xref: /linux/mm/page_alloc.c (revision 3c206509826094e85ead0b056f484db96829248d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 #include "swap.h"
86 
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
89 
90 /* No special request */
91 #define FPI_NONE		((__force fpi_t)0)
92 
93 /*
94  * Skip free page reporting notification for the (possibly merged) page.
95  * This does not hinder free page reporting from grabbing the page,
96  * reporting it and marking it "reported" -  it only skips notifying
97  * the free page reporting infrastructure about a newly freed page. For
98  * example, used when temporarily pulling a page from a freelist and
99  * putting it back unmodified.
100  */
101 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
102 
103 /*
104  * Place the (possibly merged) page to the tail of the freelist. Will ignore
105  * page shuffling (relevant code - e.g., memory onlining - is expected to
106  * shuffle the whole zone).
107  *
108  * Note: No code should rely on this flag for correctness - it's purely
109  *       to allow for optimizations when handing back either fresh pages
110  *       (memory onlining) or untouched pages (page isolation, free page
111  *       reporting).
112  */
113 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
114 
115 /*
116  * Don't poison memory with KASAN (only for the tag-based modes).
117  * During boot, all non-reserved memblock memory is exposed to page_alloc.
118  * Poisoning all that memory lengthens boot time, especially on systems with
119  * large amount of RAM. This flag is used to skip that poisoning.
120  * This is only done for the tag-based KASAN modes, as those are able to
121  * detect memory corruptions with the memory tags assigned by default.
122  * All memory allocated normally after boot gets poisoned as usual.
123  */
124 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
125 
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 /*
132  * On SMP, spin_trylock is sufficient protection.
133  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134  */
135 #define pcp_trylock_prepare(flags)	do { } while (0)
136 #define pcp_trylock_finish(flag)	do { } while (0)
137 #else
138 
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
141 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
142 #endif
143 
144 /*
145  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146  * a migration causing the wrong PCP to be locked and remote memory being
147  * potentially allocated, pin the task to the CPU for the lookup+lock.
148  * preempt_disable is used on !RT because it is faster than migrate_disable.
149  * migrate_disable is used on RT because otherwise RT spinlock usage is
150  * interfered with and a high priority task cannot preempt the allocator.
151  */
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin()		preempt_disable()
154 #define pcpu_task_unpin()	preempt_enable()
155 #else
156 #define pcpu_task_pin()		migrate_disable()
157 #define pcpu_task_unpin()	migrate_enable()
158 #endif
159 
160 /*
161  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162  * Return value should be used with equivalent unlock helper.
163  */
164 #define pcpu_spin_lock(type, member, ptr)				\
165 ({									\
166 	type *_ret;							\
167 	pcpu_task_pin();						\
168 	_ret = this_cpu_ptr(ptr);					\
169 	spin_lock(&_ret->member);					\
170 	_ret;								\
171 })
172 
173 #define pcpu_spin_lock_irqsave(type, member, ptr, flags)		\
174 ({									\
175 	type *_ret;							\
176 	pcpu_task_pin();						\
177 	_ret = this_cpu_ptr(ptr);					\
178 	spin_lock_irqsave(&_ret->member, flags);			\
179 	_ret;								\
180 })
181 
182 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags)		\
183 ({									\
184 	type *_ret;							\
185 	pcpu_task_pin();						\
186 	_ret = this_cpu_ptr(ptr);					\
187 	if (!spin_trylock_irqsave(&_ret->member, flags)) {		\
188 		pcpu_task_unpin();					\
189 		_ret = NULL;						\
190 	}								\
191 	_ret;								\
192 })
193 
194 #define pcpu_spin_unlock(member, ptr)					\
195 ({									\
196 	spin_unlock(&ptr->member);					\
197 	pcpu_task_unpin();						\
198 })
199 
200 #define pcpu_spin_unlock_irqrestore(member, ptr, flags)			\
201 ({									\
202 	spin_unlock_irqrestore(&ptr->member, flags);			\
203 	pcpu_task_unpin();						\
204 })
205 
206 /* struct per_cpu_pages specific helpers. */
207 #define pcp_spin_lock(ptr)						\
208 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
209 
210 #define pcp_spin_lock_irqsave(ptr, flags)				\
211 	pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
212 
213 #define pcp_spin_trylock_irqsave(ptr, flags)				\
214 	pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
215 
216 #define pcp_spin_unlock(ptr)						\
217 	pcpu_spin_unlock(lock, ptr)
218 
219 #define pcp_spin_unlock_irqrestore(ptr, flags)				\
220 	pcpu_spin_unlock_irqrestore(lock, ptr, flags)
221 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
222 DEFINE_PER_CPU(int, numa_node);
223 EXPORT_PER_CPU_SYMBOL(numa_node);
224 #endif
225 
226 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
227 
228 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
229 /*
230  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
231  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
232  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
233  * defined in <linux/topology.h>.
234  */
235 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
236 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
237 #endif
238 
239 static DEFINE_MUTEX(pcpu_drain_mutex);
240 
241 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
242 volatile unsigned long latent_entropy __latent_entropy;
243 EXPORT_SYMBOL(latent_entropy);
244 #endif
245 
246 /*
247  * Array of node states.
248  */
249 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
250 	[N_POSSIBLE] = NODE_MASK_ALL,
251 	[N_ONLINE] = { { [0] = 1UL } },
252 #ifndef CONFIG_NUMA
253 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
254 #ifdef CONFIG_HIGHMEM
255 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
256 #endif
257 	[N_MEMORY] = { { [0] = 1UL } },
258 	[N_CPU] = { { [0] = 1UL } },
259 #endif	/* NUMA */
260 };
261 EXPORT_SYMBOL(node_states);
262 
263 atomic_long_t _totalram_pages __read_mostly;
264 EXPORT_SYMBOL(_totalram_pages);
265 unsigned long totalreserve_pages __read_mostly;
266 unsigned long totalcma_pages __read_mostly;
267 
268 int percpu_pagelist_high_fraction;
269 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
270 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
271 EXPORT_SYMBOL(init_on_alloc);
272 
273 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
274 EXPORT_SYMBOL(init_on_free);
275 
276 static bool _init_on_alloc_enabled_early __read_mostly
277 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
278 static int __init early_init_on_alloc(char *buf)
279 {
280 
281 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
282 }
283 early_param("init_on_alloc", early_init_on_alloc);
284 
285 static bool _init_on_free_enabled_early __read_mostly
286 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
287 static int __init early_init_on_free(char *buf)
288 {
289 	return kstrtobool(buf, &_init_on_free_enabled_early);
290 }
291 early_param("init_on_free", early_init_on_free);
292 
293 /*
294  * A cached value of the page's pageblock's migratetype, used when the page is
295  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
296  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
297  * Also the migratetype set in the page does not necessarily match the pcplist
298  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
299  * other index - this ensures that it will be put on the correct CMA freelist.
300  */
301 static inline int get_pcppage_migratetype(struct page *page)
302 {
303 	return page->index;
304 }
305 
306 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
307 {
308 	page->index = migratetype;
309 }
310 
311 #ifdef CONFIG_PM_SLEEP
312 /*
313  * The following functions are used by the suspend/hibernate code to temporarily
314  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
315  * while devices are suspended.  To avoid races with the suspend/hibernate code,
316  * they should always be called with system_transition_mutex held
317  * (gfp_allowed_mask also should only be modified with system_transition_mutex
318  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
319  * with that modification).
320  */
321 
322 static gfp_t saved_gfp_mask;
323 
324 void pm_restore_gfp_mask(void)
325 {
326 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
327 	if (saved_gfp_mask) {
328 		gfp_allowed_mask = saved_gfp_mask;
329 		saved_gfp_mask = 0;
330 	}
331 }
332 
333 void pm_restrict_gfp_mask(void)
334 {
335 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
336 	WARN_ON(saved_gfp_mask);
337 	saved_gfp_mask = gfp_allowed_mask;
338 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
339 }
340 
341 bool pm_suspended_storage(void)
342 {
343 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
344 		return false;
345 	return true;
346 }
347 #endif /* CONFIG_PM_SLEEP */
348 
349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
350 unsigned int pageblock_order __read_mostly;
351 #endif
352 
353 static void __free_pages_ok(struct page *page, unsigned int order,
354 			    fpi_t fpi_flags);
355 
356 /*
357  * results with 256, 32 in the lowmem_reserve sysctl:
358  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
359  *	1G machine -> (16M dma, 784M normal, 224M high)
360  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
361  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
362  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
363  *
364  * TBD: should special case ZONE_DMA32 machines here - in those we normally
365  * don't need any ZONE_NORMAL reservation
366  */
367 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
368 #ifdef CONFIG_ZONE_DMA
369 	[ZONE_DMA] = 256,
370 #endif
371 #ifdef CONFIG_ZONE_DMA32
372 	[ZONE_DMA32] = 256,
373 #endif
374 	[ZONE_NORMAL] = 32,
375 #ifdef CONFIG_HIGHMEM
376 	[ZONE_HIGHMEM] = 0,
377 #endif
378 	[ZONE_MOVABLE] = 0,
379 };
380 
381 static char * const zone_names[MAX_NR_ZONES] = {
382 #ifdef CONFIG_ZONE_DMA
383 	 "DMA",
384 #endif
385 #ifdef CONFIG_ZONE_DMA32
386 	 "DMA32",
387 #endif
388 	 "Normal",
389 #ifdef CONFIG_HIGHMEM
390 	 "HighMem",
391 #endif
392 	 "Movable",
393 #ifdef CONFIG_ZONE_DEVICE
394 	 "Device",
395 #endif
396 };
397 
398 const char * const migratetype_names[MIGRATE_TYPES] = {
399 	"Unmovable",
400 	"Movable",
401 	"Reclaimable",
402 	"HighAtomic",
403 #ifdef CONFIG_CMA
404 	"CMA",
405 #endif
406 #ifdef CONFIG_MEMORY_ISOLATION
407 	"Isolate",
408 #endif
409 };
410 
411 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
412 	[NULL_COMPOUND_DTOR] = NULL,
413 	[COMPOUND_PAGE_DTOR] = free_compound_page,
414 #ifdef CONFIG_HUGETLB_PAGE
415 	[HUGETLB_PAGE_DTOR] = free_huge_page,
416 #endif
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
419 #endif
420 };
421 
422 int min_free_kbytes = 1024;
423 int user_min_free_kbytes = -1;
424 int watermark_boost_factor __read_mostly = 15000;
425 int watermark_scale_factor = 10;
426 
427 static unsigned long nr_kernel_pages __initdata;
428 static unsigned long nr_all_pages __initdata;
429 static unsigned long dma_reserve __initdata;
430 
431 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
433 static unsigned long required_kernelcore __initdata;
434 static unsigned long required_kernelcore_percent __initdata;
435 static unsigned long required_movablecore __initdata;
436 static unsigned long required_movablecore_percent __initdata;
437 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
438 bool mirrored_kernelcore __initdata_memblock;
439 
440 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
441 int movable_zone;
442 EXPORT_SYMBOL(movable_zone);
443 
444 #if MAX_NUMNODES > 1
445 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
446 unsigned int nr_online_nodes __read_mostly = 1;
447 EXPORT_SYMBOL(nr_node_ids);
448 EXPORT_SYMBOL(nr_online_nodes);
449 #endif
450 
451 int page_group_by_mobility_disabled __read_mostly;
452 
453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
454 /*
455  * During boot we initialize deferred pages on-demand, as needed, but once
456  * page_alloc_init_late() has finished, the deferred pages are all initialized,
457  * and we can permanently disable that path.
458  */
459 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
460 
461 static inline bool deferred_pages_enabled(void)
462 {
463 	return static_branch_unlikely(&deferred_pages);
464 }
465 
466 /* Returns true if the struct page for the pfn is uninitialised */
467 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
468 {
469 	int nid = early_pfn_to_nid(pfn);
470 
471 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
472 		return true;
473 
474 	return false;
475 }
476 
477 /*
478  * Returns true when the remaining initialisation should be deferred until
479  * later in the boot cycle when it can be parallelised.
480  */
481 static bool __meminit
482 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
483 {
484 	static unsigned long prev_end_pfn, nr_initialised;
485 
486 	if (early_page_ext_enabled())
487 		return false;
488 	/*
489 	 * prev_end_pfn static that contains the end of previous zone
490 	 * No need to protect because called very early in boot before smp_init.
491 	 */
492 	if (prev_end_pfn != end_pfn) {
493 		prev_end_pfn = end_pfn;
494 		nr_initialised = 0;
495 	}
496 
497 	/* Always populate low zones for address-constrained allocations */
498 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
499 		return false;
500 
501 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
502 		return true;
503 	/*
504 	 * We start only with one section of pages, more pages are added as
505 	 * needed until the rest of deferred pages are initialized.
506 	 */
507 	nr_initialised++;
508 	if ((nr_initialised > PAGES_PER_SECTION) &&
509 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
510 		NODE_DATA(nid)->first_deferred_pfn = pfn;
511 		return true;
512 	}
513 	return false;
514 }
515 #else
516 static inline bool deferred_pages_enabled(void)
517 {
518 	return false;
519 }
520 
521 static inline bool early_page_uninitialised(unsigned long pfn)
522 {
523 	return false;
524 }
525 
526 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
527 {
528 	return false;
529 }
530 #endif
531 
532 /* Return a pointer to the bitmap storing bits affecting a block of pages */
533 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
534 							unsigned long pfn)
535 {
536 #ifdef CONFIG_SPARSEMEM
537 	return section_to_usemap(__pfn_to_section(pfn));
538 #else
539 	return page_zone(page)->pageblock_flags;
540 #endif /* CONFIG_SPARSEMEM */
541 }
542 
543 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
544 {
545 #ifdef CONFIG_SPARSEMEM
546 	pfn &= (PAGES_PER_SECTION-1);
547 #else
548 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
549 #endif /* CONFIG_SPARSEMEM */
550 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
551 }
552 
553 static __always_inline
554 unsigned long __get_pfnblock_flags_mask(const struct page *page,
555 					unsigned long pfn,
556 					unsigned long mask)
557 {
558 	unsigned long *bitmap;
559 	unsigned long bitidx, word_bitidx;
560 	unsigned long word;
561 
562 	bitmap = get_pageblock_bitmap(page, pfn);
563 	bitidx = pfn_to_bitidx(page, pfn);
564 	word_bitidx = bitidx / BITS_PER_LONG;
565 	bitidx &= (BITS_PER_LONG-1);
566 	/*
567 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
568 	 * a consistent read of the memory array, so that results, even though
569 	 * racy, are not corrupted.
570 	 */
571 	word = READ_ONCE(bitmap[word_bitidx]);
572 	return (word >> bitidx) & mask;
573 }
574 
575 /**
576  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
577  * @page: The page within the block of interest
578  * @pfn: The target page frame number
579  * @mask: mask of bits that the caller is interested in
580  *
581  * Return: pageblock_bits flags
582  */
583 unsigned long get_pfnblock_flags_mask(const struct page *page,
584 					unsigned long pfn, unsigned long mask)
585 {
586 	return __get_pfnblock_flags_mask(page, pfn, mask);
587 }
588 
589 static __always_inline int get_pfnblock_migratetype(const struct page *page,
590 					unsigned long pfn)
591 {
592 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
593 }
594 
595 /**
596  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
597  * @page: The page within the block of interest
598  * @flags: The flags to set
599  * @pfn: The target page frame number
600  * @mask: mask of bits that the caller is interested in
601  */
602 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
603 					unsigned long pfn,
604 					unsigned long mask)
605 {
606 	unsigned long *bitmap;
607 	unsigned long bitidx, word_bitidx;
608 	unsigned long word;
609 
610 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
611 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
612 
613 	bitmap = get_pageblock_bitmap(page, pfn);
614 	bitidx = pfn_to_bitidx(page, pfn);
615 	word_bitidx = bitidx / BITS_PER_LONG;
616 	bitidx &= (BITS_PER_LONG-1);
617 
618 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
619 
620 	mask <<= bitidx;
621 	flags <<= bitidx;
622 
623 	word = READ_ONCE(bitmap[word_bitidx]);
624 	do {
625 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
626 }
627 
628 void set_pageblock_migratetype(struct page *page, int migratetype)
629 {
630 	if (unlikely(page_group_by_mobility_disabled &&
631 		     migratetype < MIGRATE_PCPTYPES))
632 		migratetype = MIGRATE_UNMOVABLE;
633 
634 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
635 				page_to_pfn(page), MIGRATETYPE_MASK);
636 }
637 
638 #ifdef CONFIG_DEBUG_VM
639 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
640 {
641 	int ret = 0;
642 	unsigned seq;
643 	unsigned long pfn = page_to_pfn(page);
644 	unsigned long sp, start_pfn;
645 
646 	do {
647 		seq = zone_span_seqbegin(zone);
648 		start_pfn = zone->zone_start_pfn;
649 		sp = zone->spanned_pages;
650 		if (!zone_spans_pfn(zone, pfn))
651 			ret = 1;
652 	} while (zone_span_seqretry(zone, seq));
653 
654 	if (ret)
655 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
656 			pfn, zone_to_nid(zone), zone->name,
657 			start_pfn, start_pfn + sp);
658 
659 	return ret;
660 }
661 
662 static int page_is_consistent(struct zone *zone, struct page *page)
663 {
664 	if (zone != page_zone(page))
665 		return 0;
666 
667 	return 1;
668 }
669 /*
670  * Temporary debugging check for pages not lying within a given zone.
671  */
672 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
673 {
674 	if (page_outside_zone_boundaries(zone, page))
675 		return 1;
676 	if (!page_is_consistent(zone, page))
677 		return 1;
678 
679 	return 0;
680 }
681 #else
682 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
683 {
684 	return 0;
685 }
686 #endif
687 
688 static void bad_page(struct page *page, const char *reason)
689 {
690 	static unsigned long resume;
691 	static unsigned long nr_shown;
692 	static unsigned long nr_unshown;
693 
694 	/*
695 	 * Allow a burst of 60 reports, then keep quiet for that minute;
696 	 * or allow a steady drip of one report per second.
697 	 */
698 	if (nr_shown == 60) {
699 		if (time_before(jiffies, resume)) {
700 			nr_unshown++;
701 			goto out;
702 		}
703 		if (nr_unshown) {
704 			pr_alert(
705 			      "BUG: Bad page state: %lu messages suppressed\n",
706 				nr_unshown);
707 			nr_unshown = 0;
708 		}
709 		nr_shown = 0;
710 	}
711 	if (nr_shown++ == 0)
712 		resume = jiffies + 60 * HZ;
713 
714 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
715 		current->comm, page_to_pfn(page));
716 	dump_page(page, reason);
717 
718 	print_modules();
719 	dump_stack();
720 out:
721 	/* Leave bad fields for debug, except PageBuddy could make trouble */
722 	page_mapcount_reset(page); /* remove PageBuddy */
723 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
724 }
725 
726 static inline unsigned int order_to_pindex(int migratetype, int order)
727 {
728 	int base = order;
729 
730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
732 		VM_BUG_ON(order != pageblock_order);
733 		return NR_LOWORDER_PCP_LISTS;
734 	}
735 #else
736 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
737 #endif
738 
739 	return (MIGRATE_PCPTYPES * base) + migratetype;
740 }
741 
742 static inline int pindex_to_order(unsigned int pindex)
743 {
744 	int order = pindex / MIGRATE_PCPTYPES;
745 
746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
747 	if (pindex == NR_LOWORDER_PCP_LISTS)
748 		order = pageblock_order;
749 #else
750 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
751 #endif
752 
753 	return order;
754 }
755 
756 static inline bool pcp_allowed_order(unsigned int order)
757 {
758 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
759 		return true;
760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
761 	if (order == pageblock_order)
762 		return true;
763 #endif
764 	return false;
765 }
766 
767 static inline void free_the_page(struct page *page, unsigned int order)
768 {
769 	if (pcp_allowed_order(order))		/* Via pcp? */
770 		free_unref_page(page, order);
771 	else
772 		__free_pages_ok(page, order, FPI_NONE);
773 }
774 
775 /*
776  * Higher-order pages are called "compound pages".  They are structured thusly:
777  *
778  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
779  *
780  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
781  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
782  *
783  * The first tail page's ->compound_dtor holds the offset in array of compound
784  * page destructors. See compound_page_dtors.
785  *
786  * The first tail page's ->compound_order holds the order of allocation.
787  * This usage means that zero-order pages may not be compound.
788  */
789 
790 void free_compound_page(struct page *page)
791 {
792 	mem_cgroup_uncharge(page_folio(page));
793 	free_the_page(page, compound_order(page));
794 }
795 
796 static void prep_compound_head(struct page *page, unsigned int order)
797 {
798 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
799 	set_compound_order(page, order);
800 	atomic_set(compound_mapcount_ptr(page), -1);
801 	atomic_set(compound_pincount_ptr(page), 0);
802 }
803 
804 static void prep_compound_tail(struct page *head, int tail_idx)
805 {
806 	struct page *p = head + tail_idx;
807 
808 	p->mapping = TAIL_MAPPING;
809 	set_compound_head(p, head);
810 }
811 
812 void prep_compound_page(struct page *page, unsigned int order)
813 {
814 	int i;
815 	int nr_pages = 1 << order;
816 
817 	__SetPageHead(page);
818 	for (i = 1; i < nr_pages; i++)
819 		prep_compound_tail(page, i);
820 
821 	prep_compound_head(page, order);
822 }
823 
824 void destroy_large_folio(struct folio *folio)
825 {
826 	enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
827 
828 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
829 	compound_page_dtors[dtor](&folio->page);
830 }
831 
832 #ifdef CONFIG_DEBUG_PAGEALLOC
833 unsigned int _debug_guardpage_minorder;
834 
835 bool _debug_pagealloc_enabled_early __read_mostly
836 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
837 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
838 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
839 EXPORT_SYMBOL(_debug_pagealloc_enabled);
840 
841 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
842 
843 static int __init early_debug_pagealloc(char *buf)
844 {
845 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
846 }
847 early_param("debug_pagealloc", early_debug_pagealloc);
848 
849 static int __init debug_guardpage_minorder_setup(char *buf)
850 {
851 	unsigned long res;
852 
853 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
854 		pr_err("Bad debug_guardpage_minorder value\n");
855 		return 0;
856 	}
857 	_debug_guardpage_minorder = res;
858 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
859 	return 0;
860 }
861 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
862 
863 static inline bool set_page_guard(struct zone *zone, struct page *page,
864 				unsigned int order, int migratetype)
865 {
866 	if (!debug_guardpage_enabled())
867 		return false;
868 
869 	if (order >= debug_guardpage_minorder())
870 		return false;
871 
872 	__SetPageGuard(page);
873 	INIT_LIST_HEAD(&page->buddy_list);
874 	set_page_private(page, order);
875 	/* Guard pages are not available for any usage */
876 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
877 
878 	return true;
879 }
880 
881 static inline void clear_page_guard(struct zone *zone, struct page *page,
882 				unsigned int order, int migratetype)
883 {
884 	if (!debug_guardpage_enabled())
885 		return;
886 
887 	__ClearPageGuard(page);
888 
889 	set_page_private(page, 0);
890 	if (!is_migrate_isolate(migratetype))
891 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
892 }
893 #else
894 static inline bool set_page_guard(struct zone *zone, struct page *page,
895 			unsigned int order, int migratetype) { return false; }
896 static inline void clear_page_guard(struct zone *zone, struct page *page,
897 				unsigned int order, int migratetype) {}
898 #endif
899 
900 /*
901  * Enable static keys related to various memory debugging and hardening options.
902  * Some override others, and depend on early params that are evaluated in the
903  * order of appearance. So we need to first gather the full picture of what was
904  * enabled, and then make decisions.
905  */
906 void init_mem_debugging_and_hardening(void)
907 {
908 	bool page_poisoning_requested = false;
909 
910 #ifdef CONFIG_PAGE_POISONING
911 	/*
912 	 * Page poisoning is debug page alloc for some arches. If
913 	 * either of those options are enabled, enable poisoning.
914 	 */
915 	if (page_poisoning_enabled() ||
916 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
917 	      debug_pagealloc_enabled())) {
918 		static_branch_enable(&_page_poisoning_enabled);
919 		page_poisoning_requested = true;
920 	}
921 #endif
922 
923 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
924 	    page_poisoning_requested) {
925 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
926 			"will take precedence over init_on_alloc and init_on_free\n");
927 		_init_on_alloc_enabled_early = false;
928 		_init_on_free_enabled_early = false;
929 	}
930 
931 	if (_init_on_alloc_enabled_early)
932 		static_branch_enable(&init_on_alloc);
933 	else
934 		static_branch_disable(&init_on_alloc);
935 
936 	if (_init_on_free_enabled_early)
937 		static_branch_enable(&init_on_free);
938 	else
939 		static_branch_disable(&init_on_free);
940 
941 #ifdef CONFIG_DEBUG_PAGEALLOC
942 	if (!debug_pagealloc_enabled())
943 		return;
944 
945 	static_branch_enable(&_debug_pagealloc_enabled);
946 
947 	if (!debug_guardpage_minorder())
948 		return;
949 
950 	static_branch_enable(&_debug_guardpage_enabled);
951 #endif
952 }
953 
954 static inline void set_buddy_order(struct page *page, unsigned int order)
955 {
956 	set_page_private(page, order);
957 	__SetPageBuddy(page);
958 }
959 
960 #ifdef CONFIG_COMPACTION
961 static inline struct capture_control *task_capc(struct zone *zone)
962 {
963 	struct capture_control *capc = current->capture_control;
964 
965 	return unlikely(capc) &&
966 		!(current->flags & PF_KTHREAD) &&
967 		!capc->page &&
968 		capc->cc->zone == zone ? capc : NULL;
969 }
970 
971 static inline bool
972 compaction_capture(struct capture_control *capc, struct page *page,
973 		   int order, int migratetype)
974 {
975 	if (!capc || order != capc->cc->order)
976 		return false;
977 
978 	/* Do not accidentally pollute CMA or isolated regions*/
979 	if (is_migrate_cma(migratetype) ||
980 	    is_migrate_isolate(migratetype))
981 		return false;
982 
983 	/*
984 	 * Do not let lower order allocations pollute a movable pageblock.
985 	 * This might let an unmovable request use a reclaimable pageblock
986 	 * and vice-versa but no more than normal fallback logic which can
987 	 * have trouble finding a high-order free page.
988 	 */
989 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
990 		return false;
991 
992 	capc->page = page;
993 	return true;
994 }
995 
996 #else
997 static inline struct capture_control *task_capc(struct zone *zone)
998 {
999 	return NULL;
1000 }
1001 
1002 static inline bool
1003 compaction_capture(struct capture_control *capc, struct page *page,
1004 		   int order, int migratetype)
1005 {
1006 	return false;
1007 }
1008 #endif /* CONFIG_COMPACTION */
1009 
1010 /* Used for pages not on another list */
1011 static inline void add_to_free_list(struct page *page, struct zone *zone,
1012 				    unsigned int order, int migratetype)
1013 {
1014 	struct free_area *area = &zone->free_area[order];
1015 
1016 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1017 	area->nr_free++;
1018 }
1019 
1020 /* Used for pages not on another list */
1021 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1022 					 unsigned int order, int migratetype)
1023 {
1024 	struct free_area *area = &zone->free_area[order];
1025 
1026 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1027 	area->nr_free++;
1028 }
1029 
1030 /*
1031  * Used for pages which are on another list. Move the pages to the tail
1032  * of the list - so the moved pages won't immediately be considered for
1033  * allocation again (e.g., optimization for memory onlining).
1034  */
1035 static inline void move_to_free_list(struct page *page, struct zone *zone,
1036 				     unsigned int order, int migratetype)
1037 {
1038 	struct free_area *area = &zone->free_area[order];
1039 
1040 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1041 }
1042 
1043 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1044 					   unsigned int order)
1045 {
1046 	/* clear reported state and update reported page count */
1047 	if (page_reported(page))
1048 		__ClearPageReported(page);
1049 
1050 	list_del(&page->buddy_list);
1051 	__ClearPageBuddy(page);
1052 	set_page_private(page, 0);
1053 	zone->free_area[order].nr_free--;
1054 }
1055 
1056 /*
1057  * If this is not the largest possible page, check if the buddy
1058  * of the next-highest order is free. If it is, it's possible
1059  * that pages are being freed that will coalesce soon. In case,
1060  * that is happening, add the free page to the tail of the list
1061  * so it's less likely to be used soon and more likely to be merged
1062  * as a higher order page
1063  */
1064 static inline bool
1065 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1066 		   struct page *page, unsigned int order)
1067 {
1068 	unsigned long higher_page_pfn;
1069 	struct page *higher_page;
1070 
1071 	if (order >= MAX_ORDER - 2)
1072 		return false;
1073 
1074 	higher_page_pfn = buddy_pfn & pfn;
1075 	higher_page = page + (higher_page_pfn - pfn);
1076 
1077 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1078 			NULL) != NULL;
1079 }
1080 
1081 /*
1082  * Freeing function for a buddy system allocator.
1083  *
1084  * The concept of a buddy system is to maintain direct-mapped table
1085  * (containing bit values) for memory blocks of various "orders".
1086  * The bottom level table contains the map for the smallest allocatable
1087  * units of memory (here, pages), and each level above it describes
1088  * pairs of units from the levels below, hence, "buddies".
1089  * At a high level, all that happens here is marking the table entry
1090  * at the bottom level available, and propagating the changes upward
1091  * as necessary, plus some accounting needed to play nicely with other
1092  * parts of the VM system.
1093  * At each level, we keep a list of pages, which are heads of continuous
1094  * free pages of length of (1 << order) and marked with PageBuddy.
1095  * Page's order is recorded in page_private(page) field.
1096  * So when we are allocating or freeing one, we can derive the state of the
1097  * other.  That is, if we allocate a small block, and both were
1098  * free, the remainder of the region must be split into blocks.
1099  * If a block is freed, and its buddy is also free, then this
1100  * triggers coalescing into a block of larger size.
1101  *
1102  * -- nyc
1103  */
1104 
1105 static inline void __free_one_page(struct page *page,
1106 		unsigned long pfn,
1107 		struct zone *zone, unsigned int order,
1108 		int migratetype, fpi_t fpi_flags)
1109 {
1110 	struct capture_control *capc = task_capc(zone);
1111 	unsigned long buddy_pfn;
1112 	unsigned long combined_pfn;
1113 	struct page *buddy;
1114 	bool to_tail;
1115 
1116 	VM_BUG_ON(!zone_is_initialized(zone));
1117 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1118 
1119 	VM_BUG_ON(migratetype == -1);
1120 	if (likely(!is_migrate_isolate(migratetype)))
1121 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1122 
1123 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1124 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1125 
1126 	while (order < MAX_ORDER - 1) {
1127 		if (compaction_capture(capc, page, order, migratetype)) {
1128 			__mod_zone_freepage_state(zone, -(1 << order),
1129 								migratetype);
1130 			return;
1131 		}
1132 
1133 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1134 		if (!buddy)
1135 			goto done_merging;
1136 
1137 		if (unlikely(order >= pageblock_order)) {
1138 			/*
1139 			 * We want to prevent merge between freepages on pageblock
1140 			 * without fallbacks and normal pageblock. Without this,
1141 			 * pageblock isolation could cause incorrect freepage or CMA
1142 			 * accounting or HIGHATOMIC accounting.
1143 			 */
1144 			int buddy_mt = get_pageblock_migratetype(buddy);
1145 
1146 			if (migratetype != buddy_mt
1147 					&& (!migratetype_is_mergeable(migratetype) ||
1148 						!migratetype_is_mergeable(buddy_mt)))
1149 				goto done_merging;
1150 		}
1151 
1152 		/*
1153 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1154 		 * merge with it and move up one order.
1155 		 */
1156 		if (page_is_guard(buddy))
1157 			clear_page_guard(zone, buddy, order, migratetype);
1158 		else
1159 			del_page_from_free_list(buddy, zone, order);
1160 		combined_pfn = buddy_pfn & pfn;
1161 		page = page + (combined_pfn - pfn);
1162 		pfn = combined_pfn;
1163 		order++;
1164 	}
1165 
1166 done_merging:
1167 	set_buddy_order(page, order);
1168 
1169 	if (fpi_flags & FPI_TO_TAIL)
1170 		to_tail = true;
1171 	else if (is_shuffle_order(order))
1172 		to_tail = shuffle_pick_tail();
1173 	else
1174 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1175 
1176 	if (to_tail)
1177 		add_to_free_list_tail(page, zone, order, migratetype);
1178 	else
1179 		add_to_free_list(page, zone, order, migratetype);
1180 
1181 	/* Notify page reporting subsystem of freed page */
1182 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1183 		page_reporting_notify_free(order);
1184 }
1185 
1186 /**
1187  * split_free_page() -- split a free page at split_pfn_offset
1188  * @free_page:		the original free page
1189  * @order:		the order of the page
1190  * @split_pfn_offset:	split offset within the page
1191  *
1192  * Return -ENOENT if the free page is changed, otherwise 0
1193  *
1194  * It is used when the free page crosses two pageblocks with different migratetypes
1195  * at split_pfn_offset within the page. The split free page will be put into
1196  * separate migratetype lists afterwards. Otherwise, the function achieves
1197  * nothing.
1198  */
1199 int split_free_page(struct page *free_page,
1200 			unsigned int order, unsigned long split_pfn_offset)
1201 {
1202 	struct zone *zone = page_zone(free_page);
1203 	unsigned long free_page_pfn = page_to_pfn(free_page);
1204 	unsigned long pfn;
1205 	unsigned long flags;
1206 	int free_page_order;
1207 	int mt;
1208 	int ret = 0;
1209 
1210 	if (split_pfn_offset == 0)
1211 		return ret;
1212 
1213 	spin_lock_irqsave(&zone->lock, flags);
1214 
1215 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1216 		ret = -ENOENT;
1217 		goto out;
1218 	}
1219 
1220 	mt = get_pageblock_migratetype(free_page);
1221 	if (likely(!is_migrate_isolate(mt)))
1222 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1223 
1224 	del_page_from_free_list(free_page, zone, order);
1225 	for (pfn = free_page_pfn;
1226 	     pfn < free_page_pfn + (1UL << order);) {
1227 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1228 
1229 		free_page_order = min_t(unsigned int,
1230 					pfn ? __ffs(pfn) : order,
1231 					__fls(split_pfn_offset));
1232 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1233 				mt, FPI_NONE);
1234 		pfn += 1UL << free_page_order;
1235 		split_pfn_offset -= (1UL << free_page_order);
1236 		/* we have done the first part, now switch to second part */
1237 		if (split_pfn_offset == 0)
1238 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1239 	}
1240 out:
1241 	spin_unlock_irqrestore(&zone->lock, flags);
1242 	return ret;
1243 }
1244 /*
1245  * A bad page could be due to a number of fields. Instead of multiple branches,
1246  * try and check multiple fields with one check. The caller must do a detailed
1247  * check if necessary.
1248  */
1249 static inline bool page_expected_state(struct page *page,
1250 					unsigned long check_flags)
1251 {
1252 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1253 		return false;
1254 
1255 	if (unlikely((unsigned long)page->mapping |
1256 			page_ref_count(page) |
1257 #ifdef CONFIG_MEMCG
1258 			page->memcg_data |
1259 #endif
1260 			(page->flags & check_flags)))
1261 		return false;
1262 
1263 	return true;
1264 }
1265 
1266 static const char *page_bad_reason(struct page *page, unsigned long flags)
1267 {
1268 	const char *bad_reason = NULL;
1269 
1270 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1271 		bad_reason = "nonzero mapcount";
1272 	if (unlikely(page->mapping != NULL))
1273 		bad_reason = "non-NULL mapping";
1274 	if (unlikely(page_ref_count(page) != 0))
1275 		bad_reason = "nonzero _refcount";
1276 	if (unlikely(page->flags & flags)) {
1277 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1278 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1279 		else
1280 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1281 	}
1282 #ifdef CONFIG_MEMCG
1283 	if (unlikely(page->memcg_data))
1284 		bad_reason = "page still charged to cgroup";
1285 #endif
1286 	return bad_reason;
1287 }
1288 
1289 static void free_page_is_bad_report(struct page *page)
1290 {
1291 	bad_page(page,
1292 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1293 }
1294 
1295 static inline bool free_page_is_bad(struct page *page)
1296 {
1297 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1298 		return false;
1299 
1300 	/* Something has gone sideways, find it */
1301 	free_page_is_bad_report(page);
1302 	return true;
1303 }
1304 
1305 static int free_tail_pages_check(struct page *head_page, struct page *page)
1306 {
1307 	int ret = 1;
1308 
1309 	/*
1310 	 * We rely page->lru.next never has bit 0 set, unless the page
1311 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1312 	 */
1313 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1314 
1315 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1316 		ret = 0;
1317 		goto out;
1318 	}
1319 	switch (page - head_page) {
1320 	case 1:
1321 		/* the first tail page: ->mapping may be compound_mapcount() */
1322 		if (unlikely(compound_mapcount(page))) {
1323 			bad_page(page, "nonzero compound_mapcount");
1324 			goto out;
1325 		}
1326 		break;
1327 	case 2:
1328 		/*
1329 		 * the second tail page: ->mapping is
1330 		 * deferred_list.next -- ignore value.
