1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/prefetch.h> 58 #include <linux/mm_inline.h> 59 #include <linux/migrate.h> 60 #include <linux/page_ext.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/page_owner.h> 64 65 #include <asm/sections.h> 66 #include <asm/tlbflush.h> 67 #include <asm/div64.h> 68 #include "internal.h" 69 70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 71 static DEFINE_MUTEX(pcp_batch_high_lock); 72 #define MIN_PERCPU_PAGELIST_FRACTION (8) 73 74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 75 DEFINE_PER_CPU(int, numa_node); 76 EXPORT_PER_CPU_SYMBOL(numa_node); 77 #endif 78 79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 80 /* 81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 84 * defined in <linux/topology.h>. 85 */ 86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 87 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 88 int _node_numa_mem_[MAX_NUMNODES]; 89 #endif 90 91 /* 92 * Array of node states. 93 */ 94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 95 [N_POSSIBLE] = NODE_MASK_ALL, 96 [N_ONLINE] = { { [0] = 1UL } }, 97 #ifndef CONFIG_NUMA 98 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 99 #ifdef CONFIG_HIGHMEM 100 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 101 #endif 102 #ifdef CONFIG_MOVABLE_NODE 103 [N_MEMORY] = { { [0] = 1UL } }, 104 #endif 105 [N_CPU] = { { [0] = 1UL } }, 106 #endif /* NUMA */ 107 }; 108 EXPORT_SYMBOL(node_states); 109 110 /* Protect totalram_pages and zone->managed_pages */ 111 static DEFINE_SPINLOCK(managed_page_count_lock); 112 113 unsigned long totalram_pages __read_mostly; 114 unsigned long totalreserve_pages __read_mostly; 115 unsigned long totalcma_pages __read_mostly; 116 /* 117 * When calculating the number of globally allowed dirty pages, there 118 * is a certain number of per-zone reserves that should not be 119 * considered dirtyable memory. This is the sum of those reserves 120 * over all existing zones that contribute dirtyable memory. 121 */ 122 unsigned long dirty_balance_reserve __read_mostly; 123 124 int percpu_pagelist_fraction; 125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 126 127 #ifdef CONFIG_PM_SLEEP 128 /* 129 * The following functions are used by the suspend/hibernate code to temporarily 130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 131 * while devices are suspended. To avoid races with the suspend/hibernate code, 132 * they should always be called with pm_mutex held (gfp_allowed_mask also should 133 * only be modified with pm_mutex held, unless the suspend/hibernate code is 134 * guaranteed not to run in parallel with that modification). 135 */ 136 137 static gfp_t saved_gfp_mask; 138 139 void pm_restore_gfp_mask(void) 140 { 141 WARN_ON(!mutex_is_locked(&pm_mutex)); 142 if (saved_gfp_mask) { 143 gfp_allowed_mask = saved_gfp_mask; 144 saved_gfp_mask = 0; 145 } 146 } 147 148 void pm_restrict_gfp_mask(void) 149 { 150 WARN_ON(!mutex_is_locked(&pm_mutex)); 151 WARN_ON(saved_gfp_mask); 152 saved_gfp_mask = gfp_allowed_mask; 153 gfp_allowed_mask &= ~GFP_IOFS; 154 } 155 156 bool pm_suspended_storage(void) 157 { 158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 159 return false; 160 return true; 161 } 162 #endif /* CONFIG_PM_SLEEP */ 163 164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 165 int pageblock_order __read_mostly; 166 #endif 167 168 static void __free_pages_ok(struct page *page, unsigned int order); 169 170 /* 171 * results with 256, 32 in the lowmem_reserve sysctl: 172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 173 * 1G machine -> (16M dma, 784M normal, 224M high) 174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 177 * 178 * TBD: should special case ZONE_DMA32 machines here - in those we normally 179 * don't need any ZONE_NORMAL reservation 180 */ 181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 182 #ifdef CONFIG_ZONE_DMA 183 256, 184 #endif 185 #ifdef CONFIG_ZONE_DMA32 186 256, 187 #endif 188 #ifdef CONFIG_HIGHMEM 189 32, 190 #endif 191 32, 192 }; 193 194 EXPORT_SYMBOL(totalram_pages); 195 196 static char * const zone_names[MAX_NR_ZONES] = { 197 #ifdef CONFIG_ZONE_DMA 198 "DMA", 199 #endif 200 #ifdef CONFIG_ZONE_DMA32 201 "DMA32", 202 #endif 203 "Normal", 204 #ifdef CONFIG_HIGHMEM 205 "HighMem", 206 #endif 207 "Movable", 208 }; 209 210 int min_free_kbytes = 1024; 211 int user_min_free_kbytes = -1; 212 213 static unsigned long __meminitdata nr_kernel_pages; 214 static unsigned long __meminitdata nr_all_pages; 215 static unsigned long __meminitdata dma_reserve; 216 217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 220 static unsigned long __initdata required_kernelcore; 221 static unsigned long __initdata required_movablecore; 222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 223 224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 225 int movable_zone; 226 EXPORT_SYMBOL(movable_zone); 227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 228 229 #if MAX_NUMNODES > 1 230 int nr_node_ids __read_mostly = MAX_NUMNODES; 231 int nr_online_nodes __read_mostly = 1; 232 EXPORT_SYMBOL(nr_node_ids); 233 EXPORT_SYMBOL(nr_online_nodes); 234 #endif 235 236 int page_group_by_mobility_disabled __read_mostly; 237 238 void set_pageblock_migratetype(struct page *page, int migratetype) 239 { 240 if (unlikely(page_group_by_mobility_disabled && 241 migratetype < MIGRATE_PCPTYPES)) 242 migratetype = MIGRATE_UNMOVABLE; 243 244 set_pageblock_flags_group(page, (unsigned long)migratetype, 245 PB_migrate, PB_migrate_end); 246 } 247 248 #ifdef CONFIG_DEBUG_VM 249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 250 { 251 int ret = 0; 252 unsigned seq; 253 unsigned long pfn = page_to_pfn(page); 254 unsigned long sp, start_pfn; 255 256 do { 257 seq = zone_span_seqbegin(zone); 258 start_pfn = zone->zone_start_pfn; 259 sp = zone->spanned_pages; 260 if (!zone_spans_pfn(zone, pfn)) 261 ret = 1; 262 } while (zone_span_seqretry(zone, seq)); 263 264 if (ret) 265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 266 pfn, zone_to_nid(zone), zone->name, 267 start_pfn, start_pfn + sp); 268 269 return ret; 270 } 271 272 static int page_is_consistent(struct zone *zone, struct page *page) 273 { 274 if (!pfn_valid_within(page_to_pfn(page))) 275 return 0; 276 if (zone != page_zone(page)) 277 return 0; 278 279 return 1; 280 } 281 /* 282 * Temporary debugging check for pages not lying within a given zone. 283 */ 284 static int bad_range(struct zone *zone, struct page *page) 285 { 286 if (page_outside_zone_boundaries(zone, page)) 287 return 1; 288 if (!page_is_consistent(zone, page)) 289 return 1; 290 291 return 0; 292 } 293 #else 294 static inline int bad_range(struct zone *zone, struct page *page) 295 { 296 return 0; 297 } 298 #endif 299 300 static void bad_page(struct page *page, const char *reason, 301 unsigned long bad_flags) 302 { 303 static unsigned long resume; 304 static unsigned long nr_shown; 305 static unsigned long nr_unshown; 306 307 /* Don't complain about poisoned pages */ 308 if (PageHWPoison(page)) { 309 page_mapcount_reset(page); /* remove PageBuddy */ 310 return; 311 } 312 313 /* 314 * Allow a burst of 60 reports, then keep quiet for that minute; 315 * or allow a steady drip of one report per second. 316 */ 317 if (nr_shown == 60) { 318 if (time_before(jiffies, resume)) { 319 nr_unshown++; 320 goto out; 321 } 322 if (nr_unshown) { 323 printk(KERN_ALERT 324 "BUG: Bad page state: %lu messages suppressed\n", 325 nr_unshown); 326 nr_unshown = 0; 327 } 328 nr_shown = 0; 329 } 330 if (nr_shown++ == 0) 331 resume = jiffies + 60 * HZ; 332 333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 334 current->comm, page_to_pfn(page)); 335 dump_page_badflags(page, reason, bad_flags); 336 337 print_modules(); 338 dump_stack(); 339 out: 340 /* Leave bad fields for debug, except PageBuddy could make trouble */ 341 page_mapcount_reset(page); /* remove PageBuddy */ 342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 343 } 344 345 /* 346 * Higher-order pages are called "compound pages". They are structured thusly: 347 * 348 * The first PAGE_SIZE page is called the "head page". 349 * 350 * The remaining PAGE_SIZE pages are called "tail pages". 351 * 352 * All pages have PG_compound set. All tail pages have their ->first_page 353 * pointing at the head page. 354 * 355 * The first tail page's ->lru.next holds the address of the compound page's 356 * put_page() function. Its ->lru.prev holds the order of allocation. 357 * This usage means that zero-order pages may not be compound. 358 */ 359 360 static void free_compound_page(struct page *page) 361 { 362 __free_pages_ok(page, compound_order(page)); 363 } 364 365 void prep_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 370 set_compound_page_dtor(page, free_compound_page); 371 set_compound_order(page, order); 372 __SetPageHead(page); 373 for (i = 1; i < nr_pages; i++) { 374 struct page *p = page + i; 375 set_page_count(p, 0); 376 p->first_page = page; 377 /* Make sure p->first_page is always valid for PageTail() */ 378 smp_wmb(); 379 __SetPageTail(p); 380 } 381 } 382 383 static inline void prep_zero_page(struct page *page, unsigned int order, 384 gfp_t gfp_flags) 385 { 386 int i; 387 388 /* 389 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 390 * and __GFP_HIGHMEM from hard or soft interrupt context. 391 */ 392 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 393 for (i = 0; i < (1 << order); i++) 394 clear_highpage(page + i); 395 } 396 397 #ifdef CONFIG_DEBUG_PAGEALLOC 398 unsigned int _debug_guardpage_minorder; 399 bool _debug_pagealloc_enabled __read_mostly; 400 bool _debug_guardpage_enabled __read_mostly; 401 402 static int __init early_debug_pagealloc(char *buf) 403 { 404 if (!buf) 405 return -EINVAL; 406 407 if (strcmp(buf, "on") == 0) 408 _debug_pagealloc_enabled = true; 409 410 return 0; 411 } 412 early_param("debug_pagealloc", early_debug_pagealloc); 413 414 static bool need_debug_guardpage(void) 415 { 416 /* If we don't use debug_pagealloc, we don't need guard page */ 417 if (!debug_pagealloc_enabled()) 418 return false; 419 420 return true; 421 } 422 423 static void init_debug_guardpage(void) 424 { 425 if (!debug_pagealloc_enabled()) 426 return; 427 428 _debug_guardpage_enabled = true; 429 } 430 431 struct page_ext_operations debug_guardpage_ops = { 432 .need = need_debug_guardpage, 433 .init = init_debug_guardpage, 434 }; 435 436 static int __init debug_guardpage_minorder_setup(char *buf) 437 { 438 unsigned long res; 439 440 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 441 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 442 return 0; 443 } 444 _debug_guardpage_minorder = res; 445 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 446 return 0; 447 } 448 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 449 450 static inline void set_page_guard(struct zone *zone, struct page *page, 451 unsigned int order, int migratetype) 452 { 453 struct page_ext *page_ext; 454 455 if (!debug_guardpage_enabled()) 456 return; 457 458 page_ext = lookup_page_ext(page); 459 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 460 461 INIT_LIST_HEAD(&page->lru); 462 set_page_private(page, order); 463 /* Guard pages are not available for any usage */ 464 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 465 } 466 467 static inline void clear_page_guard(struct zone *zone, struct page *page, 468 unsigned int order, int migratetype) 469 { 470 struct page_ext *page_ext; 471 472 if (!debug_guardpage_enabled()) 473 return; 474 475 page_ext = lookup_page_ext(page); 476 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 477 478 set_page_private(page, 0); 479 if (!is_migrate_isolate(migratetype)) 480 __mod_zone_freepage_state(zone, (1 << order), migratetype); 481 } 482 #else 483 struct page_ext_operations debug_guardpage_ops = { NULL, }; 484 static inline void set_page_guard(struct zone *zone, struct page *page, 485 unsigned int order, int migratetype) {} 486 static inline void clear_page_guard(struct zone *zone, struct page *page, 487 unsigned int order, int migratetype) {} 488 #endif 489 490 static inline void set_page_order(struct page *page, unsigned int order) 491 { 492 set_page_private(page, order); 493 __SetPageBuddy(page); 494 } 495 496 static inline void rmv_page_order(struct page *page) 497 { 498 __ClearPageBuddy(page); 499 set_page_private(page, 0); 500 } 501 502 /* 503 * This function checks whether a page is free && is the buddy 504 * we can do coalesce a page and its buddy if 505 * (a) the buddy is not in a hole && 506 * (b) the buddy is in the buddy system && 507 * (c) a page and its buddy have the same order && 508 * (d) a page and its buddy are in the same zone. 509 * 510 * For recording whether a page is in the buddy system, we set ->_mapcount 511 * PAGE_BUDDY_MAPCOUNT_VALUE. 512 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 513 * serialized by zone->lock. 514 * 515 * For recording page's order, we use page_private(page). 516 */ 517 static inline int page_is_buddy(struct page *page, struct page *buddy, 518 unsigned int order) 519 { 520 if (!pfn_valid_within(page_to_pfn(buddy))) 521 return 0; 522 523 if (page_is_guard(buddy) && page_order(buddy) == order) { 524 if (page_zone_id(page) != page_zone_id(buddy)) 525 return 0; 526 527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 528 529 return 1; 530 } 531 532 if (PageBuddy(buddy) && page_order(buddy) == order) { 533 /* 534 * zone check is done late to avoid uselessly 535 * calculating zone/node ids for pages that could 536 * never merge. 537 */ 538 if (page_zone_id(page) != page_zone_id(buddy)) 539 return 0; 540 541 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 542 543 return 1; 544 } 545 return 0; 546 } 547 548 /* 549 * Freeing function for a buddy system allocator. 550 * 551 * The concept of a buddy system is to maintain direct-mapped table 552 * (containing bit values) for memory blocks of various "orders". 553 * The bottom level table contains the map for the smallest allocatable 554 * units of memory (here, pages), and each level above it describes 555 * pairs of units from the levels below, hence, "buddies". 556 * At a high level, all that happens here is marking the table entry 557 * at the bottom level available, and propagating the changes upward 558 * as necessary, plus some accounting needed to play nicely with other 559 * parts of the VM system. 560 * At each level, we keep a list of pages, which are heads of continuous 561 * free pages of length of (1 << order) and marked with _mapcount 562 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 563 * field. 564 * So when we are allocating or freeing one, we can derive the state of the 565 * other. That is, if we allocate a small block, and both were 566 * free, the remainder of the region must be split into blocks. 567 * If a block is freed, and its buddy is also free, then this 568 * triggers coalescing into a block of larger size. 569 * 570 * -- nyc 571 */ 572 573 static inline void __free_one_page(struct page *page, 574 unsigned long pfn, 575 struct zone *zone, unsigned int order, 576 int migratetype) 577 { 578 unsigned long page_idx; 579 unsigned long combined_idx; 580 unsigned long uninitialized_var(buddy_idx); 581 struct page *buddy; 582 int max_order = MAX_ORDER; 583 584 VM_BUG_ON(!zone_is_initialized(zone)); 585 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 586 587 VM_BUG_ON(migratetype == -1); 588 if (is_migrate_isolate(migratetype)) { 589 /* 590 * We restrict max order of merging to prevent merge 591 * between freepages on isolate pageblock and normal 592 * pageblock. Without this, pageblock isolation 593 * could cause incorrect freepage accounting. 594 */ 595 max_order = min(MAX_ORDER, pageblock_order + 1); 596 } else { 597 __mod_zone_freepage_state(zone, 1 << order, migratetype); 598 } 599 600 page_idx = pfn & ((1 << max_order) - 1); 601 602 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 603 VM_BUG_ON_PAGE(bad_range(zone, page), page); 604 605 while (order < max_order - 1) { 606 buddy_idx = __find_buddy_index(page_idx, order); 607 buddy = page + (buddy_idx - page_idx); 608 if (!page_is_buddy(page, buddy, order)) 609 break; 610 /* 611 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 612 * merge with it and move up one order. 613 */ 614 if (page_is_guard(buddy)) { 615 clear_page_guard(zone, buddy, order, migratetype); 616 } else { 617 list_del(&buddy->lru); 618 zone->free_area[order].nr_free--; 619 rmv_page_order(buddy); 620 } 621 combined_idx = buddy_idx & page_idx; 622 page = page + (combined_idx - page_idx); 623 page_idx = combined_idx; 624 order++; 625 } 626 set_page_order(page, order); 627 628 /* 629 * If this is not the largest possible page, check if the buddy 630 * of the next-highest order is free. If it is, it's possible 631 * that pages are being freed that will coalesce soon. In case, 632 * that is happening, add the free page to the tail of the list 633 * so it's less likely to be used soon and more likely to be merged 634 * as a higher order page 635 */ 636 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 637 struct page *higher_page, *higher_buddy; 638 combined_idx = buddy_idx & page_idx; 639 higher_page = page + (combined_idx - page_idx); 640 buddy_idx = __find_buddy_index(combined_idx, order + 1); 641 higher_buddy = higher_page + (buddy_idx - combined_idx); 642 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 643 list_add_tail(&page->lru, 644 &zone->free_area[order].free_list[migratetype]); 645 goto out; 646 } 647 } 648 649 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 650 out: 651 zone->free_area[order].nr_free++; 652 } 653 654 static inline int free_pages_check(struct page *page) 655 { 656 const char *bad_reason = NULL; 657 unsigned long bad_flags = 0; 658 659 if (unlikely(page_mapcount(page))) 660 bad_reason = "nonzero mapcount"; 661 if (unlikely(page->mapping != NULL)) 662 bad_reason = "non-NULL mapping"; 663 if (unlikely(atomic_read(&page->_count) != 0)) 664 bad_reason = "nonzero _count"; 665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 666 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 667 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 668 } 669 #ifdef CONFIG_MEMCG 670 if (unlikely(page->mem_cgroup)) 671 bad_reason = "page still charged to cgroup"; 672 #endif 673 if (unlikely(bad_reason)) { 674 bad_page(page, bad_reason, bad_flags); 675 return 1; 676 } 677 page_cpupid_reset_last(page); 678 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 679 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 680 return 0; 681 } 682 683 /* 684 * Frees a number of pages from the PCP lists 685 * Assumes all pages on list are in same zone, and of same order. 686 * count is the number of pages to free. 687 * 688 * If the zone was previously in an "all pages pinned" state then look to 689 * see if this freeing clears that state. 690 * 691 * And clear the zone's pages_scanned counter, to hold off the "all pages are 692 * pinned" detection logic. 693 */ 694 static void free_pcppages_bulk(struct zone *zone, int count, 695 struct per_cpu_pages *pcp) 696 { 697 int migratetype = 0; 698 int batch_free = 0; 699 int to_free = count; 700 unsigned long nr_scanned; 701 702 spin_lock(&zone->lock); 703 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 704 if (nr_scanned) 705 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 706 707 while (to_free) { 708 struct page *page; 709 struct list_head *list; 710 711 /* 712 * Remove pages from lists in a round-robin fashion. A 713 * batch_free count is maintained that is incremented when an 714 * empty list is encountered. This is so more pages are freed 715 * off fuller lists instead of spinning excessively around empty 716 * lists 717 */ 718 do { 719 batch_free++; 720 if (++migratetype == MIGRATE_PCPTYPES) 721 migratetype = 0; 722 list = &pcp->lists[migratetype]; 723 } while (list_empty(list)); 724 725 /* This is the only non-empty list. Free them all. */ 726 if (batch_free == MIGRATE_PCPTYPES) 727 batch_free = to_free; 728 729 do { 730 int mt; /* migratetype of the to-be-freed page */ 731 732 page = list_entry(list->prev, struct page, lru); 733 /* must delete as __free_one_page list manipulates */ 734 list_del(&page->lru); 735 mt = get_freepage_migratetype(page); 736 if (unlikely(has_isolate_pageblock(zone))) 737 mt = get_pageblock_migratetype(page); 738 739 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 740 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 741 trace_mm_page_pcpu_drain(page, 0, mt); 742 } while (--to_free && --batch_free && !list_empty(list)); 743 } 744 spin_unlock(&zone->lock); 745 } 746 747 static void free_one_page(struct zone *zone, 748 struct page *page, unsigned long pfn, 749 unsigned int order, 750 int migratetype) 751 { 752 unsigned long nr_scanned; 753 spin_lock(&zone->lock); 754 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 755 if (nr_scanned) 756 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 757 758 if (unlikely(has_isolate_pageblock(zone) || 759 is_migrate_isolate(migratetype))) { 760 migratetype = get_pfnblock_migratetype(page, pfn); 761 } 762 __free_one_page(page, pfn, zone, order, migratetype); 763 spin_unlock(&zone->lock); 764 } 765 766 static int free_tail_pages_check(struct page *head_page, struct page *page) 767 { 768 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 769 return 0; 770 if (unlikely(!PageTail(page))) { 771 bad_page(page, "PageTail not set", 0); 772 return 1; 773 } 774 if (unlikely(page->first_page != head_page)) { 775 bad_page(page, "first_page not consistent", 0); 776 return 1; 777 } 778 return 0; 779 } 780 781 static bool free_pages_prepare(struct page *page, unsigned int order) 782 { 783 bool compound = PageCompound(page); 784 int i, bad = 0; 785 786 VM_BUG_ON_PAGE(PageTail(page), page); 787 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 788 789 trace_mm_page_free(page, order); 790 kmemcheck_free_shadow(page, order); 791 kasan_free_pages(page, order); 792 793 if (PageAnon(page)) 794 page->mapping = NULL; 795 bad += free_pages_check(page); 796 for (i = 1; i < (1 << order); i++) { 797 if (compound) 798 bad += free_tail_pages_check(page, page + i); 799 bad += free_pages_check(page + i); 800 } 801 if (bad) 802 return false; 803 804 reset_page_owner(page, order); 805 806 if (!PageHighMem(page)) { 807 debug_check_no_locks_freed(page_address(page), 808 PAGE_SIZE << order); 809 debug_check_no_obj_freed(page_address(page), 810 PAGE_SIZE << order); 811 } 812 arch_free_page(page, order); 813 kernel_map_pages(page, 1 << order, 0); 814 815 return true; 816 } 817 818 static void __free_pages_ok(struct page *page, unsigned int order) 819 { 820 unsigned long flags; 821 int migratetype; 822 unsigned long pfn = page_to_pfn(page); 823 824 if (!free_pages_prepare(page, order)) 825 return; 826 827 migratetype = get_pfnblock_migratetype(page, pfn); 828 local_irq_save(flags); 829 __count_vm_events(PGFREE, 1 << order); 830 set_freepage_migratetype(page, migratetype); 831 free_one_page(page_zone(page), page, pfn, order, migratetype); 832 local_irq_restore(flags); 833 } 834 835 void __init __free_pages_bootmem(struct page *page, unsigned int order) 836 { 837 unsigned int nr_pages = 1 << order; 838 struct page *p = page; 839 unsigned int loop; 840 841 prefetchw(p); 842 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 843 prefetchw(p + 1); 844 __ClearPageReserved(p); 845 set_page_count(p, 0); 846 } 847 __ClearPageReserved(p); 848 set_page_count(p, 0); 849 850 page_zone(page)->managed_pages += nr_pages; 851 set_page_refcounted(page); 852 __free_pages(page, order); 853 } 854 855 #ifdef CONFIG_CMA 856 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 857 void __init init_cma_reserved_pageblock(struct page *page) 858 { 859 unsigned i = pageblock_nr_pages; 860 struct page *p = page; 861 862 do { 863 __ClearPageReserved(p); 864 set_page_count(p, 0); 865 } while (++p, --i); 866 867 set_pageblock_migratetype(page, MIGRATE_CMA); 868 869 if (pageblock_order >= MAX_ORDER) { 870 i = pageblock_nr_pages; 871 p = page; 872 do { 873 set_page_refcounted(p); 874 __free_pages(p, MAX_ORDER - 1); 875 p += MAX_ORDER_NR_PAGES; 876 } while (i -= MAX_ORDER_NR_PAGES); 877 } else { 878 set_page_refcounted(page); 879 __free_pages(page, pageblock_order); 880 } 881 882 adjust_managed_page_count(page, pageblock_nr_pages); 883 } 884 #endif 885 886 /* 887 * The order of subdivision here is critical for the IO subsystem. 888 * Please do not alter this order without good reasons and regression 889 * testing. Specifically, as large blocks of memory are subdivided, 890 * the order in which smaller blocks are delivered depends on the order 891 * they're subdivided in this function. This is the primary factor 892 * influencing the order in which pages are delivered to the IO 893 * subsystem according to empirical testing, and this is also justified 894 * by considering the behavior of a buddy system containing a single 895 * large block of memory acted on by a series of small allocations. 896 * This behavior is a critical factor in sglist merging's success. 