xref: /linux/mm/page_alloc.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 #include "internal.h"
56 
57 /*
58  * Array of node states.
59  */
60 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
61 	[N_POSSIBLE] = NODE_MASK_ALL,
62 	[N_ONLINE] = { { [0] = 1UL } },
63 #ifndef CONFIG_NUMA
64 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
65 #ifdef CONFIG_HIGHMEM
66 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
67 #endif
68 	[N_CPU] = { { [0] = 1UL } },
69 #endif	/* NUMA */
70 };
71 EXPORT_SYMBOL(node_states);
72 
73 unsigned long totalram_pages __read_mostly;
74 unsigned long totalreserve_pages __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
77 
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
81 
82 static void __free_pages_ok(struct page *page, unsigned int order);
83 
84 /*
85  * results with 256, 32 in the lowmem_reserve sysctl:
86  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87  *	1G machine -> (16M dma, 784M normal, 224M high)
88  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91  *
92  * TBD: should special case ZONE_DMA32 machines here - in those we normally
93  * don't need any ZONE_NORMAL reservation
94  */
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 	 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 	 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
103 	 32,
104 #endif
105 	 32,
106 };
107 
108 EXPORT_SYMBOL(totalram_pages);
109 
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 	 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 	 "DMA32",
116 #endif
117 	 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 	 "HighMem",
120 #endif
121 	 "Movable",
122 };
123 
124 int min_free_kbytes = 1024;
125 
126 static unsigned long __meminitdata nr_kernel_pages;
127 static unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
129 
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131   /*
132    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133    * ranges of memory (RAM) that may be registered with add_active_range().
134    * Ranges passed to add_active_range() will be merged if possible
135    * so the number of times add_active_range() can be called is
136    * related to the number of nodes and the number of holes
137    */
138   #ifdef CONFIG_MAX_ACTIVE_REGIONS
139     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141   #else
142     #if MAX_NUMNODES >= 32
143       /* If there can be many nodes, allow up to 50 holes per node */
144       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145     #else
146       /* By default, allow up to 256 distinct regions */
147       #define MAX_ACTIVE_REGIONS 256
148     #endif
149   #endif
150 
151   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152   static int __meminitdata nr_nodemap_entries;
153   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155   static unsigned long __initdata required_kernelcore;
156   static unsigned long __initdata required_movablecore;
157   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158 
159   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160   int movable_zone;
161   EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163 
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
170 
171 int page_group_by_mobility_disabled __read_mostly;
172 
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 {
175 
176 	if (unlikely(page_group_by_mobility_disabled))
177 		migratetype = MIGRATE_UNMOVABLE;
178 
179 	set_pageblock_flags_group(page, (unsigned long)migratetype,
180 					PB_migrate, PB_migrate_end);
181 }
182 
183 bool oom_killer_disabled __read_mostly;
184 
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
187 {
188 	int ret = 0;
189 	unsigned seq;
190 	unsigned long pfn = page_to_pfn(page);
191 
192 	do {
193 		seq = zone_span_seqbegin(zone);
194 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 			ret = 1;
196 		else if (pfn < zone->zone_start_pfn)
197 			ret = 1;
198 	} while (zone_span_seqretry(zone, seq));
199 
200 	return ret;
201 }
202 
203 static int page_is_consistent(struct zone *zone, struct page *page)
204 {
205 	if (!pfn_valid_within(page_to_pfn(page)))
206 		return 0;
207 	if (zone != page_zone(page))
208 		return 0;
209 
210 	return 1;
211 }
212 /*
213  * Temporary debugging check for pages not lying within a given zone.
214  */
215 static int bad_range(struct zone *zone, struct page *page)
216 {
217 	if (page_outside_zone_boundaries(zone, page))
218 		return 1;
219 	if (!page_is_consistent(zone, page))
220 		return 1;
221 
222 	return 0;
223 }
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
226 {
227 	return 0;
228 }
229 #endif
230 
231 static void bad_page(struct page *page)
232 {
233 	static unsigned long resume;
234 	static unsigned long nr_shown;
235 	static unsigned long nr_unshown;
236 
237 	/*
238 	 * Allow a burst of 60 reports, then keep quiet for that minute;
239 	 * or allow a steady drip of one report per second.
240 	 */
241 	if (nr_shown == 60) {
242 		if (time_before(jiffies, resume)) {
243 			nr_unshown++;
244 			goto out;
245 		}
246 		if (nr_unshown) {
247 			printk(KERN_ALERT
248 			      "BUG: Bad page state: %lu messages suppressed\n",
249 				nr_unshown);
250 			nr_unshown = 0;
251 		}
252 		nr_shown = 0;
253 	}
254 	if (nr_shown++ == 0)
255 		resume = jiffies + 60 * HZ;
256 
257 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
258 		current->comm, page_to_pfn(page));
259 	printk(KERN_ALERT
260 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 		page, (void *)page->flags, page_count(page),
262 		page_mapcount(page), page->mapping, page->index);
263 
264 	dump_stack();
265 out:
266 	/* Leave bad fields for debug, except PageBuddy could make trouble */
267 	__ClearPageBuddy(page);
268 	add_taint(TAINT_BAD_PAGE);
269 }
270 
271 /*
272  * Higher-order pages are called "compound pages".  They are structured thusly:
273  *
274  * The first PAGE_SIZE page is called the "head page".
275  *
276  * The remaining PAGE_SIZE pages are called "tail pages".
277  *
278  * All pages have PG_compound set.  All pages have their ->private pointing at
279  * the head page (even the head page has this).
280  *
281  * The first tail page's ->lru.next holds the address of the compound page's
282  * put_page() function.  Its ->lru.prev holds the order of allocation.
283  * This usage means that zero-order pages may not be compound.
284  */
285 
286 static void free_compound_page(struct page *page)
287 {
288 	__free_pages_ok(page, compound_order(page));
289 }
290 
291 void prep_compound_page(struct page *page, unsigned long order)
292 {
293 	int i;
294 	int nr_pages = 1 << order;
295 
296 	set_compound_page_dtor(page, free_compound_page);
297 	set_compound_order(page, order);
298 	__SetPageHead(page);
299 	for (i = 1; i < nr_pages; i++) {
300 		struct page *p = page + i;
301 
302 		__SetPageTail(p);
303 		p->first_page = page;
304 	}
305 }
306 
307 static int destroy_compound_page(struct page *page, unsigned long order)
308 {
309 	int i;
310 	int nr_pages = 1 << order;
311 	int bad = 0;
312 
313 	if (unlikely(compound_order(page) != order) ||
314 	    unlikely(!PageHead(page))) {
315 		bad_page(page);
316 		bad++;
317 	}
318 
319 	__ClearPageHead(page);
320 
321 	for (i = 1; i < nr_pages; i++) {
322 		struct page *p = page + i;
323 
324 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
325 			bad_page(page);
326 			bad++;
327 		}
328 		__ClearPageTail(p);
329 	}
330 
331 	return bad;
332 }
333 
334 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335 {
336 	int i;
337 
338 	/*
339 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
341 	 */
342 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
343 	for (i = 0; i < (1 << order); i++)
344 		clear_highpage(page + i);
345 }
346 
347 static inline void set_page_order(struct page *page, int order)
348 {
349 	set_page_private(page, order);
350 	__SetPageBuddy(page);
351 }
352 
353 static inline void rmv_page_order(struct page *page)
354 {
355 	__ClearPageBuddy(page);
356 	set_page_private(page, 0);
357 }
358 
359 /*
360  * Locate the struct page for both the matching buddy in our
361  * pair (buddy1) and the combined O(n+1) page they form (page).
362  *
363  * 1) Any buddy B1 will have an order O twin B2 which satisfies
364  * the following equation:
365  *     B2 = B1 ^ (1 << O)
366  * For example, if the starting buddy (buddy2) is #8 its order
367  * 1 buddy is #10:
368  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369  *
370  * 2) Any buddy B will have an order O+1 parent P which
371  * satisfies the following equation:
372  *     P = B & ~(1 << O)
373  *
374  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
375  */
376 static inline struct page *
377 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378 {
379 	unsigned long buddy_idx = page_idx ^ (1 << order);
380 
381 	return page + (buddy_idx - page_idx);
382 }
383 
384 static inline unsigned long
385 __find_combined_index(unsigned long page_idx, unsigned int order)
386 {
387 	return (page_idx & ~(1 << order));
388 }
389 
390 /*
391  * This function checks whether a page is free && is the buddy
392  * we can do coalesce a page and its buddy if
393  * (a) the buddy is not in a hole &&
394  * (b) the buddy is in the buddy system &&
395  * (c) a page and its buddy have the same order &&
396  * (d) a page and its buddy are in the same zone.
397  *
398  * For recording whether a page is in the buddy system, we use PG_buddy.
399  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
400  *
401  * For recording page's order, we use page_private(page).
402  */
403 static inline int page_is_buddy(struct page *page, struct page *buddy,
404 								int order)
405 {
406 	if (!pfn_valid_within(page_to_pfn(buddy)))
407 		return 0;
408 
409 	if (page_zone_id(page) != page_zone_id(buddy))
410 		return 0;
411 
412 	if (PageBuddy(buddy) && page_order(buddy) == order) {
413 		VM_BUG_ON(page_count(buddy) != 0);
414 		return 1;
415 	}
416 	return 0;
417 }
418 
419 /*
420  * Freeing function for a buddy system allocator.
421  *
422  * The concept of a buddy system is to maintain direct-mapped table
423  * (containing bit values) for memory blocks of various "orders".
424  * The bottom level table contains the map for the smallest allocatable
425  * units of memory (here, pages), and each level above it describes
426  * pairs of units from the levels below, hence, "buddies".
427  * At a high level, all that happens here is marking the table entry
428  * at the bottom level available, and propagating the changes upward
429  * as necessary, plus some accounting needed to play nicely with other
430  * parts of the VM system.
431  * At each level, we keep a list of pages, which are heads of continuous
432  * free pages of length of (1 << order) and marked with PG_buddy. Page's
433  * order is recorded in page_private(page) field.
434  * So when we are allocating or freeing one, we can derive the state of the
435  * other.  That is, if we allocate a small block, and both were
436  * free, the remainder of the region must be split into blocks.
437  * If a block is freed, and its buddy is also free, then this
438  * triggers coalescing into a block of larger size.
439  *
440  * -- wli
441  */
442 
443 static inline void __free_one_page(struct page *page,
444 		struct zone *zone, unsigned int order,
445 		int migratetype)
446 {
447 	unsigned long page_idx;
448 
449 	if (unlikely(PageCompound(page)))
450 		if (unlikely(destroy_compound_page(page, order)))
451 			return;
452 
453 	VM_BUG_ON(migratetype == -1);
454 
455 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456 
457 	VM_BUG_ON(page_idx & ((1 << order) - 1));
458 	VM_BUG_ON(bad_range(zone, page));
459 
460 	while (order < MAX_ORDER-1) {
461 		unsigned long combined_idx;
462 		struct page *buddy;
463 
464 		buddy = __page_find_buddy(page, page_idx, order);
465 		if (!page_is_buddy(page, buddy, order))
466 			break;
467 
468 		/* Our buddy is free, merge with it and move up one order. */
469 		list_del(&buddy->lru);
470 		zone->free_area[order].nr_free--;
471 		rmv_page_order(buddy);
472 		combined_idx = __find_combined_index(page_idx, order);
473 		page = page + (combined_idx - page_idx);
474 		page_idx = combined_idx;
475 		order++;
476 	}
477 	set_page_order(page, order);
478 	list_add(&page->lru,
479 		&zone->free_area[order].free_list[migratetype]);
480 	zone->free_area[order].nr_free++;
481 }
482 
483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484 /*
485  * free_page_mlock() -- clean up attempts to free and mlocked() page.
486  * Page should not be on lru, so no need to fix that up.
487  * free_pages_check() will verify...
488  */
489 static inline void free_page_mlock(struct page *page)
490 {
491 	__dec_zone_page_state(page, NR_MLOCK);
492 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
493 }
494 #else
495 static void free_page_mlock(struct page *page) { }
496 #endif
497 
498 static inline int free_pages_check(struct page *page)
499 {
500 	if (unlikely(page_mapcount(page) |
501 		(page->mapping != NULL)  |
502 		(atomic_read(&page->_count) != 0) |
503 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
504 		bad_page(page);
505 		return 1;
506 	}
507 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 	return 0;
510 }
511 
512 /*
513  * Frees a number of pages from the PCP lists
514  * Assumes all pages on list are in same zone, and of same order.
515  * count is the number of pages to free.
516  *
517  * If the zone was previously in an "all pages pinned" state then look to
518  * see if this freeing clears that state.
519  *
520  * And clear the zone's pages_scanned counter, to hold off the "all pages are
521  * pinned" detection logic.
522  */
523 static void free_pcppages_bulk(struct zone *zone, int count,
524 					struct per_cpu_pages *pcp)
525 {
526 	int migratetype = 0;
527 	int batch_free = 0;
528 
529 	spin_lock(&zone->lock);
530 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
531 	zone->pages_scanned = 0;
532 
533 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
534 	while (count) {
535 		struct page *page;
536 		struct list_head *list;
537 
538 		/*
539 		 * Remove pages from lists in a round-robin fashion. A
540 		 * batch_free count is maintained that is incremented when an
541 		 * empty list is encountered.  This is so more pages are freed
542 		 * off fuller lists instead of spinning excessively around empty
543 		 * lists
544 		 */
545 		do {
546 			batch_free++;
547 			if (++migratetype == MIGRATE_PCPTYPES)
548 				migratetype = 0;
549 			list = &pcp->lists[migratetype];
550 		} while (list_empty(list));
551 
552 		do {
553 			page = list_entry(list->prev, struct page, lru);
554 			/* must delete as __free_one_page list manipulates */
555 			list_del(&page->lru);
556 			__free_one_page(page, zone, 0, migratetype);
557 			trace_mm_page_pcpu_drain(page, 0, migratetype);
558 		} while (--count && --batch_free && !list_empty(list));
559 	}
560 	spin_unlock(&zone->lock);
561 }
562 
563 static void free_one_page(struct zone *zone, struct page *page, int order,
564 				int migratetype)
565 {
566 	spin_lock(&zone->lock);
567 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
568 	zone->pages_scanned = 0;
569 
570 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
571 	__free_one_page(page, zone, order, migratetype);
572 	spin_unlock(&zone->lock);
573 }
574 
575 static void __free_pages_ok(struct page *page, unsigned int order)
576 {
577 	unsigned long flags;
578 	int i;
579 	int bad = 0;
580 	int wasMlocked = __TestClearPageMlocked(page);
581 
582 	kmemcheck_free_shadow(page, order);
583 
584 	for (i = 0 ; i < (1 << order) ; ++i)
585 		bad += free_pages_check(page + i);
586 	if (bad)
587 		return;
588 
589 	if (!PageHighMem(page)) {
590 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
591 		debug_check_no_obj_freed(page_address(page),
592 					   PAGE_SIZE << order);
593 	}
594 	arch_free_page(page, order);
595 	kernel_map_pages(page, 1 << order, 0);
596 
597 	local_irq_save(flags);
598 	if (unlikely(wasMlocked))
599 		free_page_mlock(page);
600 	__count_vm_events(PGFREE, 1 << order);
601 	free_one_page(page_zone(page), page, order,
602 					get_pageblock_migratetype(page));
603 	local_irq_restore(flags);
604 }
605 
606 /*
607  * permit the bootmem allocator to evade page validation on high-order frees
608  */
609 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
610 {
611 	if (order == 0) {
612 		__ClearPageReserved(page);
613 		set_page_count(page, 0);
614 		set_page_refcounted(page);
615 		__free_page(page);
616 	} else {
617 		int loop;
618 
619 		prefetchw(page);
620 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
621 			struct page *p = &page[loop];
622 
623 			if (loop + 1 < BITS_PER_LONG)
624 				prefetchw(p + 1);
625 			__ClearPageReserved(p);
626 			set_page_count(p, 0);
627 		}
628 
629 		set_page_refcounted(page);
630 		__free_pages(page, order);
631 	}
632 }
633 
634 
635 /*
636  * The order of subdivision here is critical for the IO subsystem.
637  * Please do not alter this order without good reasons and regression
638  * testing. Specifically, as large blocks of memory are subdivided,
639  * the order in which smaller blocks are delivered depends on the order
640  * they're subdivided in this function. This is the primary factor
641  * influencing the order in which pages are delivered to the IO
642  * subsystem according to empirical testing, and this is also justified
643  * by considering the behavior of a buddy system containing a single
644  * large block of memory acted on by a series of small allocations.
645  * This behavior is a critical factor in sglist merging's success.
646  *
647  * -- wli
648  */
649 static inline void expand(struct zone *zone, struct page *page,
650 	int low, int high, struct free_area *area,
651 	int migratetype)
652 {
653 	unsigned long size = 1 << high;
654 
655 	while (high > low) {
656 		area--;
657 		high--;
658 		size >>= 1;
659 		VM_BUG_ON(bad_range(zone, &page[size]));
660 		list_add(&page[size].lru, &area->free_list[migratetype]);
661 		area->nr_free++;
662 		set_page_order(&page[size], high);
663 	}
664 }
665 
666 /*
667  * This page is about to be returned from the page allocator
668  */
669 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
670 {
671 	if (unlikely(page_mapcount(page) |
672 		(page->mapping != NULL)  |
673 		(atomic_read(&page->_count) != 0)  |
674 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
675 		bad_page(page);
676 		return 1;
677 	}
678 
679 	set_page_private(page, 0);
680 	set_page_refcounted(page);
681 
682 	arch_alloc_page(page, order);
683 	kernel_map_pages(page, 1 << order, 1);
684 
685 	if (gfp_flags & __GFP_ZERO)
686 		prep_zero_page(page, order, gfp_flags);
687 
688 	if (order && (gfp_flags & __GFP_COMP))
689 		prep_compound_page(page, order);
690 
691 	return 0;
692 }
693 
694 /*
695  * Go through the free lists for the given migratetype and remove
696  * the smallest available page from the freelists
697  */
698 static inline
699 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
700 						int migratetype)
701 {
702 	unsigned int current_order;
703 	struct free_area * area;
704 	struct page *page;
705 
706 	/* Find a page of the appropriate size in the preferred list */
707 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
708 		area = &(zone->free_area[current_order]);
709 		if (list_empty(&area->free_list[migratetype]))
710 			continue;
711 
712 		page = list_entry(area->free_list[migratetype].next,
713 							struct page, lru);
714 		list_del(&page->lru);
715 		rmv_page_order(page);
716 		area->nr_free--;
717 		expand(zone, page, order, current_order, area, migratetype);
718 		return page;
719 	}
720 
721 	return NULL;
722 }
723 
724 
725 /*
726  * This array describes the order lists are fallen back to when
727  * the free lists for the desirable migrate type are depleted
728  */
729 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
730 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
731 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
732 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
733 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
734 };
735 
736 /*
737  * Move the free pages in a range to the free lists of the requested type.
738  * Note that start_page and end_pages are not aligned on a pageblock
739  * boundary. If alignment is required, use move_freepages_block()
740  */
741 static int move_freepages(struct zone *zone,
742 			  struct page *start_page, struct page *end_page,
743 			  int migratetype)
744 {
745 	struct page *page;
746 	unsigned long order;
747 	int pages_moved = 0;
748 
749 #ifndef CONFIG_HOLES_IN_ZONE
750 	/*
751 	 * page_zone is not safe to call in this context when
752 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
753 	 * anyway as we check zone boundaries in move_freepages_block().
