xref: /linux/mm/page_alloc.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53 
54 /*
55  * Array of node states.
56  */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 	[N_POSSIBLE] = NODE_MASK_ALL,
59 	[N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 	[N_CPU] = { { [0] = 1UL } },
66 #endif	/* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69 
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
74 
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78 
79 static void __free_pages_ok(struct page *page, unsigned int order);
80 
81 /*
82  * results with 256, 32 in the lowmem_reserve sysctl:
83  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84  *	1G machine -> (16M dma, 784M normal, 224M high)
85  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88  *
89  * TBD: should special case ZONE_DMA32 machines here - in those we normally
90  * don't need any ZONE_NORMAL reservation
91  */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 	 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 	 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 	 32,
101 #endif
102 	 32,
103 };
104 
105 EXPORT_SYMBOL(totalram_pages);
106 
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 	 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 	 "DMA32",
113 #endif
114 	 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 	 "HighMem",
117 #endif
118 	 "Movable",
119 };
120 
121 int min_free_kbytes = 1024;
122 
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126 
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128   /*
129    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130    * ranges of memory (RAM) that may be registered with add_active_range().
131    * Ranges passed to add_active_range() will be merged if possible
132    * so the number of times add_active_range() can be called is
133    * related to the number of nodes and the number of holes
134    */
135   #ifdef CONFIG_MAX_ACTIVE_REGIONS
136     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138   #else
139     #if MAX_NUMNODES >= 32
140       /* If there can be many nodes, allow up to 50 holes per node */
141       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142     #else
143       /* By default, allow up to 256 distinct regions */
144       #define MAX_ACTIVE_REGIONS 256
145     #endif
146   #endif
147 
148   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149   static int __meminitdata nr_nodemap_entries;
150   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156   static unsigned long __initdata required_kernelcore;
157   static unsigned long __initdata required_movablecore;
158   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 
160   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161   int movable_zone;
162   EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169 
170 int page_group_by_mobility_disabled __read_mostly;
171 
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 	set_pageblock_flags_group(page, (unsigned long)migratetype,
175 					PB_migrate, PB_migrate_end);
176 }
177 
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 	int ret = 0;
182 	unsigned seq;
183 	unsigned long pfn = page_to_pfn(page);
184 
185 	do {
186 		seq = zone_span_seqbegin(zone);
187 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 			ret = 1;
189 		else if (pfn < zone->zone_start_pfn)
190 			ret = 1;
191 	} while (zone_span_seqretry(zone, seq));
192 
193 	return ret;
194 }
195 
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 	if (!pfn_valid_within(page_to_pfn(page)))
199 		return 0;
200 	if (zone != page_zone(page))
201 		return 0;
202 
203 	return 1;
204 }
205 /*
206  * Temporary debugging check for pages not lying within a given zone.
207  */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 	if (page_outside_zone_boundaries(zone, page))
211 		return 1;
212 	if (!page_is_consistent(zone, page))
213 		return 1;
214 
215 	return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 	return 0;
221 }
222 #endif
223 
224 static void bad_page(struct page *page)
225 {
226 	printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
227 		"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
228 		current->comm, page, (int)(2*sizeof(unsigned long)),
229 		(unsigned long)page->flags, page->mapping,
230 		page_mapcount(page), page_count(page));
231 
232 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
233 		KERN_EMERG "Backtrace:\n");
234 	dump_stack();
235 	page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
236 	set_page_count(page, 0);
237 	reset_page_mapcount(page);
238 	page->mapping = NULL;
239 	add_taint(TAINT_BAD_PAGE);
240 }
241 
242 /*
243  * Higher-order pages are called "compound pages".  They are structured thusly:
244  *
245  * The first PAGE_SIZE page is called the "head page".
246  *
247  * The remaining PAGE_SIZE pages are called "tail pages".
248  *
249  * All pages have PG_compound set.  All pages have their ->private pointing at
250  * the head page (even the head page has this).
251  *
252  * The first tail page's ->lru.next holds the address of the compound page's
253  * put_page() function.  Its ->lru.prev holds the order of allocation.
254  * This usage means that zero-order pages may not be compound.
255  */
256 
257 static void free_compound_page(struct page *page)
258 {
259 	__free_pages_ok(page, compound_order(page));
260 }
261 
262 void prep_compound_page(struct page *page, unsigned long order)
263 {
264 	int i;
265 	int nr_pages = 1 << order;
266 	struct page *p = page + 1;
267 
268 	set_compound_page_dtor(page, free_compound_page);
269 	set_compound_order(page, order);
270 	__SetPageHead(page);
271 	for (i = 1; i < nr_pages; i++, p++) {
272 		if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
273 			p = pfn_to_page(page_to_pfn(page) + i);
274 		__SetPageTail(p);
275 		p->first_page = page;
276 	}
277 }
278 
279 static void destroy_compound_page(struct page *page, unsigned long order)
280 {
281 	int i;
282 	int nr_pages = 1 << order;
283 	struct page *p = page + 1;
284 
285 	if (unlikely(compound_order(page) != order))
286 		bad_page(page);
287 
288 	if (unlikely(!PageHead(page)))
289 			bad_page(page);
290 	__ClearPageHead(page);
291 	for (i = 1; i < nr_pages; i++, p++) {
292 		if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
293 			p = pfn_to_page(page_to_pfn(page) + i);
294 
295 		if (unlikely(!PageTail(p) |
296 				(p->first_page != page)))
297 			bad_page(page);
298 		__ClearPageTail(p);
299 	}
300 }
301 
302 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
303 {
304 	int i;
305 
306 	/*
307 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
308 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
309 	 */
310 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
311 	for (i = 0; i < (1 << order); i++)
312 		clear_highpage(page + i);
313 }
314 
315 static inline void set_page_order(struct page *page, int order)
316 {
317 	set_page_private(page, order);
318 	__SetPageBuddy(page);
319 }
320 
321 static inline void rmv_page_order(struct page *page)
322 {
323 	__ClearPageBuddy(page);
324 	set_page_private(page, 0);
325 }
326 
327 /*
328  * Locate the struct page for both the matching buddy in our
329  * pair (buddy1) and the combined O(n+1) page they form (page).
330  *
331  * 1) Any buddy B1 will have an order O twin B2 which satisfies
332  * the following equation:
333  *     B2 = B1 ^ (1 << O)
334  * For example, if the starting buddy (buddy2) is #8 its order
335  * 1 buddy is #10:
336  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
337  *
338  * 2) Any buddy B will have an order O+1 parent P which
339  * satisfies the following equation:
340  *     P = B & ~(1 << O)
341  *
342  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
343  */
344 static inline struct page *
345 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
346 {
347 	unsigned long buddy_idx = page_idx ^ (1 << order);
348 
349 	return page + (buddy_idx - page_idx);
350 }
351 
352 static inline unsigned long
353 __find_combined_index(unsigned long page_idx, unsigned int order)
354 {
355 	return (page_idx & ~(1 << order));
356 }
357 
358 /*
359  * This function checks whether a page is free && is the buddy
360  * we can do coalesce a page and its buddy if
361  * (a) the buddy is not in a hole &&
362  * (b) the buddy is in the buddy system &&
363  * (c) a page and its buddy have the same order &&
364  * (d) a page and its buddy are in the same zone.
365  *
366  * For recording whether a page is in the buddy system, we use PG_buddy.
367  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
368  *
369  * For recording page's order, we use page_private(page).
370  */
371 static inline int page_is_buddy(struct page *page, struct page *buddy,
372 								int order)
373 {
374 	if (!pfn_valid_within(page_to_pfn(buddy)))
375 		return 0;
376 
377 	if (page_zone_id(page) != page_zone_id(buddy))
378 		return 0;
379 
380 	if (PageBuddy(buddy) && page_order(buddy) == order) {
381 		BUG_ON(page_count(buddy) != 0);
382 		return 1;
383 	}
384 	return 0;
385 }
386 
387 /*
388  * Freeing function for a buddy system allocator.
389  *
390  * The concept of a buddy system is to maintain direct-mapped table
391  * (containing bit values) for memory blocks of various "orders".
392  * The bottom level table contains the map for the smallest allocatable
393  * units of memory (here, pages), and each level above it describes
394  * pairs of units from the levels below, hence, "buddies".
395  * At a high level, all that happens here is marking the table entry
396  * at the bottom level available, and propagating the changes upward
397  * as necessary, plus some accounting needed to play nicely with other
398  * parts of the VM system.
399  * At each level, we keep a list of pages, which are heads of continuous
400  * free pages of length of (1 << order) and marked with PG_buddy. Page's
401  * order is recorded in page_private(page) field.
402  * So when we are allocating or freeing one, we can derive the state of the
403  * other.  That is, if we allocate a small block, and both were
404  * free, the remainder of the region must be split into blocks.
405  * If a block is freed, and its buddy is also free, then this
406  * triggers coalescing into a block of larger size.
407  *
408  * -- wli
409  */
410 
411 static inline void __free_one_page(struct page *page,
412 		struct zone *zone, unsigned int order)
413 {
414 	unsigned long page_idx;
415 	int order_size = 1 << order;
416 	int migratetype = get_pageblock_migratetype(page);
417 
418 	if (unlikely(PageCompound(page)))
419 		destroy_compound_page(page, order);
420 
421 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
422 
423 	VM_BUG_ON(page_idx & (order_size - 1));
424 	VM_BUG_ON(bad_range(zone, page));
425 
426 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
427 	while (order < MAX_ORDER-1) {
428 		unsigned long combined_idx;
429 		struct page *buddy;
430 
431 		buddy = __page_find_buddy(page, page_idx, order);
432 		if (!page_is_buddy(page, buddy, order))
433 			break;
434 
435 		/* Our buddy is free, merge with it and move up one order. */
436 		list_del(&buddy->lru);
437 		zone->free_area[order].nr_free--;
438 		rmv_page_order(buddy);
439 		combined_idx = __find_combined_index(page_idx, order);
440 		page = page + (combined_idx - page_idx);
441 		page_idx = combined_idx;
442 		order++;
443 	}
444 	set_page_order(page, order);
445 	list_add(&page->lru,
446 		&zone->free_area[order].free_list[migratetype]);
447 	zone->free_area[order].nr_free++;
448 }
449 
450 static inline int free_pages_check(struct page *page)
451 {
452 	free_page_mlock(page);
453 	if (unlikely(page_mapcount(page) |
454 		(page->mapping != NULL)  |
455 		(page_count(page) != 0)  |
456 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
457 		bad_page(page);
458 	if (PageDirty(page))
459 		__ClearPageDirty(page);
460 	if (PageSwapBacked(page))
461 		__ClearPageSwapBacked(page);
462 	/*
463 	 * For now, we report if PG_reserved was found set, but do not
464 	 * clear it, and do not free the page.  But we shall soon need
465 	 * to do more, for when the ZERO_PAGE count wraps negative.
466 	 */
467 	return PageReserved(page);
468 }
469 
470 /*
471  * Frees a list of pages.
472  * Assumes all pages on list are in same zone, and of same order.
473  * count is the number of pages to free.
474  *
475  * If the zone was previously in an "all pages pinned" state then look to
476  * see if this freeing clears that state.
477  *
478  * And clear the zone's pages_scanned counter, to hold off the "all pages are
479  * pinned" detection logic.
480  */
481 static void free_pages_bulk(struct zone *zone, int count,
482 					struct list_head *list, int order)
483 {
484 	spin_lock(&zone->lock);
485 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
486 	zone->pages_scanned = 0;
487 	while (count--) {
488 		struct page *page;
489 
490 		VM_BUG_ON(list_empty(list));
491 		page = list_entry(list->prev, struct page, lru);
492 		/* have to delete it as __free_one_page list manipulates */
493 		list_del(&page->lru);
494 		__free_one_page(page, zone, order);
495 	}
496 	spin_unlock(&zone->lock);
497 }
498 
499 static void free_one_page(struct zone *zone, struct page *page, int order)
500 {
501 	spin_lock(&zone->lock);
502 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
503 	zone->pages_scanned = 0;
504 	__free_one_page(page, zone, order);
505 	spin_unlock(&zone->lock);
506 }
507 
508 static void __free_pages_ok(struct page *page, unsigned int order)
509 {
510 	unsigned long flags;
511 	int i;
512 	int reserved = 0;
513 
514 	for (i = 0 ; i < (1 << order) ; ++i)
515 		reserved += free_pages_check(page + i);
516 	if (reserved)
517 		return;
518 
519 	if (!PageHighMem(page)) {
520 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
521 		debug_check_no_obj_freed(page_address(page),
522 					   PAGE_SIZE << order);
523 	}
524 	arch_free_page(page, order);
525 	kernel_map_pages(page, 1 << order, 0);
526 
527 	local_irq_save(flags);
528 	__count_vm_events(PGFREE, 1 << order);
529 	free_one_page(page_zone(page), page, order);
530 	local_irq_restore(flags);
531 }
532 
533 /*
534  * permit the bootmem allocator to evade page validation on high-order frees
535  */
536 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
537 {
538 	if (order == 0) {
539 		__ClearPageReserved(page);
540 		set_page_count(page, 0);
541 		set_page_refcounted(page);
542 		__free_page(page);
543 	} else {
544 		int loop;
545 
546 		prefetchw(page);
547 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
548 			struct page *p = &page[loop];
549 
550 			if (loop + 1 < BITS_PER_LONG)
551 				prefetchw(p + 1);
552 			__ClearPageReserved(p);
553 			set_page_count(p, 0);
554 		}
555 
556 		set_page_refcounted(page);
557 		__free_pages(page, order);
558 	}
559 }
560 
561 
562 /*
563  * The order of subdivision here is critical for the IO subsystem.
564  * Please do not alter this order without good reasons and regression
565  * testing. Specifically, as large blocks of memory are subdivided,
566  * the order in which smaller blocks are delivered depends on the order
567  * they're subdivided in this function. This is the primary factor
568  * influencing the order in which pages are delivered to the IO
569  * subsystem according to empirical testing, and this is also justified
570  * by considering the behavior of a buddy system containing a single
571  * large block of memory acted on by a series of small allocations.
572  * This behavior is a critical factor in sglist merging's success.
573  *
574  * -- wli
575  */
576 static inline void expand(struct zone *zone, struct page *page,
577 	int low, int high, struct free_area *area,
578 	int migratetype)
579 {
580 	unsigned long size = 1 << high;
581 
582 	while (high > low) {
583 		area--;
584 		high--;
585 		size >>= 1;
586 		VM_BUG_ON(bad_range(zone, &page[size]));
587 		list_add(&page[size].lru, &area->free_list[migratetype]);
588 		area->nr_free++;
589 		set_page_order(&page[size], high);
590 	}
591 }
592 
593 /*
594  * This page is about to be returned from the page allocator
595  */
596 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
597 {
598 	if (unlikely(page_mapcount(page) |
599 		(page->mapping != NULL)  |
600 		(page_count(page) != 0)  |
601 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
602 		bad_page(page);
603 
604 	/*
605 	 * For now, we report if PG_reserved was found set, but do not
606 	 * clear it, and do not allocate the page: as a safety net.
607 	 */
608 	if (PageReserved(page))
609 		return 1;
610 
611 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
612 			1 << PG_referenced | 1 << PG_arch_1 |
613 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk
614 #ifdef CONFIG_UNEVICTABLE_LRU
615 			| 1 << PG_mlocked
616 #endif
617 			);
618 	set_page_private(page, 0);
619 	set_page_refcounted(page);
620 
621 	arch_alloc_page(page, order);
622 	kernel_map_pages(page, 1 << order, 1);
623 
624 	if (gfp_flags & __GFP_ZERO)
625 		prep_zero_page(page, order, gfp_flags);
626 
627 	if (order && (gfp_flags & __GFP_COMP))
628 		prep_compound_page(page, order);
629 
630 	return 0;
631 }
632 
633 /*
634  * Go through the free lists for the given migratetype and remove
635  * the smallest available page from the freelists
636  */
637 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
638 						int migratetype)
639 {
640 	unsigned int current_order;
641 	struct free_area * area;
642 	struct page *page;
643 
644 	/* Find a page of the appropriate size in the preferred list */
645 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
646 		area = &(zone->free_area[current_order]);
647 		if (list_empty(&area->free_list[migratetype]))
648 			continue;
649 
650 		page = list_entry(area->free_list[migratetype].next,
651 							struct page, lru);
652 		list_del(&page->lru);
653 		rmv_page_order(page);
654 		area->nr_free--;
655 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
656 		expand(zone, page, order, current_order, area, migratetype);
657 		return page;
658 	}
659 
660 	return NULL;
661 }
662 
663 
664 /*
665  * This array describes the order lists are fallen back to when
666  * the free lists for the desirable migrate type are depleted
667  */
668 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
669 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
670 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
671 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
672 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
673 };
674 
675 /*
676  * Move the free pages in a range to the free lists of the requested type.
677  * Note that start_page and end_pages are not aligned on a pageblock
678  * boundary. If alignment is required, use move_freepages_block()
679  */
680 static int move_freepages(struct zone *zone,
681 			  struct page *start_page, struct page *end_page,
682 			  int migratetype)
683 {
684 	struct page *page;
685 	unsigned long order;
686 	int pages_moved = 0;
687 
688 #ifndef CONFIG_HOLES_IN_ZONE
689 	/*
690 	 * page_zone is not safe to call in this context when
691 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
692 	 * anyway as we check zone boundaries in move_freepages_block().
