of the zone->blockflags rounded to an unsigned long 7565 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7566 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7567 * round what is now in bits to nearest long in bits, then return it in 7568 * bytes. 7569 */ 7570 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7571 { 7572 unsigned long usemapsize; 7573 7574 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7575 usemapsize = roundup(zonesize, pageblock_nr_pages); 7576 usemapsize = usemapsize >> pageblock_order; 7577 usemapsize *= NR_PAGEBLOCK_BITS; 7578 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7579 7580 return usemapsize / 8; 7581 } 7582 7583 static void __ref setup_usemap(struct zone *zone) 7584 { 7585 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7586 zone->spanned_pages); 7587 zone->pageblock_flags = NULL; 7588 if (usemapsize) { 7589 zone->pageblock_flags = 7590 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7591 zone_to_nid(zone)); 7592 if (!zone->pageblock_flags) 7593 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7594 usemapsize, zone->name, zone_to_nid(zone)); 7595 } 7596 } 7597 #else 7598 static inline void setup_usemap(struct zone *zone) {} 7599 #endif /* CONFIG_SPARSEMEM */ 7600 7601 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7602 7603 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7604 void __init set_pageblock_order(void) 7605 { 7606 unsigned int order = MAX_ORDER - 1; 7607 7608 /* Check that pageblock_nr_pages has not already been setup */ 7609 if (pageblock_order) 7610 return; 7611 7612 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7613 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7614 order = HUGETLB_PAGE_ORDER; 7615 7616 /* 7617 * Assume the largest contiguous order of interest is a huge page. 7618 * This value may be variable depending on boot parameters on IA64 and 7619 * powerpc. 7620 */ 7621 pageblock_order = order; 7622 } 7623 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7624 7625 /* 7626 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7627 * is unused as pageblock_order is set at compile-time. See 7628 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7629 * the kernel config 7630 */ 7631 void __init set_pageblock_order(void) 7632 { 7633 } 7634 7635 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7636 7637 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7638 unsigned long present_pages) 7639 { 7640 unsigned long pages = spanned_pages; 7641 7642 /* 7643 * Provide a more accurate estimation if there are holes within 7644 * the zone and SPARSEMEM is in use. If there are holes within the 7645 * zone, each populated memory region may cost us one or two extra 7646 * memmap pages due to alignment because memmap pages for each 7647 * populated regions may not be naturally aligned on page boundary. 7648 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7649 */ 7650 if (spanned_pages > present_pages + (present_pages >> 4) && 7651 IS_ENABLED(CONFIG_SPARSEMEM)) 7652 pages = present_pages; 7653 7654 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7655 } 7656 7657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7658 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7659 { 7660 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7661 7662 spin_lock_init(&ds_queue->split_queue_lock); 7663 INIT_LIST_HEAD(&ds_queue->split_queue); 7664 ds_queue->split_queue_len = 0; 7665 } 7666 #else 7667 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7668 #endif 7669 7670 #ifdef CONFIG_COMPACTION 7671 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7672 { 7673 init_waitqueue_head(&pgdat->kcompactd_wait); 7674 } 7675 #else 7676 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7677 #endif 7678 7679 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7680 { 7681 int i; 7682 7683 pgdat_resize_init(pgdat); 7684 pgdat_kswapd_lock_init(pgdat); 7685 7686 pgdat_init_split_queue(pgdat); 7687 pgdat_init_kcompactd(pgdat); 7688 7689 init_waitqueue_head(&pgdat->kswapd_wait); 7690 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7691 7692 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7693 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7694 7695 pgdat_page_ext_init(pgdat); 7696 lruvec_init(&pgdat->__lruvec); 7697 } 7698 7699 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7700 unsigned long remaining_pages) 7701 { 7702 atomic_long_set(&zone->managed_pages, remaining_pages); 7703 zone_set_nid(zone, nid); 7704 zone->name = zone_names[idx]; 7705 zone->zone_pgdat = NODE_DATA(nid); 7706 spin_lock_init(&zone->lock); 7707 zone_seqlock_init(zone); 7708 zone_pcp_init(zone); 7709 } 7710 7711 /* 7712 * Set up the zone data structures 7713 * - init pgdat internals 7714 * - init all zones belonging to this node 7715 * 7716 * NOTE: this function is only called during memory hotplug 7717 */ 7718 #ifdef CONFIG_MEMORY_HOTPLUG 7719 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7720 { 7721 int nid = pgdat->node_id; 7722 enum zone_type z; 7723 int cpu; 7724 7725 pgdat_init_internals(pgdat); 7726 7727 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7728 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7729 7730 /* 7731 * Reset the nr_zones, order and highest_zoneidx before reuse. 7732 * Note that kswapd will init kswapd_highest_zoneidx properly 7733 * when it starts in the near future. 7734 */ 7735 pgdat->nr_zones = 0; 7736 pgdat->kswapd_order = 0; 7737 pgdat->kswapd_highest_zoneidx = 0; 7738 pgdat->node_start_pfn = 0; 7739 for_each_online_cpu(cpu) { 7740 struct per_cpu_nodestat *p; 7741 7742 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7743 memset(p, 0, sizeof(*p)); 7744 } 7745 7746 for (z = 0; z < MAX_NR_ZONES; z++) 7747 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7748 } 7749 #endif 7750 7751 /* 7752 * Set up the zone data structures: 7753 * - mark all pages reserved 7754 * - mark all memory queues empty 7755 * - clear the memory bitmaps 7756 * 7757 * NOTE: pgdat should get zeroed by caller. 7758 * NOTE: this function is only called during early init. 7759 */ 7760 static void __init free_area_init_core(struct pglist_data *pgdat) 7761 { 7762 enum zone_type j; 7763 int nid = pgdat->node_id; 7764 7765 pgdat_init_internals(pgdat); 7766 pgdat->per_cpu_nodestats = &boot_nodestats; 7767 7768 for (j = 0; j < MAX_NR_ZONES; j++) { 7769 struct zone *zone = pgdat->node_zones + j; 7770 unsigned long size, freesize, memmap_pages; 7771 7772 size = zone->spanned_pages; 7773 freesize = zone->present_pages; 7774 7775 /* 7776 * Adjust freesize so that it accounts for how much memory 7777 * is used by this zone for memmap. This affects the watermark 7778 * and per-cpu initialisations 7779 */ 7780 memmap_pages = calc_memmap_size(size, freesize); 7781 if (!is_highmem_idx(j)) { 7782 if (freesize >= memmap_pages) { 7783 freesize -= memmap_pages; 7784 if (memmap_pages) 7785 pr_debug(" %s zone: %lu pages used for memmap\n", 7786 zone_names[j], memmap_pages); 7787 } else 7788 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7789 zone_names[j], memmap_pages, freesize); 7790 } 7791 7792 /* Account for reserved pages */ 7793 if (j == 0 && freesize > dma_reserve) { 7794 freesize -= dma_reserve; 7795 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7796 } 7797 7798 if (!is_highmem_idx(j)) 7799 nr_kernel_pages += freesize; 7800 /* Charge for highmem memmap if there are enough kernel pages */ 7801 else if (nr_kernel_pages > memmap_pages * 2) 7802 nr_kernel_pages -= memmap_pages; 7803 nr_all_pages += freesize; 7804 7805 /* 7806 * Set an approximate value for lowmem here, it will be adjusted 7807 * when the bootmem allocator frees pages into the buddy system. 7808 * And all highmem pages will be managed by the buddy system. 