xref: /linux/mm/page_alloc.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 
76 #include <asm/sections.h>
77 #include <asm/tlbflush.h>
78 #include <asm/div64.h>
79 #include "internal.h"
80 #include "shuffle.h"
81 #include "page_reporting.h"
82 
83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84 typedef int __bitwise fpi_t;
85 
86 /* No special request */
87 #define FPI_NONE		((__force fpi_t)0)
88 
89 /*
90  * Skip free page reporting notification for the (possibly merged) page.
91  * This does not hinder free page reporting from grabbing the page,
92  * reporting it and marking it "reported" -  it only skips notifying
93  * the free page reporting infrastructure about a newly freed page. For
94  * example, used when temporarily pulling a page from a freelist and
95  * putting it back unmodified.
96  */
97 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
98 
99 /*
100  * Place the (possibly merged) page to the tail of the freelist. Will ignore
101  * page shuffling (relevant code - e.g., memory onlining - is expected to
102  * shuffle the whole zone).
103  *
104  * Note: No code should rely on this flag for correctness - it's purely
105  *       to allow for optimizations when handing back either fresh pages
106  *       (memory onlining) or untouched pages (page isolation, free page
107  *       reporting).
108  */
109 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
110 
111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112 static DEFINE_MUTEX(pcp_batch_high_lock);
113 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
114 
115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116 DEFINE_PER_CPU(int, numa_node);
117 EXPORT_PER_CPU_SYMBOL(numa_node);
118 #endif
119 
120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
121 
122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
123 /*
124  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127  * defined in <linux/topology.h>.
128  */
129 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
130 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
131 #endif
132 
133 /* work_structs for global per-cpu drains */
134 struct pcpu_drain {
135 	struct zone *zone;
136 	struct work_struct work;
137 };
138 static DEFINE_MUTEX(pcpu_drain_mutex);
139 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
140 
141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
142 volatile unsigned long latent_entropy __latent_entropy;
143 EXPORT_SYMBOL(latent_entropy);
144 #endif
145 
146 /*
147  * Array of node states.
148  */
149 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
150 	[N_POSSIBLE] = NODE_MASK_ALL,
151 	[N_ONLINE] = { { [0] = 1UL } },
152 #ifndef CONFIG_NUMA
153 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
154 #ifdef CONFIG_HIGHMEM
155 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
156 #endif
157 	[N_MEMORY] = { { [0] = 1UL } },
158 	[N_CPU] = { { [0] = 1UL } },
159 #endif	/* NUMA */
160 };
161 EXPORT_SYMBOL(node_states);
162 
163 atomic_long_t _totalram_pages __read_mostly;
164 EXPORT_SYMBOL(_totalram_pages);
165 unsigned long totalreserve_pages __read_mostly;
166 unsigned long totalcma_pages __read_mostly;
167 
168 int percpu_pagelist_fraction;
169 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
170 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
171 EXPORT_SYMBOL(init_on_alloc);
172 
173 DEFINE_STATIC_KEY_FALSE(init_on_free);
174 EXPORT_SYMBOL(init_on_free);
175 
176 static bool _init_on_alloc_enabled_early __read_mostly
177 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
178 static int __init early_init_on_alloc(char *buf)
179 {
180 
181 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
182 }
183 early_param("init_on_alloc", early_init_on_alloc);
184 
185 static bool _init_on_free_enabled_early __read_mostly
186 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
187 static int __init early_init_on_free(char *buf)
188 {
189 	return kstrtobool(buf, &_init_on_free_enabled_early);
190 }
191 early_param("init_on_free", early_init_on_free);
192 
193 /*
194  * A cached value of the page's pageblock's migratetype, used when the page is
195  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197  * Also the migratetype set in the page does not necessarily match the pcplist
198  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199  * other index - this ensures that it will be put on the correct CMA freelist.
