1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/oom.h> 34 #include <linux/notifier.h> 35 #include <linux/topology.h> 36 #include <linux/sysctl.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/memory_hotplug.h> 40 #include <linux/nodemask.h> 41 #include <linux/vmalloc.h> 42 #include <linux/mempolicy.h> 43 #include <linux/stop_machine.h> 44 #include <linux/sort.h> 45 #include <linux/pfn.h> 46 #include <linux/backing-dev.h> 47 #include <linux/fault-inject.h> 48 #include <linux/page-isolation.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/debugobjects.h> 51 #include <linux/kmemleak.h> 52 #include <linux/memory.h> 53 #include <linux/compaction.h> 54 #include <trace/events/kmem.h> 55 #include <linux/ftrace_event.h> 56 #include <linux/memcontrol.h> 57 58 #include <asm/tlbflush.h> 59 #include <asm/div64.h> 60 #include "internal.h" 61 62 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 63 DEFINE_PER_CPU(int, numa_node); 64 EXPORT_PER_CPU_SYMBOL(numa_node); 65 #endif 66 67 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 68 /* 69 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 70 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 71 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 72 * defined in <linux/topology.h>. 73 */ 74 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 75 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 76 #endif 77 78 /* 79 * Array of node states. 80 */ 81 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 82 [N_POSSIBLE] = NODE_MASK_ALL, 83 [N_ONLINE] = { { [0] = 1UL } }, 84 #ifndef CONFIG_NUMA 85 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 86 #ifdef CONFIG_HIGHMEM 87 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 88 #endif 89 [N_CPU] = { { [0] = 1UL } }, 90 #endif /* NUMA */ 91 }; 92 EXPORT_SYMBOL(node_states); 93 94 unsigned long totalram_pages __read_mostly; 95 unsigned long totalreserve_pages __read_mostly; 96 int percpu_pagelist_fraction; 97 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 98 99 #ifdef CONFIG_PM_SLEEP 100 /* 101 * The following functions are used by the suspend/hibernate code to temporarily 102 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 103 * while devices are suspended. To avoid races with the suspend/hibernate code, 104 * they should always be called with pm_mutex held (gfp_allowed_mask also should 105 * only be modified with pm_mutex held, unless the suspend/hibernate code is 106 * guaranteed not to run in parallel with that modification). 107 */ 108 109 static gfp_t saved_gfp_mask; 110 111 void pm_restore_gfp_mask(void) 112 { 113 WARN_ON(!mutex_is_locked(&pm_mutex)); 114 if (saved_gfp_mask) { 115 gfp_allowed_mask = saved_gfp_mask; 116 saved_gfp_mask = 0; 117 } 118 } 119 120 void pm_restrict_gfp_mask(void) 121 { 122 WARN_ON(!mutex_is_locked(&pm_mutex)); 123 WARN_ON(saved_gfp_mask); 124 saved_gfp_mask = gfp_allowed_mask; 125 gfp_allowed_mask &= ~GFP_IOFS; 126 } 127 #endif /* CONFIG_PM_SLEEP */ 128 129 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 130 int pageblock_order __read_mostly; 131 #endif 132 133 static void __free_pages_ok(struct page *page, unsigned int order); 134 135 /* 136 * results with 256, 32 in the lowmem_reserve sysctl: 137 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 138 * 1G machine -> (16M dma, 784M normal, 224M high) 139 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 140 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 141 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 142 * 143 * TBD: should special case ZONE_DMA32 machines here - in those we normally 144 * don't need any ZONE_NORMAL reservation 145 */ 146 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 147 #ifdef CONFIG_ZONE_DMA 148 256, 149 #endif 150 #ifdef CONFIG_ZONE_DMA32 151 256, 152 #endif 153 #ifdef CONFIG_HIGHMEM 154 32, 155 #endif 156 32, 157 }; 158 159 EXPORT_SYMBOL(totalram_pages); 160 161 static char * const zone_names[MAX_NR_ZONES] = { 162 #ifdef CONFIG_ZONE_DMA 163 "DMA", 164 #endif 165 #ifdef CONFIG_ZONE_DMA32 166 "DMA32", 167 #endif 168 "Normal", 169 #ifdef CONFIG_HIGHMEM 170 "HighMem", 171 #endif 172 "Movable", 173 }; 174 175 int min_free_kbytes = 1024; 176 177 static unsigned long __meminitdata nr_kernel_pages; 178 static unsigned long __meminitdata nr_all_pages; 179 static unsigned long __meminitdata dma_reserve; 180 181 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 182 /* 183 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 184 * ranges of memory (RAM) that may be registered with add_active_range(). 185 * Ranges passed to add_active_range() will be merged if possible 186 * so the number of times add_active_range() can be called is 187 * related to the number of nodes and the number of holes 188 */ 189 #ifdef CONFIG_MAX_ACTIVE_REGIONS 190 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 191 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 192 #else 193 #if MAX_NUMNODES >= 32 194 /* If there can be many nodes, allow up to 50 holes per node */ 195 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 196 #else 197 /* By default, allow up to 256 distinct regions */ 198 #define MAX_ACTIVE_REGIONS 256 199 #endif 200 #endif 201 202 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 203 static int __meminitdata nr_nodemap_entries; 204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 205 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 206 static unsigned long __initdata required_kernelcore; 207 static unsigned long __initdata required_movablecore; 208 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 209 210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 211 int movable_zone; 212 EXPORT_SYMBOL(movable_zone); 213 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 214 215 #if MAX_NUMNODES > 1 216 int nr_node_ids __read_mostly = MAX_NUMNODES; 217 int nr_online_nodes __read_mostly = 1; 218 EXPORT_SYMBOL(nr_node_ids); 219 EXPORT_SYMBOL(nr_online_nodes); 220 #endif 221 222 int page_group_by_mobility_disabled __read_mostly; 223 224 static void set_pageblock_migratetype(struct page *page, int migratetype) 225 { 226 227 if (unlikely(page_group_by_mobility_disabled)) 228 migratetype = MIGRATE_UNMOVABLE; 229 230 set_pageblock_flags_group(page, (unsigned long)migratetype, 231 PB_migrate, PB_migrate_end); 232 } 233 234 bool oom_killer_disabled __read_mostly; 235 236 #ifdef CONFIG_DEBUG_VM 237 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 238 { 239 int ret = 0; 240 unsigned seq; 241 unsigned long pfn = page_to_pfn(page); 242 243 do { 244 seq = zone_span_seqbegin(zone); 245 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 246 ret = 1; 247 else if (pfn < zone->zone_start_pfn) 248 ret = 1; 249 } while (zone_span_seqretry(zone, seq)); 250 251 return ret; 252 } 253 254 static int page_is_consistent(struct zone *zone, struct page *page) 255 { 256 if (!pfn_valid_within(page_to_pfn(page))) 257 return 0; 258 if (zone != page_zone(page)) 259 return 0; 260 261 return 1; 262 } 263 /* 264 * Temporary debugging check for pages not lying within a given zone. 265 */ 266 static int bad_range(struct zone *zone, struct page *page) 267 { 268 if (page_outside_zone_boundaries(zone, page)) 269 return 1; 270 if (!page_is_consistent(zone, page)) 271 return 1; 272 273 return 0; 274 } 275 #else 276 static inline int bad_range(struct zone *zone, struct page *page) 277 { 278 return 0; 279 } 280 #endif 281 282 static void bad_page(struct page *page) 283 { 284 static unsigned long resume; 285 static unsigned long nr_shown; 286 static unsigned long nr_unshown; 287 288 /* Don't complain about poisoned pages */ 289 if (PageHWPoison(page)) { 290 reset_page_mapcount(page); /* remove PageBuddy */ 291 return; 292 } 293 294 /* 295 * Allow a burst of 60 reports, then keep quiet for that minute; 296 * or allow a steady drip of one report per second. 297 */ 298 if (nr_shown == 60) { 299 if (time_before(jiffies, resume)) { 300 nr_unshown++; 301 goto out; 302 } 303 if (nr_unshown) { 304 printk(KERN_ALERT 305 "BUG: Bad page state: %lu messages suppressed\n", 306 nr_unshown); 307 nr_unshown = 0; 308 } 309 nr_shown = 0; 310 } 311 if (nr_shown++ == 0) 312 resume = jiffies + 60 * HZ; 313 314 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 315 current->comm, page_to_pfn(page)); 316 dump_page(page); 317 318 dump_stack(); 319 out: 320 /* Leave bad fields for debug, except PageBuddy could make trouble */ 321 reset_page_mapcount(page); /* remove PageBuddy */ 322 add_taint(TAINT_BAD_PAGE); 323 } 324 325 /* 326 * Higher-order pages are called "compound pages". They are structured thusly: 327 * 328 * The first PAGE_SIZE page is called the "head page". 329 * 330 * The remaining PAGE_SIZE pages are called "tail pages". 331 * 332 * All pages have PG_compound set. All pages have their ->private pointing at 333 * the head page (even the head page has this). 334 * 335 * The first tail page's ->lru.next holds the address of the compound page's 336 * put_page() function. Its ->lru.prev holds the order of allocation. 337 * This usage means that zero-order pages may not be compound. 338 */ 339 340 static void free_compound_page(struct page *page) 341 { 342 __free_pages_ok(page, compound_order(page)); 343 } 344 345 void prep_compound_page(struct page *page, unsigned long order) 346 { 347 int i; 348 int nr_pages = 1 << order; 349 350 set_compound_page_dtor(page, free_compound_page); 351 set_compound_order(page, order); 352 __SetPageHead(page); 353 for (i = 1; i < nr_pages; i++) { 354 struct page *p = page + i; 355 356 __SetPageTail(p); 357 p->first_page = page; 358 } 359 } 360 361 /* update __split_huge_page_refcount if you change this function */ 362 static int destroy_compound_page(struct page *page, unsigned long order) 363 { 364 int i; 365 int nr_pages = 1 << order; 366 int bad = 0; 367 368 if (unlikely(compound_order(page) != order) || 369 unlikely(!PageHead(page))) { 370 bad_page(page); 371 bad++; 372 } 373 374 __ClearPageHead(page); 375 376 for (i = 1; i < nr_pages; i++) { 377 struct page *p = page + i; 378 379 if (unlikely(!PageTail(p) || (p->first_page != page))) { 380 bad_page(page); 381 bad++; 382 } 383 __ClearPageTail(p); 384 } 385 386 return bad; 387 } 388 389 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 390 { 391 int i; 392 393 /* 394 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 395 * and __GFP_HIGHMEM from hard or soft interrupt context. 396 */ 397 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 398 for (i = 0; i < (1 << order); i++) 399 clear_highpage(page + i); 400 } 401 402 static inline void set_page_order(struct page *page, int order) 403 { 404 set_page_private(page, order); 405 __SetPageBuddy(page); 406 } 407 408 static inline void rmv_page_order(struct page *page) 409 { 410 __ClearPageBuddy(page); 411 set_page_private(page, 0); 412 } 413 414 /* 415 * Locate the struct page for both the matching buddy in our 416 * pair (buddy1) and the combined O(n+1) page they form (page). 417 * 418 * 1) Any buddy B1 will have an order O twin B2 which satisfies 419 * the following equation: 420 * B2 = B1 ^ (1 << O) 421 * For example, if the starting buddy (buddy2) is #8 its order 422 * 1 buddy is #10: 423 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 424 * 425 * 2) Any buddy B will have an order O+1 parent P which 426 * satisfies the following equation: 427 * P = B & ~(1 << O) 428 * 429 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 430 */ 431 static inline unsigned long 432 __find_buddy_index(unsigned long page_idx, unsigned int order) 433 { 434 return page_idx ^ (1 << order); 435 } 436 437 /* 438 * This function checks whether a page is free && is the buddy 439 * we can do coalesce a page and its buddy if 440 * (a) the buddy is not in a hole && 441 * (b) the buddy is in the buddy system && 442 * (c) a page and its buddy have the same order && 443 * (d) a page and its buddy are in the same zone. 444 * 445 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 446 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 447 * 448 * For recording page's order, we use page_private(page). 449 */ 450 static inline int page_is_buddy(struct page *page, struct page *buddy, 451 int order) 452 { 453 if (!pfn_valid_within(page_to_pfn(buddy))) 454 return 0; 455 456 if (page_zone_id(page) != page_zone_id(buddy)) 457 return 0; 458 459 if (PageBuddy(buddy) && page_order(buddy) == order) { 460 VM_BUG_ON(page_count(buddy) != 0); 461 return 1; 462 } 463 return 0; 464 } 465 466 /* 467 * Freeing function for a buddy system allocator. 468 * 469 * The concept of a buddy system is to maintain direct-mapped table 470 * (containing bit values) for memory blocks of various "orders". 471 * The bottom level table contains the map for the smallest allocatable 472 * units of memory (here, pages), and each level above it describes 473 * pairs of units from the levels below, hence, "buddies". 474 * At a high level, all that happens here is marking the table entry 475 * at the bottom level available, and propagating the changes upward 476 * as necessary, plus some accounting needed to play nicely with other 477 * parts of the VM system. 478 * At each level, we keep a list of pages, which are heads of continuous 479 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 480 * order is recorded in page_private(page) field. 481 * So when we are allocating or freeing one, we can derive the state of the 482 * other. That is, if we allocate a small block, and both were 483 * free, the remainder of the region must be split into blocks. 484 * If a block is freed, and its buddy is also free, then this 485 * triggers coalescing into a block of larger size. 486 * 487 * -- wli 488 */ 489 490 static inline void __free_one_page(struct page *page, 491 struct zone *zone, unsigned int order, 492 int migratetype) 493 { 494 unsigned long page_idx; 495 unsigned long combined_idx; 496 unsigned long uninitialized_var(buddy_idx); 497 struct page *buddy; 498 499 if (unlikely(PageCompound(page))) 500 if (unlikely(destroy_compound_page(page, order))) 501 return; 502 503 VM_BUG_ON(migratetype == -1); 504 505 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 506 507 VM_BUG_ON(page_idx & ((1 << order) - 1)); 508 VM_BUG_ON(bad_range(zone, page)); 509 510 while (order < MAX_ORDER-1) { 511 buddy_idx = __find_buddy_index(page_idx, order); 512 buddy = page + (buddy_idx - page_idx); 513 if (!page_is_buddy(page, buddy, order)) 514 break; 515 516 /* Our buddy is free, merge with it and move up one order. */ 517 list_del(&buddy->lru); 518 zone->free_area[order].nr_free--; 519 rmv_page_order(buddy); 520 combined_idx = buddy_idx & page_idx; 521 page = page + (combined_idx - page_idx); 522 page_idx = combined_idx; 523 order++; 524 } 525 set_page_order(page, order); 526 527 /* 528 * If this is not the largest possible page, check if the buddy 529 * of the next-highest order is free. If it is, it's possible 530 * that pages are being freed that will coalesce soon. In case, 531 * that is happening, add the free page to the tail of the list 532 * so it's less likely to be used soon and more likely to be merged 533 * as a higher order page 534 */ 535 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 536 struct page *higher_page, *higher_buddy; 537 combined_idx = buddy_idx & page_idx; 538 higher_page = page + (combined_idx - page_idx); 539 buddy_idx = __find_buddy_index(combined_idx, order + 1); 540 higher_buddy = page + (buddy_idx - combined_idx); 541 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 542 list_add_tail(&page->lru, 543 &zone->free_area[order].free_list[migratetype]); 544 goto out; 545 } 546 } 547 548 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 549 out: 550 zone->free_area[order].nr_free++; 551 } 552 553 /* 554 * free_page_mlock() -- clean up attempts to free and mlocked() page. 555 * Page should not be on lru, so no need to fix that up. 556 * free_pages_check() will verify... 557 */ 558 static inline void free_page_mlock(struct page *page) 559 { 560 __dec_zone_page_state(page, NR_MLOCK); 561 __count_vm_event(UNEVICTABLE_MLOCKFREED); 562 } 563 564 static inline int free_pages_check(struct page *page) 565 { 566 if (unlikely(page_mapcount(page) | 567 (page->mapping != NULL) | 568 (atomic_read(&page->_count) != 0) | 569 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 570 (mem_cgroup_bad_page_check(page)))) { 571 bad_page(page); 572 return 1; 573 } 574 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 575 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 576 return 0; 577 } 578 579 /* 580 * Frees a number of pages from the PCP lists 581 * Assumes all pages on list are in same zone, and of same order. 582 * count is the number of pages to free. 583 * 584 * If the zone was previously in an "all pages pinned" state then look to 585 * see if this freeing clears that state. 586 * 587 * And clear the zone's pages_scanned counter, to hold off the "all pages are 588 * pinned" detection logic. 589 */ 590 static void free_pcppages_bulk(struct zone *zone, int count, 591 struct per_cpu_pages *pcp) 592 { 593 int migratetype = 0; 594 int batch_free = 0; 595 int to_free = count; 596 597 spin_lock(&zone->lock); 598 zone->all_unreclaimable = 0; 599 zone->pages_scanned = 0; 600 601 while (to_free) { 602 struct page *page; 603 struct list_head *list; 604 605 /* 606 * Remove pages from lists in a round-robin fashion. A 607 * batch_free count is maintained that is incremented when an 608 * empty list is encountered. This is so more pages are freed 609 * off fuller lists instead of spinning excessively around empty 610 * lists 611 */ 612 do { 613 batch_free++; 614 if (++migratetype == MIGRATE_PCPTYPES) 615 migratetype = 0; 616 list = &pcp->lists[migratetype]; 617 } while (list_empty(list)); 618 619 /* This is the only non-empty list. Free them all. */ 620 if (batch_free == MIGRATE_PCPTYPES) 621 batch_free = to_free; 622 623 do { 624 page = list_entry(list->prev, struct page, lru); 625 /* must delete as __free_one_page list manipulates */ 626 list_del(&page->lru); 627 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 628 __free_one_page(page, zone, 0, page_private(page)); 629 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 630 } while (--to_free && --batch_free && !list_empty(list)); 631 } 632 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 633 spin_unlock(&zone->lock); 634 } 635 636 static void free_one_page(struct zone *zone, struct page *page, int order, 637 int migratetype) 638 { 639 spin_lock(&zone->lock); 640 zone->all_unreclaimable = 0; 641 zone->pages_scanned = 0; 642 643 __free_one_page(page, zone, order, migratetype); 644 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 645 spin_unlock(&zone->lock); 646 } 647 648 static bool free_pages_prepare(struct page *page, unsigned int order) 649 { 650 int i; 651 int bad = 0; 652 653 trace_mm_page_free_direct(page, order); 654 kmemcheck_free_shadow(page, order); 655 656 if (PageAnon(page)) 657 page->mapping = NULL; 658 for (i = 0; i < (1 << order); i++) 659 bad += free_pages_check(page + i); 660 if (bad) 661 return false; 662 663 if (!PageHighMem(page)) { 664 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 665 debug_check_no_obj_freed(page_address(page), 666 PAGE_SIZE << order); 667 } 668 arch_free_page(page, order); 669 kernel_map_pages(page, 1 << order, 0); 670 671 return true; 672 } 673 674 static void __free_pages_ok(struct page *page, unsigned int order) 675 { 676 unsigned long flags; 677 int wasMlocked = __TestClearPageMlocked(page); 678 679 if (!free_pages_prepare(page, order)) 680 return; 681 682 local_irq_save(flags); 683 if (unlikely(wasMlocked)) 684 free_page_mlock(page); 685 __count_vm_events(PGFREE, 1 << order); 686 free_one_page(page_zone(page), page, order, 687 get_pageblock_migratetype(page)); 688 local_irq_restore(flags); 689 } 690 691 /* 692 * permit the bootmem allocator to evade page validation on high-order frees 693 */ 694 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 695 { 696 if (order == 0) { 697 __ClearPageReserved(page); 698 set_page_count(page, 0); 699 set_page_refcounted(page); 700 __free_page(page); 701 } else { 702 int loop; 703 704 prefetchw(page); 705 for (loop = 0; loop < BITS_PER_LONG; loop++) { 706 struct page *p = &page[loop]; 707 708 if (loop + 1 < BITS_PER_LONG) 709 prefetchw(p + 1); 710 __ClearPageReserved(p); 711 set_page_count(p, 0); 712 } 713 714 set_page_refcounted(page); 715 __free_pages(page, order); 716 } 717 } 718 719 720 /* 721 * The order of subdivision here is critical for the IO subsystem. 722 * Please do not alter this order without good reasons and regression 723 * testing. Specifically, as large blocks of memory are subdivided, 724 * the order in which smaller blocks are delivered depends on the order 725 * they're subdivided in this function. This is the primary factor 726 * influencing the order in which pages are delivered to the IO 727 * subsystem according to empirical testing, and this is also justified 728 * by considering the behavior of a buddy system containing a single 729 * large block of memory acted on by a series of small allocations. 730 * This behavior is a critical factor in sglist merging's success. 