7809 */ 7810 zone_init_internals(zone, j, nid, freesize); 7811 7812 if (!size) 7813 continue; 7814 7815 set_pageblock_order(); 7816 setup_usemap(zone); 7817 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7818 } 7819 } 7820 7821 #ifdef CONFIG_FLATMEM 7822 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7823 { 7824 unsigned long __maybe_unused start = 0; 7825 unsigned long __maybe_unused offset = 0; 7826 7827 /* Skip empty nodes */ 7828 if (!pgdat->node_spanned_pages) 7829 return; 7830 7831 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7832 offset = pgdat->node_start_pfn - start; 7833 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7834 if (!pgdat->node_mem_map) { 7835 unsigned long size, end; 7836 struct page *map; 7837 7838 /* 7839 * The zone's endpoints aren't required to be MAX_ORDER 7840 * aligned but the node_mem_map endpoints must be in order 7841 * for the buddy allocator to function correctly. 7842 */ 7843 end = pgdat_end_pfn(pgdat); 7844 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7845 size = (end - start) * sizeof(struct page); 7846 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7847 pgdat->node_id, false); 7848 if (!map) 7849 panic("Failed to allocate %ld bytes for node %d memory map\n", 7850 size, pgdat->node_id); 7851 pgdat->node_mem_map = map + offset; 7852 } 7853 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7854 __func__, pgdat->node_id, (unsigned long)pgdat, 7855 (unsigned long)pgdat->node_mem_map); 7856 #ifndef CONFIG_NUMA 7857 /* 7858 * With no DISCONTIG, the global mem_map is just set as node 0's 7859 */ 7860 if (pgdat == NODE_DATA(0)) { 7861 mem_map = NODE_DATA(0)->node_mem_map; 7862 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7863 mem_map -= offset; 7864 } 7865 #endif 7866 } 7867 #else 7868 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7869 #endif /* CONFIG_FLATMEM */ 7870 7871 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7872 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7873 { 7874 pgdat->first_deferred_pfn = ULONG_MAX; 7875 } 7876 #else 7877 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7878 #endif 7879 7880 static void __init free_area_init_node(int nid) 7881 { 7882 pg_data_t *pgdat = NODE_DATA(nid); 7883 unsigned long start_pfn = 0; 7884 unsigned long end_pfn = 0; 7885 7886 /* pg_data_t should be reset to zero when it's allocated */ 7887 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7888 7889 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7890 7891 pgdat->node_id = nid; 7892 pgdat->node_start_pfn = start_pfn; 7893 pgdat->per_cpu_nodestats = NULL; 7894 7895 if (start_pfn != end_pfn) { 7896 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7897 (u64)start_pfn << PAGE_SHIFT, 7898 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7899 } else { 7900 pr_info("Initmem setup node %d as memoryless\n", nid); 7901 } 7902 7903 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7904 7905 alloc_node_mem_map(pgdat); 7906 pgdat_set_deferred_range(pgdat); 7907 7908 free_area_init_core(pgdat); 7909 } 7910 7911 static void __init free_area_init_memoryless_node(int nid) 7912 { 7913 free_area_init_node(nid); 7914 } 7915 7916 #if MAX_NUMNODES > 1 7917 /* 7918 * Figure out the number of possible node ids. 7919 */ 7920 void __init setup_nr_node_ids(void) 7921 { 7922 unsigned int highest; 7923 7924 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7925 nr_node_ids = highest + 1; 7926 } 7927 #endif 7928 7929 /** 7930 * node_map_pfn_alignment - determine the maximum internode alignment 7931 * 7932 * This function should be called after node map is populated and sorted. 7933 * It calculates the maximum power of two alignment which can distinguish 7934 * all the nodes. 7935 * 7936 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7937 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7938 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7939 * shifted, 1GiB is enough and this function will indicate so. 7940 * 7941 * This is used to test whether pfn -> nid mapping of the chosen memory 7942 * model has fine enough granularity to avoid incorrect mapping for the 7943 * populated node map. 7944 * 7945 * Return: the determined alignment in pfn's. 0 if there is no alignment 7946 * requirement (single node). 7947 */ 7948 unsigned long __init node_map_pfn_alignment(void) 7949 { 7950 unsigned long accl_mask = 0, last_end = 0; 7951 unsigned long start, end, mask; 7952 int last_nid = NUMA_NO_NODE; 7953 int i, nid; 7954 7955 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7956 if (!start || last_nid < 0 || last_nid == nid) { 7957 last_nid = nid; 7958 last_end = end; 7959 continue; 7960 } 7961 7962 /* 7963 * Start with a mask granular enough to pin-point to the 7964 * start pfn and tick off bits one-by-one until it becomes 7965 * too coarse to separate the current node from the last. 7966 */ 7967 mask = ~((1 << __ffs(start)) - 1); 7968 while (mask && last_end <= (start & (mask << 1))) 7969 mask <<= 1; 7970 7971 /* accumulate all internode masks */ 7972 accl_mask |= mask; 7973 } 7974 7975 /* convert mask to number of pages */ 7976 return ~accl_mask + 1; 7977 } 7978 7979 /* 7980 * early_calculate_totalpages() 7981 * Sum pages in active regions for movable zone. 7982 * Populate N_MEMORY for calculating usable_nodes. 7983 */ 7984 static unsigned long __init early_calculate_totalpages(void) 7985 { 7986 unsigned long totalpages = 0; 7987 unsigned long start_pfn, end_pfn; 7988 int i, nid; 7989 7990 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7991 unsigned long pages = end_pfn - start_pfn; 7992 7993 totalpages += pages; 7994 if (pages) 7995 node_set_state(nid, N_MEMORY); 7996 } 7997 return totalpages; 7998 } 7999 8000 /* 8001 * Find the PFN the Movable zone begins in each node. Kernel memory 8002 * is spread evenly between nodes as long as the nodes have enough 8003 * memory. When they don't, some nodes will have more kernelcore than 8004 * others 8005 */ 8006 static void __init find_zone_movable_pfns_for_nodes(void) 8007 { 8008 int i, nid; 8009 unsigned long usable_startpfn; 8010 unsigned long kernelcore_node, kernelcore_remaining; 8011 /* save the state before borrow the nodemask */ 8012 nodemask_t saved_node_state = node_states[N_MEMORY]; 8013 unsigned long totalpages = early_calculate_totalpages(); 8014 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 8015 struct memblock_region *r; 8016 8017 /* Need to find movable_zone earlier when movable_node is specified. */ 8018 find_usable_zone_for_movable(); 8019 8020 /* 8021 * If movable_node is specified, ignore kernelcore and movablecore 8022 * options. 8023 */ 8024 if (movable_node_is_enabled()) { 8025 for_each_mem_region(r) { 8026 if (!memblock_is_hotpluggable(r)) 8027 continue; 8028 8029 nid = memblock_get_region_node(r); 8030 8031 usable_startpfn = PFN_DOWN(r->base); 8032 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8033 min(usable_startpfn, zone_movable_pfn[nid]) : 8034 usable_startpfn; 8035 } 8036 8037 goto out2; 8038 } 8039 8040 /* 8041 * If kernelcore=mirror is specified, ignore movablecore option 8042 */ 8043 if (mirrored_kernelcore) { 8044 bool mem_below_4gb_not_mirrored = false; 8045 8046 for_each_mem_region(r) { 8047 if (memblock_is_mirror(r)) 8048 continue; 8049 8050 nid = memblock_get_region_node(r); 8051 8052 usable_startpfn = memblock_region_memory_base_pfn(r); 8053 8054 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 8055 mem_below_4gb_not_mirrored = true; 8056 continue; 8057 } 8058 8059 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8060 min(usable_startpfn, zone_movable_pfn[nid]) : 8061 usable_startpfn; 8062 } 8063 8064 if (mem_below_4gb_not_mirrored) 8065 pr_warn("This configuration results in unmirrored kernel memory.\n"); 8066 8067 goto out2; 8068 } 8069 8070 /* 8071 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 8072 * amount of necessary memory. 8073 */ 8074 if (required_kernelcore_percent) 8075 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 8076 10000UL; 8077 if (required_movablecore_percent) 8078 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 8079 10000UL; 8080 8081 /* 8082 * If movablecore= was specified, calculate what size of 8083 * kernelcore that corresponds so that memory usable for 8084 * any allocation type is evenly spread. If both kernelcore 8085 * and movablecore are specified, then the value of kernelcore 8086 * will be used for required_kernelcore if it's greater than 8087 * what movablecore would have allowed. 