xref: /linux/mm/page_alloc.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77 
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
81 
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
86 
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88 
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 /*
91  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94  * defined in <linux/topology.h>.
95  */
96 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
99 #endif
100 
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 	struct zone *zone;
104 	struct work_struct work;
105 };
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108 
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113 
114 /*
115  * Array of node states.
116  */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 	[N_POSSIBLE] = NODE_MASK_ALL,
119 	[N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 	[N_MEMORY] = { { [0] = 1UL } },
126 	[N_CPU] = { { [0] = 1UL } },
127 #endif	/* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130 
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135 
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
144 
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
151 
152 static int __init early_init_on_alloc(char *buf)
153 {
154 	int ret;
155 	bool bool_result;
156 
157 	if (!buf)
158 		return -EINVAL;
159 	ret = kstrtobool(buf, &bool_result);
160 	if (bool_result && page_poisoning_enabled())
161 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 	if (bool_result)
163 		static_branch_enable(&init_on_alloc);
164 	else
165 		static_branch_disable(&init_on_alloc);
166 	return ret;
167 }
168 early_param("init_on_alloc", early_init_on_alloc);
169 
170 static int __init early_init_on_free(char *buf)
171 {
172 	int ret;
173 	bool bool_result;
174 
175 	if (!buf)
176 		return -EINVAL;
177 	ret = kstrtobool(buf, &bool_result);
178 	if (bool_result && page_poisoning_enabled())
179 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 	if (bool_result)
181 		static_branch_enable(&init_on_free);
182 	else
183 		static_branch_disable(&init_on_free);
184 	return ret;
185 }
186 early_param("init_on_free", early_init_on_free);
187 
188 /*
189  * A cached value of the page's pageblock's migratetype, used when the page is
190  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192  * Also the migratetype set in the page does not necessarily match the pcplist
193  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194  * other index - this ensures that it will be put on the correct CMA freelist.
195  */
196 static inline int get_pcppage_migratetype(struct page *page)
197 {
198 	return page->index;
199 }
200 
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202 {
203 	page->index = migratetype;
204 }
205 
206 #ifdef CONFIG_PM_SLEEP
207 /*
208  * The following functions are used by the suspend/hibernate code to temporarily
209  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210  * while devices are suspended.  To avoid races with the suspend/hibernate code,
211  * they should always be called with system_transition_mutex held
212  * (gfp_allowed_mask also should only be modified with system_transition_mutex
213  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214  * with that modification).
215  */
216 
217 static gfp_t saved_gfp_mask;
218 
219 void pm_restore_gfp_mask(void)
220 {
221 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 	if (saved_gfp_mask) {
223 		gfp_allowed_mask = saved_gfp_mask;
224 		saved_gfp_mask = 0;
225 	}
226 }
227 
228 void pm_restrict_gfp_mask(void)
229 {
230 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 	WARN_ON(saved_gfp_mask);
232 	saved_gfp_mask = gfp_allowed_mask;
233 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234 }
235 
236 bool pm_suspended_storage(void)
237 {
238 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 		return false;
240 	return true;
241 }
242 #endif /* CONFIG_PM_SLEEP */
243 
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
247 
248 static void __free_pages_ok(struct page *page, unsigned int order);
249 
250 /*
251  * results with 256, 32 in the lowmem_reserve sysctl:
252  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253  *	1G machine -> (16M dma, 784M normal, 224M high)
254  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257  *
258  * TBD: should special case ZONE_DMA32 machines here - in those we normally
259  * don't need any ZONE_NORMAL reservation
260  */
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 	[ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 	[ZONE_DMA32] = 256,
267 #endif
268 	[ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 	[ZONE_HIGHMEM] = 0,
271 #endif
272 	[ZONE_MOVABLE] = 0,
273 };
274 
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 	 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 	 "DMA32",
281 #endif
282 	 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 	 "HighMem",
285 #endif
286 	 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 	 "Device",
289 #endif
290 };
291 
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 	"Unmovable",
294 	"Movable",
295 	"Reclaimable",
296 	"HighAtomic",
297 #ifdef CONFIG_CMA
298 	"CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 	"Isolate",
302 #endif
303 };
304 
305 compound_page_dtor * const compound_page_dtors[] = {
306 	NULL,
307 	free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 	free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 	free_transhuge_page,
313 #endif
314 };
315 
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
319 /*
320  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321  * are not on separate NUMA nodes. Functionally this works but with
322  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323  * quite small. By default, do not boost watermarks on discontigmem as in
324  * many cases very high-order allocations like THP are likely to be
325  * unsupported and the premature reclaim offsets the advantage of long-term
326  * fragmentation avoidance.
327  */
328 int watermark_boost_factor __read_mostly;
329 #else
330 int watermark_boost_factor __read_mostly = 15000;
331 #endif
332 int watermark_scale_factor = 10;
333 
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
337 
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347 
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352 
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
359 
360 int page_group_by_mobility_disabled __read_mostly;
361 
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 /*
364  * During boot we initialize deferred pages on-demand, as needed, but once
365  * page_alloc_init_late() has finished, the deferred pages are all initialized,
366  * and we can permanently disable that path.
367  */
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369 
370 /*
371  * Calling kasan_free_pages() only after deferred memory initialization
372  * has completed. Poisoning pages during deferred memory init will greatly
373  * lengthen the process and cause problem in large memory systems as the
374  * deferred pages initialization is done with interrupt disabled.
375  *
376  * Assuming that there will be no reference to those newly initialized
377  * pages before they are ever allocated, this should have no effect on
378  * KASAN memory tracking as the poison will be properly inserted at page
379  * allocation time. The only corner case is when pages are allocated by
380  * on-demand allocation and then freed again before the deferred pages
381  * initialization is done, but this is not likely to happen.
382  */
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 {
385 	if (!static_branch_unlikely(&deferred_pages))
386 		kasan_free_pages(page, order);
387 }
388 
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 {
392 	int nid = early_pfn_to_nid(pfn);
393 
394 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 		return true;
396 
397 	return false;
398 }
399 
400 /*
401  * Returns true when the remaining initialisation should be deferred until
402  * later in the boot cycle when it can be parallelised.
403  */
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 {
407 	static unsigned long prev_end_pfn, nr_initialised;
408 
409 	/*
410 	 * prev_end_pfn static that contains the end of previous zone
411 	 * No need to protect because called very early in boot before smp_init.
412 	 */
413 	if (prev_end_pfn != end_pfn) {
414 		prev_end_pfn = end_pfn;
415 		nr_initialised = 0;
416 	}
417 
418 	/* Always populate low zones for address-constrained allocations */
419 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 		return false;
421 
422 	/*
423 	 * We start only with one section of pages, more pages are added as
424 	 * needed until the rest of deferred pages are initialized.
425 	 */
426 	nr_initialised++;
427 	if ((nr_initialised > PAGES_PER_SECTION) &&
428 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 		NODE_DATA(nid)->first_deferred_pfn = pfn;
430 		return true;
431 	}
432 	return false;
433 }
434 #else
435 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
436 
437 static inline bool early_page_uninitialised(unsigned long pfn)
438 {
439 	return false;
440 }
441 
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443 {
444 	return false;
445 }
446 #endif
447 
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 							unsigned long pfn)
451 {
452 #ifdef CONFIG_SPARSEMEM
453 	return __pfn_to_section(pfn)->pageblock_flags;
454 #else
455 	return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
457 }
458 
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 {
461 #ifdef CONFIG_SPARSEMEM
462 	pfn &= (PAGES_PER_SECTION-1);
463 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 #else
465 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
468 }
469 
470 /**
471  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472  * @page: The page within the block of interest
473  * @pfn: The target page frame number
474  * @end_bitidx: The last bit of interest to retrieve
475  * @mask: mask of bits that the caller is interested in
476  *
477  * Return: pageblock_bits flags
478  */
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 					unsigned long pfn,
481 					unsigned long end_bitidx,
482 					unsigned long mask)
483 {
484 	unsigned long *bitmap;
485 	unsigned long bitidx, word_bitidx;
486 	unsigned long word;
487 
488 	bitmap = get_pageblock_bitmap(page, pfn);
489 	bitidx = pfn_to_bitidx(page, pfn);
490 	word_bitidx = bitidx / BITS_PER_LONG;
491 	bitidx &= (BITS_PER_LONG-1);
492 
493 	word = bitmap[word_bitidx];
494 	bitidx += end_bitidx;
495 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496 }
497 
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 					unsigned long end_bitidx,
500 					unsigned long mask)
501 {
502 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503 }
504 
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 {
507 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508 }
509 
510 /**
511  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512  * @page: The page within the block of interest
513  * @flags: The flags to set
514  * @pfn: The target page frame number
515  * @end_bitidx: The last bit of interest
516  * @mask: mask of bits that the caller is interested in
517  */
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 					unsigned long pfn,
520 					unsigned long end_bitidx,
521 					unsigned long mask)
522 {
523 	unsigned long *bitmap;
524 	unsigned long bitidx, word_bitidx;
525 	unsigned long old_word, word;
526 
527 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 
530 	bitmap = get_pageblock_bitmap(page, pfn);
531 	bitidx = pfn_to_bitidx(page, pfn);
532 	word_bitidx = bitidx / BITS_PER_LONG;
533 	bitidx &= (BITS_PER_LONG-1);
534 
535 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536 
537 	bitidx += end_bitidx;
538 	mask <<= (BITS_PER_LONG - bitidx - 1);
539 	flags <<= (BITS_PER_LONG - bitidx - 1);
540 
541 	word = READ_ONCE(bitmap[word_bitidx]);
542 	for (;;) {
543 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 		if (word == old_word)
545 			break;
546 		word = old_word;
547 	}
548 }
549 
550 void set_pageblock_migratetype(struct page *page, int migratetype)
551 {
552 	if (unlikely(page_group_by_mobility_disabled &&
553 		     migratetype < MIGRATE_PCPTYPES))
554 		migratetype = MIGRATE_UNMOVABLE;
555 
556 	set_pageblock_flags_group(page, (unsigned long)migratetype,
557 					PB_migrate, PB_migrate_end);
558 }
559 
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
562 {
563 	int ret = 0;
564 	unsigned seq;
565 	unsigned long pfn = page_to_pfn(page);
566 	unsigned long sp, start_pfn;
567 
568 	do {
569 		seq = zone_span_seqbegin(zone);
570 		start_pfn = zone->zone_start_pfn;
571 		sp = zone->spanned_pages;
572 		if (!zone_spans_pfn(zone, pfn))
573 			ret = 1;
574 	} while (zone_span_seqretry(zone, seq));
575 
576 	if (ret)
577 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 			pfn, zone_to_nid(zone), zone->name,
579 			start_pfn, start_pfn + sp);
580 
581 	return ret;
582 }
583 
584 static int page_is_consistent(struct zone *zone, struct page *page)
585 {
586 	if (!pfn_valid_within(page_to_pfn(page)))
587 		return 0;
588 	if (zone != page_zone(page))
589 		return 0;
590 
591 	return 1;
592 }
593 /*
594  * Temporary debugging check for pages not lying within a given zone.
595  */
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 {
598 	if (page_outside_zone_boundaries(zone, page))
599 		return 1;
600 	if (!page_is_consistent(zone, page))
601 		return 1;
602 
603 	return 0;
604 }
605 #else
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
607 {
608 	return 0;
609 }
610 #endif
611 
612 static void bad_page(struct page *page, const char *reason,
613 		unsigned long bad_flags)
614 {
615 	static unsigned long resume;
616 	static unsigned long nr_shown;
617 	static unsigned long nr_unshown;
618 
619 	/*
620 	 * Allow a burst of 60 reports, then keep quiet for that minute;
621 	 * or allow a steady drip of one report per second.
622 	 */
623 	if (nr_shown == 60) {
624 		if (time_before(jiffies, resume)) {
625 			nr_unshown++;
626 			goto out;
627 		}
628 		if (nr_unshown) {
629 			pr_alert(
630 			      "BUG: Bad page state: %lu messages suppressed\n",
631 				nr_unshown);
632 			nr_unshown = 0;
633 		}
634 		nr_shown = 0;
635 	}
636 	if (nr_shown++ == 0)
637 		resume = jiffies + 60 * HZ;
638 
639 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
640 		current->comm, page_to_pfn(page));
641 	__dump_page(page, reason);
642 	bad_flags &= page->flags;
643 	if (bad_flags)
644 		pr_alert("bad because of flags: %#lx(%pGp)\n",
645 						bad_flags, &bad_flags);
646 	dump_page_owner(page);
647 
648 	print_modules();
649 	dump_stack();
650 out:
651 	/* Leave bad fields for debug, except PageBuddy could make trouble */
652 	page_mapcount_reset(page); /* remove PageBuddy */
653 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655 
656 /*
657  * Higher-order pages are called "compound pages".  They are structured thusly:
658  *
659  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
660  *
661  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
663  *
664  * The first tail page's ->compound_dtor holds the offset in array of compound
665  * page destructors. See compound_page_dtors.
666  *
667  * The first tail page's ->compound_order holds the order of allocation.
668  * This usage means that zero-order pages may not be compound.
669  */
670 
671 void free_compound_page(struct page *page)
672 {
673 	__free_pages_ok(page, compound_order(page));
674 }
675 
676 void prep_compound_page(struct page *page, unsigned int order)
677 {
678 	int i;
679 	int nr_pages = 1 << order;
680 
681 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
682 	set_compound_order(page, order);
683 	__SetPageHead(page);
684 	for (i = 1; i < nr_pages; i++) {
685 		struct page *p = page + i;
686 		set_page_count(p, 0);
687 		p->mapping = TAIL_MAPPING;
688 		set_compound_head(p, page);
689 	}
690 	atomic_set(compound_mapcount_ptr(page), -1);
691 }
692 
693 #ifdef CONFIG_DEBUG_PAGEALLOC
694 unsigned int _debug_guardpage_minorder;
695 
696 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
697 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
698 #else
699 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
700 #endif
701 EXPORT_SYMBOL(_debug_pagealloc_enabled);
702 
703 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
704 
705 static int __init early_debug_pagealloc(char *buf)
706 {
707 	bool enable = false;
708 
709 	if (kstrtobool(buf, &enable))
710 		return -EINVAL;
711 
712 	if (enable)
713 		static_branch_enable(&_debug_pagealloc_enabled);
714 
715 	return 0;
716 }
717 early_param("debug_pagealloc", early_debug_pagealloc);
718 
719 static void init_debug_guardpage(void)
720 {
721 	if (!debug_pagealloc_enabled())
722 		return;
723 
724 	if (!debug_guardpage_minorder())
725 		return;
726 
727 	static_branch_enable(&_debug_guardpage_enabled);
728 }
729 
730 static int __init debug_guardpage_minorder_setup(char *buf)
731 {
732 	unsigned long res;
733 
734 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
735 		pr_err("Bad debug_guardpage_minorder value\n");
736 		return 0;
737 	}
738 	_debug_guardpage_minorder = res;
739 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
740 	return 0;
741 }
742 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
743 
744 static inline bool set_page_guard(struct zone *zone, struct page *page,
745 				unsigned int order, int migratetype)
746 {
747 	if (!debug_guardpage_enabled())
748 		return false;
749 
750 	if (order >= debug_guardpage_minorder())
751 		return false;
752 
753 	__SetPageGuard(page);
754 	INIT_LIST_HEAD(&page->lru);
755 	set_page_private(page, order);
756 	/* Guard pages are not available for any usage */
757 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
758 
759 	return true;
760 }
761 
762 static inline void clear_page_guard(struct zone *zone, struct page *page,
763 				unsigned int order, int migratetype)
764 {
765 	if (!debug_guardpage_enabled())
766 		return;
767 
768 	__ClearPageGuard(page);
769 
770 	set_page_private(page, 0);
771 	if (!is_migrate_isolate(migratetype))
772 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
773 }
774 #else
775 static inline bool set_page_guard(struct zone *zone, struct page *page,
776 			unsigned int order, int migratetype) { return false; }
777 static inline void clear_page_guard(struct zone *zone, struct page *page,
778 				unsigned int order, int migratetype) {}
779 #endif
780 
781 static inline void set_page_order(struct page *page, unsigned int order)
782 {
783 	set_page_private(page, order);
784 	__SetPageBuddy(page);
785 }
786 
787 /*
788  * This function checks whether a page is free && is the buddy
789  * we can coalesce a page and its buddy if
790  * (a) the buddy is not in a hole (check before calling!) &&
791  * (b) the buddy is in the buddy system &&
792  * (c) a page and its buddy have the same order &&
793  * (d) a page and its buddy are in the same zone.
794  *
795  * For recording whether a page is in the buddy system, we set PageBuddy.
796  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
797  *
798  * For recording page's order, we use page_private(page).
799  */
800 static inline int page_is_buddy(struct page *page, struct page *buddy,
801 							unsigned int order)
802 {
803 	if (page_is_guard(buddy) && page_order(buddy) == order) {
804 		if (page_zone_id(page) != page_zone_id(buddy))
805 			return 0;
806 
807 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
808 
809 		return 1;
810 	}
811 
812 	if (PageBuddy(buddy) && page_order(buddy) == order) {
813 		/*
814 		 * zone check is done late to avoid uselessly
815 		 * calculating zone/node ids for pages that could
816 		 * never merge.
817 		 */
818 		if (page_zone_id(page) != page_zone_id(buddy))
819 			return 0;
820 
821 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
822 
823 		return 1;
824 	}
825 	return 0;
826 }
827 
828 #ifdef CONFIG_COMPACTION
829 static inline struct capture_control *task_capc(struct zone *zone)
830 {
831 	struct capture_control *capc = current->capture_control;
832 
833 	return capc &&
834 		!(current->flags & PF_KTHREAD) &&
835 		!capc->page &&
836 		capc->cc->zone == zone &&
837 		capc->cc->direct_compaction ? capc : NULL;
838 }
839 
840 static inline bool
841 compaction_capture(struct capture_control *capc, struct page *page,
842 		   int order, int migratetype)
843 {
844 	if (!capc || order != capc->cc->order)
845 		return false;
846 
847 	/* Do not accidentally pollute CMA or isolated regions*/
848 	if (is_migrate_cma(migratetype) ||
849 	    is_migrate_isolate(migratetype))
850 		return false;
851 
852 	/*
853 	 * Do not let lower order allocations polluate a movable pageblock.
854 	 * This might let an unmovable request use a reclaimable pageblock
855 	 * and vice-versa but no more than normal fallback logic which can
856 	 * have trouble finding a high-order free page.
857 	 */
858 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
859 		return false;
860 
861 	capc->page = page;
862 	return true;
863 }
864 
865 #else
866 static inline struct capture_control *task_capc(struct zone *zone)
867 {
868 	return NULL;
869 }
870 
871 static inline bool
872 compaction_capture(struct capture_control *capc, struct page *page,
873 		   int order, int migratetype)
874 {
875 	return false;
876 }
877 #endif /* CONFIG_COMPACTION */
878 
879 /*
880  * Freeing function for a buddy system allocator.
881  *
882  * The concept of a buddy system is to maintain direct-mapped table
883  * (containing bit values) for memory blocks of various "orders".
884  * The bottom level table contains the map for the smallest allocatable
885  * units of memory (here, pages), and each level above it describes
886  * pairs of units from the levels below, hence, "buddies".
887  * At a high level, all that happens here is marking the table entry
888  * at the bottom level available, and propagating the changes upward
889  * as necessary, plus some accounting needed to play nicely with other
890  * parts of the VM system.
891  * At each level, we keep a list of pages, which are heads of continuous
892  * free pages of length of (1 << order) and marked with PageBuddy.
893  * Page's order is recorded in page_private(page) field.
894  * So when we are allocating or freeing one, we can derive the state of the
895  * other.  That is, if we allocate a small block, and both were
896  * free, the remainder of the region must be split into blocks.
897  * If a block is freed, and its buddy is also free, then this
898  * triggers coalescing into a block of larger size.
899  *
900  * -- nyc
901  */
902 
903 static inline void __free_one_page(struct page *page,
904 		unsigned long pfn,
905 		struct zone *zone, unsigned int order,
906 		int migratetype)
907 {
908 	unsigned long combined_pfn;
909 	unsigned long uninitialized_var(buddy_pfn);
910 	struct page *buddy;
911 	unsigned int max_order;
912 	struct capture_control *capc = task_capc(zone);
913 
914 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
915 
916 	VM_BUG_ON(!zone_is_initialized(zone));
917 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
918 
919 	VM_BUG_ON(migratetype == -1);
920 	if (likely(!is_migrate_isolate(migratetype)))
921 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
922 
923 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
924 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
925 
926 continue_merging:
927 	while (order < max_order - 1) {
928 		if (compaction_capture(capc, page, order, migratetype)) {
929 			__mod_zone_freepage_state(zone, -(1 << order),
930 								migratetype);
931 			return;
932 		}
933 		buddy_pfn = __find_buddy_pfn(pfn, order);
934 		buddy = page + (buddy_pfn - pfn);
935 
936 		if (!pfn_valid_within(buddy_pfn))
937 			goto done_merging;
938 		if (!page_is_buddy(page, buddy, order))
939 			goto done_merging;
940 		/*
941 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
942 		 * merge with it and move up one order.
943 		 */
944 		if (page_is_guard(buddy))
945 			clear_page_guard(zone, buddy, order, migratetype);
946 		else
947 			del_page_from_free_area(buddy, &zone->free_area[order]);
948 		combined_pfn = buddy_pfn & pfn;
949 		page = page + (combined_pfn - pfn);
950 		pfn = combined_pfn;
951 		order++;
952 	}
953 	if (max_order < MAX_ORDER) {
954 		/* If we are here, it means order is >= pageblock_order.
955 		 * We want to prevent merge between freepages on isolate
956 		 * pageblock and normal pageblock. Without this, pageblock
957 		 * isolation could cause incorrect freepage or CMA accounting.
958 		 *
959 		 * We don't want to hit this code for the more frequent
960 		 * low-order merging.
961 		 */
962 		if (unlikely(has_isolate_pageblock(zone))) {
963 			int buddy_mt;
964 
965 			buddy_pfn = __find_buddy_pfn(pfn, order);
966 			buddy = page + (buddy_pfn - pfn);
967 			buddy_mt = get_pageblock_migratetype(buddy);
968 
969 			if (migratetype != buddy_mt
970 					&& (is_migrate_isolate(migratetype) ||
971 						is_migrate_isolate(buddy_mt)))
972 				goto done_merging;
973 		}
974 		max_order++;
975 		goto continue_merging;
976 	}
977 
978 done_merging:
979 	set_page_order(page, order);
980 
981 	/*
982 	 * If this is not the largest possible page, check if the buddy
983 	 * of the next-highest order is free. If it is, it's possible
984 	 * that pages are being freed that will coalesce soon. In case,
985 	 * that is happening, add the free page to the tail of the list
986 	 * so it's less likely to be used soon and more likely to be merged
987 	 * as a higher order page
988 	 */
989 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
990 			&& !is_shuffle_order(order)) {
991 		struct page *higher_page, *higher_buddy;
992 		combined_pfn = buddy_pfn & pfn;
993 		higher_page = page + (combined_pfn - pfn);
994 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
995 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
996 		if (pfn_valid_within(buddy_pfn) &&
997 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
998 			add_to_free_area_tail(page, &zone->free_area[order],
999 					      migratetype);
1000 			return;
1001 		}
1002 	}
1003 
1004 	if (is_shuffle_order(order))
1005 		add_to_free_area_random(page, &zone->free_area[order],
1006 				migratetype);
1007 	else
1008 		add_to_free_area(page, &zone->free_area[order], migratetype);
1009 
1010 }
1011 
1012 /*
1013  * A bad page could be due to a number of fields. Instead of multiple branches,
1014  * try and check multiple fields with one check. The caller must do a detailed
1015  * check if necessary.
1016  */
1017 static inline bool page_expected_state(struct page *page,
1018 					unsigned long check_flags)
1019 {
1020 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1021 		return false;
1022 
1023 	if (unlikely((unsigned long)page->mapping |
1024 			page_ref_count(page) |
1025 #ifdef CONFIG_MEMCG
1026 			(unsigned long)page->mem_cgroup |
1027 #endif
1028 			(page->flags & check_flags)))
1029 		return false;
1030 
1031 	return true;
1032 }
1033 
1034 static void free_pages_check_bad(struct page *page)
1035 {
1036 	const char *bad_reason;
1037 	unsigned long bad_flags;
1038 
1039 	bad_reason = NULL;
1040 	bad_flags = 0;
1041 
1042 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1043 		bad_reason = "nonzero mapcount";
1044 	if (unlikely(page->mapping != NULL))
1045 		bad_reason = "non-NULL mapping";
1046 	if (unlikely(page_ref_count(page) != 0))
1047 		bad_reason = "nonzero _refcount";
1048 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1049 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1050 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1051 	}
1052 #ifdef CONFIG_MEMCG
1053 	if (unlikely(page->mem_cgroup))
1054 		bad_reason = "page still charged to cgroup";
1055 #endif
1056 	bad_page(page, bad_reason, bad_flags);
1057 }
1058 
1059 static inline int free_pages_check(struct page *page)
1060 {
1061 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1062 		return 0;
1063 
1064 	/* Something has gone sideways, find it */
1065 	free_pages_check_bad(page);
1066 	return 1;
1067 }
1068 
1069 static int free_tail_pages_check(struct page *head_page, struct page *page)
1070 {
1071 	int ret = 1;
1072 
1073 	/*
1074 	 * We rely page->lru.next never has bit 0 set, unless the page
1075 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1076 	 */
1077 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1078 
1079 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1080 		ret = 0;
1081 		goto out;
1082 	}
1083 	switch (page - head_page) {
1084 	case 1:
1085 		/* the first tail page: ->mapping may be compound_mapcount() */
1086 		if (unlikely(compound_mapcount(page))) {
1087 			bad_page(page, "nonzero compound_mapcount", 0);
1088 			goto out;
1089 		}
1090 		break;
1091 	case 2:
1092 		/*
1093 		 * the second tail page: ->mapping is
1094 		 * deferred_list.next -- ignore value.
1095 		 */
1096 		break;
1097 	default:
1098 		if (page->mapping != TAIL_MAPPING) {
1099 			bad_page(page, "corrupted mapping in tail page", 0);
1100 			goto out;
1101 		}
1102 		break;
1103 	}
1104 	if (unlikely(!PageTail(page))) {
1105 		bad_page(page, "PageTail not set", 0);
1106 		goto out;
1107 	}
1108 	if (unlikely(compound_head(page) != head_page)) {
1109 		bad_page(page, "compound_head not consistent", 0);
1110 		goto out;
1111 	}
1112 	ret = 0;
1113 out:
1114 	page->mapping = NULL;
1115 	clear_compound_head(page);
1116 	return ret;
1117 }
1118 
1119 static void kernel_init_free_pages(struct page *page, int numpages)
1120 {
1121 	int i;
1122 
1123 	for (i = 0; i < numpages; i++)
1124 		clear_highpage(page + i);
1125 }
1126 
1127 static __always_inline bool free_pages_prepare(struct page *page,
1128 					unsigned int order, bool check_free)
1129 {
1130 	int bad = 0;
1131 
1132 	VM_BUG_ON_PAGE(PageTail(page), page);
1133 
1134 	trace_mm_page_free(page, order);
1135 
1136 	/*
1137 	 * Check tail pages before head page information is cleared to
1138 	 * avoid checking PageCompound for order-0 pages.
1139 	 */
1140 	if (unlikely(order)) {
1141 		bool compound = PageCompound(page);
1142 		int i;
1143 
1144 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1145 
1146 		if (compound)
1147 			ClearPageDoubleMap(page);
1148 		for (i = 1; i < (1 << order); i++) {
1149 			if (compound)
1150 				bad += free_tail_pages_check(page, page + i);
1151 			if (unlikely(free_pages_check(page + i))) {
1152 				bad++;
1153 				continue;
1154 			}
1155 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1156 		}
1157 	}
1158 	if (PageMappingFlags(page))
1159 		page->mapping = NULL;
1160 	if (memcg_kmem_enabled() && PageKmemcg(page))
1161 		__memcg_kmem_uncharge(page, order);
1162 	if (check_free)
1163 		bad += free_pages_check(page);
1164 	if (bad)
1165 		return false;
1166 
1167 	page_cpupid_reset_last(page);
1168 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1169 	reset_page_owner(page, order);
1170 
1171 	if (!PageHighMem(page)) {
1172 		debug_check_no_locks_freed(page_address(page),
1173 					   PAGE_SIZE << order);
1174 		debug_check_no_obj_freed(page_address(page),
1175 					   PAGE_SIZE << order);
1176 	}
1177 	arch_free_page(page, order);
1178 	if (want_init_on_free())
1179 		kernel_init_free_pages(page, 1 << order);
1180 
1181 	kernel_poison_pages(page, 1 << order, 0);
1182 	if (debug_pagealloc_enabled())
1183 		kernel_map_pages(page, 1 << order, 0);
1184 
1185 	kasan_free_nondeferred_pages(page, order);
1186 
1187 	return true;
1188 }
1189 
1190 #ifdef CONFIG_DEBUG_VM
1191 /*
1192  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1193  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1194  * moved from pcp lists to free lists.
1195  */
1196 static bool free_pcp_prepare(struct page *page)
1197 {
1198 	return free_pages_prepare(page, 0, true);
1199 }
1200 
1201 static bool bulkfree_pcp_prepare(struct page *page)
1202 {
1203 	if (debug_pagealloc_enabled())
1204 		return free_pages_check(page);
1205 	else
1206 		return false;
1207 }
1208 #else
1209 /*
1210  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1211  * moving from pcp lists to free list in order to reduce overhead. With
1212  * debug_pagealloc enabled, they are checked also immediately when being freed
1213  * to the pcp lists.
1214  */
1215 static bool free_pcp_prepare(struct page *page)
1216 {
1217 	if (debug_pagealloc_enabled())
1218 		return free_pages_prepare(page, 0, true);
1219 	else
1220 		return free_pages_prepare(page, 0, false);
1221 }
1222 
1223 static bool bulkfree_pcp_prepare(struct page *page)
1224 {
1225 	return free_pages_check(page);
1226 }
1227 #endif /* CONFIG_DEBUG_VM */
1228 
1229 static inline void prefetch_buddy(struct page *page)
1230 {
1231 	unsigned long pfn = page_to_pfn(page);
1232 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1233 	struct page *buddy = page + (buddy_pfn - pfn);
1234 
1235 	prefetch(buddy);
1236 }
1237 
1238 /*
1239  * Frees a number of pages from the PCP lists
1240  * Assumes all pages on list are in same zone, and of same order.
1241  * count is the number of pages to free.
1242  *
1243  * If the zone was previously in an "all pages pinned" state then look to
1244  * see if this freeing clears that state.
1245  *
1246  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1247  * pinned" detection logic.
1248  */
1249 static void free_pcppages_bulk(struct zone *zone, int count,
1250 					struct per_cpu_pages *pcp)
1251 {
1252 	int migratetype = 0;
1253 	int batch_free = 0;
1254 	int prefetch_nr = 0;
1255 	bool isolated_pageblocks;
1256 	struct page *page, *tmp;
1257 	LIST_HEAD(head);
1258 
1259 	while (count) {
1260 		struct list_head *list;
1261 
1262 		/*
1263 		 * Remove pages from lists in a round-robin fashion. A
1264 		 * batch_free count is maintained that is incremented when an
1265 		 * empty list is encountered.  This is so more pages are freed
1266 		 * off fuller lists instead of spinning excessively around empty
1267 		 * lists
1268 		 */
1269 		do {
1270 			batch_free++;
1271 			if (++migratetype == MIGRATE_PCPTYPES)
1272 				migratetype = 0;
1273 			list = &pcp->lists[migratetype];
1274 		} while (list_empty(list));
1275 
1276 		/* This is the only non-empty list. Free them all. */
1277 		if (batch_free == MIGRATE_PCPTYPES)
1278 			batch_free = count;
1279 
1280 		do {
1281 			page = list_last_entry(list, struct page, lru);
1282 			/* must delete to avoid corrupting pcp list */
1283 			list_del(&page->lru);
1284 			pcp->count--;
1285 
1286 			if (bulkfree_pcp_prepare(page))
1287 				continue;
1288 
1289 			list_add_tail(&page->lru, &head);
1290 
1291 			/*
1292 			 * We are going to put the page back to the global
1293 			 * pool, prefetch its buddy to speed up later access
1294 			 * under zone->lock. It is believed the overhead of
1295 			 * an additional test and calculating buddy_pfn here
1296 			 * can be offset by reduced memory latency later. To
1297 			 * avoid excessive prefetching due to large count, only
1298 			 * prefetch buddy for the first pcp->batch nr of pages.
1299 			 */
1300 			if (prefetch_nr++ < pcp->batch)
1301 				prefetch_buddy(page);
1302 		} while (--count && --batch_free && !list_empty(list));
1303 	}
1304 
1305 	spin_lock(&zone->lock);
1306 	isolated_pageblocks = has_isolate_pageblock(zone);
1307 
1308 	/*
1309 	 * Use safe version since after __free_one_page(),
1310 	 * page->lru.next will not point to original list.
