xref: /linux/mm/page_alloc.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69 
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
73 
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78 
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84  * defined in <linux/topology.h>.
85  */
86 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 #endif
89 
90 /*
91  * Array of node states.
92  */
93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 	[N_POSSIBLE] = NODE_MASK_ALL,
95 	[N_ONLINE] = { { [0] = 1UL } },
96 #ifndef CONFIG_NUMA
97 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
98 #ifdef CONFIG_HIGHMEM
99 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
100 #endif
101 #ifdef CONFIG_MOVABLE_NODE
102 	[N_MEMORY] = { { [0] = 1UL } },
103 #endif
104 	[N_CPU] = { { [0] = 1UL } },
105 #endif	/* NUMA */
106 };
107 EXPORT_SYMBOL(node_states);
108 
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock);
111 
112 unsigned long totalram_pages __read_mostly;
113 unsigned long totalreserve_pages __read_mostly;
114 /*
115  * When calculating the number of globally allowed dirty pages, there
116  * is a certain number of per-zone reserves that should not be
117  * considered dirtyable memory.  This is the sum of those reserves
118  * over all existing zones that contribute dirtyable memory.
119  */
120 unsigned long dirty_balance_reserve __read_mostly;
121 
122 int percpu_pagelist_fraction;
123 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
124 
125 #ifdef CONFIG_PM_SLEEP
126 /*
127  * The following functions are used by the suspend/hibernate code to temporarily
128  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
129  * while devices are suspended.  To avoid races with the suspend/hibernate code,
130  * they should always be called with pm_mutex held (gfp_allowed_mask also should
131  * only be modified with pm_mutex held, unless the suspend/hibernate code is
132  * guaranteed not to run in parallel with that modification).
133  */
134 
135 static gfp_t saved_gfp_mask;
136 
137 void pm_restore_gfp_mask(void)
138 {
139 	WARN_ON(!mutex_is_locked(&pm_mutex));
140 	if (saved_gfp_mask) {
141 		gfp_allowed_mask = saved_gfp_mask;
142 		saved_gfp_mask = 0;
143 	}
144 }
145 
146 void pm_restrict_gfp_mask(void)
147 {
148 	WARN_ON(!mutex_is_locked(&pm_mutex));
149 	WARN_ON(saved_gfp_mask);
150 	saved_gfp_mask = gfp_allowed_mask;
151 	gfp_allowed_mask &= ~GFP_IOFS;
152 }
153 
154 bool pm_suspended_storage(void)
155 {
156 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
157 		return false;
158 	return true;
159 }
160 #endif /* CONFIG_PM_SLEEP */
161 
162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
163 int pageblock_order __read_mostly;
164 #endif
165 
166 static void __free_pages_ok(struct page *page, unsigned int order);
167 
168 /*
169  * results with 256, 32 in the lowmem_reserve sysctl:
170  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
171  *	1G machine -> (16M dma, 784M normal, 224M high)
172  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
173  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
174  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
175  *
176  * TBD: should special case ZONE_DMA32 machines here - in those we normally
177  * don't need any ZONE_NORMAL reservation
178  */
179 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
180 #ifdef CONFIG_ZONE_DMA
181 	 256,
182 #endif
183 #ifdef CONFIG_ZONE_DMA32
184 	 256,
185 #endif
186 #ifdef CONFIG_HIGHMEM
187 	 32,
188 #endif
189 	 32,
190 };
191 
192 EXPORT_SYMBOL(totalram_pages);
193 
194 static char * const zone_names[MAX_NR_ZONES] = {
195 #ifdef CONFIG_ZONE_DMA
196 	 "DMA",
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 	 "DMA32",
200 #endif
201 	 "Normal",
202 #ifdef CONFIG_HIGHMEM
203 	 "HighMem",
204 #endif
205 	 "Movable",
206 };
207 
208 int min_free_kbytes = 1024;
209 int user_min_free_kbytes = -1;
210 
211 static unsigned long __meminitdata nr_kernel_pages;
212 static unsigned long __meminitdata nr_all_pages;
213 static unsigned long __meminitdata dma_reserve;
214 
215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
216 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __initdata required_kernelcore;
219 static unsigned long __initdata required_movablecore;
220 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
221 
222 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223 int movable_zone;
224 EXPORT_SYMBOL(movable_zone);
225 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
226 
227 #if MAX_NUMNODES > 1
228 int nr_node_ids __read_mostly = MAX_NUMNODES;
229 int nr_online_nodes __read_mostly = 1;
230 EXPORT_SYMBOL(nr_node_ids);
231 EXPORT_SYMBOL(nr_online_nodes);
232 #endif
233 
234 int page_group_by_mobility_disabled __read_mostly;
235 
236 void set_pageblock_migratetype(struct page *page, int migratetype)
237 {
238 	if (unlikely(page_group_by_mobility_disabled &&
239 		     migratetype < MIGRATE_PCPTYPES))
240 		migratetype = MIGRATE_UNMOVABLE;
241 
242 	set_pageblock_flags_group(page, (unsigned long)migratetype,
243 					PB_migrate, PB_migrate_end);
244 }
245 
246 bool oom_killer_disabled __read_mostly;
247 
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 	int ret = 0;
252 	unsigned seq;
253 	unsigned long pfn = page_to_pfn(page);
254 	unsigned long sp, start_pfn;
255 
256 	do {
257 		seq = zone_span_seqbegin(zone);
258 		start_pfn = zone->zone_start_pfn;
259 		sp = zone->spanned_pages;
260 		if (!zone_spans_pfn(zone, pfn))
261 			ret = 1;
262 	} while (zone_span_seqretry(zone, seq));
263 
264 	if (ret)
265 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 			pfn, zone_to_nid(zone), zone->name,
267 			start_pfn, start_pfn + sp);
268 
269 	return ret;
270 }
271 
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 	if (!pfn_valid_within(page_to_pfn(page)))
275 		return 0;
276 	if (zone != page_zone(page))
277 		return 0;
278 
279 	return 1;
280 }
281 /*
282  * Temporary debugging check for pages not lying within a given zone.
283  */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 	if (page_outside_zone_boundaries(zone, page))
287 		return 1;
288 	if (!page_is_consistent(zone, page))
289 		return 1;
290 
291 	return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 	return 0;
297 }
298 #endif
299 
300 static void bad_page(struct page *page, const char *reason,
301 		unsigned long bad_flags)
302 {
303 	static unsigned long resume;
304 	static unsigned long nr_shown;
305 	static unsigned long nr_unshown;
306 
307 	/* Don't complain about poisoned pages */
308 	if (PageHWPoison(page)) {
309 		page_mapcount_reset(page); /* remove PageBuddy */
310 		return;
311 	}
312 
313 	/*
314 	 * Allow a burst of 60 reports, then keep quiet for that minute;
315 	 * or allow a steady drip of one report per second.
316 	 */
317 	if (nr_shown == 60) {
318 		if (time_before(jiffies, resume)) {
319 			nr_unshown++;
320 			goto out;
321 		}
322 		if (nr_unshown) {
323 			printk(KERN_ALERT
324 			      "BUG: Bad page state: %lu messages suppressed\n",
325 				nr_unshown);
326 			nr_unshown = 0;
327 		}
328 		nr_shown = 0;
329 	}
330 	if (nr_shown++ == 0)
331 		resume = jiffies + 60 * HZ;
332 
333 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
334 		current->comm, page_to_pfn(page));
335 	dump_page_badflags(page, reason, bad_flags);
336 
337 	print_modules();
338 	dump_stack();
339 out:
340 	/* Leave bad fields for debug, except PageBuddy could make trouble */
341 	page_mapcount_reset(page); /* remove PageBuddy */
342 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344 
345 /*
346  * Higher-order pages are called "compound pages".  They are structured thusly:
347  *
348  * The first PAGE_SIZE page is called the "head page".
349  *
350  * The remaining PAGE_SIZE pages are called "tail pages".
351  *
352  * All pages have PG_compound set.  All tail pages have their ->first_page
353  * pointing at the head page.
354  *
355  * The first tail page's ->lru.next holds the address of the compound page's
356  * put_page() function.  Its ->lru.prev holds the order of allocation.
357  * This usage means that zero-order pages may not be compound.
358  */
359 
360 static void free_compound_page(struct page *page)
361 {
362 	__free_pages_ok(page, compound_order(page));
363 }
364 
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 	int i;
368 	int nr_pages = 1 << order;
369 
370 	set_compound_page_dtor(page, free_compound_page);
371 	set_compound_order(page, order);
372 	__SetPageHead(page);
373 	for (i = 1; i < nr_pages; i++) {
374 		struct page *p = page + i;
375 		set_page_count(p, 0);
376 		p->first_page = page;
377 		/* Make sure p->first_page is always valid for PageTail() */
378 		smp_wmb();
379 		__SetPageTail(p);
380 	}
381 }
382 
383 /* update __split_huge_page_refcount if you change this function */
384 static int destroy_compound_page(struct page *page, unsigned long order)
385 {
386 	int i;
387 	int nr_pages = 1 << order;
388 	int bad = 0;
389 
390 	if (unlikely(compound_order(page) != order)) {
391 		bad_page(page, "wrong compound order", 0);
392 		bad++;
393 	}
394 
395 	__ClearPageHead(page);
396 
397 	for (i = 1; i < nr_pages; i++) {
398 		struct page *p = page + i;
399 
400 		if (unlikely(!PageTail(p))) {
401 			bad_page(page, "PageTail not set", 0);
402 			bad++;
403 		} else if (unlikely(p->first_page != page)) {
404 			bad_page(page, "first_page not consistent", 0);
405 			bad++;
406 		}
407 		__ClearPageTail(p);
408 	}
409 
410 	return bad;
411 }
412 
413 static inline void prep_zero_page(struct page *page, unsigned int order,
414 							gfp_t gfp_flags)
415 {
416 	int i;
417 
418 	/*
419 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
420 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
421 	 */
422 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
423 	for (i = 0; i < (1 << order); i++)
424 		clear_highpage(page + i);
425 }
426 
427 #ifdef CONFIG_DEBUG_PAGEALLOC
428 unsigned int _debug_guardpage_minorder;
429 
430 static int __init debug_guardpage_minorder_setup(char *buf)
431 {
432 	unsigned long res;
433 
434 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
435 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
436 		return 0;
437 	}
438 	_debug_guardpage_minorder = res;
439 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
440 	return 0;
441 }
442 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
443 
444 static inline void set_page_guard_flag(struct page *page)
445 {
446 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
447 }
448 
449 static inline void clear_page_guard_flag(struct page *page)
450 {
451 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
452 }
453 #else
454 static inline void set_page_guard_flag(struct page *page) { }
455 static inline void clear_page_guard_flag(struct page *page) { }
456 #endif
457 
458 static inline void set_page_order(struct page *page, unsigned int order)
459 {
460 	set_page_private(page, order);
461 	__SetPageBuddy(page);
462 }
463 
464 static inline void rmv_page_order(struct page *page)
465 {
466 	__ClearPageBuddy(page);
467 	set_page_private(page, 0);
468 }
469 
470 /*
471  * Locate the struct page for both the matching buddy in our
472  * pair (buddy1) and the combined O(n+1) page they form (page).
473  *
474  * 1) Any buddy B1 will have an order O twin B2 which satisfies
475  * the following equation:
476  *     B2 = B1 ^ (1 << O)
477  * For example, if the starting buddy (buddy2) is #8 its order
478  * 1 buddy is #10:
479  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
480  *
481  * 2) Any buddy B will have an order O+1 parent P which
482  * satisfies the following equation:
483  *     P = B & ~(1 << O)
484  *
485  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
486  */
487 static inline unsigned long
488 __find_buddy_index(unsigned long page_idx, unsigned int order)
489 {
490 	return page_idx ^ (1 << order);
491 }
492 
493 /*
494  * This function checks whether a page is free && is the buddy
495  * we can do coalesce a page and its buddy if
496  * (a) the buddy is not in a hole &&
497  * (b) the buddy is in the buddy system &&
498  * (c) a page and its buddy have the same order &&
499  * (d) a page and its buddy are in the same zone.
500  *
501  * For recording whether a page is in the buddy system, we set ->_mapcount
502  * PAGE_BUDDY_MAPCOUNT_VALUE.
503  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
504  * serialized by zone->lock.
505  *
506  * For recording page's order, we use page_private(page).
507  */
508 static inline int page_is_buddy(struct page *page, struct page *buddy,
509 							unsigned int order)
510 {
511 	if (!pfn_valid_within(page_to_pfn(buddy)))
512 		return 0;
513 
514 	if (page_is_guard(buddy) && page_order(buddy) == order) {
515 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
516 
517 		if (page_zone_id(page) != page_zone_id(buddy))
518 			return 0;
519 
520 		return 1;
521 	}
522 
523 	if (PageBuddy(buddy) && page_order(buddy) == order) {
524 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
525 
526 		/*
527 		 * zone check is done late to avoid uselessly
528 		 * calculating zone/node ids for pages that could
529 		 * never merge.
530 		 */
531 		if (page_zone_id(page) != page_zone_id(buddy))
532 			return 0;
533 
534 		return 1;
535 	}
536 	return 0;
537 }
538 
539 /*
540  * Freeing function for a buddy system allocator.
541  *
542  * The concept of a buddy system is to maintain direct-mapped table
543  * (containing bit values) for memory blocks of various "orders".
544  * The bottom level table contains the map for the smallest allocatable
545  * units of memory (here, pages), and each level above it describes
546  * pairs of units from the levels below, hence, "buddies".
547  * At a high level, all that happens here is marking the table entry
548  * at the bottom level available, and propagating the changes upward
549  * as necessary, plus some accounting needed to play nicely with other
550  * parts of the VM system.
551  * At each level, we keep a list of pages, which are heads of continuous
552  * free pages of length of (1 << order) and marked with _mapcount
553  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
554  * field.
555  * So when we are allocating or freeing one, we can derive the state of the
556  * other.  That is, if we allocate a small block, and both were
557  * free, the remainder of the region must be split into blocks.
558  * If a block is freed, and its buddy is also free, then this
559  * triggers coalescing into a block of larger size.
560  *
561  * -- nyc
562  */
563 
564 static inline void __free_one_page(struct page *page,
565 		unsigned long pfn,
566 		struct zone *zone, unsigned int order,
567 		int migratetype)
568 {
569 	unsigned long page_idx;
570 	unsigned long combined_idx;
571 	unsigned long uninitialized_var(buddy_idx);
572 	struct page *buddy;
573 
574 	VM_BUG_ON(!zone_is_initialized(zone));
575 
576 	if (unlikely(PageCompound(page)))
577 		if (unlikely(destroy_compound_page(page, order)))
578 			return;
579 
580 	VM_BUG_ON(migratetype == -1);
581 
582 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
583 
584 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
585 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
586 
587 	while (order < MAX_ORDER-1) {
588 		buddy_idx = __find_buddy_index(page_idx, order);
589 		buddy = page + (buddy_idx - page_idx);
590 		if (!page_is_buddy(page, buddy, order))
591 			break;
592 		/*
593 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
594 		 * merge with it and move up one order.
595 		 */
596 		if (page_is_guard(buddy)) {
597 			clear_page_guard_flag(buddy);
598 			set_page_private(page, 0);
599 			__mod_zone_freepage_state(zone, 1 << order,
600 						  migratetype);
601 		} else {
602 			list_del(&buddy->lru);
603 			zone->free_area[order].nr_free--;
604 			rmv_page_order(buddy);
605 		}
606 		combined_idx = buddy_idx & page_idx;
607 		page = page + (combined_idx - page_idx);
608 		page_idx = combined_idx;
609 		order++;
610 	}
611 	set_page_order(page, order);
612 
613 	/*
614 	 * If this is not the largest possible page, check if the buddy
615 	 * of the next-highest order is free. If it is, it's possible
616 	 * that pages are being freed that will coalesce soon. In case,
617 	 * that is happening, add the free page to the tail of the list
618 	 * so it's less likely to be used soon and more likely to be merged
619 	 * as a higher order page
620 	 */
621 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
622 		struct page *higher_page, *higher_buddy;
623 		combined_idx = buddy_idx & page_idx;
624 		higher_page = page + (combined_idx - page_idx);
625 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
626 		higher_buddy = higher_page + (buddy_idx - combined_idx);
627 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
628 			list_add_tail(&page->lru,
629 				&zone->free_area[order].free_list[migratetype]);
630 			goto out;
631 		}
632 	}
633 
634 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
635 out:
636 	zone->free_area[order].nr_free++;
637 }
638 
639 static inline int free_pages_check(struct page *page)
640 {
641 	const char *bad_reason = NULL;
642 	unsigned long bad_flags = 0;
643 
644 	if (unlikely(page_mapcount(page)))
645 		bad_reason = "nonzero mapcount";
646 	if (unlikely(page->mapping != NULL))
647 		bad_reason = "non-NULL mapping";
648 	if (unlikely(atomic_read(&page->_count) != 0))
649 		bad_reason = "nonzero _count";
650 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
651 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
652 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
653 	}
654 	if (unlikely(mem_cgroup_bad_page_check(page)))
655 		bad_reason = "cgroup check failed";
656 	if (unlikely(bad_reason)) {
657 		bad_page(page, bad_reason, bad_flags);
658 		return 1;
659 	}
660 	page_cpupid_reset_last(page);
661 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
662 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
663 	return 0;
664 }
665 
666 /*
667  * Frees a number of pages from the PCP lists
668  * Assumes all pages on list are in same zone, and of same order.
669  * count is the number of pages to free.
670  *
671  * If the zone was previously in an "all pages pinned" state then look to
672  * see if this freeing clears that state.
673  *
674  * And clear the zone's pages_scanned counter, to hold off the "all pages are
675  * pinned" detection logic.
676  */
677 static void free_pcppages_bulk(struct zone *zone, int count,
678 					struct per_cpu_pages *pcp)
679 {
680 	int migratetype = 0;
681 	int batch_free = 0;
682 	int to_free = count;
683 	unsigned long nr_scanned;
684 
685 	spin_lock(&zone->lock);
686 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
687 	if (nr_scanned)
688 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
689 
690 	while (to_free) {
691 		struct page *page;
692 		struct list_head *list;
693 
694 		/*
695 		 * Remove pages from lists in a round-robin fashion. A
696 		 * batch_free count is maintained that is incremented when an
697 		 * empty list is encountered.  This is so more pages are freed
698 		 * off fuller lists instead of spinning excessively around empty
699 		 * lists
700 		 */
701 		do {
702 			batch_free++;
703 			if (++migratetype == MIGRATE_PCPTYPES)
704 				migratetype = 0;
705 			list = &pcp->lists[migratetype];
706 		} while (list_empty(list));
707 
708 		/* This is the only non-empty list. Free them all. */
709 		if (batch_free == MIGRATE_PCPTYPES)
710 			batch_free = to_free;
711 
712 		do {
713 			int mt;	/* migratetype of the to-be-freed page */
714 
715 			page = list_entry(list->prev, struct page, lru);
716 			/* must delete as __free_one_page list manipulates */
717 			list_del(&page->lru);
718 			mt = get_freepage_migratetype(page);
719 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
720 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
721 			trace_mm_page_pcpu_drain(page, 0, mt);
722 			if (likely(!is_migrate_isolate_page(page))) {
723 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
724 				if (is_migrate_cma(mt))
725 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
726 			}
727 		} while (--to_free && --batch_free && !list_empty(list));
728 	}
729 	spin_unlock(&zone->lock);
730 }
731 
732 static void free_one_page(struct zone *zone,
733 				struct page *page, unsigned long pfn,
734 				unsigned int order,
735 				int migratetype)
736 {
737 	unsigned long nr_scanned;
738 	spin_lock(&zone->lock);
739 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
740 	if (nr_scanned)
741 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
742 
743 	__free_one_page(page, pfn, zone, order, migratetype);
744 	if (unlikely(!is_migrate_isolate(migratetype)))
745 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
746 	spin_unlock(&zone->lock);
747 }
748 
749 static bool free_pages_prepare(struct page *page, unsigned int order)
750 {
751 	int i;
752 	int bad = 0;
753 
754 	trace_mm_page_free(page, order);
755 	kmemcheck_free_shadow(page, order);
756 
757 	if (PageAnon(page))
758 		page->mapping = NULL;
759 	for (i = 0; i < (1 << order); i++)
760 		bad += free_pages_check(page + i);
761 	if (bad)
762 		return false;
763 
764 	if (!PageHighMem(page)) {
765 		debug_check_no_locks_freed(page_address(page),
766 					   PAGE_SIZE << order);
767 		debug_check_no_obj_freed(page_address(page),
768 					   PAGE_SIZE << order);
769 	}
770 	arch_free_page(page, order);
771 	kernel_map_pages(page, 1 << order, 0);
772 
773 	return true;
774 }
775 
776 static void __free_pages_ok(struct page *page, unsigned int order)
777 {
778 	unsigned long flags;
779 	int migratetype;
780 	unsigned long pfn = page_to_pfn(page);
781 
782 	if (!free_pages_prepare(page, order))
783 		return;
784 
785 	migratetype = get_pfnblock_migratetype(page, pfn);
786 	local_irq_save(flags);
787 	__count_vm_events(PGFREE, 1 << order);
788 	set_freepage_migratetype(page, migratetype);
789 	free_one_page(page_zone(page), page, pfn, order, migratetype);
790 	local_irq_restore(flags);
791 }
792 
793 void __init __free_pages_bootmem(struct page *page, unsigned int order)
794 {
795 	unsigned int nr_pages = 1 << order;
796 	struct page *p = page;
797 	unsigned int loop;
798 
799 	prefetchw(p);
800 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
801 		prefetchw(p + 1);
802 		__ClearPageReserved(p);
803 		set_page_count(p, 0);
804 	}
805 	__ClearPageReserved(p);
806 	set_page_count(p, 0);
807 
808 	page_zone(page)->managed_pages += nr_pages;
809 	set_page_refcounted(page);
810 	__free_pages(page, order);
811 }
812 
813 #ifdef CONFIG_CMA
814 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
815 void __init init_cma_reserved_pageblock(struct page *page)
816 {
817 	unsigned i = pageblock_nr_pages;
818 	struct page *p = page;
819 
820 	do {
821 		__ClearPageReserved(p);
822 		set_page_count(p, 0);
823 	} while (++p, --i);
824 
825 	set_pageblock_migratetype(page, MIGRATE_CMA);
826 
827 	if (pageblock_order >= MAX_ORDER) {
828 		i = pageblock_nr_pages;
829 		p = page;
830 		do {
831 			set_page_refcounted(p);
832 			__free_pages(p, MAX_ORDER - 1);
833 			p += MAX_ORDER_NR_PAGES;
834 		} while (i -= MAX_ORDER_NR_PAGES);
835 	} else {
836 		set_page_refcounted(page);
837 		__free_pages(page, pageblock_order);
838 	}
839 
840 	adjust_managed_page_count(page, pageblock_nr_pages);
841 }
842 #endif
843 
844 /*
845  * The order of subdivision here is critical for the IO subsystem.
846  * Please do not alter this order without good reasons and regression
847  * testing. Specifically, as large blocks of memory are subdivided,
848  * the order in which smaller blocks are delivered depends on the order
849  * they're subdivided in this function. This is the primary factor
850  * influencing the order in which pages are delivered to the IO
851  * subsystem according to empirical testing, and this is also justified
852  * by considering the behavior of a buddy system containing a single
853  * large block of memory acted on by a series of small allocations.
854  * This behavior is a critical factor in sglist merging's success.
855  *
856  * -- nyc
857  */
858 static inline void expand(struct zone *zone, struct page *page,
859 	int low, int high, struct free_area *area,
860 	int migratetype)
861 {
862 	unsigned long size = 1 << high;
863 
864 	while (high > low) {
865 		area--;
866 		high--;
867 		size >>= 1;
868 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
869 
870 #ifdef CONFIG_DEBUG_PAGEALLOC
871 		if (high < debug_guardpage_minorder()) {
872 			/*
873 			 * Mark as guard pages (or page), that will allow to
874 			 * merge back to allocator when buddy will be freed.
875 			 * Corresponding page table entries will not be touched,
876 			 * pages will stay not present in virtual address space
877 			 */
878 			INIT_LIST_HEAD(&page[size].lru);
879 			set_page_guard_flag(&page[size]);
880 			set_page_private(&page[size], high);
881 			/* Guard pages are not available for any usage */
882 			__mod_zone_freepage_state(zone, -(1 << high),
883 						  migratetype);
884 			continue;
885 		}
886 #endif
887 		list_add(&page[size].lru, &area->free_list[migratetype]);
888 		area->nr_free++;
889 		set_page_order(&page[size], high);
890 	}
891 }
892 
893 /*
894  * This page is about to be returned from the page allocator
895  */
896 static inline int check_new_page(struct page *page)
897 {
898 	const char *bad_reason = NULL;
899 	unsigned long bad_flags = 0;
900 
901 	if (unlikely(page_mapcount(page)))
902 		bad_reason = "nonzero mapcount";
903 	if (unlikely(page->mapping != NULL))
904 		bad_reason = "non-NULL mapping";
905 	if (unlikely(atomic_read(&page->_count) != 0))
906 		bad_reason = "nonzero _count";
907 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
908 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
909 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
910 	}
911 	if (unlikely(mem_cgroup_bad_page_check(page)))
912 		bad_reason = "cgroup check failed";
913 	if (unlikely(bad_reason)) {
914 		bad_page(page, bad_reason, bad_flags);
915 		return 1;
916 	}
917 	return 0;
918 }
919 
920 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
921 {
922 	int i;
923 
924 	for (i = 0; i < (1 << order); i++) {
925 		struct page *p = page + i;
926 		if (unlikely(check_new_page(p)))
927 			return 1;
928 	}
929 
930 	set_page_private(page, 0);
931 	set_page_refcounted(page);
932 
933 	arch_alloc_page(page, order);
934 	kernel_map_pages(page, 1 << order, 1);
935 
936 	if (gfp_flags & __GFP_ZERO)
937 		prep_zero_page(page, order, gfp_flags);
938 
939 	if (order && (gfp_flags & __GFP_COMP))
940 		prep_compound_page(page, order);
941 
942 	return 0;
943 }
944 
945 /*
946  * Go through the free lists for the given migratetype and remove
947  * the smallest available page from the freelists
948  */
949 static inline
950 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
951 						int migratetype)
952 {
953 	unsigned int current_order;
954 	struct free_area *area;
955 	struct page *page;
956 
957 	/* Find a page of the appropriate size in the preferred list */
958 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
959 		area = &(zone->free_area[current_order]);
960 		if (list_empty(&area->free_list[migratetype]))
961 			continue;
962 
963 		page = list_entry(area->free_list[migratetype].next,
964 							struct page, lru);
965 		list_del(&page->lru);
966 		rmv_page_order(page);
967 		area->nr_free--;
968 		expand(zone, page, order, current_order, area, migratetype);
969 		set_freepage_migratetype(page, migratetype);
970 		return page;
971 	}
972 
973 	return NULL;
974 }
975 
976 
977 /*
978  * This array describes the order lists are fallen back to when
979  * the free lists for the desirable migrate type are depleted
980  */
981 static int fallbacks[MIGRATE_TYPES][4] = {
982 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
983 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
984 #ifdef CONFIG_CMA
985 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
986 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
987 #else
988 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
989 #endif
990 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
991 #ifdef CONFIG_MEMORY_ISOLATION
992 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
993 #endif
994 };
995 
996 /*
997  * Move the free pages in a range to the free lists of the requested type.