8088 */ 8089 if (required_movablecore) { 8090 unsigned long corepages; 8091 8092 /* 8093 * Round-up so that ZONE_MOVABLE is at least as large as what 8094 * was requested by the user 8095 */ 8096 required_movablecore = 8097 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 8098 required_movablecore = min(totalpages, required_movablecore); 8099 corepages = totalpages - required_movablecore; 8100 8101 required_kernelcore = max(required_kernelcore, corepages); 8102 } 8103 8104 /* 8105 * If kernelcore was not specified or kernelcore size is larger 8106 * than totalpages, there is no ZONE_MOVABLE. 8107 */ 8108 if (!required_kernelcore || required_kernelcore >= totalpages) 8109 goto out; 8110 8111 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 8112 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 8113 8114 restart: 8115 /* Spread kernelcore memory as evenly as possible throughout nodes */ 8116 kernelcore_node = required_kernelcore / usable_nodes; 8117 for_each_node_state(nid, N_MEMORY) { 8118 unsigned long start_pfn, end_pfn; 8119 8120 /* 8121 * Recalculate kernelcore_node if the division per node 8122 * now exceeds what is necessary to satisfy the requested 8123 * amount of memory for the kernel 8124 */ 8125 if (required_kernelcore < kernelcore_node) 8126 kernelcore_node = required_kernelcore / usable_nodes; 8127 8128 /* 8129 * As the map is walked, we track how much memory is usable 8130 * by the kernel using kernelcore_remaining. When it is 8131 * 0, the rest of the node is usable by ZONE_MOVABLE 8132 */ 8133 kernelcore_remaining = kernelcore_node; 8134 8135 /* Go through each range of PFNs within this node */ 8136 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 8137 unsigned long size_pages; 8138 8139 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 8140 if (start_pfn >= end_pfn) 8141 continue; 8142 8143 /* Account for what is only usable for kernelcore */ 8144 if (start_pfn < usable_startpfn) { 8145 unsigned long kernel_pages; 8146 kernel_pages = min(end_pfn, usable_startpfn) 8147 - start_pfn; 8148 8149 kernelcore_remaining -= min(kernel_pages, 8150 kernelcore_remaining); 8151 required_kernelcore -= min(kernel_pages, 8152 required_kernelcore); 8153 8154 /* Continue if range is now fully accounted */ 8155 if (end_pfn <= usable_startpfn) { 8156 8157 /* 8158 * Push zone_movable_pfn to the end so 8159 * that if we have to rebalance 8160 * kernelcore across nodes, we will 8161 * not double account here 8162 */ 8163 zone_movable_pfn[nid] = end_pfn; 8164 continue; 8165 } 8166 start_pfn = usable_startpfn; 8167 } 8168 8169 /* 8170 * The usable PFN range for ZONE_MOVABLE is from 8171 * start_pfn->end_pfn. Calculate size_pages as the 8172 * number of pages used as kernelcore 8173 */ 8174 size_pages = end_pfn - start_pfn; 8175 if (size_pages > kernelcore_remaining) 8176 size_pages = kernelcore_remaining; 8177 zone_movable_pfn[nid] = start_pfn + size_pages; 8178 8179 /* 8180 * Some kernelcore has been met, update counts and 8181 * break if the kernelcore for this node has been 8182 * satisfied 8183 */ 8184 required_kernelcore -= min(required_kernelcore, 8185 size_pages); 8186 kernelcore_remaining -= size_pages; 8187 if (!kernelcore_remaining) 8188 break; 8189 } 8190 } 8191 8192 /* 8193 * If there is still required_kernelcore, we do another pass with one 8194 * less node in the count. This will push zone_movable_pfn[nid] further 8195 * along on the nodes that still have memory until kernelcore is 8196 * satisfied 8197 */ 8198 usable_nodes--; 8199 if (usable_nodes && required_kernelcore > usable_nodes) 8200 goto restart; 8201 8202 out2: 8203 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8204 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8205 unsigned long start_pfn, end_pfn; 8206 8207 zone_movable_pfn[nid] = 8208 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8209 8210 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8211 if (zone_movable_pfn[nid] >= end_pfn) 8212 zone_movable_pfn[nid] = 0; 8213 } 8214 8215 out: 8216 /* restore the node_state */ 8217 node_states[N_MEMORY] = saved_node_state; 8218 } 8219 8220 /* Any regular or high memory on that node ? */ 8221 static void check_for_memory(pg_data_t *pgdat, int nid) 8222 { 8223 enum zone_type zone_type; 8224 8225 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8226 struct zone *zone = &pgdat->node_zones[zone_type]; 8227 if (populated_zone(zone)) { 8228 if (IS_ENABLED(CONFIG_HIGHMEM)) 8229 node_set_state(nid, N_HIGH_MEMORY); 8230 if (zone_type <= ZONE_NORMAL) 8231 node_set_state(nid, N_NORMAL_MEMORY); 8232 break; 8233 } 8234 } 8235 } 8236 8237 /* 8238 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8239 * such cases we allow max_zone_pfn sorted in the descending order 8240 */ 8241 bool __weak arch_has_descending_max_zone_pfns(void) 8242 { 8243 return false; 8244 } 8245 8246 /** 8247 * free_area_init - Initialise all pg_data_t and zone data 8248 * @max_zone_pfn: an array of max PFNs for each zone 8249 * 8250 * This will call free_area_init_node() for each active node in the system. 8251 * Using the page ranges provided by memblock_set_node(), the size of each 8252 * zone in each node and their holes is calculated. If the maximum PFN 8253 * between two adjacent zones match, it is assumed that the zone is empty. 8254 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8255 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8256 * starts where the previous one ended. For example, ZONE_DMA32 starts 8257 * at arch_max_dma_pfn. 8258 */ 8259 void __init free_area_init(unsigned long *max_zone_pfn) 8260 { 8261 unsigned long start_pfn, end_pfn; 8262 int i, nid, zone; 8263 bool descending; 8264 8265 /* Record where the zone boundaries are */ 8266 memset(arch_zone_lowest_possible_pfn, 0, 8267 sizeof(arch_zone_lowest_possible_pfn)); 8268 memset(arch_zone_highest_possible_pfn, 0, 8269 sizeof(arch_zone_highest_possible_pfn)); 8270 8271 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 8272 descending = arch_has_descending_max_zone_pfns(); 8273 8274 for (i = 0; i < MAX_NR_ZONES; i++) { 8275 if (descending) 8276 zone = MAX_NR_ZONES - i - 1; 8277 else 8278 zone = i; 8279 8280 if (zone == ZONE_MOVABLE) 8281 continue; 8282 8283 end_pfn = max(max_zone_pfn[zone], start_pfn); 8284 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8285 arch_zone_highest_possible_pfn[zone] = end_pfn; 8286 8287 start_pfn = end_pfn; 8288 } 8289 8290 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8291 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8292 find_zone_movable_pfns_for_nodes(); 8293 8294 /* Print out the zone ranges */ 8295 pr_info("Zone ranges:\n"); 8296 for (i = 0; i < MAX_NR_ZONES; i++) { 8297 if (i == ZONE_MOVABLE) 8298 continue; 8299 pr_info(" %-8s ", zone_names[i]); 8300 if (arch_zone_lowest_possible_pfn[i] == 8301 arch_zone_highest_possible_pfn[i]) 8302 pr_cont("empty\n"); 8303 else 8304 pr_cont("[mem %#018Lx-%#018Lx]\n", 8305 (u64)arch_zone_lowest_possible_pfn[i] 8306 << PAGE_SHIFT, 8307 ((u64)arch_zone_highest_possible_pfn[i] 8308 << PAGE_SHIFT) - 1); 8309 } 8310 8311 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8312 pr_info("Movable zone start for each node\n"); 8313 for (i = 0; i < MAX_NUMNODES; i++) { 8314 if (zone_movable_pfn[i]) 8315 pr_info(" Node %d: %#018Lx\n", i, 8316 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8317 } 8318 8319 /* 8320 * Print out the early node map, and initialize the 8321 * subsection-map relative to active online memory ranges to 8322 * enable future "sub-section" extensions of the memory map. 8323 */ 8324 pr_info("Early memory node ranges\n"); 8325 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8326 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8327 (u64)start_pfn << PAGE_SHIFT, 8328 ((u64)end_pfn << PAGE_SHIFT) - 1); 8329 subsection_map_init(start_pfn, end_pfn - start_pfn); 8330 } 8331 8332 /* Initialise every node */ 8333 mminit_verify_pageflags_layout(); 8334 setup_nr_node_ids(); 8335 for_each_node(nid) { 8336 pg_data_t *pgdat; 8337 8338 if (!node_online(nid)) { 8339 pr_info("Initializing node %d as memoryless\n", nid); 8340 8341 /* Allocator not initialized yet */ 8342 pgdat = arch_alloc_nodedata(nid); 8343 if (!pgdat) { 8344 pr_err("Cannot allocate %zuB for node %d.