xref: /linux/mm/page_alloc.c (revision 37a93dd5c49b5fda807fd204edf2547c3493319c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* Free the page without taking locks. Rely on trylock only. */
92 #define FPI_TRYLOCK		((__force fpi_t)BIT(2))
93 
94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
95 static DEFINE_MUTEX(pcp_batch_high_lock);
96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
97 
98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
99 /*
100  * On SMP, spin_trylock is sufficient protection.
101  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
102  * Pass flags to a no-op inline function to typecheck and silence the unused
103  * variable warning.
104  */
105 static inline void __pcp_trylock_noop(unsigned long *flags) { }
106 #define pcp_trylock_prepare(flags)	__pcp_trylock_noop(&(flags))
107 #define pcp_trylock_finish(flags)	__pcp_trylock_noop(&(flags))
108 #else
109 
110 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
111 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
112 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
113 #endif
114 
115 /*
116  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
117  * a migration causing the wrong PCP to be locked and remote memory being
118  * potentially allocated, pin the task to the CPU for the lookup+lock.
119  * preempt_disable is used on !RT because it is faster than migrate_disable.
120  * migrate_disable is used on RT because otherwise RT spinlock usage is
121  * interfered with and a high priority task cannot preempt the allocator.
122  */
123 #ifndef CONFIG_PREEMPT_RT
124 #define pcpu_task_pin()		preempt_disable()
125 #define pcpu_task_unpin()	preempt_enable()
126 #else
127 #define pcpu_task_pin()		migrate_disable()
128 #define pcpu_task_unpin()	migrate_enable()
129 #endif
130 
131 /*
132  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
133  * Return value should be used with equivalent unlock helper.
134  */
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_trylock(ptr, UP_flags)					\
155 ({									\
156 	struct per_cpu_pages *__ret;					\
157 	pcp_trylock_prepare(UP_flags);					\
158 	__ret = pcpu_spin_trylock(struct per_cpu_pages, lock, ptr);	\
159 	if (!__ret)							\
160 		pcp_trylock_finish(UP_flags);				\
161 	__ret;								\
162 })
163 
164 #define pcp_spin_unlock(ptr, UP_flags)					\
165 ({									\
166 	pcpu_spin_unlock(lock, ptr);					\
167 	pcp_trylock_finish(UP_flags);					\
168 })
169 
170 /*
171  * With the UP spinlock implementation, when we spin_lock(&pcp->lock) (for i.e.
172  * a potentially remote cpu drain) and get interrupted by an operation that
173  * attempts pcp_spin_trylock(), we can't rely on the trylock failure due to UP
174  * spinlock assumptions making the trylock a no-op. So we have to turn that
175  * spin_lock() to a spin_lock_irqsave(). This works because on UP there are no
176  * remote cpu's so we can only be locking the only existing local one.
177  */
178 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
179 static inline void __flags_noop(unsigned long *flags) { }
180 #define pcp_spin_lock_maybe_irqsave(ptr, flags)		\
181 ({							\
182 	 __flags_noop(&(flags));			\
183 	 spin_lock(&(ptr)->lock);			\
184 })
185 #define pcp_spin_unlock_maybe_irqrestore(ptr, flags)	\
186 ({							\
187 	 spin_unlock(&(ptr)->lock);			\
188 	 __flags_noop(&(flags));			\
189 })
190 #else
191 #define pcp_spin_lock_maybe_irqsave(ptr, flags)		\
192 		spin_lock_irqsave(&(ptr)->lock, flags)
193 #define pcp_spin_unlock_maybe_irqrestore(ptr, flags)	\
194 		spin_unlock_irqrestore(&(ptr)->lock, flags)
195 #endif
196 
197 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
198 DEFINE_PER_CPU(int, numa_node);
199 EXPORT_PER_CPU_SYMBOL(numa_node);
200 #endif
201 
202 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
203 
204 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
205 /*
206  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
207  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
208  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
209  * defined in <linux/topology.h>.
210  */
211 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
212 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
213 #endif
214 
215 static DEFINE_MUTEX(pcpu_drain_mutex);
216 
217 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
218 volatile unsigned long latent_entropy __latent_entropy;
219 EXPORT_SYMBOL(latent_entropy);
220 #endif
221 
222 /*
223  * Array of node states.
224  */
225 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
226 	[N_POSSIBLE] = NODE_MASK_ALL,
227 	[N_ONLINE] = { { [0] = 1UL } },
228 #ifndef CONFIG_NUMA
229 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
230 #ifdef CONFIG_HIGHMEM
231 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
232 #endif
233 	[N_MEMORY] = { { [0] = 1UL } },
234 	[N_CPU] = { { [0] = 1UL } },
235 #endif	/* NUMA */
236 };
237 EXPORT_SYMBOL(node_states);
238 
239 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
240 
241 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
242 unsigned int pageblock_order __read_mostly;
243 #endif
244 
245 static void __free_pages_ok(struct page *page, unsigned int order,
246 			    fpi_t fpi_flags);
247 
248 /*
249  * results with 256, 32 in the lowmem_reserve sysctl:
250  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
251  *	1G machine -> (16M dma, 784M normal, 224M high)
252  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
253  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
254  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
255  *
256  * TBD: should special case ZONE_DMA32 machines here - in those we normally
257  * don't need any ZONE_NORMAL reservation
258  */
259 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
260 #ifdef CONFIG_ZONE_DMA
261 	[ZONE_DMA] = 256,
262 #endif
263 #ifdef CONFIG_ZONE_DMA32
264 	[ZONE_DMA32] = 256,
265 #endif
266 	[ZONE_NORMAL] = 32,
267 #ifdef CONFIG_HIGHMEM
268 	[ZONE_HIGHMEM] = 0,
269 #endif
270 	[ZONE_MOVABLE] = 0,
271 };
272 
273 char * const zone_names[MAX_NR_ZONES] = {
274 #ifdef CONFIG_ZONE_DMA
275 	 "DMA",
276 #endif
277 #ifdef CONFIG_ZONE_DMA32
278 	 "DMA32",
279 #endif
280 	 "Normal",
281 #ifdef CONFIG_HIGHMEM
282 	 "HighMem",
283 #endif
284 	 "Movable",
285 #ifdef CONFIG_ZONE_DEVICE
286 	 "Device",
287 #endif
288 };
289 
290 const char * const migratetype_names[MIGRATE_TYPES] = {
291 	"Unmovable",
292 	"Movable",
293 	"Reclaimable",
294 	"HighAtomic",
295 #ifdef CONFIG_CMA
296 	"CMA",
297 #endif
298 #ifdef CONFIG_MEMORY_ISOLATION
299 	"Isolate",
300 #endif
301 };
302 
303 int min_free_kbytes = 1024;
304 int user_min_free_kbytes = -1;
305 static int watermark_boost_factor __read_mostly = 15000;
306 static int watermark_scale_factor = 10;
307 int defrag_mode;
308 
309 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
310 int movable_zone;
311 EXPORT_SYMBOL(movable_zone);
312 
313 #if MAX_NUMNODES > 1
314 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
315 unsigned int nr_online_nodes __read_mostly = 1;
316 EXPORT_SYMBOL(nr_node_ids);
317 EXPORT_SYMBOL(nr_online_nodes);
318 #endif
319 
320 static bool page_contains_unaccepted(struct page *page, unsigned int order);
321 static bool cond_accept_memory(struct zone *zone, unsigned int order,
322 			       int alloc_flags);
323 static bool __free_unaccepted(struct page *page);
324 
325 int page_group_by_mobility_disabled __read_mostly;
326 
327 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
328 /*
329  * During boot we initialize deferred pages on-demand, as needed, but once
330  * page_alloc_init_late() has finished, the deferred pages are all initialized,
331  * and we can permanently disable that path.
332  */
333 DEFINE_STATIC_KEY_TRUE(deferred_pages);
334 
335 static inline bool deferred_pages_enabled(void)
336 {
337 	return static_branch_unlikely(&deferred_pages);
338 }
339 
340 /*
341  * deferred_grow_zone() is __init, but it is called from
342  * get_page_from_freelist() during early boot until deferred_pages permanently
343  * disables this call. This is why we have refdata wrapper to avoid warning,
344  * and to ensure that the function body gets unloaded.
345  */
346 static bool __ref
347 _deferred_grow_zone(struct zone *zone, unsigned int order)
348 {
349 	return deferred_grow_zone(zone, order);
350 }
351 #else
352 static inline bool deferred_pages_enabled(void)
353 {
354 	return false;
355 }
356 
357 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
358 {
359 	return false;
360 }
361 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
362 
363 /* Return a pointer to the bitmap storing bits affecting a block of pages */
364 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
365 							unsigned long pfn)
366 {
367 #ifdef CONFIG_SPARSEMEM
368 	return section_to_usemap(__pfn_to_section(pfn));
369 #else
370 	return page_zone(page)->pageblock_flags;
371 #endif /* CONFIG_SPARSEMEM */
372 }
373 
374 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
375 {
376 #ifdef CONFIG_SPARSEMEM
377 	pfn &= (PAGES_PER_SECTION-1);
378 #else
379 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
380 #endif /* CONFIG_SPARSEMEM */
381 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
382 }
383 
384 static __always_inline bool is_standalone_pb_bit(enum pageblock_bits pb_bit)
385 {
386 	return pb_bit >= PB_compact_skip && pb_bit < __NR_PAGEBLOCK_BITS;
387 }
388 
389 static __always_inline void
390 get_pfnblock_bitmap_bitidx(const struct page *page, unsigned long pfn,
391 			   unsigned long **bitmap_word, unsigned long *bitidx)
392 {
393 	unsigned long *bitmap;
394 	unsigned long word_bitidx;
395 
396 #ifdef CONFIG_MEMORY_ISOLATION
397 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 8);
398 #else
399 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
400 #endif
401 	BUILD_BUG_ON(__MIGRATE_TYPE_END > MIGRATETYPE_MASK);
402 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
403 
404 	bitmap = get_pageblock_bitmap(page, pfn);
405 	*bitidx = pfn_to_bitidx(page, pfn);
406 	word_bitidx = *bitidx / BITS_PER_LONG;
407 	*bitidx &= (BITS_PER_LONG - 1);
408 	*bitmap_word = &bitmap[word_bitidx];
409 }
410 
411 
412 /**
413  * __get_pfnblock_flags_mask - Return the requested group of flags for
414  * a pageblock_nr_pages block of pages
415  * @page: The page within the block of interest
416  * @pfn: The target page frame number
417  * @mask: mask of bits that the caller is interested in
418  *
419  * Return: pageblock_bits flags
420  */
421 static unsigned long __get_pfnblock_flags_mask(const struct page *page,
422 					       unsigned long pfn,
423 					       unsigned long mask)
424 {
425 	unsigned long *bitmap_word;
426 	unsigned long bitidx;
427 	unsigned long word;
428 
429 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
430 	/*
431 	 * This races, without locks, with set_pfnblock_migratetype(). Ensure
432 	 * a consistent read of the memory array, so that results, even though
433 	 * racy, are not corrupted.
434 	 */
435 	word = READ_ONCE(*bitmap_word);
436 	return (word >> bitidx) & mask;
437 }
438 
439 /**
440  * get_pfnblock_bit - Check if a standalone bit of a pageblock is set
441  * @page: The page within the block of interest
442  * @pfn: The target page frame number
443  * @pb_bit: pageblock bit to check
444  *
445  * Return: true if the bit is set, otherwise false
446  */
447 bool get_pfnblock_bit(const struct page *page, unsigned long pfn,
448 		      enum pageblock_bits pb_bit)
449 {
450 	unsigned long *bitmap_word;
451 	unsigned long bitidx;
452 
453 	if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
454 		return false;
455 
456 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
457 
458 	return test_bit(bitidx + pb_bit, bitmap_word);
459 }
460 
461 /**
462  * get_pfnblock_migratetype - Return the migratetype of a pageblock
463  * @page: The page within the block of interest
464  * @pfn: The target page frame number
465  *
466  * Return: The migratetype of the pageblock
467  *
468  * Use get_pfnblock_migratetype() if caller already has both @page and @pfn
469  * to save a call to page_to_pfn().
470  */
471 __always_inline enum migratetype
472 get_pfnblock_migratetype(const struct page *page, unsigned long pfn)
473 {
474 	unsigned long mask = MIGRATETYPE_AND_ISO_MASK;
475 	unsigned long flags;
476 
477 	flags = __get_pfnblock_flags_mask(page, pfn, mask);
478 
479 #ifdef CONFIG_MEMORY_ISOLATION
480 	if (flags & BIT(PB_migrate_isolate))
481 		return MIGRATE_ISOLATE;
482 #endif
483 	return flags & MIGRATETYPE_MASK;
484 }
485 
486 /**
487  * __set_pfnblock_flags_mask - Set the requested group of flags for
488  * a pageblock_nr_pages block of pages
489  * @page: The page within the block of interest
490  * @pfn: The target page frame number
491  * @flags: The flags to set
492  * @mask: mask of bits that the caller is interested in
493  */
494 static void __set_pfnblock_flags_mask(struct page *page, unsigned long pfn,
495 				      unsigned long flags, unsigned long mask)
496 {
497 	unsigned long *bitmap_word;
498 	unsigned long bitidx;
499 	unsigned long word;
500 
501 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
502 
503 	mask <<= bitidx;
504 	flags <<= bitidx;
505 
506 	word = READ_ONCE(*bitmap_word);
507 	do {
508 	} while (!try_cmpxchg(bitmap_word, &word, (word & ~mask) | flags));
509 }
510 
511 /**
512  * set_pfnblock_bit - Set a standalone bit of a pageblock
513  * @page: The page within the block of interest
514  * @pfn: The target page frame number
515  * @pb_bit: pageblock bit to set
516  */
517 void set_pfnblock_bit(const struct page *page, unsigned long pfn,
518 		      enum pageblock_bits pb_bit)
519 {
520 	unsigned long *bitmap_word;
521 	unsigned long bitidx;
522 
523 	if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
524 		return;
525 
526 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
527 
528 	set_bit(bitidx + pb_bit, bitmap_word);
529 }
530 
531 /**
532  * clear_pfnblock_bit - Clear a standalone bit of a pageblock
533  * @page: The page within the block of interest
534  * @pfn: The target page frame number
535  * @pb_bit: pageblock bit to clear
536  */
537 void clear_pfnblock_bit(const struct page *page, unsigned long pfn,
538 			enum pageblock_bits pb_bit)
539 {
540 	unsigned long *bitmap_word;
541 	unsigned long bitidx;
542 
543 	if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
544 		return;
545 
546 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
547 
548 	clear_bit(bitidx + pb_bit, bitmap_word);
549 }
550 
551 /**
552  * set_pageblock_migratetype - Set the migratetype of a pageblock
553  * @page: The page within the block of interest
554  * @migratetype: migratetype to set
555  */
556 static void set_pageblock_migratetype(struct page *page,
557 				      enum migratetype migratetype)
558 {
559 	if (unlikely(page_group_by_mobility_disabled &&
560 		     migratetype < MIGRATE_PCPTYPES))
561 		migratetype = MIGRATE_UNMOVABLE;
562 
563 #ifdef CONFIG_MEMORY_ISOLATION
564 	if (migratetype == MIGRATE_ISOLATE) {
565 		VM_WARN_ONCE(1,
566 			"Use set_pageblock_isolate() for pageblock isolation");
567 		return;
568 	}
569 	VM_WARN_ONCE(get_pageblock_isolate(page),
570 		     "Use clear_pageblock_isolate() to unisolate pageblock");
571 	/* MIGRATETYPE_AND_ISO_MASK clears PB_migrate_isolate if it is set */
572 #endif
573 	__set_pfnblock_flags_mask(page, page_to_pfn(page),
574 				  (unsigned long)migratetype,
575 				  MIGRATETYPE_AND_ISO_MASK);
576 }
577 
578 void __meminit init_pageblock_migratetype(struct page *page,
579 					  enum migratetype migratetype,
580 					  bool isolate)
581 {
582 	unsigned long flags;
583 
584 	if (unlikely(page_group_by_mobility_disabled &&
585 		     migratetype < MIGRATE_PCPTYPES))
586 		migratetype = MIGRATE_UNMOVABLE;
587 
588 	flags = migratetype;
589 
590 #ifdef CONFIG_MEMORY_ISOLATION
591 	if (migratetype == MIGRATE_ISOLATE) {
592 		VM_WARN_ONCE(
593 			1,
594 			"Set isolate=true to isolate pageblock with a migratetype");
595 		return;
596 	}
597 	if (isolate)
598 		flags |= BIT(PB_migrate_isolate);
599 #endif
600 	__set_pfnblock_flags_mask(page, page_to_pfn(page), flags,
601 				  MIGRATETYPE_AND_ISO_MASK);
602 }
603 
604 #ifdef CONFIG_DEBUG_VM
605 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
606 {
607 	int ret;
608 	unsigned seq;
609 	unsigned long pfn = page_to_pfn(page);
610 	unsigned long sp, start_pfn;
611 
612 	do {
613 		seq = zone_span_seqbegin(zone);
614 		start_pfn = zone->zone_start_pfn;
615 		sp = zone->spanned_pages;
616 		ret = !zone_spans_pfn(zone, pfn);
617 	} while (zone_span_seqretry(zone, seq));
618 
619 	if (ret)
620 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
621 			pfn, zone_to_nid(zone), zone->name,
622 			start_pfn, start_pfn + sp);
623 
624 	return ret;
625 }
626 
627 /*
628  * Temporary debugging check for pages not lying within a given zone.
629  */
630 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
631 {
632 	if (page_outside_zone_boundaries(zone, page))
633 		return true;
634 	if (zone != page_zone(page))
635 		return true;
636 
637 	return false;
638 }
639 #else
640 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
641 {
642 	return false;
643 }
644 #endif
645 
646 static void bad_page(struct page *page, const char *reason)
647 {
648 	static unsigned long resume;
649 	static unsigned long nr_shown;
650 	static unsigned long nr_unshown;
651 
652 	/*
653 	 * Allow a burst of 60 reports, then keep quiet for that minute;
654 	 * or allow a steady drip of one report per second.
655 	 */
656 	if (nr_shown == 60) {
657 		if (time_before(jiffies, resume)) {
658 			nr_unshown++;
659 			goto out;
660 		}
661 		if (nr_unshown) {
662 			pr_alert(
663 			      "BUG: Bad page state: %lu messages suppressed\n",
664 				nr_unshown);
665 			nr_unshown = 0;
666 		}
667 		nr_shown = 0;
668 	}
669 	if (nr_shown++ == 0)
670 		resume = jiffies + 60 * HZ;
671 
672 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
673 		current->comm, page_to_pfn(page));
674 	dump_page(page, reason);
675 
676 	print_modules();
677 	dump_stack();
678 out:
679 	/* Leave bad fields for debug, except PageBuddy could make trouble */
680 	if (PageBuddy(page))
681 		__ClearPageBuddy(page);
682 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
683 }
684 
685 static inline unsigned int order_to_pindex(int migratetype, int order)
686 {
687 
688 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
689 	bool movable;
690 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
691 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
692 
693 		movable = migratetype == MIGRATE_MOVABLE;
694 
695 		return NR_LOWORDER_PCP_LISTS + movable;
696 	}
697 #else
698 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
699 #endif
700 
701 	return (MIGRATE_PCPTYPES * order) + migratetype;
702 }
703 
704 static inline int pindex_to_order(unsigned int pindex)
705 {
706 	int order = pindex / MIGRATE_PCPTYPES;
707 
708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
709 	if (pindex >= NR_LOWORDER_PCP_LISTS)
710 		order = HPAGE_PMD_ORDER;
711 #else
712 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
713 #endif
714 
715 	return order;
716 }
717 
718 static inline bool pcp_allowed_order(unsigned int order)
719 {
720 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
721 		return true;
722 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
723 	if (order == HPAGE_PMD_ORDER)
724 		return true;
725 #endif
726 	return false;
727 }
728 
729 /*
730  * Higher-order pages are called "compound pages".  They are structured thusly:
731  *
732  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
733  *
734  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
735  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
736  *
737  * The first tail page's ->compound_order holds the order of allocation.
738  * This usage means that zero-order pages may not be compound.
739  */
740 
741 void prep_compound_page(struct page *page, unsigned int order)
742 {
743 	int i;
744 	int nr_pages = 1 << order;
745 
746 	__SetPageHead(page);
747 	for (i = 1; i < nr_pages; i++)
748 		prep_compound_tail(page, i);
749 
750 	prep_compound_head(page, order);
751 }
752 
753 static inline void set_buddy_order(struct page *page, unsigned int order)
754 {
755 	set_page_private(page, order);
756 	__SetPageBuddy(page);
757 }
758 
759 #ifdef CONFIG_COMPACTION
760 static inline struct capture_control *task_capc(struct zone *zone)
761 {
762 	struct capture_control *capc = current->capture_control;
763 
764 	return unlikely(capc) &&
765 		!(current->flags & PF_KTHREAD) &&
766 		!capc->page &&
767 		capc->cc->zone == zone ? capc : NULL;
768 }
769 
770 static inline bool
771 compaction_capture(struct capture_control *capc, struct page *page,
772 		   int order, int migratetype)
773 {
774 	if (!capc || order != capc->cc->order)
775 		return false;
776 
777 	/* Do not accidentally pollute CMA or isolated regions*/
778 	if (is_migrate_cma(migratetype) ||
779 	    is_migrate_isolate(migratetype))
780 		return false;
781 
782 	/*
783 	 * Do not let lower order allocations pollute a movable pageblock
784 	 * unless compaction is also requesting movable pages.
785 	 * This might let an unmovable request use a reclaimable pageblock
786 	 * and vice-versa but no more than normal fallback logic which can
787 	 * have trouble finding a high-order free page.
788 	 */
789 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
790 	    capc->cc->migratetype != MIGRATE_MOVABLE)
791 		return false;
792 
793 	if (migratetype != capc->cc->migratetype)
794 		trace_mm_page_alloc_extfrag(page, capc->cc->order, order,
795 					    capc->cc->migratetype, migratetype);
796 
797 	capc->page = page;
798 	return true;
799 }
800 
801 #else
802 static inline struct capture_control *task_capc(struct zone *zone)
803 {
804 	return NULL;
805 }
806 
807 static inline bool
808 compaction_capture(struct capture_control *capc, struct page *page,
809 		   int order, int migratetype)
810 {
811 	return false;
812 }
813 #endif /* CONFIG_COMPACTION */
814 
815 static inline void account_freepages(struct zone *zone, int nr_pages,
816 				     int migratetype)
817 {
818 	lockdep_assert_held(&zone->lock);
819 
820 	if (is_migrate_isolate(migratetype))
821 		return;
822 
823 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
824 
825 	if (is_migrate_cma(migratetype))
826 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
827 	else if (migratetype == MIGRATE_HIGHATOMIC)
828 		WRITE_ONCE(zone->nr_free_highatomic,
829 			   zone->nr_free_highatomic + nr_pages);
830 }
831 
832 /* Used for pages not on another list */
833 static inline void __add_to_free_list(struct page *page, struct zone *zone,
834 				      unsigned int order, int migratetype,
835 				      bool tail)
836 {
837 	struct free_area *area = &zone->free_area[order];
838 	int nr_pages = 1 << order;
839 
840 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
841 		     "page type is %d, passed migratetype is %d (nr=%d)\n",
842 		     get_pageblock_migratetype(page), migratetype, nr_pages);
843 
844 	if (tail)
845 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
846 	else
847 		list_add(&page->buddy_list, &area->free_list[migratetype]);
848 	area->nr_free++;
849 
850 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
851 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
852 }
853 
854 /*
855  * Used for pages which are on another list. Move the pages to the tail
856  * of the list - so the moved pages won't immediately be considered for
857  * allocation again (e.g., optimization for memory onlining).
858  */
859 static inline void move_to_free_list(struct page *page, struct zone *zone,
860 				     unsigned int order, int old_mt, int new_mt)
861 {
862 	struct free_area *area = &zone->free_area[order];
863 	int nr_pages = 1 << order;
864 
865 	/* Free page moving can fail, so it happens before the type update */
866 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
867 		     "page type is %d, passed migratetype is %d (nr=%d)\n",
868 		     get_pageblock_migratetype(page), old_mt, nr_pages);
869 
870 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
871 
872 	account_freepages(zone, -nr_pages, old_mt);
873 	account_freepages(zone, nr_pages, new_mt);
874 
875 	if (order >= pageblock_order &&
876 	    is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) {
877 		if (!is_migrate_isolate(old_mt))
878 			nr_pages = -nr_pages;
879 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
880 	}
881 }
882 
883 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
884 					     unsigned int order, int migratetype)
885 {
886 	int nr_pages = 1 << order;
887 
888         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
889 		     "page type is %d, passed migratetype is %d (nr=%d)\n",
890 		     get_pageblock_migratetype(page), migratetype, nr_pages);
891 
892 	/* clear reported state and update reported page count */
893 	if (page_reported(page))
894 		__ClearPageReported(page);
895 
896 	list_del(&page->buddy_list);
897 	__ClearPageBuddy(page);
898 	set_page_private(page, 0);
899 	zone->free_area[order].nr_free--;
900 
901 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
902 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages);
903 }
904 
905 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
906 					   unsigned int order, int migratetype)
907 {
908 	__del_page_from_free_list(page, zone, order, migratetype);
909 	account_freepages(zone, -(1 << order), migratetype);
910 }
911 
912 static inline struct page *get_page_from_free_area(struct free_area *area,
913 					    int migratetype)
914 {
915 	return list_first_entry_or_null(&area->free_list[migratetype],
916 					struct page, buddy_list);
917 }
918 
919 /*
920  * If this is less than the 2nd largest possible page, check if the buddy
921  * of the next-higher order is free. If it is, it's possible
922  * that pages are being freed that will coalesce soon. In case,
923  * that is happening, add the free page to the tail of the list
924  * so it's less likely to be used soon and more likely to be merged
925  * as a 2-level higher order page
926  */
927 static inline bool
928 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
929 		   struct page *page, unsigned int order)
930 {
931 	unsigned long higher_page_pfn;
932 	struct page *higher_page;
933 
934 	if (order >= MAX_PAGE_ORDER - 1)
935 		return false;
936 
937 	higher_page_pfn = buddy_pfn & pfn;
938 	higher_page = page + (higher_page_pfn - pfn);
939 
940 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
941 			NULL) != NULL;
942 }
943 
944 static void change_pageblock_range(struct page *pageblock_page,
945 				   int start_order, int migratetype)
946 {
947 	int nr_pageblocks = 1 << (start_order - pageblock_order);
948 
949 	while (nr_pageblocks--) {
950 		set_pageblock_migratetype(pageblock_page, migratetype);
951 		pageblock_page += pageblock_nr_pages;
952 	}
953 }
954 
955 /*
956  * Freeing function for a buddy system allocator.
957  *
958  * The concept of a buddy system is to maintain direct-mapped table
959  * (containing bit values) for memory blocks of various "orders".
960  * The bottom level table contains the map for the smallest allocatable
961  * units of memory (here, pages), and each level above it describes
962  * pairs of units from the levels below, hence, "buddies".
963  * At a high level, all that happens here is marking the table entry
964  * at the bottom level available, and propagating the changes upward
965  * as necessary, plus some accounting needed to play nicely with other
966  * parts of the VM system.
967  * At each level, we keep a list of pages, which are heads of continuous
968  * free pages of length of (1 << order) and marked with PageBuddy.
969  * Page's order is recorded in page_private(page) field.
970  * So when we are allocating or freeing one, we can derive the state of the
971  * other.  That is, if we allocate a small block, and both were
972  * free, the remainder of the region must be split into blocks.
973  * If a block is freed, and its buddy is also free, then this
974  * triggers coalescing into a block of larger size.
975  *
976  * -- nyc
977  */
978 
979 static inline void __free_one_page(struct page *page,
980 		unsigned long pfn,
981 		struct zone *zone, unsigned int order,
982 		int migratetype, fpi_t fpi_flags)
983 {
984 	struct capture_control *capc = task_capc(zone);
985 	unsigned long buddy_pfn = 0;
986 	unsigned long combined_pfn;
987 	struct page *buddy;
988 	bool to_tail;
989 
990 	VM_BUG_ON(!zone_is_initialized(zone));
991 	VM_BUG_ON_PAGE(page->flags.f & PAGE_FLAGS_CHECK_AT_PREP, page);
992 
993 	VM_BUG_ON(migratetype == -1);
994 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
995 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
996 
997 	account_freepages(zone, 1 << order, migratetype);
998 
999 	while (order < MAX_PAGE_ORDER) {
1000 		int buddy_mt = migratetype;
1001 
1002 		if (compaction_capture(capc, page, order, migratetype)) {
1003 			account_freepages(zone, -(1 << order), migratetype);
1004 			return;
1005 		}
1006 
1007 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1008 		if (!buddy)
1009 			goto done_merging;
1010 
1011 		if (unlikely(order >= pageblock_order)) {
1012 			/*
1013 			 * We want to prevent merge between freepages on pageblock
1014 			 * without fallbacks and normal pageblock. Without this,
1015 			 * pageblock isolation could cause incorrect freepage or CMA
1016 			 * accounting or HIGHATOMIC accounting.
1017 			 */
1018 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
1019 
1020 			if (migratetype != buddy_mt &&
1021 			    (!migratetype_is_mergeable(migratetype) ||
1022 			     !migratetype_is_mergeable(buddy_mt)))
1023 				goto done_merging;
1024 		}
1025 
1026 		/*
1027 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1028 		 * merge with it and move up one order.
1029 		 */
1030 		if (page_is_guard(buddy))
1031 			clear_page_guard(zone, buddy, order);
1032 		else
1033 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
1034 
1035 		if (unlikely(buddy_mt != migratetype)) {
1036 			/*
1037 			 * Match buddy type. This ensures that an
1038 			 * expand() down the line puts the sub-blocks
1039 			 * on the right freelists.
1040 			 */
1041 			change_pageblock_range(buddy, order, migratetype);
1042 		}
1043 
1044 		combined_pfn = buddy_pfn & pfn;
1045 		page = page + (combined_pfn - pfn);
1046 		pfn = combined_pfn;
1047 		order++;
1048 	}
1049 
1050 done_merging:
1051 	set_buddy_order(page, order);
1052 
1053 	if (fpi_flags & FPI_TO_TAIL)
1054 		to_tail = true;
1055 	else if (is_shuffle_order(order))
1056 		to_tail = shuffle_pick_tail();
1057 	else
1058 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1059 
1060 	__add_to_free_list(page, zone, order, migratetype, to_tail);
1061 
1062 	/* Notify page reporting subsystem of freed page */
1063 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1064 		page_reporting_notify_free(order);
1065 }
1066 
1067 /*
1068  * A bad page could be due to a number of fields. Instead of multiple branches,
1069  * try and check multiple fields with one check. The caller must do a detailed
1070  * check if necessary.