897 * 898 * -- nyc 899 */ 900 static inline void expand(struct zone *zone, struct page *page, 901 int low, int high, struct free_area *area, 902 int migratetype) 903 { 904 unsigned long size = 1 << high; 905 906 while (high > low) { 907 area--; 908 high--; 909 size >>= 1; 910 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 911 912 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 913 debug_guardpage_enabled() && 914 high < debug_guardpage_minorder()) { 915 /* 916 * Mark as guard pages (or page), that will allow to 917 * merge back to allocator when buddy will be freed. 918 * Corresponding page table entries will not be touched, 919 * pages will stay not present in virtual address space 920 */ 921 set_page_guard(zone, &page[size], high, migratetype); 922 continue; 923 } 924 list_add(&page[size].lru, &area->free_list[migratetype]); 925 area->nr_free++; 926 set_page_order(&page[size], high); 927 } 928 } 929 930 /* 931 * This page is about to be returned from the page allocator 932 */ 933 static inline int check_new_page(struct page *page) 934 { 935 const char *bad_reason = NULL; 936 unsigned long bad_flags = 0; 937 938 if (unlikely(page_mapcount(page))) 939 bad_reason = "nonzero mapcount"; 940 if (unlikely(page->mapping != NULL)) 941 bad_reason = "non-NULL mapping"; 942 if (unlikely(atomic_read(&page->_count) != 0)) 943 bad_reason = "nonzero _count"; 944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 945 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 946 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 947 } 948 #ifdef CONFIG_MEMCG 949 if (unlikely(page->mem_cgroup)) 950 bad_reason = "page still charged to cgroup"; 951 #endif 952 if (unlikely(bad_reason)) { 953 bad_page(page, bad_reason, bad_flags); 954 return 1; 955 } 956 return 0; 957 } 958 959 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 960 int alloc_flags) 961 { 962 int i; 963 964 for (i = 0; i < (1 << order); i++) { 965 struct page *p = page + i; 966 if (unlikely(check_new_page(p))) 967 return 1; 968 } 969 970 set_page_private(page, 0); 971 set_page_refcounted(page); 972 973 arch_alloc_page(page, order); 974 kernel_map_pages(page, 1 << order, 1); 975 kasan_alloc_pages(page, order); 976 977 if (gfp_flags & __GFP_ZERO) 978 prep_zero_page(page, order, gfp_flags); 979 980 if (order && (gfp_flags & __GFP_COMP)) 981 prep_compound_page(page, order); 982 983 set_page_owner(page, order, gfp_flags); 984 985 /* 986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to 987 * allocate the page. The expectation is that the caller is taking 988 * steps that will free more memory. The caller should avoid the page 989 * being used for !PFMEMALLOC purposes. 990 */ 991 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 992 993 return 0; 994 } 995 996 /* 997 * Go through the free lists for the given migratetype and remove 998 * the smallest available page from the freelists 999 */ 1000 static inline 1001 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1002 int migratetype) 1003 { 1004 unsigned int current_order; 1005 struct free_area *area; 1006 struct page *page; 1007 1008 /* Find a page of the appropriate size in the preferred list */ 1009 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1010 area = &(zone->free_area[current_order]); 1011 if (list_empty(&area->free_list[migratetype])) 1012 continue; 1013 1014 page = list_entry(area->free_list[migratetype].next, 1015 struct page, lru); 1016 list_del(&page->lru); 1017 rmv_page_order(page); 1018 area->nr_free--; 1019 expand(zone, page, order, current_order, area, migratetype); 1020 set_freepage_migratetype(page, migratetype); 1021 return page; 1022 } 1023 1024 return NULL; 1025 } 1026 1027 1028 /* 1029 * This array describes the order lists are fallen back to when 1030 * the free lists for the desirable migrate type are depleted 1031 */ 1032 static int fallbacks[MIGRATE_TYPES][4] = { 1033 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1034 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1035 #ifdef CONFIG_CMA 1036 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 1037 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 1038 #else 1039 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 1040 #endif 1041 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 1042 #ifdef CONFIG_MEMORY_ISOLATION 1043 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 1044 #endif 1045 }; 1046 1047 /* 1048 * Move the free pages in a range to the free lists of the requested type. 1049 * Note that start_page and end_pages are not aligned on a pageblock 1050 * boundary. If alignment is required, use move_freepages_block() 1051 */ 1052 int move_freepages(struct zone *zone, 1053 struct page *start_page, struct page *end_page, 1054 int migratetype) 1055 { 1056 struct page *page; 1057 unsigned long order; 1058 int pages_moved = 0; 1059 1060 #ifndef CONFIG_HOLES_IN_ZONE 1061 /* 1062 * page_zone is not safe to call in this context when 1063 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1064 * anyway as we check zone boundaries in move_freepages_block(). 1065 * Remove at a later date when no bug reports exist related to 1066 * grouping pages by mobility 1067 */ 1068 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1069 #endif 1070 1071 for (page = start_page; page <= end_page;) { 1072 /* Make sure we are not inadvertently changing nodes */ 1073 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1074 1075 if (!pfn_valid_within(page_to_pfn(page))) { 1076 page++; 1077 continue; 1078 } 1079 1080 if (!PageBuddy(page)) { 1081 page++; 1082 continue; 1083 } 1084 1085 order = page_order(page); 1086 list_move(&page->lru, 1087 &zone->free_area[order].free_list[migratetype]); 1088 set_freepage_migratetype(page, migratetype); 1089 page += 1 << order; 1090 pages_moved += 1 << order; 1091 } 1092 1093 return pages_moved; 1094 } 1095 1096 int move_freepages_block(struct zone *zone, struct page *page, 1097 int migratetype) 1098 { 1099 unsigned long start_pfn, end_pfn; 1100 struct page *start_page, *end_page; 1101 1102 start_pfn = page_to_pfn(page); 1103 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1104 start_page = pfn_to_page(start_pfn); 1105 end_page = start_page + pageblock_nr_pages - 1; 1106 end_pfn = start_pfn + pageblock_nr_pages - 1; 1107 1108 /* Do not cross zone boundaries */ 1109 if (!zone_spans_pfn(zone, start_pfn)) 1110 start_page = page; 1111 if (!zone_spans_pfn(zone, end_pfn)) 1112 return 0; 1113 1114 return move_freepages(zone, start_page, end_page, migratetype); 1115 } 1116 1117 static void change_pageblock_range(struct page *pageblock_page, 1118 int start_order, int migratetype) 1119 { 1120 int nr_pageblocks = 1 << (start_order - pageblock_order); 1121 1122 while (nr_pageblocks--) { 1123 set_pageblock_migratetype(pageblock_page, migratetype); 1124 pageblock_page += pageblock_nr_pages; 1125 } 1126 } 1127 1128 /* 1129 * When we are falling back to another migratetype during allocation, try to 1130 * steal extra free pages from the same pageblocks to satisfy further 1131 * allocations, instead of polluting multiple pageblocks. 1132 * 1133 * If we are stealing a relatively large buddy page, it is likely there will 1134 * be more free pages in the pageblock, so try to steal them all. For 1135 * reclaimable and unmovable allocations, we steal regardless of page size, 1136 * as fragmentation caused by those allocations polluting movable pageblocks 1137 * is worse than movable allocations stealing from unmovable and reclaimable 1138 * pageblocks. 1139 * 1140 * If we claim more than half of the pageblock, change pageblock's migratetype 1141 * as well. 1142 */ 1143 static void try_to_steal_freepages(struct zone *zone, struct page *page, 1144 int start_type, int fallback_type) 1145 { 1146 int current_order = page_order(page); 1147 1148 /* Take ownership for orders >= pageblock_order */ 1149 if (current_order >= pageblock_order) { 1150 change_pageblock_range(page, current_order, start_type); 1151 return; 1152 } 1153 1154 if (current_order >= pageblock_order / 2 || 1155 start_type == MIGRATE_RECLAIMABLE || 1156 start_type == MIGRATE_UNMOVABLE || 1157 page_group_by_mobility_disabled) { 1158 int pages; 1159 1160 pages = move_freepages_block(zone, page, start_type); 1161 1162 /* Claim the whole block if over half of it is free */ 1163 if (pages >= (1 << (pageblock_order-1)) || 1164 page_group_by_mobility_disabled) 1165 set_pageblock_migratetype(page, start_type); 1166 } 1167 } 1168 1169 /* Remove an element from the buddy allocator from the fallback list */ 1170 static inline struct page * 1171 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1172 { 1173 struct free_area *area; 1174 unsigned int current_order; 1175 struct page *page; 1176 1177 /* Find the largest possible block of pages in the other list */ 1178 for (current_order = MAX_ORDER-1; 1179 current_order >= order && current_order <= MAX_ORDER-1; 1180 --current_order) { 1181 int i; 1182 for (i = 0;; i++) { 1183 int migratetype = fallbacks[start_migratetype][i]; 1184 int buddy_type = start_migratetype; 1185 1186 /* MIGRATE_RESERVE handled later if necessary */ 1187 if (migratetype == MIGRATE_RESERVE) 1188 break; 1189 1190 area = &(zone->free_area[current_order]); 1191 if (list_empty(&area->free_list[migratetype])) 1192 continue; 1193 1194 page = list_entry(area->free_list[migratetype].next, 1195 struct page, lru); 1196 area->nr_free--; 1197 1198 if (!is_migrate_cma(migratetype)) { 1199 try_to_steal_freepages(zone, page, 1200 start_migratetype, 1201 migratetype); 1202 } else { 1203 /* 1204 * When borrowing from MIGRATE_CMA, we need to 1205 * release the excess buddy pages to CMA 1206 * itself, and we do not try to steal extra 1207 * free pages. 1208 */ 1209 buddy_type = migratetype; 1210 } 1211 1212 /* Remove the page from the freelists */ 1213 list_del(&page->lru); 1214 rmv_page_order(page); 1215 1216 expand(zone, page, order, current_order, area, 1217 buddy_type); 1218 1219 /* 1220 * The freepage_migratetype may differ from pageblock's 1221 * migratetype depending on the decisions in 1222 * try_to_steal_freepages(). This is OK as long as it 1223 * does not differ for MIGRATE_CMA pageblocks. For CMA 1224 * we need to make sure unallocated pages flushed from 1225 * pcp lists are returned to the correct freelist. 1226 */ 1227 set_freepage_migratetype(page, buddy_type); 1228 1229 trace_mm_page_alloc_extfrag(page, order, current_order, 1230 start_migratetype, migratetype); 1231 1232 return page; 1233 } 1234 } 1235 1236 return NULL; 1237 } 1238 1239 /* 1240 * Do the hard work of removing an element from the buddy allocator. 1241 * Call me with the zone->lock already held. 1242 */ 1243 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1244 int migratetype) 1245 { 1246 struct page *page; 1247 1248 retry_reserve: 1249 page = __rmqueue_smallest(zone, order, migratetype); 1250 1251 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1252 page = __rmqueue_fallback(zone, order, migratetype); 1253 1254 /* 1255 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1256 * is used because __rmqueue_smallest is an inline function 1257 * and we want just one call site 1258 */ 1259 if (!page) { 1260 migratetype = MIGRATE_RESERVE; 1261 goto retry_reserve; 1262 } 1263 } 1264 1265 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1266 return page; 1267 } 1268 1269 /* 1270 * Obtain a specified number of elements from the buddy allocator, all under 1271 * a single hold of the lock, for efficiency. Add them to the supplied list. 1272 * Returns the number of new pages which were placed at *list. 1273 */ 1274 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1275 unsigned long count, struct list_head *list, 1276 int migratetype, bool cold) 1277 { 1278 int i; 1279 1280 spin_lock(&zone->lock); 1281 for (i = 0; i < count; ++i) { 1282 struct page *page = __rmqueue(zone, order, migratetype); 1283 if (unlikely(page == NULL)) 1284 break; 1285 1286 /* 1287 * Split buddy pages returned by expand() are received here 1288 * in physical page order. The page is added to the callers and 1289 * list and the list head then moves forward. From the callers 1290 * perspective, the linked list is ordered by page number in 1291 * some conditions. This is useful for IO devices that can 1292 * merge IO requests if the physical pages are ordered 1293 * properly. 1294 */ 1295 if (likely(!cold)) 1296 list_add(&page->lru, list); 1297 else 1298 list_add_tail(&page->lru, list); 1299 list = &page->lru; 1300 if (is_migrate_cma(get_freepage_migratetype(page))) 1301 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1302 -(1 << order)); 1303 } 1304 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1305 spin_unlock(&zone->lock); 1306 return i; 1307 } 1308 1309 #ifdef CONFIG_NUMA 1310 /* 1311 * Called from the vmstat counter updater to drain pagesets of this 1312 * currently executing processor on remote nodes after they have 1313 * expired. 1314 * 1315 * Note that this function must be called with the thread pinned to 1316 * a single processor. 1317 */ 1318 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1319 { 1320 unsigned long flags; 1321 int to_drain, batch; 1322 1323 local_irq_save(flags); 1324 batch = ACCESS_ONCE(pcp->batch); 1325 to_drain = min(pcp->count, batch); 1326 if (to_drain > 0) { 1327 free_pcppages_bulk(zone, to_drain, pcp); 1328 pcp->count -= to_drain; 1329 } 1330 local_irq_restore(flags); 1331 } 1332 #endif 1333 1334 /* 1335 * Drain pcplists of the indicated processor and zone. 1336 * 1337 * The processor must either be the current processor and the 1338 * thread pinned to the current processor or a processor that 1339 * is not online. 1340 */ 1341 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 1342 { 1343 unsigned long flags; 1344 struct per_cpu_pageset *pset; 1345 struct per_cpu_pages *pcp; 1346 1347 local_irq_save(flags); 1348 pset = per_cpu_ptr(zone->pageset, cpu); 1349 1350 pcp = &pset->pcp; 1351 if (pcp->count) { 1352 free_pcppages_bulk(zone, pcp->count, pcp); 1353 pcp->count = 0; 1354 } 1355 local_irq_restore(flags); 1356 } 1357 1358 /* 1359 * Drain pcplists of all zones on the indicated processor. 1360 * 1361 * The processor must either be the current processor and the 1362 * thread pinned to the current processor or a processor that 1363 * is not online. 1364 */ 1365 static void drain_pages(unsigned int cpu) 1366 { 1367 struct zone *zone; 1368 1369 for_each_populated_zone(zone) { 1370 drain_pages_zone(cpu, zone); 1371 } 1372 } 1373 1374 /* 1375 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1376 * 1377 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 1378 * the single zone's pages. 1379 */ 1380 void drain_local_pages(struct zone *zone) 1381 { 1382 int cpu = smp_processor_id(); 1383 1384 if (zone) 1385 drain_pages_zone(cpu, zone); 1386 else 1387 drain_pages(cpu); 1388 } 1389 1390 /* 1391 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1392 * 1393 * When zone parameter is non-NULL, spill just the single zone's pages. 1394 * 1395 * Note that this code is protected against sending an IPI to an offline 1396 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1397 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1398 * nothing keeps CPUs from showing up after we populated the cpumask and 1399 * before the call to on_each_cpu_mask(). 1400 */ 1401 void drain_all_pages(struct zone *zone) 1402 { 1403 int cpu; 1404 1405 /* 1406 * Allocate in the BSS so we wont require allocation in 1407 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1408 */ 1409 static cpumask_t cpus_with_pcps; 1410 1411 /* 1412 * We don't care about racing with CPU hotplug event 1413 * as offline notification will cause the notified 1414 * cpu to drain that CPU pcps and on_each_cpu_mask 1415 * disables preemption as part of its processing 1416 */ 1417 for_each_online_cpu(cpu) { 1418 struct per_cpu_pageset *pcp; 1419 struct zone *z; 1420 bool has_pcps = false; 1421 1422 if (zone) { 1423 pcp = per_cpu_ptr(zone->pageset, cpu); 1424 if (pcp->pcp.count) 1425 has_pcps = true; 1426 } else { 1427 for_each_populated_zone(z) { 1428 pcp = per_cpu_ptr(z->pageset, cpu); 1429 if (pcp->pcp.count) { 1430 has_pcps = true; 1431 break; 1432 } 1433 } 1434 } 1435 1436 if (has_pcps) 1437 cpumask_set_cpu(cpu, &cpus_with_pcps); 1438 else 1439 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1440 } 1441 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 1442 zone, 1); 1443 } 1444 1445 #ifdef CONFIG_HIBERNATION 1446 1447 void mark_free_pages(struct zone *zone) 1448 { 1449 unsigned long pfn, max_zone_pfn; 1450 unsigned long flags; 1451 unsigned int order, t; 1452 struct list_head *curr; 1453 1454 if (zone_is_empty(zone)) 1455 return; 1456 1457 spin_lock_irqsave(&zone->lock, flags); 1458 1459 max_zone_pfn = zone_end_pfn(zone); 1460 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1461 if (pfn_valid(pfn)) { 1462 struct page *page = pfn_to_page(pfn); 1463 1464 if (!swsusp_page_is_forbidden(page)) 1465 swsusp_unset_page_free(page); 1466 } 1467 1468 for_each_migratetype_order(order, t) { 1469 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1470 unsigned long i; 1471 1472 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1473 for (i = 0; i < (1UL << order); i++) 1474 swsusp_set_page_free(pfn_to_page(pfn + i)); 1475 } 1476 } 1477 spin_unlock_irqrestore(&zone->lock, flags); 1478 } 1479 #endif /* CONFIG_PM */ 1480 1481 /* 1482 * Free a 0-order page 1483 * cold == true ? free a cold page : free a hot page 1484 */ 1485 void free_hot_cold_page(struct page *page, bool cold) 1486 { 1487 struct zone *zone = page_zone(page); 1488 struct per_cpu_pages *pcp; 1489 unsigned long flags; 1490 unsigned long pfn = page_to_pfn(page); 1491 int migratetype; 1492 1493 if (!free_pages_prepare(page, 0)) 1494 return; 1495 1496 migratetype = get_pfnblock_migratetype(page, pfn); 1497 set_freepage_migratetype(page, migratetype); 1498 local_irq_save(flags); 1499 __count_vm_event(PGFREE); 1500 1501 /* 1502 * We only track unmovable, reclaimable and movable on pcp lists. 1503 * Free ISOLATE pages back to the allocator because they are being 1504 * offlined but treat RESERVE as movable pages so we can get those 1505 * areas back if necessary. Otherwise, we may have to free 1506 * excessively into the page allocator 1507 */ 1508 if (migratetype >= MIGRATE_PCPTYPES) { 1509 if (unlikely(is_migrate_isolate(migratetype))) { 1510 free_one_page(zone, page, pfn, 0, migratetype); 1511 goto out; 1512 } 1513 migratetype = MIGRATE_MOVABLE; 1514 } 1515 1516 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1517 if (!cold) 1518 list_add(&page->lru, &pcp->lists[migratetype]); 1519 else 1520 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1521 pcp->count++; 1522 if (pcp->count >= pcp->high) { 1523 unsigned long batch = ACCESS_ONCE(pcp->batch); 1524 free_pcppages_bulk(zone, batch, pcp); 1525 pcp->count -= batch; 1526 } 1527 1528 out: 1529 local_irq_restore(flags); 1530 } 1531 1532 /* 1533 * Free a list of 0-order pages 1534 */ 1535 void free_hot_cold_page_list(struct list_head *list, bool cold) 1536 { 1537 struct page *page, *next; 1538 1539 list_for_each_entry_safe(page, next, list, lru) { 1540 trace_mm_page_free_batched(page, cold); 1541 free_hot_cold_page(page, cold); 1542 } 1543 } 1544 1545 /* 1546 * split_page takes a non-compound higher-order page, and splits it into 1547 * n (1<<order) sub-pages: page[0..n] 1548 * Each sub-page must be freed individually. 1549 * 1550 * Note: this is probably too low level an operation for use in drivers. 1551 * Please consult with lkml before using this in your driver. 1552 */ 1553 void split_page(struct page *page, unsigned int order) 1554 { 1555 int i; 1556 1557 VM_BUG_ON_PAGE(PageCompound(page), page); 1558 VM_BUG_ON_PAGE(!page_count(page), page); 1559 1560 #ifdef CONFIG_KMEMCHECK 1561 /* 1562 * Split shadow pages too, because free(page[0]) would 1563 * otherwise free the whole shadow. 1564 */ 1565 if (kmemcheck_page_is_tracked(page)) 1566 split_page(virt_to_page(page[0].shadow), order); 1567 #endif 1568 1569 set_page_owner(page, 0, 0); 1570 for (i = 1; i < (1 << order); i++) { 1571 set_page_refcounted(page + i); 1572 set_page_owner(page + i, 0, 0); 1573 } 1574 } 1575 EXPORT_SYMBOL_GPL(split_page); 1576 1577 int __isolate_free_page(struct page *page, unsigned int order) 1578 { 1579 unsigned long watermark; 1580 struct zone *zone; 1581 int mt; 1582 1583 BUG_ON(!PageBuddy(page)); 1584 1585 zone = page_zone(page); 1586 mt = get_pageblock_migratetype(page); 1587 1588 if (!is_migrate_isolate(mt)) { 1589 /* Obey watermarks as if the page was being allocated */ 1590 watermark = low_wmark_pages(zone) + (1 << order); 1591 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1592 return 0; 1593 1594 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1595 } 1596 1597 /* Remove page from free list */ 1598 list_del(&page->lru); 1599 zone->free_area[order].nr_free--; 1600 rmv_page_order(page); 1601 1602 /* Set the pageblock if the isolated page is at least a pageblock */ 1603 if (order >= pageblock_order - 1) { 1604 struct page *endpage = page + (1 << order) - 1; 1605 for (; page < endpage; page += pageblock_nr_pages) { 1606 int mt = get_pageblock_migratetype(page); 1607 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1608 set_pageblock_migratetype(page, 1609 MIGRATE_MOVABLE); 1610 } 1611 } 1612 1613 set_page_owner(page, order, 0); 1614 return 1UL << order; 1615 } 1616 1617 /* 1618 * Similar to split_page except the page is already free. As this is only 1619 * being used for migration, the migratetype of the block also changes. 1620 * As this is called with interrupts disabled, the caller is responsible 1621 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1622 * are enabled. 1623 * 1624 * Note: this is probably too low level an operation for use in drivers. 1625 * Please consult with lkml before using this in your driver. 1626 */ 1627 int split_free_page(struct page *page) 1628 { 1629 unsigned int order; 1630 int nr_pages; 1631 1632 order = page_order(page); 1633 1634 nr_pages = __isolate_free_page(page, order); 1635 if (!nr_pages) 1636 return 0; 1637 1638 /* Split into individual pages */ 1639 set_page_refcounted(page); 1640 split_page(page, order); 1641 return nr_pages; 1642 } 1643 1644 /* 1645 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 1646 */ 1647 static inline 1648 struct page *buffered_rmqueue(struct zone *preferred_zone, 1649 struct zone *zone, unsigned int order, 1650 gfp_t gfp_flags, int migratetype) 1651 { 1652 unsigned long flags; 1653 struct page *page; 1654 bool cold = ((gfp_flags & __GFP_COLD) != 0); 1655 1656 if (likely(order == 0)) { 1657 struct per_cpu_pages *pcp; 1658 struct list_head *list; 1659 1660 local_irq_save(flags); 1661 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1662 list = &pcp->lists[migratetype]; 1663 if (list_empty(list)) { 1664 pcp->count += rmqueue_bulk(zone, 0, 1665 pcp->batch, list, 1666 migratetype, cold); 1667 if (unlikely(list_empty(list))) 1668 goto failed; 1669 } 1670 1671 if (cold) 1672 page = list_entry(list->prev, struct page, lru); 1673 else 1674 page = list_entry(list->next, struct page, lru); 1675 1676 list_del(&page->lru); 1677 pcp->count--; 1678 } else { 1679 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1680 /* 1681 * __GFP_NOFAIL is not to be used in new code. 1682 * 1683 * All __GFP_NOFAIL callers should be fixed so that they 1684 * properly detect and handle allocation failures. 1685 * 1686 * We most definitely don't want callers attempting to 1687 * allocate greater than order-1 page units with 1688 * __GFP_NOFAIL. 1689 */ 1690 WARN_ON_ONCE(order > 1); 1691 } 1692 spin_lock_irqsave(&zone->lock, flags); 1693 page = __rmqueue(zone, order, migratetype); 1694 spin_unlock(&zone->lock); 1695 if (!page) 1696 goto failed; 1697 __mod_zone_freepage_state(zone, -(1 << order), 1698 get_freepage_migratetype(page)); 1699 } 1700 1701 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1702 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && 1703 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) 1704 set_bit(ZONE_FAIR_DEPLETED, &zone->flags); 1705 1706 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1707 zone_statistics(preferred_zone, zone, gfp_flags); 1708 local_irq_restore(flags); 1709 1710 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1711 return page; 1712 1713 failed: 1714 local_irq_restore(flags); 1715 return NULL; 1716 } 1717 1718 #ifdef CONFIG_FAIL_PAGE_ALLOC 1719 1720 static struct { 1721 struct fault_attr attr; 1722 1723 u32 ignore_gfp_highmem; 1724 u32 ignore_gfp_wait; 1725 u32 min_order; 1726 } fail_page_alloc = { 1727 .attr = FAULT_ATTR_INITIALIZER, 1728 .ignore_gfp_wait = 1, 1729 .ignore_gfp_highmem = 1, 1730 .min_order = 1, 1731 }; 1732 1733 static int __init setup_fail_page_alloc(char *str) 1734 { 1735 return setup_fault_attr(&fail_page_alloc.attr, str); 1736 } 1737 __setup("fail_page_alloc=", setup_fail_page_alloc); 1738 1739 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1740 { 1741 if (order < fail_page_alloc.min_order) 1742 return false; 1743 if (gfp_mask & __GFP_NOFAIL) 1744 return false; 1745 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1746 return false; 1747 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1748 return false; 1749 1750 return should_fail(&fail_page_alloc.attr, 1 << order); 1751 } 1752 1753 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1754 1755 static int __init fail_page_alloc_debugfs(void) 1756 { 1757 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1758 struct dentry *dir; 1759 1760 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1761 &fail_page_alloc.attr); 1762 if (IS_ERR(dir)) 1763 return PTR_ERR(dir); 1764 1765 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1766 &fail_page_alloc.ignore_gfp_wait)) 1767 goto fail; 1768 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1769 &fail_page_alloc.ignore_gfp_highmem)) 1770 goto fail; 1771 if (!debugfs_create_u32("min-order", mode, dir, 1772 &fail_page_alloc.min_order)) 1773 goto fail; 1774 1775 return 0; 1776 fail: 1777 debugfs_remove_recursive(dir); 1778 1779 return -ENOMEM; 1780 } 1781 1782 late_initcall(fail_page_alloc_debugfs); 1783 1784 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1785 1786 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1787 1788 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1789 { 1790 return false; 1791 } 1792 1793 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1794 1795 /* 1796 * Return true if free pages are above 'mark'. This takes into account the order 1797 * of the allocation. 