754 	 * Remove at a later date when no bug reports exist related to
755 	 * grouping pages by mobility
756 	 */
757 	BUG_ON(page_zone(start_page) != page_zone(end_page));
758 #endif
759 
760 	for (page = start_page; page <= end_page;) {
761 		/* Make sure we are not inadvertently changing nodes */
762 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
763 
764 		if (!pfn_valid_within(page_to_pfn(page))) {
765 			page++;
766 			continue;
767 		}
768 
769 		if (!PageBuddy(page)) {
770 			page++;
771 			continue;
772 		}
773 
774 		order = page_order(page);
775 		list_del(&page->lru);
776 		list_add(&page->lru,
777 			&zone->free_area[order].free_list[migratetype]);
778 		page += 1 << order;
779 		pages_moved += 1 << order;
780 	}
781 
782 	return pages_moved;
783 }
784 
785 static int move_freepages_block(struct zone *zone, struct page *page,
786 				int migratetype)
787 {
788 	unsigned long start_pfn, end_pfn;
789 	struct page *start_page, *end_page;
790 
791 	start_pfn = page_to_pfn(page);
792 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
793 	start_page = pfn_to_page(start_pfn);
794 	end_page = start_page + pageblock_nr_pages - 1;
795 	end_pfn = start_pfn + pageblock_nr_pages - 1;
796 
797 	/* Do not cross zone boundaries */
798 	if (start_pfn < zone->zone_start_pfn)
799 		start_page = page;
800 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
801 		return 0;
802 
803 	return move_freepages(zone, start_page, end_page, migratetype);
804 }
805 
806 static void change_pageblock_range(struct page *pageblock_page,
807 					int start_order, int migratetype)
808 {
809 	int nr_pageblocks = 1 << (start_order - pageblock_order);
810 
811 	while (nr_pageblocks--) {
812 		set_pageblock_migratetype(pageblock_page, migratetype);
813 		pageblock_page += pageblock_nr_pages;
814 	}
815 }
816 
817 /* Remove an element from the buddy allocator from the fallback list */
818 static inline struct page *
819 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
820 {
821 	struct free_area * area;
822 	int current_order;
823 	struct page *page;
824 	int migratetype, i;
825 
826 	/* Find the largest possible block of pages in the other list */
827 	for (current_order = MAX_ORDER-1; current_order >= order;
828 						--current_order) {
829 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
830 			migratetype = fallbacks[start_migratetype][i];
831 
832 			/* MIGRATE_RESERVE handled later if necessary */
833 			if (migratetype == MIGRATE_RESERVE)
834 				continue;
835 
836 			area = &(zone->free_area[current_order]);
837 			if (list_empty(&area->free_list[migratetype]))
838 				continue;
839 
840 			page = list_entry(area->free_list[migratetype].next,
841 					struct page, lru);
842 			area->nr_free--;
843 
844 			/*
845 			 * If breaking a large block of pages, move all free
846 			 * pages to the preferred allocation list. If falling
847 			 * back for a reclaimable kernel allocation, be more
848 			 * agressive about taking ownership of free pages
849 			 */
850 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
851 					start_migratetype == MIGRATE_RECLAIMABLE ||
852 					page_group_by_mobility_disabled) {
853 				unsigned long pages;
854 				pages = move_freepages_block(zone, page,
855 								start_migratetype);
856 
857 				/* Claim the whole block if over half of it is free */
858 				if (pages >= (1 << (pageblock_order-1)) ||
859 						page_group_by_mobility_disabled)
860 					set_pageblock_migratetype(page,
861 								start_migratetype);
862 
863 				migratetype = start_migratetype;
864 			}
865 
866 			/* Remove the page from the freelists */
867 			list_del(&page->lru);
868 			rmv_page_order(page);
869 
870 			/* Take ownership for orders >= pageblock_order */
871 			if (current_order >= pageblock_order)
872 				change_pageblock_range(page, current_order,
873 							start_migratetype);
874 
875 			expand(zone, page, order, current_order, area, migratetype);
876 
877 			trace_mm_page_alloc_extfrag(page, order, current_order,
878 				start_migratetype, migratetype);
879 
880 			return page;
881 		}
882 	}
883 
884 	return NULL;
885 }
886 
887 /*
888  * Do the hard work of removing an element from the buddy allocator.
889  * Call me with the zone->lock already held.
890  */
891 static struct page *__rmqueue(struct zone *zone, unsigned int order,
892 						int migratetype)
893 {
894 	struct page *page;
895 
896 retry_reserve:
897 	page = __rmqueue_smallest(zone, order, migratetype);
898 
899 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
900 		page = __rmqueue_fallback(zone, order, migratetype);
901 
902 		/*
903 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
904 		 * is used because __rmqueue_smallest is an inline function
905 		 * and we want just one call site
906 		 */
907 		if (!page) {
908 			migratetype = MIGRATE_RESERVE;
909 			goto retry_reserve;
910 		}
911 	}
912 
913 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
914 	return page;
915 }
916 
917 /*
918  * Obtain a specified number of elements from the buddy allocator, all under
919  * a single hold of the lock, for efficiency.  Add them to the supplied list.
920  * Returns the number of new pages which were placed at *list.
921  */
922 static int rmqueue_bulk(struct zone *zone, unsigned int order,
923 			unsigned long count, struct list_head *list,
924 			int migratetype, int cold)
925 {
926 	int i;
927 
928 	spin_lock(&zone->lock);
929 	for (i = 0; i < count; ++i) {
930 		struct page *page = __rmqueue(zone, order, migratetype);
931 		if (unlikely(page == NULL))
932 			break;
933 
934 		/*
935 		 * Split buddy pages returned by expand() are received here
936 		 * in physical page order. The page is added to the callers and
937 		 * list and the list head then moves forward. From the callers
938 		 * perspective, the linked list is ordered by page number in
939 		 * some conditions. This is useful for IO devices that can
940 		 * merge IO requests if the physical pages are ordered
941 		 * properly.
942 		 */
943 		if (likely(cold == 0))
944 			list_add(&page->lru, list);
945 		else
946 			list_add_tail(&page->lru, list);
947 		set_page_private(page, migratetype);
948 		list = &page->lru;
949 	}
950 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
951 	spin_unlock(&zone->lock);
952 	return i;
953 }
954 
955 #ifdef CONFIG_NUMA
956 /*
957  * Called from the vmstat counter updater to drain pagesets of this
958  * currently executing processor on remote nodes after they have
959  * expired.
960  *
961  * Note that this function must be called with the thread pinned to
962  * a single processor.
963  */
964 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
965 {
966 	unsigned long flags;
967 	int to_drain;
968 
969 	local_irq_save(flags);
970 	if (pcp->count >= pcp->batch)
971 		to_drain = pcp->batch;
972 	else
973 		to_drain = pcp->count;
974 	free_pcppages_bulk(zone, to_drain, pcp);
975 	pcp->count -= to_drain;
976 	local_irq_restore(flags);
977 }
978 #endif
979 
980 /*
981  * Drain pages of the indicated processor.
982  *
983  * The processor must either be the current processor and the
984  * thread pinned to the current processor or a processor that
985  * is not online.
986  */
987 static void drain_pages(unsigned int cpu)
988 {
989 	unsigned long flags;
990 	struct zone *zone;
991 
992 	for_each_populated_zone(zone) {
993 		struct per_cpu_pageset *pset;
994 		struct per_cpu_pages *pcp;
995 
996 		pset = zone_pcp(zone, cpu);
997 
998 		pcp = &pset->pcp;
999 		local_irq_save(flags);
1000 		free_pcppages_bulk(zone, pcp->count, pcp);
1001 		pcp->count = 0;
1002 		local_irq_restore(flags);
1003 	}
1004 }
1005 
1006 /*
1007  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1008  */
1009 void drain_local_pages(void *arg)
1010 {
1011 	drain_pages(smp_processor_id());
1012 }
1013 
1014 /*
1015  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1016  */
1017 void drain_all_pages(void)
1018 {
1019 	on_each_cpu(drain_local_pages, NULL, 1);
1020 }
1021 
1022 #ifdef CONFIG_HIBERNATION
1023 
1024 void mark_free_pages(struct zone *zone)
1025 {
1026 	unsigned long pfn, max_zone_pfn;
1027 	unsigned long flags;
1028 	int order, t;
1029 	struct list_head *curr;
1030 
1031 	if (!zone->spanned_pages)
1032 		return;
1033 
1034 	spin_lock_irqsave(&zone->lock, flags);
1035 
1036 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1037 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1038 		if (pfn_valid(pfn)) {
1039 			struct page *page = pfn_to_page(pfn);
1040 
1041 			if (!swsusp_page_is_forbidden(page))
1042 				swsusp_unset_page_free(page);
1043 		}
1044 
1045 	for_each_migratetype_order(order, t) {
1046 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1047 			unsigned long i;
1048 
1049 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1050 			for (i = 0; i < (1UL << order); i++)
1051 				swsusp_set_page_free(pfn_to_page(pfn + i));
1052 		}
1053 	}
1054 	spin_unlock_irqrestore(&zone->lock, flags);
1055 }
1056 #endif /* CONFIG_PM */
1057 
1058 /*
1059  * Free a 0-order page
1060  */
1061 static void free_hot_cold_page(struct page *page, int cold)
1062 {
1063 	struct zone *zone = page_zone(page);
1064 	struct per_cpu_pages *pcp;
1065 	unsigned long flags;
1066 	int migratetype;
1067 	int wasMlocked = __TestClearPageMlocked(page);
1068 
1069 	kmemcheck_free_shadow(page, 0);
1070 
1071 	if (PageAnon(page))
1072 		page->mapping = NULL;
1073 	if (free_pages_check(page))
1074 		return;
1075 
1076 	if (!PageHighMem(page)) {
1077 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1078 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1079 	}
1080 	arch_free_page(page, 0);
1081 	kernel_map_pages(page, 1, 0);
1082 
1083 	pcp = &zone_pcp(zone, get_cpu())->pcp;
1084 	migratetype = get_pageblock_migratetype(page);
1085 	set_page_private(page, migratetype);
1086 	local_irq_save(flags);
1087 	if (unlikely(wasMlocked))
1088 		free_page_mlock(page);
1089 	__count_vm_event(PGFREE);
1090 
1091 	/*
1092 	 * We only track unmovable, reclaimable and movable on pcp lists.
1093 	 * Free ISOLATE pages back to the allocator because they are being
1094 	 * offlined but treat RESERVE as movable pages so we can get those
1095 	 * areas back if necessary. Otherwise, we may have to free
1096 	 * excessively into the page allocator
1097 	 */
1098 	if (migratetype >= MIGRATE_PCPTYPES) {
1099 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1100 			free_one_page(zone, page, 0, migratetype);
1101 			goto out;
1102 		}
1103 		migratetype = MIGRATE_MOVABLE;
1104 	}
1105 
1106 	if (cold)
1107 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1108 	else
1109 		list_add(&page->lru, &pcp->lists[migratetype]);
1110 	pcp->count++;
1111 	if (pcp->count >= pcp->high) {
1112 		free_pcppages_bulk(zone, pcp->batch, pcp);
1113 		pcp->count -= pcp->batch;
1114 	}
1115 
1116 out:
1117 	local_irq_restore(flags);
1118 	put_cpu();
1119 }
1120 
1121 void free_hot_page(struct page *page)
1122 {
1123 	trace_mm_page_free_direct(page, 0);
1124 	free_hot_cold_page(page, 0);
1125 }
1126 
1127 /*
1128  * split_page takes a non-compound higher-order page, and splits it into
1129  * n (1<<order) sub-pages: page[0..n]
1130  * Each sub-page must be freed individually.
1131  *
1132  * Note: this is probably too low level an operation for use in drivers.
1133  * Please consult with lkml before using this in your driver.
1134  */
1135 void split_page(struct page *page, unsigned int order)
1136 {
1137 	int i;
1138 
1139 	VM_BUG_ON(PageCompound(page));
1140 	VM_BUG_ON(!page_count(page));
1141 
1142 #ifdef CONFIG_KMEMCHECK
1143 	/*
1144 	 * Split shadow pages too, because free(page[0]) would
1145 	 * otherwise free the whole shadow.
1146 	 */
1147 	if (kmemcheck_page_is_tracked(page))
1148 		split_page(virt_to_page(page[0].shadow), order);
1149 #endif
1150 
1151 	for (i = 1; i < (1 << order); i++)
1152 		set_page_refcounted(page + i);
1153 }
1154 
1155 /*
1156  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1157  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1158  * or two.
1159  */
1160 static inline
1161 struct page *buffered_rmqueue(struct zone *preferred_zone,
1162 			struct zone *zone, int order, gfp_t gfp_flags,
1163 			int migratetype)
1164 {
1165 	unsigned long flags;
1166 	struct page *page;
1167 	int cold = !!(gfp_flags & __GFP_COLD);
1168 	int cpu;
1169 
1170 again:
1171 	cpu  = get_cpu();
1172 	if (likely(order == 0)) {
1173 		struct per_cpu_pages *pcp;
1174 		struct list_head *list;
1175 
1176 		pcp = &zone_pcp(zone, cpu)->pcp;
1177 		list = &pcp->lists[migratetype];
1178 		local_irq_save(flags);
1179 		if (list_empty(list)) {
1180 			pcp->count += rmqueue_bulk(zone, 0,
1181 					pcp->batch, list,
1182 					migratetype, cold);
1183 			if (unlikely(list_empty(list)))
1184 				goto failed;
1185 		}
1186 
1187 		if (cold)
1188 			page = list_entry(list->prev, struct page, lru);
1189 		else
1190 			page = list_entry(list->next, struct page, lru);
1191 
1192 		list_del(&page->lru);
1193 		pcp->count--;
1194 	} else {
1195 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1196 			/*
1197 			 * __GFP_NOFAIL is not to be used in new code.
1198 			 *
1199 			 * All __GFP_NOFAIL callers should be fixed so that they
1200 			 * properly detect and handle allocation failures.
1201 			 *
1202 			 * We most definitely don't want callers attempting to
1203 			 * allocate greater than order-1 page units with
1204 			 * __GFP_NOFAIL.
1205 			 */
1206 			WARN_ON_ONCE(order > 1);
1207 		}
1208 		spin_lock_irqsave(&zone->lock, flags);
1209 		page = __rmqueue(zone, order, migratetype);
1210 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1211 		spin_unlock(&zone->lock);
1212 		if (!page)
1213 			goto failed;
1214 	}
1215 
1216 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1217 	zone_statistics(preferred_zone, zone);
1218 	local_irq_restore(flags);
1219 	put_cpu();
1220 
1221 	VM_BUG_ON(bad_range(zone, page));
1222 	if (prep_new_page(page, order, gfp_flags))
1223 		goto again;
1224 	return page;
1225 
1226 failed:
1227 	local_irq_restore(flags);
1228 	put_cpu();
1229 	return NULL;
1230 }
1231 
1232 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1233 #define ALLOC_WMARK_MIN		WMARK_MIN
1234 #define ALLOC_WMARK_LOW		WMARK_LOW
1235 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1236 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1237 
1238 /* Mask to get the watermark bits */
1239 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1240 
1241 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1242 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1243 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1244 
1245 #ifdef CONFIG_FAIL_PAGE_ALLOC
1246 
1247 static struct fail_page_alloc_attr {
1248 	struct fault_attr attr;
1249 
1250 	u32 ignore_gfp_highmem;
1251 	u32 ignore_gfp_wait;
1252 	u32 min_order;
1253 
1254 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1255 
1256 	struct dentry *ignore_gfp_highmem_file;
1257 	struct dentry *ignore_gfp_wait_file;
1258 	struct dentry *min_order_file;
1259 
1260 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1261 
1262 } fail_page_alloc = {
1263 	.attr = FAULT_ATTR_INITIALIZER,
1264 	.ignore_gfp_wait = 1,
1265 	.ignore_gfp_highmem = 1,
1266 	.min_order = 1,
1267 };
1268 
1269 static int __init setup_fail_page_alloc(char *str)
1270 {
1271 	return setup_fault_attr(&fail_page_alloc.attr, str);
1272 }
1273 __setup("fail_page_alloc=", setup_fail_page_alloc);
1274 
1275 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1276 {
1277 	if (order < fail_page_alloc.min_order)
1278 		return 0;
1279 	if (gfp_mask & __GFP_NOFAIL)
1280 		return 0;
1281 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1282 		return 0;
1283 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1284 		return 0;
1285 
1286 	return should_fail(&fail_page_alloc.attr, 1 << order);
1287 }
1288 
1289 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1290 
1291 static int __init fail_page_alloc_debugfs(void)
1292 {
1293 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1294 	struct dentry *dir;
1295 	int err;
1296 
1297 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1298 				       "fail_page_alloc");
1299 	if (err)
1300 		return err;
1301 	dir = fail_page_alloc.attr.dentries.dir;
1302 
1303 	fail_page_alloc.ignore_gfp_wait_file =
1304 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1305 				      &fail_page_alloc.ignore_gfp_wait);
1306 
1307 	fail_page_alloc.ignore_gfp_highmem_file =
1308 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1309 				      &fail_page_alloc.ignore_gfp_highmem);
1310 	fail_page_alloc.min_order_file =
1311 		debugfs_create_u32("min-order", mode, dir,
1312 				   &fail_page_alloc.min_order);
1313 
1314 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1315             !fail_page_alloc.ignore_gfp_highmem_file ||
1316             !fail_page_alloc.min_order_file) {
1317 		err = -ENOMEM;
1318 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1319 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1320 		debugfs_remove(fail_page_alloc.min_order_file);
1321 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1322 	}
1323 
1324 	return err;
1325 }
1326 
1327 late_initcall(fail_page_alloc_debugfs);
1328 
1329 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1330 
1331 #else /* CONFIG_FAIL_PAGE_ALLOC */
1332 
1333 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1334 {
1335 	return 0;
1336 }
1337 
1338 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1339 
1340 /*
1341  * Return 1 if free pages are above 'mark'. This takes into account the order
1342  * of the allocation.
1343  */
1344 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1345 		      int classzone_idx, int alloc_flags)
1346 {
1347 	/* free_pages my go negative - that's OK */
1348 	long min = mark;
1349 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1350 	int o;
1351 
1352 	if (alloc_flags & ALLOC_HIGH)
1353 		min -= min / 2;
1354 	if (alloc_flags & ALLOC_HARDER)
1355 		min -= min / 4;
1356 
1357 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1358 		return 0;
1359 	for (o = 0; o < order; o++) {
1360 		/* At the next order, this order's pages become unavailable */
1361 		free_pages -= z->free_area[o].nr_free << o;
1362 
1363 		/* Require fewer higher order pages to be free */
1364 		min >>= 1;
1365 
1366 		if (free_pages <= min)
1367 			return 0;
1368 	}
1369 	return 1;
1370 }
1371 
1372 #ifdef CONFIG_NUMA
1373 /*
1374  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1375  * skip over zones that are not allowed by the cpuset, or that have
1376  * been recently (in last second) found to be nearly full.  See further
1377  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1378  * that have to skip over a lot of full or unallowed zones.
1379  *
1380  * If the zonelist cache is present in the passed in zonelist, then
1381  * returns a pointer to the allowed node mask (either the current
1382  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1383  *
1384  * If the zonelist cache is not available for this zonelist, does
1385  * nothing and returns NULL.
1386  *
1387  * If the fullzones BITMAP in the zonelist cache is stale (more than
1388  * a second since last zap'd) then we zap it out (clear its bits.)
1389  *
1390  * We hold off even calling zlc_setup, until after we've checked the
1391  * first zone in the zonelist, on the theory that most allocations will
1392  * be satisfied from that first zone, so best to examine that zone as
1393  * quickly as we can.