1071  */
1072 static inline bool page_expected_state(struct page *page,
1073 					unsigned long check_flags)
1074 {
1075 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1076 		return false;
1077 
1078 	if (unlikely((unsigned long)page->mapping |
1079 			page_ref_count(page) |
1080 #ifdef CONFIG_MEMCG
1081 			page->memcg_data |
1082 #endif
1083 			page_pool_page_is_pp(page) |
1084 			(page->flags.f & check_flags)))
1085 		return false;
1086 
1087 	return true;
1088 }
1089 
1090 static const char *page_bad_reason(struct page *page, unsigned long flags)
1091 {
1092 	const char *bad_reason = NULL;
1093 
1094 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1095 		bad_reason = "nonzero mapcount";
1096 	if (unlikely(page->mapping != NULL))
1097 		bad_reason = "non-NULL mapping";
1098 	if (unlikely(page_ref_count(page) != 0))
1099 		bad_reason = "nonzero _refcount";
1100 	if (unlikely(page->flags.f & flags)) {
1101 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1102 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1103 		else
1104 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1105 	}
1106 #ifdef CONFIG_MEMCG
1107 	if (unlikely(page->memcg_data))
1108 		bad_reason = "page still charged to cgroup";
1109 #endif
1110 	if (unlikely(page_pool_page_is_pp(page)))
1111 		bad_reason = "page_pool leak";
1112 	return bad_reason;
1113 }
1114 
1115 static inline bool free_page_is_bad(struct page *page)
1116 {
1117 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1118 		return false;
1119 
1120 	/* Something has gone sideways, find it */
1121 	bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1122 	return true;
1123 }
1124 
1125 static inline bool is_check_pages_enabled(void)
1126 {
1127 	return static_branch_unlikely(&check_pages_enabled);
1128 }
1129 
1130 static int free_tail_page_prepare(struct page *head_page, struct page *page)
1131 {
1132 	struct folio *folio = (struct folio *)head_page;
1133 	int ret = 1;
1134 
1135 	/*
1136 	 * We rely page->lru.next never has bit 0 set, unless the page
1137 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1138 	 */
1139 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1140 
1141 	if (!is_check_pages_enabled()) {
1142 		ret = 0;
1143 		goto out;
1144 	}
1145 	switch (page - head_page) {
1146 	case 1:
1147 		/* the first tail page: these may be in place of ->mapping */
1148 		if (unlikely(folio_large_mapcount(folio))) {
1149 			bad_page(page, "nonzero large_mapcount");
1150 			goto out;
1151 		}
1152 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) &&
1153 		    unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1154 			bad_page(page, "nonzero nr_pages_mapped");
1155 			goto out;
1156 		}
1157 		if (IS_ENABLED(CONFIG_MM_ID)) {
1158 			if (unlikely(folio->_mm_id_mapcount[0] != -1)) {
1159 				bad_page(page, "nonzero mm mapcount 0");
1160 				goto out;
1161 			}
1162 			if (unlikely(folio->_mm_id_mapcount[1] != -1)) {
1163 				bad_page(page, "nonzero mm mapcount 1");
1164 				goto out;
1165 			}
1166 		}
1167 		if (IS_ENABLED(CONFIG_64BIT)) {
1168 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1169 				bad_page(page, "nonzero entire_mapcount");
1170 				goto out;
1171 			}
1172 			if (unlikely(atomic_read(&folio->_pincount))) {
1173 				bad_page(page, "nonzero pincount");
1174 				goto out;
1175 			}
1176 		}
1177 		break;
1178 	case 2:
1179 		/* the second tail page: deferred_list overlaps ->mapping */
1180 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1181 			bad_page(page, "on deferred list");
1182 			goto out;
1183 		}
1184 		if (!IS_ENABLED(CONFIG_64BIT)) {
1185 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1186 				bad_page(page, "nonzero entire_mapcount");
1187 				goto out;
1188 			}
1189 			if (unlikely(atomic_read(&folio->_pincount))) {
1190 				bad_page(page, "nonzero pincount");
1191 				goto out;
1192 			}
1193 		}
1194 		break;
1195 	case 3:
1196 		/* the third tail page: hugetlb specifics overlap ->mappings */
1197 		if (IS_ENABLED(CONFIG_HUGETLB_PAGE))
1198 			break;
1199 		fallthrough;
1200 	default:
1201 		if (page->mapping != TAIL_MAPPING) {
1202 			bad_page(page, "corrupted mapping in tail page");
1203 			goto out;
1204 		}
1205 		break;
1206 	}
1207 	if (unlikely(!PageTail(page))) {
1208 		bad_page(page, "PageTail not set");
1209 		goto out;
1210 	}
1211 	if (unlikely(compound_head(page) != head_page)) {
1212 		bad_page(page, "compound_head not consistent");
1213 		goto out;
1214 	}
1215 	ret = 0;
1216 out:
1217 	page->mapping = NULL;
1218 	clear_compound_head(page);
1219 	return ret;
1220 }
1221 
1222 /*
1223  * Skip KASAN memory poisoning when either:
1224  *
1225  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1226  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1227  *    using page tags instead (see below).
1228  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1229  *    that error detection is disabled for accesses via the page address.
1230  *
1231  * Pages will have match-all tags in the following circumstances:
1232  *
1233  * 1. Pages are being initialized for the first time, including during deferred
1234  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1235  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1236  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1237  * 3. The allocation was excluded from being checked due to sampling,
1238  *    see the call to kasan_unpoison_pages.
1239  *
1240  * Poisoning pages during deferred memory init will greatly lengthen the
1241  * process and cause problem in large memory systems as the deferred pages
1242  * initialization is done with interrupt disabled.
1243  *
1244  * Assuming that there will be no reference to those newly initialized
1245  * pages before they are ever allocated, this should have no effect on
1246  * KASAN memory tracking as the poison will be properly inserted at page
1247  * allocation time. The only corner case is when pages are allocated by
1248  * on-demand allocation and then freed again before the deferred pages
1249  * initialization is done, but this is not likely to happen.
1250  */
1251 static inline bool should_skip_kasan_poison(struct page *page)
1252 {
1253 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1254 		return deferred_pages_enabled();
1255 
1256 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1257 }
1258 
1259 static void kernel_init_pages(struct page *page, int numpages)
1260 {
1261 	int i;
1262 
1263 	/* s390's use of memset() could override KASAN redzones. */
1264 	kasan_disable_current();
1265 	for (i = 0; i < numpages; i++)
1266 		clear_highpage_kasan_tagged(page + i);
1267 	kasan_enable_current();
1268 }
1269 
1270 #ifdef CONFIG_MEM_ALLOC_PROFILING
1271 
1272 /* Should be called only if mem_alloc_profiling_enabled() */
1273 void __clear_page_tag_ref(struct page *page)
1274 {
1275 	union pgtag_ref_handle handle;
1276 	union codetag_ref ref;
1277 
1278 	if (get_page_tag_ref(page, &ref, &handle)) {
1279 		set_codetag_empty(&ref);
1280 		update_page_tag_ref(handle, &ref);
1281 		put_page_tag_ref(handle);
1282 	}
1283 }
1284 
1285 /* Should be called only if mem_alloc_profiling_enabled() */
1286 static noinline
1287 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1288 		       unsigned int nr)
1289 {
1290 	union pgtag_ref_handle handle;
1291 	union codetag_ref ref;
1292 
1293 	if (get_page_tag_ref(page, &ref, &handle)) {
1294 		alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1295 		update_page_tag_ref(handle, &ref);
1296 		put_page_tag_ref(handle);
1297 	}
1298 }
1299 
1300 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1301 				   unsigned int nr)
1302 {
1303 	if (mem_alloc_profiling_enabled())
1304 		__pgalloc_tag_add(page, task, nr);
1305 }
1306 
1307 /* Should be called only if mem_alloc_profiling_enabled() */
1308 static noinline
1309 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1310 {
1311 	union pgtag_ref_handle handle;
1312 	union codetag_ref ref;
1313 
1314 	if (get_page_tag_ref(page, &ref, &handle)) {
1315 		alloc_tag_sub(&ref, PAGE_SIZE * nr);
1316 		update_page_tag_ref(handle, &ref);
1317 		put_page_tag_ref(handle);
1318 	}
1319 }
1320 
1321 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1322 {
1323 	if (mem_alloc_profiling_enabled())
1324 		__pgalloc_tag_sub(page, nr);
1325 }
1326 
1327 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */
1328 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr)
1329 {
1330 	if (tag)
1331 		this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1332 }
1333 
1334 #else /* CONFIG_MEM_ALLOC_PROFILING */
1335 
1336 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1337 				   unsigned int nr) {}
1338 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
1339 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {}
1340 
1341 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1342 
1343 __always_inline bool free_pages_prepare(struct page *page,
1344 			unsigned int order)
1345 {
1346 	int bad = 0;
1347 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1348 	bool init = want_init_on_free();
1349 	bool compound = PageCompound(page);
1350 	struct folio *folio = page_folio(page);
1351 
1352 	VM_BUG_ON_PAGE(PageTail(page), page);
1353 
1354 	trace_mm_page_free(page, order);
1355 	kmsan_free_page(page, order);
1356 
1357 	if (memcg_kmem_online() && PageMemcgKmem(page))
1358 		__memcg_kmem_uncharge_page(page, order);
1359 
1360 	/*
1361 	 * In rare cases, when truncation or holepunching raced with
1362 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1363 	 * found set here.  This does not indicate a problem, unless
1364 	 * "unevictable_pgs_cleared" appears worryingly large.
1365 	 */
1366 	if (unlikely(folio_test_mlocked(folio))) {
1367 		long nr_pages = folio_nr_pages(folio);
1368 
1369 		__folio_clear_mlocked(folio);
1370 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1371 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1372 	}
1373 
1374 	if (unlikely(PageHWPoison(page)) && !order) {
1375 		/* Do not let hwpoison pages hit pcplists/buddy */
1376 		reset_page_owner(page, order);
1377 		page_table_check_free(page, order);
1378 		pgalloc_tag_sub(page, 1 << order);
1379 
1380 		/*
1381 		 * The page is isolated and accounted for.
1382 		 * Mark the codetag as empty to avoid accounting error
1383 		 * when the page is freed by unpoison_memory().
1384 		 */
1385 		clear_page_tag_ref(page);
1386 		return false;
1387 	}
1388 
1389 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1390 
1391 	/*
1392 	 * Check tail pages before head page information is cleared to
1393 	 * avoid checking PageCompound for order-0 pages.
1394 	 */
1395 	if (unlikely(order)) {
1396 		int i;
1397 
1398 		if (compound) {
1399 			page[1].flags.f &= ~PAGE_FLAGS_SECOND;
1400 #ifdef NR_PAGES_IN_LARGE_FOLIO
1401 			folio->_nr_pages = 0;
1402 #endif
1403 		}
1404 		for (i = 1; i < (1 << order); i++) {
1405 			if (compound)
1406 				bad += free_tail_page_prepare(page, page + i);
1407 			if (is_check_pages_enabled()) {
1408 				if (free_page_is_bad(page + i)) {
1409 					bad++;
1410 					continue;
1411 				}
1412 			}
1413 			(page + i)->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP;
1414 		}
1415 	}
1416 	if (folio_test_anon(folio)) {
1417 		mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1418 		folio->mapping = NULL;
1419 	}
1420 	if (unlikely(page_has_type(page)))
1421 		/* Reset the page_type (which overlays _mapcount) */
1422 		page->page_type = UINT_MAX;
1423 
1424 	if (is_check_pages_enabled()) {
1425 		if (free_page_is_bad(page))
1426 			bad++;
1427 		if (bad)
1428 			return false;
1429 	}
1430 
1431 	page_cpupid_reset_last(page);
1432 	page->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP;
1433 	reset_page_owner(page, order);
1434 	page_table_check_free(page, order);
1435 	pgalloc_tag_sub(page, 1 << order);
1436 
1437 	if (!PageHighMem(page)) {
1438 		debug_check_no_locks_freed(page_address(page),
1439 					   PAGE_SIZE << order);
1440 		debug_check_no_obj_freed(page_address(page),
1441 					   PAGE_SIZE << order);
1442 	}
1443 
1444 	kernel_poison_pages(page, 1 << order);
1445 
1446 	/*
1447 	 * As memory initialization might be integrated into KASAN,
1448 	 * KASAN poisoning and memory initialization code must be
1449 	 * kept together to avoid discrepancies in behavior.
1450 	 *
1451 	 * With hardware tag-based KASAN, memory tags must be set before the
1452 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1453 	 */
1454 	if (!skip_kasan_poison) {
1455 		kasan_poison_pages(page, order, init);
1456 
1457 		/* Memory is already initialized if KASAN did it internally. */
1458 		if (kasan_has_integrated_init())
1459 			init = false;
1460 	}
1461 	if (init)
1462 		kernel_init_pages(page, 1 << order);
1463 
1464 	/*
1465 	 * arch_free_page() can make the page's contents inaccessible.  s390
1466 	 * does this.  So nothing which can access the page's contents should
1467 	 * happen after this.
1468 	 */
1469 	arch_free_page(page, order);
1470 
1471 	debug_pagealloc_unmap_pages(page, 1 << order);
1472 
1473 	return true;
1474 }
1475 
1476 /*
1477  * Frees a number of pages from the PCP lists
1478  * Assumes all pages on list are in same zone.
1479  * count is the number of pages to free.
1480  */
1481 static void free_pcppages_bulk(struct zone *zone, int count,
1482 					struct per_cpu_pages *pcp,
1483 					int pindex)
1484 {
1485 	unsigned long flags;
1486 	unsigned int order;
1487 	struct page *page;
1488 
1489 	/*
1490 	 * Ensure proper count is passed which otherwise would stuck in the
1491 	 * below while (list_empty(list)) loop.
1492 	 */
1493 	count = min(pcp->count, count);
1494 
1495 	/* Ensure requested pindex is drained first. */
1496 	pindex = pindex - 1;
1497 
1498 	spin_lock_irqsave(&zone->lock, flags);
1499 
1500 	while (count > 0) {
1501 		struct list_head *list;
1502 		int nr_pages;
1503 
1504 		/* Remove pages from lists in a round-robin fashion. */
1505 		do {
1506 			if (++pindex > NR_PCP_LISTS - 1)
1507 				pindex = 0;
1508 			list = &pcp->lists[pindex];
1509 		} while (list_empty(list));
1510 
1511 		order = pindex_to_order(pindex);
1512 		nr_pages = 1 << order;
1513 		do {
1514 			unsigned long pfn;
1515 			int mt;
1516 
1517 			page = list_last_entry(list, struct page, pcp_list);
1518 			pfn = page_to_pfn(page);
1519 			mt = get_pfnblock_migratetype(page, pfn);
1520 
1521 			/* must delete to avoid corrupting pcp list */
1522 			list_del(&page->pcp_list);
1523 			count -= nr_pages;
1524 			pcp->count -= nr_pages;
1525 
1526 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1527 			trace_mm_page_pcpu_drain(page, order, mt);
1528 		} while (count > 0 && !list_empty(list));
1529 	}
1530 
1531 	spin_unlock_irqrestore(&zone->lock, flags);
1532 }
1533 
1534 /* Split a multi-block free page into its individual pageblocks. */
1535 static void split_large_buddy(struct zone *zone, struct page *page,
1536 			      unsigned long pfn, int order, fpi_t fpi)
1537 {
1538 	unsigned long end = pfn + (1 << order);
1539 
1540 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1541 	/* Caller removed page from freelist, buddy info cleared! */
1542 	VM_WARN_ON_ONCE(PageBuddy(page));
1543 
1544 	if (order > pageblock_order)
1545 		order = pageblock_order;
1546 
1547 	do {
1548 		int mt = get_pfnblock_migratetype(page, pfn);
1549 
1550 		__free_one_page(page, pfn, zone, order, mt, fpi);
1551 		pfn += 1 << order;
1552 		if (pfn == end)
1553 			break;
1554 		page = pfn_to_page(pfn);
1555 	} while (1);
1556 }
1557 
1558 static void add_page_to_zone_llist(struct zone *zone, struct page *page,
1559 				   unsigned int order)
1560 {
1561 	/* Remember the order */
1562 	page->private = order;
1563 	/* Add the page to the free list */
1564 	llist_add(&page->pcp_llist, &zone->trylock_free_pages);
1565 }
1566 
1567 static void free_one_page(struct zone *zone, struct page *page,
1568 			  unsigned long pfn, unsigned int order,
1569 			  fpi_t fpi_flags)
1570 {
1571 	struct llist_head *llhead;
1572 	unsigned long flags;
1573 
1574 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
1575 		if (!spin_trylock_irqsave(&zone->lock, flags)) {
1576 			add_page_to_zone_llist(zone, page, order);
1577 			return;
1578 		}
1579 	} else {
1580 		spin_lock_irqsave(&zone->lock, flags);
1581 	}
1582 
1583 	/* The lock succeeded. Process deferred pages. */
1584 	llhead = &zone->trylock_free_pages;
1585 	if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
1586 		struct llist_node *llnode;
1587 		struct page *p, *tmp;
1588 
1589 		llnode = llist_del_all(llhead);
1590 		llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
1591 			unsigned int p_order = p->private;
1592 
1593 			split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
1594 			__count_vm_events(PGFREE, 1 << p_order);
1595 		}
1596 	}
1597 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1598 	spin_unlock_irqrestore(&zone->lock, flags);
1599 
1600 	__count_vm_events(PGFREE, 1 << order);
1601 }
1602 
1603 static void __free_pages_ok(struct page *page, unsigned int order,
1604 			    fpi_t fpi_flags)
1605 {
1606 	unsigned long pfn = page_to_pfn(page);
1607 	struct zone *zone = page_zone(page);
1608 
1609 	if (free_pages_prepare(page, order))
1610 		free_one_page(zone, page, pfn, order, fpi_flags);
1611 }
1612 
1613 void __meminit __free_pages_core(struct page *page, unsigned int order,
1614 		enum meminit_context context)
1615 {
1616 	unsigned int nr_pages = 1 << order;
1617 	struct page *p = page;
1618 	unsigned int loop;
1619 
1620 	/*
1621 	 * When initializing the memmap, __init_single_page() sets the refcount
1622 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1623 	 * refcount of all involved pages to 0.
1624 	 *
1625 	 * Note that hotplugged memory pages are initialized to PageOffline().
1626 	 * Pages freed from memblock might be marked as reserved.
1627 	 */
1628 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1629 	    unlikely(context == MEMINIT_HOTPLUG)) {
1630 		for (loop = 0; loop < nr_pages; loop++, p++) {
1631 			VM_WARN_ON_ONCE(PageReserved(p));
1632 			__ClearPageOffline(p);
1633 			set_page_count(p, 0);
1634 		}
1635 
1636 		adjust_managed_page_count(page, nr_pages);
1637 	} else {
1638 		for (loop = 0; loop < nr_pages; loop++, p++) {
1639 			__ClearPageReserved(p);
1640 			set_page_count(p, 0);
1641 		}
1642 
1643 		/* memblock adjusts totalram_pages() manually. */
1644 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1645 	}
1646 
1647 	if (page_contains_unaccepted(page, order)) {
1648 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1649 			return;
1650 
1651 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1652 	}
1653 
1654 	/*
1655 	 * Bypass PCP and place fresh pages right to the tail, primarily
1656 	 * relevant for memory onlining.
1657 	 */
1658 	__free_pages_ok(page, order, FPI_TO_TAIL);
1659 }
1660 
1661 /*
1662  * Check that the whole (or subset of) a pageblock given by the interval of
1663  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1664  * with the migration of free compaction scanner.
1665  *
1666  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1667  *
1668  * It's possible on some configurations to have a setup like node0 node1 node0
1669  * i.e. it's possible that all pages within a zones range of pages do not
1670  * belong to a single zone. We assume that a border between node0 and node1
1671  * can occur within a single pageblock, but not a node0 node1 node0
1672  * interleaving within a single pageblock. It is therefore sufficient to check
1673  * the first and last page of a pageblock and avoid checking each individual
1674  * page in a pageblock.
1675  *
1676  * Note: the function may return non-NULL struct page even for a page block
1677  * which contains a memory hole (i.e. there is no physical memory for a subset
1678  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1679  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1680  * even though the start pfn is online and valid. This should be safe most of
1681  * the time because struct pages are still initialized via init_unavailable_range()
1682  * and pfn walkers shouldn't touch any physical memory range for which they do
1683  * not recognize any specific metadata in struct pages.
1684  */
1685 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1686 				     unsigned long end_pfn, struct zone *zone)
1687 {
1688 	struct page *start_page;
1689 	struct page *end_page;
1690 
1691 	/* end_pfn is one past the range we are checking */
1692 	end_pfn--;
1693 
1694 	if (!pfn_valid(end_pfn))
1695 		return NULL;
1696 
1697 	start_page = pfn_to_online_page(start_pfn);
1698 	if (!start_page)
1699 		return NULL;
1700 
1701 	if (page_zone(start_page) != zone)
1702 		return NULL;
1703 
1704 	end_page = pfn_to_page(end_pfn);
1705 
1706 	/* This gives a shorter code than deriving page_zone(end_page) */
1707 	if (page_zone_id(start_page) != page_zone_id(end_page))
1708 		return NULL;
1709 
1710 	return start_page;
1711 }
1712 
1713 /*
1714  * The order of subdivision here is critical for the IO subsystem.
1715  * Please do not alter this order without good reasons and regression
1716  * testing. Specifically, as large blocks of memory are subdivided,
1717  * the order in which smaller blocks are delivered depends on the order
1718  * they're subdivided in this function. This is the primary factor
1719  * influencing the order in which pages are delivered to the IO
1720  * subsystem according to empirical testing, and this is also justified
1721  * by considering the behavior of a buddy system containing a single
1722  * large block of memory acted on by a series of small allocations.
1723  * This behavior is a critical factor in sglist merging's success.
1724  *
1725  * -- nyc
1726  */
1727 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1728 				  int high, int migratetype)
1729 {
1730 	unsigned int size = 1 << high;
1731 	unsigned int nr_added = 0;
1732 
1733 	while (high > low) {
1734 		high--;
1735 		size >>= 1;
1736 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1737 
1738 		/*
1739 		 * Mark as guard pages (or page), that will allow to
1740 		 * merge back to allocator when buddy will be freed.
1741 		 * Corresponding page table entries will not be touched,
1742 		 * pages will stay not present in virtual address space
1743 		 */
1744 		if (set_page_guard(zone, &page[size], high))
1745 			continue;
1746 
1747 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1748 		set_buddy_order(&page[size], high);
1749 		nr_added += size;
1750 	}
1751 
1752 	return nr_added;
1753 }
1754 
1755 static __always_inline void page_del_and_expand(struct zone *zone,
1756 						struct page *page, int low,
1757 						int high, int migratetype)
1758 {
1759 	int nr_pages = 1 << high;
1760 
1761 	__del_page_from_free_list(page, zone, high, migratetype);
1762 	nr_pages -= expand(zone, page, low, high, migratetype);
1763 	account_freepages(zone, -nr_pages, migratetype);
1764 }
1765 
1766 static void check_new_page_bad(struct page *page)
1767 {
1768 	if (unlikely(PageHWPoison(page))) {
1769 		/* Don't complain about hwpoisoned pages */
1770 		if (PageBuddy(page))
1771 			__ClearPageBuddy(page);
1772 		return;
1773 	}
1774 
1775 	bad_page(page,
1776 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1777 }
1778 
1779 /*
1780  * This page is about to be returned from the page allocator
1781  */
1782 static bool check_new_page(struct page *page)
1783 {
1784 	if (likely(page_expected_state(page,
1785 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1786 		return false;
1787 
1788 	check_new_page_bad(page);
1789 	return true;
1790 }
1791 
1792 static inline bool check_new_pages(struct page *page, unsigned int order)
1793 {
1794 	if (is_check_pages_enabled()) {
1795 		for (int i = 0; i < (1 << order); i++) {
1796 			struct page *p = page + i;
1797 
1798 			if (check_new_page(p))
1799 				return true;
1800 		}
1801 	}
1802 
1803 	return false;
1804 }
1805 
1806 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1807 {
1808 	/* Don't skip if a software KASAN mode is enabled. */
1809 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1810 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1811 		return false;
1812 
1813 	/* Skip, if hardware tag-based KASAN is not enabled. */
1814 	if (!kasan_hw_tags_enabled())
1815 		return true;
1816 
1817 	/*
1818 	 * With hardware tag-based KASAN enabled, skip if this has been
1819 	 * requested via __GFP_SKIP_KASAN.
1820 	 */
1821 	return flags & __GFP_SKIP_KASAN;
1822 }
1823 
1824 static inline bool should_skip_init(gfp_t flags)
1825 {
1826 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1827 	if (!kasan_hw_tags_enabled())
1828 		return false;
1829 
1830 	/* For hardware tag-based KASAN, skip if requested. */
1831 	return (flags & __GFP_SKIP_ZERO);
1832 }
1833 
1834 inline void post_alloc_hook(struct page *page, unsigned int order,
1835 				gfp_t gfp_flags)
1836 {
1837 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1838 			!should_skip_init(gfp_flags);
1839 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1840 	int i;
1841 
1842 	set_page_private(page, 0);
1843 
1844 	arch_alloc_page(page, order);
1845 	debug_pagealloc_map_pages(page, 1 << order);
1846 
1847 	/*
1848 	 * Page unpoisoning must happen before memory initialization.
1849 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1850 	 * allocations and the page unpoisoning code will complain.
1851 	 */
1852 	kernel_unpoison_pages(page, 1 << order);
1853 
1854 	/*
1855 	 * As memory initialization might be integrated into KASAN,
1856 	 * KASAN unpoisoning and memory initializion code must be
1857 	 * kept together to avoid discrepancies in behavior.
1858 	 */
1859 
1860 	/*
1861 	 * If memory tags should be zeroed
1862 	 * (which happens only when memory should be initialized as well).
1863 	 */
1864 	if (zero_tags)
1865 		init = !tag_clear_highpages(page, 1 << order);
1866 
1867 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1868 	    kasan_unpoison_pages(page, order, init)) {
1869 		/* Take note that memory was initialized by KASAN. */
1870 		if (kasan_has_integrated_init())
1871 			init = false;
1872 	} else {
1873 		/*
1874 		 * If memory tags have not been set by KASAN, reset the page
1875 		 * tags to ensure page_address() dereferencing does not fault.
1876 		 */
1877 		for (i = 0; i != 1 << order; ++i)
1878 			page_kasan_tag_reset(page + i);
1879 	}
1880 	/* If memory is still not initialized, initialize it now. */
1881 	if (init)
1882 		kernel_init_pages(page, 1 << order);
1883 
1884 	set_page_owner(page, order, gfp_flags);
1885 	page_table_check_alloc(page, order);
1886 	pgalloc_tag_add(page, current, 1 << order);
1887 }
1888 
1889 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1890 							unsigned int alloc_flags)
1891 {
1892 	post_alloc_hook(page, order, gfp_flags);
1893 
1894 	if (order && (gfp_flags & __GFP_COMP))
1895 		prep_compound_page(page, order);
1896 
1897 	/*
1898 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1899 	 * allocate the page. The expectation is that the caller is taking
1900 	 * steps that will free more memory. The caller should avoid the page
1901 	 * being used for !PFMEMALLOC purposes.
1902 	 */
1903 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1904 		set_page_pfmemalloc(page);
1905 	else
1906 		clear_page_pfmemalloc(page);
1907 }
1908 
1909 /*
1910  * Go through the free lists for the given migratetype and remove
1911  * the smallest available page from the freelists
1912  */
1913 static __always_inline
1914 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1915 						int migratetype)
1916 {
1917 	unsigned int current_order;
1918 	struct free_area *area;
1919 	struct page *page;
1920 
1921 	/* Find a page of the appropriate size in the preferred list */
1922 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1923 		area = &(zone->free_area[current_order]);
1924 		page = get_page_from_free_area(area, migratetype);
1925 		if (!page)
1926 			continue;
1927 
1928 		page_del_and_expand(zone, page, order, current_order,
1929 				    migratetype);
1930 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1931 				pcp_allowed_order(order) &&
1932 				migratetype < MIGRATE_PCPTYPES);
1933 		return page;
1934 	}
1935 
1936 	return NULL;
1937 }
1938 
1939 
1940 /*
1941  * This array describes the order lists are fallen back to when
1942  * the free lists for the desirable migrate type are depleted
1943  *
1944  * The other migratetypes do not have fallbacks.
1945  */
1946 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1947 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1948 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1949 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1950 };
1951 
1952 #ifdef CONFIG_CMA
1953 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1954 					unsigned int order)
1955 {
1956 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1957 }
1958 #else
1959 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1960 					unsigned int order) { return NULL; }
1961 #endif
1962 
1963 /*
1964  * Move all free pages of a block to new type's freelist. Caller needs to
1965  * change the block type.
1966  */
1967 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1968 				  int old_mt, int new_mt)
1969 {
1970 	struct page *page;
1971 	unsigned long pfn, end_pfn;
1972 	unsigned int order;
1973 	int pages_moved = 0;
1974 
1975 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1976 	end_pfn = pageblock_end_pfn(start_pfn);
1977 
1978 	for (pfn = start_pfn; pfn < end_pfn;) {
1979 		page = pfn_to_page(pfn);
1980 		if (!PageBuddy(page)) {
1981 			pfn++;
1982 			continue;
1983 		}
1984 
1985 		/* Make sure we are not inadvertently changing nodes */
1986 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1987 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1988 
1989 		order = buddy_order(page);
1990 
1991 		move_to_free_list(page, zone, order, old_mt, new_mt);
1992 
1993 		pfn += 1 << order;
1994 		pages_moved += 1 << order;
1995 	}
1996 
1997 	return pages_moved;
1998 }
1999 
2000 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
2001 				      unsigned long *start_pfn,
2002 				      int *num_free, int *num_movable)
2003 {
2004 	unsigned long pfn, start, end;
2005 
2006 	pfn = page_to_pfn(page);
2007 	start = pageblock_start_pfn(pfn);
2008 	end = pageblock_end_pfn(pfn);
2009 
2010 	/*
2011 	 * The caller only has the lock for @zone, don't touch ranges
2012 	 * that straddle into other zones. While we could move part of
2013 	 * the range that's inside the zone, this call is usually
2014 	 * accompanied by other operations such as migratetype updates
2015 	 * which also should be locked.
