xref: /linux/mm/page_alloc.c (revision 394d83c17fac2b7bcf05cb99d1e945135767bb6b)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
56 
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node);
63 EXPORT_PER_CPU_SYMBOL(numa_node);
64 #endif
65 
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 /*
68  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71  * defined in <linux/topology.h>.
72  */
73 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75 #endif
76 
77 /*
78  * Array of node states.
79  */
80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 	[N_POSSIBLE] = NODE_MASK_ALL,
82 	[N_ONLINE] = { { [0] = 1UL } },
83 #ifndef CONFIG_NUMA
84 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
85 #ifdef CONFIG_HIGHMEM
86 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
87 #endif
88 	[N_CPU] = { { [0] = 1UL } },
89 #endif	/* NUMA */
90 };
91 EXPORT_SYMBOL(node_states);
92 
93 unsigned long totalram_pages __read_mostly;
94 unsigned long totalreserve_pages __read_mostly;
95 int percpu_pagelist_fraction;
96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
97 
98 #ifdef CONFIG_PM_SLEEP
99 /*
100  * The following functions are used by the suspend/hibernate code to temporarily
101  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102  * while devices are suspended.  To avoid races with the suspend/hibernate code,
103  * they should always be called with pm_mutex held (gfp_allowed_mask also should
104  * only be modified with pm_mutex held, unless the suspend/hibernate code is
105  * guaranteed not to run in parallel with that modification).
106  */
107 
108 static gfp_t saved_gfp_mask;
109 
110 void pm_restore_gfp_mask(void)
111 {
112 	WARN_ON(!mutex_is_locked(&pm_mutex));
113 	if (saved_gfp_mask) {
114 		gfp_allowed_mask = saved_gfp_mask;
115 		saved_gfp_mask = 0;
116 	}
117 }
118 
119 void pm_restrict_gfp_mask(void)
120 {
121 	WARN_ON(!mutex_is_locked(&pm_mutex));
122 	WARN_ON(saved_gfp_mask);
123 	saved_gfp_mask = gfp_allowed_mask;
124 	gfp_allowed_mask &= ~GFP_IOFS;
125 }
126 #endif /* CONFIG_PM_SLEEP */
127 
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly;
130 #endif
131 
132 static void __free_pages_ok(struct page *page, unsigned int order);
133 
134 /*
135  * results with 256, 32 in the lowmem_reserve sysctl:
136  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137  *	1G machine -> (16M dma, 784M normal, 224M high)
138  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
141  *
142  * TBD: should special case ZONE_DMA32 machines here - in those we normally
143  * don't need any ZONE_NORMAL reservation
144  */
145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
146 #ifdef CONFIG_ZONE_DMA
147 	 256,
148 #endif
149 #ifdef CONFIG_ZONE_DMA32
150 	 256,
151 #endif
152 #ifdef CONFIG_HIGHMEM
153 	 32,
154 #endif
155 	 32,
156 };
157 
158 EXPORT_SYMBOL(totalram_pages);
159 
160 static char * const zone_names[MAX_NR_ZONES] = {
161 #ifdef CONFIG_ZONE_DMA
162 	 "DMA",
163 #endif
164 #ifdef CONFIG_ZONE_DMA32
165 	 "DMA32",
166 #endif
167 	 "Normal",
168 #ifdef CONFIG_HIGHMEM
169 	 "HighMem",
170 #endif
171 	 "Movable",
172 };
173 
174 int min_free_kbytes = 1024;
175 
176 static unsigned long __meminitdata nr_kernel_pages;
177 static unsigned long __meminitdata nr_all_pages;
178 static unsigned long __meminitdata dma_reserve;
179 
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181   /*
182    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183    * ranges of memory (RAM) that may be registered with add_active_range().
184    * Ranges passed to add_active_range() will be merged if possible
185    * so the number of times add_active_range() can be called is
186    * related to the number of nodes and the number of holes
187    */
188   #ifdef CONFIG_MAX_ACTIVE_REGIONS
189     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191   #else
192     #if MAX_NUMNODES >= 32
193       /* If there can be many nodes, allow up to 50 holes per node */
194       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195     #else
196       /* By default, allow up to 256 distinct regions */
197       #define MAX_ACTIVE_REGIONS 256
198     #endif
199   #endif
200 
201   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202   static int __meminitdata nr_nodemap_entries;
203   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
205   static unsigned long __initdata required_kernelcore;
206   static unsigned long __initdata required_movablecore;
207   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
208 
209   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210   int movable_zone;
211   EXPORT_SYMBOL(movable_zone);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213 
214 #if MAX_NUMNODES > 1
215 int nr_node_ids __read_mostly = MAX_NUMNODES;
216 int nr_online_nodes __read_mostly = 1;
217 EXPORT_SYMBOL(nr_node_ids);
218 EXPORT_SYMBOL(nr_online_nodes);
219 #endif
220 
221 int page_group_by_mobility_disabled __read_mostly;
222 
223 static void set_pageblock_migratetype(struct page *page, int migratetype)
224 {
225 
226 	if (unlikely(page_group_by_mobility_disabled))
227 		migratetype = MIGRATE_UNMOVABLE;
228 
229 	set_pageblock_flags_group(page, (unsigned long)migratetype,
230 					PB_migrate, PB_migrate_end);
231 }
232 
233 bool oom_killer_disabled __read_mostly;
234 
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
237 {
238 	int ret = 0;
239 	unsigned seq;
240 	unsigned long pfn = page_to_pfn(page);
241 
242 	do {
243 		seq = zone_span_seqbegin(zone);
244 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 			ret = 1;
246 		else if (pfn < zone->zone_start_pfn)
247 			ret = 1;
248 	} while (zone_span_seqretry(zone, seq));
249 
250 	return ret;
251 }
252 
253 static int page_is_consistent(struct zone *zone, struct page *page)
254 {
255 	if (!pfn_valid_within(page_to_pfn(page)))
256 		return 0;
257 	if (zone != page_zone(page))
258 		return 0;
259 
260 	return 1;
261 }
262 /*
263  * Temporary debugging check for pages not lying within a given zone.
264  */
265 static int bad_range(struct zone *zone, struct page *page)
266 {
267 	if (page_outside_zone_boundaries(zone, page))
268 		return 1;
269 	if (!page_is_consistent(zone, page))
270 		return 1;
271 
272 	return 0;
273 }
274 #else
275 static inline int bad_range(struct zone *zone, struct page *page)
276 {
277 	return 0;
278 }
279 #endif
280 
281 static void bad_page(struct page *page)
282 {
283 	static unsigned long resume;
284 	static unsigned long nr_shown;
285 	static unsigned long nr_unshown;
286 
287 	/* Don't complain about poisoned pages */
288 	if (PageHWPoison(page)) {
289 		__ClearPageBuddy(page);
290 		return;
291 	}
292 
293 	/*
294 	 * Allow a burst of 60 reports, then keep quiet for that minute;
295 	 * or allow a steady drip of one report per second.
296 	 */
297 	if (nr_shown == 60) {
298 		if (time_before(jiffies, resume)) {
299 			nr_unshown++;
300 			goto out;
301 		}
302 		if (nr_unshown) {
303 			printk(KERN_ALERT
304 			      "BUG: Bad page state: %lu messages suppressed\n",
305 				nr_unshown);
306 			nr_unshown = 0;
307 		}
308 		nr_shown = 0;
309 	}
310 	if (nr_shown++ == 0)
311 		resume = jiffies + 60 * HZ;
312 
313 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
314 		current->comm, page_to_pfn(page));
315 	dump_page(page);
316 
317 	dump_stack();
318 out:
319 	/* Leave bad fields for debug, except PageBuddy could make trouble */
320 	__ClearPageBuddy(page);
321 	add_taint(TAINT_BAD_PAGE);
322 }
323 
324 /*
325  * Higher-order pages are called "compound pages".  They are structured thusly:
326  *
327  * The first PAGE_SIZE page is called the "head page".
328  *
329  * The remaining PAGE_SIZE pages are called "tail pages".
330  *
331  * All pages have PG_compound set.  All pages have their ->private pointing at
332  * the head page (even the head page has this).
333  *
334  * The first tail page's ->lru.next holds the address of the compound page's
335  * put_page() function.  Its ->lru.prev holds the order of allocation.
336  * This usage means that zero-order pages may not be compound.
337  */
338 
339 static void free_compound_page(struct page *page)
340 {
341 	__free_pages_ok(page, compound_order(page));
342 }
343 
344 void prep_compound_page(struct page *page, unsigned long order)
345 {
346 	int i;
347 	int nr_pages = 1 << order;
348 
349 	set_compound_page_dtor(page, free_compound_page);
350 	set_compound_order(page, order);
351 	__SetPageHead(page);
352 	for (i = 1; i < nr_pages; i++) {
353 		struct page *p = page + i;
354 
355 		__SetPageTail(p);
356 		p->first_page = page;
357 	}
358 }
359 
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page *page, unsigned long order)
362 {
363 	int i;
364 	int nr_pages = 1 << order;
365 	int bad = 0;
366 
367 	if (unlikely(compound_order(page) != order) ||
368 	    unlikely(!PageHead(page))) {
369 		bad_page(page);
370 		bad++;
371 	}
372 
373 	__ClearPageHead(page);
374 
375 	for (i = 1; i < nr_pages; i++) {
376 		struct page *p = page + i;
377 
378 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
379 			bad_page(page);
380 			bad++;
381 		}
382 		__ClearPageTail(p);
383 	}
384 
385 	return bad;
386 }
387 
388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389 {
390 	int i;
391 
392 	/*
393 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 	 */
396 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
397 	for (i = 0; i < (1 << order); i++)
398 		clear_highpage(page + i);
399 }
400 
401 static inline void set_page_order(struct page *page, int order)
402 {
403 	set_page_private(page, order);
404 	__SetPageBuddy(page);
405 }
406 
407 static inline void rmv_page_order(struct page *page)
408 {
409 	__ClearPageBuddy(page);
410 	set_page_private(page, 0);
411 }
412 
413 /*
414  * Locate the struct page for both the matching buddy in our
415  * pair (buddy1) and the combined O(n+1) page they form (page).
416  *
417  * 1) Any buddy B1 will have an order O twin B2 which satisfies
418  * the following equation:
419  *     B2 = B1 ^ (1 << O)
420  * For example, if the starting buddy (buddy2) is #8 its order
421  * 1 buddy is #10:
422  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
423  *
424  * 2) Any buddy B will have an order O+1 parent P which
425  * satisfies the following equation:
426  *     P = B & ~(1 << O)
427  *
428  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
429  */
430 static inline unsigned long
431 __find_buddy_index(unsigned long page_idx, unsigned int order)
432 {
433 	return page_idx ^ (1 << order);
434 }
435 
436 /*
437  * This function checks whether a page is free && is the buddy
438  * we can do coalesce a page and its buddy if
439  * (a) the buddy is not in a hole &&
440  * (b) the buddy is in the buddy system &&
441  * (c) a page and its buddy have the same order &&
442  * (d) a page and its buddy are in the same zone.
443  *
444  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
445  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
446  *
447  * For recording page's order, we use page_private(page).
448  */
449 static inline int page_is_buddy(struct page *page, struct page *buddy,
450 								int order)
451 {
452 	if (!pfn_valid_within(page_to_pfn(buddy)))
453 		return 0;
454 
455 	if (page_zone_id(page) != page_zone_id(buddy))
456 		return 0;
457 
458 	if (PageBuddy(buddy) && page_order(buddy) == order) {
459 		VM_BUG_ON(page_count(buddy) != 0);
460 		return 1;
461 	}
462 	return 0;
463 }
464 
465 /*
466  * Freeing function for a buddy system allocator.
467  *
468  * The concept of a buddy system is to maintain direct-mapped table
469  * (containing bit values) for memory blocks of various "orders".
470  * The bottom level table contains the map for the smallest allocatable
471  * units of memory (here, pages), and each level above it describes
472  * pairs of units from the levels below, hence, "buddies".
473  * At a high level, all that happens here is marking the table entry
474  * at the bottom level available, and propagating the changes upward
475  * as necessary, plus some accounting needed to play nicely with other
476  * parts of the VM system.
477  * At each level, we keep a list of pages, which are heads of continuous
478  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
479  * order is recorded in page_private(page) field.
480  * So when we are allocating or freeing one, we can derive the state of the
481  * other.  That is, if we allocate a small block, and both were
482  * free, the remainder of the region must be split into blocks.
483  * If a block is freed, and its buddy is also free, then this
484  * triggers coalescing into a block of larger size.
485  *
486  * -- wli
487  */
488 
489 static inline void __free_one_page(struct page *page,
490 		struct zone *zone, unsigned int order,
491 		int migratetype)
492 {
493 	unsigned long page_idx;
494 	unsigned long combined_idx;
495 	unsigned long uninitialized_var(buddy_idx);
496 	struct page *buddy;
497 
498 	if (unlikely(PageCompound(page)))
499 		if (unlikely(destroy_compound_page(page, order)))
500 			return;
501 
502 	VM_BUG_ON(migratetype == -1);
503 
504 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
505 
506 	VM_BUG_ON(page_idx & ((1 << order) - 1));
507 	VM_BUG_ON(bad_range(zone, page));
508 
509 	while (order < MAX_ORDER-1) {
510 		buddy_idx = __find_buddy_index(page_idx, order);
511 		buddy = page + (buddy_idx - page_idx);
512 		if (!page_is_buddy(page, buddy, order))
513 			break;
514 
515 		/* Our buddy is free, merge with it and move up one order. */
516 		list_del(&buddy->lru);
517 		zone->free_area[order].nr_free--;
518 		rmv_page_order(buddy);
519 		combined_idx = buddy_idx & page_idx;
520 		page = page + (combined_idx - page_idx);
521 		page_idx = combined_idx;
522 		order++;
523 	}
524 	set_page_order(page, order);
525 
526 	/*
527 	 * If this is not the largest possible page, check if the buddy
528 	 * of the next-highest order is free. If it is, it's possible
529 	 * that pages are being freed that will coalesce soon. In case,
530 	 * that is happening, add the free page to the tail of the list
531 	 * so it's less likely to be used soon and more likely to be merged
532 	 * as a higher order page
533 	 */
534 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
535 		struct page *higher_page, *higher_buddy;
536 		combined_idx = buddy_idx & page_idx;
537 		higher_page = page + (combined_idx - page_idx);
538 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
539 		higher_buddy = page + (buddy_idx - combined_idx);
540 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
541 			list_add_tail(&page->lru,
542 				&zone->free_area[order].free_list[migratetype]);
543 			goto out;
544 		}
545 	}
546 
547 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
548 out:
549 	zone->free_area[order].nr_free++;
550 }
551 
552 /*
553  * free_page_mlock() -- clean up attempts to free and mlocked() page.
554  * Page should not be on lru, so no need to fix that up.
555  * free_pages_check() will verify...
556  */
557 static inline void free_page_mlock(struct page *page)
558 {
559 	__dec_zone_page_state(page, NR_MLOCK);
560 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
561 }
562 
563 static inline int free_pages_check(struct page *page)
564 {
565 	if (unlikely(page_mapcount(page) |
566 		(page->mapping != NULL)  |
567 		(atomic_read(&page->_count) != 0) |
568 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
569 		bad_page(page);
570 		return 1;
571 	}
572 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
573 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
574 	return 0;
575 }
576 
577 /*
578  * Frees a number of pages from the PCP lists
579  * Assumes all pages on list are in same zone, and of same order.
580  * count is the number of pages to free.
581  *
582  * If the zone was previously in an "all pages pinned" state then look to
583  * see if this freeing clears that state.
584  *
585  * And clear the zone's pages_scanned counter, to hold off the "all pages are
586  * pinned" detection logic.
587  */
588 static void free_pcppages_bulk(struct zone *zone, int count,
589 					struct per_cpu_pages *pcp)
590 {
591 	int migratetype = 0;
592 	int batch_free = 0;
593 	int to_free = count;
594 
595 	spin_lock(&zone->lock);
596 	zone->all_unreclaimable = 0;
597 	zone->pages_scanned = 0;
598 
599 	while (to_free) {
600 		struct page *page;
601 		struct list_head *list;
602 
603 		/*
604 		 * Remove pages from lists in a round-robin fashion. A
605 		 * batch_free count is maintained that is incremented when an
606 		 * empty list is encountered.  This is so more pages are freed
607 		 * off fuller lists instead of spinning excessively around empty
608 		 * lists
609 		 */
610 		do {
611 			batch_free++;
612 			if (++migratetype == MIGRATE_PCPTYPES)
613 				migratetype = 0;
614 			list = &pcp->lists[migratetype];
615 		} while (list_empty(list));
616 
617 		do {
618 			page = list_entry(list->prev, struct page, lru);
619 			/* must delete as __free_one_page list manipulates */
620 			list_del(&page->lru);
621 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
622 			__free_one_page(page, zone, 0, page_private(page));
623 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
624 		} while (--to_free && --batch_free && !list_empty(list));
625 	}
626 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
627 	spin_unlock(&zone->lock);
628 }
629 
630 static void free_one_page(struct zone *zone, struct page *page, int order,
631 				int migratetype)
632 {
633 	spin_lock(&zone->lock);
634 	zone->all_unreclaimable = 0;
635 	zone->pages_scanned = 0;
636 
637 	__free_one_page(page, zone, order, migratetype);
638 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
639 	spin_unlock(&zone->lock);
640 }
641 
642 static bool free_pages_prepare(struct page *page, unsigned int order)
643 {
644 	int i;
645 	int bad = 0;
646 
647 	trace_mm_page_free_direct(page, order);
648 	kmemcheck_free_shadow(page, order);
649 
650 	if (PageAnon(page))
651 		page->mapping = NULL;
652 	for (i = 0; i < (1 << order); i++)
653 		bad += free_pages_check(page + i);
654 	if (bad)
655 		return false;
656 
657 	if (!PageHighMem(page)) {
658 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
659 		debug_check_no_obj_freed(page_address(page),
660 					   PAGE_SIZE << order);
661 	}
662 	arch_free_page(page, order);
663 	kernel_map_pages(page, 1 << order, 0);
664 
665 	return true;
666 }
667 
668 static void __free_pages_ok(struct page *page, unsigned int order)
669 {
670 	unsigned long flags;
671 	int wasMlocked = __TestClearPageMlocked(page);
672 
673 	if (!free_pages_prepare(page, order))
674 		return;
675 
676 	local_irq_save(flags);
677 	if (unlikely(wasMlocked))
678 		free_page_mlock(page);
679 	__count_vm_events(PGFREE, 1 << order);
680 	free_one_page(page_zone(page), page, order,
681 					get_pageblock_migratetype(page));
682 	local_irq_restore(flags);
683 }
684 
685 /*
686  * permit the bootmem allocator to evade page validation on high-order frees
687  */
688 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
689 {
690 	if (order == 0) {
691 		__ClearPageReserved(page);
692 		set_page_count(page, 0);
693 		set_page_refcounted(page);
694 		__free_page(page);
695 	} else {
696 		int loop;
697 
698 		prefetchw(page);
699 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
700 			struct page *p = &page[loop];
701 
702 			if (loop + 1 < BITS_PER_LONG)
703 				prefetchw(p + 1);
704 			__ClearPageReserved(p);
705 			set_page_count(p, 0);
706 		}
707 
708 		set_page_refcounted(page);
709 		__free_pages(page, order);
710 	}
711 }
712 
713 
714 /*
715  * The order of subdivision here is critical for the IO subsystem.
716  * Please do not alter this order without good reasons and regression
717  * testing. Specifically, as large blocks of memory are subdivided,
718  * the order in which smaller blocks are delivered depends on the order
719  * they're subdivided in this function. This is the primary factor
720  * influencing the order in which pages are delivered to the IO
721  * subsystem according to empirical testing, and this is also justified
722  * by considering the behavior of a buddy system containing a single
723  * large block of memory acted on by a series of small allocations.
724  * This behavior is a critical factor in sglist merging's success.
725  *
726  * -- wli
727  */
728 static inline void expand(struct zone *zone, struct page *page,
729 	int low, int high, struct free_area *area,
730 	int migratetype)
731 {
732 	unsigned long size = 1 << high;
733 
734 	while (high > low) {
735 		area--;
736 		high--;
737 		size >>= 1;
738 		VM_BUG_ON(bad_range(zone, &page[size]));
739 		list_add(&page[size].lru, &area->free_list[migratetype]);
740 		area->nr_free++;
741 		set_page_order(&page[size], high);
742 	}
743 }
744 
745 /*
746  * This page is about to be returned from the page allocator
747  */
748 static inline int check_new_page(struct page *page)
749 {
750 	if (unlikely(page_mapcount(page) |
751 		(page->mapping != NULL)  |
752 		(atomic_read(&page->_count) != 0)  |
753 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
754 		bad_page(page);
755 		return 1;
756 	}
757 	return 0;
758 }
759 
760 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
761 {
762 	int i;
763 
764 	for (i = 0; i < (1 << order); i++) {
765 		struct page *p = page + i;
766 		if (unlikely(check_new_page(p)))
767 			return 1;
768 	}
769 
770 	set_page_private(page, 0);
771 	set_page_refcounted(page);
772 
773 	arch_alloc_page(page, order);
774 	kernel_map_pages(page, 1 << order, 1);
775 
776 	if (gfp_flags & __GFP_ZERO)
777 		prep_zero_page(page, order, gfp_flags);
778 
779 	if (order && (gfp_flags & __GFP_COMP))
780 		prep_compound_page(page, order);
781 
782 	return 0;
783 }
784 
785 /*
786  * Go through the free lists for the given migratetype and remove
787  * the smallest available page from the freelists
788  */
789 static inline
790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
791 						int migratetype)
792 {
793 	unsigned int current_order;
794 	struct free_area * area;
795 	struct page *page;
796 
797 	/* Find a page of the appropriate size in the preferred list */
798 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
799 		area = &(zone->free_area[current_order]);
800 		if (list_empty(&area->free_list[migratetype]))
801 			continue;
802 
803 		page = list_entry(area->free_list[migratetype].next,
804 							struct page, lru);
805 		list_del(&page->lru);
806 		rmv_page_order(page);
807 		area->nr_free--;
808 		expand(zone, page, order, current_order, area, migratetype);
809 		return page;
810 	}
811 
812 	return NULL;
813 }
814 
815 
816 /*
817  * This array describes the order lists are fallen back to when
818  * the free lists for the desirable migrate type are depleted
819  */
820 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
821 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
822 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
823 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
824 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
825 };
826 
827 /*
828  * Move the free pages in a range to the free lists of the requested type.
