xref: /linux/mm/page_alloc.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77 
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
81 
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
86 
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88 
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 /*
91  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94  * defined in <linux/topology.h>.
95  */
96 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
99 #endif
100 
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 	struct zone *zone;
104 	struct work_struct work;
105 };
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108 
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113 
114 /*
115  * Array of node states.
116  */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 	[N_POSSIBLE] = NODE_MASK_ALL,
119 	[N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 	[N_MEMORY] = { { [0] = 1UL } },
126 	[N_CPU] = { { [0] = 1UL } },
127 #endif	/* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130 
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135 
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
144 
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
151 
152 static int __init early_init_on_alloc(char *buf)
153 {
154 	int ret;
155 	bool bool_result;
156 
157 	if (!buf)
158 		return -EINVAL;
159 	ret = kstrtobool(buf, &bool_result);
160 	if (bool_result && page_poisoning_enabled())
161 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 	if (bool_result)
163 		static_branch_enable(&init_on_alloc);
164 	else
165 		static_branch_disable(&init_on_alloc);
166 	return ret;
167 }
168 early_param("init_on_alloc", early_init_on_alloc);
169 
170 static int __init early_init_on_free(char *buf)
171 {
172 	int ret;
173 	bool bool_result;
174 
175 	if (!buf)
176 		return -EINVAL;
177 	ret = kstrtobool(buf, &bool_result);
178 	if (bool_result && page_poisoning_enabled())
179 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 	if (bool_result)
181 		static_branch_enable(&init_on_free);
182 	else
183 		static_branch_disable(&init_on_free);
184 	return ret;
185 }
186 early_param("init_on_free", early_init_on_free);
187 
188 /*
189  * A cached value of the page's pageblock's migratetype, used when the page is
190  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192  * Also the migratetype set in the page does not necessarily match the pcplist
193  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194  * other index - this ensures that it will be put on the correct CMA freelist.
195  */
196 static inline int get_pcppage_migratetype(struct page *page)
197 {
198 	return page->index;
199 }
200 
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202 {
203 	page->index = migratetype;
204 }
205 
206 #ifdef CONFIG_PM_SLEEP
207 /*
208  * The following functions are used by the suspend/hibernate code to temporarily
209  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210  * while devices are suspended.  To avoid races with the suspend/hibernate code,
211  * they should always be called with system_transition_mutex held
212  * (gfp_allowed_mask also should only be modified with system_transition_mutex
213  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214  * with that modification).
215  */
216 
217 static gfp_t saved_gfp_mask;
218 
219 void pm_restore_gfp_mask(void)
220 {
221 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 	if (saved_gfp_mask) {
223 		gfp_allowed_mask = saved_gfp_mask;
224 		saved_gfp_mask = 0;
225 	}
226 }
227 
228 void pm_restrict_gfp_mask(void)
229 {
230 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 	WARN_ON(saved_gfp_mask);
232 	saved_gfp_mask = gfp_allowed_mask;
233 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234 }
235 
236 bool pm_suspended_storage(void)
237 {
238 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 		return false;
240 	return true;
241 }
242 #endif /* CONFIG_PM_SLEEP */
243 
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
247 
248 static void __free_pages_ok(struct page *page, unsigned int order);
249 
250 /*
251  * results with 256, 32 in the lowmem_reserve sysctl:
252  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253  *	1G machine -> (16M dma, 784M normal, 224M high)
254  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257  *
258  * TBD: should special case ZONE_DMA32 machines here - in those we normally
259  * don't need any ZONE_NORMAL reservation
260  */
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 	[ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 	[ZONE_DMA32] = 256,
267 #endif
268 	[ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 	[ZONE_HIGHMEM] = 0,
271 #endif
272 	[ZONE_MOVABLE] = 0,
273 };
274 
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 	 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 	 "DMA32",
281 #endif
282 	 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 	 "HighMem",
285 #endif
286 	 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 	 "Device",
289 #endif
290 };
291 
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 	"Unmovable",
294 	"Movable",
295 	"Reclaimable",
296 	"HighAtomic",
297 #ifdef CONFIG_CMA
298 	"CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 	"Isolate",
302 #endif
303 };
304 
305 compound_page_dtor * const compound_page_dtors[] = {
306 	NULL,
307 	free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 	free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 	free_transhuge_page,
313 #endif
314 };
315 
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
319 /*
320  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321  * are not on separate NUMA nodes. Functionally this works but with
322  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323  * quite small. By default, do not boost watermarks on discontigmem as in
324  * many cases very high-order allocations like THP are likely to be
325  * unsupported and the premature reclaim offsets the advantage of long-term
326  * fragmentation avoidance.
327  */
328 int watermark_boost_factor __read_mostly;
329 #else
330 int watermark_boost_factor __read_mostly = 15000;
331 #endif
332 int watermark_scale_factor = 10;
333 
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
337 
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347 
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352 
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
359 
360 int page_group_by_mobility_disabled __read_mostly;
361 
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 /*
364  * During boot we initialize deferred pages on-demand, as needed, but once
365  * page_alloc_init_late() has finished, the deferred pages are all initialized,
366  * and we can permanently disable that path.
367  */
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369 
370 /*
371  * Calling kasan_free_pages() only after deferred memory initialization
372  * has completed. Poisoning pages during deferred memory init will greatly
373  * lengthen the process and cause problem in large memory systems as the
374  * deferred pages initialization is done with interrupt disabled.
375  *
376  * Assuming that there will be no reference to those newly initialized
377  * pages before they are ever allocated, this should have no effect on
378  * KASAN memory tracking as the poison will be properly inserted at page
379  * allocation time. The only corner case is when pages are allocated by
380  * on-demand allocation and then freed again before the deferred pages
381  * initialization is done, but this is not likely to happen.
382  */
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 {
385 	if (!static_branch_unlikely(&deferred_pages))
386 		kasan_free_pages(page, order);
387 }
388 
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 {
392 	int nid = early_pfn_to_nid(pfn);
393 
394 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 		return true;
396 
397 	return false;
398 }
399 
400 /*
401  * Returns true when the remaining initialisation should be deferred until
402  * later in the boot cycle when it can be parallelised.
403  */
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 {
407 	static unsigned long prev_end_pfn, nr_initialised;
408 
409 	/*
410 	 * prev_end_pfn static that contains the end of previous zone
411 	 * No need to protect because called very early in boot before smp_init.
412 	 */
413 	if (prev_end_pfn != end_pfn) {
414 		prev_end_pfn = end_pfn;
415 		nr_initialised = 0;
416 	}
417 
418 	/* Always populate low zones for address-constrained allocations */
419 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 		return false;
421 
422 	/*
423 	 * We start only with one section of pages, more pages are added as
424 	 * needed until the rest of deferred pages are initialized.
425 	 */
426 	nr_initialised++;
427 	if ((nr_initialised > PAGES_PER_SECTION) &&
428 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 		NODE_DATA(nid)->first_deferred_pfn = pfn;
430 		return true;
431 	}
432 	return false;
433 }
434 #else
435 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
436 
437 static inline bool early_page_uninitialised(unsigned long pfn)
438 {
439 	return false;
440 }
441 
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443 {
444 	return false;
445 }
446 #endif
447 
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 							unsigned long pfn)
451 {
452 #ifdef CONFIG_SPARSEMEM
453 	return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 	return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
457 }
458 
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 {
461 #ifdef CONFIG_SPARSEMEM
462 	pfn &= (PAGES_PER_SECTION-1);
463 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 #else
465 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
468 }
469 
470 /**
471  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472  * @page: The page within the block of interest
473  * @pfn: The target page frame number
474  * @end_bitidx: The last bit of interest to retrieve
475  * @mask: mask of bits that the caller is interested in
476  *
477  * Return: pageblock_bits flags
478  */
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 					unsigned long pfn,
481 					unsigned long end_bitidx,
482 					unsigned long mask)
483 {
484 	unsigned long *bitmap;
485 	unsigned long bitidx, word_bitidx;
486 	unsigned long word;
487 
488 	bitmap = get_pageblock_bitmap(page, pfn);
489 	bitidx = pfn_to_bitidx(page, pfn);
490 	word_bitidx = bitidx / BITS_PER_LONG;
491 	bitidx &= (BITS_PER_LONG-1);
492 
493 	word = bitmap[word_bitidx];
494 	bitidx += end_bitidx;
495 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496 }
497 
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 					unsigned long end_bitidx,
500 					unsigned long mask)
501 {
502 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503 }
504 
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 {
507 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508 }
509 
510 /**
511  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512  * @page: The page within the block of interest
513  * @flags: The flags to set
514  * @pfn: The target page frame number
515  * @end_bitidx: The last bit of interest
516  * @mask: mask of bits that the caller is interested in
517  */
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 					unsigned long pfn,
520 					unsigned long end_bitidx,
521 					unsigned long mask)
522 {
523 	unsigned long *bitmap;
524 	unsigned long bitidx, word_bitidx;
525 	unsigned long old_word, word;
526 
527 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 
530 	bitmap = get_pageblock_bitmap(page, pfn);
531 	bitidx = pfn_to_bitidx(page, pfn);
532 	word_bitidx = bitidx / BITS_PER_LONG;
533 	bitidx &= (BITS_PER_LONG-1);
534 
535 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536 
537 	bitidx += end_bitidx;
538 	mask <<= (BITS_PER_LONG - bitidx - 1);
539 	flags <<= (BITS_PER_LONG - bitidx - 1);
540 
541 	word = READ_ONCE(bitmap[word_bitidx]);
542 	for (;;) {
543 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 		if (word == old_word)
545 			break;
546 		word = old_word;
547 	}
548 }
549 
550 void set_pageblock_migratetype(struct page *page, int migratetype)
551 {
552 	if (unlikely(page_group_by_mobility_disabled &&
553 		     migratetype < MIGRATE_PCPTYPES))
554 		migratetype = MIGRATE_UNMOVABLE;
555 
556 	set_pageblock_flags_group(page, (unsigned long)migratetype,
557 					PB_migrate, PB_migrate_end);
558 }
559 
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
562 {
563 	int ret = 0;
564 	unsigned seq;
565 	unsigned long pfn = page_to_pfn(page);
566 	unsigned long sp, start_pfn;
567 
568 	do {
569 		seq = zone_span_seqbegin(zone);
570 		start_pfn = zone->zone_start_pfn;
571 		sp = zone->spanned_pages;
572 		if (!zone_spans_pfn(zone, pfn))
573 			ret = 1;
574 	} while (zone_span_seqretry(zone, seq));
575 
576 	if (ret)
577 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 			pfn, zone_to_nid(zone), zone->name,
579 			start_pfn, start_pfn + sp);
580 
581 	return ret;
582 }
583 
584 static int page_is_consistent(struct zone *zone, struct page *page)
585 {
586 	if (!pfn_valid_within(page_to_pfn(page)))
587 		return 0;
588 	if (zone != page_zone(page))
589 		return 0;
590 
591 	return 1;
592 }
593 /*
594  * Temporary debugging check for pages not lying within a given zone.
595  */
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 {
598 	if (page_outside_zone_boundaries(zone, page))
599 		return 1;
600 	if (!page_is_consistent(zone, page))
601 		return 1;
602 
603 	return 0;
604 }
605 #else
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
607 {
608 	return 0;
609 }
610 #endif
611 
612 static void bad_page(struct page *page, const char *reason,
613 		unsigned long bad_flags)
614 {
615 	static unsigned long resume;
616 	static unsigned long nr_shown;
617 	static unsigned long nr_unshown;
618 
619 	/*
620 	 * Allow a burst of 60 reports, then keep quiet for that minute;
621 	 * or allow a steady drip of one report per second.
622 	 */
623 	if (nr_shown == 60) {
624 		if (time_before(jiffies, resume)) {
625 			nr_unshown++;
626 			goto out;
627 		}
628 		if (nr_unshown) {
629 			pr_alert(
630 			      "BUG: Bad page state: %lu messages suppressed\n",
631 				nr_unshown);
632 			nr_unshown = 0;
633 		}
634 		nr_shown = 0;
635 	}
636 	if (nr_shown++ == 0)
637 		resume = jiffies + 60 * HZ;
638 
639 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
640 		current->comm, page_to_pfn(page));
641 	__dump_page(page, reason);
642 	bad_flags &= page->flags;
643 	if (bad_flags)
644 		pr_alert("bad because of flags: %#lx(%pGp)\n",
645 						bad_flags, &bad_flags);
646 	dump_page_owner(page);
647 
648 	print_modules();
649 	dump_stack();
650 out:
651 	/* Leave bad fields for debug, except PageBuddy could make trouble */
652 	page_mapcount_reset(page); /* remove PageBuddy */
653 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655 
656 /*
657  * Higher-order pages are called "compound pages".  They are structured thusly:
658  *
659  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
660  *
661  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
663  *
664  * The first tail page's ->compound_dtor holds the offset in array of compound
665  * page destructors. See compound_page_dtors.
666  *
667  * The first tail page's ->compound_order holds the order of allocation.
668  * This usage means that zero-order pages may not be compound.
669  */
670 
671 void free_compound_page(struct page *page)
672 {
673 	mem_cgroup_uncharge(page);
674 	__free_pages_ok(page, compound_order(page));
675 }
676 
677 void prep_compound_page(struct page *page, unsigned int order)
678 {
679 	int i;
680 	int nr_pages = 1 << order;
681 
682 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 	set_compound_order(page, order);
684 	__SetPageHead(page);
685 	for (i = 1; i < nr_pages; i++) {
686 		struct page *p = page + i;
687 		set_page_count(p, 0);
688 		p->mapping = TAIL_MAPPING;
689 		set_compound_head(p, page);
690 	}
691 	atomic_set(compound_mapcount_ptr(page), -1);
692 }
693 
694 #ifdef CONFIG_DEBUG_PAGEALLOC
695 unsigned int _debug_guardpage_minorder;
696 
697 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
698 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
699 #else
700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701 #endif
702 EXPORT_SYMBOL(_debug_pagealloc_enabled);
703 
704 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
705 
706 static int __init early_debug_pagealloc(char *buf)
707 {
708 	bool enable = false;
709 
710 	if (kstrtobool(buf, &enable))
711 		return -EINVAL;
712 
713 	if (enable)
714 		static_branch_enable(&_debug_pagealloc_enabled);
715 
716 	return 0;
717 }
718 early_param("debug_pagealloc", early_debug_pagealloc);
719 
720 static void init_debug_guardpage(void)
721 {
722 	if (!debug_pagealloc_enabled())
723 		return;
724 
725 	if (!debug_guardpage_minorder())
726 		return;
727 
728 	static_branch_enable(&_debug_guardpage_enabled);
729 }
730 
731 static int __init debug_guardpage_minorder_setup(char *buf)
732 {
733 	unsigned long res;
734 
735 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
736 		pr_err("Bad debug_guardpage_minorder value\n");
737 		return 0;
738 	}
739 	_debug_guardpage_minorder = res;
740 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
741 	return 0;
742 }
743 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
744 
745 static inline bool set_page_guard(struct zone *zone, struct page *page,
746 				unsigned int order, int migratetype)
747 {
748 	if (!debug_guardpage_enabled())
749 		return false;
750 
751 	if (order >= debug_guardpage_minorder())
752 		return false;
753 
754 	__SetPageGuard(page);
755 	INIT_LIST_HEAD(&page->lru);
756 	set_page_private(page, order);
757 	/* Guard pages are not available for any usage */
758 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
759 
760 	return true;
761 }
762 
763 static inline void clear_page_guard(struct zone *zone, struct page *page,
764 				unsigned int order, int migratetype)
765 {
766 	if (!debug_guardpage_enabled())
767 		return;
768 
769 	__ClearPageGuard(page);
770 
771 	set_page_private(page, 0);
772 	if (!is_migrate_isolate(migratetype))
773 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
774 }
775 #else
776 static inline bool set_page_guard(struct zone *zone, struct page *page,
777 			unsigned int order, int migratetype) { return false; }
778 static inline void clear_page_guard(struct zone *zone, struct page *page,
779 				unsigned int order, int migratetype) {}
780 #endif
781 
782 static inline void set_page_order(struct page *page, unsigned int order)
783 {
784 	set_page_private(page, order);
785 	__SetPageBuddy(page);
786 }
787 
788 /*
789  * This function checks whether a page is free && is the buddy
790  * we can coalesce a page and its buddy if
791  * (a) the buddy is not in a hole (check before calling!) &&
792  * (b) the buddy is in the buddy system &&
793  * (c) a page and its buddy have the same order &&
794  * (d) a page and its buddy are in the same zone.
795  *
796  * For recording whether a page is in the buddy system, we set PageBuddy.
797  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
798  *
799  * For recording page's order, we use page_private(page).
800  */
801 static inline int page_is_buddy(struct page *page, struct page *buddy,
802 							unsigned int order)
803 {
804 	if (page_is_guard(buddy) && page_order(buddy) == order) {
805 		if (page_zone_id(page) != page_zone_id(buddy))
806 			return 0;
807 
808 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
809 
810 		return 1;
811 	}
812 
813 	if (PageBuddy(buddy) && page_order(buddy) == order) {
814 		/*
815 		 * zone check is done late to avoid uselessly
816 		 * calculating zone/node ids for pages that could
817 		 * never merge.
818 		 */
819 		if (page_zone_id(page) != page_zone_id(buddy))
820 			return 0;
821 
822 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
823 
824 		return 1;
825 	}
826 	return 0;
827 }
828 
829 #ifdef CONFIG_COMPACTION
830 static inline struct capture_control *task_capc(struct zone *zone)
831 {
832 	struct capture_control *capc = current->capture_control;
833 
834 	return capc &&
835 		!(current->flags & PF_KTHREAD) &&
836 		!capc->page &&
837 		capc->cc->zone == zone &&
838 		capc->cc->direct_compaction ? capc : NULL;
839 }
840 
841 static inline bool
842 compaction_capture(struct capture_control *capc, struct page *page,
843 		   int order, int migratetype)
844 {
845 	if (!capc || order != capc->cc->order)
846 		return false;
847 
848 	/* Do not accidentally pollute CMA or isolated regions*/
849 	if (is_migrate_cma(migratetype) ||
850 	    is_migrate_isolate(migratetype))
851 		return false;
852 
853 	/*
854 	 * Do not let lower order allocations polluate a movable pageblock.
855 	 * This might let an unmovable request use a reclaimable pageblock
856 	 * and vice-versa but no more than normal fallback logic which can
857 	 * have trouble finding a high-order free page.
858 	 */
859 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
860 		return false;
861 
862 	capc->page = page;
863 	return true;
864 }
865 
866 #else
867 static inline struct capture_control *task_capc(struct zone *zone)
868 {
869 	return NULL;
870 }
871 
872 static inline bool
873 compaction_capture(struct capture_control *capc, struct page *page,
874 		   int order, int migratetype)
875 {
876 	return false;
877 }
878 #endif /* CONFIG_COMPACTION */
879 
880 /*
881  * Freeing function for a buddy system allocator.
882  *
883  * The concept of a buddy system is to maintain direct-mapped table
884  * (containing bit values) for memory blocks of various "orders".
885  * The bottom level table contains the map for the smallest allocatable
886  * units of memory (here, pages), and each level above it describes
887  * pairs of units from the levels below, hence, "buddies".
888  * At a high level, all that happens here is marking the table entry
889  * at the bottom level available, and propagating the changes upward
890  * as necessary, plus some accounting needed to play nicely with other
891  * parts of the VM system.
892  * At each level, we keep a list of pages, which are heads of continuous
893  * free pages of length of (1 << order) and marked with PageBuddy.
894  * Page's order is recorded in page_private(page) field.
895  * So when we are allocating or freeing one, we can derive the state of the
896  * other.  That is, if we allocate a small block, and both were
897  * free, the remainder of the region must be split into blocks.
898  * If a block is freed, and its buddy is also free, then this
899  * triggers coalescing into a block of larger size.
900  *
901  * -- nyc
902  */
903 
904 static inline void __free_one_page(struct page *page,
905 		unsigned long pfn,
906 		struct zone *zone, unsigned int order,
907 		int migratetype)
908 {
909 	unsigned long combined_pfn;
910 	unsigned long uninitialized_var(buddy_pfn);
911 	struct page *buddy;
912 	unsigned int max_order;
913 	struct capture_control *capc = task_capc(zone);
914 
915 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
916 
917 	VM_BUG_ON(!zone_is_initialized(zone));
918 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
919 
920 	VM_BUG_ON(migratetype == -1);
921 	if (likely(!is_migrate_isolate(migratetype)))
922 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
923 
924 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
925 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
926 
927 continue_merging:
928 	while (order < max_order - 1) {
929 		if (compaction_capture(capc, page, order, migratetype)) {
930 			__mod_zone_freepage_state(zone, -(1 << order),
931 								migratetype);
932 			return;
933 		}
934 		buddy_pfn = __find_buddy_pfn(pfn, order);
935 		buddy = page + (buddy_pfn - pfn);
936 
937 		if (!pfn_valid_within(buddy_pfn))
938 			goto done_merging;
939 		if (!page_is_buddy(page, buddy, order))
940 			goto done_merging;
941 		/*
942 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
943 		 * merge with it and move up one order.
944 		 */
945 		if (page_is_guard(buddy))
946 			clear_page_guard(zone, buddy, order, migratetype);
947 		else
948 			del_page_from_free_area(buddy, &zone->free_area[order]);
949 		combined_pfn = buddy_pfn & pfn;
950 		page = page + (combined_pfn - pfn);
951 		pfn = combined_pfn;
952 		order++;
953 	}
954 	if (max_order < MAX_ORDER) {
955 		/* If we are here, it means order is >= pageblock_order.
956 		 * We want to prevent merge between freepages on isolate
957 		 * pageblock and normal pageblock. Without this, pageblock
958 		 * isolation could cause incorrect freepage or CMA accounting.
959 		 *
960 		 * We don't want to hit this code for the more frequent
961 		 * low-order merging.
962 		 */
963 		if (unlikely(has_isolate_pageblock(zone))) {
964 			int buddy_mt;
965 
966 			buddy_pfn = __find_buddy_pfn(pfn, order);
967 			buddy = page + (buddy_pfn - pfn);
968 			buddy_mt = get_pageblock_migratetype(buddy);
969 
970 			if (migratetype != buddy_mt
971 					&& (is_migrate_isolate(migratetype) ||
972 						is_migrate_isolate(buddy_mt)))
973 				goto done_merging;
974 		}
975 		max_order++;
976 		goto continue_merging;
977 	}
978 
979 done_merging:
980 	set_page_order(page, order);
981 
982 	/*
983 	 * If this is not the largest possible page, check if the buddy
984 	 * of the next-highest order is free. If it is, it's possible
985 	 * that pages are being freed that will coalesce soon. In case,
986 	 * that is happening, add the free page to the tail of the list
987 	 * so it's less likely to be used soon and more likely to be merged
988 	 * as a higher order page
989 	 */
990 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
991 			&& !is_shuffle_order(order)) {
992 		struct page *higher_page, *higher_buddy;
993 		combined_pfn = buddy_pfn & pfn;
994 		higher_page = page + (combined_pfn - pfn);
995 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
996 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
997 		if (pfn_valid_within(buddy_pfn) &&
998 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
999 			add_to_free_area_tail(page, &zone->free_area[order],
1000 					      migratetype);
1001 			return;
1002 		}
1003 	}
1004 
1005 	if (is_shuffle_order(order))
1006 		add_to_free_area_random(page, &zone->free_area[order],
1007 				migratetype);
1008 	else
1009 		add_to_free_area(page, &zone->free_area[order], migratetype);
1010 
1011 }
1012 
1013 /*
1014  * A bad page could be due to a number of fields. Instead of multiple branches,
1015  * try and check multiple fields with one check. The caller must do a detailed
1016  * check if necessary.
1017  */
1018 static inline bool page_expected_state(struct page *page,
1019 					unsigned long check_flags)
1020 {
1021 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1022 		return false;
1023 
1024 	if (unlikely((unsigned long)page->mapping |
1025 			page_ref_count(page) |
1026 #ifdef CONFIG_MEMCG
1027 			(unsigned long)page->mem_cgroup |
1028 #endif
1029 			(page->flags & check_flags)))
1030 		return false;
1031 
1032 	return true;
1033 }
1034 
1035 static void free_pages_check_bad(struct page *page)
1036 {
1037 	const char *bad_reason;
1038 	unsigned long bad_flags;
1039 
1040 	bad_reason = NULL;
1041 	bad_flags = 0;
1042 
1043 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1044 		bad_reason = "nonzero mapcount";
1045 	if (unlikely(page->mapping != NULL))
1046 		bad_reason = "non-NULL mapping";
1047 	if (unlikely(page_ref_count(page) != 0))
1048 		bad_reason = "nonzero _refcount";
1049 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1050 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1051 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1052 	}
1053 #ifdef CONFIG_MEMCG
1054 	if (unlikely(page->mem_cgroup))
1055 		bad_reason = "page still charged to cgroup";
1056 #endif
1057 	bad_page(page, bad_reason, bad_flags);
1058 }
1059 
1060 static inline int free_pages_check(struct page *page)
1061 {
1062 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1063 		return 0;
1064 
1065 	/* Something has gone sideways, find it */
1066 	free_pages_check_bad(page);
1067 	return 1;
1068 }
1069 
1070 static int free_tail_pages_check(struct page *head_page, struct page *page)
1071 {
1072 	int ret = 1;
1073 
1074 	/*
1075 	 * We rely page->lru.next never has bit 0 set, unless the page
1076 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1077 	 */
1078 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1079 
1080 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1081 		ret = 0;
1082 		goto out;
1083 	}
1084 	switch (page - head_page) {
1085 	case 1:
1086 		/* the first tail page: ->mapping may be compound_mapcount() */
1087 		if (unlikely(compound_mapcount(page))) {
1088 			bad_page(page, "nonzero compound_mapcount", 0);
1089 			goto out;
1090 		}
1091 		break;
1092 	case 2:
1093 		/*
1094 		 * the second tail page: ->mapping is
1095 		 * deferred_list.next -- ignore value.
1096 		 */
1097 		break;
1098 	default:
1099 		if (page->mapping != TAIL_MAPPING) {
1100 			bad_page(page, "corrupted mapping in tail page", 0);
1101 			goto out;
1102 		}
1103 		break;
1104 	}
1105 	if (unlikely(!PageTail(page))) {
1106 		bad_page(page, "PageTail not set", 0);
1107 		goto out;
1108 	}
1109 	if (unlikely(compound_head(page) != head_page)) {
1110 		bad_page(page, "compound_head not consistent", 0);
1111 		goto out;
1112 	}
1113 	ret = 0;
1114 out:
1115 	page->mapping = NULL;
1116 	clear_compound_head(page);
1117 	return ret;
1118 }
1119 
1120 static void kernel_init_free_pages(struct page *page, int numpages)
1121 {
1122 	int i;
1123 
1124 	for (i = 0; i < numpages; i++)
1125 		clear_highpage(page + i);
1126 }
1127 
1128 static __always_inline bool free_pages_prepare(struct page *page,
1129 					unsigned int order, bool check_free)
1130 {
1131 	int bad = 0;
1132 
1133 	VM_BUG_ON_PAGE(PageTail(page), page);
1134 
1135 	trace_mm_page_free(page, order);
1136 
1137 	/*
1138 	 * Check tail pages before head page information is cleared to
1139 	 * avoid checking PageCompound for order-0 pages.
1140 	 */
1141 	if (unlikely(order)) {
1142 		bool compound = PageCompound(page);
1143 		int i;
1144 
1145 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1146 
1147 		if (compound)
1148 			ClearPageDoubleMap(page);
1149 		for (i = 1; i < (1 << order); i++) {
1150 			if (compound)
1151 				bad += free_tail_pages_check(page, page + i);
1152 			if (unlikely(free_pages_check(page + i))) {
1153 				bad++;
1154 				continue;
1155 			}
1156 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1157 		}
1158 	}
1159 	if (PageMappingFlags(page))
1160 		page->mapping = NULL;
1161 	if (memcg_kmem_enabled() && PageKmemcg(page))
1162 		__memcg_kmem_uncharge(page, order);
1163 	if (check_free)
1164 		bad += free_pages_check(page);
1165 	if (bad)
1166 		return false;
1167 
1168 	page_cpupid_reset_last(page);
1169 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1170 	reset_page_owner(page, order);
1171 
1172 	if (!PageHighMem(page)) {
1173 		debug_check_no_locks_freed(page_address(page),
1174 					   PAGE_SIZE << order);
1175 		debug_check_no_obj_freed(page_address(page),
1176 					   PAGE_SIZE << order);
1177 	}
1178 	if (want_init_on_free())
1179 		kernel_init_free_pages(page, 1 << order);
1180 
1181 	kernel_poison_pages(page, 1 << order, 0);
1182 	/*
1183 	 * arch_free_page() can make the page's contents inaccessible.  s390
1184 	 * does this.  So nothing which can access the page's contents should
1185 	 * happen after this.
1186 	 */
1187 	arch_free_page(page, order);
1188 
1189 	if (debug_pagealloc_enabled())
1190 		kernel_map_pages(page, 1 << order, 0);
1191 
1192 	kasan_free_nondeferred_pages(page, order);
1193 
1194 	return true;
1195 }
1196 
1197 #ifdef CONFIG_DEBUG_VM
1198 /*
1199  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1200  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1201  * moved from pcp lists to free lists.
1202  */
1203 static bool free_pcp_prepare(struct page *page)
1204 {
1205 	return free_pages_prepare(page, 0, true);
1206 }
1207 
1208 static bool bulkfree_pcp_prepare(struct page *page)
1209 {
1210 	if (debug_pagealloc_enabled())
1211 		return free_pages_check(page);
1212 	else
1213 		return false;
1214 }
1215 #else
1216 /*
1217  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1218  * moving from pcp lists to free list in order to reduce overhead. With
1219  * debug_pagealloc enabled, they are checked also immediately when being freed
1220  * to the pcp lists.
1221  */
1222 static bool free_pcp_prepare(struct page *page)
1223 {
1224 	if (debug_pagealloc_enabled())
1225 		return free_pages_prepare(page, 0, true);
1226 	else
1227 		return free_pages_prepare(page, 0, false);
1228 }
1229 
1230 static bool bulkfree_pcp_prepare(struct page *page)
1231 {
1232 	return free_pages_check(page);
1233 }
1234 #endif /* CONFIG_DEBUG_VM */
1235 
1236 static inline void prefetch_buddy(struct page *page)
1237 {
1238 	unsigned long pfn = page_to_pfn(page);
1239 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1240 	struct page *buddy = page + (buddy_pfn - pfn);
1241 
1242 	prefetch(buddy);
1243 }
1244 
1245 /*
1246  * Frees a number of pages from the PCP lists
1247  * Assumes all pages on list are in same zone, and of same order.
1248  * count is the number of pages to free.
1249  *
1250  * If the zone was previously in an "all pages pinned" state then look to
1251  * see if this freeing clears that state.
1252  *
1253  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1254  * pinned" detection logic.
1255  */
1256 static void free_pcppages_bulk(struct zone *zone, int count,
1257 					struct per_cpu_pages *pcp)
1258 {
1259 	int migratetype = 0;
1260 	int batch_free = 0;
1261 	int prefetch_nr = 0;
1262 	bool isolated_pageblocks;
1263 	struct page *page, *tmp;
1264 	LIST_HEAD(head);
1265 
1266 	while (count) {
1267 		struct list_head *list;
1268 
1269 		/*
1270 		 * Remove pages from lists in a round-robin fashion. A
1271 		 * batch_free count is maintained that is incremented when an
1272 		 * empty list is encountered.  This is so more pages are freed
1273 		 * off fuller lists instead of spinning excessively around empty
1274 		 * lists
1275 		 */
1276 		do {
1277 			batch_free++;
1278 			if (++migratetype == MIGRATE_PCPTYPES)
1279 				migratetype = 0;
1280 			list = &pcp->lists[migratetype];
1281 		} while (list_empty(list));
1282 
1283 		/* This is the only non-empty list. Free them all. */
1284 		if (batch_free == MIGRATE_PCPTYPES)
1285 			batch_free = count;
1286 
1287 		do {
1288 			page = list_last_entry(list, struct page, lru);
1289 			/* must delete to avoid corrupting pcp list */
1290 			list_del(&page->lru);
1291 			pcp->count--;
1292 
1293 			if (bulkfree_pcp_prepare(page))
1294 				continue;
1295 
1296 			list_add_tail(&page->lru, &head);
1297 
1298 			/*
1299 			 * We are going to put the page back to the global
1300 			 * pool, prefetch its buddy to speed up later access
1301 			 * under zone->lock. It is believed the overhead of
1302 			 * an additional test and calculating buddy_pfn here
1303 			 * can be offset by reduced memory latency later. To
1304 			 * avoid excessive prefetching due to large count, only
1305 			 * prefetch buddy for the first pcp->batch nr of pages.
1306 			 */
1307 			if (prefetch_nr++ < pcp->batch)
1308 				prefetch_buddy(page);
1309 		} while (--count && --batch_free && !list_empty(list));
1310 	}
1311 
1312 	spin_lock(&zone->lock);
1313 	isolated_pageblocks = has_isolate_pageblock(zone);
1314 
1315 	/*
1316 	 * Use safe version since after __free_one_page(),
1317 	 * page->lru.next will not point to original list.