2016 	 */
2017 	if (!zone_spans_pfn(zone, start))
2018 		return false;
2019 	if (!zone_spans_pfn(zone, end - 1))
2020 		return false;
2021 
2022 	*start_pfn = start;
2023 
2024 	if (num_free) {
2025 		*num_free = 0;
2026 		*num_movable = 0;
2027 		for (pfn = start; pfn < end;) {
2028 			page = pfn_to_page(pfn);
2029 			if (PageBuddy(page)) {
2030 				int nr = 1 << buddy_order(page);
2031 
2032 				*num_free += nr;
2033 				pfn += nr;
2034 				continue;
2035 			}
2036 			/*
2037 			 * We assume that pages that could be isolated for
2038 			 * migration are movable. But we don't actually try
2039 			 * isolating, as that would be expensive.
2040 			 */
2041 			if (PageLRU(page) || page_has_movable_ops(page))
2042 				(*num_movable)++;
2043 			pfn++;
2044 		}
2045 	}
2046 
2047 	return true;
2048 }
2049 
2050 static int move_freepages_block(struct zone *zone, struct page *page,
2051 				int old_mt, int new_mt)
2052 {
2053 	unsigned long start_pfn;
2054 	int res;
2055 
2056 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
2057 		return -1;
2058 
2059 	res = __move_freepages_block(zone, start_pfn, old_mt, new_mt);
2060 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
2061 
2062 	return res;
2063 
2064 }
2065 
2066 #ifdef CONFIG_MEMORY_ISOLATION
2067 /* Look for a buddy that straddles start_pfn */
2068 static unsigned long find_large_buddy(unsigned long start_pfn)
2069 {
2070 	/*
2071 	 * If start_pfn is not an order-0 PageBuddy, next PageBuddy containing
2072 	 * start_pfn has minimal order of __ffs(start_pfn) + 1. Start checking
2073 	 * the order with __ffs(start_pfn). If start_pfn is order-0 PageBuddy,
2074 	 * the starting order does not matter.
2075 	 */
2076 	int order = start_pfn ? __ffs(start_pfn) : MAX_PAGE_ORDER;
2077 	struct page *page;
2078 	unsigned long pfn = start_pfn;
2079 
2080 	while (!PageBuddy(page = pfn_to_page(pfn))) {
2081 		/* Nothing found */
2082 		if (++order > MAX_PAGE_ORDER)
2083 			return start_pfn;
2084 		pfn &= ~0UL << order;
2085 	}
2086 
2087 	/*
2088 	 * Found a preceding buddy, but does it straddle?
2089 	 */
2090 	if (pfn + (1 << buddy_order(page)) > start_pfn)
2091 		return pfn;
2092 
2093 	/* Nothing found */
2094 	return start_pfn;
2095 }
2096 
2097 static inline void toggle_pageblock_isolate(struct page *page, bool isolate)
2098 {
2099 	if (isolate)
2100 		set_pageblock_isolate(page);
2101 	else
2102 		clear_pageblock_isolate(page);
2103 }
2104 
2105 /**
2106  * __move_freepages_block_isolate - move free pages in block for page isolation
2107  * @zone: the zone
2108  * @page: the pageblock page
2109  * @isolate: to isolate the given pageblock or unisolate it
2110  *
2111  * This is similar to move_freepages_block(), but handles the special
2112  * case encountered in page isolation, where the block of interest
2113  * might be part of a larger buddy spanning multiple pageblocks.
2114  *
2115  * Unlike the regular page allocator path, which moves pages while
2116  * stealing buddies off the freelist, page isolation is interested in
2117  * arbitrary pfn ranges that may have overlapping buddies on both ends.
2118  *
2119  * This function handles that. Straddling buddies are split into
2120  * individual pageblocks. Only the block of interest is moved.
2121  *
2122  * Returns %true if pages could be moved, %false otherwise.
2123  */
2124 static bool __move_freepages_block_isolate(struct zone *zone,
2125 		struct page *page, bool isolate)
2126 {
2127 	unsigned long start_pfn, buddy_pfn;
2128 	int from_mt;
2129 	int to_mt;
2130 	struct page *buddy;
2131 
2132 	if (isolate == get_pageblock_isolate(page)) {
2133 		VM_WARN_ONCE(1, "%s a pageblock that is already in that state",
2134 			     isolate ? "Isolate" : "Unisolate");
2135 		return false;
2136 	}
2137 
2138 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
2139 		return false;
2140 
2141 	/* No splits needed if buddies can't span multiple blocks */
2142 	if (pageblock_order == MAX_PAGE_ORDER)
2143 		goto move;
2144 
2145 	buddy_pfn = find_large_buddy(start_pfn);
2146 	buddy = pfn_to_page(buddy_pfn);
2147 	/* We're a part of a larger buddy */
2148 	if (PageBuddy(buddy) && buddy_order(buddy) > pageblock_order) {
2149 		int order = buddy_order(buddy);
2150 
2151 		del_page_from_free_list(buddy, zone, order,
2152 					get_pfnblock_migratetype(buddy, buddy_pfn));
2153 		toggle_pageblock_isolate(page, isolate);
2154 		split_large_buddy(zone, buddy, buddy_pfn, order, FPI_NONE);
2155 		return true;
2156 	}
2157 
2158 move:
2159 	/* Use MIGRATETYPE_MASK to get non-isolate migratetype */
2160 	if (isolate) {
2161 		from_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page),
2162 						    MIGRATETYPE_MASK);
2163 		to_mt = MIGRATE_ISOLATE;
2164 	} else {
2165 		from_mt = MIGRATE_ISOLATE;
2166 		to_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page),
2167 						  MIGRATETYPE_MASK);
2168 	}
2169 
2170 	__move_freepages_block(zone, start_pfn, from_mt, to_mt);
2171 	toggle_pageblock_isolate(pfn_to_page(start_pfn), isolate);
2172 
2173 	return true;
2174 }
2175 
2176 bool pageblock_isolate_and_move_free_pages(struct zone *zone, struct page *page)
2177 {
2178 	return __move_freepages_block_isolate(zone, page, true);
2179 }
2180 
2181 bool pageblock_unisolate_and_move_free_pages(struct zone *zone, struct page *page)
2182 {
2183 	return __move_freepages_block_isolate(zone, page, false);
2184 }
2185 
2186 #endif /* CONFIG_MEMORY_ISOLATION */
2187 
2188 static inline bool boost_watermark(struct zone *zone)
2189 {
2190 	unsigned long max_boost;
2191 
2192 	if (!watermark_boost_factor)
2193 		return false;
2194 	/*
2195 	 * Don't bother in zones that are unlikely to produce results.
2196 	 * On small machines, including kdump capture kernels running
2197 	 * in a small area, boosting the watermark can cause an out of
2198 	 * memory situation immediately.
2199 	 */
2200 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2201 		return false;
2202 
2203 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2204 			watermark_boost_factor, 10000);
2205 
2206 	/*
2207 	 * high watermark may be uninitialised if fragmentation occurs
2208 	 * very early in boot so do not boost. We do not fall
2209 	 * through and boost by pageblock_nr_pages as failing
2210 	 * allocations that early means that reclaim is not going
2211 	 * to help and it may even be impossible to reclaim the
2212 	 * boosted watermark resulting in a hang.
2213 	 */
2214 	if (!max_boost)
2215 		return false;
2216 
2217 	max_boost = max(pageblock_nr_pages, max_boost);
2218 
2219 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2220 		max_boost);
2221 
2222 	return true;
2223 }
2224 
2225 /*
2226  * When we are falling back to another migratetype during allocation, should we
2227  * try to claim an entire block to satisfy further allocations, instead of
2228  * polluting multiple pageblocks?
2229  */
2230 static bool should_try_claim_block(unsigned int order, int start_mt)
2231 {
2232 	/*
2233 	 * Leaving this order check is intended, although there is
2234 	 * relaxed order check in next check. The reason is that
2235 	 * we can actually claim the whole pageblock if this condition met,
2236 	 * but, below check doesn't guarantee it and that is just heuristic
2237 	 * so could be changed anytime.
2238 	 */
2239 	if (order >= pageblock_order)
2240 		return true;
2241 
2242 	/*
2243 	 * Above a certain threshold, always try to claim, as it's likely there
2244 	 * will be more free pages in the pageblock.
2245 	 */
2246 	if (order >= pageblock_order / 2)
2247 		return true;
2248 
2249 	/*
2250 	 * Unmovable/reclaimable allocations would cause permanent
2251 	 * fragmentations if they fell back to allocating from a movable block
2252 	 * (polluting it), so we try to claim the whole block regardless of the
2253 	 * allocation size. Later movable allocations can always steal from this
2254 	 * block, which is less problematic.
2255 	 */
2256 	if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
2257 		return true;
2258 
2259 	if (page_group_by_mobility_disabled)
2260 		return true;
2261 
2262 	/*
2263 	 * Movable pages won't cause permanent fragmentation, so when you alloc
2264 	 * small pages, we just need to temporarily steal unmovable or
2265 	 * reclaimable pages that are closest to the request size. After a
2266 	 * while, memory compaction may occur to form large contiguous pages,
2267 	 * and the next movable allocation may not need to steal.
2268 	 */
2269 	return false;
2270 }
2271 
2272 /*
2273  * Check whether there is a suitable fallback freepage with requested order.
2274  * If claimable is true, this function returns fallback_mt only if
2275  * we would do this whole-block claiming. This would help to reduce
2276  * fragmentation due to mixed migratetype pages in one pageblock.
2277  */
2278 int find_suitable_fallback(struct free_area *area, unsigned int order,
2279 			   int migratetype, bool claimable)
2280 {
2281 	int i;
2282 
2283 	if (claimable && !should_try_claim_block(order, migratetype))
2284 		return -2;
2285 
2286 	if (area->nr_free == 0)
2287 		return -1;
2288 
2289 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2290 		int fallback_mt = fallbacks[migratetype][i];
2291 
2292 		if (!free_area_empty(area, fallback_mt))
2293 			return fallback_mt;
2294 	}
2295 
2296 	return -1;
2297 }
2298 
2299 /*
2300  * This function implements actual block claiming behaviour. If order is large
2301  * enough, we can claim the whole pageblock for the requested migratetype. If
2302  * not, we check the pageblock for constituent pages; if at least half of the
2303  * pages are free or compatible, we can still claim the whole block, so pages
2304  * freed in the future will be put on the correct free list.
2305  */
2306 static struct page *
2307 try_to_claim_block(struct zone *zone, struct page *page,
2308 		   int current_order, int order, int start_type,
2309 		   int block_type, unsigned int alloc_flags)
2310 {
2311 	int free_pages, movable_pages, alike_pages;
2312 	unsigned long start_pfn;
2313 
2314 	/* Take ownership for orders >= pageblock_order */
2315 	if (current_order >= pageblock_order) {
2316 		unsigned int nr_added;
2317 
2318 		del_page_from_free_list(page, zone, current_order, block_type);
2319 		change_pageblock_range(page, current_order, start_type);
2320 		nr_added = expand(zone, page, order, current_order, start_type);
2321 		account_freepages(zone, nr_added, start_type);
2322 		return page;
2323 	}
2324 
2325 	/*
2326 	 * Boost watermarks to increase reclaim pressure to reduce the
2327 	 * likelihood of future fallbacks. Wake kswapd now as the node
2328 	 * may be balanced overall and kswapd will not wake naturally.
2329 	 */
2330 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2331 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2332 
2333 	/* moving whole block can fail due to zone boundary conditions */
2334 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2335 				       &movable_pages))
2336 		return NULL;
2337 
2338 	/*
2339 	 * Determine how many pages are compatible with our allocation.
2340 	 * For movable allocation, it's the number of movable pages which
2341 	 * we just obtained. For other types it's a bit more tricky.
2342 	 */
2343 	if (start_type == MIGRATE_MOVABLE) {
2344 		alike_pages = movable_pages;
2345 	} else {
2346 		/*
2347 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2348 		 * to MOVABLE pageblock, consider all non-movable pages as
2349 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2350 		 * vice versa, be conservative since we can't distinguish the
2351 		 * exact migratetype of non-movable pages.
2352 		 */
2353 		if (block_type == MIGRATE_MOVABLE)
2354 			alike_pages = pageblock_nr_pages
2355 						- (free_pages + movable_pages);
2356 		else
2357 			alike_pages = 0;
2358 	}
2359 	/*
2360 	 * If a sufficient number of pages in the block are either free or of
2361 	 * compatible migratability as our allocation, claim the whole block.
2362 	 */
2363 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2364 			page_group_by_mobility_disabled) {
2365 		__move_freepages_block(zone, start_pfn, block_type, start_type);
2366 		set_pageblock_migratetype(pfn_to_page(start_pfn), start_type);
2367 		return __rmqueue_smallest(zone, order, start_type);
2368 	}
2369 
2370 	return NULL;
2371 }
2372 
2373 /*
2374  * Try to allocate from some fallback migratetype by claiming the entire block,
2375  * i.e. converting it to the allocation's start migratetype.
2376  *
2377  * The use of signed ints for order and current_order is a deliberate
2378  * deviation from the rest of this file, to make the for loop
2379  * condition simpler.
2380  */
2381 static __always_inline struct page *
2382 __rmqueue_claim(struct zone *zone, int order, int start_migratetype,
2383 						unsigned int alloc_flags)
2384 {
2385 	struct free_area *area;
2386 	int current_order;
2387 	int min_order = order;
2388 	struct page *page;
2389 	int fallback_mt;
2390 
2391 	/*
2392 	 * Do not steal pages from freelists belonging to other pageblocks
2393 	 * i.e. orders < pageblock_order. If there are no local zones free,
2394 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2395 	 */
2396 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2397 		min_order = pageblock_order;
2398 
2399 	/*
2400 	 * Find the largest available free page in the other list. This roughly
2401 	 * approximates finding the pageblock with the most free pages, which
2402 	 * would be too costly to do exactly.
2403 	 */
2404 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2405 				--current_order) {
2406 		area = &(zone->free_area[current_order]);
2407 		fallback_mt = find_suitable_fallback(area, current_order,
2408 						     start_migratetype, true);
2409 
2410 		/* No block in that order */
2411 		if (fallback_mt == -1)
2412 			continue;
2413 
2414 		/* Advanced into orders too low to claim, abort */
2415 		if (fallback_mt == -2)
2416 			break;
2417 
2418 		page = get_page_from_free_area(area, fallback_mt);
2419 		page = try_to_claim_block(zone, page, current_order, order,
2420 					  start_migratetype, fallback_mt,
2421 					  alloc_flags);
2422 		if (page) {
2423 			trace_mm_page_alloc_extfrag(page, order, current_order,
2424 						    start_migratetype, fallback_mt);
2425 			return page;
2426 		}
2427 	}
2428 
2429 	return NULL;
2430 }
2431 
2432 /*
2433  * Try to steal a single page from some fallback migratetype. Leave the rest of
2434  * the block as its current migratetype, potentially causing fragmentation.
2435  */
2436 static __always_inline struct page *
2437 __rmqueue_steal(struct zone *zone, int order, int start_migratetype)
2438 {
2439 	struct free_area *area;
2440 	int current_order;
2441 	struct page *page;
2442 	int fallback_mt;
2443 
2444 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2445 		area = &(zone->free_area[current_order]);
2446 		fallback_mt = find_suitable_fallback(area, current_order,
2447 						     start_migratetype, false);
2448 		if (fallback_mt == -1)
2449 			continue;
2450 
2451 		page = get_page_from_free_area(area, fallback_mt);
2452 		page_del_and_expand(zone, page, order, current_order, fallback_mt);
2453 		trace_mm_page_alloc_extfrag(page, order, current_order,
2454 					    start_migratetype, fallback_mt);
2455 		return page;
2456 	}
2457 
2458 	return NULL;
2459 }
2460 
2461 enum rmqueue_mode {
2462 	RMQUEUE_NORMAL,
2463 	RMQUEUE_CMA,
2464 	RMQUEUE_CLAIM,
2465 	RMQUEUE_STEAL,
2466 };
2467 
2468 /*
2469  * Do the hard work of removing an element from the buddy allocator.
2470  * Call me with the zone->lock already held.
2471  */
2472 static __always_inline struct page *
2473 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2474 	  unsigned int alloc_flags, enum rmqueue_mode *mode)
2475 {
2476 	struct page *page;
2477 
2478 	if (IS_ENABLED(CONFIG_CMA)) {
2479 		/*
2480 		 * Balance movable allocations between regular and CMA areas by
2481 		 * allocating from CMA when over half of the zone's free memory
2482 		 * is in the CMA area.
2483 		 */
2484 		if (alloc_flags & ALLOC_CMA &&
2485 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2486 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2487 			page = __rmqueue_cma_fallback(zone, order);
2488 			if (page)
2489 				return page;
2490 		}
2491 	}
2492 
2493 	/*
2494 	 * First try the freelists of the requested migratetype, then try
2495 	 * fallbacks modes with increasing levels of fragmentation risk.
2496 	 *
2497 	 * The fallback logic is expensive and rmqueue_bulk() calls in
2498 	 * a loop with the zone->lock held, meaning the freelists are
2499 	 * not subject to any outside changes. Remember in *mode where
2500 	 * we found pay dirt, to save us the search on the next call.
2501 	 */
2502 	switch (*mode) {
2503 	case RMQUEUE_NORMAL:
2504 		page = __rmqueue_smallest(zone, order, migratetype);
2505 		if (page)
2506 			return page;
2507 		fallthrough;
2508 	case RMQUEUE_CMA:
2509 		if (alloc_flags & ALLOC_CMA) {
2510 			page = __rmqueue_cma_fallback(zone, order);
2511 			if (page) {
2512 				*mode = RMQUEUE_CMA;
2513 				return page;
2514 			}
2515 		}
2516 		fallthrough;
2517 	case RMQUEUE_CLAIM:
2518 		page = __rmqueue_claim(zone, order, migratetype, alloc_flags);
2519 		if (page) {
2520 			/* Replenished preferred freelist, back to normal mode. */
2521 			*mode = RMQUEUE_NORMAL;
2522 			return page;
2523 		}
2524 		fallthrough;
2525 	case RMQUEUE_STEAL:
2526 		if (!(alloc_flags & ALLOC_NOFRAGMENT)) {
2527 			page = __rmqueue_steal(zone, order, migratetype);
2528 			if (page) {
2529 				*mode = RMQUEUE_STEAL;
2530 				return page;
2531 			}
2532 		}
2533 	}
2534 	return NULL;
2535 }
2536 
2537 /*
2538  * Obtain a specified number of elements from the buddy allocator, all under
2539  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2540  * Returns the number of new pages which were placed at *list.
2541  */
2542 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2543 			unsigned long count, struct list_head *list,
2544 			int migratetype, unsigned int alloc_flags)
2545 {
2546 	enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2547 	unsigned long flags;
2548 	int i;
2549 
2550 	if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2551 		if (!spin_trylock_irqsave(&zone->lock, flags))
2552 			return 0;
2553 	} else {
2554 		spin_lock_irqsave(&zone->lock, flags);
2555 	}
2556 	for (i = 0; i < count; ++i) {
2557 		struct page *page = __rmqueue(zone, order, migratetype,
2558 					      alloc_flags, &rmqm);
2559 		if (unlikely(page == NULL))
2560 			break;
2561 
2562 		/*
2563 		 * Split buddy pages returned by expand() are received here in
2564 		 * physical page order. The page is added to the tail of
2565 		 * caller's list. From the callers perspective, the linked list
2566 		 * is ordered by page number under some conditions. This is
2567 		 * useful for IO devices that can forward direction from the
2568 		 * head, thus also in the physical page order. This is useful
2569 		 * for IO devices that can merge IO requests if the physical
2570 		 * pages are ordered properly.
2571 		 */
2572 		list_add_tail(&page->pcp_list, list);
2573 	}
2574 	spin_unlock_irqrestore(&zone->lock, flags);
2575 
2576 	return i;
2577 }
2578 
2579 /*
2580  * Called from the vmstat counter updater to decay the PCP high.
2581  * Return whether there are addition works to do.
2582  */
2583 bool decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2584 {
2585 	int high_min, to_drain, to_drain_batched, batch;
2586 	unsigned long UP_flags;
2587 	bool todo = false;
2588 
2589 	high_min = READ_ONCE(pcp->high_min);
2590 	batch = READ_ONCE(pcp->batch);
2591 	/*
2592 	 * Decrease pcp->high periodically to try to free possible
2593 	 * idle PCP pages.  And, avoid to free too many pages to
2594 	 * control latency.  This caps pcp->high decrement too.
2595 	 */
2596 	if (pcp->high > high_min) {
2597 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2598 				 pcp->high - (pcp->high >> 3), high_min);
2599 		if (pcp->high > high_min)
2600 			todo = true;
2601 	}
2602 
2603 	to_drain = pcp->count - pcp->high;
2604 	while (to_drain > 0) {
2605 		to_drain_batched = min(to_drain, batch);
2606 		pcp_spin_lock_maybe_irqsave(pcp, UP_flags);
2607 		free_pcppages_bulk(zone, to_drain_batched, pcp, 0);
2608 		pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags);
2609 		todo = true;
2610 
2611 		to_drain -= to_drain_batched;
2612 	}
2613 
2614 	return todo;
2615 }
2616 
2617 #ifdef CONFIG_NUMA
2618 /*
2619  * Called from the vmstat counter updater to drain pagesets of this
2620  * currently executing processor on remote nodes after they have
2621  * expired.
2622  */
2623 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2624 {
2625 	unsigned long UP_flags;
2626 	int to_drain, batch;
2627 
2628 	batch = READ_ONCE(pcp->batch);
2629 	to_drain = min(pcp->count, batch);
2630 	if (to_drain > 0) {
2631 		pcp_spin_lock_maybe_irqsave(pcp, UP_flags);
2632 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2633 		pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags);
2634 	}
2635 }
2636 #endif
2637 
2638 /*
2639  * Drain pcplists of the indicated processor and zone.
2640  */
2641 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2642 {
2643 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2644 	unsigned long UP_flags;
2645 	int count;
2646 
2647 	do {
2648 		pcp_spin_lock_maybe_irqsave(pcp, UP_flags);
2649 		count = pcp->count;
2650 		if (count) {
2651 			int to_drain = min(count,
2652 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2653 
2654 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2655 			count -= to_drain;
2656 		}
2657 		pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags);
2658 	} while (count);
2659 }
2660 
2661 /*
2662  * Drain pcplists of all zones on the indicated processor.
2663  */
2664 static void drain_pages(unsigned int cpu)
2665 {
2666 	struct zone *zone;
2667 
2668 	for_each_populated_zone(zone) {
2669 		drain_pages_zone(cpu, zone);
2670 	}
2671 }
2672 
2673 /*
2674  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2675  */
2676 void drain_local_pages(struct zone *zone)
2677 {
2678 	int cpu = smp_processor_id();
2679 
2680 	if (zone)
2681 		drain_pages_zone(cpu, zone);
2682 	else
2683 		drain_pages(cpu);
2684 }
2685 
2686 /*
2687  * The implementation of drain_all_pages(), exposing an extra parameter to
2688  * drain on all cpus.
2689  *
2690  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2691  * not empty. The check for non-emptiness can however race with a free to
2692  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2693  * that need the guarantee that every CPU has drained can disable the
2694  * optimizing racy check.
2695  */
2696 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2697 {
2698 	int cpu;
2699 
2700 	/*
2701 	 * Allocate in the BSS so we won't require allocation in
2702 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2703 	 */
2704 	static cpumask_t cpus_with_pcps;
2705 
2706 	/*
2707 	 * Do not drain if one is already in progress unless it's specific to
2708 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2709 	 * the drain to be complete when the call returns.
2710 	 */
2711 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2712 		if (!zone)
2713 			return;
2714 		mutex_lock(&pcpu_drain_mutex);
2715 	}
2716 
2717 	/*
2718 	 * We don't care about racing with CPU hotplug event
2719 	 * as offline notification will cause the notified
2720 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2721 	 * disables preemption as part of its processing
2722 	 */
2723 	for_each_online_cpu(cpu) {
2724 		struct per_cpu_pages *pcp;
2725 		struct zone *z;
2726 		bool has_pcps = false;
2727 
2728 		if (force_all_cpus) {
2729 			/*
2730 			 * The pcp.count check is racy, some callers need a
2731 			 * guarantee that no cpu is missed.
2732 			 */
2733 			has_pcps = true;
2734 		} else if (zone) {
2735 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2736 			if (pcp->count)
2737 				has_pcps = true;
2738 		} else {
2739 			for_each_populated_zone(z) {
2740 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2741 				if (pcp->count) {
2742 					has_pcps = true;
2743 					break;
2744 				}
2745 			}
2746 		}
2747 
2748 		if (has_pcps)
2749 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2750 		else
2751 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2752 	}
2753 
2754 	for_each_cpu(cpu, &cpus_with_pcps) {
2755 		if (zone)
2756 			drain_pages_zone(cpu, zone);
2757 		else
2758 			drain_pages(cpu);
2759 	}
2760 
2761 	mutex_unlock(&pcpu_drain_mutex);
2762 }
2763 
2764 /*
2765  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2766  *
2767  * When zone parameter is non-NULL, spill just the single zone's pages.
2768  */
2769 void drain_all_pages(struct zone *zone)
2770 {
2771 	__drain_all_pages(zone, false);
2772 }
2773 
2774 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2775 {
2776 	int min_nr_free, max_nr_free;
2777 
2778 	/* Free as much as possible if batch freeing high-order pages. */
2779 	if (unlikely(free_high))
2780 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2781 
2782 	/* Check for PCP disabled or boot pageset */
2783 	if (unlikely(high < batch))
2784 		return 1;
2785 
2786 	/* Leave at least pcp->batch pages on the list */
2787 	min_nr_free = batch;
2788 	max_nr_free = high - batch;
2789 
2790 	/*
2791 	 * Increase the batch number to the number of the consecutive
2792 	 * freed pages to reduce zone lock contention.
2793 	 */
2794 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2795 
2796 	return batch;
2797 }
2798 
2799 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2800 		       int batch, bool free_high)
2801 {
2802 	int high, high_min, high_max;
2803 
2804 	high_min = READ_ONCE(pcp->high_min);
2805 	high_max = READ_ONCE(pcp->high_max);
2806 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2807 
2808 	if (unlikely(!high))
2809 		return 0;
2810 
2811 	if (unlikely(free_high)) {
2812 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2813 				high_min);
2814 		return 0;
2815 	}
2816 
2817 	/*
2818 	 * If reclaim is active, limit the number of pages that can be
2819 	 * stored on pcp lists
2820 	 */
2821 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2822 		int free_count = max_t(int, pcp->free_count, batch);
2823 
2824 		pcp->high = max(high - free_count, high_min);
2825 		return min(batch << 2, pcp->high);
2826 	}
2827 
2828 	if (high_min == high_max)
2829 		return high;
2830 
2831 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2832 		int free_count = max_t(int, pcp->free_count, batch);
2833 
2834 		pcp->high = max(high - free_count, high_min);
2835 		high = max(pcp->count, high_min);
2836 	} else if (pcp->count >= high) {
2837 		int need_high = pcp->free_count + batch;
2838 
2839 		/* pcp->high should be large enough to hold batch freed pages */
2840 		if (pcp->high < need_high)
2841 			pcp->high = clamp(need_high, high_min, high_max);
2842 	}
2843 
2844 	return high;
2845 }
2846 
2847 /*
2848  * Tune pcp alloc factor and adjust count & free_count. Free pages to bring the
2849  * pcp's watermarks below high.
2850  *
2851  * May return a freed pcp, if during page freeing the pcp spinlock cannot be
2852  * reacquired. Return true if pcp is locked, false otherwise.
2853  */
2854 static bool free_frozen_page_commit(struct zone *zone,
2855 		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2856 		unsigned int order, fpi_t fpi_flags, unsigned long *UP_flags)
2857 {
2858 	int high, batch;
2859 	int to_free, to_free_batched;
2860 	int pindex;
2861 	int cpu = smp_processor_id();
2862 	int ret = true;
2863 	bool free_high = false;
2864 
2865 	/*
2866 	 * On freeing, reduce the number of pages that are batch allocated.
2867 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2868 	 * allocations.
2869 	 */
2870 	pcp->alloc_factor >>= 1;
2871 	__count_vm_events(PGFREE, 1 << order);
2872 	pindex = order_to_pindex(migratetype, order);
2873 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2874 	pcp->count += 1 << order;
2875 
2876 	batch = READ_ONCE(pcp->batch);
2877 	/*
2878 	 * As high-order pages other than THP's stored on PCP can contribute
2879 	 * to fragmentation, limit the number stored when PCP is heavily
2880 	 * freeing without allocation. The remainder after bulk freeing
2881 	 * stops will be drained from vmstat refresh context.
2882 	 */
2883 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2884 		free_high = (pcp->free_count >= (batch + pcp->high_min / 2) &&
2885 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2886 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2887 			      pcp->count >= batch));
2888 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2889 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2890 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2891 	}
2892 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2893 		pcp->free_count += (1 << order);
2894 
2895 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
2896 		/*
2897 		 * Do not attempt to take a zone lock. Let pcp->count get
2898 		 * over high mark temporarily.
2899 		 */
2900 		return true;
2901 	}
2902 
2903 	high = nr_pcp_high(pcp, zone, batch, free_high);
2904 	if (pcp->count < high)
2905 		return true;
2906 
2907 	to_free = nr_pcp_free(pcp, batch, high, free_high);
2908 	while (to_free > 0 && pcp->count > 0) {
2909 		to_free_batched = min(to_free, batch);
2910 		free_pcppages_bulk(zone, to_free_batched, pcp, pindex);
2911 		to_free -= to_free_batched;
2912 
2913 		if (to_free == 0 || pcp->count == 0)
2914 			break;
2915 
2916 		pcp_spin_unlock(pcp, *UP_flags);
2917 
2918 		pcp = pcp_spin_trylock(zone->per_cpu_pageset, *UP_flags);
2919 		if (!pcp) {
2920 			ret = false;
2921 			break;
2922 		}
2923 
2924 		/*
2925 		 * Check if this thread has been migrated to a different CPU.
2926 		 * If that is the case, give up and indicate that the pcp is
2927 		 * returned in an unlocked state.
2928 		 */
2929 		if (smp_processor_id() != cpu) {
2930 			pcp_spin_unlock(pcp, *UP_flags);
2931 			ret = false;
2932 			break;
2933 		}
2934 	}
2935 
2936 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2937 	    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2938 			      ZONE_MOVABLE, 0)) {
2939 		struct pglist_data *pgdat = zone->zone_pgdat;
2940 		clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2941 
2942 		/*
2943 		 * Assume that memory pressure on this node is gone and may be
2944 		 * in a reclaimable state. If a memory fallback node exists,
2945 		 * direct reclaim may not have been triggered, causing a
2946 		 * 'hopeless node' to stay in that state for a while.  Let
2947 		 * kswapd work again by resetting kswapd_failures.