1331 		 */
1332 		break;
1333 	default:
1334 		if (page->mapping != TAIL_MAPPING) {
1335 			bad_page(page, "corrupted mapping in tail page");
1336 			goto out;
1337 		}
1338 		break;
1339 	}
1340 	if (unlikely(!PageTail(page))) {
1341 		bad_page(page, "PageTail not set");
1342 		goto out;
1343 	}
1344 	if (unlikely(compound_head(page) != head_page)) {
1345 		bad_page(page, "compound_head not consistent");
1346 		goto out;
1347 	}
1348 	ret = 0;
1349 out:
1350 	page->mapping = NULL;
1351 	clear_compound_head(page);
1352 	return ret;
1353 }
1354 
1355 /*
1356  * Skip KASAN memory poisoning when either:
1357  *
1358  * 1. Deferred memory initialization has not yet completed,
1359  *    see the explanation below.
1360  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1361  *    see the comment next to it.
1362  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1363  *    see the comment next to it.
1364  *
1365  * Poisoning pages during deferred memory init will greatly lengthen the
1366  * process and cause problem in large memory systems as the deferred pages
1367  * initialization is done with interrupt disabled.
1368  *
1369  * Assuming that there will be no reference to those newly initialized
1370  * pages before they are ever allocated, this should have no effect on
1371  * KASAN memory tracking as the poison will be properly inserted at page
1372  * allocation time. The only corner case is when pages are allocated by
1373  * on-demand allocation and then freed again before the deferred pages
1374  * initialization is done, but this is not likely to happen.
1375  */
1376 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1377 {
1378 	return deferred_pages_enabled() ||
1379 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1380 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1381 	       PageSkipKASanPoison(page);
1382 }
1383 
1384 static void kernel_init_pages(struct page *page, int numpages)
1385 {
1386 	int i;
1387 
1388 	/* s390's use of memset() could override KASAN redzones. */
1389 	kasan_disable_current();
1390 	for (i = 0; i < numpages; i++)
1391 		clear_highpage_kasan_tagged(page + i);
1392 	kasan_enable_current();
1393 }
1394 
1395 static __always_inline bool free_pages_prepare(struct page *page,
1396 			unsigned int order, bool check_free, fpi_t fpi_flags)
1397 {
1398 	int bad = 0;
1399 	bool init = want_init_on_free();
1400 
1401 	VM_BUG_ON_PAGE(PageTail(page), page);
1402 
1403 	trace_mm_page_free(page, order);
1404 	kmsan_free_page(page, order);
1405 
1406 	if (unlikely(PageHWPoison(page)) && !order) {
1407 		/*
1408 		 * Do not let hwpoison pages hit pcplists/buddy
1409 		 * Untie memcg state and reset page's owner
1410 		 */
1411 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1412 			__memcg_kmem_uncharge_page(page, order);
1413 		reset_page_owner(page, order);
1414 		page_table_check_free(page, order);
1415 		return false;
1416 	}
1417 
1418 	/*
1419 	 * Check tail pages before head page information is cleared to
1420 	 * avoid checking PageCompound for order-0 pages.
1421 	 */
1422 	if (unlikely(order)) {
1423 		bool compound = PageCompound(page);
1424 		int i;
1425 
1426 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1427 
1428 		if (compound) {
1429 			ClearPageDoubleMap(page);
1430 			ClearPageHasHWPoisoned(page);
1431 		}
1432 		for (i = 1; i < (1 << order); i++) {
1433 			if (compound)
1434 				bad += free_tail_pages_check(page, page + i);
1435 			if (unlikely(free_page_is_bad(page + i))) {
1436 				bad++;
1437 				continue;
1438 			}
1439 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1440 		}
1441 	}
1442 	if (PageMappingFlags(page))
1443 		page->mapping = NULL;
1444 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1445 		__memcg_kmem_uncharge_page(page, order);
1446 	if (check_free && free_page_is_bad(page))
1447 		bad++;
1448 	if (bad)
1449 		return false;
1450 
1451 	page_cpupid_reset_last(page);
1452 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1453 	reset_page_owner(page, order);
1454 	page_table_check_free(page, order);
1455 
1456 	if (!PageHighMem(page)) {
1457 		debug_check_no_locks_freed(page_address(page),
1458 					   PAGE_SIZE << order);
1459 		debug_check_no_obj_freed(page_address(page),
1460 					   PAGE_SIZE << order);
1461 	}
1462 
1463 	kernel_poison_pages(page, 1 << order);
1464 
1465 	/*
1466 	 * As memory initialization might be integrated into KASAN,
1467 	 * KASAN poisoning and memory initialization code must be
1468 	 * kept together to avoid discrepancies in behavior.
1469 	 *
1470 	 * With hardware tag-based KASAN, memory tags must be set before the
1471 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1472 	 */
1473 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1474 		kasan_poison_pages(page, order, init);
1475 
1476 		/* Memory is already initialized if KASAN did it internally. */
1477 		if (kasan_has_integrated_init())
1478 			init = false;
1479 	}
1480 	if (init)
1481 		kernel_init_pages(page, 1 << order);
1482 
1483 	/*
1484 	 * arch_free_page() can make the page's contents inaccessible.  s390
1485 	 * does this.  So nothing which can access the page's contents should
1486 	 * happen after this.
1487 	 */
1488 	arch_free_page(page, order);
1489 
1490 	debug_pagealloc_unmap_pages(page, 1 << order);
1491 
1492 	return true;
1493 }
1494 
1495 #ifdef CONFIG_DEBUG_VM
1496 /*
1497  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1498  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1499  * moved from pcp lists to free lists.
1500  */
1501 static bool free_pcp_prepare(struct page *page, unsigned int order)
1502 {
1503 	return free_pages_prepare(page, order, true, FPI_NONE);
1504 }
1505 
1506 /* return true if this page has an inappropriate state */
1507 static bool bulkfree_pcp_prepare(struct page *page)
1508 {
1509 	if (debug_pagealloc_enabled_static())
1510 		return free_page_is_bad(page);
1511 	else
1512 		return false;
1513 }
1514 #else
1515 /*
1516  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1517  * moving from pcp lists to free list in order to reduce overhead. With
1518  * debug_pagealloc enabled, they are checked also immediately when being freed
1519  * to the pcp lists.
1520  */
1521 static bool free_pcp_prepare(struct page *page, unsigned int order)
1522 {
1523 	if (debug_pagealloc_enabled_static())
1524 		return free_pages_prepare(page, order, true, FPI_NONE);
1525 	else
1526 		return free_pages_prepare(page, order, false, FPI_NONE);
1527 }
1528 
1529 static bool bulkfree_pcp_prepare(struct page *page)
1530 {
1531 	return free_page_is_bad(page);
1532 }
1533 #endif /* CONFIG_DEBUG_VM */
1534 
1535 /*
1536  * Frees a number of pages from the PCP lists
1537  * Assumes all pages on list are in same zone.
1538  * count is the number of pages to free.
1539  */
1540 static void free_pcppages_bulk(struct zone *zone, int count,
1541 					struct per_cpu_pages *pcp,
1542 					int pindex)
1543 {
1544 	int min_pindex = 0;
1545 	int max_pindex = NR_PCP_LISTS - 1;
1546 	unsigned int order;
1547 	bool isolated_pageblocks;
1548 	struct page *page;
1549 
1550 	/*
1551 	 * Ensure proper count is passed which otherwise would stuck in the
1552 	 * below while (list_empty(list)) loop.
1553 	 */
1554 	count = min(pcp->count, count);
1555 
1556 	/* Ensure requested pindex is drained first. */
1557 	pindex = pindex - 1;
1558 
1559 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1560 	spin_lock(&zone->lock);
1561 	isolated_pageblocks = has_isolate_pageblock(zone);
1562 
1563 	while (count > 0) {
1564 		struct list_head *list;
1565 		int nr_pages;
1566 
1567 		/* Remove pages from lists in a round-robin fashion. */
1568 		do {
1569 			if (++pindex > max_pindex)
1570 				pindex = min_pindex;
1571 			list = &pcp->lists[pindex];
1572 			if (!list_empty(list))
1573 				break;
1574 
1575 			if (pindex == max_pindex)
1576 				max_pindex--;
1577 			if (pindex == min_pindex)
1578 				min_pindex++;
1579 		} while (1);
1580 
1581 		order = pindex_to_order(pindex);
1582 		nr_pages = 1 << order;
1583 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1584 		do {
1585 			int mt;
1586 
1587 			page = list_last_entry(list, struct page, pcp_list);
1588 			mt = get_pcppage_migratetype(page);
1589 
1590 			/* must delete to avoid corrupting pcp list */
1591 			list_del(&page->pcp_list);
1592 			count -= nr_pages;
1593 			pcp->count -= nr_pages;
1594 
1595 			if (bulkfree_pcp_prepare(page))
1596 				continue;
1597 
1598 			/* MIGRATE_ISOLATE page should not go to pcplists */
1599 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1600 			/* Pageblock could have been isolated meanwhile */
1601 			if (unlikely(isolated_pageblocks))
1602 				mt = get_pageblock_migratetype(page);
1603 
1604 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1605 			trace_mm_page_pcpu_drain(page, order, mt);
1606 		} while (count > 0 && !list_empty(list));
1607 	}
1608 
1609 	spin_unlock(&zone->lock);
1610 }
1611 
1612 static void free_one_page(struct zone *zone,
1613 				struct page *page, unsigned long pfn,
1614 				unsigned int order,
1615 				int migratetype, fpi_t fpi_flags)
1616 {
1617 	unsigned long flags;
1618 
1619 	spin_lock_irqsave(&zone->lock, flags);
1620 	if (unlikely(has_isolate_pageblock(zone) ||
1621 		is_migrate_isolate(migratetype))) {
1622 		migratetype = get_pfnblock_migratetype(page, pfn);
1623 	}
1624 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1625 	spin_unlock_irqrestore(&zone->lock, flags);
1626 }
1627 
1628 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1629 				unsigned long zone, int nid)
1630 {
1631 	mm_zero_struct_page(page);
1632 	set_page_links(page, zone, nid, pfn);
1633 	init_page_count(page);
1634 	page_mapcount_reset(page);
1635 	page_cpupid_reset_last(page);
1636 	page_kasan_tag_reset(page);
1637 
1638 	INIT_LIST_HEAD(&page->lru);
1639 #ifdef WANT_PAGE_VIRTUAL
1640 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1641 	if (!is_highmem_idx(zone))
1642 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1643 #endif
1644 }
1645 
1646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1647 static void __meminit init_reserved_page(unsigned long pfn)
1648 {
1649 	pg_data_t *pgdat;
1650 	int nid, zid;
1651 
1652 	if (!early_page_uninitialised(pfn))
1653 		return;
1654 
1655 	nid = early_pfn_to_nid(pfn);
1656 	pgdat = NODE_DATA(nid);
1657 
1658 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1659 		struct zone *zone = &pgdat->node_zones[zid];
1660 
1661 		if (zone_spans_pfn(zone, pfn))
1662 			break;
1663 	}
1664 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1665 }
1666 #else
1667 static inline void init_reserved_page(unsigned long pfn)
1668 {
1669 }
1670 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1671 
1672 /*
1673  * Initialised pages do not have PageReserved set. This function is
1674  * called for each range allocated by the bootmem allocator and
1675  * marks the pages PageReserved. The remaining valid pages are later
1676  * sent to the buddy page allocator.
1677  */
1678 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1679 {
1680 	unsigned long start_pfn = PFN_DOWN(start);
1681 	unsigned long end_pfn = PFN_UP(end);
1682 
1683 	for (; start_pfn < end_pfn; start_pfn++) {
1684 		if (pfn_valid(start_pfn)) {
1685 			struct page *page = pfn_to_page(start_pfn);
1686 
1687 			init_reserved_page(start_pfn);
1688 
1689 			/* Avoid false-positive PageTail() */
1690 			INIT_LIST_HEAD(&page->lru);
1691 
1692 			/*
1693 			 * no need for atomic set_bit because the struct
1694 			 * page is not visible yet so nobody should
1695 			 * access it yet.
1696 			 */
1697 			__SetPageReserved(page);
1698 		}
1699 	}
1700 }
1701 
1702 static void __free_pages_ok(struct page *page, unsigned int order,
1703 			    fpi_t fpi_flags)
1704 {
1705 	unsigned long flags;
1706 	int migratetype;
1707 	unsigned long pfn = page_to_pfn(page);
1708 	struct zone *zone = page_zone(page);
1709 
1710 	if (!free_pages_prepare(page, order, true, fpi_flags))
1711 		return;
1712 
1713 	migratetype = get_pfnblock_migratetype(page, pfn);
1714 
1715 	spin_lock_irqsave(&zone->lock, flags);
1716 	if (unlikely(has_isolate_pageblock(zone) ||
1717 		is_migrate_isolate(migratetype))) {
1718 		migratetype = get_pfnblock_migratetype(page, pfn);
1719 	}
1720 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1721 	spin_unlock_irqrestore(&zone->lock, flags);
1722 
1723 	__count_vm_events(PGFREE, 1 << order);
1724 }
1725 
1726 void __free_pages_core(struct page *page, unsigned int order)
1727 {
1728 	unsigned int nr_pages = 1 << order;
1729 	struct page *p = page;
1730 	unsigned int loop;
1731 
1732 	/*
1733 	 * When initializing the memmap, __init_single_page() sets the refcount
1734 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1735 	 * refcount of all involved pages to 0.
1736 	 */
1737 	prefetchw(p);
1738 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1739 		prefetchw(p + 1);
1740 		__ClearPageReserved(p);
1741 		set_page_count(p, 0);
1742 	}
1743 	__ClearPageReserved(p);
1744 	set_page_count(p, 0);
1745 
1746 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1747 
1748 	/*
1749 	 * Bypass PCP and place fresh pages right to the tail, primarily
1750 	 * relevant for memory onlining.
1751 	 */
1752 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1753 }
1754 
1755 #ifdef CONFIG_NUMA
1756 
1757 /*
1758  * During memory init memblocks map pfns to nids. The search is expensive and
1759  * this caches recent lookups. The implementation of __early_pfn_to_nid
1760  * treats start/end as pfns.
1761  */
1762 struct mminit_pfnnid_cache {
1763 	unsigned long last_start;
1764 	unsigned long last_end;
1765 	int last_nid;
1766 };
1767 
1768 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1769 
1770 /*
1771  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1772  */
1773 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1774 					struct mminit_pfnnid_cache *state)
1775 {
1776 	unsigned long start_pfn, end_pfn;
1777 	int nid;
1778 
1779 	if (state->last_start <= pfn && pfn < state->last_end)
1780 		return state->last_nid;
1781 
1782 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1783 	if (nid != NUMA_NO_NODE) {
1784 		state->last_start = start_pfn;
1785 		state->last_end = end_pfn;
1786 		state->last_nid = nid;
1787 	}
1788 
1789 	return nid;
1790 }
1791 
1792 int __meminit early_pfn_to_nid(unsigned long pfn)
1793 {
1794 	static DEFINE_SPINLOCK(early_pfn_lock);
1795 	int nid;
1796 
1797 	spin_lock(&early_pfn_lock);
1798 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1799 	if (nid < 0)
1800 		nid = first_online_node;
1801 	spin_unlock(&early_pfn_lock);
1802 
1803 	return nid;
1804 }
1805 #endif /* CONFIG_NUMA */
1806 
1807 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1808 							unsigned int order)
1809 {
1810 	if (early_page_uninitialised(pfn))
1811 		return;
1812 	if (!kmsan_memblock_free_pages(page, order)) {
1813 		/* KMSAN will take care of these pages. */
1814 		return;
1815 	}
1816 	__free_pages_core(page, order);
1817 }
1818 
1819 /*
1820  * Check that the whole (or subset of) a pageblock given by the interval of
1821  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1822  * with the migration of free compaction scanner.
1823  *
1824  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1825  *
1826  * It's possible on some configurations to have a setup like node0 node1 node0
1827  * i.e. it's possible that all pages within a zones range of pages do not
1828  * belong to a single zone. We assume that a border between node0 and node1
1829  * can occur within a single pageblock, but not a node0 node1 node0
1830  * interleaving within a single pageblock. It is therefore sufficient to check
1831  * the first and last page of a pageblock and avoid checking each individual
1832  * page in a pageblock.
1833  */
1834 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1835 				     unsigned long end_pfn, struct zone *zone)
1836 {
1837 	struct page *start_page;
1838 	struct page *end_page;
1839 
1840 	/* end_pfn is one past the range we are checking */
1841 	end_pfn--;
1842 
1843 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1844 		return NULL;
1845 
1846 	start_page = pfn_to_online_page(start_pfn);
1847 	if (!start_page)
1848 		return NULL;
1849 
1850 	if (page_zone(start_page) != zone)
1851 		return NULL;
1852 
1853 	end_page = pfn_to_page(end_pfn);
1854 
1855 	/* This gives a shorter code than deriving page_zone(end_page) */
1856 	if (page_zone_id(start_page) != page_zone_id(end_page))
1857 		return NULL;
1858 
1859 	return start_page;
1860 }
1861 
1862 void set_zone_contiguous(struct zone *zone)
1863 {
1864 	unsigned long block_start_pfn = zone->zone_start_pfn;
1865 	unsigned long block_end_pfn;
1866 
1867 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1868 	for (; block_start_pfn < zone_end_pfn(zone);
1869 			block_start_pfn = block_end_pfn,
1870 			 block_end_pfn += pageblock_nr_pages) {
1871 
1872 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1873 
1874 		if (!__pageblock_pfn_to_page(block_start_pfn,
1875 					     block_end_pfn, zone))
1876 			return;
1877 		cond_resched();
1878 	}
1879 
1880 	/* We confirm that there is no hole */
1881 	zone->contiguous = true;
1882 }
1883 
1884 void clear_zone_contiguous(struct zone *zone)
1885 {
1886 	zone->contiguous = false;
1887 }
1888 
1889 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1890 static void __init deferred_free_range(unsigned long pfn,
1891 				       unsigned long nr_pages)
1892 {
1893 	struct page *page;
1894 	unsigned long i;
1895 
1896 	if (!nr_pages)
1897 		return;
1898 
1899 	page = pfn_to_page(pfn);
1900 
1901 	/* Free a large naturally-aligned chunk if possible */
1902 	if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1903 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1904 		__free_pages_core(page, pageblock_order);
1905 		return;
1906 	}
1907 
1908 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1909 		if (pageblock_aligned(pfn))
1910 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1911 		__free_pages_core(page, 0);
1912 	}
1913 }
1914 
1915 /* Completion tracking for deferred_init_memmap() threads */
1916 static atomic_t pgdat_init_n_undone __initdata;
1917 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1918 
1919 static inline void __init pgdat_init_report_one_done(void)
1920 {
1921 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1922 		complete(&pgdat_init_all_done_comp);
1923 }
1924 
1925 /*
1926  * Returns true if page needs to be initialized or freed to buddy allocator.
1927  *
1928  * First we check if pfn is valid on architectures where it is possible to have
1929  * holes within pageblock_nr_pages. On systems where it is not possible, this
1930  * function is optimized out.
1931  *
1932  * Then, we check if a current large page is valid by only checking the validity
1933  * of the head pfn.
1934  */
1935 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1936 {
1937 	if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1938 		return false;
1939 	return true;
1940 }
1941 
1942 /*
1943  * Free pages to buddy allocator. Try to free aligned pages in
1944  * pageblock_nr_pages sizes.
1945  */
1946 static void __init deferred_free_pages(unsigned long pfn,
1947 				       unsigned long end_pfn)
1948 {
1949 	unsigned long nr_free = 0;
1950 
1951 	for (; pfn < end_pfn; pfn++) {
1952 		if (!deferred_pfn_valid(pfn)) {
1953 			deferred_free_range(pfn - nr_free, nr_free);
1954 			nr_free = 0;
1955 		} else if (pageblock_aligned(pfn)) {
1956 			deferred_free_range(pfn - nr_free, nr_free);
1957 			nr_free = 1;
1958 		} else {
1959 			nr_free++;
1960 		}
1961 	}
1962 	/* Free the last block of pages to allocator */
1963 	deferred_free_range(pfn - nr_free, nr_free);
1964 }
1965 
1966 /*
1967  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1968  * by performing it only once every pageblock_nr_pages.
1969  * Return number of pages initialized.
1970  */
1971 static unsigned long  __init deferred_init_pages(struct zone *zone,
1972 						 unsigned long pfn,
1973 						 unsigned long end_pfn)
1974 {
1975 	int nid = zone_to_nid(zone);
1976 	unsigned long nr_pages = 0;
1977 	int zid = zone_idx(zone);
1978 	struct page *page = NULL;
1979 
1980 	for (; pfn < end_pfn; pfn++) {
1981 		if (!deferred_pfn_valid(pfn)) {
1982 			page = NULL;
1983 			continue;
1984 		} else if (!page || pageblock_aligned(pfn)) {
1985 			page = pfn_to_page(pfn);
1986 		} else {
1987 			page++;
1988 		}
1989 		__init_single_page(page, pfn, zid, nid);
1990 		nr_pages++;
1991 	}
1992 	return (nr_pages);
1993 }
1994 
1995 /*
1996  * This function is meant to pre-load the iterator for the zone init.
1997  * Specifically it walks through the ranges until we are caught up to the
1998  * first_init_pfn value and exits there. If we never encounter the value we
1999  * return false indicating there are no valid ranges left.
2000  */
2001 static bool __init
2002 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2003 				    unsigned long *spfn, unsigned long *epfn,
2004 				    unsigned long first_init_pfn)
2005 {
2006 	u64 j;
2007 
2008 	/*
2009 	 * Start out by walking through the ranges in this zone that have
2010 	 * already been initialized. We don't need to do anything with them
2011 	 * so we just need to flush them out of the system.
2012 	 */
2013 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2014 		if (*epfn <= first_init_pfn)
2015 			continue;
2016 		if (*spfn < first_init_pfn)
2017 			*spfn = first_init_pfn;
2018 		*i = j;
2019 		return true;
2020 	}
2021 
2022 	return false;
2023 }
2024 
2025 /*
2026  * Initialize and free pages. We do it in two loops: first we initialize
2027  * struct page, then free to buddy allocator, because while we are
2028  * freeing pages we can access pages that are ahead (computing buddy
2029  * page in __free_one_page()).
2030  *
2031  * In order to try and keep some memory in the cache we have the loop
2032  * broken along max page order boundaries. This way we will not cause
2033  * any issues with the buddy page computation.
2034  */
2035 static unsigned long __init
2036 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2037 		       unsigned long *end_pfn)
2038 {
2039 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2040 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2041 	unsigned long nr_pages = 0;
2042 	u64 j = *i;
2043 
2044 	/* First we loop through and initialize the page values */
2045 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2046 		unsigned long t;
2047 
2048 		if (mo_pfn <= *start_pfn)
2049 			break;
2050 
2051 		t = min(mo_pfn, *end_pfn);
2052 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2053 
2054 		if (mo_pfn < *end_pfn) {
2055 			*start_pfn = mo_pfn;
2056 			break;
2057 		}
2058 	}
2059 
2060 	/* Reset values and now loop through freeing pages as needed */
2061 	swap(j, *i);
2062 
2063 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2064 		unsigned long t;
2065 
2066 		if (mo_pfn <= spfn)
2067 			break;
2068 
2069 		t = min(mo_pfn, epfn);
2070 		deferred_free_pages(spfn, t);
2071 
2072 		if (mo_pfn <= epfn)
2073 			break;
2074 	}
2075 
2076 	return nr_pages;
2077 }
2078 
2079 static void __init
2080 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2081 			   void *arg)
2082 {
2083 	unsigned long spfn, epfn;
2084 	struct zone *zone = arg;
2085 	u64 i;
2086 
2087 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2088 
2089 	/*
2090 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2091 	 * can avoid introducing any issues with the buddy allocator.
2092 	 */
2093 	while (spfn < end_pfn) {
2094 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2095 		cond_resched();
2096 	}
2097 }
2098 
2099 /* An arch may override for more concurrency. */
2100 __weak int __init
2101 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2102 {
2103 	return 1;
2104 }
2105 
2106 /* Initialise remaining memory on a node */
2107 static int __init deferred_init_memmap(void *data)
2108 {
2109 	pg_data_t *pgdat = data;
2110 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2111 	unsigned long spfn = 0, epfn = 0;
2112 	unsigned long first_init_pfn, flags;
2113 	unsigned long start = jiffies;
2114 	struct zone *zone;
2115 	int zid, max_threads;
2116 	u64 i;
2117 
2118 	/* Bind memory initialisation thread to a local node if possible */
2119 	if (!cpumask_empty(cpumask))
2120 		set_cpus_allowed_ptr(current, cpumask);
2121 
2122 	pgdat_resize_lock(pgdat, &flags);
2123 	first_init_pfn = pgdat->first_deferred_pfn;
2124 	if (first_init_pfn == ULONG_MAX) {
2125 		pgdat_resize_unlock(pgdat, &flags);
2126 		pgdat_init_report_one_done();
2127 		return 0;
2128 	}
2129 
2130 	/* Sanity check boundaries */
2131 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2132 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2133 	pgdat->first_deferred_pfn = ULONG_MAX;
2134 
2135 	/*
2136 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2137 	 * interrupt thread must allocate this early in boot, zone must be
2138 	 * pre-grown prior to start of deferred page initialization.
2139 	 */
2140 	pgdat_resize_unlock(pgdat, &flags);
2141 
2142 	/* Only the highest zone is deferred so find it */
2143 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2144 		zone = pgdat->node_zones + zid;
2145 		if (first_init_pfn < zone_end_pfn(zone))
2146 			break;
2147 	}
2148 
2149 	/* If the zone is empty somebody else may have cleared out the zone */
2150 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2151 						 first_init_pfn))
2152 		goto zone_empty;
2153 
2154 	max_threads = deferred_page_init_max_threads(cpumask);
2155 
2156 	while (spfn < epfn) {
2157 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2158 		struct padata_mt_job job = {
2159 			.thread_fn   = deferred_init_memmap_chunk,
2160 			.fn_arg      = zone,
2161 			.start       = spfn,
2162 			.size        = epfn_align - spfn,
2163 			.align       = PAGES_PER_SECTION,
2164 			.min_chunk   = PAGES_PER_SECTION,
2165 			.max_threads = max_threads,
2166 		};
2167 
2168 		padata_do_multithreaded(&job);
2169 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2170 						    epfn_align);
2171 	}
2172 zone_empty:
2173 	/* Sanity check that the next zone really is unpopulated */
2174 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2175 
2176 	pr_info("node %d deferred pages initialised in %ums\n",
2177 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2178 
2179 	pgdat_init_report_one_done();
2180 	return 0;
2181 }
2182 
2183 /*
2184  * If this zone has deferred pages, try to grow it by initializing enough
2185  * deferred pages to satisfy the allocation specified by order, rounded up to
2186  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2187  * of SECTION_SIZE bytes by initializing struct pages in increments of
2188  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2189  *
2190  * Return true when zone was grown, otherwise return false. We return true even
2191  * when we grow less than requested, to let the caller decide if there are
2192  * enough pages to satisfy the allocation.
2193  *
2194  * Note: We use noinline because this function is needed only during boot, and
2195  * it is called from a __ref function _deferred_grow_zone. This way we are
2196  * making sure that it is not inlined into permanent text section.
2197  */
2198 static noinline bool __init
2199 deferred_grow_zone(struct zone *zone, unsigned int order)
2200 {
2201 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2202 	pg_data_t *pgdat = zone->zone_pgdat;
2203 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2204 	unsigned long spfn, epfn, flags;
2205 	unsigned long nr_pages = 0;
2206 	u64 i;
2207 
2208 	/* Only the last zone may have deferred pages */
2209 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2210 		return false;
2211 
2212 	pgdat_resize_lock(pgdat, &flags);
2213 
2214 	/*
2215 	 * If someone grew this zone while we were waiting for spinlock, return
2216 	 * true, as there might be enough pages already.
2217 	 */
2218 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2219 		pgdat_resize_unlock(pgdat, &flags);
2220 		return true;
2221 	}
2222 
2223 	/* If the zone is empty somebody else may have cleared out the zone */
2224 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2225 						 first_deferred_pfn)) {
2226 		pgdat->first_deferred_pfn = ULONG_MAX;
2227 		pgdat_resize_unlock(pgdat, &flags);
2228 		/* Retry only once. */
2229 		return first_deferred_pfn != ULONG_MAX;
2230 	}
2231 
2232 	/*
2233 	 * Initialize and free pages in MAX_ORDER sized increments so
2234 	 * that we can avoid introducing any issues with the buddy
2235 	 * allocator.
2236 	 */
2237 	while (spfn < epfn) {
2238 		/* update our first deferred PFN for this section */
2239 		first_deferred_pfn = spfn;
2240 
2241 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2242 		touch_nmi_watchdog();
2243 
2244 		/* We should only stop along section boundaries */
2245 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2246 			continue;
2247 
2248 		/* If our quota has been met we can stop here */
2249 		if (nr_pages >= nr_pages_needed)
2250 			break;
2251 	}
2252 
2253 	pgdat->first_deferred_pfn = spfn;
2254 	pgdat_resize_unlock(pgdat, &flags);
2255 
2256 	return nr_pages > 0;
2257 }
2258 
2259 /*
2260  * deferred_grow_zone() is __init, but it is called from
2261  * get_page_from_freelist() during early boot until deferred_pages permanently
2262  * disables this call. This is why we have refdata wrapper to avoid warning,
2263  * and to ensure that the function body gets unloaded.
2264  */
2265 static bool __ref
2266 _deferred_grow_zone(struct zone *zone, unsigned int order)
2267 {
2268 	return deferred_grow_zone(zone, order);
2269 }
2270 
2271 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2272 
2273 void __init page_alloc_init_late(void)
2274 {
2275 	struct zone *zone;
2276 	int nid;
2277 
2278 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2279 
2280 	/* There will be num_node_state(N_MEMORY) threads */
2281 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2282 	for_each_node_state(nid, N_MEMORY) {
2283 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2284 	}
2285 
2286 	/* Block until all are initialised */
2287 	wait_for_completion(&pgdat_init_all_done_comp);
2288 
2289 	/*
2290 	 * We initialized the rest of the deferred pages.  Permanently disable
2291 	 * on-demand struct page initialization.
2292 	 */
2293 	static_branch_disable(&deferred_pages);
2294 
2295 	/* Reinit limits that are based on free pages after the kernel is up */
2296 	files_maxfiles_init();
2297 #endif
2298 
2299 	buffer_init();
2300 
2301 	/* Discard memblock private memory */
2302 	memblock_discard();
2303 
2304 	for_each_node_state(nid, N_MEMORY)
2305 		shuffle_free_memory(NODE_DATA(nid));
2306 
2307 	for_each_populated_zone(zone)
2308 		set_zone_contiguous(zone);
2309 }
2310 
2311 #ifdef CONFIG_CMA
2312 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2313 void __init init_cma_reserved_pageblock(struct page *page)
2314 {
2315 	unsigned i = pageblock_nr_pages;
2316 	struct page *p = page;
2317 
2318 	do {
2319 		__ClearPageReserved(p);
2320 		set_page_count(p, 0);
2321 	} while (++p, --i);
2322 
2323 	set_pageblock_migratetype(page, MIGRATE_CMA);
2324 	set_page_refcounted(page);
2325 	__free_pages(page, pageblock_order);
2326 
2327 	adjust_managed_page_count(page, pageblock_nr_pages);
2328 	page_zone(page)->cma_pages += pageblock_nr_pages;
2329 }
2330 #endif
2331 
2332 /*
2333  * The order of subdivision here is critical for the IO subsystem.
2334  * Please do not alter this order without good reasons and regression
2335  * testing. Specifically, as large blocks of memory are subdivided,
2336  * the order in which smaller blocks are delivered depends on the order
2337  * they're subdivided in this function. This is the primary factor
2338  * influencing the order in which pages are delivered to the IO
2339  * subsystem according to empirical testing, and this is also justified
2340  * by considering the behavior of a buddy system containing a single
2341  * large block of memory acted on by a series of small allocations.
2342  * This behavior is a critical factor in sglist merging's success.
2343  *
2344  * -- nyc
2345  */
2346 static inline void expand(struct zone *zone, struct page *page,
2347 	int low, int high, int migratetype)
2348 {
2349 	unsigned long size = 1 << high;
2350 
2351 	while (high > low) {
2352 		high--;
2353 		size >>= 1;
2354 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2355 
2356 		/*
2357 		 * Mark as guard pages (or page), that will allow to
2358 		 * merge back to allocator when buddy will be freed.
2359 		 * Corresponding page table entries will not be touched,
2360 		 * pages will stay not present in virtual address space
2361 		 */
2362 		if (set_page_guard(zone, &page[size], high, migratetype))
2363 			continue;
2364 
2365 		add_to_free_list(&page[size], zone, high, migratetype);
2366 		set_buddy_order(&page[size], high);
2367 	}
2368 }
2369 
2370 static void check_new_page_bad(struct page *page)
2371 {
2372 	if (unlikely(page->flags & __PG_HWPOISON)) {
2373 		/* Don't complain about hwpoisoned pages */
2374 		page_mapcount_reset(page); /* remove PageBuddy */
2375 		return;
2376 	}
2377 
2378 	bad_page(page,
2379 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2380 }
2381 
2382 /*
2383  * This page is about to be returned from the page allocator
2384  */
2385 static inline int check_new_page(struct page *page)
2386 {
2387 	if (likely(page_expected_state(page,
2388 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2389 		return 0;
2390 
2391 	check_new_page_bad(page);
2392 	return 1;
2393 }
2394 
2395 static bool check_new_pages(struct page *page, unsigned int order)
2396 {
2397 	int i;
2398 	for (i = 0; i < (1 << order); i++) {
2399 		struct page *p = page + i;
2400 
2401 		if (unlikely(check_new_page(p)))
2402 			return true;
2403 	}
2404 
2405 	return false;
2406 }
2407 
2408 #ifdef CONFIG_DEBUG_VM
2409 /*
2410  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2411  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2412  * also checked when pcp lists are refilled from the free lists.
2413  */
2414 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2415 {
2416 	if (debug_pagealloc_enabled_static())
2417 		return check_new_pages(page, order);
2418 	else
2419 		return false;
2420 }
2421 
2422 static inline bool check_new_pcp(struct page *page, unsigned int order)
2423 {
2424 	return check_new_pages(page, order);
2425 }
2426 #else
2427 /*
2428  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2429  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2430  * enabled, they are also checked when being allocated from the pcp lists.
2431  */
2432 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2433 {
2434 	return check_new_pages(page, order);
2435 }
2436 static inline bool check_new_pcp(struct page *page, unsigned int order)
2437 {
2438 	if (debug_pagealloc_enabled_static())
2439 		return check_new_pages(page, order);
2440 	else
2441 		return false;
2442 }
2443 #endif /* CONFIG_DEBUG_VM */
2444 
2445 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2446 {
2447 	/* Don't skip if a software KASAN mode is enabled. */
2448 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2449 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2450 		return false;
2451 
2452 	/* Skip, if hardware tag-based KASAN is not enabled. */
2453 	if (!kasan_hw_tags_enabled())
2454 		return true;
2455 
2456 	/*
2457 	 * With hardware tag-based KASAN enabled, skip if this has been
2458 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2459 	 */
2460 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2461 }
2462 
2463 static inline bool should_skip_init(gfp_t flags)
2464 {
2465 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2466 	if (!kasan_hw_tags_enabled())
2467 		return false;
2468 
2469 	/* For hardware tag-based KASAN, skip if requested. */
2470 	return (flags & __GFP_SKIP_ZERO);
2471 }
2472 
2473 inline void post_alloc_hook(struct page *page, unsigned int order,
2474 				gfp_t gfp_flags)
2475 {
2476 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2477 			!should_skip_init(gfp_flags);
2478 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2479 	int i;
2480 
2481 	set_page_private(page, 0);
2482 	set_page_refcounted(page);
2483 
2484 	arch_alloc_page(page, order);
2485 	debug_pagealloc_map_pages(page, 1 << order);
2486 
2487 	/*
2488 	 * Page unpoisoning must happen before memory initialization.
2489 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2490 	 * allocations and the page unpoisoning code will complain.
2491 	 */
2492 	kernel_unpoison_pages(page, 1 << order);
2493 
2494 	/*
2495 	 * As memory initialization might be integrated into KASAN,
2496 	 * KASAN unpoisoning and memory initializion code must be
2497 	 * kept together to avoid discrepancies in behavior.
2498 	 */
2499 
2500 	/*
2501 	 * If memory tags should be zeroed (which happens only when memory
2502 	 * should be initialized as well).
2503 	 */
2504 	if (init_tags) {
2505 		/* Initialize both memory and tags. */
2506 		for (i = 0; i != 1 << order; ++i)
2507 			tag_clear_highpage(page + i);
2508 
2509 		/* Note that memory is already initialized by the loop above. */
2510 		init = false;
2511 	}
2512 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2513 		/* Unpoison shadow memory or set memory tags. */
2514 		kasan_unpoison_pages(page, order, init);
2515 
2516 		/* Note that memory is already initialized by KASAN. */
2517 		if (kasan_has_integrated_init())
2518 			init = false;
2519 	} else {
2520 		/* Ensure page_address() dereferencing does not fault. */
2521 		for (i = 0; i != 1 << order; ++i)
2522 			page_kasan_tag_reset(page + i);
2523 	}
2524 	/* If memory is still not initialized, do it now. */
2525 	if (init)
2526 		kernel_init_pages(page, 1 << order);
2527 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2528 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2529 		SetPageSkipKASanPoison(page);
2530 
2531 	set_page_owner(page, order, gfp_flags);
2532 	page_table_check_alloc(page, order);
2533 }
2534 
2535 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2536 							unsigned int alloc_flags)
2537 {
2538 	post_alloc_hook(page, order, gfp_flags);
2539 
2540 	if (order && (gfp_flags & __GFP_COMP))
2541 		prep_compound_page(page, order);
2542 
2543 	/*
2544 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2545 	 * allocate the page. The expectation is that the caller is taking
2546 	 * steps that will free more memory. The caller should avoid the page
2547 	 * being used for !PFMEMALLOC purposes.