1311 	 */
1312 	list_for_each_entry_safe(page, tmp, &head, lru) {
1313 		int mt = get_pcppage_migratetype(page);
1314 		/* MIGRATE_ISOLATE page should not go to pcplists */
1315 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1316 		/* Pageblock could have been isolated meanwhile */
1317 		if (unlikely(isolated_pageblocks))
1318 			mt = get_pageblock_migratetype(page);
1319 
1320 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1321 		trace_mm_page_pcpu_drain(page, 0, mt);
1322 	}
1323 	spin_unlock(&zone->lock);
1324 }
1325 
1326 static void free_one_page(struct zone *zone,
1327 				struct page *page, unsigned long pfn,
1328 				unsigned int order,
1329 				int migratetype)
1330 {
1331 	spin_lock(&zone->lock);
1332 	if (unlikely(has_isolate_pageblock(zone) ||
1333 		is_migrate_isolate(migratetype))) {
1334 		migratetype = get_pfnblock_migratetype(page, pfn);
1335 	}
1336 	__free_one_page(page, pfn, zone, order, migratetype);
1337 	spin_unlock(&zone->lock);
1338 }
1339 
1340 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1341 				unsigned long zone, int nid)
1342 {
1343 	mm_zero_struct_page(page);
1344 	set_page_links(page, zone, nid, pfn);
1345 	init_page_count(page);
1346 	page_mapcount_reset(page);
1347 	page_cpupid_reset_last(page);
1348 	page_kasan_tag_reset(page);
1349 
1350 	INIT_LIST_HEAD(&page->lru);
1351 #ifdef WANT_PAGE_VIRTUAL
1352 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1353 	if (!is_highmem_idx(zone))
1354 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1355 #endif
1356 }
1357 
1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1359 static void __meminit init_reserved_page(unsigned long pfn)
1360 {
1361 	pg_data_t *pgdat;
1362 	int nid, zid;
1363 
1364 	if (!early_page_uninitialised(pfn))
1365 		return;
1366 
1367 	nid = early_pfn_to_nid(pfn);
1368 	pgdat = NODE_DATA(nid);
1369 
1370 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1371 		struct zone *zone = &pgdat->node_zones[zid];
1372 
1373 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1374 			break;
1375 	}
1376 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1377 }
1378 #else
1379 static inline void init_reserved_page(unsigned long pfn)
1380 {
1381 }
1382 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1383 
1384 /*
1385  * Initialised pages do not have PageReserved set. This function is
1386  * called for each range allocated by the bootmem allocator and
1387  * marks the pages PageReserved. The remaining valid pages are later
1388  * sent to the buddy page allocator.
1389  */
1390 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1391 {
1392 	unsigned long start_pfn = PFN_DOWN(start);
1393 	unsigned long end_pfn = PFN_UP(end);
1394 
1395 	for (; start_pfn < end_pfn; start_pfn++) {
1396 		if (pfn_valid(start_pfn)) {
1397 			struct page *page = pfn_to_page(start_pfn);
1398 
1399 			init_reserved_page(start_pfn);
1400 
1401 			/* Avoid false-positive PageTail() */
1402 			INIT_LIST_HEAD(&page->lru);
1403 
1404 			/*
1405 			 * no need for atomic set_bit because the struct
1406 			 * page is not visible yet so nobody should
1407 			 * access it yet.
1408 			 */
1409 			__SetPageReserved(page);
1410 		}
1411 	}
1412 }
1413 
1414 static void __free_pages_ok(struct page *page, unsigned int order)
1415 {
1416 	unsigned long flags;
1417 	int migratetype;
1418 	unsigned long pfn = page_to_pfn(page);
1419 
1420 	if (!free_pages_prepare(page, order, true))
1421 		return;
1422 
1423 	migratetype = get_pfnblock_migratetype(page, pfn);
1424 	local_irq_save(flags);
1425 	__count_vm_events(PGFREE, 1 << order);
1426 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1427 	local_irq_restore(flags);
1428 }
1429 
1430 void __free_pages_core(struct page *page, unsigned int order)
1431 {
1432 	unsigned int nr_pages = 1 << order;
1433 	struct page *p = page;
1434 	unsigned int loop;
1435 
1436 	prefetchw(p);
1437 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1438 		prefetchw(p + 1);
1439 		__ClearPageReserved(p);
1440 		set_page_count(p, 0);
1441 	}
1442 	__ClearPageReserved(p);
1443 	set_page_count(p, 0);
1444 
1445 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1446 	set_page_refcounted(page);
1447 	__free_pages(page, order);
1448 }
1449 
1450 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1451 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1452 
1453 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1454 
1455 int __meminit early_pfn_to_nid(unsigned long pfn)
1456 {
1457 	static DEFINE_SPINLOCK(early_pfn_lock);
1458 	int nid;
1459 
1460 	spin_lock(&early_pfn_lock);
1461 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1462 	if (nid < 0)
1463 		nid = first_online_node;
1464 	spin_unlock(&early_pfn_lock);
1465 
1466 	return nid;
1467 }
1468 #endif
1469 
1470 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1471 /* Only safe to use early in boot when initialisation is single-threaded */
1472 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1473 {
1474 	int nid;
1475 
1476 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1477 	if (nid >= 0 && nid != node)
1478 		return false;
1479 	return true;
1480 }
1481 
1482 #else
1483 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1484 {
1485 	return true;
1486 }
1487 #endif
1488 
1489 
1490 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1491 							unsigned int order)
1492 {
1493 	if (early_page_uninitialised(pfn))
1494 		return;
1495 	__free_pages_core(page, order);
1496 }
1497 
1498 /*
1499  * Check that the whole (or subset of) a pageblock given by the interval of
1500  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1501  * with the migration of free compaction scanner. The scanners then need to
1502  * use only pfn_valid_within() check for arches that allow holes within
1503  * pageblocks.
1504  *
1505  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1506  *
1507  * It's possible on some configurations to have a setup like node0 node1 node0
1508  * i.e. it's possible that all pages within a zones range of pages do not
1509  * belong to a single zone. We assume that a border between node0 and node1
1510  * can occur within a single pageblock, but not a node0 node1 node0
1511  * interleaving within a single pageblock. It is therefore sufficient to check
1512  * the first and last page of a pageblock and avoid checking each individual
1513  * page in a pageblock.
1514  */
1515 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1516 				     unsigned long end_pfn, struct zone *zone)
1517 {
1518 	struct page *start_page;
1519 	struct page *end_page;
1520 
1521 	/* end_pfn is one past the range we are checking */
1522 	end_pfn--;
1523 
1524 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1525 		return NULL;
1526 
1527 	start_page = pfn_to_online_page(start_pfn);
1528 	if (!start_page)
1529 		return NULL;
1530 
1531 	if (page_zone(start_page) != zone)
1532 		return NULL;
1533 
1534 	end_page = pfn_to_page(end_pfn);
1535 
1536 	/* This gives a shorter code than deriving page_zone(end_page) */
1537 	if (page_zone_id(start_page) != page_zone_id(end_page))
1538 		return NULL;
1539 
1540 	return start_page;
1541 }
1542 
1543 void set_zone_contiguous(struct zone *zone)
1544 {
1545 	unsigned long block_start_pfn = zone->zone_start_pfn;
1546 	unsigned long block_end_pfn;
1547 
1548 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1549 	for (; block_start_pfn < zone_end_pfn(zone);
1550 			block_start_pfn = block_end_pfn,
1551 			 block_end_pfn += pageblock_nr_pages) {
1552 
1553 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1554 
1555 		if (!__pageblock_pfn_to_page(block_start_pfn,
1556 					     block_end_pfn, zone))
1557 			return;
1558 	}
1559 
1560 	/* We confirm that there is no hole */
1561 	zone->contiguous = true;
1562 }
1563 
1564 void clear_zone_contiguous(struct zone *zone)
1565 {
1566 	zone->contiguous = false;
1567 }
1568 
1569 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1570 static void __init deferred_free_range(unsigned long pfn,
1571 				       unsigned long nr_pages)
1572 {
1573 	struct page *page;
1574 	unsigned long i;
1575 
1576 	if (!nr_pages)
1577 		return;
1578 
1579 	page = pfn_to_page(pfn);
1580 
1581 	/* Free a large naturally-aligned chunk if possible */
1582 	if (nr_pages == pageblock_nr_pages &&
1583 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1584 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1585 		__free_pages_core(page, pageblock_order);
1586 		return;
1587 	}
1588 
1589 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1590 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1591 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592 		__free_pages_core(page, 0);
1593 	}
1594 }
1595 
1596 /* Completion tracking for deferred_init_memmap() threads */
1597 static atomic_t pgdat_init_n_undone __initdata;
1598 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1599 
1600 static inline void __init pgdat_init_report_one_done(void)
1601 {
1602 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1603 		complete(&pgdat_init_all_done_comp);
1604 }
1605 
1606 /*
1607  * Returns true if page needs to be initialized or freed to buddy allocator.
1608  *
1609  * First we check if pfn is valid on architectures where it is possible to have
1610  * holes within pageblock_nr_pages. On systems where it is not possible, this
1611  * function is optimized out.
1612  *
1613  * Then, we check if a current large page is valid by only checking the validity
1614  * of the head pfn.
1615  */
1616 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1617 {
1618 	if (!pfn_valid_within(pfn))
1619 		return false;
1620 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1621 		return false;
1622 	return true;
1623 }
1624 
1625 /*
1626  * Free pages to buddy allocator. Try to free aligned pages in
1627  * pageblock_nr_pages sizes.
1628  */
1629 static void __init deferred_free_pages(unsigned long pfn,
1630 				       unsigned long end_pfn)
1631 {
1632 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1633 	unsigned long nr_free = 0;
1634 
1635 	for (; pfn < end_pfn; pfn++) {
1636 		if (!deferred_pfn_valid(pfn)) {
1637 			deferred_free_range(pfn - nr_free, nr_free);
1638 			nr_free = 0;
1639 		} else if (!(pfn & nr_pgmask)) {
1640 			deferred_free_range(pfn - nr_free, nr_free);
1641 			nr_free = 1;
1642 			touch_nmi_watchdog();
1643 		} else {
1644 			nr_free++;
1645 		}
1646 	}
1647 	/* Free the last block of pages to allocator */
1648 	deferred_free_range(pfn - nr_free, nr_free);
1649 }
1650 
1651 /*
1652  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1653  * by performing it only once every pageblock_nr_pages.
1654  * Return number of pages initialized.
1655  */
1656 static unsigned long  __init deferred_init_pages(struct zone *zone,
1657 						 unsigned long pfn,
1658 						 unsigned long end_pfn)
1659 {
1660 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1661 	int nid = zone_to_nid(zone);
1662 	unsigned long nr_pages = 0;
1663 	int zid = zone_idx(zone);
1664 	struct page *page = NULL;
1665 
1666 	for (; pfn < end_pfn; pfn++) {
1667 		if (!deferred_pfn_valid(pfn)) {
1668 			page = NULL;
1669 			continue;
1670 		} else if (!page || !(pfn & nr_pgmask)) {
1671 			page = pfn_to_page(pfn);
1672 			touch_nmi_watchdog();
1673 		} else {
1674 			page++;
1675 		}
1676 		__init_single_page(page, pfn, zid, nid);
1677 		nr_pages++;
1678 	}
1679 	return (nr_pages);
1680 }
1681 
1682 /*
1683  * This function is meant to pre-load the iterator for the zone init.
1684  * Specifically it walks through the ranges until we are caught up to the
1685  * first_init_pfn value and exits there. If we never encounter the value we
1686  * return false indicating there are no valid ranges left.
1687  */
1688 static bool __init
1689 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1690 				    unsigned long *spfn, unsigned long *epfn,
1691 				    unsigned long first_init_pfn)
1692 {
1693 	u64 j;
1694 
1695 	/*
1696 	 * Start out by walking through the ranges in this zone that have
1697 	 * already been initialized. We don't need to do anything with them
1698 	 * so we just need to flush them out of the system.
1699 	 */
1700 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1701 		if (*epfn <= first_init_pfn)
1702 			continue;
1703 		if (*spfn < first_init_pfn)
1704 			*spfn = first_init_pfn;
1705 		*i = j;
1706 		return true;
1707 	}
1708 
1709 	return false;
1710 }
1711 
1712 /*
1713  * Initialize and free pages. We do it in two loops: first we initialize
1714  * struct page, then free to buddy allocator, because while we are
1715  * freeing pages we can access pages that are ahead (computing buddy
1716  * page in __free_one_page()).
1717  *
1718  * In order to try and keep some memory in the cache we have the loop
1719  * broken along max page order boundaries. This way we will not cause
1720  * any issues with the buddy page computation.
1721  */
1722 static unsigned long __init
1723 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1724 		       unsigned long *end_pfn)
1725 {
1726 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1727 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1728 	unsigned long nr_pages = 0;
1729 	u64 j = *i;
1730 
1731 	/* First we loop through and initialize the page values */
1732 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1733 		unsigned long t;
1734 
1735 		if (mo_pfn <= *start_pfn)
1736 			break;
1737 
1738 		t = min(mo_pfn, *end_pfn);
1739 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1740 
1741 		if (mo_pfn < *end_pfn) {
1742 			*start_pfn = mo_pfn;
1743 			break;
1744 		}
1745 	}
1746 
1747 	/* Reset values and now loop through freeing pages as needed */
1748 	swap(j, *i);
1749 
1750 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1751 		unsigned long t;
1752 
1753 		if (mo_pfn <= spfn)
1754 			break;
1755 
1756 		t = min(mo_pfn, epfn);
1757 		deferred_free_pages(spfn, t);
1758 
1759 		if (mo_pfn <= epfn)
1760 			break;
1761 	}
1762 
1763 	return nr_pages;
1764 }
1765 
1766 /* Initialise remaining memory on a node */
1767 static int __init deferred_init_memmap(void *data)
1768 {
1769 	pg_data_t *pgdat = data;
1770 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1771 	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1772 	unsigned long first_init_pfn, flags;
1773 	unsigned long start = jiffies;
1774 	struct zone *zone;
1775 	int zid;
1776 	u64 i;
1777 
1778 	/* Bind memory initialisation thread to a local node if possible */
1779 	if (!cpumask_empty(cpumask))
1780 		set_cpus_allowed_ptr(current, cpumask);
1781 
1782 	pgdat_resize_lock(pgdat, &flags);
1783 	first_init_pfn = pgdat->first_deferred_pfn;
1784 	if (first_init_pfn == ULONG_MAX) {
1785 		pgdat_resize_unlock(pgdat, &flags);
1786 		pgdat_init_report_one_done();
1787 		return 0;
1788 	}
1789 
1790 	/* Sanity check boundaries */
1791 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1792 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1793 	pgdat->first_deferred_pfn = ULONG_MAX;
1794 
1795 	/* Only the highest zone is deferred so find it */
1796 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1797 		zone = pgdat->node_zones + zid;
1798 		if (first_init_pfn < zone_end_pfn(zone))
1799 			break;
1800 	}
1801 
1802 	/* If the zone is empty somebody else may have cleared out the zone */
1803 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1804 						 first_init_pfn))
1805 		goto zone_empty;
1806 
1807 	/*
1808 	 * Initialize and free pages in MAX_ORDER sized increments so
1809 	 * that we can avoid introducing any issues with the buddy
1810 	 * allocator.
1811 	 */
1812 	while (spfn < epfn)
1813 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1814 zone_empty:
1815 	pgdat_resize_unlock(pgdat, &flags);
1816 
1817 	/* Sanity check that the next zone really is unpopulated */
1818 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1819 
1820 	pr_info("node %d initialised, %lu pages in %ums\n",
1821 		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1822 
1823 	pgdat_init_report_one_done();
1824 	return 0;
1825 }
1826 
1827 /*
1828  * If this zone has deferred pages, try to grow it by initializing enough
1829  * deferred pages to satisfy the allocation specified by order, rounded up to
1830  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1831  * of SECTION_SIZE bytes by initializing struct pages in increments of
1832  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1833  *
1834  * Return true when zone was grown, otherwise return false. We return true even
1835  * when we grow less than requested, to let the caller decide if there are
1836  * enough pages to satisfy the allocation.
1837  *
1838  * Note: We use noinline because this function is needed only during boot, and
1839  * it is called from a __ref function _deferred_grow_zone. This way we are
1840  * making sure that it is not inlined into permanent text section.
1841  */
1842 static noinline bool __init
1843 deferred_grow_zone(struct zone *zone, unsigned int order)
1844 {
1845 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1846 	pg_data_t *pgdat = zone->zone_pgdat;
1847 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1848 	unsigned long spfn, epfn, flags;
1849 	unsigned long nr_pages = 0;
1850 	u64 i;
1851 
1852 	/* Only the last zone may have deferred pages */
1853 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1854 		return false;
1855 
1856 	pgdat_resize_lock(pgdat, &flags);
1857 
1858 	/*
1859 	 * If deferred pages have been initialized while we were waiting for
1860 	 * the lock, return true, as the zone was grown.  The caller will retry
1861 	 * this zone.  We won't return to this function since the caller also
1862 	 * has this static branch.
1863 	 */
1864 	if (!static_branch_unlikely(&deferred_pages)) {
1865 		pgdat_resize_unlock(pgdat, &flags);
1866 		return true;
1867 	}
1868 
1869 	/*
1870 	 * If someone grew this zone while we were waiting for spinlock, return
1871 	 * true, as there might be enough pages already.
1872 	 */
1873 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1874 		pgdat_resize_unlock(pgdat, &flags);
1875 		return true;
1876 	}
1877 
1878 	/* If the zone is empty somebody else may have cleared out the zone */
1879 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1880 						 first_deferred_pfn)) {
1881 		pgdat->first_deferred_pfn = ULONG_MAX;
1882 		pgdat_resize_unlock(pgdat, &flags);
1883 		/* Retry only once. */
1884 		return first_deferred_pfn != ULONG_MAX;
1885 	}
1886 
1887 	/*
1888 	 * Initialize and free pages in MAX_ORDER sized increments so
1889 	 * that we can avoid introducing any issues with the buddy
1890 	 * allocator.
1891 	 */
1892 	while (spfn < epfn) {
1893 		/* update our first deferred PFN for this section */
1894 		first_deferred_pfn = spfn;
1895 
1896 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1897 
1898 		/* We should only stop along section boundaries */
1899 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1900 			continue;
1901 
1902 		/* If our quota has been met we can stop here */
1903 		if (nr_pages >= nr_pages_needed)
1904 			break;
1905 	}
1906 
1907 	pgdat->first_deferred_pfn = spfn;
1908 	pgdat_resize_unlock(pgdat, &flags);
1909 
1910 	return nr_pages > 0;
1911 }
1912 
1913 /*
1914  * deferred_grow_zone() is __init, but it is called from
1915  * get_page_from_freelist() during early boot until deferred_pages permanently
1916  * disables this call. This is why we have refdata wrapper to avoid warning,
1917  * and to ensure that the function body gets unloaded.
1918  */
1919 static bool __ref
1920 _deferred_grow_zone(struct zone *zone, unsigned int order)
1921 {
1922 	return deferred_grow_zone(zone, order);
1923 }
1924 
1925 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1926 
1927 void __init page_alloc_init_late(void)
1928 {
1929 	struct zone *zone;
1930 	int nid;
1931 
1932 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1933 
1934 	/* There will be num_node_state(N_MEMORY) threads */
1935 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1936 	for_each_node_state(nid, N_MEMORY) {
1937 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1938 	}
1939 
1940 	/* Block until all are initialised */
1941 	wait_for_completion(&pgdat_init_all_done_comp);
1942 
1943 	/*
1944 	 * We initialized the rest of the deferred pages.  Permanently disable
1945 	 * on-demand struct page initialization.
1946 	 */
1947 	static_branch_disable(&deferred_pages);
1948 
1949 	/* Reinit limits that are based on free pages after the kernel is up */
1950 	files_maxfiles_init();
1951 #endif
1952 
1953 	/* Discard memblock private memory */
1954 	memblock_discard();
1955 
1956 	for_each_node_state(nid, N_MEMORY)
1957 		shuffle_free_memory(NODE_DATA(nid));
1958 
1959 	for_each_populated_zone(zone)
1960 		set_zone_contiguous(zone);
1961 
1962 #ifdef CONFIG_DEBUG_PAGEALLOC
1963 	init_debug_guardpage();
1964 #endif
1965 }
1966 
1967 #ifdef CONFIG_CMA
1968 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1969 void __init init_cma_reserved_pageblock(struct page *page)
1970 {
1971 	unsigned i = pageblock_nr_pages;
1972 	struct page *p = page;
1973 
1974 	do {
1975 		__ClearPageReserved(p);
1976 		set_page_count(p, 0);
1977 	} while (++p, --i);
1978 
1979 	set_pageblock_migratetype(page, MIGRATE_CMA);
1980 
1981 	if (pageblock_order >= MAX_ORDER) {
1982 		i = pageblock_nr_pages;
1983 		p = page;
1984 		do {
1985 			set_page_refcounted(p);
1986 			__free_pages(p, MAX_ORDER - 1);
1987 			p += MAX_ORDER_NR_PAGES;
1988 		} while (i -= MAX_ORDER_NR_PAGES);
1989 	} else {
1990 		set_page_refcounted(page);
1991 		__free_pages(page, pageblock_order);
1992 	}
1993 
1994 	adjust_managed_page_count(page, pageblock_nr_pages);
1995 }
1996 #endif
1997 
1998 /*
1999  * The order of subdivision here is critical for the IO subsystem.
2000  * Please do not alter this order without good reasons and regression
2001  * testing. Specifically, as large blocks of memory are subdivided,
2002  * the order in which smaller blocks are delivered depends on the order
2003  * they're subdivided in this function. This is the primary factor
2004  * influencing the order in which pages are delivered to the IO
2005  * subsystem according to empirical testing, and this is also justified
2006  * by considering the behavior of a buddy system containing a single
2007  * large block of memory acted on by a series of small allocations.
2008  * This behavior is a critical factor in sglist merging's success.
2009  *
2010  * -- nyc
2011  */
2012 static inline void expand(struct zone *zone, struct page *page,
2013 	int low, int high, struct free_area *area,
2014 	int migratetype)
2015 {
2016 	unsigned long size = 1 << high;
2017 
2018 	while (high > low) {
2019 		area--;
2020 		high--;
2021 		size >>= 1;
2022 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2023 
2024 		/*
2025 		 * Mark as guard pages (or page), that will allow to
2026 		 * merge back to allocator when buddy will be freed.
2027 		 * Corresponding page table entries will not be touched,
2028 		 * pages will stay not present in virtual address space
2029 		 */
2030 		if (set_page_guard(zone, &page[size], high, migratetype))
2031 			continue;
2032 
2033 		add_to_free_area(&page[size], area, migratetype);
2034 		set_page_order(&page[size], high);
2035 	}
2036 }
2037 
2038 static void check_new_page_bad(struct page *page)
2039 {
2040 	const char *bad_reason = NULL;
2041 	unsigned long bad_flags = 0;
2042 
2043 	if (unlikely(atomic_read(&page->_mapcount) != -1))
2044 		bad_reason = "nonzero mapcount";
2045 	if (unlikely(page->mapping != NULL))
2046 		bad_reason = "non-NULL mapping";
2047 	if (unlikely(page_ref_count(page) != 0))
2048 		bad_reason = "nonzero _refcount";
2049 	if (unlikely(page->flags & __PG_HWPOISON)) {
2050 		bad_reason = "HWPoisoned (hardware-corrupted)";
2051 		bad_flags = __PG_HWPOISON;
2052 		/* Don't complain about hwpoisoned pages */
2053 		page_mapcount_reset(page); /* remove PageBuddy */
2054 		return;
2055 	}
2056 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2057 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2058 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2059 	}
2060 #ifdef CONFIG_MEMCG
2061 	if (unlikely(page->mem_cgroup))
2062 		bad_reason = "page still charged to cgroup";
2063 #endif
2064 	bad_page(page, bad_reason, bad_flags);
2065 }
2066 
2067 /*
2068  * This page is about to be returned from the page allocator
2069  */
2070 static inline int check_new_page(struct page *page)
2071 {
2072 	if (likely(page_expected_state(page,
2073 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2074 		return 0;
2075 
2076 	check_new_page_bad(page);
2077 	return 1;
2078 }
2079 
2080 static inline bool free_pages_prezeroed(void)
2081 {
2082 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2083 		page_poisoning_enabled()) || want_init_on_free();
2084 }
2085 
2086 #ifdef CONFIG_DEBUG_VM
2087 /*
2088  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2089  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2090  * also checked when pcp lists are refilled from the free lists.
2091  */
2092 static inline bool check_pcp_refill(struct page *page)
2093 {
2094 	if (debug_pagealloc_enabled())
2095 		return check_new_page(page);
2096 	else
2097 		return false;
2098 }
2099 
2100 static inline bool check_new_pcp(struct page *page)
2101 {
2102 	return check_new_page(page);
2103 }
2104 #else
2105 /*
2106  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2107  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2108  * enabled, they are also checked when being allocated from the pcp lists.
2109  */
2110 static inline bool check_pcp_refill(struct page *page)
2111 {
2112 	return check_new_page(page);
2113 }
2114 static inline bool check_new_pcp(struct page *page)
2115 {
2116 	if (debug_pagealloc_enabled())
2117 		return check_new_page(page);
2118 	else
2119 		return false;
2120 }
2121 #endif /* CONFIG_DEBUG_VM */
2122 
2123 static bool check_new_pages(struct page *page, unsigned int order)
2124 {
2125 	int i;
2126 	for (i = 0; i < (1 << order); i++) {
2127 		struct page *p = page + i;
2128 
2129 		if (unlikely(check_new_page(p)))
2130 			return true;
2131 	}
2132 
2133 	return false;
2134 }
2135 
2136 inline void post_alloc_hook(struct page *page, unsigned int order,
2137 				gfp_t gfp_flags)
2138 {
2139 	set_page_private(page, 0);
2140 	set_page_refcounted(page);
2141 
2142 	arch_alloc_page(page, order);
2143 	if (debug_pagealloc_enabled())
2144 		kernel_map_pages(page, 1 << order, 1);
2145 	kasan_alloc_pages(page, order);
2146 	kernel_poison_pages(page, 1 << order, 1);
2147 	set_page_owner(page, order, gfp_flags);
2148 }
2149 
2150 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2151 							unsigned int alloc_flags)
2152 {
2153 	post_alloc_hook(page, order, gfp_flags);
2154 
2155 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2156 		kernel_init_free_pages(page, 1 << order);
2157 
2158 	if (order && (gfp_flags & __GFP_COMP))
2159 		prep_compound_page(page, order);
2160 
2161 	/*
2162 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2163 	 * allocate the page. The expectation is that the caller is taking
2164 	 * steps that will free more memory. The caller should avoid the page
2165 	 * being used for !PFMEMALLOC purposes.
2166 	 */
2167 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2168 		set_page_pfmemalloc(page);
2169 	else
2170 		clear_page_pfmemalloc(page);
2171 }
2172 
2173 /*
2174  * Go through the free lists for the given migratetype and remove
2175  * the smallest available page from the freelists
2176  */
2177 static __always_inline
2178 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2179 						int migratetype)
2180 {
2181 	unsigned int current_order;
2182 	struct free_area *area;
2183 	struct page *page;
2184 
2185 	/* Find a page of the appropriate size in the preferred list */
2186 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2187 		area = &(zone->free_area[current_order]);
2188 		page = get_page_from_free_area(area, migratetype);
2189 		if (!page)
2190 			continue;
2191 		del_page_from_free_area(page, area);
2192 		expand(zone, page, order, current_order, area, migratetype);
2193 		set_pcppage_migratetype(page, migratetype);
2194 		return page;
2195 	}
2196 
2197 	return NULL;
2198 }
2199 
2200 
2201 /*
2202  * This array describes the order lists are fallen back to when
2203  * the free lists for the desirable migrate type are depleted
2204  */
2205 static int fallbacks[MIGRATE_TYPES][4] = {
2206 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2207 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2208 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2209 #ifdef CONFIG_CMA
2210 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2211 #endif
2212 #ifdef CONFIG_MEMORY_ISOLATION
2213 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2214 #endif
2215 };
2216 
2217 #ifdef CONFIG_CMA
2218 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2219 					unsigned int order)
2220 {
2221 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2222 }
2223 #else
2224 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2225 					unsigned int order) { return NULL; }
2226 #endif
2227 
2228 /*
2229  * Move the free pages in a range to the free lists of the requested type.
2230  * Note that start_page and end_pages are not aligned on a pageblock
2231  * boundary. If alignment is required, use move_freepages_block()
2232  */
2233 static int move_freepages(struct zone *zone,
2234 			  struct page *start_page, struct page *end_page,
2235 			  int migratetype, int *num_movable)
2236 {
2237 	struct page *page;
2238 	unsigned int order;
2239 	int pages_moved = 0;
2240 
2241 #ifndef CONFIG_HOLES_IN_ZONE
2242 	/*
2243 	 * page_zone is not safe to call in this context when
2244 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2245 	 * anyway as we check zone boundaries in move_freepages_block().
2246 	 * Remove at a later date when no bug reports exist related to
2247 	 * grouping pages by mobility
2248 	 */
2249 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2250 	          pfn_valid(page_to_pfn(end_page)) &&
2251 	          page_zone(start_page) != page_zone(end_page));
2252 #endif
2253 	for (page = start_page; page <= end_page;) {
2254 		if (!pfn_valid_within(page_to_pfn(page))) {
2255 			page++;
2256 			continue;
2257 		}
2258 
2259 		/* Make sure we are not inadvertently changing nodes */
2260 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2261 
2262 		if (!PageBuddy(page)) {
2263 			/*
2264 			 * We assume that pages that could be isolated for
2265 			 * migration are movable. But we don't actually try
2266 			 * isolating, as that would be expensive.
2267 			 */
2268 			if (num_movable &&
2269 					(PageLRU(page) || __PageMovable(page)))
2270 				(*num_movable)++;
2271 
2272 			page++;
2273 			continue;
2274 		}
2275 
2276 		order = page_order(page);
2277 		move_to_free_area(page, &zone->free_area[order], migratetype);
2278 		page += 1 << order;
2279 		pages_moved += 1 << order;
2280 	}
2281 
2282 	return pages_moved;
2283 }
2284 
2285 int move_freepages_block(struct zone *zone, struct page *page,
2286 				int migratetype, int *num_movable)
2287 {
2288 	unsigned long start_pfn, end_pfn;
2289 	struct page *start_page, *end_page;
2290 
2291 	if (num_movable)
2292 		*num_movable = 0;
2293 
2294 	start_pfn = page_to_pfn(page);
2295 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2296 	start_page = pfn_to_page(start_pfn);
2297 	end_page = start_page + pageblock_nr_pages - 1;
2298 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2299 
2300 	/* Do not cross zone boundaries */
2301 	if (!zone_spans_pfn(zone, start_pfn))
2302 		start_page = page;
2303 	if (!zone_spans_pfn(zone, end_pfn))
2304 		return 0;
2305 
2306 	return move_freepages(zone, start_page, end_page, migratetype,
2307 								num_movable);
2308 }
2309 
2310 static void change_pageblock_range(struct page *pageblock_page,
2311 					int start_order, int migratetype)
2312 {
2313 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2314 
2315 	while (nr_pageblocks--) {
2316 		set_pageblock_migratetype(pageblock_page, migratetype);
2317 		pageblock_page += pageblock_nr_pages;
2318 	}
2319 }
2320 
2321 /*
2322  * When we are falling back to another migratetype during allocation, try to
2323  * steal extra free pages from the same pageblocks to satisfy further
2324  * allocations, instead of polluting multiple pageblocks.
2325  *
2326  * If we are stealing a relatively large buddy page, it is likely there will
2327  * be more free pages in the pageblock, so try to steal them all. For
2328  * reclaimable and unmovable allocations, we steal regardless of page size,
2329  * as fragmentation caused by those allocations polluting movable pageblocks
2330  * is worse than movable allocations stealing from unmovable and reclaimable
2331  * pageblocks.
2332  */
2333 static bool can_steal_fallback(unsigned int order, int start_mt)
2334 {
2335 	/*
2336 	 * Leaving this order check is intended, although there is
2337 	 * relaxed order check in next check. The reason is that
2338 	 * we can actually steal whole pageblock if this condition met,
2339 	 * but, below check doesn't guarantee it and that is just heuristic
2340 	 * so could be changed anytime.
