xref: /linux/mm/page_alloc.c (revision 34efe1c3b688944d9817a5faaab7aad870182c59)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static void accept_page(struct page *page, unsigned int order);
290 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
291 static inline bool has_unaccepted_memory(void);
292 static bool __free_unaccepted(struct page *page);
293 
294 int page_group_by_mobility_disabled __read_mostly;
295 
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /*
298  * During boot we initialize deferred pages on-demand, as needed, but once
299  * page_alloc_init_late() has finished, the deferred pages are all initialized,
300  * and we can permanently disable that path.
301  */
302 DEFINE_STATIC_KEY_TRUE(deferred_pages);
303 
304 static inline bool deferred_pages_enabled(void)
305 {
306 	return static_branch_unlikely(&deferred_pages);
307 }
308 
309 /*
310  * deferred_grow_zone() is __init, but it is called from
311  * get_page_from_freelist() during early boot until deferred_pages permanently
312  * disables this call. This is why we have refdata wrapper to avoid warning,
313  * and to ensure that the function body gets unloaded.
314  */
315 static bool __ref
316 _deferred_grow_zone(struct zone *zone, unsigned int order)
317 {
318 	return deferred_grow_zone(zone, order);
319 }
320 #else
321 static inline bool deferred_pages_enabled(void)
322 {
323 	return false;
324 }
325 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
326 
327 /* Return a pointer to the bitmap storing bits affecting a block of pages */
328 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
329 							unsigned long pfn)
330 {
331 #ifdef CONFIG_SPARSEMEM
332 	return section_to_usemap(__pfn_to_section(pfn));
333 #else
334 	return page_zone(page)->pageblock_flags;
335 #endif /* CONFIG_SPARSEMEM */
336 }
337 
338 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
339 {
340 #ifdef CONFIG_SPARSEMEM
341 	pfn &= (PAGES_PER_SECTION-1);
342 #else
343 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
344 #endif /* CONFIG_SPARSEMEM */
345 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
346 }
347 
348 /**
349  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
350  * @page: The page within the block of interest
351  * @pfn: The target page frame number
352  * @mask: mask of bits that the caller is interested in
353  *
354  * Return: pageblock_bits flags
355  */
356 unsigned long get_pfnblock_flags_mask(const struct page *page,
357 					unsigned long pfn, unsigned long mask)
358 {
359 	unsigned long *bitmap;
360 	unsigned long bitidx, word_bitidx;
361 	unsigned long word;
362 
363 	bitmap = get_pageblock_bitmap(page, pfn);
364 	bitidx = pfn_to_bitidx(page, pfn);
365 	word_bitidx = bitidx / BITS_PER_LONG;
366 	bitidx &= (BITS_PER_LONG-1);
367 	/*
368 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
369 	 * a consistent read of the memory array, so that results, even though
370 	 * racy, are not corrupted.
371 	 */
372 	word = READ_ONCE(bitmap[word_bitidx]);
373 	return (word >> bitidx) & mask;
374 }
375 
376 static __always_inline int get_pfnblock_migratetype(const struct page *page,
377 					unsigned long pfn)
378 {
379 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
380 }
381 
382 /**
383  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
384  * @page: The page within the block of interest
385  * @flags: The flags to set
386  * @pfn: The target page frame number
387  * @mask: mask of bits that the caller is interested in
388  */
389 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
390 					unsigned long pfn,
391 					unsigned long mask)
392 {
393 	unsigned long *bitmap;
394 	unsigned long bitidx, word_bitidx;
395 	unsigned long word;
396 
397 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
398 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
399 
400 	bitmap = get_pageblock_bitmap(page, pfn);
401 	bitidx = pfn_to_bitidx(page, pfn);
402 	word_bitidx = bitidx / BITS_PER_LONG;
403 	bitidx &= (BITS_PER_LONG-1);
404 
405 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
406 
407 	mask <<= bitidx;
408 	flags <<= bitidx;
409 
410 	word = READ_ONCE(bitmap[word_bitidx]);
411 	do {
412 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
413 }
414 
415 void set_pageblock_migratetype(struct page *page, int migratetype)
416 {
417 	if (unlikely(page_group_by_mobility_disabled &&
418 		     migratetype < MIGRATE_PCPTYPES))
419 		migratetype = MIGRATE_UNMOVABLE;
420 
421 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
422 				page_to_pfn(page), MIGRATETYPE_MASK);
423 }
424 
425 #ifdef CONFIG_DEBUG_VM
426 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
427 {
428 	int ret;
429 	unsigned seq;
430 	unsigned long pfn = page_to_pfn(page);
431 	unsigned long sp, start_pfn;
432 
433 	do {
434 		seq = zone_span_seqbegin(zone);
435 		start_pfn = zone->zone_start_pfn;
436 		sp = zone->spanned_pages;
437 		ret = !zone_spans_pfn(zone, pfn);
438 	} while (zone_span_seqretry(zone, seq));
439 
440 	if (ret)
441 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
442 			pfn, zone_to_nid(zone), zone->name,
443 			start_pfn, start_pfn + sp);
444 
445 	return ret;
446 }
447 
448 /*
449  * Temporary debugging check for pages not lying within a given zone.
450  */
451 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
452 {
453 	if (page_outside_zone_boundaries(zone, page))
454 		return true;
455 	if (zone != page_zone(page))
456 		return true;
457 
458 	return false;
459 }
460 #else
461 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
462 {
463 	return false;
464 }
465 #endif
466 
467 static void bad_page(struct page *page, const char *reason)
468 {
469 	static unsigned long resume;
470 	static unsigned long nr_shown;
471 	static unsigned long nr_unshown;
472 
473 	/*
474 	 * Allow a burst of 60 reports, then keep quiet for that minute;
475 	 * or allow a steady drip of one report per second.
476 	 */
477 	if (nr_shown == 60) {
478 		if (time_before(jiffies, resume)) {
479 			nr_unshown++;
480 			goto out;
481 		}
482 		if (nr_unshown) {
483 			pr_alert(
484 			      "BUG: Bad page state: %lu messages suppressed\n",
485 				nr_unshown);
486 			nr_unshown = 0;
487 		}
488 		nr_shown = 0;
489 	}
490 	if (nr_shown++ == 0)
491 		resume = jiffies + 60 * HZ;
492 
493 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
494 		current->comm, page_to_pfn(page));
495 	dump_page(page, reason);
496 
497 	print_modules();
498 	dump_stack();
499 out:
500 	/* Leave bad fields for debug, except PageBuddy could make trouble */
501 	page_mapcount_reset(page); /* remove PageBuddy */
502 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
503 }
504 
505 static inline unsigned int order_to_pindex(int migratetype, int order)
506 {
507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
508 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
509 		VM_BUG_ON(order != pageblock_order);
510 		return NR_LOWORDER_PCP_LISTS;
511 	}
512 #else
513 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
514 #endif
515 
516 	return (MIGRATE_PCPTYPES * order) + migratetype;
517 }
518 
519 static inline int pindex_to_order(unsigned int pindex)
520 {
521 	int order = pindex / MIGRATE_PCPTYPES;
522 
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 	if (pindex == NR_LOWORDER_PCP_LISTS)
525 		order = pageblock_order;
526 #else
527 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
528 #endif
529 
530 	return order;
531 }
532 
533 static inline bool pcp_allowed_order(unsigned int order)
534 {
535 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
536 		return true;
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 	if (order == pageblock_order)
539 		return true;
540 #endif
541 	return false;
542 }
543 
544 static inline void free_the_page(struct page *page, unsigned int order)
545 {
546 	if (pcp_allowed_order(order))		/* Via pcp? */
547 		free_unref_page(page, order);
548 	else
549 		__free_pages_ok(page, order, FPI_NONE);
550 }
551 
552 /*
553  * Higher-order pages are called "compound pages".  They are structured thusly:
554  *
555  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
556  *
557  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
559  *
560  * The first tail page's ->compound_order holds the order of allocation.
561  * This usage means that zero-order pages may not be compound.
562  */
563 
564 void prep_compound_page(struct page *page, unsigned int order)
565 {
566 	int i;
567 	int nr_pages = 1 << order;
568 
569 	__SetPageHead(page);
570 	for (i = 1; i < nr_pages; i++)
571 		prep_compound_tail(page, i);
572 
573 	prep_compound_head(page, order);
574 }
575 
576 void destroy_large_folio(struct folio *folio)
577 {
578 	if (folio_test_hugetlb(folio)) {
579 		free_huge_folio(folio);
580 		return;
581 	}
582 
583 	if (folio_test_large_rmappable(folio))
584 		folio_undo_large_rmappable(folio);
585 
586 	mem_cgroup_uncharge(folio);
587 	free_the_page(&folio->page, folio_order(folio));
588 }
589 
590 static inline void set_buddy_order(struct page *page, unsigned int order)
591 {
592 	set_page_private(page, order);
593 	__SetPageBuddy(page);
594 }
595 
596 #ifdef CONFIG_COMPACTION
597 static inline struct capture_control *task_capc(struct zone *zone)
598 {
599 	struct capture_control *capc = current->capture_control;
600 
601 	return unlikely(capc) &&
602 		!(current->flags & PF_KTHREAD) &&
603 		!capc->page &&
604 		capc->cc->zone == zone ? capc : NULL;
605 }
606 
607 static inline bool
608 compaction_capture(struct capture_control *capc, struct page *page,
609 		   int order, int migratetype)
610 {
611 	if (!capc || order != capc->cc->order)
612 		return false;
613 
614 	/* Do not accidentally pollute CMA or isolated regions*/
615 	if (is_migrate_cma(migratetype) ||
616 	    is_migrate_isolate(migratetype))
617 		return false;
618 
619 	/*
620 	 * Do not let lower order allocations pollute a movable pageblock.
621 	 * This might let an unmovable request use a reclaimable pageblock
622 	 * and vice-versa but no more than normal fallback logic which can
623 	 * have trouble finding a high-order free page.
624 	 */
625 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
626 		return false;
627 
628 	capc->page = page;
629 	return true;
630 }
631 
632 #else
633 static inline struct capture_control *task_capc(struct zone *zone)
634 {
635 	return NULL;
636 }
637 
638 static inline bool
639 compaction_capture(struct capture_control *capc, struct page *page,
640 		   int order, int migratetype)
641 {
642 	return false;
643 }
644 #endif /* CONFIG_COMPACTION */
645 
646 static inline void account_freepages(struct zone *zone, int nr_pages,
647 				     int migratetype)
648 {
649 	if (is_migrate_isolate(migratetype))
650 		return;
651 
652 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
653 
654 	if (is_migrate_cma(migratetype))
655 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
656 }
657 
658 /* Used for pages not on another list */
659 static inline void __add_to_free_list(struct page *page, struct zone *zone,
660 				      unsigned int order, int migratetype,
661 				      bool tail)
662 {
663 	struct free_area *area = &zone->free_area[order];
664 
665 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
666 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
667 		     get_pageblock_migratetype(page), migratetype, 1 << order);
668 
669 	if (tail)
670 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
671 	else
672 		list_add(&page->buddy_list, &area->free_list[migratetype]);
673 	area->nr_free++;
674 }
675 
676 /*
677  * Used for pages which are on another list. Move the pages to the tail
678  * of the list - so the moved pages won't immediately be considered for
679  * allocation again (e.g., optimization for memory onlining).
680  */
681 static inline void move_to_free_list(struct page *page, struct zone *zone,
682 				     unsigned int order, int old_mt, int new_mt)
683 {
684 	struct free_area *area = &zone->free_area[order];
685 
686 	/* Free page moving can fail, so it happens before the type update */
687 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
688 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
689 		     get_pageblock_migratetype(page), old_mt, 1 << order);
690 
691 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
692 
693 	account_freepages(zone, -(1 << order), old_mt);
694 	account_freepages(zone, 1 << order, new_mt);
695 }
696 
697 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
698 					     unsigned int order, int migratetype)
699 {
700         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
701 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
702 		     get_pageblock_migratetype(page), migratetype, 1 << order);
703 
704 	/* clear reported state and update reported page count */
705 	if (page_reported(page))
706 		__ClearPageReported(page);
707 
708 	list_del(&page->buddy_list);
709 	__ClearPageBuddy(page);
710 	set_page_private(page, 0);
711 	zone->free_area[order].nr_free--;
712 }
713 
714 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
715 					   unsigned int order, int migratetype)
716 {
717 	__del_page_from_free_list(page, zone, order, migratetype);
718 	account_freepages(zone, -(1 << order), migratetype);
719 }
720 
721 static inline struct page *get_page_from_free_area(struct free_area *area,
722 					    int migratetype)
723 {
724 	return list_first_entry_or_null(&area->free_list[migratetype],
725 					struct page, buddy_list);
726 }
727 
728 /*
729  * If this is not the largest possible page, check if the buddy
730  * of the next-highest order is free. If it is, it's possible
731  * that pages are being freed that will coalesce soon. In case,
732  * that is happening, add the free page to the tail of the list
733  * so it's less likely to be used soon and more likely to be merged
734  * as a higher order page
735  */
736 static inline bool
737 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
738 		   struct page *page, unsigned int order)
739 {
740 	unsigned long higher_page_pfn;
741 	struct page *higher_page;
742 
743 	if (order >= MAX_PAGE_ORDER - 1)
744 		return false;
745 
746 	higher_page_pfn = buddy_pfn & pfn;
747 	higher_page = page + (higher_page_pfn - pfn);
748 
749 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
750 			NULL) != NULL;
751 }
752 
753 /*
754  * Freeing function for a buddy system allocator.
755  *
756  * The concept of a buddy system is to maintain direct-mapped table
757  * (containing bit values) for memory blocks of various "orders".
758  * The bottom level table contains the map for the smallest allocatable
759  * units of memory (here, pages), and each level above it describes
760  * pairs of units from the levels below, hence, "buddies".
761  * At a high level, all that happens here is marking the table entry
762  * at the bottom level available, and propagating the changes upward
763  * as necessary, plus some accounting needed to play nicely with other
764  * parts of the VM system.
765  * At each level, we keep a list of pages, which are heads of continuous
766  * free pages of length of (1 << order) and marked with PageBuddy.
767  * Page's order is recorded in page_private(page) field.
768  * So when we are allocating or freeing one, we can derive the state of the
769  * other.  That is, if we allocate a small block, and both were
770  * free, the remainder of the region must be split into blocks.
771  * If a block is freed, and its buddy is also free, then this
772  * triggers coalescing into a block of larger size.
773  *
774  * -- nyc
775  */
776 
777 static inline void __free_one_page(struct page *page,
778 		unsigned long pfn,
779 		struct zone *zone, unsigned int order,
780 		int migratetype, fpi_t fpi_flags)
781 {
782 	struct capture_control *capc = task_capc(zone);
783 	unsigned long buddy_pfn = 0;
784 	unsigned long combined_pfn;
785 	struct page *buddy;
786 	bool to_tail;
787 
788 	VM_BUG_ON(!zone_is_initialized(zone));
789 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
790 
791 	VM_BUG_ON(migratetype == -1);
792 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
793 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
794 
795 	account_freepages(zone, 1 << order, migratetype);
796 
797 	while (order < MAX_PAGE_ORDER) {
798 		int buddy_mt = migratetype;
799 
800 		if (compaction_capture(capc, page, order, migratetype)) {
801 			account_freepages(zone, -(1 << order), migratetype);
802 			return;
803 		}
804 
805 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
806 		if (!buddy)
807 			goto done_merging;
808 
809 		if (unlikely(order >= pageblock_order)) {
810 			/*
811 			 * We want to prevent merge between freepages on pageblock
812 			 * without fallbacks and normal pageblock. Without this,
813 			 * pageblock isolation could cause incorrect freepage or CMA
814 			 * accounting or HIGHATOMIC accounting.
815 			 */
816 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
817 
818 			if (migratetype != buddy_mt &&
819 			    (!migratetype_is_mergeable(migratetype) ||
820 			     !migratetype_is_mergeable(buddy_mt)))
821 				goto done_merging;
822 		}
823 
824 		/*
825 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
826 		 * merge with it and move up one order.
827 		 */
828 		if (page_is_guard(buddy))
829 			clear_page_guard(zone, buddy, order);
830 		else
831 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
832 
833 		if (unlikely(buddy_mt != migratetype)) {
834 			/*
835 			 * Match buddy type. This ensures that an
836 			 * expand() down the line puts the sub-blocks
837 			 * on the right freelists.
838 			 */
839 			set_pageblock_migratetype(buddy, migratetype);
840 		}
841 
842 		combined_pfn = buddy_pfn & pfn;
843 		page = page + (combined_pfn - pfn);
844 		pfn = combined_pfn;
845 		order++;
846 	}
847 
848 done_merging:
849 	set_buddy_order(page, order);
850 
851 	if (fpi_flags & FPI_TO_TAIL)
852 		to_tail = true;
853 	else if (is_shuffle_order(order))
854 		to_tail = shuffle_pick_tail();
855 	else
856 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
857 
858 	__add_to_free_list(page, zone, order, migratetype, to_tail);
859 
860 	/* Notify page reporting subsystem of freed page */
861 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
862 		page_reporting_notify_free(order);
863 }
864 
865 /*
866  * A bad page could be due to a number of fields. Instead of multiple branches,
867  * try and check multiple fields with one check. The caller must do a detailed
868  * check if necessary.
869  */
870 static inline bool page_expected_state(struct page *page,
871 					unsigned long check_flags)
872 {
873 	if (unlikely(atomic_read(&page->_mapcount) != -1))
874 		return false;
875 
876 	if (unlikely((unsigned long)page->mapping |
877 			page_ref_count(page) |
878 #ifdef CONFIG_MEMCG
879 			page->memcg_data |
880 #endif
881 #ifdef CONFIG_PAGE_POOL
882 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
883 #endif
884 			(page->flags & check_flags)))
885 		return false;
886 
887 	return true;
888 }
889 
890 static const char *page_bad_reason(struct page *page, unsigned long flags)
891 {
892 	const char *bad_reason = NULL;
893 
894 	if (unlikely(atomic_read(&page->_mapcount) != -1))
895 		bad_reason = "nonzero mapcount";
896 	if (unlikely(page->mapping != NULL))
897 		bad_reason = "non-NULL mapping";
898 	if (unlikely(page_ref_count(page) != 0))
899 		bad_reason = "nonzero _refcount";
900 	if (unlikely(page->flags & flags)) {
901 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
902 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
903 		else
904 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
905 	}
906 #ifdef CONFIG_MEMCG
907 	if (unlikely(page->memcg_data))
908 		bad_reason = "page still charged to cgroup";
909 #endif
910 #ifdef CONFIG_PAGE_POOL
911 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
912 		bad_reason = "page_pool leak";
913 #endif
914 	return bad_reason;
915 }
916 
917 static void free_page_is_bad_report(struct page *page)
918 {
919 	bad_page(page,
920 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
921 }
922 
923 static inline bool free_page_is_bad(struct page *page)
924 {
925 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
926 		return false;
927 
928 	/* Something has gone sideways, find it */
929 	free_page_is_bad_report(page);
930 	return true;
931 }
932 
933 static inline bool is_check_pages_enabled(void)
934 {
935 	return static_branch_unlikely(&check_pages_enabled);
936 }
937 
938 static int free_tail_page_prepare(struct page *head_page, struct page *page)
939 {
940 	struct folio *folio = (struct folio *)head_page;
941 	int ret = 1;
942 
943 	/*
944 	 * We rely page->lru.next never has bit 0 set, unless the page
945 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
946 	 */
947 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
948 
949 	if (!is_check_pages_enabled()) {
950 		ret = 0;
951 		goto out;
952 	}
953 	switch (page - head_page) {
954 	case 1:
955 		/* the first tail page: these may be in place of ->mapping */
956 		if (unlikely(folio_entire_mapcount(folio))) {
957 			bad_page(page, "nonzero entire_mapcount");
958 			goto out;
959 		}
960 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
961 			bad_page(page, "nonzero nr_pages_mapped");
962 			goto out;
963 		}
964 		if (unlikely(atomic_read(&folio->_pincount))) {
965 			bad_page(page, "nonzero pincount");
966 			goto out;
967 		}
968 		break;
969 	case 2:
970 		/* the second tail page: deferred_list overlaps ->mapping */
971 		if (unlikely(!list_empty(&folio->_deferred_list))) {
972 			bad_page(page, "on deferred list");
973 			goto out;
974 		}
975 		break;
976 	default:
977 		if (page->mapping != TAIL_MAPPING) {
978 			bad_page(page, "corrupted mapping in tail page");
979 			goto out;
980 		}
981 		break;
982 	}
983 	if (unlikely(!PageTail(page))) {
984 		bad_page(page, "PageTail not set");
985 		goto out;
986 	}
987 	if (unlikely(compound_head(page) != head_page)) {
988 		bad_page(page, "compound_head not consistent");
989 		goto out;
990 	}
991 	ret = 0;
992 out:
993 	page->mapping = NULL;
994 	clear_compound_head(page);
995 	return ret;
996 }
997 
998 /*
999  * Skip KASAN memory poisoning when either:
1000  *
1001  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1002  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1003  *    using page tags instead (see below).
1004  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1005  *    that error detection is disabled for accesses via the page address.
1006  *
1007  * Pages will have match-all tags in the following circumstances:
1008  *
1009  * 1. Pages are being initialized for the first time, including during deferred
1010  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1011  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1012  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1013  * 3. The allocation was excluded from being checked due to sampling,
1014  *    see the call to kasan_unpoison_pages.
1015  *
1016  * Poisoning pages during deferred memory init will greatly lengthen the
1017  * process and cause problem in large memory systems as the deferred pages
1018  * initialization is done with interrupt disabled.
1019  *
1020  * Assuming that there will be no reference to those newly initialized
1021  * pages before they are ever allocated, this should have no effect on
1022  * KASAN memory tracking as the poison will be properly inserted at page
1023  * allocation time. The only corner case is when pages are allocated by
1024  * on-demand allocation and then freed again before the deferred pages
1025  * initialization is done, but this is not likely to happen.
1026  */
1027 static inline bool should_skip_kasan_poison(struct page *page)
1028 {
1029 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1030 		return deferred_pages_enabled();
1031 
1032 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1033 }
1034 
1035 void kernel_init_pages(struct page *page, int numpages)
1036 {
1037 	int i;
1038 
1039 	/* s390's use of memset() could override KASAN redzones. */
1040 	kasan_disable_current();
1041 	for (i = 0; i < numpages; i++)
1042 		clear_highpage_kasan_tagged(page + i);
1043 	kasan_enable_current();
1044 }
1045 
1046 __always_inline bool free_pages_prepare(struct page *page,
1047 			unsigned int order)
1048 {
1049 	int bad = 0;
1050 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1051 	bool init = want_init_on_free();
1052 	bool compound = PageCompound(page);
1053 
1054 	VM_BUG_ON_PAGE(PageTail(page), page);
1055 
1056 	trace_mm_page_free(page, order);
1057 	kmsan_free_page(page, order);
1058 
1059 	if (memcg_kmem_online() && PageMemcgKmem(page))
1060 		__memcg_kmem_uncharge_page(page, order);
1061 
1062 	if (unlikely(PageHWPoison(page)) && !order) {
1063 		/* Do not let hwpoison pages hit pcplists/buddy */
1064 		reset_page_owner(page, order);
1065 		page_table_check_free(page, order);
1066 		pgalloc_tag_sub(page, 1 << order);
1067 		return false;
1068 	}
1069 
1070 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1071 
1072 	/*
1073 	 * Check tail pages before head page information is cleared to
1074 	 * avoid checking PageCompound for order-0 pages.
1075 	 */
1076 	if (unlikely(order)) {
1077 		int i;
1078 
1079 		if (compound)
1080 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1081 		for (i = 1; i < (1 << order); i++) {
1082 			if (compound)
1083 				bad += free_tail_page_prepare(page, page + i);
1084 			if (is_check_pages_enabled()) {
1085 				if (free_page_is_bad(page + i)) {
1086 					bad++;
1087 					continue;
1088 				}
1089 			}
1090 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1091 		}
1092 	}
1093 	if (PageMappingFlags(page))
1094 		page->mapping = NULL;
1095 	if (is_check_pages_enabled()) {
1096 		if (free_page_is_bad(page))
1097 			bad++;
1098 		if (bad)
1099 			return false;
1100 	}
1101 
1102 	page_cpupid_reset_last(page);
1103 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1104 	reset_page_owner(page, order);
1105 	page_table_check_free(page, order);
1106 	pgalloc_tag_sub(page, 1 << order);
1107 
1108 	if (!PageHighMem(page)) {
1109 		debug_check_no_locks_freed(page_address(page),
1110 					   PAGE_SIZE << order);
1111 		debug_check_no_obj_freed(page_address(page),
1112 					   PAGE_SIZE << order);
1113 	}
1114 
1115 	kernel_poison_pages(page, 1 << order);
1116 
1117 	/*
1118 	 * As memory initialization might be integrated into KASAN,
1119 	 * KASAN poisoning and memory initialization code must be
1120 	 * kept together to avoid discrepancies in behavior.
1121 	 *
1122 	 * With hardware tag-based KASAN, memory tags must be set before the
1123 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1124 	 */
1125 	if (!skip_kasan_poison) {
1126 		kasan_poison_pages(page, order, init);
1127 
1128 		/* Memory is already initialized if KASAN did it internally. */
1129 		if (kasan_has_integrated_init())
1130 			init = false;
1131 	}
1132 	if (init)
1133 		kernel_init_pages(page, 1 << order);
1134 
1135 	/*
1136 	 * arch_free_page() can make the page's contents inaccessible.  s390
1137 	 * does this.  So nothing which can access the page's contents should
1138 	 * happen after this.
1139 	 */
1140 	arch_free_page(page, order);
1141 
1142 	debug_pagealloc_unmap_pages(page, 1 << order);
1143 
1144 	return true;
1145 }
1146 
1147 /*
1148  * Frees a number of pages from the PCP lists
1149  * Assumes all pages on list are in same zone.
1150  * count is the number of pages to free.