1394  */
1395 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1396 {
1397 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1398 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1399 
1400 	zlc = zonelist->zlcache_ptr;
1401 	if (!zlc)
1402 		return NULL;
1403 
1404 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1405 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1406 		zlc->last_full_zap = jiffies;
1407 	}
1408 
1409 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1410 					&cpuset_current_mems_allowed :
1411 					&node_states[N_HIGH_MEMORY];
1412 	return allowednodes;
1413 }
1414 
1415 /*
1416  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1417  * if it is worth looking at further for free memory:
1418  *  1) Check that the zone isn't thought to be full (doesn't have its
1419  *     bit set in the zonelist_cache fullzones BITMAP).
1420  *  2) Check that the zones node (obtained from the zonelist_cache
1421  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1422  * Return true (non-zero) if zone is worth looking at further, or
1423  * else return false (zero) if it is not.
1424  *
1425  * This check -ignores- the distinction between various watermarks,
1426  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1427  * found to be full for any variation of these watermarks, it will
1428  * be considered full for up to one second by all requests, unless
1429  * we are so low on memory on all allowed nodes that we are forced
1430  * into the second scan of the zonelist.
1431  *
1432  * In the second scan we ignore this zonelist cache and exactly
1433  * apply the watermarks to all zones, even it is slower to do so.
1434  * We are low on memory in the second scan, and should leave no stone
1435  * unturned looking for a free page.
1436  */
1437 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1438 						nodemask_t *allowednodes)
1439 {
1440 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1441 	int i;				/* index of *z in zonelist zones */
1442 	int n;				/* node that zone *z is on */
1443 
1444 	zlc = zonelist->zlcache_ptr;
1445 	if (!zlc)
1446 		return 1;
1447 
1448 	i = z - zonelist->_zonerefs;
1449 	n = zlc->z_to_n[i];
1450 
1451 	/* This zone is worth trying if it is allowed but not full */
1452 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1453 }
1454 
1455 /*
1456  * Given 'z' scanning a zonelist, set the corresponding bit in
1457  * zlc->fullzones, so that subsequent attempts to allocate a page
1458  * from that zone don't waste time re-examining it.
1459  */
1460 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1461 {
1462 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1463 	int i;				/* index of *z in zonelist zones */
1464 
1465 	zlc = zonelist->zlcache_ptr;
1466 	if (!zlc)
1467 		return;
1468 
1469 	i = z - zonelist->_zonerefs;
1470 
1471 	set_bit(i, zlc->fullzones);
1472 }
1473 
1474 #else	/* CONFIG_NUMA */
1475 
1476 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1477 {
1478 	return NULL;
1479 }
1480 
1481 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1482 				nodemask_t *allowednodes)
1483 {
1484 	return 1;
1485 }
1486 
1487 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1488 {
1489 }
1490 #endif	/* CONFIG_NUMA */
1491 
1492 /*
1493  * get_page_from_freelist goes through the zonelist trying to allocate
1494  * a page.
1495  */
1496 static struct page *
1497 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1498 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1499 		struct zone *preferred_zone, int migratetype)
1500 {
1501 	struct zoneref *z;
1502 	struct page *page = NULL;
1503 	int classzone_idx;
1504 	struct zone *zone;
1505 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1506 	int zlc_active = 0;		/* set if using zonelist_cache */
1507 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1508 
1509 	classzone_idx = zone_idx(preferred_zone);
1510 zonelist_scan:
1511 	/*
1512 	 * Scan zonelist, looking for a zone with enough free.
1513 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1514 	 */
1515 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1516 						high_zoneidx, nodemask) {
1517 		if (NUMA_BUILD && zlc_active &&
1518 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1519 				continue;
1520 		if ((alloc_flags & ALLOC_CPUSET) &&
1521 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1522 				goto try_next_zone;
1523 
1524 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1525 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1526 			unsigned long mark;
1527 			int ret;
1528 
1529 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1530 			if (zone_watermark_ok(zone, order, mark,
1531 				    classzone_idx, alloc_flags))
1532 				goto try_this_zone;
1533 
1534 			if (zone_reclaim_mode == 0)
1535 				goto this_zone_full;
1536 
1537 			ret = zone_reclaim(zone, gfp_mask, order);
1538 			switch (ret) {
1539 			case ZONE_RECLAIM_NOSCAN:
1540 				/* did not scan */
1541 				goto try_next_zone;
1542 			case ZONE_RECLAIM_FULL:
1543 				/* scanned but unreclaimable */
1544 				goto this_zone_full;
1545 			default:
1546 				/* did we reclaim enough */
1547 				if (!zone_watermark_ok(zone, order, mark,
1548 						classzone_idx, alloc_flags))
1549 					goto this_zone_full;
1550 			}
1551 		}
1552 
1553 try_this_zone:
1554 		page = buffered_rmqueue(preferred_zone, zone, order,
1555 						gfp_mask, migratetype);
1556 		if (page)
1557 			break;
1558 this_zone_full:
1559 		if (NUMA_BUILD)
1560 			zlc_mark_zone_full(zonelist, z);
1561 try_next_zone:
1562 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1563 			/*
1564 			 * we do zlc_setup after the first zone is tried but only
1565 			 * if there are multiple nodes make it worthwhile
1566 			 */
1567 			allowednodes = zlc_setup(zonelist, alloc_flags);
1568 			zlc_active = 1;
1569 			did_zlc_setup = 1;
1570 		}
1571 	}
1572 
1573 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1574 		/* Disable zlc cache for second zonelist scan */
1575 		zlc_active = 0;
1576 		goto zonelist_scan;
1577 	}
1578 	return page;
1579 }
1580 
1581 static inline int
1582 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1583 				unsigned long pages_reclaimed)
1584 {
1585 	/* Do not loop if specifically requested */
1586 	if (gfp_mask & __GFP_NORETRY)
1587 		return 0;
1588 
1589 	/*
1590 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1591 	 * means __GFP_NOFAIL, but that may not be true in other
1592 	 * implementations.
1593 	 */
1594 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1595 		return 1;
1596 
1597 	/*
1598 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1599 	 * specified, then we retry until we no longer reclaim any pages
1600 	 * (above), or we've reclaimed an order of pages at least as
1601 	 * large as the allocation's order. In both cases, if the
1602 	 * allocation still fails, we stop retrying.
1603 	 */
1604 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1605 		return 1;
1606 
1607 	/*
1608 	 * Don't let big-order allocations loop unless the caller
1609 	 * explicitly requests that.
1610 	 */
1611 	if (gfp_mask & __GFP_NOFAIL)
1612 		return 1;
1613 
1614 	return 0;
1615 }
1616 
1617 static inline struct page *
1618 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1619 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1620 	nodemask_t *nodemask, struct zone *preferred_zone,
1621 	int migratetype)
1622 {
1623 	struct page *page;
1624 
1625 	/* Acquire the OOM killer lock for the zones in zonelist */
1626 	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1627 		schedule_timeout_uninterruptible(1);
1628 		return NULL;
1629 	}
1630 
1631 	/*
1632 	 * Go through the zonelist yet one more time, keep very high watermark
1633 	 * here, this is only to catch a parallel oom killing, we must fail if
1634 	 * we're still under heavy pressure.
1635 	 */
1636 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1637 		order, zonelist, high_zoneidx,
1638 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1639 		preferred_zone, migratetype);
1640 	if (page)
1641 		goto out;
1642 
1643 	/* The OOM killer will not help higher order allocs */
1644 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1645 		goto out;
1646 
1647 	/* Exhausted what can be done so it's blamo time */
1648 	out_of_memory(zonelist, gfp_mask, order);
1649 
1650 out:
1651 	clear_zonelist_oom(zonelist, gfp_mask);
1652 	return page;
1653 }
1654 
1655 /* The really slow allocator path where we enter direct reclaim */
1656 static inline struct page *
1657 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1658 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1659 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1660 	int migratetype, unsigned long *did_some_progress)
1661 {
1662 	struct page *page = NULL;
1663 	struct reclaim_state reclaim_state;
1664 	struct task_struct *p = current;
1665 
1666 	cond_resched();
1667 
1668 	/* We now go into synchronous reclaim */
1669 	cpuset_memory_pressure_bump();
1670 	p->flags |= PF_MEMALLOC;
1671 	lockdep_set_current_reclaim_state(gfp_mask);
1672 	reclaim_state.reclaimed_slab = 0;
1673 	p->reclaim_state = &reclaim_state;
1674 
1675 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1676 
1677 	p->reclaim_state = NULL;
1678 	lockdep_clear_current_reclaim_state();
1679 	p->flags &= ~PF_MEMALLOC;
1680 
1681 	cond_resched();
1682 
1683 	if (order != 0)
1684 		drain_all_pages();
1685 
1686 	if (likely(*did_some_progress))
1687 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1688 					zonelist, high_zoneidx,
1689 					alloc_flags, preferred_zone,
1690 					migratetype);
1691 	return page;
1692 }
1693 
1694 /*
1695  * This is called in the allocator slow-path if the allocation request is of
1696  * sufficient urgency to ignore watermarks and take other desperate measures
1697  */
1698 static inline struct page *
1699 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1700 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1701 	nodemask_t *nodemask, struct zone *preferred_zone,
1702 	int migratetype)
1703 {
1704 	struct page *page;
1705 
1706 	do {
1707 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1708 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1709 			preferred_zone, migratetype);
1710 
1711 		if (!page && gfp_mask & __GFP_NOFAIL)
1712 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1713 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1714 
1715 	return page;
1716 }
1717 
1718 static inline
1719 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1720 						enum zone_type high_zoneidx)
1721 {
1722 	struct zoneref *z;
1723 	struct zone *zone;
1724 
1725 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1726 		wakeup_kswapd(zone, order);
1727 }
1728 
1729 static inline int
1730 gfp_to_alloc_flags(gfp_t gfp_mask)
1731 {
1732 	struct task_struct *p = current;
1733 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1734 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1735 
1736 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1737 	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1738 
1739 	/*
1740 	 * The caller may dip into page reserves a bit more if the caller
1741 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1742 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1743 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1744 	 */
1745 	alloc_flags |= (gfp_mask & __GFP_HIGH);
1746 
1747 	if (!wait) {
1748 		alloc_flags |= ALLOC_HARDER;
1749 		/*
1750 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1751 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1752 		 */
1753 		alloc_flags &= ~ALLOC_CPUSET;
1754 	} else if (unlikely(rt_task(p)))
1755 		alloc_flags |= ALLOC_HARDER;
1756 
1757 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1758 		if (!in_interrupt() &&
1759 		    ((p->flags & PF_MEMALLOC) ||
1760 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1761 			alloc_flags |= ALLOC_NO_WATERMARKS;
1762 	}
1763 
1764 	return alloc_flags;
1765 }
1766 
1767 static inline struct page *
1768 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1769 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1770 	nodemask_t *nodemask, struct zone *preferred_zone,
1771 	int migratetype)
1772 {
1773 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1774 	struct page *page = NULL;
1775 	int alloc_flags;
1776 	unsigned long pages_reclaimed = 0;
1777 	unsigned long did_some_progress;
1778 	struct task_struct *p = current;
1779 
1780 	/*
1781 	 * In the slowpath, we sanity check order to avoid ever trying to
1782 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1783 	 * be using allocators in order of preference for an area that is
1784 	 * too large.
1785 	 */
1786 	if (order >= MAX_ORDER) {
1787 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1788 		return NULL;
1789 	}
1790 
1791 	/*
1792 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1793 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1794 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1795 	 * using a larger set of nodes after it has established that the
1796 	 * allowed per node queues are empty and that nodes are
1797 	 * over allocated.
1798 	 */
1799 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1800 		goto nopage;
1801 
1802 	wake_all_kswapd(order, zonelist, high_zoneidx);
1803 
1804 restart:
1805 	/*
1806 	 * OK, we're below the kswapd watermark and have kicked background
1807 	 * reclaim. Now things get more complex, so set up alloc_flags according
1808 	 * to how we want to proceed.
1809 	 */
1810 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1811 
1812 	/* This is the last chance, in general, before the goto nopage. */
1813 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1814 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1815 			preferred_zone, migratetype);
1816 	if (page)
1817 		goto got_pg;
1818 
1819 rebalance:
1820 	/* Allocate without watermarks if the context allows */
1821 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
1822 		page = __alloc_pages_high_priority(gfp_mask, order,
1823 				zonelist, high_zoneidx, nodemask,
1824 				preferred_zone, migratetype);
1825 		if (page)
1826 			goto got_pg;
1827 	}
1828 
1829 	/* Atomic allocations - we can't balance anything */
1830 	if (!wait)
1831 		goto nopage;
1832 
1833 	/* Avoid recursion of direct reclaim */
1834 	if (p->flags & PF_MEMALLOC)
1835 		goto nopage;
1836 
1837 	/* Avoid allocations with no watermarks from looping endlessly */
1838 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1839 		goto nopage;
1840 
1841 	/* Try direct reclaim and then allocating */
1842 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
1843 					zonelist, high_zoneidx,
1844 					nodemask,
1845 					alloc_flags, preferred_zone,
1846 					migratetype, &did_some_progress);
1847 	if (page)
1848 		goto got_pg;
1849 
1850 	/*
1851 	 * If we failed to make any progress reclaiming, then we are
1852 	 * running out of options and have to consider going OOM
1853 	 */
1854 	if (!did_some_progress) {
1855 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1856 			if (oom_killer_disabled)
1857 				goto nopage;
1858 			page = __alloc_pages_may_oom(gfp_mask, order,
1859 					zonelist, high_zoneidx,
1860 					nodemask, preferred_zone,
1861 					migratetype);
1862 			if (page)
1863 				goto got_pg;
1864 
1865 			/*
1866 			 * The OOM killer does not trigger for high-order
1867 			 * ~__GFP_NOFAIL allocations so if no progress is being
1868 			 * made, there are no other options and retrying is
1869 			 * unlikely to help.
1870 			 */
1871 			if (order > PAGE_ALLOC_COSTLY_ORDER &&
1872 						!(gfp_mask & __GFP_NOFAIL))
1873 				goto nopage;
1874 
1875 			goto restart;
1876 		}
1877 	}
1878 
1879 	/* Check if we should retry the allocation */
1880 	pages_reclaimed += did_some_progress;
1881 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1882 		/* Wait for some write requests to complete then retry */
1883 		congestion_wait(BLK_RW_ASYNC, HZ/50);
1884 		goto rebalance;
1885 	}
1886 
1887 nopage:
1888 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1889 		printk(KERN_WARNING "%s: page allocation failure."
1890 			" order:%d, mode:0x%x\n",
1891 			p->comm, order, gfp_mask);
1892 		dump_stack();
1893 		show_mem();
1894 	}
1895 	return page;
1896 got_pg:
1897 	if (kmemcheck_enabled)
1898 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1899 	return page;
1900 
1901 }
1902 
1903 /*
1904  * This is the 'heart' of the zoned buddy allocator.
1905  */
1906 struct page *
1907 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1908 			struct zonelist *zonelist, nodemask_t *nodemask)
1909 {
1910 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1911 	struct zone *preferred_zone;
1912 	struct page *page;
1913 	int migratetype = allocflags_to_migratetype(gfp_mask);
1914 
1915 	gfp_mask &= gfp_allowed_mask;
1916 
1917 	lockdep_trace_alloc(gfp_mask);
1918 
1919 	might_sleep_if(gfp_mask & __GFP_WAIT);
1920 
1921 	if (should_fail_alloc_page(gfp_mask, order))
1922 		return NULL;
1923 
1924 	/*
1925 	 * Check the zones suitable for the gfp_mask contain at least one
1926 	 * valid zone. It's possible to have an empty zonelist as a result
1927 	 * of GFP_THISNODE and a memoryless node
1928 	 */
1929 	if (unlikely(!zonelist->_zonerefs->zone))
1930 		return NULL;
1931 
1932 	/* The preferred zone is used for statistics later */
1933 	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1934 	if (!preferred_zone)
1935 		return NULL;
1936 
1937 	/* First allocation attempt */
1938 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1939 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1940 			preferred_zone, migratetype);
1941 	if (unlikely(!page))
1942 		page = __alloc_pages_slowpath(gfp_mask, order,
1943 				zonelist, high_zoneidx, nodemask,
1944 				preferred_zone, migratetype);
1945 
1946 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1947 	return page;
1948 }
1949 EXPORT_SYMBOL(__alloc_pages_nodemask);
1950 
1951 /*
1952  * Common helper functions.
1953  */
1954 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1955 {
1956 	struct page *page;
1957 
1958 	/*
1959 	 * __get_free_pages() returns a 32-bit address, which cannot represent
1960 	 * a highmem page
1961 	 */
1962 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1963 
1964 	page = alloc_pages(gfp_mask, order);
1965 	if (!page)
1966 		return 0;
1967 	return (unsigned long) page_address(page);
1968 }
1969 EXPORT_SYMBOL(__get_free_pages);
1970 
1971 unsigned long get_zeroed_page(gfp_t gfp_mask)
1972 {
1973 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1974 }
1975 EXPORT_SYMBOL(get_zeroed_page);
1976 
1977 void __pagevec_free(struct pagevec *pvec)
1978 {
1979 	int i = pagevec_count(pvec);
1980 
1981 	while (--i >= 0) {
1982 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1983 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1984 	}
1985 }
1986 
1987 void __free_pages(struct page *page, unsigned int order)
1988 {
1989 	if (put_page_testzero(page)) {
1990 		trace_mm_page_free_direct(page, order);
1991 		if (order == 0)
1992 			free_hot_page(page);
1993 		else
1994 			__free_pages_ok(page, order);
1995 	}
1996 }
1997 
1998 EXPORT_SYMBOL(__free_pages);
1999 
2000 void free_pages(unsigned long addr, unsigned int order)
2001 {
2002 	if (addr != 0) {
2003 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2004 		__free_pages(virt_to_page((void *)addr), order);
2005 	}
2006 }
2007 
2008 EXPORT_SYMBOL(free_pages);
2009 
2010 /**
2011  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2012  * @size: the number of bytes to allocate
2013  * @gfp_mask: GFP flags for the allocation
2014  *
2015  * This function is similar to alloc_pages(), except that it allocates the
2016  * minimum number of pages to satisfy the request.  alloc_pages() can only
2017  * allocate memory in power-of-two pages.
2018  *
2019  * This function is also limited by MAX_ORDER.
2020  *
2021  * Memory allocated by this function must be released by free_pages_exact().
2022  */
2023 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2024 {
2025 	unsigned int order = get_order(size);
2026 	unsigned long addr;
2027 
2028 	addr = __get_free_pages(gfp_mask, order);
2029 	if (addr) {
2030 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2031 		unsigned long used = addr + PAGE_ALIGN(size);
2032 
2033 		split_page(virt_to_page((void *)addr), order);
2034 		while (used < alloc_end) {
2035 			free_page(used);
2036 			used += PAGE_SIZE;
2037 		}
2038 	}
2039 
2040 	return (void *)addr;
2041 }
2042 EXPORT_SYMBOL(alloc_pages_exact);
2043 
2044 /**
2045  * free_pages_exact - release memory allocated via alloc_pages_exact()
2046  * @virt: the value returned by alloc_pages_exact.
2047  * @size: size of allocation, same value as passed to alloc_pages_exact().
2048  *
2049  * Release the memory allocated by a previous call to alloc_pages_exact.