829  * Note that start_page and end_pages are not aligned on a pageblock
830  * boundary. If alignment is required, use move_freepages_block()
831  */
832 static int move_freepages(struct zone *zone,
833 			  struct page *start_page, struct page *end_page,
834 			  int migratetype)
835 {
836 	struct page *page;
837 	unsigned long order;
838 	int pages_moved = 0;
839 
840 #ifndef CONFIG_HOLES_IN_ZONE
841 	/*
842 	 * page_zone is not safe to call in this context when
843 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 	 * anyway as we check zone boundaries in move_freepages_block().
845 	 * Remove at a later date when no bug reports exist related to
846 	 * grouping pages by mobility
847 	 */
848 	BUG_ON(page_zone(start_page) != page_zone(end_page));
849 #endif
850 
851 	for (page = start_page; page <= end_page;) {
852 		/* Make sure we are not inadvertently changing nodes */
853 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
854 
855 		if (!pfn_valid_within(page_to_pfn(page))) {
856 			page++;
857 			continue;
858 		}
859 
860 		if (!PageBuddy(page)) {
861 			page++;
862 			continue;
863 		}
864 
865 		order = page_order(page);
866 		list_del(&page->lru);
867 		list_add(&page->lru,
868 			&zone->free_area[order].free_list[migratetype]);
869 		page += 1 << order;
870 		pages_moved += 1 << order;
871 	}
872 
873 	return pages_moved;
874 }
875 
876 static int move_freepages_block(struct zone *zone, struct page *page,
877 				int migratetype)
878 {
879 	unsigned long start_pfn, end_pfn;
880 	struct page *start_page, *end_page;
881 
882 	start_pfn = page_to_pfn(page);
883 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
884 	start_page = pfn_to_page(start_pfn);
885 	end_page = start_page + pageblock_nr_pages - 1;
886 	end_pfn = start_pfn + pageblock_nr_pages - 1;
887 
888 	/* Do not cross zone boundaries */
889 	if (start_pfn < zone->zone_start_pfn)
890 		start_page = page;
891 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
892 		return 0;
893 
894 	return move_freepages(zone, start_page, end_page, migratetype);
895 }
896 
897 static void change_pageblock_range(struct page *pageblock_page,
898 					int start_order, int migratetype)
899 {
900 	int nr_pageblocks = 1 << (start_order - pageblock_order);
901 
902 	while (nr_pageblocks--) {
903 		set_pageblock_migratetype(pageblock_page, migratetype);
904 		pageblock_page += pageblock_nr_pages;
905 	}
906 }
907 
908 /* Remove an element from the buddy allocator from the fallback list */
909 static inline struct page *
910 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
911 {
912 	struct free_area * area;
913 	int current_order;
914 	struct page *page;
915 	int migratetype, i;
916 
917 	/* Find the largest possible block of pages in the other list */
918 	for (current_order = MAX_ORDER-1; current_order >= order;
919 						--current_order) {
920 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
921 			migratetype = fallbacks[start_migratetype][i];
922 
923 			/* MIGRATE_RESERVE handled later if necessary */
924 			if (migratetype == MIGRATE_RESERVE)
925 				continue;
926 
927 			area = &(zone->free_area[current_order]);
928 			if (list_empty(&area->free_list[migratetype]))
929 				continue;
930 
931 			page = list_entry(area->free_list[migratetype].next,
932 					struct page, lru);
933 			area->nr_free--;
934 
935 			/*
936 			 * If breaking a large block of pages, move all free
937 			 * pages to the preferred allocation list. If falling
938 			 * back for a reclaimable kernel allocation, be more
939 			 * agressive about taking ownership of free pages
940 			 */
941 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
942 					start_migratetype == MIGRATE_RECLAIMABLE ||
943 					page_group_by_mobility_disabled) {
944 				unsigned long pages;
945 				pages = move_freepages_block(zone, page,
946 								start_migratetype);
947 
948 				/* Claim the whole block if over half of it is free */
949 				if (pages >= (1 << (pageblock_order-1)) ||
950 						page_group_by_mobility_disabled)
951 					set_pageblock_migratetype(page,
952 								start_migratetype);
953 
954 				migratetype = start_migratetype;
955 			}
956 
957 			/* Remove the page from the freelists */
958 			list_del(&page->lru);
959 			rmv_page_order(page);
960 
961 			/* Take ownership for orders >= pageblock_order */
962 			if (current_order >= pageblock_order)
963 				change_pageblock_range(page, current_order,
964 							start_migratetype);
965 
966 			expand(zone, page, order, current_order, area, migratetype);
967 
968 			trace_mm_page_alloc_extfrag(page, order, current_order,
969 				start_migratetype, migratetype);
970 
971 			return page;
972 		}
973 	}
974 
975 	return NULL;
976 }
977 
978 /*
979  * Do the hard work of removing an element from the buddy allocator.
980  * Call me with the zone->lock already held.
981  */
982 static struct page *__rmqueue(struct zone *zone, unsigned int order,
983 						int migratetype)
984 {
985 	struct page *page;
986 
987 retry_reserve:
988 	page = __rmqueue_smallest(zone, order, migratetype);
989 
990 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
991 		page = __rmqueue_fallback(zone, order, migratetype);
992 
993 		/*
994 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 		 * is used because __rmqueue_smallest is an inline function
996 		 * and we want just one call site
997 		 */
998 		if (!page) {
999 			migratetype = MIGRATE_RESERVE;
1000 			goto retry_reserve;
1001 		}
1002 	}
1003 
1004 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1005 	return page;
1006 }
1007 
1008 /*
1009  * Obtain a specified number of elements from the buddy allocator, all under
1010  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1011  * Returns the number of new pages which were placed at *list.
1012  */
1013 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1014 			unsigned long count, struct list_head *list,
1015 			int migratetype, int cold)
1016 {
1017 	int i;
1018 
1019 	spin_lock(&zone->lock);
1020 	for (i = 0; i < count; ++i) {
1021 		struct page *page = __rmqueue(zone, order, migratetype);
1022 		if (unlikely(page == NULL))
1023 			break;
1024 
1025 		/*
1026 		 * Split buddy pages returned by expand() are received here
1027 		 * in physical page order. The page is added to the callers and
1028 		 * list and the list head then moves forward. From the callers
1029 		 * perspective, the linked list is ordered by page number in
1030 		 * some conditions. This is useful for IO devices that can
1031 		 * merge IO requests if the physical pages are ordered
1032 		 * properly.
1033 		 */
1034 		if (likely(cold == 0))
1035 			list_add(&page->lru, list);
1036 		else
1037 			list_add_tail(&page->lru, list);
1038 		set_page_private(page, migratetype);
1039 		list = &page->lru;
1040 	}
1041 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1042 	spin_unlock(&zone->lock);
1043 	return i;
1044 }
1045 
1046 #ifdef CONFIG_NUMA
1047 /*
1048  * Called from the vmstat counter updater to drain pagesets of this
1049  * currently executing processor on remote nodes after they have
1050  * expired.
1051  *
1052  * Note that this function must be called with the thread pinned to
1053  * a single processor.
1054  */
1055 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1056 {
1057 	unsigned long flags;
1058 	int to_drain;
1059 
1060 	local_irq_save(flags);
1061 	if (pcp->count >= pcp->batch)
1062 		to_drain = pcp->batch;
1063 	else
1064 		to_drain = pcp->count;
1065 	free_pcppages_bulk(zone, to_drain, pcp);
1066 	pcp->count -= to_drain;
1067 	local_irq_restore(flags);
1068 }
1069 #endif
1070 
1071 /*
1072  * Drain pages of the indicated processor.
1073  *
1074  * The processor must either be the current processor and the
1075  * thread pinned to the current processor or a processor that
1076  * is not online.
1077  */
1078 static void drain_pages(unsigned int cpu)
1079 {
1080 	unsigned long flags;
1081 	struct zone *zone;
1082 
1083 	for_each_populated_zone(zone) {
1084 		struct per_cpu_pageset *pset;
1085 		struct per_cpu_pages *pcp;
1086 
1087 		local_irq_save(flags);
1088 		pset = per_cpu_ptr(zone->pageset, cpu);
1089 
1090 		pcp = &pset->pcp;
1091 		free_pcppages_bulk(zone, pcp->count, pcp);
1092 		pcp->count = 0;
1093 		local_irq_restore(flags);
1094 	}
1095 }
1096 
1097 /*
1098  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1099  */
1100 void drain_local_pages(void *arg)
1101 {
1102 	drain_pages(smp_processor_id());
1103 }
1104 
1105 /*
1106  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1107  */
1108 void drain_all_pages(void)
1109 {
1110 	on_each_cpu(drain_local_pages, NULL, 1);
1111 }
1112 
1113 #ifdef CONFIG_HIBERNATION
1114 
1115 void mark_free_pages(struct zone *zone)
1116 {
1117 	unsigned long pfn, max_zone_pfn;
1118 	unsigned long flags;
1119 	int order, t;
1120 	struct list_head *curr;
1121 
1122 	if (!zone->spanned_pages)
1123 		return;
1124 
1125 	spin_lock_irqsave(&zone->lock, flags);
1126 
1127 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1128 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1129 		if (pfn_valid(pfn)) {
1130 			struct page *page = pfn_to_page(pfn);
1131 
1132 			if (!swsusp_page_is_forbidden(page))
1133 				swsusp_unset_page_free(page);
1134 		}
1135 
1136 	for_each_migratetype_order(order, t) {
1137 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1138 			unsigned long i;
1139 
1140 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1141 			for (i = 0; i < (1UL << order); i++)
1142 				swsusp_set_page_free(pfn_to_page(pfn + i));
1143 		}
1144 	}
1145 	spin_unlock_irqrestore(&zone->lock, flags);
1146 }
1147 #endif /* CONFIG_PM */
1148 
1149 /*
1150  * Free a 0-order page
1151  * cold == 1 ? free a cold page : free a hot page
1152  */
1153 void free_hot_cold_page(struct page *page, int cold)
1154 {
1155 	struct zone *zone = page_zone(page);
1156 	struct per_cpu_pages *pcp;
1157 	unsigned long flags;
1158 	int migratetype;
1159 	int wasMlocked = __TestClearPageMlocked(page);
1160 
1161 	if (!free_pages_prepare(page, 0))
1162 		return;
1163 
1164 	migratetype = get_pageblock_migratetype(page);
1165 	set_page_private(page, migratetype);
1166 	local_irq_save(flags);
1167 	if (unlikely(wasMlocked))
1168 		free_page_mlock(page);
1169 	__count_vm_event(PGFREE);
1170 
1171 	/*
1172 	 * We only track unmovable, reclaimable and movable on pcp lists.
1173 	 * Free ISOLATE pages back to the allocator because they are being
1174 	 * offlined but treat RESERVE as movable pages so we can get those
1175 	 * areas back if necessary. Otherwise, we may have to free
1176 	 * excessively into the page allocator
1177 	 */
1178 	if (migratetype >= MIGRATE_PCPTYPES) {
1179 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1180 			free_one_page(zone, page, 0, migratetype);
1181 			goto out;
1182 		}
1183 		migratetype = MIGRATE_MOVABLE;
1184 	}
1185 
1186 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1187 	if (cold)
1188 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1189 	else
1190 		list_add(&page->lru, &pcp->lists[migratetype]);
1191 	pcp->count++;
1192 	if (pcp->count >= pcp->high) {
1193 		free_pcppages_bulk(zone, pcp->batch, pcp);
1194 		pcp->count -= pcp->batch;
1195 	}
1196 
1197 out:
1198 	local_irq_restore(flags);
1199 }
1200 
1201 /*
1202  * split_page takes a non-compound higher-order page, and splits it into
1203  * n (1<<order) sub-pages: page[0..n]
1204  * Each sub-page must be freed individually.
1205  *
1206  * Note: this is probably too low level an operation for use in drivers.
1207  * Please consult with lkml before using this in your driver.
1208  */
1209 void split_page(struct page *page, unsigned int order)
1210 {
1211 	int i;
1212 
1213 	VM_BUG_ON(PageCompound(page));
1214 	VM_BUG_ON(!page_count(page));
1215 
1216 #ifdef CONFIG_KMEMCHECK
1217 	/*
1218 	 * Split shadow pages too, because free(page[0]) would
1219 	 * otherwise free the whole shadow.
1220 	 */
1221 	if (kmemcheck_page_is_tracked(page))
1222 		split_page(virt_to_page(page[0].shadow), order);
1223 #endif
1224 
1225 	for (i = 1; i < (1 << order); i++)
1226 		set_page_refcounted(page + i);
1227 }
1228 
1229 /*
1230  * Similar to split_page except the page is already free. As this is only
1231  * being used for migration, the migratetype of the block also changes.
1232  * As this is called with interrupts disabled, the caller is responsible
1233  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1234  * are enabled.
1235  *
1236  * Note: this is probably too low level an operation for use in drivers.
1237  * Please consult with lkml before using this in your driver.
1238  */
1239 int split_free_page(struct page *page)
1240 {
1241 	unsigned int order;
1242 	unsigned long watermark;
1243 	struct zone *zone;
1244 
1245 	BUG_ON(!PageBuddy(page));
1246 
1247 	zone = page_zone(page);
1248 	order = page_order(page);
1249 
1250 	/* Obey watermarks as if the page was being allocated */
1251 	watermark = low_wmark_pages(zone) + (1 << order);
1252 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1253 		return 0;
1254 
1255 	/* Remove page from free list */
1256 	list_del(&page->lru);
1257 	zone->free_area[order].nr_free--;
1258 	rmv_page_order(page);
1259 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1260 
1261 	/* Split into individual pages */
1262 	set_page_refcounted(page);
1263 	split_page(page, order);
1264 
1265 	if (order >= pageblock_order - 1) {
1266 		struct page *endpage = page + (1 << order) - 1;
1267 		for (; page < endpage; page += pageblock_nr_pages)
1268 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1269 	}
1270 
1271 	return 1 << order;
1272 }
1273 
1274 /*
1275  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1276  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1277  * or two.
1278  */
1279 static inline
1280 struct page *buffered_rmqueue(struct zone *preferred_zone,
1281 			struct zone *zone, int order, gfp_t gfp_flags,
1282 			int migratetype)
1283 {
1284 	unsigned long flags;
1285 	struct page *page;
1286 	int cold = !!(gfp_flags & __GFP_COLD);
1287 
1288 again:
1289 	if (likely(order == 0)) {
1290 		struct per_cpu_pages *pcp;
1291 		struct list_head *list;
1292 
1293 		local_irq_save(flags);
1294 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1295 		list = &pcp->lists[migratetype];
1296 		if (list_empty(list)) {
1297 			pcp->count += rmqueue_bulk(zone, 0,
1298 					pcp->batch, list,
1299 					migratetype, cold);
1300 			if (unlikely(list_empty(list)))
1301 				goto failed;
1302 		}
1303 
1304 		if (cold)
1305 			page = list_entry(list->prev, struct page, lru);
1306 		else
1307 			page = list_entry(list->next, struct page, lru);
1308 
1309 		list_del(&page->lru);
1310 		pcp->count--;
1311 	} else {
1312 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1313 			/*
1314 			 * __GFP_NOFAIL is not to be used in new code.
1315 			 *
1316 			 * All __GFP_NOFAIL callers should be fixed so that they
1317 			 * properly detect and handle allocation failures.
1318 			 *
1319 			 * We most definitely don't want callers attempting to
1320 			 * allocate greater than order-1 page units with
1321 			 * __GFP_NOFAIL.
1322 			 */
1323 			WARN_ON_ONCE(order > 1);
1324 		}
1325 		spin_lock_irqsave(&zone->lock, flags);
1326 		page = __rmqueue(zone, order, migratetype);
1327 		spin_unlock(&zone->lock);
1328 		if (!page)
1329 			goto failed;
1330 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1331 	}
1332 
1333 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1334 	zone_statistics(preferred_zone, zone);
1335 	local_irq_restore(flags);
1336 
1337 	VM_BUG_ON(bad_range(zone, page));
1338 	if (prep_new_page(page, order, gfp_flags))
1339 		goto again;
1340 	return page;
1341 
1342 failed:
1343 	local_irq_restore(flags);
1344 	return NULL;
1345 }
1346 
1347 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1348 #define ALLOC_WMARK_MIN		WMARK_MIN
1349 #define ALLOC_WMARK_LOW		WMARK_LOW
1350 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1351 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1352 
1353 /* Mask to get the watermark bits */
1354 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1355 
1356 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1357 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1358 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1359 
1360 #ifdef CONFIG_FAIL_PAGE_ALLOC
1361 
1362 static struct fail_page_alloc_attr {
1363 	struct fault_attr attr;
1364 
1365 	u32 ignore_gfp_highmem;
1366 	u32 ignore_gfp_wait;
1367 	u32 min_order;
1368 
1369 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1370 
1371 	struct dentry *ignore_gfp_highmem_file;
1372 	struct dentry *ignore_gfp_wait_file;
1373 	struct dentry *min_order_file;
1374 
1375 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1376 
1377 } fail_page_alloc = {
1378 	.attr = FAULT_ATTR_INITIALIZER,
1379 	.ignore_gfp_wait = 1,
1380 	.ignore_gfp_highmem = 1,
1381 	.min_order = 1,
1382 };
1383 
1384 static int __init setup_fail_page_alloc(char *str)
1385 {
1386 	return setup_fault_attr(&fail_page_alloc.attr, str);
1387 }
1388 __setup("fail_page_alloc=", setup_fail_page_alloc);
1389 
1390 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1391 {
1392 	if (order < fail_page_alloc.min_order)
1393 		return 0;
1394 	if (gfp_mask & __GFP_NOFAIL)
1395 		return 0;
1396 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1397 		return 0;
1398 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1399 		return 0;
1400 
1401 	return should_fail(&fail_page_alloc.attr, 1 << order);
1402 }
1403 
1404 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1405 
1406 static int __init fail_page_alloc_debugfs(void)
1407 {
1408 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1409 	struct dentry *dir;
1410 	int err;
1411 
1412 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1413 				       "fail_page_alloc");
1414 	if (err)
1415 		return err;
1416 	dir = fail_page_alloc.attr.dentries.dir;
1417 
1418 	fail_page_alloc.ignore_gfp_wait_file =
1419 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1420 				      &fail_page_alloc.ignore_gfp_wait);
1421 
1422 	fail_page_alloc.ignore_gfp_highmem_file =
1423 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1424 				      &fail_page_alloc.ignore_gfp_highmem);
1425 	fail_page_alloc.min_order_file =
1426 		debugfs_create_u32("min-order", mode, dir,
1427 				   &fail_page_alloc.min_order);
1428 
1429 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1430             !fail_page_alloc.ignore_gfp_highmem_file ||
1431             !fail_page_alloc.min_order_file) {
1432 		err = -ENOMEM;
1433 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1434 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1435 		debugfs_remove(fail_page_alloc.min_order_file);
1436 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1437 	}
1438 
1439 	return err;
1440 }
1441 
1442 late_initcall(fail_page_alloc_debugfs);
1443 
1444 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1445 
1446 #else /* CONFIG_FAIL_PAGE_ALLOC */
1447 
1448 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1449 {
1450 	return 0;
1451 }
1452 
1453 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1454 
1455 /*
1456  * Return true if free pages are above 'mark'. This takes into account the order
1457  * of the allocation.
1458  */
1459 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1460 		      int classzone_idx, int alloc_flags, long free_pages)
1461 {
1462 	/* free_pages my go negative - that's OK */
1463 	long min = mark;
1464 	int o;
1465 
1466 	free_pages -= (1 << order) + 1;
1467 	if (alloc_flags & ALLOC_HIGH)
1468 		min -= min / 2;
1469 	if (alloc_flags & ALLOC_HARDER)
1470 		min -= min / 4;
1471 
1472 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1473 		return false;
1474 	for (o = 0; o < order; o++) {
1475 		/* At the next order, this order's pages become unavailable */
1476 		free_pages -= z->free_area[o].nr_free << o;
1477 
1478 		/* Require fewer higher order pages to be free */
1479 		min >>= 1;
1480 
1481 		if (free_pages <= min)
1482 			return false;
1483 	}
1484 	return true;
1485 }
1486 
1487 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1488 		      int classzone_idx, int alloc_flags)
1489 {
1490 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1491 					zone_page_state(z, NR_FREE_PAGES));
1492 }
1493 
1494 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1495 		      int classzone_idx, int alloc_flags)
1496 {
1497 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1498 
1499 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1500 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1501 
1502 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1503 								free_pages);
1504 }
1505 
1506 #ifdef CONFIG_NUMA
1507 /*
1508  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1509  * skip over zones that are not allowed by the cpuset, or that have
1510  * been recently (in last second) found to be nearly full.  See further
1511  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1512  * that have to skip over a lot of full or unallowed zones.
1513  *
1514  * If the zonelist cache is present in the passed in zonelist, then
1515  * returns a pointer to the allowed node mask (either the current
1516  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1517  *
1518  * If the zonelist cache is not available for this zonelist, does
1519  * nothing and returns NULL.
1520  *
1521  * If the fullzones BITMAP in the zonelist cache is stale (more than
1522  * a second since last zap'd) then we zap it out (clear its bits.)
1523  *
1524  * We hold off even calling zlc_setup, until after we've checked the
1525  * first zone in the zonelist, on the theory that most allocations will
1526  * be satisfied from that first zone, so best to examine that zone as
1527  * quickly as we can.