1318 	 */
1319 	list_for_each_entry_safe(page, tmp, &head, lru) {
1320 		int mt = get_pcppage_migratetype(page);
1321 		/* MIGRATE_ISOLATE page should not go to pcplists */
1322 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1323 		/* Pageblock could have been isolated meanwhile */
1324 		if (unlikely(isolated_pageblocks))
1325 			mt = get_pageblock_migratetype(page);
1326 
1327 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1328 		trace_mm_page_pcpu_drain(page, 0, mt);
1329 	}
1330 	spin_unlock(&zone->lock);
1331 }
1332 
1333 static void free_one_page(struct zone *zone,
1334 				struct page *page, unsigned long pfn,
1335 				unsigned int order,
1336 				int migratetype)
1337 {
1338 	spin_lock(&zone->lock);
1339 	if (unlikely(has_isolate_pageblock(zone) ||
1340 		is_migrate_isolate(migratetype))) {
1341 		migratetype = get_pfnblock_migratetype(page, pfn);
1342 	}
1343 	__free_one_page(page, pfn, zone, order, migratetype);
1344 	spin_unlock(&zone->lock);
1345 }
1346 
1347 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1348 				unsigned long zone, int nid)
1349 {
1350 	mm_zero_struct_page(page);
1351 	set_page_links(page, zone, nid, pfn);
1352 	init_page_count(page);
1353 	page_mapcount_reset(page);
1354 	page_cpupid_reset_last(page);
1355 	page_kasan_tag_reset(page);
1356 
1357 	INIT_LIST_HEAD(&page->lru);
1358 #ifdef WANT_PAGE_VIRTUAL
1359 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1360 	if (!is_highmem_idx(zone))
1361 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1362 #endif
1363 }
1364 
1365 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1366 static void __meminit init_reserved_page(unsigned long pfn)
1367 {
1368 	pg_data_t *pgdat;
1369 	int nid, zid;
1370 
1371 	if (!early_page_uninitialised(pfn))
1372 		return;
1373 
1374 	nid = early_pfn_to_nid(pfn);
1375 	pgdat = NODE_DATA(nid);
1376 
1377 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1378 		struct zone *zone = &pgdat->node_zones[zid];
1379 
1380 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1381 			break;
1382 	}
1383 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1384 }
1385 #else
1386 static inline void init_reserved_page(unsigned long pfn)
1387 {
1388 }
1389 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1390 
1391 /*
1392  * Initialised pages do not have PageReserved set. This function is
1393  * called for each range allocated by the bootmem allocator and
1394  * marks the pages PageReserved. The remaining valid pages are later
1395  * sent to the buddy page allocator.
1396  */
1397 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1398 {
1399 	unsigned long start_pfn = PFN_DOWN(start);
1400 	unsigned long end_pfn = PFN_UP(end);
1401 
1402 	for (; start_pfn < end_pfn; start_pfn++) {
1403 		if (pfn_valid(start_pfn)) {
1404 			struct page *page = pfn_to_page(start_pfn);
1405 
1406 			init_reserved_page(start_pfn);
1407 
1408 			/* Avoid false-positive PageTail() */
1409 			INIT_LIST_HEAD(&page->lru);
1410 
1411 			/*
1412 			 * no need for atomic set_bit because the struct
1413 			 * page is not visible yet so nobody should
1414 			 * access it yet.
1415 			 */
1416 			__SetPageReserved(page);
1417 		}
1418 	}
1419 }
1420 
1421 static void __free_pages_ok(struct page *page, unsigned int order)
1422 {
1423 	unsigned long flags;
1424 	int migratetype;
1425 	unsigned long pfn = page_to_pfn(page);
1426 
1427 	if (!free_pages_prepare(page, order, true))
1428 		return;
1429 
1430 	migratetype = get_pfnblock_migratetype(page, pfn);
1431 	local_irq_save(flags);
1432 	__count_vm_events(PGFREE, 1 << order);
1433 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1434 	local_irq_restore(flags);
1435 }
1436 
1437 void __free_pages_core(struct page *page, unsigned int order)
1438 {
1439 	unsigned int nr_pages = 1 << order;
1440 	struct page *p = page;
1441 	unsigned int loop;
1442 
1443 	prefetchw(p);
1444 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1445 		prefetchw(p + 1);
1446 		__ClearPageReserved(p);
1447 		set_page_count(p, 0);
1448 	}
1449 	__ClearPageReserved(p);
1450 	set_page_count(p, 0);
1451 
1452 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1453 	set_page_refcounted(page);
1454 	__free_pages(page, order);
1455 }
1456 
1457 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1458 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1459 
1460 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1461 
1462 int __meminit early_pfn_to_nid(unsigned long pfn)
1463 {
1464 	static DEFINE_SPINLOCK(early_pfn_lock);
1465 	int nid;
1466 
1467 	spin_lock(&early_pfn_lock);
1468 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1469 	if (nid < 0)
1470 		nid = first_online_node;
1471 	spin_unlock(&early_pfn_lock);
1472 
1473 	return nid;
1474 }
1475 #endif
1476 
1477 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1478 /* Only safe to use early in boot when initialisation is single-threaded */
1479 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1480 {
1481 	int nid;
1482 
1483 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1484 	if (nid >= 0 && nid != node)
1485 		return false;
1486 	return true;
1487 }
1488 
1489 #else
1490 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1491 {
1492 	return true;
1493 }
1494 #endif
1495 
1496 
1497 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1498 							unsigned int order)
1499 {
1500 	if (early_page_uninitialised(pfn))
1501 		return;
1502 	__free_pages_core(page, order);
1503 }
1504 
1505 /*
1506  * Check that the whole (or subset of) a pageblock given by the interval of
1507  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1508  * with the migration of free compaction scanner. The scanners then need to
1509  * use only pfn_valid_within() check for arches that allow holes within
1510  * pageblocks.
1511  *
1512  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1513  *
1514  * It's possible on some configurations to have a setup like node0 node1 node0
1515  * i.e. it's possible that all pages within a zones range of pages do not
1516  * belong to a single zone. We assume that a border between node0 and node1
1517  * can occur within a single pageblock, but not a node0 node1 node0
1518  * interleaving within a single pageblock. It is therefore sufficient to check
1519  * the first and last page of a pageblock and avoid checking each individual
1520  * page in a pageblock.
1521  */
1522 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1523 				     unsigned long end_pfn, struct zone *zone)
1524 {
1525 	struct page *start_page;
1526 	struct page *end_page;
1527 
1528 	/* end_pfn is one past the range we are checking */
1529 	end_pfn--;
1530 
1531 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1532 		return NULL;
1533 
1534 	start_page = pfn_to_online_page(start_pfn);
1535 	if (!start_page)
1536 		return NULL;
1537 
1538 	if (page_zone(start_page) != zone)
1539 		return NULL;
1540 
1541 	end_page = pfn_to_page(end_pfn);
1542 
1543 	/* This gives a shorter code than deriving page_zone(end_page) */
1544 	if (page_zone_id(start_page) != page_zone_id(end_page))
1545 		return NULL;
1546 
1547 	return start_page;
1548 }
1549 
1550 void set_zone_contiguous(struct zone *zone)
1551 {
1552 	unsigned long block_start_pfn = zone->zone_start_pfn;
1553 	unsigned long block_end_pfn;
1554 
1555 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1556 	for (; block_start_pfn < zone_end_pfn(zone);
1557 			block_start_pfn = block_end_pfn,
1558 			 block_end_pfn += pageblock_nr_pages) {
1559 
1560 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1561 
1562 		if (!__pageblock_pfn_to_page(block_start_pfn,
1563 					     block_end_pfn, zone))
1564 			return;
1565 	}
1566 
1567 	/* We confirm that there is no hole */
1568 	zone->contiguous = true;
1569 }
1570 
1571 void clear_zone_contiguous(struct zone *zone)
1572 {
1573 	zone->contiguous = false;
1574 }
1575 
1576 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1577 static void __init deferred_free_range(unsigned long pfn,
1578 				       unsigned long nr_pages)
1579 {
1580 	struct page *page;
1581 	unsigned long i;
1582 
1583 	if (!nr_pages)
1584 		return;
1585 
1586 	page = pfn_to_page(pfn);
1587 
1588 	/* Free a large naturally-aligned chunk if possible */
1589 	if (nr_pages == pageblock_nr_pages &&
1590 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1591 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592 		__free_pages_core(page, pageblock_order);
1593 		return;
1594 	}
1595 
1596 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1597 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1598 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1599 		__free_pages_core(page, 0);
1600 	}
1601 }
1602 
1603 /* Completion tracking for deferred_init_memmap() threads */
1604 static atomic_t pgdat_init_n_undone __initdata;
1605 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1606 
1607 static inline void __init pgdat_init_report_one_done(void)
1608 {
1609 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1610 		complete(&pgdat_init_all_done_comp);
1611 }
1612 
1613 /*
1614  * Returns true if page needs to be initialized or freed to buddy allocator.
1615  *
1616  * First we check if pfn is valid on architectures where it is possible to have
1617  * holes within pageblock_nr_pages. On systems where it is not possible, this
1618  * function is optimized out.
1619  *
1620  * Then, we check if a current large page is valid by only checking the validity
1621  * of the head pfn.
1622  */
1623 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1624 {
1625 	if (!pfn_valid_within(pfn))
1626 		return false;
1627 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1628 		return false;
1629 	return true;
1630 }
1631 
1632 /*
1633  * Free pages to buddy allocator. Try to free aligned pages in
1634  * pageblock_nr_pages sizes.
1635  */
1636 static void __init deferred_free_pages(unsigned long pfn,
1637 				       unsigned long end_pfn)
1638 {
1639 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1640 	unsigned long nr_free = 0;
1641 
1642 	for (; pfn < end_pfn; pfn++) {
1643 		if (!deferred_pfn_valid(pfn)) {
1644 			deferred_free_range(pfn - nr_free, nr_free);
1645 			nr_free = 0;
1646 		} else if (!(pfn & nr_pgmask)) {
1647 			deferred_free_range(pfn - nr_free, nr_free);
1648 			nr_free = 1;
1649 			touch_nmi_watchdog();
1650 		} else {
1651 			nr_free++;
1652 		}
1653 	}
1654 	/* Free the last block of pages to allocator */
1655 	deferred_free_range(pfn - nr_free, nr_free);
1656 }
1657 
1658 /*
1659  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1660  * by performing it only once every pageblock_nr_pages.
1661  * Return number of pages initialized.
1662  */
1663 static unsigned long  __init deferred_init_pages(struct zone *zone,
1664 						 unsigned long pfn,
1665 						 unsigned long end_pfn)
1666 {
1667 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1668 	int nid = zone_to_nid(zone);
1669 	unsigned long nr_pages = 0;
1670 	int zid = zone_idx(zone);
1671 	struct page *page = NULL;
1672 
1673 	for (; pfn < end_pfn; pfn++) {
1674 		if (!deferred_pfn_valid(pfn)) {
1675 			page = NULL;
1676 			continue;
1677 		} else if (!page || !(pfn & nr_pgmask)) {
1678 			page = pfn_to_page(pfn);
1679 			touch_nmi_watchdog();
1680 		} else {
1681 			page++;
1682 		}
1683 		__init_single_page(page, pfn, zid, nid);
1684 		nr_pages++;
1685 	}
1686 	return (nr_pages);
1687 }
1688 
1689 /*
1690  * This function is meant to pre-load the iterator for the zone init.
1691  * Specifically it walks through the ranges until we are caught up to the
1692  * first_init_pfn value and exits there. If we never encounter the value we
1693  * return false indicating there are no valid ranges left.
1694  */
1695 static bool __init
1696 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1697 				    unsigned long *spfn, unsigned long *epfn,
1698 				    unsigned long first_init_pfn)
1699 {
1700 	u64 j;
1701 
1702 	/*
1703 	 * Start out by walking through the ranges in this zone that have
1704 	 * already been initialized. We don't need to do anything with them
1705 	 * so we just need to flush them out of the system.
1706 	 */
1707 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1708 		if (*epfn <= first_init_pfn)
1709 			continue;
1710 		if (*spfn < first_init_pfn)
1711 			*spfn = first_init_pfn;
1712 		*i = j;
1713 		return true;
1714 	}
1715 
1716 	return false;
1717 }
1718 
1719 /*
1720  * Initialize and free pages. We do it in two loops: first we initialize
1721  * struct page, then free to buddy allocator, because while we are
1722  * freeing pages we can access pages that are ahead (computing buddy
1723  * page in __free_one_page()).
1724  *
1725  * In order to try and keep some memory in the cache we have the loop
1726  * broken along max page order boundaries. This way we will not cause
1727  * any issues with the buddy page computation.
1728  */
1729 static unsigned long __init
1730 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1731 		       unsigned long *end_pfn)
1732 {
1733 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1734 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1735 	unsigned long nr_pages = 0;
1736 	u64 j = *i;
1737 
1738 	/* First we loop through and initialize the page values */
1739 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1740 		unsigned long t;
1741 
1742 		if (mo_pfn <= *start_pfn)
1743 			break;
1744 
1745 		t = min(mo_pfn, *end_pfn);
1746 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1747 
1748 		if (mo_pfn < *end_pfn) {
1749 			*start_pfn = mo_pfn;
1750 			break;
1751 		}
1752 	}
1753 
1754 	/* Reset values and now loop through freeing pages as needed */
1755 	swap(j, *i);
1756 
1757 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1758 		unsigned long t;
1759 
1760 		if (mo_pfn <= spfn)
1761 			break;
1762 
1763 		t = min(mo_pfn, epfn);
1764 		deferred_free_pages(spfn, t);
1765 
1766 		if (mo_pfn <= epfn)
1767 			break;
1768 	}
1769 
1770 	return nr_pages;
1771 }
1772 
1773 /* Initialise remaining memory on a node */
1774 static int __init deferred_init_memmap(void *data)
1775 {
1776 	pg_data_t *pgdat = data;
1777 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1778 	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1779 	unsigned long first_init_pfn, flags;
1780 	unsigned long start = jiffies;
1781 	struct zone *zone;
1782 	int zid;
1783 	u64 i;
1784 
1785 	/* Bind memory initialisation thread to a local node if possible */
1786 	if (!cpumask_empty(cpumask))
1787 		set_cpus_allowed_ptr(current, cpumask);
1788 
1789 	pgdat_resize_lock(pgdat, &flags);
1790 	first_init_pfn = pgdat->first_deferred_pfn;
1791 	if (first_init_pfn == ULONG_MAX) {
1792 		pgdat_resize_unlock(pgdat, &flags);
1793 		pgdat_init_report_one_done();
1794 		return 0;
1795 	}
1796 
1797 	/* Sanity check boundaries */
1798 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1799 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1800 	pgdat->first_deferred_pfn = ULONG_MAX;
1801 
1802 	/* Only the highest zone is deferred so find it */
1803 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1804 		zone = pgdat->node_zones + zid;
1805 		if (first_init_pfn < zone_end_pfn(zone))
1806 			break;
1807 	}
1808 
1809 	/* If the zone is empty somebody else may have cleared out the zone */
1810 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1811 						 first_init_pfn))
1812 		goto zone_empty;
1813 
1814 	/*
1815 	 * Initialize and free pages in MAX_ORDER sized increments so
1816 	 * that we can avoid introducing any issues with the buddy
1817 	 * allocator.
1818 	 */
1819 	while (spfn < epfn)
1820 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1821 zone_empty:
1822 	pgdat_resize_unlock(pgdat, &flags);
1823 
1824 	/* Sanity check that the next zone really is unpopulated */
1825 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1826 
1827 	pr_info("node %d initialised, %lu pages in %ums\n",
1828 		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1829 
1830 	pgdat_init_report_one_done();
1831 	return 0;
1832 }
1833 
1834 /*
1835  * If this zone has deferred pages, try to grow it by initializing enough
1836  * deferred pages to satisfy the allocation specified by order, rounded up to
1837  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1838  * of SECTION_SIZE bytes by initializing struct pages in increments of
1839  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1840  *
1841  * Return true when zone was grown, otherwise return false. We return true even
1842  * when we grow less than requested, to let the caller decide if there are
1843  * enough pages to satisfy the allocation.
1844  *
1845  * Note: We use noinline because this function is needed only during boot, and
1846  * it is called from a __ref function _deferred_grow_zone. This way we are
1847  * making sure that it is not inlined into permanent text section.
1848  */
1849 static noinline bool __init
1850 deferred_grow_zone(struct zone *zone, unsigned int order)
1851 {
1852 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1853 	pg_data_t *pgdat = zone->zone_pgdat;
1854 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1855 	unsigned long spfn, epfn, flags;
1856 	unsigned long nr_pages = 0;
1857 	u64 i;
1858 
1859 	/* Only the last zone may have deferred pages */
1860 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1861 		return false;
1862 
1863 	pgdat_resize_lock(pgdat, &flags);
1864 
1865 	/*
1866 	 * If deferred pages have been initialized while we were waiting for
1867 	 * the lock, return true, as the zone was grown.  The caller will retry
1868 	 * this zone.  We won't return to this function since the caller also
1869 	 * has this static branch.
1870 	 */
1871 	if (!static_branch_unlikely(&deferred_pages)) {
1872 		pgdat_resize_unlock(pgdat, &flags);
1873 		return true;
1874 	}
1875 
1876 	/*
1877 	 * If someone grew this zone while we were waiting for spinlock, return
1878 	 * true, as there might be enough pages already.
1879 	 */
1880 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1881 		pgdat_resize_unlock(pgdat, &flags);
1882 		return true;
1883 	}
1884 
1885 	/* If the zone is empty somebody else may have cleared out the zone */
1886 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1887 						 first_deferred_pfn)) {
1888 		pgdat->first_deferred_pfn = ULONG_MAX;
1889 		pgdat_resize_unlock(pgdat, &flags);
1890 		/* Retry only once. */
1891 		return first_deferred_pfn != ULONG_MAX;
1892 	}
1893 
1894 	/*
1895 	 * Initialize and free pages in MAX_ORDER sized increments so
1896 	 * that we can avoid introducing any issues with the buddy
1897 	 * allocator.
1898 	 */
1899 	while (spfn < epfn) {
1900 		/* update our first deferred PFN for this section */
1901 		first_deferred_pfn = spfn;
1902 
1903 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1904 
1905 		/* We should only stop along section boundaries */
1906 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1907 			continue;
1908 
1909 		/* If our quota has been met we can stop here */
1910 		if (nr_pages >= nr_pages_needed)
1911 			break;
1912 	}
1913 
1914 	pgdat->first_deferred_pfn = spfn;
1915 	pgdat_resize_unlock(pgdat, &flags);
1916 
1917 	return nr_pages > 0;
1918 }
1919 
1920 /*
1921  * deferred_grow_zone() is __init, but it is called from
1922  * get_page_from_freelist() during early boot until deferred_pages permanently
1923  * disables this call. This is why we have refdata wrapper to avoid warning,
1924  * and to ensure that the function body gets unloaded.
1925  */
1926 static bool __ref
1927 _deferred_grow_zone(struct zone *zone, unsigned int order)
1928 {
1929 	return deferred_grow_zone(zone, order);
1930 }
1931 
1932 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1933 
1934 void __init page_alloc_init_late(void)
1935 {
1936 	struct zone *zone;
1937 	int nid;
1938 
1939 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1940 
1941 	/* There will be num_node_state(N_MEMORY) threads */
1942 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1943 	for_each_node_state(nid, N_MEMORY) {
1944 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1945 	}
1946 
1947 	/* Block until all are initialised */
1948 	wait_for_completion(&pgdat_init_all_done_comp);
1949 
1950 	/*
1951 	 * We initialized the rest of the deferred pages.  Permanently disable
1952 	 * on-demand struct page initialization.
1953 	 */
1954 	static_branch_disable(&deferred_pages);
1955 
1956 	/* Reinit limits that are based on free pages after the kernel is up */
1957 	files_maxfiles_init();
1958 #endif
1959 
1960 	/* Discard memblock private memory */
1961 	memblock_discard();
1962 
1963 	for_each_node_state(nid, N_MEMORY)
1964 		shuffle_free_memory(NODE_DATA(nid));
1965 
1966 	for_each_populated_zone(zone)
1967 		set_zone_contiguous(zone);
1968 
1969 #ifdef CONFIG_DEBUG_PAGEALLOC
1970 	init_debug_guardpage();
1971 #endif
1972 }
1973 
1974 #ifdef CONFIG_CMA
1975 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1976 void __init init_cma_reserved_pageblock(struct page *page)
1977 {
1978 	unsigned i = pageblock_nr_pages;
1979 	struct page *p = page;
1980 
1981 	do {
1982 		__ClearPageReserved(p);
1983 		set_page_count(p, 0);
1984 	} while (++p, --i);
1985 
1986 	set_pageblock_migratetype(page, MIGRATE_CMA);
1987 
1988 	if (pageblock_order >= MAX_ORDER) {
1989 		i = pageblock_nr_pages;
1990 		p = page;
1991 		do {
1992 			set_page_refcounted(p);
1993 			__free_pages(p, MAX_ORDER - 1);
1994 			p += MAX_ORDER_NR_PAGES;
1995 		} while (i -= MAX_ORDER_NR_PAGES);
1996 	} else {
1997 		set_page_refcounted(page);
1998 		__free_pages(page, pageblock_order);
1999 	}
2000 
2001 	adjust_managed_page_count(page, pageblock_nr_pages);
2002 }
2003 #endif
2004 
2005 /*
2006  * The order of subdivision here is critical for the IO subsystem.
2007  * Please do not alter this order without good reasons and regression
2008  * testing. Specifically, as large blocks of memory are subdivided,
2009  * the order in which smaller blocks are delivered depends on the order
2010  * they're subdivided in this function. This is the primary factor
2011  * influencing the order in which pages are delivered to the IO
2012  * subsystem according to empirical testing, and this is also justified
2013  * by considering the behavior of a buddy system containing a single
2014  * large block of memory acted on by a series of small allocations.
2015  * This behavior is a critical factor in sglist merging's success.
2016  *
2017  * -- nyc
2018  */
2019 static inline void expand(struct zone *zone, struct page *page,
2020 	int low, int high, struct free_area *area,
2021 	int migratetype)
2022 {
2023 	unsigned long size = 1 << high;
2024 
2025 	while (high > low) {
2026 		area--;
2027 		high--;
2028 		size >>= 1;
2029 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2030 
2031 		/*
2032 		 * Mark as guard pages (or page), that will allow to
2033 		 * merge back to allocator when buddy will be freed.
2034 		 * Corresponding page table entries will not be touched,
2035 		 * pages will stay not present in virtual address space
2036 		 */
2037 		if (set_page_guard(zone, &page[size], high, migratetype))
2038 			continue;
2039 
2040 		add_to_free_area(&page[size], area, migratetype);
2041 		set_page_order(&page[size], high);
2042 	}
2043 }
2044 
2045 static void check_new_page_bad(struct page *page)
2046 {
2047 	const char *bad_reason = NULL;
2048 	unsigned long bad_flags = 0;
2049 
2050 	if (unlikely(atomic_read(&page->_mapcount) != -1))
2051 		bad_reason = "nonzero mapcount";
2052 	if (unlikely(page->mapping != NULL))
2053 		bad_reason = "non-NULL mapping";
2054 	if (unlikely(page_ref_count(page) != 0))
2055 		bad_reason = "nonzero _refcount";
2056 	if (unlikely(page->flags & __PG_HWPOISON)) {
2057 		bad_reason = "HWPoisoned (hardware-corrupted)";
2058 		bad_flags = __PG_HWPOISON;
2059 		/* Don't complain about hwpoisoned pages */
2060 		page_mapcount_reset(page); /* remove PageBuddy */
2061 		return;
2062 	}
2063 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2064 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2065 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2066 	}
2067 #ifdef CONFIG_MEMCG
2068 	if (unlikely(page->mem_cgroup))
2069 		bad_reason = "page still charged to cgroup";
2070 #endif
2071 	bad_page(page, bad_reason, bad_flags);
2072 }
2073 
2074 /*
2075  * This page is about to be returned from the page allocator
2076  */
2077 static inline int check_new_page(struct page *page)
2078 {
2079 	if (likely(page_expected_state(page,
2080 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2081 		return 0;
2082 
2083 	check_new_page_bad(page);
2084 	return 1;
2085 }
2086 
2087 static inline bool free_pages_prezeroed(void)
2088 {
2089 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2090 		page_poisoning_enabled()) || want_init_on_free();
2091 }
2092 
2093 #ifdef CONFIG_DEBUG_VM
2094 /*
2095  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2096  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2097  * also checked when pcp lists are refilled from the free lists.
2098  */
2099 static inline bool check_pcp_refill(struct page *page)
2100 {
2101 	if (debug_pagealloc_enabled())
2102 		return check_new_page(page);
2103 	else
2104 		return false;
2105 }
2106 
2107 static inline bool check_new_pcp(struct page *page)
2108 {
2109 	return check_new_page(page);
2110 }
2111 #else
2112 /*
2113  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2114  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2115  * enabled, they are also checked when being allocated from the pcp lists.
2116  */
2117 static inline bool check_pcp_refill(struct page *page)
2118 {
2119 	return check_new_page(page);
2120 }
2121 static inline bool check_new_pcp(struct page *page)
2122 {
2123 	if (debug_pagealloc_enabled())
2124 		return check_new_page(page);
2125 	else
2126 		return false;
2127 }
2128 #endif /* CONFIG_DEBUG_VM */
2129 
2130 static bool check_new_pages(struct page *page, unsigned int order)
2131 {
2132 	int i;
2133 	for (i = 0; i < (1 << order); i++) {
2134 		struct page *p = page + i;
2135 
2136 		if (unlikely(check_new_page(p)))
2137 			return true;
2138 	}
2139 
2140 	return false;
2141 }
2142 
2143 inline void post_alloc_hook(struct page *page, unsigned int order,
2144 				gfp_t gfp_flags)
2145 {
2146 	set_page_private(page, 0);
2147 	set_page_refcounted(page);
2148 
2149 	arch_alloc_page(page, order);
2150 	if (debug_pagealloc_enabled())
2151 		kernel_map_pages(page, 1 << order, 1);
2152 	kasan_alloc_pages(page, order);
2153 	kernel_poison_pages(page, 1 << order, 1);
2154 	set_page_owner(page, order, gfp_flags);
2155 }
2156 
2157 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2158 							unsigned int alloc_flags)
2159 {
2160 	post_alloc_hook(page, order, gfp_flags);
2161 
2162 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2163 		kernel_init_free_pages(page, 1 << order);
2164 
2165 	if (order && (gfp_flags & __GFP_COMP))
2166 		prep_compound_page(page, order);
2167 
2168 	/*
2169 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2170 	 * allocate the page. The expectation is that the caller is taking
2171 	 * steps that will free more memory. The caller should avoid the page
2172 	 * being used for !PFMEMALLOC purposes.
2173 	 */
2174 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2175 		set_page_pfmemalloc(page);
2176 	else
2177 		clear_page_pfmemalloc(page);
2178 }
2179 
2180 /*
2181  * Go through the free lists for the given migratetype and remove
2182  * the smallest available page from the freelists
2183  */
2184 static __always_inline
2185 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2186 						int migratetype)
2187 {
2188 	unsigned int current_order;
2189 	struct free_area *area;
2190 	struct page *page;
2191 
2192 	/* Find a page of the appropriate size in the preferred list */
2193 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2194 		area = &(zone->free_area[current_order]);
2195 		page = get_page_from_free_area(area, migratetype);
2196 		if (!page)
2197 			continue;
2198 		del_page_from_free_area(page, area);
2199 		expand(zone, page, order, current_order, area, migratetype);
2200 		set_pcppage_migratetype(page, migratetype);
2201 		return page;
2202 	}
2203 
2204 	return NULL;
2205 }
2206 
2207 
2208 /*
2209  * This array describes the order lists are fallen back to when
2210  * the free lists for the desirable migrate type are depleted
2211  */
2212 static int fallbacks[MIGRATE_TYPES][4] = {
2213 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2214 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2215 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2216 #ifdef CONFIG_CMA
2217 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2218 #endif
2219 #ifdef CONFIG_MEMORY_ISOLATION
2220 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2221 #endif
2222 };
2223 
2224 #ifdef CONFIG_CMA
2225 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2226 					unsigned int order)
2227 {
2228 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2229 }
2230 #else
2231 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2232 					unsigned int order) { return NULL; }
2233 #endif
2234 
2235 /*
2236  * Move the free pages in a range to the free lists of the requested type.
2237  * Note that start_page and end_pages are not aligned on a pageblock
2238  * boundary. If alignment is required, use move_freepages_block()
2239  */
2240 static int move_freepages(struct zone *zone,
2241 			  struct page *start_page, struct page *end_page,
2242 			  int migratetype, int *num_movable)
2243 {
2244 	struct page *page;
2245 	unsigned int order;
2246 	int pages_moved = 0;
2247 
2248 	for (page = start_page; page <= end_page;) {
2249 		if (!pfn_valid_within(page_to_pfn(page))) {
2250 			page++;
2251 			continue;
2252 		}
2253 
2254 		if (!PageBuddy(page)) {
2255 			/*
2256 			 * We assume that pages that could be isolated for
2257 			 * migration are movable. But we don't actually try
2258 			 * isolating, as that would be expensive.
2259 			 */
2260 			if (num_movable &&
2261 					(PageLRU(page) || __PageMovable(page)))
2262 				(*num_movable)++;
2263 
2264 			page++;
2265 			continue;
2266 		}
2267 
2268 		/* Make sure we are not inadvertently changing nodes */
2269 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2270 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2271 
2272 		order = page_order(page);
2273 		move_to_free_area(page, &zone->free_area[order], migratetype);
2274 		page += 1 << order;
2275 		pages_moved += 1 << order;
2276 	}
2277 
2278 	return pages_moved;
2279 }
2280 
2281 int move_freepages_block(struct zone *zone, struct page *page,
2282 				int migratetype, int *num_movable)
2283 {
2284 	unsigned long start_pfn, end_pfn;
2285 	struct page *start_page, *end_page;
2286 
2287 	if (num_movable)
2288 		*num_movable = 0;
2289 
2290 	start_pfn = page_to_pfn(page);
2291 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2292 	start_page = pfn_to_page(start_pfn);
2293 	end_page = start_page + pageblock_nr_pages - 1;
2294 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2295 
2296 	/* Do not cross zone boundaries */
2297 	if (!zone_spans_pfn(zone, start_pfn))
2298 		start_page = page;
2299 	if (!zone_spans_pfn(zone, end_pfn))
2300 		return 0;
2301 
2302 	return move_freepages(zone, start_page, end_page, migratetype,
2303 								num_movable);
2304 }
2305 
2306 static void change_pageblock_range(struct page *pageblock_page,
2307 					int start_order, int migratetype)
2308 {
2309 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2310 
2311 	while (nr_pageblocks--) {
2312 		set_pageblock_migratetype(pageblock_page, migratetype);
2313 		pageblock_page += pageblock_nr_pages;
2314 	}
2315 }
2316 
2317 /*
2318  * When we are falling back to another migratetype during allocation, try to
2319  * steal extra free pages from the same pageblocks to satisfy further
2320  * allocations, instead of polluting multiple pageblocks.
2321  *
2322  * If we are stealing a relatively large buddy page, it is likely there will
2323  * be more free pages in the pageblock, so try to steal them all. For
2324  * reclaimable and unmovable allocations, we steal regardless of page size,
2325  * as fragmentation caused by those allocations polluting movable pageblocks
2326  * is worse than movable allocations stealing from unmovable and reclaimable
2327  * pageblocks.
2328  */
2329 static bool can_steal_fallback(unsigned int order, int start_mt)
2330 {
2331 	/*
2332 	 * Leaving this order check is intended, although there is
2333 	 * relaxed order check in next check. The reason is that
2334 	 * we can actually steal whole pageblock if this condition met,
2335 	 * but, below check doesn't guarantee it and that is just heuristic
2336 	 * so could be changed anytime.
2337 	 */
2338 	if (order >= pageblock_order)
2339 		return true;
2340 
2341 	if (order >= pageblock_order / 2 ||
2342 		start_mt == MIGRATE_RECLAIMABLE ||
2343 		start_mt == MIGRATE_UNMOVABLE ||
2344 		page_group_by_mobility_disabled)
2345 		return true;
2346 
2347 	return false;
2348 }
2349 
2350 static inline void boost_watermark(struct zone *zone)
2351 {
2352 	unsigned long max_boost;
2353 
2354 	if (!watermark_boost_factor)
2355 		return;
2356 
2357 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2358 			watermark_boost_factor, 10000);
2359 
2360 	/*
2361 	 * high watermark may be uninitialised if fragmentation occurs
2362 	 * very early in boot so do not boost. We do not fall
2363 	 * through and boost by pageblock_nr_pages as failing
2364 	 * allocations that early means that reclaim is not going
2365 	 * to help and it may even be impossible to reclaim the
2366 	 * boosted watermark resulting in a hang.