\n", 8345 sizeof(*pgdat), nid); 8346 continue; 8347 } 8348 arch_refresh_nodedata(nid, pgdat); 8349 free_area_init_memoryless_node(nid); 8350 8351 /* 8352 * We do not want to confuse userspace by sysfs 8353 * files/directories for node without any memory 8354 * attached to it, so this node is not marked as 8355 * N_MEMORY and not marked online so that no sysfs 8356 * hierarchy will be created via register_one_node for 8357 * it. The pgdat will get fully initialized by 8358 * hotadd_init_pgdat() when memory is hotplugged into 8359 * this node. 8360 */ 8361 continue; 8362 } 8363 8364 pgdat = NODE_DATA(nid); 8365 free_area_init_node(nid); 8366 8367 /* Any memory on that node */ 8368 if (pgdat->node_present_pages) 8369 node_set_state(nid, N_MEMORY); 8370 check_for_memory(pgdat, nid); 8371 } 8372 8373 memmap_init(); 8374 } 8375 8376 static int __init cmdline_parse_core(char *p, unsigned long *core, 8377 unsigned long *percent) 8378 { 8379 unsigned long long coremem; 8380 char *endptr; 8381 8382 if (!p) 8383 return -EINVAL; 8384 8385 /* Value may be a percentage of total memory, otherwise bytes */ 8386 coremem = simple_strtoull(p, &endptr, 0); 8387 if (*endptr == '%') { 8388 /* Paranoid check for percent values greater than 100 */ 8389 WARN_ON(coremem > 100); 8390 8391 *percent = coremem; 8392 } else { 8393 coremem = memparse(p, &p); 8394 /* Paranoid check that UL is enough for the coremem value */ 8395 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8396 8397 *core = coremem >> PAGE_SHIFT; 8398 *percent = 0UL; 8399 } 8400 return 0; 8401 } 8402 8403 /* 8404 * kernelcore=size sets the amount of memory for use for allocations that 8405 * cannot be reclaimed or migrated. 8406 */ 8407 static int __init cmdline_parse_kernelcore(char *p) 8408 { 8409 /* parse kernelcore=mirror */ 8410 if (parse_option_str(p, "mirror")) { 8411 mirrored_kernelcore = true; 8412 return 0; 8413 } 8414 8415 return cmdline_parse_core(p, &required_kernelcore, 8416 &required_kernelcore_percent); 8417 } 8418 8419 /* 8420 * movablecore=size sets the amount of memory for use for allocations that 8421 * can be reclaimed or migrated. 8422 */ 8423 static int __init cmdline_parse_movablecore(char *p) 8424 { 8425 return cmdline_parse_core(p, &required_movablecore, 8426 &required_movablecore_percent); 8427 } 8428 8429 early_param("kernelcore", cmdline_parse_kernelcore); 8430 early_param("movablecore", cmdline_parse_movablecore); 8431 8432 void adjust_managed_page_count(struct page *page, long count) 8433 { 8434 atomic_long_add(count, &page_zone(page)->managed_pages); 8435 totalram_pages_add(count); 8436 #ifdef CONFIG_HIGHMEM 8437 if (PageHighMem(page)) 8438 totalhigh_pages_add(count); 8439 #endif 8440 } 8441 EXPORT_SYMBOL(adjust_managed_page_count); 8442 8443 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8444 { 8445 void *pos; 8446 unsigned long pages = 0; 8447 8448 start = (void *)PAGE_ALIGN((unsigned long)start); 8449 end = (void *)((unsigned long)end & PAGE_MASK); 8450 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8451 struct page *page = virt_to_page(pos); 8452 void *direct_map_addr; 8453 8454 /* 8455 * 'direct_map_addr' might be different from 'pos' 8456 * because some architectures' virt_to_page() 8457 * work with aliases. Getting the direct map 8458 * address ensures that we get a _writeable_ 8459 * alias for the memset(). 8460 */ 8461 direct_map_addr = page_address(page); 8462 /* 8463 * Perform a kasan-unchecked memset() since this memory 8464 * has not been initialized. 8465 */ 8466 direct_map_addr = kasan_reset_tag(direct_map_addr); 8467 if ((unsigned int)poison <= 0xFF) 8468 memset(direct_map_addr, poison, PAGE_SIZE); 8469 8470 free_reserved_page(page); 8471 } 8472 8473 if (pages && s) 8474 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8475 8476 return pages; 8477 } 8478 8479 void __init mem_init_print_info(void) 8480 { 8481 unsigned long physpages, codesize, datasize, rosize, bss_size; 8482 unsigned long init_code_size, init_data_size; 8483 8484 physpages = get_num_physpages(); 8485 codesize = _etext - _stext; 8486 datasize = _edata - _sdata; 8487 rosize = __end_rodata - __start_rodata; 8488 bss_size = __bss_stop - __bss_start; 8489 init_data_size = __init_end - __init_begin; 8490 init_code_size = _einittext - _sinittext; 8491 8492 /* 8493 * Detect special cases and adjust section sizes accordingly: 8494 * 1) .init.* may be embedded into .data sections 8495 * 2) .init.text.* may be out of [__init_begin, __init_end], 8496 * please refer to arch/tile/kernel/vmlinux.lds.S. 8497 * 3) .rodata.* may be embedded into .text or .data sections. 8498 */ 8499 #define adj_init_size(start, end, size, pos, adj) \ 8500 do { \ 8501 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8502 size -= adj; \ 8503 } while (0) 8504 8505 adj_init_size(__init_begin, __init_end, init_data_size, 8506 _sinittext, init_code_size); 8507 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8508 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8509 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8510 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8511 8512 #undef adj_init_size 8513 8514 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8515 #ifdef CONFIG_HIGHMEM 8516 ", %luK highmem" 8517 #endif 8518 ")\n", 8519 K(nr_free_pages()), K(physpages), 8520 codesize >> 10, datasize >> 10, rosize >> 10, 8521 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8522 K(physpages - totalram_pages() - totalcma_pages), 8523 K(totalcma_pages) 8524 #ifdef CONFIG_HIGHMEM 8525 , K(totalhigh_pages()) 8526 #endif 8527 ); 8528 } 8529 8530 /** 8531 * set_dma_reserve - set the specified number of pages reserved in the first zone 8532 * @new_dma_reserve: The number of pages to mark reserved 8533 * 8534 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8535 * In the DMA zone, a significant percentage may be consumed by kernel image 8536 * and other unfreeable allocations which can skew the watermarks badly. This 8537 * function may optionally be used to account for unfreeable pages in the 8538 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8539 * smaller per-cpu batchsize. 8540 */ 8541 void __init set_dma_reserve(unsigned long new_dma_reserve) 8542 { 8543 dma_reserve = new_dma_reserve; 8544 } 8545 8546 static int page_alloc_cpu_dead(unsigned int cpu) 8547 { 8548 struct zone *zone; 8549 8550 lru_add_drain_cpu(cpu); 8551 mlock_page_drain_remote(cpu); 8552 drain_pages(cpu); 8553 8554 /* 8555 * Spill the event counters of the dead processor 8556 * into the current processors event counters. 8557 * This artificially elevates the count of the current 8558 * processor. 8559 */ 8560 vm_events_fold_cpu(cpu); 8561 8562 /* 8563 * Zero the differential counters of the dead processor 8564 * so that the vm statistics are consistent. 8565 * 8566 * This is only okay since the processor is dead and cannot 8567 * race with what we are doing. 8568 */ 8569 cpu_vm_stats_fold(cpu); 8570 8571 for_each_populated_zone(zone) 8572 zone_pcp_update(zone, 0); 8573 8574 return 0; 8575 } 8576 8577 static int page_alloc_cpu_online(unsigned int cpu) 8578 { 8579 struct zone *zone; 8580 8581 for_each_populated_zone(zone) 8582 zone_pcp_update(zone, 1); 8583 return 0; 8584 } 8585 8586 #ifdef CONFIG_NUMA 8587 int hashdist = HASHDIST_DEFAULT; 8588 8589 static int __init set_hashdist(char *str) 8590 { 8591 if (!str) 8592 return 0; 8593 hashdist = simple_strtoul(str, &str, 0); 8594 return 1; 8595 } 8596 __setup("hashdist=", set_hashdist); 8597 #endif 8598 8599 void __init page_alloc_init(void) 8600 { 8601 int ret; 8602 8603 #ifdef CONFIG_NUMA 8604 if (num_node_state(N_MEMORY) == 1) 8605 hashdist = 0; 8606 #endif 8607 8608 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8609 "mm/page_alloc:pcp", 8610 page_alloc_cpu_online, 8611 page_alloc_cpu_dead); 8612 WARN_ON(ret < 0); 8613 } 8614 8615 /* 8616 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8617 * or min_free_kbytes changes. 