1151  */
1152 static void free_pcppages_bulk(struct zone *zone, int count,
1153 					struct per_cpu_pages *pcp,
1154 					int pindex)
1155 {
1156 	unsigned long flags;
1157 	unsigned int order;
1158 	struct page *page;
1159 
1160 	/*
1161 	 * Ensure proper count is passed which otherwise would stuck in the
1162 	 * below while (list_empty(list)) loop.
1163 	 */
1164 	count = min(pcp->count, count);
1165 
1166 	/* Ensure requested pindex is drained first. */
1167 	pindex = pindex - 1;
1168 
1169 	spin_lock_irqsave(&zone->lock, flags);
1170 
1171 	while (count > 0) {
1172 		struct list_head *list;
1173 		int nr_pages;
1174 
1175 		/* Remove pages from lists in a round-robin fashion. */
1176 		do {
1177 			if (++pindex > NR_PCP_LISTS - 1)
1178 				pindex = 0;
1179 			list = &pcp->lists[pindex];
1180 		} while (list_empty(list));
1181 
1182 		order = pindex_to_order(pindex);
1183 		nr_pages = 1 << order;
1184 		do {
1185 			unsigned long pfn;
1186 			int mt;
1187 
1188 			page = list_last_entry(list, struct page, pcp_list);
1189 			pfn = page_to_pfn(page);
1190 			mt = get_pfnblock_migratetype(page, pfn);
1191 
1192 			/* must delete to avoid corrupting pcp list */
1193 			list_del(&page->pcp_list);
1194 			count -= nr_pages;
1195 			pcp->count -= nr_pages;
1196 
1197 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1198 			trace_mm_page_pcpu_drain(page, order, mt);
1199 		} while (count > 0 && !list_empty(list));
1200 	}
1201 
1202 	spin_unlock_irqrestore(&zone->lock, flags);
1203 }
1204 
1205 static void free_one_page(struct zone *zone, struct page *page,
1206 			  unsigned long pfn, unsigned int order,
1207 			  fpi_t fpi_flags)
1208 {
1209 	unsigned long flags;
1210 	int migratetype;
1211 
1212 	spin_lock_irqsave(&zone->lock, flags);
1213 	migratetype = get_pfnblock_migratetype(page, pfn);
1214 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1215 	spin_unlock_irqrestore(&zone->lock, flags);
1216 }
1217 
1218 static void __free_pages_ok(struct page *page, unsigned int order,
1219 			    fpi_t fpi_flags)
1220 {
1221 	unsigned long pfn = page_to_pfn(page);
1222 	struct zone *zone = page_zone(page);
1223 
1224 	if (!free_pages_prepare(page, order))
1225 		return;
1226 
1227 	free_one_page(zone, page, pfn, order, fpi_flags);
1228 
1229 	__count_vm_events(PGFREE, 1 << order);
1230 }
1231 
1232 void __free_pages_core(struct page *page, unsigned int order)
1233 {
1234 	unsigned int nr_pages = 1 << order;
1235 	struct page *p = page;
1236 	unsigned int loop;
1237 
1238 	/*
1239 	 * When initializing the memmap, __init_single_page() sets the refcount
1240 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1241 	 * refcount of all involved pages to 0.
1242 	 */
1243 	prefetchw(p);
1244 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1245 		prefetchw(p + 1);
1246 		__ClearPageReserved(p);
1247 		set_page_count(p, 0);
1248 	}
1249 	__ClearPageReserved(p);
1250 	set_page_count(p, 0);
1251 
1252 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1253 
1254 	if (page_contains_unaccepted(page, order)) {
1255 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1256 			return;
1257 
1258 		accept_page(page, order);
1259 	}
1260 
1261 	/*
1262 	 * Bypass PCP and place fresh pages right to the tail, primarily
1263 	 * relevant for memory onlining.
1264 	 */
1265 	__free_pages_ok(page, order, FPI_TO_TAIL);
1266 }
1267 
1268 /*
1269  * Check that the whole (or subset of) a pageblock given by the interval of
1270  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1271  * with the migration of free compaction scanner.
1272  *
1273  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1274  *
1275  * It's possible on some configurations to have a setup like node0 node1 node0
1276  * i.e. it's possible that all pages within a zones range of pages do not
1277  * belong to a single zone. We assume that a border between node0 and node1
1278  * can occur within a single pageblock, but not a node0 node1 node0
1279  * interleaving within a single pageblock. It is therefore sufficient to check
1280  * the first and last page of a pageblock and avoid checking each individual
1281  * page in a pageblock.
1282  *
1283  * Note: the function may return non-NULL struct page even for a page block
1284  * which contains a memory hole (i.e. there is no physical memory for a subset
1285  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1286  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1287  * even though the start pfn is online and valid. This should be safe most of
1288  * the time because struct pages are still initialized via init_unavailable_range()
1289  * and pfn walkers shouldn't touch any physical memory range for which they do
1290  * not recognize any specific metadata in struct pages.
1291  */
1292 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1293 				     unsigned long end_pfn, struct zone *zone)
1294 {
1295 	struct page *start_page;
1296 	struct page *end_page;
1297 
1298 	/* end_pfn is one past the range we are checking */
1299 	end_pfn--;
1300 
1301 	if (!pfn_valid(end_pfn))
1302 		return NULL;
1303 
1304 	start_page = pfn_to_online_page(start_pfn);
1305 	if (!start_page)
1306 		return NULL;
1307 
1308 	if (page_zone(start_page) != zone)
1309 		return NULL;
1310 
1311 	end_page = pfn_to_page(end_pfn);
1312 
1313 	/* This gives a shorter code than deriving page_zone(end_page) */
1314 	if (page_zone_id(start_page) != page_zone_id(end_page))
1315 		return NULL;
1316 
1317 	return start_page;
1318 }
1319 
1320 /*
1321  * The order of subdivision here is critical for the IO subsystem.
1322  * Please do not alter this order without good reasons and regression
1323  * testing. Specifically, as large blocks of memory are subdivided,
1324  * the order in which smaller blocks are delivered depends on the order
1325  * they're subdivided in this function. This is the primary factor
1326  * influencing the order in which pages are delivered to the IO
1327  * subsystem according to empirical testing, and this is also justified
1328  * by considering the behavior of a buddy system containing a single
1329  * large block of memory acted on by a series of small allocations.
1330  * This behavior is a critical factor in sglist merging's success.
1331  *
1332  * -- nyc
1333  */
1334 static inline void expand(struct zone *zone, struct page *page,
1335 	int low, int high, int migratetype)
1336 {
1337 	unsigned long size = 1 << high;
1338 	unsigned long nr_added = 0;
1339 
1340 	while (high > low) {
1341 		high--;
1342 		size >>= 1;
1343 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1344 
1345 		/*
1346 		 * Mark as guard pages (or page), that will allow to
1347 		 * merge back to allocator when buddy will be freed.
1348 		 * Corresponding page table entries will not be touched,
1349 		 * pages will stay not present in virtual address space
1350 		 */
1351 		if (set_page_guard(zone, &page[size], high))
1352 			continue;
1353 
1354 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1355 		set_buddy_order(&page[size], high);
1356 		nr_added += size;
1357 	}
1358 	account_freepages(zone, nr_added, migratetype);
1359 }
1360 
1361 static void check_new_page_bad(struct page *page)
1362 {
1363 	if (unlikely(page->flags & __PG_HWPOISON)) {
1364 		/* Don't complain about hwpoisoned pages */
1365 		page_mapcount_reset(page); /* remove PageBuddy */
1366 		return;
1367 	}
1368 
1369 	bad_page(page,
1370 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1371 }
1372 
1373 /*
1374  * This page is about to be returned from the page allocator
1375  */
1376 static bool check_new_page(struct page *page)
1377 {
1378 	if (likely(page_expected_state(page,
1379 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1380 		return false;
1381 
1382 	check_new_page_bad(page);
1383 	return true;
1384 }
1385 
1386 static inline bool check_new_pages(struct page *page, unsigned int order)
1387 {
1388 	if (is_check_pages_enabled()) {
1389 		for (int i = 0; i < (1 << order); i++) {
1390 			struct page *p = page + i;
1391 
1392 			if (check_new_page(p))
1393 				return true;
1394 		}
1395 	}
1396 
1397 	return false;
1398 }
1399 
1400 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1401 {
1402 	/* Don't skip if a software KASAN mode is enabled. */
1403 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1404 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1405 		return false;
1406 
1407 	/* Skip, if hardware tag-based KASAN is not enabled. */
1408 	if (!kasan_hw_tags_enabled())
1409 		return true;
1410 
1411 	/*
1412 	 * With hardware tag-based KASAN enabled, skip if this has been
1413 	 * requested via __GFP_SKIP_KASAN.
1414 	 */
1415 	return flags & __GFP_SKIP_KASAN;
1416 }
1417 
1418 static inline bool should_skip_init(gfp_t flags)
1419 {
1420 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1421 	if (!kasan_hw_tags_enabled())
1422 		return false;
1423 
1424 	/* For hardware tag-based KASAN, skip if requested. */
1425 	return (flags & __GFP_SKIP_ZERO);
1426 }
1427 
1428 inline void post_alloc_hook(struct page *page, unsigned int order,
1429 				gfp_t gfp_flags)
1430 {
1431 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1432 			!should_skip_init(gfp_flags);
1433 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1434 	int i;
1435 
1436 	set_page_private(page, 0);
1437 	set_page_refcounted(page);
1438 
1439 	arch_alloc_page(page, order);
1440 	debug_pagealloc_map_pages(page, 1 << order);
1441 
1442 	/*
1443 	 * Page unpoisoning must happen before memory initialization.
1444 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1445 	 * allocations and the page unpoisoning code will complain.
1446 	 */
1447 	kernel_unpoison_pages(page, 1 << order);
1448 
1449 	/*
1450 	 * As memory initialization might be integrated into KASAN,
1451 	 * KASAN unpoisoning and memory initializion code must be
1452 	 * kept together to avoid discrepancies in behavior.
1453 	 */
1454 
1455 	/*
1456 	 * If memory tags should be zeroed
1457 	 * (which happens only when memory should be initialized as well).
1458 	 */
1459 	if (zero_tags) {
1460 		/* Initialize both memory and memory tags. */
1461 		for (i = 0; i != 1 << order; ++i)
1462 			tag_clear_highpage(page + i);
1463 
1464 		/* Take note that memory was initialized by the loop above. */
1465 		init = false;
1466 	}
1467 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1468 	    kasan_unpoison_pages(page, order, init)) {
1469 		/* Take note that memory was initialized by KASAN. */
1470 		if (kasan_has_integrated_init())
1471 			init = false;
1472 	} else {
1473 		/*
1474 		 * If memory tags have not been set by KASAN, reset the page
1475 		 * tags to ensure page_address() dereferencing does not fault.
1476 		 */
1477 		for (i = 0; i != 1 << order; ++i)
1478 			page_kasan_tag_reset(page + i);
1479 	}
1480 	/* If memory is still not initialized, initialize it now. */
1481 	if (init)
1482 		kernel_init_pages(page, 1 << order);
1483 
1484 	set_page_owner(page, order, gfp_flags);
1485 	page_table_check_alloc(page, order);
1486 	pgalloc_tag_add(page, current, 1 << order);
1487 }
1488 
1489 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1490 							unsigned int alloc_flags)
1491 {
1492 	post_alloc_hook(page, order, gfp_flags);
1493 
1494 	if (order && (gfp_flags & __GFP_COMP))
1495 		prep_compound_page(page, order);
1496 
1497 	/*
1498 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1499 	 * allocate the page. The expectation is that the caller is taking
1500 	 * steps that will free more memory. The caller should avoid the page
1501 	 * being used for !PFMEMALLOC purposes.
1502 	 */
1503 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1504 		set_page_pfmemalloc(page);
1505 	else
1506 		clear_page_pfmemalloc(page);
1507 }
1508 
1509 /*
1510  * Go through the free lists for the given migratetype and remove
1511  * the smallest available page from the freelists
1512  */
1513 static __always_inline
1514 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1515 						int migratetype)
1516 {
1517 	unsigned int current_order;
1518 	struct free_area *area;
1519 	struct page *page;
1520 
1521 	/* Find a page of the appropriate size in the preferred list */
1522 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1523 		area = &(zone->free_area[current_order]);
1524 		page = get_page_from_free_area(area, migratetype);
1525 		if (!page)
1526 			continue;
1527 		del_page_from_free_list(page, zone, current_order, migratetype);
1528 		expand(zone, page, order, current_order, migratetype);
1529 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1530 				pcp_allowed_order(order) &&
1531 				migratetype < MIGRATE_PCPTYPES);
1532 		return page;
1533 	}
1534 
1535 	return NULL;
1536 }
1537 
1538 
1539 /*
1540  * This array describes the order lists are fallen back to when
1541  * the free lists for the desirable migrate type are depleted
1542  *
1543  * The other migratetypes do not have fallbacks.
1544  */
1545 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1546 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1547 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1548 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1549 };
1550 
1551 #ifdef CONFIG_CMA
1552 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1553 					unsigned int order)
1554 {
1555 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1556 }
1557 #else
1558 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1559 					unsigned int order) { return NULL; }
1560 #endif
1561 
1562 /*
1563  * Change the type of a block and move all its free pages to that
1564  * type's freelist.
1565  */
1566 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1567 				  int old_mt, int new_mt)
1568 {
1569 	struct page *page;
1570 	unsigned long pfn, end_pfn;
1571 	unsigned int order;
1572 	int pages_moved = 0;
1573 
1574 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1575 	end_pfn = pageblock_end_pfn(start_pfn);
1576 
1577 	for (pfn = start_pfn; pfn < end_pfn;) {
1578 		page = pfn_to_page(pfn);
1579 		if (!PageBuddy(page)) {
1580 			pfn++;
1581 			continue;
1582 		}
1583 
1584 		/* Make sure we are not inadvertently changing nodes */
1585 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1586 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1587 
1588 		order = buddy_order(page);
1589 
1590 		move_to_free_list(page, zone, order, old_mt, new_mt);
1591 
1592 		pfn += 1 << order;
1593 		pages_moved += 1 << order;
1594 	}
1595 
1596 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1597 
1598 	return pages_moved;
1599 }
1600 
1601 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1602 				      unsigned long *start_pfn,
1603 				      int *num_free, int *num_movable)
1604 {
1605 	unsigned long pfn, start, end;
1606 
1607 	pfn = page_to_pfn(page);
1608 	start = pageblock_start_pfn(pfn);
1609 	end = pageblock_end_pfn(pfn);
1610 
1611 	/*
1612 	 * The caller only has the lock for @zone, don't touch ranges
1613 	 * that straddle into other zones. While we could move part of
1614 	 * the range that's inside the zone, this call is usually
1615 	 * accompanied by other operations such as migratetype updates
1616 	 * which also should be locked.
1617 	 */
1618 	if (!zone_spans_pfn(zone, start))
1619 		return false;
1620 	if (!zone_spans_pfn(zone, end - 1))
1621 		return false;
1622 
1623 	*start_pfn = start;
1624 
1625 	if (num_free) {
1626 		*num_free = 0;
1627 		*num_movable = 0;
1628 		for (pfn = start; pfn < end;) {
1629 			page = pfn_to_page(pfn);
1630 			if (PageBuddy(page)) {
1631 				int nr = 1 << buddy_order(page);
1632 
1633 				*num_free += nr;
1634 				pfn += nr;
1635 				continue;
1636 			}
1637 			/*
1638 			 * We assume that pages that could be isolated for
1639 			 * migration are movable. But we don't actually try
1640 			 * isolating, as that would be expensive.
1641 			 */
1642 			if (PageLRU(page) || __PageMovable(page))
1643 				(*num_movable)++;
1644 			pfn++;
1645 		}
1646 	}
1647 
1648 	return true;
1649 }
1650 
1651 static int move_freepages_block(struct zone *zone, struct page *page,
1652 				int old_mt, int new_mt)
1653 {
1654 	unsigned long start_pfn;
1655 
1656 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1657 		return -1;
1658 
1659 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1660 }
1661 
1662 #ifdef CONFIG_MEMORY_ISOLATION
1663 /* Look for a buddy that straddles start_pfn */
1664 static unsigned long find_large_buddy(unsigned long start_pfn)
1665 {
1666 	int order = 0;
1667 	struct page *page;
1668 	unsigned long pfn = start_pfn;
1669 
1670 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1671 		/* Nothing found */
1672 		if (++order > MAX_PAGE_ORDER)
1673 			return start_pfn;
1674 		pfn &= ~0UL << order;
1675 	}
1676 
1677 	/*
1678 	 * Found a preceding buddy, but does it straddle?
1679 	 */
1680 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1681 		return pfn;
1682 
1683 	/* Nothing found */
1684 	return start_pfn;
1685 }
1686 
1687 /* Split a multi-block free page into its individual pageblocks */
1688 static void split_large_buddy(struct zone *zone, struct page *page,
1689 			      unsigned long pfn, int order)
1690 {
1691 	unsigned long end_pfn = pfn + (1 << order);
1692 
1693 	VM_WARN_ON_ONCE(order <= pageblock_order);
1694 	VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1));
1695 
1696 	/* Caller removed page from freelist, buddy info cleared! */
1697 	VM_WARN_ON_ONCE(PageBuddy(page));
1698 
1699 	while (pfn != end_pfn) {
1700 		int mt = get_pfnblock_migratetype(page, pfn);
1701 
1702 		__free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE);
1703 		pfn += pageblock_nr_pages;
1704 		page = pfn_to_page(pfn);
1705 	}
1706 }
1707 
1708 /**
1709  * move_freepages_block_isolate - move free pages in block for page isolation
1710  * @zone: the zone
1711  * @page: the pageblock page
1712  * @migratetype: migratetype to set on the pageblock
1713  *
1714  * This is similar to move_freepages_block(), but handles the special
1715  * case encountered in page isolation, where the block of interest
1716  * might be part of a larger buddy spanning multiple pageblocks.
1717  *
1718  * Unlike the regular page allocator path, which moves pages while
1719  * stealing buddies off the freelist, page isolation is interested in
1720  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1721  *
1722  * This function handles that. Straddling buddies are split into
1723  * individual pageblocks. Only the block of interest is moved.
1724  *
1725  * Returns %true if pages could be moved, %false otherwise.
1726  */
1727 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1728 				  int migratetype)
1729 {
1730 	unsigned long start_pfn, pfn;
1731 
1732 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1733 		return false;
1734 
1735 	/* No splits needed if buddies can't span multiple blocks */
1736 	if (pageblock_order == MAX_PAGE_ORDER)
1737 		goto move;
1738 
1739 	/* We're a tail block in a larger buddy */
1740 	pfn = find_large_buddy(start_pfn);
1741 	if (pfn != start_pfn) {
1742 		struct page *buddy = pfn_to_page(pfn);
1743 		int order = buddy_order(buddy);
1744 
1745 		del_page_from_free_list(buddy, zone, order,
1746 					get_pfnblock_migratetype(buddy, pfn));
1747 		set_pageblock_migratetype(page, migratetype);
1748 		split_large_buddy(zone, buddy, pfn, order);
1749 		return true;
1750 	}
1751 
1752 	/* We're the starting block of a larger buddy */
1753 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1754 		int order = buddy_order(page);
1755 
1756 		del_page_from_free_list(page, zone, order,
1757 					get_pfnblock_migratetype(page, pfn));
1758 		set_pageblock_migratetype(page, migratetype);
1759 		split_large_buddy(zone, page, pfn, order);
1760 		return true;
1761 	}
1762 move:
1763 	__move_freepages_block(zone, start_pfn,
1764 			       get_pfnblock_migratetype(page, start_pfn),
1765 			       migratetype);
1766 	return true;
1767 }
1768 #endif /* CONFIG_MEMORY_ISOLATION */
1769 
1770 static void change_pageblock_range(struct page *pageblock_page,
1771 					int start_order, int migratetype)
1772 {
1773 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1774 
1775 	while (nr_pageblocks--) {
1776 		set_pageblock_migratetype(pageblock_page, migratetype);
1777 		pageblock_page += pageblock_nr_pages;
1778 	}
1779 }
1780 
1781 /*
1782  * When we are falling back to another migratetype during allocation, try to
1783  * steal extra free pages from the same pageblocks to satisfy further
1784  * allocations, instead of polluting multiple pageblocks.
1785  *
1786  * If we are stealing a relatively large buddy page, it is likely there will
1787  * be more free pages in the pageblock, so try to steal them all. For
1788  * reclaimable and unmovable allocations, we steal regardless of page size,
1789  * as fragmentation caused by those allocations polluting movable pageblocks
1790  * is worse than movable allocations stealing from unmovable and reclaimable
1791  * pageblocks.
1792  */
1793 static bool can_steal_fallback(unsigned int order, int start_mt)
1794 {
1795 	/*
1796 	 * Leaving this order check is intended, although there is
1797 	 * relaxed order check in next check. The reason is that
1798 	 * we can actually steal whole pageblock if this condition met,
1799 	 * but, below check doesn't guarantee it and that is just heuristic
1800 	 * so could be changed anytime.
1801 	 */
1802 	if (order >= pageblock_order)
1803 		return true;
1804 
1805 	if (order >= pageblock_order / 2 ||
1806 		start_mt == MIGRATE_RECLAIMABLE ||
1807 		start_mt == MIGRATE_UNMOVABLE ||
1808 		page_group_by_mobility_disabled)
1809 		return true;
1810 
1811 	return false;
1812 }
1813 
1814 static inline bool boost_watermark(struct zone *zone)
1815 {
1816 	unsigned long max_boost;
1817 
1818 	if (!watermark_boost_factor)
1819 		return false;
1820 	/*
1821 	 * Don't bother in zones that are unlikely to produce results.
1822 	 * On small machines, including kdump capture kernels running
1823 	 * in a small area, boosting the watermark can cause an out of
1824 	 * memory situation immediately.
1825 	 */
1826 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1827 		return false;
1828 
1829 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1830 			watermark_boost_factor, 10000);
1831 
1832 	/*
1833 	 * high watermark may be uninitialised if fragmentation occurs
1834 	 * very early in boot so do not boost. We do not fall
1835 	 * through and boost by pageblock_nr_pages as failing
1836 	 * allocations that early means that reclaim is not going
1837 	 * to help and it may even be impossible to reclaim the
1838 	 * boosted watermark resulting in a hang.
1839 	 */
1840 	if (!max_boost)
1841 		return false;
1842 
1843 	max_boost = max(pageblock_nr_pages, max_boost);
1844 
1845 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1846 		max_boost);
1847 
1848 	return true;
1849 }
1850 
1851 /*
1852  * This function implements actual steal behaviour. If order is large enough, we
1853  * can claim the whole pageblock for the requested migratetype. If not, we check
1854  * the pageblock for constituent pages; if at least half of the pages are free
1855  * or compatible, we can still claim the whole block, so pages freed in the
1856  * future will be put on the correct free list. Otherwise, we isolate exactly
1857  * the order we need from the fallback block and leave its migratetype alone.
1858  */
1859 static struct page *
1860 steal_suitable_fallback(struct zone *zone, struct page *page,
1861 			int current_order, int order, int start_type,
1862 			unsigned int alloc_flags, bool whole_block)
1863 {
1864 	int free_pages, movable_pages, alike_pages;
1865 	unsigned long start_pfn;
1866 	int block_type;
1867 
1868 	block_type = get_pageblock_migratetype(page);
1869 
1870 	/*
1871 	 * This can happen due to races and we want to prevent broken
1872 	 * highatomic accounting.
1873 	 */
1874 	if (is_migrate_highatomic(block_type))
1875 		goto single_page;
1876 
1877 	/* Take ownership for orders >= pageblock_order */
1878 	if (current_order >= pageblock_order) {
1879 		del_page_from_free_list(page, zone, current_order, block_type);
1880 		change_pageblock_range(page, current_order, start_type);
1881 		expand(zone, page, order, current_order, start_type);
1882 		return page;
1883 	}
1884 
1885 	/*
1886 	 * Boost watermarks to increase reclaim pressure to reduce the
1887 	 * likelihood of future fallbacks. Wake kswapd now as the node
1888 	 * may be balanced overall and kswapd will not wake naturally.
1889 	 */
1890 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1891 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1892 
1893 	/* We are not allowed to try stealing from the whole block */
1894 	if (!whole_block)
1895 		goto single_page;
1896 
1897 	/* moving whole block can fail due to zone boundary conditions */
1898 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1899 				       &movable_pages))
1900 		goto single_page;
1901 
1902 	/*
1903 	 * Determine how many pages are compatible with our allocation.
1904 	 * For movable allocation, it's the number of movable pages which
1905 	 * we just obtained. For other types it's a bit more tricky.
1906 	 */
1907 	if (start_type == MIGRATE_MOVABLE) {
1908 		alike_pages = movable_pages;
1909 	} else {
1910 		/*
1911 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1912 		 * to MOVABLE pageblock, consider all non-movable pages as
1913 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1914 		 * vice versa, be conservative since we can't distinguish the
1915 		 * exact migratetype of non-movable pages.
1916 		 */
1917 		if (block_type == MIGRATE_MOVABLE)
1918 			alike_pages = pageblock_nr_pages
1919 						- (free_pages + movable_pages);
1920 		else
1921 			alike_pages = 0;
1922 	}
1923 	/*
1924 	 * If a sufficient number of pages in the block are either free or of
1925 	 * compatible migratability as our allocation, claim the whole block.
1926 	 */
1927 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1928 			page_group_by_mobility_disabled) {
1929 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1930 		return __rmqueue_smallest(zone, order, start_type);
1931 	}
1932 
1933 single_page:
1934 	del_page_from_free_list(page, zone, current_order, block_type);
1935 	expand(zone, page, order, current_order, block_type);
1936 	return page;
1937 }
1938 
1939 /*
1940  * Check whether there is a suitable fallback freepage with requested order.
1941  * If only_stealable is true, this function returns fallback_mt only if
1942  * we can steal other freepages all together. This would help to reduce
1943  * fragmentation due to mixed migratetype pages in one pageblock.