2948 		 */
2949 		if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES &&
2950 		    next_memory_node(pgdat->node_id) < MAX_NUMNODES)
2951 			atomic_set(&pgdat->kswapd_failures, 0);
2952 	}
2953 	return ret;
2954 }
2955 
2956 /*
2957  * Free a pcp page
2958  */
2959 static void __free_frozen_pages(struct page *page, unsigned int order,
2960 				fpi_t fpi_flags)
2961 {
2962 	unsigned long UP_flags;
2963 	struct per_cpu_pages *pcp;
2964 	struct zone *zone;
2965 	unsigned long pfn = page_to_pfn(page);
2966 	int migratetype;
2967 
2968 	if (!pcp_allowed_order(order)) {
2969 		__free_pages_ok(page, order, fpi_flags);
2970 		return;
2971 	}
2972 
2973 	if (!free_pages_prepare(page, order))
2974 		return;
2975 
2976 	/*
2977 	 * We only track unmovable, reclaimable and movable on pcp lists.
2978 	 * Place ISOLATE pages on the isolated list because they are being
2979 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2980 	 * get those areas back if necessary. Otherwise, we may have to free
2981 	 * excessively into the page allocator
2982 	 */
2983 	zone = page_zone(page);
2984 	migratetype = get_pfnblock_migratetype(page, pfn);
2985 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2986 		if (unlikely(is_migrate_isolate(migratetype))) {
2987 			free_one_page(zone, page, pfn, order, fpi_flags);
2988 			return;
2989 		}
2990 		migratetype = MIGRATE_MOVABLE;
2991 	}
2992 
2993 	if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
2994 		     && (in_nmi() || in_hardirq()))) {
2995 		add_page_to_zone_llist(zone, page, order);
2996 		return;
2997 	}
2998 	pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags);
2999 	if (pcp) {
3000 		if (!free_frozen_page_commit(zone, pcp, page, migratetype,
3001 						order, fpi_flags, &UP_flags))
3002 			return;
3003 		pcp_spin_unlock(pcp, UP_flags);
3004 	} else {
3005 		free_one_page(zone, page, pfn, order, fpi_flags);
3006 	}
3007 }
3008 
3009 void free_frozen_pages(struct page *page, unsigned int order)
3010 {
3011 	__free_frozen_pages(page, order, FPI_NONE);
3012 }
3013 
3014 void free_frozen_pages_nolock(struct page *page, unsigned int order)
3015 {
3016 	__free_frozen_pages(page, order, FPI_TRYLOCK);
3017 }
3018 
3019 /*
3020  * Free a batch of folios
3021  */
3022 void free_unref_folios(struct folio_batch *folios)
3023 {
3024 	unsigned long UP_flags;
3025 	struct per_cpu_pages *pcp = NULL;
3026 	struct zone *locked_zone = NULL;
3027 	int i, j;
3028 
3029 	/* Prepare folios for freeing */
3030 	for (i = 0, j = 0; i < folios->nr; i++) {
3031 		struct folio *folio = folios->folios[i];
3032 		unsigned long pfn = folio_pfn(folio);
3033 		unsigned int order = folio_order(folio);
3034 
3035 		if (!free_pages_prepare(&folio->page, order))
3036 			continue;
3037 		/*
3038 		 * Free orders not handled on the PCP directly to the
3039 		 * allocator.
3040 		 */
3041 		if (!pcp_allowed_order(order)) {
3042 			free_one_page(folio_zone(folio), &folio->page,
3043 				      pfn, order, FPI_NONE);
3044 			continue;
3045 		}
3046 		folio->private = (void *)(unsigned long)order;
3047 		if (j != i)
3048 			folios->folios[j] = folio;
3049 		j++;
3050 	}
3051 	folios->nr = j;
3052 
3053 	for (i = 0; i < folios->nr; i++) {
3054 		struct folio *folio = folios->folios[i];
3055 		struct zone *zone = folio_zone(folio);
3056 		unsigned long pfn = folio_pfn(folio);
3057 		unsigned int order = (unsigned long)folio->private;
3058 		int migratetype;
3059 
3060 		folio->private = NULL;
3061 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
3062 
3063 		/* Different zone requires a different pcp lock */
3064 		if (zone != locked_zone ||
3065 		    is_migrate_isolate(migratetype)) {
3066 			if (pcp) {
3067 				pcp_spin_unlock(pcp, UP_flags);
3068 				locked_zone = NULL;
3069 				pcp = NULL;
3070 			}
3071 
3072 			/*
3073 			 * Free isolated pages directly to the
3074 			 * allocator, see comment in free_frozen_pages.
3075 			 */
3076 			if (is_migrate_isolate(migratetype)) {
3077 				free_one_page(zone, &folio->page, pfn,
3078 					      order, FPI_NONE);
3079 				continue;
3080 			}
3081 
3082 			/*
3083 			 * trylock is necessary as folios may be getting freed
3084 			 * from IRQ or SoftIRQ context after an IO completion.
3085 			 */
3086 			pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags);
3087 			if (unlikely(!pcp)) {
3088 				free_one_page(zone, &folio->page, pfn,
3089 					      order, FPI_NONE);
3090 				continue;
3091 			}
3092 			locked_zone = zone;
3093 		}
3094 
3095 		/*
3096 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3097 		 * to the MIGRATE_MOVABLE pcp list.
3098 		 */
3099 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3100 			migratetype = MIGRATE_MOVABLE;
3101 
3102 		trace_mm_page_free_batched(&folio->page);
3103 		if (!free_frozen_page_commit(zone, pcp, &folio->page,
3104 				migratetype, order, FPI_NONE, &UP_flags)) {
3105 			pcp = NULL;
3106 			locked_zone = NULL;
3107 		}
3108 	}
3109 
3110 	if (pcp)
3111 		pcp_spin_unlock(pcp, UP_flags);
3112 	folio_batch_reinit(folios);
3113 }
3114 
3115 /*
3116  * split_page takes a non-compound higher-order page, and splits it into
3117  * n (1<<order) sub-pages: page[0..n]
3118  * Each sub-page must be freed individually.
3119  *
3120  * Note: this is probably too low level an operation for use in drivers.
3121  * Please consult with lkml before using this in your driver.
3122  */
3123 void split_page(struct page *page, unsigned int order)
3124 {
3125 	int i;
3126 
3127 	VM_BUG_ON_PAGE(PageCompound(page), page);
3128 	VM_BUG_ON_PAGE(!page_count(page), page);
3129 
3130 	for (i = 1; i < (1 << order); i++)
3131 		set_page_refcounted(page + i);
3132 	split_page_owner(page, order, 0);
3133 	pgalloc_tag_split(page_folio(page), order, 0);
3134 	split_page_memcg(page, order);
3135 }
3136 EXPORT_SYMBOL_GPL(split_page);
3137 
3138 int __isolate_free_page(struct page *page, unsigned int order)
3139 {
3140 	struct zone *zone = page_zone(page);
3141 	int mt = get_pageblock_migratetype(page);
3142 
3143 	if (!is_migrate_isolate(mt)) {
3144 		unsigned long watermark;
3145 		/*
3146 		 * Obey watermarks as if the page was being allocated. We can
3147 		 * emulate a high-order watermark check with a raised order-0
3148 		 * watermark, because we already know our high-order page
3149 		 * exists.
3150 		 */
3151 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3152 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3153 			return 0;
3154 	}
3155 
3156 	del_page_from_free_list(page, zone, order, mt);
3157 
3158 	/*
3159 	 * Set the pageblock if the isolated page is at least half of a
3160 	 * pageblock
3161 	 */
3162 	if (order >= pageblock_order - 1) {
3163 		struct page *endpage = page + (1 << order) - 1;
3164 		for (; page < endpage; page += pageblock_nr_pages) {
3165 			int mt = get_pageblock_migratetype(page);
3166 			/*
3167 			 * Only change normal pageblocks (i.e., they can merge
3168 			 * with others)
3169 			 */
3170 			if (migratetype_is_mergeable(mt))
3171 				move_freepages_block(zone, page, mt,
3172 						     MIGRATE_MOVABLE);
3173 		}
3174 	}
3175 
3176 	return 1UL << order;
3177 }
3178 
3179 /**
3180  * __putback_isolated_page - Return a now-isolated page back where we got it
3181  * @page: Page that was isolated
3182  * @order: Order of the isolated page
3183  * @mt: The page's pageblock's migratetype
3184  *
3185  * This function is meant to return a page pulled from the free lists via
3186  * __isolate_free_page back to the free lists they were pulled from.
3187  */
3188 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3189 {
3190 	struct zone *zone = page_zone(page);
3191 
3192 	/* zone lock should be held when this function is called */
3193 	lockdep_assert_held(&zone->lock);
3194 
3195 	/* Return isolated page to tail of freelist. */
3196 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3197 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3198 }
3199 
3200 /*
3201  * Update NUMA hit/miss statistics
3202  */
3203 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3204 				   long nr_account)
3205 {
3206 #ifdef CONFIG_NUMA
3207 	enum numa_stat_item local_stat = NUMA_LOCAL;
3208 
3209 	/* skip numa counters update if numa stats is disabled */
3210 	if (!static_branch_likely(&vm_numa_stat_key))
3211 		return;
3212 
3213 	if (zone_to_nid(z) != numa_node_id())
3214 		local_stat = NUMA_OTHER;
3215 
3216 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3217 		__count_numa_events(z, NUMA_HIT, nr_account);
3218 	else {
3219 		__count_numa_events(z, NUMA_MISS, nr_account);
3220 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3221 	}
3222 	__count_numa_events(z, local_stat, nr_account);
3223 #endif
3224 }
3225 
3226 static __always_inline
3227 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3228 			   unsigned int order, unsigned int alloc_flags,
3229 			   int migratetype)
3230 {
3231 	struct page *page;
3232 	unsigned long flags;
3233 
3234 	do {
3235 		page = NULL;
3236 		if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
3237 			if (!spin_trylock_irqsave(&zone->lock, flags))
3238 				return NULL;
3239 		} else {
3240 			spin_lock_irqsave(&zone->lock, flags);
3241 		}
3242 		if (alloc_flags & ALLOC_HIGHATOMIC)
3243 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3244 		if (!page) {
3245 			enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
3246 
3247 			page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm);
3248 
3249 			/*
3250 			 * If the allocation fails, allow OOM handling and
3251 			 * order-0 (atomic) allocs access to HIGHATOMIC
3252 			 * reserves as failing now is worse than failing a
3253 			 * high-order atomic allocation in the future.
3254 			 */
3255 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
3256 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3257 
3258 			if (!page) {
3259 				spin_unlock_irqrestore(&zone->lock, flags);
3260 				return NULL;
3261 			}
3262 		}
3263 		spin_unlock_irqrestore(&zone->lock, flags);
3264 	} while (check_new_pages(page, order));
3265 
3266 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3267 	zone_statistics(preferred_zone, zone, 1);
3268 
3269 	return page;
3270 }
3271 
3272 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
3273 {
3274 	int high, base_batch, batch, max_nr_alloc;
3275 	int high_max, high_min;
3276 
3277 	base_batch = READ_ONCE(pcp->batch);
3278 	high_min = READ_ONCE(pcp->high_min);
3279 	high_max = READ_ONCE(pcp->high_max);
3280 	high = pcp->high = clamp(pcp->high, high_min, high_max);
3281 
3282 	/* Check for PCP disabled or boot pageset */
3283 	if (unlikely(high < base_batch))
3284 		return 1;
3285 
3286 	if (order)
3287 		batch = base_batch;
3288 	else
3289 		batch = (base_batch << pcp->alloc_factor);
3290 
3291 	/*
3292 	 * If we had larger pcp->high, we could avoid to allocate from
3293 	 * zone.
3294 	 */
3295 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
3296 		high = pcp->high = min(high + batch, high_max);
3297 
3298 	if (!order) {
3299 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3300 		/*
3301 		 * Double the number of pages allocated each time there is
3302 		 * subsequent allocation of order-0 pages without any freeing.
3303 		 */
3304 		if (batch <= max_nr_alloc &&
3305 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3306 			pcp->alloc_factor++;
3307 		batch = min(batch, max_nr_alloc);
3308 	}
3309 
3310 	/*
3311 	 * Scale batch relative to order if batch implies free pages
3312 	 * can be stored on the PCP. Batch can be 1 for small zones or
3313 	 * for boot pagesets which should never store free pages as
3314 	 * the pages may belong to arbitrary zones.
3315 	 */
3316 	if (batch > 1)
3317 		batch = max(batch >> order, 2);
3318 
3319 	return batch;
3320 }
3321 
3322 /* Remove page from the per-cpu list, caller must protect the list */
3323 static inline
3324 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3325 			int migratetype,
3326 			unsigned int alloc_flags,
3327 			struct per_cpu_pages *pcp,
3328 			struct list_head *list)
3329 {
3330 	struct page *page;
3331 
3332 	do {
3333 		if (list_empty(list)) {
3334 			int batch = nr_pcp_alloc(pcp, zone, order);
3335 			int alloced;
3336 
3337 			alloced = rmqueue_bulk(zone, order,
3338 					batch, list,
3339 					migratetype, alloc_flags);
3340 
3341 			pcp->count += alloced << order;
3342 			if (unlikely(list_empty(list)))
3343 				return NULL;
3344 		}
3345 
3346 		page = list_first_entry(list, struct page, pcp_list);
3347 		list_del(&page->pcp_list);
3348 		pcp->count -= 1 << order;
3349 	} while (check_new_pages(page, order));
3350 
3351 	return page;
3352 }
3353 
3354 /* Lock and remove page from the per-cpu list */
3355 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3356 			struct zone *zone, unsigned int order,
3357 			int migratetype, unsigned int alloc_flags)
3358 {
3359 	struct per_cpu_pages *pcp;
3360 	struct list_head *list;
3361 	struct page *page;
3362 	unsigned long UP_flags;
3363 
3364 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3365 	pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags);
3366 	if (!pcp)
3367 		return NULL;
3368 
3369 	/*
3370 	 * On allocation, reduce the number of pages that are batch freed.
3371 	 * See nr_pcp_free() where free_factor is increased for subsequent
3372 	 * frees.
3373 	 */
3374 	pcp->free_count >>= 1;
3375 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3376 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3377 	pcp_spin_unlock(pcp, UP_flags);
3378 	if (page) {
3379 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3380 		zone_statistics(preferred_zone, zone, 1);
3381 	}
3382 	return page;
3383 }
3384 
3385 /*
3386  * Allocate a page from the given zone.
3387  * Use pcplists for THP or "cheap" high-order allocations.
3388  */
3389 
3390 /*
3391  * Do not instrument rmqueue() with KMSAN. This function may call
3392  * __msan_poison_alloca() through a call to set_pfnblock_migratetype().
3393  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3394  * may call rmqueue() again, which will result in a deadlock.
3395  */
3396 __no_sanitize_memory
3397 static inline
3398 struct page *rmqueue(struct zone *preferred_zone,
3399 			struct zone *zone, unsigned int order,
3400 			gfp_t gfp_flags, unsigned int alloc_flags,
3401 			int migratetype)
3402 {
3403 	struct page *page;
3404 
3405 	if (likely(pcp_allowed_order(order))) {
3406 		page = rmqueue_pcplist(preferred_zone, zone, order,
3407 				       migratetype, alloc_flags);
3408 		if (likely(page))
3409 			goto out;
3410 	}
3411 
3412 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3413 							migratetype);
3414 
3415 out:
3416 	/* Separate test+clear to avoid unnecessary atomics */
3417 	if ((alloc_flags & ALLOC_KSWAPD) &&
3418 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3419 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3420 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3421 	}
3422 
3423 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3424 	return page;
3425 }
3426 
3427 /*
3428  * Reserve the pageblock(s) surrounding an allocation request for
3429  * exclusive use of high-order atomic allocations if there are no
3430  * empty page blocks that contain a page with a suitable order
3431  */
3432 static void reserve_highatomic_pageblock(struct page *page, int order,
3433 					 struct zone *zone)
3434 {
3435 	int mt;
3436 	unsigned long max_managed, flags;
3437 
3438 	/*
3439 	 * The number reserved as: minimum is 1 pageblock, maximum is
3440 	 * roughly 1% of a zone. But if 1% of a zone falls below a
3441 	 * pageblock size, then don't reserve any pageblocks.
3442 	 * Check is race-prone but harmless.
3443 	 */
3444 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3445 		return;
3446 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3447 	if (zone->nr_reserved_highatomic >= max_managed)
3448 		return;
3449 
3450 	spin_lock_irqsave(&zone->lock, flags);
3451 
3452 	/* Recheck the nr_reserved_highatomic limit under the lock */
3453 	if (zone->nr_reserved_highatomic >= max_managed)
3454 		goto out_unlock;
3455 
3456 	/* Yoink! */
3457 	mt = get_pageblock_migratetype(page);
3458 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
3459 	if (!migratetype_is_mergeable(mt))
3460 		goto out_unlock;
3461 
3462 	if (order < pageblock_order) {
3463 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3464 			goto out_unlock;
3465 		zone->nr_reserved_highatomic += pageblock_nr_pages;
3466 	} else {
3467 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3468 		zone->nr_reserved_highatomic += 1 << order;
3469 	}
3470 
3471 out_unlock:
3472 	spin_unlock_irqrestore(&zone->lock, flags);
3473 }
3474 
3475 /*
3476  * Used when an allocation is about to fail under memory pressure. This
3477  * potentially hurts the reliability of high-order allocations when under
3478  * intense memory pressure but failed atomic allocations should be easier
3479  * to recover from than an OOM.
3480  *
3481  * If @force is true, try to unreserve pageblocks even though highatomic
3482  * pageblock is exhausted.
3483  */
3484 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3485 						bool force)
3486 {
3487 	struct zonelist *zonelist = ac->zonelist;
3488 	unsigned long flags;
3489 	struct zoneref *z;
3490 	struct zone *zone;
3491 	struct page *page;
3492 	int order;
3493 	int ret;
3494 
3495 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3496 								ac->nodemask) {
3497 		/*
3498 		 * Preserve at least one pageblock unless memory pressure
3499 		 * is really high.
3500 		 */
3501 		if (!force && zone->nr_reserved_highatomic <=
3502 					pageblock_nr_pages)
3503 			continue;
3504 
3505 		spin_lock_irqsave(&zone->lock, flags);
3506 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
3507 			struct free_area *area = &(zone->free_area[order]);
3508 			unsigned long size;
3509 
3510 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3511 			if (!page)
3512 				continue;
3513 
3514 			size = max(pageblock_nr_pages, 1UL << order);
3515 			/*
3516 			 * It should never happen but changes to
3517 			 * locking could inadvertently allow a per-cpu
3518 			 * drain to add pages to MIGRATE_HIGHATOMIC
3519 			 * while unreserving so be safe and watch for
3520 			 * underflows.
3521 			 */
3522 			if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
3523 				size = zone->nr_reserved_highatomic;
3524 			zone->nr_reserved_highatomic -= size;
3525 
3526 			/*
3527 			 * Convert to ac->migratetype and avoid the normal
3528 			 * pageblock stealing heuristics. Minimally, the caller
3529 			 * is doing the work and needs the pages. More
3530 			 * importantly, if the block was always converted to
3531 			 * MIGRATE_UNMOVABLE or another type then the number
3532 			 * of pageblocks that cannot be completely freed
3533 			 * may increase.
3534 			 */
3535 			if (order < pageblock_order)
3536 				ret = move_freepages_block(zone, page,
3537 							   MIGRATE_HIGHATOMIC,
3538 							   ac->migratetype);
3539 			else {
3540 				move_to_free_list(page, zone, order,
3541 						  MIGRATE_HIGHATOMIC,
3542 						  ac->migratetype);
3543 				change_pageblock_range(page, order,
3544 						       ac->migratetype);
3545 				ret = 1;
3546 			}
3547 			/*
3548 			 * Reserving the block(s) already succeeded,
3549 			 * so this should not fail on zone boundaries.
3550 			 */
3551 			WARN_ON_ONCE(ret == -1);
3552 			if (ret > 0) {
3553 				spin_unlock_irqrestore(&zone->lock, flags);
3554 				return ret;
3555 			}
3556 		}
3557 		spin_unlock_irqrestore(&zone->lock, flags);
3558 	}
3559 
3560 	return false;
3561 }
3562 
3563 static inline long __zone_watermark_unusable_free(struct zone *z,
3564 				unsigned int order, unsigned int alloc_flags)
3565 {
3566 	long unusable_free = (1 << order) - 1;
3567 
3568 	/*
3569 	 * If the caller does not have rights to reserves below the min
3570 	 * watermark then subtract the free pages reserved for highatomic.
3571 	 */
3572 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3573 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3574 
3575 #ifdef CONFIG_CMA
3576 	/* If allocation can't use CMA areas don't use free CMA pages */
3577 	if (!(alloc_flags & ALLOC_CMA))
3578 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3579 #endif
3580 
3581 	return unusable_free;
3582 }
3583 
3584 /*
3585  * Return true if free base pages are above 'mark'. For high-order checks it
3586  * will return true of the order-0 watermark is reached and there is at least
3587  * one free page of a suitable size. Checking now avoids taking the zone lock
3588  * to check in the allocation paths if no pages are free.
3589  */
3590 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3591 			 int highest_zoneidx, unsigned int alloc_flags,
3592 			 long free_pages)
3593 {
3594 	long min = mark;
3595 	int o;
3596 
3597 	/* free_pages may go negative - that's OK */
3598 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3599 
3600 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3601 		/*
3602 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3603 		 * as OOM.
3604 		 */
3605 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3606 			min -= min / 2;
3607 
3608 			/*
3609 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3610 			 * access more reserves than just __GFP_HIGH. Other
3611 			 * non-blocking allocations requests such as GFP_NOWAIT
3612 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3613 			 * access to the min reserve.
3614 			 */
3615 			if (alloc_flags & ALLOC_NON_BLOCK)
3616 				min -= min / 4;
3617 		}
3618 
3619 		/*
3620 		 * OOM victims can try even harder than the normal reserve
3621 		 * users on the grounds that it's definitely going to be in
3622 		 * the exit path shortly and free memory. Any allocation it
3623 		 * makes during the free path will be small and short-lived.
3624 		 */
3625 		if (alloc_flags & ALLOC_OOM)
3626 			min -= min / 2;
3627 	}
3628 
3629 	/*
3630 	 * Check watermarks for an order-0 allocation request. If these
3631 	 * are not met, then a high-order request also cannot go ahead
3632 	 * even if a suitable page happened to be free.
3633 	 */
3634 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3635 		return false;
3636 
3637 	/* If this is an order-0 request then the watermark is fine */
3638 	if (!order)
3639 		return true;
3640 
3641 	/* For a high-order request, check at least one suitable page is free */
3642 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3643 		struct free_area *area = &z->free_area[o];
3644 		int mt;
3645 
3646 		if (!area->nr_free)
3647 			continue;
3648 
3649 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3650 			if (!free_area_empty(area, mt))
3651 				return true;
3652 		}
3653 
3654 #ifdef CONFIG_CMA
3655 		if ((alloc_flags & ALLOC_CMA) &&
3656 		    !free_area_empty(area, MIGRATE_CMA)) {
3657 			return true;
3658 		}
3659 #endif
3660 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3661 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3662 			return true;
3663 		}
3664 	}
3665 	return false;
3666 }
3667 
3668 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3669 		      int highest_zoneidx, unsigned int alloc_flags)
3670 {
3671 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3672 					zone_page_state(z, NR_FREE_PAGES));
3673 }
3674 
3675 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3676 				unsigned long mark, int highest_zoneidx,
3677 				unsigned int alloc_flags, gfp_t gfp_mask)
3678 {
3679 	long free_pages;
3680 
3681 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3682 
3683 	/*
3684 	 * Fast check for order-0 only. If this fails then the reserves
3685 	 * need to be calculated.
3686 	 */
3687 	if (!order) {
3688 		long usable_free;
3689 		long reserved;
3690 
3691 		usable_free = free_pages;
3692 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3693 
3694 		/* reserved may over estimate high-atomic reserves. */
3695 		usable_free -= min(usable_free, reserved);
3696 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3697 			return true;
3698 	}
3699 
3700 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3701 					free_pages))
3702 		return true;
3703 
3704 	/*
3705 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3706 	 * when checking the min watermark. The min watermark is the
3707 	 * point where boosting is ignored so that kswapd is woken up
3708 	 * when below the low watermark.
3709 	 */
3710 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3711 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3712 		mark = z->_watermark[WMARK_MIN];
3713 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3714 					alloc_flags, free_pages);
3715 	}
3716 
3717 	return false;
3718 }
3719 
3720 #ifdef CONFIG_NUMA
3721 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3722 
3723 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3724 {
3725 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3726 				node_reclaim_distance;
3727 }
3728 #else	/* CONFIG_NUMA */
3729 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3730 {
3731 	return true;
3732 }
3733 #endif	/* CONFIG_NUMA */
3734 
3735 /*
3736  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3737  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3738  * premature use of a lower zone may cause lowmem pressure problems that
3739  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3740  * probably too small. It only makes sense to spread allocations to avoid
3741  * fragmentation between the Normal and DMA32 zones.
3742  */
3743 static inline unsigned int
3744 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3745 {
3746 	unsigned int alloc_flags;
3747 
3748 	/*
3749 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3750 	 * to save a branch.
3751 	 */
3752 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3753 
3754 	if (defrag_mode) {
3755 		alloc_flags |= ALLOC_NOFRAGMENT;
3756 		return alloc_flags;
3757 	}
3758 
3759 #ifdef CONFIG_ZONE_DMA32
3760 	if (!zone)
3761 		return alloc_flags;
3762 
3763 	if (zone_idx(zone) != ZONE_NORMAL)
3764 		return alloc_flags;
3765 
3766 	/*
3767 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3768 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3769 	 * on UMA that if Normal is populated then so is DMA32.
3770 	 */
3771 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3772 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3773 		return alloc_flags;
3774 
3775 	alloc_flags |= ALLOC_NOFRAGMENT;
3776 #endif /* CONFIG_ZONE_DMA32 */
3777 	return alloc_flags;
3778 }
3779 
3780 /* Must be called after current_gfp_context() which can change gfp_mask */
3781 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3782 						  unsigned int alloc_flags)
3783 {
3784 #ifdef CONFIG_CMA
3785 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3786 		alloc_flags |= ALLOC_CMA;
3787 #endif
3788 	return alloc_flags;
3789 }
3790 
3791 /*
3792  * get_page_from_freelist goes through the zonelist trying to allocate
3793  * a page.
3794  */
3795 static struct page *
3796 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3797 						const struct alloc_context *ac)
3798 {
3799 	struct zoneref *z;
3800 	struct zone *zone;
3801 	struct pglist_data *last_pgdat = NULL;
3802 	bool last_pgdat_dirty_ok = false;
3803 	bool no_fallback;
3804 	bool skip_kswapd_nodes = nr_online_nodes > 1;
3805 	bool skipped_kswapd_nodes = false;
3806 
3807 retry:
3808 	/*
3809 	 * Scan zonelist, looking for a zone with enough free.
3810 	 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c.
3811 	 */
3812 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3813 	z = ac->preferred_zoneref;
3814 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3815 					ac->nodemask) {
3816 		struct page *page;
3817 		unsigned long mark;
3818 
3819 		if (cpusets_enabled() &&
3820 			(alloc_flags & ALLOC_CPUSET) &&
3821 			!__cpuset_zone_allowed(zone, gfp_mask))
3822 				continue;
3823 		/*
3824 		 * When allocating a page cache page for writing, we
3825 		 * want to get it from a node that is within its dirty
3826 		 * limit, such that no single node holds more than its
3827 		 * proportional share of globally allowed dirty pages.
3828 		 * The dirty limits take into account the node's
3829 		 * lowmem reserves and high watermark so that kswapd
3830 		 * should be able to balance it without having to
3831 		 * write pages from its LRU list.
3832 		 *
3833 		 * XXX: For now, allow allocations to potentially
3834 		 * exceed the per-node dirty limit in the slowpath
3835 		 * (spread_dirty_pages unset) before going into reclaim,
3836 		 * which is important when on a NUMA setup the allowed
3837 		 * nodes are together not big enough to reach the
3838 		 * global limit.  The proper fix for these situations
3839 		 * will require awareness of nodes in the
3840 		 * dirty-throttling and the flusher threads.
3841 		 */
3842 		if (ac->spread_dirty_pages) {
3843 			if (last_pgdat != zone->zone_pgdat) {
3844 				last_pgdat = zone->zone_pgdat;
3845 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3846 			}
3847 
3848 			if (!last_pgdat_dirty_ok)
3849 				continue;
3850 		}
3851 
3852 		if (no_fallback && !defrag_mode && nr_online_nodes > 1 &&
3853 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3854 			int local_nid;
3855 
3856 			/*
3857 			 * If moving to a remote node, retry but allow
3858 			 * fragmenting fallbacks. Locality is more important
3859 			 * than fragmentation avoidance.
3860 			 */
3861 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3862 			if (zone_to_nid(zone) != local_nid) {
3863 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3864 				goto retry;
3865 			}
3866 		}
3867 
3868 		/*
3869 		 * If kswapd is already active on a node, keep looking
3870 		 * for other nodes that might be idle. This can happen
3871 		 * if another process has NUMA bindings and is causing
3872 		 * kswapd wakeups on only some nodes. Avoid accidental
3873 		 * "node_reclaim_mode"-like behavior in this case.
3874 		 */
3875 		if (skip_kswapd_nodes &&
3876 		    !waitqueue_active(&zone->zone_pgdat->kswapd_wait)) {
3877 			skipped_kswapd_nodes = true;
3878 			continue;
3879 		}
3880 
3881 		cond_accept_memory(zone, order, alloc_flags);
3882 
3883 		/*
3884 		 * Detect whether the number of free pages is below high
3885 		 * watermark.  If so, we will decrease pcp->high and free
3886 		 * PCP pages in free path to reduce the possibility of
3887 		 * premature page reclaiming.  Detection is done here to
3888 		 * avoid to do that in hotter free path.