200  */
201 static inline int get_pcppage_migratetype(struct page *page)
202 {
203 	return page->index;
204 }
205 
206 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
207 {
208 	page->index = migratetype;
209 }
210 
211 #ifdef CONFIG_PM_SLEEP
212 /*
213  * The following functions are used by the suspend/hibernate code to temporarily
214  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215  * while devices are suspended.  To avoid races with the suspend/hibernate code,
216  * they should always be called with system_transition_mutex held
217  * (gfp_allowed_mask also should only be modified with system_transition_mutex
218  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219  * with that modification).
220  */
221 
222 static gfp_t saved_gfp_mask;
223 
224 void pm_restore_gfp_mask(void)
225 {
226 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
227 	if (saved_gfp_mask) {
228 		gfp_allowed_mask = saved_gfp_mask;
229 		saved_gfp_mask = 0;
230 	}
231 }
232 
233 void pm_restrict_gfp_mask(void)
234 {
235 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
236 	WARN_ON(saved_gfp_mask);
237 	saved_gfp_mask = gfp_allowed_mask;
238 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
239 }
240 
241 bool pm_suspended_storage(void)
242 {
243 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
244 		return false;
245 	return true;
246 }
247 #endif /* CONFIG_PM_SLEEP */
248 
249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
250 unsigned int pageblock_order __read_mostly;
251 #endif
252 
253 static void __free_pages_ok(struct page *page, unsigned int order,
254 			    fpi_t fpi_flags);
255 
256 /*
257  * results with 256, 32 in the lowmem_reserve sysctl:
258  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259  *	1G machine -> (16M dma, 784M normal, 224M high)
260  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
262  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
263  *
264  * TBD: should special case ZONE_DMA32 machines here - in those we normally
265  * don't need any ZONE_NORMAL reservation
266  */
267 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
268 #ifdef CONFIG_ZONE_DMA
269 	[ZONE_DMA] = 256,
270 #endif
271 #ifdef CONFIG_ZONE_DMA32
272 	[ZONE_DMA32] = 256,
273 #endif
274 	[ZONE_NORMAL] = 32,
275 #ifdef CONFIG_HIGHMEM
276 	[ZONE_HIGHMEM] = 0,
277 #endif
278 	[ZONE_MOVABLE] = 0,
279 };
280 
281 static char * const zone_names[MAX_NR_ZONES] = {
282 #ifdef CONFIG_ZONE_DMA
283 	 "DMA",
284 #endif
285 #ifdef CONFIG_ZONE_DMA32
286 	 "DMA32",
287 #endif
288 	 "Normal",
289 #ifdef CONFIG_HIGHMEM
290 	 "HighMem",
291 #endif
292 	 "Movable",
293 #ifdef CONFIG_ZONE_DEVICE
294 	 "Device",
295 #endif
296 };
297 
298 const char * const migratetype_names[MIGRATE_TYPES] = {
299 	"Unmovable",
300 	"Movable",
301 	"Reclaimable",
302 	"HighAtomic",
303 #ifdef CONFIG_CMA
304 	"CMA",
305 #endif
306 #ifdef CONFIG_MEMORY_ISOLATION
307 	"Isolate",
308 #endif
309 };
310 
311 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
312 	[NULL_COMPOUND_DTOR] = NULL,
313 	[COMPOUND_PAGE_DTOR] = free_compound_page,
314 #ifdef CONFIG_HUGETLB_PAGE
315 	[HUGETLB_PAGE_DTOR] = free_huge_page,
316 #endif
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
319 #endif
320 };
321 
322 int min_free_kbytes = 1024;
323 int user_min_free_kbytes = -1;
324 #ifdef CONFIG_DISCONTIGMEM
325 /*
326  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327  * are not on separate NUMA nodes. Functionally this works but with
328  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329  * quite small. By default, do not boost watermarks on discontigmem as in
330  * many cases very high-order allocations like THP are likely to be
331  * unsupported and the premature reclaim offsets the advantage of long-term
332  * fragmentation avoidance.