693 	 * Remove at a later date when no bug reports exist related to
694 	 * grouping pages by mobility
695 	 */
696 	BUG_ON(page_zone(start_page) != page_zone(end_page));
697 #endif
698 
699 	for (page = start_page; page <= end_page;) {
700 		/* Make sure we are not inadvertently changing nodes */
701 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
702 
703 		if (!pfn_valid_within(page_to_pfn(page))) {
704 			page++;
705 			continue;
706 		}
707 
708 		if (!PageBuddy(page)) {
709 			page++;
710 			continue;
711 		}
712 
713 		order = page_order(page);
714 		list_del(&page->lru);
715 		list_add(&page->lru,
716 			&zone->free_area[order].free_list[migratetype]);
717 		page += 1 << order;
718 		pages_moved += 1 << order;
719 	}
720 
721 	return pages_moved;
722 }
723 
724 static int move_freepages_block(struct zone *zone, struct page *page,
725 				int migratetype)
726 {
727 	unsigned long start_pfn, end_pfn;
728 	struct page *start_page, *end_page;
729 
730 	start_pfn = page_to_pfn(page);
731 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
732 	start_page = pfn_to_page(start_pfn);
733 	end_page = start_page + pageblock_nr_pages - 1;
734 	end_pfn = start_pfn + pageblock_nr_pages - 1;
735 
736 	/* Do not cross zone boundaries */
737 	if (start_pfn < zone->zone_start_pfn)
738 		start_page = page;
739 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
740 		return 0;
741 
742 	return move_freepages(zone, start_page, end_page, migratetype);
743 }
744 
745 /* Remove an element from the buddy allocator from the fallback list */
746 static struct page *__rmqueue_fallback(struct zone *zone, int order,
747 						int start_migratetype)
748 {
749 	struct free_area * area;
750 	int current_order;
751 	struct page *page;
752 	int migratetype, i;
753 
754 	/* Find the largest possible block of pages in the other list */
755 	for (current_order = MAX_ORDER-1; current_order >= order;
756 						--current_order) {
757 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
758 			migratetype = fallbacks[start_migratetype][i];
759 
760 			/* MIGRATE_RESERVE handled later if necessary */
761 			if (migratetype == MIGRATE_RESERVE)
762 				continue;
763 
764 			area = &(zone->free_area[current_order]);
765 			if (list_empty(&area->free_list[migratetype]))
766 				continue;
767 
768 			page = list_entry(area->free_list[migratetype].next,
769 					struct page, lru);
770 			area->nr_free--;
771 
772 			/*
773 			 * If breaking a large block of pages, move all free
774 			 * pages to the preferred allocation list. If falling
775 			 * back for a reclaimable kernel allocation, be more
776 			 * agressive about taking ownership of free pages
777 			 */
778 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
779 					start_migratetype == MIGRATE_RECLAIMABLE) {
780 				unsigned long pages;
781 				pages = move_freepages_block(zone, page,
782 								start_migratetype);
783 
784 				/* Claim the whole block if over half of it is free */
785 				if (pages >= (1 << (pageblock_order-1)))
786 					set_pageblock_migratetype(page,
787 								start_migratetype);
788 
789 				migratetype = start_migratetype;
790 			}
791 
792 			/* Remove the page from the freelists */
793 			list_del(&page->lru);
794 			rmv_page_order(page);
795 			__mod_zone_page_state(zone, NR_FREE_PAGES,
796 							-(1UL << order));
797 
798 			if (current_order == pageblock_order)
799 				set_pageblock_migratetype(page,
800 							start_migratetype);
801 
802 			expand(zone, page, order, current_order, area, migratetype);
803 			return page;
804 		}
805 	}
806 
807 	/* Use MIGRATE_RESERVE rather than fail an allocation */
808 	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
809 }
810 
811 /*
812  * Do the hard work of removing an element from the buddy allocator.
813  * Call me with the zone->lock already held.
814  */
815 static struct page *__rmqueue(struct zone *zone, unsigned int order,
816 						int migratetype)
817 {
818 	struct page *page;
819 
820 	page = __rmqueue_smallest(zone, order, migratetype);
821 
822 	if (unlikely(!page))
823 		page = __rmqueue_fallback(zone, order, migratetype);
824 
825 	return page;
826 }
827 
828 /*
829  * Obtain a specified number of elements from the buddy allocator, all under
830  * a single hold of the lock, for efficiency.  Add them to the supplied list.
831  * Returns the number of new pages which were placed at *list.
832  */
833 static int rmqueue_bulk(struct zone *zone, unsigned int order,
834 			unsigned long count, struct list_head *list,
835 			int migratetype)
836 {
837 	int i;
838 
839 	spin_lock(&zone->lock);
840 	for (i = 0; i < count; ++i) {
841 		struct page *page = __rmqueue(zone, order, migratetype);
842 		if (unlikely(page == NULL))
843 			break;
844 
845 		/*
846 		 * Split buddy pages returned by expand() are received here
847 		 * in physical page order. The page is added to the callers and
848 		 * list and the list head then moves forward. From the callers
849 		 * perspective, the linked list is ordered by page number in
850 		 * some conditions. This is useful for IO devices that can
851 		 * merge IO requests if the physical pages are ordered
852 		 * properly.
853 		 */
854 		list_add(&page->lru, list);
855 		set_page_private(page, migratetype);
856 		list = &page->lru;
857 	}
858 	spin_unlock(&zone->lock);
859 	return i;
860 }
861 
862 #ifdef CONFIG_NUMA
863 /*
864  * Called from the vmstat counter updater to drain pagesets of this
865  * currently executing processor on remote nodes after they have
866  * expired.
867  *
868  * Note that this function must be called with the thread pinned to
869  * a single processor.
870  */
871 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
872 {
873 	unsigned long flags;
874 	int to_drain;
875 
876 	local_irq_save(flags);
877 	if (pcp->count >= pcp->batch)
878 		to_drain = pcp->batch;
879 	else
880 		to_drain = pcp->count;
881 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
882 	pcp->count -= to_drain;
883 	local_irq_restore(flags);
884 }
885 #endif
886 
887 /*
888  * Drain pages of the indicated processor.
889  *
890  * The processor must either be the current processor and the
891  * thread pinned to the current processor or a processor that
892  * is not online.
893  */
894 static void drain_pages(unsigned int cpu)
895 {
896 	unsigned long flags;
897 	struct zone *zone;
898 
899 	for_each_zone(zone) {
900 		struct per_cpu_pageset *pset;
901 		struct per_cpu_pages *pcp;
902 
903 		if (!populated_zone(zone))
904 			continue;
905 
906 		pset = zone_pcp(zone, cpu);
907 
908 		pcp = &pset->pcp;
909 		local_irq_save(flags);
910 		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
911 		pcp->count = 0;
912 		local_irq_restore(flags);
913 	}
914 }
915 
916 /*
917  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
918  */
919 void drain_local_pages(void *arg)
920 {
921 	drain_pages(smp_processor_id());
922 }
923 
924 /*
925  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
926  */
927 void drain_all_pages(void)
928 {
929 	on_each_cpu(drain_local_pages, NULL, 1);
930 }
931 
932 #ifdef CONFIG_HIBERNATION
933 
934 void mark_free_pages(struct zone *zone)
935 {
936 	unsigned long pfn, max_zone_pfn;
937 	unsigned long flags;
938 	int order, t;
939 	struct list_head *curr;
940 
941 	if (!zone->spanned_pages)
942 		return;
943 
944 	spin_lock_irqsave(&zone->lock, flags);
945 
946 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
947 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
948 		if (pfn_valid(pfn)) {
949 			struct page *page = pfn_to_page(pfn);
950 
951 			if (!swsusp_page_is_forbidden(page))
952 				swsusp_unset_page_free(page);
953 		}
954 
955 	for_each_migratetype_order(order, t) {
956 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
957 			unsigned long i;
958 
959 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
960 			for (i = 0; i < (1UL << order); i++)
961 				swsusp_set_page_free(pfn_to_page(pfn + i));
962 		}
963 	}
964 	spin_unlock_irqrestore(&zone->lock, flags);
965 }
966 #endif /* CONFIG_PM */
967 
968 /*
969  * Free a 0-order page
970  */
971 static void free_hot_cold_page(struct page *page, int cold)
972 {
973 	struct zone *zone = page_zone(page);
974 	struct per_cpu_pages *pcp;
975 	unsigned long flags;
976 
977 	if (PageAnon(page))
978 		page->mapping = NULL;
979 	if (free_pages_check(page))
980 		return;
981 
982 	if (!PageHighMem(page)) {
983 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
984 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
985 	}
986 	arch_free_page(page, 0);
987 	kernel_map_pages(page, 1, 0);
988 
989 	pcp = &zone_pcp(zone, get_cpu())->pcp;
990 	local_irq_save(flags);
991 	__count_vm_event(PGFREE);
992 	if (cold)
993 		list_add_tail(&page->lru, &pcp->list);
994 	else
995 		list_add(&page->lru, &pcp->list);
996 	set_page_private(page, get_pageblock_migratetype(page));
997 	pcp->count++;
998 	if (pcp->count >= pcp->high) {
999 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1000 		pcp->count -= pcp->batch;
1001 	}
1002 	local_irq_restore(flags);
1003 	put_cpu();
1004 }
1005 
1006 void free_hot_page(struct page *page)
1007 {
1008 	free_hot_cold_page(page, 0);
1009 }
1010 
1011 void free_cold_page(struct page *page)
1012 {
1013 	free_hot_cold_page(page, 1);
1014 }
1015 
1016 /*
1017  * split_page takes a non-compound higher-order page, and splits it into
1018  * n (1<<order) sub-pages: page[0..n]
1019  * Each sub-page must be freed individually.
1020  *
1021  * Note: this is probably too low level an operation for use in drivers.
1022  * Please consult with lkml before using this in your driver.
1023  */
1024 void split_page(struct page *page, unsigned int order)
1025 {
1026 	int i;
1027 
1028 	VM_BUG_ON(PageCompound(page));
1029 	VM_BUG_ON(!page_count(page));
1030 	for (i = 1; i < (1 << order); i++)
1031 		set_page_refcounted(page + i);
1032 }
1033 
1034 /*
1035  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1036  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1037  * or two.
1038  */
1039 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1040 			struct zone *zone, int order, gfp_t gfp_flags)
1041 {
1042 	unsigned long flags;
1043 	struct page *page;
1044 	int cold = !!(gfp_flags & __GFP_COLD);
1045 	int cpu;
1046 	int migratetype = allocflags_to_migratetype(gfp_flags);
1047 
1048 again:
1049 	cpu  = get_cpu();
1050 	if (likely(order == 0)) {
1051 		struct per_cpu_pages *pcp;
1052 
1053 		pcp = &zone_pcp(zone, cpu)->pcp;
1054 		local_irq_save(flags);
1055 		if (!pcp->count) {
1056 			pcp->count = rmqueue_bulk(zone, 0,
1057 					pcp->batch, &pcp->list, migratetype);
1058 			if (unlikely(!pcp->count))
1059 				goto failed;
1060 		}
1061 
1062 		/* Find a page of the appropriate migrate type */
1063 		if (cold) {
1064 			list_for_each_entry_reverse(page, &pcp->list, lru)
1065 				if (page_private(page) == migratetype)
1066 					break;
1067 		} else {
1068 			list_for_each_entry(page, &pcp->list, lru)
1069 				if (page_private(page) == migratetype)
1070 					break;
1071 		}
1072 
1073 		/* Allocate more to the pcp list if necessary */
1074 		if (unlikely(&page->lru == &pcp->list)) {
1075 			pcp->count += rmqueue_bulk(zone, 0,
1076 					pcp->batch, &pcp->list, migratetype);
1077 			page = list_entry(pcp->list.next, struct page, lru);
1078 		}
1079 
1080 		list_del(&page->lru);
1081 		pcp->count--;
1082 	} else {
1083 		spin_lock_irqsave(&zone->lock, flags);
1084 		page = __rmqueue(zone, order, migratetype);
1085 		spin_unlock(&zone->lock);
1086 		if (!page)
1087 			goto failed;
1088 	}
1089 
1090 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1091 	zone_statistics(preferred_zone, zone);
1092 	local_irq_restore(flags);
1093 	put_cpu();
1094 
1095 	VM_BUG_ON(bad_range(zone, page));
1096 	if (prep_new_page(page, order, gfp_flags))
1097 		goto again;
1098 	return page;
1099 
1100 failed:
1101 	local_irq_restore(flags);
1102 	put_cpu();
1103 	return NULL;
1104 }
1105 
1106 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1107 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1108 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1109 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1110 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1111 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1112 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1113 
1114 #ifdef CONFIG_FAIL_PAGE_ALLOC
1115 
1116 static struct fail_page_alloc_attr {
1117 	struct fault_attr attr;
1118 
1119 	u32 ignore_gfp_highmem;
1120 	u32 ignore_gfp_wait;
1121 	u32 min_order;
1122 
1123 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1124 
1125 	struct dentry *ignore_gfp_highmem_file;
1126 	struct dentry *ignore_gfp_wait_file;
1127 	struct dentry *min_order_file;
1128 
1129 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1130 
1131 } fail_page_alloc = {
1132 	.attr = FAULT_ATTR_INITIALIZER,
1133 	.ignore_gfp_wait = 1,
1134 	.ignore_gfp_highmem = 1,
1135 	.min_order = 1,
1136 };
1137 
1138 static int __init setup_fail_page_alloc(char *str)
1139 {
1140 	return setup_fault_attr(&fail_page_alloc.attr, str);
1141 }
1142 __setup("fail_page_alloc=", setup_fail_page_alloc);
1143 
1144 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1145 {
1146 	if (order < fail_page_alloc.min_order)
1147 		return 0;
1148 	if (gfp_mask & __GFP_NOFAIL)
1149 		return 0;
1150 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1151 		return 0;
1152 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1153 		return 0;
1154 
1155 	return should_fail(&fail_page_alloc.attr, 1 << order);
1156 }
1157 
1158 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1159 
1160 static int __init fail_page_alloc_debugfs(void)
1161 {
1162 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1163 	struct dentry *dir;
1164 	int err;
1165 
1166 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1167 				       "fail_page_alloc");
1168 	if (err)
1169 		return err;
1170 	dir = fail_page_alloc.attr.dentries.dir;
1171 
1172 	fail_page_alloc.ignore_gfp_wait_file =
1173 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1174 				      &fail_page_alloc.ignore_gfp_wait);
1175 
1176 	fail_page_alloc.ignore_gfp_highmem_file =
1177 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1178 				      &fail_page_alloc.ignore_gfp_highmem);
1179 	fail_page_alloc.min_order_file =
1180 		debugfs_create_u32("min-order", mode, dir,
1181 				   &fail_page_alloc.min_order);
1182 
1183 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1184             !fail_page_alloc.ignore_gfp_highmem_file ||
1185             !fail_page_alloc.min_order_file) {
1186 		err = -ENOMEM;
1187 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1188 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1189 		debugfs_remove(fail_page_alloc.min_order_file);
1190 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1191 	}
1192 
1193 	return err;
1194 }
1195 
1196 late_initcall(fail_page_alloc_debugfs);
1197 
1198 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1199 
1200 #else /* CONFIG_FAIL_PAGE_ALLOC */
1201 
1202 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1203 {
1204 	return 0;
1205 }
1206 
1207 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1208 
1209 /*
1210  * Return 1 if free pages are above 'mark'. This takes into account the order
1211  * of the allocation.
1212  */
1213 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1214 		      int classzone_idx, int alloc_flags)
1215 {
1216 	/* free_pages my go negative - that's OK */
1217 	long min = mark;
1218 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1219 	int o;
1220 
1221 	if (alloc_flags & ALLOC_HIGH)
1222 		min -= min / 2;
1223 	if (alloc_flags & ALLOC_HARDER)
1224 		min -= min / 4;
1225 
1226 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1227 		return 0;
1228 	for (o = 0; o < order; o++) {
1229 		/* At the next order, this order's pages become unavailable */
1230 		free_pages -= z->free_area[o].nr_free << o;
1231 
1232 		/* Require fewer higher order pages to be free */
1233 		min >>= 1;
1234 
1235 		if (free_pages <= min)
1236 			return 0;
1237 	}
1238 	return 1;
1239 }
1240 
1241 #ifdef CONFIG_NUMA
1242 /*
1243  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1244  * skip over zones that are not allowed by the cpuset, or that have
1245  * been recently (in last second) found to be nearly full.  See further
1246  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1247  * that have to skip over a lot of full or unallowed zones.
1248  *
1249  * If the zonelist cache is present in the passed in zonelist, then
1250  * returns a pointer to the allowed node mask (either the current
1251  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1252  *
1253  * If the zonelist cache is not available for this zonelist, does
1254  * nothing and returns NULL.
1255  *
1256  * If the fullzones BITMAP in the zonelist cache is stale (more than
1257  * a second since last zap'd) then we zap it out (clear its bits.)
1258  *
1259  * We hold off even calling zlc_setup, until after we've checked the
1260  * first zone in the zonelist, on the theory that most allocations will
1261  * be satisfied from that first zone, so best to examine that zone as
1262  * quickly as we can.
1263  */
1264 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1265 {
1266 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1267 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1268 
1269 	zlc = zonelist->zlcache_ptr;
1270 	if (!zlc)
1271 		return NULL;
1272 
1273 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1274 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1275 		zlc->last_full_zap = jiffies;
1276 	}
1277 
1278 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1279 					&cpuset_current_mems_allowed :
1280 					&node_states[N_HIGH_MEMORY];
1281 	return allowednodes;
1282 }
1283 
1284 /*
1285  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1286  * if it is worth looking at further for free memory:
1287  *  1) Check that the zone isn't thought to be full (doesn't have its
1288  *     bit set in the zonelist_cache fullzones BITMAP).
1289  *  2) Check that the zones node (obtained from the zonelist_cache
1290  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1291  * Return true (non-zero) if zone is worth looking at further, or
1292  * else return false (zero) if it is not.
1293  *
1294  * This check -ignores- the distinction between various watermarks,
1295  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1296  * found to be full for any variation of these watermarks, it will
1297  * be considered full for up to one second by all requests, unless
1298  * we are so low on memory on all allowed nodes that we are forced
1299  * into the second scan of the zonelist.
1300  *
1301  * In the second scan we ignore this zonelist cache and exactly
1302  * apply the watermarks to all zones, even it is slower to do so.
1303  * We are low on memory in the second scan, and should leave no stone
1304  * unturned looking for a free page.
1305  */
1306 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1307 						nodemask_t *allowednodes)
1308 {
1309 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1310 	int i;				/* index of *z in zonelist zones */
1311 	int n;				/* node that zone *z is on */
1312 
1313 	zlc = zonelist->zlcache_ptr;
1314 	if (!zlc)
1315 		return 1;
1316 
1317 	i = z - zonelist->_zonerefs;
1318 	n = zlc->z_to_n[i];
1319 
1320 	/* This zone is worth trying if it is allowed but not full */
1321 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1322 }
1323 
1324 /*
1325  * Given 'z' scanning a zonelist, set the corresponding bit in
1326  * zlc->fullzones, so that subsequent attempts to allocate a page
1327  * from that zone don't waste time re-examining it.