731 * 732 * -- wli 733 */ 734 static inline void expand(struct zone *zone, struct page *page, 735 int low, int high, struct free_area *area, 736 int migratetype) 737 { 738 unsigned long size = 1 << high; 739 740 while (high > low) { 741 area--; 742 high--; 743 size >>= 1; 744 VM_BUG_ON(bad_range(zone, &page[size])); 745 list_add(&page[size].lru, &area->free_list[migratetype]); 746 area->nr_free++; 747 set_page_order(&page[size], high); 748 } 749 } 750 751 /* 752 * This page is about to be returned from the page allocator 753 */ 754 static inline int check_new_page(struct page *page) 755 { 756 if (unlikely(page_mapcount(page) | 757 (page->mapping != NULL) | 758 (atomic_read(&page->_count) != 0) | 759 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 760 (mem_cgroup_bad_page_check(page)))) { 761 bad_page(page); 762 return 1; 763 } 764 return 0; 765 } 766 767 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 768 { 769 int i; 770 771 for (i = 0; i < (1 << order); i++) { 772 struct page *p = page + i; 773 if (unlikely(check_new_page(p))) 774 return 1; 775 } 776 777 set_page_private(page, 0); 778 set_page_refcounted(page); 779 780 arch_alloc_page(page, order); 781 kernel_map_pages(page, 1 << order, 1); 782 783 if (gfp_flags & __GFP_ZERO) 784 prep_zero_page(page, order, gfp_flags); 785 786 if (order && (gfp_flags & __GFP_COMP)) 787 prep_compound_page(page, order); 788 789 return 0; 790 } 791 792 /* 793 * Go through the free lists for the given migratetype and remove 794 * the smallest available page from the freelists 795 */ 796 static inline 797 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 798 int migratetype) 799 { 800 unsigned int current_order; 801 struct free_area * area; 802 struct page *page; 803 804 /* Find a page of the appropriate size in the preferred list */ 805 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 806 area = &(zone->free_area[current_order]); 807 if (list_empty(&area->free_list[migratetype])) 808 continue; 809 810 page = list_entry(area->free_list[migratetype].next, 811 struct page, lru); 812 list_del(&page->lru); 813 rmv_page_order(page); 814 area->nr_free--; 815 expand(zone, page, order, current_order, area, migratetype); 816 return page; 817 } 818 819 return NULL; 820 } 821 822 823 /* 824 * This array describes the order lists are fallen back to when 825 * the free lists for the desirable migrate type are depleted 826 */ 827 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 828 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 829 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 830 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 831 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 832 }; 833 834 /* 835 * Move the free pages in a range to the free lists of the requested type. 836 * Note that start_page and end_pages are not aligned on a pageblock 837 * boundary. If alignment is required, use move_freepages_block() 838 */ 839 static int move_freepages(struct zone *zone, 840 struct page *start_page, struct page *end_page, 841 int migratetype) 842 { 843 struct page *page; 844 unsigned long order; 845 int pages_moved = 0; 846 847 #ifndef CONFIG_HOLES_IN_ZONE 848 /* 849 * page_zone is not safe to call in this context when 850 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 851 * anyway as we check zone boundaries in move_freepages_block(). 852 * Remove at a later date when no bug reports exist related to 853 * grouping pages by mobility 854 */ 855 BUG_ON(page_zone(start_page) != page_zone(end_page)); 856 #endif 857 858 for (page = start_page; page <= end_page;) { 859 /* Make sure we are not inadvertently changing nodes */ 860 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 861 862 if (!pfn_valid_within(page_to_pfn(page))) { 863 page++; 864 continue; 865 } 866 867 if (!PageBuddy(page)) { 868 page++; 869 continue; 870 } 871 872 order = page_order(page); 873 list_move(&page->lru, 874 &zone->free_area[order].free_list[migratetype]); 875 page += 1 << order; 876 pages_moved += 1 << order; 877 } 878 879 return pages_moved; 880 } 881 882 static int move_freepages_block(struct zone *zone, struct page *page, 883 int migratetype) 884 { 885 unsigned long start_pfn, end_pfn; 886 struct page *start_page, *end_page; 887 888 start_pfn = page_to_pfn(page); 889 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 890 start_page = pfn_to_page(start_pfn); 891 end_page = start_page + pageblock_nr_pages - 1; 892 end_pfn = start_pfn + pageblock_nr_pages - 1; 893 894 /* Do not cross zone boundaries */ 895 if (start_pfn < zone->zone_start_pfn) 896 start_page = page; 897 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 898 return 0; 899 900 return move_freepages(zone, start_page, end_page, migratetype); 901 } 902 903 static void change_pageblock_range(struct page *pageblock_page, 904 int start_order, int migratetype) 905 { 906 int nr_pageblocks = 1 << (start_order - pageblock_order); 907 908 while (nr_pageblocks--) { 909 set_pageblock_migratetype(pageblock_page, migratetype); 910 pageblock_page += pageblock_nr_pages; 911 } 912 } 913 914 /* Remove an element from the buddy allocator from the fallback list */ 915 static inline struct page * 916 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 917 { 918 struct free_area * area; 919 int current_order; 920 struct page *page; 921 int migratetype, i; 922 923 /* Find the largest possible block of pages in the other list */ 924 for (current_order = MAX_ORDER-1; current_order >= order; 925 --current_order) { 926 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 927 migratetype = fallbacks[start_migratetype][i]; 928 929 /* MIGRATE_RESERVE handled later if necessary */ 930 if (migratetype == MIGRATE_RESERVE) 931 continue; 932 933 area = &(zone->free_area[current_order]); 934 if (list_empty(&area->free_list[migratetype])) 935 continue; 936 937 page = list_entry(area->free_list[migratetype].next, 938 struct page, lru); 939 area->nr_free--; 940 941 /* 942 * If breaking a large block of pages, move all free 943 * pages to the preferred allocation list. If falling 944 * back for a reclaimable kernel allocation, be more 945 * aggressive about taking ownership of free pages 946 */ 947 if (unlikely(current_order >= (pageblock_order >> 1)) || 948 start_migratetype == MIGRATE_RECLAIMABLE || 949 page_group_by_mobility_disabled) { 950 unsigned long pages; 951 pages = move_freepages_block(zone, page, 952 start_migratetype); 953 954 /* Claim the whole block if over half of it is free */ 955 if (pages >= (1 << (pageblock_order-1)) || 956 page_group_by_mobility_disabled) 957 set_pageblock_migratetype(page, 958 start_migratetype); 959 960 migratetype = start_migratetype; 961 } 962 963 /* Remove the page from the freelists */ 964 list_del(&page->lru); 965 rmv_page_order(page); 966 967 /* Take ownership for orders >= pageblock_order */ 968 if (current_order >= pageblock_order) 969 change_pageblock_range(page, current_order, 970 start_migratetype); 971 972 expand(zone, page, order, current_order, area, migratetype); 973 974 trace_mm_page_alloc_extfrag(page, order, current_order, 975 start_migratetype, migratetype); 976 977 return page; 978 } 979 } 980 981 return NULL; 982 } 983 984 /* 985 * Do the hard work of removing an element from the buddy allocator. 986 * Call me with the zone->lock already held. 987 */ 988 static struct page *__rmqueue(struct zone *zone, unsigned int order, 989 int migratetype) 990 { 991 struct page *page; 992 993 retry_reserve: 994 page = __rmqueue_smallest(zone, order, migratetype); 995 996 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 997 page = __rmqueue_fallback(zone, order, migratetype); 998 999 /* 1000 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1001 * is used because __rmqueue_smallest is an inline function 1002 * and we want just one call site 1003 */ 1004 if (!page) { 1005 migratetype = MIGRATE_RESERVE; 1006 goto retry_reserve; 1007 } 1008 } 1009 1010 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1011 return page; 1012 } 1013 1014 /* 1015 * Obtain a specified number of elements from the buddy allocator, all under 1016 * a single hold of the lock, for efficiency. Add them to the supplied list. 1017 * Returns the number of new pages which were placed at *list. 1018 */ 1019 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1020 unsigned long count, struct list_head *list, 1021 int migratetype, int cold) 1022 { 1023 int i; 1024 1025 spin_lock(&zone->lock); 1026 for (i = 0; i < count; ++i) { 1027 struct page *page = __rmqueue(zone, order, migratetype); 1028 if (unlikely(page == NULL)) 1029 break; 1030 1031 /* 1032 * Split buddy pages returned by expand() are received here 1033 * in physical page order. The page is added to the callers and 1034 * list and the list head then moves forward. From the callers 1035 * perspective, the linked list is ordered by page number in 1036 * some conditions. This is useful for IO devices that can 1037 * merge IO requests if the physical pages are ordered 1038 * properly. 1039 */ 1040 if (likely(cold == 0)) 1041 list_add(&page->lru, list); 1042 else 1043 list_add_tail(&page->lru, list); 1044 set_page_private(page, migratetype); 1045 list = &page->lru; 1046 } 1047 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1048 spin_unlock(&zone->lock); 1049 return i; 1050 } 1051 1052 #ifdef CONFIG_NUMA 1053 /* 1054 * Called from the vmstat counter updater to drain pagesets of this 1055 * currently executing processor on remote nodes after they have 1056 * expired. 1057 * 1058 * Note that this function must be called with the thread pinned to 1059 * a single processor. 1060 */ 1061 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1062 { 1063 unsigned long flags; 1064 int to_drain; 1065 1066 local_irq_save(flags); 1067 if (pcp->count >= pcp->batch) 1068 to_drain = pcp->batch; 1069 else 1070 to_drain = pcp->count; 1071 free_pcppages_bulk(zone, to_drain, pcp); 1072 pcp->count -= to_drain; 1073 local_irq_restore(flags); 1074 } 1075 #endif 1076 1077 /* 1078 * Drain pages of the indicated processor. 1079 * 1080 * The processor must either be the current processor and the 1081 * thread pinned to the current processor or a processor that 1082 * is not online. 1083 */ 1084 static void drain_pages(unsigned int cpu) 1085 { 1086 unsigned long flags; 1087 struct zone *zone; 1088 1089 for_each_populated_zone(zone) { 1090 struct per_cpu_pageset *pset; 1091 struct per_cpu_pages *pcp; 1092 1093 local_irq_save(flags); 1094 pset = per_cpu_ptr(zone->pageset, cpu); 1095 1096 pcp = &pset->pcp; 1097 if (pcp->count) { 1098 free_pcppages_bulk(zone, pcp->count, pcp); 1099 pcp->count = 0; 1100 } 1101 local_irq_restore(flags); 1102 } 1103 } 1104 1105 /* 1106 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1107 */ 1108 void drain_local_pages(void *arg) 1109 { 1110 drain_pages(smp_processor_id()); 1111 } 1112 1113 /* 1114 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1115 */ 1116 void drain_all_pages(void) 1117 { 1118 on_each_cpu(drain_local_pages, NULL, 1); 1119 } 1120 1121 #ifdef CONFIG_HIBERNATION 1122 1123 void mark_free_pages(struct zone *zone) 1124 { 1125 unsigned long pfn, max_zone_pfn; 1126 unsigned long flags; 1127 int order, t; 1128 struct list_head *curr; 1129 1130 if (!zone->spanned_pages) 1131 return; 1132 1133 spin_lock_irqsave(&zone->lock, flags); 1134 1135 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1136 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1137 if (pfn_valid(pfn)) { 1138 struct page *page = pfn_to_page(pfn); 1139 1140 if (!swsusp_page_is_forbidden(page)) 1141 swsusp_unset_page_free(page); 1142 } 1143 1144 for_each_migratetype_order(order, t) { 1145 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1146 unsigned long i; 1147 1148 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1149 for (i = 0; i < (1UL << order); i++) 1150 swsusp_set_page_free(pfn_to_page(pfn + i)); 1151 } 1152 } 1153 spin_unlock_irqrestore(&zone->lock, flags); 1154 } 1155 #endif /* CONFIG_PM */ 1156 1157 /* 1158 * Free a 0-order page 1159 * cold == 1 ? free a cold page : free a hot page 1160 */ 1161 void free_hot_cold_page(struct page *page, int cold) 1162 { 1163 struct zone *zone = page_zone(page); 1164 struct per_cpu_pages *pcp; 1165 unsigned long flags; 1166 int migratetype; 1167 int wasMlocked = __TestClearPageMlocked(page); 1168 1169 if (!free_pages_prepare(page, 0)) 1170 return; 1171 1172 migratetype = get_pageblock_migratetype(page); 1173 set_page_private(page, migratetype); 1174 local_irq_save(flags); 1175 if (unlikely(wasMlocked)) 1176 free_page_mlock(page); 1177 __count_vm_event(PGFREE); 1178 1179 /* 1180 * We only track unmovable, reclaimable and movable on pcp lists. 1181 * Free ISOLATE pages back to the allocator because they are being 1182 * offlined but treat RESERVE as movable pages so we can get those 1183 * areas back if necessary. Otherwise, we may have to free 1184 * excessively into the page allocator 1185 */ 1186 if (migratetype >= MIGRATE_PCPTYPES) { 1187 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1188 free_one_page(zone, page, 0, migratetype); 1189 goto out; 1190 } 1191 migratetype = MIGRATE_MOVABLE; 1192 } 1193 1194 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1195 if (cold) 1196 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1197 else 1198 list_add(&page->lru, &pcp->lists[migratetype]); 1199 pcp->count++; 1200 if (pcp->count >= pcp->high) { 1201 free_pcppages_bulk(zone, pcp->batch, pcp); 1202 pcp->count -= pcp->batch; 1203 } 1204 1205 out: 1206 local_irq_restore(flags); 1207 } 1208 1209 /* 1210 * split_page takes a non-compound higher-order page, and splits it into 1211 * n (1<<order) sub-pages: page[0..n] 1212 * Each sub-page must be freed individually. 1213 * 1214 * Note: this is probably too low level an operation for use in drivers. 1215 * Please consult with lkml before using this in your driver. 1216 */ 1217 void split_page(struct page *page, unsigned int order) 1218 { 1219 int i; 1220 1221 VM_BUG_ON(PageCompound(page)); 1222 VM_BUG_ON(!page_count(page)); 1223 1224 #ifdef CONFIG_KMEMCHECK 1225 /* 1226 * Split shadow pages too, because free(page[0]) would 1227 * otherwise free the whole shadow. 1228 */ 1229 if (kmemcheck_page_is_tracked(page)) 1230 split_page(virt_to_page(page[0].shadow), order); 1231 #endif 1232 1233 for (i = 1; i < (1 << order); i++) 1234 set_page_refcounted(page + i); 1235 } 1236 1237 /* 1238 * Similar to split_page except the page is already free. As this is only 1239 * being used for migration, the migratetype of the block also changes. 1240 * As this is called with interrupts disabled, the caller is responsible 1241 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1242 * are enabled. 1243 * 1244 * Note: this is probably too low level an operation for use in drivers. 1245 * Please consult with lkml before using this in your driver. 1246 */ 1247 int split_free_page(struct page *page) 1248 { 1249 unsigned int order; 1250 unsigned long watermark; 1251 struct zone *zone; 1252 1253 BUG_ON(!PageBuddy(page)); 1254 1255 zone = page_zone(page); 1256 order = page_order(page); 1257 1258 /* Obey watermarks as if the page was being allocated */ 1259 watermark = low_wmark_pages(zone) + (1 << order); 1260 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1261 return 0; 1262 1263 /* Remove page from free list */ 1264 list_del(&page->lru); 1265 zone->free_area[order].nr_free--; 1266 rmv_page_order(page); 1267 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1268 1269 /* Split into individual pages */ 1270 set_page_refcounted(page); 1271 split_page(page, order); 1272 1273 if (order >= pageblock_order - 1) { 1274 struct page *endpage = page + (1 << order) - 1; 1275 for (; page < endpage; page += pageblock_nr_pages) 1276 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1277 } 1278 1279 return 1 << order; 1280 } 1281 1282 /* 1283 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1284 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1285 * or two. 1286 */ 1287 static inline 1288 struct page *buffered_rmqueue(struct zone *preferred_zone, 1289 struct zone *zone, int order, gfp_t gfp_flags, 1290 int migratetype) 1291 { 1292 unsigned long flags; 1293 struct page *page; 1294 int cold = !!(gfp_flags & __GFP_COLD); 1295 1296 again: 1297 if (likely(order == 0)) { 1298 struct per_cpu_pages *pcp; 1299 struct list_head *list; 1300 1301 local_irq_save(flags); 1302 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1303 list = &pcp->lists[migratetype]; 1304 if (list_empty(list)) { 1305 pcp->count += rmqueue_bulk(zone, 0, 1306 pcp->batch, list, 1307 migratetype, cold); 1308 if (unlikely(list_empty(list))) 1309 goto failed; 1310 } 1311 1312 if (cold) 1313 page = list_entry(list->prev, struct page, lru); 1314 else 1315 page = list_entry(list->next, struct page, lru); 1316 1317 list_del(&page->lru); 1318 pcp->count--; 1319 } else { 1320 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1321 /* 1322 * __GFP_NOFAIL is not to be used in new code. 1323 * 1324 * All __GFP_NOFAIL callers should be fixed so that they 1325 * properly detect and handle allocation failures. 1326 * 1327 * We most definitely don't want callers attempting to 1328 * allocate greater than order-1 page units with 1329 * __GFP_NOFAIL. 1330 */ 1331 WARN_ON_ONCE(order > 1); 1332 } 1333 spin_lock_irqsave(&zone->lock, flags); 1334 page = __rmqueue(zone, order, migratetype); 1335 spin_unlock(&zone->lock); 1336 if (!page) 1337 goto failed; 1338 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1339 } 1340 1341 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1342 zone_statistics(preferred_zone, zone, gfp_flags); 1343 local_irq_restore(flags); 1344 1345 VM_BUG_ON(bad_range(zone, page)); 1346 if (prep_new_page(page, order, gfp_flags)) 1347 goto again; 1348 return page; 1349 1350 failed: 1351 local_irq_restore(flags); 1352 return NULL; 1353 } 1354 1355 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1356 #define ALLOC_WMARK_MIN WMARK_MIN 1357 #define ALLOC_WMARK_LOW WMARK_LOW 1358 #define ALLOC_WMARK_HIGH WMARK_HIGH 1359 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1360 1361 /* Mask to get the watermark bits */ 1362 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1363 1364 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1365 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1366 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1367 1368 #ifdef CONFIG_FAIL_PAGE_ALLOC 1369 1370 static struct fail_page_alloc_attr { 1371 struct fault_attr attr; 1372 1373 u32 ignore_gfp_highmem; 1374 u32 ignore_gfp_wait; 1375 u32 min_order; 1376 1377 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1378 1379 struct dentry *ignore_gfp_highmem_file; 1380 struct dentry *ignore_gfp_wait_file; 1381 struct dentry *min_order_file; 1382 1383 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1384 1385 } fail_page_alloc = { 1386 .attr = FAULT_ATTR_INITIALIZER, 1387 .ignore_gfp_wait = 1, 1388 .ignore_gfp_highmem = 1, 1389 .min_order = 1, 1390 }; 1391 1392 static int __init setup_fail_page_alloc(char *str) 1393 { 1394 return setup_fault_attr(&fail_page_alloc.attr, str); 1395 } 1396 __setup("fail_page_alloc=", setup_fail_page_alloc); 1397 1398 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1399 { 1400 if (order < fail_page_alloc.min_order) 1401 return 0; 1402 if (gfp_mask & __GFP_NOFAIL) 1403 return 0; 1404 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1405 return 0; 1406 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1407 return 0; 1408 1409 return should_fail(&fail_page_alloc.attr, 1 << order); 1410 } 1411 1412 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1413 1414 static int __init fail_page_alloc_debugfs(void) 1415 { 1416 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1417 struct dentry *dir; 1418 int err; 1419 1420 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1421 "fail_page_alloc"); 1422 if (err) 1423 return err; 1424 dir = fail_page_alloc.attr.dentries.dir; 1425 1426 fail_page_alloc.ignore_gfp_wait_file = 1427 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1428 &fail_page_alloc.ignore_gfp_wait); 1429 1430 fail_page_alloc.ignore_gfp_highmem_file = 1431 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1432 &fail_page_alloc.ignore_gfp_highmem); 1433 fail_page_alloc.min_order_file = 1434 debugfs_create_u32("min-order", mode, dir, 1435 &fail_page_alloc.min_order); 1436 1437 if (!fail_page_alloc.ignore_gfp_wait_file || 1438 !fail_page_alloc.ignore_gfp_highmem_file || 1439 !fail_page_alloc.min_order_file) { 1440 err = -ENOMEM; 1441 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1442 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1443 debugfs_remove(fail_page_alloc.min_order_file); 1444 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1445 } 1446 1447 return err; 1448 } 1449 1450 late_initcall(fail_page_alloc_debugfs); 1451 1452 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1453 1454 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1455 1456 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1457 { 1458 return 0; 1459 } 1460 1461 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1462 1463 /* 1464 * Return true if free pages are above 'mark'. This takes into account the order 1465 * of the allocation. 1466 */ 1467 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1468 int classzone_idx, int alloc_flags, long free_pages) 1469 { 1470 /* free_pages my go negative - that's OK */ 1471 long min = mark; 1472 int o; 1473 1474 free_pages -= (1 << order) + 1; 1475 if (alloc_flags & ALLOC_HIGH) 1476 min -= min / 2; 1477 if (alloc_flags & ALLOC_HARDER) 1478 min -= min / 4; 1479 1480 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1481 return false; 1482 for (o = 0; o < order; o++) { 1483 /* At the next order, this order's pages become unavailable */ 1484 free_pages -= z->free_area[o].nr_free << o; 1485 1486 /* Require fewer higher order pages to be free */ 1487 min >>= 1; 1488 1489 if (free_pages <= min) 1490 return false; 1491 } 1492 return true; 1493 } 1494 1495 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1496 int classzone_idx, int alloc_flags) 1497 { 1498 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1499 zone_page_state(z, NR_FREE_PAGES)); 1500 } 1501 1502 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1503 int classzone_idx, int alloc_flags) 1504 { 1505 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1506 1507 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1508 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1509 1510 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1511 free_pages); 1512 } 1513 1514 #ifdef CONFIG_NUMA 1515 /* 1516 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1517 * skip over zones that are not allowed by the cpuset, or that have 1518 * been recently (in last second) found to be nearly full. See further 1519 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1520 * that have to skip over a lot of full or unallowed zones. 