333  */
334 int watermark_boost_factor __read_mostly;
335 #else
336 int watermark_boost_factor __read_mostly = 15000;
337 #endif
338 int watermark_scale_factor = 10;
339 
340 static unsigned long nr_kernel_pages __initdata;
341 static unsigned long nr_all_pages __initdata;
342 static unsigned long dma_reserve __initdata;
343 
344 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
345 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
346 static unsigned long required_kernelcore __initdata;
347 static unsigned long required_kernelcore_percent __initdata;
348 static unsigned long required_movablecore __initdata;
349 static unsigned long required_movablecore_percent __initdata;
350 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
351 static bool mirrored_kernelcore __meminitdata;
352 
353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
354 int movable_zone;
355 EXPORT_SYMBOL(movable_zone);
356 
357 #if MAX_NUMNODES > 1
358 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
359 unsigned int nr_online_nodes __read_mostly = 1;
360 EXPORT_SYMBOL(nr_node_ids);
361 EXPORT_SYMBOL(nr_online_nodes);
362 #endif
363 
364 int page_group_by_mobility_disabled __read_mostly;
365 
366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
367 /*
368  * During boot we initialize deferred pages on-demand, as needed, but once
369  * page_alloc_init_late() has finished, the deferred pages are all initialized,
370  * and we can permanently disable that path.
371  */
372 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
373 
374 /*
375  * Calling kasan_free_pages() only after deferred memory initialization
376  * has completed. Poisoning pages during deferred memory init will greatly
377  * lengthen the process and cause problem in large memory systems as the
378  * deferred pages initialization is done with interrupt disabled.
379  *
380  * Assuming that there will be no reference to those newly initialized
381  * pages before they are ever allocated, this should have no effect on
382  * KASAN memory tracking as the poison will be properly inserted at page
383  * allocation time. The only corner case is when pages are allocated by
384  * on-demand allocation and then freed again before the deferred pages
385  * initialization is done, but this is not likely to happen.
386  */
387 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
388 {
389 	if (!static_branch_unlikely(&deferred_pages))
390 		kasan_free_pages(page, order);
391 }
392 
393 /* Returns true if the struct page for the pfn is uninitialised */
394 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
395 {
396 	int nid = early_pfn_to_nid(pfn);
397 
398 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
399 		return true;
400 
401 	return false;
402 }
403 
404 /*
405  * Returns true when the remaining initialisation should be deferred until
406  * later in the boot cycle when it can be parallelised.
407  */
408 static bool __meminit
409 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
410 {
411 	static unsigned long prev_end_pfn, nr_initialised;
412 
413 	/*
414 	 * prev_end_pfn static that contains the end of previous zone
415 	 * No need to protect because called very early in boot before smp_init.
416 	 */
417 	if (prev_end_pfn != end_pfn) {
418 		prev_end_pfn = end_pfn;
419 		nr_initialised = 0;
420 	}
421 
422 	/* Always populate low zones for address-constrained allocations */
423 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
424 		return false;
425 
426 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
427 		return true;
428 	/*
429 	 * We start only with one section of pages, more pages are added as
430 	 * needed until the rest of deferred pages are initialized.