2367 	 */
2368 	if (!max_boost)
2369 		return;
2370 
2371 	max_boost = max(pageblock_nr_pages, max_boost);
2372 
2373 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2374 		max_boost);
2375 }
2376 
2377 /*
2378  * This function implements actual steal behaviour. If order is large enough,
2379  * we can steal whole pageblock. If not, we first move freepages in this
2380  * pageblock to our migratetype and determine how many already-allocated pages
2381  * are there in the pageblock with a compatible migratetype. If at least half
2382  * of pages are free or compatible, we can change migratetype of the pageblock
2383  * itself, so pages freed in the future will be put on the correct free list.
2384  */
2385 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2386 		unsigned int alloc_flags, int start_type, bool whole_block)
2387 {
2388 	unsigned int current_order = page_order(page);
2389 	struct free_area *area;
2390 	int free_pages, movable_pages, alike_pages;
2391 	int old_block_type;
2392 
2393 	old_block_type = get_pageblock_migratetype(page);
2394 
2395 	/*
2396 	 * This can happen due to races and we want to prevent broken
2397 	 * highatomic accounting.
2398 	 */
2399 	if (is_migrate_highatomic(old_block_type))
2400 		goto single_page;
2401 
2402 	/* Take ownership for orders >= pageblock_order */
2403 	if (current_order >= pageblock_order) {
2404 		change_pageblock_range(page, current_order, start_type);
2405 		goto single_page;
2406 	}
2407 
2408 	/*
2409 	 * Boost watermarks to increase reclaim pressure to reduce the
2410 	 * likelihood of future fallbacks. Wake kswapd now as the node
2411 	 * may be balanced overall and kswapd will not wake naturally.
2412 	 */
2413 	boost_watermark(zone);
2414 	if (alloc_flags & ALLOC_KSWAPD)
2415 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2416 
2417 	/* We are not allowed to try stealing from the whole block */
2418 	if (!whole_block)
2419 		goto single_page;
2420 
2421 	free_pages = move_freepages_block(zone, page, start_type,
2422 						&movable_pages);
2423 	/*
2424 	 * Determine how many pages are compatible with our allocation.
2425 	 * For movable allocation, it's the number of movable pages which
2426 	 * we just obtained. For other types it's a bit more tricky.
2427 	 */
2428 	if (start_type == MIGRATE_MOVABLE) {
2429 		alike_pages = movable_pages;
2430 	} else {
2431 		/*
2432 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2433 		 * to MOVABLE pageblock, consider all non-movable pages as
2434 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2435 		 * vice versa, be conservative since we can't distinguish the
2436 		 * exact migratetype of non-movable pages.
2437 		 */
2438 		if (old_block_type == MIGRATE_MOVABLE)
2439 			alike_pages = pageblock_nr_pages
2440 						- (free_pages + movable_pages);
2441 		else
2442 			alike_pages = 0;
2443 	}
2444 
2445 	/* moving whole block can fail due to zone boundary conditions */
2446 	if (!free_pages)
2447 		goto single_page;
2448 
2449 	/*
2450 	 * If a sufficient number of pages in the block are either free or of
2451 	 * comparable migratability as our allocation, claim the whole block.
2452 	 */
2453 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2454 			page_group_by_mobility_disabled)
2455 		set_pageblock_migratetype(page, start_type);
2456 
2457 	return;
2458 
2459 single_page:
2460 	area = &zone->free_area[current_order];
2461 	move_to_free_area(page, area, start_type);
2462 }
2463 
2464 /*
2465  * Check whether there is a suitable fallback freepage with requested order.
2466  * If only_stealable is true, this function returns fallback_mt only if
2467  * we can steal other freepages all together. This would help to reduce
2468  * fragmentation due to mixed migratetype pages in one pageblock.
2469  */
2470 int find_suitable_fallback(struct free_area *area, unsigned int order,
2471 			int migratetype, bool only_stealable, bool *can_steal)
2472 {
2473 	int i;
2474 	int fallback_mt;
2475 
2476 	if (area->nr_free == 0)
2477 		return -1;
2478 
2479 	*can_steal = false;
2480 	for (i = 0;; i++) {
2481 		fallback_mt = fallbacks[migratetype][i];
2482 		if (fallback_mt == MIGRATE_TYPES)
2483 			break;
2484 
2485 		if (free_area_empty(area, fallback_mt))
2486 			continue;
2487 
2488 		if (can_steal_fallback(order, migratetype))
2489 			*can_steal = true;
2490 
2491 		if (!only_stealable)
2492 			return fallback_mt;
2493 
2494 		if (*can_steal)
2495 			return fallback_mt;
2496 	}
2497 
2498 	return -1;
2499 }
2500 
2501 /*
2502  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2503  * there are no empty page blocks that contain a page with a suitable order
2504  */
2505 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2506 				unsigned int alloc_order)
2507 {
2508 	int mt;
2509 	unsigned long max_managed, flags;
2510 
2511 	/*
2512 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2513 	 * Check is race-prone but harmless.
2514 	 */
2515 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2516 	if (zone->nr_reserved_highatomic >= max_managed)
2517 		return;
2518 
2519 	spin_lock_irqsave(&zone->lock, flags);
2520 
2521 	/* Recheck the nr_reserved_highatomic limit under the lock */
2522 	if (zone->nr_reserved_highatomic >= max_managed)
2523 		goto out_unlock;
2524 
2525 	/* Yoink! */
2526 	mt = get_pageblock_migratetype(page);
2527 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2528 	    && !is_migrate_cma(mt)) {
2529 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2530 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2531 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2532 	}
2533 
2534 out_unlock:
2535 	spin_unlock_irqrestore(&zone->lock, flags);
2536 }
2537 
2538 /*
2539  * Used when an allocation is about to fail under memory pressure. This
2540  * potentially hurts the reliability of high-order allocations when under
2541  * intense memory pressure but failed atomic allocations should be easier
2542  * to recover from than an OOM.
2543  *
2544  * If @force is true, try to unreserve a pageblock even though highatomic
2545  * pageblock is exhausted.
2546  */
2547 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2548 						bool force)
2549 {
2550 	struct zonelist *zonelist = ac->zonelist;
2551 	unsigned long flags;
2552 	struct zoneref *z;
2553 	struct zone *zone;
2554 	struct page *page;
2555 	int order;
2556 	bool ret;
2557 
2558 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2559 								ac->nodemask) {
2560 		/*
2561 		 * Preserve at least one pageblock unless memory pressure
2562 		 * is really high.
2563 		 */
2564 		if (!force && zone->nr_reserved_highatomic <=
2565 					pageblock_nr_pages)
2566 			continue;
2567 
2568 		spin_lock_irqsave(&zone->lock, flags);
2569 		for (order = 0; order < MAX_ORDER; order++) {
2570 			struct free_area *area = &(zone->free_area[order]);
2571 
2572 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2573 			if (!page)
2574 				continue;
2575 
2576 			/*
2577 			 * In page freeing path, migratetype change is racy so
2578 			 * we can counter several free pages in a pageblock
2579 			 * in this loop althoug we changed the pageblock type
2580 			 * from highatomic to ac->migratetype. So we should
2581 			 * adjust the count once.
2582 			 */
2583 			if (is_migrate_highatomic_page(page)) {
2584 				/*
2585 				 * It should never happen but changes to
2586 				 * locking could inadvertently allow a per-cpu
2587 				 * drain to add pages to MIGRATE_HIGHATOMIC
2588 				 * while unreserving so be safe and watch for
2589 				 * underflows.
2590 				 */
2591 				zone->nr_reserved_highatomic -= min(
2592 						pageblock_nr_pages,
2593 						zone->nr_reserved_highatomic);
2594 			}
2595 
2596 			/*
2597 			 * Convert to ac->migratetype and avoid the normal
2598 			 * pageblock stealing heuristics. Minimally, the caller
2599 			 * is doing the work and needs the pages. More
2600 			 * importantly, if the block was always converted to
2601 			 * MIGRATE_UNMOVABLE or another type then the number
2602 			 * of pageblocks that cannot be completely freed
2603 			 * may increase.
2604 			 */
2605 			set_pageblock_migratetype(page, ac->migratetype);
2606 			ret = move_freepages_block(zone, page, ac->migratetype,
2607 									NULL);
2608 			if (ret) {
2609 				spin_unlock_irqrestore(&zone->lock, flags);
2610 				return ret;
2611 			}
2612 		}
2613 		spin_unlock_irqrestore(&zone->lock, flags);
2614 	}
2615 
2616 	return false;
2617 }
2618 
2619 /*
2620  * Try finding a free buddy page on the fallback list and put it on the free
2621  * list of requested migratetype, possibly along with other pages from the same
2622  * block, depending on fragmentation avoidance heuristics. Returns true if
2623  * fallback was found so that __rmqueue_smallest() can grab it.
2624  *
2625  * The use of signed ints for order and current_order is a deliberate
2626  * deviation from the rest of this file, to make the for loop
2627  * condition simpler.
2628  */
2629 static __always_inline bool
2630 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2631 						unsigned int alloc_flags)
2632 {
2633 	struct free_area *area;
2634 	int current_order;
2635 	int min_order = order;
2636 	struct page *page;
2637 	int fallback_mt;
2638 	bool can_steal;
2639 
2640 	/*
2641 	 * Do not steal pages from freelists belonging to other pageblocks
2642 	 * i.e. orders < pageblock_order. If there are no local zones free,
2643 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2644 	 */
2645 	if (alloc_flags & ALLOC_NOFRAGMENT)
2646 		min_order = pageblock_order;
2647 
2648 	/*
2649 	 * Find the largest available free page in the other list. This roughly
2650 	 * approximates finding the pageblock with the most free pages, which
2651 	 * would be too costly to do exactly.
2652 	 */
2653 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2654 				--current_order) {
2655 		area = &(zone->free_area[current_order]);
2656 		fallback_mt = find_suitable_fallback(area, current_order,
2657 				start_migratetype, false, &can_steal);
2658 		if (fallback_mt == -1)
2659 			continue;
2660 
2661 		/*
2662 		 * We cannot steal all free pages from the pageblock and the
2663 		 * requested migratetype is movable. In that case it's better to
2664 		 * steal and split the smallest available page instead of the
2665 		 * largest available page, because even if the next movable
2666 		 * allocation falls back into a different pageblock than this
2667 		 * one, it won't cause permanent fragmentation.
2668 		 */
2669 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2670 					&& current_order > order)
2671 			goto find_smallest;
2672 
2673 		goto do_steal;
2674 	}
2675 
2676 	return false;
2677 
2678 find_smallest:
2679 	for (current_order = order; current_order < MAX_ORDER;
2680 							current_order++) {
2681 		area = &(zone->free_area[current_order]);
2682 		fallback_mt = find_suitable_fallback(area, current_order,
2683 				start_migratetype, false, &can_steal);
2684 		if (fallback_mt != -1)
2685 			break;
2686 	}
2687 
2688 	/*
2689 	 * This should not happen - we already found a suitable fallback
2690 	 * when looking for the largest page.
2691 	 */
2692 	VM_BUG_ON(current_order == MAX_ORDER);
2693 
2694 do_steal:
2695 	page = get_page_from_free_area(area, fallback_mt);
2696 
2697 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2698 								can_steal);
2699 
2700 	trace_mm_page_alloc_extfrag(page, order, current_order,
2701 		start_migratetype, fallback_mt);
2702 
2703 	return true;
2704 
2705 }
2706 
2707 /*
2708  * Do the hard work of removing an element from the buddy allocator.
2709  * Call me with the zone->lock already held.
2710  */
2711 static __always_inline struct page *
2712 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2713 						unsigned int alloc_flags)
2714 {
2715 	struct page *page;
2716 
2717 retry:
2718 	page = __rmqueue_smallest(zone, order, migratetype);
2719 	if (unlikely(!page)) {
2720 		if (migratetype == MIGRATE_MOVABLE)
2721 			page = __rmqueue_cma_fallback(zone, order);
2722 
2723 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2724 								alloc_flags))
2725 			goto retry;
2726 	}
2727 
2728 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2729 	return page;
2730 }
2731 
2732 /*
2733  * Obtain a specified number of elements from the buddy allocator, all under
2734  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2735  * Returns the number of new pages which were placed at *list.
2736  */
2737 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2738 			unsigned long count, struct list_head *list,
2739 			int migratetype, unsigned int alloc_flags)
2740 {
2741 	int i, alloced = 0;
2742 
2743 	spin_lock(&zone->lock);
2744 	for (i = 0; i < count; ++i) {
2745 		struct page *page = __rmqueue(zone, order, migratetype,
2746 								alloc_flags);
2747 		if (unlikely(page == NULL))
2748 			break;
2749 
2750 		if (unlikely(check_pcp_refill(page)))
2751 			continue;
2752 
2753 		/*
2754 		 * Split buddy pages returned by expand() are received here in
2755 		 * physical page order. The page is added to the tail of
2756 		 * caller's list. From the callers perspective, the linked list
2757 		 * is ordered by page number under some conditions. This is
2758 		 * useful for IO devices that can forward direction from the
2759 		 * head, thus also in the physical page order. This is useful
2760 		 * for IO devices that can merge IO requests if the physical
2761 		 * pages are ordered properly.
2762 		 */
2763 		list_add_tail(&page->lru, list);
2764 		alloced++;
2765 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2766 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2767 					      -(1 << order));
2768 	}
2769 
2770 	/*
2771 	 * i pages were removed from the buddy list even if some leak due
2772 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2773 	 * on i. Do not confuse with 'alloced' which is the number of
2774 	 * pages added to the pcp list.
2775 	 */
2776 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2777 	spin_unlock(&zone->lock);
2778 	return alloced;
2779 }
2780 
2781 #ifdef CONFIG_NUMA
2782 /*
2783  * Called from the vmstat counter updater to drain pagesets of this
2784  * currently executing processor on remote nodes after they have
2785  * expired.
2786  *
2787  * Note that this function must be called with the thread pinned to
2788  * a single processor.
2789  */
2790 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2791 {
2792 	unsigned long flags;
2793 	int to_drain, batch;
2794 
2795 	local_irq_save(flags);
2796 	batch = READ_ONCE(pcp->batch);
2797 	to_drain = min(pcp->count, batch);
2798 	if (to_drain > 0)
2799 		free_pcppages_bulk(zone, to_drain, pcp);
2800 	local_irq_restore(flags);
2801 }
2802 #endif
2803 
2804 /*
2805  * Drain pcplists of the indicated processor and zone.
2806  *
2807  * The processor must either be the current processor and the
2808  * thread pinned to the current processor or a processor that
2809  * is not online.
2810  */
2811 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2812 {
2813 	unsigned long flags;
2814 	struct per_cpu_pageset *pset;
2815 	struct per_cpu_pages *pcp;
2816 
2817 	local_irq_save(flags);
2818 	pset = per_cpu_ptr(zone->pageset, cpu);
2819 
2820 	pcp = &pset->pcp;
2821 	if (pcp->count)
2822 		free_pcppages_bulk(zone, pcp->count, pcp);
2823 	local_irq_restore(flags);
2824 }
2825 
2826 /*
2827  * Drain pcplists of all zones on the indicated processor.
2828  *
2829  * The processor must either be the current processor and the
2830  * thread pinned to the current processor or a processor that
2831  * is not online.
2832  */
2833 static void drain_pages(unsigned int cpu)
2834 {
2835 	struct zone *zone;
2836 
2837 	for_each_populated_zone(zone) {
2838 		drain_pages_zone(cpu, zone);
2839 	}
2840 }
2841 
2842 /*
2843  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2844  *
2845  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2846  * the single zone's pages.
2847  */
2848 void drain_local_pages(struct zone *zone)
2849 {
2850 	int cpu = smp_processor_id();
2851 
2852 	if (zone)
2853 		drain_pages_zone(cpu, zone);
2854 	else
2855 		drain_pages(cpu);
2856 }
2857 
2858 static void drain_local_pages_wq(struct work_struct *work)
2859 {
2860 	struct pcpu_drain *drain;
2861 
2862 	drain = container_of(work, struct pcpu_drain, work);
2863 
2864 	/*
2865 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2866 	 * we can race with cpu offline when the WQ can move this from
2867 	 * a cpu pinned worker to an unbound one. We can operate on a different
2868 	 * cpu which is allright but we also have to make sure to not move to
2869 	 * a different one.
2870 	 */
2871 	preempt_disable();
2872 	drain_local_pages(drain->zone);
2873 	preempt_enable();
2874 }
2875 
2876 /*
2877  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2878  *
2879  * When zone parameter is non-NULL, spill just the single zone's pages.
2880  *
2881  * Note that this can be extremely slow as the draining happens in a workqueue.
2882  */
2883 void drain_all_pages(struct zone *zone)
2884 {
2885 	int cpu;
2886 
2887 	/*
2888 	 * Allocate in the BSS so we wont require allocation in
2889 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2890 	 */
2891 	static cpumask_t cpus_with_pcps;
2892 
2893 	/*
2894 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2895 	 * initialized.
2896 	 */
2897 	if (WARN_ON_ONCE(!mm_percpu_wq))
2898 		return;
2899 
2900 	/*
2901 	 * Do not drain if one is already in progress unless it's specific to
2902 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2903 	 * the drain to be complete when the call returns.
2904 	 */
2905 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2906 		if (!zone)
2907 			return;
2908 		mutex_lock(&pcpu_drain_mutex);
2909 	}
2910 
2911 	/*
2912 	 * We don't care about racing with CPU hotplug event
2913 	 * as offline notification will cause the notified
2914 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2915 	 * disables preemption as part of its processing
2916 	 */
2917 	for_each_online_cpu(cpu) {
2918 		struct per_cpu_pageset *pcp;
2919 		struct zone *z;
2920 		bool has_pcps = false;
2921 
2922 		if (zone) {
2923 			pcp = per_cpu_ptr(zone->pageset, cpu);
2924 			if (pcp->pcp.count)
2925 				has_pcps = true;
2926 		} else {
2927 			for_each_populated_zone(z) {
2928 				pcp = per_cpu_ptr(z->pageset, cpu);
2929 				if (pcp->pcp.count) {
2930 					has_pcps = true;
2931 					break;
2932 				}
2933 			}
2934 		}
2935 
2936 		if (has_pcps)
2937 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2938 		else
2939 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2940 	}
2941 
2942 	for_each_cpu(cpu, &cpus_with_pcps) {
2943 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2944 
2945 		drain->zone = zone;
2946 		INIT_WORK(&drain->work, drain_local_pages_wq);
2947 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2948 	}
2949 	for_each_cpu(cpu, &cpus_with_pcps)
2950 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2951 
2952 	mutex_unlock(&pcpu_drain_mutex);
2953 }
2954 
2955 #ifdef CONFIG_HIBERNATION
2956 
2957 /*
2958  * Touch the watchdog for every WD_PAGE_COUNT pages.
2959  */
2960 #define WD_PAGE_COUNT	(128*1024)
2961 
2962 void mark_free_pages(struct zone *zone)
2963 {
2964 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2965 	unsigned long flags;
2966 	unsigned int order, t;
2967 	struct page *page;
2968 
2969 	if (zone_is_empty(zone))
2970 		return;
2971 
2972 	spin_lock_irqsave(&zone->lock, flags);
2973 
2974 	max_zone_pfn = zone_end_pfn(zone);
2975 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2976 		if (pfn_valid(pfn)) {
2977 			page = pfn_to_page(pfn);
2978 
2979 			if (!--page_count) {
2980 				touch_nmi_watchdog();
2981 				page_count = WD_PAGE_COUNT;
2982 			}
2983 
2984 			if (page_zone(page) != zone)
2985 				continue;
2986 
2987 			if (!swsusp_page_is_forbidden(page))
2988 				swsusp_unset_page_free(page);
2989 		}
2990 
2991 	for_each_migratetype_order(order, t) {
2992 		list_for_each_entry(page,
2993 				&zone->free_area[order].free_list[t], lru) {
2994 			unsigned long i;
2995 
2996 			pfn = page_to_pfn(page);
2997 			for (i = 0; i < (1UL << order); i++) {
2998 				if (!--page_count) {
2999 					touch_nmi_watchdog();
3000 					page_count = WD_PAGE_COUNT;
3001 				}
3002 				swsusp_set_page_free(pfn_to_page(pfn + i));
3003 			}
3004 		}
3005 	}
3006 	spin_unlock_irqrestore(&zone->lock, flags);
3007 }
3008 #endif /* CONFIG_PM */
3009 
3010 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3011 {
3012 	int migratetype;
3013 
3014 	if (!free_pcp_prepare(page))
3015 		return false;
3016 
3017 	migratetype = get_pfnblock_migratetype(page, pfn);
3018 	set_pcppage_migratetype(page, migratetype);
3019 	return true;
3020 }
3021 
3022 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3023 {
3024 	struct zone *zone = page_zone(page);
3025 	struct per_cpu_pages *pcp;
3026 	int migratetype;
3027 
3028 	migratetype = get_pcppage_migratetype(page);
3029 	__count_vm_event(PGFREE);
3030 
3031 	/*
3032 	 * We only track unmovable, reclaimable and movable on pcp lists.
3033 	 * Free ISOLATE pages back to the allocator because they are being
3034 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3035 	 * areas back if necessary. Otherwise, we may have to free
3036 	 * excessively into the page allocator
3037 	 */
3038 	if (migratetype >= MIGRATE_PCPTYPES) {
3039 		if (unlikely(is_migrate_isolate(migratetype))) {
3040 			free_one_page(zone, page, pfn, 0, migratetype);
3041 			return;
3042 		}
3043 		migratetype = MIGRATE_MOVABLE;
3044 	}
3045 
3046 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3047 	list_add(&page->lru, &pcp->lists[migratetype]);
3048 	pcp->count++;
3049 	if (pcp->count >= pcp->high) {
3050 		unsigned long batch = READ_ONCE(pcp->batch);
3051 		free_pcppages_bulk(zone, batch, pcp);
3052 	}
3053 }
3054 
3055 /*
3056  * Free a 0-order page
3057  */
3058 void free_unref_page(struct page *page)
3059 {
3060 	unsigned long flags;
3061 	unsigned long pfn = page_to_pfn(page);
3062 
3063 	if (!free_unref_page_prepare(page, pfn))
3064 		return;
3065 
3066 	local_irq_save(flags);
3067 	free_unref_page_commit(page, pfn);
3068 	local_irq_restore(flags);
3069 }
3070 
3071 /*
3072  * Free a list of 0-order pages
3073  */
3074 void free_unref_page_list(struct list_head *list)
3075 {
3076 	struct page *page, *next;
3077 	unsigned long flags, pfn;
3078 	int batch_count = 0;
3079 
3080 	/* Prepare pages for freeing */
3081 	list_for_each_entry_safe(page, next, list, lru) {
3082 		pfn = page_to_pfn(page);
3083 		if (!free_unref_page_prepare(page, pfn))
3084 			list_del(&page->lru);
3085 		set_page_private(page, pfn);
3086 	}
3087 
3088 	local_irq_save(flags);
3089 	list_for_each_entry_safe(page, next, list, lru) {
3090 		unsigned long pfn = page_private(page);
3091 
3092 		set_page_private(page, 0);
3093 		trace_mm_page_free_batched(page);
3094 		free_unref_page_commit(page, pfn);
3095 
3096 		/*
3097 		 * Guard against excessive IRQ disabled times when we get
3098 		 * a large list of pages to free.
3099 		 */
3100 		if (++batch_count == SWAP_CLUSTER_MAX) {
3101 			local_irq_restore(flags);
3102 			batch_count = 0;
3103 			local_irq_save(flags);
3104 		}
3105 	}
3106 	local_irq_restore(flags);
3107 }
3108 
3109 /*
3110  * split_page takes a non-compound higher-order page, and splits it into
3111  * n (1<<order) sub-pages: page[0..n]
3112  * Each sub-page must be freed individually.
3113  *
3114  * Note: this is probably too low level an operation for use in drivers.
3115  * Please consult with lkml before using this in your driver.
3116  */
3117 void split_page(struct page *page, unsigned int order)
3118 {
3119 	int i;
3120 
3121 	VM_BUG_ON_PAGE(PageCompound(page), page);
3122 	VM_BUG_ON_PAGE(!page_count(page), page);
3123 
3124 	for (i = 1; i < (1 << order); i++)
3125 		set_page_refcounted(page + i);
3126 	split_page_owner(page, order);
3127 }
3128 EXPORT_SYMBOL_GPL(split_page);
3129 
3130 int __isolate_free_page(struct page *page, unsigned int order)
3131 {
3132 	struct free_area *area = &page_zone(page)->free_area[order];
3133 	unsigned long watermark;
3134 	struct zone *zone;
3135 	int mt;
3136 
3137 	BUG_ON(!PageBuddy(page));
3138 
3139 	zone = page_zone(page);
3140 	mt = get_pageblock_migratetype(page);
3141 
3142 	if (!is_migrate_isolate(mt)) {
3143 		/*
3144 		 * Obey watermarks as if the page was being allocated. We can
3145 		 * emulate a high-order watermark check with a raised order-0
3146 		 * watermark, because we already know our high-order page
3147 		 * exists.
3148 		 */
3149 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3150 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3151 			return 0;
3152 
3153 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3154 	}
3155 
3156 	/* Remove page from free list */
3157 
3158 	del_page_from_free_area(page, area);
3159 
3160 	/*
3161 	 * Set the pageblock if the isolated page is at least half of a
3162 	 * pageblock
3163 	 */
3164 	if (order >= pageblock_order - 1) {
3165 		struct page *endpage = page + (1 << order) - 1;
3166 		for (; page < endpage; page += pageblock_nr_pages) {
3167 			int mt = get_pageblock_migratetype(page);
3168 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3169 			    && !is_migrate_highatomic(mt))
3170 				set_pageblock_migratetype(page,
3171 							  MIGRATE_MOVABLE);
3172 		}
3173 	}
3174 
3175 
3176 	return 1UL << order;
3177 }
3178 
3179 /*
3180  * Update NUMA hit/miss statistics
3181  *
3182  * Must be called with interrupts disabled.
3183  */
3184 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3185 {
3186 #ifdef CONFIG_NUMA
3187 	enum numa_stat_item local_stat = NUMA_LOCAL;
3188 
3189 	/* skip numa counters update if numa stats is disabled */
3190 	if (!static_branch_likely(&vm_numa_stat_key))
3191 		return;
3192 
3193 	if (zone_to_nid(z) != numa_node_id())
3194 		local_stat = NUMA_OTHER;
3195 
3196 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3197 		__inc_numa_state(z, NUMA_HIT);
3198 	else {
3199 		__inc_numa_state(z, NUMA_MISS);
3200 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3201 	}
3202 	__inc_numa_state(z, local_stat);
3203 #endif
3204 }
3205 
3206 /* Remove page from the per-cpu list, caller must protect the list */
3207 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3208 			unsigned int alloc_flags,
3209 			struct per_cpu_pages *pcp,
3210 			struct list_head *list)
3211 {
3212 	struct page *page;
3213 
3214 	do {
3215 		if (list_empty(list)) {
3216 			pcp->count += rmqueue_bulk(zone, 0,
3217 					pcp->batch, list,
3218 					migratetype, alloc_flags);
3219 			if (unlikely(list_empty(list)))
3220 				return NULL;
3221 		}
3222 
3223 		page = list_first_entry(list, struct page, lru);
3224 		list_del(&page->lru);
3225 		pcp->count--;
3226 	} while (check_new_pcp(page));
3227 
3228 	return page;
3229 }
3230 
3231 /* Lock and remove page from the per-cpu list */
3232 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3233 			struct zone *zone, gfp_t gfp_flags,
3234 			int migratetype, unsigned int alloc_flags)
3235 {
3236 	struct per_cpu_pages *pcp;
3237 	struct list_head *list;
3238 	struct page *page;
3239 	unsigned long flags;
3240 
3241 	local_irq_save(flags);
3242 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3243 	list = &pcp->lists[migratetype];
3244 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3245 	if (page) {
3246 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3247 		zone_statistics(preferred_zone, zone);
3248 	}
3249 	local_irq_restore(flags);
3250 	return page;
3251 }
3252 
3253 /*
3254  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3255  */
3256 static inline
3257 struct page *rmqueue(struct zone *preferred_zone,
3258 			struct zone *zone, unsigned int order,
3259 			gfp_t gfp_flags, unsigned int alloc_flags,
3260 			int migratetype)
3261 {
3262 	unsigned long flags;
3263 	struct page *page;
3264 
3265 	if (likely(order == 0)) {
3266 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3267 					migratetype, alloc_flags);
3268 		goto out;
3269 	}
3270 
3271 	/*
3272 	 * We most definitely don't want callers attempting to
3273 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3274 	 */
3275 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3276 	spin_lock_irqsave(&zone->lock, flags);
3277 
3278 	do {
3279 		page = NULL;
3280 		if (alloc_flags & ALLOC_HARDER) {
3281 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3282 			if (page)
3283 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3284 		}
3285 		if (!page)
3286 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3287 	} while (page && check_new_pages(page, order));
3288 	spin_unlock(&zone->lock);
3289 	if (!page)
3290 		goto failed;
3291 	__mod_zone_freepage_state(zone, -(1 << order),
3292 				  get_pcppage_migratetype(page));
3293 
3294 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3295 	zone_statistics(preferred_zone, zone);
3296 	local_irq_restore(flags);
3297 
3298 out:
3299 	/* Separate test+clear to avoid unnecessary atomics */
3300 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3301 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3302 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3303 	}
3304 
3305 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3306 	return page;
3307 
3308 failed:
3309 	local_irq_restore(flags);
3310 	return NULL;
3311 }
3312 
3313 #ifdef CONFIG_FAIL_PAGE_ALLOC
3314 
3315 static struct {
3316 	struct fault_attr attr;
3317 
3318 	bool ignore_gfp_highmem;
3319 	bool ignore_gfp_reclaim;
3320 	u32 min_order;
3321 } fail_page_alloc = {
3322 	.attr = FAULT_ATTR_INITIALIZER,
3323 	.ignore_gfp_reclaim = true,
3324 	.ignore_gfp_highmem = true,
3325 	.min_order = 1,
3326 };
3327 
3328 static int __init setup_fail_page_alloc(char *str)
3329 {
3330 	return setup_fault_attr(&fail_page_alloc.attr, str);
3331 }
3332 __setup("fail_page_alloc=", setup_fail_page_alloc);
3333 
3334 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3335 {
3336 	if (order < fail_page_alloc.min_order)
3337 		return false;
3338 	if (gfp_mask & __GFP_NOFAIL)
3339 		return false;
3340 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3341 		return false;
3342 	if (fail_page_alloc.ignore_gfp_reclaim &&
3343 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3344 		return false;
3345 
3346 	return should_fail(&fail_page_alloc.attr, 1 << order);
3347 }
3348 
3349 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3350 
3351 static int __init fail_page_alloc_debugfs(void)
3352 {
3353 	umode_t mode = S_IFREG | 0600;
3354 	struct dentry *dir;
3355 
3356 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3357 					&fail_page_alloc.attr);
3358 
3359 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3360 			    &fail_page_alloc.ignore_gfp_reclaim);
3361 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3362 			    &fail_page_alloc.ignore_gfp_highmem);
3363 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3364 
3365 	return 0;
3366 }
3367 
3368 late_initcall(fail_page_alloc_debugfs);
3369 
3370 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3371 
3372 #else /* CONFIG_FAIL_PAGE_ALLOC */
3373 
3374 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3375 {
3376 	return false;
3377 }
3378 
3379 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3380 
3381 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3382 {
3383 	return __should_fail_alloc_page(gfp_mask, order);
3384 }
3385 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3386 
3387 /*
3388  * Return true if free base pages are above 'mark'. For high-order checks it
3389  * will return true of the order-0 watermark is reached and there is at least
3390  * one free page of a suitable size. Checking now avoids taking the zone lock
3391  * to check in the allocation paths if no pages are free.
3392  */
3393 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3394 			 int classzone_idx, unsigned int alloc_flags,
3395 			 long free_pages)
3396 {
3397 	long min = mark;
3398 	int o;
3399 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3400 
3401 	/* free_pages may go negative - that's OK */
3402 	free_pages -= (1 << order) - 1;
3403 
3404 	if (alloc_flags & ALLOC_HIGH)
3405 		min -= min / 2;
3406 
3407 	/*
3408 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3409 	 * the high-atomic reserves. This will over-estimate the size of the
3410 	 * atomic reserve but it avoids a search.
3411 	 */
3412 	if (likely(!alloc_harder)) {
3413 		free_pages -= z->nr_reserved_highatomic;
3414 	} else {
3415 		/*
3416 		 * OOM victims can try even harder than normal ALLOC_HARDER
3417 		 * users on the grounds that it's definitely going to be in
3418 		 * the exit path shortly and free memory. Any allocation it
3419 		 * makes during the free path will be small and short-lived.