998  * Note that start_page and end_pages are not aligned on a pageblock
999  * boundary. If alignment is required, use move_freepages_block()
1000  */
1001 int move_freepages(struct zone *zone,
1002 			  struct page *start_page, struct page *end_page,
1003 			  int migratetype)
1004 {
1005 	struct page *page;
1006 	unsigned long order;
1007 	int pages_moved = 0;
1008 
1009 #ifndef CONFIG_HOLES_IN_ZONE
1010 	/*
1011 	 * page_zone is not safe to call in this context when
1012 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1013 	 * anyway as we check zone boundaries in move_freepages_block().
1014 	 * Remove at a later date when no bug reports exist related to
1015 	 * grouping pages by mobility
1016 	 */
1017 	BUG_ON(page_zone(start_page) != page_zone(end_page));
1018 #endif
1019 
1020 	for (page = start_page; page <= end_page;) {
1021 		/* Make sure we are not inadvertently changing nodes */
1022 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1023 
1024 		if (!pfn_valid_within(page_to_pfn(page))) {
1025 			page++;
1026 			continue;
1027 		}
1028 
1029 		if (!PageBuddy(page)) {
1030 			page++;
1031 			continue;
1032 		}
1033 
1034 		order = page_order(page);
1035 		list_move(&page->lru,
1036 			  &zone->free_area[order].free_list[migratetype]);
1037 		set_freepage_migratetype(page, migratetype);
1038 		page += 1 << order;
1039 		pages_moved += 1 << order;
1040 	}
1041 
1042 	return pages_moved;
1043 }
1044 
1045 int move_freepages_block(struct zone *zone, struct page *page,
1046 				int migratetype)
1047 {
1048 	unsigned long start_pfn, end_pfn;
1049 	struct page *start_page, *end_page;
1050 
1051 	start_pfn = page_to_pfn(page);
1052 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1053 	start_page = pfn_to_page(start_pfn);
1054 	end_page = start_page + pageblock_nr_pages - 1;
1055 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1056 
1057 	/* Do not cross zone boundaries */
1058 	if (!zone_spans_pfn(zone, start_pfn))
1059 		start_page = page;
1060 	if (!zone_spans_pfn(zone, end_pfn))
1061 		return 0;
1062 
1063 	return move_freepages(zone, start_page, end_page, migratetype);
1064 }
1065 
1066 static void change_pageblock_range(struct page *pageblock_page,
1067 					int start_order, int migratetype)
1068 {
1069 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1070 
1071 	while (nr_pageblocks--) {
1072 		set_pageblock_migratetype(pageblock_page, migratetype);
1073 		pageblock_page += pageblock_nr_pages;
1074 	}
1075 }
1076 
1077 /*
1078  * If breaking a large block of pages, move all free pages to the preferred
1079  * allocation list. If falling back for a reclaimable kernel allocation, be
1080  * more aggressive about taking ownership of free pages.
1081  *
1082  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1083  * nor move CMA pages to different free lists. We don't want unmovable pages
1084  * to be allocated from MIGRATE_CMA areas.
1085  *
1086  * Returns the new migratetype of the pageblock (or the same old migratetype
1087  * if it was unchanged).
1088  */
1089 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1090 				  int start_type, int fallback_type)
1091 {
1092 	int current_order = page_order(page);
1093 
1094 	/*
1095 	 * When borrowing from MIGRATE_CMA, we need to release the excess
1096 	 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1097 	 * is set to CMA so it is returned to the correct freelist in case
1098 	 * the page ends up being not actually allocated from the pcp lists.
1099 	 */
1100 	if (is_migrate_cma(fallback_type))
1101 		return fallback_type;
1102 
1103 	/* Take ownership for orders >= pageblock_order */
1104 	if (current_order >= pageblock_order) {
1105 		change_pageblock_range(page, current_order, start_type);
1106 		return start_type;
1107 	}
1108 
1109 	if (current_order >= pageblock_order / 2 ||
1110 	    start_type == MIGRATE_RECLAIMABLE ||
1111 	    page_group_by_mobility_disabled) {
1112 		int pages;
1113 
1114 		pages = move_freepages_block(zone, page, start_type);
1115 
1116 		/* Claim the whole block if over half of it is free */
1117 		if (pages >= (1 << (pageblock_order-1)) ||
1118 				page_group_by_mobility_disabled) {
1119 
1120 			set_pageblock_migratetype(page, start_type);
1121 			return start_type;
1122 		}
1123 
1124 	}
1125 
1126 	return fallback_type;
1127 }
1128 
1129 /* Remove an element from the buddy allocator from the fallback list */
1130 static inline struct page *
1131 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1132 {
1133 	struct free_area *area;
1134 	unsigned int current_order;
1135 	struct page *page;
1136 	int migratetype, new_type, i;
1137 
1138 	/* Find the largest possible block of pages in the other list */
1139 	for (current_order = MAX_ORDER-1;
1140 				current_order >= order && current_order <= MAX_ORDER-1;
1141 				--current_order) {
1142 		for (i = 0;; i++) {
1143 			migratetype = fallbacks[start_migratetype][i];
1144 
1145 			/* MIGRATE_RESERVE handled later if necessary */
1146 			if (migratetype == MIGRATE_RESERVE)
1147 				break;
1148 
1149 			area = &(zone->free_area[current_order]);
1150 			if (list_empty(&area->free_list[migratetype]))
1151 				continue;
1152 
1153 			page = list_entry(area->free_list[migratetype].next,
1154 					struct page, lru);
1155 			area->nr_free--;
1156 
1157 			new_type = try_to_steal_freepages(zone, page,
1158 							  start_migratetype,
1159 							  migratetype);
1160 
1161 			/* Remove the page from the freelists */
1162 			list_del(&page->lru);
1163 			rmv_page_order(page);
1164 
1165 			expand(zone, page, order, current_order, area,
1166 			       new_type);
1167 			/* The freepage_migratetype may differ from pageblock's
1168 			 * migratetype depending on the decisions in
1169 			 * try_to_steal_freepages. This is OK as long as it does
1170 			 * not differ for MIGRATE_CMA type.
1171 			 */
1172 			set_freepage_migratetype(page, new_type);
1173 
1174 			trace_mm_page_alloc_extfrag(page, order, current_order,
1175 				start_migratetype, migratetype, new_type);
1176 
1177 			return page;
1178 		}
1179 	}
1180 
1181 	return NULL;
1182 }
1183 
1184 /*
1185  * Do the hard work of removing an element from the buddy allocator.
1186  * Call me with the zone->lock already held.
1187  */
1188 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1189 						int migratetype)
1190 {
1191 	struct page *page;
1192 
1193 retry_reserve:
1194 	page = __rmqueue_smallest(zone, order, migratetype);
1195 
1196 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1197 		page = __rmqueue_fallback(zone, order, migratetype);
1198 
1199 		/*
1200 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1201 		 * is used because __rmqueue_smallest is an inline function
1202 		 * and we want just one call site
1203 		 */
1204 		if (!page) {
1205 			migratetype = MIGRATE_RESERVE;
1206 			goto retry_reserve;
1207 		}
1208 	}
1209 
1210 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1211 	return page;
1212 }
1213 
1214 /*
1215  * Obtain a specified number of elements from the buddy allocator, all under
1216  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1217  * Returns the number of new pages which were placed at *list.
1218  */
1219 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1220 			unsigned long count, struct list_head *list,
1221 			int migratetype, bool cold)
1222 {
1223 	int i;
1224 
1225 	spin_lock(&zone->lock);
1226 	for (i = 0; i < count; ++i) {
1227 		struct page *page = __rmqueue(zone, order, migratetype);
1228 		if (unlikely(page == NULL))
1229 			break;
1230 
1231 		/*
1232 		 * Split buddy pages returned by expand() are received here
1233 		 * in physical page order. The page is added to the callers and
1234 		 * list and the list head then moves forward. From the callers
1235 		 * perspective, the linked list is ordered by page number in
1236 		 * some conditions. This is useful for IO devices that can
1237 		 * merge IO requests if the physical pages are ordered
1238 		 * properly.
1239 		 */
1240 		if (likely(!cold))
1241 			list_add(&page->lru, list);
1242 		else
1243 			list_add_tail(&page->lru, list);
1244 		list = &page->lru;
1245 		if (is_migrate_cma(get_freepage_migratetype(page)))
1246 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1247 					      -(1 << order));
1248 	}
1249 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1250 	spin_unlock(&zone->lock);
1251 	return i;
1252 }
1253 
1254 #ifdef CONFIG_NUMA
1255 /*
1256  * Called from the vmstat counter updater to drain pagesets of this
1257  * currently executing processor on remote nodes after they have
1258  * expired.
1259  *
1260  * Note that this function must be called with the thread pinned to
1261  * a single processor.
1262  */
1263 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1264 {
1265 	unsigned long flags;
1266 	int to_drain, batch;
1267 
1268 	local_irq_save(flags);
1269 	batch = ACCESS_ONCE(pcp->batch);
1270 	to_drain = min(pcp->count, batch);
1271 	if (to_drain > 0) {
1272 		free_pcppages_bulk(zone, to_drain, pcp);
1273 		pcp->count -= to_drain;
1274 	}
1275 	local_irq_restore(flags);
1276 }
1277 #endif
1278 
1279 /*
1280  * Drain pages of the indicated processor.
1281  *
1282  * The processor must either be the current processor and the
1283  * thread pinned to the current processor or a processor that
1284  * is not online.
1285  */
1286 static void drain_pages(unsigned int cpu)
1287 {
1288 	unsigned long flags;
1289 	struct zone *zone;
1290 
1291 	for_each_populated_zone(zone) {
1292 		struct per_cpu_pageset *pset;
1293 		struct per_cpu_pages *pcp;
1294 
1295 		local_irq_save(flags);
1296 		pset = per_cpu_ptr(zone->pageset, cpu);
1297 
1298 		pcp = &pset->pcp;
1299 		if (pcp->count) {
1300 			free_pcppages_bulk(zone, pcp->count, pcp);
1301 			pcp->count = 0;
1302 		}
1303 		local_irq_restore(flags);
1304 	}
1305 }
1306 
1307 /*
1308  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1309  */
1310 void drain_local_pages(void *arg)
1311 {
1312 	drain_pages(smp_processor_id());
1313 }
1314 
1315 /*
1316  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1317  *
1318  * Note that this code is protected against sending an IPI to an offline
1319  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1320  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1321  * nothing keeps CPUs from showing up after we populated the cpumask and
1322  * before the call to on_each_cpu_mask().
1323  */
1324 void drain_all_pages(void)
1325 {
1326 	int cpu;
1327 	struct per_cpu_pageset *pcp;
1328 	struct zone *zone;
1329 
1330 	/*
1331 	 * Allocate in the BSS so we wont require allocation in
1332 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1333 	 */
1334 	static cpumask_t cpus_with_pcps;
1335 
1336 	/*
1337 	 * We don't care about racing with CPU hotplug event
1338 	 * as offline notification will cause the notified
1339 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1340 	 * disables preemption as part of its processing
1341 	 */
1342 	for_each_online_cpu(cpu) {
1343 		bool has_pcps = false;
1344 		for_each_populated_zone(zone) {
1345 			pcp = per_cpu_ptr(zone->pageset, cpu);
1346 			if (pcp->pcp.count) {
1347 				has_pcps = true;
1348 				break;
1349 			}
1350 		}
1351 		if (has_pcps)
1352 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1353 		else
1354 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1355 	}
1356 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1357 }
1358 
1359 #ifdef CONFIG_HIBERNATION
1360 
1361 void mark_free_pages(struct zone *zone)
1362 {
1363 	unsigned long pfn, max_zone_pfn;
1364 	unsigned long flags;
1365 	unsigned int order, t;
1366 	struct list_head *curr;
1367 
1368 	if (zone_is_empty(zone))
1369 		return;
1370 
1371 	spin_lock_irqsave(&zone->lock, flags);
1372 
1373 	max_zone_pfn = zone_end_pfn(zone);
1374 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1375 		if (pfn_valid(pfn)) {
1376 			struct page *page = pfn_to_page(pfn);
1377 
1378 			if (!swsusp_page_is_forbidden(page))
1379 				swsusp_unset_page_free(page);
1380 		}
1381 
1382 	for_each_migratetype_order(order, t) {
1383 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1384 			unsigned long i;
1385 
1386 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1387 			for (i = 0; i < (1UL << order); i++)
1388 				swsusp_set_page_free(pfn_to_page(pfn + i));
1389 		}
1390 	}
1391 	spin_unlock_irqrestore(&zone->lock, flags);
1392 }
1393 #endif /* CONFIG_PM */
1394 
1395 /*
1396  * Free a 0-order page
1397  * cold == true ? free a cold page : free a hot page
1398  */
1399 void free_hot_cold_page(struct page *page, bool cold)
1400 {
1401 	struct zone *zone = page_zone(page);
1402 	struct per_cpu_pages *pcp;
1403 	unsigned long flags;
1404 	unsigned long pfn = page_to_pfn(page);
1405 	int migratetype;
1406 
1407 	if (!free_pages_prepare(page, 0))
1408 		return;
1409 
1410 	migratetype = get_pfnblock_migratetype(page, pfn);
1411 	set_freepage_migratetype(page, migratetype);
1412 	local_irq_save(flags);
1413 	__count_vm_event(PGFREE);
1414 
1415 	/*
1416 	 * We only track unmovable, reclaimable and movable on pcp lists.
1417 	 * Free ISOLATE pages back to the allocator because they are being
1418 	 * offlined but treat RESERVE as movable pages so we can get those
1419 	 * areas back if necessary. Otherwise, we may have to free
1420 	 * excessively into the page allocator
1421 	 */
1422 	if (migratetype >= MIGRATE_PCPTYPES) {
1423 		if (unlikely(is_migrate_isolate(migratetype))) {
1424 			free_one_page(zone, page, pfn, 0, migratetype);
1425 			goto out;
1426 		}
1427 		migratetype = MIGRATE_MOVABLE;
1428 	}
1429 
1430 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1431 	if (!cold)
1432 		list_add(&page->lru, &pcp->lists[migratetype]);
1433 	else
1434 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1435 	pcp->count++;
1436 	if (pcp->count >= pcp->high) {
1437 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1438 		free_pcppages_bulk(zone, batch, pcp);
1439 		pcp->count -= batch;
1440 	}
1441 
1442 out:
1443 	local_irq_restore(flags);
1444 }
1445 
1446 /*
1447  * Free a list of 0-order pages
1448  */
1449 void free_hot_cold_page_list(struct list_head *list, bool cold)
1450 {
1451 	struct page *page, *next;
1452 
1453 	list_for_each_entry_safe(page, next, list, lru) {
1454 		trace_mm_page_free_batched(page, cold);
1455 		free_hot_cold_page(page, cold);
1456 	}
1457 }
1458 
1459 /*
1460  * split_page takes a non-compound higher-order page, and splits it into
1461  * n (1<<order) sub-pages: page[0..n]
1462  * Each sub-page must be freed individually.
1463  *
1464  * Note: this is probably too low level an operation for use in drivers.
1465  * Please consult with lkml before using this in your driver.
1466  */
1467 void split_page(struct page *page, unsigned int order)
1468 {
1469 	int i;
1470 
1471 	VM_BUG_ON_PAGE(PageCompound(page), page);
1472 	VM_BUG_ON_PAGE(!page_count(page), page);
1473 
1474 #ifdef CONFIG_KMEMCHECK
1475 	/*
1476 	 * Split shadow pages too, because free(page[0]) would
1477 	 * otherwise free the whole shadow.
1478 	 */
1479 	if (kmemcheck_page_is_tracked(page))
1480 		split_page(virt_to_page(page[0].shadow), order);
1481 #endif
1482 
1483 	for (i = 1; i < (1 << order); i++)
1484 		set_page_refcounted(page + i);
1485 }
1486 EXPORT_SYMBOL_GPL(split_page);
1487 
1488 static int __isolate_free_page(struct page *page, unsigned int order)
1489 {
1490 	unsigned long watermark;
1491 	struct zone *zone;
1492 	int mt;
1493 
1494 	BUG_ON(!PageBuddy(page));
1495 
1496 	zone = page_zone(page);
1497 	mt = get_pageblock_migratetype(page);
1498 
1499 	if (!is_migrate_isolate(mt)) {
1500 		/* Obey watermarks as if the page was being allocated */
1501 		watermark = low_wmark_pages(zone) + (1 << order);
1502 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1503 			return 0;
1504 
1505 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1506 	}
1507 
1508 	/* Remove page from free list */
1509 	list_del(&page->lru);
1510 	zone->free_area[order].nr_free--;
1511 	rmv_page_order(page);
1512 
1513 	/* Set the pageblock if the isolated page is at least a pageblock */
1514 	if (order >= pageblock_order - 1) {
1515 		struct page *endpage = page + (1 << order) - 1;
1516 		for (; page < endpage; page += pageblock_nr_pages) {
1517 			int mt = get_pageblock_migratetype(page);
1518 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1519 				set_pageblock_migratetype(page,
1520 							  MIGRATE_MOVABLE);
1521 		}
1522 	}
1523 
1524 	return 1UL << order;
1525 }
1526 
1527 /*
1528  * Similar to split_page except the page is already free. As this is only
1529  * being used for migration, the migratetype of the block also changes.
1530  * As this is called with interrupts disabled, the caller is responsible
1531  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1532  * are enabled.
1533  *
1534  * Note: this is probably too low level an operation for use in drivers.
1535  * Please consult with lkml before using this in your driver.
1536  */
1537 int split_free_page(struct page *page)
1538 {
1539 	unsigned int order;
1540 	int nr_pages;
1541 
1542 	order = page_order(page);
1543 
1544 	nr_pages = __isolate_free_page(page, order);
1545 	if (!nr_pages)
1546 		return 0;
1547 
1548 	/* Split into individual pages */
1549 	set_page_refcounted(page);
1550 	split_page(page, order);
1551 	return nr_pages;
1552 }
1553 
1554 /*
1555  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1556  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1557  * or two.
1558  */
1559 static inline
1560 struct page *buffered_rmqueue(struct zone *preferred_zone,
1561 			struct zone *zone, unsigned int order,
1562 			gfp_t gfp_flags, int migratetype)
1563 {
1564 	unsigned long flags;
1565 	struct page *page;
1566 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1567 
1568 again:
1569 	if (likely(order == 0)) {
1570 		struct per_cpu_pages *pcp;
1571 		struct list_head *list;
1572 
1573 		local_irq_save(flags);
1574 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1575 		list = &pcp->lists[migratetype];
1576 		if (list_empty(list)) {
1577 			pcp->count += rmqueue_bulk(zone, 0,
1578 					pcp->batch, list,
1579 					migratetype, cold);
1580 			if (unlikely(list_empty(list)))
1581 				goto failed;
1582 		}
1583 
1584 		if (cold)
1585 			page = list_entry(list->prev, struct page, lru);
1586 		else
1587 			page = list_entry(list->next, struct page, lru);
1588 
1589 		list_del(&page->lru);
1590 		pcp->count--;
1591 	} else {
1592 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1593 			/*
1594 			 * __GFP_NOFAIL is not to be used in new code.
1595 			 *
1596 			 * All __GFP_NOFAIL callers should be fixed so that they
1597 			 * properly detect and handle allocation failures.
1598 			 *
1599 			 * We most definitely don't want callers attempting to
1600 			 * allocate greater than order-1 page units with
1601 			 * __GFP_NOFAIL.
1602 			 */
1603 			WARN_ON_ONCE(order > 1);
1604 		}
1605 		spin_lock_irqsave(&zone->lock, flags);
1606 		page = __rmqueue(zone, order, migratetype);
1607 		spin_unlock(&zone->lock);
1608 		if (!page)
1609 			goto failed;
1610 		__mod_zone_freepage_state(zone, -(1 << order),
1611 					  get_freepage_migratetype(page));
1612 	}
1613 
1614 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1615 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1616 	    !zone_is_fair_depleted(zone))
1617 		zone_set_flag(zone, ZONE_FAIR_DEPLETED);
1618 
1619 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1620 	zone_statistics(preferred_zone, zone, gfp_flags);
1621 	local_irq_restore(flags);
1622 
1623 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1624 	if (prep_new_page(page, order, gfp_flags))
1625 		goto again;
1626 	return page;
1627 
1628 failed:
1629 	local_irq_restore(flags);
1630 	return NULL;
1631 }
1632 
1633 #ifdef CONFIG_FAIL_PAGE_ALLOC
1634 
1635 static struct {
1636 	struct fault_attr attr;
1637 
1638 	u32 ignore_gfp_highmem;
1639 	u32 ignore_gfp_wait;
1640 	u32 min_order;
1641 } fail_page_alloc = {
1642 	.attr = FAULT_ATTR_INITIALIZER,
1643 	.ignore_gfp_wait = 1,
1644 	.ignore_gfp_highmem = 1,
1645 	.min_order = 1,
1646 };
1647 
1648 static int __init setup_fail_page_alloc(char *str)
1649 {
1650 	return setup_fault_attr(&fail_page_alloc.attr, str);
1651 }
1652 __setup("fail_page_alloc=", setup_fail_page_alloc);
1653 
1654 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1655 {
1656 	if (order < fail_page_alloc.min_order)
1657 		return false;
1658 	if (gfp_mask & __GFP_NOFAIL)
1659 		return false;
1660 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1661 		return false;
1662 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1663 		return false;
1664 
1665 	return should_fail(&fail_page_alloc.attr, 1 << order);
1666 }
1667 
1668 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1669 
1670 static int __init fail_page_alloc_debugfs(void)
1671 {
1672 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1673 	struct dentry *dir;
1674 
1675 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1676 					&fail_page_alloc.attr);
1677 	if (IS_ERR(dir))
1678 		return PTR_ERR(dir);
1679 
1680 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1681 				&fail_page_alloc.ignore_gfp_wait))
1682 		goto fail;
1683 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1684 				&fail_page_alloc.ignore_gfp_highmem))
1685 		goto fail;
1686 	if (!debugfs_create_u32("min-order", mode, dir,
1687 				&fail_page_alloc.min_order))
1688 		goto fail;
1689 
1690 	return 0;
1691 fail:
1692 	debugfs_remove_recursive(dir);
1693 
1694 	return -ENOMEM;
1695 }
1696 
1697 late_initcall(fail_page_alloc_debugfs);
1698 
1699 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1700 
1701 #else /* CONFIG_FAIL_PAGE_ALLOC */
1702 
1703 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1704 {
1705 	return false;
1706 }
1707 
1708 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1709 
1710 /*
1711  * Return true if free pages are above 'mark'. This takes into account the order
1712  * of the allocation.
1713  */
1714 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1715 			unsigned long mark, int classzone_idx, int alloc_flags,
1716 			long free_pages)
1717 {
1718 	/* free_pages my go negative - that's OK */
1719 	long min = mark;
1720 	int o;
1721 	long free_cma = 0;
1722 
1723 	free_pages -= (1 << order) - 1;
1724 	if (alloc_flags & ALLOC_HIGH)
1725 		min -= min / 2;
1726 	if (alloc_flags & ALLOC_HARDER)
1727 		min -= min / 4;
1728 #ifdef CONFIG_CMA
1729 	/* If allocation can't use CMA areas don't use free CMA pages */
1730 	if (!(alloc_flags & ALLOC_CMA))
1731 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1732 #endif
1733 
1734 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1735 		return false;
1736 	for (o = 0; o < order; o++) {
1737 		/* At the next order, this order's pages become unavailable */
1738 		free_pages -= z->free_area[o].nr_free << o;
1739 
1740 		/* Require fewer higher order pages to be free */
1741 		min >>= 1;
1742 
1743 		if (free_pages <= min)
1744 			return false;
1745 	}
1746 	return true;
1747 }
1748 
1749 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1750 		      int classzone_idx, int alloc_flags)
1751 {
1752 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1753 					zone_page_state(z, NR_FREE_PAGES));
1754 }
1755 
1756 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1757 			unsigned long mark, int classzone_idx, int alloc_flags)
1758 {
1759 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1760 
1761 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1762 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1763 
1764 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1765 								free_pages);
1766 }
1767 
1768 #ifdef CONFIG_NUMA
1769 /*
1770  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1771  * skip over zones that are not allowed by the cpuset, or that have
1772  * been recently (in last second) found to be nearly full.  See further
1773  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1774  * that have to skip over a lot of full or unallowed zones.
1775  *
1776  * If the zonelist cache is present in the passed zonelist, then
1777  * returns a pointer to the allowed node mask (either the current
1778  * tasks mems_allowed, or node_states[N_MEMORY].)