1328  */
1329 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1330 {
1331 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1332 	int i;				/* index of *z in zonelist zones */
1333 
1334 	zlc = zonelist->zlcache_ptr;
1335 	if (!zlc)
1336 		return;
1337 
1338 	i = z - zonelist->_zonerefs;
1339 
1340 	set_bit(i, zlc->fullzones);
1341 }
1342 
1343 #else	/* CONFIG_NUMA */
1344 
1345 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1346 {
1347 	return NULL;
1348 }
1349 
1350 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1351 				nodemask_t *allowednodes)
1352 {
1353 	return 1;
1354 }
1355 
1356 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1357 {
1358 }
1359 #endif	/* CONFIG_NUMA */
1360 
1361 /*
1362  * get_page_from_freelist goes through the zonelist trying to allocate
1363  * a page.
1364  */
1365 static struct page *
1366 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1367 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1368 {
1369 	struct zoneref *z;
1370 	struct page *page = NULL;
1371 	int classzone_idx;
1372 	struct zone *zone, *preferred_zone;
1373 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1374 	int zlc_active = 0;		/* set if using zonelist_cache */
1375 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1376 
1377 	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1378 							&preferred_zone);
1379 	if (!preferred_zone)
1380 		return NULL;
1381 
1382 	classzone_idx = zone_idx(preferred_zone);
1383 
1384 zonelist_scan:
1385 	/*
1386 	 * Scan zonelist, looking for a zone with enough free.
1387 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1388 	 */
1389 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1390 						high_zoneidx, nodemask) {
1391 		if (NUMA_BUILD && zlc_active &&
1392 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1393 				continue;
1394 		if ((alloc_flags & ALLOC_CPUSET) &&
1395 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1396 				goto try_next_zone;
1397 
1398 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1399 			unsigned long mark;
1400 			if (alloc_flags & ALLOC_WMARK_MIN)
1401 				mark = zone->pages_min;
1402 			else if (alloc_flags & ALLOC_WMARK_LOW)
1403 				mark = zone->pages_low;
1404 			else
1405 				mark = zone->pages_high;
1406 			if (!zone_watermark_ok(zone, order, mark,
1407 				    classzone_idx, alloc_flags)) {
1408 				if (!zone_reclaim_mode ||
1409 				    !zone_reclaim(zone, gfp_mask, order))
1410 					goto this_zone_full;
1411 			}
1412 		}
1413 
1414 		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1415 		if (page)
1416 			break;
1417 this_zone_full:
1418 		if (NUMA_BUILD)
1419 			zlc_mark_zone_full(zonelist, z);
1420 try_next_zone:
1421 		if (NUMA_BUILD && !did_zlc_setup) {
1422 			/* we do zlc_setup after the first zone is tried */
1423 			allowednodes = zlc_setup(zonelist, alloc_flags);
1424 			zlc_active = 1;
1425 			did_zlc_setup = 1;
1426 		}
1427 	}
1428 
1429 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1430 		/* Disable zlc cache for second zonelist scan */
1431 		zlc_active = 0;
1432 		goto zonelist_scan;
1433 	}
1434 	return page;
1435 }
1436 
1437 /*
1438  * This is the 'heart' of the zoned buddy allocator.
1439  */
1440 struct page *
1441 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1442 			struct zonelist *zonelist, nodemask_t *nodemask)
1443 {
1444 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1445 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1446 	struct zoneref *z;
1447 	struct zone *zone;
1448 	struct page *page;
1449 	struct reclaim_state reclaim_state;
1450 	struct task_struct *p = current;
1451 	int do_retry;
1452 	int alloc_flags;
1453 	unsigned long did_some_progress;
1454 	unsigned long pages_reclaimed = 0;
1455 
1456 	might_sleep_if(wait);
1457 
1458 	if (should_fail_alloc_page(gfp_mask, order))
1459 		return NULL;
1460 
1461 restart:
1462 	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1463 
1464 	if (unlikely(!z->zone)) {
1465 		/*
1466 		 * Happens if we have an empty zonelist as a result of
1467 		 * GFP_THISNODE being used on a memoryless node
1468 		 */
1469 		return NULL;
1470 	}
1471 
1472 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1473 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1474 	if (page)
1475 		goto got_pg;
1476 
1477 	/*
1478 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1479 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1480 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1481 	 * using a larger set of nodes after it has established that the
1482 	 * allowed per node queues are empty and that nodes are
1483 	 * over allocated.
1484 	 */
1485 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1486 		goto nopage;
1487 
1488 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1489 		wakeup_kswapd(zone, order);
1490 
1491 	/*
1492 	 * OK, we're below the kswapd watermark and have kicked background
1493 	 * reclaim. Now things get more complex, so set up alloc_flags according
1494 	 * to how we want to proceed.
1495 	 *
1496 	 * The caller may dip into page reserves a bit more if the caller
1497 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1498 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1499 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1500 	 */
1501 	alloc_flags = ALLOC_WMARK_MIN;
1502 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1503 		alloc_flags |= ALLOC_HARDER;
1504 	if (gfp_mask & __GFP_HIGH)
1505 		alloc_flags |= ALLOC_HIGH;
1506 	if (wait)
1507 		alloc_flags |= ALLOC_CPUSET;
1508 
1509 	/*
1510 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1511 	 * coming from realtime tasks go deeper into reserves.
1512 	 *
1513 	 * This is the last chance, in general, before the goto nopage.
1514 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1515 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1516 	 */
1517 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1518 						high_zoneidx, alloc_flags);
1519 	if (page)
1520 		goto got_pg;
1521 
1522 	/* This allocation should allow future memory freeing. */
1523 
1524 rebalance:
1525 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1526 			&& !in_interrupt()) {
1527 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1528 nofail_alloc:
1529 			/* go through the zonelist yet again, ignoring mins */
1530 			page = get_page_from_freelist(gfp_mask, nodemask, order,
1531 				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1532 			if (page)
1533 				goto got_pg;
1534 			if (gfp_mask & __GFP_NOFAIL) {
1535 				congestion_wait(WRITE, HZ/50);
1536 				goto nofail_alloc;
1537 			}
1538 		}
1539 		goto nopage;
1540 	}
1541 
1542 	/* Atomic allocations - we can't balance anything */
1543 	if (!wait)
1544 		goto nopage;
1545 
1546 	cond_resched();
1547 
1548 	/* We now go into synchronous reclaim */
1549 	cpuset_memory_pressure_bump();
1550 	p->flags |= PF_MEMALLOC;
1551 	reclaim_state.reclaimed_slab = 0;
1552 	p->reclaim_state = &reclaim_state;
1553 
1554 	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1555 
1556 	p->reclaim_state = NULL;
1557 	p->flags &= ~PF_MEMALLOC;
1558 
1559 	cond_resched();
1560 
1561 	if (order != 0)
1562 		drain_all_pages();
1563 
1564 	if (likely(did_some_progress)) {
1565 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1566 					zonelist, high_zoneidx, alloc_flags);
1567 		if (page)
1568 			goto got_pg;
1569 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1570 		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1571 			schedule_timeout_uninterruptible(1);
1572 			goto restart;
1573 		}
1574 
1575 		/*
1576 		 * Go through the zonelist yet one more time, keep
1577 		 * very high watermark here, this is only to catch
1578 		 * a parallel oom killing, we must fail if we're still
1579 		 * under heavy pressure.
1580 		 */
1581 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1582 			order, zonelist, high_zoneidx,
1583 			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1584 		if (page) {
1585 			clear_zonelist_oom(zonelist, gfp_mask);
1586 			goto got_pg;
1587 		}
1588 
1589 		/* The OOM killer will not help higher order allocs so fail */
1590 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1591 			clear_zonelist_oom(zonelist, gfp_mask);
1592 			goto nopage;
1593 		}
1594 
1595 		out_of_memory(zonelist, gfp_mask, order);
1596 		clear_zonelist_oom(zonelist, gfp_mask);
1597 		goto restart;
1598 	}
1599 
1600 	/*
1601 	 * Don't let big-order allocations loop unless the caller explicitly
1602 	 * requests that.  Wait for some write requests to complete then retry.
1603 	 *
1604 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1605 	 * means __GFP_NOFAIL, but that may not be true in other
1606 	 * implementations.
1607 	 *
1608 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1609 	 * specified, then we retry until we no longer reclaim any pages
1610 	 * (above), or we've reclaimed an order of pages at least as
1611 	 * large as the allocation's order. In both cases, if the
1612 	 * allocation still fails, we stop retrying.
1613 	 */
1614 	pages_reclaimed += did_some_progress;
1615 	do_retry = 0;
1616 	if (!(gfp_mask & __GFP_NORETRY)) {
1617 		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1618 			do_retry = 1;
1619 		} else {
1620 			if (gfp_mask & __GFP_REPEAT &&
1621 				pages_reclaimed < (1 << order))
1622 					do_retry = 1;
1623 		}
1624 		if (gfp_mask & __GFP_NOFAIL)
1625 			do_retry = 1;
1626 	}
1627 	if (do_retry) {
1628 		congestion_wait(WRITE, HZ/50);
1629 		goto rebalance;
1630 	}
1631 
1632 nopage:
1633 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1634 		printk(KERN_WARNING "%s: page allocation failure."
1635 			" order:%d, mode:0x%x\n",
1636 			p->comm, order, gfp_mask);
1637 		dump_stack();
1638 		show_mem();
1639 	}
1640 got_pg:
1641 	return page;
1642 }
1643 EXPORT_SYMBOL(__alloc_pages_internal);
1644 
1645 /*
1646  * Common helper functions.
1647  */
1648 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1649 {
1650 	struct page * page;
1651 	page = alloc_pages(gfp_mask, order);
1652 	if (!page)
1653 		return 0;
1654 	return (unsigned long) page_address(page);
1655 }
1656 
1657 EXPORT_SYMBOL(__get_free_pages);
1658 
1659 unsigned long get_zeroed_page(gfp_t gfp_mask)
1660 {
1661 	struct page * page;
1662 
1663 	/*
1664 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1665 	 * a highmem page
1666 	 */
1667 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1668 
1669 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1670 	if (page)
1671 		return (unsigned long) page_address(page);
1672 	return 0;
1673 }
1674 
1675 EXPORT_SYMBOL(get_zeroed_page);
1676 
1677 void __pagevec_free(struct pagevec *pvec)
1678 {
1679 	int i = pagevec_count(pvec);
1680 
1681 	while (--i >= 0)
1682 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1683 }
1684 
1685 void __free_pages(struct page *page, unsigned int order)
1686 {
1687 	if (put_page_testzero(page)) {
1688 		if (order == 0)
1689 			free_hot_page(page);
1690 		else
1691 			__free_pages_ok(page, order);
1692 	}
1693 }
1694 
1695 EXPORT_SYMBOL(__free_pages);
1696 
1697 void free_pages(unsigned long addr, unsigned int order)
1698 {
1699 	if (addr != 0) {
1700 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1701 		__free_pages(virt_to_page((void *)addr), order);
1702 	}
1703 }
1704 
1705 EXPORT_SYMBOL(free_pages);
1706 
1707 /**
1708  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1709  * @size: the number of bytes to allocate
1710  * @gfp_mask: GFP flags for the allocation
1711  *
1712  * This function is similar to alloc_pages(), except that it allocates the
1713  * minimum number of pages to satisfy the request.  alloc_pages() can only
1714  * allocate memory in power-of-two pages.
1715  *
1716  * This function is also limited by MAX_ORDER.
1717  *
1718  * Memory allocated by this function must be released by free_pages_exact().
1719  */
1720 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1721 {
1722 	unsigned int order = get_order(size);
1723 	unsigned long addr;
1724 
1725 	addr = __get_free_pages(gfp_mask, order);
1726 	if (addr) {
1727 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1728 		unsigned long used = addr + PAGE_ALIGN(size);
1729 
1730 		split_page(virt_to_page(addr), order);
1731 		while (used < alloc_end) {
1732 			free_page(used);
1733 			used += PAGE_SIZE;
1734 		}
1735 	}
1736 
1737 	return (void *)addr;
1738 }
1739 EXPORT_SYMBOL(alloc_pages_exact);
1740 
1741 /**
1742  * free_pages_exact - release memory allocated via alloc_pages_exact()
1743  * @virt: the value returned by alloc_pages_exact.
1744  * @size: size of allocation, same value as passed to alloc_pages_exact().
1745  *
1746  * Release the memory allocated by a previous call to alloc_pages_exact.
1747  */
1748 void free_pages_exact(void *virt, size_t size)
1749 {
1750 	unsigned long addr = (unsigned long)virt;
1751 	unsigned long end = addr + PAGE_ALIGN(size);
1752 
1753 	while (addr < end) {
1754 		free_page(addr);
1755 		addr += PAGE_SIZE;
1756 	}
1757 }
1758 EXPORT_SYMBOL(free_pages_exact);
1759 
1760 static unsigned int nr_free_zone_pages(int offset)
1761 {
1762 	struct zoneref *z;
1763 	struct zone *zone;
1764 
1765 	/* Just pick one node, since fallback list is circular */
1766 	unsigned int sum = 0;
1767 
1768 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1769 
1770 	for_each_zone_zonelist(zone, z, zonelist, offset) {
1771 		unsigned long size = zone->present_pages;
1772 		unsigned long high = zone->pages_high;
1773 		if (size > high)
1774 			sum += size - high;
1775 	}
1776 
1777 	return sum;
1778 }
1779 
1780 /*
1781  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1782  */
1783 unsigned int nr_free_buffer_pages(void)
1784 {
1785 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1786 }
1787 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1788 
1789 /*
1790  * Amount of free RAM allocatable within all zones
1791  */
1792 unsigned int nr_free_pagecache_pages(void)
1793 {
1794 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1795 }
1796 
1797 static inline void show_node(struct zone *zone)
1798 {
1799 	if (NUMA_BUILD)
1800 		printk("Node %d ", zone_to_nid(zone));
1801 }
1802 
1803 void si_meminfo(struct sysinfo *val)
1804 {
1805 	val->totalram = totalram_pages;
1806 	val->sharedram = 0;
1807 	val->freeram = global_page_state(NR_FREE_PAGES);
1808 	val->bufferram = nr_blockdev_pages();
1809 	val->totalhigh = totalhigh_pages;
1810 	val->freehigh = nr_free_highpages();
1811 	val->mem_unit = PAGE_SIZE;
1812 }
1813 
1814 EXPORT_SYMBOL(si_meminfo);
1815 
1816 #ifdef CONFIG_NUMA
1817 void si_meminfo_node(struct sysinfo *val, int nid)
1818 {
1819 	pg_data_t *pgdat = NODE_DATA(nid);
1820 
1821 	val->totalram = pgdat->node_present_pages;
1822 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1823 #ifdef CONFIG_HIGHMEM
1824 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1825 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1826 			NR_FREE_PAGES);
1827 #else
1828 	val->totalhigh = 0;
1829 	val->freehigh = 0;
1830 #endif
1831 	val->mem_unit = PAGE_SIZE;
1832 }
1833 #endif
1834 
1835 #define K(x) ((x) << (PAGE_SHIFT-10))
1836 
1837 /*
1838  * Show free area list (used inside shift_scroll-lock stuff)
1839  * We also calculate the percentage fragmentation. We do this by counting the
1840  * memory on each free list with the exception of the first item on the list.
1841  */
1842 void show_free_areas(void)
1843 {
1844 	int cpu;
1845 	struct zone *zone;
1846 
1847 	for_each_zone(zone) {
1848 		if (!populated_zone(zone))
1849 			continue;
1850 
1851 		show_node(zone);
1852 		printk("%s per-cpu:\n", zone->name);
1853 
1854 		for_each_online_cpu(cpu) {
1855 			struct per_cpu_pageset *pageset;
1856 
1857 			pageset = zone_pcp(zone, cpu);
1858 
1859 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1860 			       cpu, pageset->pcp.high,
1861 			       pageset->pcp.batch, pageset->pcp.count);
1862 		}
1863 	}
1864 
1865 	printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1866 		" inactive_file:%lu"
1867 //TODO:  check/adjust line lengths
1868 #ifdef CONFIG_UNEVICTABLE_LRU
1869 		" unevictable:%lu"
1870 #endif
1871 		" dirty:%lu writeback:%lu unstable:%lu\n"
1872 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1873 		global_page_state(NR_ACTIVE_ANON),
1874 		global_page_state(NR_ACTIVE_FILE),
1875 		global_page_state(NR_INACTIVE_ANON),
1876 		global_page_state(NR_INACTIVE_FILE),
1877 #ifdef CONFIG_UNEVICTABLE_LRU
1878 		global_page_state(NR_UNEVICTABLE),
1879 #endif
1880 		global_page_state(NR_FILE_DIRTY),
1881 		global_page_state(NR_WRITEBACK),
1882 		global_page_state(NR_UNSTABLE_NFS),
1883 		global_page_state(NR_FREE_PAGES),
1884 		global_page_state(NR_SLAB_RECLAIMABLE) +
1885 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1886 		global_page_state(NR_FILE_MAPPED),
1887 		global_page_state(NR_PAGETABLE),
1888 		global_page_state(NR_BOUNCE));
1889 
1890 	for_each_zone(zone) {
1891 		int i;
1892 
1893 		if (!populated_zone(zone))
1894 			continue;
1895 
1896 		show_node(zone);
1897 		printk("%s"
1898 			" free:%lukB"
1899 			" min:%lukB"
1900 			" low:%lukB"
1901 			" high:%lukB"
1902 			" active_anon:%lukB"
1903 			" inactive_anon:%lukB"
1904 			" active_file:%lukB"
1905 			" inactive_file:%lukB"
1906 #ifdef CONFIG_UNEVICTABLE_LRU
1907 			" unevictable:%lukB"
1908 #endif
1909 			" present:%lukB"
1910 			" pages_scanned:%lu"
1911 			" all_unreclaimable? %s"
1912 			"\n",
1913 			zone->name,
1914 			K(zone_page_state(zone, NR_FREE_PAGES)),
1915 			K(zone->pages_min),
1916 			K(zone->pages_low),
1917 			K(zone->pages_high),
1918 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
1919 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
1920 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
1921 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
1922 #ifdef CONFIG_UNEVICTABLE_LRU
1923 			K(zone_page_state(zone, NR_UNEVICTABLE)),
1924 #endif
1925 			K(zone->present_pages),
1926 			zone->pages_scanned,
1927 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1928 			);
1929 		printk("lowmem_reserve[]:");
1930 		for (i = 0; i < MAX_NR_ZONES; i++)
1931 			printk(" %lu", zone->lowmem_reserve[i]);
1932 		printk("\n");
1933 	}
1934 
1935 	for_each_zone(zone) {
1936  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1937 
1938 		if (!populated_zone(zone))
1939 			continue;
1940 
1941 		show_node(zone);
1942 		printk("%s: ", zone->name);
1943 
1944 		spin_lock_irqsave(&zone->lock, flags);
1945 		for (order = 0; order < MAX_ORDER; order++) {
1946 			nr[order] = zone->free_area[order].nr_free;
1947 			total += nr[order] << order;
1948 		}
1949 		spin_unlock_irqrestore(&zone->lock, flags);
1950 		for (order = 0; order < MAX_ORDER; order++)
1951 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1952 		printk("= %lukB\n", K(total));
1953 	}
1954 
1955 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1956 
1957 	show_swap_cache_info();
1958 }
1959 
1960 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1961 {
1962 	zoneref->zone = zone;
1963 	zoneref->zone_idx = zone_idx(zone);
1964 }
1965 
1966 /*
1967  * Builds allocation fallback zone lists.