3420 		 */
3421 		if (alloc_flags & ALLOC_OOM)
3422 			min -= min / 2;
3423 		else
3424 			min -= min / 4;
3425 	}
3426 
3427 
3428 #ifdef CONFIG_CMA
3429 	/* If allocation can't use CMA areas don't use free CMA pages */
3430 	if (!(alloc_flags & ALLOC_CMA))
3431 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3432 #endif
3433 
3434 	/*
3435 	 * Check watermarks for an order-0 allocation request. If these
3436 	 * are not met, then a high-order request also cannot go ahead
3437 	 * even if a suitable page happened to be free.
3438 	 */
3439 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3440 		return false;
3441 
3442 	/* If this is an order-0 request then the watermark is fine */
3443 	if (!order)
3444 		return true;
3445 
3446 	/* For a high-order request, check at least one suitable page is free */
3447 	for (o = order; o < MAX_ORDER; o++) {
3448 		struct free_area *area = &z->free_area[o];
3449 		int mt;
3450 
3451 		if (!area->nr_free)
3452 			continue;
3453 
3454 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3455 			if (!free_area_empty(area, mt))
3456 				return true;
3457 		}
3458 
3459 #ifdef CONFIG_CMA
3460 		if ((alloc_flags & ALLOC_CMA) &&
3461 		    !free_area_empty(area, MIGRATE_CMA)) {
3462 			return true;
3463 		}
3464 #endif
3465 		if (alloc_harder &&
3466 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3467 			return true;
3468 	}
3469 	return false;
3470 }
3471 
3472 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3473 		      int classzone_idx, unsigned int alloc_flags)
3474 {
3475 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3476 					zone_page_state(z, NR_FREE_PAGES));
3477 }
3478 
3479 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3480 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3481 {
3482 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3483 	long cma_pages = 0;
3484 
3485 #ifdef CONFIG_CMA
3486 	/* If allocation can't use CMA areas don't use free CMA pages */
3487 	if (!(alloc_flags & ALLOC_CMA))
3488 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3489 #endif
3490 
3491 	/*
3492 	 * Fast check for order-0 only. If this fails then the reserves
3493 	 * need to be calculated. There is a corner case where the check
3494 	 * passes but only the high-order atomic reserve are free. If
3495 	 * the caller is !atomic then it'll uselessly search the free
3496 	 * list. That corner case is then slower but it is harmless.
3497 	 */
3498 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3499 		return true;
3500 
3501 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3502 					free_pages);
3503 }
3504 
3505 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3506 			unsigned long mark, int classzone_idx)
3507 {
3508 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3509 
3510 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3511 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3512 
3513 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3514 								free_pages);
3515 }
3516 
3517 #ifdef CONFIG_NUMA
3518 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3519 {
3520 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3521 				node_reclaim_distance;
3522 }
3523 #else	/* CONFIG_NUMA */
3524 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3525 {
3526 	return true;
3527 }
3528 #endif	/* CONFIG_NUMA */
3529 
3530 /*
3531  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3532  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3533  * premature use of a lower zone may cause lowmem pressure problems that
3534  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3535  * probably too small. It only makes sense to spread allocations to avoid
3536  * fragmentation between the Normal and DMA32 zones.
3537  */
3538 static inline unsigned int
3539 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3540 {
3541 	unsigned int alloc_flags = 0;
3542 
3543 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3544 		alloc_flags |= ALLOC_KSWAPD;
3545 
3546 #ifdef CONFIG_ZONE_DMA32
3547 	if (!zone)
3548 		return alloc_flags;
3549 
3550 	if (zone_idx(zone) != ZONE_NORMAL)
3551 		return alloc_flags;
3552 
3553 	/*
3554 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3555 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3556 	 * on UMA that if Normal is populated then so is DMA32.
3557 	 */
3558 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3559 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3560 		return alloc_flags;
3561 
3562 	alloc_flags |= ALLOC_NOFRAGMENT;
3563 #endif /* CONFIG_ZONE_DMA32 */
3564 	return alloc_flags;
3565 }
3566 
3567 /*
3568  * get_page_from_freelist goes through the zonelist trying to allocate
3569  * a page.
3570  */
3571 static struct page *
3572 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3573 						const struct alloc_context *ac)
3574 {
3575 	struct zoneref *z;
3576 	struct zone *zone;
3577 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3578 	bool no_fallback;
3579 
3580 retry:
3581 	/*
3582 	 * Scan zonelist, looking for a zone with enough free.
3583 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3584 	 */
3585 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3586 	z = ac->preferred_zoneref;
3587 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3588 								ac->nodemask) {
3589 		struct page *page;
3590 		unsigned long mark;
3591 
3592 		if (cpusets_enabled() &&
3593 			(alloc_flags & ALLOC_CPUSET) &&
3594 			!__cpuset_zone_allowed(zone, gfp_mask))
3595 				continue;
3596 		/*
3597 		 * When allocating a page cache page for writing, we
3598 		 * want to get it from a node that is within its dirty
3599 		 * limit, such that no single node holds more than its
3600 		 * proportional share of globally allowed dirty pages.
3601 		 * The dirty limits take into account the node's
3602 		 * lowmem reserves and high watermark so that kswapd
3603 		 * should be able to balance it without having to
3604 		 * write pages from its LRU list.
3605 		 *
3606 		 * XXX: For now, allow allocations to potentially
3607 		 * exceed the per-node dirty limit in the slowpath
3608 		 * (spread_dirty_pages unset) before going into reclaim,
3609 		 * which is important when on a NUMA setup the allowed
3610 		 * nodes are together not big enough to reach the
3611 		 * global limit.  The proper fix for these situations
3612 		 * will require awareness of nodes in the
3613 		 * dirty-throttling and the flusher threads.
3614 		 */
3615 		if (ac->spread_dirty_pages) {
3616 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3617 				continue;
3618 
3619 			if (!node_dirty_ok(zone->zone_pgdat)) {
3620 				last_pgdat_dirty_limit = zone->zone_pgdat;
3621 				continue;
3622 			}
3623 		}
3624 
3625 		if (no_fallback && nr_online_nodes > 1 &&
3626 		    zone != ac->preferred_zoneref->zone) {
3627 			int local_nid;
3628 
3629 			/*
3630 			 * If moving to a remote node, retry but allow
3631 			 * fragmenting fallbacks. Locality is more important
3632 			 * than fragmentation avoidance.
3633 			 */
3634 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3635 			if (zone_to_nid(zone) != local_nid) {
3636 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3637 				goto retry;
3638 			}
3639 		}
3640 
3641 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3642 		if (!zone_watermark_fast(zone, order, mark,
3643 				       ac_classzone_idx(ac), alloc_flags)) {
3644 			int ret;
3645 
3646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3647 			/*
3648 			 * Watermark failed for this zone, but see if we can
3649 			 * grow this zone if it contains deferred pages.
3650 			 */
3651 			if (static_branch_unlikely(&deferred_pages)) {
3652 				if (_deferred_grow_zone(zone, order))
3653 					goto try_this_zone;
3654 			}
3655 #endif
3656 			/* Checked here to keep the fast path fast */
3657 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3658 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3659 				goto try_this_zone;
3660 
3661 			if (node_reclaim_mode == 0 ||
3662 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3663 				continue;
3664 
3665 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3666 			switch (ret) {
3667 			case NODE_RECLAIM_NOSCAN:
3668 				/* did not scan */
3669 				continue;
3670 			case NODE_RECLAIM_FULL:
3671 				/* scanned but unreclaimable */
3672 				continue;
3673 			default:
3674 				/* did we reclaim enough */
3675 				if (zone_watermark_ok(zone, order, mark,
3676 						ac_classzone_idx(ac), alloc_flags))
3677 					goto try_this_zone;
3678 
3679 				continue;
3680 			}
3681 		}
3682 
3683 try_this_zone:
3684 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3685 				gfp_mask, alloc_flags, ac->migratetype);
3686 		if (page) {
3687 			prep_new_page(page, order, gfp_mask, alloc_flags);
3688 
3689 			/*
3690 			 * If this is a high-order atomic allocation then check
3691 			 * if the pageblock should be reserved for the future
3692 			 */
3693 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3694 				reserve_highatomic_pageblock(page, zone, order);
3695 
3696 			return page;
3697 		} else {
3698 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3699 			/* Try again if zone has deferred pages */
3700 			if (static_branch_unlikely(&deferred_pages)) {
3701 				if (_deferred_grow_zone(zone, order))
3702 					goto try_this_zone;
3703 			}
3704 #endif
3705 		}
3706 	}
3707 
3708 	/*
3709 	 * It's possible on a UMA machine to get through all zones that are
3710 	 * fragmented. If avoiding fragmentation, reset and try again.
3711 	 */
3712 	if (no_fallback) {
3713 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3714 		goto retry;
3715 	}
3716 
3717 	return NULL;
3718 }
3719 
3720 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3721 {
3722 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3723 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3724 
3725 	if (!__ratelimit(&show_mem_rs))
3726 		return;
3727 
3728 	/*
3729 	 * This documents exceptions given to allocations in certain
3730 	 * contexts that are allowed to allocate outside current's set
3731 	 * of allowed nodes.
3732 	 */
3733 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3734 		if (tsk_is_oom_victim(current) ||
3735 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3736 			filter &= ~SHOW_MEM_FILTER_NODES;
3737 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3738 		filter &= ~SHOW_MEM_FILTER_NODES;
3739 
3740 	show_mem(filter, nodemask);
3741 }
3742 
3743 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3744 {
3745 	struct va_format vaf;
3746 	va_list args;
3747 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3748 				      DEFAULT_RATELIMIT_BURST);
3749 
3750 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3751 		return;
3752 
3753 	va_start(args, fmt);
3754 	vaf.fmt = fmt;
3755 	vaf.va = &args;
3756 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3757 			current->comm, &vaf, gfp_mask, &gfp_mask,
3758 			nodemask_pr_args(nodemask));
3759 	va_end(args);
3760 
3761 	cpuset_print_current_mems_allowed();
3762 	pr_cont("\n");
3763 	dump_stack();
3764 	warn_alloc_show_mem(gfp_mask, nodemask);
3765 }
3766 
3767 static inline struct page *
3768 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3769 			      unsigned int alloc_flags,
3770 			      const struct alloc_context *ac)
3771 {
3772 	struct page *page;
3773 
3774 	page = get_page_from_freelist(gfp_mask, order,
3775 			alloc_flags|ALLOC_CPUSET, ac);
3776 	/*
3777 	 * fallback to ignore cpuset restriction if our nodes
3778 	 * are depleted
3779 	 */
3780 	if (!page)
3781 		page = get_page_from_freelist(gfp_mask, order,
3782 				alloc_flags, ac);
3783 
3784 	return page;
3785 }
3786 
3787 static inline struct page *
3788 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3789 	const struct alloc_context *ac, unsigned long *did_some_progress)
3790 {
3791 	struct oom_control oc = {
3792 		.zonelist = ac->zonelist,
3793 		.nodemask = ac->nodemask,
3794 		.memcg = NULL,
3795 		.gfp_mask = gfp_mask,
3796 		.order = order,
3797 	};
3798 	struct page *page;
3799 
3800 	*did_some_progress = 0;
3801 
3802 	/*
3803 	 * Acquire the oom lock.  If that fails, somebody else is
3804 	 * making progress for us.
3805 	 */
3806 	if (!mutex_trylock(&oom_lock)) {
3807 		*did_some_progress = 1;
3808 		schedule_timeout_uninterruptible(1);
3809 		return NULL;
3810 	}
3811 
3812 	/*
3813 	 * Go through the zonelist yet one more time, keep very high watermark
3814 	 * here, this is only to catch a parallel oom killing, we must fail if
3815 	 * we're still under heavy pressure. But make sure that this reclaim
3816 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3817 	 * allocation which will never fail due to oom_lock already held.
3818 	 */
3819 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3820 				      ~__GFP_DIRECT_RECLAIM, order,
3821 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3822 	if (page)
3823 		goto out;
3824 
3825 	/* Coredumps can quickly deplete all memory reserves */
3826 	if (current->flags & PF_DUMPCORE)
3827 		goto out;
3828 	/* The OOM killer will not help higher order allocs */
3829 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3830 		goto out;
3831 	/*
3832 	 * We have already exhausted all our reclaim opportunities without any
3833 	 * success so it is time to admit defeat. We will skip the OOM killer
3834 	 * because it is very likely that the caller has a more reasonable
3835 	 * fallback than shooting a random task.
3836 	 */
3837 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3838 		goto out;
3839 	/* The OOM killer does not needlessly kill tasks for lowmem */
3840 	if (ac->high_zoneidx < ZONE_NORMAL)
3841 		goto out;
3842 	if (pm_suspended_storage())
3843 		goto out;
3844 	/*
3845 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3846 	 * other request to make a forward progress.
3847 	 * We are in an unfortunate situation where out_of_memory cannot
3848 	 * do much for this context but let's try it to at least get
3849 	 * access to memory reserved if the current task is killed (see
3850 	 * out_of_memory). Once filesystems are ready to handle allocation
3851 	 * failures more gracefully we should just bail out here.
3852 	 */
3853 
3854 	/* The OOM killer may not free memory on a specific node */
3855 	if (gfp_mask & __GFP_THISNODE)
3856 		goto out;
3857 
3858 	/* Exhausted what can be done so it's blame time */
3859 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3860 		*did_some_progress = 1;
3861 
3862 		/*
3863 		 * Help non-failing allocations by giving them access to memory
3864 		 * reserves
3865 		 */
3866 		if (gfp_mask & __GFP_NOFAIL)
3867 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3868 					ALLOC_NO_WATERMARKS, ac);
3869 	}
3870 out:
3871 	mutex_unlock(&oom_lock);
3872 	return page;
3873 }
3874 
3875 /*
3876  * Maximum number of compaction retries wit a progress before OOM
3877  * killer is consider as the only way to move forward.
3878  */
3879 #define MAX_COMPACT_RETRIES 16
3880 
3881 #ifdef CONFIG_COMPACTION
3882 /* Try memory compaction for high-order allocations before reclaim */
3883 static struct page *
3884 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3885 		unsigned int alloc_flags, const struct alloc_context *ac,
3886 		enum compact_priority prio, enum compact_result *compact_result)
3887 {
3888 	struct page *page = NULL;
3889 	unsigned long pflags;
3890 	unsigned int noreclaim_flag;
3891 
3892 	if (!order)
3893 		return NULL;
3894 
3895 	psi_memstall_enter(&pflags);
3896 	noreclaim_flag = memalloc_noreclaim_save();
3897 
3898 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3899 								prio, &page);
3900 
3901 	memalloc_noreclaim_restore(noreclaim_flag);
3902 	psi_memstall_leave(&pflags);
3903 
3904 	/*
3905 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3906 	 * count a compaction stall
3907 	 */
3908 	count_vm_event(COMPACTSTALL);
3909 
3910 	/* Prep a captured page if available */
3911 	if (page)
3912 		prep_new_page(page, order, gfp_mask, alloc_flags);
3913 
3914 	/* Try get a page from the freelist if available */
3915 	if (!page)
3916 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3917 
3918 	if (page) {
3919 		struct zone *zone = page_zone(page);
3920 
3921 		zone->compact_blockskip_flush = false;
3922 		compaction_defer_reset(zone, order, true);
3923 		count_vm_event(COMPACTSUCCESS);
3924 		return page;
3925 	}
3926 
3927 	/*
3928 	 * It's bad if compaction run occurs and fails. The most likely reason
3929 	 * is that pages exist, but not enough to satisfy watermarks.
3930 	 */
3931 	count_vm_event(COMPACTFAIL);
3932 
3933 	cond_resched();
3934 
3935 	return NULL;
3936 }
3937 
3938 static inline bool
3939 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3940 		     enum compact_result compact_result,
3941 		     enum compact_priority *compact_priority,
3942 		     int *compaction_retries)
3943 {
3944 	int max_retries = MAX_COMPACT_RETRIES;
3945 	int min_priority;
3946 	bool ret = false;
3947 	int retries = *compaction_retries;
3948 	enum compact_priority priority = *compact_priority;
3949 
3950 	if (!order)
3951 		return false;
3952 
3953 	if (compaction_made_progress(compact_result))
3954 		(*compaction_retries)++;
3955 
3956 	/*
3957 	 * compaction considers all the zone as desperately out of memory
3958 	 * so it doesn't really make much sense to retry except when the
3959 	 * failure could be caused by insufficient priority
3960 	 */
3961 	if (compaction_failed(compact_result))
3962 		goto check_priority;
3963 
3964 	/*
3965 	 * compaction was skipped because there are not enough order-0 pages
3966 	 * to work with, so we retry only if it looks like reclaim can help.
3967 	 */
3968 	if (compaction_needs_reclaim(compact_result)) {
3969 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3970 		goto out;
3971 	}
3972 
3973 	/*
3974 	 * make sure the compaction wasn't deferred or didn't bail out early
3975 	 * due to locks contention before we declare that we should give up.
3976 	 * But the next retry should use a higher priority if allowed, so
3977 	 * we don't just keep bailing out endlessly.
3978 	 */
3979 	if (compaction_withdrawn(compact_result)) {
3980 		goto check_priority;
3981 	}
3982 
3983 	/*
3984 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3985 	 * costly ones because they are de facto nofail and invoke OOM
3986 	 * killer to move on while costly can fail and users are ready
3987 	 * to cope with that. 1/4 retries is rather arbitrary but we
3988 	 * would need much more detailed feedback from compaction to
3989 	 * make a better decision.
3990 	 */
3991 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3992 		max_retries /= 4;
3993 	if (*compaction_retries <= max_retries) {
3994 		ret = true;
3995 		goto out;
3996 	}
3997 
3998 	/*
3999 	 * Make sure there are attempts at the highest priority if we exhausted
4000 	 * all retries or failed at the lower priorities.
4001 	 */
4002 check_priority:
4003 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4004 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4005 
4006 	if (*compact_priority > min_priority) {
4007 		(*compact_priority)--;
4008 		*compaction_retries = 0;
4009 		ret = true;
4010 	}
4011 out:
4012 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4013 	return ret;
4014 }
4015 #else
4016 static inline struct page *
4017 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4018 		unsigned int alloc_flags, const struct alloc_context *ac,
4019 		enum compact_priority prio, enum compact_result *compact_result)
4020 {
4021 	*compact_result = COMPACT_SKIPPED;
4022 	return NULL;
4023 }
4024 
4025 static inline bool
4026 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4027 		     enum compact_result compact_result,
4028 		     enum compact_priority *compact_priority,
4029 		     int *compaction_retries)
4030 {
4031 	struct zone *zone;
4032 	struct zoneref *z;
4033 
4034 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4035 		return false;
4036 
4037 	/*
4038 	 * There are setups with compaction disabled which would prefer to loop
4039 	 * inside the allocator rather than hit the oom killer prematurely.
4040 	 * Let's give them a good hope and keep retrying while the order-0
4041 	 * watermarks are OK.
4042 	 */
4043 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4044 					ac->nodemask) {
4045 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4046 					ac_classzone_idx(ac), alloc_flags))
4047 			return true;
4048 	}
4049 	return false;
4050 }
4051 #endif /* CONFIG_COMPACTION */
4052 
4053 #ifdef CONFIG_LOCKDEP
4054 static struct lockdep_map __fs_reclaim_map =
4055 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4056 
4057 static bool __need_fs_reclaim(gfp_t gfp_mask)
4058 {
4059 	gfp_mask = current_gfp_context(gfp_mask);
4060 
4061 	/* no reclaim without waiting on it */
4062 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4063 		return false;
4064 
4065 	/* this guy won't enter reclaim */
4066 	if (current->flags & PF_MEMALLOC)
4067 		return false;
4068 
4069 	/* We're only interested __GFP_FS allocations for now */
4070 	if (!(gfp_mask & __GFP_FS))
4071 		return false;
4072 
4073 	if (gfp_mask & __GFP_NOLOCKDEP)
4074 		return false;
4075 
4076 	return true;
4077 }
4078 
4079 void __fs_reclaim_acquire(void)
4080 {
4081 	lock_map_acquire(&__fs_reclaim_map);
4082 }
4083 
4084 void __fs_reclaim_release(void)
4085 {
4086 	lock_map_release(&__fs_reclaim_map);
4087 }
4088 
4089 void fs_reclaim_acquire(gfp_t gfp_mask)
4090 {
4091 	if (__need_fs_reclaim(gfp_mask))
4092 		__fs_reclaim_acquire();
4093 }
4094 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4095 
4096 void fs_reclaim_release(gfp_t gfp_mask)
4097 {
4098 	if (__need_fs_reclaim(gfp_mask))
4099 		__fs_reclaim_release();
4100 }
4101 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4102 #endif
4103 
4104 /* Perform direct synchronous page reclaim */
4105 static int
4106 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4107 					const struct alloc_context *ac)
4108 {
4109 	int progress;
4110 	unsigned int noreclaim_flag;
4111 	unsigned long pflags;
4112 
4113 	cond_resched();
4114 
4115 	/* We now go into synchronous reclaim */
4116 	cpuset_memory_pressure_bump();
4117 	psi_memstall_enter(&pflags);
4118 	fs_reclaim_acquire(gfp_mask);
4119 	noreclaim_flag = memalloc_noreclaim_save();
4120 
4121 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4122 								ac->nodemask);
4123 
4124 	memalloc_noreclaim_restore(noreclaim_flag);
4125 	fs_reclaim_release(gfp_mask);
4126 	psi_memstall_leave(&pflags);
4127 
4128 	cond_resched();
4129 
4130 	return progress;
4131 }
4132 
4133 /* The really slow allocator path where we enter direct reclaim */
4134 static inline struct page *
4135 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4136 		unsigned int alloc_flags, const struct alloc_context *ac,
4137 		unsigned long *did_some_progress)
4138 {
4139 	struct page *page = NULL;
4140 	bool drained = false;
4141 
4142 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4143 	if (unlikely(!(*did_some_progress)))
4144 		return NULL;
4145 
4146 retry:
4147 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4148 
4149 	/*
4150 	 * If an allocation failed after direct reclaim, it could be because
4151 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4152 	 * Shrink them them and try again
4153 	 */
4154 	if (!page && !drained) {
4155 		unreserve_highatomic_pageblock(ac, false);
4156 		drain_all_pages(NULL);
4157 		drained = true;
4158 		goto retry;
4159 	}
4160 
4161 	return page;
4162 }
4163 
4164 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4165 			     const struct alloc_context *ac)
4166 {
4167 	struct zoneref *z;
4168 	struct zone *zone;
4169 	pg_data_t *last_pgdat = NULL;
4170 	enum zone_type high_zoneidx = ac->high_zoneidx;
4171 
4172 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4173 					ac->nodemask) {
4174 		if (last_pgdat != zone->zone_pgdat)
4175 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4176 		last_pgdat = zone->zone_pgdat;
4177 	}
4178 }
4179 
4180 static inline unsigned int
4181 gfp_to_alloc_flags(gfp_t gfp_mask)
4182 {
4183 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4184 
4185 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4186 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4187 
4188 	/*
4189 	 * The caller may dip into page reserves a bit more if the caller
4190 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4191 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4192 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4193 	 */
4194 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4195 
4196 	if (gfp_mask & __GFP_ATOMIC) {
4197 		/*
4198 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4199 		 * if it can't schedule.
4200 		 */
4201 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4202 			alloc_flags |= ALLOC_HARDER;
4203 		/*
4204 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4205 		 * comment for __cpuset_node_allowed().
4206 		 */
4207 		alloc_flags &= ~ALLOC_CPUSET;
4208 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4209 		alloc_flags |= ALLOC_HARDER;
4210 
4211 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4212 		alloc_flags |= ALLOC_KSWAPD;
4213 
4214 #ifdef CONFIG_CMA
4215 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4216 		alloc_flags |= ALLOC_CMA;
4217 #endif
4218 	return alloc_flags;
4219 }
4220 
4221 static bool oom_reserves_allowed(struct task_struct *tsk)
4222 {
4223 	if (!tsk_is_oom_victim(tsk))
4224 		return false;
4225 
4226 	/*
4227 	 * !MMU doesn't have oom reaper so give access to memory reserves
4228 	 * only to the thread with TIF_MEMDIE set
4229 	 */
4230 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4231 		return false;
4232 
4233 	return true;
4234 }
4235 
4236 /*
4237  * Distinguish requests which really need access to full memory
4238  * reserves from oom victims which can live with a portion of it
4239  */
4240 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4241 {
4242 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4243 		return 0;
4244 	if (gfp_mask & __GFP_MEMALLOC)
4245 		return ALLOC_NO_WATERMARKS;
4246 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4247 		return ALLOC_NO_WATERMARKS;
4248 	if (!in_interrupt()) {
4249 		if (current->flags & PF_MEMALLOC)
4250 			return ALLOC_NO_WATERMARKS;
4251 		else if (oom_reserves_allowed(current))
4252 			return ALLOC_OOM;
4253 	}
4254 
4255 	return 0;
4256 }
4257 
4258 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4259 {
4260 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4261 }
4262 
4263 /*
4264  * Checks whether it makes sense to retry the reclaim to make a forward progress
4265  * for the given allocation request.
4266  *
4267  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4268  * without success, or when we couldn't even meet the watermark if we
4269  * reclaimed all remaining pages on the LRU lists.
4270  *
4271  * Returns true if a retry is viable or false to enter the oom path.
4272  */
4273 static inline bool
4274 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4275 		     struct alloc_context *ac, int alloc_flags,
4276 		     bool did_some_progress, int *no_progress_loops)
4277 {
4278 	struct zone *zone;
4279 	struct zoneref *z;
4280 	bool ret = false;
4281 
4282 	/*
4283 	 * Costly allocations might have made a progress but this doesn't mean
4284 	 * their order will become available due to high fragmentation so
4285 	 * always increment the no progress counter for them
4286 	 */
4287 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4288 		*no_progress_loops = 0;
4289 	else
4290 		(*no_progress_loops)++;
4291 
4292 	/*
4293 	 * Make sure we converge to OOM if we cannot make any progress
4294 	 * several times in the row.
4295 	 */
4296 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4297 		/* Before OOM, exhaust highatomic_reserve */
4298 		return unreserve_highatomic_pageblock(ac, true);
4299 	}
4300 
4301 	/*
4302 	 * Keep reclaiming pages while there is a chance this will lead
4303 	 * somewhere.  If none of the target zones can satisfy our allocation
4304 	 * request even if all reclaimable pages are considered then we are
4305 	 * screwed and have to go OOM.
4306 	 */
4307 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4308 					ac->nodemask) {
4309 		unsigned long available;
4310 		unsigned long reclaimable;
4311 		unsigned long min_wmark = min_wmark_pages(zone);
4312 		bool wmark;
4313 
4314 		available = reclaimable = zone_reclaimable_pages(zone);
4315 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4316 
4317 		/*
4318 		 * Would the allocation succeed if we reclaimed all
4319 		 * reclaimable pages?
4320 		 */
4321 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4322 				ac_classzone_idx(ac), alloc_flags, available);
4323 		trace_reclaim_retry_zone(z, order, reclaimable,
4324 				available, min_wmark, *no_progress_loops, wmark);
4325 		if (wmark) {
4326 			/*
4327 			 * If we didn't make any progress and have a lot of
4328 			 * dirty + writeback pages then we should wait for
4329 			 * an IO to complete to slow down the reclaim and
4330 			 * prevent from pre mature OOM
4331 			 */
4332 			if (!did_some_progress) {
4333 				unsigned long write_pending;
4334 
4335 				write_pending = zone_page_state_snapshot(zone,
4336 							NR_ZONE_WRITE_PENDING);
4337 
4338 				if (2 * write_pending > reclaimable) {
4339 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4340 					return true;
4341 				}
4342 			}
4343 
4344 			ret = true;
4345 			goto out;
4346 		}
4347 	}
4348 
4349 out:
4350 	/*
4351 	 * Memory allocation/reclaim might be called from a WQ context and the
4352 	 * current implementation of the WQ concurrency control doesn't
4353 	 * recognize that a particular WQ is congested if the worker thread is
4354 	 * looping without ever sleeping. Therefore we have to do a short sleep
4355 	 * here rather than calling cond_resched().
4356 	 */
4357 	if (current->flags & PF_WQ_WORKER)
4358 		schedule_timeout_uninterruptible(1);
4359 	else
4360 		cond_resched();
4361 	return ret;
4362 }
4363 
4364 static inline bool
4365 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4366 {
4367 	/*
4368 	 * It's possible that cpuset's mems_allowed and the nodemask from
4369 	 * mempolicy don't intersect. This should be normally dealt with by
4370 	 * policy_nodemask(), but it's possible to race with cpuset update in
4371 	 * such a way the check therein was true, and then it became false
4372 	 * before we got our cpuset_mems_cookie here.
4373 	 * This assumes that for all allocations, ac->nodemask can come only
4374 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4375 	 * when it does not intersect with the cpuset restrictions) or the
4376 	 * caller can deal with a violated nodemask.
4377 	 */
4378 	if (cpusets_enabled() && ac->nodemask &&
4379 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4380 		ac->nodemask = NULL;
4381 		return true;
4382 	}
4383 
4384 	/*
4385 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4386 	 * possible to race with parallel threads in such a way that our
4387 	 * allocation can fail while the mask is being updated. If we are about
4388 	 * to fail, check if the cpuset changed during allocation and if so,
4389 	 * retry.
4390 	 */
4391 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4392 		return true;
4393 
4394 	return false;
4395 }
4396 
4397 static inline struct page *
4398 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4399 						struct alloc_context *ac)
4400 {
4401 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4402 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4403 	struct page *page = NULL;
4404 	unsigned int alloc_flags;
4405 	unsigned long did_some_progress;
4406 	enum compact_priority compact_priority;
4407 	enum compact_result compact_result;
4408 	int compaction_retries;
4409 	int no_progress_loops;
4410 	unsigned int cpuset_mems_cookie;
4411 	int reserve_flags;
4412 
4413 	/*
4414 	 * We also sanity check to catch abuse of atomic reserves being used by
4415 	 * callers that are not in atomic context.
4416 	 */
4417 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4418 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4419 		gfp_mask &= ~__GFP_ATOMIC;
4420 
4421 retry_cpuset:
4422 	compaction_retries = 0;
4423 	no_progress_loops = 0;
4424 	compact_priority = DEF_COMPACT_PRIORITY;
4425 	cpuset_mems_cookie = read_mems_allowed_begin();
4426 
4427 	/*
4428 	 * The fast path uses conservative alloc_flags to succeed only until
4429 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4430 	 * alloc_flags precisely. So we do that now.
4431 	 */
4432 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4433 
4434 	/*
4435 	 * We need to recalculate the starting point for the zonelist iterator
4436 	 * because we might have used different nodemask in the fast path, or
4437 	 * there was a cpuset modification and we are retrying - otherwise we
4438 	 * could end up iterating over non-eligible zones endlessly.
4439 	 */
4440 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4441 					ac->high_zoneidx, ac->nodemask);
4442 	if (!ac->preferred_zoneref->zone)
4443 		goto nopage;
4444 
4445 	if (alloc_flags & ALLOC_KSWAPD)
4446 		wake_all_kswapds(order, gfp_mask, ac);
4447 
4448 	/*
4449 	 * The adjusted alloc_flags might result in immediate success, so try
4450 	 * that first
4451 	 */
4452 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4453 	if (page)
4454 		goto got_pg;
4455 
4456 	/*
4457 	 * For costly allocations, try direct compaction first, as it's likely
4458 	 * that we have enough base pages and don't need to reclaim. For non-
4459 	 * movable high-order allocations, do that as well, as compaction will
4460 	 * try prevent permanent fragmentation by migrating from blocks of the
4461 	 * same migratetype.
4462 	 * Don't try this for allocations that are allowed to ignore
4463 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4464 	 */
4465 	if (can_direct_reclaim &&
4466 			(costly_order ||
4467 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4468 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4469 		page = __alloc_pages_direct_compact(gfp_mask, order,
4470 						alloc_flags, ac,
4471 						INIT_COMPACT_PRIORITY,
4472 						&compact_result);
4473 		if (page)
4474 			goto got_pg;
4475 
4476 		 if (order >= pageblock_order && (gfp_mask & __GFP_IO)) {
4477 			/*
4478 			 * If allocating entire pageblock(s) and compaction
4479 			 * failed because all zones are below low watermarks
4480 			 * or is prohibited because it recently failed at this
4481 			 * order, fail immediately.
4482 			 *
4483 			 * Reclaim is
4484 			 *  - potentially very expensive because zones are far
4485 			 *    below their low watermarks or this is part of very
4486 			 *    bursty high order allocations,
4487 			 *  - not guaranteed to help because isolate_freepages()
4488 			 *    may not iterate over freed pages as part of its
4489 			 *    linear scan, and
4490 			 *  - unlikely to make entire pageblocks free on its
4491 			 *    own.
4492 			 */
4493 			if (compact_result == COMPACT_SKIPPED ||
4494 			    compact_result == COMPACT_DEFERRED)
4495 				goto nopage;
4496 		}
4497 
4498 		/*
4499 		 * Checks for costly allocations with __GFP_NORETRY, which
4500 		 * includes THP page fault allocations
4501 		 */
4502 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4503 			/*
4504 			 * If compaction is deferred for high-order allocations,
4505 			 * it is because sync compaction recently failed. If
4506 			 * this is the case and the caller requested a THP
4507 			 * allocation, we do not want to heavily disrupt the
4508 			 * system, so we fail the allocation instead of entering
4509 			 * direct reclaim.