1521 * 1522 * If the zonelist cache is present in the passed in zonelist, then 1523 * returns a pointer to the allowed node mask (either the current 1524 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1525 * 1526 * If the zonelist cache is not available for this zonelist, does 1527 * nothing and returns NULL. 1528 * 1529 * If the fullzones BITMAP in the zonelist cache is stale (more than 1530 * a second since last zap'd) then we zap it out (clear its bits.) 1531 * 1532 * We hold off even calling zlc_setup, until after we've checked the 1533 * first zone in the zonelist, on the theory that most allocations will 1534 * be satisfied from that first zone, so best to examine that zone as 1535 * quickly as we can. 1536 */ 1537 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1538 { 1539 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1540 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1541 1542 zlc = zonelist->zlcache_ptr; 1543 if (!zlc) 1544 return NULL; 1545 1546 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1547 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1548 zlc->last_full_zap = jiffies; 1549 } 1550 1551 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1552 &cpuset_current_mems_allowed : 1553 &node_states[N_HIGH_MEMORY]; 1554 return allowednodes; 1555 } 1556 1557 /* 1558 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1559 * if it is worth looking at further for free memory: 1560 * 1) Check that the zone isn't thought to be full (doesn't have its 1561 * bit set in the zonelist_cache fullzones BITMAP). 1562 * 2) Check that the zones node (obtained from the zonelist_cache 1563 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1564 * Return true (non-zero) if zone is worth looking at further, or 1565 * else return false (zero) if it is not. 1566 * 1567 * This check -ignores- the distinction between various watermarks, 1568 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1569 * found to be full for any variation of these watermarks, it will 1570 * be considered full for up to one second by all requests, unless 1571 * we are so low on memory on all allowed nodes that we are forced 1572 * into the second scan of the zonelist. 1573 * 1574 * In the second scan we ignore this zonelist cache and exactly 1575 * apply the watermarks to all zones, even it is slower to do so. 1576 * We are low on memory in the second scan, and should leave no stone 1577 * unturned looking for a free page. 1578 */ 1579 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1580 nodemask_t *allowednodes) 1581 { 1582 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1583 int i; /* index of *z in zonelist zones */ 1584 int n; /* node that zone *z is on */ 1585 1586 zlc = zonelist->zlcache_ptr; 1587 if (!zlc) 1588 return 1; 1589 1590 i = z - zonelist->_zonerefs; 1591 n = zlc->z_to_n[i]; 1592 1593 /* This zone is worth trying if it is allowed but not full */ 1594 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1595 } 1596 1597 /* 1598 * Given 'z' scanning a zonelist, set the corresponding bit in 1599 * zlc->fullzones, so that subsequent attempts to allocate a page 1600 * from that zone don't waste time re-examining it. 1601 */ 1602 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1603 { 1604 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1605 int i; /* index of *z in zonelist zones */ 1606 1607 zlc = zonelist->zlcache_ptr; 1608 if (!zlc) 1609 return; 1610 1611 i = z - zonelist->_zonerefs; 1612 1613 set_bit(i, zlc->fullzones); 1614 } 1615 1616 #else /* CONFIG_NUMA */ 1617 1618 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1619 { 1620 return NULL; 1621 } 1622 1623 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1624 nodemask_t *allowednodes) 1625 { 1626 return 1; 1627 } 1628 1629 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1630 { 1631 } 1632 #endif /* CONFIG_NUMA */ 1633 1634 /* 1635 * get_page_from_freelist goes through the zonelist trying to allocate 1636 * a page. 1637 */ 1638 static struct page * 1639 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1640 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1641 struct zone *preferred_zone, int migratetype) 1642 { 1643 struct zoneref *z; 1644 struct page *page = NULL; 1645 int classzone_idx; 1646 struct zone *zone; 1647 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1648 int zlc_active = 0; /* set if using zonelist_cache */ 1649 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1650 1651 classzone_idx = zone_idx(preferred_zone); 1652 zonelist_scan: 1653 /* 1654 * Scan zonelist, looking for a zone with enough free. 1655 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1656 */ 1657 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1658 high_zoneidx, nodemask) { 1659 if (NUMA_BUILD && zlc_active && 1660 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1661 continue; 1662 if ((alloc_flags & ALLOC_CPUSET) && 1663 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1664 goto try_next_zone; 1665 1666 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1667 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1668 unsigned long mark; 1669 int ret; 1670 1671 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1672 if (zone_watermark_ok(zone, order, mark, 1673 classzone_idx, alloc_flags)) 1674 goto try_this_zone; 1675 1676 if (zone_reclaim_mode == 0) 1677 goto this_zone_full; 1678 1679 ret = zone_reclaim(zone, gfp_mask, order); 1680 switch (ret) { 1681 case ZONE_RECLAIM_NOSCAN: 1682 /* did not scan */ 1683 goto try_next_zone; 1684 case ZONE_RECLAIM_FULL: 1685 /* scanned but unreclaimable */ 1686 goto this_zone_full; 1687 default: 1688 /* did we reclaim enough */ 1689 if (!zone_watermark_ok(zone, order, mark, 1690 classzone_idx, alloc_flags)) 1691 goto this_zone_full; 1692 } 1693 } 1694 1695 try_this_zone: 1696 page = buffered_rmqueue(preferred_zone, zone, order, 1697 gfp_mask, migratetype); 1698 if (page) 1699 break; 1700 this_zone_full: 1701 if (NUMA_BUILD) 1702 zlc_mark_zone_full(zonelist, z); 1703 try_next_zone: 1704 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1705 /* 1706 * we do zlc_setup after the first zone is tried but only 1707 * if there are multiple nodes make it worthwhile 1708 */ 1709 allowednodes = zlc_setup(zonelist, alloc_flags); 1710 zlc_active = 1; 1711 did_zlc_setup = 1; 1712 } 1713 } 1714 1715 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1716 /* Disable zlc cache for second zonelist scan */ 1717 zlc_active = 0; 1718 goto zonelist_scan; 1719 } 1720 return page; 1721 } 1722 1723 /* 1724 * Large machines with many possible nodes should not always dump per-node 1725 * meminfo in irq context. 1726 */ 1727 static inline bool should_suppress_show_mem(void) 1728 { 1729 bool ret = false; 1730 1731 #if NODES_SHIFT > 8 1732 ret = in_interrupt(); 1733 #endif 1734 return ret; 1735 } 1736 1737 static inline int 1738 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1739 unsigned long pages_reclaimed) 1740 { 1741 /* Do not loop if specifically requested */ 1742 if (gfp_mask & __GFP_NORETRY) 1743 return 0; 1744 1745 /* 1746 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1747 * means __GFP_NOFAIL, but that may not be true in other 1748 * implementations. 1749 */ 1750 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1751 return 1; 1752 1753 /* 1754 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1755 * specified, then we retry until we no longer reclaim any pages 1756 * (above), or we've reclaimed an order of pages at least as 1757 * large as the allocation's order. In both cases, if the 1758 * allocation still fails, we stop retrying. 1759 */ 1760 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1761 return 1; 1762 1763 /* 1764 * Don't let big-order allocations loop unless the caller 1765 * explicitly requests that. 1766 */ 1767 if (gfp_mask & __GFP_NOFAIL) 1768 return 1; 1769 1770 return 0; 1771 } 1772 1773 static inline struct page * 1774 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1775 struct zonelist *zonelist, enum zone_type high_zoneidx, 1776 nodemask_t *nodemask, struct zone *preferred_zone, 1777 int migratetype) 1778 { 1779 struct page *page; 1780 1781 /* Acquire the OOM killer lock for the zones in zonelist */ 1782 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1783 schedule_timeout_uninterruptible(1); 1784 return NULL; 1785 } 1786 1787 /* 1788 * Go through the zonelist yet one more time, keep very high watermark 1789 * here, this is only to catch a parallel oom killing, we must fail if 1790 * we're still under heavy pressure. 1791 */ 1792 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1793 order, zonelist, high_zoneidx, 1794 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1795 preferred_zone, migratetype); 1796 if (page) 1797 goto out; 1798 1799 if (!(gfp_mask & __GFP_NOFAIL)) { 1800 /* The OOM killer will not help higher order allocs */ 1801 if (order > PAGE_ALLOC_COSTLY_ORDER) 1802 goto out; 1803 /* The OOM killer does not needlessly kill tasks for lowmem */ 1804 if (high_zoneidx < ZONE_NORMAL) 1805 goto out; 1806 /* 1807 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1808 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1809 * The caller should handle page allocation failure by itself if 1810 * it specifies __GFP_THISNODE. 1811 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1812 */ 1813 if (gfp_mask & __GFP_THISNODE) 1814 goto out; 1815 } 1816 /* Exhausted what can be done so it's blamo time */ 1817 out_of_memory(zonelist, gfp_mask, order, nodemask); 1818 1819 out: 1820 clear_zonelist_oom(zonelist, gfp_mask); 1821 return page; 1822 } 1823 1824 #ifdef CONFIG_COMPACTION 1825 /* Try memory compaction for high-order allocations before reclaim */ 1826 static struct page * 1827 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1828 struct zonelist *zonelist, enum zone_type high_zoneidx, 1829 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1830 int migratetype, unsigned long *did_some_progress, 1831 bool sync_migration) 1832 { 1833 struct page *page; 1834 1835 if (!order || compaction_deferred(preferred_zone)) 1836 return NULL; 1837 1838 current->flags |= PF_MEMALLOC; 1839 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1840 nodemask, sync_migration); 1841 current->flags &= ~PF_MEMALLOC; 1842 if (*did_some_progress != COMPACT_SKIPPED) { 1843 1844 /* Page migration frees to the PCP lists but we want merging */ 1845 drain_pages(get_cpu()); 1846 put_cpu(); 1847 1848 page = get_page_from_freelist(gfp_mask, nodemask, 1849 order, zonelist, high_zoneidx, 1850 alloc_flags, preferred_zone, 1851 migratetype); 1852 if (page) { 1853 preferred_zone->compact_considered = 0; 1854 preferred_zone->compact_defer_shift = 0; 1855 count_vm_event(COMPACTSUCCESS); 1856 return page; 1857 } 1858 1859 /* 1860 * It's bad if compaction run occurs and fails. 1861 * The most likely reason is that pages exist, 1862 * but not enough to satisfy watermarks. 1863 */ 1864 count_vm_event(COMPACTFAIL); 1865 defer_compaction(preferred_zone); 1866 1867 cond_resched(); 1868 } 1869 1870 return NULL; 1871 } 1872 #else 1873 static inline struct page * 1874 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1875 struct zonelist *zonelist, enum zone_type high_zoneidx, 1876 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1877 int migratetype, unsigned long *did_some_progress, 1878 bool sync_migration) 1879 { 1880 return NULL; 1881 } 1882 #endif /* CONFIG_COMPACTION */ 1883 1884 /* The really slow allocator path where we enter direct reclaim */ 1885 static inline struct page * 1886 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1887 struct zonelist *zonelist, enum zone_type high_zoneidx, 1888 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1889 int migratetype, unsigned long *did_some_progress) 1890 { 1891 struct page *page = NULL; 1892 struct reclaim_state reclaim_state; 1893 bool drained = false; 1894 1895 cond_resched(); 1896 1897 /* We now go into synchronous reclaim */ 1898 cpuset_memory_pressure_bump(); 1899 current->flags |= PF_MEMALLOC; 1900 lockdep_set_current_reclaim_state(gfp_mask); 1901 reclaim_state.reclaimed_slab = 0; 1902 current->reclaim_state = &reclaim_state; 1903 1904 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1905 1906 current->reclaim_state = NULL; 1907 lockdep_clear_current_reclaim_state(); 1908 current->flags &= ~PF_MEMALLOC; 1909 1910 cond_resched(); 1911 1912 if (unlikely(!(*did_some_progress))) 1913 return NULL; 1914 1915 retry: 1916 page = get_page_from_freelist(gfp_mask, nodemask, order, 1917 zonelist, high_zoneidx, 1918 alloc_flags, preferred_zone, 1919 migratetype); 1920 1921 /* 1922 * If an allocation failed after direct reclaim, it could be because 1923 * pages are pinned on the per-cpu lists. Drain them and try again 1924 */ 1925 if (!page && !drained) { 1926 drain_all_pages(); 1927 drained = true; 1928 goto retry; 1929 } 1930 1931 return page; 1932 } 1933 1934 /* 1935 * This is called in the allocator slow-path if the allocation request is of 1936 * sufficient urgency to ignore watermarks and take other desperate measures 1937 */ 1938 static inline struct page * 1939 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1940 struct zonelist *zonelist, enum zone_type high_zoneidx, 1941 nodemask_t *nodemask, struct zone *preferred_zone, 1942 int migratetype) 1943 { 1944 struct page *page; 1945 1946 do { 1947 page = get_page_from_freelist(gfp_mask, nodemask, order, 1948 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1949 preferred_zone, migratetype); 1950 1951 if (!page && gfp_mask & __GFP_NOFAIL) 1952 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 1953 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1954 1955 return page; 1956 } 1957 1958 static inline 1959 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1960 enum zone_type high_zoneidx, 1961 enum zone_type classzone_idx) 1962 { 1963 struct zoneref *z; 1964 struct zone *zone; 1965 1966 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1967 wakeup_kswapd(zone, order, classzone_idx); 1968 } 1969 1970 static inline int 1971 gfp_to_alloc_flags(gfp_t gfp_mask) 1972 { 1973 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1974 const gfp_t wait = gfp_mask & __GFP_WAIT; 1975 1976 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1977 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 1978 1979 /* 1980 * The caller may dip into page reserves a bit more if the caller 1981 * cannot run direct reclaim, or if the caller has realtime scheduling 1982 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1983 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1984 */ 1985 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 1986 1987 if (!wait) { 1988 /* 1989 * Not worth trying to allocate harder for 1990 * __GFP_NOMEMALLOC even if it can't schedule. 1991 */ 1992 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1993 alloc_flags |= ALLOC_HARDER; 1994 /* 1995 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1996 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1997 */ 1998 alloc_flags &= ~ALLOC_CPUSET; 1999 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2000 alloc_flags |= ALLOC_HARDER; 2001 2002 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2003 if (!in_interrupt() && 2004 ((current->flags & PF_MEMALLOC) || 2005 unlikely(test_thread_flag(TIF_MEMDIE)))) 2006 alloc_flags |= ALLOC_NO_WATERMARKS; 2007 } 2008 2009 return alloc_flags; 2010 } 2011 2012 static inline struct page * 2013 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2014 struct zonelist *zonelist, enum zone_type high_zoneidx, 2015 nodemask_t *nodemask, struct zone *preferred_zone, 2016 int migratetype) 2017 { 2018 const gfp_t wait = gfp_mask & __GFP_WAIT; 2019 struct page *page = NULL; 2020 int alloc_flags; 2021 unsigned long pages_reclaimed = 0; 2022 unsigned long did_some_progress; 2023 bool sync_migration = false; 2024 2025 /* 2026 * In the slowpath, we sanity check order to avoid ever trying to 2027 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2028 * be using allocators in order of preference for an area that is 2029 * too large. 2030 */ 2031 if (order >= MAX_ORDER) { 2032 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2033 return NULL; 2034 } 2035 2036 /* 2037 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2038 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2039 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2040 * using a larger set of nodes after it has established that the 2041 * allowed per node queues are empty and that nodes are 2042 * over allocated. 2043 */ 2044 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2045 goto nopage; 2046 2047 restart: 2048 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2049 wake_all_kswapd(order, zonelist, high_zoneidx, 2050 zone_idx(preferred_zone)); 2051 2052 /* 2053 * OK, we're below the kswapd watermark and have kicked background 2054 * reclaim. Now things get more complex, so set up alloc_flags according 2055 * to how we want to proceed. 2056 */ 2057 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2058 2059 /* 2060 * Find the true preferred zone if the allocation is unconstrained by 2061 * cpusets. 2062 */ 2063 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2064 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2065 &preferred_zone); 2066 2067 /* This is the last chance, in general, before the goto nopage. */ 2068 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2069 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2070 preferred_zone, migratetype); 2071 if (page) 2072 goto got_pg; 2073 2074 rebalance: 2075 /* Allocate without watermarks if the context allows */ 2076 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2077 page = __alloc_pages_high_priority(gfp_mask, order, 2078 zonelist, high_zoneidx, nodemask, 2079 preferred_zone, migratetype); 2080 if (page) 2081 goto got_pg; 2082 } 2083 2084 /* Atomic allocations - we can't balance anything */ 2085 if (!wait) 2086 goto nopage; 2087 2088 /* Avoid recursion of direct reclaim */ 2089 if (current->flags & PF_MEMALLOC) 2090 goto nopage; 2091 2092 /* Avoid allocations with no watermarks from looping endlessly */ 2093 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2094 goto nopage; 2095 2096 /* 2097 * Try direct compaction. The first pass is asynchronous. Subsequent 2098 * attempts after direct reclaim are synchronous 2099 */ 2100 page = __alloc_pages_direct_compact(gfp_mask, order, 2101 zonelist, high_zoneidx, 2102 nodemask, 2103 alloc_flags, preferred_zone, 2104 migratetype, &did_some_progress, 2105 sync_migration); 2106 if (page) 2107 goto got_pg; 2108 sync_migration = !(gfp_mask & __GFP_NO_KSWAPD); 2109 2110 /* Try direct reclaim and then allocating */ 2111 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2112 zonelist, high_zoneidx, 2113 nodemask, 2114 alloc_flags, preferred_zone, 2115 migratetype, &did_some_progress); 2116 if (page) 2117 goto got_pg; 2118 2119 /* 2120 * If we failed to make any progress reclaiming, then we are 2121 * running out of options and have to consider going OOM 2122 */ 2123 if (!did_some_progress) { 2124 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2125 if (oom_killer_disabled) 2126 goto nopage; 2127 page = __alloc_pages_may_oom(gfp_mask, order, 2128 zonelist, high_zoneidx, 2129 nodemask, preferred_zone, 2130 migratetype); 2131 if (page) 2132 goto got_pg; 2133 2134 if (!(gfp_mask & __GFP_NOFAIL)) { 2135 /* 2136 * The oom killer is not called for high-order 2137 * allocations that may fail, so if no progress 2138 * is being made, there are no other options and 2139 * retrying is unlikely to help. 2140 */ 2141 if (order > PAGE_ALLOC_COSTLY_ORDER) 2142 goto nopage; 2143 /* 2144 * The oom killer is not called for lowmem 2145 * allocations to prevent needlessly killing 2146 * innocent tasks. 2147 */ 2148 if (high_zoneidx < ZONE_NORMAL) 2149 goto nopage; 2150 } 2151 2152 goto restart; 2153 } 2154 } 2155 2156 /* Check if we should retry the allocation */ 2157 pages_reclaimed += did_some_progress; 2158 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 2159 /* Wait for some write requests to complete then retry */ 2160 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2161 goto rebalance; 2162 } else { 2163 /* 2164 * High-order allocations do not necessarily loop after 2165 * direct reclaim and reclaim/compaction depends on compaction 2166 * being called after reclaim so call directly if necessary 2167 */ 2168 page = __alloc_pages_direct_compact(gfp_mask, order, 2169 zonelist, high_zoneidx, 2170 nodemask, 2171 alloc_flags, preferred_zone, 2172 migratetype, &did_some_progress, 2173 sync_migration); 2174 if (page) 2175 goto got_pg; 2176 } 2177 2178 nopage: 2179 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 2180 unsigned int filter = SHOW_MEM_FILTER_NODES; 2181 2182 /* 2183 * This documents exceptions given to allocations in certain 2184 * contexts that are allowed to allocate outside current's set 2185 * of allowed nodes. 