1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* Free the page without taking locks. Rely on trylock only. */ 92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) 93 94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 95 static DEFINE_MUTEX(pcp_batch_high_lock); 96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 97 98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 99 /* 100 * On SMP, spin_trylock is sufficient protection. 101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 102 * Pass flags to a no-op inline function to typecheck and silence the unused 103 * variable warning. 104 */ 105 static inline void __pcp_trylock_noop(unsigned long *flags) { } 106 #define pcp_trylock_prepare(flags) __pcp_trylock_noop(&(flags)) 107 #define pcp_trylock_finish(flags) __pcp_trylock_noop(&(flags)) 108 #else 109 110 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 111 #define pcp_trylock_prepare(flags) local_irq_save(flags) 112 #define pcp_trylock_finish(flags) local_irq_restore(flags) 113 #endif 114 115 /* 116 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 117 * a migration causing the wrong PCP to be locked and remote memory being 118 * potentially allocated, pin the task to the CPU for the lookup+lock. 119 * preempt_disable is used on !RT because it is faster than migrate_disable. 120 * migrate_disable is used on RT because otherwise RT spinlock usage is 121 * interfered with and a high priority task cannot preempt the allocator. 122 */ 123 #ifndef CONFIG_PREEMPT_RT 124 #define pcpu_task_pin() preempt_disable() 125 #define pcpu_task_unpin() preempt_enable() 126 #else 127 #define pcpu_task_pin() migrate_disable() 128 #define pcpu_task_unpin() migrate_enable() 129 #endif 130 131 /* 132 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 133 * Return value should be used with equivalent unlock helper. 134 */ 135 #define pcpu_spin_trylock(type, member, ptr) \ 136 ({ \ 137 type *_ret; \ 138 pcpu_task_pin(); \ 139 _ret = this_cpu_ptr(ptr); \ 140 if (!spin_trylock(&_ret->member)) { \ 141 pcpu_task_unpin(); \ 142 _ret = NULL; \ 143 } \ 144 _ret; \ 145 }) 146 147 #define pcpu_spin_unlock(member, ptr) \ 148 ({ \ 149 spin_unlock(&ptr->member); \ 150 pcpu_task_unpin(); \ 151 }) 152 153 /* struct per_cpu_pages specific helpers. */ 154 #define pcp_spin_trylock(ptr, UP_flags) \ 155 ({ \ 156 struct per_cpu_pages *__ret; \ 157 pcp_trylock_prepare(UP_flags); \ 158 __ret = pcpu_spin_trylock(struct per_cpu_pages, lock, ptr); \ 159 if (!__ret) \ 160 pcp_trylock_finish(UP_flags); \ 161 __ret; \ 162 }) 163 164 #define pcp_spin_unlock(ptr, UP_flags) \ 165 ({ \ 166 pcpu_spin_unlock(lock, ptr); \ 167 pcp_trylock_finish(UP_flags); \ 168 }) 169 170 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 171 DEFINE_PER_CPU(int, numa_node); 172 EXPORT_PER_CPU_SYMBOL(numa_node); 173 #endif 174 175 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 176 177 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 178 /* 179 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 180 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 181 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 182 * defined in <linux/topology.h>. 183 */ 184 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 185 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 186 #endif 187 188 static DEFINE_MUTEX(pcpu_drain_mutex); 189 190 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 191 volatile unsigned long latent_entropy __latent_entropy; 192 EXPORT_SYMBOL(latent_entropy); 193 #endif 194 195 /* 196 * Array of node states. 197 */ 198 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 199 [N_POSSIBLE] = NODE_MASK_ALL, 200 [N_ONLINE] = { { [0] = 1UL } }, 201 #ifndef CONFIG_NUMA 202 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 203 #ifdef CONFIG_HIGHMEM 204 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 205 #endif 206 [N_MEMORY] = { { [0] = 1UL } }, 207 [N_CPU] = { { [0] = 1UL } }, 208 #endif /* NUMA */ 209 }; 210 EXPORT_SYMBOL(node_states); 211 212 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 213 214 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 215 unsigned int pageblock_order __read_mostly; 216 #endif 217 218 static void __free_pages_ok(struct page *page, unsigned int order, 219 fpi_t fpi_flags); 220 221 /* 222 * results with 256, 32 in the lowmem_reserve sysctl: 223 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 224 * 1G machine -> (16M dma, 784M normal, 224M high) 225 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 226 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 227 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 228 * 229 * TBD: should special case ZONE_DMA32 machines here - in those we normally 230 * don't need any ZONE_NORMAL reservation 231 */ 232 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 233 #ifdef CONFIG_ZONE_DMA 234 [ZONE_DMA] = 256, 235 #endif 236 #ifdef CONFIG_ZONE_DMA32 237 [ZONE_DMA32] = 256, 238 #endif 239 [ZONE_NORMAL] = 32, 240 #ifdef CONFIG_HIGHMEM 241 [ZONE_HIGHMEM] = 0, 242 #endif 243 [ZONE_MOVABLE] = 0, 244 }; 245 246 char * const zone_names[MAX_NR_ZONES] = { 247 #ifdef CONFIG_ZONE_DMA 248 "DMA", 249 #endif 250 #ifdef CONFIG_ZONE_DMA32 251 "DMA32", 252 #endif 253 "Normal", 254 #ifdef CONFIG_HIGHMEM 255 "HighMem", 256 #endif 257 "Movable", 258 #ifdef CONFIG_ZONE_DEVICE 259 "Device", 260 #endif 261 }; 262 263 const char * const migratetype_names[MIGRATE_TYPES] = { 264 "Unmovable", 265 "Movable", 266 "Reclaimable", 267 "HighAtomic", 268 #ifdef CONFIG_CMA 269 "CMA", 270 #endif 271 #ifdef CONFIG_MEMORY_ISOLATION 272 "Isolate", 273 #endif 274 }; 275 276 int min_free_kbytes = 1024; 277 int user_min_free_kbytes = -1; 278 static int watermark_boost_factor __read_mostly = 15000; 279 static int watermark_scale_factor = 10; 280 int defrag_mode; 281 282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 283 int movable_zone; 284 EXPORT_SYMBOL(movable_zone); 285 286 #if MAX_NUMNODES > 1 287 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 288 unsigned int nr_online_nodes __read_mostly = 1; 289 EXPORT_SYMBOL(nr_node_ids); 290 EXPORT_SYMBOL(nr_online_nodes); 291 #endif 292 293 static bool page_contains_unaccepted(struct page *page, unsigned int order); 294 static bool cond_accept_memory(struct zone *zone, unsigned int order, 295 int alloc_flags); 296 static bool __free_unaccepted(struct page *page); 297 298 int page_group_by_mobility_disabled __read_mostly; 299 300 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 301 /* 302 * During boot we initialize deferred pages on-demand, as needed, but once 303 * page_alloc_init_late() has finished, the deferred pages are all initialized, 304 * and we can permanently disable that path. 305 */ 306 DEFINE_STATIC_KEY_TRUE(deferred_pages); 307 308 static inline bool deferred_pages_enabled(void) 309 { 310 return static_branch_unlikely(&deferred_pages); 311 } 312 313 /* 314 * deferred_grow_zone() is __init, but it is called from 315 * get_page_from_freelist() during early boot until deferred_pages permanently 316 * disables this call. This is why we have refdata wrapper to avoid warning, 317 * and to ensure that the function body gets unloaded. 318 */ 319 static bool __ref 320 _deferred_grow_zone(struct zone *zone, unsigned int order) 321 { 322 return deferred_grow_zone(zone, order); 323 } 324 #else 325 static inline bool deferred_pages_enabled(void) 326 { 327 return false; 328 } 329 330 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 331 { 332 return false; 333 } 334 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 335 336 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 337 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 338 unsigned long pfn) 339 { 340 #ifdef CONFIG_SPARSEMEM 341 return section_to_usemap(__pfn_to_section(pfn)); 342 #else 343 return page_zone(page)->pageblock_flags; 344 #endif /* CONFIG_SPARSEMEM */ 345 } 346 347 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 348 { 349 #ifdef CONFIG_SPARSEMEM 350 pfn &= (PAGES_PER_SECTION-1); 351 #else 352 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 353 #endif /* CONFIG_SPARSEMEM */ 354 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 355 } 356 357 static __always_inline bool is_standalone_pb_bit(enum pageblock_bits pb_bit) 358 { 359 return pb_bit >= PB_compact_skip && pb_bit < __NR_PAGEBLOCK_BITS; 360 } 361 362 static __always_inline void 363 get_pfnblock_bitmap_bitidx(const struct page *page, unsigned long pfn, 364 unsigned long **bitmap_word, unsigned long *bitidx) 365 { 366 unsigned long *bitmap; 367 unsigned long word_bitidx; 368 369 #ifdef CONFIG_MEMORY_ISOLATION 370 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 8); 371 #else 372 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 373 #endif 374 BUILD_BUG_ON(__MIGRATE_TYPE_END > MIGRATETYPE_MASK); 375 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 376 377 bitmap = get_pageblock_bitmap(page, pfn); 378 *bitidx = pfn_to_bitidx(page, pfn); 379 word_bitidx = *bitidx / BITS_PER_LONG; 380 *bitidx &= (BITS_PER_LONG - 1); 381 *bitmap_word = &bitmap[word_bitidx]; 382 } 383 384 385 /** 386 * __get_pfnblock_flags_mask - Return the requested group of flags for 387 * a pageblock_nr_pages block of pages 388 * @page: The page within the block of interest 389 * @pfn: The target page frame number 390 * @mask: mask of bits that the caller is interested in 391 * 392 * Return: pageblock_bits flags 393 */ 394 static unsigned long __get_pfnblock_flags_mask(const struct page *page, 395 unsigned long pfn, 396 unsigned long mask) 397 { 398 unsigned long *bitmap_word; 399 unsigned long bitidx; 400 unsigned long word; 401 402 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 403 /* 404 * This races, without locks, with set_pfnblock_migratetype(). Ensure 405 * a consistent read of the memory array, so that results, even though 406 * racy, are not corrupted. 407 */ 408 word = READ_ONCE(*bitmap_word); 409 return (word >> bitidx) & mask; 410 } 411 412 /** 413 * get_pfnblock_bit - Check if a standalone bit of a pageblock is set 414 * @page: The page within the block of interest 415 * @pfn: The target page frame number 416 * @pb_bit: pageblock bit to check 417 * 418 * Return: true if the bit is set, otherwise false 419 */ 420 bool get_pfnblock_bit(const struct page *page, unsigned long pfn, 421 enum pageblock_bits pb_bit) 422 { 423 unsigned long *bitmap_word; 424 unsigned long bitidx; 425 426 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 427 return false; 428 429 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 430 431 return test_bit(bitidx + pb_bit, bitmap_word); 432 } 433 434 /** 435 * get_pfnblock_migratetype - Return the migratetype of a pageblock 436 * @page: The page within the block of interest 437 * @pfn: The target page frame number 438 * 439 * Return: The migratetype of the pageblock 440 * 441 * Use get_pfnblock_migratetype() if caller already has both @page and @pfn 442 * to save a call to page_to_pfn(). 443 */ 444 __always_inline enum migratetype 445 get_pfnblock_migratetype(const struct page *page, unsigned long pfn) 446 { 447 unsigned long mask = MIGRATETYPE_AND_ISO_MASK; 448 unsigned long flags; 449 450 flags = __get_pfnblock_flags_mask(page, pfn, mask); 451 452 #ifdef CONFIG_MEMORY_ISOLATION 453 if (flags & BIT(PB_migrate_isolate)) 454 return MIGRATE_ISOLATE; 455 #endif 456 return flags & MIGRATETYPE_MASK; 457 } 458 459 /** 460 * __set_pfnblock_flags_mask - Set the requested group of flags for 461 * a pageblock_nr_pages block of pages 462 * @page: The page within the block of interest 463 * @pfn: The target page frame number 464 * @flags: The flags to set 465 * @mask: mask of bits that the caller is interested in 466 */ 467 static void __set_pfnblock_flags_mask(struct page *page, unsigned long pfn, 468 unsigned long flags, unsigned long mask) 469 { 470 unsigned long *bitmap_word; 471 unsigned long bitidx; 472 unsigned long word; 473 474 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 475 476 mask <<= bitidx; 477 flags <<= bitidx; 478 479 word = READ_ONCE(*bitmap_word); 480 do { 481 } while (!try_cmpxchg(bitmap_word, &word, (word & ~mask) | flags)); 482 } 483 484 /** 485 * set_pfnblock_bit - Set a standalone bit of a pageblock 486 * @page: The page within the block of interest 487 * @pfn: The target page frame number 488 * @pb_bit: pageblock bit to set 489 */ 490 void set_pfnblock_bit(const struct page *page, unsigned long pfn, 491 enum pageblock_bits pb_bit) 492 { 493 unsigned long *bitmap_word; 494 unsigned long bitidx; 495 496 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 497 return; 498 499 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 500 501 set_bit(bitidx + pb_bit, bitmap_word); 502 } 503 504 /** 505 * clear_pfnblock_bit - Clear a standalone bit of a pageblock 506 * @page: The page within the block of interest 507 * @pfn: The target page frame number 508 * @pb_bit: pageblock bit to clear 509 */ 510 void clear_pfnblock_bit(const struct page *page, unsigned long pfn, 511 enum pageblock_bits pb_bit) 512 { 513 unsigned long *bitmap_word; 514 unsigned long bitidx; 515 516 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 517 return; 518 519 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 520 521 clear_bit(bitidx + pb_bit, bitmap_word); 522 } 523 524 /** 525 * set_pageblock_migratetype - Set the migratetype of a pageblock 526 * @page: The page within the block of interest 527 * @migratetype: migratetype to set 528 */ 529 static void set_pageblock_migratetype(struct page *page, 530 enum migratetype migratetype) 531 { 532 if (unlikely(page_group_by_mobility_disabled && 533 migratetype < MIGRATE_PCPTYPES)) 534 migratetype = MIGRATE_UNMOVABLE; 535 536 #ifdef CONFIG_MEMORY_ISOLATION 537 if (migratetype == MIGRATE_ISOLATE) { 538 VM_WARN_ONCE(1, 539 "Use set_pageblock_isolate() for pageblock isolation"); 540 return; 541 } 542 VM_WARN_ONCE(get_pageblock_isolate(page), 543 "Use clear_pageblock_isolate() to unisolate pageblock"); 544 /* MIGRATETYPE_AND_ISO_MASK clears PB_migrate_isolate if it is set */ 545 #endif 546 __set_pfnblock_flags_mask(page, page_to_pfn(page), 547 (unsigned long)migratetype, 548 MIGRATETYPE_AND_ISO_MASK); 549 } 550 551 void __meminit init_pageblock_migratetype(struct page *page, 552 enum migratetype migratetype, 553 bool isolate) 554 { 555 unsigned long flags; 556 557 if (unlikely(page_group_by_mobility_disabled && 558 migratetype < MIGRATE_PCPTYPES)) 559 migratetype = MIGRATE_UNMOVABLE; 560 561 flags = migratetype; 562 563 #ifdef CONFIG_MEMORY_ISOLATION 564 if (migratetype == MIGRATE_ISOLATE) { 565 VM_WARN_ONCE( 566 1, 567 "Set isolate=true to isolate pageblock with a migratetype"); 568 return; 569 } 570 if (isolate) 571 flags |= BIT(PB_migrate_isolate); 572 #endif 573 __set_pfnblock_flags_mask(page, page_to_pfn(page), flags, 574 MIGRATETYPE_AND_ISO_MASK); 575 } 576 577 #ifdef CONFIG_DEBUG_VM 578 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 579 { 580 int ret; 581 unsigned seq; 582 unsigned long pfn = page_to_pfn(page); 583 unsigned long sp, start_pfn; 584 585 do { 586 seq = zone_span_seqbegin(zone); 587 start_pfn = zone->zone_start_pfn; 588 sp = zone->spanned_pages; 589 ret = !zone_spans_pfn(zone, pfn); 590 } while (zone_span_seqretry(zone, seq)); 591 592 if (ret) 593 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 594 pfn, zone_to_nid(zone), zone->name, 595 start_pfn, start_pfn + sp); 596 597 return ret; 598 } 599 600 /* 601 * Temporary debugging check for pages not lying within a given zone. 602 */ 603 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 604 { 605 if (page_outside_zone_boundaries(zone, page)) 606 return true; 607 if (zone != page_zone(page)) 608 return true; 609 610 return false; 611 } 612 #else 613 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 614 { 615 return false; 616 } 617 #endif 618 619 static void bad_page(struct page *page, const char *reason) 620 { 621 static unsigned long resume; 622 static unsigned long nr_shown; 623 static unsigned long nr_unshown; 624 625 /* 626 * Allow a burst of 60 reports, then keep quiet for that minute; 627 * or allow a steady drip of one report per second. 628 */ 629 if (nr_shown == 60) { 630 if (time_before(jiffies, resume)) { 631 nr_unshown++; 632 goto out; 633 } 634 if (nr_unshown) { 635 pr_alert( 636 "BUG: Bad page state: %lu messages suppressed\n", 637 nr_unshown); 638 nr_unshown = 0; 639 } 640 nr_shown = 0; 641 } 642 if (nr_shown++ == 0) 643 resume = jiffies + 60 * HZ; 644 645 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 646 current->comm, page_to_pfn(page)); 647 dump_page(page, reason); 648 649 print_modules(); 650 dump_stack(); 651 out: 652 /* Leave bad fields for debug, except PageBuddy could make trouble */ 653 if (PageBuddy(page)) 654 __ClearPageBuddy(page); 655 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 656 } 657 658 static inline unsigned int order_to_pindex(int migratetype, int order) 659 { 660 661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 662 bool movable; 663 if (order > PAGE_ALLOC_COSTLY_ORDER) { 664 VM_BUG_ON(order != HPAGE_PMD_ORDER); 665 666 movable = migratetype == MIGRATE_MOVABLE; 667 668 return NR_LOWORDER_PCP_LISTS + movable; 669 } 670 #else 671 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 672 #endif 673 674 return (MIGRATE_PCPTYPES * order) + migratetype; 675 } 676 677 static inline int pindex_to_order(unsigned int pindex) 678 { 679 int order = pindex / MIGRATE_PCPTYPES; 680 681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 682 if (pindex >= NR_LOWORDER_PCP_LISTS) 683 order = HPAGE_PMD_ORDER; 684 #else 685 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 686 #endif 687 688 return order; 689 } 690 691 static inline bool pcp_allowed_order(unsigned int order) 692 { 693 if (order <= PAGE_ALLOC_COSTLY_ORDER) 694 return true; 695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 696 if (order == HPAGE_PMD_ORDER) 697 return true; 698 #endif 699 return false; 700 } 701 702 /* 703 * Higher-order pages are called "compound pages". They are structured thusly: 704 * 705 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 706 * 707 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 708 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 709 * 710 * The first tail page's ->compound_order holds the order of allocation. 711 * This usage means that zero-order pages may not be compound. 712 */ 713 714 void prep_compound_page(struct page *page, unsigned int order) 715 { 716 int i; 717 int nr_pages = 1 << order; 718 719 __SetPageHead(page); 720 for (i = 1; i < nr_pages; i++) 721 prep_compound_tail(page, i); 722 723 prep_compound_head(page, order); 724 } 725 726 static inline void set_buddy_order(struct page *page, unsigned int order) 727 { 728 set_page_private(page, order); 729 __SetPageBuddy(page); 730 } 731 732 #ifdef CONFIG_COMPACTION 733 static inline struct capture_control *task_capc(struct zone *zone) 734 { 735 struct capture_control *capc = current->capture_control; 736 737 return unlikely(capc) && 738 !(current->flags & PF_KTHREAD) && 739 !capc->page && 740 capc->cc->zone == zone ? capc : NULL; 741 } 742 743 static inline bool 744 compaction_capture(struct capture_control *capc, struct page *page, 745 int order, int migratetype) 746 { 747 if (!capc || order != capc->cc->order) 748 return false; 749 750 /* Do not accidentally pollute CMA or isolated regions*/ 751 if (is_migrate_cma(migratetype) || 752 is_migrate_isolate(migratetype)) 753 return false; 754 755 /* 756 * Do not let lower order allocations pollute a movable pageblock 757 * unless compaction is also requesting movable pages. 758 * This might let an unmovable request use a reclaimable pageblock 759 * and vice-versa but no more than normal fallback logic which can 760 * have trouble finding a high-order free page. 761 */ 762 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 763 capc->cc->migratetype != MIGRATE_MOVABLE) 764 return false; 765 766 if (migratetype != capc->cc->migratetype) 767 trace_mm_page_alloc_extfrag(page, capc->cc->order, order, 768 capc->cc->migratetype, migratetype); 769 770 capc->page = page; 771 return true; 772 } 773 774 #else 775 static inline struct capture_control *task_capc(struct zone *zone) 776 { 777 return NULL; 778 } 779 780 static inline bool 781 compaction_capture(struct capture_control *capc, struct page *page, 782 int order, int migratetype) 783 { 784 return false; 785 } 786 #endif /* CONFIG_COMPACTION */ 787 788 static inline void account_freepages(struct zone *zone, int nr_pages, 789 int migratetype) 790 { 791 lockdep_assert_held(&zone->lock); 792 793 if (is_migrate_isolate(migratetype)) 794 return; 795 796 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 797 798 if (is_migrate_cma(migratetype)) 799 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 800 else if (migratetype == MIGRATE_HIGHATOMIC) 801 WRITE_ONCE(zone->nr_free_highatomic, 802 zone->nr_free_highatomic + nr_pages); 803 } 804 805 /* Used for pages not on another list */ 806 static inline void __add_to_free_list(struct page *page, struct zone *zone, 807 unsigned int order, int migratetype, 808 bool tail) 809 { 810 struct free_area *area = &zone->free_area[order]; 811 int nr_pages = 1 << order; 812 813 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 814 "page type is %d, passed migratetype is %d (nr=%d)\n", 815 get_pageblock_migratetype(page), migratetype, nr_pages); 816 817 if (tail) 818 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 819 else 820 list_add(&page->buddy_list, &area->free_list[migratetype]); 821 area->nr_free++; 822 823 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 824 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 825 } 826 827 /* 828 * Used for pages which are on another list. Move the pages to the tail 829 * of the list - so the moved pages won't immediately be considered for 830 * allocation again (e.g., optimization for memory onlining). 831 */ 832 static inline void move_to_free_list(struct page *page, struct zone *zone, 833 unsigned int order, int old_mt, int new_mt) 834 { 835 struct free_area *area = &zone->free_area[order]; 836 int nr_pages = 1 << order; 837 838 /* Free page moving can fail, so it happens before the type update */ 839 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 840 "page type is %d, passed migratetype is %d (nr=%d)\n", 841 get_pageblock_migratetype(page), old_mt, nr_pages); 842 843 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 844 845 account_freepages(zone, -nr_pages, old_mt); 846 account_freepages(zone, nr_pages, new_mt); 847 848 if (order >= pageblock_order && 849 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { 850 if (!is_migrate_isolate(old_mt)) 851 nr_pages = -nr_pages; 852 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 853 } 854 } 855 856 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 857 unsigned int order, int migratetype) 858 { 859 int nr_pages = 1 << order; 860 861 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 862 "page type is %d, passed migratetype is %d (nr=%d)\n", 863 get_pageblock_migratetype(page), migratetype, nr_pages); 864 865 /* clear reported state and update reported page count */ 866 if (page_reported(page)) 867 __ClearPageReported(page); 868 869 list_del(&page->buddy_list); 870 __ClearPageBuddy(page); 871 set_page_private(page, 0); 872 zone->free_area[order].nr_free--; 873 874 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 875 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); 876 } 877 878 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 879 unsigned int order, int migratetype) 880 { 881 __del_page_from_free_list(page, zone, order, migratetype); 882 account_freepages(zone, -(1 << order), migratetype); 883 } 884 885 static inline struct page *get_page_from_free_area(struct free_area *area, 886 int migratetype) 887 { 888 return list_first_entry_or_null(&area->free_list[migratetype], 889 struct page, buddy_list); 890 } 891 892 /* 893 * If this is less than the 2nd largest possible page, check if the buddy 894 * of the next-higher order is free. If it is, it's possible 895 * that pages are being freed that will coalesce soon. In case, 896 * that is happening, add the free page to the tail of the list 897 * so it's less likely to be used soon and more likely to be merged 898 * as a 2-level higher order page 899 */ 900 static inline bool 901 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 902 struct page *page, unsigned int order) 903 { 904 unsigned long higher_page_pfn; 905 struct page *higher_page; 906 907 if (order >= MAX_PAGE_ORDER - 1) 908 return false; 909 910 higher_page_pfn = buddy_pfn & pfn; 911 higher_page = page + (higher_page_pfn - pfn); 912 913 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 914 NULL) != NULL; 915 } 916 917 /* 918 * Freeing function for a buddy system allocator. 919 * 920 * The concept of a buddy system is to maintain direct-mapped table 921 * (containing bit values) for memory blocks of various "orders". 922 * The bottom level table contains the map for the smallest allocatable 923 * units of memory (here, pages), and each level above it describes 924 * pairs of units from the levels below, hence, "buddies". 925 * At a high level, all that happens here is marking the table entry 926 * at the bottom level available, and propagating the changes upward 927 * as necessary, plus some accounting needed to play nicely with other 928 * parts of the VM system. 929 * At each level, we keep a list of pages, which are heads of continuous 930 * free pages of length of (1 << order) and marked with PageBuddy. 931 * Page's order is recorded in page_private(page) field. 932 * So when we are allocating or freeing one, we can derive the state of the 933 * other. That is, if we allocate a small block, and both were 934 * free, the remainder of the region must be split into blocks. 935 * If a block is freed, and its buddy is also free, then this 936 * triggers coalescing into a block of larger size. 937 * 938 * -- nyc 939 */ 940 941 static inline void __free_one_page(struct page *page, 942 unsigned long pfn, 943 struct zone *zone, unsigned int order, 944 int migratetype, fpi_t fpi_flags) 945 { 946 struct capture_control *capc = task_capc(zone); 947 unsigned long buddy_pfn = 0; 948 unsigned long combined_pfn; 949 struct page *buddy; 950 bool to_tail; 951 952 VM_BUG_ON(!zone_is_initialized(zone)); 953 VM_BUG_ON_PAGE(page->flags.f & PAGE_FLAGS_CHECK_AT_PREP, page); 954 955 VM_BUG_ON(migratetype == -1); 956 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 957 VM_BUG_ON_PAGE(bad_range(zone, page), page); 958 959 account_freepages(zone, 1 << order, migratetype); 960 961 while (order < MAX_PAGE_ORDER) { 962 int buddy_mt = migratetype; 963 964 if (compaction_capture(capc, page, order, migratetype)) { 965 account_freepages(zone, -(1 << order), migratetype); 966 return; 967 } 968 969 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 970 if (!buddy) 971 goto done_merging; 972 973 if (unlikely(order >= pageblock_order)) { 974 /* 975 * We want to prevent merge between freepages on pageblock 976 * without fallbacks and normal pageblock. Without this, 977 * pageblock isolation could cause incorrect freepage or CMA 978 * accounting or HIGHATOMIC accounting. 979 */ 980 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 981 982 if (migratetype != buddy_mt && 983 (!migratetype_is_mergeable(migratetype) || 984 !migratetype_is_mergeable(buddy_mt))) 985 goto done_merging; 986 } 987 988 /* 989 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 990 * merge with it and move up one order. 991 */ 992 if (page_is_guard(buddy)) 993 clear_page_guard(zone, buddy, order); 994 else 995 __del_page_from_free_list(buddy, zone, order, buddy_mt); 996 997 if (unlikely(buddy_mt != migratetype)) { 998 /* 999 * Match buddy type. This ensures that an 1000 * expand() down the line puts the sub-blocks 1001 * on the right freelists. 1002 */ 1003 set_pageblock_migratetype(buddy, migratetype); 1004 } 1005 1006 combined_pfn = buddy_pfn & pfn; 1007 page = page + (combined_pfn - pfn); 1008 pfn = combined_pfn; 1009 order++; 1010 } 1011 1012 done_merging: 1013 set_buddy_order(page, order); 1014 1015 if (fpi_flags & FPI_TO_TAIL) 1016 to_tail = true; 1017 else if (is_shuffle_order(order)) 1018 to_tail = shuffle_pick_tail(); 1019 else 1020 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1021 1022 __add_to_free_list(page, zone, order, migratetype, to_tail); 1023 1024 /* Notify page reporting subsystem of freed page */ 1025 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1026 page_reporting_notify_free(order); 1027 } 1028 1029 /* 1030 * A bad page could be due to a number of fields. Instead of multiple branches, 1031 * try and check multiple fields with one check. The caller must do a detailed 1032 * check if necessary. 