1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 #include "shuffle.h" 77 78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 79 static DEFINE_MUTEX(pcp_batch_high_lock); 80 #define MIN_PERCPU_PAGELIST_FRACTION (8) 81 82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 83 DEFINE_PER_CPU(int, numa_node); 84 EXPORT_PER_CPU_SYMBOL(numa_node); 85 #endif 86 87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 88 89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 90 /* 91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 94 * defined in <linux/topology.h>. 95 */ 96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 97 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 98 int _node_numa_mem_[MAX_NUMNODES]; 99 #endif 100 101 /* work_structs for global per-cpu drains */ 102 struct pcpu_drain { 103 struct zone *zone; 104 struct work_struct work; 105 }; 106 DEFINE_MUTEX(pcpu_drain_mutex); 107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 108 109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 110 volatile unsigned long latent_entropy __latent_entropy; 111 EXPORT_SYMBOL(latent_entropy); 112 #endif 113 114 /* 115 * Array of node states. 116 */ 117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 118 [N_POSSIBLE] = NODE_MASK_ALL, 119 [N_ONLINE] = { { [0] = 1UL } }, 120 #ifndef CONFIG_NUMA 121 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 122 #ifdef CONFIG_HIGHMEM 123 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 124 #endif 125 [N_MEMORY] = { { [0] = 1UL } }, 126 [N_CPU] = { { [0] = 1UL } }, 127 #endif /* NUMA */ 128 }; 129 EXPORT_SYMBOL(node_states); 130 131 atomic_long_t _totalram_pages __read_mostly; 132 EXPORT_SYMBOL(_totalram_pages); 133 unsigned long totalreserve_pages __read_mostly; 134 unsigned long totalcma_pages __read_mostly; 135 136 int percpu_pagelist_fraction; 137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 139 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 140 #else 141 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 142 #endif 143 EXPORT_SYMBOL(init_on_alloc); 144 145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 146 DEFINE_STATIC_KEY_TRUE(init_on_free); 147 #else 148 DEFINE_STATIC_KEY_FALSE(init_on_free); 149 #endif 150 EXPORT_SYMBOL(init_on_free); 151 152 static int __init early_init_on_alloc(char *buf) 153 { 154 int ret; 155 bool bool_result; 156 157 if (!buf) 158 return -EINVAL; 159 ret = kstrtobool(buf, &bool_result); 160 if (bool_result && page_poisoning_enabled()) 161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 162 if (bool_result) 163 static_branch_enable(&init_on_alloc); 164 else 165 static_branch_disable(&init_on_alloc); 166 return ret; 167 } 168 early_param("init_on_alloc", early_init_on_alloc); 169 170 static int __init early_init_on_free(char *buf) 171 { 172 int ret; 173 bool bool_result; 174 175 if (!buf) 176 return -EINVAL; 177 ret = kstrtobool(buf, &bool_result); 178 if (bool_result && page_poisoning_enabled()) 179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 180 if (bool_result) 181 static_branch_enable(&init_on_free); 182 else 183 static_branch_disable(&init_on_free); 184 return ret; 185 } 186 early_param("init_on_free", early_init_on_free); 187 188 /* 189 * A cached value of the page's pageblock's migratetype, used when the page is 190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 191 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 192 * Also the migratetype set in the page does not necessarily match the pcplist 193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 194 * other index - this ensures that it will be put on the correct CMA freelist. 195 */ 196 static inline int get_pcppage_migratetype(struct page *page) 197 { 198 return page->index; 199 } 200 201 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 202 { 203 page->index = migratetype; 204 } 205 206 #ifdef CONFIG_PM_SLEEP 207 /* 208 * The following functions are used by the suspend/hibernate code to temporarily 209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 210 * while devices are suspended. To avoid races with the suspend/hibernate code, 211 * they should always be called with system_transition_mutex held 212 * (gfp_allowed_mask also should only be modified with system_transition_mutex 213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 214 * with that modification). 215 */ 216 217 static gfp_t saved_gfp_mask; 218 219 void pm_restore_gfp_mask(void) 220 { 221 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 222 if (saved_gfp_mask) { 223 gfp_allowed_mask = saved_gfp_mask; 224 saved_gfp_mask = 0; 225 } 226 } 227 228 void pm_restrict_gfp_mask(void) 229 { 230 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 231 WARN_ON(saved_gfp_mask); 232 saved_gfp_mask = gfp_allowed_mask; 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 234 } 235 236 bool pm_suspended_storage(void) 237 { 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 239 return false; 240 return true; 241 } 242 #endif /* CONFIG_PM_SLEEP */ 243 244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 245 unsigned int pageblock_order __read_mostly; 246 #endif 247 248 static void __free_pages_ok(struct page *page, unsigned int order); 249 250 /* 251 * results with 256, 32 in the lowmem_reserve sysctl: 252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 253 * 1G machine -> (16M dma, 784M normal, 224M high) 254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 257 * 258 * TBD: should special case ZONE_DMA32 machines here - in those we normally 259 * don't need any ZONE_NORMAL reservation 260 */ 261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 262 #ifdef CONFIG_ZONE_DMA 263 [ZONE_DMA] = 256, 264 #endif 265 #ifdef CONFIG_ZONE_DMA32 266 [ZONE_DMA32] = 256, 267 #endif 268 [ZONE_NORMAL] = 32, 269 #ifdef CONFIG_HIGHMEM 270 [ZONE_HIGHMEM] = 0, 271 #endif 272 [ZONE_MOVABLE] = 0, 273 }; 274 275 static char * const zone_names[MAX_NR_ZONES] = { 276 #ifdef CONFIG_ZONE_DMA 277 "DMA", 278 #endif 279 #ifdef CONFIG_ZONE_DMA32 280 "DMA32", 281 #endif 282 "Normal", 283 #ifdef CONFIG_HIGHMEM 284 "HighMem", 285 #endif 286 "Movable", 287 #ifdef CONFIG_ZONE_DEVICE 288 "Device", 289 #endif 290 }; 291 292 const char * const migratetype_names[MIGRATE_TYPES] = { 293 "Unmovable", 294 "Movable", 295 "Reclaimable", 296 "HighAtomic", 297 #ifdef CONFIG_CMA 298 "CMA", 299 #endif 300 #ifdef CONFIG_MEMORY_ISOLATION 301 "Isolate", 302 #endif 303 }; 304 305 compound_page_dtor * const compound_page_dtors[] = { 306 NULL, 307 free_compound_page, 308 #ifdef CONFIG_HUGETLB_PAGE 309 free_huge_page, 310 #endif 311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 312 free_transhuge_page, 313 #endif 314 }; 315 316 int min_free_kbytes = 1024; 317 int user_min_free_kbytes = -1; 318 #ifdef CONFIG_DISCONTIGMEM 319 /* 320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 321 * are not on separate NUMA nodes. Functionally this works but with 322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 323 * quite small. By default, do not boost watermarks on discontigmem as in 324 * many cases very high-order allocations like THP are likely to be 325 * unsupported and the premature reclaim offsets the advantage of long-term 326 * fragmentation avoidance. 327 */ 328 int watermark_boost_factor __read_mostly; 329 #else 330 int watermark_boost_factor __read_mostly = 15000; 331 #endif 332 int watermark_scale_factor = 10; 333 334 static unsigned long nr_kernel_pages __initdata; 335 static unsigned long nr_all_pages __initdata; 336 static unsigned long dma_reserve __initdata; 337 338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 341 static unsigned long required_kernelcore __initdata; 342 static unsigned long required_kernelcore_percent __initdata; 343 static unsigned long required_movablecore __initdata; 344 static unsigned long required_movablecore_percent __initdata; 345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 346 static bool mirrored_kernelcore __meminitdata; 347 348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 349 int movable_zone; 350 EXPORT_SYMBOL(movable_zone); 351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 352 353 #if MAX_NUMNODES > 1 354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 355 unsigned int nr_online_nodes __read_mostly = 1; 356 EXPORT_SYMBOL(nr_node_ids); 357 EXPORT_SYMBOL(nr_online_nodes); 358 #endif 359 360 int page_group_by_mobility_disabled __read_mostly; 361 362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 363 /* 364 * During boot we initialize deferred pages on-demand, as needed, but once 365 * page_alloc_init_late() has finished, the deferred pages are all initialized, 366 * and we can permanently disable that path. 367 */ 368 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 369 370 /* 371 * Calling kasan_free_pages() only after deferred memory initialization 372 * has completed. Poisoning pages during deferred memory init will greatly 373 * lengthen the process and cause problem in large memory systems as the 374 * deferred pages initialization is done with interrupt disabled. 375 * 376 * Assuming that there will be no reference to those newly initialized 377 * pages before they are ever allocated, this should have no effect on 378 * KASAN memory tracking as the poison will be properly inserted at page 379 * allocation time. The only corner case is when pages are allocated by 380 * on-demand allocation and then freed again before the deferred pages 381 * initialization is done, but this is not likely to happen. 382 */ 383 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 384 { 385 if (!static_branch_unlikely(&deferred_pages)) 386 kasan_free_pages(page, order); 387 } 388 389 /* Returns true if the struct page for the pfn is uninitialised */ 390 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 391 { 392 int nid = early_pfn_to_nid(pfn); 393 394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 395 return true; 396 397 return false; 398 } 399 400 /* 401 * Returns true when the remaining initialisation should be deferred until 402 * later in the boot cycle when it can be parallelised. 403 */ 404 static bool __meminit 405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 406 { 407 static unsigned long prev_end_pfn, nr_initialised; 408 409 /* 410 * prev_end_pfn static that contains the end of previous zone 411 * No need to protect because called very early in boot before smp_init. 412 */ 413 if (prev_end_pfn != end_pfn) { 414 prev_end_pfn = end_pfn; 415 nr_initialised = 0; 416 } 417 418 /* Always populate low zones for address-constrained allocations */ 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 420 return false; 421 422 /* 423 * We start only with one section of pages, more pages are added as 424 * needed until the rest of deferred pages are initialized. 425 */ 426 nr_initialised++; 427 if ((nr_initialised > PAGES_PER_SECTION) && 428 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 429 NODE_DATA(nid)->first_deferred_pfn = pfn; 430 return true; 431 } 432 return false; 433 } 434 #else 435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 436 437 static inline bool early_page_uninitialised(unsigned long pfn) 438 { 439 return false; 440 } 441 442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 443 { 444 return false; 445 } 446 #endif 447 448 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 449 static inline unsigned long *get_pageblock_bitmap(struct page *page, 450 unsigned long pfn) 451 { 452 #ifdef CONFIG_SPARSEMEM 453 return __pfn_to_section(pfn)->pageblock_flags; 454 #else 455 return page_zone(page)->pageblock_flags; 456 #endif /* CONFIG_SPARSEMEM */ 457 } 458 459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 460 { 461 #ifdef CONFIG_SPARSEMEM 462 pfn &= (PAGES_PER_SECTION-1); 463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 464 #else 465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 467 #endif /* CONFIG_SPARSEMEM */ 468 } 469 470 /** 471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 472 * @page: The page within the block of interest 473 * @pfn: The target page frame number 474 * @end_bitidx: The last bit of interest to retrieve 475 * @mask: mask of bits that the caller is interested in 476 * 477 * Return: pageblock_bits flags 478 */ 479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 480 unsigned long pfn, 481 unsigned long end_bitidx, 482 unsigned long mask) 483 { 484 unsigned long *bitmap; 485 unsigned long bitidx, word_bitidx; 486 unsigned long word; 487 488 bitmap = get_pageblock_bitmap(page, pfn); 489 bitidx = pfn_to_bitidx(page, pfn); 490 word_bitidx = bitidx / BITS_PER_LONG; 491 bitidx &= (BITS_PER_LONG-1); 492 493 word = bitmap[word_bitidx]; 494 bitidx += end_bitidx; 495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 496 } 497 498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 499 unsigned long end_bitidx, 500 unsigned long mask) 501 { 502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 503 } 504 505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 506 { 507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 508 } 509 510 /** 511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 512 * @page: The page within the block of interest 513 * @flags: The flags to set 514 * @pfn: The target page frame number 515 * @end_bitidx: The last bit of interest 516 * @mask: mask of bits that the caller is interested in 517 */ 518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 519 unsigned long pfn, 520 unsigned long end_bitidx, 521 unsigned long mask) 522 { 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 bitidx += end_bitidx; 538 mask <<= (BITS_PER_LONG - bitidx - 1); 539 flags <<= (BITS_PER_LONG - bitidx - 1); 540 541 word = READ_ONCE(bitmap[word_bitidx]); 542 for (;;) { 543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 544 if (word == old_word) 545 break; 546 word = old_word; 547 } 548 } 549 550 void set_pageblock_migratetype(struct page *page, int migratetype) 551 { 552 if (unlikely(page_group_by_mobility_disabled && 553 migratetype < MIGRATE_PCPTYPES)) 554 migratetype = MIGRATE_UNMOVABLE; 555 556 set_pageblock_flags_group(page, (unsigned long)migratetype, 557 PB_migrate, PB_migrate_end); 558 } 559 560 #ifdef CONFIG_DEBUG_VM 561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 562 { 563 int ret = 0; 564 unsigned seq; 565 unsigned long pfn = page_to_pfn(page); 566 unsigned long sp, start_pfn; 567 568 do { 569 seq = zone_span_seqbegin(zone); 570 start_pfn = zone->zone_start_pfn; 571 sp = zone->spanned_pages; 572 if (!zone_spans_pfn(zone, pfn)) 573 ret = 1; 574 } while (zone_span_seqretry(zone, seq)); 575 576 if (ret) 577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 578 pfn, zone_to_nid(zone), zone->name, 579 start_pfn, start_pfn + sp); 580 581 return ret; 582 } 583 584 static int page_is_consistent(struct zone *zone, struct page *page) 585 { 586 if (!pfn_valid_within(page_to_pfn(page))) 587 return 0; 588 if (zone != page_zone(page)) 589 return 0; 590 591 return 1; 592 } 593 /* 594 * Temporary debugging check for pages not lying within a given zone. 595 */ 596 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 597 { 598 if (page_outside_zone_boundaries(zone, page)) 599 return 1; 600 if (!page_is_consistent(zone, page)) 601 return 1; 602 603 return 0; 604 } 605 #else 606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 607 { 608 return 0; 609 } 610 #endif 611 612 static void bad_page(struct page *page, const char *reason, 613 unsigned long bad_flags) 614 { 615 static unsigned long resume; 616 static unsigned long nr_shown; 617 static unsigned long nr_unshown; 618 619 /* 620 * Allow a burst of 60 reports, then keep quiet for that minute; 621 * or allow a steady drip of one report per second. 622 */ 623 if (nr_shown == 60) { 624 if (time_before(jiffies, resume)) { 625 nr_unshown++; 626 goto out; 627 } 628 if (nr_unshown) { 629 pr_alert( 630 "BUG: Bad page state: %lu messages suppressed\n", 631 nr_unshown); 632 nr_unshown = 0; 633 } 634 nr_shown = 0; 635 } 636 if (nr_shown++ == 0) 637 resume = jiffies + 60 * HZ; 638 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 640 current->comm, page_to_pfn(page)); 641 __dump_page(page, reason); 642 bad_flags &= page->flags; 643 if (bad_flags) 644 pr_alert("bad because of flags: %#lx(%pGp)\n", 645 bad_flags, &bad_flags); 646 dump_page_owner(page); 647 648 print_modules(); 649 dump_stack(); 650 out: 651 /* Leave bad fields for debug, except PageBuddy could make trouble */ 652 page_mapcount_reset(page); /* remove PageBuddy */ 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 654 } 655 656 /* 657 * Higher-order pages are called "compound pages". They are structured thusly: 658 * 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 660 * 661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 663 * 664 * The first tail page's ->compound_dtor holds the offset in array of compound 665 * page destructors. See compound_page_dtors. 666 * 667 * The first tail page's ->compound_order holds the order of allocation. 668 * This usage means that zero-order pages may not be compound. 669 */ 670 671 void free_compound_page(struct page *page) 672 { 673 __free_pages_ok(page, compound_order(page)); 674 } 675 676 void prep_compound_page(struct page *page, unsigned int order) 677 { 678 int i; 679 int nr_pages = 1 << order; 680 681 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 682 set_compound_order(page, order); 683 __SetPageHead(page); 684 for (i = 1; i < nr_pages; i++) { 685 struct page *p = page + i; 686 set_page_count(p, 0); 687 p->mapping = TAIL_MAPPING; 688 set_compound_head(p, page); 689 } 690 atomic_set(compound_mapcount_ptr(page), -1); 691 } 692 693 #ifdef CONFIG_DEBUG_PAGEALLOC 694 unsigned int _debug_guardpage_minorder; 695 696 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT 697 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled); 698 #else 699 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 700 #endif 701 EXPORT_SYMBOL(_debug_pagealloc_enabled); 702 703 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 704 705 static int __init early_debug_pagealloc(char *buf) 706 { 707 bool enable = false; 708 709 if (kstrtobool(buf, &enable)) 710 return -EINVAL; 711 712 if (enable) 713 static_branch_enable(&_debug_pagealloc_enabled); 714 715 return 0; 716 } 717 early_param("debug_pagealloc", early_debug_pagealloc); 718 719 static void init_debug_guardpage(void) 720 { 721 if (!debug_pagealloc_enabled()) 722 return; 723 724 if (!debug_guardpage_minorder()) 725 return; 726 727 static_branch_enable(&_debug_guardpage_enabled); 728 } 729 730 static int __init debug_guardpage_minorder_setup(char *buf) 731 { 732 unsigned long res; 733 734 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 735 pr_err("Bad debug_guardpage_minorder value\n"); 736 return 0; 737 } 738 _debug_guardpage_minorder = res; 739 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 740 return 0; 741 } 742 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 743 744 static inline bool set_page_guard(struct zone *zone, struct page *page, 745 unsigned int order, int migratetype) 746 { 747 if (!debug_guardpage_enabled()) 748 return false; 749 750 if (order >= debug_guardpage_minorder()) 751 return false; 752 753 __SetPageGuard(page); 754 INIT_LIST_HEAD(&page->lru); 755 set_page_private(page, order); 756 /* Guard pages are not available for any usage */ 757 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 758 759 return true; 760 } 761 762 static inline void clear_page_guard(struct zone *zone, struct page *page, 763 unsigned int order, int migratetype) 764 { 765 if (!debug_guardpage_enabled()) 766 return; 767 768 __ClearPageGuard(page); 769 770 set_page_private(page, 0); 771 if (!is_migrate_isolate(migratetype)) 772 __mod_zone_freepage_state(zone, (1 << order), migratetype); 773 } 774 #else 775 static inline bool set_page_guard(struct zone *zone, struct page *page, 776 unsigned int order, int migratetype) { return false; } 777 static inline void clear_page_guard(struct zone *zone, struct page *page, 778 unsigned int order, int migratetype) {} 779 #endif 780 781 static inline void set_page_order(struct page *page, unsigned int order) 782 { 783 set_page_private(page, order); 784 __SetPageBuddy(page); 785 } 786 787 /* 788 * This function checks whether a page is free && is the buddy 789 * we can coalesce a page and its buddy if 790 * (a) the buddy is not in a hole (check before calling!) && 791 * (b) the buddy is in the buddy system && 792 * (c) a page and its buddy have the same order && 793 * (d) a page and its buddy are in the same zone. 794 * 795 * For recording whether a page is in the buddy system, we set PageBuddy. 796 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 797 * 798 * For recording page's order, we use page_private(page). 799 */ 800 static inline int page_is_buddy(struct page *page, struct page *buddy, 801 unsigned int order) 802 { 803 if (page_is_guard(buddy) && page_order(buddy) == order) { 804 if (page_zone_id(page) != page_zone_id(buddy)) 805 return 0; 806 807 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 808 809 return 1; 810 } 811 812 if (PageBuddy(buddy) && page_order(buddy) == order) { 813 /* 814 * zone check is done late to avoid uselessly 815 * calculating zone/node ids for pages that could 816 * never merge. 817 */ 818 if (page_zone_id(page) != page_zone_id(buddy)) 819 return 0; 820 821 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 822 823 return 1; 824 } 825 return 0; 826 } 827 828 #ifdef CONFIG_COMPACTION 829 static inline struct capture_control *task_capc(struct zone *zone) 830 { 831 struct capture_control *capc = current->capture_control; 832 833 return capc && 834 !(current->flags & PF_KTHREAD) && 835 !capc->page && 836 capc->cc->zone == zone && 837 capc->cc->direct_compaction ? capc : NULL; 838 } 839 840 static inline bool 841 compaction_capture(struct capture_control *capc, struct page *page, 842 int order, int migratetype) 843 { 844 if (!capc || order != capc->cc->order) 845 return false; 846 847 /* Do not accidentally pollute CMA or isolated regions*/ 848 if (is_migrate_cma(migratetype) || 849 is_migrate_isolate(migratetype)) 850 return false; 851 852 /* 853 * Do not let lower order allocations polluate a movable pageblock. 854 * This might let an unmovable request use a reclaimable pageblock 855 * and vice-versa but no more than normal fallback logic which can 856 * have trouble finding a high-order free page. 857 */ 858 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 859 return false; 860 861 capc->page = page; 862 return true; 863 } 864 865 #else 866 static inline struct capture_control *task_capc(struct zone *zone) 867 { 868 return NULL; 869 } 870 871 static inline bool 872 compaction_capture(struct capture_control *capc, struct page *page, 873 int order, int migratetype) 874 { 875 return false; 876 } 877 #endif /* CONFIG_COMPACTION */ 878 879 /* 880 * Freeing function for a buddy system allocator. 881 * 882 * The concept of a buddy system is to maintain direct-mapped table 883 * (containing bit values) for memory blocks of various "orders". 884 * The bottom level table contains the map for the smallest allocatable 885 * units of memory (here, pages), and each level above it describes 886 * pairs of units from the levels below, hence, "buddies". 887 * At a high level, all that happens here is marking the table entry 888 * at the bottom level available, and propagating the changes upward 889 * as necessary, plus some accounting needed to play nicely with other 890 * parts of the VM system. 891 * At each level, we keep a list of pages, which are heads of continuous 892 * free pages of length of (1 << order) and marked with PageBuddy. 893 * Page's order is recorded in page_private(page) field. 894 * So when we are allocating or freeing one, we can derive the state of the 895 * other. That is, if we allocate a small block, and both were 896 * free, the remainder of the region must be split into blocks. 897 * If a block is freed, and its buddy is also free, then this 898 * triggers coalescing into a block of larger size. 899 * 900 * -- nyc 901 */ 902 903 static inline void __free_one_page(struct page *page, 904 unsigned long pfn, 905 struct zone *zone, unsigned int order, 906 int migratetype) 907 { 908 unsigned long combined_pfn; 909 unsigned long uninitialized_var(buddy_pfn); 910 struct page *buddy; 911 unsigned int max_order; 912 struct capture_control *capc = task_capc(zone); 913 914 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 915 916 VM_BUG_ON(!zone_is_initialized(zone)); 917 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 918 919 VM_BUG_ON(migratetype == -1); 920 if (likely(!is_migrate_isolate(migratetype))) 921 __mod_zone_freepage_state(zone, 1 << order, migratetype); 922 923 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 924 VM_BUG_ON_PAGE(bad_range(zone, page), page); 925 926 continue_merging: 927 while (order < max_order - 1) { 928 if (compaction_capture(capc, page, order, migratetype)) { 929 __mod_zone_freepage_state(zone, -(1 << order), 930 migratetype); 931 return; 932 } 933 buddy_pfn = __find_buddy_pfn(pfn, order); 934 buddy = page + (buddy_pfn - pfn); 935 936 if (!pfn_valid_within(buddy_pfn)) 937 goto done_merging; 938 if (!page_is_buddy(page, buddy, order)) 939 goto done_merging; 940 /* 941 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 942 * merge with it and move up one order. 943 */ 944 if (page_is_guard(buddy)) 945 clear_page_guard(zone, buddy, order, migratetype); 946 else 947 del_page_from_free_area(buddy, &zone->free_area[order]); 948 combined_pfn = buddy_pfn & pfn; 949 page = page + (combined_pfn - pfn); 950 pfn = combined_pfn; 951 order++; 952 } 953 if (max_order < MAX_ORDER) { 954 /* If we are here, it means order is >= pageblock_order. 955 * We want to prevent merge between freepages on isolate 956 * pageblock and normal pageblock. Without this, pageblock 957 * isolation could cause incorrect freepage or CMA accounting. 958 * 959 * We don't want to hit this code for the more frequent 960 * low-order merging. 961 */ 962 if (unlikely(has_isolate_pageblock(zone))) { 963 int buddy_mt; 964 965 buddy_pfn = __find_buddy_pfn(pfn, order); 966 buddy = page + (buddy_pfn - pfn); 967 buddy_mt = get_pageblock_migratetype(buddy); 968 969 if (migratetype != buddy_mt 970 && (is_migrate_isolate(migratetype) || 971 is_migrate_isolate(buddy_mt))) 972 goto done_merging; 973 } 974 max_order++; 975 goto continue_merging; 976 } 977 978 done_merging: 979 set_page_order(page, order); 980 981 /* 982 * If this is not the largest possible page, check if the buddy 983 * of the next-highest order is free. If it is, it's possible 984 * that pages are being freed that will coalesce soon. In case, 985 * that is happening, add the free page to the tail of the list 986 * so it's less likely to be used soon and more likely to be merged 987 * as a higher order page 988 */ 989 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn) 990 && !is_shuffle_order(order)) { 991 struct page *higher_page, *higher_buddy; 992 combined_pfn = buddy_pfn & pfn; 993 higher_page = page + (combined_pfn - pfn); 994 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 995 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 996 if (pfn_valid_within(buddy_pfn) && 997 page_is_buddy(higher_page, higher_buddy, order + 1)) { 998 add_to_free_area_tail(page, &zone->free_area[order], 999 migratetype); 1000 return; 1001 } 1002 } 1003 1004 if (is_shuffle_order(order)) 1005 add_to_free_area_random(page, &zone->free_area[order], 1006 migratetype); 1007 else 1008 add_to_free_area(page, &zone->free_area[order], migratetype); 1009 1010 } 1011 1012 /* 1013 * A bad page could be due to a number of fields. Instead of multiple branches, 1014 * try and check multiple fields with one check. The caller must do a detailed 1015 * check if necessary. 1016 */ 1017 static inline bool page_expected_state(struct page *page, 1018 unsigned long check_flags) 1019 { 1020 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1021 return false; 1022 1023 if (unlikely((unsigned long)page->mapping | 1024 page_ref_count(page) | 1025 #ifdef CONFIG_MEMCG 1026 (unsigned long)page->mem_cgroup | 1027 #endif 1028 (page->flags & check_flags))) 1029 return false; 1030 1031 return true; 1032 } 1033 1034 static void free_pages_check_bad(struct page *page) 1035 { 1036 const char *bad_reason; 1037 unsigned long bad_flags; 1038 1039 bad_reason = NULL; 1040 bad_flags = 0; 1041 1042 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1043 bad_reason = "nonzero mapcount"; 1044 if (unlikely(page->mapping != NULL)) 1045 bad_reason = "non-NULL mapping"; 1046 if (unlikely(page_ref_count(page) != 0)) 1047 bad_reason = "nonzero _refcount"; 1048 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1049 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1050 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1051 } 1052 #ifdef CONFIG_MEMCG 1053 if (unlikely(page->mem_cgroup)) 1054 bad_reason = "page still charged to cgroup"; 1055 #endif 1056 bad_page(page, bad_reason, bad_flags); 1057 } 1058 1059 static inline int free_pages_check(struct page *page) 1060 { 1061 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1062 return 0; 1063 1064 /* Something has gone sideways, find it */ 1065 free_pages_check_bad(page); 1066 return 1; 1067 } 1068 1069 static int free_tail_pages_check(struct page *head_page, struct page *page) 1070 { 1071 int ret = 1; 1072 1073 /* 1074 * We rely page->lru.next never has bit 0 set, unless the page 1075 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1076 */ 1077 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1078 1079 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1080 ret = 0; 1081 goto out; 1082 } 1083 switch (page - head_page) { 1084 case 1: 1085 /* the first tail page: ->mapping may be compound_mapcount() */ 1086 if (unlikely(compound_mapcount(page))) { 1087 bad_page(page, "nonzero compound_mapcount", 0); 1088 goto out; 1089 } 1090 break; 1091 case 2: 1092 /* 1093 * the second tail page: ->mapping is 1094 * deferred_list.next -- ignore value. 1095 */ 1096 break; 1097 default: 1098 if (page->mapping != TAIL_MAPPING) { 1099 bad_page(page, "corrupted mapping in tail page", 0); 1100 goto out; 1101 } 1102 break; 1103 } 1104 if (unlikely(!PageTail(page))) { 1105 bad_page(page, "PageTail not set", 0); 1106 goto out; 1107 } 1108 if (unlikely(compound_head(page) != head_page)) { 1109 bad_page(page, "compound_head not consistent", 0); 1110 goto out; 1111 } 1112 ret = 0; 1113 out: 1114 page->mapping = NULL; 1115 clear_compound_head(page); 1116 return ret; 1117 } 1118 1119 static void kernel_init_free_pages(struct page *page, int numpages) 1120 { 1121 int i; 1122 1123 for (i = 0; i < numpages; i++) 1124 clear_highpage(page + i); 1125 } 1126 1127 static __always_inline bool free_pages_prepare(struct page *page, 1128 unsigned int order, bool check_free) 1129 { 1130 int bad = 0; 1131 1132 VM_BUG_ON_PAGE(PageTail(page), page); 1133 1134 trace_mm_page_free(page, order); 1135 1136 /* 1137 * Check tail pages before head page information is cleared to 1138 * avoid checking PageCompound for order-0 pages. 1139 */ 1140 if (unlikely(order)) { 1141 bool compound = PageCompound(page); 1142 int i; 1143 1144 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1145 1146 if (compound) 1147 ClearPageDoubleMap(page); 1148 for (i = 1; i < (1 << order); i++) { 1149 if (compound) 1150 bad += free_tail_pages_check(page, page + i); 1151 if (unlikely(free_pages_check(page + i))) { 1152 bad++; 1153 continue; 1154 } 1155 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1156 } 1157 } 1158 if (PageMappingFlags(page)) 1159 page->mapping = NULL; 1160 if (memcg_kmem_enabled() && PageKmemcg(page)) 1161 __memcg_kmem_uncharge(page, order); 1162 if (check_free) 1163 bad += free_pages_check(page); 1164 if (bad) 1165 return false; 1166 1167 page_cpupid_reset_last(page); 1168 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1169 reset_page_owner(page, order); 1170 1171 if (!PageHighMem(page)) { 1172 debug_check_no_locks_freed(page_address(page), 1173 PAGE_SIZE << order); 1174 debug_check_no_obj_freed(page_address(page), 1175 PAGE_SIZE << order); 1176 } 1177 arch_free_page(page, order); 1178 if (want_init_on_free()) 1179 kernel_init_free_pages(page, 1 << order); 1180 1181 kernel_poison_pages(page, 1 << order, 0); 1182 if (debug_pagealloc_enabled()) 1183 kernel_map_pages(page, 1 << order, 0); 1184 1185 kasan_free_nondeferred_pages(page, order); 1186 1187 return true; 1188 } 1189 1190 #ifdef CONFIG_DEBUG_VM 1191 /* 1192 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1193 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1194 * moved from pcp lists to free lists. 