2186 */ 2187 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2188 if (test_thread_flag(TIF_MEMDIE) || 2189 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2190 filter &= ~SHOW_MEM_FILTER_NODES; 2191 if (in_interrupt() || !wait) 2192 filter &= ~SHOW_MEM_FILTER_NODES; 2193 2194 pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n", 2195 current->comm, order, gfp_mask); 2196 dump_stack(); 2197 if (!should_suppress_show_mem()) 2198 show_mem(filter); 2199 } 2200 return page; 2201 got_pg: 2202 if (kmemcheck_enabled) 2203 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2204 return page; 2205 2206 } 2207 2208 /* 2209 * This is the 'heart' of the zoned buddy allocator. 2210 */ 2211 struct page * 2212 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2213 struct zonelist *zonelist, nodemask_t *nodemask) 2214 { 2215 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2216 struct zone *preferred_zone; 2217 struct page *page; 2218 int migratetype = allocflags_to_migratetype(gfp_mask); 2219 2220 gfp_mask &= gfp_allowed_mask; 2221 2222 lockdep_trace_alloc(gfp_mask); 2223 2224 might_sleep_if(gfp_mask & __GFP_WAIT); 2225 2226 if (should_fail_alloc_page(gfp_mask, order)) 2227 return NULL; 2228 2229 /* 2230 * Check the zones suitable for the gfp_mask contain at least one 2231 * valid zone. It's possible to have an empty zonelist as a result 2232 * of GFP_THISNODE and a memoryless node 2233 */ 2234 if (unlikely(!zonelist->_zonerefs->zone)) 2235 return NULL; 2236 2237 get_mems_allowed(); 2238 /* The preferred zone is used for statistics later */ 2239 first_zones_zonelist(zonelist, high_zoneidx, 2240 nodemask ? : &cpuset_current_mems_allowed, 2241 &preferred_zone); 2242 if (!preferred_zone) { 2243 put_mems_allowed(); 2244 return NULL; 2245 } 2246 2247 /* First allocation attempt */ 2248 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2249 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2250 preferred_zone, migratetype); 2251 if (unlikely(!page)) 2252 page = __alloc_pages_slowpath(gfp_mask, order, 2253 zonelist, high_zoneidx, nodemask, 2254 preferred_zone, migratetype); 2255 put_mems_allowed(); 2256 2257 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2258 return page; 2259 } 2260 EXPORT_SYMBOL(__alloc_pages_nodemask); 2261 2262 /* 2263 * Common helper functions. 2264 */ 2265 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2266 { 2267 struct page *page; 2268 2269 /* 2270 * __get_free_pages() returns a 32-bit address, which cannot represent 2271 * a highmem page 2272 */ 2273 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2274 2275 page = alloc_pages(gfp_mask, order); 2276 if (!page) 2277 return 0; 2278 return (unsigned long) page_address(page); 2279 } 2280 EXPORT_SYMBOL(__get_free_pages); 2281 2282 unsigned long get_zeroed_page(gfp_t gfp_mask) 2283 { 2284 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2285 } 2286 EXPORT_SYMBOL(get_zeroed_page); 2287 2288 void __pagevec_free(struct pagevec *pvec) 2289 { 2290 int i = pagevec_count(pvec); 2291 2292 while (--i >= 0) { 2293 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2294 free_hot_cold_page(pvec->pages[i], pvec->cold); 2295 } 2296 } 2297 2298 void __free_pages(struct page *page, unsigned int order) 2299 { 2300 if (put_page_testzero(page)) { 2301 if (order == 0) 2302 free_hot_cold_page(page, 0); 2303 else 2304 __free_pages_ok(page, order); 2305 } 2306 } 2307 2308 EXPORT_SYMBOL(__free_pages); 2309 2310 void free_pages(unsigned long addr, unsigned int order) 2311 { 2312 if (addr != 0) { 2313 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2314 __free_pages(virt_to_page((void *)addr), order); 2315 } 2316 } 2317 2318 EXPORT_SYMBOL(free_pages); 2319 2320 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2321 { 2322 if (addr) { 2323 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2324 unsigned long used = addr + PAGE_ALIGN(size); 2325 2326 split_page(virt_to_page((void *)addr), order); 2327 while (used < alloc_end) { 2328 free_page(used); 2329 used += PAGE_SIZE; 2330 } 2331 } 2332 return (void *)addr; 2333 } 2334 2335 /** 2336 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2337 * @size: the number of bytes to allocate 2338 * @gfp_mask: GFP flags for the allocation 2339 * 2340 * This function is similar to alloc_pages(), except that it allocates the 2341 * minimum number of pages to satisfy the request. alloc_pages() can only 2342 * allocate memory in power-of-two pages. 2343 * 2344 * This function is also limited by MAX_ORDER. 2345 * 2346 * Memory allocated by this function must be released by free_pages_exact(). 2347 */ 2348 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2349 { 2350 unsigned int order = get_order(size); 2351 unsigned long addr; 2352 2353 addr = __get_free_pages(gfp_mask, order); 2354 return make_alloc_exact(addr, order, size); 2355 } 2356 EXPORT_SYMBOL(alloc_pages_exact); 2357 2358 /** 2359 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2360 * pages on a node. 2361 * @size: the number of bytes to allocate 2362 * @gfp_mask: GFP flags for the allocation 2363 * 2364 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2365 * back. 2366 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2367 * but is not exact. 2368 */ 2369 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2370 { 2371 unsigned order = get_order(size); 2372 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2373 if (!p) 2374 return NULL; 2375 return make_alloc_exact((unsigned long)page_address(p), order, size); 2376 } 2377 EXPORT_SYMBOL(alloc_pages_exact_nid); 2378 2379 /** 2380 * free_pages_exact - release memory allocated via alloc_pages_exact() 2381 * @virt: the value returned by alloc_pages_exact. 2382 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2383 * 2384 * Release the memory allocated by a previous call to alloc_pages_exact. 2385 */ 2386 void free_pages_exact(void *virt, size_t size) 2387 { 2388 unsigned long addr = (unsigned long)virt; 2389 unsigned long end = addr + PAGE_ALIGN(size); 2390 2391 while (addr < end) { 2392 free_page(addr); 2393 addr += PAGE_SIZE; 2394 } 2395 } 2396 EXPORT_SYMBOL(free_pages_exact); 2397 2398 static unsigned int nr_free_zone_pages(int offset) 2399 { 2400 struct zoneref *z; 2401 struct zone *zone; 2402 2403 /* Just pick one node, since fallback list is circular */ 2404 unsigned int sum = 0; 2405 2406 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2407 2408 for_each_zone_zonelist(zone, z, zonelist, offset) { 2409 unsigned long size = zone->present_pages; 2410 unsigned long high = high_wmark_pages(zone); 2411 if (size > high) 2412 sum += size - high; 2413 } 2414 2415 return sum; 2416 } 2417 2418 /* 2419 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2420 */ 2421 unsigned int nr_free_buffer_pages(void) 2422 { 2423 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2424 } 2425 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2426 2427 /* 2428 * Amount of free RAM allocatable within all zones 2429 */ 2430 unsigned int nr_free_pagecache_pages(void) 2431 { 2432 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2433 } 2434 2435 static inline void show_node(struct zone *zone) 2436 { 2437 if (NUMA_BUILD) 2438 printk("Node %d ", zone_to_nid(zone)); 2439 } 2440 2441 void si_meminfo(struct sysinfo *val) 2442 { 2443 val->totalram = totalram_pages; 2444 val->sharedram = 0; 2445 val->freeram = global_page_state(NR_FREE_PAGES); 2446 val->bufferram = nr_blockdev_pages(); 2447 val->totalhigh = totalhigh_pages; 2448 val->freehigh = nr_free_highpages(); 2449 val->mem_unit = PAGE_SIZE; 2450 } 2451 2452 EXPORT_SYMBOL(si_meminfo); 2453 2454 #ifdef CONFIG_NUMA 2455 void si_meminfo_node(struct sysinfo *val, int nid) 2456 { 2457 pg_data_t *pgdat = NODE_DATA(nid); 2458 2459 val->totalram = pgdat->node_present_pages; 2460 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2461 #ifdef CONFIG_HIGHMEM 2462 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2463 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2464 NR_FREE_PAGES); 2465 #else 2466 val->totalhigh = 0; 2467 val->freehigh = 0; 2468 #endif 2469 val->mem_unit = PAGE_SIZE; 2470 } 2471 #endif 2472 2473 /* 2474 * Determine whether the zone's node should be displayed or not, depending on 2475 * whether SHOW_MEM_FILTER_NODES was passed to __show_free_areas(). 2476 */ 2477 static bool skip_free_areas_zone(unsigned int flags, const struct zone *zone) 2478 { 2479 bool ret = false; 2480 2481 if (!(flags & SHOW_MEM_FILTER_NODES)) 2482 goto out; 2483 2484 get_mems_allowed(); 2485 ret = !node_isset(zone->zone_pgdat->node_id, 2486 cpuset_current_mems_allowed); 2487 put_mems_allowed(); 2488 out: 2489 return ret; 2490 } 2491 2492 #define K(x) ((x) << (PAGE_SHIFT-10)) 2493 2494 /* 2495 * Show free area list (used inside shift_scroll-lock stuff) 2496 * We also calculate the percentage fragmentation. We do this by counting the 2497 * memory on each free list with the exception of the first item on the list. 2498 * Suppresses nodes that are not allowed by current's cpuset if 2499 * SHOW_MEM_FILTER_NODES is passed. 2500 */ 2501 void __show_free_areas(unsigned int filter) 2502 { 2503 int cpu; 2504 struct zone *zone; 2505 2506 for_each_populated_zone(zone) { 2507 if (skip_free_areas_zone(filter, zone)) 2508 continue; 2509 show_node(zone); 2510 printk("%s per-cpu:\n", zone->name); 2511 2512 for_each_online_cpu(cpu) { 2513 struct per_cpu_pageset *pageset; 2514 2515 pageset = per_cpu_ptr(zone->pageset, cpu); 2516 2517 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2518 cpu, pageset->pcp.high, 2519 pageset->pcp.batch, pageset->pcp.count); 2520 } 2521 } 2522 2523 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2524 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2525 " unevictable:%lu" 2526 " dirty:%lu writeback:%lu unstable:%lu\n" 2527 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2528 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2529 global_page_state(NR_ACTIVE_ANON), 2530 global_page_state(NR_INACTIVE_ANON), 2531 global_page_state(NR_ISOLATED_ANON), 2532 global_page_state(NR_ACTIVE_FILE), 2533 global_page_state(NR_INACTIVE_FILE), 2534 global_page_state(NR_ISOLATED_FILE), 2535 global_page_state(NR_UNEVICTABLE), 2536 global_page_state(NR_FILE_DIRTY), 2537 global_page_state(NR_WRITEBACK), 2538 global_page_state(NR_UNSTABLE_NFS), 2539 global_page_state(NR_FREE_PAGES), 2540 global_page_state(NR_SLAB_RECLAIMABLE), 2541 global_page_state(NR_SLAB_UNRECLAIMABLE), 2542 global_page_state(NR_FILE_MAPPED), 2543 global_page_state(NR_SHMEM), 2544 global_page_state(NR_PAGETABLE), 2545 global_page_state(NR_BOUNCE)); 2546 2547 for_each_populated_zone(zone) { 2548 int i; 2549 2550 if (skip_free_areas_zone(filter, zone)) 2551 continue; 2552 show_node(zone); 2553 printk("%s" 2554 " free:%lukB" 2555 " min:%lukB" 2556 " low:%lukB" 2557 " high:%lukB" 2558 " active_anon:%lukB" 2559 " inactive_anon:%lukB" 2560 " active_file:%lukB" 2561 " inactive_file:%lukB" 2562 " unevictable:%lukB" 2563 " isolated(anon):%lukB" 2564 " isolated(file):%lukB" 2565 " present:%lukB" 2566 " mlocked:%lukB" 2567 " dirty:%lukB" 2568 " writeback:%lukB" 2569 " mapped:%lukB" 2570 " shmem:%lukB" 2571 " slab_reclaimable:%lukB" 2572 " slab_unreclaimable:%lukB" 2573 " kernel_stack:%lukB" 2574 " pagetables:%lukB" 2575 " unstable:%lukB" 2576 " bounce:%lukB" 2577 " writeback_tmp:%lukB" 2578 " pages_scanned:%lu" 2579 " all_unreclaimable? %s" 2580 "\n", 2581 zone->name, 2582 K(zone_page_state(zone, NR_FREE_PAGES)), 2583 K(min_wmark_pages(zone)), 2584 K(low_wmark_pages(zone)), 2585 K(high_wmark_pages(zone)), 2586 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2587 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2588 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2589 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2590 K(zone_page_state(zone, NR_UNEVICTABLE)), 2591 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2592 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2593 K(zone->present_pages), 2594 K(zone_page_state(zone, NR_MLOCK)), 2595 K(zone_page_state(zone, NR_FILE_DIRTY)), 2596 K(zone_page_state(zone, NR_WRITEBACK)), 2597 K(zone_page_state(zone, NR_FILE_MAPPED)), 2598 K(zone_page_state(zone, NR_SHMEM)), 2599 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2600 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2601 zone_page_state(zone, NR_KERNEL_STACK) * 2602 THREAD_SIZE / 1024, 2603 K(zone_page_state(zone, NR_PAGETABLE)), 2604 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2605 K(zone_page_state(zone, NR_BOUNCE)), 2606 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2607 zone->pages_scanned, 2608 (zone->all_unreclaimable ? "yes" : "no") 2609 ); 2610 printk("lowmem_reserve[]:"); 2611 for (i = 0; i < MAX_NR_ZONES; i++) 2612 printk(" %lu", zone->lowmem_reserve[i]); 2613 printk("\n"); 2614 } 2615 2616 for_each_populated_zone(zone) { 2617 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2618 2619 if (skip_free_areas_zone(filter, zone)) 2620 continue; 2621 show_node(zone); 2622 printk("%s: ", zone->name); 2623 2624 spin_lock_irqsave(&zone->lock, flags); 2625 for (order = 0; order < MAX_ORDER; order++) { 2626 nr[order] = zone->free_area[order].nr_free; 2627 total += nr[order] << order; 2628 } 2629 spin_unlock_irqrestore(&zone->lock, flags); 2630 for (order = 0; order < MAX_ORDER; order++) 2631 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2632 printk("= %lukB\n", K(total)); 2633 } 2634 2635 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2636 2637 show_swap_cache_info(); 2638 } 2639 2640 void show_free_areas(void) 2641 { 2642 __show_free_areas(0); 2643 } 2644 2645 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2646 { 2647 zoneref->zone = zone; 2648 zoneref->zone_idx = zone_idx(zone); 2649 } 2650 2651 /* 2652 * Builds allocation fallback zone lists. 2653 * 2654 * Add all populated zones of a node to the zonelist. 2655 */ 2656 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2657 int nr_zones, enum zone_type zone_type) 2658 { 2659 struct zone *zone; 2660 2661 BUG_ON(zone_type >= MAX_NR_ZONES); 2662 zone_type++; 2663 2664 do { 2665 zone_type--; 2666 zone = pgdat->node_zones + zone_type; 2667 if (populated_zone(zone)) { 2668 zoneref_set_zone(zone, 2669 &zonelist->_zonerefs[nr_zones++]); 2670 check_highest_zone(zone_type); 2671 } 2672 2673 } while (zone_type); 2674 return nr_zones; 2675 } 2676 2677 2678 /* 2679 * zonelist_order: 2680 * 0 = automatic detection of better ordering. 2681 * 1 = order by ([node] distance, -zonetype) 2682 * 2 = order by (-zonetype, [node] distance) 2683 * 2684 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2685 * the same zonelist. So only NUMA can configure this param. 2686 */ 2687 #define ZONELIST_ORDER_DEFAULT 0 2688 #define ZONELIST_ORDER_NODE 1 2689 #define ZONELIST_ORDER_ZONE 2 2690 2691 /* zonelist order in the kernel. 2692 * set_zonelist_order() will set this to NODE or ZONE. 2693 */ 2694 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2695 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2696 2697 2698 #ifdef CONFIG_NUMA 2699 /* The value user specified ....changed by config */ 2700 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2701 /* string for sysctl */ 2702 #define NUMA_ZONELIST_ORDER_LEN 16 2703 char numa_zonelist_order[16] = "default"; 2704 2705 /* 2706 * interface for configure zonelist ordering. 2707 * command line option "numa_zonelist_order" 2708 * = "[dD]efault - default, automatic configuration. 2709 * = "[nN]ode - order by node locality, then by zone within node 2710 * = "[zZ]one - order by zone, then by locality within zone 2711 */ 2712 2713 static int __parse_numa_zonelist_order(char *s) 2714 { 2715 if (*s == 'd' || *s == 'D') { 2716 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2717 } else if (*s == 'n' || *s == 'N') { 2718 user_zonelist_order = ZONELIST_ORDER_NODE; 2719 } else if (*s == 'z' || *s == 'Z') { 2720 user_zonelist_order = ZONELIST_ORDER_ZONE; 2721 } else { 2722 printk(KERN_WARNING 2723 "Ignoring invalid numa_zonelist_order value: " 2724 "%s\n", s); 2725 return -EINVAL; 2726 } 2727 return 0; 2728 } 2729 2730 static __init int setup_numa_zonelist_order(char *s) 2731 { 2732 int ret; 2733 2734 if (!s) 2735 return 0; 2736 2737 ret = __parse_numa_zonelist_order(s); 2738 if (ret == 0) 2739 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 2740 2741 return ret; 2742 } 2743 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2744 2745 /* 2746 * sysctl handler for numa_zonelist_order 2747 */ 2748 int numa_zonelist_order_handler(ctl_table *table, int write, 2749 void __user *buffer, size_t *length, 2750 loff_t *ppos) 2751 { 2752 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2753 int ret; 2754 static DEFINE_MUTEX(zl_order_mutex); 2755 2756 mutex_lock(&zl_order_mutex); 2757 if (write) 2758 strcpy(saved_string, (char*)table->data); 2759 ret = proc_dostring(table, write, buffer, length, ppos); 2760 if (ret) 2761 goto out; 2762 if (write) { 2763 int oldval = user_zonelist_order; 2764 if (__parse_numa_zonelist_order((char*)table->data)) { 2765 /* 2766 * bogus value. restore saved string 2767 */ 2768 strncpy((char*)table->data, saved_string, 2769 NUMA_ZONELIST_ORDER_LEN); 2770 user_zonelist_order = oldval; 2771 } else if (oldval != user_zonelist_order) { 2772 mutex_lock(&zonelists_mutex); 2773 build_all_zonelists(NULL); 2774 mutex_unlock(&zonelists_mutex); 2775 } 2776 } 2777 out: 2778 mutex_unlock(&zl_order_mutex); 2779 return ret; 2780 } 2781 2782 2783 #define MAX_NODE_LOAD (nr_online_nodes) 2784 static int node_load[MAX_NUMNODES]; 2785 2786 /** 2787 * find_next_best_node - find the next node that should appear in a given node's fallback list 2788 * @node: node whose fallback list we're appending 2789 * @used_node_mask: nodemask_t of already used nodes 2790 * 2791 * We use a number of factors to determine which is the next node that should 2792 * appear on a given node's fallback list. The node should not have appeared 2793 * already in @node's fallback list, and it should be the next closest node 2794 * according to the distance array (which contains arbitrary distance values 2795 * from each node to each node in the system), and should also prefer nodes 2796 * with no CPUs, since presumably they'll have very little allocation pressure 2797 * on them otherwise. 2798 * It returns -1 if no node is found. 2799 */ 2800 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2801 { 2802 int n, val; 2803 int min_val = INT_MAX; 2804 int best_node = -1; 2805 const struct cpumask *tmp = cpumask_of_node(0); 2806 2807 /* Use the local node if we haven't already */ 2808 if (!node_isset(node, *used_node_mask)) { 2809 node_set(node, *used_node_mask); 2810 return node; 2811 } 2812 2813 for_each_node_state(n, N_HIGH_MEMORY) { 2814 2815 /* Don't want a node to appear more than once */ 2816 if (node_isset(n, *used_node_mask)) 2817 continue; 2818 2819 /* Use the distance array to find the distance */ 2820 val = node_distance(node, n); 2821 2822 /* Penalize nodes under us ("prefer the next node") */ 2823 val += (n < node); 2824 2825 /* Give preference to headless and unused nodes */ 2826 tmp = cpumask_of_node(n); 2827 if (!cpumask_empty(tmp)) 2828 val += PENALTY_FOR_NODE_WITH_CPUS; 2829 2830 /* Slight preference for less loaded node */ 2831 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2832 val += node_load[n]; 2833 2834 if (val < min_val) { 2835 min_val = val; 2836 best_node = n; 2837 } 2838 } 2839 2840 if (best_node >= 0) 2841 node_set(best_node, *used_node_mask); 2842 2843 return best_node; 2844 } 2845 2846 2847 /* 2848 * Build zonelists ordered by node and zones within node. 2849 * This results in maximum locality--normal zone overflows into local 2850 * DMA zone, if any--but risks exhausting DMA zone. 2851 */ 2852 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2853 { 2854 int j; 2855 struct zonelist *zonelist; 2856 2857 zonelist = &pgdat->node_zonelists[0]; 2858 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2859 ; 2860 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2861 MAX_NR_ZONES - 1); 2862 zonelist->_zonerefs[j].zone = NULL; 2863 zonelist->_zonerefs[j].zone_idx = 0; 2864 } 2865 2866 /* 2867 * Build gfp_thisnode zonelists 2868 */ 2869 static void build_thisnode_zonelists(pg_data_t *pgdat) 2870 { 2871 int j; 2872 struct zonelist *zonelist; 2873 2874 zonelist = &pgdat->node_zonelists[1]; 2875 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2876 zonelist->_zonerefs[j].zone = NULL; 2877 zonelist->_zonerefs[j].zone_idx = 0; 2878 } 2879 2880 /* 2881 * Build zonelists ordered by zone and nodes within zones. 2882 * This results in conserving DMA zone[s] until all Normal memory is 2883 * exhausted, but results in overflowing to remote node while memory 2884 * may still exist in local DMA zone. 2885 */ 2886 static int node_order[MAX_NUMNODES]; 2887 2888 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2889 { 2890 int pos, j, node; 2891 int zone_type; /* needs to be signed */ 2892 struct zone *z; 2893 struct zonelist *zonelist; 2894 2895 zonelist = &pgdat->node_zonelists[0]; 2896 pos = 0; 2897 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2898 for (j = 0; j < nr_nodes; j++) { 2899 node = node_order[j]; 2900 z = &NODE_DATA(node)->node_zones[zone_type]; 2901 if (populated_zone(z)) { 2902 zoneref_set_zone(z, 2903 &zonelist->_zonerefs[pos++]); 2904 check_highest_zone(zone_type); 2905 } 2906 } 2907 } 2908 zonelist->_zonerefs[pos].zone = NULL; 2909 zonelist->_zonerefs[pos].zone_idx = 0; 2910 } 2911 2912 static int default_zonelist_order(void) 2913 { 2914 int nid, zone_type; 2915 unsigned long low_kmem_size,total_size; 2916 struct zone *z; 2917 int average_size; 2918 /* 2919 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2920 * If they are really small and used heavily, the system can fall 2921 * into OOM very easily. 