2050  */
2051 void free_pages_exact(void *virt, size_t size)
2052 {
2053 	unsigned long addr = (unsigned long)virt;
2054 	unsigned long end = addr + PAGE_ALIGN(size);
2055 
2056 	while (addr < end) {
2057 		free_page(addr);
2058 		addr += PAGE_SIZE;
2059 	}
2060 }
2061 EXPORT_SYMBOL(free_pages_exact);
2062 
2063 static unsigned int nr_free_zone_pages(int offset)
2064 {
2065 	struct zoneref *z;
2066 	struct zone *zone;
2067 
2068 	/* Just pick one node, since fallback list is circular */
2069 	unsigned int sum = 0;
2070 
2071 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2072 
2073 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2074 		unsigned long size = zone->present_pages;
2075 		unsigned long high = high_wmark_pages(zone);
2076 		if (size > high)
2077 			sum += size - high;
2078 	}
2079 
2080 	return sum;
2081 }
2082 
2083 /*
2084  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2085  */
2086 unsigned int nr_free_buffer_pages(void)
2087 {
2088 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2089 }
2090 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2091 
2092 /*
2093  * Amount of free RAM allocatable within all zones
2094  */
2095 unsigned int nr_free_pagecache_pages(void)
2096 {
2097 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2098 }
2099 
2100 static inline void show_node(struct zone *zone)
2101 {
2102 	if (NUMA_BUILD)
2103 		printk("Node %d ", zone_to_nid(zone));
2104 }
2105 
2106 void si_meminfo(struct sysinfo *val)
2107 {
2108 	val->totalram = totalram_pages;
2109 	val->sharedram = 0;
2110 	val->freeram = global_page_state(NR_FREE_PAGES);
2111 	val->bufferram = nr_blockdev_pages();
2112 	val->totalhigh = totalhigh_pages;
2113 	val->freehigh = nr_free_highpages();
2114 	val->mem_unit = PAGE_SIZE;
2115 }
2116 
2117 EXPORT_SYMBOL(si_meminfo);
2118 
2119 #ifdef CONFIG_NUMA
2120 void si_meminfo_node(struct sysinfo *val, int nid)
2121 {
2122 	pg_data_t *pgdat = NODE_DATA(nid);
2123 
2124 	val->totalram = pgdat->node_present_pages;
2125 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2126 #ifdef CONFIG_HIGHMEM
2127 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2128 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2129 			NR_FREE_PAGES);
2130 #else
2131 	val->totalhigh = 0;
2132 	val->freehigh = 0;
2133 #endif
2134 	val->mem_unit = PAGE_SIZE;
2135 }
2136 #endif
2137 
2138 #define K(x) ((x) << (PAGE_SHIFT-10))
2139 
2140 /*
2141  * Show free area list (used inside shift_scroll-lock stuff)
2142  * We also calculate the percentage fragmentation. We do this by counting the
2143  * memory on each free list with the exception of the first item on the list.
2144  */
2145 void show_free_areas(void)
2146 {
2147 	int cpu;
2148 	struct zone *zone;
2149 
2150 	for_each_populated_zone(zone) {
2151 		show_node(zone);
2152 		printk("%s per-cpu:\n", zone->name);
2153 
2154 		for_each_online_cpu(cpu) {
2155 			struct per_cpu_pageset *pageset;
2156 
2157 			pageset = zone_pcp(zone, cpu);
2158 
2159 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2160 			       cpu, pageset->pcp.high,
2161 			       pageset->pcp.batch, pageset->pcp.count);
2162 		}
2163 	}
2164 
2165 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2166 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2167 		" unevictable:%lu"
2168 		" dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
2169 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2170 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2171 		global_page_state(NR_ACTIVE_ANON),
2172 		global_page_state(NR_INACTIVE_ANON),
2173 		global_page_state(NR_ISOLATED_ANON),
2174 		global_page_state(NR_ACTIVE_FILE),
2175 		global_page_state(NR_INACTIVE_FILE),
2176 		global_page_state(NR_ISOLATED_FILE),
2177 		global_page_state(NR_UNEVICTABLE),
2178 		global_page_state(NR_FILE_DIRTY),
2179 		global_page_state(NR_WRITEBACK),
2180 		global_page_state(NR_UNSTABLE_NFS),
2181 		nr_blockdev_pages(),
2182 		global_page_state(NR_FREE_PAGES),
2183 		global_page_state(NR_SLAB_RECLAIMABLE),
2184 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2185 		global_page_state(NR_FILE_MAPPED),
2186 		global_page_state(NR_SHMEM),
2187 		global_page_state(NR_PAGETABLE),
2188 		global_page_state(NR_BOUNCE));
2189 
2190 	for_each_populated_zone(zone) {
2191 		int i;
2192 
2193 		show_node(zone);
2194 		printk("%s"
2195 			" free:%lukB"
2196 			" min:%lukB"
2197 			" low:%lukB"
2198 			" high:%lukB"
2199 			" active_anon:%lukB"
2200 			" inactive_anon:%lukB"
2201 			" active_file:%lukB"
2202 			" inactive_file:%lukB"
2203 			" unevictable:%lukB"
2204 			" isolated(anon):%lukB"
2205 			" isolated(file):%lukB"
2206 			" present:%lukB"
2207 			" mlocked:%lukB"
2208 			" dirty:%lukB"
2209 			" writeback:%lukB"
2210 			" mapped:%lukB"
2211 			" shmem:%lukB"
2212 			" slab_reclaimable:%lukB"
2213 			" slab_unreclaimable:%lukB"
2214 			" kernel_stack:%lukB"
2215 			" pagetables:%lukB"
2216 			" unstable:%lukB"
2217 			" bounce:%lukB"
2218 			" writeback_tmp:%lukB"
2219 			" pages_scanned:%lu"
2220 			" all_unreclaimable? %s"
2221 			"\n",
2222 			zone->name,
2223 			K(zone_page_state(zone, NR_FREE_PAGES)),
2224 			K(min_wmark_pages(zone)),
2225 			K(low_wmark_pages(zone)),
2226 			K(high_wmark_pages(zone)),
2227 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2228 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2229 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2230 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2231 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2232 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2233 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2234 			K(zone->present_pages),
2235 			K(zone_page_state(zone, NR_MLOCK)),
2236 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2237 			K(zone_page_state(zone, NR_WRITEBACK)),
2238 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2239 			K(zone_page_state(zone, NR_SHMEM)),
2240 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2241 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2242 			zone_page_state(zone, NR_KERNEL_STACK) *
2243 				THREAD_SIZE / 1024,
2244 			K(zone_page_state(zone, NR_PAGETABLE)),
2245 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2246 			K(zone_page_state(zone, NR_BOUNCE)),
2247 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2248 			zone->pages_scanned,
2249 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
2250 			);
2251 		printk("lowmem_reserve[]:");
2252 		for (i = 0; i < MAX_NR_ZONES; i++)
2253 			printk(" %lu", zone->lowmem_reserve[i]);
2254 		printk("\n");
2255 	}
2256 
2257 	for_each_populated_zone(zone) {
2258  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2259 
2260 		show_node(zone);
2261 		printk("%s: ", zone->name);
2262 
2263 		spin_lock_irqsave(&zone->lock, flags);
2264 		for (order = 0; order < MAX_ORDER; order++) {
2265 			nr[order] = zone->free_area[order].nr_free;
2266 			total += nr[order] << order;
2267 		}
2268 		spin_unlock_irqrestore(&zone->lock, flags);
2269 		for (order = 0; order < MAX_ORDER; order++)
2270 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2271 		printk("= %lukB\n", K(total));
2272 	}
2273 
2274 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2275 
2276 	show_swap_cache_info();
2277 }
2278 
2279 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2280 {
2281 	zoneref->zone = zone;
2282 	zoneref->zone_idx = zone_idx(zone);
2283 }
2284 
2285 /*
2286  * Builds allocation fallback zone lists.
2287  *
2288  * Add all populated zones of a node to the zonelist.
2289  */
2290 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2291 				int nr_zones, enum zone_type zone_type)
2292 {
2293 	struct zone *zone;
2294 
2295 	BUG_ON(zone_type >= MAX_NR_ZONES);
2296 	zone_type++;
2297 
2298 	do {
2299 		zone_type--;
2300 		zone = pgdat->node_zones + zone_type;
2301 		if (populated_zone(zone)) {
2302 			zoneref_set_zone(zone,
2303 				&zonelist->_zonerefs[nr_zones++]);
2304 			check_highest_zone(zone_type);
2305 		}
2306 
2307 	} while (zone_type);
2308 	return nr_zones;
2309 }
2310 
2311 
2312 /*
2313  *  zonelist_order:
2314  *  0 = automatic detection of better ordering.
2315  *  1 = order by ([node] distance, -zonetype)
2316  *  2 = order by (-zonetype, [node] distance)
2317  *
2318  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2319  *  the same zonelist. So only NUMA can configure this param.
2320  */
2321 #define ZONELIST_ORDER_DEFAULT  0
2322 #define ZONELIST_ORDER_NODE     1
2323 #define ZONELIST_ORDER_ZONE     2
2324 
2325 /* zonelist order in the kernel.
2326  * set_zonelist_order() will set this to NODE or ZONE.
2327  */
2328 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2329 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2330 
2331 
2332 #ifdef CONFIG_NUMA
2333 /* The value user specified ....changed by config */
2334 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2335 /* string for sysctl */
2336 #define NUMA_ZONELIST_ORDER_LEN	16
2337 char numa_zonelist_order[16] = "default";
2338 
2339 /*
2340  * interface for configure zonelist ordering.
2341  * command line option "numa_zonelist_order"
2342  *	= "[dD]efault	- default, automatic configuration.
2343  *	= "[nN]ode 	- order by node locality, then by zone within node
2344  *	= "[zZ]one      - order by zone, then by locality within zone
2345  */
2346 
2347 static int __parse_numa_zonelist_order(char *s)
2348 {
2349 	if (*s == 'd' || *s == 'D') {
2350 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2351 	} else if (*s == 'n' || *s == 'N') {
2352 		user_zonelist_order = ZONELIST_ORDER_NODE;
2353 	} else if (*s == 'z' || *s == 'Z') {
2354 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2355 	} else {
2356 		printk(KERN_WARNING
2357 			"Ignoring invalid numa_zonelist_order value:  "
2358 			"%s\n", s);
2359 		return -EINVAL;
2360 	}
2361 	return 0;
2362 }
2363 
2364 static __init int setup_numa_zonelist_order(char *s)
2365 {
2366 	if (s)
2367 		return __parse_numa_zonelist_order(s);
2368 	return 0;
2369 }
2370 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2371 
2372 /*
2373  * sysctl handler for numa_zonelist_order
2374  */
2375 int numa_zonelist_order_handler(ctl_table *table, int write,
2376 		struct file *file, void __user *buffer, size_t *length,
2377 		loff_t *ppos)
2378 {
2379 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2380 	int ret;
2381 
2382 	if (write)
2383 		strncpy(saved_string, (char*)table->data,
2384 			NUMA_ZONELIST_ORDER_LEN);
2385 	ret = proc_dostring(table, write, file, buffer, length, ppos);
2386 	if (ret)
2387 		return ret;
2388 	if (write) {
2389 		int oldval = user_zonelist_order;
2390 		if (__parse_numa_zonelist_order((char*)table->data)) {
2391 			/*
2392 			 * bogus value.  restore saved string
2393 			 */
2394 			strncpy((char*)table->data, saved_string,
2395 				NUMA_ZONELIST_ORDER_LEN);
2396 			user_zonelist_order = oldval;
2397 		} else if (oldval != user_zonelist_order)
2398 			build_all_zonelists();
2399 	}
2400 	return 0;
2401 }
2402 
2403 
2404 #define MAX_NODE_LOAD (nr_online_nodes)
2405 static int node_load[MAX_NUMNODES];
2406 
2407 /**
2408  * find_next_best_node - find the next node that should appear in a given node's fallback list
2409  * @node: node whose fallback list we're appending
2410  * @used_node_mask: nodemask_t of already used nodes
2411  *
2412  * We use a number of factors to determine which is the next node that should
2413  * appear on a given node's fallback list.  The node should not have appeared
2414  * already in @node's fallback list, and it should be the next closest node
2415  * according to the distance array (which contains arbitrary distance values
2416  * from each node to each node in the system), and should also prefer nodes
2417  * with no CPUs, since presumably they'll have very little allocation pressure
2418  * on them otherwise.
2419  * It returns -1 if no node is found.
2420  */
2421 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2422 {
2423 	int n, val;
2424 	int min_val = INT_MAX;
2425 	int best_node = -1;
2426 	const struct cpumask *tmp = cpumask_of_node(0);
2427 
2428 	/* Use the local node if we haven't already */
2429 	if (!node_isset(node, *used_node_mask)) {
2430 		node_set(node, *used_node_mask);
2431 		return node;
2432 	}
2433 
2434 	for_each_node_state(n, N_HIGH_MEMORY) {
2435 
2436 		/* Don't want a node to appear more than once */
2437 		if (node_isset(n, *used_node_mask))
2438 			continue;
2439 
2440 		/* Use the distance array to find the distance */
2441 		val = node_distance(node, n);
2442 
2443 		/* Penalize nodes under us ("prefer the next node") */
2444 		val += (n < node);
2445 
2446 		/* Give preference to headless and unused nodes */
2447 		tmp = cpumask_of_node(n);
2448 		if (!cpumask_empty(tmp))
2449 			val += PENALTY_FOR_NODE_WITH_CPUS;
2450 
2451 		/* Slight preference for less loaded node */
2452 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2453 		val += node_load[n];
2454 
2455 		if (val < min_val) {
2456 			min_val = val;
2457 			best_node = n;
2458 		}
2459 	}
2460 
2461 	if (best_node >= 0)
2462 		node_set(best_node, *used_node_mask);
2463 
2464 	return best_node;
2465 }
2466 
2467 
2468 /*
2469  * Build zonelists ordered by node and zones within node.
2470  * This results in maximum locality--normal zone overflows into local
2471  * DMA zone, if any--but risks exhausting DMA zone.
2472  */
2473 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2474 {
2475 	int j;
2476 	struct zonelist *zonelist;
2477 
2478 	zonelist = &pgdat->node_zonelists[0];
2479 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2480 		;
2481 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2482 							MAX_NR_ZONES - 1);
2483 	zonelist->_zonerefs[j].zone = NULL;
2484 	zonelist->_zonerefs[j].zone_idx = 0;
2485 }
2486 
2487 /*
2488  * Build gfp_thisnode zonelists
2489  */
2490 static void build_thisnode_zonelists(pg_data_t *pgdat)
2491 {
2492 	int j;
2493 	struct zonelist *zonelist;
2494 
2495 	zonelist = &pgdat->node_zonelists[1];
2496 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2497 	zonelist->_zonerefs[j].zone = NULL;
2498 	zonelist->_zonerefs[j].zone_idx = 0;
2499 }
2500 
2501 /*
2502  * Build zonelists ordered by zone and nodes within zones.
2503  * This results in conserving DMA zone[s] until all Normal memory is
2504  * exhausted, but results in overflowing to remote node while memory
2505  * may still exist in local DMA zone.
2506  */
2507 static int node_order[MAX_NUMNODES];
2508 
2509 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2510 {
2511 	int pos, j, node;
2512 	int zone_type;		/* needs to be signed */
2513 	struct zone *z;
2514 	struct zonelist *zonelist;
2515 
2516 	zonelist = &pgdat->node_zonelists[0];
2517 	pos = 0;
2518 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2519 		for (j = 0; j < nr_nodes; j++) {
2520 			node = node_order[j];
2521 			z = &NODE_DATA(node)->node_zones[zone_type];
2522 			if (populated_zone(z)) {
2523 				zoneref_set_zone(z,
2524 					&zonelist->_zonerefs[pos++]);
2525 				check_highest_zone(zone_type);
2526 			}
2527 		}
2528 	}
2529 	zonelist->_zonerefs[pos].zone = NULL;
2530 	zonelist->_zonerefs[pos].zone_idx = 0;
2531 }
2532 
2533 static int default_zonelist_order(void)
2534 {
2535 	int nid, zone_type;
2536 	unsigned long low_kmem_size,total_size;
2537 	struct zone *z;
2538 	int average_size;
2539 	/*
2540          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2541 	 * If they are really small and used heavily, the system can fall
2542 	 * into OOM very easily.
2543 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2544 	 */
2545 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2546 	low_kmem_size = 0;
2547 	total_size = 0;
2548 	for_each_online_node(nid) {
2549 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2550 			z = &NODE_DATA(nid)->node_zones[zone_type];
2551 			if (populated_zone(z)) {
2552 				if (zone_type < ZONE_NORMAL)
2553 					low_kmem_size += z->present_pages;
2554 				total_size += z->present_pages;
2555 			}
2556 		}
2557 	}
2558 	if (!low_kmem_size ||  /* there are no DMA area. */
2559 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2560 		return ZONELIST_ORDER_NODE;
2561 	/*
2562 	 * look into each node's config.
2563   	 * If there is a node whose DMA/DMA32 memory is very big area on
2564  	 * local memory, NODE_ORDER may be suitable.
2565          */
2566 	average_size = total_size /
2567 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2568 	for_each_online_node(nid) {
2569 		low_kmem_size = 0;
2570 		total_size = 0;
2571 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2572 			z = &NODE_DATA(nid)->node_zones[zone_type];
2573 			if (populated_zone(z)) {
2574 				if (zone_type < ZONE_NORMAL)
2575 					low_kmem_size += z->present_pages;
2576 				total_size += z->present_pages;
2577 			}
2578 		}
2579 		if (low_kmem_size &&
2580 		    total_size > average_size && /* ignore small node */
2581 		    low_kmem_size > total_size * 70/100)
2582 			return ZONELIST_ORDER_NODE;
2583 	}
2584 	return ZONELIST_ORDER_ZONE;
2585 }
2586 
2587 static void set_zonelist_order(void)
2588 {
2589 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2590 		current_zonelist_order = default_zonelist_order();
2591 	else
2592 		current_zonelist_order = user_zonelist_order;
2593 }
2594 
2595 static void build_zonelists(pg_data_t *pgdat)
2596 {
2597 	int j, node, load;
2598 	enum zone_type i;
2599 	nodemask_t used_mask;
2600 	int local_node, prev_node;
2601 	struct zonelist *zonelist;
2602 	int order = current_zonelist_order;
2603 
2604 	/* initialize zonelists */
2605 	for (i = 0; i < MAX_ZONELISTS; i++) {
2606 		zonelist = pgdat->node_zonelists + i;
2607 		zonelist->_zonerefs[0].zone = NULL;
2608 		zonelist->_zonerefs[0].zone_idx = 0;
2609 	}
2610 
2611 	/* NUMA-aware ordering of nodes */
2612 	local_node = pgdat->node_id;
2613 	load = nr_online_nodes;
2614 	prev_node = local_node;
2615 	nodes_clear(used_mask);
2616 
2617 	memset(node_order, 0, sizeof(node_order));
2618 	j = 0;
2619 
2620 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2621 		int distance = node_distance(local_node, node);
2622 
2623 		/*
2624 		 * If another node is sufficiently far away then it is better
2625 		 * to reclaim pages in a zone before going off node.
2626 		 */
2627 		if (distance > RECLAIM_DISTANCE)
2628 			zone_reclaim_mode = 1;
2629 
2630 		/*
2631 		 * We don't want to pressure a particular node.
2632 		 * So adding penalty to the first node in same
2633 		 * distance group to make it round-robin.