1968  *
1969  * Add all populated zones of a node to the zonelist.
1970  */
1971 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1972 				int nr_zones, enum zone_type zone_type)
1973 {
1974 	struct zone *zone;
1975 
1976 	BUG_ON(zone_type >= MAX_NR_ZONES);
1977 	zone_type++;
1978 
1979 	do {
1980 		zone_type--;
1981 		zone = pgdat->node_zones + zone_type;
1982 		if (populated_zone(zone)) {
1983 			zoneref_set_zone(zone,
1984 				&zonelist->_zonerefs[nr_zones++]);
1985 			check_highest_zone(zone_type);
1986 		}
1987 
1988 	} while (zone_type);
1989 	return nr_zones;
1990 }
1991 
1992 
1993 /*
1994  *  zonelist_order:
1995  *  0 = automatic detection of better ordering.
1996  *  1 = order by ([node] distance, -zonetype)
1997  *  2 = order by (-zonetype, [node] distance)
1998  *
1999  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2000  *  the same zonelist. So only NUMA can configure this param.
2001  */
2002 #define ZONELIST_ORDER_DEFAULT  0
2003 #define ZONELIST_ORDER_NODE     1
2004 #define ZONELIST_ORDER_ZONE     2
2005 
2006 /* zonelist order in the kernel.
2007  * set_zonelist_order() will set this to NODE or ZONE.
2008  */
2009 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2010 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2011 
2012 
2013 #ifdef CONFIG_NUMA
2014 /* The value user specified ....changed by config */
2015 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2016 /* string for sysctl */
2017 #define NUMA_ZONELIST_ORDER_LEN	16
2018 char numa_zonelist_order[16] = "default";
2019 
2020 /*
2021  * interface for configure zonelist ordering.
2022  * command line option "numa_zonelist_order"
2023  *	= "[dD]efault	- default, automatic configuration.
2024  *	= "[nN]ode 	- order by node locality, then by zone within node
2025  *	= "[zZ]one      - order by zone, then by locality within zone
2026  */
2027 
2028 static int __parse_numa_zonelist_order(char *s)
2029 {
2030 	if (*s == 'd' || *s == 'D') {
2031 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2032 	} else if (*s == 'n' || *s == 'N') {
2033 		user_zonelist_order = ZONELIST_ORDER_NODE;
2034 	} else if (*s == 'z' || *s == 'Z') {
2035 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2036 	} else {
2037 		printk(KERN_WARNING
2038 			"Ignoring invalid numa_zonelist_order value:  "
2039 			"%s\n", s);
2040 		return -EINVAL;
2041 	}
2042 	return 0;
2043 }
2044 
2045 static __init int setup_numa_zonelist_order(char *s)
2046 {
2047 	if (s)
2048 		return __parse_numa_zonelist_order(s);
2049 	return 0;
2050 }
2051 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2052 
2053 /*
2054  * sysctl handler for numa_zonelist_order
2055  */
2056 int numa_zonelist_order_handler(ctl_table *table, int write,
2057 		struct file *file, void __user *buffer, size_t *length,
2058 		loff_t *ppos)
2059 {
2060 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2061 	int ret;
2062 
2063 	if (write)
2064 		strncpy(saved_string, (char*)table->data,
2065 			NUMA_ZONELIST_ORDER_LEN);
2066 	ret = proc_dostring(table, write, file, buffer, length, ppos);
2067 	if (ret)
2068 		return ret;
2069 	if (write) {
2070 		int oldval = user_zonelist_order;
2071 		if (__parse_numa_zonelist_order((char*)table->data)) {
2072 			/*
2073 			 * bogus value.  restore saved string
2074 			 */
2075 			strncpy((char*)table->data, saved_string,
2076 				NUMA_ZONELIST_ORDER_LEN);
2077 			user_zonelist_order = oldval;
2078 		} else if (oldval != user_zonelist_order)
2079 			build_all_zonelists();
2080 	}
2081 	return 0;
2082 }
2083 
2084 
2085 #define MAX_NODE_LOAD (num_online_nodes())
2086 static int node_load[MAX_NUMNODES];
2087 
2088 /**
2089  * find_next_best_node - find the next node that should appear in a given node's fallback list
2090  * @node: node whose fallback list we're appending
2091  * @used_node_mask: nodemask_t of already used nodes
2092  *
2093  * We use a number of factors to determine which is the next node that should
2094  * appear on a given node's fallback list.  The node should not have appeared
2095  * already in @node's fallback list, and it should be the next closest node
2096  * according to the distance array (which contains arbitrary distance values
2097  * from each node to each node in the system), and should also prefer nodes
2098  * with no CPUs, since presumably they'll have very little allocation pressure
2099  * on them otherwise.
2100  * It returns -1 if no node is found.
2101  */
2102 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2103 {
2104 	int n, val;
2105 	int min_val = INT_MAX;
2106 	int best_node = -1;
2107 	node_to_cpumask_ptr(tmp, 0);
2108 
2109 	/* Use the local node if we haven't already */
2110 	if (!node_isset(node, *used_node_mask)) {
2111 		node_set(node, *used_node_mask);
2112 		return node;
2113 	}
2114 
2115 	for_each_node_state(n, N_HIGH_MEMORY) {
2116 
2117 		/* Don't want a node to appear more than once */
2118 		if (node_isset(n, *used_node_mask))
2119 			continue;
2120 
2121 		/* Use the distance array to find the distance */
2122 		val = node_distance(node, n);
2123 
2124 		/* Penalize nodes under us ("prefer the next node") */
2125 		val += (n < node);
2126 
2127 		/* Give preference to headless and unused nodes */
2128 		node_to_cpumask_ptr_next(tmp, n);
2129 		if (!cpus_empty(*tmp))
2130 			val += PENALTY_FOR_NODE_WITH_CPUS;
2131 
2132 		/* Slight preference for less loaded node */
2133 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2134 		val += node_load[n];
2135 
2136 		if (val < min_val) {
2137 			min_val = val;
2138 			best_node = n;
2139 		}
2140 	}
2141 
2142 	if (best_node >= 0)
2143 		node_set(best_node, *used_node_mask);
2144 
2145 	return best_node;
2146 }
2147 
2148 
2149 /*
2150  * Build zonelists ordered by node and zones within node.
2151  * This results in maximum locality--normal zone overflows into local
2152  * DMA zone, if any--but risks exhausting DMA zone.
2153  */
2154 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2155 {
2156 	int j;
2157 	struct zonelist *zonelist;
2158 
2159 	zonelist = &pgdat->node_zonelists[0];
2160 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2161 		;
2162 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2163 							MAX_NR_ZONES - 1);
2164 	zonelist->_zonerefs[j].zone = NULL;
2165 	zonelist->_zonerefs[j].zone_idx = 0;
2166 }
2167 
2168 /*
2169  * Build gfp_thisnode zonelists
2170  */
2171 static void build_thisnode_zonelists(pg_data_t *pgdat)
2172 {
2173 	int j;
2174 	struct zonelist *zonelist;
2175 
2176 	zonelist = &pgdat->node_zonelists[1];
2177 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2178 	zonelist->_zonerefs[j].zone = NULL;
2179 	zonelist->_zonerefs[j].zone_idx = 0;
2180 }
2181 
2182 /*
2183  * Build zonelists ordered by zone and nodes within zones.
2184  * This results in conserving DMA zone[s] until all Normal memory is
2185  * exhausted, but results in overflowing to remote node while memory
2186  * may still exist in local DMA zone.
2187  */
2188 static int node_order[MAX_NUMNODES];
2189 
2190 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2191 {
2192 	int pos, j, node;
2193 	int zone_type;		/* needs to be signed */
2194 	struct zone *z;
2195 	struct zonelist *zonelist;
2196 
2197 	zonelist = &pgdat->node_zonelists[0];
2198 	pos = 0;
2199 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2200 		for (j = 0; j < nr_nodes; j++) {
2201 			node = node_order[j];
2202 			z = &NODE_DATA(node)->node_zones[zone_type];
2203 			if (populated_zone(z)) {
2204 				zoneref_set_zone(z,
2205 					&zonelist->_zonerefs[pos++]);
2206 				check_highest_zone(zone_type);
2207 			}
2208 		}
2209 	}
2210 	zonelist->_zonerefs[pos].zone = NULL;
2211 	zonelist->_zonerefs[pos].zone_idx = 0;
2212 }
2213 
2214 static int default_zonelist_order(void)
2215 {
2216 	int nid, zone_type;
2217 	unsigned long low_kmem_size,total_size;
2218 	struct zone *z;
2219 	int average_size;
2220 	/*
2221          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2222 	 * If they are really small and used heavily, the system can fall
2223 	 * into OOM very easily.
2224 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2225 	 */
2226 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2227 	low_kmem_size = 0;
2228 	total_size = 0;
2229 	for_each_online_node(nid) {
2230 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2231 			z = &NODE_DATA(nid)->node_zones[zone_type];
2232 			if (populated_zone(z)) {
2233 				if (zone_type < ZONE_NORMAL)
2234 					low_kmem_size += z->present_pages;
2235 				total_size += z->present_pages;
2236 			}
2237 		}
2238 	}
2239 	if (!low_kmem_size ||  /* there are no DMA area. */
2240 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2241 		return ZONELIST_ORDER_NODE;
2242 	/*
2243 	 * look into each node's config.
2244   	 * If there is a node whose DMA/DMA32 memory is very big area on
2245  	 * local memory, NODE_ORDER may be suitable.
2246          */
2247 	average_size = total_size /
2248 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2249 	for_each_online_node(nid) {
2250 		low_kmem_size = 0;
2251 		total_size = 0;
2252 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2253 			z = &NODE_DATA(nid)->node_zones[zone_type];
2254 			if (populated_zone(z)) {
2255 				if (zone_type < ZONE_NORMAL)
2256 					low_kmem_size += z->present_pages;
2257 				total_size += z->present_pages;
2258 			}
2259 		}
2260 		if (low_kmem_size &&
2261 		    total_size > average_size && /* ignore small node */
2262 		    low_kmem_size > total_size * 70/100)
2263 			return ZONELIST_ORDER_NODE;
2264 	}
2265 	return ZONELIST_ORDER_ZONE;
2266 }
2267 
2268 static void set_zonelist_order(void)
2269 {
2270 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2271 		current_zonelist_order = default_zonelist_order();
2272 	else
2273 		current_zonelist_order = user_zonelist_order;
2274 }
2275 
2276 static void build_zonelists(pg_data_t *pgdat)
2277 {
2278 	int j, node, load;
2279 	enum zone_type i;
2280 	nodemask_t used_mask;
2281 	int local_node, prev_node;
2282 	struct zonelist *zonelist;
2283 	int order = current_zonelist_order;
2284 
2285 	/* initialize zonelists */
2286 	for (i = 0; i < MAX_ZONELISTS; i++) {
2287 		zonelist = pgdat->node_zonelists + i;
2288 		zonelist->_zonerefs[0].zone = NULL;
2289 		zonelist->_zonerefs[0].zone_idx = 0;
2290 	}
2291 
2292 	/* NUMA-aware ordering of nodes */
2293 	local_node = pgdat->node_id;
2294 	load = num_online_nodes();
2295 	prev_node = local_node;
2296 	nodes_clear(used_mask);
2297 
2298 	memset(node_load, 0, sizeof(node_load));
2299 	memset(node_order, 0, sizeof(node_order));
2300 	j = 0;
2301 
2302 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2303 		int distance = node_distance(local_node, node);
2304 
2305 		/*
2306 		 * If another node is sufficiently far away then it is better
2307 		 * to reclaim pages in a zone before going off node.
2308 		 */
2309 		if (distance > RECLAIM_DISTANCE)
2310 			zone_reclaim_mode = 1;
2311 
2312 		/*
2313 		 * We don't want to pressure a particular node.
2314 		 * So adding penalty to the first node in same
2315 		 * distance group to make it round-robin.
2316 		 */
2317 		if (distance != node_distance(local_node, prev_node))
2318 			node_load[node] = load;
2319 
2320 		prev_node = node;
2321 		load--;
2322 		if (order == ZONELIST_ORDER_NODE)
2323 			build_zonelists_in_node_order(pgdat, node);
2324 		else
2325 			node_order[j++] = node;	/* remember order */
2326 	}
2327 
2328 	if (order == ZONELIST_ORDER_ZONE) {
2329 		/* calculate node order -- i.e., DMA last! */
2330 		build_zonelists_in_zone_order(pgdat, j);
2331 	}
2332 
2333 	build_thisnode_zonelists(pgdat);
2334 }
2335 
2336 /* Construct the zonelist performance cache - see further mmzone.h */
2337 static void build_zonelist_cache(pg_data_t *pgdat)
2338 {
2339 	struct zonelist *zonelist;
2340 	struct zonelist_cache *zlc;
2341 	struct zoneref *z;
2342 
2343 	zonelist = &pgdat->node_zonelists[0];
2344 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2345 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2346 	for (z = zonelist->_zonerefs; z->zone; z++)
2347 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2348 }
2349 
2350 
2351 #else	/* CONFIG_NUMA */
2352 
2353 static void set_zonelist_order(void)
2354 {
2355 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2356 }
2357 
2358 static void build_zonelists(pg_data_t *pgdat)
2359 {
2360 	int node, local_node;
2361 	enum zone_type j;
2362 	struct zonelist *zonelist;
2363 
2364 	local_node = pgdat->node_id;
2365 
2366 	zonelist = &pgdat->node_zonelists[0];
2367 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2368 
2369 	/*
2370 	 * Now we build the zonelist so that it contains the zones
2371 	 * of all the other nodes.
2372 	 * We don't want to pressure a particular node, so when
2373 	 * building the zones for node N, we make sure that the
2374 	 * zones coming right after the local ones are those from
2375 	 * node N+1 (modulo N)
2376 	 */
2377 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2378 		if (!node_online(node))
2379 			continue;
2380 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2381 							MAX_NR_ZONES - 1);
2382 	}
2383 	for (node = 0; node < local_node; node++) {
2384 		if (!node_online(node))
2385 			continue;
2386 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2387 							MAX_NR_ZONES - 1);
2388 	}
2389 
2390 	zonelist->_zonerefs[j].zone = NULL;
2391 	zonelist->_zonerefs[j].zone_idx = 0;
2392 }
2393 
2394 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2395 static void build_zonelist_cache(pg_data_t *pgdat)
2396 {
2397 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2398 }
2399 
2400 #endif	/* CONFIG_NUMA */
2401 
2402 /* return values int ....just for stop_machine() */
2403 static int __build_all_zonelists(void *dummy)
2404 {
2405 	int nid;
2406 
2407 	for_each_online_node(nid) {
2408 		pg_data_t *pgdat = NODE_DATA(nid);
2409 
2410 		build_zonelists(pgdat);
2411 		build_zonelist_cache(pgdat);
2412 	}
2413 	return 0;
2414 }
2415 
2416 void build_all_zonelists(void)
2417 {
2418 	set_zonelist_order();
2419 
2420 	if (system_state == SYSTEM_BOOTING) {
2421 		__build_all_zonelists(NULL);
2422 		mminit_verify_zonelist();
2423 		cpuset_init_current_mems_allowed();
2424 	} else {
2425 		/* we have to stop all cpus to guarantee there is no user
2426 		   of zonelist */
2427 		stop_machine(__build_all_zonelists, NULL, NULL);
2428 		/* cpuset refresh routine should be here */
2429 	}
2430 	vm_total_pages = nr_free_pagecache_pages();
2431 	/*
2432 	 * Disable grouping by mobility if the number of pages in the
2433 	 * system is too low to allow the mechanism to work. It would be
2434 	 * more accurate, but expensive to check per-zone. This check is
2435 	 * made on memory-hotadd so a system can start with mobility
2436 	 * disabled and enable it later
2437 	 */
2438 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2439 		page_group_by_mobility_disabled = 1;
2440 	else
2441 		page_group_by_mobility_disabled = 0;
2442 
2443 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2444 		"Total pages: %ld\n",
2445 			num_online_nodes(),
2446 			zonelist_order_name[current_zonelist_order],
2447 			page_group_by_mobility_disabled ? "off" : "on",
2448 			vm_total_pages);
2449 #ifdef CONFIG_NUMA
2450 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2451 #endif
2452 }
2453 
2454 /*
2455  * Helper functions to size the waitqueue hash table.
2456  * Essentially these want to choose hash table sizes sufficiently
2457  * large so that collisions trying to wait on pages are rare.
2458  * But in fact, the number of active page waitqueues on typical
2459  * systems is ridiculously low, less than 200. So this is even
2460  * conservative, even though it seems large.
2461  *
2462  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2463  * waitqueues, i.e. the size of the waitq table given the number of pages.
2464  */
2465 #define PAGES_PER_WAITQUEUE	256
2466 
2467 #ifndef CONFIG_MEMORY_HOTPLUG
2468 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2469 {
2470 	unsigned long size = 1;
2471 
2472 	pages /= PAGES_PER_WAITQUEUE;
2473 
2474 	while (size < pages)
2475 		size <<= 1;
2476 
2477 	/*
2478 	 * Once we have dozens or even hundreds of threads sleeping
2479 	 * on IO we've got bigger problems than wait queue collision.
2480 	 * Limit the size of the wait table to a reasonable size.
2481 	 */
2482 	size = min(size, 4096UL);
2483 
2484 	return max(size, 4UL);
2485 }
2486 #else
2487 /*
2488  * A zone's size might be changed by hot-add, so it is not possible to determine
2489  * a suitable size for its wait_table.  So we use the maximum size now.