8618 */ 8619 static void calculate_totalreserve_pages(void) 8620 { 8621 struct pglist_data *pgdat; 8622 unsigned long reserve_pages = 0; 8623 enum zone_type i, j; 8624 8625 for_each_online_pgdat(pgdat) { 8626 8627 pgdat->totalreserve_pages = 0; 8628 8629 for (i = 0; i < MAX_NR_ZONES; i++) { 8630 struct zone *zone = pgdat->node_zones + i; 8631 long max = 0; 8632 unsigned long managed_pages = zone_managed_pages(zone); 8633 8634 /* Find valid and maximum lowmem_reserve in the zone */ 8635 for (j = i; j < MAX_NR_ZONES; j++) { 8636 if (zone->lowmem_reserve[j] > max) 8637 max = zone->lowmem_reserve[j]; 8638 } 8639 8640 /* we treat the high watermark as reserved pages. */ 8641 max += high_wmark_pages(zone); 8642 8643 if (max > managed_pages) 8644 max = managed_pages; 8645 8646 pgdat->totalreserve_pages += max; 8647 8648 reserve_pages += max; 8649 } 8650 } 8651 totalreserve_pages = reserve_pages; 8652 } 8653 8654 /* 8655 * setup_per_zone_lowmem_reserve - called whenever 8656 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8657 * has a correct pages reserved value, so an adequate number of 8658 * pages are left in the zone after a successful __alloc_pages(). 8659 */ 8660 static void setup_per_zone_lowmem_reserve(void) 8661 { 8662 struct pglist_data *pgdat; 8663 enum zone_type i, j; 8664 8665 for_each_online_pgdat(pgdat) { 8666 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8667 struct zone *zone = &pgdat->node_zones[i]; 8668 int ratio = sysctl_lowmem_reserve_ratio[i]; 8669 bool clear = !ratio || !zone_managed_pages(zone); 8670 unsigned long managed_pages = 0; 8671 8672 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8673 struct zone *upper_zone = &pgdat->node_zones[j]; 8674 8675 managed_pages += zone_managed_pages(upper_zone); 8676 8677 if (clear) 8678 zone->lowmem_reserve[j] = 0; 8679 else 8680 zone->lowmem_reserve[j] = managed_pages / ratio; 8681 } 8682 } 8683 } 8684 8685 /* update totalreserve_pages */ 8686 calculate_totalreserve_pages(); 8687 } 8688 8689 static void __setup_per_zone_wmarks(void) 8690 { 8691 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8692 unsigned long lowmem_pages = 0; 8693 struct zone *zone; 8694 unsigned long flags; 8695 8696 /* Calculate total number of !ZONE_HIGHMEM pages */ 8697 for_each_zone(zone) { 8698 if (!is_highmem(zone)) 8699 lowmem_pages += zone_managed_pages(zone); 8700 } 8701 8702 for_each_zone(zone) { 8703 u64 tmp; 8704 8705 spin_lock_irqsave(&zone->lock, flags); 8706 tmp = (u64)pages_min * zone_managed_pages(zone); 8707 do_div(tmp, lowmem_pages); 8708 if (is_highmem(zone)) { 8709 /* 8710 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8711 * need highmem pages, so cap pages_min to a small 8712 * value here. 8713 * 8714 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8715 * deltas control async page reclaim, and so should 8716 * not be capped for highmem. 8717 */ 8718 unsigned long min_pages; 8719 8720 min_pages = zone_managed_pages(zone) / 1024; 8721 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8722 zone->_watermark[WMARK_MIN] = min_pages; 8723 } else { 8724 /* 8725 * If it's a lowmem zone, reserve a number of pages 8726 * proportionate to the zone's size. 8727 */ 8728 zone->_watermark[WMARK_MIN] = tmp; 8729 } 8730 8731 /* 8732 * Set the kswapd watermarks distance according to the 8733 * scale factor in proportion to available memory, but 8734 * ensure a minimum size on small systems. 8735 */ 8736 tmp = max_t(u64, tmp >> 2, 8737 mult_frac(zone_managed_pages(zone), 8738 watermark_scale_factor, 10000)); 8739 8740 zone->watermark_boost = 0; 8741 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8742 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8743 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8744 8745 spin_unlock_irqrestore(&zone->lock, flags); 8746 } 8747 8748 /* update totalreserve_pages */ 8749 calculate_totalreserve_pages(); 8750 } 8751 8752 /** 8753 * setup_per_zone_wmarks - called when min_free_kbytes changes 8754 * or when memory is hot-{added|removed} 8755 * 8756 * Ensures that the watermark[min,low,high] values for each zone are set 8757 * correctly with respect to min_free_kbytes. 8758 */ 8759 void setup_per_zone_wmarks(void) 8760 { 8761 struct zone *zone; 8762 static DEFINE_SPINLOCK(lock); 8763 8764 spin_lock(&lock); 8765 __setup_per_zone_wmarks(); 8766 spin_unlock(&lock); 8767 8768 /* 8769 * The watermark size have changed so update the pcpu batch 8770 * and high limits or the limits may be inappropriate. 8771 */ 8772 for_each_zone(zone) 8773 zone_pcp_update(zone, 0); 8774 } 8775 8776 /* 8777 * Initialise min_free_kbytes. 8778 * 8779 * For small machines we want it small (128k min). For large machines 8780 * we want it large (256MB max). But it is not linear, because network 8781 * bandwidth does not increase linearly with machine size. We use 8782 * 8783 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8784 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8785 * 8786 * which yields 8787 * 8788 * 16MB: 512k 8789 * 32MB: 724k 8790 * 64MB: 1024k 8791 * 128MB: 1448k 8792 * 256MB: 2048k 8793 * 512MB: 2896k 8794 * 1024MB: 4096k 8795 * 2048MB: 5792k 8796 * 4096MB: 8192k 8797 * 8192MB: 11584k 8798 * 16384MB: 16384k 8799 */ 8800 void calculate_min_free_kbytes(void) 8801 { 8802 unsigned long lowmem_kbytes; 8803 int new_min_free_kbytes; 8804 8805 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8806 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8807 8808 if (new_min_free_kbytes > user_min_free_kbytes) 8809 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8810 else 8811 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8812 new_min_free_kbytes, user_min_free_kbytes); 8813 8814 } 8815 8816 int __meminit init_per_zone_wmark_min(void) 8817 { 8818 calculate_min_free_kbytes(); 8819 setup_per_zone_wmarks(); 8820 refresh_zone_stat_thresholds(); 8821 setup_per_zone_lowmem_reserve(); 8822 8823 #ifdef CONFIG_NUMA 8824 setup_min_unmapped_ratio(); 8825 setup_min_slab_ratio(); 8826 #endif 8827 8828 khugepaged_min_free_kbytes_update(); 8829 8830 return 0; 8831 } 8832 postcore_initcall(init_per_zone_wmark_min) 8833 8834 /* 8835 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8836 * that we can call two helper functions whenever min_free_kbytes 8837 * changes. 8838 */ 8839 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8840 void *buffer, size_t *length, loff_t *ppos) 8841 { 8842 int rc; 8843 8844 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8845 if (rc) 8846 return rc; 8847 8848 if (write) { 8849 user_min_free_kbytes = min_free_kbytes; 8850 setup_per_zone_wmarks(); 8851 } 8852 return 0; 8853 } 8854 8855 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8856 void *buffer, size_t *length, loff_t *ppos) 8857 { 8858 int rc; 8859 8860 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8861 if (rc) 8862 return rc; 8863 8864 if (write) 8865 setup_per_zone_wmarks(); 8866 8867 return 0; 8868 } 8869 8870 #ifdef CONFIG_NUMA 8871 static void setup_min_unmapped_ratio(void) 8872 { 8873 pg_data_t *pgdat; 8874 struct zone *zone; 8875 8876 for_each_online_pgdat(pgdat) 8877 pgdat->min_unmapped_pages = 0; 8878 8879 for_each_zone(zone) 8880 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8881 sysctl_min_unmapped_ratio) / 100; 8882 } 8883 8884 8885 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8886 void *buffer, size_t *length, loff_t *ppos) 8887 { 8888 int rc; 8889 8890 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8891 if (rc) 8892 return rc; 8893 8894 setup_min_unmapped_ratio(); 8895 8896 return 0; 8897 } 8898 8899 static void setup_min_slab_ratio(void) 8900 { 8901 pg_data_t *pgdat; 8902 struct zone *zone; 8903 8904 for_each_online_pgdat(pgdat) 8905 pgdat->min_slab_pages = 0; 8906 8907 for_each_zone(zone) 8908 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8909 sysctl_min_slab_ratio) / 100; 8910 } 8911 8912 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8913 void *buffer, size_t *length, loff_t *ppos) 8914 { 8915 int rc; 8916 8917 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8918 if (rc) 8919 return rc; 8920 8921 setup_min_slab_ratio(); 8922 8923 return 0; 8924 } 8925 #endif 8926 8927 /* 8928 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8929 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8930 * whenever sysctl_lowmem_reserve_ratio changes. 