1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/oom.h> 32 #include <linux/notifier.h> 33 #include <linux/topology.h> 34 #include <linux/sysctl.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/memory_hotplug.h> 38 #include <linux/nodemask.h> 39 #include <linux/vmalloc.h> 40 #include <linux/mempolicy.h> 41 #include <linux/stop_machine.h> 42 #include <linux/sort.h> 43 #include <linux/pfn.h> 44 #include <linux/backing-dev.h> 45 #include <linux/fault-inject.h> 46 #include <linux/page-isolation.h> 47 #include <linux/page_cgroup.h> 48 #include <linux/debugobjects.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 #include "internal.h" 53 54 /* 55 * Array of node states. 56 */ 57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 58 [N_POSSIBLE] = NODE_MASK_ALL, 59 [N_ONLINE] = { { [0] = 1UL } }, 60 #ifndef CONFIG_NUMA 61 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 62 #ifdef CONFIG_HIGHMEM 63 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 64 #endif 65 [N_CPU] = { { [0] = 1UL } }, 66 #endif /* NUMA */ 67 }; 68 EXPORT_SYMBOL(node_states); 69 70 unsigned long totalram_pages __read_mostly; 71 unsigned long totalreserve_pages __read_mostly; 72 long nr_swap_pages; 73 int percpu_pagelist_fraction; 74 75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 76 int pageblock_order __read_mostly; 77 #endif 78 79 static void __free_pages_ok(struct page *page, unsigned int order); 80 81 /* 82 * results with 256, 32 in the lowmem_reserve sysctl: 83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 84 * 1G machine -> (16M dma, 784M normal, 224M high) 85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 88 * 89 * TBD: should special case ZONE_DMA32 machines here - in those we normally 90 * don't need any ZONE_NORMAL reservation 91 */ 92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 93 #ifdef CONFIG_ZONE_DMA 94 256, 95 #endif 96 #ifdef CONFIG_ZONE_DMA32 97 256, 98 #endif 99 #ifdef CONFIG_HIGHMEM 100 32, 101 #endif 102 32, 103 }; 104 105 EXPORT_SYMBOL(totalram_pages); 106 107 static char * const zone_names[MAX_NR_ZONES] = { 108 #ifdef CONFIG_ZONE_DMA 109 "DMA", 110 #endif 111 #ifdef CONFIG_ZONE_DMA32 112 "DMA32", 113 #endif 114 "Normal", 115 #ifdef CONFIG_HIGHMEM 116 "HighMem", 117 #endif 118 "Movable", 119 }; 120 121 int min_free_kbytes = 1024; 122 123 unsigned long __meminitdata nr_kernel_pages; 124 unsigned long __meminitdata nr_all_pages; 125 static unsigned long __meminitdata dma_reserve; 126 127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 128 /* 129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 130 * ranges of memory (RAM) that may be registered with add_active_range(). 131 * Ranges passed to add_active_range() will be merged if possible 132 * so the number of times add_active_range() can be called is 133 * related to the number of nodes and the number of holes 134 */ 135 #ifdef CONFIG_MAX_ACTIVE_REGIONS 136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 138 #else 139 #if MAX_NUMNODES >= 32 140 /* If there can be many nodes, allow up to 50 holes per node */ 141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 142 #else 143 /* By default, allow up to 256 distinct regions */ 144 #define MAX_ACTIVE_REGIONS 256 145 #endif 146 #endif 147 148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 149 static int __meminitdata nr_nodemap_entries; 150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; 154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; 155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 156 static unsigned long __initdata required_kernelcore; 157 static unsigned long __initdata required_movablecore; 158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 159 160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 161 int movable_zone; 162 EXPORT_SYMBOL(movable_zone); 163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 164 165 #if MAX_NUMNODES > 1 166 int nr_node_ids __read_mostly = MAX_NUMNODES; 167 EXPORT_SYMBOL(nr_node_ids); 168 #endif 169 170 int page_group_by_mobility_disabled __read_mostly; 171 172 static void set_pageblock_migratetype(struct page *page, int migratetype) 173 { 174 set_pageblock_flags_group(page, (unsigned long)migratetype, 175 PB_migrate, PB_migrate_end); 176 } 177 178 #ifdef CONFIG_DEBUG_VM 179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 180 { 181 int ret = 0; 182 unsigned seq; 183 unsigned long pfn = page_to_pfn(page); 184 185 do { 186 seq = zone_span_seqbegin(zone); 187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 188 ret = 1; 189 else if (pfn < zone->zone_start_pfn) 190 ret = 1; 191 } while (zone_span_seqretry(zone, seq)); 192 193 return ret; 194 } 195 196 static int page_is_consistent(struct zone *zone, struct page *page) 197 { 198 if (!pfn_valid_within(page_to_pfn(page))) 199 return 0; 200 if (zone != page_zone(page)) 201 return 0; 202 203 return 1; 204 } 205 /* 206 * Temporary debugging check for pages not lying within a given zone. 207 */ 208 static int bad_range(struct zone *zone, struct page *page) 209 { 210 if (page_outside_zone_boundaries(zone, page)) 211 return 1; 212 if (!page_is_consistent(zone, page)) 213 return 1; 214 215 return 0; 216 } 217 #else 218 static inline int bad_range(struct zone *zone, struct page *page) 219 { 220 return 0; 221 } 222 #endif 223 224 static void bad_page(struct page *page) 225 { 226 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG 227 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", 228 current->comm, page, (int)(2*sizeof(unsigned long)), 229 (unsigned long)page->flags, page->mapping, 230 page_mapcount(page), page_count(page)); 231 232 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 233 KERN_EMERG "Backtrace:\n"); 234 dump_stack(); 235 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD; 236 set_page_count(page, 0); 237 reset_page_mapcount(page); 238 page->mapping = NULL; 239 add_taint(TAINT_BAD_PAGE); 240 } 241 242 /* 243 * Higher-order pages are called "compound pages". They are structured thusly: 244 * 245 * The first PAGE_SIZE page is called the "head page". 246 * 247 * The remaining PAGE_SIZE pages are called "tail pages". 248 * 249 * All pages have PG_compound set. All pages have their ->private pointing at 250 * the head page (even the head page has this). 251 * 252 * The first tail page's ->lru.next holds the address of the compound page's 253 * put_page() function. Its ->lru.prev holds the order of allocation. 254 * This usage means that zero-order pages may not be compound. 255 */ 256 257 static void free_compound_page(struct page *page) 258 { 259 __free_pages_ok(page, compound_order(page)); 260 } 261 262 void prep_compound_page(struct page *page, unsigned long order) 263 { 264 int i; 265 int nr_pages = 1 << order; 266 struct page *p = page + 1; 267 268 set_compound_page_dtor(page, free_compound_page); 269 set_compound_order(page, order); 270 __SetPageHead(page); 271 for (i = 1; i < nr_pages; i++, p++) { 272 if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0)) 273 p = pfn_to_page(page_to_pfn(page) + i); 274 __SetPageTail(p); 275 p->first_page = page; 276 } 277 } 278 279 static void destroy_compound_page(struct page *page, unsigned long order) 280 { 281 int i; 282 int nr_pages = 1 << order; 283 struct page *p = page + 1; 284 285 if (unlikely(compound_order(page) != order)) 286 bad_page(page); 287 288 if (unlikely(!PageHead(page))) 289 bad_page(page); 290 __ClearPageHead(page); 291 for (i = 1; i < nr_pages; i++, p++) { 292 if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0)) 293 p = pfn_to_page(page_to_pfn(page) + i); 294 295 if (unlikely(!PageTail(p) | 296 (p->first_page != page))) 297 bad_page(page); 298 __ClearPageTail(p); 299 } 300 } 301 302 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 303 { 304 int i; 305 306 /* 307 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 308 * and __GFP_HIGHMEM from hard or soft interrupt context. 309 */ 310 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 311 for (i = 0; i < (1 << order); i++) 312 clear_highpage(page + i); 313 } 314 315 static inline void set_page_order(struct page *page, int order) 316 { 317 set_page_private(page, order); 318 __SetPageBuddy(page); 319 } 320 321 static inline void rmv_page_order(struct page *page) 322 { 323 __ClearPageBuddy(page); 324 set_page_private(page, 0); 325 } 326 327 /* 328 * Locate the struct page for both the matching buddy in our 329 * pair (buddy1) and the combined O(n+1) page they form (page). 330 * 331 * 1) Any buddy B1 will have an order O twin B2 which satisfies 332 * the following equation: 333 * B2 = B1 ^ (1 << O) 334 * For example, if the starting buddy (buddy2) is #8 its order 335 * 1 buddy is #10: 336 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 337 * 338 * 2) Any buddy B will have an order O+1 parent P which 339 * satisfies the following equation: 340 * P = B & ~(1 << O) 341 * 342 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 343 */ 344 static inline struct page * 345 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 346 { 347 unsigned long buddy_idx = page_idx ^ (1 << order); 348 349 return page + (buddy_idx - page_idx); 350 } 351 352 static inline unsigned long 353 __find_combined_index(unsigned long page_idx, unsigned int order) 354 { 355 return (page_idx & ~(1 << order)); 356 } 357 358 /* 359 * This function checks whether a page is free && is the buddy 360 * we can do coalesce a page and its buddy if 361 * (a) the buddy is not in a hole && 362 * (b) the buddy is in the buddy system && 363 * (c) a page and its buddy have the same order && 364 * (d) a page and its buddy are in the same zone. 365 * 366 * For recording whether a page is in the buddy system, we use PG_buddy. 367 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 368 * 369 * For recording page's order, we use page_private(page). 370 */ 371 static inline int page_is_buddy(struct page *page, struct page *buddy, 372 int order) 373 { 374 if (!pfn_valid_within(page_to_pfn(buddy))) 375 return 0; 376 377 if (page_zone_id(page) != page_zone_id(buddy)) 378 return 0; 379 380 if (PageBuddy(buddy) && page_order(buddy) == order) { 381 BUG_ON(page_count(buddy) != 0); 382 return 1; 383 } 384 return 0; 385 } 386 387 /* 388 * Freeing function for a buddy system allocator. 389 * 390 * The concept of a buddy system is to maintain direct-mapped table 391 * (containing bit values) for memory blocks of various "orders". 392 * The bottom level table contains the map for the smallest allocatable 393 * units of memory (here, pages), and each level above it describes 394 * pairs of units from the levels below, hence, "buddies". 395 * At a high level, all that happens here is marking the table entry 396 * at the bottom level available, and propagating the changes upward 397 * as necessary, plus some accounting needed to play nicely with other 398 * parts of the VM system. 399 * At each level, we keep a list of pages, which are heads of continuous 400 * free pages of length of (1 << order) and marked with PG_buddy. Page's 401 * order is recorded in page_private(page) field. 402 * So when we are allocating or freeing one, we can derive the state of the 403 * other. That is, if we allocate a small block, and both were 404 * free, the remainder of the region must be split into blocks. 405 * If a block is freed, and its buddy is also free, then this 406 * triggers coalescing into a block of larger size. 407 * 408 * -- wli 409 */ 410 411 static inline void __free_one_page(struct page *page, 412 struct zone *zone, unsigned int order) 413 { 414 unsigned long page_idx; 415 int order_size = 1 << order; 416 int migratetype = get_pageblock_migratetype(page); 417 418 if (unlikely(PageCompound(page))) 419 destroy_compound_page(page, order); 420 421 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 422 423 VM_BUG_ON(page_idx & (order_size - 1)); 424 VM_BUG_ON(bad_range(zone, page)); 425 426 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size); 427 while (order < MAX_ORDER-1) { 428 unsigned long combined_idx; 429 struct page *buddy; 430 431 buddy = __page_find_buddy(page, page_idx, order); 432 if (!page_is_buddy(page, buddy, order)) 433 break; 434 435 /* Our buddy is free, merge with it and move up one order. */ 436 list_del(&buddy->lru); 437 zone->free_area[order].nr_free--; 438 rmv_page_order(buddy); 439 combined_idx = __find_combined_index(page_idx, order); 440 page = page + (combined_idx - page_idx); 441 page_idx = combined_idx; 442 order++; 443 } 444 set_page_order(page, order); 445 list_add(&page->lru, 446 &zone->free_area[order].free_list[migratetype]); 447 zone->free_area[order].nr_free++; 448 } 449 450 static inline int free_pages_check(struct page *page) 451 { 452 free_page_mlock(page); 453 if (unlikely(page_mapcount(page) | 454 (page->mapping != NULL) | 455 (page_count(page) != 0) | 456 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) 457 bad_page(page); 458 if (PageDirty(page)) 459 __ClearPageDirty(page); 460 if (PageSwapBacked(page)) 461 __ClearPageSwapBacked(page); 462 /* 463 * For now, we report if PG_reserved was found set, but do not 464 * clear it, and do not free the page. But we shall soon need 465 * to do more, for when the ZERO_PAGE count wraps negative. 466 */ 467 return PageReserved(page); 468 } 469 470 /* 471 * Frees a list of pages. 472 * Assumes all pages on list are in same zone, and of same order. 473 * count is the number of pages to free. 474 * 475 * If the zone was previously in an "all pages pinned" state then look to 476 * see if this freeing clears that state. 477 * 478 * And clear the zone's pages_scanned counter, to hold off the "all pages are 479 * pinned" detection logic. 480 */ 481 static void free_pages_bulk(struct zone *zone, int count, 482 struct list_head *list, int order) 483 { 484 spin_lock(&zone->lock); 485 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 486 zone->pages_scanned = 0; 487 while (count--) { 488 struct page *page; 489 490 VM_BUG_ON(list_empty(list)); 491 page = list_entry(list->prev, struct page, lru); 492 /* have to delete it as __free_one_page list manipulates */ 493 list_del(&page->lru); 494 __free_one_page(page, zone, order); 495 } 496 spin_unlock(&zone->lock); 497 } 498 499 static void free_one_page(struct zone *zone, struct page *page, int order) 500 { 501 spin_lock(&zone->lock); 502 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 503 zone->pages_scanned = 0; 504 __free_one_page(page, zone, order); 505 spin_unlock(&zone->lock); 506 } 507 508 static void __free_pages_ok(struct page *page, unsigned int order) 509 { 510 unsigned long flags; 511 int i; 512 int reserved = 0; 513 514 for (i = 0 ; i < (1 << order) ; ++i) 515 reserved += free_pages_check(page + i); 516 if (reserved) 517 return; 518 519 if (!PageHighMem(page)) { 520 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 521 debug_check_no_obj_freed(page_address(page), 522 PAGE_SIZE << order); 523 } 524 arch_free_page(page, order); 525 kernel_map_pages(page, 1 << order, 0); 526 527 local_irq_save(flags); 528 __count_vm_events(PGFREE, 1 << order); 529 free_one_page(page_zone(page), page, order); 530 local_irq_restore(flags); 531 } 532 533 /* 534 * permit the bootmem allocator to evade page validation on high-order frees 535 */ 536 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 537 { 538 if (order == 0) { 539 __ClearPageReserved(page); 540 set_page_count(page, 0); 541 set_page_refcounted(page); 542 __free_page(page); 543 } else { 544 int loop; 545 546 prefetchw(page); 547 for (loop = 0; loop < BITS_PER_LONG; loop++) { 548 struct page *p = &page[loop]; 549 550 if (loop + 1 < BITS_PER_LONG) 551 prefetchw(p + 1); 552 __ClearPageReserved(p); 553 set_page_count(p, 0); 554 } 555 556 set_page_refcounted(page); 557 __free_pages(page, order); 558 } 559 } 560 561 562 /* 563 * The order of subdivision here is critical for the IO subsystem. 564 * Please do not alter this order without good reasons and regression 565 * testing. Specifically, as large blocks of memory are subdivided, 566 * the order in which smaller blocks are delivered depends on the order 567 * they're subdivided in this function. This is the primary factor 568 * influencing the order in which pages are delivered to the IO 569 * subsystem according to empirical testing, and this is also justified 570 * by considering the behavior of a buddy system containing a single 571 * large block of memory acted on by a series of small allocations. 572 * This behavior is a critical factor in sglist merging's success. 