2634 		 */
2635 		if (distance != node_distance(local_node, prev_node))
2636 			node_load[node] = load;
2637 
2638 		prev_node = node;
2639 		load--;
2640 		if (order == ZONELIST_ORDER_NODE)
2641 			build_zonelists_in_node_order(pgdat, node);
2642 		else
2643 			node_order[j++] = node;	/* remember order */
2644 	}
2645 
2646 	if (order == ZONELIST_ORDER_ZONE) {
2647 		/* calculate node order -- i.e., DMA last! */
2648 		build_zonelists_in_zone_order(pgdat, j);
2649 	}
2650 
2651 	build_thisnode_zonelists(pgdat);
2652 }
2653 
2654 /* Construct the zonelist performance cache - see further mmzone.h */
2655 static void build_zonelist_cache(pg_data_t *pgdat)
2656 {
2657 	struct zonelist *zonelist;
2658 	struct zonelist_cache *zlc;
2659 	struct zoneref *z;
2660 
2661 	zonelist = &pgdat->node_zonelists[0];
2662 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2663 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2664 	for (z = zonelist->_zonerefs; z->zone; z++)
2665 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2666 }
2667 
2668 
2669 #else	/* CONFIG_NUMA */
2670 
2671 static void set_zonelist_order(void)
2672 {
2673 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2674 }
2675 
2676 static void build_zonelists(pg_data_t *pgdat)
2677 {
2678 	int node, local_node;
2679 	enum zone_type j;
2680 	struct zonelist *zonelist;
2681 
2682 	local_node = pgdat->node_id;
2683 
2684 	zonelist = &pgdat->node_zonelists[0];
2685 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2686 
2687 	/*
2688 	 * Now we build the zonelist so that it contains the zones
2689 	 * of all the other nodes.
2690 	 * We don't want to pressure a particular node, so when
2691 	 * building the zones for node N, we make sure that the
2692 	 * zones coming right after the local ones are those from
2693 	 * node N+1 (modulo N)
2694 	 */
2695 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2696 		if (!node_online(node))
2697 			continue;
2698 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2699 							MAX_NR_ZONES - 1);
2700 	}
2701 	for (node = 0; node < local_node; node++) {
2702 		if (!node_online(node))
2703 			continue;
2704 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2705 							MAX_NR_ZONES - 1);
2706 	}
2707 
2708 	zonelist->_zonerefs[j].zone = NULL;
2709 	zonelist->_zonerefs[j].zone_idx = 0;
2710 }
2711 
2712 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2713 static void build_zonelist_cache(pg_data_t *pgdat)
2714 {
2715 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2716 }
2717 
2718 #endif	/* CONFIG_NUMA */
2719 
2720 /* return values int ....just for stop_machine() */
2721 static int __build_all_zonelists(void *dummy)
2722 {
2723 	int nid;
2724 
2725 #ifdef CONFIG_NUMA
2726 	memset(node_load, 0, sizeof(node_load));
2727 #endif
2728 	for_each_online_node(nid) {
2729 		pg_data_t *pgdat = NODE_DATA(nid);
2730 
2731 		build_zonelists(pgdat);
2732 		build_zonelist_cache(pgdat);
2733 	}
2734 	return 0;
2735 }
2736 
2737 void build_all_zonelists(void)
2738 {
2739 	set_zonelist_order();
2740 
2741 	if (system_state == SYSTEM_BOOTING) {
2742 		__build_all_zonelists(NULL);
2743 		mminit_verify_zonelist();
2744 		cpuset_init_current_mems_allowed();
2745 	} else {
2746 		/* we have to stop all cpus to guarantee there is no user
2747 		   of zonelist */
2748 		stop_machine(__build_all_zonelists, NULL, NULL);
2749 		/* cpuset refresh routine should be here */
2750 	}
2751 	vm_total_pages = nr_free_pagecache_pages();
2752 	/*
2753 	 * Disable grouping by mobility if the number of pages in the
2754 	 * system is too low to allow the mechanism to work. It would be
2755 	 * more accurate, but expensive to check per-zone. This check is
2756 	 * made on memory-hotadd so a system can start with mobility
2757 	 * disabled and enable it later
2758 	 */
2759 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2760 		page_group_by_mobility_disabled = 1;
2761 	else
2762 		page_group_by_mobility_disabled = 0;
2763 
2764 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2765 		"Total pages: %ld\n",
2766 			nr_online_nodes,
2767 			zonelist_order_name[current_zonelist_order],
2768 			page_group_by_mobility_disabled ? "off" : "on",
2769 			vm_total_pages);
2770 #ifdef CONFIG_NUMA
2771 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2772 #endif
2773 }
2774 
2775 /*
2776  * Helper functions to size the waitqueue hash table.
2777  * Essentially these want to choose hash table sizes sufficiently
2778  * large so that collisions trying to wait on pages are rare.
2779  * But in fact, the number of active page waitqueues on typical
2780  * systems is ridiculously low, less than 200. So this is even
2781  * conservative, even though it seems large.
2782  *
2783  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2784  * waitqueues, i.e. the size of the waitq table given the number of pages.
2785  */
2786 #define PAGES_PER_WAITQUEUE	256
2787 
2788 #ifndef CONFIG_MEMORY_HOTPLUG
2789 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2790 {
2791 	unsigned long size = 1;
2792 
2793 	pages /= PAGES_PER_WAITQUEUE;
2794 
2795 	while (size < pages)
2796 		size <<= 1;
2797 
2798 	/*
2799 	 * Once we have dozens or even hundreds of threads sleeping
2800 	 * on IO we've got bigger problems than wait queue collision.
2801 	 * Limit the size of the wait table to a reasonable size.
2802 	 */
2803 	size = min(size, 4096UL);
2804 
2805 	return max(size, 4UL);
2806 }
2807 #else
2808 /*
2809  * A zone's size might be changed by hot-add, so it is not possible to determine
2810  * a suitable size for its wait_table.  So we use the maximum size now.
2811  *
2812  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2813  *
2814  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2815  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2816  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2817  *
2818  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2819  * or more by the traditional way. (See above).  It equals:
2820  *
2821  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2822  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2823  *    powerpc (64K page size)             : =  (32G +16M)byte.
2824  */
2825 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2826 {
2827 	return 4096UL;
2828 }
2829 #endif
2830 
2831 /*
2832  * This is an integer logarithm so that shifts can be used later
2833  * to extract the more random high bits from the multiplicative
2834  * hash function before the remainder is taken.
2835  */
2836 static inline unsigned long wait_table_bits(unsigned long size)
2837 {
2838 	return ffz(~size);
2839 }
2840 
2841 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2842 
2843 /*
2844  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2845  * of blocks reserved is based on min_wmark_pages(zone). The memory within
2846  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2847  * higher will lead to a bigger reserve which will get freed as contiguous
2848  * blocks as reclaim kicks in
2849  */
2850 static void setup_zone_migrate_reserve(struct zone *zone)
2851 {
2852 	unsigned long start_pfn, pfn, end_pfn;
2853 	struct page *page;
2854 	unsigned long block_migratetype;
2855 	int reserve;
2856 
2857 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2858 	start_pfn = zone->zone_start_pfn;
2859 	end_pfn = start_pfn + zone->spanned_pages;
2860 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2861 							pageblock_order;
2862 
2863 	/*
2864 	 * Reserve blocks are generally in place to help high-order atomic
2865 	 * allocations that are short-lived. A min_free_kbytes value that
2866 	 * would result in more than 2 reserve blocks for atomic allocations
2867 	 * is assumed to be in place to help anti-fragmentation for the
2868 	 * future allocation of hugepages at runtime.
2869 	 */
2870 	reserve = min(2, reserve);
2871 
2872 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2873 		if (!pfn_valid(pfn))
2874 			continue;
2875 		page = pfn_to_page(pfn);
2876 
2877 		/* Watch out for overlapping nodes */
2878 		if (page_to_nid(page) != zone_to_nid(zone))
2879 			continue;
2880 
2881 		/* Blocks with reserved pages will never free, skip them. */
2882 		if (PageReserved(page))
2883 			continue;
2884 
2885 		block_migratetype = get_pageblock_migratetype(page);
2886 
2887 		/* If this block is reserved, account for it */
2888 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2889 			reserve--;
2890 			continue;
2891 		}
2892 
2893 		/* Suitable for reserving if this block is movable */
2894 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2895 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2896 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2897 			reserve--;
2898 			continue;
2899 		}
2900 
2901 		/*
2902 		 * If the reserve is met and this is a previous reserved block,
2903 		 * take it back
2904 		 */
2905 		if (block_migratetype == MIGRATE_RESERVE) {
2906 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2907 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2908 		}
2909 	}
2910 }
2911 
2912 /*
2913  * Initially all pages are reserved - free ones are freed
2914  * up by free_all_bootmem() once the early boot process is
2915  * done. Non-atomic initialization, single-pass.
2916  */
2917 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2918 		unsigned long start_pfn, enum memmap_context context)
2919 {
2920 	struct page *page;
2921 	unsigned long end_pfn = start_pfn + size;
2922 	unsigned long pfn;
2923 	struct zone *z;
2924 
2925 	if (highest_memmap_pfn < end_pfn - 1)
2926 		highest_memmap_pfn = end_pfn - 1;
2927 
2928 	z = &NODE_DATA(nid)->node_zones[zone];
2929 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2930 		/*
2931 		 * There can be holes in boot-time mem_map[]s
2932 		 * handed to this function.  They do not
2933 		 * exist on hotplugged memory.
2934 		 */
2935 		if (context == MEMMAP_EARLY) {
2936 			if (!early_pfn_valid(pfn))
2937 				continue;
2938 			if (!early_pfn_in_nid(pfn, nid))
2939 				continue;
2940 		}
2941 		page = pfn_to_page(pfn);
2942 		set_page_links(page, zone, nid, pfn);
2943 		mminit_verify_page_links(page, zone, nid, pfn);
2944 		init_page_count(page);
2945 		reset_page_mapcount(page);
2946 		SetPageReserved(page);
2947 		/*
2948 		 * Mark the block movable so that blocks are reserved for
2949 		 * movable at startup. This will force kernel allocations
2950 		 * to reserve their blocks rather than leaking throughout
2951 		 * the address space during boot when many long-lived
2952 		 * kernel allocations are made. Later some blocks near
2953 		 * the start are marked MIGRATE_RESERVE by
2954 		 * setup_zone_migrate_reserve()
2955 		 *
2956 		 * bitmap is created for zone's valid pfn range. but memmap
2957 		 * can be created for invalid pages (for alignment)
2958 		 * check here not to call set_pageblock_migratetype() against
2959 		 * pfn out of zone.
2960 		 */
2961 		if ((z->zone_start_pfn <= pfn)
2962 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2963 		    && !(pfn & (pageblock_nr_pages - 1)))
2964 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2965 
2966 		INIT_LIST_HEAD(&page->lru);
2967 #ifdef WANT_PAGE_VIRTUAL
2968 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2969 		if (!is_highmem_idx(zone))
2970 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2971 #endif
2972 	}
2973 }
2974 
2975 static void __meminit zone_init_free_lists(struct zone *zone)
2976 {
2977 	int order, t;
2978 	for_each_migratetype_order(order, t) {
2979 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2980 		zone->free_area[order].nr_free = 0;
2981 	}
2982 }
2983 
2984 #ifndef __HAVE_ARCH_MEMMAP_INIT
2985 #define memmap_init(size, nid, zone, start_pfn) \
2986 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2987 #endif
2988 
2989 static int zone_batchsize(struct zone *zone)
2990 {
2991 #ifdef CONFIG_MMU
2992 	int batch;
2993 
2994 	/*
2995 	 * The per-cpu-pages pools are set to around 1000th of the
2996 	 * size of the zone.  But no more than 1/2 of a meg.
2997 	 *
2998 	 * OK, so we don't know how big the cache is.  So guess.
2999 	 */
3000 	batch = zone->present_pages / 1024;
3001 	if (batch * PAGE_SIZE > 512 * 1024)
3002 		batch = (512 * 1024) / PAGE_SIZE;
3003 	batch /= 4;		/* We effectively *= 4 below */
3004 	if (batch < 1)
3005 		batch = 1;
3006 
3007 	/*
3008 	 * Clamp the batch to a 2^n - 1 value. Having a power
3009 	 * of 2 value was found to be more likely to have
3010 	 * suboptimal cache aliasing properties in some cases.
3011 	 *
3012 	 * For example if 2 tasks are alternately allocating
3013 	 * batches of pages, one task can end up with a lot
3014 	 * of pages of one half of the possible page colors
3015 	 * and the other with pages of the other colors.
3016 	 */
3017 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3018 
3019 	return batch;
3020 
3021 #else
3022 	/* The deferral and batching of frees should be suppressed under NOMMU
3023 	 * conditions.
3024 	 *
3025 	 * The problem is that NOMMU needs to be able to allocate large chunks
3026 	 * of contiguous memory as there's no hardware page translation to
3027 	 * assemble apparent contiguous memory from discontiguous pages.
3028 	 *
3029 	 * Queueing large contiguous runs of pages for batching, however,
3030 	 * causes the pages to actually be freed in smaller chunks.  As there
3031 	 * can be a significant delay between the individual batches being
3032 	 * recycled, this leads to the once large chunks of space being
3033 	 * fragmented and becoming unavailable for high-order allocations.
3034 	 */
3035 	return 0;
3036 #endif
3037 }
3038 
3039 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3040 {
3041 	struct per_cpu_pages *pcp;
3042 	int migratetype;
3043 
3044 	memset(p, 0, sizeof(*p));
3045 
3046 	pcp = &p->pcp;
3047 	pcp->count = 0;
3048 	pcp->high = 6 * batch;
3049 	pcp->batch = max(1UL, 1 * batch);
3050 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3051 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3052 }
3053 
3054 /*
3055  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3056  * to the value high for the pageset p.
3057  */
3058 
3059 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3060 				unsigned long high)
3061 {
3062 	struct per_cpu_pages *pcp;
3063 
3064 	pcp = &p->pcp;
3065 	pcp->high = high;
3066 	pcp->batch = max(1UL, high/4);
3067 	if ((high/4) > (PAGE_SHIFT * 8))
3068 		pcp->batch = PAGE_SHIFT * 8;
3069 }
3070 
3071 
3072 #ifdef CONFIG_NUMA
3073 /*
3074  * Boot pageset table. One per cpu which is going to be used for all
3075  * zones and all nodes. The parameters will be set in such a way
3076  * that an item put on a list will immediately be handed over to
3077  * the buddy list. This is safe since pageset manipulation is done
3078  * with interrupts disabled.
3079  *
3080  * Some NUMA counter updates may also be caught by the boot pagesets.
3081  *
3082  * The boot_pagesets must be kept even after bootup is complete for
3083  * unused processors and/or zones. They do play a role for bootstrapping
3084  * hotplugged processors.
3085  *
3086  * zoneinfo_show() and maybe other functions do
3087  * not check if the processor is online before following the pageset pointer.
3088  * Other parts of the kernel may not check if the zone is available.
3089  */
3090 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3091 
3092 /*
3093  * Dynamically allocate memory for the
3094  * per cpu pageset array in struct zone.
3095  */
3096 static int __cpuinit process_zones(int cpu)
3097 {
3098 	struct zone *zone, *dzone;
3099 	int node = cpu_to_node(cpu);
3100 
3101 	node_set_state(node, N_CPU);	/* this node has a cpu */
3102 
3103 	for_each_populated_zone(zone) {
3104 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3105 					 GFP_KERNEL, node);
3106 		if (!zone_pcp(zone, cpu))
3107 			goto bad;
3108 
3109 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3110 
3111 		if (percpu_pagelist_fraction)
3112 			setup_pagelist_highmark(zone_pcp(zone, cpu),
3113 			 	(zone->present_pages / percpu_pagelist_fraction));
3114 	}
3115 
3116 	return 0;
3117 bad:
3118 	for_each_zone(dzone) {
3119 		if (!populated_zone(dzone))
3120 			continue;
3121 		if (dzone == zone)
3122 			break;
3123 		kfree(zone_pcp(dzone, cpu));
3124 		zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3125 	}
3126 	return -ENOMEM;
3127 }
3128 
3129 static inline void free_zone_pagesets(int cpu)
3130 {
3131 	struct zone *zone;
3132 
3133 	for_each_zone(zone) {
3134 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3135 
3136 		/* Free per_cpu_pageset if it is slab allocated */
3137 		if (pset != &boot_pageset[cpu])
3138 			kfree(pset);
3139 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3140 	}
3141 }
3142 
3143 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3144 		unsigned long action,
3145 		void *hcpu)
3146 {
3147 	int cpu = (long)hcpu;
3148 	int ret = NOTIFY_OK;
3149 
3150 	switch (action) {
3151 	case CPU_UP_PREPARE:
3152 	case CPU_UP_PREPARE_FROZEN:
3153 		if (process_zones(cpu))
3154 			ret = NOTIFY_BAD;
3155 		break;
3156 	case CPU_UP_CANCELED:
3157 	case CPU_UP_CANCELED_FROZEN:
3158 	case CPU_DEAD:
3159 	case CPU_DEAD_FROZEN:
3160 		free_zone_pagesets(cpu);
3161 		break;
3162 	default:
3163 		break;
3164 	}
3165 	return ret;
3166 }
3167 
3168 static struct notifier_block __cpuinitdata pageset_notifier =
3169 	{ &pageset_cpuup_callback, NULL, 0 };
3170 
3171 void __init setup_per_cpu_pageset(void)
3172 {
3173 	int err;
3174 
3175 	/* Initialize per_cpu_pageset for cpu 0.
3176 	 * A cpuup callback will do this for every cpu
3177 	 * as it comes online
3178 	 */
3179 	err = process_zones(smp_processor_id());
3180 	BUG_ON(err);
3181 	register_cpu_notifier(&pageset_notifier);
3182 }
3183 
3184 #endif
3185 
3186 static noinline __init_refok
3187 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3188 {
3189 	int i;
3190 	struct pglist_data *pgdat = zone->zone_pgdat;
3191 	size_t alloc_size;
3192 
3193 	/*
3194 	 * The per-page waitqueue mechanism uses hashed waitqueues
3195 	 * per zone.
3196 	 */
3197 	zone->wait_table_hash_nr_entries =
3198 		 wait_table_hash_nr_entries(zone_size_pages);
3199 	zone->wait_table_bits =
3200 		wait_table_bits(zone->wait_table_hash_nr_entries);
3201 	alloc_size = zone->wait_table_hash_nr_entries
3202 					* sizeof(wait_queue_head_t);
3203 
3204 	if (!slab_is_available()) {
3205 		zone->wait_table = (wait_queue_head_t *)
3206 			alloc_bootmem_node(pgdat, alloc_size);
3207 	} else {
3208 		/*
3209 		 * This case means that a zone whose size was 0 gets new memory
3210 		 * via memory hot-add.
3211 		 * But it may be the case that a new node was hot-added.  In
3212 		 * this case vmalloc() will not be able to use this new node's
3213 		 * memory - this wait_table must be initialized to use this new
3214 		 * node itself as well.
3215 		 * To use this new node's memory, further consideration will be
3216 		 * necessary.