8931 * 8932 * The reserve ratio obviously has absolutely no relation with the 8933 * minimum watermarks. The lowmem reserve ratio can only make sense 8934 * if in function of the boot time zone sizes. 8935 */ 8936 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8937 void *buffer, size_t *length, loff_t *ppos) 8938 { 8939 int i; 8940 8941 proc_dointvec_minmax(table, write, buffer, length, ppos); 8942 8943 for (i = 0; i < MAX_NR_ZONES; i++) { 8944 if (sysctl_lowmem_reserve_ratio[i] < 1) 8945 sysctl_lowmem_reserve_ratio[i] = 0; 8946 } 8947 8948 setup_per_zone_lowmem_reserve(); 8949 return 0; 8950 } 8951 8952 /* 8953 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8954 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8955 * pagelist can have before it gets flushed back to buddy allocator. 8956 */ 8957 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8958 int write, void *buffer, size_t *length, loff_t *ppos) 8959 { 8960 struct zone *zone; 8961 int old_percpu_pagelist_high_fraction; 8962 int ret; 8963 8964 mutex_lock(&pcp_batch_high_lock); 8965 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8966 8967 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8968 if (!write || ret < 0) 8969 goto out; 8970 8971 /* Sanity checking to avoid pcp imbalance */ 8972 if (percpu_pagelist_high_fraction && 8973 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8974 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8975 ret = -EINVAL; 8976 goto out; 8977 } 8978 8979 /* No change? */ 8980 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8981 goto out; 8982 8983 for_each_populated_zone(zone) 8984 zone_set_pageset_high_and_batch(zone, 0); 8985 out: 8986 mutex_unlock(&pcp_batch_high_lock); 8987 return ret; 8988 } 8989 8990 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8991 /* 8992 * Returns the number of pages that arch has reserved but 8993 * is not known to alloc_large_system_hash(). 8994 */ 8995 static unsigned long __init arch_reserved_kernel_pages(void) 8996 { 8997 return 0; 8998 } 8999 #endif 9000 9001 /* 9002 * Adaptive scale is meant to reduce sizes of hash tables on large memory 9003 * machines. As memory size is increased the scale is also increased but at 9004 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 9005 * quadruples the scale is increased by one, which means the size of hash table 9006 * only doubles, instead of quadrupling as well. 9007 * Because 32-bit systems cannot have large physical memory, where this scaling 9008 * makes sense, it is disabled on such platforms. 9009 */ 9010 #if __BITS_PER_LONG > 32 9011 #define ADAPT_SCALE_BASE (64ul << 30) 9012 #define ADAPT_SCALE_SHIFT 2 9013 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 9014 #endif 9015 9016 /* 9017 * allocate a large system hash table from bootmem 9018 * - it is assumed that the hash table must contain an exact power-of-2 9019 * quantity of entries 9020 * - limit is the number of hash buckets, not the total allocation size 9021 */ 9022 void *__init alloc_large_system_hash(const char *tablename, 9023 unsigned long bucketsize, 9024 unsigned long numentries, 9025 int scale, 9026 int flags, 9027 unsigned int *_hash_shift, 9028 unsigned int *_hash_mask, 9029 unsigned long low_limit, 9030 unsigned long high_limit) 9031 { 9032 unsigned long long max = high_limit; 9033 unsigned long log2qty, size; 9034 void *table; 9035 gfp_t gfp_flags; 9036 bool virt; 9037 bool huge; 9038 9039 /* allow the kernel cmdline to have a say */ 9040 if (!numentries) { 9041 /* round applicable memory size up to nearest megabyte */ 9042 numentries = nr_kernel_pages; 9043 numentries -= arch_reserved_kernel_pages(); 9044 9045 /* It isn't necessary when PAGE_SIZE >= 1MB */ 9046 if (PAGE_SHIFT < 20) 9047 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 9048 9049 #if __BITS_PER_LONG > 32 9050 if (!high_limit) { 9051 unsigned long adapt; 9052 9053 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 9054 adapt <<= ADAPT_SCALE_SHIFT) 9055 scale++; 9056 } 9057 #endif 9058 9059 /* limit to 1 bucket per 2^scale bytes of low memory */ 9060 if (scale > PAGE_SHIFT) 9061 numentries >>= (scale - PAGE_SHIFT); 9062 else 9063 numentries <<= (PAGE_SHIFT - scale); 9064 9065 /* Make sure we've got at least a 0-order allocation.. */ 9066 if (unlikely(flags & HASH_SMALL)) { 9067 /* Makes no sense without HASH_EARLY */ 9068 WARN_ON(!(flags & HASH_EARLY)); 9069 if (!(numentries >> *_hash_shift)) { 9070 numentries = 1UL << *_hash_shift; 9071 BUG_ON(!numentries); 9072 } 9073 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 9074 numentries = PAGE_SIZE / bucketsize; 9075 } 9076 numentries = roundup_pow_of_two(numentries); 9077 9078 /* limit allocation size to 1/16 total memory by default */ 9079 if (max == 0) { 9080 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 9081 do_div(max, bucketsize); 9082 } 9083 max = min(max, 0x80000000ULL); 9084 9085 if (numentries < low_limit) 9086 numentries = low_limit; 9087 if (numentries > max) 9088 numentries = max; 9089 9090 log2qty = ilog2(numentries); 9091 9092 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 9093 do { 9094 virt = false; 9095 size = bucketsize << log2qty; 9096 if (flags & HASH_EARLY) { 9097 if (flags & HASH_ZERO) 9098 table = memblock_alloc(size, SMP_CACHE_BYTES); 9099 else 9100 table = memblock_alloc_raw(size, 9101 SMP_CACHE_BYTES); 9102 } else if (get_order(size) >= MAX_ORDER || hashdist) { 9103 table = vmalloc_huge(size, gfp_flags); 9104 virt = true; 9105 if (table) 9106 huge = is_vm_area_hugepages(table); 9107 } else { 9108 /* 9109 * If bucketsize is not a power-of-two, we may free 9110 * some pages at the end of hash table which 9111 * alloc_pages_exact() automatically does 9112 */ 9113 table = alloc_pages_exact(size, gfp_flags); 9114 kmemleak_alloc(table, size, 1, gfp_flags); 9115 } 9116 } while (!table && size > PAGE_SIZE && --log2qty); 9117 9118 if (!table) 9119 panic("Failed to allocate %s hash table\n", tablename); 9120 9121 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 9122 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 9123 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 9124 9125 if (_hash_shift) 9126 *_hash_shift = log2qty; 9127 if (_hash_mask) 9128 *_hash_mask = (1 << log2qty) - 1; 9129 9130 return table; 9131 } 9132 9133 #ifdef CONFIG_CONTIG_ALLOC 9134 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9135 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9136 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9137 static void alloc_contig_dump_pages(struct list_head *page_list) 9138 { 9139 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9140 9141 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9142 struct page *page; 9143 9144 dump_stack(); 9145 list_for_each_entry(page, page_list, lru) 9146 dump_page(page, "migration failure"); 9147 } 9148 } 9149 #else 9150 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9151 { 9152 } 9153 #endif 9154 9155 /* [start, end) must belong to a single zone. */ 9156 int __alloc_contig_migrate_range(struct compact_control *cc, 9157 unsigned long start, unsigned long end) 9158 { 9159 /* This function is based on compact_zone() from compaction.c. */ 9160 unsigned int nr_reclaimed; 9161 unsigned long pfn = start; 9162 unsigned int tries = 0; 9163 int ret = 0; 9164 struct migration_target_control mtc = { 9165 .nid = zone_to_nid(cc->zone), 9166 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9167 }; 9168 9169 lru_cache_disable(); 9170 9171 while (pfn < end || !list_empty(&cc->migratepages)) { 9172 if (fatal_signal_pending(current)) { 9173 ret = -EINTR; 9174 break; 9175 } 9176 9177 