431 	 */
432 	nr_initialised++;
433 	if ((nr_initialised > PAGES_PER_SECTION) &&
434 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
435 		NODE_DATA(nid)->first_deferred_pfn = pfn;
436 		return true;
437 	}
438 	return false;
439 }
440 #else
441 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
442 
443 static inline bool early_page_uninitialised(unsigned long pfn)
444 {
445 	return false;
446 }
447 
448 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
449 {
450 	return false;
451 }
452 #endif
453 
454 /* Return a pointer to the bitmap storing bits affecting a block of pages */
455 static inline unsigned long *get_pageblock_bitmap(struct page *page,
456 							unsigned long pfn)
457 {
458 #ifdef CONFIG_SPARSEMEM
459 	return section_to_usemap(__pfn_to_section(pfn));
460 #else
461 	return page_zone(page)->pageblock_flags;
462 #endif /* CONFIG_SPARSEMEM */
463 }
464 
465 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
466 {
467 #ifdef CONFIG_SPARSEMEM
468 	pfn &= (PAGES_PER_SECTION-1);
469 #else
470 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
471 #endif /* CONFIG_SPARSEMEM */
472 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
473 }
474 
475 static __always_inline
476 unsigned long __get_pfnblock_flags_mask(struct page *page,
477 					unsigned long pfn,
478 					unsigned long mask)
479 {
480 	unsigned long *bitmap;
481 	unsigned long bitidx, word_bitidx;
482 	unsigned long word;
483 
484 	bitmap = get_pageblock_bitmap(page, pfn);
485 	bitidx = pfn_to_bitidx(page, pfn);
486 	word_bitidx = bitidx / BITS_PER_LONG;
487 	bitidx &= (BITS_PER_LONG-1);
488 
489 	word = bitmap[word_bitidx];
490 	return (word >> bitidx) & mask;
491 }
492 
493 /**
494  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
495  * @page: The page within the block of interest
496  * @pfn: The target page frame number
497  * @mask: mask of bits that the caller is interested in
498  *
499  * Return: pageblock_bits flags
500  */
501 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
502 					unsigned long mask)
503 {
504 	return __get_pfnblock_flags_mask(page, pfn, mask);
505 }
506 
507 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
508 {
509 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
510 }
511 
512 /**
513  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
514  * @page: The page within the block of interest
515  * @flags: The flags to set
516  * @pfn: The target page frame number
517  * @mask: mask of bits that the caller is interested in
518  */
519 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
520 					unsigned long pfn,
521 					unsigned long mask)
522 {
523 	unsigned long *bitmap;
524 	unsigned long bitidx, word_bitidx;
525 	unsigned long old_word, word;
526 
527 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 
530 	bitmap = get_pageblock_bitmap(page, pfn);
531 	bitidx = pfn_to_bitidx(page, pfn);
532 	word_bitidx = bitidx / BITS_PER_LONG;
533 	bitidx &= (BITS_PER_LONG-1);
534 
535 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536 
537 	mask <<= bitidx;
538 	flags <<= bitidx;
539 
540 	word = READ_ONCE(bitmap[word_bitidx]);
541 	for (;;) {
542 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
543 		if (word == old_word)
544 			break;
545 		word = old_word;
546 	}
547 }
548 
549 void set_pageblock_migratetype(struct page *page, int migratetype)
550 {
551 	if (unlikely(page_group_by_mobility_disabled &&
552 		     migratetype < MIGRATE_PCPTYPES))
553 		migratetype = MIGRATE_UNMOVABLE;
554 
555 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
556 				page_to_pfn(page), MIGRATETYPE_MASK);
557 }
558 
559 #ifdef CONFIG_DEBUG_VM
560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
561 {
562 	int ret = 0;
563 	unsigned seq;
564 	unsigned long pfn = page_to_pfn(page);
565 	unsigned long sp, start_pfn;
566 
567 	do {
568 		seq = zone_span_seqbegin(zone);
569 		start_pfn = zone->zone_start_pfn;
570 		sp = zone->spanned_pages;
571 		if (!zone_spans_pfn(zone, pfn))
572 			ret = 1;
573 	} while (zone_span_seqretry(zone, seq));
574 
575 	if (ret)
576 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 			pfn, zone_to_nid(zone), zone->name,
578 			start_pfn, start_pfn + sp);
579 
580 	return ret;
581 }
582 
583 static int page_is_consistent(struct zone *zone, struct page *page)
584 {
585 	if (!pfn_valid_within(page_to_pfn(page)))
586 		return 0;
587 	if (zone != page_zone(page))
588 		return 0;
589 
590 	return 1;
591 }
592 /*
593  * Temporary debugging check for pages not lying within a given zone.
594  */
595 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
596 {
597 	if (page_outside_zone_boundaries(zone, page))
598 		return 1;
599 	if (!page_is_consistent(zone, page))
600 		return 1;
601 
602 	return 0;
603 }
604 #else
605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 	return 0;
608 }
609 #endif
610 
611 static void bad_page(struct page *page, const char *reason)
612 {
613 	static unsigned long resume;
614 	static unsigned long nr_shown;
615 	static unsigned long nr_unshown;
616 
617 	/*
618 	 * Allow a burst of 60 reports, then keep quiet for that minute;
619 	 * or allow a steady drip of one report per second.