3217 		 */
3218 		zone->wait_table = vmalloc(alloc_size);
3219 	}
3220 	if (!zone->wait_table)
3221 		return -ENOMEM;
3222 
3223 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3224 		init_waitqueue_head(zone->wait_table + i);
3225 
3226 	return 0;
3227 }
3228 
3229 static int __zone_pcp_update(void *data)
3230 {
3231 	struct zone *zone = data;
3232 	int cpu;
3233 	unsigned long batch = zone_batchsize(zone), flags;
3234 
3235 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3236 		struct per_cpu_pageset *pset;
3237 		struct per_cpu_pages *pcp;
3238 
3239 		pset = zone_pcp(zone, cpu);
3240 		pcp = &pset->pcp;
3241 
3242 		local_irq_save(flags);
3243 		free_pcppages_bulk(zone, pcp->count, pcp);
3244 		setup_pageset(pset, batch);
3245 		local_irq_restore(flags);
3246 	}
3247 	return 0;
3248 }
3249 
3250 void zone_pcp_update(struct zone *zone)
3251 {
3252 	stop_machine(__zone_pcp_update, zone, NULL);
3253 }
3254 
3255 static __meminit void zone_pcp_init(struct zone *zone)
3256 {
3257 	int cpu;
3258 	unsigned long batch = zone_batchsize(zone);
3259 
3260 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
3261 #ifdef CONFIG_NUMA
3262 		/* Early boot. Slab allocator not functional yet */
3263 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
3264 		setup_pageset(&boot_pageset[cpu],0);
3265 #else
3266 		setup_pageset(zone_pcp(zone,cpu), batch);
3267 #endif
3268 	}
3269 	if (zone->present_pages)
3270 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
3271 			zone->name, zone->present_pages, batch);
3272 }
3273 
3274 __meminit int init_currently_empty_zone(struct zone *zone,
3275 					unsigned long zone_start_pfn,
3276 					unsigned long size,
3277 					enum memmap_context context)
3278 {
3279 	struct pglist_data *pgdat = zone->zone_pgdat;
3280 	int ret;
3281 	ret = zone_wait_table_init(zone, size);
3282 	if (ret)
3283 		return ret;
3284 	pgdat->nr_zones = zone_idx(zone) + 1;
3285 
3286 	zone->zone_start_pfn = zone_start_pfn;
3287 
3288 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3289 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3290 			pgdat->node_id,
3291 			(unsigned long)zone_idx(zone),
3292 			zone_start_pfn, (zone_start_pfn + size));
3293 
3294 	zone_init_free_lists(zone);
3295 
3296 	return 0;
3297 }
3298 
3299 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3300 /*
3301  * Basic iterator support. Return the first range of PFNs for a node
3302  * Note: nid == MAX_NUMNODES returns first region regardless of node
3303  */
3304 static int __meminit first_active_region_index_in_nid(int nid)
3305 {
3306 	int i;
3307 
3308 	for (i = 0; i < nr_nodemap_entries; i++)
3309 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3310 			return i;
3311 
3312 	return -1;
3313 }
3314 
3315 /*
3316  * Basic iterator support. Return the next active range of PFNs for a node
3317  * Note: nid == MAX_NUMNODES returns next region regardless of node
3318  */
3319 static int __meminit next_active_region_index_in_nid(int index, int nid)
3320 {
3321 	for (index = index + 1; index < nr_nodemap_entries; index++)
3322 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3323 			return index;
3324 
3325 	return -1;
3326 }
3327 
3328 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3329 /*
3330  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3331  * Architectures may implement their own version but if add_active_range()
3332  * was used and there are no special requirements, this is a convenient
3333  * alternative
3334  */
3335 int __meminit __early_pfn_to_nid(unsigned long pfn)
3336 {
3337 	int i;
3338 
3339 	for (i = 0; i < nr_nodemap_entries; i++) {
3340 		unsigned long start_pfn = early_node_map[i].start_pfn;
3341 		unsigned long end_pfn = early_node_map[i].end_pfn;
3342 
3343 		if (start_pfn <= pfn && pfn < end_pfn)
3344 			return early_node_map[i].nid;
3345 	}
3346 	/* This is a memory hole */
3347 	return -1;
3348 }
3349 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3350 
3351 int __meminit early_pfn_to_nid(unsigned long pfn)
3352 {
3353 	int nid;
3354 
3355 	nid = __early_pfn_to_nid(pfn);
3356 	if (nid >= 0)
3357 		return nid;
3358 	/* just returns 0 */
3359 	return 0;
3360 }
3361 
3362 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3363 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3364 {
3365 	int nid;
3366 
3367 	nid = __early_pfn_to_nid(pfn);
3368 	if (nid >= 0 && nid != node)
3369 		return false;
3370 	return true;
3371 }
3372 #endif
3373 
3374 /* Basic iterator support to walk early_node_map[] */
3375 #define for_each_active_range_index_in_nid(i, nid) \
3376 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3377 				i = next_active_region_index_in_nid(i, nid))
3378 
3379 /**
3380  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3381  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3382  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3383  *
3384  * If an architecture guarantees that all ranges registered with
3385  * add_active_ranges() contain no holes and may be freed, this
3386  * this function may be used instead of calling free_bootmem() manually.
3387  */
3388 void __init free_bootmem_with_active_regions(int nid,
3389 						unsigned long max_low_pfn)
3390 {
3391 	int i;
3392 
3393 	for_each_active_range_index_in_nid(i, nid) {
3394 		unsigned long size_pages = 0;
3395 		unsigned long end_pfn = early_node_map[i].end_pfn;
3396 
3397 		if (early_node_map[i].start_pfn >= max_low_pfn)
3398 			continue;
3399 
3400 		if (end_pfn > max_low_pfn)
3401 			end_pfn = max_low_pfn;
3402 
3403 		size_pages = end_pfn - early_node_map[i].start_pfn;
3404 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3405 				PFN_PHYS(early_node_map[i].start_pfn),
3406 				size_pages << PAGE_SHIFT);
3407 	}
3408 }
3409 
3410 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3411 {
3412 	int i;
3413 	int ret;
3414 
3415 	for_each_active_range_index_in_nid(i, nid) {
3416 		ret = work_fn(early_node_map[i].start_pfn,
3417 			      early_node_map[i].end_pfn, data);
3418 		if (ret)
3419 			break;
3420 	}
3421 }
3422 /**
3423  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3424  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3425  *
3426  * If an architecture guarantees that all ranges registered with
3427  * add_active_ranges() contain no holes and may be freed, this
3428  * function may be used instead of calling memory_present() manually.
3429  */
3430 void __init sparse_memory_present_with_active_regions(int nid)
3431 {
3432 	int i;
3433 
3434 	for_each_active_range_index_in_nid(i, nid)
3435 		memory_present(early_node_map[i].nid,
3436 				early_node_map[i].start_pfn,
3437 				early_node_map[i].end_pfn);
3438 }
3439 
3440 /**
3441  * get_pfn_range_for_nid - Return the start and end page frames for a node
3442  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3443  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3444  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3445  *
3446  * It returns the start and end page frame of a node based on information
3447  * provided by an arch calling add_active_range(). If called for a node
3448  * with no available memory, a warning is printed and the start and end
3449  * PFNs will be 0.
3450  */
3451 void __meminit get_pfn_range_for_nid(unsigned int nid,
3452 			unsigned long *start_pfn, unsigned long *end_pfn)
3453 {
3454 	int i;
3455 	*start_pfn = -1UL;
3456 	*end_pfn = 0;
3457 
3458 	for_each_active_range_index_in_nid(i, nid) {
3459 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3460 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3461 	}
3462 
3463 	if (*start_pfn == -1UL)
3464 		*start_pfn = 0;
3465 }
3466 
3467 /*
3468  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3469  * assumption is made that zones within a node are ordered in monotonic
3470  * increasing memory addresses so that the "highest" populated zone is used
3471  */
3472 static void __init find_usable_zone_for_movable(void)
3473 {
3474 	int zone_index;
3475 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3476 		if (zone_index == ZONE_MOVABLE)
3477 			continue;
3478 
3479 		if (arch_zone_highest_possible_pfn[zone_index] >
3480 				arch_zone_lowest_possible_pfn[zone_index])
3481 			break;
3482 	}
3483 
3484 	VM_BUG_ON(zone_index == -1);
3485 	movable_zone = zone_index;
3486 }
3487 
3488 /*
3489  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3490  * because it is sized independant of architecture. Unlike the other zones,
3491  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3492  * in each node depending on the size of each node and how evenly kernelcore
3493  * is distributed. This helper function adjusts the zone ranges
3494  * provided by the architecture for a given node by using the end of the
3495  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3496  * zones within a node are in order of monotonic increases memory addresses
3497  */
3498 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3499 					unsigned long zone_type,
3500 					unsigned long node_start_pfn,
3501 					unsigned long node_end_pfn,
3502 					unsigned long *zone_start_pfn,
3503 					unsigned long *zone_end_pfn)
3504 {
3505 	/* Only adjust if ZONE_MOVABLE is on this node */
3506 	if (zone_movable_pfn[nid]) {
3507 		/* Size ZONE_MOVABLE */
3508 		if (zone_type == ZONE_MOVABLE) {
3509 			*zone_start_pfn = zone_movable_pfn[nid];
3510 			*zone_end_pfn = min(node_end_pfn,
3511 				arch_zone_highest_possible_pfn[movable_zone]);
3512 
3513 		/* Adjust for ZONE_MOVABLE starting within this range */
3514 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3515 				*zone_end_pfn > zone_movable_pfn[nid]) {
3516 			*zone_end_pfn = zone_movable_pfn[nid];
3517 
3518 		/* Check if this whole range is within ZONE_MOVABLE */
3519 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3520 			*zone_start_pfn = *zone_end_pfn;
3521 	}
3522 }
3523 
3524 /*
3525  * Return the number of pages a zone spans in a node, including holes
3526  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3527  */
3528 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3529 					unsigned long zone_type,
3530 					unsigned long *ignored)
3531 {
3532 	unsigned long node_start_pfn, node_end_pfn;
3533 	unsigned long zone_start_pfn, zone_end_pfn;
3534 
3535 	/* Get the start and end of the node and zone */
3536 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3537 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3538 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3539 	adjust_zone_range_for_zone_movable(nid, zone_type,
3540 				node_start_pfn, node_end_pfn,
3541 				&zone_start_pfn, &zone_end_pfn);
3542 
3543 	/* Check that this node has pages within the zone's required range */
3544 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3545 		return 0;
3546 
3547 	/* Move the zone boundaries inside the node if necessary */
3548 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3549 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3550 
3551 	/* Return the spanned pages */
3552 	return zone_end_pfn - zone_start_pfn;
3553 }
3554 
3555 /*
3556  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3557  * then all holes in the requested range will be accounted for.
3558  */
3559 static unsigned long __meminit __absent_pages_in_range(int nid,
3560 				unsigned long range_start_pfn,
3561 				unsigned long range_end_pfn)
3562 {
3563 	int i = 0;
3564 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3565 	unsigned long start_pfn;
3566 
3567 	/* Find the end_pfn of the first active range of pfns in the node */
3568 	i = first_active_region_index_in_nid(nid);
3569 	if (i == -1)
3570 		return 0;
3571 
3572 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3573 
3574 	/* Account for ranges before physical memory on this node */
3575 	if (early_node_map[i].start_pfn > range_start_pfn)
3576 		hole_pages = prev_end_pfn - range_start_pfn;
3577 
3578 	/* Find all holes for the zone within the node */
3579 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3580 
3581 		/* No need to continue if prev_end_pfn is outside the zone */
3582 		if (prev_end_pfn >= range_end_pfn)
3583 			break;
3584 
3585 		/* Make sure the end of the zone is not within the hole */
3586 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3587 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3588 
3589 		/* Update the hole size cound and move on */
3590 		if (start_pfn > range_start_pfn) {
3591 			BUG_ON(prev_end_pfn > start_pfn);
3592 			hole_pages += start_pfn - prev_end_pfn;
3593 		}
3594 		prev_end_pfn = early_node_map[i].end_pfn;
3595 	}
3596 
3597 	/* Account for ranges past physical memory on this node */
3598 	if (range_end_pfn > prev_end_pfn)
3599 		hole_pages += range_end_pfn -
3600 				max(range_start_pfn, prev_end_pfn);
3601 
3602 	return hole_pages;
3603 }
3604 
3605 /**
3606  * absent_pages_in_range - Return number of page frames in holes within a range
3607  * @start_pfn: The start PFN to start searching for holes
3608  * @end_pfn: The end PFN to stop searching for holes
3609  *
3610  * It returns the number of pages frames in memory holes within a range.
3611  */
3612 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3613 							unsigned long end_pfn)
3614 {
3615 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3616 }
3617 
3618 /* Return the number of page frames in holes in a zone on a node */
3619 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3620 					unsigned long zone_type,
3621 					unsigned long *ignored)
3622 {
3623 	unsigned long node_start_pfn, node_end_pfn;
3624 	unsigned long zone_start_pfn, zone_end_pfn;
3625 
3626 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3627 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3628 							node_start_pfn);
3629 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3630 							node_end_pfn);
3631 
3632 	adjust_zone_range_for_zone_movable(nid, zone_type,
3633 			node_start_pfn, node_end_pfn,
3634 			&zone_start_pfn, &zone_end_pfn);
3635 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3636 }
3637 
3638 #else
3639 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3640 					unsigned long zone_type,
3641 					unsigned long *zones_size)
3642 {
3643 	return zones_size[zone_type];
3644 }
3645 
3646 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3647 						unsigned long zone_type,
3648 						unsigned long *zholes_size)
3649 {
3650 	if (!zholes_size)
3651 		return 0;
3652 
3653 	return zholes_size[zone_type];
3654 }
3655 
3656 #endif
3657 
3658 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3659 		unsigned long *zones_size, unsigned long *zholes_size)
3660 {
3661 	unsigned long realtotalpages, totalpages = 0;
3662 	enum zone_type i;
3663 
3664 	for (i = 0; i < MAX_NR_ZONES; i++)
3665 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3666 								zones_size);
3667 	pgdat->node_spanned_pages = totalpages;
3668 
3669 	realtotalpages = totalpages;
3670 	for (i = 0; i < MAX_NR_ZONES; i++)
3671 		realtotalpages -=
3672 			zone_absent_pages_in_node(pgdat->node_id, i,
3673 								zholes_size);
3674 	pgdat->node_present_pages = realtotalpages;
3675 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3676 							realtotalpages);
3677 }
3678 
3679 #ifndef CONFIG_SPARSEMEM
3680 /*
3681  * Calculate the size of the zone->blockflags rounded to an unsigned long
3682  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3683  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3684  * round what is now in bits to nearest long in bits, then return it in
3685  * bytes.
3686  */
3687 static unsigned long __init usemap_size(unsigned long zonesize)
3688 {
3689 	unsigned long usemapsize;
3690 
3691 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3692 	usemapsize = usemapsize >> pageblock_order;
3693 	usemapsize *= NR_PAGEBLOCK_BITS;
3694 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3695 
3696 	return usemapsize / 8;
3697 }
3698 
3699 static void __init setup_usemap(struct pglist_data *pgdat,
3700 				struct zone *zone, unsigned long zonesize)
3701 {
3702 	unsigned long usemapsize = usemap_size(zonesize);
3703 	zone->pageblock_flags = NULL;
3704 	if (usemapsize)
3705 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3706 }
3707 #else
3708 static void inline setup_usemap(struct pglist_data *pgdat,
3709 				struct zone *zone, unsigned long zonesize) {}
3710 #endif /* CONFIG_SPARSEMEM */
3711 
3712 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3713 
3714 /* Return a sensible default order for the pageblock size. */
3715 static inline int pageblock_default_order(void)
3716 {
3717 	if (HPAGE_SHIFT > PAGE_SHIFT)
3718 		return HUGETLB_PAGE_ORDER;
3719 
3720 	return MAX_ORDER-1;
3721 }
3722 
3723 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3724 static inline void __init set_pageblock_order(unsigned int order)
3725 {
3726 	/* Check that pageblock_nr_pages has not already been setup */
3727 	if (pageblock_order)
3728 		return;
3729 
3730 	/*
3731 	 * Assume the largest contiguous order of interest is a huge page.
3732 	 * This value may be variable depending on boot parameters on IA64
3733 	 */
3734 	pageblock_order = order;
3735 }
3736 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3737 
3738 /*
3739  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3740  * and pageblock_default_order() are unused as pageblock_order is set
3741  * at compile-time. See include/linux/pageblock-flags.h for the values of
3742  * pageblock_order based on the kernel config
3743  */
3744 static inline int pageblock_default_order(unsigned int order)
3745 {
3746 	return MAX_ORDER-1;
3747 }
3748 #define set_pageblock_order(x)	do {} while (0)
3749 
3750 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3751 
3752 /*
3753  * Set up the zone data structures:
3754  *   - mark all pages reserved
3755  *   - mark all memory queues empty
3756  *   - clear the memory bitmaps
3757  */
3758 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3759 		unsigned long *zones_size, unsigned long *zholes_size)
3760 {
3761 	enum zone_type j;
3762 	int nid = pgdat->node_id;
3763 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3764 	int ret;
3765 
3766 	pgdat_resize_init(pgdat);
3767 	pgdat->nr_zones = 0;
3768 	init_waitqueue_head(&pgdat->kswapd_wait);
3769 	pgdat->kswapd_max_order = 0;
3770 	pgdat_page_cgroup_init(pgdat);
3771 
3772 	for (j = 0; j < MAX_NR_ZONES; j++) {
3773 		struct zone *zone = pgdat->node_zones + j;
3774 		unsigned long size, realsize, memmap_pages;
3775 		enum lru_list l;
3776 
3777 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3778 		realsize = size - zone_absent_pages_in_node(nid, j,
3779 								zholes_size);
3780 
3781 		/*
3782 		 * Adjust realsize so that it accounts for how much memory
3783 		 * is used by this zone for memmap. This affects the watermark
3784 		 * and per-cpu initialisations
3785 		 */
3786 		memmap_pages =
3787 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3788 		if (realsize >= memmap_pages) {
3789 			realsize -= memmap_pages;
3790 			if (memmap_pages)
3791 				printk(KERN_DEBUG
3792 				       "  %s zone: %lu pages used for memmap\n",
3793 				       zone_names[j], memmap_pages);
3794 		} else
3795 			printk(KERN_WARNING
3796 				"  %s zone: %lu pages exceeds realsize %lu\n",
3797 				zone_names[j], memmap_pages, realsize);
3798 
3799 		/* Account for reserved pages */
3800 		if (j == 0 && realsize > dma_reserve) {
3801 			realsize -= dma_reserve;
3802 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3803 					zone_names[0], dma_reserve);
3804 		}
3805 
3806 		if (!is_highmem_idx(j))
3807 			nr_kernel_pages += realsize;
3808 		nr_all_pages += realsize;
3809 
3810 		zone->spanned_pages = size;
3811 		zone->present_pages = realsize;
3812 #ifdef CONFIG_NUMA
3813 		zone->node = nid;
3814 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3815 						/ 100;
3816 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3817 #endif
3818 		zone->name = zone_names[j];
3819 		spin_lock_init(&zone->lock);
3820 		spin_lock_init(&zone->lru_lock);
3821 		zone_seqlock_init(zone);
3822 		zone->zone_pgdat = pgdat;
3823 
3824 		zone->prev_priority = DEF_PRIORITY;
3825 
3826 		zone_pcp_init(zone);
3827 		for_each_lru(l) {
3828 			INIT_LIST_HEAD(&zone->lru[l].list);
3829 			zone->reclaim_stat.nr_saved_scan[l] = 0;
3830 		}
3831 		zone->reclaim_stat.recent_rotated[0] = 0;
3832 		zone->reclaim_stat.recent_rotated[1] = 0;
3833 		zone->reclaim_stat.recent_scanned[0] = 0;
3834 		zone->reclaim_stat.recent_scanned[1] = 0;
3835 		zap_zone_vm_stats(zone);
3836 		zone->flags = 0;
3837 		if (!size)
3838 			continue;
3839 
3840 		set_pageblock_order(pageblock_default_order());
3841 		setup_usemap(pgdat, zone, size);
3842 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3843 						size, MEMMAP_EARLY);
3844 		BUG_ON(ret);
3845 		memmap_init(size, nid, j, zone_start_pfn);
3846 		zone_start_pfn += size;
3847 	}
3848 }
3849 
3850 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3851 {
3852 	/* Skip empty nodes */
3853 	if (!pgdat->node_spanned_pages)
3854 		return;
3855 
3856 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3857 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3858 	if (!pgdat->node_mem_map) {
3859 		unsigned long size, start, end;
3860 		struct page *map;
3861 
3862 		/*
3863 		 * The zone's endpoints aren't required to be MAX_ORDER
3864 		 * aligned but the node_mem_map endpoints must be in order
3865 		 * for the buddy allocator to function correctly.