if (list_empty(&cc->migratepages)) { 9178 cc->nr_migratepages = 0; 9179 ret = isolate_migratepages_range(cc, pfn, end); 9180 if (ret && ret != -EAGAIN) 9181 break; 9182 pfn = cc->migrate_pfn; 9183 tries = 0; 9184 } else if (++tries == 5) { 9185 ret = -EBUSY; 9186 break; 9187 } 9188 9189 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9190 &cc->migratepages); 9191 cc->nr_migratepages -= nr_reclaimed; 9192 9193 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9194 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9195 9196 /* 9197 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9198 * to retry again over this error, so do the same here. 9199 */ 9200 if (ret == -ENOMEM) 9201 break; 9202 } 9203 9204 lru_cache_enable(); 9205 if (ret < 0) { 9206 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9207 alloc_contig_dump_pages(&cc->migratepages); 9208 putback_movable_pages(&cc->migratepages); 9209 return ret; 9210 } 9211 return 0; 9212 } 9213 9214 /** 9215 * alloc_contig_range() -- tries to allocate given range of pages 9216 * @start: start PFN to allocate 9217 * @end: one-past-the-last PFN to allocate 9218 * @migratetype: migratetype of the underlying pageblocks (either 9219 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9220 * in range must have the same migratetype and it must 9221 * be either of the two. 9222 * @gfp_mask: GFP mask to use during compaction 9223 * 9224 * The PFN range does not have to be pageblock aligned. The PFN range must 9225 * belong to a single zone. 9226 * 9227 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9228 * pageblocks in the range. Once isolated, the pageblocks should not 9229 * be modified by others. 9230 * 9231 * Return: zero on success or negative error code. On success all 9232 * pages which PFN is in [start, end) are allocated for the caller and 9233 * need to be freed with free_contig_range(). 9234 */ 9235 int alloc_contig_range(unsigned long start, unsigned long end, 9236 unsigned migratetype, gfp_t gfp_mask) 9237 { 9238 unsigned long outer_start, outer_end; 9239 int order; 9240 int ret = 0; 9241 9242 struct compact_control cc = { 9243 .nr_migratepages = 0, 9244 .order = -1, 9245 .zone = page_zone(pfn_to_page(start)), 9246 .mode = MIGRATE_SYNC, 9247 .ignore_skip_hint = true, 9248 .no_set_skip_hint = true, 9249 .gfp_mask = current_gfp_context(gfp_mask), 9250 .alloc_contig = true, 9251 }; 9252 INIT_LIST_HEAD(&cc.migratepages); 9253 9254 /* 9255 * What we do here is we mark all pageblocks in range as 9256 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9257 * have different sizes, and due to the way page allocator 9258 * work, start_isolate_page_range() has special handlings for this. 9259 * 9260 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9261 * migrate the pages from an unaligned range (ie. pages that 9262 * we are interested in). This will put all the pages in 9263 * range back to page allocator as MIGRATE_ISOLATE. 9264 * 9265 * When this is done, we take the pages in range from page 9266 * allocator removing them from the buddy system. This way 9267 * page allocator will never consider using them. 9268 * 9269 * This lets us mark the pageblocks back as 9270 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9271 * aligned range but not in the unaligned, original range are 9272 * put back to page allocator so that buddy can use them. 9273 */ 9274 9275 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9276 if (ret) 9277 goto done; 9278 9279 drain_all_pages(cc.zone); 9280 9281 /* 9282 * In case of -EBUSY, we'd like to know which page causes problem. 9283 * So, just fall through. test_pages_isolated() has a tracepoint 9284 * which will report the busy page. 9285 * 9286 * It is possible that busy pages could become available before 9287 * the call to test_pages_isolated, and the range will actually be 9288 * allocated. So, if we fall through be sure to clear ret so that 9289 * -EBUSY is not accidentally used or returned to caller. 9290 */ 9291 ret = __alloc_contig_migrate_range(&cc, start, end); 9292 if (ret && ret != -EBUSY) 9293 goto done; 9294 ret = 0; 9295 9296 /* 9297 * Pages from [start, end) are within a pageblock_nr_pages 9298 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9299 * more, all pages in [start, end) are free in page allocator. 9300 * What we are going to do is to allocate all pages from 9301 * [start, end) (that is remove them from page allocator). 9302 * 9303 * The only problem is that pages at the beginning and at the 9304 * end of interesting range may be not aligned with pages that 9305 * page allocator holds, ie. they can be part of higher order 9306 * pages. Because of this, we reserve the bigger range and 9307 * once this is done free the pages we are not interested in. 9308 * 9309 * We don't have to hold zone->lock here because the pages are 9310 * isolated thus they won't get removed from buddy. 9311 */ 9312 9313 order = 0; 9314 outer_start = start; 9315 while (!PageBuddy(pfn_to_page(outer_start))) { 9316 if (++order >= MAX_ORDER) { 9317 outer_start = start; 9318 break; 9319 } 9320 outer_start &= ~0UL << order; 9321 } 9322 9323 if (outer_start != start) { 9324 order = buddy_order(pfn_to_page(outer_start)); 9325 9326 /* 9327 * outer_start page could be small order buddy page and 9328 * it doesn't include start page. Adjust outer_start 9329 * in this case to report failed page properly 9330 * on tracepoint in test_pages_isolated() 9331 */ 9332 if (outer_start + (1UL << order) <= start) 9333 outer_start = start; 9334 } 9335 9336 /* Make sure the range is really isolated. */ 9337 if (test_pages_isolated(outer_start, end, 0)) { 9338 ret = -EBUSY; 9339 goto done; 9340 } 9341 9342 /* Grab isolated pages from freelists. */ 9343 outer_end = isolate_freepages_range(&cc, outer_start, end); 9344 if (!outer_end) { 9345 ret = -EBUSY; 9346 goto done; 9347 } 9348 9349 /* Free head and tail (if any) */ 9350 if (start != outer_start) 9351 free_contig_range(outer_start, start - outer_start); 9352 if (end != outer_end) 9353 free_contig_range(end, outer_end - end); 9354 9355 done: 9356 undo_isolate_page_range(start, end, migratetype); 9357 return ret; 9358 } 9359 EXPORT_SYMBOL(alloc_contig_range); 9360 9361 static int __alloc_contig_pages(unsigned long start_pfn, 9362 unsigned long nr_pages, gfp_t gfp_mask) 9363 { 9364 unsigned long end_pfn = start_pfn + nr_pages; 9365 9366 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9367 gfp_mask); 9368 } 9369 9370 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9371 unsigned long nr_pages) 9372 { 9373 unsigned long i, end_pfn = start_pfn + nr_pages; 9374 struct page *page; 9375 9376 for (i = start_pfn; i < end_pfn; i++) { 9377 page = pfn_to_online_page(i); 9378 if (!page) 9379 return false; 9380 9381 if (page_zone(page) != z) 9382 return false; 9383 9384 if (PageReserved(page)) 9385 return false; 9386 } 9387 return true; 9388 } 9389 9390 static bool zone_spans_last_pfn(const struct zone *zone, 9391 unsigned long start_pfn, unsigned long nr_pages) 9392 { 9393 unsigned long last_pfn = start_pfn + nr_pages - 1; 9394 9395 return zone_spans_pfn(zone, last_pfn); 9396 } 9397 9398 /** 9399 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9400 * @nr_pages: Number of contiguous pages to allocate 9401 * @gfp_mask: GFP mask to limit search and used during compaction 9402 * @nid: Target node 9403 * @nodemask: Mask for other possible nodes 9404 * 9405 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9406 * on an applicable zonelist to find a contiguous pfn range which can then be 9407 * tried for allocation with alloc_contig_range(). This routine is intended 9408 * for allocation requests which can not be fulfilled with the buddy allocator. 9409 * 9410 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9411 * power of two, then allocated range is also guaranteed to be aligned to same 9412 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9413 * 9414 * Allocated pages can be freed with free_contig_range() or by manually calling 9415 * __free_page() on each allocated page. 9416 * 9417 * Return: pointer to contiguous pages on success, or NULL if not successful. 