2548 	 */
2549 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2550 		set_page_pfmemalloc(page);
2551 	else
2552 		clear_page_pfmemalloc(page);
2553 }
2554 
2555 /*
2556  * Go through the free lists for the given migratetype and remove
2557  * the smallest available page from the freelists
2558  */
2559 static __always_inline
2560 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2561 						int migratetype)
2562 {
2563 	unsigned int current_order;
2564 	struct free_area *area;
2565 	struct page *page;
2566 
2567 	/* Find a page of the appropriate size in the preferred list */
2568 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2569 		area = &(zone->free_area[current_order]);
2570 		page = get_page_from_free_area(area, migratetype);
2571 		if (!page)
2572 			continue;
2573 		del_page_from_free_list(page, zone, current_order);
2574 		expand(zone, page, order, current_order, migratetype);
2575 		set_pcppage_migratetype(page, migratetype);
2576 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2577 				pcp_allowed_order(order) &&
2578 				migratetype < MIGRATE_PCPTYPES);
2579 		return page;
2580 	}
2581 
2582 	return NULL;
2583 }
2584 
2585 
2586 /*
2587  * This array describes the order lists are fallen back to when
2588  * the free lists for the desirable migrate type are depleted
2589  *
2590  * The other migratetypes do not have fallbacks.
2591  */
2592 static int fallbacks[MIGRATE_TYPES][3] = {
2593 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2594 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2595 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2596 };
2597 
2598 #ifdef CONFIG_CMA
2599 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2600 					unsigned int order)
2601 {
2602 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2603 }
2604 #else
2605 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2606 					unsigned int order) { return NULL; }
2607 #endif
2608 
2609 /*
2610  * Move the free pages in a range to the freelist tail of the requested type.
2611  * Note that start_page and end_pages are not aligned on a pageblock
2612  * boundary. If alignment is required, use move_freepages_block()
2613  */
2614 static int move_freepages(struct zone *zone,
2615 			  unsigned long start_pfn, unsigned long end_pfn,
2616 			  int migratetype, int *num_movable)
2617 {
2618 	struct page *page;
2619 	unsigned long pfn;
2620 	unsigned int order;
2621 	int pages_moved = 0;
2622 
2623 	for (pfn = start_pfn; pfn <= end_pfn;) {
2624 		page = pfn_to_page(pfn);
2625 		if (!PageBuddy(page)) {
2626 			/*
2627 			 * We assume that pages that could be isolated for
2628 			 * migration are movable. But we don't actually try
2629 			 * isolating, as that would be expensive.
2630 			 */
2631 			if (num_movable &&
2632 					(PageLRU(page) || __PageMovable(page)))
2633 				(*num_movable)++;
2634 			pfn++;
2635 			continue;
2636 		}
2637 
2638 		/* Make sure we are not inadvertently changing nodes */
2639 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2640 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2641 
2642 		order = buddy_order(page);
2643 		move_to_free_list(page, zone, order, migratetype);
2644 		pfn += 1 << order;
2645 		pages_moved += 1 << order;
2646 	}
2647 
2648 	return pages_moved;
2649 }
2650 
2651 int move_freepages_block(struct zone *zone, struct page *page,
2652 				int migratetype, int *num_movable)
2653 {
2654 	unsigned long start_pfn, end_pfn, pfn;
2655 
2656 	if (num_movable)
2657 		*num_movable = 0;
2658 
2659 	pfn = page_to_pfn(page);
2660 	start_pfn = pageblock_start_pfn(pfn);
2661 	end_pfn = pageblock_end_pfn(pfn) - 1;
2662 
2663 	/* Do not cross zone boundaries */
2664 	if (!zone_spans_pfn(zone, start_pfn))
2665 		start_pfn = pfn;
2666 	if (!zone_spans_pfn(zone, end_pfn))
2667 		return 0;
2668 
2669 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2670 								num_movable);
2671 }
2672 
2673 static void change_pageblock_range(struct page *pageblock_page,
2674 					int start_order, int migratetype)
2675 {
2676 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2677 
2678 	while (nr_pageblocks--) {
2679 		set_pageblock_migratetype(pageblock_page, migratetype);
2680 		pageblock_page += pageblock_nr_pages;
2681 	}
2682 }
2683 
2684 /*
2685  * When we are falling back to another migratetype during allocation, try to
2686  * steal extra free pages from the same pageblocks to satisfy further
2687  * allocations, instead of polluting multiple pageblocks.
2688  *
2689  * If we are stealing a relatively large buddy page, it is likely there will
2690  * be more free pages in the pageblock, so try to steal them all. For
2691  * reclaimable and unmovable allocations, we steal regardless of page size,
2692  * as fragmentation caused by those allocations polluting movable pageblocks
2693  * is worse than movable allocations stealing from unmovable and reclaimable
2694  * pageblocks.
2695  */
2696 static bool can_steal_fallback(unsigned int order, int start_mt)
2697 {
2698 	/*
2699 	 * Leaving this order check is intended, although there is
2700 	 * relaxed order check in next check. The reason is that
2701 	 * we can actually steal whole pageblock if this condition met,
2702 	 * but, below check doesn't guarantee it and that is just heuristic
2703 	 * so could be changed anytime.
2704 	 */
2705 	if (order >= pageblock_order)
2706 		return true;
2707 
2708 	if (order >= pageblock_order / 2 ||
2709 		start_mt == MIGRATE_RECLAIMABLE ||
2710 		start_mt == MIGRATE_UNMOVABLE ||
2711 		page_group_by_mobility_disabled)
2712 		return true;
2713 
2714 	return false;
2715 }
2716 
2717 static inline bool boost_watermark(struct zone *zone)
2718 {
2719 	unsigned long max_boost;
2720 
2721 	if (!watermark_boost_factor)
2722 		return false;
2723 	/*
2724 	 * Don't bother in zones that are unlikely to produce results.
2725 	 * On small machines, including kdump capture kernels running
2726 	 * in a small area, boosting the watermark can cause an out of
2727 	 * memory situation immediately.
2728 	 */
2729 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2730 		return false;
2731 
2732 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2733 			watermark_boost_factor, 10000);
2734 
2735 	/*
2736 	 * high watermark may be uninitialised if fragmentation occurs
2737 	 * very early in boot so do not boost. We do not fall
2738 	 * through and boost by pageblock_nr_pages as failing
2739 	 * allocations that early means that reclaim is not going
2740 	 * to help and it may even be impossible to reclaim the
2741 	 * boosted watermark resulting in a hang.
2742 	 */
2743 	if (!max_boost)
2744 		return false;
2745 
2746 	max_boost = max(pageblock_nr_pages, max_boost);
2747 
2748 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2749 		max_boost);
2750 
2751 	return true;
2752 }
2753 
2754 /*
2755  * This function implements actual steal behaviour. If order is large enough,
2756  * we can steal whole pageblock. If not, we first move freepages in this
2757  * pageblock to our migratetype and determine how many already-allocated pages
2758  * are there in the pageblock with a compatible migratetype. If at least half
2759  * of pages are free or compatible, we can change migratetype of the pageblock
2760  * itself, so pages freed in the future will be put on the correct free list.
2761  */
2762 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2763 		unsigned int alloc_flags, int start_type, bool whole_block)
2764 {
2765 	unsigned int current_order = buddy_order(page);
2766 	int free_pages, movable_pages, alike_pages;
2767 	int old_block_type;
2768 
2769 	old_block_type = get_pageblock_migratetype(page);
2770 
2771 	/*
2772 	 * This can happen due to races and we want to prevent broken
2773 	 * highatomic accounting.
2774 	 */
2775 	if (is_migrate_highatomic(old_block_type))
2776 		goto single_page;
2777 
2778 	/* Take ownership for orders >= pageblock_order */
2779 	if (current_order >= pageblock_order) {
2780 		change_pageblock_range(page, current_order, start_type);
2781 		goto single_page;
2782 	}
2783 
2784 	/*
2785 	 * Boost watermarks to increase reclaim pressure to reduce the
2786 	 * likelihood of future fallbacks. Wake kswapd now as the node
2787 	 * may be balanced overall and kswapd will not wake naturally.
2788 	 */
2789 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2790 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2791 
2792 	/* We are not allowed to try stealing from the whole block */
2793 	if (!whole_block)
2794 		goto single_page;
2795 
2796 	free_pages = move_freepages_block(zone, page, start_type,
2797 						&movable_pages);
2798 	/*
2799 	 * Determine how many pages are compatible with our allocation.
2800 	 * For movable allocation, it's the number of movable pages which
2801 	 * we just obtained. For other types it's a bit more tricky.
2802 	 */
2803 	if (start_type == MIGRATE_MOVABLE) {
2804 		alike_pages = movable_pages;
2805 	} else {
2806 		/*
2807 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2808 		 * to MOVABLE pageblock, consider all non-movable pages as
2809 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2810 		 * vice versa, be conservative since we can't distinguish the
2811 		 * exact migratetype of non-movable pages.
2812 		 */
2813 		if (old_block_type == MIGRATE_MOVABLE)
2814 			alike_pages = pageblock_nr_pages
2815 						- (free_pages + movable_pages);
2816 		else
2817 			alike_pages = 0;
2818 	}
2819 
2820 	/* moving whole block can fail due to zone boundary conditions */
2821 	if (!free_pages)
2822 		goto single_page;
2823 
2824 	/*
2825 	 * If a sufficient number of pages in the block are either free or of
2826 	 * comparable migratability as our allocation, claim the whole block.
2827 	 */
2828 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2829 			page_group_by_mobility_disabled)
2830 		set_pageblock_migratetype(page, start_type);
2831 
2832 	return;
2833 
2834 single_page:
2835 	move_to_free_list(page, zone, current_order, start_type);
2836 }
2837 
2838 /*
2839  * Check whether there is a suitable fallback freepage with requested order.
2840  * If only_stealable is true, this function returns fallback_mt only if
2841  * we can steal other freepages all together. This would help to reduce
2842  * fragmentation due to mixed migratetype pages in one pageblock.
2843  */
2844 int find_suitable_fallback(struct free_area *area, unsigned int order,
2845 			int migratetype, bool only_stealable, bool *can_steal)
2846 {
2847 	int i;
2848 	int fallback_mt;
2849 
2850 	if (area->nr_free == 0)
2851 		return -1;
2852 
2853 	*can_steal = false;
2854 	for (i = 0;; i++) {
2855 		fallback_mt = fallbacks[migratetype][i];
2856 		if (fallback_mt == MIGRATE_TYPES)
2857 			break;
2858 
2859 		if (free_area_empty(area, fallback_mt))
2860 			continue;
2861 
2862 		if (can_steal_fallback(order, migratetype))
2863 			*can_steal = true;
2864 
2865 		if (!only_stealable)
2866 			return fallback_mt;
2867 
2868 		if (*can_steal)
2869 			return fallback_mt;
2870 	}
2871 
2872 	return -1;
2873 }
2874 
2875 /*
2876  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2877  * there are no empty page blocks that contain a page with a suitable order
2878  */
2879 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2880 				unsigned int alloc_order)
2881 {
2882 	int mt;
2883 	unsigned long max_managed, flags;
2884 
2885 	/*
2886 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2887 	 * Check is race-prone but harmless.
2888 	 */
2889 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2890 	if (zone->nr_reserved_highatomic >= max_managed)
2891 		return;
2892 
2893 	spin_lock_irqsave(&zone->lock, flags);
2894 
2895 	/* Recheck the nr_reserved_highatomic limit under the lock */
2896 	if (zone->nr_reserved_highatomic >= max_managed)
2897 		goto out_unlock;
2898 
2899 	/* Yoink! */
2900 	mt = get_pageblock_migratetype(page);
2901 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2902 	if (migratetype_is_mergeable(mt)) {
2903 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2904 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2905 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2906 	}
2907 
2908 out_unlock:
2909 	spin_unlock_irqrestore(&zone->lock, flags);
2910 }
2911 
2912 /*
2913  * Used when an allocation is about to fail under memory pressure. This
2914  * potentially hurts the reliability of high-order allocations when under
2915  * intense memory pressure but failed atomic allocations should be easier
2916  * to recover from than an OOM.
2917  *
2918  * If @force is true, try to unreserve a pageblock even though highatomic
2919  * pageblock is exhausted.
2920  */
2921 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2922 						bool force)
2923 {
2924 	struct zonelist *zonelist = ac->zonelist;
2925 	unsigned long flags;
2926 	struct zoneref *z;
2927 	struct zone *zone;
2928 	struct page *page;
2929 	int order;
2930 	bool ret;
2931 
2932 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2933 								ac->nodemask) {
2934 		/*
2935 		 * Preserve at least one pageblock unless memory pressure
2936 		 * is really high.
2937 		 */
2938 		if (!force && zone->nr_reserved_highatomic <=
2939 					pageblock_nr_pages)
2940 			continue;
2941 
2942 		spin_lock_irqsave(&zone->lock, flags);
2943 		for (order = 0; order < MAX_ORDER; order++) {
2944 			struct free_area *area = &(zone->free_area[order]);
2945 
2946 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2947 			if (!page)
2948 				continue;
2949 
2950 			/*
2951 			 * In page freeing path, migratetype change is racy so
2952 			 * we can counter several free pages in a pageblock
2953 			 * in this loop although we changed the pageblock type
2954 			 * from highatomic to ac->migratetype. So we should
2955 			 * adjust the count once.
2956 			 */
2957 			if (is_migrate_highatomic_page(page)) {
2958 				/*
2959 				 * It should never happen but changes to
2960 				 * locking could inadvertently allow a per-cpu
2961 				 * drain to add pages to MIGRATE_HIGHATOMIC
2962 				 * while unreserving so be safe and watch for
2963 				 * underflows.
2964 				 */
2965 				zone->nr_reserved_highatomic -= min(
2966 						pageblock_nr_pages,
2967 						zone->nr_reserved_highatomic);
2968 			}
2969 
2970 			/*
2971 			 * Convert to ac->migratetype and avoid the normal
2972 			 * pageblock stealing heuristics. Minimally, the caller
2973 			 * is doing the work and needs the pages. More
2974 			 * importantly, if the block was always converted to
2975 			 * MIGRATE_UNMOVABLE or another type then the number
2976 			 * of pageblocks that cannot be completely freed
2977 			 * may increase.
2978 			 */
2979 			set_pageblock_migratetype(page, ac->migratetype);
2980 			ret = move_freepages_block(zone, page, ac->migratetype,
2981 									NULL);
2982 			if (ret) {
2983 				spin_unlock_irqrestore(&zone->lock, flags);
2984 				return ret;
2985 			}
2986 		}
2987 		spin_unlock_irqrestore(&zone->lock, flags);
2988 	}
2989 
2990 	return false;
2991 }
2992 
2993 /*
2994  * Try finding a free buddy page on the fallback list and put it on the free
2995  * list of requested migratetype, possibly along with other pages from the same
2996  * block, depending on fragmentation avoidance heuristics. Returns true if
2997  * fallback was found so that __rmqueue_smallest() can grab it.
2998  *
2999  * The use of signed ints for order and current_order is a deliberate
3000  * deviation from the rest of this file, to make the for loop
3001  * condition simpler.
3002  */
3003 static __always_inline bool
3004 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3005 						unsigned int alloc_flags)
3006 {
3007 	struct free_area *area;
3008 	int current_order;
3009 	int min_order = order;
3010 	struct page *page;
3011 	int fallback_mt;
3012 	bool can_steal;
3013 
3014 	/*
3015 	 * Do not steal pages from freelists belonging to other pageblocks
3016 	 * i.e. orders < pageblock_order. If there are no local zones free,
3017 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3018 	 */
3019 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3020 		min_order = pageblock_order;
3021 
3022 	/*
3023 	 * Find the largest available free page in the other list. This roughly
3024 	 * approximates finding the pageblock with the most free pages, which
3025 	 * would be too costly to do exactly.
3026 	 */
3027 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3028 				--current_order) {
3029 		area = &(zone->free_area[current_order]);
3030 		fallback_mt = find_suitable_fallback(area, current_order,
3031 				start_migratetype, false, &can_steal);
3032 		if (fallback_mt == -1)
3033 			continue;
3034 
3035 		/*
3036 		 * We cannot steal all free pages from the pageblock and the
3037 		 * requested migratetype is movable. In that case it's better to
3038 		 * steal and split the smallest available page instead of the
3039 		 * largest available page, because even if the next movable
3040 		 * allocation falls back into a different pageblock than this
3041 		 * one, it won't cause permanent fragmentation.
3042 		 */
3043 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3044 					&& current_order > order)
3045 			goto find_smallest;
3046 
3047 		goto do_steal;
3048 	}
3049 
3050 	return false;
3051 
3052 find_smallest:
3053 	for (current_order = order; current_order < MAX_ORDER;
3054 							current_order++) {
3055 		area = &(zone->free_area[current_order]);
3056 		fallback_mt = find_suitable_fallback(area, current_order,
3057 				start_migratetype, false, &can_steal);
3058 		if (fallback_mt != -1)
3059 			break;
3060 	}
3061 
3062 	/*
3063 	 * This should not happen - we already found a suitable fallback
3064 	 * when looking for the largest page.
3065 	 */
3066 	VM_BUG_ON(current_order == MAX_ORDER);
3067 
3068 do_steal:
3069 	page = get_page_from_free_area(area, fallback_mt);
3070 
3071 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3072 								can_steal);
3073 
3074 	trace_mm_page_alloc_extfrag(page, order, current_order,
3075 		start_migratetype, fallback_mt);
3076 
3077 	return true;
3078 
3079 }
3080 
3081 /*
3082  * Do the hard work of removing an element from the buddy allocator.
3083  * Call me with the zone->lock already held.
3084  */
3085 static __always_inline struct page *
3086 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3087 						unsigned int alloc_flags)
3088 {
3089 	struct page *page;
3090 
3091 	if (IS_ENABLED(CONFIG_CMA)) {
3092 		/*
3093 		 * Balance movable allocations between regular and CMA areas by
3094 		 * allocating from CMA when over half of the zone's free memory
3095 		 * is in the CMA area.
3096 		 */
3097 		if (alloc_flags & ALLOC_CMA &&
3098 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3099 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3100 			page = __rmqueue_cma_fallback(zone, order);
3101 			if (page)
3102 				return page;
3103 		}
3104 	}
3105 retry:
3106 	page = __rmqueue_smallest(zone, order, migratetype);
3107 	if (unlikely(!page)) {
3108 		if (alloc_flags & ALLOC_CMA)
3109 			page = __rmqueue_cma_fallback(zone, order);
3110 
3111 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3112 								alloc_flags))
3113 			goto retry;
3114 	}
3115 	return page;
3116 }
3117 
3118 /*
3119  * Obtain a specified number of elements from the buddy allocator, all under
3120  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3121  * Returns the number of new pages which were placed at *list.
3122  */
3123 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3124 			unsigned long count, struct list_head *list,
3125 			int migratetype, unsigned int alloc_flags)
3126 {
3127 	int i, allocated = 0;
3128 
3129 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3130 	spin_lock(&zone->lock);
3131 	for (i = 0; i < count; ++i) {
3132 		struct page *page = __rmqueue(zone, order, migratetype,
3133 								alloc_flags);
3134 		if (unlikely(page == NULL))
3135 			break;
3136 
3137 		if (unlikely(check_pcp_refill(page, order)))
3138 			continue;
3139 
3140 		/*
3141 		 * Split buddy pages returned by expand() are received here in
3142 		 * physical page order. The page is added to the tail of
3143 		 * caller's list. From the callers perspective, the linked list
3144 		 * is ordered by page number under some conditions. This is
3145 		 * useful for IO devices that can forward direction from the
3146 		 * head, thus also in the physical page order. This is useful
3147 		 * for IO devices that can merge IO requests if the physical
3148 		 * pages are ordered properly.
3149 		 */
3150 		list_add_tail(&page->pcp_list, list);
3151 		allocated++;
3152 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3153 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3154 					      -(1 << order));
3155 	}
3156 
3157 	/*
3158 	 * i pages were removed from the buddy list even if some leak due
3159 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3160 	 * on i. Do not confuse with 'allocated' which is the number of
3161 	 * pages added to the pcp list.
3162 	 */
3163 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3164 	spin_unlock(&zone->lock);
3165 	return allocated;
3166 }
3167 
3168 #ifdef CONFIG_NUMA
3169 /*
3170  * Called from the vmstat counter updater to drain pagesets of this
3171  * currently executing processor on remote nodes after they have
3172  * expired.
3173  */
3174 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3175 {
3176 	int to_drain, batch;
3177 
3178 	batch = READ_ONCE(pcp->batch);
3179 	to_drain = min(pcp->count, batch);
3180 	if (to_drain > 0) {
3181 		unsigned long flags;
3182 
3183 		/*
3184 		 * free_pcppages_bulk expects IRQs disabled for zone->lock
3185 		 * so even though pcp->lock is not intended to be IRQ-safe,
3186 		 * it's needed in this context.
3187 		 */
3188 		spin_lock_irqsave(&pcp->lock, flags);
3189 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3190 		spin_unlock_irqrestore(&pcp->lock, flags);
3191 	}
3192 }
3193 #endif
3194 
3195 /*
3196  * Drain pcplists of the indicated processor and zone.
3197  */
3198 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3199 {
3200 	struct per_cpu_pages *pcp;
3201 
3202 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3203 	if (pcp->count) {
3204 		unsigned long flags;
3205 
3206 		/* See drain_zone_pages on why this is disabling IRQs */
3207 		spin_lock_irqsave(&pcp->lock, flags);
3208 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3209 		spin_unlock_irqrestore(&pcp->lock, flags);
3210 	}
3211 }
3212 
3213 /*
3214  * Drain pcplists of all zones on the indicated processor.
3215  */
3216 static void drain_pages(unsigned int cpu)
3217 {
3218 	struct zone *zone;
3219 
3220 	for_each_populated_zone(zone) {
3221 		drain_pages_zone(cpu, zone);
3222 	}
3223 }
3224 
3225 /*
3226  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3227  */
3228 void drain_local_pages(struct zone *zone)
3229 {
3230 	int cpu = smp_processor_id();
3231 
3232 	if (zone)
3233 		drain_pages_zone(cpu, zone);
3234 	else
3235 		drain_pages(cpu);
3236 }
3237 
3238 /*
3239  * The implementation of drain_all_pages(), exposing an extra parameter to
3240  * drain on all cpus.
3241  *
3242  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3243  * not empty. The check for non-emptiness can however race with a free to
3244  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3245  * that need the guarantee that every CPU has drained can disable the
3246  * optimizing racy check.
3247  */
3248 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3249 {
3250 	int cpu;
3251 
3252 	/*
3253 	 * Allocate in the BSS so we won't require allocation in
3254 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3255 	 */
3256 	static cpumask_t cpus_with_pcps;
3257 
3258 	/*
3259 	 * Do not drain if one is already in progress unless it's specific to
3260 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3261 	 * the drain to be complete when the call returns.
3262 	 */
3263 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3264 		if (!zone)
3265 			return;
3266 		mutex_lock(&pcpu_drain_mutex);
3267 	}
3268 
3269 	/*
3270 	 * We don't care about racing with CPU hotplug event
3271 	 * as offline notification will cause the notified
3272 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3273 	 * disables preemption as part of its processing
3274 	 */
3275 	for_each_online_cpu(cpu) {
3276 		struct per_cpu_pages *pcp;
3277 		struct zone *z;
3278 		bool has_pcps = false;
3279 
3280 		if (force_all_cpus) {
3281 			/*
3282 			 * The pcp.count check is racy, some callers need a
3283 			 * guarantee that no cpu is missed.
3284 			 */
3285 			has_pcps = true;
3286 		} else if (zone) {
3287 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3288 			if (pcp->count)
3289 				has_pcps = true;
3290 		} else {
3291 			for_each_populated_zone(z) {
3292 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3293 				if (pcp->count) {
3294 					has_pcps = true;
3295 					break;
3296 				}
3297 			}
3298 		}
3299 
3300 		if (has_pcps)
3301 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3302 		else
3303 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3304 	}
3305 
3306 	for_each_cpu(cpu, &cpus_with_pcps) {
3307 		if (zone)
3308 			drain_pages_zone(cpu, zone);
3309 		else
3310 			drain_pages(cpu);
3311 	}
3312 
3313 	mutex_unlock(&pcpu_drain_mutex);
3314 }
3315 
3316 /*
3317  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3318  *
3319  * When zone parameter is non-NULL, spill just the single zone's pages.
3320  */
3321 void drain_all_pages(struct zone *zone)
3322 {
3323 	__drain_all_pages(zone, false);
3324 }
3325 
3326 #ifdef CONFIG_HIBERNATION
3327 
3328 /*
3329  * Touch the watchdog for every WD_PAGE_COUNT pages.
3330  */
3331 #define WD_PAGE_COUNT	(128*1024)
3332 
3333 void mark_free_pages(struct zone *zone)
3334 {
3335 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3336 	unsigned long flags;
3337 	unsigned int order, t;
3338 	struct page *page;
3339 
3340 	if (zone_is_empty(zone))
3341 		return;
3342 
3343 	spin_lock_irqsave(&zone->lock, flags);
3344 
3345 	max_zone_pfn = zone_end_pfn(zone);
3346 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3347 		if (pfn_valid(pfn)) {
3348 			page = pfn_to_page(pfn);
3349 
3350 			if (!--page_count) {
3351 				touch_nmi_watchdog();
3352 				page_count = WD_PAGE_COUNT;
3353 			}
3354 
3355 			if (page_zone(page) != zone)
3356 				continue;
3357 
3358 			if (!swsusp_page_is_forbidden(page))
3359 				swsusp_unset_page_free(page);
3360 		}
3361 
3362 	for_each_migratetype_order(order, t) {
3363 		list_for_each_entry(page,
3364 				&zone->free_area[order].free_list[t], buddy_list) {
3365 			unsigned long i;
3366 
3367 			pfn = page_to_pfn(page);
3368 			for (i = 0; i < (1UL << order); i++) {
3369 				if (!--page_count) {
3370 					touch_nmi_watchdog();
3371 					page_count = WD_PAGE_COUNT;
3372 				}
3373 				swsusp_set_page_free(pfn_to_page(pfn + i));
3374 			}
3375 		}
3376 	}
3377 	spin_unlock_irqrestore(&zone->lock, flags);
3378 }
3379 #endif /* CONFIG_PM */
3380 
3381 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3382 							unsigned int order)
3383 {
3384 	int migratetype;
3385 
3386 	if (!free_pcp_prepare(page, order))
3387 		return false;
3388 
3389 	migratetype = get_pfnblock_migratetype(page, pfn);
3390 	set_pcppage_migratetype(page, migratetype);
3391 	return true;
3392 }
3393 
3394 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3395 		       bool free_high)
3396 {
3397 	int min_nr_free, max_nr_free;
3398 
3399 	/* Free everything if batch freeing high-order pages. */
3400 	if (unlikely(free_high))
3401 		return pcp->count;
3402 
3403 	/* Check for PCP disabled or boot pageset */
3404 	if (unlikely(high < batch))
3405 		return 1;
3406 
3407 	/* Leave at least pcp->batch pages on the list */
3408 	min_nr_free = batch;
3409 	max_nr_free = high - batch;
3410 
3411 	/*
3412 	 * Double the number of pages freed each time there is subsequent
3413 	 * freeing of pages without any allocation.
3414 	 */
3415 	batch <<= pcp->free_factor;
3416 	if (batch < max_nr_free)
3417 		pcp->free_factor++;
3418 	batch = clamp(batch, min_nr_free, max_nr_free);
3419 
3420 	return batch;
3421 }
3422 
3423 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3424 		       bool free_high)
3425 {
3426 	int high = READ_ONCE(pcp->high);
3427 
3428 	if (unlikely(!high || free_high))
3429 		return 0;
3430 
3431 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3432 		return high;
3433 
3434 	/*
3435 	 * If reclaim is active, limit the number of pages that can be
3436 	 * stored on pcp lists
3437 	 */
3438 	return min(READ_ONCE(pcp->batch) << 2, high);
3439 }
3440 
3441 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3442 				   struct page *page, int migratetype,
3443 				   unsigned int order)
3444 {
3445 	int high;
3446 	int pindex;
3447 	bool free_high;
3448 
3449 	__count_vm_event(PGFREE);
3450 	pindex = order_to_pindex(migratetype, order);
3451 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3452 	pcp->count += 1 << order;
3453 
3454 	/*
3455 	 * As high-order pages other than THP's stored on PCP can contribute
3456 	 * to fragmentation, limit the number stored when PCP is heavily
3457 	 * freeing without allocation. The remainder after bulk freeing
3458 	 * stops will be drained from vmstat refresh context.
3459 	 */
3460 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3461 
3462 	high = nr_pcp_high(pcp, zone, free_high);
3463 	if (pcp->count >= high) {
3464 		int batch = READ_ONCE(pcp->batch);
3465 
3466 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3467 	}
3468 }
3469 
3470 /*
3471  * Free a pcp page
3472  */
3473 void free_unref_page(struct page *page, unsigned int order)
3474 {
3475 	unsigned long flags;
3476 	unsigned long __maybe_unused UP_flags;
3477 	struct per_cpu_pages *pcp;
3478 	struct zone *zone;
3479 	unsigned long pfn = page_to_pfn(page);
3480 	int migratetype;
3481 
3482 	if (!free_unref_page_prepare(page, pfn, order))
3483 		return;
3484 
3485 	/*
3486 	 * We only track unmovable, reclaimable and movable on pcp lists.
3487 	 * Place ISOLATE pages on the isolated list because they are being
3488 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3489 	 * areas back if necessary. Otherwise, we may have to free
3490 	 * excessively into the page allocator
3491 	 */
3492 	migratetype = get_pcppage_migratetype(page);
3493 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3494 		if (unlikely(is_migrate_isolate(migratetype))) {
3495 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3496 			return;
3497 		}
3498 		migratetype = MIGRATE_MOVABLE;
3499 	}
3500 
3501 	zone = page_zone(page);
3502 	pcp_trylock_prepare(UP_flags);
3503 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3504 	if (pcp) {
3505 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3506 		pcp_spin_unlock_irqrestore(pcp, flags);
3507 	} else {
3508 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3509 	}
3510 	pcp_trylock_finish(UP_flags);
3511 }
3512 
3513 /*
3514  * Free a list of 0-order pages
3515  */
3516 void free_unref_page_list(struct list_head *list)
3517 {
3518 	struct page *page, *next;
3519 	struct per_cpu_pages *pcp = NULL;
3520 	struct zone *locked_zone = NULL;
3521 	unsigned long flags;
3522 	int batch_count = 0;
3523 	int migratetype;
3524 
3525 	/* Prepare pages for freeing */
3526 	list_for_each_entry_safe(page, next, list, lru) {
3527 		unsigned long pfn = page_to_pfn(page);
3528 		if (!free_unref_page_prepare(page, pfn, 0)) {
3529 			list_del(&page->lru);
3530 			continue;
3531 		}
3532 
3533 		/*
3534 		 * Free isolated pages directly to the allocator, see
3535 		 * comment in free_unref_page.
3536 		 */
3537 		migratetype = get_pcppage_migratetype(page);
3538 		if (unlikely(is_migrate_isolate(migratetype))) {
3539 			list_del(&page->lru);
3540 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3541 			continue;
3542 		}
3543 	}
3544 
3545 	list_for_each_entry_safe(page, next, list, lru) {
3546 		struct zone *zone = page_zone(page);
3547 
3548 		/* Different zone, different pcp lock. */
3549 		if (zone != locked_zone) {
3550 			if (pcp)
3551 				pcp_spin_unlock_irqrestore(pcp, flags);
3552 
3553 			locked_zone = zone;
3554 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3555 		}
3556 
3557 		/*
3558 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3559 		 * to the MIGRATE_MOVABLE pcp list.
3560 		 */
3561 		migratetype = get_pcppage_migratetype(page);
3562 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3563 			migratetype = MIGRATE_MOVABLE;
3564 
3565 		trace_mm_page_free_batched(page);
3566 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3567 
3568 		/*
3569 		 * Guard against excessive IRQ disabled times when we get
3570 		 * a large list of pages to free.
3571 		 */
3572 		if (++batch_count == SWAP_CLUSTER_MAX) {
3573 			pcp_spin_unlock_irqrestore(pcp, flags);
3574 			batch_count = 0;
3575 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3576 		}
3577 	}
3578 
3579 	if (pcp)
3580 		pcp_spin_unlock_irqrestore(pcp, flags);
3581 }
3582 
3583 /*
3584  * split_page takes a non-compound higher-order page, and splits it into
3585  * n (1<<order) sub-pages: page[0..n]
3586  * Each sub-page must be freed individually.
3587  *
3588  * Note: this is probably too low level an operation for use in drivers.
3589  * Please consult with lkml before using this in your driver.
3590  */
3591 void split_page(struct page *page, unsigned int order)
3592 {
3593 	int i;
3594 
3595 	VM_BUG_ON_PAGE(PageCompound(page), page);
3596 	VM_BUG_ON_PAGE(!page_count(page), page);
3597 
3598 	for (i = 1; i < (1 << order); i++)
3599 		set_page_refcounted(page + i);
3600 	split_page_owner(page, 1 << order);
3601 	split_page_memcg(page, 1 << order);
3602 }
3603 EXPORT_SYMBOL_GPL(split_page);
3604 
3605 int __isolate_free_page(struct page *page, unsigned int order)
3606 {
3607 	struct zone *zone = page_zone(page);
3608 	int mt = get_pageblock_migratetype(page);
3609 
3610 	if (!is_migrate_isolate(mt)) {
3611 		unsigned long watermark;
3612 		/*
3613 		 * Obey watermarks as if the page was being allocated. We can
3614 		 * emulate a high-order watermark check with a raised order-0
3615 		 * watermark, because we already know our high-order page
3616 		 * exists.
3617 		 */
3618 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3619 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3620 			return 0;
3621 
3622 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3623 	}
3624 
3625 	del_page_from_free_list(page, zone, order);
3626 
3627 	/*
3628 	 * Set the pageblock if the isolated page is at least half of a
3629 	 * pageblock
3630 	 */
3631 	if (order >= pageblock_order - 1) {
3632 		struct page *endpage = page + (1 << order) - 1;
3633 		for (; page < endpage; page += pageblock_nr_pages) {
3634 			int mt = get_pageblock_migratetype(page);
3635 			/*
3636 			 * Only change normal pageblocks (i.e., they can merge
3637 			 * with others)
3638 			 */
3639 			if (migratetype_is_mergeable(mt))
3640 				set_pageblock_migratetype(page,
3641 							  MIGRATE_MOVABLE);
3642 		}
3643 	}
3644 
3645 	return 1UL << order;
3646 }
3647 
3648 /**
3649  * __putback_isolated_page - Return a now-isolated page back where we got it
3650  * @page: Page that was isolated
3651  * @order: Order of the isolated page
3652  * @mt: The page's pageblock's migratetype
3653  *
3654  * This function is meant to return a page pulled from the free lists via
3655  * __isolate_free_page back to the free lists they were pulled from.
3656  */
3657 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3658 {
3659 	struct zone *zone = page_zone(page);
3660 
3661 	/* zone lock should be held when this function is called */
3662 	lockdep_assert_held(&zone->lock);
3663 
3664 	/* Return isolated page to tail of freelist. */
3665 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3666 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3667 }
3668 
3669 /*
3670  * Update NUMA hit/miss statistics
3671  *
3672  * Must be called with interrupts disabled.
3673  */
3674 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3675 				   long nr_account)
3676 {
3677 #ifdef CONFIG_NUMA
3678 	enum numa_stat_item local_stat = NUMA_LOCAL;
3679 
3680 	/* skip numa counters update if numa stats is disabled */
3681 	if (!static_branch_likely(&vm_numa_stat_key))
3682 		return;
3683 
3684 	if (zone_to_nid(z) != numa_node_id())
3685 		local_stat = NUMA_OTHER;
3686 
3687 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3688 		__count_numa_events(z, NUMA_HIT, nr_account);
3689 	else {
3690 		__count_numa_events(z, NUMA_MISS, nr_account);
3691 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3692 	}
3693 	__count_numa_events(z, local_stat, nr_account);
3694 #endif
3695 }
3696 
3697 static __always_inline
3698 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3699 			   unsigned int order, unsigned int alloc_flags,
3700 			   int migratetype)
3701 {
3702 	struct page *page;
3703 	unsigned long flags;
3704 
3705 	do {
3706 		page = NULL;
3707 		spin_lock_irqsave(&zone->lock, flags);
3708 		/*
3709 		 * order-0 request can reach here when the pcplist is skipped
3710 		 * due to non-CMA allocation context. HIGHATOMIC area is
3711 		 * reserved for high-order atomic allocation, so order-0
3712 		 * request should skip it.