3866 		 */
3867 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3868 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3869 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3870 		size =  (end - start) * sizeof(struct page);
3871 		map = alloc_remap(pgdat->node_id, size);
3872 		if (!map)
3873 			map = alloc_bootmem_node(pgdat, size);
3874 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3875 	}
3876 #ifndef CONFIG_NEED_MULTIPLE_NODES
3877 	/*
3878 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3879 	 */
3880 	if (pgdat == NODE_DATA(0)) {
3881 		mem_map = NODE_DATA(0)->node_mem_map;
3882 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3883 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3884 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3885 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3886 	}
3887 #endif
3888 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3889 }
3890 
3891 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3892 		unsigned long node_start_pfn, unsigned long *zholes_size)
3893 {
3894 	pg_data_t *pgdat = NODE_DATA(nid);
3895 
3896 	pgdat->node_id = nid;
3897 	pgdat->node_start_pfn = node_start_pfn;
3898 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3899 
3900 	alloc_node_mem_map(pgdat);
3901 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3902 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3903 		nid, (unsigned long)pgdat,
3904 		(unsigned long)pgdat->node_mem_map);
3905 #endif
3906 
3907 	free_area_init_core(pgdat, zones_size, zholes_size);
3908 }
3909 
3910 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3911 
3912 #if MAX_NUMNODES > 1
3913 /*
3914  * Figure out the number of possible node ids.
3915  */
3916 static void __init setup_nr_node_ids(void)
3917 {
3918 	unsigned int node;
3919 	unsigned int highest = 0;
3920 
3921 	for_each_node_mask(node, node_possible_map)
3922 		highest = node;
3923 	nr_node_ids = highest + 1;
3924 }
3925 #else
3926 static inline void setup_nr_node_ids(void)
3927 {
3928 }
3929 #endif
3930 
3931 /**
3932  * add_active_range - Register a range of PFNs backed by physical memory
3933  * @nid: The node ID the range resides on
3934  * @start_pfn: The start PFN of the available physical memory
3935  * @end_pfn: The end PFN of the available physical memory
3936  *
3937  * These ranges are stored in an early_node_map[] and later used by
3938  * free_area_init_nodes() to calculate zone sizes and holes. If the
3939  * range spans a memory hole, it is up to the architecture to ensure
3940  * the memory is not freed by the bootmem allocator. If possible
3941  * the range being registered will be merged with existing ranges.
3942  */
3943 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3944 						unsigned long end_pfn)
3945 {
3946 	int i;
3947 
3948 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3949 			"Entering add_active_range(%d, %#lx, %#lx) "
3950 			"%d entries of %d used\n",
3951 			nid, start_pfn, end_pfn,
3952 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3953 
3954 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3955 
3956 	/* Merge with existing active regions if possible */
3957 	for (i = 0; i < nr_nodemap_entries; i++) {
3958 		if (early_node_map[i].nid != nid)
3959 			continue;
3960 
3961 		/* Skip if an existing region covers this new one */
3962 		if (start_pfn >= early_node_map[i].start_pfn &&
3963 				end_pfn <= early_node_map[i].end_pfn)
3964 			return;
3965 
3966 		/* Merge forward if suitable */
3967 		if (start_pfn <= early_node_map[i].end_pfn &&
3968 				end_pfn > early_node_map[i].end_pfn) {
3969 			early_node_map[i].end_pfn = end_pfn;
3970 			return;
3971 		}
3972 
3973 		/* Merge backward if suitable */
3974 		if (start_pfn < early_node_map[i].end_pfn &&
3975 				end_pfn >= early_node_map[i].start_pfn) {
3976 			early_node_map[i].start_pfn = start_pfn;
3977 			return;
3978 		}
3979 	}
3980 
3981 	/* Check that early_node_map is large enough */
3982 	if (i >= MAX_ACTIVE_REGIONS) {
3983 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3984 							MAX_ACTIVE_REGIONS);
3985 		return;
3986 	}
3987 
3988 	early_node_map[i].nid = nid;
3989 	early_node_map[i].start_pfn = start_pfn;
3990 	early_node_map[i].end_pfn = end_pfn;
3991 	nr_nodemap_entries = i + 1;
3992 }
3993 
3994 /**
3995  * remove_active_range - Shrink an existing registered range of PFNs
3996  * @nid: The node id the range is on that should be shrunk
3997  * @start_pfn: The new PFN of the range
3998  * @end_pfn: The new PFN of the range
3999  *
4000  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4001  * The map is kept near the end physical page range that has already been
4002  * registered. This function allows an arch to shrink an existing registered
4003  * range.
4004  */
4005 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4006 				unsigned long end_pfn)
4007 {
4008 	int i, j;
4009 	int removed = 0;
4010 
4011 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4012 			  nid, start_pfn, end_pfn);
4013 
4014 	/* Find the old active region end and shrink */
4015 	for_each_active_range_index_in_nid(i, nid) {
4016 		if (early_node_map[i].start_pfn >= start_pfn &&
4017 		    early_node_map[i].end_pfn <= end_pfn) {
4018 			/* clear it */
4019 			early_node_map[i].start_pfn = 0;
4020 			early_node_map[i].end_pfn = 0;
4021 			removed = 1;
4022 			continue;
4023 		}
4024 		if (early_node_map[i].start_pfn < start_pfn &&
4025 		    early_node_map[i].end_pfn > start_pfn) {
4026 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4027 			early_node_map[i].end_pfn = start_pfn;
4028 			if (temp_end_pfn > end_pfn)
4029 				add_active_range(nid, end_pfn, temp_end_pfn);
4030 			continue;
4031 		}
4032 		if (early_node_map[i].start_pfn >= start_pfn &&
4033 		    early_node_map[i].end_pfn > end_pfn &&
4034 		    early_node_map[i].start_pfn < end_pfn) {
4035 			early_node_map[i].start_pfn = end_pfn;
4036 			continue;
4037 		}
4038 	}
4039 
4040 	if (!removed)
4041 		return;
4042 
4043 	/* remove the blank ones */
4044 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4045 		if (early_node_map[i].nid != nid)
4046 			continue;
4047 		if (early_node_map[i].end_pfn)
4048 			continue;
4049 		/* we found it, get rid of it */
4050 		for (j = i; j < nr_nodemap_entries - 1; j++)
4051 			memcpy(&early_node_map[j], &early_node_map[j+1],
4052 				sizeof(early_node_map[j]));
4053 		j = nr_nodemap_entries - 1;
4054 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4055 		nr_nodemap_entries--;
4056 	}
4057 }
4058 
4059 /**
4060  * remove_all_active_ranges - Remove all currently registered regions
4061  *
4062  * During discovery, it may be found that a table like SRAT is invalid
4063  * and an alternative discovery method must be used. This function removes
4064  * all currently registered regions.
4065  */
4066 void __init remove_all_active_ranges(void)
4067 {
4068 	memset(early_node_map, 0, sizeof(early_node_map));
4069 	nr_nodemap_entries = 0;
4070 }
4071 
4072 /* Compare two active node_active_regions */
4073 static int __init cmp_node_active_region(const void *a, const void *b)
4074 {
4075 	struct node_active_region *arange = (struct node_active_region *)a;
4076 	struct node_active_region *brange = (struct node_active_region *)b;
4077 
4078 	/* Done this way to avoid overflows */
4079 	if (arange->start_pfn > brange->start_pfn)
4080 		return 1;
4081 	if (arange->start_pfn < brange->start_pfn)
4082 		return -1;
4083 
4084 	return 0;
4085 }
4086 
4087 /* sort the node_map by start_pfn */
4088 static void __init sort_node_map(void)
4089 {
4090 	sort(early_node_map, (size_t)nr_nodemap_entries,
4091 			sizeof(struct node_active_region),
4092 			cmp_node_active_region, NULL);
4093 }
4094 
4095 /* Find the lowest pfn for a node */
4096 static unsigned long __init find_min_pfn_for_node(int nid)
4097 {
4098 	int i;
4099 	unsigned long min_pfn = ULONG_MAX;
4100 
4101 	/* Assuming a sorted map, the first range found has the starting pfn */
4102 	for_each_active_range_index_in_nid(i, nid)
4103 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4104 
4105 	if (min_pfn == ULONG_MAX) {
4106 		printk(KERN_WARNING
4107 			"Could not find start_pfn for node %d\n", nid);
4108 		return 0;
4109 	}
4110 
4111 	return min_pfn;
4112 }
4113 
4114 /**
4115  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4116  *
4117  * It returns the minimum PFN based on information provided via
4118  * add_active_range().
4119  */
4120 unsigned long __init find_min_pfn_with_active_regions(void)
4121 {
4122 	return find_min_pfn_for_node(MAX_NUMNODES);
4123 }
4124 
4125 /*
4126  * early_calculate_totalpages()
4127  * Sum pages in active regions for movable zone.
4128  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4129  */
4130 static unsigned long __init early_calculate_totalpages(void)
4131 {
4132 	int i;
4133 	unsigned long totalpages = 0;
4134 
4135 	for (i = 0; i < nr_nodemap_entries; i++) {
4136 		unsigned long pages = early_node_map[i].end_pfn -
4137 						early_node_map[i].start_pfn;
4138 		totalpages += pages;
4139 		if (pages)
4140 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4141 	}
4142   	return totalpages;
4143 }
4144 
4145 /*
4146  * Find the PFN the Movable zone begins in each node. Kernel memory
4147  * is spread evenly between nodes as long as the nodes have enough
4148  * memory. When they don't, some nodes will have more kernelcore than
4149  * others
4150  */
4151 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4152 {
4153 	int i, nid;
4154 	unsigned long usable_startpfn;
4155 	unsigned long kernelcore_node, kernelcore_remaining;
4156 	/* save the state before borrow the nodemask */
4157 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4158 	unsigned long totalpages = early_calculate_totalpages();
4159 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4160 
4161 	/*
4162 	 * If movablecore was specified, calculate what size of
4163 	 * kernelcore that corresponds so that memory usable for
4164 	 * any allocation type is evenly spread. If both kernelcore
4165 	 * and movablecore are specified, then the value of kernelcore
4166 	 * will be used for required_kernelcore if it's greater than
4167 	 * what movablecore would have allowed.
4168 	 */
4169 	if (required_movablecore) {
4170 		unsigned long corepages;
4171 
4172 		/*
4173 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4174 		 * was requested by the user
4175 		 */
4176 		required_movablecore =
4177 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4178 		corepages = totalpages - required_movablecore;
4179 
4180 		required_kernelcore = max(required_kernelcore, corepages);
4181 	}
4182 
4183 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4184 	if (!required_kernelcore)
4185 		goto out;
4186 
4187 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4188 	find_usable_zone_for_movable();
4189 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4190 
4191 restart:
4192 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4193 	kernelcore_node = required_kernelcore / usable_nodes;
4194 	for_each_node_state(nid, N_HIGH_MEMORY) {
4195 		/*
4196 		 * Recalculate kernelcore_node if the division per node
4197 		 * now exceeds what is necessary to satisfy the requested
4198 		 * amount of memory for the kernel
4199 		 */
4200 		if (required_kernelcore < kernelcore_node)
4201 			kernelcore_node = required_kernelcore / usable_nodes;
4202 
4203 		/*
4204 		 * As the map is walked, we track how much memory is usable
4205 		 * by the kernel using kernelcore_remaining. When it is
4206 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4207 		 */
4208 		kernelcore_remaining = kernelcore_node;
4209 
4210 		/* Go through each range of PFNs within this node */
4211 		for_each_active_range_index_in_nid(i, nid) {
4212 			unsigned long start_pfn, end_pfn;
4213 			unsigned long size_pages;
4214 
4215 			start_pfn = max(early_node_map[i].start_pfn,
4216 						zone_movable_pfn[nid]);
4217 			end_pfn = early_node_map[i].end_pfn;
4218 			if (start_pfn >= end_pfn)
4219 				continue;
4220 
4221 			/* Account for what is only usable for kernelcore */
4222 			if (start_pfn < usable_startpfn) {
4223 				unsigned long kernel_pages;
4224 				kernel_pages = min(end_pfn, usable_startpfn)
4225 								- start_pfn;
4226 
4227 				kernelcore_remaining -= min(kernel_pages,
4228 							kernelcore_remaining);
4229 				required_kernelcore -= min(kernel_pages,
4230 							required_kernelcore);
4231 
4232 				/* Continue if range is now fully accounted */
4233 				if (end_pfn <= usable_startpfn) {
4234 
4235 					/*
4236 					 * Push zone_movable_pfn to the end so
4237 					 * that if we have to rebalance
4238 					 * kernelcore across nodes, we will
4239 					 * not double account here
4240 					 */
4241 					zone_movable_pfn[nid] = end_pfn;
4242 					continue;
4243 				}
4244 				start_pfn = usable_startpfn;
4245 			}
4246 
4247 			/*
4248 			 * The usable PFN range for ZONE_MOVABLE is from
4249 			 * start_pfn->end_pfn. Calculate size_pages as the
4250 			 * number of pages used as kernelcore
4251 			 */
4252 			size_pages = end_pfn - start_pfn;
4253 			if (size_pages > kernelcore_remaining)
4254 				size_pages = kernelcore_remaining;
4255 			zone_movable_pfn[nid] = start_pfn + size_pages;
4256 
4257 			/*
4258 			 * Some kernelcore has been met, update counts and
4259 			 * break if the kernelcore for this node has been
4260 			 * satisified
4261 			 */
4262 			required_kernelcore -= min(required_kernelcore,
4263 								size_pages);
4264 			kernelcore_remaining -= size_pages;
4265 			if (!kernelcore_remaining)
4266 				break;
4267 		}
4268 	}
4269 
4270 	/*
4271 	 * If there is still required_kernelcore, we do another pass with one
4272 	 * less node in the count. This will push zone_movable_pfn[nid] further
4273 	 * along on the nodes that still have memory until kernelcore is
4274 	 * satisified
4275 	 */
4276 	usable_nodes--;
4277 	if (usable_nodes && required_kernelcore > usable_nodes)
4278 		goto restart;
4279 
4280 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4281 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4282 		zone_movable_pfn[nid] =
4283 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4284 
4285 out:
4286 	/* restore the node_state */
4287 	node_states[N_HIGH_MEMORY] = saved_node_state;
4288 }
4289 
4290 /* Any regular memory on that node ? */
4291 static void check_for_regular_memory(pg_data_t *pgdat)
4292 {
4293 #ifdef CONFIG_HIGHMEM
4294 	enum zone_type zone_type;
4295 
4296 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4297 		struct zone *zone = &pgdat->node_zones[zone_type];
4298 		if (zone->present_pages)
4299 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4300 	}
4301 #endif
4302 }
4303 
4304 /**
4305  * free_area_init_nodes - Initialise all pg_data_t and zone data
4306  * @max_zone_pfn: an array of max PFNs for each zone
4307  *
4308  * This will call free_area_init_node() for each active node in the system.
4309  * Using the page ranges provided by add_active_range(), the size of each
4310  * zone in each node and their holes is calculated. If the maximum PFN
4311  * between two adjacent zones match, it is assumed that the zone is empty.
4312  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4313  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4314  * starts where the previous one ended. For example, ZONE_DMA32 starts
4315  * at arch_max_dma_pfn.
4316  */
4317 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4318 {
4319 	unsigned long nid;
4320 	int i;
4321 
4322 	/* Sort early_node_map as initialisation assumes it is sorted */
4323 	sort_node_map();
4324 
4325 	/* Record where the zone boundaries are */
4326 	memset(arch_zone_lowest_possible_pfn, 0,
4327 				sizeof(arch_zone_lowest_possible_pfn));
4328 	memset(arch_zone_highest_possible_pfn, 0,
4329 				sizeof(arch_zone_highest_possible_pfn));
4330 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4331 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4332 	for (i = 1; i < MAX_NR_ZONES; i++) {
4333 		if (i == ZONE_MOVABLE)
4334 			continue;
4335 		arch_zone_lowest_possible_pfn[i] =
4336 			arch_zone_highest_possible_pfn[i-1];
4337 		arch_zone_highest_possible_pfn[i] =
4338 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4339 	}
4340 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4341 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4342 
4343 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4344 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4345 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4346 
4347 	/* Print out the zone ranges */
4348 	printk("Zone PFN ranges:\n");
4349 	for (i = 0; i < MAX_NR_ZONES; i++) {
4350 		if (i == ZONE_MOVABLE)
4351 			continue;
4352 		printk("  %-8s %0#10lx -> %0#10lx\n",
4353 				zone_names[i],
4354 				arch_zone_lowest_possible_pfn[i],
4355 				arch_zone_highest_possible_pfn[i]);
4356 	}
4357 
4358 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4359 	printk("Movable zone start PFN for each node\n");
4360 	for (i = 0; i < MAX_NUMNODES; i++) {
4361 		if (zone_movable_pfn[i])
4362 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4363 	}
4364 
4365 	/* Print out the early_node_map[] */
4366 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4367 	for (i = 0; i < nr_nodemap_entries; i++)
4368 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4369 						early_node_map[i].start_pfn,
4370 						early_node_map[i].end_pfn);
4371 
4372 	/* Initialise every node */
4373 	mminit_verify_pageflags_layout();
4374 	setup_nr_node_ids();
4375 	for_each_online_node(nid) {
4376 		pg_data_t *pgdat = NODE_DATA(nid);
4377 		free_area_init_node(nid, NULL,
4378 				find_min_pfn_for_node(nid), NULL);
4379 
4380 		/* Any memory on that node */
4381 		if (pgdat->node_present_pages)
4382 			node_set_state(nid, N_HIGH_MEMORY);
4383 		check_for_regular_memory(pgdat);
4384 	}
4385 }
4386 
4387 static int __init cmdline_parse_core(char *p, unsigned long *core)
4388 {
4389 	unsigned long long coremem;
4390 	if (!p)
4391 		return -EINVAL;
4392 
4393 	coremem = memparse(p, &p);
4394 	*core = coremem >> PAGE_SHIFT;
4395 
4396 	/* Paranoid check that UL is enough for the coremem value */
4397 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4398 
4399 	return 0;
4400 }
4401 
4402 /*
4403  * kernelcore=size sets the amount of memory for use for allocations that
4404  * cannot be reclaimed or migrated.
4405  */
4406 static int __init cmdline_parse_kernelcore(char *p)
4407 {
4408 	return cmdline_parse_core(p, &required_kernelcore);
4409 }
4410 
4411 /*
4412  * movablecore=size sets the amount of memory for use for allocations that
4413  * can be reclaimed or migrated.
4414  */
4415 static int __init cmdline_parse_movablecore(char *p)
4416 {
4417 	return cmdline_parse_core(p, &required_movablecore);
4418 }
4419 
4420 early_param("kernelcore", cmdline_parse_kernelcore);
4421 early_param("movablecore", cmdline_parse_movablecore);
4422 
4423 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4424 
4425 /**
4426  * set_dma_reserve - set the specified number of pages reserved in the first zone
4427  * @new_dma_reserve: The number of pages to mark reserved
4428  *
4429  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4430  * In the DMA zone, a significant percentage may be consumed by kernel image
4431  * and other unfreeable allocations which can skew the watermarks badly. This
4432  * function may optionally be used to account for unfreeable pages in the
4433  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4434  * smaller per-cpu batchsize.