1195 */ 1196 static bool free_pcp_prepare(struct page *page) 1197 { 1198 return free_pages_prepare(page, 0, true); 1199 } 1200 1201 static bool bulkfree_pcp_prepare(struct page *page) 1202 { 1203 if (debug_pagealloc_enabled()) 1204 return free_pages_check(page); 1205 else 1206 return false; 1207 } 1208 #else 1209 /* 1210 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1211 * moving from pcp lists to free list in order to reduce overhead. With 1212 * debug_pagealloc enabled, they are checked also immediately when being freed 1213 * to the pcp lists. 1214 */ 1215 static bool free_pcp_prepare(struct page *page) 1216 { 1217 if (debug_pagealloc_enabled()) 1218 return free_pages_prepare(page, 0, true); 1219 else 1220 return free_pages_prepare(page, 0, false); 1221 } 1222 1223 static bool bulkfree_pcp_prepare(struct page *page) 1224 { 1225 return free_pages_check(page); 1226 } 1227 #endif /* CONFIG_DEBUG_VM */ 1228 1229 static inline void prefetch_buddy(struct page *page) 1230 { 1231 unsigned long pfn = page_to_pfn(page); 1232 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1233 struct page *buddy = page + (buddy_pfn - pfn); 1234 1235 prefetch(buddy); 1236 } 1237 1238 /* 1239 * Frees a number of pages from the PCP lists 1240 * Assumes all pages on list are in same zone, and of same order. 1241 * count is the number of pages to free. 1242 * 1243 * If the zone was previously in an "all pages pinned" state then look to 1244 * see if this freeing clears that state. 1245 * 1246 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1247 * pinned" detection logic. 1248 */ 1249 static void free_pcppages_bulk(struct zone *zone, int count, 1250 struct per_cpu_pages *pcp) 1251 { 1252 int migratetype = 0; 1253 int batch_free = 0; 1254 int prefetch_nr = 0; 1255 bool isolated_pageblocks; 1256 struct page *page, *tmp; 1257 LIST_HEAD(head); 1258 1259 while (count) { 1260 struct list_head *list; 1261 1262 /* 1263 * Remove pages from lists in a round-robin fashion. A 1264 * batch_free count is maintained that is incremented when an 1265 * empty list is encountered. This is so more pages are freed 1266 * off fuller lists instead of spinning excessively around empty 1267 * lists 1268 */ 1269 do { 1270 batch_free++; 1271 if (++migratetype == MIGRATE_PCPTYPES) 1272 migratetype = 0; 1273 list = &pcp->lists[migratetype]; 1274 } while (list_empty(list)); 1275 1276 /* This is the only non-empty list. Free them all. */ 1277 if (batch_free == MIGRATE_PCPTYPES) 1278 batch_free = count; 1279 1280 do { 1281 page = list_last_entry(list, struct page, lru); 1282 /* must delete to avoid corrupting pcp list */ 1283 list_del(&page->lru); 1284 pcp->count--; 1285 1286 if (bulkfree_pcp_prepare(page)) 1287 continue; 1288 1289 list_add_tail(&page->lru, &head); 1290 1291 /* 1292 * We are going to put the page back to the global 1293 * pool, prefetch its buddy to speed up later access 1294 * under zone->lock. It is believed the overhead of 1295 * an additional test and calculating buddy_pfn here 1296 * can be offset by reduced memory latency later. To 1297 * avoid excessive prefetching due to large count, only 1298 * prefetch buddy for the first pcp->batch nr of pages. 1299 */ 1300 if (prefetch_nr++ < pcp->batch) 1301 prefetch_buddy(page); 1302 } while (--count && --batch_free && !list_empty(list)); 1303 } 1304 1305 spin_lock(&zone->lock); 1306 isolated_pageblocks = has_isolate_pageblock(zone); 1307 1308 /* 1309 * Use safe version since after __free_one_page(), 1310 * page->lru.next will not point to original list. 1311 */ 1312 list_for_each_entry_safe(page, tmp, &head, lru) { 1313 int mt = get_pcppage_migratetype(page); 1314 /* MIGRATE_ISOLATE page should not go to pcplists */ 1315 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1316 /* Pageblock could have been isolated meanwhile */ 1317 if (unlikely(isolated_pageblocks)) 1318 mt = get_pageblock_migratetype(page); 1319 1320 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1321 trace_mm_page_pcpu_drain(page, 0, mt); 1322 } 1323 spin_unlock(&zone->lock); 1324 } 1325 1326 static void free_one_page(struct zone *zone, 1327 struct page *page, unsigned long pfn, 1328 unsigned int order, 1329 int migratetype) 1330 { 1331 spin_lock(&zone->lock); 1332 if (unlikely(has_isolate_pageblock(zone) || 1333 is_migrate_isolate(migratetype))) { 1334 migratetype = get_pfnblock_migratetype(page, pfn); 1335 } 1336 __free_one_page(page, pfn, zone, order, migratetype); 1337 spin_unlock(&zone->lock); 1338 } 1339 1340 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1341 unsigned long zone, int nid) 1342 { 1343 mm_zero_struct_page(page); 1344 set_page_links(page, zone, nid, pfn); 1345 init_page_count(page); 1346 page_mapcount_reset(page); 1347 page_cpupid_reset_last(page); 1348 page_kasan_tag_reset(page); 1349 1350 INIT_LIST_HEAD(&page->lru); 1351 #ifdef WANT_PAGE_VIRTUAL 1352 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1353 if (!is_highmem_idx(zone)) 1354 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1355 #endif 1356 } 1357 1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1359 static void __meminit init_reserved_page(unsigned long pfn) 1360 { 1361 pg_data_t *pgdat; 1362 int nid, zid; 1363 1364 if (!early_page_uninitialised(pfn)) 1365 return; 1366 1367 nid = early_pfn_to_nid(pfn); 1368 pgdat = NODE_DATA(nid); 1369 1370 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1371 struct zone *zone = &pgdat->node_zones[zid]; 1372 1373 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1374 break; 1375 } 1376 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1377 } 1378 #else 1379 static inline void init_reserved_page(unsigned long pfn) 1380 { 1381 } 1382 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1383 1384 /* 1385 * Initialised pages do not have PageReserved set. This function is 1386 * called for each range allocated by the bootmem allocator and 1387 * marks the pages PageReserved. The remaining valid pages are later 1388 * sent to the buddy page allocator. 1389 */ 1390 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1391 { 1392 unsigned long start_pfn = PFN_DOWN(start); 1393 unsigned long end_pfn = PFN_UP(end); 1394 1395 for (; start_pfn < end_pfn; start_pfn++) { 1396 if (pfn_valid(start_pfn)) { 1397 struct page *page = pfn_to_page(start_pfn); 1398 1399 init_reserved_page(start_pfn); 1400 1401 /* Avoid false-positive PageTail() */ 1402 INIT_LIST_HEAD(&page->lru); 1403 1404 /* 1405 * no need for atomic set_bit because the struct 1406 * page is not visible yet so nobody should 1407 * access it yet. 1408 */ 1409 __SetPageReserved(page); 1410 } 1411 } 1412 } 1413 1414 static void __free_pages_ok(struct page *page, unsigned int order) 1415 { 1416 unsigned long flags; 1417 int migratetype; 1418 unsigned long pfn = page_to_pfn(page); 1419 1420 if (!free_pages_prepare(page, order, true)) 1421 return; 1422 1423 migratetype = get_pfnblock_migratetype(page, pfn); 1424 local_irq_save(flags); 1425 __count_vm_events(PGFREE, 1 << order); 1426 free_one_page(page_zone(page), page, pfn, order, migratetype); 1427 local_irq_restore(flags); 1428 } 1429 1430 void __free_pages_core(struct page *page, unsigned int order) 1431 { 1432 unsigned int nr_pages = 1 << order; 1433 struct page *p = page; 1434 unsigned int loop; 1435 1436 prefetchw(p); 1437 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1438 prefetchw(p + 1); 1439 __ClearPageReserved(p); 1440 set_page_count(p, 0); 1441 } 1442 __ClearPageReserved(p); 1443 set_page_count(p, 0); 1444 1445 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1446 set_page_refcounted(page); 1447 __free_pages(page, order); 1448 } 1449 1450 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1451 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1452 1453 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1454 1455 int __meminit early_pfn_to_nid(unsigned long pfn) 1456 { 1457 static DEFINE_SPINLOCK(early_pfn_lock); 1458 int nid; 1459 1460 spin_lock(&early_pfn_lock); 1461 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1462 if (nid < 0) 1463 nid = first_online_node; 1464 spin_unlock(&early_pfn_lock); 1465 1466 return nid; 1467 } 1468 #endif 1469 1470 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1471 /* Only safe to use early in boot when initialisation is single-threaded */ 1472 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1473 { 1474 int nid; 1475 1476 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1477 if (nid >= 0 && nid != node) 1478 return false; 1479 return true; 1480 } 1481 1482 #else 1483 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1484 { 1485 return true; 1486 } 1487 #endif 1488 1489 1490 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1491 unsigned int order) 1492 { 1493 if (early_page_uninitialised(pfn)) 1494 return; 1495 __free_pages_core(page, order); 1496 } 1497 1498 /* 1499 * Check that the whole (or subset of) a pageblock given by the interval of 1500 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1501 * with the migration of free compaction scanner. The scanners then need to 1502 * use only pfn_valid_within() check for arches that allow holes within 1503 * pageblocks. 1504 * 1505 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1506 * 1507 * It's possible on some configurations to have a setup like node0 node1 node0 1508 * i.e. it's possible that all pages within a zones range of pages do not 1509 * belong to a single zone. We assume that a border between node0 and node1 1510 * can occur within a single pageblock, but not a node0 node1 node0 1511 * interleaving within a single pageblock. It is therefore sufficient to check 1512 * the first and last page of a pageblock and avoid checking each individual 1513 * page in a pageblock. 1514 */ 1515 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1516 unsigned long end_pfn, struct zone *zone) 1517 { 1518 struct page *start_page; 1519 struct page *end_page; 1520 1521 /* end_pfn is one past the range we are checking */ 1522 end_pfn--; 1523 1524 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1525 return NULL; 1526 1527 start_page = pfn_to_online_page(start_pfn); 1528 if (!start_page) 1529 return NULL; 1530 1531 if (page_zone(start_page) != zone) 1532 return NULL; 1533 1534 end_page = pfn_to_page(end_pfn); 1535 1536 /* This gives a shorter code than deriving page_zone(end_page) */ 1537 if (page_zone_id(start_page) != page_zone_id(end_page)) 1538 return NULL; 1539 1540 return start_page; 1541 } 1542 1543 void set_zone_contiguous(struct zone *zone) 1544 { 1545 unsigned long block_start_pfn = zone->zone_start_pfn; 1546 unsigned long block_end_pfn; 1547 1548 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1549 for (; block_start_pfn < zone_end_pfn(zone); 1550 block_start_pfn = block_end_pfn, 1551 block_end_pfn += pageblock_nr_pages) { 1552 1553 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1554 1555 if (!__pageblock_pfn_to_page(block_start_pfn, 1556 block_end_pfn, zone)) 1557 return; 1558 } 1559 1560 /* We confirm that there is no hole */ 1561 zone->contiguous = true; 1562 } 1563 1564 void clear_zone_contiguous(struct zone *zone) 1565 { 1566 zone->contiguous = false; 1567 } 1568 1569 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1570 static void __init deferred_free_range(unsigned long pfn, 1571 unsigned long nr_pages) 1572 { 1573 struct page *page; 1574 unsigned long i; 1575 1576 if (!nr_pages) 1577 return; 1578 1579 page = pfn_to_page(pfn); 1580 1581 /* Free a large naturally-aligned chunk if possible */ 1582 if (nr_pages == pageblock_nr_pages && 1583 (pfn & (pageblock_nr_pages - 1)) == 0) { 1584 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1585 __free_pages_core(page, pageblock_order); 1586 return; 1587 } 1588 1589 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1590 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1592 __free_pages_core(page, 0); 1593 } 1594 } 1595 1596 /* Completion tracking for deferred_init_memmap() threads */ 1597 static atomic_t pgdat_init_n_undone __initdata; 1598 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1599 1600 static inline void __init pgdat_init_report_one_done(void) 1601 { 1602 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1603 complete(&pgdat_init_all_done_comp); 1604 } 1605 1606 /* 1607 * Returns true if page needs to be initialized or freed to buddy allocator. 1608 * 1609 * First we check if pfn is valid on architectures where it is possible to have 1610 * holes within pageblock_nr_pages. On systems where it is not possible, this 1611 * function is optimized out. 1612 * 1613 * Then, we check if a current large page is valid by only checking the validity 1614 * of the head pfn. 1615 */ 1616 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1617 { 1618 if (!pfn_valid_within(pfn)) 1619 return false; 1620 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1621 return false; 1622 return true; 1623 } 1624 1625 /* 1626 * Free pages to buddy allocator. Try to free aligned pages in 1627 * pageblock_nr_pages sizes. 1628 */ 1629 static void __init deferred_free_pages(unsigned long pfn, 1630 unsigned long end_pfn) 1631 { 1632 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1633 unsigned long nr_free = 0; 1634 1635 for (; pfn < end_pfn; pfn++) { 1636 if (!deferred_pfn_valid(pfn)) { 1637 deferred_free_range(pfn - nr_free, nr_free); 1638 nr_free = 0; 1639 } else if (!(pfn & nr_pgmask)) { 1640 deferred_free_range(pfn - nr_free, nr_free); 1641 nr_free = 1; 1642 touch_nmi_watchdog(); 1643 } else { 1644 nr_free++; 1645 } 1646 } 1647 /* Free the last block of pages to allocator */ 1648 deferred_free_range(pfn - nr_free, nr_free); 1649 } 1650 1651 /* 1652 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1653 * by performing it only once every pageblock_nr_pages. 1654 * Return number of pages initialized. 1655 */ 1656 static unsigned long __init deferred_init_pages(struct zone *zone, 1657 unsigned long pfn, 1658 unsigned long end_pfn) 1659 { 1660 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1661 int nid = zone_to_nid(zone); 1662 unsigned long nr_pages = 0; 1663 int zid = zone_idx(zone); 1664 struct page *page = NULL; 1665 1666 for (; pfn < end_pfn; pfn++) { 1667 if (!deferred_pfn_valid(pfn)) { 1668 page = NULL; 1669 continue; 1670 } else if (!page || !(pfn & nr_pgmask)) { 1671 page = pfn_to_page(pfn); 1672 touch_nmi_watchdog(); 1673 } else { 1674 page++; 1675 } 1676 __init_single_page(page, pfn, zid, nid); 1677 nr_pages++; 1678 } 1679 return (nr_pages); 1680 } 1681 1682 /* 1683 * This function is meant to pre-load the iterator for the zone init. 1684 * Specifically it walks through the ranges until we are caught up to the 1685 * first_init_pfn value and exits there. If we never encounter the value we 1686 * return false indicating there are no valid ranges left. 1687 */ 1688 static bool __init 1689 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1690 unsigned long *spfn, unsigned long *epfn, 1691 unsigned long first_init_pfn) 1692 { 1693 u64 j; 1694 1695 /* 1696 * Start out by walking through the ranges in this zone that have 1697 * already been initialized. We don't need to do anything with them 1698 * so we just need to flush them out of the system. 1699 */ 1700 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1701 if (*epfn <= first_init_pfn) 1702 continue; 1703 if (*spfn < first_init_pfn) 1704 *spfn = first_init_pfn; 1705 *i = j; 1706 return true; 1707 } 1708 1709 return false; 1710 } 1711 1712 /* 1713 * Initialize and free pages. We do it in two loops: first we initialize 1714 * struct page, then free to buddy allocator, because while we are 1715 * freeing pages we can access pages that are ahead (computing buddy 1716 * page in __free_one_page()). 1717 * 1718 * In order to try and keep some memory in the cache we have the loop 1719 * broken along max page order boundaries. This way we will not cause 1720 * any issues with the buddy page computation. 1721 */ 1722 static unsigned long __init 1723 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1724 unsigned long *end_pfn) 1725 { 1726 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1727 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1728 unsigned long nr_pages = 0; 1729 u64 j = *i; 1730 1731 /* First we loop through and initialize the page values */ 1732 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1733 unsigned long t; 1734 1735 if (mo_pfn <= *start_pfn) 1736 break; 1737 1738 t = min(mo_pfn, *end_pfn); 1739 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1740 1741 if (mo_pfn < *end_pfn) { 1742 *start_pfn = mo_pfn; 1743 break; 1744 } 1745 } 1746 1747 /* Reset values and now loop through freeing pages as needed */ 1748 swap(j, *i); 1749 1750 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1751 unsigned long t; 1752 1753 if (mo_pfn <= spfn) 1754 break; 1755 1756 t = min(mo_pfn, epfn); 1757 deferred_free_pages(spfn, t); 1758 1759 if (mo_pfn <= epfn) 1760 break; 1761 } 1762 1763 return nr_pages; 1764 } 1765 1766 /* Initialise remaining memory on a node */ 1767 static int __init deferred_init_memmap(void *data) 1768 { 1769 pg_data_t *pgdat = data; 1770 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1771 unsigned long spfn = 0, epfn = 0, nr_pages = 0; 1772 unsigned long first_init_pfn, flags; 1773 unsigned long start = jiffies; 1774 struct zone *zone; 1775 int zid; 1776 u64 i; 1777 1778 /* Bind memory initialisation thread to a local node if possible */ 1779 if (!cpumask_empty(cpumask)) 1780 set_cpus_allowed_ptr(current, cpumask); 1781 1782 pgdat_resize_lock(pgdat, &flags); 1783 first_init_pfn = pgdat->first_deferred_pfn; 1784 if (first_init_pfn == ULONG_MAX) { 1785 pgdat_resize_unlock(pgdat, &flags); 1786 pgdat_init_report_one_done(); 1787 return 0; 1788 } 1789 1790 /* Sanity check boundaries */ 1791 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1792 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1793 pgdat->first_deferred_pfn = ULONG_MAX; 1794 1795 /* Only the highest zone is deferred so find it */ 1796 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1797 zone = pgdat->node_zones + zid; 1798 if (first_init_pfn < zone_end_pfn(zone)) 1799 break; 1800 } 1801 1802 /* If the zone is empty somebody else may have cleared out the zone */ 1803 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1804 first_init_pfn)) 1805 goto zone_empty; 1806 1807 /* 1808 * Initialize and free pages in MAX_ORDER sized increments so 1809 * that we can avoid introducing any issues with the buddy 1810 * allocator. 1811 */ 1812 while (spfn < epfn) 1813 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1814 zone_empty: 1815 pgdat_resize_unlock(pgdat, &flags); 1816 1817 /* Sanity check that the next zone really is unpopulated */ 1818 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1819 1820 pr_info("node %d initialised, %lu pages in %ums\n", 1821 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start)); 1822 1823 pgdat_init_report_one_done(); 1824 return 0; 1825 } 1826 1827 /* 1828 * If this zone has deferred pages, try to grow it by initializing enough 1829 * deferred pages to satisfy the allocation specified by order, rounded up to 1830 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1831 * of SECTION_SIZE bytes by initializing struct pages in increments of 1832 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1833 * 1834 * Return true when zone was grown, otherwise return false. We return true even 1835 * when we grow less than requested, to let the caller decide if there are 1836 * enough pages to satisfy the allocation. 1837 * 1838 * Note: We use noinline because this function is needed only during boot, and 1839 * it is called from a __ref function _deferred_grow_zone. This way we are 1840 * making sure that it is not inlined into permanent text section. 1841 */ 1842 static noinline bool __init 1843 deferred_grow_zone(struct zone *zone, unsigned int order) 1844 { 1845 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1846 pg_data_t *pgdat = zone->zone_pgdat; 1847 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1848 unsigned long spfn, epfn, flags; 1849 unsigned long nr_pages = 0; 1850 u64 i; 1851 1852 /* Only the last zone may have deferred pages */ 1853 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1854 return false; 1855 1856 pgdat_resize_lock(pgdat, &flags); 1857 1858 /* 1859 * If deferred pages have been initialized while we were waiting for 1860 * the lock, return true, as the zone was grown. The caller will retry 1861 * this zone. We won't return to this function since the caller also 1862 * has this static branch. 1863 */ 1864 if (!static_branch_unlikely(&deferred_pages)) { 1865 pgdat_resize_unlock(pgdat, &flags); 1866 return true; 1867 } 1868 1869 /* 1870 * If someone grew this zone while we were waiting for spinlock, return 1871 * true, as there might be enough pages already. 1872 */ 1873 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1874 pgdat_resize_unlock(pgdat, &flags); 1875 return true; 1876 } 1877 1878 /* If the zone is empty somebody else may have cleared out the zone */ 1879 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1880 first_deferred_pfn)) { 1881 pgdat->first_deferred_pfn = ULONG_MAX; 1882 pgdat_resize_unlock(pgdat, &flags); 1883 /* Retry only once. */ 1884 return first_deferred_pfn != ULONG_MAX; 1885 } 1886 1887 /* 1888 * Initialize and free pages in MAX_ORDER sized increments so 1889 * that we can avoid introducing any issues with the buddy 1890 * allocator. 1891 */ 1892 while (spfn < epfn) { 1893 /* update our first deferred PFN for this section */ 1894 first_deferred_pfn = spfn; 1895 1896 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1897 1898 /* We should only stop along section boundaries */ 1899 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1900 continue; 1901 1902 /* If our quota has been met we can stop here */ 1903 if (nr_pages >= nr_pages_needed) 1904 break; 1905 } 1906 1907 pgdat->first_deferred_pfn = spfn; 1908 pgdat_resize_unlock(pgdat, &flags); 1909 1910 return nr_pages > 0; 1911 } 1912 1913 /* 1914 * deferred_grow_zone() is __init, but it is called from 1915 * get_page_from_freelist() during early boot until deferred_pages permanently 1916 * disables this call. This is why we have refdata wrapper to avoid warning, 1917 * and to ensure that the function body gets unloaded. 1918 */ 1919 static bool __ref 1920 _deferred_grow_zone(struct zone *zone, unsigned int order) 1921 { 1922 return deferred_grow_zone(zone, order); 1923 } 1924 1925 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1926 1927 void __init page_alloc_init_late(void) 1928 { 1929 struct zone *zone; 1930 int nid; 1931 1932 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1933 1934 /* There will be num_node_state(N_MEMORY) threads */ 1935 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1936 for_each_node_state(nid, N_MEMORY) { 1937 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1938 } 1939 1940 /* Block until all are initialised */ 1941 wait_for_completion(&pgdat_init_all_done_comp); 1942 1943 /* 1944 * We initialized the rest of the deferred pages. Permanently disable 1945 * on-demand struct page initialization. 1946 */ 1947 static_branch_disable(&deferred_pages); 1948 1949 /* Reinit limits that are based on free pages after the kernel is up */ 1950 files_maxfiles_init(); 1951 #endif 1952 1953 /* Discard memblock private memory */ 1954 memblock_discard(); 1955 1956 for_each_node_state(nid, N_MEMORY) 1957 shuffle_free_memory(NODE_DATA(nid)); 1958 1959 for_each_populated_zone(zone) 1960 set_zone_contiguous(zone); 1961 1962 #ifdef CONFIG_DEBUG_PAGEALLOC 1963 init_debug_guardpage(); 1964 #endif 1965 } 1966 1967 #ifdef CONFIG_CMA 1968 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1969 void __init init_cma_reserved_pageblock(struct page *page) 1970 { 1971 unsigned i = pageblock_nr_pages; 1972 struct page *p = page; 1973 1974 do { 1975 __ClearPageReserved(p); 1976 set_page_count(p, 0); 1977 } while (++p, --i); 1978 1979 set_pageblock_migratetype(page, MIGRATE_CMA); 1980 1981 if (pageblock_order >= MAX_ORDER) { 1982 i = pageblock_nr_pages; 1983 p = page; 1984 do { 1985 set_page_refcounted(p); 1986 __free_pages(p, MAX_ORDER - 1); 1987 p += MAX_ORDER_NR_PAGES; 1988 } while (i -= MAX_ORDER_NR_PAGES); 1989 } else { 1990 set_page_refcounted(page); 1991 __free_pages(page, pageblock_order); 1992 } 1993 1994 adjust_managed_page_count(page, pageblock_nr_pages); 1995 } 1996 #endif 1997 1998 /* 1999 * The order of subdivision here is critical for the IO subsystem. 2000 * Please do not alter this order without good reasons and regression 2001 * testing. Specifically, as large blocks of memory are subdivided, 2002 * the order in which smaller blocks are delivered depends on the order 2003 * they're subdivided in this function. This is the primary factor 2004 * influencing the order in which pages are delivered to the IO 2005 * subsystem according to empirical testing, and this is also justified 2006 * by considering the behavior of a buddy system containing a single 2007 * large block of memory acted on by a series of small allocations. 2008 * This behavior is a critical factor in sglist merging's success. 2009 * 2010 * -- nyc 2011 */ 2012 static inline void expand(struct zone *zone, struct page *page, 2013 int low, int high, struct free_area *area, 2014 int migratetype) 2015 { 2016 unsigned long size = 1 << high; 2017 2018 while (high > low) { 2019 area--; 2020 high--; 2021 size >>= 1; 2022 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2023 2024 /* 2025 * Mark as guard pages (or page), that will allow to 2026 * merge back to allocator when buddy will be freed. 2027 * Corresponding page table entries will not be touched, 2028 * pages will stay not present in virtual address space 2029 */ 2030 if (set_page_guard(zone, &page[size], high, migratetype)) 2031 continue; 2032 2033 add_to_free_area(&page[size], area, migratetype); 2034 set_page_order(&page[size], high); 2035 } 2036 } 2037 2038 static void check_new_page_bad(struct page *page) 2039 { 2040 const char *bad_reason = NULL; 2041 unsigned long bad_flags = 0; 2042 2043 if (unlikely(atomic_read(&page->_mapcount) != -1)) 2044 bad_reason = "nonzero mapcount"; 2045 if (unlikely(page->mapping != NULL)) 2046 bad_reason = "non-NULL mapping"; 2047 if (unlikely(page_ref_count(page) != 0)) 2048 bad_reason = "nonzero _refcount"; 2049 if (unlikely(page->flags & __PG_HWPOISON)) { 2050 bad_reason = "HWPoisoned (hardware-corrupted)"; 2051 bad_flags = __PG_HWPOISON; 2052 /* Don't complain about hwpoisoned pages */ 2053 page_mapcount_reset(page); /* remove PageBuddy */ 2054 return; 2055 } 2056 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 2057 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 2058 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 2059 } 2060 #ifdef CONFIG_MEMCG 2061 if (unlikely(page->mem_cgroup)) 2062 bad_reason = "page still charged to cgroup"; 2063 #endif 2064 bad_page(page, bad_reason, bad_flags); 2065 } 2066 2067 /* 2068 * This page is about to be returned from the page allocator 2069 */ 2070 static inline int check_new_page(struct page *page) 2071 { 2072 if (likely(page_expected_state(page, 2073 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2074 return 0; 2075 2076 check_new_page_bad(page); 2077 return 1; 2078 } 2079 2080 static inline bool free_pages_prezeroed(void) 2081 { 2082 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2083 page_poisoning_enabled()) || want_init_on_free(); 2084 } 2085 2086 #ifdef CONFIG_DEBUG_VM 2087 /* 2088 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2089 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2090 * also checked when pcp lists are refilled from the free lists. 2091 */ 2092 static inline bool check_pcp_refill(struct page *page) 2093 { 2094 if (debug_pagealloc_enabled()) 2095 return check_new_page(page); 2096 else 2097 return false; 2098 } 2099 2100 static inline bool check_new_pcp(struct page *page) 2101 { 2102 return check_new_page(page); 2103 } 2104 #else 2105 /* 2106 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2107 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2108 * enabled, they are also checked when being allocated from the pcp lists. 2109 */ 2110 static inline bool check_pcp_refill(struct page *page) 2111 { 2112 return check_new_page(page); 2113 } 2114 static inline bool check_new_pcp(struct page *page) 2115 { 2116 if (debug_pagealloc_enabled()) 2117 return check_new_page(page); 2118 else 2119 return false; 2120 } 2121 #endif /* CONFIG_DEBUG_VM */ 2122 2123 static bool check_new_pages(struct page *page, unsigned int order) 2124 { 2125 int i; 2126 for (i = 0; i < (1 << order); i++) { 2127 struct page *p = page + i; 2128 2129 if (unlikely(check_new_page(p))) 2130 return true; 2131 } 2132 2133 return false; 2134 } 2135 2136 inline void post_alloc_hook(struct page *page, unsigned int order, 2137 gfp_t gfp_flags) 2138 { 2139 set_page_private(page, 0); 2140 set_page_refcounted(page); 2141 2142 arch_alloc_page(page, order); 2143 if (debug_pagealloc_enabled()) 2144 kernel_map_pages(page, 1 << order, 1); 2145 kasan_alloc_pages(page, order); 2146 kernel_poison_pages(page, 1 << order, 1); 2147 set_page_owner(page, order, gfp_flags); 2148 } 2149 2150 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2151 unsigned int alloc_flags) 2152 { 2153 post_alloc_hook(page, order, gfp_flags); 2154 2155 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2156 kernel_init_free_pages(page, 1 << order); 2157 2158 if (order && (gfp_flags & __GFP_COMP)) 2159 prep_compound_page(page, order); 2160 2161 /* 2162 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2163 * allocate the page. The expectation is that the caller is taking 2164 * steps that will free more memory. The caller should avoid the page 2165 * being used for !PFMEMALLOC purposes. 2166 */ 2167 if (alloc_flags & ALLOC_NO_WATERMARKS) 2168 set_page_pfmemalloc(page); 2169 else 2170 clear_page_pfmemalloc(page); 2171 } 2172 2173 /* 2174 * Go through the free lists for the given migratetype and remove 2175 * the smallest available page from the freelists 2176 */ 2177 static __always_inline 2178 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2179 int migratetype) 2180 { 2181 unsigned int current_order; 2182 struct free_area *area; 2183 struct page *page; 2184 2185 /* Find a page of the appropriate size in the preferred list */ 2186 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2187 area = &(zone->free_area[current_order]); 2188 page = get_page_from_free_area(area, migratetype); 2189 if (!page) 2190 continue; 2191 del_page_from_free_area(page, area); 2192 expand(zone, page, order, current_order, area, migratetype); 2193 set_pcppage_migratetype(page, migratetype); 2194 return page; 2195 } 2196 2197 return NULL; 2198 } 2199 2200 2201 /* 2202 * This array describes the order lists are fallen back to when 2203 * the free lists for the desirable migrate type are depleted 2204 */ 2205 static int fallbacks[MIGRATE_TYPES][4] = { 2206 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2207 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2208 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2209 #ifdef CONFIG_CMA 2210 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2211 #endif 2212 #ifdef CONFIG_MEMORY_ISOLATION 2213 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2214 #endif 2215 }; 2216 2217 #ifdef CONFIG_CMA 2218 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2219 unsigned int order) 2220 { 2221 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2222 } 2223 #else 2224 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2225 unsigned int order) { return NULL; } 2226 #endif 2227 2228 /* 2229 * Move the free pages in a range to the free lists of the requested type. 2230 * Note that start_page and end_pages are not aligned on a pageblock 2231 * boundary. If alignment is required, use move_freepages_block() 2232 */ 2233 static int move_freepages(struct zone *zone, 2234 struct page *start_page, struct page *end_page, 2235 int migratetype, int *num_movable) 2236 { 2237 struct page *page; 2238 unsigned int order; 2239 int pages_moved = 0; 2240 2241 #ifndef CONFIG_HOLES_IN_ZONE 2242 /* 2243 * page_zone is not safe to call in this context when 2244 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2245 * anyway as we check zone boundaries in move_freepages_block(). 