2341 	 */
2342 	if (order >= pageblock_order)
2343 		return true;
2344 
2345 	if (order >= pageblock_order / 2 ||
2346 		start_mt == MIGRATE_RECLAIMABLE ||
2347 		start_mt == MIGRATE_UNMOVABLE ||
2348 		page_group_by_mobility_disabled)
2349 		return true;
2350 
2351 	return false;
2352 }
2353 
2354 static inline void boost_watermark(struct zone *zone)
2355 {
2356 	unsigned long max_boost;
2357 
2358 	if (!watermark_boost_factor)
2359 		return;
2360 
2361 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2362 			watermark_boost_factor, 10000);
2363 
2364 	/*
2365 	 * high watermark may be uninitialised if fragmentation occurs
2366 	 * very early in boot so do not boost. We do not fall
2367 	 * through and boost by pageblock_nr_pages as failing
2368 	 * allocations that early means that reclaim is not going
2369 	 * to help and it may even be impossible to reclaim the
2370 	 * boosted watermark resulting in a hang.
2371 	 */
2372 	if (!max_boost)
2373 		return;
2374 
2375 	max_boost = max(pageblock_nr_pages, max_boost);
2376 
2377 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2378 		max_boost);
2379 }
2380 
2381 /*
2382  * This function implements actual steal behaviour. If order is large enough,
2383  * we can steal whole pageblock. If not, we first move freepages in this
2384  * pageblock to our migratetype and determine how many already-allocated pages
2385  * are there in the pageblock with a compatible migratetype. If at least half
2386  * of pages are free or compatible, we can change migratetype of the pageblock
2387  * itself, so pages freed in the future will be put on the correct free list.
2388  */
2389 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2390 		unsigned int alloc_flags, int start_type, bool whole_block)
2391 {
2392 	unsigned int current_order = page_order(page);
2393 	struct free_area *area;
2394 	int free_pages, movable_pages, alike_pages;
2395 	int old_block_type;
2396 
2397 	old_block_type = get_pageblock_migratetype(page);
2398 
2399 	/*
2400 	 * This can happen due to races and we want to prevent broken
2401 	 * highatomic accounting.
2402 	 */
2403 	if (is_migrate_highatomic(old_block_type))
2404 		goto single_page;
2405 
2406 	/* Take ownership for orders >= pageblock_order */
2407 	if (current_order >= pageblock_order) {
2408 		change_pageblock_range(page, current_order, start_type);
2409 		goto single_page;
2410 	}
2411 
2412 	/*
2413 	 * Boost watermarks to increase reclaim pressure to reduce the
2414 	 * likelihood of future fallbacks. Wake kswapd now as the node
2415 	 * may be balanced overall and kswapd will not wake naturally.
2416 	 */
2417 	boost_watermark(zone);
2418 	if (alloc_flags & ALLOC_KSWAPD)
2419 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2420 
2421 	/* We are not allowed to try stealing from the whole block */
2422 	if (!whole_block)
2423 		goto single_page;
2424 
2425 	free_pages = move_freepages_block(zone, page, start_type,
2426 						&movable_pages);
2427 	/*
2428 	 * Determine how many pages are compatible with our allocation.
2429 	 * For movable allocation, it's the number of movable pages which
2430 	 * we just obtained. For other types it's a bit more tricky.
2431 	 */
2432 	if (start_type == MIGRATE_MOVABLE) {
2433 		alike_pages = movable_pages;
2434 	} else {
2435 		/*
2436 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2437 		 * to MOVABLE pageblock, consider all non-movable pages as
2438 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2439 		 * vice versa, be conservative since we can't distinguish the
2440 		 * exact migratetype of non-movable pages.
2441 		 */
2442 		if (old_block_type == MIGRATE_MOVABLE)
2443 			alike_pages = pageblock_nr_pages
2444 						- (free_pages + movable_pages);
2445 		else
2446 			alike_pages = 0;
2447 	}
2448 
2449 	/* moving whole block can fail due to zone boundary conditions */
2450 	if (!free_pages)
2451 		goto single_page;
2452 
2453 	/*
2454 	 * If a sufficient number of pages in the block are either free or of
2455 	 * comparable migratability as our allocation, claim the whole block.
2456 	 */
2457 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2458 			page_group_by_mobility_disabled)
2459 		set_pageblock_migratetype(page, start_type);
2460 
2461 	return;
2462 
2463 single_page:
2464 	area = &zone->free_area[current_order];
2465 	move_to_free_area(page, area, start_type);
2466 }
2467 
2468 /*
2469  * Check whether there is a suitable fallback freepage with requested order.
2470  * If only_stealable is true, this function returns fallback_mt only if
2471  * we can steal other freepages all together. This would help to reduce
2472  * fragmentation due to mixed migratetype pages in one pageblock.
2473  */
2474 int find_suitable_fallback(struct free_area *area, unsigned int order,
2475 			int migratetype, bool only_stealable, bool *can_steal)
2476 {
2477 	int i;
2478 	int fallback_mt;
2479 
2480 	if (area->nr_free == 0)
2481 		return -1;
2482 
2483 	*can_steal = false;
2484 	for (i = 0;; i++) {
2485 		fallback_mt = fallbacks[migratetype][i];
2486 		if (fallback_mt == MIGRATE_TYPES)
2487 			break;
2488 
2489 		if (free_area_empty(area, fallback_mt))
2490 			continue;
2491 
2492 		if (can_steal_fallback(order, migratetype))
2493 			*can_steal = true;
2494 
2495 		if (!only_stealable)
2496 			return fallback_mt;
2497 
2498 		if (*can_steal)
2499 			return fallback_mt;
2500 	}
2501 
2502 	return -1;
2503 }
2504 
2505 /*
2506  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2507  * there are no empty page blocks that contain a page with a suitable order
2508  */
2509 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2510 				unsigned int alloc_order)
2511 {
2512 	int mt;
2513 	unsigned long max_managed, flags;
2514 
2515 	/*
2516 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2517 	 * Check is race-prone but harmless.
2518 	 */
2519 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2520 	if (zone->nr_reserved_highatomic >= max_managed)
2521 		return;
2522 
2523 	spin_lock_irqsave(&zone->lock, flags);
2524 
2525 	/* Recheck the nr_reserved_highatomic limit under the lock */
2526 	if (zone->nr_reserved_highatomic >= max_managed)
2527 		goto out_unlock;
2528 
2529 	/* Yoink! */
2530 	mt = get_pageblock_migratetype(page);
2531 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2532 	    && !is_migrate_cma(mt)) {
2533 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2534 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2535 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2536 	}
2537 
2538 out_unlock:
2539 	spin_unlock_irqrestore(&zone->lock, flags);
2540 }
2541 
2542 /*
2543  * Used when an allocation is about to fail under memory pressure. This
2544  * potentially hurts the reliability of high-order allocations when under
2545  * intense memory pressure but failed atomic allocations should be easier
2546  * to recover from than an OOM.
2547  *
2548  * If @force is true, try to unreserve a pageblock even though highatomic
2549  * pageblock is exhausted.
2550  */
2551 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2552 						bool force)
2553 {
2554 	struct zonelist *zonelist = ac->zonelist;
2555 	unsigned long flags;
2556 	struct zoneref *z;
2557 	struct zone *zone;
2558 	struct page *page;
2559 	int order;
2560 	bool ret;
2561 
2562 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2563 								ac->nodemask) {
2564 		/*
2565 		 * Preserve at least one pageblock unless memory pressure
2566 		 * is really high.
2567 		 */
2568 		if (!force && zone->nr_reserved_highatomic <=
2569 					pageblock_nr_pages)
2570 			continue;
2571 
2572 		spin_lock_irqsave(&zone->lock, flags);
2573 		for (order = 0; order < MAX_ORDER; order++) {
2574 			struct free_area *area = &(zone->free_area[order]);
2575 
2576 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2577 			if (!page)
2578 				continue;
2579 
2580 			/*
2581 			 * In page freeing path, migratetype change is racy so
2582 			 * we can counter several free pages in a pageblock
2583 			 * in this loop althoug we changed the pageblock type
2584 			 * from highatomic to ac->migratetype. So we should
2585 			 * adjust the count once.
2586 			 */
2587 			if (is_migrate_highatomic_page(page)) {
2588 				/*
2589 				 * It should never happen but changes to
2590 				 * locking could inadvertently allow a per-cpu
2591 				 * drain to add pages to MIGRATE_HIGHATOMIC
2592 				 * while unreserving so be safe and watch for
2593 				 * underflows.
2594 				 */
2595 				zone->nr_reserved_highatomic -= min(
2596 						pageblock_nr_pages,
2597 						zone->nr_reserved_highatomic);
2598 			}
2599 
2600 			/*
2601 			 * Convert to ac->migratetype and avoid the normal
2602 			 * pageblock stealing heuristics. Minimally, the caller
2603 			 * is doing the work and needs the pages. More
2604 			 * importantly, if the block was always converted to
2605 			 * MIGRATE_UNMOVABLE or another type then the number
2606 			 * of pageblocks that cannot be completely freed
2607 			 * may increase.
2608 			 */
2609 			set_pageblock_migratetype(page, ac->migratetype);
2610 			ret = move_freepages_block(zone, page, ac->migratetype,
2611 									NULL);
2612 			if (ret) {
2613 				spin_unlock_irqrestore(&zone->lock, flags);
2614 				return ret;
2615 			}
2616 		}
2617 		spin_unlock_irqrestore(&zone->lock, flags);
2618 	}
2619 
2620 	return false;
2621 }
2622 
2623 /*
2624  * Try finding a free buddy page on the fallback list and put it on the free
2625  * list of requested migratetype, possibly along with other pages from the same
2626  * block, depending on fragmentation avoidance heuristics. Returns true if
2627  * fallback was found so that __rmqueue_smallest() can grab it.
2628  *
2629  * The use of signed ints for order and current_order is a deliberate
2630  * deviation from the rest of this file, to make the for loop
2631  * condition simpler.
2632  */
2633 static __always_inline bool
2634 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2635 						unsigned int alloc_flags)
2636 {
2637 	struct free_area *area;
2638 	int current_order;
2639 	int min_order = order;
2640 	struct page *page;
2641 	int fallback_mt;
2642 	bool can_steal;
2643 
2644 	/*
2645 	 * Do not steal pages from freelists belonging to other pageblocks
2646 	 * i.e. orders < pageblock_order. If there are no local zones free,
2647 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2648 	 */
2649 	if (alloc_flags & ALLOC_NOFRAGMENT)
2650 		min_order = pageblock_order;
2651 
2652 	/*
2653 	 * Find the largest available free page in the other list. This roughly
2654 	 * approximates finding the pageblock with the most free pages, which
2655 	 * would be too costly to do exactly.
2656 	 */
2657 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2658 				--current_order) {
2659 		area = &(zone->free_area[current_order]);
2660 		fallback_mt = find_suitable_fallback(area, current_order,
2661 				start_migratetype, false, &can_steal);
2662 		if (fallback_mt == -1)
2663 			continue;
2664 
2665 		/*
2666 		 * We cannot steal all free pages from the pageblock and the
2667 		 * requested migratetype is movable. In that case it's better to
2668 		 * steal and split the smallest available page instead of the
2669 		 * largest available page, because even if the next movable
2670 		 * allocation falls back into a different pageblock than this
2671 		 * one, it won't cause permanent fragmentation.
2672 		 */
2673 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2674 					&& current_order > order)
2675 			goto find_smallest;
2676 
2677 		goto do_steal;
2678 	}
2679 
2680 	return false;
2681 
2682 find_smallest:
2683 	for (current_order = order; current_order < MAX_ORDER;
2684 							current_order++) {
2685 		area = &(zone->free_area[current_order]);
2686 		fallback_mt = find_suitable_fallback(area, current_order,
2687 				start_migratetype, false, &can_steal);
2688 		if (fallback_mt != -1)
2689 			break;
2690 	}
2691 
2692 	/*
2693 	 * This should not happen - we already found a suitable fallback
2694 	 * when looking for the largest page.
2695 	 */
2696 	VM_BUG_ON(current_order == MAX_ORDER);
2697 
2698 do_steal:
2699 	page = get_page_from_free_area(area, fallback_mt);
2700 
2701 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2702 								can_steal);
2703 
2704 	trace_mm_page_alloc_extfrag(page, order, current_order,
2705 		start_migratetype, fallback_mt);
2706 
2707 	return true;
2708 
2709 }
2710 
2711 /*
2712  * Do the hard work of removing an element from the buddy allocator.
2713  * Call me with the zone->lock already held.
2714  */
2715 static __always_inline struct page *
2716 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2717 						unsigned int alloc_flags)
2718 {
2719 	struct page *page;
2720 
2721 retry:
2722 	page = __rmqueue_smallest(zone, order, migratetype);
2723 	if (unlikely(!page)) {
2724 		if (migratetype == MIGRATE_MOVABLE)
2725 			page = __rmqueue_cma_fallback(zone, order);
2726 
2727 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2728 								alloc_flags))
2729 			goto retry;
2730 	}
2731 
2732 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2733 	return page;
2734 }
2735 
2736 /*
2737  * Obtain a specified number of elements from the buddy allocator, all under
2738  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2739  * Returns the number of new pages which were placed at *list.
2740  */
2741 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2742 			unsigned long count, struct list_head *list,
2743 			int migratetype, unsigned int alloc_flags)
2744 {
2745 	int i, alloced = 0;
2746 
2747 	spin_lock(&zone->lock);
2748 	for (i = 0; i < count; ++i) {
2749 		struct page *page = __rmqueue(zone, order, migratetype,
2750 								alloc_flags);
2751 		if (unlikely(page == NULL))
2752 			break;
2753 
2754 		if (unlikely(check_pcp_refill(page)))
2755 			continue;
2756 
2757 		/*
2758 		 * Split buddy pages returned by expand() are received here in
2759 		 * physical page order. The page is added to the tail of
2760 		 * caller's list. From the callers perspective, the linked list
2761 		 * is ordered by page number under some conditions. This is
2762 		 * useful for IO devices that can forward direction from the
2763 		 * head, thus also in the physical page order. This is useful
2764 		 * for IO devices that can merge IO requests if the physical
2765 		 * pages are ordered properly.
2766 		 */
2767 		list_add_tail(&page->lru, list);
2768 		alloced++;
2769 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2770 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2771 					      -(1 << order));
2772 	}
2773 
2774 	/*
2775 	 * i pages were removed from the buddy list even if some leak due
2776 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2777 	 * on i. Do not confuse with 'alloced' which is the number of
2778 	 * pages added to the pcp list.
2779 	 */
2780 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2781 	spin_unlock(&zone->lock);
2782 	return alloced;
2783 }
2784 
2785 #ifdef CONFIG_NUMA
2786 /*
2787  * Called from the vmstat counter updater to drain pagesets of this
2788  * currently executing processor on remote nodes after they have
2789  * expired.
2790  *
2791  * Note that this function must be called with the thread pinned to
2792  * a single processor.
2793  */
2794 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2795 {
2796 	unsigned long flags;
2797 	int to_drain, batch;
2798 
2799 	local_irq_save(flags);
2800 	batch = READ_ONCE(pcp->batch);
2801 	to_drain = min(pcp->count, batch);
2802 	if (to_drain > 0)
2803 		free_pcppages_bulk(zone, to_drain, pcp);
2804 	local_irq_restore(flags);
2805 }
2806 #endif
2807 
2808 /*
2809  * Drain pcplists of the indicated processor and zone.
2810  *
2811  * The processor must either be the current processor and the
2812  * thread pinned to the current processor or a processor that
2813  * is not online.
2814  */
2815 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2816 {
2817 	unsigned long flags;
2818 	struct per_cpu_pageset *pset;
2819 	struct per_cpu_pages *pcp;
2820 
2821 	local_irq_save(flags);
2822 	pset = per_cpu_ptr(zone->pageset, cpu);
2823 
2824 	pcp = &pset->pcp;
2825 	if (pcp->count)
2826 		free_pcppages_bulk(zone, pcp->count, pcp);
2827 	local_irq_restore(flags);
2828 }
2829 
2830 /*
2831  * Drain pcplists of all zones on the indicated processor.
2832  *
2833  * The processor must either be the current processor and the
2834  * thread pinned to the current processor or a processor that
2835  * is not online.
2836  */
2837 static void drain_pages(unsigned int cpu)
2838 {
2839 	struct zone *zone;
2840 
2841 	for_each_populated_zone(zone) {
2842 		drain_pages_zone(cpu, zone);
2843 	}
2844 }
2845 
2846 /*
2847  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2848  *
2849  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2850  * the single zone's pages.
2851  */
2852 void drain_local_pages(struct zone *zone)
2853 {
2854 	int cpu = smp_processor_id();
2855 
2856 	if (zone)
2857 		drain_pages_zone(cpu, zone);
2858 	else
2859 		drain_pages(cpu);
2860 }
2861 
2862 static void drain_local_pages_wq(struct work_struct *work)
2863 {
2864 	struct pcpu_drain *drain;
2865 
2866 	drain = container_of(work, struct pcpu_drain, work);
2867 
2868 	/*
2869 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2870 	 * we can race with cpu offline when the WQ can move this from
2871 	 * a cpu pinned worker to an unbound one. We can operate on a different
2872 	 * cpu which is allright but we also have to make sure to not move to
2873 	 * a different one.
2874 	 */
2875 	preempt_disable();
2876 	drain_local_pages(drain->zone);
2877 	preempt_enable();
2878 }
2879 
2880 /*
2881  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2882  *
2883  * When zone parameter is non-NULL, spill just the single zone's pages.
2884  *
2885  * Note that this can be extremely slow as the draining happens in a workqueue.
2886  */
2887 void drain_all_pages(struct zone *zone)
2888 {
2889 	int cpu;
2890 
2891 	/*
2892 	 * Allocate in the BSS so we wont require allocation in
2893 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2894 	 */
2895 	static cpumask_t cpus_with_pcps;
2896 
2897 	/*
2898 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2899 	 * initialized.
2900 	 */
2901 	if (WARN_ON_ONCE(!mm_percpu_wq))
2902 		return;
2903 
2904 	/*
2905 	 * Do not drain if one is already in progress unless it's specific to
2906 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2907 	 * the drain to be complete when the call returns.
2908 	 */
2909 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2910 		if (!zone)
2911 			return;
2912 		mutex_lock(&pcpu_drain_mutex);
2913 	}
2914 
2915 	/*
2916 	 * We don't care about racing with CPU hotplug event
2917 	 * as offline notification will cause the notified
2918 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2919 	 * disables preemption as part of its processing
2920 	 */
2921 	for_each_online_cpu(cpu) {
2922 		struct per_cpu_pageset *pcp;
2923 		struct zone *z;
2924 		bool has_pcps = false;
2925 
2926 		if (zone) {
2927 			pcp = per_cpu_ptr(zone->pageset, cpu);
2928 			if (pcp->pcp.count)
2929 				has_pcps = true;
2930 		} else {
2931 			for_each_populated_zone(z) {
2932 				pcp = per_cpu_ptr(z->pageset, cpu);
2933 				if (pcp->pcp.count) {
2934 					has_pcps = true;
2935 					break;
2936 				}
2937 			}
2938 		}
2939 
2940 		if (has_pcps)
2941 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2942 		else
2943 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2944 	}
2945 
2946 	for_each_cpu(cpu, &cpus_with_pcps) {
2947 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2948 
2949 		drain->zone = zone;
2950 		INIT_WORK(&drain->work, drain_local_pages_wq);
2951 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2952 	}
2953 	for_each_cpu(cpu, &cpus_with_pcps)
2954 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2955 
2956 	mutex_unlock(&pcpu_drain_mutex);
2957 }
2958 
2959 #ifdef CONFIG_HIBERNATION
2960 
2961 /*
2962  * Touch the watchdog for every WD_PAGE_COUNT pages.
2963  */
2964 #define WD_PAGE_COUNT	(128*1024)
2965 
2966 void mark_free_pages(struct zone *zone)
2967 {
2968 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2969 	unsigned long flags;
2970 	unsigned int order, t;
2971 	struct page *page;
2972 
2973 	if (zone_is_empty(zone))
2974 		return;
2975 
2976 	spin_lock_irqsave(&zone->lock, flags);
2977 
2978 	max_zone_pfn = zone_end_pfn(zone);
2979 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2980 		if (pfn_valid(pfn)) {
2981 			page = pfn_to_page(pfn);
2982 
2983 			if (!--page_count) {
2984 				touch_nmi_watchdog();
2985 				page_count = WD_PAGE_COUNT;
2986 			}
2987 
2988 			if (page_zone(page) != zone)
2989 				continue;
2990 
2991 			if (!swsusp_page_is_forbidden(page))
2992 				swsusp_unset_page_free(page);
2993 		}
2994 
2995 	for_each_migratetype_order(order, t) {
2996 		list_for_each_entry(page,
2997 				&zone->free_area[order].free_list[t], lru) {
2998 			unsigned long i;
2999 
3000 			pfn = page_to_pfn(page);
3001 			for (i = 0; i < (1UL << order); i++) {
3002 				if (!--page_count) {
3003 					touch_nmi_watchdog();
3004 					page_count = WD_PAGE_COUNT;
3005 				}
3006 				swsusp_set_page_free(pfn_to_page(pfn + i));
3007 			}
3008 		}
3009 	}
3010 	spin_unlock_irqrestore(&zone->lock, flags);
3011 }
3012 #endif /* CONFIG_PM */
3013 
3014 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3015 {
3016 	int migratetype;
3017 
3018 	if (!free_pcp_prepare(page))
3019 		return false;
3020 
3021 	migratetype = get_pfnblock_migratetype(page, pfn);
3022 	set_pcppage_migratetype(page, migratetype);
3023 	return true;
3024 }
3025 
3026 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3027 {
3028 	struct zone *zone = page_zone(page);
3029 	struct per_cpu_pages *pcp;
3030 	int migratetype;
3031 
3032 	migratetype = get_pcppage_migratetype(page);
3033 	__count_vm_event(PGFREE);
3034 
3035 	/*
3036 	 * We only track unmovable, reclaimable and movable on pcp lists.
3037 	 * Free ISOLATE pages back to the allocator because they are being
3038 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3039 	 * areas back if necessary. Otherwise, we may have to free
3040 	 * excessively into the page allocator
3041 	 */
3042 	if (migratetype >= MIGRATE_PCPTYPES) {
3043 		if (unlikely(is_migrate_isolate(migratetype))) {
3044 			free_one_page(zone, page, pfn, 0, migratetype);
3045 			return;
3046 		}
3047 		migratetype = MIGRATE_MOVABLE;
3048 	}
3049 
3050 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3051 	list_add(&page->lru, &pcp->lists[migratetype]);
3052 	pcp->count++;
3053 	if (pcp->count >= pcp->high) {
3054 		unsigned long batch = READ_ONCE(pcp->batch);
3055 		free_pcppages_bulk(zone, batch, pcp);
3056 	}
3057 }
3058 
3059 /*
3060  * Free a 0-order page
3061  */
3062 void free_unref_page(struct page *page)
3063 {
3064 	unsigned long flags;
3065 	unsigned long pfn = page_to_pfn(page);
3066 
3067 	if (!free_unref_page_prepare(page, pfn))
3068 		return;
3069 
3070 	local_irq_save(flags);
3071 	free_unref_page_commit(page, pfn);
3072 	local_irq_restore(flags);
3073 }
3074 
3075 /*
3076  * Free a list of 0-order pages
3077  */
3078 void free_unref_page_list(struct list_head *list)
3079 {
3080 	struct page *page, *next;
3081 	unsigned long flags, pfn;
3082 	int batch_count = 0;
3083 
3084 	/* Prepare pages for freeing */
3085 	list_for_each_entry_safe(page, next, list, lru) {
3086 		pfn = page_to_pfn(page);
3087 		if (!free_unref_page_prepare(page, pfn))
3088 			list_del(&page->lru);
3089 		set_page_private(page, pfn);
3090 	}
3091 
3092 	local_irq_save(flags);
3093 	list_for_each_entry_safe(page, next, list, lru) {
3094 		unsigned long pfn = page_private(page);
3095 
3096 		set_page_private(page, 0);
3097 		trace_mm_page_free_batched(page);
3098 		free_unref_page_commit(page, pfn);
3099 
3100 		/*
3101 		 * Guard against excessive IRQ disabled times when we get
3102 		 * a large list of pages to free.
3103 		 */
3104 		if (++batch_count == SWAP_CLUSTER_MAX) {
3105 			local_irq_restore(flags);
3106 			batch_count = 0;
3107 			local_irq_save(flags);
3108 		}
3109 	}
3110 	local_irq_restore(flags);
3111 }
3112 
3113 /*
3114  * split_page takes a non-compound higher-order page, and splits it into
3115  * n (1<<order) sub-pages: page[0..n]
3116  * Each sub-page must be freed individually.
3117  *
3118  * Note: this is probably too low level an operation for use in drivers.
3119  * Please consult with lkml before using this in your driver.
3120  */
3121 void split_page(struct page *page, unsigned int order)
3122 {
3123 	int i;
3124 
3125 	VM_BUG_ON_PAGE(PageCompound(page), page);
3126 	VM_BUG_ON_PAGE(!page_count(page), page);
3127 
3128 	for (i = 1; i < (1 << order); i++)
3129 		set_page_refcounted(page + i);
3130 	split_page_owner(page, order);
3131 }
3132 EXPORT_SYMBOL_GPL(split_page);
3133 
3134 int __isolate_free_page(struct page *page, unsigned int order)
3135 {
3136 	struct free_area *area = &page_zone(page)->free_area[order];
3137 	unsigned long watermark;
3138 	struct zone *zone;
3139 	int mt;
3140 
3141 	BUG_ON(!PageBuddy(page));
3142 
3143 	zone = page_zone(page);
3144 	mt = get_pageblock_migratetype(page);
3145 
3146 	if (!is_migrate_isolate(mt)) {
3147 		/*
3148 		 * Obey watermarks as if the page was being allocated. We can
3149 		 * emulate a high-order watermark check with a raised order-0
3150 		 * watermark, because we already know our high-order page
3151 		 * exists.
3152 		 */
3153 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3154 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3155 			return 0;
3156 
3157 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3158 	}
3159 
3160 	/* Remove page from free list */
3161 
3162 	del_page_from_free_area(page, area);
3163 
3164 	/*
3165 	 * Set the pageblock if the isolated page is at least half of a
3166 	 * pageblock
3167 	 */
3168 	if (order >= pageblock_order - 1) {
3169 		struct page *endpage = page + (1 << order) - 1;
3170 		for (; page < endpage; page += pageblock_nr_pages) {
3171 			int mt = get_pageblock_migratetype(page);
3172 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3173 			    && !is_migrate_highatomic(mt))
3174 				set_pageblock_migratetype(page,
3175 							  MIGRATE_MOVABLE);
3176 		}
3177 	}
3178 
3179 
3180 	return 1UL << order;
3181 }
3182 
3183 /*
3184  * Update NUMA hit/miss statistics
3185  *
3186  * Must be called with interrupts disabled.
3187  */
3188 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3189 {
3190 #ifdef CONFIG_NUMA
3191 	enum numa_stat_item local_stat = NUMA_LOCAL;
3192 
3193 	/* skip numa counters update if numa stats is disabled */
3194 	if (!static_branch_likely(&vm_numa_stat_key))
3195 		return;
3196 
3197 	if (zone_to_nid(z) != numa_node_id())
3198 		local_stat = NUMA_OTHER;
3199 
3200 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3201 		__inc_numa_state(z, NUMA_HIT);
3202 	else {
3203 		__inc_numa_state(z, NUMA_MISS);
3204 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3205 	}
3206 	__inc_numa_state(z, local_stat);
3207 #endif
3208 }
3209 
3210 /* Remove page from the per-cpu list, caller must protect the list */
3211 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3212 			unsigned int alloc_flags,
3213 			struct per_cpu_pages *pcp,
3214 			struct list_head *list)
3215 {
3216 	struct page *page;
3217 
3218 	do {
3219 		if (list_empty(list)) {
3220 			pcp->count += rmqueue_bulk(zone, 0,
3221 					pcp->batch, list,
3222 					migratetype, alloc_flags);
3223 			if (unlikely(list_empty(list)))
3224 				return NULL;
3225 		}
3226 
3227 		page = list_first_entry(list, struct page, lru);
3228 		list_del(&page->lru);
3229 		pcp->count--;
3230 	} while (check_new_pcp(page));
3231 
3232 	return page;
3233 }
3234 
3235 /* Lock and remove page from the per-cpu list */
3236 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3237 			struct zone *zone, gfp_t gfp_flags,
3238 			int migratetype, unsigned int alloc_flags)
3239 {
3240 	struct per_cpu_pages *pcp;
3241 	struct list_head *list;
3242 	struct page *page;
3243 	unsigned long flags;
3244 
3245 	local_irq_save(flags);
3246 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3247 	list = &pcp->lists[migratetype];
3248 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3249 	if (page) {
3250 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3251 		zone_statistics(preferred_zone, zone);
3252 	}
3253 	local_irq_restore(flags);
3254 	return page;
3255 }
3256 
3257 /*
3258  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3259  */
3260 static inline
3261 struct page *rmqueue(struct zone *preferred_zone,
3262 			struct zone *zone, unsigned int order,
3263 			gfp_t gfp_flags, unsigned int alloc_flags,
3264 			int migratetype)
3265 {
3266 	unsigned long flags;
3267 	struct page *page;
3268 
3269 	if (likely(order == 0)) {
3270 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3271 					migratetype, alloc_flags);
3272 		goto out;
3273 	}
3274 
3275 	/*
3276 	 * We most definitely don't want callers attempting to
3277 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3278 	 */
3279 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3280 	spin_lock_irqsave(&zone->lock, flags);
3281 
3282 	do {
3283 		page = NULL;
3284 		if (alloc_flags & ALLOC_HARDER) {
3285 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3286 			if (page)
3287 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3288 		}
3289 		if (!page)
3290 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3291 	} while (page && check_new_pages(page, order));
3292 	spin_unlock(&zone->lock);
3293 	if (!page)
3294 		goto failed;
3295 	__mod_zone_freepage_state(zone, -(1 << order),
3296 				  get_pcppage_migratetype(page));
3297 
3298 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3299 	zone_statistics(preferred_zone, zone);
3300 	local_irq_restore(flags);
3301 
3302 out:
3303 	/* Separate test+clear to avoid unnecessary atomics */
3304 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3305 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3306 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3307 	}
3308 
3309 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3310 	return page;
3311 
3312 failed:
3313 	local_irq_restore(flags);
3314 	return NULL;
3315 }
3316 
3317 #ifdef CONFIG_FAIL_PAGE_ALLOC
3318 
3319 static struct {
3320 	struct fault_attr attr;
3321 
3322 	bool ignore_gfp_highmem;
3323 	bool ignore_gfp_reclaim;
3324 	u32 min_order;
3325 } fail_page_alloc = {
3326 	.attr = FAULT_ATTR_INITIALIZER,
3327 	.ignore_gfp_reclaim = true,
3328 	.ignore_gfp_highmem = true,
3329 	.min_order = 1,
3330 };
3331 
3332 static int __init setup_fail_page_alloc(char *str)
3333 {
3334 	return setup_fault_attr(&fail_page_alloc.attr, str);
3335 }
3336 __setup("fail_page_alloc=", setup_fail_page_alloc);
3337 
3338 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3339 {
3340 	if (order < fail_page_alloc.min_order)
3341 		return false;
3342 	if (gfp_mask & __GFP_NOFAIL)
3343 		return false;
3344 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3345 		return false;
3346 	if (fail_page_alloc.ignore_gfp_reclaim &&
3347 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3348 		return false;
3349 
3350 	return should_fail(&fail_page_alloc.attr, 1 << order);
3351 }
3352 
3353 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3354 
3355 static int __init fail_page_alloc_debugfs(void)
3356 {
3357 	umode_t mode = S_IFREG | 0600;
3358 	struct dentry *dir;
3359 
3360 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3361 					&fail_page_alloc.attr);
3362 
3363 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3364 			    &fail_page_alloc.ignore_gfp_reclaim);
3365 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3366 			    &fail_page_alloc.ignore_gfp_highmem);
3367 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3368 
3369 	return 0;
3370 }
3371 
3372 late_initcall(fail_page_alloc_debugfs);
3373 
3374 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3375 
3376 #else /* CONFIG_FAIL_PAGE_ALLOC */
3377 
3378 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3379 {
3380 	return false;
3381 }
3382 
3383 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3384 
3385 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3386 {
3387 	return __should_fail_alloc_page(gfp_mask, order);
3388 }
3389 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3390 
3391 /*
3392  * Return true if free base pages are above 'mark'. For high-order checks it
3393  * will return true of the order-0 watermark is reached and there is at least
3394  * one free page of a suitable size. Checking now avoids taking the zone lock
3395  * to check in the allocation paths if no pages are free.
3396  */
3397 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3398 			 int classzone_idx, unsigned int alloc_flags,
3399 			 long free_pages)
3400 {
3401 	long min = mark;
3402 	int o;
3403 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3404 
3405 	/* free_pages may go negative - that's OK */
3406 	free_pages -= (1 << order) - 1;
3407 
3408 	if (alloc_flags & ALLOC_HIGH)
3409 		min -= min / 2;
3410 
3411 	/*
3412 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3413 	 * the high-atomic reserves. This will over-estimate the size of the
3414 	 * atomic reserve but it avoids a search.