2922 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2923 */ 2924 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2925 low_kmem_size = 0; 2926 total_size = 0; 2927 for_each_online_node(nid) { 2928 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2929 z = &NODE_DATA(nid)->node_zones[zone_type]; 2930 if (populated_zone(z)) { 2931 if (zone_type < ZONE_NORMAL) 2932 low_kmem_size += z->present_pages; 2933 total_size += z->present_pages; 2934 } else if (zone_type == ZONE_NORMAL) { 2935 /* 2936 * If any node has only lowmem, then node order 2937 * is preferred to allow kernel allocations 2938 * locally; otherwise, they can easily infringe 2939 * on other nodes when there is an abundance of 2940 * lowmem available to allocate from. 2941 */ 2942 return ZONELIST_ORDER_NODE; 2943 } 2944 } 2945 } 2946 if (!low_kmem_size || /* there are no DMA area. */ 2947 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2948 return ZONELIST_ORDER_NODE; 2949 /* 2950 * look into each node's config. 2951 * If there is a node whose DMA/DMA32 memory is very big area on 2952 * local memory, NODE_ORDER may be suitable. 2953 */ 2954 average_size = total_size / 2955 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2956 for_each_online_node(nid) { 2957 low_kmem_size = 0; 2958 total_size = 0; 2959 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2960 z = &NODE_DATA(nid)->node_zones[zone_type]; 2961 if (populated_zone(z)) { 2962 if (zone_type < ZONE_NORMAL) 2963 low_kmem_size += z->present_pages; 2964 total_size += z->present_pages; 2965 } 2966 } 2967 if (low_kmem_size && 2968 total_size > average_size && /* ignore small node */ 2969 low_kmem_size > total_size * 70/100) 2970 return ZONELIST_ORDER_NODE; 2971 } 2972 return ZONELIST_ORDER_ZONE; 2973 } 2974 2975 static void set_zonelist_order(void) 2976 { 2977 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2978 current_zonelist_order = default_zonelist_order(); 2979 else 2980 current_zonelist_order = user_zonelist_order; 2981 } 2982 2983 static void build_zonelists(pg_data_t *pgdat) 2984 { 2985 int j, node, load; 2986 enum zone_type i; 2987 nodemask_t used_mask; 2988 int local_node, prev_node; 2989 struct zonelist *zonelist; 2990 int order = current_zonelist_order; 2991 2992 /* initialize zonelists */ 2993 for (i = 0; i < MAX_ZONELISTS; i++) { 2994 zonelist = pgdat->node_zonelists + i; 2995 zonelist->_zonerefs[0].zone = NULL; 2996 zonelist->_zonerefs[0].zone_idx = 0; 2997 } 2998 2999 /* NUMA-aware ordering of nodes */ 3000 local_node = pgdat->node_id; 3001 load = nr_online_nodes; 3002 prev_node = local_node; 3003 nodes_clear(used_mask); 3004 3005 memset(node_order, 0, sizeof(node_order)); 3006 j = 0; 3007 3008 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3009 int distance = node_distance(local_node, node); 3010 3011 /* 3012 * If another node is sufficiently far away then it is better 3013 * to reclaim pages in a zone before going off node. 3014 */ 3015 if (distance > RECLAIM_DISTANCE) 3016 zone_reclaim_mode = 1; 3017 3018 /* 3019 * We don't want to pressure a particular node. 3020 * So adding penalty to the first node in same 3021 * distance group to make it round-robin. 3022 */ 3023 if (distance != node_distance(local_node, prev_node)) 3024 node_load[node] = load; 3025 3026 prev_node = node; 3027 load--; 3028 if (order == ZONELIST_ORDER_NODE) 3029 build_zonelists_in_node_order(pgdat, node); 3030 else 3031 node_order[j++] = node; /* remember order */ 3032 } 3033 3034 if (order == ZONELIST_ORDER_ZONE) { 3035 /* calculate node order -- i.e., DMA last! */ 3036 build_zonelists_in_zone_order(pgdat, j); 3037 } 3038 3039 build_thisnode_zonelists(pgdat); 3040 } 3041 3042 /* Construct the zonelist performance cache - see further mmzone.h */ 3043 static void build_zonelist_cache(pg_data_t *pgdat) 3044 { 3045 struct zonelist *zonelist; 3046 struct zonelist_cache *zlc; 3047 struct zoneref *z; 3048 3049 zonelist = &pgdat->node_zonelists[0]; 3050 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3051 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3052 for (z = zonelist->_zonerefs; z->zone; z++) 3053 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3054 } 3055 3056 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3057 /* 3058 * Return node id of node used for "local" allocations. 3059 * I.e., first node id of first zone in arg node's generic zonelist. 3060 * Used for initializing percpu 'numa_mem', which is used primarily 3061 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3062 */ 3063 int local_memory_node(int node) 3064 { 3065 struct zone *zone; 3066 3067 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3068 gfp_zone(GFP_KERNEL), 3069 NULL, 3070 &zone); 3071 return zone->node; 3072 } 3073 #endif 3074 3075 #else /* CONFIG_NUMA */ 3076 3077 static void set_zonelist_order(void) 3078 { 3079 current_zonelist_order = ZONELIST_ORDER_ZONE; 3080 } 3081 3082 static void build_zonelists(pg_data_t *pgdat) 3083 { 3084 int node, local_node; 3085 enum zone_type j; 3086 struct zonelist *zonelist; 3087 3088 local_node = pgdat->node_id; 3089 3090 zonelist = &pgdat->node_zonelists[0]; 3091 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3092 3093 /* 3094 * Now we build the zonelist so that it contains the zones 3095 * of all the other nodes. 3096 * We don't want to pressure a particular node, so when 3097 * building the zones for node N, we make sure that the 3098 * zones coming right after the local ones are those from 3099 * node N+1 (modulo N) 3100 */ 3101 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3102 if (!node_online(node)) 3103 continue; 3104 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3105 MAX_NR_ZONES - 1); 3106 } 3107 for (node = 0; node < local_node; node++) { 3108 if (!node_online(node)) 3109 continue; 3110 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3111 MAX_NR_ZONES - 1); 3112 } 3113 3114 zonelist->_zonerefs[j].zone = NULL; 3115 zonelist->_zonerefs[j].zone_idx = 0; 3116 } 3117 3118 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3119 static void build_zonelist_cache(pg_data_t *pgdat) 3120 { 3121 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3122 } 3123 3124 #endif /* CONFIG_NUMA */ 3125 3126 /* 3127 * Boot pageset table. One per cpu which is going to be used for all 3128 * zones and all nodes. The parameters will be set in such a way 3129 * that an item put on a list will immediately be handed over to 3130 * the buddy list. This is safe since pageset manipulation is done 3131 * with interrupts disabled. 3132 * 3133 * The boot_pagesets must be kept even after bootup is complete for 3134 * unused processors and/or zones. They do play a role for bootstrapping 3135 * hotplugged processors. 3136 * 3137 * zoneinfo_show() and maybe other functions do 3138 * not check if the processor is online before following the pageset pointer. 3139 * Other parts of the kernel may not check if the zone is available. 3140 */ 3141 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3142 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3143 static void setup_zone_pageset(struct zone *zone); 3144 3145 /* 3146 * Global mutex to protect against size modification of zonelists 3147 * as well as to serialize pageset setup for the new populated zone. 3148 */ 3149 DEFINE_MUTEX(zonelists_mutex); 3150 3151 /* return values int ....just for stop_machine() */ 3152 static __init_refok int __build_all_zonelists(void *data) 3153 { 3154 int nid; 3155 int cpu; 3156 3157 #ifdef CONFIG_NUMA 3158 memset(node_load, 0, sizeof(node_load)); 3159 #endif 3160 for_each_online_node(nid) { 3161 pg_data_t *pgdat = NODE_DATA(nid); 3162 3163 build_zonelists(pgdat); 3164 build_zonelist_cache(pgdat); 3165 } 3166 3167 /* 3168 * Initialize the boot_pagesets that are going to be used 3169 * for bootstrapping processors. The real pagesets for 3170 * each zone will be allocated later when the per cpu 3171 * allocator is available. 3172 * 3173 * boot_pagesets are used also for bootstrapping offline 3174 * cpus if the system is already booted because the pagesets 3175 * are needed to initialize allocators on a specific cpu too. 3176 * F.e. the percpu allocator needs the page allocator which 3177 * needs the percpu allocator in order to allocate its pagesets 3178 * (a chicken-egg dilemma). 3179 */ 3180 for_each_possible_cpu(cpu) { 3181 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3182 3183 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3184 /* 3185 * We now know the "local memory node" for each node-- 3186 * i.e., the node of the first zone in the generic zonelist. 3187 * Set up numa_mem percpu variable for on-line cpus. During 3188 * boot, only the boot cpu should be on-line; we'll init the 3189 * secondary cpus' numa_mem as they come on-line. During 3190 * node/memory hotplug, we'll fixup all on-line cpus. 3191 */ 3192 if (cpu_online(cpu)) 3193 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3194 #endif 3195 } 3196 3197 return 0; 3198 } 3199 3200 /* 3201 * Called with zonelists_mutex held always 3202 * unless system_state == SYSTEM_BOOTING. 3203 */ 3204 void __ref build_all_zonelists(void *data) 3205 { 3206 set_zonelist_order(); 3207 3208 if (system_state == SYSTEM_BOOTING) { 3209 __build_all_zonelists(NULL); 3210 mminit_verify_zonelist(); 3211 cpuset_init_current_mems_allowed(); 3212 } else { 3213 /* we have to stop all cpus to guarantee there is no user 3214 of zonelist */ 3215 #ifdef CONFIG_MEMORY_HOTPLUG 3216 if (data) 3217 setup_zone_pageset((struct zone *)data); 3218 #endif 3219 stop_machine(__build_all_zonelists, NULL, NULL); 3220 /* cpuset refresh routine should be here */ 3221 } 3222 vm_total_pages = nr_free_pagecache_pages(); 3223 /* 3224 * Disable grouping by mobility if the number of pages in the 3225 * system is too low to allow the mechanism to work. It would be 3226 * more accurate, but expensive to check per-zone. This check is 3227 * made on memory-hotadd so a system can start with mobility 3228 * disabled and enable it later 3229 */ 3230 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3231 page_group_by_mobility_disabled = 1; 3232 else 3233 page_group_by_mobility_disabled = 0; 3234 3235 printk("Built %i zonelists in %s order, mobility grouping %s. " 3236 "Total pages: %ld\n", 3237 nr_online_nodes, 3238 zonelist_order_name[current_zonelist_order], 3239 page_group_by_mobility_disabled ? "off" : "on", 3240 vm_total_pages); 3241 #ifdef CONFIG_NUMA 3242 printk("Policy zone: %s\n", zone_names[policy_zone]); 3243 #endif 3244 } 3245 3246 /* 3247 * Helper functions to size the waitqueue hash table. 3248 * Essentially these want to choose hash table sizes sufficiently 3249 * large so that collisions trying to wait on pages are rare. 3250 * But in fact, the number of active page waitqueues on typical 3251 * systems is ridiculously low, less than 200. So this is even 3252 * conservative, even though it seems large. 3253 * 3254 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3255 * waitqueues, i.e. the size of the waitq table given the number of pages. 3256 */ 3257 #define PAGES_PER_WAITQUEUE 256 3258 3259 #ifndef CONFIG_MEMORY_HOTPLUG 3260 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3261 { 3262 unsigned long size = 1; 3263 3264 pages /= PAGES_PER_WAITQUEUE; 3265 3266 while (size < pages) 3267 size <<= 1; 3268 3269 /* 3270 * Once we have dozens or even hundreds of threads sleeping 3271 * on IO we've got bigger problems than wait queue collision. 3272 * Limit the size of the wait table to a reasonable size. 3273 */ 3274 size = min(size, 4096UL); 3275 3276 return max(size, 4UL); 3277 } 3278 #else 3279 /* 3280 * A zone's size might be changed by hot-add, so it is not possible to determine 3281 * a suitable size for its wait_table. So we use the maximum size now. 3282 * 3283 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3284 * 3285 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3286 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3287 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3288 * 3289 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3290 * or more by the traditional way. (See above). It equals: 3291 * 3292 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3293 * ia64(16K page size) : = ( 8G + 4M)byte. 3294 * powerpc (64K page size) : = (32G +16M)byte. 3295 */ 3296 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3297 { 3298 return 4096UL; 3299 } 3300 #endif 3301 3302 /* 3303 * This is an integer logarithm so that shifts can be used later 3304 * to extract the more random high bits from the multiplicative 3305 * hash function before the remainder is taken. 3306 */ 3307 static inline unsigned long wait_table_bits(unsigned long size) 3308 { 3309 return ffz(~size); 3310 } 3311 3312 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3313 3314 /* 3315 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3316 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3317 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3318 * higher will lead to a bigger reserve which will get freed as contiguous 3319 * blocks as reclaim kicks in 3320 */ 3321 static void setup_zone_migrate_reserve(struct zone *zone) 3322 { 3323 unsigned long start_pfn, pfn, end_pfn; 3324 struct page *page; 3325 unsigned long block_migratetype; 3326 int reserve; 3327 3328 /* Get the start pfn, end pfn and the number of blocks to reserve */ 3329 start_pfn = zone->zone_start_pfn; 3330 end_pfn = start_pfn + zone->spanned_pages; 3331 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3332 pageblock_order; 3333 3334 /* 3335 * Reserve blocks are generally in place to help high-order atomic 3336 * allocations that are short-lived. A min_free_kbytes value that 3337 * would result in more than 2 reserve blocks for atomic allocations 3338 * is assumed to be in place to help anti-fragmentation for the 3339 * future allocation of hugepages at runtime. 3340 */ 3341 reserve = min(2, reserve); 3342 3343 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3344 if (!pfn_valid(pfn)) 3345 continue; 3346 page = pfn_to_page(pfn); 3347 3348 /* Watch out for overlapping nodes */ 3349 if (page_to_nid(page) != zone_to_nid(zone)) 3350 continue; 3351 3352 /* Blocks with reserved pages will never free, skip them. */ 3353 if (PageReserved(page)) 3354 continue; 3355 3356 block_migratetype = get_pageblock_migratetype(page); 3357 3358 /* If this block is reserved, account for it */ 3359 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3360 reserve--; 3361 continue; 3362 } 3363 3364 /* Suitable for reserving if this block is movable */ 3365 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3366 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3367 move_freepages_block(zone, page, MIGRATE_RESERVE); 3368 reserve--; 3369 continue; 3370 } 3371 3372 /* 3373 * If the reserve is met and this is a previous reserved block, 3374 * take it back 3375 */ 3376 if (block_migratetype == MIGRATE_RESERVE) { 3377 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3378 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3379 } 3380 } 3381 } 3382 3383 /* 3384 * Initially all pages are reserved - free ones are freed 3385 * up by free_all_bootmem() once the early boot process is 3386 * done. Non-atomic initialization, single-pass. 3387 */ 3388 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3389 unsigned long start_pfn, enum memmap_context context) 3390 { 3391 struct page *page; 3392 unsigned long end_pfn = start_pfn + size; 3393 unsigned long pfn; 3394 struct zone *z; 3395 3396 if (highest_memmap_pfn < end_pfn - 1) 3397 highest_memmap_pfn = end_pfn - 1; 3398 3399 z = &NODE_DATA(nid)->node_zones[zone]; 3400 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3401 /* 3402 * There can be holes in boot-time mem_map[]s 3403 * handed to this function. They do not 3404 * exist on hotplugged memory. 3405 */ 3406 if (context == MEMMAP_EARLY) { 3407 if (!early_pfn_valid(pfn)) 3408 continue; 3409 if (!early_pfn_in_nid(pfn, nid)) 3410 continue; 3411 } 3412 page = pfn_to_page(pfn); 3413 set_page_links(page, zone, nid, pfn); 3414 mminit_verify_page_links(page, zone, nid, pfn); 3415 init_page_count(page); 3416 reset_page_mapcount(page); 3417 SetPageReserved(page); 3418 /* 3419 * Mark the block movable so that blocks are reserved for 3420 * movable at startup. This will force kernel allocations 3421 * to reserve their blocks rather than leaking throughout 3422 * the address space during boot when many long-lived 3423 * kernel allocations are made. Later some blocks near 3424 * the start are marked MIGRATE_RESERVE by 3425 * setup_zone_migrate_reserve() 3426 * 3427 * bitmap is created for zone's valid pfn range. but memmap 3428 * can be created for invalid pages (for alignment) 3429 * check here not to call set_pageblock_migratetype() against 3430 * pfn out of zone. 3431 */ 3432 if ((z->zone_start_pfn <= pfn) 3433 && (pfn < z->zone_start_pfn + z->spanned_pages) 3434 && !(pfn & (pageblock_nr_pages - 1))) 3435 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3436 3437 INIT_LIST_HEAD(&page->lru); 3438 #ifdef WANT_PAGE_VIRTUAL 3439 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3440 if (!is_highmem_idx(zone)) 3441 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3442 #endif 3443 } 3444 } 3445 3446 static void __meminit zone_init_free_lists(struct zone *zone) 3447 { 3448 int order, t; 3449 for_each_migratetype_order(order, t) { 3450 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3451 zone->free_area[order].nr_free = 0; 3452 } 3453 } 3454 3455 #ifndef __HAVE_ARCH_MEMMAP_INIT 3456 #define memmap_init(size, nid, zone, start_pfn) \ 3457 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3458 #endif 3459 3460 static int zone_batchsize(struct zone *zone) 3461 { 3462 #ifdef CONFIG_MMU 3463 int batch; 3464 3465 /* 3466 * The per-cpu-pages pools are set to around 1000th of the 3467 * size of the zone. But no more than 1/2 of a meg. 3468 * 3469 * OK, so we don't know how big the cache is. So guess. 3470 */ 3471 batch = zone->present_pages / 1024; 3472 if (batch * PAGE_SIZE > 512 * 1024) 3473 batch = (512 * 1024) / PAGE_SIZE; 3474 batch /= 4; /* We effectively *= 4 below */ 3475 if (batch < 1) 3476 batch = 1; 3477 3478 /* 3479 * Clamp the batch to a 2^n - 1 value. Having a power 3480 * of 2 value was found to be more likely to have 3481 * suboptimal cache aliasing properties in some cases. 3482 * 3483 * For example if 2 tasks are alternately allocating 3484 * batches of pages, one task can end up with a lot 3485 * of pages of one half of the possible page colors 3486 * and the other with pages of the other colors. 3487 */ 3488 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3489 3490 return batch; 3491 3492 #else 3493 /* The deferral and batching of frees should be suppressed under NOMMU 3494 * conditions. 3495 * 3496 * The problem is that NOMMU needs to be able to allocate large chunks 3497 * of contiguous memory as there's no hardware page translation to 3498 * assemble apparent contiguous memory from discontiguous pages. 3499 * 3500 * Queueing large contiguous runs of pages for batching, however, 3501 * causes the pages to actually be freed in smaller chunks. As there 3502 * can be a significant delay between the individual batches being 3503 * recycled, this leads to the once large chunks of space being 3504 * fragmented and becoming unavailable for high-order allocations. 3505 */ 3506 return 0; 3507 #endif 3508 } 3509 3510 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3511 { 3512 struct per_cpu_pages *pcp; 3513 int migratetype; 3514 3515 memset(p, 0, sizeof(*p)); 3516 3517 pcp = &p->pcp; 3518 pcp->count = 0; 3519 pcp->high = 6 * batch; 3520 pcp->batch = max(1UL, 1 * batch); 3521 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3522 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3523 } 3524 3525 /* 3526 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3527 * to the value high for the pageset p. 3528 */ 3529 3530 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3531 unsigned long high) 3532 { 3533 struct per_cpu_pages *pcp; 3534 3535 pcp = &p->pcp; 3536 pcp->high = high; 3537 pcp->batch = max(1UL, high/4); 3538 if ((high/4) > (PAGE_SHIFT * 8)) 3539 pcp->batch = PAGE_SHIFT * 8; 3540 } 3541 3542 static __meminit void setup_zone_pageset(struct zone *zone) 3543 { 3544 int cpu; 3545 3546 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3547 3548 for_each_possible_cpu(cpu) { 3549 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3550 3551 setup_pageset(pcp, zone_batchsize(zone)); 3552 3553 if (percpu_pagelist_fraction) 3554 setup_pagelist_highmark(pcp, 3555 (zone->present_pages / 3556 percpu_pagelist_fraction)); 3557 } 3558 } 3559 3560 /* 3561 * Allocate per cpu pagesets and initialize them. 3562 * Before this call only boot pagesets were available. 3563 */ 3564 void __init setup_per_cpu_pageset(void) 3565 { 3566 struct zone *zone; 3567 3568 for_each_populated_zone(zone) 3569 setup_zone_pageset(zone); 3570 } 3571 3572 static noinline __init_refok 3573 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3574 { 3575 int i; 3576 struct pglist_data *pgdat = zone->zone_pgdat; 3577 size_t alloc_size; 3578 3579 /* 3580 * The per-page waitqueue mechanism uses hashed waitqueues 3581 * per zone. 3582 */ 3583 zone->wait_table_hash_nr_entries = 3584 wait_table_hash_nr_entries(zone_size_pages); 3585 zone->wait_table_bits = 3586 wait_table_bits(zone->wait_table_hash_nr_entries); 3587 alloc_size = zone->wait_table_hash_nr_entries 3588 * sizeof(wait_queue_head_t); 3589 3590 if (!slab_is_available()) { 3591 zone->wait_table = (wait_queue_head_t *) 3592 alloc_bootmem_node_nopanic(pgdat, alloc_size); 3593 } else { 3594 /* 3595 * This case means that a zone whose size was 0 gets new memory 3596 * via memory hot-add. 3597 * But it may be the case that a new node was hot-added. In 3598 * this case vmalloc() will not be able to use this new node's 3599 * memory - this wait_table must be initialized to use this new 3600 * node itself as well. 3601 * To use this new node's memory, further consideration will be 3602 * necessary. 