1798 */ 1799 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 1800 unsigned long mark, int classzone_idx, int alloc_flags, 1801 long free_pages) 1802 { 1803 /* free_pages may go negative - that's OK */ 1804 long min = mark; 1805 int o; 1806 long free_cma = 0; 1807 1808 free_pages -= (1 << order) - 1; 1809 if (alloc_flags & ALLOC_HIGH) 1810 min -= min / 2; 1811 if (alloc_flags & ALLOC_HARDER) 1812 min -= min / 4; 1813 #ifdef CONFIG_CMA 1814 /* If allocation can't use CMA areas don't use free CMA pages */ 1815 if (!(alloc_flags & ALLOC_CMA)) 1816 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1817 #endif 1818 1819 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx]) 1820 return false; 1821 for (o = 0; o < order; o++) { 1822 /* At the next order, this order's pages become unavailable */ 1823 free_pages -= z->free_area[o].nr_free << o; 1824 1825 /* Require fewer higher order pages to be free */ 1826 min >>= 1; 1827 1828 if (free_pages <= min) 1829 return false; 1830 } 1831 return true; 1832 } 1833 1834 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1835 int classzone_idx, int alloc_flags) 1836 { 1837 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1838 zone_page_state(z, NR_FREE_PAGES)); 1839 } 1840 1841 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1842 unsigned long mark, int classzone_idx, int alloc_flags) 1843 { 1844 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1845 1846 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1847 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1848 1849 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1850 free_pages); 1851 } 1852 1853 #ifdef CONFIG_NUMA 1854 /* 1855 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1856 * skip over zones that are not allowed by the cpuset, or that have 1857 * been recently (in last second) found to be nearly full. See further 1858 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1859 * that have to skip over a lot of full or unallowed zones. 1860 * 1861 * If the zonelist cache is present in the passed zonelist, then 1862 * returns a pointer to the allowed node mask (either the current 1863 * tasks mems_allowed, or node_states[N_MEMORY].) 1864 * 1865 * If the zonelist cache is not available for this zonelist, does 1866 * nothing and returns NULL. 1867 * 1868 * If the fullzones BITMAP in the zonelist cache is stale (more than 1869 * a second since last zap'd) then we zap it out (clear its bits.) 1870 * 1871 * We hold off even calling zlc_setup, until after we've checked the 1872 * first zone in the zonelist, on the theory that most allocations will 1873 * be satisfied from that first zone, so best to examine that zone as 1874 * quickly as we can. 1875 */ 1876 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1877 { 1878 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1879 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1880 1881 zlc = zonelist->zlcache_ptr; 1882 if (!zlc) 1883 return NULL; 1884 1885 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1886 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1887 zlc->last_full_zap = jiffies; 1888 } 1889 1890 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1891 &cpuset_current_mems_allowed : 1892 &node_states[N_MEMORY]; 1893 return allowednodes; 1894 } 1895 1896 /* 1897 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1898 * if it is worth looking at further for free memory: 1899 * 1) Check that the zone isn't thought to be full (doesn't have its 1900 * bit set in the zonelist_cache fullzones BITMAP). 1901 * 2) Check that the zones node (obtained from the zonelist_cache 1902 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1903 * Return true (non-zero) if zone is worth looking at further, or 1904 * else return false (zero) if it is not. 1905 * 1906 * This check -ignores- the distinction between various watermarks, 1907 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1908 * found to be full for any variation of these watermarks, it will 1909 * be considered full for up to one second by all requests, unless 1910 * we are so low on memory on all allowed nodes that we are forced 1911 * into the second scan of the zonelist. 1912 * 1913 * In the second scan we ignore this zonelist cache and exactly 1914 * apply the watermarks to all zones, even it is slower to do so. 1915 * We are low on memory in the second scan, and should leave no stone 1916 * unturned looking for a free page. 1917 */ 1918 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1919 nodemask_t *allowednodes) 1920 { 1921 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1922 int i; /* index of *z in zonelist zones */ 1923 int n; /* node that zone *z is on */ 1924 1925 zlc = zonelist->zlcache_ptr; 1926 if (!zlc) 1927 return 1; 1928 1929 i = z - zonelist->_zonerefs; 1930 n = zlc->z_to_n[i]; 1931 1932 /* This zone is worth trying if it is allowed but not full */ 1933 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1934 } 1935 1936 /* 1937 * Given 'z' scanning a zonelist, set the corresponding bit in 1938 * zlc->fullzones, so that subsequent attempts to allocate a page 1939 * from that zone don't waste time re-examining it. 1940 */ 1941 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1942 { 1943 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1944 int i; /* index of *z in zonelist zones */ 1945 1946 zlc = zonelist->zlcache_ptr; 1947 if (!zlc) 1948 return; 1949 1950 i = z - zonelist->_zonerefs; 1951 1952 set_bit(i, zlc->fullzones); 1953 } 1954 1955 /* 1956 * clear all zones full, called after direct reclaim makes progress so that 1957 * a zone that was recently full is not skipped over for up to a second 1958 */ 1959 static void zlc_clear_zones_full(struct zonelist *zonelist) 1960 { 1961 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1962 1963 zlc = zonelist->zlcache_ptr; 1964 if (!zlc) 1965 return; 1966 1967 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1968 } 1969 1970 static bool zone_local(struct zone *local_zone, struct zone *zone) 1971 { 1972 return local_zone->node == zone->node; 1973 } 1974 1975 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1976 { 1977 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 1978 RECLAIM_DISTANCE; 1979 } 1980 1981 #else /* CONFIG_NUMA */ 1982 1983 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1984 { 1985 return NULL; 1986 } 1987 1988 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1989 nodemask_t *allowednodes) 1990 { 1991 return 1; 1992 } 1993 1994 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1995 { 1996 } 1997 1998 static void zlc_clear_zones_full(struct zonelist *zonelist) 1999 { 2000 } 2001 2002 static bool zone_local(struct zone *local_zone, struct zone *zone) 2003 { 2004 return true; 2005 } 2006 2007 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2008 { 2009 return true; 2010 } 2011 2012 #endif /* CONFIG_NUMA */ 2013 2014 static void reset_alloc_batches(struct zone *preferred_zone) 2015 { 2016 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 2017 2018 do { 2019 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2020 high_wmark_pages(zone) - low_wmark_pages(zone) - 2021 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2022 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2023 } while (zone++ != preferred_zone); 2024 } 2025 2026 /* 2027 * get_page_from_freelist goes through the zonelist trying to allocate 2028 * a page. 2029 */ 2030 static struct page * 2031 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2032 const struct alloc_context *ac) 2033 { 2034 struct zonelist *zonelist = ac->zonelist; 2035 struct zoneref *z; 2036 struct page *page = NULL; 2037 struct zone *zone; 2038 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 2039 int zlc_active = 0; /* set if using zonelist_cache */ 2040 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 2041 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 2042 (gfp_mask & __GFP_WRITE); 2043 int nr_fair_skipped = 0; 2044 bool zonelist_rescan; 2045 2046 zonelist_scan: 2047 zonelist_rescan = false; 2048 2049 /* 2050 * Scan zonelist, looking for a zone with enough free. 2051 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2052 */ 2053 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2054 ac->nodemask) { 2055 unsigned long mark; 2056 2057 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2058 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2059 continue; 2060 if (cpusets_enabled() && 2061 (alloc_flags & ALLOC_CPUSET) && 2062 !cpuset_zone_allowed(zone, gfp_mask)) 2063 continue; 2064 /* 2065 * Distribute pages in proportion to the individual 2066 * zone size to ensure fair page aging. The zone a 2067 * page was allocated in should have no effect on the 2068 * time the page has in memory before being reclaimed. 2069 */ 2070 if (alloc_flags & ALLOC_FAIR) { 2071 if (!zone_local(ac->preferred_zone, zone)) 2072 break; 2073 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { 2074 nr_fair_skipped++; 2075 continue; 2076 } 2077 } 2078 /* 2079 * When allocating a page cache page for writing, we 2080 * want to get it from a zone that is within its dirty 2081 * limit, such that no single zone holds more than its 2082 * proportional share of globally allowed dirty pages. 2083 * The dirty limits take into account the zone's 2084 * lowmem reserves and high watermark so that kswapd 2085 * should be able to balance it without having to 2086 * write pages from its LRU list. 2087 * 2088 * This may look like it could increase pressure on 2089 * lower zones by failing allocations in higher zones 2090 * before they are full. But the pages that do spill 2091 * over are limited as the lower zones are protected 2092 * by this very same mechanism. It should not become 2093 * a practical burden to them. 2094 * 2095 * XXX: For now, allow allocations to potentially 2096 * exceed the per-zone dirty limit in the slowpath 2097 * (ALLOC_WMARK_LOW unset) before going into reclaim, 2098 * which is important when on a NUMA setup the allowed 2099 * zones are together not big enough to reach the 2100 * global limit. The proper fix for these situations 2101 * will require awareness of zones in the 2102 * dirty-throttling and the flusher threads. 2103 */ 2104 if (consider_zone_dirty && !zone_dirty_ok(zone)) 2105 continue; 2106 2107 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2108 if (!zone_watermark_ok(zone, order, mark, 2109 ac->classzone_idx, alloc_flags)) { 2110 int ret; 2111 2112 /* Checked here to keep the fast path fast */ 2113 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2114 if (alloc_flags & ALLOC_NO_WATERMARKS) 2115 goto try_this_zone; 2116 2117 if (IS_ENABLED(CONFIG_NUMA) && 2118 !did_zlc_setup && nr_online_nodes > 1) { 2119 /* 2120 * we do zlc_setup if there are multiple nodes 2121 * and before considering the first zone allowed 2122 * by the cpuset. 2123 */ 2124 allowednodes = zlc_setup(zonelist, alloc_flags); 2125 zlc_active = 1; 2126 did_zlc_setup = 1; 2127 } 2128 2129 if (zone_reclaim_mode == 0 || 2130 !zone_allows_reclaim(ac->preferred_zone, zone)) 2131 goto this_zone_full; 2132 2133 /* 2134 * As we may have just activated ZLC, check if the first 2135 * eligible zone has failed zone_reclaim recently. 2136 */ 2137 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2138 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2139 continue; 2140 2141 ret = zone_reclaim(zone, gfp_mask, order); 2142 switch (ret) { 2143 case ZONE_RECLAIM_NOSCAN: 2144 /* did not scan */ 2145 continue; 2146 case ZONE_RECLAIM_FULL: 2147 /* scanned but unreclaimable */ 2148 continue; 2149 default: 2150 /* did we reclaim enough */ 2151 if (zone_watermark_ok(zone, order, mark, 2152 ac->classzone_idx, alloc_flags)) 2153 goto try_this_zone; 2154 2155 /* 2156 * Failed to reclaim enough to meet watermark. 2157 * Only mark the zone full if checking the min 2158 * watermark or if we failed to reclaim just 2159 * 1<<order pages or else the page allocator 2160 * fastpath will prematurely mark zones full 2161 * when the watermark is between the low and 2162 * min watermarks. 2163 */ 2164 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2165 ret == ZONE_RECLAIM_SOME) 2166 goto this_zone_full; 2167 2168 continue; 2169 } 2170 } 2171 2172 try_this_zone: 2173 page = buffered_rmqueue(ac->preferred_zone, zone, order, 2174 gfp_mask, ac->migratetype); 2175 if (page) { 2176 if (prep_new_page(page, order, gfp_mask, alloc_flags)) 2177 goto try_this_zone; 2178 return page; 2179 } 2180 this_zone_full: 2181 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2182 zlc_mark_zone_full(zonelist, z); 2183 } 2184 2185 /* 2186 * The first pass makes sure allocations are spread fairly within the 2187 * local node. However, the local node might have free pages left 2188 * after the fairness batches are exhausted, and remote zones haven't 2189 * even been considered yet. Try once more without fairness, and 2190 * include remote zones now, before entering the slowpath and waking 2191 * kswapd: prefer spilling to a remote zone over swapping locally. 2192 */ 2193 if (alloc_flags & ALLOC_FAIR) { 2194 alloc_flags &= ~ALLOC_FAIR; 2195 if (nr_fair_skipped) { 2196 zonelist_rescan = true; 2197 reset_alloc_batches(ac->preferred_zone); 2198 } 2199 if (nr_online_nodes > 1) 2200 zonelist_rescan = true; 2201 } 2202 2203 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) { 2204 /* Disable zlc cache for second zonelist scan */ 2205 zlc_active = 0; 2206 zonelist_rescan = true; 2207 } 2208 2209 if (zonelist_rescan) 2210 goto zonelist_scan; 2211 2212 return NULL; 2213 } 2214 2215 /* 2216 * Large machines with many possible nodes should not always dump per-node 2217 * meminfo in irq context. 2218 */ 2219 static inline bool should_suppress_show_mem(void) 2220 { 2221 bool ret = false; 2222 2223 #if NODES_SHIFT > 8 2224 ret = in_interrupt(); 2225 #endif 2226 return ret; 2227 } 2228 2229 static DEFINE_RATELIMIT_STATE(nopage_rs, 2230 DEFAULT_RATELIMIT_INTERVAL, 2231 DEFAULT_RATELIMIT_BURST); 2232 2233 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2234 { 2235 unsigned int filter = SHOW_MEM_FILTER_NODES; 2236 2237 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2238 debug_guardpage_minorder() > 0) 2239 return; 2240 2241 /* 2242 * This documents exceptions given to allocations in certain 2243 * contexts that are allowed to allocate outside current's set 2244 * of allowed nodes. 2245 */ 2246 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2247 if (test_thread_flag(TIF_MEMDIE) || 2248 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2249 filter &= ~SHOW_MEM_FILTER_NODES; 2250 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2251 filter &= ~SHOW_MEM_FILTER_NODES; 2252 2253 if (fmt) { 2254 struct va_format vaf; 2255 va_list args; 2256 2257 va_start(args, fmt); 2258 2259 vaf.fmt = fmt; 2260 vaf.va = &args; 2261 2262 pr_warn("%pV", &vaf); 2263 2264 va_end(args); 2265 } 2266 2267 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2268 current->comm, order, gfp_mask); 2269 2270 dump_stack(); 2271 if (!should_suppress_show_mem()) 2272 show_mem(filter); 2273 } 2274 2275 static inline int 2276 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2277 unsigned long did_some_progress, 2278 unsigned long pages_reclaimed) 2279 { 2280 /* Do not loop if specifically requested */ 2281 if (gfp_mask & __GFP_NORETRY) 2282 return 0; 2283 2284 /* Always retry if specifically requested */ 2285 if (gfp_mask & __GFP_NOFAIL) 2286 return 1; 2287 2288 /* 2289 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2290 * making forward progress without invoking OOM. Suspend also disables 2291 * storage devices so kswapd will not help. Bail if we are suspending. 2292 */ 2293 if (!did_some_progress && pm_suspended_storage()) 2294 return 0; 2295 2296 /* 2297 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2298 * means __GFP_NOFAIL, but that may not be true in other 2299 * implementations. 2300 */ 2301 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2302 return 1; 2303 2304 /* 2305 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2306 * specified, then we retry until we no longer reclaim any pages 2307 * (above), or we've reclaimed an order of pages at least as 2308 * large as the allocation's order. In both cases, if the 2309 * allocation still fails, we stop retrying. 2310 */ 2311 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2312 return 1; 2313 2314 return 0; 2315 } 2316 2317 static inline struct page * 2318 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2319 const struct alloc_context *ac, unsigned long *did_some_progress) 2320 { 2321 struct page *page; 2322 2323 *did_some_progress = 0; 2324 2325 /* 2326 * Acquire the per-zone oom lock for each zone. If that 2327 * fails, somebody else is making progress for us. 2328 */ 2329 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) { 2330 *did_some_progress = 1; 2331 schedule_timeout_uninterruptible(1); 2332 return NULL; 2333 } 2334 2335 /* 2336 * Go through the zonelist yet one more time, keep very high watermark 2337 * here, this is only to catch a parallel oom killing, we must fail if 2338 * we're still under heavy pressure. 2339 */ 2340 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 2341 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 2342 if (page) 2343 goto out; 2344 2345 if (!(gfp_mask & __GFP_NOFAIL)) { 2346 /* Coredumps can quickly deplete all memory reserves */ 2347 if (current->flags & PF_DUMPCORE) 2348 goto out; 2349 /* The OOM killer will not help higher order allocs */ 2350 if (order > PAGE_ALLOC_COSTLY_ORDER) 2351 goto out; 2352 /* The OOM killer does not needlessly kill tasks for lowmem */ 2353 if (ac->high_zoneidx < ZONE_NORMAL) 2354 goto out; 2355 /* The OOM killer does not compensate for light reclaim */ 2356 if (!(gfp_mask & __GFP_FS)) { 2357 /* 2358 * XXX: Page reclaim didn't yield anything, 2359 * and the OOM killer can't be invoked, but 2360 * keep looping as per should_alloc_retry(). 2361 */ 2362 *did_some_progress = 1; 2363 goto out; 2364 } 2365 /* 2366 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2367 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2368 * The caller should handle page allocation failure by itself if 2369 * it specifies __GFP_THISNODE. 2370 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2371 */ 2372 if (gfp_mask & __GFP_THISNODE) 2373 goto out; 2374 } 2375 /* Exhausted what can be done so it's blamo time */ 2376 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false) 2377 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) 2378 *did_some_progress = 1; 2379 out: 2380 oom_zonelist_unlock(ac->zonelist, gfp_mask); 2381 return page; 2382 } 2383 2384 #ifdef CONFIG_COMPACTION 2385 /* Try memory compaction for high-order allocations before reclaim */ 2386 static struct page * 2387 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2388 int alloc_flags, const struct alloc_context *ac, 2389 enum migrate_mode mode, int *contended_compaction, 2390 bool *deferred_compaction) 2391 { 2392 unsigned long compact_result; 2393 struct page *page; 2394 2395 if (!order) 2396 return NULL; 2397 2398 current->flags |= PF_MEMALLOC; 2399 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 2400 mode, contended_compaction); 2401 current->flags &= ~PF_MEMALLOC; 2402 2403 switch (compact_result) { 2404 case COMPACT_DEFERRED: 2405 *deferred_compaction = true; 2406 /* fall-through */ 2407 case COMPACT_SKIPPED: 2408 return NULL; 2409 default: 2410 break; 2411 } 2412 2413 /* 2414 * At least in one zone compaction wasn't deferred or skipped, so let's 2415 * count a compaction stall 2416 */ 2417 count_vm_event(COMPACTSTALL); 2418 2419 page = get_page_from_freelist(gfp_mask, order, 2420 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2421 2422 if (page) { 2423 struct zone *zone = page_zone(page); 2424 2425 zone->compact_blockskip_flush = false; 2426 compaction_defer_reset(zone, order, true); 2427 count_vm_event(COMPACTSUCCESS); 2428 return page; 2429 } 2430 2431 /* 2432 * It's bad if compaction run occurs and fails. The most likely reason 2433 * is that pages exist, but not enough to satisfy watermarks. 2434 */ 2435 count_vm_event(COMPACTFAIL); 2436 2437 cond_resched(); 2438 2439 return NULL; 2440 } 2441 #else 2442 static inline struct page * 2443 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2444 int alloc_flags, const struct alloc_context *ac, 2445 enum migrate_mode mode, int *contended_compaction, 2446 bool *deferred_compaction) 2447 { 2448 return NULL; 2449 } 2450 #endif /* CONFIG_COMPACTION */ 2451 2452 /* Perform direct synchronous page reclaim */ 2453 static int 2454 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 2455 const struct alloc_context *ac) 2456 { 2457 struct reclaim_state reclaim_state; 2458 int progress; 2459 2460 cond_resched(); 2461 2462 /* We now go into synchronous reclaim */ 2463 cpuset_memory_pressure_bump(); 2464 current->flags |= PF_MEMALLOC; 2465 lockdep_set_current_reclaim_state(gfp_mask); 2466 reclaim_state.reclaimed_slab = 0; 2467 current->reclaim_state = &reclaim_state; 2468 2469 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 2470 ac->nodemask); 2471 2472 current->reclaim_state = NULL; 2473 lockdep_clear_current_reclaim_state(); 2474 current->flags &= ~PF_MEMALLOC; 2475 2476 cond_resched(); 2477 2478 return progress; 2479 } 2480 2481 /* The really slow allocator path where we enter direct reclaim */ 2482 static inline struct page * 2483 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2484 int alloc_flags, const struct alloc_context *ac, 2485 unsigned long *did_some_progress) 2486 { 2487 struct page *page = NULL; 2488 bool drained = false; 2489 2490 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 2491 if (unlikely(!(*did_some_progress))) 2492 return NULL; 2493 2494 /* After successful reclaim, reconsider all zones for allocation */ 2495 if (IS_ENABLED(CONFIG_NUMA)) 2496 zlc_clear_zones_full(ac->zonelist); 2497 2498 retry: 2499 page = get_page_from_freelist(gfp_mask, order, 2500 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2501 2502 /* 2503 * If an allocation failed after direct reclaim, it could be because 2504 * pages are pinned on the per-cpu lists. Drain them and try again 2505 */ 2506 if (!page && !drained) { 2507 drain_all_pages(NULL); 2508 drained = true; 2509 goto retry; 2510 } 2511 2512 return page; 2513 } 2514 2515 /* 2516 * This is called in the allocator slow-path if the allocation request is of 2517 * sufficient urgency to ignore watermarks and take other desperate measures 2518 */ 2519 static inline struct page * 2520 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2521 const struct alloc_context *ac) 2522 { 2523 struct page *page; 2524 2525 do { 2526 page = get_page_from_freelist(gfp_mask, order, 2527 ALLOC_NO_WATERMARKS, ac); 2528 2529 if (!page && gfp_mask & __GFP_NOFAIL) 2530 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, 2531 HZ/50); 2532 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2533 2534 return page; 2535 } 2536 2537 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 2538 { 2539 struct zoneref *z; 2540 struct zone *zone; 2541 2542 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2543 ac->high_zoneidx, ac->nodemask) 2544 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone)); 2545 } 2546 2547 static inline int 2548 gfp_to_alloc_flags(gfp_t gfp_mask) 2549 { 2550 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2551 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); 2552 2553 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2554 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2555 2556 /* 2557 * The caller may dip into page reserves a bit more if the caller 2558 * cannot run direct reclaim, or if the caller has realtime scheduling 2559 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2560 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). 