1944  */
1945 int find_suitable_fallback(struct free_area *area, unsigned int order,
1946 			int migratetype, bool only_stealable, bool *can_steal)
1947 {
1948 	int i;
1949 	int fallback_mt;
1950 
1951 	if (area->nr_free == 0)
1952 		return -1;
1953 
1954 	*can_steal = false;
1955 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1956 		fallback_mt = fallbacks[migratetype][i];
1957 		if (free_area_empty(area, fallback_mt))
1958 			continue;
1959 
1960 		if (can_steal_fallback(order, migratetype))
1961 			*can_steal = true;
1962 
1963 		if (!only_stealable)
1964 			return fallback_mt;
1965 
1966 		if (*can_steal)
1967 			return fallback_mt;
1968 	}
1969 
1970 	return -1;
1971 }
1972 
1973 /*
1974  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1975  * there are no empty page blocks that contain a page with a suitable order
1976  */
1977 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1978 {
1979 	int mt;
1980 	unsigned long max_managed, flags;
1981 
1982 	/*
1983 	 * The number reserved as: minimum is 1 pageblock, maximum is
1984 	 * roughly 1% of a zone. But if 1% of a zone falls below a
1985 	 * pageblock size, then don't reserve any pageblocks.
1986 	 * Check is race-prone but harmless.
1987 	 */
1988 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1989 		return;
1990 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1991 	if (zone->nr_reserved_highatomic >= max_managed)
1992 		return;
1993 
1994 	spin_lock_irqsave(&zone->lock, flags);
1995 
1996 	/* Recheck the nr_reserved_highatomic limit under the lock */
1997 	if (zone->nr_reserved_highatomic >= max_managed)
1998 		goto out_unlock;
1999 
2000 	/* Yoink! */
2001 	mt = get_pageblock_migratetype(page);
2002 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2003 	if (migratetype_is_mergeable(mt))
2004 		if (move_freepages_block(zone, page, mt,
2005 					 MIGRATE_HIGHATOMIC) != -1)
2006 			zone->nr_reserved_highatomic += pageblock_nr_pages;
2007 
2008 out_unlock:
2009 	spin_unlock_irqrestore(&zone->lock, flags);
2010 }
2011 
2012 /*
2013  * Used when an allocation is about to fail under memory pressure. This
2014  * potentially hurts the reliability of high-order allocations when under
2015  * intense memory pressure but failed atomic allocations should be easier
2016  * to recover from than an OOM.
2017  *
2018  * If @force is true, try to unreserve a pageblock even though highatomic
2019  * pageblock is exhausted.
2020  */
2021 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2022 						bool force)
2023 {
2024 	struct zonelist *zonelist = ac->zonelist;
2025 	unsigned long flags;
2026 	struct zoneref *z;
2027 	struct zone *zone;
2028 	struct page *page;
2029 	int order;
2030 	int ret;
2031 
2032 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2033 								ac->nodemask) {
2034 		/*
2035 		 * Preserve at least one pageblock unless memory pressure
2036 		 * is really high.
2037 		 */
2038 		if (!force && zone->nr_reserved_highatomic <=
2039 					pageblock_nr_pages)
2040 			continue;
2041 
2042 		spin_lock_irqsave(&zone->lock, flags);
2043 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2044 			struct free_area *area = &(zone->free_area[order]);
2045 			int mt;
2046 
2047 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2048 			if (!page)
2049 				continue;
2050 
2051 			mt = get_pageblock_migratetype(page);
2052 			/*
2053 			 * In page freeing path, migratetype change is racy so
2054 			 * we can counter several free pages in a pageblock
2055 			 * in this loop although we changed the pageblock type
2056 			 * from highatomic to ac->migratetype. So we should
2057 			 * adjust the count once.
2058 			 */
2059 			if (is_migrate_highatomic(mt)) {
2060 				/*
2061 				 * It should never happen but changes to
2062 				 * locking could inadvertently allow a per-cpu
2063 				 * drain to add pages to MIGRATE_HIGHATOMIC
2064 				 * while unreserving so be safe and watch for
2065 				 * underflows.
2066 				 */
2067 				zone->nr_reserved_highatomic -= min(
2068 						pageblock_nr_pages,
2069 						zone->nr_reserved_highatomic);
2070 			}
2071 
2072 			/*
2073 			 * Convert to ac->migratetype and avoid the normal
2074 			 * pageblock stealing heuristics. Minimally, the caller
2075 			 * is doing the work and needs the pages. More
2076 			 * importantly, if the block was always converted to
2077 			 * MIGRATE_UNMOVABLE or another type then the number
2078 			 * of pageblocks that cannot be completely freed
2079 			 * may increase.
2080 			 */
2081 			ret = move_freepages_block(zone, page, mt,
2082 						   ac->migratetype);
2083 			/*
2084 			 * Reserving this block already succeeded, so this should
2085 			 * not fail on zone boundaries.
2086 			 */
2087 			WARN_ON_ONCE(ret == -1);
2088 			if (ret > 0) {
2089 				spin_unlock_irqrestore(&zone->lock, flags);
2090 				return ret;
2091 			}
2092 		}
2093 		spin_unlock_irqrestore(&zone->lock, flags);
2094 	}
2095 
2096 	return false;
2097 }
2098 
2099 /*
2100  * Try finding a free buddy page on the fallback list and put it on the free
2101  * list of requested migratetype, possibly along with other pages from the same
2102  * block, depending on fragmentation avoidance heuristics. Returns true if
2103  * fallback was found so that __rmqueue_smallest() can grab it.
2104  *
2105  * The use of signed ints for order and current_order is a deliberate
2106  * deviation from the rest of this file, to make the for loop
2107  * condition simpler.
2108  */
2109 static __always_inline struct page *
2110 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2111 						unsigned int alloc_flags)
2112 {
2113 	struct free_area *area;
2114 	int current_order;
2115 	int min_order = order;
2116 	struct page *page;
2117 	int fallback_mt;
2118 	bool can_steal;
2119 
2120 	/*
2121 	 * Do not steal pages from freelists belonging to other pageblocks
2122 	 * i.e. orders < pageblock_order. If there are no local zones free,
2123 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2124 	 */
2125 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2126 		min_order = pageblock_order;
2127 
2128 	/*
2129 	 * Find the largest available free page in the other list. This roughly
2130 	 * approximates finding the pageblock with the most free pages, which
2131 	 * would be too costly to do exactly.
2132 	 */
2133 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2134 				--current_order) {
2135 		area = &(zone->free_area[current_order]);
2136 		fallback_mt = find_suitable_fallback(area, current_order,
2137 				start_migratetype, false, &can_steal);
2138 		if (fallback_mt == -1)
2139 			continue;
2140 
2141 		/*
2142 		 * We cannot steal all free pages from the pageblock and the
2143 		 * requested migratetype is movable. In that case it's better to
2144 		 * steal and split the smallest available page instead of the
2145 		 * largest available page, because even if the next movable
2146 		 * allocation falls back into a different pageblock than this
2147 		 * one, it won't cause permanent fragmentation.
2148 		 */
2149 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2150 					&& current_order > order)
2151 			goto find_smallest;
2152 
2153 		goto do_steal;
2154 	}
2155 
2156 	return NULL;
2157 
2158 find_smallest:
2159 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2160 		area = &(zone->free_area[current_order]);
2161 		fallback_mt = find_suitable_fallback(area, current_order,
2162 				start_migratetype, false, &can_steal);
2163 		if (fallback_mt != -1)
2164 			break;
2165 	}
2166 
2167 	/*
2168 	 * This should not happen - we already found a suitable fallback
2169 	 * when looking for the largest page.
2170 	 */
2171 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2172 
2173 do_steal:
2174 	page = get_page_from_free_area(area, fallback_mt);
2175 
2176 	/* take off list, maybe claim block, expand remainder */
2177 	page = steal_suitable_fallback(zone, page, current_order, order,
2178 				       start_migratetype, alloc_flags, can_steal);
2179 
2180 	trace_mm_page_alloc_extfrag(page, order, current_order,
2181 		start_migratetype, fallback_mt);
2182 
2183 	return page;
2184 }
2185 
2186 /*
2187  * Do the hard work of removing an element from the buddy allocator.
2188  * Call me with the zone->lock already held.
2189  */
2190 static __always_inline struct page *
2191 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2192 						unsigned int alloc_flags)
2193 {
2194 	struct page *page;
2195 
2196 	if (IS_ENABLED(CONFIG_CMA)) {
2197 		/*
2198 		 * Balance movable allocations between regular and CMA areas by
2199 		 * allocating from CMA when over half of the zone's free memory
2200 		 * is in the CMA area.
2201 		 */
2202 		if (alloc_flags & ALLOC_CMA &&
2203 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2204 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2205 			page = __rmqueue_cma_fallback(zone, order);
2206 			if (page)
2207 				return page;
2208 		}
2209 	}
2210 
2211 	page = __rmqueue_smallest(zone, order, migratetype);
2212 	if (unlikely(!page)) {
2213 		if (alloc_flags & ALLOC_CMA)
2214 			page = __rmqueue_cma_fallback(zone, order);
2215 
2216 		if (!page)
2217 			page = __rmqueue_fallback(zone, order, migratetype,
2218 						  alloc_flags);
2219 	}
2220 	return page;
2221 }
2222 
2223 /*
2224  * Obtain a specified number of elements from the buddy allocator, all under
2225  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2226  * Returns the number of new pages which were placed at *list.
2227  */
2228 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2229 			unsigned long count, struct list_head *list,
2230 			int migratetype, unsigned int alloc_flags)
2231 {
2232 	unsigned long flags;
2233 	int i;
2234 
2235 	spin_lock_irqsave(&zone->lock, flags);
2236 	for (i = 0; i < count; ++i) {
2237 		struct page *page = __rmqueue(zone, order, migratetype,
2238 								alloc_flags);
2239 		if (unlikely(page == NULL))
2240 			break;
2241 
2242 		/*
2243 		 * Split buddy pages returned by expand() are received here in
2244 		 * physical page order. The page is added to the tail of
2245 		 * caller's list. From the callers perspective, the linked list
2246 		 * is ordered by page number under some conditions. This is
2247 		 * useful for IO devices that can forward direction from the
2248 		 * head, thus also in the physical page order. This is useful
2249 		 * for IO devices that can merge IO requests if the physical
2250 		 * pages are ordered properly.
2251 		 */
2252 		list_add_tail(&page->pcp_list, list);
2253 	}
2254 	spin_unlock_irqrestore(&zone->lock, flags);
2255 
2256 	return i;
2257 }
2258 
2259 /*
2260  * Called from the vmstat counter updater to decay the PCP high.
2261  * Return whether there are addition works to do.
2262  */
2263 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2264 {
2265 	int high_min, to_drain, batch;
2266 	int todo = 0;
2267 
2268 	high_min = READ_ONCE(pcp->high_min);
2269 	batch = READ_ONCE(pcp->batch);
2270 	/*
2271 	 * Decrease pcp->high periodically to try to free possible
2272 	 * idle PCP pages.  And, avoid to free too many pages to
2273 	 * control latency.  This caps pcp->high decrement too.
2274 	 */
2275 	if (pcp->high > high_min) {
2276 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2277 				 pcp->high - (pcp->high >> 3), high_min);
2278 		if (pcp->high > high_min)
2279 			todo++;
2280 	}
2281 
2282 	to_drain = pcp->count - pcp->high;
2283 	if (to_drain > 0) {
2284 		spin_lock(&pcp->lock);
2285 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2286 		spin_unlock(&pcp->lock);
2287 		todo++;
2288 	}
2289 
2290 	return todo;
2291 }
2292 
2293 #ifdef CONFIG_NUMA
2294 /*
2295  * Called from the vmstat counter updater to drain pagesets of this
2296  * currently executing processor on remote nodes after they have
2297  * expired.
2298  */
2299 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2300 {
2301 	int to_drain, batch;
2302 
2303 	batch = READ_ONCE(pcp->batch);
2304 	to_drain = min(pcp->count, batch);
2305 	if (to_drain > 0) {
2306 		spin_lock(&pcp->lock);
2307 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2308 		spin_unlock(&pcp->lock);
2309 	}
2310 }
2311 #endif
2312 
2313 /*
2314  * Drain pcplists of the indicated processor and zone.
2315  */
2316 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2317 {
2318 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2319 	int count = READ_ONCE(pcp->count);
2320 
2321 	while (count) {
2322 		int to_drain = min(count, pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2323 		count -= to_drain;
2324 
2325 		spin_lock(&pcp->lock);
2326 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2327 		spin_unlock(&pcp->lock);
2328 	}
2329 }
2330 
2331 /*
2332  * Drain pcplists of all zones on the indicated processor.
2333  */
2334 static void drain_pages(unsigned int cpu)
2335 {
2336 	struct zone *zone;
2337 
2338 	for_each_populated_zone(zone) {
2339 		drain_pages_zone(cpu, zone);
2340 	}
2341 }
2342 
2343 /*
2344  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2345  */
2346 void drain_local_pages(struct zone *zone)
2347 {
2348 	int cpu = smp_processor_id();
2349 
2350 	if (zone)
2351 		drain_pages_zone(cpu, zone);
2352 	else
2353 		drain_pages(cpu);
2354 }
2355 
2356 /*
2357  * The implementation of drain_all_pages(), exposing an extra parameter to
2358  * drain on all cpus.
2359  *
2360  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2361  * not empty. The check for non-emptiness can however race with a free to
2362  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2363  * that need the guarantee that every CPU has drained can disable the
2364  * optimizing racy check.
2365  */
2366 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2367 {
2368 	int cpu;
2369 
2370 	/*
2371 	 * Allocate in the BSS so we won't require allocation in
2372 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2373 	 */
2374 	static cpumask_t cpus_with_pcps;
2375 
2376 	/*
2377 	 * Do not drain if one is already in progress unless it's specific to
2378 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2379 	 * the drain to be complete when the call returns.
2380 	 */
2381 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2382 		if (!zone)
2383 			return;
2384 		mutex_lock(&pcpu_drain_mutex);
2385 	}
2386 
2387 	/*
2388 	 * We don't care about racing with CPU hotplug event
2389 	 * as offline notification will cause the notified
2390 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2391 	 * disables preemption as part of its processing
2392 	 */
2393 	for_each_online_cpu(cpu) {
2394 		struct per_cpu_pages *pcp;
2395 		struct zone *z;
2396 		bool has_pcps = false;
2397 
2398 		if (force_all_cpus) {
2399 			/*
2400 			 * The pcp.count check is racy, some callers need a
2401 			 * guarantee that no cpu is missed.
2402 			 */
2403 			has_pcps = true;
2404 		} else if (zone) {
2405 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2406 			if (pcp->count)
2407 				has_pcps = true;
2408 		} else {
2409 			for_each_populated_zone(z) {
2410 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2411 				if (pcp->count) {
2412 					has_pcps = true;
2413 					break;
2414 				}
2415 			}
2416 		}
2417 
2418 		if (has_pcps)
2419 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2420 		else
2421 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2422 	}
2423 
2424 	for_each_cpu(cpu, &cpus_with_pcps) {
2425 		if (zone)
2426 			drain_pages_zone(cpu, zone);
2427 		else
2428 			drain_pages(cpu);
2429 	}
2430 
2431 	mutex_unlock(&pcpu_drain_mutex);
2432 }
2433 
2434 /*
2435  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2436  *
2437  * When zone parameter is non-NULL, spill just the single zone's pages.
2438  */
2439 void drain_all_pages(struct zone *zone)
2440 {
2441 	__drain_all_pages(zone, false);
2442 }
2443 
2444 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2445 {
2446 	int min_nr_free, max_nr_free;
2447 
2448 	/* Free as much as possible if batch freeing high-order pages. */
2449 	if (unlikely(free_high))
2450 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2451 
2452 	/* Check for PCP disabled or boot pageset */
2453 	if (unlikely(high < batch))
2454 		return 1;
2455 
2456 	/* Leave at least pcp->batch pages on the list */
2457 	min_nr_free = batch;
2458 	max_nr_free = high - batch;
2459 
2460 	/*
2461 	 * Increase the batch number to the number of the consecutive
2462 	 * freed pages to reduce zone lock contention.
2463 	 */
2464 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2465 
2466 	return batch;
2467 }
2468 
2469 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2470 		       int batch, bool free_high)
2471 {
2472 	int high, high_min, high_max;
2473 
2474 	high_min = READ_ONCE(pcp->high_min);
2475 	high_max = READ_ONCE(pcp->high_max);
2476 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2477 
2478 	if (unlikely(!high))
2479 		return 0;
2480 
2481 	if (unlikely(free_high)) {
2482 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2483 				high_min);
2484 		return 0;
2485 	}
2486 
2487 	/*
2488 	 * If reclaim is active, limit the number of pages that can be
2489 	 * stored on pcp lists
2490 	 */
2491 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2492 		int free_count = max_t(int, pcp->free_count, batch);
2493 
2494 		pcp->high = max(high - free_count, high_min);
2495 		return min(batch << 2, pcp->high);
2496 	}
2497 
2498 	if (high_min == high_max)
2499 		return high;
2500 
2501 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2502 		int free_count = max_t(int, pcp->free_count, batch);
2503 
2504 		pcp->high = max(high - free_count, high_min);
2505 		high = max(pcp->count, high_min);
2506 	} else if (pcp->count >= high) {
2507 		int need_high = pcp->free_count + batch;
2508 
2509 		/* pcp->high should be large enough to hold batch freed pages */
2510 		if (pcp->high < need_high)
2511 			pcp->high = clamp(need_high, high_min, high_max);
2512 	}
2513 
2514 	return high;
2515 }
2516 
2517 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2518 				   struct page *page, int migratetype,
2519 				   unsigned int order)
2520 {
2521 	int high, batch;
2522 	int pindex;
2523 	bool free_high = false;
2524 
2525 	/*
2526 	 * On freeing, reduce the number of pages that are batch allocated.
2527 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2528 	 * allocations.
2529 	 */
2530 	pcp->alloc_factor >>= 1;
2531 	__count_vm_events(PGFREE, 1 << order);
2532 	pindex = order_to_pindex(migratetype, order);
2533 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2534 	pcp->count += 1 << order;
2535 
2536 	batch = READ_ONCE(pcp->batch);
2537 	/*
2538 	 * As high-order pages other than THP's stored on PCP can contribute
2539 	 * to fragmentation, limit the number stored when PCP is heavily
2540 	 * freeing without allocation. The remainder after bulk freeing
2541 	 * stops will be drained from vmstat refresh context.
2542 	 */
2543 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2544 		free_high = (pcp->free_count >= batch &&
2545 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2546 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2547 			      pcp->count >= READ_ONCE(batch)));
2548 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2549 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2550 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2551 	}
2552 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2553 		pcp->free_count += (1 << order);
2554 	high = nr_pcp_high(pcp, zone, batch, free_high);
2555 	if (pcp->count >= high) {
2556 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2557 				   pcp, pindex);
2558 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2559 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2560 				      ZONE_MOVABLE, 0))
2561 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2562 	}
2563 }
2564 
2565 /*
2566  * Free a pcp page
2567  */
2568 void free_unref_page(struct page *page, unsigned int order)
2569 {
2570 	unsigned long __maybe_unused UP_flags;
2571 	struct per_cpu_pages *pcp;
2572 	struct zone *zone;
2573 	unsigned long pfn = page_to_pfn(page);
2574 	int migratetype;
2575 
2576 	if (!free_pages_prepare(page, order))
2577 		return;
2578 
2579 	/*
2580 	 * We only track unmovable, reclaimable and movable on pcp lists.
2581 	 * Place ISOLATE pages on the isolated list because they are being
2582 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2583 	 * get those areas back if necessary. Otherwise, we may have to free
2584 	 * excessively into the page allocator
2585 	 */
2586 	migratetype = get_pfnblock_migratetype(page, pfn);
2587 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2588 		if (unlikely(is_migrate_isolate(migratetype))) {
2589 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2590 			return;
2591 		}
2592 		migratetype = MIGRATE_MOVABLE;
2593 	}
2594 
2595 	zone = page_zone(page);
2596 	pcp_trylock_prepare(UP_flags);
2597 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2598 	if (pcp) {
2599 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2600 		pcp_spin_unlock(pcp);
2601 	} else {
2602 		free_one_page(zone, page, pfn, order, FPI_NONE);
2603 	}
2604 	pcp_trylock_finish(UP_flags);
2605 }
2606 
2607 /*
2608  * Free a batch of folios
2609  */
2610 void free_unref_folios(struct folio_batch *folios)
2611 {
2612 	unsigned long __maybe_unused UP_flags;
2613 	struct per_cpu_pages *pcp = NULL;
2614 	struct zone *locked_zone = NULL;
2615 	int i, j;
2616 
2617 	/* Prepare folios for freeing */
2618 	for (i = 0, j = 0; i < folios->nr; i++) {
2619 		struct folio *folio = folios->folios[i];
2620 		unsigned long pfn = folio_pfn(folio);
2621 		unsigned int order = folio_order(folio);
2622 
2623 		if (order > 0 && folio_test_large_rmappable(folio))
2624 			folio_undo_large_rmappable(folio);
2625 		if (!free_pages_prepare(&folio->page, order))
2626 			continue;
2627 		/*
2628 		 * Free orders not handled on the PCP directly to the
2629 		 * allocator.
2630 		 */
2631 		if (!pcp_allowed_order(order)) {
2632 			free_one_page(folio_zone(folio), &folio->page,
2633 				      pfn, order, FPI_NONE);
2634 			continue;
2635 		}
2636 		folio->private = (void *)(unsigned long)order;
2637 		if (j != i)
2638 			folios->folios[j] = folio;
2639 		j++;
2640 	}
2641 	folios->nr = j;
2642 
2643 	for (i = 0; i < folios->nr; i++) {
2644 		struct folio *folio = folios->folios[i];
2645 		struct zone *zone = folio_zone(folio);
2646 		unsigned long pfn = folio_pfn(folio);
2647 		unsigned int order = (unsigned long)folio->private;
2648 		int migratetype;
2649 
2650 		folio->private = NULL;
2651 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2652 
2653 		/* Different zone requires a different pcp lock */
2654 		if (zone != locked_zone ||
2655 		    is_migrate_isolate(migratetype)) {
2656 			if (pcp) {
2657 				pcp_spin_unlock(pcp);
2658 				pcp_trylock_finish(UP_flags);
2659 				locked_zone = NULL;
2660 				pcp = NULL;
2661 			}
2662 
2663 			/*
2664 			 * Free isolated pages directly to the
2665 			 * allocator, see comment in free_unref_page.
2666 			 */
2667 			if (is_migrate_isolate(migratetype)) {
2668 				free_one_page(zone, &folio->page, pfn,
2669 					      order, FPI_NONE);
2670 				continue;
2671 			}
2672 
2673 			/*
2674 			 * trylock is necessary as folios may be getting freed
2675 			 * from IRQ or SoftIRQ context after an IO completion.
2676 			 */
2677 			pcp_trylock_prepare(UP_flags);
2678 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2679 			if (unlikely(!pcp)) {
2680 				pcp_trylock_finish(UP_flags);
2681 				free_one_page(zone, &folio->page, pfn,
2682 					      order, FPI_NONE);
2683 				continue;
2684 			}
2685 			locked_zone = zone;
2686 		}
2687 
2688 		/*
2689 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2690 		 * to the MIGRATE_MOVABLE pcp list.
2691 		 */
2692 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2693 			migratetype = MIGRATE_MOVABLE;
2694 
2695 		trace_mm_page_free_batched(&folio->page);
2696 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2697 				order);
2698 	}
2699 
2700 	if (pcp) {
2701 		pcp_spin_unlock(pcp);
2702 		pcp_trylock_finish(UP_flags);
2703 	}
2704 	folio_batch_reinit(folios);
2705 }
2706 
2707 /*
2708  * split_page takes a non-compound higher-order page, and splits it into
2709  * n (1<<order) sub-pages: page[0..n]
2710  * Each sub-page must be freed individually.
2711  *
2712  * Note: this is probably too low level an operation for use in drivers.
2713  * Please consult with lkml before using this in your driver.
2714  */
2715 void split_page(struct page *page, unsigned int order)
2716 {
2717 	int i;
2718 
2719 	VM_BUG_ON_PAGE(PageCompound(page), page);
2720 	VM_BUG_ON_PAGE(!page_count(page), page);
2721 
2722 	for (i = 1; i < (1 << order); i++)
2723 		set_page_refcounted(page + i);
2724 	split_page_owner(page, order, 0);
2725 	pgalloc_tag_split(page, 1 << order);
2726 	split_page_memcg(page, order, 0);
2727 }
2728 EXPORT_SYMBOL_GPL(split_page);
2729 
2730 int __isolate_free_page(struct page *page, unsigned int order)
2731 {
2732 	struct zone *zone = page_zone(page);
2733 	int mt = get_pageblock_migratetype(page);
2734 
2735 	if (!is_migrate_isolate(mt)) {
2736 		unsigned long watermark;
2737 		/*
2738 		 * Obey watermarks as if the page was being allocated. We can
2739 		 * emulate a high-order watermark check with a raised order-0
2740 		 * watermark, because we already know our high-order page
2741 		 * exists.
2742 		 */
2743 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2744 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2745 			return 0;
2746 	}
2747 
2748 	del_page_from_free_list(page, zone, order, mt);
2749 
2750 	/*
2751 	 * Set the pageblock if the isolated page is at least half of a
2752 	 * pageblock
2753 	 */
2754 	if (order >= pageblock_order - 1) {
2755 		struct page *endpage = page + (1 << order) - 1;
2756 		for (; page < endpage; page += pageblock_nr_pages) {
2757 			int mt = get_pageblock_migratetype(page);
2758 			/*
2759 			 * Only change normal pageblocks (i.e., they can merge
2760 			 * with others)
2761 			 */
2762 			if (migratetype_is_mergeable(mt))
2763 				move_freepages_block(zone, page, mt,
2764 						     MIGRATE_MOVABLE);
2765 		}
2766 	}
2767 
2768 	return 1UL << order;
2769 }
2770 
2771 /**
2772  * __putback_isolated_page - Return a now-isolated page back where we got it
2773  * @page: Page that was isolated
2774  * @order: Order of the isolated page
2775  * @mt: The page's pageblock's migratetype
2776  *
2777  * This function is meant to return a page pulled from the free lists via
2778  * __isolate_free_page back to the free lists they were pulled from.