3889 		 */
3890 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3891 			goto check_alloc_wmark;
3892 
3893 		mark = high_wmark_pages(zone);
3894 		if (zone_watermark_fast(zone, order, mark,
3895 					ac->highest_zoneidx, alloc_flags,
3896 					gfp_mask))
3897 			goto try_this_zone;
3898 		else
3899 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3900 
3901 check_alloc_wmark:
3902 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3903 		if (!zone_watermark_fast(zone, order, mark,
3904 				       ac->highest_zoneidx, alloc_flags,
3905 				       gfp_mask)) {
3906 			int ret;
3907 
3908 			if (cond_accept_memory(zone, order, alloc_flags))
3909 				goto try_this_zone;
3910 
3911 			/*
3912 			 * Watermark failed for this zone, but see if we can
3913 			 * grow this zone if it contains deferred pages.
3914 			 */
3915 			if (deferred_pages_enabled()) {
3916 				if (_deferred_grow_zone(zone, order))
3917 					goto try_this_zone;
3918 			}
3919 			/* Checked here to keep the fast path fast */
3920 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3921 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3922 				goto try_this_zone;
3923 
3924 			if (!node_reclaim_enabled() ||
3925 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3926 				continue;
3927 
3928 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3929 			switch (ret) {
3930 			case NODE_RECLAIM_NOSCAN:
3931 				/* did not scan */
3932 				continue;
3933 			case NODE_RECLAIM_FULL:
3934 				/* scanned but unreclaimable */
3935 				continue;
3936 			default:
3937 				/* did we reclaim enough */
3938 				if (zone_watermark_ok(zone, order, mark,
3939 					ac->highest_zoneidx, alloc_flags))
3940 					goto try_this_zone;
3941 
3942 				continue;
3943 			}
3944 		}
3945 
3946 try_this_zone:
3947 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3948 				gfp_mask, alloc_flags, ac->migratetype);
3949 		if (page) {
3950 			prep_new_page(page, order, gfp_mask, alloc_flags);
3951 
3952 			/*
3953 			 * If this is a high-order atomic allocation then check
3954 			 * if the pageblock should be reserved for the future
3955 			 */
3956 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3957 				reserve_highatomic_pageblock(page, order, zone);
3958 
3959 			return page;
3960 		} else {
3961 			if (cond_accept_memory(zone, order, alloc_flags))
3962 				goto try_this_zone;
3963 
3964 			/* Try again if zone has deferred pages */
3965 			if (deferred_pages_enabled()) {
3966 				if (_deferred_grow_zone(zone, order))
3967 					goto try_this_zone;
3968 			}
3969 		}
3970 	}
3971 
3972 	/*
3973 	 * If we skipped over nodes with active kswapds and found no
3974 	 * idle nodes, retry and place anywhere the watermarks permit.
3975 	 */
3976 	if (skip_kswapd_nodes && skipped_kswapd_nodes) {
3977 		skip_kswapd_nodes = false;
3978 		goto retry;
3979 	}
3980 
3981 	/*
3982 	 * It's possible on a UMA machine to get through all zones that are
3983 	 * fragmented. If avoiding fragmentation, reset and try again.
3984 	 */
3985 	if (no_fallback && !defrag_mode) {
3986 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3987 		goto retry;
3988 	}
3989 
3990 	return NULL;
3991 }
3992 
3993 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3994 {
3995 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3996 
3997 	/*
3998 	 * This documents exceptions given to allocations in certain
3999 	 * contexts that are allowed to allocate outside current's set
4000 	 * of allowed nodes.
4001 	 */
4002 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4003 		if (tsk_is_oom_victim(current) ||
4004 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4005 			filter &= ~SHOW_MEM_FILTER_NODES;
4006 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4007 		filter &= ~SHOW_MEM_FILTER_NODES;
4008 
4009 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4010 	mem_cgroup_show_protected_memory(NULL);
4011 }
4012 
4013 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4014 {
4015 	struct va_format vaf;
4016 	va_list args;
4017 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4018 
4019 	if ((gfp_mask & __GFP_NOWARN) ||
4020 	     !__ratelimit(&nopage_rs) ||
4021 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4022 		return;
4023 
4024 	va_start(args, fmt);
4025 	vaf.fmt = fmt;
4026 	vaf.va = &args;
4027 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4028 			current->comm, &vaf, gfp_mask, &gfp_mask,
4029 			nodemask_pr_args(nodemask));
4030 	va_end(args);
4031 
4032 	cpuset_print_current_mems_allowed();
4033 	pr_cont("\n");
4034 	dump_stack();
4035 	warn_alloc_show_mem(gfp_mask, nodemask);
4036 }
4037 
4038 static inline struct page *
4039 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4040 			      unsigned int alloc_flags,
4041 			      const struct alloc_context *ac)
4042 {
4043 	struct page *page;
4044 
4045 	page = get_page_from_freelist(gfp_mask, order,
4046 			alloc_flags|ALLOC_CPUSET, ac);
4047 	/*
4048 	 * fallback to ignore cpuset restriction if our nodes
4049 	 * are depleted
4050 	 */
4051 	if (!page)
4052 		page = get_page_from_freelist(gfp_mask, order,
4053 				alloc_flags, ac);
4054 	return page;
4055 }
4056 
4057 static inline struct page *
4058 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4059 	const struct alloc_context *ac, unsigned long *did_some_progress)
4060 {
4061 	struct oom_control oc = {
4062 		.zonelist = ac->zonelist,
4063 		.nodemask = ac->nodemask,
4064 		.memcg = NULL,
4065 		.gfp_mask = gfp_mask,
4066 		.order = order,
4067 	};
4068 	struct page *page;
4069 
4070 	*did_some_progress = 0;
4071 
4072 	/*
4073 	 * Acquire the oom lock.  If that fails, somebody else is
4074 	 * making progress for us.
4075 	 */
4076 	if (!mutex_trylock(&oom_lock)) {
4077 		*did_some_progress = 1;
4078 		schedule_timeout_uninterruptible(1);
4079 		return NULL;
4080 	}
4081 
4082 	/*
4083 	 * Go through the zonelist yet one more time, keep very high watermark
4084 	 * here, this is only to catch a parallel oom killing, we must fail if
4085 	 * we're still under heavy pressure. But make sure that this reclaim
4086 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4087 	 * allocation which will never fail due to oom_lock already held.
4088 	 */
4089 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4090 				      ~__GFP_DIRECT_RECLAIM, order,
4091 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4092 	if (page)
4093 		goto out;
4094 
4095 	/* Coredumps can quickly deplete all memory reserves */
4096 	if (current->flags & PF_DUMPCORE)
4097 		goto out;
4098 	/* The OOM killer will not help higher order allocs */
4099 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4100 		goto out;
4101 	/*
4102 	 * We have already exhausted all our reclaim opportunities without any
4103 	 * success so it is time to admit defeat. We will skip the OOM killer
4104 	 * because it is very likely that the caller has a more reasonable
4105 	 * fallback than shooting a random task.
4106 	 *
4107 	 * The OOM killer may not free memory on a specific node.
4108 	 */
4109 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4110 		goto out;
4111 	/* The OOM killer does not needlessly kill tasks for lowmem */
4112 	if (ac->highest_zoneidx < ZONE_NORMAL)
4113 		goto out;
4114 	if (pm_suspended_storage())
4115 		goto out;
4116 	/*
4117 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4118 	 * other request to make a forward progress.
4119 	 * We are in an unfortunate situation where out_of_memory cannot
4120 	 * do much for this context but let's try it to at least get
4121 	 * access to memory reserved if the current task is killed (see
4122 	 * out_of_memory). Once filesystems are ready to handle allocation
4123 	 * failures more gracefully we should just bail out here.
4124 	 */
4125 
4126 	/* Exhausted what can be done so it's blame time */
4127 	if (out_of_memory(&oc) ||
4128 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4129 		*did_some_progress = 1;
4130 
4131 		/*
4132 		 * Help non-failing allocations by giving them access to memory
4133 		 * reserves
4134 		 */
4135 		if (gfp_mask & __GFP_NOFAIL)
4136 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4137 					ALLOC_NO_WATERMARKS, ac);
4138 	}
4139 out:
4140 	mutex_unlock(&oom_lock);
4141 	return page;
4142 }
4143 
4144 /*
4145  * Maximum number of compaction retries with a progress before OOM
4146  * killer is consider as the only way to move forward.
4147  */
4148 #define MAX_COMPACT_RETRIES 16
4149 
4150 #ifdef CONFIG_COMPACTION
4151 /* Try memory compaction for high-order allocations before reclaim */
4152 static struct page *
4153 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4154 		unsigned int alloc_flags, const struct alloc_context *ac,
4155 		enum compact_priority prio, enum compact_result *compact_result)
4156 {
4157 	struct page *page = NULL;
4158 	unsigned long pflags;
4159 	unsigned int noreclaim_flag;
4160 
4161 	if (!order)
4162 		return NULL;
4163 
4164 	psi_memstall_enter(&pflags);
4165 	delayacct_compact_start();
4166 	noreclaim_flag = memalloc_noreclaim_save();
4167 
4168 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4169 								prio, &page);
4170 
4171 	memalloc_noreclaim_restore(noreclaim_flag);
4172 	psi_memstall_leave(&pflags);
4173 	delayacct_compact_end();
4174 
4175 	if (*compact_result == COMPACT_SKIPPED)
4176 		return NULL;
4177 	/*
4178 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4179 	 * count a compaction stall
4180 	 */
4181 	count_vm_event(COMPACTSTALL);
4182 
4183 	/* Prep a captured page if available */
4184 	if (page)
4185 		prep_new_page(page, order, gfp_mask, alloc_flags);
4186 
4187 	/* Try get a page from the freelist if available */
4188 	if (!page)
4189 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4190 
4191 	if (page) {
4192 		struct zone *zone = page_zone(page);
4193 
4194 		zone->compact_blockskip_flush = false;
4195 		compaction_defer_reset(zone, order, true);
4196 		count_vm_event(COMPACTSUCCESS);
4197 		return page;
4198 	}
4199 
4200 	/*
4201 	 * It's bad if compaction run occurs and fails. The most likely reason
4202 	 * is that pages exist, but not enough to satisfy watermarks.
4203 	 */
4204 	count_vm_event(COMPACTFAIL);
4205 
4206 	cond_resched();
4207 
4208 	return NULL;
4209 }
4210 
4211 static inline bool
4212 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4213 		     enum compact_result compact_result,
4214 		     enum compact_priority *compact_priority,
4215 		     int *compaction_retries)
4216 {
4217 	int max_retries = MAX_COMPACT_RETRIES;
4218 	int min_priority;
4219 	bool ret = false;
4220 	int retries = *compaction_retries;
4221 	enum compact_priority priority = *compact_priority;
4222 
4223 	if (!order)
4224 		return false;
4225 
4226 	if (fatal_signal_pending(current))
4227 		return false;
4228 
4229 	/*
4230 	 * Compaction was skipped due to a lack of free order-0
4231 	 * migration targets. Continue if reclaim can help.
4232 	 */
4233 	if (compact_result == COMPACT_SKIPPED) {
4234 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4235 		goto out;
4236 	}
4237 
4238 	/*
4239 	 * Compaction managed to coalesce some page blocks, but the
4240 	 * allocation failed presumably due to a race. Retry some.
4241 	 */
4242 	if (compact_result == COMPACT_SUCCESS) {
4243 		/*
4244 		 * !costly requests are much more important than
4245 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
4246 		 * facto nofail and invoke OOM killer to move on while
4247 		 * costly can fail and users are ready to cope with
4248 		 * that. 1/4 retries is rather arbitrary but we would
4249 		 * need much more detailed feedback from compaction to
4250 		 * make a better decision.
4251 		 */
4252 		if (order > PAGE_ALLOC_COSTLY_ORDER)
4253 			max_retries /= 4;
4254 
4255 		if (++(*compaction_retries) <= max_retries) {
4256 			ret = true;
4257 			goto out;
4258 		}
4259 	}
4260 
4261 	/*
4262 	 * Compaction failed. Retry with increasing priority.
4263 	 */
4264 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4265 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4266 
4267 	if (*compact_priority > min_priority) {
4268 		(*compact_priority)--;
4269 		*compaction_retries = 0;
4270 		ret = true;
4271 	}
4272 out:
4273 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4274 	return ret;
4275 }
4276 #else
4277 static inline struct page *
4278 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4279 		unsigned int alloc_flags, const struct alloc_context *ac,
4280 		enum compact_priority prio, enum compact_result *compact_result)
4281 {
4282 	*compact_result = COMPACT_SKIPPED;
4283 	return NULL;
4284 }
4285 
4286 static inline bool
4287 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4288 		     enum compact_result compact_result,
4289 		     enum compact_priority *compact_priority,
4290 		     int *compaction_retries)
4291 {
4292 	struct zone *zone;
4293 	struct zoneref *z;
4294 
4295 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4296 		return false;
4297 
4298 	/*
4299 	 * There are setups with compaction disabled which would prefer to loop
4300 	 * inside the allocator rather than hit the oom killer prematurely.
4301 	 * Let's give them a good hope and keep retrying while the order-0
4302 	 * watermarks are OK.
4303 	 */
4304 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4305 				ac->highest_zoneidx, ac->nodemask) {
4306 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4307 					ac->highest_zoneidx, alloc_flags))
4308 			return true;
4309 	}
4310 	return false;
4311 }
4312 #endif /* CONFIG_COMPACTION */
4313 
4314 #ifdef CONFIG_LOCKDEP
4315 static struct lockdep_map __fs_reclaim_map =
4316 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4317 
4318 static bool __need_reclaim(gfp_t gfp_mask)
4319 {
4320 	/* no reclaim without waiting on it */
4321 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4322 		return false;
4323 
4324 	/* this guy won't enter reclaim */
4325 	if (current->flags & PF_MEMALLOC)
4326 		return false;
4327 
4328 	if (gfp_mask & __GFP_NOLOCKDEP)
4329 		return false;
4330 
4331 	return true;
4332 }
4333 
4334 void __fs_reclaim_acquire(unsigned long ip)
4335 {
4336 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4337 }
4338 
4339 void __fs_reclaim_release(unsigned long ip)
4340 {
4341 	lock_release(&__fs_reclaim_map, ip);
4342 }
4343 
4344 void fs_reclaim_acquire(gfp_t gfp_mask)
4345 {
4346 	gfp_mask = current_gfp_context(gfp_mask);
4347 
4348 	if (__need_reclaim(gfp_mask)) {
4349 		if (gfp_mask & __GFP_FS)
4350 			__fs_reclaim_acquire(_RET_IP_);
4351 
4352 #ifdef CONFIG_MMU_NOTIFIER
4353 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4354 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4355 #endif
4356 
4357 	}
4358 }
4359 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4360 
4361 void fs_reclaim_release(gfp_t gfp_mask)
4362 {
4363 	gfp_mask = current_gfp_context(gfp_mask);
4364 
4365 	if (__need_reclaim(gfp_mask)) {
4366 		if (gfp_mask & __GFP_FS)
4367 			__fs_reclaim_release(_RET_IP_);
4368 	}
4369 }
4370 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4371 #endif
4372 
4373 /*
4374  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4375  * have been rebuilt so allocation retries. Reader side does not lock and
4376  * retries the allocation if zonelist changes. Writer side is protected by the
4377  * embedded spin_lock.
4378  */
4379 static DEFINE_SEQLOCK(zonelist_update_seq);
4380 
4381 static unsigned int zonelist_iter_begin(void)
4382 {
4383 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4384 		return read_seqbegin(&zonelist_update_seq);
4385 
4386 	return 0;
4387 }
4388 
4389 static unsigned int check_retry_zonelist(unsigned int seq)
4390 {
4391 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4392 		return read_seqretry(&zonelist_update_seq, seq);
4393 
4394 	return seq;
4395 }
4396 
4397 /* Perform direct synchronous page reclaim */
4398 static unsigned long
4399 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4400 					const struct alloc_context *ac)
4401 {
4402 	unsigned int noreclaim_flag;
4403 	unsigned long progress;
4404 
4405 	cond_resched();
4406 
4407 	/* We now go into synchronous reclaim */
4408 	cpuset_memory_pressure_bump();
4409 	fs_reclaim_acquire(gfp_mask);
4410 	noreclaim_flag = memalloc_noreclaim_save();
4411 
4412 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4413 								ac->nodemask);
4414 
4415 	memalloc_noreclaim_restore(noreclaim_flag);
4416 	fs_reclaim_release(gfp_mask);
4417 
4418 	cond_resched();
4419 
4420 	return progress;
4421 }
4422 
4423 /* The really slow allocator path where we enter direct reclaim */
4424 static inline struct page *
4425 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4426 		unsigned int alloc_flags, const struct alloc_context *ac,
4427 		unsigned long *did_some_progress)
4428 {
4429 	struct page *page = NULL;
4430 	unsigned long pflags;
4431 	bool drained = false;
4432 
4433 	psi_memstall_enter(&pflags);
4434 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4435 	if (unlikely(!(*did_some_progress)))
4436 		goto out;
4437 
4438 retry:
4439 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4440 
4441 	/*
4442 	 * If an allocation failed after direct reclaim, it could be because
4443 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4444 	 * Shrink them and try again
4445 	 */
4446 	if (!page && !drained) {
4447 		unreserve_highatomic_pageblock(ac, false);
4448 		drain_all_pages(NULL);
4449 		drained = true;
4450 		goto retry;
4451 	}
4452 out:
4453 	psi_memstall_leave(&pflags);
4454 
4455 	return page;
4456 }
4457 
4458 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4459 			     const struct alloc_context *ac)
4460 {
4461 	struct zoneref *z;
4462 	struct zone *zone;
4463 	pg_data_t *last_pgdat = NULL;
4464 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4465 	unsigned int reclaim_order;
4466 
4467 	if (defrag_mode)
4468 		reclaim_order = max(order, pageblock_order);
4469 	else
4470 		reclaim_order = order;
4471 
4472 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4473 					ac->nodemask) {
4474 		if (!managed_zone(zone))
4475 			continue;
4476 		if (last_pgdat == zone->zone_pgdat)
4477 			continue;
4478 		wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx);
4479 		last_pgdat = zone->zone_pgdat;
4480 	}
4481 }
4482 
4483 static inline unsigned int
4484 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4485 {
4486 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4487 
4488 	/*
4489 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4490 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4491 	 * to save two branches.
4492 	 */
4493 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4494 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4495 
4496 	/*
4497 	 * The caller may dip into page reserves a bit more if the caller
4498 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4499 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4500 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4501 	 */
4502 	alloc_flags |= (__force int)
4503 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4504 
4505 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4506 		/*
4507 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4508 		 * if it can't schedule.
4509 		 */
4510 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4511 			alloc_flags |= ALLOC_NON_BLOCK;
4512 
4513 			if (order > 0 && (alloc_flags & ALLOC_MIN_RESERVE))
4514 				alloc_flags |= ALLOC_HIGHATOMIC;
4515 		}
4516 
4517 		/*
4518 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4519 		 * GFP_ATOMIC) rather than fail, see the comment for
4520 		 * cpuset_current_node_allowed().
4521 		 */
4522 		if (alloc_flags & ALLOC_MIN_RESERVE)
4523 			alloc_flags &= ~ALLOC_CPUSET;
4524 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4525 		alloc_flags |= ALLOC_MIN_RESERVE;
4526 
4527 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4528 
4529 	if (defrag_mode)
4530 		alloc_flags |= ALLOC_NOFRAGMENT;
4531 
4532 	return alloc_flags;
4533 }
4534 
4535 static bool oom_reserves_allowed(struct task_struct *tsk)
4536 {
4537 	if (!tsk_is_oom_victim(tsk))
4538 		return false;
4539 
4540 	/*
4541 	 * !MMU doesn't have oom reaper so give access to memory reserves
4542 	 * only to the thread with TIF_MEMDIE set
4543 	 */
4544 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4545 		return false;
4546 
4547 	return true;
4548 }
4549 
4550 /*
4551  * Distinguish requests which really need access to full memory
4552  * reserves from oom victims which can live with a portion of it
4553  */
4554 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4555 {
4556 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4557 		return 0;
4558 	if (gfp_mask & __GFP_MEMALLOC)
4559 		return ALLOC_NO_WATERMARKS;
4560 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4561 		return ALLOC_NO_WATERMARKS;
4562 	if (!in_interrupt()) {
4563 		if (current->flags & PF_MEMALLOC)
4564 			return ALLOC_NO_WATERMARKS;
4565 		else if (oom_reserves_allowed(current))
4566 			return ALLOC_OOM;
4567 	}
4568 
4569 	return 0;
4570 }
4571 
4572 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4573 {
4574 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4575 }
4576 
4577 /*
4578  * Checks whether it makes sense to retry the reclaim to make a forward progress
4579  * for the given allocation request.
4580  *
4581  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4582  * without success, or when we couldn't even meet the watermark if we
4583  * reclaimed all remaining pages on the LRU lists.
4584  *
4585  * Returns true if a retry is viable or false to enter the oom path.
4586  */
4587 static inline bool
4588 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4589 		     struct alloc_context *ac, int alloc_flags,
4590 		     bool did_some_progress, int *no_progress_loops)
4591 {
4592 	struct zone *zone;
4593 	struct zoneref *z;
4594 	bool ret = false;
4595 
4596 	/*
4597 	 * Costly allocations might have made a progress but this doesn't mean
4598 	 * their order will become available due to high fragmentation so
4599 	 * always increment the no progress counter for them
4600 	 */
4601 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4602 		*no_progress_loops = 0;
4603 	else
4604 		(*no_progress_loops)++;
4605 
4606 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4607 		goto out;
4608 
4609 
4610 	/*
4611 	 * Keep reclaiming pages while there is a chance this will lead
4612 	 * somewhere.  If none of the target zones can satisfy our allocation
4613 	 * request even if all reclaimable pages are considered then we are
4614 	 * screwed and have to go OOM.
4615 	 */
4616 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4617 				ac->highest_zoneidx, ac->nodemask) {
4618 		unsigned long available;
4619 		unsigned long reclaimable;
4620 		unsigned long min_wmark = min_wmark_pages(zone);
4621 		bool wmark;
4622 
4623 		if (cpusets_enabled() &&
4624 			(alloc_flags & ALLOC_CPUSET) &&
4625 			!__cpuset_zone_allowed(zone, gfp_mask))
4626 				continue;
4627 
4628 		available = reclaimable = zone_reclaimable_pages(zone);
4629 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4630 
4631 		/*
4632 		 * Would the allocation succeed if we reclaimed all
4633 		 * reclaimable pages?
4634 		 */
4635 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4636 				ac->highest_zoneidx, alloc_flags, available);
4637 		trace_reclaim_retry_zone(z, order, reclaimable,
4638 				available, min_wmark, *no_progress_loops, wmark);
4639 		if (wmark) {
4640 			ret = true;
4641 			break;
4642 		}
4643 	}
4644 
4645 	/*
4646 	 * Memory allocation/reclaim might be called from a WQ context and the
4647 	 * current implementation of the WQ concurrency control doesn't
4648 	 * recognize that a particular WQ is congested if the worker thread is
4649 	 * looping without ever sleeping. Therefore we have to do a short sleep
4650 	 * here rather than calling cond_resched().
4651 	 */
4652 	if (current->flags & PF_WQ_WORKER)
4653 		schedule_timeout_uninterruptible(1);
4654 	else
4655 		cond_resched();
4656 out:
4657 	/* Before OOM, exhaust highatomic_reserve */
4658 	if (!ret)
4659 		return unreserve_highatomic_pageblock(ac, true);
4660 
4661 	return ret;
4662 }
4663 
4664 static inline bool
4665 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4666 {
4667 	/*
4668 	 * It's possible that cpuset's mems_allowed and the nodemask from
4669 	 * mempolicy don't intersect. This should be normally dealt with by
4670 	 * policy_nodemask(), but it's possible to race with cpuset update in
4671 	 * such a way the check therein was true, and then it became false
4672 	 * before we got our cpuset_mems_cookie here.
4673 	 * This assumes that for all allocations, ac->nodemask can come only
4674 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4675 	 * when it does not intersect with the cpuset restrictions) or the
4676 	 * caller can deal with a violated nodemask.
4677 	 */
4678 	if (cpusets_enabled() && ac->nodemask &&
4679 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4680 		ac->nodemask = NULL;
4681 		return true;
4682 	}
4683 
4684 	/*
4685 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4686 	 * possible to race with parallel threads in such a way that our
4687 	 * allocation can fail while the mask is being updated. If we are about
4688 	 * to fail, check if the cpuset changed during allocation and if so,
4689 	 * retry.
4690 	 */
4691 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4692 		return true;
4693 
4694 	return false;
4695 }
4696 
4697 static inline struct page *
4698 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4699 						struct alloc_context *ac)
4700 {
4701 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4702 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4703 	bool nofail = gfp_mask & __GFP_NOFAIL;
4704 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4705 	struct page *page = NULL;
4706 	unsigned int alloc_flags;
4707 	unsigned long did_some_progress;
4708 	enum compact_priority compact_priority;
4709 	enum compact_result compact_result;
4710 	int compaction_retries;
4711 	int no_progress_loops;
4712 	unsigned int cpuset_mems_cookie;
4713 	unsigned int zonelist_iter_cookie;
4714 	int reserve_flags;
4715 
4716 	if (unlikely(nofail)) {
4717 		/*
4718 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4719 		 * otherwise, we may result in lockup.
4720 		 */
4721 		WARN_ON_ONCE(!can_direct_reclaim);
4722 		/*
4723 		 * PF_MEMALLOC request from this context is rather bizarre
4724 		 * because we cannot reclaim anything and only can loop waiting
4725 		 * for somebody to do a work for us.
4726 		 */
4727 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4728 	}
4729 
4730 restart:
4731 	compaction_retries = 0;
4732 	no_progress_loops = 0;
4733 	compact_result = COMPACT_SKIPPED;
4734 	compact_priority = DEF_COMPACT_PRIORITY;
4735 	cpuset_mems_cookie = read_mems_allowed_begin();
4736 	zonelist_iter_cookie = zonelist_iter_begin();
4737 
4738 	/*
4739 	 * The fast path uses conservative alloc_flags to succeed only until
4740 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4741 	 * alloc_flags precisely. So we do that now.
4742 	 */
4743 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4744 
4745 	/*
4746 	 * We need to recalculate the starting point for the zonelist iterator
4747 	 * because we might have used different nodemask in the fast path, or
4748 	 * there was a cpuset modification and we are retrying - otherwise we
4749 	 * could end up iterating over non-eligible zones endlessly.
4750 	 */
4751 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4752 					ac->highest_zoneidx, ac->nodemask);
4753 	if (!zonelist_zone(ac->preferred_zoneref))
4754 		goto nopage;
4755 
4756 	/*
4757 	 * Check for insane configurations where the cpuset doesn't contain
4758 	 * any suitable zone to satisfy the request - e.g. non-movable
4759 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4760 	 */
4761 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4762 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4763 					ac->highest_zoneidx,
4764 					&cpuset_current_mems_allowed);
4765 		if (!zonelist_zone(z))
4766 			goto nopage;
4767 	}
4768 
4769 	if (alloc_flags & ALLOC_KSWAPD)
4770 		wake_all_kswapds(order, gfp_mask, ac);
4771 
4772 	/*
4773 	 * The adjusted alloc_flags might result in immediate success, so try
4774 	 * that first
4775 	 */
4776 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4777 	if (page)
4778 		goto got_pg;
4779 
4780 	/*
4781 	 * For costly allocations, try direct compaction first, as it's likely
4782 	 * that we have enough base pages and don't need to reclaim. For non-
4783 	 * movable high-order allocations, do that as well, as compaction will
4784 	 * try prevent permanent fragmentation by migrating from blocks of the
4785 	 * same migratetype.
4786 	 * Don't try this for allocations that are allowed to ignore
4787 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4788 	 */
4789 	if (can_direct_reclaim && can_compact &&
4790 			(costly_order ||
4791 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4792 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4793 		page = __alloc_pages_direct_compact(gfp_mask, order,
4794 						alloc_flags, ac,
4795 						INIT_COMPACT_PRIORITY,
4796 						&compact_result);
4797 		if (page)
4798 			goto got_pg;
4799 
4800 		/*
4801 		 * Checks for costly allocations with __GFP_NORETRY, which
4802 		 * includes some THP page fault allocations
4803 		 */
4804 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4805 			/*
4806 			 * If allocating entire pageblock(s) and compaction
4807 			 * failed because all zones are below low watermarks
4808 			 * or is prohibited because it recently failed at this
4809 			 * order, fail immediately unless the allocator has
4810 			 * requested compaction and reclaim retry.
4811 			 *
4812 			 * Reclaim is
4813 			 *  - potentially very expensive because zones are far
4814 			 *    below their low watermarks or this is part of very
4815 			 *    bursty high order allocations,
4816 			 *  - not guaranteed to help because isolate_freepages()
4817 			 *    may not iterate over freed pages as part of its
4818 			 *    linear scan, and
4819 			 *  - unlikely to make entire pageblocks free on its
4820 			 *    own.
4821 			 */
4822 			if (compact_result == COMPACT_SKIPPED ||
4823 			    compact_result == COMPACT_DEFERRED)
4824 				goto nopage;
4825 
4826 			/*
4827 			 * Looks like reclaim/compaction is worth trying, but
4828 			 * sync compaction could be very expensive, so keep
4829 			 * using async compaction.
4830 			 */
4831 			compact_priority = INIT_COMPACT_PRIORITY;
4832 		}
4833 	}
4834 
4835 retry:
4836 	/*
4837 	 * Deal with possible cpuset update races or zonelist updates to avoid
4838 	 * infinite retries.
4839 	 */
4840 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4841 	    check_retry_zonelist(zonelist_iter_cookie))
4842 		goto restart;
4843 
4844 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4845 	if (alloc_flags & ALLOC_KSWAPD)
4846 		wake_all_kswapds(order, gfp_mask, ac);
4847 
4848 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4849 	if (reserve_flags)
4850 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4851 					  (alloc_flags & ALLOC_KSWAPD);
4852 
4853 	/*
4854 	 * Reset the nodemask and zonelist iterators if memory policies can be
4855 	 * ignored. These allocations are high priority and system rather than
4856 	 * user oriented.