1779  *
1780  * If the zonelist cache is not available for this zonelist, does
1781  * nothing and returns NULL.
1782  *
1783  * If the fullzones BITMAP in the zonelist cache is stale (more than
1784  * a second since last zap'd) then we zap it out (clear its bits.)
1785  *
1786  * We hold off even calling zlc_setup, until after we've checked the
1787  * first zone in the zonelist, on the theory that most allocations will
1788  * be satisfied from that first zone, so best to examine that zone as
1789  * quickly as we can.
1790  */
1791 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1792 {
1793 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1794 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1795 
1796 	zlc = zonelist->zlcache_ptr;
1797 	if (!zlc)
1798 		return NULL;
1799 
1800 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1801 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1802 		zlc->last_full_zap = jiffies;
1803 	}
1804 
1805 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1806 					&cpuset_current_mems_allowed :
1807 					&node_states[N_MEMORY];
1808 	return allowednodes;
1809 }
1810 
1811 /*
1812  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1813  * if it is worth looking at further for free memory:
1814  *  1) Check that the zone isn't thought to be full (doesn't have its
1815  *     bit set in the zonelist_cache fullzones BITMAP).
1816  *  2) Check that the zones node (obtained from the zonelist_cache
1817  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1818  * Return true (non-zero) if zone is worth looking at further, or
1819  * else return false (zero) if it is not.
1820  *
1821  * This check -ignores- the distinction between various watermarks,
1822  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1823  * found to be full for any variation of these watermarks, it will
1824  * be considered full for up to one second by all requests, unless
1825  * we are so low on memory on all allowed nodes that we are forced
1826  * into the second scan of the zonelist.
1827  *
1828  * In the second scan we ignore this zonelist cache and exactly
1829  * apply the watermarks to all zones, even it is slower to do so.
1830  * We are low on memory in the second scan, and should leave no stone
1831  * unturned looking for a free page.
1832  */
1833 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1834 						nodemask_t *allowednodes)
1835 {
1836 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1837 	int i;				/* index of *z in zonelist zones */
1838 	int n;				/* node that zone *z is on */
1839 
1840 	zlc = zonelist->zlcache_ptr;
1841 	if (!zlc)
1842 		return 1;
1843 
1844 	i = z - zonelist->_zonerefs;
1845 	n = zlc->z_to_n[i];
1846 
1847 	/* This zone is worth trying if it is allowed but not full */
1848 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1849 }
1850 
1851 /*
1852  * Given 'z' scanning a zonelist, set the corresponding bit in
1853  * zlc->fullzones, so that subsequent attempts to allocate a page
1854  * from that zone don't waste time re-examining it.
1855  */
1856 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1857 {
1858 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1859 	int i;				/* index of *z in zonelist zones */
1860 
1861 	zlc = zonelist->zlcache_ptr;
1862 	if (!zlc)
1863 		return;
1864 
1865 	i = z - zonelist->_zonerefs;
1866 
1867 	set_bit(i, zlc->fullzones);
1868 }
1869 
1870 /*
1871  * clear all zones full, called after direct reclaim makes progress so that
1872  * a zone that was recently full is not skipped over for up to a second
1873  */
1874 static void zlc_clear_zones_full(struct zonelist *zonelist)
1875 {
1876 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1877 
1878 	zlc = zonelist->zlcache_ptr;
1879 	if (!zlc)
1880 		return;
1881 
1882 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1883 }
1884 
1885 static bool zone_local(struct zone *local_zone, struct zone *zone)
1886 {
1887 	return local_zone->node == zone->node;
1888 }
1889 
1890 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1891 {
1892 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1893 				RECLAIM_DISTANCE;
1894 }
1895 
1896 #else	/* CONFIG_NUMA */
1897 
1898 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1899 {
1900 	return NULL;
1901 }
1902 
1903 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1904 				nodemask_t *allowednodes)
1905 {
1906 	return 1;
1907 }
1908 
1909 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1910 {
1911 }
1912 
1913 static void zlc_clear_zones_full(struct zonelist *zonelist)
1914 {
1915 }
1916 
1917 static bool zone_local(struct zone *local_zone, struct zone *zone)
1918 {
1919 	return true;
1920 }
1921 
1922 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1923 {
1924 	return true;
1925 }
1926 
1927 #endif	/* CONFIG_NUMA */
1928 
1929 static void reset_alloc_batches(struct zone *preferred_zone)
1930 {
1931 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1932 
1933 	do {
1934 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
1935 			high_wmark_pages(zone) - low_wmark_pages(zone) -
1936 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1937 		zone_clear_flag(zone, ZONE_FAIR_DEPLETED);
1938 	} while (zone++ != preferred_zone);
1939 }
1940 
1941 /*
1942  * get_page_from_freelist goes through the zonelist trying to allocate
1943  * a page.
1944  */
1945 static struct page *
1946 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1947 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1948 		struct zone *preferred_zone, int classzone_idx, int migratetype)
1949 {
1950 	struct zoneref *z;
1951 	struct page *page = NULL;
1952 	struct zone *zone;
1953 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1954 	int zlc_active = 0;		/* set if using zonelist_cache */
1955 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1956 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1957 				(gfp_mask & __GFP_WRITE);
1958 	int nr_fair_skipped = 0;
1959 	bool zonelist_rescan;
1960 
1961 zonelist_scan:
1962 	zonelist_rescan = false;
1963 
1964 	/*
1965 	 * Scan zonelist, looking for a zone with enough free.
1966 	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1967 	 */
1968 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1969 						high_zoneidx, nodemask) {
1970 		unsigned long mark;
1971 
1972 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1973 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1974 				continue;
1975 		if (cpusets_enabled() &&
1976 			(alloc_flags & ALLOC_CPUSET) &&
1977 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1978 				continue;
1979 		/*
1980 		 * Distribute pages in proportion to the individual
1981 		 * zone size to ensure fair page aging.  The zone a
1982 		 * page was allocated in should have no effect on the
1983 		 * time the page has in memory before being reclaimed.
1984 		 */
1985 		if (alloc_flags & ALLOC_FAIR) {
1986 			if (!zone_local(preferred_zone, zone))
1987 				break;
1988 			if (zone_is_fair_depleted(zone)) {
1989 				nr_fair_skipped++;
1990 				continue;
1991 			}
1992 		}
1993 		/*
1994 		 * When allocating a page cache page for writing, we
1995 		 * want to get it from a zone that is within its dirty
1996 		 * limit, such that no single zone holds more than its
1997 		 * proportional share of globally allowed dirty pages.
1998 		 * The dirty limits take into account the zone's
1999 		 * lowmem reserves and high watermark so that kswapd
2000 		 * should be able to balance it without having to
2001 		 * write pages from its LRU list.
2002 		 *
2003 		 * This may look like it could increase pressure on
2004 		 * lower zones by failing allocations in higher zones
2005 		 * before they are full.  But the pages that do spill
2006 		 * over are limited as the lower zones are protected
2007 		 * by this very same mechanism.  It should not become
2008 		 * a practical burden to them.
2009 		 *
2010 		 * XXX: For now, allow allocations to potentially
2011 		 * exceed the per-zone dirty limit in the slowpath
2012 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2013 		 * which is important when on a NUMA setup the allowed
2014 		 * zones are together not big enough to reach the
2015 		 * global limit.  The proper fix for these situations
2016 		 * will require awareness of zones in the
2017 		 * dirty-throttling and the flusher threads.
2018 		 */
2019 		if (consider_zone_dirty && !zone_dirty_ok(zone))
2020 			continue;
2021 
2022 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2023 		if (!zone_watermark_ok(zone, order, mark,
2024 				       classzone_idx, alloc_flags)) {
2025 			int ret;
2026 
2027 			/* Checked here to keep the fast path fast */
2028 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2029 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2030 				goto try_this_zone;
2031 
2032 			if (IS_ENABLED(CONFIG_NUMA) &&
2033 					!did_zlc_setup && nr_online_nodes > 1) {
2034 				/*
2035 				 * we do zlc_setup if there are multiple nodes
2036 				 * and before considering the first zone allowed
2037 				 * by the cpuset.
2038 				 */
2039 				allowednodes = zlc_setup(zonelist, alloc_flags);
2040 				zlc_active = 1;
2041 				did_zlc_setup = 1;
2042 			}
2043 
2044 			if (zone_reclaim_mode == 0 ||
2045 			    !zone_allows_reclaim(preferred_zone, zone))
2046 				goto this_zone_full;
2047 
2048 			/*
2049 			 * As we may have just activated ZLC, check if the first
2050 			 * eligible zone has failed zone_reclaim recently.
2051 			 */
2052 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2053 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2054 				continue;
2055 
2056 			ret = zone_reclaim(zone, gfp_mask, order);
2057 			switch (ret) {
2058 			case ZONE_RECLAIM_NOSCAN:
2059 				/* did not scan */
2060 				continue;
2061 			case ZONE_RECLAIM_FULL:
2062 				/* scanned but unreclaimable */
2063 				continue;
2064 			default:
2065 				/* did we reclaim enough */
2066 				if (zone_watermark_ok(zone, order, mark,
2067 						classzone_idx, alloc_flags))
2068 					goto try_this_zone;
2069 
2070 				/*
2071 				 * Failed to reclaim enough to meet watermark.
2072 				 * Only mark the zone full if checking the min
2073 				 * watermark or if we failed to reclaim just
2074 				 * 1<<order pages or else the page allocator
2075 				 * fastpath will prematurely mark zones full
2076 				 * when the watermark is between the low and
2077 				 * min watermarks.
2078 				 */
2079 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2080 				    ret == ZONE_RECLAIM_SOME)
2081 					goto this_zone_full;
2082 
2083 				continue;
2084 			}
2085 		}
2086 
2087 try_this_zone:
2088 		page = buffered_rmqueue(preferred_zone, zone, order,
2089 						gfp_mask, migratetype);
2090 		if (page)
2091 			break;
2092 this_zone_full:
2093 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2094 			zlc_mark_zone_full(zonelist, z);
2095 	}
2096 
2097 	if (page) {
2098 		/*
2099 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2100 		 * necessary to allocate the page. The expectation is
2101 		 * that the caller is taking steps that will free more
2102 		 * memory. The caller should avoid the page being used
2103 		 * for !PFMEMALLOC purposes.
2104 		 */
2105 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2106 		return page;
2107 	}
2108 
2109 	/*
2110 	 * The first pass makes sure allocations are spread fairly within the
2111 	 * local node.  However, the local node might have free pages left
2112 	 * after the fairness batches are exhausted, and remote zones haven't
2113 	 * even been considered yet.  Try once more without fairness, and
2114 	 * include remote zones now, before entering the slowpath and waking
2115 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2116 	 */
2117 	if (alloc_flags & ALLOC_FAIR) {
2118 		alloc_flags &= ~ALLOC_FAIR;
2119 		if (nr_fair_skipped) {
2120 			zonelist_rescan = true;
2121 			reset_alloc_batches(preferred_zone);
2122 		}
2123 		if (nr_online_nodes > 1)
2124 			zonelist_rescan = true;
2125 	}
2126 
2127 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2128 		/* Disable zlc cache for second zonelist scan */
2129 		zlc_active = 0;
2130 		zonelist_rescan = true;
2131 	}
2132 
2133 	if (zonelist_rescan)
2134 		goto zonelist_scan;
2135 
2136 	return NULL;
2137 }
2138 
2139 /*
2140  * Large machines with many possible nodes should not always dump per-node
2141  * meminfo in irq context.
2142  */
2143 static inline bool should_suppress_show_mem(void)
2144 {
2145 	bool ret = false;
2146 
2147 #if NODES_SHIFT > 8
2148 	ret = in_interrupt();
2149 #endif
2150 	return ret;
2151 }
2152 
2153 static DEFINE_RATELIMIT_STATE(nopage_rs,
2154 		DEFAULT_RATELIMIT_INTERVAL,
2155 		DEFAULT_RATELIMIT_BURST);
2156 
2157 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2158 {
2159 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2160 
2161 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2162 	    debug_guardpage_minorder() > 0)
2163 		return;
2164 
2165 	/*
2166 	 * This documents exceptions given to allocations in certain
2167 	 * contexts that are allowed to allocate outside current's set
2168 	 * of allowed nodes.
2169 	 */
2170 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2171 		if (test_thread_flag(TIF_MEMDIE) ||
2172 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2173 			filter &= ~SHOW_MEM_FILTER_NODES;
2174 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2175 		filter &= ~SHOW_MEM_FILTER_NODES;
2176 
2177 	if (fmt) {
2178 		struct va_format vaf;
2179 		va_list args;
2180 
2181 		va_start(args, fmt);
2182 
2183 		vaf.fmt = fmt;
2184 		vaf.va = &args;
2185 
2186 		pr_warn("%pV", &vaf);
2187 
2188 		va_end(args);
2189 	}
2190 
2191 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2192 		current->comm, order, gfp_mask);
2193 
2194 	dump_stack();
2195 	if (!should_suppress_show_mem())
2196 		show_mem(filter);
2197 }
2198 
2199 static inline int
2200 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2201 				unsigned long did_some_progress,
2202 				unsigned long pages_reclaimed)
2203 {
2204 	/* Do not loop if specifically requested */
2205 	if (gfp_mask & __GFP_NORETRY)
2206 		return 0;
2207 
2208 	/* Always retry if specifically requested */
2209 	if (gfp_mask & __GFP_NOFAIL)
2210 		return 1;
2211 
2212 	/*
2213 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2214 	 * making forward progress without invoking OOM. Suspend also disables
2215 	 * storage devices so kswapd will not help. Bail if we are suspending.
2216 	 */
2217 	if (!did_some_progress && pm_suspended_storage())
2218 		return 0;
2219 
2220 	/*
2221 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2222 	 * means __GFP_NOFAIL, but that may not be true in other
2223 	 * implementations.
2224 	 */
2225 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2226 		return 1;
2227 
2228 	/*
2229 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2230 	 * specified, then we retry until we no longer reclaim any pages
2231 	 * (above), or we've reclaimed an order of pages at least as
2232 	 * large as the allocation's order. In both cases, if the
2233 	 * allocation still fails, we stop retrying.
2234 	 */
2235 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2236 		return 1;
2237 
2238 	return 0;
2239 }
2240 
2241 static inline struct page *
2242 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2243 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2244 	nodemask_t *nodemask, struct zone *preferred_zone,
2245 	int classzone_idx, int migratetype)
2246 {
2247 	struct page *page;
2248 
2249 	/* Acquire the per-zone oom lock for each zone */
2250 	if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2251 		schedule_timeout_uninterruptible(1);
2252 		return NULL;
2253 	}
2254 
2255 	/*
2256 	 * Go through the zonelist yet one more time, keep very high watermark
2257 	 * here, this is only to catch a parallel oom killing, we must fail if
2258 	 * we're still under heavy pressure.
2259 	 */
2260 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2261 		order, zonelist, high_zoneidx,
2262 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2263 		preferred_zone, classzone_idx, migratetype);
2264 	if (page)
2265 		goto out;
2266 
2267 	if (!(gfp_mask & __GFP_NOFAIL)) {
2268 		/* The OOM killer will not help higher order allocs */
2269 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2270 			goto out;
2271 		/* The OOM killer does not needlessly kill tasks for lowmem */
2272 		if (high_zoneidx < ZONE_NORMAL)
2273 			goto out;
2274 		/*
2275 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2276 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2277 		 * The caller should handle page allocation failure by itself if
2278 		 * it specifies __GFP_THISNODE.
2279 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2280 		 */
2281 		if (gfp_mask & __GFP_THISNODE)
2282 			goto out;
2283 	}
2284 	/* Exhausted what can be done so it's blamo time */
2285 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2286 
2287 out:
2288 	oom_zonelist_unlock(zonelist, gfp_mask);
2289 	return page;
2290 }
2291 
2292 #ifdef CONFIG_COMPACTION
2293 /* Try memory compaction for high-order allocations before reclaim */
2294 static struct page *
2295 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2296 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2297 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2298 	int classzone_idx, int migratetype, enum migrate_mode mode,
2299 	bool *contended_compaction, bool *deferred_compaction,
2300 	unsigned long *did_some_progress)
2301 {
2302 	if (!order)
2303 		return NULL;
2304 
2305 	if (compaction_deferred(preferred_zone, order)) {
2306 		*deferred_compaction = true;
2307 		return NULL;
2308 	}
2309 
2310 	current->flags |= PF_MEMALLOC;
2311 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2312 						nodemask, mode,
2313 						contended_compaction);
2314 	current->flags &= ~PF_MEMALLOC;
2315 
2316 	if (*did_some_progress != COMPACT_SKIPPED) {
2317 		struct page *page;
2318 
2319 		/* Page migration frees to the PCP lists but we want merging */
2320 		drain_pages(get_cpu());
2321 		put_cpu();
2322 
2323 		page = get_page_from_freelist(gfp_mask, nodemask,
2324 				order, zonelist, high_zoneidx,
2325 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2326 				preferred_zone, classzone_idx, migratetype);
2327 		if (page) {
2328 			preferred_zone->compact_blockskip_flush = false;
2329 			compaction_defer_reset(preferred_zone, order, true);
2330 			count_vm_event(COMPACTSUCCESS);
2331 			return page;
2332 		}
2333 
2334 		/*
2335 		 * It's bad if compaction run occurs and fails.
2336 		 * The most likely reason is that pages exist,
2337 		 * but not enough to satisfy watermarks.
2338 		 */
2339 		count_vm_event(COMPACTFAIL);
2340 
2341 		/*
2342 		 * As async compaction considers a subset of pageblocks, only
2343 		 * defer if the failure was a sync compaction failure.
2344 		 */
2345 		if (mode != MIGRATE_ASYNC)
2346 			defer_compaction(preferred_zone, order);
2347 
2348 		cond_resched();
2349 	}
2350 
2351 	return NULL;
2352 }
2353 #else
2354 static inline struct page *
2355 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2356 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2357 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2358 	int classzone_idx, int migratetype,
2359 	enum migrate_mode mode, bool *contended_compaction,
2360 	bool *deferred_compaction, unsigned long *did_some_progress)
2361 {
2362 	return NULL;
2363 }
2364 #endif /* CONFIG_COMPACTION */
2365 
2366 /* Perform direct synchronous page reclaim */
2367 static int
2368 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2369 		  nodemask_t *nodemask)
2370 {
2371 	struct reclaim_state reclaim_state;
2372 	int progress;
2373 
2374 	cond_resched();
2375 
2376 	/* We now go into synchronous reclaim */
2377 	cpuset_memory_pressure_bump();
2378 	current->flags |= PF_MEMALLOC;
2379 	lockdep_set_current_reclaim_state(gfp_mask);
2380 	reclaim_state.reclaimed_slab = 0;
2381 	current->reclaim_state = &reclaim_state;
2382 
2383 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2384 
2385 	current->reclaim_state = NULL;
2386 	lockdep_clear_current_reclaim_state();
2387 	current->flags &= ~PF_MEMALLOC;
2388 
2389 	cond_resched();
2390 
2391 	return progress;
2392 }
2393 
2394 /* The really slow allocator path where we enter direct reclaim */
2395 static inline struct page *
2396 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2397 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2398 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2399 	int classzone_idx, int migratetype, unsigned long *did_some_progress)
2400 {
2401 	struct page *page = NULL;
2402 	bool drained = false;
2403 
2404 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2405 					       nodemask);
2406 	if (unlikely(!(*did_some_progress)))
2407 		return NULL;
2408 
2409 	/* After successful reclaim, reconsider all zones for allocation */
2410 	if (IS_ENABLED(CONFIG_NUMA))
2411 		zlc_clear_zones_full(zonelist);
2412 
2413 retry:
2414 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2415 					zonelist, high_zoneidx,
2416 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2417 					preferred_zone, classzone_idx,
2418 					migratetype);
2419 
2420 	/*
2421 	 * If an allocation failed after direct reclaim, it could be because
2422 	 * pages are pinned on the per-cpu lists. Drain them and try again
2423 	 */
2424 	if (!page && !drained) {
2425 		drain_all_pages();
2426 		drained = true;
2427 		goto retry;
2428 	}
2429 
2430 	return page;
2431 }
2432 
2433 /*
2434  * This is called in the allocator slow-path if the allocation request is of
2435  * sufficient urgency to ignore watermarks and take other desperate measures
2436  */
2437 static inline struct page *
2438 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2439 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2440 	nodemask_t *nodemask, struct zone *preferred_zone,
2441 	int classzone_idx, int migratetype)
2442 {
2443 	struct page *page;
2444 
2445 	do {
2446 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2447 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2448 			preferred_zone, classzone_idx, migratetype);
2449 
2450 		if (!page && gfp_mask & __GFP_NOFAIL)
2451 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2452 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2453 
2454 	return page;
2455 }
2456 
2457 static void wake_all_kswapds(unsigned int order,
2458 			     struct zonelist *zonelist,
2459 			     enum zone_type high_zoneidx,
2460 			     struct zone *preferred_zone)
2461 {
2462 	struct zoneref *z;
2463 	struct zone *zone;
2464 
2465 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2466 		wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2467 }
2468 
2469 static inline int
2470 gfp_to_alloc_flags(gfp_t gfp_mask)
2471 {
2472 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2473 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2474 
2475 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2476 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2477 
2478 	/*
2479 	 * The caller may dip into page reserves a bit more if the caller
2480 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2481 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2482 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2483 	 */
2484 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2485 
2486 	if (atomic) {
2487 		/*
2488 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2489 		 * if it can't schedule.
2490 		 */
2491 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2492 			alloc_flags |= ALLOC_HARDER;
2493 		/*
2494 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2495 		 * comment for __cpuset_node_allowed_softwall().
2496 		 */
2497 		alloc_flags &= ~ALLOC_CPUSET;
2498 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2499 		alloc_flags |= ALLOC_HARDER;
2500 
2501 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2502 		if (gfp_mask & __GFP_MEMALLOC)
2503 			alloc_flags |= ALLOC_NO_WATERMARKS;
2504 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2505 			alloc_flags |= ALLOC_NO_WATERMARKS;
2506 		else if (!in_interrupt() &&
2507 				((current->flags & PF_MEMALLOC) ||
2508 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2509 			alloc_flags |= ALLOC_NO_WATERMARKS;
2510 	}
2511 #ifdef CONFIG_CMA
2512 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2513 		alloc_flags |= ALLOC_CMA;
2514 #endif
2515 	return alloc_flags;
2516 }
2517 
2518 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2519 {
2520 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2521 }
2522 
2523 static inline struct page *
2524 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2525 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2526 	nodemask_t *nodemask, struct zone *preferred_zone,
2527 	int classzone_idx, int migratetype)
2528 {
2529 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2530 	struct page *page = NULL;
2531 	int alloc_flags;
2532 	unsigned long pages_reclaimed = 0;
2533 	unsigned long did_some_progress;
2534 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2535 	bool deferred_compaction = false;
2536 	bool contended_compaction = false;
2537 
2538 	/*
2539 	 * In the slowpath, we sanity check order to avoid ever trying to
2540 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2541 	 * be using allocators in order of preference for an area that is
2542 	 * too large.
2543 	 */
2544 	if (order >= MAX_ORDER) {
2545 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2546 		return NULL;
2547 	}
2548 
2549 	/*
2550 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2551 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2552 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2553 	 * using a larger set of nodes after it has established that the
2554 	 * allowed per node queues are empty and that nodes are
2555 	 * over allocated.
2556 	 */
2557 	if (IS_ENABLED(CONFIG_NUMA) &&
2558 	    (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2559 		goto nopage;
2560 
2561 restart:
2562 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2563 		wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
2564 
2565 	/*
2566 	 * OK, we're below the kswapd watermark and have kicked background
2567 	 * reclaim. Now things get more complex, so set up alloc_flags according
2568 	 * to how we want to proceed.
2569 	 */
2570 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2571 
2572 	/*
2573 	 * Find the true preferred zone if the allocation is unconstrained by
2574 	 * cpusets.
2575 	 */
2576 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2577 		struct zoneref *preferred_zoneref;
2578 		preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2579 				NULL, &preferred_zone);
2580 		classzone_idx = zonelist_zone_idx(preferred_zoneref);
2581 	}
2582 
2583 rebalance:
2584 	/* This is the last chance, in general, before the goto nopage. */
2585 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2586 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2587 			preferred_zone, classzone_idx, migratetype);
2588 	if (page)
2589 		goto got_pg;
2590 
2591 	/* Allocate without watermarks if the context allows */
2592 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2593 		/*
2594 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2595 		 * the allocation is high priority and these type of
2596 		 * allocations are system rather than user orientated
2597 		 */
2598 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2599 
2600 		page = __alloc_pages_high_priority(gfp_mask, order,
2601 				zonelist, high_zoneidx, nodemask,
2602 				preferred_zone, classzone_idx, migratetype);
2603 		if (page) {
2604 			goto got_pg;
2605 		}
2606 	}
2607 
2608 	/* Atomic allocations - we can't balance anything */
2609 	if (!wait) {
2610 		/*
2611 		 * All existing users of the deprecated __GFP_NOFAIL are
2612 		 * blockable, so warn of any new users that actually allow this
2613 		 * type of allocation to fail.
2614 		 */
2615 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2616 		goto nopage;
2617 	}
2618 
2619 	/* Avoid recursion of direct reclaim */
2620 	if (current->flags & PF_MEMALLOC)
2621 		goto nopage;
2622 
2623 	/* Avoid allocations with no watermarks from looping endlessly */
2624 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2625 		goto nopage;
2626 
2627 	/*
2628 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2629 	 * attempts after direct reclaim are synchronous
2630 	 */
2631 	page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2632 					high_zoneidx, nodemask, alloc_flags,
2633 					preferred_zone,
2634 					classzone_idx, migratetype,
2635 					migration_mode, &contended_compaction,
2636 					&deferred_compaction,
2637 					&did_some_progress);
2638 	if (page)
2639 		goto got_pg;
2640 
2641 	/*
2642 	 * If compaction is deferred for high-order allocations, it is because
2643 	 * sync compaction recently failed. In this is the case and the caller
2644 	 * requested a movable allocation that does not heavily disrupt the
2645 	 * system then fail the allocation instead of entering direct reclaim.