2779  */
2780 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2781 {
2782 	struct zone *zone = page_zone(page);
2783 
2784 	/* zone lock should be held when this function is called */
2785 	lockdep_assert_held(&zone->lock);
2786 
2787 	/* Return isolated page to tail of freelist. */
2788 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2789 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2790 }
2791 
2792 /*
2793  * Update NUMA hit/miss statistics
2794  */
2795 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2796 				   long nr_account)
2797 {
2798 #ifdef CONFIG_NUMA
2799 	enum numa_stat_item local_stat = NUMA_LOCAL;
2800 
2801 	/* skip numa counters update if numa stats is disabled */
2802 	if (!static_branch_likely(&vm_numa_stat_key))
2803 		return;
2804 
2805 	if (zone_to_nid(z) != numa_node_id())
2806 		local_stat = NUMA_OTHER;
2807 
2808 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2809 		__count_numa_events(z, NUMA_HIT, nr_account);
2810 	else {
2811 		__count_numa_events(z, NUMA_MISS, nr_account);
2812 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2813 	}
2814 	__count_numa_events(z, local_stat, nr_account);
2815 #endif
2816 }
2817 
2818 static __always_inline
2819 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2820 			   unsigned int order, unsigned int alloc_flags,
2821 			   int migratetype)
2822 {
2823 	struct page *page;
2824 	unsigned long flags;
2825 
2826 	do {
2827 		page = NULL;
2828 		spin_lock_irqsave(&zone->lock, flags);
2829 		if (alloc_flags & ALLOC_HIGHATOMIC)
2830 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2831 		if (!page) {
2832 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2833 
2834 			/*
2835 			 * If the allocation fails, allow OOM handling access
2836 			 * to HIGHATOMIC reserves as failing now is worse than
2837 			 * failing a high-order atomic allocation in the
2838 			 * future.
2839 			 */
2840 			if (!page && (alloc_flags & ALLOC_OOM))
2841 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2842 
2843 			if (!page) {
2844 				spin_unlock_irqrestore(&zone->lock, flags);
2845 				return NULL;
2846 			}
2847 		}
2848 		spin_unlock_irqrestore(&zone->lock, flags);
2849 	} while (check_new_pages(page, order));
2850 
2851 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2852 	zone_statistics(preferred_zone, zone, 1);
2853 
2854 	return page;
2855 }
2856 
2857 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2858 {
2859 	int high, base_batch, batch, max_nr_alloc;
2860 	int high_max, high_min;
2861 
2862 	base_batch = READ_ONCE(pcp->batch);
2863 	high_min = READ_ONCE(pcp->high_min);
2864 	high_max = READ_ONCE(pcp->high_max);
2865 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2866 
2867 	/* Check for PCP disabled or boot pageset */
2868 	if (unlikely(high < base_batch))
2869 		return 1;
2870 
2871 	if (order)
2872 		batch = base_batch;
2873 	else
2874 		batch = (base_batch << pcp->alloc_factor);
2875 
2876 	/*
2877 	 * If we had larger pcp->high, we could avoid to allocate from
2878 	 * zone.
2879 	 */
2880 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2881 		high = pcp->high = min(high + batch, high_max);
2882 
2883 	if (!order) {
2884 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2885 		/*
2886 		 * Double the number of pages allocated each time there is
2887 		 * subsequent allocation of order-0 pages without any freeing.
2888 		 */
2889 		if (batch <= max_nr_alloc &&
2890 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2891 			pcp->alloc_factor++;
2892 		batch = min(batch, max_nr_alloc);
2893 	}
2894 
2895 	/*
2896 	 * Scale batch relative to order if batch implies free pages
2897 	 * can be stored on the PCP. Batch can be 1 for small zones or
2898 	 * for boot pagesets which should never store free pages as
2899 	 * the pages may belong to arbitrary zones.
2900 	 */
2901 	if (batch > 1)
2902 		batch = max(batch >> order, 2);
2903 
2904 	return batch;
2905 }
2906 
2907 /* Remove page from the per-cpu list, caller must protect the list */
2908 static inline
2909 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2910 			int migratetype,
2911 			unsigned int alloc_flags,
2912 			struct per_cpu_pages *pcp,
2913 			struct list_head *list)
2914 {
2915 	struct page *page;
2916 
2917 	do {
2918 		if (list_empty(list)) {
2919 			int batch = nr_pcp_alloc(pcp, zone, order);
2920 			int alloced;
2921 
2922 			alloced = rmqueue_bulk(zone, order,
2923 					batch, list,
2924 					migratetype, alloc_flags);
2925 
2926 			pcp->count += alloced << order;
2927 			if (unlikely(list_empty(list)))
2928 				return NULL;
2929 		}
2930 
2931 		page = list_first_entry(list, struct page, pcp_list);
2932 		list_del(&page->pcp_list);
2933 		pcp->count -= 1 << order;
2934 	} while (check_new_pages(page, order));
2935 
2936 	return page;
2937 }
2938 
2939 /* Lock and remove page from the per-cpu list */
2940 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2941 			struct zone *zone, unsigned int order,
2942 			int migratetype, unsigned int alloc_flags)
2943 {
2944 	struct per_cpu_pages *pcp;
2945 	struct list_head *list;
2946 	struct page *page;
2947 	unsigned long __maybe_unused UP_flags;
2948 
2949 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2950 	pcp_trylock_prepare(UP_flags);
2951 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2952 	if (!pcp) {
2953 		pcp_trylock_finish(UP_flags);
2954 		return NULL;
2955 	}
2956 
2957 	/*
2958 	 * On allocation, reduce the number of pages that are batch freed.
2959 	 * See nr_pcp_free() where free_factor is increased for subsequent
2960 	 * frees.
2961 	 */
2962 	pcp->free_count >>= 1;
2963 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2964 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2965 	pcp_spin_unlock(pcp);
2966 	pcp_trylock_finish(UP_flags);
2967 	if (page) {
2968 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2969 		zone_statistics(preferred_zone, zone, 1);
2970 	}
2971 	return page;
2972 }
2973 
2974 /*
2975  * Allocate a page from the given zone.
2976  * Use pcplists for THP or "cheap" high-order allocations.
2977  */
2978 
2979 /*
2980  * Do not instrument rmqueue() with KMSAN. This function may call
2981  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2982  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2983  * may call rmqueue() again, which will result in a deadlock.
2984  */
2985 __no_sanitize_memory
2986 static inline
2987 struct page *rmqueue(struct zone *preferred_zone,
2988 			struct zone *zone, unsigned int order,
2989 			gfp_t gfp_flags, unsigned int alloc_flags,
2990 			int migratetype)
2991 {
2992 	struct page *page;
2993 
2994 	/*
2995 	 * We most definitely don't want callers attempting to
2996 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2997 	 */
2998 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2999 
3000 	if (likely(pcp_allowed_order(order))) {
3001 		page = rmqueue_pcplist(preferred_zone, zone, order,
3002 				       migratetype, alloc_flags);
3003 		if (likely(page))
3004 			goto out;
3005 	}
3006 
3007 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3008 							migratetype);
3009 
3010 out:
3011 	/* Separate test+clear to avoid unnecessary atomics */
3012 	if ((alloc_flags & ALLOC_KSWAPD) &&
3013 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3014 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3015 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3016 	}
3017 
3018 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3019 	return page;
3020 }
3021 
3022 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3023 {
3024 	return __should_fail_alloc_page(gfp_mask, order);
3025 }
3026 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3027 
3028 static inline long __zone_watermark_unusable_free(struct zone *z,
3029 				unsigned int order, unsigned int alloc_flags)
3030 {
3031 	long unusable_free = (1 << order) - 1;
3032 
3033 	/*
3034 	 * If the caller does not have rights to reserves below the min
3035 	 * watermark then subtract the high-atomic reserves. This will
3036 	 * over-estimate the size of the atomic reserve but it avoids a search.
3037 	 */
3038 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3039 		unusable_free += z->nr_reserved_highatomic;
3040 
3041 #ifdef CONFIG_CMA
3042 	/* If allocation can't use CMA areas don't use free CMA pages */
3043 	if (!(alloc_flags & ALLOC_CMA))
3044 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3045 #endif
3046 #ifdef CONFIG_UNACCEPTED_MEMORY
3047 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
3048 #endif
3049 
3050 	return unusable_free;
3051 }
3052 
3053 /*
3054  * Return true if free base pages are above 'mark'. For high-order checks it
3055  * will return true of the order-0 watermark is reached and there is at least
3056  * one free page of a suitable size. Checking now avoids taking the zone lock
3057  * to check in the allocation paths if no pages are free.
3058  */
3059 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3060 			 int highest_zoneidx, unsigned int alloc_flags,
3061 			 long free_pages)
3062 {
3063 	long min = mark;
3064 	int o;
3065 
3066 	/* free_pages may go negative - that's OK */
3067 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3068 
3069 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3070 		/*
3071 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3072 		 * as OOM.
3073 		 */
3074 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3075 			min -= min / 2;
3076 
3077 			/*
3078 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3079 			 * access more reserves than just __GFP_HIGH. Other
3080 			 * non-blocking allocations requests such as GFP_NOWAIT
3081 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3082 			 * access to the min reserve.
3083 			 */
3084 			if (alloc_flags & ALLOC_NON_BLOCK)
3085 				min -= min / 4;
3086 		}
3087 
3088 		/*
3089 		 * OOM victims can try even harder than the normal reserve
3090 		 * users on the grounds that it's definitely going to be in
3091 		 * the exit path shortly and free memory. Any allocation it
3092 		 * makes during the free path will be small and short-lived.
3093 		 */
3094 		if (alloc_flags & ALLOC_OOM)
3095 			min -= min / 2;
3096 	}
3097 
3098 	/*
3099 	 * Check watermarks for an order-0 allocation request. If these
3100 	 * are not met, then a high-order request also cannot go ahead
3101 	 * even if a suitable page happened to be free.
3102 	 */
3103 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3104 		return false;
3105 
3106 	/* If this is an order-0 request then the watermark is fine */
3107 	if (!order)
3108 		return true;
3109 
3110 	/* For a high-order request, check at least one suitable page is free */
3111 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3112 		struct free_area *area = &z->free_area[o];
3113 		int mt;
3114 
3115 		if (!area->nr_free)
3116 			continue;
3117 
3118 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3119 			if (!free_area_empty(area, mt))
3120 				return true;
3121 		}
3122 
3123 #ifdef CONFIG_CMA
3124 		if ((alloc_flags & ALLOC_CMA) &&
3125 		    !free_area_empty(area, MIGRATE_CMA)) {
3126 			return true;
3127 		}
3128 #endif
3129 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3130 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3131 			return true;
3132 		}
3133 	}
3134 	return false;
3135 }
3136 
3137 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3138 		      int highest_zoneidx, unsigned int alloc_flags)
3139 {
3140 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3141 					zone_page_state(z, NR_FREE_PAGES));
3142 }
3143 
3144 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3145 				unsigned long mark, int highest_zoneidx,
3146 				unsigned int alloc_flags, gfp_t gfp_mask)
3147 {
3148 	long free_pages;
3149 
3150 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3151 
3152 	/*
3153 	 * Fast check for order-0 only. If this fails then the reserves
3154 	 * need to be calculated.
3155 	 */
3156 	if (!order) {
3157 		long usable_free;
3158 		long reserved;
3159 
3160 		usable_free = free_pages;
3161 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3162 
3163 		/* reserved may over estimate high-atomic reserves. */
3164 		usable_free -= min(usable_free, reserved);
3165 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3166 			return true;
3167 	}
3168 
3169 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3170 					free_pages))
3171 		return true;
3172 
3173 	/*
3174 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3175 	 * when checking the min watermark. The min watermark is the
3176 	 * point where boosting is ignored so that kswapd is woken up
3177 	 * when below the low watermark.
3178 	 */
3179 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3180 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3181 		mark = z->_watermark[WMARK_MIN];
3182 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3183 					alloc_flags, free_pages);
3184 	}
3185 
3186 	return false;
3187 }
3188 
3189 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3190 			unsigned long mark, int highest_zoneidx)
3191 {
3192 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3193 
3194 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3195 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3196 
3197 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3198 								free_pages);
3199 }
3200 
3201 #ifdef CONFIG_NUMA
3202 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3203 
3204 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3205 {
3206 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3207 				node_reclaim_distance;
3208 }
3209 #else	/* CONFIG_NUMA */
3210 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3211 {
3212 	return true;
3213 }
3214 #endif	/* CONFIG_NUMA */
3215 
3216 /*
3217  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3218  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3219  * premature use of a lower zone may cause lowmem pressure problems that
3220  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3221  * probably too small. It only makes sense to spread allocations to avoid
3222  * fragmentation between the Normal and DMA32 zones.
3223  */
3224 static inline unsigned int
3225 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3226 {
3227 	unsigned int alloc_flags;
3228 
3229 	/*
3230 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3231 	 * to save a branch.
3232 	 */
3233 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3234 
3235 #ifdef CONFIG_ZONE_DMA32
3236 	if (!zone)
3237 		return alloc_flags;
3238 
3239 	if (zone_idx(zone) != ZONE_NORMAL)
3240 		return alloc_flags;
3241 
3242 	/*
3243 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3244 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3245 	 * on UMA that if Normal is populated then so is DMA32.
3246 	 */
3247 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3248 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3249 		return alloc_flags;
3250 
3251 	alloc_flags |= ALLOC_NOFRAGMENT;
3252 #endif /* CONFIG_ZONE_DMA32 */
3253 	return alloc_flags;
3254 }
3255 
3256 /* Must be called after current_gfp_context() which can change gfp_mask */
3257 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3258 						  unsigned int alloc_flags)
3259 {
3260 #ifdef CONFIG_CMA
3261 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3262 		alloc_flags |= ALLOC_CMA;
3263 #endif
3264 	return alloc_flags;
3265 }
3266 
3267 /*
3268  * get_page_from_freelist goes through the zonelist trying to allocate
3269  * a page.
3270  */
3271 static struct page *
3272 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3273 						const struct alloc_context *ac)
3274 {
3275 	struct zoneref *z;
3276 	struct zone *zone;
3277 	struct pglist_data *last_pgdat = NULL;
3278 	bool last_pgdat_dirty_ok = false;
3279 	bool no_fallback;
3280 
3281 retry:
3282 	/*
3283 	 * Scan zonelist, looking for a zone with enough free.
3284 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3285 	 */
3286 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3287 	z = ac->preferred_zoneref;
3288 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3289 					ac->nodemask) {
3290 		struct page *page;
3291 		unsigned long mark;
3292 
3293 		if (cpusets_enabled() &&
3294 			(alloc_flags & ALLOC_CPUSET) &&
3295 			!__cpuset_zone_allowed(zone, gfp_mask))
3296 				continue;
3297 		/*
3298 		 * When allocating a page cache page for writing, we
3299 		 * want to get it from a node that is within its dirty
3300 		 * limit, such that no single node holds more than its
3301 		 * proportional share of globally allowed dirty pages.
3302 		 * The dirty limits take into account the node's
3303 		 * lowmem reserves and high watermark so that kswapd
3304 		 * should be able to balance it without having to
3305 		 * write pages from its LRU list.
3306 		 *
3307 		 * XXX: For now, allow allocations to potentially
3308 		 * exceed the per-node dirty limit in the slowpath
3309 		 * (spread_dirty_pages unset) before going into reclaim,
3310 		 * which is important when on a NUMA setup the allowed
3311 		 * nodes are together not big enough to reach the
3312 		 * global limit.  The proper fix for these situations
3313 		 * will require awareness of nodes in the
3314 		 * dirty-throttling and the flusher threads.
3315 		 */
3316 		if (ac->spread_dirty_pages) {
3317 			if (last_pgdat != zone->zone_pgdat) {
3318 				last_pgdat = zone->zone_pgdat;
3319 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3320 			}
3321 
3322 			if (!last_pgdat_dirty_ok)
3323 				continue;
3324 		}
3325 
3326 		if (no_fallback && nr_online_nodes > 1 &&
3327 		    zone != ac->preferred_zoneref->zone) {
3328 			int local_nid;
3329 
3330 			/*
3331 			 * If moving to a remote node, retry but allow
3332 			 * fragmenting fallbacks. Locality is more important
3333 			 * than fragmentation avoidance.
3334 			 */
3335 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3336 			if (zone_to_nid(zone) != local_nid) {
3337 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3338 				goto retry;
3339 			}
3340 		}
3341 
3342 		/*
3343 		 * Detect whether the number of free pages is below high
3344 		 * watermark.  If so, we will decrease pcp->high and free
3345 		 * PCP pages in free path to reduce the possibility of
3346 		 * premature page reclaiming.  Detection is done here to
3347 		 * avoid to do that in hotter free path.
3348 		 */
3349 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3350 			goto check_alloc_wmark;
3351 
3352 		mark = high_wmark_pages(zone);
3353 		if (zone_watermark_fast(zone, order, mark,
3354 					ac->highest_zoneidx, alloc_flags,
3355 					gfp_mask))
3356 			goto try_this_zone;
3357 		else
3358 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3359 
3360 check_alloc_wmark:
3361 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3362 		if (!zone_watermark_fast(zone, order, mark,
3363 				       ac->highest_zoneidx, alloc_flags,
3364 				       gfp_mask)) {
3365 			int ret;
3366 
3367 			if (has_unaccepted_memory()) {
3368 				if (try_to_accept_memory(zone, order))
3369 					goto try_this_zone;
3370 			}
3371 
3372 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3373 			/*
3374 			 * Watermark failed for this zone, but see if we can
3375 			 * grow this zone if it contains deferred pages.
3376 			 */
3377 			if (deferred_pages_enabled()) {
3378 				if (_deferred_grow_zone(zone, order))
3379 					goto try_this_zone;
3380 			}
3381 #endif
3382 			/* Checked here to keep the fast path fast */
3383 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3384 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3385 				goto try_this_zone;
3386 
3387 			if (!node_reclaim_enabled() ||
3388 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3389 				continue;
3390 
3391 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3392 			switch (ret) {
3393 			case NODE_RECLAIM_NOSCAN:
3394 				/* did not scan */
3395 				continue;
3396 			case NODE_RECLAIM_FULL:
3397 				/* scanned but unreclaimable */
3398 				continue;
3399 			default:
3400 				/* did we reclaim enough */
3401 				if (zone_watermark_ok(zone, order, mark,
3402 					ac->highest_zoneidx, alloc_flags))
3403 					goto try_this_zone;
3404 
3405 				continue;
3406 			}
3407 		}
3408 
3409 try_this_zone:
3410 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3411 				gfp_mask, alloc_flags, ac->migratetype);
3412 		if (page) {
3413 			prep_new_page(page, order, gfp_mask, alloc_flags);
3414 
3415 			/*
3416 			 * If this is a high-order atomic allocation then check
3417 			 * if the pageblock should be reserved for the future
3418 			 */
3419 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3420 				reserve_highatomic_pageblock(page, zone);
3421 
3422 			return page;
3423 		} else {
3424 			if (has_unaccepted_memory()) {
3425 				if (try_to_accept_memory(zone, order))
3426 					goto try_this_zone;
3427 			}
3428 
3429 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3430 			/* Try again if zone has deferred pages */
3431 			if (deferred_pages_enabled()) {
3432 				if (_deferred_grow_zone(zone, order))
3433 					goto try_this_zone;
3434 			}
3435 #endif
3436 		}
3437 	}
3438 
3439 	/*
3440 	 * It's possible on a UMA machine to get through all zones that are
3441 	 * fragmented. If avoiding fragmentation, reset and try again.
3442 	 */
3443 	if (no_fallback) {
3444 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3445 		goto retry;
3446 	}
3447 
3448 	return NULL;
3449 }
3450 
3451 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3452 {
3453 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3454 
3455 	/*
3456 	 * This documents exceptions given to allocations in certain
3457 	 * contexts that are allowed to allocate outside current's set
3458 	 * of allowed nodes.
3459 	 */
3460 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3461 		if (tsk_is_oom_victim(current) ||
3462 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3463 			filter &= ~SHOW_MEM_FILTER_NODES;
3464 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3465 		filter &= ~SHOW_MEM_FILTER_NODES;
3466 
3467 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3468 }
3469 
3470 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3471 {
3472 	struct va_format vaf;
3473 	va_list args;
3474 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3475 
3476 	if ((gfp_mask & __GFP_NOWARN) ||
3477 	     !__ratelimit(&nopage_rs) ||
3478 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3479 		return;
3480 
3481 	va_start(args, fmt);
3482 	vaf.fmt = fmt;
3483 	vaf.va = &args;
3484 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3485 			current->comm, &vaf, gfp_mask, &gfp_mask,
3486 			nodemask_pr_args(nodemask));
3487 	va_end(args);
3488 
3489 	cpuset_print_current_mems_allowed();
3490 	pr_cont("\n");
3491 	dump_stack();
3492 	warn_alloc_show_mem(gfp_mask, nodemask);
3493 }
3494 
3495 static inline struct page *
3496 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3497 			      unsigned int alloc_flags,
3498 			      const struct alloc_context *ac)
3499 {
3500 	struct page *page;
3501 
3502 	page = get_page_from_freelist(gfp_mask, order,
3503 			alloc_flags|ALLOC_CPUSET, ac);
3504 	/*
3505 	 * fallback to ignore cpuset restriction if our nodes
3506 	 * are depleted
3507 	 */
3508 	if (!page)
3509 		page = get_page_from_freelist(gfp_mask, order,
3510 				alloc_flags, ac);
3511 
3512 	return page;
3513 }
3514 
3515 static inline struct page *
3516 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3517 	const struct alloc_context *ac, unsigned long *did_some_progress)
3518 {
3519 	struct oom_control oc = {
3520 		.zonelist = ac->zonelist,
3521 		.nodemask = ac->nodemask,
3522 		.memcg = NULL,
3523 		.gfp_mask = gfp_mask,
3524 		.order = order,
3525 	};
3526 	struct page *page;
3527 
3528 	*did_some_progress = 0;
3529 
3530 	/*
3531 	 * Acquire the oom lock.  If that fails, somebody else is
3532 	 * making progress for us.
3533 	 */
3534 	if (!mutex_trylock(&oom_lock)) {
3535 		*did_some_progress = 1;
3536 		schedule_timeout_uninterruptible(1);
3537 		return NULL;
3538 	}
3539 
3540 	/*
3541 	 * Go through the zonelist yet one more time, keep very high watermark
3542 	 * here, this is only to catch a parallel oom killing, we must fail if
3543 	 * we're still under heavy pressure. But make sure that this reclaim
3544 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3545 	 * allocation which will never fail due to oom_lock already held.
3546 	 */
3547 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3548 				      ~__GFP_DIRECT_RECLAIM, order,
3549 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3550 	if (page)
3551 		goto out;
3552 
3553 	/* Coredumps can quickly deplete all memory reserves */
3554 	if (current->flags & PF_DUMPCORE)
3555 		goto out;
3556 	/* The OOM killer will not help higher order allocs */
3557 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3558 		goto out;
3559 	/*
3560 	 * We have already exhausted all our reclaim opportunities without any
3561 	 * success so it is time to admit defeat. We will skip the OOM killer
3562 	 * because it is very likely that the caller has a more reasonable
3563 	 * fallback than shooting a random task.
3564 	 *
3565 	 * The OOM killer may not free memory on a specific node.
3566 	 */
3567 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3568 		goto out;
3569 	/* The OOM killer does not needlessly kill tasks for lowmem */
3570 	if (ac->highest_zoneidx < ZONE_NORMAL)
3571 		goto out;
3572 	if (pm_suspended_storage())
3573 		goto out;
3574 	/*
3575 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3576 	 * other request to make a forward progress.
3577 	 * We are in an unfortunate situation where out_of_memory cannot
3578 	 * do much for this context but let's try it to at least get
3579 	 * access to memory reserved if the current task is killed (see
3580 	 * out_of_memory). Once filesystems are ready to handle allocation
3581 	 * failures more gracefully we should just bail out here.
3582 	 */
3583 
3584 	/* Exhausted what can be done so it's blame time */
3585 	if (out_of_memory(&oc) ||
3586 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3587 		*did_some_progress = 1;
3588 
3589 		/*
3590 		 * Help non-failing allocations by giving them access to memory
3591 		 * reserves
3592 		 */
3593 		if (gfp_mask & __GFP_NOFAIL)
3594 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3595 					ALLOC_NO_WATERMARKS, ac);
3596 	}
3597 out:
3598 	mutex_unlock(&oom_lock);
3599 	return page;
3600 }
3601 
3602 /*
3603  * Maximum number of compaction retries with a progress before OOM
3604  * killer is consider as the only way to move forward.
3605  */
3606 #define MAX_COMPACT_RETRIES 16
3607 
3608 #ifdef CONFIG_COMPACTION
3609 /* Try memory compaction for high-order allocations before reclaim */
3610 static struct page *
3611 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3612 		unsigned int alloc_flags, const struct alloc_context *ac,
3613 		enum compact_priority prio, enum compact_result *compact_result)
3614 {
3615 	struct page *page = NULL;
3616 	unsigned long pflags;
3617 	unsigned int noreclaim_flag;
3618 
3619 	if (!order)
3620 		return NULL;
3621 
3622 	psi_memstall_enter(&pflags);
3623 	delayacct_compact_start();
3624 	noreclaim_flag = memalloc_noreclaim_save();
3625 
3626 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3627 								prio, &page);
3628 
3629 	memalloc_noreclaim_restore(noreclaim_flag);
3630 	psi_memstall_leave(&pflags);
3631 	delayacct_compact_end();
3632 
3633 	if (*compact_result == COMPACT_SKIPPED)
3634 		return NULL;
3635 	/*
3636 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3637 	 * count a compaction stall
3638 	 */
3639 	count_vm_event(COMPACTSTALL);
3640 
3641 	/* Prep a captured page if available */
3642 	if (page)
3643 		prep_new_page(page, order, gfp_mask, alloc_flags);
3644 
3645 	/* Try get a page from the freelist if available */
3646 	if (!page)
3647 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3648 
3649 	if (page) {
3650 		struct zone *zone = page_zone(page);
3651 
3652 		zone->compact_blockskip_flush = false;
3653 		compaction_defer_reset(zone, order, true);
3654 		count_vm_event(COMPACTSUCCESS);
3655 		return page;
3656 	}
3657 
3658 	/*
3659 	 * It's bad if compaction run occurs and fails. The most likely reason
3660 	 * is that pages exist, but not enough to satisfy watermarks.