2246 * Remove at a later date when no bug reports exist related to 2247 * grouping pages by mobility 2248 */ 2249 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2250 pfn_valid(page_to_pfn(end_page)) && 2251 page_zone(start_page) != page_zone(end_page)); 2252 #endif 2253 for (page = start_page; page <= end_page;) { 2254 if (!pfn_valid_within(page_to_pfn(page))) { 2255 page++; 2256 continue; 2257 } 2258 2259 /* Make sure we are not inadvertently changing nodes */ 2260 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2261 2262 if (!PageBuddy(page)) { 2263 /* 2264 * We assume that pages that could be isolated for 2265 * migration are movable. But we don't actually try 2266 * isolating, as that would be expensive. 2267 */ 2268 if (num_movable && 2269 (PageLRU(page) || __PageMovable(page))) 2270 (*num_movable)++; 2271 2272 page++; 2273 continue; 2274 } 2275 2276 order = page_order(page); 2277 move_to_free_area(page, &zone->free_area[order], migratetype); 2278 page += 1 << order; 2279 pages_moved += 1 << order; 2280 } 2281 2282 return pages_moved; 2283 } 2284 2285 int move_freepages_block(struct zone *zone, struct page *page, 2286 int migratetype, int *num_movable) 2287 { 2288 unsigned long start_pfn, end_pfn; 2289 struct page *start_page, *end_page; 2290 2291 if (num_movable) 2292 *num_movable = 0; 2293 2294 start_pfn = page_to_pfn(page); 2295 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2296 start_page = pfn_to_page(start_pfn); 2297 end_page = start_page + pageblock_nr_pages - 1; 2298 end_pfn = start_pfn + pageblock_nr_pages - 1; 2299 2300 /* Do not cross zone boundaries */ 2301 if (!zone_spans_pfn(zone, start_pfn)) 2302 start_page = page; 2303 if (!zone_spans_pfn(zone, end_pfn)) 2304 return 0; 2305 2306 return move_freepages(zone, start_page, end_page, migratetype, 2307 num_movable); 2308 } 2309 2310 static void change_pageblock_range(struct page *pageblock_page, 2311 int start_order, int migratetype) 2312 { 2313 int nr_pageblocks = 1 << (start_order - pageblock_order); 2314 2315 while (nr_pageblocks--) { 2316 set_pageblock_migratetype(pageblock_page, migratetype); 2317 pageblock_page += pageblock_nr_pages; 2318 } 2319 } 2320 2321 /* 2322 * When we are falling back to another migratetype during allocation, try to 2323 * steal extra free pages from the same pageblocks to satisfy further 2324 * allocations, instead of polluting multiple pageblocks. 2325 * 2326 * If we are stealing a relatively large buddy page, it is likely there will 2327 * be more free pages in the pageblock, so try to steal them all. For 2328 * reclaimable and unmovable allocations, we steal regardless of page size, 2329 * as fragmentation caused by those allocations polluting movable pageblocks 2330 * is worse than movable allocations stealing from unmovable and reclaimable 2331 * pageblocks. 2332 */ 2333 static bool can_steal_fallback(unsigned int order, int start_mt) 2334 { 2335 /* 2336 * Leaving this order check is intended, although there is 2337 * relaxed order check in next check. The reason is that 2338 * we can actually steal whole pageblock if this condition met, 2339 * but, below check doesn't guarantee it and that is just heuristic 2340 * so could be changed anytime. 2341 */ 2342 if (order >= pageblock_order) 2343 return true; 2344 2345 if (order >= pageblock_order / 2 || 2346 start_mt == MIGRATE_RECLAIMABLE || 2347 start_mt == MIGRATE_UNMOVABLE || 2348 page_group_by_mobility_disabled) 2349 return true; 2350 2351 return false; 2352 } 2353 2354 static inline void boost_watermark(struct zone *zone) 2355 { 2356 unsigned long max_boost; 2357 2358 if (!watermark_boost_factor) 2359 return; 2360 2361 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2362 watermark_boost_factor, 10000); 2363 2364 /* 2365 * high watermark may be uninitialised if fragmentation occurs 2366 * very early in boot so do not boost. We do not fall 2367 * through and boost by pageblock_nr_pages as failing 2368 * allocations that early means that reclaim is not going 2369 * to help and it may even be impossible to reclaim the 2370 * boosted watermark resulting in a hang. 2371 */ 2372 if (!max_boost) 2373 return; 2374 2375 max_boost = max(pageblock_nr_pages, max_boost); 2376 2377 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2378 max_boost); 2379 } 2380 2381 /* 2382 * This function implements actual steal behaviour. If order is large enough, 2383 * we can steal whole pageblock. If not, we first move freepages in this 2384 * pageblock to our migratetype and determine how many already-allocated pages 2385 * are there in the pageblock with a compatible migratetype. If at least half 2386 * of pages are free or compatible, we can change migratetype of the pageblock 2387 * itself, so pages freed in the future will be put on the correct free list. 2388 */ 2389 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2390 unsigned int alloc_flags, int start_type, bool whole_block) 2391 { 2392 unsigned int current_order = page_order(page); 2393 struct free_area *area; 2394 int free_pages, movable_pages, alike_pages; 2395 int old_block_type; 2396 2397 old_block_type = get_pageblock_migratetype(page); 2398 2399 /* 2400 * This can happen due to races and we want to prevent broken 2401 * highatomic accounting. 2402 */ 2403 if (is_migrate_highatomic(old_block_type)) 2404 goto single_page; 2405 2406 /* Take ownership for orders >= pageblock_order */ 2407 if (current_order >= pageblock_order) { 2408 change_pageblock_range(page, current_order, start_type); 2409 goto single_page; 2410 } 2411 2412 /* 2413 * Boost watermarks to increase reclaim pressure to reduce the 2414 * likelihood of future fallbacks. Wake kswapd now as the node 2415 * may be balanced overall and kswapd will not wake naturally. 2416 */ 2417 boost_watermark(zone); 2418 if (alloc_flags & ALLOC_KSWAPD) 2419 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2420 2421 /* We are not allowed to try stealing from the whole block */ 2422 if (!whole_block) 2423 goto single_page; 2424 2425 free_pages = move_freepages_block(zone, page, start_type, 2426 &movable_pages); 2427 /* 2428 * Determine how many pages are compatible with our allocation. 2429 * For movable allocation, it's the number of movable pages which 2430 * we just obtained. For other types it's a bit more tricky. 2431 */ 2432 if (start_type == MIGRATE_MOVABLE) { 2433 alike_pages = movable_pages; 2434 } else { 2435 /* 2436 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2437 * to MOVABLE pageblock, consider all non-movable pages as 2438 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2439 * vice versa, be conservative since we can't distinguish the 2440 * exact migratetype of non-movable pages. 2441 */ 2442 if (old_block_type == MIGRATE_MOVABLE) 2443 alike_pages = pageblock_nr_pages 2444 - (free_pages + movable_pages); 2445 else 2446 alike_pages = 0; 2447 } 2448 2449 /* moving whole block can fail due to zone boundary conditions */ 2450 if (!free_pages) 2451 goto single_page; 2452 2453 /* 2454 * If a sufficient number of pages in the block are either free or of 2455 * comparable migratability as our allocation, claim the whole block. 2456 */ 2457 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2458 page_group_by_mobility_disabled) 2459 set_pageblock_migratetype(page, start_type); 2460 2461 return; 2462 2463 single_page: 2464 area = &zone->free_area[current_order]; 2465 move_to_free_area(page, area, start_type); 2466 } 2467 2468 /* 2469 * Check whether there is a suitable fallback freepage with requested order. 2470 * If only_stealable is true, this function returns fallback_mt only if 2471 * we can steal other freepages all together. This would help to reduce 2472 * fragmentation due to mixed migratetype pages in one pageblock. 2473 */ 2474 int find_suitable_fallback(struct free_area *area, unsigned int order, 2475 int migratetype, bool only_stealable, bool *can_steal) 2476 { 2477 int i; 2478 int fallback_mt; 2479 2480 if (area->nr_free == 0) 2481 return -1; 2482 2483 *can_steal = false; 2484 for (i = 0;; i++) { 2485 fallback_mt = fallbacks[migratetype][i]; 2486 if (fallback_mt == MIGRATE_TYPES) 2487 break; 2488 2489 if (free_area_empty(area, fallback_mt)) 2490 continue; 2491 2492 if (can_steal_fallback(order, migratetype)) 2493 *can_steal = true; 2494 2495 if (!only_stealable) 2496 return fallback_mt; 2497 2498 if (*can_steal) 2499 return fallback_mt; 2500 } 2501 2502 return -1; 2503 } 2504 2505 /* 2506 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2507 * there are no empty page blocks that contain a page with a suitable order 2508 */ 2509 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2510 unsigned int alloc_order) 2511 { 2512 int mt; 2513 unsigned long max_managed, flags; 2514 2515 /* 2516 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2517 * Check is race-prone but harmless. 2518 */ 2519 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2520 if (zone->nr_reserved_highatomic >= max_managed) 2521 return; 2522 2523 spin_lock_irqsave(&zone->lock, flags); 2524 2525 /* Recheck the nr_reserved_highatomic limit under the lock */ 2526 if (zone->nr_reserved_highatomic >= max_managed) 2527 goto out_unlock; 2528 2529 /* Yoink! */ 2530 mt = get_pageblock_migratetype(page); 2531 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2532 && !is_migrate_cma(mt)) { 2533 zone->nr_reserved_highatomic += pageblock_nr_pages; 2534 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2535 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2536 } 2537 2538 out_unlock: 2539 spin_unlock_irqrestore(&zone->lock, flags); 2540 } 2541 2542 /* 2543 * Used when an allocation is about to fail under memory pressure. This 2544 * potentially hurts the reliability of high-order allocations when under 2545 * intense memory pressure but failed atomic allocations should be easier 2546 * to recover from than an OOM. 2547 * 2548 * If @force is true, try to unreserve a pageblock even though highatomic 2549 * pageblock is exhausted. 2550 */ 2551 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2552 bool force) 2553 { 2554 struct zonelist *zonelist = ac->zonelist; 2555 unsigned long flags; 2556 struct zoneref *z; 2557 struct zone *zone; 2558 struct page *page; 2559 int order; 2560 bool ret; 2561 2562 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2563 ac->nodemask) { 2564 /* 2565 * Preserve at least one pageblock unless memory pressure 2566 * is really high. 2567 */ 2568 if (!force && zone->nr_reserved_highatomic <= 2569 pageblock_nr_pages) 2570 continue; 2571 2572 spin_lock_irqsave(&zone->lock, flags); 2573 for (order = 0; order < MAX_ORDER; order++) { 2574 struct free_area *area = &(zone->free_area[order]); 2575 2576 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2577 if (!page) 2578 continue; 2579 2580 /* 2581 * In page freeing path, migratetype change is racy so 2582 * we can counter several free pages in a pageblock 2583 * in this loop althoug we changed the pageblock type 2584 * from highatomic to ac->migratetype. So we should 2585 * adjust the count once. 2586 */ 2587 if (is_migrate_highatomic_page(page)) { 2588 /* 2589 * It should never happen but changes to 2590 * locking could inadvertently allow a per-cpu 2591 * drain to add pages to MIGRATE_HIGHATOMIC 2592 * while unreserving so be safe and watch for 2593 * underflows. 2594 */ 2595 zone->nr_reserved_highatomic -= min( 2596 pageblock_nr_pages, 2597 zone->nr_reserved_highatomic); 2598 } 2599 2600 /* 2601 * Convert to ac->migratetype and avoid the normal 2602 * pageblock stealing heuristics. Minimally, the caller 2603 * is doing the work and needs the pages. More 2604 * importantly, if the block was always converted to 2605 * MIGRATE_UNMOVABLE or another type then the number 2606 * of pageblocks that cannot be completely freed 2607 * may increase. 2608 */ 2609 set_pageblock_migratetype(page, ac->migratetype); 2610 ret = move_freepages_block(zone, page, ac->migratetype, 2611 NULL); 2612 if (ret) { 2613 spin_unlock_irqrestore(&zone->lock, flags); 2614 return ret; 2615 } 2616 } 2617 spin_unlock_irqrestore(&zone->lock, flags); 2618 } 2619 2620 return false; 2621 } 2622 2623 /* 2624 * Try finding a free buddy page on the fallback list and put it on the free 2625 * list of requested migratetype, possibly along with other pages from the same 2626 * block, depending on fragmentation avoidance heuristics. Returns true if 2627 * fallback was found so that __rmqueue_smallest() can grab it. 2628 * 2629 * The use of signed ints for order and current_order is a deliberate 2630 * deviation from the rest of this file, to make the for loop 2631 * condition simpler. 2632 */ 2633 static __always_inline bool 2634 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2635 unsigned int alloc_flags) 2636 { 2637 struct free_area *area; 2638 int current_order; 2639 int min_order = order; 2640 struct page *page; 2641 int fallback_mt; 2642 bool can_steal; 2643 2644 /* 2645 * Do not steal pages from freelists belonging to other pageblocks 2646 * i.e. orders < pageblock_order. If there are no local zones free, 2647 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2648 */ 2649 if (alloc_flags & ALLOC_NOFRAGMENT) 2650 min_order = pageblock_order; 2651 2652 /* 2653 * Find the largest available free page in the other list. This roughly 2654 * approximates finding the pageblock with the most free pages, which 2655 * would be too costly to do exactly. 2656 */ 2657 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2658 --current_order) { 2659 area = &(zone->free_area[current_order]); 2660 fallback_mt = find_suitable_fallback(area, current_order, 2661 start_migratetype, false, &can_steal); 2662 if (fallback_mt == -1) 2663 continue; 2664 2665 /* 2666 * We cannot steal all free pages from the pageblock and the 2667 * requested migratetype is movable. In that case it's better to 2668 * steal and split the smallest available page instead of the 2669 * largest available page, because even if the next movable 2670 * allocation falls back into a different pageblock than this 2671 * one, it won't cause permanent fragmentation. 2672 */ 2673 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2674 && current_order > order) 2675 goto find_smallest; 2676 2677 goto do_steal; 2678 } 2679 2680 return false; 2681 2682 find_smallest: 2683 for (current_order = order; current_order < MAX_ORDER; 2684 current_order++) { 2685 area = &(zone->free_area[current_order]); 2686 fallback_mt = find_suitable_fallback(area, current_order, 2687 start_migratetype, false, &can_steal); 2688 if (fallback_mt != -1) 2689 break; 2690 } 2691 2692 /* 2693 * This should not happen - we already found a suitable fallback 2694 * when looking for the largest page. 2695 */ 2696 VM_BUG_ON(current_order == MAX_ORDER); 2697 2698 do_steal: 2699 page = get_page_from_free_area(area, fallback_mt); 2700 2701 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2702 can_steal); 2703 2704 trace_mm_page_alloc_extfrag(page, order, current_order, 2705 start_migratetype, fallback_mt); 2706 2707 return true; 2708 2709 } 2710 2711 /* 2712 * Do the hard work of removing an element from the buddy allocator. 2713 * Call me with the zone->lock already held. 2714 */ 2715 static __always_inline struct page * 2716 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2717 unsigned int alloc_flags) 2718 { 2719 struct page *page; 2720 2721 retry: 2722 page = __rmqueue_smallest(zone, order, migratetype); 2723 if (unlikely(!page)) { 2724 if (migratetype == MIGRATE_MOVABLE) 2725 page = __rmqueue_cma_fallback(zone, order); 2726 2727 if (!page && __rmqueue_fallback(zone, order, migratetype, 2728 alloc_flags)) 2729 goto retry; 2730 } 2731 2732 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2733 return page; 2734 } 2735 2736 /* 2737 * Obtain a specified number of elements from the buddy allocator, all under 2738 * a single hold of the lock, for efficiency. Add them to the supplied list. 2739 * Returns the number of new pages which were placed at *list. 2740 */ 2741 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2742 unsigned long count, struct list_head *list, 2743 int migratetype, unsigned int alloc_flags) 2744 { 2745 int i, alloced = 0; 2746 2747 spin_lock(&zone->lock); 2748 for (i = 0; i < count; ++i) { 2749 struct page *page = __rmqueue(zone, order, migratetype, 2750 alloc_flags); 2751 if (unlikely(page == NULL)) 2752 break; 2753 2754 if (unlikely(check_pcp_refill(page))) 2755 continue; 2756 2757 /* 2758 * Split buddy pages returned by expand() are received here in 2759 * physical page order. The page is added to the tail of 2760 * caller's list. From the callers perspective, the linked list 2761 * is ordered by page number under some conditions. This is 2762 * useful for IO devices that can forward direction from the 2763 * head, thus also in the physical page order. This is useful 2764 * for IO devices that can merge IO requests if the physical 2765 * pages are ordered properly. 2766 */ 2767 list_add_tail(&page->lru, list); 2768 alloced++; 2769 if (is_migrate_cma(get_pcppage_migratetype(page))) 2770 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2771 -(1 << order)); 2772 } 2773 2774 /* 2775 * i pages were removed from the buddy list even if some leak due 2776 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2777 * on i. Do not confuse with 'alloced' which is the number of 2778 * pages added to the pcp list. 2779 */ 2780 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2781 spin_unlock(&zone->lock); 2782 return alloced; 2783 } 2784 2785 #ifdef CONFIG_NUMA 2786 /* 2787 * Called from the vmstat counter updater to drain pagesets of this 2788 * currently executing processor on remote nodes after they have 2789 * expired. 2790 * 2791 * Note that this function must be called with the thread pinned to 2792 * a single processor. 2793 */ 2794 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2795 { 2796 unsigned long flags; 2797 int to_drain, batch; 2798 2799 local_irq_save(flags); 2800 batch = READ_ONCE(pcp->batch); 2801 to_drain = min(pcp->count, batch); 2802 if (to_drain > 0) 2803 free_pcppages_bulk(zone, to_drain, pcp); 2804 local_irq_restore(flags); 2805 } 2806 #endif 2807 2808 /* 2809 * Drain pcplists of the indicated processor and zone. 2810 * 2811 * The processor must either be the current processor and the 2812 * thread pinned to the current processor or a processor that 2813 * is not online. 2814 */ 2815 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2816 { 2817 unsigned long flags; 2818 struct per_cpu_pageset *pset; 2819 struct per_cpu_pages *pcp; 2820 2821 local_irq_save(flags); 2822 pset = per_cpu_ptr(zone->pageset, cpu); 2823 2824 pcp = &pset->pcp; 2825 if (pcp->count) 2826 free_pcppages_bulk(zone, pcp->count, pcp); 2827 local_irq_restore(flags); 2828 } 2829 2830 /* 2831 * Drain pcplists of all zones on the indicated processor. 2832 * 2833 * The processor must either be the current processor and the 2834 * thread pinned to the current processor or a processor that 2835 * is not online. 2836 */ 2837 static void drain_pages(unsigned int cpu) 2838 { 2839 struct zone *zone; 2840 2841 for_each_populated_zone(zone) { 2842 drain_pages_zone(cpu, zone); 2843 } 2844 } 2845 2846 /* 2847 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2848 * 2849 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2850 * the single zone's pages. 2851 */ 2852 void drain_local_pages(struct zone *zone) 2853 { 2854 int cpu = smp_processor_id(); 2855 2856 if (zone) 2857 drain_pages_zone(cpu, zone); 2858 else 2859 drain_pages(cpu); 2860 } 2861 2862 static void drain_local_pages_wq(struct work_struct *work) 2863 { 2864 struct pcpu_drain *drain; 2865 2866 drain = container_of(work, struct pcpu_drain, work); 2867 2868 /* 2869 * drain_all_pages doesn't use proper cpu hotplug protection so 2870 * we can race with cpu offline when the WQ can move this from 2871 * a cpu pinned worker to an unbound one. We can operate on a different 2872 * cpu which is allright but we also have to make sure to not move to 2873 * a different one. 2874 */ 2875 preempt_disable(); 2876 drain_local_pages(drain->zone); 2877 preempt_enable(); 2878 } 2879 2880 /* 2881 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2882 * 2883 * When zone parameter is non-NULL, spill just the single zone's pages. 2884 * 2885 * Note that this can be extremely slow as the draining happens in a workqueue. 2886 */ 2887 void drain_all_pages(struct zone *zone) 2888 { 2889 int cpu; 2890 2891 /* 2892 * Allocate in the BSS so we wont require allocation in 2893 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2894 */ 2895 static cpumask_t cpus_with_pcps; 2896 2897 /* 2898 * Make sure nobody triggers this path before mm_percpu_wq is fully 2899 * initialized. 2900 */ 2901 if (WARN_ON_ONCE(!mm_percpu_wq)) 2902 return; 2903 2904 /* 2905 * Do not drain if one is already in progress unless it's specific to 2906 * a zone. Such callers are primarily CMA and memory hotplug and need 2907 * the drain to be complete when the call returns. 2908 */ 2909 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2910 if (!zone) 2911 return; 2912 mutex_lock(&pcpu_drain_mutex); 2913 } 2914 2915 /* 2916 * We don't care about racing with CPU hotplug event 2917 * as offline notification will cause the notified 2918 * cpu to drain that CPU pcps and on_each_cpu_mask 2919 * disables preemption as part of its processing 2920 */ 2921 for_each_online_cpu(cpu) { 2922 struct per_cpu_pageset *pcp; 2923 struct zone *z; 2924 bool has_pcps = false; 2925 2926 if (zone) { 2927 pcp = per_cpu_ptr(zone->pageset, cpu); 2928 if (pcp->pcp.count) 2929 has_pcps = true; 2930 } else { 2931 for_each_populated_zone(z) { 2932 pcp = per_cpu_ptr(z->pageset, cpu); 2933 if (pcp->pcp.count) { 2934 has_pcps = true; 2935 break; 2936 } 2937 } 2938 } 2939 2940 if (has_pcps) 2941 cpumask_set_cpu(cpu, &cpus_with_pcps); 2942 else 2943 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2944 } 2945 2946 for_each_cpu(cpu, &cpus_with_pcps) { 2947 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2948 2949 drain->zone = zone; 2950 INIT_WORK(&drain->work, drain_local_pages_wq); 2951 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2952 } 2953 for_each_cpu(cpu, &cpus_with_pcps) 2954 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2955 2956 mutex_unlock(&pcpu_drain_mutex); 2957 } 2958 2959 #ifdef CONFIG_HIBERNATION 2960 2961 /* 2962 * Touch the watchdog for every WD_PAGE_COUNT pages. 2963 */ 2964 #define WD_PAGE_COUNT (128*1024) 2965 2966 void mark_free_pages(struct zone *zone) 2967 { 2968 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2969 unsigned long flags; 2970 unsigned int order, t; 2971 struct page *page; 2972 2973 if (zone_is_empty(zone)) 2974 return; 2975 2976 spin_lock_irqsave(&zone->lock, flags); 2977 2978 max_zone_pfn = zone_end_pfn(zone); 2979 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2980 if (pfn_valid(pfn)) { 2981 page = pfn_to_page(pfn); 2982 2983 if (!--page_count) { 2984 touch_nmi_watchdog(); 2985 page_count = WD_PAGE_COUNT; 2986 } 2987 2988 if (page_zone(page) != zone) 2989 continue; 2990 2991 if (!swsusp_page_is_forbidden(page)) 2992 swsusp_unset_page_free(page); 2993 } 2994 2995 for_each_migratetype_order(order, t) { 2996 list_for_each_entry(page, 2997 &zone->free_area[order].free_list[t], lru) { 2998 unsigned long i; 2999 3000 pfn = page_to_pfn(page); 3001 for (i = 0; i < (1UL << order); i++) { 3002 if (!--page_count) { 3003 touch_nmi_watchdog(); 3004 page_count = WD_PAGE_COUNT; 3005 } 3006 swsusp_set_page_free(pfn_to_page(pfn + i)); 3007 } 3008 } 3009 } 3010 spin_unlock_irqrestore(&zone->lock, flags); 3011 } 3012 #endif /* CONFIG_PM */ 3013 3014 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3015 { 3016 int migratetype; 3017 3018 if (!free_pcp_prepare(page)) 3019 return false; 3020 3021 migratetype = get_pfnblock_migratetype(page, pfn); 3022 set_pcppage_migratetype(page, migratetype); 3023 return true; 3024 } 3025 3026 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3027 { 3028 struct zone *zone = page_zone(page); 3029 struct per_cpu_pages *pcp; 3030 int migratetype; 3031 3032 migratetype = get_pcppage_migratetype(page); 3033 __count_vm_event(PGFREE); 3034 3035 /* 3036 * We only track unmovable, reclaimable and movable on pcp lists. 3037 * Free ISOLATE pages back to the allocator because they are being 3038 * offlined but treat HIGHATOMIC as movable pages so we can get those 3039 * areas back if necessary. Otherwise, we may have to free 3040 * excessively into the page allocator 3041 */ 3042 if (migratetype >= MIGRATE_PCPTYPES) { 3043 if (unlikely(is_migrate_isolate(migratetype))) { 3044 free_one_page(zone, page, pfn, 0, migratetype); 3045 return; 3046 } 3047 migratetype = MIGRATE_MOVABLE; 3048 } 3049 3050 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3051 list_add(&page->lru, &pcp->lists[migratetype]); 3052 pcp->count++; 3053 if (pcp->count >= pcp->high) { 3054 unsigned long batch = READ_ONCE(pcp->batch); 3055 free_pcppages_bulk(zone, batch, pcp); 3056 } 3057 } 3058 3059 /* 3060 * Free a 0-order page 3061 */ 3062 void free_unref_page(struct page *page) 3063 { 3064 unsigned long flags; 3065 unsigned long pfn = page_to_pfn(page); 3066 3067 if (!free_unref_page_prepare(page, pfn)) 3068 return; 3069 3070 local_irq_save(flags); 3071 free_unref_page_commit(page, pfn); 3072 local_irq_restore(flags); 3073 } 3074 3075 /* 3076 * Free a list of 0-order pages 3077 */ 3078 void free_unref_page_list(struct list_head *list) 3079 { 3080 struct page *page, *next; 3081 unsigned long flags, pfn; 3082 int batch_count = 0; 3083 3084 /* Prepare pages for freeing */ 3085 list_for_each_entry_safe(page, next, list, lru) { 3086 pfn = page_to_pfn(page); 3087 if (!free_unref_page_prepare(page, pfn)) 3088 list_del(&page->lru); 3089 set_page_private(page, pfn); 3090 } 3091 3092 local_irq_save(flags); 3093 list_for_each_entry_safe(page, next, list, lru) { 3094 unsigned long pfn = page_private(page); 3095 3096 set_page_private(page, 0); 3097 trace_mm_page_free_batched(page); 3098 free_unref_page_commit(page, pfn); 3099 3100 /* 3101 * Guard against excessive IRQ disabled times when we get 3102 * a large list of pages to free. 3103 */ 3104 if (++batch_count == SWAP_CLUSTER_MAX) { 3105 local_irq_restore(flags); 3106 batch_count = 0; 3107 local_irq_save(flags); 3108 } 3109 } 3110 local_irq_restore(flags); 3111 } 3112 3113 /* 3114 * split_page takes a non-compound higher-order page, and splits it into 3115 * n (1<<order) sub-pages: page[0..n] 3116 * Each sub-page must be freed individually. 3117 * 3118 * Note: this is probably too low level an operation for use in drivers. 3119 * Please consult with lkml before using this in your driver. 3120 */ 3121 void split_page(struct page *page, unsigned int order) 3122 { 3123 int i; 3124 3125 VM_BUG_ON_PAGE(PageCompound(page), page); 3126 VM_BUG_ON_PAGE(!page_count(page), page); 3127 3128 for (i = 1; i < (1 << order); i++) 3129 set_page_refcounted(page + i); 3130 split_page_owner(page, order); 3131 } 3132 EXPORT_SYMBOL_GPL(split_page); 3133 3134 int __isolate_free_page(struct page *page, unsigned int order) 3135 { 3136 struct free_area *area = &page_zone(page)->free_area[order]; 3137 unsigned long watermark; 3138 struct zone *zone; 3139 int mt; 3140 3141 BUG_ON(!PageBuddy(page)); 3142 3143 zone = page_zone(page); 3144 mt = get_pageblock_migratetype(page); 3145 3146 if (!is_migrate_isolate(mt)) { 3147 /* 3148 * Obey watermarks as if the page was being allocated. We can 3149 * emulate a high-order watermark check with a raised order-0 3150 * watermark, because we already know our high-order page 3151 * exists. 3152 */ 3153 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3154 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3155 return 0; 3156 3157 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3158 } 3159 3160 /* Remove page from free list */ 3161 3162 del_page_from_free_area(page, area); 3163 3164 /* 3165 * Set the pageblock if the isolated page is at least half of a 3166 * pageblock 3167 */ 3168 if (order >= pageblock_order - 1) { 3169 struct page *endpage = page + (1 << order) - 1; 3170 for (; page < endpage; page += pageblock_nr_pages) { 3171 int mt = get_pageblock_migratetype(page); 3172 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3173 && !is_migrate_highatomic(mt)) 3174 set_pageblock_migratetype(page, 3175 MIGRATE_MOVABLE); 3176 } 3177 } 3178 3179 3180 return 1UL << order; 3181 } 3182 3183 /* 3184 * Update NUMA hit/miss statistics 3185 * 3186 * Must be called with interrupts disabled. 3187 */ 3188 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3189 { 3190 #ifdef CONFIG_NUMA 3191 enum numa_stat_item local_stat = NUMA_LOCAL; 3192 3193 /* skip numa counters update if numa stats is disabled */ 3194 if (!static_branch_likely(&vm_numa_stat_key)) 3195 return; 3196 3197 if (zone_to_nid(z) != numa_node_id()) 3198 local_stat = NUMA_OTHER; 3199 3200 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3201 __inc_numa_state(z, NUMA_HIT); 3202 else { 3203 __inc_numa_state(z, NUMA_MISS); 3204 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3205 } 3206 __inc_numa_state(z, local_stat); 3207 #endif 3208 } 3209 3210 /* Remove page from the per-cpu list, caller must protect the list */ 3211 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3212 unsigned int alloc_flags, 3213 struct per_cpu_pages *pcp, 3214 struct list_head *list) 3215 { 3216 struct page *page; 3217 3218 do { 3219 if (list_empty(list)) { 3220 pcp->count += rmqueue_bulk(zone, 0, 3221 pcp->batch, list, 3222 migratetype, alloc_flags); 3223 if (unlikely(list_empty(list))) 3224 return NULL; 3225 } 3226 3227 page = list_first_entry(list, struct page, lru); 3228 list_del(&page->lru); 3229 pcp->count--; 3230 } while (check_new_pcp(page)); 3231 3232 return page; 3233 } 3234 3235 /* Lock and remove page from the per-cpu list */ 3236 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3237 struct zone *zone, gfp_t gfp_flags, 3238 int migratetype, unsigned int alloc_flags) 3239 { 3240 struct per_cpu_pages *pcp; 3241 struct list_head *list; 3242 struct page *page; 3243 unsigned long flags; 3244 3245 local_irq_save(flags); 3246 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3247 list = &pcp->lists[migratetype]; 3248 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3249 if (page) { 3250 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3251 zone_statistics(preferred_zone, zone); 3252 } 3253 local_irq_restore(flags); 3254 return page; 3255 } 3256 3257 /* 3258 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3259 */ 3260 static inline 3261 struct page *rmqueue(struct zone *preferred_zone, 3262 struct zone *zone, unsigned int order, 3263 gfp_t gfp_flags, unsigned int alloc_flags, 3264 int migratetype) 3265 { 3266 unsigned long flags; 3267 struct page *page; 3268 3269 if (likely(order == 0)) { 3270 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3271 migratetype, alloc_flags); 3272 goto out; 3273 } 3274 3275 /* 3276 * We most definitely don't want callers attempting to 3277 * allocate greater than order-1 page units with __GFP_NOFAIL. 