1033 */ 1034 static inline bool page_expected_state(struct page *page, 1035 unsigned long check_flags) 1036 { 1037 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1038 return false; 1039 1040 if (unlikely((unsigned long)page->mapping | 1041 page_ref_count(page) | 1042 #ifdef CONFIG_MEMCG 1043 page->memcg_data | 1044 #endif 1045 page_pool_page_is_pp(page) | 1046 (page->flags.f & check_flags))) 1047 return false; 1048 1049 return true; 1050 } 1051 1052 static const char *page_bad_reason(struct page *page, unsigned long flags) 1053 { 1054 const char *bad_reason = NULL; 1055 1056 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1057 bad_reason = "nonzero mapcount"; 1058 if (unlikely(page->mapping != NULL)) 1059 bad_reason = "non-NULL mapping"; 1060 if (unlikely(page_ref_count(page) != 0)) 1061 bad_reason = "nonzero _refcount"; 1062 if (unlikely(page->flags.f & flags)) { 1063 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1064 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1065 else 1066 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1067 } 1068 #ifdef CONFIG_MEMCG 1069 if (unlikely(page->memcg_data)) 1070 bad_reason = "page still charged to cgroup"; 1071 #endif 1072 if (unlikely(page_pool_page_is_pp(page))) 1073 bad_reason = "page_pool leak"; 1074 return bad_reason; 1075 } 1076 1077 static inline bool free_page_is_bad(struct page *page) 1078 { 1079 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1080 return false; 1081 1082 /* Something has gone sideways, find it */ 1083 bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1084 return true; 1085 } 1086 1087 static inline bool is_check_pages_enabled(void) 1088 { 1089 return static_branch_unlikely(&check_pages_enabled); 1090 } 1091 1092 static int free_tail_page_prepare(struct page *head_page, struct page *page) 1093 { 1094 struct folio *folio = (struct folio *)head_page; 1095 int ret = 1; 1096 1097 /* 1098 * We rely page->lru.next never has bit 0 set, unless the page 1099 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1100 */ 1101 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1102 1103 if (!is_check_pages_enabled()) { 1104 ret = 0; 1105 goto out; 1106 } 1107 switch (page - head_page) { 1108 case 1: 1109 /* the first tail page: these may be in place of ->mapping */ 1110 if (unlikely(folio_large_mapcount(folio))) { 1111 bad_page(page, "nonzero large_mapcount"); 1112 goto out; 1113 } 1114 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && 1115 unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1116 bad_page(page, "nonzero nr_pages_mapped"); 1117 goto out; 1118 } 1119 if (IS_ENABLED(CONFIG_MM_ID)) { 1120 if (unlikely(folio->_mm_id_mapcount[0] != -1)) { 1121 bad_page(page, "nonzero mm mapcount 0"); 1122 goto out; 1123 } 1124 if (unlikely(folio->_mm_id_mapcount[1] != -1)) { 1125 bad_page(page, "nonzero mm mapcount 1"); 1126 goto out; 1127 } 1128 } 1129 if (IS_ENABLED(CONFIG_64BIT)) { 1130 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1131 bad_page(page, "nonzero entire_mapcount"); 1132 goto out; 1133 } 1134 if (unlikely(atomic_read(&folio->_pincount))) { 1135 bad_page(page, "nonzero pincount"); 1136 goto out; 1137 } 1138 } 1139 break; 1140 case 2: 1141 /* the second tail page: deferred_list overlaps ->mapping */ 1142 if (unlikely(!list_empty(&folio->_deferred_list))) { 1143 bad_page(page, "on deferred list"); 1144 goto out; 1145 } 1146 if (!IS_ENABLED(CONFIG_64BIT)) { 1147 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1148 bad_page(page, "nonzero entire_mapcount"); 1149 goto out; 1150 } 1151 if (unlikely(atomic_read(&folio->_pincount))) { 1152 bad_page(page, "nonzero pincount"); 1153 goto out; 1154 } 1155 } 1156 break; 1157 case 3: 1158 /* the third tail page: hugetlb specifics overlap ->mappings */ 1159 if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) 1160 break; 1161 fallthrough; 1162 default: 1163 if (page->mapping != TAIL_MAPPING) { 1164 bad_page(page, "corrupted mapping in tail page"); 1165 goto out; 1166 } 1167 break; 1168 } 1169 if (unlikely(!PageTail(page))) { 1170 bad_page(page, "PageTail not set"); 1171 goto out; 1172 } 1173 if (unlikely(compound_head(page) != head_page)) { 1174 bad_page(page, "compound_head not consistent"); 1175 goto out; 1176 } 1177 ret = 0; 1178 out: 1179 page->mapping = NULL; 1180 clear_compound_head(page); 1181 return ret; 1182 } 1183 1184 /* 1185 * Skip KASAN memory poisoning when either: 1186 * 1187 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1188 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1189 * using page tags instead (see below). 1190 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1191 * that error detection is disabled for accesses via the page address. 1192 * 1193 * Pages will have match-all tags in the following circumstances: 1194 * 1195 * 1. Pages are being initialized for the first time, including during deferred 1196 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1197 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1198 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1199 * 3. The allocation was excluded from being checked due to sampling, 1200 * see the call to kasan_unpoison_pages. 1201 * 1202 * Poisoning pages during deferred memory init will greatly lengthen the 1203 * process and cause problem in large memory systems as the deferred pages 1204 * initialization is done with interrupt disabled. 1205 * 1206 * Assuming that there will be no reference to those newly initialized 1207 * pages before they are ever allocated, this should have no effect on 1208 * KASAN memory tracking as the poison will be properly inserted at page 1209 * allocation time. The only corner case is when pages are allocated by 1210 * on-demand allocation and then freed again before the deferred pages 1211 * initialization is done, but this is not likely to happen. 1212 */ 1213 static inline bool should_skip_kasan_poison(struct page *page) 1214 { 1215 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1216 return deferred_pages_enabled(); 1217 1218 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1219 } 1220 1221 static void kernel_init_pages(struct page *page, int numpages) 1222 { 1223 int i; 1224 1225 /* s390's use of memset() could override KASAN redzones. */ 1226 kasan_disable_current(); 1227 for (i = 0; i < numpages; i++) 1228 clear_highpage_kasan_tagged(page + i); 1229 kasan_enable_current(); 1230 } 1231 1232 #ifdef CONFIG_MEM_ALLOC_PROFILING 1233 1234 /* Should be called only if mem_alloc_profiling_enabled() */ 1235 void __clear_page_tag_ref(struct page *page) 1236 { 1237 union pgtag_ref_handle handle; 1238 union codetag_ref ref; 1239 1240 if (get_page_tag_ref(page, &ref, &handle)) { 1241 set_codetag_empty(&ref); 1242 update_page_tag_ref(handle, &ref); 1243 put_page_tag_ref(handle); 1244 } 1245 } 1246 1247 /* Should be called only if mem_alloc_profiling_enabled() */ 1248 static noinline 1249 void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1250 unsigned int nr) 1251 { 1252 union pgtag_ref_handle handle; 1253 union codetag_ref ref; 1254 1255 if (get_page_tag_ref(page, &ref, &handle)) { 1256 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1257 update_page_tag_ref(handle, &ref); 1258 put_page_tag_ref(handle); 1259 } 1260 } 1261 1262 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1263 unsigned int nr) 1264 { 1265 if (mem_alloc_profiling_enabled()) 1266 __pgalloc_tag_add(page, task, nr); 1267 } 1268 1269 /* Should be called only if mem_alloc_profiling_enabled() */ 1270 static noinline 1271 void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1272 { 1273 union pgtag_ref_handle handle; 1274 union codetag_ref ref; 1275 1276 if (get_page_tag_ref(page, &ref, &handle)) { 1277 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1278 update_page_tag_ref(handle, &ref); 1279 put_page_tag_ref(handle); 1280 } 1281 } 1282 1283 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1284 { 1285 if (mem_alloc_profiling_enabled()) 1286 __pgalloc_tag_sub(page, nr); 1287 } 1288 1289 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */ 1290 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) 1291 { 1292 if (tag) 1293 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1294 } 1295 1296 #else /* CONFIG_MEM_ALLOC_PROFILING */ 1297 1298 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1299 unsigned int nr) {} 1300 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1301 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {} 1302 1303 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 1304 1305 __always_inline bool free_pages_prepare(struct page *page, 1306 unsigned int order) 1307 { 1308 int bad = 0; 1309 bool skip_kasan_poison = should_skip_kasan_poison(page); 1310 bool init = want_init_on_free(); 1311 bool compound = PageCompound(page); 1312 struct folio *folio = page_folio(page); 1313 1314 VM_BUG_ON_PAGE(PageTail(page), page); 1315 1316 trace_mm_page_free(page, order); 1317 kmsan_free_page(page, order); 1318 1319 if (memcg_kmem_online() && PageMemcgKmem(page)) 1320 __memcg_kmem_uncharge_page(page, order); 1321 1322 /* 1323 * In rare cases, when truncation or holepunching raced with 1324 * munlock after VM_LOCKED was cleared, Mlocked may still be 1325 * found set here. This does not indicate a problem, unless 1326 * "unevictable_pgs_cleared" appears worryingly large. 1327 */ 1328 if (unlikely(folio_test_mlocked(folio))) { 1329 long nr_pages = folio_nr_pages(folio); 1330 1331 __folio_clear_mlocked(folio); 1332 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1333 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1334 } 1335 1336 if (unlikely(PageHWPoison(page)) && !order) { 1337 /* Do not let hwpoison pages hit pcplists/buddy */ 1338 reset_page_owner(page, order); 1339 page_table_check_free(page, order); 1340 pgalloc_tag_sub(page, 1 << order); 1341 1342 /* 1343 * The page is isolated and accounted for. 1344 * Mark the codetag as empty to avoid accounting error 1345 * when the page is freed by unpoison_memory(). 1346 */ 1347 clear_page_tag_ref(page); 1348 return false; 1349 } 1350 1351 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1352 1353 /* 1354 * Check tail pages before head page information is cleared to 1355 * avoid checking PageCompound for order-0 pages. 1356 */ 1357 if (unlikely(order)) { 1358 int i; 1359 1360 if (compound) { 1361 page[1].flags.f &= ~PAGE_FLAGS_SECOND; 1362 #ifdef NR_PAGES_IN_LARGE_FOLIO 1363 folio->_nr_pages = 0; 1364 #endif 1365 } 1366 for (i = 1; i < (1 << order); i++) { 1367 if (compound) 1368 bad += free_tail_page_prepare(page, page + i); 1369 if (is_check_pages_enabled()) { 1370 if (free_page_is_bad(page + i)) { 1371 bad++; 1372 continue; 1373 } 1374 } 1375 (page + i)->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 1376 } 1377 } 1378 if (folio_test_anon(folio)) { 1379 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1380 folio->mapping = NULL; 1381 } 1382 if (unlikely(page_has_type(page))) 1383 /* Reset the page_type (which overlays _mapcount) */ 1384 page->page_type = UINT_MAX; 1385 1386 if (is_check_pages_enabled()) { 1387 if (free_page_is_bad(page)) 1388 bad++; 1389 if (bad) 1390 return false; 1391 } 1392 1393 page_cpupid_reset_last(page); 1394 page->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 1395 reset_page_owner(page, order); 1396 page_table_check_free(page, order); 1397 pgalloc_tag_sub(page, 1 << order); 1398 1399 if (!PageHighMem(page)) { 1400 debug_check_no_locks_freed(page_address(page), 1401 PAGE_SIZE << order); 1402 debug_check_no_obj_freed(page_address(page), 1403 PAGE_SIZE << order); 1404 } 1405 1406 kernel_poison_pages(page, 1 << order); 1407 1408 /* 1409 * As memory initialization might be integrated into KASAN, 1410 * KASAN poisoning and memory initialization code must be 1411 * kept together to avoid discrepancies in behavior. 1412 * 1413 * With hardware tag-based KASAN, memory tags must be set before the 1414 * page becomes unavailable via debug_pagealloc or arch_free_page. 1415 */ 1416 if (!skip_kasan_poison) { 1417 kasan_poison_pages(page, order, init); 1418 1419 /* Memory is already initialized if KASAN did it internally. */ 1420 if (kasan_has_integrated_init()) 1421 init = false; 1422 } 1423 if (init) 1424 kernel_init_pages(page, 1 << order); 1425 1426 /* 1427 * arch_free_page() can make the page's contents inaccessible. s390 1428 * does this. So nothing which can access the page's contents should 1429 * happen after this. 1430 */ 1431 arch_free_page(page, order); 1432 1433 debug_pagealloc_unmap_pages(page, 1 << order); 1434 1435 return true; 1436 } 1437 1438 /* 1439 * Frees a number of pages from the PCP lists 1440 * Assumes all pages on list are in same zone. 1441 * count is the number of pages to free. 1442 */ 1443 static void free_pcppages_bulk(struct zone *zone, int count, 1444 struct per_cpu_pages *pcp, 1445 int pindex) 1446 { 1447 unsigned long flags; 1448 unsigned int order; 1449 struct page *page; 1450 1451 /* 1452 * Ensure proper count is passed which otherwise would stuck in the 1453 * below while (list_empty(list)) loop. 1454 */ 1455 count = min(pcp->count, count); 1456 1457 /* Ensure requested pindex is drained first. */ 1458 pindex = pindex - 1; 1459 1460 spin_lock_irqsave(&zone->lock, flags); 1461 1462 while (count > 0) { 1463 struct list_head *list; 1464 int nr_pages; 1465 1466 /* Remove pages from lists in a round-robin fashion. */ 1467 do { 1468 if (++pindex > NR_PCP_LISTS - 1) 1469 pindex = 0; 1470 list = &pcp->lists[pindex]; 1471 } while (list_empty(list)); 1472 1473 order = pindex_to_order(pindex); 1474 nr_pages = 1 << order; 1475 do { 1476 unsigned long pfn; 1477 int mt; 1478 1479 page = list_last_entry(list, struct page, pcp_list); 1480 pfn = page_to_pfn(page); 1481 mt = get_pfnblock_migratetype(page, pfn); 1482 1483 /* must delete to avoid corrupting pcp list */ 1484 list_del(&page->pcp_list); 1485 count -= nr_pages; 1486 pcp->count -= nr_pages; 1487 1488 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1489 trace_mm_page_pcpu_drain(page, order, mt); 1490 } while (count > 0 && !list_empty(list)); 1491 } 1492 1493 spin_unlock_irqrestore(&zone->lock, flags); 1494 } 1495 1496 /* Split a multi-block free page into its individual pageblocks. */ 1497 static void split_large_buddy(struct zone *zone, struct page *page, 1498 unsigned long pfn, int order, fpi_t fpi) 1499 { 1500 unsigned long end = pfn + (1 << order); 1501 1502 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1503 /* Caller removed page from freelist, buddy info cleared! */ 1504 VM_WARN_ON_ONCE(PageBuddy(page)); 1505 1506 if (order > pageblock_order) 1507 order = pageblock_order; 1508 1509 do { 1510 int mt = get_pfnblock_migratetype(page, pfn); 1511 1512 __free_one_page(page, pfn, zone, order, mt, fpi); 1513 pfn += 1 << order; 1514 if (pfn == end) 1515 break; 1516 page = pfn_to_page(pfn); 1517 } while (1); 1518 } 1519 1520 static void add_page_to_zone_llist(struct zone *zone, struct page *page, 1521 unsigned int order) 1522 { 1523 /* Remember the order */ 1524 page->private = order; 1525 /* Add the page to the free list */ 1526 llist_add(&page->pcp_llist, &zone->trylock_free_pages); 1527 } 1528 1529 static void free_one_page(struct zone *zone, struct page *page, 1530 unsigned long pfn, unsigned int order, 1531 fpi_t fpi_flags) 1532 { 1533 struct llist_head *llhead; 1534 unsigned long flags; 1535 1536 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 1537 if (!spin_trylock_irqsave(&zone->lock, flags)) { 1538 add_page_to_zone_llist(zone, page, order); 1539 return; 1540 } 1541 } else { 1542 spin_lock_irqsave(&zone->lock, flags); 1543 } 1544 1545 /* The lock succeeded. Process deferred pages. */ 1546 llhead = &zone->trylock_free_pages; 1547 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { 1548 struct llist_node *llnode; 1549 struct page *p, *tmp; 1550 1551 llnode = llist_del_all(llhead); 1552 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { 1553 unsigned int p_order = p->private; 1554 1555 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); 1556 __count_vm_events(PGFREE, 1 << p_order); 1557 } 1558 } 1559 split_large_buddy(zone, page, pfn, order, fpi_flags); 1560 spin_unlock_irqrestore(&zone->lock, flags); 1561 1562 __count_vm_events(PGFREE, 1 << order); 1563 } 1564 1565 static void __free_pages_ok(struct page *page, unsigned int order, 1566 fpi_t fpi_flags) 1567 { 1568 unsigned long pfn = page_to_pfn(page); 1569 struct zone *zone = page_zone(page); 1570 1571 if (free_pages_prepare(page, order)) 1572 free_one_page(zone, page, pfn, order, fpi_flags); 1573 } 1574 1575 void __meminit __free_pages_core(struct page *page, unsigned int order, 1576 enum meminit_context context) 1577 { 1578 unsigned int nr_pages = 1 << order; 1579 struct page *p = page; 1580 unsigned int loop; 1581 1582 /* 1583 * When initializing the memmap, __init_single_page() sets the refcount 1584 * of all pages to 1 ("allocated"/"not free"). We have to set the 1585 * refcount of all involved pages to 0. 1586 * 1587 * Note that hotplugged memory pages are initialized to PageOffline(). 1588 * Pages freed from memblock might be marked as reserved. 1589 */ 1590 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1591 unlikely(context == MEMINIT_HOTPLUG)) { 1592 for (loop = 0; loop < nr_pages; loop++, p++) { 1593 VM_WARN_ON_ONCE(PageReserved(p)); 1594 __ClearPageOffline(p); 1595 set_page_count(p, 0); 1596 } 1597 1598 adjust_managed_page_count(page, nr_pages); 1599 } else { 1600 for (loop = 0; loop < nr_pages; loop++, p++) { 1601 __ClearPageReserved(p); 1602 set_page_count(p, 0); 1603 } 1604 1605 /* memblock adjusts totalram_pages() manually. */ 1606 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1607 } 1608 1609 if (page_contains_unaccepted(page, order)) { 1610 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1611 return; 1612 1613 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1614 } 1615 1616 /* 1617 * Bypass PCP and place fresh pages right to the tail, primarily 1618 * relevant for memory onlining. 1619 */ 1620 __free_pages_ok(page, order, FPI_TO_TAIL); 1621 } 1622 1623 /* 1624 * Check that the whole (or subset of) a pageblock given by the interval of 1625 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1626 * with the migration of free compaction scanner. 1627 * 1628 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1629 * 1630 * It's possible on some configurations to have a setup like node0 node1 node0 1631 * i.e. it's possible that all pages within a zones range of pages do not 1632 * belong to a single zone. We assume that a border between node0 and node1 1633 * can occur within a single pageblock, but not a node0 node1 node0 1634 * interleaving within a single pageblock. It is therefore sufficient to check 1635 * the first and last page of a pageblock and avoid checking each individual 1636 * page in a pageblock. 1637 * 1638 * Note: the function may return non-NULL struct page even for a page block 1639 * which contains a memory hole (i.e. there is no physical memory for a subset 1640 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1641 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1642 * even though the start pfn is online and valid. This should be safe most of 1643 * the time because struct pages are still initialized via init_unavailable_range() 1644 * and pfn walkers shouldn't touch any physical memory range for which they do 1645 * not recognize any specific metadata in struct pages. 1646 */ 1647 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1648 unsigned long end_pfn, struct zone *zone) 1649 { 1650 struct page *start_page; 1651 struct page *end_page; 1652 1653 /* end_pfn is one past the range we are checking */ 1654 end_pfn--; 1655 1656 if (!pfn_valid(end_pfn)) 1657 return NULL; 1658 1659 start_page = pfn_to_online_page(start_pfn); 1660 if (!start_page) 1661 return NULL; 1662 1663 if (page_zone(start_page) != zone) 1664 return NULL; 1665 1666 end_page = pfn_to_page(end_pfn); 1667 1668 /* This gives a shorter code than deriving page_zone(end_page) */ 1669 if (page_zone_id(start_page) != page_zone_id(end_page)) 1670 return NULL; 1671 1672 return start_page; 1673 } 1674 1675 /* 1676 * The order of subdivision here is critical for the IO subsystem. 1677 * Please do not alter this order without good reasons and regression 1678 * testing. Specifically, as large blocks of memory are subdivided, 1679 * the order in which smaller blocks are delivered depends on the order 1680 * they're subdivided in this function. This is the primary factor 1681 * influencing the order in which pages are delivered to the IO 1682 * subsystem according to empirical testing, and this is also justified 1683 * by considering the behavior of a buddy system containing a single 1684 * large block of memory acted on by a series of small allocations. 1685 * This behavior is a critical factor in sglist merging's success. 1686 * 1687 * -- nyc 1688 */ 1689 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1690 int high, int migratetype) 1691 { 1692 unsigned int size = 1 << high; 1693 unsigned int nr_added = 0; 1694 1695 while (high > low) { 1696 high--; 1697 size >>= 1; 1698 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1699 1700 /* 1701 * Mark as guard pages (or page), that will allow to 1702 * merge back to allocator when buddy will be freed. 1703 * Corresponding page table entries will not be touched, 1704 * pages will stay not present in virtual address space 1705 */ 1706 if (set_page_guard(zone, &page[size], high)) 1707 continue; 1708 1709 __add_to_free_list(&page[size], zone, high, migratetype, false); 1710 set_buddy_order(&page[size], high); 1711 nr_added += size; 1712 } 1713 1714 return nr_added; 1715 } 1716 1717 static __always_inline void page_del_and_expand(struct zone *zone, 1718 struct page *page, int low, 1719 int high, int migratetype) 1720 { 1721 int nr_pages = 1 << high; 1722 1723 __del_page_from_free_list(page, zone, high, migratetype); 1724 nr_pages -= expand(zone, page, low, high, migratetype); 1725 account_freepages(zone, -nr_pages, migratetype); 1726 } 1727 1728 static void check_new_page_bad(struct page *page) 1729 { 1730 if (unlikely(PageHWPoison(page))) { 1731 /* Don't complain about hwpoisoned pages */ 1732 if (PageBuddy(page)) 1733 __ClearPageBuddy(page); 1734 return; 1735 } 1736 1737 bad_page(page, 1738 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1739 } 1740 1741 /* 1742 * This page is about to be returned from the page allocator 1743 */ 1744 static bool check_new_page(struct page *page) 1745 { 1746 if (likely(page_expected_state(page, 1747 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1748 return false; 1749 1750 check_new_page_bad(page); 1751 return true; 1752 } 1753 1754 static inline bool check_new_pages(struct page *page, unsigned int order) 1755 { 1756 if (is_check_pages_enabled()) { 1757 for (int i = 0; i < (1 << order); i++) { 1758 struct page *p = page + i; 1759 1760 if (check_new_page(p)) 1761 return true; 1762 } 1763 } 1764 1765 return false; 1766 } 1767 1768 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1769 { 1770 /* Don't skip if a software KASAN mode is enabled. */ 1771 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1772 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1773 return false; 1774 1775 /* Skip, if hardware tag-based KASAN is not enabled. */ 1776 if (!kasan_hw_tags_enabled()) 1777 return true; 1778 1779 /* 1780 * With hardware tag-based KASAN enabled, skip if this has been 1781 * requested via __GFP_SKIP_KASAN. 1782 */ 1783 return flags & __GFP_SKIP_KASAN; 1784 } 1785 1786 static inline bool should_skip_init(gfp_t flags) 1787 { 1788 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1789 if (!kasan_hw_tags_enabled()) 1790 return false; 1791 1792 /* For hardware tag-based KASAN, skip if requested. */ 1793 return (flags & __GFP_SKIP_ZERO); 1794 } 1795 1796 inline void post_alloc_hook(struct page *page, unsigned int order, 1797 gfp_t gfp_flags) 1798 { 1799 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1800 !should_skip_init(gfp_flags); 1801 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1802 int i; 1803 1804 set_page_private(page, 0); 1805 1806 arch_alloc_page(page, order); 1807 debug_pagealloc_map_pages(page, 1 << order); 1808 1809 /* 1810 * Page unpoisoning must happen before memory initialization. 1811 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1812 * allocations and the page unpoisoning code will complain. 1813 */ 1814 kernel_unpoison_pages(page, 1 << order); 1815 1816 /* 1817 * As memory initialization might be integrated into KASAN, 1818 * KASAN unpoisoning and memory initializion code must be 1819 * kept together to avoid discrepancies in behavior. 1820 */ 1821 1822 /* 1823 * If memory tags should be zeroed 1824 * (which happens only when memory should be initialized as well). 1825 */ 1826 if (zero_tags) { 1827 /* Initialize both memory and memory tags. */ 1828 for (i = 0; i != 1 << order; ++i) 1829 tag_clear_highpage(page + i); 1830 1831 /* Take note that memory was initialized by the loop above. */ 1832 init = false; 1833 } 1834 if (!should_skip_kasan_unpoison(gfp_flags) && 1835 kasan_unpoison_pages(page, order, init)) { 1836 /* Take note that memory was initialized by KASAN. */ 1837 if (kasan_has_integrated_init()) 1838 init = false; 1839 } else { 1840 /* 1841 * If memory tags have not been set by KASAN, reset the page 1842 * tags to ensure page_address() dereferencing does not fault. 1843 */ 1844 for (i = 0; i != 1 << order; ++i) 1845 page_kasan_tag_reset(page + i); 1846 } 1847 /* If memory is still not initialized, initialize it now. */ 1848 if (init) 1849 kernel_init_pages(page, 1 << order); 1850 1851 set_page_owner(page, order, gfp_flags); 1852 page_table_check_alloc(page, order); 1853 pgalloc_tag_add(page, current, 1 << order); 1854 } 1855 1856 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1857 unsigned int alloc_flags) 1858 { 1859 post_alloc_hook(page, order, gfp_flags); 1860 1861 if (order && (gfp_flags & __GFP_COMP)) 1862 prep_compound_page(page, order); 1863 1864 /* 1865 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1866 * allocate the page. The expectation is that the caller is taking 1867 * steps that will free more memory. The caller should avoid the page 1868 * being used for !PFMEMALLOC purposes. 1869 */ 1870 if (alloc_flags & ALLOC_NO_WATERMARKS) 1871 set_page_pfmemalloc(page); 1872 else 1873 clear_page_pfmemalloc(page); 1874 } 1875 1876 /* 1877 * Go through the free lists for the given migratetype and remove 1878 * the smallest available page from the freelists 1879 */ 1880 static __always_inline 1881 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1882 int migratetype) 1883 { 1884 unsigned int current_order; 1885 struct free_area *area; 1886 struct page *page; 1887 1888 /* Find a page of the appropriate size in the preferred list */ 1889 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1890 area = &(zone->free_area[current_order]); 1891 page = get_page_from_free_area(area, migratetype); 1892 if (!page) 1893 continue; 1894 1895 page_del_and_expand(zone, page, order, current_order, 1896 migratetype); 1897 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1898 pcp_allowed_order(order) && 1899 migratetype < MIGRATE_PCPTYPES); 1900 return page; 1901 } 1902 1903 return NULL; 1904 } 1905 1906 1907 /* 1908 * This array describes the order lists are fallen back to when 1909 * the free lists for the desirable migrate type are depleted 1910 * 1911 * The other migratetypes do not have fallbacks. 1912 */ 1913 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1914 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1915 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1916 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1917 }; 1918 1919 #ifdef CONFIG_CMA 1920 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1921 unsigned int order) 1922 { 1923 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1924 } 1925 #else 1926 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1927 unsigned int order) { return NULL; } 1928 #endif 1929 1930 /* 1931 * Move all free pages of a block to new type's freelist. Caller needs to 1932 * change the block type. 1933 */ 1934 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1935 int old_mt, int new_mt) 1936 { 1937 struct page *page; 1938 unsigned long pfn, end_pfn; 1939 unsigned int order; 1940 int pages_moved = 0; 1941 1942 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1943 end_pfn = pageblock_end_pfn(start_pfn); 1944 1945 for (pfn = start_pfn; pfn < end_pfn;) { 1946 page = pfn_to_page(pfn); 1947 if (!PageBuddy(page)) { 1948 pfn++; 1949 continue; 1950 } 1951 1952 /* Make sure we are not inadvertently changing nodes */ 1953 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1954 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1955 1956 order = buddy_order(page); 1957 1958 move_to_free_list(page, zone, order, old_mt, new_mt); 1959 1960 pfn += 1 << order; 1961 pages_moved += 1 << order; 1962 } 1963 1964 return pages_moved; 1965 } 1966 1967 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1968 unsigned long *start_pfn, 1969 int *num_free, int *num_movable) 1970 { 1971 unsigned long pfn, start, end; 1972 1973 pfn = page_to_pfn(page); 1974 start = pageblock_start_pfn(pfn); 1975 end = pageblock_end_pfn(pfn); 1976 1977 /* 1978 * The caller only has the lock for @zone, don't touch ranges 1979 * that straddle into other zones. While we could move part of 1980 * the range that's inside the zone, this call is usually 1981 * accompanied by other operations such as migratetype updates 1982 * which also should be locked. 