1528  */
1529 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1530 {
1531 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1532 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1533 
1534 	zlc = zonelist->zlcache_ptr;
1535 	if (!zlc)
1536 		return NULL;
1537 
1538 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1539 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1540 		zlc->last_full_zap = jiffies;
1541 	}
1542 
1543 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1544 					&cpuset_current_mems_allowed :
1545 					&node_states[N_HIGH_MEMORY];
1546 	return allowednodes;
1547 }
1548 
1549 /*
1550  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1551  * if it is worth looking at further for free memory:
1552  *  1) Check that the zone isn't thought to be full (doesn't have its
1553  *     bit set in the zonelist_cache fullzones BITMAP).
1554  *  2) Check that the zones node (obtained from the zonelist_cache
1555  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1556  * Return true (non-zero) if zone is worth looking at further, or
1557  * else return false (zero) if it is not.
1558  *
1559  * This check -ignores- the distinction between various watermarks,
1560  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1561  * found to be full for any variation of these watermarks, it will
1562  * be considered full for up to one second by all requests, unless
1563  * we are so low on memory on all allowed nodes that we are forced
1564  * into the second scan of the zonelist.
1565  *
1566  * In the second scan we ignore this zonelist cache and exactly
1567  * apply the watermarks to all zones, even it is slower to do so.
1568  * We are low on memory in the second scan, and should leave no stone
1569  * unturned looking for a free page.
1570  */
1571 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1572 						nodemask_t *allowednodes)
1573 {
1574 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1575 	int i;				/* index of *z in zonelist zones */
1576 	int n;				/* node that zone *z is on */
1577 
1578 	zlc = zonelist->zlcache_ptr;
1579 	if (!zlc)
1580 		return 1;
1581 
1582 	i = z - zonelist->_zonerefs;
1583 	n = zlc->z_to_n[i];
1584 
1585 	/* This zone is worth trying if it is allowed but not full */
1586 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1587 }
1588 
1589 /*
1590  * Given 'z' scanning a zonelist, set the corresponding bit in
1591  * zlc->fullzones, so that subsequent attempts to allocate a page
1592  * from that zone don't waste time re-examining it.
1593  */
1594 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1595 {
1596 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1597 	int i;				/* index of *z in zonelist zones */
1598 
1599 	zlc = zonelist->zlcache_ptr;
1600 	if (!zlc)
1601 		return;
1602 
1603 	i = z - zonelist->_zonerefs;
1604 
1605 	set_bit(i, zlc->fullzones);
1606 }
1607 
1608 #else	/* CONFIG_NUMA */
1609 
1610 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1611 {
1612 	return NULL;
1613 }
1614 
1615 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1616 				nodemask_t *allowednodes)
1617 {
1618 	return 1;
1619 }
1620 
1621 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1622 {
1623 }
1624 #endif	/* CONFIG_NUMA */
1625 
1626 /*
1627  * get_page_from_freelist goes through the zonelist trying to allocate
1628  * a page.
1629  */
1630 static struct page *
1631 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1632 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1633 		struct zone *preferred_zone, int migratetype)
1634 {
1635 	struct zoneref *z;
1636 	struct page *page = NULL;
1637 	int classzone_idx;
1638 	struct zone *zone;
1639 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1640 	int zlc_active = 0;		/* set if using zonelist_cache */
1641 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1642 
1643 	classzone_idx = zone_idx(preferred_zone);
1644 zonelist_scan:
1645 	/*
1646 	 * Scan zonelist, looking for a zone with enough free.
1647 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1648 	 */
1649 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1650 						high_zoneidx, nodemask) {
1651 		if (NUMA_BUILD && zlc_active &&
1652 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1653 				continue;
1654 		if ((alloc_flags & ALLOC_CPUSET) &&
1655 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1656 				goto try_next_zone;
1657 
1658 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1659 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1660 			unsigned long mark;
1661 			int ret;
1662 
1663 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1664 			if (zone_watermark_ok(zone, order, mark,
1665 				    classzone_idx, alloc_flags))
1666 				goto try_this_zone;
1667 
1668 			if (zone_reclaim_mode == 0)
1669 				goto this_zone_full;
1670 
1671 			ret = zone_reclaim(zone, gfp_mask, order);
1672 			switch (ret) {
1673 			case ZONE_RECLAIM_NOSCAN:
1674 				/* did not scan */
1675 				goto try_next_zone;
1676 			case ZONE_RECLAIM_FULL:
1677 				/* scanned but unreclaimable */
1678 				goto this_zone_full;
1679 			default:
1680 				/* did we reclaim enough */
1681 				if (!zone_watermark_ok(zone, order, mark,
1682 						classzone_idx, alloc_flags))
1683 					goto this_zone_full;
1684 			}
1685 		}
1686 
1687 try_this_zone:
1688 		page = buffered_rmqueue(preferred_zone, zone, order,
1689 						gfp_mask, migratetype);
1690 		if (page)
1691 			break;
1692 this_zone_full:
1693 		if (NUMA_BUILD)
1694 			zlc_mark_zone_full(zonelist, z);
1695 try_next_zone:
1696 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1697 			/*
1698 			 * we do zlc_setup after the first zone is tried but only
1699 			 * if there are multiple nodes make it worthwhile
1700 			 */
1701 			allowednodes = zlc_setup(zonelist, alloc_flags);
1702 			zlc_active = 1;
1703 			did_zlc_setup = 1;
1704 		}
1705 	}
1706 
1707 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1708 		/* Disable zlc cache for second zonelist scan */
1709 		zlc_active = 0;
1710 		goto zonelist_scan;
1711 	}
1712 	return page;
1713 }
1714 
1715 static inline int
1716 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1717 				unsigned long pages_reclaimed)
1718 {
1719 	/* Do not loop if specifically requested */
1720 	if (gfp_mask & __GFP_NORETRY)
1721 		return 0;
1722 
1723 	/*
1724 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1725 	 * means __GFP_NOFAIL, but that may not be true in other
1726 	 * implementations.
1727 	 */
1728 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1729 		return 1;
1730 
1731 	/*
1732 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1733 	 * specified, then we retry until we no longer reclaim any pages
1734 	 * (above), or we've reclaimed an order of pages at least as
1735 	 * large as the allocation's order. In both cases, if the
1736 	 * allocation still fails, we stop retrying.
1737 	 */
1738 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1739 		return 1;
1740 
1741 	/*
1742 	 * Don't let big-order allocations loop unless the caller
1743 	 * explicitly requests that.
1744 	 */
1745 	if (gfp_mask & __GFP_NOFAIL)
1746 		return 1;
1747 
1748 	return 0;
1749 }
1750 
1751 static inline struct page *
1752 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1753 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1754 	nodemask_t *nodemask, struct zone *preferred_zone,
1755 	int migratetype)
1756 {
1757 	struct page *page;
1758 
1759 	/* Acquire the OOM killer lock for the zones in zonelist */
1760 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1761 		schedule_timeout_uninterruptible(1);
1762 		return NULL;
1763 	}
1764 
1765 	/*
1766 	 * Go through the zonelist yet one more time, keep very high watermark
1767 	 * here, this is only to catch a parallel oom killing, we must fail if
1768 	 * we're still under heavy pressure.
1769 	 */
1770 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1771 		order, zonelist, high_zoneidx,
1772 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1773 		preferred_zone, migratetype);
1774 	if (page)
1775 		goto out;
1776 
1777 	if (!(gfp_mask & __GFP_NOFAIL)) {
1778 		/* The OOM killer will not help higher order allocs */
1779 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1780 			goto out;
1781 		/* The OOM killer does not needlessly kill tasks for lowmem */
1782 		if (high_zoneidx < ZONE_NORMAL)
1783 			goto out;
1784 		/*
1785 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1786 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1787 		 * The caller should handle page allocation failure by itself if
1788 		 * it specifies __GFP_THISNODE.
1789 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1790 		 */
1791 		if (gfp_mask & __GFP_THISNODE)
1792 			goto out;
1793 	}
1794 	/* Exhausted what can be done so it's blamo time */
1795 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1796 
1797 out:
1798 	clear_zonelist_oom(zonelist, gfp_mask);
1799 	return page;
1800 }
1801 
1802 #ifdef CONFIG_COMPACTION
1803 /* Try memory compaction for high-order allocations before reclaim */
1804 static struct page *
1805 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1806 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1807 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1808 	int migratetype, unsigned long *did_some_progress,
1809 	bool sync_migration)
1810 {
1811 	struct page *page;
1812 
1813 	if (!order || compaction_deferred(preferred_zone))
1814 		return NULL;
1815 
1816 	current->flags |= PF_MEMALLOC;
1817 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1818 						nodemask, sync_migration);
1819 	current->flags &= ~PF_MEMALLOC;
1820 	if (*did_some_progress != COMPACT_SKIPPED) {
1821 
1822 		/* Page migration frees to the PCP lists but we want merging */
1823 		drain_pages(get_cpu());
1824 		put_cpu();
1825 
1826 		page = get_page_from_freelist(gfp_mask, nodemask,
1827 				order, zonelist, high_zoneidx,
1828 				alloc_flags, preferred_zone,
1829 				migratetype);
1830 		if (page) {
1831 			preferred_zone->compact_considered = 0;
1832 			preferred_zone->compact_defer_shift = 0;
1833 			count_vm_event(COMPACTSUCCESS);
1834 			return page;
1835 		}
1836 
1837 		/*
1838 		 * It's bad if compaction run occurs and fails.
1839 		 * The most likely reason is that pages exist,
1840 		 * but not enough to satisfy watermarks.
1841 		 */
1842 		count_vm_event(COMPACTFAIL);
1843 		defer_compaction(preferred_zone);
1844 
1845 		cond_resched();
1846 	}
1847 
1848 	return NULL;
1849 }
1850 #else
1851 static inline struct page *
1852 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1853 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1854 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1855 	int migratetype, unsigned long *did_some_progress,
1856 	bool sync_migration)
1857 {
1858 	return NULL;
1859 }
1860 #endif /* CONFIG_COMPACTION */
1861 
1862 /* The really slow allocator path where we enter direct reclaim */
1863 static inline struct page *
1864 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1865 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1866 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1867 	int migratetype, unsigned long *did_some_progress)
1868 {
1869 	struct page *page = NULL;
1870 	struct reclaim_state reclaim_state;
1871 	bool drained = false;
1872 
1873 	cond_resched();
1874 
1875 	/* We now go into synchronous reclaim */
1876 	cpuset_memory_pressure_bump();
1877 	current->flags |= PF_MEMALLOC;
1878 	lockdep_set_current_reclaim_state(gfp_mask);
1879 	reclaim_state.reclaimed_slab = 0;
1880 	current->reclaim_state = &reclaim_state;
1881 
1882 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1883 
1884 	current->reclaim_state = NULL;
1885 	lockdep_clear_current_reclaim_state();
1886 	current->flags &= ~PF_MEMALLOC;
1887 
1888 	cond_resched();
1889 
1890 	if (unlikely(!(*did_some_progress)))
1891 		return NULL;
1892 
1893 retry:
1894 	page = get_page_from_freelist(gfp_mask, nodemask, order,
1895 					zonelist, high_zoneidx,
1896 					alloc_flags, preferred_zone,
1897 					migratetype);
1898 
1899 	/*
1900 	 * If an allocation failed after direct reclaim, it could be because
1901 	 * pages are pinned on the per-cpu lists. Drain them and try again
1902 	 */
1903 	if (!page && !drained) {
1904 		drain_all_pages();
1905 		drained = true;
1906 		goto retry;
1907 	}
1908 
1909 	return page;
1910 }
1911 
1912 /*
1913  * This is called in the allocator slow-path if the allocation request is of
1914  * sufficient urgency to ignore watermarks and take other desperate measures
1915  */
1916 static inline struct page *
1917 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1918 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1919 	nodemask_t *nodemask, struct zone *preferred_zone,
1920 	int migratetype)
1921 {
1922 	struct page *page;
1923 
1924 	do {
1925 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1926 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1927 			preferred_zone, migratetype);
1928 
1929 		if (!page && gfp_mask & __GFP_NOFAIL)
1930 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1931 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1932 
1933 	return page;
1934 }
1935 
1936 static inline
1937 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1938 						enum zone_type high_zoneidx,
1939 						enum zone_type classzone_idx)
1940 {
1941 	struct zoneref *z;
1942 	struct zone *zone;
1943 
1944 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1945 		wakeup_kswapd(zone, order, classzone_idx);
1946 }
1947 
1948 static inline int
1949 gfp_to_alloc_flags(gfp_t gfp_mask)
1950 {
1951 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1952 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1953 
1954 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1955 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1956 
1957 	/*
1958 	 * The caller may dip into page reserves a bit more if the caller
1959 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1960 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1961 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1962 	 */
1963 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1964 
1965 	if (!wait) {
1966 		/*
1967 		 * Not worth trying to allocate harder for
1968 		 * __GFP_NOMEMALLOC even if it can't schedule.
1969 		 */
1970 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
1971 			alloc_flags |= ALLOC_HARDER;
1972 		/*
1973 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1974 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1975 		 */
1976 		alloc_flags &= ~ALLOC_CPUSET;
1977 	} else if (unlikely(rt_task(current)) && !in_interrupt())
1978 		alloc_flags |= ALLOC_HARDER;
1979 
1980 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1981 		if (!in_interrupt() &&
1982 		    ((current->flags & PF_MEMALLOC) ||
1983 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1984 			alloc_flags |= ALLOC_NO_WATERMARKS;
1985 	}
1986 
1987 	return alloc_flags;
1988 }
1989 
1990 static inline struct page *
1991 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1992 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1993 	nodemask_t *nodemask, struct zone *preferred_zone,
1994 	int migratetype)
1995 {
1996 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1997 	struct page *page = NULL;
1998 	int alloc_flags;
1999 	unsigned long pages_reclaimed = 0;
2000 	unsigned long did_some_progress;
2001 	bool sync_migration = false;
2002 
2003 	/*
2004 	 * In the slowpath, we sanity check order to avoid ever trying to
2005 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2006 	 * be using allocators in order of preference for an area that is
2007 	 * too large.
2008 	 */
2009 	if (order >= MAX_ORDER) {
2010 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2011 		return NULL;
2012 	}
2013 
2014 	/*
2015 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2016 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2017 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2018 	 * using a larger set of nodes after it has established that the
2019 	 * allowed per node queues are empty and that nodes are
2020 	 * over allocated.
2021 	 */
2022 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2023 		goto nopage;
2024 
2025 restart:
2026 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2027 		wake_all_kswapd(order, zonelist, high_zoneidx,
2028 						zone_idx(preferred_zone));
2029 
2030 	/*
2031 	 * OK, we're below the kswapd watermark and have kicked background
2032 	 * reclaim. Now things get more complex, so set up alloc_flags according
2033 	 * to how we want to proceed.
2034 	 */
2035 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2036 
2037 	/* This is the last chance, in general, before the goto nopage. */
2038 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2039 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2040 			preferred_zone, migratetype);
2041 	if (page)
2042 		goto got_pg;
2043 
2044 rebalance:
2045 	/* Allocate without watermarks if the context allows */
2046 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2047 		page = __alloc_pages_high_priority(gfp_mask, order,
2048 				zonelist, high_zoneidx, nodemask,
2049 				preferred_zone, migratetype);
2050 		if (page)
2051 			goto got_pg;
2052 	}
2053 
2054 	/* Atomic allocations - we can't balance anything */
2055 	if (!wait)
2056 		goto nopage;
2057 
2058 	/* Avoid recursion of direct reclaim */
2059 	if (current->flags & PF_MEMALLOC)
2060 		goto nopage;
2061 
2062 	/* Avoid allocations with no watermarks from looping endlessly */
2063 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2064 		goto nopage;
2065 
2066 	/*
2067 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2068 	 * attempts after direct reclaim are synchronous
2069 	 */
2070 	page = __alloc_pages_direct_compact(gfp_mask, order,
2071 					zonelist, high_zoneidx,
2072 					nodemask,
2073 					alloc_flags, preferred_zone,
2074 					migratetype, &did_some_progress,
2075 					sync_migration);
2076 	if (page)
2077 		goto got_pg;
2078 	sync_migration = true;
2079 
2080 	/* Try direct reclaim and then allocating */
2081 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2082 					zonelist, high_zoneidx,
2083 					nodemask,
2084 					alloc_flags, preferred_zone,
2085 					migratetype, &did_some_progress);
2086 	if (page)
2087 		goto got_pg;
2088 
2089 	/*
2090 	 * If we failed to make any progress reclaiming, then we are
2091 	 * running out of options and have to consider going OOM
2092 	 */
2093 	if (!did_some_progress) {
2094 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2095 			if (oom_killer_disabled)
2096 				goto nopage;
2097 			page = __alloc_pages_may_oom(gfp_mask, order,
2098 					zonelist, high_zoneidx,
2099 					nodemask, preferred_zone,
2100 					migratetype);
2101 			if (page)
2102 				goto got_pg;
2103 
2104 			if (!(gfp_mask & __GFP_NOFAIL)) {
2105 				/*
2106 				 * The oom killer is not called for high-order
2107 				 * allocations that may fail, so if no progress
2108 				 * is being made, there are no other options and
2109 				 * retrying is unlikely to help.
2110 				 */
2111 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2112 					goto nopage;
2113 				/*
2114 				 * The oom killer is not called for lowmem
2115 				 * allocations to prevent needlessly killing
2116 				 * innocent tasks.
2117 				 */
2118 				if (high_zoneidx < ZONE_NORMAL)
2119 					goto nopage;
2120 			}
2121 
2122 			goto restart;
2123 		}
2124 	}
2125 
2126 	/* Check if we should retry the allocation */
2127 	pages_reclaimed += did_some_progress;
2128 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2129 		/* Wait for some write requests to complete then retry */
2130 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2131 		goto rebalance;
2132 	} else {
2133 		/*
2134 		 * High-order allocations do not necessarily loop after
2135 		 * direct reclaim and reclaim/compaction depends on compaction
2136 		 * being called after reclaim so call directly if necessary
2137 		 */
2138 		page = __alloc_pages_direct_compact(gfp_mask, order,
2139 					zonelist, high_zoneidx,
2140 					nodemask,
2141 					alloc_flags, preferred_zone,
2142 					migratetype, &did_some_progress,
2143 					sync_migration);
2144 		if (page)
2145 			goto got_pg;
2146 	}
2147 
2148 nopage:
2149 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2150 		printk(KERN_WARNING "%s: page allocation failure."
2151 			" order:%d, mode:0x%x\n",
2152 			current->comm, order, gfp_mask);
2153 		dump_stack();
2154 		show_mem();
2155 	}
2156 	return page;
2157 got_pg:
2158 	if (kmemcheck_enabled)
2159 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2160 	return page;
2161 
2162 }
2163 
2164 /*
2165  * This is the 'heart' of the zoned buddy allocator.
2166  */
2167 struct page *
2168 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2169 			struct zonelist *zonelist, nodemask_t *nodemask)
2170 {
2171 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2172 	struct zone *preferred_zone;
2173 	struct page *page;
2174 	int migratetype = allocflags_to_migratetype(gfp_mask);
2175 
2176 	gfp_mask &= gfp_allowed_mask;
2177 
2178 	lockdep_trace_alloc(gfp_mask);
2179 
2180 	might_sleep_if(gfp_mask & __GFP_WAIT);
2181 
2182 	if (should_fail_alloc_page(gfp_mask, order))
2183 		return NULL;
2184 
2185 	/*
2186 	 * Check the zones suitable for the gfp_mask contain at least one
2187 	 * valid zone. It's possible to have an empty zonelist as a result
2188 	 * of GFP_THISNODE and a memoryless node
2189 	 */
2190 	if (unlikely(!zonelist->_zonerefs->zone))
2191 		return NULL;
2192 
2193 	get_mems_allowed();
2194 	/* The preferred zone is used for statistics later */
2195 	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2196 	if (!preferred_zone) {
2197 		put_mems_allowed();
2198 		return NULL;
2199 	}
2200 
2201 	/* First allocation attempt */
2202 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2203 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2204 			preferred_zone, migratetype);
2205 	if (unlikely(!page))
2206 		page = __alloc_pages_slowpath(gfp_mask, order,
2207 				zonelist, high_zoneidx, nodemask,
2208 				preferred_zone, migratetype);
2209 	put_mems_allowed();
2210 
2211 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2212 	return page;
2213 }
2214 EXPORT_SYMBOL(__alloc_pages_nodemask);
2215 
2216 /*
2217  * Common helper functions.
2218  */
2219 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2220 {
2221 	struct page *page;
2222 
2223 	/*
2224 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2225 	 * a highmem page
2226 	 */
2227 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2228 
2229 	page = alloc_pages(gfp_mask, order);
2230 	if (!page)
2231 		return 0;
2232 	return (unsigned long) page_address(page);
2233 }
2234 EXPORT_SYMBOL(__get_free_pages);
2235 
2236 unsigned long get_zeroed_page(gfp_t gfp_mask)
2237 {
2238 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2239 }
2240 EXPORT_SYMBOL(get_zeroed_page);
2241 
2242 void __pagevec_free(struct pagevec *pvec)
2243 {
2244 	int i = pagevec_count(pvec);
2245 
2246 	while (--i >= 0) {
2247 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2248 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2249 	}
2250 }
2251 
2252 void __free_pages(struct page *page, unsigned int order)
2253 {
2254 	if (put_page_testzero(page)) {
2255 		if (order == 0)
2256 			free_hot_cold_page(page, 0);
2257 		else
2258 			__free_pages_ok(page, order);
2259 	}
2260 }
2261 
2262 EXPORT_SYMBOL(__free_pages);
2263 
2264 void free_pages(unsigned long addr, unsigned int order)
2265 {
2266 	if (addr != 0) {
2267 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2268 		__free_pages(virt_to_page((void *)addr), order);
2269 	}
2270 }
2271 
2272 EXPORT_SYMBOL(free_pages);
2273 
2274 /**
2275  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2276  * @size: the number of bytes to allocate
2277  * @gfp_mask: GFP flags for the allocation
2278  *
2279  * This function is similar to alloc_pages(), except that it allocates the
2280  * minimum number of pages to satisfy the request.  alloc_pages() can only
2281  * allocate memory in power-of-two pages.
2282  *
2283  * This function is also limited by MAX_ORDER.