573 * 574 * -- wli 575 */ 576 static inline void expand(struct zone *zone, struct page *page, 577 int low, int high, struct free_area *area, 578 int migratetype) 579 { 580 unsigned long size = 1 << high; 581 582 while (high > low) { 583 area--; 584 high--; 585 size >>= 1; 586 VM_BUG_ON(bad_range(zone, &page[size])); 587 list_add(&page[size].lru, &area->free_list[migratetype]); 588 area->nr_free++; 589 set_page_order(&page[size], high); 590 } 591 } 592 593 /* 594 * This page is about to be returned from the page allocator 595 */ 596 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 597 { 598 if (unlikely(page_mapcount(page) | 599 (page->mapping != NULL) | 600 (page_count(page) != 0) | 601 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) 602 bad_page(page); 603 604 /* 605 * For now, we report if PG_reserved was found set, but do not 606 * clear it, and do not allocate the page: as a safety net. 607 */ 608 if (PageReserved(page)) 609 return 1; 610 611 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim | 612 1 << PG_referenced | 1 << PG_arch_1 | 613 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk 614 #ifdef CONFIG_UNEVICTABLE_LRU 615 | 1 << PG_mlocked 616 #endif 617 ); 618 set_page_private(page, 0); 619 set_page_refcounted(page); 620 621 arch_alloc_page(page, order); 622 kernel_map_pages(page, 1 << order, 1); 623 624 if (gfp_flags & __GFP_ZERO) 625 prep_zero_page(page, order, gfp_flags); 626 627 if (order && (gfp_flags & __GFP_COMP)) 628 prep_compound_page(page, order); 629 630 return 0; 631 } 632 633 /* 634 * Go through the free lists for the given migratetype and remove 635 * the smallest available page from the freelists 636 */ 637 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 638 int migratetype) 639 { 640 unsigned int current_order; 641 struct free_area * area; 642 struct page *page; 643 644 /* Find a page of the appropriate size in the preferred list */ 645 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 646 area = &(zone->free_area[current_order]); 647 if (list_empty(&area->free_list[migratetype])) 648 continue; 649 650 page = list_entry(area->free_list[migratetype].next, 651 struct page, lru); 652 list_del(&page->lru); 653 rmv_page_order(page); 654 area->nr_free--; 655 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order)); 656 expand(zone, page, order, current_order, area, migratetype); 657 return page; 658 } 659 660 return NULL; 661 } 662 663 664 /* 665 * This array describes the order lists are fallen back to when 666 * the free lists for the desirable migrate type are depleted 667 */ 668 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 669 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 670 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 671 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 672 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 673 }; 674 675 /* 676 * Move the free pages in a range to the free lists of the requested type. 677 * Note that start_page and end_pages are not aligned on a pageblock 678 * boundary. If alignment is required, use move_freepages_block() 679 */ 680 static int move_freepages(struct zone *zone, 681 struct page *start_page, struct page *end_page, 682 int migratetype) 683 { 684 struct page *page; 685 unsigned long order; 686 int pages_moved = 0; 687 688 #ifndef CONFIG_HOLES_IN_ZONE 689 /* 690 * page_zone is not safe to call in this context when 691 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 692 * anyway as we check zone boundaries in move_freepages_block(). 693 * Remove at a later date when no bug reports exist related to 694 * grouping pages by mobility 695 */ 696 BUG_ON(page_zone(start_page) != page_zone(end_page)); 697 #endif 698 699 for (page = start_page; page <= end_page;) { 700 /* Make sure we are not inadvertently changing nodes */ 701 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 702 703 if (!pfn_valid_within(page_to_pfn(page))) { 704 page++; 705 continue; 706 } 707 708 if (!PageBuddy(page)) { 709 page++; 710 continue; 711 } 712 713 order = page_order(page); 714 list_del(&page->lru); 715 list_add(&page->lru, 716 &zone->free_area[order].free_list[migratetype]); 717 page += 1 << order; 718 pages_moved += 1 << order; 719 } 720 721 return pages_moved; 722 } 723 724 static int move_freepages_block(struct zone *zone, struct page *page, 725 int migratetype) 726 { 727 unsigned long start_pfn, end_pfn; 728 struct page *start_page, *end_page; 729 730 start_pfn = page_to_pfn(page); 731 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 732 start_page = pfn_to_page(start_pfn); 733 end_page = start_page + pageblock_nr_pages - 1; 734 end_pfn = start_pfn + pageblock_nr_pages - 1; 735 736 /* Do not cross zone boundaries */ 737 if (start_pfn < zone->zone_start_pfn) 738 start_page = page; 739 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 740 return 0; 741 742 return move_freepages(zone, start_page, end_page, migratetype); 743 } 744 745 /* Remove an element from the buddy allocator from the fallback list */ 746 static struct page *__rmqueue_fallback(struct zone *zone, int order, 747 int start_migratetype) 748 { 749 struct free_area * area; 750 int current_order; 751 struct page *page; 752 int migratetype, i; 753 754 /* Find the largest possible block of pages in the other list */ 755 for (current_order = MAX_ORDER-1; current_order >= order; 756 --current_order) { 757 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 758 migratetype = fallbacks[start_migratetype][i]; 759 760 /* MIGRATE_RESERVE handled later if necessary */ 761 if (migratetype == MIGRATE_RESERVE) 762 continue; 763 764 area = &(zone->free_area[current_order]); 765 if (list_empty(&area->free_list[migratetype])) 766 continue; 767 768 page = list_entry(area->free_list[migratetype].next, 769 struct page, lru); 770 area->nr_free--; 771 772 /* 773 * If breaking a large block of pages, move all free 774 * pages to the preferred allocation list. If falling 775 * back for a reclaimable kernel allocation, be more 776 * agressive about taking ownership of free pages 777 */ 778 if (unlikely(current_order >= (pageblock_order >> 1)) || 779 start_migratetype == MIGRATE_RECLAIMABLE) { 780 unsigned long pages; 781 pages = move_freepages_block(zone, page, 782 start_migratetype); 783 784 /* Claim the whole block if over half of it is free */ 785 if (pages >= (1 << (pageblock_order-1))) 786 set_pageblock_migratetype(page, 787 start_migratetype); 788 789 migratetype = start_migratetype; 790 } 791 792 /* Remove the page from the freelists */ 793 list_del(&page->lru); 794 rmv_page_order(page); 795 __mod_zone_page_state(zone, NR_FREE_PAGES, 796 -(1UL << order)); 797 798 if (current_order == pageblock_order) 799 set_pageblock_migratetype(page, 800 start_migratetype); 801 802 expand(zone, page, order, current_order, area, migratetype); 803 return page; 804 } 805 } 806 807 /* Use MIGRATE_RESERVE rather than fail an allocation */ 808 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE); 809 } 810 811 /* 812 * Do the hard work of removing an element from the buddy allocator. 813 * Call me with the zone->lock already held. 814 */ 815 static struct page *__rmqueue(struct zone *zone, unsigned int order, 816 int migratetype) 817 { 818 struct page *page; 819 820 page = __rmqueue_smallest(zone, order, migratetype); 821 822 if (unlikely(!page)) 823 page = __rmqueue_fallback(zone, order, migratetype); 824 825 return page; 826 } 827 828 /* 829 * Obtain a specified number of elements from the buddy allocator, all under 830 * a single hold of the lock, for efficiency. Add them to the supplied list. 831 * Returns the number of new pages which were placed at *list. 832 */ 833 static int rmqueue_bulk(struct zone *zone, unsigned int order, 834 unsigned long count, struct list_head *list, 835 int migratetype) 836 { 837 int i; 838 839 spin_lock(&zone->lock); 840 for (i = 0; i < count; ++i) { 841 struct page *page = __rmqueue(zone, order, migratetype); 842 if (unlikely(page == NULL)) 843 break; 844 845 /* 846 * Split buddy pages returned by expand() are received here 847 * in physical page order. The page is added to the callers and 848 * list and the list head then moves forward. From the callers 849 * perspective, the linked list is ordered by page number in 850 * some conditions. This is useful for IO devices that can 851 * merge IO requests if the physical pages are ordered 852 * properly. 853 */ 854 list_add(&page->lru, list); 855 set_page_private(page, migratetype); 856 list = &page->lru; 857 } 858 spin_unlock(&zone->lock); 859 return i; 860 } 861 862 #ifdef CONFIG_NUMA 863 /* 864 * Called from the vmstat counter updater to drain pagesets of this 865 * currently executing processor on remote nodes after they have 866 * expired. 867 * 868 * Note that this function must be called with the thread pinned to 869 * a single processor. 870 */ 871 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 872 { 873 unsigned long flags; 874 int to_drain; 875 876 local_irq_save(flags); 877 if (pcp->count >= pcp->batch) 878 to_drain = pcp->batch; 879 else 880 to_drain = pcp->count; 881 free_pages_bulk(zone, to_drain, &pcp->list, 0); 882 pcp->count -= to_drain; 883 local_irq_restore(flags); 884 } 885 #endif 886 887 /* 888 * Drain pages of the indicated processor. 889 * 890 * The processor must either be the current processor and the 891 * thread pinned to the current processor or a processor that 892 * is not online. 893 */ 894 static void drain_pages(unsigned int cpu) 895 { 896 unsigned long flags; 897 struct zone *zone; 898 899 for_each_zone(zone) { 900 struct per_cpu_pageset *pset; 901 struct per_cpu_pages *pcp; 902 903 if (!populated_zone(zone)) 904 continue; 905 906 pset = zone_pcp(zone, cpu); 907 908 pcp = &pset->pcp; 909 local_irq_save(flags); 910 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 911 pcp->count = 0; 912 local_irq_restore(flags); 913 } 914 } 915 916 /* 917 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 918 */ 919 void drain_local_pages(void *arg) 920 { 921 drain_pages(smp_processor_id()); 922 } 923 924 /* 925 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 926 */ 927 void drain_all_pages(void) 928 { 929 on_each_cpu(drain_local_pages, NULL, 1); 930 } 931 932 #ifdef CONFIG_HIBERNATION 933 934 void mark_free_pages(struct zone *zone) 935 { 936 unsigned long pfn, max_zone_pfn; 937 unsigned long flags; 938 int order, t; 939 struct list_head *curr; 940 941 if (!zone->spanned_pages) 942 return; 943 944 spin_lock_irqsave(&zone->lock, flags); 945 946 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 947 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 948 if (pfn_valid(pfn)) { 949 struct page *page = pfn_to_page(pfn); 950 951 if (!swsusp_page_is_forbidden(page)) 952 swsusp_unset_page_free(page); 953 } 954 955 for_each_migratetype_order(order, t) { 956 list_for_each(curr, &zone->free_area[order].free_list[t]) { 957 unsigned long i; 958 959 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 960 for (i = 0; i < (1UL << order); i++) 961 swsusp_set_page_free(pfn_to_page(pfn + i)); 962 } 963 } 964 spin_unlock_irqrestore(&zone->lock, flags); 965 } 966 #endif /* CONFIG_PM */ 967 968 /* 969 * Free a 0-order page 970 */ 971 static void free_hot_cold_page(struct page *page, int cold) 972 { 973 struct zone *zone = page_zone(page); 974 struct per_cpu_pages *pcp; 975 unsigned long flags; 976 977 if (PageAnon(page)) 978 page->mapping = NULL; 979 if (free_pages_check(page)) 980 return; 981 982 if (!PageHighMem(page)) { 983 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 984 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 985 } 986 arch_free_page(page, 0); 987 kernel_map_pages(page, 1, 0); 988 989 pcp = &zone_pcp(zone, get_cpu())->pcp; 990 local_irq_save(flags); 991 __count_vm_event(PGFREE); 992 if (cold) 993 list_add_tail(&page->lru, &pcp->list); 994 else 995 list_add(&page->lru, &pcp->list); 996 set_page_private(page, get_pageblock_migratetype(page)); 997 pcp->count++; 998 if (pcp->count >= pcp->high) { 999 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 1000 pcp->count -= pcp->batch; 1001 } 1002 local_irq_restore(flags); 1003 put_cpu(); 1004 } 1005 1006 void free_hot_page(struct page *page) 1007 { 1008 free_hot_cold_page(page, 0); 1009 } 1010 1011 void free_cold_page(struct page *page) 1012 { 1013 free_hot_cold_page(page, 1); 1014 } 1015 1016 /* 1017 * split_page takes a non-compound higher-order page, and splits it into 1018 * n (1<<order) sub-pages: page[0..n] 1019 * Each sub-page must be freed individually. 1020 * 1021 * Note: this is probably too low level an operation for use in drivers. 1022 * Please consult with lkml before using this in your driver. 1023 */ 1024 void split_page(struct page *page, unsigned int order) 1025 { 1026 int i; 1027 1028 VM_BUG_ON(PageCompound(page)); 1029 VM_BUG_ON(!page_count(page)); 1030 for (i = 1; i < (1 << order); i++) 1031 set_page_refcounted(page + i); 1032 } 1033 1034 /* 1035 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1036 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1037 * or two. 1038 */ 1039 static struct page *buffered_rmqueue(struct zone *preferred_zone, 1040 struct zone *zone, int order, gfp_t gfp_flags) 1041 { 1042 unsigned long flags; 1043 struct page *page; 1044 int cold = !!(gfp_flags & __GFP_COLD); 1045 int cpu; 1046 int migratetype = allocflags_to_migratetype(gfp_flags); 1047 1048 again: 1049 cpu = get_cpu(); 1050 if (likely(order == 0)) { 1051 struct per_cpu_pages *pcp; 1052 1053 pcp = &zone_pcp(zone, cpu)->pcp; 1054 local_irq_save(flags); 1055 if (!pcp->count) { 1056 pcp->count = rmqueue_bulk(zone, 0, 1057 pcp->batch, &pcp->list, migratetype); 1058 if (unlikely(!pcp->count)) 1059 goto failed; 1060 } 1061 1062 /* Find a page of the appropriate migrate type */ 1063 if (cold) { 1064 list_for_each_entry_reverse(page, &pcp->list, lru) 1065 if (page_private(page) == migratetype) 1066 break; 1067 } else { 1068 list_for_each_entry(page, &pcp->list, lru) 1069 if (page_private(page) == migratetype) 1070 break; 1071 } 1072 1073 /* Allocate more to the pcp list if necessary */ 1074 if (unlikely(&page->lru == &pcp->list)) { 1075 pcp->count += rmqueue_bulk(zone, 0, 1076 pcp->batch, &pcp->list, migratetype); 1077 page = list_entry(pcp->list.next, struct page, lru); 1078 } 1079 1080 list_del(&page->lru); 1081 pcp->count--; 1082 } else { 1083 spin_lock_irqsave(&zone->lock, flags); 1084 page = __rmqueue(zone, order, migratetype); 1085 spin_unlock(&zone->lock); 1086 if (!page) 1087 goto failed; 1088 } 1089 1090 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1091 zone_statistics(preferred_zone, zone); 1092 local_irq_restore(flags); 1093 put_cpu(); 1094 1095 VM_BUG_ON(bad_range(zone, page)); 1096 if (prep_new_page(page, order, gfp_flags)) 1097 goto again; 1098 return page; 1099 1100 failed: 1101 local_irq_restore(flags); 1102 put_cpu(); 1103 return NULL; 1104 } 1105 1106 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 1107 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 1108 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 1109 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 1110 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1111 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1112 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1113 1114 #ifdef CONFIG_FAIL_PAGE_ALLOC 1115 1116 static struct fail_page_alloc_attr { 1117 struct fault_attr attr; 1118 1119 u32 ignore_gfp_highmem; 1120 u32 ignore_gfp_wait; 1121 u32 min_order; 1122 1123 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1124 1125 struct dentry *ignore_gfp_highmem_file; 1126 struct dentry *ignore_gfp_wait_file; 1127 struct dentry *min_order_file; 1128 1129 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1130 1131 } fail_page_alloc = { 1132 .attr = FAULT_ATTR_INITIALIZER, 1133 .ignore_gfp_wait = 1, 1134 .ignore_gfp_highmem = 1, 1135 .min_order = 1, 1136 }; 1137 1138 static int __init setup_fail_page_alloc(char *str) 1139 { 1140 return setup_fault_attr(&fail_page_alloc.attr, str); 1141 } 1142 __setup("fail_page_alloc=", setup_fail_page_alloc); 1143 1144 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1145 { 1146 if (order < fail_page_alloc.min_order) 1147 return 0; 1148 if (gfp_mask & __GFP_NOFAIL) 1149 return 0; 1150 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1151 return 0; 1152 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1153 return 0; 1154 1155 return should_fail(&fail_page_alloc.attr, 1 << order); 1156 } 1157 1158 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1159 1160 static int __init fail_page_alloc_debugfs(void) 1161 { 1162 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1163 struct dentry *dir; 1164 int err; 1165 1166 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1167 "fail_page_alloc"); 1168 if (err) 1169 return err; 1170 dir = fail_page_alloc.attr.dentries.dir; 1171 1172 fail_page_alloc.ignore_gfp_wait_file = 1173 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1174 &fail_page_alloc.ignore_gfp_wait); 1175 1176 fail_page_alloc.ignore_gfp_highmem_file = 1177 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1178 &fail_page_alloc.ignore_gfp_highmem); 1179 fail_page_alloc.min_order_file = 1180 debugfs_create_u32("min-order", mode, dir, 1181 &fail_page_alloc.min_order); 1182 1183 if (!fail_page_alloc.ignore_gfp_wait_file || 1184 !fail_page_alloc.ignore_gfp_highmem_file || 1185 !fail_page_alloc.min_order_file) { 1186 err = -ENOMEM; 1187 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1188 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1189 debugfs_remove(fail_page_alloc.min_order_file); 1190 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1191 } 1192 1193 return err; 1194 } 1195 1196 late_initcall(fail_page_alloc_debugfs); 1197 1198 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1199 1200 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1201 1202 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1203 { 1204 return 0; 1205 } 1206 1207 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1208 1209 /* 1210 * Return 1 if free pages are above 'mark'. This takes into account the order 1211 * of the allocation. 1212 */ 1213 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1214 int classzone_idx, int alloc_flags) 1215 { 1216 /* free_pages my go negative - that's OK */ 1217 long min = mark; 1218 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1219 int o; 1220 1221 if (alloc_flags & ALLOC_HIGH) 1222 min -= min / 2; 1223 if (alloc_flags & ALLOC_HARDER) 1224 min -= min / 4; 1225 1226 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1227 return 0; 1228 for (o = 0; o < order; o++) { 1229 /* At the next order, this order's pages become unavailable */ 1230 free_pages -= z->free_area[o].nr_free << o; 1231 1232 /* Require fewer higher order pages to be free */ 1233 min >>= 1; 1234 1235 if (free_pages <= min) 1236 return 0; 1237 } 1238 return 1; 1239 } 1240 1241 #ifdef CONFIG_NUMA 1242 /* 1243 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1244 * skip over zones that are not allowed by the cpuset, or that have 1245 * been recently (in last second) found to be nearly full. See further 1246 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1247 * that have to skip over a lot of full or unallowed zones. 