3661 	 */
3662 	count_vm_event(COMPACTFAIL);
3663 
3664 	cond_resched();
3665 
3666 	return NULL;
3667 }
3668 
3669 static inline bool
3670 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3671 		     enum compact_result compact_result,
3672 		     enum compact_priority *compact_priority,
3673 		     int *compaction_retries)
3674 {
3675 	int max_retries = MAX_COMPACT_RETRIES;
3676 	int min_priority;
3677 	bool ret = false;
3678 	int retries = *compaction_retries;
3679 	enum compact_priority priority = *compact_priority;
3680 
3681 	if (!order)
3682 		return false;
3683 
3684 	if (fatal_signal_pending(current))
3685 		return false;
3686 
3687 	/*
3688 	 * Compaction was skipped due to a lack of free order-0
3689 	 * migration targets. Continue if reclaim can help.
3690 	 */
3691 	if (compact_result == COMPACT_SKIPPED) {
3692 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3693 		goto out;
3694 	}
3695 
3696 	/*
3697 	 * Compaction managed to coalesce some page blocks, but the
3698 	 * allocation failed presumably due to a race. Retry some.
3699 	 */
3700 	if (compact_result == COMPACT_SUCCESS) {
3701 		/*
3702 		 * !costly requests are much more important than
3703 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3704 		 * facto nofail and invoke OOM killer to move on while
3705 		 * costly can fail and users are ready to cope with
3706 		 * that. 1/4 retries is rather arbitrary but we would
3707 		 * need much more detailed feedback from compaction to
3708 		 * make a better decision.
3709 		 */
3710 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3711 			max_retries /= 4;
3712 
3713 		if (++(*compaction_retries) <= max_retries) {
3714 			ret = true;
3715 			goto out;
3716 		}
3717 	}
3718 
3719 	/*
3720 	 * Compaction failed. Retry with increasing priority.
3721 	 */
3722 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3723 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3724 
3725 	if (*compact_priority > min_priority) {
3726 		(*compact_priority)--;
3727 		*compaction_retries = 0;
3728 		ret = true;
3729 	}
3730 out:
3731 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3732 	return ret;
3733 }
3734 #else
3735 static inline struct page *
3736 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3737 		unsigned int alloc_flags, const struct alloc_context *ac,
3738 		enum compact_priority prio, enum compact_result *compact_result)
3739 {
3740 	*compact_result = COMPACT_SKIPPED;
3741 	return NULL;
3742 }
3743 
3744 static inline bool
3745 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3746 		     enum compact_result compact_result,
3747 		     enum compact_priority *compact_priority,
3748 		     int *compaction_retries)
3749 {
3750 	struct zone *zone;
3751 	struct zoneref *z;
3752 
3753 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3754 		return false;
3755 
3756 	/*
3757 	 * There are setups with compaction disabled which would prefer to loop
3758 	 * inside the allocator rather than hit the oom killer prematurely.
3759 	 * Let's give them a good hope and keep retrying while the order-0
3760 	 * watermarks are OK.
3761 	 */
3762 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3763 				ac->highest_zoneidx, ac->nodemask) {
3764 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3765 					ac->highest_zoneidx, alloc_flags))
3766 			return true;
3767 	}
3768 	return false;
3769 }
3770 #endif /* CONFIG_COMPACTION */
3771 
3772 #ifdef CONFIG_LOCKDEP
3773 static struct lockdep_map __fs_reclaim_map =
3774 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3775 
3776 static bool __need_reclaim(gfp_t gfp_mask)
3777 {
3778 	/* no reclaim without waiting on it */
3779 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3780 		return false;
3781 
3782 	/* this guy won't enter reclaim */
3783 	if (current->flags & PF_MEMALLOC)
3784 		return false;
3785 
3786 	if (gfp_mask & __GFP_NOLOCKDEP)
3787 		return false;
3788 
3789 	return true;
3790 }
3791 
3792 void __fs_reclaim_acquire(unsigned long ip)
3793 {
3794 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3795 }
3796 
3797 void __fs_reclaim_release(unsigned long ip)
3798 {
3799 	lock_release(&__fs_reclaim_map, ip);
3800 }
3801 
3802 void fs_reclaim_acquire(gfp_t gfp_mask)
3803 {
3804 	gfp_mask = current_gfp_context(gfp_mask);
3805 
3806 	if (__need_reclaim(gfp_mask)) {
3807 		if (gfp_mask & __GFP_FS)
3808 			__fs_reclaim_acquire(_RET_IP_);
3809 
3810 #ifdef CONFIG_MMU_NOTIFIER
3811 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3812 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3813 #endif
3814 
3815 	}
3816 }
3817 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3818 
3819 void fs_reclaim_release(gfp_t gfp_mask)
3820 {
3821 	gfp_mask = current_gfp_context(gfp_mask);
3822 
3823 	if (__need_reclaim(gfp_mask)) {
3824 		if (gfp_mask & __GFP_FS)
3825 			__fs_reclaim_release(_RET_IP_);
3826 	}
3827 }
3828 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3829 #endif
3830 
3831 /*
3832  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3833  * have been rebuilt so allocation retries. Reader side does not lock and
3834  * retries the allocation if zonelist changes. Writer side is protected by the
3835  * embedded spin_lock.
3836  */
3837 static DEFINE_SEQLOCK(zonelist_update_seq);
3838 
3839 static unsigned int zonelist_iter_begin(void)
3840 {
3841 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3842 		return read_seqbegin(&zonelist_update_seq);
3843 
3844 	return 0;
3845 }
3846 
3847 static unsigned int check_retry_zonelist(unsigned int seq)
3848 {
3849 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3850 		return read_seqretry(&zonelist_update_seq, seq);
3851 
3852 	return seq;
3853 }
3854 
3855 /* Perform direct synchronous page reclaim */
3856 static unsigned long
3857 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3858 					const struct alloc_context *ac)
3859 {
3860 	unsigned int noreclaim_flag;
3861 	unsigned long progress;
3862 
3863 	cond_resched();
3864 
3865 	/* We now go into synchronous reclaim */
3866 	cpuset_memory_pressure_bump();
3867 	fs_reclaim_acquire(gfp_mask);
3868 	noreclaim_flag = memalloc_noreclaim_save();
3869 
3870 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3871 								ac->nodemask);
3872 
3873 	memalloc_noreclaim_restore(noreclaim_flag);
3874 	fs_reclaim_release(gfp_mask);
3875 
3876 	cond_resched();
3877 
3878 	return progress;
3879 }
3880 
3881 /* The really slow allocator path where we enter direct reclaim */
3882 static inline struct page *
3883 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3884 		unsigned int alloc_flags, const struct alloc_context *ac,
3885 		unsigned long *did_some_progress)
3886 {
3887 	struct page *page = NULL;
3888 	unsigned long pflags;
3889 	bool drained = false;
3890 
3891 	psi_memstall_enter(&pflags);
3892 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3893 	if (unlikely(!(*did_some_progress)))
3894 		goto out;
3895 
3896 retry:
3897 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3898 
3899 	/*
3900 	 * If an allocation failed after direct reclaim, it could be because
3901 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3902 	 * Shrink them and try again
3903 	 */
3904 	if (!page && !drained) {
3905 		unreserve_highatomic_pageblock(ac, false);
3906 		drain_all_pages(NULL);
3907 		drained = true;
3908 		goto retry;
3909 	}
3910 out:
3911 	psi_memstall_leave(&pflags);
3912 
3913 	return page;
3914 }
3915 
3916 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3917 			     const struct alloc_context *ac)
3918 {
3919 	struct zoneref *z;
3920 	struct zone *zone;
3921 	pg_data_t *last_pgdat = NULL;
3922 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3923 
3924 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3925 					ac->nodemask) {
3926 		if (!managed_zone(zone))
3927 			continue;
3928 		if (last_pgdat != zone->zone_pgdat) {
3929 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3930 			last_pgdat = zone->zone_pgdat;
3931 		}
3932 	}
3933 }
3934 
3935 static inline unsigned int
3936 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3937 {
3938 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3939 
3940 	/*
3941 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3942 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3943 	 * to save two branches.
3944 	 */
3945 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3946 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3947 
3948 	/*
3949 	 * The caller may dip into page reserves a bit more if the caller
3950 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3951 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3952 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3953 	 */
3954 	alloc_flags |= (__force int)
3955 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3956 
3957 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3958 		/*
3959 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3960 		 * if it can't schedule.
3961 		 */
3962 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3963 			alloc_flags |= ALLOC_NON_BLOCK;
3964 
3965 			if (order > 0)
3966 				alloc_flags |= ALLOC_HIGHATOMIC;
3967 		}
3968 
3969 		/*
3970 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3971 		 * GFP_ATOMIC) rather than fail, see the comment for
3972 		 * cpuset_node_allowed().
3973 		 */
3974 		if (alloc_flags & ALLOC_MIN_RESERVE)
3975 			alloc_flags &= ~ALLOC_CPUSET;
3976 	} else if (unlikely(rt_task(current)) && in_task())
3977 		alloc_flags |= ALLOC_MIN_RESERVE;
3978 
3979 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3980 
3981 	return alloc_flags;
3982 }
3983 
3984 static bool oom_reserves_allowed(struct task_struct *tsk)
3985 {
3986 	if (!tsk_is_oom_victim(tsk))
3987 		return false;
3988 
3989 	/*
3990 	 * !MMU doesn't have oom reaper so give access to memory reserves
3991 	 * only to the thread with TIF_MEMDIE set
3992 	 */
3993 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3994 		return false;
3995 
3996 	return true;
3997 }
3998 
3999 /*
4000  * Distinguish requests which really need access to full memory
4001  * reserves from oom victims which can live with a portion of it
4002  */
4003 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4004 {
4005 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4006 		return 0;
4007 	if (gfp_mask & __GFP_MEMALLOC)
4008 		return ALLOC_NO_WATERMARKS;
4009 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4010 		return ALLOC_NO_WATERMARKS;
4011 	if (!in_interrupt()) {
4012 		if (current->flags & PF_MEMALLOC)
4013 			return ALLOC_NO_WATERMARKS;
4014 		else if (oom_reserves_allowed(current))
4015 			return ALLOC_OOM;
4016 	}
4017 
4018 	return 0;
4019 }
4020 
4021 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4022 {
4023 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4024 }
4025 
4026 /*
4027  * Checks whether it makes sense to retry the reclaim to make a forward progress
4028  * for the given allocation request.
4029  *
4030  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4031  * without success, or when we couldn't even meet the watermark if we
4032  * reclaimed all remaining pages on the LRU lists.
4033  *
4034  * Returns true if a retry is viable or false to enter the oom path.
4035  */
4036 static inline bool
4037 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4038 		     struct alloc_context *ac, int alloc_flags,
4039 		     bool did_some_progress, int *no_progress_loops)
4040 {
4041 	struct zone *zone;
4042 	struct zoneref *z;
4043 	bool ret = false;
4044 
4045 	/*
4046 	 * Costly allocations might have made a progress but this doesn't mean
4047 	 * their order will become available due to high fragmentation so
4048 	 * always increment the no progress counter for them
4049 	 */
4050 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4051 		*no_progress_loops = 0;
4052 	else
4053 		(*no_progress_loops)++;
4054 
4055 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4056 		goto out;
4057 
4058 
4059 	/*
4060 	 * Keep reclaiming pages while there is a chance this will lead
4061 	 * somewhere.  If none of the target zones can satisfy our allocation
4062 	 * request even if all reclaimable pages are considered then we are
4063 	 * screwed and have to go OOM.
4064 	 */
4065 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4066 				ac->highest_zoneidx, ac->nodemask) {
4067 		unsigned long available;
4068 		unsigned long reclaimable;
4069 		unsigned long min_wmark = min_wmark_pages(zone);
4070 		bool wmark;
4071 
4072 		available = reclaimable = zone_reclaimable_pages(zone);
4073 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4074 
4075 		/*
4076 		 * Would the allocation succeed if we reclaimed all
4077 		 * reclaimable pages?
4078 		 */
4079 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4080 				ac->highest_zoneidx, alloc_flags, available);
4081 		trace_reclaim_retry_zone(z, order, reclaimable,
4082 				available, min_wmark, *no_progress_loops, wmark);
4083 		if (wmark) {
4084 			ret = true;
4085 			break;
4086 		}
4087 	}
4088 
4089 	/*
4090 	 * Memory allocation/reclaim might be called from a WQ context and the
4091 	 * current implementation of the WQ concurrency control doesn't
4092 	 * recognize that a particular WQ is congested if the worker thread is
4093 	 * looping without ever sleeping. Therefore we have to do a short sleep
4094 	 * here rather than calling cond_resched().
4095 	 */
4096 	if (current->flags & PF_WQ_WORKER)
4097 		schedule_timeout_uninterruptible(1);
4098 	else
4099 		cond_resched();
4100 out:
4101 	/* Before OOM, exhaust highatomic_reserve */
4102 	if (!ret)
4103 		return unreserve_highatomic_pageblock(ac, true);
4104 
4105 	return ret;
4106 }
4107 
4108 static inline bool
4109 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4110 {
4111 	/*
4112 	 * It's possible that cpuset's mems_allowed and the nodemask from
4113 	 * mempolicy don't intersect. This should be normally dealt with by
4114 	 * policy_nodemask(), but it's possible to race with cpuset update in
4115 	 * such a way the check therein was true, and then it became false
4116 	 * before we got our cpuset_mems_cookie here.
4117 	 * This assumes that for all allocations, ac->nodemask can come only
4118 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4119 	 * when it does not intersect with the cpuset restrictions) or the
4120 	 * caller can deal with a violated nodemask.
4121 	 */
4122 	if (cpusets_enabled() && ac->nodemask &&
4123 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4124 		ac->nodemask = NULL;
4125 		return true;
4126 	}
4127 
4128 	/*
4129 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4130 	 * possible to race with parallel threads in such a way that our
4131 	 * allocation can fail while the mask is being updated. If we are about
4132 	 * to fail, check if the cpuset changed during allocation and if so,
4133 	 * retry.
4134 	 */
4135 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4136 		return true;
4137 
4138 	return false;
4139 }
4140 
4141 static inline struct page *
4142 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4143 						struct alloc_context *ac)
4144 {
4145 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4146 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4147 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4148 	struct page *page = NULL;
4149 	unsigned int alloc_flags;
4150 	unsigned long did_some_progress;
4151 	enum compact_priority compact_priority;
4152 	enum compact_result compact_result;
4153 	int compaction_retries;
4154 	int no_progress_loops;
4155 	unsigned int cpuset_mems_cookie;
4156 	unsigned int zonelist_iter_cookie;
4157 	int reserve_flags;
4158 
4159 restart:
4160 	compaction_retries = 0;
4161 	no_progress_loops = 0;
4162 	compact_priority = DEF_COMPACT_PRIORITY;
4163 	cpuset_mems_cookie = read_mems_allowed_begin();
4164 	zonelist_iter_cookie = zonelist_iter_begin();
4165 
4166 	/*
4167 	 * The fast path uses conservative alloc_flags to succeed only until
4168 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4169 	 * alloc_flags precisely. So we do that now.
4170 	 */
4171 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4172 
4173 	/*
4174 	 * We need to recalculate the starting point for the zonelist iterator
4175 	 * because we might have used different nodemask in the fast path, or
4176 	 * there was a cpuset modification and we are retrying - otherwise we
4177 	 * could end up iterating over non-eligible zones endlessly.
4178 	 */
4179 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4180 					ac->highest_zoneidx, ac->nodemask);
4181 	if (!ac->preferred_zoneref->zone)
4182 		goto nopage;
4183 
4184 	/*
4185 	 * Check for insane configurations where the cpuset doesn't contain
4186 	 * any suitable zone to satisfy the request - e.g. non-movable
4187 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4188 	 */
4189 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4190 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4191 					ac->highest_zoneidx,
4192 					&cpuset_current_mems_allowed);
4193 		if (!z->zone)
4194 			goto nopage;
4195 	}
4196 
4197 	if (alloc_flags & ALLOC_KSWAPD)
4198 		wake_all_kswapds(order, gfp_mask, ac);
4199 
4200 	/*
4201 	 * The adjusted alloc_flags might result in immediate success, so try
4202 	 * that first
4203 	 */
4204 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4205 	if (page)
4206 		goto got_pg;
4207 
4208 	/*
4209 	 * For costly allocations, try direct compaction first, as it's likely
4210 	 * that we have enough base pages and don't need to reclaim. For non-
4211 	 * movable high-order allocations, do that as well, as compaction will
4212 	 * try prevent permanent fragmentation by migrating from blocks of the
4213 	 * same migratetype.
4214 	 * Don't try this for allocations that are allowed to ignore
4215 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4216 	 */
4217 	if (can_direct_reclaim && can_compact &&
4218 			(costly_order ||
4219 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4220 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4221 		page = __alloc_pages_direct_compact(gfp_mask, order,
4222 						alloc_flags, ac,
4223 						INIT_COMPACT_PRIORITY,
4224 						&compact_result);
4225 		if (page)
4226 			goto got_pg;
4227 
4228 		/*
4229 		 * Checks for costly allocations with __GFP_NORETRY, which
4230 		 * includes some THP page fault allocations
4231 		 */
4232 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4233 			/*
4234 			 * If allocating entire pageblock(s) and compaction
4235 			 * failed because all zones are below low watermarks
4236 			 * or is prohibited because it recently failed at this
4237 			 * order, fail immediately unless the allocator has
4238 			 * requested compaction and reclaim retry.
4239 			 *
4240 			 * Reclaim is
4241 			 *  - potentially very expensive because zones are far
4242 			 *    below their low watermarks or this is part of very
4243 			 *    bursty high order allocations,
4244 			 *  - not guaranteed to help because isolate_freepages()
4245 			 *    may not iterate over freed pages as part of its
4246 			 *    linear scan, and
4247 			 *  - unlikely to make entire pageblocks free on its
4248 			 *    own.
4249 			 */
4250 			if (compact_result == COMPACT_SKIPPED ||
4251 			    compact_result == COMPACT_DEFERRED)
4252 				goto nopage;
4253 
4254 			/*
4255 			 * Looks like reclaim/compaction is worth trying, but
4256 			 * sync compaction could be very expensive, so keep
4257 			 * using async compaction.
4258 			 */
4259 			compact_priority = INIT_COMPACT_PRIORITY;
4260 		}
4261 	}
4262 
4263 retry:
4264 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4265 	if (alloc_flags & ALLOC_KSWAPD)
4266 		wake_all_kswapds(order, gfp_mask, ac);
4267 
4268 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4269 	if (reserve_flags)
4270 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4271 					  (alloc_flags & ALLOC_KSWAPD);
4272 
4273 	/*
4274 	 * Reset the nodemask and zonelist iterators if memory policies can be
4275 	 * ignored. These allocations are high priority and system rather than
4276 	 * user oriented.
4277 	 */
4278 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4279 		ac->nodemask = NULL;
4280 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4281 					ac->highest_zoneidx, ac->nodemask);
4282 	}
4283 
4284 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4285 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4286 	if (page)
4287 		goto got_pg;
4288 
4289 	/* Caller is not willing to reclaim, we can't balance anything */
4290 	if (!can_direct_reclaim)
4291 		goto nopage;
4292 
4293 	/* Avoid recursion of direct reclaim */
4294 	if (current->flags & PF_MEMALLOC)
4295 		goto nopage;
4296 
4297 	/* Try direct reclaim and then allocating */
4298 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4299 							&did_some_progress);
4300 	if (page)
4301 		goto got_pg;
4302 
4303 	/* Try direct compaction and then allocating */
4304 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4305 					compact_priority, &compact_result);
4306 	if (page)
4307 		goto got_pg;
4308 
4309 	/* Do not loop if specifically requested */
4310 	if (gfp_mask & __GFP_NORETRY)
4311 		goto nopage;
4312 
4313 	/*
4314 	 * Do not retry costly high order allocations unless they are
4315 	 * __GFP_RETRY_MAYFAIL and we can compact
4316 	 */
4317 	if (costly_order && (!can_compact ||
4318 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4319 		goto nopage;
4320 
4321 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4322 				 did_some_progress > 0, &no_progress_loops))
4323 		goto retry;
4324 
4325 	/*
4326 	 * It doesn't make any sense to retry for the compaction if the order-0
4327 	 * reclaim is not able to make any progress because the current
4328 	 * implementation of the compaction depends on the sufficient amount
4329 	 * of free memory (see __compaction_suitable)
4330 	 */
4331 	if (did_some_progress > 0 && can_compact &&
4332 			should_compact_retry(ac, order, alloc_flags,
4333 				compact_result, &compact_priority,
4334 				&compaction_retries))
4335 		goto retry;
4336 
4337 
4338 	/*
4339 	 * Deal with possible cpuset update races or zonelist updates to avoid
4340 	 * a unnecessary OOM kill.
4341 	 */
4342 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4343 	    check_retry_zonelist(zonelist_iter_cookie))
4344 		goto restart;
4345 
4346 	/* Reclaim has failed us, start killing things */
4347 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4348 	if (page)
4349 		goto got_pg;
4350 
4351 	/* Avoid allocations with no watermarks from looping endlessly */
4352 	if (tsk_is_oom_victim(current) &&
4353 	    (alloc_flags & ALLOC_OOM ||
4354 	     (gfp_mask & __GFP_NOMEMALLOC)))
4355 		goto nopage;
4356 
4357 	/* Retry as long as the OOM killer is making progress */
4358 	if (did_some_progress) {
4359 		no_progress_loops = 0;
4360 		goto retry;
4361 	}
4362 
4363 nopage:
4364 	/*
4365 	 * Deal with possible cpuset update races or zonelist updates to avoid
4366 	 * a unnecessary OOM kill.
4367 	 */
4368 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4369 	    check_retry_zonelist(zonelist_iter_cookie))
4370 		goto restart;
4371 
4372 	/*
4373 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4374 	 * we always retry
4375 	 */
4376 	if (gfp_mask & __GFP_NOFAIL) {
4377 		/*
4378 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4379 		 * of any new users that actually require GFP_NOWAIT
4380 		 */
4381 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4382 			goto fail;
4383 
4384 		/*
4385 		 * PF_MEMALLOC request from this context is rather bizarre
4386 		 * because we cannot reclaim anything and only can loop waiting
4387 		 * for somebody to do a work for us
4388 		 */
4389 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4390 
4391 		/*
4392 		 * non failing costly orders are a hard requirement which we
4393 		 * are not prepared for much so let's warn about these users
4394 		 * so that we can identify them and convert them to something
4395 		 * else.
4396 		 */
4397 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4398 
4399 		/*
4400 		 * Help non-failing allocations by giving some access to memory
4401 		 * reserves normally used for high priority non-blocking
4402 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4403 		 * could deplete whole memory reserves which would just make
4404 		 * the situation worse.
4405 		 */
4406 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4407 		if (page)
4408 			goto got_pg;
4409 
4410 		cond_resched();
4411 		goto retry;
4412 	}
4413 fail:
4414 	warn_alloc(gfp_mask, ac->nodemask,
4415 			"page allocation failure: order:%u", order);
4416 got_pg:
4417 	return page;
4418 }
4419 
4420 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4421 		int preferred_nid, nodemask_t *nodemask,
4422 		struct alloc_context *ac, gfp_t *alloc_gfp,
4423 		unsigned int *alloc_flags)
4424 {
4425 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4426 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4427 	ac->nodemask = nodemask;
4428 	ac->migratetype = gfp_migratetype(gfp_mask);
4429 
4430 	if (cpusets_enabled()) {
4431 		*alloc_gfp |= __GFP_HARDWALL;
4432 		/*
4433 		 * When we are in the interrupt context, it is irrelevant
4434 		 * to the current task context. It means that any node ok.
4435 		 */
4436 		if (in_task() && !ac->nodemask)
4437 			ac->nodemask = &cpuset_current_mems_allowed;
4438 		else
4439 			*alloc_flags |= ALLOC_CPUSET;
4440 	}
4441 
4442 	might_alloc(gfp_mask);
4443 
4444 	if (should_fail_alloc_page(gfp_mask, order))
4445 		return false;
4446 
4447 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4448 
4449 	/* Dirty zone balancing only done in the fast path */
4450 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4451 
4452 	/*
4453 	 * The preferred zone is used for statistics but crucially it is
4454 	 * also used as the starting point for the zonelist iterator. It
4455 	 * may get reset for allocations that ignore memory policies.
4456 	 */
4457 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4458 					ac->highest_zoneidx, ac->nodemask);
4459 
4460 	return true;
4461 }
4462 
4463 /*
4464  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4465  * @gfp: GFP flags for the allocation
4466  * @preferred_nid: The preferred NUMA node ID to allocate from
4467  * @nodemask: Set of nodes to allocate from, may be NULL
4468  * @nr_pages: The number of pages desired on the list or array
4469  * @page_list: Optional list to store the allocated pages
4470  * @page_array: Optional array to store the pages
4471  *
4472  * This is a batched version of the page allocator that attempts to
4473  * allocate nr_pages quickly. Pages are added to page_list if page_list
4474  * is not NULL, otherwise it is assumed that the page_array is valid.
4475  *
4476  * For lists, nr_pages is the number of pages that should be allocated.
4477  *
4478  * For arrays, only NULL elements are populated with pages and nr_pages
4479  * is the maximum number of pages that will be stored in the array.
4480  *
4481  * Returns the number of pages on the list or array.
4482  */
4483 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4484 			nodemask_t *nodemask, int nr_pages,
4485 			struct list_head *page_list,
4486 			struct page **page_array)
4487 {
4488 	struct page *page;
4489 	unsigned long __maybe_unused UP_flags;
4490 	struct zone *zone;
4491 	struct zoneref *z;
4492 	struct per_cpu_pages *pcp;
4493 	struct list_head *pcp_list;
4494 	struct alloc_context ac;
4495 	gfp_t alloc_gfp;
4496 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4497 	int nr_populated = 0, nr_account = 0;
4498 
4499 	/*
4500 	 * Skip populated array elements to determine if any pages need
4501 	 * to be allocated before disabling IRQs.