3278 */ 3279 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3280 spin_lock_irqsave(&zone->lock, flags); 3281 3282 do { 3283 page = NULL; 3284 if (alloc_flags & ALLOC_HARDER) { 3285 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3286 if (page) 3287 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3288 } 3289 if (!page) 3290 page = __rmqueue(zone, order, migratetype, alloc_flags); 3291 } while (page && check_new_pages(page, order)); 3292 spin_unlock(&zone->lock); 3293 if (!page) 3294 goto failed; 3295 __mod_zone_freepage_state(zone, -(1 << order), 3296 get_pcppage_migratetype(page)); 3297 3298 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3299 zone_statistics(preferred_zone, zone); 3300 local_irq_restore(flags); 3301 3302 out: 3303 /* Separate test+clear to avoid unnecessary atomics */ 3304 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3305 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3306 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3307 } 3308 3309 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3310 return page; 3311 3312 failed: 3313 local_irq_restore(flags); 3314 return NULL; 3315 } 3316 3317 #ifdef CONFIG_FAIL_PAGE_ALLOC 3318 3319 static struct { 3320 struct fault_attr attr; 3321 3322 bool ignore_gfp_highmem; 3323 bool ignore_gfp_reclaim; 3324 u32 min_order; 3325 } fail_page_alloc = { 3326 .attr = FAULT_ATTR_INITIALIZER, 3327 .ignore_gfp_reclaim = true, 3328 .ignore_gfp_highmem = true, 3329 .min_order = 1, 3330 }; 3331 3332 static int __init setup_fail_page_alloc(char *str) 3333 { 3334 return setup_fault_attr(&fail_page_alloc.attr, str); 3335 } 3336 __setup("fail_page_alloc=", setup_fail_page_alloc); 3337 3338 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3339 { 3340 if (order < fail_page_alloc.min_order) 3341 return false; 3342 if (gfp_mask & __GFP_NOFAIL) 3343 return false; 3344 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3345 return false; 3346 if (fail_page_alloc.ignore_gfp_reclaim && 3347 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3348 return false; 3349 3350 return should_fail(&fail_page_alloc.attr, 1 << order); 3351 } 3352 3353 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3354 3355 static int __init fail_page_alloc_debugfs(void) 3356 { 3357 umode_t mode = S_IFREG | 0600; 3358 struct dentry *dir; 3359 3360 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3361 &fail_page_alloc.attr); 3362 3363 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3364 &fail_page_alloc.ignore_gfp_reclaim); 3365 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3366 &fail_page_alloc.ignore_gfp_highmem); 3367 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3368 3369 return 0; 3370 } 3371 3372 late_initcall(fail_page_alloc_debugfs); 3373 3374 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3375 3376 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3377 3378 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3379 { 3380 return false; 3381 } 3382 3383 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3384 3385 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3386 { 3387 return __should_fail_alloc_page(gfp_mask, order); 3388 } 3389 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3390 3391 /* 3392 * Return true if free base pages are above 'mark'. For high-order checks it 3393 * will return true of the order-0 watermark is reached and there is at least 3394 * one free page of a suitable size. Checking now avoids taking the zone lock 3395 * to check in the allocation paths if no pages are free. 3396 */ 3397 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3398 int classzone_idx, unsigned int alloc_flags, 3399 long free_pages) 3400 { 3401 long min = mark; 3402 int o; 3403 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3404 3405 /* free_pages may go negative - that's OK */ 3406 free_pages -= (1 << order) - 1; 3407 3408 if (alloc_flags & ALLOC_HIGH) 3409 min -= min / 2; 3410 3411 /* 3412 * If the caller does not have rights to ALLOC_HARDER then subtract 3413 * the high-atomic reserves. This will over-estimate the size of the 3414 * atomic reserve but it avoids a search. 3415 */ 3416 if (likely(!alloc_harder)) { 3417 free_pages -= z->nr_reserved_highatomic; 3418 } else { 3419 /* 3420 * OOM victims can try even harder than normal ALLOC_HARDER 3421 * users on the grounds that it's definitely going to be in 3422 * the exit path shortly and free memory. Any allocation it 3423 * makes during the free path will be small and short-lived. 3424 */ 3425 if (alloc_flags & ALLOC_OOM) 3426 min -= min / 2; 3427 else 3428 min -= min / 4; 3429 } 3430 3431 3432 #ifdef CONFIG_CMA 3433 /* If allocation can't use CMA areas don't use free CMA pages */ 3434 if (!(alloc_flags & ALLOC_CMA)) 3435 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3436 #endif 3437 3438 /* 3439 * Check watermarks for an order-0 allocation request. If these 3440 * are not met, then a high-order request also cannot go ahead 3441 * even if a suitable page happened to be free. 3442 */ 3443 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3444 return false; 3445 3446 /* If this is an order-0 request then the watermark is fine */ 3447 if (!order) 3448 return true; 3449 3450 /* For a high-order request, check at least one suitable page is free */ 3451 for (o = order; o < MAX_ORDER; o++) { 3452 struct free_area *area = &z->free_area[o]; 3453 int mt; 3454 3455 if (!area->nr_free) 3456 continue; 3457 3458 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3459 if (!free_area_empty(area, mt)) 3460 return true; 3461 } 3462 3463 #ifdef CONFIG_CMA 3464 if ((alloc_flags & ALLOC_CMA) && 3465 !free_area_empty(area, MIGRATE_CMA)) { 3466 return true; 3467 } 3468 #endif 3469 if (alloc_harder && 3470 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3471 return true; 3472 } 3473 return false; 3474 } 3475 3476 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3477 int classzone_idx, unsigned int alloc_flags) 3478 { 3479 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3480 zone_page_state(z, NR_FREE_PAGES)); 3481 } 3482 3483 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3484 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3485 { 3486 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3487 long cma_pages = 0; 3488 3489 #ifdef CONFIG_CMA 3490 /* If allocation can't use CMA areas don't use free CMA pages */ 3491 if (!(alloc_flags & ALLOC_CMA)) 3492 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3493 #endif 3494 3495 /* 3496 * Fast check for order-0 only. If this fails then the reserves 3497 * need to be calculated. There is a corner case where the check 3498 * passes but only the high-order atomic reserve are free. If 3499 * the caller is !atomic then it'll uselessly search the free 3500 * list. That corner case is then slower but it is harmless. 3501 */ 3502 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3503 return true; 3504 3505 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3506 free_pages); 3507 } 3508 3509 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3510 unsigned long mark, int classzone_idx) 3511 { 3512 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3513 3514 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3515 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3516 3517 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3518 free_pages); 3519 } 3520 3521 #ifdef CONFIG_NUMA 3522 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3523 { 3524 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3525 RECLAIM_DISTANCE; 3526 } 3527 #else /* CONFIG_NUMA */ 3528 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3529 { 3530 return true; 3531 } 3532 #endif /* CONFIG_NUMA */ 3533 3534 /* 3535 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3536 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3537 * premature use of a lower zone may cause lowmem pressure problems that 3538 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3539 * probably too small. It only makes sense to spread allocations to avoid 3540 * fragmentation between the Normal and DMA32 zones. 3541 */ 3542 static inline unsigned int 3543 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3544 { 3545 unsigned int alloc_flags = 0; 3546 3547 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3548 alloc_flags |= ALLOC_KSWAPD; 3549 3550 #ifdef CONFIG_ZONE_DMA32 3551 if (!zone) 3552 return alloc_flags; 3553 3554 if (zone_idx(zone) != ZONE_NORMAL) 3555 return alloc_flags; 3556 3557 /* 3558 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3559 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3560 * on UMA that if Normal is populated then so is DMA32. 3561 */ 3562 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3563 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3564 return alloc_flags; 3565 3566 alloc_flags |= ALLOC_NOFRAGMENT; 3567 #endif /* CONFIG_ZONE_DMA32 */ 3568 return alloc_flags; 3569 } 3570 3571 /* 3572 * get_page_from_freelist goes through the zonelist trying to allocate 3573 * a page. 3574 */ 3575 static struct page * 3576 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3577 const struct alloc_context *ac) 3578 { 3579 struct zoneref *z; 3580 struct zone *zone; 3581 struct pglist_data *last_pgdat_dirty_limit = NULL; 3582 bool no_fallback; 3583 3584 retry: 3585 /* 3586 * Scan zonelist, looking for a zone with enough free. 3587 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3588 */ 3589 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3590 z = ac->preferred_zoneref; 3591 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3592 ac->nodemask) { 3593 struct page *page; 3594 unsigned long mark; 3595 3596 if (cpusets_enabled() && 3597 (alloc_flags & ALLOC_CPUSET) && 3598 !__cpuset_zone_allowed(zone, gfp_mask)) 3599 continue; 3600 /* 3601 * When allocating a page cache page for writing, we 3602 * want to get it from a node that is within its dirty 3603 * limit, such that no single node holds more than its 3604 * proportional share of globally allowed dirty pages. 3605 * The dirty limits take into account the node's 3606 * lowmem reserves and high watermark so that kswapd 3607 * should be able to balance it without having to 3608 * write pages from its LRU list. 3609 * 3610 * XXX: For now, allow allocations to potentially 3611 * exceed the per-node dirty limit in the slowpath 3612 * (spread_dirty_pages unset) before going into reclaim, 3613 * which is important when on a NUMA setup the allowed 3614 * nodes are together not big enough to reach the 3615 * global limit. The proper fix for these situations 3616 * will require awareness of nodes in the 3617 * dirty-throttling and the flusher threads. 3618 */ 3619 if (ac->spread_dirty_pages) { 3620 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3621 continue; 3622 3623 if (!node_dirty_ok(zone->zone_pgdat)) { 3624 last_pgdat_dirty_limit = zone->zone_pgdat; 3625 continue; 3626 } 3627 } 3628 3629 if (no_fallback && nr_online_nodes > 1 && 3630 zone != ac->preferred_zoneref->zone) { 3631 int local_nid; 3632 3633 /* 3634 * If moving to a remote node, retry but allow 3635 * fragmenting fallbacks. Locality is more important 3636 * than fragmentation avoidance. 3637 */ 3638 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3639 if (zone_to_nid(zone) != local_nid) { 3640 alloc_flags &= ~ALLOC_NOFRAGMENT; 3641 goto retry; 3642 } 3643 } 3644 3645 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3646 if (!zone_watermark_fast(zone, order, mark, 3647 ac_classzone_idx(ac), alloc_flags)) { 3648 int ret; 3649 3650 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3651 /* 3652 * Watermark failed for this zone, but see if we can 3653 * grow this zone if it contains deferred pages. 3654 */ 3655 if (static_branch_unlikely(&deferred_pages)) { 3656 if (_deferred_grow_zone(zone, order)) 3657 goto try_this_zone; 3658 } 3659 #endif 3660 /* Checked here to keep the fast path fast */ 3661 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3662 if (alloc_flags & ALLOC_NO_WATERMARKS) 3663 goto try_this_zone; 3664 3665 if (node_reclaim_mode == 0 || 3666 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3667 continue; 3668 3669 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3670 switch (ret) { 3671 case NODE_RECLAIM_NOSCAN: 3672 /* did not scan */ 3673 continue; 3674 case NODE_RECLAIM_FULL: 3675 /* scanned but unreclaimable */ 3676 continue; 3677 default: 3678 /* did we reclaim enough */ 3679 if (zone_watermark_ok(zone, order, mark, 3680 ac_classzone_idx(ac), alloc_flags)) 3681 goto try_this_zone; 3682 3683 continue; 3684 } 3685 } 3686 3687 try_this_zone: 3688 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3689 gfp_mask, alloc_flags, ac->migratetype); 3690 if (page) { 3691 prep_new_page(page, order, gfp_mask, alloc_flags); 3692 3693 /* 3694 * If this is a high-order atomic allocation then check 3695 * if the pageblock should be reserved for the future 3696 */ 3697 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3698 reserve_highatomic_pageblock(page, zone, order); 3699 3700 return page; 3701 } else { 3702 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3703 /* Try again if zone has deferred pages */ 3704 if (static_branch_unlikely(&deferred_pages)) { 3705 if (_deferred_grow_zone(zone, order)) 3706 goto try_this_zone; 3707 } 3708 #endif 3709 } 3710 } 3711 3712 /* 3713 * It's possible on a UMA machine to get through all zones that are 3714 * fragmented. If avoiding fragmentation, reset and try again. 3715 */ 3716 if (no_fallback) { 3717 alloc_flags &= ~ALLOC_NOFRAGMENT; 3718 goto retry; 3719 } 3720 3721 return NULL; 3722 } 3723 3724 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3725 { 3726 unsigned int filter = SHOW_MEM_FILTER_NODES; 3727 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3728 3729 if (!__ratelimit(&show_mem_rs)) 3730 return; 3731 3732 /* 3733 * This documents exceptions given to allocations in certain 3734 * contexts that are allowed to allocate outside current's set 3735 * of allowed nodes. 3736 */ 3737 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3738 if (tsk_is_oom_victim(current) || 3739 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3740 filter &= ~SHOW_MEM_FILTER_NODES; 3741 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3742 filter &= ~SHOW_MEM_FILTER_NODES; 3743 3744 show_mem(filter, nodemask); 3745 } 3746 3747 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3748 { 3749 struct va_format vaf; 3750 va_list args; 3751 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3752 DEFAULT_RATELIMIT_BURST); 3753 3754 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3755 return; 3756 3757 va_start(args, fmt); 3758 vaf.fmt = fmt; 3759 vaf.va = &args; 3760 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3761 current->comm, &vaf, gfp_mask, &gfp_mask, 3762 nodemask_pr_args(nodemask)); 3763 va_end(args); 3764 3765 cpuset_print_current_mems_allowed(); 3766 pr_cont("\n"); 3767 dump_stack(); 3768 warn_alloc_show_mem(gfp_mask, nodemask); 3769 } 3770 3771 static inline struct page * 3772 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3773 unsigned int alloc_flags, 3774 const struct alloc_context *ac) 3775 { 3776 struct page *page; 3777 3778 page = get_page_from_freelist(gfp_mask, order, 3779 alloc_flags|ALLOC_CPUSET, ac); 3780 /* 3781 * fallback to ignore cpuset restriction if our nodes 3782 * are depleted 3783 */ 3784 if (!page) 3785 page = get_page_from_freelist(gfp_mask, order, 3786 alloc_flags, ac); 3787 3788 return page; 3789 } 3790 3791 static inline struct page * 3792 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3793 const struct alloc_context *ac, unsigned long *did_some_progress) 3794 { 3795 struct oom_control oc = { 3796 .zonelist = ac->zonelist, 3797 .nodemask = ac->nodemask, 3798 .memcg = NULL, 3799 .gfp_mask = gfp_mask, 3800 .order = order, 3801 }; 3802 struct page *page; 3803 3804 *did_some_progress = 0; 3805 3806 /* 3807 * Acquire the oom lock. If that fails, somebody else is 3808 * making progress for us. 3809 */ 3810 if (!mutex_trylock(&oom_lock)) { 3811 *did_some_progress = 1; 3812 schedule_timeout_uninterruptible(1); 3813 return NULL; 3814 } 3815 3816 /* 3817 * Go through the zonelist yet one more time, keep very high watermark 3818 * here, this is only to catch a parallel oom killing, we must fail if 3819 * we're still under heavy pressure. But make sure that this reclaim 3820 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3821 * allocation which will never fail due to oom_lock already held. 3822 */ 3823 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3824 ~__GFP_DIRECT_RECLAIM, order, 3825 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3826 if (page) 3827 goto out; 3828 3829 /* Coredumps can quickly deplete all memory reserves */ 3830 if (current->flags & PF_DUMPCORE) 3831 goto out; 3832 /* The OOM killer will not help higher order allocs */ 3833 if (order > PAGE_ALLOC_COSTLY_ORDER) 3834 goto out; 3835 /* 3836 * We have already exhausted all our reclaim opportunities without any 3837 * success so it is time to admit defeat. We will skip the OOM killer 3838 * because it is very likely that the caller has a more reasonable 3839 * fallback than shooting a random task. 3840 */ 3841 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3842 goto out; 3843 /* The OOM killer does not needlessly kill tasks for lowmem */ 3844 if (ac->high_zoneidx < ZONE_NORMAL) 3845 goto out; 3846 if (pm_suspended_storage()) 3847 goto out; 3848 /* 3849 * XXX: GFP_NOFS allocations should rather fail than rely on 3850 * other request to make a forward progress. 3851 * We are in an unfortunate situation where out_of_memory cannot 3852 * do much for this context but let's try it to at least get 3853 * access to memory reserved if the current task is killed (see 3854 * out_of_memory). Once filesystems are ready to handle allocation 3855 * failures more gracefully we should just bail out here. 3856 */ 3857 3858 /* The OOM killer may not free memory on a specific node */ 3859 if (gfp_mask & __GFP_THISNODE) 3860 goto out; 3861 3862 /* Exhausted what can be done so it's blame time */ 3863 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3864 *did_some_progress = 1; 3865 3866 /* 3867 * Help non-failing allocations by giving them access to memory 3868 * reserves 3869 */ 3870 if (gfp_mask & __GFP_NOFAIL) 3871 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3872 ALLOC_NO_WATERMARKS, ac); 3873 } 3874 out: 3875 mutex_unlock(&oom_lock); 3876 return page; 3877 } 3878 3879 /* 3880 * Maximum number of compaction retries wit a progress before OOM 3881 * killer is consider as the only way to move forward. 3882 */ 3883 #define MAX_COMPACT_RETRIES 16 3884 3885 #ifdef CONFIG_COMPACTION 3886 /* Try memory compaction for high-order allocations before reclaim */ 3887 static struct page * 3888 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3889 unsigned int alloc_flags, const struct alloc_context *ac, 3890 enum compact_priority prio, enum compact_result *compact_result) 3891 { 3892 struct page *page = NULL; 3893 unsigned long pflags; 3894 unsigned int noreclaim_flag; 3895 3896 if (!order) 3897 return NULL; 3898 3899 psi_memstall_enter(&pflags); 3900 noreclaim_flag = memalloc_noreclaim_save(); 3901 3902 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3903 prio, &page); 3904 3905 memalloc_noreclaim_restore(noreclaim_flag); 3906 psi_memstall_leave(&pflags); 3907 3908 /* 3909 * At least in one zone compaction wasn't deferred or skipped, so let's 3910 * count a compaction stall 3911 */ 3912 count_vm_event(COMPACTSTALL); 3913 3914 /* Prep a captured page if available */ 3915 if (page) 3916 prep_new_page(page, order, gfp_mask, alloc_flags); 3917 3918 /* Try get a page from the freelist if available */ 3919 if (!page) 3920 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3921 3922 if (page) { 3923 struct zone *zone = page_zone(page); 3924 3925 zone->compact_blockskip_flush = false; 3926 compaction_defer_reset(zone, order, true); 3927 count_vm_event(COMPACTSUCCESS); 3928 return page; 3929 } 3930 3931 /* 3932 * It's bad if compaction run occurs and fails. The most likely reason 3933 * is that pages exist, but not enough to satisfy watermarks. 3934 */ 3935 count_vm_event(COMPACTFAIL); 3936 3937 cond_resched(); 3938 3939 return NULL; 3940 } 3941 3942 static inline bool 3943 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3944 enum compact_result compact_result, 3945 enum compact_priority *compact_priority, 3946 int *compaction_retries) 3947 { 3948 int max_retries = MAX_COMPACT_RETRIES; 3949 int min_priority; 3950 bool ret = false; 3951 int retries = *compaction_retries; 3952 enum compact_priority priority = *compact_priority; 3953 3954 if (!order) 3955 return false; 3956 3957 if (compaction_made_progress(compact_result)) 3958 (*compaction_retries)++; 3959 3960 /* 3961 * compaction considers all the zone as desperately out of memory 3962 * so it doesn't really make much sense to retry except when the 3963 * failure could be caused by insufficient priority 3964 */ 3965 if (compaction_failed(compact_result)) 3966 goto check_priority; 3967 3968 /* 3969 * make sure the compaction wasn't deferred or didn't bail out early 3970 * due to locks contention before we declare that we should give up. 3971 * But do not retry if the given zonelist is not suitable for 3972 * compaction. 3973 */ 3974 if (compaction_withdrawn(compact_result)) { 3975 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3976 goto out; 3977 } 3978 3979 /* 3980 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3981 * costly ones because they are de facto nofail and invoke OOM 3982 * killer to move on while costly can fail and users are ready 3983 * to cope with that. 1/4 retries is rather arbitrary but we 3984 * would need much more detailed feedback from compaction to 3985 * make a better decision. 3986 */ 3987 if (order > PAGE_ALLOC_COSTLY_ORDER) 3988 max_retries /= 4; 3989 if (*compaction_retries <= max_retries) { 3990 ret = true; 3991 goto out; 3992 } 3993 3994 /* 3995 * Make sure there are attempts at the highest priority if we exhausted 3996 * all retries or failed at the lower priorities. 3997 */ 3998 check_priority: 3999 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4000 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4001 4002 if (*compact_priority > min_priority) { 4003 (*compact_priority)--; 4004 *compaction_retries = 0; 4005 ret = true; 4006 } 4007 out: 4008 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4009 return ret; 4010 } 4011 #else 4012 static inline struct page * 4013 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4014 unsigned int alloc_flags, const struct alloc_context *ac, 4015 enum compact_priority prio, enum compact_result *compact_result) 4016 { 4017 *compact_result = COMPACT_SKIPPED; 4018 return NULL; 4019 } 4020 4021 static inline bool 4022 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4023 enum compact_result compact_result, 4024 enum compact_priority *compact_priority, 4025 int *compaction_retries) 4026 { 4027 struct zone *zone; 4028 struct zoneref *z; 4029 4030 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4031 return false; 4032 4033 /* 4034 * There are setups with compaction disabled which would prefer to loop 4035 * inside the allocator rather than hit the oom killer prematurely. 4036 * Let's give them a good hope and keep retrying while the order-0 4037 * watermarks are OK. 4038 */ 4039 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4040 ac->nodemask) { 4041 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4042 ac_classzone_idx(ac), alloc_flags)) 4043 return true; 4044 } 4045 return false; 4046 } 4047 #endif /* CONFIG_COMPACTION */ 4048 4049 #ifdef CONFIG_LOCKDEP 4050 static struct lockdep_map __fs_reclaim_map = 4051 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4052 4053 static bool __need_fs_reclaim(gfp_t gfp_mask) 4054 { 4055 gfp_mask = current_gfp_context(gfp_mask); 4056 4057 /* no reclaim without waiting on it */ 4058 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4059 return false; 4060 4061 /* this guy won't enter reclaim */ 4062 if (current->flags & PF_MEMALLOC) 4063 return false; 4064 4065 /* We're only interested __GFP_FS allocations for now */ 4066 if (!(gfp_mask & __GFP_FS)) 4067 return false; 4068 4069 if (gfp_mask & __GFP_NOLOCKDEP) 4070 return false; 4071 4072 return true; 4073 } 4074 4075 void __fs_reclaim_acquire(void) 4076 { 4077 lock_map_acquire(&__fs_reclaim_map); 4078 } 4079 4080 void __fs_reclaim_release(void) 4081 { 4082 lock_map_release(&__fs_reclaim_map); 4083 } 4084 4085 void fs_reclaim_acquire(gfp_t gfp_mask) 4086 { 4087 if (__need_fs_reclaim(gfp_mask)) 4088 __fs_reclaim_acquire(); 4089 } 4090 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4091 4092 void fs_reclaim_release(gfp_t gfp_mask) 4093 { 4094 if (__need_fs_reclaim(gfp_mask)) 4095 __fs_reclaim_release(); 4096 } 4097 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4098 #endif 4099 4100 /* Perform direct synchronous page reclaim */ 4101 static int 4102 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4103 const struct alloc_context *ac) 4104 { 4105 struct reclaim_state reclaim_state; 4106 int progress; 4107 unsigned int noreclaim_flag; 4108 unsigned long pflags; 4109 4110 cond_resched(); 4111 4112 /* We now go into synchronous reclaim */ 4113 cpuset_memory_pressure_bump(); 4114 psi_memstall_enter(&pflags); 4115 fs_reclaim_acquire(gfp_mask); 4116 noreclaim_flag = memalloc_noreclaim_save(); 4117 reclaim_state.reclaimed_slab = 0; 4118 current->reclaim_state = &reclaim_state; 4119 4120 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4121 ac->nodemask); 4122 4123 current->reclaim_state = NULL; 4124 memalloc_noreclaim_restore(noreclaim_flag); 4125 fs_reclaim_release(gfp_mask); 4126 psi_memstall_leave(&pflags); 4127 4128 cond_resched(); 4129 4130 return progress; 4131 } 4132 4133 /* The really slow allocator path where we enter direct reclaim */ 4134 static inline struct page * 4135 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4136 unsigned int alloc_flags, const struct alloc_context *ac, 4137 unsigned long *did_some_progress) 4138 { 4139 struct page *page = NULL; 4140 bool drained = false; 4141 4142 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4143 if (unlikely(!(*did_some_progress))) 4144 return NULL; 4145 4146 retry: 4147 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4148 4149 /* 4150 * If an allocation failed after direct reclaim, it could be because 4151 * pages are pinned on the per-cpu lists or in high alloc reserves. 4152 * Shrink them them and try again 4153 */ 4154 if (!page && !drained) { 4155 unreserve_highatomic_pageblock(ac, false); 4156 drain_all_pages(NULL); 4157 drained = true; 4158 goto retry; 4159 } 4160 4161 return page; 4162 } 4163 4164 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4165 const struct alloc_context *ac) 4166 { 4167 struct zoneref *z; 4168 struct zone *zone; 4169 pg_data_t *last_pgdat = NULL; 4170 enum zone_type high_zoneidx = ac->high_zoneidx; 4171 4172 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4173 ac->nodemask) { 4174 if (last_pgdat != zone->zone_pgdat) 4175 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4176 last_pgdat = zone->zone_pgdat; 4177 } 4178 } 4179 4180 static inline unsigned int 4181 gfp_to_alloc_flags(gfp_t gfp_mask) 4182 { 4183 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4184 4185 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 4186 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4187 4188 /* 4189 * The caller may dip into page reserves a bit more if the caller 4190 * cannot run direct reclaim, or if the caller has realtime scheduling 4191 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4192 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4193 */ 4194 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 4195 4196 if (gfp_mask & __GFP_ATOMIC) { 4197 /* 4198 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4199 * if it can't schedule. 4200 */ 4201 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4202 alloc_flags |= ALLOC_HARDER; 4203 /* 4204 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4205 * comment for __cpuset_node_allowed(). 4206 */ 4207 alloc_flags &= ~ALLOC_CPUSET; 4208 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4209 alloc_flags |= ALLOC_HARDER; 4210 4211 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4212 alloc_flags |= ALLOC_KSWAPD; 4213 4214 #ifdef CONFIG_CMA 4215 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4216 alloc_flags |= ALLOC_CMA; 4217 #endif 4218 return alloc_flags; 4219 } 4220 4221 static bool oom_reserves_allowed(struct task_struct *tsk) 4222 { 4223 if (!tsk_is_oom_victim(tsk)) 4224 return false; 4225 4226 /* 4227 * !MMU doesn't have oom reaper so give access to memory reserves 4228 * only to the thread with TIF_MEMDIE set 4229 */ 4230 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4231 return false; 4232 4233 return true; 4234 } 4235 4236 /* 4237 * Distinguish requests which really need access to full memory 4238 * reserves from oom victims which can live with a portion of it 4239 */ 4240 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4241 { 4242 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4243 return 0; 4244 if (gfp_mask & __GFP_MEMALLOC) 4245 return ALLOC_NO_WATERMARKS; 4246 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4247 return ALLOC_NO_WATERMARKS; 4248 if (!in_interrupt()) { 4249 if (current->flags & PF_MEMALLOC) 4250 return ALLOC_NO_WATERMARKS; 4251 else if (oom_reserves_allowed(current)) 4252 return ALLOC_OOM; 4253 } 4254 4255 return 0; 4256 } 4257 4258 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4259 { 4260 return !!__gfp_pfmemalloc_flags(gfp_mask); 4261 } 4262 4263 /* 4264 * Checks whether it makes sense to retry the reclaim to make a forward progress 4265 * for the given allocation request. 4266 * 4267 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4268 * without success, or when we couldn't even meet the watermark if we 4269 * reclaimed all remaining pages on the LRU lists. 4270 * 4271 * Returns true if a retry is viable or false to enter the oom path. 4272 */ 4273 static inline bool 4274 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4275 struct alloc_context *ac, int alloc_flags, 4276 bool did_some_progress, int *no_progress_loops) 4277 { 4278 struct zone *zone; 4279 struct zoneref *z; 4280 bool ret = false; 4281 4282 /* 4283 * Costly allocations might have made a progress but this doesn't mean 4284 * their order will become available due to high fragmentation so 4285 * always increment the no progress counter for them 4286 */ 4287 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4288 *no_progress_loops = 0; 4289 else 4290 (*no_progress_loops)++; 4291 4292 /* 4293 * Make sure we converge to OOM if we cannot make any progress 4294 * several times in the row. 4295 */ 4296 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4297 /* Before OOM, exhaust highatomic_reserve */ 4298 return unreserve_highatomic_pageblock(ac, true); 4299 } 4300 4301 /* 4302 * Keep reclaiming pages while there is a chance this will lead 4303 * somewhere. If none of the target zones can satisfy our allocation 4304 * request even if all reclaimable pages are considered then we are 4305 * screwed and have to go OOM. 4306 */ 4307 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4308 ac->nodemask) { 4309 unsigned long available; 4310 unsigned long reclaimable; 4311 unsigned long min_wmark = min_wmark_pages(zone); 4312 bool wmark; 4313 4314 available = reclaimable = zone_reclaimable_pages(zone); 4315 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4316 4317 /* 4318 * Would the allocation succeed if we reclaimed all 4319 * reclaimable pages? 4320 */ 4321 wmark = __zone_watermark_ok(zone, order, min_wmark, 4322 ac_classzone_idx(ac), alloc_flags, available); 4323 trace_reclaim_retry_zone(z, order, reclaimable, 4324 available, min_wmark, *no_progress_loops, wmark); 4325 if (wmark) { 4326 /* 4327 * If we didn't make any progress and have a lot of 4328 * dirty + writeback pages then we should wait for 4329 * an IO to complete to slow down the reclaim and 4330 * prevent from pre mature OOM 4331 */ 4332 if (!did_some_progress) { 4333 unsigned long write_pending; 4334 4335 write_pending = zone_page_state_snapshot(zone, 4336 NR_ZONE_WRITE_PENDING); 4337 4338 if (2 * write_pending > reclaimable) { 4339 congestion_wait(BLK_RW_ASYNC, HZ/10); 4340 return true; 4341 } 4342 } 4343 4344 ret = true; 4345 goto out; 4346 } 4347 } 4348 4349 out: 4350 /* 4351 * Memory allocation/reclaim might be called from a WQ context and the 4352 * current implementation of the WQ concurrency control doesn't 4353 * recognize that a particular WQ is congested if the worker thread is 4354 * looping without ever sleeping. Therefore we have to do a short sleep 4355 * here rather than calling cond_resched(). 4356 */ 4357 if (current->flags & PF_WQ_WORKER) 4358 schedule_timeout_uninterruptible(1); 4359 else 4360 cond_resched(); 4361 return ret; 4362 } 4363 4364 static inline bool 4365 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4366 { 4367 /* 4368 * It's possible that cpuset's mems_allowed and the nodemask from 4369 * mempolicy don't intersect. This should be normally dealt with by 4370 * policy_nodemask(), but it's possible to race with cpuset update in 4371 * such a way the check therein was true, and then it became false 4372 * before we got our cpuset_mems_cookie here. 4373 * This assumes that for all allocations, ac->nodemask can come only 4374 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4375 * when it does not intersect with the cpuset restrictions) or the 4376 * caller can deal with a violated nodemask. 4377 */ 4378 if (cpusets_enabled() && ac->nodemask && 4379 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4380 ac->nodemask = NULL; 4381 return true; 4382 } 4383 4384 /* 4385 * When updating a task's mems_allowed or mempolicy nodemask, it is 4386 * possible to race with parallel threads in such a way that our 4387 * allocation can fail while the mask is being updated. If we are about 4388 * to fail, check if the cpuset changed during allocation and if so, 4389 * retry. 