1983 */ 1984 if (!zone_spans_pfn(zone, start)) 1985 return false; 1986 if (!zone_spans_pfn(zone, end - 1)) 1987 return false; 1988 1989 *start_pfn = start; 1990 1991 if (num_free) { 1992 *num_free = 0; 1993 *num_movable = 0; 1994 for (pfn = start; pfn < end;) { 1995 page = pfn_to_page(pfn); 1996 if (PageBuddy(page)) { 1997 int nr = 1 << buddy_order(page); 1998 1999 *num_free += nr; 2000 pfn += nr; 2001 continue; 2002 } 2003 /* 2004 * We assume that pages that could be isolated for 2005 * migration are movable. But we don't actually try 2006 * isolating, as that would be expensive. 2007 */ 2008 if (PageLRU(page) || page_has_movable_ops(page)) 2009 (*num_movable)++; 2010 pfn++; 2011 } 2012 } 2013 2014 return true; 2015 } 2016 2017 static int move_freepages_block(struct zone *zone, struct page *page, 2018 int old_mt, int new_mt) 2019 { 2020 unsigned long start_pfn; 2021 int res; 2022 2023 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2024 return -1; 2025 2026 res = __move_freepages_block(zone, start_pfn, old_mt, new_mt); 2027 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 2028 2029 return res; 2030 2031 } 2032 2033 #ifdef CONFIG_MEMORY_ISOLATION 2034 /* Look for a buddy that straddles start_pfn */ 2035 static unsigned long find_large_buddy(unsigned long start_pfn) 2036 { 2037 /* 2038 * If start_pfn is not an order-0 PageBuddy, next PageBuddy containing 2039 * start_pfn has minimal order of __ffs(start_pfn) + 1. Start checking 2040 * the order with __ffs(start_pfn). If start_pfn is order-0 PageBuddy, 2041 * the starting order does not matter. 2042 */ 2043 int order = start_pfn ? __ffs(start_pfn) : MAX_PAGE_ORDER; 2044 struct page *page; 2045 unsigned long pfn = start_pfn; 2046 2047 while (!PageBuddy(page = pfn_to_page(pfn))) { 2048 /* Nothing found */ 2049 if (++order > MAX_PAGE_ORDER) 2050 return start_pfn; 2051 pfn &= ~0UL << order; 2052 } 2053 2054 /* 2055 * Found a preceding buddy, but does it straddle? 2056 */ 2057 if (pfn + (1 << buddy_order(page)) > start_pfn) 2058 return pfn; 2059 2060 /* Nothing found */ 2061 return start_pfn; 2062 } 2063 2064 static inline void toggle_pageblock_isolate(struct page *page, bool isolate) 2065 { 2066 if (isolate) 2067 set_pageblock_isolate(page); 2068 else 2069 clear_pageblock_isolate(page); 2070 } 2071 2072 /** 2073 * __move_freepages_block_isolate - move free pages in block for page isolation 2074 * @zone: the zone 2075 * @page: the pageblock page 2076 * @isolate: to isolate the given pageblock or unisolate it 2077 * 2078 * This is similar to move_freepages_block(), but handles the special 2079 * case encountered in page isolation, where the block of interest 2080 * might be part of a larger buddy spanning multiple pageblocks. 2081 * 2082 * Unlike the regular page allocator path, which moves pages while 2083 * stealing buddies off the freelist, page isolation is interested in 2084 * arbitrary pfn ranges that may have overlapping buddies on both ends. 2085 * 2086 * This function handles that. Straddling buddies are split into 2087 * individual pageblocks. Only the block of interest is moved. 2088 * 2089 * Returns %true if pages could be moved, %false otherwise. 2090 */ 2091 static bool __move_freepages_block_isolate(struct zone *zone, 2092 struct page *page, bool isolate) 2093 { 2094 unsigned long start_pfn, buddy_pfn; 2095 int from_mt; 2096 int to_mt; 2097 struct page *buddy; 2098 2099 if (isolate == get_pageblock_isolate(page)) { 2100 VM_WARN_ONCE(1, "%s a pageblock that is already in that state", 2101 isolate ? "Isolate" : "Unisolate"); 2102 return false; 2103 } 2104 2105 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2106 return false; 2107 2108 /* No splits needed if buddies can't span multiple blocks */ 2109 if (pageblock_order == MAX_PAGE_ORDER) 2110 goto move; 2111 2112 buddy_pfn = find_large_buddy(start_pfn); 2113 buddy = pfn_to_page(buddy_pfn); 2114 /* We're a part of a larger buddy */ 2115 if (PageBuddy(buddy) && buddy_order(buddy) > pageblock_order) { 2116 int order = buddy_order(buddy); 2117 2118 del_page_from_free_list(buddy, zone, order, 2119 get_pfnblock_migratetype(buddy, buddy_pfn)); 2120 toggle_pageblock_isolate(page, isolate); 2121 split_large_buddy(zone, buddy, buddy_pfn, order, FPI_NONE); 2122 return true; 2123 } 2124 2125 move: 2126 /* Use MIGRATETYPE_MASK to get non-isolate migratetype */ 2127 if (isolate) { 2128 from_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2129 MIGRATETYPE_MASK); 2130 to_mt = MIGRATE_ISOLATE; 2131 } else { 2132 from_mt = MIGRATE_ISOLATE; 2133 to_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2134 MIGRATETYPE_MASK); 2135 } 2136 2137 __move_freepages_block(zone, start_pfn, from_mt, to_mt); 2138 toggle_pageblock_isolate(pfn_to_page(start_pfn), isolate); 2139 2140 return true; 2141 } 2142 2143 bool pageblock_isolate_and_move_free_pages(struct zone *zone, struct page *page) 2144 { 2145 return __move_freepages_block_isolate(zone, page, true); 2146 } 2147 2148 bool pageblock_unisolate_and_move_free_pages(struct zone *zone, struct page *page) 2149 { 2150 return __move_freepages_block_isolate(zone, page, false); 2151 } 2152 2153 #endif /* CONFIG_MEMORY_ISOLATION */ 2154 2155 static void change_pageblock_range(struct page *pageblock_page, 2156 int start_order, int migratetype) 2157 { 2158 int nr_pageblocks = 1 << (start_order - pageblock_order); 2159 2160 while (nr_pageblocks--) { 2161 set_pageblock_migratetype(pageblock_page, migratetype); 2162 pageblock_page += pageblock_nr_pages; 2163 } 2164 } 2165 2166 static inline bool boost_watermark(struct zone *zone) 2167 { 2168 unsigned long max_boost; 2169 2170 if (!watermark_boost_factor) 2171 return false; 2172 /* 2173 * Don't bother in zones that are unlikely to produce results. 2174 * On small machines, including kdump capture kernels running 2175 * in a small area, boosting the watermark can cause an out of 2176 * memory situation immediately. 2177 */ 2178 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2179 return false; 2180 2181 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2182 watermark_boost_factor, 10000); 2183 2184 /* 2185 * high watermark may be uninitialised if fragmentation occurs 2186 * very early in boot so do not boost. We do not fall 2187 * through and boost by pageblock_nr_pages as failing 2188 * allocations that early means that reclaim is not going 2189 * to help and it may even be impossible to reclaim the 2190 * boosted watermark resulting in a hang. 2191 */ 2192 if (!max_boost) 2193 return false; 2194 2195 max_boost = max(pageblock_nr_pages, max_boost); 2196 2197 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2198 max_boost); 2199 2200 return true; 2201 } 2202 2203 /* 2204 * When we are falling back to another migratetype during allocation, should we 2205 * try to claim an entire block to satisfy further allocations, instead of 2206 * polluting multiple pageblocks? 2207 */ 2208 static bool should_try_claim_block(unsigned int order, int start_mt) 2209 { 2210 /* 2211 * Leaving this order check is intended, although there is 2212 * relaxed order check in next check. The reason is that 2213 * we can actually claim the whole pageblock if this condition met, 2214 * but, below check doesn't guarantee it and that is just heuristic 2215 * so could be changed anytime. 2216 */ 2217 if (order >= pageblock_order) 2218 return true; 2219 2220 /* 2221 * Above a certain threshold, always try to claim, as it's likely there 2222 * will be more free pages in the pageblock. 2223 */ 2224 if (order >= pageblock_order / 2) 2225 return true; 2226 2227 /* 2228 * Unmovable/reclaimable allocations would cause permanent 2229 * fragmentations if they fell back to allocating from a movable block 2230 * (polluting it), so we try to claim the whole block regardless of the 2231 * allocation size. Later movable allocations can always steal from this 2232 * block, which is less problematic. 2233 */ 2234 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) 2235 return true; 2236 2237 if (page_group_by_mobility_disabled) 2238 return true; 2239 2240 /* 2241 * Movable pages won't cause permanent fragmentation, so when you alloc 2242 * small pages, we just need to temporarily steal unmovable or 2243 * reclaimable pages that are closest to the request size. After a 2244 * while, memory compaction may occur to form large contiguous pages, 2245 * and the next movable allocation may not need to steal. 2246 */ 2247 return false; 2248 } 2249 2250 /* 2251 * Check whether there is a suitable fallback freepage with requested order. 2252 * If claimable is true, this function returns fallback_mt only if 2253 * we would do this whole-block claiming. This would help to reduce 2254 * fragmentation due to mixed migratetype pages in one pageblock. 2255 */ 2256 int find_suitable_fallback(struct free_area *area, unsigned int order, 2257 int migratetype, bool claimable) 2258 { 2259 int i; 2260 2261 if (claimable && !should_try_claim_block(order, migratetype)) 2262 return -2; 2263 2264 if (area->nr_free == 0) 2265 return -1; 2266 2267 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2268 int fallback_mt = fallbacks[migratetype][i]; 2269 2270 if (!free_area_empty(area, fallback_mt)) 2271 return fallback_mt; 2272 } 2273 2274 return -1; 2275 } 2276 2277 /* 2278 * This function implements actual block claiming behaviour. If order is large 2279 * enough, we can claim the whole pageblock for the requested migratetype. If 2280 * not, we check the pageblock for constituent pages; if at least half of the 2281 * pages are free or compatible, we can still claim the whole block, so pages 2282 * freed in the future will be put on the correct free list. 2283 */ 2284 static struct page * 2285 try_to_claim_block(struct zone *zone, struct page *page, 2286 int current_order, int order, int start_type, 2287 int block_type, unsigned int alloc_flags) 2288 { 2289 int free_pages, movable_pages, alike_pages; 2290 unsigned long start_pfn; 2291 2292 /* Take ownership for orders >= pageblock_order */ 2293 if (current_order >= pageblock_order) { 2294 unsigned int nr_added; 2295 2296 del_page_from_free_list(page, zone, current_order, block_type); 2297 change_pageblock_range(page, current_order, start_type); 2298 nr_added = expand(zone, page, order, current_order, start_type); 2299 account_freepages(zone, nr_added, start_type); 2300 return page; 2301 } 2302 2303 /* 2304 * Boost watermarks to increase reclaim pressure to reduce the 2305 * likelihood of future fallbacks. Wake kswapd now as the node 2306 * may be balanced overall and kswapd will not wake naturally. 2307 */ 2308 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2309 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2310 2311 /* moving whole block can fail due to zone boundary conditions */ 2312 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2313 &movable_pages)) 2314 return NULL; 2315 2316 /* 2317 * Determine how many pages are compatible with our allocation. 2318 * For movable allocation, it's the number of movable pages which 2319 * we just obtained. For other types it's a bit more tricky. 2320 */ 2321 if (start_type == MIGRATE_MOVABLE) { 2322 alike_pages = movable_pages; 2323 } else { 2324 /* 2325 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2326 * to MOVABLE pageblock, consider all non-movable pages as 2327 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2328 * vice versa, be conservative since we can't distinguish the 2329 * exact migratetype of non-movable pages. 2330 */ 2331 if (block_type == MIGRATE_MOVABLE) 2332 alike_pages = pageblock_nr_pages 2333 - (free_pages + movable_pages); 2334 else 2335 alike_pages = 0; 2336 } 2337 /* 2338 * If a sufficient number of pages in the block are either free or of 2339 * compatible migratability as our allocation, claim the whole block. 2340 */ 2341 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2342 page_group_by_mobility_disabled) { 2343 __move_freepages_block(zone, start_pfn, block_type, start_type); 2344 set_pageblock_migratetype(pfn_to_page(start_pfn), start_type); 2345 return __rmqueue_smallest(zone, order, start_type); 2346 } 2347 2348 return NULL; 2349 } 2350 2351 /* 2352 * Try to allocate from some fallback migratetype by claiming the entire block, 2353 * i.e. converting it to the allocation's start migratetype. 2354 * 2355 * The use of signed ints for order and current_order is a deliberate 2356 * deviation from the rest of this file, to make the for loop 2357 * condition simpler. 2358 */ 2359 static __always_inline struct page * 2360 __rmqueue_claim(struct zone *zone, int order, int start_migratetype, 2361 unsigned int alloc_flags) 2362 { 2363 struct free_area *area; 2364 int current_order; 2365 int min_order = order; 2366 struct page *page; 2367 int fallback_mt; 2368 2369 /* 2370 * Do not steal pages from freelists belonging to other pageblocks 2371 * i.e. orders < pageblock_order. If there are no local zones free, 2372 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2373 */ 2374 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2375 min_order = pageblock_order; 2376 2377 /* 2378 * Find the largest available free page in the other list. This roughly 2379 * approximates finding the pageblock with the most free pages, which 2380 * would be too costly to do exactly. 2381 */ 2382 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2383 --current_order) { 2384 area = &(zone->free_area[current_order]); 2385 fallback_mt = find_suitable_fallback(area, current_order, 2386 start_migratetype, true); 2387 2388 /* No block in that order */ 2389 if (fallback_mt == -1) 2390 continue; 2391 2392 /* Advanced into orders too low to claim, abort */ 2393 if (fallback_mt == -2) 2394 break; 2395 2396 page = get_page_from_free_area(area, fallback_mt); 2397 page = try_to_claim_block(zone, page, current_order, order, 2398 start_migratetype, fallback_mt, 2399 alloc_flags); 2400 if (page) { 2401 trace_mm_page_alloc_extfrag(page, order, current_order, 2402 start_migratetype, fallback_mt); 2403 return page; 2404 } 2405 } 2406 2407 return NULL; 2408 } 2409 2410 /* 2411 * Try to steal a single page from some fallback migratetype. Leave the rest of 2412 * the block as its current migratetype, potentially causing fragmentation. 2413 */ 2414 static __always_inline struct page * 2415 __rmqueue_steal(struct zone *zone, int order, int start_migratetype) 2416 { 2417 struct free_area *area; 2418 int current_order; 2419 struct page *page; 2420 int fallback_mt; 2421 2422 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2423 area = &(zone->free_area[current_order]); 2424 fallback_mt = find_suitable_fallback(area, current_order, 2425 start_migratetype, false); 2426 if (fallback_mt == -1) 2427 continue; 2428 2429 page = get_page_from_free_area(area, fallback_mt); 2430 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2431 trace_mm_page_alloc_extfrag(page, order, current_order, 2432 start_migratetype, fallback_mt); 2433 return page; 2434 } 2435 2436 return NULL; 2437 } 2438 2439 enum rmqueue_mode { 2440 RMQUEUE_NORMAL, 2441 RMQUEUE_CMA, 2442 RMQUEUE_CLAIM, 2443 RMQUEUE_STEAL, 2444 }; 2445 2446 /* 2447 * Do the hard work of removing an element from the buddy allocator. 2448 * Call me with the zone->lock already held. 2449 */ 2450 static __always_inline struct page * 2451 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2452 unsigned int alloc_flags, enum rmqueue_mode *mode) 2453 { 2454 struct page *page; 2455 2456 if (IS_ENABLED(CONFIG_CMA)) { 2457 /* 2458 * Balance movable allocations between regular and CMA areas by 2459 * allocating from CMA when over half of the zone's free memory 2460 * is in the CMA area. 2461 */ 2462 if (alloc_flags & ALLOC_CMA && 2463 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2464 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2465 page = __rmqueue_cma_fallback(zone, order); 2466 if (page) 2467 return page; 2468 } 2469 } 2470 2471 /* 2472 * First try the freelists of the requested migratetype, then try 2473 * fallbacks modes with increasing levels of fragmentation risk. 2474 * 2475 * The fallback logic is expensive and rmqueue_bulk() calls in 2476 * a loop with the zone->lock held, meaning the freelists are 2477 * not subject to any outside changes. Remember in *mode where 2478 * we found pay dirt, to save us the search on the next call. 2479 */ 2480 switch (*mode) { 2481 case RMQUEUE_NORMAL: 2482 page = __rmqueue_smallest(zone, order, migratetype); 2483 if (page) 2484 return page; 2485 fallthrough; 2486 case RMQUEUE_CMA: 2487 if (alloc_flags & ALLOC_CMA) { 2488 page = __rmqueue_cma_fallback(zone, order); 2489 if (page) { 2490 *mode = RMQUEUE_CMA; 2491 return page; 2492 } 2493 } 2494 fallthrough; 2495 case RMQUEUE_CLAIM: 2496 page = __rmqueue_claim(zone, order, migratetype, alloc_flags); 2497 if (page) { 2498 /* Replenished preferred freelist, back to normal mode. */ 2499 *mode = RMQUEUE_NORMAL; 2500 return page; 2501 } 2502 fallthrough; 2503 case RMQUEUE_STEAL: 2504 if (!(alloc_flags & ALLOC_NOFRAGMENT)) { 2505 page = __rmqueue_steal(zone, order, migratetype); 2506 if (page) { 2507 *mode = RMQUEUE_STEAL; 2508 return page; 2509 } 2510 } 2511 } 2512 return NULL; 2513 } 2514 2515 /* 2516 * Obtain a specified number of elements from the buddy allocator, all under 2517 * a single hold of the lock, for efficiency. Add them to the supplied list. 2518 * Returns the number of new pages which were placed at *list. 2519 */ 2520 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2521 unsigned long count, struct list_head *list, 2522 int migratetype, unsigned int alloc_flags) 2523 { 2524 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2525 unsigned long flags; 2526 int i; 2527 2528 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2529 if (!spin_trylock_irqsave(&zone->lock, flags)) 2530 return 0; 2531 } else { 2532 spin_lock_irqsave(&zone->lock, flags); 2533 } 2534 for (i = 0; i < count; ++i) { 2535 struct page *page = __rmqueue(zone, order, migratetype, 2536 alloc_flags, &rmqm); 2537 if (unlikely(page == NULL)) 2538 break; 2539 2540 /* 2541 * Split buddy pages returned by expand() are received here in 2542 * physical page order. The page is added to the tail of 2543 * caller's list. From the callers perspective, the linked list 2544 * is ordered by page number under some conditions. This is 2545 * useful for IO devices that can forward direction from the 2546 * head, thus also in the physical page order. This is useful 2547 * for IO devices that can merge IO requests if the physical 2548 * pages are ordered properly. 2549 */ 2550 list_add_tail(&page->pcp_list, list); 2551 } 2552 spin_unlock_irqrestore(&zone->lock, flags); 2553 2554 return i; 2555 } 2556 2557 /* 2558 * Called from the vmstat counter updater to decay the PCP high. 2559 * Return whether there are addition works to do. 2560 */ 2561 bool decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2562 { 2563 int high_min, to_drain, to_drain_batched, batch; 2564 bool todo = false; 2565 2566 high_min = READ_ONCE(pcp->high_min); 2567 batch = READ_ONCE(pcp->batch); 2568 /* 2569 * Decrease pcp->high periodically to try to free possible 2570 * idle PCP pages. And, avoid to free too many pages to 2571 * control latency. This caps pcp->high decrement too. 2572 */ 2573 if (pcp->high > high_min) { 2574 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2575 pcp->high - (pcp->high >> 3), high_min); 2576 if (pcp->high > high_min) 2577 todo = true; 2578 } 2579 2580 to_drain = pcp->count - pcp->high; 2581 while (to_drain > 0) { 2582 to_drain_batched = min(to_drain, batch); 2583 spin_lock(&pcp->lock); 2584 free_pcppages_bulk(zone, to_drain_batched, pcp, 0); 2585 spin_unlock(&pcp->lock); 2586 todo = true; 2587 2588 to_drain -= to_drain_batched; 2589 } 2590 2591 return todo; 2592 } 2593 2594 #ifdef CONFIG_NUMA 2595 /* 2596 * Called from the vmstat counter updater to drain pagesets of this 2597 * currently executing processor on remote nodes after they have 2598 * expired. 2599 */ 2600 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2601 { 2602 int to_drain, batch; 2603 2604 batch = READ_ONCE(pcp->batch); 2605 to_drain = min(pcp->count, batch); 2606 if (to_drain > 0) { 2607 spin_lock(&pcp->lock); 2608 free_pcppages_bulk(zone, to_drain, pcp, 0); 2609 spin_unlock(&pcp->lock); 2610 } 2611 } 2612 #endif 2613 2614 /* 2615 * Drain pcplists of the indicated processor and zone. 2616 */ 2617 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2618 { 2619 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2620 int count; 2621 2622 do { 2623 spin_lock(&pcp->lock); 2624 count = pcp->count; 2625 if (count) { 2626 int to_drain = min(count, 2627 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2628 2629 free_pcppages_bulk(zone, to_drain, pcp, 0); 2630 count -= to_drain; 2631 } 2632 spin_unlock(&pcp->lock); 2633 } while (count); 2634 } 2635 2636 /* 2637 * Drain pcplists of all zones on the indicated processor. 2638 */ 2639 static void drain_pages(unsigned int cpu) 2640 { 2641 struct zone *zone; 2642 2643 for_each_populated_zone(zone) { 2644 drain_pages_zone(cpu, zone); 2645 } 2646 } 2647 2648 /* 2649 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2650 */ 2651 void drain_local_pages(struct zone *zone) 2652 { 2653 int cpu = smp_processor_id(); 2654 2655 if (zone) 2656 drain_pages_zone(cpu, zone); 2657 else 2658 drain_pages(cpu); 2659 } 2660 2661 /* 2662 * The implementation of drain_all_pages(), exposing an extra parameter to 2663 * drain on all cpus. 2664 * 2665 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2666 * not empty. The check for non-emptiness can however race with a free to 2667 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2668 * that need the guarantee that every CPU has drained can disable the 2669 * optimizing racy check. 2670 */ 2671 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2672 { 2673 int cpu; 2674 2675 /* 2676 * Allocate in the BSS so we won't require allocation in 2677 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2678 */ 2679 static cpumask_t cpus_with_pcps; 2680 2681 /* 2682 * Do not drain if one is already in progress unless it's specific to 2683 * a zone. Such callers are primarily CMA and memory hotplug and need 2684 * the drain to be complete when the call returns. 2685 */ 2686 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2687 if (!zone) 2688 return; 2689 mutex_lock(&pcpu_drain_mutex); 2690 } 2691 2692 /* 2693 * We don't care about racing with CPU hotplug event 2694 * as offline notification will cause the notified 2695 * cpu to drain that CPU pcps and on_each_cpu_mask 2696 * disables preemption as part of its processing 2697 */ 2698 for_each_online_cpu(cpu) { 2699 struct per_cpu_pages *pcp; 2700 struct zone *z; 2701 bool has_pcps = false; 2702 2703 if (force_all_cpus) { 2704 /* 2705 * The pcp.count check is racy, some callers need a 2706 * guarantee that no cpu is missed. 2707 */ 2708 has_pcps = true; 2709 } else if (zone) { 2710 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2711 if (pcp->count) 2712 has_pcps = true; 2713 } else { 2714 for_each_populated_zone(z) { 2715 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2716 if (pcp->count) { 2717 has_pcps = true; 2718 break; 2719 } 2720 } 2721 } 2722 2723 if (has_pcps) 2724 cpumask_set_cpu(cpu, &cpus_with_pcps); 2725 else 2726 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2727 } 2728 2729 for_each_cpu(cpu, &cpus_with_pcps) { 2730 if (zone) 2731 drain_pages_zone(cpu, zone); 2732 else 2733 drain_pages(cpu); 2734 } 2735 2736 mutex_unlock(&pcpu_drain_mutex); 2737 } 2738 2739 /* 2740 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2741 * 2742 * When zone parameter is non-NULL, spill just the single zone's pages. 2743 */ 2744 void drain_all_pages(struct zone *zone) 2745 { 2746 __drain_all_pages(zone, false); 2747 } 2748 2749 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2750 { 2751 int min_nr_free, max_nr_free; 2752 2753 /* Free as much as possible if batch freeing high-order pages. */ 2754 if (unlikely(free_high)) 2755 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2756 2757 /* Check for PCP disabled or boot pageset */ 2758 if (unlikely(high < batch)) 2759 return 1; 2760 2761 /* Leave at least pcp->batch pages on the list */ 2762 min_nr_free = batch; 2763 max_nr_free = high - batch; 2764 2765 /* 2766 * Increase the batch number to the number of the consecutive 2767 * freed pages to reduce zone lock contention. 2768 */ 2769 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2770 2771 return batch; 2772 } 2773 2774 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2775 int batch, bool free_high) 2776 { 2777 int high, high_min, high_max; 2778 2779 high_min = READ_ONCE(pcp->high_min); 2780 high_max = READ_ONCE(pcp->high_max); 2781 high = pcp->high = clamp(pcp->high, high_min, high_max); 2782 2783 if (unlikely(!high)) 2784 return 0; 2785 2786 if (unlikely(free_high)) { 2787 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2788 high_min); 2789 return 0; 2790 } 2791 2792 /* 2793 * If reclaim is active, limit the number of pages that can be 2794 * stored on pcp lists 2795 */ 2796 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2797 int free_count = max_t(int, pcp->free_count, batch); 2798 2799 pcp->high = max(high - free_count, high_min); 2800 return min(batch << 2, pcp->high); 2801 } 2802 2803 if (high_min == high_max) 2804 return high; 2805 2806 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2807 int free_count = max_t(int, pcp->free_count, batch); 2808 2809 pcp->high = max(high - free_count, high_min); 2810 high = max(pcp->count, high_min); 2811 } else if (pcp->count >= high) { 2812 int need_high = pcp->free_count + batch; 2813 2814 /* pcp->high should be large enough to hold batch freed pages */ 2815 if (pcp->high < need_high) 2816 pcp->high = clamp(need_high, high_min, high_max); 2817 } 2818 2819 return high; 2820 } 2821 2822 /* 2823 * Tune pcp alloc factor and adjust count & free_count. Free pages to bring the 2824 * pcp's watermarks below high. 2825 * 2826 * May return a freed pcp, if during page freeing the pcp spinlock cannot be 2827 * reacquired. Return true if pcp is locked, false otherwise. 2828 */ 2829 static bool free_frozen_page_commit(struct zone *zone, 2830 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2831 unsigned int order, fpi_t fpi_flags, unsigned long *UP_flags) 2832 { 2833 int high, batch; 2834 int to_free, to_free_batched; 2835 int pindex; 2836 int cpu = smp_processor_id(); 2837 int ret = true; 2838 bool free_high = false; 2839 2840 /* 2841 * On freeing, reduce the number of pages that are batch allocated. 2842 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2843 * allocations. 2844 */ 2845 pcp->alloc_factor >>= 1; 2846 __count_vm_events(PGFREE, 1 << order); 2847 pindex = order_to_pindex(migratetype, order); 2848 list_add(&page->pcp_list, &pcp->lists[pindex]); 2849 pcp->count += 1 << order; 2850 2851 batch = READ_ONCE(pcp->batch); 2852 /* 2853 * As high-order pages other than THP's stored on PCP can contribute 2854 * to fragmentation, limit the number stored when PCP is heavily 2855 * freeing without allocation. The remainder after bulk freeing 2856 * stops will be drained from vmstat refresh context. 2857 */ 2858 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2859 free_high = (pcp->free_count >= (batch + pcp->high_min / 2) && 2860 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2861 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2862 pcp->count >= batch)); 2863 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2864 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2865 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2866 } 2867 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2868 pcp->free_count += (1 << order); 2869 2870 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 2871 /* 2872 * Do not attempt to take a zone lock. Let pcp->count get 2873 * over high mark temporarily. 2874 */ 2875 return true; 2876 } 2877 2878 high = nr_pcp_high(pcp, zone, batch, free_high); 2879 if (pcp->count < high) 2880 return true; 2881 2882 to_free = nr_pcp_free(pcp, batch, high, free_high); 2883 while (to_free > 0 && pcp->count > 0) { 2884 to_free_batched = min(to_free, batch); 2885 free_pcppages_bulk(zone, to_free_batched, pcp, pindex); 2886 to_free -= to_free_batched; 2887 2888 if (to_free == 0 || pcp->count == 0) 2889 break; 2890 2891 pcp_spin_unlock(pcp, *UP_flags); 2892 2893 pcp = pcp_spin_trylock(zone->per_cpu_pageset, *UP_flags); 2894 if (!pcp) { 2895 ret = false; 2896 break; 2897 } 2898 2899 /* 2900 * Check if this thread has been migrated to a different CPU. 2901 * If that is the case, give up and indicate that the pcp is 2902 * returned in an unlocked state. 2903 */ 2904 if (smp_processor_id() != cpu) { 2905 pcp_spin_unlock(pcp, *UP_flags); 2906 ret = false; 2907 break; 2908 } 2909 } 2910 2911 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2912 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2913 ZONE_MOVABLE, 0)) { 2914 struct pglist_data *pgdat = zone->zone_pgdat; 2915 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2916 2917 /* 2918 * Assume that memory pressure on this node is gone and may be 2919 * in a reclaimable state. If a memory fallback node exists, 2920 * direct reclaim may not have been triggered, causing a 2921 * 'hopeless node' to stay in that state for a while. Let 2922 * kswapd work again by resetting kswapd_failures. 