2561 */ 2562 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2563 2564 if (atomic) { 2565 /* 2566 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 2567 * if it can't schedule. 2568 */ 2569 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2570 alloc_flags |= ALLOC_HARDER; 2571 /* 2572 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 2573 * comment for __cpuset_node_allowed(). 2574 */ 2575 alloc_flags &= ~ALLOC_CPUSET; 2576 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2577 alloc_flags |= ALLOC_HARDER; 2578 2579 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2580 if (gfp_mask & __GFP_MEMALLOC) 2581 alloc_flags |= ALLOC_NO_WATERMARKS; 2582 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2583 alloc_flags |= ALLOC_NO_WATERMARKS; 2584 else if (!in_interrupt() && 2585 ((current->flags & PF_MEMALLOC) || 2586 unlikely(test_thread_flag(TIF_MEMDIE)))) 2587 alloc_flags |= ALLOC_NO_WATERMARKS; 2588 } 2589 #ifdef CONFIG_CMA 2590 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2591 alloc_flags |= ALLOC_CMA; 2592 #endif 2593 return alloc_flags; 2594 } 2595 2596 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2597 { 2598 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2599 } 2600 2601 static inline struct page * 2602 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2603 struct alloc_context *ac) 2604 { 2605 const gfp_t wait = gfp_mask & __GFP_WAIT; 2606 struct page *page = NULL; 2607 int alloc_flags; 2608 unsigned long pages_reclaimed = 0; 2609 unsigned long did_some_progress; 2610 enum migrate_mode migration_mode = MIGRATE_ASYNC; 2611 bool deferred_compaction = false; 2612 int contended_compaction = COMPACT_CONTENDED_NONE; 2613 2614 /* 2615 * In the slowpath, we sanity check order to avoid ever trying to 2616 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2617 * be using allocators in order of preference for an area that is 2618 * too large. 2619 */ 2620 if (order >= MAX_ORDER) { 2621 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2622 return NULL; 2623 } 2624 2625 /* 2626 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2627 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2628 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2629 * using a larger set of nodes after it has established that the 2630 * allowed per node queues are empty and that nodes are 2631 * over allocated. 2632 */ 2633 if (IS_ENABLED(CONFIG_NUMA) && 2634 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2635 goto nopage; 2636 2637 retry: 2638 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2639 wake_all_kswapds(order, ac); 2640 2641 /* 2642 * OK, we're below the kswapd watermark and have kicked background 2643 * reclaim. Now things get more complex, so set up alloc_flags according 2644 * to how we want to proceed. 2645 */ 2646 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2647 2648 /* 2649 * Find the true preferred zone if the allocation is unconstrained by 2650 * cpusets. 2651 */ 2652 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) { 2653 struct zoneref *preferred_zoneref; 2654 preferred_zoneref = first_zones_zonelist(ac->zonelist, 2655 ac->high_zoneidx, NULL, &ac->preferred_zone); 2656 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref); 2657 } 2658 2659 /* This is the last chance, in general, before the goto nopage. */ 2660 page = get_page_from_freelist(gfp_mask, order, 2661 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2662 if (page) 2663 goto got_pg; 2664 2665 /* Allocate without watermarks if the context allows */ 2666 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2667 /* 2668 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2669 * the allocation is high priority and these type of 2670 * allocations are system rather than user orientated 2671 */ 2672 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 2673 2674 page = __alloc_pages_high_priority(gfp_mask, order, ac); 2675 2676 if (page) { 2677 goto got_pg; 2678 } 2679 } 2680 2681 /* Atomic allocations - we can't balance anything */ 2682 if (!wait) { 2683 /* 2684 * All existing users of the deprecated __GFP_NOFAIL are 2685 * blockable, so warn of any new users that actually allow this 2686 * type of allocation to fail. 2687 */ 2688 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 2689 goto nopage; 2690 } 2691 2692 /* Avoid recursion of direct reclaim */ 2693 if (current->flags & PF_MEMALLOC) 2694 goto nopage; 2695 2696 /* Avoid allocations with no watermarks from looping endlessly */ 2697 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2698 goto nopage; 2699 2700 /* 2701 * Try direct compaction. The first pass is asynchronous. Subsequent 2702 * attempts after direct reclaim are synchronous 2703 */ 2704 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 2705 migration_mode, 2706 &contended_compaction, 2707 &deferred_compaction); 2708 if (page) 2709 goto got_pg; 2710 2711 /* Checks for THP-specific high-order allocations */ 2712 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) { 2713 /* 2714 * If compaction is deferred for high-order allocations, it is 2715 * because sync compaction recently failed. If this is the case 2716 * and the caller requested a THP allocation, we do not want 2717 * to heavily disrupt the system, so we fail the allocation 2718 * instead of entering direct reclaim. 2719 */ 2720 if (deferred_compaction) 2721 goto nopage; 2722 2723 /* 2724 * In all zones where compaction was attempted (and not 2725 * deferred or skipped), lock contention has been detected. 2726 * For THP allocation we do not want to disrupt the others 2727 * so we fallback to base pages instead. 2728 */ 2729 if (contended_compaction == COMPACT_CONTENDED_LOCK) 2730 goto nopage; 2731 2732 /* 2733 * If compaction was aborted due to need_resched(), we do not 2734 * want to further increase allocation latency, unless it is 2735 * khugepaged trying to collapse. 2736 */ 2737 if (contended_compaction == COMPACT_CONTENDED_SCHED 2738 && !(current->flags & PF_KTHREAD)) 2739 goto nopage; 2740 } 2741 2742 /* 2743 * It can become very expensive to allocate transparent hugepages at 2744 * fault, so use asynchronous memory compaction for THP unless it is 2745 * khugepaged trying to collapse. 2746 */ 2747 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE || 2748 (current->flags & PF_KTHREAD)) 2749 migration_mode = MIGRATE_SYNC_LIGHT; 2750 2751 /* Try direct reclaim and then allocating */ 2752 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 2753 &did_some_progress); 2754 if (page) 2755 goto got_pg; 2756 2757 /* Check if we should retry the allocation */ 2758 pages_reclaimed += did_some_progress; 2759 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2760 pages_reclaimed)) { 2761 /* 2762 * If we fail to make progress by freeing individual 2763 * pages, but the allocation wants us to keep going, 2764 * start OOM killing tasks. 2765 */ 2766 if (!did_some_progress) { 2767 page = __alloc_pages_may_oom(gfp_mask, order, ac, 2768 &did_some_progress); 2769 if (page) 2770 goto got_pg; 2771 if (!did_some_progress) 2772 goto nopage; 2773 } 2774 /* Wait for some write requests to complete then retry */ 2775 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50); 2776 goto retry; 2777 } else { 2778 /* 2779 * High-order allocations do not necessarily loop after 2780 * direct reclaim and reclaim/compaction depends on compaction 2781 * being called after reclaim so call directly if necessary 2782 */ 2783 page = __alloc_pages_direct_compact(gfp_mask, order, 2784 alloc_flags, ac, migration_mode, 2785 &contended_compaction, 2786 &deferred_compaction); 2787 if (page) 2788 goto got_pg; 2789 } 2790 2791 nopage: 2792 warn_alloc_failed(gfp_mask, order, NULL); 2793 got_pg: 2794 return page; 2795 } 2796 2797 /* 2798 * This is the 'heart' of the zoned buddy allocator. 2799 */ 2800 struct page * 2801 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2802 struct zonelist *zonelist, nodemask_t *nodemask) 2803 { 2804 struct zoneref *preferred_zoneref; 2805 struct page *page = NULL; 2806 unsigned int cpuset_mems_cookie; 2807 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 2808 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 2809 struct alloc_context ac = { 2810 .high_zoneidx = gfp_zone(gfp_mask), 2811 .nodemask = nodemask, 2812 .migratetype = gfpflags_to_migratetype(gfp_mask), 2813 }; 2814 2815 gfp_mask &= gfp_allowed_mask; 2816 2817 lockdep_trace_alloc(gfp_mask); 2818 2819 might_sleep_if(gfp_mask & __GFP_WAIT); 2820 2821 if (should_fail_alloc_page(gfp_mask, order)) 2822 return NULL; 2823 2824 /* 2825 * Check the zones suitable for the gfp_mask contain at least one 2826 * valid zone. It's possible to have an empty zonelist as a result 2827 * of GFP_THISNODE and a memoryless node 2828 */ 2829 if (unlikely(!zonelist->_zonerefs->zone)) 2830 return NULL; 2831 2832 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) 2833 alloc_flags |= ALLOC_CMA; 2834 2835 retry_cpuset: 2836 cpuset_mems_cookie = read_mems_allowed_begin(); 2837 2838 /* We set it here, as __alloc_pages_slowpath might have changed it */ 2839 ac.zonelist = zonelist; 2840 /* The preferred zone is used for statistics later */ 2841 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx, 2842 ac.nodemask ? : &cpuset_current_mems_allowed, 2843 &ac.preferred_zone); 2844 if (!ac.preferred_zone) 2845 goto out; 2846 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref); 2847 2848 /* First allocation attempt */ 2849 alloc_mask = gfp_mask|__GFP_HARDWALL; 2850 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 2851 if (unlikely(!page)) { 2852 /* 2853 * Runtime PM, block IO and its error handling path 2854 * can deadlock because I/O on the device might not 2855 * complete. 2856 */ 2857 alloc_mask = memalloc_noio_flags(gfp_mask); 2858 2859 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 2860 } 2861 2862 if (kmemcheck_enabled && page) 2863 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2864 2865 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 2866 2867 out: 2868 /* 2869 * When updating a task's mems_allowed, it is possible to race with 2870 * parallel threads in such a way that an allocation can fail while 2871 * the mask is being updated. If a page allocation is about to fail, 2872 * check if the cpuset changed during allocation and if so, retry. 2873 */ 2874 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2875 goto retry_cpuset; 2876 2877 return page; 2878 } 2879 EXPORT_SYMBOL(__alloc_pages_nodemask); 2880 2881 /* 2882 * Common helper functions. 2883 */ 2884 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2885 { 2886 struct page *page; 2887 2888 /* 2889 * __get_free_pages() returns a 32-bit address, which cannot represent 2890 * a highmem page 2891 */ 2892 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2893 2894 page = alloc_pages(gfp_mask, order); 2895 if (!page) 2896 return 0; 2897 return (unsigned long) page_address(page); 2898 } 2899 EXPORT_SYMBOL(__get_free_pages); 2900 2901 unsigned long get_zeroed_page(gfp_t gfp_mask) 2902 { 2903 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2904 } 2905 EXPORT_SYMBOL(get_zeroed_page); 2906 2907 void __free_pages(struct page *page, unsigned int order) 2908 { 2909 if (put_page_testzero(page)) { 2910 if (order == 0) 2911 free_hot_cold_page(page, false); 2912 else 2913 __free_pages_ok(page, order); 2914 } 2915 } 2916 2917 EXPORT_SYMBOL(__free_pages); 2918 2919 void free_pages(unsigned long addr, unsigned int order) 2920 { 2921 if (addr != 0) { 2922 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2923 __free_pages(virt_to_page((void *)addr), order); 2924 } 2925 } 2926 2927 EXPORT_SYMBOL(free_pages); 2928 2929 /* 2930 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 2931 * of the current memory cgroup. 2932 * 2933 * It should be used when the caller would like to use kmalloc, but since the 2934 * allocation is large, it has to fall back to the page allocator. 2935 */ 2936 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 2937 { 2938 struct page *page; 2939 struct mem_cgroup *memcg = NULL; 2940 2941 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2942 return NULL; 2943 page = alloc_pages(gfp_mask, order); 2944 memcg_kmem_commit_charge(page, memcg, order); 2945 return page; 2946 } 2947 2948 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 2949 { 2950 struct page *page; 2951 struct mem_cgroup *memcg = NULL; 2952 2953 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2954 return NULL; 2955 page = alloc_pages_node(nid, gfp_mask, order); 2956 memcg_kmem_commit_charge(page, memcg, order); 2957 return page; 2958 } 2959 2960 /* 2961 * __free_kmem_pages and free_kmem_pages will free pages allocated with 2962 * alloc_kmem_pages. 2963 */ 2964 void __free_kmem_pages(struct page *page, unsigned int order) 2965 { 2966 memcg_kmem_uncharge_pages(page, order); 2967 __free_pages(page, order); 2968 } 2969 2970 void free_kmem_pages(unsigned long addr, unsigned int order) 2971 { 2972 if (addr != 0) { 2973 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2974 __free_kmem_pages(virt_to_page((void *)addr), order); 2975 } 2976 } 2977 2978 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2979 { 2980 if (addr) { 2981 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2982 unsigned long used = addr + PAGE_ALIGN(size); 2983 2984 split_page(virt_to_page((void *)addr), order); 2985 while (used < alloc_end) { 2986 free_page(used); 2987 used += PAGE_SIZE; 2988 } 2989 } 2990 return (void *)addr; 2991 } 2992 2993 /** 2994 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2995 * @size: the number of bytes to allocate 2996 * @gfp_mask: GFP flags for the allocation 2997 * 2998 * This function is similar to alloc_pages(), except that it allocates the 2999 * minimum number of pages to satisfy the request. alloc_pages() can only 3000 * allocate memory in power-of-two pages. 3001 * 3002 * This function is also limited by MAX_ORDER. 3003 * 3004 * Memory allocated by this function must be released by free_pages_exact(). 3005 */ 3006 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 3007 { 3008 unsigned int order = get_order(size); 3009 unsigned long addr; 3010 3011 addr = __get_free_pages(gfp_mask, order); 3012 return make_alloc_exact(addr, order, size); 3013 } 3014 EXPORT_SYMBOL(alloc_pages_exact); 3015 3016 /** 3017 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3018 * pages on a node. 3019 * @nid: the preferred node ID where memory should be allocated 3020 * @size: the number of bytes to allocate 3021 * @gfp_mask: GFP flags for the allocation 3022 * 3023 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3024 * back. 3025 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 3026 * but is not exact. 3027 */ 3028 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3029 { 3030 unsigned order = get_order(size); 3031 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3032 if (!p) 3033 return NULL; 3034 return make_alloc_exact((unsigned long)page_address(p), order, size); 3035 } 3036 3037 /** 3038 * free_pages_exact - release memory allocated via alloc_pages_exact() 3039 * @virt: the value returned by alloc_pages_exact. 3040 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3041 * 3042 * Release the memory allocated by a previous call to alloc_pages_exact. 3043 */ 3044 void free_pages_exact(void *virt, size_t size) 3045 { 3046 unsigned long addr = (unsigned long)virt; 3047 unsigned long end = addr + PAGE_ALIGN(size); 3048 3049 while (addr < end) { 3050 free_page(addr); 3051 addr += PAGE_SIZE; 3052 } 3053 } 3054 EXPORT_SYMBOL(free_pages_exact); 3055 3056 /** 3057 * nr_free_zone_pages - count number of pages beyond high watermark 3058 * @offset: The zone index of the highest zone 3059 * 3060 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3061 * high watermark within all zones at or below a given zone index. For each 3062 * zone, the number of pages is calculated as: 3063 * managed_pages - high_pages 3064 */ 3065 static unsigned long nr_free_zone_pages(int offset) 3066 { 3067 struct zoneref *z; 3068 struct zone *zone; 3069 3070 /* Just pick one node, since fallback list is circular */ 3071 unsigned long sum = 0; 3072 3073 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3074 3075 for_each_zone_zonelist(zone, z, zonelist, offset) { 3076 unsigned long size = zone->managed_pages; 3077 unsigned long high = high_wmark_pages(zone); 3078 if (size > high) 3079 sum += size - high; 3080 } 3081 3082 return sum; 3083 } 3084 3085 /** 3086 * nr_free_buffer_pages - count number of pages beyond high watermark 3087 * 3088 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3089 * watermark within ZONE_DMA and ZONE_NORMAL. 3090 */ 3091 unsigned long nr_free_buffer_pages(void) 3092 { 3093 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3094 } 3095 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3096 3097 /** 3098 * nr_free_pagecache_pages - count number of pages beyond high watermark 3099 * 3100 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3101 * high watermark within all zones. 3102 */ 3103 unsigned long nr_free_pagecache_pages(void) 3104 { 3105 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3106 } 3107 3108 static inline void show_node(struct zone *zone) 3109 { 3110 if (IS_ENABLED(CONFIG_NUMA)) 3111 printk("Node %d ", zone_to_nid(zone)); 3112 } 3113 3114 void si_meminfo(struct sysinfo *val) 3115 { 3116 val->totalram = totalram_pages; 3117 val->sharedram = global_page_state(NR_SHMEM); 3118 val->freeram = global_page_state(NR_FREE_PAGES); 3119 val->bufferram = nr_blockdev_pages(); 3120 val->totalhigh = totalhigh_pages; 3121 val->freehigh = nr_free_highpages(); 3122 val->mem_unit = PAGE_SIZE; 3123 } 3124 3125 EXPORT_SYMBOL(si_meminfo); 3126 3127 #ifdef CONFIG_NUMA 3128 void si_meminfo_node(struct sysinfo *val, int nid) 3129 { 3130 int zone_type; /* needs to be signed */ 3131 unsigned long managed_pages = 0; 3132 pg_data_t *pgdat = NODE_DATA(nid); 3133 3134 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3135 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3136 val->totalram = managed_pages; 3137 val->sharedram = node_page_state(nid, NR_SHMEM); 3138 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3139 #ifdef CONFIG_HIGHMEM 3140 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3141 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3142 NR_FREE_PAGES); 3143 #else 3144 val->totalhigh = 0; 3145 val->freehigh = 0; 3146 #endif 3147 val->mem_unit = PAGE_SIZE; 3148 } 3149 #endif 3150 3151 /* 3152 * Determine whether the node should be displayed or not, depending on whether 3153 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3154 */ 3155 bool skip_free_areas_node(unsigned int flags, int nid) 3156 { 3157 bool ret = false; 3158 unsigned int cpuset_mems_cookie; 3159 3160 if (!(flags & SHOW_MEM_FILTER_NODES)) 3161 goto out; 3162 3163 do { 3164 cpuset_mems_cookie = read_mems_allowed_begin(); 3165 ret = !node_isset(nid, cpuset_current_mems_allowed); 3166 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3167 out: 3168 return ret; 3169 } 3170 3171 #define K(x) ((x) << (PAGE_SHIFT-10)) 3172 3173 static void show_migration_types(unsigned char type) 3174 { 3175 static const char types[MIGRATE_TYPES] = { 3176 [MIGRATE_UNMOVABLE] = 'U', 3177 [MIGRATE_RECLAIMABLE] = 'E', 3178 [MIGRATE_MOVABLE] = 'M', 3179 [MIGRATE_RESERVE] = 'R', 3180 #ifdef CONFIG_CMA 3181 [MIGRATE_CMA] = 'C', 3182 #endif 3183 #ifdef CONFIG_MEMORY_ISOLATION 3184 [MIGRATE_ISOLATE] = 'I', 3185 #endif 3186 }; 3187 char tmp[MIGRATE_TYPES + 1]; 3188 char *p = tmp; 3189 int i; 3190 3191 for (i = 0; i < MIGRATE_TYPES; i++) { 3192 if (type & (1 << i)) 3193 *p++ = types[i]; 3194 } 3195 3196 *p = '\0'; 3197 printk("(%s) ", tmp); 3198 } 3199 3200 /* 3201 * Show free area list (used inside shift_scroll-lock stuff) 3202 * We also calculate the percentage fragmentation. We do this by counting the 3203 * memory on each free list with the exception of the first item on the list. 3204 * Suppresses nodes that are not allowed by current's cpuset if 3205 * SHOW_MEM_FILTER_NODES is passed. 3206 */ 3207 void show_free_areas(unsigned int filter) 3208 { 3209 int cpu; 3210 struct zone *zone; 3211 3212 for_each_populated_zone(zone) { 3213 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3214 continue; 3215 show_node(zone); 3216 printk("%s per-cpu:\n", zone->name); 3217 3218 for_each_online_cpu(cpu) { 3219 struct per_cpu_pageset *pageset; 3220 3221 pageset = per_cpu_ptr(zone->pageset, cpu); 3222 3223 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3224 cpu, pageset->pcp.high, 3225 pageset->pcp.batch, pageset->pcp.count); 3226 } 3227 } 3228 3229 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3230 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3231 " unevictable:%lu" 3232 " dirty:%lu writeback:%lu unstable:%lu\n" 3233 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3234 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3235 " free_cma:%lu\n", 3236 global_page_state(NR_ACTIVE_ANON), 3237 global_page_state(NR_INACTIVE_ANON), 3238 global_page_state(NR_ISOLATED_ANON), 3239 global_page_state(NR_ACTIVE_FILE), 3240 global_page_state(NR_INACTIVE_FILE), 3241 global_page_state(NR_ISOLATED_FILE), 3242 global_page_state(NR_UNEVICTABLE), 3243 global_page_state(NR_FILE_DIRTY), 3244 global_page_state(NR_WRITEBACK), 3245 global_page_state(NR_UNSTABLE_NFS), 3246 global_page_state(NR_FREE_PAGES), 3247 global_page_state(NR_SLAB_RECLAIMABLE), 3248 global_page_state(NR_SLAB_UNRECLAIMABLE), 3249 global_page_state(NR_FILE_MAPPED), 3250 global_page_state(NR_SHMEM), 3251 global_page_state(NR_PAGETABLE), 3252 global_page_state(NR_BOUNCE), 3253 global_page_state(NR_FREE_CMA_PAGES)); 3254 3255 for_each_populated_zone(zone) { 3256 int i; 3257 3258 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3259 continue; 3260 show_node(zone); 3261 printk("%s" 3262 " free:%lukB" 3263 " min:%lukB" 3264 " low:%lukB" 3265 " high:%lukB" 3266 " active_anon:%lukB" 3267 " inactive_anon:%lukB" 3268 " active_file:%lukB" 3269 " inactive_file:%lukB" 3270 " unevictable:%lukB" 3271 " isolated(anon):%lukB" 3272 " isolated(file):%lukB" 3273 " present:%lukB" 3274 " managed:%lukB" 3275 " mlocked:%lukB" 3276 " dirty:%lukB" 3277 " writeback:%lukB" 3278 " mapped:%lukB" 3279 " shmem:%lukB" 3280 " slab_reclaimable:%lukB" 3281 " slab_unreclaimable:%lukB" 3282 " kernel_stack:%lukB" 3283 " pagetables:%lukB" 3284 " unstable:%lukB" 3285 " bounce:%lukB" 3286 " free_cma:%lukB" 3287 " writeback_tmp:%lukB" 3288 " pages_scanned:%lu" 3289 " all_unreclaimable? %s" 3290 "\n", 3291 zone->name, 3292 K(zone_page_state(zone, NR_FREE_PAGES)), 3293 K(min_wmark_pages(zone)), 3294 K(low_wmark_pages(zone)), 3295 K(high_wmark_pages(zone)), 3296 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3297 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3298 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3299 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3300 K(zone_page_state(zone, NR_UNEVICTABLE)), 3301 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3302 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3303 K(zone->present_pages), 3304 K(zone->managed_pages), 3305 K(zone_page_state(zone, NR_MLOCK)), 3306 K(zone_page_state(zone, NR_FILE_DIRTY)), 3307 K(zone_page_state(zone, NR_WRITEBACK)), 3308 K(zone_page_state(zone, NR_FILE_MAPPED)), 3309 K(zone_page_state(zone, NR_SHMEM)), 3310 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3311 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3312 zone_page_state(zone, NR_KERNEL_STACK) * 3313 THREAD_SIZE / 1024, 3314 K(zone_page_state(zone, NR_PAGETABLE)), 3315 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3316 K(zone_page_state(zone, NR_BOUNCE)), 3317 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3318 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3319 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3320 (!zone_reclaimable(zone) ? "yes" : "no") 3321 ); 3322 printk("lowmem_reserve[]:"); 3323 for (i = 0; i < MAX_NR_ZONES; i++) 3324 printk(" %ld", zone->lowmem_reserve[i]); 3325 printk("\n"); 3326 } 3327 3328 for_each_populated_zone(zone) { 3329 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3330 unsigned char types[MAX_ORDER]; 3331 3332 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3333 continue; 3334 show_node(zone); 3335 printk("%s: ", zone->name); 3336 3337 spin_lock_irqsave(&zone->lock, flags); 3338 for (order = 0; order < MAX_ORDER; order++) { 3339 struct free_area *area = &zone->free_area[order]; 3340 int type; 3341 3342 nr[order] = area->nr_free; 3343 total += nr[order] << order; 3344 3345 types[order] = 0; 3346 for (type = 0; type < MIGRATE_TYPES; type++) { 3347 if (!list_empty(&area->free_list[type])) 3348 types[order] |= 1 << type; 3349 } 3350 } 3351 spin_unlock_irqrestore(&zone->lock, flags); 3352 for (order = 0; order < MAX_ORDER; order++) { 3353 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3354 if (nr[order]) 3355 show_migration_types(types[order]); 3356 } 3357 printk("= %lukB\n", K(total)); 3358 } 3359 3360 hugetlb_show_meminfo(); 3361 3362 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3363 3364 show_swap_cache_info(); 3365 } 3366 3367 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3368 { 3369 zoneref->zone = zone; 3370 zoneref->zone_idx = zone_idx(zone); 3371 } 3372 3373 /* 3374 * Builds allocation fallback zone lists. 