4390 */ 4391 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4392 return true; 4393 4394 return false; 4395 } 4396 4397 static inline struct page * 4398 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4399 struct alloc_context *ac) 4400 { 4401 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4402 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4403 struct page *page = NULL; 4404 unsigned int alloc_flags; 4405 unsigned long did_some_progress; 4406 enum compact_priority compact_priority; 4407 enum compact_result compact_result; 4408 int compaction_retries; 4409 int no_progress_loops; 4410 unsigned int cpuset_mems_cookie; 4411 int reserve_flags; 4412 4413 /* 4414 * We also sanity check to catch abuse of atomic reserves being used by 4415 * callers that are not in atomic context. 4416 */ 4417 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4418 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4419 gfp_mask &= ~__GFP_ATOMIC; 4420 4421 retry_cpuset: 4422 compaction_retries = 0; 4423 no_progress_loops = 0; 4424 compact_priority = DEF_COMPACT_PRIORITY; 4425 cpuset_mems_cookie = read_mems_allowed_begin(); 4426 4427 /* 4428 * The fast path uses conservative alloc_flags to succeed only until 4429 * kswapd needs to be woken up, and to avoid the cost of setting up 4430 * alloc_flags precisely. So we do that now. 4431 */ 4432 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4433 4434 /* 4435 * We need to recalculate the starting point for the zonelist iterator 4436 * because we might have used different nodemask in the fast path, or 4437 * there was a cpuset modification and we are retrying - otherwise we 4438 * could end up iterating over non-eligible zones endlessly. 4439 */ 4440 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4441 ac->high_zoneidx, ac->nodemask); 4442 if (!ac->preferred_zoneref->zone) 4443 goto nopage; 4444 4445 if (alloc_flags & ALLOC_KSWAPD) 4446 wake_all_kswapds(order, gfp_mask, ac); 4447 4448 /* 4449 * The adjusted alloc_flags might result in immediate success, so try 4450 * that first 4451 */ 4452 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4453 if (page) 4454 goto got_pg; 4455 4456 /* 4457 * For costly allocations, try direct compaction first, as it's likely 4458 * that we have enough base pages and don't need to reclaim. For non- 4459 * movable high-order allocations, do that as well, as compaction will 4460 * try prevent permanent fragmentation by migrating from blocks of the 4461 * same migratetype. 4462 * Don't try this for allocations that are allowed to ignore 4463 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4464 */ 4465 if (can_direct_reclaim && 4466 (costly_order || 4467 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4468 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4469 page = __alloc_pages_direct_compact(gfp_mask, order, 4470 alloc_flags, ac, 4471 INIT_COMPACT_PRIORITY, 4472 &compact_result); 4473 if (page) 4474 goto got_pg; 4475 4476 /* 4477 * Checks for costly allocations with __GFP_NORETRY, which 4478 * includes THP page fault allocations 4479 */ 4480 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4481 /* 4482 * If compaction is deferred for high-order allocations, 4483 * it is because sync compaction recently failed. If 4484 * this is the case and the caller requested a THP 4485 * allocation, we do not want to heavily disrupt the 4486 * system, so we fail the allocation instead of entering 4487 * direct reclaim. 4488 */ 4489 if (compact_result == COMPACT_DEFERRED) 4490 goto nopage; 4491 4492 /* 4493 * Looks like reclaim/compaction is worth trying, but 4494 * sync compaction could be very expensive, so keep 4495 * using async compaction. 4496 */ 4497 compact_priority = INIT_COMPACT_PRIORITY; 4498 } 4499 } 4500 4501 retry: 4502 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4503 if (alloc_flags & ALLOC_KSWAPD) 4504 wake_all_kswapds(order, gfp_mask, ac); 4505 4506 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4507 if (reserve_flags) 4508 alloc_flags = reserve_flags; 4509 4510 /* 4511 * Reset the nodemask and zonelist iterators if memory policies can be 4512 * ignored. These allocations are high priority and system rather than 4513 * user oriented. 4514 */ 4515 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4516 ac->nodemask = NULL; 4517 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4518 ac->high_zoneidx, ac->nodemask); 4519 } 4520 4521 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4522 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4523 if (page) 4524 goto got_pg; 4525 4526 /* Caller is not willing to reclaim, we can't balance anything */ 4527 if (!can_direct_reclaim) 4528 goto nopage; 4529 4530 /* Avoid recursion of direct reclaim */ 4531 if (current->flags & PF_MEMALLOC) 4532 goto nopage; 4533 4534 /* Try direct reclaim and then allocating */ 4535 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4536 &did_some_progress); 4537 if (page) 4538 goto got_pg; 4539 4540 /* Try direct compaction and then allocating */ 4541 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4542 compact_priority, &compact_result); 4543 if (page) 4544 goto got_pg; 4545 4546 /* Do not loop if specifically requested */ 4547 if (gfp_mask & __GFP_NORETRY) 4548 goto nopage; 4549 4550 /* 4551 * Do not retry costly high order allocations unless they are 4552 * __GFP_RETRY_MAYFAIL 4553 */ 4554 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4555 goto nopage; 4556 4557 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4558 did_some_progress > 0, &no_progress_loops)) 4559 goto retry; 4560 4561 /* 4562 * It doesn't make any sense to retry for the compaction if the order-0 4563 * reclaim is not able to make any progress because the current 4564 * implementation of the compaction depends on the sufficient amount 4565 * of free memory (see __compaction_suitable) 4566 */ 4567 if (did_some_progress > 0 && 4568 should_compact_retry(ac, order, alloc_flags, 4569 compact_result, &compact_priority, 4570 &compaction_retries)) 4571 goto retry; 4572 4573 4574 /* Deal with possible cpuset update races before we start OOM killing */ 4575 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4576 goto retry_cpuset; 4577 4578 /* Reclaim has failed us, start killing things */ 4579 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4580 if (page) 4581 goto got_pg; 4582 4583 /* Avoid allocations with no watermarks from looping endlessly */ 4584 if (tsk_is_oom_victim(current) && 4585 (alloc_flags == ALLOC_OOM || 4586 (gfp_mask & __GFP_NOMEMALLOC))) 4587 goto nopage; 4588 4589 /* Retry as long as the OOM killer is making progress */ 4590 if (did_some_progress) { 4591 no_progress_loops = 0; 4592 goto retry; 4593 } 4594 4595 nopage: 4596 /* Deal with possible cpuset update races before we fail */ 4597 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4598 goto retry_cpuset; 4599 4600 /* 4601 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4602 * we always retry 4603 */ 4604 if (gfp_mask & __GFP_NOFAIL) { 4605 /* 4606 * All existing users of the __GFP_NOFAIL are blockable, so warn 4607 * of any new users that actually require GFP_NOWAIT 4608 */ 4609 if (WARN_ON_ONCE(!can_direct_reclaim)) 4610 goto fail; 4611 4612 /* 4613 * PF_MEMALLOC request from this context is rather bizarre 4614 * because we cannot reclaim anything and only can loop waiting 4615 * for somebody to do a work for us 4616 */ 4617 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4618 4619 /* 4620 * non failing costly orders are a hard requirement which we 4621 * are not prepared for much so let's warn about these users 4622 * so that we can identify them and convert them to something 4623 * else. 4624 */ 4625 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4626 4627 /* 4628 * Help non-failing allocations by giving them access to memory 4629 * reserves but do not use ALLOC_NO_WATERMARKS because this 4630 * could deplete whole memory reserves which would just make 4631 * the situation worse 4632 */ 4633 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4634 if (page) 4635 goto got_pg; 4636 4637 cond_resched(); 4638 goto retry; 4639 } 4640 fail: 4641 warn_alloc(gfp_mask, ac->nodemask, 4642 "page allocation failure: order:%u", order); 4643 got_pg: 4644 return page; 4645 } 4646 4647 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4648 int preferred_nid, nodemask_t *nodemask, 4649 struct alloc_context *ac, gfp_t *alloc_mask, 4650 unsigned int *alloc_flags) 4651 { 4652 ac->high_zoneidx = gfp_zone(gfp_mask); 4653 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4654 ac->nodemask = nodemask; 4655 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4656 4657 if (cpusets_enabled()) { 4658 *alloc_mask |= __GFP_HARDWALL; 4659 if (!ac->nodemask) 4660 ac->nodemask = &cpuset_current_mems_allowed; 4661 else 4662 *alloc_flags |= ALLOC_CPUSET; 4663 } 4664 4665 fs_reclaim_acquire(gfp_mask); 4666 fs_reclaim_release(gfp_mask); 4667 4668 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4669 4670 if (should_fail_alloc_page(gfp_mask, order)) 4671 return false; 4672 4673 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4674 *alloc_flags |= ALLOC_CMA; 4675 4676 return true; 4677 } 4678 4679 /* Determine whether to spread dirty pages and what the first usable zone */ 4680 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4681 { 4682 /* Dirty zone balancing only done in the fast path */ 4683 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4684 4685 /* 4686 * The preferred zone is used for statistics but crucially it is 4687 * also used as the starting point for the zonelist iterator. It 4688 * may get reset for allocations that ignore memory policies. 4689 */ 4690 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4691 ac->high_zoneidx, ac->nodemask); 4692 } 4693 4694 /* 4695 * This is the 'heart' of the zoned buddy allocator. 4696 */ 4697 struct page * 4698 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4699 nodemask_t *nodemask) 4700 { 4701 struct page *page; 4702 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4703 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4704 struct alloc_context ac = { }; 4705 4706 /* 4707 * There are several places where we assume that the order value is sane 4708 * so bail out early if the request is out of bound. 4709 */ 4710 if (unlikely(order >= MAX_ORDER)) { 4711 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4712 return NULL; 4713 } 4714 4715 gfp_mask &= gfp_allowed_mask; 4716 alloc_mask = gfp_mask; 4717 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4718 return NULL; 4719 4720 finalise_ac(gfp_mask, &ac); 4721 4722 /* 4723 * Forbid the first pass from falling back to types that fragment 4724 * memory until all local zones are considered. 4725 */ 4726 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4727 4728 /* First allocation attempt */ 4729 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4730 if (likely(page)) 4731 goto out; 4732 4733 /* 4734 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4735 * resp. GFP_NOIO which has to be inherited for all allocation requests 4736 * from a particular context which has been marked by 4737 * memalloc_no{fs,io}_{save,restore}. 4738 */ 4739 alloc_mask = current_gfp_context(gfp_mask); 4740 ac.spread_dirty_pages = false; 4741 4742 /* 4743 * Restore the original nodemask if it was potentially replaced with 4744 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4745 */ 4746 if (unlikely(ac.nodemask != nodemask)) 4747 ac.nodemask = nodemask; 4748 4749 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4750 4751 out: 4752 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4753 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4754 __free_pages(page, order); 4755 page = NULL; 4756 } 4757 4758 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4759 4760 return page; 4761 } 4762 EXPORT_SYMBOL(__alloc_pages_nodemask); 4763 4764 /* 4765 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4766 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4767 * you need to access high mem. 4768 */ 4769 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4770 { 4771 struct page *page; 4772 4773 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4774 if (!page) 4775 return 0; 4776 return (unsigned long) page_address(page); 4777 } 4778 EXPORT_SYMBOL(__get_free_pages); 4779 4780 unsigned long get_zeroed_page(gfp_t gfp_mask) 4781 { 4782 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4783 } 4784 EXPORT_SYMBOL(get_zeroed_page); 4785 4786 static inline void free_the_page(struct page *page, unsigned int order) 4787 { 4788 if (order == 0) /* Via pcp? */ 4789 free_unref_page(page); 4790 else 4791 __free_pages_ok(page, order); 4792 } 4793 4794 void __free_pages(struct page *page, unsigned int order) 4795 { 4796 if (put_page_testzero(page)) 4797 free_the_page(page, order); 4798 } 4799 EXPORT_SYMBOL(__free_pages); 4800 4801 void free_pages(unsigned long addr, unsigned int order) 4802 { 4803 if (addr != 0) { 4804 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4805 __free_pages(virt_to_page((void *)addr), order); 4806 } 4807 } 4808 4809 EXPORT_SYMBOL(free_pages); 4810 4811 /* 4812 * Page Fragment: 4813 * An arbitrary-length arbitrary-offset area of memory which resides 4814 * within a 0 or higher order page. Multiple fragments within that page 4815 * are individually refcounted, in the page's reference counter. 4816 * 4817 * The page_frag functions below provide a simple allocation framework for 4818 * page fragments. This is used by the network stack and network device 4819 * drivers to provide a backing region of memory for use as either an 4820 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4821 */ 4822 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4823 gfp_t gfp_mask) 4824 { 4825 struct page *page = NULL; 4826 gfp_t gfp = gfp_mask; 4827 4828 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4829 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4830 __GFP_NOMEMALLOC; 4831 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4832 PAGE_FRAG_CACHE_MAX_ORDER); 4833 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4834 #endif 4835 if (unlikely(!page)) 4836 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4837 4838 nc->va = page ? page_address(page) : NULL; 4839 4840 return page; 4841 } 4842 4843 void __page_frag_cache_drain(struct page *page, unsigned int count) 4844 { 4845 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4846 4847 if (page_ref_sub_and_test(page, count)) 4848 free_the_page(page, compound_order(page)); 4849 } 4850 EXPORT_SYMBOL(__page_frag_cache_drain); 4851 4852 void *page_frag_alloc(struct page_frag_cache *nc, 4853 unsigned int fragsz, gfp_t gfp_mask) 4854 { 4855 unsigned int size = PAGE_SIZE; 4856 struct page *page; 4857 int offset; 4858 4859 if (unlikely(!nc->va)) { 4860 refill: 4861 page = __page_frag_cache_refill(nc, gfp_mask); 4862 if (!page) 4863 return NULL; 4864 4865 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4866 /* if size can vary use size else just use PAGE_SIZE */ 4867 size = nc->size; 4868 #endif 4869 /* Even if we own the page, we do not use atomic_set(). 4870 * This would break get_page_unless_zero() users. 4871 */ 4872 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4873 4874 /* reset page count bias and offset to start of new frag */ 4875 nc->pfmemalloc = page_is_pfmemalloc(page); 4876 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4877 nc->offset = size; 4878 } 4879 4880 offset = nc->offset - fragsz; 4881 if (unlikely(offset < 0)) { 4882 page = virt_to_page(nc->va); 4883 4884 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4885 goto refill; 4886 4887 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4888 /* if size can vary use size else just use PAGE_SIZE */ 4889 size = nc->size; 4890 #endif 4891 /* OK, page count is 0, we can safely set it */ 4892 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4893 4894 /* reset page count bias and offset to start of new frag */ 4895 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4896 offset = size - fragsz; 4897 } 4898 4899 nc->pagecnt_bias--; 4900 nc->offset = offset; 4901 4902 return nc->va + offset; 4903 } 4904 EXPORT_SYMBOL(page_frag_alloc); 4905 4906 /* 4907 * Frees a page fragment allocated out of either a compound or order 0 page. 4908 */ 4909 void page_frag_free(void *addr) 4910 { 4911 struct page *page = virt_to_head_page(addr); 4912 4913 if (unlikely(put_page_testzero(page))) 4914 free_the_page(page, compound_order(page)); 4915 } 4916 EXPORT_SYMBOL(page_frag_free); 4917 4918 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4919 size_t size) 4920 { 4921 if (addr) { 4922 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4923 unsigned long used = addr + PAGE_ALIGN(size); 4924 4925 split_page(virt_to_page((void *)addr), order); 4926 while (used < alloc_end) { 4927 free_page(used); 4928 used += PAGE_SIZE; 4929 } 4930 } 4931 return (void *)addr; 4932 } 4933 4934 /** 4935 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4936 * @size: the number of bytes to allocate 4937 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4938 * 4939 * This function is similar to alloc_pages(), except that it allocates the 4940 * minimum number of pages to satisfy the request. alloc_pages() can only 4941 * allocate memory in power-of-two pages. 4942 * 4943 * This function is also limited by MAX_ORDER. 4944 * 4945 * Memory allocated by this function must be released by free_pages_exact(). 4946 * 4947 * Return: pointer to the allocated area or %NULL in case of error. 4948 */ 4949 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4950 { 4951 unsigned int order = get_order(size); 4952 unsigned long addr; 4953 4954 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4955 gfp_mask &= ~__GFP_COMP; 4956 4957 addr = __get_free_pages(gfp_mask, order); 4958 return make_alloc_exact(addr, order, size); 4959 } 4960 EXPORT_SYMBOL(alloc_pages_exact); 4961 4962 /** 4963 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4964 * pages on a node. 4965 * @nid: the preferred node ID where memory should be allocated 4966 * @size: the number of bytes to allocate 4967 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4968 * 4969 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4970 * back. 4971 * 4972 * Return: pointer to the allocated area or %NULL in case of error. 4973 */ 4974 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4975 { 4976 unsigned int order = get_order(size); 4977 struct page *p; 4978 4979 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4980 gfp_mask &= ~__GFP_COMP; 4981 4982 p = alloc_pages_node(nid, gfp_mask, order); 4983 if (!p) 4984 return NULL; 4985 return make_alloc_exact((unsigned long)page_address(p), order, size); 4986 } 4987 4988 /** 4989 * free_pages_exact - release memory allocated via alloc_pages_exact() 4990 * @virt: the value returned by alloc_pages_exact. 4991 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4992 * 4993 * Release the memory allocated by a previous call to alloc_pages_exact. 4994 */ 4995 void free_pages_exact(void *virt, size_t size) 4996 { 4997 unsigned long addr = (unsigned long)virt; 4998 unsigned long end = addr + PAGE_ALIGN(size); 4999 5000 while (addr < end) { 5001 free_page(addr); 5002 addr += PAGE_SIZE; 5003 } 5004 } 5005 EXPORT_SYMBOL(free_pages_exact); 5006 5007 /** 5008 * nr_free_zone_pages - count number of pages beyond high watermark 5009 * @offset: The zone index of the highest zone 5010 * 5011 * nr_free_zone_pages() counts the number of pages which are beyond the 5012 * high watermark within all zones at or below a given zone index. For each 5013 * zone, the number of pages is calculated as: 5014 * 5015 * nr_free_zone_pages = managed_pages - high_pages 5016 * 5017 * Return: number of pages beyond high watermark. 5018 */ 5019 static unsigned long nr_free_zone_pages(int offset) 5020 { 5021 struct zoneref *z; 5022 struct zone *zone; 5023 5024 /* Just pick one node, since fallback list is circular */ 5025 unsigned long sum = 0; 5026 5027 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5028 5029 for_each_zone_zonelist(zone, z, zonelist, offset) { 5030 unsigned long size = zone_managed_pages(zone); 5031 unsigned long high = high_wmark_pages(zone); 5032 if (size > high) 5033 sum += size - high; 5034 } 5035 5036 return sum; 5037 } 5038 5039 /** 5040 * nr_free_buffer_pages - count number of pages beyond high watermark 5041 * 5042 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5043 * watermark within ZONE_DMA and ZONE_NORMAL. 5044 * 5045 * Return: number of pages beyond high watermark within ZONE_DMA and 5046 * ZONE_NORMAL. 5047 */ 5048 unsigned long nr_free_buffer_pages(void) 5049 { 5050 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5051 } 5052 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5053 5054 /** 5055 * nr_free_pagecache_pages - count number of pages beyond high watermark 5056 * 5057 * nr_free_pagecache_pages() counts the number of pages which are beyond the 5058 * high watermark within all zones. 5059 * 5060 * Return: number of pages beyond high watermark within all zones. 5061 */ 5062 unsigned long nr_free_pagecache_pages(void) 5063 { 5064 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5065 } 5066 5067 static inline void show_node(struct zone *zone) 5068 { 5069 if (IS_ENABLED(CONFIG_NUMA)) 5070 printk("Node %d ", zone_to_nid(zone)); 5071 } 5072 5073 long si_mem_available(void) 5074 { 5075 long available; 5076 unsigned long pagecache; 5077 unsigned long wmark_low = 0; 5078 unsigned long pages[NR_LRU_LISTS]; 5079 unsigned long reclaimable; 5080 struct zone *zone; 5081 int lru; 5082 5083 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5084 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5085 5086 for_each_zone(zone) 5087 wmark_low += low_wmark_pages(zone); 5088 5089 /* 5090 * Estimate the amount of memory available for userspace allocations, 5091 * without causing swapping. 5092 */ 5093 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5094 5095 /* 5096 * Not all the page cache can be freed, otherwise the system will 5097 * start swapping. Assume at least half of the page cache, or the 5098 * low watermark worth of cache, needs to stay. 5099 */ 5100 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5101 pagecache -= min(pagecache / 2, wmark_low); 5102 available += pagecache; 5103 5104 /* 5105 * Part of the reclaimable slab and other kernel memory consists of 5106 * items that are in use, and cannot be freed. Cap this estimate at the 5107 * low watermark. 5108 */ 5109 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5110 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5111 available += reclaimable - min(reclaimable / 2, wmark_low); 5112 5113 if (available < 0) 5114 available = 0; 5115 return available; 5116 } 5117 EXPORT_SYMBOL_GPL(si_mem_available); 5118 5119 void si_meminfo(struct sysinfo *val) 5120 { 5121 val->totalram = totalram_pages(); 5122 val->sharedram = global_node_page_state(NR_SHMEM); 5123 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5124 val->bufferram = nr_blockdev_pages(); 5125 val->totalhigh = totalhigh_pages(); 5126 val->freehigh = nr_free_highpages(); 5127 val->mem_unit = PAGE_SIZE; 5128 } 5129 5130 EXPORT_SYMBOL(si_meminfo); 5131 5132 #ifdef CONFIG_NUMA 5133 void si_meminfo_node(struct sysinfo *val, int nid) 5134 { 5135 int zone_type; /* needs to be signed */ 5136 unsigned long managed_pages = 0; 5137 unsigned long managed_highpages = 0; 5138 unsigned long free_highpages = 0; 5139 pg_data_t *pgdat = NODE_DATA(nid); 5140 5141 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5142 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5143 val->totalram = managed_pages; 5144 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5145 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5146 #ifdef CONFIG_HIGHMEM 5147 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5148 struct zone *zone = &pgdat->node_zones[zone_type]; 5149 5150 if (is_highmem(zone)) { 5151 managed_highpages += zone_managed_pages(zone); 5152 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5153 } 5154 } 5155 val->totalhigh = managed_highpages; 5156 val->freehigh = free_highpages; 5157 #else 5158 val->totalhigh = managed_highpages; 5159 val->freehigh = free_highpages; 5160 #endif 5161 val->mem_unit = PAGE_SIZE; 5162 } 5163 #endif 5164 5165 /* 5166 * Determine whether the node should be displayed or not, depending on whether 5167 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5168 */ 5169 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5170 { 5171 if (!(flags & SHOW_MEM_FILTER_NODES)) 5172 return false; 5173 5174 /* 5175 * no node mask - aka implicit memory numa policy. Do not bother with 5176 * the synchronization - read_mems_allowed_begin - because we do not 5177 * have to be precise here. 5178 */ 5179 if (!nodemask) 5180 nodemask = &cpuset_current_mems_allowed; 5181 5182 return !node_isset(nid, *nodemask); 5183 } 5184 5185 #define K(x) ((x) << (PAGE_SHIFT-10)) 5186 5187 static void show_migration_types(unsigned char type) 5188 { 5189 static const char types[MIGRATE_TYPES] = { 5190 [MIGRATE_UNMOVABLE] = 'U', 5191 [MIGRATE_MOVABLE] = 'M', 5192 [MIGRATE_RECLAIMABLE] = 'E', 5193 [MIGRATE_HIGHATOMIC] = 'H', 5194 #ifdef CONFIG_CMA 5195 [MIGRATE_CMA] = 'C', 5196 #endif 5197 #ifdef CONFIG_MEMORY_ISOLATION 5198 [MIGRATE_ISOLATE] = 'I', 5199 #endif 5200 }; 5201 char tmp[MIGRATE_TYPES + 1]; 5202 char *p = tmp; 5203 int i; 5204 5205 for (i = 0; i < MIGRATE_TYPES; i++) { 5206 if (type & (1 << i)) 5207 *p++ = types[i]; 5208 } 5209 5210 *p = '\0'; 5211 printk(KERN_CONT "(%s) ", tmp); 5212 } 5213 5214 /* 5215 * Show free area list (used inside shift_scroll-lock stuff) 5216 * We also calculate the percentage fragmentation. We do this by counting the 5217 * memory on each free list with the exception of the first item on the list. 5218 * 5219 * Bits in @filter: 5220 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5221 * cpuset. 5222 */ 5223 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5224 { 5225 unsigned long free_pcp = 0; 5226 int cpu; 5227 struct zone *zone; 5228 pg_data_t *pgdat; 5229 5230 for_each_populated_zone(zone) { 5231 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5232 continue; 5233 5234 for_each_online_cpu(cpu) 5235 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5236 } 5237 5238 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5239 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5240 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5241 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5242 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5243 " free:%lu free_pcp:%lu free_cma:%lu\n", 5244 global_node_page_state(NR_ACTIVE_ANON), 5245 global_node_page_state(NR_INACTIVE_ANON), 5246 global_node_page_state(NR_ISOLATED_ANON), 5247 global_node_page_state(NR_ACTIVE_FILE), 5248 global_node_page_state(NR_INACTIVE_FILE), 5249 global_node_page_state(NR_ISOLATED_FILE), 5250 global_node_page_state(NR_UNEVICTABLE), 5251 global_node_page_state(NR_FILE_DIRTY), 5252 global_node_page_state(NR_WRITEBACK), 5253 global_node_page_state(NR_UNSTABLE_NFS), 5254 global_node_page_state(NR_SLAB_RECLAIMABLE), 5255 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5256 global_node_page_state(NR_FILE_MAPPED), 5257 global_node_page_state(NR_SHMEM), 5258 global_zone_page_state(NR_PAGETABLE), 5259 global_zone_page_state(NR_BOUNCE), 5260 global_zone_page_state(NR_FREE_PAGES), 5261 free_pcp, 5262 global_zone_page_state(NR_FREE_CMA_PAGES)); 5263 5264 for_each_online_pgdat(pgdat) { 5265 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5266 continue; 5267 5268 printk("Node %d" 5269 " active_anon:%lukB" 5270 " inactive_anon:%lukB" 5271 " active_file:%lukB" 5272 " inactive_file:%lukB" 5273 " unevictable:%lukB" 5274 " isolated(anon):%lukB" 5275 " isolated(file):%lukB" 5276 " mapped:%lukB" 5277 " dirty:%lukB" 5278 " writeback:%lukB" 5279 " shmem:%lukB" 5280 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5281 " shmem_thp: %lukB" 5282 " shmem_pmdmapped: %lukB" 5283 " anon_thp: %lukB" 5284 #endif 5285 " writeback_tmp:%lukB" 5286 " unstable:%lukB" 5287 " all_unreclaimable? %s" 5288 "\n", 5289 pgdat->node_id, 5290 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5291 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5292 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5293 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5294 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5295 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5296 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5297 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5298 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5299 K(node_page_state(pgdat, NR_WRITEBACK)), 5300 K(node_page_state(pgdat, NR_SHMEM)), 5301 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5302 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5303 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5304 * HPAGE_PMD_NR), 5305 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5306 #endif 5307 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5308 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5309 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5310 "yes" : "no"); 5311 } 5312 5313 for_each_populated_zone(zone) { 5314 int i; 5315 5316 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5317 continue; 5318 5319 free_pcp = 0; 5320 for_each_online_cpu(cpu) 5321 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5322 5323 show_node(zone); 5324 printk(KERN_CONT 5325 "%s" 5326 " free:%lukB" 5327 " min:%lukB" 5328 " low:%lukB" 5329 " high:%lukB" 5330 " active_anon:%lukB" 5331 " inactive_anon:%lukB" 5332 " active_file:%lukB" 5333 " inactive_file:%lukB" 5334 " unevictable:%lukB" 5335 " writepending:%lukB" 5336 " present:%lukB" 5337 " managed:%lukB" 5338 " mlocked:%lukB" 5339 " kernel_stack:%lukB" 5340 " pagetables:%lukB" 5341 " bounce:%lukB" 5342 " free_pcp:%lukB" 5343 " local_pcp:%ukB" 5344 " free_cma:%lukB" 5345 "\n", 5346 zone->name, 5347 K(zone_page_state(zone, NR_FREE_PAGES)), 5348 K(min_wmark_pages(zone)), 5349 K(low_wmark_pages(zone)), 5350 K(high_wmark_pages(zone)), 5351 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5352 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5353 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5354 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5355 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5356 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5357 K(zone->present_pages), 5358 K(zone_managed_pages(zone)), 5359 K(zone_page_state(zone, NR_MLOCK)), 5360 zone_page_state(zone, NR_KERNEL_STACK_KB), 5361 K(zone_page_state(zone, NR_PAGETABLE)), 5362 K(zone_page_state(zone, NR_BOUNCE)), 5363 K(free_pcp), 5364 K(this_cpu_read(zone->pageset->pcp.count)), 5365 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5366 printk("lowmem_reserve[]:"); 5367 for (i = 0; i < MAX_NR_ZONES; i++) 5368 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5369 printk(KERN_CONT "\n"); 5370 } 5371 5372 for_each_populated_zone(zone) { 5373 unsigned int order; 5374 unsigned long nr[MAX_ORDER], flags, total = 0; 5375 unsigned char types[MAX_ORDER]; 5376 5377 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5378 continue; 5379 show_node(zone); 5380 printk(KERN_CONT "%s: ", zone->name); 5381 5382 spin_lock_irqsave(&zone->lock, flags); 5383 for (order = 0; order < MAX_ORDER; order++) { 5384 struct free_area *area = &zone->free_area[order]; 5385 int type; 5386 5387 nr[order] = area->nr_free; 5388 total += nr[order] << order; 5389 5390 types[order] = 0; 5391 for (type = 0; type < MIGRATE_TYPES; type++) { 5392 if (!free_area_empty(area, type)) 5393 types[order] |= 1 << type; 5394 } 5395 } 5396 spin_unlock_irqrestore(&zone->lock, flags); 5397 for (order = 0; order < MAX_ORDER; order++) { 5398 printk(KERN_CONT "%lu*%lukB ", 5399 nr[order], K(1UL) << order); 5400 if (nr[order]) 5401 show_migration_types(types[order]); 5402 } 5403 printk(KERN_CONT "= %lukB\n", K(total)); 5404 } 5405 5406 hugetlb_show_meminfo(); 5407 5408 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5409 5410 show_swap_cache_info(); 5411 } 5412 5413 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5414 { 5415 zoneref->zone = zone; 5416 zoneref->zone_idx = zone_idx(zone); 5417 } 5418 5419 /* 5420 * Builds allocation fallback zone lists. 5421 * 5422 * Add all populated zones of a node to the zonelist. 