2284  *
2285  * Memory allocated by this function must be released by free_pages_exact().
2286  */
2287 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2288 {
2289 	unsigned int order = get_order(size);
2290 	unsigned long addr;
2291 
2292 	addr = __get_free_pages(gfp_mask, order);
2293 	if (addr) {
2294 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2295 		unsigned long used = addr + PAGE_ALIGN(size);
2296 
2297 		split_page(virt_to_page((void *)addr), order);
2298 		while (used < alloc_end) {
2299 			free_page(used);
2300 			used += PAGE_SIZE;
2301 		}
2302 	}
2303 
2304 	return (void *)addr;
2305 }
2306 EXPORT_SYMBOL(alloc_pages_exact);
2307 
2308 /**
2309  * free_pages_exact - release memory allocated via alloc_pages_exact()
2310  * @virt: the value returned by alloc_pages_exact.
2311  * @size: size of allocation, same value as passed to alloc_pages_exact().
2312  *
2313  * Release the memory allocated by a previous call to alloc_pages_exact.
2314  */
2315 void free_pages_exact(void *virt, size_t size)
2316 {
2317 	unsigned long addr = (unsigned long)virt;
2318 	unsigned long end = addr + PAGE_ALIGN(size);
2319 
2320 	while (addr < end) {
2321 		free_page(addr);
2322 		addr += PAGE_SIZE;
2323 	}
2324 }
2325 EXPORT_SYMBOL(free_pages_exact);
2326 
2327 static unsigned int nr_free_zone_pages(int offset)
2328 {
2329 	struct zoneref *z;
2330 	struct zone *zone;
2331 
2332 	/* Just pick one node, since fallback list is circular */
2333 	unsigned int sum = 0;
2334 
2335 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2336 
2337 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2338 		unsigned long size = zone->present_pages;
2339 		unsigned long high = high_wmark_pages(zone);
2340 		if (size > high)
2341 			sum += size - high;
2342 	}
2343 
2344 	return sum;
2345 }
2346 
2347 /*
2348  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2349  */
2350 unsigned int nr_free_buffer_pages(void)
2351 {
2352 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2353 }
2354 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2355 
2356 /*
2357  * Amount of free RAM allocatable within all zones
2358  */
2359 unsigned int nr_free_pagecache_pages(void)
2360 {
2361 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2362 }
2363 
2364 static inline void show_node(struct zone *zone)
2365 {
2366 	if (NUMA_BUILD)
2367 		printk("Node %d ", zone_to_nid(zone));
2368 }
2369 
2370 void si_meminfo(struct sysinfo *val)
2371 {
2372 	val->totalram = totalram_pages;
2373 	val->sharedram = 0;
2374 	val->freeram = global_page_state(NR_FREE_PAGES);
2375 	val->bufferram = nr_blockdev_pages();
2376 	val->totalhigh = totalhigh_pages;
2377 	val->freehigh = nr_free_highpages();
2378 	val->mem_unit = PAGE_SIZE;
2379 }
2380 
2381 EXPORT_SYMBOL(si_meminfo);
2382 
2383 #ifdef CONFIG_NUMA
2384 void si_meminfo_node(struct sysinfo *val, int nid)
2385 {
2386 	pg_data_t *pgdat = NODE_DATA(nid);
2387 
2388 	val->totalram = pgdat->node_present_pages;
2389 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2390 #ifdef CONFIG_HIGHMEM
2391 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2392 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2393 			NR_FREE_PAGES);
2394 #else
2395 	val->totalhigh = 0;
2396 	val->freehigh = 0;
2397 #endif
2398 	val->mem_unit = PAGE_SIZE;
2399 }
2400 #endif
2401 
2402 #define K(x) ((x) << (PAGE_SHIFT-10))
2403 
2404 /*
2405  * Show free area list (used inside shift_scroll-lock stuff)
2406  * We also calculate the percentage fragmentation. We do this by counting the
2407  * memory on each free list with the exception of the first item on the list.
2408  */
2409 void show_free_areas(void)
2410 {
2411 	int cpu;
2412 	struct zone *zone;
2413 
2414 	for_each_populated_zone(zone) {
2415 		show_node(zone);
2416 		printk("%s per-cpu:\n", zone->name);
2417 
2418 		for_each_online_cpu(cpu) {
2419 			struct per_cpu_pageset *pageset;
2420 
2421 			pageset = per_cpu_ptr(zone->pageset, cpu);
2422 
2423 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2424 			       cpu, pageset->pcp.high,
2425 			       pageset->pcp.batch, pageset->pcp.count);
2426 		}
2427 	}
2428 
2429 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2430 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2431 		" unevictable:%lu"
2432 		" dirty:%lu writeback:%lu unstable:%lu\n"
2433 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2434 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2435 		global_page_state(NR_ACTIVE_ANON),
2436 		global_page_state(NR_INACTIVE_ANON),
2437 		global_page_state(NR_ISOLATED_ANON),
2438 		global_page_state(NR_ACTIVE_FILE),
2439 		global_page_state(NR_INACTIVE_FILE),
2440 		global_page_state(NR_ISOLATED_FILE),
2441 		global_page_state(NR_UNEVICTABLE),
2442 		global_page_state(NR_FILE_DIRTY),
2443 		global_page_state(NR_WRITEBACK),
2444 		global_page_state(NR_UNSTABLE_NFS),
2445 		global_page_state(NR_FREE_PAGES),
2446 		global_page_state(NR_SLAB_RECLAIMABLE),
2447 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2448 		global_page_state(NR_FILE_MAPPED),
2449 		global_page_state(NR_SHMEM),
2450 		global_page_state(NR_PAGETABLE),
2451 		global_page_state(NR_BOUNCE));
2452 
2453 	for_each_populated_zone(zone) {
2454 		int i;
2455 
2456 		show_node(zone);
2457 		printk("%s"
2458 			" free:%lukB"
2459 			" min:%lukB"
2460 			" low:%lukB"
2461 			" high:%lukB"
2462 			" active_anon:%lukB"
2463 			" inactive_anon:%lukB"
2464 			" active_file:%lukB"
2465 			" inactive_file:%lukB"
2466 			" unevictable:%lukB"
2467 			" isolated(anon):%lukB"
2468 			" isolated(file):%lukB"
2469 			" present:%lukB"
2470 			" mlocked:%lukB"
2471 			" dirty:%lukB"
2472 			" writeback:%lukB"
2473 			" mapped:%lukB"
2474 			" shmem:%lukB"
2475 			" slab_reclaimable:%lukB"
2476 			" slab_unreclaimable:%lukB"
2477 			" kernel_stack:%lukB"
2478 			" pagetables:%lukB"
2479 			" unstable:%lukB"
2480 			" bounce:%lukB"
2481 			" writeback_tmp:%lukB"
2482 			" pages_scanned:%lu"
2483 			" all_unreclaimable? %s"
2484 			"\n",
2485 			zone->name,
2486 			K(zone_page_state(zone, NR_FREE_PAGES)),
2487 			K(min_wmark_pages(zone)),
2488 			K(low_wmark_pages(zone)),
2489 			K(high_wmark_pages(zone)),
2490 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2491 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2492 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2493 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2494 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2495 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2496 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2497 			K(zone->present_pages),
2498 			K(zone_page_state(zone, NR_MLOCK)),
2499 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2500 			K(zone_page_state(zone, NR_WRITEBACK)),
2501 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2502 			K(zone_page_state(zone, NR_SHMEM)),
2503 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2504 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2505 			zone_page_state(zone, NR_KERNEL_STACK) *
2506 				THREAD_SIZE / 1024,
2507 			K(zone_page_state(zone, NR_PAGETABLE)),
2508 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2509 			K(zone_page_state(zone, NR_BOUNCE)),
2510 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2511 			zone->pages_scanned,
2512 			(zone->all_unreclaimable ? "yes" : "no")
2513 			);
2514 		printk("lowmem_reserve[]:");
2515 		for (i = 0; i < MAX_NR_ZONES; i++)
2516 			printk(" %lu", zone->lowmem_reserve[i]);
2517 		printk("\n");
2518 	}
2519 
2520 	for_each_populated_zone(zone) {
2521  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2522 
2523 		show_node(zone);
2524 		printk("%s: ", zone->name);
2525 
2526 		spin_lock_irqsave(&zone->lock, flags);
2527 		for (order = 0; order < MAX_ORDER; order++) {
2528 			nr[order] = zone->free_area[order].nr_free;
2529 			total += nr[order] << order;
2530 		}
2531 		spin_unlock_irqrestore(&zone->lock, flags);
2532 		for (order = 0; order < MAX_ORDER; order++)
2533 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2534 		printk("= %lukB\n", K(total));
2535 	}
2536 
2537 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2538 
2539 	show_swap_cache_info();
2540 }
2541 
2542 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2543 {
2544 	zoneref->zone = zone;
2545 	zoneref->zone_idx = zone_idx(zone);
2546 }
2547 
2548 /*
2549  * Builds allocation fallback zone lists.
2550  *
2551  * Add all populated zones of a node to the zonelist.
2552  */
2553 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2554 				int nr_zones, enum zone_type zone_type)
2555 {
2556 	struct zone *zone;
2557 
2558 	BUG_ON(zone_type >= MAX_NR_ZONES);
2559 	zone_type++;
2560 
2561 	do {
2562 		zone_type--;
2563 		zone = pgdat->node_zones + zone_type;
2564 		if (populated_zone(zone)) {
2565 			zoneref_set_zone(zone,
2566 				&zonelist->_zonerefs[nr_zones++]);
2567 			check_highest_zone(zone_type);
2568 		}
2569 
2570 	} while (zone_type);
2571 	return nr_zones;
2572 }
2573 
2574 
2575 /*
2576  *  zonelist_order:
2577  *  0 = automatic detection of better ordering.
2578  *  1 = order by ([node] distance, -zonetype)
2579  *  2 = order by (-zonetype, [node] distance)
2580  *
2581  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2582  *  the same zonelist. So only NUMA can configure this param.
2583  */
2584 #define ZONELIST_ORDER_DEFAULT  0
2585 #define ZONELIST_ORDER_NODE     1
2586 #define ZONELIST_ORDER_ZONE     2
2587 
2588 /* zonelist order in the kernel.
2589  * set_zonelist_order() will set this to NODE or ZONE.
2590  */
2591 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2592 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2593 
2594 
2595 #ifdef CONFIG_NUMA
2596 /* The value user specified ....changed by config */
2597 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2598 /* string for sysctl */
2599 #define NUMA_ZONELIST_ORDER_LEN	16
2600 char numa_zonelist_order[16] = "default";
2601 
2602 /*
2603  * interface for configure zonelist ordering.
2604  * command line option "numa_zonelist_order"
2605  *	= "[dD]efault	- default, automatic configuration.
2606  *	= "[nN]ode 	- order by node locality, then by zone within node
2607  *	= "[zZ]one      - order by zone, then by locality within zone
2608  */
2609 
2610 static int __parse_numa_zonelist_order(char *s)
2611 {
2612 	if (*s == 'd' || *s == 'D') {
2613 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2614 	} else if (*s == 'n' || *s == 'N') {
2615 		user_zonelist_order = ZONELIST_ORDER_NODE;
2616 	} else if (*s == 'z' || *s == 'Z') {
2617 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2618 	} else {
2619 		printk(KERN_WARNING
2620 			"Ignoring invalid numa_zonelist_order value:  "
2621 			"%s\n", s);
2622 		return -EINVAL;
2623 	}
2624 	return 0;
2625 }
2626 
2627 static __init int setup_numa_zonelist_order(char *s)
2628 {
2629 	int ret;
2630 
2631 	if (!s)
2632 		return 0;
2633 
2634 	ret = __parse_numa_zonelist_order(s);
2635 	if (ret == 0)
2636 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2637 
2638 	return ret;
2639 }
2640 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2641 
2642 /*
2643  * sysctl handler for numa_zonelist_order
2644  */
2645 int numa_zonelist_order_handler(ctl_table *table, int write,
2646 		void __user *buffer, size_t *length,
2647 		loff_t *ppos)
2648 {
2649 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2650 	int ret;
2651 	static DEFINE_MUTEX(zl_order_mutex);
2652 
2653 	mutex_lock(&zl_order_mutex);
2654 	if (write)
2655 		strcpy(saved_string, (char*)table->data);
2656 	ret = proc_dostring(table, write, buffer, length, ppos);
2657 	if (ret)
2658 		goto out;
2659 	if (write) {
2660 		int oldval = user_zonelist_order;
2661 		if (__parse_numa_zonelist_order((char*)table->data)) {
2662 			/*
2663 			 * bogus value.  restore saved string
2664 			 */
2665 			strncpy((char*)table->data, saved_string,
2666 				NUMA_ZONELIST_ORDER_LEN);
2667 			user_zonelist_order = oldval;
2668 		} else if (oldval != user_zonelist_order) {
2669 			mutex_lock(&zonelists_mutex);
2670 			build_all_zonelists(NULL);
2671 			mutex_unlock(&zonelists_mutex);
2672 		}
2673 	}
2674 out:
2675 	mutex_unlock(&zl_order_mutex);
2676 	return ret;
2677 }
2678 
2679 
2680 #define MAX_NODE_LOAD (nr_online_nodes)
2681 static int node_load[MAX_NUMNODES];
2682 
2683 /**
2684  * find_next_best_node - find the next node that should appear in a given node's fallback list
2685  * @node: node whose fallback list we're appending
2686  * @used_node_mask: nodemask_t of already used nodes
2687  *
2688  * We use a number of factors to determine which is the next node that should
2689  * appear on a given node's fallback list.  The node should not have appeared
2690  * already in @node's fallback list, and it should be the next closest node
2691  * according to the distance array (which contains arbitrary distance values
2692  * from each node to each node in the system), and should also prefer nodes
2693  * with no CPUs, since presumably they'll have very little allocation pressure
2694  * on them otherwise.
2695  * It returns -1 if no node is found.
2696  */
2697 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2698 {
2699 	int n, val;
2700 	int min_val = INT_MAX;
2701 	int best_node = -1;
2702 	const struct cpumask *tmp = cpumask_of_node(0);
2703 
2704 	/* Use the local node if we haven't already */
2705 	if (!node_isset(node, *used_node_mask)) {
2706 		node_set(node, *used_node_mask);
2707 		return node;
2708 	}
2709 
2710 	for_each_node_state(n, N_HIGH_MEMORY) {
2711 
2712 		/* Don't want a node to appear more than once */
2713 		if (node_isset(n, *used_node_mask))
2714 			continue;
2715 
2716 		/* Use the distance array to find the distance */
2717 		val = node_distance(node, n);
2718 
2719 		/* Penalize nodes under us ("prefer the next node") */
2720 		val += (n < node);
2721 
2722 		/* Give preference to headless and unused nodes */
2723 		tmp = cpumask_of_node(n);
2724 		if (!cpumask_empty(tmp))
2725 			val += PENALTY_FOR_NODE_WITH_CPUS;
2726 
2727 		/* Slight preference for less loaded node */
2728 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2729 		val += node_load[n];
2730 
2731 		if (val < min_val) {
2732 			min_val = val;
2733 			best_node = n;
2734 		}
2735 	}
2736 
2737 	if (best_node >= 0)
2738 		node_set(best_node, *used_node_mask);
2739 
2740 	return best_node;
2741 }
2742 
2743 
2744 /*
2745  * Build zonelists ordered by node and zones within node.
2746  * This results in maximum locality--normal zone overflows into local
2747  * DMA zone, if any--but risks exhausting DMA zone.
2748  */
2749 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2750 {
2751 	int j;
2752 	struct zonelist *zonelist;
2753 
2754 	zonelist = &pgdat->node_zonelists[0];
2755 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2756 		;
2757 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2758 							MAX_NR_ZONES - 1);
2759 	zonelist->_zonerefs[j].zone = NULL;
2760 	zonelist->_zonerefs[j].zone_idx = 0;
2761 }
2762 
2763 /*
2764  * Build gfp_thisnode zonelists
2765  */
2766 static void build_thisnode_zonelists(pg_data_t *pgdat)
2767 {
2768 	int j;
2769 	struct zonelist *zonelist;
2770 
2771 	zonelist = &pgdat->node_zonelists[1];
2772 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2773 	zonelist->_zonerefs[j].zone = NULL;
2774 	zonelist->_zonerefs[j].zone_idx = 0;
2775 }
2776 
2777 /*
2778  * Build zonelists ordered by zone and nodes within zones.
2779  * This results in conserving DMA zone[s] until all Normal memory is
2780  * exhausted, but results in overflowing to remote node while memory
2781  * may still exist in local DMA zone.
2782  */
2783 static int node_order[MAX_NUMNODES];
2784 
2785 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2786 {
2787 	int pos, j, node;
2788 	int zone_type;		/* needs to be signed */
2789 	struct zone *z;
2790 	struct zonelist *zonelist;
2791 
2792 	zonelist = &pgdat->node_zonelists[0];
2793 	pos = 0;
2794 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2795 		for (j = 0; j < nr_nodes; j++) {
2796 			node = node_order[j];
2797 			z = &NODE_DATA(node)->node_zones[zone_type];
2798 			if (populated_zone(z)) {
2799 				zoneref_set_zone(z,
2800 					&zonelist->_zonerefs[pos++]);
2801 				check_highest_zone(zone_type);
2802 			}
2803 		}
2804 	}
2805 	zonelist->_zonerefs[pos].zone = NULL;
2806 	zonelist->_zonerefs[pos].zone_idx = 0;
2807 }
2808 
2809 static int default_zonelist_order(void)
2810 {
2811 	int nid, zone_type;
2812 	unsigned long low_kmem_size,total_size;
2813 	struct zone *z;
2814 	int average_size;
2815 	/*
2816          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2817 	 * If they are really small and used heavily, the system can fall
2818 	 * into OOM very easily.
2819 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2820 	 */
2821 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2822 	low_kmem_size = 0;
2823 	total_size = 0;
2824 	for_each_online_node(nid) {
2825 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2826 			z = &NODE_DATA(nid)->node_zones[zone_type];
2827 			if (populated_zone(z)) {
2828 				if (zone_type < ZONE_NORMAL)
2829 					low_kmem_size += z->present_pages;
2830 				total_size += z->present_pages;
2831 			} else if (zone_type == ZONE_NORMAL) {
2832 				/*
2833 				 * If any node has only lowmem, then node order
2834 				 * is preferred to allow kernel allocations
2835 				 * locally; otherwise, they can easily infringe
2836 				 * on other nodes when there is an abundance of
2837 				 * lowmem available to allocate from.
2838 				 */
2839 				return ZONELIST_ORDER_NODE;
2840 			}
2841 		}
2842 	}
2843 	if (!low_kmem_size ||  /* there are no DMA area. */
2844 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2845 		return ZONELIST_ORDER_NODE;
2846 	/*
2847 	 * look into each node's config.
2848   	 * If there is a node whose DMA/DMA32 memory is very big area on
2849  	 * local memory, NODE_ORDER may be suitable.
2850          */
2851 	average_size = total_size /
2852 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2853 	for_each_online_node(nid) {
2854 		low_kmem_size = 0;
2855 		total_size = 0;
2856 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2857 			z = &NODE_DATA(nid)->node_zones[zone_type];
2858 			if (populated_zone(z)) {
2859 				if (zone_type < ZONE_NORMAL)
2860 					low_kmem_size += z->present_pages;
2861 				total_size += z->present_pages;
2862 			}
2863 		}
2864 		if (low_kmem_size &&
2865 		    total_size > average_size && /* ignore small node */
2866 		    low_kmem_size > total_size * 70/100)
2867 			return ZONELIST_ORDER_NODE;
2868 	}
2869 	return ZONELIST_ORDER_ZONE;
2870 }
2871 
2872 static void set_zonelist_order(void)
2873 {
2874 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2875 		current_zonelist_order = default_zonelist_order();
2876 	else
2877 		current_zonelist_order = user_zonelist_order;
2878 }
2879 
2880 static void build_zonelists(pg_data_t *pgdat)
2881 {
2882 	int j, node, load;
2883 	enum zone_type i;
2884 	nodemask_t used_mask;
2885 	int local_node, prev_node;
2886 	struct zonelist *zonelist;
2887 	int order = current_zonelist_order;
2888 
2889 	/* initialize zonelists */
2890 	for (i = 0; i < MAX_ZONELISTS; i++) {
2891 		zonelist = pgdat->node_zonelists + i;
2892 		zonelist->_zonerefs[0].zone = NULL;
2893 		zonelist->_zonerefs[0].zone_idx = 0;
2894 	}
2895 
2896 	/* NUMA-aware ordering of nodes */
2897 	local_node = pgdat->node_id;
2898 	load = nr_online_nodes;
2899 	prev_node = local_node;
2900 	nodes_clear(used_mask);
2901 
2902 	memset(node_order, 0, sizeof(node_order));
2903 	j = 0;
2904 
2905 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2906 		int distance = node_distance(local_node, node);
2907 
2908 		/*
2909 		 * If another node is sufficiently far away then it is better
2910 		 * to reclaim pages in a zone before going off node.
2911 		 */
2912 		if (distance > RECLAIM_DISTANCE)
2913 			zone_reclaim_mode = 1;
2914 
2915 		/*
2916 		 * We don't want to pressure a particular node.
2917 		 * So adding penalty to the first node in same
2918 		 * distance group to make it round-robin.
2919 		 */
2920 		if (distance != node_distance(local_node, prev_node))
2921 			node_load[node] = load;
2922 
2923 		prev_node = node;
2924 		load--;
2925 		if (order == ZONELIST_ORDER_NODE)
2926 			build_zonelists_in_node_order(pgdat, node);
2927 		else
2928 			node_order[j++] = node;	/* remember order */
2929 	}
2930 
2931 	if (order == ZONELIST_ORDER_ZONE) {
2932 		/* calculate node order -- i.e., DMA last! */
2933 		build_zonelists_in_zone_order(pgdat, j);
2934 	}
2935 
2936 	build_thisnode_zonelists(pgdat);
2937 }
2938 
2939 /* Construct the zonelist performance cache - see further mmzone.h */
2940 static void build_zonelist_cache(pg_data_t *pgdat)
2941 {
2942 	struct zonelist *zonelist;
2943 	struct zonelist_cache *zlc;
2944 	struct zoneref *z;
2945 
2946 	zonelist = &pgdat->node_zonelists[0];
2947 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2948 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2949 	for (z = zonelist->_zonerefs; z->zone; z++)
2950 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2951 }
2952 
2953 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2954 /*
2955  * Return node id of node used for "local" allocations.