3415 	 */
3416 	if (likely(!alloc_harder)) {
3417 		free_pages -= z->nr_reserved_highatomic;
3418 	} else {
3419 		/*
3420 		 * OOM victims can try even harder than normal ALLOC_HARDER
3421 		 * users on the grounds that it's definitely going to be in
3422 		 * the exit path shortly and free memory. Any allocation it
3423 		 * makes during the free path will be small and short-lived.
3424 		 */
3425 		if (alloc_flags & ALLOC_OOM)
3426 			min -= min / 2;
3427 		else
3428 			min -= min / 4;
3429 	}
3430 
3431 
3432 #ifdef CONFIG_CMA
3433 	/* If allocation can't use CMA areas don't use free CMA pages */
3434 	if (!(alloc_flags & ALLOC_CMA))
3435 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3436 #endif
3437 
3438 	/*
3439 	 * Check watermarks for an order-0 allocation request. If these
3440 	 * are not met, then a high-order request also cannot go ahead
3441 	 * even if a suitable page happened to be free.
3442 	 */
3443 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3444 		return false;
3445 
3446 	/* If this is an order-0 request then the watermark is fine */
3447 	if (!order)
3448 		return true;
3449 
3450 	/* For a high-order request, check at least one suitable page is free */
3451 	for (o = order; o < MAX_ORDER; o++) {
3452 		struct free_area *area = &z->free_area[o];
3453 		int mt;
3454 
3455 		if (!area->nr_free)
3456 			continue;
3457 
3458 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3459 			if (!free_area_empty(area, mt))
3460 				return true;
3461 		}
3462 
3463 #ifdef CONFIG_CMA
3464 		if ((alloc_flags & ALLOC_CMA) &&
3465 		    !free_area_empty(area, MIGRATE_CMA)) {
3466 			return true;
3467 		}
3468 #endif
3469 		if (alloc_harder &&
3470 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3471 			return true;
3472 	}
3473 	return false;
3474 }
3475 
3476 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3477 		      int classzone_idx, unsigned int alloc_flags)
3478 {
3479 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3480 					zone_page_state(z, NR_FREE_PAGES));
3481 }
3482 
3483 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3484 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3485 {
3486 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3487 	long cma_pages = 0;
3488 
3489 #ifdef CONFIG_CMA
3490 	/* If allocation can't use CMA areas don't use free CMA pages */
3491 	if (!(alloc_flags & ALLOC_CMA))
3492 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3493 #endif
3494 
3495 	/*
3496 	 * Fast check for order-0 only. If this fails then the reserves
3497 	 * need to be calculated. There is a corner case where the check
3498 	 * passes but only the high-order atomic reserve are free. If
3499 	 * the caller is !atomic then it'll uselessly search the free
3500 	 * list. That corner case is then slower but it is harmless.
3501 	 */
3502 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3503 		return true;
3504 
3505 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3506 					free_pages);
3507 }
3508 
3509 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3510 			unsigned long mark, int classzone_idx)
3511 {
3512 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3513 
3514 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3515 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3516 
3517 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3518 								free_pages);
3519 }
3520 
3521 #ifdef CONFIG_NUMA
3522 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3523 {
3524 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3525 				RECLAIM_DISTANCE;
3526 }
3527 #else	/* CONFIG_NUMA */
3528 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3529 {
3530 	return true;
3531 }
3532 #endif	/* CONFIG_NUMA */
3533 
3534 /*
3535  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3536  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3537  * premature use of a lower zone may cause lowmem pressure problems that
3538  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3539  * probably too small. It only makes sense to spread allocations to avoid
3540  * fragmentation between the Normal and DMA32 zones.
3541  */
3542 static inline unsigned int
3543 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3544 {
3545 	unsigned int alloc_flags = 0;
3546 
3547 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3548 		alloc_flags |= ALLOC_KSWAPD;
3549 
3550 #ifdef CONFIG_ZONE_DMA32
3551 	if (!zone)
3552 		return alloc_flags;
3553 
3554 	if (zone_idx(zone) != ZONE_NORMAL)
3555 		return alloc_flags;
3556 
3557 	/*
3558 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3559 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3560 	 * on UMA that if Normal is populated then so is DMA32.
3561 	 */
3562 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3563 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3564 		return alloc_flags;
3565 
3566 	alloc_flags |= ALLOC_NOFRAGMENT;
3567 #endif /* CONFIG_ZONE_DMA32 */
3568 	return alloc_flags;
3569 }
3570 
3571 /*
3572  * get_page_from_freelist goes through the zonelist trying to allocate
3573  * a page.
3574  */
3575 static struct page *
3576 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3577 						const struct alloc_context *ac)
3578 {
3579 	struct zoneref *z;
3580 	struct zone *zone;
3581 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3582 	bool no_fallback;
3583 
3584 retry:
3585 	/*
3586 	 * Scan zonelist, looking for a zone with enough free.
3587 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3588 	 */
3589 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3590 	z = ac->preferred_zoneref;
3591 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3592 								ac->nodemask) {
3593 		struct page *page;
3594 		unsigned long mark;
3595 
3596 		if (cpusets_enabled() &&
3597 			(alloc_flags & ALLOC_CPUSET) &&
3598 			!__cpuset_zone_allowed(zone, gfp_mask))
3599 				continue;
3600 		/*
3601 		 * When allocating a page cache page for writing, we
3602 		 * want to get it from a node that is within its dirty
3603 		 * limit, such that no single node holds more than its
3604 		 * proportional share of globally allowed dirty pages.
3605 		 * The dirty limits take into account the node's
3606 		 * lowmem reserves and high watermark so that kswapd
3607 		 * should be able to balance it without having to
3608 		 * write pages from its LRU list.
3609 		 *
3610 		 * XXX: For now, allow allocations to potentially
3611 		 * exceed the per-node dirty limit in the slowpath
3612 		 * (spread_dirty_pages unset) before going into reclaim,
3613 		 * which is important when on a NUMA setup the allowed
3614 		 * nodes are together not big enough to reach the
3615 		 * global limit.  The proper fix for these situations
3616 		 * will require awareness of nodes in the
3617 		 * dirty-throttling and the flusher threads.
3618 		 */
3619 		if (ac->spread_dirty_pages) {
3620 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3621 				continue;
3622 
3623 			if (!node_dirty_ok(zone->zone_pgdat)) {
3624 				last_pgdat_dirty_limit = zone->zone_pgdat;
3625 				continue;
3626 			}
3627 		}
3628 
3629 		if (no_fallback && nr_online_nodes > 1 &&
3630 		    zone != ac->preferred_zoneref->zone) {
3631 			int local_nid;
3632 
3633 			/*
3634 			 * If moving to a remote node, retry but allow
3635 			 * fragmenting fallbacks. Locality is more important
3636 			 * than fragmentation avoidance.
3637 			 */
3638 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3639 			if (zone_to_nid(zone) != local_nid) {
3640 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3641 				goto retry;
3642 			}
3643 		}
3644 
3645 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3646 		if (!zone_watermark_fast(zone, order, mark,
3647 				       ac_classzone_idx(ac), alloc_flags)) {
3648 			int ret;
3649 
3650 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3651 			/*
3652 			 * Watermark failed for this zone, but see if we can
3653 			 * grow this zone if it contains deferred pages.
3654 			 */
3655 			if (static_branch_unlikely(&deferred_pages)) {
3656 				if (_deferred_grow_zone(zone, order))
3657 					goto try_this_zone;
3658 			}
3659 #endif
3660 			/* Checked here to keep the fast path fast */
3661 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3662 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3663 				goto try_this_zone;
3664 
3665 			if (node_reclaim_mode == 0 ||
3666 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3667 				continue;
3668 
3669 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3670 			switch (ret) {
3671 			case NODE_RECLAIM_NOSCAN:
3672 				/* did not scan */
3673 				continue;
3674 			case NODE_RECLAIM_FULL:
3675 				/* scanned but unreclaimable */
3676 				continue;
3677 			default:
3678 				/* did we reclaim enough */
3679 				if (zone_watermark_ok(zone, order, mark,
3680 						ac_classzone_idx(ac), alloc_flags))
3681 					goto try_this_zone;
3682 
3683 				continue;
3684 			}
3685 		}
3686 
3687 try_this_zone:
3688 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3689 				gfp_mask, alloc_flags, ac->migratetype);
3690 		if (page) {
3691 			prep_new_page(page, order, gfp_mask, alloc_flags);
3692 
3693 			/*
3694 			 * If this is a high-order atomic allocation then check
3695 			 * if the pageblock should be reserved for the future
3696 			 */
3697 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3698 				reserve_highatomic_pageblock(page, zone, order);
3699 
3700 			return page;
3701 		} else {
3702 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3703 			/* Try again if zone has deferred pages */
3704 			if (static_branch_unlikely(&deferred_pages)) {
3705 				if (_deferred_grow_zone(zone, order))
3706 					goto try_this_zone;
3707 			}
3708 #endif
3709 		}
3710 	}
3711 
3712 	/*
3713 	 * It's possible on a UMA machine to get through all zones that are
3714 	 * fragmented. If avoiding fragmentation, reset and try again.
3715 	 */
3716 	if (no_fallback) {
3717 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3718 		goto retry;
3719 	}
3720 
3721 	return NULL;
3722 }
3723 
3724 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3725 {
3726 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3727 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3728 
3729 	if (!__ratelimit(&show_mem_rs))
3730 		return;
3731 
3732 	/*
3733 	 * This documents exceptions given to allocations in certain
3734 	 * contexts that are allowed to allocate outside current's set
3735 	 * of allowed nodes.
3736 	 */
3737 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3738 		if (tsk_is_oom_victim(current) ||
3739 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3740 			filter &= ~SHOW_MEM_FILTER_NODES;
3741 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3742 		filter &= ~SHOW_MEM_FILTER_NODES;
3743 
3744 	show_mem(filter, nodemask);
3745 }
3746 
3747 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3748 {
3749 	struct va_format vaf;
3750 	va_list args;
3751 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3752 				      DEFAULT_RATELIMIT_BURST);
3753 
3754 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3755 		return;
3756 
3757 	va_start(args, fmt);
3758 	vaf.fmt = fmt;
3759 	vaf.va = &args;
3760 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3761 			current->comm, &vaf, gfp_mask, &gfp_mask,
3762 			nodemask_pr_args(nodemask));
3763 	va_end(args);
3764 
3765 	cpuset_print_current_mems_allowed();
3766 	pr_cont("\n");
3767 	dump_stack();
3768 	warn_alloc_show_mem(gfp_mask, nodemask);
3769 }
3770 
3771 static inline struct page *
3772 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3773 			      unsigned int alloc_flags,
3774 			      const struct alloc_context *ac)
3775 {
3776 	struct page *page;
3777 
3778 	page = get_page_from_freelist(gfp_mask, order,
3779 			alloc_flags|ALLOC_CPUSET, ac);
3780 	/*
3781 	 * fallback to ignore cpuset restriction if our nodes
3782 	 * are depleted
3783 	 */
3784 	if (!page)
3785 		page = get_page_from_freelist(gfp_mask, order,
3786 				alloc_flags, ac);
3787 
3788 	return page;
3789 }
3790 
3791 static inline struct page *
3792 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3793 	const struct alloc_context *ac, unsigned long *did_some_progress)
3794 {
3795 	struct oom_control oc = {
3796 		.zonelist = ac->zonelist,
3797 		.nodemask = ac->nodemask,
3798 		.memcg = NULL,
3799 		.gfp_mask = gfp_mask,
3800 		.order = order,
3801 	};
3802 	struct page *page;
3803 
3804 	*did_some_progress = 0;
3805 
3806 	/*
3807 	 * Acquire the oom lock.  If that fails, somebody else is
3808 	 * making progress for us.
3809 	 */
3810 	if (!mutex_trylock(&oom_lock)) {
3811 		*did_some_progress = 1;
3812 		schedule_timeout_uninterruptible(1);
3813 		return NULL;
3814 	}
3815 
3816 	/*
3817 	 * Go through the zonelist yet one more time, keep very high watermark
3818 	 * here, this is only to catch a parallel oom killing, we must fail if
3819 	 * we're still under heavy pressure. But make sure that this reclaim
3820 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3821 	 * allocation which will never fail due to oom_lock already held.
3822 	 */
3823 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3824 				      ~__GFP_DIRECT_RECLAIM, order,
3825 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3826 	if (page)
3827 		goto out;
3828 
3829 	/* Coredumps can quickly deplete all memory reserves */
3830 	if (current->flags & PF_DUMPCORE)
3831 		goto out;
3832 	/* The OOM killer will not help higher order allocs */
3833 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3834 		goto out;
3835 	/*
3836 	 * We have already exhausted all our reclaim opportunities without any
3837 	 * success so it is time to admit defeat. We will skip the OOM killer
3838 	 * because it is very likely that the caller has a more reasonable
3839 	 * fallback than shooting a random task.
3840 	 */
3841 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3842 		goto out;
3843 	/* The OOM killer does not needlessly kill tasks for lowmem */
3844 	if (ac->high_zoneidx < ZONE_NORMAL)
3845 		goto out;
3846 	if (pm_suspended_storage())
3847 		goto out;
3848 	/*
3849 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3850 	 * other request to make a forward progress.
3851 	 * We are in an unfortunate situation where out_of_memory cannot
3852 	 * do much for this context but let's try it to at least get
3853 	 * access to memory reserved if the current task is killed (see
3854 	 * out_of_memory). Once filesystems are ready to handle allocation
3855 	 * failures more gracefully we should just bail out here.
3856 	 */
3857 
3858 	/* The OOM killer may not free memory on a specific node */
3859 	if (gfp_mask & __GFP_THISNODE)
3860 		goto out;
3861 
3862 	/* Exhausted what can be done so it's blame time */
3863 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3864 		*did_some_progress = 1;
3865 
3866 		/*
3867 		 * Help non-failing allocations by giving them access to memory
3868 		 * reserves
3869 		 */
3870 		if (gfp_mask & __GFP_NOFAIL)
3871 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3872 					ALLOC_NO_WATERMARKS, ac);
3873 	}
3874 out:
3875 	mutex_unlock(&oom_lock);
3876 	return page;
3877 }
3878 
3879 /*
3880  * Maximum number of compaction retries wit a progress before OOM
3881  * killer is consider as the only way to move forward.
3882  */
3883 #define MAX_COMPACT_RETRIES 16
3884 
3885 #ifdef CONFIG_COMPACTION
3886 /* Try memory compaction for high-order allocations before reclaim */
3887 static struct page *
3888 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3889 		unsigned int alloc_flags, const struct alloc_context *ac,
3890 		enum compact_priority prio, enum compact_result *compact_result)
3891 {
3892 	struct page *page = NULL;
3893 	unsigned long pflags;
3894 	unsigned int noreclaim_flag;
3895 
3896 	if (!order)
3897 		return NULL;
3898 
3899 	psi_memstall_enter(&pflags);
3900 	noreclaim_flag = memalloc_noreclaim_save();
3901 
3902 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3903 								prio, &page);
3904 
3905 	memalloc_noreclaim_restore(noreclaim_flag);
3906 	psi_memstall_leave(&pflags);
3907 
3908 	/*
3909 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3910 	 * count a compaction stall
3911 	 */
3912 	count_vm_event(COMPACTSTALL);
3913 
3914 	/* Prep a captured page if available */
3915 	if (page)
3916 		prep_new_page(page, order, gfp_mask, alloc_flags);
3917 
3918 	/* Try get a page from the freelist if available */
3919 	if (!page)
3920 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3921 
3922 	if (page) {
3923 		struct zone *zone = page_zone(page);
3924 
3925 		zone->compact_blockskip_flush = false;
3926 		compaction_defer_reset(zone, order, true);
3927 		count_vm_event(COMPACTSUCCESS);
3928 		return page;
3929 	}
3930 
3931 	/*
3932 	 * It's bad if compaction run occurs and fails. The most likely reason
3933 	 * is that pages exist, but not enough to satisfy watermarks.
3934 	 */
3935 	count_vm_event(COMPACTFAIL);
3936 
3937 	cond_resched();
3938 
3939 	return NULL;
3940 }
3941 
3942 static inline bool
3943 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3944 		     enum compact_result compact_result,
3945 		     enum compact_priority *compact_priority,
3946 		     int *compaction_retries)
3947 {
3948 	int max_retries = MAX_COMPACT_RETRIES;
3949 	int min_priority;
3950 	bool ret = false;
3951 	int retries = *compaction_retries;
3952 	enum compact_priority priority = *compact_priority;
3953 
3954 	if (!order)
3955 		return false;
3956 
3957 	if (compaction_made_progress(compact_result))
3958 		(*compaction_retries)++;
3959 
3960 	/*
3961 	 * compaction considers all the zone as desperately out of memory
3962 	 * so it doesn't really make much sense to retry except when the
3963 	 * failure could be caused by insufficient priority
3964 	 */
3965 	if (compaction_failed(compact_result))
3966 		goto check_priority;
3967 
3968 	/*
3969 	 * make sure the compaction wasn't deferred or didn't bail out early
3970 	 * due to locks contention before we declare that we should give up.
3971 	 * But do not retry if the given zonelist is not suitable for
3972 	 * compaction.
3973 	 */
3974 	if (compaction_withdrawn(compact_result)) {
3975 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3976 		goto out;
3977 	}
3978 
3979 	/*
3980 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3981 	 * costly ones because they are de facto nofail and invoke OOM
3982 	 * killer to move on while costly can fail and users are ready
3983 	 * to cope with that. 1/4 retries is rather arbitrary but we
3984 	 * would need much more detailed feedback from compaction to
3985 	 * make a better decision.
3986 	 */
3987 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3988 		max_retries /= 4;
3989 	if (*compaction_retries <= max_retries) {
3990 		ret = true;
3991 		goto out;
3992 	}
3993 
3994 	/*
3995 	 * Make sure there are attempts at the highest priority if we exhausted
3996 	 * all retries or failed at the lower priorities.
3997 	 */
3998 check_priority:
3999 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4000 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4001 
4002 	if (*compact_priority > min_priority) {
4003 		(*compact_priority)--;
4004 		*compaction_retries = 0;
4005 		ret = true;
4006 	}
4007 out:
4008 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4009 	return ret;
4010 }
4011 #else
4012 static inline struct page *
4013 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4014 		unsigned int alloc_flags, const struct alloc_context *ac,
4015 		enum compact_priority prio, enum compact_result *compact_result)
4016 {
4017 	*compact_result = COMPACT_SKIPPED;
4018 	return NULL;
4019 }
4020 
4021 static inline bool
4022 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4023 		     enum compact_result compact_result,
4024 		     enum compact_priority *compact_priority,
4025 		     int *compaction_retries)
4026 {
4027 	struct zone *zone;
4028 	struct zoneref *z;
4029 
4030 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4031 		return false;
4032 
4033 	/*
4034 	 * There are setups with compaction disabled which would prefer to loop
4035 	 * inside the allocator rather than hit the oom killer prematurely.
4036 	 * Let's give them a good hope and keep retrying while the order-0
4037 	 * watermarks are OK.
4038 	 */
4039 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4040 					ac->nodemask) {
4041 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4042 					ac_classzone_idx(ac), alloc_flags))
4043 			return true;
4044 	}
4045 	return false;
4046 }
4047 #endif /* CONFIG_COMPACTION */
4048 
4049 #ifdef CONFIG_LOCKDEP
4050 static struct lockdep_map __fs_reclaim_map =
4051 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4052 
4053 static bool __need_fs_reclaim(gfp_t gfp_mask)
4054 {
4055 	gfp_mask = current_gfp_context(gfp_mask);
4056 
4057 	/* no reclaim without waiting on it */
4058 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4059 		return false;
4060 
4061 	/* this guy won't enter reclaim */
4062 	if (current->flags & PF_MEMALLOC)
4063 		return false;
4064 
4065 	/* We're only interested __GFP_FS allocations for now */
4066 	if (!(gfp_mask & __GFP_FS))
4067 		return false;
4068 
4069 	if (gfp_mask & __GFP_NOLOCKDEP)
4070 		return false;
4071 
4072 	return true;
4073 }
4074 
4075 void __fs_reclaim_acquire(void)
4076 {
4077 	lock_map_acquire(&__fs_reclaim_map);
4078 }
4079 
4080 void __fs_reclaim_release(void)
4081 {
4082 	lock_map_release(&__fs_reclaim_map);
4083 }
4084 
4085 void fs_reclaim_acquire(gfp_t gfp_mask)
4086 {
4087 	if (__need_fs_reclaim(gfp_mask))
4088 		__fs_reclaim_acquire();
4089 }
4090 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4091 
4092 void fs_reclaim_release(gfp_t gfp_mask)
4093 {
4094 	if (__need_fs_reclaim(gfp_mask))
4095 		__fs_reclaim_release();
4096 }
4097 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4098 #endif
4099 
4100 /* Perform direct synchronous page reclaim */
4101 static int
4102 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4103 					const struct alloc_context *ac)
4104 {
4105 	struct reclaim_state reclaim_state;
4106 	int progress;
4107 	unsigned int noreclaim_flag;
4108 	unsigned long pflags;
4109 
4110 	cond_resched();
4111 
4112 	/* We now go into synchronous reclaim */
4113 	cpuset_memory_pressure_bump();
4114 	psi_memstall_enter(&pflags);
4115 	fs_reclaim_acquire(gfp_mask);
4116 	noreclaim_flag = memalloc_noreclaim_save();
4117 	reclaim_state.reclaimed_slab = 0;
4118 	current->reclaim_state = &reclaim_state;
4119 
4120 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4121 								ac->nodemask);
4122 
4123 	current->reclaim_state = NULL;
4124 	memalloc_noreclaim_restore(noreclaim_flag);
4125 	fs_reclaim_release(gfp_mask);
4126 	psi_memstall_leave(&pflags);
4127 
4128 	cond_resched();
4129 
4130 	return progress;
4131 }
4132 
4133 /* The really slow allocator path where we enter direct reclaim */
4134 static inline struct page *
4135 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4136 		unsigned int alloc_flags, const struct alloc_context *ac,
4137 		unsigned long *did_some_progress)
4138 {
4139 	struct page *page = NULL;
4140 	bool drained = false;
4141 
4142 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4143 	if (unlikely(!(*did_some_progress)))
4144 		return NULL;
4145 
4146 retry:
4147 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4148 
4149 	/*
4150 	 * If an allocation failed after direct reclaim, it could be because
4151 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4152 	 * Shrink them them and try again
4153 	 */
4154 	if (!page && !drained) {
4155 		unreserve_highatomic_pageblock(ac, false);
4156 		drain_all_pages(NULL);
4157 		drained = true;
4158 		goto retry;
4159 	}
4160 
4161 	return page;
4162 }
4163 
4164 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4165 			     const struct alloc_context *ac)
4166 {
4167 	struct zoneref *z;
4168 	struct zone *zone;
4169 	pg_data_t *last_pgdat = NULL;
4170 	enum zone_type high_zoneidx = ac->high_zoneidx;
4171 
4172 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4173 					ac->nodemask) {
4174 		if (last_pgdat != zone->zone_pgdat)
4175 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4176 		last_pgdat = zone->zone_pgdat;
4177 	}
4178 }
4179 
4180 static inline unsigned int
4181 gfp_to_alloc_flags(gfp_t gfp_mask)
4182 {
4183 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4184 
4185 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4186 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4187 
4188 	/*
4189 	 * The caller may dip into page reserves a bit more if the caller
4190 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4191 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4192 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4193 	 */
4194 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4195 
4196 	if (gfp_mask & __GFP_ATOMIC) {
4197 		/*
4198 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4199 		 * if it can't schedule.
4200 		 */
4201 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4202 			alloc_flags |= ALLOC_HARDER;
4203 		/*
4204 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4205 		 * comment for __cpuset_node_allowed().
4206 		 */
4207 		alloc_flags &= ~ALLOC_CPUSET;
4208 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4209 		alloc_flags |= ALLOC_HARDER;
4210 
4211 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4212 		alloc_flags |= ALLOC_KSWAPD;
4213 
4214 #ifdef CONFIG_CMA
4215 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4216 		alloc_flags |= ALLOC_CMA;
4217 #endif
4218 	return alloc_flags;
4219 }
4220 
4221 static bool oom_reserves_allowed(struct task_struct *tsk)
4222 {
4223 	if (!tsk_is_oom_victim(tsk))
4224 		return false;
4225 
4226 	/*
4227 	 * !MMU doesn't have oom reaper so give access to memory reserves
4228 	 * only to the thread with TIF_MEMDIE set
4229 	 */
4230 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4231 		return false;
4232 
4233 	return true;
4234 }
4235 
4236 /*
4237  * Distinguish requests which really need access to full memory
4238  * reserves from oom victims which can live with a portion of it
4239  */
4240 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4241 {
4242 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4243 		return 0;
4244 	if (gfp_mask & __GFP_MEMALLOC)
4245 		return ALLOC_NO_WATERMARKS;
4246 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4247 		return ALLOC_NO_WATERMARKS;
4248 	if (!in_interrupt()) {
4249 		if (current->flags & PF_MEMALLOC)
4250 			return ALLOC_NO_WATERMARKS;
4251 		else if (oom_reserves_allowed(current))
4252 			return ALLOC_OOM;
4253 	}
4254 
4255 	return 0;
4256 }
4257 
4258 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4259 {
4260 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4261 }
4262 
4263 /*
4264  * Checks whether it makes sense to retry the reclaim to make a forward progress
4265  * for the given allocation request.
4266  *
4267  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4268  * without success, or when we couldn't even meet the watermark if we
4269  * reclaimed all remaining pages on the LRU lists.
4270  *
4271  * Returns true if a retry is viable or false to enter the oom path.
4272  */
4273 static inline bool
4274 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4275 		     struct alloc_context *ac, int alloc_flags,
4276 		     bool did_some_progress, int *no_progress_loops)
4277 {
4278 	struct zone *zone;
4279 	struct zoneref *z;
4280 	bool ret = false;
4281 
4282 	/*
4283 	 * Costly allocations might have made a progress but this doesn't mean
4284 	 * their order will become available due to high fragmentation so
4285 	 * always increment the no progress counter for them
4286 	 */
4287 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4288 		*no_progress_loops = 0;
4289 	else
4290 		(*no_progress_loops)++;
4291 
4292 	/*
4293 	 * Make sure we converge to OOM if we cannot make any progress
4294 	 * several times in the row.
4295 	 */
4296 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4297 		/* Before OOM, exhaust highatomic_reserve */
4298 		return unreserve_highatomic_pageblock(ac, true);
4299 	}
4300 
4301 	/*
4302 	 * Keep reclaiming pages while there is a chance this will lead
4303 	 * somewhere.  If none of the target zones can satisfy our allocation
4304 	 * request even if all reclaimable pages are considered then we are
4305 	 * screwed and have to go OOM.
4306 	 */
4307 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4308 					ac->nodemask) {
4309 		unsigned long available;
4310 		unsigned long reclaimable;
4311 		unsigned long min_wmark = min_wmark_pages(zone);
4312 		bool wmark;
4313 
4314 		available = reclaimable = zone_reclaimable_pages(zone);
4315 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4316 
4317 		/*
4318 		 * Would the allocation succeed if we reclaimed all
4319 		 * reclaimable pages?
4320 		 */
4321 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4322 				ac_classzone_idx(ac), alloc_flags, available);
4323 		trace_reclaim_retry_zone(z, order, reclaimable,
4324 				available, min_wmark, *no_progress_loops, wmark);
4325 		if (wmark) {
4326 			/*
4327 			 * If we didn't make any progress and have a lot of
4328 			 * dirty + writeback pages then we should wait for
4329 			 * an IO to complete to slow down the reclaim and
4330 			 * prevent from pre mature OOM
4331 			 */
4332 			if (!did_some_progress) {
4333 				unsigned long write_pending;
4334 
4335 				write_pending = zone_page_state_snapshot(zone,
4336 							NR_ZONE_WRITE_PENDING);
4337 
4338 				if (2 * write_pending > reclaimable) {
4339 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4340 					return true;
4341 				}
4342 			}
4343 
4344 			ret = true;
4345 			goto out;
4346 		}
4347 	}
4348 
4349 out:
4350 	/*
4351 	 * Memory allocation/reclaim might be called from a WQ context and the
4352 	 * current implementation of the WQ concurrency control doesn't
4353 	 * recognize that a particular WQ is congested if the worker thread is
4354 	 * looping without ever sleeping. Therefore we have to do a short sleep
4355 	 * here rather than calling cond_resched().
4356 	 */
4357 	if (current->flags & PF_WQ_WORKER)
4358 		schedule_timeout_uninterruptible(1);
4359 	else
4360 		cond_resched();
4361 	return ret;
4362 }
4363 
4364 static inline bool
4365 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4366 {
4367 	/*
4368 	 * It's possible that cpuset's mems_allowed and the nodemask from
4369 	 * mempolicy don't intersect. This should be normally dealt with by
4370 	 * policy_nodemask(), but it's possible to race with cpuset update in
4371 	 * such a way the check therein was true, and then it became false
4372 	 * before we got our cpuset_mems_cookie here.
4373 	 * This assumes that for all allocations, ac->nodemask can come only
4374 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4375 	 * when it does not intersect with the cpuset restrictions) or the
4376 	 * caller can deal with a violated nodemask.
4377 	 */
4378 	if (cpusets_enabled() && ac->nodemask &&
4379 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4380 		ac->nodemask = NULL;
4381 		return true;
4382 	}
4383 
4384 	/*
4385 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4386 	 * possible to race with parallel threads in such a way that our
4387 	 * allocation can fail while the mask is being updated. If we are about
4388 	 * to fail, check if the cpuset changed during allocation and if so,
4389 	 * retry.
4390 	 */
4391 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4392 		return true;
4393 
4394 	return false;
4395 }
4396 
4397 static inline struct page *
4398 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4399 						struct alloc_context *ac)
4400 {
4401 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4402 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4403 	struct page *page = NULL;
4404 	unsigned int alloc_flags;
4405 	unsigned long did_some_progress;
4406 	enum compact_priority compact_priority;
4407 	enum compact_result compact_result;
4408 	int compaction_retries;
4409 	int no_progress_loops;
4410 	unsigned int cpuset_mems_cookie;
4411 	int reserve_flags;
4412 
4413 	/*
4414 	 * We also sanity check to catch abuse of atomic reserves being used by
4415 	 * callers that are not in atomic context.
4416 	 */
4417 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4418 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4419 		gfp_mask &= ~__GFP_ATOMIC;
4420 
4421 retry_cpuset:
4422 	compaction_retries = 0;
4423 	no_progress_loops = 0;
4424 	compact_priority = DEF_COMPACT_PRIORITY;
4425 	cpuset_mems_cookie = read_mems_allowed_begin();
4426 
4427 	/*
4428 	 * The fast path uses conservative alloc_flags to succeed only until
4429 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4430 	 * alloc_flags precisely. So we do that now.
4431 	 */
4432 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4433 
4434 	/*
4435 	 * We need to recalculate the starting point for the zonelist iterator
4436 	 * because we might have used different nodemask in the fast path, or
4437 	 * there was a cpuset modification and we are retrying - otherwise we
4438 	 * could end up iterating over non-eligible zones endlessly.
4439 	 */
4440 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4441 					ac->high_zoneidx, ac->nodemask);
4442 	if (!ac->preferred_zoneref->zone)
4443 		goto nopage;
4444 
4445 	if (alloc_flags & ALLOC_KSWAPD)
4446 		wake_all_kswapds(order, gfp_mask, ac);
4447 
4448 	/*
4449 	 * The adjusted alloc_flags might result in immediate success, so try
4450 	 * that first
4451 	 */
4452 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4453 	if (page)
4454 		goto got_pg;
4455 
4456 	/*
4457 	 * For costly allocations, try direct compaction first, as it's likely
4458 	 * that we have enough base pages and don't need to reclaim. For non-
4459 	 * movable high-order allocations, do that as well, as compaction will
4460 	 * try prevent permanent fragmentation by migrating from blocks of the
4461 	 * same migratetype.
4462 	 * Don't try this for allocations that are allowed to ignore
4463 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4464 	 */
4465 	if (can_direct_reclaim &&
4466 			(costly_order ||
4467 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4468 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4469 		page = __alloc_pages_direct_compact(gfp_mask, order,
4470 						alloc_flags, ac,
4471 						INIT_COMPACT_PRIORITY,
4472 						&compact_result);
4473 		if (page)
4474 			goto got_pg;
4475 
4476 		/*
4477 		 * Checks for costly allocations with __GFP_NORETRY, which
4478 		 * includes THP page fault allocations
4479 		 */
4480 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4481 			/*
4482 			 * If compaction is deferred for high-order allocations,
4483 			 * it is because sync compaction recently failed. If
4484 			 * this is the case and the caller requested a THP
4485 			 * allocation, we do not want to heavily disrupt the
4486 			 * system, so we fail the allocation instead of entering
4487 			 * direct reclaim.