5423 */ 5424 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5425 { 5426 struct zone *zone; 5427 enum zone_type zone_type = MAX_NR_ZONES; 5428 int nr_zones = 0; 5429 5430 do { 5431 zone_type--; 5432 zone = pgdat->node_zones + zone_type; 5433 if (managed_zone(zone)) { 5434 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5435 check_highest_zone(zone_type); 5436 } 5437 } while (zone_type); 5438 5439 return nr_zones; 5440 } 5441 5442 #ifdef CONFIG_NUMA 5443 5444 static int __parse_numa_zonelist_order(char *s) 5445 { 5446 /* 5447 * We used to support different zonlists modes but they turned 5448 * out to be just not useful. Let's keep the warning in place 5449 * if somebody still use the cmd line parameter so that we do 5450 * not fail it silently 5451 */ 5452 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5453 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5454 return -EINVAL; 5455 } 5456 return 0; 5457 } 5458 5459 static __init int setup_numa_zonelist_order(char *s) 5460 { 5461 if (!s) 5462 return 0; 5463 5464 return __parse_numa_zonelist_order(s); 5465 } 5466 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5467 5468 char numa_zonelist_order[] = "Node"; 5469 5470 /* 5471 * sysctl handler for numa_zonelist_order 5472 */ 5473 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5474 void __user *buffer, size_t *length, 5475 loff_t *ppos) 5476 { 5477 char *str; 5478 int ret; 5479 5480 if (!write) 5481 return proc_dostring(table, write, buffer, length, ppos); 5482 str = memdup_user_nul(buffer, 16); 5483 if (IS_ERR(str)) 5484 return PTR_ERR(str); 5485 5486 ret = __parse_numa_zonelist_order(str); 5487 kfree(str); 5488 return ret; 5489 } 5490 5491 5492 #define MAX_NODE_LOAD (nr_online_nodes) 5493 static int node_load[MAX_NUMNODES]; 5494 5495 /** 5496 * find_next_best_node - find the next node that should appear in a given node's fallback list 5497 * @node: node whose fallback list we're appending 5498 * @used_node_mask: nodemask_t of already used nodes 5499 * 5500 * We use a number of factors to determine which is the next node that should 5501 * appear on a given node's fallback list. The node should not have appeared 5502 * already in @node's fallback list, and it should be the next closest node 5503 * according to the distance array (which contains arbitrary distance values 5504 * from each node to each node in the system), and should also prefer nodes 5505 * with no CPUs, since presumably they'll have very little allocation pressure 5506 * on them otherwise. 5507 * 5508 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5509 */ 5510 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5511 { 5512 int n, val; 5513 int min_val = INT_MAX; 5514 int best_node = NUMA_NO_NODE; 5515 const struct cpumask *tmp = cpumask_of_node(0); 5516 5517 /* Use the local node if we haven't already */ 5518 if (!node_isset(node, *used_node_mask)) { 5519 node_set(node, *used_node_mask); 5520 return node; 5521 } 5522 5523 for_each_node_state(n, N_MEMORY) { 5524 5525 /* Don't want a node to appear more than once */ 5526 if (node_isset(n, *used_node_mask)) 5527 continue; 5528 5529 /* Use the distance array to find the distance */ 5530 val = node_distance(node, n); 5531 5532 /* Penalize nodes under us ("prefer the next node") */ 5533 val += (n < node); 5534 5535 /* Give preference to headless and unused nodes */ 5536 tmp = cpumask_of_node(n); 5537 if (!cpumask_empty(tmp)) 5538 val += PENALTY_FOR_NODE_WITH_CPUS; 5539 5540 /* Slight preference for less loaded node */ 5541 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5542 val += node_load[n]; 5543 5544 if (val < min_val) { 5545 min_val = val; 5546 best_node = n; 5547 } 5548 } 5549 5550 if (best_node >= 0) 5551 node_set(best_node, *used_node_mask); 5552 5553 return best_node; 5554 } 5555 5556 5557 /* 5558 * Build zonelists ordered by node and zones within node. 5559 * This results in maximum locality--normal zone overflows into local 5560 * DMA zone, if any--but risks exhausting DMA zone. 5561 */ 5562 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5563 unsigned nr_nodes) 5564 { 5565 struct zoneref *zonerefs; 5566 int i; 5567 5568 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5569 5570 for (i = 0; i < nr_nodes; i++) { 5571 int nr_zones; 5572 5573 pg_data_t *node = NODE_DATA(node_order[i]); 5574 5575 nr_zones = build_zonerefs_node(node, zonerefs); 5576 zonerefs += nr_zones; 5577 } 5578 zonerefs->zone = NULL; 5579 zonerefs->zone_idx = 0; 5580 } 5581 5582 /* 5583 * Build gfp_thisnode zonelists 5584 */ 5585 static void build_thisnode_zonelists(pg_data_t *pgdat) 5586 { 5587 struct zoneref *zonerefs; 5588 int nr_zones; 5589 5590 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5591 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5592 zonerefs += nr_zones; 5593 zonerefs->zone = NULL; 5594 zonerefs->zone_idx = 0; 5595 } 5596 5597 /* 5598 * Build zonelists ordered by zone and nodes within zones. 5599 * This results in conserving DMA zone[s] until all Normal memory is 5600 * exhausted, but results in overflowing to remote node while memory 5601 * may still exist in local DMA zone. 5602 */ 5603 5604 static void build_zonelists(pg_data_t *pgdat) 5605 { 5606 static int node_order[MAX_NUMNODES]; 5607 int node, load, nr_nodes = 0; 5608 nodemask_t used_mask; 5609 int local_node, prev_node; 5610 5611 /* NUMA-aware ordering of nodes */ 5612 local_node = pgdat->node_id; 5613 load = nr_online_nodes; 5614 prev_node = local_node; 5615 nodes_clear(used_mask); 5616 5617 memset(node_order, 0, sizeof(node_order)); 5618 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5619 /* 5620 * We don't want to pressure a particular node. 5621 * So adding penalty to the first node in same 5622 * distance group to make it round-robin. 5623 */ 5624 if (node_distance(local_node, node) != 5625 node_distance(local_node, prev_node)) 5626 node_load[node] = load; 5627 5628 node_order[nr_nodes++] = node; 5629 prev_node = node; 5630 load--; 5631 } 5632 5633 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5634 build_thisnode_zonelists(pgdat); 5635 } 5636 5637 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5638 /* 5639 * Return node id of node used for "local" allocations. 5640 * I.e., first node id of first zone in arg node's generic zonelist. 5641 * Used for initializing percpu 'numa_mem', which is used primarily 5642 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5643 */ 5644 int local_memory_node(int node) 5645 { 5646 struct zoneref *z; 5647 5648 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5649 gfp_zone(GFP_KERNEL), 5650 NULL); 5651 return zone_to_nid(z->zone); 5652 } 5653 #endif 5654 5655 static void setup_min_unmapped_ratio(void); 5656 static void setup_min_slab_ratio(void); 5657 #else /* CONFIG_NUMA */ 5658 5659 static void build_zonelists(pg_data_t *pgdat) 5660 { 5661 int node, local_node; 5662 struct zoneref *zonerefs; 5663 int nr_zones; 5664 5665 local_node = pgdat->node_id; 5666 5667 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5668 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5669 zonerefs += nr_zones; 5670 5671 /* 5672 * Now we build the zonelist so that it contains the zones 5673 * of all the other nodes. 5674 * We don't want to pressure a particular node, so when 5675 * building the zones for node N, we make sure that the 5676 * zones coming right after the local ones are those from 5677 * node N+1 (modulo N) 5678 */ 5679 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5680 if (!node_online(node)) 5681 continue; 5682 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5683 zonerefs += nr_zones; 5684 } 5685 for (node = 0; node < local_node; node++) { 5686 if (!node_online(node)) 5687 continue; 5688 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5689 zonerefs += nr_zones; 5690 } 5691 5692 zonerefs->zone = NULL; 5693 zonerefs->zone_idx = 0; 5694 } 5695 5696 #endif /* CONFIG_NUMA */ 5697 5698 /* 5699 * Boot pageset table. One per cpu which is going to be used for all 5700 * zones and all nodes. The parameters will be set in such a way 5701 * that an item put on a list will immediately be handed over to 5702 * the buddy list. This is safe since pageset manipulation is done 5703 * with interrupts disabled. 5704 * 5705 * The boot_pagesets must be kept even after bootup is complete for 5706 * unused processors and/or zones. They do play a role for bootstrapping 5707 * hotplugged processors. 5708 * 5709 * zoneinfo_show() and maybe other functions do 5710 * not check if the processor is online before following the pageset pointer. 5711 * Other parts of the kernel may not check if the zone is available. 5712 */ 5713 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5714 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5715 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5716 5717 static void __build_all_zonelists(void *data) 5718 { 5719 int nid; 5720 int __maybe_unused cpu; 5721 pg_data_t *self = data; 5722 static DEFINE_SPINLOCK(lock); 5723 5724 spin_lock(&lock); 5725 5726 #ifdef CONFIG_NUMA 5727 memset(node_load, 0, sizeof(node_load)); 5728 #endif 5729 5730 /* 5731 * This node is hotadded and no memory is yet present. So just 5732 * building zonelists is fine - no need to touch other nodes. 5733 */ 5734 if (self && !node_online(self->node_id)) { 5735 build_zonelists(self); 5736 } else { 5737 for_each_online_node(nid) { 5738 pg_data_t *pgdat = NODE_DATA(nid); 5739 5740 build_zonelists(pgdat); 5741 } 5742 5743 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5744 /* 5745 * We now know the "local memory node" for each node-- 5746 * i.e., the node of the first zone in the generic zonelist. 5747 * Set up numa_mem percpu variable for on-line cpus. During 5748 * boot, only the boot cpu should be on-line; we'll init the 5749 * secondary cpus' numa_mem as they come on-line. During 5750 * node/memory hotplug, we'll fixup all on-line cpus. 5751 */ 5752 for_each_online_cpu(cpu) 5753 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5754 #endif 5755 } 5756 5757 spin_unlock(&lock); 5758 } 5759 5760 static noinline void __init 5761 build_all_zonelists_init(void) 5762 { 5763 int cpu; 5764 5765 __build_all_zonelists(NULL); 5766 5767 /* 5768 * Initialize the boot_pagesets that are going to be used 5769 * for bootstrapping processors. The real pagesets for 5770 * each zone will be allocated later when the per cpu 5771 * allocator is available. 5772 * 5773 * boot_pagesets are used also for bootstrapping offline 5774 * cpus if the system is already booted because the pagesets 5775 * are needed to initialize allocators on a specific cpu too. 5776 * F.e. the percpu allocator needs the page allocator which 5777 * needs the percpu allocator in order to allocate its pagesets 5778 * (a chicken-egg dilemma). 5779 */ 5780 for_each_possible_cpu(cpu) 5781 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5782 5783 mminit_verify_zonelist(); 5784 cpuset_init_current_mems_allowed(); 5785 } 5786 5787 /* 5788 * unless system_state == SYSTEM_BOOTING. 5789 * 5790 * __ref due to call of __init annotated helper build_all_zonelists_init 5791 * [protected by SYSTEM_BOOTING]. 5792 */ 5793 void __ref build_all_zonelists(pg_data_t *pgdat) 5794 { 5795 if (system_state == SYSTEM_BOOTING) { 5796 build_all_zonelists_init(); 5797 } else { 5798 __build_all_zonelists(pgdat); 5799 /* cpuset refresh routine should be here */ 5800 } 5801 vm_total_pages = nr_free_pagecache_pages(); 5802 /* 5803 * Disable grouping by mobility if the number of pages in the 5804 * system is too low to allow the mechanism to work. It would be 5805 * more accurate, but expensive to check per-zone. This check is 5806 * made on memory-hotadd so a system can start with mobility 5807 * disabled and enable it later 5808 */ 5809 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5810 page_group_by_mobility_disabled = 1; 5811 else 5812 page_group_by_mobility_disabled = 0; 5813 5814 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5815 nr_online_nodes, 5816 page_group_by_mobility_disabled ? "off" : "on", 5817 vm_total_pages); 5818 #ifdef CONFIG_NUMA 5819 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5820 #endif 5821 } 5822 5823 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5824 static bool __meminit 5825 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5826 { 5827 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5828 static struct memblock_region *r; 5829 5830 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5831 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5832 for_each_memblock(memory, r) { 5833 if (*pfn < memblock_region_memory_end_pfn(r)) 5834 break; 5835 } 5836 } 5837 if (*pfn >= memblock_region_memory_base_pfn(r) && 5838 memblock_is_mirror(r)) { 5839 *pfn = memblock_region_memory_end_pfn(r); 5840 return true; 5841 } 5842 } 5843 #endif 5844 return false; 5845 } 5846 5847 /* 5848 * Initially all pages are reserved - free ones are freed 5849 * up by memblock_free_all() once the early boot process is 5850 * done. Non-atomic initialization, single-pass. 5851 */ 5852 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5853 unsigned long start_pfn, enum memmap_context context, 5854 struct vmem_altmap *altmap) 5855 { 5856 unsigned long pfn, end_pfn = start_pfn + size; 5857 struct page *page; 5858 5859 if (highest_memmap_pfn < end_pfn - 1) 5860 highest_memmap_pfn = end_pfn - 1; 5861 5862 #ifdef CONFIG_ZONE_DEVICE 5863 /* 5864 * Honor reservation requested by the driver for this ZONE_DEVICE 5865 * memory. We limit the total number of pages to initialize to just 5866 * those that might contain the memory mapping. We will defer the 5867 * ZONE_DEVICE page initialization until after we have released 5868 * the hotplug lock. 5869 */ 5870 if (zone == ZONE_DEVICE) { 5871 if (!altmap) 5872 return; 5873 5874 if (start_pfn == altmap->base_pfn) 5875 start_pfn += altmap->reserve; 5876 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5877 } 5878 #endif 5879 5880 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5881 /* 5882 * There can be holes in boot-time mem_map[]s handed to this 5883 * function. They do not exist on hotplugged memory. 5884 */ 5885 if (context == MEMMAP_EARLY) { 5886 if (!early_pfn_valid(pfn)) 5887 continue; 5888 if (!early_pfn_in_nid(pfn, nid)) 5889 continue; 5890 if (overlap_memmap_init(zone, &pfn)) 5891 continue; 5892 if (defer_init(nid, pfn, end_pfn)) 5893 break; 5894 } 5895 5896 page = pfn_to_page(pfn); 5897 __init_single_page(page, pfn, zone, nid); 5898 if (context == MEMMAP_HOTPLUG) 5899 __SetPageReserved(page); 5900 5901 /* 5902 * Mark the block movable so that blocks are reserved for 5903 * movable at startup. This will force kernel allocations 5904 * to reserve their blocks rather than leaking throughout 5905 * the address space during boot when many long-lived 5906 * kernel allocations are made. 5907 * 5908 * bitmap is created for zone's valid pfn range. but memmap 5909 * can be created for invalid pages (for alignment) 5910 * check here not to call set_pageblock_migratetype() against 5911 * pfn out of zone. 5912 */ 5913 if (!(pfn & (pageblock_nr_pages - 1))) { 5914 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5915 cond_resched(); 5916 } 5917 } 5918 } 5919 5920 #ifdef CONFIG_ZONE_DEVICE 5921 void __ref memmap_init_zone_device(struct zone *zone, 5922 unsigned long start_pfn, 5923 unsigned long size, 5924 struct dev_pagemap *pgmap) 5925 { 5926 unsigned long pfn, end_pfn = start_pfn + size; 5927 struct pglist_data *pgdat = zone->zone_pgdat; 5928 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 5929 unsigned long zone_idx = zone_idx(zone); 5930 unsigned long start = jiffies; 5931 int nid = pgdat->node_id; 5932 5933 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone))) 5934 return; 5935 5936 /* 5937 * The call to memmap_init_zone should have already taken care 5938 * of the pages reserved for the memmap, so we can just jump to 5939 * the end of that region and start processing the device pages. 5940 */ 5941 if (altmap) { 5942 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5943 size = end_pfn - start_pfn; 5944 } 5945 5946 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5947 struct page *page = pfn_to_page(pfn); 5948 5949 __init_single_page(page, pfn, zone_idx, nid); 5950 5951 /* 5952 * Mark page reserved as it will need to wait for onlining 5953 * phase for it to be fully associated with a zone. 5954 * 5955 * We can use the non-atomic __set_bit operation for setting 5956 * the flag as we are still initializing the pages. 5957 */ 5958 __SetPageReserved(page); 5959 5960 /* 5961 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 5962 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 5963 * ever freed or placed on a driver-private list. 5964 */ 5965 page->pgmap = pgmap; 5966 page->zone_device_data = NULL; 5967 5968 /* 5969 * Mark the block movable so that blocks are reserved for 5970 * movable at startup. This will force kernel allocations 5971 * to reserve their blocks rather than leaking throughout 5972 * the address space during boot when many long-lived 5973 * kernel allocations are made. 5974 * 5975 * bitmap is created for zone's valid pfn range. but memmap 5976 * can be created for invalid pages (for alignment) 5977 * check here not to call set_pageblock_migratetype() against 5978 * pfn out of zone. 5979 * 5980 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5981 * because this is done early in sparse_add_one_section 5982 */ 5983 if (!(pfn & (pageblock_nr_pages - 1))) { 5984 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5985 cond_resched(); 5986 } 5987 } 5988 5989 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev), 5990 size, jiffies_to_msecs(jiffies - start)); 5991 } 5992 5993 #endif 5994 static void __meminit zone_init_free_lists(struct zone *zone) 5995 { 5996 unsigned int order, t; 5997 for_each_migratetype_order(order, t) { 5998 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5999 zone->free_area[order].nr_free = 0; 6000 } 6001 } 6002 6003 void __meminit __weak memmap_init(unsigned long size, int nid, 6004 unsigned long zone, unsigned long start_pfn) 6005 { 6006 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 6007 } 6008 6009 static int zone_batchsize(struct zone *zone) 6010 { 6011 #ifdef CONFIG_MMU 6012 int batch; 6013 6014 /* 6015 * The per-cpu-pages pools are set to around 1000th of the 6016 * size of the zone. 6017 */ 6018 batch = zone_managed_pages(zone) / 1024; 6019 /* But no more than a meg. */ 6020 if (batch * PAGE_SIZE > 1024 * 1024) 6021 batch = (1024 * 1024) / PAGE_SIZE; 6022 batch /= 4; /* We effectively *= 4 below */ 6023 if (batch < 1) 6024 batch = 1; 6025 6026 /* 6027 * Clamp the batch to a 2^n - 1 value. Having a power 6028 * of 2 value was found to be more likely to have 6029 * suboptimal cache aliasing properties in some cases. 6030 * 6031 * For example if 2 tasks are alternately allocating 6032 * batches of pages, one task can end up with a lot 6033 * of pages of one half of the possible page colors 6034 * and the other with pages of the other colors. 6035 */ 6036 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6037 6038 return batch; 6039 6040 #else 6041 /* The deferral and batching of frees should be suppressed under NOMMU 6042 * conditions. 6043 * 6044 * The problem is that NOMMU needs to be able to allocate large chunks 6045 * of contiguous memory as there's no hardware page translation to 6046 * assemble apparent contiguous memory from discontiguous pages. 6047 * 6048 * Queueing large contiguous runs of pages for batching, however, 6049 * causes the pages to actually be freed in smaller chunks. As there 6050 * can be a significant delay between the individual batches being 6051 * recycled, this leads to the once large chunks of space being 6052 * fragmented and becoming unavailable for high-order allocations. 6053 */ 6054 return 0; 6055 #endif 6056 } 6057 6058 /* 6059 * pcp->high and pcp->batch values are related and dependent on one another: 6060 * ->batch must never be higher then ->high. 6061 * The following function updates them in a safe manner without read side 6062 * locking. 6063 * 6064 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6065 * those fields changing asynchronously (acording the the above rule). 6066 * 6067 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6068 * outside of boot time (or some other assurance that no concurrent updaters 6069 * exist). 6070 */ 6071 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6072 unsigned long batch) 6073 { 6074 /* start with a fail safe value for batch */ 6075 pcp->batch = 1; 6076 smp_wmb(); 6077 6078 /* Update high, then batch, in order */ 6079 pcp->high = high; 6080 smp_wmb(); 6081 6082 pcp->batch = batch; 6083 } 6084 6085 /* a companion to pageset_set_high() */ 6086 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6087 { 6088 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6089 } 6090 6091 static void pageset_init(struct per_cpu_pageset *p) 6092 { 6093 struct per_cpu_pages *pcp; 6094 int migratetype; 6095 6096 memset(p, 0, sizeof(*p)); 6097 6098 pcp = &p->pcp; 6099 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6100 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6101 } 6102 6103 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6104 { 6105 pageset_init(p); 6106 pageset_set_batch(p, batch); 6107 } 6108 6109 /* 6110 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6111 * to the value high for the pageset p. 6112 */ 6113 static void pageset_set_high(struct per_cpu_pageset *p, 6114 unsigned long high) 6115 { 6116 unsigned long batch = max(1UL, high / 4); 6117 if ((high / 4) > (PAGE_SHIFT * 8)) 6118 batch = PAGE_SHIFT * 8; 6119 6120 pageset_update(&p->pcp, high, batch); 6121 } 6122 6123 static void pageset_set_high_and_batch(struct zone *zone, 6124 struct per_cpu_pageset *pcp) 6125 { 6126 if (percpu_pagelist_fraction) 6127 pageset_set_high(pcp, 6128 (zone_managed_pages(zone) / 6129 percpu_pagelist_fraction)); 6130 else 6131 pageset_set_batch(pcp, zone_batchsize(zone)); 6132 } 6133 6134 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6135 { 6136 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6137 6138 pageset_init(pcp); 6139 pageset_set_high_and_batch(zone, pcp); 6140 } 6141 6142 void __meminit setup_zone_pageset(struct zone *zone) 6143 { 6144 int cpu; 6145 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6146 for_each_possible_cpu(cpu) 6147 zone_pageset_init(zone, cpu); 6148 } 6149 6150 /* 6151 * Allocate per cpu pagesets and initialize them. 6152 * Before this call only boot pagesets were available. 6153 */ 6154 void __init setup_per_cpu_pageset(void) 6155 { 6156 struct pglist_data *pgdat; 6157 struct zone *zone; 6158 6159 for_each_populated_zone(zone) 6160 setup_zone_pageset(zone); 6161 6162 for_each_online_pgdat(pgdat) 6163 pgdat->per_cpu_nodestats = 6164 alloc_percpu(struct per_cpu_nodestat); 6165 } 6166 6167 static __meminit void zone_pcp_init(struct zone *zone) 6168 { 6169 /* 6170 * per cpu subsystem is not up at this point. The following code 6171 * relies on the ability of the linker to provide the 6172 * offset of a (static) per cpu variable into the per cpu area. 6173 */ 6174 zone->pageset = &boot_pageset; 6175 6176 if (populated_zone(zone)) 6177 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6178 zone->name, zone->present_pages, 6179 zone_batchsize(zone)); 6180 } 6181 6182 void __meminit init_currently_empty_zone(struct zone *zone, 6183 unsigned long zone_start_pfn, 6184 unsigned long size) 6185 { 6186 struct pglist_data *pgdat = zone->zone_pgdat; 6187 int zone_idx = zone_idx(zone) + 1; 6188 6189 if (zone_idx > pgdat->nr_zones) 6190 pgdat->nr_zones = zone_idx; 6191 6192 zone->zone_start_pfn = zone_start_pfn; 6193 6194 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6195 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6196 pgdat->node_id, 6197 (unsigned long)zone_idx(zone), 6198 zone_start_pfn, (zone_start_pfn + size)); 6199 6200 zone_init_free_lists(zone); 6201 zone->initialized = 1; 6202 } 6203 6204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6205 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6206 6207 /* 6208 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6209 */ 6210 int __meminit __early_pfn_to_nid(unsigned long pfn, 6211 struct mminit_pfnnid_cache *state) 6212 { 6213 unsigned long start_pfn, end_pfn; 6214 int nid; 6215 6216 if (state->last_start <= pfn && pfn < state->last_end) 6217 return state->last_nid; 6218 6219 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6220 if (nid != NUMA_NO_NODE) { 6221 state->last_start = start_pfn; 6222 state->last_end = end_pfn; 6223 state->last_nid = nid; 6224 } 6225 6226 return nid; 6227 } 6228 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6229 6230 /** 6231 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6232 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6233 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6234 * 6235 * If an architecture guarantees that all ranges registered contain no holes 6236 * and may be freed, this this function may be used instead of calling 6237 * memblock_free_early_nid() manually. 6238 */ 6239 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6240 { 6241 unsigned long start_pfn, end_pfn; 6242 int i, this_nid; 6243 6244 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6245 start_pfn = min(start_pfn, max_low_pfn); 6246 end_pfn = min(end_pfn, max_low_pfn); 6247 6248 if (start_pfn < end_pfn) 6249 memblock_free_early_nid(PFN_PHYS(start_pfn), 6250 (end_pfn - start_pfn) << PAGE_SHIFT, 6251 this_nid); 6252 } 6253 } 6254 6255 /** 6256 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6257 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6258 * 6259 * If an architecture guarantees that all ranges registered contain no holes and may 6260 * be freed, this function may be used instead of calling memory_present() manually. 6261 */ 6262 void __init sparse_memory_present_with_active_regions(int nid) 6263 { 6264 unsigned long start_pfn, end_pfn; 6265 int i, this_nid; 6266 6267 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6268 memory_present(this_nid, start_pfn, end_pfn); 6269 } 6270 6271 /** 6272 * get_pfn_range_for_nid - Return the start and end page frames for a node 6273 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6274 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6275 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6276 * 6277 * It returns the start and end page frame of a node based on information 6278 * provided by memblock_set_node(). If called for a node 6279 * with no available memory, a warning is printed and the start and end 6280 * PFNs will be 0. 6281 */ 6282 void __init get_pfn_range_for_nid(unsigned int nid, 6283 unsigned long *start_pfn, unsigned long *end_pfn) 6284 { 6285 unsigned long this_start_pfn, this_end_pfn; 6286 int i; 6287 6288 *start_pfn = -1UL; 6289 *end_pfn = 0; 6290 6291 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6292 *start_pfn = min(*start_pfn, this_start_pfn); 6293 *end_pfn = max(*end_pfn, this_end_pfn); 6294 } 6295 6296 if (*start_pfn == -1UL) 6297 *start_pfn = 0; 6298 } 6299 6300 /* 6301 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6302 * assumption is made that zones within a node are ordered in monotonic 6303 * increasing memory addresses so that the "highest" populated zone is used 6304 */ 6305 static void __init find_usable_zone_for_movable(void) 6306 { 6307 int zone_index; 6308 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6309 if (zone_index == ZONE_MOVABLE) 6310 continue; 6311 6312 if (arch_zone_highest_possible_pfn[zone_index] > 6313 arch_zone_lowest_possible_pfn[zone_index]) 6314 break; 6315 } 6316 6317 VM_BUG_ON(zone_index == -1); 6318 movable_zone = zone_index; 6319 } 6320 6321 /* 6322 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6323 * because it is sized independent of architecture. Unlike the other zones, 6324 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6325 * in each node depending on the size of each node and how evenly kernelcore 6326 * is distributed. This helper function adjusts the zone ranges 6327 * provided by the architecture for a given node by using the end of the 6328 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6329 * zones within a node are in order of monotonic increases memory addresses 6330 */ 6331 static void __init adjust_zone_range_for_zone_movable(int nid, 6332 unsigned long zone_type, 6333 unsigned long node_start_pfn, 6334 unsigned long node_end_pfn, 6335 unsigned long *zone_start_pfn, 6336 unsigned long *zone_end_pfn) 6337 { 6338 /* Only adjust if ZONE_MOVABLE is on this node */ 6339 if (zone_movable_pfn[nid]) { 6340 /* Size ZONE_MOVABLE */ 6341 if (zone_type == ZONE_MOVABLE) { 6342 *zone_start_pfn = zone_movable_pfn[nid]; 6343 *zone_end_pfn = min(node_end_pfn, 6344 arch_zone_highest_possible_pfn[movable_zone]); 6345 6346 /* Adjust for ZONE_MOVABLE starting within this range */ 6347 } else if (!mirrored_kernelcore && 6348 *zone_start_pfn < zone_movable_pfn[nid] && 6349 *zone_end_pfn > zone_movable_pfn[nid]) { 6350 *zone_end_pfn = zone_movable_pfn[nid]; 6351 6352 /* Check if this whole range is within ZONE_MOVABLE */ 6353 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6354 *zone_start_pfn = *zone_end_pfn; 6355 } 6356 } 6357 6358 /* 6359 * Return the number of pages a zone spans in a node, including holes 6360 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6361 */ 6362 static unsigned long __init zone_spanned_pages_in_node(int nid, 6363 unsigned long zone_type, 6364 unsigned long node_start_pfn, 6365 unsigned long node_end_pfn, 6366 unsigned long *zone_start_pfn, 6367 unsigned long *zone_end_pfn, 6368 unsigned long *ignored) 6369 { 6370 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6371 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6372 /* When hotadd a new node from cpu_up(), the node should be empty */ 6373 if (!node_start_pfn && !node_end_pfn) 6374 return 0; 6375 6376 /* Get the start and end of the zone */ 6377 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6378 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6379 adjust_zone_range_for_zone_movable(nid, zone_type, 6380 node_start_pfn, node_end_pfn, 6381 zone_start_pfn, zone_end_pfn); 6382 6383 /* Check that this node has pages within the zone's required range */ 6384 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6385 return 0; 6386 6387 /* Move the zone boundaries inside the node if necessary */ 6388 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6389 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6390 6391 /* Return the spanned pages */ 6392 return *zone_end_pfn - *zone_start_pfn; 6393 } 6394 6395 /* 6396 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6397 * then all holes in the requested range will be accounted for. 6398 */ 6399 unsigned long __init __absent_pages_in_range(int nid, 6400 unsigned long range_start_pfn, 6401 unsigned long range_end_pfn) 6402 { 6403 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6404 unsigned long start_pfn, end_pfn; 6405 int i; 6406 6407 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6408 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6409 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6410 nr_absent -= end_pfn - start_pfn; 6411 } 6412 return nr_absent; 6413 } 6414 6415 /** 6416 * absent_pages_in_range - Return number of page frames in holes within a range 6417 * @start_pfn: The start PFN to start searching for holes 6418 * @end_pfn: The end PFN to stop searching for holes 6419 * 6420 * Return: the number of pages frames in memory holes within a range. 6421 */ 6422 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6423 unsigned long end_pfn) 6424 { 6425 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6426 } 6427 6428 /* Return the number of page frames in holes in a zone on a node */ 6429 static unsigned long __init zone_absent_pages_in_node(int nid, 6430 unsigned long zone_type, 6431 unsigned long node_start_pfn, 6432 unsigned long node_end_pfn, 6433 unsigned long *ignored) 6434 { 6435 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6436 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6437 unsigned long zone_start_pfn, zone_end_pfn; 6438 unsigned long nr_absent; 6439 6440 /* When hotadd a new node from cpu_up(), the node should be empty */ 6441 if (!node_start_pfn && !node_end_pfn) 6442 return 0; 6443 6444 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6445 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6446 6447 adjust_zone_range_for_zone_movable(nid, zone_type, 6448 node_start_pfn, node_end_pfn, 6449 &zone_start_pfn, &zone_end_pfn); 6450 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6451 6452 /* 6453 * ZONE_MOVABLE handling. 6454 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6455 * and vice versa. 