3375 * 3376 * Add all populated zones of a node to the zonelist. 3377 */ 3378 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3379 int nr_zones) 3380 { 3381 struct zone *zone; 3382 enum zone_type zone_type = MAX_NR_ZONES; 3383 3384 do { 3385 zone_type--; 3386 zone = pgdat->node_zones + zone_type; 3387 if (populated_zone(zone)) { 3388 zoneref_set_zone(zone, 3389 &zonelist->_zonerefs[nr_zones++]); 3390 check_highest_zone(zone_type); 3391 } 3392 } while (zone_type); 3393 3394 return nr_zones; 3395 } 3396 3397 3398 /* 3399 * zonelist_order: 3400 * 0 = automatic detection of better ordering. 3401 * 1 = order by ([node] distance, -zonetype) 3402 * 2 = order by (-zonetype, [node] distance) 3403 * 3404 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3405 * the same zonelist. So only NUMA can configure this param. 3406 */ 3407 #define ZONELIST_ORDER_DEFAULT 0 3408 #define ZONELIST_ORDER_NODE 1 3409 #define ZONELIST_ORDER_ZONE 2 3410 3411 /* zonelist order in the kernel. 3412 * set_zonelist_order() will set this to NODE or ZONE. 3413 */ 3414 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3415 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3416 3417 3418 #ifdef CONFIG_NUMA 3419 /* The value user specified ....changed by config */ 3420 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3421 /* string for sysctl */ 3422 #define NUMA_ZONELIST_ORDER_LEN 16 3423 char numa_zonelist_order[16] = "default"; 3424 3425 /* 3426 * interface for configure zonelist ordering. 3427 * command line option "numa_zonelist_order" 3428 * = "[dD]efault - default, automatic configuration. 3429 * = "[nN]ode - order by node locality, then by zone within node 3430 * = "[zZ]one - order by zone, then by locality within zone 3431 */ 3432 3433 static int __parse_numa_zonelist_order(char *s) 3434 { 3435 if (*s == 'd' || *s == 'D') { 3436 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3437 } else if (*s == 'n' || *s == 'N') { 3438 user_zonelist_order = ZONELIST_ORDER_NODE; 3439 } else if (*s == 'z' || *s == 'Z') { 3440 user_zonelist_order = ZONELIST_ORDER_ZONE; 3441 } else { 3442 printk(KERN_WARNING 3443 "Ignoring invalid numa_zonelist_order value: " 3444 "%s\n", s); 3445 return -EINVAL; 3446 } 3447 return 0; 3448 } 3449 3450 static __init int setup_numa_zonelist_order(char *s) 3451 { 3452 int ret; 3453 3454 if (!s) 3455 return 0; 3456 3457 ret = __parse_numa_zonelist_order(s); 3458 if (ret == 0) 3459 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3460 3461 return ret; 3462 } 3463 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3464 3465 /* 3466 * sysctl handler for numa_zonelist_order 3467 */ 3468 int numa_zonelist_order_handler(struct ctl_table *table, int write, 3469 void __user *buffer, size_t *length, 3470 loff_t *ppos) 3471 { 3472 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3473 int ret; 3474 static DEFINE_MUTEX(zl_order_mutex); 3475 3476 mutex_lock(&zl_order_mutex); 3477 if (write) { 3478 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3479 ret = -EINVAL; 3480 goto out; 3481 } 3482 strcpy(saved_string, (char *)table->data); 3483 } 3484 ret = proc_dostring(table, write, buffer, length, ppos); 3485 if (ret) 3486 goto out; 3487 if (write) { 3488 int oldval = user_zonelist_order; 3489 3490 ret = __parse_numa_zonelist_order((char *)table->data); 3491 if (ret) { 3492 /* 3493 * bogus value. restore saved string 3494 */ 3495 strncpy((char *)table->data, saved_string, 3496 NUMA_ZONELIST_ORDER_LEN); 3497 user_zonelist_order = oldval; 3498 } else if (oldval != user_zonelist_order) { 3499 mutex_lock(&zonelists_mutex); 3500 build_all_zonelists(NULL, NULL); 3501 mutex_unlock(&zonelists_mutex); 3502 } 3503 } 3504 out: 3505 mutex_unlock(&zl_order_mutex); 3506 return ret; 3507 } 3508 3509 3510 #define MAX_NODE_LOAD (nr_online_nodes) 3511 static int node_load[MAX_NUMNODES]; 3512 3513 /** 3514 * find_next_best_node - find the next node that should appear in a given node's fallback list 3515 * @node: node whose fallback list we're appending 3516 * @used_node_mask: nodemask_t of already used nodes 3517 * 3518 * We use a number of factors to determine which is the next node that should 3519 * appear on a given node's fallback list. The node should not have appeared 3520 * already in @node's fallback list, and it should be the next closest node 3521 * according to the distance array (which contains arbitrary distance values 3522 * from each node to each node in the system), and should also prefer nodes 3523 * with no CPUs, since presumably they'll have very little allocation pressure 3524 * on them otherwise. 3525 * It returns -1 if no node is found. 3526 */ 3527 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3528 { 3529 int n, val; 3530 int min_val = INT_MAX; 3531 int best_node = NUMA_NO_NODE; 3532 const struct cpumask *tmp = cpumask_of_node(0); 3533 3534 /* Use the local node if we haven't already */ 3535 if (!node_isset(node, *used_node_mask)) { 3536 node_set(node, *used_node_mask); 3537 return node; 3538 } 3539 3540 for_each_node_state(n, N_MEMORY) { 3541 3542 /* Don't want a node to appear more than once */ 3543 if (node_isset(n, *used_node_mask)) 3544 continue; 3545 3546 /* Use the distance array to find the distance */ 3547 val = node_distance(node, n); 3548 3549 /* Penalize nodes under us ("prefer the next node") */ 3550 val += (n < node); 3551 3552 /* Give preference to headless and unused nodes */ 3553 tmp = cpumask_of_node(n); 3554 if (!cpumask_empty(tmp)) 3555 val += PENALTY_FOR_NODE_WITH_CPUS; 3556 3557 /* Slight preference for less loaded node */ 3558 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3559 val += node_load[n]; 3560 3561 if (val < min_val) { 3562 min_val = val; 3563 best_node = n; 3564 } 3565 } 3566 3567 if (best_node >= 0) 3568 node_set(best_node, *used_node_mask); 3569 3570 return best_node; 3571 } 3572 3573 3574 /* 3575 * Build zonelists ordered by node and zones within node. 3576 * This results in maximum locality--normal zone overflows into local 3577 * DMA zone, if any--but risks exhausting DMA zone. 3578 */ 3579 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3580 { 3581 int j; 3582 struct zonelist *zonelist; 3583 3584 zonelist = &pgdat->node_zonelists[0]; 3585 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3586 ; 3587 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3588 zonelist->_zonerefs[j].zone = NULL; 3589 zonelist->_zonerefs[j].zone_idx = 0; 3590 } 3591 3592 /* 3593 * Build gfp_thisnode zonelists 3594 */ 3595 static void build_thisnode_zonelists(pg_data_t *pgdat) 3596 { 3597 int j; 3598 struct zonelist *zonelist; 3599 3600 zonelist = &pgdat->node_zonelists[1]; 3601 j = build_zonelists_node(pgdat, zonelist, 0); 3602 zonelist->_zonerefs[j].zone = NULL; 3603 zonelist->_zonerefs[j].zone_idx = 0; 3604 } 3605 3606 /* 3607 * Build zonelists ordered by zone and nodes within zones. 3608 * This results in conserving DMA zone[s] until all Normal memory is 3609 * exhausted, but results in overflowing to remote node while memory 3610 * may still exist in local DMA zone. 3611 */ 3612 static int node_order[MAX_NUMNODES]; 3613 3614 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3615 { 3616 int pos, j, node; 3617 int zone_type; /* needs to be signed */ 3618 struct zone *z; 3619 struct zonelist *zonelist; 3620 3621 zonelist = &pgdat->node_zonelists[0]; 3622 pos = 0; 3623 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3624 for (j = 0; j < nr_nodes; j++) { 3625 node = node_order[j]; 3626 z = &NODE_DATA(node)->node_zones[zone_type]; 3627 if (populated_zone(z)) { 3628 zoneref_set_zone(z, 3629 &zonelist->_zonerefs[pos++]); 3630 check_highest_zone(zone_type); 3631 } 3632 } 3633 } 3634 zonelist->_zonerefs[pos].zone = NULL; 3635 zonelist->_zonerefs[pos].zone_idx = 0; 3636 } 3637 3638 #if defined(CONFIG_64BIT) 3639 /* 3640 * Devices that require DMA32/DMA are relatively rare and do not justify a 3641 * penalty to every machine in case the specialised case applies. Default 3642 * to Node-ordering on 64-bit NUMA machines 3643 */ 3644 static int default_zonelist_order(void) 3645 { 3646 return ZONELIST_ORDER_NODE; 3647 } 3648 #else 3649 /* 3650 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 3651 * by the kernel. If processes running on node 0 deplete the low memory zone 3652 * then reclaim will occur more frequency increasing stalls and potentially 3653 * be easier to OOM if a large percentage of the zone is under writeback or 3654 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 3655 * Hence, default to zone ordering on 32-bit. 3656 */ 3657 static int default_zonelist_order(void) 3658 { 3659 return ZONELIST_ORDER_ZONE; 3660 } 3661 #endif /* CONFIG_64BIT */ 3662 3663 static void set_zonelist_order(void) 3664 { 3665 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3666 current_zonelist_order = default_zonelist_order(); 3667 else 3668 current_zonelist_order = user_zonelist_order; 3669 } 3670 3671 static void build_zonelists(pg_data_t *pgdat) 3672 { 3673 int j, node, load; 3674 enum zone_type i; 3675 nodemask_t used_mask; 3676 int local_node, prev_node; 3677 struct zonelist *zonelist; 3678 int order = current_zonelist_order; 3679 3680 /* initialize zonelists */ 3681 for (i = 0; i < MAX_ZONELISTS; i++) { 3682 zonelist = pgdat->node_zonelists + i; 3683 zonelist->_zonerefs[0].zone = NULL; 3684 zonelist->_zonerefs[0].zone_idx = 0; 3685 } 3686 3687 /* NUMA-aware ordering of nodes */ 3688 local_node = pgdat->node_id; 3689 load = nr_online_nodes; 3690 prev_node = local_node; 3691 nodes_clear(used_mask); 3692 3693 memset(node_order, 0, sizeof(node_order)); 3694 j = 0; 3695 3696 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3697 /* 3698 * We don't want to pressure a particular node. 3699 * So adding penalty to the first node in same 3700 * distance group to make it round-robin. 3701 */ 3702 if (node_distance(local_node, node) != 3703 node_distance(local_node, prev_node)) 3704 node_load[node] = load; 3705 3706 prev_node = node; 3707 load--; 3708 if (order == ZONELIST_ORDER_NODE) 3709 build_zonelists_in_node_order(pgdat, node); 3710 else 3711 node_order[j++] = node; /* remember order */ 3712 } 3713 3714 if (order == ZONELIST_ORDER_ZONE) { 3715 /* calculate node order -- i.e., DMA last! */ 3716 build_zonelists_in_zone_order(pgdat, j); 3717 } 3718 3719 build_thisnode_zonelists(pgdat); 3720 } 3721 3722 /* Construct the zonelist performance cache - see further mmzone.h */ 3723 static void build_zonelist_cache(pg_data_t *pgdat) 3724 { 3725 struct zonelist *zonelist; 3726 struct zonelist_cache *zlc; 3727 struct zoneref *z; 3728 3729 zonelist = &pgdat->node_zonelists[0]; 3730 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3731 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3732 for (z = zonelist->_zonerefs; z->zone; z++) 3733 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3734 } 3735 3736 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3737 /* 3738 * Return node id of node used for "local" allocations. 3739 * I.e., first node id of first zone in arg node's generic zonelist. 3740 * Used for initializing percpu 'numa_mem', which is used primarily 3741 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3742 */ 3743 int local_memory_node(int node) 3744 { 3745 struct zone *zone; 3746 3747 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3748 gfp_zone(GFP_KERNEL), 3749 NULL, 3750 &zone); 3751 return zone->node; 3752 } 3753 #endif 3754 3755 #else /* CONFIG_NUMA */ 3756 3757 static void set_zonelist_order(void) 3758 { 3759 current_zonelist_order = ZONELIST_ORDER_ZONE; 3760 } 3761 3762 static void build_zonelists(pg_data_t *pgdat) 3763 { 3764 int node, local_node; 3765 enum zone_type j; 3766 struct zonelist *zonelist; 3767 3768 local_node = pgdat->node_id; 3769 3770 zonelist = &pgdat->node_zonelists[0]; 3771 j = build_zonelists_node(pgdat, zonelist, 0); 3772 3773 /* 3774 * Now we build the zonelist so that it contains the zones 3775 * of all the other nodes. 3776 * We don't want to pressure a particular node, so when 3777 * building the zones for node N, we make sure that the 3778 * zones coming right after the local ones are those from 3779 * node N+1 (modulo N) 3780 */ 3781 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3782 if (!node_online(node)) 3783 continue; 3784 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3785 } 3786 for (node = 0; node < local_node; node++) { 3787 if (!node_online(node)) 3788 continue; 3789 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3790 } 3791 3792 zonelist->_zonerefs[j].zone = NULL; 3793 zonelist->_zonerefs[j].zone_idx = 0; 3794 } 3795 3796 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3797 static void build_zonelist_cache(pg_data_t *pgdat) 3798 { 3799 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3800 } 3801 3802 #endif /* CONFIG_NUMA */ 3803 3804 /* 3805 * Boot pageset table. One per cpu which is going to be used for all 3806 * zones and all nodes. The parameters will be set in such a way 3807 * that an item put on a list will immediately be handed over to 3808 * the buddy list. This is safe since pageset manipulation is done 3809 * with interrupts disabled. 3810 * 3811 * The boot_pagesets must be kept even after bootup is complete for 3812 * unused processors and/or zones. They do play a role for bootstrapping 3813 * hotplugged processors. 3814 * 3815 * zoneinfo_show() and maybe other functions do 3816 * not check if the processor is online before following the pageset pointer. 3817 * Other parts of the kernel may not check if the zone is available. 3818 */ 3819 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3820 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3821 static void setup_zone_pageset(struct zone *zone); 3822 3823 /* 3824 * Global mutex to protect against size modification of zonelists 3825 * as well as to serialize pageset setup for the new populated zone. 3826 */ 3827 DEFINE_MUTEX(zonelists_mutex); 3828 3829 /* return values int ....just for stop_machine() */ 3830 static int __build_all_zonelists(void *data) 3831 { 3832 int nid; 3833 int cpu; 3834 pg_data_t *self = data; 3835 3836 #ifdef CONFIG_NUMA 3837 memset(node_load, 0, sizeof(node_load)); 3838 #endif 3839 3840 if (self && !node_online(self->node_id)) { 3841 build_zonelists(self); 3842 build_zonelist_cache(self); 3843 } 3844 3845 for_each_online_node(nid) { 3846 pg_data_t *pgdat = NODE_DATA(nid); 3847 3848 build_zonelists(pgdat); 3849 build_zonelist_cache(pgdat); 3850 } 3851 3852 /* 3853 * Initialize the boot_pagesets that are going to be used 3854 * for bootstrapping processors. The real pagesets for 3855 * each zone will be allocated later when the per cpu 3856 * allocator is available. 3857 * 3858 * boot_pagesets are used also for bootstrapping offline 3859 * cpus if the system is already booted because the pagesets 3860 * are needed to initialize allocators on a specific cpu too. 3861 * F.e. the percpu allocator needs the page allocator which 3862 * needs the percpu allocator in order to allocate its pagesets 3863 * (a chicken-egg dilemma). 3864 */ 3865 for_each_possible_cpu(cpu) { 3866 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3867 3868 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3869 /* 3870 * We now know the "local memory node" for each node-- 3871 * i.e., the node of the first zone in the generic zonelist. 3872 * Set up numa_mem percpu variable for on-line cpus. During 3873 * boot, only the boot cpu should be on-line; we'll init the 3874 * secondary cpus' numa_mem as they come on-line. During 3875 * node/memory hotplug, we'll fixup all on-line cpus. 3876 */ 3877 if (cpu_online(cpu)) 3878 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3879 #endif 3880 } 3881 3882 return 0; 3883 } 3884 3885 static noinline void __init 3886 build_all_zonelists_init(void) 3887 { 3888 __build_all_zonelists(NULL); 3889 mminit_verify_zonelist(); 3890 cpuset_init_current_mems_allowed(); 3891 } 3892 3893 /* 3894 * Called with zonelists_mutex held always 3895 * unless system_state == SYSTEM_BOOTING. 3896 * 3897 * __ref due to (1) call of __meminit annotated setup_zone_pageset 3898 * [we're only called with non-NULL zone through __meminit paths] and 3899 * (2) call of __init annotated helper build_all_zonelists_init 3900 * [protected by SYSTEM_BOOTING]. 3901 */ 3902 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3903 { 3904 set_zonelist_order(); 3905 3906 if (system_state == SYSTEM_BOOTING) { 3907 build_all_zonelists_init(); 3908 } else { 3909 #ifdef CONFIG_MEMORY_HOTPLUG 3910 if (zone) 3911 setup_zone_pageset(zone); 3912 #endif 3913 /* we have to stop all cpus to guarantee there is no user 3914 of zonelist */ 3915 stop_machine(__build_all_zonelists, pgdat, NULL); 3916 /* cpuset refresh routine should be here */ 3917 } 3918 vm_total_pages = nr_free_pagecache_pages(); 3919 /* 3920 * Disable grouping by mobility if the number of pages in the 3921 * system is too low to allow the mechanism to work. It would be 3922 * more accurate, but expensive to check per-zone. This check is 3923 * made on memory-hotadd so a system can start with mobility 3924 * disabled and enable it later 3925 */ 3926 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3927 page_group_by_mobility_disabled = 1; 3928 else 3929 page_group_by_mobility_disabled = 0; 3930 3931 pr_info("Built %i zonelists in %s order, mobility grouping %s. " 3932 "Total pages: %ld\n", 3933 nr_online_nodes, 3934 zonelist_order_name[current_zonelist_order], 3935 page_group_by_mobility_disabled ? "off" : "on", 3936 vm_total_pages); 3937 #ifdef CONFIG_NUMA 3938 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 3939 #endif 3940 } 3941 3942 /* 3943 * Helper functions to size the waitqueue hash table. 3944 * Essentially these want to choose hash table sizes sufficiently 3945 * large so that collisions trying to wait on pages are rare. 3946 * But in fact, the number of active page waitqueues on typical 3947 * systems is ridiculously low, less than 200. So this is even 3948 * conservative, even though it seems large. 3949 * 3950 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3951 * waitqueues, i.e. the size of the waitq table given the number of pages. 3952 */ 3953 #define PAGES_PER_WAITQUEUE 256 3954 3955 #ifndef CONFIG_MEMORY_HOTPLUG 3956 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3957 { 3958 unsigned long size = 1; 3959 3960 pages /= PAGES_PER_WAITQUEUE; 3961 3962 while (size < pages) 3963 size <<= 1; 3964 3965 /* 3966 * Once we have dozens or even hundreds of threads sleeping 3967 * on IO we've got bigger problems than wait queue collision. 3968 * Limit the size of the wait table to a reasonable size. 3969 */ 3970 size = min(size, 4096UL); 3971 3972 return max(size, 4UL); 3973 } 3974 #else 3975 /* 3976 * A zone's size might be changed by hot-add, so it is not possible to determine 3977 * a suitable size for its wait_table. So we use the maximum size now. 3978 * 3979 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3980 * 3981 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3982 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3983 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3984 * 3985 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3986 * or more by the traditional way. (See above). It equals: 3987 * 3988 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3989 * ia64(16K page size) : = ( 8G + 4M)byte. 3990 * powerpc (64K page size) : = (32G +16M)byte. 3991 */ 3992 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3993 { 3994 return 4096UL; 3995 } 3996 #endif 3997 3998 /* 3999 * This is an integer logarithm so that shifts can be used later 4000 * to extract the more random high bits from the multiplicative 4001 * hash function before the remainder is taken. 4002 */ 4003 static inline unsigned long wait_table_bits(unsigned long size) 4004 { 4005 return ffz(~size); 4006 } 4007 4008 /* 4009 * Check if a pageblock contains reserved pages 4010 */ 4011 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 4012 { 4013 unsigned long pfn; 4014 4015 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4016 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 4017 return 1; 4018 } 4019 return 0; 4020 } 4021 4022 /* 4023 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 4024 * of blocks reserved is based on min_wmark_pages(zone). The memory within 4025 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 4026 * higher will lead to a bigger reserve which will get freed as contiguous 4027 * blocks as reclaim kicks in 4028 */ 4029 static void setup_zone_migrate_reserve(struct zone *zone) 4030 { 4031 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 4032 struct page *page; 4033 unsigned long block_migratetype; 4034 int reserve; 4035 int old_reserve; 4036 4037 /* 4038 * Get the start pfn, end pfn and the number of blocks to reserve 4039 * We have to be careful to be aligned to pageblock_nr_pages to 4040 * make sure that we always check pfn_valid for the first page in 4041 * the block. 4042 */ 4043 start_pfn = zone->zone_start_pfn; 4044 end_pfn = zone_end_pfn(zone); 4045 start_pfn = roundup(start_pfn, pageblock_nr_pages); 4046 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 4047 pageblock_order; 4048 4049 /* 4050 * Reserve blocks are generally in place to help high-order atomic 4051 * allocations that are short-lived. A min_free_kbytes value that 4052 * would result in more than 2 reserve blocks for atomic allocations 4053 * is assumed to be in place to help anti-fragmentation for the 4054 * future allocation of hugepages at runtime. 4055 */ 4056 reserve = min(2, reserve); 4057 old_reserve = zone->nr_migrate_reserve_block; 4058 4059 /* When memory hot-add, we almost always need to do nothing */ 4060 if (reserve == old_reserve) 4061 return; 4062 zone->nr_migrate_reserve_block = reserve; 4063 4064 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4065 if (!pfn_valid(pfn)) 4066 continue; 4067 page = pfn_to_page(pfn); 4068 4069 /* Watch out for overlapping nodes */ 4070 if (page_to_nid(page) != zone_to_nid(zone)) 4071 continue; 4072 4073 block_migratetype = get_pageblock_migratetype(page); 4074 4075 /* Only test what is necessary when the reserves are not met */ 4076 if (reserve > 0) { 4077 /* 4078 * Blocks with reserved pages will never free, skip 4079 * them. 4080 */ 4081 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4082 if (pageblock_is_reserved(pfn, block_end_pfn)) 4083 continue; 4084 4085 /* If this block is reserved, account for it */ 4086 if (block_migratetype == MIGRATE_RESERVE) { 4087 reserve--; 4088 continue; 4089 } 4090 4091 /* Suitable for reserving if this block is movable */ 4092 if (block_migratetype == MIGRATE_MOVABLE) { 4093 set_pageblock_migratetype(page, 4094 MIGRATE_RESERVE); 4095 move_freepages_block(zone, page, 4096 MIGRATE_RESERVE); 4097 reserve--; 4098 continue; 4099 } 4100 } else if (!old_reserve) { 4101 /* 4102 * At boot time we don't need to scan the whole zone 4103 * for turning off MIGRATE_RESERVE. 4104 */ 4105 break; 4106 } 4107 4108 /* 4109 * If the reserve is met and this is a previous reserved block, 4110 * take it back 4111 */ 4112 if (block_migratetype == MIGRATE_RESERVE) { 4113 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4114 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4115 } 4116 } 4117 } 4118 4119 /* 4120 * Initially all pages are reserved - free ones are freed 4121 * up by free_all_bootmem() once the early boot process is 4122 * done. Non-atomic initialization, single-pass. 4123 */ 4124 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4125 unsigned long start_pfn, enum memmap_context context) 4126 { 4127 struct page *page; 4128 unsigned long end_pfn = start_pfn + size; 4129 unsigned long pfn; 4130 struct zone *z; 4131 4132 if (highest_memmap_pfn < end_pfn - 1) 4133 highest_memmap_pfn = end_pfn - 1; 4134 4135 z = &NODE_DATA(nid)->node_zones[zone]; 4136 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4137 /* 4138 * There can be holes in boot-time mem_map[]s 4139 * handed to this function. They do not 4140 * exist on hotplugged memory. 4141 */ 4142 if (context == MEMMAP_EARLY) { 4143 if (!early_pfn_valid(pfn)) 4144 continue; 4145 if (!early_pfn_in_nid(pfn, nid)) 4146 continue; 4147 } 4148 page = pfn_to_page(pfn); 4149 set_page_links(page, zone, nid, pfn); 4150 mminit_verify_page_links(page, zone, nid, pfn); 4151 init_page_count(page); 4152 page_mapcount_reset(page); 4153 page_cpupid_reset_last(page); 4154 SetPageReserved(page); 4155 /* 4156 * Mark the block movable so that blocks are reserved for 4157 * movable at startup. This will force kernel allocations 4158 * to reserve their blocks rather than leaking throughout 4159 * the address space during boot when many long-lived 4160 * kernel allocations are made. Later some blocks near 4161 * the start are marked MIGRATE_RESERVE by 4162 * setup_zone_migrate_reserve() 4163 * 4164 * bitmap is created for zone's valid pfn range. but memmap 4165 * can be created for invalid pages (for alignment) 4166 * check here not to call set_pageblock_migratetype() against 4167 * pfn out of zone. 4168 */ 4169 if ((z->zone_start_pfn <= pfn) 4170 && (pfn < zone_end_pfn(z)) 4171 && !