4488 			 */
4489 			if (compact_result == COMPACT_DEFERRED)
4490 				goto nopage;
4491 
4492 			/*
4493 			 * Looks like reclaim/compaction is worth trying, but
4494 			 * sync compaction could be very expensive, so keep
4495 			 * using async compaction.
4496 			 */
4497 			compact_priority = INIT_COMPACT_PRIORITY;
4498 		}
4499 	}
4500 
4501 retry:
4502 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4503 	if (alloc_flags & ALLOC_KSWAPD)
4504 		wake_all_kswapds(order, gfp_mask, ac);
4505 
4506 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4507 	if (reserve_flags)
4508 		alloc_flags = reserve_flags;
4509 
4510 	/*
4511 	 * Reset the nodemask and zonelist iterators if memory policies can be
4512 	 * ignored. These allocations are high priority and system rather than
4513 	 * user oriented.
4514 	 */
4515 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4516 		ac->nodemask = NULL;
4517 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4518 					ac->high_zoneidx, ac->nodemask);
4519 	}
4520 
4521 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4522 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4523 	if (page)
4524 		goto got_pg;
4525 
4526 	/* Caller is not willing to reclaim, we can't balance anything */
4527 	if (!can_direct_reclaim)
4528 		goto nopage;
4529 
4530 	/* Avoid recursion of direct reclaim */
4531 	if (current->flags & PF_MEMALLOC)
4532 		goto nopage;
4533 
4534 	/* Try direct reclaim and then allocating */
4535 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4536 							&did_some_progress);
4537 	if (page)
4538 		goto got_pg;
4539 
4540 	/* Try direct compaction and then allocating */
4541 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4542 					compact_priority, &compact_result);
4543 	if (page)
4544 		goto got_pg;
4545 
4546 	/* Do not loop if specifically requested */
4547 	if (gfp_mask & __GFP_NORETRY)
4548 		goto nopage;
4549 
4550 	/*
4551 	 * Do not retry costly high order allocations unless they are
4552 	 * __GFP_RETRY_MAYFAIL
4553 	 */
4554 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4555 		goto nopage;
4556 
4557 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4558 				 did_some_progress > 0, &no_progress_loops))
4559 		goto retry;
4560 
4561 	/*
4562 	 * It doesn't make any sense to retry for the compaction if the order-0
4563 	 * reclaim is not able to make any progress because the current
4564 	 * implementation of the compaction depends on the sufficient amount
4565 	 * of free memory (see __compaction_suitable)
4566 	 */
4567 	if (did_some_progress > 0 &&
4568 			should_compact_retry(ac, order, alloc_flags,
4569 				compact_result, &compact_priority,
4570 				&compaction_retries))
4571 		goto retry;
4572 
4573 
4574 	/* Deal with possible cpuset update races before we start OOM killing */
4575 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4576 		goto retry_cpuset;
4577 
4578 	/* Reclaim has failed us, start killing things */
4579 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4580 	if (page)
4581 		goto got_pg;
4582 
4583 	/* Avoid allocations with no watermarks from looping endlessly */
4584 	if (tsk_is_oom_victim(current) &&
4585 	    (alloc_flags == ALLOC_OOM ||
4586 	     (gfp_mask & __GFP_NOMEMALLOC)))
4587 		goto nopage;
4588 
4589 	/* Retry as long as the OOM killer is making progress */
4590 	if (did_some_progress) {
4591 		no_progress_loops = 0;
4592 		goto retry;
4593 	}
4594 
4595 nopage:
4596 	/* Deal with possible cpuset update races before we fail */
4597 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4598 		goto retry_cpuset;
4599 
4600 	/*
4601 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4602 	 * we always retry
4603 	 */
4604 	if (gfp_mask & __GFP_NOFAIL) {
4605 		/*
4606 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4607 		 * of any new users that actually require GFP_NOWAIT
4608 		 */
4609 		if (WARN_ON_ONCE(!can_direct_reclaim))
4610 			goto fail;
4611 
4612 		/*
4613 		 * PF_MEMALLOC request from this context is rather bizarre
4614 		 * because we cannot reclaim anything and only can loop waiting
4615 		 * for somebody to do a work for us
4616 		 */
4617 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4618 
4619 		/*
4620 		 * non failing costly orders are a hard requirement which we
4621 		 * are not prepared for much so let's warn about these users
4622 		 * so that we can identify them and convert them to something
4623 		 * else.
4624 		 */
4625 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4626 
4627 		/*
4628 		 * Help non-failing allocations by giving them access to memory
4629 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4630 		 * could deplete whole memory reserves which would just make
4631 		 * the situation worse
4632 		 */
4633 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4634 		if (page)
4635 			goto got_pg;
4636 
4637 		cond_resched();
4638 		goto retry;
4639 	}
4640 fail:
4641 	warn_alloc(gfp_mask, ac->nodemask,
4642 			"page allocation failure: order:%u", order);
4643 got_pg:
4644 	return page;
4645 }
4646 
4647 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4648 		int preferred_nid, nodemask_t *nodemask,
4649 		struct alloc_context *ac, gfp_t *alloc_mask,
4650 		unsigned int *alloc_flags)
4651 {
4652 	ac->high_zoneidx = gfp_zone(gfp_mask);
4653 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4654 	ac->nodemask = nodemask;
4655 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4656 
4657 	if (cpusets_enabled()) {
4658 		*alloc_mask |= __GFP_HARDWALL;
4659 		if (!ac->nodemask)
4660 			ac->nodemask = &cpuset_current_mems_allowed;
4661 		else
4662 			*alloc_flags |= ALLOC_CPUSET;
4663 	}
4664 
4665 	fs_reclaim_acquire(gfp_mask);
4666 	fs_reclaim_release(gfp_mask);
4667 
4668 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4669 
4670 	if (should_fail_alloc_page(gfp_mask, order))
4671 		return false;
4672 
4673 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4674 		*alloc_flags |= ALLOC_CMA;
4675 
4676 	return true;
4677 }
4678 
4679 /* Determine whether to spread dirty pages and what the first usable zone */
4680 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4681 {
4682 	/* Dirty zone balancing only done in the fast path */
4683 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4684 
4685 	/*
4686 	 * The preferred zone is used for statistics but crucially it is
4687 	 * also used as the starting point for the zonelist iterator. It
4688 	 * may get reset for allocations that ignore memory policies.
4689 	 */
4690 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4691 					ac->high_zoneidx, ac->nodemask);
4692 }
4693 
4694 /*
4695  * This is the 'heart' of the zoned buddy allocator.
4696  */
4697 struct page *
4698 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4699 							nodemask_t *nodemask)
4700 {
4701 	struct page *page;
4702 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4703 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4704 	struct alloc_context ac = { };
4705 
4706 	/*
4707 	 * There are several places where we assume that the order value is sane
4708 	 * so bail out early if the request is out of bound.
4709 	 */
4710 	if (unlikely(order >= MAX_ORDER)) {
4711 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4712 		return NULL;
4713 	}
4714 
4715 	gfp_mask &= gfp_allowed_mask;
4716 	alloc_mask = gfp_mask;
4717 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4718 		return NULL;
4719 
4720 	finalise_ac(gfp_mask, &ac);
4721 
4722 	/*
4723 	 * Forbid the first pass from falling back to types that fragment
4724 	 * memory until all local zones are considered.
4725 	 */
4726 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4727 
4728 	/* First allocation attempt */
4729 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4730 	if (likely(page))
4731 		goto out;
4732 
4733 	/*
4734 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4735 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4736 	 * from a particular context which has been marked by
4737 	 * memalloc_no{fs,io}_{save,restore}.
4738 	 */
4739 	alloc_mask = current_gfp_context(gfp_mask);
4740 	ac.spread_dirty_pages = false;
4741 
4742 	/*
4743 	 * Restore the original nodemask if it was potentially replaced with
4744 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4745 	 */
4746 	if (unlikely(ac.nodemask != nodemask))
4747 		ac.nodemask = nodemask;
4748 
4749 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4750 
4751 out:
4752 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4753 	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4754 		__free_pages(page, order);
4755 		page = NULL;
4756 	}
4757 
4758 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4759 
4760 	return page;
4761 }
4762 EXPORT_SYMBOL(__alloc_pages_nodemask);
4763 
4764 /*
4765  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4766  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4767  * you need to access high mem.
4768  */
4769 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4770 {
4771 	struct page *page;
4772 
4773 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4774 	if (!page)
4775 		return 0;
4776 	return (unsigned long) page_address(page);
4777 }
4778 EXPORT_SYMBOL(__get_free_pages);
4779 
4780 unsigned long get_zeroed_page(gfp_t gfp_mask)
4781 {
4782 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4783 }
4784 EXPORT_SYMBOL(get_zeroed_page);
4785 
4786 static inline void free_the_page(struct page *page, unsigned int order)
4787 {
4788 	if (order == 0)		/* Via pcp? */
4789 		free_unref_page(page);
4790 	else
4791 		__free_pages_ok(page, order);
4792 }
4793 
4794 void __free_pages(struct page *page, unsigned int order)
4795 {
4796 	if (put_page_testzero(page))
4797 		free_the_page(page, order);
4798 }
4799 EXPORT_SYMBOL(__free_pages);
4800 
4801 void free_pages(unsigned long addr, unsigned int order)
4802 {
4803 	if (addr != 0) {
4804 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4805 		__free_pages(virt_to_page((void *)addr), order);
4806 	}
4807 }
4808 
4809 EXPORT_SYMBOL(free_pages);
4810 
4811 /*
4812  * Page Fragment:
4813  *  An arbitrary-length arbitrary-offset area of memory which resides
4814  *  within a 0 or higher order page.  Multiple fragments within that page
4815  *  are individually refcounted, in the page's reference counter.
4816  *
4817  * The page_frag functions below provide a simple allocation framework for
4818  * page fragments.  This is used by the network stack and network device
4819  * drivers to provide a backing region of memory for use as either an
4820  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4821  */
4822 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4823 					     gfp_t gfp_mask)
4824 {
4825 	struct page *page = NULL;
4826 	gfp_t gfp = gfp_mask;
4827 
4828 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4829 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4830 		    __GFP_NOMEMALLOC;
4831 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4832 				PAGE_FRAG_CACHE_MAX_ORDER);
4833 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4834 #endif
4835 	if (unlikely(!page))
4836 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4837 
4838 	nc->va = page ? page_address(page) : NULL;
4839 
4840 	return page;
4841 }
4842 
4843 void __page_frag_cache_drain(struct page *page, unsigned int count)
4844 {
4845 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4846 
4847 	if (page_ref_sub_and_test(page, count))
4848 		free_the_page(page, compound_order(page));
4849 }
4850 EXPORT_SYMBOL(__page_frag_cache_drain);
4851 
4852 void *page_frag_alloc(struct page_frag_cache *nc,
4853 		      unsigned int fragsz, gfp_t gfp_mask)
4854 {
4855 	unsigned int size = PAGE_SIZE;
4856 	struct page *page;
4857 	int offset;
4858 
4859 	if (unlikely(!nc->va)) {
4860 refill:
4861 		page = __page_frag_cache_refill(nc, gfp_mask);
4862 		if (!page)
4863 			return NULL;
4864 
4865 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4866 		/* if size can vary use size else just use PAGE_SIZE */
4867 		size = nc->size;
4868 #endif
4869 		/* Even if we own the page, we do not use atomic_set().
4870 		 * This would break get_page_unless_zero() users.
4871 		 */
4872 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4873 
4874 		/* reset page count bias and offset to start of new frag */
4875 		nc->pfmemalloc = page_is_pfmemalloc(page);
4876 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4877 		nc->offset = size;
4878 	}
4879 
4880 	offset = nc->offset - fragsz;
4881 	if (unlikely(offset < 0)) {
4882 		page = virt_to_page(nc->va);
4883 
4884 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4885 			goto refill;
4886 
4887 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4888 		/* if size can vary use size else just use PAGE_SIZE */
4889 		size = nc->size;
4890 #endif
4891 		/* OK, page count is 0, we can safely set it */
4892 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4893 
4894 		/* reset page count bias and offset to start of new frag */
4895 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4896 		offset = size - fragsz;
4897 	}
4898 
4899 	nc->pagecnt_bias--;
4900 	nc->offset = offset;
4901 
4902 	return nc->va + offset;
4903 }
4904 EXPORT_SYMBOL(page_frag_alloc);
4905 
4906 /*
4907  * Frees a page fragment allocated out of either a compound or order 0 page.
4908  */
4909 void page_frag_free(void *addr)
4910 {
4911 	struct page *page = virt_to_head_page(addr);
4912 
4913 	if (unlikely(put_page_testzero(page)))
4914 		free_the_page(page, compound_order(page));
4915 }
4916 EXPORT_SYMBOL(page_frag_free);
4917 
4918 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4919 		size_t size)
4920 {
4921 	if (addr) {
4922 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4923 		unsigned long used = addr + PAGE_ALIGN(size);
4924 
4925 		split_page(virt_to_page((void *)addr), order);
4926 		while (used < alloc_end) {
4927 			free_page(used);
4928 			used += PAGE_SIZE;
4929 		}
4930 	}
4931 	return (void *)addr;
4932 }
4933 
4934 /**
4935  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4936  * @size: the number of bytes to allocate
4937  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4938  *
4939  * This function is similar to alloc_pages(), except that it allocates the
4940  * minimum number of pages to satisfy the request.  alloc_pages() can only
4941  * allocate memory in power-of-two pages.
4942  *
4943  * This function is also limited by MAX_ORDER.
4944  *
4945  * Memory allocated by this function must be released by free_pages_exact().
4946  *
4947  * Return: pointer to the allocated area or %NULL in case of error.
4948  */
4949 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4950 {
4951 	unsigned int order = get_order(size);
4952 	unsigned long addr;
4953 
4954 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4955 		gfp_mask &= ~__GFP_COMP;
4956 
4957 	addr = __get_free_pages(gfp_mask, order);
4958 	return make_alloc_exact(addr, order, size);
4959 }
4960 EXPORT_SYMBOL(alloc_pages_exact);
4961 
4962 /**
4963  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4964  *			   pages on a node.
4965  * @nid: the preferred node ID where memory should be allocated
4966  * @size: the number of bytes to allocate
4967  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4968  *
4969  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4970  * back.
4971  *
4972  * Return: pointer to the allocated area or %NULL in case of error.
4973  */
4974 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4975 {
4976 	unsigned int order = get_order(size);
4977 	struct page *p;
4978 
4979 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4980 		gfp_mask &= ~__GFP_COMP;
4981 
4982 	p = alloc_pages_node(nid, gfp_mask, order);
4983 	if (!p)
4984 		return NULL;
4985 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4986 }
4987 
4988 /**
4989  * free_pages_exact - release memory allocated via alloc_pages_exact()
4990  * @virt: the value returned by alloc_pages_exact.
4991  * @size: size of allocation, same value as passed to alloc_pages_exact().
4992  *
4993  * Release the memory allocated by a previous call to alloc_pages_exact.
4994  */
4995 void free_pages_exact(void *virt, size_t size)
4996 {
4997 	unsigned long addr = (unsigned long)virt;
4998 	unsigned long end = addr + PAGE_ALIGN(size);
4999 
5000 	while (addr < end) {
5001 		free_page(addr);
5002 		addr += PAGE_SIZE;
5003 	}
5004 }
5005 EXPORT_SYMBOL(free_pages_exact);
5006 
5007 /**
5008  * nr_free_zone_pages - count number of pages beyond high watermark
5009  * @offset: The zone index of the highest zone
5010  *
5011  * nr_free_zone_pages() counts the number of pages which are beyond the
5012  * high watermark within all zones at or below a given zone index.  For each
5013  * zone, the number of pages is calculated as:
5014  *
5015  *     nr_free_zone_pages = managed_pages - high_pages
5016  *
5017  * Return: number of pages beyond high watermark.
5018  */
5019 static unsigned long nr_free_zone_pages(int offset)
5020 {
5021 	struct zoneref *z;
5022 	struct zone *zone;
5023 
5024 	/* Just pick one node, since fallback list is circular */
5025 	unsigned long sum = 0;
5026 
5027 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5028 
5029 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5030 		unsigned long size = zone_managed_pages(zone);
5031 		unsigned long high = high_wmark_pages(zone);
5032 		if (size > high)
5033 			sum += size - high;
5034 	}
5035 
5036 	return sum;
5037 }
5038 
5039 /**
5040  * nr_free_buffer_pages - count number of pages beyond high watermark
5041  *
5042  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5043  * watermark within ZONE_DMA and ZONE_NORMAL.
5044  *
5045  * Return: number of pages beyond high watermark within ZONE_DMA and
5046  * ZONE_NORMAL.
5047  */
5048 unsigned long nr_free_buffer_pages(void)
5049 {
5050 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5051 }
5052 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5053 
5054 /**
5055  * nr_free_pagecache_pages - count number of pages beyond high watermark
5056  *
5057  * nr_free_pagecache_pages() counts the number of pages which are beyond the
5058  * high watermark within all zones.
5059  *
5060  * Return: number of pages beyond high watermark within all zones.
5061  */
5062 unsigned long nr_free_pagecache_pages(void)
5063 {
5064 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5065 }
5066 
5067 static inline void show_node(struct zone *zone)
5068 {
5069 	if (IS_ENABLED(CONFIG_NUMA))
5070 		printk("Node %d ", zone_to_nid(zone));
5071 }
5072 
5073 long si_mem_available(void)
5074 {
5075 	long available;
5076 	unsigned long pagecache;
5077 	unsigned long wmark_low = 0;
5078 	unsigned long pages[NR_LRU_LISTS];
5079 	unsigned long reclaimable;
5080 	struct zone *zone;
5081 	int lru;
5082 
5083 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5084 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5085 
5086 	for_each_zone(zone)
5087 		wmark_low += low_wmark_pages(zone);
5088 
5089 	/*
5090 	 * Estimate the amount of memory available for userspace allocations,
5091 	 * without causing swapping.
5092 	 */
5093 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5094 
5095 	/*
5096 	 * Not all the page cache can be freed, otherwise the system will
5097 	 * start swapping. Assume at least half of the page cache, or the
5098 	 * low watermark worth of cache, needs to stay.
5099 	 */
5100 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5101 	pagecache -= min(pagecache / 2, wmark_low);
5102 	available += pagecache;
5103 
5104 	/*
5105 	 * Part of the reclaimable slab and other kernel memory consists of
5106 	 * items that are in use, and cannot be freed. Cap this estimate at the
5107 	 * low watermark.
5108 	 */
5109 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5110 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5111 	available += reclaimable - min(reclaimable / 2, wmark_low);
5112 
5113 	if (available < 0)
5114 		available = 0;
5115 	return available;
5116 }
5117 EXPORT_SYMBOL_GPL(si_mem_available);
5118 
5119 void si_meminfo(struct sysinfo *val)
5120 {
5121 	val->totalram = totalram_pages();
5122 	val->sharedram = global_node_page_state(NR_SHMEM);
5123 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5124 	val->bufferram = nr_blockdev_pages();
5125 	val->totalhigh = totalhigh_pages();
5126 	val->freehigh = nr_free_highpages();
5127 	val->mem_unit = PAGE_SIZE;
5128 }
5129 
5130 EXPORT_SYMBOL(si_meminfo);
5131 
5132 #ifdef CONFIG_NUMA
5133 void si_meminfo_node(struct sysinfo *val, int nid)
5134 {
5135 	int zone_type;		/* needs to be signed */
5136 	unsigned long managed_pages = 0;
5137 	unsigned long managed_highpages = 0;
5138 	unsigned long free_highpages = 0;
5139 	pg_data_t *pgdat = NODE_DATA(nid);
5140 
5141 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5142 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5143 	val->totalram = managed_pages;
5144 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5145 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5146 #ifdef CONFIG_HIGHMEM
5147 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5148 		struct zone *zone = &pgdat->node_zones[zone_type];
5149 
5150 		if (is_highmem(zone)) {
5151 			managed_highpages += zone_managed_pages(zone);
5152 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5153 		}
5154 	}
5155 	val->totalhigh = managed_highpages;
5156 	val->freehigh = free_highpages;
5157 #else
5158 	val->totalhigh = managed_highpages;
5159 	val->freehigh = free_highpages;
5160 #endif
5161 	val->mem_unit = PAGE_SIZE;
5162 }
5163 #endif
5164 
5165 /*
5166  * Determine whether the node should be displayed or not, depending on whether
5167  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5168  */
5169 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5170 {
5171 	if (!(flags & SHOW_MEM_FILTER_NODES))
5172 		return false;
5173 
5174 	/*
5175 	 * no node mask - aka implicit memory numa policy. Do not bother with
5176 	 * the synchronization - read_mems_allowed_begin - because we do not
5177 	 * have to be precise here.
5178 	 */
5179 	if (!nodemask)
5180 		nodemask = &cpuset_current_mems_allowed;
5181 
5182 	return !node_isset(nid, *nodemask);
5183 }
5184 
5185 #define K(x) ((x) << (PAGE_SHIFT-10))
5186 
5187 static void show_migration_types(unsigned char type)
5188 {
5189 	static const char types[MIGRATE_TYPES] = {
5190 		[MIGRATE_UNMOVABLE]	= 'U',
5191 		[MIGRATE_MOVABLE]	= 'M',
5192 		[MIGRATE_RECLAIMABLE]	= 'E',
5193 		[MIGRATE_HIGHATOMIC]	= 'H',
5194 #ifdef CONFIG_CMA
5195 		[MIGRATE_CMA]		= 'C',
5196 #endif
5197 #ifdef CONFIG_MEMORY_ISOLATION
5198 		[MIGRATE_ISOLATE]	= 'I',
5199 #endif
5200 	};
5201 	char tmp[MIGRATE_TYPES + 1];
5202 	char *p = tmp;
5203 	int i;
5204 
5205 	for (i = 0; i < MIGRATE_TYPES; i++) {
5206 		if (type & (1 << i))
5207 			*p++ = types[i];
5208 	}
5209 
5210 	*p = '\0';
5211 	printk(KERN_CONT "(%s) ", tmp);
5212 }
5213 
5214 /*
5215  * Show free area list (used inside shift_scroll-lock stuff)
5216  * We also calculate the percentage fragmentation. We do this by counting the
5217  * memory on each free list with the exception of the first item on the list.
5218  *
5219  * Bits in @filter:
5220  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5221  *   cpuset.
5222  */
5223 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5224 {
5225 	unsigned long free_pcp = 0;
5226 	int cpu;
5227 	struct zone *zone;
5228 	pg_data_t *pgdat;
5229 
5230 	for_each_populated_zone(zone) {
5231 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5232 			continue;
5233 
5234 		for_each_online_cpu(cpu)
5235 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5236 	}
5237 
5238 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5239 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5240 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5241 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5242 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5243 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5244 		global_node_page_state(NR_ACTIVE_ANON),
5245 		global_node_page_state(NR_INACTIVE_ANON),
5246 		global_node_page_state(NR_ISOLATED_ANON),
5247 		global_node_page_state(NR_ACTIVE_FILE),
5248 		global_node_page_state(NR_INACTIVE_FILE),
5249 		global_node_page_state(NR_ISOLATED_FILE),
5250 		global_node_page_state(NR_UNEVICTABLE),
5251 		global_node_page_state(NR_FILE_DIRTY),
5252 		global_node_page_state(NR_WRITEBACK),
5253 		global_node_page_state(NR_UNSTABLE_NFS),
5254 		global_node_page_state(NR_SLAB_RECLAIMABLE),
5255 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5256 		global_node_page_state(NR_FILE_MAPPED),
5257 		global_node_page_state(NR_SHMEM),
5258 		global_zone_page_state(NR_PAGETABLE),
5259 		global_zone_page_state(NR_BOUNCE),
5260 		global_zone_page_state(NR_FREE_PAGES),
5261 		free_pcp,
5262 		global_zone_page_state(NR_FREE_CMA_PAGES));
5263 
5264 	for_each_online_pgdat(pgdat) {
5265 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5266 			continue;
5267 
5268 		printk("Node %d"
5269 			" active_anon:%lukB"
5270 			" inactive_anon:%lukB"
5271 			" active_file:%lukB"
5272 			" inactive_file:%lukB"
5273 			" unevictable:%lukB"
5274 			" isolated(anon):%lukB"
5275 			" isolated(file):%lukB"
5276 			" mapped:%lukB"
5277 			" dirty:%lukB"
5278 			" writeback:%lukB"
5279 			" shmem:%lukB"
5280 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5281 			" shmem_thp: %lukB"
5282 			" shmem_pmdmapped: %lukB"
5283 			" anon_thp: %lukB"
5284 #endif
5285 			" writeback_tmp:%lukB"
5286 			" unstable:%lukB"
5287 			" all_unreclaimable? %s"
5288 			"\n",
5289 			pgdat->node_id,
5290 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5291 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5292 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5293 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5294 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5295 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5296 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5297 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5298 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5299 			K(node_page_state(pgdat, NR_WRITEBACK)),
5300 			K(node_page_state(pgdat, NR_SHMEM)),
5301 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5302 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5303 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5304 					* HPAGE_PMD_NR),
5305 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5306 #endif
5307 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5308 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5309 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5310 				"yes" : "no");
5311 	}
5312 
5313 	for_each_populated_zone(zone) {
5314 		int i;
5315 
5316 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5317 			continue;
5318 
5319 		free_pcp = 0;
5320 		for_each_online_cpu(cpu)
5321 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5322 
5323 		show_node(zone);
5324 		printk(KERN_CONT
5325 			"%s"
5326 			" free:%lukB"
5327 			" min:%lukB"
5328 			" low:%lukB"
5329 			" high:%lukB"
5330 			" active_anon:%lukB"
5331 			" inactive_anon:%lukB"
5332 			" active_file:%lukB"
5333 			" inactive_file:%lukB"
5334 			" unevictable:%lukB"
5335 			" writepending:%lukB"
5336 			" present:%lukB"
5337 			" managed:%lukB"
5338 			" mlocked:%lukB"
5339 			" kernel_stack:%lukB"
5340 			" pagetables:%lukB"
5341 			" bounce:%lukB"
5342 			" free_pcp:%lukB"
5343 			" local_pcp:%ukB"
5344 			" free_cma:%lukB"
5345 			"\n",
5346 			zone->name,
5347 			K(zone_page_state(zone, NR_FREE_PAGES)),
5348 			K(min_wmark_pages(zone)),
5349 			K(low_wmark_pages(zone)),
5350 			K(high_wmark_pages(zone)),
5351 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5352 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5353 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5354 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5355 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5356 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5357 			K(zone->present_pages),
5358 			K(zone_managed_pages(zone)),
5359 			K(zone_page_state(zone, NR_MLOCK)),
5360 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5361 			K(zone_page_state(zone, NR_PAGETABLE)),
5362 			K(zone_page_state(zone, NR_BOUNCE)),
5363 			K(free_pcp),
5364 			K(this_cpu_read(zone->pageset->pcp.count)),
5365 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5366 		printk("lowmem_reserve[]:");
5367 		for (i = 0; i < MAX_NR_ZONES; i++)
5368 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5369 		printk(KERN_CONT "\n");
5370 	}
5371 
5372 	for_each_populated_zone(zone) {
5373 		unsigned int order;
5374 		unsigned long nr[MAX_ORDER], flags, total = 0;
5375 		unsigned char types[MAX_ORDER];
5376 
5377 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5378 			continue;
5379 		show_node(zone);
5380 		printk(KERN_CONT "%s: ", zone->name);
5381 
5382 		spin_lock_irqsave(&zone->lock, flags);
5383 		for (order = 0; order < MAX_ORDER; order++) {
5384 			struct free_area *area = &zone->free_area[order];
5385 			int type;
5386 
5387 			nr[order] = area->nr_free;
5388 			total += nr[order] << order;
5389 
5390 			types[order] = 0;
5391 			for (type = 0; type < MIGRATE_TYPES; type++) {
5392 				if (!free_area_empty(area, type))
5393 					types[order] |= 1 << type;
5394 			}
5395 		}
5396 		spin_unlock_irqrestore(&zone->lock, flags);
5397 		for (order = 0; order < MAX_ORDER; order++) {
5398 			printk(KERN_CONT "%lu*%lukB ",
5399 			       nr[order], K(1UL) << order);
5400 			if (nr[order])
5401 				show_migration_types(types[order]);
5402 		}
5403 		printk(KERN_CONT "= %lukB\n", K(total));
5404 	}
5405 
5406 	hugetlb_show_meminfo();
5407 
5408 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5409 
5410 	show_swap_cache_info();
5411 }
5412 
5413 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5414 {
5415 	zoneref->zone = zone;
5416 	zoneref->zone_idx = zone_idx(zone);
5417 }
5418 
5419 /*
5420  * Builds allocation fallback zone lists.
5421  *
5422  * Add all populated zones of a node to the zonelist.
5423  */
5424 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5425 {
5426 	struct zone *zone;
5427 	enum zone_type zone_type = MAX_NR_ZONES;
5428 	int nr_zones = 0;
5429 
5430 	do {
5431 		zone_type--;
5432 		zone = pgdat->node_zones + zone_type;
5433 		if (managed_zone(zone)) {
5434 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5435 			check_highest_zone(zone_type);
5436 		}
5437 	} while (zone_type);
5438 
5439 	return nr_zones;
5440 }
5441 
5442 #ifdef CONFIG_NUMA
5443 
5444 static int __parse_numa_zonelist_order(char *s)
5445 {
5446 	/*
5447 	 * We used to support different zonlists modes but they turned
5448 	 * out to be just not useful. Let's keep the warning in place
5449 	 * if somebody still use the cmd line parameter so that we do
5450 	 * not fail it silently
5451 	 */
5452 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5453 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5454 		return -EINVAL;
5455 	}
5456 	return 0;
5457 }
5458 
5459 static __init int setup_numa_zonelist_order(char *s)
5460 {
5461 	if (!s)
5462 		return 0;
5463 
5464 	return __parse_numa_zonelist_order(s);
5465 }
5466 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5467 
5468 char numa_zonelist_order[] = "Node";
5469 
5470 /*
5471  * sysctl handler for numa_zonelist_order
5472  */
5473 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5474 		void __user *buffer, size_t *length,
5475 		loff_t *ppos)
5476 {
5477 	char *str;
5478 	int ret;
5479 
5480 	if (!write)
5481 		return proc_dostring(table, write, buffer, length, ppos);
5482 	str = memdup_user_nul(buffer, 16);
5483 	if (IS_ERR(str))
5484 		return PTR_ERR(str);
5485 
5486 	ret = __parse_numa_zonelist_order(str);
5487 	kfree(str);
5488 	return ret;
5489 }
5490 
5491 
5492 #define MAX_NODE_LOAD (nr_online_nodes)
5493 static int node_load[MAX_NUMNODES];
5494 
5495 /**
5496  * find_next_best_node - find the next node that should appear in a given node's fallback list
5497  * @node: node whose fallback list we're appending
5498  * @used_node_mask: nodemask_t of already used nodes
5499  *
5500  * We use a number of factors to determine which is the next node that should
5501  * appear on a given node's fallback list.  The node should not have appeared
5502  * already in @node's fallback list, and it should be the next closest node
5503  * according to the distance array (which contains arbitrary distance values
5504  * from each node to each node in the system), and should also prefer nodes
5505  * with no CPUs, since presumably they'll have very little allocation pressure
5506  * on them otherwise.
5507  *
5508  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5509  */
5510 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5511 {
5512 	int n, val;
5513 	int min_val = INT_MAX;
5514 	int best_node = NUMA_NO_NODE;
5515 	const struct cpumask *tmp = cpumask_of_node(0);
5516 
5517 	/* Use the local node if we haven't already */
5518 	if (!node_isset(node, *used_node_mask)) {
5519 		node_set(node, *used_node_mask);
5520 		return node;
5521 	}
5522 
5523 	for_each_node_state(n, N_MEMORY) {
5524 
5525 		/* Don't want a node to appear more than once */
5526 		if (node_isset(n, *used_node_mask))
5527 			continue;
5528 
5529 		/* Use the distance array to find the distance */
5530 		val = node_distance(node, n);
5531 
5532 		/* Penalize nodes under us ("prefer the next node") */
5533 		val += (n < node);
5534 
5535 		/* Give preference to headless and unused nodes */
5536 		tmp = cpumask_of_node(n);
5537 		if (!cpumask_empty(tmp))
5538 			val += PENALTY_FOR_NODE_WITH_CPUS;
5539 
5540 		/* Slight preference for less loaded node */
5541 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5542 		val += node_load[n];
5543 
5544 		if (val < min_val) {
5545 			min_val = val;
5546 			best_node = n;
5547 		}
5548 	}
5549 
5550 	if (best_node >= 0)
5551 		node_set(best_node, *used_node_mask);
5552 
5553 	return best_node;
5554 }
5555 
5556 
5557 /*
5558  * Build zonelists ordered by node and zones within node.
5559  * This results in maximum locality--normal zone overflows into local
5560  * DMA zone, if any--but risks exhausting DMA zone.