3603 */ 3604 zone->wait_table = vmalloc(alloc_size); 3605 } 3606 if (!zone->wait_table) 3607 return -ENOMEM; 3608 3609 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3610 init_waitqueue_head(zone->wait_table + i); 3611 3612 return 0; 3613 } 3614 3615 static int __zone_pcp_update(void *data) 3616 { 3617 struct zone *zone = data; 3618 int cpu; 3619 unsigned long batch = zone_batchsize(zone), flags; 3620 3621 for_each_possible_cpu(cpu) { 3622 struct per_cpu_pageset *pset; 3623 struct per_cpu_pages *pcp; 3624 3625 pset = per_cpu_ptr(zone->pageset, cpu); 3626 pcp = &pset->pcp; 3627 3628 local_irq_save(flags); 3629 free_pcppages_bulk(zone, pcp->count, pcp); 3630 setup_pageset(pset, batch); 3631 local_irq_restore(flags); 3632 } 3633 return 0; 3634 } 3635 3636 void zone_pcp_update(struct zone *zone) 3637 { 3638 stop_machine(__zone_pcp_update, zone, NULL); 3639 } 3640 3641 static __meminit void zone_pcp_init(struct zone *zone) 3642 { 3643 /* 3644 * per cpu subsystem is not up at this point. The following code 3645 * relies on the ability of the linker to provide the 3646 * offset of a (static) per cpu variable into the per cpu area. 3647 */ 3648 zone->pageset = &boot_pageset; 3649 3650 if (zone->present_pages) 3651 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3652 zone->name, zone->present_pages, 3653 zone_batchsize(zone)); 3654 } 3655 3656 __meminit int init_currently_empty_zone(struct zone *zone, 3657 unsigned long zone_start_pfn, 3658 unsigned long size, 3659 enum memmap_context context) 3660 { 3661 struct pglist_data *pgdat = zone->zone_pgdat; 3662 int ret; 3663 ret = zone_wait_table_init(zone, size); 3664 if (ret) 3665 return ret; 3666 pgdat->nr_zones = zone_idx(zone) + 1; 3667 3668 zone->zone_start_pfn = zone_start_pfn; 3669 3670 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3671 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3672 pgdat->node_id, 3673 (unsigned long)zone_idx(zone), 3674 zone_start_pfn, (zone_start_pfn + size)); 3675 3676 zone_init_free_lists(zone); 3677 3678 return 0; 3679 } 3680 3681 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3682 /* 3683 * Basic iterator support. Return the first range of PFNs for a node 3684 * Note: nid == MAX_NUMNODES returns first region regardless of node 3685 */ 3686 static int __meminit first_active_region_index_in_nid(int nid) 3687 { 3688 int i; 3689 3690 for (i = 0; i < nr_nodemap_entries; i++) 3691 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3692 return i; 3693 3694 return -1; 3695 } 3696 3697 /* 3698 * Basic iterator support. Return the next active range of PFNs for a node 3699 * Note: nid == MAX_NUMNODES returns next region regardless of node 3700 */ 3701 static int __meminit next_active_region_index_in_nid(int index, int nid) 3702 { 3703 for (index = index + 1; index < nr_nodemap_entries; index++) 3704 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3705 return index; 3706 3707 return -1; 3708 } 3709 3710 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3711 /* 3712 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3713 * Architectures may implement their own version but if add_active_range() 3714 * was used and there are no special requirements, this is a convenient 3715 * alternative 3716 */ 3717 int __meminit __early_pfn_to_nid(unsigned long pfn) 3718 { 3719 int i; 3720 3721 for (i = 0; i < nr_nodemap_entries; i++) { 3722 unsigned long start_pfn = early_node_map[i].start_pfn; 3723 unsigned long end_pfn = early_node_map[i].end_pfn; 3724 3725 if (start_pfn <= pfn && pfn < end_pfn) 3726 return early_node_map[i].nid; 3727 } 3728 /* This is a memory hole */ 3729 return -1; 3730 } 3731 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3732 3733 int __meminit early_pfn_to_nid(unsigned long pfn) 3734 { 3735 int nid; 3736 3737 nid = __early_pfn_to_nid(pfn); 3738 if (nid >= 0) 3739 return nid; 3740 /* just returns 0 */ 3741 return 0; 3742 } 3743 3744 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3745 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3746 { 3747 int nid; 3748 3749 nid = __early_pfn_to_nid(pfn); 3750 if (nid >= 0 && nid != node) 3751 return false; 3752 return true; 3753 } 3754 #endif 3755 3756 /* Basic iterator support to walk early_node_map[] */ 3757 #define for_each_active_range_index_in_nid(i, nid) \ 3758 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3759 i = next_active_region_index_in_nid(i, nid)) 3760 3761 /** 3762 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3763 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3764 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3765 * 3766 * If an architecture guarantees that all ranges registered with 3767 * add_active_ranges() contain no holes and may be freed, this 3768 * this function may be used instead of calling free_bootmem() manually. 3769 */ 3770 void __init free_bootmem_with_active_regions(int nid, 3771 unsigned long max_low_pfn) 3772 { 3773 int i; 3774 3775 for_each_active_range_index_in_nid(i, nid) { 3776 unsigned long size_pages = 0; 3777 unsigned long end_pfn = early_node_map[i].end_pfn; 3778 3779 if (early_node_map[i].start_pfn >= max_low_pfn) 3780 continue; 3781 3782 if (end_pfn > max_low_pfn) 3783 end_pfn = max_low_pfn; 3784 3785 size_pages = end_pfn - early_node_map[i].start_pfn; 3786 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3787 PFN_PHYS(early_node_map[i].start_pfn), 3788 size_pages << PAGE_SHIFT); 3789 } 3790 } 3791 3792 #ifdef CONFIG_HAVE_MEMBLOCK 3793 /* 3794 * Basic iterator support. Return the last range of PFNs for a node 3795 * Note: nid == MAX_NUMNODES returns last region regardless of node 3796 */ 3797 static int __meminit last_active_region_index_in_nid(int nid) 3798 { 3799 int i; 3800 3801 for (i = nr_nodemap_entries - 1; i >= 0; i--) 3802 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3803 return i; 3804 3805 return -1; 3806 } 3807 3808 /* 3809 * Basic iterator support. Return the previous active range of PFNs for a node 3810 * Note: nid == MAX_NUMNODES returns next region regardless of node 3811 */ 3812 static int __meminit previous_active_region_index_in_nid(int index, int nid) 3813 { 3814 for (index = index - 1; index >= 0; index--) 3815 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3816 return index; 3817 3818 return -1; 3819 } 3820 3821 #define for_each_active_range_index_in_nid_reverse(i, nid) \ 3822 for (i = last_active_region_index_in_nid(nid); i != -1; \ 3823 i = previous_active_region_index_in_nid(i, nid)) 3824 3825 u64 __init find_memory_core_early(int nid, u64 size, u64 align, 3826 u64 goal, u64 limit) 3827 { 3828 int i; 3829 3830 /* Need to go over early_node_map to find out good range for node */ 3831 for_each_active_range_index_in_nid_reverse(i, nid) { 3832 u64 addr; 3833 u64 ei_start, ei_last; 3834 u64 final_start, final_end; 3835 3836 ei_last = early_node_map[i].end_pfn; 3837 ei_last <<= PAGE_SHIFT; 3838 ei_start = early_node_map[i].start_pfn; 3839 ei_start <<= PAGE_SHIFT; 3840 3841 final_start = max(ei_start, goal); 3842 final_end = min(ei_last, limit); 3843 3844 if (final_start >= final_end) 3845 continue; 3846 3847 addr = memblock_find_in_range(final_start, final_end, size, align); 3848 3849 if (addr == MEMBLOCK_ERROR) 3850 continue; 3851 3852 return addr; 3853 } 3854 3855 return MEMBLOCK_ERROR; 3856 } 3857 #endif 3858 3859 int __init add_from_early_node_map(struct range *range, int az, 3860 int nr_range, int nid) 3861 { 3862 int i; 3863 u64 start, end; 3864 3865 /* need to go over early_node_map to find out good range for node */ 3866 for_each_active_range_index_in_nid(i, nid) { 3867 start = early_node_map[i].start_pfn; 3868 end = early_node_map[i].end_pfn; 3869 nr_range = add_range(range, az, nr_range, start, end); 3870 } 3871 return nr_range; 3872 } 3873 3874 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3875 { 3876 int i; 3877 int ret; 3878 3879 for_each_active_range_index_in_nid(i, nid) { 3880 ret = work_fn(early_node_map[i].start_pfn, 3881 early_node_map[i].end_pfn, data); 3882 if (ret) 3883 break; 3884 } 3885 } 3886 /** 3887 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3888 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3889 * 3890 * If an architecture guarantees that all ranges registered with 3891 * add_active_ranges() contain no holes and may be freed, this 3892 * function may be used instead of calling memory_present() manually. 3893 */ 3894 void __init sparse_memory_present_with_active_regions(int nid) 3895 { 3896 int i; 3897 3898 for_each_active_range_index_in_nid(i, nid) 3899 memory_present(early_node_map[i].nid, 3900 early_node_map[i].start_pfn, 3901 early_node_map[i].end_pfn); 3902 } 3903 3904 /** 3905 * get_pfn_range_for_nid - Return the start and end page frames for a node 3906 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3907 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3908 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3909 * 3910 * It returns the start and end page frame of a node based on information 3911 * provided by an arch calling add_active_range(). If called for a node 3912 * with no available memory, a warning is printed and the start and end 3913 * PFNs will be 0. 3914 */ 3915 void __meminit get_pfn_range_for_nid(unsigned int nid, 3916 unsigned long *start_pfn, unsigned long *end_pfn) 3917 { 3918 int i; 3919 *start_pfn = -1UL; 3920 *end_pfn = 0; 3921 3922 for_each_active_range_index_in_nid(i, nid) { 3923 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3924 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3925 } 3926 3927 if (*start_pfn == -1UL) 3928 *start_pfn = 0; 3929 } 3930 3931 /* 3932 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3933 * assumption is made that zones within a node are ordered in monotonic 3934 * increasing memory addresses so that the "highest" populated zone is used 3935 */ 3936 static void __init find_usable_zone_for_movable(void) 3937 { 3938 int zone_index; 3939 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3940 if (zone_index == ZONE_MOVABLE) 3941 continue; 3942 3943 if (arch_zone_highest_possible_pfn[zone_index] > 3944 arch_zone_lowest_possible_pfn[zone_index]) 3945 break; 3946 } 3947 3948 VM_BUG_ON(zone_index == -1); 3949 movable_zone = zone_index; 3950 } 3951 3952 /* 3953 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3954 * because it is sized independent of architecture. Unlike the other zones, 3955 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3956 * in each node depending on the size of each node and how evenly kernelcore 3957 * is distributed. This helper function adjusts the zone ranges 3958 * provided by the architecture for a given node by using the end of the 3959 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3960 * zones within a node are in order of monotonic increases memory addresses 3961 */ 3962 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3963 unsigned long zone_type, 3964 unsigned long node_start_pfn, 3965 unsigned long node_end_pfn, 3966 unsigned long *zone_start_pfn, 3967 unsigned long *zone_end_pfn) 3968 { 3969 /* Only adjust if ZONE_MOVABLE is on this node */ 3970 if (zone_movable_pfn[nid]) { 3971 /* Size ZONE_MOVABLE */ 3972 if (zone_type == ZONE_MOVABLE) { 3973 *zone_start_pfn = zone_movable_pfn[nid]; 3974 *zone_end_pfn = min(node_end_pfn, 3975 arch_zone_highest_possible_pfn[movable_zone]); 3976 3977 /* Adjust for ZONE_MOVABLE starting within this range */ 3978 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3979 *zone_end_pfn > zone_movable_pfn[nid]) { 3980 *zone_end_pfn = zone_movable_pfn[nid]; 3981 3982 /* Check if this whole range is within ZONE_MOVABLE */ 3983 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3984 *zone_start_pfn = *zone_end_pfn; 3985 } 3986 } 3987 3988 /* 3989 * Return the number of pages a zone spans in a node, including holes 3990 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3991 */ 3992 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3993 unsigned long zone_type, 3994 unsigned long *ignored) 3995 { 3996 unsigned long node_start_pfn, node_end_pfn; 3997 unsigned long zone_start_pfn, zone_end_pfn; 3998 3999 /* Get the start and end of the node and zone */ 4000 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4001 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4002 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4003 adjust_zone_range_for_zone_movable(nid, zone_type, 4004 node_start_pfn, node_end_pfn, 4005 &zone_start_pfn, &zone_end_pfn); 4006 4007 /* Check that this node has pages within the zone's required range */ 4008 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4009 return 0; 4010 4011 /* Move the zone boundaries inside the node if necessary */ 4012 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4013 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4014 4015 /* Return the spanned pages */ 4016 return zone_end_pfn - zone_start_pfn; 4017 } 4018 4019 /* 4020 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4021 * then all holes in the requested range will be accounted for. 4022 */ 4023 unsigned long __meminit __absent_pages_in_range(int nid, 4024 unsigned long range_start_pfn, 4025 unsigned long range_end_pfn) 4026 { 4027 int i = 0; 4028 unsigned long prev_end_pfn = 0, hole_pages = 0; 4029 unsigned long start_pfn; 4030 4031 /* Find the end_pfn of the first active range of pfns in the node */ 4032 i = first_active_region_index_in_nid(nid); 4033 if (i == -1) 4034 return 0; 4035 4036 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 4037 4038 /* Account for ranges before physical memory on this node */ 4039 if (early_node_map[i].start_pfn > range_start_pfn) 4040 hole_pages = prev_end_pfn - range_start_pfn; 4041 4042 /* Find all holes for the zone within the node */ 4043 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 4044 4045 /* No need to continue if prev_end_pfn is outside the zone */ 4046 if (prev_end_pfn >= range_end_pfn) 4047 break; 4048 4049 /* Make sure the end of the zone is not within the hole */ 4050 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 4051 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 4052 4053 /* Update the hole size cound and move on */ 4054 if (start_pfn > range_start_pfn) { 4055 BUG_ON(prev_end_pfn > start_pfn); 4056 hole_pages += start_pfn - prev_end_pfn; 4057 } 4058 prev_end_pfn = early_node_map[i].end_pfn; 4059 } 4060 4061 /* Account for ranges past physical memory on this node */ 4062 if (range_end_pfn > prev_end_pfn) 4063 hole_pages += range_end_pfn - 4064 max(range_start_pfn, prev_end_pfn); 4065 4066 return hole_pages; 4067 } 4068 4069 /** 4070 * absent_pages_in_range - Return number of page frames in holes within a range 4071 * @start_pfn: The start PFN to start searching for holes 4072 * @end_pfn: The end PFN to stop searching for holes 4073 * 4074 * It returns the number of pages frames in memory holes within a range. 4075 */ 4076 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4077 unsigned long end_pfn) 4078 { 4079 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4080 } 4081 4082 /* Return the number of page frames in holes in a zone on a node */ 4083 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4084 unsigned long zone_type, 4085 unsigned long *ignored) 4086 { 4087 unsigned long node_start_pfn, node_end_pfn; 4088 unsigned long zone_start_pfn, zone_end_pfn; 4089 4090 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4091 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 4092 node_start_pfn); 4093 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 4094 node_end_pfn); 4095 4096 adjust_zone_range_for_zone_movable(nid, zone_type, 4097 node_start_pfn, node_end_pfn, 4098 &zone_start_pfn, &zone_end_pfn); 4099 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4100 } 4101 4102 #else 4103 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4104 unsigned long zone_type, 4105 unsigned long *zones_size) 4106 { 4107 return zones_size[zone_type]; 4108 } 4109 4110 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4111 unsigned long zone_type, 4112 unsigned long *zholes_size) 4113 { 4114 if (!zholes_size) 4115 return 0; 4116 4117 return zholes_size[zone_type]; 4118 } 4119 4120 #endif 4121 4122 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4123 unsigned long *zones_size, unsigned long *zholes_size) 4124 { 4125 unsigned long realtotalpages, totalpages = 0; 4126 enum zone_type i; 4127 4128 for (i = 0; i < MAX_NR_ZONES; i++) 4129 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4130 zones_size); 4131 pgdat->node_spanned_pages = totalpages; 4132 4133 realtotalpages = totalpages; 4134 for (i = 0; i < MAX_NR_ZONES; i++) 4135 realtotalpages -= 4136 zone_absent_pages_in_node(pgdat->node_id, i, 4137 zholes_size); 4138 pgdat->node_present_pages = realtotalpages; 4139 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4140 realtotalpages); 4141 } 4142 4143 #ifndef CONFIG_SPARSEMEM 4144 /* 4145 * Calculate the size of the zone->blockflags rounded to an unsigned long 4146 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4147 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4148 * round what is now in bits to nearest long in bits, then return it in 4149 * bytes. 4150 */ 4151 static unsigned long __init usemap_size(unsigned long zonesize) 4152 { 4153 unsigned long usemapsize; 4154 4155 usemapsize = roundup(zonesize, pageblock_nr_pages); 4156 usemapsize = usemapsize >> pageblock_order; 4157 usemapsize *= NR_PAGEBLOCK_BITS; 4158 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4159 4160 return usemapsize / 8; 4161 } 4162 4163 static void __init setup_usemap(struct pglist_data *pgdat, 4164 struct zone *zone, unsigned long zonesize) 4165 { 4166 unsigned long usemapsize = usemap_size(zonesize); 4167 zone->pageblock_flags = NULL; 4168 if (usemapsize) 4169 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4170 usemapsize); 4171 } 4172 #else 4173 static inline void setup_usemap(struct pglist_data *pgdat, 4174 struct zone *zone, unsigned long zonesize) {} 4175 #endif /* CONFIG_SPARSEMEM */ 4176 4177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4178 4179 /* Return a sensible default order for the pageblock size. */ 4180 static inline int pageblock_default_order(void) 4181 { 4182 if (HPAGE_SHIFT > PAGE_SHIFT) 4183 return HUGETLB_PAGE_ORDER; 4184 4185 return MAX_ORDER-1; 4186 } 4187 4188 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4189 static inline void __init set_pageblock_order(unsigned int order) 4190 { 4191 /* Check that pageblock_nr_pages has not already been setup */ 4192 if (pageblock_order) 4193 return; 4194 4195 /* 4196 * Assume the largest contiguous order of interest is a huge page. 4197 * This value may be variable depending on boot parameters on IA64 4198 */ 4199 pageblock_order = order; 4200 } 4201 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4202 4203 /* 4204 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4205 * and pageblock_default_order() are unused as pageblock_order is set 4206 * at compile-time. See include/linux/pageblock-flags.h for the values of 4207 * pageblock_order based on the kernel config 4208 */ 4209 static inline int pageblock_default_order(unsigned int order) 4210 { 4211 return MAX_ORDER-1; 4212 } 4213 #define set_pageblock_order(x) do {} while (0) 4214 4215 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4216 4217 /* 4218 * Set up the zone data structures: 4219 * - mark all pages reserved 4220 * - mark all memory queues empty 4221 * - clear the memory bitmaps 4222 */ 4223 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4224 unsigned long *zones_size, unsigned long *zholes_size) 4225 { 4226 enum zone_type j; 4227 int nid = pgdat->node_id; 4228 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4229 int ret; 4230 4231 pgdat_resize_init(pgdat); 4232 pgdat->nr_zones = 0; 4233 init_waitqueue_head(&pgdat->kswapd_wait); 4234 pgdat->kswapd_max_order = 0; 4235 pgdat_page_cgroup_init(pgdat); 4236 4237 for (j = 0; j < MAX_NR_ZONES; j++) { 4238 struct zone *zone = pgdat->node_zones + j; 4239 unsigned long size, realsize, memmap_pages; 4240 enum lru_list l; 4241 4242 size = zone_spanned_pages_in_node(nid, j, zones_size); 4243 realsize = size - zone_absent_pages_in_node(nid, j, 4244 zholes_size); 4245 4246 /* 4247 * Adjust realsize so that it accounts for how much memory 4248 * is used by this zone for memmap. This affects the watermark 4249 * and per-cpu initialisations 4250 */ 4251 memmap_pages = 4252 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4253 if (realsize >= memmap_pages) { 4254 realsize -= memmap_pages; 4255 if (memmap_pages) 4256 printk(KERN_DEBUG 4257 " %s zone: %lu pages used for memmap\n", 4258 zone_names[j], memmap_pages); 4259 } else 4260 printk(KERN_WARNING 4261 " %s zone: %lu pages exceeds realsize %lu\n", 4262 zone_names[j], memmap_pages, realsize); 4263 4264 /* Account for reserved pages */ 4265 if (j == 0 && realsize > dma_reserve) { 4266 realsize -= dma_reserve; 4267 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4268 zone_names[0], dma_reserve); 4269 } 4270 4271 if (!is_highmem_idx(j)) 4272 nr_kernel_pages += realsize; 4273 nr_all_pages += realsize; 4274 4275 zone->spanned_pages = size; 4276 zone->present_pages = realsize; 4277 #ifdef CONFIG_NUMA 4278 zone->node = nid; 4279 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4280 / 100; 4281 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4282 #endif 4283 zone->name = zone_names[j]; 4284 spin_lock_init(&zone->lock); 4285 spin_lock_init(&zone->lru_lock); 4286 zone_seqlock_init(zone); 4287 zone->zone_pgdat = pgdat; 4288 4289 zone_pcp_init(zone); 4290 for_each_lru(l) { 4291 INIT_LIST_HEAD(&zone->lru[l].list); 4292 zone->reclaim_stat.nr_saved_scan[l] = 0; 4293 } 4294 zone->reclaim_stat.recent_rotated[0] = 0; 4295 zone->reclaim_stat.recent_rotated[1] = 0; 4296 zone->reclaim_stat.recent_scanned[0] = 0; 4297 zone->reclaim_stat.recent_scanned[1] = 0; 4298 zap_zone_vm_stats(zone); 4299 zone->flags = 0; 4300 if (!size) 4301 continue; 4302 4303 set_pageblock_order(pageblock_default_order()); 4304 setup_usemap(pgdat, zone, size); 4305 ret = init_currently_empty_zone(zone, zone_start_pfn, 4306 size, MEMMAP_EARLY); 4307 BUG_ON(ret); 4308 memmap_init(size, nid, j, zone_start_pfn); 4309 zone_start_pfn += size; 4310 } 4311 } 4312 4313 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4314 { 4315 /* Skip empty nodes */ 4316 if (!pgdat->node_spanned_pages) 4317 return; 4318 4319 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4320 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4321 if (!pgdat->node_mem_map) { 4322 unsigned long size, start, end; 4323 struct page *map; 4324 4325 /* 4326 * The zone's endpoints aren't required to be MAX_ORDER 4327 * aligned but the node_mem_map endpoints must be in order 4328 * for the buddy allocator to function correctly. 