2923 */ 2924 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES && 2925 next_memory_node(pgdat->node_id) < MAX_NUMNODES) 2926 atomic_set(&pgdat->kswapd_failures, 0); 2927 } 2928 return ret; 2929 } 2930 2931 /* 2932 * Free a pcp page 2933 */ 2934 static void __free_frozen_pages(struct page *page, unsigned int order, 2935 fpi_t fpi_flags) 2936 { 2937 unsigned long UP_flags; 2938 struct per_cpu_pages *pcp; 2939 struct zone *zone; 2940 unsigned long pfn = page_to_pfn(page); 2941 int migratetype; 2942 2943 if (!pcp_allowed_order(order)) { 2944 __free_pages_ok(page, order, fpi_flags); 2945 return; 2946 } 2947 2948 if (!free_pages_prepare(page, order)) 2949 return; 2950 2951 /* 2952 * We only track unmovable, reclaimable and movable on pcp lists. 2953 * Place ISOLATE pages on the isolated list because they are being 2954 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2955 * get those areas back if necessary. Otherwise, we may have to free 2956 * excessively into the page allocator 2957 */ 2958 zone = page_zone(page); 2959 migratetype = get_pfnblock_migratetype(page, pfn); 2960 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2961 if (unlikely(is_migrate_isolate(migratetype))) { 2962 free_one_page(zone, page, pfn, order, fpi_flags); 2963 return; 2964 } 2965 migratetype = MIGRATE_MOVABLE; 2966 } 2967 2968 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) 2969 && (in_nmi() || in_hardirq()))) { 2970 add_page_to_zone_llist(zone, page, order); 2971 return; 2972 } 2973 pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags); 2974 if (pcp) { 2975 if (!free_frozen_page_commit(zone, pcp, page, migratetype, 2976 order, fpi_flags, &UP_flags)) 2977 return; 2978 pcp_spin_unlock(pcp, UP_flags); 2979 } else { 2980 free_one_page(zone, page, pfn, order, fpi_flags); 2981 } 2982 } 2983 2984 void free_frozen_pages(struct page *page, unsigned int order) 2985 { 2986 __free_frozen_pages(page, order, FPI_NONE); 2987 } 2988 2989 /* 2990 * Free a batch of folios 2991 */ 2992 void free_unref_folios(struct folio_batch *folios) 2993 { 2994 unsigned long UP_flags; 2995 struct per_cpu_pages *pcp = NULL; 2996 struct zone *locked_zone = NULL; 2997 int i, j; 2998 2999 /* Prepare folios for freeing */ 3000 for (i = 0, j = 0; i < folios->nr; i++) { 3001 struct folio *folio = folios->folios[i]; 3002 unsigned long pfn = folio_pfn(folio); 3003 unsigned int order = folio_order(folio); 3004 3005 if (!free_pages_prepare(&folio->page, order)) 3006 continue; 3007 /* 3008 * Free orders not handled on the PCP directly to the 3009 * allocator. 3010 */ 3011 if (!pcp_allowed_order(order)) { 3012 free_one_page(folio_zone(folio), &folio->page, 3013 pfn, order, FPI_NONE); 3014 continue; 3015 } 3016 folio->private = (void *)(unsigned long)order; 3017 if (j != i) 3018 folios->folios[j] = folio; 3019 j++; 3020 } 3021 folios->nr = j; 3022 3023 for (i = 0; i < folios->nr; i++) { 3024 struct folio *folio = folios->folios[i]; 3025 struct zone *zone = folio_zone(folio); 3026 unsigned long pfn = folio_pfn(folio); 3027 unsigned int order = (unsigned long)folio->private; 3028 int migratetype; 3029 3030 folio->private = NULL; 3031 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 3032 3033 /* Different zone requires a different pcp lock */ 3034 if (zone != locked_zone || 3035 is_migrate_isolate(migratetype)) { 3036 if (pcp) { 3037 pcp_spin_unlock(pcp, UP_flags); 3038 locked_zone = NULL; 3039 pcp = NULL; 3040 } 3041 3042 /* 3043 * Free isolated pages directly to the 3044 * allocator, see comment in free_frozen_pages. 3045 */ 3046 if (is_migrate_isolate(migratetype)) { 3047 free_one_page(zone, &folio->page, pfn, 3048 order, FPI_NONE); 3049 continue; 3050 } 3051 3052 /* 3053 * trylock is necessary as folios may be getting freed 3054 * from IRQ or SoftIRQ context after an IO completion. 3055 */ 3056 pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags); 3057 if (unlikely(!pcp)) { 3058 free_one_page(zone, &folio->page, pfn, 3059 order, FPI_NONE); 3060 continue; 3061 } 3062 locked_zone = zone; 3063 } 3064 3065 /* 3066 * Non-isolated types over MIGRATE_PCPTYPES get added 3067 * to the MIGRATE_MOVABLE pcp list. 3068 */ 3069 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3070 migratetype = MIGRATE_MOVABLE; 3071 3072 trace_mm_page_free_batched(&folio->page); 3073 if (!free_frozen_page_commit(zone, pcp, &folio->page, 3074 migratetype, order, FPI_NONE, &UP_flags)) { 3075 pcp = NULL; 3076 locked_zone = NULL; 3077 } 3078 } 3079 3080 if (pcp) 3081 pcp_spin_unlock(pcp, UP_flags); 3082 folio_batch_reinit(folios); 3083 } 3084 3085 /* 3086 * split_page takes a non-compound higher-order page, and splits it into 3087 * n (1<<order) sub-pages: page[0..n] 3088 * Each sub-page must be freed individually. 3089 * 3090 * Note: this is probably too low level an operation for use in drivers. 3091 * Please consult with lkml before using this in your driver. 3092 */ 3093 void split_page(struct page *page, unsigned int order) 3094 { 3095 int i; 3096 3097 VM_BUG_ON_PAGE(PageCompound(page), page); 3098 VM_BUG_ON_PAGE(!page_count(page), page); 3099 3100 for (i = 1; i < (1 << order); i++) 3101 set_page_refcounted(page + i); 3102 split_page_owner(page, order, 0); 3103 pgalloc_tag_split(page_folio(page), order, 0); 3104 split_page_memcg(page, order); 3105 } 3106 EXPORT_SYMBOL_GPL(split_page); 3107 3108 int __isolate_free_page(struct page *page, unsigned int order) 3109 { 3110 struct zone *zone = page_zone(page); 3111 int mt = get_pageblock_migratetype(page); 3112 3113 if (!is_migrate_isolate(mt)) { 3114 unsigned long watermark; 3115 /* 3116 * Obey watermarks as if the page was being allocated. We can 3117 * emulate a high-order watermark check with a raised order-0 3118 * watermark, because we already know our high-order page 3119 * exists. 3120 */ 3121 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3122 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3123 return 0; 3124 } 3125 3126 del_page_from_free_list(page, zone, order, mt); 3127 3128 /* 3129 * Set the pageblock if the isolated page is at least half of a 3130 * pageblock 3131 */ 3132 if (order >= pageblock_order - 1) { 3133 struct page *endpage = page + (1 << order) - 1; 3134 for (; page < endpage; page += pageblock_nr_pages) { 3135 int mt = get_pageblock_migratetype(page); 3136 /* 3137 * Only change normal pageblocks (i.e., they can merge 3138 * with others) 3139 */ 3140 if (migratetype_is_mergeable(mt)) 3141 move_freepages_block(zone, page, mt, 3142 MIGRATE_MOVABLE); 3143 } 3144 } 3145 3146 return 1UL << order; 3147 } 3148 3149 /** 3150 * __putback_isolated_page - Return a now-isolated page back where we got it 3151 * @page: Page that was isolated 3152 * @order: Order of the isolated page 3153 * @mt: The page's pageblock's migratetype 3154 * 3155 * This function is meant to return a page pulled from the free lists via 3156 * __isolate_free_page back to the free lists they were pulled from. 3157 */ 3158 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3159 { 3160 struct zone *zone = page_zone(page); 3161 3162 /* zone lock should be held when this function is called */ 3163 lockdep_assert_held(&zone->lock); 3164 3165 /* Return isolated page to tail of freelist. */ 3166 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3167 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3168 } 3169 3170 /* 3171 * Update NUMA hit/miss statistics 3172 */ 3173 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3174 long nr_account) 3175 { 3176 #ifdef CONFIG_NUMA 3177 enum numa_stat_item local_stat = NUMA_LOCAL; 3178 3179 /* skip numa counters update if numa stats is disabled */ 3180 if (!static_branch_likely(&vm_numa_stat_key)) 3181 return; 3182 3183 if (zone_to_nid(z) != numa_node_id()) 3184 local_stat = NUMA_OTHER; 3185 3186 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3187 __count_numa_events(z, NUMA_HIT, nr_account); 3188 else { 3189 __count_numa_events(z, NUMA_MISS, nr_account); 3190 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3191 } 3192 __count_numa_events(z, local_stat, nr_account); 3193 #endif 3194 } 3195 3196 static __always_inline 3197 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3198 unsigned int order, unsigned int alloc_flags, 3199 int migratetype) 3200 { 3201 struct page *page; 3202 unsigned long flags; 3203 3204 do { 3205 page = NULL; 3206 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 3207 if (!spin_trylock_irqsave(&zone->lock, flags)) 3208 return NULL; 3209 } else { 3210 spin_lock_irqsave(&zone->lock, flags); 3211 } 3212 if (alloc_flags & ALLOC_HIGHATOMIC) 3213 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3214 if (!page) { 3215 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 3216 3217 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); 3218 3219 /* 3220 * If the allocation fails, allow OOM handling and 3221 * order-0 (atomic) allocs access to HIGHATOMIC 3222 * reserves as failing now is worse than failing a 3223 * high-order atomic allocation in the future. 3224 */ 3225 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 3226 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3227 3228 if (!page) { 3229 spin_unlock_irqrestore(&zone->lock, flags); 3230 return NULL; 3231 } 3232 } 3233 spin_unlock_irqrestore(&zone->lock, flags); 3234 } while (check_new_pages(page, order)); 3235 3236 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3237 zone_statistics(preferred_zone, zone, 1); 3238 3239 return page; 3240 } 3241 3242 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 3243 { 3244 int high, base_batch, batch, max_nr_alloc; 3245 int high_max, high_min; 3246 3247 base_batch = READ_ONCE(pcp->batch); 3248 high_min = READ_ONCE(pcp->high_min); 3249 high_max = READ_ONCE(pcp->high_max); 3250 high = pcp->high = clamp(pcp->high, high_min, high_max); 3251 3252 /* Check for PCP disabled or boot pageset */ 3253 if (unlikely(high < base_batch)) 3254 return 1; 3255 3256 if (order) 3257 batch = base_batch; 3258 else 3259 batch = (base_batch << pcp->alloc_factor); 3260 3261 /* 3262 * If we had larger pcp->high, we could avoid to allocate from 3263 * zone. 3264 */ 3265 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3266 high = pcp->high = min(high + batch, high_max); 3267 3268 if (!order) { 3269 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 3270 /* 3271 * Double the number of pages allocated each time there is 3272 * subsequent allocation of order-0 pages without any freeing. 3273 */ 3274 if (batch <= max_nr_alloc && 3275 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 3276 pcp->alloc_factor++; 3277 batch = min(batch, max_nr_alloc); 3278 } 3279 3280 /* 3281 * Scale batch relative to order if batch implies free pages 3282 * can be stored on the PCP. Batch can be 1 for small zones or 3283 * for boot pagesets which should never store free pages as 3284 * the pages may belong to arbitrary zones. 3285 */ 3286 if (batch > 1) 3287 batch = max(batch >> order, 2); 3288 3289 return batch; 3290 } 3291 3292 /* Remove page from the per-cpu list, caller must protect the list */ 3293 static inline 3294 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3295 int migratetype, 3296 unsigned int alloc_flags, 3297 struct per_cpu_pages *pcp, 3298 struct list_head *list) 3299 { 3300 struct page *page; 3301 3302 do { 3303 if (list_empty(list)) { 3304 int batch = nr_pcp_alloc(pcp, zone, order); 3305 int alloced; 3306 3307 alloced = rmqueue_bulk(zone, order, 3308 batch, list, 3309 migratetype, alloc_flags); 3310 3311 pcp->count += alloced << order; 3312 if (unlikely(list_empty(list))) 3313 return NULL; 3314 } 3315 3316 page = list_first_entry(list, struct page, pcp_list); 3317 list_del(&page->pcp_list); 3318 pcp->count -= 1 << order; 3319 } while (check_new_pages(page, order)); 3320 3321 return page; 3322 } 3323 3324 /* Lock and remove page from the per-cpu list */ 3325 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3326 struct zone *zone, unsigned int order, 3327 int migratetype, unsigned int alloc_flags) 3328 { 3329 struct per_cpu_pages *pcp; 3330 struct list_head *list; 3331 struct page *page; 3332 unsigned long UP_flags; 3333 3334 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3335 pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags); 3336 if (!pcp) 3337 return NULL; 3338 3339 /* 3340 * On allocation, reduce the number of pages that are batch freed. 3341 * See nr_pcp_free() where free_factor is increased for subsequent 3342 * frees. 3343 */ 3344 pcp->free_count >>= 1; 3345 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3346 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3347 pcp_spin_unlock(pcp, UP_flags); 3348 if (page) { 3349 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3350 zone_statistics(preferred_zone, zone, 1); 3351 } 3352 return page; 3353 } 3354 3355 /* 3356 * Allocate a page from the given zone. 3357 * Use pcplists for THP or "cheap" high-order allocations. 3358 */ 3359 3360 /* 3361 * Do not instrument rmqueue() with KMSAN. This function may call 3362 * __msan_poison_alloca() through a call to set_pfnblock_migratetype(). 3363 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3364 * may call rmqueue() again, which will result in a deadlock. 3365 */ 3366 __no_sanitize_memory 3367 static inline 3368 struct page *rmqueue(struct zone *preferred_zone, 3369 struct zone *zone, unsigned int order, 3370 gfp_t gfp_flags, unsigned int alloc_flags, 3371 int migratetype) 3372 { 3373 struct page *page; 3374 3375 if (likely(pcp_allowed_order(order))) { 3376 page = rmqueue_pcplist(preferred_zone, zone, order, 3377 migratetype, alloc_flags); 3378 if (likely(page)) 3379 goto out; 3380 } 3381 3382 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3383 migratetype); 3384 3385 out: 3386 /* Separate test+clear to avoid unnecessary atomics */ 3387 if ((alloc_flags & ALLOC_KSWAPD) && 3388 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3389 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3390 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3391 } 3392 3393 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3394 return page; 3395 } 3396 3397 /* 3398 * Reserve the pageblock(s) surrounding an allocation request for 3399 * exclusive use of high-order atomic allocations if there are no 3400 * empty page blocks that contain a page with a suitable order 3401 */ 3402 static void reserve_highatomic_pageblock(struct page *page, int order, 3403 struct zone *zone) 3404 { 3405 int mt; 3406 unsigned long max_managed, flags; 3407 3408 /* 3409 * The number reserved as: minimum is 1 pageblock, maximum is 3410 * roughly 1% of a zone. But if 1% of a zone falls below a 3411 * pageblock size, then don't reserve any pageblocks. 3412 * Check is race-prone but harmless. 3413 */ 3414 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3415 return; 3416 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3417 if (zone->nr_reserved_highatomic >= max_managed) 3418 return; 3419 3420 spin_lock_irqsave(&zone->lock, flags); 3421 3422 /* Recheck the nr_reserved_highatomic limit under the lock */ 3423 if (zone->nr_reserved_highatomic >= max_managed) 3424 goto out_unlock; 3425 3426 /* Yoink! */ 3427 mt = get_pageblock_migratetype(page); 3428 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3429 if (!migratetype_is_mergeable(mt)) 3430 goto out_unlock; 3431 3432 if (order < pageblock_order) { 3433 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3434 goto out_unlock; 3435 zone->nr_reserved_highatomic += pageblock_nr_pages; 3436 } else { 3437 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3438 zone->nr_reserved_highatomic += 1 << order; 3439 } 3440 3441 out_unlock: 3442 spin_unlock_irqrestore(&zone->lock, flags); 3443 } 3444 3445 /* 3446 * Used when an allocation is about to fail under memory pressure. This 3447 * potentially hurts the reliability of high-order allocations when under 3448 * intense memory pressure but failed atomic allocations should be easier 3449 * to recover from than an OOM. 3450 * 3451 * If @force is true, try to unreserve pageblocks even though highatomic 3452 * pageblock is exhausted. 3453 */ 3454 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3455 bool force) 3456 { 3457 struct zonelist *zonelist = ac->zonelist; 3458 unsigned long flags; 3459 struct zoneref *z; 3460 struct zone *zone; 3461 struct page *page; 3462 int order; 3463 int ret; 3464 3465 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3466 ac->nodemask) { 3467 /* 3468 * Preserve at least one pageblock unless memory pressure 3469 * is really high. 3470 */ 3471 if (!force && zone->nr_reserved_highatomic <= 3472 pageblock_nr_pages) 3473 continue; 3474 3475 spin_lock_irqsave(&zone->lock, flags); 3476 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3477 struct free_area *area = &(zone->free_area[order]); 3478 unsigned long size; 3479 3480 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3481 if (!page) 3482 continue; 3483 3484 size = max(pageblock_nr_pages, 1UL << order); 3485 /* 3486 * It should never happen but changes to 3487 * locking could inadvertently allow a per-cpu 3488 * drain to add pages to MIGRATE_HIGHATOMIC 3489 * while unreserving so be safe and watch for 3490 * underflows. 3491 */ 3492 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3493 size = zone->nr_reserved_highatomic; 3494 zone->nr_reserved_highatomic -= size; 3495 3496 /* 3497 * Convert to ac->migratetype and avoid the normal 3498 * pageblock stealing heuristics. Minimally, the caller 3499 * is doing the work and needs the pages. More 3500 * importantly, if the block was always converted to 3501 * MIGRATE_UNMOVABLE or another type then the number 3502 * of pageblocks that cannot be completely freed 3503 * may increase. 3504 */ 3505 if (order < pageblock_order) 3506 ret = move_freepages_block(zone, page, 3507 MIGRATE_HIGHATOMIC, 3508 ac->migratetype); 3509 else { 3510 move_to_free_list(page, zone, order, 3511 MIGRATE_HIGHATOMIC, 3512 ac->migratetype); 3513 change_pageblock_range(page, order, 3514 ac->migratetype); 3515 ret = 1; 3516 } 3517 /* 3518 * Reserving the block(s) already succeeded, 3519 * so this should not fail on zone boundaries. 3520 */ 3521 WARN_ON_ONCE(ret == -1); 3522 if (ret > 0) { 3523 spin_unlock_irqrestore(&zone->lock, flags); 3524 return ret; 3525 } 3526 } 3527 spin_unlock_irqrestore(&zone->lock, flags); 3528 } 3529 3530 return false; 3531 } 3532 3533 static inline long __zone_watermark_unusable_free(struct zone *z, 3534 unsigned int order, unsigned int alloc_flags) 3535 { 3536 long unusable_free = (1 << order) - 1; 3537 3538 /* 3539 * If the caller does not have rights to reserves below the min 3540 * watermark then subtract the free pages reserved for highatomic. 3541 */ 3542 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3543 unusable_free += READ_ONCE(z->nr_free_highatomic); 3544 3545 #ifdef CONFIG_CMA 3546 /* If allocation can't use CMA areas don't use free CMA pages */ 3547 if (!(alloc_flags & ALLOC_CMA)) 3548 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3549 #endif 3550 3551 return unusable_free; 3552 } 3553 3554 /* 3555 * Return true if free base pages are above 'mark'. For high-order checks it 3556 * will return true of the order-0 watermark is reached and there is at least 3557 * one free page of a suitable size. Checking now avoids taking the zone lock 3558 * to check in the allocation paths if no pages are free. 3559 */ 3560 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3561 int highest_zoneidx, unsigned int alloc_flags, 3562 long free_pages) 3563 { 3564 long min = mark; 3565 int o; 3566 3567 /* free_pages may go negative - that's OK */ 3568 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3569 3570 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3571 /* 3572 * __GFP_HIGH allows access to 50% of the min reserve as well 3573 * as OOM. 3574 */ 3575 if (alloc_flags & ALLOC_MIN_RESERVE) { 3576 min -= min / 2; 3577 3578 /* 3579 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3580 * access more reserves than just __GFP_HIGH. Other 3581 * non-blocking allocations requests such as GFP_NOWAIT 3582 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3583 * access to the min reserve. 3584 */ 3585 if (alloc_flags & ALLOC_NON_BLOCK) 3586 min -= min / 4; 3587 } 3588 3589 /* 3590 * OOM victims can try even harder than the normal reserve 3591 * users on the grounds that it's definitely going to be in 3592 * the exit path shortly and free memory. Any allocation it 3593 * makes during the free path will be small and short-lived. 3594 */ 3595 if (alloc_flags & ALLOC_OOM) 3596 min -= min / 2; 3597 } 3598 3599 /* 3600 * Check watermarks for an order-0 allocation request. If these 3601 * are not met, then a high-order request also cannot go ahead 3602 * even if a suitable page happened to be free. 3603 */ 3604 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3605 return false; 3606 3607 /* If this is an order-0 request then the watermark is fine */ 3608 if (!order) 3609 return true; 3610 3611 /* For a high-order request, check at least one suitable page is free */ 3612 for (o = order; o < NR_PAGE_ORDERS; o++) { 3613 struct free_area *area = &z->free_area[o]; 3614 int mt; 3615 3616 if (!area->nr_free) 3617 continue; 3618 3619 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3620 if (!free_area_empty(area, mt)) 3621 return true; 3622 } 3623 3624 #ifdef CONFIG_CMA 3625 if ((alloc_flags & ALLOC_CMA) && 3626 !free_area_empty(area, MIGRATE_CMA)) { 3627 return true; 3628 } 3629 #endif 3630 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3631 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3632 return true; 3633 } 3634 } 3635 return false; 3636 } 3637 3638 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3639 int highest_zoneidx, unsigned int alloc_flags) 3640 { 3641 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3642 zone_page_state(z, NR_FREE_PAGES)); 3643 } 3644 3645 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3646 unsigned long mark, int highest_zoneidx, 3647 unsigned int alloc_flags, gfp_t gfp_mask) 3648 { 3649 long free_pages; 3650 3651 free_pages = zone_page_state(z, NR_FREE_PAGES); 3652 3653 /* 3654 * Fast check for order-0 only. If this fails then the reserves 3655 * need to be calculated. 3656 */ 3657 if (!order) { 3658 long usable_free; 3659 long reserved; 3660 3661 usable_free = free_pages; 3662 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3663 3664 /* reserved may over estimate high-atomic reserves. */ 3665 usable_free -= min(usable_free, reserved); 3666 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3667 return true; 3668 } 3669 3670 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3671 free_pages)) 3672 return true; 3673 3674 /* 3675 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3676 * when checking the min watermark. The min watermark is the 3677 * point where boosting is ignored so that kswapd is woken up 3678 * when below the low watermark. 3679 */ 3680 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3681 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3682 mark = z->_watermark[WMARK_MIN]; 3683 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3684 alloc_flags, free_pages); 3685 } 3686 3687 return false; 3688 } 3689 3690 #ifdef CONFIG_NUMA 3691 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3692 3693 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3694 { 3695 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3696 node_reclaim_distance; 3697 } 3698 #else /* CONFIG_NUMA */ 3699 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3700 { 3701 return true; 3702 } 3703 #endif /* CONFIG_NUMA */ 3704 3705 /* 3706 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3707 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3708 * premature use of a lower zone may cause lowmem pressure problems that 3709 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3710 * probably too small. It only makes sense to spread allocations to avoid 3711 * fragmentation between the Normal and DMA32 zones. 3712 */ 3713 static inline unsigned int 3714 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3715 { 3716 unsigned int alloc_flags; 3717 3718 /* 3719 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3720 * to save a branch. 3721 */ 3722 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3723 3724 if (defrag_mode) { 3725 alloc_flags |= ALLOC_NOFRAGMENT; 3726 return alloc_flags; 3727 } 3728 3729 #ifdef CONFIG_ZONE_DMA32 3730 if (!zone) 3731 return alloc_flags; 3732 3733 if (zone_idx(zone) != ZONE_NORMAL) 3734 return alloc_flags; 3735 3736 /* 3737 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3738 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3739 * on UMA that if Normal is populated then so is DMA32. 3740 */ 3741 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3742 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3743 return alloc_flags; 3744 3745 alloc_flags |= ALLOC_NOFRAGMENT; 3746 #endif /* CONFIG_ZONE_DMA32 */ 3747 return alloc_flags; 3748 } 3749 3750 /* Must be called after current_gfp_context() which can change gfp_mask */ 3751 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3752 unsigned int alloc_flags) 3753 { 3754 #ifdef CONFIG_CMA 3755 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3756 alloc_flags |= ALLOC_CMA; 3757 #endif 3758 return alloc_flags; 3759 } 3760 3761 /* 3762 * get_page_from_freelist goes through the zonelist trying to allocate 3763 * a page. 3764 */ 3765 static struct page * 3766 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3767 const struct alloc_context *ac) 3768 { 3769 struct zoneref *z; 3770 struct zone *zone; 3771 struct pglist_data *last_pgdat = NULL; 3772 bool last_pgdat_dirty_ok = false; 3773 bool no_fallback; 3774 bool skip_kswapd_nodes = nr_online_nodes > 1; 3775 bool skipped_kswapd_nodes = false; 3776 3777 retry: 3778 /* 3779 * Scan zonelist, looking for a zone with enough free. 3780 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c. 3781 */ 3782 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3783 z = ac->preferred_zoneref; 3784 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3785 ac->nodemask) { 3786 struct page *page; 3787 unsigned long mark; 3788 3789 if (cpusets_enabled() && 3790 (alloc_flags & ALLOC_CPUSET) && 3791 !__cpuset_zone_allowed(zone, gfp_mask)) 3792 continue; 3793 /* 3794 * When allocating a page cache page for writing, we 3795 * want to get it from a node that is within its dirty 3796 * limit, such that no single node holds more than its 3797 * proportional share of globally allowed dirty pages. 3798 * The dirty limits take into account the node's 3799 * lowmem reserves and high watermark so that kswapd 3800 * should be able to balance it without having to 3801 * write pages from its LRU list. 3802 * 3803 * XXX: For now, allow allocations to potentially 3804 * exceed the per-node dirty limit in the slowpath 3805 * (spread_dirty_pages unset) before going into reclaim, 3806 * which is important when on a NUMA setup the allowed 3807 * nodes are together not big enough to reach the 3808 * global limit. The proper fix for these situations 3809 * will require awareness of nodes in the 3810 * dirty-throttling and the flusher threads. 3811 */ 3812 if (ac->spread_dirty_pages) { 3813 if (last_pgdat != zone->zone_pgdat) { 3814 last_pgdat = zone->zone_pgdat; 3815 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3816 } 3817 3818 if (!last_pgdat_dirty_ok) 3819 continue; 3820 } 3821 3822 if (no_fallback && !defrag_mode && nr_online_nodes > 1 && 3823 zone != zonelist_zone(ac->preferred_zoneref)) { 3824 int local_nid; 3825 3826 /* 3827 * If moving to a remote node, retry but allow 3828 * fragmenting fallbacks. Locality is more important 3829 * than fragmentation avoidance. 3830 */ 3831 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3832 if (zone_to_nid(zone) != local_nid) { 3833 alloc_flags &= ~ALLOC_NOFRAGMENT; 3834 goto retry; 3835 } 3836 } 3837 3838 /* 3839 * If kswapd is already active on a node, keep looking 3840 * for other nodes that might be idle. This can happen 3841 * if another process has NUMA bindings and is causing 3842 * kswapd wakeups on only some nodes. Avoid accidental 3843 * "node_reclaim_mode"-like behavior in this case. 3844 */ 3845 if (skip_kswapd_nodes && 3846 !waitqueue_active(&zone->zone_pgdat->kswapd_wait)) { 3847 skipped_kswapd_nodes = true; 3848 continue; 3849 } 3850 3851 cond_accept_memory(zone, order, alloc_flags); 3852 3853 /* 3854 * Detect whether the number of free pages is below high 3855 * watermark. If so, we will decrease pcp->high and free 3856 * PCP pages in free path to reduce the possibility of 3857 * premature page reclaiming. Detection is done here to 3858 * avoid to do that in hotter free path. 3859 */ 3860 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3861 goto check_alloc_wmark; 3862 3863 mark = high_wmark_pages(zone); 3864 if (zone_watermark_fast(zone, order, mark, 3865 ac->highest_zoneidx, alloc_flags, 3866 gfp_mask)) 3867 goto try_this_zone; 3868 else 3869 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3870 3871 check_alloc_wmark: 3872 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3873 if (!zone_watermark_fast(zone, order, mark, 3874 ac->highest_zoneidx, alloc_flags, 3875 gfp_mask)) { 3876 int ret; 3877 3878 if (cond_accept_memory(zone, order, alloc_flags)) 3879 goto try_this_zone; 3880 3881 /* 3882 * Watermark failed for this zone, but see if we can 3883 * grow this zone if it contains deferred pages. 