4510 			 */
4511 			if (compact_result == COMPACT_DEFERRED)
4512 				goto nopage;
4513 
4514 			/*
4515 			 * Looks like reclaim/compaction is worth trying, but
4516 			 * sync compaction could be very expensive, so keep
4517 			 * using async compaction.
4518 			 */
4519 			compact_priority = INIT_COMPACT_PRIORITY;
4520 		}
4521 	}
4522 
4523 retry:
4524 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4525 	if (alloc_flags & ALLOC_KSWAPD)
4526 		wake_all_kswapds(order, gfp_mask, ac);
4527 
4528 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4529 	if (reserve_flags)
4530 		alloc_flags = reserve_flags;
4531 
4532 	/*
4533 	 * Reset the nodemask and zonelist iterators if memory policies can be
4534 	 * ignored. These allocations are high priority and system rather than
4535 	 * user oriented.
4536 	 */
4537 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4538 		ac->nodemask = NULL;
4539 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4540 					ac->high_zoneidx, ac->nodemask);
4541 	}
4542 
4543 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4544 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4545 	if (page)
4546 		goto got_pg;
4547 
4548 	/* Caller is not willing to reclaim, we can't balance anything */
4549 	if (!can_direct_reclaim)
4550 		goto nopage;
4551 
4552 	/* Avoid recursion of direct reclaim */
4553 	if (current->flags & PF_MEMALLOC)
4554 		goto nopage;
4555 
4556 	/* Try direct reclaim and then allocating */
4557 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4558 							&did_some_progress);
4559 	if (page)
4560 		goto got_pg;
4561 
4562 	/* Try direct compaction and then allocating */
4563 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4564 					compact_priority, &compact_result);
4565 	if (page)
4566 		goto got_pg;
4567 
4568 	/* Do not loop if specifically requested */
4569 	if (gfp_mask & __GFP_NORETRY)
4570 		goto nopage;
4571 
4572 	/*
4573 	 * Do not retry costly high order allocations unless they are
4574 	 * __GFP_RETRY_MAYFAIL
4575 	 */
4576 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4577 		goto nopage;
4578 
4579 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4580 				 did_some_progress > 0, &no_progress_loops))
4581 		goto retry;
4582 
4583 	/*
4584 	 * It doesn't make any sense to retry for the compaction if the order-0
4585 	 * reclaim is not able to make any progress because the current
4586 	 * implementation of the compaction depends on the sufficient amount
4587 	 * of free memory (see __compaction_suitable)
4588 	 */
4589 	if (did_some_progress > 0 &&
4590 			should_compact_retry(ac, order, alloc_flags,
4591 				compact_result, &compact_priority,
4592 				&compaction_retries))
4593 		goto retry;
4594 
4595 
4596 	/* Deal with possible cpuset update races before we start OOM killing */
4597 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4598 		goto retry_cpuset;
4599 
4600 	/* Reclaim has failed us, start killing things */
4601 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4602 	if (page)
4603 		goto got_pg;
4604 
4605 	/* Avoid allocations with no watermarks from looping endlessly */
4606 	if (tsk_is_oom_victim(current) &&
4607 	    (alloc_flags == ALLOC_OOM ||
4608 	     (gfp_mask & __GFP_NOMEMALLOC)))
4609 		goto nopage;
4610 
4611 	/* Retry as long as the OOM killer is making progress */
4612 	if (did_some_progress) {
4613 		no_progress_loops = 0;
4614 		goto retry;
4615 	}
4616 
4617 nopage:
4618 	/* Deal with possible cpuset update races before we fail */
4619 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4620 		goto retry_cpuset;
4621 
4622 	/*
4623 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4624 	 * we always retry
4625 	 */
4626 	if (gfp_mask & __GFP_NOFAIL) {
4627 		/*
4628 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4629 		 * of any new users that actually require GFP_NOWAIT
4630 		 */
4631 		if (WARN_ON_ONCE(!can_direct_reclaim))
4632 			goto fail;
4633 
4634 		/*
4635 		 * PF_MEMALLOC request from this context is rather bizarre
4636 		 * because we cannot reclaim anything and only can loop waiting
4637 		 * for somebody to do a work for us
4638 		 */
4639 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4640 
4641 		/*
4642 		 * non failing costly orders are a hard requirement which we
4643 		 * are not prepared for much so let's warn about these users
4644 		 * so that we can identify them and convert them to something
4645 		 * else.
4646 		 */
4647 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4648 
4649 		/*
4650 		 * Help non-failing allocations by giving them access to memory
4651 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4652 		 * could deplete whole memory reserves which would just make
4653 		 * the situation worse
4654 		 */
4655 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4656 		if (page)
4657 			goto got_pg;
4658 
4659 		cond_resched();
4660 		goto retry;
4661 	}
4662 fail:
4663 	warn_alloc(gfp_mask, ac->nodemask,
4664 			"page allocation failure: order:%u", order);
4665 got_pg:
4666 	return page;
4667 }
4668 
4669 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4670 		int preferred_nid, nodemask_t *nodemask,
4671 		struct alloc_context *ac, gfp_t *alloc_mask,
4672 		unsigned int *alloc_flags)
4673 {
4674 	ac->high_zoneidx = gfp_zone(gfp_mask);
4675 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4676 	ac->nodemask = nodemask;
4677 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4678 
4679 	if (cpusets_enabled()) {
4680 		*alloc_mask |= __GFP_HARDWALL;
4681 		if (!ac->nodemask)
4682 			ac->nodemask = &cpuset_current_mems_allowed;
4683 		else
4684 			*alloc_flags |= ALLOC_CPUSET;
4685 	}
4686 
4687 	fs_reclaim_acquire(gfp_mask);
4688 	fs_reclaim_release(gfp_mask);
4689 
4690 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4691 
4692 	if (should_fail_alloc_page(gfp_mask, order))
4693 		return false;
4694 
4695 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4696 		*alloc_flags |= ALLOC_CMA;
4697 
4698 	return true;
4699 }
4700 
4701 /* Determine whether to spread dirty pages and what the first usable zone */
4702 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4703 {
4704 	/* Dirty zone balancing only done in the fast path */
4705 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4706 
4707 	/*
4708 	 * The preferred zone is used for statistics but crucially it is
4709 	 * also used as the starting point for the zonelist iterator. It
4710 	 * may get reset for allocations that ignore memory policies.
4711 	 */
4712 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4713 					ac->high_zoneidx, ac->nodemask);
4714 }
4715 
4716 /*
4717  * This is the 'heart' of the zoned buddy allocator.
4718  */
4719 struct page *
4720 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4721 							nodemask_t *nodemask)
4722 {
4723 	struct page *page;
4724 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4725 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4726 	struct alloc_context ac = { };
4727 
4728 	/*
4729 	 * There are several places where we assume that the order value is sane
4730 	 * so bail out early if the request is out of bound.
4731 	 */
4732 	if (unlikely(order >= MAX_ORDER)) {
4733 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4734 		return NULL;
4735 	}
4736 
4737 	gfp_mask &= gfp_allowed_mask;
4738 	alloc_mask = gfp_mask;
4739 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4740 		return NULL;
4741 
4742 	finalise_ac(gfp_mask, &ac);
4743 
4744 	/*
4745 	 * Forbid the first pass from falling back to types that fragment
4746 	 * memory until all local zones are considered.
4747 	 */
4748 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4749 
4750 	/* First allocation attempt */
4751 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4752 	if (likely(page))
4753 		goto out;
4754 
4755 	/*
4756 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4757 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4758 	 * from a particular context which has been marked by
4759 	 * memalloc_no{fs,io}_{save,restore}.
4760 	 */
4761 	alloc_mask = current_gfp_context(gfp_mask);
4762 	ac.spread_dirty_pages = false;
4763 
4764 	/*
4765 	 * Restore the original nodemask if it was potentially replaced with
4766 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4767 	 */
4768 	if (unlikely(ac.nodemask != nodemask))
4769 		ac.nodemask = nodemask;
4770 
4771 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4772 
4773 out:
4774 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4775 	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4776 		__free_pages(page, order);
4777 		page = NULL;
4778 	}
4779 
4780 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4781 
4782 	return page;
4783 }
4784 EXPORT_SYMBOL(__alloc_pages_nodemask);
4785 
4786 /*
4787  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4788  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4789  * you need to access high mem.
4790  */
4791 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4792 {
4793 	struct page *page;
4794 
4795 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4796 	if (!page)
4797 		return 0;
4798 	return (unsigned long) page_address(page);
4799 }
4800 EXPORT_SYMBOL(__get_free_pages);
4801 
4802 unsigned long get_zeroed_page(gfp_t gfp_mask)
4803 {
4804 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4805 }
4806 EXPORT_SYMBOL(get_zeroed_page);
4807 
4808 static inline void free_the_page(struct page *page, unsigned int order)
4809 {
4810 	if (order == 0)		/* Via pcp? */
4811 		free_unref_page(page);
4812 	else
4813 		__free_pages_ok(page, order);
4814 }
4815 
4816 void __free_pages(struct page *page, unsigned int order)
4817 {
4818 	if (put_page_testzero(page))
4819 		free_the_page(page, order);
4820 }
4821 EXPORT_SYMBOL(__free_pages);
4822 
4823 void free_pages(unsigned long addr, unsigned int order)
4824 {
4825 	if (addr != 0) {
4826 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4827 		__free_pages(virt_to_page((void *)addr), order);
4828 	}
4829 }
4830 
4831 EXPORT_SYMBOL(free_pages);
4832 
4833 /*
4834  * Page Fragment:
4835  *  An arbitrary-length arbitrary-offset area of memory which resides
4836  *  within a 0 or higher order page.  Multiple fragments within that page
4837  *  are individually refcounted, in the page's reference counter.
4838  *
4839  * The page_frag functions below provide a simple allocation framework for
4840  * page fragments.  This is used by the network stack and network device
4841  * drivers to provide a backing region of memory for use as either an
4842  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4843  */
4844 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4845 					     gfp_t gfp_mask)
4846 {
4847 	struct page *page = NULL;
4848 	gfp_t gfp = gfp_mask;
4849 
4850 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4851 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4852 		    __GFP_NOMEMALLOC;
4853 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4854 				PAGE_FRAG_CACHE_MAX_ORDER);
4855 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4856 #endif
4857 	if (unlikely(!page))
4858 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4859 
4860 	nc->va = page ? page_address(page) : NULL;
4861 
4862 	return page;
4863 }
4864 
4865 void __page_frag_cache_drain(struct page *page, unsigned int count)
4866 {
4867 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4868 
4869 	if (page_ref_sub_and_test(page, count))
4870 		free_the_page(page, compound_order(page));
4871 }
4872 EXPORT_SYMBOL(__page_frag_cache_drain);
4873 
4874 void *page_frag_alloc(struct page_frag_cache *nc,
4875 		      unsigned int fragsz, gfp_t gfp_mask)
4876 {
4877 	unsigned int size = PAGE_SIZE;
4878 	struct page *page;
4879 	int offset;
4880 
4881 	if (unlikely(!nc->va)) {
4882 refill:
4883 		page = __page_frag_cache_refill(nc, gfp_mask);
4884 		if (!page)
4885 			return NULL;
4886 
4887 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4888 		/* if size can vary use size else just use PAGE_SIZE */
4889 		size = nc->size;
4890 #endif
4891 		/* Even if we own the page, we do not use atomic_set().
4892 		 * This would break get_page_unless_zero() users.
4893 		 */
4894 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4895 
4896 		/* reset page count bias and offset to start of new frag */
4897 		nc->pfmemalloc = page_is_pfmemalloc(page);
4898 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4899 		nc->offset = size;
4900 	}
4901 
4902 	offset = nc->offset - fragsz;
4903 	if (unlikely(offset < 0)) {
4904 		page = virt_to_page(nc->va);
4905 
4906 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4907 			goto refill;
4908 
4909 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4910 		/* if size can vary use size else just use PAGE_SIZE */
4911 		size = nc->size;
4912 #endif
4913 		/* OK, page count is 0, we can safely set it */
4914 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4915 
4916 		/* reset page count bias and offset to start of new frag */
4917 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4918 		offset = size - fragsz;
4919 	}
4920 
4921 	nc->pagecnt_bias--;
4922 	nc->offset = offset;
4923 
4924 	return nc->va + offset;
4925 }
4926 EXPORT_SYMBOL(page_frag_alloc);
4927 
4928 /*
4929  * Frees a page fragment allocated out of either a compound or order 0 page.
4930  */
4931 void page_frag_free(void *addr)
4932 {
4933 	struct page *page = virt_to_head_page(addr);
4934 
4935 	if (unlikely(put_page_testzero(page)))
4936 		free_the_page(page, compound_order(page));
4937 }
4938 EXPORT_SYMBOL(page_frag_free);
4939 
4940 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4941 		size_t size)
4942 {
4943 	if (addr) {
4944 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4945 		unsigned long used = addr + PAGE_ALIGN(size);
4946 
4947 		split_page(virt_to_page((void *)addr), order);
4948 		while (used < alloc_end) {
4949 			free_page(used);
4950 			used += PAGE_SIZE;
4951 		}
4952 	}
4953 	return (void *)addr;
4954 }
4955 
4956 /**
4957  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4958  * @size: the number of bytes to allocate
4959  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4960  *
4961  * This function is similar to alloc_pages(), except that it allocates the
4962  * minimum number of pages to satisfy the request.  alloc_pages() can only
4963  * allocate memory in power-of-two pages.
4964  *
4965  * This function is also limited by MAX_ORDER.
4966  *
4967  * Memory allocated by this function must be released by free_pages_exact().
4968  *
4969  * Return: pointer to the allocated area or %NULL in case of error.
4970  */
4971 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4972 {
4973 	unsigned int order = get_order(size);
4974 	unsigned long addr;
4975 
4976 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4977 		gfp_mask &= ~__GFP_COMP;
4978 
4979 	addr = __get_free_pages(gfp_mask, order);
4980 	return make_alloc_exact(addr, order, size);
4981 }
4982 EXPORT_SYMBOL(alloc_pages_exact);
4983 
4984 /**
4985  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4986  *			   pages on a node.
4987  * @nid: the preferred node ID where memory should be allocated
4988  * @size: the number of bytes to allocate
4989  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4990  *
4991  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4992  * back.
4993  *
4994  * Return: pointer to the allocated area or %NULL in case of error.
4995  */
4996 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4997 {
4998 	unsigned int order = get_order(size);
4999 	struct page *p;
5000 
5001 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5002 		gfp_mask &= ~__GFP_COMP;
5003 
5004 	p = alloc_pages_node(nid, gfp_mask, order);
5005 	if (!p)
5006 		return NULL;
5007 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5008 }
5009 
5010 /**
5011  * free_pages_exact - release memory allocated via alloc_pages_exact()
5012  * @virt: the value returned by alloc_pages_exact.
5013  * @size: size of allocation, same value as passed to alloc_pages_exact().
5014  *
5015  * Release the memory allocated by a previous call to alloc_pages_exact.
5016  */
5017 void free_pages_exact(void *virt, size_t size)
5018 {
5019 	unsigned long addr = (unsigned long)virt;
5020 	unsigned long end = addr + PAGE_ALIGN(size);
5021 
5022 	while (addr < end) {
5023 		free_page(addr);
5024 		addr += PAGE_SIZE;
5025 	}
5026 }
5027 EXPORT_SYMBOL(free_pages_exact);
5028 
5029 /**
5030  * nr_free_zone_pages - count number of pages beyond high watermark
5031  * @offset: The zone index of the highest zone
5032  *
5033  * nr_free_zone_pages() counts the number of pages which are beyond the
5034  * high watermark within all zones at or below a given zone index.  For each
5035  * zone, the number of pages is calculated as:
5036  *
5037  *     nr_free_zone_pages = managed_pages - high_pages
5038  *
5039  * Return: number of pages beyond high watermark.
5040  */
5041 static unsigned long nr_free_zone_pages(int offset)
5042 {
5043 	struct zoneref *z;
5044 	struct zone *zone;
5045 
5046 	/* Just pick one node, since fallback list is circular */
5047 	unsigned long sum = 0;
5048 
5049 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5050 
5051 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5052 		unsigned long size = zone_managed_pages(zone);
5053 		unsigned long high = high_wmark_pages(zone);
5054 		if (size > high)
5055 			sum += size - high;
5056 	}
5057 
5058 	return sum;
5059 }
5060 
5061 /**
5062  * nr_free_buffer_pages - count number of pages beyond high watermark
5063  *
5064  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5065  * watermark within ZONE_DMA and ZONE_NORMAL.
5066  *
5067  * Return: number of pages beyond high watermark within ZONE_DMA and
5068  * ZONE_NORMAL.
5069  */
5070 unsigned long nr_free_buffer_pages(void)
5071 {
5072 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5073 }
5074 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5075 
5076 /**
5077  * nr_free_pagecache_pages - count number of pages beyond high watermark
5078  *
5079  * nr_free_pagecache_pages() counts the number of pages which are beyond the
5080  * high watermark within all zones.
5081  *
5082  * Return: number of pages beyond high watermark within all zones.
5083  */
5084 unsigned long nr_free_pagecache_pages(void)
5085 {
5086 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5087 }
5088 
5089 static inline void show_node(struct zone *zone)
5090 {
5091 	if (IS_ENABLED(CONFIG_NUMA))
5092 		printk("Node %d ", zone_to_nid(zone));
5093 }
5094 
5095 long si_mem_available(void)
5096 {
5097 	long available;
5098 	unsigned long pagecache;
5099 	unsigned long wmark_low = 0;
5100 	unsigned long pages[NR_LRU_LISTS];
5101 	unsigned long reclaimable;
5102 	struct zone *zone;
5103 	int lru;
5104 
5105 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5106 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5107 
5108 	for_each_zone(zone)
5109 		wmark_low += low_wmark_pages(zone);
5110 
5111 	/*
5112 	 * Estimate the amount of memory available for userspace allocations,
5113 	 * without causing swapping.
5114 	 */
5115 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5116 
5117 	/*
5118 	 * Not all the page cache can be freed, otherwise the system will
5119 	 * start swapping. Assume at least half of the page cache, or the
5120 	 * low watermark worth of cache, needs to stay.
5121 	 */
5122 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5123 	pagecache -= min(pagecache / 2, wmark_low);
5124 	available += pagecache;
5125 
5126 	/*
5127 	 * Part of the reclaimable slab and other kernel memory consists of
5128 	 * items that are in use, and cannot be freed. Cap this estimate at the
5129 	 * low watermark.
5130 	 */
5131 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5132 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5133 	available += reclaimable - min(reclaimable / 2, wmark_low);
5134 
5135 	if (available < 0)
5136 		available = 0;
5137 	return available;
5138 }
5139 EXPORT_SYMBOL_GPL(si_mem_available);
5140 
5141 void si_meminfo(struct sysinfo *val)
5142 {
5143 	val->totalram = totalram_pages();
5144 	val->sharedram = global_node_page_state(NR_SHMEM);
5145 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5146 	val->bufferram = nr_blockdev_pages();
5147 	val->totalhigh = totalhigh_pages();
5148 	val->freehigh = nr_free_highpages();
5149 	val->mem_unit = PAGE_SIZE;
5150 }
5151 
5152 EXPORT_SYMBOL(si_meminfo);
5153 
5154 #ifdef CONFIG_NUMA
5155 void si_meminfo_node(struct sysinfo *val, int nid)
5156 {
5157 	int zone_type;		/* needs to be signed */
5158 	unsigned long managed_pages = 0;
5159 	unsigned long managed_highpages = 0;
5160 	unsigned long free_highpages = 0;
5161 	pg_data_t *pgdat = NODE_DATA(nid);
5162 
5163 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5164 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5165 	val->totalram = managed_pages;
5166 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5167 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5168 #ifdef CONFIG_HIGHMEM
5169 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5170 		struct zone *zone = &pgdat->node_zones[zone_type];
5171 
5172 		if (is_highmem(zone)) {
5173 			managed_highpages += zone_managed_pages(zone);
5174 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5175 		}
5176 	}
5177 	val->totalhigh = managed_highpages;
5178 	val->freehigh = free_highpages;
5179 #else
5180 	val->totalhigh = managed_highpages;
5181 	val->freehigh = free_highpages;
5182 #endif
5183 	val->mem_unit = PAGE_SIZE;
5184 }
5185 #endif
5186 
5187 /*
5188  * Determine whether the node should be displayed or not, depending on whether
5189  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5190  */
5191 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5192 {
5193 	if (!(flags & SHOW_MEM_FILTER_NODES))
5194 		return false;
5195 
5196 	/*
5197 	 * no node mask - aka implicit memory numa policy. Do not bother with
5198 	 * the synchronization - read_mems_allowed_begin - because we do not
5199 	 * have to be precise here.
5200 	 */
5201 	if (!nodemask)
5202 		nodemask = &cpuset_current_mems_allowed;
5203 
5204 	return !node_isset(nid, *nodemask);
5205 }
5206 
5207 #define K(x) ((x) << (PAGE_SHIFT-10))
5208 
5209 static void show_migration_types(unsigned char type)
5210 {
5211 	static const char types[MIGRATE_TYPES] = {
5212 		[MIGRATE_UNMOVABLE]	= 'U',
5213 		[MIGRATE_MOVABLE]	= 'M',
5214 		[MIGRATE_RECLAIMABLE]	= 'E',
5215 		[MIGRATE_HIGHATOMIC]	= 'H',
5216 #ifdef CONFIG_CMA
5217 		[MIGRATE_CMA]		= 'C',
5218 #endif
5219 #ifdef CONFIG_MEMORY_ISOLATION
5220 		[MIGRATE_ISOLATE]	= 'I',
5221 #endif
5222 	};
5223 	char tmp[MIGRATE_TYPES + 1];
5224 	char *p = tmp;
5225 	int i;
5226 
5227 	for (i = 0; i < MIGRATE_TYPES; i++) {
5228 		if (type & (1 << i))
5229 			*p++ = types[i];
5230 	}
5231 
5232 	*p = '\0';
5233 	printk(KERN_CONT "(%s) ", tmp);
5234 }
5235 
5236 /*
5237  * Show free area list (used inside shift_scroll-lock stuff)
5238  * We also calculate the percentage fragmentation. We do this by counting the
5239  * memory on each free list with the exception of the first item on the list.
5240  *
5241  * Bits in @filter:
5242  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5243  *   cpuset.
5244  */
5245 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5246 {
5247 	unsigned long free_pcp = 0;
5248 	int cpu;
5249 	struct zone *zone;
5250 	pg_data_t *pgdat;
5251 
5252 	for_each_populated_zone(zone) {
5253 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5254 			continue;
5255 
5256 		for_each_online_cpu(cpu)
5257 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5258 	}
5259 
5260 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5261 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5262 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5263 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5264 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5265 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5266 		global_node_page_state(NR_ACTIVE_ANON),
5267 		global_node_page_state(NR_INACTIVE_ANON),
5268 		global_node_page_state(NR_ISOLATED_ANON),
5269 		global_node_page_state(NR_ACTIVE_FILE),
5270 		global_node_page_state(NR_INACTIVE_FILE),
5271 		global_node_page_state(NR_ISOLATED_FILE),
5272 		global_node_page_state(NR_UNEVICTABLE),
5273 		global_node_page_state(NR_FILE_DIRTY),
5274 		global_node_page_state(NR_WRITEBACK),
5275 		global_node_page_state(NR_UNSTABLE_NFS),
5276 		global_node_page_state(NR_SLAB_RECLAIMABLE),
5277 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5278 		global_node_page_state(NR_FILE_MAPPED),
5279 		global_node_page_state(NR_SHMEM),
5280 		global_zone_page_state(NR_PAGETABLE),
5281 		global_zone_page_state(NR_BOUNCE),
5282 		global_zone_page_state(NR_FREE_PAGES),
5283 		free_pcp,
5284 		global_zone_page_state(NR_FREE_CMA_PAGES));
5285 
5286 	for_each_online_pgdat(pgdat) {
5287 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5288 			continue;
5289 
5290 		printk("Node %d"
5291 			" active_anon:%lukB"
5292 			" inactive_anon:%lukB"
5293 			" active_file:%lukB"
5294 			" inactive_file:%lukB"
5295 			" unevictable:%lukB"
5296 			" isolated(anon):%lukB"
5297 			" isolated(file):%lukB"
5298 			" mapped:%lukB"
5299 			" dirty:%lukB"
5300 			" writeback:%lukB"
5301 			" shmem:%lukB"
5302 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5303 			" shmem_thp: %lukB"
5304 			" shmem_pmdmapped: %lukB"
5305 			" anon_thp: %lukB"
5306 #endif
5307 			" writeback_tmp:%lukB"
5308 			" unstable:%lukB"
5309 			" all_unreclaimable? %s"
5310 			"\n",
5311 			pgdat->node_id,
5312 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5313 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5314 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5315 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5316 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5317 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5318 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5319 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5320 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5321 			K(node_page_state(pgdat, NR_WRITEBACK)),
5322 			K(node_page_state(pgdat, NR_SHMEM)),
5323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5324 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5325 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5326 					* HPAGE_PMD_NR),
5327 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5328 #endif
5329 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5330 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5331 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5332 				"yes" : "no");
5333 	}
5334 
5335 	for_each_populated_zone(zone) {
5336 		int i;
5337 
5338 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5339 			continue;
5340 
5341 		free_pcp = 0;
5342 		for_each_online_cpu(cpu)
5343 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5344 
5345 		show_node(zone);
5346 		printk(KERN_CONT
5347 			"%s"
5348 			" free:%lukB"
5349 			" min:%lukB"
5350 			" low:%lukB"
5351 			" high:%lukB"
5352 			" active_anon:%lukB"
5353 			" inactive_anon:%lukB"
5354 			" active_file:%lukB"
5355 			" inactive_file:%lukB"
5356 			" unevictable:%lukB"
5357 			" writepending:%lukB"
5358 			" present:%lukB"
5359 			" managed:%lukB"
5360 			" mlocked:%lukB"
5361 			" kernel_stack:%lukB"
5362 			" pagetables:%lukB"
5363 			" bounce:%lukB"
5364 			" free_pcp:%lukB"
5365 			" local_pcp:%ukB"
5366 			" free_cma:%lukB"
5367 			"\n",
5368 			zone->name,
5369 			K(zone_page_state(zone, NR_FREE_PAGES)),
5370 			K(min_wmark_pages(zone)),
5371 			K(low_wmark_pages(zone)),
5372 			K(high_wmark_pages(zone)),
5373 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5374 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5375 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5376 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5377 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5378 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5379 			K(zone->present_pages),
5380 			K(zone_managed_pages(zone)),
5381 			K(zone_page_state(zone, NR_MLOCK)),
5382 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5383 			K(zone_page_state(zone, NR_PAGETABLE)),
5384 			K(zone_page_state(zone, NR_BOUNCE)),
5385 			K(free_pcp),
5386 			K(this_cpu_read(zone->pageset->pcp.count)),
5387 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5388 		printk("lowmem_reserve[]:");
5389 		for (i = 0; i < MAX_NR_ZONES; i++)
5390 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5391 		printk(KERN_CONT "\n");
5392 	}
5393 
5394 	for_each_populated_zone(zone) {
5395 		unsigned int order;
5396 		unsigned long nr[MAX_ORDER], flags, total = 0;
5397 		unsigned char types[MAX_ORDER];
5398 
5399 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5400 			continue;
5401 		show_node(zone);
5402 		printk(KERN_CONT "%s: ", zone->name);
5403 
5404 		spin_lock_irqsave(&zone->lock, flags);
5405 		for (order = 0; order < MAX_ORDER; order++) {
5406 			struct free_area *area = &zone->free_area[order];
5407 			int type;
5408 
5409 			nr[order] = area->nr_free;
5410 			total += nr[order] << order;
5411 
5412 			types[order] = 0;
5413 			for (type = 0; type < MIGRATE_TYPES; type++) {
5414 				if (!free_area_empty(area, type))
5415 					types[order] |= 1 << type;
5416 			}
5417 		}
5418 		spin_unlock_irqrestore(&zone->lock, flags);
5419 		for (order = 0; order < MAX_ORDER; order++) {
5420 			printk(KERN_CONT "%lu*%lukB ",
5421 			       nr[order], K(1UL) << order);
5422 			if (nr[order])
5423 				show_migration_types(types[order]);
5424 		}
5425 		printk(KERN_CONT "= %lukB\n", K(total));
5426 	}
5427 
5428 	hugetlb_show_meminfo();
5429 
5430 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5431 
5432 	show_swap_cache_info();
5433 }
5434 
5435 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5436 {
5437 	zoneref->zone = zone;
5438 	zoneref->zone_idx = zone_idx(zone);
5439 }
5440 
5441 /*
5442  * Builds allocation fallback zone lists.
5443  *
5444  * Add all populated zones of a node to the zonelist.
5445  */
5446 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5447 {
5448 	struct zone *zone;
5449 	enum zone_type zone_type = MAX_NR_ZONES;
5450 	int nr_zones = 0;
5451 
5452 	do {
5453 		zone_type--;
5454 		zone = pgdat->node_zones + zone_type;
5455 		if (managed_zone(zone)) {
5456 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5457 			check_highest_zone(zone_type);
5458 		}
5459 	} while (zone_type);
5460 
5461 	return nr_zones;
5462 }
5463 
5464 #ifdef CONFIG_NUMA
5465 
5466 static int __parse_numa_zonelist_order(char *s)
5467 {
5468 	/*
5469 	 * We used to support different zonlists modes but they turned
5470 	 * out to be just not useful. Let's keep the warning in place
5471 	 * if somebody still use the cmd line parameter so that we do
5472 	 * not fail it silently
5473 	 */
5474 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5475 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5476 		return -EINVAL;
5477 	}
5478 	return 0;
5479 }
5480 
5481 static __init int setup_numa_zonelist_order(char *s)
5482 {
5483 	if (!s)
5484 		return 0;
5485 
5486 	return __parse_numa_zonelist_order(s);
5487 }
5488 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5489 
5490 char numa_zonelist_order[] = "Node";
5491 
5492 /*
5493  * sysctl handler for numa_zonelist_order
5494  */
5495 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5496 		void __user *buffer, size_t *length,
5497 		loff_t *ppos)
5498 {
5499 	char *str;
5500 	int ret;
5501 
5502 	if (!write)
5503 		return proc_dostring(table, write, buffer, length, ppos);
5504 	str = memdup_user_nul(buffer, 16);
5505 	if (IS_ERR(str))
5506 		return PTR_ERR(str);
5507 
5508 	ret = __parse_numa_zonelist_order(str);
5509 	kfree(str);
5510 	return ret;
5511 }
5512 
5513 
5514 #define MAX_NODE_LOAD (nr_online_nodes)
5515 static int node_load[MAX_NUMNODES];
5516 
5517 /**
5518  * find_next_best_node - find the next node that should appear in a given node's fallback list
5519  * @node: node whose fallback list we're appending
5520  * @used_node_mask: nodemask_t of already used nodes
5521  *
5522  * We use a number of factors to determine which is the next node that should
5523  * appear on a given node's fallback list.  The node should not have appeared
5524  * already in @node's fallback list, and it should be the next closest node
5525  * according to the distance array (which contains arbitrary distance values
5526  * from each node to each node in the system), and should also prefer nodes
5527  * with no CPUs, since presumably they'll have very little allocation pressure
5528  * on them otherwise.
5529  *
5530  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5531  */
5532 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5533 {
5534 	int n, val;
5535 	int min_val = INT_MAX;
5536 	int best_node = NUMA_NO_NODE;
5537 	const struct cpumask *tmp = cpumask_of_node(0);
5538 
5539 	/* Use the local node if we haven't already */
5540 	if (!node_isset(node, *used_node_mask)) {
5541 		node_set(node, *used_node_mask);
5542 		return node;
5543 	}
5544 
5545 	for_each_node_state(n, N_MEMORY) {
5546 
5547 		/* Don't want a node to appear more than once */
5548 		if (node_isset(n, *used_node_mask))
5549 			continue;
5550 
5551 		/* Use the distance array to find the distance */
5552 		val = node_distance(node, n);
5553 
5554 		/* Penalize nodes under us ("prefer the next node") */
5555 		val += (n < node);
5556 
5557 		/* Give preference to headless and unused nodes */
5558 		tmp = cpumask_of_node(n);
5559 		if (!cpumask_empty(tmp))
5560 			val += PENALTY_FOR_NODE_WITH_CPUS;
5561 
5562 		/* Slight preference for less loaded node */
5563 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5564 		val += node_load[n];
5565 
5566 		if (val < min_val) {
5567 			min_val = val;
5568 			best_node = n;
5569 		}
5570 	}
5571 
5572 	if (best_node >= 0)
5573 		node_set(best_node, *used_node_mask);
5574 
5575 	return best_node;
5576 }
5577 
5578 
5579 /*
5580  * Build zonelists ordered by node and zones within node.
5581  * This results in maximum locality--normal zone overflows into local
5582  * DMA zone, if any--but risks exhausting DMA zone.