4329 */ 4330 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4331 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4332 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4333 size = (end - start) * sizeof(struct page); 4334 map = alloc_remap(pgdat->node_id, size); 4335 if (!map) 4336 map = alloc_bootmem_node_nopanic(pgdat, size); 4337 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4338 } 4339 #ifndef CONFIG_NEED_MULTIPLE_NODES 4340 /* 4341 * With no DISCONTIG, the global mem_map is just set as node 0's 4342 */ 4343 if (pgdat == NODE_DATA(0)) { 4344 mem_map = NODE_DATA(0)->node_mem_map; 4345 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4346 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4347 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4348 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4349 } 4350 #endif 4351 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4352 } 4353 4354 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4355 unsigned long node_start_pfn, unsigned long *zholes_size) 4356 { 4357 pg_data_t *pgdat = NODE_DATA(nid); 4358 4359 pgdat->node_id = nid; 4360 pgdat->node_start_pfn = node_start_pfn; 4361 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4362 4363 alloc_node_mem_map(pgdat); 4364 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4365 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4366 nid, (unsigned long)pgdat, 4367 (unsigned long)pgdat->node_mem_map); 4368 #endif 4369 4370 free_area_init_core(pgdat, zones_size, zholes_size); 4371 } 4372 4373 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4374 4375 #if MAX_NUMNODES > 1 4376 /* 4377 * Figure out the number of possible node ids. 4378 */ 4379 static void __init setup_nr_node_ids(void) 4380 { 4381 unsigned int node; 4382 unsigned int highest = 0; 4383 4384 for_each_node_mask(node, node_possible_map) 4385 highest = node; 4386 nr_node_ids = highest + 1; 4387 } 4388 #else 4389 static inline void setup_nr_node_ids(void) 4390 { 4391 } 4392 #endif 4393 4394 /** 4395 * add_active_range - Register a range of PFNs backed by physical memory 4396 * @nid: The node ID the range resides on 4397 * @start_pfn: The start PFN of the available physical memory 4398 * @end_pfn: The end PFN of the available physical memory 4399 * 4400 * These ranges are stored in an early_node_map[] and later used by 4401 * free_area_init_nodes() to calculate zone sizes and holes. If the 4402 * range spans a memory hole, it is up to the architecture to ensure 4403 * the memory is not freed by the bootmem allocator. If possible 4404 * the range being registered will be merged with existing ranges. 4405 */ 4406 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4407 unsigned long end_pfn) 4408 { 4409 int i; 4410 4411 mminit_dprintk(MMINIT_TRACE, "memory_register", 4412 "Entering add_active_range(%d, %#lx, %#lx) " 4413 "%d entries of %d used\n", 4414 nid, start_pfn, end_pfn, 4415 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4416 4417 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4418 4419 /* Merge with existing active regions if possible */ 4420 for (i = 0; i < nr_nodemap_entries; i++) { 4421 if (early_node_map[i].nid != nid) 4422 continue; 4423 4424 /* Skip if an existing region covers this new one */ 4425 if (start_pfn >= early_node_map[i].start_pfn && 4426 end_pfn <= early_node_map[i].end_pfn) 4427 return; 4428 4429 /* Merge forward if suitable */ 4430 if (start_pfn <= early_node_map[i].end_pfn && 4431 end_pfn > early_node_map[i].end_pfn) { 4432 early_node_map[i].end_pfn = end_pfn; 4433 return; 4434 } 4435 4436 /* Merge backward if suitable */ 4437 if (start_pfn < early_node_map[i].start_pfn && 4438 end_pfn >= early_node_map[i].start_pfn) { 4439 early_node_map[i].start_pfn = start_pfn; 4440 return; 4441 } 4442 } 4443 4444 /* Check that early_node_map is large enough */ 4445 if (i >= MAX_ACTIVE_REGIONS) { 4446 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4447 MAX_ACTIVE_REGIONS); 4448 return; 4449 } 4450 4451 early_node_map[i].nid = nid; 4452 early_node_map[i].start_pfn = start_pfn; 4453 early_node_map[i].end_pfn = end_pfn; 4454 nr_nodemap_entries = i + 1; 4455 } 4456 4457 /** 4458 * remove_active_range - Shrink an existing registered range of PFNs 4459 * @nid: The node id the range is on that should be shrunk 4460 * @start_pfn: The new PFN of the range 4461 * @end_pfn: The new PFN of the range 4462 * 4463 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4464 * The map is kept near the end physical page range that has already been 4465 * registered. This function allows an arch to shrink an existing registered 4466 * range. 4467 */ 4468 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4469 unsigned long end_pfn) 4470 { 4471 int i, j; 4472 int removed = 0; 4473 4474 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4475 nid, start_pfn, end_pfn); 4476 4477 /* Find the old active region end and shrink */ 4478 for_each_active_range_index_in_nid(i, nid) { 4479 if (early_node_map[i].start_pfn >= start_pfn && 4480 early_node_map[i].end_pfn <= end_pfn) { 4481 /* clear it */ 4482 early_node_map[i].start_pfn = 0; 4483 early_node_map[i].end_pfn = 0; 4484 removed = 1; 4485 continue; 4486 } 4487 if (early_node_map[i].start_pfn < start_pfn && 4488 early_node_map[i].end_pfn > start_pfn) { 4489 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4490 early_node_map[i].end_pfn = start_pfn; 4491 if (temp_end_pfn > end_pfn) 4492 add_active_range(nid, end_pfn, temp_end_pfn); 4493 continue; 4494 } 4495 if (early_node_map[i].start_pfn >= start_pfn && 4496 early_node_map[i].end_pfn > end_pfn && 4497 early_node_map[i].start_pfn < end_pfn) { 4498 early_node_map[i].start_pfn = end_pfn; 4499 continue; 4500 } 4501 } 4502 4503 if (!removed) 4504 return; 4505 4506 /* remove the blank ones */ 4507 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4508 if (early_node_map[i].nid != nid) 4509 continue; 4510 if (early_node_map[i].end_pfn) 4511 continue; 4512 /* we found it, get rid of it */ 4513 for (j = i; j < nr_nodemap_entries - 1; j++) 4514 memcpy(&early_node_map[j], &early_node_map[j+1], 4515 sizeof(early_node_map[j])); 4516 j = nr_nodemap_entries - 1; 4517 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4518 nr_nodemap_entries--; 4519 } 4520 } 4521 4522 /** 4523 * remove_all_active_ranges - Remove all currently registered regions 4524 * 4525 * During discovery, it may be found that a table like SRAT is invalid 4526 * and an alternative discovery method must be used. This function removes 4527 * all currently registered regions. 4528 */ 4529 void __init remove_all_active_ranges(void) 4530 { 4531 memset(early_node_map, 0, sizeof(early_node_map)); 4532 nr_nodemap_entries = 0; 4533 } 4534 4535 /* Compare two active node_active_regions */ 4536 static int __init cmp_node_active_region(const void *a, const void *b) 4537 { 4538 struct node_active_region *arange = (struct node_active_region *)a; 4539 struct node_active_region *brange = (struct node_active_region *)b; 4540 4541 /* Done this way to avoid overflows */ 4542 if (arange->start_pfn > brange->start_pfn) 4543 return 1; 4544 if (arange->start_pfn < brange->start_pfn) 4545 return -1; 4546 4547 return 0; 4548 } 4549 4550 /* sort the node_map by start_pfn */ 4551 void __init sort_node_map(void) 4552 { 4553 sort(early_node_map, (size_t)nr_nodemap_entries, 4554 sizeof(struct node_active_region), 4555 cmp_node_active_region, NULL); 4556 } 4557 4558 /* Find the lowest pfn for a node */ 4559 static unsigned long __init find_min_pfn_for_node(int nid) 4560 { 4561 int i; 4562 unsigned long min_pfn = ULONG_MAX; 4563 4564 /* Assuming a sorted map, the first range found has the starting pfn */ 4565 for_each_active_range_index_in_nid(i, nid) 4566 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4567 4568 if (min_pfn == ULONG_MAX) { 4569 printk(KERN_WARNING 4570 "Could not find start_pfn for node %d\n", nid); 4571 return 0; 4572 } 4573 4574 return min_pfn; 4575 } 4576 4577 /** 4578 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4579 * 4580 * It returns the minimum PFN based on information provided via 4581 * add_active_range(). 4582 */ 4583 unsigned long __init find_min_pfn_with_active_regions(void) 4584 { 4585 return find_min_pfn_for_node(MAX_NUMNODES); 4586 } 4587 4588 /* 4589 * early_calculate_totalpages() 4590 * Sum pages in active regions for movable zone. 4591 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4592 */ 4593 static unsigned long __init early_calculate_totalpages(void) 4594 { 4595 int i; 4596 unsigned long totalpages = 0; 4597 4598 for (i = 0; i < nr_nodemap_entries; i++) { 4599 unsigned long pages = early_node_map[i].end_pfn - 4600 early_node_map[i].start_pfn; 4601 totalpages += pages; 4602 if (pages) 4603 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4604 } 4605 return totalpages; 4606 } 4607 4608 /* 4609 * Find the PFN the Movable zone begins in each node. Kernel memory 4610 * is spread evenly between nodes as long as the nodes have enough 4611 * memory. When they don't, some nodes will have more kernelcore than 4612 * others 4613 */ 4614 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4615 { 4616 int i, nid; 4617 unsigned long usable_startpfn; 4618 unsigned long kernelcore_node, kernelcore_remaining; 4619 /* save the state before borrow the nodemask */ 4620 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4621 unsigned long totalpages = early_calculate_totalpages(); 4622 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4623 4624 /* 4625 * If movablecore was specified, calculate what size of 4626 * kernelcore that corresponds so that memory usable for 4627 * any allocation type is evenly spread. If both kernelcore 4628 * and movablecore are specified, then the value of kernelcore 4629 * will be used for required_kernelcore if it's greater than 4630 * what movablecore would have allowed. 4631 */ 4632 if (required_movablecore) { 4633 unsigned long corepages; 4634 4635 /* 4636 * Round-up so that ZONE_MOVABLE is at least as large as what 4637 * was requested by the user 4638 */ 4639 required_movablecore = 4640 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4641 corepages = totalpages - required_movablecore; 4642 4643 required_kernelcore = max(required_kernelcore, corepages); 4644 } 4645 4646 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4647 if (!required_kernelcore) 4648 goto out; 4649 4650 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4651 find_usable_zone_for_movable(); 4652 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4653 4654 restart: 4655 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4656 kernelcore_node = required_kernelcore / usable_nodes; 4657 for_each_node_state(nid, N_HIGH_MEMORY) { 4658 /* 4659 * Recalculate kernelcore_node if the division per node 4660 * now exceeds what is necessary to satisfy the requested 4661 * amount of memory for the kernel 4662 */ 4663 if (required_kernelcore < kernelcore_node) 4664 kernelcore_node = required_kernelcore / usable_nodes; 4665 4666 /* 4667 * As the map is walked, we track how much memory is usable 4668 * by the kernel using kernelcore_remaining. When it is 4669 * 0, the rest of the node is usable by ZONE_MOVABLE 4670 */ 4671 kernelcore_remaining = kernelcore_node; 4672 4673 /* Go through each range of PFNs within this node */ 4674 for_each_active_range_index_in_nid(i, nid) { 4675 unsigned long start_pfn, end_pfn; 4676 unsigned long size_pages; 4677 4678 start_pfn = max(early_node_map[i].start_pfn, 4679 zone_movable_pfn[nid]); 4680 end_pfn = early_node_map[i].end_pfn; 4681 if (start_pfn >= end_pfn) 4682 continue; 4683 4684 /* Account for what is only usable for kernelcore */ 4685 if (start_pfn < usable_startpfn) { 4686 unsigned long kernel_pages; 4687 kernel_pages = min(end_pfn, usable_startpfn) 4688 - start_pfn; 4689 4690 kernelcore_remaining -= min(kernel_pages, 4691 kernelcore_remaining); 4692 required_kernelcore -= min(kernel_pages, 4693 required_kernelcore); 4694 4695 /* Continue if range is now fully accounted */ 4696 if (end_pfn <= usable_startpfn) { 4697 4698 /* 4699 * Push zone_movable_pfn to the end so 4700 * that if we have to rebalance 4701 * kernelcore across nodes, we will 4702 * not double account here 4703 */ 4704 zone_movable_pfn[nid] = end_pfn; 4705 continue; 4706 } 4707 start_pfn = usable_startpfn; 4708 } 4709 4710 /* 4711 * The usable PFN range for ZONE_MOVABLE is from 4712 * start_pfn->end_pfn. Calculate size_pages as the 4713 * number of pages used as kernelcore 4714 */ 4715 size_pages = end_pfn - start_pfn; 4716 if (size_pages > kernelcore_remaining) 4717 size_pages = kernelcore_remaining; 4718 zone_movable_pfn[nid] = start_pfn + size_pages; 4719 4720 /* 4721 * Some kernelcore has been met, update counts and 4722 * break if the kernelcore for this node has been 4723 * satisified 4724 */ 4725 required_kernelcore -= min(required_kernelcore, 4726 size_pages); 4727 kernelcore_remaining -= size_pages; 4728 if (!kernelcore_remaining) 4729 break; 4730 } 4731 } 4732 4733 /* 4734 * If there is still required_kernelcore, we do another pass with one 4735 * less node in the count. This will push zone_movable_pfn[nid] further 4736 * along on the nodes that still have memory until kernelcore is 4737 * satisified 4738 */ 4739 usable_nodes--; 4740 if (usable_nodes && required_kernelcore > usable_nodes) 4741 goto restart; 4742 4743 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4744 for (nid = 0; nid < MAX_NUMNODES; nid++) 4745 zone_movable_pfn[nid] = 4746 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4747 4748 out: 4749 /* restore the node_state */ 4750 node_states[N_HIGH_MEMORY] = saved_node_state; 4751 } 4752 4753 /* Any regular memory on that node ? */ 4754 static void check_for_regular_memory(pg_data_t *pgdat) 4755 { 4756 #ifdef CONFIG_HIGHMEM 4757 enum zone_type zone_type; 4758 4759 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4760 struct zone *zone = &pgdat->node_zones[zone_type]; 4761 if (zone->present_pages) 4762 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4763 } 4764 #endif 4765 } 4766 4767 /** 4768 * free_area_init_nodes - Initialise all pg_data_t and zone data 4769 * @max_zone_pfn: an array of max PFNs for each zone 4770 * 4771 * This will call free_area_init_node() for each active node in the system. 4772 * Using the page ranges provided by add_active_range(), the size of each 4773 * zone in each node and their holes is calculated. If the maximum PFN 4774 * between two adjacent zones match, it is assumed that the zone is empty. 4775 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4776 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4777 * starts where the previous one ended. For example, ZONE_DMA32 starts 4778 * at arch_max_dma_pfn. 4779 */ 4780 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4781 { 4782 unsigned long nid; 4783 int i; 4784 4785 /* Sort early_node_map as initialisation assumes it is sorted */ 4786 sort_node_map(); 4787 4788 /* Record where the zone boundaries are */ 4789 memset(arch_zone_lowest_possible_pfn, 0, 4790 sizeof(arch_zone_lowest_possible_pfn)); 4791 memset(arch_zone_highest_possible_pfn, 0, 4792 sizeof(arch_zone_highest_possible_pfn)); 4793 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4794 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4795 for (i = 1; i < MAX_NR_ZONES; i++) { 4796 if (i == ZONE_MOVABLE) 4797 continue; 4798 arch_zone_lowest_possible_pfn[i] = 4799 arch_zone_highest_possible_pfn[i-1]; 4800 arch_zone_highest_possible_pfn[i] = 4801 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4802 } 4803 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4804 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4805 4806 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4807 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4808 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4809 4810 /* Print out the zone ranges */ 4811 printk("Zone PFN ranges:\n"); 4812 for (i = 0; i < MAX_NR_ZONES; i++) { 4813 if (i == ZONE_MOVABLE) 4814 continue; 4815 printk(" %-8s ", zone_names[i]); 4816 if (arch_zone_lowest_possible_pfn[i] == 4817 arch_zone_highest_possible_pfn[i]) 4818 printk("empty\n"); 4819 else 4820 printk("%0#10lx -> %0#10lx\n", 4821 arch_zone_lowest_possible_pfn[i], 4822 arch_zone_highest_possible_pfn[i]); 4823 } 4824 4825 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4826 printk("Movable zone start PFN for each node\n"); 4827 for (i = 0; i < MAX_NUMNODES; i++) { 4828 if (zone_movable_pfn[i]) 4829 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4830 } 4831 4832 /* Print out the early_node_map[] */ 4833 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4834 for (i = 0; i < nr_nodemap_entries; i++) 4835 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4836 early_node_map[i].start_pfn, 4837 early_node_map[i].end_pfn); 4838 4839 /* Initialise every node */ 4840 mminit_verify_pageflags_layout(); 4841 setup_nr_node_ids(); 4842 for_each_online_node(nid) { 4843 pg_data_t *pgdat = NODE_DATA(nid); 4844 free_area_init_node(nid, NULL, 4845 find_min_pfn_for_node(nid), NULL); 4846 4847 /* Any memory on that node */ 4848 if (pgdat->node_present_pages) 4849 node_set_state(nid, N_HIGH_MEMORY); 4850 check_for_regular_memory(pgdat); 4851 } 4852 } 4853 4854 static int __init cmdline_parse_core(char *p, unsigned long *core) 4855 { 4856 unsigned long long coremem; 4857 if (!p) 4858 return -EINVAL; 4859 4860 coremem = memparse(p, &p); 4861 *core = coremem >> PAGE_SHIFT; 4862 4863 /* Paranoid check that UL is enough for the coremem value */ 4864 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4865 4866 return 0; 4867 } 4868 4869 /* 4870 * kernelcore=size sets the amount of memory for use for allocations that 4871 * cannot be reclaimed or migrated. 4872 */ 4873 static int __init cmdline_parse_kernelcore(char *p) 4874 { 4875 return cmdline_parse_core(p, &required_kernelcore); 4876 } 4877 4878 /* 4879 * movablecore=size sets the amount of memory for use for allocations that 4880 * can be reclaimed or migrated. 4881 */ 4882 static int __init cmdline_parse_movablecore(char *p) 4883 { 4884 return cmdline_parse_core(p, &required_movablecore); 4885 } 4886 4887 early_param("kernelcore", cmdline_parse_kernelcore); 4888 early_param("movablecore", cmdline_parse_movablecore); 4889 4890 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4891 4892 /** 4893 * set_dma_reserve - set the specified number of pages reserved in the first zone 4894 * @new_dma_reserve: The number of pages to mark reserved 4895 * 4896 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4897 * In the DMA zone, a significant percentage may be consumed by kernel image 4898 * and other unfreeable allocations which can skew the watermarks badly. This 4899 * function may optionally be used to account for unfreeable pages in the 4900 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4901 * smaller per-cpu batchsize. 4902 */ 4903 void __init set_dma_reserve(unsigned long new_dma_reserve) 4904 { 4905 dma_reserve = new_dma_reserve; 4906 } 4907 4908 void __init free_area_init(unsigned long *zones_size) 4909 { 4910 free_area_init_node(0, zones_size, 4911 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4912 } 4913 4914 static int page_alloc_cpu_notify(struct notifier_block *self, 4915 unsigned long action, void *hcpu) 4916 { 4917 int cpu = (unsigned long)hcpu; 4918 4919 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4920 drain_pages(cpu); 4921 4922 /* 4923 * Spill the event counters of the dead processor 4924 * into the current processors event counters. 4925 * This artificially elevates the count of the current 4926 * processor. 4927 */ 4928 vm_events_fold_cpu(cpu); 4929 4930 /* 4931 * Zero the differential counters of the dead processor 4932 * so that the vm statistics are consistent. 4933 * 4934 * This is only okay since the processor is dead and cannot 4935 * race with what we are doing. 4936 */ 4937 refresh_cpu_vm_stats(cpu); 4938 } 4939 return NOTIFY_OK; 4940 } 4941 4942 void __init page_alloc_init(void) 4943 { 4944 hotcpu_notifier(page_alloc_cpu_notify, 0); 4945 } 4946 4947 /* 4948 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4949 * or min_free_kbytes changes. 4950 */ 4951 static void calculate_totalreserve_pages(void) 4952 { 4953 struct pglist_data *pgdat; 4954 unsigned long reserve_pages = 0; 4955 enum zone_type i, j; 4956 4957 for_each_online_pgdat(pgdat) { 4958 for (i = 0; i < MAX_NR_ZONES; i++) { 4959 struct zone *zone = pgdat->node_zones + i; 4960 unsigned long max = 0; 4961 4962 /* Find valid and maximum lowmem_reserve in the zone */ 4963 for (j = i; j < MAX_NR_ZONES; j++) { 4964 if (zone->lowmem_reserve[j] > max) 4965 max = zone->lowmem_reserve[j]; 4966 } 4967 4968 /* we treat the high watermark as reserved pages. */ 4969 max += high_wmark_pages(zone); 4970 4971 if (max > zone->present_pages) 4972 max = zone->present_pages; 4973 reserve_pages += max; 4974 } 4975 } 4976 totalreserve_pages = reserve_pages; 4977 } 4978 4979 /* 4980 * setup_per_zone_lowmem_reserve - called whenever 4981 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4982 * has a correct pages reserved value, so an adequate number of 4983 * pages are left in the zone after a successful __alloc_pages(). 