1248 * 1249 * If the zonelist cache is present in the passed in zonelist, then 1250 * returns a pointer to the allowed node mask (either the current 1251 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1252 * 1253 * If the zonelist cache is not available for this zonelist, does 1254 * nothing and returns NULL. 1255 * 1256 * If the fullzones BITMAP in the zonelist cache is stale (more than 1257 * a second since last zap'd) then we zap it out (clear its bits.) 1258 * 1259 * We hold off even calling zlc_setup, until after we've checked the 1260 * first zone in the zonelist, on the theory that most allocations will 1261 * be satisfied from that first zone, so best to examine that zone as 1262 * quickly as we can. 1263 */ 1264 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1265 { 1266 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1267 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1268 1269 zlc = zonelist->zlcache_ptr; 1270 if (!zlc) 1271 return NULL; 1272 1273 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1274 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1275 zlc->last_full_zap = jiffies; 1276 } 1277 1278 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1279 &cpuset_current_mems_allowed : 1280 &node_states[N_HIGH_MEMORY]; 1281 return allowednodes; 1282 } 1283 1284 /* 1285 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1286 * if it is worth looking at further for free memory: 1287 * 1) Check that the zone isn't thought to be full (doesn't have its 1288 * bit set in the zonelist_cache fullzones BITMAP). 1289 * 2) Check that the zones node (obtained from the zonelist_cache 1290 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1291 * Return true (non-zero) if zone is worth looking at further, or 1292 * else return false (zero) if it is not. 1293 * 1294 * This check -ignores- the distinction between various watermarks, 1295 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1296 * found to be full for any variation of these watermarks, it will 1297 * be considered full for up to one second by all requests, unless 1298 * we are so low on memory on all allowed nodes that we are forced 1299 * into the second scan of the zonelist. 1300 * 1301 * In the second scan we ignore this zonelist cache and exactly 1302 * apply the watermarks to all zones, even it is slower to do so. 1303 * We are low on memory in the second scan, and should leave no stone 1304 * unturned looking for a free page. 1305 */ 1306 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1307 nodemask_t *allowednodes) 1308 { 1309 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1310 int i; /* index of *z in zonelist zones */ 1311 int n; /* node that zone *z is on */ 1312 1313 zlc = zonelist->zlcache_ptr; 1314 if (!zlc) 1315 return 1; 1316 1317 i = z - zonelist->_zonerefs; 1318 n = zlc->z_to_n[i]; 1319 1320 /* This zone is worth trying if it is allowed but not full */ 1321 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1322 } 1323 1324 /* 1325 * Given 'z' scanning a zonelist, set the corresponding bit in 1326 * zlc->fullzones, so that subsequent attempts to allocate a page 1327 * from that zone don't waste time re-examining it. 1328 */ 1329 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1330 { 1331 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1332 int i; /* index of *z in zonelist zones */ 1333 1334 zlc = zonelist->zlcache_ptr; 1335 if (!zlc) 1336 return; 1337 1338 i = z - zonelist->_zonerefs; 1339 1340 set_bit(i, zlc->fullzones); 1341 } 1342 1343 #else /* CONFIG_NUMA */ 1344 1345 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1346 { 1347 return NULL; 1348 } 1349 1350 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1351 nodemask_t *allowednodes) 1352 { 1353 return 1; 1354 } 1355 1356 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1357 { 1358 } 1359 #endif /* CONFIG_NUMA */ 1360 1361 /* 1362 * get_page_from_freelist goes through the zonelist trying to allocate 1363 * a page. 1364 */ 1365 static struct page * 1366 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1367 struct zonelist *zonelist, int high_zoneidx, int alloc_flags) 1368 { 1369 struct zoneref *z; 1370 struct page *page = NULL; 1371 int classzone_idx; 1372 struct zone *zone, *preferred_zone; 1373 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1374 int zlc_active = 0; /* set if using zonelist_cache */ 1375 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1376 1377 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask, 1378 &preferred_zone); 1379 if (!preferred_zone) 1380 return NULL; 1381 1382 classzone_idx = zone_idx(preferred_zone); 1383 1384 zonelist_scan: 1385 /* 1386 * Scan zonelist, looking for a zone with enough free. 1387 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1388 */ 1389 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1390 high_zoneidx, nodemask) { 1391 if (NUMA_BUILD && zlc_active && 1392 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1393 continue; 1394 if ((alloc_flags & ALLOC_CPUSET) && 1395 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1396 goto try_next_zone; 1397 1398 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1399 unsigned long mark; 1400 if (alloc_flags & ALLOC_WMARK_MIN) 1401 mark = zone->pages_min; 1402 else if (alloc_flags & ALLOC_WMARK_LOW) 1403 mark = zone->pages_low; 1404 else 1405 mark = zone->pages_high; 1406 if (!zone_watermark_ok(zone, order, mark, 1407 classzone_idx, alloc_flags)) { 1408 if (!zone_reclaim_mode || 1409 !zone_reclaim(zone, gfp_mask, order)) 1410 goto this_zone_full; 1411 } 1412 } 1413 1414 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask); 1415 if (page) 1416 break; 1417 this_zone_full: 1418 if (NUMA_BUILD) 1419 zlc_mark_zone_full(zonelist, z); 1420 try_next_zone: 1421 if (NUMA_BUILD && !did_zlc_setup) { 1422 /* we do zlc_setup after the first zone is tried */ 1423 allowednodes = zlc_setup(zonelist, alloc_flags); 1424 zlc_active = 1; 1425 did_zlc_setup = 1; 1426 } 1427 } 1428 1429 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1430 /* Disable zlc cache for second zonelist scan */ 1431 zlc_active = 0; 1432 goto zonelist_scan; 1433 } 1434 return page; 1435 } 1436 1437 /* 1438 * This is the 'heart' of the zoned buddy allocator. 1439 */ 1440 struct page * 1441 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order, 1442 struct zonelist *zonelist, nodemask_t *nodemask) 1443 { 1444 const gfp_t wait = gfp_mask & __GFP_WAIT; 1445 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1446 struct zoneref *z; 1447 struct zone *zone; 1448 struct page *page; 1449 struct reclaim_state reclaim_state; 1450 struct task_struct *p = current; 1451 int do_retry; 1452 int alloc_flags; 1453 unsigned long did_some_progress; 1454 unsigned long pages_reclaimed = 0; 1455 1456 might_sleep_if(wait); 1457 1458 if (should_fail_alloc_page(gfp_mask, order)) 1459 return NULL; 1460 1461 restart: 1462 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */ 1463 1464 if (unlikely(!z->zone)) { 1465 /* 1466 * Happens if we have an empty zonelist as a result of 1467 * GFP_THISNODE being used on a memoryless node 1468 */ 1469 return NULL; 1470 } 1471 1472 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1473 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1474 if (page) 1475 goto got_pg; 1476 1477 /* 1478 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1479 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1480 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1481 * using a larger set of nodes after it has established that the 1482 * allowed per node queues are empty and that nodes are 1483 * over allocated. 1484 */ 1485 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1486 goto nopage; 1487 1488 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1489 wakeup_kswapd(zone, order); 1490 1491 /* 1492 * OK, we're below the kswapd watermark and have kicked background 1493 * reclaim. Now things get more complex, so set up alloc_flags according 1494 * to how we want to proceed. 1495 * 1496 * The caller may dip into page reserves a bit more if the caller 1497 * cannot run direct reclaim, or if the caller has realtime scheduling 1498 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1499 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1500 */ 1501 alloc_flags = ALLOC_WMARK_MIN; 1502 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1503 alloc_flags |= ALLOC_HARDER; 1504 if (gfp_mask & __GFP_HIGH) 1505 alloc_flags |= ALLOC_HIGH; 1506 if (wait) 1507 alloc_flags |= ALLOC_CPUSET; 1508 1509 /* 1510 * Go through the zonelist again. Let __GFP_HIGH and allocations 1511 * coming from realtime tasks go deeper into reserves. 1512 * 1513 * This is the last chance, in general, before the goto nopage. 1514 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1515 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1516 */ 1517 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1518 high_zoneidx, alloc_flags); 1519 if (page) 1520 goto got_pg; 1521 1522 /* This allocation should allow future memory freeing. */ 1523 1524 rebalance: 1525 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1526 && !in_interrupt()) { 1527 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1528 nofail_alloc: 1529 /* go through the zonelist yet again, ignoring mins */ 1530 page = get_page_from_freelist(gfp_mask, nodemask, order, 1531 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS); 1532 if (page) 1533 goto got_pg; 1534 if (gfp_mask & __GFP_NOFAIL) { 1535 congestion_wait(WRITE, HZ/50); 1536 goto nofail_alloc; 1537 } 1538 } 1539 goto nopage; 1540 } 1541 1542 /* Atomic allocations - we can't balance anything */ 1543 if (!wait) 1544 goto nopage; 1545 1546 cond_resched(); 1547 1548 /* We now go into synchronous reclaim */ 1549 cpuset_memory_pressure_bump(); 1550 p->flags |= PF_MEMALLOC; 1551 reclaim_state.reclaimed_slab = 0; 1552 p->reclaim_state = &reclaim_state; 1553 1554 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask); 1555 1556 p->reclaim_state = NULL; 1557 p->flags &= ~PF_MEMALLOC; 1558 1559 cond_resched(); 1560 1561 if (order != 0) 1562 drain_all_pages(); 1563 1564 if (likely(did_some_progress)) { 1565 page = get_page_from_freelist(gfp_mask, nodemask, order, 1566 zonelist, high_zoneidx, alloc_flags); 1567 if (page) 1568 goto got_pg; 1569 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1570 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1571 schedule_timeout_uninterruptible(1); 1572 goto restart; 1573 } 1574 1575 /* 1576 * Go through the zonelist yet one more time, keep 1577 * very high watermark here, this is only to catch 1578 * a parallel oom killing, we must fail if we're still 1579 * under heavy pressure. 1580 */ 1581 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1582 order, zonelist, high_zoneidx, 1583 ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1584 if (page) { 1585 clear_zonelist_oom(zonelist, gfp_mask); 1586 goto got_pg; 1587 } 1588 1589 /* The OOM killer will not help higher order allocs so fail */ 1590 if (order > PAGE_ALLOC_COSTLY_ORDER) { 1591 clear_zonelist_oom(zonelist, gfp_mask); 1592 goto nopage; 1593 } 1594 1595 out_of_memory(zonelist, gfp_mask, order); 1596 clear_zonelist_oom(zonelist, gfp_mask); 1597 goto restart; 1598 } 1599 1600 /* 1601 * Don't let big-order allocations loop unless the caller explicitly 1602 * requests that. Wait for some write requests to complete then retry. 1603 * 1604 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1605 * means __GFP_NOFAIL, but that may not be true in other 1606 * implementations. 1607 * 1608 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1609 * specified, then we retry until we no longer reclaim any pages 1610 * (above), or we've reclaimed an order of pages at least as 1611 * large as the allocation's order. In both cases, if the 1612 * allocation still fails, we stop retrying. 1613 */ 1614 pages_reclaimed += did_some_progress; 1615 do_retry = 0; 1616 if (!(gfp_mask & __GFP_NORETRY)) { 1617 if (order <= PAGE_ALLOC_COSTLY_ORDER) { 1618 do_retry = 1; 1619 } else { 1620 if (gfp_mask & __GFP_REPEAT && 1621 pages_reclaimed < (1 << order)) 1622 do_retry = 1; 1623 } 1624 if (gfp_mask & __GFP_NOFAIL) 1625 do_retry = 1; 1626 } 1627 if (do_retry) { 1628 congestion_wait(WRITE, HZ/50); 1629 goto rebalance; 1630 } 1631 1632 nopage: 1633 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1634 printk(KERN_WARNING "%s: page allocation failure." 1635 " order:%d, mode:0x%x\n", 1636 p->comm, order, gfp_mask); 1637 dump_stack(); 1638 show_mem(); 1639 } 1640 got_pg: 1641 return page; 1642 } 1643 EXPORT_SYMBOL(__alloc_pages_internal); 1644 1645 /* 1646 * Common helper functions. 1647 */ 1648 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1649 { 1650 struct page * page; 1651 page = alloc_pages(gfp_mask, order); 1652 if (!page) 1653 return 0; 1654 return (unsigned long) page_address(page); 1655 } 1656 1657 EXPORT_SYMBOL(__get_free_pages); 1658 1659 unsigned long get_zeroed_page(gfp_t gfp_mask) 1660 { 1661 struct page * page; 1662 1663 /* 1664 * get_zeroed_page() returns a 32-bit address, which cannot represent 1665 * a highmem page 1666 */ 1667 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1668 1669 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1670 if (page) 1671 return (unsigned long) page_address(page); 1672 return 0; 1673 } 1674 1675 EXPORT_SYMBOL(get_zeroed_page); 1676 1677 void __pagevec_free(struct pagevec *pvec) 1678 { 1679 int i = pagevec_count(pvec); 1680 1681 while (--i >= 0) 1682 free_hot_cold_page(pvec->pages[i], pvec->cold); 1683 } 1684 1685 void __free_pages(struct page *page, unsigned int order) 1686 { 1687 if (put_page_testzero(page)) { 1688 if (order == 0) 1689 free_hot_page(page); 1690 else 1691 __free_pages_ok(page, order); 1692 } 1693 } 1694 1695 EXPORT_SYMBOL(__free_pages); 1696 1697 void free_pages(unsigned long addr, unsigned int order) 1698 { 1699 if (addr != 0) { 1700 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1701 __free_pages(virt_to_page((void *)addr), order); 1702 } 1703 } 1704 1705 EXPORT_SYMBOL(free_pages); 1706 1707 /** 1708 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 1709 * @size: the number of bytes to allocate 1710 * @gfp_mask: GFP flags for the allocation 1711 * 1712 * This function is similar to alloc_pages(), except that it allocates the 1713 * minimum number of pages to satisfy the request. alloc_pages() can only 1714 * allocate memory in power-of-two pages. 1715 * 1716 * This function is also limited by MAX_ORDER. 1717 * 1718 * Memory allocated by this function must be released by free_pages_exact(). 1719 */ 1720 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 1721 { 1722 unsigned int order = get_order(size); 1723 unsigned long addr; 1724 1725 addr = __get_free_pages(gfp_mask, order); 1726 if (addr) { 1727 unsigned long alloc_end = addr + (PAGE_SIZE << order); 1728 unsigned long used = addr + PAGE_ALIGN(size); 1729 1730 split_page(virt_to_page(addr), order); 1731 while (used < alloc_end) { 1732 free_page(used); 1733 used += PAGE_SIZE; 1734 } 1735 } 1736 1737 return (void *)addr; 1738 } 1739 EXPORT_SYMBOL(alloc_pages_exact); 1740 1741 /** 1742 * free_pages_exact - release memory allocated via alloc_pages_exact() 1743 * @virt: the value returned by alloc_pages_exact. 1744 * @size: size of allocation, same value as passed to alloc_pages_exact(). 1745 * 1746 * Release the memory allocated by a previous call to alloc_pages_exact. 1747 */ 1748 void free_pages_exact(void *virt, size_t size) 1749 { 1750 unsigned long addr = (unsigned long)virt; 1751 unsigned long end = addr + PAGE_ALIGN(size); 1752 1753 while (addr < end) { 1754 free_page(addr); 1755 addr += PAGE_SIZE; 1756 } 1757 } 1758 EXPORT_SYMBOL(free_pages_exact); 1759 1760 static unsigned int nr_free_zone_pages(int offset) 1761 { 1762 struct zoneref *z; 1763 struct zone *zone; 1764 1765 /* Just pick one node, since fallback list is circular */ 1766 unsigned int sum = 0; 1767 1768 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 1769 1770 for_each_zone_zonelist(zone, z, zonelist, offset) { 1771 unsigned long size = zone->present_pages; 1772 unsigned long high = zone->pages_high; 1773 if (size > high) 1774 sum += size - high; 1775 } 1776 1777 return sum; 1778 } 1779 1780 /* 1781 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1782 */ 1783 unsigned int nr_free_buffer_pages(void) 1784 { 1785 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1786 } 1787 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 1788 1789 /* 1790 * Amount of free RAM allocatable within all zones 1791 */ 1792 unsigned int nr_free_pagecache_pages(void) 1793 { 1794 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 1795 } 1796 1797 static inline void show_node(struct zone *zone) 1798 { 1799 if (NUMA_BUILD) 1800 printk("Node %d ", zone_to_nid(zone)); 1801 } 1802 1803 void si_meminfo(struct sysinfo *val) 1804 { 1805 val->totalram = totalram_pages; 1806 val->sharedram = 0; 1807 val->freeram = global_page_state(NR_FREE_PAGES); 1808 val->bufferram = nr_blockdev_pages(); 1809 val->totalhigh = totalhigh_pages; 1810 val->freehigh = nr_free_highpages(); 1811 val->mem_unit = PAGE_SIZE; 1812 } 1813 1814 EXPORT_SYMBOL(si_meminfo); 1815 1816 #ifdef CONFIG_NUMA 1817 void si_meminfo_node(struct sysinfo *val, int nid) 1818 { 1819 pg_data_t *pgdat = NODE_DATA(nid); 1820 1821 val->totalram = pgdat->node_present_pages; 1822 val->freeram = node_page_state(nid, NR_FREE_PAGES); 1823 #ifdef CONFIG_HIGHMEM 1824 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1825 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 1826 NR_FREE_PAGES); 1827 #else 1828 val->totalhigh = 0; 1829 val->freehigh = 0; 1830 #endif 1831 val->mem_unit = PAGE_SIZE; 1832 } 1833 #endif 1834 1835 #define K(x) ((x) << (PAGE_SHIFT-10)) 1836 1837 /* 1838 * Show free area list (used inside shift_scroll-lock stuff) 1839 * We also calculate the percentage fragmentation. We do this by counting the 1840 * memory on each free list with the exception of the first item on the list. 1841 */ 1842 void show_free_areas(void) 1843 { 1844 int cpu; 1845 struct zone *zone; 1846 1847 for_each_zone(zone) { 1848 if (!populated_zone(zone)) 