2646 	 */
2647 	if ((deferred_compaction || contended_compaction) &&
2648 						(gfp_mask & __GFP_NO_KSWAPD))
2649 		goto nopage;
2650 
2651 	/*
2652 	 * It can become very expensive to allocate transparent hugepages at
2653 	 * fault, so use asynchronous memory compaction for THP unless it is
2654 	 * khugepaged trying to collapse.
2655 	 */
2656 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2657 						(current->flags & PF_KTHREAD))
2658 		migration_mode = MIGRATE_SYNC_LIGHT;
2659 
2660 	/* Try direct reclaim and then allocating */
2661 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2662 					zonelist, high_zoneidx,
2663 					nodemask,
2664 					alloc_flags, preferred_zone,
2665 					classzone_idx, migratetype,
2666 					&did_some_progress);
2667 	if (page)
2668 		goto got_pg;
2669 
2670 	/*
2671 	 * If we failed to make any progress reclaiming, then we are
2672 	 * running out of options and have to consider going OOM
2673 	 */
2674 	if (!did_some_progress) {
2675 		if (oom_gfp_allowed(gfp_mask)) {
2676 			if (oom_killer_disabled)
2677 				goto nopage;
2678 			/* Coredumps can quickly deplete all memory reserves */
2679 			if ((current->flags & PF_DUMPCORE) &&
2680 			    !(gfp_mask & __GFP_NOFAIL))
2681 				goto nopage;
2682 			page = __alloc_pages_may_oom(gfp_mask, order,
2683 					zonelist, high_zoneidx,
2684 					nodemask, preferred_zone,
2685 					classzone_idx, migratetype);
2686 			if (page)
2687 				goto got_pg;
2688 
2689 			if (!(gfp_mask & __GFP_NOFAIL)) {
2690 				/*
2691 				 * The oom killer is not called for high-order
2692 				 * allocations that may fail, so if no progress
2693 				 * is being made, there are no other options and
2694 				 * retrying is unlikely to help.
2695 				 */
2696 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2697 					goto nopage;
2698 				/*
2699 				 * The oom killer is not called for lowmem
2700 				 * allocations to prevent needlessly killing
2701 				 * innocent tasks.
2702 				 */
2703 				if (high_zoneidx < ZONE_NORMAL)
2704 					goto nopage;
2705 			}
2706 
2707 			goto restart;
2708 		}
2709 	}
2710 
2711 	/* Check if we should retry the allocation */
2712 	pages_reclaimed += did_some_progress;
2713 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2714 						pages_reclaimed)) {
2715 		/* Wait for some write requests to complete then retry */
2716 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2717 		goto rebalance;
2718 	} else {
2719 		/*
2720 		 * High-order allocations do not necessarily loop after
2721 		 * direct reclaim and reclaim/compaction depends on compaction
2722 		 * being called after reclaim so call directly if necessary
2723 		 */
2724 		page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2725 					high_zoneidx, nodemask, alloc_flags,
2726 					preferred_zone,
2727 					classzone_idx, migratetype,
2728 					migration_mode, &contended_compaction,
2729 					&deferred_compaction,
2730 					&did_some_progress);
2731 		if (page)
2732 			goto got_pg;
2733 	}
2734 
2735 nopage:
2736 	warn_alloc_failed(gfp_mask, order, NULL);
2737 	return page;
2738 got_pg:
2739 	if (kmemcheck_enabled)
2740 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2741 
2742 	return page;
2743 }
2744 
2745 /*
2746  * This is the 'heart' of the zoned buddy allocator.
2747  */
2748 struct page *
2749 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2750 			struct zonelist *zonelist, nodemask_t *nodemask)
2751 {
2752 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2753 	struct zone *preferred_zone;
2754 	struct zoneref *preferred_zoneref;
2755 	struct page *page = NULL;
2756 	int migratetype = allocflags_to_migratetype(gfp_mask);
2757 	unsigned int cpuset_mems_cookie;
2758 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2759 	int classzone_idx;
2760 
2761 	gfp_mask &= gfp_allowed_mask;
2762 
2763 	lockdep_trace_alloc(gfp_mask);
2764 
2765 	might_sleep_if(gfp_mask & __GFP_WAIT);
2766 
2767 	if (should_fail_alloc_page(gfp_mask, order))
2768 		return NULL;
2769 
2770 	/*
2771 	 * Check the zones suitable for the gfp_mask contain at least one
2772 	 * valid zone. It's possible to have an empty zonelist as a result
2773 	 * of GFP_THISNODE and a memoryless node
2774 	 */
2775 	if (unlikely(!zonelist->_zonerefs->zone))
2776 		return NULL;
2777 
2778 retry_cpuset:
2779 	cpuset_mems_cookie = read_mems_allowed_begin();
2780 
2781 	/* The preferred zone is used for statistics later */
2782 	preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2783 				nodemask ? : &cpuset_current_mems_allowed,
2784 				&preferred_zone);
2785 	if (!preferred_zone)
2786 		goto out;
2787 	classzone_idx = zonelist_zone_idx(preferred_zoneref);
2788 
2789 #ifdef CONFIG_CMA
2790 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2791 		alloc_flags |= ALLOC_CMA;
2792 #endif
2793 	/* First allocation attempt */
2794 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2795 			zonelist, high_zoneidx, alloc_flags,
2796 			preferred_zone, classzone_idx, migratetype);
2797 	if (unlikely(!page)) {
2798 		/*
2799 		 * Runtime PM, block IO and its error handling path
2800 		 * can deadlock because I/O on the device might not
2801 		 * complete.
2802 		 */
2803 		gfp_mask = memalloc_noio_flags(gfp_mask);
2804 		page = __alloc_pages_slowpath(gfp_mask, order,
2805 				zonelist, high_zoneidx, nodemask,
2806 				preferred_zone, classzone_idx, migratetype);
2807 	}
2808 
2809 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2810 
2811 out:
2812 	/*
2813 	 * When updating a task's mems_allowed, it is possible to race with
2814 	 * parallel threads in such a way that an allocation can fail while
2815 	 * the mask is being updated. If a page allocation is about to fail,
2816 	 * check if the cpuset changed during allocation and if so, retry.
2817 	 */
2818 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2819 		goto retry_cpuset;
2820 
2821 	return page;
2822 }
2823 EXPORT_SYMBOL(__alloc_pages_nodemask);
2824 
2825 /*
2826  * Common helper functions.
2827  */
2828 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2829 {
2830 	struct page *page;
2831 
2832 	/*
2833 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2834 	 * a highmem page
2835 	 */
2836 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2837 
2838 	page = alloc_pages(gfp_mask, order);
2839 	if (!page)
2840 		return 0;
2841 	return (unsigned long) page_address(page);
2842 }
2843 EXPORT_SYMBOL(__get_free_pages);
2844 
2845 unsigned long get_zeroed_page(gfp_t gfp_mask)
2846 {
2847 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2848 }
2849 EXPORT_SYMBOL(get_zeroed_page);
2850 
2851 void __free_pages(struct page *page, unsigned int order)
2852 {
2853 	if (put_page_testzero(page)) {
2854 		if (order == 0)
2855 			free_hot_cold_page(page, false);
2856 		else
2857 			__free_pages_ok(page, order);
2858 	}
2859 }
2860 
2861 EXPORT_SYMBOL(__free_pages);
2862 
2863 void free_pages(unsigned long addr, unsigned int order)
2864 {
2865 	if (addr != 0) {
2866 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2867 		__free_pages(virt_to_page((void *)addr), order);
2868 	}
2869 }
2870 
2871 EXPORT_SYMBOL(free_pages);
2872 
2873 /*
2874  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2875  * of the current memory cgroup.
2876  *
2877  * It should be used when the caller would like to use kmalloc, but since the
2878  * allocation is large, it has to fall back to the page allocator.
2879  */
2880 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2881 {
2882 	struct page *page;
2883 	struct mem_cgroup *memcg = NULL;
2884 
2885 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2886 		return NULL;
2887 	page = alloc_pages(gfp_mask, order);
2888 	memcg_kmem_commit_charge(page, memcg, order);
2889 	return page;
2890 }
2891 
2892 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2893 {
2894 	struct page *page;
2895 	struct mem_cgroup *memcg = NULL;
2896 
2897 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2898 		return NULL;
2899 	page = alloc_pages_node(nid, gfp_mask, order);
2900 	memcg_kmem_commit_charge(page, memcg, order);
2901 	return page;
2902 }
2903 
2904 /*
2905  * __free_kmem_pages and free_kmem_pages will free pages allocated with
2906  * alloc_kmem_pages.
2907  */
2908 void __free_kmem_pages(struct page *page, unsigned int order)
2909 {
2910 	memcg_kmem_uncharge_pages(page, order);
2911 	__free_pages(page, order);
2912 }
2913 
2914 void free_kmem_pages(unsigned long addr, unsigned int order)
2915 {
2916 	if (addr != 0) {
2917 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2918 		__free_kmem_pages(virt_to_page((void *)addr), order);
2919 	}
2920 }
2921 
2922 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2923 {
2924 	if (addr) {
2925 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2926 		unsigned long used = addr + PAGE_ALIGN(size);
2927 
2928 		split_page(virt_to_page((void *)addr), order);
2929 		while (used < alloc_end) {
2930 			free_page(used);
2931 			used += PAGE_SIZE;
2932 		}
2933 	}
2934 	return (void *)addr;
2935 }
2936 
2937 /**
2938  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2939  * @size: the number of bytes to allocate
2940  * @gfp_mask: GFP flags for the allocation
2941  *
2942  * This function is similar to alloc_pages(), except that it allocates the
2943  * minimum number of pages to satisfy the request.  alloc_pages() can only
2944  * allocate memory in power-of-two pages.
2945  *
2946  * This function is also limited by MAX_ORDER.
2947  *
2948  * Memory allocated by this function must be released by free_pages_exact().
2949  */
2950 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2951 {
2952 	unsigned int order = get_order(size);
2953 	unsigned long addr;
2954 
2955 	addr = __get_free_pages(gfp_mask, order);
2956 	return make_alloc_exact(addr, order, size);
2957 }
2958 EXPORT_SYMBOL(alloc_pages_exact);
2959 
2960 /**
2961  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2962  *			   pages on a node.
2963  * @nid: the preferred node ID where memory should be allocated
2964  * @size: the number of bytes to allocate
2965  * @gfp_mask: GFP flags for the allocation
2966  *
2967  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2968  * back.
2969  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2970  * but is not exact.
2971  */
2972 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2973 {
2974 	unsigned order = get_order(size);
2975 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2976 	if (!p)
2977 		return NULL;
2978 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2979 }
2980 
2981 /**
2982  * free_pages_exact - release memory allocated via alloc_pages_exact()
2983  * @virt: the value returned by alloc_pages_exact.
2984  * @size: size of allocation, same value as passed to alloc_pages_exact().
2985  *
2986  * Release the memory allocated by a previous call to alloc_pages_exact.
2987  */
2988 void free_pages_exact(void *virt, size_t size)
2989 {
2990 	unsigned long addr = (unsigned long)virt;
2991 	unsigned long end = addr + PAGE_ALIGN(size);
2992 
2993 	while (addr < end) {
2994 		free_page(addr);
2995 		addr += PAGE_SIZE;
2996 	}
2997 }
2998 EXPORT_SYMBOL(free_pages_exact);
2999 
3000 /**
3001  * nr_free_zone_pages - count number of pages beyond high watermark
3002  * @offset: The zone index of the highest zone
3003  *
3004  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3005  * high watermark within all zones at or below a given zone index.  For each
3006  * zone, the number of pages is calculated as:
3007  *     managed_pages - high_pages
3008  */
3009 static unsigned long nr_free_zone_pages(int offset)
3010 {
3011 	struct zoneref *z;
3012 	struct zone *zone;
3013 
3014 	/* Just pick one node, since fallback list is circular */
3015 	unsigned long sum = 0;
3016 
3017 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3018 
3019 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3020 		unsigned long size = zone->managed_pages;
3021 		unsigned long high = high_wmark_pages(zone);
3022 		if (size > high)
3023 			sum += size - high;
3024 	}
3025 
3026 	return sum;
3027 }
3028 
3029 /**
3030  * nr_free_buffer_pages - count number of pages beyond high watermark
3031  *
3032  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3033  * watermark within ZONE_DMA and ZONE_NORMAL.
3034  */
3035 unsigned long nr_free_buffer_pages(void)
3036 {
3037 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3038 }
3039 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3040 
3041 /**
3042  * nr_free_pagecache_pages - count number of pages beyond high watermark
3043  *
3044  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3045  * high watermark within all zones.
3046  */
3047 unsigned long nr_free_pagecache_pages(void)
3048 {
3049 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3050 }
3051 
3052 static inline void show_node(struct zone *zone)
3053 {
3054 	if (IS_ENABLED(CONFIG_NUMA))
3055 		printk("Node %d ", zone_to_nid(zone));
3056 }
3057 
3058 void si_meminfo(struct sysinfo *val)
3059 {
3060 	val->totalram = totalram_pages;
3061 	val->sharedram = global_page_state(NR_SHMEM);
3062 	val->freeram = global_page_state(NR_FREE_PAGES);
3063 	val->bufferram = nr_blockdev_pages();
3064 	val->totalhigh = totalhigh_pages;
3065 	val->freehigh = nr_free_highpages();
3066 	val->mem_unit = PAGE_SIZE;
3067 }
3068 
3069 EXPORT_SYMBOL(si_meminfo);
3070 
3071 #ifdef CONFIG_NUMA
3072 void si_meminfo_node(struct sysinfo *val, int nid)
3073 {
3074 	int zone_type;		/* needs to be signed */
3075 	unsigned long managed_pages = 0;
3076 	pg_data_t *pgdat = NODE_DATA(nid);
3077 
3078 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3079 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3080 	val->totalram = managed_pages;
3081 	val->sharedram = node_page_state(nid, NR_SHMEM);
3082 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3083 #ifdef CONFIG_HIGHMEM
3084 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3085 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3086 			NR_FREE_PAGES);
3087 #else
3088 	val->totalhigh = 0;
3089 	val->freehigh = 0;
3090 #endif
3091 	val->mem_unit = PAGE_SIZE;
3092 }
3093 #endif
3094 
3095 /*
3096  * Determine whether the node should be displayed or not, depending on whether
3097  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3098  */
3099 bool skip_free_areas_node(unsigned int flags, int nid)
3100 {
3101 	bool ret = false;
3102 	unsigned int cpuset_mems_cookie;
3103 
3104 	if (!(flags & SHOW_MEM_FILTER_NODES))
3105 		goto out;
3106 
3107 	do {
3108 		cpuset_mems_cookie = read_mems_allowed_begin();
3109 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3110 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3111 out:
3112 	return ret;
3113 }
3114 
3115 #define K(x) ((x) << (PAGE_SHIFT-10))
3116 
3117 static void show_migration_types(unsigned char type)
3118 {
3119 	static const char types[MIGRATE_TYPES] = {
3120 		[MIGRATE_UNMOVABLE]	= 'U',
3121 		[MIGRATE_RECLAIMABLE]	= 'E',
3122 		[MIGRATE_MOVABLE]	= 'M',
3123 		[MIGRATE_RESERVE]	= 'R',
3124 #ifdef CONFIG_CMA
3125 		[MIGRATE_CMA]		= 'C',
3126 #endif
3127 #ifdef CONFIG_MEMORY_ISOLATION
3128 		[MIGRATE_ISOLATE]	= 'I',
3129 #endif
3130 	};
3131 	char tmp[MIGRATE_TYPES + 1];
3132 	char *p = tmp;
3133 	int i;
3134 
3135 	for (i = 0; i < MIGRATE_TYPES; i++) {
3136 		if (type & (1 << i))
3137 			*p++ = types[i];
3138 	}
3139 
3140 	*p = '\0';
3141 	printk("(%s) ", tmp);
3142 }
3143 
3144 /*
3145  * Show free area list (used inside shift_scroll-lock stuff)
3146  * We also calculate the percentage fragmentation. We do this by counting the
3147  * memory on each free list with the exception of the first item on the list.
3148  * Suppresses nodes that are not allowed by current's cpuset if
3149  * SHOW_MEM_FILTER_NODES is passed.
3150  */
3151 void show_free_areas(unsigned int filter)
3152 {
3153 	int cpu;
3154 	struct zone *zone;
3155 
3156 	for_each_populated_zone(zone) {
3157 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3158 			continue;
3159 		show_node(zone);
3160 		printk("%s per-cpu:\n", zone->name);
3161 
3162 		for_each_online_cpu(cpu) {
3163 			struct per_cpu_pageset *pageset;
3164 
3165 			pageset = per_cpu_ptr(zone->pageset, cpu);
3166 
3167 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3168 			       cpu, pageset->pcp.high,
3169 			       pageset->pcp.batch, pageset->pcp.count);
3170 		}
3171 	}
3172 
3173 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3174 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3175 		" unevictable:%lu"
3176 		" dirty:%lu writeback:%lu unstable:%lu\n"
3177 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3178 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3179 		" free_cma:%lu\n",
3180 		global_page_state(NR_ACTIVE_ANON),
3181 		global_page_state(NR_INACTIVE_ANON),
3182 		global_page_state(NR_ISOLATED_ANON),
3183 		global_page_state(NR_ACTIVE_FILE),
3184 		global_page_state(NR_INACTIVE_FILE),
3185 		global_page_state(NR_ISOLATED_FILE),
3186 		global_page_state(NR_UNEVICTABLE),
3187 		global_page_state(NR_FILE_DIRTY),
3188 		global_page_state(NR_WRITEBACK),
3189 		global_page_state(NR_UNSTABLE_NFS),
3190 		global_page_state(NR_FREE_PAGES),
3191 		global_page_state(NR_SLAB_RECLAIMABLE),
3192 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3193 		global_page_state(NR_FILE_MAPPED),
3194 		global_page_state(NR_SHMEM),
3195 		global_page_state(NR_PAGETABLE),
3196 		global_page_state(NR_BOUNCE),
3197 		global_page_state(NR_FREE_CMA_PAGES));
3198 
3199 	for_each_populated_zone(zone) {
3200 		int i;
3201 
3202 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3203 			continue;
3204 		show_node(zone);
3205 		printk("%s"
3206 			" free:%lukB"
3207 			" min:%lukB"
3208 			" low:%lukB"
3209 			" high:%lukB"
3210 			" active_anon:%lukB"
3211 			" inactive_anon:%lukB"
3212 			" active_file:%lukB"
3213 			" inactive_file:%lukB"
3214 			" unevictable:%lukB"
3215 			" isolated(anon):%lukB"
3216 			" isolated(file):%lukB"
3217 			" present:%lukB"
3218 			" managed:%lukB"
3219 			" mlocked:%lukB"
3220 			" dirty:%lukB"
3221 			" writeback:%lukB"
3222 			" mapped:%lukB"
3223 			" shmem:%lukB"
3224 			" slab_reclaimable:%lukB"
3225 			" slab_unreclaimable:%lukB"
3226 			" kernel_stack:%lukB"
3227 			" pagetables:%lukB"
3228 			" unstable:%lukB"
3229 			" bounce:%lukB"
3230 			" free_cma:%lukB"
3231 			" writeback_tmp:%lukB"
3232 			" pages_scanned:%lu"
3233 			" all_unreclaimable? %s"
3234 			"\n",
3235 			zone->name,
3236 			K(zone_page_state(zone, NR_FREE_PAGES)),
3237 			K(min_wmark_pages(zone)),
3238 			K(low_wmark_pages(zone)),
3239 			K(high_wmark_pages(zone)),
3240 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3241 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3242 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3243 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3244 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3245 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3246 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3247 			K(zone->present_pages),
3248 			K(zone->managed_pages),
3249 			K(zone_page_state(zone, NR_MLOCK)),
3250 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3251 			K(zone_page_state(zone, NR_WRITEBACK)),
3252 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3253 			K(zone_page_state(zone, NR_SHMEM)),
3254 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3255 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3256 			zone_page_state(zone, NR_KERNEL_STACK) *
3257 				THREAD_SIZE / 1024,
3258 			K(zone_page_state(zone, NR_PAGETABLE)),
3259 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3260 			K(zone_page_state(zone, NR_BOUNCE)),
3261 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3262 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3263 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3264 			(!zone_reclaimable(zone) ? "yes" : "no")
3265 			);
3266 		printk("lowmem_reserve[]:");
3267 		for (i = 0; i < MAX_NR_ZONES; i++)
3268 			printk(" %ld", zone->lowmem_reserve[i]);
3269 		printk("\n");
3270 	}
3271 
3272 	for_each_populated_zone(zone) {
3273 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3274 		unsigned char types[MAX_ORDER];
3275 
3276 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3277 			continue;
3278 		show_node(zone);
3279 		printk("%s: ", zone->name);
3280 
3281 		spin_lock_irqsave(&zone->lock, flags);
3282 		for (order = 0; order < MAX_ORDER; order++) {
3283 			struct free_area *area = &zone->free_area[order];
3284 			int type;
3285 
3286 			nr[order] = area->nr_free;
3287 			total += nr[order] << order;
3288 
3289 			types[order] = 0;
3290 			for (type = 0; type < MIGRATE_TYPES; type++) {
3291 				if (!list_empty(&area->free_list[type]))
3292 					types[order] |= 1 << type;
3293 			}
3294 		}
3295 		spin_unlock_irqrestore(&zone->lock, flags);
3296 		for (order = 0; order < MAX_ORDER; order++) {
3297 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3298 			if (nr[order])
3299 				show_migration_types(types[order]);
3300 		}
3301 		printk("= %lukB\n", K(total));
3302 	}
3303 
3304 	hugetlb_show_meminfo();
3305 
3306 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3307 
3308 	show_swap_cache_info();
3309 }
3310 
3311 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3312 {
3313 	zoneref->zone = zone;
3314 	zoneref->zone_idx = zone_idx(zone);
3315 }
3316 
3317 /*
3318  * Builds allocation fallback zone lists.
3319  *
3320  * Add all populated zones of a node to the zonelist.
3321  */
3322 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3323 				int nr_zones)
3324 {
3325 	struct zone *zone;
3326 	enum zone_type zone_type = MAX_NR_ZONES;
3327 
3328 	do {
3329 		zone_type--;
3330 		zone = pgdat->node_zones + zone_type;
3331 		if (populated_zone(zone)) {
3332 			zoneref_set_zone(zone,
3333 				&zonelist->_zonerefs[nr_zones++]);
3334 			check_highest_zone(zone_type);
3335 		}
3336 	} while (zone_type);
3337 
3338 	return nr_zones;
3339 }
3340 
3341 
3342 /*
3343  *  zonelist_order:
3344  *  0 = automatic detection of better ordering.
3345  *  1 = order by ([node] distance, -zonetype)
3346  *  2 = order by (-zonetype, [node] distance)
3347  *
3348  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3349  *  the same zonelist. So only NUMA can configure this param.
3350  */
3351 #define ZONELIST_ORDER_DEFAULT  0
3352 #define ZONELIST_ORDER_NODE     1
3353 #define ZONELIST_ORDER_ZONE     2
3354 
3355 /* zonelist order in the kernel.
3356  * set_zonelist_order() will set this to NODE or ZONE.
3357  */
3358 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3359 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3360 
3361 
3362 #ifdef CONFIG_NUMA
3363 /* The value user specified ....changed by config */
3364 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3365 /* string for sysctl */
3366 #define NUMA_ZONELIST_ORDER_LEN	16
3367 char numa_zonelist_order[16] = "default";
3368 
3369 /*
3370  * interface for configure zonelist ordering.
3371  * command line option "numa_zonelist_order"
3372  *	= "[dD]efault	- default, automatic configuration.
3373  *	= "[nN]ode 	- order by node locality, then by zone within node
3374  *	= "[zZ]one      - order by zone, then by locality within zone
3375  */
3376 
3377 static int __parse_numa_zonelist_order(char *s)
3378 {
3379 	if (*s == 'd' || *s == 'D') {
3380 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3381 	} else if (*s == 'n' || *s == 'N') {
3382 		user_zonelist_order = ZONELIST_ORDER_NODE;
3383 	} else if (*s == 'z' || *s == 'Z') {
3384 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3385 	} else {
3386 		printk(KERN_WARNING
3387 			"Ignoring invalid numa_zonelist_order value:  "
3388 			"%s\n", s);
3389 		return -EINVAL;
3390 	}
3391 	return 0;
3392 }
3393 
3394 static __init int setup_numa_zonelist_order(char *s)
3395 {
3396 	int ret;
3397 
3398 	if (!s)
3399 		return 0;
3400 
3401 	ret = __parse_numa_zonelist_order(s);
3402 	if (ret == 0)
3403 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3404 
3405 	return ret;
3406 }
3407 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3408 
3409 /*
3410  * sysctl handler for numa_zonelist_order
3411  */
3412 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3413 		void __user *buffer, size_t *length,
3414 		loff_t *ppos)
3415 {
3416 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3417 	int ret;
3418 	static DEFINE_MUTEX(zl_order_mutex);
3419 
3420 	mutex_lock(&zl_order_mutex);
3421 	if (write) {
3422 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3423 			ret = -EINVAL;
3424 			goto out;
3425 		}
3426 		strcpy(saved_string, (char *)table->data);
3427 	}
3428 	ret = proc_dostring(table, write, buffer, length, ppos);
3429 	if (ret)
3430 		goto out;
3431 	if (write) {
3432 		int oldval = user_zonelist_order;
3433 
3434 		ret = __parse_numa_zonelist_order((char *)table->data);
3435 		if (ret) {
3436 			/*
3437 			 * bogus value.  restore saved string
3438 			 */
3439 			strncpy((char *)table->data, saved_string,
3440 				NUMA_ZONELIST_ORDER_LEN);
3441 			user_zonelist_order = oldval;
3442 		} else if (oldval != user_zonelist_order) {
3443 			mutex_lock(&zonelists_mutex);
3444 			build_all_zonelists(NULL, NULL);
3445 			mutex_unlock(&zonelists_mutex);
3446 		}
3447 	}
3448 out:
3449 	mutex_unlock(&zl_order_mutex);
3450 	return ret;
3451 }
3452 
3453 
3454 #define MAX_NODE_LOAD (nr_online_nodes)
3455 static int node_load[MAX_NUMNODES];
3456 
3457 /**
3458  * find_next_best_node - find the next node that should appear in a given node's fallback list
3459  * @node: node whose fallback list we're appending
3460  * @used_node_mask: nodemask_t of already used nodes
3461  *
3462  * We use a number of factors to determine which is the next node that should
3463  * appear on a given node's fallback list.  The node should not have appeared
3464  * already in @node's fallback list, and it should be the next closest node
3465  * according to the distance array (which contains arbitrary distance values
3466  * from each node to each node in the system), and should also prefer nodes
3467  * with no CPUs, since presumably they'll have very little allocation pressure
3468  * on them otherwise.