3884 */ 3885 if (deferred_pages_enabled()) { 3886 if (_deferred_grow_zone(zone, order)) 3887 goto try_this_zone; 3888 } 3889 /* Checked here to keep the fast path fast */ 3890 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3891 if (alloc_flags & ALLOC_NO_WATERMARKS) 3892 goto try_this_zone; 3893 3894 if (!node_reclaim_enabled() || 3895 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3896 continue; 3897 3898 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3899 switch (ret) { 3900 case NODE_RECLAIM_NOSCAN: 3901 /* did not scan */ 3902 continue; 3903 case NODE_RECLAIM_FULL: 3904 /* scanned but unreclaimable */ 3905 continue; 3906 default: 3907 /* did we reclaim enough */ 3908 if (zone_watermark_ok(zone, order, mark, 3909 ac->highest_zoneidx, alloc_flags)) 3910 goto try_this_zone; 3911 3912 continue; 3913 } 3914 } 3915 3916 try_this_zone: 3917 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3918 gfp_mask, alloc_flags, ac->migratetype); 3919 if (page) { 3920 prep_new_page(page, order, gfp_mask, alloc_flags); 3921 3922 /* 3923 * If this is a high-order atomic allocation then check 3924 * if the pageblock should be reserved for the future 3925 */ 3926 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3927 reserve_highatomic_pageblock(page, order, zone); 3928 3929 return page; 3930 } else { 3931 if (cond_accept_memory(zone, order, alloc_flags)) 3932 goto try_this_zone; 3933 3934 /* Try again if zone has deferred pages */ 3935 if (deferred_pages_enabled()) { 3936 if (_deferred_grow_zone(zone, order)) 3937 goto try_this_zone; 3938 } 3939 } 3940 } 3941 3942 /* 3943 * If we skipped over nodes with active kswapds and found no 3944 * idle nodes, retry and place anywhere the watermarks permit. 3945 */ 3946 if (skip_kswapd_nodes && skipped_kswapd_nodes) { 3947 skip_kswapd_nodes = false; 3948 goto retry; 3949 } 3950 3951 /* 3952 * It's possible on a UMA machine to get through all zones that are 3953 * fragmented. If avoiding fragmentation, reset and try again. 3954 */ 3955 if (no_fallback && !defrag_mode) { 3956 alloc_flags &= ~ALLOC_NOFRAGMENT; 3957 goto retry; 3958 } 3959 3960 return NULL; 3961 } 3962 3963 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3964 { 3965 unsigned int filter = SHOW_MEM_FILTER_NODES; 3966 3967 /* 3968 * This documents exceptions given to allocations in certain 3969 * contexts that are allowed to allocate outside current's set 3970 * of allowed nodes. 3971 */ 3972 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3973 if (tsk_is_oom_victim(current) || 3974 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3975 filter &= ~SHOW_MEM_FILTER_NODES; 3976 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3977 filter &= ~SHOW_MEM_FILTER_NODES; 3978 3979 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3980 mem_cgroup_show_protected_memory(NULL); 3981 } 3982 3983 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3984 { 3985 struct va_format vaf; 3986 va_list args; 3987 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3988 3989 if ((gfp_mask & __GFP_NOWARN) || 3990 !__ratelimit(&nopage_rs) || 3991 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3992 return; 3993 3994 va_start(args, fmt); 3995 vaf.fmt = fmt; 3996 vaf.va = &args; 3997 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3998 current->comm, &vaf, gfp_mask, &gfp_mask, 3999 nodemask_pr_args(nodemask)); 4000 va_end(args); 4001 4002 cpuset_print_current_mems_allowed(); 4003 pr_cont("\n"); 4004 dump_stack(); 4005 warn_alloc_show_mem(gfp_mask, nodemask); 4006 } 4007 4008 static inline struct page * 4009 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4010 unsigned int alloc_flags, 4011 const struct alloc_context *ac) 4012 { 4013 struct page *page; 4014 4015 page = get_page_from_freelist(gfp_mask, order, 4016 alloc_flags|ALLOC_CPUSET, ac); 4017 /* 4018 * fallback to ignore cpuset restriction if our nodes 4019 * are depleted 4020 */ 4021 if (!page) 4022 page = get_page_from_freelist(gfp_mask, order, 4023 alloc_flags, ac); 4024 return page; 4025 } 4026 4027 static inline struct page * 4028 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4029 const struct alloc_context *ac, unsigned long *did_some_progress) 4030 { 4031 struct oom_control oc = { 4032 .zonelist = ac->zonelist, 4033 .nodemask = ac->nodemask, 4034 .memcg = NULL, 4035 .gfp_mask = gfp_mask, 4036 .order = order, 4037 }; 4038 struct page *page; 4039 4040 *did_some_progress = 0; 4041 4042 /* 4043 * Acquire the oom lock. If that fails, somebody else is 4044 * making progress for us. 4045 */ 4046 if (!mutex_trylock(&oom_lock)) { 4047 *did_some_progress = 1; 4048 schedule_timeout_uninterruptible(1); 4049 return NULL; 4050 } 4051 4052 /* 4053 * Go through the zonelist yet one more time, keep very high watermark 4054 * here, this is only to catch a parallel oom killing, we must fail if 4055 * we're still under heavy pressure. But make sure that this reclaim 4056 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4057 * allocation which will never fail due to oom_lock already held. 4058 */ 4059 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4060 ~__GFP_DIRECT_RECLAIM, order, 4061 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4062 if (page) 4063 goto out; 4064 4065 /* Coredumps can quickly deplete all memory reserves */ 4066 if (current->flags & PF_DUMPCORE) 4067 goto out; 4068 /* The OOM killer will not help higher order allocs */ 4069 if (order > PAGE_ALLOC_COSTLY_ORDER) 4070 goto out; 4071 /* 4072 * We have already exhausted all our reclaim opportunities without any 4073 * success so it is time to admit defeat. We will skip the OOM killer 4074 * because it is very likely that the caller has a more reasonable 4075 * fallback than shooting a random task. 4076 * 4077 * The OOM killer may not free memory on a specific node. 4078 */ 4079 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4080 goto out; 4081 /* The OOM killer does not needlessly kill tasks for lowmem */ 4082 if (ac->highest_zoneidx < ZONE_NORMAL) 4083 goto out; 4084 if (pm_suspended_storage()) 4085 goto out; 4086 /* 4087 * XXX: GFP_NOFS allocations should rather fail than rely on 4088 * other request to make a forward progress. 4089 * We are in an unfortunate situation where out_of_memory cannot 4090 * do much for this context but let's try it to at least get 4091 * access to memory reserved if the current task is killed (see 4092 * out_of_memory). Once filesystems are ready to handle allocation 4093 * failures more gracefully we should just bail out here. 4094 */ 4095 4096 /* Exhausted what can be done so it's blame time */ 4097 if (out_of_memory(&oc) || 4098 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4099 *did_some_progress = 1; 4100 4101 /* 4102 * Help non-failing allocations by giving them access to memory 4103 * reserves 4104 */ 4105 if (gfp_mask & __GFP_NOFAIL) 4106 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4107 ALLOC_NO_WATERMARKS, ac); 4108 } 4109 out: 4110 mutex_unlock(&oom_lock); 4111 return page; 4112 } 4113 4114 /* 4115 * Maximum number of compaction retries with a progress before OOM 4116 * killer is consider as the only way to move forward. 4117 */ 4118 #define MAX_COMPACT_RETRIES 16 4119 4120 #ifdef CONFIG_COMPACTION 4121 /* Try memory compaction for high-order allocations before reclaim */ 4122 static struct page * 4123 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4124 unsigned int alloc_flags, const struct alloc_context *ac, 4125 enum compact_priority prio, enum compact_result *compact_result) 4126 { 4127 struct page *page = NULL; 4128 unsigned long pflags; 4129 unsigned int noreclaim_flag; 4130 4131 if (!order) 4132 return NULL; 4133 4134 psi_memstall_enter(&pflags); 4135 delayacct_compact_start(); 4136 noreclaim_flag = memalloc_noreclaim_save(); 4137 4138 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4139 prio, &page); 4140 4141 memalloc_noreclaim_restore(noreclaim_flag); 4142 psi_memstall_leave(&pflags); 4143 delayacct_compact_end(); 4144 4145 if (*compact_result == COMPACT_SKIPPED) 4146 return NULL; 4147 /* 4148 * At least in one zone compaction wasn't deferred or skipped, so let's 4149 * count a compaction stall 4150 */ 4151 count_vm_event(COMPACTSTALL); 4152 4153 /* Prep a captured page if available */ 4154 if (page) 4155 prep_new_page(page, order, gfp_mask, alloc_flags); 4156 4157 /* Try get a page from the freelist if available */ 4158 if (!page) 4159 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4160 4161 if (page) { 4162 struct zone *zone = page_zone(page); 4163 4164 zone->compact_blockskip_flush = false; 4165 compaction_defer_reset(zone, order, true); 4166 count_vm_event(COMPACTSUCCESS); 4167 return page; 4168 } 4169 4170 /* 4171 * It's bad if compaction run occurs and fails. The most likely reason 4172 * is that pages exist, but not enough to satisfy watermarks. 4173 */ 4174 count_vm_event(COMPACTFAIL); 4175 4176 cond_resched(); 4177 4178 return NULL; 4179 } 4180 4181 static inline bool 4182 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4183 enum compact_result compact_result, 4184 enum compact_priority *compact_priority, 4185 int *compaction_retries) 4186 { 4187 int max_retries = MAX_COMPACT_RETRIES; 4188 int min_priority; 4189 bool ret = false; 4190 int retries = *compaction_retries; 4191 enum compact_priority priority = *compact_priority; 4192 4193 if (!order) 4194 return false; 4195 4196 if (fatal_signal_pending(current)) 4197 return false; 4198 4199 /* 4200 * Compaction was skipped due to a lack of free order-0 4201 * migration targets. Continue if reclaim can help. 4202 */ 4203 if (compact_result == COMPACT_SKIPPED) { 4204 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4205 goto out; 4206 } 4207 4208 /* 4209 * Compaction managed to coalesce some page blocks, but the 4210 * allocation failed presumably due to a race. Retry some. 4211 */ 4212 if (compact_result == COMPACT_SUCCESS) { 4213 /* 4214 * !costly requests are much more important than 4215 * __GFP_RETRY_MAYFAIL costly ones because they are de 4216 * facto nofail and invoke OOM killer to move on while 4217 * costly can fail and users are ready to cope with 4218 * that. 1/4 retries is rather arbitrary but we would 4219 * need much more detailed feedback from compaction to 4220 * make a better decision. 4221 */ 4222 if (order > PAGE_ALLOC_COSTLY_ORDER) 4223 max_retries /= 4; 4224 4225 if (++(*compaction_retries) <= max_retries) { 4226 ret = true; 4227 goto out; 4228 } 4229 } 4230 4231 /* 4232 * Compaction failed. Retry with increasing priority. 4233 */ 4234 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4235 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4236 4237 if (*compact_priority > min_priority) { 4238 (*compact_priority)--; 4239 *compaction_retries = 0; 4240 ret = true; 4241 } 4242 out: 4243 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4244 return ret; 4245 } 4246 #else 4247 static inline struct page * 4248 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4249 unsigned int alloc_flags, const struct alloc_context *ac, 4250 enum compact_priority prio, enum compact_result *compact_result) 4251 { 4252 *compact_result = COMPACT_SKIPPED; 4253 return NULL; 4254 } 4255 4256 static inline bool 4257 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4258 enum compact_result compact_result, 4259 enum compact_priority *compact_priority, 4260 int *compaction_retries) 4261 { 4262 struct zone *zone; 4263 struct zoneref *z; 4264 4265 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4266 return false; 4267 4268 /* 4269 * There are setups with compaction disabled which would prefer to loop 4270 * inside the allocator rather than hit the oom killer prematurely. 4271 * Let's give them a good hope and keep retrying while the order-0 4272 * watermarks are OK. 4273 */ 4274 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4275 ac->highest_zoneidx, ac->nodemask) { 4276 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4277 ac->highest_zoneidx, alloc_flags)) 4278 return true; 4279 } 4280 return false; 4281 } 4282 #endif /* CONFIG_COMPACTION */ 4283 4284 #ifdef CONFIG_LOCKDEP 4285 static struct lockdep_map __fs_reclaim_map = 4286 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4287 4288 static bool __need_reclaim(gfp_t gfp_mask) 4289 { 4290 /* no reclaim without waiting on it */ 4291 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4292 return false; 4293 4294 /* this guy won't enter reclaim */ 4295 if (current->flags & PF_MEMALLOC) 4296 return false; 4297 4298 if (gfp_mask & __GFP_NOLOCKDEP) 4299 return false; 4300 4301 return true; 4302 } 4303 4304 void __fs_reclaim_acquire(unsigned long ip) 4305 { 4306 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4307 } 4308 4309 void __fs_reclaim_release(unsigned long ip) 4310 { 4311 lock_release(&__fs_reclaim_map, ip); 4312 } 4313 4314 void fs_reclaim_acquire(gfp_t gfp_mask) 4315 { 4316 gfp_mask = current_gfp_context(gfp_mask); 4317 4318 if (__need_reclaim(gfp_mask)) { 4319 if (gfp_mask & __GFP_FS) 4320 __fs_reclaim_acquire(_RET_IP_); 4321 4322 #ifdef CONFIG_MMU_NOTIFIER 4323 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4324 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4325 #endif 4326 4327 } 4328 } 4329 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4330 4331 void fs_reclaim_release(gfp_t gfp_mask) 4332 { 4333 gfp_mask = current_gfp_context(gfp_mask); 4334 4335 if (__need_reclaim(gfp_mask)) { 4336 if (gfp_mask & __GFP_FS) 4337 __fs_reclaim_release(_RET_IP_); 4338 } 4339 } 4340 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4341 #endif 4342 4343 /* 4344 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4345 * have been rebuilt so allocation retries. Reader side does not lock and 4346 * retries the allocation if zonelist changes. Writer side is protected by the 4347 * embedded spin_lock. 4348 */ 4349 static DEFINE_SEQLOCK(zonelist_update_seq); 4350 4351 static unsigned int zonelist_iter_begin(void) 4352 { 4353 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4354 return read_seqbegin(&zonelist_update_seq); 4355 4356 return 0; 4357 } 4358 4359 static unsigned int check_retry_zonelist(unsigned int seq) 4360 { 4361 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4362 return read_seqretry(&zonelist_update_seq, seq); 4363 4364 return seq; 4365 } 4366 4367 /* Perform direct synchronous page reclaim */ 4368 static unsigned long 4369 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4370 const struct alloc_context *ac) 4371 { 4372 unsigned int noreclaim_flag; 4373 unsigned long progress; 4374 4375 cond_resched(); 4376 4377 /* We now go into synchronous reclaim */ 4378 cpuset_memory_pressure_bump(); 4379 fs_reclaim_acquire(gfp_mask); 4380 noreclaim_flag = memalloc_noreclaim_save(); 4381 4382 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4383 ac->nodemask); 4384 4385 memalloc_noreclaim_restore(noreclaim_flag); 4386 fs_reclaim_release(gfp_mask); 4387 4388 cond_resched(); 4389 4390 return progress; 4391 } 4392 4393 /* The really slow allocator path where we enter direct reclaim */ 4394 static inline struct page * 4395 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4396 unsigned int alloc_flags, const struct alloc_context *ac, 4397 unsigned long *did_some_progress) 4398 { 4399 struct page *page = NULL; 4400 unsigned long pflags; 4401 bool drained = false; 4402 4403 psi_memstall_enter(&pflags); 4404 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4405 if (unlikely(!(*did_some_progress))) 4406 goto out; 4407 4408 retry: 4409 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4410 4411 /* 4412 * If an allocation failed after direct reclaim, it could be because 4413 * pages are pinned on the per-cpu lists or in high alloc reserves. 4414 * Shrink them and try again 4415 */ 4416 if (!page && !drained) { 4417 unreserve_highatomic_pageblock(ac, false); 4418 drain_all_pages(NULL); 4419 drained = true; 4420 goto retry; 4421 } 4422 out: 4423 psi_memstall_leave(&pflags); 4424 4425 return page; 4426 } 4427 4428 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4429 const struct alloc_context *ac) 4430 { 4431 struct zoneref *z; 4432 struct zone *zone; 4433 pg_data_t *last_pgdat = NULL; 4434 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4435 unsigned int reclaim_order; 4436 4437 if (defrag_mode) 4438 reclaim_order = max(order, pageblock_order); 4439 else 4440 reclaim_order = order; 4441 4442 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4443 ac->nodemask) { 4444 if (!managed_zone(zone)) 4445 continue; 4446 if (last_pgdat == zone->zone_pgdat) 4447 continue; 4448 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); 4449 last_pgdat = zone->zone_pgdat; 4450 } 4451 } 4452 4453 static inline unsigned int 4454 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4455 { 4456 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4457 4458 /* 4459 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4460 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4461 * to save two branches. 4462 */ 4463 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4464 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4465 4466 /* 4467 * The caller may dip into page reserves a bit more if the caller 4468 * cannot run direct reclaim, or if the caller has realtime scheduling 4469 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4470 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4471 */ 4472 alloc_flags |= (__force int) 4473 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4474 4475 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4476 /* 4477 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4478 * if it can't schedule. 4479 */ 4480 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4481 alloc_flags |= ALLOC_NON_BLOCK; 4482 4483 if (order > 0 && (alloc_flags & ALLOC_MIN_RESERVE)) 4484 alloc_flags |= ALLOC_HIGHATOMIC; 4485 } 4486 4487 /* 4488 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4489 * GFP_ATOMIC) rather than fail, see the comment for 4490 * cpuset_current_node_allowed(). 4491 */ 4492 if (alloc_flags & ALLOC_MIN_RESERVE) 4493 alloc_flags &= ~ALLOC_CPUSET; 4494 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4495 alloc_flags |= ALLOC_MIN_RESERVE; 4496 4497 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4498 4499 if (defrag_mode) 4500 alloc_flags |= ALLOC_NOFRAGMENT; 4501 4502 return alloc_flags; 4503 } 4504 4505 static bool oom_reserves_allowed(struct task_struct *tsk) 4506 { 4507 if (!tsk_is_oom_victim(tsk)) 4508 return false; 4509 4510 /* 4511 * !MMU doesn't have oom reaper so give access to memory reserves 4512 * only to the thread with TIF_MEMDIE set 4513 */ 4514 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4515 return false; 4516 4517 return true; 4518 } 4519 4520 /* 4521 * Distinguish requests which really need access to full memory 4522 * reserves from oom victims which can live with a portion of it 4523 */ 4524 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4525 { 4526 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4527 return 0; 4528 if (gfp_mask & __GFP_MEMALLOC) 4529 return ALLOC_NO_WATERMARKS; 4530 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4531 return ALLOC_NO_WATERMARKS; 4532 if (!in_interrupt()) { 4533 if (current->flags & PF_MEMALLOC) 4534 return ALLOC_NO_WATERMARKS; 4535 else if (oom_reserves_allowed(current)) 4536 return ALLOC_OOM; 4537 } 4538 4539 return 0; 4540 } 4541 4542 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4543 { 4544 return !!__gfp_pfmemalloc_flags(gfp_mask); 4545 } 4546 4547 /* 4548 * Checks whether it makes sense to retry the reclaim to make a forward progress 4549 * for the given allocation request. 4550 * 4551 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4552 * without success, or when we couldn't even meet the watermark if we 4553 * reclaimed all remaining pages on the LRU lists. 4554 * 4555 * Returns true if a retry is viable or false to enter the oom path. 4556 */ 4557 static inline bool 4558 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4559 struct alloc_context *ac, int alloc_flags, 4560 bool did_some_progress, int *no_progress_loops) 4561 { 4562 struct zone *zone; 4563 struct zoneref *z; 4564 bool ret = false; 4565 4566 /* 4567 * Costly allocations might have made a progress but this doesn't mean 4568 * their order will become available due to high fragmentation so 4569 * always increment the no progress counter for them 4570 */ 4571 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4572 *no_progress_loops = 0; 4573 else 4574 (*no_progress_loops)++; 4575 4576 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4577 goto out; 4578 4579 4580 /* 4581 * Keep reclaiming pages while there is a chance this will lead 4582 * somewhere. If none of the target zones can satisfy our allocation 4583 * request even if all reclaimable pages are considered then we are 4584 * screwed and have to go OOM. 4585 */ 4586 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4587 ac->highest_zoneidx, ac->nodemask) { 4588 unsigned long available; 4589 unsigned long reclaimable; 4590 unsigned long min_wmark = min_wmark_pages(zone); 4591 bool wmark; 4592 4593 if (cpusets_enabled() && 4594 (alloc_flags & ALLOC_CPUSET) && 4595 !__cpuset_zone_allowed(zone, gfp_mask)) 4596 continue; 4597 4598 available = reclaimable = zone_reclaimable_pages(zone); 4599 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4600 4601 /* 4602 * Would the allocation succeed if we reclaimed all 4603 * reclaimable pages? 4604 */ 4605 wmark = __zone_watermark_ok(zone, order, min_wmark, 4606 ac->highest_zoneidx, alloc_flags, available); 4607 trace_reclaim_retry_zone(z, order, reclaimable, 4608 available, min_wmark, *no_progress_loops, wmark); 4609 if (wmark) { 4610 ret = true; 4611 break; 4612 } 4613 } 4614 4615 /* 4616 * Memory allocation/reclaim might be called from a WQ context and the 4617 * current implementation of the WQ concurrency control doesn't 4618 * recognize that a particular WQ is congested if the worker thread is 4619 * looping without ever sleeping. Therefore we have to do a short sleep 4620 * here rather than calling cond_resched(). 4621 */ 4622 if (current->flags & PF_WQ_WORKER) 4623 schedule_timeout_uninterruptible(1); 4624 else 4625 cond_resched(); 4626 out: 4627 /* Before OOM, exhaust highatomic_reserve */ 4628 if (!ret) 4629 return unreserve_highatomic_pageblock(ac, true); 4630 4631 return ret; 4632 } 4633 4634 static inline bool 4635 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4636 { 4637 /* 4638 * It's possible that cpuset's mems_allowed and the nodemask from 4639 * mempolicy don't intersect. This should be normally dealt with by 4640 * policy_nodemask(), but it's possible to race with cpuset update in 4641 * such a way the check therein was true, and then it became false 4642 * before we got our cpuset_mems_cookie here. 4643 * This assumes that for all allocations, ac->nodemask can come only 4644 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4645 * when it does not intersect with the cpuset restrictions) or the 4646 * caller can deal with a violated nodemask. 4647 */ 4648 if (cpusets_enabled() && ac->nodemask && 4649 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4650 ac->nodemask = NULL; 4651 return true; 4652 } 4653 4654 /* 4655 * When updating a task's mems_allowed or mempolicy nodemask, it is 4656 * possible to race with parallel threads in such a way that our 4657 * allocation can fail while the mask is being updated. If we are about 4658 * to fail, check if the cpuset changed during allocation and if so, 4659 * retry. 4660 */ 4661 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4662 return true; 4663 4664 return false; 4665 } 4666 4667 static inline struct page * 4668 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4669 struct alloc_context *ac) 4670 { 4671 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4672 bool can_compact = gfp_compaction_allowed(gfp_mask); 4673 bool nofail = gfp_mask & __GFP_NOFAIL; 4674 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4675 struct page *page = NULL; 4676 unsigned int alloc_flags; 4677 unsigned long did_some_progress; 4678 enum compact_priority compact_priority; 4679 enum compact_result compact_result; 4680 int compaction_retries; 4681 int no_progress_loops; 4682 unsigned int cpuset_mems_cookie; 4683 unsigned int zonelist_iter_cookie; 4684 int reserve_flags; 4685 4686 if (unlikely(nofail)) { 4687 /* 4688 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4689 * otherwise, we may result in lockup. 4690 */ 4691 WARN_ON_ONCE(!can_direct_reclaim); 4692 /* 4693 * PF_MEMALLOC request from this context is rather bizarre 4694 * because we cannot reclaim anything and only can loop waiting 4695 * for somebody to do a work for us. 4696 */ 4697 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4698 } 4699 4700 restart: 4701 compaction_retries = 0; 4702 no_progress_loops = 0; 4703 compact_result = COMPACT_SKIPPED; 4704 compact_priority = DEF_COMPACT_PRIORITY; 4705 cpuset_mems_cookie = read_mems_allowed_begin(); 4706 zonelist_iter_cookie = zonelist_iter_begin(); 4707 4708 /* 4709 * The fast path uses conservative alloc_flags to succeed only until 4710 * kswapd needs to be woken up, and to avoid the cost of setting up 4711 * alloc_flags precisely. So we do that now. 4712 */ 4713 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4714 4715 /* 4716 * We need to recalculate the starting point for the zonelist iterator 4717 * because we might have used different nodemask in the fast path, or 4718 * there was a cpuset modification and we are retrying - otherwise we 4719 * could end up iterating over non-eligible zones endlessly. 4720 */ 4721 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4722 ac->highest_zoneidx, ac->nodemask); 4723 if (!zonelist_zone(ac->preferred_zoneref)) 4724 goto nopage; 4725 4726 /* 4727 * Check for insane configurations where the cpuset doesn't contain 4728 * any suitable zone to satisfy the request - e.g. non-movable 4729 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4730 */ 4731 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4732 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4733 ac->highest_zoneidx, 4734 &cpuset_current_mems_allowed); 4735 if (!zonelist_zone(z)) 4736 goto nopage; 4737 } 4738 4739 if (alloc_flags & ALLOC_KSWAPD) 4740 wake_all_kswapds(order, gfp_mask, ac); 4741 4742 /* 4743 * The adjusted alloc_flags might result in immediate success, so try 4744 * that first 4745 */ 4746 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4747 if (page) 4748 goto got_pg; 4749 4750 /* 4751 * For costly allocations, try direct compaction first, as it's likely 4752 * that we have enough base pages and don't need to reclaim. For non- 4753 * movable high-order allocations, do that as well, as compaction will 4754 * try prevent permanent fragmentation by migrating from blocks of the 4755 * same migratetype. 4756 * Don't try this for allocations that are allowed to ignore 4757 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4758 */ 4759 if (can_direct_reclaim && can_compact && 4760 (costly_order || 4761 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4762 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4763 page = __alloc_pages_direct_compact(gfp_mask, order, 4764 alloc_flags, ac, 4765 INIT_COMPACT_PRIORITY, 4766 &compact_result); 4767 if (page) 4768 goto got_pg; 4769 4770 /* 4771 * Checks for costly allocations with __GFP_NORETRY, which 4772 * includes some THP page fault allocations 4773 */ 4774 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4775 /* 4776 * If allocating entire pageblock(s) and compaction 4777 * failed because all zones are below low watermarks 4778 * or is prohibited because it recently failed at this 4779 * order, fail immediately unless the allocator has 4780 * requested compaction and reclaim retry. 4781 * 4782 * Reclaim is 4783 * - potentially very expensive because zones are far 4784 * below their low watermarks or this is part of very 4785 * bursty high order allocations, 4786 * - not guaranteed to help because isolate_freepages() 4787 * may not iterate over freed pages as part of its 4788 * linear scan, and 4789 * - unlikely to make entire pageblocks free on its 4790 * own. 4791 */ 4792 if (compact_result == COMPACT_SKIPPED || 4793 compact_result == COMPACT_DEFERRED) 4794 goto nopage; 4795 4796 /* 4797 * Looks like reclaim/compaction is worth trying, but 4798 * sync compaction could be very expensive, so keep 4799 * using async compaction. 4800 */ 4801 compact_priority = INIT_COMPACT_PRIORITY; 4802 } 4803 } 4804 4805 retry: 4806 /* 4807 * Deal with possible cpuset update races or zonelist updates to avoid 4808 * infinite retries. 4809 */ 4810 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4811 check_retry_zonelist(zonelist_iter_cookie)) 4812 goto restart; 4813 4814 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4815 if (alloc_flags & ALLOC_KSWAPD) 4816 wake_all_kswapds(order, gfp_mask, ac); 4817 4818 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4819 if (reserve_flags) 4820 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4821 (alloc_flags & ALLOC_KSWAPD); 4822 4823 /* 4824 * Reset the nodemask and zonelist iterators if memory policies can be 4825 * ignored. These allocations are high priority and system rather than 4826 * user oriented. 