2956  * I.e., first node id of first zone in arg node's generic zonelist.
2957  * Used for initializing percpu 'numa_mem', which is used primarily
2958  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2959  */
2960 int local_memory_node(int node)
2961 {
2962 	struct zone *zone;
2963 
2964 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2965 				   gfp_zone(GFP_KERNEL),
2966 				   NULL,
2967 				   &zone);
2968 	return zone->node;
2969 }
2970 #endif
2971 
2972 #else	/* CONFIG_NUMA */
2973 
2974 static void set_zonelist_order(void)
2975 {
2976 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2977 }
2978 
2979 static void build_zonelists(pg_data_t *pgdat)
2980 {
2981 	int node, local_node;
2982 	enum zone_type j;
2983 	struct zonelist *zonelist;
2984 
2985 	local_node = pgdat->node_id;
2986 
2987 	zonelist = &pgdat->node_zonelists[0];
2988 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2989 
2990 	/*
2991 	 * Now we build the zonelist so that it contains the zones
2992 	 * of all the other nodes.
2993 	 * We don't want to pressure a particular node, so when
2994 	 * building the zones for node N, we make sure that the
2995 	 * zones coming right after the local ones are those from
2996 	 * node N+1 (modulo N)
2997 	 */
2998 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2999 		if (!node_online(node))
3000 			continue;
3001 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3002 							MAX_NR_ZONES - 1);
3003 	}
3004 	for (node = 0; node < local_node; node++) {
3005 		if (!node_online(node))
3006 			continue;
3007 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3008 							MAX_NR_ZONES - 1);
3009 	}
3010 
3011 	zonelist->_zonerefs[j].zone = NULL;
3012 	zonelist->_zonerefs[j].zone_idx = 0;
3013 }
3014 
3015 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3016 static void build_zonelist_cache(pg_data_t *pgdat)
3017 {
3018 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3019 }
3020 
3021 #endif	/* CONFIG_NUMA */
3022 
3023 /*
3024  * Boot pageset table. One per cpu which is going to be used for all
3025  * zones and all nodes. The parameters will be set in such a way
3026  * that an item put on a list will immediately be handed over to
3027  * the buddy list. This is safe since pageset manipulation is done
3028  * with interrupts disabled.
3029  *
3030  * The boot_pagesets must be kept even after bootup is complete for
3031  * unused processors and/or zones. They do play a role for bootstrapping
3032  * hotplugged processors.
3033  *
3034  * zoneinfo_show() and maybe other functions do
3035  * not check if the processor is online before following the pageset pointer.
3036  * Other parts of the kernel may not check if the zone is available.
3037  */
3038 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3039 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3040 static void setup_zone_pageset(struct zone *zone);
3041 
3042 /*
3043  * Global mutex to protect against size modification of zonelists
3044  * as well as to serialize pageset setup for the new populated zone.
3045  */
3046 DEFINE_MUTEX(zonelists_mutex);
3047 
3048 /* return values int ....just for stop_machine() */
3049 static __init_refok int __build_all_zonelists(void *data)
3050 {
3051 	int nid;
3052 	int cpu;
3053 
3054 #ifdef CONFIG_NUMA
3055 	memset(node_load, 0, sizeof(node_load));
3056 #endif
3057 	for_each_online_node(nid) {
3058 		pg_data_t *pgdat = NODE_DATA(nid);
3059 
3060 		build_zonelists(pgdat);
3061 		build_zonelist_cache(pgdat);
3062 	}
3063 
3064 	/*
3065 	 * Initialize the boot_pagesets that are going to be used
3066 	 * for bootstrapping processors. The real pagesets for
3067 	 * each zone will be allocated later when the per cpu
3068 	 * allocator is available.
3069 	 *
3070 	 * boot_pagesets are used also for bootstrapping offline
3071 	 * cpus if the system is already booted because the pagesets
3072 	 * are needed to initialize allocators on a specific cpu too.
3073 	 * F.e. the percpu allocator needs the page allocator which
3074 	 * needs the percpu allocator in order to allocate its pagesets
3075 	 * (a chicken-egg dilemma).
3076 	 */
3077 	for_each_possible_cpu(cpu) {
3078 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3079 
3080 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3081 		/*
3082 		 * We now know the "local memory node" for each node--
3083 		 * i.e., the node of the first zone in the generic zonelist.
3084 		 * Set up numa_mem percpu variable for on-line cpus.  During
3085 		 * boot, only the boot cpu should be on-line;  we'll init the
3086 		 * secondary cpus' numa_mem as they come on-line.  During
3087 		 * node/memory hotplug, we'll fixup all on-line cpus.
3088 		 */
3089 		if (cpu_online(cpu))
3090 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3091 #endif
3092 	}
3093 
3094 	return 0;
3095 }
3096 
3097 /*
3098  * Called with zonelists_mutex held always
3099  * unless system_state == SYSTEM_BOOTING.
3100  */
3101 void build_all_zonelists(void *data)
3102 {
3103 	set_zonelist_order();
3104 
3105 	if (system_state == SYSTEM_BOOTING) {
3106 		__build_all_zonelists(NULL);
3107 		mminit_verify_zonelist();
3108 		cpuset_init_current_mems_allowed();
3109 	} else {
3110 		/* we have to stop all cpus to guarantee there is no user
3111 		   of zonelist */
3112 #ifdef CONFIG_MEMORY_HOTPLUG
3113 		if (data)
3114 			setup_zone_pageset((struct zone *)data);
3115 #endif
3116 		stop_machine(__build_all_zonelists, NULL, NULL);
3117 		/* cpuset refresh routine should be here */
3118 	}
3119 	vm_total_pages = nr_free_pagecache_pages();
3120 	/*
3121 	 * Disable grouping by mobility if the number of pages in the
3122 	 * system is too low to allow the mechanism to work. It would be
3123 	 * more accurate, but expensive to check per-zone. This check is
3124 	 * made on memory-hotadd so a system can start with mobility
3125 	 * disabled and enable it later
3126 	 */
3127 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3128 		page_group_by_mobility_disabled = 1;
3129 	else
3130 		page_group_by_mobility_disabled = 0;
3131 
3132 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3133 		"Total pages: %ld\n",
3134 			nr_online_nodes,
3135 			zonelist_order_name[current_zonelist_order],
3136 			page_group_by_mobility_disabled ? "off" : "on",
3137 			vm_total_pages);
3138 #ifdef CONFIG_NUMA
3139 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3140 #endif
3141 }
3142 
3143 /*
3144  * Helper functions to size the waitqueue hash table.
3145  * Essentially these want to choose hash table sizes sufficiently
3146  * large so that collisions trying to wait on pages are rare.
3147  * But in fact, the number of active page waitqueues on typical
3148  * systems is ridiculously low, less than 200. So this is even
3149  * conservative, even though it seems large.
3150  *
3151  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3152  * waitqueues, i.e. the size of the waitq table given the number of pages.
3153  */
3154 #define PAGES_PER_WAITQUEUE	256
3155 
3156 #ifndef CONFIG_MEMORY_HOTPLUG
3157 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3158 {
3159 	unsigned long size = 1;
3160 
3161 	pages /= PAGES_PER_WAITQUEUE;
3162 
3163 	while (size < pages)
3164 		size <<= 1;
3165 
3166 	/*
3167 	 * Once we have dozens or even hundreds of threads sleeping
3168 	 * on IO we've got bigger problems than wait queue collision.
3169 	 * Limit the size of the wait table to a reasonable size.
3170 	 */
3171 	size = min(size, 4096UL);
3172 
3173 	return max(size, 4UL);
3174 }
3175 #else
3176 /*
3177  * A zone's size might be changed by hot-add, so it is not possible to determine
3178  * a suitable size for its wait_table.  So we use the maximum size now.
3179  *
3180  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3181  *
3182  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3183  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3184  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3185  *
3186  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3187  * or more by the traditional way. (See above).  It equals:
3188  *
3189  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3190  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3191  *    powerpc (64K page size)             : =  (32G +16M)byte.
3192  */
3193 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3194 {
3195 	return 4096UL;
3196 }
3197 #endif
3198 
3199 /*
3200  * This is an integer logarithm so that shifts can be used later
3201  * to extract the more random high bits from the multiplicative
3202  * hash function before the remainder is taken.
3203  */
3204 static inline unsigned long wait_table_bits(unsigned long size)
3205 {
3206 	return ffz(~size);
3207 }
3208 
3209 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3210 
3211 /*
3212  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3213  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3214  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3215  * higher will lead to a bigger reserve which will get freed as contiguous
3216  * blocks as reclaim kicks in
3217  */
3218 static void setup_zone_migrate_reserve(struct zone *zone)
3219 {
3220 	unsigned long start_pfn, pfn, end_pfn;
3221 	struct page *page;
3222 	unsigned long block_migratetype;
3223 	int reserve;
3224 
3225 	/* Get the start pfn, end pfn and the number of blocks to reserve */
3226 	start_pfn = zone->zone_start_pfn;
3227 	end_pfn = start_pfn + zone->spanned_pages;
3228 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3229 							pageblock_order;
3230 
3231 	/*
3232 	 * Reserve blocks are generally in place to help high-order atomic
3233 	 * allocations that are short-lived. A min_free_kbytes value that
3234 	 * would result in more than 2 reserve blocks for atomic allocations
3235 	 * is assumed to be in place to help anti-fragmentation for the
3236 	 * future allocation of hugepages at runtime.
3237 	 */
3238 	reserve = min(2, reserve);
3239 
3240 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3241 		if (!pfn_valid(pfn))
3242 			continue;
3243 		page = pfn_to_page(pfn);
3244 
3245 		/* Watch out for overlapping nodes */
3246 		if (page_to_nid(page) != zone_to_nid(zone))
3247 			continue;
3248 
3249 		/* Blocks with reserved pages will never free, skip them. */
3250 		if (PageReserved(page))
3251 			continue;
3252 
3253 		block_migratetype = get_pageblock_migratetype(page);
3254 
3255 		/* If this block is reserved, account for it */
3256 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3257 			reserve--;
3258 			continue;
3259 		}
3260 
3261 		/* Suitable for reserving if this block is movable */
3262 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3263 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3264 			move_freepages_block(zone, page, MIGRATE_RESERVE);
3265 			reserve--;
3266 			continue;
3267 		}
3268 
3269 		/*
3270 		 * If the reserve is met and this is a previous reserved block,
3271 		 * take it back
3272 		 */
3273 		if (block_migratetype == MIGRATE_RESERVE) {
3274 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3275 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3276 		}
3277 	}
3278 }
3279 
3280 /*
3281  * Initially all pages are reserved - free ones are freed
3282  * up by free_all_bootmem() once the early boot process is
3283  * done. Non-atomic initialization, single-pass.
3284  */
3285 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3286 		unsigned long start_pfn, enum memmap_context context)
3287 {
3288 	struct page *page;
3289 	unsigned long end_pfn = start_pfn + size;
3290 	unsigned long pfn;
3291 	struct zone *z;
3292 
3293 	if (highest_memmap_pfn < end_pfn - 1)
3294 		highest_memmap_pfn = end_pfn - 1;
3295 
3296 	z = &NODE_DATA(nid)->node_zones[zone];
3297 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3298 		/*
3299 		 * There can be holes in boot-time mem_map[]s
3300 		 * handed to this function.  They do not
3301 		 * exist on hotplugged memory.
3302 		 */
3303 		if (context == MEMMAP_EARLY) {
3304 			if (!early_pfn_valid(pfn))
3305 				continue;
3306 			if (!early_pfn_in_nid(pfn, nid))
3307 				continue;
3308 		}
3309 		page = pfn_to_page(pfn);
3310 		set_page_links(page, zone, nid, pfn);
3311 		mminit_verify_page_links(page, zone, nid, pfn);
3312 		init_page_count(page);
3313 		reset_page_mapcount(page);
3314 		SetPageReserved(page);
3315 		/*
3316 		 * Mark the block movable so that blocks are reserved for
3317 		 * movable at startup. This will force kernel allocations
3318 		 * to reserve their blocks rather than leaking throughout
3319 		 * the address space during boot when many long-lived
3320 		 * kernel allocations are made. Later some blocks near
3321 		 * the start are marked MIGRATE_RESERVE by
3322 		 * setup_zone_migrate_reserve()
3323 		 *
3324 		 * bitmap is created for zone's valid pfn range. but memmap
3325 		 * can be created for invalid pages (for alignment)
3326 		 * check here not to call set_pageblock_migratetype() against
3327 		 * pfn out of zone.
3328 		 */
3329 		if ((z->zone_start_pfn <= pfn)
3330 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3331 		    && !(pfn & (pageblock_nr_pages - 1)))
3332 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3333 
3334 		INIT_LIST_HEAD(&page->lru);
3335 #ifdef WANT_PAGE_VIRTUAL
3336 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3337 		if (!is_highmem_idx(zone))
3338 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3339 #endif
3340 	}
3341 }
3342 
3343 static void __meminit zone_init_free_lists(struct zone *zone)
3344 {
3345 	int order, t;
3346 	for_each_migratetype_order(order, t) {
3347 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3348 		zone->free_area[order].nr_free = 0;
3349 	}
3350 }
3351 
3352 #ifndef __HAVE_ARCH_MEMMAP_INIT
3353 #define memmap_init(size, nid, zone, start_pfn) \
3354 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3355 #endif
3356 
3357 static int zone_batchsize(struct zone *zone)
3358 {
3359 #ifdef CONFIG_MMU
3360 	int batch;
3361 
3362 	/*
3363 	 * The per-cpu-pages pools are set to around 1000th of the
3364 	 * size of the zone.  But no more than 1/2 of a meg.
3365 	 *
3366 	 * OK, so we don't know how big the cache is.  So guess.
3367 	 */
3368 	batch = zone->present_pages / 1024;
3369 	if (batch * PAGE_SIZE > 512 * 1024)
3370 		batch = (512 * 1024) / PAGE_SIZE;
3371 	batch /= 4;		/* We effectively *= 4 below */
3372 	if (batch < 1)
3373 		batch = 1;
3374 
3375 	/*
3376 	 * Clamp the batch to a 2^n - 1 value. Having a power
3377 	 * of 2 value was found to be more likely to have
3378 	 * suboptimal cache aliasing properties in some cases.
3379 	 *
3380 	 * For example if 2 tasks are alternately allocating
3381 	 * batches of pages, one task can end up with a lot
3382 	 * of pages of one half of the possible page colors
3383 	 * and the other with pages of the other colors.
3384 	 */
3385 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3386 
3387 	return batch;
3388 
3389 #else
3390 	/* The deferral and batching of frees should be suppressed under NOMMU
3391 	 * conditions.
3392 	 *
3393 	 * The problem is that NOMMU needs to be able to allocate large chunks
3394 	 * of contiguous memory as there's no hardware page translation to
3395 	 * assemble apparent contiguous memory from discontiguous pages.
3396 	 *
3397 	 * Queueing large contiguous runs of pages for batching, however,
3398 	 * causes the pages to actually be freed in smaller chunks.  As there
3399 	 * can be a significant delay between the individual batches being
3400 	 * recycled, this leads to the once large chunks of space being
3401 	 * fragmented and becoming unavailable for high-order allocations.
3402 	 */
3403 	return 0;
3404 #endif
3405 }
3406 
3407 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3408 {
3409 	struct per_cpu_pages *pcp;
3410 	int migratetype;
3411 
3412 	memset(p, 0, sizeof(*p));
3413 
3414 	pcp = &p->pcp;
3415 	pcp->count = 0;
3416 	pcp->high = 6 * batch;
3417 	pcp->batch = max(1UL, 1 * batch);
3418 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3419 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3420 }
3421 
3422 /*
3423  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3424  * to the value high for the pageset p.
3425  */
3426 
3427 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3428 				unsigned long high)
3429 {
3430 	struct per_cpu_pages *pcp;
3431 
3432 	pcp = &p->pcp;
3433 	pcp->high = high;
3434 	pcp->batch = max(1UL, high/4);
3435 	if ((high/4) > (PAGE_SHIFT * 8))
3436 		pcp->batch = PAGE_SHIFT * 8;
3437 }
3438 
3439 static __meminit void setup_zone_pageset(struct zone *zone)
3440 {
3441 	int cpu;
3442 
3443 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3444 
3445 	for_each_possible_cpu(cpu) {
3446 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3447 
3448 		setup_pageset(pcp, zone_batchsize(zone));
3449 
3450 		if (percpu_pagelist_fraction)
3451 			setup_pagelist_highmark(pcp,
3452 				(zone->present_pages /
3453 					percpu_pagelist_fraction));
3454 	}
3455 }
3456 
3457 /*
3458  * Allocate per cpu pagesets and initialize them.
3459  * Before this call only boot pagesets were available.
3460  */
3461 void __init setup_per_cpu_pageset(void)
3462 {
3463 	struct zone *zone;
3464 
3465 	for_each_populated_zone(zone)
3466 		setup_zone_pageset(zone);
3467 }
3468 
3469 static noinline __init_refok
3470 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3471 {
3472 	int i;
3473 	struct pglist_data *pgdat = zone->zone_pgdat;
3474 	size_t alloc_size;
3475 
3476 	/*
3477 	 * The per-page waitqueue mechanism uses hashed waitqueues
3478 	 * per zone.
3479 	 */
3480 	zone->wait_table_hash_nr_entries =
3481 		 wait_table_hash_nr_entries(zone_size_pages);
3482 	zone->wait_table_bits =
3483 		wait_table_bits(zone->wait_table_hash_nr_entries);
3484 	alloc_size = zone->wait_table_hash_nr_entries
3485 					* sizeof(wait_queue_head_t);
3486 
3487 	if (!slab_is_available()) {
3488 		zone->wait_table = (wait_queue_head_t *)
3489 			alloc_bootmem_node(pgdat, alloc_size);
3490 	} else {
3491 		/*
3492 		 * This case means that a zone whose size was 0 gets new memory
3493 		 * via memory hot-add.
3494 		 * But it may be the case that a new node was hot-added.  In
3495 		 * this case vmalloc() will not be able to use this new node's
3496 		 * memory - this wait_table must be initialized to use this new
3497 		 * node itself as well.
3498 		 * To use this new node's memory, further consideration will be
3499 		 * necessary.
3500 		 */
3501 		zone->wait_table = vmalloc(alloc_size);
3502 	}
3503 	if (!zone->wait_table)
3504 		return -ENOMEM;
3505 
3506 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3507 		init_waitqueue_head(zone->wait_table + i);
3508 
3509 	return 0;
3510 }
3511 
3512 static int __zone_pcp_update(void *data)
3513 {
3514 	struct zone *zone = data;
3515 	int cpu;
3516 	unsigned long batch = zone_batchsize(zone), flags;
3517 
3518 	for_each_possible_cpu(cpu) {
3519 		struct per_cpu_pageset *pset;
3520 		struct per_cpu_pages *pcp;
3521 
3522 		pset = per_cpu_ptr(zone->pageset, cpu);
3523 		pcp = &pset->pcp;
3524 
3525 		local_irq_save(flags);
3526 		free_pcppages_bulk(zone, pcp->count, pcp);
3527 		setup_pageset(pset, batch);
3528 		local_irq_restore(flags);
3529 	}
3530 	return 0;
3531 }
3532 
3533 void zone_pcp_update(struct zone *zone)
3534 {
3535 	stop_machine(__zone_pcp_update, zone, NULL);
3536 }
3537 
3538 static __meminit void zone_pcp_init(struct zone *zone)
3539 {
3540 	/*
3541 	 * per cpu subsystem is not up at this point. The following code
3542 	 * relies on the ability of the linker to provide the
3543 	 * offset of a (static) per cpu variable into the per cpu area.
3544 	 */
3545 	zone->pageset = &boot_pageset;
3546 
3547 	if (zone->present_pages)
3548 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3549 			zone->name, zone->present_pages,
3550 					 zone_batchsize(zone));
3551 }
3552 
3553 __meminit int init_currently_empty_zone(struct zone *zone,
3554 					unsigned long zone_start_pfn,
3555 					unsigned long size,
3556 					enum memmap_context context)
3557 {
3558 	struct pglist_data *pgdat = zone->zone_pgdat;
3559 	int ret;
3560 	ret = zone_wait_table_init(zone, size);
3561 	if (ret)
3562 		return ret;
3563 	pgdat->nr_zones = zone_idx(zone) + 1;
3564 
3565 	zone->zone_start_pfn = zone_start_pfn;
3566 
3567 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3568 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3569 			pgdat->node_id,
3570 			(unsigned long)zone_idx(zone),
3571 			zone_start_pfn, (zone_start_pfn + size));
3572 
3573 	zone_init_free_lists(zone);
3574 
3575 	return 0;
3576 }
3577 
3578 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3579 /*
3580  * Basic iterator support. Return the first range of PFNs for a node
3581  * Note: nid == MAX_NUMNODES returns first region regardless of node
3582  */
3583 static int __meminit first_active_region_index_in_nid(int nid)
3584 {
3585 	int i;
3586 
3587 	for (i = 0; i < nr_nodemap_entries; i++)
3588 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3589 			return i;
3590 
3591 	return -1;
3592 }
3593 
3594 /*
3595  * Basic iterator support. Return the next active range of PFNs for a node
3596  * Note: nid == MAX_NUMNODES returns next region regardless of node
3597  */
3598 static int __meminit next_active_region_index_in_nid(int index, int nid)
3599 {
3600 	for (index = index + 1; index < nr_nodemap_entries; index++)
3601 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3602 			return index;
3603 
3604 	return -1;
3605 }
3606 
3607 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3608 /*
3609  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3610  * Architectures may implement their own version but if add_active_range()
3611  * was used and there are no special requirements, this is a convenient
3612  * alternative
3613  */
3614 int __meminit __early_pfn_to_nid(unsigned long pfn)
3615 {
3616 	int i;
3617 
3618 	for (i = 0; i < nr_nodemap_entries; i++) {
3619 		unsigned long start_pfn = early_node_map[i].start_pfn;
3620 		unsigned long end_pfn = early_node_map[i].end_pfn;
3621 
3622 		if (start_pfn <= pfn && pfn < end_pfn)
3623 			return early_node_map[i].nid;
3624 	}
3625 	/* This is a memory hole */
3626 	return -1;
3627 }
3628 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3629 
3630 int __meminit early_pfn_to_nid(unsigned long pfn)
3631 {
3632 	int nid;
3633 
3634 	nid = __early_pfn_to_nid(pfn);
3635 	if (nid >= 0)
3636 		return nid;
3637 	/* just returns 0 */
3638 	return 0;
3639 }
3640 
3641 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3642 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3643 {
3644 	int nid;
3645 
3646 	nid = __early_pfn_to_nid(pfn);
3647 	if (nid >= 0 && nid != node)
3648 		return false;
3649 	return true;
3650 }
3651 #endif
3652 
3653 /* Basic iterator support to walk early_node_map[] */
3654 #define for_each_active_range_index_in_nid(i, nid) \
3655 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3656 				i = next_active_region_index_in_nid(i, nid))
3657 
3658 /**
3659  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3660  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3661  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3662  *
3663  * If an architecture guarantees that all ranges registered with
3664  * add_active_ranges() contain no holes and may be freed, this
3665  * this function may be used instead of calling free_bootmem() manually.