9418 */ 9419 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9420 int nid, nodemask_t *nodemask) 9421 { 9422 unsigned long ret, pfn, flags; 9423 struct zonelist *zonelist; 9424 struct zone *zone; 9425 struct zoneref *z; 9426 9427 zonelist = node_zonelist(nid, gfp_mask); 9428 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9429 gfp_zone(gfp_mask), nodemask) { 9430 spin_lock_irqsave(&zone->lock, flags); 9431 9432 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9433 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9434 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9435 /* 9436 * We release the zone lock here because 9437 * alloc_contig_range() will also lock the zone 9438 * at some point. If there's an allocation 9439 * spinning on this lock, it may win the race 9440 * and cause alloc_contig_range() to fail... 9441 */ 9442 spin_unlock_irqrestore(&zone->lock, flags); 9443 ret = __alloc_contig_pages(pfn, nr_pages, 9444 gfp_mask); 9445 if (!ret) 9446 return pfn_to_page(pfn); 9447 spin_lock_irqsave(&zone->lock, flags); 9448 } 9449 pfn += nr_pages; 9450 } 9451 spin_unlock_irqrestore(&zone->lock, flags); 9452 } 9453 return NULL; 9454 } 9455 #endif /* CONFIG_CONTIG_ALLOC */ 9456 9457 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9458 { 9459 unsigned long count = 0; 9460 9461 for (; nr_pages--; pfn++) { 9462 struct page *page = pfn_to_page(pfn); 9463 9464 count += page_count(page) != 1; 9465 __free_page(page); 9466 } 9467 WARN(count != 0, "%lu pages are still in use!\n", count); 9468 } 9469 EXPORT_SYMBOL(free_contig_range); 9470 9471 /* 9472 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9473 * page high values need to be recalculated. 9474 */ 9475 void zone_pcp_update(struct zone *zone, int cpu_online) 9476 { 9477 mutex_lock(&pcp_batch_high_lock); 9478 zone_set_pageset_high_and_batch(zone, cpu_online); 9479 mutex_unlock(&pcp_batch_high_lock); 9480 } 9481 9482 /* 9483 * Effectively disable pcplists for the zone by setting the high limit to 0 9484 * and draining all cpus. A concurrent page freeing on another CPU that's about 9485 * to put the page on pcplist will either finish before the drain and the page 9486 * will be drained, or observe the new high limit and skip the pcplist. 9487 * 9488 * Must be paired with a call to zone_pcp_enable(). 9489 */ 9490 void zone_pcp_disable(struct zone *zone) 9491 { 9492 mutex_lock(&pcp_batch_high_lock); 9493 __zone_set_pageset_high_and_batch(zone, 0, 1); 9494 __drain_all_pages(zone, true); 9495 } 9496 9497 void zone_pcp_enable(struct zone *zone) 9498 { 9499 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9500 mutex_unlock(&pcp_batch_high_lock); 9501 } 9502 9503 void zone_pcp_reset(struct zone *zone) 9504 { 9505 int cpu; 9506 struct per_cpu_zonestat *pzstats; 9507 9508 if (zone->per_cpu_pageset != &boot_pageset) { 9509 for_each_online_cpu(cpu) { 9510 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9511 drain_zonestat(zone, pzstats); 9512 } 9513 free_percpu(zone->per_cpu_pageset); 9514 free_percpu(zone->per_cpu_zonestats); 9515 zone->per_cpu_pageset = &boot_pageset; 9516 zone->per_cpu_zonestats = &boot_zonestats; 9517 } 9518 } 9519 9520 #ifdef CONFIG_MEMORY_HOTREMOVE 9521 /* 9522 * All pages in the range must be in a single zone, must not contain holes, 9523 * must span full sections, and must be isolated before calling this function. 9524 */ 9525 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9526 { 9527 unsigned long pfn = start_pfn; 9528 struct page *page; 9529 struct zone *zone; 9530 unsigned int order; 9531 unsigned long flags; 9532 9533 offline_mem_sections(pfn, end_pfn); 9534 zone = page_zone(pfn_to_page(pfn)); 9535 spin_lock_irqsave(&zone->lock, flags); 9536 while (pfn < end_pfn) { 9537 page = pfn_to_page(pfn); 9538 /* 9539 * The HWPoisoned page may be not in buddy system, and 9540 * page_count() is not 0. 9541 */ 9542 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9543 pfn++; 9544 continue; 9545 } 9546 /* 9547 * At this point all remaining PageOffline() pages have a 9548 * reference count of 0 and can simply be skipped. 9549 */ 9550 if (PageOffline(page)) { 9551 BUG_ON(page_count(page)); 9552 BUG_ON(PageBuddy(page)); 9553 pfn++; 9554 continue; 9555 } 9556 9557 BUG_ON(page_count(page)); 9558 BUG_ON(!PageBuddy(page)); 9559 order = buddy_order(page); 9560 del_page_from_free_list(page, zone, order); 9561 pfn += (1 << order); 9562 } 9563 spin_unlock_irqrestore(&zone->lock, flags); 9564 } 9565 #endif 9566 9567 /* 9568 * This function returns a stable result only if called under zone lock. 9569 */ 9570 bool is_free_buddy_page(struct page *page) 9571 { 9572 unsigned long pfn = page_to_pfn(page); 9573 unsigned int order; 9574 9575 for (order = 0; order < MAX_ORDER; order++) { 9576 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9577 9578 if (PageBuddy(page_head) && 9579 buddy_order_unsafe(page_head) >= order) 9580 break; 9581 } 9582 9583 return order < MAX_ORDER; 9584 } 9585 EXPORT_SYMBOL(is_free_buddy_page); 9586 9587 #ifdef CONFIG_MEMORY_FAILURE 9588 /* 9589 * Break down a higher-order page in sub-pages, and keep our target out of 9590 * buddy allocator. 9591 */ 9592 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9593 struct page *target, int low, int high, 9594 int migratetype) 9595 { 9596 unsigned long size = 1 << high; 9597 struct page *current_buddy, *next_page; 9598 9599 while (high > low) { 9600 high--; 9601 size >>= 1; 9602 9603 if (target >= &page[size]) { 9604 next_page = page + size; 9605 current_buddy = page; 9606 } else { 9607 next_page = page; 9608 current_buddy = page + size; 9609 } 9610 9611 if (set_page_guard(zone, current_buddy, high, migratetype)) 9612 continue; 9613 9614 if (current_buddy != target) { 9615 add_to_free_list(current_buddy, zone, high, migratetype); 9616 set_buddy_order(current_buddy, high); 9617 page = next_page; 9618 } 9619 } 9620 } 9621 9622 /* 9623 * Take a page that will be marked as poisoned off the buddy allocator. 9624 */ 9625 bool take_page_off_buddy(struct page *page) 9626 { 9627 struct zone *zone = page_zone(page); 9628 unsigned long pfn = page_to_pfn(page); 9629 unsigned long flags; 9630 unsigned int order; 9631 bool ret = false; 9632 9633 spin_lock_irqsave(&zone->lock, flags); 9634 for (order = 0; order < MAX_ORDER; order++) { 9635 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9636 int page_order = buddy_order(page_head); 9637 9638 if (PageBuddy(page_head) && page_order >= order) { 9639 unsigned long pfn_head = page_to_pfn(page_head); 9640 int migratetype = get_pfnblock_migratetype(page_head, 9641 pfn_head); 9642 9643 del_page_from_free_list(page_head, zone, page_order); 9644 break_down_buddy_pages(zone, page_head, page, 0, 9645 page_order, migratetype); 9646 SetPageHWPoisonTakenOff(page); 9647 if (!is_migrate_isolate(migratetype)) 9648 __mod_zone_freepage_state(zone, -1, migratetype); 9649 ret = true; 9650 break; 9651 } 9652 if (page_count(page_head) > 0) 9653 break; 9654 } 9655 spin_unlock_irqrestore(&zone->lock, flags); 9656 return ret; 9657 } 9658 9659 /* 9660 * Cancel takeoff done by take_page_off_buddy(). 9661 */ 9662 bool put_page_back_buddy(struct page *page) 9663 { 9664 struct zone *zone = page_zone(page); 9665 unsigned long pfn = page_to_pfn(page); 9666 unsigned long flags; 9667 int migratetype = get_pfnblock_migratetype(page, pfn); 9668 bool ret = false; 9669 9670 spin_lock_irqsave(&zone->lock, flags); 9671 if (put_page_testzero(page)) { 9672 ClearPageHWPoisonTakenOff(page); 9673 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9674 if (TestClearPageHWPoison(page)) { 9675 ret = true; 9676 } 9677 } 9678 spin_unlock_irqrestore(&zone->lock, flags); 9679 9680 return ret; 9681 } 9682 #endif 9683 9684 #ifdef CONFIG_ZONE_DMA 9685 bool has_managed_dma(void) 9686 { 9687 struct pglist_data *pgdat; 9688 9689 for_each_online_pgdat(pgdat) { 9690 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9691 9692 if (managed_zone(zone)) 9693 return true; 9694 } 9695 return false; 9696 } 9697 #endif /* CONFIG_ZONE_DMA */ 9698