4502 	 */
4503 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4504 		nr_populated++;
4505 
4506 	/* No pages requested? */
4507 	if (unlikely(nr_pages <= 0))
4508 		goto out;
4509 
4510 	/* Already populated array? */
4511 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4512 		goto out;
4513 
4514 	/* Bulk allocator does not support memcg accounting. */
4515 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4516 		goto failed;
4517 
4518 	/* Use the single page allocator for one page. */
4519 	if (nr_pages - nr_populated == 1)
4520 		goto failed;
4521 
4522 #ifdef CONFIG_PAGE_OWNER
4523 	/*
4524 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4525 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4526 	 * removes much of the performance benefit of bulk allocation so
4527 	 * force the caller to allocate one page at a time as it'll have
4528 	 * similar performance to added complexity to the bulk allocator.
4529 	 */
4530 	if (static_branch_unlikely(&page_owner_inited))
4531 		goto failed;
4532 #endif
4533 
4534 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4535 	gfp &= gfp_allowed_mask;
4536 	alloc_gfp = gfp;
4537 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4538 		goto out;
4539 	gfp = alloc_gfp;
4540 
4541 	/* Find an allowed local zone that meets the low watermark. */
4542 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4543 		unsigned long mark;
4544 
4545 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4546 		    !__cpuset_zone_allowed(zone, gfp)) {
4547 			continue;
4548 		}
4549 
4550 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4551 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4552 			goto failed;
4553 		}
4554 
4555 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4556 		if (zone_watermark_fast(zone, 0,  mark,
4557 				zonelist_zone_idx(ac.preferred_zoneref),
4558 				alloc_flags, gfp)) {
4559 			break;
4560 		}
4561 	}
4562 
4563 	/*
4564 	 * If there are no allowed local zones that meets the watermarks then
4565 	 * try to allocate a single page and reclaim if necessary.
4566 	 */
4567 	if (unlikely(!zone))
4568 		goto failed;
4569 
4570 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4571 	pcp_trylock_prepare(UP_flags);
4572 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4573 	if (!pcp)
4574 		goto failed_irq;
4575 
4576 	/* Attempt the batch allocation */
4577 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4578 	while (nr_populated < nr_pages) {
4579 
4580 		/* Skip existing pages */
4581 		if (page_array && page_array[nr_populated]) {
4582 			nr_populated++;
4583 			continue;
4584 		}
4585 
4586 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4587 								pcp, pcp_list);
4588 		if (unlikely(!page)) {
4589 			/* Try and allocate at least one page */
4590 			if (!nr_account) {
4591 				pcp_spin_unlock(pcp);
4592 				goto failed_irq;
4593 			}
4594 			break;
4595 		}
4596 		nr_account++;
4597 
4598 		prep_new_page(page, 0, gfp, 0);
4599 		if (page_list)
4600 			list_add(&page->lru, page_list);
4601 		else
4602 			page_array[nr_populated] = page;
4603 		nr_populated++;
4604 	}
4605 
4606 	pcp_spin_unlock(pcp);
4607 	pcp_trylock_finish(UP_flags);
4608 
4609 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4610 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4611 
4612 out:
4613 	return nr_populated;
4614 
4615 failed_irq:
4616 	pcp_trylock_finish(UP_flags);
4617 
4618 failed:
4619 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4620 	if (page) {
4621 		if (page_list)
4622 			list_add(&page->lru, page_list);
4623 		else
4624 			page_array[nr_populated] = page;
4625 		nr_populated++;
4626 	}
4627 
4628 	goto out;
4629 }
4630 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4631 
4632 /*
4633  * This is the 'heart' of the zoned buddy allocator.
4634  */
4635 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4636 				      int preferred_nid, nodemask_t *nodemask)
4637 {
4638 	struct page *page;
4639 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4640 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4641 	struct alloc_context ac = { };
4642 
4643 	/*
4644 	 * There are several places where we assume that the order value is sane
4645 	 * so bail out early if the request is out of bound.
4646 	 */
4647 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4648 		return NULL;
4649 
4650 	gfp &= gfp_allowed_mask;
4651 	/*
4652 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4653 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4654 	 * from a particular context which has been marked by
4655 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4656 	 * movable zones are not used during allocation.
4657 	 */
4658 	gfp = current_gfp_context(gfp);
4659 	alloc_gfp = gfp;
4660 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4661 			&alloc_gfp, &alloc_flags))
4662 		return NULL;
4663 
4664 	/*
4665 	 * Forbid the first pass from falling back to types that fragment
4666 	 * memory until all local zones are considered.
4667 	 */
4668 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4669 
4670 	/* First allocation attempt */
4671 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4672 	if (likely(page))
4673 		goto out;
4674 
4675 	alloc_gfp = gfp;
4676 	ac.spread_dirty_pages = false;
4677 
4678 	/*
4679 	 * Restore the original nodemask if it was potentially replaced with
4680 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4681 	 */
4682 	ac.nodemask = nodemask;
4683 
4684 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4685 
4686 out:
4687 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4688 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4689 		__free_pages(page, order);
4690 		page = NULL;
4691 	}
4692 
4693 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4694 	kmsan_alloc_page(page, order, alloc_gfp);
4695 
4696 	return page;
4697 }
4698 EXPORT_SYMBOL(__alloc_pages_noprof);
4699 
4700 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4701 		nodemask_t *nodemask)
4702 {
4703 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4704 					preferred_nid, nodemask);
4705 	return page_rmappable_folio(page);
4706 }
4707 EXPORT_SYMBOL(__folio_alloc_noprof);
4708 
4709 /*
4710  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4711  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4712  * you need to access high mem.
4713  */
4714 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4715 {
4716 	struct page *page;
4717 
4718 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4719 	if (!page)
4720 		return 0;
4721 	return (unsigned long) page_address(page);
4722 }
4723 EXPORT_SYMBOL(get_free_pages_noprof);
4724 
4725 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4726 {
4727 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4728 }
4729 EXPORT_SYMBOL(get_zeroed_page_noprof);
4730 
4731 /**
4732  * __free_pages - Free pages allocated with alloc_pages().
4733  * @page: The page pointer returned from alloc_pages().
4734  * @order: The order of the allocation.
4735  *
4736  * This function can free multi-page allocations that are not compound
4737  * pages.  It does not check that the @order passed in matches that of
4738  * the allocation, so it is easy to leak memory.  Freeing more memory
4739  * than was allocated will probably emit a warning.
4740  *
4741  * If the last reference to this page is speculative, it will be released
4742  * by put_page() which only frees the first page of a non-compound
4743  * allocation.  To prevent the remaining pages from being leaked, we free
4744  * the subsequent pages here.  If you want to use the page's reference
4745  * count to decide when to free the allocation, you should allocate a
4746  * compound page, and use put_page() instead of __free_pages().
4747  *
4748  * Context: May be called in interrupt context or while holding a normal
4749  * spinlock, but not in NMI context or while holding a raw spinlock.
4750  */
4751 void __free_pages(struct page *page, unsigned int order)
4752 {
4753 	/* get PageHead before we drop reference */
4754 	int head = PageHead(page);
4755 	struct alloc_tag *tag = pgalloc_tag_get(page);
4756 
4757 	if (put_page_testzero(page))
4758 		free_the_page(page, order);
4759 	else if (!head) {
4760 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4761 		while (order-- > 0)
4762 			free_the_page(page + (1 << order), order);
4763 	}
4764 }
4765 EXPORT_SYMBOL(__free_pages);
4766 
4767 void free_pages(unsigned long addr, unsigned int order)
4768 {
4769 	if (addr != 0) {
4770 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4771 		__free_pages(virt_to_page((void *)addr), order);
4772 	}
4773 }
4774 
4775 EXPORT_SYMBOL(free_pages);
4776 
4777 /*
4778  * Page Fragment:
4779  *  An arbitrary-length arbitrary-offset area of memory which resides
4780  *  within a 0 or higher order page.  Multiple fragments within that page
4781  *  are individually refcounted, in the page's reference counter.
4782  *
4783  * The page_frag functions below provide a simple allocation framework for
4784  * page fragments.  This is used by the network stack and network device
4785  * drivers to provide a backing region of memory for use as either an
4786  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4787  */
4788 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4789 					     gfp_t gfp_mask)
4790 {
4791 	struct page *page = NULL;
4792 	gfp_t gfp = gfp_mask;
4793 
4794 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4795 	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4796 		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4797 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4798 				PAGE_FRAG_CACHE_MAX_ORDER);
4799 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4800 #endif
4801 	if (unlikely(!page))
4802 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4803 
4804 	nc->va = page ? page_address(page) : NULL;
4805 
4806 	return page;
4807 }
4808 
4809 void page_frag_cache_drain(struct page_frag_cache *nc)
4810 {
4811 	if (!nc->va)
4812 		return;
4813 
4814 	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4815 	nc->va = NULL;
4816 }
4817 EXPORT_SYMBOL(page_frag_cache_drain);
4818 
4819 void __page_frag_cache_drain(struct page *page, unsigned int count)
4820 {
4821 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4822 
4823 	if (page_ref_sub_and_test(page, count))
4824 		free_the_page(page, compound_order(page));
4825 }
4826 EXPORT_SYMBOL(__page_frag_cache_drain);
4827 
4828 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4829 			      unsigned int fragsz, gfp_t gfp_mask,
4830 			      unsigned int align_mask)
4831 {
4832 	unsigned int size = PAGE_SIZE;
4833 	struct page *page;
4834 	int offset;
4835 
4836 	if (unlikely(!nc->va)) {
4837 refill:
4838 		page = __page_frag_cache_refill(nc, gfp_mask);
4839 		if (!page)
4840 			return NULL;
4841 
4842 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4843 		/* if size can vary use size else just use PAGE_SIZE */
4844 		size = nc->size;
4845 #endif
4846 		/* Even if we own the page, we do not use atomic_set().
4847 		 * This would break get_page_unless_zero() users.
4848 		 */
4849 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4850 
4851 		/* reset page count bias and offset to start of new frag */
4852 		nc->pfmemalloc = page_is_pfmemalloc(page);
4853 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4854 		nc->offset = size;
4855 	}
4856 
4857 	offset = nc->offset - fragsz;
4858 	if (unlikely(offset < 0)) {
4859 		page = virt_to_page(nc->va);
4860 
4861 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4862 			goto refill;
4863 
4864 		if (unlikely(nc->pfmemalloc)) {
4865 			free_the_page(page, compound_order(page));
4866 			goto refill;
4867 		}
4868 
4869 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4870 		/* if size can vary use size else just use PAGE_SIZE */
4871 		size = nc->size;
4872 #endif
4873 		/* OK, page count is 0, we can safely set it */
4874 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4875 
4876 		/* reset page count bias and offset to start of new frag */
4877 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4878 		offset = size - fragsz;
4879 		if (unlikely(offset < 0)) {
4880 			/*
4881 			 * The caller is trying to allocate a fragment
4882 			 * with fragsz > PAGE_SIZE but the cache isn't big
4883 			 * enough to satisfy the request, this may
4884 			 * happen in low memory conditions.
4885 			 * We don't release the cache page because
4886 			 * it could make memory pressure worse
4887 			 * so we simply return NULL here.
4888 			 */
4889 			return NULL;
4890 		}
4891 	}
4892 
4893 	nc->pagecnt_bias--;
4894 	offset &= align_mask;
4895 	nc->offset = offset;
4896 
4897 	return nc->va + offset;
4898 }
4899 EXPORT_SYMBOL(__page_frag_alloc_align);
4900 
4901 /*
4902  * Frees a page fragment allocated out of either a compound or order 0 page.
4903  */
4904 void page_frag_free(void *addr)
4905 {
4906 	struct page *page = virt_to_head_page(addr);
4907 
4908 	if (unlikely(put_page_testzero(page)))
4909 		free_the_page(page, compound_order(page));
4910 }
4911 EXPORT_SYMBOL(page_frag_free);
4912 
4913 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4914 		size_t size)
4915 {
4916 	if (addr) {
4917 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4918 		struct page *page = virt_to_page((void *)addr);
4919 		struct page *last = page + nr;
4920 
4921 		split_page_owner(page, order, 0);
4922 		pgalloc_tag_split(page, 1 << order);
4923 		split_page_memcg(page, order, 0);
4924 		while (page < --last)
4925 			set_page_refcounted(last);
4926 
4927 		last = page + (1UL << order);
4928 		for (page += nr; page < last; page++)
4929 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4930 	}
4931 	return (void *)addr;
4932 }
4933 
4934 /**
4935  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4936  * @size: the number of bytes to allocate
4937  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4938  *
4939  * This function is similar to alloc_pages(), except that it allocates the
4940  * minimum number of pages to satisfy the request.  alloc_pages() can only
4941  * allocate memory in power-of-two pages.
4942  *
4943  * This function is also limited by MAX_PAGE_ORDER.
4944  *
4945  * Memory allocated by this function must be released by free_pages_exact().
4946  *
4947  * Return: pointer to the allocated area or %NULL in case of error.
4948  */
4949 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4950 {
4951 	unsigned int order = get_order(size);
4952 	unsigned long addr;
4953 
4954 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4955 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4956 
4957 	addr = get_free_pages_noprof(gfp_mask, order);
4958 	return make_alloc_exact(addr, order, size);
4959 }
4960 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4961 
4962 /**
4963  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4964  *			   pages on a node.
4965  * @nid: the preferred node ID where memory should be allocated
4966  * @size: the number of bytes to allocate
4967  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4968  *
4969  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4970  * back.
4971  *
4972  * Return: pointer to the allocated area or %NULL in case of error.
4973  */
4974 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4975 {
4976 	unsigned int order = get_order(size);
4977 	struct page *p;
4978 
4979 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4980 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4981 
4982 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
4983 	if (!p)
4984 		return NULL;
4985 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4986 }
4987 
4988 /**
4989  * free_pages_exact - release memory allocated via alloc_pages_exact()
4990  * @virt: the value returned by alloc_pages_exact.
4991  * @size: size of allocation, same value as passed to alloc_pages_exact().
4992  *
4993  * Release the memory allocated by a previous call to alloc_pages_exact.
4994  */
4995 void free_pages_exact(void *virt, size_t size)
4996 {
4997 	unsigned long addr = (unsigned long)virt;
4998 	unsigned long end = addr + PAGE_ALIGN(size);
4999 
5000 	while (addr < end) {
5001 		free_page(addr);
5002 		addr += PAGE_SIZE;
5003 	}
5004 }
5005 EXPORT_SYMBOL(free_pages_exact);
5006 
5007 /**
5008  * nr_free_zone_pages - count number of pages beyond high watermark
5009  * @offset: The zone index of the highest zone
5010  *
5011  * nr_free_zone_pages() counts the number of pages which are beyond the
5012  * high watermark within all zones at or below a given zone index.  For each
5013  * zone, the number of pages is calculated as:
5014  *
5015  *     nr_free_zone_pages = managed_pages - high_pages
5016  *
5017  * Return: number of pages beyond high watermark.
5018  */
5019 static unsigned long nr_free_zone_pages(int offset)
5020 {
5021 	struct zoneref *z;
5022 	struct zone *zone;
5023 
5024 	/* Just pick one node, since fallback list is circular */
5025 	unsigned long sum = 0;
5026 
5027 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5028 
5029 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5030 		unsigned long size = zone_managed_pages(zone);
5031 		unsigned long high = high_wmark_pages(zone);
5032 		if (size > high)
5033 			sum += size - high;
5034 	}
5035 
5036 	return sum;
5037 }
5038 
5039 /**
5040  * nr_free_buffer_pages - count number of pages beyond high watermark
5041  *
5042  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5043  * watermark within ZONE_DMA and ZONE_NORMAL.
5044  *
5045  * Return: number of pages beyond high watermark within ZONE_DMA and
5046  * ZONE_NORMAL.
5047  */
5048 unsigned long nr_free_buffer_pages(void)
5049 {
5050 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5051 }
5052 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5053 
5054 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5055 {
5056 	zoneref->zone = zone;
5057 	zoneref->zone_idx = zone_idx(zone);
5058 }
5059 
5060 /*
5061  * Builds allocation fallback zone lists.
5062  *
5063  * Add all populated zones of a node to the zonelist.
5064  */
5065 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5066 {
5067 	struct zone *zone;
5068 	enum zone_type zone_type = MAX_NR_ZONES;
5069 	int nr_zones = 0;
5070 
5071 	do {
5072 		zone_type--;
5073 		zone = pgdat->node_zones + zone_type;
5074 		if (populated_zone(zone)) {
5075 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5076 			check_highest_zone(zone_type);
5077 		}
5078 	} while (zone_type);
5079 
5080 	return nr_zones;
5081 }
5082 
5083 #ifdef CONFIG_NUMA
5084 
5085 static int __parse_numa_zonelist_order(char *s)
5086 {
5087 	/*
5088 	 * We used to support different zonelists modes but they turned
5089 	 * out to be just not useful. Let's keep the warning in place
5090 	 * if somebody still use the cmd line parameter so that we do
5091 	 * not fail it silently
5092 	 */
5093 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5094 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5095 		return -EINVAL;
5096 	}
5097 	return 0;
5098 }
5099 
5100 static char numa_zonelist_order[] = "Node";
5101 #define NUMA_ZONELIST_ORDER_LEN	16
5102 /*
5103  * sysctl handler for numa_zonelist_order
5104  */
5105 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
5106 		void *buffer, size_t *length, loff_t *ppos)
5107 {
5108 	if (write)
5109 		return __parse_numa_zonelist_order(buffer);
5110 	return proc_dostring(table, write, buffer, length, ppos);
5111 }
5112 
5113 static int node_load[MAX_NUMNODES];
5114 
5115 /**
5116  * find_next_best_node - find the next node that should appear in a given node's fallback list
5117  * @node: node whose fallback list we're appending
5118  * @used_node_mask: nodemask_t of already used nodes
5119  *
5120  * We use a number of factors to determine which is the next node that should
5121  * appear on a given node's fallback list.  The node should not have appeared
5122  * already in @node's fallback list, and it should be the next closest node
5123  * according to the distance array (which contains arbitrary distance values
5124  * from each node to each node in the system), and should also prefer nodes
5125  * with no CPUs, since presumably they'll have very little allocation pressure
5126  * on them otherwise.
5127  *
5128  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5129  */
5130 int find_next_best_node(int node, nodemask_t *used_node_mask)
5131 {
5132 	int n, val;
5133 	int min_val = INT_MAX;
5134 	int best_node = NUMA_NO_NODE;
5135 
5136 	/*
5137 	 * Use the local node if we haven't already, but for memoryless local
5138 	 * node, we should skip it and fall back to other nodes.
5139 	 */
5140 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5141 		node_set(node, *used_node_mask);
5142 		return node;
5143 	}
5144 
5145 	for_each_node_state(n, N_MEMORY) {
5146 
5147 		/* Don't want a node to appear more than once */
5148 		if (node_isset(n, *used_node_mask))
5149 			continue;
5150 
5151 		/* Use the distance array to find the distance */
5152 		val = node_distance(node, n);
5153 
5154 		/* Penalize nodes under us ("prefer the next node") */
5155 		val += (n < node);
5156 
5157 		/* Give preference to headless and unused nodes */
5158 		if (!cpumask_empty(cpumask_of_node(n)))
5159 			val += PENALTY_FOR_NODE_WITH_CPUS;
5160 
5161 		/* Slight preference for less loaded node */
5162 		val *= MAX_NUMNODES;
5163 		val += node_load[n];
5164 
5165 		if (val < min_val) {
5166 			min_val = val;
5167 			best_node = n;
5168 		}
5169 	}
5170 
5171 	if (best_node >= 0)
5172 		node_set(best_node, *used_node_mask);
5173 
5174 	return best_node;
5175 }
5176 
5177 
5178 /*
5179  * Build zonelists ordered by node and zones within node.
5180  * This results in maximum locality--normal zone overflows into local
5181  * DMA zone, if any--but risks exhausting DMA zone.
5182  */
5183 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5184 		unsigned nr_nodes)
5185 {
5186 	struct zoneref *zonerefs;
5187 	int i;
5188 
5189 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5190 
5191 	for (i = 0; i < nr_nodes; i++) {
5192 		int nr_zones;
5193 
5194 		pg_data_t *node = NODE_DATA(node_order[i]);
5195 
5196 		nr_zones = build_zonerefs_node(node, zonerefs);
5197 		zonerefs += nr_zones;
5198 	}
5199 	zonerefs->zone = NULL;
5200 	zonerefs->zone_idx = 0;
5201 }
5202 
5203 /*
5204  * Build gfp_thisnode zonelists
5205  */
5206 static void build_thisnode_zonelists(pg_data_t *pgdat)
5207 {
5208 	struct zoneref *zonerefs;
5209 	int nr_zones;
5210 
5211 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5212 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5213 	zonerefs += nr_zones;
5214 	zonerefs->zone = NULL;
5215 	zonerefs->zone_idx = 0;
5216 }
5217 
5218 /*
5219  * Build zonelists ordered by zone and nodes within zones.
5220  * This results in conserving DMA zone[s] until all Normal memory is
5221  * exhausted, but results in overflowing to remote node while memory
5222  * may still exist in local DMA zone.
5223  */
5224 
5225 static void build_zonelists(pg_data_t *pgdat)
5226 {
5227 	static int node_order[MAX_NUMNODES];
5228 	int node, nr_nodes = 0;
5229 	nodemask_t used_mask = NODE_MASK_NONE;
5230 	int local_node, prev_node;
5231 
5232 	/* NUMA-aware ordering of nodes */
5233 	local_node = pgdat->node_id;
5234 	prev_node = local_node;
5235 
5236 	memset(node_order, 0, sizeof(node_order));
5237 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5238 		/*
5239 		 * We don't want to pressure a particular node.
5240 		 * So adding penalty to the first node in same
5241 		 * distance group to make it round-robin.
5242 		 */
5243 		if (node_distance(local_node, node) !=
5244 		    node_distance(local_node, prev_node))
5245 			node_load[node] += 1;
5246 
5247 		node_order[nr_nodes++] = node;
5248 		prev_node = node;
5249 	}
5250 
5251 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5252 	build_thisnode_zonelists(pgdat);
5253 	pr_info("Fallback order for Node %d: ", local_node);
5254 	for (node = 0; node < nr_nodes; node++)
5255 		pr_cont("%d ", node_order[node]);
5256 	pr_cont("\n");
5257 }
5258 
5259 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5260 /*
5261  * Return node id of node used for "local" allocations.
5262  * I.e., first node id of first zone in arg node's generic zonelist.
5263  * Used for initializing percpu 'numa_mem', which is used primarily
5264  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5265  */
5266 int local_memory_node(int node)
5267 {
5268 	struct zoneref *z;
5269 
5270 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5271 				   gfp_zone(GFP_KERNEL),
5272 				   NULL);
5273 	return zone_to_nid(z->zone);
5274 }
5275 #endif
5276 
5277 static void setup_min_unmapped_ratio(void);
5278 static void setup_min_slab_ratio(void);
5279 #else	/* CONFIG_NUMA */
5280 
5281 static void build_zonelists(pg_data_t *pgdat)
5282 {
5283 	struct zoneref *zonerefs;
5284 	int nr_zones;
5285 
5286 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5287 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5288 	zonerefs += nr_zones;
5289 
5290 	zonerefs->zone = NULL;
5291 	zonerefs->zone_idx = 0;
5292 }
5293 
5294 #endif	/* CONFIG_NUMA */
5295 
5296 /*
5297  * Boot pageset table. One per cpu which is going to be used for all
5298  * zones and all nodes. The parameters will be set in such a way
5299  * that an item put on a list will immediately be handed over to
5300  * the buddy list. This is safe since pageset manipulation is done
5301  * with interrupts disabled.
5302  *
5303  * The boot_pagesets must be kept even after bootup is complete for
5304  * unused processors and/or zones. They do play a role for bootstrapping
5305  * hotplugged processors.
5306  *
5307  * zoneinfo_show() and maybe other functions do
5308  * not check if the processor is online before following the pageset pointer.
5309  * Other parts of the kernel may not check if the zone is available.
5310  */
5311 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5312 /* These effectively disable the pcplists in the boot pageset completely */
5313 #define BOOT_PAGESET_HIGH	0
5314 #define BOOT_PAGESET_BATCH	1
5315 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5316 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5317 
5318 static void __build_all_zonelists(void *data)
5319 {
5320 	int nid;
5321 	int __maybe_unused cpu;
5322 	pg_data_t *self = data;
5323 	unsigned long flags;
5324 
5325 	/*
5326 	 * The zonelist_update_seq must be acquired with irqsave because the
5327 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5328 	 */
5329 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5330 	/*
5331 	 * Also disable synchronous printk() to prevent any printk() from
5332 	 * trying to hold port->lock, for
5333 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5334 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5335 	 */
5336 	printk_deferred_enter();
5337 
5338 #ifdef CONFIG_NUMA
5339 	memset(node_load, 0, sizeof(node_load));
5340 #endif
5341 
5342 	/*
5343 	 * This node is hotadded and no memory is yet present.   So just
5344 	 * building zonelists is fine - no need to touch other nodes.
5345 	 */
5346 	if (self && !node_online(self->node_id)) {
5347 		build_zonelists(self);
5348 	} else {
5349 		/*
5350 		 * All possible nodes have pgdat preallocated
5351 		 * in free_area_init
5352 		 */
5353 		for_each_node(nid) {
5354 			pg_data_t *pgdat = NODE_DATA(nid);
5355 
5356 			build_zonelists(pgdat);
5357 		}
5358 
5359 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5360 		/*
5361 		 * We now know the "local memory node" for each node--
5362 		 * i.e., the node of the first zone in the generic zonelist.
5363 		 * Set up numa_mem percpu variable for on-line cpus.  During
5364 		 * boot, only the boot cpu should be on-line;  we'll init the
5365 		 * secondary cpus' numa_mem as they come on-line.  During
5366 		 * node/memory hotplug, we'll fixup all on-line cpus.