3666  */
3667 void __init free_bootmem_with_active_regions(int nid,
3668 						unsigned long max_low_pfn)
3669 {
3670 	int i;
3671 
3672 	for_each_active_range_index_in_nid(i, nid) {
3673 		unsigned long size_pages = 0;
3674 		unsigned long end_pfn = early_node_map[i].end_pfn;
3675 
3676 		if (early_node_map[i].start_pfn >= max_low_pfn)
3677 			continue;
3678 
3679 		if (end_pfn > max_low_pfn)
3680 			end_pfn = max_low_pfn;
3681 
3682 		size_pages = end_pfn - early_node_map[i].start_pfn;
3683 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3684 				PFN_PHYS(early_node_map[i].start_pfn),
3685 				size_pages << PAGE_SHIFT);
3686 	}
3687 }
3688 
3689 #ifdef CONFIG_HAVE_MEMBLOCK
3690 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3691 					u64 goal, u64 limit)
3692 {
3693 	int i;
3694 
3695 	/* Need to go over early_node_map to find out good range for node */
3696 	for_each_active_range_index_in_nid(i, nid) {
3697 		u64 addr;
3698 		u64 ei_start, ei_last;
3699 		u64 final_start, final_end;
3700 
3701 		ei_last = early_node_map[i].end_pfn;
3702 		ei_last <<= PAGE_SHIFT;
3703 		ei_start = early_node_map[i].start_pfn;
3704 		ei_start <<= PAGE_SHIFT;
3705 
3706 		final_start = max(ei_start, goal);
3707 		final_end = min(ei_last, limit);
3708 
3709 		if (final_start >= final_end)
3710 			continue;
3711 
3712 		addr = memblock_find_in_range(final_start, final_end, size, align);
3713 
3714 		if (addr == MEMBLOCK_ERROR)
3715 			continue;
3716 
3717 		return addr;
3718 	}
3719 
3720 	return MEMBLOCK_ERROR;
3721 }
3722 #endif
3723 
3724 int __init add_from_early_node_map(struct range *range, int az,
3725 				   int nr_range, int nid)
3726 {
3727 	int i;
3728 	u64 start, end;
3729 
3730 	/* need to go over early_node_map to find out good range for node */
3731 	for_each_active_range_index_in_nid(i, nid) {
3732 		start = early_node_map[i].start_pfn;
3733 		end = early_node_map[i].end_pfn;
3734 		nr_range = add_range(range, az, nr_range, start, end);
3735 	}
3736 	return nr_range;
3737 }
3738 
3739 #ifdef CONFIG_NO_BOOTMEM
3740 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3741 					u64 goal, u64 limit)
3742 {
3743 	void *ptr;
3744 	u64 addr;
3745 
3746 	if (limit > memblock.current_limit)
3747 		limit = memblock.current_limit;
3748 
3749 	addr = find_memory_core_early(nid, size, align, goal, limit);
3750 
3751 	if (addr == MEMBLOCK_ERROR)
3752 		return NULL;
3753 
3754 	ptr = phys_to_virt(addr);
3755 	memset(ptr, 0, size);
3756 	memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3757 	/*
3758 	 * The min_count is set to 0 so that bootmem allocated blocks
3759 	 * are never reported as leaks.
3760 	 */
3761 	kmemleak_alloc(ptr, size, 0, 0);
3762 	return ptr;
3763 }
3764 #endif
3765 
3766 
3767 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3768 {
3769 	int i;
3770 	int ret;
3771 
3772 	for_each_active_range_index_in_nid(i, nid) {
3773 		ret = work_fn(early_node_map[i].start_pfn,
3774 			      early_node_map[i].end_pfn, data);
3775 		if (ret)
3776 			break;
3777 	}
3778 }
3779 /**
3780  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3781  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3782  *
3783  * If an architecture guarantees that all ranges registered with
3784  * add_active_ranges() contain no holes and may be freed, this
3785  * function may be used instead of calling memory_present() manually.
3786  */
3787 void __init sparse_memory_present_with_active_regions(int nid)
3788 {
3789 	int i;
3790 
3791 	for_each_active_range_index_in_nid(i, nid)
3792 		memory_present(early_node_map[i].nid,
3793 				early_node_map[i].start_pfn,
3794 				early_node_map[i].end_pfn);
3795 }
3796 
3797 /**
3798  * get_pfn_range_for_nid - Return the start and end page frames for a node
3799  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3800  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3801  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3802  *
3803  * It returns the start and end page frame of a node based on information
3804  * provided by an arch calling add_active_range(). If called for a node
3805  * with no available memory, a warning is printed and the start and end
3806  * PFNs will be 0.
3807  */
3808 void __meminit get_pfn_range_for_nid(unsigned int nid,
3809 			unsigned long *start_pfn, unsigned long *end_pfn)
3810 {
3811 	int i;
3812 	*start_pfn = -1UL;
3813 	*end_pfn = 0;
3814 
3815 	for_each_active_range_index_in_nid(i, nid) {
3816 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3817 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3818 	}
3819 
3820 	if (*start_pfn == -1UL)
3821 		*start_pfn = 0;
3822 }
3823 
3824 /*
3825  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3826  * assumption is made that zones within a node are ordered in monotonic
3827  * increasing memory addresses so that the "highest" populated zone is used
3828  */
3829 static void __init find_usable_zone_for_movable(void)
3830 {
3831 	int zone_index;
3832 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3833 		if (zone_index == ZONE_MOVABLE)
3834 			continue;
3835 
3836 		if (arch_zone_highest_possible_pfn[zone_index] >
3837 				arch_zone_lowest_possible_pfn[zone_index])
3838 			break;
3839 	}
3840 
3841 	VM_BUG_ON(zone_index == -1);
3842 	movable_zone = zone_index;
3843 }
3844 
3845 /*
3846  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3847  * because it is sized independant of architecture. Unlike the other zones,
3848  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3849  * in each node depending on the size of each node and how evenly kernelcore
3850  * is distributed. This helper function adjusts the zone ranges
3851  * provided by the architecture for a given node by using the end of the
3852  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3853  * zones within a node are in order of monotonic increases memory addresses
3854  */
3855 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3856 					unsigned long zone_type,
3857 					unsigned long node_start_pfn,
3858 					unsigned long node_end_pfn,
3859 					unsigned long *zone_start_pfn,
3860 					unsigned long *zone_end_pfn)
3861 {
3862 	/* Only adjust if ZONE_MOVABLE is on this node */
3863 	if (zone_movable_pfn[nid]) {
3864 		/* Size ZONE_MOVABLE */
3865 		if (zone_type == ZONE_MOVABLE) {
3866 			*zone_start_pfn = zone_movable_pfn[nid];
3867 			*zone_end_pfn = min(node_end_pfn,
3868 				arch_zone_highest_possible_pfn[movable_zone]);
3869 
3870 		/* Adjust for ZONE_MOVABLE starting within this range */
3871 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3872 				*zone_end_pfn > zone_movable_pfn[nid]) {
3873 			*zone_end_pfn = zone_movable_pfn[nid];
3874 
3875 		/* Check if this whole range is within ZONE_MOVABLE */
3876 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3877 			*zone_start_pfn = *zone_end_pfn;
3878 	}
3879 }
3880 
3881 /*
3882  * Return the number of pages a zone spans in a node, including holes
3883  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3884  */
3885 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3886 					unsigned long zone_type,
3887 					unsigned long *ignored)
3888 {
3889 	unsigned long node_start_pfn, node_end_pfn;
3890 	unsigned long zone_start_pfn, zone_end_pfn;
3891 
3892 	/* Get the start and end of the node and zone */
3893 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3894 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3895 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3896 	adjust_zone_range_for_zone_movable(nid, zone_type,
3897 				node_start_pfn, node_end_pfn,
3898 				&zone_start_pfn, &zone_end_pfn);
3899 
3900 	/* Check that this node has pages within the zone's required range */
3901 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3902 		return 0;
3903 
3904 	/* Move the zone boundaries inside the node if necessary */
3905 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3906 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3907 
3908 	/* Return the spanned pages */
3909 	return zone_end_pfn - zone_start_pfn;
3910 }
3911 
3912 /*
3913  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3914  * then all holes in the requested range will be accounted for.
3915  */
3916 unsigned long __meminit __absent_pages_in_range(int nid,
3917 				unsigned long range_start_pfn,
3918 				unsigned long range_end_pfn)
3919 {
3920 	int i = 0;
3921 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3922 	unsigned long start_pfn;
3923 
3924 	/* Find the end_pfn of the first active range of pfns in the node */
3925 	i = first_active_region_index_in_nid(nid);
3926 	if (i == -1)
3927 		return 0;
3928 
3929 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3930 
3931 	/* Account for ranges before physical memory on this node */
3932 	if (early_node_map[i].start_pfn > range_start_pfn)
3933 		hole_pages = prev_end_pfn - range_start_pfn;
3934 
3935 	/* Find all holes for the zone within the node */
3936 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3937 
3938 		/* No need to continue if prev_end_pfn is outside the zone */
3939 		if (prev_end_pfn >= range_end_pfn)
3940 			break;
3941 
3942 		/* Make sure the end of the zone is not within the hole */
3943 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3944 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3945 
3946 		/* Update the hole size cound and move on */
3947 		if (start_pfn > range_start_pfn) {
3948 			BUG_ON(prev_end_pfn > start_pfn);
3949 			hole_pages += start_pfn - prev_end_pfn;
3950 		}
3951 		prev_end_pfn = early_node_map[i].end_pfn;
3952 	}
3953 
3954 	/* Account for ranges past physical memory on this node */
3955 	if (range_end_pfn > prev_end_pfn)
3956 		hole_pages += range_end_pfn -
3957 				max(range_start_pfn, prev_end_pfn);
3958 
3959 	return hole_pages;
3960 }
3961 
3962 /**
3963  * absent_pages_in_range - Return number of page frames in holes within a range
3964  * @start_pfn: The start PFN to start searching for holes
3965  * @end_pfn: The end PFN to stop searching for holes
3966  *
3967  * It returns the number of pages frames in memory holes within a range.
3968  */
3969 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3970 							unsigned long end_pfn)
3971 {
3972 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3973 }
3974 
3975 /* Return the number of page frames in holes in a zone on a node */
3976 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3977 					unsigned long zone_type,
3978 					unsigned long *ignored)
3979 {
3980 	unsigned long node_start_pfn, node_end_pfn;
3981 	unsigned long zone_start_pfn, zone_end_pfn;
3982 
3983 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3984 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3985 							node_start_pfn);
3986 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3987 							node_end_pfn);
3988 
3989 	adjust_zone_range_for_zone_movable(nid, zone_type,
3990 			node_start_pfn, node_end_pfn,
3991 			&zone_start_pfn, &zone_end_pfn);
3992 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3993 }
3994 
3995 #else
3996 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3997 					unsigned long zone_type,
3998 					unsigned long *zones_size)
3999 {
4000 	return zones_size[zone_type];
4001 }
4002 
4003 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4004 						unsigned long zone_type,
4005 						unsigned long *zholes_size)
4006 {
4007 	if (!zholes_size)
4008 		return 0;
4009 
4010 	return zholes_size[zone_type];
4011 }
4012 
4013 #endif
4014 
4015 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4016 		unsigned long *zones_size, unsigned long *zholes_size)
4017 {
4018 	unsigned long realtotalpages, totalpages = 0;
4019 	enum zone_type i;
4020 
4021 	for (i = 0; i < MAX_NR_ZONES; i++)
4022 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4023 								zones_size);
4024 	pgdat->node_spanned_pages = totalpages;
4025 
4026 	realtotalpages = totalpages;
4027 	for (i = 0; i < MAX_NR_ZONES; i++)
4028 		realtotalpages -=
4029 			zone_absent_pages_in_node(pgdat->node_id, i,
4030 								zholes_size);
4031 	pgdat->node_present_pages = realtotalpages;
4032 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4033 							realtotalpages);
4034 }
4035 
4036 #ifndef CONFIG_SPARSEMEM
4037 /*
4038  * Calculate the size of the zone->blockflags rounded to an unsigned long
4039  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4040  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4041  * round what is now in bits to nearest long in bits, then return it in
4042  * bytes.
4043  */
4044 static unsigned long __init usemap_size(unsigned long zonesize)
4045 {
4046 	unsigned long usemapsize;
4047 
4048 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4049 	usemapsize = usemapsize >> pageblock_order;
4050 	usemapsize *= NR_PAGEBLOCK_BITS;
4051 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4052 
4053 	return usemapsize / 8;
4054 }
4055 
4056 static void __init setup_usemap(struct pglist_data *pgdat,
4057 				struct zone *zone, unsigned long zonesize)
4058 {
4059 	unsigned long usemapsize = usemap_size(zonesize);
4060 	zone->pageblock_flags = NULL;
4061 	if (usemapsize)
4062 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4063 }
4064 #else
4065 static inline void setup_usemap(struct pglist_data *pgdat,
4066 				struct zone *zone, unsigned long zonesize) {}
4067 #endif /* CONFIG_SPARSEMEM */
4068 
4069 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4070 
4071 /* Return a sensible default order for the pageblock size. */
4072 static inline int pageblock_default_order(void)
4073 {
4074 	if (HPAGE_SHIFT > PAGE_SHIFT)
4075 		return HUGETLB_PAGE_ORDER;
4076 
4077 	return MAX_ORDER-1;
4078 }
4079 
4080 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4081 static inline void __init set_pageblock_order(unsigned int order)
4082 {
4083 	/* Check that pageblock_nr_pages has not already been setup */
4084 	if (pageblock_order)
4085 		return;
4086 
4087 	/*
4088 	 * Assume the largest contiguous order of interest is a huge page.
4089 	 * This value may be variable depending on boot parameters on IA64
4090 	 */
4091 	pageblock_order = order;
4092 }
4093 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4094 
4095 /*
4096  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4097  * and pageblock_default_order() are unused as pageblock_order is set
4098  * at compile-time. See include/linux/pageblock-flags.h for the values of
4099  * pageblock_order based on the kernel config
4100  */
4101 static inline int pageblock_default_order(unsigned int order)
4102 {
4103 	return MAX_ORDER-1;
4104 }
4105 #define set_pageblock_order(x)	do {} while (0)
4106 
4107 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4108 
4109 /*
4110  * Set up the zone data structures:
4111  *   - mark all pages reserved
4112  *   - mark all memory queues empty
4113  *   - clear the memory bitmaps
4114  */
4115 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4116 		unsigned long *zones_size, unsigned long *zholes_size)
4117 {
4118 	enum zone_type j;
4119 	int nid = pgdat->node_id;
4120 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4121 	int ret;
4122 
4123 	pgdat_resize_init(pgdat);
4124 	pgdat->nr_zones = 0;
4125 	init_waitqueue_head(&pgdat->kswapd_wait);
4126 	pgdat->kswapd_max_order = 0;
4127 	pgdat_page_cgroup_init(pgdat);
4128 
4129 	for (j = 0; j < MAX_NR_ZONES; j++) {
4130 		struct zone *zone = pgdat->node_zones + j;
4131 		unsigned long size, realsize, memmap_pages;
4132 		enum lru_list l;
4133 
4134 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4135 		realsize = size - zone_absent_pages_in_node(nid, j,
4136 								zholes_size);
4137 
4138 		/*
4139 		 * Adjust realsize so that it accounts for how much memory
4140 		 * is used by this zone for memmap. This affects the watermark
4141 		 * and per-cpu initialisations
4142 		 */
4143 		memmap_pages =
4144 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4145 		if (realsize >= memmap_pages) {
4146 			realsize -= memmap_pages;
4147 			if (memmap_pages)
4148 				printk(KERN_DEBUG
4149 				       "  %s zone: %lu pages used for memmap\n",
4150 				       zone_names[j], memmap_pages);
4151 		} else
4152 			printk(KERN_WARNING
4153 				"  %s zone: %lu pages exceeds realsize %lu\n",
4154 				zone_names[j], memmap_pages, realsize);
4155 
4156 		/* Account for reserved pages */
4157 		if (j == 0 && realsize > dma_reserve) {
4158 			realsize -= dma_reserve;
4159 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4160 					zone_names[0], dma_reserve);
4161 		}
4162 
4163 		if (!is_highmem_idx(j))
4164 			nr_kernel_pages += realsize;
4165 		nr_all_pages += realsize;
4166 
4167 		zone->spanned_pages = size;
4168 		zone->present_pages = realsize;
4169 #ifdef CONFIG_NUMA
4170 		zone->node = nid;
4171 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4172 						/ 100;
4173 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4174 #endif
4175 		zone->name = zone_names[j];
4176 		spin_lock_init(&zone->lock);
4177 		spin_lock_init(&zone->lru_lock);
4178 		zone_seqlock_init(zone);
4179 		zone->zone_pgdat = pgdat;
4180 
4181 		zone_pcp_init(zone);
4182 		for_each_lru(l) {
4183 			INIT_LIST_HEAD(&zone->lru[l].list);
4184 			zone->reclaim_stat.nr_saved_scan[l] = 0;
4185 		}
4186 		zone->reclaim_stat.recent_rotated[0] = 0;
4187 		zone->reclaim_stat.recent_rotated[1] = 0;
4188 		zone->reclaim_stat.recent_scanned[0] = 0;
4189 		zone->reclaim_stat.recent_scanned[1] = 0;
4190 		zap_zone_vm_stats(zone);
4191 		zone->flags = 0;
4192 		if (!size)
4193 			continue;
4194 
4195 		set_pageblock_order(pageblock_default_order());
4196 		setup_usemap(pgdat, zone, size);
4197 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4198 						size, MEMMAP_EARLY);
4199 		BUG_ON(ret);
4200 		memmap_init(size, nid, j, zone_start_pfn);
4201 		zone_start_pfn += size;
4202 	}
4203 }
4204 
4205 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4206 {
4207 	/* Skip empty nodes */
4208 	if (!pgdat->node_spanned_pages)
4209 		return;
4210 
4211 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4212 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4213 	if (!pgdat->node_mem_map) {
4214 		unsigned long size, start, end;
4215 		struct page *map;
4216 
4217 		/*
4218 		 * The zone's endpoints aren't required to be MAX_ORDER
4219 		 * aligned but the node_mem_map endpoints must be in order
4220 		 * for the buddy allocator to function correctly.
4221 		 */
4222 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4223 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4224 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4225 		size =  (end - start) * sizeof(struct page);
4226 		map = alloc_remap(pgdat->node_id, size);
4227 		if (!map)
4228 			map = alloc_bootmem_node(pgdat, size);
4229 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4230 	}
4231 #ifndef CONFIG_NEED_MULTIPLE_NODES
4232 	/*
4233 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4234 	 */
4235 	if (pgdat == NODE_DATA(0)) {
4236 		mem_map = NODE_DATA(0)->node_mem_map;
4237 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4238 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4239 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4240 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4241 	}
4242 #endif
4243 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4244 }
4245 
4246 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4247 		unsigned long node_start_pfn, unsigned long *zholes_size)
4248 {
4249 	pg_data_t *pgdat = NODE_DATA(nid);
4250 
4251 	pgdat->node_id = nid;
4252 	pgdat->node_start_pfn = node_start_pfn;
4253 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4254 
4255 	alloc_node_mem_map(pgdat);
4256 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4257 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4258 		nid, (unsigned long)pgdat,
4259 		(unsigned long)pgdat->node_mem_map);
4260 #endif
4261 
4262 	free_area_init_core(pgdat, zones_size, zholes_size);
4263 }
4264 
4265 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4266 
4267 #if MAX_NUMNODES > 1
4268 /*
4269  * Figure out the number of possible node ids.
4270  */
4271 static void __init setup_nr_node_ids(void)
4272 {
4273 	unsigned int node;
4274 	unsigned int highest = 0;
4275 
4276 	for_each_node_mask(node, node_possible_map)
4277 		highest = node;
4278 	nr_node_ids = highest + 1;
4279 }
4280 #else
4281 static inline void setup_nr_node_ids(void)
4282 {
4283 }
4284 #endif
4285 
4286 /**
4287  * add_active_range - Register a range of PFNs backed by physical memory
4288  * @nid: The node ID the range resides on
4289  * @start_pfn: The start PFN of the available physical memory
4290  * @end_pfn: The end PFN of the available physical memory
4291  *
4292  * These ranges are stored in an early_node_map[] and later used by
4293  * free_area_init_nodes() to calculate zone sizes and holes. If the
4294  * range spans a memory hole, it is up to the architecture to ensure
4295  * the memory is not freed by the bootmem allocator. If possible
4296  * the range being registered will be merged with existing ranges.