3713 		 */
3714 		if (order > 0 && alloc_flags & ALLOC_HARDER)
3715 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3716 		if (!page) {
3717 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3718 			if (!page) {
3719 				spin_unlock_irqrestore(&zone->lock, flags);
3720 				return NULL;
3721 			}
3722 		}
3723 		__mod_zone_freepage_state(zone, -(1 << order),
3724 					  get_pcppage_migratetype(page));
3725 		spin_unlock_irqrestore(&zone->lock, flags);
3726 	} while (check_new_pages(page, order));
3727 
3728 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3729 	zone_statistics(preferred_zone, zone, 1);
3730 
3731 	return page;
3732 }
3733 
3734 /* Remove page from the per-cpu list, caller must protect the list */
3735 static inline
3736 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3737 			int migratetype,
3738 			unsigned int alloc_flags,
3739 			struct per_cpu_pages *pcp,
3740 			struct list_head *list)
3741 {
3742 	struct page *page;
3743 
3744 	do {
3745 		if (list_empty(list)) {
3746 			int batch = READ_ONCE(pcp->batch);
3747 			int alloced;
3748 
3749 			/*
3750 			 * Scale batch relative to order if batch implies
3751 			 * free pages can be stored on the PCP. Batch can
3752 			 * be 1 for small zones or for boot pagesets which
3753 			 * should never store free pages as the pages may
3754 			 * belong to arbitrary zones.
3755 			 */
3756 			if (batch > 1)
3757 				batch = max(batch >> order, 2);
3758 			alloced = rmqueue_bulk(zone, order,
3759 					batch, list,
3760 					migratetype, alloc_flags);
3761 
3762 			pcp->count += alloced << order;
3763 			if (unlikely(list_empty(list)))
3764 				return NULL;
3765 		}
3766 
3767 		page = list_first_entry(list, struct page, pcp_list);
3768 		list_del(&page->pcp_list);
3769 		pcp->count -= 1 << order;
3770 	} while (check_new_pcp(page, order));
3771 
3772 	return page;
3773 }
3774 
3775 /* Lock and remove page from the per-cpu list */
3776 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3777 			struct zone *zone, unsigned int order,
3778 			int migratetype, unsigned int alloc_flags)
3779 {
3780 	struct per_cpu_pages *pcp;
3781 	struct list_head *list;
3782 	struct page *page;
3783 	unsigned long flags;
3784 	unsigned long __maybe_unused UP_flags;
3785 
3786 	/*
3787 	 * spin_trylock may fail due to a parallel drain. In the future, the
3788 	 * trylock will also protect against IRQ reentrancy.
3789 	 */
3790 	pcp_trylock_prepare(UP_flags);
3791 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3792 	if (!pcp) {
3793 		pcp_trylock_finish(UP_flags);
3794 		return NULL;
3795 	}
3796 
3797 	/*
3798 	 * On allocation, reduce the number of pages that are batch freed.
3799 	 * See nr_pcp_free() where free_factor is increased for subsequent
3800 	 * frees.
3801 	 */
3802 	pcp->free_factor >>= 1;
3803 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3804 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3805 	pcp_spin_unlock_irqrestore(pcp, flags);
3806 	pcp_trylock_finish(UP_flags);
3807 	if (page) {
3808 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3809 		zone_statistics(preferred_zone, zone, 1);
3810 	}
3811 	return page;
3812 }
3813 
3814 /*
3815  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3816  */
3817 
3818 /*
3819  * Do not instrument rmqueue() with KMSAN. This function may call
3820  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3821  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3822  * may call rmqueue() again, which will result in a deadlock.
3823  */
3824 __no_sanitize_memory
3825 static inline
3826 struct page *rmqueue(struct zone *preferred_zone,
3827 			struct zone *zone, unsigned int order,
3828 			gfp_t gfp_flags, unsigned int alloc_flags,
3829 			int migratetype)
3830 {
3831 	struct page *page;
3832 
3833 	/*
3834 	 * We most definitely don't want callers attempting to
3835 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3836 	 */
3837 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3838 
3839 	if (likely(pcp_allowed_order(order))) {
3840 		/*
3841 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3842 		 * we need to skip it when CMA area isn't allowed.
3843 		 */
3844 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3845 				migratetype != MIGRATE_MOVABLE) {
3846 			page = rmqueue_pcplist(preferred_zone, zone, order,
3847 					migratetype, alloc_flags);
3848 			if (likely(page))
3849 				goto out;
3850 		}
3851 	}
3852 
3853 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3854 							migratetype);
3855 
3856 out:
3857 	/* Separate test+clear to avoid unnecessary atomics */
3858 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3859 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3860 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3861 	}
3862 
3863 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3864 	return page;
3865 }
3866 
3867 #ifdef CONFIG_FAIL_PAGE_ALLOC
3868 
3869 static struct {
3870 	struct fault_attr attr;
3871 
3872 	bool ignore_gfp_highmem;
3873 	bool ignore_gfp_reclaim;
3874 	u32 min_order;
3875 } fail_page_alloc = {
3876 	.attr = FAULT_ATTR_INITIALIZER,
3877 	.ignore_gfp_reclaim = true,
3878 	.ignore_gfp_highmem = true,
3879 	.min_order = 1,
3880 };
3881 
3882 static int __init setup_fail_page_alloc(char *str)
3883 {
3884 	return setup_fault_attr(&fail_page_alloc.attr, str);
3885 }
3886 __setup("fail_page_alloc=", setup_fail_page_alloc);
3887 
3888 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3889 {
3890 	if (order < fail_page_alloc.min_order)
3891 		return false;
3892 	if (gfp_mask & __GFP_NOFAIL)
3893 		return false;
3894 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3895 		return false;
3896 	if (fail_page_alloc.ignore_gfp_reclaim &&
3897 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3898 		return false;
3899 
3900 	if (gfp_mask & __GFP_NOWARN)
3901 		fail_page_alloc.attr.no_warn = true;
3902 
3903 	return should_fail(&fail_page_alloc.attr, 1 << order);
3904 }
3905 
3906 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3907 
3908 static int __init fail_page_alloc_debugfs(void)
3909 {
3910 	umode_t mode = S_IFREG | 0600;
3911 	struct dentry *dir;
3912 
3913 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3914 					&fail_page_alloc.attr);
3915 
3916 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3917 			    &fail_page_alloc.ignore_gfp_reclaim);
3918 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3919 			    &fail_page_alloc.ignore_gfp_highmem);
3920 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3921 
3922 	return 0;
3923 }
3924 
3925 late_initcall(fail_page_alloc_debugfs);
3926 
3927 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3928 
3929 #else /* CONFIG_FAIL_PAGE_ALLOC */
3930 
3931 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3932 {
3933 	return false;
3934 }
3935 
3936 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3937 
3938 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3939 {
3940 	return __should_fail_alloc_page(gfp_mask, order);
3941 }
3942 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3943 
3944 static inline long __zone_watermark_unusable_free(struct zone *z,
3945 				unsigned int order, unsigned int alloc_flags)
3946 {
3947 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3948 	long unusable_free = (1 << order) - 1;
3949 
3950 	/*
3951 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3952 	 * the high-atomic reserves. This will over-estimate the size of the
3953 	 * atomic reserve but it avoids a search.
3954 	 */
3955 	if (likely(!alloc_harder))
3956 		unusable_free += z->nr_reserved_highatomic;
3957 
3958 #ifdef CONFIG_CMA
3959 	/* If allocation can't use CMA areas don't use free CMA pages */
3960 	if (!(alloc_flags & ALLOC_CMA))
3961 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3962 #endif
3963 
3964 	return unusable_free;
3965 }
3966 
3967 /*
3968  * Return true if free base pages are above 'mark'. For high-order checks it
3969  * will return true of the order-0 watermark is reached and there is at least
3970  * one free page of a suitable size. Checking now avoids taking the zone lock
3971  * to check in the allocation paths if no pages are free.
3972  */
3973 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3974 			 int highest_zoneidx, unsigned int alloc_flags,
3975 			 long free_pages)
3976 {
3977 	long min = mark;
3978 	int o;
3979 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3980 
3981 	/* free_pages may go negative - that's OK */
3982 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3983 
3984 	if (alloc_flags & ALLOC_HIGH)
3985 		min -= min / 2;
3986 
3987 	if (unlikely(alloc_harder)) {
3988 		/*
3989 		 * OOM victims can try even harder than normal ALLOC_HARDER
3990 		 * users on the grounds that it's definitely going to be in
3991 		 * the exit path shortly and free memory. Any allocation it
3992 		 * makes during the free path will be small and short-lived.
3993 		 */
3994 		if (alloc_flags & ALLOC_OOM)
3995 			min -= min / 2;
3996 		else
3997 			min -= min / 4;
3998 	}
3999 
4000 	/*
4001 	 * Check watermarks for an order-0 allocation request. If these
4002 	 * are not met, then a high-order request also cannot go ahead
4003 	 * even if a suitable page happened to be free.
4004 	 */
4005 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4006 		return false;
4007 
4008 	/* If this is an order-0 request then the watermark is fine */
4009 	if (!order)
4010 		return true;
4011 
4012 	/* For a high-order request, check at least one suitable page is free */
4013 	for (o = order; o < MAX_ORDER; o++) {
4014 		struct free_area *area = &z->free_area[o];
4015 		int mt;
4016 
4017 		if (!area->nr_free)
4018 			continue;
4019 
4020 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4021 			if (!free_area_empty(area, mt))
4022 				return true;
4023 		}
4024 
4025 #ifdef CONFIG_CMA
4026 		if ((alloc_flags & ALLOC_CMA) &&
4027 		    !free_area_empty(area, MIGRATE_CMA)) {
4028 			return true;
4029 		}
4030 #endif
4031 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4032 			return true;
4033 	}
4034 	return false;
4035 }
4036 
4037 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4038 		      int highest_zoneidx, unsigned int alloc_flags)
4039 {
4040 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4041 					zone_page_state(z, NR_FREE_PAGES));
4042 }
4043 
4044 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4045 				unsigned long mark, int highest_zoneidx,
4046 				unsigned int alloc_flags, gfp_t gfp_mask)
4047 {
4048 	long free_pages;
4049 
4050 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4051 
4052 	/*
4053 	 * Fast check for order-0 only. If this fails then the reserves
4054 	 * need to be calculated.
4055 	 */
4056 	if (!order) {
4057 		long usable_free;
4058 		long reserved;
4059 
4060 		usable_free = free_pages;
4061 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4062 
4063 		/* reserved may over estimate high-atomic reserves. */
4064 		usable_free -= min(usable_free, reserved);
4065 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4066 			return true;
4067 	}
4068 
4069 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4070 					free_pages))
4071 		return true;
4072 	/*
4073 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4074 	 * when checking the min watermark. The min watermark is the
4075 	 * point where boosting is ignored so that kswapd is woken up
4076 	 * when below the low watermark.
4077 	 */
4078 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4079 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4080 		mark = z->_watermark[WMARK_MIN];
4081 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4082 					alloc_flags, free_pages);
4083 	}
4084 
4085 	return false;
4086 }
4087 
4088 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4089 			unsigned long mark, int highest_zoneidx)
4090 {
4091 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4092 
4093 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4094 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4095 
4096 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4097 								free_pages);
4098 }
4099 
4100 #ifdef CONFIG_NUMA
4101 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4102 
4103 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4104 {
4105 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4106 				node_reclaim_distance;
4107 }
4108 #else	/* CONFIG_NUMA */
4109 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4110 {
4111 	return true;
4112 }
4113 #endif	/* CONFIG_NUMA */
4114 
4115 /*
4116  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4117  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4118  * premature use of a lower zone may cause lowmem pressure problems that
4119  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4120  * probably too small. It only makes sense to spread allocations to avoid
4121  * fragmentation between the Normal and DMA32 zones.
4122  */
4123 static inline unsigned int
4124 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4125 {
4126 	unsigned int alloc_flags;
4127 
4128 	/*
4129 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4130 	 * to save a branch.
4131 	 */
4132 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4133 
4134 #ifdef CONFIG_ZONE_DMA32
4135 	if (!zone)
4136 		return alloc_flags;
4137 
4138 	if (zone_idx(zone) != ZONE_NORMAL)
4139 		return alloc_flags;
4140 
4141 	/*
4142 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4143 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4144 	 * on UMA that if Normal is populated then so is DMA32.
4145 	 */
4146 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4147 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4148 		return alloc_flags;
4149 
4150 	alloc_flags |= ALLOC_NOFRAGMENT;
4151 #endif /* CONFIG_ZONE_DMA32 */
4152 	return alloc_flags;
4153 }
4154 
4155 /* Must be called after current_gfp_context() which can change gfp_mask */
4156 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4157 						  unsigned int alloc_flags)
4158 {
4159 #ifdef CONFIG_CMA
4160 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4161 		alloc_flags |= ALLOC_CMA;
4162 #endif
4163 	return alloc_flags;
4164 }
4165 
4166 /*
4167  * get_page_from_freelist goes through the zonelist trying to allocate
4168  * a page.
4169  */
4170 static struct page *
4171 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4172 						const struct alloc_context *ac)
4173 {
4174 	struct zoneref *z;
4175 	struct zone *zone;
4176 	struct pglist_data *last_pgdat = NULL;
4177 	bool last_pgdat_dirty_ok = false;
4178 	bool no_fallback;
4179 
4180 retry:
4181 	/*
4182 	 * Scan zonelist, looking for a zone with enough free.
4183 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4184 	 */
4185 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4186 	z = ac->preferred_zoneref;
4187 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4188 					ac->nodemask) {
4189 		struct page *page;
4190 		unsigned long mark;
4191 
4192 		if (cpusets_enabled() &&
4193 			(alloc_flags & ALLOC_CPUSET) &&
4194 			!__cpuset_zone_allowed(zone, gfp_mask))
4195 				continue;
4196 		/*
4197 		 * When allocating a page cache page for writing, we
4198 		 * want to get it from a node that is within its dirty
4199 		 * limit, such that no single node holds more than its
4200 		 * proportional share of globally allowed dirty pages.
4201 		 * The dirty limits take into account the node's
4202 		 * lowmem reserves and high watermark so that kswapd
4203 		 * should be able to balance it without having to
4204 		 * write pages from its LRU list.
4205 		 *
4206 		 * XXX: For now, allow allocations to potentially
4207 		 * exceed the per-node dirty limit in the slowpath
4208 		 * (spread_dirty_pages unset) before going into reclaim,
4209 		 * which is important when on a NUMA setup the allowed
4210 		 * nodes are together not big enough to reach the
4211 		 * global limit.  The proper fix for these situations
4212 		 * will require awareness of nodes in the
4213 		 * dirty-throttling and the flusher threads.
4214 		 */
4215 		if (ac->spread_dirty_pages) {
4216 			if (last_pgdat != zone->zone_pgdat) {
4217 				last_pgdat = zone->zone_pgdat;
4218 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4219 			}
4220 
4221 			if (!last_pgdat_dirty_ok)
4222 				continue;
4223 		}
4224 
4225 		if (no_fallback && nr_online_nodes > 1 &&
4226 		    zone != ac->preferred_zoneref->zone) {
4227 			int local_nid;
4228 
4229 			/*
4230 			 * If moving to a remote node, retry but allow
4231 			 * fragmenting fallbacks. Locality is more important
4232 			 * than fragmentation avoidance.
4233 			 */
4234 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4235 			if (zone_to_nid(zone) != local_nid) {
4236 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4237 				goto retry;
4238 			}
4239 		}
4240 
4241 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4242 		if (!zone_watermark_fast(zone, order, mark,
4243 				       ac->highest_zoneidx, alloc_flags,
4244 				       gfp_mask)) {
4245 			int ret;
4246 
4247 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4248 			/*
4249 			 * Watermark failed for this zone, but see if we can
4250 			 * grow this zone if it contains deferred pages.
4251 			 */
4252 			if (static_branch_unlikely(&deferred_pages)) {
4253 				if (_deferred_grow_zone(zone, order))
4254 					goto try_this_zone;
4255 			}
4256 #endif
4257 			/* Checked here to keep the fast path fast */
4258 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4259 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4260 				goto try_this_zone;
4261 
4262 			if (!node_reclaim_enabled() ||
4263 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4264 				continue;
4265 
4266 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4267 			switch (ret) {
4268 			case NODE_RECLAIM_NOSCAN:
4269 				/* did not scan */
4270 				continue;
4271 			case NODE_RECLAIM_FULL:
4272 				/* scanned but unreclaimable */
4273 				continue;
4274 			default:
4275 				/* did we reclaim enough */
4276 				if (zone_watermark_ok(zone, order, mark,
4277 					ac->highest_zoneidx, alloc_flags))
4278 					goto try_this_zone;
4279 
4280 				continue;
4281 			}
4282 		}
4283 
4284 try_this_zone:
4285 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4286 				gfp_mask, alloc_flags, ac->migratetype);
4287 		if (page) {
4288 			prep_new_page(page, order, gfp_mask, alloc_flags);
4289 
4290 			/*
4291 			 * If this is a high-order atomic allocation then check
4292 			 * if the pageblock should be reserved for the future
4293 			 */
4294 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4295 				reserve_highatomic_pageblock(page, zone, order);
4296 
4297 			return page;
4298 		} else {
4299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4300 			/* Try again if zone has deferred pages */
4301 			if (static_branch_unlikely(&deferred_pages)) {
4302 				if (_deferred_grow_zone(zone, order))
4303 					goto try_this_zone;
4304 			}
4305 #endif
4306 		}
4307 	}
4308 
4309 	/*
4310 	 * It's possible on a UMA machine to get through all zones that are
4311 	 * fragmented. If avoiding fragmentation, reset and try again.
4312 	 */
4313 	if (no_fallback) {
4314 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4315 		goto retry;
4316 	}
4317 
4318 	return NULL;
4319 }
4320 
4321 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4322 {
4323 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4324 
4325 	/*
4326 	 * This documents exceptions given to allocations in certain
4327 	 * contexts that are allowed to allocate outside current's set
4328 	 * of allowed nodes.
4329 	 */
4330 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4331 		if (tsk_is_oom_victim(current) ||
4332 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4333 			filter &= ~SHOW_MEM_FILTER_NODES;
4334 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4335 		filter &= ~SHOW_MEM_FILTER_NODES;
4336 
4337 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4338 }
4339 
4340 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4341 {
4342 	struct va_format vaf;
4343 	va_list args;
4344 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4345 
4346 	if ((gfp_mask & __GFP_NOWARN) ||
4347 	     !__ratelimit(&nopage_rs) ||
4348 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4349 		return;
4350 
4351 	va_start(args, fmt);
4352 	vaf.fmt = fmt;
4353 	vaf.va = &args;
4354 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4355 			current->comm, &vaf, gfp_mask, &gfp_mask,
4356 			nodemask_pr_args(nodemask));
4357 	va_end(args);
4358 
4359 	cpuset_print_current_mems_allowed();
4360 	pr_cont("\n");
4361 	dump_stack();
4362 	warn_alloc_show_mem(gfp_mask, nodemask);
4363 }
4364 
4365 static inline struct page *
4366 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4367 			      unsigned int alloc_flags,
4368 			      const struct alloc_context *ac)
4369 {
4370 	struct page *page;
4371 
4372 	page = get_page_from_freelist(gfp_mask, order,
4373 			alloc_flags|ALLOC_CPUSET, ac);
4374 	/*
4375 	 * fallback to ignore cpuset restriction if our nodes
4376 	 * are depleted
4377 	 */
4378 	if (!page)
4379 		page = get_page_from_freelist(gfp_mask, order,
4380 				alloc_flags, ac);
4381 
4382 	return page;
4383 }
4384 
4385 static inline struct page *
4386 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4387 	const struct alloc_context *ac, unsigned long *did_some_progress)
4388 {
4389 	struct oom_control oc = {
4390 		.zonelist = ac->zonelist,
4391 		.nodemask = ac->nodemask,
4392 		.memcg = NULL,
4393 		.gfp_mask = gfp_mask,
4394 		.order = order,
4395 	};
4396 	struct page *page;
4397 
4398 	*did_some_progress = 0;
4399 
4400 	/*
4401 	 * Acquire the oom lock.  If that fails, somebody else is
4402 	 * making progress for us.
4403 	 */
4404 	if (!mutex_trylock(&oom_lock)) {
4405 		*did_some_progress = 1;
4406 		schedule_timeout_uninterruptible(1);
4407 		return NULL;
4408 	}
4409 
4410 	/*
4411 	 * Go through the zonelist yet one more time, keep very high watermark
4412 	 * here, this is only to catch a parallel oom killing, we must fail if
4413 	 * we're still under heavy pressure. But make sure that this reclaim
4414 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4415 	 * allocation which will never fail due to oom_lock already held.
4416 	 */
4417 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4418 				      ~__GFP_DIRECT_RECLAIM, order,
4419 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4420 	if (page)
4421 		goto out;
4422 
4423 	/* Coredumps can quickly deplete all memory reserves */
4424 	if (current->flags & PF_DUMPCORE)
4425 		goto out;
4426 	/* The OOM killer will not help higher order allocs */
4427 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4428 		goto out;
4429 	/*
4430 	 * We have already exhausted all our reclaim opportunities without any
4431 	 * success so it is time to admit defeat. We will skip the OOM killer
4432 	 * because it is very likely that the caller has a more reasonable
4433 	 * fallback than shooting a random task.
4434 	 *
4435 	 * The OOM killer may not free memory on a specific node.
4436 	 */
4437 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4438 		goto out;
4439 	/* The OOM killer does not needlessly kill tasks for lowmem */
4440 	if (ac->highest_zoneidx < ZONE_NORMAL)
4441 		goto out;
4442 	if (pm_suspended_storage())
4443 		goto out;
4444 	/*
4445 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4446 	 * other request to make a forward progress.
4447 	 * We are in an unfortunate situation where out_of_memory cannot
4448 	 * do much for this context but let's try it to at least get
4449 	 * access to memory reserved if the current task is killed (see
4450 	 * out_of_memory). Once filesystems are ready to handle allocation
4451 	 * failures more gracefully we should just bail out here.
4452 	 */
4453 
4454 	/* Exhausted what can be done so it's blame time */
4455 	if (out_of_memory(&oc) ||
4456 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4457 		*did_some_progress = 1;
4458 
4459 		/*
4460 		 * Help non-failing allocations by giving them access to memory
4461 		 * reserves
4462 		 */
4463 		if (gfp_mask & __GFP_NOFAIL)
4464 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4465 					ALLOC_NO_WATERMARKS, ac);
4466 	}
4467 out:
4468 	mutex_unlock(&oom_lock);
4469 	return page;
4470 }
4471 
4472 /*
4473  * Maximum number of compaction retries with a progress before OOM
4474  * killer is consider as the only way to move forward.
4475  */
4476 #define MAX_COMPACT_RETRIES 16
4477 
4478 #ifdef CONFIG_COMPACTION
4479 /* Try memory compaction for high-order allocations before reclaim */
4480 static struct page *
4481 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4482 		unsigned int alloc_flags, const struct alloc_context *ac,
4483 		enum compact_priority prio, enum compact_result *compact_result)
4484 {
4485 	struct page *page = NULL;
4486 	unsigned long pflags;
4487 	unsigned int noreclaim_flag;
4488 
4489 	if (!order)
4490 		return NULL;
4491 
4492 	psi_memstall_enter(&pflags);
4493 	delayacct_compact_start();
4494 	noreclaim_flag = memalloc_noreclaim_save();
4495 
4496 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4497 								prio, &page);
4498 
4499 	memalloc_noreclaim_restore(noreclaim_flag);
4500 	psi_memstall_leave(&pflags);
4501 	delayacct_compact_end();
4502 
4503 	if (*compact_result == COMPACT_SKIPPED)
4504 		return NULL;
4505 	/*
4506 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4507 	 * count a compaction stall
4508 	 */
4509 	count_vm_event(COMPACTSTALL);
4510 
4511 	/* Prep a captured page if available */
4512 	if (page)
4513 		prep_new_page(page, order, gfp_mask, alloc_flags);
4514 
4515 	/* Try get a page from the freelist if available */
4516 	if (!page)
4517 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4518 
4519 	if (page) {
4520 		struct zone *zone = page_zone(page);
4521 
4522 		zone->compact_blockskip_flush = false;
4523 		compaction_defer_reset(zone, order, true);
4524 		count_vm_event(COMPACTSUCCESS);
4525 		return page;
4526 	}
4527 
4528 	/*
4529 	 * It's bad if compaction run occurs and fails. The most likely reason
4530 	 * is that pages exist, but not enough to satisfy watermarks.
4531 	 */
4532 	count_vm_event(COMPACTFAIL);
4533 
4534 	cond_resched();
4535 
4536 	return NULL;
4537 }
4538 
4539 static inline bool
4540 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4541 		     enum compact_result compact_result,
4542 		     enum compact_priority *compact_priority,
4543 		     int *compaction_retries)
4544 {
4545 	int max_retries = MAX_COMPACT_RETRIES;
4546 	int min_priority;
4547 	bool ret = false;
4548 	int retries = *compaction_retries;
4549 	enum compact_priority priority = *compact_priority;
4550 
4551 	if (!order)
4552 		return false;
4553 
4554 	if (fatal_signal_pending(current))
4555 		return false;
4556 
4557 	if (compaction_made_progress(compact_result))
4558 		(*compaction_retries)++;
4559 
4560 	/*
4561 	 * compaction considers all the zone as desperately out of memory
4562 	 * so it doesn't really make much sense to retry except when the
4563 	 * failure could be caused by insufficient priority
4564 	 */
4565 	if (compaction_failed(compact_result))
4566 		goto check_priority;
4567 
4568 	/*
4569 	 * compaction was skipped because there are not enough order-0 pages
4570 	 * to work with, so we retry only if it looks like reclaim can help.
4571 	 */
4572 	if (compaction_needs_reclaim(compact_result)) {
4573 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4574 		goto out;
4575 	}
4576 
4577 	/*
4578 	 * make sure the compaction wasn't deferred or didn't bail out early
4579 	 * due to locks contention before we declare that we should give up.
4580 	 * But the next retry should use a higher priority if allowed, so
4581 	 * we don't just keep bailing out endlessly.
4582 	 */
4583 	if (compaction_withdrawn(compact_result)) {
4584 		goto check_priority;
4585 	}
4586 
4587 	/*
4588 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4589 	 * costly ones because they are de facto nofail and invoke OOM
4590 	 * killer to move on while costly can fail and users are ready
4591 	 * to cope with that. 1/4 retries is rather arbitrary but we
4592 	 * would need much more detailed feedback from compaction to
4593 	 * make a better decision.
4594 	 */
4595 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4596 		max_retries /= 4;
4597 	if (*compaction_retries <= max_retries) {
4598 		ret = true;
4599 		goto out;
4600 	}
4601 
4602 	/*
4603 	 * Make sure there are attempts at the highest priority if we exhausted
4604 	 * all retries or failed at the lower priorities.
4605 	 */
4606 check_priority:
4607 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4608 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4609 
4610 	if (*compact_priority > min_priority) {
4611 		(*compact_priority)--;
4612 		*compaction_retries = 0;
4613 		ret = true;
4614 	}
4615 out:
4616 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4617 	return ret;
4618 }
4619 #else
4620 static inline struct page *
4621 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4622 		unsigned int alloc_flags, const struct alloc_context *ac,
4623 		enum compact_priority prio, enum compact_result *compact_result)
4624 {
4625 	*compact_result = COMPACT_SKIPPED;
4626 	return NULL;
4627 }
4628 
4629 static inline bool
4630 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4631 		     enum compact_result compact_result,
4632 		     enum compact_priority *compact_priority,
4633 		     int *compaction_retries)
4634 {
4635 	struct zone *zone;
4636 	struct zoneref *z;
4637 
4638 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4639 		return false;
4640 
4641 	/*
4642 	 * There are setups with compaction disabled which would prefer to loop
4643 	 * inside the allocator rather than hit the oom killer prematurely.
4644 	 * Let's give them a good hope and keep retrying while the order-0
4645 	 * watermarks are OK.
4646 	 */
4647 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4648 				ac->highest_zoneidx, ac->nodemask) {
4649 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4650 					ac->highest_zoneidx, alloc_flags))
4651 			return true;
4652 	}
4653 	return false;
4654 }
4655 #endif /* CONFIG_COMPACTION */
4656 
4657 #ifdef CONFIG_LOCKDEP
4658 static struct lockdep_map __fs_reclaim_map =
4659 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4660 
4661 static bool __need_reclaim(gfp_t gfp_mask)
4662 {
4663 	/* no reclaim without waiting on it */
4664 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4665 		return false;
4666 
4667 	/* this guy won't enter reclaim */
4668 	if (current->flags & PF_MEMALLOC)
4669 		return false;
4670 
4671 	if (gfp_mask & __GFP_NOLOCKDEP)
4672 		return false;
4673 
4674 	return true;
4675 }
4676 
4677 void __fs_reclaim_acquire(unsigned long ip)
4678 {
4679 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4680 }
4681 
4682 void __fs_reclaim_release(unsigned long ip)
4683 {
4684 	lock_release(&__fs_reclaim_map, ip);
4685 }
4686 
4687 void fs_reclaim_acquire(gfp_t gfp_mask)
4688 {
4689 	gfp_mask = current_gfp_context(gfp_mask);
4690 
4691 	if (__need_reclaim(gfp_mask)) {
4692 		if (gfp_mask & __GFP_FS)
4693 			__fs_reclaim_acquire(_RET_IP_);
4694 
4695 #ifdef CONFIG_MMU_NOTIFIER
4696 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4697 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4698 #endif
4699 
4700 	}
4701 }
4702 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4703 
4704 void fs_reclaim_release(gfp_t gfp_mask)
4705 {
4706 	gfp_mask = current_gfp_context(gfp_mask);
4707 
4708 	if (__need_reclaim(gfp_mask)) {
4709 		if (gfp_mask & __GFP_FS)
4710 			__fs_reclaim_release(_RET_IP_);
4711 	}
4712 }
4713 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4714 #endif
4715 
4716 /*
4717  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4718  * have been rebuilt so allocation retries. Reader side does not lock and
4719  * retries the allocation if zonelist changes. Writer side is protected by the
4720  * embedded spin_lock.
4721  */
4722 static DEFINE_SEQLOCK(zonelist_update_seq);
4723 
4724 static unsigned int zonelist_iter_begin(void)
4725 {
4726 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4727 		return read_seqbegin(&zonelist_update_seq);
4728 
4729 	return 0;
4730 }
4731 
4732 static unsigned int check_retry_zonelist(unsigned int seq)
4733 {
4734 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4735 		return read_seqretry(&zonelist_update_seq, seq);
4736 
4737 	return seq;
4738 }
4739 
4740 /* Perform direct synchronous page reclaim */
4741 static unsigned long
4742 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4743 					const struct alloc_context *ac)
4744 {
4745 	unsigned int noreclaim_flag;
4746 	unsigned long progress;
4747 
4748 	cond_resched();
4749 
4750 	/* We now go into synchronous reclaim */
4751 	cpuset_memory_pressure_bump();
4752 	fs_reclaim_acquire(gfp_mask);
4753 	noreclaim_flag = memalloc_noreclaim_save();
4754 
4755 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4756 								ac->nodemask);
4757 
4758 	memalloc_noreclaim_restore(noreclaim_flag);
4759 	fs_reclaim_release(gfp_mask);
4760 
4761 	cond_resched();
4762 
4763 	return progress;
4764 }
4765 
4766 /* The really slow allocator path where we enter direct reclaim */
4767 static inline struct page *
4768 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4769 		unsigned int alloc_flags, const struct alloc_context *ac,
4770 		unsigned long *did_some_progress)
4771 {
4772 	struct page *page = NULL;
4773 	unsigned long pflags;
4774 	bool drained = false;
4775 
4776 	psi_memstall_enter(&pflags);
4777 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4778 	if (unlikely(!(*did_some_progress)))
4779 		goto out;
4780 
4781 retry:
4782 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4783 
4784 	/*
4785 	 * If an allocation failed after direct reclaim, it could be because
4786 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4787 	 * Shrink them and try again
4788 	 */
4789 	if (!page && !drained) {
4790 		unreserve_highatomic_pageblock(ac, false);
4791 		drain_all_pages(NULL);
4792 		drained = true;
4793 		goto retry;
4794 	}
4795 out:
4796 	psi_memstall_leave(&pflags);
4797 
4798 	return page;
4799 }
4800 
4801 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4802 			     const struct alloc_context *ac)
4803 {
4804 	struct zoneref *z;
4805 	struct zone *zone;
4806 	pg_data_t *last_pgdat = NULL;
4807 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4808 
4809 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4810 					ac->nodemask) {
4811 		if (!managed_zone(zone))
4812 			continue;
4813 		if (last_pgdat != zone->zone_pgdat) {
4814 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4815 			last_pgdat = zone->zone_pgdat;
4816 		}
4817 	}
4818 }
4819 
4820 static inline unsigned int
4821 gfp_to_alloc_flags(gfp_t gfp_mask)
4822 {
4823 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4824 
4825 	/*
4826 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4827 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4828 	 * to save two branches.
4829 	 */
4830 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4831 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4832 
4833 	/*
4834 	 * The caller may dip into page reserves a bit more if the caller
4835 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4836 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4837 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4838 	 */
4839 	alloc_flags |= (__force int)
4840 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4841 
4842 	if (gfp_mask & __GFP_ATOMIC) {
4843 		/*
4844 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4845 		 * if it can't schedule.
4846 		 */
4847 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4848 			alloc_flags |= ALLOC_HARDER;
4849 		/*
4850 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4851 		 * comment for __cpuset_node_allowed().
4852 		 */
4853 		alloc_flags &= ~ALLOC_CPUSET;
4854 	} else if (unlikely(rt_task(current)) && in_task())
4855 		alloc_flags |= ALLOC_HARDER;
4856 
4857 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4858 
4859 	return alloc_flags;
4860 }
4861 
4862 static bool oom_reserves_allowed(struct task_struct *tsk)
4863 {
4864 	if (!tsk_is_oom_victim(tsk))
4865 		return false;
4866 
4867 	/*
4868 	 * !MMU doesn't have oom reaper so give access to memory reserves
4869 	 * only to the thread with TIF_MEMDIE set
4870 	 */
4871 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4872 		return false;
4873 
4874 	return true;
4875 }
4876 
4877 /*
4878  * Distinguish requests which really need access to full memory
4879  * reserves from oom victims which can live with a portion of it
4880  */
4881 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4882 {
4883 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4884 		return 0;
4885 	if (gfp_mask & __GFP_MEMALLOC)
4886 		return ALLOC_NO_WATERMARKS;
4887 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4888 		return ALLOC_NO_WATERMARKS;
4889 	if (!in_interrupt()) {
4890 		if (current->flags & PF_MEMALLOC)
4891 			return ALLOC_NO_WATERMARKS;
4892 		else if (oom_reserves_allowed(current))
4893 			return ALLOC_OOM;
4894 	}
4895 
4896 	return 0;
4897 }
4898 
4899 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4900 {
4901 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4902 }
4903 
4904 /*
4905  * Checks whether it makes sense to retry the reclaim to make a forward progress
4906  * for the given allocation request.
4907  *
4908  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4909  * without success, or when we couldn't even meet the watermark if we
4910  * reclaimed all remaining pages on the LRU lists.
4911  *
4912  * Returns true if a retry is viable or false to enter the oom path.
4913  */
4914 static inline bool
4915 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4916 		     struct alloc_context *ac, int alloc_flags,
4917 		     bool did_some_progress, int *no_progress_loops)
4918 {
4919 	struct zone *zone;
4920 	struct zoneref *z;
4921 	bool ret = false;
4922 
4923 	/*
4924 	 * Costly allocations might have made a progress but this doesn't mean
4925 	 * their order will become available due to high fragmentation so
4926 	 * always increment the no progress counter for them
4927 	 */
4928 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4929 		*no_progress_loops = 0;
4930 	else
4931 		(*no_progress_loops)++;
4932 
4933 	/*
4934 	 * Make sure we converge to OOM if we cannot make any progress
4935 	 * several times in the row.
4936 	 */
4937 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4938 		/* Before OOM, exhaust highatomic_reserve */
4939 		return unreserve_highatomic_pageblock(ac, true);
4940 	}
4941 
4942 	/*
4943 	 * Keep reclaiming pages while there is a chance this will lead
4944 	 * somewhere.  If none of the target zones can satisfy our allocation
4945 	 * request even if all reclaimable pages are considered then we are
4946 	 * screwed and have to go OOM.
4947 	 */
4948 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4949 				ac->highest_zoneidx, ac->nodemask) {
4950 		unsigned long available;
4951 		unsigned long reclaimable;
4952 		unsigned long min_wmark = min_wmark_pages(zone);
4953 		bool wmark;
4954 
4955 		available = reclaimable = zone_reclaimable_pages(zone);
4956 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4957 
4958 		/*
4959 		 * Would the allocation succeed if we reclaimed all
4960 		 * reclaimable pages?
4961 		 */
4962 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4963 				ac->highest_zoneidx, alloc_flags, available);
4964 		trace_reclaim_retry_zone(z, order, reclaimable,
4965 				available, min_wmark, *no_progress_loops, wmark);
4966 		if (wmark) {
4967 			ret = true;
4968 			break;
4969 		}
4970 	}
4971 
4972 	/*
4973 	 * Memory allocation/reclaim might be called from a WQ context and the
4974 	 * current implementation of the WQ concurrency control doesn't
4975 	 * recognize that a particular WQ is congested if the worker thread is
4976 	 * looping without ever sleeping. Therefore we have to do a short sleep
4977 	 * here rather than calling cond_resched().
4978 	 */
4979 	if (current->flags & PF_WQ_WORKER)
4980 		schedule_timeout_uninterruptible(1);
4981 	else
4982 		cond_resched();
4983 	return ret;
4984 }
4985 
4986 static inline bool
4987 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4988 {
4989 	/*
4990 	 * It's possible that cpuset's mems_allowed and the nodemask from
4991 	 * mempolicy don't intersect. This should be normally dealt with by
4992 	 * policy_nodemask(), but it's possible to race with cpuset update in
4993 	 * such a way the check therein was true, and then it became false
4994 	 * before we got our cpuset_mems_cookie here.