4827 */ 4828 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4829 ac->nodemask = NULL; 4830 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4831 ac->highest_zoneidx, ac->nodemask); 4832 } 4833 4834 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4835 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4836 if (page) 4837 goto got_pg; 4838 4839 /* Caller is not willing to reclaim, we can't balance anything */ 4840 if (!can_direct_reclaim) 4841 goto nopage; 4842 4843 /* Avoid recursion of direct reclaim */ 4844 if (current->flags & PF_MEMALLOC) 4845 goto nopage; 4846 4847 /* Try direct reclaim and then allocating */ 4848 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4849 &did_some_progress); 4850 if (page) 4851 goto got_pg; 4852 4853 /* Try direct compaction and then allocating */ 4854 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4855 compact_priority, &compact_result); 4856 if (page) 4857 goto got_pg; 4858 4859 /* Do not loop if specifically requested */ 4860 if (gfp_mask & __GFP_NORETRY) 4861 goto nopage; 4862 4863 /* 4864 * Do not retry costly high order allocations unless they are 4865 * __GFP_RETRY_MAYFAIL and we can compact 4866 */ 4867 if (costly_order && (!can_compact || 4868 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4869 goto nopage; 4870 4871 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4872 did_some_progress > 0, &no_progress_loops)) 4873 goto retry; 4874 4875 /* 4876 * It doesn't make any sense to retry for the compaction if the order-0 4877 * reclaim is not able to make any progress because the current 4878 * implementation of the compaction depends on the sufficient amount 4879 * of free memory (see __compaction_suitable) 4880 */ 4881 if (did_some_progress > 0 && can_compact && 4882 should_compact_retry(ac, order, alloc_flags, 4883 compact_result, &compact_priority, 4884 &compaction_retries)) 4885 goto retry; 4886 4887 /* Reclaim/compaction failed to prevent the fallback */ 4888 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { 4889 alloc_flags &= ~ALLOC_NOFRAGMENT; 4890 goto retry; 4891 } 4892 4893 /* 4894 * Deal with possible cpuset update races or zonelist updates to avoid 4895 * a unnecessary OOM kill. 4896 */ 4897 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4898 check_retry_zonelist(zonelist_iter_cookie)) 4899 goto restart; 4900 4901 /* Reclaim has failed us, start killing things */ 4902 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4903 if (page) 4904 goto got_pg; 4905 4906 /* Avoid allocations with no watermarks from looping endlessly */ 4907 if (tsk_is_oom_victim(current) && 4908 (alloc_flags & ALLOC_OOM || 4909 (gfp_mask & __GFP_NOMEMALLOC))) 4910 goto nopage; 4911 4912 /* Retry as long as the OOM killer is making progress */ 4913 if (did_some_progress) { 4914 no_progress_loops = 0; 4915 goto retry; 4916 } 4917 4918 nopage: 4919 /* 4920 * Deal with possible cpuset update races or zonelist updates to avoid 4921 * a unnecessary OOM kill. 4922 */ 4923 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4924 check_retry_zonelist(zonelist_iter_cookie)) 4925 goto restart; 4926 4927 /* 4928 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4929 * we always retry 4930 */ 4931 if (unlikely(nofail)) { 4932 /* 4933 * Lacking direct_reclaim we can't do anything to reclaim memory, 4934 * we disregard these unreasonable nofail requests and still 4935 * return NULL 4936 */ 4937 if (!can_direct_reclaim) 4938 goto fail; 4939 4940 /* 4941 * Help non-failing allocations by giving some access to memory 4942 * reserves normally used for high priority non-blocking 4943 * allocations but do not use ALLOC_NO_WATERMARKS because this 4944 * could deplete whole memory reserves which would just make 4945 * the situation worse. 4946 */ 4947 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4948 if (page) 4949 goto got_pg; 4950 4951 cond_resched(); 4952 goto retry; 4953 } 4954 fail: 4955 warn_alloc(gfp_mask, ac->nodemask, 4956 "page allocation failure: order:%u", order); 4957 got_pg: 4958 return page; 4959 } 4960 4961 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4962 int preferred_nid, nodemask_t *nodemask, 4963 struct alloc_context *ac, gfp_t *alloc_gfp, 4964 unsigned int *alloc_flags) 4965 { 4966 ac->highest_zoneidx = gfp_zone(gfp_mask); 4967 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4968 ac->nodemask = nodemask; 4969 ac->migratetype = gfp_migratetype(gfp_mask); 4970 4971 if (cpusets_enabled()) { 4972 *alloc_gfp |= __GFP_HARDWALL; 4973 /* 4974 * When we are in the interrupt context, it is irrelevant 4975 * to the current task context. It means that any node ok. 4976 */ 4977 if (in_task() && !ac->nodemask) 4978 ac->nodemask = &cpuset_current_mems_allowed; 4979 else 4980 *alloc_flags |= ALLOC_CPUSET; 4981 } 4982 4983 might_alloc(gfp_mask); 4984 4985 /* 4986 * Don't invoke should_fail logic, since it may call 4987 * get_random_u32() and printk() which need to spin_lock. 4988 */ 4989 if (!(*alloc_flags & ALLOC_TRYLOCK) && 4990 should_fail_alloc_page(gfp_mask, order)) 4991 return false; 4992 4993 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4994 4995 /* Dirty zone balancing only done in the fast path */ 4996 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4997 4998 /* 4999 * The preferred zone is used for statistics but crucially it is 5000 * also used as the starting point for the zonelist iterator. It 5001 * may get reset for allocations that ignore memory policies. 5002 */ 5003 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5004 ac->highest_zoneidx, ac->nodemask); 5005 5006 return true; 5007 } 5008 5009 /* 5010 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 5011 * @gfp: GFP flags for the allocation 5012 * @preferred_nid: The preferred NUMA node ID to allocate from 5013 * @nodemask: Set of nodes to allocate from, may be NULL 5014 * @nr_pages: The number of pages desired in the array 5015 * @page_array: Array to store the pages 5016 * 5017 * This is a batched version of the page allocator that attempts to 5018 * allocate nr_pages quickly. Pages are added to the page_array. 5019 * 5020 * Note that only NULL elements are populated with pages and nr_pages 5021 * is the maximum number of pages that will be stored in the array. 5022 * 5023 * Returns the number of pages in the array. 5024 */ 5025 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 5026 nodemask_t *nodemask, int nr_pages, 5027 struct page **page_array) 5028 { 5029 struct page *page; 5030 unsigned long UP_flags; 5031 struct zone *zone; 5032 struct zoneref *z; 5033 struct per_cpu_pages *pcp; 5034 struct list_head *pcp_list; 5035 struct alloc_context ac; 5036 gfp_t alloc_gfp; 5037 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5038 int nr_populated = 0, nr_account = 0; 5039 5040 /* 5041 * Skip populated array elements to determine if any pages need 5042 * to be allocated before disabling IRQs. 5043 */ 5044 while (nr_populated < nr_pages && page_array[nr_populated]) 5045 nr_populated++; 5046 5047 /* No pages requested? */ 5048 if (unlikely(nr_pages <= 0)) 5049 goto out; 5050 5051 /* Already populated array? */ 5052 if (unlikely(nr_pages - nr_populated == 0)) 5053 goto out; 5054 5055 /* Bulk allocator does not support memcg accounting. */ 5056 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 5057 goto failed; 5058 5059 /* Use the single page allocator for one page. */ 5060 if (nr_pages - nr_populated == 1) 5061 goto failed; 5062 5063 #ifdef CONFIG_PAGE_OWNER 5064 /* 5065 * PAGE_OWNER may recurse into the allocator to allocate space to 5066 * save the stack with pagesets.lock held. Releasing/reacquiring 5067 * removes much of the performance benefit of bulk allocation so 5068 * force the caller to allocate one page at a time as it'll have 5069 * similar performance to added complexity to the bulk allocator. 5070 */ 5071 if (static_branch_unlikely(&page_owner_inited)) 5072 goto failed; 5073 #endif 5074 5075 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5076 gfp &= gfp_allowed_mask; 5077 alloc_gfp = gfp; 5078 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5079 goto out; 5080 gfp = alloc_gfp; 5081 5082 /* Find an allowed local zone that meets the low watermark. */ 5083 z = ac.preferred_zoneref; 5084 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 5085 unsigned long mark; 5086 5087 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5088 !__cpuset_zone_allowed(zone, gfp)) { 5089 continue; 5090 } 5091 5092 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 5093 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 5094 goto failed; 5095 } 5096 5097 cond_accept_memory(zone, 0, alloc_flags); 5098 retry_this_zone: 5099 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5100 if (zone_watermark_fast(zone, 0, mark, 5101 zonelist_zone_idx(ac.preferred_zoneref), 5102 alloc_flags, gfp)) { 5103 break; 5104 } 5105 5106 if (cond_accept_memory(zone, 0, alloc_flags)) 5107 goto retry_this_zone; 5108 5109 /* Try again if zone has deferred pages */ 5110 if (deferred_pages_enabled()) { 5111 if (_deferred_grow_zone(zone, 0)) 5112 goto retry_this_zone; 5113 } 5114 } 5115 5116 /* 5117 * If there are no allowed local zones that meets the watermarks then 5118 * try to allocate a single page and reclaim if necessary. 5119 */ 5120 if (unlikely(!zone)) 5121 goto failed; 5122 5123 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 5124 pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags); 5125 if (!pcp) 5126 goto failed; 5127 5128 /* Attempt the batch allocation */ 5129 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5130 while (nr_populated < nr_pages) { 5131 5132 /* Skip existing pages */ 5133 if (page_array[nr_populated]) { 5134 nr_populated++; 5135 continue; 5136 } 5137 5138 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5139 pcp, pcp_list); 5140 if (unlikely(!page)) { 5141 /* Try and allocate at least one page */ 5142 if (!nr_account) { 5143 pcp_spin_unlock(pcp, UP_flags); 5144 goto failed; 5145 } 5146 break; 5147 } 5148 nr_account++; 5149 5150 prep_new_page(page, 0, gfp, 0); 5151 set_page_refcounted(page); 5152 page_array[nr_populated++] = page; 5153 } 5154 5155 pcp_spin_unlock(pcp, UP_flags); 5156 5157 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5158 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 5159 5160 out: 5161 return nr_populated; 5162 5163 failed: 5164 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 5165 if (page) 5166 page_array[nr_populated++] = page; 5167 goto out; 5168 } 5169 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 5170 5171 /* 5172 * This is the 'heart' of the zoned buddy allocator. 5173 */ 5174 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 5175 int preferred_nid, nodemask_t *nodemask) 5176 { 5177 struct page *page; 5178 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5179 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5180 struct alloc_context ac = { }; 5181 5182 /* 5183 * There are several places where we assume that the order value is sane 5184 * so bail out early if the request is out of bound. 5185 */ 5186 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 5187 return NULL; 5188 5189 gfp &= gfp_allowed_mask; 5190 /* 5191 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5192 * resp. GFP_NOIO which has to be inherited for all allocation requests 5193 * from a particular context which has been marked by 5194 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5195 * movable zones are not used during allocation. 5196 */ 5197 gfp = current_gfp_context(gfp); 5198 alloc_gfp = gfp; 5199 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5200 &alloc_gfp, &alloc_flags)) 5201 return NULL; 5202 5203 /* 5204 * Forbid the first pass from falling back to types that fragment 5205 * memory until all local zones are considered. 5206 */ 5207 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 5208 5209 /* First allocation attempt */ 5210 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5211 if (likely(page)) 5212 goto out; 5213 5214 alloc_gfp = gfp; 5215 ac.spread_dirty_pages = false; 5216 5217 /* 5218 * Restore the original nodemask if it was potentially replaced with 5219 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5220 */ 5221 ac.nodemask = nodemask; 5222 5223 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5224 5225 out: 5226 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 5227 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5228 free_frozen_pages(page, order); 5229 page = NULL; 5230 } 5231 5232 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5233 kmsan_alloc_page(page, order, alloc_gfp); 5234 5235 return page; 5236 } 5237 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 5238 5239 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 5240 int preferred_nid, nodemask_t *nodemask) 5241 { 5242 struct page *page; 5243 5244 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 5245 if (page) 5246 set_page_refcounted(page); 5247 return page; 5248 } 5249 EXPORT_SYMBOL(__alloc_pages_noprof); 5250 5251 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 5252 nodemask_t *nodemask) 5253 { 5254 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 5255 preferred_nid, nodemask); 5256 return page_rmappable_folio(page); 5257 } 5258 EXPORT_SYMBOL(__folio_alloc_noprof); 5259 5260 /* 5261 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5262 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5263 * you need to access high mem. 5264 */ 5265 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 5266 { 5267 struct page *page; 5268 5269 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 5270 if (!page) 5271 return 0; 5272 return (unsigned long) page_address(page); 5273 } 5274 EXPORT_SYMBOL(get_free_pages_noprof); 5275 5276 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 5277 { 5278 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 5279 } 5280 EXPORT_SYMBOL(get_zeroed_page_noprof); 5281 5282 static void ___free_pages(struct page *page, unsigned int order, 5283 fpi_t fpi_flags) 5284 { 5285 /* get PageHead before we drop reference */ 5286 int head = PageHead(page); 5287 /* get alloc tag in case the page is released by others */ 5288 struct alloc_tag *tag = pgalloc_tag_get(page); 5289 5290 if (put_page_testzero(page)) 5291 __free_frozen_pages(page, order, fpi_flags); 5292 else if (!head) { 5293 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 5294 while (order-- > 0) { 5295 /* 5296 * The "tail" pages of this non-compound high-order 5297 * page will have no code tags, so to avoid warnings 5298 * mark them as empty. 5299 */ 5300 clear_page_tag_ref(page + (1 << order)); 5301 __free_frozen_pages(page + (1 << order), order, 5302 fpi_flags); 5303 } 5304 } 5305 } 5306 5307 /** 5308 * __free_pages - Free pages allocated with alloc_pages(). 5309 * @page: The page pointer returned from alloc_pages(). 5310 * @order: The order of the allocation. 5311 * 5312 * This function can free multi-page allocations that are not compound 5313 * pages. It does not check that the @order passed in matches that of 5314 * the allocation, so it is easy to leak memory. Freeing more memory 5315 * than was allocated will probably emit a warning. 5316 * 5317 * If the last reference to this page is speculative, it will be released 5318 * by put_page() which only frees the first page of a non-compound 5319 * allocation. To prevent the remaining pages from being leaked, we free 5320 * the subsequent pages here. If you want to use the page's reference 5321 * count to decide when to free the allocation, you should allocate a 5322 * compound page, and use put_page() instead of __free_pages(). 5323 * 5324 * Context: May be called in interrupt context or while holding a normal 5325 * spinlock, but not in NMI context or while holding a raw spinlock. 5326 */ 5327 void __free_pages(struct page *page, unsigned int order) 5328 { 5329 ___free_pages(page, order, FPI_NONE); 5330 } 5331 EXPORT_SYMBOL(__free_pages); 5332 5333 /* 5334 * Can be called while holding raw_spin_lock or from IRQ and NMI for any 5335 * page type (not only those that came from alloc_pages_nolock) 5336 */ 5337 void free_pages_nolock(struct page *page, unsigned int order) 5338 { 5339 ___free_pages(page, order, FPI_TRYLOCK); 5340 } 5341 5342 /** 5343 * free_pages - Free pages allocated with __get_free_pages(). 5344 * @addr: The virtual address tied to a page returned from __get_free_pages(). 5345 * @order: The order of the allocation. 5346 * 5347 * This function behaves the same as __free_pages(). Use this function 5348 * to free pages when you only have a valid virtual address. If you have 5349 * the page, call __free_pages() instead. 5350 */ 5351 void free_pages(unsigned long addr, unsigned int order) 5352 { 5353 if (addr != 0) { 5354 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5355 __free_pages(virt_to_page((void *)addr), order); 5356 } 5357 } 5358 5359 EXPORT_SYMBOL(free_pages); 5360 5361 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5362 size_t size) 5363 { 5364 if (addr) { 5365 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5366 struct page *page = virt_to_page((void *)addr); 5367 struct page *last = page + nr; 5368 5369 split_page_owner(page, order, 0); 5370 pgalloc_tag_split(page_folio(page), order, 0); 5371 split_page_memcg(page, order); 5372 while (page < --last) 5373 set_page_refcounted(last); 5374 5375 last = page + (1UL << order); 5376 for (page += nr; page < last; page++) 5377 __free_pages_ok(page, 0, FPI_TO_TAIL); 5378 } 5379 return (void *)addr; 5380 } 5381 5382 /** 5383 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5384 * @size: the number of bytes to allocate 5385 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5386 * 5387 * This function is similar to alloc_pages(), except that it allocates the 5388 * minimum number of pages to satisfy the request. alloc_pages() can only 5389 * allocate memory in power-of-two pages. 5390 * 5391 * This function is also limited by MAX_PAGE_ORDER. 5392 * 5393 * Memory allocated by this function must be released by free_pages_exact(). 5394 * 5395 * Return: pointer to the allocated area or %NULL in case of error. 5396 */ 5397 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5398 { 5399 unsigned int order = get_order(size); 5400 unsigned long addr; 5401 5402 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5403 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5404 5405 addr = get_free_pages_noprof(gfp_mask, order); 5406 return make_alloc_exact(addr, order, size); 5407 } 5408 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5409 5410 /** 5411 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5412 * pages on a node. 5413 * @nid: the preferred node ID where memory should be allocated 5414 * @size: the number of bytes to allocate 5415 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5416 * 5417 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5418 * back. 5419 * 5420 * Return: pointer to the allocated area or %NULL in case of error. 5421 */ 5422 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5423 { 5424 unsigned int order = get_order(size); 5425 struct page *p; 5426 5427 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5428 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5429 5430 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5431 if (!p) 5432 return NULL; 5433 return make_alloc_exact((unsigned long)page_address(p), order, size); 5434 } 5435 5436 /** 5437 * free_pages_exact - release memory allocated via alloc_pages_exact() 5438 * @virt: the value returned by alloc_pages_exact. 5439 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5440 * 5441 * Release the memory allocated by a previous call to alloc_pages_exact. 5442 */ 5443 void free_pages_exact(void *virt, size_t size) 5444 { 5445 unsigned long addr = (unsigned long)virt; 5446 unsigned long end = addr + PAGE_ALIGN(size); 5447 5448 while (addr < end) { 5449 free_page(addr); 5450 addr += PAGE_SIZE; 5451 } 5452 } 5453 EXPORT_SYMBOL(free_pages_exact); 5454 5455 /** 5456 * nr_free_zone_pages - count number of pages beyond high watermark 5457 * @offset: The zone index of the highest zone 5458 * 5459 * nr_free_zone_pages() counts the number of pages which are beyond the 5460 * high watermark within all zones at or below a given zone index. For each 5461 * zone, the number of pages is calculated as: 5462 * 5463 * nr_free_zone_pages = managed_pages - high_pages 5464 * 5465 * Return: number of pages beyond high watermark. 5466 */ 5467 static unsigned long nr_free_zone_pages(int offset) 5468 { 5469 struct zoneref *z; 5470 struct zone *zone; 5471 5472 /* Just pick one node, since fallback list is circular */ 5473 unsigned long sum = 0; 5474 5475 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5476 5477 for_each_zone_zonelist(zone, z, zonelist, offset) { 5478 unsigned long size = zone_managed_pages(zone); 5479 unsigned long high = high_wmark_pages(zone); 5480 if (size > high) 5481 sum += size - high; 5482 } 5483 5484 return sum; 5485 } 5486 5487 /** 5488 * nr_free_buffer_pages - count number of pages beyond high watermark 5489 * 5490 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5491 * watermark within ZONE_DMA and ZONE_NORMAL. 5492 * 5493 * Return: number of pages beyond high watermark within ZONE_DMA and 5494 * ZONE_NORMAL. 5495 */ 5496 unsigned long nr_free_buffer_pages(void) 5497 { 5498 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5499 } 5500 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5501 5502 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5503 { 5504 zoneref->zone = zone; 5505 zoneref->zone_idx = zone_idx(zone); 5506 } 5507 5508 /* 5509 * Builds allocation fallback zone lists. 5510 * 5511 * Add all populated zones of a node to the zonelist. 5512 */ 5513 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5514 { 5515 struct zone *zone; 5516 enum zone_type zone_type = MAX_NR_ZONES; 5517 int nr_zones = 0; 5518 5519 do { 5520 zone_type--; 5521 zone = pgdat->node_zones + zone_type; 5522 if (populated_zone(zone)) { 5523 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5524 check_highest_zone(zone_type); 5525 } 5526 } while (zone_type); 5527 5528 return nr_zones; 5529 } 5530 5531 #ifdef CONFIG_NUMA 5532 5533 static int __parse_numa_zonelist_order(char *s) 5534 { 5535 /* 5536 * We used to support different zonelists modes but they turned 5537 * out to be just not useful. Let's keep the warning in place 5538 * if somebody still use the cmd line parameter so that we do 5539 * not fail it silently 5540 */ 5541 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5542 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5543 return -EINVAL; 5544 } 5545 return 0; 5546 } 5547 5548 static char numa_zonelist_order[] = "Node"; 5549 #define NUMA_ZONELIST_ORDER_LEN 16 5550 /* 5551 * sysctl handler for numa_zonelist_order 5552 */ 5553 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5554 void *buffer, size_t *length, loff_t *ppos) 5555 { 5556 if (write) 5557 return __parse_numa_zonelist_order(buffer); 5558 return proc_dostring(table, write, buffer, length, ppos); 5559 } 5560 5561 static int node_load[MAX_NUMNODES]; 5562 5563 /** 5564 * find_next_best_node - find the next node that should appear in a given node's fallback list 5565 * @node: node whose fallback list we're appending 5566 * @used_node_mask: nodemask_t of already used nodes 5567 * 5568 * We use a number of factors to determine which is the next node that should 5569 * appear on a given node's fallback list. The node should not have appeared 5570 * already in @node's fallback list, and it should be the next closest node 5571 * according to the distance array (which contains arbitrary distance values 5572 * from each node to each node in the system), and should also prefer nodes 5573 * with no CPUs, since presumably they'll have very little allocation pressure 5574 * on them otherwise. 5575 * 5576 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5577 */ 5578 int find_next_best_node(int node, nodemask_t *used_node_mask) 5579 { 5580 int n, val; 5581 int min_val = INT_MAX; 5582 int best_node = NUMA_NO_NODE; 5583 5584 /* 5585 * Use the local node if we haven't already, but for memoryless local 5586 * node, we should skip it and fall back to other nodes. 5587 */ 5588 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5589 node_set(node, *used_node_mask); 5590 return node; 5591 } 5592 5593 for_each_node_state(n, N_MEMORY) { 5594 5595 /* Don't want a node to appear more than once */ 5596 if (node_isset(n, *used_node_mask)) 5597 continue; 5598 5599 /* Use the distance array to find the distance */ 5600 val = node_distance(node, n); 5601 5602 /* Penalize nodes under us ("prefer the next node") */ 5603 val += (n < node); 5604 5605 /* Give preference to headless and unused nodes */ 5606 if (!cpumask_empty(cpumask_of_node(n))) 5607 val += PENALTY_FOR_NODE_WITH_CPUS; 5608 5609 /* Slight preference for less loaded node */ 5610 val *= MAX_NUMNODES; 5611 val += node_load[n]; 5612 5613 if (val < min_val) { 5614 min_val = val; 5615 best_node = n; 5616 } 5617 } 5618 5619 if (best_node >= 0) 5620 node_set(best_node, *used_node_mask); 5621 5622 return best_node; 5623 } 5624 5625 5626 /* 5627 * Build zonelists ordered by node and zones within node. 5628 * This results in maximum locality--normal zone overflows into local 5629 * DMA zone, if any--but risks exhausting DMA zone. 5630 */ 5631 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5632 unsigned nr_nodes) 5633 { 5634 struct zoneref *zonerefs; 5635 int i; 5636 5637 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5638 5639 for (i = 0; i < nr_nodes; i++) { 5640 int nr_zones; 5641 5642 pg_data_t *node = NODE_DATA(node_order[i]); 5643 5644 nr_zones = build_zonerefs_node(node, zonerefs); 5645 zonerefs += nr_zones; 5646 } 5647 zonerefs->zone = NULL; 5648 zonerefs->zone_idx = 0; 5649 } 5650 5651 /* 5652 * Build __GFP_THISNODE zonelists 5653 */ 5654 static void build_thisnode_zonelists(pg_data_t *pgdat) 5655 { 5656 struct zoneref *zonerefs; 5657 int nr_zones; 5658 5659 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5660 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5661 zonerefs += nr_zones; 5662 zonerefs->zone = NULL; 5663 zonerefs->zone_idx = 0; 5664 } 5665 5666 static void build_zonelists(pg_data_t *pgdat) 5667 { 5668 static int node_order[MAX_NUMNODES]; 5669 int node, nr_nodes = 0; 5670 nodemask_t used_mask = NODE_MASK_NONE; 5671 int local_node, prev_node; 5672 5673 /* NUMA-aware ordering of nodes */ 5674 local_node = pgdat->node_id; 5675 prev_node = local_node; 5676 5677 memset(node_order, 0, sizeof(node_order)); 5678 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5679 /* 5680 * We don't want to pressure a particular node. 5681 * So adding penalty to the first node in same 5682 * distance group to make it round-robin. 5683 */ 5684 if (node_distance(local_node, node) != 5685 node_distance(local_node, prev_node)) 5686 node_load[node] += 1; 5687 5688 node_order[nr_nodes++] = node; 5689 prev_node = node; 5690 } 5691 5692 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5693 build_thisnode_zonelists(pgdat); 5694 pr_info("Fallback order for Node %d: ", local_node); 5695 for (node = 0; node < nr_nodes; node++) 5696 pr_cont("%d ", node_order[node]); 5697 pr_cont("\n"); 5698 } 5699 5700 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5701 /* 5702 * Return node id of node used for "local" allocations. 5703 * I.e., first node id of first zone in arg node's generic zonelist. 5704 * Used for initializing percpu 'numa_mem', which is used primarily 5705 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5706 */ 5707 int local_memory_node(int node) 5708 { 5709 struct zoneref *z; 5710 5711 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5712 gfp_zone(GFP_KERNEL), 5713 NULL); 5714 return zonelist_node_idx(z); 5715 } 5716 #endif 5717 5718 static void setup_min_unmapped_ratio(void); 5719 static void setup_min_slab_ratio(void); 5720 #else /* CONFIG_NUMA */ 5721 5722 static void build_zonelists(pg_data_t *pgdat) 5723 { 5724 struct zoneref *zonerefs; 5725 int nr_zones; 5726 5727 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5728 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5729 zonerefs += nr_zones; 5730 5731 zonerefs->zone = NULL; 5732 zonerefs->zone_idx = 0; 5733 } 5734 5735 #endif /* CONFIG_NUMA */ 5736 5737 /* 5738 * Boot pageset table. One per cpu which is going to be used for all 5739 * zones and all nodes. The parameters will be set in such a way 5740 * that an item put on a list will immediately be handed over to 5741 * the buddy list. This is safe since pageset manipulation is done 5742 * with interrupts disabled. 5743 * 5744 * The boot_pagesets must be kept even after bootup is complete for 5745 * unused processors and/or zones. They do play a role for bootstrapping 5746 * hotplugged processors. 5747 * 5748 * zoneinfo_show() and maybe other functions do 5749 * not check if the processor is online before following the pageset pointer. 5750 * Other parts of the kernel may not check if the zone is available. 