2490  *
2491  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2492  *
2493  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2494  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2495  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2496  *
2497  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2498  * or more by the traditional way. (See above).  It equals:
2499  *
2500  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2501  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2502  *    powerpc (64K page size)             : =  (32G +16M)byte.
2503  */
2504 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2505 {
2506 	return 4096UL;
2507 }
2508 #endif
2509 
2510 /*
2511  * This is an integer logarithm so that shifts can be used later
2512  * to extract the more random high bits from the multiplicative
2513  * hash function before the remainder is taken.
2514  */
2515 static inline unsigned long wait_table_bits(unsigned long size)
2516 {
2517 	return ffz(~size);
2518 }
2519 
2520 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2521 
2522 /*
2523  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2524  * of blocks reserved is based on zone->pages_min. The memory within the
2525  * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2526  * higher will lead to a bigger reserve which will get freed as contiguous
2527  * blocks as reclaim kicks in
2528  */
2529 static void setup_zone_migrate_reserve(struct zone *zone)
2530 {
2531 	unsigned long start_pfn, pfn, end_pfn;
2532 	struct page *page;
2533 	unsigned long reserve, block_migratetype;
2534 
2535 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2536 	start_pfn = zone->zone_start_pfn;
2537 	end_pfn = start_pfn + zone->spanned_pages;
2538 	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2539 							pageblock_order;
2540 
2541 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2542 		if (!pfn_valid(pfn))
2543 			continue;
2544 		page = pfn_to_page(pfn);
2545 
2546 		/* Watch out for overlapping nodes */
2547 		if (page_to_nid(page) != zone_to_nid(zone))
2548 			continue;
2549 
2550 		/* Blocks with reserved pages will never free, skip them. */
2551 		if (PageReserved(page))
2552 			continue;
2553 
2554 		block_migratetype = get_pageblock_migratetype(page);
2555 
2556 		/* If this block is reserved, account for it */
2557 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2558 			reserve--;
2559 			continue;
2560 		}
2561 
2562 		/* Suitable for reserving if this block is movable */
2563 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2564 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2565 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2566 			reserve--;
2567 			continue;
2568 		}
2569 
2570 		/*
2571 		 * If the reserve is met and this is a previous reserved block,
2572 		 * take it back
2573 		 */
2574 		if (block_migratetype == MIGRATE_RESERVE) {
2575 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2576 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2577 		}
2578 	}
2579 }
2580 
2581 /*
2582  * Initially all pages are reserved - free ones are freed
2583  * up by free_all_bootmem() once the early boot process is
2584  * done. Non-atomic initialization, single-pass.
2585  */
2586 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2587 		unsigned long start_pfn, enum memmap_context context)
2588 {
2589 	struct page *page;
2590 	unsigned long end_pfn = start_pfn + size;
2591 	unsigned long pfn;
2592 	struct zone *z;
2593 
2594 	z = &NODE_DATA(nid)->node_zones[zone];
2595 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2596 		/*
2597 		 * There can be holes in boot-time mem_map[]s
2598 		 * handed to this function.  They do not
2599 		 * exist on hotplugged memory.
2600 		 */
2601 		if (context == MEMMAP_EARLY) {
2602 			if (!early_pfn_valid(pfn))
2603 				continue;
2604 			if (!early_pfn_in_nid(pfn, nid))
2605 				continue;
2606 		}
2607 		page = pfn_to_page(pfn);
2608 		set_page_links(page, zone, nid, pfn);
2609 		mminit_verify_page_links(page, zone, nid, pfn);
2610 		init_page_count(page);
2611 		reset_page_mapcount(page);
2612 		SetPageReserved(page);
2613 		/*
2614 		 * Mark the block movable so that blocks are reserved for
2615 		 * movable at startup. This will force kernel allocations
2616 		 * to reserve their blocks rather than leaking throughout
2617 		 * the address space during boot when many long-lived
2618 		 * kernel allocations are made. Later some blocks near
2619 		 * the start are marked MIGRATE_RESERVE by
2620 		 * setup_zone_migrate_reserve()
2621 		 *
2622 		 * bitmap is created for zone's valid pfn range. but memmap
2623 		 * can be created for invalid pages (for alignment)
2624 		 * check here not to call set_pageblock_migratetype() against
2625 		 * pfn out of zone.
2626 		 */
2627 		if ((z->zone_start_pfn <= pfn)
2628 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2629 		    && !(pfn & (pageblock_nr_pages - 1)))
2630 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2631 
2632 		INIT_LIST_HEAD(&page->lru);
2633 #ifdef WANT_PAGE_VIRTUAL
2634 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2635 		if (!is_highmem_idx(zone))
2636 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2637 #endif
2638 	}
2639 }
2640 
2641 static void __meminit zone_init_free_lists(struct zone *zone)
2642 {
2643 	int order, t;
2644 	for_each_migratetype_order(order, t) {
2645 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2646 		zone->free_area[order].nr_free = 0;
2647 	}
2648 }
2649 
2650 #ifndef __HAVE_ARCH_MEMMAP_INIT
2651 #define memmap_init(size, nid, zone, start_pfn) \
2652 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2653 #endif
2654 
2655 static int zone_batchsize(struct zone *zone)
2656 {
2657 	int batch;
2658 
2659 	/*
2660 	 * The per-cpu-pages pools are set to around 1000th of the
2661 	 * size of the zone.  But no more than 1/2 of a meg.
2662 	 *
2663 	 * OK, so we don't know how big the cache is.  So guess.
2664 	 */
2665 	batch = zone->present_pages / 1024;
2666 	if (batch * PAGE_SIZE > 512 * 1024)
2667 		batch = (512 * 1024) / PAGE_SIZE;
2668 	batch /= 4;		/* We effectively *= 4 below */
2669 	if (batch < 1)
2670 		batch = 1;
2671 
2672 	/*
2673 	 * Clamp the batch to a 2^n - 1 value. Having a power
2674 	 * of 2 value was found to be more likely to have
2675 	 * suboptimal cache aliasing properties in some cases.
2676 	 *
2677 	 * For example if 2 tasks are alternately allocating
2678 	 * batches of pages, one task can end up with a lot
2679 	 * of pages of one half of the possible page colors
2680 	 * and the other with pages of the other colors.
2681 	 */
2682 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2683 
2684 	return batch;
2685 }
2686 
2687 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2688 {
2689 	struct per_cpu_pages *pcp;
2690 
2691 	memset(p, 0, sizeof(*p));
2692 
2693 	pcp = &p->pcp;
2694 	pcp->count = 0;
2695 	pcp->high = 6 * batch;
2696 	pcp->batch = max(1UL, 1 * batch);
2697 	INIT_LIST_HEAD(&pcp->list);
2698 }
2699 
2700 /*
2701  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2702  * to the value high for the pageset p.
2703  */
2704 
2705 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2706 				unsigned long high)
2707 {
2708 	struct per_cpu_pages *pcp;
2709 
2710 	pcp = &p->pcp;
2711 	pcp->high = high;
2712 	pcp->batch = max(1UL, high/4);
2713 	if ((high/4) > (PAGE_SHIFT * 8))
2714 		pcp->batch = PAGE_SHIFT * 8;
2715 }
2716 
2717 
2718 #ifdef CONFIG_NUMA
2719 /*
2720  * Boot pageset table. One per cpu which is going to be used for all
2721  * zones and all nodes. The parameters will be set in such a way
2722  * that an item put on a list will immediately be handed over to
2723  * the buddy list. This is safe since pageset manipulation is done
2724  * with interrupts disabled.
2725  *
2726  * Some NUMA counter updates may also be caught by the boot pagesets.
2727  *
2728  * The boot_pagesets must be kept even after bootup is complete for
2729  * unused processors and/or zones. They do play a role for bootstrapping
2730  * hotplugged processors.
2731  *
2732  * zoneinfo_show() and maybe other functions do
2733  * not check if the processor is online before following the pageset pointer.
2734  * Other parts of the kernel may not check if the zone is available.
2735  */
2736 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2737 
2738 /*
2739  * Dynamically allocate memory for the
2740  * per cpu pageset array in struct zone.
2741  */
2742 static int __cpuinit process_zones(int cpu)
2743 {
2744 	struct zone *zone, *dzone;
2745 	int node = cpu_to_node(cpu);
2746 
2747 	node_set_state(node, N_CPU);	/* this node has a cpu */
2748 
2749 	for_each_zone(zone) {
2750 
2751 		if (!populated_zone(zone))
2752 			continue;
2753 
2754 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2755 					 GFP_KERNEL, node);
2756 		if (!zone_pcp(zone, cpu))
2757 			goto bad;
2758 
2759 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2760 
2761 		if (percpu_pagelist_fraction)
2762 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2763 			 	(zone->present_pages / percpu_pagelist_fraction));
2764 	}
2765 
2766 	return 0;
2767 bad:
2768 	for_each_zone(dzone) {
2769 		if (!populated_zone(dzone))
2770 			continue;
2771 		if (dzone == zone)
2772 			break;
2773 		kfree(zone_pcp(dzone, cpu));
2774 		zone_pcp(dzone, cpu) = NULL;
2775 	}
2776 	return -ENOMEM;
2777 }
2778 
2779 static inline void free_zone_pagesets(int cpu)
2780 {
2781 	struct zone *zone;
2782 
2783 	for_each_zone(zone) {
2784 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2785 
2786 		/* Free per_cpu_pageset if it is slab allocated */
2787 		if (pset != &boot_pageset[cpu])
2788 			kfree(pset);
2789 		zone_pcp(zone, cpu) = NULL;
2790 	}
2791 }
2792 
2793 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2794 		unsigned long action,
2795 		void *hcpu)
2796 {
2797 	int cpu = (long)hcpu;
2798 	int ret = NOTIFY_OK;
2799 
2800 	switch (action) {
2801 	case CPU_UP_PREPARE:
2802 	case CPU_UP_PREPARE_FROZEN:
2803 		if (process_zones(cpu))
2804 			ret = NOTIFY_BAD;
2805 		break;
2806 	case CPU_UP_CANCELED:
2807 	case CPU_UP_CANCELED_FROZEN:
2808 	case CPU_DEAD:
2809 	case CPU_DEAD_FROZEN:
2810 		free_zone_pagesets(cpu);
2811 		break;
2812 	default:
2813 		break;
2814 	}
2815 	return ret;
2816 }
2817 
2818 static struct notifier_block __cpuinitdata pageset_notifier =
2819 	{ &pageset_cpuup_callback, NULL, 0 };
2820 
2821 void __init setup_per_cpu_pageset(void)
2822 {
2823 	int err;
2824 
2825 	/* Initialize per_cpu_pageset for cpu 0.
2826 	 * A cpuup callback will do this for every cpu
2827 	 * as it comes online
2828 	 */
2829 	err = process_zones(smp_processor_id());
2830 	BUG_ON(err);
2831 	register_cpu_notifier(&pageset_notifier);
2832 }
2833 
2834 #endif
2835 
2836 static noinline __init_refok
2837 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2838 {
2839 	int i;
2840 	struct pglist_data *pgdat = zone->zone_pgdat;
2841 	size_t alloc_size;
2842 
2843 	/*
2844 	 * The per-page waitqueue mechanism uses hashed waitqueues
2845 	 * per zone.
2846 	 */
2847 	zone->wait_table_hash_nr_entries =
2848 		 wait_table_hash_nr_entries(zone_size_pages);
2849 	zone->wait_table_bits =
2850 		wait_table_bits(zone->wait_table_hash_nr_entries);
2851 	alloc_size = zone->wait_table_hash_nr_entries
2852 					* sizeof(wait_queue_head_t);
2853 
2854 	if (!slab_is_available()) {
2855 		zone->wait_table = (wait_queue_head_t *)
2856 			alloc_bootmem_node(pgdat, alloc_size);
2857 	} else {
2858 		/*
2859 		 * This case means that a zone whose size was 0 gets new memory
2860 		 * via memory hot-add.
2861 		 * But it may be the case that a new node was hot-added.  In
2862 		 * this case vmalloc() will not be able to use this new node's
2863 		 * memory - this wait_table must be initialized to use this new
2864 		 * node itself as well.
2865 		 * To use this new node's memory, further consideration will be
2866 		 * necessary.
2867 		 */
2868 		zone->wait_table = vmalloc(alloc_size);
2869 	}
2870 	if (!zone->wait_table)
2871 		return -ENOMEM;
2872 
2873 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2874 		init_waitqueue_head(zone->wait_table + i);
2875 
2876 	return 0;
2877 }
2878 
2879 static __meminit void zone_pcp_init(struct zone *zone)
2880 {
2881 	int cpu;
2882 	unsigned long batch = zone_batchsize(zone);
2883 
2884 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2885 #ifdef CONFIG_NUMA
2886 		/* Early boot. Slab allocator not functional yet */
2887 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2888 		setup_pageset(&boot_pageset[cpu],0);
2889 #else
2890 		setup_pageset(zone_pcp(zone,cpu), batch);
2891 #endif
2892 	}
2893 	if (zone->present_pages)
2894 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2895 			zone->name, zone->present_pages, batch);
2896 }
2897 
2898 __meminit int init_currently_empty_zone(struct zone *zone,
2899 					unsigned long zone_start_pfn,
2900 					unsigned long size,
2901 					enum memmap_context context)
2902 {
2903 	struct pglist_data *pgdat = zone->zone_pgdat;
2904 	int ret;
2905 	ret = zone_wait_table_init(zone, size);
2906 	if (ret)
2907 		return ret;
2908 	pgdat->nr_zones = zone_idx(zone) + 1;
2909 
2910 	zone->zone_start_pfn = zone_start_pfn;
2911 
2912 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
2913 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
2914 			pgdat->node_id,
2915 			(unsigned long)zone_idx(zone),
2916 			zone_start_pfn, (zone_start_pfn + size));
2917 
2918 	zone_init_free_lists(zone);
2919 
2920 	return 0;
2921 }
2922 
2923 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2924 /*
2925  * Basic iterator support. Return the first range of PFNs for a node
2926  * Note: nid == MAX_NUMNODES returns first region regardless of node
2927  */
2928 static int __meminit first_active_region_index_in_nid(int nid)
2929 {
2930 	int i;
2931 
2932 	for (i = 0; i < nr_nodemap_entries; i++)
2933 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2934 			return i;
2935 
2936 	return -1;
2937 }
2938 
2939 /*
2940  * Basic iterator support. Return the next active range of PFNs for a node
2941  * Note: nid == MAX_NUMNODES returns next region regardless of node
2942  */
2943 static int __meminit next_active_region_index_in_nid(int index, int nid)
2944 {
2945 	for (index = index + 1; index < nr_nodemap_entries; index++)
2946 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2947 			return index;
2948 
2949 	return -1;
2950 }
2951 
2952 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2953 /*
2954  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2955  * Architectures may implement their own version but if add_active_range()
2956  * was used and there are no special requirements, this is a convenient
2957  * alternative
2958  */
2959 int __meminit early_pfn_to_nid(unsigned long pfn)
2960 {
2961 	int i;
2962 
2963 	for (i = 0; i < nr_nodemap_entries; i++) {
2964 		unsigned long start_pfn = early_node_map[i].start_pfn;
2965 		unsigned long end_pfn = early_node_map[i].end_pfn;
2966 
2967 		if (start_pfn <= pfn && pfn < end_pfn)
2968 			return early_node_map[i].nid;
2969 	}
2970 
2971 	return 0;
2972 }
2973 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2974 
2975 /* Basic iterator support to walk early_node_map[] */
2976 #define for_each_active_range_index_in_nid(i, nid) \
2977 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2978 				i = next_active_region_index_in_nid(i, nid))
2979 
2980 /**
2981  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2982  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2983  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2984  *
2985  * If an architecture guarantees that all ranges registered with
2986  * add_active_ranges() contain no holes and may be freed, this
2987  * this function may be used instead of calling free_bootmem() manually.
2988  */
2989 void __init free_bootmem_with_active_regions(int nid,
2990 						unsigned long max_low_pfn)
2991 {
2992 	int i;
2993 
2994 	for_each_active_range_index_in_nid(i, nid) {
2995 		unsigned long size_pages = 0;
2996 		unsigned long end_pfn = early_node_map[i].end_pfn;
2997 
2998 		if (early_node_map[i].start_pfn >= max_low_pfn)
2999 			continue;
3000 
3001 		if (end_pfn > max_low_pfn)
3002 			end_pfn = max_low_pfn;
3003 
3004 		size_pages = end_pfn - early_node_map[i].start_pfn;
3005 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3006 				PFN_PHYS(early_node_map[i].start_pfn),
3007 				size_pages << PAGE_SHIFT);
3008 	}
3009 }
3010 
3011 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3012 {
3013 	int i;
3014 	int ret;
3015 
3016 	for_each_active_range_index_in_nid(i, nid) {
3017 		ret = work_fn(early_node_map[i].start_pfn,
3018 			      early_node_map[i].end_pfn, data);
3019 		if (ret)
3020 			break;
3021 	}
3022 }
3023 /**
3024  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3025  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3026  *
3027  * If an architecture guarantees that all ranges registered with
3028  * add_active_ranges() contain no holes and may be freed, this
3029  * function may be used instead of calling memory_present() manually.
3030  */
3031 void __init sparse_memory_present_with_active_regions(int nid)
3032 {
3033 	int i;
3034 
3035 	for_each_active_range_index_in_nid(i, nid)
3036 		memory_present(early_node_map[i].nid,
3037 				early_node_map[i].start_pfn,
3038 				early_node_map[i].end_pfn);
3039 }
3040 
3041 /**
3042  * push_node_boundaries - Push node boundaries to at least the requested boundary
3043  * @nid: The nid of the node to push the boundary for
3044  * @start_pfn: The start pfn of the node
3045  * @end_pfn: The end pfn of the node
3046  *
3047  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3048  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3049  * be hotplugged even though no physical memory exists. This function allows
3050  * an arch to push out the node boundaries so mem_map is allocated that can
3051  * be used later.