(pfn & (pageblock_nr_pages - 1))) 4172 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4173 4174 INIT_LIST_HEAD(&page->lru); 4175 #ifdef WANT_PAGE_VIRTUAL 4176 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4177 if (!is_highmem_idx(zone)) 4178 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4179 #endif 4180 } 4181 } 4182 4183 static void __meminit zone_init_free_lists(struct zone *zone) 4184 { 4185 unsigned int order, t; 4186 for_each_migratetype_order(order, t) { 4187 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4188 zone->free_area[order].nr_free = 0; 4189 } 4190 } 4191 4192 #ifndef __HAVE_ARCH_MEMMAP_INIT 4193 #define memmap_init(size, nid, zone, start_pfn) \ 4194 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4195 #endif 4196 4197 static int zone_batchsize(struct zone *zone) 4198 { 4199 #ifdef CONFIG_MMU 4200 int batch; 4201 4202 /* 4203 * The per-cpu-pages pools are set to around 1000th of the 4204 * size of the zone. But no more than 1/2 of a meg. 4205 * 4206 * OK, so we don't know how big the cache is. So guess. 4207 */ 4208 batch = zone->managed_pages / 1024; 4209 if (batch * PAGE_SIZE > 512 * 1024) 4210 batch = (512 * 1024) / PAGE_SIZE; 4211 batch /= 4; /* We effectively *= 4 below */ 4212 if (batch < 1) 4213 batch = 1; 4214 4215 /* 4216 * Clamp the batch to a 2^n - 1 value. Having a power 4217 * of 2 value was found to be more likely to have 4218 * suboptimal cache aliasing properties in some cases. 4219 * 4220 * For example if 2 tasks are alternately allocating 4221 * batches of pages, one task can end up with a lot 4222 * of pages of one half of the possible page colors 4223 * and the other with pages of the other colors. 4224 */ 4225 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4226 4227 return batch; 4228 4229 #else 4230 /* The deferral and batching of frees should be suppressed under NOMMU 4231 * conditions. 4232 * 4233 * The problem is that NOMMU needs to be able to allocate large chunks 4234 * of contiguous memory as there's no hardware page translation to 4235 * assemble apparent contiguous memory from discontiguous pages. 4236 * 4237 * Queueing large contiguous runs of pages for batching, however, 4238 * causes the pages to actually be freed in smaller chunks. As there 4239 * can be a significant delay between the individual batches being 4240 * recycled, this leads to the once large chunks of space being 4241 * fragmented and becoming unavailable for high-order allocations. 4242 */ 4243 return 0; 4244 #endif 4245 } 4246 4247 /* 4248 * pcp->high and pcp->batch values are related and dependent on one another: 4249 * ->batch must never be higher then ->high. 4250 * The following function updates them in a safe manner without read side 4251 * locking. 4252 * 4253 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4254 * those fields changing asynchronously (acording the the above rule). 4255 * 4256 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4257 * outside of boot time (or some other assurance that no concurrent updaters 4258 * exist). 4259 */ 4260 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4261 unsigned long batch) 4262 { 4263 /* start with a fail safe value for batch */ 4264 pcp->batch = 1; 4265 smp_wmb(); 4266 4267 /* Update high, then batch, in order */ 4268 pcp->high = high; 4269 smp_wmb(); 4270 4271 pcp->batch = batch; 4272 } 4273 4274 /* a companion to pageset_set_high() */ 4275 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4276 { 4277 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4278 } 4279 4280 static void pageset_init(struct per_cpu_pageset *p) 4281 { 4282 struct per_cpu_pages *pcp; 4283 int migratetype; 4284 4285 memset(p, 0, sizeof(*p)); 4286 4287 pcp = &p->pcp; 4288 pcp->count = 0; 4289 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4290 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4291 } 4292 4293 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4294 { 4295 pageset_init(p); 4296 pageset_set_batch(p, batch); 4297 } 4298 4299 /* 4300 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4301 * to the value high for the pageset p. 4302 */ 4303 static void pageset_set_high(struct per_cpu_pageset *p, 4304 unsigned long high) 4305 { 4306 unsigned long batch = max(1UL, high / 4); 4307 if ((high / 4) > (PAGE_SHIFT * 8)) 4308 batch = PAGE_SHIFT * 8; 4309 4310 pageset_update(&p->pcp, high, batch); 4311 } 4312 4313 static void pageset_set_high_and_batch(struct zone *zone, 4314 struct per_cpu_pageset *pcp) 4315 { 4316 if (percpu_pagelist_fraction) 4317 pageset_set_high(pcp, 4318 (zone->managed_pages / 4319 percpu_pagelist_fraction)); 4320 else 4321 pageset_set_batch(pcp, zone_batchsize(zone)); 4322 } 4323 4324 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4325 { 4326 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4327 4328 pageset_init(pcp); 4329 pageset_set_high_and_batch(zone, pcp); 4330 } 4331 4332 static void __meminit setup_zone_pageset(struct zone *zone) 4333 { 4334 int cpu; 4335 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4336 for_each_possible_cpu(cpu) 4337 zone_pageset_init(zone, cpu); 4338 } 4339 4340 /* 4341 * Allocate per cpu pagesets and initialize them. 4342 * Before this call only boot pagesets were available. 4343 */ 4344 void __init setup_per_cpu_pageset(void) 4345 { 4346 struct zone *zone; 4347 4348 for_each_populated_zone(zone) 4349 setup_zone_pageset(zone); 4350 } 4351 4352 static noinline __init_refok 4353 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4354 { 4355 int i; 4356 size_t alloc_size; 4357 4358 /* 4359 * The per-page waitqueue mechanism uses hashed waitqueues 4360 * per zone. 4361 */ 4362 zone->wait_table_hash_nr_entries = 4363 wait_table_hash_nr_entries(zone_size_pages); 4364 zone->wait_table_bits = 4365 wait_table_bits(zone->wait_table_hash_nr_entries); 4366 alloc_size = zone->wait_table_hash_nr_entries 4367 * sizeof(wait_queue_head_t); 4368 4369 if (!slab_is_available()) { 4370 zone->wait_table = (wait_queue_head_t *) 4371 memblock_virt_alloc_node_nopanic( 4372 alloc_size, zone->zone_pgdat->node_id); 4373 } else { 4374 /* 4375 * This case means that a zone whose size was 0 gets new memory 4376 * via memory hot-add. 4377 * But it may be the case that a new node was hot-added. In 4378 * this case vmalloc() will not be able to use this new node's 4379 * memory - this wait_table must be initialized to use this new 4380 * node itself as well. 4381 * To use this new node's memory, further consideration will be 4382 * necessary. 4383 */ 4384 zone->wait_table = vmalloc(alloc_size); 4385 } 4386 if (!zone->wait_table) 4387 return -ENOMEM; 4388 4389 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4390 init_waitqueue_head(zone->wait_table + i); 4391 4392 return 0; 4393 } 4394 4395 static __meminit void zone_pcp_init(struct zone *zone) 4396 { 4397 /* 4398 * per cpu subsystem is not up at this point. The following code 4399 * relies on the ability of the linker to provide the 4400 * offset of a (static) per cpu variable into the per cpu area. 4401 */ 4402 zone->pageset = &boot_pageset; 4403 4404 if (populated_zone(zone)) 4405 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4406 zone->name, zone->present_pages, 4407 zone_batchsize(zone)); 4408 } 4409 4410 int __meminit init_currently_empty_zone(struct zone *zone, 4411 unsigned long zone_start_pfn, 4412 unsigned long size, 4413 enum memmap_context context) 4414 { 4415 struct pglist_data *pgdat = zone->zone_pgdat; 4416 int ret; 4417 ret = zone_wait_table_init(zone, size); 4418 if (ret) 4419 return ret; 4420 pgdat->nr_zones = zone_idx(zone) + 1; 4421 4422 zone->zone_start_pfn = zone_start_pfn; 4423 4424 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4425 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4426 pgdat->node_id, 4427 (unsigned long)zone_idx(zone), 4428 zone_start_pfn, (zone_start_pfn + size)); 4429 4430 zone_init_free_lists(zone); 4431 4432 return 0; 4433 } 4434 4435 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4436 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4437 /* 4438 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4439 */ 4440 int __meminit __early_pfn_to_nid(unsigned long pfn) 4441 { 4442 unsigned long start_pfn, end_pfn; 4443 int nid; 4444 /* 4445 * NOTE: The following SMP-unsafe globals are only used early in boot 4446 * when the kernel is running single-threaded. 4447 */ 4448 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4449 static int __meminitdata last_nid; 4450 4451 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4452 return last_nid; 4453 4454 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4455 if (nid != -1) { 4456 last_start_pfn = start_pfn; 4457 last_end_pfn = end_pfn; 4458 last_nid = nid; 4459 } 4460 4461 return nid; 4462 } 4463 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4464 4465 int __meminit early_pfn_to_nid(unsigned long pfn) 4466 { 4467 int nid; 4468 4469 nid = __early_pfn_to_nid(pfn); 4470 if (nid >= 0) 4471 return nid; 4472 /* just returns 0 */ 4473 return 0; 4474 } 4475 4476 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4477 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4478 { 4479 int nid; 4480 4481 nid = __early_pfn_to_nid(pfn); 4482 if (nid >= 0 && nid != node) 4483 return false; 4484 return true; 4485 } 4486 #endif 4487 4488 /** 4489 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4490 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4491 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4492 * 4493 * If an architecture guarantees that all ranges registered contain no holes 4494 * and may be freed, this this function may be used instead of calling 4495 * memblock_free_early_nid() manually. 4496 */ 4497 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4498 { 4499 unsigned long start_pfn, end_pfn; 4500 int i, this_nid; 4501 4502 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4503 start_pfn = min(start_pfn, max_low_pfn); 4504 end_pfn = min(end_pfn, max_low_pfn); 4505 4506 if (start_pfn < end_pfn) 4507 memblock_free_early_nid(PFN_PHYS(start_pfn), 4508 (end_pfn - start_pfn) << PAGE_SHIFT, 4509 this_nid); 4510 } 4511 } 4512 4513 /** 4514 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4515 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4516 * 4517 * If an architecture guarantees that all ranges registered contain no holes and may 4518 * be freed, this function may be used instead of calling memory_present() manually. 4519 */ 4520 void __init sparse_memory_present_with_active_regions(int nid) 4521 { 4522 unsigned long start_pfn, end_pfn; 4523 int i, this_nid; 4524 4525 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4526 memory_present(this_nid, start_pfn, end_pfn); 4527 } 4528 4529 /** 4530 * get_pfn_range_for_nid - Return the start and end page frames for a node 4531 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4532 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4533 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4534 * 4535 * It returns the start and end page frame of a node based on information 4536 * provided by memblock_set_node(). If called for a node 4537 * with no available memory, a warning is printed and the start and end 4538 * PFNs will be 0. 4539 */ 4540 void __meminit get_pfn_range_for_nid(unsigned int nid, 4541 unsigned long *start_pfn, unsigned long *end_pfn) 4542 { 4543 unsigned long this_start_pfn, this_end_pfn; 4544 int i; 4545 4546 *start_pfn = -1UL; 4547 *end_pfn = 0; 4548 4549 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4550 *start_pfn = min(*start_pfn, this_start_pfn); 4551 *end_pfn = max(*end_pfn, this_end_pfn); 4552 } 4553 4554 if (*start_pfn == -1UL) 4555 *start_pfn = 0; 4556 } 4557 4558 /* 4559 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4560 * assumption is made that zones within a node are ordered in monotonic 4561 * increasing memory addresses so that the "highest" populated zone is used 4562 */ 4563 static void __init find_usable_zone_for_movable(void) 4564 { 4565 int zone_index; 4566 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4567 if (zone_index == ZONE_MOVABLE) 4568 continue; 4569 4570 if (arch_zone_highest_possible_pfn[zone_index] > 4571 arch_zone_lowest_possible_pfn[zone_index]) 4572 break; 4573 } 4574 4575 VM_BUG_ON(zone_index == -1); 4576 movable_zone = zone_index; 4577 } 4578 4579 /* 4580 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4581 * because it is sized independent of architecture. Unlike the other zones, 4582 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4583 * in each node depending on the size of each node and how evenly kernelcore 4584 * is distributed. This helper function adjusts the zone ranges 4585 * provided by the architecture for a given node by using the end of the 4586 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4587 * zones within a node are in order of monotonic increases memory addresses 4588 */ 4589 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4590 unsigned long zone_type, 4591 unsigned long node_start_pfn, 4592 unsigned long node_end_pfn, 4593 unsigned long *zone_start_pfn, 4594 unsigned long *zone_end_pfn) 4595 { 4596 /* Only adjust if ZONE_MOVABLE is on this node */ 4597 if (zone_movable_pfn[nid]) { 4598 /* Size ZONE_MOVABLE */ 4599 if (zone_type == ZONE_MOVABLE) { 4600 *zone_start_pfn = zone_movable_pfn[nid]; 4601 *zone_end_pfn = min(node_end_pfn, 4602 arch_zone_highest_possible_pfn[movable_zone]); 4603 4604 /* Adjust for ZONE_MOVABLE starting within this range */ 4605 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4606 *zone_end_pfn > zone_movable_pfn[nid]) { 4607 *zone_end_pfn = zone_movable_pfn[nid]; 4608 4609 /* Check if this whole range is within ZONE_MOVABLE */ 4610 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4611 *zone_start_pfn = *zone_end_pfn; 4612 } 4613 } 4614 4615 /* 4616 * Return the number of pages a zone spans in a node, including holes 4617 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4618 */ 4619 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4620 unsigned long zone_type, 4621 unsigned long node_start_pfn, 4622 unsigned long node_end_pfn, 4623 unsigned long *ignored) 4624 { 4625 unsigned long zone_start_pfn, zone_end_pfn; 4626 4627 /* Get the start and end of the zone */ 4628 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4629 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4630 adjust_zone_range_for_zone_movable(nid, zone_type, 4631 node_start_pfn, node_end_pfn, 4632 &zone_start_pfn, &zone_end_pfn); 4633 4634 /* Check that this node has pages within the zone's required range */ 4635 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4636 return 0; 4637 4638 /* Move the zone boundaries inside the node if necessary */ 4639 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4640 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4641 4642 /* Return the spanned pages */ 4643 return zone_end_pfn - zone_start_pfn; 4644 } 4645 4646 /* 4647 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4648 * then all holes in the requested range will be accounted for. 4649 */ 4650 unsigned long __meminit __absent_pages_in_range(int nid, 4651 unsigned long range_start_pfn, 4652 unsigned long range_end_pfn) 4653 { 4654 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4655 unsigned long start_pfn, end_pfn; 4656 int i; 4657 4658 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4659 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4660 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4661 nr_absent -= end_pfn - start_pfn; 4662 } 4663 return nr_absent; 4664 } 4665 4666 /** 4667 * absent_pages_in_range - Return number of page frames in holes within a range 4668 * @start_pfn: The start PFN to start searching for holes 4669 * @end_pfn: The end PFN to stop searching for holes 4670 * 4671 * It returns the number of pages frames in memory holes within a range. 4672 */ 4673 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4674 unsigned long end_pfn) 4675 { 4676 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4677 } 4678 4679 /* Return the number of page frames in holes in a zone on a node */ 4680 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4681 unsigned long zone_type, 4682 unsigned long node_start_pfn, 4683 unsigned long node_end_pfn, 4684 unsigned long *ignored) 4685 { 4686 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4687 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4688 unsigned long zone_start_pfn, zone_end_pfn; 4689 4690 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4691 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4692 4693 adjust_zone_range_for_zone_movable(nid, zone_type, 4694 node_start_pfn, node_end_pfn, 4695 &zone_start_pfn, &zone_end_pfn); 4696 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4697 } 4698 4699 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4700 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4701 unsigned long zone_type, 4702 unsigned long node_start_pfn, 4703 unsigned long node_end_pfn, 4704 unsigned long *zones_size) 4705 { 4706 return zones_size[zone_type]; 4707 } 4708 4709 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4710 unsigned long zone_type, 4711 unsigned long node_start_pfn, 4712 unsigned long node_end_pfn, 4713 unsigned long *zholes_size) 4714 { 4715 if (!zholes_size) 4716 return 0; 4717 4718 return zholes_size[zone_type]; 4719 } 4720 4721 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4722 4723 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4724 unsigned long node_start_pfn, 4725 unsigned long node_end_pfn, 4726 unsigned long *zones_size, 4727 unsigned long *zholes_size) 4728 { 4729 unsigned long realtotalpages, totalpages = 0; 4730 enum zone_type i; 4731 4732 for (i = 0; i < MAX_NR_ZONES; i++) 4733 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4734 node_start_pfn, 4735 node_end_pfn, 4736 zones_size); 4737 pgdat->node_spanned_pages = totalpages; 4738 4739 realtotalpages = totalpages; 4740 for (i = 0; i < MAX_NR_ZONES; i++) 4741 realtotalpages -= 4742 zone_absent_pages_in_node(pgdat->node_id, i, 4743 node_start_pfn, node_end_pfn, 4744 zholes_size); 4745 pgdat->node_present_pages = realtotalpages; 4746 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4747 realtotalpages); 4748 } 4749 4750 #ifndef CONFIG_SPARSEMEM 4751 /* 4752 * Calculate the size of the zone->blockflags rounded to an unsigned long 4753 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4754 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4755 * round what is now in bits to nearest long in bits, then return it in 4756 * bytes. 4757 */ 4758 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4759 { 4760 unsigned long usemapsize; 4761 4762 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4763 usemapsize = roundup(zonesize, pageblock_nr_pages); 4764 usemapsize = usemapsize >> pageblock_order; 4765 usemapsize *= NR_PAGEBLOCK_BITS; 4766 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4767 4768 return usemapsize / 8; 4769 } 4770 4771 static void __init setup_usemap(struct pglist_data *pgdat, 4772 struct zone *zone, 4773 unsigned long zone_start_pfn, 4774 unsigned long zonesize) 4775 { 4776 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4777 zone->pageblock_flags = NULL; 4778 if (usemapsize) 4779 zone->pageblock_flags = 4780 memblock_virt_alloc_node_nopanic(usemapsize, 4781 pgdat->node_id); 4782 } 4783 #else 4784 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4785 unsigned long zone_start_pfn, unsigned long zonesize) {} 4786 #endif /* CONFIG_SPARSEMEM */ 4787 4788 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4789 4790 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4791 void __paginginit set_pageblock_order(void) 4792 { 4793 unsigned int order; 4794 4795 /* Check that pageblock_nr_pages has not already been setup */ 4796 if (pageblock_order) 4797 return; 4798 4799 if (HPAGE_SHIFT > PAGE_SHIFT) 4800 order = HUGETLB_PAGE_ORDER; 4801 else 4802 order = MAX_ORDER - 1; 4803 4804 /* 4805 * Assume the largest contiguous order of interest is a huge page. 4806 * This value may be variable depending on boot parameters on IA64 and 4807 * powerpc. 4808 */ 4809 pageblock_order = order; 4810 } 4811 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4812 4813 /* 4814 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4815 * is unused as pageblock_order is set at compile-time. See 4816 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4817 * the kernel config 4818 */ 4819 void __paginginit set_pageblock_order(void) 4820 { 4821 } 4822 4823 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4824 4825 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4826 unsigned long present_pages) 4827 { 4828 unsigned long pages = spanned_pages; 4829 4830 /* 4831 * Provide a more accurate estimation if there are holes within 4832 * the zone and SPARSEMEM is in use. If there are holes within the 4833 * zone, each populated memory region may cost us one or two extra 4834 * memmap pages due to alignment because memmap pages for each 4835 * populated regions may not naturally algined on page boundary. 4836 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4837 */ 4838 if (spanned_pages > present_pages + (present_pages >> 4) && 4839 IS_ENABLED(CONFIG_SPARSEMEM)) 4840 pages = present_pages; 4841 4842 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4843 } 4844 4845 /* 4846 * Set up the zone data structures: 4847 * - mark all pages reserved 4848 * - mark all memory queues empty 4849 * - clear the memory bitmaps 4850 * 4851 * NOTE: pgdat should get zeroed by caller. 4852 */ 4853 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4854 unsigned long node_start_pfn, unsigned long node_end_pfn, 4855 unsigned long *zones_size, unsigned long *zholes_size) 4856 { 4857 enum zone_type j; 4858 int nid = pgdat->node_id; 4859 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4860 int ret; 4861 4862 pgdat_resize_init(pgdat); 4863 #ifdef CONFIG_NUMA_BALANCING 4864 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4865 pgdat->numabalancing_migrate_nr_pages = 0; 4866 pgdat->numabalancing_migrate_next_window = jiffies; 4867 #endif 4868 init_waitqueue_head(&pgdat->kswapd_wait); 4869 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4870 pgdat_page_ext_init(pgdat); 4871 4872 for (j = 0; j < MAX_NR_ZONES; j++) { 4873 struct zone *zone = pgdat->node_zones + j; 4874 unsigned long size, realsize, freesize, memmap_pages; 4875 4876 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4877 node_end_pfn, zones_size); 4878 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4879 node_start_pfn, 4880 node_end_pfn, 4881 zholes_size); 4882 4883 /* 4884 * Adjust freesize so that it accounts for how much memory 4885 * is used by this zone for memmap. This affects the watermark 4886 * and per-cpu initialisations 4887 */ 4888 memmap_pages = calc_memmap_size(size, realsize); 4889 if (!is_highmem_idx(j)) { 4890 if (freesize >= memmap_pages) { 4891 freesize -= memmap_pages; 4892 if (memmap_pages) 4893 printk(KERN_DEBUG 4894 " %s zone: %lu pages used for memmap\n", 4895 zone_names[j], memmap_pages); 4896 } else 4897 printk(KERN_WARNING 4898 " %s zone: %lu pages exceeds freesize %lu\n", 4899 zone_names[j], memmap_pages, freesize); 4900 } 4901 4902 /* Account for reserved pages */ 4903 if (j == 0 && freesize > dma_reserve) { 4904 freesize -= dma_reserve; 4905 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4906 zone_names[0], dma_reserve); 4907 } 4908 4909 if (!is_highmem_idx(j)) 4910 nr_kernel_pages += freesize; 4911 /* Charge for highmem memmap if there are enough kernel pages */ 4912 else if (nr_kernel_pages > memmap_pages * 2) 4913 nr_kernel_pages -= memmap_pages; 4914 nr_all_pages += freesize; 4915 4916 zone->spanned_pages = size; 4917 zone->present_pages = realsize; 4918 /* 4919 * Set an approximate value for lowmem here, it will be adjusted 4920 * when the bootmem allocator frees pages into the buddy system. 4921 * And all highmem pages will be managed by the buddy system. 4922 */ 4923 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4924 #ifdef CONFIG_NUMA 4925 zone->node = nid; 4926 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4927 / 100; 4928 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4929 #endif 4930 zone->name = zone_names[j]; 4931 spin_lock_init(&zone->lock); 4932 spin_lock_init(&zone->lru_lock); 4933 zone_seqlock_init(zone); 4934 zone->zone_pgdat = pgdat; 4935 zone_pcp_init(zone); 4936 4937 /* For bootup, initialized properly in watermark setup */ 4938 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4939 4940 lruvec_init(&zone->lruvec); 4941 if (!size) 4942 continue; 4943 4944 set_pageblock_order(); 4945 setup_usemap(pgdat, zone, zone_start_pfn, size); 4946 ret = init_currently_empty_zone(zone, zone_start_pfn, 4947 size, MEMMAP_EARLY); 4948 BUG_ON(ret); 4949 memmap_init(size, nid, j, zone_start_pfn); 4950 zone_start_pfn += size; 4951 } 4952 } 4953 4954 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4955 { 4956 /* Skip empty nodes */ 4957 if (!pgdat->node_spanned_pages) 4958 return; 4959 4960 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4961 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4962 if (!pgdat->node_mem_map) { 4963 unsigned long size, start, end; 4964 struct page *map; 4965 4966 /* 4967 * The zone's endpoints aren't required to be MAX_ORDER 4968 * aligned but the node_mem_map endpoints must be in order 4969 * for the buddy allocator to function correctly. 