5751 */ 5752 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5753 /* These effectively disable the pcplists in the boot pageset completely */ 5754 #define BOOT_PAGESET_HIGH 0 5755 #define BOOT_PAGESET_BATCH 1 5756 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5757 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5758 5759 static void __build_all_zonelists(void *data) 5760 { 5761 int nid; 5762 int __maybe_unused cpu; 5763 pg_data_t *self = data; 5764 unsigned long flags; 5765 5766 /* 5767 * The zonelist_update_seq must be acquired with irqsave because the 5768 * reader can be invoked from IRQ with GFP_ATOMIC. 5769 */ 5770 write_seqlock_irqsave(&zonelist_update_seq, flags); 5771 /* 5772 * Also disable synchronous printk() to prevent any printk() from 5773 * trying to hold port->lock, for 5774 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5775 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5776 */ 5777 printk_deferred_enter(); 5778 5779 #ifdef CONFIG_NUMA 5780 memset(node_load, 0, sizeof(node_load)); 5781 #endif 5782 5783 /* 5784 * This node is hotadded and no memory is yet present. So just 5785 * building zonelists is fine - no need to touch other nodes. 5786 */ 5787 if (self && !node_online(self->node_id)) { 5788 build_zonelists(self); 5789 } else { 5790 /* 5791 * All possible nodes have pgdat preallocated 5792 * in free_area_init 5793 */ 5794 for_each_node(nid) { 5795 pg_data_t *pgdat = NODE_DATA(nid); 5796 5797 build_zonelists(pgdat); 5798 } 5799 5800 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5801 /* 5802 * We now know the "local memory node" for each node-- 5803 * i.e., the node of the first zone in the generic zonelist. 5804 * Set up numa_mem percpu variable for on-line cpus. During 5805 * boot, only the boot cpu should be on-line; we'll init the 5806 * secondary cpus' numa_mem as they come on-line. During 5807 * node/memory hotplug, we'll fixup all on-line cpus. 5808 */ 5809 for_each_online_cpu(cpu) 5810 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5811 #endif 5812 } 5813 5814 printk_deferred_exit(); 5815 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5816 } 5817 5818 static noinline void __init 5819 build_all_zonelists_init(void) 5820 { 5821 int cpu; 5822 5823 __build_all_zonelists(NULL); 5824 5825 /* 5826 * Initialize the boot_pagesets that are going to be used 5827 * for bootstrapping processors. The real pagesets for 5828 * each zone will be allocated later when the per cpu 5829 * allocator is available. 5830 * 5831 * boot_pagesets are used also for bootstrapping offline 5832 * cpus if the system is already booted because the pagesets 5833 * are needed to initialize allocators on a specific cpu too. 5834 * F.e. the percpu allocator needs the page allocator which 5835 * needs the percpu allocator in order to allocate its pagesets 5836 * (a chicken-egg dilemma). 5837 */ 5838 for_each_possible_cpu(cpu) 5839 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5840 5841 mminit_verify_zonelist(); 5842 cpuset_init_current_mems_allowed(); 5843 } 5844 5845 /* 5846 * unless system_state == SYSTEM_BOOTING. 5847 * 5848 * __ref due to call of __init annotated helper build_all_zonelists_init 5849 * [protected by SYSTEM_BOOTING]. 5850 */ 5851 void __ref build_all_zonelists(pg_data_t *pgdat) 5852 { 5853 unsigned long vm_total_pages; 5854 5855 if (system_state == SYSTEM_BOOTING) { 5856 build_all_zonelists_init(); 5857 } else { 5858 __build_all_zonelists(pgdat); 5859 /* cpuset refresh routine should be here */ 5860 } 5861 /* Get the number of free pages beyond high watermark in all zones. */ 5862 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5863 /* 5864 * Disable grouping by mobility if the number of pages in the 5865 * system is too low to allow the mechanism to work. It would be 5866 * more accurate, but expensive to check per-zone. This check is 5867 * made on memory-hotadd so a system can start with mobility 5868 * disabled and enable it later 5869 */ 5870 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5871 page_group_by_mobility_disabled = 1; 5872 else 5873 page_group_by_mobility_disabled = 0; 5874 5875 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5876 nr_online_nodes, 5877 str_off_on(page_group_by_mobility_disabled), 5878 vm_total_pages); 5879 #ifdef CONFIG_NUMA 5880 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5881 #endif 5882 } 5883 5884 static int zone_batchsize(struct zone *zone) 5885 { 5886 #ifdef CONFIG_MMU 5887 int batch; 5888 5889 /* 5890 * The number of pages to batch allocate is either ~0.025% 5891 * of the zone or 256KB, whichever is smaller. The batch 5892 * size is striking a balance between allocation latency 5893 * and zone lock contention. 5894 */ 5895 batch = min(zone_managed_pages(zone) >> 12, SZ_256K / PAGE_SIZE); 5896 if (batch <= 1) 5897 return 1; 5898 5899 /* 5900 * Clamp the batch to a 2^n - 1 value. Having a power 5901 * of 2 value was found to be more likely to have 5902 * suboptimal cache aliasing properties in some cases. 5903 * 5904 * For example if 2 tasks are alternately allocating 5905 * batches of pages, one task can end up with a lot 5906 * of pages of one half of the possible page colors 5907 * and the other with pages of the other colors. 5908 */ 5909 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5910 5911 return batch; 5912 5913 #else 5914 /* The deferral and batching of frees should be suppressed under NOMMU 5915 * conditions. 5916 * 5917 * The problem is that NOMMU needs to be able to allocate large chunks 5918 * of contiguous memory as there's no hardware page translation to 5919 * assemble apparent contiguous memory from discontiguous pages. 5920 * 5921 * Queueing large contiguous runs of pages for batching, however, 5922 * causes the pages to actually be freed in smaller chunks. As there 5923 * can be a significant delay between the individual batches being 5924 * recycled, this leads to the once large chunks of space being 5925 * fragmented and becoming unavailable for high-order allocations. 5926 */ 5927 return 0; 5928 #endif 5929 } 5930 5931 static int percpu_pagelist_high_fraction; 5932 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5933 int high_fraction) 5934 { 5935 #ifdef CONFIG_MMU 5936 int high; 5937 int nr_split_cpus; 5938 unsigned long total_pages; 5939 5940 if (!high_fraction) { 5941 /* 5942 * By default, the high value of the pcp is based on the zone 5943 * low watermark so that if they are full then background 5944 * reclaim will not be started prematurely. 5945 */ 5946 total_pages = low_wmark_pages(zone); 5947 } else { 5948 /* 5949 * If percpu_pagelist_high_fraction is configured, the high 5950 * value is based on a fraction of the managed pages in the 5951 * zone. 5952 */ 5953 total_pages = zone_managed_pages(zone) / high_fraction; 5954 } 5955 5956 /* 5957 * Split the high value across all online CPUs local to the zone. Note 5958 * that early in boot that CPUs may not be online yet and that during 5959 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5960 * onlined. For memory nodes that have no CPUs, split the high value 5961 * across all online CPUs to mitigate the risk that reclaim is triggered 5962 * prematurely due to pages stored on pcp lists. 5963 */ 5964 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5965 if (!nr_split_cpus) 5966 nr_split_cpus = num_online_cpus(); 5967 high = total_pages / nr_split_cpus; 5968 5969 /* 5970 * Ensure high is at least batch*4. The multiple is based on the 5971 * historical relationship between high and batch. 5972 */ 5973 high = max(high, batch << 2); 5974 5975 return high; 5976 #else 5977 return 0; 5978 #endif 5979 } 5980 5981 /* 5982 * pcp->high and pcp->batch values are related and generally batch is lower 5983 * than high. They are also related to pcp->count such that count is lower 5984 * than high, and as soon as it reaches high, the pcplist is flushed. 5985 * 5986 * However, guaranteeing these relations at all times would require e.g. write 5987 * barriers here but also careful usage of read barriers at the read side, and 5988 * thus be prone to error and bad for performance. Thus the update only prevents 5989 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5990 * should ensure they can cope with those fields changing asynchronously, and 5991 * fully trust only the pcp->count field on the local CPU with interrupts 5992 * disabled. 5993 * 5994 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5995 * outside of boot time (or some other assurance that no concurrent updaters 5996 * exist). 5997 */ 5998 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5999 unsigned long high_max, unsigned long batch) 6000 { 6001 WRITE_ONCE(pcp->batch, batch); 6002 WRITE_ONCE(pcp->high_min, high_min); 6003 WRITE_ONCE(pcp->high_max, high_max); 6004 } 6005 6006 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6007 { 6008 int pindex; 6009 6010 memset(pcp, 0, sizeof(*pcp)); 6011 memset(pzstats, 0, sizeof(*pzstats)); 6012 6013 spin_lock_init(&pcp->lock); 6014 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6015 INIT_LIST_HEAD(&pcp->lists[pindex]); 6016 6017 /* 6018 * Set batch and high values safe for a boot pageset. A true percpu 6019 * pageset's initialization will update them subsequently. Here we don't 6020 * need to be as careful as pageset_update() as nobody can access the 6021 * pageset yet. 6022 */ 6023 pcp->high_min = BOOT_PAGESET_HIGH; 6024 pcp->high_max = BOOT_PAGESET_HIGH; 6025 pcp->batch = BOOT_PAGESET_BATCH; 6026 } 6027 6028 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 6029 unsigned long high_max, unsigned long batch) 6030 { 6031 struct per_cpu_pages *pcp; 6032 int cpu; 6033 6034 for_each_possible_cpu(cpu) { 6035 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6036 pageset_update(pcp, high_min, high_max, batch); 6037 } 6038 } 6039 6040 /* 6041 * Calculate and set new high and batch values for all per-cpu pagesets of a 6042 * zone based on the zone's size. 6043 */ 6044 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6045 { 6046 int new_high_min, new_high_max, new_batch; 6047 6048 new_batch = zone_batchsize(zone); 6049 if (percpu_pagelist_high_fraction) { 6050 new_high_min = zone_highsize(zone, new_batch, cpu_online, 6051 percpu_pagelist_high_fraction); 6052 /* 6053 * PCP high is tuned manually, disable auto-tuning via 6054 * setting high_min and high_max to the manual value. 6055 */ 6056 new_high_max = new_high_min; 6057 } else { 6058 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 6059 new_high_max = zone_highsize(zone, new_batch, cpu_online, 6060 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 6061 } 6062 6063 if (zone->pageset_high_min == new_high_min && 6064 zone->pageset_high_max == new_high_max && 6065 zone->pageset_batch == new_batch) 6066 return; 6067 6068 zone->pageset_high_min = new_high_min; 6069 zone->pageset_high_max = new_high_max; 6070 zone->pageset_batch = new_batch; 6071 6072 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 6073 new_batch); 6074 } 6075 6076 void __meminit setup_zone_pageset(struct zone *zone) 6077 { 6078 int cpu; 6079 6080 /* Size may be 0 on !SMP && !NUMA */ 6081 if (sizeof(struct per_cpu_zonestat) > 0) 6082 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6083 6084 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6085 for_each_possible_cpu(cpu) { 6086 struct per_cpu_pages *pcp; 6087 struct per_cpu_zonestat *pzstats; 6088 6089 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6090 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6091 per_cpu_pages_init(pcp, pzstats); 6092 } 6093 6094 zone_set_pageset_high_and_batch(zone, 0); 6095 } 6096 6097 /* 6098 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6099 * page high values need to be recalculated. 6100 */ 6101 static void zone_pcp_update(struct zone *zone, int cpu_online) 6102 { 6103 mutex_lock(&pcp_batch_high_lock); 6104 zone_set_pageset_high_and_batch(zone, cpu_online); 6105 mutex_unlock(&pcp_batch_high_lock); 6106 } 6107 6108 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 6109 { 6110 struct per_cpu_pages *pcp; 6111 struct cpu_cacheinfo *cci; 6112 6113 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6114 cci = get_cpu_cacheinfo(cpu); 6115 /* 6116 * If data cache slice of CPU is large enough, "pcp->batch" 6117 * pages can be preserved in PCP before draining PCP for 6118 * consecutive high-order pages freeing without allocation. 6119 * This can reduce zone lock contention without hurting 6120 * cache-hot pages sharing. 6121 */ 6122 spin_lock(&pcp->lock); 6123 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 6124 pcp->flags |= PCPF_FREE_HIGH_BATCH; 6125 else 6126 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 6127 spin_unlock(&pcp->lock); 6128 } 6129 6130 void setup_pcp_cacheinfo(unsigned int cpu) 6131 { 6132 struct zone *zone; 6133 6134 for_each_populated_zone(zone) 6135 zone_pcp_update_cacheinfo(zone, cpu); 6136 } 6137 6138 /* 6139 * Allocate per cpu pagesets and initialize them. 6140 * Before this call only boot pagesets were available. 6141 */ 6142 void __init setup_per_cpu_pageset(void) 6143 { 6144 struct pglist_data *pgdat; 6145 struct zone *zone; 6146 int __maybe_unused cpu; 6147 6148 for_each_populated_zone(zone) 6149 setup_zone_pageset(zone); 6150 6151 #ifdef CONFIG_NUMA 6152 /* 6153 * Unpopulated zones continue using the boot pagesets. 6154 * The numa stats for these pagesets need to be reset. 6155 * Otherwise, they will end up skewing the stats of 6156 * the nodes these zones are associated with. 6157 */ 6158 for_each_possible_cpu(cpu) { 6159 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6160 memset(pzstats->vm_numa_event, 0, 6161 sizeof(pzstats->vm_numa_event)); 6162 } 6163 #endif 6164 6165 for_each_online_pgdat(pgdat) 6166 pgdat->per_cpu_nodestats = 6167 alloc_percpu(struct per_cpu_nodestat); 6168 } 6169 6170 __meminit void zone_pcp_init(struct zone *zone) 6171 { 6172 /* 6173 * per cpu subsystem is not up at this point. The following code 6174 * relies on the ability of the linker to provide the 6175 * offset of a (static) per cpu variable into the per cpu area. 6176 */ 6177 zone->per_cpu_pageset = &boot_pageset; 6178 zone->per_cpu_zonestats = &boot_zonestats; 6179 zone->pageset_high_min = BOOT_PAGESET_HIGH; 6180 zone->pageset_high_max = BOOT_PAGESET_HIGH; 6181 zone->pageset_batch = BOOT_PAGESET_BATCH; 6182 6183 if (populated_zone(zone)) 6184 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 6185 zone->present_pages, zone_batchsize(zone)); 6186 } 6187 6188 static void setup_per_zone_lowmem_reserve(void); 6189 6190 void adjust_managed_page_count(struct page *page, long count) 6191 { 6192 atomic_long_add(count, &page_zone(page)->managed_pages); 6193 totalram_pages_add(count); 6194 setup_per_zone_lowmem_reserve(); 6195 } 6196 EXPORT_SYMBOL(adjust_managed_page_count); 6197 6198 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 6199 { 6200 void *pos; 6201 unsigned long pages = 0; 6202 6203 start = (void *)PAGE_ALIGN((unsigned long)start); 6204 end = (void *)((unsigned long)end & PAGE_MASK); 6205 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6206 struct page *page = virt_to_page(pos); 6207 void *direct_map_addr; 6208 6209 /* 6210 * 'direct_map_addr' might be different from 'pos' 6211 * because some architectures' virt_to_page() 6212 * work with aliases. Getting the direct map 6213 * address ensures that we get a _writeable_ 6214 * alias for the memset(). 6215 */ 6216 direct_map_addr = page_address(page); 6217 /* 6218 * Perform a kasan-unchecked memset() since this memory 6219 * has not been initialized. 6220 */ 6221 direct_map_addr = kasan_reset_tag(direct_map_addr); 6222 if ((unsigned int)poison <= 0xFF) 6223 memset(direct_map_addr, poison, PAGE_SIZE); 6224 6225 free_reserved_page(page); 6226 } 6227 6228 if (pages && s) 6229 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 6230 6231 return pages; 6232 } 6233 6234 void free_reserved_page(struct page *page) 6235 { 6236 clear_page_tag_ref(page); 6237 ClearPageReserved(page); 6238 init_page_count(page); 6239 __free_page(page); 6240 adjust_managed_page_count(page, 1); 6241 } 6242 EXPORT_SYMBOL(free_reserved_page); 6243 6244 static int page_alloc_cpu_dead(unsigned int cpu) 6245 { 6246 struct zone *zone; 6247 6248 lru_add_drain_cpu(cpu); 6249 mlock_drain_remote(cpu); 6250 drain_pages(cpu); 6251 6252 /* 6253 * Spill the event counters of the dead processor 6254 * into the current processors event counters. 6255 * This artificially elevates the count of the current 6256 * processor. 6257 */ 6258 vm_events_fold_cpu(cpu); 6259 6260 /* 6261 * Zero the differential counters of the dead processor 6262 * so that the vm statistics are consistent. 6263 * 6264 * This is only okay since the processor is dead and cannot 6265 * race with what we are doing. 6266 */ 6267 cpu_vm_stats_fold(cpu); 6268 6269 for_each_populated_zone(zone) 6270 zone_pcp_update(zone, 0); 6271 6272 return 0; 6273 } 6274 6275 static int page_alloc_cpu_online(unsigned int cpu) 6276 { 6277 struct zone *zone; 6278 6279 for_each_populated_zone(zone) 6280 zone_pcp_update(zone, 1); 6281 return 0; 6282 } 6283 6284 void __init page_alloc_init_cpuhp(void) 6285 { 6286 int ret; 6287 6288 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6289 "mm/page_alloc:pcp", 6290 page_alloc_cpu_online, 6291 page_alloc_cpu_dead); 6292 WARN_ON(ret < 0); 6293 } 6294 6295 /* 6296 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6297 * or min_free_kbytes changes. 6298 */ 6299 static void calculate_totalreserve_pages(void) 6300 { 6301 struct pglist_data *pgdat; 6302 unsigned long reserve_pages = 0; 6303 enum zone_type i, j; 6304 6305 for_each_online_pgdat(pgdat) { 6306 6307 pgdat->totalreserve_pages = 0; 6308 6309 for (i = 0; i < MAX_NR_ZONES; i++) { 6310 struct zone *zone = pgdat->node_zones + i; 6311 long max = 0; 6312 unsigned long managed_pages = zone_managed_pages(zone); 6313 6314 /* Find valid and maximum lowmem_reserve in the zone */ 6315 for (j = i; j < MAX_NR_ZONES; j++) 6316 max = max(max, zone->lowmem_reserve[j]); 6317 6318 /* we treat the high watermark as reserved pages. */ 6319 max += high_wmark_pages(zone); 6320 6321 max = min_t(unsigned long, max, managed_pages); 6322 6323 pgdat->totalreserve_pages += max; 6324 6325 reserve_pages += max; 6326 } 6327 } 6328 totalreserve_pages = reserve_pages; 6329 trace_mm_calculate_totalreserve_pages(totalreserve_pages); 6330 } 6331 6332 /* 6333 * setup_per_zone_lowmem_reserve - called whenever 6334 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6335 * has a correct pages reserved value, so an adequate number of 6336 * pages are left in the zone after a successful __alloc_pages(). 6337 */ 6338 static void setup_per_zone_lowmem_reserve(void) 6339 { 6340 struct pglist_data *pgdat; 6341 enum zone_type i, j; 6342 6343 for_each_online_pgdat(pgdat) { 6344 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6345 struct zone *zone = &pgdat->node_zones[i]; 6346 int ratio = sysctl_lowmem_reserve_ratio[i]; 6347 bool clear = !ratio || !zone_managed_pages(zone); 6348 unsigned long managed_pages = 0; 6349 6350 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6351 struct zone *upper_zone = &pgdat->node_zones[j]; 6352 6353 managed_pages += zone_managed_pages(upper_zone); 6354 6355 if (clear) 6356 zone->lowmem_reserve[j] = 0; 6357 else 6358 zone->lowmem_reserve[j] = managed_pages / ratio; 6359 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, 6360 zone->lowmem_reserve[j]); 6361 } 6362 } 6363 } 6364 6365 /* update totalreserve_pages */ 6366 calculate_totalreserve_pages(); 6367 } 6368 6369 static void __setup_per_zone_wmarks(void) 6370 { 6371 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6372 unsigned long lowmem_pages = 0; 6373 struct zone *zone; 6374 unsigned long flags; 6375 6376 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6377 for_each_zone(zone) { 6378 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6379 lowmem_pages += zone_managed_pages(zone); 6380 } 6381 6382 for_each_zone(zone) { 6383 u64 tmp; 6384 6385 spin_lock_irqsave(&zone->lock, flags); 6386 tmp = (u64)pages_min * zone_managed_pages(zone); 6387 tmp = div64_ul(tmp, lowmem_pages); 6388 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6389 /* 6390 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6391 * need highmem and movable zones pages, so cap pages_min 6392 * to a small value here. 6393 * 6394 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6395 * deltas control async page reclaim, and so should 6396 * not be capped for highmem and movable zones. 6397 */ 6398 unsigned long min_pages; 6399 6400 min_pages = zone_managed_pages(zone) / 1024; 6401 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6402 zone->_watermark[WMARK_MIN] = min_pages; 6403 } else { 6404 /* 6405 * If it's a lowmem zone, reserve a number of pages 6406 * proportionate to the zone's size. 6407 */ 6408 zone->_watermark[WMARK_MIN] = tmp; 6409 } 6410 6411 /* 6412 * Set the kswapd watermarks distance according to the 6413 * scale factor in proportion to available memory, but 6414 * ensure a minimum size on small systems. 6415 */ 6416 tmp = max_t(u64, tmp >> 2, 6417 mult_frac(zone_managed_pages(zone), 6418 watermark_scale_factor, 10000)); 6419 6420 zone->watermark_boost = 0; 6421 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6422 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6423 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6424 trace_mm_setup_per_zone_wmarks(zone); 6425 6426 spin_unlock_irqrestore(&zone->lock, flags); 6427 } 6428 6429 /* update totalreserve_pages */ 6430 calculate_totalreserve_pages(); 6431 } 6432 6433 /** 6434 * setup_per_zone_wmarks - called when min_free_kbytes changes 6435 * or when memory is hot-{added|removed} 6436 * 6437 * Ensures that the watermark[min,low,high] values for each zone are set 6438 * correctly with respect to min_free_kbytes. 6439 */ 6440 void setup_per_zone_wmarks(void) 6441 { 6442 struct zone *zone; 6443 static DEFINE_SPINLOCK(lock); 6444 6445 spin_lock(&lock); 6446 __setup_per_zone_wmarks(); 6447 spin_unlock(&lock); 6448 6449 /* 6450 * The watermark size have changed so update the pcpu batch 6451 * and high limits or the limits may be inappropriate. 6452 */ 6453 for_each_zone(zone) 6454 zone_pcp_update(zone, 0); 6455 } 6456 6457 /* 6458 * Initialise min_free_kbytes. 6459 * 6460 * For small machines we want it small (128k min). For large machines 6461 * we want it large (256MB max). But it is not linear, because network 6462 * bandwidth does not increase linearly with machine size. We use 6463 * 6464 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6465 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6466 * 6467 * which yields 6468 * 6469 * 16MB: 512k 6470 * 32MB: 724k 6471 * 64MB: 1024k 6472 * 128MB: 1448k 6473 * 256MB: 2048k 6474 * 512MB: 2896k 6475 * 1024MB: 4096k 6476 * 2048MB: 5792k 6477 * 4096MB: 8192k 6478 * 8192MB: 11584k 6479 * 16384MB: 16384k 6480 */ 6481 void calculate_min_free_kbytes(void) 6482 { 6483 unsigned long lowmem_kbytes; 6484 int new_min_free_kbytes; 6485 6486 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6487 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6488 6489 if (new_min_free_kbytes > user_min_free_kbytes) 6490 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6491 else 6492 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6493 new_min_free_kbytes, user_min_free_kbytes); 6494 6495 } 6496 6497 int __meminit init_per_zone_wmark_min(void) 6498 { 6499 calculate_min_free_kbytes(); 6500 setup_per_zone_wmarks(); 6501 refresh_zone_stat_thresholds(); 6502 setup_per_zone_lowmem_reserve(); 6503 6504 #ifdef CONFIG_NUMA 6505 setup_min_unmapped_ratio(); 6506 setup_min_slab_ratio(); 6507 #endif 6508 6509 khugepaged_min_free_kbytes_update(); 6510 6511 return 0; 6512 } 6513 postcore_initcall(init_per_zone_wmark_min) 6514 6515 /* 6516 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6517 * that we can call two helper functions whenever min_free_kbytes 6518 * changes. 6519 */ 6520 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6521 void *buffer, size_t *length, loff_t *ppos) 6522 { 6523 int rc; 6524 6525 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6526 if (rc) 6527 return rc; 6528 6529 if (write) { 6530 user_min_free_kbytes = min_free_kbytes; 6531 setup_per_zone_wmarks(); 6532 } 6533 return 0; 6534 } 6535 6536 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6537 void *buffer, size_t *length, loff_t *ppos) 6538 { 6539 int rc; 6540 6541 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6542 if (rc) 6543 return rc; 6544 6545 if (write) 6546 setup_per_zone_wmarks(); 6547 6548 return 0; 6549 } 6550 6551 #ifdef CONFIG_NUMA 6552 static void setup_min_unmapped_ratio(void) 6553 { 6554 pg_data_t *pgdat; 6555 struct zone *zone; 6556 6557 for_each_online_pgdat(pgdat) 6558 pgdat->min_unmapped_pages = 0; 6559 6560 for_each_zone(zone) 6561 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6562 sysctl_min_unmapped_ratio) / 100; 6563 } 6564 6565 6566 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6567 void *buffer, size_t *length, loff_t *ppos) 6568 { 6569 int rc; 6570 6571 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6572 if (rc) 6573 return rc; 6574 6575 setup_min_unmapped_ratio(); 6576 6577 return 0; 6578 } 6579 6580 static void setup_min_slab_ratio(void) 6581 { 6582 pg_data_t *pgdat; 6583 struct zone *zone; 6584 6585 for_each_online_pgdat(pgdat) 6586 pgdat->min_slab_pages = 0; 6587 6588 for_each_zone(zone) 6589 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6590 sysctl_min_slab_ratio) / 100; 6591 } 6592 6593 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6594 void *buffer, size_t *length, loff_t *ppos) 6595 { 6596 int rc; 6597 6598 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6599 if (rc) 6600 return rc; 6601 6602 setup_min_slab_ratio(); 6603 6604 return 0; 6605 } 6606 #endif 6607 6608 /* 6609 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6610 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6611 * whenever sysctl_lowmem_reserve_ratio changes. 6612 * 6613 * The reserve ratio obviously has absolutely no relation with the 6614 * minimum watermarks. The lowmem reserve ratio can only make sense 6615 * if in function of the boot time zone sizes. 6616 */ 6617 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6618 int write, void *buffer, size_t *length, loff_t *ppos) 6619 { 6620 int i; 6621 6622 proc_dointvec_minmax(table, write, buffer, length, ppos); 6623 6624 for (i = 0; i < MAX_NR_ZONES; i++) { 6625 if (sysctl_lowmem_reserve_ratio[i] < 1) 6626 sysctl_lowmem_reserve_ratio[i] = 0; 6627 } 6628 6629 setup_per_zone_lowmem_reserve(); 6630 return 0; 6631 } 6632 6633 /* 6634 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6635 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6636 * pagelist can have before it gets flushed back to buddy allocator. 