5561  */
5562 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5563 		unsigned nr_nodes)
5564 {
5565 	struct zoneref *zonerefs;
5566 	int i;
5567 
5568 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5569 
5570 	for (i = 0; i < nr_nodes; i++) {
5571 		int nr_zones;
5572 
5573 		pg_data_t *node = NODE_DATA(node_order[i]);
5574 
5575 		nr_zones = build_zonerefs_node(node, zonerefs);
5576 		zonerefs += nr_zones;
5577 	}
5578 	zonerefs->zone = NULL;
5579 	zonerefs->zone_idx = 0;
5580 }
5581 
5582 /*
5583  * Build gfp_thisnode zonelists
5584  */
5585 static void build_thisnode_zonelists(pg_data_t *pgdat)
5586 {
5587 	struct zoneref *zonerefs;
5588 	int nr_zones;
5589 
5590 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5591 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5592 	zonerefs += nr_zones;
5593 	zonerefs->zone = NULL;
5594 	zonerefs->zone_idx = 0;
5595 }
5596 
5597 /*
5598  * Build zonelists ordered by zone and nodes within zones.
5599  * This results in conserving DMA zone[s] until all Normal memory is
5600  * exhausted, but results in overflowing to remote node while memory
5601  * may still exist in local DMA zone.
5602  */
5603 
5604 static void build_zonelists(pg_data_t *pgdat)
5605 {
5606 	static int node_order[MAX_NUMNODES];
5607 	int node, load, nr_nodes = 0;
5608 	nodemask_t used_mask;
5609 	int local_node, prev_node;
5610 
5611 	/* NUMA-aware ordering of nodes */
5612 	local_node = pgdat->node_id;
5613 	load = nr_online_nodes;
5614 	prev_node = local_node;
5615 	nodes_clear(used_mask);
5616 
5617 	memset(node_order, 0, sizeof(node_order));
5618 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5619 		/*
5620 		 * We don't want to pressure a particular node.
5621 		 * So adding penalty to the first node in same
5622 		 * distance group to make it round-robin.
5623 		 */
5624 		if (node_distance(local_node, node) !=
5625 		    node_distance(local_node, prev_node))
5626 			node_load[node] = load;
5627 
5628 		node_order[nr_nodes++] = node;
5629 		prev_node = node;
5630 		load--;
5631 	}
5632 
5633 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5634 	build_thisnode_zonelists(pgdat);
5635 }
5636 
5637 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5638 /*
5639  * Return node id of node used for "local" allocations.
5640  * I.e., first node id of first zone in arg node's generic zonelist.
5641  * Used for initializing percpu 'numa_mem', which is used primarily
5642  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5643  */
5644 int local_memory_node(int node)
5645 {
5646 	struct zoneref *z;
5647 
5648 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5649 				   gfp_zone(GFP_KERNEL),
5650 				   NULL);
5651 	return zone_to_nid(z->zone);
5652 }
5653 #endif
5654 
5655 static void setup_min_unmapped_ratio(void);
5656 static void setup_min_slab_ratio(void);
5657 #else	/* CONFIG_NUMA */
5658 
5659 static void build_zonelists(pg_data_t *pgdat)
5660 {
5661 	int node, local_node;
5662 	struct zoneref *zonerefs;
5663 	int nr_zones;
5664 
5665 	local_node = pgdat->node_id;
5666 
5667 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5668 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5669 	zonerefs += nr_zones;
5670 
5671 	/*
5672 	 * Now we build the zonelist so that it contains the zones
5673 	 * of all the other nodes.
5674 	 * We don't want to pressure a particular node, so when
5675 	 * building the zones for node N, we make sure that the
5676 	 * zones coming right after the local ones are those from
5677 	 * node N+1 (modulo N)
5678 	 */
5679 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5680 		if (!node_online(node))
5681 			continue;
5682 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5683 		zonerefs += nr_zones;
5684 	}
5685 	for (node = 0; node < local_node; node++) {
5686 		if (!node_online(node))
5687 			continue;
5688 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5689 		zonerefs += nr_zones;
5690 	}
5691 
5692 	zonerefs->zone = NULL;
5693 	zonerefs->zone_idx = 0;
5694 }
5695 
5696 #endif	/* CONFIG_NUMA */
5697 
5698 /*
5699  * Boot pageset table. One per cpu which is going to be used for all
5700  * zones and all nodes. The parameters will be set in such a way
5701  * that an item put on a list will immediately be handed over to
5702  * the buddy list. This is safe since pageset manipulation is done
5703  * with interrupts disabled.
5704  *
5705  * The boot_pagesets must be kept even after bootup is complete for
5706  * unused processors and/or zones. They do play a role for bootstrapping
5707  * hotplugged processors.
5708  *
5709  * zoneinfo_show() and maybe other functions do
5710  * not check if the processor is online before following the pageset pointer.
5711  * Other parts of the kernel may not check if the zone is available.
5712  */
5713 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5714 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5715 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5716 
5717 static void __build_all_zonelists(void *data)
5718 {
5719 	int nid;
5720 	int __maybe_unused cpu;
5721 	pg_data_t *self = data;
5722 	static DEFINE_SPINLOCK(lock);
5723 
5724 	spin_lock(&lock);
5725 
5726 #ifdef CONFIG_NUMA
5727 	memset(node_load, 0, sizeof(node_load));
5728 #endif
5729 
5730 	/*
5731 	 * This node is hotadded and no memory is yet present.   So just
5732 	 * building zonelists is fine - no need to touch other nodes.
5733 	 */
5734 	if (self && !node_online(self->node_id)) {
5735 		build_zonelists(self);
5736 	} else {
5737 		for_each_online_node(nid) {
5738 			pg_data_t *pgdat = NODE_DATA(nid);
5739 
5740 			build_zonelists(pgdat);
5741 		}
5742 
5743 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5744 		/*
5745 		 * We now know the "local memory node" for each node--
5746 		 * i.e., the node of the first zone in the generic zonelist.
5747 		 * Set up numa_mem percpu variable for on-line cpus.  During
5748 		 * boot, only the boot cpu should be on-line;  we'll init the
5749 		 * secondary cpus' numa_mem as they come on-line.  During
5750 		 * node/memory hotplug, we'll fixup all on-line cpus.
5751 		 */
5752 		for_each_online_cpu(cpu)
5753 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5754 #endif
5755 	}
5756 
5757 	spin_unlock(&lock);
5758 }
5759 
5760 static noinline void __init
5761 build_all_zonelists_init(void)
5762 {
5763 	int cpu;
5764 
5765 	__build_all_zonelists(NULL);
5766 
5767 	/*
5768 	 * Initialize the boot_pagesets that are going to be used
5769 	 * for bootstrapping processors. The real pagesets for
5770 	 * each zone will be allocated later when the per cpu
5771 	 * allocator is available.
5772 	 *
5773 	 * boot_pagesets are used also for bootstrapping offline
5774 	 * cpus if the system is already booted because the pagesets
5775 	 * are needed to initialize allocators on a specific cpu too.
5776 	 * F.e. the percpu allocator needs the page allocator which
5777 	 * needs the percpu allocator in order to allocate its pagesets
5778 	 * (a chicken-egg dilemma).
5779 	 */
5780 	for_each_possible_cpu(cpu)
5781 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5782 
5783 	mminit_verify_zonelist();
5784 	cpuset_init_current_mems_allowed();
5785 }
5786 
5787 /*
5788  * unless system_state == SYSTEM_BOOTING.
5789  *
5790  * __ref due to call of __init annotated helper build_all_zonelists_init
5791  * [protected by SYSTEM_BOOTING].
5792  */
5793 void __ref build_all_zonelists(pg_data_t *pgdat)
5794 {
5795 	if (system_state == SYSTEM_BOOTING) {
5796 		build_all_zonelists_init();
5797 	} else {
5798 		__build_all_zonelists(pgdat);
5799 		/* cpuset refresh routine should be here */
5800 	}
5801 	vm_total_pages = nr_free_pagecache_pages();
5802 	/*
5803 	 * Disable grouping by mobility if the number of pages in the
5804 	 * system is too low to allow the mechanism to work. It would be
5805 	 * more accurate, but expensive to check per-zone. This check is
5806 	 * made on memory-hotadd so a system can start with mobility
5807 	 * disabled and enable it later
5808 	 */
5809 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5810 		page_group_by_mobility_disabled = 1;
5811 	else
5812 		page_group_by_mobility_disabled = 0;
5813 
5814 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5815 		nr_online_nodes,
5816 		page_group_by_mobility_disabled ? "off" : "on",
5817 		vm_total_pages);
5818 #ifdef CONFIG_NUMA
5819 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5820 #endif
5821 }
5822 
5823 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5824 static bool __meminit
5825 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5826 {
5827 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5828 	static struct memblock_region *r;
5829 
5830 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5831 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5832 			for_each_memblock(memory, r) {
5833 				if (*pfn < memblock_region_memory_end_pfn(r))
5834 					break;
5835 			}
5836 		}
5837 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5838 		    memblock_is_mirror(r)) {
5839 			*pfn = memblock_region_memory_end_pfn(r);
5840 			return true;
5841 		}
5842 	}
5843 #endif
5844 	return false;
5845 }
5846 
5847 /*
5848  * Initially all pages are reserved - free ones are freed
5849  * up by memblock_free_all() once the early boot process is
5850  * done. Non-atomic initialization, single-pass.
5851  */
5852 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5853 		unsigned long start_pfn, enum memmap_context context,
5854 		struct vmem_altmap *altmap)
5855 {
5856 	unsigned long pfn, end_pfn = start_pfn + size;
5857 	struct page *page;
5858 
5859 	if (highest_memmap_pfn < end_pfn - 1)
5860 		highest_memmap_pfn = end_pfn - 1;
5861 
5862 #ifdef CONFIG_ZONE_DEVICE
5863 	/*
5864 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5865 	 * memory. We limit the total number of pages to initialize to just
5866 	 * those that might contain the memory mapping. We will defer the
5867 	 * ZONE_DEVICE page initialization until after we have released
5868 	 * the hotplug lock.
5869 	 */
5870 	if (zone == ZONE_DEVICE) {
5871 		if (!altmap)
5872 			return;
5873 
5874 		if (start_pfn == altmap->base_pfn)
5875 			start_pfn += altmap->reserve;
5876 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5877 	}
5878 #endif
5879 
5880 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5881 		/*
5882 		 * There can be holes in boot-time mem_map[]s handed to this
5883 		 * function.  They do not exist on hotplugged memory.
5884 		 */
5885 		if (context == MEMMAP_EARLY) {
5886 			if (!early_pfn_valid(pfn))
5887 				continue;
5888 			if (!early_pfn_in_nid(pfn, nid))
5889 				continue;
5890 			if (overlap_memmap_init(zone, &pfn))
5891 				continue;
5892 			if (defer_init(nid, pfn, end_pfn))
5893 				break;
5894 		}
5895 
5896 		page = pfn_to_page(pfn);
5897 		__init_single_page(page, pfn, zone, nid);
5898 		if (context == MEMMAP_HOTPLUG)
5899 			__SetPageReserved(page);
5900 
5901 		/*
5902 		 * Mark the block movable so that blocks are reserved for
5903 		 * movable at startup. This will force kernel allocations
5904 		 * to reserve their blocks rather than leaking throughout
5905 		 * the address space during boot when many long-lived
5906 		 * kernel allocations are made.
5907 		 *
5908 		 * bitmap is created for zone's valid pfn range. but memmap
5909 		 * can be created for invalid pages (for alignment)
5910 		 * check here not to call set_pageblock_migratetype() against
5911 		 * pfn out of zone.
5912 		 */
5913 		if (!(pfn & (pageblock_nr_pages - 1))) {
5914 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5915 			cond_resched();
5916 		}
5917 	}
5918 }
5919 
5920 #ifdef CONFIG_ZONE_DEVICE
5921 void __ref memmap_init_zone_device(struct zone *zone,
5922 				   unsigned long start_pfn,
5923 				   unsigned long size,
5924 				   struct dev_pagemap *pgmap)
5925 {
5926 	unsigned long pfn, end_pfn = start_pfn + size;
5927 	struct pglist_data *pgdat = zone->zone_pgdat;
5928 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5929 	unsigned long zone_idx = zone_idx(zone);
5930 	unsigned long start = jiffies;
5931 	int nid = pgdat->node_id;
5932 
5933 	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5934 		return;
5935 
5936 	/*
5937 	 * The call to memmap_init_zone should have already taken care
5938 	 * of the pages reserved for the memmap, so we can just jump to
5939 	 * the end of that region and start processing the device pages.
5940 	 */
5941 	if (altmap) {
5942 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5943 		size = end_pfn - start_pfn;
5944 	}
5945 
5946 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5947 		struct page *page = pfn_to_page(pfn);
5948 
5949 		__init_single_page(page, pfn, zone_idx, nid);
5950 
5951 		/*
5952 		 * Mark page reserved as it will need to wait for onlining
5953 		 * phase for it to be fully associated with a zone.
5954 		 *
5955 		 * We can use the non-atomic __set_bit operation for setting
5956 		 * the flag as we are still initializing the pages.
5957 		 */
5958 		__SetPageReserved(page);
5959 
5960 		/*
5961 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5962 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
5963 		 * ever freed or placed on a driver-private list.
5964 		 */
5965 		page->pgmap = pgmap;
5966 		page->zone_device_data = NULL;
5967 
5968 		/*
5969 		 * Mark the block movable so that blocks are reserved for
5970 		 * movable at startup. This will force kernel allocations
5971 		 * to reserve their blocks rather than leaking throughout
5972 		 * the address space during boot when many long-lived
5973 		 * kernel allocations are made.
5974 		 *
5975 		 * bitmap is created for zone's valid pfn range. but memmap
5976 		 * can be created for invalid pages (for alignment)
5977 		 * check here not to call set_pageblock_migratetype() against
5978 		 * pfn out of zone.
5979 		 *
5980 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5981 		 * because this is done early in sparse_add_one_section
5982 		 */
5983 		if (!(pfn & (pageblock_nr_pages - 1))) {
5984 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5985 			cond_resched();
5986 		}
5987 	}
5988 
5989 	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5990 		size, jiffies_to_msecs(jiffies - start));
5991 }
5992 
5993 #endif
5994 static void __meminit zone_init_free_lists(struct zone *zone)
5995 {
5996 	unsigned int order, t;
5997 	for_each_migratetype_order(order, t) {
5998 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5999 		zone->free_area[order].nr_free = 0;
6000 	}
6001 }
6002 
6003 void __meminit __weak memmap_init(unsigned long size, int nid,
6004 				  unsigned long zone, unsigned long start_pfn)
6005 {
6006 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6007 }
6008 
6009 static int zone_batchsize(struct zone *zone)
6010 {
6011 #ifdef CONFIG_MMU
6012 	int batch;
6013 
6014 	/*
6015 	 * The per-cpu-pages pools are set to around 1000th of the
6016 	 * size of the zone.
6017 	 */
6018 	batch = zone_managed_pages(zone) / 1024;
6019 	/* But no more than a meg. */
6020 	if (batch * PAGE_SIZE > 1024 * 1024)
6021 		batch = (1024 * 1024) / PAGE_SIZE;
6022 	batch /= 4;		/* We effectively *= 4 below */
6023 	if (batch < 1)
6024 		batch = 1;
6025 
6026 	/*
6027 	 * Clamp the batch to a 2^n - 1 value. Having a power
6028 	 * of 2 value was found to be more likely to have
6029 	 * suboptimal cache aliasing properties in some cases.
6030 	 *
6031 	 * For example if 2 tasks are alternately allocating
6032 	 * batches of pages, one task can end up with a lot
6033 	 * of pages of one half of the possible page colors
6034 	 * and the other with pages of the other colors.
6035 	 */
6036 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6037 
6038 	return batch;
6039 
6040 #else
6041 	/* The deferral and batching of frees should be suppressed under NOMMU
6042 	 * conditions.
6043 	 *
6044 	 * The problem is that NOMMU needs to be able to allocate large chunks
6045 	 * of contiguous memory as there's no hardware page translation to
6046 	 * assemble apparent contiguous memory from discontiguous pages.
6047 	 *
6048 	 * Queueing large contiguous runs of pages for batching, however,
6049 	 * causes the pages to actually be freed in smaller chunks.  As there
6050 	 * can be a significant delay between the individual batches being
6051 	 * recycled, this leads to the once large chunks of space being
6052 	 * fragmented and becoming unavailable for high-order allocations.
6053 	 */
6054 	return 0;
6055 #endif
6056 }
6057 
6058 /*
6059  * pcp->high and pcp->batch values are related and dependent on one another:
6060  * ->batch must never be higher then ->high.
6061  * The following function updates them in a safe manner without read side
6062  * locking.
6063  *
6064  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6065  * those fields changing asynchronously (acording the the above rule).
6066  *
6067  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6068  * outside of boot time (or some other assurance that no concurrent updaters
6069  * exist).
6070  */
6071 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6072 		unsigned long batch)
6073 {
6074        /* start with a fail safe value for batch */
6075 	pcp->batch = 1;
6076 	smp_wmb();
6077 
6078        /* Update high, then batch, in order */
6079 	pcp->high = high;
6080 	smp_wmb();
6081 
6082 	pcp->batch = batch;
6083 }
6084 
6085 /* a companion to pageset_set_high() */
6086 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6087 {
6088 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6089 }
6090 
6091 static void pageset_init(struct per_cpu_pageset *p)
6092 {
6093 	struct per_cpu_pages *pcp;
6094 	int migratetype;
6095 
6096 	memset(p, 0, sizeof(*p));
6097 
6098 	pcp = &p->pcp;
6099 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6100 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6101 }
6102 
6103 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6104 {
6105 	pageset_init(p);
6106 	pageset_set_batch(p, batch);
6107 }
6108 
6109 /*
6110  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6111  * to the value high for the pageset p.
6112  */
6113 static void pageset_set_high(struct per_cpu_pageset *p,
6114 				unsigned long high)
6115 {
6116 	unsigned long batch = max(1UL, high / 4);
6117 	if ((high / 4) > (PAGE_SHIFT * 8))
6118 		batch = PAGE_SHIFT * 8;
6119 
6120 	pageset_update(&p->pcp, high, batch);
6121 }
6122 
6123 static void pageset_set_high_and_batch(struct zone *zone,
6124 				       struct per_cpu_pageset *pcp)
6125 {
6126 	if (percpu_pagelist_fraction)
6127 		pageset_set_high(pcp,
6128 			(zone_managed_pages(zone) /
6129 				percpu_pagelist_fraction));
6130 	else
6131 		pageset_set_batch(pcp, zone_batchsize(zone));
6132 }
6133 
6134 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6135 {
6136 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6137 
6138 	pageset_init(pcp);
6139 	pageset_set_high_and_batch(zone, pcp);
6140 }
6141 
6142 void __meminit setup_zone_pageset(struct zone *zone)
6143 {
6144 	int cpu;
6145 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6146 	for_each_possible_cpu(cpu)
6147 		zone_pageset_init(zone, cpu);
6148 }
6149 
6150 /*
6151  * Allocate per cpu pagesets and initialize them.
6152  * Before this call only boot pagesets were available.
6153  */
6154 void __init setup_per_cpu_pageset(void)
6155 {
6156 	struct pglist_data *pgdat;
6157 	struct zone *zone;
6158 
6159 	for_each_populated_zone(zone)
6160 		setup_zone_pageset(zone);
6161 
6162 	for_each_online_pgdat(pgdat)
6163 		pgdat->per_cpu_nodestats =
6164 			alloc_percpu(struct per_cpu_nodestat);
6165 }
6166 
6167 static __meminit void zone_pcp_init(struct zone *zone)
6168 {
6169 	/*
6170 	 * per cpu subsystem is not up at this point. The following code
6171 	 * relies on the ability of the linker to provide the
6172 	 * offset of a (static) per cpu variable into the per cpu area.
6173 	 */
6174 	zone->pageset = &boot_pageset;
6175 
6176 	if (populated_zone(zone))
6177 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6178 			zone->name, zone->present_pages,
6179 					 zone_batchsize(zone));
6180 }
6181 
6182 void __meminit init_currently_empty_zone(struct zone *zone,
6183 					unsigned long zone_start_pfn,
6184 					unsigned long size)
6185 {
6186 	struct pglist_data *pgdat = zone->zone_pgdat;
6187 	int zone_idx = zone_idx(zone) + 1;
6188 
6189 	if (zone_idx > pgdat->nr_zones)
6190 		pgdat->nr_zones = zone_idx;
6191 
6192 	zone->zone_start_pfn = zone_start_pfn;
6193 
6194 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6195 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6196 			pgdat->node_id,
6197 			(unsigned long)zone_idx(zone),
6198 			zone_start_pfn, (zone_start_pfn + size));
6199 
6200 	zone_init_free_lists(zone);
6201 	zone->initialized = 1;
6202 }
6203 
6204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6205 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6206 
6207 /*
6208  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6209  */
6210 int __meminit __early_pfn_to_nid(unsigned long pfn,
6211 					struct mminit_pfnnid_cache *state)
6212 {
6213 	unsigned long start_pfn, end_pfn;
6214 	int nid;
6215 
6216 	if (state->last_start <= pfn && pfn < state->last_end)
6217 		return state->last_nid;
6218 
6219 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6220 	if (nid != NUMA_NO_NODE) {
6221 		state->last_start = start_pfn;
6222 		state->last_end = end_pfn;
6223 		state->last_nid = nid;
6224 	}
6225 
6226 	return nid;
6227 }
6228 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6229 
6230 /**
6231  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6232  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6233  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6234  *
6235  * If an architecture guarantees that all ranges registered contain no holes
6236  * and may be freed, this this function may be used instead of calling
6237  * memblock_free_early_nid() manually.
6238  */
6239 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6240 {
6241 	unsigned long start_pfn, end_pfn;
6242 	int i, this_nid;
6243 
6244 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6245 		start_pfn = min(start_pfn, max_low_pfn);
6246 		end_pfn = min(end_pfn, max_low_pfn);
6247 
6248 		if (start_pfn < end_pfn)
6249 			memblock_free_early_nid(PFN_PHYS(start_pfn),
6250 					(end_pfn - start_pfn) << PAGE_SHIFT,
6251 					this_nid);
6252 	}
6253 }
6254 
6255 /**
6256  * sparse_memory_present_with_active_regions - Call memory_present for each active range
6257  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6258  *
6259  * If an architecture guarantees that all ranges registered contain no holes and may
6260  * be freed, this function may be used instead of calling memory_present() manually.
6261  */
6262 void __init sparse_memory_present_with_active_regions(int nid)
6263 {
6264 	unsigned long start_pfn, end_pfn;
6265 	int i, this_nid;
6266 
6267 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6268 		memory_present(this_nid, start_pfn, end_pfn);
6269 }
6270 
6271 /**
6272  * get_pfn_range_for_nid - Return the start and end page frames for a node
6273  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6274  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6275  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6276  *
6277  * It returns the start and end page frame of a node based on information
6278  * provided by memblock_set_node(). If called for a node
6279  * with no available memory, a warning is printed and the start and end
6280  * PFNs will be 0.
6281  */
6282 void __init get_pfn_range_for_nid(unsigned int nid,
6283 			unsigned long *start_pfn, unsigned long *end_pfn)
6284 {
6285 	unsigned long this_start_pfn, this_end_pfn;
6286 	int i;
6287 
6288 	*start_pfn = -1UL;
6289 	*end_pfn = 0;
6290 
6291 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6292 		*start_pfn = min(*start_pfn, this_start_pfn);
6293 		*end_pfn = max(*end_pfn, this_end_pfn);
6294 	}
6295 
6296 	if (*start_pfn == -1UL)
6297 		*start_pfn = 0;
6298 }
6299 
6300 /*
6301  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6302  * assumption is made that zones within a node are ordered in monotonic
6303  * increasing memory addresses so that the "highest" populated zone is used
6304  */
6305 static void __init find_usable_zone_for_movable(void)
6306 {
6307 	int zone_index;
6308 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6309 		if (zone_index == ZONE_MOVABLE)
6310 			continue;
6311 
6312 		if (arch_zone_highest_possible_pfn[zone_index] >
6313 				arch_zone_lowest_possible_pfn[zone_index])
6314 			break;
6315 	}
6316 
6317 	VM_BUG_ON(zone_index == -1);
6318 	movable_zone = zone_index;
6319 }
6320 
6321 /*
6322  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6323  * because it is sized independent of architecture. Unlike the other zones,
6324  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6325  * in each node depending on the size of each node and how evenly kernelcore
6326  * is distributed. This helper function adjusts the zone ranges
6327  * provided by the architecture for a given node by using the end of the
6328  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6329  * zones within a node are in order of monotonic increases memory addresses
6330  */
6331 static void __init adjust_zone_range_for_zone_movable(int nid,
6332 					unsigned long zone_type,
6333 					unsigned long node_start_pfn,
6334 					unsigned long node_end_pfn,
6335 					unsigned long *zone_start_pfn,
6336 					unsigned long *zone_end_pfn)
6337 {
6338 	/* Only adjust if ZONE_MOVABLE is on this node */
6339 	if (zone_movable_pfn[nid]) {
6340 		/* Size ZONE_MOVABLE */
6341 		if (zone_type == ZONE_MOVABLE) {
6342 			*zone_start_pfn = zone_movable_pfn[nid];
6343 			*zone_end_pfn = min(node_end_pfn,
6344 				arch_zone_highest_possible_pfn[movable_zone]);
6345 
6346 		/* Adjust for ZONE_MOVABLE starting within this range */
6347 		} else if (!mirrored_kernelcore &&
6348 			*zone_start_pfn < zone_movable_pfn[nid] &&
6349 			*zone_end_pfn > zone_movable_pfn[nid]) {
6350 			*zone_end_pfn = zone_movable_pfn[nid];
6351 
6352 		/* Check if this whole range is within ZONE_MOVABLE */
6353 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6354 			*zone_start_pfn = *zone_end_pfn;
6355 	}
6356 }
6357 
6358 /*
6359  * Return the number of pages a zone spans in a node, including holes
6360  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6361  */
6362 static unsigned long __init zone_spanned_pages_in_node(int nid,
6363 					unsigned long zone_type,
6364 					unsigned long node_start_pfn,
6365 					unsigned long node_end_pfn,
6366 					unsigned long *zone_start_pfn,
6367 					unsigned long *zone_end_pfn,
6368 					unsigned long *ignored)
6369 {
6370 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6371 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6372 	/* When hotadd a new node from cpu_up(), the node should be empty */
6373 	if (!node_start_pfn && !node_end_pfn)
6374 		return 0;
6375 
6376 	/* Get the start and end of the zone */
6377 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6378 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6379 	adjust_zone_range_for_zone_movable(nid, zone_type,
6380 				node_start_pfn, node_end_pfn,
6381 				zone_start_pfn, zone_end_pfn);
6382 
6383 	/* Check that this node has pages within the zone's required range */
6384 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6385 		return 0;
6386 
6387 	/* Move the zone boundaries inside the node if necessary */
6388 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6389 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6390 
6391 	/* Return the spanned pages */
6392 	return *zone_end_pfn - *zone_start_pfn;
6393 }
6394 
6395 /*
6396  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6397  * then all holes in the requested range will be accounted for.
6398  */
6399 unsigned long __init __absent_pages_in_range(int nid,
6400 				unsigned long range_start_pfn,
6401 				unsigned long range_end_pfn)
6402 {
6403 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6404 	unsigned long start_pfn, end_pfn;
6405 	int i;
6406 
6407 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6408 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6409 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6410 		nr_absent -= end_pfn - start_pfn;
6411 	}
6412 	return nr_absent;
6413 }
6414 
6415 /**
6416  * absent_pages_in_range - Return number of page frames in holes within a range
6417  * @start_pfn: The start PFN to start searching for holes
6418  * @end_pfn: The end PFN to stop searching for holes
6419  *
6420  * Return: the number of pages frames in memory holes within a range.
6421  */
6422 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6423 							unsigned long end_pfn)
6424 {
6425 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6426 }
6427 
6428 /* Return the number of page frames in holes in a zone on a node */
6429 static unsigned long __init zone_absent_pages_in_node(int nid,
6430 					unsigned long zone_type,
6431 					unsigned long node_start_pfn,
6432 					unsigned long node_end_pfn,
6433 					unsigned long *ignored)
6434 {
6435 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6436 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6437 	unsigned long zone_start_pfn, zone_end_pfn;
6438 	unsigned long nr_absent;
6439 
6440 	/* When hotadd a new node from cpu_up(), the node should be empty */
6441 	if (!node_start_pfn && !node_end_pfn)
6442 		return 0;
6443 
6444 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6445 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6446 
6447 	adjust_zone_range_for_zone_movable(nid, zone_type,
6448 			node_start_pfn, node_end_pfn,
6449 			&zone_start_pfn, &zone_end_pfn);
6450 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6451 
6452 	/*
6453 	 * ZONE_MOVABLE handling.
6454 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6455 	 * and vice versa.
6456 	 */
6457 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6458 		unsigned long start_pfn, end_pfn;
6459 		struct memblock_region *r;
6460 
6461 		for_each_memblock(memory, r) {
6462 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6463 					  zone_start_pfn, zone_end_pfn);
6464 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6465 					zone_start_pfn, zone_end_pfn);
6466 
6467 			if (zone_type == ZONE_MOVABLE &&
6468 			    memblock_is_mirror(r))
6469 				nr_absent += end_pfn - start_pfn;
6470 
6471 			if (zone_type == ZONE_NORMAL &&
6472 			    !memblock_is_mirror(r))
6473 				nr_absent += end_pfn - start_pfn;
6474 		}
6475 	}
6476 
6477 	return nr_absent;
6478 }
6479 
6480 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6481 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6482 					unsigned long zone_type,
6483 					unsigned long node_start_pfn,
6484 					unsigned long node_end_pfn,
6485 					unsigned long *zone_start_pfn,
6486 					unsigned long *zone_end_pfn,
6487 					unsigned long *zones_size)
6488 {
6489 	unsigned int zone;
6490 
6491 	*zone_start_pfn = node_start_pfn;
6492 	for (zone = 0; zone < zone_type; zone++)
6493 		*zone_start_pfn += zones_size[zone];
6494 
6495 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6496 
6497 	return zones_size[zone_type];
6498 }
6499 
6500 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6501 						unsigned long zone_type,
6502 						unsigned long node_start_pfn,
6503 						unsigned long node_end_pfn,
6504 						unsigned long *zholes_size)
6505 {
6506 	if (!zholes_size)
6507 		return 0;
6508 
6509 	return zholes_size[zone_type];
6510 }
6511 
6512 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6513 
6514 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6515 						unsigned long node_start_pfn,
6516 						unsigned long node_end_pfn,
6517 						unsigned long *zones_size,
6518 						unsigned long *zholes_size)
6519 {
6520 	unsigned long realtotalpages = 0, totalpages = 0;
6521 	enum zone_type i;
6522 
6523 	for (i = 0; i < MAX_NR_ZONES; i++) {
6524 		struct zone *zone = pgdat->node_zones + i;
6525 		unsigned long zone_start_pfn, zone_end_pfn;
6526 		unsigned long size, real_size;
6527 
6528 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6529 						  node_start_pfn,
6530 						  node_end_pfn,
6531 						  &zone_start_pfn,
6532 						  &zone_end_pfn,
6533 						  zones_size);
6534 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6535 						  node_start_pfn, node_end_pfn,
6536 						  zholes_size);
6537 		if (size)
6538 			zone->zone_start_pfn = zone_start_pfn;
6539 		else
6540 			zone->zone_start_pfn = 0;
6541 		zone->spanned_pages = size;
6542 		zone->present_pages = real_size;
6543 
6544 		totalpages += size;
6545 		realtotalpages += real_size;
6546 	}
6547 
6548 	pgdat->node_spanned_pages = totalpages;
6549 	pgdat->node_present_pages = realtotalpages;
6550 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6551 							realtotalpages);
6552 }
6553 
6554 #ifndef CONFIG_SPARSEMEM
6555 /*
6556  * Calculate the size of the zone->blockflags rounded to an unsigned long
6557  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6558  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6559  * round what is now in bits to nearest long in bits, then return it in
6560  * bytes.
6561  */
6562 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6563 {
6564 	unsigned long usemapsize;
6565 
6566 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6567 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6568 	usemapsize = usemapsize >> pageblock_order;
6569 	usemapsize *= NR_PAGEBLOCK_BITS;
6570 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6571 
6572 	return usemapsize / 8;
6573 }
6574 
6575 static void __ref setup_usemap(struct pglist_data *pgdat,
6576 				struct zone *zone,
6577 				unsigned long zone_start_pfn,
6578 				unsigned long zonesize)
6579 {
6580 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6581 	zone->pageblock_flags = NULL;
6582 	if (usemapsize) {
6583 		zone->pageblock_flags =
6584 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6585 					    pgdat->node_id);
6586 		if (!zone->pageblock_flags)
6587 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6588 			      usemapsize, zone->name, pgdat->node_id);
6589 	}
6590 }
6591 #else
6592 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6593 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6594 #endif /* CONFIG_SPARSEMEM */
6595 
6596 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6597 
6598 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6599 void __init set_pageblock_order(void)
6600 {
6601 	unsigned int order;
6602 
6603 	/* Check that pageblock_nr_pages has not already been setup */
6604 	if (pageblock_order)
6605 		return;
6606 
6607 	if (HPAGE_SHIFT > PAGE_SHIFT)
6608 		order = HUGETLB_PAGE_ORDER;
6609 	else
6610 		order = MAX_ORDER - 1;
6611 
6612 	/*
6613 	 * Assume the largest contiguous order of interest is a huge page.