620 	 */
621 	if (nr_shown == 60) {
622 		if (time_before(jiffies, resume)) {
623 			nr_unshown++;
624 			goto out;
625 		}
626 		if (nr_unshown) {
627 			pr_alert(
628 			      "BUG: Bad page state: %lu messages suppressed\n",
629 				nr_unshown);
630 			nr_unshown = 0;
631 		}
632 		nr_shown = 0;
633 	}
634 	if (nr_shown++ == 0)
635 		resume = jiffies + 60 * HZ;
636 
637 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
638 		current->comm, page_to_pfn(page));
639 	__dump_page(page, reason);
640 	dump_page_owner(page);
641 
642 	print_modules();
643 	dump_stack();
644 out:
645 	/* Leave bad fields for debug, except PageBuddy could make trouble */
646 	page_mapcount_reset(page); /* remove PageBuddy */
647 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
648 }
649 
650 /*
651  * Higher-order pages are called "compound pages".  They are structured thusly:
652  *
653  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
654  *
655  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
656  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
657  *
658  * The first tail page's ->compound_dtor holds the offset in array of compound
659  * page destructors. See compound_page_dtors.
660  *
661  * The first tail page's ->compound_order holds the order of allocation.
662  * This usage means that zero-order pages may not be compound.
663  */
664 
665 void free_compound_page(struct page *page)
666 {
667 	mem_cgroup_uncharge(page);
668 	__free_pages_ok(page, compound_order(page), FPI_NONE);
669 }
670 
671 void prep_compound_page(struct page *page, unsigned int order)
672 {
673 	int i;
674 	int nr_pages = 1 << order;
675 
676 	__SetPageHead(page);
677 	for (i = 1; i < nr_pages; i++) {
678 		struct page *p = page + i;
679 		set_page_count(p, 0);
680 		p->mapping = TAIL_MAPPING;
681 		set_compound_head(p, page);
682 	}
683 
684 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
685 	set_compound_order(page, order);
686 	atomic_set(compound_mapcount_ptr(page), -1);
687 	if (hpage_pincount_available(page))
688 		atomic_set(compound_pincount_ptr(page), 0);
689 }
690 
691 #ifdef CONFIG_DEBUG_PAGEALLOC
692 unsigned int _debug_guardpage_minorder;
693 
694 bool _debug_pagealloc_enabled_early __read_mostly
695 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
696 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
697 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
698 EXPORT_SYMBOL(_debug_pagealloc_enabled);
699 
700 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
701 
702 static int __init early_debug_pagealloc(char *buf)
703 {
704 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
705 }
706 early_param("debug_pagealloc", early_debug_pagealloc);
707 
708 static int __init debug_guardpage_minorder_setup(char *buf)
709 {
710 	unsigned long res;
711 
712 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
713 		pr_err("Bad debug_guardpage_minorder value\n");
714 		return 0;
715 	}
716 	_debug_guardpage_minorder = res;
717 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
718 	return 0;
719 }
720 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
721 
722 static inline bool set_page_guard(struct zone *zone, struct page *page,
723 				unsigned int order, int migratetype)
724 {
725 	if (!debug_guardpage_enabled())
726 		return false;
727 
728 	if (order >= debug_guardpage_minorder())
729 		return false;
730 
731 	__SetPageGuard(page);
732 	INIT_LIST_HEAD(&page->lru);
733 	set_page_private(page, order);
734 	/* Guard pages are not available for any usage */
735 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
736 
737 	return true;
738 }
739 
740 static inline void clear_page_guard(struct zone *zone, struct page *page,
741 				unsigned int order, int migratetype)
742 {
743 	if (!debug_guardpage_enabled())
744 		return;
745 
746 	__ClearPageGuard(page);
747 
748 	set_page_private(page, 0);
749 	if (!is_migrate_isolate(migratetype))
750 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
751 }
752 #else
753 static inline bool set_page_guard(struct zone *zone, struct page *page,
754 			unsigned int order, int migratetype) { return false; }
755 static inline void clear_page_guard(struct zone *zone, struct page *page,
756 				unsigned int order, int migratetype) {}
757 #endif
758 
759 /*
760  * Enable static keys related to various memory debugging and hardening options.