4435  */
4436 void __init set_dma_reserve(unsigned long new_dma_reserve)
4437 {
4438 	dma_reserve = new_dma_reserve;
4439 }
4440 
4441 #ifndef CONFIG_NEED_MULTIPLE_NODES
4442 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4443 EXPORT_SYMBOL(contig_page_data);
4444 #endif
4445 
4446 void __init free_area_init(unsigned long *zones_size)
4447 {
4448 	free_area_init_node(0, zones_size,
4449 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4450 }
4451 
4452 static int page_alloc_cpu_notify(struct notifier_block *self,
4453 				 unsigned long action, void *hcpu)
4454 {
4455 	int cpu = (unsigned long)hcpu;
4456 
4457 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4458 		drain_pages(cpu);
4459 
4460 		/*
4461 		 * Spill the event counters of the dead processor
4462 		 * into the current processors event counters.
4463 		 * This artificially elevates the count of the current
4464 		 * processor.
4465 		 */
4466 		vm_events_fold_cpu(cpu);
4467 
4468 		/*
4469 		 * Zero the differential counters of the dead processor
4470 		 * so that the vm statistics are consistent.
4471 		 *
4472 		 * This is only okay since the processor is dead and cannot
4473 		 * race with what we are doing.
4474 		 */
4475 		refresh_cpu_vm_stats(cpu);
4476 	}
4477 	return NOTIFY_OK;
4478 }
4479 
4480 void __init page_alloc_init(void)
4481 {
4482 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4483 }
4484 
4485 /*
4486  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4487  *	or min_free_kbytes changes.
4488  */
4489 static void calculate_totalreserve_pages(void)
4490 {
4491 	struct pglist_data *pgdat;
4492 	unsigned long reserve_pages = 0;
4493 	enum zone_type i, j;
4494 
4495 	for_each_online_pgdat(pgdat) {
4496 		for (i = 0; i < MAX_NR_ZONES; i++) {
4497 			struct zone *zone = pgdat->node_zones + i;
4498 			unsigned long max = 0;
4499 
4500 			/* Find valid and maximum lowmem_reserve in the zone */
4501 			for (j = i; j < MAX_NR_ZONES; j++) {
4502 				if (zone->lowmem_reserve[j] > max)
4503 					max = zone->lowmem_reserve[j];
4504 			}
4505 
4506 			/* we treat the high watermark as reserved pages. */
4507 			max += high_wmark_pages(zone);
4508 
4509 			if (max > zone->present_pages)
4510 				max = zone->present_pages;
4511 			reserve_pages += max;
4512 		}
4513 	}
4514 	totalreserve_pages = reserve_pages;
4515 }
4516 
4517 /*
4518  * setup_per_zone_lowmem_reserve - called whenever
4519  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4520  *	has a correct pages reserved value, so an adequate number of
4521  *	pages are left in the zone after a successful __alloc_pages().
4522  */
4523 static void setup_per_zone_lowmem_reserve(void)
4524 {
4525 	struct pglist_data *pgdat;
4526 	enum zone_type j, idx;
4527 
4528 	for_each_online_pgdat(pgdat) {
4529 		for (j = 0; j < MAX_NR_ZONES; j++) {
4530 			struct zone *zone = pgdat->node_zones + j;
4531 			unsigned long present_pages = zone->present_pages;
4532 
4533 			zone->lowmem_reserve[j] = 0;
4534 
4535 			idx = j;
4536 			while (idx) {
4537 				struct zone *lower_zone;
4538 
4539 				idx--;
4540 
4541 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4542 					sysctl_lowmem_reserve_ratio[idx] = 1;
4543 
4544 				lower_zone = pgdat->node_zones + idx;
4545 				lower_zone->lowmem_reserve[j] = present_pages /
4546 					sysctl_lowmem_reserve_ratio[idx];
4547 				present_pages += lower_zone->present_pages;
4548 			}
4549 		}
4550 	}
4551 
4552 	/* update totalreserve_pages */
4553 	calculate_totalreserve_pages();
4554 }
4555 
4556 /**
4557  * setup_per_zone_wmarks - called when min_free_kbytes changes
4558  * or when memory is hot-{added|removed}
4559  *
4560  * Ensures that the watermark[min,low,high] values for each zone are set
4561  * correctly with respect to min_free_kbytes.
4562  */
4563 void setup_per_zone_wmarks(void)
4564 {
4565 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4566 	unsigned long lowmem_pages = 0;
4567 	struct zone *zone;
4568 	unsigned long flags;
4569 
4570 	/* Calculate total number of !ZONE_HIGHMEM pages */
4571 	for_each_zone(zone) {
4572 		if (!is_highmem(zone))
4573 			lowmem_pages += zone->present_pages;
4574 	}
4575 
4576 	for_each_zone(zone) {
4577 		u64 tmp;
4578 
4579 		spin_lock_irqsave(&zone->lock, flags);
4580 		tmp = (u64)pages_min * zone->present_pages;
4581 		do_div(tmp, lowmem_pages);
4582 		if (is_highmem(zone)) {
4583 			/*
4584 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4585 			 * need highmem pages, so cap pages_min to a small
4586 			 * value here.
4587 			 *
4588 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4589 			 * deltas controls asynch page reclaim, and so should
4590 			 * not be capped for highmem.
4591 			 */
4592 			int min_pages;
4593 
4594 			min_pages = zone->present_pages / 1024;
4595 			if (min_pages < SWAP_CLUSTER_MAX)
4596 				min_pages = SWAP_CLUSTER_MAX;
4597 			if (min_pages > 128)
4598 				min_pages = 128;
4599 			zone->watermark[WMARK_MIN] = min_pages;
4600 		} else {
4601 			/*
4602 			 * If it's a lowmem zone, reserve a number of pages
4603 			 * proportionate to the zone's size.
4604 			 */
4605 			zone->watermark[WMARK_MIN] = tmp;
4606 		}
4607 
4608 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4609 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4610 		setup_zone_migrate_reserve(zone);
4611 		spin_unlock_irqrestore(&zone->lock, flags);
4612 	}
4613 
4614 	/* update totalreserve_pages */
4615 	calculate_totalreserve_pages();
4616 }
4617 
4618 /*
4619  * The inactive anon list should be small enough that the VM never has to
4620  * do too much work, but large enough that each inactive page has a chance
4621  * to be referenced again before it is swapped out.
4622  *
4623  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4624  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4625  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4626  * the anonymous pages are kept on the inactive list.
4627  *
4628  * total     target    max
4629  * memory    ratio     inactive anon
4630  * -------------------------------------
4631  *   10MB       1         5MB
4632  *  100MB       1        50MB
4633  *    1GB       3       250MB
4634  *   10GB      10       0.9GB
4635  *  100GB      31         3GB
4636  *    1TB     101        10GB
4637  *   10TB     320        32GB
4638  */
4639 void calculate_zone_inactive_ratio(struct zone *zone)
4640 {
4641 	unsigned int gb, ratio;
4642 
4643 	/* Zone size in gigabytes */
4644 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4645 	if (gb)
4646 		ratio = int_sqrt(10 * gb);
4647 	else
4648 		ratio = 1;
4649 
4650 	zone->inactive_ratio = ratio;
4651 }
4652 
4653 static void __init setup_per_zone_inactive_ratio(void)
4654 {
4655 	struct zone *zone;
4656 
4657 	for_each_zone(zone)
4658 		calculate_zone_inactive_ratio(zone);
4659 }
4660 
4661 /*
4662  * Initialise min_free_kbytes.
4663  *
4664  * For small machines we want it small (128k min).  For large machines
4665  * we want it large (64MB max).  But it is not linear, because network
4666  * bandwidth does not increase linearly with machine size.  We use
4667  *
4668  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4669  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4670  *
4671  * which yields
4672  *
4673  * 16MB:	512k
4674  * 32MB:	724k
4675  * 64MB:	1024k
4676  * 128MB:	1448k
4677  * 256MB:	2048k
4678  * 512MB:	2896k
4679  * 1024MB:	4096k
4680  * 2048MB:	5792k
4681  * 4096MB:	8192k
4682  * 8192MB:	11584k
4683  * 16384MB:	16384k
4684  */
4685 static int __init init_per_zone_wmark_min(void)
4686 {
4687 	unsigned long lowmem_kbytes;
4688 
4689 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4690 
4691 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4692 	if (min_free_kbytes < 128)
4693 		min_free_kbytes = 128;
4694 	if (min_free_kbytes > 65536)
4695 		min_free_kbytes = 65536;
4696 	setup_per_zone_wmarks();
4697 	setup_per_zone_lowmem_reserve();
4698 	setup_per_zone_inactive_ratio();
4699 	return 0;
4700 }
4701 module_init(init_per_zone_wmark_min)
4702 
4703 /*
4704  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4705  *	that we can call two helper functions whenever min_free_kbytes
4706  *	changes.
4707  */
4708 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4709 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4710 {
4711 	proc_dointvec(table, write, file, buffer, length, ppos);
4712 	if (write)
4713 		setup_per_zone_wmarks();
4714 	return 0;
4715 }
4716 
4717 #ifdef CONFIG_NUMA
4718 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4719 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4720 {
4721 	struct zone *zone;
4722 	int rc;
4723 
4724 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4725 	if (rc)
4726 		return rc;
4727 
4728 	for_each_zone(zone)
4729 		zone->min_unmapped_pages = (zone->present_pages *
4730 				sysctl_min_unmapped_ratio) / 100;
4731 	return 0;
4732 }
4733 
4734 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4735 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4736 {
4737 	struct zone *zone;
4738 	int rc;
4739 
4740 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4741 	if (rc)
4742 		return rc;
4743 
4744 	for_each_zone(zone)
4745 		zone->min_slab_pages = (zone->present_pages *
4746 				sysctl_min_slab_ratio) / 100;
4747 	return 0;
4748 }
4749 #endif
4750 
4751 /*
4752  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4753  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4754  *	whenever sysctl_lowmem_reserve_ratio changes.
4755  *
4756  * The reserve ratio obviously has absolutely no relation with the
4757  * minimum watermarks. The lowmem reserve ratio can only make sense
4758  * if in function of the boot time zone sizes.
4759  */
4760 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4761 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4762 {
4763 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4764 	setup_per_zone_lowmem_reserve();
4765 	return 0;
4766 }
4767 
4768 /*
4769  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4770  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4771  * can have before it gets flushed back to buddy allocator.
4772  */
4773 
4774 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4775 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4776 {
4777 	struct zone *zone;
4778 	unsigned int cpu;
4779 	int ret;
4780 
4781 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4782 	if (!write || (ret == -EINVAL))
4783 		return ret;
4784 	for_each_populated_zone(zone) {
4785 		for_each_online_cpu(cpu) {
4786 			unsigned long  high;
4787 			high = zone->present_pages / percpu_pagelist_fraction;
4788 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4789 		}
4790 	}
4791 	return 0;
4792 }
4793 
4794 int hashdist = HASHDIST_DEFAULT;
4795 
4796 #ifdef CONFIG_NUMA
4797 static int __init set_hashdist(char *str)
4798 {
4799 	if (!str)
4800 		return 0;
4801 	hashdist = simple_strtoul(str, &str, 0);
4802 	return 1;
4803 }
4804 __setup("hashdist=", set_hashdist);
4805 #endif
4806 
4807 /*
4808  * allocate a large system hash table from bootmem
4809  * - it is assumed that the hash table must contain an exact power-of-2
4810  *   quantity of entries
4811  * - limit is the number of hash buckets, not the total allocation size
4812  */
4813 void *__init alloc_large_system_hash(const char *tablename,
4814 				     unsigned long bucketsize,
4815 				     unsigned long numentries,
4816 				     int scale,
4817 				     int flags,
4818 				     unsigned int *_hash_shift,
4819 				     unsigned int *_hash_mask,
4820 				     unsigned long limit)
4821 {
4822 	unsigned long long max = limit;
4823 	unsigned long log2qty, size;
4824 	void *table = NULL;
4825 
4826 	/* allow the kernel cmdline to have a say */
4827 	if (!numentries) {
4828 		/* round applicable memory size up to nearest megabyte */
4829 		numentries = nr_kernel_pages;
4830 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4831 		numentries >>= 20 - PAGE_SHIFT;
4832 		numentries <<= 20 - PAGE_SHIFT;
4833 
4834 		/* limit to 1 bucket per 2^scale bytes of low memory */
4835 		if (scale > PAGE_SHIFT)
4836 			numentries >>= (scale - PAGE_SHIFT);
4837 		else
4838 			numentries <<= (PAGE_SHIFT - scale);
4839 
4840 		/* Make sure we've got at least a 0-order allocation.. */
4841 		if (unlikely(flags & HASH_SMALL)) {
4842 			/* Makes no sense without HASH_EARLY */
4843 			WARN_ON(!(flags & HASH_EARLY));
4844 			if (!(numentries >> *_hash_shift)) {
4845 				numentries = 1UL << *_hash_shift;
4846 				BUG_ON(!numentries);
4847 			}
4848 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4849 			numentries = PAGE_SIZE / bucketsize;
4850 	}
4851 	numentries = roundup_pow_of_two(numentries);
4852 
4853 	/* limit allocation size to 1/16 total memory by default */
4854 	if (max == 0) {
4855 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4856 		do_div(max, bucketsize);
4857 	}
4858 
4859 	if (numentries > max)
4860 		numentries = max;
4861 
4862 	log2qty = ilog2(numentries);
4863 
4864 	do {
4865 		size = bucketsize << log2qty;
4866 		if (flags & HASH_EARLY)
4867 			table = alloc_bootmem_nopanic(size);
4868 		else if (hashdist)
4869 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4870 		else {
4871 			/*
4872 			 * If bucketsize is not a power-of-two, we may free
4873 			 * some pages at the end of hash table which
4874 			 * alloc_pages_exact() automatically does
4875 			 */
4876 			if (get_order(size) < MAX_ORDER) {
4877 				table = alloc_pages_exact(size, GFP_ATOMIC);
4878 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4879 			}
4880 		}
4881 	} while (!table && size > PAGE_SIZE && --log2qty);
4882 
4883 	if (!table)
4884 		panic("Failed to allocate %s hash table\n", tablename);
4885 
4886 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4887 	       tablename,
4888 	       (1U << log2qty),
4889 	       ilog2(size) - PAGE_SHIFT,
4890 	       size);
4891 
4892 	if (_hash_shift)
4893 		*_hash_shift = log2qty;
4894 	if (_hash_mask)
4895 		*_hash_mask = (1 << log2qty) - 1;
4896 
4897 	return table;
4898 }
4899 
4900 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4901 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4902 							unsigned long pfn)
4903 {
4904 #ifdef CONFIG_SPARSEMEM
4905 	return __pfn_to_section(pfn)->pageblock_flags;
4906 #else
4907 	return zone->pageblock_flags;
4908 #endif /* CONFIG_SPARSEMEM */
4909 }
4910 
4911 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4912 {
4913 #ifdef CONFIG_SPARSEMEM
4914 	pfn &= (PAGES_PER_SECTION-1);
4915 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4916 #else
4917 	pfn = pfn - zone->zone_start_pfn;
4918 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4919 #endif /* CONFIG_SPARSEMEM */
4920 }
4921 
4922 /**
4923  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4924  * @page: The page within the block of interest
4925  * @start_bitidx: The first bit of interest to retrieve
4926  * @end_bitidx: The last bit of interest
4927  * returns pageblock_bits flags
4928  */
4929 unsigned long get_pageblock_flags_group(struct page *page,
4930 					int start_bitidx, int end_bitidx)
4931 {
4932 	struct zone *zone;
4933 	unsigned long *bitmap;
4934 	unsigned long pfn, bitidx;
4935 	unsigned long flags = 0;
4936 	unsigned long value = 1;
4937 
4938 	zone = page_zone(page);
4939 	pfn = page_to_pfn(page);
4940 	bitmap = get_pageblock_bitmap(zone, pfn);
4941 	bitidx = pfn_to_bitidx(zone, pfn);
4942 
4943 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4944 		if (test_bit(bitidx + start_bitidx, bitmap))
4945 			flags |= value;
4946 
4947 	return flags;
4948 }
4949 
4950 /**
4951  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4952  * @page: The page within the block of interest
4953  * @start_bitidx: The first bit of interest
4954  * @end_bitidx: The last bit of interest
4955  * @flags: The flags to set
4956  */
4957 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4958 					int start_bitidx, int end_bitidx)
4959 {
4960 	struct zone *zone;
4961 	unsigned long *bitmap;
4962 	unsigned long pfn, bitidx;
4963 	unsigned long value = 1;
4964 
4965 	zone = page_zone(page);
4966 	pfn = page_to_pfn(page);
4967 	bitmap = get_pageblock_bitmap(zone, pfn);
4968 	bitidx = pfn_to_bitidx(zone, pfn);
4969 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4970 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4971 
4972 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4973 		if (flags & value)
4974 			__set_bit(bitidx + start_bitidx, bitmap);
4975 		else
4976 			__clear_bit(bitidx + start_bitidx, bitmap);
4977 }
4978 
4979 /*
4980  * This is designed as sub function...plz see page_isolation.c also.
4981  * set/clear page block's type to be ISOLATE.
4982  * page allocater never alloc memory from ISOLATE block.
4983  */
4984 
4985 int set_migratetype_isolate(struct page *page)
4986 {
4987 	struct zone *zone;
4988 	unsigned long flags;
4989 	int ret = -EBUSY;
4990 	int zone_idx;
4991 
4992 	zone = page_zone(page);
4993 	zone_idx = zone_idx(zone);
4994 	spin_lock_irqsave(&zone->lock, flags);
4995 	/*
4996 	 * In future, more migrate types will be able to be isolation target.
4997 	 */
4998 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
4999 	    zone_idx != ZONE_MOVABLE)
5000 		goto out;
5001 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5002 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
5003 	ret = 0;
5004 out:
5005 	spin_unlock_irqrestore(&zone->lock, flags);
5006 	if (!ret)
5007 		drain_all_pages();
5008 	return ret;
5009 }
5010 
5011 void unset_migratetype_isolate(struct page *page)
5012 {
5013 	struct zone *zone;
5014 	unsigned long flags;
5015 	zone = page_zone(page);
5016 	spin_lock_irqsave(&zone->lock, flags);
5017 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5018 		goto out;
5019 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5020 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5021 out:
5022 	spin_unlock_irqrestore(&zone->lock, flags);
5023 }
5024 
5025 #ifdef CONFIG_MEMORY_HOTREMOVE
5026 /*
5027  * All pages in the range must be isolated before calling this.
5028  */
5029 void
5030 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5031 {
5032 	struct page *page;
5033 	struct zone *zone;
5034 	int order, i;
5035 	unsigned long pfn;
5036 	unsigned long flags;
5037 	/* find the first valid pfn */
5038 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5039 		if (pfn_valid(pfn))
5040 			break;
5041 	if (pfn == end_pfn)
5042 		return;
5043 	zone = page_zone(pfn_to_page(pfn));
5044 	spin_lock_irqsave(&zone->lock, flags);
5045 	pfn = start_pfn;
5046 	while (pfn < end_pfn) {
5047 		if (!pfn_valid(pfn)) {
5048 			pfn++;
5049 			continue;
5050 		}
5051 		page = pfn_to_page(pfn);
5052 		BUG_ON(page_count(page));
5053 		BUG_ON(!PageBuddy(page));
5054 		order = page_order(page);
5055 #ifdef CONFIG_DEBUG_VM
5056 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5057 		       pfn, 1 << order, end_pfn);
5058 #endif
5059 		list_del(&page->lru);
5060 		rmv_page_order(page);
5061 		zone->free_area[order].nr_free--;
5062 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5063 				      - (1UL << order));
5064 		for (i = 0; i < (1 << order); i++)
5065 			SetPageReserved((page+i));
5066 		pfn += (1 << order);
5067 	}
5068 	spin_unlock_irqrestore(&zone->lock, flags);
5069 }
5070 #endif
5071