4995 	 * This assumes that for all allocations, ac->nodemask can come only
4996 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4997 	 * when it does not intersect with the cpuset restrictions) or the
4998 	 * caller can deal with a violated nodemask.
4999 	 */
5000 	if (cpusets_enabled() && ac->nodemask &&
5001 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5002 		ac->nodemask = NULL;
5003 		return true;
5004 	}
5005 
5006 	/*
5007 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
5008 	 * possible to race with parallel threads in such a way that our
5009 	 * allocation can fail while the mask is being updated. If we are about
5010 	 * to fail, check if the cpuset changed during allocation and if so,
5011 	 * retry.
5012 	 */
5013 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5014 		return true;
5015 
5016 	return false;
5017 }
5018 
5019 static inline struct page *
5020 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5021 						struct alloc_context *ac)
5022 {
5023 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5024 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5025 	struct page *page = NULL;
5026 	unsigned int alloc_flags;
5027 	unsigned long did_some_progress;
5028 	enum compact_priority compact_priority;
5029 	enum compact_result compact_result;
5030 	int compaction_retries;
5031 	int no_progress_loops;
5032 	unsigned int cpuset_mems_cookie;
5033 	unsigned int zonelist_iter_cookie;
5034 	int reserve_flags;
5035 
5036 	/*
5037 	 * We also sanity check to catch abuse of atomic reserves being used by
5038 	 * callers that are not in atomic context.
5039 	 */
5040 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5041 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5042 		gfp_mask &= ~__GFP_ATOMIC;
5043 
5044 restart:
5045 	compaction_retries = 0;
5046 	no_progress_loops = 0;
5047 	compact_priority = DEF_COMPACT_PRIORITY;
5048 	cpuset_mems_cookie = read_mems_allowed_begin();
5049 	zonelist_iter_cookie = zonelist_iter_begin();
5050 
5051 	/*
5052 	 * The fast path uses conservative alloc_flags to succeed only until
5053 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5054 	 * alloc_flags precisely. So we do that now.
5055 	 */
5056 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
5057 
5058 	/*
5059 	 * We need to recalculate the starting point for the zonelist iterator
5060 	 * because we might have used different nodemask in the fast path, or
5061 	 * there was a cpuset modification and we are retrying - otherwise we
5062 	 * could end up iterating over non-eligible zones endlessly.
5063 	 */
5064 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5065 					ac->highest_zoneidx, ac->nodemask);
5066 	if (!ac->preferred_zoneref->zone)
5067 		goto nopage;
5068 
5069 	/*
5070 	 * Check for insane configurations where the cpuset doesn't contain
5071 	 * any suitable zone to satisfy the request - e.g. non-movable
5072 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5073 	 */
5074 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5075 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5076 					ac->highest_zoneidx,
5077 					&cpuset_current_mems_allowed);
5078 		if (!z->zone)
5079 			goto nopage;
5080 	}
5081 
5082 	if (alloc_flags & ALLOC_KSWAPD)
5083 		wake_all_kswapds(order, gfp_mask, ac);
5084 
5085 	/*
5086 	 * The adjusted alloc_flags might result in immediate success, so try
5087 	 * that first
5088 	 */
5089 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5090 	if (page)
5091 		goto got_pg;
5092 
5093 	/*
5094 	 * For costly allocations, try direct compaction first, as it's likely
5095 	 * that we have enough base pages and don't need to reclaim. For non-
5096 	 * movable high-order allocations, do that as well, as compaction will
5097 	 * try prevent permanent fragmentation by migrating from blocks of the
5098 	 * same migratetype.
5099 	 * Don't try this for allocations that are allowed to ignore
5100 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5101 	 */
5102 	if (can_direct_reclaim &&
5103 			(costly_order ||
5104 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5105 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5106 		page = __alloc_pages_direct_compact(gfp_mask, order,
5107 						alloc_flags, ac,
5108 						INIT_COMPACT_PRIORITY,
5109 						&compact_result);
5110 		if (page)
5111 			goto got_pg;
5112 
5113 		/*
5114 		 * Checks for costly allocations with __GFP_NORETRY, which
5115 		 * includes some THP page fault allocations
5116 		 */
5117 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5118 			/*
5119 			 * If allocating entire pageblock(s) and compaction
5120 			 * failed because all zones are below low watermarks
5121 			 * or is prohibited because it recently failed at this
5122 			 * order, fail immediately unless the allocator has
5123 			 * requested compaction and reclaim retry.
5124 			 *
5125 			 * Reclaim is
5126 			 *  - potentially very expensive because zones are far
5127 			 *    below their low watermarks or this is part of very
5128 			 *    bursty high order allocations,
5129 			 *  - not guaranteed to help because isolate_freepages()
5130 			 *    may not iterate over freed pages as part of its
5131 			 *    linear scan, and
5132 			 *  - unlikely to make entire pageblocks free on its
5133 			 *    own.
5134 			 */
5135 			if (compact_result == COMPACT_SKIPPED ||
5136 			    compact_result == COMPACT_DEFERRED)
5137 				goto nopage;
5138 
5139 			/*
5140 			 * Looks like reclaim/compaction is worth trying, but
5141 			 * sync compaction could be very expensive, so keep
5142 			 * using async compaction.
5143 			 */
5144 			compact_priority = INIT_COMPACT_PRIORITY;
5145 		}
5146 	}
5147 
5148 retry:
5149 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5150 	if (alloc_flags & ALLOC_KSWAPD)
5151 		wake_all_kswapds(order, gfp_mask, ac);
5152 
5153 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5154 	if (reserve_flags)
5155 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5156 
5157 	/*
5158 	 * Reset the nodemask and zonelist iterators if memory policies can be
5159 	 * ignored. These allocations are high priority and system rather than
5160 	 * user oriented.
5161 	 */
5162 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5163 		ac->nodemask = NULL;
5164 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5165 					ac->highest_zoneidx, ac->nodemask);
5166 	}
5167 
5168 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5169 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5170 	if (page)
5171 		goto got_pg;
5172 
5173 	/* Caller is not willing to reclaim, we can't balance anything */
5174 	if (!can_direct_reclaim)
5175 		goto nopage;
5176 
5177 	/* Avoid recursion of direct reclaim */
5178 	if (current->flags & PF_MEMALLOC)
5179 		goto nopage;
5180 
5181 	/* Try direct reclaim and then allocating */
5182 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5183 							&did_some_progress);
5184 	if (page)
5185 		goto got_pg;
5186 
5187 	/* Try direct compaction and then allocating */
5188 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5189 					compact_priority, &compact_result);
5190 	if (page)
5191 		goto got_pg;
5192 
5193 	/* Do not loop if specifically requested */
5194 	if (gfp_mask & __GFP_NORETRY)
5195 		goto nopage;
5196 
5197 	/*
5198 	 * Do not retry costly high order allocations unless they are
5199 	 * __GFP_RETRY_MAYFAIL
5200 	 */
5201 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5202 		goto nopage;
5203 
5204 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5205 				 did_some_progress > 0, &no_progress_loops))
5206 		goto retry;
5207 
5208 	/*
5209 	 * It doesn't make any sense to retry for the compaction if the order-0
5210 	 * reclaim is not able to make any progress because the current
5211 	 * implementation of the compaction depends on the sufficient amount
5212 	 * of free memory (see __compaction_suitable)
5213 	 */
5214 	if (did_some_progress > 0 &&
5215 			should_compact_retry(ac, order, alloc_flags,
5216 				compact_result, &compact_priority,
5217 				&compaction_retries))
5218 		goto retry;
5219 
5220 
5221 	/*
5222 	 * Deal with possible cpuset update races or zonelist updates to avoid
5223 	 * a unnecessary OOM kill.
5224 	 */
5225 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5226 	    check_retry_zonelist(zonelist_iter_cookie))
5227 		goto restart;
5228 
5229 	/* Reclaim has failed us, start killing things */
5230 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5231 	if (page)
5232 		goto got_pg;
5233 
5234 	/* Avoid allocations with no watermarks from looping endlessly */
5235 	if (tsk_is_oom_victim(current) &&
5236 	    (alloc_flags & ALLOC_OOM ||
5237 	     (gfp_mask & __GFP_NOMEMALLOC)))
5238 		goto nopage;
5239 
5240 	/* Retry as long as the OOM killer is making progress */
5241 	if (did_some_progress) {
5242 		no_progress_loops = 0;
5243 		goto retry;
5244 	}
5245 
5246 nopage:
5247 	/*
5248 	 * Deal with possible cpuset update races or zonelist updates to avoid
5249 	 * a unnecessary OOM kill.
5250 	 */
5251 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5252 	    check_retry_zonelist(zonelist_iter_cookie))
5253 		goto restart;
5254 
5255 	/*
5256 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5257 	 * we always retry
5258 	 */
5259 	if (gfp_mask & __GFP_NOFAIL) {
5260 		/*
5261 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5262 		 * of any new users that actually require GFP_NOWAIT
5263 		 */
5264 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5265 			goto fail;
5266 
5267 		/*
5268 		 * PF_MEMALLOC request from this context is rather bizarre
5269 		 * because we cannot reclaim anything and only can loop waiting
5270 		 * for somebody to do a work for us
5271 		 */
5272 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5273 
5274 		/*
5275 		 * non failing costly orders are a hard requirement which we
5276 		 * are not prepared for much so let's warn about these users
5277 		 * so that we can identify them and convert them to something
5278 		 * else.
5279 		 */
5280 		WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5281 
5282 		/*
5283 		 * Help non-failing allocations by giving them access to memory
5284 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5285 		 * could deplete whole memory reserves which would just make
5286 		 * the situation worse
5287 		 */
5288 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5289 		if (page)
5290 			goto got_pg;
5291 
5292 		cond_resched();
5293 		goto retry;
5294 	}
5295 fail:
5296 	warn_alloc(gfp_mask, ac->nodemask,
5297 			"page allocation failure: order:%u", order);
5298 got_pg:
5299 	return page;
5300 }
5301 
5302 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5303 		int preferred_nid, nodemask_t *nodemask,
5304 		struct alloc_context *ac, gfp_t *alloc_gfp,
5305 		unsigned int *alloc_flags)
5306 {
5307 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5308 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5309 	ac->nodemask = nodemask;
5310 	ac->migratetype = gfp_migratetype(gfp_mask);
5311 
5312 	if (cpusets_enabled()) {
5313 		*alloc_gfp |= __GFP_HARDWALL;
5314 		/*
5315 		 * When we are in the interrupt context, it is irrelevant
5316 		 * to the current task context. It means that any node ok.
5317 		 */
5318 		if (in_task() && !ac->nodemask)
5319 			ac->nodemask = &cpuset_current_mems_allowed;
5320 		else
5321 			*alloc_flags |= ALLOC_CPUSET;
5322 	}
5323 
5324 	might_alloc(gfp_mask);
5325 
5326 	if (should_fail_alloc_page(gfp_mask, order))
5327 		return false;
5328 
5329 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5330 
5331 	/* Dirty zone balancing only done in the fast path */
5332 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5333 
5334 	/*
5335 	 * The preferred zone is used for statistics but crucially it is
5336 	 * also used as the starting point for the zonelist iterator. It
5337 	 * may get reset for allocations that ignore memory policies.
5338 	 */
5339 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5340 					ac->highest_zoneidx, ac->nodemask);
5341 
5342 	return true;
5343 }
5344 
5345 /*
5346  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5347  * @gfp: GFP flags for the allocation
5348  * @preferred_nid: The preferred NUMA node ID to allocate from
5349  * @nodemask: Set of nodes to allocate from, may be NULL
5350  * @nr_pages: The number of pages desired on the list or array
5351  * @page_list: Optional list to store the allocated pages
5352  * @page_array: Optional array to store the pages
5353  *
5354  * This is a batched version of the page allocator that attempts to
5355  * allocate nr_pages quickly. Pages are added to page_list if page_list
5356  * is not NULL, otherwise it is assumed that the page_array is valid.
5357  *
5358  * For lists, nr_pages is the number of pages that should be allocated.
5359  *
5360  * For arrays, only NULL elements are populated with pages and nr_pages
5361  * is the maximum number of pages that will be stored in the array.
5362  *
5363  * Returns the number of pages on the list or array.
5364  */
5365 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5366 			nodemask_t *nodemask, int nr_pages,
5367 			struct list_head *page_list,
5368 			struct page **page_array)
5369 {
5370 	struct page *page;
5371 	unsigned long flags;
5372 	unsigned long __maybe_unused UP_flags;
5373 	struct zone *zone;
5374 	struct zoneref *z;
5375 	struct per_cpu_pages *pcp;
5376 	struct list_head *pcp_list;
5377 	struct alloc_context ac;
5378 	gfp_t alloc_gfp;
5379 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5380 	int nr_populated = 0, nr_account = 0;
5381 
5382 	/*
5383 	 * Skip populated array elements to determine if any pages need
5384 	 * to be allocated before disabling IRQs.
5385 	 */
5386 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5387 		nr_populated++;
5388 
5389 	/* No pages requested? */
5390 	if (unlikely(nr_pages <= 0))
5391 		goto out;
5392 
5393 	/* Already populated array? */
5394 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5395 		goto out;
5396 
5397 	/* Bulk allocator does not support memcg accounting. */
5398 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5399 		goto failed;
5400 
5401 	/* Use the single page allocator for one page. */
5402 	if (nr_pages - nr_populated == 1)
5403 		goto failed;
5404 
5405 #ifdef CONFIG_PAGE_OWNER
5406 	/*
5407 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5408 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5409 	 * removes much of the performance benefit of bulk allocation so
5410 	 * force the caller to allocate one page at a time as it'll have
5411 	 * similar performance to added complexity to the bulk allocator.
5412 	 */
5413 	if (static_branch_unlikely(&page_owner_inited))
5414 		goto failed;
5415 #endif
5416 
5417 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5418 	gfp &= gfp_allowed_mask;
5419 	alloc_gfp = gfp;
5420 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5421 		goto out;
5422 	gfp = alloc_gfp;
5423 
5424 	/* Find an allowed local zone that meets the low watermark. */
5425 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5426 		unsigned long mark;
5427 
5428 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5429 		    !__cpuset_zone_allowed(zone, gfp)) {
5430 			continue;
5431 		}
5432 
5433 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5434 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5435 			goto failed;
5436 		}
5437 
5438 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5439 		if (zone_watermark_fast(zone, 0,  mark,
5440 				zonelist_zone_idx(ac.preferred_zoneref),
5441 				alloc_flags, gfp)) {
5442 			break;
5443 		}
5444 	}
5445 
5446 	/*
5447 	 * If there are no allowed local zones that meets the watermarks then
5448 	 * try to allocate a single page and reclaim if necessary.
5449 	 */
5450 	if (unlikely(!zone))
5451 		goto failed;
5452 
5453 	/* Is a parallel drain in progress? */
5454 	pcp_trylock_prepare(UP_flags);
5455 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5456 	if (!pcp)
5457 		goto failed_irq;
5458 
5459 	/* Attempt the batch allocation */
5460 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5461 	while (nr_populated < nr_pages) {
5462 
5463 		/* Skip existing pages */
5464 		if (page_array && page_array[nr_populated]) {
5465 			nr_populated++;
5466 			continue;
5467 		}
5468 
5469 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5470 								pcp, pcp_list);
5471 		if (unlikely(!page)) {
5472 			/* Try and allocate at least one page */
5473 			if (!nr_account) {
5474 				pcp_spin_unlock_irqrestore(pcp, flags);
5475 				goto failed_irq;
5476 			}
5477 			break;
5478 		}
5479 		nr_account++;
5480 
5481 		prep_new_page(page, 0, gfp, 0);
5482 		if (page_list)
5483 			list_add(&page->lru, page_list);
5484 		else
5485 			page_array[nr_populated] = page;
5486 		nr_populated++;
5487 	}
5488 
5489 	pcp_spin_unlock_irqrestore(pcp, flags);
5490 	pcp_trylock_finish(UP_flags);
5491 
5492 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5493 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5494 
5495 out:
5496 	return nr_populated;
5497 
5498 failed_irq:
5499 	pcp_trylock_finish(UP_flags);
5500 
5501 failed:
5502 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5503 	if (page) {
5504 		if (page_list)
5505 			list_add(&page->lru, page_list);
5506 		else
5507 			page_array[nr_populated] = page;
5508 		nr_populated++;
5509 	}
5510 
5511 	goto out;
5512 }
5513 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5514 
5515 /*
5516  * This is the 'heart' of the zoned buddy allocator.
5517  */
5518 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5519 							nodemask_t *nodemask)
5520 {
5521 	struct page *page;
5522 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5523 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5524 	struct alloc_context ac = { };
5525 
5526 	/*
5527 	 * There are several places where we assume that the order value is sane
5528 	 * so bail out early if the request is out of bound.
5529 	 */
5530 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5531 		return NULL;
5532 
5533 	gfp &= gfp_allowed_mask;
5534 	/*
5535 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5536 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5537 	 * from a particular context which has been marked by
5538 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5539 	 * movable zones are not used during allocation.
5540 	 */
5541 	gfp = current_gfp_context(gfp);
5542 	alloc_gfp = gfp;
5543 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5544 			&alloc_gfp, &alloc_flags))
5545 		return NULL;
5546 
5547 	/*
5548 	 * Forbid the first pass from falling back to types that fragment
5549 	 * memory until all local zones are considered.
5550 	 */
5551 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5552 
5553 	/* First allocation attempt */
5554 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5555 	if (likely(page))
5556 		goto out;
5557 
5558 	alloc_gfp = gfp;
5559 	ac.spread_dirty_pages = false;
5560 
5561 	/*
5562 	 * Restore the original nodemask if it was potentially replaced with
5563 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5564 	 */
5565 	ac.nodemask = nodemask;
5566 
5567 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5568 
5569 out:
5570 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5571 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5572 		__free_pages(page, order);
5573 		page = NULL;
5574 	}
5575 
5576 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5577 	kmsan_alloc_page(page, order, alloc_gfp);
5578 
5579 	return page;
5580 }
5581 EXPORT_SYMBOL(__alloc_pages);
5582 
5583 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5584 		nodemask_t *nodemask)
5585 {
5586 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5587 			preferred_nid, nodemask);
5588 
5589 	if (page && order > 1)
5590 		prep_transhuge_page(page);
5591 	return (struct folio *)page;
5592 }
5593 EXPORT_SYMBOL(__folio_alloc);
5594 
5595 /*
5596  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5597  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5598  * you need to access high mem.
5599  */
5600 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5601 {
5602 	struct page *page;
5603 
5604 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5605 	if (!page)
5606 		return 0;
5607 	return (unsigned long) page_address(page);
5608 }
5609 EXPORT_SYMBOL(__get_free_pages);
5610 
5611 unsigned long get_zeroed_page(gfp_t gfp_mask)
5612 {
5613 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5614 }
5615 EXPORT_SYMBOL(get_zeroed_page);
5616 
5617 /**
5618  * __free_pages - Free pages allocated with alloc_pages().
5619  * @page: The page pointer returned from alloc_pages().
5620  * @order: The order of the allocation.
5621  *
5622  * This function can free multi-page allocations that are not compound
5623  * pages.  It does not check that the @order passed in matches that of
5624  * the allocation, so it is easy to leak memory.  Freeing more memory
5625  * than was allocated will probably emit a warning.
5626  *
5627  * If the last reference to this page is speculative, it will be released
5628  * by put_page() which only frees the first page of a non-compound
5629  * allocation.  To prevent the remaining pages from being leaked, we free
5630  * the subsequent pages here.  If you want to use the page's reference
5631  * count to decide when to free the allocation, you should allocate a
5632  * compound page, and use put_page() instead of __free_pages().
5633  *
5634  * Context: May be called in interrupt context or while holding a normal
5635  * spinlock, but not in NMI context or while holding a raw spinlock.
5636  */
5637 void __free_pages(struct page *page, unsigned int order)
5638 {
5639 	if (put_page_testzero(page))
5640 		free_the_page(page, order);
5641 	else if (!PageHead(page))
5642 		while (order-- > 0)
5643 			free_the_page(page + (1 << order), order);
5644 }
5645 EXPORT_SYMBOL(__free_pages);
5646 
5647 void free_pages(unsigned long addr, unsigned int order)
5648 {
5649 	if (addr != 0) {
5650 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5651 		__free_pages(virt_to_page((void *)addr), order);
5652 	}
5653 }
5654 
5655 EXPORT_SYMBOL(free_pages);
5656 
5657 /*
5658  * Page Fragment:
5659  *  An arbitrary-length arbitrary-offset area of memory which resides
5660  *  within a 0 or higher order page.  Multiple fragments within that page
5661  *  are individually refcounted, in the page's reference counter.
5662  *
5663  * The page_frag functions below provide a simple allocation framework for
5664  * page fragments.  This is used by the network stack and network device
5665  * drivers to provide a backing region of memory for use as either an
5666  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5667  */
5668 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5669 					     gfp_t gfp_mask)
5670 {
5671 	struct page *page = NULL;
5672 	gfp_t gfp = gfp_mask;
5673 
5674 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5675 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5676 		    __GFP_NOMEMALLOC;
5677 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5678 				PAGE_FRAG_CACHE_MAX_ORDER);
5679 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5680 #endif
5681 	if (unlikely(!page))
5682 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5683 
5684 	nc->va = page ? page_address(page) : NULL;
5685 
5686 	return page;
5687 }
5688 
5689 void __page_frag_cache_drain(struct page *page, unsigned int count)
5690 {
5691 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5692 
5693 	if (page_ref_sub_and_test(page, count))
5694 		free_the_page(page, compound_order(page));
5695 }
5696 EXPORT_SYMBOL(__page_frag_cache_drain);
5697 
5698 void *page_frag_alloc_align(struct page_frag_cache *nc,
5699 		      unsigned int fragsz, gfp_t gfp_mask,
5700 		      unsigned int align_mask)
5701 {
5702 	unsigned int size = PAGE_SIZE;
5703 	struct page *page;
5704 	int offset;
5705 
5706 	if (unlikely(!nc->va)) {
5707 refill:
5708 		page = __page_frag_cache_refill(nc, gfp_mask);
5709 		if (!page)
5710 			return NULL;
5711 
5712 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5713 		/* if size can vary use size else just use PAGE_SIZE */
5714 		size = nc->size;
5715 #endif
5716 		/* Even if we own the page, we do not use atomic_set().
5717 		 * This would break get_page_unless_zero() users.
5718 		 */
5719 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5720 
5721 		/* reset page count bias and offset to start of new frag */
5722 		nc->pfmemalloc = page_is_pfmemalloc(page);
5723 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5724 		nc->offset = size;
5725 	}
5726 
5727 	offset = nc->offset - fragsz;
5728 	if (unlikely(offset < 0)) {
5729 		page = virt_to_page(nc->va);
5730 
5731 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5732 			goto refill;
5733 
5734 		if (unlikely(nc->pfmemalloc)) {
5735 			free_the_page(page, compound_order(page));
5736 			goto refill;
5737 		}
5738 
5739 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5740 		/* if size can vary use size else just use PAGE_SIZE */
5741 		size = nc->size;
5742 #endif
5743 		/* OK, page count is 0, we can safely set it */
5744 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5745 
5746 		/* reset page count bias and offset to start of new frag */
5747 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5748 		offset = size - fragsz;
5749 		if (unlikely(offset < 0)) {
5750 			/*
5751 			 * The caller is trying to allocate a fragment
5752 			 * with fragsz > PAGE_SIZE but the cache isn't big
5753 			 * enough to satisfy the request, this may
5754 			 * happen in low memory conditions.
5755 			 * We don't release the cache page because
5756 			 * it could make memory pressure worse
5757 			 * so we simply return NULL here.
5758 			 */
5759 			return NULL;
5760 		}
5761 	}
5762 
5763 	nc->pagecnt_bias--;
5764 	offset &= align_mask;
5765 	nc->offset = offset;
5766 
5767 	return nc->va + offset;
5768 }
5769 EXPORT_SYMBOL(page_frag_alloc_align);
5770 
5771 /*
5772  * Frees a page fragment allocated out of either a compound or order 0 page.
5773  */
5774 void page_frag_free(void *addr)
5775 {
5776 	struct page *page = virt_to_head_page(addr);
5777 
5778 	if (unlikely(put_page_testzero(page)))
5779 		free_the_page(page, compound_order(page));
5780 }
5781 EXPORT_SYMBOL(page_frag_free);
5782 
5783 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5784 		size_t size)
5785 {
5786 	if (addr) {
5787 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5788 		unsigned long used = addr + PAGE_ALIGN(size);
5789 
5790 		split_page(virt_to_page((void *)addr), order);
5791 		while (used < alloc_end) {
5792 			free_page(used);
5793 			used += PAGE_SIZE;
5794 		}
5795 	}
5796 	return (void *)addr;
5797 }
5798 
5799 /**
5800  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5801  * @size: the number of bytes to allocate
5802  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5803  *
5804  * This function is similar to alloc_pages(), except that it allocates the
5805  * minimum number of pages to satisfy the request.  alloc_pages() can only
5806  * allocate memory in power-of-two pages.
5807  *
5808  * This function is also limited by MAX_ORDER.
5809  *
5810  * Memory allocated by this function must be released by free_pages_exact().
5811  *
5812  * Return: pointer to the allocated area or %NULL in case of error.
5813  */
5814 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5815 {
5816 	unsigned int order = get_order(size);
5817 	unsigned long addr;
5818 
5819 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5820 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5821 
5822 	addr = __get_free_pages(gfp_mask, order);
5823 	return make_alloc_exact(addr, order, size);
5824 }
5825 EXPORT_SYMBOL(alloc_pages_exact);
5826 
5827 /**
5828  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5829  *			   pages on a node.
5830  * @nid: the preferred node ID where memory should be allocated
5831  * @size: the number of bytes to allocate
5832  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5833  *
5834  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5835  * back.
5836  *
5837  * Return: pointer to the allocated area or %NULL in case of error.
5838  */
5839 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5840 {
5841 	unsigned int order = get_order(size);
5842 	struct page *p;
5843 
5844 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5845 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5846 
5847 	p = alloc_pages_node(nid, gfp_mask, order);
5848 	if (!p)
5849 		return NULL;
5850 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5851 }
5852 
5853 /**
5854  * free_pages_exact - release memory allocated via alloc_pages_exact()
5855  * @virt: the value returned by alloc_pages_exact.
5856  * @size: size of allocation, same value as passed to alloc_pages_exact().
5857  *
5858  * Release the memory allocated by a previous call to alloc_pages_exact.
5859  */
5860 void free_pages_exact(void *virt, size_t size)
5861 {
5862 	unsigned long addr = (unsigned long)virt;
5863 	unsigned long end = addr + PAGE_ALIGN(size);
5864 
5865 	while (addr < end) {
5866 		free_page(addr);
5867 		addr += PAGE_SIZE;
5868 	}
5869 }
5870 EXPORT_SYMBOL(free_pages_exact);
5871 
5872 /**
5873  * nr_free_zone_pages - count number of pages beyond high watermark
5874  * @offset: The zone index of the highest zone
5875  *
5876  * nr_free_zone_pages() counts the number of pages which are beyond the
5877  * high watermark within all zones at or below a given zone index.  For each
5878  * zone, the number of pages is calculated as:
5879  *
5880  *     nr_free_zone_pages = managed_pages - high_pages
5881  *
5882  * Return: number of pages beyond high watermark.
5883  */
5884 static unsigned long nr_free_zone_pages(int offset)
5885 {
5886 	struct zoneref *z;
5887 	struct zone *zone;
5888 
5889 	/* Just pick one node, since fallback list is circular */
5890 	unsigned long sum = 0;
5891 
5892 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5893 
5894 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5895 		unsigned long size = zone_managed_pages(zone);
5896 		unsigned long high = high_wmark_pages(zone);
5897 		if (size > high)
5898 			sum += size - high;
5899 	}
5900 
5901 	return sum;
5902 }
5903 
5904 /**
5905  * nr_free_buffer_pages - count number of pages beyond high watermark
5906  *
5907  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5908  * watermark within ZONE_DMA and ZONE_NORMAL.
5909  *
5910  * Return: number of pages beyond high watermark within ZONE_DMA and
5911  * ZONE_NORMAL.
5912  */
5913 unsigned long nr_free_buffer_pages(void)
5914 {
5915 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5916 }
5917 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5918 
5919 static inline void show_node(struct zone *zone)
5920 {
5921 	if (IS_ENABLED(CONFIG_NUMA))
5922 		printk("Node %d ", zone_to_nid(zone));
5923 }
5924 
5925 long si_mem_available(void)
5926 {
5927 	long available;
5928 	unsigned long pagecache;
5929 	unsigned long wmark_low = 0;
5930 	unsigned long pages[NR_LRU_LISTS];
5931 	unsigned long reclaimable;
5932 	struct zone *zone;
5933 	int lru;
5934 
5935 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5936 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5937 
5938 	for_each_zone(zone)
5939 		wmark_low += low_wmark_pages(zone);
5940 
5941 	/*
5942 	 * Estimate the amount of memory available for userspace allocations,
5943 	 * without causing swapping or OOM.
5944 	 */
5945 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5946 
5947 	/*
5948 	 * Not all the page cache can be freed, otherwise the system will
5949 	 * start swapping or thrashing. Assume at least half of the page
5950 	 * cache, or the low watermark worth of cache, needs to stay.
5951 	 */
5952 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5953 	pagecache -= min(pagecache / 2, wmark_low);
5954 	available += pagecache;
5955 
5956 	/*
5957 	 * Part of the reclaimable slab and other kernel memory consists of
5958 	 * items that are in use, and cannot be freed. Cap this estimate at the
5959 	 * low watermark.
5960 	 */
5961 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5962 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5963 	available += reclaimable - min(reclaimable / 2, wmark_low);
5964 
5965 	if (available < 0)
5966 		available = 0;
5967 	return available;
5968 }
5969 EXPORT_SYMBOL_GPL(si_mem_available);
5970 
5971 void si_meminfo(struct sysinfo *val)
5972 {
5973 	val->totalram = totalram_pages();
5974 	val->sharedram = global_node_page_state(NR_SHMEM);
5975 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5976 	val->bufferram = nr_blockdev_pages();
5977 	val->totalhigh = totalhigh_pages();
5978 	val->freehigh = nr_free_highpages();
5979 	val->mem_unit = PAGE_SIZE;
5980 }
5981 
5982 EXPORT_SYMBOL(si_meminfo);
5983 
5984 #ifdef CONFIG_NUMA
5985 void si_meminfo_node(struct sysinfo *val, int nid)
5986 {
5987 	int zone_type;		/* needs to be signed */
5988 	unsigned long managed_pages = 0;
5989 	unsigned long managed_highpages = 0;
5990 	unsigned long free_highpages = 0;
5991 	pg_data_t *pgdat = NODE_DATA(nid);
5992 
5993 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5994 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5995 	val->totalram = managed_pages;
5996 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5997 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5998 #ifdef CONFIG_HIGHMEM
5999 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6000 		struct zone *zone = &pgdat->node_zones[zone_type];
6001 
6002 		if (is_highmem(zone)) {
6003 			managed_highpages += zone_managed_pages(zone);
6004 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6005 		}
6006 	}
6007 	val->totalhigh = managed_highpages;
6008 	val->freehigh = free_highpages;
6009 #else
6010 	val->totalhigh = managed_highpages;
6011 	val->freehigh = free_highpages;
6012 #endif
6013 	val->mem_unit = PAGE_SIZE;
6014 }
6015 #endif
6016 
6017 /*
6018  * Determine whether the node should be displayed or not, depending on whether
6019  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6020  */
6021 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6022 {
6023 	if (!(flags & SHOW_MEM_FILTER_NODES))
6024 		return false;
6025 
6026 	/*
6027 	 * no node mask - aka implicit memory numa policy. Do not bother with
6028 	 * the synchronization - read_mems_allowed_begin - because we do not
6029 	 * have to be precise here.
6030 	 */
6031 	if (!nodemask)
6032 		nodemask = &cpuset_current_mems_allowed;
6033 
6034 	return !node_isset(nid, *nodemask);
6035 }
6036 
6037 #define K(x) ((x) << (PAGE_SHIFT-10))
6038 
6039 static void show_migration_types(unsigned char type)
6040 {
6041 	static const char types[MIGRATE_TYPES] = {
6042 		[MIGRATE_UNMOVABLE]	= 'U',
6043 		[MIGRATE_MOVABLE]	= 'M',
6044 		[MIGRATE_RECLAIMABLE]	= 'E',
6045 		[MIGRATE_HIGHATOMIC]	= 'H',
6046 #ifdef CONFIG_CMA
6047 		[MIGRATE_CMA]		= 'C',
6048 #endif
6049 #ifdef CONFIG_MEMORY_ISOLATION
6050 		[MIGRATE_ISOLATE]	= 'I',
6051 #endif
6052 	};
6053 	char tmp[MIGRATE_TYPES + 1];
6054 	char *p = tmp;
6055 	int i;
6056 
6057 	for (i = 0; i < MIGRATE_TYPES; i++) {
6058 		if (type & (1 << i))
6059 			*p++ = types[i];
6060 	}
6061 
6062 	*p = '\0';
6063 	printk(KERN_CONT "(%s) ", tmp);
6064 }
6065 
6066 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6067 {
6068 	int zone_idx;
6069 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6070 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
6071 			return true;
6072 	return false;
6073 }
6074 
6075 /*
6076  * Show free area list (used inside shift_scroll-lock stuff)
6077  * We also calculate the percentage fragmentation. We do this by counting the
6078  * memory on each free list with the exception of the first item on the list.
6079  *
6080  * Bits in @filter:
6081  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6082  *   cpuset.
6083  */
6084 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6085 {
6086 	unsigned long free_pcp = 0;
6087 	int cpu, nid;
6088 	struct zone *zone;
6089 	pg_data_t *pgdat;
6090 
6091 	for_each_populated_zone(zone) {
6092 		if (zone_idx(zone) > max_zone_idx)
6093 			continue;
6094 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6095 			continue;
6096 
6097 		for_each_online_cpu(cpu)
6098 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6099 	}
6100 
6101 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6102 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6103 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6104 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6105 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
6106 		" kernel_misc_reclaimable:%lu\n"
6107 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6108 		global_node_page_state(NR_ACTIVE_ANON),
6109 		global_node_page_state(NR_INACTIVE_ANON),
6110 		global_node_page_state(NR_ISOLATED_ANON),
6111 		global_node_page_state(NR_ACTIVE_FILE),
6112 		global_node_page_state(NR_INACTIVE_FILE),
6113 		global_node_page_state(NR_ISOLATED_FILE),
6114 		global_node_page_state(NR_UNEVICTABLE),
6115 		global_node_page_state(NR_FILE_DIRTY),
6116 		global_node_page_state(NR_WRITEBACK),
6117 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6118 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6119 		global_node_page_state(NR_FILE_MAPPED),
6120 		global_node_page_state(NR_SHMEM),
6121 		global_node_page_state(NR_PAGETABLE),
6122 		global_zone_page_state(NR_BOUNCE),
6123 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6124 		global_zone_page_state(NR_FREE_PAGES),
6125 		free_pcp,
6126 		global_zone_page_state(NR_FREE_CMA_PAGES));
6127 
6128 	for_each_online_pgdat(pgdat) {
6129 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6130 			continue;
6131 		if (!node_has_managed_zones(pgdat, max_zone_idx))
6132 			continue;
6133 
6134 		printk("Node %d"
6135 			" active_anon:%lukB"
6136 			" inactive_anon:%lukB"
6137 			" active_file:%lukB"
6138 			" inactive_file:%lukB"
6139 			" unevictable:%lukB"
6140 			" isolated(anon):%lukB"
6141 			" isolated(file):%lukB"
6142 			" mapped:%lukB"
6143 			" dirty:%lukB"
6144 			" writeback:%lukB"
6145 			" shmem:%lukB"
6146 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6147 			" shmem_thp: %lukB"
6148 			" shmem_pmdmapped: %lukB"
6149 			" anon_thp: %lukB"
6150 #endif
6151 			" writeback_tmp:%lukB"
6152 			" kernel_stack:%lukB"
6153 #ifdef CONFIG_SHADOW_CALL_STACK
6154 			" shadow_call_stack:%lukB"
6155 #endif
6156 			" pagetables:%lukB"
6157 			" all_unreclaimable? %s"
6158 			"\n",
6159 			pgdat->node_id,
6160 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6161 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6162 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6163 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6164 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6165 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6166 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6167 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6168 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6169 			K(node_page_state(pgdat, NR_WRITEBACK)),
6170 			K(node_page_state(pgdat, NR_SHMEM)),
6171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6172 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6173 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6174 			K(node_page_state(pgdat, NR_ANON_THPS)),
6175 #endif
6176 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6177 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6178 #ifdef CONFIG_SHADOW_CALL_STACK
6179 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6180 #endif
6181 			K(node_page_state(pgdat, NR_PAGETABLE)),
6182 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6183 				"yes" : "no");
6184 	}
6185 
6186 	for_each_populated_zone(zone) {
6187 		int i;
6188 
6189 		if (zone_idx(zone) > max_zone_idx)
6190 			continue;
6191 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6192 			continue;
6193 
6194 		free_pcp = 0;
6195 		for_each_online_cpu(cpu)
6196 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6197 
6198 		show_node(zone);
6199 		printk(KERN_CONT
6200 			"%s"
6201 			" free:%lukB"
6202 			" boost:%lukB"
6203 			" min:%lukB"
6204 			" low:%lukB"
6205 			" high:%lukB"
6206 			" reserved_highatomic:%luKB"
6207 			" active_anon:%lukB"
6208 			" inactive_anon:%lukB"
6209 			" active_file:%lukB"
6210 			" inactive_file:%lukB"
6211 			" unevictable:%lukB"
6212 			" writepending:%lukB"
6213 			" present:%lukB"
6214 			" managed:%lukB"
6215 			" mlocked:%lukB"
6216 			" bounce:%lukB"
6217 			" free_pcp:%lukB"
6218 			" local_pcp:%ukB"
6219 			" free_cma:%lukB"
6220 			"\n",
6221 			zone->name,
6222 			K(zone_page_state(zone, NR_FREE_PAGES)),
6223 			K(zone->watermark_boost),
6224 			K(min_wmark_pages(zone)),
6225 			K(low_wmark_pages(zone)),
6226 			K(high_wmark_pages(zone)),
6227 			K(zone->nr_reserved_highatomic),
6228 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6229 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6230 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6231 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6232 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6233 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6234 			K(zone->present_pages),
6235 			K(zone_managed_pages(zone)),
6236 			K(zone_page_state(zone, NR_MLOCK)),
6237 			K(zone_page_state(zone, NR_BOUNCE)),
6238 			K(free_pcp),
6239 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6240 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6241 		printk("lowmem_reserve[]:");
6242 		for (i = 0; i < MAX_NR_ZONES; i++)
6243 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6244 		printk(KERN_CONT "\n");
6245 	}
6246 
6247 	for_each_populated_zone(zone) {
6248 		unsigned int order;
6249 		unsigned long nr[MAX_ORDER], flags, total = 0;
6250 		unsigned char types[MAX_ORDER];
6251 
6252 		if (zone_idx(zone) > max_zone_idx)
6253 			continue;
6254 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6255 			continue;
6256 		show_node(zone);
6257 		printk(KERN_CONT "%s: ", zone->name);
6258 
6259 		spin_lock_irqsave(&zone->lock, flags);
6260 		for (order = 0; order < MAX_ORDER; order++) {
6261 			struct free_area *area = &zone->free_area[order];
6262 			int type;
6263 
6264 			nr[order] = area->nr_free;
6265 			total += nr[order] << order;
6266 
6267 			types[order] = 0;
6268 			for (type = 0; type < MIGRATE_TYPES; type++) {
6269 				if (!free_area_empty(area, type))
6270 					types[order] |= 1 << type;
6271 			}
6272 		}
6273 		spin_unlock_irqrestore(&zone->lock, flags);
6274 		for (order = 0; order < MAX_ORDER; order++) {
6275 			printk(KERN_CONT "%lu*%lukB ",
6276 			       nr[order], K(1UL) << order);
6277 			if (nr[order])
6278 				show_migration_types(types[order]);
6279 		}
6280 		printk(KERN_CONT "= %lukB\n", K(total));
6281 	}
6282 
6283 	for_each_online_node(nid) {
6284 		if (show_mem_node_skip(filter, nid, nodemask))
6285 			continue;
6286 		hugetlb_show_meminfo_node(nid);
6287 	}
6288 
6289 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6290 
6291 	show_swap_cache_info();
6292 }
6293 
6294 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6295 {
6296 	zoneref->zone = zone;
6297 	zoneref->zone_idx = zone_idx(zone);
6298 }
6299 
6300 /*
6301  * Builds allocation fallback zone lists.