3052  */
3053 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3054 void __init push_node_boundaries(unsigned int nid,
3055 		unsigned long start_pfn, unsigned long end_pfn)
3056 {
3057 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3058 			"Entering push_node_boundaries(%u, %lu, %lu)\n",
3059 			nid, start_pfn, end_pfn);
3060 
3061 	/* Initialise the boundary for this node if necessary */
3062 	if (node_boundary_end_pfn[nid] == 0)
3063 		node_boundary_start_pfn[nid] = -1UL;
3064 
3065 	/* Update the boundaries */
3066 	if (node_boundary_start_pfn[nid] > start_pfn)
3067 		node_boundary_start_pfn[nid] = start_pfn;
3068 	if (node_boundary_end_pfn[nid] < end_pfn)
3069 		node_boundary_end_pfn[nid] = end_pfn;
3070 }
3071 
3072 /* If necessary, push the node boundary out for reserve hotadd */
3073 static void __meminit account_node_boundary(unsigned int nid,
3074 		unsigned long *start_pfn, unsigned long *end_pfn)
3075 {
3076 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3077 			"Entering account_node_boundary(%u, %lu, %lu)\n",
3078 			nid, *start_pfn, *end_pfn);
3079 
3080 	/* Return if boundary information has not been provided */
3081 	if (node_boundary_end_pfn[nid] == 0)
3082 		return;
3083 
3084 	/* Check the boundaries and update if necessary */
3085 	if (node_boundary_start_pfn[nid] < *start_pfn)
3086 		*start_pfn = node_boundary_start_pfn[nid];
3087 	if (node_boundary_end_pfn[nid] > *end_pfn)
3088 		*end_pfn = node_boundary_end_pfn[nid];
3089 }
3090 #else
3091 void __init push_node_boundaries(unsigned int nid,
3092 		unsigned long start_pfn, unsigned long end_pfn) {}
3093 
3094 static void __meminit account_node_boundary(unsigned int nid,
3095 		unsigned long *start_pfn, unsigned long *end_pfn) {}
3096 #endif
3097 
3098 
3099 /**
3100  * get_pfn_range_for_nid - Return the start and end page frames for a node
3101  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3102  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3103  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3104  *
3105  * It returns the start and end page frame of a node based on information
3106  * provided by an arch calling add_active_range(). If called for a node
3107  * with no available memory, a warning is printed and the start and end
3108  * PFNs will be 0.
3109  */
3110 void __meminit get_pfn_range_for_nid(unsigned int nid,
3111 			unsigned long *start_pfn, unsigned long *end_pfn)
3112 {
3113 	int i;
3114 	*start_pfn = -1UL;
3115 	*end_pfn = 0;
3116 
3117 	for_each_active_range_index_in_nid(i, nid) {
3118 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3119 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3120 	}
3121 
3122 	if (*start_pfn == -1UL)
3123 		*start_pfn = 0;
3124 
3125 	/* Push the node boundaries out if requested */
3126 	account_node_boundary(nid, start_pfn, end_pfn);
3127 }
3128 
3129 /*
3130  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3131  * assumption is made that zones within a node are ordered in monotonic
3132  * increasing memory addresses so that the "highest" populated zone is used
3133  */
3134 static void __init find_usable_zone_for_movable(void)
3135 {
3136 	int zone_index;
3137 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3138 		if (zone_index == ZONE_MOVABLE)
3139 			continue;
3140 
3141 		if (arch_zone_highest_possible_pfn[zone_index] >
3142 				arch_zone_lowest_possible_pfn[zone_index])
3143 			break;
3144 	}
3145 
3146 	VM_BUG_ON(zone_index == -1);
3147 	movable_zone = zone_index;
3148 }
3149 
3150 /*
3151  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3152  * because it is sized independant of architecture. Unlike the other zones,
3153  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3154  * in each node depending on the size of each node and how evenly kernelcore
3155  * is distributed. This helper function adjusts the zone ranges
3156  * provided by the architecture for a given node by using the end of the
3157  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3158  * zones within a node are in order of monotonic increases memory addresses
3159  */
3160 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3161 					unsigned long zone_type,
3162 					unsigned long node_start_pfn,
3163 					unsigned long node_end_pfn,
3164 					unsigned long *zone_start_pfn,
3165 					unsigned long *zone_end_pfn)
3166 {
3167 	/* Only adjust if ZONE_MOVABLE is on this node */
3168 	if (zone_movable_pfn[nid]) {
3169 		/* Size ZONE_MOVABLE */
3170 		if (zone_type == ZONE_MOVABLE) {
3171 			*zone_start_pfn = zone_movable_pfn[nid];
3172 			*zone_end_pfn = min(node_end_pfn,
3173 				arch_zone_highest_possible_pfn[movable_zone]);
3174 
3175 		/* Adjust for ZONE_MOVABLE starting within this range */
3176 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3177 				*zone_end_pfn > zone_movable_pfn[nid]) {
3178 			*zone_end_pfn = zone_movable_pfn[nid];
3179 
3180 		/* Check if this whole range is within ZONE_MOVABLE */
3181 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3182 			*zone_start_pfn = *zone_end_pfn;
3183 	}
3184 }
3185 
3186 /*
3187  * Return the number of pages a zone spans in a node, including holes
3188  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3189  */
3190 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3191 					unsigned long zone_type,
3192 					unsigned long *ignored)
3193 {
3194 	unsigned long node_start_pfn, node_end_pfn;
3195 	unsigned long zone_start_pfn, zone_end_pfn;
3196 
3197 	/* Get the start and end of the node and zone */
3198 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3199 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3200 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3201 	adjust_zone_range_for_zone_movable(nid, zone_type,
3202 				node_start_pfn, node_end_pfn,
3203 				&zone_start_pfn, &zone_end_pfn);
3204 
3205 	/* Check that this node has pages within the zone's required range */
3206 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3207 		return 0;
3208 
3209 	/* Move the zone boundaries inside the node if necessary */
3210 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3211 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3212 
3213 	/* Return the spanned pages */
3214 	return zone_end_pfn - zone_start_pfn;
3215 }
3216 
3217 /*
3218  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3219  * then all holes in the requested range will be accounted for.
3220  */
3221 static unsigned long __meminit __absent_pages_in_range(int nid,
3222 				unsigned long range_start_pfn,
3223 				unsigned long range_end_pfn)
3224 {
3225 	int i = 0;
3226 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3227 	unsigned long start_pfn;
3228 
3229 	/* Find the end_pfn of the first active range of pfns in the node */
3230 	i = first_active_region_index_in_nid(nid);
3231 	if (i == -1)
3232 		return 0;
3233 
3234 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3235 
3236 	/* Account for ranges before physical memory on this node */
3237 	if (early_node_map[i].start_pfn > range_start_pfn)
3238 		hole_pages = prev_end_pfn - range_start_pfn;
3239 
3240 	/* Find all holes for the zone within the node */
3241 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3242 
3243 		/* No need to continue if prev_end_pfn is outside the zone */
3244 		if (prev_end_pfn >= range_end_pfn)
3245 			break;
3246 
3247 		/* Make sure the end of the zone is not within the hole */
3248 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3249 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3250 
3251 		/* Update the hole size cound and move on */
3252 		if (start_pfn > range_start_pfn) {
3253 			BUG_ON(prev_end_pfn > start_pfn);
3254 			hole_pages += start_pfn - prev_end_pfn;
3255 		}
3256 		prev_end_pfn = early_node_map[i].end_pfn;
3257 	}
3258 
3259 	/* Account for ranges past physical memory on this node */
3260 	if (range_end_pfn > prev_end_pfn)
3261 		hole_pages += range_end_pfn -
3262 				max(range_start_pfn, prev_end_pfn);
3263 
3264 	return hole_pages;
3265 }
3266 
3267 /**
3268  * absent_pages_in_range - Return number of page frames in holes within a range
3269  * @start_pfn: The start PFN to start searching for holes
3270  * @end_pfn: The end PFN to stop searching for holes
3271  *
3272  * It returns the number of pages frames in memory holes within a range.
3273  */
3274 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3275 							unsigned long end_pfn)
3276 {
3277 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3278 }
3279 
3280 /* Return the number of page frames in holes in a zone on a node */
3281 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3282 					unsigned long zone_type,
3283 					unsigned long *ignored)
3284 {
3285 	unsigned long node_start_pfn, node_end_pfn;
3286 	unsigned long zone_start_pfn, zone_end_pfn;
3287 
3288 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3289 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3290 							node_start_pfn);
3291 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3292 							node_end_pfn);
3293 
3294 	adjust_zone_range_for_zone_movable(nid, zone_type,
3295 			node_start_pfn, node_end_pfn,
3296 			&zone_start_pfn, &zone_end_pfn);
3297 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3298 }
3299 
3300 #else
3301 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3302 					unsigned long zone_type,
3303 					unsigned long *zones_size)
3304 {
3305 	return zones_size[zone_type];
3306 }
3307 
3308 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3309 						unsigned long zone_type,
3310 						unsigned long *zholes_size)
3311 {
3312 	if (!zholes_size)
3313 		return 0;
3314 
3315 	return zholes_size[zone_type];
3316 }
3317 
3318 #endif
3319 
3320 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3321 		unsigned long *zones_size, unsigned long *zholes_size)
3322 {
3323 	unsigned long realtotalpages, totalpages = 0;
3324 	enum zone_type i;
3325 
3326 	for (i = 0; i < MAX_NR_ZONES; i++)
3327 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3328 								zones_size);
3329 	pgdat->node_spanned_pages = totalpages;
3330 
3331 	realtotalpages = totalpages;
3332 	for (i = 0; i < MAX_NR_ZONES; i++)
3333 		realtotalpages -=
3334 			zone_absent_pages_in_node(pgdat->node_id, i,
3335 								zholes_size);
3336 	pgdat->node_present_pages = realtotalpages;
3337 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3338 							realtotalpages);
3339 }
3340 
3341 #ifndef CONFIG_SPARSEMEM
3342 /*
3343  * Calculate the size of the zone->blockflags rounded to an unsigned long
3344  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3345  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3346  * round what is now in bits to nearest long in bits, then return it in
3347  * bytes.
3348  */
3349 static unsigned long __init usemap_size(unsigned long zonesize)
3350 {
3351 	unsigned long usemapsize;
3352 
3353 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3354 	usemapsize = usemapsize >> pageblock_order;
3355 	usemapsize *= NR_PAGEBLOCK_BITS;
3356 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3357 
3358 	return usemapsize / 8;
3359 }
3360 
3361 static void __init setup_usemap(struct pglist_data *pgdat,
3362 				struct zone *zone, unsigned long zonesize)
3363 {
3364 	unsigned long usemapsize = usemap_size(zonesize);
3365 	zone->pageblock_flags = NULL;
3366 	if (usemapsize) {
3367 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3368 		memset(zone->pageblock_flags, 0, usemapsize);
3369 	}
3370 }
3371 #else
3372 static void inline setup_usemap(struct pglist_data *pgdat,
3373 				struct zone *zone, unsigned long zonesize) {}
3374 #endif /* CONFIG_SPARSEMEM */
3375 
3376 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3377 
3378 /* Return a sensible default order for the pageblock size. */
3379 static inline int pageblock_default_order(void)
3380 {
3381 	if (HPAGE_SHIFT > PAGE_SHIFT)
3382 		return HUGETLB_PAGE_ORDER;
3383 
3384 	return MAX_ORDER-1;
3385 }
3386 
3387 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3388 static inline void __init set_pageblock_order(unsigned int order)
3389 {
3390 	/* Check that pageblock_nr_pages has not already been setup */
3391 	if (pageblock_order)
3392 		return;
3393 
3394 	/*
3395 	 * Assume the largest contiguous order of interest is a huge page.
3396 	 * This value may be variable depending on boot parameters on IA64
3397 	 */
3398 	pageblock_order = order;
3399 }
3400 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3401 
3402 /*
3403  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3404  * and pageblock_default_order() are unused as pageblock_order is set
3405  * at compile-time. See include/linux/pageblock-flags.h for the values of
3406  * pageblock_order based on the kernel config
3407  */
3408 static inline int pageblock_default_order(unsigned int order)
3409 {
3410 	return MAX_ORDER-1;
3411 }
3412 #define set_pageblock_order(x)	do {} while (0)
3413 
3414 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3415 
3416 /*
3417  * Set up the zone data structures:
3418  *   - mark all pages reserved
3419  *   - mark all memory queues empty
3420  *   - clear the memory bitmaps
3421  */
3422 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3423 		unsigned long *zones_size, unsigned long *zholes_size)
3424 {
3425 	enum zone_type j;
3426 	int nid = pgdat->node_id;
3427 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3428 	int ret;
3429 
3430 	pgdat_resize_init(pgdat);
3431 	pgdat->nr_zones = 0;
3432 	init_waitqueue_head(&pgdat->kswapd_wait);
3433 	pgdat->kswapd_max_order = 0;
3434 	pgdat_page_cgroup_init(pgdat);
3435 
3436 	for (j = 0; j < MAX_NR_ZONES; j++) {
3437 		struct zone *zone = pgdat->node_zones + j;
3438 		unsigned long size, realsize, memmap_pages;
3439 		enum lru_list l;
3440 
3441 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3442 		realsize = size - zone_absent_pages_in_node(nid, j,
3443 								zholes_size);
3444 
3445 		/*
3446 		 * Adjust realsize so that it accounts for how much memory
3447 		 * is used by this zone for memmap. This affects the watermark
3448 		 * and per-cpu initialisations
3449 		 */
3450 		memmap_pages =
3451 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3452 		if (realsize >= memmap_pages) {
3453 			realsize -= memmap_pages;
3454 			printk(KERN_DEBUG
3455 				"  %s zone: %lu pages used for memmap\n",
3456 				zone_names[j], memmap_pages);
3457 		} else
3458 			printk(KERN_WARNING
3459 				"  %s zone: %lu pages exceeds realsize %lu\n",
3460 				zone_names[j], memmap_pages, realsize);
3461 
3462 		/* Account for reserved pages */
3463 		if (j == 0 && realsize > dma_reserve) {
3464 			realsize -= dma_reserve;
3465 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3466 					zone_names[0], dma_reserve);
3467 		}
3468 
3469 		if (!is_highmem_idx(j))
3470 			nr_kernel_pages += realsize;
3471 		nr_all_pages += realsize;
3472 
3473 		zone->spanned_pages = size;
3474 		zone->present_pages = realsize;
3475 #ifdef CONFIG_NUMA
3476 		zone->node = nid;
3477 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3478 						/ 100;
3479 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3480 #endif
3481 		zone->name = zone_names[j];
3482 		spin_lock_init(&zone->lock);
3483 		spin_lock_init(&zone->lru_lock);
3484 		zone_seqlock_init(zone);
3485 		zone->zone_pgdat = pgdat;
3486 
3487 		zone->prev_priority = DEF_PRIORITY;
3488 
3489 		zone_pcp_init(zone);
3490 		for_each_lru(l) {
3491 			INIT_LIST_HEAD(&zone->lru[l].list);
3492 			zone->lru[l].nr_scan = 0;
3493 		}
3494 		zone->recent_rotated[0] = 0;
3495 		zone->recent_rotated[1] = 0;
3496 		zone->recent_scanned[0] = 0;
3497 		zone->recent_scanned[1] = 0;
3498 		zap_zone_vm_stats(zone);
3499 		zone->flags = 0;
3500 		if (!size)
3501 			continue;
3502 
3503 		set_pageblock_order(pageblock_default_order());
3504 		setup_usemap(pgdat, zone, size);
3505 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3506 						size, MEMMAP_EARLY);
3507 		BUG_ON(ret);
3508 		memmap_init(size, nid, j, zone_start_pfn);
3509 		zone_start_pfn += size;
3510 	}
3511 }
3512 
3513 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3514 {
3515 	/* Skip empty nodes */
3516 	if (!pgdat->node_spanned_pages)
3517 		return;
3518 
3519 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3520 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3521 	if (!pgdat->node_mem_map) {
3522 		unsigned long size, start, end;
3523 		struct page *map;
3524 
3525 		/*
3526 		 * The zone's endpoints aren't required to be MAX_ORDER
3527 		 * aligned but the node_mem_map endpoints must be in order
3528 		 * for the buddy allocator to function correctly.
3529 		 */
3530 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3531 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3532 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3533 		size =  (end - start) * sizeof(struct page);
3534 		map = alloc_remap(pgdat->node_id, size);
3535 		if (!map)
3536 			map = alloc_bootmem_node(pgdat, size);
3537 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3538 	}
3539 #ifndef CONFIG_NEED_MULTIPLE_NODES
3540 	/*
3541 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3542 	 */
3543 	if (pgdat == NODE_DATA(0)) {
3544 		mem_map = NODE_DATA(0)->node_mem_map;
3545 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3546 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3547 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3548 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3549 	}
3550 #endif
3551 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3552 }
3553 
3554 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3555 		unsigned long node_start_pfn, unsigned long *zholes_size)
3556 {
3557 	pg_data_t *pgdat = NODE_DATA(nid);
3558 
3559 	pgdat->node_id = nid;
3560 	pgdat->node_start_pfn = node_start_pfn;
3561 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3562 
3563 	alloc_node_mem_map(pgdat);
3564 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3565 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3566 		nid, (unsigned long)pgdat,
3567 		(unsigned long)pgdat->node_mem_map);
3568 #endif
3569 
3570 	free_area_init_core(pgdat, zones_size, zholes_size);
3571 }
3572 
3573 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3574 
3575 #if MAX_NUMNODES > 1
3576 /*
3577  * Figure out the number of possible node ids.
3578  */
3579 static void __init setup_nr_node_ids(void)
3580 {
3581 	unsigned int node;
3582 	unsigned int highest = 0;
3583 
3584 	for_each_node_mask(node, node_possible_map)
3585 		highest = node;
3586 	nr_node_ids = highest + 1;
3587 }
3588 #else
3589 static inline void setup_nr_node_ids(void)
3590 {
3591 }
3592 #endif
3593 
3594 /**
3595  * add_active_range - Register a range of PFNs backed by physical memory
3596  * @nid: The node ID the range resides on
3597  * @start_pfn: The start PFN of the available physical memory
3598  * @end_pfn: The end PFN of the available physical memory
3599  *
3600  * These ranges are stored in an early_node_map[] and later used by
3601  * free_area_init_nodes() to calculate zone sizes and holes. If the
3602  * range spans a memory hole, it is up to the architecture to ensure
3603  * the memory is not freed by the bootmem allocator. If possible
3604  * the range being registered will be merged with existing ranges.