5367 		 */
5368 		for_each_online_cpu(cpu)
5369 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5370 #endif
5371 	}
5372 
5373 	printk_deferred_exit();
5374 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5375 }
5376 
5377 static noinline void __init
5378 build_all_zonelists_init(void)
5379 {
5380 	int cpu;
5381 
5382 	__build_all_zonelists(NULL);
5383 
5384 	/*
5385 	 * Initialize the boot_pagesets that are going to be used
5386 	 * for bootstrapping processors. The real pagesets for
5387 	 * each zone will be allocated later when the per cpu
5388 	 * allocator is available.
5389 	 *
5390 	 * boot_pagesets are used also for bootstrapping offline
5391 	 * cpus if the system is already booted because the pagesets
5392 	 * are needed to initialize allocators on a specific cpu too.
5393 	 * F.e. the percpu allocator needs the page allocator which
5394 	 * needs the percpu allocator in order to allocate its pagesets
5395 	 * (a chicken-egg dilemma).
5396 	 */
5397 	for_each_possible_cpu(cpu)
5398 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5399 
5400 	mminit_verify_zonelist();
5401 	cpuset_init_current_mems_allowed();
5402 }
5403 
5404 /*
5405  * unless system_state == SYSTEM_BOOTING.
5406  *
5407  * __ref due to call of __init annotated helper build_all_zonelists_init
5408  * [protected by SYSTEM_BOOTING].
5409  */
5410 void __ref build_all_zonelists(pg_data_t *pgdat)
5411 {
5412 	unsigned long vm_total_pages;
5413 
5414 	if (system_state == SYSTEM_BOOTING) {
5415 		build_all_zonelists_init();
5416 	} else {
5417 		__build_all_zonelists(pgdat);
5418 		/* cpuset refresh routine should be here */
5419 	}
5420 	/* Get the number of free pages beyond high watermark in all zones. */
5421 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5422 	/*
5423 	 * Disable grouping by mobility if the number of pages in the
5424 	 * system is too low to allow the mechanism to work. It would be
5425 	 * more accurate, but expensive to check per-zone. This check is
5426 	 * made on memory-hotadd so a system can start with mobility
5427 	 * disabled and enable it later
5428 	 */
5429 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5430 		page_group_by_mobility_disabled = 1;
5431 	else
5432 		page_group_by_mobility_disabled = 0;
5433 
5434 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5435 		nr_online_nodes,
5436 		page_group_by_mobility_disabled ? "off" : "on",
5437 		vm_total_pages);
5438 #ifdef CONFIG_NUMA
5439 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5440 #endif
5441 }
5442 
5443 static int zone_batchsize(struct zone *zone)
5444 {
5445 #ifdef CONFIG_MMU
5446 	int batch;
5447 
5448 	/*
5449 	 * The number of pages to batch allocate is either ~0.1%
5450 	 * of the zone or 1MB, whichever is smaller. The batch
5451 	 * size is striking a balance between allocation latency
5452 	 * and zone lock contention.
5453 	 */
5454 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5455 	batch /= 4;		/* We effectively *= 4 below */
5456 	if (batch < 1)
5457 		batch = 1;
5458 
5459 	/*
5460 	 * Clamp the batch to a 2^n - 1 value. Having a power
5461 	 * of 2 value was found to be more likely to have
5462 	 * suboptimal cache aliasing properties in some cases.
5463 	 *
5464 	 * For example if 2 tasks are alternately allocating
5465 	 * batches of pages, one task can end up with a lot
5466 	 * of pages of one half of the possible page colors
5467 	 * and the other with pages of the other colors.
5468 	 */
5469 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5470 
5471 	return batch;
5472 
5473 #else
5474 	/* The deferral and batching of frees should be suppressed under NOMMU
5475 	 * conditions.
5476 	 *
5477 	 * The problem is that NOMMU needs to be able to allocate large chunks
5478 	 * of contiguous memory as there's no hardware page translation to
5479 	 * assemble apparent contiguous memory from discontiguous pages.
5480 	 *
5481 	 * Queueing large contiguous runs of pages for batching, however,
5482 	 * causes the pages to actually be freed in smaller chunks.  As there
5483 	 * can be a significant delay between the individual batches being
5484 	 * recycled, this leads to the once large chunks of space being
5485 	 * fragmented and becoming unavailable for high-order allocations.
5486 	 */
5487 	return 0;
5488 #endif
5489 }
5490 
5491 static int percpu_pagelist_high_fraction;
5492 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5493 			 int high_fraction)
5494 {
5495 #ifdef CONFIG_MMU
5496 	int high;
5497 	int nr_split_cpus;
5498 	unsigned long total_pages;
5499 
5500 	if (!high_fraction) {
5501 		/*
5502 		 * By default, the high value of the pcp is based on the zone
5503 		 * low watermark so that if they are full then background
5504 		 * reclaim will not be started prematurely.
5505 		 */
5506 		total_pages = low_wmark_pages(zone);
5507 	} else {
5508 		/*
5509 		 * If percpu_pagelist_high_fraction is configured, the high
5510 		 * value is based on a fraction of the managed pages in the
5511 		 * zone.
5512 		 */
5513 		total_pages = zone_managed_pages(zone) / high_fraction;
5514 	}
5515 
5516 	/*
5517 	 * Split the high value across all online CPUs local to the zone. Note
5518 	 * that early in boot that CPUs may not be online yet and that during
5519 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5520 	 * onlined. For memory nodes that have no CPUs, split the high value
5521 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5522 	 * prematurely due to pages stored on pcp lists.
5523 	 */
5524 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5525 	if (!nr_split_cpus)
5526 		nr_split_cpus = num_online_cpus();
5527 	high = total_pages / nr_split_cpus;
5528 
5529 	/*
5530 	 * Ensure high is at least batch*4. The multiple is based on the
5531 	 * historical relationship between high and batch.
5532 	 */
5533 	high = max(high, batch << 2);
5534 
5535 	return high;
5536 #else
5537 	return 0;
5538 #endif
5539 }
5540 
5541 /*
5542  * pcp->high and pcp->batch values are related and generally batch is lower
5543  * than high. They are also related to pcp->count such that count is lower
5544  * than high, and as soon as it reaches high, the pcplist is flushed.
5545  *
5546  * However, guaranteeing these relations at all times would require e.g. write
5547  * barriers here but also careful usage of read barriers at the read side, and
5548  * thus be prone to error and bad for performance. Thus the update only prevents
5549  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5550  * should ensure they can cope with those fields changing asynchronously, and
5551  * fully trust only the pcp->count field on the local CPU with interrupts
5552  * disabled.
5553  *
5554  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5555  * outside of boot time (or some other assurance that no concurrent updaters
5556  * exist).
5557  */
5558 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5559 			   unsigned long high_max, unsigned long batch)
5560 {
5561 	WRITE_ONCE(pcp->batch, batch);
5562 	WRITE_ONCE(pcp->high_min, high_min);
5563 	WRITE_ONCE(pcp->high_max, high_max);
5564 }
5565 
5566 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5567 {
5568 	int pindex;
5569 
5570 	memset(pcp, 0, sizeof(*pcp));
5571 	memset(pzstats, 0, sizeof(*pzstats));
5572 
5573 	spin_lock_init(&pcp->lock);
5574 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5575 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5576 
5577 	/*
5578 	 * Set batch and high values safe for a boot pageset. A true percpu
5579 	 * pageset's initialization will update them subsequently. Here we don't
5580 	 * need to be as careful as pageset_update() as nobody can access the
5581 	 * pageset yet.
5582 	 */
5583 	pcp->high_min = BOOT_PAGESET_HIGH;
5584 	pcp->high_max = BOOT_PAGESET_HIGH;
5585 	pcp->batch = BOOT_PAGESET_BATCH;
5586 	pcp->free_count = 0;
5587 }
5588 
5589 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5590 					      unsigned long high_max, unsigned long batch)
5591 {
5592 	struct per_cpu_pages *pcp;
5593 	int cpu;
5594 
5595 	for_each_possible_cpu(cpu) {
5596 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5597 		pageset_update(pcp, high_min, high_max, batch);
5598 	}
5599 }
5600 
5601 /*
5602  * Calculate and set new high and batch values for all per-cpu pagesets of a
5603  * zone based on the zone's size.
5604  */
5605 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5606 {
5607 	int new_high_min, new_high_max, new_batch;
5608 
5609 	new_batch = max(1, zone_batchsize(zone));
5610 	if (percpu_pagelist_high_fraction) {
5611 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5612 					     percpu_pagelist_high_fraction);
5613 		/*
5614 		 * PCP high is tuned manually, disable auto-tuning via
5615 		 * setting high_min and high_max to the manual value.
5616 		 */
5617 		new_high_max = new_high_min;
5618 	} else {
5619 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5620 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5621 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5622 	}
5623 
5624 	if (zone->pageset_high_min == new_high_min &&
5625 	    zone->pageset_high_max == new_high_max &&
5626 	    zone->pageset_batch == new_batch)
5627 		return;
5628 
5629 	zone->pageset_high_min = new_high_min;
5630 	zone->pageset_high_max = new_high_max;
5631 	zone->pageset_batch = new_batch;
5632 
5633 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5634 					  new_batch);
5635 }
5636 
5637 void __meminit setup_zone_pageset(struct zone *zone)
5638 {
5639 	int cpu;
5640 
5641 	/* Size may be 0 on !SMP && !NUMA */
5642 	if (sizeof(struct per_cpu_zonestat) > 0)
5643 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5644 
5645 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5646 	for_each_possible_cpu(cpu) {
5647 		struct per_cpu_pages *pcp;
5648 		struct per_cpu_zonestat *pzstats;
5649 
5650 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5651 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5652 		per_cpu_pages_init(pcp, pzstats);
5653 	}
5654 
5655 	zone_set_pageset_high_and_batch(zone, 0);
5656 }
5657 
5658 /*
5659  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5660  * page high values need to be recalculated.
5661  */
5662 static void zone_pcp_update(struct zone *zone, int cpu_online)
5663 {
5664 	mutex_lock(&pcp_batch_high_lock);
5665 	zone_set_pageset_high_and_batch(zone, cpu_online);
5666 	mutex_unlock(&pcp_batch_high_lock);
5667 }
5668 
5669 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5670 {
5671 	struct per_cpu_pages *pcp;
5672 	struct cpu_cacheinfo *cci;
5673 
5674 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5675 	cci = get_cpu_cacheinfo(cpu);
5676 	/*
5677 	 * If data cache slice of CPU is large enough, "pcp->batch"
5678 	 * pages can be preserved in PCP before draining PCP for
5679 	 * consecutive high-order pages freeing without allocation.
5680 	 * This can reduce zone lock contention without hurting
5681 	 * cache-hot pages sharing.
5682 	 */
5683 	spin_lock(&pcp->lock);
5684 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5685 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5686 	else
5687 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5688 	spin_unlock(&pcp->lock);
5689 }
5690 
5691 void setup_pcp_cacheinfo(unsigned int cpu)
5692 {
5693 	struct zone *zone;
5694 
5695 	for_each_populated_zone(zone)
5696 		zone_pcp_update_cacheinfo(zone, cpu);
5697 }
5698 
5699 /*
5700  * Allocate per cpu pagesets and initialize them.
5701  * Before this call only boot pagesets were available.
5702  */
5703 void __init setup_per_cpu_pageset(void)
5704 {
5705 	struct pglist_data *pgdat;
5706 	struct zone *zone;
5707 	int __maybe_unused cpu;
5708 
5709 	for_each_populated_zone(zone)
5710 		setup_zone_pageset(zone);
5711 
5712 #ifdef CONFIG_NUMA
5713 	/*
5714 	 * Unpopulated zones continue using the boot pagesets.
5715 	 * The numa stats for these pagesets need to be reset.
5716 	 * Otherwise, they will end up skewing the stats of
5717 	 * the nodes these zones are associated with.
5718 	 */
5719 	for_each_possible_cpu(cpu) {
5720 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5721 		memset(pzstats->vm_numa_event, 0,
5722 		       sizeof(pzstats->vm_numa_event));
5723 	}
5724 #endif
5725 
5726 	for_each_online_pgdat(pgdat)
5727 		pgdat->per_cpu_nodestats =
5728 			alloc_percpu(struct per_cpu_nodestat);
5729 }
5730 
5731 __meminit void zone_pcp_init(struct zone *zone)
5732 {
5733 	/*
5734 	 * per cpu subsystem is not up at this point. The following code
5735 	 * relies on the ability of the linker to provide the
5736 	 * offset of a (static) per cpu variable into the per cpu area.
5737 	 */
5738 	zone->per_cpu_pageset = &boot_pageset;
5739 	zone->per_cpu_zonestats = &boot_zonestats;
5740 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5741 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5742 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5743 
5744 	if (populated_zone(zone))
5745 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5746 			 zone->present_pages, zone_batchsize(zone));
5747 }
5748 
5749 void adjust_managed_page_count(struct page *page, long count)
5750 {
5751 	atomic_long_add(count, &page_zone(page)->managed_pages);
5752 	totalram_pages_add(count);
5753 #ifdef CONFIG_HIGHMEM
5754 	if (PageHighMem(page))
5755 		totalhigh_pages_add(count);
5756 #endif
5757 }
5758 EXPORT_SYMBOL(adjust_managed_page_count);
5759 
5760 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5761 {
5762 	void *pos;
5763 	unsigned long pages = 0;
5764 
5765 	start = (void *)PAGE_ALIGN((unsigned long)start);
5766 	end = (void *)((unsigned long)end & PAGE_MASK);
5767 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5768 		struct page *page = virt_to_page(pos);
5769 		void *direct_map_addr;
5770 
5771 		/*
5772 		 * 'direct_map_addr' might be different from 'pos'
5773 		 * because some architectures' virt_to_page()
5774 		 * work with aliases.  Getting the direct map
5775 		 * address ensures that we get a _writeable_
5776 		 * alias for the memset().
5777 		 */
5778 		direct_map_addr = page_address(page);
5779 		/*
5780 		 * Perform a kasan-unchecked memset() since this memory
5781 		 * has not been initialized.
5782 		 */
5783 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5784 		if ((unsigned int)poison <= 0xFF)
5785 			memset(direct_map_addr, poison, PAGE_SIZE);
5786 
5787 		free_reserved_page(page);
5788 	}
5789 
5790 	if (pages && s)
5791 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5792 
5793 	return pages;
5794 }
5795 
5796 static int page_alloc_cpu_dead(unsigned int cpu)
5797 {
5798 	struct zone *zone;
5799 
5800 	lru_add_drain_cpu(cpu);
5801 	mlock_drain_remote(cpu);
5802 	drain_pages(cpu);
5803 
5804 	/*
5805 	 * Spill the event counters of the dead processor
5806 	 * into the current processors event counters.
5807 	 * This artificially elevates the count of the current
5808 	 * processor.
5809 	 */
5810 	vm_events_fold_cpu(cpu);
5811 
5812 	/*
5813 	 * Zero the differential counters of the dead processor
5814 	 * so that the vm statistics are consistent.
5815 	 *
5816 	 * This is only okay since the processor is dead and cannot
5817 	 * race with what we are doing.
5818 	 */
5819 	cpu_vm_stats_fold(cpu);
5820 
5821 	for_each_populated_zone(zone)
5822 		zone_pcp_update(zone, 0);
5823 
5824 	return 0;
5825 }
5826 
5827 static int page_alloc_cpu_online(unsigned int cpu)
5828 {
5829 	struct zone *zone;
5830 
5831 	for_each_populated_zone(zone)
5832 		zone_pcp_update(zone, 1);
5833 	return 0;
5834 }
5835 
5836 void __init page_alloc_init_cpuhp(void)
5837 {
5838 	int ret;
5839 
5840 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5841 					"mm/page_alloc:pcp",
5842 					page_alloc_cpu_online,
5843 					page_alloc_cpu_dead);
5844 	WARN_ON(ret < 0);
5845 }
5846 
5847 /*
5848  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5849  *	or min_free_kbytes changes.
5850  */
5851 static void calculate_totalreserve_pages(void)
5852 {
5853 	struct pglist_data *pgdat;
5854 	unsigned long reserve_pages = 0;
5855 	enum zone_type i, j;
5856 
5857 	for_each_online_pgdat(pgdat) {
5858 
5859 		pgdat->totalreserve_pages = 0;
5860 
5861 		for (i = 0; i < MAX_NR_ZONES; i++) {
5862 			struct zone *zone = pgdat->node_zones + i;
5863 			long max = 0;
5864 			unsigned long managed_pages = zone_managed_pages(zone);
5865 
5866 			/* Find valid and maximum lowmem_reserve in the zone */
5867 			for (j = i; j < MAX_NR_ZONES; j++) {
5868 				if (zone->lowmem_reserve[j] > max)
5869 					max = zone->lowmem_reserve[j];
5870 			}
5871 
5872 			/* we treat the high watermark as reserved pages. */
5873 			max += high_wmark_pages(zone);
5874 
5875 			if (max > managed_pages)
5876 				max = managed_pages;
5877 
5878 			pgdat->totalreserve_pages += max;
5879 
5880 			reserve_pages += max;
5881 		}
5882 	}
5883 	totalreserve_pages = reserve_pages;
5884 }
5885 
5886 /*
5887  * setup_per_zone_lowmem_reserve - called whenever
5888  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5889  *	has a correct pages reserved value, so an adequate number of
5890  *	pages are left in the zone after a successful __alloc_pages().
5891  */
5892 static void setup_per_zone_lowmem_reserve(void)
5893 {
5894 	struct pglist_data *pgdat;
5895 	enum zone_type i, j;
5896 
5897 	for_each_online_pgdat(pgdat) {
5898 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5899 			struct zone *zone = &pgdat->node_zones[i];
5900 			int ratio = sysctl_lowmem_reserve_ratio[i];
5901 			bool clear = !ratio || !zone_managed_pages(zone);
5902 			unsigned long managed_pages = 0;
5903 
5904 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5905 				struct zone *upper_zone = &pgdat->node_zones[j];
5906 				bool empty = !zone_managed_pages(upper_zone);
5907 
5908 				managed_pages += zone_managed_pages(upper_zone);
5909 
5910 				if (clear || empty)
5911 					zone->lowmem_reserve[j] = 0;
5912 				else
5913 					zone->lowmem_reserve[j] = managed_pages / ratio;
5914 			}
5915 		}
5916 	}
5917 
5918 	/* update totalreserve_pages */
5919 	calculate_totalreserve_pages();
5920 }
5921 
5922 static void __setup_per_zone_wmarks(void)
5923 {
5924 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5925 	unsigned long lowmem_pages = 0;
5926 	struct zone *zone;
5927 	unsigned long flags;
5928 
5929 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5930 	for_each_zone(zone) {
5931 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5932 			lowmem_pages += zone_managed_pages(zone);
5933 	}
5934 
5935 	for_each_zone(zone) {
5936 		u64 tmp;
5937 
5938 		spin_lock_irqsave(&zone->lock, flags);
5939 		tmp = (u64)pages_min * zone_managed_pages(zone);
5940 		tmp = div64_ul(tmp, lowmem_pages);
5941 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5942 			/*
5943 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5944 			 * need highmem and movable zones pages, so cap pages_min
5945 			 * to a small  value here.
5946 			 *
5947 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5948 			 * deltas control async page reclaim, and so should
5949 			 * not be capped for highmem and movable zones.
5950 			 */
5951 			unsigned long min_pages;
5952 
5953 			min_pages = zone_managed_pages(zone) / 1024;
5954 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5955 			zone->_watermark[WMARK_MIN] = min_pages;
5956 		} else {
5957 			/*
5958 			 * If it's a lowmem zone, reserve a number of pages
5959 			 * proportionate to the zone's size.
5960 			 */
5961 			zone->_watermark[WMARK_MIN] = tmp;
5962 		}
5963 
5964 		/*
5965 		 * Set the kswapd watermarks distance according to the
5966 		 * scale factor in proportion to available memory, but
5967 		 * ensure a minimum size on small systems.
5968 		 */
5969 		tmp = max_t(u64, tmp >> 2,
5970 			    mult_frac(zone_managed_pages(zone),
5971 				      watermark_scale_factor, 10000));
5972 
5973 		zone->watermark_boost = 0;
5974 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5975 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5976 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5977 
5978 		spin_unlock_irqrestore(&zone->lock, flags);
5979 	}
5980 
5981 	/* update totalreserve_pages */
5982 	calculate_totalreserve_pages();
5983 }
5984 
5985 /**
5986  * setup_per_zone_wmarks - called when min_free_kbytes changes
5987  * or when memory is hot-{added|removed}
5988  *
5989  * Ensures that the watermark[min,low,high] values for each zone are set
5990  * correctly with respect to min_free_kbytes.
5991  */
5992 void setup_per_zone_wmarks(void)
5993 {
5994 	struct zone *zone;
5995 	static DEFINE_SPINLOCK(lock);
5996 
5997 	spin_lock(&lock);
5998 	__setup_per_zone_wmarks();
5999 	spin_unlock(&lock);
6000 
6001 	/*
6002 	 * The watermark size have changed so update the pcpu batch
6003 	 * and high limits or the limits may be inappropriate.
6004 	 */
6005 	for_each_zone(zone)
6006 		zone_pcp_update(zone, 0);
6007 }
6008 
6009 /*
6010  * Initialise min_free_kbytes.
6011  *
6012  * For small machines we want it small (128k min).  For large machines
6013  * we want it large (256MB max).  But it is not linear, because network
6014  * bandwidth does not increase linearly with machine size.  We use
6015  *
6016  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6017  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6018  *
6019  * which yields
6020  *
6021  * 16MB:	512k
6022  * 32MB:	724k
6023  * 64MB:	1024k
6024  * 128MB:	1448k
6025  * 256MB:	2048k
6026  * 512MB:	2896k
6027  * 1024MB:	4096k
6028  * 2048MB:	5792k
6029  * 4096MB:	8192k
6030  * 8192MB:	11584k
6031  * 16384MB:	16384k
6032  */
6033 void calculate_min_free_kbytes(void)
6034 {
6035 	unsigned long lowmem_kbytes;
6036 	int new_min_free_kbytes;
6037 
6038 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6039 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6040 
6041 	if (new_min_free_kbytes > user_min_free_kbytes)
6042 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6043 	else
6044 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6045 				new_min_free_kbytes, user_min_free_kbytes);
6046 
6047 }
6048 
6049 int __meminit init_per_zone_wmark_min(void)
6050 {
6051 	calculate_min_free_kbytes();
6052 	setup_per_zone_wmarks();
6053 	refresh_zone_stat_thresholds();
6054 	setup_per_zone_lowmem_reserve();
6055 
6056 #ifdef CONFIG_NUMA
6057 	setup_min_unmapped_ratio();
6058 	setup_min_slab_ratio();
6059 #endif
6060 
6061 	khugepaged_min_free_kbytes_update();
6062 
6063 	return 0;
6064 }
6065 postcore_initcall(init_per_zone_wmark_min)
6066 
6067 /*
6068  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6069  *	that we can call two helper functions whenever min_free_kbytes
6070  *	changes.
6071  */
6072 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6073 		void *buffer, size_t *length, loff_t *ppos)
6074 {
6075 	int rc;
6076 
6077 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6078 	if (rc)
6079 		return rc;
6080 
6081 	if (write) {
6082 		user_min_free_kbytes = min_free_kbytes;
6083 		setup_per_zone_wmarks();
6084 	}
6085 	return 0;
6086 }
6087 
6088 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6089 		void *buffer, size_t *length, loff_t *ppos)
6090 {
6091 	int rc;
6092 
6093 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6094 	if (rc)
6095 		return rc;
6096 
6097 	if (write)
6098 		setup_per_zone_wmarks();
6099 
6100 	return 0;
6101 }
6102 
6103 #ifdef CONFIG_NUMA
6104 static void setup_min_unmapped_ratio(void)
6105 {
6106 	pg_data_t *pgdat;
6107 	struct zone *zone;
6108 
6109 	for_each_online_pgdat(pgdat)
6110 		pgdat->min_unmapped_pages = 0;
6111 
6112 	for_each_zone(zone)
6113 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6114 						         sysctl_min_unmapped_ratio) / 100;
6115 }
6116 
6117 
6118 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6119 		void *buffer, size_t *length, loff_t *ppos)
6120 {
6121 	int rc;
6122 
6123 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6124 	if (rc)
6125 		return rc;
6126 
6127 	setup_min_unmapped_ratio();
6128 
6129 	return 0;
6130 }
6131 
6132 static void setup_min_slab_ratio(void)
6133 {
6134 	pg_data_t *pgdat;
6135 	struct zone *zone;
6136 
6137 	for_each_online_pgdat(pgdat)
6138 		pgdat->min_slab_pages = 0;
6139 
6140 	for_each_zone(zone)
6141 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6142 						     sysctl_min_slab_ratio) / 100;
6143 }
6144 
6145 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6146 		void *buffer, size_t *length, loff_t *ppos)
6147 {
6148 	int rc;
6149 
6150 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6151 	if (rc)
6152 		return rc;
6153 
6154 	setup_min_slab_ratio();
6155 
6156 	return 0;
6157 }
6158 #endif
6159 
6160 /*
6161  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6162  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6163  *	whenever sysctl_lowmem_reserve_ratio changes.
6164  *
6165  * The reserve ratio obviously has absolutely no relation with the
6166  * minimum watermarks. The lowmem reserve ratio can only make sense
6167  * if in function of the boot time zone sizes.
6168  */
6169 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6170 		int write, void *buffer, size_t *length, loff_t *ppos)
6171 {
6172 	int i;
6173 
6174 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6175 
6176 	for (i = 0; i < MAX_NR_ZONES; i++) {
6177 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6178 			sysctl_lowmem_reserve_ratio[i] = 0;
6179 	}
6180 
6181 	setup_per_zone_lowmem_reserve();
6182 	return 0;
6183 }
6184 
6185 /*
6186  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6187  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6188  * pagelist can have before it gets flushed back to buddy allocator.