1849 continue; 1850 1851 show_node(zone); 1852 printk("%s per-cpu:\n", zone->name); 1853 1854 for_each_online_cpu(cpu) { 1855 struct per_cpu_pageset *pageset; 1856 1857 pageset = zone_pcp(zone, cpu); 1858 1859 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 1860 cpu, pageset->pcp.high, 1861 pageset->pcp.batch, pageset->pcp.count); 1862 } 1863 } 1864 1865 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n" 1866 " inactive_file:%lu" 1867 //TODO: check/adjust line lengths 1868 #ifdef CONFIG_UNEVICTABLE_LRU 1869 " unevictable:%lu" 1870 #endif 1871 " dirty:%lu writeback:%lu unstable:%lu\n" 1872 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 1873 global_page_state(NR_ACTIVE_ANON), 1874 global_page_state(NR_ACTIVE_FILE), 1875 global_page_state(NR_INACTIVE_ANON), 1876 global_page_state(NR_INACTIVE_FILE), 1877 #ifdef CONFIG_UNEVICTABLE_LRU 1878 global_page_state(NR_UNEVICTABLE), 1879 #endif 1880 global_page_state(NR_FILE_DIRTY), 1881 global_page_state(NR_WRITEBACK), 1882 global_page_state(NR_UNSTABLE_NFS), 1883 global_page_state(NR_FREE_PAGES), 1884 global_page_state(NR_SLAB_RECLAIMABLE) + 1885 global_page_state(NR_SLAB_UNRECLAIMABLE), 1886 global_page_state(NR_FILE_MAPPED), 1887 global_page_state(NR_PAGETABLE), 1888 global_page_state(NR_BOUNCE)); 1889 1890 for_each_zone(zone) { 1891 int i; 1892 1893 if (!populated_zone(zone)) 1894 continue; 1895 1896 show_node(zone); 1897 printk("%s" 1898 " free:%lukB" 1899 " min:%lukB" 1900 " low:%lukB" 1901 " high:%lukB" 1902 " active_anon:%lukB" 1903 " inactive_anon:%lukB" 1904 " active_file:%lukB" 1905 " inactive_file:%lukB" 1906 #ifdef CONFIG_UNEVICTABLE_LRU 1907 " unevictable:%lukB" 1908 #endif 1909 " present:%lukB" 1910 " pages_scanned:%lu" 1911 " all_unreclaimable? %s" 1912 "\n", 1913 zone->name, 1914 K(zone_page_state(zone, NR_FREE_PAGES)), 1915 K(zone->pages_min), 1916 K(zone->pages_low), 1917 K(zone->pages_high), 1918 K(zone_page_state(zone, NR_ACTIVE_ANON)), 1919 K(zone_page_state(zone, NR_INACTIVE_ANON)), 1920 K(zone_page_state(zone, NR_ACTIVE_FILE)), 1921 K(zone_page_state(zone, NR_INACTIVE_FILE)), 1922 #ifdef CONFIG_UNEVICTABLE_LRU 1923 K(zone_page_state(zone, NR_UNEVICTABLE)), 1924 #endif 1925 K(zone->present_pages), 1926 zone->pages_scanned, 1927 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 1928 ); 1929 printk("lowmem_reserve[]:"); 1930 for (i = 0; i < MAX_NR_ZONES; i++) 1931 printk(" %lu", zone->lowmem_reserve[i]); 1932 printk("\n"); 1933 } 1934 1935 for_each_zone(zone) { 1936 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1937 1938 if (!populated_zone(zone)) 1939 continue; 1940 1941 show_node(zone); 1942 printk("%s: ", zone->name); 1943 1944 spin_lock_irqsave(&zone->lock, flags); 1945 for (order = 0; order < MAX_ORDER; order++) { 1946 nr[order] = zone->free_area[order].nr_free; 1947 total += nr[order] << order; 1948 } 1949 spin_unlock_irqrestore(&zone->lock, flags); 1950 for (order = 0; order < MAX_ORDER; order++) 1951 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1952 printk("= %lukB\n", K(total)); 1953 } 1954 1955 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 1956 1957 show_swap_cache_info(); 1958 } 1959 1960 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 1961 { 1962 zoneref->zone = zone; 1963 zoneref->zone_idx = zone_idx(zone); 1964 } 1965 1966 /* 1967 * Builds allocation fallback zone lists. 1968 * 1969 * Add all populated zones of a node to the zonelist. 1970 */ 1971 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 1972 int nr_zones, enum zone_type zone_type) 1973 { 1974 struct zone *zone; 1975 1976 BUG_ON(zone_type >= MAX_NR_ZONES); 1977 zone_type++; 1978 1979 do { 1980 zone_type--; 1981 zone = pgdat->node_zones + zone_type; 1982 if (populated_zone(zone)) { 1983 zoneref_set_zone(zone, 1984 &zonelist->_zonerefs[nr_zones++]); 1985 check_highest_zone(zone_type); 1986 } 1987 1988 } while (zone_type); 1989 return nr_zones; 1990 } 1991 1992 1993 /* 1994 * zonelist_order: 1995 * 0 = automatic detection of better ordering. 1996 * 1 = order by ([node] distance, -zonetype) 1997 * 2 = order by (-zonetype, [node] distance) 1998 * 1999 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2000 * the same zonelist. So only NUMA can configure this param. 2001 */ 2002 #define ZONELIST_ORDER_DEFAULT 0 2003 #define ZONELIST_ORDER_NODE 1 2004 #define ZONELIST_ORDER_ZONE 2 2005 2006 /* zonelist order in the kernel. 2007 * set_zonelist_order() will set this to NODE or ZONE. 2008 */ 2009 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2010 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2011 2012 2013 #ifdef CONFIG_NUMA 2014 /* The value user specified ....changed by config */ 2015 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2016 /* string for sysctl */ 2017 #define NUMA_ZONELIST_ORDER_LEN 16 2018 char numa_zonelist_order[16] = "default"; 2019 2020 /* 2021 * interface for configure zonelist ordering. 2022 * command line option "numa_zonelist_order" 2023 * = "[dD]efault - default, automatic configuration. 2024 * = "[nN]ode - order by node locality, then by zone within node 2025 * = "[zZ]one - order by zone, then by locality within zone 2026 */ 2027 2028 static int __parse_numa_zonelist_order(char *s) 2029 { 2030 if (*s == 'd' || *s == 'D') { 2031 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2032 } else if (*s == 'n' || *s == 'N') { 2033 user_zonelist_order = ZONELIST_ORDER_NODE; 2034 } else if (*s == 'z' || *s == 'Z') { 2035 user_zonelist_order = ZONELIST_ORDER_ZONE; 2036 } else { 2037 printk(KERN_WARNING 2038 "Ignoring invalid numa_zonelist_order value: " 2039 "%s\n", s); 2040 return -EINVAL; 2041 } 2042 return 0; 2043 } 2044 2045 static __init int setup_numa_zonelist_order(char *s) 2046 { 2047 if (s) 2048 return __parse_numa_zonelist_order(s); 2049 return 0; 2050 } 2051 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2052 2053 /* 2054 * sysctl handler for numa_zonelist_order 2055 */ 2056 int numa_zonelist_order_handler(ctl_table *table, int write, 2057 struct file *file, void __user *buffer, size_t *length, 2058 loff_t *ppos) 2059 { 2060 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2061 int ret; 2062 2063 if (write) 2064 strncpy(saved_string, (char*)table->data, 2065 NUMA_ZONELIST_ORDER_LEN); 2066 ret = proc_dostring(table, write, file, buffer, length, ppos); 2067 if (ret) 2068 return ret; 2069 if (write) { 2070 int oldval = user_zonelist_order; 2071 if (__parse_numa_zonelist_order((char*)table->data)) { 2072 /* 2073 * bogus value. restore saved string 2074 */ 2075 strncpy((char*)table->data, saved_string, 2076 NUMA_ZONELIST_ORDER_LEN); 2077 user_zonelist_order = oldval; 2078 } else if (oldval != user_zonelist_order) 2079 build_all_zonelists(); 2080 } 2081 return 0; 2082 } 2083 2084 2085 #define MAX_NODE_LOAD (num_online_nodes()) 2086 static int node_load[MAX_NUMNODES]; 2087 2088 /** 2089 * find_next_best_node - find the next node that should appear in a given node's fallback list 2090 * @node: node whose fallback list we're appending 2091 * @used_node_mask: nodemask_t of already used nodes 2092 * 2093 * We use a number of factors to determine which is the next node that should 2094 * appear on a given node's fallback list. The node should not have appeared 2095 * already in @node's fallback list, and it should be the next closest node 2096 * according to the distance array (which contains arbitrary distance values 2097 * from each node to each node in the system), and should also prefer nodes 2098 * with no CPUs, since presumably they'll have very little allocation pressure 2099 * on them otherwise. 2100 * It returns -1 if no node is found. 2101 */ 2102 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2103 { 2104 int n, val; 2105 int min_val = INT_MAX; 2106 int best_node = -1; 2107 node_to_cpumask_ptr(tmp, 0); 2108 2109 /* Use the local node if we haven't already */ 2110 if (!node_isset(node, *used_node_mask)) { 2111 node_set(node, *used_node_mask); 2112 return node; 2113 } 2114 2115 for_each_node_state(n, N_HIGH_MEMORY) { 2116 2117 /* Don't want a node to appear more than once */ 2118 if (node_isset(n, *used_node_mask)) 2119 continue; 2120 2121 /* Use the distance array to find the distance */ 2122 val = node_distance(node, n); 2123 2124 /* Penalize nodes under us ("prefer the next node") */ 2125 val += (n < node); 2126 2127 /* Give preference to headless and unused nodes */ 2128 node_to_cpumask_ptr_next(tmp, n); 2129 if (!cpus_empty(*tmp)) 2130 val += PENALTY_FOR_NODE_WITH_CPUS; 2131 2132 /* Slight preference for less loaded node */ 2133 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2134 val += node_load[n]; 2135 2136 if (val < min_val) { 2137 min_val = val; 2138 best_node = n; 2139 } 2140 } 2141 2142 if (best_node >= 0) 2143 node_set(best_node, *used_node_mask); 2144 2145 return best_node; 2146 } 2147 2148 2149 /* 2150 * Build zonelists ordered by node and zones within node. 2151 * This results in maximum locality--normal zone overflows into local 2152 * DMA zone, if any--but risks exhausting DMA zone. 2153 */ 2154 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2155 { 2156 int j; 2157 struct zonelist *zonelist; 2158 2159 zonelist = &pgdat->node_zonelists[0]; 2160 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2161 ; 2162 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2163 MAX_NR_ZONES - 1); 2164 zonelist->_zonerefs[j].zone = NULL; 2165 zonelist->_zonerefs[j].zone_idx = 0; 2166 } 2167 2168 /* 2169 * Build gfp_thisnode zonelists 2170 */ 2171 static void build_thisnode_zonelists(pg_data_t *pgdat) 2172 { 2173 int j; 2174 struct zonelist *zonelist; 2175 2176 zonelist = &pgdat->node_zonelists[1]; 2177 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2178 zonelist->_zonerefs[j].zone = NULL; 2179 zonelist->_zonerefs[j].zone_idx = 0; 2180 } 2181 2182 /* 2183 * Build zonelists ordered by zone and nodes within zones. 2184 * This results in conserving DMA zone[s] until all Normal memory is 2185 * exhausted, but results in overflowing to remote node while memory 2186 * may still exist in local DMA zone. 2187 */ 2188 static int node_order[MAX_NUMNODES]; 2189 2190 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2191 { 2192 int pos, j, node; 2193 int zone_type; /* needs to be signed */ 2194 struct zone *z; 2195 struct zonelist *zonelist; 2196 2197 zonelist = &pgdat->node_zonelists[0]; 2198 pos = 0; 2199 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2200 for (j = 0; j < nr_nodes; j++) { 2201 node = node_order[j]; 2202 z = &NODE_DATA(node)->node_zones[zone_type]; 2203 if (populated_zone(z)) { 2204 zoneref_set_zone(z, 2205 &zonelist->_zonerefs[pos++]); 2206 check_highest_zone(zone_type); 2207 } 2208 } 2209 } 2210 zonelist->_zonerefs[pos].zone = NULL; 2211 zonelist->_zonerefs[pos].zone_idx = 0; 2212 } 2213 2214 static int default_zonelist_order(void) 2215 { 2216 int nid, zone_type; 2217 unsigned long low_kmem_size,total_size; 2218 struct zone *z; 2219 int average_size; 2220 /* 2221 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2222 * If they are really small and used heavily, the system can fall 2223 * into OOM very easily. 2224 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2225 */ 2226 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2227 low_kmem_size = 0; 2228 total_size = 0; 2229 for_each_online_node(nid) { 2230 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2231 z = &NODE_DATA(nid)->node_zones[zone_type]; 2232 if (populated_zone(z)) { 2233 if (zone_type < ZONE_NORMAL) 2234 low_kmem_size += z->present_pages; 2235 total_size += z->present_pages; 2236 } 2237 } 2238 } 2239 if (!low_kmem_size || /* there are no DMA area. */ 2240 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2241 return ZONELIST_ORDER_NODE; 2242 /* 2243 * look into each node's config. 2244 * If there is a node whose DMA/DMA32 memory is very big area on 2245 * local memory, NODE_ORDER may be suitable. 2246 */ 2247 average_size = total_size / 2248 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2249 for_each_online_node(nid) { 2250 low_kmem_size = 0; 2251 total_size = 0; 2252 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2253 z = &NODE_DATA(nid)->node_zones[zone_type]; 2254 if (populated_zone(z)) { 2255 if (zone_type < ZONE_NORMAL) 2256 low_kmem_size += z->present_pages; 2257 total_size += z->present_pages; 2258 } 2259 } 2260 if (low_kmem_size && 2261 total_size > average_size && /* ignore small node */ 2262 low_kmem_size > total_size * 70/100) 2263 return ZONELIST_ORDER_NODE; 2264 } 2265 return ZONELIST_ORDER_ZONE; 2266 } 2267 2268 static void set_zonelist_order(void) 2269 { 2270 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2271 current_zonelist_order = default_zonelist_order(); 2272 else 2273 current_zonelist_order = user_zonelist_order; 2274 } 2275 2276 static void build_zonelists(pg_data_t *pgdat) 2277 { 2278 int j, node, load; 2279 enum zone_type i; 2280 nodemask_t used_mask; 2281 int local_node, prev_node; 2282 struct zonelist *zonelist; 2283 int order = current_zonelist_order; 2284 2285 /* initialize zonelists */ 2286 for (i = 0; i < MAX_ZONELISTS; i++) { 2287 zonelist = pgdat->node_zonelists + i; 2288 zonelist->_zonerefs[0].zone = NULL; 2289 zonelist->_zonerefs[0].zone_idx = 0; 2290 } 2291 2292 /* NUMA-aware ordering of nodes */ 2293 local_node = pgdat->node_id; 2294 load = num_online_nodes(); 2295 prev_node = local_node; 2296 nodes_clear(used_mask); 2297 2298 memset(node_load, 0, sizeof(node_load)); 2299 memset(node_order, 0, sizeof(node_order)); 2300 j = 0; 2301 2302 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2303 int distance = node_distance(local_node, node); 2304 2305 /* 2306 * If another node is sufficiently far away then it is better 2307 * to reclaim pages in a zone before going off node. 2308 */ 2309 if (distance > RECLAIM_DISTANCE) 2310 zone_reclaim_mode = 1; 2311 2312 /* 2313 * We don't want to pressure a particular node. 2314 * So adding penalty to the first node in same 2315 * distance group to make it round-robin. 2316 */ 2317 if (distance != node_distance(local_node, prev_node)) 2318 node_load[node] = load; 2319 2320 prev_node = node; 2321 load--; 2322 if (order == ZONELIST_ORDER_NODE) 2323 build_zonelists_in_node_order(pgdat, node); 2324 else 2325 node_order[j++] = node; /* remember order */ 2326 } 2327 2328 if (order == ZONELIST_ORDER_ZONE) { 2329 /* calculate node order -- i.e., DMA last! */ 2330 build_zonelists_in_zone_order(pgdat, j); 2331 } 2332 2333 build_thisnode_zonelists(pgdat); 2334 } 2335 2336 /* Construct the zonelist performance cache - see further mmzone.h */ 2337 static void build_zonelist_cache(pg_data_t *pgdat) 2338 { 2339 struct zonelist *zonelist; 2340 struct zonelist_cache *zlc; 2341 struct zoneref *z; 2342 2343 zonelist = &pgdat->node_zonelists[0]; 2344 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2345 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2346 for (z = zonelist->_zonerefs; z->zone; z++) 2347 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2348 } 2349 2350 2351 #else /* CONFIG_NUMA */ 2352 2353 static void set_zonelist_order(void) 2354 { 2355 current_zonelist_order = ZONELIST_ORDER_ZONE; 2356 } 2357 2358 static void build_zonelists(pg_data_t *pgdat) 2359 { 2360 int node, local_node; 2361 enum zone_type j; 2362 struct zonelist *zonelist; 2363 2364 local_node = pgdat->node_id; 2365 2366 zonelist = &pgdat->node_zonelists[0]; 2367 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2368 2369 /* 2370 * Now we build the zonelist so that it contains the zones 2371 * of all the other nodes. 2372 * We don't want to pressure a particular node, so when 2373 * building the zones for node N, we make sure that the 2374 * zones coming right after the local ones are those from 2375 * node N+1 (modulo N) 2376 */ 2377 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2378 if (!node_online(node)) 2379 continue; 2380 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2381 MAX_NR_ZONES - 1); 2382 } 2383 for (node = 0; node < local_node; node++) { 2384 if (!node_online(node)) 2385 continue; 2386 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2387 MAX_NR_ZONES - 1); 2388 } 2389 2390 zonelist->_zonerefs[j].zone = NULL; 2391 zonelist->_zonerefs[j].zone_idx = 0; 2392 } 2393 2394 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2395 static void build_zonelist_cache(pg_data_t *pgdat) 2396 { 2397 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2398 } 2399 2400 #endif /* CONFIG_NUMA */ 2401 2402 /* return values int ....just for stop_machine() */ 2403 static int __build_all_zonelists(void *dummy) 2404 { 2405 int nid; 2406 2407 for_each_online_node(nid) { 2408 pg_data_t *pgdat = NODE_DATA(nid); 2409 2410 build_zonelists(pgdat); 2411 build_zonelist_cache(pgdat); 2412 } 2413 return 0; 2414 } 2415 2416 void build_all_zonelists(void) 2417 { 2418 set_zonelist_order(); 2419 2420 if (system_state == SYSTEM_BOOTING) { 2421 __build_all_zonelists(NULL); 2422 mminit_verify_zonelist(); 2423 cpuset_init_current_mems_allowed(); 2424 } else { 2425 /* we have to stop all cpus to guarantee there is no user 2426 of zonelist */ 2427 stop_machine(__build_all_zonelists, NULL, NULL); 2428 /* cpuset refresh routine should be here */ 2429 } 2430 vm_total_pages = nr_free_pagecache_pages(); 2431 /* 2432 * Disable grouping by mobility if the number of pages in the 2433 * system is too low to allow the mechanism to work. It would be 2434 * more accurate, but expensive to check per-zone. This check is 2435 * made on memory-hotadd so a system can start with mobility 2436 * disabled and enable it later 2437 */ 2438 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2439 page_group_by_mobility_disabled = 1; 2440 else 2441 page_group_by_mobility_disabled = 0; 2442 2443 printk("Built %i zonelists in %s order, mobility grouping %s. " 2444 "Total pages: %ld\n", 2445 num_online_nodes(), 2446 zonelist_order_name[current_zonelist_order], 2447 page_group_by_mobility_disabled ? "off" : "on", 2448 vm_total_pages); 2449 #ifdef CONFIG_NUMA 2450 printk("Policy zone: %s\n", zone_names[policy_zone]); 2451 #endif 2452 } 2453 2454 /* 2455 * Helper functions to size the waitqueue hash table. 