3469  * It returns -1 if no node is found.
3470  */
3471 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3472 {
3473 	int n, val;
3474 	int min_val = INT_MAX;
3475 	int best_node = NUMA_NO_NODE;
3476 	const struct cpumask *tmp = cpumask_of_node(0);
3477 
3478 	/* Use the local node if we haven't already */
3479 	if (!node_isset(node, *used_node_mask)) {
3480 		node_set(node, *used_node_mask);
3481 		return node;
3482 	}
3483 
3484 	for_each_node_state(n, N_MEMORY) {
3485 
3486 		/* Don't want a node to appear more than once */
3487 		if (node_isset(n, *used_node_mask))
3488 			continue;
3489 
3490 		/* Use the distance array to find the distance */
3491 		val = node_distance(node, n);
3492 
3493 		/* Penalize nodes under us ("prefer the next node") */
3494 		val += (n < node);
3495 
3496 		/* Give preference to headless and unused nodes */
3497 		tmp = cpumask_of_node(n);
3498 		if (!cpumask_empty(tmp))
3499 			val += PENALTY_FOR_NODE_WITH_CPUS;
3500 
3501 		/* Slight preference for less loaded node */
3502 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3503 		val += node_load[n];
3504 
3505 		if (val < min_val) {
3506 			min_val = val;
3507 			best_node = n;
3508 		}
3509 	}
3510 
3511 	if (best_node >= 0)
3512 		node_set(best_node, *used_node_mask);
3513 
3514 	return best_node;
3515 }
3516 
3517 
3518 /*
3519  * Build zonelists ordered by node and zones within node.
3520  * This results in maximum locality--normal zone overflows into local
3521  * DMA zone, if any--but risks exhausting DMA zone.
3522  */
3523 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3524 {
3525 	int j;
3526 	struct zonelist *zonelist;
3527 
3528 	zonelist = &pgdat->node_zonelists[0];
3529 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3530 		;
3531 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3532 	zonelist->_zonerefs[j].zone = NULL;
3533 	zonelist->_zonerefs[j].zone_idx = 0;
3534 }
3535 
3536 /*
3537  * Build gfp_thisnode zonelists
3538  */
3539 static void build_thisnode_zonelists(pg_data_t *pgdat)
3540 {
3541 	int j;
3542 	struct zonelist *zonelist;
3543 
3544 	zonelist = &pgdat->node_zonelists[1];
3545 	j = build_zonelists_node(pgdat, zonelist, 0);
3546 	zonelist->_zonerefs[j].zone = NULL;
3547 	zonelist->_zonerefs[j].zone_idx = 0;
3548 }
3549 
3550 /*
3551  * Build zonelists ordered by zone and nodes within zones.
3552  * This results in conserving DMA zone[s] until all Normal memory is
3553  * exhausted, but results in overflowing to remote node while memory
3554  * may still exist in local DMA zone.
3555  */
3556 static int node_order[MAX_NUMNODES];
3557 
3558 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3559 {
3560 	int pos, j, node;
3561 	int zone_type;		/* needs to be signed */
3562 	struct zone *z;
3563 	struct zonelist *zonelist;
3564 
3565 	zonelist = &pgdat->node_zonelists[0];
3566 	pos = 0;
3567 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3568 		for (j = 0; j < nr_nodes; j++) {
3569 			node = node_order[j];
3570 			z = &NODE_DATA(node)->node_zones[zone_type];
3571 			if (populated_zone(z)) {
3572 				zoneref_set_zone(z,
3573 					&zonelist->_zonerefs[pos++]);
3574 				check_highest_zone(zone_type);
3575 			}
3576 		}
3577 	}
3578 	zonelist->_zonerefs[pos].zone = NULL;
3579 	zonelist->_zonerefs[pos].zone_idx = 0;
3580 }
3581 
3582 static int default_zonelist_order(void)
3583 {
3584 	int nid, zone_type;
3585 	unsigned long low_kmem_size, total_size;
3586 	struct zone *z;
3587 	int average_size;
3588 	/*
3589 	 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3590 	 * If they are really small and used heavily, the system can fall
3591 	 * into OOM very easily.
3592 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3593 	 */
3594 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3595 	low_kmem_size = 0;
3596 	total_size = 0;
3597 	for_each_online_node(nid) {
3598 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3599 			z = &NODE_DATA(nid)->node_zones[zone_type];
3600 			if (populated_zone(z)) {
3601 				if (zone_type < ZONE_NORMAL)
3602 					low_kmem_size += z->managed_pages;
3603 				total_size += z->managed_pages;
3604 			} else if (zone_type == ZONE_NORMAL) {
3605 				/*
3606 				 * If any node has only lowmem, then node order
3607 				 * is preferred to allow kernel allocations
3608 				 * locally; otherwise, they can easily infringe
3609 				 * on other nodes when there is an abundance of
3610 				 * lowmem available to allocate from.
3611 				 */
3612 				return ZONELIST_ORDER_NODE;
3613 			}
3614 		}
3615 	}
3616 	if (!low_kmem_size ||  /* there are no DMA area. */
3617 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3618 		return ZONELIST_ORDER_NODE;
3619 	/*
3620 	 * look into each node's config.
3621 	 * If there is a node whose DMA/DMA32 memory is very big area on
3622 	 * local memory, NODE_ORDER may be suitable.
3623 	 */
3624 	average_size = total_size /
3625 				(nodes_weight(node_states[N_MEMORY]) + 1);
3626 	for_each_online_node(nid) {
3627 		low_kmem_size = 0;
3628 		total_size = 0;
3629 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3630 			z = &NODE_DATA(nid)->node_zones[zone_type];
3631 			if (populated_zone(z)) {
3632 				if (zone_type < ZONE_NORMAL)
3633 					low_kmem_size += z->present_pages;
3634 				total_size += z->present_pages;
3635 			}
3636 		}
3637 		if (low_kmem_size &&
3638 		    total_size > average_size && /* ignore small node */
3639 		    low_kmem_size > total_size * 70/100)
3640 			return ZONELIST_ORDER_NODE;
3641 	}
3642 	return ZONELIST_ORDER_ZONE;
3643 }
3644 
3645 static void set_zonelist_order(void)
3646 {
3647 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3648 		current_zonelist_order = default_zonelist_order();
3649 	else
3650 		current_zonelist_order = user_zonelist_order;
3651 }
3652 
3653 static void build_zonelists(pg_data_t *pgdat)
3654 {
3655 	int j, node, load;
3656 	enum zone_type i;
3657 	nodemask_t used_mask;
3658 	int local_node, prev_node;
3659 	struct zonelist *zonelist;
3660 	int order = current_zonelist_order;
3661 
3662 	/* initialize zonelists */
3663 	for (i = 0; i < MAX_ZONELISTS; i++) {
3664 		zonelist = pgdat->node_zonelists + i;
3665 		zonelist->_zonerefs[0].zone = NULL;
3666 		zonelist->_zonerefs[0].zone_idx = 0;
3667 	}
3668 
3669 	/* NUMA-aware ordering of nodes */
3670 	local_node = pgdat->node_id;
3671 	load = nr_online_nodes;
3672 	prev_node = local_node;
3673 	nodes_clear(used_mask);
3674 
3675 	memset(node_order, 0, sizeof(node_order));
3676 	j = 0;
3677 
3678 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3679 		/*
3680 		 * We don't want to pressure a particular node.
3681 		 * So adding penalty to the first node in same
3682 		 * distance group to make it round-robin.
3683 		 */
3684 		if (node_distance(local_node, node) !=
3685 		    node_distance(local_node, prev_node))
3686 			node_load[node] = load;
3687 
3688 		prev_node = node;
3689 		load--;
3690 		if (order == ZONELIST_ORDER_NODE)
3691 			build_zonelists_in_node_order(pgdat, node);
3692 		else
3693 			node_order[j++] = node;	/* remember order */
3694 	}
3695 
3696 	if (order == ZONELIST_ORDER_ZONE) {
3697 		/* calculate node order -- i.e., DMA last! */
3698 		build_zonelists_in_zone_order(pgdat, j);
3699 	}
3700 
3701 	build_thisnode_zonelists(pgdat);
3702 }
3703 
3704 /* Construct the zonelist performance cache - see further mmzone.h */
3705 static void build_zonelist_cache(pg_data_t *pgdat)
3706 {
3707 	struct zonelist *zonelist;
3708 	struct zonelist_cache *zlc;
3709 	struct zoneref *z;
3710 
3711 	zonelist = &pgdat->node_zonelists[0];
3712 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3713 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3714 	for (z = zonelist->_zonerefs; z->zone; z++)
3715 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3716 }
3717 
3718 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3719 /*
3720  * Return node id of node used for "local" allocations.
3721  * I.e., first node id of first zone in arg node's generic zonelist.
3722  * Used for initializing percpu 'numa_mem', which is used primarily
3723  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3724  */
3725 int local_memory_node(int node)
3726 {
3727 	struct zone *zone;
3728 
3729 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3730 				   gfp_zone(GFP_KERNEL),
3731 				   NULL,
3732 				   &zone);
3733 	return zone->node;
3734 }
3735 #endif
3736 
3737 #else	/* CONFIG_NUMA */
3738 
3739 static void set_zonelist_order(void)
3740 {
3741 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3742 }
3743 
3744 static void build_zonelists(pg_data_t *pgdat)
3745 {
3746 	int node, local_node;
3747 	enum zone_type j;
3748 	struct zonelist *zonelist;
3749 
3750 	local_node = pgdat->node_id;
3751 
3752 	zonelist = &pgdat->node_zonelists[0];
3753 	j = build_zonelists_node(pgdat, zonelist, 0);
3754 
3755 	/*
3756 	 * Now we build the zonelist so that it contains the zones
3757 	 * of all the other nodes.
3758 	 * We don't want to pressure a particular node, so when
3759 	 * building the zones for node N, we make sure that the
3760 	 * zones coming right after the local ones are those from
3761 	 * node N+1 (modulo N)
3762 	 */
3763 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3764 		if (!node_online(node))
3765 			continue;
3766 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3767 	}
3768 	for (node = 0; node < local_node; node++) {
3769 		if (!node_online(node))
3770 			continue;
3771 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3772 	}
3773 
3774 	zonelist->_zonerefs[j].zone = NULL;
3775 	zonelist->_zonerefs[j].zone_idx = 0;
3776 }
3777 
3778 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3779 static void build_zonelist_cache(pg_data_t *pgdat)
3780 {
3781 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3782 }
3783 
3784 #endif	/* CONFIG_NUMA */
3785 
3786 /*
3787  * Boot pageset table. One per cpu which is going to be used for all
3788  * zones and all nodes. The parameters will be set in such a way
3789  * that an item put on a list will immediately be handed over to
3790  * the buddy list. This is safe since pageset manipulation is done
3791  * with interrupts disabled.
3792  *
3793  * The boot_pagesets must be kept even after bootup is complete for
3794  * unused processors and/or zones. They do play a role for bootstrapping
3795  * hotplugged processors.
3796  *
3797  * zoneinfo_show() and maybe other functions do
3798  * not check if the processor is online before following the pageset pointer.
3799  * Other parts of the kernel may not check if the zone is available.
3800  */
3801 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3802 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3803 static void setup_zone_pageset(struct zone *zone);
3804 
3805 /*
3806  * Global mutex to protect against size modification of zonelists
3807  * as well as to serialize pageset setup for the new populated zone.
3808  */
3809 DEFINE_MUTEX(zonelists_mutex);
3810 
3811 /* return values int ....just for stop_machine() */
3812 static int __build_all_zonelists(void *data)
3813 {
3814 	int nid;
3815 	int cpu;
3816 	pg_data_t *self = data;
3817 
3818 #ifdef CONFIG_NUMA
3819 	memset(node_load, 0, sizeof(node_load));
3820 #endif
3821 
3822 	if (self && !node_online(self->node_id)) {
3823 		build_zonelists(self);
3824 		build_zonelist_cache(self);
3825 	}
3826 
3827 	for_each_online_node(nid) {
3828 		pg_data_t *pgdat = NODE_DATA(nid);
3829 
3830 		build_zonelists(pgdat);
3831 		build_zonelist_cache(pgdat);
3832 	}
3833 
3834 	/*
3835 	 * Initialize the boot_pagesets that are going to be used
3836 	 * for bootstrapping processors. The real pagesets for
3837 	 * each zone will be allocated later when the per cpu
3838 	 * allocator is available.
3839 	 *
3840 	 * boot_pagesets are used also for bootstrapping offline
3841 	 * cpus if the system is already booted because the pagesets
3842 	 * are needed to initialize allocators on a specific cpu too.
3843 	 * F.e. the percpu allocator needs the page allocator which
3844 	 * needs the percpu allocator in order to allocate its pagesets
3845 	 * (a chicken-egg dilemma).
3846 	 */
3847 	for_each_possible_cpu(cpu) {
3848 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3849 
3850 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3851 		/*
3852 		 * We now know the "local memory node" for each node--
3853 		 * i.e., the node of the first zone in the generic zonelist.
3854 		 * Set up numa_mem percpu variable for on-line cpus.  During
3855 		 * boot, only the boot cpu should be on-line;  we'll init the
3856 		 * secondary cpus' numa_mem as they come on-line.  During
3857 		 * node/memory hotplug, we'll fixup all on-line cpus.
3858 		 */
3859 		if (cpu_online(cpu))
3860 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3861 #endif
3862 	}
3863 
3864 	return 0;
3865 }
3866 
3867 /*
3868  * Called with zonelists_mutex held always
3869  * unless system_state == SYSTEM_BOOTING.
3870  */
3871 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3872 {
3873 	set_zonelist_order();
3874 
3875 	if (system_state == SYSTEM_BOOTING) {
3876 		__build_all_zonelists(NULL);
3877 		mminit_verify_zonelist();
3878 		cpuset_init_current_mems_allowed();
3879 	} else {
3880 #ifdef CONFIG_MEMORY_HOTPLUG
3881 		if (zone)
3882 			setup_zone_pageset(zone);
3883 #endif
3884 		/* we have to stop all cpus to guarantee there is no user
3885 		   of zonelist */
3886 		stop_machine(__build_all_zonelists, pgdat, NULL);
3887 		/* cpuset refresh routine should be here */
3888 	}
3889 	vm_total_pages = nr_free_pagecache_pages();
3890 	/*
3891 	 * Disable grouping by mobility if the number of pages in the
3892 	 * system is too low to allow the mechanism to work. It would be
3893 	 * more accurate, but expensive to check per-zone. This check is
3894 	 * made on memory-hotadd so a system can start with mobility
3895 	 * disabled and enable it later
3896 	 */
3897 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3898 		page_group_by_mobility_disabled = 1;
3899 	else
3900 		page_group_by_mobility_disabled = 0;
3901 
3902 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3903 		"Total pages: %ld\n",
3904 			nr_online_nodes,
3905 			zonelist_order_name[current_zonelist_order],
3906 			page_group_by_mobility_disabled ? "off" : "on",
3907 			vm_total_pages);
3908 #ifdef CONFIG_NUMA
3909 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3910 #endif
3911 }
3912 
3913 /*
3914  * Helper functions to size the waitqueue hash table.
3915  * Essentially these want to choose hash table sizes sufficiently
3916  * large so that collisions trying to wait on pages are rare.
3917  * But in fact, the number of active page waitqueues on typical
3918  * systems is ridiculously low, less than 200. So this is even
3919  * conservative, even though it seems large.
3920  *
3921  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3922  * waitqueues, i.e. the size of the waitq table given the number of pages.
3923  */
3924 #define PAGES_PER_WAITQUEUE	256
3925 
3926 #ifndef CONFIG_MEMORY_HOTPLUG
3927 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3928 {
3929 	unsigned long size = 1;
3930 
3931 	pages /= PAGES_PER_WAITQUEUE;
3932 
3933 	while (size < pages)
3934 		size <<= 1;
3935 
3936 	/*
3937 	 * Once we have dozens or even hundreds of threads sleeping
3938 	 * on IO we've got bigger problems than wait queue collision.
3939 	 * Limit the size of the wait table to a reasonable size.
3940 	 */
3941 	size = min(size, 4096UL);
3942 
3943 	return max(size, 4UL);
3944 }
3945 #else
3946 /*
3947  * A zone's size might be changed by hot-add, so it is not possible to determine
3948  * a suitable size for its wait_table.  So we use the maximum size now.
3949  *
3950  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3951  *
3952  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3953  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3954  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3955  *
3956  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3957  * or more by the traditional way. (See above).  It equals:
3958  *
3959  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3960  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3961  *    powerpc (64K page size)             : =  (32G +16M)byte.
3962  */
3963 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3964 {
3965 	return 4096UL;
3966 }
3967 #endif
3968 
3969 /*
3970  * This is an integer logarithm so that shifts can be used later
3971  * to extract the more random high bits from the multiplicative
3972  * hash function before the remainder is taken.
3973  */
3974 static inline unsigned long wait_table_bits(unsigned long size)
3975 {
3976 	return ffz(~size);
3977 }
3978 
3979 /*
3980  * Check if a pageblock contains reserved pages
3981  */
3982 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3983 {
3984 	unsigned long pfn;
3985 
3986 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3987 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3988 			return 1;
3989 	}
3990 	return 0;
3991 }
3992 
3993 /*
3994  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3995  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3996  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3997  * higher will lead to a bigger reserve which will get freed as contiguous
3998  * blocks as reclaim kicks in
3999  */
4000 static void setup_zone_migrate_reserve(struct zone *zone)
4001 {
4002 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4003 	struct page *page;
4004 	unsigned long block_migratetype;
4005 	int reserve;
4006 	int old_reserve;
4007 
4008 	/*
4009 	 * Get the start pfn, end pfn and the number of blocks to reserve
4010 	 * We have to be careful to be aligned to pageblock_nr_pages to
4011 	 * make sure that we always check pfn_valid for the first page in
4012 	 * the block.
4013 	 */
4014 	start_pfn = zone->zone_start_pfn;
4015 	end_pfn = zone_end_pfn(zone);
4016 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4017 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4018 							pageblock_order;
4019 
4020 	/*
4021 	 * Reserve blocks are generally in place to help high-order atomic
4022 	 * allocations that are short-lived. A min_free_kbytes value that
4023 	 * would result in more than 2 reserve blocks for atomic allocations
4024 	 * is assumed to be in place to help anti-fragmentation for the
4025 	 * future allocation of hugepages at runtime.
4026 	 */
4027 	reserve = min(2, reserve);
4028 	old_reserve = zone->nr_migrate_reserve_block;
4029 
4030 	/* When memory hot-add, we almost always need to do nothing */
4031 	if (reserve == old_reserve)
4032 		return;
4033 	zone->nr_migrate_reserve_block = reserve;
4034 
4035 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4036 		if (!pfn_valid(pfn))
4037 			continue;
4038 		page = pfn_to_page(pfn);
4039 
4040 		/* Watch out for overlapping nodes */
4041 		if (page_to_nid(page) != zone_to_nid(zone))
4042 			continue;
4043 
4044 		block_migratetype = get_pageblock_migratetype(page);
4045 
4046 		/* Only test what is necessary when the reserves are not met */
4047 		if (reserve > 0) {
4048 			/*
4049 			 * Blocks with reserved pages will never free, skip
4050 			 * them.
4051 			 */
4052 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4053 			if (pageblock_is_reserved(pfn, block_end_pfn))
4054 				continue;
4055 
4056 			/* If this block is reserved, account for it */
4057 			if (block_migratetype == MIGRATE_RESERVE) {
4058 				reserve--;
4059 				continue;
4060 			}
4061 
4062 			/* Suitable for reserving if this block is movable */
4063 			if (block_migratetype == MIGRATE_MOVABLE) {
4064 				set_pageblock_migratetype(page,
4065 							MIGRATE_RESERVE);
4066 				move_freepages_block(zone, page,
4067 							MIGRATE_RESERVE);
4068 				reserve--;
4069 				continue;
4070 			}
4071 		} else if (!old_reserve) {
4072 			/*
4073 			 * At boot time we don't need to scan the whole zone
4074 			 * for turning off MIGRATE_RESERVE.
4075 			 */
4076 			break;
4077 		}
4078 
4079 		/*
4080 		 * If the reserve is met and this is a previous reserved block,
4081 		 * take it back
4082 		 */
4083 		if (block_migratetype == MIGRATE_RESERVE) {
4084 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4085 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4086 		}
4087 	}
4088 }
4089 
4090 /*
4091  * Initially all pages are reserved - free ones are freed
4092  * up by free_all_bootmem() once the early boot process is
4093  * done. Non-atomic initialization, single-pass.
4094  */
4095 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4096 		unsigned long start_pfn, enum memmap_context context)
4097 {
4098 	struct page *page;
4099 	unsigned long end_pfn = start_pfn + size;
4100 	unsigned long pfn;
4101 	struct zone *z;
4102 
4103 	if (highest_memmap_pfn < end_pfn - 1)
4104 		highest_memmap_pfn = end_pfn - 1;
4105 
4106 	z = &NODE_DATA(nid)->node_zones[zone];
4107 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4108 		/*
4109 		 * There can be holes in boot-time mem_map[]s
4110 		 * handed to this function.  They do not
4111 		 * exist on hotplugged memory.
4112 		 */
4113 		if (context == MEMMAP_EARLY) {
4114 			if (!early_pfn_valid(pfn))
4115 				continue;
4116 			if (!early_pfn_in_nid(pfn, nid))
4117 				continue;
4118 		}
4119 		page = pfn_to_page(pfn);
4120 		set_page_links(page, zone, nid, pfn);
4121 		mminit_verify_page_links(page, zone, nid, pfn);
4122 		init_page_count(page);
4123 		page_mapcount_reset(page);
4124 		page_cpupid_reset_last(page);
4125 		SetPageReserved(page);
4126 		/*
4127 		 * Mark the block movable so that blocks are reserved for
4128 		 * movable at startup. This will force kernel allocations
4129 		 * to reserve their blocks rather than leaking throughout
4130 		 * the address space during boot when many long-lived
4131 		 * kernel allocations are made. Later some blocks near
4132 		 * the start are marked MIGRATE_RESERVE by
4133 		 * setup_zone_migrate_reserve()
4134 		 *
4135 		 * bitmap is created for zone's valid pfn range. but memmap
4136 		 * can be created for invalid pages (for alignment)
4137 		 * check here not to call set_pageblock_migratetype() against
4138 		 * pfn out of zone.
4139 		 */
4140 		if ((z->zone_start_pfn <= pfn)
4141 		    && (pfn < zone_end_pfn(z))
4142 		    && !(pfn & (pageblock_nr_pages - 1)))
4143 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4144 
4145 		INIT_LIST_HEAD(&page->lru);
4146 #ifdef WANT_PAGE_VIRTUAL
4147 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4148 		if (!is_highmem_idx(zone))
4149 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4150 #endif
4151 	}
4152 }
4153 
4154 static void __meminit zone_init_free_lists(struct zone *zone)
4155 {
4156 	unsigned int order, t;
4157 	for_each_migratetype_order(order, t) {
4158 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4159 		zone->free_area[order].nr_free = 0;
4160 	}
4161 }
4162 
4163 #ifndef __HAVE_ARCH_MEMMAP_INIT
4164 #define memmap_init(size, nid, zone, start_pfn) \
4165 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4166 #endif
4167 
4168 static int zone_batchsize(struct zone *zone)
4169 {
4170 #ifdef CONFIG_MMU
4171 	int batch;
4172 
4173 	/*
4174 	 * The per-cpu-pages pools are set to around 1000th of the
4175 	 * size of the zone.  But no more than 1/2 of a meg.
4176 	 *
4177 	 * OK, so we don't know how big the cache is.  So guess.
4178 	 */
4179 	batch = zone->managed_pages / 1024;
4180 	if (batch * PAGE_SIZE > 512 * 1024)
4181 		batch = (512 * 1024) / PAGE_SIZE;
4182 	batch /= 4;		/* We effectively *= 4 below */
4183 	if (batch < 1)
4184 		batch = 1;
4185 
4186 	/*
4187 	 * Clamp the batch to a 2^n - 1 value. Having a power
4188 	 * of 2 value was found to be more likely to have
4189 	 * suboptimal cache aliasing properties in some cases.
4190 	 *
4191 	 * For example if 2 tasks are alternately allocating
4192 	 * batches of pages, one task can end up with a lot
4193 	 * of pages of one half of the possible page colors
4194 	 * and the other with pages of the other colors.
4195 	 */
4196 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4197 
4198 	return batch;
4199 
4200 #else
4201 	/* The deferral and batching of frees should be suppressed under NOMMU
4202 	 * conditions.
4203 	 *
4204 	 * The problem is that NOMMU needs to be able to allocate large chunks
4205 	 * of contiguous memory as there's no hardware page translation to
4206 	 * assemble apparent contiguous memory from discontiguous pages.
4207 	 *
4208 	 * Queueing large contiguous runs of pages for batching, however,
4209 	 * causes the pages to actually be freed in smaller chunks.  As there
4210 	 * can be a significant delay between the individual batches being
4211 	 * recycled, this leads to the once large chunks of space being
4212 	 * fragmented and becoming unavailable for high-order allocations.