3605  */
3606 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3607 						unsigned long end_pfn)
3608 {
3609 	int i;
3610 
3611 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3612 			"Entering add_active_range(%d, %#lx, %#lx) "
3613 			"%d entries of %d used\n",
3614 			nid, start_pfn, end_pfn,
3615 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3616 
3617 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3618 
3619 	/* Merge with existing active regions if possible */
3620 	for (i = 0; i < nr_nodemap_entries; i++) {
3621 		if (early_node_map[i].nid != nid)
3622 			continue;
3623 
3624 		/* Skip if an existing region covers this new one */
3625 		if (start_pfn >= early_node_map[i].start_pfn &&
3626 				end_pfn <= early_node_map[i].end_pfn)
3627 			return;
3628 
3629 		/* Merge forward if suitable */
3630 		if (start_pfn <= early_node_map[i].end_pfn &&
3631 				end_pfn > early_node_map[i].end_pfn) {
3632 			early_node_map[i].end_pfn = end_pfn;
3633 			return;
3634 		}
3635 
3636 		/* Merge backward if suitable */
3637 		if (start_pfn < early_node_map[i].end_pfn &&
3638 				end_pfn >= early_node_map[i].start_pfn) {
3639 			early_node_map[i].start_pfn = start_pfn;
3640 			return;
3641 		}
3642 	}
3643 
3644 	/* Check that early_node_map is large enough */
3645 	if (i >= MAX_ACTIVE_REGIONS) {
3646 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3647 							MAX_ACTIVE_REGIONS);
3648 		return;
3649 	}
3650 
3651 	early_node_map[i].nid = nid;
3652 	early_node_map[i].start_pfn = start_pfn;
3653 	early_node_map[i].end_pfn = end_pfn;
3654 	nr_nodemap_entries = i + 1;
3655 }
3656 
3657 /**
3658  * remove_active_range - Shrink an existing registered range of PFNs
3659  * @nid: The node id the range is on that should be shrunk
3660  * @start_pfn: The new PFN of the range
3661  * @end_pfn: The new PFN of the range
3662  *
3663  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3664  * The map is kept near the end physical page range that has already been
3665  * registered. This function allows an arch to shrink an existing registered
3666  * range.
3667  */
3668 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3669 				unsigned long end_pfn)
3670 {
3671 	int i, j;
3672 	int removed = 0;
3673 
3674 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3675 			  nid, start_pfn, end_pfn);
3676 
3677 	/* Find the old active region end and shrink */
3678 	for_each_active_range_index_in_nid(i, nid) {
3679 		if (early_node_map[i].start_pfn >= start_pfn &&
3680 		    early_node_map[i].end_pfn <= end_pfn) {
3681 			/* clear it */
3682 			early_node_map[i].start_pfn = 0;
3683 			early_node_map[i].end_pfn = 0;
3684 			removed = 1;
3685 			continue;
3686 		}
3687 		if (early_node_map[i].start_pfn < start_pfn &&
3688 		    early_node_map[i].end_pfn > start_pfn) {
3689 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3690 			early_node_map[i].end_pfn = start_pfn;
3691 			if (temp_end_pfn > end_pfn)
3692 				add_active_range(nid, end_pfn, temp_end_pfn);
3693 			continue;
3694 		}
3695 		if (early_node_map[i].start_pfn >= start_pfn &&
3696 		    early_node_map[i].end_pfn > end_pfn &&
3697 		    early_node_map[i].start_pfn < end_pfn) {
3698 			early_node_map[i].start_pfn = end_pfn;
3699 			continue;
3700 		}
3701 	}
3702 
3703 	if (!removed)
3704 		return;
3705 
3706 	/* remove the blank ones */
3707 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3708 		if (early_node_map[i].nid != nid)
3709 			continue;
3710 		if (early_node_map[i].end_pfn)
3711 			continue;
3712 		/* we found it, get rid of it */
3713 		for (j = i; j < nr_nodemap_entries - 1; j++)
3714 			memcpy(&early_node_map[j], &early_node_map[j+1],
3715 				sizeof(early_node_map[j]));
3716 		j = nr_nodemap_entries - 1;
3717 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3718 		nr_nodemap_entries--;
3719 	}
3720 }
3721 
3722 /**
3723  * remove_all_active_ranges - Remove all currently registered regions
3724  *
3725  * During discovery, it may be found that a table like SRAT is invalid
3726  * and an alternative discovery method must be used. This function removes
3727  * all currently registered regions.
3728  */
3729 void __init remove_all_active_ranges(void)
3730 {
3731 	memset(early_node_map, 0, sizeof(early_node_map));
3732 	nr_nodemap_entries = 0;
3733 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3734 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3735 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3736 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3737 }
3738 
3739 /* Compare two active node_active_regions */
3740 static int __init cmp_node_active_region(const void *a, const void *b)
3741 {
3742 	struct node_active_region *arange = (struct node_active_region *)a;
3743 	struct node_active_region *brange = (struct node_active_region *)b;
3744 
3745 	/* Done this way to avoid overflows */
3746 	if (arange->start_pfn > brange->start_pfn)
3747 		return 1;
3748 	if (arange->start_pfn < brange->start_pfn)
3749 		return -1;
3750 
3751 	return 0;
3752 }
3753 
3754 /* sort the node_map by start_pfn */
3755 static void __init sort_node_map(void)
3756 {
3757 	sort(early_node_map, (size_t)nr_nodemap_entries,
3758 			sizeof(struct node_active_region),
3759 			cmp_node_active_region, NULL);
3760 }
3761 
3762 /* Find the lowest pfn for a node */
3763 static unsigned long __init find_min_pfn_for_node(int nid)
3764 {
3765 	int i;
3766 	unsigned long min_pfn = ULONG_MAX;
3767 
3768 	/* Assuming a sorted map, the first range found has the starting pfn */
3769 	for_each_active_range_index_in_nid(i, nid)
3770 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3771 
3772 	if (min_pfn == ULONG_MAX) {
3773 		printk(KERN_WARNING
3774 			"Could not find start_pfn for node %d\n", nid);
3775 		return 0;
3776 	}
3777 
3778 	return min_pfn;
3779 }
3780 
3781 /**
3782  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3783  *
3784  * It returns the minimum PFN based on information provided via
3785  * add_active_range().
3786  */
3787 unsigned long __init find_min_pfn_with_active_regions(void)
3788 {
3789 	return find_min_pfn_for_node(MAX_NUMNODES);
3790 }
3791 
3792 /*
3793  * early_calculate_totalpages()
3794  * Sum pages in active regions for movable zone.
3795  * Populate N_HIGH_MEMORY for calculating usable_nodes.
3796  */
3797 static unsigned long __init early_calculate_totalpages(void)
3798 {
3799 	int i;
3800 	unsigned long totalpages = 0;
3801 
3802 	for (i = 0; i < nr_nodemap_entries; i++) {
3803 		unsigned long pages = early_node_map[i].end_pfn -
3804 						early_node_map[i].start_pfn;
3805 		totalpages += pages;
3806 		if (pages)
3807 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3808 	}
3809   	return totalpages;
3810 }
3811 
3812 /*
3813  * Find the PFN the Movable zone begins in each node. Kernel memory
3814  * is spread evenly between nodes as long as the nodes have enough
3815  * memory. When they don't, some nodes will have more kernelcore than
3816  * others
3817  */
3818 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3819 {
3820 	int i, nid;
3821 	unsigned long usable_startpfn;
3822 	unsigned long kernelcore_node, kernelcore_remaining;
3823 	unsigned long totalpages = early_calculate_totalpages();
3824 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3825 
3826 	/*
3827 	 * If movablecore was specified, calculate what size of
3828 	 * kernelcore that corresponds so that memory usable for
3829 	 * any allocation type is evenly spread. If both kernelcore
3830 	 * and movablecore are specified, then the value of kernelcore
3831 	 * will be used for required_kernelcore if it's greater than
3832 	 * what movablecore would have allowed.
3833 	 */
3834 	if (required_movablecore) {
3835 		unsigned long corepages;
3836 
3837 		/*
3838 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3839 		 * was requested by the user
3840 		 */
3841 		required_movablecore =
3842 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3843 		corepages = totalpages - required_movablecore;
3844 
3845 		required_kernelcore = max(required_kernelcore, corepages);
3846 	}
3847 
3848 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3849 	if (!required_kernelcore)
3850 		return;
3851 
3852 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3853 	find_usable_zone_for_movable();
3854 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3855 
3856 restart:
3857 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3858 	kernelcore_node = required_kernelcore / usable_nodes;
3859 	for_each_node_state(nid, N_HIGH_MEMORY) {
3860 		/*
3861 		 * Recalculate kernelcore_node if the division per node
3862 		 * now exceeds what is necessary to satisfy the requested
3863 		 * amount of memory for the kernel
3864 		 */
3865 		if (required_kernelcore < kernelcore_node)
3866 			kernelcore_node = required_kernelcore / usable_nodes;
3867 
3868 		/*
3869 		 * As the map is walked, we track how much memory is usable
3870 		 * by the kernel using kernelcore_remaining. When it is
3871 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3872 		 */
3873 		kernelcore_remaining = kernelcore_node;
3874 
3875 		/* Go through each range of PFNs within this node */
3876 		for_each_active_range_index_in_nid(i, nid) {
3877 			unsigned long start_pfn, end_pfn;
3878 			unsigned long size_pages;
3879 
3880 			start_pfn = max(early_node_map[i].start_pfn,
3881 						zone_movable_pfn[nid]);
3882 			end_pfn = early_node_map[i].end_pfn;
3883 			if (start_pfn >= end_pfn)
3884 				continue;
3885 
3886 			/* Account for what is only usable for kernelcore */
3887 			if (start_pfn < usable_startpfn) {
3888 				unsigned long kernel_pages;
3889 				kernel_pages = min(end_pfn, usable_startpfn)
3890 								- start_pfn;
3891 
3892 				kernelcore_remaining -= min(kernel_pages,
3893 							kernelcore_remaining);
3894 				required_kernelcore -= min(kernel_pages,
3895 							required_kernelcore);
3896 
3897 				/* Continue if range is now fully accounted */
3898 				if (end_pfn <= usable_startpfn) {
3899 
3900 					/*
3901 					 * Push zone_movable_pfn to the end so
3902 					 * that if we have to rebalance
3903 					 * kernelcore across nodes, we will
3904 					 * not double account here
3905 					 */
3906 					zone_movable_pfn[nid] = end_pfn;
3907 					continue;
3908 				}
3909 				start_pfn = usable_startpfn;
3910 			}
3911 
3912 			/*
3913 			 * The usable PFN range for ZONE_MOVABLE is from
3914 			 * start_pfn->end_pfn. Calculate size_pages as the
3915 			 * number of pages used as kernelcore
3916 			 */
3917 			size_pages = end_pfn - start_pfn;
3918 			if (size_pages > kernelcore_remaining)
3919 				size_pages = kernelcore_remaining;
3920 			zone_movable_pfn[nid] = start_pfn + size_pages;
3921 
3922 			/*
3923 			 * Some kernelcore has been met, update counts and
3924 			 * break if the kernelcore for this node has been
3925 			 * satisified
3926 			 */
3927 			required_kernelcore -= min(required_kernelcore,
3928 								size_pages);
3929 			kernelcore_remaining -= size_pages;
3930 			if (!kernelcore_remaining)
3931 				break;
3932 		}
3933 	}
3934 
3935 	/*
3936 	 * If there is still required_kernelcore, we do another pass with one
3937 	 * less node in the count. This will push zone_movable_pfn[nid] further
3938 	 * along on the nodes that still have memory until kernelcore is
3939 	 * satisified
3940 	 */
3941 	usable_nodes--;
3942 	if (usable_nodes && required_kernelcore > usable_nodes)
3943 		goto restart;
3944 
3945 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3946 	for (nid = 0; nid < MAX_NUMNODES; nid++)
3947 		zone_movable_pfn[nid] =
3948 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3949 }
3950 
3951 /* Any regular memory on that node ? */
3952 static void check_for_regular_memory(pg_data_t *pgdat)
3953 {
3954 #ifdef CONFIG_HIGHMEM
3955 	enum zone_type zone_type;
3956 
3957 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3958 		struct zone *zone = &pgdat->node_zones[zone_type];
3959 		if (zone->present_pages)
3960 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3961 	}
3962 #endif
3963 }
3964 
3965 /**
3966  * free_area_init_nodes - Initialise all pg_data_t and zone data
3967  * @max_zone_pfn: an array of max PFNs for each zone
3968  *
3969  * This will call free_area_init_node() for each active node in the system.
3970  * Using the page ranges provided by add_active_range(), the size of each
3971  * zone in each node and their holes is calculated. If the maximum PFN
3972  * between two adjacent zones match, it is assumed that the zone is empty.
3973  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3974  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3975  * starts where the previous one ended. For example, ZONE_DMA32 starts
3976  * at arch_max_dma_pfn.
3977  */
3978 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3979 {
3980 	unsigned long nid;
3981 	int i;
3982 
3983 	/* Sort early_node_map as initialisation assumes it is sorted */
3984 	sort_node_map();
3985 
3986 	/* Record where the zone boundaries are */
3987 	memset(arch_zone_lowest_possible_pfn, 0,
3988 				sizeof(arch_zone_lowest_possible_pfn));
3989 	memset(arch_zone_highest_possible_pfn, 0,
3990 				sizeof(arch_zone_highest_possible_pfn));
3991 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3992 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3993 	for (i = 1; i < MAX_NR_ZONES; i++) {
3994 		if (i == ZONE_MOVABLE)
3995 			continue;
3996 		arch_zone_lowest_possible_pfn[i] =
3997 			arch_zone_highest_possible_pfn[i-1];
3998 		arch_zone_highest_possible_pfn[i] =
3999 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4000 	}
4001 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4002 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4003 
4004 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4005 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4006 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4007 
4008 	/* Print out the zone ranges */
4009 	printk("Zone PFN ranges:\n");
4010 	for (i = 0; i < MAX_NR_ZONES; i++) {
4011 		if (i == ZONE_MOVABLE)
4012 			continue;
4013 		printk("  %-8s %0#10lx -> %0#10lx\n",
4014 				zone_names[i],
4015 				arch_zone_lowest_possible_pfn[i],
4016 				arch_zone_highest_possible_pfn[i]);
4017 	}
4018 
4019 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4020 	printk("Movable zone start PFN for each node\n");
4021 	for (i = 0; i < MAX_NUMNODES; i++) {
4022 		if (zone_movable_pfn[i])
4023 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4024 	}
4025 
4026 	/* Print out the early_node_map[] */
4027 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4028 	for (i = 0; i < nr_nodemap_entries; i++)
4029 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4030 						early_node_map[i].start_pfn,
4031 						early_node_map[i].end_pfn);
4032 
4033 	/* Initialise every node */
4034 	mminit_verify_pageflags_layout();
4035 	setup_nr_node_ids();
4036 	for_each_online_node(nid) {
4037 		pg_data_t *pgdat = NODE_DATA(nid);
4038 		free_area_init_node(nid, NULL,
4039 				find_min_pfn_for_node(nid), NULL);
4040 
4041 		/* Any memory on that node */
4042 		if (pgdat->node_present_pages)
4043 			node_set_state(nid, N_HIGH_MEMORY);
4044 		check_for_regular_memory(pgdat);
4045 	}
4046 }
4047 
4048 static int __init cmdline_parse_core(char *p, unsigned long *core)
4049 {
4050 	unsigned long long coremem;
4051 	if (!p)
4052 		return -EINVAL;
4053 
4054 	coremem = memparse(p, &p);
4055 	*core = coremem >> PAGE_SHIFT;
4056 
4057 	/* Paranoid check that UL is enough for the coremem value */
4058 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4059 
4060 	return 0;
4061 }
4062 
4063 /*
4064  * kernelcore=size sets the amount of memory for use for allocations that
4065  * cannot be reclaimed or migrated.
4066  */
4067 static int __init cmdline_parse_kernelcore(char *p)
4068 {
4069 	return cmdline_parse_core(p, &required_kernelcore);
4070 }
4071 
4072 /*
4073  * movablecore=size sets the amount of memory for use for allocations that
4074  * can be reclaimed or migrated.
4075  */
4076 static int __init cmdline_parse_movablecore(char *p)
4077 {
4078 	return cmdline_parse_core(p, &required_movablecore);
4079 }
4080 
4081 early_param("kernelcore", cmdline_parse_kernelcore);
4082 early_param("movablecore", cmdline_parse_movablecore);
4083 
4084 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4085 
4086 /**
4087  * set_dma_reserve - set the specified number of pages reserved in the first zone
4088  * @new_dma_reserve: The number of pages to mark reserved
4089  *
4090  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4091  * In the DMA zone, a significant percentage may be consumed by kernel image
4092  * and other unfreeable allocations which can skew the watermarks badly. This
4093  * function may optionally be used to account for unfreeable pages in the
4094  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4095  * smaller per-cpu batchsize.
4096  */
4097 void __init set_dma_reserve(unsigned long new_dma_reserve)
4098 {
4099 	dma_reserve = new_dma_reserve;
4100 }
4101 
4102 #ifndef CONFIG_NEED_MULTIPLE_NODES
4103 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4104 EXPORT_SYMBOL(contig_page_data);
4105 #endif
4106 
4107 void __init free_area_init(unsigned long *zones_size)
4108 {
4109 	free_area_init_node(0, zones_size,
4110 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4111 }
4112 
4113 static int page_alloc_cpu_notify(struct notifier_block *self,
4114 				 unsigned long action, void *hcpu)
4115 {
4116 	int cpu = (unsigned long)hcpu;
4117 
4118 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4119 		drain_pages(cpu);
4120 
4121 		/*
4122 		 * Spill the event counters of the dead processor
4123 		 * into the current processors event counters.
4124 		 * This artificially elevates the count of the current
4125 		 * processor.
4126 		 */
4127 		vm_events_fold_cpu(cpu);
4128 
4129 		/*
4130 		 * Zero the differential counters of the dead processor
4131 		 * so that the vm statistics are consistent.
4132 		 *
4133 		 * This is only okay since the processor is dead and cannot
4134 		 * race with what we are doing.
4135 		 */
4136 		refresh_cpu_vm_stats(cpu);
4137 	}
4138 	return NOTIFY_OK;
4139 }
4140 
4141 void __init page_alloc_init(void)
4142 {
4143 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4144 }
4145 
4146 /*
4147  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4148  *	or min_free_kbytes changes.