2456 * Essentially these want to choose hash table sizes sufficiently 2457 * large so that collisions trying to wait on pages are rare. 2458 * But in fact, the number of active page waitqueues on typical 2459 * systems is ridiculously low, less than 200. So this is even 2460 * conservative, even though it seems large. 2461 * 2462 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2463 * waitqueues, i.e. the size of the waitq table given the number of pages. 2464 */ 2465 #define PAGES_PER_WAITQUEUE 256 2466 2467 #ifndef CONFIG_MEMORY_HOTPLUG 2468 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2469 { 2470 unsigned long size = 1; 2471 2472 pages /= PAGES_PER_WAITQUEUE; 2473 2474 while (size < pages) 2475 size <<= 1; 2476 2477 /* 2478 * Once we have dozens or even hundreds of threads sleeping 2479 * on IO we've got bigger problems than wait queue collision. 2480 * Limit the size of the wait table to a reasonable size. 2481 */ 2482 size = min(size, 4096UL); 2483 2484 return max(size, 4UL); 2485 } 2486 #else 2487 /* 2488 * A zone's size might be changed by hot-add, so it is not possible to determine 2489 * a suitable size for its wait_table. So we use the maximum size now. 2490 * 2491 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2492 * 2493 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2494 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2495 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2496 * 2497 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2498 * or more by the traditional way. (See above). It equals: 2499 * 2500 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2501 * ia64(16K page size) : = ( 8G + 4M)byte. 2502 * powerpc (64K page size) : = (32G +16M)byte. 2503 */ 2504 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2505 { 2506 return 4096UL; 2507 } 2508 #endif 2509 2510 /* 2511 * This is an integer logarithm so that shifts can be used later 2512 * to extract the more random high bits from the multiplicative 2513 * hash function before the remainder is taken. 2514 */ 2515 static inline unsigned long wait_table_bits(unsigned long size) 2516 { 2517 return ffz(~size); 2518 } 2519 2520 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2521 2522 /* 2523 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2524 * of blocks reserved is based on zone->pages_min. The memory within the 2525 * reserve will tend to store contiguous free pages. Setting min_free_kbytes 2526 * higher will lead to a bigger reserve which will get freed as contiguous 2527 * blocks as reclaim kicks in 2528 */ 2529 static void setup_zone_migrate_reserve(struct zone *zone) 2530 { 2531 unsigned long start_pfn, pfn, end_pfn; 2532 struct page *page; 2533 unsigned long reserve, block_migratetype; 2534 2535 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2536 start_pfn = zone->zone_start_pfn; 2537 end_pfn = start_pfn + zone->spanned_pages; 2538 reserve = roundup(zone->pages_min, pageblock_nr_pages) >> 2539 pageblock_order; 2540 2541 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2542 if (!pfn_valid(pfn)) 2543 continue; 2544 page = pfn_to_page(pfn); 2545 2546 /* Watch out for overlapping nodes */ 2547 if (page_to_nid(page) != zone_to_nid(zone)) 2548 continue; 2549 2550 /* Blocks with reserved pages will never free, skip them. */ 2551 if (PageReserved(page)) 2552 continue; 2553 2554 block_migratetype = get_pageblock_migratetype(page); 2555 2556 /* If this block is reserved, account for it */ 2557 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2558 reserve--; 2559 continue; 2560 } 2561 2562 /* Suitable for reserving if this block is movable */ 2563 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2564 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2565 move_freepages_block(zone, page, MIGRATE_RESERVE); 2566 reserve--; 2567 continue; 2568 } 2569 2570 /* 2571 * If the reserve is met and this is a previous reserved block, 2572 * take it back 2573 */ 2574 if (block_migratetype == MIGRATE_RESERVE) { 2575 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2576 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2577 } 2578 } 2579 } 2580 2581 /* 2582 * Initially all pages are reserved - free ones are freed 2583 * up by free_all_bootmem() once the early boot process is 2584 * done. Non-atomic initialization, single-pass. 2585 */ 2586 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2587 unsigned long start_pfn, enum memmap_context context) 2588 { 2589 struct page *page; 2590 unsigned long end_pfn = start_pfn + size; 2591 unsigned long pfn; 2592 struct zone *z; 2593 2594 z = &NODE_DATA(nid)->node_zones[zone]; 2595 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2596 /* 2597 * There can be holes in boot-time mem_map[]s 2598 * handed to this function. They do not 2599 * exist on hotplugged memory. 2600 */ 2601 if (context == MEMMAP_EARLY) { 2602 if (!early_pfn_valid(pfn)) 2603 continue; 2604 if (!early_pfn_in_nid(pfn, nid)) 2605 continue; 2606 } 2607 page = pfn_to_page(pfn); 2608 set_page_links(page, zone, nid, pfn); 2609 mminit_verify_page_links(page, zone, nid, pfn); 2610 init_page_count(page); 2611 reset_page_mapcount(page); 2612 SetPageReserved(page); 2613 /* 2614 * Mark the block movable so that blocks are reserved for 2615 * movable at startup. This will force kernel allocations 2616 * to reserve their blocks rather than leaking throughout 2617 * the address space during boot when many long-lived 2618 * kernel allocations are made. Later some blocks near 2619 * the start are marked MIGRATE_RESERVE by 2620 * setup_zone_migrate_reserve() 2621 * 2622 * bitmap is created for zone's valid pfn range. but memmap 2623 * can be created for invalid pages (for alignment) 2624 * check here not to call set_pageblock_migratetype() against 2625 * pfn out of zone. 2626 */ 2627 if ((z->zone_start_pfn <= pfn) 2628 && (pfn < z->zone_start_pfn + z->spanned_pages) 2629 && !(pfn & (pageblock_nr_pages - 1))) 2630 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2631 2632 INIT_LIST_HEAD(&page->lru); 2633 #ifdef WANT_PAGE_VIRTUAL 2634 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2635 if (!is_highmem_idx(zone)) 2636 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2637 #endif 2638 } 2639 } 2640 2641 static void __meminit zone_init_free_lists(struct zone *zone) 2642 { 2643 int order, t; 2644 for_each_migratetype_order(order, t) { 2645 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2646 zone->free_area[order].nr_free = 0; 2647 } 2648 } 2649 2650 #ifndef __HAVE_ARCH_MEMMAP_INIT 2651 #define memmap_init(size, nid, zone, start_pfn) \ 2652 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2653 #endif 2654 2655 static int zone_batchsize(struct zone *zone) 2656 { 2657 int batch; 2658 2659 /* 2660 * The per-cpu-pages pools are set to around 1000th of the 2661 * size of the zone. But no more than 1/2 of a meg. 2662 * 2663 * OK, so we don't know how big the cache is. So guess. 2664 */ 2665 batch = zone->present_pages / 1024; 2666 if (batch * PAGE_SIZE > 512 * 1024) 2667 batch = (512 * 1024) / PAGE_SIZE; 2668 batch /= 4; /* We effectively *= 4 below */ 2669 if (batch < 1) 2670 batch = 1; 2671 2672 /* 2673 * Clamp the batch to a 2^n - 1 value. Having a power 2674 * of 2 value was found to be more likely to have 2675 * suboptimal cache aliasing properties in some cases. 2676 * 2677 * For example if 2 tasks are alternately allocating 2678 * batches of pages, one task can end up with a lot 2679 * of pages of one half of the possible page colors 2680 * and the other with pages of the other colors. 2681 */ 2682 batch = (1 << (fls(batch + batch/2)-1)) - 1; 2683 2684 return batch; 2685 } 2686 2687 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2688 { 2689 struct per_cpu_pages *pcp; 2690 2691 memset(p, 0, sizeof(*p)); 2692 2693 pcp = &p->pcp; 2694 pcp->count = 0; 2695 pcp->high = 6 * batch; 2696 pcp->batch = max(1UL, 1 * batch); 2697 INIT_LIST_HEAD(&pcp->list); 2698 } 2699 2700 /* 2701 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2702 * to the value high for the pageset p. 2703 */ 2704 2705 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2706 unsigned long high) 2707 { 2708 struct per_cpu_pages *pcp; 2709 2710 pcp = &p->pcp; 2711 pcp->high = high; 2712 pcp->batch = max(1UL, high/4); 2713 if ((high/4) > (PAGE_SHIFT * 8)) 2714 pcp->batch = PAGE_SHIFT * 8; 2715 } 2716 2717 2718 #ifdef CONFIG_NUMA 2719 /* 2720 * Boot pageset table. One per cpu which is going to be used for all 2721 * zones and all nodes. The parameters will be set in such a way 2722 * that an item put on a list will immediately be handed over to 2723 * the buddy list. This is safe since pageset manipulation is done 2724 * with interrupts disabled. 2725 * 2726 * Some NUMA counter updates may also be caught by the boot pagesets. 2727 * 2728 * The boot_pagesets must be kept even after bootup is complete for 2729 * unused processors and/or zones. They do play a role for bootstrapping 2730 * hotplugged processors. 2731 * 2732 * zoneinfo_show() and maybe other functions do 2733 * not check if the processor is online before following the pageset pointer. 2734 * Other parts of the kernel may not check if the zone is available. 2735 */ 2736 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2737 2738 /* 2739 * Dynamically allocate memory for the 2740 * per cpu pageset array in struct zone. 2741 */ 2742 static int __cpuinit process_zones(int cpu) 2743 { 2744 struct zone *zone, *dzone; 2745 int node = cpu_to_node(cpu); 2746 2747 node_set_state(node, N_CPU); /* this node has a cpu */ 2748 2749 for_each_zone(zone) { 2750 2751 if (!populated_zone(zone)) 2752 continue; 2753 2754 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2755 GFP_KERNEL, node); 2756 if (!zone_pcp(zone, cpu)) 2757 goto bad; 2758 2759 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2760 2761 if (percpu_pagelist_fraction) 2762 setup_pagelist_highmark(zone_pcp(zone, cpu), 2763 (zone->present_pages / percpu_pagelist_fraction)); 2764 } 2765 2766 return 0; 2767 bad: 2768 for_each_zone(dzone) { 2769 if (!populated_zone(dzone)) 2770 continue; 2771 if (dzone == zone) 2772 break; 2773 kfree(zone_pcp(dzone, cpu)); 2774 zone_pcp(dzone, cpu) = NULL; 2775 } 2776 return -ENOMEM; 2777 } 2778 2779 static inline void free_zone_pagesets(int cpu) 2780 { 2781 struct zone *zone; 2782 2783 for_each_zone(zone) { 2784 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2785 2786 /* Free per_cpu_pageset if it is slab allocated */ 2787 if (pset != &boot_pageset[cpu]) 2788 kfree(pset); 2789 zone_pcp(zone, cpu) = NULL; 2790 } 2791 } 2792 2793 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2794 unsigned long action, 2795 void *hcpu) 2796 { 2797 int cpu = (long)hcpu; 2798 int ret = NOTIFY_OK; 2799 2800 switch (action) { 2801 case CPU_UP_PREPARE: 2802 case CPU_UP_PREPARE_FROZEN: 2803 if (process_zones(cpu)) 2804 ret = NOTIFY_BAD; 2805 break; 2806 case CPU_UP_CANCELED: 2807 case CPU_UP_CANCELED_FROZEN: 2808 case CPU_DEAD: 2809 case CPU_DEAD_FROZEN: 2810 free_zone_pagesets(cpu); 2811 break; 2812 default: 2813 break; 2814 } 2815 return ret; 2816 } 2817 2818 static struct notifier_block __cpuinitdata pageset_notifier = 2819 { &pageset_cpuup_callback, NULL, 0 }; 2820 2821 void __init setup_per_cpu_pageset(void) 2822 { 2823 int err; 2824 2825 /* Initialize per_cpu_pageset for cpu 0. 2826 * A cpuup callback will do this for every cpu 2827 * as it comes online 2828 */ 2829 err = process_zones(smp_processor_id()); 2830 BUG_ON(err); 2831 register_cpu_notifier(&pageset_notifier); 2832 } 2833 2834 #endif 2835 2836 static noinline __init_refok 2837 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2838 { 2839 int i; 2840 struct pglist_data *pgdat = zone->zone_pgdat; 2841 size_t alloc_size; 2842 2843 /* 2844 * The per-page waitqueue mechanism uses hashed waitqueues 2845 * per zone. 2846 */ 2847 zone->wait_table_hash_nr_entries = 2848 wait_table_hash_nr_entries(zone_size_pages); 2849 zone->wait_table_bits = 2850 wait_table_bits(zone->wait_table_hash_nr_entries); 2851 alloc_size = zone->wait_table_hash_nr_entries 2852 * sizeof(wait_queue_head_t); 2853 2854 if (!slab_is_available()) { 2855 zone->wait_table = (wait_queue_head_t *) 2856 alloc_bootmem_node(pgdat, alloc_size); 2857 } else { 2858 /* 2859 * This case means that a zone whose size was 0 gets new memory 2860 * via memory hot-add. 2861 * But it may be the case that a new node was hot-added. In 2862 * this case vmalloc() will not be able to use this new node's 2863 * memory - this wait_table must be initialized to use this new 2864 * node itself as well. 2865 * To use this new node's memory, further consideration will be 2866 * necessary. 2867 */ 2868 zone->wait_table = vmalloc(alloc_size); 2869 } 2870 if (!zone->wait_table) 2871 return -ENOMEM; 2872 2873 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2874 init_waitqueue_head(zone->wait_table + i); 2875 2876 return 0; 2877 } 2878 2879 static __meminit void zone_pcp_init(struct zone *zone) 2880 { 2881 int cpu; 2882 unsigned long batch = zone_batchsize(zone); 2883 2884 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2885 #ifdef CONFIG_NUMA 2886 /* Early boot. Slab allocator not functional yet */ 2887 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2888 setup_pageset(&boot_pageset[cpu],0); 2889 #else 2890 setup_pageset(zone_pcp(zone,cpu), batch); 2891 #endif 2892 } 2893 if (zone->present_pages) 2894 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2895 zone->name, zone->present_pages, batch); 2896 } 2897 2898 __meminit int init_currently_empty_zone(struct zone *zone, 2899 unsigned long zone_start_pfn, 2900 unsigned long size, 2901 enum memmap_context context) 2902 { 2903 struct pglist_data *pgdat = zone->zone_pgdat; 2904 int ret; 2905 ret = zone_wait_table_init(zone, size); 2906 if (ret) 2907 return ret; 2908 pgdat->nr_zones = zone_idx(zone) + 1; 2909 2910 zone->zone_start_pfn = zone_start_pfn; 2911 2912 mminit_dprintk(MMINIT_TRACE, "memmap_init", 2913 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 2914 pgdat->node_id, 2915 (unsigned long)zone_idx(zone), 2916 zone_start_pfn, (zone_start_pfn + size)); 2917 2918 zone_init_free_lists(zone); 2919 2920 return 0; 2921 } 2922 2923 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2924 /* 2925 * Basic iterator support. Return the first range of PFNs for a node 2926 * Note: nid == MAX_NUMNODES returns first region regardless of node 2927 */ 2928 static int __meminit first_active_region_index_in_nid(int nid) 2929 { 2930 int i; 2931 2932 for (i = 0; i < nr_nodemap_entries; i++) 2933 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2934 return i; 2935 2936 return -1; 2937 } 2938 2939 /* 2940 * Basic iterator support. Return the next active range of PFNs for a node 2941 * Note: nid == MAX_NUMNODES returns next region regardless of node 2942 */ 2943 static int __meminit next_active_region_index_in_nid(int index, int nid) 2944 { 2945 for (index = index + 1; index < nr_nodemap_entries; index++) 2946 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2947 return index; 2948 2949 return -1; 2950 } 2951 2952 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2953 /* 2954 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2955 * Architectures may implement their own version but if add_active_range() 2956 * was used and there are no special requirements, this is a convenient 2957 * alternative 2958 */ 2959 int __meminit early_pfn_to_nid(unsigned long pfn) 2960 { 2961 int i; 2962 2963 for (i = 0; i < nr_nodemap_entries; i++) { 2964 unsigned long start_pfn = early_node_map[i].start_pfn; 2965 unsigned long end_pfn = early_node_map[i].end_pfn; 2966 2967 if (start_pfn <= pfn && pfn < end_pfn) 2968 return early_node_map[i].nid; 2969 } 2970 2971 return 0; 2972 } 2973 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 2974 2975 /* Basic iterator support to walk early_node_map[] */ 2976 #define for_each_active_range_index_in_nid(i, nid) \ 2977 for (i = first_active_region_index_in_nid(nid); i != -1; \ 2978 i = next_active_region_index_in_nid(i, nid)) 2979 2980 /** 2981 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 2982 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 2983 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 2984 * 2985 * If an architecture guarantees that all ranges registered with 2986 * add_active_ranges() contain no holes and may be freed, this 2987 * this function may be used instead of calling free_bootmem() manually. 2988 */ 2989 void __init free_bootmem_with_active_regions(int nid, 2990 unsigned long max_low_pfn) 2991 { 2992 int i; 2993 2994 for_each_active_range_index_in_nid(i, nid) { 2995 unsigned long size_pages = 0; 2996 unsigned long end_pfn = early_node_map[i].end_pfn; 2997 2998 if (early_node_map[i].start_pfn >= max_low_pfn) 2999 continue; 3000 3001 if (end_pfn > max_low_pfn) 3002 end_pfn = max_low_pfn; 3003 3004 size_pages = end_pfn - early_node_map[i].start_pfn; 3005 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3006 PFN_PHYS(early_node_map[i].start_pfn), 3007 size_pages << PAGE_SHIFT); 3008 } 3009 } 3010 3011 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3012 { 3013 int i; 3014 int ret; 3015 3016 for_each_active_range_index_in_nid(i, nid) { 3017 ret = work_fn(early_node_map[i].start_pfn, 3018 early_node_map[i].end_pfn, data); 3019 if (ret) 3020 break; 3021 } 3022 } 3023 /** 3024 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3025 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3026 * 3027 * If an architecture guarantees that all ranges registered with 3028 * add_active_ranges() contain no holes and may be freed, this 3029 * function may be used instead of calling memory_present() manually. 