4213 	 */
4214 	return 0;
4215 #endif
4216 }
4217 
4218 /*
4219  * pcp->high and pcp->batch values are related and dependent on one another:
4220  * ->batch must never be higher then ->high.
4221  * The following function updates them in a safe manner without read side
4222  * locking.
4223  *
4224  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4225  * those fields changing asynchronously (acording the the above rule).
4226  *
4227  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4228  * outside of boot time (or some other assurance that no concurrent updaters
4229  * exist).
4230  */
4231 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4232 		unsigned long batch)
4233 {
4234        /* start with a fail safe value for batch */
4235 	pcp->batch = 1;
4236 	smp_wmb();
4237 
4238        /* Update high, then batch, in order */
4239 	pcp->high = high;
4240 	smp_wmb();
4241 
4242 	pcp->batch = batch;
4243 }
4244 
4245 /* a companion to pageset_set_high() */
4246 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4247 {
4248 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4249 }
4250 
4251 static void pageset_init(struct per_cpu_pageset *p)
4252 {
4253 	struct per_cpu_pages *pcp;
4254 	int migratetype;
4255 
4256 	memset(p, 0, sizeof(*p));
4257 
4258 	pcp = &p->pcp;
4259 	pcp->count = 0;
4260 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4261 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4262 }
4263 
4264 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4265 {
4266 	pageset_init(p);
4267 	pageset_set_batch(p, batch);
4268 }
4269 
4270 /*
4271  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4272  * to the value high for the pageset p.
4273  */
4274 static void pageset_set_high(struct per_cpu_pageset *p,
4275 				unsigned long high)
4276 {
4277 	unsigned long batch = max(1UL, high / 4);
4278 	if ((high / 4) > (PAGE_SHIFT * 8))
4279 		batch = PAGE_SHIFT * 8;
4280 
4281 	pageset_update(&p->pcp, high, batch);
4282 }
4283 
4284 static void pageset_set_high_and_batch(struct zone *zone,
4285 				       struct per_cpu_pageset *pcp)
4286 {
4287 	if (percpu_pagelist_fraction)
4288 		pageset_set_high(pcp,
4289 			(zone->managed_pages /
4290 				percpu_pagelist_fraction));
4291 	else
4292 		pageset_set_batch(pcp, zone_batchsize(zone));
4293 }
4294 
4295 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4296 {
4297 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4298 
4299 	pageset_init(pcp);
4300 	pageset_set_high_and_batch(zone, pcp);
4301 }
4302 
4303 static void __meminit setup_zone_pageset(struct zone *zone)
4304 {
4305 	int cpu;
4306 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4307 	for_each_possible_cpu(cpu)
4308 		zone_pageset_init(zone, cpu);
4309 }
4310 
4311 /*
4312  * Allocate per cpu pagesets and initialize them.
4313  * Before this call only boot pagesets were available.
4314  */
4315 void __init setup_per_cpu_pageset(void)
4316 {
4317 	struct zone *zone;
4318 
4319 	for_each_populated_zone(zone)
4320 		setup_zone_pageset(zone);
4321 }
4322 
4323 static noinline __init_refok
4324 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4325 {
4326 	int i;
4327 	size_t alloc_size;
4328 
4329 	/*
4330 	 * The per-page waitqueue mechanism uses hashed waitqueues
4331 	 * per zone.
4332 	 */
4333 	zone->wait_table_hash_nr_entries =
4334 		 wait_table_hash_nr_entries(zone_size_pages);
4335 	zone->wait_table_bits =
4336 		wait_table_bits(zone->wait_table_hash_nr_entries);
4337 	alloc_size = zone->wait_table_hash_nr_entries
4338 					* sizeof(wait_queue_head_t);
4339 
4340 	if (!slab_is_available()) {
4341 		zone->wait_table = (wait_queue_head_t *)
4342 			memblock_virt_alloc_node_nopanic(
4343 				alloc_size, zone->zone_pgdat->node_id);
4344 	} else {
4345 		/*
4346 		 * This case means that a zone whose size was 0 gets new memory
4347 		 * via memory hot-add.
4348 		 * But it may be the case that a new node was hot-added.  In
4349 		 * this case vmalloc() will not be able to use this new node's
4350 		 * memory - this wait_table must be initialized to use this new
4351 		 * node itself as well.
4352 		 * To use this new node's memory, further consideration will be
4353 		 * necessary.
4354 		 */
4355 		zone->wait_table = vmalloc(alloc_size);
4356 	}
4357 	if (!zone->wait_table)
4358 		return -ENOMEM;
4359 
4360 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4361 		init_waitqueue_head(zone->wait_table + i);
4362 
4363 	return 0;
4364 }
4365 
4366 static __meminit void zone_pcp_init(struct zone *zone)
4367 {
4368 	/*
4369 	 * per cpu subsystem is not up at this point. The following code
4370 	 * relies on the ability of the linker to provide the
4371 	 * offset of a (static) per cpu variable into the per cpu area.
4372 	 */
4373 	zone->pageset = &boot_pageset;
4374 
4375 	if (populated_zone(zone))
4376 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4377 			zone->name, zone->present_pages,
4378 					 zone_batchsize(zone));
4379 }
4380 
4381 int __meminit init_currently_empty_zone(struct zone *zone,
4382 					unsigned long zone_start_pfn,
4383 					unsigned long size,
4384 					enum memmap_context context)
4385 {
4386 	struct pglist_data *pgdat = zone->zone_pgdat;
4387 	int ret;
4388 	ret = zone_wait_table_init(zone, size);
4389 	if (ret)
4390 		return ret;
4391 	pgdat->nr_zones = zone_idx(zone) + 1;
4392 
4393 	zone->zone_start_pfn = zone_start_pfn;
4394 
4395 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4396 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4397 			pgdat->node_id,
4398 			(unsigned long)zone_idx(zone),
4399 			zone_start_pfn, (zone_start_pfn + size));
4400 
4401 	zone_init_free_lists(zone);
4402 
4403 	return 0;
4404 }
4405 
4406 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4407 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4408 /*
4409  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4410  */
4411 int __meminit __early_pfn_to_nid(unsigned long pfn)
4412 {
4413 	unsigned long start_pfn, end_pfn;
4414 	int nid;
4415 	/*
4416 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4417 	 * when the kernel is running single-threaded.
4418 	 */
4419 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4420 	static int __meminitdata last_nid;
4421 
4422 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4423 		return last_nid;
4424 
4425 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4426 	if (nid != -1) {
4427 		last_start_pfn = start_pfn;
4428 		last_end_pfn = end_pfn;
4429 		last_nid = nid;
4430 	}
4431 
4432 	return nid;
4433 }
4434 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4435 
4436 int __meminit early_pfn_to_nid(unsigned long pfn)
4437 {
4438 	int nid;
4439 
4440 	nid = __early_pfn_to_nid(pfn);
4441 	if (nid >= 0)
4442 		return nid;
4443 	/* just returns 0 */
4444 	return 0;
4445 }
4446 
4447 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4448 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4449 {
4450 	int nid;
4451 
4452 	nid = __early_pfn_to_nid(pfn);
4453 	if (nid >= 0 && nid != node)
4454 		return false;
4455 	return true;
4456 }
4457 #endif
4458 
4459 /**
4460  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4461  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4462  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4463  *
4464  * If an architecture guarantees that all ranges registered contain no holes
4465  * and may be freed, this this function may be used instead of calling
4466  * memblock_free_early_nid() manually.
4467  */
4468 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4469 {
4470 	unsigned long start_pfn, end_pfn;
4471 	int i, this_nid;
4472 
4473 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4474 		start_pfn = min(start_pfn, max_low_pfn);
4475 		end_pfn = min(end_pfn, max_low_pfn);
4476 
4477 		if (start_pfn < end_pfn)
4478 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4479 					(end_pfn - start_pfn) << PAGE_SHIFT,
4480 					this_nid);
4481 	}
4482 }
4483 
4484 /**
4485  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4486  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4487  *
4488  * If an architecture guarantees that all ranges registered contain no holes and may
4489  * be freed, this function may be used instead of calling memory_present() manually.
4490  */
4491 void __init sparse_memory_present_with_active_regions(int nid)
4492 {
4493 	unsigned long start_pfn, end_pfn;
4494 	int i, this_nid;
4495 
4496 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4497 		memory_present(this_nid, start_pfn, end_pfn);
4498 }
4499 
4500 /**
4501  * get_pfn_range_for_nid - Return the start and end page frames for a node
4502  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4503  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4504  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4505  *
4506  * It returns the start and end page frame of a node based on information
4507  * provided by memblock_set_node(). If called for a node
4508  * with no available memory, a warning is printed and the start and end
4509  * PFNs will be 0.
4510  */
4511 void __meminit get_pfn_range_for_nid(unsigned int nid,
4512 			unsigned long *start_pfn, unsigned long *end_pfn)
4513 {
4514 	unsigned long this_start_pfn, this_end_pfn;
4515 	int i;
4516 
4517 	*start_pfn = -1UL;
4518 	*end_pfn = 0;
4519 
4520 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4521 		*start_pfn = min(*start_pfn, this_start_pfn);
4522 		*end_pfn = max(*end_pfn, this_end_pfn);
4523 	}
4524 
4525 	if (*start_pfn == -1UL)
4526 		*start_pfn = 0;
4527 }
4528 
4529 /*
4530  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4531  * assumption is made that zones within a node are ordered in monotonic
4532  * increasing memory addresses so that the "highest" populated zone is used
4533  */
4534 static void __init find_usable_zone_for_movable(void)
4535 {
4536 	int zone_index;
4537 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4538 		if (zone_index == ZONE_MOVABLE)
4539 			continue;
4540 
4541 		if (arch_zone_highest_possible_pfn[zone_index] >
4542 				arch_zone_lowest_possible_pfn[zone_index])
4543 			break;
4544 	}
4545 
4546 	VM_BUG_ON(zone_index == -1);
4547 	movable_zone = zone_index;
4548 }
4549 
4550 /*
4551  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4552  * because it is sized independent of architecture. Unlike the other zones,
4553  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4554  * in each node depending on the size of each node and how evenly kernelcore
4555  * is distributed. This helper function adjusts the zone ranges
4556  * provided by the architecture for a given node by using the end of the
4557  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4558  * zones within a node are in order of monotonic increases memory addresses
4559  */
4560 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4561 					unsigned long zone_type,
4562 					unsigned long node_start_pfn,
4563 					unsigned long node_end_pfn,
4564 					unsigned long *zone_start_pfn,
4565 					unsigned long *zone_end_pfn)
4566 {
4567 	/* Only adjust if ZONE_MOVABLE is on this node */
4568 	if (zone_movable_pfn[nid]) {
4569 		/* Size ZONE_MOVABLE */
4570 		if (zone_type == ZONE_MOVABLE) {
4571 			*zone_start_pfn = zone_movable_pfn[nid];
4572 			*zone_end_pfn = min(node_end_pfn,
4573 				arch_zone_highest_possible_pfn[movable_zone]);
4574 
4575 		/* Adjust for ZONE_MOVABLE starting within this range */
4576 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4577 				*zone_end_pfn > zone_movable_pfn[nid]) {
4578 			*zone_end_pfn = zone_movable_pfn[nid];
4579 
4580 		/* Check if this whole range is within ZONE_MOVABLE */
4581 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4582 			*zone_start_pfn = *zone_end_pfn;
4583 	}
4584 }
4585 
4586 /*
4587  * Return the number of pages a zone spans in a node, including holes
4588  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4589  */
4590 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4591 					unsigned long zone_type,
4592 					unsigned long node_start_pfn,
4593 					unsigned long node_end_pfn,
4594 					unsigned long *ignored)
4595 {
4596 	unsigned long zone_start_pfn, zone_end_pfn;
4597 
4598 	/* Get the start and end of the zone */
4599 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4600 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4601 	adjust_zone_range_for_zone_movable(nid, zone_type,
4602 				node_start_pfn, node_end_pfn,
4603 				&zone_start_pfn, &zone_end_pfn);
4604 
4605 	/* Check that this node has pages within the zone's required range */
4606 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4607 		return 0;
4608 
4609 	/* Move the zone boundaries inside the node if necessary */
4610 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4611 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4612 
4613 	/* Return the spanned pages */
4614 	return zone_end_pfn - zone_start_pfn;
4615 }
4616 
4617 /*
4618  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4619  * then all holes in the requested range will be accounted for.
4620  */
4621 unsigned long __meminit __absent_pages_in_range(int nid,
4622 				unsigned long range_start_pfn,
4623 				unsigned long range_end_pfn)
4624 {
4625 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4626 	unsigned long start_pfn, end_pfn;
4627 	int i;
4628 
4629 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4630 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4631 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4632 		nr_absent -= end_pfn - start_pfn;
4633 	}
4634 	return nr_absent;
4635 }
4636 
4637 /**
4638  * absent_pages_in_range - Return number of page frames in holes within a range
4639  * @start_pfn: The start PFN to start searching for holes
4640  * @end_pfn: The end PFN to stop searching for holes
4641  *
4642  * It returns the number of pages frames in memory holes within a range.
4643  */
4644 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4645 							unsigned long end_pfn)
4646 {
4647 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4648 }
4649 
4650 /* Return the number of page frames in holes in a zone on a node */
4651 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4652 					unsigned long zone_type,
4653 					unsigned long node_start_pfn,
4654 					unsigned long node_end_pfn,
4655 					unsigned long *ignored)
4656 {
4657 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4658 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4659 	unsigned long zone_start_pfn, zone_end_pfn;
4660 
4661 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4662 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4663 
4664 	adjust_zone_range_for_zone_movable(nid, zone_type,
4665 			node_start_pfn, node_end_pfn,
4666 			&zone_start_pfn, &zone_end_pfn);
4667 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4668 }
4669 
4670 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4671 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4672 					unsigned long zone_type,
4673 					unsigned long node_start_pfn,
4674 					unsigned long node_end_pfn,
4675 					unsigned long *zones_size)
4676 {
4677 	return zones_size[zone_type];
4678 }
4679 
4680 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4681 						unsigned long zone_type,
4682 						unsigned long node_start_pfn,
4683 						unsigned long node_end_pfn,
4684 						unsigned long *zholes_size)
4685 {
4686 	if (!zholes_size)
4687 		return 0;
4688 
4689 	return zholes_size[zone_type];
4690 }
4691 
4692 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4693 
4694 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4695 						unsigned long node_start_pfn,
4696 						unsigned long node_end_pfn,
4697 						unsigned long *zones_size,
4698 						unsigned long *zholes_size)
4699 {
4700 	unsigned long realtotalpages, totalpages = 0;
4701 	enum zone_type i;
4702 
4703 	for (i = 0; i < MAX_NR_ZONES; i++)
4704 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4705 							 node_start_pfn,
4706 							 node_end_pfn,
4707 							 zones_size);
4708 	pgdat->node_spanned_pages = totalpages;
4709 
4710 	realtotalpages = totalpages;
4711 	for (i = 0; i < MAX_NR_ZONES; i++)
4712 		realtotalpages -=
4713 			zone_absent_pages_in_node(pgdat->node_id, i,
4714 						  node_start_pfn, node_end_pfn,
4715 						  zholes_size);
4716 	pgdat->node_present_pages = realtotalpages;
4717 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4718 							realtotalpages);
4719 }
4720 
4721 #ifndef CONFIG_SPARSEMEM
4722 /*
4723  * Calculate the size of the zone->blockflags rounded to an unsigned long
4724  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4725  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4726  * round what is now in bits to nearest long in bits, then return it in
4727  * bytes.
4728  */
4729 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4730 {
4731 	unsigned long usemapsize;
4732 
4733 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4734 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4735 	usemapsize = usemapsize >> pageblock_order;
4736 	usemapsize *= NR_PAGEBLOCK_BITS;
4737 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4738 
4739 	return usemapsize / 8;
4740 }
4741 
4742 static void __init setup_usemap(struct pglist_data *pgdat,
4743 				struct zone *zone,
4744 				unsigned long zone_start_pfn,
4745 				unsigned long zonesize)
4746 {
4747 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4748 	zone->pageblock_flags = NULL;
4749 	if (usemapsize)
4750 		zone->pageblock_flags =
4751 			memblock_virt_alloc_node_nopanic(usemapsize,
4752 							 pgdat->node_id);
4753 }
4754 #else
4755 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4756 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4757 #endif /* CONFIG_SPARSEMEM */
4758 
4759 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4760 
4761 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4762 void __paginginit set_pageblock_order(void)
4763 {
4764 	unsigned int order;
4765 
4766 	/* Check that pageblock_nr_pages has not already been setup */
4767 	if (pageblock_order)
4768 		return;
4769 
4770 	if (HPAGE_SHIFT > PAGE_SHIFT)
4771 		order = HUGETLB_PAGE_ORDER;
4772 	else
4773 		order = MAX_ORDER - 1;
4774 
4775 	/*
4776 	 * Assume the largest contiguous order of interest is a huge page.
4777 	 * This value may be variable depending on boot parameters on IA64 and
4778 	 * powerpc.
4779 	 */
4780 	pageblock_order = order;
4781 }
4782 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4783 
4784 /*
4785  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4786  * is unused as pageblock_order is set at compile-time. See
4787  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4788  * the kernel config
4789  */
4790 void __paginginit set_pageblock_order(void)
4791 {
4792 }
4793 
4794 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4795 
4796 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4797 						   unsigned long present_pages)
4798 {
4799 	unsigned long pages = spanned_pages;
4800 
4801 	/*
4802 	 * Provide a more accurate estimation if there are holes within
4803 	 * the zone and SPARSEMEM is in use. If there are holes within the
4804 	 * zone, each populated memory region may cost us one or two extra
4805 	 * memmap pages due to alignment because memmap pages for each
4806 	 * populated regions may not naturally algined on page boundary.
4807 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4808 	 */
4809 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4810 	    IS_ENABLED(CONFIG_SPARSEMEM))
4811 		pages = present_pages;
4812 
4813 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4814 }
4815 
4816 /*
4817  * Set up the zone data structures:
4818  *   - mark all pages reserved
4819  *   - mark all memory queues empty
4820  *   - clear the memory bitmaps
4821  *
4822  * NOTE: pgdat should get zeroed by caller.
4823  */
4824 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4825 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4826 		unsigned long *zones_size, unsigned long *zholes_size)
4827 {
4828 	enum zone_type j;
4829 	int nid = pgdat->node_id;
4830 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4831 	int ret;
4832 
4833 	pgdat_resize_init(pgdat);
4834 #ifdef CONFIG_NUMA_BALANCING
4835 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4836 	pgdat->numabalancing_migrate_nr_pages = 0;
4837 	pgdat->numabalancing_migrate_next_window = jiffies;
4838 #endif
4839 	init_waitqueue_head(&pgdat->kswapd_wait);
4840 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4841 	pgdat_page_cgroup_init(pgdat);
4842 
4843 	for (j = 0; j < MAX_NR_ZONES; j++) {
4844 		struct zone *zone = pgdat->node_zones + j;
4845 		unsigned long size, realsize, freesize, memmap_pages;
4846 
4847 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4848 						  node_end_pfn, zones_size);
4849 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4850 								node_start_pfn,
4851 								node_end_pfn,
4852 								zholes_size);
4853 
4854 		/*
4855 		 * Adjust freesize so that it accounts for how much memory
4856 		 * is used by this zone for memmap. This affects the watermark
4857 		 * and per-cpu initialisations
4858 		 */
4859 		memmap_pages = calc_memmap_size(size, realsize);
4860 		if (freesize >= memmap_pages) {
4861 			freesize -= memmap_pages;
4862 			if (memmap_pages)
4863 				printk(KERN_DEBUG
4864 				       "  %s zone: %lu pages used for memmap\n",
4865 				       zone_names[j], memmap_pages);
4866 		} else
4867 			printk(KERN_WARNING
4868 				"  %s zone: %lu pages exceeds freesize %lu\n",
4869 				zone_names[j], memmap_pages, freesize);
4870 
4871 		/* Account for reserved pages */
4872 		if (j == 0 && freesize > dma_reserve) {
4873 			freesize -= dma_reserve;
4874 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4875 					zone_names[0], dma_reserve);
4876 		}
4877 
4878 		if (!is_highmem_idx(j))
4879 			nr_kernel_pages += freesize;
4880 		/* Charge for highmem memmap if there are enough kernel pages */
4881 		else if (nr_kernel_pages > memmap_pages * 2)
4882 			nr_kernel_pages -= memmap_pages;
4883 		nr_all_pages += freesize;
4884 
4885 		zone->spanned_pages = size;
4886 		zone->present_pages = realsize;
4887 		/*
4888 		 * Set an approximate value for lowmem here, it will be adjusted
4889 		 * when the bootmem allocator frees pages into the buddy system.
4890 		 * And all highmem pages will be managed by the buddy system.
4891 		 */
4892 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4893 #ifdef CONFIG_NUMA
4894 		zone->node = nid;
4895 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4896 						/ 100;
4897 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4898 #endif
4899 		zone->name = zone_names[j];
4900 		spin_lock_init(&zone->lock);
4901 		spin_lock_init(&zone->lru_lock);
4902 		zone_seqlock_init(zone);
4903 		zone->zone_pgdat = pgdat;
4904 		zone_pcp_init(zone);
4905 
4906 		/* For bootup, initialized properly in watermark setup */
4907 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4908 
4909 		lruvec_init(&zone->lruvec);
4910 		if (!size)
4911 			continue;
4912 
4913 		set_pageblock_order();
4914 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4915 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4916 						size, MEMMAP_EARLY);
4917 		BUG_ON(ret);
4918 		memmap_init(size, nid, j, zone_start_pfn);
4919 		zone_start_pfn += size;
4920 	}
4921 }
4922 
4923 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4924 {
4925 	/* Skip empty nodes */
4926 	if (!pgdat->node_spanned_pages)
4927 		return;
4928 
4929 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4930 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4931 	if (!pgdat->node_mem_map) {
4932 		unsigned long size, start, end;
4933 		struct page *map;
4934 
4935 		/*
4936 		 * The zone's endpoints aren't required to be MAX_ORDER
4937 		 * aligned but the node_mem_map endpoints must be in order
4938 		 * for the buddy allocator to function correctly.
4939 		 */
4940 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4941 		end = pgdat_end_pfn(pgdat);
4942 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4943 		size =  (end - start) * sizeof(struct page);
4944 		map = alloc_remap(pgdat->node_id, size);
4945 		if (!map)
4946 			map = memblock_virt_alloc_node_nopanic(size,
4947 							       pgdat->node_id);
4948 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4949 	}
4950 #ifndef CONFIG_NEED_MULTIPLE_NODES
4951 	/*
4952 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4953 	 */
4954 	if (pgdat == NODE_DATA(0)) {
4955 		mem_map = NODE_DATA(0)->node_mem_map;
4956 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4957 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4958 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4959 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4960 	}
4961 #endif
4962 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4963 }
4964 
4965 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4966 		unsigned long node_start_pfn, unsigned long *zholes_size)
4967 {
4968 	pg_data_t *pgdat = NODE_DATA(nid);
4969 	unsigned long start_pfn = 0;
4970 	unsigned long end_pfn = 0;
4971 
4972 	/* pg_data_t should be reset to zero when it's allocated */
4973 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4974 
4975 	pgdat->node_id = nid;
4976 	pgdat->node_start_pfn = node_start_pfn;
4977 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4978 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4979 #endif
4980 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4981 				  zones_size, zholes_size);
4982 
4983 	alloc_node_mem_map(pgdat);
4984 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4985 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4986 		nid, (unsigned long)pgdat,
4987 		(unsigned long)pgdat->node_mem_map);
4988 #endif
4989 
4990 	free_area_init_core(pgdat, start_pfn, end_pfn,
4991 			    zones_size, zholes_size);
4992 }
4993 
4994 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4995 
4996 #if MAX_NUMNODES > 1
4997 /*
4998  * Figure out the number of possible node ids.
4999  */
5000 void __init setup_nr_node_ids(void)
5001 {
5002 	unsigned int node;
5003 	unsigned int highest = 0;
5004 
5005 	for_each_node_mask(node, node_possible_map)
5006 		highest = node;
5007 	nr_node_ids = highest + 1;
5008 }
5009 #endif
5010 
5011 /**
5012  * node_map_pfn_alignment - determine the maximum internode alignment
5013  *
5014  * This function should be called after node map is populated and sorted.
5015  * It calculates the maximum power of two alignment which can distinguish
5016  * all the nodes.
5017  *
5018  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5019  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5020  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5021  * shifted, 1GiB is enough and this function will indicate so.
5022  *
5023  * This is used to test whether pfn -> nid mapping of the chosen memory
5024  * model has fine enough granularity to avoid incorrect mapping for the
5025  * populated node map.
5026  *
5027  * Returns the determined alignment in pfn's.  0 if there is no alignment
5028  * requirement (single node).
5029  */
5030 unsigned long __init node_map_pfn_alignment(void)
5031 {
5032 	unsigned long accl_mask = 0, last_end = 0;
5033 	unsigned long start, end, mask;
5034 	int last_nid = -1;
5035 	int i, nid;
5036 
5037 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5038 		if (!start || last_nid < 0 || last_nid == nid) {
5039 			last_nid = nid;
5040 			last_end = end;
5041 			continue;
5042 		}
5043 
5044 		/*
5045 		 * Start with a mask granular enough to pin-point to the
5046 		 * start pfn and tick off bits one-by-one until it becomes
5047 		 * too coarse to separate the current node from the last.
5048 		 */
5049 		mask = ~((1 << __ffs(start)) - 1);
5050 		while (mask && last_end <= (start & (mask << 1)))
5051 			mask <<= 1;
5052 
5053 		/* accumulate all internode masks */
5054 		accl_mask |= mask;
5055 	}
5056 
5057 	/* convert mask to number of pages */
5058 	return ~accl_mask + 1;
5059 }
5060 
5061 /* Find the lowest pfn for a node */
5062 static unsigned long __init find_min_pfn_for_node(int nid)
5063 {
5064 	unsigned long min_pfn = ULONG_MAX;
5065 	unsigned long start_pfn;
5066 	int i;
5067 
5068 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5069 		min_pfn = min(min_pfn, start_pfn);
5070 
5071 	if (min_pfn == ULONG_MAX) {
5072 		printk(KERN_WARNING
5073 			"Could not find start_pfn for node %d\n", nid);
5074 		return 0;
5075 	}
5076 
5077 	return min_pfn;
5078 }
5079 
5080 /**
5081  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5082  *
5083  * It returns the minimum PFN based on information provided via
5084  * memblock_set_node().