6456 */ 6457 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6458 unsigned long start_pfn, end_pfn; 6459 struct memblock_region *r; 6460 6461 for_each_memblock(memory, r) { 6462 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6463 zone_start_pfn, zone_end_pfn); 6464 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6465 zone_start_pfn, zone_end_pfn); 6466 6467 if (zone_type == ZONE_MOVABLE && 6468 memblock_is_mirror(r)) 6469 nr_absent += end_pfn - start_pfn; 6470 6471 if (zone_type == ZONE_NORMAL && 6472 !memblock_is_mirror(r)) 6473 nr_absent += end_pfn - start_pfn; 6474 } 6475 } 6476 6477 return nr_absent; 6478 } 6479 6480 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6481 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6482 unsigned long zone_type, 6483 unsigned long node_start_pfn, 6484 unsigned long node_end_pfn, 6485 unsigned long *zone_start_pfn, 6486 unsigned long *zone_end_pfn, 6487 unsigned long *zones_size) 6488 { 6489 unsigned int zone; 6490 6491 *zone_start_pfn = node_start_pfn; 6492 for (zone = 0; zone < zone_type; zone++) 6493 *zone_start_pfn += zones_size[zone]; 6494 6495 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6496 6497 return zones_size[zone_type]; 6498 } 6499 6500 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6501 unsigned long zone_type, 6502 unsigned long node_start_pfn, 6503 unsigned long node_end_pfn, 6504 unsigned long *zholes_size) 6505 { 6506 if (!zholes_size) 6507 return 0; 6508 6509 return zholes_size[zone_type]; 6510 } 6511 6512 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6513 6514 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6515 unsigned long node_start_pfn, 6516 unsigned long node_end_pfn, 6517 unsigned long *zones_size, 6518 unsigned long *zholes_size) 6519 { 6520 unsigned long realtotalpages = 0, totalpages = 0; 6521 enum zone_type i; 6522 6523 for (i = 0; i < MAX_NR_ZONES; i++) { 6524 struct zone *zone = pgdat->node_zones + i; 6525 unsigned long zone_start_pfn, zone_end_pfn; 6526 unsigned long size, real_size; 6527 6528 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6529 node_start_pfn, 6530 node_end_pfn, 6531 &zone_start_pfn, 6532 &zone_end_pfn, 6533 zones_size); 6534 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6535 node_start_pfn, node_end_pfn, 6536 zholes_size); 6537 if (size) 6538 zone->zone_start_pfn = zone_start_pfn; 6539 else 6540 zone->zone_start_pfn = 0; 6541 zone->spanned_pages = size; 6542 zone->present_pages = real_size; 6543 6544 totalpages += size; 6545 realtotalpages += real_size; 6546 } 6547 6548 pgdat->node_spanned_pages = totalpages; 6549 pgdat->node_present_pages = realtotalpages; 6550 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6551 realtotalpages); 6552 } 6553 6554 #ifndef CONFIG_SPARSEMEM 6555 /* 6556 * Calculate the size of the zone->blockflags rounded to an unsigned long 6557 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6558 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6559 * round what is now in bits to nearest long in bits, then return it in 6560 * bytes. 6561 */ 6562 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6563 { 6564 unsigned long usemapsize; 6565 6566 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6567 usemapsize = roundup(zonesize, pageblock_nr_pages); 6568 usemapsize = usemapsize >> pageblock_order; 6569 usemapsize *= NR_PAGEBLOCK_BITS; 6570 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6571 6572 return usemapsize / 8; 6573 } 6574 6575 static void __ref setup_usemap(struct pglist_data *pgdat, 6576 struct zone *zone, 6577 unsigned long zone_start_pfn, 6578 unsigned long zonesize) 6579 { 6580 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6581 zone->pageblock_flags = NULL; 6582 if (usemapsize) { 6583 zone->pageblock_flags = 6584 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6585 pgdat->node_id); 6586 if (!zone->pageblock_flags) 6587 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6588 usemapsize, zone->name, pgdat->node_id); 6589 } 6590 } 6591 #else 6592 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6593 unsigned long zone_start_pfn, unsigned long zonesize) {} 6594 #endif /* CONFIG_SPARSEMEM */ 6595 6596 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6597 6598 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6599 void __init set_pageblock_order(void) 6600 { 6601 unsigned int order; 6602 6603 /* Check that pageblock_nr_pages has not already been setup */ 6604 if (pageblock_order) 6605 return; 6606 6607 if (HPAGE_SHIFT > PAGE_SHIFT) 6608 order = HUGETLB_PAGE_ORDER; 6609 else 6610 order = MAX_ORDER - 1; 6611 6612 /* 6613 * Assume the largest contiguous order of interest is a huge page. 6614 * This value may be variable depending on boot parameters on IA64 and 6615 * powerpc. 6616 */ 6617 pageblock_order = order; 6618 } 6619 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6620 6621 /* 6622 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6623 * is unused as pageblock_order is set at compile-time. See 6624 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6625 * the kernel config 6626 */ 6627 void __init set_pageblock_order(void) 6628 { 6629 } 6630 6631 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6632 6633 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6634 unsigned long present_pages) 6635 { 6636 unsigned long pages = spanned_pages; 6637 6638 /* 6639 * Provide a more accurate estimation if there are holes within 6640 * the zone and SPARSEMEM is in use. If there are holes within the 6641 * zone, each populated memory region may cost us one or two extra 6642 * memmap pages due to alignment because memmap pages for each 6643 * populated regions may not be naturally aligned on page boundary. 6644 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6645 */ 6646 if (spanned_pages > present_pages + (present_pages >> 4) && 6647 IS_ENABLED(CONFIG_SPARSEMEM)) 6648 pages = present_pages; 6649 6650 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6651 } 6652 6653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6654 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6655 { 6656 spin_lock_init(&pgdat->split_queue_lock); 6657 INIT_LIST_HEAD(&pgdat->split_queue); 6658 pgdat->split_queue_len = 0; 6659 } 6660 #else 6661 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6662 #endif 6663 6664 #ifdef CONFIG_COMPACTION 6665 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6666 { 6667 init_waitqueue_head(&pgdat->kcompactd_wait); 6668 } 6669 #else 6670 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6671 #endif 6672 6673 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6674 { 6675 pgdat_resize_init(pgdat); 6676 6677 pgdat_init_split_queue(pgdat); 6678 pgdat_init_kcompactd(pgdat); 6679 6680 init_waitqueue_head(&pgdat->kswapd_wait); 6681 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6682 6683 pgdat_page_ext_init(pgdat); 6684 spin_lock_init(&pgdat->lru_lock); 6685 lruvec_init(node_lruvec(pgdat)); 6686 } 6687 6688 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6689 unsigned long remaining_pages) 6690 { 6691 atomic_long_set(&zone->managed_pages, remaining_pages); 6692 zone_set_nid(zone, nid); 6693 zone->name = zone_names[idx]; 6694 zone->zone_pgdat = NODE_DATA(nid); 6695 spin_lock_init(&zone->lock); 6696 zone_seqlock_init(zone); 6697 zone_pcp_init(zone); 6698 } 6699 6700 /* 6701 * Set up the zone data structures 6702 * - init pgdat internals 6703 * - init all zones belonging to this node 6704 * 6705 * NOTE: this function is only called during memory hotplug 6706 */ 6707 #ifdef CONFIG_MEMORY_HOTPLUG 6708 void __ref free_area_init_core_hotplug(int nid) 6709 { 6710 enum zone_type z; 6711 pg_data_t *pgdat = NODE_DATA(nid); 6712 6713 pgdat_init_internals(pgdat); 6714 for (z = 0; z < MAX_NR_ZONES; z++) 6715 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6716 } 6717 #endif 6718 6719 /* 6720 * Set up the zone data structures: 6721 * - mark all pages reserved 6722 * - mark all memory queues empty 6723 * - clear the memory bitmaps 6724 * 6725 * NOTE: pgdat should get zeroed by caller. 6726 * NOTE: this function is only called during early init. 6727 */ 6728 static void __init free_area_init_core(struct pglist_data *pgdat) 6729 { 6730 enum zone_type j; 6731 int nid = pgdat->node_id; 6732 6733 pgdat_init_internals(pgdat); 6734 pgdat->per_cpu_nodestats = &boot_nodestats; 6735 6736 for (j = 0; j < MAX_NR_ZONES; j++) { 6737 struct zone *zone = pgdat->node_zones + j; 6738 unsigned long size, freesize, memmap_pages; 6739 unsigned long zone_start_pfn = zone->zone_start_pfn; 6740 6741 size = zone->spanned_pages; 6742 freesize = zone->present_pages; 6743 6744 /* 6745 * Adjust freesize so that it accounts for how much memory 6746 * is used by this zone for memmap. This affects the watermark 6747 * and per-cpu initialisations 6748 */ 6749 memmap_pages = calc_memmap_size(size, freesize); 6750 if (!is_highmem_idx(j)) { 6751 if (freesize >= memmap_pages) { 6752 freesize -= memmap_pages; 6753 if (memmap_pages) 6754 printk(KERN_DEBUG 6755 " %s zone: %lu pages used for memmap\n", 6756 zone_names[j], memmap_pages); 6757 } else 6758 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6759 zone_names[j], memmap_pages, freesize); 6760 } 6761 6762 /* Account for reserved pages */ 6763 if (j == 0 && freesize > dma_reserve) { 6764 freesize -= dma_reserve; 6765 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6766 zone_names[0], dma_reserve); 6767 } 6768 6769 if (!is_highmem_idx(j)) 6770 nr_kernel_pages += freesize; 6771 /* Charge for highmem memmap if there are enough kernel pages */ 6772 else if (nr_kernel_pages > memmap_pages * 2) 6773 nr_kernel_pages -= memmap_pages; 6774 nr_all_pages += freesize; 6775 6776 /* 6777 * Set an approximate value for lowmem here, it will be adjusted 6778 * when the bootmem allocator frees pages into the buddy system. 6779 * And all highmem pages will be managed by the buddy system. 6780 */ 6781 zone_init_internals(zone, j, nid, freesize); 6782 6783 if (!size) 6784 continue; 6785 6786 set_pageblock_order(); 6787 setup_usemap(pgdat, zone, zone_start_pfn, size); 6788 init_currently_empty_zone(zone, zone_start_pfn, size); 6789 memmap_init(size, nid, j, zone_start_pfn); 6790 } 6791 } 6792 6793 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6794 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6795 { 6796 unsigned long __maybe_unused start = 0; 6797 unsigned long __maybe_unused offset = 0; 6798 6799 /* Skip empty nodes */ 6800 if (!pgdat->node_spanned_pages) 6801 return; 6802 6803 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6804 offset = pgdat->node_start_pfn - start; 6805 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6806 if (!pgdat->node_mem_map) { 6807 unsigned long size, end; 6808 struct page *map; 6809 6810 /* 6811 * The zone's endpoints aren't required to be MAX_ORDER 6812 * aligned but the node_mem_map endpoints must be in order 6813 * for the buddy allocator to function correctly. 6814 */ 6815 end = pgdat_end_pfn(pgdat); 6816 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6817 size = (end - start) * sizeof(struct page); 6818 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6819 pgdat->node_id); 6820 if (!map) 6821 panic("Failed to allocate %ld bytes for node %d memory map\n", 6822 size, pgdat->node_id); 6823 pgdat->node_mem_map = map + offset; 6824 } 6825 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6826 __func__, pgdat->node_id, (unsigned long)pgdat, 6827 (unsigned long)pgdat->node_mem_map); 6828 #ifndef CONFIG_NEED_MULTIPLE_NODES 6829 /* 6830 * With no DISCONTIG, the global mem_map is just set as node 0's 6831 */ 6832 if (pgdat == NODE_DATA(0)) { 6833 mem_map = NODE_DATA(0)->node_mem_map; 6834 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6835 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6836 mem_map -= offset; 6837 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6838 } 6839 #endif 6840 } 6841 #else 6842 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6843 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6844 6845 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6846 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6847 { 6848 pgdat->first_deferred_pfn = ULONG_MAX; 6849 } 6850 #else 6851 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6852 #endif 6853 6854 void __init free_area_init_node(int nid, unsigned long *zones_size, 6855 unsigned long node_start_pfn, 6856 unsigned long *zholes_size) 6857 { 6858 pg_data_t *pgdat = NODE_DATA(nid); 6859 unsigned long start_pfn = 0; 6860 unsigned long end_pfn = 0; 6861 6862 /* pg_data_t should be reset to zero when it's allocated */ 6863 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6864 6865 pgdat->node_id = nid; 6866 pgdat->node_start_pfn = node_start_pfn; 6867 pgdat->per_cpu_nodestats = NULL; 6868 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6869 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6870 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6871 (u64)start_pfn << PAGE_SHIFT, 6872 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6873 #else 6874 start_pfn = node_start_pfn; 6875 #endif 6876 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6877 zones_size, zholes_size); 6878 6879 alloc_node_mem_map(pgdat); 6880 pgdat_set_deferred_range(pgdat); 6881 6882 free_area_init_core(pgdat); 6883 } 6884 6885 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6886 /* 6887 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6888 * pages zeroed 6889 */ 6890 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6891 { 6892 unsigned long pfn; 6893 u64 pgcnt = 0; 6894 6895 for (pfn = spfn; pfn < epfn; pfn++) { 6896 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6897 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6898 + pageblock_nr_pages - 1; 6899 continue; 6900 } 6901 mm_zero_struct_page(pfn_to_page(pfn)); 6902 pgcnt++; 6903 } 6904 6905 return pgcnt; 6906 } 6907 6908 /* 6909 * Only struct pages that are backed by physical memory are zeroed and 6910 * initialized by going through __init_single_page(). But, there are some 6911 * struct pages which are reserved in memblock allocator and their fields 6912 * may be accessed (for example page_to_pfn() on some configuration accesses 6913 * flags). We must explicitly zero those struct pages. 6914 * 6915 * This function also addresses a similar issue where struct pages are left 6916 * uninitialized because the physical address range is not covered by 6917 * memblock.memory or memblock.reserved. That could happen when memblock 6918 * layout is manually configured via memmap=. 6919 */ 6920 void __init zero_resv_unavail(void) 6921 { 6922 phys_addr_t start, end; 6923 u64 i, pgcnt; 6924 phys_addr_t next = 0; 6925 6926 /* 6927 * Loop through unavailable ranges not covered by memblock.memory. 6928 */ 6929 pgcnt = 0; 6930 for_each_mem_range(i, &memblock.memory, NULL, 6931 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6932 if (next < start) 6933 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6934 next = end; 6935 } 6936 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6937 6938 /* 6939 * Struct pages that do not have backing memory. This could be because 6940 * firmware is using some of this memory, or for some other reasons. 6941 */ 6942 if (pgcnt) 6943 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6944 } 6945 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6946 6947 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6948 6949 #if MAX_NUMNODES > 1 6950 /* 6951 * Figure out the number of possible node ids. 6952 */ 6953 void __init setup_nr_node_ids(void) 6954 { 6955 unsigned int highest; 6956 6957 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6958 nr_node_ids = highest + 1; 6959 } 6960 #endif 6961 6962 /** 6963 * node_map_pfn_alignment - determine the maximum internode alignment 6964 * 6965 * This function should be called after node map is populated and sorted. 6966 * It calculates the maximum power of two alignment which can distinguish 6967 * all the nodes. 6968 * 6969 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6970 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6971 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6972 * shifted, 1GiB is enough and this function will indicate so. 6973 * 6974 * This is used to test whether pfn -> nid mapping of the chosen memory 6975 * model has fine enough granularity to avoid incorrect mapping for the 6976 * populated node map. 6977 * 6978 * Return: the determined alignment in pfn's. 0 if there is no alignment 6979 * requirement (single node). 6980 */ 6981 unsigned long __init node_map_pfn_alignment(void) 6982 { 6983 unsigned long accl_mask = 0, last_end = 0; 6984 unsigned long start, end, mask; 6985 int last_nid = NUMA_NO_NODE; 6986 int i, nid; 6987 6988 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6989 if (!start || last_nid < 0 || last_nid == nid) { 6990 last_nid = nid; 6991 last_end = end; 6992 continue; 6993 } 6994 6995 /* 6996 * Start with a mask granular enough to pin-point to the 6997 * start pfn and tick off bits one-by-one until it becomes 6998 * too coarse to separate the current node from the last. 6999 */ 7000 mask = ~((1 << __ffs(start)) - 1); 7001 while (mask && last_end <= (start & (mask << 1))) 7002 mask <<= 1; 7003 7004 /* accumulate all internode masks */ 7005 accl_mask |= mask; 7006 } 7007 7008 /* convert mask to number of pages */ 7009 return ~accl_mask + 1; 7010 } 7011 7012 /* Find the lowest pfn for a node */ 7013 static unsigned long __init find_min_pfn_for_node(int nid) 7014 { 7015 unsigned long min_pfn = ULONG_MAX; 7016 unsigned long start_pfn; 7017 int i; 7018 7019 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 7020 min_pfn = min(min_pfn, start_pfn); 7021 7022 if (min_pfn == ULONG_MAX) { 7023 pr_warn("Could not find start_pfn for node %d\n", nid); 7024 return 0; 7025 } 7026 7027 return min_pfn; 7028 } 7029 7030 /** 7031 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7032 * 7033 * Return: the minimum PFN based on information provided via 7034 * memblock_set_node(). 7035 */ 7036 unsigned long __init find_min_pfn_with_active_regions(void) 7037 { 7038 return find_min_pfn_for_node(MAX_NUMNODES); 7039 } 7040 7041 /* 7042 * early_calculate_totalpages() 7043 * Sum pages in active regions for movable zone. 7044 * Populate N_MEMORY for calculating usable_nodes. 7045 */ 7046 static unsigned long __init early_calculate_totalpages(void) 7047 { 7048 unsigned long totalpages = 0; 7049 unsigned long start_pfn, end_pfn; 7050 int i, nid; 7051 7052 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7053 unsigned long pages = end_pfn - start_pfn; 7054 7055 totalpages += pages; 7056 if (pages) 7057 node_set_state(nid, N_MEMORY); 7058 } 7059 return totalpages; 7060 } 7061 7062 /* 7063 * Find the PFN the Movable zone begins in each node. Kernel memory 7064 * is spread evenly between nodes as long as the nodes have enough 7065 * memory. When they don't, some nodes will have more kernelcore than 7066 * others 7067 */ 7068 static void __init find_zone_movable_pfns_for_nodes(void) 7069 { 7070 int i, nid; 7071 unsigned long usable_startpfn; 7072 unsigned long kernelcore_node, kernelcore_remaining; 7073 /* save the state before borrow the nodemask */ 7074 nodemask_t saved_node_state = node_states[N_MEMORY]; 7075 unsigned long totalpages = early_calculate_totalpages(); 7076 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7077 struct memblock_region *r; 7078 7079 /* Need to find movable_zone earlier when movable_node is specified. */ 7080 find_usable_zone_for_movable(); 7081 7082 /* 7083 * If movable_node is specified, ignore kernelcore and movablecore 7084 * options. 7085 */ 7086 if (movable_node_is_enabled()) { 7087 for_each_memblock(memory, r) { 7088 if (!memblock_is_hotpluggable(r)) 7089 continue; 7090 7091 nid = r->nid; 7092 7093 usable_startpfn = PFN_DOWN(r->base); 7094 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7095 min(usable_startpfn, zone_movable_pfn[nid]) : 7096 usable_startpfn; 7097 } 7098 7099 goto out2; 7100 } 7101 7102 /* 7103 * If kernelcore=mirror is specified, ignore movablecore option 7104 */ 7105 if (mirrored_kernelcore) { 7106 bool mem_below_4gb_not_mirrored = false; 7107 7108 for_each_memblock(memory, r) { 7109 if (memblock_is_mirror(r)) 7110 continue; 7111 7112 nid = r->nid; 7113 7114 usable_startpfn = memblock_region_memory_base_pfn(r); 7115 7116 if (usable_startpfn < 0x100000) { 7117 mem_below_4gb_not_mirrored = true; 7118 continue; 7119 } 7120 7121 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7122 min(usable_startpfn, zone_movable_pfn[nid]) : 7123 usable_startpfn; 7124 } 7125 7126 if (mem_below_4gb_not_mirrored) 7127 pr_warn("This configuration results in unmirrored kernel memory."); 7128 7129 goto out2; 7130 } 7131 7132 /* 7133 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7134 * amount of necessary memory. 7135 */ 7136 if (required_kernelcore_percent) 7137 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7138 10000UL; 7139 if (required_movablecore_percent) 7140 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7141 10000UL; 7142 7143 /* 7144 * If movablecore= was specified, calculate what size of 7145 * kernelcore that corresponds so that memory usable for 7146 * any allocation type is evenly spread. If both kernelcore 7147 * and movablecore are specified, then the value of kernelcore 7148 * will be used for required_kernelcore if it's greater than 7149 * what movablecore would have allowed. 7150 */ 7151 if (required_movablecore) { 7152 unsigned long corepages; 7153 7154 /* 7155 * Round-up so that ZONE_MOVABLE is at least as large as what 7156 * was requested by the user 7157 */ 7158 required_movablecore = 7159 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7160 required_movablecore = min(totalpages, required_movablecore); 7161 corepages = totalpages - required_movablecore; 7162 7163 required_kernelcore = max(required_kernelcore, corepages); 7164 } 7165 7166 /* 7167 * If kernelcore was not specified or kernelcore size is larger 7168 * than totalpages, there is no ZONE_MOVABLE. 7169 */ 7170 if (!required_kernelcore || required_kernelcore >= totalpages) 7171 goto out; 7172 7173 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7174 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7175 7176 restart: 7177 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7178 kernelcore_node = required_kernelcore / usable_nodes; 7179 for_each_node_state(nid, N_MEMORY) { 7180 unsigned long start_pfn, end_pfn; 7181 7182 /* 7183 * Recalculate kernelcore_node if the division per node 7184 * now exceeds what is necessary to satisfy the requested 7185 * amount of memory for the kernel 7186 */ 7187 if (required_kernelcore < kernelcore_node) 7188 kernelcore_node = required_kernelcore / usable_nodes; 7189 7190 /* 7191 * As the map is walked, we track how much memory is usable 7192 * by the kernel using kernelcore_remaining. When it is 7193 * 0, the rest of the node is usable by ZONE_MOVABLE 7194 */ 7195 kernelcore_remaining = kernelcore_node; 7196 7197 /* Go through each range of PFNs within this node */ 7198 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7199 unsigned long size_pages; 7200 7201 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7202 if (start_pfn >= end_pfn) 7203 continue; 7204 7205 /* Account for what is only usable for kernelcore */ 7206 if (start_pfn < usable_startpfn) { 7207 unsigned long kernel_pages; 7208 kernel_pages = min(end_pfn, usable_startpfn) 7209 - start_pfn; 7210 7211 kernelcore_remaining -= min(kernel_pages, 7212 kernelcore_remaining); 7213 required_kernelcore -= min(kernel_pages, 7214 required_kernelcore); 7215 7216 /* Continue if range is now fully accounted */ 7217 if (end_pfn <= usable_startpfn) { 7218 7219 /* 7220 * Push zone_movable_pfn to the end so 7221 * that if we have to rebalance 7222 * kernelcore across nodes, we will 7223 * not double account here 7224 */ 7225 zone_movable_pfn[nid] = end_pfn; 7226 continue; 7227 } 7228 start_pfn = usable_startpfn; 7229 } 7230 7231 /* 7232 * The usable PFN range for ZONE_MOVABLE is from 7233 * start_pfn->end_pfn. Calculate size_pages as the 7234 * number of pages used as kernelcore 7235 */ 7236 size_pages = end_pfn - start_pfn; 7237 if (size_pages > kernelcore_remaining) 7238 size_pages = kernelcore_remaining; 7239 zone_movable_pfn[nid] = start_pfn + size_pages; 7240 7241 /* 7242 * Some kernelcore has been met, update counts and 7243 * break if the kernelcore for this node has been 7244 * satisfied 7245 */ 7246 required_kernelcore -= min(required_kernelcore, 7247 size_pages); 7248 kernelcore_remaining -= size_pages; 7249 if (!kernelcore_remaining) 7250 break; 7251 } 7252 } 7253 7254 /* 7255 * If there is still required_kernelcore, we do another pass with one 7256 * less node in the count. This will push zone_movable_pfn[nid] further 7257 * along on the nodes that still have memory until kernelcore is 7258 * satisfied 7259 */ 7260 usable_nodes--; 7261 if (usable_nodes && required_kernelcore > usable_nodes) 7262 goto restart; 7263 7264 out2: 7265 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7266 for (nid = 0; nid < MAX_NUMNODES; nid++) 7267 zone_movable_pfn[nid] = 7268 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7269 7270 out: 7271 /* restore the node_state */ 7272 node_states[N_MEMORY] = saved_node_state; 7273 } 7274 7275 /* Any regular or high memory on that node ? */ 7276 static void check_for_memory(pg_data_t *pgdat, int nid) 7277 { 7278 enum zone_type zone_type; 7279 7280 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7281 struct zone *zone = &pgdat->node_zones[zone_type]; 7282 if (populated_zone(zone)) { 7283 if (IS_ENABLED(CONFIG_HIGHMEM)) 7284 node_set_state(nid, N_HIGH_MEMORY); 7285 if (zone_type <= ZONE_NORMAL) 7286 node_set_state(nid, N_NORMAL_MEMORY); 7287 break; 7288 } 7289 } 7290 } 7291 7292 /** 7293 * free_area_init_nodes - Initialise all pg_data_t and zone data 7294 * @max_zone_pfn: an array of max PFNs for each zone 7295 * 7296 * This will call free_area_init_node() for each active node in the system. 7297 * Using the page ranges provided by memblock_set_node(), the size of each 7298 * zone in each node and their holes is calculated. If the maximum PFN 7299 * between two adjacent zones match, it is assumed that the zone is empty. 7300 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7301 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7302 * starts where the previous one ended. For example, ZONE_DMA32 starts 7303 * at arch_max_dma_pfn. 7304 */ 7305 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7306 { 7307 unsigned long start_pfn, end_pfn; 7308 int i, nid; 7309 7310 /* Record where the zone boundaries are */ 7311 memset(arch_zone_lowest_possible_pfn, 0, 7312 sizeof(arch_zone_lowest_possible_pfn)); 7313 memset(arch_zone_highest_possible_pfn, 0, 7314 sizeof(arch_zone_highest_possible_pfn)); 7315 7316 start_pfn = find_min_pfn_with_active_regions(); 7317 7318 for (i = 0; i < MAX_NR_ZONES; i++) { 7319 if (i == ZONE_MOVABLE) 7320 continue; 7321 7322 end_pfn = max(max_zone_pfn[i], start_pfn); 7323 arch_zone_lowest_possible_pfn[i] = start_pfn; 7324 arch_zone_highest_possible_pfn[i] = end_pfn; 7325 7326 start_pfn = end_pfn; 7327 } 7328 7329 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7330 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7331 find_zone_movable_pfns_for_nodes(); 7332 7333 /* Print out the zone ranges */ 7334 pr_info("Zone ranges:\n"); 7335 for (i = 0; i < MAX_NR_ZONES; i++) { 7336 if (i == ZONE_MOVABLE) 7337 continue; 7338 pr_info(" %-8s ", zone_names[i]); 7339 if (arch_zone_lowest_possible_pfn[i] == 7340 arch_zone_highest_possible_pfn[i]) 7341 pr_cont("empty\n"); 7342 else 7343 pr_cont("[mem %#018Lx-%#018Lx]\n", 7344 (u64)arch_zone_lowest_possible_pfn[i] 7345 << PAGE_SHIFT, 7346 ((u64)arch_zone_highest_possible_pfn[i] 7347 << PAGE_SHIFT) - 1); 7348 } 7349 7350 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7351 pr_info("Movable zone start for each node\n"); 7352 for (i = 0; i < MAX_NUMNODES; i++) { 7353 if (zone_movable_pfn[i]) 7354 pr_info(" Node %d: %#018Lx\n", i, 7355 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7356 } 7357 7358 /* Print out the early node map */ 7359 pr_info("Early memory node ranges\n"); 7360 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 7361 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7362 (u64)start_pfn << PAGE_SHIFT, 7363 ((u64)end_pfn << PAGE_SHIFT) - 1); 7364 7365 /* Initialise every node */ 7366 mminit_verify_pageflags_layout(); 7367 setup_nr_node_ids(); 7368 zero_resv_unavail(); 7369 for_each_online_node(nid) { 7370 pg_data_t *pgdat = NODE_DATA(nid); 7371 free_area_init_node(nid, NULL, 7372 find_min_pfn_for_node(nid), NULL); 7373 7374 /* Any memory on that node */ 7375 if (pgdat->node_present_pages) 7376 node_set_state(nid, N_MEMORY); 7377 check_for_memory(pgdat, nid); 7378 } 7379 } 7380 7381 static int __init cmdline_parse_core(char *p, unsigned long *core, 7382 unsigned long *percent) 7383 { 7384 unsigned long long coremem; 7385 char *endptr; 7386 7387 if (!p) 7388 return -EINVAL; 7389 7390 /* Value may be a percentage of total memory, otherwise bytes */ 7391 coremem = simple_strtoull(p, &endptr, 0); 7392 if (*endptr == '%') { 7393 /* Paranoid check for percent values greater than 100 */ 7394 WARN_ON(coremem > 100); 7395 7396 *percent = coremem; 7397 } else { 7398 coremem = memparse(p, &p); 7399 /* Paranoid check that UL is enough for the coremem value */ 7400 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7401 7402 *core = coremem >> PAGE_SHIFT; 7403 *percent = 0UL; 7404 } 7405 return 0; 7406 } 7407 7408 /* 7409 * kernelcore=size sets the amount of memory for use for allocations that 7410 * cannot be reclaimed or migrated. 7411 */ 7412 static int __init cmdline_parse_kernelcore(char *p) 7413 { 7414 /* parse kernelcore=mirror */ 7415 if (parse_option_str(p, "mirror")) { 7416 mirrored_kernelcore = true; 7417 return 0; 7418 } 7419 7420 return cmdline_parse_core(p, &required_kernelcore, 7421 &required_kernelcore_percent); 7422 } 7423 7424 /* 7425 * movablecore=size sets the amount of memory for use for allocations that 7426 * can be reclaimed or migrated. 7427 */ 7428 static int __init cmdline_parse_movablecore(char *p) 7429 { 7430 return cmdline_parse_core(p, &required_movablecore, 7431 &required_movablecore_percent); 7432 } 7433 7434 early_param("kernelcore", cmdline_parse_kernelcore); 7435 early_param("movablecore", cmdline_parse_movablecore); 7436 7437 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7438 7439 void adjust_managed_page_count(struct page *page, long count) 7440 { 7441 atomic_long_add(count, &page_zone(page)->managed_pages); 7442 totalram_pages_add(count); 7443 #ifdef CONFIG_HIGHMEM 7444 if (PageHighMem(page)) 7445 totalhigh_pages_add(count); 7446 #endif 7447 } 7448 EXPORT_SYMBOL(adjust_managed_page_count); 7449 7450 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7451 { 7452 void *pos; 7453 unsigned long pages = 0; 7454 7455 start = (void *)PAGE_ALIGN((unsigned long)start); 7456 end = (void *)((unsigned long)end & PAGE_MASK); 7457 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7458 struct page *page = virt_to_page(pos); 7459 void *direct_map_addr; 7460 7461 /* 7462 * 'direct_map_addr' might be different from 'pos' 7463 * because some architectures' virt_to_page() 7464 * work with aliases. Getting the direct map 7465 * address ensures that we get a _writeable_ 7466 * alias for the memset(). 7467 */ 7468 direct_map_addr = page_address(page); 7469 if ((unsigned int)poison <= 0xFF) 7470 memset(direct_map_addr, poison, PAGE_SIZE); 7471 7472 free_reserved_page(page); 7473 } 7474 7475 if (pages && s) 7476 pr_info("Freeing %s memory: %ldK\n", 7477 s, pages << (PAGE_SHIFT - 10)); 7478 7479 return pages; 7480 } 7481 7482 #ifdef CONFIG_HIGHMEM 7483 void free_highmem_page(struct page *page) 7484 { 7485 __free_reserved_page(page); 7486 totalram_pages_inc(); 7487 atomic_long_inc(&page_zone(page)->managed_pages); 7488 totalhigh_pages_inc(); 7489 } 7490 #endif 7491 7492 7493 void __init mem_init_print_info(const char *str) 7494 { 7495 unsigned long physpages, codesize, datasize, rosize, bss_size; 7496 unsigned long init_code_size, init_data_size; 7497 7498 physpages = get_num_physpages(); 7499 codesize = _etext - _stext; 7500 datasize = _edata - _sdata; 7501 rosize = __end_rodata - __start_rodata; 7502 bss_size = __bss_stop - __bss_start; 7503 init_data_size = __init_end - __init_begin; 7504 init_code_size = _einittext - _sinittext; 7505 7506 /* 7507 * Detect special cases and adjust section sizes accordingly: 7508 * 1) .init.* may be embedded into .data sections 7509 * 2) .init.text.* may be out of [__init_begin, __init_end], 7510 * please refer to arch/tile/kernel/vmlinux.lds.S. 7511 * 3) .rodata.* may be embedded into .text or .data sections. 