3030 */ 3031 void __init sparse_memory_present_with_active_regions(int nid) 3032 { 3033 int i; 3034 3035 for_each_active_range_index_in_nid(i, nid) 3036 memory_present(early_node_map[i].nid, 3037 early_node_map[i].start_pfn, 3038 early_node_map[i].end_pfn); 3039 } 3040 3041 /** 3042 * push_node_boundaries - Push node boundaries to at least the requested boundary 3043 * @nid: The nid of the node to push the boundary for 3044 * @start_pfn: The start pfn of the node 3045 * @end_pfn: The end pfn of the node 3046 * 3047 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 3048 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 3049 * be hotplugged even though no physical memory exists. This function allows 3050 * an arch to push out the node boundaries so mem_map is allocated that can 3051 * be used later. 3052 */ 3053 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3054 void __init push_node_boundaries(unsigned int nid, 3055 unsigned long start_pfn, unsigned long end_pfn) 3056 { 3057 mminit_dprintk(MMINIT_TRACE, "zoneboundary", 3058 "Entering push_node_boundaries(%u, %lu, %lu)\n", 3059 nid, start_pfn, end_pfn); 3060 3061 /* Initialise the boundary for this node if necessary */ 3062 if (node_boundary_end_pfn[nid] == 0) 3063 node_boundary_start_pfn[nid] = -1UL; 3064 3065 /* Update the boundaries */ 3066 if (node_boundary_start_pfn[nid] > start_pfn) 3067 node_boundary_start_pfn[nid] = start_pfn; 3068 if (node_boundary_end_pfn[nid] < end_pfn) 3069 node_boundary_end_pfn[nid] = end_pfn; 3070 } 3071 3072 /* If necessary, push the node boundary out for reserve hotadd */ 3073 static void __meminit account_node_boundary(unsigned int nid, 3074 unsigned long *start_pfn, unsigned long *end_pfn) 3075 { 3076 mminit_dprintk(MMINIT_TRACE, "zoneboundary", 3077 "Entering account_node_boundary(%u, %lu, %lu)\n", 3078 nid, *start_pfn, *end_pfn); 3079 3080 /* Return if boundary information has not been provided */ 3081 if (node_boundary_end_pfn[nid] == 0) 3082 return; 3083 3084 /* Check the boundaries and update if necessary */ 3085 if (node_boundary_start_pfn[nid] < *start_pfn) 3086 *start_pfn = node_boundary_start_pfn[nid]; 3087 if (node_boundary_end_pfn[nid] > *end_pfn) 3088 *end_pfn = node_boundary_end_pfn[nid]; 3089 } 3090 #else 3091 void __init push_node_boundaries(unsigned int nid, 3092 unsigned long start_pfn, unsigned long end_pfn) {} 3093 3094 static void __meminit account_node_boundary(unsigned int nid, 3095 unsigned long *start_pfn, unsigned long *end_pfn) {} 3096 #endif 3097 3098 3099 /** 3100 * get_pfn_range_for_nid - Return the start and end page frames for a node 3101 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3102 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3103 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3104 * 3105 * It returns the start and end page frame of a node based on information 3106 * provided by an arch calling add_active_range(). If called for a node 3107 * with no available memory, a warning is printed and the start and end 3108 * PFNs will be 0. 3109 */ 3110 void __meminit get_pfn_range_for_nid(unsigned int nid, 3111 unsigned long *start_pfn, unsigned long *end_pfn) 3112 { 3113 int i; 3114 *start_pfn = -1UL; 3115 *end_pfn = 0; 3116 3117 for_each_active_range_index_in_nid(i, nid) { 3118 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3119 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3120 } 3121 3122 if (*start_pfn == -1UL) 3123 *start_pfn = 0; 3124 3125 /* Push the node boundaries out if requested */ 3126 account_node_boundary(nid, start_pfn, end_pfn); 3127 } 3128 3129 /* 3130 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3131 * assumption is made that zones within a node are ordered in monotonic 3132 * increasing memory addresses so that the "highest" populated zone is used 3133 */ 3134 static void __init find_usable_zone_for_movable(void) 3135 { 3136 int zone_index; 3137 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3138 if (zone_index == ZONE_MOVABLE) 3139 continue; 3140 3141 if (arch_zone_highest_possible_pfn[zone_index] > 3142 arch_zone_lowest_possible_pfn[zone_index]) 3143 break; 3144 } 3145 3146 VM_BUG_ON(zone_index == -1); 3147 movable_zone = zone_index; 3148 } 3149 3150 /* 3151 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3152 * because it is sized independant of architecture. Unlike the other zones, 3153 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3154 * in each node depending on the size of each node and how evenly kernelcore 3155 * is distributed. This helper function adjusts the zone ranges 3156 * provided by the architecture for a given node by using the end of the 3157 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3158 * zones within a node are in order of monotonic increases memory addresses 3159 */ 3160 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3161 unsigned long zone_type, 3162 unsigned long node_start_pfn, 3163 unsigned long node_end_pfn, 3164 unsigned long *zone_start_pfn, 3165 unsigned long *zone_end_pfn) 3166 { 3167 /* Only adjust if ZONE_MOVABLE is on this node */ 3168 if (zone_movable_pfn[nid]) { 3169 /* Size ZONE_MOVABLE */ 3170 if (zone_type == ZONE_MOVABLE) { 3171 *zone_start_pfn = zone_movable_pfn[nid]; 3172 *zone_end_pfn = min(node_end_pfn, 3173 arch_zone_highest_possible_pfn[movable_zone]); 3174 3175 /* Adjust for ZONE_MOVABLE starting within this range */ 3176 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3177 *zone_end_pfn > zone_movable_pfn[nid]) { 3178 *zone_end_pfn = zone_movable_pfn[nid]; 3179 3180 /* Check if this whole range is within ZONE_MOVABLE */ 3181 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3182 *zone_start_pfn = *zone_end_pfn; 3183 } 3184 } 3185 3186 /* 3187 * Return the number of pages a zone spans in a node, including holes 3188 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3189 */ 3190 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3191 unsigned long zone_type, 3192 unsigned long *ignored) 3193 { 3194 unsigned long node_start_pfn, node_end_pfn; 3195 unsigned long zone_start_pfn, zone_end_pfn; 3196 3197 /* Get the start and end of the node and zone */ 3198 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3199 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3200 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3201 adjust_zone_range_for_zone_movable(nid, zone_type, 3202 node_start_pfn, node_end_pfn, 3203 &zone_start_pfn, &zone_end_pfn); 3204 3205 /* Check that this node has pages within the zone's required range */ 3206 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3207 return 0; 3208 3209 /* Move the zone boundaries inside the node if necessary */ 3210 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3211 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3212 3213 /* Return the spanned pages */ 3214 return zone_end_pfn - zone_start_pfn; 3215 } 3216 3217 /* 3218 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3219 * then all holes in the requested range will be accounted for. 3220 */ 3221 static unsigned long __meminit __absent_pages_in_range(int nid, 3222 unsigned long range_start_pfn, 3223 unsigned long range_end_pfn) 3224 { 3225 int i = 0; 3226 unsigned long prev_end_pfn = 0, hole_pages = 0; 3227 unsigned long start_pfn; 3228 3229 /* Find the end_pfn of the first active range of pfns in the node */ 3230 i = first_active_region_index_in_nid(nid); 3231 if (i == -1) 3232 return 0; 3233 3234 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3235 3236 /* Account for ranges before physical memory on this node */ 3237 if (early_node_map[i].start_pfn > range_start_pfn) 3238 hole_pages = prev_end_pfn - range_start_pfn; 3239 3240 /* Find all holes for the zone within the node */ 3241 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3242 3243 /* No need to continue if prev_end_pfn is outside the zone */ 3244 if (prev_end_pfn >= range_end_pfn) 3245 break; 3246 3247 /* Make sure the end of the zone is not within the hole */ 3248 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3249 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3250 3251 /* Update the hole size cound and move on */ 3252 if (start_pfn > range_start_pfn) { 3253 BUG_ON(prev_end_pfn > start_pfn); 3254 hole_pages += start_pfn - prev_end_pfn; 3255 } 3256 prev_end_pfn = early_node_map[i].end_pfn; 3257 } 3258 3259 /* Account for ranges past physical memory on this node */ 3260 if (range_end_pfn > prev_end_pfn) 3261 hole_pages += range_end_pfn - 3262 max(range_start_pfn, prev_end_pfn); 3263 3264 return hole_pages; 3265 } 3266 3267 /** 3268 * absent_pages_in_range - Return number of page frames in holes within a range 3269 * @start_pfn: The start PFN to start searching for holes 3270 * @end_pfn: The end PFN to stop searching for holes 3271 * 3272 * It returns the number of pages frames in memory holes within a range. 3273 */ 3274 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3275 unsigned long end_pfn) 3276 { 3277 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3278 } 3279 3280 /* Return the number of page frames in holes in a zone on a node */ 3281 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3282 unsigned long zone_type, 3283 unsigned long *ignored) 3284 { 3285 unsigned long node_start_pfn, node_end_pfn; 3286 unsigned long zone_start_pfn, zone_end_pfn; 3287 3288 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3289 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3290 node_start_pfn); 3291 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3292 node_end_pfn); 3293 3294 adjust_zone_range_for_zone_movable(nid, zone_type, 3295 node_start_pfn, node_end_pfn, 3296 &zone_start_pfn, &zone_end_pfn); 3297 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3298 } 3299 3300 #else 3301 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3302 unsigned long zone_type, 3303 unsigned long *zones_size) 3304 { 3305 return zones_size[zone_type]; 3306 } 3307 3308 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3309 unsigned long zone_type, 3310 unsigned long *zholes_size) 3311 { 3312 if (!zholes_size) 3313 return 0; 3314 3315 return zholes_size[zone_type]; 3316 } 3317 3318 #endif 3319 3320 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3321 unsigned long *zones_size, unsigned long *zholes_size) 3322 { 3323 unsigned long realtotalpages, totalpages = 0; 3324 enum zone_type i; 3325 3326 for (i = 0; i < MAX_NR_ZONES; i++) 3327 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3328 zones_size); 3329 pgdat->node_spanned_pages = totalpages; 3330 3331 realtotalpages = totalpages; 3332 for (i = 0; i < MAX_NR_ZONES; i++) 3333 realtotalpages -= 3334 zone_absent_pages_in_node(pgdat->node_id, i, 3335 zholes_size); 3336 pgdat->node_present_pages = realtotalpages; 3337 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3338 realtotalpages); 3339 } 3340 3341 #ifndef CONFIG_SPARSEMEM 3342 /* 3343 * Calculate the size of the zone->blockflags rounded to an unsigned long 3344 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3345 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3346 * round what is now in bits to nearest long in bits, then return it in 3347 * bytes. 3348 */ 3349 static unsigned long __init usemap_size(unsigned long zonesize) 3350 { 3351 unsigned long usemapsize; 3352 3353 usemapsize = roundup(zonesize, pageblock_nr_pages); 3354 usemapsize = usemapsize >> pageblock_order; 3355 usemapsize *= NR_PAGEBLOCK_BITS; 3356 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3357 3358 return usemapsize / 8; 3359 } 3360 3361 static void __init setup_usemap(struct pglist_data *pgdat, 3362 struct zone *zone, unsigned long zonesize) 3363 { 3364 unsigned long usemapsize = usemap_size(zonesize); 3365 zone->pageblock_flags = NULL; 3366 if (usemapsize) { 3367 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3368 memset(zone->pageblock_flags, 0, usemapsize); 3369 } 3370 } 3371 #else 3372 static void inline setup_usemap(struct pglist_data *pgdat, 3373 struct zone *zone, unsigned long zonesize) {} 3374 #endif /* CONFIG_SPARSEMEM */ 3375 3376 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3377 3378 /* Return a sensible default order for the pageblock size. */ 3379 static inline int pageblock_default_order(void) 3380 { 3381 if (HPAGE_SHIFT > PAGE_SHIFT) 3382 return HUGETLB_PAGE_ORDER; 3383 3384 return MAX_ORDER-1; 3385 } 3386 3387 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3388 static inline void __init set_pageblock_order(unsigned int order) 3389 { 3390 /* Check that pageblock_nr_pages has not already been setup */ 3391 if (pageblock_order) 3392 return; 3393 3394 /* 3395 * Assume the largest contiguous order of interest is a huge page. 3396 * This value may be variable depending on boot parameters on IA64 3397 */ 3398 pageblock_order = order; 3399 } 3400 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3401 3402 /* 3403 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3404 * and pageblock_default_order() are unused as pageblock_order is set 3405 * at compile-time. See include/linux/pageblock-flags.h for the values of 3406 * pageblock_order based on the kernel config 3407 */ 3408 static inline int pageblock_default_order(unsigned int order) 3409 { 3410 return MAX_ORDER-1; 3411 } 3412 #define set_pageblock_order(x) do {} while (0) 3413 3414 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3415 3416 /* 3417 * Set up the zone data structures: 3418 * - mark all pages reserved 3419 * - mark all memory queues empty 3420 * - clear the memory bitmaps 3421 */ 3422 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3423 unsigned long *zones_size, unsigned long *zholes_size) 3424 { 3425 enum zone_type j; 3426 int nid = pgdat->node_id; 3427 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3428 int ret; 3429 3430 pgdat_resize_init(pgdat); 3431 pgdat->nr_zones = 0; 3432 init_waitqueue_head(&pgdat->kswapd_wait); 3433 pgdat->kswapd_max_order = 0; 3434 pgdat_page_cgroup_init(pgdat); 3435 3436 for (j = 0; j < MAX_NR_ZONES; j++) { 3437 struct zone *zone = pgdat->node_zones + j; 3438 unsigned long size, realsize, memmap_pages; 3439 enum lru_list l; 3440 3441 size = zone_spanned_pages_in_node(nid, j, zones_size); 3442 realsize = size - zone_absent_pages_in_node(nid, j, 3443 zholes_size); 3444 3445 /* 3446 * Adjust realsize so that it accounts for how much memory 3447 * is used by this zone for memmap. This affects the watermark 3448 * and per-cpu initialisations 3449 */ 3450 memmap_pages = 3451 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3452 if (realsize >= memmap_pages) { 3453 realsize -= memmap_pages; 3454 printk(KERN_DEBUG 3455 " %s zone: %lu pages used for memmap\n", 3456 zone_names[j], memmap_pages); 3457 } else 3458 printk(KERN_WARNING 3459 " %s zone: %lu pages exceeds realsize %lu\n", 3460 zone_names[j], memmap_pages, realsize); 3461 3462 /* Account for reserved pages */ 3463 if (j == 0 && realsize > dma_reserve) { 3464 realsize -= dma_reserve; 3465 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3466 zone_names[0], dma_reserve); 3467 } 3468 3469 if (!is_highmem_idx(j)) 3470 nr_kernel_pages += realsize; 3471 nr_all_pages += realsize; 3472 3473 zone->spanned_pages = size; 3474 zone->present_pages = realsize; 3475 #ifdef CONFIG_NUMA 3476 zone->node = nid; 3477 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3478 / 100; 3479 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3480 #endif 3481 zone->name = zone_names[j]; 3482 spin_lock_init(&zone->lock); 3483 spin_lock_init(&zone->lru_lock); 3484 zone_seqlock_init(zone); 3485 zone->zone_pgdat = pgdat; 3486 3487 zone->prev_priority = DEF_PRIORITY; 3488 3489 zone_pcp_init(zone); 3490 for_each_lru(l) { 3491 INIT_LIST_HEAD(&zone->lru[l].list); 3492 zone->lru[l].nr_scan = 0; 3493 } 3494 zone->recent_rotated[0] = 0; 3495 zone->recent_rotated[1] = 0; 3496 zone->recent_scanned[0] = 0; 3497 zone->recent_scanned[1] = 0; 3498 zap_zone_vm_stats(zone); 3499 zone->flags = 0; 3500 if (!size) 3501 continue; 3502 3503 set_pageblock_order(pageblock_default_order()); 3504 setup_usemap(pgdat, zone, size); 3505 ret = init_currently_empty_zone(zone, zone_start_pfn, 3506 size, MEMMAP_EARLY); 3507 BUG_ON(ret); 3508 memmap_init(size, nid, j, zone_start_pfn); 3509 zone_start_pfn += size; 3510 } 3511 } 3512 3513 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3514 { 3515 /* Skip empty nodes */ 3516 if (!pgdat->node_spanned_pages) 3517 return; 3518 3519 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3520 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3521 if (!pgdat->node_mem_map) { 3522 unsigned long size, start, end; 3523 struct page *map; 3524 3525 /* 3526 * The zone's endpoints aren't required to be MAX_ORDER 3527 * aligned but the node_mem_map endpoints must be in order 3528 * for the buddy allocator to function correctly. 3529 */ 3530 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3531 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3532 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3533 size = (end - start) * sizeof(struct page); 3534 map = alloc_remap(pgdat->node_id, size); 3535 if (!map) 3536 map = alloc_bootmem_node(pgdat, size); 3537 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3538 } 3539 #ifndef CONFIG_NEED_MULTIPLE_NODES 3540 /* 3541 * With no DISCONTIG, the global mem_map is just set as node 0's 3542 */ 3543 if (pgdat == NODE_DATA(0)) { 3544 mem_map = NODE_DATA(0)->node_mem_map; 3545 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3546 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3547 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3548 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3549 } 3550 #endif 3551 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3552 } 3553 3554 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3555 unsigned long node_start_pfn, unsigned long *zholes_size) 3556 { 3557 pg_data_t *pgdat = NODE_DATA(nid); 3558 3559 pgdat->node_id = nid; 3560 pgdat->node_start_pfn = node_start_pfn; 3561 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3562 3563 alloc_node_mem_map(pgdat); 3564 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3565 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3566 nid, (unsigned long)pgdat, 3567 (unsigned long)pgdat->node_mem_map); 3568 #endif 3569 3570 free_area_init_core(pgdat, zones_size, zholes_size); 3571 } 3572 3573 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3574 3575 #if MAX_NUMNODES > 1 3576 /* 3577 * Figure out the number of possible node ids. 3578 */ 3579 static void __init setup_nr_node_ids(void) 3580 { 3581 unsigned int node; 3582 unsigned int highest = 0; 3583 3584 for_each_node_mask(node, node_possible_map) 3585 highest = node; 3586 nr_node_ids = highest + 1; 3587 } 3588 #else 3589 static inline void setup_nr_node_ids(void) 3590 { 3591 } 3592 #endif 3593 3594 /** 3595 * add_active_range - Register a range of PFNs backed by physical memory 3596 * @nid: The node ID the range resides on 3597 * @start_pfn: The start PFN of the available physical memory 3598 * @end_pfn: The end PFN of the available physical memory 3599 * 3600 * These ranges are stored in an early_node_map[] and later used by 3601 * free_area_init_nodes() to calculate zone sizes and holes. If the 3602 * range spans a memory hole, it is up to the architecture to ensure 3603 * the memory is not freed by the bootmem allocator. If possible 3604 * the range being registered will be merged with existing ranges. 