6637 */ 6638 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6639 int write, void *buffer, size_t *length, loff_t *ppos) 6640 { 6641 struct zone *zone; 6642 int old_percpu_pagelist_high_fraction; 6643 int ret; 6644 6645 mutex_lock(&pcp_batch_high_lock); 6646 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6647 6648 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6649 if (!write || ret < 0) 6650 goto out; 6651 6652 /* Sanity checking to avoid pcp imbalance */ 6653 if (percpu_pagelist_high_fraction && 6654 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6655 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6656 ret = -EINVAL; 6657 goto out; 6658 } 6659 6660 /* No change? */ 6661 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6662 goto out; 6663 6664 for_each_populated_zone(zone) 6665 zone_set_pageset_high_and_batch(zone, 0); 6666 out: 6667 mutex_unlock(&pcp_batch_high_lock); 6668 return ret; 6669 } 6670 6671 static const struct ctl_table page_alloc_sysctl_table[] = { 6672 { 6673 .procname = "min_free_kbytes", 6674 .data = &min_free_kbytes, 6675 .maxlen = sizeof(min_free_kbytes), 6676 .mode = 0644, 6677 .proc_handler = min_free_kbytes_sysctl_handler, 6678 .extra1 = SYSCTL_ZERO, 6679 }, 6680 { 6681 .procname = "watermark_boost_factor", 6682 .data = &watermark_boost_factor, 6683 .maxlen = sizeof(watermark_boost_factor), 6684 .mode = 0644, 6685 .proc_handler = proc_dointvec_minmax, 6686 .extra1 = SYSCTL_ZERO, 6687 }, 6688 { 6689 .procname = "watermark_scale_factor", 6690 .data = &watermark_scale_factor, 6691 .maxlen = sizeof(watermark_scale_factor), 6692 .mode = 0644, 6693 .proc_handler = watermark_scale_factor_sysctl_handler, 6694 .extra1 = SYSCTL_ONE, 6695 .extra2 = SYSCTL_THREE_THOUSAND, 6696 }, 6697 { 6698 .procname = "defrag_mode", 6699 .data = &defrag_mode, 6700 .maxlen = sizeof(defrag_mode), 6701 .mode = 0644, 6702 .proc_handler = proc_dointvec_minmax, 6703 .extra1 = SYSCTL_ZERO, 6704 .extra2 = SYSCTL_ONE, 6705 }, 6706 { 6707 .procname = "percpu_pagelist_high_fraction", 6708 .data = &percpu_pagelist_high_fraction, 6709 .maxlen = sizeof(percpu_pagelist_high_fraction), 6710 .mode = 0644, 6711 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6712 .extra1 = SYSCTL_ZERO, 6713 }, 6714 { 6715 .procname = "lowmem_reserve_ratio", 6716 .data = &sysctl_lowmem_reserve_ratio, 6717 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6718 .mode = 0644, 6719 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6720 }, 6721 #ifdef CONFIG_NUMA 6722 { 6723 .procname = "numa_zonelist_order", 6724 .data = &numa_zonelist_order, 6725 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6726 .mode = 0644, 6727 .proc_handler = numa_zonelist_order_handler, 6728 }, 6729 { 6730 .procname = "min_unmapped_ratio", 6731 .data = &sysctl_min_unmapped_ratio, 6732 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6733 .mode = 0644, 6734 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6735 .extra1 = SYSCTL_ZERO, 6736 .extra2 = SYSCTL_ONE_HUNDRED, 6737 }, 6738 { 6739 .procname = "min_slab_ratio", 6740 .data = &sysctl_min_slab_ratio, 6741 .maxlen = sizeof(sysctl_min_slab_ratio), 6742 .mode = 0644, 6743 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6744 .extra1 = SYSCTL_ZERO, 6745 .extra2 = SYSCTL_ONE_HUNDRED, 6746 }, 6747 #endif 6748 }; 6749 6750 void __init page_alloc_sysctl_init(void) 6751 { 6752 register_sysctl_init("vm", page_alloc_sysctl_table); 6753 } 6754 6755 #ifdef CONFIG_CONTIG_ALLOC 6756 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6757 static void alloc_contig_dump_pages(struct list_head *page_list) 6758 { 6759 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6760 6761 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6762 struct page *page; 6763 6764 dump_stack(); 6765 list_for_each_entry(page, page_list, lru) 6766 dump_page(page, "migration failure"); 6767 } 6768 } 6769 6770 /* [start, end) must belong to a single zone. */ 6771 static int __alloc_contig_migrate_range(struct compact_control *cc, 6772 unsigned long start, unsigned long end) 6773 { 6774 /* This function is based on compact_zone() from compaction.c. */ 6775 unsigned int nr_reclaimed; 6776 unsigned long pfn = start; 6777 unsigned int tries = 0; 6778 int ret = 0; 6779 struct migration_target_control mtc = { 6780 .nid = zone_to_nid(cc->zone), 6781 .gfp_mask = cc->gfp_mask, 6782 .reason = MR_CONTIG_RANGE, 6783 }; 6784 6785 lru_cache_disable(); 6786 6787 while (pfn < end || !list_empty(&cc->migratepages)) { 6788 if (fatal_signal_pending(current)) { 6789 ret = -EINTR; 6790 break; 6791 } 6792 6793 if (list_empty(&cc->migratepages)) { 6794 cc->nr_migratepages = 0; 6795 ret = isolate_migratepages_range(cc, pfn, end); 6796 if (ret && ret != -EAGAIN) 6797 break; 6798 pfn = cc->migrate_pfn; 6799 tries = 0; 6800 } else if (++tries == 5) { 6801 ret = -EBUSY; 6802 break; 6803 } 6804 6805 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6806 &cc->migratepages); 6807 cc->nr_migratepages -= nr_reclaimed; 6808 6809 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6810 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6811 6812 /* 6813 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6814 * to retry again over this error, so do the same here. 6815 */ 6816 if (ret == -ENOMEM) 6817 break; 6818 } 6819 6820 lru_cache_enable(); 6821 if (ret < 0) { 6822 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6823 alloc_contig_dump_pages(&cc->migratepages); 6824 putback_movable_pages(&cc->migratepages); 6825 } 6826 6827 return (ret < 0) ? ret : 0; 6828 } 6829 6830 static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6831 { 6832 int order; 6833 6834 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6835 struct page *page, *next; 6836 int nr_pages = 1 << order; 6837 6838 list_for_each_entry_safe(page, next, &list[order], lru) { 6839 int i; 6840 6841 post_alloc_hook(page, order, gfp_mask); 6842 set_page_refcounted(page); 6843 if (!order) 6844 continue; 6845 6846 split_page(page, order); 6847 6848 /* Add all subpages to the order-0 head, in sequence. */ 6849 list_del(&page->lru); 6850 for (i = 0; i < nr_pages; i++) 6851 list_add_tail(&page[i].lru, &list[0]); 6852 } 6853 } 6854 } 6855 6856 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6857 { 6858 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6859 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6860 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6861 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6862 6863 /* 6864 * We are given the range to allocate; node, mobility and placement 6865 * hints are irrelevant at this point. We'll simply ignore them. 6866 */ 6867 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6868 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6869 6870 /* 6871 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6872 * selected action flags. 6873 */ 6874 if (gfp_mask & ~(reclaim_mask | action_mask)) 6875 return -EINVAL; 6876 6877 /* 6878 * Flags to control page compaction/migration/reclaim, to free up our 6879 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6880 * for them. 6881 * 6882 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6883 * to not degrade callers. 6884 */ 6885 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6886 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6887 return 0; 6888 } 6889 6890 /** 6891 * alloc_contig_range() -- tries to allocate given range of pages 6892 * @start: start PFN to allocate 6893 * @end: one-past-the-last PFN to allocate 6894 * @alloc_flags: allocation information 6895 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6896 * action and reclaim modifiers are supported. Reclaim modifiers 6897 * control allocation behavior during compaction/migration/reclaim. 6898 * 6899 * The PFN range does not have to be pageblock aligned. The PFN range must 6900 * belong to a single zone. 6901 * 6902 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6903 * pageblocks in the range. Once isolated, the pageblocks should not 6904 * be modified by others. 6905 * 6906 * Return: zero on success or negative error code. On success all 6907 * pages which PFN is in [start, end) are allocated for the caller and 6908 * need to be freed with free_contig_range(). 6909 */ 6910 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6911 acr_flags_t alloc_flags, gfp_t gfp_mask) 6912 { 6913 const unsigned int order = ilog2(end - start); 6914 unsigned long outer_start, outer_end; 6915 int ret = 0; 6916 6917 struct compact_control cc = { 6918 .nr_migratepages = 0, 6919 .order = -1, 6920 .zone = page_zone(pfn_to_page(start)), 6921 .mode = MIGRATE_SYNC, 6922 .ignore_skip_hint = true, 6923 .no_set_skip_hint = true, 6924 .alloc_contig = true, 6925 }; 6926 INIT_LIST_HEAD(&cc.migratepages); 6927 enum pb_isolate_mode mode = (alloc_flags & ACR_FLAGS_CMA) ? 6928 PB_ISOLATE_MODE_CMA_ALLOC : 6929 PB_ISOLATE_MODE_OTHER; 6930 6931 /* 6932 * In contrast to the buddy, we allow for orders here that exceed 6933 * MAX_PAGE_ORDER, so we must manually make sure that we are not 6934 * exceeding the maximum folio order. 6935 */ 6936 if (WARN_ON_ONCE((gfp_mask & __GFP_COMP) && order > MAX_FOLIO_ORDER)) 6937 return -EINVAL; 6938 6939 gfp_mask = current_gfp_context(gfp_mask); 6940 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 6941 return -EINVAL; 6942 6943 /* 6944 * What we do here is we mark all pageblocks in range as 6945 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6946 * have different sizes, and due to the way page allocator 6947 * work, start_isolate_page_range() has special handlings for this. 6948 * 6949 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6950 * migrate the pages from an unaligned range (ie. pages that 6951 * we are interested in). This will put all the pages in 6952 * range back to page allocator as MIGRATE_ISOLATE. 6953 * 6954 * When this is done, we take the pages in range from page 6955 * allocator removing them from the buddy system. This way 6956 * page allocator will never consider using them. 6957 * 6958 * This lets us mark the pageblocks back as 6959 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6960 * aligned range but not in the unaligned, original range are 6961 * put back to page allocator so that buddy can use them. 6962 */ 6963 6964 ret = start_isolate_page_range(start, end, mode); 6965 if (ret) 6966 goto done; 6967 6968 drain_all_pages(cc.zone); 6969 6970 /* 6971 * In case of -EBUSY, we'd like to know which page causes problem. 6972 * So, just fall through. test_pages_isolated() has a tracepoint 6973 * which will report the busy page. 6974 * 6975 * It is possible that busy pages could become available before 6976 * the call to test_pages_isolated, and the range will actually be 6977 * allocated. So, if we fall through be sure to clear ret so that 6978 * -EBUSY is not accidentally used or returned to caller. 6979 */ 6980 ret = __alloc_contig_migrate_range(&cc, start, end); 6981 if (ret && ret != -EBUSY) 6982 goto done; 6983 6984 /* 6985 * When in-use hugetlb pages are migrated, they may simply be released 6986 * back into the free hugepage pool instead of being returned to the 6987 * buddy system. After the migration of in-use huge pages is completed, 6988 * we will invoke replace_free_hugepage_folios() to ensure that these 6989 * hugepages are properly released to the buddy system. 6990 */ 6991 ret = replace_free_hugepage_folios(start, end); 6992 if (ret) 6993 goto done; 6994 6995 /* 6996 * Pages from [start, end) are within a pageblock_nr_pages 6997 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6998 * more, all pages in [start, end) are free in page allocator. 6999 * What we are going to do is to allocate all pages from 7000 * [start, end) (that is remove them from page allocator). 7001 * 7002 * The only problem is that pages at the beginning and at the 7003 * end of interesting range may be not aligned with pages that 7004 * page allocator holds, ie. they can be part of higher order 7005 * pages. Because of this, we reserve the bigger range and 7006 * once this is done free the pages we are not interested in. 7007 * 7008 * We don't have to hold zone->lock here because the pages are 7009 * isolated thus they won't get removed from buddy. 7010 */ 7011 outer_start = find_large_buddy(start); 7012 7013 /* Make sure the range is really isolated. */ 7014 if (test_pages_isolated(outer_start, end, mode)) { 7015 ret = -EBUSY; 7016 goto done; 7017 } 7018 7019 /* Grab isolated pages from freelists. */ 7020 outer_end = isolate_freepages_range(&cc, outer_start, end); 7021 if (!outer_end) { 7022 ret = -EBUSY; 7023 goto done; 7024 } 7025 7026 if (!(gfp_mask & __GFP_COMP)) { 7027 split_free_pages(cc.freepages, gfp_mask); 7028 7029 /* Free head and tail (if any) */ 7030 if (start != outer_start) 7031 free_contig_range(outer_start, start - outer_start); 7032 if (end != outer_end) 7033 free_contig_range(end, outer_end - end); 7034 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 7035 struct page *head = pfn_to_page(start); 7036 7037 check_new_pages(head, order); 7038 prep_new_page(head, order, gfp_mask, 0); 7039 set_page_refcounted(head); 7040 } else { 7041 ret = -EINVAL; 7042 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 7043 start, end, outer_start, outer_end); 7044 } 7045 done: 7046 undo_isolate_page_range(start, end); 7047 return ret; 7048 } 7049 EXPORT_SYMBOL(alloc_contig_range_noprof); 7050 7051 static int __alloc_contig_pages(unsigned long start_pfn, 7052 unsigned long nr_pages, gfp_t gfp_mask) 7053 { 7054 unsigned long end_pfn = start_pfn + nr_pages; 7055 7056 return alloc_contig_range_noprof(start_pfn, end_pfn, ACR_FLAGS_NONE, 7057 gfp_mask); 7058 } 7059 7060 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 7061 unsigned long nr_pages) 7062 { 7063 unsigned long i, end_pfn = start_pfn + nr_pages; 7064 struct page *page; 7065 7066 for (i = start_pfn; i < end_pfn; i++) { 7067 page = pfn_to_online_page(i); 7068 if (!page) 7069 return false; 7070 7071 if (page_zone(page) != z) 7072 return false; 7073 7074 if (PageReserved(page)) 7075 return false; 7076 7077 if (PageHuge(page)) 7078 return false; 7079 } 7080 return true; 7081 } 7082 7083 static bool zone_spans_last_pfn(const struct zone *zone, 7084 unsigned long start_pfn, unsigned long nr_pages) 7085 { 7086 unsigned long last_pfn = start_pfn + nr_pages - 1; 7087 7088 return zone_spans_pfn(zone, last_pfn); 7089 } 7090 7091 /** 7092 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 7093 * @nr_pages: Number of contiguous pages to allocate 7094 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 7095 * action and reclaim modifiers are supported. Reclaim modifiers 7096 * control allocation behavior during compaction/migration/reclaim. 7097 * @nid: Target node 7098 * @nodemask: Mask for other possible nodes 7099 * 7100 * This routine is a wrapper around alloc_contig_range(). It scans over zones 7101 * on an applicable zonelist to find a contiguous pfn range which can then be 7102 * tried for allocation with alloc_contig_range(). This routine is intended 7103 * for allocation requests which can not be fulfilled with the buddy allocator. 7104 * 7105 * The allocated memory is always aligned to a page boundary. If nr_pages is a 7106 * power of two, then allocated range is also guaranteed to be aligned to same 7107 * nr_pages (e.g. 1GB request would be aligned to 1GB). 7108 * 7109 * Allocated pages can be freed with free_contig_range() or by manually calling 7110 * __free_page() on each allocated page. 7111 * 7112 * Return: pointer to contiguous pages on success, or NULL if not successful. 7113 */ 7114 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 7115 int nid, nodemask_t *nodemask) 7116 { 7117 unsigned long ret, pfn, flags; 7118 struct zonelist *zonelist; 7119 struct zone *zone; 7120 struct zoneref *z; 7121 7122 zonelist = node_zonelist(nid, gfp_mask); 7123 for_each_zone_zonelist_nodemask(zone, z, zonelist, 7124 gfp_zone(gfp_mask), nodemask) { 7125 spin_lock_irqsave(&zone->lock, flags); 7126 7127 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 7128 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 7129 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 7130 /* 7131 * We release the zone lock here because 7132 * alloc_contig_range() will also lock the zone 7133 * at some point. If there's an allocation 7134 * spinning on this lock, it may win the race 7135 * and cause alloc_contig_range() to fail... 7136 */ 7137 spin_unlock_irqrestore(&zone->lock, flags); 7138 ret = __alloc_contig_pages(pfn, nr_pages, 7139 gfp_mask); 7140 if (!ret) 7141 return pfn_to_page(pfn); 7142 spin_lock_irqsave(&zone->lock, flags); 7143 } 7144 pfn += nr_pages; 7145 } 7146 spin_unlock_irqrestore(&zone->lock, flags); 7147 } 7148 return NULL; 7149 } 7150 #endif /* CONFIG_CONTIG_ALLOC */ 7151 7152 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 7153 { 7154 unsigned long count = 0; 7155 struct folio *folio = pfn_folio(pfn); 7156 7157 if (folio_test_large(folio)) { 7158 int expected = folio_nr_pages(folio); 7159 7160 if (nr_pages == expected) 7161 folio_put(folio); 7162 else 7163 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 7164 pfn, nr_pages, expected); 7165 return; 7166 } 7167 7168 for (; nr_pages--; pfn++) { 7169 struct page *page = pfn_to_page(pfn); 7170 7171 count += page_count(page) != 1; 7172 __free_page(page); 7173 } 7174 WARN(count != 0, "%lu pages are still in use!\n", count); 7175 } 7176 EXPORT_SYMBOL(free_contig_range); 7177 7178 /* 7179 * Effectively disable pcplists for the zone by setting the high limit to 0 7180 * and draining all cpus. A concurrent page freeing on another CPU that's about 7181 * to put the page on pcplist will either finish before the drain and the page 7182 * will be drained, or observe the new high limit and skip the pcplist. 7183 * 7184 * Must be paired with a call to zone_pcp_enable(). 7185 */ 7186 void zone_pcp_disable(struct zone *zone) 7187 { 7188 mutex_lock(&pcp_batch_high_lock); 7189 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 7190 __drain_all_pages(zone, true); 7191 } 7192 7193 void zone_pcp_enable(struct zone *zone) 7194 { 7195 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 7196 zone->pageset_high_max, zone->pageset_batch); 7197 mutex_unlock(&pcp_batch_high_lock); 7198 } 7199 7200 void zone_pcp_reset(struct zone *zone) 7201 { 7202 int cpu; 7203 struct per_cpu_zonestat *pzstats; 7204 7205 if (zone->per_cpu_pageset != &boot_pageset) { 7206 for_each_online_cpu(cpu) { 7207 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7208 drain_zonestat(zone, pzstats); 7209 } 7210 free_percpu(zone->per_cpu_pageset); 7211 zone->per_cpu_pageset = &boot_pageset; 7212 if (zone->per_cpu_zonestats != &boot_zonestats) { 7213 free_percpu(zone->per_cpu_zonestats); 7214 zone->per_cpu_zonestats = &boot_zonestats; 7215 } 7216 } 7217 } 7218 7219 #ifdef CONFIG_MEMORY_HOTREMOVE 7220 /* 7221 * All pages in the range must be in a single zone, must not contain holes, 7222 * must span full sections, and must be isolated before calling this function. 7223 * 7224 * Returns the number of managed (non-PageOffline()) pages in the range: the 7225 * number of pages for which memory offlining code must adjust managed page 7226 * counters using adjust_managed_page_count(). 7227 */ 7228 unsigned long __offline_isolated_pages(unsigned long start_pfn, 7229 unsigned long end_pfn) 7230 { 7231 unsigned long already_offline = 0, flags; 7232 unsigned long pfn = start_pfn; 7233 struct page *page; 7234 struct zone *zone; 7235 unsigned int order; 7236 7237 offline_mem_sections(pfn, end_pfn); 7238 zone = page_zone(pfn_to_page(pfn)); 7239 spin_lock_irqsave(&zone->lock, flags); 7240 while (pfn < end_pfn) { 7241 page = pfn_to_page(pfn); 7242 /* 7243 * The HWPoisoned page may be not in buddy system, and 7244 * page_count() is not 0. 7245 */ 7246 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7247 pfn++; 7248 continue; 7249 } 7250 /* 7251 * At this point all remaining PageOffline() pages have a 7252 * reference count of 0 and can simply be skipped. 7253 */ 7254 if (PageOffline(page)) { 7255 BUG_ON(page_count(page)); 7256 BUG_ON(PageBuddy(page)); 7257 already_offline++; 7258 pfn++; 7259 continue; 7260 } 7261 7262 BUG_ON(page_count(page)); 7263 BUG_ON(!PageBuddy(page)); 7264 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 7265 order = buddy_order(page); 7266 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 7267 pfn += (1 << order); 7268 } 7269 spin_unlock_irqrestore(&zone->lock, flags); 7270 7271 return end_pfn - start_pfn - already_offline; 7272 } 7273 #endif 7274 7275 /* 7276 * This function returns a stable result only if called under zone lock. 7277 */ 7278 bool is_free_buddy_page(const struct page *page) 7279 { 7280 unsigned long pfn = page_to_pfn(page); 7281 unsigned int order; 7282 7283 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7284 const struct page *head = page - (pfn & ((1 << order) - 1)); 7285 7286 if (PageBuddy(head) && 7287 buddy_order_unsafe(head) >= order) 7288 break; 7289 } 7290 7291 return order <= MAX_PAGE_ORDER; 7292 } 7293 EXPORT_SYMBOL(is_free_buddy_page); 7294 7295 #ifdef CONFIG_MEMORY_FAILURE 7296 static inline void add_to_free_list(struct page *page, struct zone *zone, 7297 unsigned int order, int migratetype, 7298 bool tail) 7299 { 7300 __add_to_free_list(page, zone, order, migratetype, tail); 7301 account_freepages(zone, 1 << order, migratetype); 7302 } 7303 7304 /* 7305 * Break down a higher-order page in sub-pages, and keep our target out of 7306 * buddy allocator. 7307 */ 7308 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7309 struct page *target, int low, int high, 7310 int migratetype) 7311 { 7312 unsigned long size = 1 << high; 7313 struct page *current_buddy; 7314 7315 while (high > low) { 7316 high--; 7317 size >>= 1; 7318 7319 if (target >= &page[size]) { 7320 current_buddy = page; 7321 page = page + size; 7322 } else { 7323 current_buddy = page + size; 7324 } 7325 7326 if (set_page_guard(zone, current_buddy, high)) 7327 continue; 7328 7329 add_to_free_list(current_buddy, zone, high, migratetype, false); 7330 set_buddy_order(current_buddy, high); 7331 } 7332 } 7333 7334 /* 7335 * Take a page that will be marked as poisoned off the buddy allocator. 7336 */ 7337 bool take_page_off_buddy(struct page *page) 7338 { 7339 struct zone *zone = page_zone(page); 7340 unsigned long pfn = page_to_pfn(page); 7341 unsigned long flags; 7342 unsigned int order; 7343 bool ret = false; 7344 7345 spin_lock_irqsave(&zone->lock, flags); 7346 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7347 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7348 int page_order = buddy_order(page_head); 7349 7350 if (PageBuddy(page_head) && page_order >= order) { 7351 unsigned long pfn_head = page_to_pfn(page_head); 7352 int migratetype = get_pfnblock_migratetype(page_head, 7353 pfn_head); 7354 7355 del_page_from_free_list(page_head, zone, page_order, 7356 migratetype); 7357 break_down_buddy_pages(zone, page_head, page, 0, 7358 page_order, migratetype); 7359 SetPageHWPoisonTakenOff(page); 7360 ret = true; 7361 break; 7362 } 7363 if (page_count(page_head) > 0) 7364 break; 7365 } 7366 spin_unlock_irqrestore(&zone->lock, flags); 7367 return ret; 7368 } 7369 7370 /* 7371 * Cancel takeoff done by take_page_off_buddy(). 7372 */ 7373 bool put_page_back_buddy(struct page *page) 7374 { 7375 struct zone *zone = page_zone(page); 7376 unsigned long flags; 7377 bool ret = false; 7378 7379 spin_lock_irqsave(&zone->lock, flags); 7380 if (put_page_testzero(page)) { 7381 unsigned long pfn = page_to_pfn(page); 7382 int migratetype = get_pfnblock_migratetype(page, pfn); 7383 7384 ClearPageHWPoisonTakenOff(page); 7385 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7386 if (TestClearPageHWPoison(page)) { 7387 ret = true; 7388 } 7389 } 7390 spin_unlock_irqrestore(&zone->lock, flags); 7391 7392 return ret; 7393 } 7394 #endif 7395 7396 #ifdef CONFIG_ZONE_DMA 7397 bool has_managed_dma(void) 7398 { 7399 struct pglist_data *pgdat; 7400 7401 for_each_online_pgdat(pgdat) { 7402 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 7403 7404 if (managed_zone(zone)) 7405 return true; 7406 } 7407 return false; 7408 } 7409 #endif /* CONFIG_ZONE_DMA */ 7410 7411 #ifdef CONFIG_UNACCEPTED_MEMORY 7412 7413 static bool lazy_accept = true; 7414 7415 static int __init accept_memory_parse(char *p) 7416 { 7417 if (!strcmp(p, "lazy")) { 7418 lazy_accept = true; 7419 return 0; 7420 } else if (!strcmp(p, "eager")) { 7421 lazy_accept = false; 7422 return 0; 7423 } else { 7424 return -EINVAL; 7425 } 7426 } 7427 early_param("accept_memory", accept_memory_parse); 7428 7429 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7430 { 7431 phys_addr_t start = page_to_phys(page); 7432 7433 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7434 } 7435 7436 static void __accept_page(struct zone *zone, unsigned long *flags, 7437 struct page *page) 7438 { 7439 list_del(&page->lru); 7440 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7441 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7442 __ClearPageUnaccepted(page); 7443 spin_unlock_irqrestore(&zone->lock, *flags); 7444 7445 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7446 7447 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7448 } 7449 7450 void accept_page(struct page *page) 7451 { 7452 struct zone *zone = page_zone(page); 7453 unsigned long flags; 7454 7455 spin_lock_irqsave(&zone->lock, flags); 7456 if (!PageUnaccepted(page)) { 7457 spin_unlock_irqrestore(&zone->lock, flags); 7458 return; 7459 } 7460 7461 /* Unlocks zone->lock */ 7462 __accept_page(zone, &flags, page); 7463 } 7464 7465 static bool try_to_accept_memory_one(struct zone *zone) 7466 { 7467 unsigned long flags; 7468 struct page *page; 7469 7470 spin_lock_irqsave(&zone->lock, flags); 7471 page = list_first_entry_or_null(&zone->unaccepted_pages, 7472 struct page, lru); 7473 if (!page) { 7474 spin_unlock_irqrestore(&zone->lock, flags); 7475 return false; 7476 } 7477 7478 /* Unlocks zone->lock */ 7479 __accept_page(zone, &flags, page); 7480 7481 return true; 7482 } 7483 7484 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7485 int alloc_flags) 7486 { 7487 long to_accept, wmark; 7488 bool ret = false; 7489 7490 if (list_empty(&zone->unaccepted_pages)) 7491 return false; 7492 7493 /* Bailout, since try_to_accept_memory_one() needs to take a lock */ 7494 if (alloc_flags & ALLOC_TRYLOCK) 7495 return false; 7496 7497 wmark = promo_wmark_pages(zone); 7498 7499 /* 7500 * Watermarks have not been initialized yet. 7501 * 7502 * Accepting one MAX_ORDER page to ensure progress. 7503 */ 7504 if (!wmark) 7505 return try_to_accept_memory_one(zone); 7506 7507 /* How much to accept to get to promo watermark? */ 7508 to_accept = wmark - 7509 (zone_page_state(zone, NR_FREE_PAGES) - 7510 __zone_watermark_unusable_free(zone, order, 0) - 7511 zone_page_state(zone, NR_UNACCEPTED)); 7512 7513 while (to_accept > 0) { 7514 if (!try_to_accept_memory_one(zone)) 7515 break; 7516 ret = true; 7517 to_accept -= MAX_ORDER_NR_PAGES; 7518 } 7519 7520 return ret; 7521 } 7522 7523 static bool __free_unaccepted(struct page *page) 7524 { 7525 struct zone *zone = page_zone(page); 7526 unsigned long flags; 7527 7528 if (!lazy_accept) 7529 return false; 7530 7531 spin_lock_irqsave(&zone->lock, flags); 7532 list_add_tail(&page->lru, &zone->unaccepted_pages); 7533 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7534 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7535 __SetPageUnaccepted(page); 7536 spin_unlock_irqrestore(&zone->lock, flags); 7537 7538 return true; 7539 } 7540 7541 #else 7542 7543 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7544 { 7545 return false; 7546 } 7547 7548 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7549 int alloc_flags) 7550 { 7551 return false; 7552 } 7553 7554 static bool __free_unaccepted(struct page *page) 7555 { 7556 BUILD_BUG(); 7557 return false; 7558 } 7559 7560 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7561 7562 struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order) 7563 { 7564 /* 7565 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. 7566 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd 7567 * is not safe in arbitrary context. 7568 * 7569 * These two are the conditions for gfpflags_allow_spinning() being true. 7570 * 7571 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason 7572 * to warn. Also warn would trigger printk() which is unsafe from 7573 * various contexts. We cannot use printk_deferred_enter() to mitigate, 7574 * since the running context is unknown. 7575 * 7576 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below 7577 * is safe in any context. Also zeroing the page is mandatory for 7578 * BPF use cases. 7579 * 7580 * Though __GFP_NOMEMALLOC is not checked in the code path below, 7581 * specify it here to highlight that alloc_pages_nolock() 7582 * doesn't want to deplete reserves. 7583 */ 7584 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC | __GFP_COMP 7585 | gfp_flags; 7586 unsigned int alloc_flags = ALLOC_TRYLOCK; 7587 struct alloc_context ac = { }; 7588 struct page *page; 7589 7590 VM_WARN_ON_ONCE(gfp_flags & ~__GFP_ACCOUNT); 7591 /* 7592 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is 7593 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current 7594 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will 7595 * mark the task as the owner of another rt_spin_lock which will 7596 * confuse PI logic, so return immediately if called form hard IRQ or 7597 * NMI. 7598 * 7599 * Note, irqs_disabled() case is ok. This function can be called 7600 * from raw_spin_lock_irqsave region. 7601 */ 7602 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 7603 return NULL; 7604 if (!pcp_allowed_order(order)) 7605 return NULL; 7606 7607 /* Bailout, since _deferred_grow_zone() needs to take a lock */ 7608 if (deferred_pages_enabled()) 7609 return NULL; 7610 7611 if (nid == NUMA_NO_NODE) 7612 nid = numa_node_id(); 7613 7614 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, 7615 &alloc_gfp, &alloc_flags); 7616 7617 /* 7618 * Best effort allocation from percpu free list. 7619 * If it's empty attempt to spin_trylock zone->lock. 7620 */ 7621 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 7622 7623 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ 7624 7625 if (memcg_kmem_online() && page && (gfp_flags & __GFP_ACCOUNT) && 7626 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { 7627 __free_frozen_pages(page, order, FPI_TRYLOCK); 7628 page = NULL; 7629 } 7630 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 7631 kmsan_alloc_page(page, order, alloc_gfp); 7632 return page; 7633 } 7634 /** 7635 * alloc_pages_nolock - opportunistic reentrant allocation from any context 7636 * @gfp_flags: GFP flags. Only __GFP_ACCOUNT allowed. 7637 * @nid: node to allocate from 7638 * @order: allocation order size 7639 * 7640 * Allocates pages of a given order from the given node. This is safe to 7641 * call from any context (from atomic, NMI, and also reentrant 7642 * allocator -> tracepoint -> alloc_pages_nolock_noprof). 7643 * Allocation is best effort and to be expected to fail easily so nobody should 7644 * rely on the success. Failures are not reported via warn_alloc(). 7645 * See always fail conditions below. 7646 * 7647 * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN. 7648 * It means ENOMEM. There is no reason to call it again and expect !NULL. 7649 */ 7650 struct page *alloc_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order) 7651 { 7652 struct page *page; 7653 7654 page = alloc_frozen_pages_nolock_noprof(gfp_flags, nid, order); 7655 if (page) 7656 set_page_refcounted(page); 7657 return page; 7658 } 7659 EXPORT_SYMBOL_GPL(alloc_pages_nolock_noprof); 7660