5583  */
5584 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5585 		unsigned nr_nodes)
5586 {
5587 	struct zoneref *zonerefs;
5588 	int i;
5589 
5590 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5591 
5592 	for (i = 0; i < nr_nodes; i++) {
5593 		int nr_zones;
5594 
5595 		pg_data_t *node = NODE_DATA(node_order[i]);
5596 
5597 		nr_zones = build_zonerefs_node(node, zonerefs);
5598 		zonerefs += nr_zones;
5599 	}
5600 	zonerefs->zone = NULL;
5601 	zonerefs->zone_idx = 0;
5602 }
5603 
5604 /*
5605  * Build gfp_thisnode zonelists
5606  */
5607 static void build_thisnode_zonelists(pg_data_t *pgdat)
5608 {
5609 	struct zoneref *zonerefs;
5610 	int nr_zones;
5611 
5612 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5613 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5614 	zonerefs += nr_zones;
5615 	zonerefs->zone = NULL;
5616 	zonerefs->zone_idx = 0;
5617 }
5618 
5619 /*
5620  * Build zonelists ordered by zone and nodes within zones.
5621  * This results in conserving DMA zone[s] until all Normal memory is
5622  * exhausted, but results in overflowing to remote node while memory
5623  * may still exist in local DMA zone.
5624  */
5625 
5626 static void build_zonelists(pg_data_t *pgdat)
5627 {
5628 	static int node_order[MAX_NUMNODES];
5629 	int node, load, nr_nodes = 0;
5630 	nodemask_t used_mask;
5631 	int local_node, prev_node;
5632 
5633 	/* NUMA-aware ordering of nodes */
5634 	local_node = pgdat->node_id;
5635 	load = nr_online_nodes;
5636 	prev_node = local_node;
5637 	nodes_clear(used_mask);
5638 
5639 	memset(node_order, 0, sizeof(node_order));
5640 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5641 		/*
5642 		 * We don't want to pressure a particular node.
5643 		 * So adding penalty to the first node in same
5644 		 * distance group to make it round-robin.
5645 		 */
5646 		if (node_distance(local_node, node) !=
5647 		    node_distance(local_node, prev_node))
5648 			node_load[node] = load;
5649 
5650 		node_order[nr_nodes++] = node;
5651 		prev_node = node;
5652 		load--;
5653 	}
5654 
5655 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5656 	build_thisnode_zonelists(pgdat);
5657 }
5658 
5659 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5660 /*
5661  * Return node id of node used for "local" allocations.
5662  * I.e., first node id of first zone in arg node's generic zonelist.
5663  * Used for initializing percpu 'numa_mem', which is used primarily
5664  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5665  */
5666 int local_memory_node(int node)
5667 {
5668 	struct zoneref *z;
5669 
5670 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5671 				   gfp_zone(GFP_KERNEL),
5672 				   NULL);
5673 	return zone_to_nid(z->zone);
5674 }
5675 #endif
5676 
5677 static void setup_min_unmapped_ratio(void);
5678 static void setup_min_slab_ratio(void);
5679 #else	/* CONFIG_NUMA */
5680 
5681 static void build_zonelists(pg_data_t *pgdat)
5682 {
5683 	int node, local_node;
5684 	struct zoneref *zonerefs;
5685 	int nr_zones;
5686 
5687 	local_node = pgdat->node_id;
5688 
5689 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5690 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5691 	zonerefs += nr_zones;
5692 
5693 	/*
5694 	 * Now we build the zonelist so that it contains the zones
5695 	 * of all the other nodes.
5696 	 * We don't want to pressure a particular node, so when
5697 	 * building the zones for node N, we make sure that the
5698 	 * zones coming right after the local ones are those from
5699 	 * node N+1 (modulo N)
5700 	 */
5701 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5702 		if (!node_online(node))
5703 			continue;
5704 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5705 		zonerefs += nr_zones;
5706 	}
5707 	for (node = 0; node < local_node; node++) {
5708 		if (!node_online(node))
5709 			continue;
5710 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5711 		zonerefs += nr_zones;
5712 	}
5713 
5714 	zonerefs->zone = NULL;
5715 	zonerefs->zone_idx = 0;
5716 }
5717 
5718 #endif	/* CONFIG_NUMA */
5719 
5720 /*
5721  * Boot pageset table. One per cpu which is going to be used for all
5722  * zones and all nodes. The parameters will be set in such a way
5723  * that an item put on a list will immediately be handed over to
5724  * the buddy list. This is safe since pageset manipulation is done
5725  * with interrupts disabled.
5726  *
5727  * The boot_pagesets must be kept even after bootup is complete for
5728  * unused processors and/or zones. They do play a role for bootstrapping
5729  * hotplugged processors.
5730  *
5731  * zoneinfo_show() and maybe other functions do
5732  * not check if the processor is online before following the pageset pointer.
5733  * Other parts of the kernel may not check if the zone is available.
5734  */
5735 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5736 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5737 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5738 
5739 static void __build_all_zonelists(void *data)
5740 {
5741 	int nid;
5742 	int __maybe_unused cpu;
5743 	pg_data_t *self = data;
5744 	static DEFINE_SPINLOCK(lock);
5745 
5746 	spin_lock(&lock);
5747 
5748 #ifdef CONFIG_NUMA
5749 	memset(node_load, 0, sizeof(node_load));
5750 #endif
5751 
5752 	/*
5753 	 * This node is hotadded and no memory is yet present.   So just
5754 	 * building zonelists is fine - no need to touch other nodes.
5755 	 */
5756 	if (self && !node_online(self->node_id)) {
5757 		build_zonelists(self);
5758 	} else {
5759 		for_each_online_node(nid) {
5760 			pg_data_t *pgdat = NODE_DATA(nid);
5761 
5762 			build_zonelists(pgdat);
5763 		}
5764 
5765 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5766 		/*
5767 		 * We now know the "local memory node" for each node--
5768 		 * i.e., the node of the first zone in the generic zonelist.
5769 		 * Set up numa_mem percpu variable for on-line cpus.  During
5770 		 * boot, only the boot cpu should be on-line;  we'll init the
5771 		 * secondary cpus' numa_mem as they come on-line.  During
5772 		 * node/memory hotplug, we'll fixup all on-line cpus.
5773 		 */
5774 		for_each_online_cpu(cpu)
5775 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5776 #endif
5777 	}
5778 
5779 	spin_unlock(&lock);
5780 }
5781 
5782 static noinline void __init
5783 build_all_zonelists_init(void)
5784 {
5785 	int cpu;
5786 
5787 	__build_all_zonelists(NULL);
5788 
5789 	/*
5790 	 * Initialize the boot_pagesets that are going to be used
5791 	 * for bootstrapping processors. The real pagesets for
5792 	 * each zone will be allocated later when the per cpu
5793 	 * allocator is available.
5794 	 *
5795 	 * boot_pagesets are used also for bootstrapping offline
5796 	 * cpus if the system is already booted because the pagesets
5797 	 * are needed to initialize allocators on a specific cpu too.
5798 	 * F.e. the percpu allocator needs the page allocator which
5799 	 * needs the percpu allocator in order to allocate its pagesets
5800 	 * (a chicken-egg dilemma).
5801 	 */
5802 	for_each_possible_cpu(cpu)
5803 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5804 
5805 	mminit_verify_zonelist();
5806 	cpuset_init_current_mems_allowed();
5807 }
5808 
5809 /*
5810  * unless system_state == SYSTEM_BOOTING.
5811  *
5812  * __ref due to call of __init annotated helper build_all_zonelists_init
5813  * [protected by SYSTEM_BOOTING].
5814  */
5815 void __ref build_all_zonelists(pg_data_t *pgdat)
5816 {
5817 	if (system_state == SYSTEM_BOOTING) {
5818 		build_all_zonelists_init();
5819 	} else {
5820 		__build_all_zonelists(pgdat);
5821 		/* cpuset refresh routine should be here */
5822 	}
5823 	vm_total_pages = nr_free_pagecache_pages();
5824 	/*
5825 	 * Disable grouping by mobility if the number of pages in the
5826 	 * system is too low to allow the mechanism to work. It would be
5827 	 * more accurate, but expensive to check per-zone. This check is
5828 	 * made on memory-hotadd so a system can start with mobility
5829 	 * disabled and enable it later
5830 	 */
5831 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5832 		page_group_by_mobility_disabled = 1;
5833 	else
5834 		page_group_by_mobility_disabled = 0;
5835 
5836 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5837 		nr_online_nodes,
5838 		page_group_by_mobility_disabled ? "off" : "on",
5839 		vm_total_pages);
5840 #ifdef CONFIG_NUMA
5841 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5842 #endif
5843 }
5844 
5845 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5846 static bool __meminit
5847 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5848 {
5849 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5850 	static struct memblock_region *r;
5851 
5852 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5853 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5854 			for_each_memblock(memory, r) {
5855 				if (*pfn < memblock_region_memory_end_pfn(r))
5856 					break;
5857 			}
5858 		}
5859 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5860 		    memblock_is_mirror(r)) {
5861 			*pfn = memblock_region_memory_end_pfn(r);
5862 			return true;
5863 		}
5864 	}
5865 #endif
5866 	return false;
5867 }
5868 
5869 /*
5870  * Initially all pages are reserved - free ones are freed
5871  * up by memblock_free_all() once the early boot process is
5872  * done. Non-atomic initialization, single-pass.
5873  */
5874 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5875 		unsigned long start_pfn, enum memmap_context context,
5876 		struct vmem_altmap *altmap)
5877 {
5878 	unsigned long pfn, end_pfn = start_pfn + size;
5879 	struct page *page;
5880 
5881 	if (highest_memmap_pfn < end_pfn - 1)
5882 		highest_memmap_pfn = end_pfn - 1;
5883 
5884 #ifdef CONFIG_ZONE_DEVICE
5885 	/*
5886 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5887 	 * memory. We limit the total number of pages to initialize to just
5888 	 * those that might contain the memory mapping. We will defer the
5889 	 * ZONE_DEVICE page initialization until after we have released
5890 	 * the hotplug lock.
5891 	 */
5892 	if (zone == ZONE_DEVICE) {
5893 		if (!altmap)
5894 			return;
5895 
5896 		if (start_pfn == altmap->base_pfn)
5897 			start_pfn += altmap->reserve;
5898 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5899 	}
5900 #endif
5901 
5902 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5903 		/*
5904 		 * There can be holes in boot-time mem_map[]s handed to this
5905 		 * function.  They do not exist on hotplugged memory.
5906 		 */
5907 		if (context == MEMMAP_EARLY) {
5908 			if (!early_pfn_valid(pfn))
5909 				continue;
5910 			if (!early_pfn_in_nid(pfn, nid))
5911 				continue;
5912 			if (overlap_memmap_init(zone, &pfn))
5913 				continue;
5914 			if (defer_init(nid, pfn, end_pfn))
5915 				break;
5916 		}
5917 
5918 		page = pfn_to_page(pfn);
5919 		__init_single_page(page, pfn, zone, nid);
5920 		if (context == MEMMAP_HOTPLUG)
5921 			__SetPageReserved(page);
5922 
5923 		/*
5924 		 * Mark the block movable so that blocks are reserved for
5925 		 * movable at startup. This will force kernel allocations
5926 		 * to reserve their blocks rather than leaking throughout
5927 		 * the address space during boot when many long-lived
5928 		 * kernel allocations are made.
5929 		 *
5930 		 * bitmap is created for zone's valid pfn range. but memmap
5931 		 * can be created for invalid pages (for alignment)
5932 		 * check here not to call set_pageblock_migratetype() against
5933 		 * pfn out of zone.
5934 		 */
5935 		if (!(pfn & (pageblock_nr_pages - 1))) {
5936 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5937 			cond_resched();
5938 		}
5939 	}
5940 }
5941 
5942 #ifdef CONFIG_ZONE_DEVICE
5943 void __ref memmap_init_zone_device(struct zone *zone,
5944 				   unsigned long start_pfn,
5945 				   unsigned long size,
5946 				   struct dev_pagemap *pgmap)
5947 {
5948 	unsigned long pfn, end_pfn = start_pfn + size;
5949 	struct pglist_data *pgdat = zone->zone_pgdat;
5950 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5951 	unsigned long zone_idx = zone_idx(zone);
5952 	unsigned long start = jiffies;
5953 	int nid = pgdat->node_id;
5954 
5955 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5956 		return;
5957 
5958 	/*
5959 	 * The call to memmap_init_zone should have already taken care
5960 	 * of the pages reserved for the memmap, so we can just jump to
5961 	 * the end of that region and start processing the device pages.
5962 	 */
5963 	if (altmap) {
5964 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5965 		size = end_pfn - start_pfn;
5966 	}
5967 
5968 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5969 		struct page *page = pfn_to_page(pfn);
5970 
5971 		__init_single_page(page, pfn, zone_idx, nid);
5972 
5973 		/*
5974 		 * Mark page reserved as it will need to wait for onlining
5975 		 * phase for it to be fully associated with a zone.
5976 		 *
5977 		 * We can use the non-atomic __set_bit operation for setting
5978 		 * the flag as we are still initializing the pages.
5979 		 */
5980 		__SetPageReserved(page);
5981 
5982 		/*
5983 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5984 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
5985 		 * ever freed or placed on a driver-private list.
5986 		 */
5987 		page->pgmap = pgmap;
5988 		page->zone_device_data = NULL;
5989 
5990 		/*
5991 		 * Mark the block movable so that blocks are reserved for
5992 		 * movable at startup. This will force kernel allocations
5993 		 * to reserve their blocks rather than leaking throughout
5994 		 * the address space during boot when many long-lived
5995 		 * kernel allocations are made.
5996 		 *
5997 		 * bitmap is created for zone's valid pfn range. but memmap
5998 		 * can be created for invalid pages (for alignment)
5999 		 * check here not to call set_pageblock_migratetype() against
6000 		 * pfn out of zone.
6001 		 *
6002 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6003 		 * because this is done early in section_activate()
6004 		 */
6005 		if (!(pfn & (pageblock_nr_pages - 1))) {
6006 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6007 			cond_resched();
6008 		}
6009 	}
6010 
6011 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6012 		size, jiffies_to_msecs(jiffies - start));
6013 }
6014 
6015 #endif
6016 static void __meminit zone_init_free_lists(struct zone *zone)
6017 {
6018 	unsigned int order, t;
6019 	for_each_migratetype_order(order, t) {
6020 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6021 		zone->free_area[order].nr_free = 0;
6022 	}
6023 }
6024 
6025 void __meminit __weak memmap_init(unsigned long size, int nid,
6026 				  unsigned long zone, unsigned long start_pfn)
6027 {
6028 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6029 }
6030 
6031 static int zone_batchsize(struct zone *zone)
6032 {
6033 #ifdef CONFIG_MMU
6034 	int batch;
6035 
6036 	/*
6037 	 * The per-cpu-pages pools are set to around 1000th of the
6038 	 * size of the zone.
6039 	 */
6040 	batch = zone_managed_pages(zone) / 1024;
6041 	/* But no more than a meg. */
6042 	if (batch * PAGE_SIZE > 1024 * 1024)
6043 		batch = (1024 * 1024) / PAGE_SIZE;
6044 	batch /= 4;		/* We effectively *= 4 below */
6045 	if (batch < 1)
6046 		batch = 1;
6047 
6048 	/*
6049 	 * Clamp the batch to a 2^n - 1 value. Having a power
6050 	 * of 2 value was found to be more likely to have
6051 	 * suboptimal cache aliasing properties in some cases.
6052 	 *
6053 	 * For example if 2 tasks are alternately allocating
6054 	 * batches of pages, one task can end up with a lot
6055 	 * of pages of one half of the possible page colors
6056 	 * and the other with pages of the other colors.
6057 	 */
6058 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6059 
6060 	return batch;
6061 
6062 #else
6063 	/* The deferral and batching of frees should be suppressed under NOMMU
6064 	 * conditions.
6065 	 *
6066 	 * The problem is that NOMMU needs to be able to allocate large chunks
6067 	 * of contiguous memory as there's no hardware page translation to
6068 	 * assemble apparent contiguous memory from discontiguous pages.
6069 	 *
6070 	 * Queueing large contiguous runs of pages for batching, however,
6071 	 * causes the pages to actually be freed in smaller chunks.  As there
6072 	 * can be a significant delay between the individual batches being
6073 	 * recycled, this leads to the once large chunks of space being
6074 	 * fragmented and becoming unavailable for high-order allocations.
6075 	 */
6076 	return 0;
6077 #endif
6078 }
6079 
6080 /*
6081  * pcp->high and pcp->batch values are related and dependent on one another:
6082  * ->batch must never be higher then ->high.
6083  * The following function updates them in a safe manner without read side
6084  * locking.
6085  *
6086  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6087  * those fields changing asynchronously (acording the the above rule).
6088  *
6089  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6090  * outside of boot time (or some other assurance that no concurrent updaters
6091  * exist).
6092  */
6093 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6094 		unsigned long batch)
6095 {
6096        /* start with a fail safe value for batch */
6097 	pcp->batch = 1;
6098 	smp_wmb();
6099 
6100        /* Update high, then batch, in order */
6101 	pcp->high = high;
6102 	smp_wmb();
6103 
6104 	pcp->batch = batch;
6105 }
6106 
6107 /* a companion to pageset_set_high() */
6108 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6109 {
6110 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6111 }
6112 
6113 static void pageset_init(struct per_cpu_pageset *p)
6114 {
6115 	struct per_cpu_pages *pcp;
6116 	int migratetype;
6117 
6118 	memset(p, 0, sizeof(*p));
6119 
6120 	pcp = &p->pcp;
6121 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6122 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6123 }
6124 
6125 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6126 {
6127 	pageset_init(p);
6128 	pageset_set_batch(p, batch);
6129 }
6130 
6131 /*
6132  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6133  * to the value high for the pageset p.
6134  */
6135 static void pageset_set_high(struct per_cpu_pageset *p,
6136 				unsigned long high)
6137 {
6138 	unsigned long batch = max(1UL, high / 4);
6139 	if ((high / 4) > (PAGE_SHIFT * 8))
6140 		batch = PAGE_SHIFT * 8;
6141 
6142 	pageset_update(&p->pcp, high, batch);
6143 }
6144 
6145 static void pageset_set_high_and_batch(struct zone *zone,
6146 				       struct per_cpu_pageset *pcp)
6147 {
6148 	if (percpu_pagelist_fraction)
6149 		pageset_set_high(pcp,
6150 			(zone_managed_pages(zone) /
6151 				percpu_pagelist_fraction));
6152 	else
6153 		pageset_set_batch(pcp, zone_batchsize(zone));
6154 }
6155 
6156 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6157 {
6158 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6159 
6160 	pageset_init(pcp);
6161 	pageset_set_high_and_batch(zone, pcp);
6162 }
6163 
6164 void __meminit setup_zone_pageset(struct zone *zone)
6165 {
6166 	int cpu;
6167 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6168 	for_each_possible_cpu(cpu)
6169 		zone_pageset_init(zone, cpu);
6170 }
6171 
6172 /*
6173  * Allocate per cpu pagesets and initialize them.
6174  * Before this call only boot pagesets were available.
6175  */
6176 void __init setup_per_cpu_pageset(void)
6177 {
6178 	struct pglist_data *pgdat;
6179 	struct zone *zone;
6180 
6181 	for_each_populated_zone(zone)
6182 		setup_zone_pageset(zone);
6183 
6184 	for_each_online_pgdat(pgdat)
6185 		pgdat->per_cpu_nodestats =
6186 			alloc_percpu(struct per_cpu_nodestat);
6187 }
6188 
6189 static __meminit void zone_pcp_init(struct zone *zone)
6190 {
6191 	/*
6192 	 * per cpu subsystem is not up at this point. The following code
6193 	 * relies on the ability of the linker to provide the
6194 	 * offset of a (static) per cpu variable into the per cpu area.
6195 	 */
6196 	zone->pageset = &boot_pageset;
6197 
6198 	if (populated_zone(zone))
6199 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6200 			zone->name, zone->present_pages,
6201 					 zone_batchsize(zone));
6202 }
6203 
6204 void __meminit init_currently_empty_zone(struct zone *zone,
6205 					unsigned long zone_start_pfn,
6206 					unsigned long size)
6207 {
6208 	struct pglist_data *pgdat = zone->zone_pgdat;
6209 	int zone_idx = zone_idx(zone) + 1;
6210 
6211 	if (zone_idx > pgdat->nr_zones)
6212 		pgdat->nr_zones = zone_idx;
6213 
6214 	zone->zone_start_pfn = zone_start_pfn;
6215 
6216 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6217 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6218 			pgdat->node_id,
6219 			(unsigned long)zone_idx(zone),
6220 			zone_start_pfn, (zone_start_pfn + size));
6221 
6222 	zone_init_free_lists(zone);
6223 	zone->initialized = 1;
6224 }
6225 
6226 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6227 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6228 
6229 /*
6230  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6231  */
6232 int __meminit __early_pfn_to_nid(unsigned long pfn,
6233 					struct mminit_pfnnid_cache *state)
6234 {
6235 	unsigned long start_pfn, end_pfn;
6236 	int nid;
6237 
6238 	if (state->last_start <= pfn && pfn < state->last_end)
6239 		return state->last_nid;
6240 
6241 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6242 	if (nid != NUMA_NO_NODE) {
6243 		state->last_start = start_pfn;
6244 		state->last_end = end_pfn;
6245 		state->last_nid = nid;
6246 	}
6247 
6248 	return nid;
6249 }
6250 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6251 
6252 /**
6253  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6254  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6255  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6256  *
6257  * If an architecture guarantees that all ranges registered contain no holes
6258  * and may be freed, this this function may be used instead of calling
6259  * memblock_free_early_nid() manually.
6260  */
6261 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6262 {
6263 	unsigned long start_pfn, end_pfn;
6264 	int i, this_nid;
6265 
6266 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6267 		start_pfn = min(start_pfn, max_low_pfn);
6268 		end_pfn = min(end_pfn, max_low_pfn);
6269 
6270 		if (start_pfn < end_pfn)
6271 			memblock_free_early_nid(PFN_PHYS(start_pfn),
6272 					(end_pfn - start_pfn) << PAGE_SHIFT,
6273 					this_nid);
6274 	}
6275 }
6276 
6277 /**
6278  * sparse_memory_present_with_active_regions - Call memory_present for each active range
6279  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6280  *
6281  * If an architecture guarantees that all ranges registered contain no holes and may
6282  * be freed, this function may be used instead of calling memory_present() manually.
6283  */
6284 void __init sparse_memory_present_with_active_regions(int nid)
6285 {
6286 	unsigned long start_pfn, end_pfn;
6287 	int i, this_nid;
6288 
6289 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6290 		memory_present(this_nid, start_pfn, end_pfn);
6291 }
6292 
6293 /**
6294  * get_pfn_range_for_nid - Return the start and end page frames for a node
6295  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6296  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6297  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6298  *
6299  * It returns the start and end page frame of a node based on information
6300  * provided by memblock_set_node(). If called for a node
6301  * with no available memory, a warning is printed and the start and end
6302  * PFNs will be 0.
6303  */
6304 void __init get_pfn_range_for_nid(unsigned int nid,
6305 			unsigned long *start_pfn, unsigned long *end_pfn)
6306 {
6307 	unsigned long this_start_pfn, this_end_pfn;
6308 	int i;
6309 
6310 	*start_pfn = -1UL;
6311 	*end_pfn = 0;
6312 
6313 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6314 		*start_pfn = min(*start_pfn, this_start_pfn);
6315 		*end_pfn = max(*end_pfn, this_end_pfn);
6316 	}
6317 
6318 	if (*start_pfn == -1UL)
6319 		*start_pfn = 0;
6320 }
6321 
6322 /*
6323  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6324  * assumption is made that zones within a node are ordered in monotonic
6325  * increasing memory addresses so that the "highest" populated zone is used
6326  */
6327 static void __init find_usable_zone_for_movable(void)
6328 {
6329 	int zone_index;
6330 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6331 		if (zone_index == ZONE_MOVABLE)
6332 			continue;
6333 
6334 		if (arch_zone_highest_possible_pfn[zone_index] >
6335 				arch_zone_lowest_possible_pfn[zone_index])
6336 			break;
6337 	}
6338 
6339 	VM_BUG_ON(zone_index == -1);
6340 	movable_zone = zone_index;
6341 }
6342 
6343 /*
6344  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6345  * because it is sized independent of architecture. Unlike the other zones,
6346  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6347  * in each node depending on the size of each node and how evenly kernelcore
6348  * is distributed. This helper function adjusts the zone ranges
6349  * provided by the architecture for a given node by using the end of the
6350  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6351  * zones within a node are in order of monotonic increases memory addresses
6352  */
6353 static void __init adjust_zone_range_for_zone_movable(int nid,
6354 					unsigned long zone_type,
6355 					unsigned long node_start_pfn,
6356 					unsigned long node_end_pfn,
6357 					unsigned long *zone_start_pfn,
6358 					unsigned long *zone_end_pfn)
6359 {
6360 	/* Only adjust if ZONE_MOVABLE is on this node */
6361 	if (zone_movable_pfn[nid]) {
6362 		/* Size ZONE_MOVABLE */
6363 		if (zone_type == ZONE_MOVABLE) {
6364 			*zone_start_pfn = zone_movable_pfn[nid];
6365 			*zone_end_pfn = min(node_end_pfn,
6366 				arch_zone_highest_possible_pfn[movable_zone]);
6367 
6368 		/* Adjust for ZONE_MOVABLE starting within this range */
6369 		} else if (!mirrored_kernelcore &&
6370 			*zone_start_pfn < zone_movable_pfn[nid] &&
6371 			*zone_end_pfn > zone_movable_pfn[nid]) {
6372 			*zone_end_pfn = zone_movable_pfn[nid];
6373 
6374 		/* Check if this whole range is within ZONE_MOVABLE */
6375 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6376 			*zone_start_pfn = *zone_end_pfn;
6377 	}
6378 }
6379 
6380 /*
6381  * Return the number of pages a zone spans in a node, including holes
6382  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6383  */
6384 static unsigned long __init zone_spanned_pages_in_node(int nid,
6385 					unsigned long zone_type,
6386 					unsigned long node_start_pfn,
6387 					unsigned long node_end_pfn,
6388 					unsigned long *zone_start_pfn,
6389 					unsigned long *zone_end_pfn,
6390 					unsigned long *ignored)
6391 {
6392 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6393 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6394 	/* When hotadd a new node from cpu_up(), the node should be empty */
6395 	if (!node_start_pfn && !node_end_pfn)
6396 		return 0;
6397 
6398 	/* Get the start and end of the zone */
6399 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6400 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6401 	adjust_zone_range_for_zone_movable(nid, zone_type,
6402 				node_start_pfn, node_end_pfn,
6403 				zone_start_pfn, zone_end_pfn);
6404 
6405 	/* Check that this node has pages within the zone's required range */
6406 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6407 		return 0;
6408 
6409 	/* Move the zone boundaries inside the node if necessary */
6410 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6411 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6412 
6413 	/* Return the spanned pages */
6414 	return *zone_end_pfn - *zone_start_pfn;
6415 }
6416 
6417 /*
6418  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6419  * then all holes in the requested range will be accounted for.
6420  */
6421 unsigned long __init __absent_pages_in_range(int nid,
6422 				unsigned long range_start_pfn,
6423 				unsigned long range_end_pfn)
6424 {
6425 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6426 	unsigned long start_pfn, end_pfn;
6427 	int i;
6428 
6429 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6430 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6431 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6432 		nr_absent -= end_pfn - start_pfn;
6433 	}
6434 	return nr_absent;
6435 }
6436 
6437 /**
6438  * absent_pages_in_range - Return number of page frames in holes within a range
6439  * @start_pfn: The start PFN to start searching for holes
6440  * @end_pfn: The end PFN to stop searching for holes
6441  *
6442  * Return: the number of pages frames in memory holes within a range.
6443  */
6444 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6445 							unsigned long end_pfn)
6446 {
6447 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6448 }
6449 
6450 /* Return the number of page frames in holes in a zone on a node */
6451 static unsigned long __init zone_absent_pages_in_node(int nid,
6452 					unsigned long zone_type,
6453 					unsigned long node_start_pfn,
6454 					unsigned long node_end_pfn,
6455 					unsigned long *ignored)
6456 {
6457 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6458 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6459 	unsigned long zone_start_pfn, zone_end_pfn;
6460 	unsigned long nr_absent;
6461 
6462 	/* When hotadd a new node from cpu_up(), the node should be empty */
6463 	if (!node_start_pfn && !node_end_pfn)
6464 		return 0;
6465 
6466 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6467 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6468 
6469 	adjust_zone_range_for_zone_movable(nid, zone_type,
6470 			node_start_pfn, node_end_pfn,
6471 			&zone_start_pfn, &zone_end_pfn);
6472 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6473 
6474 	/*
6475 	 * ZONE_MOVABLE handling.
6476 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6477 	 * and vice versa.
6478 	 */
6479 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6480 		unsigned long start_pfn, end_pfn;
6481 		struct memblock_region *r;
6482 
6483 		for_each_memblock(memory, r) {
6484 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6485 					  zone_start_pfn, zone_end_pfn);
6486 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6487 					zone_start_pfn, zone_end_pfn);
6488 
6489 			if (zone_type == ZONE_MOVABLE &&
6490 			    memblock_is_mirror(r))
6491 				nr_absent += end_pfn - start_pfn;
6492 
6493 			if (zone_type == ZONE_NORMAL &&
6494 			    !memblock_is_mirror(r))
6495 				nr_absent += end_pfn - start_pfn;
6496 		}
6497 	}
6498 
6499 	return nr_absent;
6500 }
6501 
6502 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6503 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6504 					unsigned long zone_type,
6505 					unsigned long node_start_pfn,
6506 					unsigned long node_end_pfn,
6507 					unsigned long *zone_start_pfn,
6508 					unsigned long *zone_end_pfn,
6509 					unsigned long *zones_size)
6510 {
6511 	unsigned int zone;
6512 
6513 	*zone_start_pfn = node_start_pfn;
6514 	for (zone = 0; zone < zone_type; zone++)
6515 		*zone_start_pfn += zones_size[zone];
6516 
6517 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6518 
6519 	return zones_size[zone_type];
6520 }
6521 
6522 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6523 						unsigned long zone_type,
6524 						unsigned long node_start_pfn,
6525 						unsigned long node_end_pfn,
6526 						unsigned long *zholes_size)
6527 {
6528 	if (!zholes_size)
6529 		return 0;
6530 
6531 	return zholes_size[zone_type];
6532 }
6533 
6534 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6535 
6536 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6537 						unsigned long node_start_pfn,
6538 						unsigned long node_end_pfn,
6539 						unsigned long *zones_size,
6540 						unsigned long *zholes_size)
6541 {
6542 	unsigned long realtotalpages = 0, totalpages = 0;
6543 	enum zone_type i;
6544 
6545 	for (i = 0; i < MAX_NR_ZONES; i++) {
6546 		struct zone *zone = pgdat->node_zones + i;
6547 		unsigned long zone_start_pfn, zone_end_pfn;
6548 		unsigned long size, real_size;
6549 
6550 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6551 						  node_start_pfn,
6552 						  node_end_pfn,
6553 						  &zone_start_pfn,
6554 						  &zone_end_pfn,
6555 						  zones_size);
6556 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6557 						  node_start_pfn, node_end_pfn,
6558 						  zholes_size);
6559 		if (size)
6560 			zone->zone_start_pfn = zone_start_pfn;
6561 		else
6562 			zone->zone_start_pfn = 0;
6563 		zone->spanned_pages = size;
6564 		zone->present_pages = real_size;
6565 
6566 		totalpages += size;
6567 		realtotalpages += real_size;
6568 	}
6569 
6570 	pgdat->node_spanned_pages = totalpages;
6571 	pgdat->node_present_pages = realtotalpages;
6572 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6573 							realtotalpages);
6574 }
6575 
6576 #ifndef CONFIG_SPARSEMEM
6577 /*
6578  * Calculate the size of the zone->blockflags rounded to an unsigned long
6579  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6580  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6581  * round what is now in bits to nearest long in bits, then return it in
6582  * bytes.
6583  */
6584 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6585 {
6586 	unsigned long usemapsize;
6587 
6588 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6589 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6590 	usemapsize = usemapsize >> pageblock_order;
6591 	usemapsize *= NR_PAGEBLOCK_BITS;
6592 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6593 
6594 	return usemapsize / 8;
6595 }
6596 
6597 static void __ref setup_usemap(struct pglist_data *pgdat,
6598 				struct zone *zone,
6599 				unsigned long zone_start_pfn,
6600 				unsigned long zonesize)
6601 {
6602 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6603 	zone->pageblock_flags = NULL;
6604 	if (usemapsize) {
6605 		zone->pageblock_flags =
6606 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6607 					    pgdat->node_id);
6608 		if (!zone->pageblock_flags)
6609 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6610 			      usemapsize, zone->name, pgdat->node_id);
6611 	}
6612 }
6613 #else
6614 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6615 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6616 #endif /* CONFIG_SPARSEMEM */
6617 
6618 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6619 
6620 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6621 void __init set_pageblock_order(void)
6622 {
6623 	unsigned int order;
6624 
6625 	/* Check that pageblock_nr_pages has not already been setup */
6626 	if (pageblock_order)
6627 		return;
6628 
6629 	if (HPAGE_SHIFT > PAGE_SHIFT)
6630 		order = HUGETLB_PAGE_ORDER;
6631 	else
6632 		order = MAX_ORDER - 1;
6633 
6634 	/*
6635 	 * Assume the largest contiguous order of interest is a huge page.