5085  */
5086 unsigned long __init find_min_pfn_with_active_regions(void)
5087 {
5088 	return find_min_pfn_for_node(MAX_NUMNODES);
5089 }
5090 
5091 /*
5092  * early_calculate_totalpages()
5093  * Sum pages in active regions for movable zone.
5094  * Populate N_MEMORY for calculating usable_nodes.
5095  */
5096 static unsigned long __init early_calculate_totalpages(void)
5097 {
5098 	unsigned long totalpages = 0;
5099 	unsigned long start_pfn, end_pfn;
5100 	int i, nid;
5101 
5102 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5103 		unsigned long pages = end_pfn - start_pfn;
5104 
5105 		totalpages += pages;
5106 		if (pages)
5107 			node_set_state(nid, N_MEMORY);
5108 	}
5109 	return totalpages;
5110 }
5111 
5112 /*
5113  * Find the PFN the Movable zone begins in each node. Kernel memory
5114  * is spread evenly between nodes as long as the nodes have enough
5115  * memory. When they don't, some nodes will have more kernelcore than
5116  * others
5117  */
5118 static void __init find_zone_movable_pfns_for_nodes(void)
5119 {
5120 	int i, nid;
5121 	unsigned long usable_startpfn;
5122 	unsigned long kernelcore_node, kernelcore_remaining;
5123 	/* save the state before borrow the nodemask */
5124 	nodemask_t saved_node_state = node_states[N_MEMORY];
5125 	unsigned long totalpages = early_calculate_totalpages();
5126 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5127 	struct memblock_region *r;
5128 
5129 	/* Need to find movable_zone earlier when movable_node is specified. */
5130 	find_usable_zone_for_movable();
5131 
5132 	/*
5133 	 * If movable_node is specified, ignore kernelcore and movablecore
5134 	 * options.
5135 	 */
5136 	if (movable_node_is_enabled()) {
5137 		for_each_memblock(memory, r) {
5138 			if (!memblock_is_hotpluggable(r))
5139 				continue;
5140 
5141 			nid = r->nid;
5142 
5143 			usable_startpfn = PFN_DOWN(r->base);
5144 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5145 				min(usable_startpfn, zone_movable_pfn[nid]) :
5146 				usable_startpfn;
5147 		}
5148 
5149 		goto out2;
5150 	}
5151 
5152 	/*
5153 	 * If movablecore=nn[KMG] was specified, calculate what size of
5154 	 * kernelcore that corresponds so that memory usable for
5155 	 * any allocation type is evenly spread. If both kernelcore
5156 	 * and movablecore are specified, then the value of kernelcore
5157 	 * will be used for required_kernelcore if it's greater than
5158 	 * what movablecore would have allowed.
5159 	 */
5160 	if (required_movablecore) {
5161 		unsigned long corepages;
5162 
5163 		/*
5164 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5165 		 * was requested by the user
5166 		 */
5167 		required_movablecore =
5168 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5169 		corepages = totalpages - required_movablecore;
5170 
5171 		required_kernelcore = max(required_kernelcore, corepages);
5172 	}
5173 
5174 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5175 	if (!required_kernelcore)
5176 		goto out;
5177 
5178 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5179 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5180 
5181 restart:
5182 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5183 	kernelcore_node = required_kernelcore / usable_nodes;
5184 	for_each_node_state(nid, N_MEMORY) {
5185 		unsigned long start_pfn, end_pfn;
5186 
5187 		/*
5188 		 * Recalculate kernelcore_node if the division per node
5189 		 * now exceeds what is necessary to satisfy the requested
5190 		 * amount of memory for the kernel
5191 		 */
5192 		if (required_kernelcore < kernelcore_node)
5193 			kernelcore_node = required_kernelcore / usable_nodes;
5194 
5195 		/*
5196 		 * As the map is walked, we track how much memory is usable
5197 		 * by the kernel using kernelcore_remaining. When it is
5198 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5199 		 */
5200 		kernelcore_remaining = kernelcore_node;
5201 
5202 		/* Go through each range of PFNs within this node */
5203 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5204 			unsigned long size_pages;
5205 
5206 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5207 			if (start_pfn >= end_pfn)
5208 				continue;
5209 
5210 			/* Account for what is only usable for kernelcore */
5211 			if (start_pfn < usable_startpfn) {
5212 				unsigned long kernel_pages;
5213 				kernel_pages = min(end_pfn, usable_startpfn)
5214 								- start_pfn;
5215 
5216 				kernelcore_remaining -= min(kernel_pages,
5217 							kernelcore_remaining);
5218 				required_kernelcore -= min(kernel_pages,
5219 							required_kernelcore);
5220 
5221 				/* Continue if range is now fully accounted */
5222 				if (end_pfn <= usable_startpfn) {
5223 
5224 					/*
5225 					 * Push zone_movable_pfn to the end so
5226 					 * that if we have to rebalance
5227 					 * kernelcore across nodes, we will
5228 					 * not double account here
5229 					 */
5230 					zone_movable_pfn[nid] = end_pfn;
5231 					continue;
5232 				}
5233 				start_pfn = usable_startpfn;
5234 			}
5235 
5236 			/*
5237 			 * The usable PFN range for ZONE_MOVABLE is from
5238 			 * start_pfn->end_pfn. Calculate size_pages as the
5239 			 * number of pages used as kernelcore
5240 			 */
5241 			size_pages = end_pfn - start_pfn;
5242 			if (size_pages > kernelcore_remaining)
5243 				size_pages = kernelcore_remaining;
5244 			zone_movable_pfn[nid] = start_pfn + size_pages;
5245 
5246 			/*
5247 			 * Some kernelcore has been met, update counts and
5248 			 * break if the kernelcore for this node has been
5249 			 * satisfied
5250 			 */
5251 			required_kernelcore -= min(required_kernelcore,
5252 								size_pages);
5253 			kernelcore_remaining -= size_pages;
5254 			if (!kernelcore_remaining)
5255 				break;
5256 		}
5257 	}
5258 
5259 	/*
5260 	 * If there is still required_kernelcore, we do another pass with one
5261 	 * less node in the count. This will push zone_movable_pfn[nid] further
5262 	 * along on the nodes that still have memory until kernelcore is
5263 	 * satisfied
5264 	 */
5265 	usable_nodes--;
5266 	if (usable_nodes && required_kernelcore > usable_nodes)
5267 		goto restart;
5268 
5269 out2:
5270 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5271 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5272 		zone_movable_pfn[nid] =
5273 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5274 
5275 out:
5276 	/* restore the node_state */
5277 	node_states[N_MEMORY] = saved_node_state;
5278 }
5279 
5280 /* Any regular or high memory on that node ? */
5281 static void check_for_memory(pg_data_t *pgdat, int nid)
5282 {
5283 	enum zone_type zone_type;
5284 
5285 	if (N_MEMORY == N_NORMAL_MEMORY)
5286 		return;
5287 
5288 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5289 		struct zone *zone = &pgdat->node_zones[zone_type];
5290 		if (populated_zone(zone)) {
5291 			node_set_state(nid, N_HIGH_MEMORY);
5292 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5293 			    zone_type <= ZONE_NORMAL)
5294 				node_set_state(nid, N_NORMAL_MEMORY);
5295 			break;
5296 		}
5297 	}
5298 }
5299 
5300 /**
5301  * free_area_init_nodes - Initialise all pg_data_t and zone data
5302  * @max_zone_pfn: an array of max PFNs for each zone
5303  *
5304  * This will call free_area_init_node() for each active node in the system.
5305  * Using the page ranges provided by memblock_set_node(), the size of each
5306  * zone in each node and their holes is calculated. If the maximum PFN
5307  * between two adjacent zones match, it is assumed that the zone is empty.
5308  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5309  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5310  * starts where the previous one ended. For example, ZONE_DMA32 starts
5311  * at arch_max_dma_pfn.
5312  */
5313 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5314 {
5315 	unsigned long start_pfn, end_pfn;
5316 	int i, nid;
5317 
5318 	/* Record where the zone boundaries are */
5319 	memset(arch_zone_lowest_possible_pfn, 0,
5320 				sizeof(arch_zone_lowest_possible_pfn));
5321 	memset(arch_zone_highest_possible_pfn, 0,
5322 				sizeof(arch_zone_highest_possible_pfn));
5323 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5324 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5325 	for (i = 1; i < MAX_NR_ZONES; i++) {
5326 		if (i == ZONE_MOVABLE)
5327 			continue;
5328 		arch_zone_lowest_possible_pfn[i] =
5329 			arch_zone_highest_possible_pfn[i-1];
5330 		arch_zone_highest_possible_pfn[i] =
5331 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5332 	}
5333 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5334 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5335 
5336 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5337 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5338 	find_zone_movable_pfns_for_nodes();
5339 
5340 	/* Print out the zone ranges */
5341 	printk("Zone ranges:\n");
5342 	for (i = 0; i < MAX_NR_ZONES; i++) {
5343 		if (i == ZONE_MOVABLE)
5344 			continue;
5345 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5346 		if (arch_zone_lowest_possible_pfn[i] ==
5347 				arch_zone_highest_possible_pfn[i])
5348 			printk(KERN_CONT "empty\n");
5349 		else
5350 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5351 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5352 				(arch_zone_highest_possible_pfn[i]
5353 					<< PAGE_SHIFT) - 1);
5354 	}
5355 
5356 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5357 	printk("Movable zone start for each node\n");
5358 	for (i = 0; i < MAX_NUMNODES; i++) {
5359 		if (zone_movable_pfn[i])
5360 			printk("  Node %d: %#010lx\n", i,
5361 			       zone_movable_pfn[i] << PAGE_SHIFT);
5362 	}
5363 
5364 	/* Print out the early node map */
5365 	printk("Early memory node ranges\n");
5366 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5367 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5368 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5369 
5370 	/* Initialise every node */
5371 	mminit_verify_pageflags_layout();
5372 	setup_nr_node_ids();
5373 	for_each_online_node(nid) {
5374 		pg_data_t *pgdat = NODE_DATA(nid);
5375 		free_area_init_node(nid, NULL,
5376 				find_min_pfn_for_node(nid), NULL);
5377 
5378 		/* Any memory on that node */
5379 		if (pgdat->node_present_pages)
5380 			node_set_state(nid, N_MEMORY);
5381 		check_for_memory(pgdat, nid);
5382 	}
5383 }
5384 
5385 static int __init cmdline_parse_core(char *p, unsigned long *core)
5386 {
5387 	unsigned long long coremem;
5388 	if (!p)
5389 		return -EINVAL;
5390 
5391 	coremem = memparse(p, &p);
5392 	*core = coremem >> PAGE_SHIFT;
5393 
5394 	/* Paranoid check that UL is enough for the coremem value */
5395 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5396 
5397 	return 0;
5398 }
5399 
5400 /*
5401  * kernelcore=size sets the amount of memory for use for allocations that
5402  * cannot be reclaimed or migrated.
5403  */
5404 static int __init cmdline_parse_kernelcore(char *p)
5405 {
5406 	return cmdline_parse_core(p, &required_kernelcore);
5407 }
5408 
5409 /*
5410  * movablecore=size sets the amount of memory for use for allocations that
5411  * can be reclaimed or migrated.
5412  */
5413 static int __init cmdline_parse_movablecore(char *p)
5414 {
5415 	return cmdline_parse_core(p, &required_movablecore);
5416 }
5417 
5418 early_param("kernelcore", cmdline_parse_kernelcore);
5419 early_param("movablecore", cmdline_parse_movablecore);
5420 
5421 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5422 
5423 void adjust_managed_page_count(struct page *page, long count)
5424 {
5425 	spin_lock(&managed_page_count_lock);
5426 	page_zone(page)->managed_pages += count;
5427 	totalram_pages += count;
5428 #ifdef CONFIG_HIGHMEM
5429 	if (PageHighMem(page))
5430 		totalhigh_pages += count;
5431 #endif
5432 	spin_unlock(&managed_page_count_lock);
5433 }
5434 EXPORT_SYMBOL(adjust_managed_page_count);
5435 
5436 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5437 {
5438 	void *pos;
5439 	unsigned long pages = 0;
5440 
5441 	start = (void *)PAGE_ALIGN((unsigned long)start);
5442 	end = (void *)((unsigned long)end & PAGE_MASK);
5443 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5444 		if ((unsigned int)poison <= 0xFF)
5445 			memset(pos, poison, PAGE_SIZE);
5446 		free_reserved_page(virt_to_page(pos));
5447 	}
5448 
5449 	if (pages && s)
5450 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5451 			s, pages << (PAGE_SHIFT - 10), start, end);
5452 
5453 	return pages;
5454 }
5455 EXPORT_SYMBOL(free_reserved_area);
5456 
5457 #ifdef	CONFIG_HIGHMEM
5458 void free_highmem_page(struct page *page)
5459 {
5460 	__free_reserved_page(page);
5461 	totalram_pages++;
5462 	page_zone(page)->managed_pages++;
5463 	totalhigh_pages++;
5464 }
5465 #endif
5466 
5467 
5468 void __init mem_init_print_info(const char *str)
5469 {
5470 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5471 	unsigned long init_code_size, init_data_size;
5472 
5473 	physpages = get_num_physpages();
5474 	codesize = _etext - _stext;
5475 	datasize = _edata - _sdata;
5476 	rosize = __end_rodata - __start_rodata;
5477 	bss_size = __bss_stop - __bss_start;
5478 	init_data_size = __init_end - __init_begin;
5479 	init_code_size = _einittext - _sinittext;
5480 
5481 	/*
5482 	 * Detect special cases and adjust section sizes accordingly:
5483 	 * 1) .init.* may be embedded into .data sections
5484 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5485 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5486 	 * 3) .rodata.* may be embedded into .text or .data sections.
5487 	 */
5488 #define adj_init_size(start, end, size, pos, adj) \
5489 	do { \
5490 		if (start <= pos && pos < end && size > adj) \
5491 			size -= adj; \
5492 	} while (0)
5493 
5494 	adj_init_size(__init_begin, __init_end, init_data_size,
5495 		     _sinittext, init_code_size);
5496 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5497 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5498 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5499 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5500 
5501 #undef	adj_init_size
5502 
5503 	printk("Memory: %luK/%luK available "
5504 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5505 	       "%luK init, %luK bss, %luK reserved"
5506 #ifdef	CONFIG_HIGHMEM
5507 	       ", %luK highmem"
5508 #endif
5509 	       "%s%s)\n",
5510 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5511 	       codesize >> 10, datasize >> 10, rosize >> 10,
5512 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5513 	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
5514 #ifdef	CONFIG_HIGHMEM
5515 	       totalhigh_pages << (PAGE_SHIFT-10),
5516 #endif
5517 	       str ? ", " : "", str ? str : "");
5518 }
5519 
5520 /**
5521  * set_dma_reserve - set the specified number of pages reserved in the first zone
5522  * @new_dma_reserve: The number of pages to mark reserved
5523  *
5524  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5525  * In the DMA zone, a significant percentage may be consumed by kernel image
5526  * and other unfreeable allocations which can skew the watermarks badly. This
5527  * function may optionally be used to account for unfreeable pages in the
5528  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5529  * smaller per-cpu batchsize.
5530  */
5531 void __init set_dma_reserve(unsigned long new_dma_reserve)
5532 {
5533 	dma_reserve = new_dma_reserve;
5534 }
5535 
5536 void __init free_area_init(unsigned long *zones_size)
5537 {
5538 	free_area_init_node(0, zones_size,
5539 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5540 }
5541 
5542 static int page_alloc_cpu_notify(struct notifier_block *self,
5543 				 unsigned long action, void *hcpu)
5544 {
5545 	int cpu = (unsigned long)hcpu;
5546 
5547 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5548 		lru_add_drain_cpu(cpu);
5549 		drain_pages(cpu);
5550 
5551 		/*
5552 		 * Spill the event counters of the dead processor
5553 		 * into the current processors event counters.
5554 		 * This artificially elevates the count of the current
5555 		 * processor.
5556 		 */
5557 		vm_events_fold_cpu(cpu);
5558 
5559 		/*
5560 		 * Zero the differential counters of the dead processor
5561 		 * so that the vm statistics are consistent.
5562 		 *
5563 		 * This is only okay since the processor is dead and cannot
5564 		 * race with what we are doing.
5565 		 */
5566 		cpu_vm_stats_fold(cpu);
5567 	}
5568 	return NOTIFY_OK;
5569 }
5570 
5571 void __init page_alloc_init(void)
5572 {
5573 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5574 }
5575 
5576 /*
5577  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5578  *	or min_free_kbytes changes.
5579  */
5580 static void calculate_totalreserve_pages(void)
5581 {
5582 	struct pglist_data *pgdat;
5583 	unsigned long reserve_pages = 0;
5584 	enum zone_type i, j;
5585 
5586 	for_each_online_pgdat(pgdat) {
5587 		for (i = 0; i < MAX_NR_ZONES; i++) {
5588 			struct zone *zone = pgdat->node_zones + i;
5589 			long max = 0;
5590 
5591 			/* Find valid and maximum lowmem_reserve in the zone */
5592 			for (j = i; j < MAX_NR_ZONES; j++) {
5593 				if (zone->lowmem_reserve[j] > max)
5594 					max = zone->lowmem_reserve[j];
5595 			}
5596 
5597 			/* we treat the high watermark as reserved pages. */
5598 			max += high_wmark_pages(zone);
5599 
5600 			if (max > zone->managed_pages)
5601 				max = zone->managed_pages;
5602 			reserve_pages += max;
5603 			/*
5604 			 * Lowmem reserves are not available to
5605 			 * GFP_HIGHUSER page cache allocations and
5606 			 * kswapd tries to balance zones to their high
5607 			 * watermark.  As a result, neither should be
5608 			 * regarded as dirtyable memory, to prevent a
5609 			 * situation where reclaim has to clean pages
5610 			 * in order to balance the zones.
5611 			 */
5612 			zone->dirty_balance_reserve = max;
5613 		}
5614 	}
5615 	dirty_balance_reserve = reserve_pages;
5616 	totalreserve_pages = reserve_pages;
5617 }
5618 
5619 /*
5620  * setup_per_zone_lowmem_reserve - called whenever
5621  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5622  *	has a correct pages reserved value, so an adequate number of
5623  *	pages are left in the zone after a successful __alloc_pages().
5624  */
5625 static void setup_per_zone_lowmem_reserve(void)
5626 {
5627 	struct pglist_data *pgdat;
5628 	enum zone_type j, idx;
5629 
5630 	for_each_online_pgdat(pgdat) {
5631 		for (j = 0; j < MAX_NR_ZONES; j++) {
5632 			struct zone *zone = pgdat->node_zones + j;
5633 			unsigned long managed_pages = zone->managed_pages;
5634 
5635 			zone->lowmem_reserve[j] = 0;
5636 
5637 			idx = j;
5638 			while (idx) {
5639 				struct zone *lower_zone;
5640 
5641 				idx--;
5642 
5643 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5644 					sysctl_lowmem_reserve_ratio[idx] = 1;
5645 
5646 				lower_zone = pgdat->node_zones + idx;
5647 				lower_zone->lowmem_reserve[j] = managed_pages /
5648 					sysctl_lowmem_reserve_ratio[idx];
5649 				managed_pages += lower_zone->managed_pages;
5650 			}
5651 		}
5652 	}
5653 
5654 	/* update totalreserve_pages */
5655 	calculate_totalreserve_pages();
5656 }
5657 
5658 static void __setup_per_zone_wmarks(void)
5659 {
5660 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5661 	unsigned long lowmem_pages = 0;
5662 	struct zone *zone;
5663 	unsigned long flags;
5664 
5665 	/* Calculate total number of !ZONE_HIGHMEM pages */
5666 	for_each_zone(zone) {
5667 		if (!is_highmem(zone))
5668 			lowmem_pages += zone->managed_pages;
5669 	}
5670 
5671 	for_each_zone(zone) {
5672 		u64 tmp;
5673 
5674 		spin_lock_irqsave(&zone->lock, flags);
5675 		tmp = (u64)pages_min * zone->managed_pages;
5676 		do_div(tmp, lowmem_pages);
5677 		if (is_highmem(zone)) {
5678 			/*
5679 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5680 			 * need highmem pages, so cap pages_min to a small
5681 			 * value here.
5682 			 *
5683 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5684 			 * deltas controls asynch page reclaim, and so should
5685 			 * not be capped for highmem.
5686 			 */
5687 			unsigned long min_pages;
5688 
5689 			min_pages = zone->managed_pages / 1024;
5690 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5691 			zone->watermark[WMARK_MIN] = min_pages;
5692 		} else {
5693 			/*
5694 			 * If it's a lowmem zone, reserve a number of pages
5695 			 * proportionate to the zone's size.
5696 			 */
5697 			zone->watermark[WMARK_MIN] = tmp;
5698 		}
5699 
5700 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5701 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5702 
5703 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5704 			high_wmark_pages(zone) - low_wmark_pages(zone) -
5705 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5706 
5707 		setup_zone_migrate_reserve(zone);
5708 		spin_unlock_irqrestore(&zone->lock, flags);
5709 	}
5710 
5711 	/* update totalreserve_pages */
5712 	calculate_totalreserve_pages();
5713 }
5714 
5715 /**
5716  * setup_per_zone_wmarks - called when min_free_kbytes changes
5717  * or when memory is hot-{added|removed}
5718  *
5719  * Ensures that the watermark[min,low,high] values for each zone are set
5720  * correctly with respect to min_free_kbytes.
5721  */
5722 void setup_per_zone_wmarks(void)
5723 {
5724 	mutex_lock(&zonelists_mutex);
5725 	__setup_per_zone_wmarks();
5726 	mutex_unlock(&zonelists_mutex);
5727 }
5728 
5729 /*
5730  * The inactive anon list should be small enough that the VM never has to
5731  * do too much work, but large enough that each inactive page has a chance
5732  * to be referenced again before it is swapped out.
5733  *
5734  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5735  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5736  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5737  * the anonymous pages are kept on the inactive list.
5738  *
5739  * total     target    max
5740  * memory    ratio     inactive anon
5741  * -------------------------------------
5742  *   10MB       1         5MB
5743  *  100MB       1        50MB
5744  *    1GB       3       250MB
5745  *   10GB      10       0.9GB
5746  *  100GB      31         3GB
5747  *    1TB     101        10GB
5748  *   10TB     320        32GB
5749  */
5750 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5751 {
5752 	unsigned int gb, ratio;
5753 
5754 	/* Zone size in gigabytes */
5755 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5756 	if (gb)
5757 		ratio = int_sqrt(10 * gb);
5758 	else
5759 		ratio = 1;
5760 
5761 	zone->inactive_ratio = ratio;
5762 }
5763 
5764 static void __meminit setup_per_zone_inactive_ratio(void)
5765 {
5766 	struct zone *zone;
5767 
5768 	for_each_zone(zone)
5769 		calculate_zone_inactive_ratio(zone);
5770 }
5771 
5772 /*
5773  * Initialise min_free_kbytes.
5774  *
5775  * For small machines we want it small (128k min).  For large machines
5776  * we want it large (64MB max).  But it is not linear, because network
5777  * bandwidth does not increase linearly with machine size.  We use
5778  *
5779  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5780  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5781  *
5782  * which yields
5783  *
5784  * 16MB:	512k
5785  * 32MB:	724k
5786  * 64MB:	1024k
5787  * 128MB:	1448k
5788  * 256MB:	2048k
5789  * 512MB:	2896k
5790  * 1024MB:	4096k
5791  * 2048MB:	5792k
5792  * 4096MB:	8192k
5793  * 8192MB:	11584k
5794  * 16384MB:	16384k
5795  */
5796 int __meminit init_per_zone_wmark_min(void)
5797 {
5798 	unsigned long lowmem_kbytes;
5799 	int new_min_free_kbytes;
5800 
5801 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5802 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5803 
5804 	if (new_min_free_kbytes > user_min_free_kbytes) {
5805 		min_free_kbytes = new_min_free_kbytes;
5806 		if (min_free_kbytes < 128)
5807 			min_free_kbytes = 128;
5808 		if (min_free_kbytes > 65536)
5809 			min_free_kbytes = 65536;
5810 	} else {
5811 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5812 				new_min_free_kbytes, user_min_free_kbytes);
5813 	}
5814 	setup_per_zone_wmarks();
5815 	refresh_zone_stat_thresholds();
5816 	setup_per_zone_lowmem_reserve();
5817 	setup_per_zone_inactive_ratio();
5818 	return 0;
5819 }
5820 module_init(init_per_zone_wmark_min)
5821 
5822 /*
5823  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5824  *	that we can call two helper functions whenever min_free_kbytes
5825  *	changes.
5826  */
5827 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5828 	void __user *buffer, size_t *length, loff_t *ppos)
5829 {
5830 	int rc;
5831 
5832 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5833 	if (rc)
5834 		return rc;
5835 
5836 	if (write) {
5837 		user_min_free_kbytes = min_free_kbytes;
5838 		setup_per_zone_wmarks();
5839 	}
5840 	return 0;
5841 }
5842 
5843 #ifdef CONFIG_NUMA
5844 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5845 	void __user *buffer, size_t *length, loff_t *ppos)
5846 {
5847 	struct zone *zone;
5848 	int rc;
5849 
5850 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5851 	if (rc)
5852 		return rc;
5853 
5854 	for_each_zone(zone)
5855 		zone->min_unmapped_pages = (zone->managed_pages *
5856 				sysctl_min_unmapped_ratio) / 100;
5857 	return 0;
5858 }
5859 
5860 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5861 	void __user *buffer, size_t *length, loff_t *ppos)
5862 {
5863 	struct zone *zone;
5864 	int rc;
5865 
5866 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5867 	if (rc)
5868 		return rc;
5869 
5870 	for_each_zone(zone)
5871 		zone->min_slab_pages = (zone->managed_pages *
5872 				sysctl_min_slab_ratio) / 100;
5873 	return 0;
5874 }
5875 #endif
5876 
5877 /*
5878  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5879  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5880  *	whenever sysctl_lowmem_reserve_ratio changes.