4297  */
4298 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4299 						unsigned long end_pfn)
4300 {
4301 	int i;
4302 
4303 	mminit_dprintk(MMINIT_TRACE, "memory_register",
4304 			"Entering add_active_range(%d, %#lx, %#lx) "
4305 			"%d entries of %d used\n",
4306 			nid, start_pfn, end_pfn,
4307 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4308 
4309 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4310 
4311 	/* Merge with existing active regions if possible */
4312 	for (i = 0; i < nr_nodemap_entries; i++) {
4313 		if (early_node_map[i].nid != nid)
4314 			continue;
4315 
4316 		/* Skip if an existing region covers this new one */
4317 		if (start_pfn >= early_node_map[i].start_pfn &&
4318 				end_pfn <= early_node_map[i].end_pfn)
4319 			return;
4320 
4321 		/* Merge forward if suitable */
4322 		if (start_pfn <= early_node_map[i].end_pfn &&
4323 				end_pfn > early_node_map[i].end_pfn) {
4324 			early_node_map[i].end_pfn = end_pfn;
4325 			return;
4326 		}
4327 
4328 		/* Merge backward if suitable */
4329 		if (start_pfn < early_node_map[i].start_pfn &&
4330 				end_pfn >= early_node_map[i].start_pfn) {
4331 			early_node_map[i].start_pfn = start_pfn;
4332 			return;
4333 		}
4334 	}
4335 
4336 	/* Check that early_node_map is large enough */
4337 	if (i >= MAX_ACTIVE_REGIONS) {
4338 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4339 							MAX_ACTIVE_REGIONS);
4340 		return;
4341 	}
4342 
4343 	early_node_map[i].nid = nid;
4344 	early_node_map[i].start_pfn = start_pfn;
4345 	early_node_map[i].end_pfn = end_pfn;
4346 	nr_nodemap_entries = i + 1;
4347 }
4348 
4349 /**
4350  * remove_active_range - Shrink an existing registered range of PFNs
4351  * @nid: The node id the range is on that should be shrunk
4352  * @start_pfn: The new PFN of the range
4353  * @end_pfn: The new PFN of the range
4354  *
4355  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4356  * The map is kept near the end physical page range that has already been
4357  * registered. This function allows an arch to shrink an existing registered
4358  * range.
4359  */
4360 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4361 				unsigned long end_pfn)
4362 {
4363 	int i, j;
4364 	int removed = 0;
4365 
4366 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4367 			  nid, start_pfn, end_pfn);
4368 
4369 	/* Find the old active region end and shrink */
4370 	for_each_active_range_index_in_nid(i, nid) {
4371 		if (early_node_map[i].start_pfn >= start_pfn &&
4372 		    early_node_map[i].end_pfn <= end_pfn) {
4373 			/* clear it */
4374 			early_node_map[i].start_pfn = 0;
4375 			early_node_map[i].end_pfn = 0;
4376 			removed = 1;
4377 			continue;
4378 		}
4379 		if (early_node_map[i].start_pfn < start_pfn &&
4380 		    early_node_map[i].end_pfn > start_pfn) {
4381 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4382 			early_node_map[i].end_pfn = start_pfn;
4383 			if (temp_end_pfn > end_pfn)
4384 				add_active_range(nid, end_pfn, temp_end_pfn);
4385 			continue;
4386 		}
4387 		if (early_node_map[i].start_pfn >= start_pfn &&
4388 		    early_node_map[i].end_pfn > end_pfn &&
4389 		    early_node_map[i].start_pfn < end_pfn) {
4390 			early_node_map[i].start_pfn = end_pfn;
4391 			continue;
4392 		}
4393 	}
4394 
4395 	if (!removed)
4396 		return;
4397 
4398 	/* remove the blank ones */
4399 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4400 		if (early_node_map[i].nid != nid)
4401 			continue;
4402 		if (early_node_map[i].end_pfn)
4403 			continue;
4404 		/* we found it, get rid of it */
4405 		for (j = i; j < nr_nodemap_entries - 1; j++)
4406 			memcpy(&early_node_map[j], &early_node_map[j+1],
4407 				sizeof(early_node_map[j]));
4408 		j = nr_nodemap_entries - 1;
4409 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4410 		nr_nodemap_entries--;
4411 	}
4412 }
4413 
4414 /**
4415  * remove_all_active_ranges - Remove all currently registered regions
4416  *
4417  * During discovery, it may be found that a table like SRAT is invalid
4418  * and an alternative discovery method must be used. This function removes
4419  * all currently registered regions.
4420  */
4421 void __init remove_all_active_ranges(void)
4422 {
4423 	memset(early_node_map, 0, sizeof(early_node_map));
4424 	nr_nodemap_entries = 0;
4425 }
4426 
4427 /* Compare two active node_active_regions */
4428 static int __init cmp_node_active_region(const void *a, const void *b)
4429 {
4430 	struct node_active_region *arange = (struct node_active_region *)a;
4431 	struct node_active_region *brange = (struct node_active_region *)b;
4432 
4433 	/* Done this way to avoid overflows */
4434 	if (arange->start_pfn > brange->start_pfn)
4435 		return 1;
4436 	if (arange->start_pfn < brange->start_pfn)
4437 		return -1;
4438 
4439 	return 0;
4440 }
4441 
4442 /* sort the node_map by start_pfn */
4443 void __init sort_node_map(void)
4444 {
4445 	sort(early_node_map, (size_t)nr_nodemap_entries,
4446 			sizeof(struct node_active_region),
4447 			cmp_node_active_region, NULL);
4448 }
4449 
4450 /* Find the lowest pfn for a node */
4451 static unsigned long __init find_min_pfn_for_node(int nid)
4452 {
4453 	int i;
4454 	unsigned long min_pfn = ULONG_MAX;
4455 
4456 	/* Assuming a sorted map, the first range found has the starting pfn */
4457 	for_each_active_range_index_in_nid(i, nid)
4458 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4459 
4460 	if (min_pfn == ULONG_MAX) {
4461 		printk(KERN_WARNING
4462 			"Could not find start_pfn for node %d\n", nid);
4463 		return 0;
4464 	}
4465 
4466 	return min_pfn;
4467 }
4468 
4469 /**
4470  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4471  *
4472  * It returns the minimum PFN based on information provided via
4473  * add_active_range().
4474  */
4475 unsigned long __init find_min_pfn_with_active_regions(void)
4476 {
4477 	return find_min_pfn_for_node(MAX_NUMNODES);
4478 }
4479 
4480 /*
4481  * early_calculate_totalpages()
4482  * Sum pages in active regions for movable zone.
4483  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4484  */
4485 static unsigned long __init early_calculate_totalpages(void)
4486 {
4487 	int i;
4488 	unsigned long totalpages = 0;
4489 
4490 	for (i = 0; i < nr_nodemap_entries; i++) {
4491 		unsigned long pages = early_node_map[i].end_pfn -
4492 						early_node_map[i].start_pfn;
4493 		totalpages += pages;
4494 		if (pages)
4495 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4496 	}
4497   	return totalpages;
4498 }
4499 
4500 /*
4501  * Find the PFN the Movable zone begins in each node. Kernel memory
4502  * is spread evenly between nodes as long as the nodes have enough
4503  * memory. When they don't, some nodes will have more kernelcore than
4504  * others
4505  */
4506 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4507 {
4508 	int i, nid;
4509 	unsigned long usable_startpfn;
4510 	unsigned long kernelcore_node, kernelcore_remaining;
4511 	/* save the state before borrow the nodemask */
4512 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4513 	unsigned long totalpages = early_calculate_totalpages();
4514 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4515 
4516 	/*
4517 	 * If movablecore was specified, calculate what size of
4518 	 * kernelcore that corresponds so that memory usable for
4519 	 * any allocation type is evenly spread. If both kernelcore
4520 	 * and movablecore are specified, then the value of kernelcore
4521 	 * will be used for required_kernelcore if it's greater than
4522 	 * what movablecore would have allowed.
4523 	 */
4524 	if (required_movablecore) {
4525 		unsigned long corepages;
4526 
4527 		/*
4528 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4529 		 * was requested by the user
4530 		 */
4531 		required_movablecore =
4532 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4533 		corepages = totalpages - required_movablecore;
4534 
4535 		required_kernelcore = max(required_kernelcore, corepages);
4536 	}
4537 
4538 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4539 	if (!required_kernelcore)
4540 		goto out;
4541 
4542 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4543 	find_usable_zone_for_movable();
4544 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4545 
4546 restart:
4547 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4548 	kernelcore_node = required_kernelcore / usable_nodes;
4549 	for_each_node_state(nid, N_HIGH_MEMORY) {
4550 		/*
4551 		 * Recalculate kernelcore_node if the division per node
4552 		 * now exceeds what is necessary to satisfy the requested
4553 		 * amount of memory for the kernel
4554 		 */
4555 		if (required_kernelcore < kernelcore_node)
4556 			kernelcore_node = required_kernelcore / usable_nodes;
4557 
4558 		/*
4559 		 * As the map is walked, we track how much memory is usable
4560 		 * by the kernel using kernelcore_remaining. When it is
4561 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4562 		 */
4563 		kernelcore_remaining = kernelcore_node;
4564 
4565 		/* Go through each range of PFNs within this node */
4566 		for_each_active_range_index_in_nid(i, nid) {
4567 			unsigned long start_pfn, end_pfn;
4568 			unsigned long size_pages;
4569 
4570 			start_pfn = max(early_node_map[i].start_pfn,
4571 						zone_movable_pfn[nid]);
4572 			end_pfn = early_node_map[i].end_pfn;
4573 			if (start_pfn >= end_pfn)
4574 				continue;
4575 
4576 			/* Account for what is only usable for kernelcore */
4577 			if (start_pfn < usable_startpfn) {
4578 				unsigned long kernel_pages;
4579 				kernel_pages = min(end_pfn, usable_startpfn)
4580 								- start_pfn;
4581 
4582 				kernelcore_remaining -= min(kernel_pages,
4583 							kernelcore_remaining);
4584 				required_kernelcore -= min(kernel_pages,
4585 							required_kernelcore);
4586 
4587 				/* Continue if range is now fully accounted */
4588 				if (end_pfn <= usable_startpfn) {
4589 
4590 					/*
4591 					 * Push zone_movable_pfn to the end so
4592 					 * that if we have to rebalance
4593 					 * kernelcore across nodes, we will
4594 					 * not double account here
4595 					 */
4596 					zone_movable_pfn[nid] = end_pfn;
4597 					continue;
4598 				}
4599 				start_pfn = usable_startpfn;
4600 			}
4601 
4602 			/*
4603 			 * The usable PFN range for ZONE_MOVABLE is from
4604 			 * start_pfn->end_pfn. Calculate size_pages as the
4605 			 * number of pages used as kernelcore
4606 			 */
4607 			size_pages = end_pfn - start_pfn;
4608 			if (size_pages > kernelcore_remaining)
4609 				size_pages = kernelcore_remaining;
4610 			zone_movable_pfn[nid] = start_pfn + size_pages;
4611 
4612 			/*
4613 			 * Some kernelcore has been met, update counts and
4614 			 * break if the kernelcore for this node has been
4615 			 * satisified
4616 			 */
4617 			required_kernelcore -= min(required_kernelcore,
4618 								size_pages);
4619 			kernelcore_remaining -= size_pages;
4620 			if (!kernelcore_remaining)
4621 				break;
4622 		}
4623 	}
4624 
4625 	/*
4626 	 * If there is still required_kernelcore, we do another pass with one
4627 	 * less node in the count. This will push zone_movable_pfn[nid] further
4628 	 * along on the nodes that still have memory until kernelcore is
4629 	 * satisified
4630 	 */
4631 	usable_nodes--;
4632 	if (usable_nodes && required_kernelcore > usable_nodes)
4633 		goto restart;
4634 
4635 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4636 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4637 		zone_movable_pfn[nid] =
4638 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4639 
4640 out:
4641 	/* restore the node_state */
4642 	node_states[N_HIGH_MEMORY] = saved_node_state;
4643 }
4644 
4645 /* Any regular memory on that node ? */
4646 static void check_for_regular_memory(pg_data_t *pgdat)
4647 {
4648 #ifdef CONFIG_HIGHMEM
4649 	enum zone_type zone_type;
4650 
4651 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4652 		struct zone *zone = &pgdat->node_zones[zone_type];
4653 		if (zone->present_pages)
4654 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4655 	}
4656 #endif
4657 }
4658 
4659 /**
4660  * free_area_init_nodes - Initialise all pg_data_t and zone data
4661  * @max_zone_pfn: an array of max PFNs for each zone
4662  *
4663  * This will call free_area_init_node() for each active node in the system.
4664  * Using the page ranges provided by add_active_range(), the size of each
4665  * zone in each node and their holes is calculated. If the maximum PFN
4666  * between two adjacent zones match, it is assumed that the zone is empty.
4667  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4668  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4669  * starts where the previous one ended. For example, ZONE_DMA32 starts
4670  * at arch_max_dma_pfn.
4671  */
4672 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4673 {
4674 	unsigned long nid;
4675 	int i;
4676 
4677 	/* Sort early_node_map as initialisation assumes it is sorted */
4678 	sort_node_map();
4679 
4680 	/* Record where the zone boundaries are */
4681 	memset(arch_zone_lowest_possible_pfn, 0,
4682 				sizeof(arch_zone_lowest_possible_pfn));
4683 	memset(arch_zone_highest_possible_pfn, 0,
4684 				sizeof(arch_zone_highest_possible_pfn));
4685 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4686 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4687 	for (i = 1; i < MAX_NR_ZONES; i++) {
4688 		if (i == ZONE_MOVABLE)
4689 			continue;
4690 		arch_zone_lowest_possible_pfn[i] =
4691 			arch_zone_highest_possible_pfn[i-1];
4692 		arch_zone_highest_possible_pfn[i] =
4693 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4694 	}
4695 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4696 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4697 
4698 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4699 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4700 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4701 
4702 	/* Print out the zone ranges */
4703 	printk("Zone PFN ranges:\n");
4704 	for (i = 0; i < MAX_NR_ZONES; i++) {
4705 		if (i == ZONE_MOVABLE)
4706 			continue;
4707 		printk("  %-8s ", zone_names[i]);
4708 		if (arch_zone_lowest_possible_pfn[i] ==
4709 				arch_zone_highest_possible_pfn[i])
4710 			printk("empty\n");
4711 		else
4712 			printk("%0#10lx -> %0#10lx\n",
4713 				arch_zone_lowest_possible_pfn[i],
4714 				arch_zone_highest_possible_pfn[i]);
4715 	}
4716 
4717 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4718 	printk("Movable zone start PFN for each node\n");
4719 	for (i = 0; i < MAX_NUMNODES; i++) {
4720 		if (zone_movable_pfn[i])
4721 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4722 	}
4723 
4724 	/* Print out the early_node_map[] */
4725 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4726 	for (i = 0; i < nr_nodemap_entries; i++)
4727 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4728 						early_node_map[i].start_pfn,
4729 						early_node_map[i].end_pfn);
4730 
4731 	/* Initialise every node */
4732 	mminit_verify_pageflags_layout();
4733 	setup_nr_node_ids();
4734 	for_each_online_node(nid) {
4735 		pg_data_t *pgdat = NODE_DATA(nid);
4736 		free_area_init_node(nid, NULL,
4737 				find_min_pfn_for_node(nid), NULL);
4738 
4739 		/* Any memory on that node */
4740 		if (pgdat->node_present_pages)
4741 			node_set_state(nid, N_HIGH_MEMORY);
4742 		check_for_regular_memory(pgdat);
4743 	}
4744 }
4745 
4746 static int __init cmdline_parse_core(char *p, unsigned long *core)
4747 {
4748 	unsigned long long coremem;
4749 	if (!p)
4750 		return -EINVAL;
4751 
4752 	coremem = memparse(p, &p);
4753 	*core = coremem >> PAGE_SHIFT;
4754 
4755 	/* Paranoid check that UL is enough for the coremem value */
4756 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4757 
4758 	return 0;
4759 }
4760 
4761 /*
4762  * kernelcore=size sets the amount of memory for use for allocations that
4763  * cannot be reclaimed or migrated.
4764  */
4765 static int __init cmdline_parse_kernelcore(char *p)
4766 {
4767 	return cmdline_parse_core(p, &required_kernelcore);
4768 }
4769 
4770 /*
4771  * movablecore=size sets the amount of memory for use for allocations that
4772  * can be reclaimed or migrated.
4773  */
4774 static int __init cmdline_parse_movablecore(char *p)
4775 {
4776 	return cmdline_parse_core(p, &required_movablecore);
4777 }
4778 
4779 early_param("kernelcore", cmdline_parse_kernelcore);
4780 early_param("movablecore", cmdline_parse_movablecore);
4781 
4782 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4783 
4784 /**
4785  * set_dma_reserve - set the specified number of pages reserved in the first zone
4786  * @new_dma_reserve: The number of pages to mark reserved
4787  *
4788  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4789  * In the DMA zone, a significant percentage may be consumed by kernel image
4790  * and other unfreeable allocations which can skew the watermarks badly. This
4791  * function may optionally be used to account for unfreeable pages in the
4792  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4793  * smaller per-cpu batchsize.
4794  */
4795 void __init set_dma_reserve(unsigned long new_dma_reserve)
4796 {
4797 	dma_reserve = new_dma_reserve;
4798 }
4799 
4800 #ifndef CONFIG_NEED_MULTIPLE_NODES
4801 struct pglist_data __refdata contig_page_data = {
4802 #ifndef CONFIG_NO_BOOTMEM
4803  .bdata = &bootmem_node_data[0]
4804 #endif
4805  };
4806 EXPORT_SYMBOL(contig_page_data);
4807 #endif
4808 
4809 void __init free_area_init(unsigned long *zones_size)
4810 {
4811 	free_area_init_node(0, zones_size,
4812 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4813 }
4814 
4815 static int page_alloc_cpu_notify(struct notifier_block *self,
4816 				 unsigned long action, void *hcpu)
4817 {
4818 	int cpu = (unsigned long)hcpu;
4819 
4820 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4821 		drain_pages(cpu);
4822 
4823 		/*
4824 		 * Spill the event counters of the dead processor
4825 		 * into the current processors event counters.
4826 		 * This artificially elevates the count of the current
4827 		 * processor.
4828 		 */
4829 		vm_events_fold_cpu(cpu);
4830 
4831 		/*
4832 		 * Zero the differential counters of the dead processor
4833 		 * so that the vm statistics are consistent.
4834 		 *
4835 		 * This is only okay since the processor is dead and cannot
4836 		 * race with what we are doing.
4837 		 */
4838 		refresh_cpu_vm_stats(cpu);
4839 	}
4840 	return NOTIFY_OK;
4841 }
4842 
4843 void __init page_alloc_init(void)
4844 {
4845 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4846 }
4847 
4848 /*
4849  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4850  *	or min_free_kbytes changes.
4851  */
4852 static void calculate_totalreserve_pages(void)
4853 {
4854 	struct pglist_data *pgdat;
4855 	unsigned long reserve_pages = 0;
4856 	enum zone_type i, j;
4857 
4858 	for_each_online_pgdat(pgdat) {
4859 		for (i = 0; i < MAX_NR_ZONES; i++) {
4860 			struct zone *zone = pgdat->node_zones + i;
4861 			unsigned long max = 0;
4862 
4863 			/* Find valid and maximum lowmem_reserve in the zone */
4864 			for (j = i; j < MAX_NR_ZONES; j++) {
4865 				if (zone->lowmem_reserve[j] > max)
4866 					max = zone->lowmem_reserve[j];
4867 			}
4868 
4869 			/* we treat the high watermark as reserved pages. */
4870 			max += high_wmark_pages(zone);
4871 
4872 			if (max > zone->present_pages)
4873 				max = zone->present_pages;
4874 			reserve_pages += max;
4875 		}
4876 	}
4877 	totalreserve_pages = reserve_pages;
4878 }
4879 
4880 /*
4881  * setup_per_zone_lowmem_reserve - called whenever
4882  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4883  *	has a correct pages reserved value, so an adequate number of
4884  *	pages are left in the zone after a successful __alloc_pages().
4885  */
4886 static void setup_per_zone_lowmem_reserve(void)
4887 {
4888 	struct pglist_data *pgdat;
4889 	enum zone_type j, idx;
4890 
4891 	for_each_online_pgdat(pgdat) {
4892 		for (j = 0; j < MAX_NR_ZONES; j++) {
4893 			struct zone *zone = pgdat->node_zones + j;
4894 			unsigned long present_pages = zone->present_pages;
4895 
4896 			zone->lowmem_reserve[j] = 0;
4897 
4898 			idx = j;
4899 			while (idx) {
4900 				struct zone *lower_zone;
4901 
4902 				idx--;
4903 
4904 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4905 					sysctl_lowmem_reserve_ratio[idx] = 1;
4906 
4907 				lower_zone = pgdat->node_zones + idx;
4908 				lower_zone->lowmem_reserve[j] = present_pages /
4909 					sysctl_lowmem_reserve_ratio[idx];
4910 				present_pages += lower_zone->present_pages;
4911 			}
4912 		}
4913 	}
4914 
4915 	/* update totalreserve_pages */
4916 	calculate_totalreserve_pages();
4917 }
4918 
4919 /**
4920  * setup_per_zone_wmarks - called when min_free_kbytes changes
4921  * or when memory is hot-{added|removed}
4922  *
4923  * Ensures that the watermark[min,low,high] values for each zone are set
4924  * correctly with respect to min_free_kbytes.
4925  */
4926 void setup_per_zone_wmarks(void)
4927 {
4928 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4929 	unsigned long lowmem_pages = 0;
4930 	struct zone *zone;
4931 	unsigned long flags;
4932 
4933 	/* Calculate total number of !ZONE_HIGHMEM pages */
4934 	for_each_zone(zone) {
4935 		if (!is_highmem(zone))
4936 			lowmem_pages += zone->present_pages;
4937 	}
4938 
4939 	for_each_zone(zone) {
4940 		u64 tmp;
4941 
4942 		spin_lock_irqsave(&zone->lock, flags);
4943 		tmp = (u64)pages_min * zone->present_pages;
4944 		do_div(tmp, lowmem_pages);
4945 		if (is_highmem(zone)) {
4946 			/*
4947 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4948 			 * need highmem pages, so cap pages_min to a small
4949 			 * value here.