6636 	 * This value may be variable depending on boot parameters on IA64 and
6637 	 * powerpc.
6638 	 */
6639 	pageblock_order = order;
6640 }
6641 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6642 
6643 /*
6644  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6645  * is unused as pageblock_order is set at compile-time. See
6646  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6647  * the kernel config
6648  */
6649 void __init set_pageblock_order(void)
6650 {
6651 }
6652 
6653 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6654 
6655 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6656 						unsigned long present_pages)
6657 {
6658 	unsigned long pages = spanned_pages;
6659 
6660 	/*
6661 	 * Provide a more accurate estimation if there are holes within
6662 	 * the zone and SPARSEMEM is in use. If there are holes within the
6663 	 * zone, each populated memory region may cost us one or two extra
6664 	 * memmap pages due to alignment because memmap pages for each
6665 	 * populated regions may not be naturally aligned on page boundary.
6666 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6667 	 */
6668 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6669 	    IS_ENABLED(CONFIG_SPARSEMEM))
6670 		pages = present_pages;
6671 
6672 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6673 }
6674 
6675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6676 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6677 {
6678 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6679 
6680 	spin_lock_init(&ds_queue->split_queue_lock);
6681 	INIT_LIST_HEAD(&ds_queue->split_queue);
6682 	ds_queue->split_queue_len = 0;
6683 }
6684 #else
6685 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6686 #endif
6687 
6688 #ifdef CONFIG_COMPACTION
6689 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6690 {
6691 	init_waitqueue_head(&pgdat->kcompactd_wait);
6692 }
6693 #else
6694 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6695 #endif
6696 
6697 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6698 {
6699 	pgdat_resize_init(pgdat);
6700 
6701 	pgdat_init_split_queue(pgdat);
6702 	pgdat_init_kcompactd(pgdat);
6703 
6704 	init_waitqueue_head(&pgdat->kswapd_wait);
6705 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6706 
6707 	pgdat_page_ext_init(pgdat);
6708 	spin_lock_init(&pgdat->lru_lock);
6709 	lruvec_init(node_lruvec(pgdat));
6710 }
6711 
6712 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6713 							unsigned long remaining_pages)
6714 {
6715 	atomic_long_set(&zone->managed_pages, remaining_pages);
6716 	zone_set_nid(zone, nid);
6717 	zone->name = zone_names[idx];
6718 	zone->zone_pgdat = NODE_DATA(nid);
6719 	spin_lock_init(&zone->lock);
6720 	zone_seqlock_init(zone);
6721 	zone_pcp_init(zone);
6722 }
6723 
6724 /*
6725  * Set up the zone data structures
6726  * - init pgdat internals
6727  * - init all zones belonging to this node
6728  *
6729  * NOTE: this function is only called during memory hotplug
6730  */
6731 #ifdef CONFIG_MEMORY_HOTPLUG
6732 void __ref free_area_init_core_hotplug(int nid)
6733 {
6734 	enum zone_type z;
6735 	pg_data_t *pgdat = NODE_DATA(nid);
6736 
6737 	pgdat_init_internals(pgdat);
6738 	for (z = 0; z < MAX_NR_ZONES; z++)
6739 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6740 }
6741 #endif
6742 
6743 /*
6744  * Set up the zone data structures:
6745  *   - mark all pages reserved
6746  *   - mark all memory queues empty
6747  *   - clear the memory bitmaps
6748  *
6749  * NOTE: pgdat should get zeroed by caller.
6750  * NOTE: this function is only called during early init.
6751  */
6752 static void __init free_area_init_core(struct pglist_data *pgdat)
6753 {
6754 	enum zone_type j;
6755 	int nid = pgdat->node_id;
6756 
6757 	pgdat_init_internals(pgdat);
6758 	pgdat->per_cpu_nodestats = &boot_nodestats;
6759 
6760 	for (j = 0; j < MAX_NR_ZONES; j++) {
6761 		struct zone *zone = pgdat->node_zones + j;
6762 		unsigned long size, freesize, memmap_pages;
6763 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6764 
6765 		size = zone->spanned_pages;
6766 		freesize = zone->present_pages;
6767 
6768 		/*
6769 		 * Adjust freesize so that it accounts for how much memory
6770 		 * is used by this zone for memmap. This affects the watermark
6771 		 * and per-cpu initialisations
6772 		 */
6773 		memmap_pages = calc_memmap_size(size, freesize);
6774 		if (!is_highmem_idx(j)) {
6775 			if (freesize >= memmap_pages) {
6776 				freesize -= memmap_pages;
6777 				if (memmap_pages)
6778 					printk(KERN_DEBUG
6779 					       "  %s zone: %lu pages used for memmap\n",
6780 					       zone_names[j], memmap_pages);
6781 			} else
6782 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6783 					zone_names[j], memmap_pages, freesize);
6784 		}
6785 
6786 		/* Account for reserved pages */
6787 		if (j == 0 && freesize > dma_reserve) {
6788 			freesize -= dma_reserve;
6789 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6790 					zone_names[0], dma_reserve);
6791 		}
6792 
6793 		if (!is_highmem_idx(j))
6794 			nr_kernel_pages += freesize;
6795 		/* Charge for highmem memmap if there are enough kernel pages */
6796 		else if (nr_kernel_pages > memmap_pages * 2)
6797 			nr_kernel_pages -= memmap_pages;
6798 		nr_all_pages += freesize;
6799 
6800 		/*
6801 		 * Set an approximate value for lowmem here, it will be adjusted
6802 		 * when the bootmem allocator frees pages into the buddy system.
6803 		 * And all highmem pages will be managed by the buddy system.
6804 		 */
6805 		zone_init_internals(zone, j, nid, freesize);
6806 
6807 		if (!size)
6808 			continue;
6809 
6810 		set_pageblock_order();
6811 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6812 		init_currently_empty_zone(zone, zone_start_pfn, size);
6813 		memmap_init(size, nid, j, zone_start_pfn);
6814 	}
6815 }
6816 
6817 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6818 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6819 {
6820 	unsigned long __maybe_unused start = 0;
6821 	unsigned long __maybe_unused offset = 0;
6822 
6823 	/* Skip empty nodes */
6824 	if (!pgdat->node_spanned_pages)
6825 		return;
6826 
6827 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6828 	offset = pgdat->node_start_pfn - start;
6829 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6830 	if (!pgdat->node_mem_map) {
6831 		unsigned long size, end;
6832 		struct page *map;
6833 
6834 		/*
6835 		 * The zone's endpoints aren't required to be MAX_ORDER
6836 		 * aligned but the node_mem_map endpoints must be in order
6837 		 * for the buddy allocator to function correctly.
6838 		 */
6839 		end = pgdat_end_pfn(pgdat);
6840 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6841 		size =  (end - start) * sizeof(struct page);
6842 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6843 					  pgdat->node_id);
6844 		if (!map)
6845 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6846 			      size, pgdat->node_id);
6847 		pgdat->node_mem_map = map + offset;
6848 	}
6849 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6850 				__func__, pgdat->node_id, (unsigned long)pgdat,
6851 				(unsigned long)pgdat->node_mem_map);
6852 #ifndef CONFIG_NEED_MULTIPLE_NODES
6853 	/*
6854 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6855 	 */
6856 	if (pgdat == NODE_DATA(0)) {
6857 		mem_map = NODE_DATA(0)->node_mem_map;
6858 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6859 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6860 			mem_map -= offset;
6861 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6862 	}
6863 #endif
6864 }
6865 #else
6866 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6867 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6868 
6869 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6870 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6871 {
6872 	pgdat->first_deferred_pfn = ULONG_MAX;
6873 }
6874 #else
6875 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6876 #endif
6877 
6878 void __init free_area_init_node(int nid, unsigned long *zones_size,
6879 				   unsigned long node_start_pfn,
6880 				   unsigned long *zholes_size)
6881 {
6882 	pg_data_t *pgdat = NODE_DATA(nid);
6883 	unsigned long start_pfn = 0;
6884 	unsigned long end_pfn = 0;
6885 
6886 	/* pg_data_t should be reset to zero when it's allocated */
6887 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6888 
6889 	pgdat->node_id = nid;
6890 	pgdat->node_start_pfn = node_start_pfn;
6891 	pgdat->per_cpu_nodestats = NULL;
6892 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6893 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6894 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6895 		(u64)start_pfn << PAGE_SHIFT,
6896 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6897 #else
6898 	start_pfn = node_start_pfn;
6899 #endif
6900 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6901 				  zones_size, zholes_size);
6902 
6903 	alloc_node_mem_map(pgdat);
6904 	pgdat_set_deferred_range(pgdat);
6905 
6906 	free_area_init_core(pgdat);
6907 }
6908 
6909 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6910 /*
6911  * Zero all valid struct pages in range [spfn, epfn), return number of struct
6912  * pages zeroed
6913  */
6914 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6915 {
6916 	unsigned long pfn;
6917 	u64 pgcnt = 0;
6918 
6919 	for (pfn = spfn; pfn < epfn; pfn++) {
6920 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6921 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6922 				+ pageblock_nr_pages - 1;
6923 			continue;
6924 		}
6925 		mm_zero_struct_page(pfn_to_page(pfn));
6926 		pgcnt++;
6927 	}
6928 
6929 	return pgcnt;
6930 }
6931 
6932 /*
6933  * Only struct pages that are backed by physical memory are zeroed and
6934  * initialized by going through __init_single_page(). But, there are some
6935  * struct pages which are reserved in memblock allocator and their fields
6936  * may be accessed (for example page_to_pfn() on some configuration accesses
6937  * flags). We must explicitly zero those struct pages.
6938  *
6939  * This function also addresses a similar issue where struct pages are left
6940  * uninitialized because the physical address range is not covered by
6941  * memblock.memory or memblock.reserved. That could happen when memblock
6942  * layout is manually configured via memmap=.
6943  */
6944 void __init zero_resv_unavail(void)
6945 {
6946 	phys_addr_t start, end;
6947 	u64 i, pgcnt;
6948 	phys_addr_t next = 0;
6949 
6950 	/*
6951 	 * Loop through unavailable ranges not covered by memblock.memory.
6952 	 */
6953 	pgcnt = 0;
6954 	for_each_mem_range(i, &memblock.memory, NULL,
6955 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6956 		if (next < start)
6957 			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6958 		next = end;
6959 	}
6960 	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6961 
6962 	/*
6963 	 * Struct pages that do not have backing memory. This could be because
6964 	 * firmware is using some of this memory, or for some other reasons.
6965 	 */
6966 	if (pgcnt)
6967 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6968 }
6969 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6970 
6971 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6972 
6973 #if MAX_NUMNODES > 1
6974 /*
6975  * Figure out the number of possible node ids.
6976  */
6977 void __init setup_nr_node_ids(void)
6978 {
6979 	unsigned int highest;
6980 
6981 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6982 	nr_node_ids = highest + 1;
6983 }
6984 #endif
6985 
6986 /**
6987  * node_map_pfn_alignment - determine the maximum internode alignment
6988  *
6989  * This function should be called after node map is populated and sorted.
6990  * It calculates the maximum power of two alignment which can distinguish
6991  * all the nodes.
6992  *
6993  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6994  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6995  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6996  * shifted, 1GiB is enough and this function will indicate so.
6997  *
6998  * This is used to test whether pfn -> nid mapping of the chosen memory
6999  * model has fine enough granularity to avoid incorrect mapping for the
7000  * populated node map.
7001  *
7002  * Return: the determined alignment in pfn's.  0 if there is no alignment
7003  * requirement (single node).
7004  */
7005 unsigned long __init node_map_pfn_alignment(void)
7006 {
7007 	unsigned long accl_mask = 0, last_end = 0;
7008 	unsigned long start, end, mask;
7009 	int last_nid = NUMA_NO_NODE;
7010 	int i, nid;
7011 
7012 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7013 		if (!start || last_nid < 0 || last_nid == nid) {
7014 			last_nid = nid;
7015 			last_end = end;
7016 			continue;
7017 		}
7018 
7019 		/*
7020 		 * Start with a mask granular enough to pin-point to the
7021 		 * start pfn and tick off bits one-by-one until it becomes
7022 		 * too coarse to separate the current node from the last.
7023 		 */
7024 		mask = ~((1 << __ffs(start)) - 1);
7025 		while (mask && last_end <= (start & (mask << 1)))
7026 			mask <<= 1;
7027 
7028 		/* accumulate all internode masks */
7029 		accl_mask |= mask;
7030 	}
7031 
7032 	/* convert mask to number of pages */
7033 	return ~accl_mask + 1;
7034 }
7035 
7036 /* Find the lowest pfn for a node */
7037 static unsigned long __init find_min_pfn_for_node(int nid)
7038 {
7039 	unsigned long min_pfn = ULONG_MAX;
7040 	unsigned long start_pfn;
7041 	int i;
7042 
7043 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7044 		min_pfn = min(min_pfn, start_pfn);
7045 
7046 	if (min_pfn == ULONG_MAX) {
7047 		pr_warn("Could not find start_pfn for node %d\n", nid);
7048 		return 0;
7049 	}
7050 
7051 	return min_pfn;
7052 }
7053 
7054 /**
7055  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7056  *
7057  * Return: the minimum PFN based on information provided via
7058  * memblock_set_node().
7059  */
7060 unsigned long __init find_min_pfn_with_active_regions(void)
7061 {
7062 	return find_min_pfn_for_node(MAX_NUMNODES);
7063 }
7064 
7065 /*
7066  * early_calculate_totalpages()
7067  * Sum pages in active regions for movable zone.
7068  * Populate N_MEMORY for calculating usable_nodes.
7069  */
7070 static unsigned long __init early_calculate_totalpages(void)
7071 {
7072 	unsigned long totalpages = 0;
7073 	unsigned long start_pfn, end_pfn;
7074 	int i, nid;
7075 
7076 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7077 		unsigned long pages = end_pfn - start_pfn;
7078 
7079 		totalpages += pages;
7080 		if (pages)
7081 			node_set_state(nid, N_MEMORY);
7082 	}
7083 	return totalpages;
7084 }
7085 
7086 /*
7087  * Find the PFN the Movable zone begins in each node. Kernel memory
7088  * is spread evenly between nodes as long as the nodes have enough
7089  * memory. When they don't, some nodes will have more kernelcore than
7090  * others
7091  */
7092 static void __init find_zone_movable_pfns_for_nodes(void)
7093 {
7094 	int i, nid;
7095 	unsigned long usable_startpfn;
7096 	unsigned long kernelcore_node, kernelcore_remaining;
7097 	/* save the state before borrow the nodemask */
7098 	nodemask_t saved_node_state = node_states[N_MEMORY];
7099 	unsigned long totalpages = early_calculate_totalpages();
7100 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7101 	struct memblock_region *r;
7102 
7103 	/* Need to find movable_zone earlier when movable_node is specified. */
7104 	find_usable_zone_for_movable();
7105 
7106 	/*
7107 	 * If movable_node is specified, ignore kernelcore and movablecore
7108 	 * options.
7109 	 */
7110 	if (movable_node_is_enabled()) {
7111 		for_each_memblock(memory, r) {
7112 			if (!memblock_is_hotpluggable(r))
7113 				continue;
7114 
7115 			nid = r->nid;
7116 
7117 			usable_startpfn = PFN_DOWN(r->base);
7118 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7119 				min(usable_startpfn, zone_movable_pfn[nid]) :
7120 				usable_startpfn;
7121 		}
7122 
7123 		goto out2;
7124 	}
7125 
7126 	/*
7127 	 * If kernelcore=mirror is specified, ignore movablecore option
7128 	 */
7129 	if (mirrored_kernelcore) {
7130 		bool mem_below_4gb_not_mirrored = false;
7131 
7132 		for_each_memblock(memory, r) {
7133 			if (memblock_is_mirror(r))
7134 				continue;
7135 
7136 			nid = r->nid;
7137 
7138 			usable_startpfn = memblock_region_memory_base_pfn(r);
7139 
7140 			if (usable_startpfn < 0x100000) {
7141 				mem_below_4gb_not_mirrored = true;
7142 				continue;
7143 			}
7144 
7145 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7146 				min(usable_startpfn, zone_movable_pfn[nid]) :
7147 				usable_startpfn;
7148 		}
7149 
7150 		if (mem_below_4gb_not_mirrored)
7151 			pr_warn("This configuration results in unmirrored kernel memory.");
7152 
7153 		goto out2;
7154 	}
7155 
7156 	/*
7157 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7158 	 * amount of necessary memory.
7159 	 */
7160 	if (required_kernelcore_percent)
7161 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7162 				       10000UL;
7163 	if (required_movablecore_percent)
7164 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7165 					10000UL;
7166 
7167 	/*
7168 	 * If movablecore= was specified, calculate what size of
7169 	 * kernelcore that corresponds so that memory usable for
7170 	 * any allocation type is evenly spread. If both kernelcore
7171 	 * and movablecore are specified, then the value of kernelcore
7172 	 * will be used for required_kernelcore if it's greater than
7173 	 * what movablecore would have allowed.
7174 	 */
7175 	if (required_movablecore) {
7176 		unsigned long corepages;
7177 
7178 		/*
7179 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7180 		 * was requested by the user
7181 		 */
7182 		required_movablecore =
7183 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7184 		required_movablecore = min(totalpages, required_movablecore);
7185 		corepages = totalpages - required_movablecore;
7186 
7187 		required_kernelcore = max(required_kernelcore, corepages);
7188 	}
7189 
7190 	/*
7191 	 * If kernelcore was not specified or kernelcore size is larger
7192 	 * than totalpages, there is no ZONE_MOVABLE.
7193 	 */
7194 	if (!required_kernelcore || required_kernelcore >= totalpages)
7195 		goto out;
7196 
7197 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7198 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7199 
7200 restart:
7201 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7202 	kernelcore_node = required_kernelcore / usable_nodes;
7203 	for_each_node_state(nid, N_MEMORY) {
7204 		unsigned long start_pfn, end_pfn;
7205 
7206 		/*
7207 		 * Recalculate kernelcore_node if the division per node
7208 		 * now exceeds what is necessary to satisfy the requested
7209 		 * amount of memory for the kernel
7210 		 */
7211 		if (required_kernelcore < kernelcore_node)
7212 			kernelcore_node = required_kernelcore / usable_nodes;
7213 
7214 		/*
7215 		 * As the map is walked, we track how much memory is usable
7216 		 * by the kernel using kernelcore_remaining. When it is
7217 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7218 		 */
7219 		kernelcore_remaining = kernelcore_node;
7220 
7221 		/* Go through each range of PFNs within this node */
7222 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7223 			unsigned long size_pages;
7224 
7225 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7226 			if (start_pfn >= end_pfn)
7227 				continue;
7228 
7229 			/* Account for what is only usable for kernelcore */
7230 			if (start_pfn < usable_startpfn) {
7231 				unsigned long kernel_pages;
7232 				kernel_pages = min(end_pfn, usable_startpfn)
7233 								- start_pfn;
7234 
7235 				kernelcore_remaining -= min(kernel_pages,
7236 							kernelcore_remaining);
7237 				required_kernelcore -= min(kernel_pages,
7238 							required_kernelcore);
7239 
7240 				/* Continue if range is now fully accounted */
7241 				if (end_pfn <= usable_startpfn) {
7242 
7243 					/*
7244 					 * Push zone_movable_pfn to the end so
7245 					 * that if we have to rebalance
7246 					 * kernelcore across nodes, we will
7247 					 * not double account here
7248 					 */
7249 					zone_movable_pfn[nid] = end_pfn;
7250 					continue;
7251 				}
7252 				start_pfn = usable_startpfn;
7253 			}
7254 
7255 			/*
7256 			 * The usable PFN range for ZONE_MOVABLE is from
7257 			 * start_pfn->end_pfn. Calculate size_pages as the
7258 			 * number of pages used as kernelcore
7259 			 */
7260 			size_pages = end_pfn - start_pfn;
7261 			if (size_pages > kernelcore_remaining)
7262 				size_pages = kernelcore_remaining;
7263 			zone_movable_pfn[nid] = start_pfn + size_pages;
7264 
7265 			/*
7266 			 * Some kernelcore has been met, update counts and
7267 			 * break if the kernelcore for this node has been
7268 			 * satisfied
7269 			 */
7270 			required_kernelcore -= min(required_kernelcore,
7271 								size_pages);
7272 			kernelcore_remaining -= size_pages;
7273 			if (!kernelcore_remaining)
7274 				break;
7275 		}
7276 	}
7277 
7278 	/*
7279 	 * If there is still required_kernelcore, we do another pass with one
7280 	 * less node in the count. This will push zone_movable_pfn[nid] further
7281 	 * along on the nodes that still have memory until kernelcore is
7282 	 * satisfied
7283 	 */
7284 	usable_nodes--;
7285 	if (usable_nodes && required_kernelcore > usable_nodes)
7286 		goto restart;
7287 
7288 out2:
7289 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7290 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7291 		zone_movable_pfn[nid] =
7292 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7293 
7294 out:
7295 	/* restore the node_state */
7296 	node_states[N_MEMORY] = saved_node_state;
7297 }
7298 
7299 /* Any regular or high memory on that node ? */
7300 static void check_for_memory(pg_data_t *pgdat, int nid)
7301 {
7302 	enum zone_type zone_type;
7303 
7304 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7305 		struct zone *zone = &pgdat->node_zones[zone_type];
7306 		if (populated_zone(zone)) {
7307 			if (IS_ENABLED(CONFIG_HIGHMEM))
7308 				node_set_state(nid, N_HIGH_MEMORY);
7309 			if (zone_type <= ZONE_NORMAL)
7310 				node_set_state(nid, N_NORMAL_MEMORY);
7311 			break;
7312 		}
7313 	}
7314 }
7315 
7316 /**
7317  * free_area_init_nodes - Initialise all pg_data_t and zone data
7318  * @max_zone_pfn: an array of max PFNs for each zone
7319  *
7320  * This will call free_area_init_node() for each active node in the system.
7321  * Using the page ranges provided by memblock_set_node(), the size of each
7322  * zone in each node and their holes is calculated. If the maximum PFN
7323  * between two adjacent zones match, it is assumed that the zone is empty.
7324  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7325  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7326  * starts where the previous one ended. For example, ZONE_DMA32 starts
7327  * at arch_max_dma_pfn.
7328  */
7329 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7330 {
7331 	unsigned long start_pfn, end_pfn;
7332 	int i, nid;
7333 
7334 	/* Record where the zone boundaries are */
7335 	memset(arch_zone_lowest_possible_pfn, 0,
7336 				sizeof(arch_zone_lowest_possible_pfn));
7337 	memset(arch_zone_highest_possible_pfn, 0,
7338 				sizeof(arch_zone_highest_possible_pfn));
7339 
7340 	start_pfn = find_min_pfn_with_active_regions();
7341 
7342 	for (i = 0; i < MAX_NR_ZONES; i++) {
7343 		if (i == ZONE_MOVABLE)
7344 			continue;
7345 
7346 		end_pfn = max(max_zone_pfn[i], start_pfn);
7347 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7348 		arch_zone_highest_possible_pfn[i] = end_pfn;
7349 
7350 		start_pfn = end_pfn;
7351 	}
7352 
7353 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7354 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7355 	find_zone_movable_pfns_for_nodes();
7356 
7357 	/* Print out the zone ranges */
7358 	pr_info("Zone ranges:\n");
7359 	for (i = 0; i < MAX_NR_ZONES; i++) {
7360 		if (i == ZONE_MOVABLE)
7361 			continue;
7362 		pr_info("  %-8s ", zone_names[i]);
7363 		if (arch_zone_lowest_possible_pfn[i] ==
7364 				arch_zone_highest_possible_pfn[i])
7365 			pr_cont("empty\n");
7366 		else
7367 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7368 				(u64)arch_zone_lowest_possible_pfn[i]
7369 					<< PAGE_SHIFT,
7370 				((u64)arch_zone_highest_possible_pfn[i]
7371 					<< PAGE_SHIFT) - 1);
7372 	}
7373 
7374 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7375 	pr_info("Movable zone start for each node\n");
7376 	for (i = 0; i < MAX_NUMNODES; i++) {
7377 		if (zone_movable_pfn[i])
7378 			pr_info("  Node %d: %#018Lx\n", i,
7379 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7380 	}
7381 
7382 	/*
7383 	 * Print out the early node map, and initialize the
7384 	 * subsection-map relative to active online memory ranges to
7385 	 * enable future "sub-section" extensions of the memory map.
7386 	 */
7387 	pr_info("Early memory node ranges\n");
7388 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7389 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7390 			(u64)start_pfn << PAGE_SHIFT,
7391 			((u64)end_pfn << PAGE_SHIFT) - 1);
7392 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7393 	}
7394 
7395 	/* Initialise every node */
7396 	mminit_verify_pageflags_layout();
7397 	setup_nr_node_ids();
7398 	zero_resv_unavail();
7399 	for_each_online_node(nid) {
7400 		pg_data_t *pgdat = NODE_DATA(nid);
7401 		free_area_init_node(nid, NULL,
7402 				find_min_pfn_for_node(nid), NULL);
7403 
7404 		/* Any memory on that node */
7405 		if (pgdat->node_present_pages)
7406 			node_set_state(nid, N_MEMORY);
7407 		check_for_memory(pgdat, nid);
7408 	}
7409 }
7410 
7411 static int __init cmdline_parse_core(char *p, unsigned long *core,
7412 				     unsigned long *percent)
7413 {
7414 	unsigned long long coremem;
7415 	char *endptr;
7416 
7417 	if (!p)
7418 		return -EINVAL;
7419 
7420 	/* Value may be a percentage of total memory, otherwise bytes */
7421 	coremem = simple_strtoull(p, &endptr, 0);
7422 	if (*endptr == '%') {
7423 		/* Paranoid check for percent values greater than 100 */
7424 		WARN_ON(coremem > 100);
7425 
7426 		*percent = coremem;
7427 	} else {
7428 		coremem = memparse(p, &p);
7429 		/* Paranoid check that UL is enough for the coremem value */
7430 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7431 
7432 		*core = coremem >> PAGE_SHIFT;
7433 		*percent = 0UL;
7434 	}
7435 	return 0;
7436 }
7437 
7438 /*
7439  * kernelcore=size sets the amount of memory for use for allocations that
7440  * cannot be reclaimed or migrated.
7441  */
7442 static int __init cmdline_parse_kernelcore(char *p)
7443 {
7444 	/* parse kernelcore=mirror */
7445 	if (parse_option_str(p, "mirror")) {
7446 		mirrored_kernelcore = true;
7447 		return 0;
7448 	}
7449 
7450 	return cmdline_parse_core(p, &required_kernelcore,
7451 				  &required_kernelcore_percent);
7452 }
7453 
7454 /*
7455  * movablecore=size sets the amount of memory for use for allocations that
7456  * can be reclaimed or migrated.
7457  */
7458 static int __init cmdline_parse_movablecore(char *p)
7459 {
7460 	return cmdline_parse_core(p, &required_movablecore,
7461 				  &required_movablecore_percent);
7462 }
7463 
7464 early_param("kernelcore", cmdline_parse_kernelcore);
7465 early_param("movablecore", cmdline_parse_movablecore);
7466 
7467 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7468 
7469 void adjust_managed_page_count(struct page *page, long count)
7470 {
7471 	atomic_long_add(count, &page_zone(page)->managed_pages);
7472 	totalram_pages_add(count);
7473 #ifdef CONFIG_HIGHMEM
7474 	if (PageHighMem(page))
7475 		totalhigh_pages_add(count);
7476 #endif
7477 }
7478 EXPORT_SYMBOL(adjust_managed_page_count);
7479 
7480 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7481 {
7482 	void *pos;
7483 	unsigned long pages = 0;
7484 
7485 	start = (void *)PAGE_ALIGN((unsigned long)start);
7486 	end = (void *)((unsigned long)end & PAGE_MASK);
7487 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7488 		struct page *page = virt_to_page(pos);
7489 		void *direct_map_addr;
7490 
7491 		/*
7492 		 * 'direct_map_addr' might be different from 'pos'
7493 		 * because some architectures' virt_to_page()
7494 		 * work with aliases.  Getting the direct map
7495 		 * address ensures that we get a _writeable_
7496 		 * alias for the memset().
7497 		 */
7498 		direct_map_addr = page_address(page);
7499 		if ((unsigned int)poison <= 0xFF)
7500 			memset(direct_map_addr, poison, PAGE_SIZE);
7501 
7502 		free_reserved_page(page);
7503 	}
7504 
7505 	if (pages && s)
7506 		pr_info("Freeing %s memory: %ldK\n",
7507 			s, pages << (PAGE_SHIFT - 10));
7508 
7509 	return pages;
7510 }
7511 
7512 #ifdef	CONFIG_HIGHMEM
7513 void free_highmem_page(struct page *page)
7514 {
7515 	__free_reserved_page(page);
7516 	totalram_pages_inc();
7517 	atomic_long_inc(&page_zone(page)->managed_pages);
7518 	totalhigh_pages_inc();
7519 }
7520 #endif
7521 
7522 
7523 void __init mem_init_print_info(const char *str)
7524 {
7525 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7526 	unsigned long init_code_size, init_data_size;
7527 
7528 	physpages = get_num_physpages();
7529 	codesize = _etext - _stext;
7530 	datasize = _edata - _sdata;
7531 	rosize = __end_rodata - __start_rodata;
7532 	bss_size = __bss_stop - __bss_start;
7533 	init_data_size = __init_end - __init_begin;
7534 	init_code_size = _einittext - _sinittext;
7535 
7536 	/*
7537 	 * Detect special cases and adjust section sizes accordingly:
7538 	 * 1) .init.* may be embedded into .data sections
7539 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7540 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7541 	 * 3) .rodata.* may be embedded into .text or .data sections.
7542 	 */
7543 #define adj_init_size(start, end, size, pos, adj) \
7544 	do { \
7545 		if (start <= pos && pos < end && size > adj) \
7546 			size -= adj; \
7547 	} while (0)
7548 
7549 	adj_init_size(__init_begin, __init_end, init_data_size,
7550 		     _sinittext, init_code_size);
7551 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7552 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7553 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7554 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7555 
7556 #undef	adj_init_size
7557 
7558 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7559 #ifdef	CONFIG_HIGHMEM
7560 		", %luK highmem"
7561 #endif
7562 		"%s%s)\n",
7563 		nr_free_pages() << (PAGE_SHIFT - 10),
7564 		physpages << (PAGE_SHIFT - 10),
7565 		codesize >> 10, datasize >> 10, rosize >> 10,
7566 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7567 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7568 		totalcma_pages << (PAGE_SHIFT - 10),
7569 #ifdef	CONFIG_HIGHMEM
7570 		totalhigh_pages() << (PAGE_SHIFT - 10),
7571 #endif
7572 		str ? ", " : "", str ? str : "");
7573 }
7574 
7575 /**
7576  * set_dma_reserve - set the specified number of pages reserved in the first zone
7577  * @new_dma_reserve: The number of pages to mark reserved
7578  *
7579  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7580  * In the DMA zone, a significant percentage may be consumed by kernel image
7581  * and other unfreeable allocations which can skew the watermarks badly. This
7582  * function may optionally be used to account for unfreeable pages in the
7583  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7584  * smaller per-cpu batchsize.
7585  */
7586 void __init set_dma_reserve(unsigned long new_dma_reserve)
7587 {
7588 	dma_reserve = new_dma_reserve;
7589 }
7590 
7591 void __init free_area_init(unsigned long *zones_size)
7592 {
7593 	zero_resv_unavail();
7594 	free_area_init_node(0, zones_size,
7595 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7596 }
7597 
7598 static int page_alloc_cpu_dead(unsigned int cpu)
7599 {
7600 
7601 	lru_add_drain_cpu(cpu);
7602 	drain_pages(cpu);
7603 
7604 	/*
7605 	 * Spill the event counters of the dead processor
7606 	 * into the current processors event counters.
7607 	 * This artificially elevates the count of the current
7608 	 * processor.
7609 	 */
7610 	vm_events_fold_cpu(cpu);
7611 
7612 	/*
7613 	 * Zero the differential counters of the dead processor
7614 	 * so that the vm statistics are consistent.
7615 	 *
7616 	 * This is only okay since the processor is dead and cannot
7617 	 * race with what we are doing.