6302  *
6303  * Add all populated zones of a node to the zonelist.
6304  */
6305 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6306 {
6307 	struct zone *zone;
6308 	enum zone_type zone_type = MAX_NR_ZONES;
6309 	int nr_zones = 0;
6310 
6311 	do {
6312 		zone_type--;
6313 		zone = pgdat->node_zones + zone_type;
6314 		if (populated_zone(zone)) {
6315 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6316 			check_highest_zone(zone_type);
6317 		}
6318 	} while (zone_type);
6319 
6320 	return nr_zones;
6321 }
6322 
6323 #ifdef CONFIG_NUMA
6324 
6325 static int __parse_numa_zonelist_order(char *s)
6326 {
6327 	/*
6328 	 * We used to support different zonelists modes but they turned
6329 	 * out to be just not useful. Let's keep the warning in place
6330 	 * if somebody still use the cmd line parameter so that we do
6331 	 * not fail it silently
6332 	 */
6333 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6334 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6335 		return -EINVAL;
6336 	}
6337 	return 0;
6338 }
6339 
6340 char numa_zonelist_order[] = "Node";
6341 
6342 /*
6343  * sysctl handler for numa_zonelist_order
6344  */
6345 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6346 		void *buffer, size_t *length, loff_t *ppos)
6347 {
6348 	if (write)
6349 		return __parse_numa_zonelist_order(buffer);
6350 	return proc_dostring(table, write, buffer, length, ppos);
6351 }
6352 
6353 
6354 static int node_load[MAX_NUMNODES];
6355 
6356 /**
6357  * find_next_best_node - find the next node that should appear in a given node's fallback list
6358  * @node: node whose fallback list we're appending
6359  * @used_node_mask: nodemask_t of already used nodes
6360  *
6361  * We use a number of factors to determine which is the next node that should
6362  * appear on a given node's fallback list.  The node should not have appeared
6363  * already in @node's fallback list, and it should be the next closest node
6364  * according to the distance array (which contains arbitrary distance values
6365  * from each node to each node in the system), and should also prefer nodes
6366  * with no CPUs, since presumably they'll have very little allocation pressure
6367  * on them otherwise.
6368  *
6369  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6370  */
6371 int find_next_best_node(int node, nodemask_t *used_node_mask)
6372 {
6373 	int n, val;
6374 	int min_val = INT_MAX;
6375 	int best_node = NUMA_NO_NODE;
6376 
6377 	/* Use the local node if we haven't already */
6378 	if (!node_isset(node, *used_node_mask)) {
6379 		node_set(node, *used_node_mask);
6380 		return node;
6381 	}
6382 
6383 	for_each_node_state(n, N_MEMORY) {
6384 
6385 		/* Don't want a node to appear more than once */
6386 		if (node_isset(n, *used_node_mask))
6387 			continue;
6388 
6389 		/* Use the distance array to find the distance */
6390 		val = node_distance(node, n);
6391 
6392 		/* Penalize nodes under us ("prefer the next node") */
6393 		val += (n < node);
6394 
6395 		/* Give preference to headless and unused nodes */
6396 		if (!cpumask_empty(cpumask_of_node(n)))
6397 			val += PENALTY_FOR_NODE_WITH_CPUS;
6398 
6399 		/* Slight preference for less loaded node */
6400 		val *= MAX_NUMNODES;
6401 		val += node_load[n];
6402 
6403 		if (val < min_val) {
6404 			min_val = val;
6405 			best_node = n;
6406 		}
6407 	}
6408 
6409 	if (best_node >= 0)
6410 		node_set(best_node, *used_node_mask);
6411 
6412 	return best_node;
6413 }
6414 
6415 
6416 /*
6417  * Build zonelists ordered by node and zones within node.
6418  * This results in maximum locality--normal zone overflows into local
6419  * DMA zone, if any--but risks exhausting DMA zone.
6420  */
6421 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6422 		unsigned nr_nodes)
6423 {
6424 	struct zoneref *zonerefs;
6425 	int i;
6426 
6427 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6428 
6429 	for (i = 0; i < nr_nodes; i++) {
6430 		int nr_zones;
6431 
6432 		pg_data_t *node = NODE_DATA(node_order[i]);
6433 
6434 		nr_zones = build_zonerefs_node(node, zonerefs);
6435 		zonerefs += nr_zones;
6436 	}
6437 	zonerefs->zone = NULL;
6438 	zonerefs->zone_idx = 0;
6439 }
6440 
6441 /*
6442  * Build gfp_thisnode zonelists
6443  */
6444 static void build_thisnode_zonelists(pg_data_t *pgdat)
6445 {
6446 	struct zoneref *zonerefs;
6447 	int nr_zones;
6448 
6449 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6450 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6451 	zonerefs += nr_zones;
6452 	zonerefs->zone = NULL;
6453 	zonerefs->zone_idx = 0;
6454 }
6455 
6456 /*
6457  * Build zonelists ordered by zone and nodes within zones.
6458  * This results in conserving DMA zone[s] until all Normal memory is
6459  * exhausted, but results in overflowing to remote node while memory
6460  * may still exist in local DMA zone.
6461  */
6462 
6463 static void build_zonelists(pg_data_t *pgdat)
6464 {
6465 	static int node_order[MAX_NUMNODES];
6466 	int node, nr_nodes = 0;
6467 	nodemask_t used_mask = NODE_MASK_NONE;
6468 	int local_node, prev_node;
6469 
6470 	/* NUMA-aware ordering of nodes */
6471 	local_node = pgdat->node_id;
6472 	prev_node = local_node;
6473 
6474 	memset(node_order, 0, sizeof(node_order));
6475 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6476 		/*
6477 		 * We don't want to pressure a particular node.
6478 		 * So adding penalty to the first node in same
6479 		 * distance group to make it round-robin.
6480 		 */
6481 		if (node_distance(local_node, node) !=
6482 		    node_distance(local_node, prev_node))
6483 			node_load[node] += 1;
6484 
6485 		node_order[nr_nodes++] = node;
6486 		prev_node = node;
6487 	}
6488 
6489 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6490 	build_thisnode_zonelists(pgdat);
6491 	pr_info("Fallback order for Node %d: ", local_node);
6492 	for (node = 0; node < nr_nodes; node++)
6493 		pr_cont("%d ", node_order[node]);
6494 	pr_cont("\n");
6495 }
6496 
6497 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6498 /*
6499  * Return node id of node used for "local" allocations.
6500  * I.e., first node id of first zone in arg node's generic zonelist.
6501  * Used for initializing percpu 'numa_mem', which is used primarily
6502  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6503  */
6504 int local_memory_node(int node)
6505 {
6506 	struct zoneref *z;
6507 
6508 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6509 				   gfp_zone(GFP_KERNEL),
6510 				   NULL);
6511 	return zone_to_nid(z->zone);
6512 }
6513 #endif
6514 
6515 static void setup_min_unmapped_ratio(void);
6516 static void setup_min_slab_ratio(void);
6517 #else	/* CONFIG_NUMA */
6518 
6519 static void build_zonelists(pg_data_t *pgdat)
6520 {
6521 	int node, local_node;
6522 	struct zoneref *zonerefs;
6523 	int nr_zones;
6524 
6525 	local_node = pgdat->node_id;
6526 
6527 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6528 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6529 	zonerefs += nr_zones;
6530 
6531 	/*
6532 	 * Now we build the zonelist so that it contains the zones
6533 	 * of all the other nodes.
6534 	 * We don't want to pressure a particular node, so when
6535 	 * building the zones for node N, we make sure that the
6536 	 * zones coming right after the local ones are those from
6537 	 * node N+1 (modulo N)
6538 	 */
6539 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6540 		if (!node_online(node))
6541 			continue;
6542 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6543 		zonerefs += nr_zones;
6544 	}
6545 	for (node = 0; node < local_node; node++) {
6546 		if (!node_online(node))
6547 			continue;
6548 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6549 		zonerefs += nr_zones;
6550 	}
6551 
6552 	zonerefs->zone = NULL;
6553 	zonerefs->zone_idx = 0;
6554 }
6555 
6556 #endif	/* CONFIG_NUMA */
6557 
6558 /*
6559  * Boot pageset table. One per cpu which is going to be used for all
6560  * zones and all nodes. The parameters will be set in such a way
6561  * that an item put on a list will immediately be handed over to
6562  * the buddy list. This is safe since pageset manipulation is done
6563  * with interrupts disabled.
6564  *
6565  * The boot_pagesets must be kept even after bootup is complete for
6566  * unused processors and/or zones. They do play a role for bootstrapping
6567  * hotplugged processors.
6568  *
6569  * zoneinfo_show() and maybe other functions do
6570  * not check if the processor is online before following the pageset pointer.
6571  * Other parts of the kernel may not check if the zone is available.
6572  */
6573 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6574 /* These effectively disable the pcplists in the boot pageset completely */
6575 #define BOOT_PAGESET_HIGH	0
6576 #define BOOT_PAGESET_BATCH	1
6577 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6578 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6579 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6580 
6581 static void __build_all_zonelists(void *data)
6582 {
6583 	int nid;
6584 	int __maybe_unused cpu;
6585 	pg_data_t *self = data;
6586 
6587 	write_seqlock(&zonelist_update_seq);
6588 
6589 #ifdef CONFIG_NUMA
6590 	memset(node_load, 0, sizeof(node_load));
6591 #endif
6592 
6593 	/*
6594 	 * This node is hotadded and no memory is yet present.   So just
6595 	 * building zonelists is fine - no need to touch other nodes.
6596 	 */
6597 	if (self && !node_online(self->node_id)) {
6598 		build_zonelists(self);
6599 	} else {
6600 		/*
6601 		 * All possible nodes have pgdat preallocated
6602 		 * in free_area_init
6603 		 */
6604 		for_each_node(nid) {
6605 			pg_data_t *pgdat = NODE_DATA(nid);
6606 
6607 			build_zonelists(pgdat);
6608 		}
6609 
6610 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6611 		/*
6612 		 * We now know the "local memory node" for each node--
6613 		 * i.e., the node of the first zone in the generic zonelist.
6614 		 * Set up numa_mem percpu variable for on-line cpus.  During
6615 		 * boot, only the boot cpu should be on-line;  we'll init the
6616 		 * secondary cpus' numa_mem as they come on-line.  During
6617 		 * node/memory hotplug, we'll fixup all on-line cpus.
6618 		 */
6619 		for_each_online_cpu(cpu)
6620 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6621 #endif
6622 	}
6623 
6624 	write_sequnlock(&zonelist_update_seq);
6625 }
6626 
6627 static noinline void __init
6628 build_all_zonelists_init(void)
6629 {
6630 	int cpu;
6631 
6632 	__build_all_zonelists(NULL);
6633 
6634 	/*
6635 	 * Initialize the boot_pagesets that are going to be used
6636 	 * for bootstrapping processors. The real pagesets for
6637 	 * each zone will be allocated later when the per cpu
6638 	 * allocator is available.
6639 	 *
6640 	 * boot_pagesets are used also for bootstrapping offline
6641 	 * cpus if the system is already booted because the pagesets
6642 	 * are needed to initialize allocators on a specific cpu too.
6643 	 * F.e. the percpu allocator needs the page allocator which
6644 	 * needs the percpu allocator in order to allocate its pagesets
6645 	 * (a chicken-egg dilemma).
6646 	 */
6647 	for_each_possible_cpu(cpu)
6648 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6649 
6650 	mminit_verify_zonelist();
6651 	cpuset_init_current_mems_allowed();
6652 }
6653 
6654 /*
6655  * unless system_state == SYSTEM_BOOTING.
6656  *
6657  * __ref due to call of __init annotated helper build_all_zonelists_init
6658  * [protected by SYSTEM_BOOTING].
6659  */
6660 void __ref build_all_zonelists(pg_data_t *pgdat)
6661 {
6662 	unsigned long vm_total_pages;
6663 
6664 	if (system_state == SYSTEM_BOOTING) {
6665 		build_all_zonelists_init();
6666 	} else {
6667 		__build_all_zonelists(pgdat);
6668 		/* cpuset refresh routine should be here */
6669 	}
6670 	/* Get the number of free pages beyond high watermark in all zones. */
6671 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6672 	/*
6673 	 * Disable grouping by mobility if the number of pages in the
6674 	 * system is too low to allow the mechanism to work. It would be
6675 	 * more accurate, but expensive to check per-zone. This check is
6676 	 * made on memory-hotadd so a system can start with mobility
6677 	 * disabled and enable it later
6678 	 */
6679 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6680 		page_group_by_mobility_disabled = 1;
6681 	else
6682 		page_group_by_mobility_disabled = 0;
6683 
6684 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6685 		nr_online_nodes,
6686 		page_group_by_mobility_disabled ? "off" : "on",
6687 		vm_total_pages);
6688 #ifdef CONFIG_NUMA
6689 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6690 #endif
6691 }
6692 
6693 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6694 static bool __meminit
6695 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6696 {
6697 	static struct memblock_region *r;
6698 
6699 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6700 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6701 			for_each_mem_region(r) {
6702 				if (*pfn < memblock_region_memory_end_pfn(r))
6703 					break;
6704 			}
6705 		}
6706 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6707 		    memblock_is_mirror(r)) {
6708 			*pfn = memblock_region_memory_end_pfn(r);
6709 			return true;
6710 		}
6711 	}
6712 	return false;
6713 }
6714 
6715 /*
6716  * Initially all pages are reserved - free ones are freed
6717  * up by memblock_free_all() once the early boot process is
6718  * done. Non-atomic initialization, single-pass.
6719  *
6720  * All aligned pageblocks are initialized to the specified migratetype
6721  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6722  * zone stats (e.g., nr_isolate_pageblock) are touched.
6723  */
6724 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6725 		unsigned long start_pfn, unsigned long zone_end_pfn,
6726 		enum meminit_context context,
6727 		struct vmem_altmap *altmap, int migratetype)
6728 {
6729 	unsigned long pfn, end_pfn = start_pfn + size;
6730 	struct page *page;
6731 
6732 	if (highest_memmap_pfn < end_pfn - 1)
6733 		highest_memmap_pfn = end_pfn - 1;
6734 
6735 #ifdef CONFIG_ZONE_DEVICE
6736 	/*
6737 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6738 	 * memory. We limit the total number of pages to initialize to just
6739 	 * those that might contain the memory mapping. We will defer the
6740 	 * ZONE_DEVICE page initialization until after we have released
6741 	 * the hotplug lock.
6742 	 */
6743 	if (zone == ZONE_DEVICE) {
6744 		if (!altmap)
6745 			return;
6746 
6747 		if (start_pfn == altmap->base_pfn)
6748 			start_pfn += altmap->reserve;
6749 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6750 	}
6751 #endif
6752 
6753 	for (pfn = start_pfn; pfn < end_pfn; ) {
6754 		/*
6755 		 * There can be holes in boot-time mem_map[]s handed to this
6756 		 * function.  They do not exist on hotplugged memory.
6757 		 */
6758 		if (context == MEMINIT_EARLY) {
6759 			if (overlap_memmap_init(zone, &pfn))
6760 				continue;
6761 			if (defer_init(nid, pfn, zone_end_pfn))
6762 				break;
6763 		}
6764 
6765 		page = pfn_to_page(pfn);
6766 		__init_single_page(page, pfn, zone, nid);
6767 		if (context == MEMINIT_HOTPLUG)
6768 			__SetPageReserved(page);
6769 
6770 		/*
6771 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6772 		 * such that unmovable allocations won't be scattered all
6773 		 * over the place during system boot.
6774 		 */
6775 		if (pageblock_aligned(pfn)) {
6776 			set_pageblock_migratetype(page, migratetype);
6777 			cond_resched();
6778 		}
6779 		pfn++;
6780 	}
6781 }
6782 
6783 #ifdef CONFIG_ZONE_DEVICE
6784 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6785 					  unsigned long zone_idx, int nid,
6786 					  struct dev_pagemap *pgmap)
6787 {
6788 
6789 	__init_single_page(page, pfn, zone_idx, nid);
6790 
6791 	/*
6792 	 * Mark page reserved as it will need to wait for onlining
6793 	 * phase for it to be fully associated with a zone.
6794 	 *
6795 	 * We can use the non-atomic __set_bit operation for setting
6796 	 * the flag as we are still initializing the pages.
6797 	 */
6798 	__SetPageReserved(page);
6799 
6800 	/*
6801 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6802 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6803 	 * ever freed or placed on a driver-private list.
6804 	 */
6805 	page->pgmap = pgmap;
6806 	page->zone_device_data = NULL;
6807 
6808 	/*
6809 	 * Mark the block movable so that blocks are reserved for
6810 	 * movable at startup. This will force kernel allocations
6811 	 * to reserve their blocks rather than leaking throughout
6812 	 * the address space during boot when many long-lived
6813 	 * kernel allocations are made.
6814 	 *
6815 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6816 	 * because this is done early in section_activate()
6817 	 */
6818 	if (pageblock_aligned(pfn)) {
6819 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6820 		cond_resched();
6821 	}
6822 }
6823 
6824 /*
6825  * With compound page geometry and when struct pages are stored in ram most
6826  * tail pages are reused. Consequently, the amount of unique struct pages to
6827  * initialize is a lot smaller that the total amount of struct pages being
6828  * mapped. This is a paired / mild layering violation with explicit knowledge
6829  * of how the sparse_vmemmap internals handle compound pages in the lack
6830  * of an altmap. See vmemmap_populate_compound_pages().
6831  */
6832 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6833 					      unsigned long nr_pages)
6834 {
6835 	return is_power_of_2(sizeof(struct page)) &&
6836 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6837 }
6838 
6839 static void __ref memmap_init_compound(struct page *head,
6840 				       unsigned long head_pfn,
6841 				       unsigned long zone_idx, int nid,
6842 				       struct dev_pagemap *pgmap,
6843 				       unsigned long nr_pages)
6844 {
6845 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6846 	unsigned int order = pgmap->vmemmap_shift;
6847 
6848 	__SetPageHead(head);
6849 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6850 		struct page *page = pfn_to_page(pfn);
6851 
6852 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6853 		prep_compound_tail(head, pfn - head_pfn);
6854 		set_page_count(page, 0);
6855 
6856 		/*
6857 		 * The first tail page stores compound_mapcount_ptr() and
6858 		 * compound_order() and the second tail page stores
6859 		 * compound_pincount_ptr(). Call prep_compound_head() after
6860 		 * the first and second tail pages have been initialized to
6861 		 * not have the data overwritten.
6862 		 */
6863 		if (pfn == head_pfn + 2)
6864 			prep_compound_head(head, order);
6865 	}
6866 }
6867 
6868 void __ref memmap_init_zone_device(struct zone *zone,
6869 				   unsigned long start_pfn,
6870 				   unsigned long nr_pages,
6871 				   struct dev_pagemap *pgmap)
6872 {
6873 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6874 	struct pglist_data *pgdat = zone->zone_pgdat;
6875 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6876 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6877 	unsigned long zone_idx = zone_idx(zone);
6878 	unsigned long start = jiffies;
6879 	int nid = pgdat->node_id;
6880 
6881 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6882 		return;
6883 
6884 	/*
6885 	 * The call to memmap_init should have already taken care
6886 	 * of the pages reserved for the memmap, so we can just jump to
6887 	 * the end of that region and start processing the device pages.
6888 	 */
6889 	if (altmap) {
6890 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6891 		nr_pages = end_pfn - start_pfn;
6892 	}
6893 
6894 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6895 		struct page *page = pfn_to_page(pfn);
6896 
6897 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6898 
6899 		if (pfns_per_compound == 1)
6900 			continue;
6901 
6902 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6903 				     compound_nr_pages(altmap, pfns_per_compound));
6904 	}
6905 
6906 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6907 		nr_pages, jiffies_to_msecs(jiffies - start));
6908 }
6909 
6910 #endif
6911 static void __meminit zone_init_free_lists(struct zone *zone)
6912 {
6913 	unsigned int order, t;
6914 	for_each_migratetype_order(order, t) {
6915 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6916 		zone->free_area[order].nr_free = 0;
6917 	}
6918 }
6919 
6920 /*
6921  * Only struct pages that correspond to ranges defined by memblock.memory
6922  * are zeroed and initialized by going through __init_single_page() during
6923  * memmap_init_zone_range().
6924  *
6925  * But, there could be struct pages that correspond to holes in
6926  * memblock.memory. This can happen because of the following reasons:
6927  * - physical memory bank size is not necessarily the exact multiple of the
6928  *   arbitrary section size
6929  * - early reserved memory may not be listed in memblock.memory
6930  * - memory layouts defined with memmap= kernel parameter may not align
6931  *   nicely with memmap sections
6932  *
6933  * Explicitly initialize those struct pages so that:
6934  * - PG_Reserved is set
6935  * - zone and node links point to zone and node that span the page if the
6936  *   hole is in the middle of a zone
6937  * - zone and node links point to adjacent zone/node if the hole falls on
6938  *   the zone boundary; the pages in such holes will be prepended to the
6939  *   zone/node above the hole except for the trailing pages in the last
6940  *   section that will be appended to the zone/node below.
6941  */
6942 static void __init init_unavailable_range(unsigned long spfn,
6943 					  unsigned long epfn,
6944 					  int zone, int node)
6945 {
6946 	unsigned long pfn;
6947 	u64 pgcnt = 0;
6948 
6949 	for (pfn = spfn; pfn < epfn; pfn++) {
6950 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
6951 			pfn = pageblock_end_pfn(pfn) - 1;
6952 			continue;
6953 		}
6954 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6955 		__SetPageReserved(pfn_to_page(pfn));
6956 		pgcnt++;
6957 	}
6958 
6959 	if (pgcnt)
6960 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6961 			node, zone_names[zone], pgcnt);
6962 }
6963 
6964 static void __init memmap_init_zone_range(struct zone *zone,
6965 					  unsigned long start_pfn,
6966 					  unsigned long end_pfn,
6967 					  unsigned long *hole_pfn)
6968 {
6969 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6970 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6971 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6972 
6973 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6974 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6975 
6976 	if (start_pfn >= end_pfn)
6977 		return;
6978 
6979 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6980 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6981 
6982 	if (*hole_pfn < start_pfn)
6983 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6984 
6985 	*hole_pfn = end_pfn;
6986 }
6987 
6988 static void __init memmap_init(void)
6989 {
6990 	unsigned long start_pfn, end_pfn;
6991 	unsigned long hole_pfn = 0;
6992 	int i, j, zone_id = 0, nid;
6993 
6994 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6995 		struct pglist_data *node = NODE_DATA(nid);
6996 
6997 		for (j = 0; j < MAX_NR_ZONES; j++) {
6998 			struct zone *zone = node->node_zones + j;
6999 
7000 			if (!populated_zone(zone))
7001 				continue;
7002 
7003 			memmap_init_zone_range(zone, start_pfn, end_pfn,
7004 					       &hole_pfn);
7005 			zone_id = j;
7006 		}
7007 	}
7008 
7009 #ifdef CONFIG_SPARSEMEM
7010 	/*
7011 	 * Initialize the memory map for hole in the range [memory_end,
7012 	 * section_end].
7013 	 * Append the pages in this hole to the highest zone in the last
7014 	 * node.
7015 	 * The call to init_unavailable_range() is outside the ifdef to
7016 	 * silence the compiler warining about zone_id set but not used;
7017 	 * for FLATMEM it is a nop anyway
7018 	 */
7019 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7020 	if (hole_pfn < end_pfn)
7021 #endif
7022 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7023 }
7024 
7025 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7026 			  phys_addr_t min_addr, int nid, bool exact_nid)
7027 {
7028 	void *ptr;
7029 
7030 	if (exact_nid)
7031 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7032 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7033 						   nid);
7034 	else
7035 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7036 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7037 						 nid);
7038 
7039 	if (ptr && size > 0)
7040 		page_init_poison(ptr, size);
7041 
7042 	return ptr;
7043 }
7044 
7045 static int zone_batchsize(struct zone *zone)
7046 {
7047 #ifdef CONFIG_MMU
7048 	int batch;
7049 
7050 	/*
7051 	 * The number of pages to batch allocate is either ~0.1%
7052 	 * of the zone or 1MB, whichever is smaller. The batch
7053 	 * size is striking a balance between allocation latency
7054 	 * and zone lock contention.
7055 	 */
7056 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
7057 	batch /= 4;		/* We effectively *= 4 below */
7058 	if (batch < 1)
7059 		batch = 1;
7060 
7061 	/*
7062 	 * Clamp the batch to a 2^n - 1 value. Having a power
7063 	 * of 2 value was found to be more likely to have
7064 	 * suboptimal cache aliasing properties in some cases.
7065 	 *
7066 	 * For example if 2 tasks are alternately allocating
7067 	 * batches of pages, one task can end up with a lot
7068 	 * of pages of one half of the possible page colors
7069 	 * and the other with pages of the other colors.
7070 	 */
7071 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7072 
7073 	return batch;
7074 
7075 #else
7076 	/* The deferral and batching of frees should be suppressed under NOMMU
7077 	 * conditions.
7078 	 *
7079 	 * The problem is that NOMMU needs to be able to allocate large chunks
7080 	 * of contiguous memory as there's no hardware page translation to
7081 	 * assemble apparent contiguous memory from discontiguous pages.
7082 	 *
7083 	 * Queueing large contiguous runs of pages for batching, however,
7084 	 * causes the pages to actually be freed in smaller chunks.  As there
7085 	 * can be a significant delay between the individual batches being
7086 	 * recycled, this leads to the once large chunks of space being
7087 	 * fragmented and becoming unavailable for high-order allocations.
7088 	 */
7089 	return 0;
7090 #endif
7091 }
7092 
7093 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7094 {
7095 #ifdef CONFIG_MMU
7096 	int high;
7097 	int nr_split_cpus;
7098 	unsigned long total_pages;
7099 
7100 	if (!percpu_pagelist_high_fraction) {
7101 		/*
7102 		 * By default, the high value of the pcp is based on the zone
7103 		 * low watermark so that if they are full then background
7104 		 * reclaim will not be started prematurely.
7105 		 */
7106 		total_pages = low_wmark_pages(zone);
7107 	} else {
7108 		/*
7109 		 * If percpu_pagelist_high_fraction is configured, the high
7110 		 * value is based on a fraction of the managed pages in the
7111 		 * zone.
7112 		 */
7113 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7114 	}
7115 
7116 	/*
7117 	 * Split the high value across all online CPUs local to the zone. Note
7118 	 * that early in boot that CPUs may not be online yet and that during
7119 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7120 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7121 	 * all online CPUs to mitigate the risk that reclaim is triggered
7122 	 * prematurely due to pages stored on pcp lists.
7123 	 */
7124 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7125 	if (!nr_split_cpus)
7126 		nr_split_cpus = num_online_cpus();
7127 	high = total_pages / nr_split_cpus;
7128 
7129 	/*
7130 	 * Ensure high is at least batch*4. The multiple is based on the
7131 	 * historical relationship between high and batch.
7132 	 */
7133 	high = max(high, batch << 2);
7134 
7135 	return high;
7136 #else
7137 	return 0;
7138 #endif
7139 }
7140 
7141 /*
7142  * pcp->high and pcp->batch values are related and generally batch is lower
7143  * than high. They are also related to pcp->count such that count is lower
7144  * than high, and as soon as it reaches high, the pcplist is flushed.
7145  *
7146  * However, guaranteeing these relations at all times would require e.g. write
7147  * barriers here but also careful usage of read barriers at the read side, and
7148  * thus be prone to error and bad for performance. Thus the update only prevents
7149  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7150  * can cope with those fields changing asynchronously, and fully trust only the
7151  * pcp->count field on the local CPU with interrupts disabled.
7152  *
7153  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7154  * outside of boot time (or some other assurance that no concurrent updaters
7155  * exist).
7156  */
7157 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7158 		unsigned long batch)
7159 {
7160 	WRITE_ONCE(pcp->batch, batch);
7161 	WRITE_ONCE(pcp->high, high);
7162 }
7163 
7164 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7165 {
7166 	int pindex;
7167 
7168 	memset(pcp, 0, sizeof(*pcp));
7169 	memset(pzstats, 0, sizeof(*pzstats));
7170 
7171 	spin_lock_init(&pcp->lock);
7172 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7173 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7174 
7175 	/*
7176 	 * Set batch and high values safe for a boot pageset. A true percpu
7177 	 * pageset's initialization will update them subsequently. Here we don't
7178 	 * need to be as careful as pageset_update() as nobody can access the
7179 	 * pageset yet.
7180 	 */
7181 	pcp->high = BOOT_PAGESET_HIGH;
7182 	pcp->batch = BOOT_PAGESET_BATCH;
7183 	pcp->free_factor = 0;
7184 }
7185 
7186 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7187 		unsigned long batch)
7188 {
7189 	struct per_cpu_pages *pcp;
7190 	int cpu;
7191 
7192 	for_each_possible_cpu(cpu) {
7193 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7194 		pageset_update(pcp, high, batch);
7195 	}
7196 }
7197 
7198 /*
7199  * Calculate and set new high and batch values for all per-cpu pagesets of a
7200  * zone based on the zone's size.
7201  */
7202 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7203 {
7204 	int new_high, new_batch;
7205 
7206 	new_batch = max(1, zone_batchsize(zone));
7207 	new_high = zone_highsize(zone, new_batch, cpu_online);
7208 
7209 	if (zone->pageset_high == new_high &&
7210 	    zone->pageset_batch == new_batch)
7211 		return;
7212 
7213 	zone->pageset_high = new_high;
7214 	zone->pageset_batch = new_batch;
7215 
7216 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7217 }
7218 
7219 void __meminit setup_zone_pageset(struct zone *zone)
7220 {
7221 	int cpu;
7222 
7223 	/* Size may be 0 on !SMP && !NUMA */
7224 	if (sizeof(struct per_cpu_zonestat) > 0)
7225 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7226 
7227 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7228 	for_each_possible_cpu(cpu) {
7229 		struct per_cpu_pages *pcp;
7230 		struct per_cpu_zonestat *pzstats;
7231 
7232 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7233 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7234 		per_cpu_pages_init(pcp, pzstats);
7235 	}
7236 
7237 	zone_set_pageset_high_and_batch(zone, 0);
7238 }
7239 
7240 /*
7241  * Allocate per cpu pagesets and initialize them.
7242  * Before this call only boot pagesets were available.
7243  */
7244 void __init setup_per_cpu_pageset(void)
7245 {
7246 	struct pglist_data *pgdat;
7247 	struct zone *zone;
7248 	int __maybe_unused cpu;
7249 
7250 	for_each_populated_zone(zone)
7251 		setup_zone_pageset(zone);
7252 
7253 #ifdef CONFIG_NUMA
7254 	/*
7255 	 * Unpopulated zones continue using the boot pagesets.
7256 	 * The numa stats for these pagesets need to be reset.
7257 	 * Otherwise, they will end up skewing the stats of
7258 	 * the nodes these zones are associated with.
7259 	 */
7260 	for_each_possible_cpu(cpu) {
7261 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7262 		memset(pzstats->vm_numa_event, 0,
7263 		       sizeof(pzstats->vm_numa_event));
7264 	}
7265 #endif
7266 
7267 	for_each_online_pgdat(pgdat)
7268 		pgdat->per_cpu_nodestats =
7269 			alloc_percpu(struct per_cpu_nodestat);
7270 }
7271 
7272 static __meminit void zone_pcp_init(struct zone *zone)
7273 {
7274 	/*
7275 	 * per cpu subsystem is not up at this point. The following code
7276 	 * relies on the ability of the linker to provide the
7277 	 * offset of a (static) per cpu variable into the per cpu area.
7278 	 */
7279 	zone->per_cpu_pageset = &boot_pageset;
7280 	zone->per_cpu_zonestats = &boot_zonestats;
7281 	zone->pageset_high = BOOT_PAGESET_HIGH;
7282 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7283 
7284 	if (populated_zone(zone))
7285 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7286 			 zone->present_pages, zone_batchsize(zone));
7287 }
7288 
7289 void __meminit init_currently_empty_zone(struct zone *zone,
7290 					unsigned long zone_start_pfn,
7291 					unsigned long size)
7292 {
7293 	struct pglist_data *pgdat = zone->zone_pgdat;
7294 	int zone_idx = zone_idx(zone) + 1;
7295 
7296 	if (zone_idx > pgdat->nr_zones)
7297 		pgdat->nr_zones = zone_idx;
7298 
7299 	zone->zone_start_pfn = zone_start_pfn;
7300 
7301 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7302 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7303 			pgdat->node_id,
7304 			(unsigned long)zone_idx(zone),
7305 			zone_start_pfn, (zone_start_pfn + size));
7306 
7307 	zone_init_free_lists(zone);
7308 	zone->initialized = 1;
7309 }
7310 
7311 /**
7312  * get_pfn_range_for_nid - Return the start and end page frames for a node
7313  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7314  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7315  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7316  *
7317  * It returns the start and end page frame of a node based on information
7318  * provided by memblock_set_node(). If called for a node
7319  * with no available memory, a warning is printed and the start and end
7320  * PFNs will be 0.