4857 	 */
4858 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4859 		ac->nodemask = NULL;
4860 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4861 					ac->highest_zoneidx, ac->nodemask);
4862 	}
4863 
4864 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4865 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4866 	if (page)
4867 		goto got_pg;
4868 
4869 	/* Caller is not willing to reclaim, we can't balance anything */
4870 	if (!can_direct_reclaim)
4871 		goto nopage;
4872 
4873 	/* Avoid recursion of direct reclaim */
4874 	if (current->flags & PF_MEMALLOC)
4875 		goto nopage;
4876 
4877 	/* Try direct reclaim and then allocating */
4878 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4879 							&did_some_progress);
4880 	if (page)
4881 		goto got_pg;
4882 
4883 	/* Try direct compaction and then allocating */
4884 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4885 					compact_priority, &compact_result);
4886 	if (page)
4887 		goto got_pg;
4888 
4889 	/* Do not loop if specifically requested */
4890 	if (gfp_mask & __GFP_NORETRY)
4891 		goto nopage;
4892 
4893 	/*
4894 	 * Do not retry costly high order allocations unless they are
4895 	 * __GFP_RETRY_MAYFAIL and we can compact
4896 	 */
4897 	if (costly_order && (!can_compact ||
4898 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4899 		goto nopage;
4900 
4901 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4902 				 did_some_progress > 0, &no_progress_loops))
4903 		goto retry;
4904 
4905 	/*
4906 	 * It doesn't make any sense to retry for the compaction if the order-0
4907 	 * reclaim is not able to make any progress because the current
4908 	 * implementation of the compaction depends on the sufficient amount
4909 	 * of free memory (see __compaction_suitable)
4910 	 */
4911 	if (did_some_progress > 0 && can_compact &&
4912 			should_compact_retry(ac, order, alloc_flags,
4913 				compact_result, &compact_priority,
4914 				&compaction_retries))
4915 		goto retry;
4916 
4917 	/* Reclaim/compaction failed to prevent the fallback */
4918 	if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) {
4919 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4920 		goto retry;
4921 	}
4922 
4923 	/*
4924 	 * Deal with possible cpuset update races or zonelist updates to avoid
4925 	 * a unnecessary OOM kill.
4926 	 */
4927 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4928 	    check_retry_zonelist(zonelist_iter_cookie))
4929 		goto restart;
4930 
4931 	/* Reclaim has failed us, start killing things */
4932 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4933 	if (page)
4934 		goto got_pg;
4935 
4936 	/* Avoid allocations with no watermarks from looping endlessly */
4937 	if (tsk_is_oom_victim(current) &&
4938 	    (alloc_flags & ALLOC_OOM ||
4939 	     (gfp_mask & __GFP_NOMEMALLOC)))
4940 		goto nopage;
4941 
4942 	/* Retry as long as the OOM killer is making progress */
4943 	if (did_some_progress) {
4944 		no_progress_loops = 0;
4945 		goto retry;
4946 	}
4947 
4948 nopage:
4949 	/*
4950 	 * Deal with possible cpuset update races or zonelist updates to avoid
4951 	 * a unnecessary OOM kill.
4952 	 */
4953 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4954 	    check_retry_zonelist(zonelist_iter_cookie))
4955 		goto restart;
4956 
4957 	/*
4958 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4959 	 * we always retry
4960 	 */
4961 	if (unlikely(nofail)) {
4962 		/*
4963 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4964 		 * we disregard these unreasonable nofail requests and still
4965 		 * return NULL
4966 		 */
4967 		if (!can_direct_reclaim)
4968 			goto fail;
4969 
4970 		/*
4971 		 * Help non-failing allocations by giving some access to memory
4972 		 * reserves normally used for high priority non-blocking
4973 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4974 		 * could deplete whole memory reserves which would just make
4975 		 * the situation worse.
4976 		 */
4977 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4978 		if (page)
4979 			goto got_pg;
4980 
4981 		cond_resched();
4982 		goto retry;
4983 	}
4984 fail:
4985 	warn_alloc(gfp_mask, ac->nodemask,
4986 			"page allocation failure: order:%u", order);
4987 got_pg:
4988 	return page;
4989 }
4990 
4991 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4992 		int preferred_nid, nodemask_t *nodemask,
4993 		struct alloc_context *ac, gfp_t *alloc_gfp,
4994 		unsigned int *alloc_flags)
4995 {
4996 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4997 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4998 	ac->nodemask = nodemask;
4999 	ac->migratetype = gfp_migratetype(gfp_mask);
5000 
5001 	if (cpusets_enabled()) {
5002 		*alloc_gfp |= __GFP_HARDWALL;
5003 		/*
5004 		 * When we are in the interrupt context, it is irrelevant
5005 		 * to the current task context. It means that any node ok.
5006 		 */
5007 		if (in_task() && !ac->nodemask)
5008 			ac->nodemask = &cpuset_current_mems_allowed;
5009 		else
5010 			*alloc_flags |= ALLOC_CPUSET;
5011 	}
5012 
5013 	might_alloc(gfp_mask);
5014 
5015 	/*
5016 	 * Don't invoke should_fail logic, since it may call
5017 	 * get_random_u32() and printk() which need to spin_lock.
5018 	 */
5019 	if (!(*alloc_flags & ALLOC_TRYLOCK) &&
5020 	    should_fail_alloc_page(gfp_mask, order))
5021 		return false;
5022 
5023 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5024 
5025 	/* Dirty zone balancing only done in the fast path */
5026 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5027 
5028 	/*
5029 	 * The preferred zone is used for statistics but crucially it is
5030 	 * also used as the starting point for the zonelist iterator. It
5031 	 * may get reset for allocations that ignore memory policies.
5032 	 */
5033 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5034 					ac->highest_zoneidx, ac->nodemask);
5035 
5036 	return true;
5037 }
5038 
5039 /*
5040  * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
5041  * @gfp: GFP flags for the allocation
5042  * @preferred_nid: The preferred NUMA node ID to allocate from
5043  * @nodemask: Set of nodes to allocate from, may be NULL
5044  * @nr_pages: The number of pages desired in the array
5045  * @page_array: Array to store the pages
5046  *
5047  * This is a batched version of the page allocator that attempts to allocate
5048  * @nr_pages quickly.  Pages are added to @page_array.
5049  *
5050  * Note that only the elements in @page_array that were cleared to %NULL on
5051  * entry are populated with newly allocated pages. @nr_pages is the maximum
5052  * number of pages that will be stored in the array.
5053  *
5054  * Returns the number of pages in @page_array, including ones already
5055  * allocated on entry.  This can be less than the number requested in @nr_pages,
5056  * but all empty slots are filled from the beginning.  I.e., if all slots in
5057  * @page_array were set to %NULL on entry, the slots from 0 to the return value
5058  * - 1 will be filled.
5059  */
5060 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
5061 			nodemask_t *nodemask, int nr_pages,
5062 			struct page **page_array)
5063 {
5064 	struct page *page;
5065 	unsigned long UP_flags;
5066 	struct zone *zone;
5067 	struct zoneref *z;
5068 	struct per_cpu_pages *pcp;
5069 	struct list_head *pcp_list;
5070 	struct alloc_context ac;
5071 	gfp_t alloc_gfp;
5072 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5073 	int nr_populated = 0, nr_account = 0;
5074 
5075 	/*
5076 	 * Skip populated array elements to determine if any pages need
5077 	 * to be allocated before disabling IRQs.
5078 	 */
5079 	while (nr_populated < nr_pages && page_array[nr_populated])
5080 		nr_populated++;
5081 
5082 	/* No pages requested? */
5083 	if (unlikely(nr_pages <= 0))
5084 		goto out;
5085 
5086 	/* Already populated array? */
5087 	if (unlikely(nr_pages - nr_populated == 0))
5088 		goto out;
5089 
5090 	/* Bulk allocator does not support memcg accounting. */
5091 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
5092 		goto failed;
5093 
5094 	/* Use the single page allocator for one page. */
5095 	if (nr_pages - nr_populated == 1)
5096 		goto failed;
5097 
5098 #ifdef CONFIG_PAGE_OWNER
5099 	/*
5100 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5101 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5102 	 * removes much of the performance benefit of bulk allocation so
5103 	 * force the caller to allocate one page at a time as it'll have
5104 	 * similar performance to added complexity to the bulk allocator.
5105 	 */
5106 	if (static_branch_unlikely(&page_owner_inited))
5107 		goto failed;
5108 #endif
5109 
5110 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5111 	gfp &= gfp_allowed_mask;
5112 	alloc_gfp = gfp;
5113 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5114 		goto out;
5115 	gfp = alloc_gfp;
5116 
5117 	/* Find an allowed local zone that meets the low watermark. */
5118 	z = ac.preferred_zoneref;
5119 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
5120 		unsigned long mark;
5121 
5122 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5123 		    !__cpuset_zone_allowed(zone, gfp)) {
5124 			continue;
5125 		}
5126 
5127 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
5128 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
5129 			goto failed;
5130 		}
5131 
5132 		cond_accept_memory(zone, 0, alloc_flags);
5133 retry_this_zone:
5134 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5135 		if (zone_watermark_fast(zone, 0,  mark,
5136 				zonelist_zone_idx(ac.preferred_zoneref),
5137 				alloc_flags, gfp)) {
5138 			break;
5139 		}
5140 
5141 		if (cond_accept_memory(zone, 0, alloc_flags))
5142 			goto retry_this_zone;
5143 
5144 		/* Try again if zone has deferred pages */
5145 		if (deferred_pages_enabled()) {
5146 			if (_deferred_grow_zone(zone, 0))
5147 				goto retry_this_zone;
5148 		}
5149 	}
5150 
5151 	/*
5152 	 * If there are no allowed local zones that meets the watermarks then
5153 	 * try to allocate a single page and reclaim if necessary.
5154 	 */
5155 	if (unlikely(!zone))
5156 		goto failed;
5157 
5158 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5159 	pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags);
5160 	if (!pcp)
5161 		goto failed;
5162 
5163 	/* Attempt the batch allocation */
5164 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5165 	while (nr_populated < nr_pages) {
5166 
5167 		/* Skip existing pages */
5168 		if (page_array[nr_populated]) {
5169 			nr_populated++;
5170 			continue;
5171 		}
5172 
5173 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5174 								pcp, pcp_list);
5175 		if (unlikely(!page)) {
5176 			/* Try and allocate at least one page */
5177 			if (!nr_account) {
5178 				pcp_spin_unlock(pcp, UP_flags);
5179 				goto failed;
5180 			}
5181 			break;
5182 		}
5183 		nr_account++;
5184 
5185 		prep_new_page(page, 0, gfp, 0);
5186 		set_page_refcounted(page);
5187 		page_array[nr_populated++] = page;
5188 	}
5189 
5190 	pcp_spin_unlock(pcp, UP_flags);
5191 
5192 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5193 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
5194 
5195 out:
5196 	return nr_populated;
5197 
5198 failed:
5199 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
5200 	if (page)
5201 		page_array[nr_populated++] = page;
5202 	goto out;
5203 }
5204 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
5205 
5206 /*
5207  * This is the 'heart' of the zoned buddy allocator.
5208  */
5209 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
5210 		int preferred_nid, nodemask_t *nodemask)
5211 {
5212 	struct page *page;
5213 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5214 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5215 	struct alloc_context ac = { };
5216 
5217 	/*
5218 	 * There are several places where we assume that the order value is sane
5219 	 * so bail out early if the request is out of bound.
5220 	 */
5221 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
5222 		return NULL;
5223 
5224 	gfp &= gfp_allowed_mask;
5225 	/*
5226 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5227 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5228 	 * from a particular context which has been marked by
5229 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5230 	 * movable zones are not used during allocation.
5231 	 */
5232 	gfp = current_gfp_context(gfp);
5233 	alloc_gfp = gfp;
5234 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5235 			&alloc_gfp, &alloc_flags))
5236 		return NULL;
5237 
5238 	/*
5239 	 * Forbid the first pass from falling back to types that fragment
5240 	 * memory until all local zones are considered.
5241 	 */
5242 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
5243 
5244 	/* First allocation attempt */
5245 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5246 	if (likely(page))
5247 		goto out;
5248 
5249 	alloc_gfp = gfp;
5250 	ac.spread_dirty_pages = false;
5251 
5252 	/*
5253 	 * Restore the original nodemask if it was potentially replaced with
5254 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5255 	 */
5256 	ac.nodemask = nodemask;
5257 
5258 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5259 
5260 out:
5261 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
5262 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5263 		free_frozen_pages(page, order);
5264 		page = NULL;
5265 	}
5266 
5267 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5268 	kmsan_alloc_page(page, order, alloc_gfp);
5269 
5270 	return page;
5271 }
5272 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
5273 
5274 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
5275 		int preferred_nid, nodemask_t *nodemask)
5276 {
5277 	struct page *page;
5278 
5279 	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
5280 	if (page)
5281 		set_page_refcounted(page);
5282 	return page;
5283 }
5284 EXPORT_SYMBOL(__alloc_pages_noprof);
5285 
5286 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
5287 		nodemask_t *nodemask)
5288 {
5289 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
5290 					preferred_nid, nodemask);
5291 	return page_rmappable_folio(page);
5292 }
5293 EXPORT_SYMBOL(__folio_alloc_noprof);
5294 
5295 /*
5296  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5297  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5298  * you need to access high mem.
5299  */
5300 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
5301 {
5302 	struct page *page;
5303 
5304 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
5305 	if (!page)
5306 		return 0;
5307 	return (unsigned long) page_address(page);
5308 }
5309 EXPORT_SYMBOL(get_free_pages_noprof);
5310 
5311 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
5312 {
5313 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
5314 }
5315 EXPORT_SYMBOL(get_zeroed_page_noprof);
5316 
5317 static void ___free_pages(struct page *page, unsigned int order,
5318 			  fpi_t fpi_flags)
5319 {
5320 	/* get PageHead before we drop reference */
5321 	int head = PageHead(page);
5322 	/* get alloc tag in case the page is released by others */
5323 	struct alloc_tag *tag = pgalloc_tag_get(page);
5324 
5325 	if (put_page_testzero(page))
5326 		__free_frozen_pages(page, order, fpi_flags);
5327 	else if (!head) {
5328 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
5329 		while (order-- > 0) {
5330 			/*
5331 			 * The "tail" pages of this non-compound high-order
5332 			 * page will have no code tags, so to avoid warnings
5333 			 * mark them as empty.
5334 			 */
5335 			clear_page_tag_ref(page + (1 << order));
5336 			__free_frozen_pages(page + (1 << order), order,
5337 					    fpi_flags);
5338 		}
5339 	}
5340 }
5341 
5342 /**
5343  * __free_pages - Free pages allocated with alloc_pages().
5344  * @page: The page pointer returned from alloc_pages().
5345  * @order: The order of the allocation.
5346  *
5347  * This function can free multi-page allocations that are not compound
5348  * pages.  It does not check that the @order passed in matches that of
5349  * the allocation, so it is easy to leak memory.  Freeing more memory
5350  * than was allocated will probably emit a warning.
5351  *
5352  * If the last reference to this page is speculative, it will be released
5353  * by put_page() which only frees the first page of a non-compound
5354  * allocation.  To prevent the remaining pages from being leaked, we free
5355  * the subsequent pages here.  If you want to use the page's reference
5356  * count to decide when to free the allocation, you should allocate a
5357  * compound page, and use put_page() instead of __free_pages().
5358  *
5359  * Context: May be called in interrupt context or while holding a normal
5360  * spinlock, but not in NMI context or while holding a raw spinlock.
5361  */
5362 void __free_pages(struct page *page, unsigned int order)
5363 {
5364 	___free_pages(page, order, FPI_NONE);
5365 }
5366 EXPORT_SYMBOL(__free_pages);
5367 
5368 /*
5369  * Can be called while holding raw_spin_lock or from IRQ and NMI for any
5370  * page type (not only those that came from alloc_pages_nolock)
5371  */
5372 void free_pages_nolock(struct page *page, unsigned int order)
5373 {
5374 	___free_pages(page, order, FPI_TRYLOCK);
5375 }
5376 
5377 /**
5378  * free_pages - Free pages allocated with __get_free_pages().
5379  * @addr: The virtual address tied to a page returned from __get_free_pages().
5380  * @order: The order of the allocation.
5381  *
5382  * This function behaves the same as __free_pages(). Use this function
5383  * to free pages when you only have a valid virtual address. If you have
5384  * the page, call __free_pages() instead.
5385  */
5386 void free_pages(unsigned long addr, unsigned int order)
5387 {
5388 	if (addr != 0) {
5389 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5390 		__free_pages(virt_to_page((void *)addr), order);
5391 	}
5392 }
5393 
5394 EXPORT_SYMBOL(free_pages);
5395 
5396 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5397 		size_t size)
5398 {
5399 	if (addr) {
5400 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5401 		struct page *page = virt_to_page((void *)addr);
5402 		struct page *last = page + nr;
5403 
5404 		split_page_owner(page, order, 0);
5405 		pgalloc_tag_split(page_folio(page), order, 0);
5406 		split_page_memcg(page, order);
5407 		while (page < --last)
5408 			set_page_refcounted(last);
5409 
5410 		last = page + (1UL << order);
5411 		for (page += nr; page < last; page++)
5412 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5413 	}
5414 	return (void *)addr;
5415 }
5416 
5417 /**
5418  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5419  * @size: the number of bytes to allocate
5420  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5421  *
5422  * This function is similar to alloc_pages(), except that it allocates the
5423  * minimum number of pages to satisfy the request.  alloc_pages() can only
5424  * allocate memory in power-of-two pages.
5425  *
5426  * This function is also limited by MAX_PAGE_ORDER.
5427  *
5428  * Memory allocated by this function must be released by free_pages_exact().
5429  *
5430  * Return: pointer to the allocated area or %NULL in case of error.
5431  */
5432 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5433 {
5434 	unsigned int order = get_order(size);
5435 	unsigned long addr;
5436 
5437 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5438 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5439 
5440 	addr = get_free_pages_noprof(gfp_mask, order);
5441 	return make_alloc_exact(addr, order, size);
5442 }
5443 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5444 
5445 /**
5446  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5447  *			   pages on a node.
5448  * @nid: the preferred node ID where memory should be allocated
5449  * @size: the number of bytes to allocate
5450  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5451  *
5452  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5453  * back.
5454  *
5455  * Return: pointer to the allocated area or %NULL in case of error.
5456  */
5457 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5458 {
5459 	unsigned int order = get_order(size);
5460 	struct page *p;
5461 
5462 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5463 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5464 
5465 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5466 	if (!p)
5467 		return NULL;
5468 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5469 }
5470 
5471 /**
5472  * free_pages_exact - release memory allocated via alloc_pages_exact()
5473  * @virt: the value returned by alloc_pages_exact.
5474  * @size: size of allocation, same value as passed to alloc_pages_exact().
5475  *
5476  * Release the memory allocated by a previous call to alloc_pages_exact.
5477  */
5478 void free_pages_exact(void *virt, size_t size)
5479 {
5480 	unsigned long addr = (unsigned long)virt;
5481 	unsigned long end = addr + PAGE_ALIGN(size);
5482 
5483 	while (addr < end) {
5484 		free_page(addr);
5485 		addr += PAGE_SIZE;
5486 	}
5487 }
5488 EXPORT_SYMBOL(free_pages_exact);
5489 
5490 /**
5491  * nr_free_zone_pages - count number of pages beyond high watermark
5492  * @offset: The zone index of the highest zone
5493  *
5494  * nr_free_zone_pages() counts the number of pages which are beyond the
5495  * high watermark within all zones at or below a given zone index.  For each
5496  * zone, the number of pages is calculated as:
5497  *
5498  *     nr_free_zone_pages = managed_pages - high_pages
5499  *
5500  * Return: number of pages beyond high watermark.
5501  */
5502 static unsigned long nr_free_zone_pages(int offset)
5503 {
5504 	struct zoneref *z;
5505 	struct zone *zone;
5506 
5507 	/* Just pick one node, since fallback list is circular */
5508 	unsigned long sum = 0;
5509 
5510 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5511 
5512 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5513 		unsigned long size = zone_managed_pages(zone);
5514 		unsigned long high = high_wmark_pages(zone);
5515 		if (size > high)
5516 			sum += size - high;
5517 	}
5518 
5519 	return sum;
5520 }
5521 
5522 /**
5523  * nr_free_buffer_pages - count number of pages beyond high watermark
5524  *
5525  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5526  * watermark within ZONE_DMA and ZONE_NORMAL.
5527  *
5528  * Return: number of pages beyond high watermark within ZONE_DMA and
5529  * ZONE_NORMAL.
5530  */
5531 unsigned long nr_free_buffer_pages(void)
5532 {
5533 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5534 }
5535 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5536 
5537 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5538 {
5539 	zoneref->zone = zone;
5540 	zoneref->zone_idx = zone_idx(zone);
5541 }
5542 
5543 /*
5544  * Builds allocation fallback zone lists.
5545  *
5546  * Add all populated zones of a node to the zonelist.
5547  */
5548 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5549 {
5550 	struct zone *zone;
5551 	enum zone_type zone_type = MAX_NR_ZONES;
5552 	int nr_zones = 0;
5553 
5554 	do {
5555 		zone_type--;
5556 		zone = pgdat->node_zones + zone_type;
5557 		if (populated_zone(zone)) {
5558 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5559 			check_highest_zone(zone_type);
5560 		}
5561 	} while (zone_type);
5562 
5563 	return nr_zones;
5564 }
5565 
5566 #ifdef CONFIG_NUMA
5567 
5568 static int __parse_numa_zonelist_order(char *s)
5569 {
5570 	/*
5571 	 * We used to support different zonelists modes but they turned
5572 	 * out to be just not useful. Let's keep the warning in place
5573 	 * if somebody still use the cmd line parameter so that we do
5574 	 * not fail it silently
5575 	 */
5576 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5577 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5578 		return -EINVAL;
5579 	}
5580 	return 0;
5581 }
5582 
5583 static char numa_zonelist_order[] = "Node";
5584 #define NUMA_ZONELIST_ORDER_LEN	16
5585 /*
5586  * sysctl handler for numa_zonelist_order
5587  */
5588 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5589 		void *buffer, size_t *length, loff_t *ppos)
5590 {
5591 	if (write)
5592 		return __parse_numa_zonelist_order(buffer);
5593 	return proc_dostring(table, write, buffer, length, ppos);
5594 }
5595 
5596 static int node_load[MAX_NUMNODES];
5597 
5598 /**
5599  * find_next_best_node - find the next node that should appear in a given node's fallback list
5600  * @node: node whose fallback list we're appending
5601  * @used_node_mask: nodemask_t of already used nodes
5602  *
5603  * We use a number of factors to determine which is the next node that should
5604  * appear on a given node's fallback list.  The node should not have appeared
5605  * already in @node's fallback list, and it should be the next closest node
5606  * according to the distance array (which contains arbitrary distance values
5607  * from each node to each node in the system), and should also prefer nodes
5608  * with no CPUs, since presumably they'll have very little allocation pressure
5609  * on them otherwise.
5610  *
5611  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5612  */
5613 int find_next_best_node(int node, nodemask_t *used_node_mask)
5614 {
5615 	int n, val;
5616 	int min_val = INT_MAX;
5617 	int best_node = NUMA_NO_NODE;
5618 
5619 	/*
5620 	 * Use the local node if we haven't already, but for memoryless local
5621 	 * node, we should skip it and fall back to other nodes.
5622 	 */
5623 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5624 		node_set(node, *used_node_mask);
5625 		return node;
5626 	}
5627 
5628 	for_each_node_state(n, N_MEMORY) {
5629 
5630 		/* Don't want a node to appear more than once */
5631 		if (node_isset(n, *used_node_mask))
5632 			continue;
5633 
5634 		/* Use the distance array to find the distance */
5635 		val = node_distance(node, n);
5636 
5637 		/* Penalize nodes under us ("prefer the next node") */
5638 		val += (n < node);
5639 
5640 		/* Give preference to headless and unused nodes */
5641 		if (!cpumask_empty(cpumask_of_node(n)))
5642 			val += PENALTY_FOR_NODE_WITH_CPUS;
5643 
5644 		/* Slight preference for less loaded node */
5645 		val *= MAX_NUMNODES;
5646 		val += node_load[n];
5647 
5648 		if (val < min_val) {
5649 			min_val = val;
5650 			best_node = n;
5651 		}
5652 	}
5653 
5654 	if (best_node >= 0)
5655 		node_set(best_node, *used_node_mask);
5656 
5657 	return best_node;
5658 }
5659 
5660 
5661 /*
5662  * Build zonelists ordered by node and zones within node.
5663  * This results in maximum locality--normal zone overflows into local
5664  * DMA zone, if any--but risks exhausting DMA zone.
5665  */
5666 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5667 		unsigned nr_nodes)
5668 {
5669 	struct zoneref *zonerefs;
5670 	int i;
5671 
5672 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5673 
5674 	for (i = 0; i < nr_nodes; i++) {
5675 		int nr_zones;
5676 
5677 		pg_data_t *node = NODE_DATA(node_order[i]);
5678 
5679 		nr_zones = build_zonerefs_node(node, zonerefs);
5680 		zonerefs += nr_zones;
5681 	}
5682 	zonerefs->zone = NULL;
5683 	zonerefs->zone_idx = 0;
5684 }
5685 
5686 /*
5687  * Build __GFP_THISNODE zonelists
5688  */
5689 static void build_thisnode_zonelists(pg_data_t *pgdat)
5690 {
5691 	struct zoneref *zonerefs;
5692 	int nr_zones;
5693 
5694 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5695 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5696 	zonerefs += nr_zones;
5697 	zonerefs->zone = NULL;
5698 	zonerefs->zone_idx = 0;
5699 }
5700 
5701 static void build_zonelists(pg_data_t *pgdat)
5702 {
5703 	static int node_order[MAX_NUMNODES];
5704 	int node, nr_nodes = 0;
5705 	nodemask_t used_mask = NODE_MASK_NONE;
5706 	int local_node, prev_node;
5707 
5708 	/* NUMA-aware ordering of nodes */
5709 	local_node = pgdat->node_id;
5710 	prev_node = local_node;
5711 
5712 	memset(node_order, 0, sizeof(node_order));
5713 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5714 		/*
5715 		 * We don't want to pressure a particular node.
5716 		 * So adding penalty to the first node in same
5717 		 * distance group to make it round-robin.
5718 		 */
5719 		if (node_distance(local_node, node) !=
5720 		    node_distance(local_node, prev_node))
5721 			node_load[node] += 1;
5722 
5723 		node_order[nr_nodes++] = node;
5724 		prev_node = node;
5725 	}
5726 
5727 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5728 	build_thisnode_zonelists(pgdat);
5729 	pr_info("Fallback order for Node %d: ", local_node);
5730 	for (node = 0; node < nr_nodes; node++)
5731 		pr_cont("%d ", node_order[node]);
5732 	pr_cont("\n");
5733 }
5734 
5735 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5736 /*
5737  * Return node id of node used for "local" allocations.
5738  * I.e., first node id of first zone in arg node's generic zonelist.
5739  * Used for initializing percpu 'numa_mem', which is used primarily
5740  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5741  */
5742 int local_memory_node(int node)
5743 {
5744 	struct zoneref *z;
5745 
5746 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5747 				   gfp_zone(GFP_KERNEL),
5748 				   NULL);
5749 	return zonelist_node_idx(z);
5750 }
5751 #endif
5752 
5753 static void setup_min_unmapped_ratio(void);
5754 static void setup_min_slab_ratio(void);
5755 #else	/* CONFIG_NUMA */
5756 
5757 static void build_zonelists(pg_data_t *pgdat)
5758 {
5759 	struct zoneref *zonerefs;
5760 	int nr_zones;
5761 
5762 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5763 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5764 	zonerefs += nr_zones;
5765 
5766 	zonerefs->zone = NULL;
5767 	zonerefs->zone_idx = 0;
5768 }
5769 
5770 #endif	/* CONFIG_NUMA */
5771 
5772 /*
5773  * Boot pageset table. One per cpu which is going to be used for all
5774  * zones and all nodes. The parameters will be set in such a way
5775  * that an item put on a list will immediately be handed over to
5776  * the buddy list. This is safe since pageset manipulation is done
5777  * with interrupts disabled.
5778  *
5779  * The boot_pagesets must be kept even after bootup is complete for
5780  * unused processors and/or zones. They do play a role for bootstrapping
5781  * hotplugged processors.
5782  *
5783  * zoneinfo_show() and maybe other functions do
5784  * not check if the processor is online before following the pageset pointer.
5785  * Other parts of the kernel may not check if the zone is available.
5786  */
5787 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5788 /* These effectively disable the pcplists in the boot pageset completely */
5789 #define BOOT_PAGESET_HIGH	0
5790 #define BOOT_PAGESET_BATCH	1
5791 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5792 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5793 
5794 static void __build_all_zonelists(void *data)
5795 {
5796 	int nid;
5797 	int __maybe_unused cpu;
5798 	pg_data_t *self = data;
5799 	unsigned long flags;
5800 
5801 	/*
5802 	 * The zonelist_update_seq must be acquired with irqsave because the
5803 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5804 	 */
5805 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5806 	/*
5807 	 * Also disable synchronous printk() to prevent any printk() from
5808 	 * trying to hold port->lock, for
5809 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5810 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5811 	 */
5812 	printk_deferred_enter();
5813 
5814 #ifdef CONFIG_NUMA
5815 	memset(node_load, 0, sizeof(node_load));
5816 #endif
5817 
5818 	/*
5819 	 * This node is hotadded and no memory is yet present.   So just
5820 	 * building zonelists is fine - no need to touch other nodes.
5821 	 */
5822 	if (self && !node_online(self->node_id)) {
5823 		build_zonelists(self);
5824 	} else {
5825 		/*
5826 		 * All possible nodes have pgdat preallocated
5827 		 * in free_area_init
5828 		 */
5829 		for_each_node(nid) {
5830 			pg_data_t *pgdat = NODE_DATA(nid);
5831 
5832 			build_zonelists(pgdat);
5833 		}
5834 
5835 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5836 		/*
5837 		 * We now know the "local memory node" for each node--
5838 		 * i.e., the node of the first zone in the generic zonelist.
5839 		 * Set up numa_mem percpu variable for on-line cpus.  During
5840 		 * boot, only the boot cpu should be on-line;  we'll init the
5841 		 * secondary cpus' numa_mem as they come on-line.  During
5842 		 * node/memory hotplug, we'll fixup all on-line cpus.
5843 		 */
5844 		for_each_online_cpu(cpu)
5845 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5846 #endif
5847 	}
5848 
5849 	printk_deferred_exit();
5850 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5851 }
5852 
5853 static noinline void __init
5854 build_all_zonelists_init(void)
5855 {
5856 	int cpu;
5857 
5858 	__build_all_zonelists(NULL);
5859 
5860 	/*
5861 	 * Initialize the boot_pagesets that are going to be used
5862 	 * for bootstrapping processors. The real pagesets for
5863 	 * each zone will be allocated later when the per cpu
5864 	 * allocator is available.
5865 	 *
5866 	 * boot_pagesets are used also for bootstrapping offline
5867 	 * cpus if the system is already booted because the pagesets
5868 	 * are needed to initialize allocators on a specific cpu too.