4970 */ 4971 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4972 end = pgdat_end_pfn(pgdat); 4973 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4974 size = (end - start) * sizeof(struct page); 4975 map = alloc_remap(pgdat->node_id, size); 4976 if (!map) 4977 map = memblock_virt_alloc_node_nopanic(size, 4978 pgdat->node_id); 4979 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4980 } 4981 #ifndef CONFIG_NEED_MULTIPLE_NODES 4982 /* 4983 * With no DISCONTIG, the global mem_map is just set as node 0's 4984 */ 4985 if (pgdat == NODE_DATA(0)) { 4986 mem_map = NODE_DATA(0)->node_mem_map; 4987 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4988 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4989 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4990 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4991 } 4992 #endif 4993 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4994 } 4995 4996 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4997 unsigned long node_start_pfn, unsigned long *zholes_size) 4998 { 4999 pg_data_t *pgdat = NODE_DATA(nid); 5000 unsigned long start_pfn = 0; 5001 unsigned long end_pfn = 0; 5002 5003 /* pg_data_t should be reset to zero when it's allocated */ 5004 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 5005 5006 pgdat->node_id = nid; 5007 pgdat->node_start_pfn = node_start_pfn; 5008 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5009 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5010 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 5011 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1); 5012 #endif 5013 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5014 zones_size, zholes_size); 5015 5016 alloc_node_mem_map(pgdat); 5017 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5018 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 5019 nid, (unsigned long)pgdat, 5020 (unsigned long)pgdat->node_mem_map); 5021 #endif 5022 5023 free_area_init_core(pgdat, start_pfn, end_pfn, 5024 zones_size, zholes_size); 5025 } 5026 5027 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5028 5029 #if MAX_NUMNODES > 1 5030 /* 5031 * Figure out the number of possible node ids. 5032 */ 5033 void __init setup_nr_node_ids(void) 5034 { 5035 unsigned int node; 5036 unsigned int highest = 0; 5037 5038 for_each_node_mask(node, node_possible_map) 5039 highest = node; 5040 nr_node_ids = highest + 1; 5041 } 5042 #endif 5043 5044 /** 5045 * node_map_pfn_alignment - determine the maximum internode alignment 5046 * 5047 * This function should be called after node map is populated and sorted. 5048 * It calculates the maximum power of two alignment which can distinguish 5049 * all the nodes. 5050 * 5051 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5052 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5053 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5054 * shifted, 1GiB is enough and this function will indicate so. 5055 * 5056 * This is used to test whether pfn -> nid mapping of the chosen memory 5057 * model has fine enough granularity to avoid incorrect mapping for the 5058 * populated node map. 5059 * 5060 * Returns the determined alignment in pfn's. 0 if there is no alignment 5061 * requirement (single node). 5062 */ 5063 unsigned long __init node_map_pfn_alignment(void) 5064 { 5065 unsigned long accl_mask = 0, last_end = 0; 5066 unsigned long start, end, mask; 5067 int last_nid = -1; 5068 int i, nid; 5069 5070 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5071 if (!start || last_nid < 0 || last_nid == nid) { 5072 last_nid = nid; 5073 last_end = end; 5074 continue; 5075 } 5076 5077 /* 5078 * Start with a mask granular enough to pin-point to the 5079 * start pfn and tick off bits one-by-one until it becomes 5080 * too coarse to separate the current node from the last. 5081 */ 5082 mask = ~((1 << __ffs(start)) - 1); 5083 while (mask && last_end <= (start & (mask << 1))) 5084 mask <<= 1; 5085 5086 /* accumulate all internode masks */ 5087 accl_mask |= mask; 5088 } 5089 5090 /* convert mask to number of pages */ 5091 return ~accl_mask + 1; 5092 } 5093 5094 /* Find the lowest pfn for a node */ 5095 static unsigned long __init find_min_pfn_for_node(int nid) 5096 { 5097 unsigned long min_pfn = ULONG_MAX; 5098 unsigned long start_pfn; 5099 int i; 5100 5101 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5102 min_pfn = min(min_pfn, start_pfn); 5103 5104 if (min_pfn == ULONG_MAX) { 5105 printk(KERN_WARNING 5106 "Could not find start_pfn for node %d\n", nid); 5107 return 0; 5108 } 5109 5110 return min_pfn; 5111 } 5112 5113 /** 5114 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5115 * 5116 * It returns the minimum PFN based on information provided via 5117 * memblock_set_node(). 5118 */ 5119 unsigned long __init find_min_pfn_with_active_regions(void) 5120 { 5121 return find_min_pfn_for_node(MAX_NUMNODES); 5122 } 5123 5124 /* 5125 * early_calculate_totalpages() 5126 * Sum pages in active regions for movable zone. 5127 * Populate N_MEMORY for calculating usable_nodes. 5128 */ 5129 static unsigned long __init early_calculate_totalpages(void) 5130 { 5131 unsigned long totalpages = 0; 5132 unsigned long start_pfn, end_pfn; 5133 int i, nid; 5134 5135 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5136 unsigned long pages = end_pfn - start_pfn; 5137 5138 totalpages += pages; 5139 if (pages) 5140 node_set_state(nid, N_MEMORY); 5141 } 5142 return totalpages; 5143 } 5144 5145 /* 5146 * Find the PFN the Movable zone begins in each node. Kernel memory 5147 * is spread evenly between nodes as long as the nodes have enough 5148 * memory. When they don't, some nodes will have more kernelcore than 5149 * others 5150 */ 5151 static void __init find_zone_movable_pfns_for_nodes(void) 5152 { 5153 int i, nid; 5154 unsigned long usable_startpfn; 5155 unsigned long kernelcore_node, kernelcore_remaining; 5156 /* save the state before borrow the nodemask */ 5157 nodemask_t saved_node_state = node_states[N_MEMORY]; 5158 unsigned long totalpages = early_calculate_totalpages(); 5159 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5160 struct memblock_region *r; 5161 5162 /* Need to find movable_zone earlier when movable_node is specified. */ 5163 find_usable_zone_for_movable(); 5164 5165 /* 5166 * If movable_node is specified, ignore kernelcore and movablecore 5167 * options. 5168 */ 5169 if (movable_node_is_enabled()) { 5170 for_each_memblock(memory, r) { 5171 if (!memblock_is_hotpluggable(r)) 5172 continue; 5173 5174 nid = r->nid; 5175 5176 usable_startpfn = PFN_DOWN(r->base); 5177 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5178 min(usable_startpfn, zone_movable_pfn[nid]) : 5179 usable_startpfn; 5180 } 5181 5182 goto out2; 5183 } 5184 5185 /* 5186 * If movablecore=nn[KMG] was specified, calculate what size of 5187 * kernelcore that corresponds so that memory usable for 5188 * any allocation type is evenly spread. If both kernelcore 5189 * and movablecore are specified, then the value of kernelcore 5190 * will be used for required_kernelcore if it's greater than 5191 * what movablecore would have allowed. 5192 */ 5193 if (required_movablecore) { 5194 unsigned long corepages; 5195 5196 /* 5197 * Round-up so that ZONE_MOVABLE is at least as large as what 5198 * was requested by the user 5199 */ 5200 required_movablecore = 5201 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5202 corepages = totalpages - required_movablecore; 5203 5204 required_kernelcore = max(required_kernelcore, corepages); 5205 } 5206 5207 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5208 if (!required_kernelcore) 5209 goto out; 5210 5211 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5212 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5213 5214 restart: 5215 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5216 kernelcore_node = required_kernelcore / usable_nodes; 5217 for_each_node_state(nid, N_MEMORY) { 5218 unsigned long start_pfn, end_pfn; 5219 5220 /* 5221 * Recalculate kernelcore_node if the division per node 5222 * now exceeds what is necessary to satisfy the requested 5223 * amount of memory for the kernel 5224 */ 5225 if (required_kernelcore < kernelcore_node) 5226 kernelcore_node = required_kernelcore / usable_nodes; 5227 5228 /* 5229 * As the map is walked, we track how much memory is usable 5230 * by the kernel using kernelcore_remaining. When it is 5231 * 0, the rest of the node is usable by ZONE_MOVABLE 5232 */ 5233 kernelcore_remaining = kernelcore_node; 5234 5235 /* Go through each range of PFNs within this node */ 5236 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5237 unsigned long size_pages; 5238 5239 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5240 if (start_pfn >= end_pfn) 5241 continue; 5242 5243 /* Account for what is only usable for kernelcore */ 5244 if (start_pfn < usable_startpfn) { 5245 unsigned long kernel_pages; 5246 kernel_pages = min(end_pfn, usable_startpfn) 5247 - start_pfn; 5248 5249 kernelcore_remaining -= min(kernel_pages, 5250 kernelcore_remaining); 5251 required_kernelcore -= min(kernel_pages, 5252 required_kernelcore); 5253 5254 /* Continue if range is now fully accounted */ 5255 if (end_pfn <= usable_startpfn) { 5256 5257 /* 5258 * Push zone_movable_pfn to the end so 5259 * that if we have to rebalance 5260 * kernelcore across nodes, we will 5261 * not double account here 5262 */ 5263 zone_movable_pfn[nid] = end_pfn; 5264 continue; 5265 } 5266 start_pfn = usable_startpfn; 5267 } 5268 5269 /* 5270 * The usable PFN range for ZONE_MOVABLE is from 5271 * start_pfn->end_pfn. Calculate size_pages as the 5272 * number of pages used as kernelcore 5273 */ 5274 size_pages = end_pfn - start_pfn; 5275 if (size_pages > kernelcore_remaining) 5276 size_pages = kernelcore_remaining; 5277 zone_movable_pfn[nid] = start_pfn + size_pages; 5278 5279 /* 5280 * Some kernelcore has been met, update counts and 5281 * break if the kernelcore for this node has been 5282 * satisfied 5283 */ 5284 required_kernelcore -= min(required_kernelcore, 5285 size_pages); 5286 kernelcore_remaining -= size_pages; 5287 if (!kernelcore_remaining) 5288 break; 5289 } 5290 } 5291 5292 /* 5293 * If there is still required_kernelcore, we do another pass with one 5294 * less node in the count. This will push zone_movable_pfn[nid] further 5295 * along on the nodes that still have memory until kernelcore is 5296 * satisfied 5297 */ 5298 usable_nodes--; 5299 if (usable_nodes && required_kernelcore > usable_nodes) 5300 goto restart; 5301 5302 out2: 5303 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5304 for (nid = 0; nid < MAX_NUMNODES; nid++) 5305 zone_movable_pfn[nid] = 5306 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5307 5308 out: 5309 /* restore the node_state */ 5310 node_states[N_MEMORY] = saved_node_state; 5311 } 5312 5313 /* Any regular or high memory on that node ? */ 5314 static void check_for_memory(pg_data_t *pgdat, int nid) 5315 { 5316 enum zone_type zone_type; 5317 5318 if (N_MEMORY == N_NORMAL_MEMORY) 5319 return; 5320 5321 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5322 struct zone *zone = &pgdat->node_zones[zone_type]; 5323 if (populated_zone(zone)) { 5324 node_set_state(nid, N_HIGH_MEMORY); 5325 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5326 zone_type <= ZONE_NORMAL) 5327 node_set_state(nid, N_NORMAL_MEMORY); 5328 break; 5329 } 5330 } 5331 } 5332 5333 /** 5334 * free_area_init_nodes - Initialise all pg_data_t and zone data 5335 * @max_zone_pfn: an array of max PFNs for each zone 5336 * 5337 * This will call free_area_init_node() for each active node in the system. 5338 * Using the page ranges provided by memblock_set_node(), the size of each 5339 * zone in each node and their holes is calculated. If the maximum PFN 5340 * between two adjacent zones match, it is assumed that the zone is empty. 5341 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5342 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5343 * starts where the previous one ended. For example, ZONE_DMA32 starts 5344 * at arch_max_dma_pfn. 5345 */ 5346 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5347 { 5348 unsigned long start_pfn, end_pfn; 5349 int i, nid; 5350 5351 /* Record where the zone boundaries are */ 5352 memset(arch_zone_lowest_possible_pfn, 0, 5353 sizeof(arch_zone_lowest_possible_pfn)); 5354 memset(arch_zone_highest_possible_pfn, 0, 5355 sizeof(arch_zone_highest_possible_pfn)); 5356 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5357 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5358 for (i = 1; i < MAX_NR_ZONES; i++) { 5359 if (i == ZONE_MOVABLE) 5360 continue; 5361 arch_zone_lowest_possible_pfn[i] = 5362 arch_zone_highest_possible_pfn[i-1]; 5363 arch_zone_highest_possible_pfn[i] = 5364 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5365 } 5366 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5367 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5368 5369 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5370 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5371 find_zone_movable_pfns_for_nodes(); 5372 5373 /* Print out the zone ranges */ 5374 pr_info("Zone ranges:\n"); 5375 for (i = 0; i < MAX_NR_ZONES; i++) { 5376 if (i == ZONE_MOVABLE) 5377 continue; 5378 pr_info(" %-8s ", zone_names[i]); 5379 if (arch_zone_lowest_possible_pfn[i] == 5380 arch_zone_highest_possible_pfn[i]) 5381 pr_cont("empty\n"); 5382 else 5383 pr_cont("[mem %#018Lx-%#018Lx]\n", 5384 (u64)arch_zone_lowest_possible_pfn[i] 5385 << PAGE_SHIFT, 5386 ((u64)arch_zone_highest_possible_pfn[i] 5387 << PAGE_SHIFT) - 1); 5388 } 5389 5390 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5391 pr_info("Movable zone start for each node\n"); 5392 for (i = 0; i < MAX_NUMNODES; i++) { 5393 if (zone_movable_pfn[i]) 5394 pr_info(" Node %d: %#018Lx\n", i, 5395 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 5396 } 5397 5398 /* Print out the early node map */ 5399 pr_info("Early memory node ranges\n"); 5400 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5401 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 5402 (u64)start_pfn << PAGE_SHIFT, 5403 ((u64)end_pfn << PAGE_SHIFT) - 1); 5404 5405 /* Initialise every node */ 5406 mminit_verify_pageflags_layout(); 5407 setup_nr_node_ids(); 5408 for_each_online_node(nid) { 5409 pg_data_t *pgdat = NODE_DATA(nid); 5410 free_area_init_node(nid, NULL, 5411 find_min_pfn_for_node(nid), NULL); 5412 5413 /* Any memory on that node */ 5414 if (pgdat->node_present_pages) 5415 node_set_state(nid, N_MEMORY); 5416 check_for_memory(pgdat, nid); 5417 } 5418 } 5419 5420 static int __init cmdline_parse_core(char *p, unsigned long *core) 5421 { 5422 unsigned long long coremem; 5423 if (!p) 5424 return -EINVAL; 5425 5426 coremem = memparse(p, &p); 5427 *core = coremem >> PAGE_SHIFT; 5428 5429 /* Paranoid check that UL is enough for the coremem value */ 5430 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5431 5432 return 0; 5433 } 5434 5435 /* 5436 * kernelcore=size sets the amount of memory for use for allocations that 5437 * cannot be reclaimed or migrated. 5438 */ 5439 static int __init cmdline_parse_kernelcore(char *p) 5440 { 5441 return cmdline_parse_core(p, &required_kernelcore); 5442 } 5443 5444 /* 5445 * movablecore=size sets the amount of memory for use for allocations that 5446 * can be reclaimed or migrated. 5447 */ 5448 static int __init cmdline_parse_movablecore(char *p) 5449 { 5450 return cmdline_parse_core(p, &required_movablecore); 5451 } 5452 5453 early_param("kernelcore", cmdline_parse_kernelcore); 5454 early_param("movablecore", cmdline_parse_movablecore); 5455 5456 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5457 5458 void adjust_managed_page_count(struct page *page, long count) 5459 { 5460 spin_lock(&managed_page_count_lock); 5461 page_zone(page)->managed_pages += count; 5462 totalram_pages += count; 5463 #ifdef CONFIG_HIGHMEM 5464 if (PageHighMem(page)) 5465 totalhigh_pages += count; 5466 #endif 5467 spin_unlock(&managed_page_count_lock); 5468 } 5469 EXPORT_SYMBOL(adjust_managed_page_count); 5470 5471 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5472 { 5473 void *pos; 5474 unsigned long pages = 0; 5475 5476 start = (void *)PAGE_ALIGN((unsigned long)start); 5477 end = (void *)((unsigned long)end & PAGE_MASK); 5478 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5479 if ((unsigned int)poison <= 0xFF) 5480 memset(pos, poison, PAGE_SIZE); 5481 free_reserved_page(virt_to_page(pos)); 5482 } 5483 5484 if (pages && s) 5485 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5486 s, pages << (PAGE_SHIFT - 10), start, end); 5487 5488 return pages; 5489 } 5490 EXPORT_SYMBOL(free_reserved_area); 5491 5492 #ifdef CONFIG_HIGHMEM 5493 void free_highmem_page(struct page *page) 5494 { 5495 __free_reserved_page(page); 5496 totalram_pages++; 5497 page_zone(page)->managed_pages++; 5498 totalhigh_pages++; 5499 } 5500 #endif 5501 5502 5503 void __init mem_init_print_info(const char *str) 5504 { 5505 unsigned long physpages, codesize, datasize, rosize, bss_size; 5506 unsigned long init_code_size, init_data_size; 5507 5508 physpages = get_num_physpages(); 5509 codesize = _etext - _stext; 5510 datasize = _edata - _sdata; 5511 rosize = __end_rodata - __start_rodata; 5512 bss_size = __bss_stop - __bss_start; 5513 init_data_size = __init_end - __init_begin; 5514 init_code_size = _einittext - _sinittext; 5515 5516 /* 5517 * Detect special cases and adjust section sizes accordingly: 5518 * 1) .init.* may be embedded into .data sections 5519 * 2) .init.text.* may be out of [__init_begin, __init_end], 5520 * please refer to arch/tile/kernel/vmlinux.lds.S. 5521 * 3) .rodata.* may be embedded into .text or .data sections. 5522 */ 5523 #define adj_init_size(start, end, size, pos, adj) \ 5524 do { \ 5525 if (start <= pos && pos < end && size > adj) \ 5526 size -= adj; \ 5527 } while (0) 5528 5529 adj_init_size(__init_begin, __init_end, init_data_size, 5530 _sinittext, init_code_size); 5531 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5532 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5533 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5534 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5535 5536 #undef adj_init_size 5537 5538 pr_info("Memory: %luK/%luK available " 5539 "(%luK kernel code, %luK rwdata, %luK rodata, " 5540 "%luK init, %luK bss, %luK reserved, %luK cma-reserved" 5541 #ifdef CONFIG_HIGHMEM 5542 ", %luK highmem" 5543 #endif 5544 "%s%s)\n", 5545 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5546 codesize >> 10, datasize >> 10, rosize >> 10, 5547 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5548 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10), 5549 totalcma_pages << (PAGE_SHIFT-10), 5550 #ifdef CONFIG_HIGHMEM 5551 totalhigh_pages << (PAGE_SHIFT-10), 5552 #endif 5553 str ? ", " : "", str ? str : ""); 5554 } 5555 5556 /** 5557 * set_dma_reserve - set the specified number of pages reserved in the first zone 5558 * @new_dma_reserve: The number of pages to mark reserved 5559 * 5560 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5561 * In the DMA zone, a significant percentage may be consumed by kernel image 5562 * and other unfreeable allocations which can skew the watermarks badly. This 5563 * function may optionally be used to account for unfreeable pages in the 5564 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5565 * smaller per-cpu batchsize. 5566 */ 5567 void __init set_dma_reserve(unsigned long new_dma_reserve) 5568 { 5569 dma_reserve = new_dma_reserve; 5570 } 5571 5572 void __init free_area_init(unsigned long *zones_size) 5573 { 5574 free_area_init_node(0, zones_size, 5575 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5576 } 5577 5578 static int page_alloc_cpu_notify(struct notifier_block *self, 5579 unsigned long action, void *hcpu) 5580 { 5581 int cpu = (unsigned long)hcpu; 5582 5583 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5584 lru_add_drain_cpu(cpu); 5585 drain_pages(cpu); 5586 5587 /* 5588 * Spill the event counters of the dead processor 5589 * into the current processors event counters. 5590 * This artificially elevates the count of the current 5591 * processor. 5592 */ 5593 vm_events_fold_cpu(cpu); 5594 5595 /* 5596 * Zero the differential counters of the dead processor 5597 * so that the vm statistics are consistent. 5598 * 5599 * This is only okay since the processor is dead and cannot 5600 * race with what we are doing. 5601 */ 5602 cpu_vm_stats_fold(cpu); 5603 } 5604 return NOTIFY_OK; 5605 } 5606 5607 void __init page_alloc_init(void) 5608 { 5609 hotcpu_notifier(page_alloc_cpu_notify, 0); 5610 } 5611 5612 /* 5613 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5614 * or min_free_kbytes changes. 5615 */ 5616 static void calculate_totalreserve_pages(void) 5617 { 5618 struct pglist_data *pgdat; 5619 unsigned long reserve_pages = 0; 5620 enum zone_type i, j; 5621 5622 for_each_online_pgdat(pgdat) { 5623 for (i = 0; i < MAX_NR_ZONES; i++) { 5624 struct zone *zone = pgdat->node_zones + i; 5625 long max = 0; 5626 5627 /* Find valid and maximum lowmem_reserve in the zone */ 5628 for (j = i; j < MAX_NR_ZONES; j++) { 5629 if (zone->lowmem_reserve[j] > max) 5630 max = zone->lowmem_reserve[j]; 5631 } 5632 5633 /* we treat the high watermark as reserved pages. */ 5634 max += high_wmark_pages(zone); 5635 5636 if (max > zone->managed_pages) 5637 max = zone->managed_pages; 5638 reserve_pages += max; 5639 /* 5640 * Lowmem reserves are not available to 5641 * GFP_HIGHUSER page cache allocations and 5642 * kswapd tries to balance zones to their high 5643 * watermark. As a result, neither should be 5644 * regarded as dirtyable memory, to prevent a 5645 * situation where reclaim has to clean pages 5646 * in order to balance the zones. 5647 */ 5648 zone->dirty_balance_reserve = max; 5649 } 5650 } 5651 dirty_balance_reserve = reserve_pages; 5652 totalreserve_pages = reserve_pages; 5653 } 5654 5655 /* 5656 * setup_per_zone_lowmem_reserve - called whenever 5657 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5658 * has a correct pages reserved value, so an adequate number of 5659 * pages are left in the zone after a successful __alloc_pages(). 5660 */ 5661 static void setup_per_zone_lowmem_reserve(void) 5662 { 5663 struct pglist_data *pgdat; 5664 enum zone_type j, idx; 5665 5666 for_each_online_pgdat(pgdat) { 5667 for (j = 0; j < MAX_NR_ZONES; j++) { 5668 struct zone *zone = pgdat->node_zones + j; 5669 unsigned long managed_pages = zone->managed_pages; 5670 5671 zone->lowmem_reserve[j] = 0; 5672 5673 idx = j; 5674 while (idx) { 5675 struct zone *lower_zone; 5676 5677 idx--; 5678 5679 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5680 sysctl_lowmem_reserve_ratio[idx] = 1; 5681 5682 lower_zone = pgdat->node_zones + idx; 5683 lower_zone->lowmem_reserve[j] = managed_pages / 5684 sysctl_lowmem_reserve_ratio[idx]; 5685 managed_pages += lower_zone->managed_pages; 5686 } 5687 } 5688 } 5689 5690 /* update totalreserve_pages */ 5691 calculate_totalreserve_pages(); 5692 } 5693 5694 static void __setup_per_zone_wmarks(void) 5695 { 5696 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5697 unsigned long lowmem_pages = 0; 5698 struct zone *zone; 5699 unsigned long flags; 5700 5701 /* Calculate total number of !ZONE_HIGHMEM pages */ 5702 for_each_zone(zone) { 5703 if (!is_highmem(zone)) 5704 lowmem_pages += zone->managed_pages; 5705 } 5706 5707 for_each_zone(zone) { 5708 u64 tmp; 5709 5710 spin_lock_irqsave(&zone->lock, flags); 5711 tmp = (u64)pages_min * zone->managed_pages; 5712 do_div(tmp, lowmem_pages); 5713 if (is_highmem(zone)) { 5714 /* 5715 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5716 * need highmem pages, so cap pages_min to a small 5717 * value here. 5718 * 5719 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5720 * deltas controls asynch page reclaim, and so should 5721 * not be capped for highmem. 