7512 */ 7513 #define adj_init_size(start, end, size, pos, adj) \ 7514 do { \ 7515 if (start <= pos && pos < end && size > adj) \ 7516 size -= adj; \ 7517 } while (0) 7518 7519 adj_init_size(__init_begin, __init_end, init_data_size, 7520 _sinittext, init_code_size); 7521 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7522 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7523 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7524 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7525 7526 #undef adj_init_size 7527 7528 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7529 #ifdef CONFIG_HIGHMEM 7530 ", %luK highmem" 7531 #endif 7532 "%s%s)\n", 7533 nr_free_pages() << (PAGE_SHIFT - 10), 7534 physpages << (PAGE_SHIFT - 10), 7535 codesize >> 10, datasize >> 10, rosize >> 10, 7536 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7537 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7538 totalcma_pages << (PAGE_SHIFT - 10), 7539 #ifdef CONFIG_HIGHMEM 7540 totalhigh_pages() << (PAGE_SHIFT - 10), 7541 #endif 7542 str ? ", " : "", str ? str : ""); 7543 } 7544 7545 /** 7546 * set_dma_reserve - set the specified number of pages reserved in the first zone 7547 * @new_dma_reserve: The number of pages to mark reserved 7548 * 7549 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7550 * In the DMA zone, a significant percentage may be consumed by kernel image 7551 * and other unfreeable allocations which can skew the watermarks badly. This 7552 * function may optionally be used to account for unfreeable pages in the 7553 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7554 * smaller per-cpu batchsize. 7555 */ 7556 void __init set_dma_reserve(unsigned long new_dma_reserve) 7557 { 7558 dma_reserve = new_dma_reserve; 7559 } 7560 7561 void __init free_area_init(unsigned long *zones_size) 7562 { 7563 zero_resv_unavail(); 7564 free_area_init_node(0, zones_size, 7565 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7566 } 7567 7568 static int page_alloc_cpu_dead(unsigned int cpu) 7569 { 7570 7571 lru_add_drain_cpu(cpu); 7572 drain_pages(cpu); 7573 7574 /* 7575 * Spill the event counters of the dead processor 7576 * into the current processors event counters. 7577 * This artificially elevates the count of the current 7578 * processor. 7579 */ 7580 vm_events_fold_cpu(cpu); 7581 7582 /* 7583 * Zero the differential counters of the dead processor 7584 * so that the vm statistics are consistent. 7585 * 7586 * This is only okay since the processor is dead and cannot 7587 * race with what we are doing. 7588 */ 7589 cpu_vm_stats_fold(cpu); 7590 return 0; 7591 } 7592 7593 #ifdef CONFIG_NUMA 7594 int hashdist = HASHDIST_DEFAULT; 7595 7596 static int __init set_hashdist(char *str) 7597 { 7598 if (!str) 7599 return 0; 7600 hashdist = simple_strtoul(str, &str, 0); 7601 return 1; 7602 } 7603 __setup("hashdist=", set_hashdist); 7604 #endif 7605 7606 void __init page_alloc_init(void) 7607 { 7608 int ret; 7609 7610 #ifdef CONFIG_NUMA 7611 if (num_node_state(N_MEMORY) == 1) 7612 hashdist = 0; 7613 #endif 7614 7615 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7616 "mm/page_alloc:dead", NULL, 7617 page_alloc_cpu_dead); 7618 WARN_ON(ret < 0); 7619 } 7620 7621 /* 7622 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7623 * or min_free_kbytes changes. 7624 */ 7625 static void calculate_totalreserve_pages(void) 7626 { 7627 struct pglist_data *pgdat; 7628 unsigned long reserve_pages = 0; 7629 enum zone_type i, j; 7630 7631 for_each_online_pgdat(pgdat) { 7632 7633 pgdat->totalreserve_pages = 0; 7634 7635 for (i = 0; i < MAX_NR_ZONES; i++) { 7636 struct zone *zone = pgdat->node_zones + i; 7637 long max = 0; 7638 unsigned long managed_pages = zone_managed_pages(zone); 7639 7640 /* Find valid and maximum lowmem_reserve in the zone */ 7641 for (j = i; j < MAX_NR_ZONES; j++) { 7642 if (zone->lowmem_reserve[j] > max) 7643 max = zone->lowmem_reserve[j]; 7644 } 7645 7646 /* we treat the high watermark as reserved pages. */ 7647 max += high_wmark_pages(zone); 7648 7649 if (max > managed_pages) 7650 max = managed_pages; 7651 7652 pgdat->totalreserve_pages += max; 7653 7654 reserve_pages += max; 7655 } 7656 } 7657 totalreserve_pages = reserve_pages; 7658 } 7659 7660 /* 7661 * setup_per_zone_lowmem_reserve - called whenever 7662 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7663 * has a correct pages reserved value, so an adequate number of 7664 * pages are left in the zone after a successful __alloc_pages(). 7665 */ 7666 static void setup_per_zone_lowmem_reserve(void) 7667 { 7668 struct pglist_data *pgdat; 7669 enum zone_type j, idx; 7670 7671 for_each_online_pgdat(pgdat) { 7672 for (j = 0; j < MAX_NR_ZONES; j++) { 7673 struct zone *zone = pgdat->node_zones + j; 7674 unsigned long managed_pages = zone_managed_pages(zone); 7675 7676 zone->lowmem_reserve[j] = 0; 7677 7678 idx = j; 7679 while (idx) { 7680 struct zone *lower_zone; 7681 7682 idx--; 7683 lower_zone = pgdat->node_zones + idx; 7684 7685 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7686 sysctl_lowmem_reserve_ratio[idx] = 0; 7687 lower_zone->lowmem_reserve[j] = 0; 7688 } else { 7689 lower_zone->lowmem_reserve[j] = 7690 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7691 } 7692 managed_pages += zone_managed_pages(lower_zone); 7693 } 7694 } 7695 } 7696 7697 /* update totalreserve_pages */ 7698 calculate_totalreserve_pages(); 7699 } 7700 7701 static void __setup_per_zone_wmarks(void) 7702 { 7703 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7704 unsigned long lowmem_pages = 0; 7705 struct zone *zone; 7706 unsigned long flags; 7707 7708 /* Calculate total number of !ZONE_HIGHMEM pages */ 7709 for_each_zone(zone) { 7710 if (!is_highmem(zone)) 7711 lowmem_pages += zone_managed_pages(zone); 7712 } 7713 7714 for_each_zone(zone) { 7715 u64 tmp; 7716 7717 spin_lock_irqsave(&zone->lock, flags); 7718 tmp = (u64)pages_min * zone_managed_pages(zone); 7719 do_div(tmp, lowmem_pages); 7720 if (is_highmem(zone)) { 7721 /* 7722 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7723 * need highmem pages, so cap pages_min to a small 7724 * value here. 7725 * 7726 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7727 * deltas control async page reclaim, and so should 7728 * not be capped for highmem. 7729 */ 7730 unsigned long min_pages; 7731 7732 min_pages = zone_managed_pages(zone) / 1024; 7733 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7734 zone->_watermark[WMARK_MIN] = min_pages; 7735 } else { 7736 /* 7737 * If it's a lowmem zone, reserve a number of pages 7738 * proportionate to the zone's size. 7739 */ 7740 zone->_watermark[WMARK_MIN] = tmp; 7741 } 7742 7743 /* 7744 * Set the kswapd watermarks distance according to the 7745 * scale factor in proportion to available memory, but 7746 * ensure a minimum size on small systems. 7747 */ 7748 tmp = max_t(u64, tmp >> 2, 7749 mult_frac(zone_managed_pages(zone), 7750 watermark_scale_factor, 10000)); 7751 7752 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7753 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7754 zone->watermark_boost = 0; 7755 7756 spin_unlock_irqrestore(&zone->lock, flags); 7757 } 7758 7759 /* update totalreserve_pages */ 7760 calculate_totalreserve_pages(); 7761 } 7762 7763 /** 7764 * setup_per_zone_wmarks - called when min_free_kbytes changes 7765 * or when memory is hot-{added|removed} 7766 * 7767 * Ensures that the watermark[min,low,high] values for each zone are set 7768 * correctly with respect to min_free_kbytes. 7769 */ 7770 void setup_per_zone_wmarks(void) 7771 { 7772 static DEFINE_SPINLOCK(lock); 7773 7774 spin_lock(&lock); 7775 __setup_per_zone_wmarks(); 7776 spin_unlock(&lock); 7777 } 7778 7779 /* 7780 * Initialise min_free_kbytes. 7781 * 7782 * For small machines we want it small (128k min). For large machines 7783 * we want it large (64MB max). But it is not linear, because network 7784 * bandwidth does not increase linearly with machine size. We use 7785 * 7786 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7787 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7788 * 7789 * which yields 7790 * 7791 * 16MB: 512k 7792 * 32MB: 724k 7793 * 64MB: 1024k 7794 * 128MB: 1448k 7795 * 256MB: 2048k 7796 * 512MB: 2896k 7797 * 1024MB: 4096k 7798 * 2048MB: 5792k 7799 * 4096MB: 8192k 7800 * 8192MB: 11584k 7801 * 16384MB: 16384k 7802 */ 7803 int __meminit init_per_zone_wmark_min(void) 7804 { 7805 unsigned long lowmem_kbytes; 7806 int new_min_free_kbytes; 7807 7808 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7809 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7810 7811 if (new_min_free_kbytes > user_min_free_kbytes) { 7812 min_free_kbytes = new_min_free_kbytes; 7813 if (min_free_kbytes < 128) 7814 min_free_kbytes = 128; 7815 if (min_free_kbytes > 65536) 7816 min_free_kbytes = 65536; 7817 } else { 7818 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7819 new_min_free_kbytes, user_min_free_kbytes); 7820 } 7821 setup_per_zone_wmarks(); 7822 refresh_zone_stat_thresholds(); 7823 setup_per_zone_lowmem_reserve(); 7824 7825 #ifdef CONFIG_NUMA 7826 setup_min_unmapped_ratio(); 7827 setup_min_slab_ratio(); 7828 #endif 7829 7830 return 0; 7831 } 7832 core_initcall(init_per_zone_wmark_min) 7833 7834 /* 7835 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7836 * that we can call two helper functions whenever min_free_kbytes 7837 * changes. 7838 */ 7839 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7840 void __user *buffer, size_t *length, loff_t *ppos) 7841 { 7842 int rc; 7843 7844 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7845 if (rc) 7846 return rc; 7847 7848 if (write) { 7849 user_min_free_kbytes = min_free_kbytes; 7850 setup_per_zone_wmarks(); 7851 } 7852 return 0; 7853 } 7854 7855 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7856 void __user *buffer, size_t *length, loff_t *ppos) 7857 { 7858 int rc; 7859 7860 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7861 if (rc) 7862 return rc; 7863 7864 return 0; 7865 } 7866 7867 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7868 void __user *buffer, size_t *length, loff_t *ppos) 7869 { 7870 int rc; 7871 7872 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7873 if (rc) 7874 return rc; 7875 7876 if (write) 7877 setup_per_zone_wmarks(); 7878 7879 return 0; 7880 } 7881 7882 #ifdef CONFIG_NUMA 7883 static void setup_min_unmapped_ratio(void) 7884 { 7885 pg_data_t *pgdat; 7886 struct zone *zone; 7887 7888 for_each_online_pgdat(pgdat) 7889 pgdat->min_unmapped_pages = 0; 7890 7891 for_each_zone(zone) 7892 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7893 sysctl_min_unmapped_ratio) / 100; 7894 } 7895 7896 7897 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7898 void __user *buffer, size_t *length, loff_t *ppos) 7899 { 7900 int rc; 7901 7902 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7903 if (rc) 7904 return rc; 7905 7906 setup_min_unmapped_ratio(); 7907 7908 return 0; 7909 } 7910 7911 static void setup_min_slab_ratio(void) 7912 { 7913 pg_data_t *pgdat; 7914 struct zone *zone; 7915 7916 for_each_online_pgdat(pgdat) 7917 pgdat->min_slab_pages = 0; 7918 7919 for_each_zone(zone) 7920 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7921 sysctl_min_slab_ratio) / 100; 7922 } 7923 7924 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7925 void __user *buffer, size_t *length, loff_t *ppos) 7926 { 7927 int rc; 7928 7929 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7930 if (rc) 7931 return rc; 7932 7933 setup_min_slab_ratio(); 7934 7935 return 0; 7936 } 7937 #endif 7938 7939 /* 7940 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7941 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7942 * whenever sysctl_lowmem_reserve_ratio changes. 7943 * 7944 * The reserve ratio obviously has absolutely no relation with the 7945 * minimum watermarks. The lowmem reserve ratio can only make sense 7946 * if in function of the boot time zone sizes. 7947 */ 7948 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7949 void __user *buffer, size_t *length, loff_t *ppos) 7950 { 7951 proc_dointvec_minmax(table, write, buffer, length, ppos); 7952 setup_per_zone_lowmem_reserve(); 7953 return 0; 7954 } 7955 7956 /* 7957 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7958 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7959 * pagelist can have before it gets flushed back to buddy allocator. 7960 */ 7961 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7962 void __user *buffer, size_t *length, loff_t *ppos) 7963 { 7964 struct zone *zone; 7965 int old_percpu_pagelist_fraction; 7966 int ret; 7967 7968 mutex_lock(&pcp_batch_high_lock); 7969 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7970 7971 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7972 if (!write || ret < 0) 7973 goto out; 7974 7975 /* Sanity checking to avoid pcp imbalance */ 7976 if (percpu_pagelist_fraction && 7977 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7978 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7979 ret = -EINVAL; 7980 goto out; 7981 } 7982 7983 /* No change? */ 7984 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7985 goto out; 7986 7987 for_each_populated_zone(zone) { 7988 unsigned int cpu; 7989 7990 for_each_possible_cpu(cpu) 7991 pageset_set_high_and_batch(zone, 7992 per_cpu_ptr(zone->pageset, cpu)); 7993 } 7994 out: 7995 mutex_unlock(&pcp_batch_high_lock); 7996 return ret; 7997 } 7998 7999 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8000 /* 8001 * Returns the number of pages that arch has reserved but 8002 * is not known to alloc_large_system_hash(). 8003 */ 8004 static unsigned long __init arch_reserved_kernel_pages(void) 8005 { 8006 return 0; 8007 } 8008 #endif 8009 8010 /* 8011 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8012 * machines. As memory size is increased the scale is also increased but at 8013 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8014 * quadruples the scale is increased by one, which means the size of hash table 8015 * only doubles, instead of quadrupling as well. 8016 * Because 32-bit systems cannot have large physical memory, where this scaling 8017 * makes sense, it is disabled on such platforms. 8018 */ 8019 #if __BITS_PER_LONG > 32 8020 #define ADAPT_SCALE_BASE (64ul << 30) 8021 #define ADAPT_SCALE_SHIFT 2 8022 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8023 #endif 8024 8025 /* 8026 * allocate a large system hash table from bootmem 8027 * - it is assumed that the hash table must contain an exact power-of-2 8028 * quantity of entries 8029 * - limit is the number of hash buckets, not the total allocation size 8030 */ 8031 void *__init alloc_large_system_hash(const char *tablename, 8032 unsigned long bucketsize, 8033 unsigned long numentries, 8034 int scale, 8035 int flags, 8036 unsigned int *_hash_shift, 8037 unsigned int *_hash_mask, 8038 unsigned long low_limit, 8039 unsigned long high_limit) 8040 { 8041 unsigned long long max = high_limit; 8042 unsigned long log2qty, size; 8043 void *table = NULL; 8044 gfp_t gfp_flags; 8045 bool virt; 8046 8047 /* allow the kernel cmdline to have a say */ 8048 if (!numentries) { 8049 /* round applicable memory size up to nearest megabyte */ 8050 numentries = nr_kernel_pages; 8051 numentries -= arch_reserved_kernel_pages(); 8052 8053 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8054 if (PAGE_SHIFT < 20) 8055 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8056 8057 #if __BITS_PER_LONG > 32 8058 if (!high_limit) { 8059 unsigned long adapt; 8060 8061 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8062 adapt <<= ADAPT_SCALE_SHIFT) 8063 scale++; 8064 } 8065 #endif 8066 8067 /* limit to 1 bucket per 2^scale bytes of low memory */ 8068 if (scale > PAGE_SHIFT) 8069 numentries >>= (scale - PAGE_SHIFT); 8070 else 8071 numentries <<= (PAGE_SHIFT - scale); 8072 8073 /* Make sure we've got at least a 0-order allocation.. */ 8074 if (unlikely(flags & HASH_SMALL)) { 8075 /* Makes no sense without HASH_EARLY */ 8076 WARN_ON(!(flags & HASH_EARLY)); 8077 if (!(numentries >> *_hash_shift)) { 8078 numentries = 1UL << *_hash_shift; 8079 BUG_ON(!numentries); 8080 } 8081 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8082 numentries = PAGE_SIZE / bucketsize; 8083 } 8084 numentries = roundup_pow_of_two(numentries); 8085 8086 /* limit allocation size to 1/16 total memory by default */ 8087 if (max == 0) { 8088 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8089 do_div(max, bucketsize); 8090 } 8091 max = min(max, 0x80000000ULL); 8092 8093 if (numentries < low_limit) 8094 numentries = low_limit; 8095 if (numentries > max) 8096 numentries = max; 8097 8098 log2qty = ilog2(numentries); 8099 8100 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8101 do { 8102 virt = false; 8103 size = bucketsize << log2qty; 8104 if (flags & HASH_EARLY) { 8105 if (flags & HASH_ZERO) 8106 table = memblock_alloc(size, SMP_CACHE_BYTES); 8107 else 8108 table = memblock_alloc_raw(size, 8109 SMP_CACHE_BYTES); 8110 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8111 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 8112 virt = true; 8113 } else { 8114 /* 8115 * If bucketsize is not a power-of-two, we may free 8116 * some pages at the end of hash table which 8117 * alloc_pages_exact() automatically does 8118 */ 8119 table = alloc_pages_exact(size, gfp_flags); 8120 kmemleak_alloc(table, size, 1, gfp_flags); 8121 } 8122 } while (!table && size > PAGE_SIZE && --log2qty); 8123 8124 if (!table) 8125 panic("Failed to allocate %s hash table\n", tablename); 8126 8127 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8128 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8129 virt ? "vmalloc" : "linear"); 8130 8131 if (_hash_shift) 8132 *_hash_shift = log2qty; 8133 if (_hash_mask) 8134 *_hash_mask = (1 << log2qty) - 1; 8135 8136 return table; 8137 } 8138 8139 /* 8140 * This function checks whether pageblock includes unmovable pages or not. 8141 * If @count is not zero, it is okay to include less @count unmovable pages 8142 * 8143 * PageLRU check without isolation or lru_lock could race so that 8144 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8145 * check without lock_page also may miss some movable non-lru pages at 8146 * race condition. So you can't expect this function should be exact. 8147 */ 8148 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 8149 int migratetype, int flags) 8150 { 8151 unsigned long found; 8152 unsigned long iter = 0; 8153 unsigned long pfn = page_to_pfn(page); 8154 const char *reason = "unmovable page"; 8155 8156 /* 8157 * TODO we could make this much more efficient by not checking every 8158 * page in the range if we know all of them are in MOVABLE_ZONE and 8159 * that the movable zone guarantees that pages are migratable but 8160 * the later is not the case right now unfortunatelly. E.g. movablecore 8161 * can still lead to having bootmem allocations in zone_movable. 8162 */ 8163 8164 if (is_migrate_cma_page(page)) { 8165 /* 8166 * CMA allocations (alloc_contig_range) really need to mark 8167 * isolate CMA pageblocks even when they are not movable in fact 8168 * so consider them movable here. 8169 */ 8170 if (is_migrate_cma(migratetype)) 8171 return false; 8172 8173 reason = "CMA page"; 8174 goto unmovable; 8175 } 8176 8177 for (found = 0; iter < pageblock_nr_pages; iter++) { 8178 unsigned long check = pfn + iter; 8179 8180 if (!pfn_valid_within(check)) 8181 continue; 8182 8183 page = pfn_to_page(check); 8184 8185 if (PageReserved(page)) 8186 goto unmovable; 8187 8188 /* 8189 * If the zone is movable and we have ruled out all reserved 8190 * pages then it should be reasonably safe to assume the rest 8191 * is movable. 8192 */ 8193 if (zone_idx(zone) == ZONE_MOVABLE) 8194 continue; 8195 8196 /* 8197 * Hugepages are not in LRU lists, but they're movable. 8198 * We need not scan over tail pages because we don't 8199 * handle each tail page individually in migration. 8200 */ 8201 if (PageHuge(page)) { 8202 struct page *head = compound_head(page); 8203 unsigned int skip_pages; 8204 8205 if (!hugepage_migration_supported(page_hstate(head))) 8206 goto unmovable; 8207 8208 skip_pages = (1 << compound_order(head)) - (page - head); 8209 iter += skip_pages - 1; 8210 continue; 8211 } 8212 8213 /* 8214 * We can't use page_count without pin a page 8215 * because another CPU can free compound page. 8216 * This check already skips compound tails of THP 8217 * because their page->_refcount is zero at all time. 8218 */ 8219 if (!page_ref_count(page)) { 8220 if (PageBuddy(page)) 8221 iter += (1 << page_order(page)) - 1; 8222 continue; 8223 } 8224 8225 /* 8226 * The HWPoisoned page may be not in buddy system, and 8227 * page_count() is not 0. 8228 */ 8229 if ((flags & SKIP_HWPOISON) && PageHWPoison(page)) 8230 continue; 8231 8232 if (__PageMovable(page)) 8233 continue; 8234 8235 if (!PageLRU(page)) 8236 found++; 8237 /* 8238 * If there are RECLAIMABLE pages, we need to check 8239 * it. But now, memory offline itself doesn't call 8240 * shrink_node_slabs() and it still to be fixed. 8241 */ 8242 /* 8243 * If the page is not RAM, page_count()should be 0. 8244 * we don't need more check. This is an _used_ not-movable page. 8245 * 8246 * The problematic thing here is PG_reserved pages. PG_reserved 8247 * is set to both of a memory hole page and a _used_ kernel 8248 * page at boot. 8249 */ 8250 if (found > count) 8251 goto unmovable; 8252 } 8253 return false; 8254 unmovable: 8255 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 8256 if (flags & REPORT_FAILURE) 8257 dump_page(pfn_to_page(pfn + iter), reason); 8258 return true; 8259 } 8260 8261 #ifdef CONFIG_CONTIG_ALLOC 8262 static unsigned long pfn_max_align_down(unsigned long pfn) 8263 { 8264 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8265 pageblock_nr_pages) - 1); 8266 } 8267 8268 static unsigned long pfn_max_align_up(unsigned long pfn) 8269 { 8270 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8271 pageblock_nr_pages)); 8272 } 8273 8274 /* [start, end) must belong to a single zone. */ 8275 static int __alloc_contig_migrate_range(struct compact_control *cc, 8276 unsigned long start, unsigned long end) 8277 { 8278 /* This function is based on compact_zone() from compaction.c. */ 8279 unsigned long nr_reclaimed; 8280 unsigned long pfn = start; 8281 unsigned int tries = 0; 8282 int ret = 0; 8283 8284 migrate_prep(); 8285 8286 while (pfn < end || !list_empty(&cc->migratepages)) { 8287 if (fatal_signal_pending(current)) { 8288 ret = -EINTR; 8289 break; 8290 } 8291 8292 if (list_empty(&cc->migratepages)) { 8293 cc->nr_migratepages = 0; 8294 pfn = isolate_migratepages_range(cc, pfn, end); 8295 if (!pfn) { 8296 ret = -EINTR; 8297 break; 8298 } 8299 tries = 0; 8300 } else if (++tries == 5) { 8301 ret = ret < 0 ? ret : -EBUSY; 8302 break; 8303 } 8304 8305 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8306 &cc->migratepages); 8307 cc->nr_migratepages -= nr_reclaimed; 8308 8309 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8310 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8311 } 8312 if (ret < 0) { 8313 putback_movable_pages(&cc->migratepages); 8314 return ret; 8315 } 8316 return 0; 8317 } 8318 8319 /** 8320 * alloc_contig_range() -- tries to allocate given range of pages 8321 * @start: start PFN to allocate 8322 * @end: one-past-the-last PFN to allocate 8323 * @migratetype: migratetype of the underlaying pageblocks (either 8324 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8325 * in range must have the same migratetype and it must 8326 * be either of the two. 8327 * @gfp_mask: GFP mask to use during compaction 8328 * 8329 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8330 * aligned. The PFN range must belong to a single zone. 8331 * 8332 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8333 * pageblocks in the range. Once isolated, the pageblocks should not 8334 * be modified by others. 8335 * 8336 * Return: zero on success or negative error code. On success all 8337 * pages which PFN is in [start, end) are allocated for the caller and 8338 * need to be freed with free_contig_range(). 8339 */ 8340 int alloc_contig_range(unsigned long start, unsigned long end, 8341 unsigned migratetype, gfp_t gfp_mask) 8342 { 8343 unsigned long outer_start, outer_end; 8344 unsigned int order; 8345 int ret = 0; 8346 8347 struct compact_control cc = { 8348 .nr_migratepages = 0, 8349 .order = -1, 8350 .zone = page_zone(pfn_to_page(start)), 8351 .mode = MIGRATE_SYNC, 8352 .ignore_skip_hint = true, 8353 .no_set_skip_hint = true, 8354 .gfp_mask = current_gfp_context(gfp_mask), 8355 }; 8356 INIT_LIST_HEAD(&cc.migratepages); 8357 8358 /* 8359 * What we do here is we mark all pageblocks in range as 8360 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8361 * have different sizes, and due to the way page allocator 8362 * work, we align the range to biggest of the two pages so 8363 * that page allocator won't try to merge buddies from 8364 * different pageblocks and change MIGRATE_ISOLATE to some 8365 * other migration type. 8366 * 8367 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8368 * migrate the pages from an unaligned range (ie. pages that 8369 * we are interested in). This will put all the pages in 8370 * range back to page allocator as MIGRATE_ISOLATE. 8371 * 8372 * When this is done, we take the pages in range from page 8373 * allocator removing them from the buddy system. This way 8374 * page allocator will never consider using them. 8375 * 8376 * This lets us mark the pageblocks back as 8377 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8378 * aligned range but not in the unaligned, original range are 8379 * put back to page allocator so that buddy can use them. 8380 */ 8381 8382 ret = start_isolate_page_range(pfn_max_align_down(start), 8383 pfn_max_align_up(end), migratetype, 0); 8384 if (ret < 0) 8385 return ret; 8386 8387 /* 8388 * In case of -EBUSY, we'd like to know which page causes problem. 8389 * So, just fall through. test_pages_isolated() has a tracepoint 8390 * which will report the busy page. 8391 * 8392 * It is possible that busy pages could become available before 8393 * the call to test_pages_isolated, and the range will actually be 8394 * allocated. So, if we fall through be sure to clear ret so that 8395 * -EBUSY is not accidentally used or returned to caller. 8396 */ 8397 ret = __alloc_contig_migrate_range(&cc, start, end); 8398 if (ret && ret != -EBUSY) 8399 goto done; 8400 ret =0; 8401 8402 /* 8403 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8404 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8405 * more, all pages in [start, end) are free in page allocator. 8406 * What we are going to do is to allocate all pages from 8407 * [start, end) (that is remove them from page allocator). 8408 * 8409 * The only problem is that pages at the beginning and at the 8410 * end of interesting range may be not aligned with pages that 8411 * page allocator holds, ie. they can be part of higher order 8412 * pages. Because of this, we reserve the bigger range and 8413 * once this is done free the pages we are not interested in. 8414 * 8415 * We don't have to hold zone->lock here because the pages are 8416 * isolated thus they won't get removed from buddy. 8417 */ 8418 8419 lru_add_drain_all(); 8420 8421 order = 0; 8422 outer_start = start; 8423 while (!PageBuddy(pfn_to_page(outer_start))) { 8424 if (++order >= MAX_ORDER) { 8425 outer_start = start; 8426 break; 8427 } 8428 outer_start &= ~0UL << order; 8429 } 8430 8431 if (outer_start != start) { 8432 order = page_order(pfn_to_page(outer_start)); 8433 8434 /* 8435 * outer_start page could be small order buddy page and 8436 * it doesn't include start page. Adjust outer_start 8437 * in this case to report failed page properly 8438 * on tracepoint in test_pages_isolated() 8439 */ 8440 if (outer_start + (1UL << order) <= start) 8441 outer_start = start; 8442 } 8443 8444 /* Make sure the range is really isolated. */ 8445 if (test_pages_isolated(outer_start, end, false)) { 8446 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8447 __func__, outer_start, end); 8448 ret = -EBUSY; 8449 goto done; 8450 } 8451 8452 /* Grab isolated pages from freelists. */ 8453 outer_end = isolate_freepages_range(&cc, outer_start, end); 8454 if (!outer_end) { 8455 ret = -EBUSY; 8456 goto done; 8457 } 8458 8459 /* Free head and tail (if any) */ 8460 if (start != outer_start) 8461 free_contig_range(outer_start, start - outer_start); 8462 if (end != outer_end) 8463 free_contig_range(end, outer_end - end); 8464 8465 done: 8466 undo_isolate_page_range(pfn_max_align_down(start), 8467 pfn_max_align_up(end), migratetype); 8468 return ret; 8469 } 8470 #endif /* CONFIG_CONTIG_ALLOC */ 8471 8472 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8473 { 8474 unsigned int count = 0; 8475 8476 for (; nr_pages--; pfn++) { 8477 struct page *page = pfn_to_page(pfn); 8478 8479 count += page_count(page) != 1; 8480 __free_page(page); 8481 } 8482 WARN(count != 0, "%d pages are still in use!\n", count); 8483 } 8484 8485 #ifdef CONFIG_MEMORY_HOTPLUG 8486 /* 8487 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8488 * page high values need to be recalulated. 8489 */ 8490 void __meminit zone_pcp_update(struct zone *zone) 8491 { 8492 unsigned cpu; 8493 mutex_lock(&pcp_batch_high_lock); 8494 for_each_possible_cpu(cpu) 8495 pageset_set_high_and_batch(zone, 8496 per_cpu_ptr(zone->pageset, cpu)); 8497 mutex_unlock(&pcp_batch_high_lock); 8498 } 8499 #endif 8500 8501 void zone_pcp_reset(struct zone *zone) 8502 { 8503 unsigned long flags; 8504 int cpu; 8505 struct per_cpu_pageset *pset; 8506 8507 /* avoid races with drain_pages() */ 8508 local_irq_save(flags); 8509 if (zone->pageset != &boot_pageset) { 8510 for_each_online_cpu(cpu) { 8511 pset = per_cpu_ptr(zone->pageset, cpu); 8512 drain_zonestat(zone, pset); 8513 } 8514 free_percpu(zone->pageset); 8515 zone->pageset = &boot_pageset; 8516 } 8517 local_irq_restore(flags); 8518 } 8519 8520 #ifdef CONFIG_MEMORY_HOTREMOVE 8521 /* 8522 * All pages in the range must be in a single zone and isolated 8523 * before calling this. 8524 */ 8525 unsigned long 8526 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8527 { 8528 struct page *page; 8529 struct zone *zone; 8530 unsigned int order, i; 8531 unsigned long pfn; 8532 unsigned long flags; 8533 unsigned long offlined_pages = 0; 8534 8535 /* find the first valid pfn */ 8536 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8537 if (pfn_valid(pfn)) 8538 break; 8539 if (pfn == end_pfn) 8540 return offlined_pages; 8541 8542 offline_mem_sections(pfn, end_pfn); 8543 zone = page_zone(pfn_to_page(pfn)); 8544 spin_lock_irqsave(&zone->lock, flags); 8545 pfn = start_pfn; 8546 while (pfn < end_pfn) { 8547 if (!pfn_valid(pfn)) { 8548 pfn++; 8549 continue; 8550 } 8551 page = pfn_to_page(pfn); 8552 /* 8553 * The HWPoisoned page may be not in buddy system, and 8554 * page_count() is not 0. 8555 */ 8556 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8557 pfn++; 8558 SetPageReserved(page); 8559 offlined_pages++; 8560 continue; 8561 } 8562 8563 BUG_ON(page_count(page)); 8564 BUG_ON(!PageBuddy(page)); 8565 order = page_order(page); 8566 offlined_pages += 1 << order; 8567 #ifdef CONFIG_DEBUG_VM 8568 pr_info("remove from free list %lx %d %lx\n", 8569 pfn, 1 << order, end_pfn); 8570 #endif 8571 del_page_from_free_area(page, &zone->free_area[order]); 8572 for (i = 0; i < (1 << order); i++) 8573 SetPageReserved((page+i)); 8574 pfn += (1 << order); 8575 } 8576 spin_unlock_irqrestore(&zone->lock, flags); 8577 8578 return offlined_pages; 8579 } 8580 #endif 8581 8582 bool is_free_buddy_page(struct page *page) 8583 { 8584 struct zone *zone = page_zone(page); 8585 unsigned long pfn = page_to_pfn(page); 8586 unsigned long flags; 8587 unsigned int order; 8588 8589 spin_lock_irqsave(&zone->lock, flags); 8590 for (order = 0; order < MAX_ORDER; order++) { 8591 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8592 8593 if (PageBuddy(page_head) && page_order(page_head) >= order) 8594 break; 8595 } 8596 spin_unlock_irqrestore(&zone->lock, flags); 8597 8598 return order < MAX_ORDER; 8599 } 8600 8601 #ifdef CONFIG_MEMORY_FAILURE 8602 /* 8603 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8604 * test is performed under the zone lock to prevent a race against page 8605 * allocation. 8606 */ 8607 bool set_hwpoison_free_buddy_page(struct page *page) 8608 { 8609 struct zone *zone = page_zone(page); 8610 unsigned long pfn = page_to_pfn(page); 8611 unsigned long flags; 8612 unsigned int order; 8613 bool hwpoisoned = false; 8614 8615 spin_lock_irqsave(&zone->lock, flags); 8616 for (order = 0; order < MAX_ORDER; order++) { 8617 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8618 8619 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8620 if (!TestSetPageHWPoison(page)) 8621 hwpoisoned = true; 8622 break; 8623 } 8624 } 8625 spin_unlock_irqrestore(&zone->lock, flags); 8626 8627 return hwpoisoned; 8628 } 8629 #endif 8630