5869 	 * F.e. the percpu allocator needs the page allocator which
5870 	 * needs the percpu allocator in order to allocate its pagesets
5871 	 * (a chicken-egg dilemma).
5872 	 */
5873 	for_each_possible_cpu(cpu)
5874 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5875 
5876 	mminit_verify_zonelist();
5877 	cpuset_init_current_mems_allowed();
5878 }
5879 
5880 /*
5881  * unless system_state == SYSTEM_BOOTING.
5882  *
5883  * __ref due to call of __init annotated helper build_all_zonelists_init
5884  * [protected by SYSTEM_BOOTING].
5885  */
5886 void __ref build_all_zonelists(pg_data_t *pgdat)
5887 {
5888 	unsigned long vm_total_pages;
5889 
5890 	if (system_state == SYSTEM_BOOTING) {
5891 		build_all_zonelists_init();
5892 	} else {
5893 		__build_all_zonelists(pgdat);
5894 		/* cpuset refresh routine should be here */
5895 	}
5896 	/* Get the number of free pages beyond high watermark in all zones. */
5897 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5898 	/*
5899 	 * Disable grouping by mobility if the number of pages in the
5900 	 * system is too low to allow the mechanism to work. It would be
5901 	 * more accurate, but expensive to check per-zone. This check is
5902 	 * made on memory-hotadd so a system can start with mobility
5903 	 * disabled and enable it later
5904 	 */
5905 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5906 		page_group_by_mobility_disabled = 1;
5907 	else
5908 		page_group_by_mobility_disabled = 0;
5909 
5910 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5911 		nr_online_nodes,
5912 		str_off_on(page_group_by_mobility_disabled),
5913 		vm_total_pages);
5914 #ifdef CONFIG_NUMA
5915 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5916 #endif
5917 }
5918 
5919 static int zone_batchsize(struct zone *zone)
5920 {
5921 #ifdef CONFIG_MMU
5922 	int batch;
5923 
5924 	/*
5925 	 * The number of pages to batch allocate is either ~0.025%
5926 	 * of the zone or 256KB, whichever is smaller. The batch
5927 	 * size is striking a balance between allocation latency
5928 	 * and zone lock contention.
5929 	 */
5930 	batch = min(zone_managed_pages(zone) >> 12, SZ_256K / PAGE_SIZE);
5931 	if (batch <= 1)
5932 		return 1;
5933 
5934 	/*
5935 	 * Clamp the batch to a 2^n - 1 value. Having a power
5936 	 * of 2 value was found to be more likely to have
5937 	 * suboptimal cache aliasing properties in some cases.
5938 	 *
5939 	 * For example if 2 tasks are alternately allocating
5940 	 * batches of pages, one task can end up with a lot
5941 	 * of pages of one half of the possible page colors
5942 	 * and the other with pages of the other colors.
5943 	 */
5944 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5945 
5946 	return batch;
5947 
5948 #else
5949 	/* The deferral and batching of frees should be suppressed under NOMMU
5950 	 * conditions.
5951 	 *
5952 	 * The problem is that NOMMU needs to be able to allocate large chunks
5953 	 * of contiguous memory as there's no hardware page translation to
5954 	 * assemble apparent contiguous memory from discontiguous pages.
5955 	 *
5956 	 * Queueing large contiguous runs of pages for batching, however,
5957 	 * causes the pages to actually be freed in smaller chunks.  As there
5958 	 * can be a significant delay between the individual batches being
5959 	 * recycled, this leads to the once large chunks of space being
5960 	 * fragmented and becoming unavailable for high-order allocations.
5961 	 */
5962 	return 1;
5963 #endif
5964 }
5965 
5966 static int percpu_pagelist_high_fraction;
5967 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5968 			 int high_fraction)
5969 {
5970 #ifdef CONFIG_MMU
5971 	int high;
5972 	int nr_split_cpus;
5973 	unsigned long total_pages;
5974 
5975 	if (!high_fraction) {
5976 		/*
5977 		 * By default, the high value of the pcp is based on the zone
5978 		 * low watermark so that if they are full then background
5979 		 * reclaim will not be started prematurely.
5980 		 */
5981 		total_pages = low_wmark_pages(zone);
5982 	} else {
5983 		/*
5984 		 * If percpu_pagelist_high_fraction is configured, the high
5985 		 * value is based on a fraction of the managed pages in the
5986 		 * zone.
5987 		 */
5988 		total_pages = zone_managed_pages(zone) / high_fraction;
5989 	}
5990 
5991 	/*
5992 	 * Split the high value across all online CPUs local to the zone. Note
5993 	 * that early in boot that CPUs may not be online yet and that during
5994 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5995 	 * onlined. For memory nodes that have no CPUs, split the high value
5996 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5997 	 * prematurely due to pages stored on pcp lists.
5998 	 */
5999 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6000 	if (!nr_split_cpus)
6001 		nr_split_cpus = num_online_cpus();
6002 	high = total_pages / nr_split_cpus;
6003 
6004 	/*
6005 	 * Ensure high is at least batch*4. The multiple is based on the
6006 	 * historical relationship between high and batch.
6007 	 */
6008 	high = max(high, batch << 2);
6009 
6010 	return high;
6011 #else
6012 	return 0;
6013 #endif
6014 }
6015 
6016 /*
6017  * pcp->high and pcp->batch values are related and generally batch is lower
6018  * than high. They are also related to pcp->count such that count is lower
6019  * than high, and as soon as it reaches high, the pcplist is flushed.
6020  *
6021  * However, guaranteeing these relations at all times would require e.g. write
6022  * barriers here but also careful usage of read barriers at the read side, and
6023  * thus be prone to error and bad for performance. Thus the update only prevents
6024  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
6025  * should ensure they can cope with those fields changing asynchronously, and
6026  * fully trust only the pcp->count field on the local CPU with interrupts
6027  * disabled.
6028  *
6029  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6030  * outside of boot time (or some other assurance that no concurrent updaters
6031  * exist).
6032  */
6033 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
6034 			   unsigned long high_max, unsigned long batch)
6035 {
6036 	WRITE_ONCE(pcp->batch, batch);
6037 	WRITE_ONCE(pcp->high_min, high_min);
6038 	WRITE_ONCE(pcp->high_max, high_max);
6039 }
6040 
6041 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6042 {
6043 	int pindex;
6044 
6045 	memset(pcp, 0, sizeof(*pcp));
6046 	memset(pzstats, 0, sizeof(*pzstats));
6047 
6048 	spin_lock_init(&pcp->lock);
6049 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6050 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6051 
6052 	/*
6053 	 * Set batch and high values safe for a boot pageset. A true percpu
6054 	 * pageset's initialization will update them subsequently. Here we don't
6055 	 * need to be as careful as pageset_update() as nobody can access the
6056 	 * pageset yet.
6057 	 */
6058 	pcp->high_min = BOOT_PAGESET_HIGH;
6059 	pcp->high_max = BOOT_PAGESET_HIGH;
6060 	pcp->batch = BOOT_PAGESET_BATCH;
6061 }
6062 
6063 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
6064 					      unsigned long high_max, unsigned long batch)
6065 {
6066 	struct per_cpu_pages *pcp;
6067 	int cpu;
6068 
6069 	for_each_possible_cpu(cpu) {
6070 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6071 		pageset_update(pcp, high_min, high_max, batch);
6072 	}
6073 }
6074 
6075 /*
6076  * Calculate and set new high and batch values for all per-cpu pagesets of a
6077  * zone based on the zone's size.
6078  */
6079 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6080 {
6081 	int new_high_min, new_high_max, new_batch;
6082 
6083 	new_batch = zone_batchsize(zone);
6084 	if (percpu_pagelist_high_fraction) {
6085 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
6086 					     percpu_pagelist_high_fraction);
6087 		/*
6088 		 * PCP high is tuned manually, disable auto-tuning via
6089 		 * setting high_min and high_max to the manual value.
6090 		 */
6091 		new_high_max = new_high_min;
6092 	} else {
6093 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
6094 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
6095 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
6096 	}
6097 
6098 	if (zone->pageset_high_min == new_high_min &&
6099 	    zone->pageset_high_max == new_high_max &&
6100 	    zone->pageset_batch == new_batch)
6101 		return;
6102 
6103 	zone->pageset_high_min = new_high_min;
6104 	zone->pageset_high_max = new_high_max;
6105 	zone->pageset_batch = new_batch;
6106 
6107 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
6108 					  new_batch);
6109 }
6110 
6111 void __meminit setup_zone_pageset(struct zone *zone)
6112 {
6113 	int cpu;
6114 
6115 	/* Size may be 0 on !SMP && !NUMA */
6116 	if (sizeof(struct per_cpu_zonestat) > 0)
6117 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6118 
6119 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6120 	for_each_possible_cpu(cpu) {
6121 		struct per_cpu_pages *pcp;
6122 		struct per_cpu_zonestat *pzstats;
6123 
6124 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6125 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6126 		per_cpu_pages_init(pcp, pzstats);
6127 	}
6128 
6129 	zone_set_pageset_high_and_batch(zone, 0);
6130 }
6131 
6132 /*
6133  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6134  * page high values need to be recalculated.
6135  */
6136 static void zone_pcp_update(struct zone *zone, int cpu_online)
6137 {
6138 	mutex_lock(&pcp_batch_high_lock);
6139 	zone_set_pageset_high_and_batch(zone, cpu_online);
6140 	mutex_unlock(&pcp_batch_high_lock);
6141 }
6142 
6143 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
6144 {
6145 	struct per_cpu_pages *pcp;
6146 	struct cpu_cacheinfo *cci;
6147 	unsigned long UP_flags;
6148 
6149 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6150 	cci = get_cpu_cacheinfo(cpu);
6151 	/*
6152 	 * If data cache slice of CPU is large enough, "pcp->batch"
6153 	 * pages can be preserved in PCP before draining PCP for
6154 	 * consecutive high-order pages freeing without allocation.
6155 	 * This can reduce zone lock contention without hurting
6156 	 * cache-hot pages sharing.
6157 	 */
6158 	pcp_spin_lock_maybe_irqsave(pcp, UP_flags);
6159 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
6160 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
6161 	else
6162 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
6163 	pcp_spin_unlock_maybe_irqrestore(pcp, UP_flags);
6164 }
6165 
6166 void setup_pcp_cacheinfo(unsigned int cpu)
6167 {
6168 	struct zone *zone;
6169 
6170 	for_each_populated_zone(zone)
6171 		zone_pcp_update_cacheinfo(zone, cpu);
6172 }
6173 
6174 /*
6175  * Allocate per cpu pagesets and initialize them.
6176  * Before this call only boot pagesets were available.
6177  */
6178 void __init setup_per_cpu_pageset(void)
6179 {
6180 	struct pglist_data *pgdat;
6181 	struct zone *zone;
6182 	int __maybe_unused cpu;
6183 
6184 	for_each_populated_zone(zone)
6185 		setup_zone_pageset(zone);
6186 
6187 #ifdef CONFIG_NUMA
6188 	/*
6189 	 * Unpopulated zones continue using the boot pagesets.
6190 	 * The numa stats for these pagesets need to be reset.
6191 	 * Otherwise, they will end up skewing the stats of
6192 	 * the nodes these zones are associated with.
6193 	 */
6194 	for_each_possible_cpu(cpu) {
6195 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6196 		memset(pzstats->vm_numa_event, 0,
6197 		       sizeof(pzstats->vm_numa_event));
6198 	}
6199 #endif
6200 
6201 	for_each_online_pgdat(pgdat)
6202 		pgdat->per_cpu_nodestats =
6203 			alloc_percpu(struct per_cpu_nodestat);
6204 }
6205 
6206 __meminit void zone_pcp_init(struct zone *zone)
6207 {
6208 	/*
6209 	 * per cpu subsystem is not up at this point. The following code
6210 	 * relies on the ability of the linker to provide the
6211 	 * offset of a (static) per cpu variable into the per cpu area.
6212 	 */
6213 	zone->per_cpu_pageset = &boot_pageset;
6214 	zone->per_cpu_zonestats = &boot_zonestats;
6215 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
6216 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
6217 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6218 
6219 	if (populated_zone(zone))
6220 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6221 			 zone->present_pages, zone_batchsize(zone));
6222 }
6223 
6224 static void setup_per_zone_lowmem_reserve(void);
6225 
6226 void adjust_managed_page_count(struct page *page, long count)
6227 {
6228 	atomic_long_add(count, &page_zone(page)->managed_pages);
6229 	totalram_pages_add(count);
6230 	setup_per_zone_lowmem_reserve();
6231 }
6232 EXPORT_SYMBOL(adjust_managed_page_count);
6233 
6234 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
6235 {
6236 	void *pos;
6237 	unsigned long pages = 0;
6238 
6239 	start = (void *)PAGE_ALIGN((unsigned long)start);
6240 	end = (void *)((unsigned long)end & PAGE_MASK);
6241 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6242 		struct page *page = virt_to_page(pos);
6243 		void *direct_map_addr;
6244 
6245 		/*
6246 		 * 'direct_map_addr' might be different from 'pos'
6247 		 * because some architectures' virt_to_page()
6248 		 * work with aliases.  Getting the direct map
6249 		 * address ensures that we get a _writeable_
6250 		 * alias for the memset().
6251 		 */
6252 		direct_map_addr = page_address(page);
6253 		/*
6254 		 * Perform a kasan-unchecked memset() since this memory
6255 		 * has not been initialized.
6256 		 */
6257 		direct_map_addr = kasan_reset_tag(direct_map_addr);
6258 		if ((unsigned int)poison <= 0xFF)
6259 			memset(direct_map_addr, poison, PAGE_SIZE);
6260 
6261 		free_reserved_page(page);
6262 	}
6263 
6264 	if (pages && s)
6265 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
6266 
6267 	return pages;
6268 }
6269 
6270 void free_reserved_page(struct page *page)
6271 {
6272 	clear_page_tag_ref(page);
6273 	ClearPageReserved(page);
6274 	init_page_count(page);
6275 	__free_page(page);
6276 	adjust_managed_page_count(page, 1);
6277 }
6278 EXPORT_SYMBOL(free_reserved_page);
6279 
6280 static int page_alloc_cpu_dead(unsigned int cpu)
6281 {
6282 	struct zone *zone;
6283 
6284 	lru_add_drain_cpu(cpu);
6285 	mlock_drain_remote(cpu);
6286 	drain_pages(cpu);
6287 
6288 	/*
6289 	 * Spill the event counters of the dead processor
6290 	 * into the current processors event counters.
6291 	 * This artificially elevates the count of the current
6292 	 * processor.
6293 	 */
6294 	vm_events_fold_cpu(cpu);
6295 
6296 	/*
6297 	 * Zero the differential counters of the dead processor
6298 	 * so that the vm statistics are consistent.
6299 	 *
6300 	 * This is only okay since the processor is dead and cannot
6301 	 * race with what we are doing.
6302 	 */
6303 	cpu_vm_stats_fold(cpu);
6304 
6305 	for_each_populated_zone(zone)
6306 		zone_pcp_update(zone, 0);
6307 
6308 	return 0;
6309 }
6310 
6311 static int page_alloc_cpu_online(unsigned int cpu)
6312 {
6313 	struct zone *zone;
6314 
6315 	for_each_populated_zone(zone)
6316 		zone_pcp_update(zone, 1);
6317 	return 0;
6318 }
6319 
6320 void __init page_alloc_init_cpuhp(void)
6321 {
6322 	int ret;
6323 
6324 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6325 					"mm/page_alloc:pcp",
6326 					page_alloc_cpu_online,
6327 					page_alloc_cpu_dead);
6328 	WARN_ON(ret < 0);
6329 }
6330 
6331 /*
6332  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6333  *	or min_free_kbytes changes.
6334  */
6335 static void calculate_totalreserve_pages(void)
6336 {
6337 	struct pglist_data *pgdat;
6338 	unsigned long reserve_pages = 0;
6339 	enum zone_type i, j;
6340 
6341 	for_each_online_pgdat(pgdat) {
6342 
6343 		pgdat->totalreserve_pages = 0;
6344 
6345 		for (i = 0; i < MAX_NR_ZONES; i++) {
6346 			struct zone *zone = pgdat->node_zones + i;
6347 			long max = 0;
6348 			unsigned long managed_pages = zone_managed_pages(zone);
6349 
6350 			/*
6351 			 * lowmem_reserve[j] is monotonically non-decreasing
6352 			 * in j for a given zone (see
6353 			 * setup_per_zone_lowmem_reserve()). The maximum
6354 			 * valid reserve lives at the highest index with a
6355 			 * non-zero value, so scan backwards and stop at the
6356 			 * first hit.
6357 			 */
6358 			for (j = MAX_NR_ZONES - 1; j > i; j--) {
6359 				if (!zone->lowmem_reserve[j])
6360 					continue;
6361 
6362 				max = zone->lowmem_reserve[j];
6363 				break;
6364 			}
6365 			/* we treat the high watermark as reserved pages. */
6366 			max += high_wmark_pages(zone);
6367 
6368 			max = min_t(unsigned long, max, managed_pages);
6369 
6370 			pgdat->totalreserve_pages += max;
6371 
6372 			reserve_pages += max;
6373 		}
6374 	}
6375 	totalreserve_pages = reserve_pages;
6376 	trace_mm_calculate_totalreserve_pages(totalreserve_pages);
6377 }
6378 
6379 /*
6380  * setup_per_zone_lowmem_reserve - called whenever
6381  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6382  *	has a correct pages reserved value, so an adequate number of
6383  *	pages are left in the zone after a successful __alloc_pages().
6384  */
6385 static void setup_per_zone_lowmem_reserve(void)
6386 {
6387 	struct pglist_data *pgdat;
6388 	enum zone_type i, j;
6389 	/*
6390 	 * For a given zone node_zones[i], lowmem_reserve[j] (j > i)
6391 	 * represents how many pages in zone i must effectively be kept
6392 	 * in reserve when deciding whether an allocation class that is
6393 	 * allowed to allocate from zones up to j may fall back into
6394 	 * zone i.
6395 	 *
6396 	 * As j increases, the allocation class can use a strictly larger
6397 	 * set of fallback zones and therefore must not be allowed to
6398 	 * deplete low zones more aggressively than a less flexible one.
6399 	 * As a result, lowmem_reserve[j] is required to be monotonically
6400 	 * non-decreasing in j for each zone i. Callers such as
6401 	 * calculate_totalreserve_pages() rely on this monotonicity when
6402 	 * selecting the maximum reserve entry.
6403 	 */
6404 	for_each_online_pgdat(pgdat) {
6405 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6406 			struct zone *zone = &pgdat->node_zones[i];
6407 			int ratio = sysctl_lowmem_reserve_ratio[i];
6408 			bool clear = !ratio || !zone_managed_pages(zone);
6409 			unsigned long managed_pages = 0;
6410 
6411 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
6412 				struct zone *upper_zone = &pgdat->node_zones[j];
6413 
6414 				managed_pages += zone_managed_pages(upper_zone);
6415 
6416 				if (clear)
6417 					zone->lowmem_reserve[j] = 0;
6418 				else
6419 					zone->lowmem_reserve[j] = managed_pages / ratio;
6420 				trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
6421 								       zone->lowmem_reserve[j]);
6422 			}
6423 		}
6424 	}
6425 
6426 	/* update totalreserve_pages */
6427 	calculate_totalreserve_pages();
6428 }
6429 
6430 static void __setup_per_zone_wmarks(void)
6431 {
6432 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6433 	unsigned long lowmem_pages = 0;
6434 	struct zone *zone;
6435 	unsigned long flags;
6436 
6437 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6438 	for_each_zone(zone) {
6439 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6440 			lowmem_pages += zone_managed_pages(zone);
6441 	}
6442 
6443 	for_each_zone(zone) {
6444 		u64 tmp;
6445 
6446 		spin_lock_irqsave(&zone->lock, flags);
6447 		tmp = (u64)pages_min * zone_managed_pages(zone);
6448 		tmp = div64_ul(tmp, lowmem_pages);
6449 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6450 			/*
6451 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6452 			 * need highmem and movable zones pages, so cap pages_min
6453 			 * to a small  value here.
6454 			 *
6455 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6456 			 * deltas control async page reclaim, and so should
6457 			 * not be capped for highmem and movable zones.
6458 			 */
6459 			unsigned long min_pages;
6460 
6461 			min_pages = zone_managed_pages(zone) / 1024;
6462 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6463 			zone->_watermark[WMARK_MIN] = min_pages;
6464 		} else {
6465 			/*
6466 			 * If it's a lowmem zone, reserve a number of pages
6467 			 * proportionate to the zone's size.
6468 			 */
6469 			zone->_watermark[WMARK_MIN] = tmp;
6470 		}
6471 
6472 		/*
6473 		 * Set the kswapd watermarks distance according to the
6474 		 * scale factor in proportion to available memory, but
6475 		 * ensure a minimum size on small systems.
6476 		 */
6477 		tmp = max_t(u64, tmp >> 2,
6478 			    mult_frac(zone_managed_pages(zone),
6479 				      watermark_scale_factor, 10000));
6480 
6481 		zone->watermark_boost = 0;
6482 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6483 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6484 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6485 		trace_mm_setup_per_zone_wmarks(zone);
6486 
6487 		spin_unlock_irqrestore(&zone->lock, flags);
6488 	}
6489 
6490 	/* update totalreserve_pages */
6491 	calculate_totalreserve_pages();
6492 }
6493 
6494 /**
6495  * setup_per_zone_wmarks - called when min_free_kbytes changes
6496  * or when memory is hot-{added|removed}
6497  *
6498  * Ensures that the watermark[min,low,high] values for each zone are set
6499  * correctly with respect to min_free_kbytes.
6500  */
6501 void setup_per_zone_wmarks(void)
6502 {
6503 	struct zone *zone;
6504 	static DEFINE_SPINLOCK(lock);
6505 
6506 	spin_lock(&lock);
6507 	__setup_per_zone_wmarks();
6508 	spin_unlock(&lock);
6509 
6510 	/*
6511 	 * The watermark size have changed so update the pcpu batch
6512 	 * and high limits or the limits may be inappropriate.
6513 	 */
6514 	for_each_zone(zone)
6515 		zone_pcp_update(zone, 0);
6516 }
6517 
6518 /*
6519  * Initialise min_free_kbytes.
6520  *
6521  * For small machines we want it small (128k min).  For large machines
6522  * we want it large (256MB max).  But it is not linear, because network
6523  * bandwidth does not increase linearly with machine size.  We use
6524  *
6525  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6526  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6527  *
6528  * which yields
6529  *
6530  * 16MB:	512k
6531  * 32MB:	724k
6532  * 64MB:	1024k
6533  * 128MB:	1448k
6534  * 256MB:	2048k
6535  * 512MB:	2896k
6536  * 1024MB:	4096k
6537  * 2048MB:	5792k
6538  * 4096MB:	8192k
6539  * 8192MB:	11584k
6540  * 16384MB:	16384k
6541  */
6542 void calculate_min_free_kbytes(void)
6543 {
6544 	unsigned long lowmem_kbytes;
6545 	int new_min_free_kbytes;
6546 
6547 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6548 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6549 
6550 	if (new_min_free_kbytes > user_min_free_kbytes)
6551 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6552 	else
6553 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6554 				new_min_free_kbytes, user_min_free_kbytes);
6555 
6556 }
6557 
6558 int __meminit init_per_zone_wmark_min(void)
6559 {
6560 	calculate_min_free_kbytes();
6561 	setup_per_zone_wmarks();
6562 	refresh_zone_stat_thresholds();
6563 	setup_per_zone_lowmem_reserve();
6564 
6565 #ifdef CONFIG_NUMA
6566 	setup_min_unmapped_ratio();
6567 	setup_min_slab_ratio();
6568 #endif
6569 
6570 	khugepaged_min_free_kbytes_update();
6571 
6572 	return 0;
6573 }
6574 postcore_initcall(init_per_zone_wmark_min)
6575 
6576 /*
6577  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6578  *	that we can call two helper functions whenever min_free_kbytes
6579  *	changes.
6580  */
6581 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6582 		void *buffer, size_t *length, loff_t *ppos)
6583 {
6584 	int rc;
6585 
6586 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6587 	if (rc)
6588 		return rc;
6589 
6590 	if (write) {
6591 		user_min_free_kbytes = min_free_kbytes;
6592 		setup_per_zone_wmarks();
6593 	}
6594 	return 0;
6595 }
6596 
6597 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6598 		void *buffer, size_t *length, loff_t *ppos)
6599 {
6600 	int rc;
6601 
6602 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6603 	if (rc)
6604 		return rc;
6605 
6606 	if (write)
6607 		setup_per_zone_wmarks();
6608 
6609 	return 0;
6610 }
6611 
6612 #ifdef CONFIG_NUMA
6613 static void setup_min_unmapped_ratio(void)
6614 {
6615 	pg_data_t *pgdat;
6616 	struct zone *zone;
6617 
6618 	for_each_online_pgdat(pgdat)
6619 		pgdat->min_unmapped_pages = 0;
6620 
6621 	for_each_zone(zone)
6622 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6623 						         sysctl_min_unmapped_ratio) / 100;
6624 }
6625 
6626 
6627 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6628 		void *buffer, size_t *length, loff_t *ppos)
6629 {
6630 	int rc;
6631 
6632 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6633 	if (rc)
6634 		return rc;
6635 
6636 	setup_min_unmapped_ratio();
6637 
6638 	return 0;
6639 }
6640 
6641 static void setup_min_slab_ratio(void)
6642 {
6643 	pg_data_t *pgdat;
6644 	struct zone *zone;
6645 
6646 	for_each_online_pgdat(pgdat)
6647 		pgdat->min_slab_pages = 0;
6648 
6649 	for_each_zone(zone)
6650 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6651 						     sysctl_min_slab_ratio) / 100;
6652 }
6653 
6654 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6655 		void *buffer, size_t *length, loff_t *ppos)
6656 {
6657 	int rc;
6658 
6659 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6660 	if (rc)
6661 		return rc;
6662 
6663 	setup_min_slab_ratio();
6664 
6665 	return 0;
6666 }
6667 #endif
6668 
6669 /*
6670  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6671  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6672  *	whenever sysctl_lowmem_reserve_ratio changes.
6673  *
6674  * The reserve ratio obviously has absolutely no relation with the
6675  * minimum watermarks. The lowmem reserve ratio can only make sense
6676  * if in function of the boot time zone sizes.
6677  */
6678 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6679 		int write, void *buffer, size_t *length, loff_t *ppos)
6680 {
6681 	int i;
6682 
6683 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6684 
6685 	for (i = 0; i < MAX_NR_ZONES; i++) {
6686 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6687 			sysctl_lowmem_reserve_ratio[i] = 0;
6688 	}
6689 
6690 	setup_per_zone_lowmem_reserve();
6691 	return 0;
6692 }
6693 
6694 /*
6695  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6696  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6697  * pagelist can have before it gets flushed back to buddy allocator.
6698  */
6699 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6700 		int write, void *buffer, size_t *length, loff_t *ppos)
6701 {
6702 	struct zone *zone;
6703 	int old_percpu_pagelist_high_fraction;
6704 	int ret;
6705 
6706 	/*
6707 	 * Avoid using pcp_batch_high_lock for reads as the value is read
6708 	 * atomically and a race with offlining is harmless.
6709 	 */
6710 
6711 	if (!write)
6712 		return proc_dointvec_minmax(table, write, buffer, length, ppos);
6713 
6714 	mutex_lock(&pcp_batch_high_lock);
6715 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6716 
6717 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6718 	if (ret < 0)
6719 		goto out;
6720 
6721 	/* Sanity checking to avoid pcp imbalance */
6722 	if (percpu_pagelist_high_fraction &&
6723 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6724 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6725 		ret = -EINVAL;
6726 		goto out;
6727 	}
6728 
6729 	/* No change? */
6730 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6731 		goto out;
6732 
6733 	for_each_populated_zone(zone)
6734 		zone_set_pageset_high_and_batch(zone, 0);
6735 out:
6736 	mutex_unlock(&pcp_batch_high_lock);
6737 	return ret;
6738 }
6739 
6740 static const struct ctl_table page_alloc_sysctl_table[] = {
6741 	{
6742 		.procname	= "min_free_kbytes",
6743 		.data		= &min_free_kbytes,
6744 		.maxlen		= sizeof(min_free_kbytes),
6745 		.mode		= 0644,
6746 		.proc_handler	= min_free_kbytes_sysctl_handler,
6747 		.extra1		= SYSCTL_ZERO,
6748 	},
6749 	{
6750 		.procname	= "watermark_boost_factor",
6751 		.data		= &watermark_boost_factor,
6752 		.maxlen		= sizeof(watermark_boost_factor),
6753 		.mode		= 0644,
6754 		.proc_handler	= proc_dointvec_minmax,
6755 		.extra1		= SYSCTL_ZERO,
6756 	},
6757 	{
6758 		.procname	= "watermark_scale_factor",
6759 		.data		= &watermark_scale_factor,
6760 		.maxlen		= sizeof(watermark_scale_factor),
6761 		.mode		= 0644,
6762 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6763 		.extra1		= SYSCTL_ONE,
6764 		.extra2		= SYSCTL_THREE_THOUSAND,
6765 	},
6766 	{
6767 		.procname	= "defrag_mode",
6768 		.data		= &defrag_mode,
6769 		.maxlen		= sizeof(defrag_mode),
6770 		.mode		= 0644,
6771 		.proc_handler	= proc_dointvec_minmax,
6772 		.extra1		= SYSCTL_ZERO,
6773 		.extra2		= SYSCTL_ONE,
6774 	},
6775 	{
6776 		.procname	= "percpu_pagelist_high_fraction",
6777 		.data		= &percpu_pagelist_high_fraction,
6778 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6779 		.mode		= 0644,
6780 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6781 		.extra1		= SYSCTL_ZERO,
6782 	},
6783 	{
6784 		.procname	= "lowmem_reserve_ratio",
6785 		.data		= &sysctl_lowmem_reserve_ratio,
6786 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6787 		.mode		= 0644,
6788 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6789 	},
6790 #ifdef CONFIG_NUMA
6791 	{
6792 		.procname	= "numa_zonelist_order",
6793 		.data		= &numa_zonelist_order,
6794 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6795 		.mode		= 0644,
6796 		.proc_handler	= numa_zonelist_order_handler,
6797 	},
6798 	{
6799 		.procname	= "min_unmapped_ratio",
6800 		.data		= &sysctl_min_unmapped_ratio,
6801 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6802 		.mode		= 0644,
6803 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6804 		.extra1		= SYSCTL_ZERO,
6805 		.extra2		= SYSCTL_ONE_HUNDRED,
6806 	},
6807 	{
6808 		.procname	= "min_slab_ratio",
6809 		.data		= &sysctl_min_slab_ratio,
6810 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6811 		.mode		= 0644,
6812 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6813 		.extra1		= SYSCTL_ZERO,
6814 		.extra2		= SYSCTL_ONE_HUNDRED,
6815 	},
6816 #endif
6817 };
6818 
6819 void __init page_alloc_sysctl_init(void)
6820 {
6821 	register_sysctl_init("vm", page_alloc_sysctl_table);
6822 }
6823 
6824 #ifdef CONFIG_CONTIG_ALLOC
6825 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6826 static void alloc_contig_dump_pages(struct list_head *page_list)
6827 {
6828 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6829 
6830 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6831 		struct page *page;
6832 
6833 		dump_stack();
6834 		list_for_each_entry(page, page_list, lru)
6835 			dump_page(page, "migration failure");
6836 	}
6837 }
6838 
6839 /* [start, end) must belong to a single zone. */
6840 static int __alloc_contig_migrate_range(struct compact_control *cc,
6841 					unsigned long start, unsigned long end)
6842 {
6843 	/* This function is based on compact_zone() from compaction.c. */
6844 	unsigned int nr_reclaimed;
6845 	unsigned long pfn = start;
6846 	unsigned int tries = 0;
6847 	int ret = 0;
6848 	struct migration_target_control mtc = {
6849 		.nid = zone_to_nid(cc->zone),
6850 		.gfp_mask = cc->gfp_mask,
6851 		.reason = MR_CONTIG_RANGE,
6852 	};
6853 
6854 	lru_cache_disable();
6855 
6856 	while (pfn < end || !list_empty(&cc->migratepages)) {
6857 		if (fatal_signal_pending(current)) {
6858 			ret = -EINTR;
6859 			break;
6860 		}
6861 
6862 		if (list_empty(&cc->migratepages)) {
6863 			cc->nr_migratepages = 0;
6864 			ret = isolate_migratepages_range(cc, pfn, end);
6865 			if (ret && ret != -EAGAIN)
6866 				break;
6867 			pfn = cc->migrate_pfn;
6868 			tries = 0;
6869 		} else if (++tries == 5) {
6870 			ret = -EBUSY;
6871 			break;
6872 		}
6873 
6874 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6875 							&cc->migratepages);
6876 		cc->nr_migratepages -= nr_reclaimed;
6877 
6878 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6879 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6880 
6881 		/*
6882 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6883 		 * to retry again over this error, so do the same here.