3605 */ 3606 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3607 unsigned long end_pfn) 3608 { 3609 int i; 3610 3611 mminit_dprintk(MMINIT_TRACE, "memory_register", 3612 "Entering add_active_range(%d, %#lx, %#lx) " 3613 "%d entries of %d used\n", 3614 nid, start_pfn, end_pfn, 3615 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3616 3617 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 3618 3619 /* Merge with existing active regions if possible */ 3620 for (i = 0; i < nr_nodemap_entries; i++) { 3621 if (early_node_map[i].nid != nid) 3622 continue; 3623 3624 /* Skip if an existing region covers this new one */ 3625 if (start_pfn >= early_node_map[i].start_pfn && 3626 end_pfn <= early_node_map[i].end_pfn) 3627 return; 3628 3629 /* Merge forward if suitable */ 3630 if (start_pfn <= early_node_map[i].end_pfn && 3631 end_pfn > early_node_map[i].end_pfn) { 3632 early_node_map[i].end_pfn = end_pfn; 3633 return; 3634 } 3635 3636 /* Merge backward if suitable */ 3637 if (start_pfn < early_node_map[i].end_pfn && 3638 end_pfn >= early_node_map[i].start_pfn) { 3639 early_node_map[i].start_pfn = start_pfn; 3640 return; 3641 } 3642 } 3643 3644 /* Check that early_node_map is large enough */ 3645 if (i >= MAX_ACTIVE_REGIONS) { 3646 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3647 MAX_ACTIVE_REGIONS); 3648 return; 3649 } 3650 3651 early_node_map[i].nid = nid; 3652 early_node_map[i].start_pfn = start_pfn; 3653 early_node_map[i].end_pfn = end_pfn; 3654 nr_nodemap_entries = i + 1; 3655 } 3656 3657 /** 3658 * remove_active_range - Shrink an existing registered range of PFNs 3659 * @nid: The node id the range is on that should be shrunk 3660 * @start_pfn: The new PFN of the range 3661 * @end_pfn: The new PFN of the range 3662 * 3663 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3664 * The map is kept near the end physical page range that has already been 3665 * registered. This function allows an arch to shrink an existing registered 3666 * range. 3667 */ 3668 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 3669 unsigned long end_pfn) 3670 { 3671 int i, j; 3672 int removed = 0; 3673 3674 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 3675 nid, start_pfn, end_pfn); 3676 3677 /* Find the old active region end and shrink */ 3678 for_each_active_range_index_in_nid(i, nid) { 3679 if (early_node_map[i].start_pfn >= start_pfn && 3680 early_node_map[i].end_pfn <= end_pfn) { 3681 /* clear it */ 3682 early_node_map[i].start_pfn = 0; 3683 early_node_map[i].end_pfn = 0; 3684 removed = 1; 3685 continue; 3686 } 3687 if (early_node_map[i].start_pfn < start_pfn && 3688 early_node_map[i].end_pfn > start_pfn) { 3689 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 3690 early_node_map[i].end_pfn = start_pfn; 3691 if (temp_end_pfn > end_pfn) 3692 add_active_range(nid, end_pfn, temp_end_pfn); 3693 continue; 3694 } 3695 if (early_node_map[i].start_pfn >= start_pfn && 3696 early_node_map[i].end_pfn > end_pfn && 3697 early_node_map[i].start_pfn < end_pfn) { 3698 early_node_map[i].start_pfn = end_pfn; 3699 continue; 3700 } 3701 } 3702 3703 if (!removed) 3704 return; 3705 3706 /* remove the blank ones */ 3707 for (i = nr_nodemap_entries - 1; i > 0; i--) { 3708 if (early_node_map[i].nid != nid) 3709 continue; 3710 if (early_node_map[i].end_pfn) 3711 continue; 3712 /* we found it, get rid of it */ 3713 for (j = i; j < nr_nodemap_entries - 1; j++) 3714 memcpy(&early_node_map[j], &early_node_map[j+1], 3715 sizeof(early_node_map[j])); 3716 j = nr_nodemap_entries - 1; 3717 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 3718 nr_nodemap_entries--; 3719 } 3720 } 3721 3722 /** 3723 * remove_all_active_ranges - Remove all currently registered regions 3724 * 3725 * During discovery, it may be found that a table like SRAT is invalid 3726 * and an alternative discovery method must be used. This function removes 3727 * all currently registered regions. 3728 */ 3729 void __init remove_all_active_ranges(void) 3730 { 3731 memset(early_node_map, 0, sizeof(early_node_map)); 3732 nr_nodemap_entries = 0; 3733 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3734 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 3735 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 3736 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 3737 } 3738 3739 /* Compare two active node_active_regions */ 3740 static int __init cmp_node_active_region(const void *a, const void *b) 3741 { 3742 struct node_active_region *arange = (struct node_active_region *)a; 3743 struct node_active_region *brange = (struct node_active_region *)b; 3744 3745 /* Done this way to avoid overflows */ 3746 if (arange->start_pfn > brange->start_pfn) 3747 return 1; 3748 if (arange->start_pfn < brange->start_pfn) 3749 return -1; 3750 3751 return 0; 3752 } 3753 3754 /* sort the node_map by start_pfn */ 3755 static void __init sort_node_map(void) 3756 { 3757 sort(early_node_map, (size_t)nr_nodemap_entries, 3758 sizeof(struct node_active_region), 3759 cmp_node_active_region, NULL); 3760 } 3761 3762 /* Find the lowest pfn for a node */ 3763 static unsigned long __init find_min_pfn_for_node(int nid) 3764 { 3765 int i; 3766 unsigned long min_pfn = ULONG_MAX; 3767 3768 /* Assuming a sorted map, the first range found has the starting pfn */ 3769 for_each_active_range_index_in_nid(i, nid) 3770 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3771 3772 if (min_pfn == ULONG_MAX) { 3773 printk(KERN_WARNING 3774 "Could not find start_pfn for node %d\n", nid); 3775 return 0; 3776 } 3777 3778 return min_pfn; 3779 } 3780 3781 /** 3782 * find_min_pfn_with_active_regions - Find the minimum PFN registered 3783 * 3784 * It returns the minimum PFN based on information provided via 3785 * add_active_range(). 3786 */ 3787 unsigned long __init find_min_pfn_with_active_regions(void) 3788 { 3789 return find_min_pfn_for_node(MAX_NUMNODES); 3790 } 3791 3792 /* 3793 * early_calculate_totalpages() 3794 * Sum pages in active regions for movable zone. 3795 * Populate N_HIGH_MEMORY for calculating usable_nodes. 3796 */ 3797 static unsigned long __init early_calculate_totalpages(void) 3798 { 3799 int i; 3800 unsigned long totalpages = 0; 3801 3802 for (i = 0; i < nr_nodemap_entries; i++) { 3803 unsigned long pages = early_node_map[i].end_pfn - 3804 early_node_map[i].start_pfn; 3805 totalpages += pages; 3806 if (pages) 3807 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 3808 } 3809 return totalpages; 3810 } 3811 3812 /* 3813 * Find the PFN the Movable zone begins in each node. Kernel memory 3814 * is spread evenly between nodes as long as the nodes have enough 3815 * memory. When they don't, some nodes will have more kernelcore than 3816 * others 3817 */ 3818 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 3819 { 3820 int i, nid; 3821 unsigned long usable_startpfn; 3822 unsigned long kernelcore_node, kernelcore_remaining; 3823 unsigned long totalpages = early_calculate_totalpages(); 3824 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 3825 3826 /* 3827 * If movablecore was specified, calculate what size of 3828 * kernelcore that corresponds so that memory usable for 3829 * any allocation type is evenly spread. If both kernelcore 3830 * and movablecore are specified, then the value of kernelcore 3831 * will be used for required_kernelcore if it's greater than 3832 * what movablecore would have allowed. 3833 */ 3834 if (required_movablecore) { 3835 unsigned long corepages; 3836 3837 /* 3838 * Round-up so that ZONE_MOVABLE is at least as large as what 3839 * was requested by the user 3840 */ 3841 required_movablecore = 3842 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 3843 corepages = totalpages - required_movablecore; 3844 3845 required_kernelcore = max(required_kernelcore, corepages); 3846 } 3847 3848 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 3849 if (!required_kernelcore) 3850 return; 3851 3852 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 3853 find_usable_zone_for_movable(); 3854 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 3855 3856 restart: 3857 /* Spread kernelcore memory as evenly as possible throughout nodes */ 3858 kernelcore_node = required_kernelcore / usable_nodes; 3859 for_each_node_state(nid, N_HIGH_MEMORY) { 3860 /* 3861 * Recalculate kernelcore_node if the division per node 3862 * now exceeds what is necessary to satisfy the requested 3863 * amount of memory for the kernel 3864 */ 3865 if (required_kernelcore < kernelcore_node) 3866 kernelcore_node = required_kernelcore / usable_nodes; 3867 3868 /* 3869 * As the map is walked, we track how much memory is usable 3870 * by the kernel using kernelcore_remaining. When it is 3871 * 0, the rest of the node is usable by ZONE_MOVABLE 3872 */ 3873 kernelcore_remaining = kernelcore_node; 3874 3875 /* Go through each range of PFNs within this node */ 3876 for_each_active_range_index_in_nid(i, nid) { 3877 unsigned long start_pfn, end_pfn; 3878 unsigned long size_pages; 3879 3880 start_pfn = max(early_node_map[i].start_pfn, 3881 zone_movable_pfn[nid]); 3882 end_pfn = early_node_map[i].end_pfn; 3883 if (start_pfn >= end_pfn) 3884 continue; 3885 3886 /* Account for what is only usable for kernelcore */ 3887 if (start_pfn < usable_startpfn) { 3888 unsigned long kernel_pages; 3889 kernel_pages = min(end_pfn, usable_startpfn) 3890 - start_pfn; 3891 3892 kernelcore_remaining -= min(kernel_pages, 3893 kernelcore_remaining); 3894 required_kernelcore -= min(kernel_pages, 3895 required_kernelcore); 3896 3897 /* Continue if range is now fully accounted */ 3898 if (end_pfn <= usable_startpfn) { 3899 3900 /* 3901 * Push zone_movable_pfn to the end so 3902 * that if we have to rebalance 3903 * kernelcore across nodes, we will 3904 * not double account here 3905 */ 3906 zone_movable_pfn[nid] = end_pfn; 3907 continue; 3908 } 3909 start_pfn = usable_startpfn; 3910 } 3911 3912 /* 3913 * The usable PFN range for ZONE_MOVABLE is from 3914 * start_pfn->end_pfn. Calculate size_pages as the 3915 * number of pages used as kernelcore 3916 */ 3917 size_pages = end_pfn - start_pfn; 3918 if (size_pages > kernelcore_remaining) 3919 size_pages = kernelcore_remaining; 3920 zone_movable_pfn[nid] = start_pfn + size_pages; 3921 3922 /* 3923 * Some kernelcore has been met, update counts and 3924 * break if the kernelcore for this node has been 3925 * satisified 3926 */ 3927 required_kernelcore -= min(required_kernelcore, 3928 size_pages); 3929 kernelcore_remaining -= size_pages; 3930 if (!kernelcore_remaining) 3931 break; 3932 } 3933 } 3934 3935 /* 3936 * If there is still required_kernelcore, we do another pass with one 3937 * less node in the count. This will push zone_movable_pfn[nid] further 3938 * along on the nodes that still have memory until kernelcore is 3939 * satisified 3940 */ 3941 usable_nodes--; 3942 if (usable_nodes && required_kernelcore > usable_nodes) 3943 goto restart; 3944 3945 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 3946 for (nid = 0; nid < MAX_NUMNODES; nid++) 3947 zone_movable_pfn[nid] = 3948 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 3949 } 3950 3951 /* Any regular memory on that node ? */ 3952 static void check_for_regular_memory(pg_data_t *pgdat) 3953 { 3954 #ifdef CONFIG_HIGHMEM 3955 enum zone_type zone_type; 3956 3957 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 3958 struct zone *zone = &pgdat->node_zones[zone_type]; 3959 if (zone->present_pages) 3960 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 3961 } 3962 #endif 3963 } 3964 3965 /** 3966 * free_area_init_nodes - Initialise all pg_data_t and zone data 3967 * @max_zone_pfn: an array of max PFNs for each zone 3968 * 3969 * This will call free_area_init_node() for each active node in the system. 3970 * Using the page ranges provided by add_active_range(), the size of each 3971 * zone in each node and their holes is calculated. If the maximum PFN 3972 * between two adjacent zones match, it is assumed that the zone is empty. 3973 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 3974 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 3975 * starts where the previous one ended. For example, ZONE_DMA32 starts 3976 * at arch_max_dma_pfn. 3977 */ 3978 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 3979 { 3980 unsigned long nid; 3981 int i; 3982 3983 /* Sort early_node_map as initialisation assumes it is sorted */ 3984 sort_node_map(); 3985 3986 /* Record where the zone boundaries are */ 3987 memset(arch_zone_lowest_possible_pfn, 0, 3988 sizeof(arch_zone_lowest_possible_pfn)); 3989 memset(arch_zone_highest_possible_pfn, 0, 3990 sizeof(arch_zone_highest_possible_pfn)); 3991 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 3992 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 3993 for (i = 1; i < MAX_NR_ZONES; i++) { 3994 if (i == ZONE_MOVABLE) 3995 continue; 3996 arch_zone_lowest_possible_pfn[i] = 3997 arch_zone_highest_possible_pfn[i-1]; 3998 arch_zone_highest_possible_pfn[i] = 3999 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4000 } 4001 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4002 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4003 4004 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4005 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4006 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4007 4008 /* Print out the zone ranges */ 4009 printk("Zone PFN ranges:\n"); 4010 for (i = 0; i < MAX_NR_ZONES; i++) { 4011 if (i == ZONE_MOVABLE) 4012 continue; 4013 printk(" %-8s %0#10lx -> %0#10lx\n", 4014 zone_names[i], 4015 arch_zone_lowest_possible_pfn[i], 4016 arch_zone_highest_possible_pfn[i]); 4017 } 4018 4019 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4020 printk("Movable zone start PFN for each node\n"); 4021 for (i = 0; i < MAX_NUMNODES; i++) { 4022 if (zone_movable_pfn[i]) 4023 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4024 } 4025 4026 /* Print out the early_node_map[] */ 4027 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4028 for (i = 0; i < nr_nodemap_entries; i++) 4029 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4030 early_node_map[i].start_pfn, 4031 early_node_map[i].end_pfn); 4032 4033 /* Initialise every node */ 4034 mminit_verify_pageflags_layout(); 4035 setup_nr_node_ids(); 4036 for_each_online_node(nid) { 4037 pg_data_t *pgdat = NODE_DATA(nid); 4038 free_area_init_node(nid, NULL, 4039 find_min_pfn_for_node(nid), NULL); 4040 4041 /* Any memory on that node */ 4042 if (pgdat->node_present_pages) 4043 node_set_state(nid, N_HIGH_MEMORY); 4044 check_for_regular_memory(pgdat); 4045 } 4046 } 4047 4048 static int __init cmdline_parse_core(char *p, unsigned long *core) 4049 { 4050 unsigned long long coremem; 4051 if (!p) 4052 return -EINVAL; 4053 4054 coremem = memparse(p, &p); 4055 *core = coremem >> PAGE_SHIFT; 4056 4057 /* Paranoid check that UL is enough for the coremem value */ 4058 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4059 4060 return 0; 4061 } 4062 4063 /* 4064 * kernelcore=size sets the amount of memory for use for allocations that 4065 * cannot be reclaimed or migrated. 4066 */ 4067 static int __init cmdline_parse_kernelcore(char *p) 4068 { 4069 return cmdline_parse_core(p, &required_kernelcore); 4070 } 4071 4072 /* 4073 * movablecore=size sets the amount of memory for use for allocations that 4074 * can be reclaimed or migrated. 4075 */ 4076 static int __init cmdline_parse_movablecore(char *p) 4077 { 4078 return cmdline_parse_core(p, &required_movablecore); 4079 } 4080 4081 early_param("kernelcore", cmdline_parse_kernelcore); 4082 early_param("movablecore", cmdline_parse_movablecore); 4083 4084 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4085 4086 /** 4087 * set_dma_reserve - set the specified number of pages reserved in the first zone 4088 * @new_dma_reserve: The number of pages to mark reserved 4089 * 4090 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4091 * In the DMA zone, a significant percentage may be consumed by kernel image 4092 * and other unfreeable allocations which can skew the watermarks badly. This 4093 * function may optionally be used to account for unfreeable pages in the 4094 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4095 * smaller per-cpu batchsize. 4096 */ 4097 void __init set_dma_reserve(unsigned long new_dma_reserve) 4098 { 4099 dma_reserve = new_dma_reserve; 4100 } 4101 4102 #ifndef CONFIG_NEED_MULTIPLE_NODES 4103 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; 4104 EXPORT_SYMBOL(contig_page_data); 4105 #endif 4106 4107 void __init free_area_init(unsigned long *zones_size) 4108 { 4109 free_area_init_node(0, zones_size, 4110 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4111 } 4112 4113 static int page_alloc_cpu_notify(struct notifier_block *self, 4114 unsigned long action, void *hcpu) 4115 { 4116 int cpu = (unsigned long)hcpu; 4117 4118 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4119 drain_pages(cpu); 4120 4121 /* 4122 * Spill the event counters of the dead processor 4123 * into the current processors event counters. 