4950 			 *
4951 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4952 			 * deltas controls asynch page reclaim, and so should
4953 			 * not be capped for highmem.
4954 			 */
4955 			int min_pages;
4956 
4957 			min_pages = zone->present_pages / 1024;
4958 			if (min_pages < SWAP_CLUSTER_MAX)
4959 				min_pages = SWAP_CLUSTER_MAX;
4960 			if (min_pages > 128)
4961 				min_pages = 128;
4962 			zone->watermark[WMARK_MIN] = min_pages;
4963 		} else {
4964 			/*
4965 			 * If it's a lowmem zone, reserve a number of pages
4966 			 * proportionate to the zone's size.
4967 			 */
4968 			zone->watermark[WMARK_MIN] = tmp;
4969 		}
4970 
4971 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4972 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4973 		setup_zone_migrate_reserve(zone);
4974 		spin_unlock_irqrestore(&zone->lock, flags);
4975 	}
4976 
4977 	/* update totalreserve_pages */
4978 	calculate_totalreserve_pages();
4979 }
4980 
4981 /*
4982  * The inactive anon list should be small enough that the VM never has to
4983  * do too much work, but large enough that each inactive page has a chance
4984  * to be referenced again before it is swapped out.
4985  *
4986  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4987  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4988  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4989  * the anonymous pages are kept on the inactive list.
4990  *
4991  * total     target    max
4992  * memory    ratio     inactive anon
4993  * -------------------------------------
4994  *   10MB       1         5MB
4995  *  100MB       1        50MB
4996  *    1GB       3       250MB
4997  *   10GB      10       0.9GB
4998  *  100GB      31         3GB
4999  *    1TB     101        10GB
5000  *   10TB     320        32GB
5001  */
5002 void calculate_zone_inactive_ratio(struct zone *zone)
5003 {
5004 	unsigned int gb, ratio;
5005 
5006 	/* Zone size in gigabytes */
5007 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5008 	if (gb)
5009 		ratio = int_sqrt(10 * gb);
5010 	else
5011 		ratio = 1;
5012 
5013 	zone->inactive_ratio = ratio;
5014 }
5015 
5016 static void __init setup_per_zone_inactive_ratio(void)
5017 {
5018 	struct zone *zone;
5019 
5020 	for_each_zone(zone)
5021 		calculate_zone_inactive_ratio(zone);
5022 }
5023 
5024 /*
5025  * Initialise min_free_kbytes.
5026  *
5027  * For small machines we want it small (128k min).  For large machines
5028  * we want it large (64MB max).  But it is not linear, because network
5029  * bandwidth does not increase linearly with machine size.  We use
5030  *
5031  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5032  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5033  *
5034  * which yields
5035  *
5036  * 16MB:	512k
5037  * 32MB:	724k
5038  * 64MB:	1024k
5039  * 128MB:	1448k
5040  * 256MB:	2048k
5041  * 512MB:	2896k
5042  * 1024MB:	4096k
5043  * 2048MB:	5792k
5044  * 4096MB:	8192k
5045  * 8192MB:	11584k
5046  * 16384MB:	16384k
5047  */
5048 static int __init init_per_zone_wmark_min(void)
5049 {
5050 	unsigned long lowmem_kbytes;
5051 
5052 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5053 
5054 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5055 	if (min_free_kbytes < 128)
5056 		min_free_kbytes = 128;
5057 	if (min_free_kbytes > 65536)
5058 		min_free_kbytes = 65536;
5059 	setup_per_zone_wmarks();
5060 	setup_per_zone_lowmem_reserve();
5061 	setup_per_zone_inactive_ratio();
5062 	return 0;
5063 }
5064 module_init(init_per_zone_wmark_min)
5065 
5066 /*
5067  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5068  *	that we can call two helper functions whenever min_free_kbytes
5069  *	changes.
5070  */
5071 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5072 	void __user *buffer, size_t *length, loff_t *ppos)
5073 {
5074 	proc_dointvec(table, write, buffer, length, ppos);
5075 	if (write)
5076 		setup_per_zone_wmarks();
5077 	return 0;
5078 }
5079 
5080 #ifdef CONFIG_NUMA
5081 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5082 	void __user *buffer, size_t *length, loff_t *ppos)
5083 {
5084 	struct zone *zone;
5085 	int rc;
5086 
5087 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5088 	if (rc)
5089 		return rc;
5090 
5091 	for_each_zone(zone)
5092 		zone->min_unmapped_pages = (zone->present_pages *
5093 				sysctl_min_unmapped_ratio) / 100;
5094 	return 0;
5095 }
5096 
5097 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5098 	void __user *buffer, size_t *length, loff_t *ppos)
5099 {
5100 	struct zone *zone;
5101 	int rc;
5102 
5103 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5104 	if (rc)
5105 		return rc;
5106 
5107 	for_each_zone(zone)
5108 		zone->min_slab_pages = (zone->present_pages *
5109 				sysctl_min_slab_ratio) / 100;
5110 	return 0;
5111 }
5112 #endif
5113 
5114 /*
5115  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5116  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5117  *	whenever sysctl_lowmem_reserve_ratio changes.
5118  *
5119  * The reserve ratio obviously has absolutely no relation with the
5120  * minimum watermarks. The lowmem reserve ratio can only make sense
5121  * if in function of the boot time zone sizes.
5122  */
5123 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5124 	void __user *buffer, size_t *length, loff_t *ppos)
5125 {
5126 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5127 	setup_per_zone_lowmem_reserve();
5128 	return 0;
5129 }
5130 
5131 /*
5132  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5133  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5134  * can have before it gets flushed back to buddy allocator.
5135  */
5136 
5137 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5138 	void __user *buffer, size_t *length, loff_t *ppos)
5139 {
5140 	struct zone *zone;
5141 	unsigned int cpu;
5142 	int ret;
5143 
5144 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5145 	if (!write || (ret == -EINVAL))
5146 		return ret;
5147 	for_each_populated_zone(zone) {
5148 		for_each_possible_cpu(cpu) {
5149 			unsigned long  high;
5150 			high = zone->present_pages / percpu_pagelist_fraction;
5151 			setup_pagelist_highmark(
5152 				per_cpu_ptr(zone->pageset, cpu), high);
5153 		}
5154 	}
5155 	return 0;
5156 }
5157 
5158 int hashdist = HASHDIST_DEFAULT;
5159 
5160 #ifdef CONFIG_NUMA
5161 static int __init set_hashdist(char *str)
5162 {
5163 	if (!str)
5164 		return 0;
5165 	hashdist = simple_strtoul(str, &str, 0);
5166 	return 1;
5167 }
5168 __setup("hashdist=", set_hashdist);
5169 #endif
5170 
5171 /*
5172  * allocate a large system hash table from bootmem
5173  * - it is assumed that the hash table must contain an exact power-of-2
5174  *   quantity of entries
5175  * - limit is the number of hash buckets, not the total allocation size
5176  */
5177 void *__init alloc_large_system_hash(const char *tablename,
5178 				     unsigned long bucketsize,
5179 				     unsigned long numentries,
5180 				     int scale,
5181 				     int flags,
5182 				     unsigned int *_hash_shift,
5183 				     unsigned int *_hash_mask,
5184 				     unsigned long limit)
5185 {
5186 	unsigned long long max = limit;
5187 	unsigned long log2qty, size;
5188 	void *table = NULL;
5189 
5190 	/* allow the kernel cmdline to have a say */
5191 	if (!numentries) {
5192 		/* round applicable memory size up to nearest megabyte */
5193 		numentries = nr_kernel_pages;
5194 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5195 		numentries >>= 20 - PAGE_SHIFT;
5196 		numentries <<= 20 - PAGE_SHIFT;
5197 
5198 		/* limit to 1 bucket per 2^scale bytes of low memory */
5199 		if (scale > PAGE_SHIFT)
5200 			numentries >>= (scale - PAGE_SHIFT);
5201 		else
5202 			numentries <<= (PAGE_SHIFT - scale);
5203 
5204 		/* Make sure we've got at least a 0-order allocation.. */
5205 		if (unlikely(flags & HASH_SMALL)) {
5206 			/* Makes no sense without HASH_EARLY */
5207 			WARN_ON(!(flags & HASH_EARLY));
5208 			if (!(numentries >> *_hash_shift)) {
5209 				numentries = 1UL << *_hash_shift;
5210 				BUG_ON(!numentries);
5211 			}
5212 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5213 			numentries = PAGE_SIZE / bucketsize;
5214 	}
5215 	numentries = roundup_pow_of_two(numentries);
5216 
5217 	/* limit allocation size to 1/16 total memory by default */
5218 	if (max == 0) {
5219 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5220 		do_div(max, bucketsize);
5221 	}
5222 
5223 	if (numentries > max)
5224 		numentries = max;
5225 
5226 	log2qty = ilog2(numentries);
5227 
5228 	do {
5229 		size = bucketsize << log2qty;
5230 		if (flags & HASH_EARLY)
5231 			table = alloc_bootmem_nopanic(size);
5232 		else if (hashdist)
5233 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5234 		else {
5235 			/*
5236 			 * If bucketsize is not a power-of-two, we may free
5237 			 * some pages at the end of hash table which
5238 			 * alloc_pages_exact() automatically does
5239 			 */
5240 			if (get_order(size) < MAX_ORDER) {
5241 				table = alloc_pages_exact(size, GFP_ATOMIC);
5242 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5243 			}
5244 		}
5245 	} while (!table && size > PAGE_SIZE && --log2qty);
5246 
5247 	if (!table)
5248 		panic("Failed to allocate %s hash table\n", tablename);
5249 
5250 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5251 	       tablename,
5252 	       (1UL << log2qty),
5253 	       ilog2(size) - PAGE_SHIFT,
5254 	       size);
5255 
5256 	if (_hash_shift)
5257 		*_hash_shift = log2qty;
5258 	if (_hash_mask)
5259 		*_hash_mask = (1 << log2qty) - 1;
5260 
5261 	return table;
5262 }
5263 
5264 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5265 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5266 							unsigned long pfn)
5267 {
5268 #ifdef CONFIG_SPARSEMEM
5269 	return __pfn_to_section(pfn)->pageblock_flags;
5270 #else
5271 	return zone->pageblock_flags;
5272 #endif /* CONFIG_SPARSEMEM */
5273 }
5274 
5275 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5276 {
5277 #ifdef CONFIG_SPARSEMEM
5278 	pfn &= (PAGES_PER_SECTION-1);
5279 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5280 #else
5281 	pfn = pfn - zone->zone_start_pfn;
5282 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5283 #endif /* CONFIG_SPARSEMEM */
5284 }
5285 
5286 /**
5287  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5288  * @page: The page within the block of interest
5289  * @start_bitidx: The first bit of interest to retrieve
5290  * @end_bitidx: The last bit of interest
5291  * returns pageblock_bits flags
5292  */
5293 unsigned long get_pageblock_flags_group(struct page *page,
5294 					int start_bitidx, int end_bitidx)
5295 {
5296 	struct zone *zone;
5297 	unsigned long *bitmap;
5298 	unsigned long pfn, bitidx;
5299 	unsigned long flags = 0;
5300 	unsigned long value = 1;
5301 
5302 	zone = page_zone(page);
5303 	pfn = page_to_pfn(page);
5304 	bitmap = get_pageblock_bitmap(zone, pfn);
5305 	bitidx = pfn_to_bitidx(zone, pfn);
5306 
5307 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5308 		if (test_bit(bitidx + start_bitidx, bitmap))
5309 			flags |= value;
5310 
5311 	return flags;
5312 }
5313 
5314 /**
5315  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5316  * @page: The page within the block of interest
5317  * @start_bitidx: The first bit of interest
5318  * @end_bitidx: The last bit of interest
5319  * @flags: The flags to set
5320  */
5321 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5322 					int start_bitidx, int end_bitidx)
5323 {
5324 	struct zone *zone;
5325 	unsigned long *bitmap;
5326 	unsigned long pfn, bitidx;
5327 	unsigned long value = 1;
5328 
5329 	zone = page_zone(page);
5330 	pfn = page_to_pfn(page);
5331 	bitmap = get_pageblock_bitmap(zone, pfn);
5332 	bitidx = pfn_to_bitidx(zone, pfn);
5333 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5334 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5335 
5336 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5337 		if (flags & value)
5338 			__set_bit(bitidx + start_bitidx, bitmap);
5339 		else
5340 			__clear_bit(bitidx + start_bitidx, bitmap);
5341 }
5342 
5343 /*
5344  * This is designed as sub function...plz see page_isolation.c also.
5345  * set/clear page block's type to be ISOLATE.
5346  * page allocater never alloc memory from ISOLATE block.
5347  */
5348 
5349 static int
5350 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5351 {
5352 	unsigned long pfn, iter, found;
5353 	/*
5354 	 * For avoiding noise data, lru_add_drain_all() should be called
5355 	 * If ZONE_MOVABLE, the zone never contains immobile pages
5356 	 */
5357 	if (zone_idx(zone) == ZONE_MOVABLE)
5358 		return true;
5359 
5360 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5361 		return true;
5362 
5363 	pfn = page_to_pfn(page);
5364 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5365 		unsigned long check = pfn + iter;
5366 
5367 		if (!pfn_valid_within(check)) {
5368 			iter++;
5369 			continue;
5370 		}
5371 		page = pfn_to_page(check);
5372 		if (!page_count(page)) {
5373 			if (PageBuddy(page))
5374 				iter += (1 << page_order(page)) - 1;
5375 			continue;
5376 		}
5377 		if (!PageLRU(page))
5378 			found++;
5379 		/*
5380 		 * If there are RECLAIMABLE pages, we need to check it.
5381 		 * But now, memory offline itself doesn't call shrink_slab()
5382 		 * and it still to be fixed.
5383 		 */
5384 		/*
5385 		 * If the page is not RAM, page_count()should be 0.
5386 		 * we don't need more check. This is an _used_ not-movable page.
5387 		 *
5388 		 * The problematic thing here is PG_reserved pages. PG_reserved
5389 		 * is set to both of a memory hole page and a _used_ kernel
5390 		 * page at boot.
5391 		 */
5392 		if (found > count)
5393 			return false;
5394 	}
5395 	return true;
5396 }
5397 
5398 bool is_pageblock_removable_nolock(struct page *page)
5399 {
5400 	struct zone *zone = page_zone(page);
5401 	return __count_immobile_pages(zone, page, 0);
5402 }
5403 
5404 int set_migratetype_isolate(struct page *page)
5405 {
5406 	struct zone *zone;
5407 	unsigned long flags, pfn;
5408 	struct memory_isolate_notify arg;
5409 	int notifier_ret;
5410 	int ret = -EBUSY;
5411 	int zone_idx;
5412 
5413 	zone = page_zone(page);
5414 	zone_idx = zone_idx(zone);
5415 
5416 	spin_lock_irqsave(&zone->lock, flags);
5417 
5418 	pfn = page_to_pfn(page);
5419 	arg.start_pfn = pfn;
5420 	arg.nr_pages = pageblock_nr_pages;
5421 	arg.pages_found = 0;
5422 
5423 	/*
5424 	 * It may be possible to isolate a pageblock even if the
5425 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5426 	 * notifier chain is used by balloon drivers to return the
5427 	 * number of pages in a range that are held by the balloon
5428 	 * driver to shrink memory. If all the pages are accounted for
5429 	 * by balloons, are free, or on the LRU, isolation can continue.
5430 	 * Later, for example, when memory hotplug notifier runs, these
5431 	 * pages reported as "can be isolated" should be isolated(freed)
5432 	 * by the balloon driver through the memory notifier chain.
5433 	 */
5434 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5435 	notifier_ret = notifier_to_errno(notifier_ret);
5436 	if (notifier_ret)
5437 		goto out;
5438 	/*
5439 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5440 	 * We just check MOVABLE pages.
5441 	 */
5442 	if (__count_immobile_pages(zone, page, arg.pages_found))
5443 		ret = 0;
5444 
5445 	/*
5446 	 * immobile means "not-on-lru" paes. If immobile is larger than
5447 	 * removable-by-driver pages reported by notifier, we'll fail.
5448 	 */
5449 
5450 out:
5451 	if (!ret) {
5452 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5453 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5454 	}
5455 
5456 	spin_unlock_irqrestore(&zone->lock, flags);
5457 	if (!ret)
5458 		drain_all_pages();
5459 	return ret;
5460 }
5461 
5462 void unset_migratetype_isolate(struct page *page)
5463 {
5464 	struct zone *zone;
5465 	unsigned long flags;
5466 	zone = page_zone(page);
5467 	spin_lock_irqsave(&zone->lock, flags);
5468 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5469 		goto out;
5470 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5471 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5472 out:
5473 	spin_unlock_irqrestore(&zone->lock, flags);
5474 }
5475 
5476 #ifdef CONFIG_MEMORY_HOTREMOVE
5477 /*
5478  * All pages in the range must be isolated before calling this.
5479  */
5480 void
5481 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5482 {
5483 	struct page *page;
5484 	struct zone *zone;
5485 	int order, i;
5486 	unsigned long pfn;
5487 	unsigned long flags;
5488 	/* find the first valid pfn */
5489 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5490 		if (pfn_valid(pfn))
5491 			break;
5492 	if (pfn == end_pfn)
5493 		return;
5494 	zone = page_zone(pfn_to_page(pfn));
5495 	spin_lock_irqsave(&zone->lock, flags);
5496 	pfn = start_pfn;
5497 	while (pfn < end_pfn) {
5498 		if (!pfn_valid(pfn)) {
5499 			pfn++;
5500 			continue;
5501 		}
5502 		page = pfn_to_page(pfn);
5503 		BUG_ON(page_count(page));
5504 		BUG_ON(!PageBuddy(page));
5505 		order = page_order(page);
5506 #ifdef CONFIG_DEBUG_VM
5507 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5508 		       pfn, 1 << order, end_pfn);
5509 #endif
5510 		list_del(&page->lru);
5511 		rmv_page_order(page);
5512 		zone->free_area[order].nr_free--;
5513 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5514 				      - (1UL << order));
5515 		for (i = 0; i < (1 << order); i++)
5516 			SetPageReserved((page+i));
5517 		pfn += (1 << order);
5518 	}
5519 	spin_unlock_irqrestore(&zone->lock, flags);
5520 }
5521 #endif
5522 
5523 #ifdef CONFIG_MEMORY_FAILURE
5524 bool is_free_buddy_page(struct page *page)
5525 {
5526 	struct zone *zone = page_zone(page);
5527 	unsigned long pfn = page_to_pfn(page);
5528 	unsigned long flags;
5529 	int order;
5530 
5531 	spin_lock_irqsave(&zone->lock, flags);
5532 	for (order = 0; order < MAX_ORDER; order++) {
5533 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5534 
5535 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5536 			break;
5537 	}
5538 	spin_unlock_irqrestore(&zone->lock, flags);
5539 
5540 	return order < MAX_ORDER;
5541 }
5542 #endif
5543 
5544 static struct trace_print_flags pageflag_names[] = {
5545 	{1UL << PG_locked,		"locked"	},
5546 	{1UL << PG_error,		"error"		},
5547 	{1UL << PG_referenced,		"referenced"	},
5548 	{1UL << PG_uptodate,		"uptodate"	},
5549 	{1UL << PG_dirty,		"dirty"		},
5550 	{1UL << PG_lru,			"lru"		},
5551 	{1UL << PG_active,		"active"	},
5552 	{1UL << PG_slab,		"slab"		},
5553 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5554 	{1UL << PG_arch_1,		"arch_1"	},
5555 	{1UL << PG_reserved,		"reserved"	},
5556 	{1UL << PG_private,		"private"	},
5557 	{1UL << PG_private_2,		"private_2"	},
5558 	{1UL << PG_writeback,		"writeback"	},
5559 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5560 	{1UL << PG_head,		"head"		},
5561 	{1UL << PG_tail,		"tail"		},
5562 #else
5563 	{1UL << PG_compound,		"compound"	},
5564 #endif
5565 	{1UL << PG_swapcache,		"swapcache"	},
5566 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5567 	{1UL << PG_reclaim,		"reclaim"	},
5568 	{1UL << PG_swapbacked,		"swapbacked"	},
5569 	{1UL << PG_unevictable,		"unevictable"	},
5570 #ifdef CONFIG_MMU
5571 	{1UL << PG_mlocked,		"mlocked"	},
5572 #endif
5573 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5574 	{1UL << PG_uncached,		"uncached"	},
5575 #endif
5576 #ifdef CONFIG_MEMORY_FAILURE
5577 	{1UL << PG_hwpoison,		"hwpoison"	},
5578 #endif
5579 	{-1UL,				NULL		},
5580 };
5581 
5582 static void dump_page_flags(unsigned long flags)
5583 {
5584 	const char *delim = "";
5585 	unsigned long mask;
5586 	int i;
5587 
5588 	printk(KERN_ALERT "page flags: %#lx(", flags);
5589 
5590 	/* remove zone id */
5591 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5592 
5593 	for (i = 0; pageflag_names[i].name && flags; i++) {
5594 
5595 		mask = pageflag_names[i].mask;
5596 		if ((flags & mask) != mask)
5597 			continue;
5598 
5599 		flags &= ~mask;
5600 		printk("%s%s", delim, pageflag_names[i].name);
5601 		delim = "|";
5602 	}
5603 
5604 	/* check for left over flags */
5605 	if (flags)
5606 		printk("%s%#lx", delim, flags);
5607 
5608 	printk(")\n");
5609 }
5610 
5611 void dump_page(struct page *page)
5612 {
5613 	printk(KERN_ALERT
5614 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5615 		page, atomic_read(&page->_count), page_mapcount(page),
5616 		page->mapping, page->index);
5617 	dump_page_flags(page->flags);
5618 }
5619