7321  */
7322 void __init get_pfn_range_for_nid(unsigned int nid,
7323 			unsigned long *start_pfn, unsigned long *end_pfn)
7324 {
7325 	unsigned long this_start_pfn, this_end_pfn;
7326 	int i;
7327 
7328 	*start_pfn = -1UL;
7329 	*end_pfn = 0;
7330 
7331 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7332 		*start_pfn = min(*start_pfn, this_start_pfn);
7333 		*end_pfn = max(*end_pfn, this_end_pfn);
7334 	}
7335 
7336 	if (*start_pfn == -1UL)
7337 		*start_pfn = 0;
7338 }
7339 
7340 /*
7341  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7342  * assumption is made that zones within a node are ordered in monotonic
7343  * increasing memory addresses so that the "highest" populated zone is used
7344  */
7345 static void __init find_usable_zone_for_movable(void)
7346 {
7347 	int zone_index;
7348 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7349 		if (zone_index == ZONE_MOVABLE)
7350 			continue;
7351 
7352 		if (arch_zone_highest_possible_pfn[zone_index] >
7353 				arch_zone_lowest_possible_pfn[zone_index])
7354 			break;
7355 	}
7356 
7357 	VM_BUG_ON(zone_index == -1);
7358 	movable_zone = zone_index;
7359 }
7360 
7361 /*
7362  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7363  * because it is sized independent of architecture. Unlike the other zones,
7364  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7365  * in each node depending on the size of each node and how evenly kernelcore
7366  * is distributed. This helper function adjusts the zone ranges
7367  * provided by the architecture for a given node by using the end of the
7368  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7369  * zones within a node are in order of monotonic increases memory addresses
7370  */
7371 static void __init adjust_zone_range_for_zone_movable(int nid,
7372 					unsigned long zone_type,
7373 					unsigned long node_start_pfn,
7374 					unsigned long node_end_pfn,
7375 					unsigned long *zone_start_pfn,
7376 					unsigned long *zone_end_pfn)
7377 {
7378 	/* Only adjust if ZONE_MOVABLE is on this node */
7379 	if (zone_movable_pfn[nid]) {
7380 		/* Size ZONE_MOVABLE */
7381 		if (zone_type == ZONE_MOVABLE) {
7382 			*zone_start_pfn = zone_movable_pfn[nid];
7383 			*zone_end_pfn = min(node_end_pfn,
7384 				arch_zone_highest_possible_pfn[movable_zone]);
7385 
7386 		/* Adjust for ZONE_MOVABLE starting within this range */
7387 		} else if (!mirrored_kernelcore &&
7388 			*zone_start_pfn < zone_movable_pfn[nid] &&
7389 			*zone_end_pfn > zone_movable_pfn[nid]) {
7390 			*zone_end_pfn = zone_movable_pfn[nid];
7391 
7392 		/* Check if this whole range is within ZONE_MOVABLE */
7393 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7394 			*zone_start_pfn = *zone_end_pfn;
7395 	}
7396 }
7397 
7398 /*
7399  * Return the number of pages a zone spans in a node, including holes
7400  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7401  */
7402 static unsigned long __init zone_spanned_pages_in_node(int nid,
7403 					unsigned long zone_type,
7404 					unsigned long node_start_pfn,
7405 					unsigned long node_end_pfn,
7406 					unsigned long *zone_start_pfn,
7407 					unsigned long *zone_end_pfn)
7408 {
7409 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7410 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7411 	/* When hotadd a new node from cpu_up(), the node should be empty */
7412 	if (!node_start_pfn && !node_end_pfn)
7413 		return 0;
7414 
7415 	/* Get the start and end of the zone */
7416 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7417 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7418 	adjust_zone_range_for_zone_movable(nid, zone_type,
7419 				node_start_pfn, node_end_pfn,
7420 				zone_start_pfn, zone_end_pfn);
7421 
7422 	/* Check that this node has pages within the zone's required range */
7423 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7424 		return 0;
7425 
7426 	/* Move the zone boundaries inside the node if necessary */
7427 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7428 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7429 
7430 	/* Return the spanned pages */
7431 	return *zone_end_pfn - *zone_start_pfn;
7432 }
7433 
7434 /*
7435  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7436  * then all holes in the requested range will be accounted for.
7437  */
7438 unsigned long __init __absent_pages_in_range(int nid,
7439 				unsigned long range_start_pfn,
7440 				unsigned long range_end_pfn)
7441 {
7442 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7443 	unsigned long start_pfn, end_pfn;
7444 	int i;
7445 
7446 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7447 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7448 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7449 		nr_absent -= end_pfn - start_pfn;
7450 	}
7451 	return nr_absent;
7452 }
7453 
7454 /**
7455  * absent_pages_in_range - Return number of page frames in holes within a range
7456  * @start_pfn: The start PFN to start searching for holes
7457  * @end_pfn: The end PFN to stop searching for holes
7458  *
7459  * Return: the number of pages frames in memory holes within a range.
7460  */
7461 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7462 							unsigned long end_pfn)
7463 {
7464 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7465 }
7466 
7467 /* Return the number of page frames in holes in a zone on a node */
7468 static unsigned long __init zone_absent_pages_in_node(int nid,
7469 					unsigned long zone_type,
7470 					unsigned long node_start_pfn,
7471 					unsigned long node_end_pfn)
7472 {
7473 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7474 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7475 	unsigned long zone_start_pfn, zone_end_pfn;
7476 	unsigned long nr_absent;
7477 
7478 	/* When hotadd a new node from cpu_up(), the node should be empty */
7479 	if (!node_start_pfn && !node_end_pfn)
7480 		return 0;
7481 
7482 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7483 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7484 
7485 	adjust_zone_range_for_zone_movable(nid, zone_type,
7486 			node_start_pfn, node_end_pfn,
7487 			&zone_start_pfn, &zone_end_pfn);
7488 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7489 
7490 	/*
7491 	 * ZONE_MOVABLE handling.
7492 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7493 	 * and vice versa.
7494 	 */
7495 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7496 		unsigned long start_pfn, end_pfn;
7497 		struct memblock_region *r;
7498 
7499 		for_each_mem_region(r) {
7500 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7501 					  zone_start_pfn, zone_end_pfn);
7502 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7503 					zone_start_pfn, zone_end_pfn);
7504 
7505 			if (zone_type == ZONE_MOVABLE &&
7506 			    memblock_is_mirror(r))
7507 				nr_absent += end_pfn - start_pfn;
7508 
7509 			if (zone_type == ZONE_NORMAL &&
7510 			    !memblock_is_mirror(r))
7511 				nr_absent += end_pfn - start_pfn;
7512 		}
7513 	}
7514 
7515 	return nr_absent;
7516 }
7517 
7518 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7519 						unsigned long node_start_pfn,
7520 						unsigned long node_end_pfn)
7521 {
7522 	unsigned long realtotalpages = 0, totalpages = 0;
7523 	enum zone_type i;
7524 
7525 	for (i = 0; i < MAX_NR_ZONES; i++) {
7526 		struct zone *zone = pgdat->node_zones + i;
7527 		unsigned long zone_start_pfn, zone_end_pfn;
7528 		unsigned long spanned, absent;
7529 		unsigned long size, real_size;
7530 
7531 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7532 						     node_start_pfn,
7533 						     node_end_pfn,
7534 						     &zone_start_pfn,
7535 						     &zone_end_pfn);
7536 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7537 						   node_start_pfn,
7538 						   node_end_pfn);
7539 
7540 		size = spanned;
7541 		real_size = size - absent;
7542 
7543 		if (size)
7544 			zone->zone_start_pfn = zone_start_pfn;
7545 		else
7546 			zone->zone_start_pfn = 0;
7547 		zone->spanned_pages = size;
7548 		zone->present_pages = real_size;
7549 #if defined(CONFIG_MEMORY_HOTPLUG)
7550 		zone->present_early_pages = real_size;
7551 #endif
7552 
7553 		totalpages += size;
7554 		realtotalpages += real_size;
7555 	}
7556 
7557 	pgdat->node_spanned_pages = totalpages;
7558 	pgdat->node_present_pages = realtotalpages;
7559 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7560 }
7561 
7562 #ifndef CONFIG_SPARSEMEM
7563 /*
7564  * Calculate the size of the zone->blockflags rounded to an unsigned long
7565  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7566  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7567  * round what is now in bits to nearest long in bits, then return it in
7568  * bytes.
7569  */
7570 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7571 {
7572 	unsigned long usemapsize;
7573 
7574 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7575 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7576 	usemapsize = usemapsize >> pageblock_order;
7577 	usemapsize *= NR_PAGEBLOCK_BITS;
7578 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7579 
7580 	return usemapsize / 8;
7581 }
7582 
7583 static void __ref setup_usemap(struct zone *zone)
7584 {
7585 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7586 					       zone->spanned_pages);
7587 	zone->pageblock_flags = NULL;
7588 	if (usemapsize) {
7589 		zone->pageblock_flags =
7590 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7591 					    zone_to_nid(zone));
7592 		if (!zone->pageblock_flags)
7593 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7594 			      usemapsize, zone->name, zone_to_nid(zone));
7595 	}
7596 }
7597 #else
7598 static inline void setup_usemap(struct zone *zone) {}
7599 #endif /* CONFIG_SPARSEMEM */
7600 
7601 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7602 
7603 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7604 void __init set_pageblock_order(void)
7605 {
7606 	unsigned int order = MAX_ORDER - 1;
7607 
7608 	/* Check that pageblock_nr_pages has not already been setup */
7609 	if (pageblock_order)
7610 		return;
7611 
7612 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7613 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7614 		order = HUGETLB_PAGE_ORDER;
7615 
7616 	/*
7617 	 * Assume the largest contiguous order of interest is a huge page.
7618 	 * This value may be variable depending on boot parameters on IA64 and
7619 	 * powerpc.
7620 	 */
7621 	pageblock_order = order;
7622 }
7623 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7624 
7625 /*
7626  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7627  * is unused as pageblock_order is set at compile-time. See
7628  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7629  * the kernel config
7630  */
7631 void __init set_pageblock_order(void)
7632 {
7633 }
7634 
7635 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7636 
7637 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7638 						unsigned long present_pages)
7639 {
7640 	unsigned long pages = spanned_pages;
7641 
7642 	/*
7643 	 * Provide a more accurate estimation if there are holes within
7644 	 * the zone and SPARSEMEM is in use. If there are holes within the
7645 	 * zone, each populated memory region may cost us one or two extra
7646 	 * memmap pages due to alignment because memmap pages for each
7647 	 * populated regions may not be naturally aligned on page boundary.
7648 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7649 	 */
7650 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7651 	    IS_ENABLED(CONFIG_SPARSEMEM))
7652 		pages = present_pages;
7653 
7654 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7655 }
7656 
7657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7658 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7659 {
7660 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7661 
7662 	spin_lock_init(&ds_queue->split_queue_lock);
7663 	INIT_LIST_HEAD(&ds_queue->split_queue);
7664 	ds_queue->split_queue_len = 0;
7665 }
7666 #else
7667 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7668 #endif
7669 
7670 #ifdef CONFIG_COMPACTION
7671 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7672 {
7673 	init_waitqueue_head(&pgdat->kcompactd_wait);
7674 }
7675 #else
7676 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7677 #endif
7678 
7679 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7680 {
7681 	int i;
7682 
7683 	pgdat_resize_init(pgdat);
7684 	pgdat_kswapd_lock_init(pgdat);
7685 
7686 	pgdat_init_split_queue(pgdat);
7687 	pgdat_init_kcompactd(pgdat);
7688 
7689 	init_waitqueue_head(&pgdat->kswapd_wait);
7690 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7691 
7692 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7693 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7694 
7695 	pgdat_page_ext_init(pgdat);
7696 	lruvec_init(&pgdat->__lruvec);
7697 }
7698 
7699 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7700 							unsigned long remaining_pages)
7701 {
7702 	atomic_long_set(&zone->managed_pages, remaining_pages);
7703 	zone_set_nid(zone, nid);
7704 	zone->name = zone_names[idx];
7705 	zone->zone_pgdat = NODE_DATA(nid);
7706 	spin_lock_init(&zone->lock);
7707 	zone_seqlock_init(zone);
7708 	zone_pcp_init(zone);
7709 }
7710 
7711 /*
7712  * Set up the zone data structures
7713  * - init pgdat internals
7714  * - init all zones belonging to this node
7715  *
7716  * NOTE: this function is only called during memory hotplug
7717  */
7718 #ifdef CONFIG_MEMORY_HOTPLUG
7719 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7720 {
7721 	int nid = pgdat->node_id;
7722 	enum zone_type z;
7723 	int cpu;
7724 
7725 	pgdat_init_internals(pgdat);
7726 
7727 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7728 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7729 
7730 	/*
7731 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7732 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7733 	 * when it starts in the near future.
7734 	 */
7735 	pgdat->nr_zones = 0;
7736 	pgdat->kswapd_order = 0;
7737 	pgdat->kswapd_highest_zoneidx = 0;
7738 	pgdat->node_start_pfn = 0;
7739 	for_each_online_cpu(cpu) {
7740 		struct per_cpu_nodestat *p;
7741 
7742 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7743 		memset(p, 0, sizeof(*p));
7744 	}
7745 
7746 	for (z = 0; z < MAX_NR_ZONES; z++)
7747 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7748 }
7749 #endif
7750 
7751 /*
7752  * Set up the zone data structures:
7753  *   - mark all pages reserved
7754  *   - mark all memory queues empty
7755  *   - clear the memory bitmaps
7756  *
7757  * NOTE: pgdat should get zeroed by caller.
7758  * NOTE: this function is only called during early init.
7759  */
7760 static void __init free_area_init_core(struct pglist_data *pgdat)
7761 {
7762 	enum zone_type j;
7763 	int nid = pgdat->node_id;
7764 
7765 	pgdat_init_internals(pgdat);
7766 	pgdat->per_cpu_nodestats = &boot_nodestats;
7767 
7768 	for (j = 0; j < MAX_NR_ZONES; j++) {
7769 		struct zone *zone = pgdat->node_zones + j;
7770 		unsigned long size, freesize, memmap_pages;
7771 
7772 		size = zone->spanned_pages;
7773 		freesize = zone->present_pages;
7774 
7775 		/*
7776 		 * Adjust freesize so that it accounts for how much memory
7777 		 * is used by this zone for memmap. This affects the watermark
7778 		 * and per-cpu initialisations
7779 		 */
7780 		memmap_pages = calc_memmap_size(size, freesize);
7781 		if (!is_highmem_idx(j)) {
7782 			if (freesize >= memmap_pages) {
7783 				freesize -= memmap_pages;
7784 				if (memmap_pages)
7785 					pr_debug("  %s zone: %lu pages used for memmap\n",
7786 						 zone_names[j], memmap_pages);
7787 			} else
7788 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7789 					zone_names[j], memmap_pages, freesize);
7790 		}
7791 
7792 		/* Account for reserved pages */
7793 		if (j == 0 && freesize > dma_reserve) {
7794 			freesize -= dma_reserve;
7795 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7796 		}
7797 
7798 		if (!is_highmem_idx(j))
7799 			nr_kernel_pages += freesize;
7800 		/* Charge for highmem memmap if there are enough kernel pages */
7801 		else if (nr_kernel_pages > memmap_pages * 2)
7802 			nr_kernel_pages -= memmap_pages;
7803 		nr_all_pages += freesize;
7804 
7805 		/*
7806 		 * Set an approximate value for lowmem here, it will be adjusted
7807 		 * when the bootmem allocator frees pages into the buddy system.
7808 		 * And all highmem pages will be managed by the buddy system.
7809 		 */
7810 		zone_init_internals(zone, j, nid, freesize);
7811 
7812 		if (!size)
7813 			continue;
7814 
7815 		set_pageblock_order();
7816 		setup_usemap(zone);
7817 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7818 	}
7819 }
7820 
7821 #ifdef CONFIG_FLATMEM
7822 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7823 {
7824 	unsigned long __maybe_unused start = 0;
7825 	unsigned long __maybe_unused offset = 0;
7826 
7827 	/* Skip empty nodes */
7828 	if (!pgdat->node_spanned_pages)
7829 		return;
7830 
7831 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7832 	offset = pgdat->node_start_pfn - start;
7833 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7834 	if (!pgdat->node_mem_map) {
7835 		unsigned long size, end;
7836 		struct page *map;
7837 
7838 		/*
7839 		 * The zone's endpoints aren't required to be MAX_ORDER
7840 		 * aligned but the node_mem_map endpoints must be in order
7841 		 * for the buddy allocator to function correctly.
7842 		 */
7843 		end = pgdat_end_pfn(pgdat);
7844 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7845 		size =  (end - start) * sizeof(struct page);
7846 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7847 				   pgdat->node_id, false);
7848 		if (!map)
7849 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7850 			      size, pgdat->node_id);
7851 		pgdat->node_mem_map = map + offset;
7852 	}
7853 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7854 				__func__, pgdat->node_id, (unsigned long)pgdat,
7855 				(unsigned long)pgdat->node_mem_map);
7856 #ifndef CONFIG_NUMA
7857 	/*
7858 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7859 	 */
7860 	if (pgdat == NODE_DATA(0)) {
7861 		mem_map = NODE_DATA(0)->node_mem_map;
7862 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7863 			mem_map -= offset;
7864 	}
7865 #endif
7866 }
7867 #else
7868 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7869 #endif /* CONFIG_FLATMEM */
7870 
7871 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7872 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7873 {
7874 	pgdat->first_deferred_pfn = ULONG_MAX;
7875 }
7876 #else
7877 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7878 #endif
7879 
7880 static void __init free_area_init_node(int nid)
7881 {
7882 	pg_data_t *pgdat = NODE_DATA(nid);
7883 	unsigned long start_pfn = 0;
7884 	unsigned long end_pfn = 0;
7885 
7886 	/* pg_data_t should be reset to zero when it's allocated */
7887 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7888 
7889 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7890 
7891 	pgdat->node_id = nid;
7892 	pgdat->node_start_pfn = start_pfn;
7893 	pgdat->per_cpu_nodestats = NULL;
7894 
7895 	if (start_pfn != end_pfn) {
7896 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7897 			(u64)start_pfn << PAGE_SHIFT,
7898 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7899 	} else {
7900 		pr_info("Initmem setup node %d as memoryless\n", nid);
7901 	}
7902 
7903 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7904 
7905 	alloc_node_mem_map(pgdat);
7906 	pgdat_set_deferred_range(pgdat);
7907 
7908 	free_area_init_core(pgdat);
7909 }
7910 
7911 static void __init free_area_init_memoryless_node(int nid)
7912 {
7913 	free_area_init_node(nid);
7914 }
7915 
7916 #if MAX_NUMNODES > 1
7917 /*
7918  * Figure out the number of possible node ids.
7919  */
7920 void __init setup_nr_node_ids(void)
7921 {
7922 	unsigned int highest;
7923 
7924 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7925 	nr_node_ids = highest + 1;
7926 }
7927 #endif
7928 
7929 /**
7930  * node_map_pfn_alignment - determine the maximum internode alignment
7931  *
7932  * This function should be called after node map is populated and sorted.
7933  * It calculates the maximum power of two alignment which can distinguish
7934  * all the nodes.
7935  *
7936  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7937  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7938  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7939  * shifted, 1GiB is enough and this function will indicate so.
7940  *
7941  * This is used to test whether pfn -> nid mapping of the chosen memory
7942  * model has fine enough granularity to avoid incorrect mapping for the
7943  * populated node map.
7944  *
7945  * Return: the determined alignment in pfn's.  0 if there is no alignment
7946  * requirement (single node).
7947  */
7948 unsigned long __init node_map_pfn_alignment(void)
7949 {
7950 	unsigned long accl_mask = 0, last_end = 0;
7951 	unsigned long start, end, mask;
7952 	int last_nid = NUMA_NO_NODE;
7953 	int i, nid;
7954 
7955 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7956 		if (!start || last_nid < 0 || last_nid == nid) {
7957 			last_nid = nid;
7958 			last_end = end;
7959 			continue;
7960 		}
7961 
7962 		/*
7963 		 * Start with a mask granular enough to pin-point to the
7964 		 * start pfn and tick off bits one-by-one until it becomes
7965 		 * too coarse to separate the current node from the last.
7966 		 */
7967 		mask = ~((1 << __ffs(start)) - 1);
7968 		while (mask && last_end <= (start & (mask << 1)))
7969 			mask <<= 1;
7970 
7971 		/* accumulate all internode masks */
7972 		accl_mask |= mask;
7973 	}
7974 
7975 	/* convert mask to number of pages */
7976 	return ~accl_mask + 1;
7977 }
7978 
7979 /*
7980  * early_calculate_totalpages()
7981  * Sum pages in active regions for movable zone.
7982  * Populate N_MEMORY for calculating usable_nodes.
7983  */
7984 static unsigned long __init early_calculate_totalpages(void)
7985 {
7986 	unsigned long totalpages = 0;
7987 	unsigned long start_pfn, end_pfn;
7988 	int i, nid;
7989 
7990 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7991 		unsigned long pages = end_pfn - start_pfn;
7992 
7993 		totalpages += pages;
7994 		if (pages)
7995 			node_set_state(nid, N_MEMORY);
7996 	}
7997 	return totalpages;
7998 }
7999 
8000 /*
8001  * Find the PFN the Movable zone begins in each node. Kernel memory
8002  * is spread evenly between nodes as long as the nodes have enough
8003  * memory. When they don't, some nodes will have more kernelcore than
8004  * others
8005  */
8006 static void __init find_zone_movable_pfns_for_nodes(void)
8007 {
8008 	int i, nid;
8009 	unsigned long usable_startpfn;
8010 	unsigned long kernelcore_node, kernelcore_remaining;
8011 	/* save the state before borrow the nodemask */
8012 	nodemask_t saved_node_state = node_states[N_MEMORY];
8013 	unsigned long totalpages = early_calculate_totalpages();
8014 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8015 	struct memblock_region *r;
8016 
8017 	/* Need to find movable_zone earlier when movable_node is specified. */
8018 	find_usable_zone_for_movable();
8019 
8020 	/*
8021 	 * If movable_node is specified, ignore kernelcore and movablecore
8022 	 * options.
8023 	 */
8024 	if (movable_node_is_enabled()) {
8025 		for_each_mem_region(r) {
8026 			if (!memblock_is_hotpluggable(r))
8027 				continue;
8028 
8029 			nid = memblock_get_region_node(r);
8030 
8031 			usable_startpfn = PFN_DOWN(r->base);
8032 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8033 				min(usable_startpfn, zone_movable_pfn[nid]) :
8034 				usable_startpfn;
8035 		}
8036 
8037 		goto out2;
8038 	}
8039 
8040 	/*
8041 	 * If kernelcore=mirror is specified, ignore movablecore option
8042 	 */
8043 	if (mirrored_kernelcore) {
8044 		bool mem_below_4gb_not_mirrored = false;
8045 
8046 		for_each_mem_region(r) {
8047 			if (memblock_is_mirror(r))
8048 				continue;
8049 
8050 			nid = memblock_get_region_node(r);
8051 
8052 			usable_startpfn = memblock_region_memory_base_pfn(r);
8053 
8054 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8055 				mem_below_4gb_not_mirrored = true;
8056 				continue;
8057 			}
8058 
8059 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8060 				min(usable_startpfn, zone_movable_pfn[nid]) :
8061 				usable_startpfn;
8062 		}
8063 
8064 		if (mem_below_4gb_not_mirrored)
8065 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8066 
8067 		goto out2;
8068 	}
8069 
8070 	/*
8071 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8072 	 * amount of necessary memory.
8073 	 */
8074 	if (required_kernelcore_percent)
8075 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8076 				       10000UL;
8077 	if (required_movablecore_percent)
8078 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8079 					10000UL;
8080 
8081 	/*
8082 	 * If movablecore= was specified, calculate what size of
8083 	 * kernelcore that corresponds so that memory usable for
8084 	 * any allocation type is evenly spread. If both kernelcore
8085 	 * and movablecore are specified, then the value of kernelcore
8086 	 * will be used for required_kernelcore if it's greater than
8087 	 * what movablecore would have allowed.
8088 	 */
8089 	if (required_movablecore) {
8090 		unsigned long corepages;
8091 
8092 		/*
8093 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8094 		 * was requested by the user
8095 		 */
8096 		required_movablecore =
8097 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8098 		required_movablecore = min(totalpages, required_movablecore);
8099 		corepages = totalpages - required_movablecore;
8100 
8101 		required_kernelcore = max(required_kernelcore, corepages);
8102 	}
8103 
8104 	/*
8105 	 * If kernelcore was not specified or kernelcore size is larger
8106 	 * than totalpages, there is no ZONE_MOVABLE.
8107 	 */
8108 	if (!required_kernelcore || required_kernelcore >= totalpages)
8109 		goto out;
8110 
8111 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8112 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8113 
8114 restart:
8115 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8116 	kernelcore_node = required_kernelcore / usable_nodes;
8117 	for_each_node_state(nid, N_MEMORY) {
8118 		unsigned long start_pfn, end_pfn;
8119 
8120 		/*
8121 		 * Recalculate kernelcore_node if the division per node
8122 		 * now exceeds what is necessary to satisfy the requested
8123 		 * amount of memory for the kernel
8124 		 */
8125 		if (required_kernelcore < kernelcore_node)
8126 			kernelcore_node = required_kernelcore / usable_nodes;
8127 
8128 		/*
8129 		 * As the map is walked, we track how much memory is usable
8130 		 * by the kernel using kernelcore_remaining. When it is
8131 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8132 		 */
8133 		kernelcore_remaining = kernelcore_node;
8134 
8135 		/* Go through each range of PFNs within this node */
8136 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8137 			unsigned long size_pages;
8138 
8139 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8140 			if (start_pfn >= end_pfn)
8141 				continue;
8142 
8143 			/* Account for what is only usable for kernelcore */
8144 			if (start_pfn < usable_startpfn) {
8145 				unsigned long kernel_pages;
8146 				kernel_pages = min(end_pfn, usable_startpfn)
8147 								- start_pfn;
8148 
8149 				kernelcore_remaining -= min(kernel_pages,
8150 							kernelcore_remaining);
8151 				required_kernelcore -= min(kernel_pages,
8152 							required_kernelcore);
8153 
8154 				/* Continue if range is now fully accounted */
8155 				if (end_pfn <= usable_startpfn) {
8156 
8157 					/*
8158 					 * Push zone_movable_pfn to the end so
8159 					 * that if we have to rebalance
8160 					 * kernelcore across nodes, we will
8161 					 * not double account here
8162 					 */
8163 					zone_movable_pfn[nid] = end_pfn;
8164 					continue;
8165 				}
8166 				start_pfn = usable_startpfn;
8167 			}
8168 
8169 			/*
8170 			 * The usable PFN range for ZONE_MOVABLE is from
8171 			 * start_pfn->end_pfn. Calculate size_pages as the
8172 			 * number of pages used as kernelcore
8173 			 */
8174 			size_pages = end_pfn - start_pfn;
8175 			if (size_pages > kernelcore_remaining)
8176 				size_pages = kernelcore_remaining;
8177 			zone_movable_pfn[nid] = start_pfn + size_pages;
8178 
8179 			/*
8180 			 * Some kernelcore has been met, update counts and
8181 			 * break if the kernelcore for this node has been
8182 			 * satisfied
8183 			 */
8184 			required_kernelcore -= min(required_kernelcore,
8185 								size_pages);
8186 			kernelcore_remaining -= size_pages;
8187 			if (!kernelcore_remaining)
8188 				break;
8189 		}
8190 	}
8191 
8192 	/*
8193 	 * If there is still required_kernelcore, we do another pass with one
8194 	 * less node in the count. This will push zone_movable_pfn[nid] further
8195 	 * along on the nodes that still have memory until kernelcore is
8196 	 * satisfied
8197 	 */
8198 	usable_nodes--;
8199 	if (usable_nodes && required_kernelcore > usable_nodes)
8200 		goto restart;
8201 
8202 out2:
8203 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8204 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8205 		unsigned long start_pfn, end_pfn;
8206 
8207 		zone_movable_pfn[nid] =
8208 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8209 
8210 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8211 		if (zone_movable_pfn[nid] >= end_pfn)
8212 			zone_movable_pfn[nid] = 0;
8213 	}
8214 
8215 out:
8216 	/* restore the node_state */
8217 	node_states[N_MEMORY] = saved_node_state;
8218 }
8219 
8220 /* Any regular or high memory on that node ? */
8221 static void check_for_memory(pg_data_t *pgdat, int nid)
8222 {
8223 	enum zone_type zone_type;
8224 
8225 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8226 		struct zone *zone = &pgdat->node_zones[zone_type];
8227 		if (populated_zone(zone)) {
8228 			if (IS_ENABLED(CONFIG_HIGHMEM))
8229 				node_set_state(nid, N_HIGH_MEMORY);
8230 			if (zone_type <= ZONE_NORMAL)
8231 				node_set_state(nid, N_NORMAL_MEMORY);
8232 			break;
8233 		}
8234 	}
8235 }
8236 
8237 /*
8238  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8239  * such cases we allow max_zone_pfn sorted in the descending order
8240  */
8241 bool __weak arch_has_descending_max_zone_pfns(void)
8242 {
8243 	return false;
8244 }
8245 
8246 /**
8247  * free_area_init - Initialise all pg_data_t and zone data
8248  * @max_zone_pfn: an array of max PFNs for each zone
8249  *
8250  * This will call free_area_init_node() for each active node in the system.
8251  * Using the page ranges provided by memblock_set_node(), the size of each
8252  * zone in each node and their holes is calculated. If the maximum PFN
8253  * between two adjacent zones match, it is assumed that the zone is empty.
8254  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8255  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8256  * starts where the previous one ended. For example, ZONE_DMA32 starts
8257  * at arch_max_dma_pfn.
8258  */
8259 void __init free_area_init(unsigned long *max_zone_pfn)
8260 {
8261 	unsigned long start_pfn, end_pfn;
8262 	int i, nid, zone;
8263 	bool descending;
8264 
8265 	/* Record where the zone boundaries are */
8266 	memset(arch_zone_lowest_possible_pfn, 0,
8267 				sizeof(arch_zone_lowest_possible_pfn));
8268 	memset(arch_zone_highest_possible_pfn, 0,
8269 				sizeof(arch_zone_highest_possible_pfn));
8270 
8271 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8272 	descending = arch_has_descending_max_zone_pfns();
8273 
8274 	for (i = 0; i < MAX_NR_ZONES; i++) {
8275 		if (descending)
8276 			zone = MAX_NR_ZONES - i - 1;
8277 		else
8278 			zone = i;
8279 
8280 		if (zone == ZONE_MOVABLE)
8281 			continue;
8282 
8283 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8284 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8285 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8286 
8287 		start_pfn = end_pfn;
8288 	}
8289 
8290 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8291 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8292 	find_zone_movable_pfns_for_nodes();
8293 
8294 	/* Print out the zone ranges */
8295 	pr_info("Zone ranges:\n");
8296 	for (i = 0; i < MAX_NR_ZONES; i++) {
8297 		if (i == ZONE_MOVABLE)
8298 			continue;
8299 		pr_info("  %-8s ", zone_names[i]);
8300 		if (arch_zone_lowest_possible_pfn[i] ==
8301 				arch_zone_highest_possible_pfn[i])
8302 			pr_cont("empty\n");
8303 		else
8304 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8305 				(u64)arch_zone_lowest_possible_pfn[i]
8306 					<< PAGE_SHIFT,
8307 				((u64)arch_zone_highest_possible_pfn[i]
8308 					<< PAGE_SHIFT) - 1);
8309 	}
8310 
8311 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8312 	pr_info("Movable zone start for each node\n");
8313 	for (i = 0; i < MAX_NUMNODES; i++) {
8314 		if (zone_movable_pfn[i])
8315 			pr_info("  Node %d: %#018Lx\n", i,
8316 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8317 	}
8318 
8319 	/*
8320 	 * Print out the early node map, and initialize the
8321 	 * subsection-map relative to active online memory ranges to
8322 	 * enable future "sub-section" extensions of the memory map.
8323 	 */
8324 	pr_info("Early memory node ranges\n");
8325 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8326 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8327 			(u64)start_pfn << PAGE_SHIFT,
8328 			((u64)end_pfn << PAGE_SHIFT) - 1);
8329 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8330 	}
8331 
8332 	/* Initialise every node */
8333 	mminit_verify_pageflags_layout();
8334 	setup_nr_node_ids();
8335 	for_each_node(nid) {
8336 		pg_data_t *pgdat;
8337 
8338 		if (!node_online(nid)) {
8339 			pr_info("Initializing node %d as memoryless\n", nid);
8340 
8341 			/* Allocator not initialized yet */
8342 			pgdat = arch_alloc_nodedata(nid);
8343 			if (!pgdat) {
8344 				pr_err("Cannot allocate %zuB for node %d.\n",
8345 						sizeof(*pgdat), nid);
8346 				continue;
8347 			}
8348 			arch_refresh_nodedata(nid, pgdat);
8349 			free_area_init_memoryless_node(nid);
8350 
8351 			/*
8352 			 * We do not want to confuse userspace by sysfs
8353 			 * files/directories for node without any memory
8354 			 * attached to it, so this node is not marked as
8355 			 * N_MEMORY and not marked online so that no sysfs
8356 			 * hierarchy will be created via register_one_node for
8357 			 * it. The pgdat will get fully initialized by
8358 			 * hotadd_init_pgdat() when memory is hotplugged into
8359 			 * this node.
8360 			 */
8361 			continue;
8362 		}
8363 
8364 		pgdat = NODE_DATA(nid);
8365 		free_area_init_node(nid);
8366 
8367 		/* Any memory on that node */
8368 		if (pgdat->node_present_pages)
8369 			node_set_state(nid, N_MEMORY);
8370 		check_for_memory(pgdat, nid);
8371 	}
8372 
8373 	memmap_init();
8374 }
8375 
8376 static int __init cmdline_parse_core(char *p, unsigned long *core,
8377 				     unsigned long *percent)
8378 {
8379 	unsigned long long coremem;
8380 	char *endptr;
8381 
8382 	if (!p)
8383 		return -EINVAL;
8384 
8385 	/* Value may be a percentage of total memory, otherwise bytes */
8386 	coremem = simple_strtoull(p, &endptr, 0);
8387 	if (*endptr == '%') {
8388 		/* Paranoid check for percent values greater than 100 */
8389 		WARN_ON(coremem > 100);
8390 
8391 		*percent = coremem;
8392 	} else {
8393 		coremem = memparse(p, &p);
8394 		/* Paranoid check that UL is enough for the coremem value */
8395 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8396 
8397 		*core = coremem >> PAGE_SHIFT;
8398 		*percent = 0UL;
8399 	}
8400 	return 0;
8401 }
8402 
8403 /*
8404  * kernelcore=size sets the amount of memory for use for allocations that
8405  * cannot be reclaimed or migrated.
8406  */
8407 static int __init cmdline_parse_kernelcore(char *p)
8408 {
8409 	/* parse kernelcore=mirror */
8410 	if (parse_option_str(p, "mirror")) {
8411 		mirrored_kernelcore = true;
8412 		return 0;
8413 	}
8414 
8415 	return cmdline_parse_core(p, &required_kernelcore,
8416 				  &required_kernelcore_percent);
8417 }
8418 
8419 /*
8420  * movablecore=size sets the amount of memory for use for allocations that
8421  * can be reclaimed or migrated.
8422  */
8423 static int __init cmdline_parse_movablecore(char *p)
8424 {
8425 	return cmdline_parse_core(p, &required_movablecore,
8426 				  &required_movablecore_percent);
8427 }
8428 
8429 early_param("kernelcore", cmdline_parse_kernelcore);
8430 early_param("movablecore", cmdline_parse_movablecore);
8431 
8432 void adjust_managed_page_count(struct page *page, long count)
8433 {
8434 	atomic_long_add(count, &page_zone(page)->managed_pages);
8435 	totalram_pages_add(count);
8436 #ifdef CONFIG_HIGHMEM
8437 	if (PageHighMem(page))
8438 		totalhigh_pages_add(count);
8439 #endif
8440 }
8441 EXPORT_SYMBOL(adjust_managed_page_count);
8442 
8443 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8444 {
8445 	void *pos;
8446 	unsigned long pages = 0;
8447 
8448 	start = (void *)PAGE_ALIGN((unsigned long)start);
8449 	end = (void *)((unsigned long)end & PAGE_MASK);
8450 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8451 		struct page *page = virt_to_page(pos);
8452 		void *direct_map_addr;
8453 
8454 		/*
8455 		 * 'direct_map_addr' might be different from 'pos'
8456 		 * because some architectures' virt_to_page()
8457 		 * work with aliases.  Getting the direct map
8458 		 * address ensures that we get a _writeable_
8459 		 * alias for the memset().
8460 		 */
8461 		direct_map_addr = page_address(page);
8462 		/*
8463 		 * Perform a kasan-unchecked memset() since this memory
8464 		 * has not been initialized.
8465 		 */
8466 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8467 		if ((unsigned int)poison <= 0xFF)
8468 			memset(direct_map_addr, poison, PAGE_SIZE);
8469 
8470 		free_reserved_page(page);
8471 	}
8472 
8473 	if (pages && s)
8474 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8475 
8476 	return pages;
8477 }
8478 
8479 void __init mem_init_print_info(void)
8480 {
8481 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8482 	unsigned long init_code_size, init_data_size;
8483 
8484 	physpages = get_num_physpages();
8485 	codesize = _etext - _stext;
8486 	datasize = _edata - _sdata;
8487 	rosize = __end_rodata - __start_rodata;
8488 	bss_size = __bss_stop - __bss_start;
8489 	init_data_size = __init_end - __init_begin;
8490 	init_code_size = _einittext - _sinittext;
8491 
8492 	/*
8493 	 * Detect special cases and adjust section sizes accordingly:
8494 	 * 1) .init.* may be embedded into .data sections
8495 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8496 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8497 	 * 3) .rodata.* may be embedded into .text or .data sections.
8498 	 */
8499 #define adj_init_size(start, end, size, pos, adj) \
8500 	do { \
8501 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8502 			size -= adj; \
8503 	} while (0)
8504 
8505 	adj_init_size(__init_begin, __init_end, init_data_size,
8506 		     _sinittext, init_code_size);
8507 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8508 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8509 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8510 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8511 
8512 #undef	adj_init_size
8513 
8514 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8515 #ifdef	CONFIG_HIGHMEM
8516 		", %luK highmem"
8517 #endif
8518 		")\n",
8519 		K(nr_free_pages()), K(physpages),
8520 		codesize >> 10, datasize >> 10, rosize >> 10,
8521 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8522 		K(physpages - totalram_pages() - totalcma_pages),
8523 		K(totalcma_pages)
8524 #ifdef	CONFIG_HIGHMEM
8525 		, K(totalhigh_pages())
8526 #endif
8527 		);
8528 }
8529 
8530 /**
8531  * set_dma_reserve - set the specified number of pages reserved in the first zone
8532  * @new_dma_reserve: The number of pages to mark reserved
8533  *
8534  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8535  * In the DMA zone, a significant percentage may be consumed by kernel image
8536  * and other unfreeable allocations which can skew the watermarks badly. This
8537  * function may optionally be used to account for unfreeable pages in the
8538  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8539  * smaller per-cpu batchsize.