6614 	 * This value may be variable depending on boot parameters on IA64 and
6615 	 * powerpc.
6616 	 */
6617 	pageblock_order = order;
6618 }
6619 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6620 
6621 /*
6622  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6623  * is unused as pageblock_order is set at compile-time. See
6624  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6625  * the kernel config
6626  */
6627 void __init set_pageblock_order(void)
6628 {
6629 }
6630 
6631 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6632 
6633 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6634 						unsigned long present_pages)
6635 {
6636 	unsigned long pages = spanned_pages;
6637 
6638 	/*
6639 	 * Provide a more accurate estimation if there are holes within
6640 	 * the zone and SPARSEMEM is in use. If there are holes within the
6641 	 * zone, each populated memory region may cost us one or two extra
6642 	 * memmap pages due to alignment because memmap pages for each
6643 	 * populated regions may not be naturally aligned on page boundary.
6644 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6645 	 */
6646 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6647 	    IS_ENABLED(CONFIG_SPARSEMEM))
6648 		pages = present_pages;
6649 
6650 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6651 }
6652 
6653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6654 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6655 {
6656 	spin_lock_init(&pgdat->split_queue_lock);
6657 	INIT_LIST_HEAD(&pgdat->split_queue);
6658 	pgdat->split_queue_len = 0;
6659 }
6660 #else
6661 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6662 #endif
6663 
6664 #ifdef CONFIG_COMPACTION
6665 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6666 {
6667 	init_waitqueue_head(&pgdat->kcompactd_wait);
6668 }
6669 #else
6670 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6671 #endif
6672 
6673 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6674 {
6675 	pgdat_resize_init(pgdat);
6676 
6677 	pgdat_init_split_queue(pgdat);
6678 	pgdat_init_kcompactd(pgdat);
6679 
6680 	init_waitqueue_head(&pgdat->kswapd_wait);
6681 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6682 
6683 	pgdat_page_ext_init(pgdat);
6684 	spin_lock_init(&pgdat->lru_lock);
6685 	lruvec_init(node_lruvec(pgdat));
6686 }
6687 
6688 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6689 							unsigned long remaining_pages)
6690 {
6691 	atomic_long_set(&zone->managed_pages, remaining_pages);
6692 	zone_set_nid(zone, nid);
6693 	zone->name = zone_names[idx];
6694 	zone->zone_pgdat = NODE_DATA(nid);
6695 	spin_lock_init(&zone->lock);
6696 	zone_seqlock_init(zone);
6697 	zone_pcp_init(zone);
6698 }
6699 
6700 /*
6701  * Set up the zone data structures
6702  * - init pgdat internals
6703  * - init all zones belonging to this node
6704  *
6705  * NOTE: this function is only called during memory hotplug
6706  */
6707 #ifdef CONFIG_MEMORY_HOTPLUG
6708 void __ref free_area_init_core_hotplug(int nid)
6709 {
6710 	enum zone_type z;
6711 	pg_data_t *pgdat = NODE_DATA(nid);
6712 
6713 	pgdat_init_internals(pgdat);
6714 	for (z = 0; z < MAX_NR_ZONES; z++)
6715 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6716 }
6717 #endif
6718 
6719 /*
6720  * Set up the zone data structures:
6721  *   - mark all pages reserved
6722  *   - mark all memory queues empty
6723  *   - clear the memory bitmaps
6724  *
6725  * NOTE: pgdat should get zeroed by caller.
6726  * NOTE: this function is only called during early init.
6727  */
6728 static void __init free_area_init_core(struct pglist_data *pgdat)
6729 {
6730 	enum zone_type j;
6731 	int nid = pgdat->node_id;
6732 
6733 	pgdat_init_internals(pgdat);
6734 	pgdat->per_cpu_nodestats = &boot_nodestats;
6735 
6736 	for (j = 0; j < MAX_NR_ZONES; j++) {
6737 		struct zone *zone = pgdat->node_zones + j;
6738 		unsigned long size, freesize, memmap_pages;
6739 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6740 
6741 		size = zone->spanned_pages;
6742 		freesize = zone->present_pages;
6743 
6744 		/*
6745 		 * Adjust freesize so that it accounts for how much memory
6746 		 * is used by this zone for memmap. This affects the watermark
6747 		 * and per-cpu initialisations
6748 		 */
6749 		memmap_pages = calc_memmap_size(size, freesize);
6750 		if (!is_highmem_idx(j)) {
6751 			if (freesize >= memmap_pages) {
6752 				freesize -= memmap_pages;
6753 				if (memmap_pages)
6754 					printk(KERN_DEBUG
6755 					       "  %s zone: %lu pages used for memmap\n",
6756 					       zone_names[j], memmap_pages);
6757 			} else
6758 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6759 					zone_names[j], memmap_pages, freesize);
6760 		}
6761 
6762 		/* Account for reserved pages */
6763 		if (j == 0 && freesize > dma_reserve) {
6764 			freesize -= dma_reserve;
6765 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6766 					zone_names[0], dma_reserve);
6767 		}
6768 
6769 		if (!is_highmem_idx(j))
6770 			nr_kernel_pages += freesize;
6771 		/* Charge for highmem memmap if there are enough kernel pages */
6772 		else if (nr_kernel_pages > memmap_pages * 2)
6773 			nr_kernel_pages -= memmap_pages;
6774 		nr_all_pages += freesize;
6775 
6776 		/*
6777 		 * Set an approximate value for lowmem here, it will be adjusted
6778 		 * when the bootmem allocator frees pages into the buddy system.
6779 		 * And all highmem pages will be managed by the buddy system.
6780 		 */
6781 		zone_init_internals(zone, j, nid, freesize);
6782 
6783 		if (!size)
6784 			continue;
6785 
6786 		set_pageblock_order();
6787 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6788 		init_currently_empty_zone(zone, zone_start_pfn, size);
6789 		memmap_init(size, nid, j, zone_start_pfn);
6790 	}
6791 }
6792 
6793 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6794 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6795 {
6796 	unsigned long __maybe_unused start = 0;
6797 	unsigned long __maybe_unused offset = 0;
6798 
6799 	/* Skip empty nodes */
6800 	if (!pgdat->node_spanned_pages)
6801 		return;
6802 
6803 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6804 	offset = pgdat->node_start_pfn - start;
6805 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6806 	if (!pgdat->node_mem_map) {
6807 		unsigned long size, end;
6808 		struct page *map;
6809 
6810 		/*
6811 		 * The zone's endpoints aren't required to be MAX_ORDER
6812 		 * aligned but the node_mem_map endpoints must be in order
6813 		 * for the buddy allocator to function correctly.
6814 		 */
6815 		end = pgdat_end_pfn(pgdat);
6816 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6817 		size =  (end - start) * sizeof(struct page);
6818 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6819 					  pgdat->node_id);
6820 		if (!map)
6821 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6822 			      size, pgdat->node_id);
6823 		pgdat->node_mem_map = map + offset;
6824 	}
6825 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6826 				__func__, pgdat->node_id, (unsigned long)pgdat,
6827 				(unsigned long)pgdat->node_mem_map);
6828 #ifndef CONFIG_NEED_MULTIPLE_NODES
6829 	/*
6830 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6831 	 */
6832 	if (pgdat == NODE_DATA(0)) {
6833 		mem_map = NODE_DATA(0)->node_mem_map;
6834 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6835 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6836 			mem_map -= offset;
6837 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6838 	}
6839 #endif
6840 }
6841 #else
6842 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6843 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6844 
6845 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6846 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6847 {
6848 	pgdat->first_deferred_pfn = ULONG_MAX;
6849 }
6850 #else
6851 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6852 #endif
6853 
6854 void __init free_area_init_node(int nid, unsigned long *zones_size,
6855 				   unsigned long node_start_pfn,
6856 				   unsigned long *zholes_size)
6857 {
6858 	pg_data_t *pgdat = NODE_DATA(nid);
6859 	unsigned long start_pfn = 0;
6860 	unsigned long end_pfn = 0;
6861 
6862 	/* pg_data_t should be reset to zero when it's allocated */
6863 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6864 
6865 	pgdat->node_id = nid;
6866 	pgdat->node_start_pfn = node_start_pfn;
6867 	pgdat->per_cpu_nodestats = NULL;
6868 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6869 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6870 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6871 		(u64)start_pfn << PAGE_SHIFT,
6872 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6873 #else
6874 	start_pfn = node_start_pfn;
6875 #endif
6876 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6877 				  zones_size, zholes_size);
6878 
6879 	alloc_node_mem_map(pgdat);
6880 	pgdat_set_deferred_range(pgdat);
6881 
6882 	free_area_init_core(pgdat);
6883 }
6884 
6885 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6886 /*
6887  * Zero all valid struct pages in range [spfn, epfn), return number of struct
6888  * pages zeroed
6889  */
6890 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6891 {
6892 	unsigned long pfn;
6893 	u64 pgcnt = 0;
6894 
6895 	for (pfn = spfn; pfn < epfn; pfn++) {
6896 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6897 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6898 				+ pageblock_nr_pages - 1;
6899 			continue;
6900 		}
6901 		mm_zero_struct_page(pfn_to_page(pfn));
6902 		pgcnt++;
6903 	}
6904 
6905 	return pgcnt;
6906 }
6907 
6908 /*
6909  * Only struct pages that are backed by physical memory are zeroed and
6910  * initialized by going through __init_single_page(). But, there are some
6911  * struct pages which are reserved in memblock allocator and their fields
6912  * may be accessed (for example page_to_pfn() on some configuration accesses
6913  * flags). We must explicitly zero those struct pages.
6914  *
6915  * This function also addresses a similar issue where struct pages are left
6916  * uninitialized because the physical address range is not covered by
6917  * memblock.memory or memblock.reserved. That could happen when memblock
6918  * layout is manually configured via memmap=.
6919  */
6920 void __init zero_resv_unavail(void)
6921 {
6922 	phys_addr_t start, end;
6923 	u64 i, pgcnt;
6924 	phys_addr_t next = 0;
6925 
6926 	/*
6927 	 * Loop through unavailable ranges not covered by memblock.memory.
6928 	 */
6929 	pgcnt = 0;
6930 	for_each_mem_range(i, &memblock.memory, NULL,
6931 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6932 		if (next < start)
6933 			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6934 		next = end;
6935 	}
6936 	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6937 
6938 	/*
6939 	 * Struct pages that do not have backing memory. This could be because
6940 	 * firmware is using some of this memory, or for some other reasons.
6941 	 */
6942 	if (pgcnt)
6943 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6944 }
6945 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6946 
6947 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6948 
6949 #if MAX_NUMNODES > 1
6950 /*
6951  * Figure out the number of possible node ids.
6952  */
6953 void __init setup_nr_node_ids(void)
6954 {
6955 	unsigned int highest;
6956 
6957 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6958 	nr_node_ids = highest + 1;
6959 }
6960 #endif
6961 
6962 /**
6963  * node_map_pfn_alignment - determine the maximum internode alignment
6964  *
6965  * This function should be called after node map is populated and sorted.
6966  * It calculates the maximum power of two alignment which can distinguish
6967  * all the nodes.
6968  *
6969  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6970  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6971  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6972  * shifted, 1GiB is enough and this function will indicate so.
6973  *
6974  * This is used to test whether pfn -> nid mapping of the chosen memory
6975  * model has fine enough granularity to avoid incorrect mapping for the
6976  * populated node map.
6977  *
6978  * Return: the determined alignment in pfn's.  0 if there is no alignment
6979  * requirement (single node).
6980  */
6981 unsigned long __init node_map_pfn_alignment(void)
6982 {
6983 	unsigned long accl_mask = 0, last_end = 0;
6984 	unsigned long start, end, mask;
6985 	int last_nid = NUMA_NO_NODE;
6986 	int i, nid;
6987 
6988 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6989 		if (!start || last_nid < 0 || last_nid == nid) {
6990 			last_nid = nid;
6991 			last_end = end;
6992 			continue;
6993 		}
6994 
6995 		/*
6996 		 * Start with a mask granular enough to pin-point to the
6997 		 * start pfn and tick off bits one-by-one until it becomes
6998 		 * too coarse to separate the current node from the last.
6999 		 */
7000 		mask = ~((1 << __ffs(start)) - 1);
7001 		while (mask && last_end <= (start & (mask << 1)))
7002 			mask <<= 1;
7003 
7004 		/* accumulate all internode masks */
7005 		accl_mask |= mask;
7006 	}
7007 
7008 	/* convert mask to number of pages */
7009 	return ~accl_mask + 1;
7010 }
7011 
7012 /* Find the lowest pfn for a node */
7013 static unsigned long __init find_min_pfn_for_node(int nid)
7014 {
7015 	unsigned long min_pfn = ULONG_MAX;
7016 	unsigned long start_pfn;
7017 	int i;
7018 
7019 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7020 		min_pfn = min(min_pfn, start_pfn);
7021 
7022 	if (min_pfn == ULONG_MAX) {
7023 		pr_warn("Could not find start_pfn for node %d\n", nid);
7024 		return 0;
7025 	}
7026 
7027 	return min_pfn;
7028 }
7029 
7030 /**
7031  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7032  *
7033  * Return: the minimum PFN based on information provided via
7034  * memblock_set_node().
7035  */
7036 unsigned long __init find_min_pfn_with_active_regions(void)
7037 {
7038 	return find_min_pfn_for_node(MAX_NUMNODES);
7039 }
7040 
7041 /*
7042  * early_calculate_totalpages()
7043  * Sum pages in active regions for movable zone.
7044  * Populate N_MEMORY for calculating usable_nodes.
7045  */
7046 static unsigned long __init early_calculate_totalpages(void)
7047 {
7048 	unsigned long totalpages = 0;
7049 	unsigned long start_pfn, end_pfn;
7050 	int i, nid;
7051 
7052 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7053 		unsigned long pages = end_pfn - start_pfn;
7054 
7055 		totalpages += pages;
7056 		if (pages)
7057 			node_set_state(nid, N_MEMORY);
7058 	}
7059 	return totalpages;
7060 }
7061 
7062 /*
7063  * Find the PFN the Movable zone begins in each node. Kernel memory
7064  * is spread evenly between nodes as long as the nodes have enough
7065  * memory. When they don't, some nodes will have more kernelcore than
7066  * others
7067  */
7068 static void __init find_zone_movable_pfns_for_nodes(void)
7069 {
7070 	int i, nid;
7071 	unsigned long usable_startpfn;
7072 	unsigned long kernelcore_node, kernelcore_remaining;
7073 	/* save the state before borrow the nodemask */
7074 	nodemask_t saved_node_state = node_states[N_MEMORY];
7075 	unsigned long totalpages = early_calculate_totalpages();
7076 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7077 	struct memblock_region *r;
7078 
7079 	/* Need to find movable_zone earlier when movable_node is specified. */
7080 	find_usable_zone_for_movable();
7081 
7082 	/*
7083 	 * If movable_node is specified, ignore kernelcore and movablecore
7084 	 * options.
7085 	 */
7086 	if (movable_node_is_enabled()) {
7087 		for_each_memblock(memory, r) {
7088 			if (!memblock_is_hotpluggable(r))
7089 				continue;
7090 
7091 			nid = r->nid;
7092 
7093 			usable_startpfn = PFN_DOWN(r->base);
7094 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7095 				min(usable_startpfn, zone_movable_pfn[nid]) :
7096 				usable_startpfn;
7097 		}
7098 
7099 		goto out2;
7100 	}
7101 
7102 	/*
7103 	 * If kernelcore=mirror is specified, ignore movablecore option
7104 	 */
7105 	if (mirrored_kernelcore) {
7106 		bool mem_below_4gb_not_mirrored = false;
7107 
7108 		for_each_memblock(memory, r) {
7109 			if (memblock_is_mirror(r))
7110 				continue;
7111 
7112 			nid = r->nid;
7113 
7114 			usable_startpfn = memblock_region_memory_base_pfn(r);
7115 
7116 			if (usable_startpfn < 0x100000) {
7117 				mem_below_4gb_not_mirrored = true;
7118 				continue;
7119 			}
7120 
7121 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7122 				min(usable_startpfn, zone_movable_pfn[nid]) :
7123 				usable_startpfn;
7124 		}
7125 
7126 		if (mem_below_4gb_not_mirrored)
7127 			pr_warn("This configuration results in unmirrored kernel memory.");
7128 
7129 		goto out2;
7130 	}
7131 
7132 	/*
7133 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7134 	 * amount of necessary memory.
7135 	 */
7136 	if (required_kernelcore_percent)
7137 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7138 				       10000UL;
7139 	if (required_movablecore_percent)
7140 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7141 					10000UL;
7142 
7143 	/*
7144 	 * If movablecore= was specified, calculate what size of
7145 	 * kernelcore that corresponds so that memory usable for
7146 	 * any allocation type is evenly spread. If both kernelcore
7147 	 * and movablecore are specified, then the value of kernelcore
7148 	 * will be used for required_kernelcore if it's greater than
7149 	 * what movablecore would have allowed.
7150 	 */
7151 	if (required_movablecore) {
7152 		unsigned long corepages;
7153 
7154 		/*
7155 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7156 		 * was requested by the user
7157 		 */
7158 		required_movablecore =
7159 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7160 		required_movablecore = min(totalpages, required_movablecore);
7161 		corepages = totalpages - required_movablecore;
7162 
7163 		required_kernelcore = max(required_kernelcore, corepages);
7164 	}
7165 
7166 	/*
7167 	 * If kernelcore was not specified or kernelcore size is larger
7168 	 * than totalpages, there is no ZONE_MOVABLE.
7169 	 */
7170 	if (!required_kernelcore || required_kernelcore >= totalpages)
7171 		goto out;
7172 
7173 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7174 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7175 
7176 restart:
7177 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7178 	kernelcore_node = required_kernelcore / usable_nodes;
7179 	for_each_node_state(nid, N_MEMORY) {
7180 		unsigned long start_pfn, end_pfn;
7181 
7182 		/*
7183 		 * Recalculate kernelcore_node if the division per node
7184 		 * now exceeds what is necessary to satisfy the requested
7185 		 * amount of memory for the kernel
7186 		 */
7187 		if (required_kernelcore < kernelcore_node)
7188 			kernelcore_node = required_kernelcore / usable_nodes;
7189 
7190 		/*
7191 		 * As the map is walked, we track how much memory is usable
7192 		 * by the kernel using kernelcore_remaining. When it is
7193 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7194 		 */
7195 		kernelcore_remaining = kernelcore_node;
7196 
7197 		/* Go through each range of PFNs within this node */
7198 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7199 			unsigned long size_pages;
7200 
7201 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7202 			if (start_pfn >= end_pfn)
7203 				continue;
7204 
7205 			/* Account for what is only usable for kernelcore */
7206 			if (start_pfn < usable_startpfn) {
7207 				unsigned long kernel_pages;
7208 				kernel_pages = min(end_pfn, usable_startpfn)
7209 								- start_pfn;
7210 
7211 				kernelcore_remaining -= min(kernel_pages,
7212 							kernelcore_remaining);
7213 				required_kernelcore -= min(kernel_pages,
7214 							required_kernelcore);
7215 
7216 				/* Continue if range is now fully accounted */
7217 				if (end_pfn <= usable_startpfn) {
7218 
7219 					/*
7220 					 * Push zone_movable_pfn to the end so
7221 					 * that if we have to rebalance
7222 					 * kernelcore across nodes, we will
7223 					 * not double account here
7224 					 */
7225 					zone_movable_pfn[nid] = end_pfn;
7226 					continue;
7227 				}
7228 				start_pfn = usable_startpfn;
7229 			}
7230 
7231 			/*
7232 			 * The usable PFN range for ZONE_MOVABLE is from
7233 			 * start_pfn->end_pfn. Calculate size_pages as the
7234 			 * number of pages used as kernelcore
7235 			 */
7236 			size_pages = end_pfn - start_pfn;
7237 			if (size_pages > kernelcore_remaining)
7238 				size_pages = kernelcore_remaining;
7239 			zone_movable_pfn[nid] = start_pfn + size_pages;
7240 
7241 			/*
7242 			 * Some kernelcore has been met, update counts and
7243 			 * break if the kernelcore for this node has been
7244 			 * satisfied
7245 			 */
7246 			required_kernelcore -= min(required_kernelcore,
7247 								size_pages);
7248 			kernelcore_remaining -= size_pages;
7249 			if (!kernelcore_remaining)
7250 				break;
7251 		}
7252 	}
7253 
7254 	/*
7255 	 * If there is still required_kernelcore, we do another pass with one
7256 	 * less node in the count. This will push zone_movable_pfn[nid] further
7257 	 * along on the nodes that still have memory until kernelcore is
7258 	 * satisfied
7259 	 */
7260 	usable_nodes--;
7261 	if (usable_nodes && required_kernelcore > usable_nodes)
7262 		goto restart;
7263 
7264 out2:
7265 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7266 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7267 		zone_movable_pfn[nid] =
7268 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7269 
7270 out:
7271 	/* restore the node_state */
7272 	node_states[N_MEMORY] = saved_node_state;
7273 }
7274 
7275 /* Any regular or high memory on that node ? */
7276 static void check_for_memory(pg_data_t *pgdat, int nid)
7277 {
7278 	enum zone_type zone_type;
7279 
7280 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7281 		struct zone *zone = &pgdat->node_zones[zone_type];
7282 		if (populated_zone(zone)) {
7283 			if (IS_ENABLED(CONFIG_HIGHMEM))
7284 				node_set_state(nid, N_HIGH_MEMORY);
7285 			if (zone_type <= ZONE_NORMAL)
7286 				node_set_state(nid, N_NORMAL_MEMORY);
7287 			break;
7288 		}
7289 	}
7290 }
7291 
7292 /**
7293  * free_area_init_nodes - Initialise all pg_data_t and zone data
7294  * @max_zone_pfn: an array of max PFNs for each zone
7295  *
7296  * This will call free_area_init_node() for each active node in the system.
7297  * Using the page ranges provided by memblock_set_node(), the size of each
7298  * zone in each node and their holes is calculated. If the maximum PFN
7299  * between two adjacent zones match, it is assumed that the zone is empty.
7300  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7301  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7302  * starts where the previous one ended. For example, ZONE_DMA32 starts
7303  * at arch_max_dma_pfn.
7304  */
7305 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7306 {
7307 	unsigned long start_pfn, end_pfn;
7308 	int i, nid;
7309 
7310 	/* Record where the zone boundaries are */
7311 	memset(arch_zone_lowest_possible_pfn, 0,
7312 				sizeof(arch_zone_lowest_possible_pfn));
7313 	memset(arch_zone_highest_possible_pfn, 0,
7314 				sizeof(arch_zone_highest_possible_pfn));
7315 
7316 	start_pfn = find_min_pfn_with_active_regions();
7317 
7318 	for (i = 0; i < MAX_NR_ZONES; i++) {
7319 		if (i == ZONE_MOVABLE)
7320 			continue;
7321 
7322 		end_pfn = max(max_zone_pfn[i], start_pfn);
7323 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7324 		arch_zone_highest_possible_pfn[i] = end_pfn;
7325 
7326 		start_pfn = end_pfn;
7327 	}
7328 
7329 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7330 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7331 	find_zone_movable_pfns_for_nodes();
7332 
7333 	/* Print out the zone ranges */
7334 	pr_info("Zone ranges:\n");
7335 	for (i = 0; i < MAX_NR_ZONES; i++) {
7336 		if (i == ZONE_MOVABLE)
7337 			continue;
7338 		pr_info("  %-8s ", zone_names[i]);
7339 		if (arch_zone_lowest_possible_pfn[i] ==
7340 				arch_zone_highest_possible_pfn[i])
7341 			pr_cont("empty\n");
7342 		else
7343 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7344 				(u64)arch_zone_lowest_possible_pfn[i]
7345 					<< PAGE_SHIFT,
7346 				((u64)arch_zone_highest_possible_pfn[i]
7347 					<< PAGE_SHIFT) - 1);
7348 	}
7349 
7350 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7351 	pr_info("Movable zone start for each node\n");
7352 	for (i = 0; i < MAX_NUMNODES; i++) {
7353 		if (zone_movable_pfn[i])
7354 			pr_info("  Node %d: %#018Lx\n", i,
7355 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7356 	}
7357 
7358 	/* Print out the early node map */
7359 	pr_info("Early memory node ranges\n");
7360 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7361 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7362 			(u64)start_pfn << PAGE_SHIFT,
7363 			((u64)end_pfn << PAGE_SHIFT) - 1);
7364 
7365 	/* Initialise every node */
7366 	mminit_verify_pageflags_layout();
7367 	setup_nr_node_ids();
7368 	zero_resv_unavail();
7369 	for_each_online_node(nid) {
7370 		pg_data_t *pgdat = NODE_DATA(nid);
7371 		free_area_init_node(nid, NULL,
7372 				find_min_pfn_for_node(nid), NULL);
7373 
7374 		/* Any memory on that node */
7375 		if (pgdat->node_present_pages)
7376 			node_set_state(nid, N_MEMORY);
7377 		check_for_memory(pgdat, nid);
7378 	}
7379 }
7380 
7381 static int __init cmdline_parse_core(char *p, unsigned long *core,
7382 				     unsigned long *percent)
7383 {
7384 	unsigned long long coremem;
7385 	char *endptr;
7386 
7387 	if (!p)
7388 		return -EINVAL;
7389 
7390 	/* Value may be a percentage of total memory, otherwise bytes */
7391 	coremem = simple_strtoull(p, &endptr, 0);
7392 	if (*endptr == '%') {
7393 		/* Paranoid check for percent values greater than 100 */
7394 		WARN_ON(coremem > 100);
7395 
7396 		*percent = coremem;
7397 	} else {
7398 		coremem = memparse(p, &p);
7399 		/* Paranoid check that UL is enough for the coremem value */
7400 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7401 
7402 		*core = coremem >> PAGE_SHIFT;
7403 		*percent = 0UL;
7404 	}
7405 	return 0;
7406 }
7407 
7408 /*
7409  * kernelcore=size sets the amount of memory for use for allocations that
7410  * cannot be reclaimed or migrated.
7411  */
7412 static int __init cmdline_parse_kernelcore(char *p)
7413 {
7414 	/* parse kernelcore=mirror */
7415 	if (parse_option_str(p, "mirror")) {
7416 		mirrored_kernelcore = true;
7417 		return 0;
7418 	}
7419 
7420 	return cmdline_parse_core(p, &required_kernelcore,
7421 				  &required_kernelcore_percent);
7422 }
7423 
7424 /*
7425  * movablecore=size sets the amount of memory for use for allocations that
7426  * can be reclaimed or migrated.
7427  */
7428 static int __init cmdline_parse_movablecore(char *p)
7429 {
7430 	return cmdline_parse_core(p, &required_movablecore,
7431 				  &required_movablecore_percent);
7432 }
7433 
7434 early_param("kernelcore", cmdline_parse_kernelcore);
7435 early_param("movablecore", cmdline_parse_movablecore);
7436 
7437 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7438 
7439 void adjust_managed_page_count(struct page *page, long count)
7440 {
7441 	atomic_long_add(count, &page_zone(page)->managed_pages);
7442 	totalram_pages_add(count);
7443 #ifdef CONFIG_HIGHMEM
7444 	if (PageHighMem(page))
7445 		totalhigh_pages_add(count);
7446 #endif
7447 }
7448 EXPORT_SYMBOL(adjust_managed_page_count);
7449 
7450 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7451 {
7452 	void *pos;
7453 	unsigned long pages = 0;
7454 
7455 	start = (void *)PAGE_ALIGN((unsigned long)start);
7456 	end = (void *)((unsigned long)end & PAGE_MASK);
7457 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7458 		struct page *page = virt_to_page(pos);
7459 		void *direct_map_addr;
7460 
7461 		/*
7462 		 * 'direct_map_addr' might be different from 'pos'
7463 		 * because some architectures' virt_to_page()
7464 		 * work with aliases.  Getting the direct map
7465 		 * address ensures that we get a _writeable_
7466 		 * alias for the memset().
7467 		 */
7468 		direct_map_addr = page_address(page);
7469 		if ((unsigned int)poison <= 0xFF)
7470 			memset(direct_map_addr, poison, PAGE_SIZE);
7471 
7472 		free_reserved_page(page);
7473 	}
7474 
7475 	if (pages && s)
7476 		pr_info("Freeing %s memory: %ldK\n",
7477 			s, pages << (PAGE_SHIFT - 10));
7478 
7479 	return pages;
7480 }
7481 
7482 #ifdef	CONFIG_HIGHMEM
7483 void free_highmem_page(struct page *page)
7484 {
7485 	__free_reserved_page(page);
7486 	totalram_pages_inc();
7487 	atomic_long_inc(&page_zone(page)->managed_pages);
7488 	totalhigh_pages_inc();
7489 }
7490 #endif
7491 
7492 
7493 void __init mem_init_print_info(const char *str)
7494 {
7495 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7496 	unsigned long init_code_size, init_data_size;
7497 
7498 	physpages = get_num_physpages();
7499 	codesize = _etext - _stext;
7500 	datasize = _edata - _sdata;
7501 	rosize = __end_rodata - __start_rodata;
7502 	bss_size = __bss_stop - __bss_start;
7503 	init_data_size = __init_end - __init_begin;
7504 	init_code_size = _einittext - _sinittext;
7505 
7506 	/*
7507 	 * Detect special cases and adjust section sizes accordingly:
7508 	 * 1) .init.* may be embedded into .data sections
7509 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7510 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7511 	 * 3) .rodata.* may be embedded into .text or .data sections.
7512 	 */
7513 #define adj_init_size(start, end, size, pos, adj) \
7514 	do { \
7515 		if (start <= pos && pos < end && size > adj) \
7516 			size -= adj; \
7517 	} while (0)
7518 
7519 	adj_init_size(__init_begin, __init_end, init_data_size,
7520 		     _sinittext, init_code_size);
7521 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7522 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7523 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7524 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7525 
7526 #undef	adj_init_size
7527 
7528 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7529 #ifdef	CONFIG_HIGHMEM
7530 		", %luK highmem"
7531 #endif
7532 		"%s%s)\n",
7533 		nr_free_pages() << (PAGE_SHIFT - 10),
7534 		physpages << (PAGE_SHIFT - 10),
7535 		codesize >> 10, datasize >> 10, rosize >> 10,
7536 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7537 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7538 		totalcma_pages << (PAGE_SHIFT - 10),
7539 #ifdef	CONFIG_HIGHMEM
7540 		totalhigh_pages() << (PAGE_SHIFT - 10),
7541 #endif
7542 		str ? ", " : "", str ? str : "");
7543 }
7544 
7545 /**
7546  * set_dma_reserve - set the specified number of pages reserved in the first zone
7547  * @new_dma_reserve: The number of pages to mark reserved
7548  *
7549  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7550  * In the DMA zone, a significant percentage may be consumed by kernel image
7551  * and other unfreeable allocations which can skew the watermarks badly. This
7552  * function may optionally be used to account for unfreeable pages in the
7553  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7554  * smaller per-cpu batchsize.
7555  */
7556 void __init set_dma_reserve(unsigned long new_dma_reserve)
7557 {
7558 	dma_reserve = new_dma_reserve;
7559 }
7560 
7561 void __init free_area_init(unsigned long *zones_size)
7562 {
7563 	zero_resv_unavail();
7564 	free_area_init_node(0, zones_size,
7565 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7566 }
7567 
7568 static int page_alloc_cpu_dead(unsigned int cpu)
7569 {
7570 
7571 	lru_add_drain_cpu(cpu);
7572 	drain_pages(cpu);
7573 
7574 	/*
7575 	 * Spill the event counters of the dead processor
7576 	 * into the current processors event counters.
7577 	 * This artificially elevates the count of the current
7578 	 * processor.
7579 	 */
7580 	vm_events_fold_cpu(cpu);
7581 
7582 	/*
7583 	 * Zero the differential counters of the dead processor
7584 	 * so that the vm statistics are consistent.
7585 	 *
7586 	 * This is only okay since the processor is dead and cannot
7587 	 * race with what we are doing.