7618 	 */
7619 	cpu_vm_stats_fold(cpu);
7620 	return 0;
7621 }
7622 
7623 #ifdef CONFIG_NUMA
7624 int hashdist = HASHDIST_DEFAULT;
7625 
7626 static int __init set_hashdist(char *str)
7627 {
7628 	if (!str)
7629 		return 0;
7630 	hashdist = simple_strtoul(str, &str, 0);
7631 	return 1;
7632 }
7633 __setup("hashdist=", set_hashdist);
7634 #endif
7635 
7636 void __init page_alloc_init(void)
7637 {
7638 	int ret;
7639 
7640 #ifdef CONFIG_NUMA
7641 	if (num_node_state(N_MEMORY) == 1)
7642 		hashdist = 0;
7643 #endif
7644 
7645 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7646 					"mm/page_alloc:dead", NULL,
7647 					page_alloc_cpu_dead);
7648 	WARN_ON(ret < 0);
7649 }
7650 
7651 /*
7652  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7653  *	or min_free_kbytes changes.
7654  */
7655 static void calculate_totalreserve_pages(void)
7656 {
7657 	struct pglist_data *pgdat;
7658 	unsigned long reserve_pages = 0;
7659 	enum zone_type i, j;
7660 
7661 	for_each_online_pgdat(pgdat) {
7662 
7663 		pgdat->totalreserve_pages = 0;
7664 
7665 		for (i = 0; i < MAX_NR_ZONES; i++) {
7666 			struct zone *zone = pgdat->node_zones + i;
7667 			long max = 0;
7668 			unsigned long managed_pages = zone_managed_pages(zone);
7669 
7670 			/* Find valid and maximum lowmem_reserve in the zone */
7671 			for (j = i; j < MAX_NR_ZONES; j++) {
7672 				if (zone->lowmem_reserve[j] > max)
7673 					max = zone->lowmem_reserve[j];
7674 			}
7675 
7676 			/* we treat the high watermark as reserved pages. */
7677 			max += high_wmark_pages(zone);
7678 
7679 			if (max > managed_pages)
7680 				max = managed_pages;
7681 
7682 			pgdat->totalreserve_pages += max;
7683 
7684 			reserve_pages += max;
7685 		}
7686 	}
7687 	totalreserve_pages = reserve_pages;
7688 }
7689 
7690 /*
7691  * setup_per_zone_lowmem_reserve - called whenever
7692  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7693  *	has a correct pages reserved value, so an adequate number of
7694  *	pages are left in the zone after a successful __alloc_pages().
7695  */
7696 static void setup_per_zone_lowmem_reserve(void)
7697 {
7698 	struct pglist_data *pgdat;
7699 	enum zone_type j, idx;
7700 
7701 	for_each_online_pgdat(pgdat) {
7702 		for (j = 0; j < MAX_NR_ZONES; j++) {
7703 			struct zone *zone = pgdat->node_zones + j;
7704 			unsigned long managed_pages = zone_managed_pages(zone);
7705 
7706 			zone->lowmem_reserve[j] = 0;
7707 
7708 			idx = j;
7709 			while (idx) {
7710 				struct zone *lower_zone;
7711 
7712 				idx--;
7713 				lower_zone = pgdat->node_zones + idx;
7714 
7715 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7716 					sysctl_lowmem_reserve_ratio[idx] = 0;
7717 					lower_zone->lowmem_reserve[j] = 0;
7718 				} else {
7719 					lower_zone->lowmem_reserve[j] =
7720 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7721 				}
7722 				managed_pages += zone_managed_pages(lower_zone);
7723 			}
7724 		}
7725 	}
7726 
7727 	/* update totalreserve_pages */
7728 	calculate_totalreserve_pages();
7729 }
7730 
7731 static void __setup_per_zone_wmarks(void)
7732 {
7733 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7734 	unsigned long lowmem_pages = 0;
7735 	struct zone *zone;
7736 	unsigned long flags;
7737 
7738 	/* Calculate total number of !ZONE_HIGHMEM pages */
7739 	for_each_zone(zone) {
7740 		if (!is_highmem(zone))
7741 			lowmem_pages += zone_managed_pages(zone);
7742 	}
7743 
7744 	for_each_zone(zone) {
7745 		u64 tmp;
7746 
7747 		spin_lock_irqsave(&zone->lock, flags);
7748 		tmp = (u64)pages_min * zone_managed_pages(zone);
7749 		do_div(tmp, lowmem_pages);
7750 		if (is_highmem(zone)) {
7751 			/*
7752 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7753 			 * need highmem pages, so cap pages_min to a small
7754 			 * value here.
7755 			 *
7756 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7757 			 * deltas control async page reclaim, and so should
7758 			 * not be capped for highmem.
7759 			 */
7760 			unsigned long min_pages;
7761 
7762 			min_pages = zone_managed_pages(zone) / 1024;
7763 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7764 			zone->_watermark[WMARK_MIN] = min_pages;
7765 		} else {
7766 			/*
7767 			 * If it's a lowmem zone, reserve a number of pages
7768 			 * proportionate to the zone's size.
7769 			 */
7770 			zone->_watermark[WMARK_MIN] = tmp;
7771 		}
7772 
7773 		/*
7774 		 * Set the kswapd watermarks distance according to the
7775 		 * scale factor in proportion to available memory, but
7776 		 * ensure a minimum size on small systems.
7777 		 */
7778 		tmp = max_t(u64, tmp >> 2,
7779 			    mult_frac(zone_managed_pages(zone),
7780 				      watermark_scale_factor, 10000));
7781 
7782 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7783 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7784 		zone->watermark_boost = 0;
7785 
7786 		spin_unlock_irqrestore(&zone->lock, flags);
7787 	}
7788 
7789 	/* update totalreserve_pages */
7790 	calculate_totalreserve_pages();
7791 }
7792 
7793 /**
7794  * setup_per_zone_wmarks - called when min_free_kbytes changes
7795  * or when memory is hot-{added|removed}
7796  *
7797  * Ensures that the watermark[min,low,high] values for each zone are set
7798  * correctly with respect to min_free_kbytes.
7799  */
7800 void setup_per_zone_wmarks(void)
7801 {
7802 	static DEFINE_SPINLOCK(lock);
7803 
7804 	spin_lock(&lock);
7805 	__setup_per_zone_wmarks();
7806 	spin_unlock(&lock);
7807 }
7808 
7809 /*
7810  * Initialise min_free_kbytes.
7811  *
7812  * For small machines we want it small (128k min).  For large machines
7813  * we want it large (64MB max).  But it is not linear, because network
7814  * bandwidth does not increase linearly with machine size.  We use
7815  *
7816  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7817  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7818  *
7819  * which yields
7820  *
7821  * 16MB:	512k
7822  * 32MB:	724k
7823  * 64MB:	1024k
7824  * 128MB:	1448k
7825  * 256MB:	2048k
7826  * 512MB:	2896k
7827  * 1024MB:	4096k
7828  * 2048MB:	5792k
7829  * 4096MB:	8192k
7830  * 8192MB:	11584k
7831  * 16384MB:	16384k
7832  */
7833 int __meminit init_per_zone_wmark_min(void)
7834 {
7835 	unsigned long lowmem_kbytes;
7836 	int new_min_free_kbytes;
7837 
7838 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7839 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7840 
7841 	if (new_min_free_kbytes > user_min_free_kbytes) {
7842 		min_free_kbytes = new_min_free_kbytes;
7843 		if (min_free_kbytes < 128)
7844 			min_free_kbytes = 128;
7845 		if (min_free_kbytes > 65536)
7846 			min_free_kbytes = 65536;
7847 	} else {
7848 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7849 				new_min_free_kbytes, user_min_free_kbytes);
7850 	}
7851 	setup_per_zone_wmarks();
7852 	refresh_zone_stat_thresholds();
7853 	setup_per_zone_lowmem_reserve();
7854 
7855 #ifdef CONFIG_NUMA
7856 	setup_min_unmapped_ratio();
7857 	setup_min_slab_ratio();
7858 #endif
7859 
7860 	return 0;
7861 }
7862 core_initcall(init_per_zone_wmark_min)
7863 
7864 /*
7865  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7866  *	that we can call two helper functions whenever min_free_kbytes
7867  *	changes.
7868  */
7869 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7870 	void __user *buffer, size_t *length, loff_t *ppos)
7871 {
7872 	int rc;
7873 
7874 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7875 	if (rc)
7876 		return rc;
7877 
7878 	if (write) {
7879 		user_min_free_kbytes = min_free_kbytes;
7880 		setup_per_zone_wmarks();
7881 	}
7882 	return 0;
7883 }
7884 
7885 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7886 	void __user *buffer, size_t *length, loff_t *ppos)
7887 {
7888 	int rc;
7889 
7890 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7891 	if (rc)
7892 		return rc;
7893 
7894 	return 0;
7895 }
7896 
7897 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7898 	void __user *buffer, size_t *length, loff_t *ppos)
7899 {
7900 	int rc;
7901 
7902 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7903 	if (rc)
7904 		return rc;
7905 
7906 	if (write)
7907 		setup_per_zone_wmarks();
7908 
7909 	return 0;
7910 }
7911 
7912 #ifdef CONFIG_NUMA
7913 static void setup_min_unmapped_ratio(void)
7914 {
7915 	pg_data_t *pgdat;
7916 	struct zone *zone;
7917 
7918 	for_each_online_pgdat(pgdat)
7919 		pgdat->min_unmapped_pages = 0;
7920 
7921 	for_each_zone(zone)
7922 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7923 						         sysctl_min_unmapped_ratio) / 100;
7924 }
7925 
7926 
7927 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7928 	void __user *buffer, size_t *length, loff_t *ppos)
7929 {
7930 	int rc;
7931 
7932 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7933 	if (rc)
7934 		return rc;
7935 
7936 	setup_min_unmapped_ratio();
7937 
7938 	return 0;
7939 }
7940 
7941 static void setup_min_slab_ratio(void)
7942 {
7943 	pg_data_t *pgdat;
7944 	struct zone *zone;
7945 
7946 	for_each_online_pgdat(pgdat)
7947 		pgdat->min_slab_pages = 0;
7948 
7949 	for_each_zone(zone)
7950 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7951 						     sysctl_min_slab_ratio) / 100;
7952 }
7953 
7954 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7955 	void __user *buffer, size_t *length, loff_t *ppos)
7956 {
7957 	int rc;
7958 
7959 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7960 	if (rc)
7961 		return rc;
7962 
7963 	setup_min_slab_ratio();
7964 
7965 	return 0;
7966 }
7967 #endif
7968 
7969 /*
7970  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7971  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7972  *	whenever sysctl_lowmem_reserve_ratio changes.
7973  *
7974  * The reserve ratio obviously has absolutely no relation with the
7975  * minimum watermarks. The lowmem reserve ratio can only make sense
7976  * if in function of the boot time zone sizes.
7977  */
7978 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7979 	void __user *buffer, size_t *length, loff_t *ppos)
7980 {
7981 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7982 	setup_per_zone_lowmem_reserve();
7983 	return 0;
7984 }
7985 
7986 /*
7987  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7988  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7989  * pagelist can have before it gets flushed back to buddy allocator.
7990  */
7991 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7992 	void __user *buffer, size_t *length, loff_t *ppos)
7993 {
7994 	struct zone *zone;
7995 	int old_percpu_pagelist_fraction;
7996 	int ret;
7997 
7998 	mutex_lock(&pcp_batch_high_lock);
7999 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8000 
8001 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8002 	if (!write || ret < 0)
8003 		goto out;
8004 
8005 	/* Sanity checking to avoid pcp imbalance */
8006 	if (percpu_pagelist_fraction &&
8007 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8008 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8009 		ret = -EINVAL;
8010 		goto out;
8011 	}
8012 
8013 	/* No change? */
8014 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8015 		goto out;
8016 
8017 	for_each_populated_zone(zone) {
8018 		unsigned int cpu;
8019 
8020 		for_each_possible_cpu(cpu)
8021 			pageset_set_high_and_batch(zone,
8022 					per_cpu_ptr(zone->pageset, cpu));
8023 	}
8024 out:
8025 	mutex_unlock(&pcp_batch_high_lock);
8026 	return ret;
8027 }
8028 
8029 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8030 /*
8031  * Returns the number of pages that arch has reserved but
8032  * is not known to alloc_large_system_hash().
8033  */
8034 static unsigned long __init arch_reserved_kernel_pages(void)
8035 {
8036 	return 0;
8037 }
8038 #endif
8039 
8040 /*
8041  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8042  * machines. As memory size is increased the scale is also increased but at
8043  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8044  * quadruples the scale is increased by one, which means the size of hash table
8045  * only doubles, instead of quadrupling as well.
8046  * Because 32-bit systems cannot have large physical memory, where this scaling
8047  * makes sense, it is disabled on such platforms.
8048  */
8049 #if __BITS_PER_LONG > 32
8050 #define ADAPT_SCALE_BASE	(64ul << 30)
8051 #define ADAPT_SCALE_SHIFT	2
8052 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8053 #endif
8054 
8055 /*
8056  * allocate a large system hash table from bootmem
8057  * - it is assumed that the hash table must contain an exact power-of-2
8058  *   quantity of entries
8059  * - limit is the number of hash buckets, not the total allocation size
8060  */
8061 void *__init alloc_large_system_hash(const char *tablename,
8062 				     unsigned long bucketsize,
8063 				     unsigned long numentries,
8064 				     int scale,
8065 				     int flags,
8066 				     unsigned int *_hash_shift,
8067 				     unsigned int *_hash_mask,
8068 				     unsigned long low_limit,
8069 				     unsigned long high_limit)
8070 {
8071 	unsigned long long max = high_limit;
8072 	unsigned long log2qty, size;
8073 	void *table = NULL;
8074 	gfp_t gfp_flags;
8075 	bool virt;
8076 
8077 	/* allow the kernel cmdline to have a say */
8078 	if (!numentries) {
8079 		/* round applicable memory size up to nearest megabyte */
8080 		numentries = nr_kernel_pages;
8081 		numentries -= arch_reserved_kernel_pages();
8082 
8083 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8084 		if (PAGE_SHIFT < 20)
8085 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8086 
8087 #if __BITS_PER_LONG > 32
8088 		if (!high_limit) {
8089 			unsigned long adapt;
8090 
8091 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8092 			     adapt <<= ADAPT_SCALE_SHIFT)
8093 				scale++;
8094 		}
8095 #endif
8096 
8097 		/* limit to 1 bucket per 2^scale bytes of low memory */
8098 		if (scale > PAGE_SHIFT)
8099 			numentries >>= (scale - PAGE_SHIFT);
8100 		else
8101 			numentries <<= (PAGE_SHIFT - scale);
8102 
8103 		/* Make sure we've got at least a 0-order allocation.. */
8104 		if (unlikely(flags & HASH_SMALL)) {
8105 			/* Makes no sense without HASH_EARLY */
8106 			WARN_ON(!(flags & HASH_EARLY));
8107 			if (!(numentries >> *_hash_shift)) {
8108 				numentries = 1UL << *_hash_shift;
8109 				BUG_ON(!numentries);
8110 			}
8111 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8112 			numentries = PAGE_SIZE / bucketsize;
8113 	}
8114 	numentries = roundup_pow_of_two(numentries);
8115 
8116 	/* limit allocation size to 1/16 total memory by default */
8117 	if (max == 0) {
8118 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8119 		do_div(max, bucketsize);
8120 	}
8121 	max = min(max, 0x80000000ULL);
8122 
8123 	if (numentries < low_limit)
8124 		numentries = low_limit;
8125 	if (numentries > max)
8126 		numentries = max;
8127 
8128 	log2qty = ilog2(numentries);
8129 
8130 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8131 	do {
8132 		virt = false;
8133 		size = bucketsize << log2qty;
8134 		if (flags & HASH_EARLY) {
8135 			if (flags & HASH_ZERO)
8136 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8137 			else
8138 				table = memblock_alloc_raw(size,
8139 							   SMP_CACHE_BYTES);
8140 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8141 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8142 			virt = true;
8143 		} else {
8144 			/*
8145 			 * If bucketsize is not a power-of-two, we may free
8146 			 * some pages at the end of hash table which
8147 			 * alloc_pages_exact() automatically does
8148 			 */
8149 			table = alloc_pages_exact(size, gfp_flags);
8150 			kmemleak_alloc(table, size, 1, gfp_flags);
8151 		}
8152 	} while (!table && size > PAGE_SIZE && --log2qty);
8153 
8154 	if (!table)
8155 		panic("Failed to allocate %s hash table\n", tablename);
8156 
8157 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8158 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8159 		virt ? "vmalloc" : "linear");
8160 
8161 	if (_hash_shift)
8162 		*_hash_shift = log2qty;
8163 	if (_hash_mask)
8164 		*_hash_mask = (1 << log2qty) - 1;
8165 
8166 	return table;
8167 }
8168 
8169 /*
8170  * This function checks whether pageblock includes unmovable pages or not.
8171  * If @count is not zero, it is okay to include less @count unmovable pages
8172  *
8173  * PageLRU check without isolation or lru_lock could race so that
8174  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8175  * check without lock_page also may miss some movable non-lru pages at
8176  * race condition. So you can't expect this function should be exact.
8177  */
8178 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8179 			 int migratetype, int flags)
8180 {
8181 	unsigned long found;
8182 	unsigned long iter = 0;
8183 	unsigned long pfn = page_to_pfn(page);
8184 	const char *reason = "unmovable page";
8185 
8186 	/*
8187 	 * TODO we could make this much more efficient by not checking every
8188 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8189 	 * that the movable zone guarantees that pages are migratable but
8190 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8191 	 * can still lead to having bootmem allocations in zone_movable.
8192 	 */
8193 
8194 	if (is_migrate_cma_page(page)) {
8195 		/*
8196 		 * CMA allocations (alloc_contig_range) really need to mark
8197 		 * isolate CMA pageblocks even when they are not movable in fact
8198 		 * so consider them movable here.
8199 		 */
8200 		if (is_migrate_cma(migratetype))
8201 			return false;
8202 
8203 		reason = "CMA page";
8204 		goto unmovable;
8205 	}
8206 
8207 	for (found = 0; iter < pageblock_nr_pages; iter++) {
8208 		unsigned long check = pfn + iter;
8209 
8210 		if (!pfn_valid_within(check))
8211 			continue;
8212 
8213 		page = pfn_to_page(check);
8214 
8215 		if (PageReserved(page))
8216 			goto unmovable;
8217 
8218 		/*
8219 		 * If the zone is movable and we have ruled out all reserved
8220 		 * pages then it should be reasonably safe to assume the rest
8221 		 * is movable.
8222 		 */
8223 		if (zone_idx(zone) == ZONE_MOVABLE)
8224 			continue;
8225 
8226 		/*
8227 		 * Hugepages are not in LRU lists, but they're movable.
8228 		 * We need not scan over tail pages because we don't
8229 		 * handle each tail page individually in migration.
8230 		 */
8231 		if (PageHuge(page)) {
8232 			struct page *head = compound_head(page);
8233 			unsigned int skip_pages;
8234 
8235 			if (!hugepage_migration_supported(page_hstate(head)))
8236 				goto unmovable;
8237 
8238 			skip_pages = compound_nr(head) - (page - head);
8239 			iter += skip_pages - 1;
8240 			continue;
8241 		}
8242 
8243 		/*
8244 		 * We can't use page_count without pin a page
8245 		 * because another CPU can free compound page.
8246 		 * This check already skips compound tails of THP
8247 		 * because their page->_refcount is zero at all time.
8248 		 */
8249 		if (!page_ref_count(page)) {
8250 			if (PageBuddy(page))
8251 				iter += (1 << page_order(page)) - 1;
8252 			continue;
8253 		}
8254 
8255 		/*
8256 		 * The HWPoisoned page may be not in buddy system, and
8257 		 * page_count() is not 0.
8258 		 */
8259 		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8260 			continue;
8261 
8262 		if (__PageMovable(page))
8263 			continue;
8264 
8265 		if (!PageLRU(page))
8266 			found++;
8267 		/*
8268 		 * If there are RECLAIMABLE pages, we need to check
8269 		 * it.  But now, memory offline itself doesn't call
8270 		 * shrink_node_slabs() and it still to be fixed.
8271 		 */
8272 		/*
8273 		 * If the page is not RAM, page_count()should be 0.
8274 		 * we don't need more check. This is an _used_ not-movable page.
8275 		 *
8276 		 * The problematic thing here is PG_reserved pages. PG_reserved
8277 		 * is set to both of a memory hole page and a _used_ kernel
8278 		 * page at boot.
8279 		 */
8280 		if (found > count)
8281 			goto unmovable;
8282 	}
8283 	return false;
8284 unmovable:
8285 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8286 	if (flags & REPORT_FAILURE)
8287 		dump_page(pfn_to_page(pfn + iter), reason);
8288 	return true;
8289 }
8290 
8291 #ifdef CONFIG_CONTIG_ALLOC
8292 static unsigned long pfn_max_align_down(unsigned long pfn)
8293 {
8294 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8295 			     pageblock_nr_pages) - 1);
8296 }
8297 
8298 static unsigned long pfn_max_align_up(unsigned long pfn)
8299 {
8300 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8301 				pageblock_nr_pages));
8302 }
8303 
8304 /* [start, end) must belong to a single zone. */
8305 static int __alloc_contig_migrate_range(struct compact_control *cc,
8306 					unsigned long start, unsigned long end)
8307 {
8308 	/* This function is based on compact_zone() from compaction.c. */
8309 	unsigned long nr_reclaimed;
8310 	unsigned long pfn = start;
8311 	unsigned int tries = 0;
8312 	int ret = 0;
8313 
8314 	migrate_prep();
8315 
8316 	while (pfn < end || !list_empty(&cc->migratepages)) {
8317 		if (fatal_signal_pending(current)) {
8318 			ret = -EINTR;
8319 			break;
8320 		}
8321 
8322 		if (list_empty(&cc->migratepages)) {
8323 			cc->nr_migratepages = 0;
8324 			pfn = isolate_migratepages_range(cc, pfn, end);
8325 			if (!pfn) {
8326 				ret = -EINTR;
8327 				break;
8328 			}
8329 			tries = 0;
8330 		} else if (++tries == 5) {
8331 			ret = ret < 0 ? ret : -EBUSY;
8332 			break;
8333 		}
8334 
8335 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8336 							&cc->migratepages);
8337 		cc->nr_migratepages -= nr_reclaimed;
8338 
8339 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8340 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8341 	}
8342 	if (ret < 0) {
8343 		putback_movable_pages(&cc->migratepages);
8344 		return ret;
8345 	}
8346 	return 0;
8347 }
8348 
8349 /**
8350  * alloc_contig_range() -- tries to allocate given range of pages
8351  * @start:	start PFN to allocate
8352  * @end:	one-past-the-last PFN to allocate
8353  * @migratetype:	migratetype of the underlaying pageblocks (either
8354  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8355  *			in range must have the same migratetype and it must
8356  *			be either of the two.
8357  * @gfp_mask:	GFP mask to use during compaction
8358  *
8359  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8360  * aligned.  The PFN range must belong to a single zone.
8361  *
8362  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8363  * pageblocks in the range.  Once isolated, the pageblocks should not
8364  * be modified by others.
8365  *
8366  * Return: zero on success or negative error code.  On success all
8367  * pages which PFN is in [start, end) are allocated for the caller and
8368  * need to be freed with free_contig_range().
8369  */
8370 int alloc_contig_range(unsigned long start, unsigned long end,
8371 		       unsigned migratetype, gfp_t gfp_mask)
8372 {
8373 	unsigned long outer_start, outer_end;
8374 	unsigned int order;
8375 	int ret = 0;
8376 
8377 	struct compact_control cc = {
8378 		.nr_migratepages = 0,
8379 		.order = -1,
8380 		.zone = page_zone(pfn_to_page(start)),
8381 		.mode = MIGRATE_SYNC,
8382 		.ignore_skip_hint = true,
8383 		.no_set_skip_hint = true,
8384 		.gfp_mask = current_gfp_context(gfp_mask),
8385 	};
8386 	INIT_LIST_HEAD(&cc.migratepages);
8387 
8388 	/*
8389 	 * What we do here is we mark all pageblocks in range as
8390 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8391 	 * have different sizes, and due to the way page allocator
8392 	 * work, we align the range to biggest of the two pages so
8393 	 * that page allocator won't try to merge buddies from
8394 	 * different pageblocks and change MIGRATE_ISOLATE to some
8395 	 * other migration type.
8396 	 *
8397 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8398 	 * migrate the pages from an unaligned range (ie. pages that
8399 	 * we are interested in).  This will put all the pages in
8400 	 * range back to page allocator as MIGRATE_ISOLATE.
8401 	 *
8402 	 * When this is done, we take the pages in range from page
8403 	 * allocator removing them from the buddy system.  This way
8404 	 * page allocator will never consider using them.
8405 	 *
8406 	 * This lets us mark the pageblocks back as
8407 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8408 	 * aligned range but not in the unaligned, original range are
8409 	 * put back to page allocator so that buddy can use them.
8410 	 */
8411 
8412 	ret = start_isolate_page_range(pfn_max_align_down(start),
8413 				       pfn_max_align_up(end), migratetype, 0);
8414 	if (ret < 0)
8415 		return ret;
8416 
8417 	/*
8418 	 * In case of -EBUSY, we'd like to know which page causes problem.
8419 	 * So, just fall through. test_pages_isolated() has a tracepoint
8420 	 * which will report the busy page.
8421 	 *
8422 	 * It is possible that busy pages could become available before
8423 	 * the call to test_pages_isolated, and the range will actually be
8424 	 * allocated.  So, if we fall through be sure to clear ret so that
8425 	 * -EBUSY is not accidentally used or returned to caller.
8426 	 */
8427 	ret = __alloc_contig_migrate_range(&cc, start, end);
8428 	if (ret && ret != -EBUSY)
8429 		goto done;
8430 	ret =0;
8431 
8432 	/*
8433 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8434 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8435 	 * more, all pages in [start, end) are free in page allocator.
8436 	 * What we are going to do is to allocate all pages from
8437 	 * [start, end) (that is remove them from page allocator).
8438 	 *
8439 	 * The only problem is that pages at the beginning and at the
8440 	 * end of interesting range may be not aligned with pages that
8441 	 * page allocator holds, ie. they can be part of higher order
8442 	 * pages.  Because of this, we reserve the bigger range and
8443 	 * once this is done free the pages we are not interested in.
8444 	 *
8445 	 * We don't have to hold zone->lock here because the pages are
8446 	 * isolated thus they won't get removed from buddy.
8447 	 */
8448 
8449 	lru_add_drain_all();
8450 
8451 	order = 0;
8452 	outer_start = start;
8453 	while (!PageBuddy(pfn_to_page(outer_start))) {
8454 		if (++order >= MAX_ORDER) {
8455 			outer_start = start;
8456 			break;
8457 		}
8458 		outer_start &= ~0UL << order;
8459 	}
8460 
8461 	if (outer_start != start) {
8462 		order = page_order(pfn_to_page(outer_start));
8463 
8464 		/*
8465 		 * outer_start page could be small order buddy page and
8466 		 * it doesn't include start page. Adjust outer_start
8467 		 * in this case to report failed page properly
8468 		 * on tracepoint in test_pages_isolated()
8469 		 */
8470 		if (outer_start + (1UL << order) <= start)
8471 			outer_start = start;
8472 	}
8473 
8474 	/* Make sure the range is really isolated. */
8475 	if (test_pages_isolated(outer_start, end, false)) {
8476 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8477 			__func__, outer_start, end);
8478 		ret = -EBUSY;
8479 		goto done;
8480 	}
8481 
8482 	/* Grab isolated pages from freelists. */
8483 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8484 	if (!outer_end) {
8485 		ret = -EBUSY;
8486 		goto done;
8487 	}
8488 
8489 	/* Free head and tail (if any) */
8490 	if (start != outer_start)
8491 		free_contig_range(outer_start, start - outer_start);
8492 	if (end != outer_end)
8493 		free_contig_range(end, outer_end - end);
8494 
8495 done:
8496 	undo_isolate_page_range(pfn_max_align_down(start),
8497 				pfn_max_align_up(end), migratetype);
8498 	return ret;
8499 }
8500 #endif /* CONFIG_CONTIG_ALLOC */
8501 
8502 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8503 {
8504 	unsigned int count = 0;
8505 
8506 	for (; nr_pages--; pfn++) {
8507 		struct page *page = pfn_to_page(pfn);
8508 
8509 		count += page_count(page) != 1;
8510 		__free_page(page);
8511 	}
8512 	WARN(count != 0, "%d pages are still in use!\n", count);
8513 }
8514 
8515 #ifdef CONFIG_MEMORY_HOTPLUG
8516 /*
8517  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8518  * page high values need to be recalulated.
8519  */
8520 void __meminit zone_pcp_update(struct zone *zone)
8521 {
8522 	unsigned cpu;
8523 	mutex_lock(&pcp_batch_high_lock);
8524 	for_each_possible_cpu(cpu)
8525 		pageset_set_high_and_batch(zone,
8526 				per_cpu_ptr(zone->pageset, cpu));
8527 	mutex_unlock(&pcp_batch_high_lock);
8528 }
8529 #endif
8530 
8531 void zone_pcp_reset(struct zone *zone)
8532 {
8533 	unsigned long flags;
8534 	int cpu;
8535 	struct per_cpu_pageset *pset;
8536 
8537 	/* avoid races with drain_pages()  */
8538 	local_irq_save(flags);
8539 	if (zone->pageset != &boot_pageset) {
8540 		for_each_online_cpu(cpu) {
8541 			pset = per_cpu_ptr(zone->pageset, cpu);
8542 			drain_zonestat(zone, pset);
8543 		}
8544 		free_percpu(zone->pageset);
8545 		zone->pageset = &boot_pageset;
8546 	}
8547 	local_irq_restore(flags);
8548 }
8549 
8550 #ifdef CONFIG_MEMORY_HOTREMOVE
8551 /*
8552  * All pages in the range must be in a single zone and isolated
8553  * before calling this.
8554  */
8555 unsigned long
8556 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8557 {
8558 	struct page *page;
8559 	struct zone *zone;
8560 	unsigned int order, i;
8561 	unsigned long pfn;
8562 	unsigned long flags;
8563 	unsigned long offlined_pages = 0;
8564 
8565 	/* find the first valid pfn */
8566 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8567 		if (pfn_valid(pfn))
8568 			break;
8569 	if (pfn == end_pfn)
8570 		return offlined_pages;
8571 
8572 	offline_mem_sections(pfn, end_pfn);
8573 	zone = page_zone(pfn_to_page(pfn));
8574 	spin_lock_irqsave(&zone->lock, flags);
8575 	pfn = start_pfn;
8576 	while (pfn < end_pfn) {
8577 		if (!pfn_valid(pfn)) {
8578 			pfn++;
8579 			continue;
8580 		}
8581 		page = pfn_to_page(pfn);
8582 		/*
8583 		 * The HWPoisoned page may be not in buddy system, and
8584 		 * page_count() is not 0.
8585 		 */
8586 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8587 			pfn++;
8588 			SetPageReserved(page);
8589 			offlined_pages++;
8590 			continue;
8591 		}
8592 
8593 		BUG_ON(page_count(page));
8594 		BUG_ON(!PageBuddy(page));
8595 		order = page_order(page);
8596 		offlined_pages += 1 << order;
8597 #ifdef CONFIG_DEBUG_VM
8598 		pr_info("remove from free list %lx %d %lx\n",
8599 			pfn, 1 << order, end_pfn);
8600 #endif
8601 		del_page_from_free_area(page, &zone->free_area[order]);
8602 		for (i = 0; i < (1 << order); i++)
8603 			SetPageReserved((page+i));
8604 		pfn += (1 << order);
8605 	}
8606 	spin_unlock_irqrestore(&zone->lock, flags);
8607 
8608 	return offlined_pages;
8609 }
8610 #endif
8611 
8612 bool is_free_buddy_page(struct page *page)
8613 {
8614 	struct zone *zone = page_zone(page);
8615 	unsigned long pfn = page_to_pfn(page);
8616 	unsigned long flags;
8617 	unsigned int order;
8618 
8619 	spin_lock_irqsave(&zone->lock, flags);
8620 	for (order = 0; order < MAX_ORDER; order++) {
8621 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8622 
8623 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8624 			break;
8625 	}
8626 	spin_unlock_irqrestore(&zone->lock, flags);
8627 
8628 	return order < MAX_ORDER;
8629 }
8630 
8631 #ifdef CONFIG_MEMORY_FAILURE
8632 /*
8633  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8634  * test is performed under the zone lock to prevent a race against page
8635  * allocation.
8636  */
8637 bool set_hwpoison_free_buddy_page(struct page *page)
8638 {
8639 	struct zone *zone = page_zone(page);
8640 	unsigned long pfn = page_to_pfn(page);
8641 	unsigned long flags;
8642 	unsigned int order;
8643 	bool hwpoisoned = false;
8644 
8645 	spin_lock_irqsave(&zone->lock, flags);
8646 	for (order = 0; order < MAX_ORDER; order++) {
8647 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8648 
8649 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8650 			if (!TestSetPageHWPoison(page))
8651 				hwpoisoned = true;
8652 			break;
8653 		}
8654 	}
8655 	spin_unlock_irqrestore(&zone->lock, flags);
8656 
8657 	return hwpoisoned;
8658 }
8659 #endif
8660