5881  *
5882  * The reserve ratio obviously has absolutely no relation with the
5883  * minimum watermarks. The lowmem reserve ratio can only make sense
5884  * if in function of the boot time zone sizes.
5885  */
5886 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5887 	void __user *buffer, size_t *length, loff_t *ppos)
5888 {
5889 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5890 	setup_per_zone_lowmem_reserve();
5891 	return 0;
5892 }
5893 
5894 /*
5895  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5896  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5897  * pagelist can have before it gets flushed back to buddy allocator.
5898  */
5899 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5900 	void __user *buffer, size_t *length, loff_t *ppos)
5901 {
5902 	struct zone *zone;
5903 	int old_percpu_pagelist_fraction;
5904 	int ret;
5905 
5906 	mutex_lock(&pcp_batch_high_lock);
5907 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5908 
5909 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5910 	if (!write || ret < 0)
5911 		goto out;
5912 
5913 	/* Sanity checking to avoid pcp imbalance */
5914 	if (percpu_pagelist_fraction &&
5915 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5916 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5917 		ret = -EINVAL;
5918 		goto out;
5919 	}
5920 
5921 	/* No change? */
5922 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5923 		goto out;
5924 
5925 	for_each_populated_zone(zone) {
5926 		unsigned int cpu;
5927 
5928 		for_each_possible_cpu(cpu)
5929 			pageset_set_high_and_batch(zone,
5930 					per_cpu_ptr(zone->pageset, cpu));
5931 	}
5932 out:
5933 	mutex_unlock(&pcp_batch_high_lock);
5934 	return ret;
5935 }
5936 
5937 int hashdist = HASHDIST_DEFAULT;
5938 
5939 #ifdef CONFIG_NUMA
5940 static int __init set_hashdist(char *str)
5941 {
5942 	if (!str)
5943 		return 0;
5944 	hashdist = simple_strtoul(str, &str, 0);
5945 	return 1;
5946 }
5947 __setup("hashdist=", set_hashdist);
5948 #endif
5949 
5950 /*
5951  * allocate a large system hash table from bootmem
5952  * - it is assumed that the hash table must contain an exact power-of-2
5953  *   quantity of entries
5954  * - limit is the number of hash buckets, not the total allocation size
5955  */
5956 void *__init alloc_large_system_hash(const char *tablename,
5957 				     unsigned long bucketsize,
5958 				     unsigned long numentries,
5959 				     int scale,
5960 				     int flags,
5961 				     unsigned int *_hash_shift,
5962 				     unsigned int *_hash_mask,
5963 				     unsigned long low_limit,
5964 				     unsigned long high_limit)
5965 {
5966 	unsigned long long max = high_limit;
5967 	unsigned long log2qty, size;
5968 	void *table = NULL;
5969 
5970 	/* allow the kernel cmdline to have a say */
5971 	if (!numentries) {
5972 		/* round applicable memory size up to nearest megabyte */
5973 		numentries = nr_kernel_pages;
5974 
5975 		/* It isn't necessary when PAGE_SIZE >= 1MB */
5976 		if (PAGE_SHIFT < 20)
5977 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5978 
5979 		/* limit to 1 bucket per 2^scale bytes of low memory */
5980 		if (scale > PAGE_SHIFT)
5981 			numentries >>= (scale - PAGE_SHIFT);
5982 		else
5983 			numentries <<= (PAGE_SHIFT - scale);
5984 
5985 		/* Make sure we've got at least a 0-order allocation.. */
5986 		if (unlikely(flags & HASH_SMALL)) {
5987 			/* Makes no sense without HASH_EARLY */
5988 			WARN_ON(!(flags & HASH_EARLY));
5989 			if (!(numentries >> *_hash_shift)) {
5990 				numentries = 1UL << *_hash_shift;
5991 				BUG_ON(!numentries);
5992 			}
5993 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5994 			numentries = PAGE_SIZE / bucketsize;
5995 	}
5996 	numentries = roundup_pow_of_two(numentries);
5997 
5998 	/* limit allocation size to 1/16 total memory by default */
5999 	if (max == 0) {
6000 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6001 		do_div(max, bucketsize);
6002 	}
6003 	max = min(max, 0x80000000ULL);
6004 
6005 	if (numentries < low_limit)
6006 		numentries = low_limit;
6007 	if (numentries > max)
6008 		numentries = max;
6009 
6010 	log2qty = ilog2(numentries);
6011 
6012 	do {
6013 		size = bucketsize << log2qty;
6014 		if (flags & HASH_EARLY)
6015 			table = memblock_virt_alloc_nopanic(size, 0);
6016 		else if (hashdist)
6017 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6018 		else {
6019 			/*
6020 			 * If bucketsize is not a power-of-two, we may free
6021 			 * some pages at the end of hash table which
6022 			 * alloc_pages_exact() automatically does
6023 			 */
6024 			if (get_order(size) < MAX_ORDER) {
6025 				table = alloc_pages_exact(size, GFP_ATOMIC);
6026 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6027 			}
6028 		}
6029 	} while (!table && size > PAGE_SIZE && --log2qty);
6030 
6031 	if (!table)
6032 		panic("Failed to allocate %s hash table\n", tablename);
6033 
6034 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6035 	       tablename,
6036 	       (1UL << log2qty),
6037 	       ilog2(size) - PAGE_SHIFT,
6038 	       size);
6039 
6040 	if (_hash_shift)
6041 		*_hash_shift = log2qty;
6042 	if (_hash_mask)
6043 		*_hash_mask = (1 << log2qty) - 1;
6044 
6045 	return table;
6046 }
6047 
6048 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6049 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6050 							unsigned long pfn)
6051 {
6052 #ifdef CONFIG_SPARSEMEM
6053 	return __pfn_to_section(pfn)->pageblock_flags;
6054 #else
6055 	return zone->pageblock_flags;
6056 #endif /* CONFIG_SPARSEMEM */
6057 }
6058 
6059 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6060 {
6061 #ifdef CONFIG_SPARSEMEM
6062 	pfn &= (PAGES_PER_SECTION-1);
6063 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6064 #else
6065 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6066 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6067 #endif /* CONFIG_SPARSEMEM */
6068 }
6069 
6070 /**
6071  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6072  * @page: The page within the block of interest
6073  * @pfn: The target page frame number
6074  * @end_bitidx: The last bit of interest to retrieve
6075  * @mask: mask of bits that the caller is interested in
6076  *
6077  * Return: pageblock_bits flags
6078  */
6079 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6080 					unsigned long end_bitidx,
6081 					unsigned long mask)
6082 {
6083 	struct zone *zone;
6084 	unsigned long *bitmap;
6085 	unsigned long bitidx, word_bitidx;
6086 	unsigned long word;
6087 
6088 	zone = page_zone(page);
6089 	bitmap = get_pageblock_bitmap(zone, pfn);
6090 	bitidx = pfn_to_bitidx(zone, pfn);
6091 	word_bitidx = bitidx / BITS_PER_LONG;
6092 	bitidx &= (BITS_PER_LONG-1);
6093 
6094 	word = bitmap[word_bitidx];
6095 	bitidx += end_bitidx;
6096 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6097 }
6098 
6099 /**
6100  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6101  * @page: The page within the block of interest
6102  * @flags: The flags to set
6103  * @pfn: The target page frame number
6104  * @end_bitidx: The last bit of interest
6105  * @mask: mask of bits that the caller is interested in
6106  */
6107 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6108 					unsigned long pfn,
6109 					unsigned long end_bitidx,
6110 					unsigned long mask)
6111 {
6112 	struct zone *zone;
6113 	unsigned long *bitmap;
6114 	unsigned long bitidx, word_bitidx;
6115 	unsigned long old_word, word;
6116 
6117 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6118 
6119 	zone = page_zone(page);
6120 	bitmap = get_pageblock_bitmap(zone, pfn);
6121 	bitidx = pfn_to_bitidx(zone, pfn);
6122 	word_bitidx = bitidx / BITS_PER_LONG;
6123 	bitidx &= (BITS_PER_LONG-1);
6124 
6125 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6126 
6127 	bitidx += end_bitidx;
6128 	mask <<= (BITS_PER_LONG - bitidx - 1);
6129 	flags <<= (BITS_PER_LONG - bitidx - 1);
6130 
6131 	word = ACCESS_ONCE(bitmap[word_bitidx]);
6132 	for (;;) {
6133 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6134 		if (word == old_word)
6135 			break;
6136 		word = old_word;
6137 	}
6138 }
6139 
6140 /*
6141  * This function checks whether pageblock includes unmovable pages or not.
6142  * If @count is not zero, it is okay to include less @count unmovable pages
6143  *
6144  * PageLRU check without isolation or lru_lock could race so that
6145  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6146  * expect this function should be exact.
6147  */
6148 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6149 			 bool skip_hwpoisoned_pages)
6150 {
6151 	unsigned long pfn, iter, found;
6152 	int mt;
6153 
6154 	/*
6155 	 * For avoiding noise data, lru_add_drain_all() should be called
6156 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6157 	 */
6158 	if (zone_idx(zone) == ZONE_MOVABLE)
6159 		return false;
6160 	mt = get_pageblock_migratetype(page);
6161 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6162 		return false;
6163 
6164 	pfn = page_to_pfn(page);
6165 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6166 		unsigned long check = pfn + iter;
6167 
6168 		if (!pfn_valid_within(check))
6169 			continue;
6170 
6171 		page = pfn_to_page(check);
6172 
6173 		/*
6174 		 * Hugepages are not in LRU lists, but they're movable.
6175 		 * We need not scan over tail pages bacause we don't
6176 		 * handle each tail page individually in migration.
6177 		 */
6178 		if (PageHuge(page)) {
6179 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6180 			continue;
6181 		}
6182 
6183 		/*
6184 		 * We can't use page_count without pin a page
6185 		 * because another CPU can free compound page.
6186 		 * This check already skips compound tails of THP
6187 		 * because their page->_count is zero at all time.
6188 		 */
6189 		if (!atomic_read(&page->_count)) {
6190 			if (PageBuddy(page))
6191 				iter += (1 << page_order(page)) - 1;
6192 			continue;
6193 		}
6194 
6195 		/*
6196 		 * The HWPoisoned page may be not in buddy system, and
6197 		 * page_count() is not 0.
6198 		 */
6199 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6200 			continue;
6201 
6202 		if (!PageLRU(page))
6203 			found++;
6204 		/*
6205 		 * If there are RECLAIMABLE pages, we need to check it.
6206 		 * But now, memory offline itself doesn't call shrink_slab()
6207 		 * and it still to be fixed.
6208 		 */
6209 		/*
6210 		 * If the page is not RAM, page_count()should be 0.
6211 		 * we don't need more check. This is an _used_ not-movable page.
6212 		 *
6213 		 * The problematic thing here is PG_reserved pages. PG_reserved
6214 		 * is set to both of a memory hole page and a _used_ kernel
6215 		 * page at boot.
6216 		 */
6217 		if (found > count)
6218 			return true;
6219 	}
6220 	return false;
6221 }
6222 
6223 bool is_pageblock_removable_nolock(struct page *page)
6224 {
6225 	struct zone *zone;
6226 	unsigned long pfn;
6227 
6228 	/*
6229 	 * We have to be careful here because we are iterating over memory
6230 	 * sections which are not zone aware so we might end up outside of
6231 	 * the zone but still within the section.
6232 	 * We have to take care about the node as well. If the node is offline
6233 	 * its NODE_DATA will be NULL - see page_zone.
6234 	 */
6235 	if (!node_online(page_to_nid(page)))
6236 		return false;
6237 
6238 	zone = page_zone(page);
6239 	pfn = page_to_pfn(page);
6240 	if (!zone_spans_pfn(zone, pfn))
6241 		return false;
6242 
6243 	return !has_unmovable_pages(zone, page, 0, true);
6244 }
6245 
6246 #ifdef CONFIG_CMA
6247 
6248 static unsigned long pfn_max_align_down(unsigned long pfn)
6249 {
6250 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6251 			     pageblock_nr_pages) - 1);
6252 }
6253 
6254 static unsigned long pfn_max_align_up(unsigned long pfn)
6255 {
6256 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6257 				pageblock_nr_pages));
6258 }
6259 
6260 /* [start, end) must belong to a single zone. */
6261 static int __alloc_contig_migrate_range(struct compact_control *cc,
6262 					unsigned long start, unsigned long end)
6263 {
6264 	/* This function is based on compact_zone() from compaction.c. */
6265 	unsigned long nr_reclaimed;
6266 	unsigned long pfn = start;
6267 	unsigned int tries = 0;
6268 	int ret = 0;
6269 
6270 	migrate_prep();
6271 
6272 	while (pfn < end || !list_empty(&cc->migratepages)) {
6273 		if (fatal_signal_pending(current)) {
6274 			ret = -EINTR;
6275 			break;
6276 		}
6277 
6278 		if (list_empty(&cc->migratepages)) {
6279 			cc->nr_migratepages = 0;
6280 			pfn = isolate_migratepages_range(cc->zone, cc,
6281 							 pfn, end, true);
6282 			if (!pfn) {
6283 				ret = -EINTR;
6284 				break;
6285 			}
6286 			tries = 0;
6287 		} else if (++tries == 5) {
6288 			ret = ret < 0 ? ret : -EBUSY;
6289 			break;
6290 		}
6291 
6292 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6293 							&cc->migratepages);
6294 		cc->nr_migratepages -= nr_reclaimed;
6295 
6296 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6297 				    NULL, 0, cc->mode, MR_CMA);
6298 	}
6299 	if (ret < 0) {
6300 		putback_movable_pages(&cc->migratepages);
6301 		return ret;
6302 	}
6303 	return 0;
6304 }
6305 
6306 /**
6307  * alloc_contig_range() -- tries to allocate given range of pages
6308  * @start:	start PFN to allocate
6309  * @end:	one-past-the-last PFN to allocate
6310  * @migratetype:	migratetype of the underlaying pageblocks (either
6311  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6312  *			in range must have the same migratetype and it must
6313  *			be either of the two.
6314  *
6315  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6316  * aligned, however it's the caller's responsibility to guarantee that
6317  * we are the only thread that changes migrate type of pageblocks the
6318  * pages fall in.
6319  *
6320  * The PFN range must belong to a single zone.
6321  *
6322  * Returns zero on success or negative error code.  On success all
6323  * pages which PFN is in [start, end) are allocated for the caller and
6324  * need to be freed with free_contig_range().
6325  */
6326 int alloc_contig_range(unsigned long start, unsigned long end,
6327 		       unsigned migratetype)
6328 {
6329 	unsigned long outer_start, outer_end;
6330 	int ret = 0, order;
6331 
6332 	struct compact_control cc = {
6333 		.nr_migratepages = 0,
6334 		.order = -1,
6335 		.zone = page_zone(pfn_to_page(start)),
6336 		.mode = MIGRATE_SYNC,
6337 		.ignore_skip_hint = true,
6338 	};
6339 	INIT_LIST_HEAD(&cc.migratepages);
6340 
6341 	/*
6342 	 * What we do here is we mark all pageblocks in range as
6343 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6344 	 * have different sizes, and due to the way page allocator
6345 	 * work, we align the range to biggest of the two pages so
6346 	 * that page allocator won't try to merge buddies from
6347 	 * different pageblocks and change MIGRATE_ISOLATE to some
6348 	 * other migration type.
6349 	 *
6350 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6351 	 * migrate the pages from an unaligned range (ie. pages that
6352 	 * we are interested in).  This will put all the pages in
6353 	 * range back to page allocator as MIGRATE_ISOLATE.
6354 	 *
6355 	 * When this is done, we take the pages in range from page
6356 	 * allocator removing them from the buddy system.  This way
6357 	 * page allocator will never consider using them.
6358 	 *
6359 	 * This lets us mark the pageblocks back as
6360 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6361 	 * aligned range but not in the unaligned, original range are
6362 	 * put back to page allocator so that buddy can use them.
6363 	 */
6364 
6365 	ret = start_isolate_page_range(pfn_max_align_down(start),
6366 				       pfn_max_align_up(end), migratetype,
6367 				       false);
6368 	if (ret)
6369 		return ret;
6370 
6371 	ret = __alloc_contig_migrate_range(&cc, start, end);
6372 	if (ret)
6373 		goto done;
6374 
6375 	/*
6376 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6377 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6378 	 * more, all pages in [start, end) are free in page allocator.
6379 	 * What we are going to do is to allocate all pages from
6380 	 * [start, end) (that is remove them from page allocator).
6381 	 *
6382 	 * The only problem is that pages at the beginning and at the
6383 	 * end of interesting range may be not aligned with pages that
6384 	 * page allocator holds, ie. they can be part of higher order
6385 	 * pages.  Because of this, we reserve the bigger range and
6386 	 * once this is done free the pages we are not interested in.
6387 	 *
6388 	 * We don't have to hold zone->lock here because the pages are
6389 	 * isolated thus they won't get removed from buddy.
6390 	 */
6391 
6392 	lru_add_drain_all();
6393 	drain_all_pages();
6394 
6395 	order = 0;
6396 	outer_start = start;
6397 	while (!PageBuddy(pfn_to_page(outer_start))) {
6398 		if (++order >= MAX_ORDER) {
6399 			ret = -EBUSY;
6400 			goto done;
6401 		}
6402 		outer_start &= ~0UL << order;
6403 	}
6404 
6405 	/* Make sure the range is really isolated. */
6406 	if (test_pages_isolated(outer_start, end, false)) {
6407 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6408 		       outer_start, end);
6409 		ret = -EBUSY;
6410 		goto done;
6411 	}
6412 
6413 
6414 	/* Grab isolated pages from freelists. */
6415 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6416 	if (!outer_end) {
6417 		ret = -EBUSY;
6418 		goto done;
6419 	}
6420 
6421 	/* Free head and tail (if any) */
6422 	if (start != outer_start)
6423 		free_contig_range(outer_start, start - outer_start);
6424 	if (end != outer_end)
6425 		free_contig_range(end, outer_end - end);
6426 
6427 done:
6428 	undo_isolate_page_range(pfn_max_align_down(start),
6429 				pfn_max_align_up(end), migratetype);
6430 	return ret;
6431 }
6432 
6433 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6434 {
6435 	unsigned int count = 0;
6436 
6437 	for (; nr_pages--; pfn++) {
6438 		struct page *page = pfn_to_page(pfn);
6439 
6440 		count += page_count(page) != 1;
6441 		__free_page(page);
6442 	}
6443 	WARN(count != 0, "%d pages are still in use!\n", count);
6444 }
6445 #endif
6446 
6447 #ifdef CONFIG_MEMORY_HOTPLUG
6448 /*
6449  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6450  * page high values need to be recalulated.
6451  */
6452 void __meminit zone_pcp_update(struct zone *zone)
6453 {
6454 	unsigned cpu;
6455 	mutex_lock(&pcp_batch_high_lock);
6456 	for_each_possible_cpu(cpu)
6457 		pageset_set_high_and_batch(zone,
6458 				per_cpu_ptr(zone->pageset, cpu));
6459 	mutex_unlock(&pcp_batch_high_lock);
6460 }
6461 #endif
6462 
6463 void zone_pcp_reset(struct zone *zone)
6464 {
6465 	unsigned long flags;
6466 	int cpu;
6467 	struct per_cpu_pageset *pset;
6468 
6469 	/* avoid races with drain_pages()  */
6470 	local_irq_save(flags);
6471 	if (zone->pageset != &boot_pageset) {
6472 		for_each_online_cpu(cpu) {
6473 			pset = per_cpu_ptr(zone->pageset, cpu);
6474 			drain_zonestat(zone, pset);
6475 		}
6476 		free_percpu(zone->pageset);
6477 		zone->pageset = &boot_pageset;
6478 	}
6479 	local_irq_restore(flags);
6480 }
6481 
6482 #ifdef CONFIG_MEMORY_HOTREMOVE
6483 /*
6484  * All pages in the range must be isolated before calling this.
6485  */
6486 void
6487 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6488 {
6489 	struct page *page;
6490 	struct zone *zone;
6491 	unsigned int order, i;
6492 	unsigned long pfn;
6493 	unsigned long flags;
6494 	/* find the first valid pfn */
6495 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6496 		if (pfn_valid(pfn))
6497 			break;
6498 	if (pfn == end_pfn)
6499 		return;
6500 	zone = page_zone(pfn_to_page(pfn));
6501 	spin_lock_irqsave(&zone->lock, flags);
6502 	pfn = start_pfn;
6503 	while (pfn < end_pfn) {
6504 		if (!pfn_valid(pfn)) {
6505 			pfn++;
6506 			continue;
6507 		}
6508 		page = pfn_to_page(pfn);
6509 		/*
6510 		 * The HWPoisoned page may be not in buddy system, and
6511 		 * page_count() is not 0.
6512 		 */
6513 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6514 			pfn++;
6515 			SetPageReserved(page);
6516 			continue;
6517 		}
6518 
6519 		BUG_ON(page_count(page));
6520 		BUG_ON(!PageBuddy(page));
6521 		order = page_order(page);
6522 #ifdef CONFIG_DEBUG_VM
6523 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6524 		       pfn, 1 << order, end_pfn);
6525 #endif
6526 		list_del(&page->lru);
6527 		rmv_page_order(page);
6528 		zone->free_area[order].nr_free--;
6529 		for (i = 0; i < (1 << order); i++)
6530 			SetPageReserved((page+i));
6531 		pfn += (1 << order);
6532 	}
6533 	spin_unlock_irqrestore(&zone->lock, flags);
6534 }
6535 #endif
6536 
6537 #ifdef CONFIG_MEMORY_FAILURE
6538 bool is_free_buddy_page(struct page *page)
6539 {
6540 	struct zone *zone = page_zone(page);
6541 	unsigned long pfn = page_to_pfn(page);
6542 	unsigned long flags;
6543 	unsigned int order;
6544 
6545 	spin_lock_irqsave(&zone->lock, flags);
6546 	for (order = 0; order < MAX_ORDER; order++) {
6547 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6548 
6549 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6550 			break;
6551 	}
6552 	spin_unlock_irqrestore(&zone->lock, flags);
6553 
6554 	return order < MAX_ORDER;
6555 }
6556 #endif
6557 
6558 static const struct trace_print_flags pageflag_names[] = {
6559 	{1UL << PG_locked,		"locked"	},
6560 	{1UL << PG_error,		"error"		},
6561 	{1UL << PG_referenced,		"referenced"	},
6562 	{1UL << PG_uptodate,		"uptodate"	},
6563 	{1UL << PG_dirty,		"dirty"		},
6564 	{1UL << PG_lru,			"lru"		},
6565 	{1UL << PG_active,		"active"	},
6566 	{1UL << PG_slab,		"slab"		},
6567 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6568 	{1UL << PG_arch_1,		"arch_1"	},
6569 	{1UL << PG_reserved,		"reserved"	},
6570 	{1UL << PG_private,		"private"	},
6571 	{1UL << PG_private_2,		"private_2"	},
6572 	{1UL << PG_writeback,		"writeback"	},
6573 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6574 	{1UL << PG_head,		"head"		},
6575 	{1UL << PG_tail,		"tail"		},
6576 #else
6577 	{1UL << PG_compound,		"compound"	},
6578 #endif
6579 	{1UL << PG_swapcache,		"swapcache"	},
6580 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6581 	{1UL << PG_reclaim,		"reclaim"	},
6582 	{1UL << PG_swapbacked,		"swapbacked"	},
6583 	{1UL << PG_unevictable,		"unevictable"	},
6584 #ifdef CONFIG_MMU
6585 	{1UL << PG_mlocked,		"mlocked"	},
6586 #endif
6587 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6588 	{1UL << PG_uncached,		"uncached"	},
6589 #endif
6590 #ifdef CONFIG_MEMORY_FAILURE
6591 	{1UL << PG_hwpoison,		"hwpoison"	},
6592 #endif
6593 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6594 	{1UL << PG_compound_lock,	"compound_lock"	},
6595 #endif
6596 };
6597 
6598 static void dump_page_flags(unsigned long flags)
6599 {
6600 	const char *delim = "";
6601 	unsigned long mask;
6602 	int i;
6603 
6604 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6605 
6606 	printk(KERN_ALERT "page flags: %#lx(", flags);
6607 
6608 	/* remove zone id */
6609 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6610 
6611 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6612 
6613 		mask = pageflag_names[i].mask;
6614 		if ((flags & mask) != mask)
6615 			continue;
6616 
6617 		flags &= ~mask;
6618 		printk("%s%s", delim, pageflag_names[i].name);
6619 		delim = "|";
6620 	}
6621 
6622 	/* check for left over flags */
6623 	if (flags)
6624 		printk("%s%#lx", delim, flags);
6625 
6626 	printk(")\n");
6627 }
6628 
6629 void dump_page_badflags(struct page *page, const char *reason,
6630 		unsigned long badflags)
6631 {
6632 	printk(KERN_ALERT
6633 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6634 		page, atomic_read(&page->_count), page_mapcount(page),
6635 		page->mapping, page->index);
6636 	dump_page_flags(page->flags);
6637 	if (reason)
6638 		pr_alert("page dumped because: %s\n", reason);
6639 	if (page->flags & badflags) {
6640 		pr_alert("bad because of flags:\n");
6641 		dump_page_flags(page->flags & badflags);
6642 	}
6643 	mem_cgroup_print_bad_page(page);
6644 }
6645 
6646 void dump_page(struct page *page, const char *reason)
6647 {
6648 	dump_page_badflags(page, reason, 0);
6649 }
6650 EXPORT_SYMBOL(dump_page);
6651