4984 */ 4985 static void setup_per_zone_lowmem_reserve(void) 4986 { 4987 struct pglist_data *pgdat; 4988 enum zone_type j, idx; 4989 4990 for_each_online_pgdat(pgdat) { 4991 for (j = 0; j < MAX_NR_ZONES; j++) { 4992 struct zone *zone = pgdat->node_zones + j; 4993 unsigned long present_pages = zone->present_pages; 4994 4995 zone->lowmem_reserve[j] = 0; 4996 4997 idx = j; 4998 while (idx) { 4999 struct zone *lower_zone; 5000 5001 idx--; 5002 5003 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5004 sysctl_lowmem_reserve_ratio[idx] = 1; 5005 5006 lower_zone = pgdat->node_zones + idx; 5007 lower_zone->lowmem_reserve[j] = present_pages / 5008 sysctl_lowmem_reserve_ratio[idx]; 5009 present_pages += lower_zone->present_pages; 5010 } 5011 } 5012 } 5013 5014 /* update totalreserve_pages */ 5015 calculate_totalreserve_pages(); 5016 } 5017 5018 /** 5019 * setup_per_zone_wmarks - called when min_free_kbytes changes 5020 * or when memory is hot-{added|removed} 5021 * 5022 * Ensures that the watermark[min,low,high] values for each zone are set 5023 * correctly with respect to min_free_kbytes. 5024 */ 5025 void setup_per_zone_wmarks(void) 5026 { 5027 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5028 unsigned long lowmem_pages = 0; 5029 struct zone *zone; 5030 unsigned long flags; 5031 5032 /* Calculate total number of !ZONE_HIGHMEM pages */ 5033 for_each_zone(zone) { 5034 if (!is_highmem(zone)) 5035 lowmem_pages += zone->present_pages; 5036 } 5037 5038 for_each_zone(zone) { 5039 u64 tmp; 5040 5041 spin_lock_irqsave(&zone->lock, flags); 5042 tmp = (u64)pages_min * zone->present_pages; 5043 do_div(tmp, lowmem_pages); 5044 if (is_highmem(zone)) { 5045 /* 5046 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5047 * need highmem pages, so cap pages_min to a small 5048 * value here. 5049 * 5050 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5051 * deltas controls asynch page reclaim, and so should 5052 * not be capped for highmem. 5053 */ 5054 int min_pages; 5055 5056 min_pages = zone->present_pages / 1024; 5057 if (min_pages < SWAP_CLUSTER_MAX) 5058 min_pages = SWAP_CLUSTER_MAX; 5059 if (min_pages > 128) 5060 min_pages = 128; 5061 zone->watermark[WMARK_MIN] = min_pages; 5062 } else { 5063 /* 5064 * If it's a lowmem zone, reserve a number of pages 5065 * proportionate to the zone's size. 5066 */ 5067 zone->watermark[WMARK_MIN] = tmp; 5068 } 5069 5070 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5071 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5072 setup_zone_migrate_reserve(zone); 5073 spin_unlock_irqrestore(&zone->lock, flags); 5074 } 5075 5076 /* update totalreserve_pages */ 5077 calculate_totalreserve_pages(); 5078 } 5079 5080 /* 5081 * The inactive anon list should be small enough that the VM never has to 5082 * do too much work, but large enough that each inactive page has a chance 5083 * to be referenced again before it is swapped out. 5084 * 5085 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5086 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5087 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5088 * the anonymous pages are kept on the inactive list. 5089 * 5090 * total target max 5091 * memory ratio inactive anon 5092 * ------------------------------------- 5093 * 10MB 1 5MB 5094 * 100MB 1 50MB 5095 * 1GB 3 250MB 5096 * 10GB 10 0.9GB 5097 * 100GB 31 3GB 5098 * 1TB 101 10GB 5099 * 10TB 320 32GB 5100 */ 5101 void calculate_zone_inactive_ratio(struct zone *zone) 5102 { 5103 unsigned int gb, ratio; 5104 5105 /* Zone size in gigabytes */ 5106 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5107 if (gb) 5108 ratio = int_sqrt(10 * gb); 5109 else 5110 ratio = 1; 5111 5112 zone->inactive_ratio = ratio; 5113 } 5114 5115 static void __init setup_per_zone_inactive_ratio(void) 5116 { 5117 struct zone *zone; 5118 5119 for_each_zone(zone) 5120 calculate_zone_inactive_ratio(zone); 5121 } 5122 5123 /* 5124 * Initialise min_free_kbytes. 5125 * 5126 * For small machines we want it small (128k min). For large machines 5127 * we want it large (64MB max). But it is not linear, because network 5128 * bandwidth does not increase linearly with machine size. We use 5129 * 5130 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5131 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5132 * 5133 * which yields 5134 * 5135 * 16MB: 512k 5136 * 32MB: 724k 5137 * 64MB: 1024k 5138 * 128MB: 1448k 5139 * 256MB: 2048k 5140 * 512MB: 2896k 5141 * 1024MB: 4096k 5142 * 2048MB: 5792k 5143 * 4096MB: 8192k 5144 * 8192MB: 11584k 5145 * 16384MB: 16384k 5146 */ 5147 static int __init init_per_zone_wmark_min(void) 5148 { 5149 unsigned long lowmem_kbytes; 5150 5151 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5152 5153 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5154 if (min_free_kbytes < 128) 5155 min_free_kbytes = 128; 5156 if (min_free_kbytes > 65536) 5157 min_free_kbytes = 65536; 5158 setup_per_zone_wmarks(); 5159 setup_per_zone_lowmem_reserve(); 5160 setup_per_zone_inactive_ratio(); 5161 return 0; 5162 } 5163 module_init(init_per_zone_wmark_min) 5164 5165 /* 5166 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5167 * that we can call two helper functions whenever min_free_kbytes 5168 * changes. 5169 */ 5170 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5171 void __user *buffer, size_t *length, loff_t *ppos) 5172 { 5173 proc_dointvec(table, write, buffer, length, ppos); 5174 if (write) 5175 setup_per_zone_wmarks(); 5176 return 0; 5177 } 5178 5179 #ifdef CONFIG_NUMA 5180 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5181 void __user *buffer, size_t *length, loff_t *ppos) 5182 { 5183 struct zone *zone; 5184 int rc; 5185 5186 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5187 if (rc) 5188 return rc; 5189 5190 for_each_zone(zone) 5191 zone->min_unmapped_pages = (zone->present_pages * 5192 sysctl_min_unmapped_ratio) / 100; 5193 return 0; 5194 } 5195 5196 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5197 void __user *buffer, size_t *length, loff_t *ppos) 5198 { 5199 struct zone *zone; 5200 int rc; 5201 5202 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5203 if (rc) 5204 return rc; 5205 5206 for_each_zone(zone) 5207 zone->min_slab_pages = (zone->present_pages * 5208 sysctl_min_slab_ratio) / 100; 5209 return 0; 5210 } 5211 #endif 5212 5213 /* 5214 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5215 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5216 * whenever sysctl_lowmem_reserve_ratio changes. 5217 * 5218 * The reserve ratio obviously has absolutely no relation with the 5219 * minimum watermarks. The lowmem reserve ratio can only make sense 5220 * if in function of the boot time zone sizes. 5221 */ 5222 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5223 void __user *buffer, size_t *length, loff_t *ppos) 5224 { 5225 proc_dointvec_minmax(table, write, buffer, length, ppos); 5226 setup_per_zone_lowmem_reserve(); 5227 return 0; 5228 } 5229 5230 /* 5231 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5232 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5233 * can have before it gets flushed back to buddy allocator. 5234 */ 5235 5236 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5237 void __user *buffer, size_t *length, loff_t *ppos) 5238 { 5239 struct zone *zone; 5240 unsigned int cpu; 5241 int ret; 5242 5243 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5244 if (!write || (ret == -EINVAL)) 5245 return ret; 5246 for_each_populated_zone(zone) { 5247 for_each_possible_cpu(cpu) { 5248 unsigned long high; 5249 high = zone->present_pages / percpu_pagelist_fraction; 5250 setup_pagelist_highmark( 5251 per_cpu_ptr(zone->pageset, cpu), high); 5252 } 5253 } 5254 return 0; 5255 } 5256 5257 int hashdist = HASHDIST_DEFAULT; 5258 5259 #ifdef CONFIG_NUMA 5260 static int __init set_hashdist(char *str) 5261 { 5262 if (!str) 5263 return 0; 5264 hashdist = simple_strtoul(str, &str, 0); 5265 return 1; 5266 } 5267 __setup("hashdist=", set_hashdist); 5268 #endif 5269 5270 /* 5271 * allocate a large system hash table from bootmem 5272 * - it is assumed that the hash table must contain an exact power-of-2 5273 * quantity of entries 5274 * - limit is the number of hash buckets, not the total allocation size 5275 */ 5276 void *__init alloc_large_system_hash(const char *tablename, 5277 unsigned long bucketsize, 5278 unsigned long numentries, 5279 int scale, 5280 int flags, 5281 unsigned int *_hash_shift, 5282 unsigned int *_hash_mask, 5283 unsigned long limit) 5284 { 5285 unsigned long long max = limit; 5286 unsigned long log2qty, size; 5287 void *table = NULL; 5288 5289 /* allow the kernel cmdline to have a say */ 5290 if (!numentries) { 5291 /* round applicable memory size up to nearest megabyte */ 5292 numentries = nr_kernel_pages; 5293 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5294 numentries >>= 20 - PAGE_SHIFT; 5295 numentries <<= 20 - PAGE_SHIFT; 5296 5297 /* limit to 1 bucket per 2^scale bytes of low memory */ 5298 if (scale > PAGE_SHIFT) 5299 numentries >>= (scale - PAGE_SHIFT); 5300 else 5301 numentries <<= (PAGE_SHIFT - scale); 5302 5303 /* Make sure we've got at least a 0-order allocation.. */ 5304 if (unlikely(flags & HASH_SMALL)) { 5305 /* Makes no sense without HASH_EARLY */ 5306 WARN_ON(!(flags & HASH_EARLY)); 5307 if (!(numentries >> *_hash_shift)) { 5308 numentries = 1UL << *_hash_shift; 5309 BUG_ON(!numentries); 5310 } 5311 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5312 numentries = PAGE_SIZE / bucketsize; 5313 } 5314 numentries = roundup_pow_of_two(numentries); 5315 5316 /* limit allocation size to 1/16 total memory by default */ 5317 if (max == 0) { 5318 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5319 do_div(max, bucketsize); 5320 } 5321 5322 if (numentries > max) 5323 numentries = max; 5324 5325 log2qty = ilog2(numentries); 5326 5327 do { 5328 size = bucketsize << log2qty; 5329 if (flags & HASH_EARLY) 5330 table = alloc_bootmem_nopanic(size); 5331 else if (hashdist) 5332 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5333 else { 5334 /* 5335 * If bucketsize is not a power-of-two, we may free 5336 * some pages at the end of hash table which 5337 * alloc_pages_exact() automatically does 5338 */ 5339 if (get_order(size) < MAX_ORDER) { 5340 table = alloc_pages_exact(size, GFP_ATOMIC); 5341 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5342 } 5343 } 5344 } while (!table && size > PAGE_SIZE && --log2qty); 5345 5346 if (!table) 5347 panic("Failed to allocate %s hash table\n", tablename); 5348 5349 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5350 tablename, 5351 (1UL << log2qty), 5352 ilog2(size) - PAGE_SHIFT, 5353 size); 5354 5355 if (_hash_shift) 5356 *_hash_shift = log2qty; 5357 if (_hash_mask) 5358 *_hash_mask = (1 << log2qty) - 1; 5359 5360 return table; 5361 } 5362 5363 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5364 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5365 unsigned long pfn) 5366 { 5367 #ifdef CONFIG_SPARSEMEM 5368 return __pfn_to_section(pfn)->pageblock_flags; 5369 #else 5370 return zone->pageblock_flags; 5371 #endif /* CONFIG_SPARSEMEM */ 5372 } 5373 5374 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5375 { 5376 #ifdef CONFIG_SPARSEMEM 5377 pfn &= (PAGES_PER_SECTION-1); 5378 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5379 #else 5380 pfn = pfn - zone->zone_start_pfn; 5381 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5382 #endif /* CONFIG_SPARSEMEM */ 5383 } 5384 5385 /** 5386 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5387 * @page: The page within the block of interest 5388 * @start_bitidx: The first bit of interest to retrieve 5389 * @end_bitidx: The last bit of interest 5390 * returns pageblock_bits flags 5391 */ 5392 unsigned long get_pageblock_flags_group(struct page *page, 5393 int start_bitidx, int end_bitidx) 5394 { 5395 struct zone *zone; 5396 unsigned long *bitmap; 5397 unsigned long pfn, bitidx; 5398 unsigned long flags = 0; 5399 unsigned long value = 1; 5400 5401 zone = page_zone(page); 5402 pfn = page_to_pfn(page); 5403 bitmap = get_pageblock_bitmap(zone, pfn); 5404 bitidx = pfn_to_bitidx(zone, pfn); 5405 5406 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5407 if (test_bit(bitidx + start_bitidx, bitmap)) 5408 flags |= value; 5409 5410 return flags; 5411 } 5412 5413 /** 5414 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5415 * @page: The page within the block of interest 5416 * @start_bitidx: The first bit of interest 5417 * @end_bitidx: The last bit of interest 5418 * @flags: The flags to set 5419 */ 5420 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5421 int start_bitidx, int end_bitidx) 5422 { 5423 struct zone *zone; 5424 unsigned long *bitmap; 5425 unsigned long pfn, bitidx; 5426 unsigned long value = 1; 5427 5428 zone = page_zone(page); 5429 pfn = page_to_pfn(page); 5430 bitmap = get_pageblock_bitmap(zone, pfn); 5431 bitidx = pfn_to_bitidx(zone, pfn); 5432 VM_BUG_ON(pfn < zone->zone_start_pfn); 5433 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5434 5435 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5436 if (flags & value) 5437 __set_bit(bitidx + start_bitidx, bitmap); 5438 else 5439 __clear_bit(bitidx + start_bitidx, bitmap); 5440 } 5441 5442 /* 5443 * This is designed as sub function...plz see page_isolation.c also. 5444 * set/clear page block's type to be ISOLATE. 5445 * page allocater never alloc memory from ISOLATE block. 5446 */ 5447 5448 static int 5449 __count_immobile_pages(struct zone *zone, struct page *page, int count) 5450 { 5451 unsigned long pfn, iter, found; 5452 /* 5453 * For avoiding noise data, lru_add_drain_all() should be called 5454 * If ZONE_MOVABLE, the zone never contains immobile pages 5455 */ 5456 if (zone_idx(zone) == ZONE_MOVABLE) 5457 return true; 5458 5459 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) 5460 return true; 5461 5462 pfn = page_to_pfn(page); 5463 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5464 unsigned long check = pfn + iter; 5465 5466 if (!pfn_valid_within(check)) 5467 continue; 5468 5469 page = pfn_to_page(check); 5470 if (!page_count(page)) { 5471 if (PageBuddy(page)) 5472 iter += (1 << page_order(page)) - 1; 5473 continue; 5474 } 5475 if (!PageLRU(page)) 5476 found++; 5477 /* 5478 * If there are RECLAIMABLE pages, we need to check it. 5479 * But now, memory offline itself doesn't call shrink_slab() 5480 * and it still to be fixed. 5481 */ 5482 /* 5483 * If the page is not RAM, page_count()should be 0. 5484 * we don't need more check. This is an _used_ not-movable page. 5485 * 5486 * The problematic thing here is PG_reserved pages. PG_reserved 5487 * is set to both of a memory hole page and a _used_ kernel 5488 * page at boot. 5489 */ 5490 if (found > count) 5491 return false; 5492 } 5493 return true; 5494 } 5495 5496 bool is_pageblock_removable_nolock(struct page *page) 5497 { 5498 struct zone *zone = page_zone(page); 5499 return __count_immobile_pages(zone, page, 0); 5500 } 5501 5502 int set_migratetype_isolate(struct page *page) 5503 { 5504 struct zone *zone; 5505 unsigned long flags, pfn; 5506 struct memory_isolate_notify arg; 5507 int notifier_ret; 5508 int ret = -EBUSY; 5509 int zone_idx; 5510 5511 zone = page_zone(page); 5512 zone_idx = zone_idx(zone); 5513 5514 spin_lock_irqsave(&zone->lock, flags); 5515 5516 pfn = page_to_pfn(page); 5517 arg.start_pfn = pfn; 5518 arg.nr_pages = pageblock_nr_pages; 5519 arg.pages_found = 0; 5520 5521 /* 5522 * It may be possible to isolate a pageblock even if the 5523 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5524 * notifier chain is used by balloon drivers to return the 5525 * number of pages in a range that are held by the balloon 5526 * driver to shrink memory. If all the pages are accounted for 5527 * by balloons, are free, or on the LRU, isolation can continue. 5528 * Later, for example, when memory hotplug notifier runs, these 5529 * pages reported as "can be isolated" should be isolated(freed) 5530 * by the balloon driver through the memory notifier chain. 5531 */ 5532 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5533 notifier_ret = notifier_to_errno(notifier_ret); 5534 if (notifier_ret) 5535 goto out; 5536 /* 5537 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 5538 * We just check MOVABLE pages. 5539 */ 5540 if (__count_immobile_pages(zone, page, arg.pages_found)) 5541 ret = 0; 5542 5543 /* 5544 * immobile means "not-on-lru" paes. If immobile is larger than 5545 * removable-by-driver pages reported by notifier, we'll fail. 5546 */ 5547 5548 out: 5549 if (!ret) { 5550 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5551 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5552 } 5553 5554 spin_unlock_irqrestore(&zone->lock, flags); 5555 if (!ret) 5556 drain_all_pages(); 5557 return ret; 5558 } 5559 5560 void unset_migratetype_isolate(struct page *page) 5561 { 5562 struct zone *zone; 5563 unsigned long flags; 5564 zone = page_zone(page); 5565 spin_lock_irqsave(&zone->lock, flags); 5566 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5567 goto out; 5568 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5569 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5570 out: 5571 spin_unlock_irqrestore(&zone->lock, flags); 5572 } 5573 5574 #ifdef CONFIG_MEMORY_HOTREMOVE 5575 /* 5576 * All pages in the range must be isolated before calling this. 5577 */ 5578 void 5579 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5580 { 5581 struct page *page; 5582 struct zone *zone; 5583 int order, i; 5584 unsigned long pfn; 5585 unsigned long flags; 5586 /* find the first valid pfn */ 5587 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5588 if (pfn_valid(pfn)) 5589 break; 5590 if (pfn == end_pfn) 5591 return; 5592 zone = page_zone(pfn_to_page(pfn)); 5593 spin_lock_irqsave(&zone->lock, flags); 5594 pfn = start_pfn; 5595 while (pfn < end_pfn) { 5596 if (!pfn_valid(pfn)) { 5597 pfn++; 5598 continue; 5599 } 5600 page = pfn_to_page(pfn); 5601 BUG_ON(page_count(page)); 5602 BUG_ON(!PageBuddy(page)); 5603 order = page_order(page); 5604 #ifdef CONFIG_DEBUG_VM 5605 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5606 pfn, 1 << order, end_pfn); 5607 #endif 5608 list_del(&page->lru); 5609 rmv_page_order(page); 5610 zone->free_area[order].nr_free--; 5611 __mod_zone_page_state(zone, NR_FREE_PAGES, 5612 - (1UL << order)); 5613 for (i = 0; i < (1 << order); i++) 5614 SetPageReserved((page+i)); 5615 pfn += (1 << order); 5616 } 5617 spin_unlock_irqrestore(&zone->lock, flags); 5618 } 5619 #endif 5620 5621 #ifdef CONFIG_MEMORY_FAILURE 5622 bool is_free_buddy_page(struct page *page) 5623 { 5624 struct zone *zone = page_zone(page); 5625 unsigned long pfn = page_to_pfn(page); 5626 unsigned long flags; 5627 int order; 5628 5629 spin_lock_irqsave(&zone->lock, flags); 5630 for (order = 0; order < MAX_ORDER; order++) { 5631 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5632 5633 if (PageBuddy(page_head) && page_order(page_head) >= order) 5634 break; 5635 } 5636 spin_unlock_irqrestore(&zone->lock, flags); 5637 5638 return order < MAX_ORDER; 5639 } 5640 #endif 5641 5642 static struct trace_print_flags pageflag_names[] = { 5643 {1UL << PG_locked, "locked" }, 5644 {1UL << PG_error, "error" }, 5645 {1UL << PG_referenced, "referenced" }, 5646 {1UL << PG_uptodate, "uptodate" }, 5647 {1UL << PG_dirty, "dirty" }, 5648 {1UL << PG_lru, "lru" }, 5649 {1UL << PG_active, "active" }, 5650 {1UL << PG_slab, "slab" }, 5651 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5652 {1UL << PG_arch_1, "arch_1" }, 5653 {1UL << PG_reserved, "reserved" }, 5654 {1UL << PG_private, "private" }, 5655 {1UL << PG_private_2, "private_2" }, 5656 {1UL << PG_writeback, "writeback" }, 5657 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5658 {1UL << PG_head, "head" }, 5659 {1UL << PG_tail, "tail" }, 5660 #else 5661 {1UL << PG_compound, "compound" }, 5662 #endif 5663 {1UL << PG_swapcache, "swapcache" }, 5664 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5665 {1UL << PG_reclaim, "reclaim" }, 5666 {1UL << PG_swapbacked, "swapbacked" }, 5667 {1UL << PG_unevictable, "unevictable" }, 5668 #ifdef CONFIG_MMU 5669 {1UL << PG_mlocked, "mlocked" }, 5670 #endif 5671 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5672 {1UL << PG_uncached, "uncached" }, 5673 #endif 5674 #ifdef CONFIG_MEMORY_FAILURE 5675 {1UL << PG_hwpoison, "hwpoison" }, 5676 #endif 5677 {-1UL, NULL }, 5678 }; 5679 5680 static void dump_page_flags(unsigned long flags) 5681 { 5682 const char *delim = ""; 5683 unsigned long mask; 5684 int i; 5685 5686 printk(KERN_ALERT "page flags: %#lx(", flags); 5687 5688 /* remove zone id */ 5689 flags &= (1UL << NR_PAGEFLAGS) - 1; 5690 5691 for (i = 0; pageflag_names[i].name && flags; i++) { 5692 5693 mask = pageflag_names[i].mask; 5694 if ((flags & mask) != mask) 5695 continue; 5696 5697 flags &= ~mask; 5698 printk("%s%s", delim, pageflag_names[i].name); 5699 delim = "|"; 5700 } 5701 5702 /* check for left over flags */ 5703 if (flags) 5704 printk("%s%#lx", delim, flags); 5705 5706 printk(")\n"); 5707 } 5708 5709 void dump_page(struct page *page) 5710 { 5711 printk(KERN_ALERT 5712 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5713 page, atomic_read(&page->_count), page_mapcount(page), 5714 page->mapping, page->index); 5715 dump_page_flags(page->flags); 5716 mem_cgroup_print_bad_page(page); 5717 } 5718