4124 * This artificially elevates the count of the current 4125 * processor. 4126 */ 4127 vm_events_fold_cpu(cpu); 4128 4129 /* 4130 * Zero the differential counters of the dead processor 4131 * so that the vm statistics are consistent. 4132 * 4133 * This is only okay since the processor is dead and cannot 4134 * race with what we are doing. 4135 */ 4136 refresh_cpu_vm_stats(cpu); 4137 } 4138 return NOTIFY_OK; 4139 } 4140 4141 void __init page_alloc_init(void) 4142 { 4143 hotcpu_notifier(page_alloc_cpu_notify, 0); 4144 } 4145 4146 /* 4147 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4148 * or min_free_kbytes changes. 4149 */ 4150 static void calculate_totalreserve_pages(void) 4151 { 4152 struct pglist_data *pgdat; 4153 unsigned long reserve_pages = 0; 4154 enum zone_type i, j; 4155 4156 for_each_online_pgdat(pgdat) { 4157 for (i = 0; i < MAX_NR_ZONES; i++) { 4158 struct zone *zone = pgdat->node_zones + i; 4159 unsigned long max = 0; 4160 4161 /* Find valid and maximum lowmem_reserve in the zone */ 4162 for (j = i; j < MAX_NR_ZONES; j++) { 4163 if (zone->lowmem_reserve[j] > max) 4164 max = zone->lowmem_reserve[j]; 4165 } 4166 4167 /* we treat pages_high as reserved pages. */ 4168 max += zone->pages_high; 4169 4170 if (max > zone->present_pages) 4171 max = zone->present_pages; 4172 reserve_pages += max; 4173 } 4174 } 4175 totalreserve_pages = reserve_pages; 4176 } 4177 4178 /* 4179 * setup_per_zone_lowmem_reserve - called whenever 4180 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4181 * has a correct pages reserved value, so an adequate number of 4182 * pages are left in the zone after a successful __alloc_pages(). 4183 */ 4184 static void setup_per_zone_lowmem_reserve(void) 4185 { 4186 struct pglist_data *pgdat; 4187 enum zone_type j, idx; 4188 4189 for_each_online_pgdat(pgdat) { 4190 for (j = 0; j < MAX_NR_ZONES; j++) { 4191 struct zone *zone = pgdat->node_zones + j; 4192 unsigned long present_pages = zone->present_pages; 4193 4194 zone->lowmem_reserve[j] = 0; 4195 4196 idx = j; 4197 while (idx) { 4198 struct zone *lower_zone; 4199 4200 idx--; 4201 4202 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4203 sysctl_lowmem_reserve_ratio[idx] = 1; 4204 4205 lower_zone = pgdat->node_zones + idx; 4206 lower_zone->lowmem_reserve[j] = present_pages / 4207 sysctl_lowmem_reserve_ratio[idx]; 4208 present_pages += lower_zone->present_pages; 4209 } 4210 } 4211 } 4212 4213 /* update totalreserve_pages */ 4214 calculate_totalreserve_pages(); 4215 } 4216 4217 /** 4218 * setup_per_zone_pages_min - called when min_free_kbytes changes. 4219 * 4220 * Ensures that the pages_{min,low,high} values for each zone are set correctly 4221 * with respect to min_free_kbytes. 4222 */ 4223 void setup_per_zone_pages_min(void) 4224 { 4225 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4226 unsigned long lowmem_pages = 0; 4227 struct zone *zone; 4228 unsigned long flags; 4229 4230 /* Calculate total number of !ZONE_HIGHMEM pages */ 4231 for_each_zone(zone) { 4232 if (!is_highmem(zone)) 4233 lowmem_pages += zone->present_pages; 4234 } 4235 4236 for_each_zone(zone) { 4237 u64 tmp; 4238 4239 spin_lock_irqsave(&zone->lock, flags); 4240 tmp = (u64)pages_min * zone->present_pages; 4241 do_div(tmp, lowmem_pages); 4242 if (is_highmem(zone)) { 4243 /* 4244 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4245 * need highmem pages, so cap pages_min to a small 4246 * value here. 4247 * 4248 * The (pages_high-pages_low) and (pages_low-pages_min) 4249 * deltas controls asynch page reclaim, and so should 4250 * not be capped for highmem. 4251 */ 4252 int min_pages; 4253 4254 min_pages = zone->present_pages / 1024; 4255 if (min_pages < SWAP_CLUSTER_MAX) 4256 min_pages = SWAP_CLUSTER_MAX; 4257 if (min_pages > 128) 4258 min_pages = 128; 4259 zone->pages_min = min_pages; 4260 } else { 4261 /* 4262 * If it's a lowmem zone, reserve a number of pages 4263 * proportionate to the zone's size. 4264 */ 4265 zone->pages_min = tmp; 4266 } 4267 4268 zone->pages_low = zone->pages_min + (tmp >> 2); 4269 zone->pages_high = zone->pages_min + (tmp >> 1); 4270 setup_zone_migrate_reserve(zone); 4271 spin_unlock_irqrestore(&zone->lock, flags); 4272 } 4273 4274 /* update totalreserve_pages */ 4275 calculate_totalreserve_pages(); 4276 } 4277 4278 /** 4279 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes. 4280 * 4281 * The inactive anon list should be small enough that the VM never has to 4282 * do too much work, but large enough that each inactive page has a chance 4283 * to be referenced again before it is swapped out. 4284 * 4285 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4286 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4287 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4288 * the anonymous pages are kept on the inactive list. 4289 * 4290 * total target max 4291 * memory ratio inactive anon 4292 * ------------------------------------- 4293 * 10MB 1 5MB 4294 * 100MB 1 50MB 4295 * 1GB 3 250MB 4296 * 10GB 10 0.9GB 4297 * 100GB 31 3GB 4298 * 1TB 101 10GB 4299 * 10TB 320 32GB 4300 */ 4301 void setup_per_zone_inactive_ratio(void) 4302 { 4303 struct zone *zone; 4304 4305 for_each_zone(zone) { 4306 unsigned int gb, ratio; 4307 4308 /* Zone size in gigabytes */ 4309 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4310 ratio = int_sqrt(10 * gb); 4311 if (!ratio) 4312 ratio = 1; 4313 4314 zone->inactive_ratio = ratio; 4315 } 4316 } 4317 4318 /* 4319 * Initialise min_free_kbytes. 4320 * 4321 * For small machines we want it small (128k min). For large machines 4322 * we want it large (64MB max). But it is not linear, because network 4323 * bandwidth does not increase linearly with machine size. We use 4324 * 4325 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4326 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4327 * 4328 * which yields 4329 * 4330 * 16MB: 512k 4331 * 32MB: 724k 4332 * 64MB: 1024k 4333 * 128MB: 1448k 4334 * 256MB: 2048k 4335 * 512MB: 2896k 4336 * 1024MB: 4096k 4337 * 2048MB: 5792k 4338 * 4096MB: 8192k 4339 * 8192MB: 11584k 4340 * 16384MB: 16384k 4341 */ 4342 static int __init init_per_zone_pages_min(void) 4343 { 4344 unsigned long lowmem_kbytes; 4345 4346 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4347 4348 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4349 if (min_free_kbytes < 128) 4350 min_free_kbytes = 128; 4351 if (min_free_kbytes > 65536) 4352 min_free_kbytes = 65536; 4353 setup_per_zone_pages_min(); 4354 setup_per_zone_lowmem_reserve(); 4355 setup_per_zone_inactive_ratio(); 4356 return 0; 4357 } 4358 module_init(init_per_zone_pages_min) 4359 4360 /* 4361 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4362 * that we can call two helper functions whenever min_free_kbytes 4363 * changes. 4364 */ 4365 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4366 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4367 { 4368 proc_dointvec(table, write, file, buffer, length, ppos); 4369 if (write) 4370 setup_per_zone_pages_min(); 4371 return 0; 4372 } 4373 4374 #ifdef CONFIG_NUMA 4375 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4376 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4377 { 4378 struct zone *zone; 4379 int rc; 4380 4381 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4382 if (rc) 4383 return rc; 4384 4385 for_each_zone(zone) 4386 zone->min_unmapped_pages = (zone->present_pages * 4387 sysctl_min_unmapped_ratio) / 100; 4388 return 0; 4389 } 4390 4391 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4392 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4393 { 4394 struct zone *zone; 4395 int rc; 4396 4397 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4398 if (rc) 4399 return rc; 4400 4401 for_each_zone(zone) 4402 zone->min_slab_pages = (zone->present_pages * 4403 sysctl_min_slab_ratio) / 100; 4404 return 0; 4405 } 4406 #endif 4407 4408 /* 4409 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4410 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4411 * whenever sysctl_lowmem_reserve_ratio changes. 4412 * 4413 * The reserve ratio obviously has absolutely no relation with the 4414 * pages_min watermarks. The lowmem reserve ratio can only make sense 4415 * if in function of the boot time zone sizes. 4416 */ 4417 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4418 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4419 { 4420 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4421 setup_per_zone_lowmem_reserve(); 4422 return 0; 4423 } 4424 4425 /* 4426 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4427 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4428 * can have before it gets flushed back to buddy allocator. 4429 */ 4430 4431 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4432 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4433 { 4434 struct zone *zone; 4435 unsigned int cpu; 4436 int ret; 4437 4438 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4439 if (!write || (ret == -EINVAL)) 4440 return ret; 4441 for_each_zone(zone) { 4442 for_each_online_cpu(cpu) { 4443 unsigned long high; 4444 high = zone->present_pages / percpu_pagelist_fraction; 4445 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4446 } 4447 } 4448 return 0; 4449 } 4450 4451 int hashdist = HASHDIST_DEFAULT; 4452 4453 #ifdef CONFIG_NUMA 4454 static int __init set_hashdist(char *str) 4455 { 4456 if (!str) 4457 return 0; 4458 hashdist = simple_strtoul(str, &str, 0); 4459 return 1; 4460 } 4461 __setup("hashdist=", set_hashdist); 4462 #endif 4463 4464 /* 4465 * allocate a large system hash table from bootmem 4466 * - it is assumed that the hash table must contain an exact power-of-2 4467 * quantity of entries 4468 * - limit is the number of hash buckets, not the total allocation size 4469 */ 4470 void *__init alloc_large_system_hash(const char *tablename, 4471 unsigned long bucketsize, 4472 unsigned long numentries, 4473 int scale, 4474 int flags, 4475 unsigned int *_hash_shift, 4476 unsigned int *_hash_mask, 4477 unsigned long limit) 4478 { 4479 unsigned long long max = limit; 4480 unsigned long log2qty, size; 4481 void *table = NULL; 4482 4483 /* allow the kernel cmdline to have a say */ 4484 if (!numentries) { 4485 /* round applicable memory size up to nearest megabyte */ 4486 numentries = nr_kernel_pages; 4487 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4488 numentries >>= 20 - PAGE_SHIFT; 4489 numentries <<= 20 - PAGE_SHIFT; 4490 4491 /* limit to 1 bucket per 2^scale bytes of low memory */ 4492 if (scale > PAGE_SHIFT) 4493 numentries >>= (scale - PAGE_SHIFT); 4494 else 4495 numentries <<= (PAGE_SHIFT - scale); 4496 4497 /* Make sure we've got at least a 0-order allocation.. */ 4498 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4499 numentries = PAGE_SIZE / bucketsize; 4500 } 4501 numentries = roundup_pow_of_two(numentries); 4502 4503 /* limit allocation size to 1/16 total memory by default */ 4504 if (max == 0) { 4505 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4506 do_div(max, bucketsize); 4507 } 4508 4509 if (numentries > max) 4510 numentries = max; 4511 4512 log2qty = ilog2(numentries); 4513 4514 do { 4515 size = bucketsize << log2qty; 4516 if (flags & HASH_EARLY) 4517 table = alloc_bootmem_nopanic(size); 4518 else if (hashdist) 4519 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4520 else { 4521 unsigned long order = get_order(size); 4522 table = (void*) __get_free_pages(GFP_ATOMIC, order); 4523 /* 4524 * If bucketsize is not a power-of-two, we may free 4525 * some pages at the end of hash table. 4526 */ 4527 if (table) { 4528 unsigned long alloc_end = (unsigned long)table + 4529 (PAGE_SIZE << order); 4530 unsigned long used = (unsigned long)table + 4531 PAGE_ALIGN(size); 4532 split_page(virt_to_page(table), order); 4533 while (used < alloc_end) { 4534 free_page(used); 4535 used += PAGE_SIZE; 4536 } 4537 } 4538 } 4539 } while (!table && size > PAGE_SIZE && --log2qty); 4540 4541 if (!table) 4542 panic("Failed to allocate %s hash table\n", tablename); 4543 4544 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4545 tablename, 4546 (1U << log2qty), 4547 ilog2(size) - PAGE_SHIFT, 4548 size); 4549 4550 if (_hash_shift) 4551 *_hash_shift = log2qty; 4552 if (_hash_mask) 4553 *_hash_mask = (1 << log2qty) - 1; 4554 4555 return table; 4556 } 4557 4558 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 4559 struct page *pfn_to_page(unsigned long pfn) 4560 { 4561 return __pfn_to_page(pfn); 4562 } 4563 unsigned long page_to_pfn(struct page *page) 4564 { 4565 return __page_to_pfn(page); 4566 } 4567 EXPORT_SYMBOL(pfn_to_page); 4568 EXPORT_SYMBOL(page_to_pfn); 4569 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 4570 4571 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4572 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4573 unsigned long pfn) 4574 { 4575 #ifdef CONFIG_SPARSEMEM 4576 return __pfn_to_section(pfn)->pageblock_flags; 4577 #else 4578 return zone->pageblock_flags; 4579 #endif /* CONFIG_SPARSEMEM */ 4580 } 4581 4582 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4583 { 4584 #ifdef CONFIG_SPARSEMEM 4585 pfn &= (PAGES_PER_SECTION-1); 4586 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4587 #else 4588 pfn = pfn - zone->zone_start_pfn; 4589 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4590 #endif /* CONFIG_SPARSEMEM */ 4591 } 4592 4593 /** 4594 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4595 * @page: The page within the block of interest 4596 * @start_bitidx: The first bit of interest to retrieve 4597 * @end_bitidx: The last bit of interest 4598 * returns pageblock_bits flags 4599 */ 4600 unsigned long get_pageblock_flags_group(struct page *page, 4601 int start_bitidx, int end_bitidx) 4602 { 4603 struct zone *zone; 4604 unsigned long *bitmap; 4605 unsigned long pfn, bitidx; 4606 unsigned long flags = 0; 4607 unsigned long value = 1; 4608 4609 zone = page_zone(page); 4610 pfn = page_to_pfn(page); 4611 bitmap = get_pageblock_bitmap(zone, pfn); 4612 bitidx = pfn_to_bitidx(zone, pfn); 4613 4614 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4615 if (test_bit(bitidx + start_bitidx, bitmap)) 4616 flags |= value; 4617 4618 return flags; 4619 } 4620 4621 /** 4622 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4623 * @page: The page within the block of interest 4624 * @start_bitidx: The first bit of interest 4625 * @end_bitidx: The last bit of interest 4626 * @flags: The flags to set 4627 */ 4628 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4629 int start_bitidx, int end_bitidx) 4630 { 4631 struct zone *zone; 4632 unsigned long *bitmap; 4633 unsigned long pfn, bitidx; 4634 unsigned long value = 1; 4635 4636 zone = page_zone(page); 4637 pfn = page_to_pfn(page); 4638 bitmap = get_pageblock_bitmap(zone, pfn); 4639 bitidx = pfn_to_bitidx(zone, pfn); 4640 VM_BUG_ON(pfn < zone->zone_start_pfn); 4641 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4642 4643 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4644 if (flags & value) 4645 __set_bit(bitidx + start_bitidx, bitmap); 4646 else 4647 __clear_bit(bitidx + start_bitidx, bitmap); 4648 } 4649 4650 /* 4651 * This is designed as sub function...plz see page_isolation.c also. 4652 * set/clear page block's type to be ISOLATE. 4653 * page allocater never alloc memory from ISOLATE block. 4654 */ 4655 4656 int set_migratetype_isolate(struct page *page) 4657 { 4658 struct zone *zone; 4659 unsigned long flags; 4660 int ret = -EBUSY; 4661 4662 zone = page_zone(page); 4663 spin_lock_irqsave(&zone->lock, flags); 4664 /* 4665 * In future, more migrate types will be able to be isolation target. 4666 */ 4667 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 4668 goto out; 4669 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 4670 move_freepages_block(zone, page, MIGRATE_ISOLATE); 4671 ret = 0; 4672 out: 4673 spin_unlock_irqrestore(&zone->lock, flags); 4674 if (!ret) 4675 drain_all_pages(); 4676 return ret; 4677 } 4678 4679 void unset_migratetype_isolate(struct page *page) 4680 { 4681 struct zone *zone; 4682 unsigned long flags; 4683 zone = page_zone(page); 4684 spin_lock_irqsave(&zone->lock, flags); 4685 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 4686 goto out; 4687 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4688 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4689 out: 4690 spin_unlock_irqrestore(&zone->lock, flags); 4691 } 4692 4693 #ifdef CONFIG_MEMORY_HOTREMOVE 4694 /* 4695 * All pages in the range must be isolated before calling this. 4696 */ 4697 void 4698 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 4699 { 4700 struct page *page; 4701 struct zone *zone; 4702 int order, i; 4703 unsigned long pfn; 4704 unsigned long flags; 4705 /* find the first valid pfn */ 4706 for (pfn = start_pfn; pfn < end_pfn; pfn++) 4707 if (pfn_valid(pfn)) 4708 break; 4709 if (pfn == end_pfn) 4710 return; 4711 zone = page_zone(pfn_to_page(pfn)); 4712 spin_lock_irqsave(&zone->lock, flags); 4713 pfn = start_pfn; 4714 while (pfn < end_pfn) { 4715 if (!pfn_valid(pfn)) { 4716 pfn++; 4717 continue; 4718 } 4719 page = pfn_to_page(pfn); 4720 BUG_ON(page_count(page)); 4721 BUG_ON(!PageBuddy(page)); 4722 order = page_order(page); 4723 #ifdef CONFIG_DEBUG_VM 4724 printk(KERN_INFO "remove from free list %lx %d %lx\n", 4725 pfn, 1 << order, end_pfn); 4726 #endif 4727 list_del(&page->lru); 4728 rmv_page_order(page); 4729 zone->free_area[order].nr_free--; 4730 __mod_zone_page_state(zone, NR_FREE_PAGES, 4731 - (1UL << order)); 4732 for (i = 0; i < (1 << order); i++) 4733 SetPageReserved((page+i)); 4734 pfn += (1 << order); 4735 } 4736 spin_unlock_irqrestore(&zone->lock, flags); 4737 } 4738 #endif 4739