5722 */ 5723 unsigned long min_pages; 5724 5725 min_pages = zone->managed_pages / 1024; 5726 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5727 zone->watermark[WMARK_MIN] = min_pages; 5728 } else { 5729 /* 5730 * If it's a lowmem zone, reserve a number of pages 5731 * proportionate to the zone's size. 5732 */ 5733 zone->watermark[WMARK_MIN] = tmp; 5734 } 5735 5736 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5737 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5738 5739 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5740 high_wmark_pages(zone) - low_wmark_pages(zone) - 5741 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 5742 5743 setup_zone_migrate_reserve(zone); 5744 spin_unlock_irqrestore(&zone->lock, flags); 5745 } 5746 5747 /* update totalreserve_pages */ 5748 calculate_totalreserve_pages(); 5749 } 5750 5751 /** 5752 * setup_per_zone_wmarks - called when min_free_kbytes changes 5753 * or when memory is hot-{added|removed} 5754 * 5755 * Ensures that the watermark[min,low,high] values for each zone are set 5756 * correctly with respect to min_free_kbytes. 5757 */ 5758 void setup_per_zone_wmarks(void) 5759 { 5760 mutex_lock(&zonelists_mutex); 5761 __setup_per_zone_wmarks(); 5762 mutex_unlock(&zonelists_mutex); 5763 } 5764 5765 /* 5766 * The inactive anon list should be small enough that the VM never has to 5767 * do too much work, but large enough that each inactive page has a chance 5768 * to be referenced again before it is swapped out. 5769 * 5770 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5771 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5772 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5773 * the anonymous pages are kept on the inactive list. 5774 * 5775 * total target max 5776 * memory ratio inactive anon 5777 * ------------------------------------- 5778 * 10MB 1 5MB 5779 * 100MB 1 50MB 5780 * 1GB 3 250MB 5781 * 10GB 10 0.9GB 5782 * 100GB 31 3GB 5783 * 1TB 101 10GB 5784 * 10TB 320 32GB 5785 */ 5786 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5787 { 5788 unsigned int gb, ratio; 5789 5790 /* Zone size in gigabytes */ 5791 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5792 if (gb) 5793 ratio = int_sqrt(10 * gb); 5794 else 5795 ratio = 1; 5796 5797 zone->inactive_ratio = ratio; 5798 } 5799 5800 static void __meminit setup_per_zone_inactive_ratio(void) 5801 { 5802 struct zone *zone; 5803 5804 for_each_zone(zone) 5805 calculate_zone_inactive_ratio(zone); 5806 } 5807 5808 /* 5809 * Initialise min_free_kbytes. 5810 * 5811 * For small machines we want it small (128k min). For large machines 5812 * we want it large (64MB max). But it is not linear, because network 5813 * bandwidth does not increase linearly with machine size. We use 5814 * 5815 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5816 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5817 * 5818 * which yields 5819 * 5820 * 16MB: 512k 5821 * 32MB: 724k 5822 * 64MB: 1024k 5823 * 128MB: 1448k 5824 * 256MB: 2048k 5825 * 512MB: 2896k 5826 * 1024MB: 4096k 5827 * 2048MB: 5792k 5828 * 4096MB: 8192k 5829 * 8192MB: 11584k 5830 * 16384MB: 16384k 5831 */ 5832 int __meminit init_per_zone_wmark_min(void) 5833 { 5834 unsigned long lowmem_kbytes; 5835 int new_min_free_kbytes; 5836 5837 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5838 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5839 5840 if (new_min_free_kbytes > user_min_free_kbytes) { 5841 min_free_kbytes = new_min_free_kbytes; 5842 if (min_free_kbytes < 128) 5843 min_free_kbytes = 128; 5844 if (min_free_kbytes > 65536) 5845 min_free_kbytes = 65536; 5846 } else { 5847 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5848 new_min_free_kbytes, user_min_free_kbytes); 5849 } 5850 setup_per_zone_wmarks(); 5851 refresh_zone_stat_thresholds(); 5852 setup_per_zone_lowmem_reserve(); 5853 setup_per_zone_inactive_ratio(); 5854 return 0; 5855 } 5856 module_init(init_per_zone_wmark_min) 5857 5858 /* 5859 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5860 * that we can call two helper functions whenever min_free_kbytes 5861 * changes. 5862 */ 5863 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5864 void __user *buffer, size_t *length, loff_t *ppos) 5865 { 5866 int rc; 5867 5868 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5869 if (rc) 5870 return rc; 5871 5872 if (write) { 5873 user_min_free_kbytes = min_free_kbytes; 5874 setup_per_zone_wmarks(); 5875 } 5876 return 0; 5877 } 5878 5879 #ifdef CONFIG_NUMA 5880 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 5881 void __user *buffer, size_t *length, loff_t *ppos) 5882 { 5883 struct zone *zone; 5884 int rc; 5885 5886 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5887 if (rc) 5888 return rc; 5889 5890 for_each_zone(zone) 5891 zone->min_unmapped_pages = (zone->managed_pages * 5892 sysctl_min_unmapped_ratio) / 100; 5893 return 0; 5894 } 5895 5896 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 5897 void __user *buffer, size_t *length, loff_t *ppos) 5898 { 5899 struct zone *zone; 5900 int rc; 5901 5902 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5903 if (rc) 5904 return rc; 5905 5906 for_each_zone(zone) 5907 zone->min_slab_pages = (zone->managed_pages * 5908 sysctl_min_slab_ratio) / 100; 5909 return 0; 5910 } 5911 #endif 5912 5913 /* 5914 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5915 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5916 * whenever sysctl_lowmem_reserve_ratio changes. 5917 * 5918 * The reserve ratio obviously has absolutely no relation with the 5919 * minimum watermarks. The lowmem reserve ratio can only make sense 5920 * if in function of the boot time zone sizes. 5921 */ 5922 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 5923 void __user *buffer, size_t *length, loff_t *ppos) 5924 { 5925 proc_dointvec_minmax(table, write, buffer, length, ppos); 5926 setup_per_zone_lowmem_reserve(); 5927 return 0; 5928 } 5929 5930 /* 5931 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5932 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5933 * pagelist can have before it gets flushed back to buddy allocator. 5934 */ 5935 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 5936 void __user *buffer, size_t *length, loff_t *ppos) 5937 { 5938 struct zone *zone; 5939 int old_percpu_pagelist_fraction; 5940 int ret; 5941 5942 mutex_lock(&pcp_batch_high_lock); 5943 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 5944 5945 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5946 if (!write || ret < 0) 5947 goto out; 5948 5949 /* Sanity checking to avoid pcp imbalance */ 5950 if (percpu_pagelist_fraction && 5951 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 5952 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 5953 ret = -EINVAL; 5954 goto out; 5955 } 5956 5957 /* No change? */ 5958 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 5959 goto out; 5960 5961 for_each_populated_zone(zone) { 5962 unsigned int cpu; 5963 5964 for_each_possible_cpu(cpu) 5965 pageset_set_high_and_batch(zone, 5966 per_cpu_ptr(zone->pageset, cpu)); 5967 } 5968 out: 5969 mutex_unlock(&pcp_batch_high_lock); 5970 return ret; 5971 } 5972 5973 int hashdist = HASHDIST_DEFAULT; 5974 5975 #ifdef CONFIG_NUMA 5976 static int __init set_hashdist(char *str) 5977 { 5978 if (!str) 5979 return 0; 5980 hashdist = simple_strtoul(str, &str, 0); 5981 return 1; 5982 } 5983 __setup("hashdist=", set_hashdist); 5984 #endif 5985 5986 /* 5987 * allocate a large system hash table from bootmem 5988 * - it is assumed that the hash table must contain an exact power-of-2 5989 * quantity of entries 5990 * - limit is the number of hash buckets, not the total allocation size 5991 */ 5992 void *__init alloc_large_system_hash(const char *tablename, 5993 unsigned long bucketsize, 5994 unsigned long numentries, 5995 int scale, 5996 int flags, 5997 unsigned int *_hash_shift, 5998 unsigned int *_hash_mask, 5999 unsigned long low_limit, 6000 unsigned long high_limit) 6001 { 6002 unsigned long long max = high_limit; 6003 unsigned long log2qty, size; 6004 void *table = NULL; 6005 6006 /* allow the kernel cmdline to have a say */ 6007 if (!numentries) { 6008 /* round applicable memory size up to nearest megabyte */ 6009 numentries = nr_kernel_pages; 6010 6011 /* It isn't necessary when PAGE_SIZE >= 1MB */ 6012 if (PAGE_SHIFT < 20) 6013 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 6014 6015 /* limit to 1 bucket per 2^scale bytes of low memory */ 6016 if (scale > PAGE_SHIFT) 6017 numentries >>= (scale - PAGE_SHIFT); 6018 else 6019 numentries <<= (PAGE_SHIFT - scale); 6020 6021 /* Make sure we've got at least a 0-order allocation.. */ 6022 if (unlikely(flags & HASH_SMALL)) { 6023 /* Makes no sense without HASH_EARLY */ 6024 WARN_ON(!(flags & HASH_EARLY)); 6025 if (!(numentries >> *_hash_shift)) { 6026 numentries = 1UL << *_hash_shift; 6027 BUG_ON(!numentries); 6028 } 6029 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 6030 numentries = PAGE_SIZE / bucketsize; 6031 } 6032 numentries = roundup_pow_of_two(numentries); 6033 6034 /* limit allocation size to 1/16 total memory by default */ 6035 if (max == 0) { 6036 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 6037 do_div(max, bucketsize); 6038 } 6039 max = min(max, 0x80000000ULL); 6040 6041 if (numentries < low_limit) 6042 numentries = low_limit; 6043 if (numentries > max) 6044 numentries = max; 6045 6046 log2qty = ilog2(numentries); 6047 6048 do { 6049 size = bucketsize << log2qty; 6050 if (flags & HASH_EARLY) 6051 table = memblock_virt_alloc_nopanic(size, 0); 6052 else if (hashdist) 6053 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6054 else { 6055 /* 6056 * If bucketsize is not a power-of-two, we may free 6057 * some pages at the end of hash table which 6058 * alloc_pages_exact() automatically does 6059 */ 6060 if (get_order(size) < MAX_ORDER) { 6061 table = alloc_pages_exact(size, GFP_ATOMIC); 6062 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6063 } 6064 } 6065 } while (!table && size > PAGE_SIZE && --log2qty); 6066 6067 if (!table) 6068 panic("Failed to allocate %s hash table\n", tablename); 6069 6070 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6071 tablename, 6072 (1UL << log2qty), 6073 ilog2(size) - PAGE_SHIFT, 6074 size); 6075 6076 if (_hash_shift) 6077 *_hash_shift = log2qty; 6078 if (_hash_mask) 6079 *_hash_mask = (1 << log2qty) - 1; 6080 6081 return table; 6082 } 6083 6084 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6085 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6086 unsigned long pfn) 6087 { 6088 #ifdef CONFIG_SPARSEMEM 6089 return __pfn_to_section(pfn)->pageblock_flags; 6090 #else 6091 return zone->pageblock_flags; 6092 #endif /* CONFIG_SPARSEMEM */ 6093 } 6094 6095 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6096 { 6097 #ifdef CONFIG_SPARSEMEM 6098 pfn &= (PAGES_PER_SECTION-1); 6099 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6100 #else 6101 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6102 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6103 #endif /* CONFIG_SPARSEMEM */ 6104 } 6105 6106 /** 6107 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6108 * @page: The page within the block of interest 6109 * @pfn: The target page frame number 6110 * @end_bitidx: The last bit of interest to retrieve 6111 * @mask: mask of bits that the caller is interested in 6112 * 6113 * Return: pageblock_bits flags 6114 */ 6115 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6116 unsigned long end_bitidx, 6117 unsigned long mask) 6118 { 6119 struct zone *zone; 6120 unsigned long *bitmap; 6121 unsigned long bitidx, word_bitidx; 6122 unsigned long word; 6123 6124 zone = page_zone(page); 6125 bitmap = get_pageblock_bitmap(zone, pfn); 6126 bitidx = pfn_to_bitidx(zone, pfn); 6127 word_bitidx = bitidx / BITS_PER_LONG; 6128 bitidx &= (BITS_PER_LONG-1); 6129 6130 word = bitmap[word_bitidx]; 6131 bitidx += end_bitidx; 6132 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6133 } 6134 6135 /** 6136 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6137 * @page: The page within the block of interest 6138 * @flags: The flags to set 6139 * @pfn: The target page frame number 6140 * @end_bitidx: The last bit of interest 6141 * @mask: mask of bits that the caller is interested in 6142 */ 6143 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6144 unsigned long pfn, 6145 unsigned long end_bitidx, 6146 unsigned long mask) 6147 { 6148 struct zone *zone; 6149 unsigned long *bitmap; 6150 unsigned long bitidx, word_bitidx; 6151 unsigned long old_word, word; 6152 6153 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6154 6155 zone = page_zone(page); 6156 bitmap = get_pageblock_bitmap(zone, pfn); 6157 bitidx = pfn_to_bitidx(zone, pfn); 6158 word_bitidx = bitidx / BITS_PER_LONG; 6159 bitidx &= (BITS_PER_LONG-1); 6160 6161 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6162 6163 bitidx += end_bitidx; 6164 mask <<= (BITS_PER_LONG - bitidx - 1); 6165 flags <<= (BITS_PER_LONG - bitidx - 1); 6166 6167 word = ACCESS_ONCE(bitmap[word_bitidx]); 6168 for (;;) { 6169 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6170 if (word == old_word) 6171 break; 6172 word = old_word; 6173 } 6174 } 6175 6176 /* 6177 * This function checks whether pageblock includes unmovable pages or not. 6178 * If @count is not zero, it is okay to include less @count unmovable pages 6179 * 6180 * PageLRU check without isolation or lru_lock could race so that 6181 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6182 * expect this function should be exact. 6183 */ 6184 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6185 bool skip_hwpoisoned_pages) 6186 { 6187 unsigned long pfn, iter, found; 6188 int mt; 6189 6190 /* 6191 * For avoiding noise data, lru_add_drain_all() should be called 6192 * If ZONE_MOVABLE, the zone never contains unmovable pages 6193 */ 6194 if (zone_idx(zone) == ZONE_MOVABLE) 6195 return false; 6196 mt = get_pageblock_migratetype(page); 6197 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6198 return false; 6199 6200 pfn = page_to_pfn(page); 6201 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6202 unsigned long check = pfn + iter; 6203 6204 if (!pfn_valid_within(check)) 6205 continue; 6206 6207 page = pfn_to_page(check); 6208 6209 /* 6210 * Hugepages are not in LRU lists, but they're movable. 6211 * We need not scan over tail pages bacause we don't 6212 * handle each tail page individually in migration. 6213 */ 6214 if (PageHuge(page)) { 6215 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6216 continue; 6217 } 6218 6219 /* 6220 * We can't use page_count without pin a page 6221 * because another CPU can free compound page. 6222 * This check already skips compound tails of THP 6223 * because their page->_count is zero at all time. 6224 */ 6225 if (!atomic_read(&page->_count)) { 6226 if (PageBuddy(page)) 6227 iter += (1 << page_order(page)) - 1; 6228 continue; 6229 } 6230 6231 /* 6232 * The HWPoisoned page may be not in buddy system, and 6233 * page_count() is not 0. 6234 */ 6235 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6236 continue; 6237 6238 if (!PageLRU(page)) 6239 found++; 6240 /* 6241 * If there are RECLAIMABLE pages, we need to check 6242 * it. But now, memory offline itself doesn't call 6243 * shrink_node_slabs() and it still to be fixed. 6244 */ 6245 /* 6246 * If the page is not RAM, page_count()should be 0. 6247 * we don't need more check. This is an _used_ not-movable page. 6248 * 6249 * The problematic thing here is PG_reserved pages. PG_reserved 6250 * is set to both of a memory hole page and a _used_ kernel 6251 * page at boot. 6252 */ 6253 if (found > count) 6254 return true; 6255 } 6256 return false; 6257 } 6258 6259 bool is_pageblock_removable_nolock(struct page *page) 6260 { 6261 struct zone *zone; 6262 unsigned long pfn; 6263 6264 /* 6265 * We have to be careful here because we are iterating over memory 6266 * sections which are not zone aware so we might end up outside of 6267 * the zone but still within the section. 6268 * We have to take care about the node as well. If the node is offline 6269 * its NODE_DATA will be NULL - see page_zone. 6270 */ 6271 if (!node_online(page_to_nid(page))) 6272 return false; 6273 6274 zone = page_zone(page); 6275 pfn = page_to_pfn(page); 6276 if (!zone_spans_pfn(zone, pfn)) 6277 return false; 6278 6279 return !has_unmovable_pages(zone, page, 0, true); 6280 } 6281 6282 #ifdef CONFIG_CMA 6283 6284 static unsigned long pfn_max_align_down(unsigned long pfn) 6285 { 6286 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6287 pageblock_nr_pages) - 1); 6288 } 6289 6290 static unsigned long pfn_max_align_up(unsigned long pfn) 6291 { 6292 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6293 pageblock_nr_pages)); 6294 } 6295 6296 /* [start, end) must belong to a single zone. */ 6297 static int __alloc_contig_migrate_range(struct compact_control *cc, 6298 unsigned long start, unsigned long end) 6299 { 6300 /* This function is based on compact_zone() from compaction.c. */ 6301 unsigned long nr_reclaimed; 6302 unsigned long pfn = start; 6303 unsigned int tries = 0; 6304 int ret = 0; 6305 6306 migrate_prep(); 6307 6308 while (pfn < end || !list_empty(&cc->migratepages)) { 6309 if (fatal_signal_pending(current)) { 6310 ret = -EINTR; 6311 break; 6312 } 6313 6314 if (list_empty(&cc->migratepages)) { 6315 cc->nr_migratepages = 0; 6316 pfn = isolate_migratepages_range(cc, pfn, end); 6317 if (!pfn) { 6318 ret = -EINTR; 6319 break; 6320 } 6321 tries = 0; 6322 } else if (++tries == 5) { 6323 ret = ret < 0 ? ret : -EBUSY; 6324 break; 6325 } 6326 6327 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6328 &cc->migratepages); 6329 cc->nr_migratepages -= nr_reclaimed; 6330 6331 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6332 NULL, 0, cc->mode, MR_CMA); 6333 } 6334 if (ret < 0) { 6335 putback_movable_pages(&cc->migratepages); 6336 return ret; 6337 } 6338 return 0; 6339 } 6340 6341 /** 6342 * alloc_contig_range() -- tries to allocate given range of pages 6343 * @start: start PFN to allocate 6344 * @end: one-past-the-last PFN to allocate 6345 * @migratetype: migratetype of the underlaying pageblocks (either 6346 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6347 * in range must have the same migratetype and it must 6348 * be either of the two. 6349 * 6350 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6351 * aligned, however it's the caller's responsibility to guarantee that 6352 * we are the only thread that changes migrate type of pageblocks the 6353 * pages fall in. 6354 * 6355 * The PFN range must belong to a single zone. 6356 * 6357 * Returns zero on success or negative error code. On success all 6358 * pages which PFN is in [start, end) are allocated for the caller and 6359 * need to be freed with free_contig_range(). 6360 */ 6361 int alloc_contig_range(unsigned long start, unsigned long end, 6362 unsigned migratetype) 6363 { 6364 unsigned long outer_start, outer_end; 6365 int ret = 0, order; 6366 6367 struct compact_control cc = { 6368 .nr_migratepages = 0, 6369 .order = -1, 6370 .zone = page_zone(pfn_to_page(start)), 6371 .mode = MIGRATE_SYNC, 6372 .ignore_skip_hint = true, 6373 }; 6374 INIT_LIST_HEAD(&cc.migratepages); 6375 6376 /* 6377 * What we do here is we mark all pageblocks in range as 6378 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6379 * have different sizes, and due to the way page allocator 6380 * work, we align the range to biggest of the two pages so 6381 * that page allocator won't try to merge buddies from 6382 * different pageblocks and change MIGRATE_ISOLATE to some 6383 * other migration type. 6384 * 6385 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6386 * migrate the pages from an unaligned range (ie. pages that 6387 * we are interested in). This will put all the pages in 6388 * range back to page allocator as MIGRATE_ISOLATE. 6389 * 6390 * When this is done, we take the pages in range from page 6391 * allocator removing them from the buddy system. This way 6392 * page allocator will never consider using them. 6393 * 6394 * This lets us mark the pageblocks back as 6395 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6396 * aligned range but not in the unaligned, original range are 6397 * put back to page allocator so that buddy can use them. 6398 */ 6399 6400 ret = start_isolate_page_range(pfn_max_align_down(start), 6401 pfn_max_align_up(end), migratetype, 6402 false); 6403 if (ret) 6404 return ret; 6405 6406 ret = __alloc_contig_migrate_range(&cc, start, end); 6407 if (ret) 6408 goto done; 6409 6410 /* 6411 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6412 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6413 * more, all pages in [start, end) are free in page allocator. 6414 * What we are going to do is to allocate all pages from 6415 * [start, end) (that is remove them from page allocator). 6416 * 6417 * The only problem is that pages at the beginning and at the 6418 * end of interesting range may be not aligned with pages that 6419 * page allocator holds, ie. they can be part of higher order 6420 * pages. Because of this, we reserve the bigger range and 6421 * once this is done free the pages we are not interested in. 6422 * 6423 * We don't have to hold zone->lock here because the pages are 6424 * isolated thus they won't get removed from buddy. 6425 */ 6426 6427 lru_add_drain_all(); 6428 drain_all_pages(cc.zone); 6429 6430 order = 0; 6431 outer_start = start; 6432 while (!PageBuddy(pfn_to_page(outer_start))) { 6433 if (++order >= MAX_ORDER) { 6434 ret = -EBUSY; 6435 goto done; 6436 } 6437 outer_start &= ~0UL << order; 6438 } 6439 6440 /* Make sure the range is really isolated. */ 6441 if (test_pages_isolated(outer_start, end, false)) { 6442 pr_info("%s: [%lx, %lx) PFNs busy\n", 6443 __func__, outer_start, end); 6444 ret = -EBUSY; 6445 goto done; 6446 } 6447 6448 /* Grab isolated pages from freelists. */ 6449 outer_end = isolate_freepages_range(&cc, outer_start, end); 6450 if (!outer_end) { 6451 ret = -EBUSY; 6452 goto done; 6453 } 6454 6455 /* Free head and tail (if any) */ 6456 if (start != outer_start) 6457 free_contig_range(outer_start, start - outer_start); 6458 if (end != outer_end) 6459 free_contig_range(end, outer_end - end); 6460 6461 done: 6462 undo_isolate_page_range(pfn_max_align_down(start), 6463 pfn_max_align_up(end), migratetype); 6464 return ret; 6465 } 6466 6467 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6468 { 6469 unsigned int count = 0; 6470 6471 for (; nr_pages--; pfn++) { 6472 struct page *page = pfn_to_page(pfn); 6473 6474 count += page_count(page) != 1; 6475 __free_page(page); 6476 } 6477 WARN(count != 0, "%d pages are still in use!\n", count); 6478 } 6479 #endif 6480 6481 #ifdef CONFIG_MEMORY_HOTPLUG 6482 /* 6483 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6484 * page high values need to be recalulated. 6485 */ 6486 void __meminit zone_pcp_update(struct zone *zone) 6487 { 6488 unsigned cpu; 6489 mutex_lock(&pcp_batch_high_lock); 6490 for_each_possible_cpu(cpu) 6491 pageset_set_high_and_batch(zone, 6492 per_cpu_ptr(zone->pageset, cpu)); 6493 mutex_unlock(&pcp_batch_high_lock); 6494 } 6495 #endif 6496 6497 void zone_pcp_reset(struct zone *zone) 6498 { 6499 unsigned long flags; 6500 int cpu; 6501 struct per_cpu_pageset *pset; 6502 6503 /* avoid races with drain_pages() */ 6504 local_irq_save(flags); 6505 if (zone->pageset != &boot_pageset) { 6506 for_each_online_cpu(cpu) { 6507 pset = per_cpu_ptr(zone->pageset, cpu); 6508 drain_zonestat(zone, pset); 6509 } 6510 free_percpu(zone->pageset); 6511 zone->pageset = &boot_pageset; 6512 } 6513 local_irq_restore(flags); 6514 } 6515 6516 #ifdef CONFIG_MEMORY_HOTREMOVE 6517 /* 6518 * All pages in the range must be isolated before calling this. 6519 */ 6520 void 6521 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6522 { 6523 struct page *page; 6524 struct zone *zone; 6525 unsigned int order, i; 6526 unsigned long pfn; 6527 unsigned long flags; 6528 /* find the first valid pfn */ 6529 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6530 if (pfn_valid(pfn)) 6531 break; 6532 if (pfn == end_pfn) 6533 return; 6534 zone = page_zone(pfn_to_page(pfn)); 6535 spin_lock_irqsave(&zone->lock, flags); 6536 pfn = start_pfn; 6537 while (pfn < end_pfn) { 6538 if (!pfn_valid(pfn)) { 6539 pfn++; 6540 continue; 6541 } 6542 page = pfn_to_page(pfn); 6543 /* 6544 * The HWPoisoned page may be not in buddy system, and 6545 * page_count() is not 0. 6546 */ 6547 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6548 pfn++; 6549 SetPageReserved(page); 6550 continue; 6551 } 6552 6553 BUG_ON(page_count(page)); 6554 BUG_ON(!PageBuddy(page)); 6555 order = page_order(page); 6556 #ifdef CONFIG_DEBUG_VM 6557 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6558 pfn, 1 << order, end_pfn); 6559 #endif 6560 list_del(&page->lru); 6561 rmv_page_order(page); 6562 zone->free_area[order].nr_free--; 6563 for (i = 0; i < (1 << order); i++) 6564 SetPageReserved((page+i)); 6565 pfn += (1 << order); 6566 } 6567 spin_unlock_irqrestore(&zone->lock, flags); 6568 } 6569 #endif 6570 6571 #ifdef CONFIG_MEMORY_FAILURE 6572 bool is_free_buddy_page(struct page *page) 6573 { 6574 struct zone *zone = page_zone(page); 6575 unsigned long pfn = page_to_pfn(page); 6576 unsigned long flags; 6577 unsigned int order; 6578 6579 spin_lock_irqsave(&zone->lock, flags); 6580 for (order = 0; order < MAX_ORDER; order++) { 6581 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6582 6583 if (PageBuddy(page_head) && page_order(page_head) >= order) 6584 break; 6585 } 6586 spin_unlock_irqrestore(&zone->lock, flags); 6587 6588 return order < MAX_ORDER; 6589 } 6590 #endif 6591