6189  */
6190 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6191 		int write, void *buffer, size_t *length, loff_t *ppos)
6192 {
6193 	struct zone *zone;
6194 	int old_percpu_pagelist_high_fraction;
6195 	int ret;
6196 
6197 	mutex_lock(&pcp_batch_high_lock);
6198 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6199 
6200 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6201 	if (!write || ret < 0)
6202 		goto out;
6203 
6204 	/* Sanity checking to avoid pcp imbalance */
6205 	if (percpu_pagelist_high_fraction &&
6206 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6207 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6208 		ret = -EINVAL;
6209 		goto out;
6210 	}
6211 
6212 	/* No change? */
6213 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6214 		goto out;
6215 
6216 	for_each_populated_zone(zone)
6217 		zone_set_pageset_high_and_batch(zone, 0);
6218 out:
6219 	mutex_unlock(&pcp_batch_high_lock);
6220 	return ret;
6221 }
6222 
6223 static struct ctl_table page_alloc_sysctl_table[] = {
6224 	{
6225 		.procname	= "min_free_kbytes",
6226 		.data		= &min_free_kbytes,
6227 		.maxlen		= sizeof(min_free_kbytes),
6228 		.mode		= 0644,
6229 		.proc_handler	= min_free_kbytes_sysctl_handler,
6230 		.extra1		= SYSCTL_ZERO,
6231 	},
6232 	{
6233 		.procname	= "watermark_boost_factor",
6234 		.data		= &watermark_boost_factor,
6235 		.maxlen		= sizeof(watermark_boost_factor),
6236 		.mode		= 0644,
6237 		.proc_handler	= proc_dointvec_minmax,
6238 		.extra1		= SYSCTL_ZERO,
6239 	},
6240 	{
6241 		.procname	= "watermark_scale_factor",
6242 		.data		= &watermark_scale_factor,
6243 		.maxlen		= sizeof(watermark_scale_factor),
6244 		.mode		= 0644,
6245 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6246 		.extra1		= SYSCTL_ONE,
6247 		.extra2		= SYSCTL_THREE_THOUSAND,
6248 	},
6249 	{
6250 		.procname	= "percpu_pagelist_high_fraction",
6251 		.data		= &percpu_pagelist_high_fraction,
6252 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6253 		.mode		= 0644,
6254 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6255 		.extra1		= SYSCTL_ZERO,
6256 	},
6257 	{
6258 		.procname	= "lowmem_reserve_ratio",
6259 		.data		= &sysctl_lowmem_reserve_ratio,
6260 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6261 		.mode		= 0644,
6262 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6263 	},
6264 #ifdef CONFIG_NUMA
6265 	{
6266 		.procname	= "numa_zonelist_order",
6267 		.data		= &numa_zonelist_order,
6268 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6269 		.mode		= 0644,
6270 		.proc_handler	= numa_zonelist_order_handler,
6271 	},
6272 	{
6273 		.procname	= "min_unmapped_ratio",
6274 		.data		= &sysctl_min_unmapped_ratio,
6275 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6276 		.mode		= 0644,
6277 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6278 		.extra1		= SYSCTL_ZERO,
6279 		.extra2		= SYSCTL_ONE_HUNDRED,
6280 	},
6281 	{
6282 		.procname	= "min_slab_ratio",
6283 		.data		= &sysctl_min_slab_ratio,
6284 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6285 		.mode		= 0644,
6286 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6287 		.extra1		= SYSCTL_ZERO,
6288 		.extra2		= SYSCTL_ONE_HUNDRED,
6289 	},
6290 #endif
6291 	{}
6292 };
6293 
6294 void __init page_alloc_sysctl_init(void)
6295 {
6296 	register_sysctl_init("vm", page_alloc_sysctl_table);
6297 }
6298 
6299 #ifdef CONFIG_CONTIG_ALLOC
6300 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6301 static void alloc_contig_dump_pages(struct list_head *page_list)
6302 {
6303 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6304 
6305 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6306 		struct page *page;
6307 
6308 		dump_stack();
6309 		list_for_each_entry(page, page_list, lru)
6310 			dump_page(page, "migration failure");
6311 	}
6312 }
6313 
6314 /*
6315  * [start, end) must belong to a single zone.
6316  * @migratetype: using migratetype to filter the type of migration in
6317  *		trace_mm_alloc_contig_migrate_range_info.
6318  */
6319 int __alloc_contig_migrate_range(struct compact_control *cc,
6320 					unsigned long start, unsigned long end,
6321 					int migratetype)
6322 {
6323 	/* This function is based on compact_zone() from compaction.c. */
6324 	unsigned int nr_reclaimed;
6325 	unsigned long pfn = start;
6326 	unsigned int tries = 0;
6327 	int ret = 0;
6328 	struct migration_target_control mtc = {
6329 		.nid = zone_to_nid(cc->zone),
6330 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6331 		.reason = MR_CONTIG_RANGE,
6332 	};
6333 	struct page *page;
6334 	unsigned long total_mapped = 0;
6335 	unsigned long total_migrated = 0;
6336 	unsigned long total_reclaimed = 0;
6337 
6338 	lru_cache_disable();
6339 
6340 	while (pfn < end || !list_empty(&cc->migratepages)) {
6341 		if (fatal_signal_pending(current)) {
6342 			ret = -EINTR;
6343 			break;
6344 		}
6345 
6346 		if (list_empty(&cc->migratepages)) {
6347 			cc->nr_migratepages = 0;
6348 			ret = isolate_migratepages_range(cc, pfn, end);
6349 			if (ret && ret != -EAGAIN)
6350 				break;
6351 			pfn = cc->migrate_pfn;
6352 			tries = 0;
6353 		} else if (++tries == 5) {
6354 			ret = -EBUSY;
6355 			break;
6356 		}
6357 
6358 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6359 							&cc->migratepages);
6360 		cc->nr_migratepages -= nr_reclaimed;
6361 
6362 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6363 			total_reclaimed += nr_reclaimed;
6364 			list_for_each_entry(page, &cc->migratepages, lru)
6365 				total_mapped += page_mapcount(page);
6366 		}
6367 
6368 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6369 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6370 
6371 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6372 			total_migrated += cc->nr_migratepages;
6373 
6374 		/*
6375 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6376 		 * to retry again over this error, so do the same here.
6377 		 */
6378 		if (ret == -ENOMEM)
6379 			break;
6380 	}
6381 
6382 	lru_cache_enable();
6383 	if (ret < 0) {
6384 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6385 			alloc_contig_dump_pages(&cc->migratepages);
6386 		putback_movable_pages(&cc->migratepages);
6387 	}
6388 
6389 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6390 						 total_migrated,
6391 						 total_reclaimed,
6392 						 total_mapped);
6393 	return (ret < 0) ? ret : 0;
6394 }
6395 
6396 /**
6397  * alloc_contig_range() -- tries to allocate given range of pages
6398  * @start:	start PFN to allocate
6399  * @end:	one-past-the-last PFN to allocate
6400  * @migratetype:	migratetype of the underlying pageblocks (either
6401  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6402  *			in range must have the same migratetype and it must
6403  *			be either of the two.
6404  * @gfp_mask:	GFP mask to use during compaction
6405  *
6406  * The PFN range does not have to be pageblock aligned. The PFN range must
6407  * belong to a single zone.
6408  *
6409  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6410  * pageblocks in the range.  Once isolated, the pageblocks should not
6411  * be modified by others.
6412  *
6413  * Return: zero on success or negative error code.  On success all
6414  * pages which PFN is in [start, end) are allocated for the caller and
6415  * need to be freed with free_contig_range().
6416  */
6417 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6418 		       unsigned migratetype, gfp_t gfp_mask)
6419 {
6420 	unsigned long outer_start, outer_end;
6421 	int ret = 0;
6422 
6423 	struct compact_control cc = {
6424 		.nr_migratepages = 0,
6425 		.order = -1,
6426 		.zone = page_zone(pfn_to_page(start)),
6427 		.mode = MIGRATE_SYNC,
6428 		.ignore_skip_hint = true,
6429 		.no_set_skip_hint = true,
6430 		.gfp_mask = current_gfp_context(gfp_mask),
6431 		.alloc_contig = true,
6432 	};
6433 	INIT_LIST_HEAD(&cc.migratepages);
6434 
6435 	/*
6436 	 * What we do here is we mark all pageblocks in range as
6437 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6438 	 * have different sizes, and due to the way page allocator
6439 	 * work, start_isolate_page_range() has special handlings for this.
6440 	 *
6441 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6442 	 * migrate the pages from an unaligned range (ie. pages that
6443 	 * we are interested in). This will put all the pages in
6444 	 * range back to page allocator as MIGRATE_ISOLATE.
6445 	 *
6446 	 * When this is done, we take the pages in range from page
6447 	 * allocator removing them from the buddy system.  This way
6448 	 * page allocator will never consider using them.
6449 	 *
6450 	 * This lets us mark the pageblocks back as
6451 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6452 	 * aligned range but not in the unaligned, original range are
6453 	 * put back to page allocator so that buddy can use them.
6454 	 */
6455 
6456 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6457 	if (ret)
6458 		goto done;
6459 
6460 	drain_all_pages(cc.zone);
6461 
6462 	/*
6463 	 * In case of -EBUSY, we'd like to know which page causes problem.
6464 	 * So, just fall through. test_pages_isolated() has a tracepoint
6465 	 * which will report the busy page.
6466 	 *
6467 	 * It is possible that busy pages could become available before
6468 	 * the call to test_pages_isolated, and the range will actually be
6469 	 * allocated.  So, if we fall through be sure to clear ret so that
6470 	 * -EBUSY is not accidentally used or returned to caller.
6471 	 */
6472 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6473 	if (ret && ret != -EBUSY)
6474 		goto done;
6475 	ret = 0;
6476 
6477 	/*
6478 	 * Pages from [start, end) are within a pageblock_nr_pages
6479 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6480 	 * more, all pages in [start, end) are free in page allocator.
6481 	 * What we are going to do is to allocate all pages from
6482 	 * [start, end) (that is remove them from page allocator).
6483 	 *
6484 	 * The only problem is that pages at the beginning and at the
6485 	 * end of interesting range may be not aligned with pages that
6486 	 * page allocator holds, ie. they can be part of higher order
6487 	 * pages.  Because of this, we reserve the bigger range and
6488 	 * once this is done free the pages we are not interested in.
6489 	 *
6490 	 * We don't have to hold zone->lock here because the pages are
6491 	 * isolated thus they won't get removed from buddy.
6492 	 */
6493 	outer_start = find_large_buddy(start);
6494 
6495 	/* Make sure the range is really isolated. */
6496 	if (test_pages_isolated(outer_start, end, 0)) {
6497 		ret = -EBUSY;
6498 		goto done;
6499 	}
6500 
6501 	/* Grab isolated pages from freelists. */
6502 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6503 	if (!outer_end) {
6504 		ret = -EBUSY;
6505 		goto done;
6506 	}
6507 
6508 	/* Free head and tail (if any) */
6509 	if (start != outer_start)
6510 		free_contig_range(outer_start, start - outer_start);
6511 	if (end != outer_end)
6512 		free_contig_range(end, outer_end - end);
6513 
6514 done:
6515 	undo_isolate_page_range(start, end, migratetype);
6516 	return ret;
6517 }
6518 EXPORT_SYMBOL(alloc_contig_range_noprof);
6519 
6520 static int __alloc_contig_pages(unsigned long start_pfn,
6521 				unsigned long nr_pages, gfp_t gfp_mask)
6522 {
6523 	unsigned long end_pfn = start_pfn + nr_pages;
6524 
6525 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6526 				   gfp_mask);
6527 }
6528 
6529 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6530 				   unsigned long nr_pages)
6531 {
6532 	unsigned long i, end_pfn = start_pfn + nr_pages;
6533 	struct page *page;
6534 
6535 	for (i = start_pfn; i < end_pfn; i++) {
6536 		page = pfn_to_online_page(i);
6537 		if (!page)
6538 			return false;
6539 
6540 		if (page_zone(page) != z)
6541 			return false;
6542 
6543 		if (PageReserved(page))
6544 			return false;
6545 
6546 		if (PageHuge(page))
6547 			return false;
6548 	}
6549 	return true;
6550 }
6551 
6552 static bool zone_spans_last_pfn(const struct zone *zone,
6553 				unsigned long start_pfn, unsigned long nr_pages)
6554 {
6555 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6556 
6557 	return zone_spans_pfn(zone, last_pfn);
6558 }
6559 
6560 /**
6561  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6562  * @nr_pages:	Number of contiguous pages to allocate
6563  * @gfp_mask:	GFP mask to limit search and used during compaction
6564  * @nid:	Target node
6565  * @nodemask:	Mask for other possible nodes
6566  *
6567  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6568  * on an applicable zonelist to find a contiguous pfn range which can then be
6569  * tried for allocation with alloc_contig_range(). This routine is intended
6570  * for allocation requests which can not be fulfilled with the buddy allocator.
6571  *
6572  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6573  * power of two, then allocated range is also guaranteed to be aligned to same
6574  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6575  *
6576  * Allocated pages can be freed with free_contig_range() or by manually calling
6577  * __free_page() on each allocated page.
6578  *
6579  * Return: pointer to contiguous pages on success, or NULL if not successful.
6580  */
6581 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6582 				 int nid, nodemask_t *nodemask)
6583 {
6584 	unsigned long ret, pfn, flags;
6585 	struct zonelist *zonelist;
6586 	struct zone *zone;
6587 	struct zoneref *z;
6588 
6589 	zonelist = node_zonelist(nid, gfp_mask);
6590 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6591 					gfp_zone(gfp_mask), nodemask) {
6592 		spin_lock_irqsave(&zone->lock, flags);
6593 
6594 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6595 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6596 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6597 				/*
6598 				 * We release the zone lock here because
6599 				 * alloc_contig_range() will also lock the zone
6600 				 * at some point. If there's an allocation
6601 				 * spinning on this lock, it may win the race
6602 				 * and cause alloc_contig_range() to fail...
6603 				 */
6604 				spin_unlock_irqrestore(&zone->lock, flags);
6605 				ret = __alloc_contig_pages(pfn, nr_pages,
6606 							gfp_mask);
6607 				if (!ret)
6608 					return pfn_to_page(pfn);
6609 				spin_lock_irqsave(&zone->lock, flags);
6610 			}
6611 			pfn += nr_pages;
6612 		}
6613 		spin_unlock_irqrestore(&zone->lock, flags);
6614 	}
6615 	return NULL;
6616 }
6617 #endif /* CONFIG_CONTIG_ALLOC */
6618 
6619 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6620 {
6621 	unsigned long count = 0;
6622 
6623 	for (; nr_pages--; pfn++) {
6624 		struct page *page = pfn_to_page(pfn);
6625 
6626 		count += page_count(page) != 1;
6627 		__free_page(page);
6628 	}
6629 	WARN(count != 0, "%lu pages are still in use!\n", count);
6630 }
6631 EXPORT_SYMBOL(free_contig_range);
6632 
6633 /*
6634  * Effectively disable pcplists for the zone by setting the high limit to 0
6635  * and draining all cpus. A concurrent page freeing on another CPU that's about
6636  * to put the page on pcplist will either finish before the drain and the page
6637  * will be drained, or observe the new high limit and skip the pcplist.
6638  *
6639  * Must be paired with a call to zone_pcp_enable().
6640  */
6641 void zone_pcp_disable(struct zone *zone)
6642 {
6643 	mutex_lock(&pcp_batch_high_lock);
6644 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6645 	__drain_all_pages(zone, true);
6646 }
6647 
6648 void zone_pcp_enable(struct zone *zone)
6649 {
6650 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6651 		zone->pageset_high_max, zone->pageset_batch);
6652 	mutex_unlock(&pcp_batch_high_lock);
6653 }
6654 
6655 void zone_pcp_reset(struct zone *zone)
6656 {
6657 	int cpu;
6658 	struct per_cpu_zonestat *pzstats;
6659 
6660 	if (zone->per_cpu_pageset != &boot_pageset) {
6661 		for_each_online_cpu(cpu) {
6662 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6663 			drain_zonestat(zone, pzstats);
6664 		}
6665 		free_percpu(zone->per_cpu_pageset);
6666 		zone->per_cpu_pageset = &boot_pageset;
6667 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6668 			free_percpu(zone->per_cpu_zonestats);
6669 			zone->per_cpu_zonestats = &boot_zonestats;
6670 		}
6671 	}
6672 }
6673 
6674 #ifdef CONFIG_MEMORY_HOTREMOVE
6675 /*
6676  * All pages in the range must be in a single zone, must not contain holes,
6677  * must span full sections, and must be isolated before calling this function.
6678  */
6679 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6680 {
6681 	unsigned long pfn = start_pfn;
6682 	struct page *page;
6683 	struct zone *zone;
6684 	unsigned int order;
6685 	unsigned long flags;
6686 
6687 	offline_mem_sections(pfn, end_pfn);
6688 	zone = page_zone(pfn_to_page(pfn));
6689 	spin_lock_irqsave(&zone->lock, flags);
6690 	while (pfn < end_pfn) {
6691 		page = pfn_to_page(pfn);
6692 		/*
6693 		 * The HWPoisoned page may be not in buddy system, and
6694 		 * page_count() is not 0.
6695 		 */
6696 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6697 			pfn++;
6698 			continue;
6699 		}
6700 		/*
6701 		 * At this point all remaining PageOffline() pages have a
6702 		 * reference count of 0 and can simply be skipped.
6703 		 */
6704 		if (PageOffline(page)) {
6705 			BUG_ON(page_count(page));
6706 			BUG_ON(PageBuddy(page));
6707 			pfn++;
6708 			continue;
6709 		}
6710 
6711 		BUG_ON(page_count(page));
6712 		BUG_ON(!PageBuddy(page));
6713 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6714 		order = buddy_order(page);
6715 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6716 		pfn += (1 << order);
6717 	}
6718 	spin_unlock_irqrestore(&zone->lock, flags);
6719 }
6720 #endif
6721 
6722 /*
6723  * This function returns a stable result only if called under zone lock.
6724  */
6725 bool is_free_buddy_page(const struct page *page)
6726 {
6727 	unsigned long pfn = page_to_pfn(page);
6728 	unsigned int order;
6729 
6730 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6731 		const struct page *head = page - (pfn & ((1 << order) - 1));
6732 
6733 		if (PageBuddy(head) &&
6734 		    buddy_order_unsafe(head) >= order)
6735 			break;
6736 	}
6737 
6738 	return order <= MAX_PAGE_ORDER;
6739 }
6740 EXPORT_SYMBOL(is_free_buddy_page);
6741 
6742 #ifdef CONFIG_MEMORY_FAILURE
6743 static inline void add_to_free_list(struct page *page, struct zone *zone,
6744 				    unsigned int order, int migratetype,
6745 				    bool tail)
6746 {
6747 	__add_to_free_list(page, zone, order, migratetype, tail);
6748 	account_freepages(zone, 1 << order, migratetype);
6749 }
6750 
6751 /*
6752  * Break down a higher-order page in sub-pages, and keep our target out of
6753  * buddy allocator.
6754  */
6755 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6756 				   struct page *target, int low, int high,
6757 				   int migratetype)
6758 {
6759 	unsigned long size = 1 << high;
6760 	struct page *current_buddy;
6761 
6762 	while (high > low) {
6763 		high--;
6764 		size >>= 1;
6765 
6766 		if (target >= &page[size]) {
6767 			current_buddy = page;
6768 			page = page + size;
6769 		} else {
6770 			current_buddy = page + size;
6771 		}
6772 
6773 		if (set_page_guard(zone, current_buddy, high))
6774 			continue;
6775 
6776 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6777 		set_buddy_order(current_buddy, high);
6778 	}
6779 }
6780 
6781 /*
6782  * Take a page that will be marked as poisoned off the buddy allocator.
6783  */
6784 bool take_page_off_buddy(struct page *page)
6785 {
6786 	struct zone *zone = page_zone(page);
6787 	unsigned long pfn = page_to_pfn(page);
6788 	unsigned long flags;
6789 	unsigned int order;
6790 	bool ret = false;
6791 
6792 	spin_lock_irqsave(&zone->lock, flags);
6793 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6794 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6795 		int page_order = buddy_order(page_head);
6796 
6797 		if (PageBuddy(page_head) && page_order >= order) {
6798 			unsigned long pfn_head = page_to_pfn(page_head);
6799 			int migratetype = get_pfnblock_migratetype(page_head,
6800 								   pfn_head);
6801 
6802 			del_page_from_free_list(page_head, zone, page_order,
6803 						migratetype);
6804 			break_down_buddy_pages(zone, page_head, page, 0,
6805 						page_order, migratetype);
6806 			SetPageHWPoisonTakenOff(page);
6807 			ret = true;
6808 			break;
6809 		}
6810 		if (page_count(page_head) > 0)
6811 			break;
6812 	}
6813 	spin_unlock_irqrestore(&zone->lock, flags);
6814 	return ret;
6815 }
6816 
6817 /*
6818  * Cancel takeoff done by take_page_off_buddy().
6819  */
6820 bool put_page_back_buddy(struct page *page)
6821 {
6822 	struct zone *zone = page_zone(page);
6823 	unsigned long flags;
6824 	bool ret = false;
6825 
6826 	spin_lock_irqsave(&zone->lock, flags);
6827 	if (put_page_testzero(page)) {
6828 		unsigned long pfn = page_to_pfn(page);
6829 		int migratetype = get_pfnblock_migratetype(page, pfn);
6830 
6831 		ClearPageHWPoisonTakenOff(page);
6832 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6833 		if (TestClearPageHWPoison(page)) {
6834 			ret = true;
6835 		}
6836 	}
6837 	spin_unlock_irqrestore(&zone->lock, flags);
6838 
6839 	return ret;
6840 }
6841 #endif
6842 
6843 #ifdef CONFIG_ZONE_DMA
6844 bool has_managed_dma(void)
6845 {
6846 	struct pglist_data *pgdat;
6847 
6848 	for_each_online_pgdat(pgdat) {
6849 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6850 
6851 		if (managed_zone(zone))
6852 			return true;
6853 	}
6854 	return false;
6855 }
6856 #endif /* CONFIG_ZONE_DMA */
6857 
6858 #ifdef CONFIG_UNACCEPTED_MEMORY
6859 
6860 /* Counts number of zones with unaccepted pages. */
6861 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6862 
6863 static bool lazy_accept = true;
6864 
6865 static int __init accept_memory_parse(char *p)
6866 {
6867 	if (!strcmp(p, "lazy")) {
6868 		lazy_accept = true;
6869 		return 0;
6870 	} else if (!strcmp(p, "eager")) {
6871 		lazy_accept = false;
6872 		return 0;
6873 	} else {
6874 		return -EINVAL;
6875 	}
6876 }
6877 early_param("accept_memory", accept_memory_parse);
6878 
6879 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6880 {
6881 	phys_addr_t start = page_to_phys(page);
6882 	phys_addr_t end = start + (PAGE_SIZE << order);
6883 
6884 	return range_contains_unaccepted_memory(start, end);
6885 }
6886 
6887 static void accept_page(struct page *page, unsigned int order)
6888 {
6889 	phys_addr_t start = page_to_phys(page);
6890 
6891 	accept_memory(start, start + (PAGE_SIZE << order));
6892 }
6893 
6894 static bool try_to_accept_memory_one(struct zone *zone)
6895 {
6896 	unsigned long flags;
6897 	struct page *page;
6898 	bool last;
6899 
6900 	if (list_empty(&zone->unaccepted_pages))
6901 		return false;
6902 
6903 	spin_lock_irqsave(&zone->lock, flags);
6904 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6905 					struct page, lru);
6906 	if (!page) {
6907 		spin_unlock_irqrestore(&zone->lock, flags);
6908 		return false;
6909 	}
6910 
6911 	list_del(&page->lru);
6912 	last = list_empty(&zone->unaccepted_pages);
6913 
6914 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6915 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6916 	spin_unlock_irqrestore(&zone->lock, flags);
6917 
6918 	accept_page(page, MAX_PAGE_ORDER);
6919 
6920 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6921 
6922 	if (last)
6923 		static_branch_dec(&zones_with_unaccepted_pages);
6924 
6925 	return true;
6926 }
6927 
6928 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6929 {
6930 	long to_accept;
6931 	int ret = false;
6932 
6933 	/* How much to accept to get to high watermark? */
6934 	to_accept = high_wmark_pages(zone) -
6935 		    (zone_page_state(zone, NR_FREE_PAGES) -
6936 		    __zone_watermark_unusable_free(zone, order, 0));
6937 
6938 	/* Accept at least one page */
6939 	do {
6940 		if (!try_to_accept_memory_one(zone))
6941 			break;
6942 		ret = true;
6943 		to_accept -= MAX_ORDER_NR_PAGES;
6944 	} while (to_accept > 0);
6945 
6946 	return ret;
6947 }
6948 
6949 static inline bool has_unaccepted_memory(void)
6950 {
6951 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6952 }
6953 
6954 static bool __free_unaccepted(struct page *page)
6955 {
6956 	struct zone *zone = page_zone(page);
6957 	unsigned long flags;
6958 	bool first = false;
6959 
6960 	if (!lazy_accept)
6961 		return false;
6962 
6963 	spin_lock_irqsave(&zone->lock, flags);
6964 	first = list_empty(&zone->unaccepted_pages);
6965 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6966 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6967 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6968 	spin_unlock_irqrestore(&zone->lock, flags);
6969 
6970 	if (first)
6971 		static_branch_inc(&zones_with_unaccepted_pages);
6972 
6973 	return true;
6974 }
6975 
6976 #else
6977 
6978 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6979 {
6980 	return false;
6981 }
6982 
6983 static void accept_page(struct page *page, unsigned int order)
6984 {
6985 }
6986 
6987 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6988 {
6989 	return false;
6990 }
6991 
6992 static inline bool has_unaccepted_memory(void)
6993 {
6994 	return false;
6995 }
6996 
6997 static bool __free_unaccepted(struct page *page)
6998 {
6999 	BUILD_BUG();
7000 	return false;
7001 }
7002 
7003 #endif /* CONFIG_UNACCEPTED_MEMORY */
7004