7588 	 */
7589 	cpu_vm_stats_fold(cpu);
7590 	return 0;
7591 }
7592 
7593 #ifdef CONFIG_NUMA
7594 int hashdist = HASHDIST_DEFAULT;
7595 
7596 static int __init set_hashdist(char *str)
7597 {
7598 	if (!str)
7599 		return 0;
7600 	hashdist = simple_strtoul(str, &str, 0);
7601 	return 1;
7602 }
7603 __setup("hashdist=", set_hashdist);
7604 #endif
7605 
7606 void __init page_alloc_init(void)
7607 {
7608 	int ret;
7609 
7610 #ifdef CONFIG_NUMA
7611 	if (num_node_state(N_MEMORY) == 1)
7612 		hashdist = 0;
7613 #endif
7614 
7615 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7616 					"mm/page_alloc:dead", NULL,
7617 					page_alloc_cpu_dead);
7618 	WARN_ON(ret < 0);
7619 }
7620 
7621 /*
7622  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7623  *	or min_free_kbytes changes.
7624  */
7625 static void calculate_totalreserve_pages(void)
7626 {
7627 	struct pglist_data *pgdat;
7628 	unsigned long reserve_pages = 0;
7629 	enum zone_type i, j;
7630 
7631 	for_each_online_pgdat(pgdat) {
7632 
7633 		pgdat->totalreserve_pages = 0;
7634 
7635 		for (i = 0; i < MAX_NR_ZONES; i++) {
7636 			struct zone *zone = pgdat->node_zones + i;
7637 			long max = 0;
7638 			unsigned long managed_pages = zone_managed_pages(zone);
7639 
7640 			/* Find valid and maximum lowmem_reserve in the zone */
7641 			for (j = i; j < MAX_NR_ZONES; j++) {
7642 				if (zone->lowmem_reserve[j] > max)
7643 					max = zone->lowmem_reserve[j];
7644 			}
7645 
7646 			/* we treat the high watermark as reserved pages. */
7647 			max += high_wmark_pages(zone);
7648 
7649 			if (max > managed_pages)
7650 				max = managed_pages;
7651 
7652 			pgdat->totalreserve_pages += max;
7653 
7654 			reserve_pages += max;
7655 		}
7656 	}
7657 	totalreserve_pages = reserve_pages;
7658 }
7659 
7660 /*
7661  * setup_per_zone_lowmem_reserve - called whenever
7662  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7663  *	has a correct pages reserved value, so an adequate number of
7664  *	pages are left in the zone after a successful __alloc_pages().
7665  */
7666 static void setup_per_zone_lowmem_reserve(void)
7667 {
7668 	struct pglist_data *pgdat;
7669 	enum zone_type j, idx;
7670 
7671 	for_each_online_pgdat(pgdat) {
7672 		for (j = 0; j < MAX_NR_ZONES; j++) {
7673 			struct zone *zone = pgdat->node_zones + j;
7674 			unsigned long managed_pages = zone_managed_pages(zone);
7675 
7676 			zone->lowmem_reserve[j] = 0;
7677 
7678 			idx = j;
7679 			while (idx) {
7680 				struct zone *lower_zone;
7681 
7682 				idx--;
7683 				lower_zone = pgdat->node_zones + idx;
7684 
7685 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7686 					sysctl_lowmem_reserve_ratio[idx] = 0;
7687 					lower_zone->lowmem_reserve[j] = 0;
7688 				} else {
7689 					lower_zone->lowmem_reserve[j] =
7690 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7691 				}
7692 				managed_pages += zone_managed_pages(lower_zone);
7693 			}
7694 		}
7695 	}
7696 
7697 	/* update totalreserve_pages */
7698 	calculate_totalreserve_pages();
7699 }
7700 
7701 static void __setup_per_zone_wmarks(void)
7702 {
7703 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7704 	unsigned long lowmem_pages = 0;
7705 	struct zone *zone;
7706 	unsigned long flags;
7707 
7708 	/* Calculate total number of !ZONE_HIGHMEM pages */
7709 	for_each_zone(zone) {
7710 		if (!is_highmem(zone))
7711 			lowmem_pages += zone_managed_pages(zone);
7712 	}
7713 
7714 	for_each_zone(zone) {
7715 		u64 tmp;
7716 
7717 		spin_lock_irqsave(&zone->lock, flags);
7718 		tmp = (u64)pages_min * zone_managed_pages(zone);
7719 		do_div(tmp, lowmem_pages);
7720 		if (is_highmem(zone)) {
7721 			/*
7722 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7723 			 * need highmem pages, so cap pages_min to a small
7724 			 * value here.
7725 			 *
7726 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7727 			 * deltas control async page reclaim, and so should
7728 			 * not be capped for highmem.
7729 			 */
7730 			unsigned long min_pages;
7731 
7732 			min_pages = zone_managed_pages(zone) / 1024;
7733 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7734 			zone->_watermark[WMARK_MIN] = min_pages;
7735 		} else {
7736 			/*
7737 			 * If it's a lowmem zone, reserve a number of pages
7738 			 * proportionate to the zone's size.
7739 			 */
7740 			zone->_watermark[WMARK_MIN] = tmp;
7741 		}
7742 
7743 		/*
7744 		 * Set the kswapd watermarks distance according to the
7745 		 * scale factor in proportion to available memory, but
7746 		 * ensure a minimum size on small systems.
7747 		 */
7748 		tmp = max_t(u64, tmp >> 2,
7749 			    mult_frac(zone_managed_pages(zone),
7750 				      watermark_scale_factor, 10000));
7751 
7752 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7753 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7754 		zone->watermark_boost = 0;
7755 
7756 		spin_unlock_irqrestore(&zone->lock, flags);
7757 	}
7758 
7759 	/* update totalreserve_pages */
7760 	calculate_totalreserve_pages();
7761 }
7762 
7763 /**
7764  * setup_per_zone_wmarks - called when min_free_kbytes changes
7765  * or when memory is hot-{added|removed}
7766  *
7767  * Ensures that the watermark[min,low,high] values for each zone are set
7768  * correctly with respect to min_free_kbytes.
7769  */
7770 void setup_per_zone_wmarks(void)
7771 {
7772 	static DEFINE_SPINLOCK(lock);
7773 
7774 	spin_lock(&lock);
7775 	__setup_per_zone_wmarks();
7776 	spin_unlock(&lock);
7777 }
7778 
7779 /*
7780  * Initialise min_free_kbytes.
7781  *
7782  * For small machines we want it small (128k min).  For large machines
7783  * we want it large (64MB max).  But it is not linear, because network
7784  * bandwidth does not increase linearly with machine size.  We use
7785  *
7786  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7787  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7788  *
7789  * which yields
7790  *
7791  * 16MB:	512k
7792  * 32MB:	724k
7793  * 64MB:	1024k
7794  * 128MB:	1448k
7795  * 256MB:	2048k
7796  * 512MB:	2896k
7797  * 1024MB:	4096k
7798  * 2048MB:	5792k
7799  * 4096MB:	8192k
7800  * 8192MB:	11584k
7801  * 16384MB:	16384k
7802  */
7803 int __meminit init_per_zone_wmark_min(void)
7804 {
7805 	unsigned long lowmem_kbytes;
7806 	int new_min_free_kbytes;
7807 
7808 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7809 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7810 
7811 	if (new_min_free_kbytes > user_min_free_kbytes) {
7812 		min_free_kbytes = new_min_free_kbytes;
7813 		if (min_free_kbytes < 128)
7814 			min_free_kbytes = 128;
7815 		if (min_free_kbytes > 65536)
7816 			min_free_kbytes = 65536;
7817 	} else {
7818 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7819 				new_min_free_kbytes, user_min_free_kbytes);
7820 	}
7821 	setup_per_zone_wmarks();
7822 	refresh_zone_stat_thresholds();
7823 	setup_per_zone_lowmem_reserve();
7824 
7825 #ifdef CONFIG_NUMA
7826 	setup_min_unmapped_ratio();
7827 	setup_min_slab_ratio();
7828 #endif
7829 
7830 	return 0;
7831 }
7832 core_initcall(init_per_zone_wmark_min)
7833 
7834 /*
7835  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7836  *	that we can call two helper functions whenever min_free_kbytes
7837  *	changes.
7838  */
7839 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7840 	void __user *buffer, size_t *length, loff_t *ppos)
7841 {
7842 	int rc;
7843 
7844 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7845 	if (rc)
7846 		return rc;
7847 
7848 	if (write) {
7849 		user_min_free_kbytes = min_free_kbytes;
7850 		setup_per_zone_wmarks();
7851 	}
7852 	return 0;
7853 }
7854 
7855 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7856 	void __user *buffer, size_t *length, loff_t *ppos)
7857 {
7858 	int rc;
7859 
7860 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7861 	if (rc)
7862 		return rc;
7863 
7864 	return 0;
7865 }
7866 
7867 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7868 	void __user *buffer, size_t *length, loff_t *ppos)
7869 {
7870 	int rc;
7871 
7872 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7873 	if (rc)
7874 		return rc;
7875 
7876 	if (write)
7877 		setup_per_zone_wmarks();
7878 
7879 	return 0;
7880 }
7881 
7882 #ifdef CONFIG_NUMA
7883 static void setup_min_unmapped_ratio(void)
7884 {
7885 	pg_data_t *pgdat;
7886 	struct zone *zone;
7887 
7888 	for_each_online_pgdat(pgdat)
7889 		pgdat->min_unmapped_pages = 0;
7890 
7891 	for_each_zone(zone)
7892 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7893 						         sysctl_min_unmapped_ratio) / 100;
7894 }
7895 
7896 
7897 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7898 	void __user *buffer, size_t *length, loff_t *ppos)
7899 {
7900 	int rc;
7901 
7902 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7903 	if (rc)
7904 		return rc;
7905 
7906 	setup_min_unmapped_ratio();
7907 
7908 	return 0;
7909 }
7910 
7911 static void setup_min_slab_ratio(void)
7912 {
7913 	pg_data_t *pgdat;
7914 	struct zone *zone;
7915 
7916 	for_each_online_pgdat(pgdat)
7917 		pgdat->min_slab_pages = 0;
7918 
7919 	for_each_zone(zone)
7920 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7921 						     sysctl_min_slab_ratio) / 100;
7922 }
7923 
7924 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7925 	void __user *buffer, size_t *length, loff_t *ppos)
7926 {
7927 	int rc;
7928 
7929 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7930 	if (rc)
7931 		return rc;
7932 
7933 	setup_min_slab_ratio();
7934 
7935 	return 0;
7936 }
7937 #endif
7938 
7939 /*
7940  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7941  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7942  *	whenever sysctl_lowmem_reserve_ratio changes.
7943  *
7944  * The reserve ratio obviously has absolutely no relation with the
7945  * minimum watermarks. The lowmem reserve ratio can only make sense
7946  * if in function of the boot time zone sizes.
7947  */
7948 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7949 	void __user *buffer, size_t *length, loff_t *ppos)
7950 {
7951 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7952 	setup_per_zone_lowmem_reserve();
7953 	return 0;
7954 }
7955 
7956 /*
7957  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7958  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7959  * pagelist can have before it gets flushed back to buddy allocator.
7960  */
7961 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7962 	void __user *buffer, size_t *length, loff_t *ppos)
7963 {
7964 	struct zone *zone;
7965 	int old_percpu_pagelist_fraction;
7966 	int ret;
7967 
7968 	mutex_lock(&pcp_batch_high_lock);
7969 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7970 
7971 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7972 	if (!write || ret < 0)
7973 		goto out;
7974 
7975 	/* Sanity checking to avoid pcp imbalance */
7976 	if (percpu_pagelist_fraction &&
7977 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7978 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7979 		ret = -EINVAL;
7980 		goto out;
7981 	}
7982 
7983 	/* No change? */
7984 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7985 		goto out;
7986 
7987 	for_each_populated_zone(zone) {
7988 		unsigned int cpu;
7989 
7990 		for_each_possible_cpu(cpu)
7991 			pageset_set_high_and_batch(zone,
7992 					per_cpu_ptr(zone->pageset, cpu));
7993 	}
7994 out:
7995 	mutex_unlock(&pcp_batch_high_lock);
7996 	return ret;
7997 }
7998 
7999 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8000 /*
8001  * Returns the number of pages that arch has reserved but
8002  * is not known to alloc_large_system_hash().
8003  */
8004 static unsigned long __init arch_reserved_kernel_pages(void)
8005 {
8006 	return 0;
8007 }
8008 #endif
8009 
8010 /*
8011  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8012  * machines. As memory size is increased the scale is also increased but at
8013  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8014  * quadruples the scale is increased by one, which means the size of hash table
8015  * only doubles, instead of quadrupling as well.
8016  * Because 32-bit systems cannot have large physical memory, where this scaling
8017  * makes sense, it is disabled on such platforms.
8018  */
8019 #if __BITS_PER_LONG > 32
8020 #define ADAPT_SCALE_BASE	(64ul << 30)
8021 #define ADAPT_SCALE_SHIFT	2
8022 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8023 #endif
8024 
8025 /*
8026  * allocate a large system hash table from bootmem
8027  * - it is assumed that the hash table must contain an exact power-of-2
8028  *   quantity of entries
8029  * - limit is the number of hash buckets, not the total allocation size
8030  */
8031 void *__init alloc_large_system_hash(const char *tablename,
8032 				     unsigned long bucketsize,
8033 				     unsigned long numentries,
8034 				     int scale,
8035 				     int flags,
8036 				     unsigned int *_hash_shift,
8037 				     unsigned int *_hash_mask,
8038 				     unsigned long low_limit,
8039 				     unsigned long high_limit)
8040 {
8041 	unsigned long long max = high_limit;
8042 	unsigned long log2qty, size;
8043 	void *table = NULL;
8044 	gfp_t gfp_flags;
8045 	bool virt;
8046 
8047 	/* allow the kernel cmdline to have a say */
8048 	if (!numentries) {
8049 		/* round applicable memory size up to nearest megabyte */
8050 		numentries = nr_kernel_pages;
8051 		numentries -= arch_reserved_kernel_pages();
8052 
8053 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8054 		if (PAGE_SHIFT < 20)
8055 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8056 
8057 #if __BITS_PER_LONG > 32
8058 		if (!high_limit) {
8059 			unsigned long adapt;
8060 
8061 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8062 			     adapt <<= ADAPT_SCALE_SHIFT)
8063 				scale++;
8064 		}
8065 #endif
8066 
8067 		/* limit to 1 bucket per 2^scale bytes of low memory */
8068 		if (scale > PAGE_SHIFT)
8069 			numentries >>= (scale - PAGE_SHIFT);
8070 		else
8071 			numentries <<= (PAGE_SHIFT - scale);
8072 
8073 		/* Make sure we've got at least a 0-order allocation.. */
8074 		if (unlikely(flags & HASH_SMALL)) {
8075 			/* Makes no sense without HASH_EARLY */
8076 			WARN_ON(!(flags & HASH_EARLY));
8077 			if (!(numentries >> *_hash_shift)) {
8078 				numentries = 1UL << *_hash_shift;
8079 				BUG_ON(!numentries);
8080 			}
8081 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8082 			numentries = PAGE_SIZE / bucketsize;
8083 	}
8084 	numentries = roundup_pow_of_two(numentries);
8085 
8086 	/* limit allocation size to 1/16 total memory by default */
8087 	if (max == 0) {
8088 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8089 		do_div(max, bucketsize);
8090 	}
8091 	max = min(max, 0x80000000ULL);
8092 
8093 	if (numentries < low_limit)
8094 		numentries = low_limit;
8095 	if (numentries > max)
8096 		numentries = max;
8097 
8098 	log2qty = ilog2(numentries);
8099 
8100 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8101 	do {
8102 		virt = false;
8103 		size = bucketsize << log2qty;
8104 		if (flags & HASH_EARLY) {
8105 			if (flags & HASH_ZERO)
8106 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8107 			else
8108 				table = memblock_alloc_raw(size,
8109 							   SMP_CACHE_BYTES);
8110 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8111 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8112 			virt = true;
8113 		} else {
8114 			/*
8115 			 * If bucketsize is not a power-of-two, we may free
8116 			 * some pages at the end of hash table which
8117 			 * alloc_pages_exact() automatically does
8118 			 */
8119 			table = alloc_pages_exact(size, gfp_flags);
8120 			kmemleak_alloc(table, size, 1, gfp_flags);
8121 		}
8122 	} while (!table && size > PAGE_SIZE && --log2qty);
8123 
8124 	if (!table)
8125 		panic("Failed to allocate %s hash table\n", tablename);
8126 
8127 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8128 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8129 		virt ? "vmalloc" : "linear");
8130 
8131 	if (_hash_shift)
8132 		*_hash_shift = log2qty;
8133 	if (_hash_mask)
8134 		*_hash_mask = (1 << log2qty) - 1;
8135 
8136 	return table;
8137 }
8138 
8139 /*
8140  * This function checks whether pageblock includes unmovable pages or not.
8141  * If @count is not zero, it is okay to include less @count unmovable pages
8142  *
8143  * PageLRU check without isolation or lru_lock could race so that
8144  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8145  * check without lock_page also may miss some movable non-lru pages at
8146  * race condition. So you can't expect this function should be exact.
8147  */
8148 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8149 			 int migratetype, int flags)
8150 {
8151 	unsigned long found;
8152 	unsigned long iter = 0;
8153 	unsigned long pfn = page_to_pfn(page);
8154 	const char *reason = "unmovable page";
8155 
8156 	/*
8157 	 * TODO we could make this much more efficient by not checking every
8158 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8159 	 * that the movable zone guarantees that pages are migratable but
8160 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8161 	 * can still lead to having bootmem allocations in zone_movable.
8162 	 */
8163 
8164 	if (is_migrate_cma_page(page)) {
8165 		/*
8166 		 * CMA allocations (alloc_contig_range) really need to mark
8167 		 * isolate CMA pageblocks even when they are not movable in fact
8168 		 * so consider them movable here.
8169 		 */
8170 		if (is_migrate_cma(migratetype))
8171 			return false;
8172 
8173 		reason = "CMA page";
8174 		goto unmovable;
8175 	}
8176 
8177 	for (found = 0; iter < pageblock_nr_pages; iter++) {
8178 		unsigned long check = pfn + iter;
8179 
8180 		if (!pfn_valid_within(check))
8181 			continue;
8182 
8183 		page = pfn_to_page(check);
8184 
8185 		if (PageReserved(page))
8186 			goto unmovable;
8187 
8188 		/*
8189 		 * If the zone is movable and we have ruled out all reserved
8190 		 * pages then it should be reasonably safe to assume the rest
8191 		 * is movable.
8192 		 */
8193 		if (zone_idx(zone) == ZONE_MOVABLE)
8194 			continue;
8195 
8196 		/*
8197 		 * Hugepages are not in LRU lists, but they're movable.
8198 		 * We need not scan over tail pages because we don't
8199 		 * handle each tail page individually in migration.
8200 		 */
8201 		if (PageHuge(page)) {
8202 			struct page *head = compound_head(page);
8203 			unsigned int skip_pages;
8204 
8205 			if (!hugepage_migration_supported(page_hstate(head)))
8206 				goto unmovable;
8207 
8208 			skip_pages = (1 << compound_order(head)) - (page - head);
8209 			iter += skip_pages - 1;
8210 			continue;
8211 		}
8212 
8213 		/*
8214 		 * We can't use page_count without pin a page
8215 		 * because another CPU can free compound page.
8216 		 * This check already skips compound tails of THP
8217 		 * because their page->_refcount is zero at all time.
8218 		 */
8219 		if (!page_ref_count(page)) {
8220 			if (PageBuddy(page))
8221 				iter += (1 << page_order(page)) - 1;
8222 			continue;
8223 		}
8224 
8225 		/*
8226 		 * The HWPoisoned page may be not in buddy system, and
8227 		 * page_count() is not 0.
8228 		 */
8229 		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8230 			continue;
8231 
8232 		if (__PageMovable(page))
8233 			continue;
8234 
8235 		if (!PageLRU(page))
8236 			found++;
8237 		/*
8238 		 * If there are RECLAIMABLE pages, we need to check
8239 		 * it.  But now, memory offline itself doesn't call
8240 		 * shrink_node_slabs() and it still to be fixed.
8241 		 */
8242 		/*
8243 		 * If the page is not RAM, page_count()should be 0.
8244 		 * we don't need more check. This is an _used_ not-movable page.
8245 		 *
8246 		 * The problematic thing here is PG_reserved pages. PG_reserved
8247 		 * is set to both of a memory hole page and a _used_ kernel
8248 		 * page at boot.
8249 		 */
8250 		if (found > count)
8251 			goto unmovable;
8252 	}
8253 	return false;
8254 unmovable:
8255 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8256 	if (flags & REPORT_FAILURE)
8257 		dump_page(pfn_to_page(pfn + iter), reason);
8258 	return true;
8259 }
8260 
8261 #ifdef CONFIG_CONTIG_ALLOC
8262 static unsigned long pfn_max_align_down(unsigned long pfn)
8263 {
8264 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8265 			     pageblock_nr_pages) - 1);
8266 }
8267 
8268 static unsigned long pfn_max_align_up(unsigned long pfn)
8269 {
8270 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8271 				pageblock_nr_pages));
8272 }
8273 
8274 /* [start, end) must belong to a single zone. */
8275 static int __alloc_contig_migrate_range(struct compact_control *cc,
8276 					unsigned long start, unsigned long end)
8277 {
8278 	/* This function is based on compact_zone() from compaction.c. */
8279 	unsigned long nr_reclaimed;
8280 	unsigned long pfn = start;
8281 	unsigned int tries = 0;
8282 	int ret = 0;
8283 
8284 	migrate_prep();
8285 
8286 	while (pfn < end || !list_empty(&cc->migratepages)) {
8287 		if (fatal_signal_pending(current)) {
8288 			ret = -EINTR;
8289 			break;
8290 		}
8291 
8292 		if (list_empty(&cc->migratepages)) {
8293 			cc->nr_migratepages = 0;
8294 			pfn = isolate_migratepages_range(cc, pfn, end);
8295 			if (!pfn) {
8296 				ret = -EINTR;
8297 				break;
8298 			}
8299 			tries = 0;
8300 		} else if (++tries == 5) {
8301 			ret = ret < 0 ? ret : -EBUSY;
8302 			break;
8303 		}
8304 
8305 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8306 							&cc->migratepages);
8307 		cc->nr_migratepages -= nr_reclaimed;
8308 
8309 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8310 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8311 	}
8312 	if (ret < 0) {
8313 		putback_movable_pages(&cc->migratepages);
8314 		return ret;
8315 	}
8316 	return 0;
8317 }
8318 
8319 /**
8320  * alloc_contig_range() -- tries to allocate given range of pages
8321  * @start:	start PFN to allocate
8322  * @end:	one-past-the-last PFN to allocate
8323  * @migratetype:	migratetype of the underlaying pageblocks (either
8324  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8325  *			in range must have the same migratetype and it must
8326  *			be either of the two.
8327  * @gfp_mask:	GFP mask to use during compaction
8328  *
8329  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8330  * aligned.  The PFN range must belong to a single zone.
8331  *
8332  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8333  * pageblocks in the range.  Once isolated, the pageblocks should not
8334  * be modified by others.
8335  *
8336  * Return: zero on success or negative error code.  On success all
8337  * pages which PFN is in [start, end) are allocated for the caller and
8338  * need to be freed with free_contig_range().
8339  */
8340 int alloc_contig_range(unsigned long start, unsigned long end,
8341 		       unsigned migratetype, gfp_t gfp_mask)
8342 {
8343 	unsigned long outer_start, outer_end;
8344 	unsigned int order;
8345 	int ret = 0;
8346 
8347 	struct compact_control cc = {
8348 		.nr_migratepages = 0,
8349 		.order = -1,
8350 		.zone = page_zone(pfn_to_page(start)),
8351 		.mode = MIGRATE_SYNC,
8352 		.ignore_skip_hint = true,
8353 		.no_set_skip_hint = true,
8354 		.gfp_mask = current_gfp_context(gfp_mask),
8355 	};
8356 	INIT_LIST_HEAD(&cc.migratepages);
8357 
8358 	/*
8359 	 * What we do here is we mark all pageblocks in range as
8360 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8361 	 * have different sizes, and due to the way page allocator
8362 	 * work, we align the range to biggest of the two pages so
8363 	 * that page allocator won't try to merge buddies from
8364 	 * different pageblocks and change MIGRATE_ISOLATE to some
8365 	 * other migration type.
8366 	 *
8367 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8368 	 * migrate the pages from an unaligned range (ie. pages that
8369 	 * we are interested in).  This will put all the pages in
8370 	 * range back to page allocator as MIGRATE_ISOLATE.
8371 	 *
8372 	 * When this is done, we take the pages in range from page
8373 	 * allocator removing them from the buddy system.  This way
8374 	 * page allocator will never consider using them.
8375 	 *
8376 	 * This lets us mark the pageblocks back as
8377 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8378 	 * aligned range but not in the unaligned, original range are
8379 	 * put back to page allocator so that buddy can use them.
8380 	 */
8381 
8382 	ret = start_isolate_page_range(pfn_max_align_down(start),
8383 				       pfn_max_align_up(end), migratetype, 0);
8384 	if (ret < 0)
8385 		return ret;
8386 
8387 	/*
8388 	 * In case of -EBUSY, we'd like to know which page causes problem.
8389 	 * So, just fall through. test_pages_isolated() has a tracepoint
8390 	 * which will report the busy page.
8391 	 *
8392 	 * It is possible that busy pages could become available before
8393 	 * the call to test_pages_isolated, and the range will actually be
8394 	 * allocated.  So, if we fall through be sure to clear ret so that
8395 	 * -EBUSY is not accidentally used or returned to caller.
8396 	 */
8397 	ret = __alloc_contig_migrate_range(&cc, start, end);
8398 	if (ret && ret != -EBUSY)
8399 		goto done;
8400 	ret =0;
8401 
8402 	/*
8403 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8404 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8405 	 * more, all pages in [start, end) are free in page allocator.
8406 	 * What we are going to do is to allocate all pages from
8407 	 * [start, end) (that is remove them from page allocator).
8408 	 *
8409 	 * The only problem is that pages at the beginning and at the
8410 	 * end of interesting range may be not aligned with pages that
8411 	 * page allocator holds, ie. they can be part of higher order
8412 	 * pages.  Because of this, we reserve the bigger range and
8413 	 * once this is done free the pages we are not interested in.
8414 	 *
8415 	 * We don't have to hold zone->lock here because the pages are
8416 	 * isolated thus they won't get removed from buddy.
8417 	 */
8418 
8419 	lru_add_drain_all();
8420 
8421 	order = 0;
8422 	outer_start = start;
8423 	while (!PageBuddy(pfn_to_page(outer_start))) {
8424 		if (++order >= MAX_ORDER) {
8425 			outer_start = start;
8426 			break;
8427 		}
8428 		outer_start &= ~0UL << order;
8429 	}
8430 
8431 	if (outer_start != start) {
8432 		order = page_order(pfn_to_page(outer_start));
8433 
8434 		/*
8435 		 * outer_start page could be small order buddy page and
8436 		 * it doesn't include start page. Adjust outer_start
8437 		 * in this case to report failed page properly
8438 		 * on tracepoint in test_pages_isolated()
8439 		 */
8440 		if (outer_start + (1UL << order) <= start)
8441 			outer_start = start;
8442 	}
8443 
8444 	/* Make sure the range is really isolated. */
8445 	if (test_pages_isolated(outer_start, end, false)) {
8446 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8447 			__func__, outer_start, end);
8448 		ret = -EBUSY;
8449 		goto done;
8450 	}
8451 
8452 	/* Grab isolated pages from freelists. */
8453 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8454 	if (!outer_end) {
8455 		ret = -EBUSY;
8456 		goto done;
8457 	}
8458 
8459 	/* Free head and tail (if any) */
8460 	if (start != outer_start)
8461 		free_contig_range(outer_start, start - outer_start);
8462 	if (end != outer_end)
8463 		free_contig_range(end, outer_end - end);
8464 
8465 done:
8466 	undo_isolate_page_range(pfn_max_align_down(start),
8467 				pfn_max_align_up(end), migratetype);
8468 	return ret;
8469 }
8470 #endif /* CONFIG_CONTIG_ALLOC */
8471 
8472 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8473 {
8474 	unsigned int count = 0;
8475 
8476 	for (; nr_pages--; pfn++) {
8477 		struct page *page = pfn_to_page(pfn);
8478 
8479 		count += page_count(page) != 1;
8480 		__free_page(page);
8481 	}
8482 	WARN(count != 0, "%d pages are still in use!\n", count);
8483 }
8484 
8485 #ifdef CONFIG_MEMORY_HOTPLUG
8486 /*
8487  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8488  * page high values need to be recalulated.
8489  */
8490 void __meminit zone_pcp_update(struct zone *zone)
8491 {
8492 	unsigned cpu;
8493 	mutex_lock(&pcp_batch_high_lock);
8494 	for_each_possible_cpu(cpu)
8495 		pageset_set_high_and_batch(zone,
8496 				per_cpu_ptr(zone->pageset, cpu));
8497 	mutex_unlock(&pcp_batch_high_lock);
8498 }
8499 #endif
8500 
8501 void zone_pcp_reset(struct zone *zone)
8502 {
8503 	unsigned long flags;
8504 	int cpu;
8505 	struct per_cpu_pageset *pset;
8506 
8507 	/* avoid races with drain_pages()  */
8508 	local_irq_save(flags);
8509 	if (zone->pageset != &boot_pageset) {
8510 		for_each_online_cpu(cpu) {
8511 			pset = per_cpu_ptr(zone->pageset, cpu);
8512 			drain_zonestat(zone, pset);
8513 		}
8514 		free_percpu(zone->pageset);
8515 		zone->pageset = &boot_pageset;
8516 	}
8517 	local_irq_restore(flags);
8518 }
8519 
8520 #ifdef CONFIG_MEMORY_HOTREMOVE
8521 /*
8522  * All pages in the range must be in a single zone and isolated
8523  * before calling this.
8524  */
8525 unsigned long
8526 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8527 {
8528 	struct page *page;
8529 	struct zone *zone;
8530 	unsigned int order, i;
8531 	unsigned long pfn;
8532 	unsigned long flags;
8533 	unsigned long offlined_pages = 0;
8534 
8535 	/* find the first valid pfn */
8536 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8537 		if (pfn_valid(pfn))
8538 			break;
8539 	if (pfn == end_pfn)
8540 		return offlined_pages;
8541 
8542 	offline_mem_sections(pfn, end_pfn);
8543 	zone = page_zone(pfn_to_page(pfn));
8544 	spin_lock_irqsave(&zone->lock, flags);
8545 	pfn = start_pfn;
8546 	while (pfn < end_pfn) {
8547 		if (!pfn_valid(pfn)) {
8548 			pfn++;
8549 			continue;
8550 		}
8551 		page = pfn_to_page(pfn);
8552 		/*
8553 		 * The HWPoisoned page may be not in buddy system, and
8554 		 * page_count() is not 0.
8555 		 */
8556 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8557 			pfn++;
8558 			SetPageReserved(page);
8559 			offlined_pages++;
8560 			continue;
8561 		}
8562 
8563 		BUG_ON(page_count(page));
8564 		BUG_ON(!PageBuddy(page));
8565 		order = page_order(page);
8566 		offlined_pages += 1 << order;
8567 #ifdef CONFIG_DEBUG_VM
8568 		pr_info("remove from free list %lx %d %lx\n",
8569 			pfn, 1 << order, end_pfn);
8570 #endif
8571 		del_page_from_free_area(page, &zone->free_area[order]);
8572 		for (i = 0; i < (1 << order); i++)
8573 			SetPageReserved((page+i));
8574 		pfn += (1 << order);
8575 	}
8576 	spin_unlock_irqrestore(&zone->lock, flags);
8577 
8578 	return offlined_pages;
8579 }
8580 #endif
8581 
8582 bool is_free_buddy_page(struct page *page)
8583 {
8584 	struct zone *zone = page_zone(page);
8585 	unsigned long pfn = page_to_pfn(page);
8586 	unsigned long flags;
8587 	unsigned int order;
8588 
8589 	spin_lock_irqsave(&zone->lock, flags);
8590 	for (order = 0; order < MAX_ORDER; order++) {
8591 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8592 
8593 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8594 			break;
8595 	}
8596 	spin_unlock_irqrestore(&zone->lock, flags);
8597 
8598 	return order < MAX_ORDER;
8599 }
8600 
8601 #ifdef CONFIG_MEMORY_FAILURE
8602 /*
8603  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8604  * test is performed under the zone lock to prevent a race against page
8605  * allocation.
8606  */
8607 bool set_hwpoison_free_buddy_page(struct page *page)
8608 {
8609 	struct zone *zone = page_zone(page);
8610 	unsigned long pfn = page_to_pfn(page);
8611 	unsigned long flags;
8612 	unsigned int order;
8613 	bool hwpoisoned = false;
8614 
8615 	spin_lock_irqsave(&zone->lock, flags);
8616 	for (order = 0; order < MAX_ORDER; order++) {
8617 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8618 
8619 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8620 			if (!TestSetPageHWPoison(page))
8621 				hwpoisoned = true;
8622 			break;
8623 		}
8624 	}
8625 	spin_unlock_irqrestore(&zone->lock, flags);
8626 
8627 	return hwpoisoned;
8628 }
8629 #endif
8630