8540  */
8541 void __init set_dma_reserve(unsigned long new_dma_reserve)
8542 {
8543 	dma_reserve = new_dma_reserve;
8544 }
8545 
8546 static int page_alloc_cpu_dead(unsigned int cpu)
8547 {
8548 	struct zone *zone;
8549 
8550 	lru_add_drain_cpu(cpu);
8551 	mlock_page_drain_remote(cpu);
8552 	drain_pages(cpu);
8553 
8554 	/*
8555 	 * Spill the event counters of the dead processor
8556 	 * into the current processors event counters.
8557 	 * This artificially elevates the count of the current
8558 	 * processor.
8559 	 */
8560 	vm_events_fold_cpu(cpu);
8561 
8562 	/*
8563 	 * Zero the differential counters of the dead processor
8564 	 * so that the vm statistics are consistent.
8565 	 *
8566 	 * This is only okay since the processor is dead and cannot
8567 	 * race with what we are doing.
8568 	 */
8569 	cpu_vm_stats_fold(cpu);
8570 
8571 	for_each_populated_zone(zone)
8572 		zone_pcp_update(zone, 0);
8573 
8574 	return 0;
8575 }
8576 
8577 static int page_alloc_cpu_online(unsigned int cpu)
8578 {
8579 	struct zone *zone;
8580 
8581 	for_each_populated_zone(zone)
8582 		zone_pcp_update(zone, 1);
8583 	return 0;
8584 }
8585 
8586 #ifdef CONFIG_NUMA
8587 int hashdist = HASHDIST_DEFAULT;
8588 
8589 static int __init set_hashdist(char *str)
8590 {
8591 	if (!str)
8592 		return 0;
8593 	hashdist = simple_strtoul(str, &str, 0);
8594 	return 1;
8595 }
8596 __setup("hashdist=", set_hashdist);
8597 #endif
8598 
8599 void __init page_alloc_init(void)
8600 {
8601 	int ret;
8602 
8603 #ifdef CONFIG_NUMA
8604 	if (num_node_state(N_MEMORY) == 1)
8605 		hashdist = 0;
8606 #endif
8607 
8608 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8609 					"mm/page_alloc:pcp",
8610 					page_alloc_cpu_online,
8611 					page_alloc_cpu_dead);
8612 	WARN_ON(ret < 0);
8613 }
8614 
8615 /*
8616  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8617  *	or min_free_kbytes changes.
8618  */
8619 static void calculate_totalreserve_pages(void)
8620 {
8621 	struct pglist_data *pgdat;
8622 	unsigned long reserve_pages = 0;
8623 	enum zone_type i, j;
8624 
8625 	for_each_online_pgdat(pgdat) {
8626 
8627 		pgdat->totalreserve_pages = 0;
8628 
8629 		for (i = 0; i < MAX_NR_ZONES; i++) {
8630 			struct zone *zone = pgdat->node_zones + i;
8631 			long max = 0;
8632 			unsigned long managed_pages = zone_managed_pages(zone);
8633 
8634 			/* Find valid and maximum lowmem_reserve in the zone */
8635 			for (j = i; j < MAX_NR_ZONES; j++) {
8636 				if (zone->lowmem_reserve[j] > max)
8637 					max = zone->lowmem_reserve[j];
8638 			}
8639 
8640 			/* we treat the high watermark as reserved pages. */
8641 			max += high_wmark_pages(zone);
8642 
8643 			if (max > managed_pages)
8644 				max = managed_pages;
8645 
8646 			pgdat->totalreserve_pages += max;
8647 
8648 			reserve_pages += max;
8649 		}
8650 	}
8651 	totalreserve_pages = reserve_pages;
8652 }
8653 
8654 /*
8655  * setup_per_zone_lowmem_reserve - called whenever
8656  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8657  *	has a correct pages reserved value, so an adequate number of
8658  *	pages are left in the zone after a successful __alloc_pages().
8659  */
8660 static void setup_per_zone_lowmem_reserve(void)
8661 {
8662 	struct pglist_data *pgdat;
8663 	enum zone_type i, j;
8664 
8665 	for_each_online_pgdat(pgdat) {
8666 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8667 			struct zone *zone = &pgdat->node_zones[i];
8668 			int ratio = sysctl_lowmem_reserve_ratio[i];
8669 			bool clear = !ratio || !zone_managed_pages(zone);
8670 			unsigned long managed_pages = 0;
8671 
8672 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8673 				struct zone *upper_zone = &pgdat->node_zones[j];
8674 
8675 				managed_pages += zone_managed_pages(upper_zone);
8676 
8677 				if (clear)
8678 					zone->lowmem_reserve[j] = 0;
8679 				else
8680 					zone->lowmem_reserve[j] = managed_pages / ratio;
8681 			}
8682 		}
8683 	}
8684 
8685 	/* update totalreserve_pages */
8686 	calculate_totalreserve_pages();
8687 }
8688 
8689 static void __setup_per_zone_wmarks(void)
8690 {
8691 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8692 	unsigned long lowmem_pages = 0;
8693 	struct zone *zone;
8694 	unsigned long flags;
8695 
8696 	/* Calculate total number of !ZONE_HIGHMEM pages */
8697 	for_each_zone(zone) {
8698 		if (!is_highmem(zone))
8699 			lowmem_pages += zone_managed_pages(zone);
8700 	}
8701 
8702 	for_each_zone(zone) {
8703 		u64 tmp;
8704 
8705 		spin_lock_irqsave(&zone->lock, flags);
8706 		tmp = (u64)pages_min * zone_managed_pages(zone);
8707 		do_div(tmp, lowmem_pages);
8708 		if (is_highmem(zone)) {
8709 			/*
8710 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8711 			 * need highmem pages, so cap pages_min to a small
8712 			 * value here.
8713 			 *
8714 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8715 			 * deltas control async page reclaim, and so should
8716 			 * not be capped for highmem.
8717 			 */
8718 			unsigned long min_pages;
8719 
8720 			min_pages = zone_managed_pages(zone) / 1024;
8721 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8722 			zone->_watermark[WMARK_MIN] = min_pages;
8723 		} else {
8724 			/*
8725 			 * If it's a lowmem zone, reserve a number of pages
8726 			 * proportionate to the zone's size.
8727 			 */
8728 			zone->_watermark[WMARK_MIN] = tmp;
8729 		}
8730 
8731 		/*
8732 		 * Set the kswapd watermarks distance according to the
8733 		 * scale factor in proportion to available memory, but
8734 		 * ensure a minimum size on small systems.
8735 		 */
8736 		tmp = max_t(u64, tmp >> 2,
8737 			    mult_frac(zone_managed_pages(zone),
8738 				      watermark_scale_factor, 10000));
8739 
8740 		zone->watermark_boost = 0;
8741 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8742 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8743 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8744 
8745 		spin_unlock_irqrestore(&zone->lock, flags);
8746 	}
8747 
8748 	/* update totalreserve_pages */
8749 	calculate_totalreserve_pages();
8750 }
8751 
8752 /**
8753  * setup_per_zone_wmarks - called when min_free_kbytes changes
8754  * or when memory is hot-{added|removed}
8755  *
8756  * Ensures that the watermark[min,low,high] values for each zone are set
8757  * correctly with respect to min_free_kbytes.
8758  */
8759 void setup_per_zone_wmarks(void)
8760 {
8761 	struct zone *zone;
8762 	static DEFINE_SPINLOCK(lock);
8763 
8764 	spin_lock(&lock);
8765 	__setup_per_zone_wmarks();
8766 	spin_unlock(&lock);
8767 
8768 	/*
8769 	 * The watermark size have changed so update the pcpu batch
8770 	 * and high limits or the limits may be inappropriate.
8771 	 */
8772 	for_each_zone(zone)
8773 		zone_pcp_update(zone, 0);
8774 }
8775 
8776 /*
8777  * Initialise min_free_kbytes.
8778  *
8779  * For small machines we want it small (128k min).  For large machines
8780  * we want it large (256MB max).  But it is not linear, because network
8781  * bandwidth does not increase linearly with machine size.  We use
8782  *
8783  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8784  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8785  *
8786  * which yields
8787  *
8788  * 16MB:	512k
8789  * 32MB:	724k
8790  * 64MB:	1024k
8791  * 128MB:	1448k
8792  * 256MB:	2048k
8793  * 512MB:	2896k
8794  * 1024MB:	4096k
8795  * 2048MB:	5792k
8796  * 4096MB:	8192k
8797  * 8192MB:	11584k
8798  * 16384MB:	16384k
8799  */
8800 void calculate_min_free_kbytes(void)
8801 {
8802 	unsigned long lowmem_kbytes;
8803 	int new_min_free_kbytes;
8804 
8805 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8806 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8807 
8808 	if (new_min_free_kbytes > user_min_free_kbytes)
8809 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8810 	else
8811 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8812 				new_min_free_kbytes, user_min_free_kbytes);
8813 
8814 }
8815 
8816 int __meminit init_per_zone_wmark_min(void)
8817 {
8818 	calculate_min_free_kbytes();
8819 	setup_per_zone_wmarks();
8820 	refresh_zone_stat_thresholds();
8821 	setup_per_zone_lowmem_reserve();
8822 
8823 #ifdef CONFIG_NUMA
8824 	setup_min_unmapped_ratio();
8825 	setup_min_slab_ratio();
8826 #endif
8827 
8828 	khugepaged_min_free_kbytes_update();
8829 
8830 	return 0;
8831 }
8832 postcore_initcall(init_per_zone_wmark_min)
8833 
8834 /*
8835  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8836  *	that we can call two helper functions whenever min_free_kbytes
8837  *	changes.
8838  */
8839 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8840 		void *buffer, size_t *length, loff_t *ppos)
8841 {
8842 	int rc;
8843 
8844 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8845 	if (rc)
8846 		return rc;
8847 
8848 	if (write) {
8849 		user_min_free_kbytes = min_free_kbytes;
8850 		setup_per_zone_wmarks();
8851 	}
8852 	return 0;
8853 }
8854 
8855 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8856 		void *buffer, size_t *length, loff_t *ppos)
8857 {
8858 	int rc;
8859 
8860 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8861 	if (rc)
8862 		return rc;
8863 
8864 	if (write)
8865 		setup_per_zone_wmarks();
8866 
8867 	return 0;
8868 }
8869 
8870 #ifdef CONFIG_NUMA
8871 static void setup_min_unmapped_ratio(void)
8872 {
8873 	pg_data_t *pgdat;
8874 	struct zone *zone;
8875 
8876 	for_each_online_pgdat(pgdat)
8877 		pgdat->min_unmapped_pages = 0;
8878 
8879 	for_each_zone(zone)
8880 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8881 						         sysctl_min_unmapped_ratio) / 100;
8882 }
8883 
8884 
8885 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8886 		void *buffer, size_t *length, loff_t *ppos)
8887 {
8888 	int rc;
8889 
8890 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8891 	if (rc)
8892 		return rc;
8893 
8894 	setup_min_unmapped_ratio();
8895 
8896 	return 0;
8897 }
8898 
8899 static void setup_min_slab_ratio(void)
8900 {
8901 	pg_data_t *pgdat;
8902 	struct zone *zone;
8903 
8904 	for_each_online_pgdat(pgdat)
8905 		pgdat->min_slab_pages = 0;
8906 
8907 	for_each_zone(zone)
8908 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8909 						     sysctl_min_slab_ratio) / 100;
8910 }
8911 
8912 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8913 		void *buffer, size_t *length, loff_t *ppos)
8914 {
8915 	int rc;
8916 
8917 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8918 	if (rc)
8919 		return rc;
8920 
8921 	setup_min_slab_ratio();
8922 
8923 	return 0;
8924 }
8925 #endif
8926 
8927 /*
8928  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8929  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8930  *	whenever sysctl_lowmem_reserve_ratio changes.
8931  *
8932  * The reserve ratio obviously has absolutely no relation with the
8933  * minimum watermarks. The lowmem reserve ratio can only make sense
8934  * if in function of the boot time zone sizes.
8935  */
8936 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8937 		void *buffer, size_t *length, loff_t *ppos)
8938 {
8939 	int i;
8940 
8941 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8942 
8943 	for (i = 0; i < MAX_NR_ZONES; i++) {
8944 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8945 			sysctl_lowmem_reserve_ratio[i] = 0;
8946 	}
8947 
8948 	setup_per_zone_lowmem_reserve();
8949 	return 0;
8950 }
8951 
8952 /*
8953  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8954  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8955  * pagelist can have before it gets flushed back to buddy allocator.
8956  */
8957 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8958 		int write, void *buffer, size_t *length, loff_t *ppos)
8959 {
8960 	struct zone *zone;
8961 	int old_percpu_pagelist_high_fraction;
8962 	int ret;
8963 
8964 	mutex_lock(&pcp_batch_high_lock);
8965 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8966 
8967 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8968 	if (!write || ret < 0)
8969 		goto out;
8970 
8971 	/* Sanity checking to avoid pcp imbalance */
8972 	if (percpu_pagelist_high_fraction &&
8973 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8974 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8975 		ret = -EINVAL;
8976 		goto out;
8977 	}
8978 
8979 	/* No change? */
8980 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8981 		goto out;
8982 
8983 	for_each_populated_zone(zone)
8984 		zone_set_pageset_high_and_batch(zone, 0);
8985 out:
8986 	mutex_unlock(&pcp_batch_high_lock);
8987 	return ret;
8988 }
8989 
8990 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8991 /*
8992  * Returns the number of pages that arch has reserved but
8993  * is not known to alloc_large_system_hash().
8994  */
8995 static unsigned long __init arch_reserved_kernel_pages(void)
8996 {
8997 	return 0;
8998 }
8999 #endif
9000 
9001 /*
9002  * Adaptive scale is meant to reduce sizes of hash tables on large memory
9003  * machines. As memory size is increased the scale is also increased but at
9004  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9005  * quadruples the scale is increased by one, which means the size of hash table
9006  * only doubles, instead of quadrupling as well.
9007  * Because 32-bit systems cannot have large physical memory, where this scaling
9008  * makes sense, it is disabled on such platforms.
9009  */
9010 #if __BITS_PER_LONG > 32
9011 #define ADAPT_SCALE_BASE	(64ul << 30)
9012 #define ADAPT_SCALE_SHIFT	2
9013 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9014 #endif
9015 
9016 /*
9017  * allocate a large system hash table from bootmem
9018  * - it is assumed that the hash table must contain an exact power-of-2
9019  *   quantity of entries
9020  * - limit is the number of hash buckets, not the total allocation size
9021  */
9022 void *__init alloc_large_system_hash(const char *tablename,
9023 				     unsigned long bucketsize,
9024 				     unsigned long numentries,
9025 				     int scale,
9026 				     int flags,
9027 				     unsigned int *_hash_shift,
9028 				     unsigned int *_hash_mask,
9029 				     unsigned long low_limit,
9030 				     unsigned long high_limit)
9031 {
9032 	unsigned long long max = high_limit;
9033 	unsigned long log2qty, size;
9034 	void *table;
9035 	gfp_t gfp_flags;
9036 	bool virt;
9037 	bool huge;
9038 
9039 	/* allow the kernel cmdline to have a say */
9040 	if (!numentries) {
9041 		/* round applicable memory size up to nearest megabyte */
9042 		numentries = nr_kernel_pages;
9043 		numentries -= arch_reserved_kernel_pages();
9044 
9045 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9046 		if (PAGE_SHIFT < 20)
9047 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
9048 
9049 #if __BITS_PER_LONG > 32
9050 		if (!high_limit) {
9051 			unsigned long adapt;
9052 
9053 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9054 			     adapt <<= ADAPT_SCALE_SHIFT)
9055 				scale++;
9056 		}
9057 #endif
9058 
9059 		/* limit to 1 bucket per 2^scale bytes of low memory */
9060 		if (scale > PAGE_SHIFT)
9061 			numentries >>= (scale - PAGE_SHIFT);
9062 		else
9063 			numentries <<= (PAGE_SHIFT - scale);
9064 
9065 		/* Make sure we've got at least a 0-order allocation.. */
9066 		if (unlikely(flags & HASH_SMALL)) {
9067 			/* Makes no sense without HASH_EARLY */
9068 			WARN_ON(!(flags & HASH_EARLY));
9069 			if (!(numentries >> *_hash_shift)) {
9070 				numentries = 1UL << *_hash_shift;
9071 				BUG_ON(!numentries);
9072 			}
9073 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9074 			numentries = PAGE_SIZE / bucketsize;
9075 	}
9076 	numentries = roundup_pow_of_two(numentries);
9077 
9078 	/* limit allocation size to 1/16 total memory by default */
9079 	if (max == 0) {
9080 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9081 		do_div(max, bucketsize);
9082 	}
9083 	max = min(max, 0x80000000ULL);
9084 
9085 	if (numentries < low_limit)
9086 		numentries = low_limit;
9087 	if (numentries > max)
9088 		numentries = max;
9089 
9090 	log2qty = ilog2(numentries);
9091 
9092 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9093 	do {
9094 		virt = false;
9095 		size = bucketsize << log2qty;
9096 		if (flags & HASH_EARLY) {
9097 			if (flags & HASH_ZERO)
9098 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9099 			else
9100 				table = memblock_alloc_raw(size,
9101 							   SMP_CACHE_BYTES);
9102 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9103 			table = vmalloc_huge(size, gfp_flags);
9104 			virt = true;
9105 			if (table)
9106 				huge = is_vm_area_hugepages(table);
9107 		} else {
9108 			/*
9109 			 * If bucketsize is not a power-of-two, we may free
9110 			 * some pages at the end of hash table which
9111 			 * alloc_pages_exact() automatically does
9112 			 */
9113 			table = alloc_pages_exact(size, gfp_flags);
9114 			kmemleak_alloc(table, size, 1, gfp_flags);
9115 		}
9116 	} while (!table && size > PAGE_SIZE && --log2qty);
9117 
9118 	if (!table)
9119 		panic("Failed to allocate %s hash table\n", tablename);
9120 
9121 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9122 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9123 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9124 
9125 	if (_hash_shift)
9126 		*_hash_shift = log2qty;
9127 	if (_hash_mask)
9128 		*_hash_mask = (1 << log2qty) - 1;
9129 
9130 	return table;
9131 }
9132 
9133 #ifdef CONFIG_CONTIG_ALLOC
9134 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9135 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9136 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9137 static void alloc_contig_dump_pages(struct list_head *page_list)
9138 {
9139 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9140 
9141 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9142 		struct page *page;
9143 
9144 		dump_stack();
9145 		list_for_each_entry(page, page_list, lru)
9146 			dump_page(page, "migration failure");
9147 	}
9148 }
9149 #else
9150 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9151 {
9152 }
9153 #endif
9154 
9155 /* [start, end) must belong to a single zone. */
9156 int __alloc_contig_migrate_range(struct compact_control *cc,
9157 					unsigned long start, unsigned long end)
9158 {
9159 	/* This function is based on compact_zone() from compaction.c. */
9160 	unsigned int nr_reclaimed;
9161 	unsigned long pfn = start;
9162 	unsigned int tries = 0;
9163 	int ret = 0;
9164 	struct migration_target_control mtc = {
9165 		.nid = zone_to_nid(cc->zone),
9166 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9167 	};
9168 
9169 	lru_cache_disable();
9170 
9171 	while (pfn < end || !list_empty(&cc->migratepages)) {
9172 		if (fatal_signal_pending(current)) {
9173 			ret = -EINTR;
9174 			break;
9175 		}
9176 
9177 		if (list_empty(&cc->migratepages)) {
9178 			cc->nr_migratepages = 0;
9179 			ret = isolate_migratepages_range(cc, pfn, end);
9180 			if (ret && ret != -EAGAIN)
9181 				break;
9182 			pfn = cc->migrate_pfn;
9183 			tries = 0;
9184 		} else if (++tries == 5) {
9185 			ret = -EBUSY;
9186 			break;
9187 		}
9188 
9189 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9190 							&cc->migratepages);
9191 		cc->nr_migratepages -= nr_reclaimed;
9192 
9193 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9194 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9195 
9196 		/*
9197 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9198 		 * to retry again over this error, so do the same here.
9199 		 */
9200 		if (ret == -ENOMEM)
9201 			break;
9202 	}
9203 
9204 	lru_cache_enable();
9205 	if (ret < 0) {
9206 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9207 			alloc_contig_dump_pages(&cc->migratepages);
9208 		putback_movable_pages(&cc->migratepages);
9209 		return ret;
9210 	}
9211 	return 0;
9212 }
9213 
9214 /**
9215  * alloc_contig_range() -- tries to allocate given range of pages
9216  * @start:	start PFN to allocate
9217  * @end:	one-past-the-last PFN to allocate
9218  * @migratetype:	migratetype of the underlying pageblocks (either
9219  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9220  *			in range must have the same migratetype and it must
9221  *			be either of the two.
9222  * @gfp_mask:	GFP mask to use during compaction
9223  *
9224  * The PFN range does not have to be pageblock aligned. The PFN range must
9225  * belong to a single zone.
9226  *
9227  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9228  * pageblocks in the range.  Once isolated, the pageblocks should not
9229  * be modified by others.
9230  *
9231  * Return: zero on success or negative error code.  On success all
9232  * pages which PFN is in [start, end) are allocated for the caller and
9233  * need to be freed with free_contig_range().
9234  */
9235 int alloc_contig_range(unsigned long start, unsigned long end,
9236 		       unsigned migratetype, gfp_t gfp_mask)
9237 {
9238 	unsigned long outer_start, outer_end;
9239 	int order;
9240 	int ret = 0;
9241 
9242 	struct compact_control cc = {
9243 		.nr_migratepages = 0,
9244 		.order = -1,
9245 		.zone = page_zone(pfn_to_page(start)),
9246 		.mode = MIGRATE_SYNC,
9247 		.ignore_skip_hint = true,
9248 		.no_set_skip_hint = true,
9249 		.gfp_mask = current_gfp_context(gfp_mask),
9250 		.alloc_contig = true,
9251 	};
9252 	INIT_LIST_HEAD(&cc.migratepages);
9253 
9254 	/*
9255 	 * What we do here is we mark all pageblocks in range as
9256 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9257 	 * have different sizes, and due to the way page allocator
9258 	 * work, start_isolate_page_range() has special handlings for this.
9259 	 *
9260 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9261 	 * migrate the pages from an unaligned range (ie. pages that
9262 	 * we are interested in). This will put all the pages in
9263 	 * range back to page allocator as MIGRATE_ISOLATE.
9264 	 *
9265 	 * When this is done, we take the pages in range from page
9266 	 * allocator removing them from the buddy system.  This way
9267 	 * page allocator will never consider using them.
9268 	 *
9269 	 * This lets us mark the pageblocks back as
9270 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9271 	 * aligned range but not in the unaligned, original range are
9272 	 * put back to page allocator so that buddy can use them.
9273 	 */
9274 
9275 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9276 	if (ret)
9277 		goto done;
9278 
9279 	drain_all_pages(cc.zone);
9280 
9281 	/*
9282 	 * In case of -EBUSY, we'd like to know which page causes problem.
9283 	 * So, just fall through. test_pages_isolated() has a tracepoint
9284 	 * which will report the busy page.
9285 	 *
9286 	 * It is possible that busy pages could become available before
9287 	 * the call to test_pages_isolated, and the range will actually be
9288 	 * allocated.  So, if we fall through be sure to clear ret so that
9289 	 * -EBUSY is not accidentally used or returned to caller.
9290 	 */
9291 	ret = __alloc_contig_migrate_range(&cc, start, end);
9292 	if (ret && ret != -EBUSY)
9293 		goto done;
9294 	ret = 0;
9295 
9296 	/*
9297 	 * Pages from [start, end) are within a pageblock_nr_pages
9298 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9299 	 * more, all pages in [start, end) are free in page allocator.
9300 	 * What we are going to do is to allocate all pages from
9301 	 * [start, end) (that is remove them from page allocator).
9302 	 *
9303 	 * The only problem is that pages at the beginning and at the
9304 	 * end of interesting range may be not aligned with pages that
9305 	 * page allocator holds, ie. they can be part of higher order
9306 	 * pages.  Because of this, we reserve the bigger range and
9307 	 * once this is done free the pages we are not interested in.
9308 	 *
9309 	 * We don't have to hold zone->lock here because the pages are
9310 	 * isolated thus they won't get removed from buddy.
9311 	 */
9312 
9313 	order = 0;
9314 	outer_start = start;
9315 	while (!PageBuddy(pfn_to_page(outer_start))) {
9316 		if (++order >= MAX_ORDER) {
9317 			outer_start = start;
9318 			break;
9319 		}
9320 		outer_start &= ~0UL << order;
9321 	}
9322 
9323 	if (outer_start != start) {
9324 		order = buddy_order(pfn_to_page(outer_start));
9325 
9326 		/*
9327 		 * outer_start page could be small order buddy page and
9328 		 * it doesn't include start page. Adjust outer_start
9329 		 * in this case to report failed page properly
9330 		 * on tracepoint in test_pages_isolated()
9331 		 */
9332 		if (outer_start + (1UL << order) <= start)
9333 			outer_start = start;
9334 	}
9335 
9336 	/* Make sure the range is really isolated. */
9337 	if (test_pages_isolated(outer_start, end, 0)) {
9338 		ret = -EBUSY;
9339 		goto done;
9340 	}
9341 
9342 	/* Grab isolated pages from freelists. */
9343 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9344 	if (!outer_end) {
9345 		ret = -EBUSY;
9346 		goto done;
9347 	}
9348 
9349 	/* Free head and tail (if any) */
9350 	if (start != outer_start)
9351 		free_contig_range(outer_start, start - outer_start);
9352 	if (end != outer_end)
9353 		free_contig_range(end, outer_end - end);
9354 
9355 done:
9356 	undo_isolate_page_range(start, end, migratetype);
9357 	return ret;
9358 }
9359 EXPORT_SYMBOL(alloc_contig_range);
9360 
9361 static int __alloc_contig_pages(unsigned long start_pfn,
9362 				unsigned long nr_pages, gfp_t gfp_mask)
9363 {
9364 	unsigned long end_pfn = start_pfn + nr_pages;
9365 
9366 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9367 				  gfp_mask);
9368 }
9369 
9370 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9371 				   unsigned long nr_pages)
9372 {
9373 	unsigned long i, end_pfn = start_pfn + nr_pages;
9374 	struct page *page;
9375 
9376 	for (i = start_pfn; i < end_pfn; i++) {
9377 		page = pfn_to_online_page(i);
9378 		if (!page)
9379 			return false;
9380 
9381 		if (page_zone(page) != z)
9382 			return false;
9383 
9384 		if (PageReserved(page))
9385 			return false;
9386 	}
9387 	return true;
9388 }
9389 
9390 static bool zone_spans_last_pfn(const struct zone *zone,
9391 				unsigned long start_pfn, unsigned long nr_pages)
9392 {
9393 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9394 
9395 	return zone_spans_pfn(zone, last_pfn);
9396 }
9397 
9398 /**
9399  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9400  * @nr_pages:	Number of contiguous pages to allocate
9401  * @gfp_mask:	GFP mask to limit search and used during compaction
9402  * @nid:	Target node
9403  * @nodemask:	Mask for other possible nodes
9404  *
9405  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9406  * on an applicable zonelist to find a contiguous pfn range which can then be
9407  * tried for allocation with alloc_contig_range(). This routine is intended
9408  * for allocation requests which can not be fulfilled with the buddy allocator.
9409  *
9410  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9411  * power of two, then allocated range is also guaranteed to be aligned to same
9412  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9413  *
9414  * Allocated pages can be freed with free_contig_range() or by manually calling
9415  * __free_page() on each allocated page.
9416  *
9417  * Return: pointer to contiguous pages on success, or NULL if not successful.
9418  */
9419 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9420 				int nid, nodemask_t *nodemask)
9421 {
9422 	unsigned long ret, pfn, flags;
9423 	struct zonelist *zonelist;
9424 	struct zone *zone;
9425 	struct zoneref *z;
9426 
9427 	zonelist = node_zonelist(nid, gfp_mask);
9428 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9429 					gfp_zone(gfp_mask), nodemask) {
9430 		spin_lock_irqsave(&zone->lock, flags);
9431 
9432 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9433 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9434 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9435 				/*
9436 				 * We release the zone lock here because
9437 				 * alloc_contig_range() will also lock the zone
9438 				 * at some point. If there's an allocation
9439 				 * spinning on this lock, it may win the race
9440 				 * and cause alloc_contig_range() to fail...
9441 				 */
9442 				spin_unlock_irqrestore(&zone->lock, flags);
9443 				ret = __alloc_contig_pages(pfn, nr_pages,
9444 							gfp_mask);
9445 				if (!ret)
9446 					return pfn_to_page(pfn);
9447 				spin_lock_irqsave(&zone->lock, flags);
9448 			}
9449 			pfn += nr_pages;
9450 		}
9451 		spin_unlock_irqrestore(&zone->lock, flags);
9452 	}
9453 	return NULL;
9454 }
9455 #endif /* CONFIG_CONTIG_ALLOC */
9456 
9457 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9458 {
9459 	unsigned long count = 0;
9460 
9461 	for (; nr_pages--; pfn++) {
9462 		struct page *page = pfn_to_page(pfn);
9463 
9464 		count += page_count(page) != 1;
9465 		__free_page(page);
9466 	}
9467 	WARN(count != 0, "%lu pages are still in use!\n", count);
9468 }
9469 EXPORT_SYMBOL(free_contig_range);
9470 
9471 /*
9472  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9473  * page high values need to be recalculated.
9474  */
9475 void zone_pcp_update(struct zone *zone, int cpu_online)
9476 {
9477 	mutex_lock(&pcp_batch_high_lock);
9478 	zone_set_pageset_high_and_batch(zone, cpu_online);
9479 	mutex_unlock(&pcp_batch_high_lock);
9480 }
9481 
9482 /*
9483  * Effectively disable pcplists for the zone by setting the high limit to 0
9484  * and draining all cpus. A concurrent page freeing on another CPU that's about
9485  * to put the page on pcplist will either finish before the drain and the page
9486  * will be drained, or observe the new high limit and skip the pcplist.
9487  *
9488  * Must be paired with a call to zone_pcp_enable().
9489  */
9490 void zone_pcp_disable(struct zone *zone)
9491 {
9492 	mutex_lock(&pcp_batch_high_lock);
9493 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9494 	__drain_all_pages(zone, true);
9495 }
9496 
9497 void zone_pcp_enable(struct zone *zone)
9498 {
9499 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9500 	mutex_unlock(&pcp_batch_high_lock);
9501 }
9502 
9503 void zone_pcp_reset(struct zone *zone)
9504 {
9505 	int cpu;
9506 	struct per_cpu_zonestat *pzstats;
9507 
9508 	if (zone->per_cpu_pageset != &boot_pageset) {
9509 		for_each_online_cpu(cpu) {
9510 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9511 			drain_zonestat(zone, pzstats);
9512 		}
9513 		free_percpu(zone->per_cpu_pageset);
9514 		free_percpu(zone->per_cpu_zonestats);
9515 		zone->per_cpu_pageset = &boot_pageset;
9516 		zone->per_cpu_zonestats = &boot_zonestats;
9517 	}
9518 }
9519 
9520 #ifdef CONFIG_MEMORY_HOTREMOVE
9521 /*
9522  * All pages in the range must be in a single zone, must not contain holes,
9523  * must span full sections, and must be isolated before calling this function.
9524  */
9525 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9526 {
9527 	unsigned long pfn = start_pfn;
9528 	struct page *page;
9529 	struct zone *zone;
9530 	unsigned int order;
9531 	unsigned long flags;
9532 
9533 	offline_mem_sections(pfn, end_pfn);
9534 	zone = page_zone(pfn_to_page(pfn));
9535 	spin_lock_irqsave(&zone->lock, flags);
9536 	while (pfn < end_pfn) {
9537 		page = pfn_to_page(pfn);
9538 		/*
9539 		 * The HWPoisoned page may be not in buddy system, and
9540 		 * page_count() is not 0.
9541 		 */
9542 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9543 			pfn++;
9544 			continue;
9545 		}
9546 		/*
9547 		 * At this point all remaining PageOffline() pages have a
9548 		 * reference count of 0 and can simply be skipped.
9549 		 */
9550 		if (PageOffline(page)) {
9551 			BUG_ON(page_count(page));
9552 			BUG_ON(PageBuddy(page));
9553 			pfn++;
9554 			continue;
9555 		}
9556 
9557 		BUG_ON(page_count(page));
9558 		BUG_ON(!PageBuddy(page));
9559 		order = buddy_order(page);
9560 		del_page_from_free_list(page, zone, order);
9561 		pfn += (1 << order);
9562 	}
9563 	spin_unlock_irqrestore(&zone->lock, flags);
9564 }
9565 #endif
9566 
9567 /*
9568  * This function returns a stable result only if called under zone lock.
9569  */
9570 bool is_free_buddy_page(struct page *page)
9571 {
9572 	unsigned long pfn = page_to_pfn(page);
9573 	unsigned int order;
9574 
9575 	for (order = 0; order < MAX_ORDER; order++) {
9576 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9577 
9578 		if (PageBuddy(page_head) &&
9579 		    buddy_order_unsafe(page_head) >= order)
9580 			break;
9581 	}
9582 
9583 	return order < MAX_ORDER;
9584 }
9585 EXPORT_SYMBOL(is_free_buddy_page);
9586 
9587 #ifdef CONFIG_MEMORY_FAILURE
9588 /*
9589  * Break down a higher-order page in sub-pages, and keep our target out of
9590  * buddy allocator.
9591  */
9592 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9593 				   struct page *target, int low, int high,
9594 				   int migratetype)
9595 {
9596 	unsigned long size = 1 << high;
9597 	struct page *current_buddy, *next_page;
9598 
9599 	while (high > low) {
9600 		high--;
9601 		size >>= 1;
9602 
9603 		if (target >= &page[size]) {
9604 			next_page = page + size;
9605 			current_buddy = page;
9606 		} else {
9607 			next_page = page;
9608 			current_buddy = page + size;
9609 		}
9610 
9611 		if (set_page_guard(zone, current_buddy, high, migratetype))
9612 			continue;
9613 
9614 		if (current_buddy != target) {
9615 			add_to_free_list(current_buddy, zone, high, migratetype);
9616 			set_buddy_order(current_buddy, high);
9617 			page = next_page;
9618 		}
9619 	}
9620 }
9621 
9622 /*
9623  * Take a page that will be marked as poisoned off the buddy allocator.
9624  */
9625 bool take_page_off_buddy(struct page *page)
9626 {
9627 	struct zone *zone = page_zone(page);
9628 	unsigned long pfn = page_to_pfn(page);
9629 	unsigned long flags;
9630 	unsigned int order;
9631 	bool ret = false;
9632 
9633 	spin_lock_irqsave(&zone->lock, flags);
9634 	for (order = 0; order < MAX_ORDER; order++) {
9635 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9636 		int page_order = buddy_order(page_head);
9637 
9638 		if (PageBuddy(page_head) && page_order >= order) {
9639 			unsigned long pfn_head = page_to_pfn(page_head);
9640 			int migratetype = get_pfnblock_migratetype(page_head,
9641 								   pfn_head);
9642 
9643 			del_page_from_free_list(page_head, zone, page_order);
9644 			break_down_buddy_pages(zone, page_head, page, 0,
9645 						page_order, migratetype);
9646 			SetPageHWPoisonTakenOff(page);
9647 			if (!is_migrate_isolate(migratetype))
9648 				__mod_zone_freepage_state(zone, -1, migratetype);
9649 			ret = true;
9650 			break;
9651 		}
9652 		if (page_count(page_head) > 0)
9653 			break;
9654 	}
9655 	spin_unlock_irqrestore(&zone->lock, flags);
9656 	return ret;
9657 }
9658 
9659 /*
9660  * Cancel takeoff done by take_page_off_buddy().
9661  */
9662 bool put_page_back_buddy(struct page *page)
9663 {
9664 	struct zone *zone = page_zone(page);
9665 	unsigned long pfn = page_to_pfn(page);
9666 	unsigned long flags;
9667 	int migratetype = get_pfnblock_migratetype(page, pfn);
9668 	bool ret = false;
9669 
9670 	spin_lock_irqsave(&zone->lock, flags);
9671 	if (put_page_testzero(page)) {
9672 		ClearPageHWPoisonTakenOff(page);
9673 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9674 		if (TestClearPageHWPoison(page)) {
9675 			ret = true;
9676 		}
9677 	}
9678 	spin_unlock_irqrestore(&zone->lock, flags);
9679 
9680 	return ret;
9681 }
9682 #endif
9683 
9684 #ifdef CONFIG_ZONE_DMA
9685 bool has_managed_dma(void)
9686 {
9687 	struct pglist_data *pgdat;
9688 
9689 	for_each_online_pgdat(pgdat) {
9690 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9691 
9692 		if (managed_zone(zone))
9693 			return true;
9694 	}
9695 	return false;
9696 }
9697 #endif /* CONFIG_ZONE_DMA */
9698