4149  */
4150 static void calculate_totalreserve_pages(void)
4151 {
4152 	struct pglist_data *pgdat;
4153 	unsigned long reserve_pages = 0;
4154 	enum zone_type i, j;
4155 
4156 	for_each_online_pgdat(pgdat) {
4157 		for (i = 0; i < MAX_NR_ZONES; i++) {
4158 			struct zone *zone = pgdat->node_zones + i;
4159 			unsigned long max = 0;
4160 
4161 			/* Find valid and maximum lowmem_reserve in the zone */
4162 			for (j = i; j < MAX_NR_ZONES; j++) {
4163 				if (zone->lowmem_reserve[j] > max)
4164 					max = zone->lowmem_reserve[j];
4165 			}
4166 
4167 			/* we treat pages_high as reserved pages. */
4168 			max += zone->pages_high;
4169 
4170 			if (max > zone->present_pages)
4171 				max = zone->present_pages;
4172 			reserve_pages += max;
4173 		}
4174 	}
4175 	totalreserve_pages = reserve_pages;
4176 }
4177 
4178 /*
4179  * setup_per_zone_lowmem_reserve - called whenever
4180  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4181  *	has a correct pages reserved value, so an adequate number of
4182  *	pages are left in the zone after a successful __alloc_pages().
4183  */
4184 static void setup_per_zone_lowmem_reserve(void)
4185 {
4186 	struct pglist_data *pgdat;
4187 	enum zone_type j, idx;
4188 
4189 	for_each_online_pgdat(pgdat) {
4190 		for (j = 0; j < MAX_NR_ZONES; j++) {
4191 			struct zone *zone = pgdat->node_zones + j;
4192 			unsigned long present_pages = zone->present_pages;
4193 
4194 			zone->lowmem_reserve[j] = 0;
4195 
4196 			idx = j;
4197 			while (idx) {
4198 				struct zone *lower_zone;
4199 
4200 				idx--;
4201 
4202 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4203 					sysctl_lowmem_reserve_ratio[idx] = 1;
4204 
4205 				lower_zone = pgdat->node_zones + idx;
4206 				lower_zone->lowmem_reserve[j] = present_pages /
4207 					sysctl_lowmem_reserve_ratio[idx];
4208 				present_pages += lower_zone->present_pages;
4209 			}
4210 		}
4211 	}
4212 
4213 	/* update totalreserve_pages */
4214 	calculate_totalreserve_pages();
4215 }
4216 
4217 /**
4218  * setup_per_zone_pages_min - called when min_free_kbytes changes.
4219  *
4220  * Ensures that the pages_{min,low,high} values for each zone are set correctly
4221  * with respect to min_free_kbytes.
4222  */
4223 void setup_per_zone_pages_min(void)
4224 {
4225 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4226 	unsigned long lowmem_pages = 0;
4227 	struct zone *zone;
4228 	unsigned long flags;
4229 
4230 	/* Calculate total number of !ZONE_HIGHMEM pages */
4231 	for_each_zone(zone) {
4232 		if (!is_highmem(zone))
4233 			lowmem_pages += zone->present_pages;
4234 	}
4235 
4236 	for_each_zone(zone) {
4237 		u64 tmp;
4238 
4239 		spin_lock_irqsave(&zone->lock, flags);
4240 		tmp = (u64)pages_min * zone->present_pages;
4241 		do_div(tmp, lowmem_pages);
4242 		if (is_highmem(zone)) {
4243 			/*
4244 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4245 			 * need highmem pages, so cap pages_min to a small
4246 			 * value here.
4247 			 *
4248 			 * The (pages_high-pages_low) and (pages_low-pages_min)
4249 			 * deltas controls asynch page reclaim, and so should
4250 			 * not be capped for highmem.
4251 			 */
4252 			int min_pages;
4253 
4254 			min_pages = zone->present_pages / 1024;
4255 			if (min_pages < SWAP_CLUSTER_MAX)
4256 				min_pages = SWAP_CLUSTER_MAX;
4257 			if (min_pages > 128)
4258 				min_pages = 128;
4259 			zone->pages_min = min_pages;
4260 		} else {
4261 			/*
4262 			 * If it's a lowmem zone, reserve a number of pages
4263 			 * proportionate to the zone's size.
4264 			 */
4265 			zone->pages_min = tmp;
4266 		}
4267 
4268 		zone->pages_low   = zone->pages_min + (tmp >> 2);
4269 		zone->pages_high  = zone->pages_min + (tmp >> 1);
4270 		setup_zone_migrate_reserve(zone);
4271 		spin_unlock_irqrestore(&zone->lock, flags);
4272 	}
4273 
4274 	/* update totalreserve_pages */
4275 	calculate_totalreserve_pages();
4276 }
4277 
4278 /**
4279  * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4280  *
4281  * The inactive anon list should be small enough that the VM never has to
4282  * do too much work, but large enough that each inactive page has a chance
4283  * to be referenced again before it is swapped out.
4284  *
4285  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4286  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4287  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4288  * the anonymous pages are kept on the inactive list.
4289  *
4290  * total     target    max
4291  * memory    ratio     inactive anon
4292  * -------------------------------------
4293  *   10MB       1         5MB
4294  *  100MB       1        50MB
4295  *    1GB       3       250MB
4296  *   10GB      10       0.9GB
4297  *  100GB      31         3GB
4298  *    1TB     101        10GB
4299  *   10TB     320        32GB
4300  */
4301 void setup_per_zone_inactive_ratio(void)
4302 {
4303 	struct zone *zone;
4304 
4305 	for_each_zone(zone) {
4306 		unsigned int gb, ratio;
4307 
4308 		/* Zone size in gigabytes */
4309 		gb = zone->present_pages >> (30 - PAGE_SHIFT);
4310 		ratio = int_sqrt(10 * gb);
4311 		if (!ratio)
4312 			ratio = 1;
4313 
4314 		zone->inactive_ratio = ratio;
4315 	}
4316 }
4317 
4318 /*
4319  * Initialise min_free_kbytes.
4320  *
4321  * For small machines we want it small (128k min).  For large machines
4322  * we want it large (64MB max).  But it is not linear, because network
4323  * bandwidth does not increase linearly with machine size.  We use
4324  *
4325  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4326  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4327  *
4328  * which yields
4329  *
4330  * 16MB:	512k
4331  * 32MB:	724k
4332  * 64MB:	1024k
4333  * 128MB:	1448k
4334  * 256MB:	2048k
4335  * 512MB:	2896k
4336  * 1024MB:	4096k
4337  * 2048MB:	5792k
4338  * 4096MB:	8192k
4339  * 8192MB:	11584k
4340  * 16384MB:	16384k
4341  */
4342 static int __init init_per_zone_pages_min(void)
4343 {
4344 	unsigned long lowmem_kbytes;
4345 
4346 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4347 
4348 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4349 	if (min_free_kbytes < 128)
4350 		min_free_kbytes = 128;
4351 	if (min_free_kbytes > 65536)
4352 		min_free_kbytes = 65536;
4353 	setup_per_zone_pages_min();
4354 	setup_per_zone_lowmem_reserve();
4355 	setup_per_zone_inactive_ratio();
4356 	return 0;
4357 }
4358 module_init(init_per_zone_pages_min)
4359 
4360 /*
4361  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4362  *	that we can call two helper functions whenever min_free_kbytes
4363  *	changes.
4364  */
4365 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4366 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4367 {
4368 	proc_dointvec(table, write, file, buffer, length, ppos);
4369 	if (write)
4370 		setup_per_zone_pages_min();
4371 	return 0;
4372 }
4373 
4374 #ifdef CONFIG_NUMA
4375 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4376 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4377 {
4378 	struct zone *zone;
4379 	int rc;
4380 
4381 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4382 	if (rc)
4383 		return rc;
4384 
4385 	for_each_zone(zone)
4386 		zone->min_unmapped_pages = (zone->present_pages *
4387 				sysctl_min_unmapped_ratio) / 100;
4388 	return 0;
4389 }
4390 
4391 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4392 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4393 {
4394 	struct zone *zone;
4395 	int rc;
4396 
4397 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4398 	if (rc)
4399 		return rc;
4400 
4401 	for_each_zone(zone)
4402 		zone->min_slab_pages = (zone->present_pages *
4403 				sysctl_min_slab_ratio) / 100;
4404 	return 0;
4405 }
4406 #endif
4407 
4408 /*
4409  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4410  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4411  *	whenever sysctl_lowmem_reserve_ratio changes.
4412  *
4413  * The reserve ratio obviously has absolutely no relation with the
4414  * pages_min watermarks. The lowmem reserve ratio can only make sense
4415  * if in function of the boot time zone sizes.
4416  */
4417 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4418 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4419 {
4420 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4421 	setup_per_zone_lowmem_reserve();
4422 	return 0;
4423 }
4424 
4425 /*
4426  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4427  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4428  * can have before it gets flushed back to buddy allocator.
4429  */
4430 
4431 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4432 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4433 {
4434 	struct zone *zone;
4435 	unsigned int cpu;
4436 	int ret;
4437 
4438 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4439 	if (!write || (ret == -EINVAL))
4440 		return ret;
4441 	for_each_zone(zone) {
4442 		for_each_online_cpu(cpu) {
4443 			unsigned long  high;
4444 			high = zone->present_pages / percpu_pagelist_fraction;
4445 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4446 		}
4447 	}
4448 	return 0;
4449 }
4450 
4451 int hashdist = HASHDIST_DEFAULT;
4452 
4453 #ifdef CONFIG_NUMA
4454 static int __init set_hashdist(char *str)
4455 {
4456 	if (!str)
4457 		return 0;
4458 	hashdist = simple_strtoul(str, &str, 0);
4459 	return 1;
4460 }
4461 __setup("hashdist=", set_hashdist);
4462 #endif
4463 
4464 /*
4465  * allocate a large system hash table from bootmem
4466  * - it is assumed that the hash table must contain an exact power-of-2
4467  *   quantity of entries
4468  * - limit is the number of hash buckets, not the total allocation size
4469  */
4470 void *__init alloc_large_system_hash(const char *tablename,
4471 				     unsigned long bucketsize,
4472 				     unsigned long numentries,
4473 				     int scale,
4474 				     int flags,
4475 				     unsigned int *_hash_shift,
4476 				     unsigned int *_hash_mask,
4477 				     unsigned long limit)
4478 {
4479 	unsigned long long max = limit;
4480 	unsigned long log2qty, size;
4481 	void *table = NULL;
4482 
4483 	/* allow the kernel cmdline to have a say */
4484 	if (!numentries) {
4485 		/* round applicable memory size up to nearest megabyte */
4486 		numentries = nr_kernel_pages;
4487 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4488 		numentries >>= 20 - PAGE_SHIFT;
4489 		numentries <<= 20 - PAGE_SHIFT;
4490 
4491 		/* limit to 1 bucket per 2^scale bytes of low memory */
4492 		if (scale > PAGE_SHIFT)
4493 			numentries >>= (scale - PAGE_SHIFT);
4494 		else
4495 			numentries <<= (PAGE_SHIFT - scale);
4496 
4497 		/* Make sure we've got at least a 0-order allocation.. */
4498 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4499 			numentries = PAGE_SIZE / bucketsize;
4500 	}
4501 	numentries = roundup_pow_of_two(numentries);
4502 
4503 	/* limit allocation size to 1/16 total memory by default */
4504 	if (max == 0) {
4505 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4506 		do_div(max, bucketsize);
4507 	}
4508 
4509 	if (numentries > max)
4510 		numentries = max;
4511 
4512 	log2qty = ilog2(numentries);
4513 
4514 	do {
4515 		size = bucketsize << log2qty;
4516 		if (flags & HASH_EARLY)
4517 			table = alloc_bootmem_nopanic(size);
4518 		else if (hashdist)
4519 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4520 		else {
4521 			unsigned long order = get_order(size);
4522 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4523 			/*
4524 			 * If bucketsize is not a power-of-two, we may free
4525 			 * some pages at the end of hash table.
4526 			 */
4527 			if (table) {
4528 				unsigned long alloc_end = (unsigned long)table +
4529 						(PAGE_SIZE << order);
4530 				unsigned long used = (unsigned long)table +
4531 						PAGE_ALIGN(size);
4532 				split_page(virt_to_page(table), order);
4533 				while (used < alloc_end) {
4534 					free_page(used);
4535 					used += PAGE_SIZE;
4536 				}
4537 			}
4538 		}
4539 	} while (!table && size > PAGE_SIZE && --log2qty);
4540 
4541 	if (!table)
4542 		panic("Failed to allocate %s hash table\n", tablename);
4543 
4544 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4545 	       tablename,
4546 	       (1U << log2qty),
4547 	       ilog2(size) - PAGE_SHIFT,
4548 	       size);
4549 
4550 	if (_hash_shift)
4551 		*_hash_shift = log2qty;
4552 	if (_hash_mask)
4553 		*_hash_mask = (1 << log2qty) - 1;
4554 
4555 	return table;
4556 }
4557 
4558 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4559 struct page *pfn_to_page(unsigned long pfn)
4560 {
4561 	return __pfn_to_page(pfn);
4562 }
4563 unsigned long page_to_pfn(struct page *page)
4564 {
4565 	return __page_to_pfn(page);
4566 }
4567 EXPORT_SYMBOL(pfn_to_page);
4568 EXPORT_SYMBOL(page_to_pfn);
4569 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4570 
4571 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4572 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4573 							unsigned long pfn)
4574 {
4575 #ifdef CONFIG_SPARSEMEM
4576 	return __pfn_to_section(pfn)->pageblock_flags;
4577 #else
4578 	return zone->pageblock_flags;
4579 #endif /* CONFIG_SPARSEMEM */
4580 }
4581 
4582 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4583 {
4584 #ifdef CONFIG_SPARSEMEM
4585 	pfn &= (PAGES_PER_SECTION-1);
4586 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4587 #else
4588 	pfn = pfn - zone->zone_start_pfn;
4589 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4590 #endif /* CONFIG_SPARSEMEM */
4591 }
4592 
4593 /**
4594  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4595  * @page: The page within the block of interest
4596  * @start_bitidx: The first bit of interest to retrieve
4597  * @end_bitidx: The last bit of interest
4598  * returns pageblock_bits flags
4599  */
4600 unsigned long get_pageblock_flags_group(struct page *page,
4601 					int start_bitidx, int end_bitidx)
4602 {
4603 	struct zone *zone;
4604 	unsigned long *bitmap;
4605 	unsigned long pfn, bitidx;
4606 	unsigned long flags = 0;
4607 	unsigned long value = 1;
4608 
4609 	zone = page_zone(page);
4610 	pfn = page_to_pfn(page);
4611 	bitmap = get_pageblock_bitmap(zone, pfn);
4612 	bitidx = pfn_to_bitidx(zone, pfn);
4613 
4614 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4615 		if (test_bit(bitidx + start_bitidx, bitmap))
4616 			flags |= value;
4617 
4618 	return flags;
4619 }
4620 
4621 /**
4622  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4623  * @page: The page within the block of interest
4624  * @start_bitidx: The first bit of interest
4625  * @end_bitidx: The last bit of interest
4626  * @flags: The flags to set
4627  */
4628 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4629 					int start_bitidx, int end_bitidx)
4630 {
4631 	struct zone *zone;
4632 	unsigned long *bitmap;
4633 	unsigned long pfn, bitidx;
4634 	unsigned long value = 1;
4635 
4636 	zone = page_zone(page);
4637 	pfn = page_to_pfn(page);
4638 	bitmap = get_pageblock_bitmap(zone, pfn);
4639 	bitidx = pfn_to_bitidx(zone, pfn);
4640 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4641 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4642 
4643 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4644 		if (flags & value)
4645 			__set_bit(bitidx + start_bitidx, bitmap);
4646 		else
4647 			__clear_bit(bitidx + start_bitidx, bitmap);
4648 }
4649 
4650 /*
4651  * This is designed as sub function...plz see page_isolation.c also.
4652  * set/clear page block's type to be ISOLATE.
4653  * page allocater never alloc memory from ISOLATE block.
4654  */
4655 
4656 int set_migratetype_isolate(struct page *page)
4657 {
4658 	struct zone *zone;
4659 	unsigned long flags;
4660 	int ret = -EBUSY;
4661 
4662 	zone = page_zone(page);
4663 	spin_lock_irqsave(&zone->lock, flags);
4664 	/*
4665 	 * In future, more migrate types will be able to be isolation target.
4666 	 */
4667 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4668 		goto out;
4669 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4670 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4671 	ret = 0;
4672 out:
4673 	spin_unlock_irqrestore(&zone->lock, flags);
4674 	if (!ret)
4675 		drain_all_pages();
4676 	return ret;
4677 }
4678 
4679 void unset_migratetype_isolate(struct page *page)
4680 {
4681 	struct zone *zone;
4682 	unsigned long flags;
4683 	zone = page_zone(page);
4684 	spin_lock_irqsave(&zone->lock, flags);
4685 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4686 		goto out;
4687 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4688 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4689 out:
4690 	spin_unlock_irqrestore(&zone->lock, flags);
4691 }
4692 
4693 #ifdef CONFIG_MEMORY_HOTREMOVE
4694 /*
4695  * All pages in the range must be isolated before calling this.
4696  */
4697 void
4698 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4699 {
4700 	struct page *page;
4701 	struct zone *zone;
4702 	int order, i;
4703 	unsigned long pfn;
4704 	unsigned long flags;
4705 	/* find the first valid pfn */
4706 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4707 		if (pfn_valid(pfn))
4708 			break;
4709 	if (pfn == end_pfn)
4710 		return;
4711 	zone = page_zone(pfn_to_page(pfn));
4712 	spin_lock_irqsave(&zone->lock, flags);
4713 	pfn = start_pfn;
4714 	while (pfn < end_pfn) {
4715 		if (!pfn_valid(pfn)) {
4716 			pfn++;
4717 			continue;
4718 		}
4719 		page = pfn_to_page(pfn);
4720 		BUG_ON(page_count(page));
4721 		BUG_ON(!PageBuddy(page));
4722 		order = page_order(page);
4723 #ifdef CONFIG_DEBUG_VM
4724 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4725 		       pfn, 1 << order, end_pfn);
4726 #endif
4727 		list_del(&page->lru);
4728 		rmv_page_order(page);
4729 		zone->free_area[order].nr_free--;
4730 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4731 				      - (1UL << order));
4732 		for (i = 0; i < (1 << order); i++)
4733 			SetPageReserved((page+i));
4734 		pfn += (1 << order);
4735 	}
4736 	spin_unlock_irqrestore(&zone->lock, flags);
4737 }
4738 #endif
4739