6884 		 */
6885 		if (ret == -ENOMEM)
6886 			break;
6887 	}
6888 
6889 	lru_cache_enable();
6890 	if (ret < 0) {
6891 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6892 			alloc_contig_dump_pages(&cc->migratepages);
6893 		putback_movable_pages(&cc->migratepages);
6894 	}
6895 
6896 	return (ret < 0) ? ret : 0;
6897 }
6898 
6899 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6900 {
6901 	int order;
6902 
6903 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6904 		struct page *page, *next;
6905 		int nr_pages = 1 << order;
6906 
6907 		list_for_each_entry_safe(page, next, &list[order], lru) {
6908 			int i;
6909 
6910 			post_alloc_hook(page, order, gfp_mask);
6911 			set_page_refcounted(page);
6912 			if (!order)
6913 				continue;
6914 
6915 			split_page(page, order);
6916 
6917 			/* Add all subpages to the order-0 head, in sequence. */
6918 			list_del(&page->lru);
6919 			for (i = 0; i < nr_pages; i++)
6920 				list_add_tail(&page[i].lru, &list[0]);
6921 		}
6922 	}
6923 }
6924 
6925 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6926 {
6927 	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6928 	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6929 				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6930 	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6931 
6932 	/*
6933 	 * We are given the range to allocate; node, mobility and placement
6934 	 * hints are irrelevant at this point. We'll simply ignore them.
6935 	 */
6936 	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6937 		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6938 
6939 	/*
6940 	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6941 	 * selected action flags.
6942 	 */
6943 	if (gfp_mask & ~(reclaim_mask | action_mask))
6944 		return -EINVAL;
6945 
6946 	/*
6947 	 * Flags to control page compaction/migration/reclaim, to free up our
6948 	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6949 	 * for them.
6950 	 *
6951 	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6952 	 * to not degrade callers.
6953 	 */
6954 	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6955 			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6956 	return 0;
6957 }
6958 
6959 /**
6960  * alloc_contig_range() -- tries to allocate given range of pages
6961  * @start:	start PFN to allocate
6962  * @end:	one-past-the-last PFN to allocate
6963  * @alloc_flags:	allocation information
6964  * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6965  *		action and reclaim modifiers are supported. Reclaim modifiers
6966  *		control allocation behavior during compaction/migration/reclaim.
6967  *
6968  * The PFN range does not have to be pageblock aligned. The PFN range must
6969  * belong to a single zone.
6970  *
6971  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6972  * pageblocks in the range.  Once isolated, the pageblocks should not
6973  * be modified by others.
6974  *
6975  * Return: zero on success or negative error code.  On success all
6976  * pages which PFN is in [start, end) are allocated for the caller and
6977  * need to be freed with free_contig_range().
6978  */
6979 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6980 			      acr_flags_t alloc_flags, gfp_t gfp_mask)
6981 {
6982 	const unsigned int order = ilog2(end - start);
6983 	unsigned long outer_start, outer_end;
6984 	int ret = 0;
6985 
6986 	struct compact_control cc = {
6987 		.nr_migratepages = 0,
6988 		.order = -1,
6989 		.zone = page_zone(pfn_to_page(start)),
6990 		.mode = MIGRATE_SYNC,
6991 		.ignore_skip_hint = true,
6992 		.no_set_skip_hint = true,
6993 		.alloc_contig = true,
6994 	};
6995 	INIT_LIST_HEAD(&cc.migratepages);
6996 	enum pb_isolate_mode mode = (alloc_flags & ACR_FLAGS_CMA) ?
6997 					    PB_ISOLATE_MODE_CMA_ALLOC :
6998 					    PB_ISOLATE_MODE_OTHER;
6999 
7000 	/*
7001 	 * In contrast to the buddy, we allow for orders here that exceed
7002 	 * MAX_PAGE_ORDER, so we must manually make sure that we are not
7003 	 * exceeding the maximum folio order.
7004 	 */
7005 	if (WARN_ON_ONCE((gfp_mask & __GFP_COMP) && order > MAX_FOLIO_ORDER))
7006 		return -EINVAL;
7007 
7008 	gfp_mask = current_gfp_context(gfp_mask);
7009 	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
7010 		return -EINVAL;
7011 
7012 	/*
7013 	 * What we do here is we mark all pageblocks in range as
7014 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7015 	 * have different sizes, and due to the way page allocator
7016 	 * work, start_isolate_page_range() has special handlings for this.
7017 	 *
7018 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7019 	 * migrate the pages from an unaligned range (ie. pages that
7020 	 * we are interested in). This will put all the pages in
7021 	 * range back to page allocator as MIGRATE_ISOLATE.
7022 	 *
7023 	 * When this is done, we take the pages in range from page
7024 	 * allocator removing them from the buddy system.  This way
7025 	 * page allocator will never consider using them.
7026 	 *
7027 	 * This lets us mark the pageblocks back as
7028 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7029 	 * aligned range but not in the unaligned, original range are
7030 	 * put back to page allocator so that buddy can use them.
7031 	 */
7032 
7033 	ret = start_isolate_page_range(start, end, mode);
7034 	if (ret)
7035 		goto done;
7036 
7037 	drain_all_pages(cc.zone);
7038 
7039 	/*
7040 	 * In case of -EBUSY, we'd like to know which page causes problem.
7041 	 * So, just fall through. test_pages_isolated() has a tracepoint
7042 	 * which will report the busy page.
7043 	 *
7044 	 * It is possible that busy pages could become available before
7045 	 * the call to test_pages_isolated, and the range will actually be
7046 	 * allocated.  So, if we fall through be sure to clear ret so that
7047 	 * -EBUSY is not accidentally used or returned to caller.
7048 	 */
7049 	ret = __alloc_contig_migrate_range(&cc, start, end);
7050 	if (ret && ret != -EBUSY)
7051 		goto done;
7052 
7053 	/*
7054 	 * When in-use hugetlb pages are migrated, they may simply be released
7055 	 * back into the free hugepage pool instead of being returned to the
7056 	 * buddy system.  After the migration of in-use huge pages is completed,
7057 	 * we will invoke replace_free_hugepage_folios() to ensure that these
7058 	 * hugepages are properly released to the buddy system.
7059 	 */
7060 	ret = replace_free_hugepage_folios(start, end);
7061 	if (ret)
7062 		goto done;
7063 
7064 	/*
7065 	 * Pages from [start, end) are within a pageblock_nr_pages
7066 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7067 	 * more, all pages in [start, end) are free in page allocator.
7068 	 * What we are going to do is to allocate all pages from
7069 	 * [start, end) (that is remove them from page allocator).
7070 	 *
7071 	 * The only problem is that pages at the beginning and at the
7072 	 * end of interesting range may be not aligned with pages that
7073 	 * page allocator holds, ie. they can be part of higher order
7074 	 * pages.  Because of this, we reserve the bigger range and
7075 	 * once this is done free the pages we are not interested in.
7076 	 *
7077 	 * We don't have to hold zone->lock here because the pages are
7078 	 * isolated thus they won't get removed from buddy.
7079 	 */
7080 	outer_start = find_large_buddy(start);
7081 
7082 	/* Make sure the range is really isolated. */
7083 	if (test_pages_isolated(outer_start, end, mode)) {
7084 		ret = -EBUSY;
7085 		goto done;
7086 	}
7087 
7088 	/* Grab isolated pages from freelists. */
7089 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7090 	if (!outer_end) {
7091 		ret = -EBUSY;
7092 		goto done;
7093 	}
7094 
7095 	if (!(gfp_mask & __GFP_COMP)) {
7096 		split_free_pages(cc.freepages, gfp_mask);
7097 
7098 		/* Free head and tail (if any) */
7099 		if (start != outer_start)
7100 			free_contig_range(outer_start, start - outer_start);
7101 		if (end != outer_end)
7102 			free_contig_range(end, outer_end - end);
7103 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
7104 		struct page *head = pfn_to_page(start);
7105 
7106 		check_new_pages(head, order);
7107 		prep_new_page(head, order, gfp_mask, 0);
7108 		set_page_refcounted(head);
7109 	} else {
7110 		ret = -EINVAL;
7111 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
7112 		     start, end, outer_start, outer_end);
7113 	}
7114 done:
7115 	undo_isolate_page_range(start, end);
7116 	return ret;
7117 }
7118 EXPORT_SYMBOL(alloc_contig_range_noprof);
7119 
7120 static int __alloc_contig_pages(unsigned long start_pfn,
7121 				unsigned long nr_pages, gfp_t gfp_mask)
7122 {
7123 	unsigned long end_pfn = start_pfn + nr_pages;
7124 
7125 	return alloc_contig_range_noprof(start_pfn, end_pfn, ACR_FLAGS_NONE,
7126 					 gfp_mask);
7127 }
7128 
7129 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
7130 				   unsigned long nr_pages)
7131 {
7132 	unsigned long i, end_pfn = start_pfn + nr_pages;
7133 	struct page *page;
7134 
7135 	for (i = start_pfn; i < end_pfn; i++) {
7136 		page = pfn_to_online_page(i);
7137 		if (!page)
7138 			return false;
7139 
7140 		if (page_zone(page) != z)
7141 			return false;
7142 
7143 		if (PageReserved(page))
7144 			return false;
7145 
7146 		if (PageHuge(page))
7147 			return false;
7148 	}
7149 	return true;
7150 }
7151 
7152 static bool zone_spans_last_pfn(const struct zone *zone,
7153 				unsigned long start_pfn, unsigned long nr_pages)
7154 {
7155 	unsigned long last_pfn = start_pfn + nr_pages - 1;
7156 
7157 	return zone_spans_pfn(zone, last_pfn);
7158 }
7159 
7160 /**
7161  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
7162  * @nr_pages:	Number of contiguous pages to allocate
7163  * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
7164  *		action and reclaim modifiers are supported. Reclaim modifiers
7165  *		control allocation behavior during compaction/migration/reclaim.
7166  * @nid:	Target node
7167  * @nodemask:	Mask for other possible nodes
7168  *
7169  * This routine is a wrapper around alloc_contig_range(). It scans over zones
7170  * on an applicable zonelist to find a contiguous pfn range which can then be
7171  * tried for allocation with alloc_contig_range(). This routine is intended
7172  * for allocation requests which can not be fulfilled with the buddy allocator.
7173  *
7174  * The allocated memory is always aligned to a page boundary. If nr_pages is a
7175  * power of two, then allocated range is also guaranteed to be aligned to same
7176  * nr_pages (e.g. 1GB request would be aligned to 1GB).
7177  *
7178  * Allocated pages can be freed with free_contig_range() or by manually calling
7179  * __free_page() on each allocated page.
7180  *
7181  * Return: pointer to contiguous pages on success, or NULL if not successful.
7182  */
7183 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
7184 				 int nid, nodemask_t *nodemask)
7185 {
7186 	unsigned long ret, pfn, flags;
7187 	struct zonelist *zonelist;
7188 	struct zone *zone;
7189 	struct zoneref *z;
7190 
7191 	zonelist = node_zonelist(nid, gfp_mask);
7192 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
7193 					gfp_zone(gfp_mask), nodemask) {
7194 		spin_lock_irqsave(&zone->lock, flags);
7195 
7196 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
7197 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
7198 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
7199 				/*
7200 				 * We release the zone lock here because
7201 				 * alloc_contig_range() will also lock the zone
7202 				 * at some point. If there's an allocation
7203 				 * spinning on this lock, it may win the race
7204 				 * and cause alloc_contig_range() to fail...
7205 				 */
7206 				spin_unlock_irqrestore(&zone->lock, flags);
7207 				ret = __alloc_contig_pages(pfn, nr_pages,
7208 							gfp_mask);
7209 				if (!ret)
7210 					return pfn_to_page(pfn);
7211 				spin_lock_irqsave(&zone->lock, flags);
7212 			}
7213 			pfn += nr_pages;
7214 		}
7215 		spin_unlock_irqrestore(&zone->lock, flags);
7216 	}
7217 	return NULL;
7218 }
7219 #endif /* CONFIG_CONTIG_ALLOC */
7220 
7221 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
7222 {
7223 	unsigned long count = 0;
7224 	struct folio *folio = pfn_folio(pfn);
7225 
7226 	if (folio_test_large(folio)) {
7227 		int expected = folio_nr_pages(folio);
7228 
7229 		if (nr_pages == expected)
7230 			folio_put(folio);
7231 		else
7232 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
7233 			     pfn, nr_pages, expected);
7234 		return;
7235 	}
7236 
7237 	for (; nr_pages--; pfn++) {
7238 		struct page *page = pfn_to_page(pfn);
7239 
7240 		count += page_count(page) != 1;
7241 		__free_page(page);
7242 	}
7243 	WARN(count != 0, "%lu pages are still in use!\n", count);
7244 }
7245 EXPORT_SYMBOL(free_contig_range);
7246 
7247 /*
7248  * Effectively disable pcplists for the zone by setting the high limit to 0
7249  * and draining all cpus. A concurrent page freeing on another CPU that's about
7250  * to put the page on pcplist will either finish before the drain and the page
7251  * will be drained, or observe the new high limit and skip the pcplist.
7252  *
7253  * Must be paired with a call to zone_pcp_enable().
7254  */
7255 void zone_pcp_disable(struct zone *zone)
7256 {
7257 	mutex_lock(&pcp_batch_high_lock);
7258 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
7259 	__drain_all_pages(zone, true);
7260 }
7261 
7262 void zone_pcp_enable(struct zone *zone)
7263 {
7264 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
7265 		zone->pageset_high_max, zone->pageset_batch);
7266 	mutex_unlock(&pcp_batch_high_lock);
7267 }
7268 
7269 void zone_pcp_reset(struct zone *zone)
7270 {
7271 	int cpu;
7272 	struct per_cpu_zonestat *pzstats;
7273 
7274 	if (zone->per_cpu_pageset != &boot_pageset) {
7275 		for_each_online_cpu(cpu) {
7276 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7277 			drain_zonestat(zone, pzstats);
7278 		}
7279 		free_percpu(zone->per_cpu_pageset);
7280 		zone->per_cpu_pageset = &boot_pageset;
7281 		if (zone->per_cpu_zonestats != &boot_zonestats) {
7282 			free_percpu(zone->per_cpu_zonestats);
7283 			zone->per_cpu_zonestats = &boot_zonestats;
7284 		}
7285 	}
7286 }
7287 
7288 #ifdef CONFIG_MEMORY_HOTREMOVE
7289 /*
7290  * All pages in the range must be in a single zone, must not contain holes,
7291  * must span full sections, and must be isolated before calling this function.
7292  *
7293  * Returns the number of managed (non-PageOffline()) pages in the range: the
7294  * number of pages for which memory offlining code must adjust managed page
7295  * counters using adjust_managed_page_count().
7296  */
7297 unsigned long __offline_isolated_pages(unsigned long start_pfn,
7298 		unsigned long end_pfn)
7299 {
7300 	unsigned long already_offline = 0, flags;
7301 	unsigned long pfn = start_pfn;
7302 	struct page *page;
7303 	struct zone *zone;
7304 	unsigned int order;
7305 
7306 	offline_mem_sections(pfn, end_pfn);
7307 	zone = page_zone(pfn_to_page(pfn));
7308 	spin_lock_irqsave(&zone->lock, flags);
7309 	while (pfn < end_pfn) {
7310 		page = pfn_to_page(pfn);
7311 		/*
7312 		 * The HWPoisoned page may be not in buddy system, and
7313 		 * page_count() is not 0.
7314 		 */
7315 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7316 			pfn++;
7317 			continue;
7318 		}
7319 		/*
7320 		 * At this point all remaining PageOffline() pages have a
7321 		 * reference count of 0 and can simply be skipped.
7322 		 */
7323 		if (PageOffline(page)) {
7324 			BUG_ON(page_count(page));
7325 			BUG_ON(PageBuddy(page));
7326 			already_offline++;
7327 			pfn++;
7328 			continue;
7329 		}
7330 
7331 		BUG_ON(page_count(page));
7332 		BUG_ON(!PageBuddy(page));
7333 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
7334 		order = buddy_order(page);
7335 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
7336 		pfn += (1 << order);
7337 	}
7338 	spin_unlock_irqrestore(&zone->lock, flags);
7339 
7340 	return end_pfn - start_pfn - already_offline;
7341 }
7342 #endif
7343 
7344 /*
7345  * This function returns a stable result only if called under zone lock.
7346  */
7347 bool is_free_buddy_page(const struct page *page)
7348 {
7349 	unsigned long pfn = page_to_pfn(page);
7350 	unsigned int order;
7351 
7352 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7353 		const struct page *head = page - (pfn & ((1 << order) - 1));
7354 
7355 		if (PageBuddy(head) &&
7356 		    buddy_order_unsafe(head) >= order)
7357 			break;
7358 	}
7359 
7360 	return order <= MAX_PAGE_ORDER;
7361 }
7362 EXPORT_SYMBOL(is_free_buddy_page);
7363 
7364 #ifdef CONFIG_MEMORY_FAILURE
7365 static inline void add_to_free_list(struct page *page, struct zone *zone,
7366 				    unsigned int order, int migratetype,
7367 				    bool tail)
7368 {
7369 	__add_to_free_list(page, zone, order, migratetype, tail);
7370 	account_freepages(zone, 1 << order, migratetype);
7371 }
7372 
7373 /*
7374  * Break down a higher-order page in sub-pages, and keep our target out of
7375  * buddy allocator.
7376  */
7377 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7378 				   struct page *target, int low, int high,
7379 				   int migratetype)
7380 {
7381 	unsigned long size = 1 << high;
7382 	struct page *current_buddy;
7383 
7384 	while (high > low) {
7385 		high--;
7386 		size >>= 1;
7387 
7388 		if (target >= &page[size]) {
7389 			current_buddy = page;
7390 			page = page + size;
7391 		} else {
7392 			current_buddy = page + size;
7393 		}
7394 
7395 		if (set_page_guard(zone, current_buddy, high))
7396 			continue;
7397 
7398 		add_to_free_list(current_buddy, zone, high, migratetype, false);
7399 		set_buddy_order(current_buddy, high);
7400 	}
7401 }
7402 
7403 /*
7404  * Take a page that will be marked as poisoned off the buddy allocator.
7405  */
7406 bool take_page_off_buddy(struct page *page)
7407 {
7408 	struct zone *zone = page_zone(page);
7409 	unsigned long pfn = page_to_pfn(page);
7410 	unsigned long flags;
7411 	unsigned int order;
7412 	bool ret = false;
7413 
7414 	spin_lock_irqsave(&zone->lock, flags);
7415 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7416 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7417 		int page_order = buddy_order(page_head);
7418 
7419 		if (PageBuddy(page_head) && page_order >= order) {
7420 			unsigned long pfn_head = page_to_pfn(page_head);
7421 			int migratetype = get_pfnblock_migratetype(page_head,
7422 								   pfn_head);
7423 
7424 			del_page_from_free_list(page_head, zone, page_order,
7425 						migratetype);
7426 			break_down_buddy_pages(zone, page_head, page, 0,
7427 						page_order, migratetype);
7428 			SetPageHWPoisonTakenOff(page);
7429 			ret = true;
7430 			break;
7431 		}
7432 		if (page_count(page_head) > 0)
7433 			break;
7434 	}
7435 	spin_unlock_irqrestore(&zone->lock, flags);
7436 	return ret;
7437 }
7438 
7439 /*
7440  * Cancel takeoff done by take_page_off_buddy().
7441  */
7442 bool put_page_back_buddy(struct page *page)
7443 {
7444 	struct zone *zone = page_zone(page);
7445 	unsigned long flags;
7446 	bool ret = false;
7447 
7448 	spin_lock_irqsave(&zone->lock, flags);
7449 	if (put_page_testzero(page)) {
7450 		unsigned long pfn = page_to_pfn(page);
7451 		int migratetype = get_pfnblock_migratetype(page, pfn);
7452 
7453 		ClearPageHWPoisonTakenOff(page);
7454 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7455 		if (TestClearPageHWPoison(page)) {
7456 			ret = true;
7457 		}
7458 	}
7459 	spin_unlock_irqrestore(&zone->lock, flags);
7460 
7461 	return ret;
7462 }
7463 #endif
7464 
7465 bool has_managed_zone(enum zone_type zone)
7466 {
7467 	struct pglist_data *pgdat;
7468 
7469 	for_each_online_pgdat(pgdat) {
7470 		if (managed_zone(&pgdat->node_zones[zone]))
7471 			return true;
7472 	}
7473 	return false;
7474 }
7475 
7476 #ifdef CONFIG_UNACCEPTED_MEMORY
7477 
7478 static bool lazy_accept = true;
7479 
7480 static int __init accept_memory_parse(char *p)
7481 {
7482 	if (!strcmp(p, "lazy")) {
7483 		lazy_accept = true;
7484 		return 0;
7485 	} else if (!strcmp(p, "eager")) {
7486 		lazy_accept = false;
7487 		return 0;
7488 	} else {
7489 		return -EINVAL;
7490 	}
7491 }
7492 early_param("accept_memory", accept_memory_parse);
7493 
7494 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7495 {
7496 	phys_addr_t start = page_to_phys(page);
7497 
7498 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7499 }
7500 
7501 static void __accept_page(struct zone *zone, unsigned long *flags,
7502 			  struct page *page)
7503 {
7504 	list_del(&page->lru);
7505 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7506 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7507 	__ClearPageUnaccepted(page);
7508 	spin_unlock_irqrestore(&zone->lock, *flags);
7509 
7510 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7511 
7512 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7513 }
7514 
7515 void accept_page(struct page *page)
7516 {
7517 	struct zone *zone = page_zone(page);
7518 	unsigned long flags;
7519 
7520 	spin_lock_irqsave(&zone->lock, flags);
7521 	if (!PageUnaccepted(page)) {
7522 		spin_unlock_irqrestore(&zone->lock, flags);
7523 		return;
7524 	}
7525 
7526 	/* Unlocks zone->lock */
7527 	__accept_page(zone, &flags, page);
7528 }
7529 
7530 static bool try_to_accept_memory_one(struct zone *zone)
7531 {
7532 	unsigned long flags;
7533 	struct page *page;
7534 
7535 	spin_lock_irqsave(&zone->lock, flags);
7536 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7537 					struct page, lru);
7538 	if (!page) {
7539 		spin_unlock_irqrestore(&zone->lock, flags);
7540 		return false;
7541 	}
7542 
7543 	/* Unlocks zone->lock */
7544 	__accept_page(zone, &flags, page);
7545 
7546 	return true;
7547 }
7548 
7549 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7550 			       int alloc_flags)
7551 {
7552 	long to_accept, wmark;
7553 	bool ret = false;
7554 
7555 	if (list_empty(&zone->unaccepted_pages))
7556 		return false;
7557 
7558 	/* Bailout, since try_to_accept_memory_one() needs to take a lock */
7559 	if (alloc_flags & ALLOC_TRYLOCK)
7560 		return false;
7561 
7562 	wmark = promo_wmark_pages(zone);
7563 
7564 	/*
7565 	 * Watermarks have not been initialized yet.
7566 	 *
7567 	 * Accepting one MAX_ORDER page to ensure progress.
7568 	 */
7569 	if (!wmark)
7570 		return try_to_accept_memory_one(zone);
7571 
7572 	/* How much to accept to get to promo watermark? */
7573 	to_accept = wmark -
7574 		    (zone_page_state(zone, NR_FREE_PAGES) -
7575 		    __zone_watermark_unusable_free(zone, order, 0) -
7576 		    zone_page_state(zone, NR_UNACCEPTED));
7577 
7578 	while (to_accept > 0) {
7579 		if (!try_to_accept_memory_one(zone))
7580 			break;
7581 		ret = true;
7582 		to_accept -= MAX_ORDER_NR_PAGES;
7583 	}
7584 
7585 	return ret;
7586 }
7587 
7588 static bool __free_unaccepted(struct page *page)
7589 {
7590 	struct zone *zone = page_zone(page);
7591 	unsigned long flags;
7592 
7593 	if (!lazy_accept)
7594 		return false;
7595 
7596 	spin_lock_irqsave(&zone->lock, flags);
7597 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7598 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7599 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7600 	__SetPageUnaccepted(page);
7601 	spin_unlock_irqrestore(&zone->lock, flags);
7602 
7603 	return true;
7604 }
7605 
7606 #else
7607 
7608 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7609 {
7610 	return false;
7611 }
7612 
7613 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7614 			       int alloc_flags)
7615 {
7616 	return false;
7617 }
7618 
7619 static bool __free_unaccepted(struct page *page)
7620 {
7621 	BUILD_BUG();
7622 	return false;
7623 }
7624 
7625 #endif /* CONFIG_UNACCEPTED_MEMORY */
7626 
7627 struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order)
7628 {
7629 	/*
7630 	 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
7631 	 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
7632 	 * is not safe in arbitrary context.
7633 	 *
7634 	 * These two are the conditions for gfpflags_allow_spinning() being true.
7635 	 *
7636 	 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason
7637 	 * to warn. Also warn would trigger printk() which is unsafe from
7638 	 * various contexts. We cannot use printk_deferred_enter() to mitigate,
7639 	 * since the running context is unknown.
7640 	 *
7641 	 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
7642 	 * is safe in any context. Also zeroing the page is mandatory for
7643 	 * BPF use cases.
7644 	 *
7645 	 * Though __GFP_NOMEMALLOC is not checked in the code path below,
7646 	 * specify it here to highlight that alloc_pages_nolock()
7647 	 * doesn't want to deplete reserves.
7648 	 */
7649 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC | __GFP_COMP
7650 			| gfp_flags;
7651 	unsigned int alloc_flags = ALLOC_TRYLOCK;
7652 	struct alloc_context ac = { };
7653 	struct page *page;
7654 
7655 	VM_WARN_ON_ONCE(gfp_flags & ~__GFP_ACCOUNT);
7656 	/*
7657 	 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
7658 	 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
7659 	 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
7660 	 * mark the task as the owner of another rt_spin_lock which will
7661 	 * confuse PI logic, so return immediately if called form hard IRQ or
7662 	 * NMI.
7663 	 *
7664 	 * Note, irqs_disabled() case is ok. This function can be called
7665 	 * from raw_spin_lock_irqsave region.
7666 	 */
7667 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
7668 		return NULL;
7669 	if (!pcp_allowed_order(order))
7670 		return NULL;
7671 
7672 	/* Bailout, since _deferred_grow_zone() needs to take a lock */
7673 	if (deferred_pages_enabled())
7674 		return NULL;
7675 
7676 	if (nid == NUMA_NO_NODE)
7677 		nid = numa_node_id();
7678 
7679 	prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
7680 			    &alloc_gfp, &alloc_flags);
7681 
7682 	/*
7683 	 * Best effort allocation from percpu free list.
7684 	 * If it's empty attempt to spin_trylock zone->lock.
7685 	 */
7686 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
7687 
7688 	/* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
7689 
7690 	if (memcg_kmem_online() && page && (gfp_flags & __GFP_ACCOUNT) &&
7691 	    unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
7692 		__free_frozen_pages(page, order, FPI_TRYLOCK);
7693 		page = NULL;
7694 	}
7695 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
7696 	kmsan_alloc_page(page, order, alloc_gfp);
7697 	return page;
7698 }
7699 /**
7700  * alloc_pages_nolock - opportunistic reentrant allocation from any context
7701  * @gfp_flags: GFP flags. Only __GFP_ACCOUNT allowed.
7702  * @nid: node to allocate from
7703  * @order: allocation order size
7704  *
7705  * Allocates pages of a given order from the given node. This is safe to
7706  * call from any context (from atomic, NMI, and also reentrant
7707  * allocator -> tracepoint -> alloc_pages_nolock_noprof).
7708  * Allocation is best effort and to be expected to fail easily so nobody should
7709  * rely on the success. Failures are not reported via warn_alloc().
7710  * See always fail conditions below.
7711  *
7712  * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN.
7713  * It means ENOMEM. There is no reason to call it again and expect !NULL.
7714  */
7715 struct page *alloc_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order)
7716 {
7717 	struct page *page;
7718 
7719 	page = alloc_frozen_pages_nolock_noprof(gfp_flags, nid, order);
7720 	if (page)
7721 		set_page_refcounted(page);
7722 	return page;
7723 }
7724 EXPORT_SYMBOL_GPL(alloc_pages_nolock_noprof);
7725