761  * Some override others, and depend on early params that are evaluated in the
762  * order of appearance. So we need to first gather the full picture of what was
763  * enabled, and then make decisions.
764  */
765 void init_mem_debugging_and_hardening(void)
766 {
767 	if (_init_on_alloc_enabled_early) {
768 		if (page_poisoning_enabled())
769 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
770 				"will take precedence over init_on_alloc\n");
771 		else
772 			static_branch_enable(&init_on_alloc);
773 	}
774 	if (_init_on_free_enabled_early) {
775 		if (page_poisoning_enabled())
776 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
777 				"will take precedence over init_on_free\n");
778 		else
779 			static_branch_enable(&init_on_free);
780 	}
781 
782 #ifdef CONFIG_PAGE_POISONING
783 	/*
784 	 * Page poisoning is debug page alloc for some arches. If
785 	 * either of those options are enabled, enable poisoning.
786 	 */
787 	if (page_poisoning_enabled() ||
788 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
789 	      debug_pagealloc_enabled()))
790 		static_branch_enable(&_page_poisoning_enabled);
791 #endif
792 
793 #ifdef CONFIG_DEBUG_PAGEALLOC
794 	if (!debug_pagealloc_enabled())
795 		return;
796 
797 	static_branch_enable(&_debug_pagealloc_enabled);
798 
799 	if (!debug_guardpage_minorder())
800 		return;
801 
802 	static_branch_enable(&_debug_guardpage_enabled);
803 #endif
804 }
805 
806 static inline void set_buddy_order(struct page *page, unsigned int order)
807 {
808 	set_page_private(page, order);
809 	__SetPageBuddy(page);
810 }
811 
812 /*
813  * This function checks whether a page is free && is the buddy
814  * we can coalesce a page and its buddy if
815  * (a) the buddy is not in a hole (check before calling!) &&
816  * (b) the buddy is in the buddy system &&
817  * (c) a page and its buddy have the same order &&
818  * (d) a page and its buddy are in the same zone.
819  *
820  * For recording whether a page is in the buddy system, we set PageBuddy.
821  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
822  *
823  * For recording page's order, we use page_private(page).
824  */
825 static inline bool page_is_buddy(struct page *page, struct page *buddy,
826 							unsigned int order)
827 {
828 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
829 		return false;
830 
831 	if (buddy_order(buddy) != order)
832 		return false;
833 
834 	/*
835 	 * zone check is done late to avoid uselessly calculating
836 	 * zone/node ids for pages that could never merge.
837 	 */
838 	if (page_zone_id(page) != page_zone_id(buddy))
839 		return false;
840 
841 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
842 
843 	return true;
844 }
845 
846 #ifdef CONFIG_COMPACTION
847 static inline struct capture_control *task_capc(struct zone *zone)
848 {
849 	struct capture_control *capc = current->capture_control;
850 
851 	return unlikely(capc) &&
852 		!(current->flags & PF_KTHREAD) &&
853 		!capc->page &&
854 		capc->cc->zone == zone ? capc : NULL;
855 }
856 
857 static inline bool
858 compaction_capture(struct capture_control *capc, struct page *page,
859 		   int order, int migratetype)
860 {
861 	if (!capc || order != capc->cc->order)
862 		return false;
863 
864 	/* Do not accidentally pollute CMA or isolated regions*/
865 	if (is_migrate_cma(migratetype) ||
866 	    is_migrate_isolate(migratetype))
867 		return false;
868 
869 	/*
870 	 * Do not let lower order allocations polluate a movable pageblock.
871 	 * This might let an unmovable request use a reclaimable pageblock
872 	 * and vice-versa but no more than normal fallback logic which can
873 	 * have trouble finding a high-order free page.
874 	 */
875 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
876 		return false;
877 
878 	capc->page = page;
879 	return true;
880 }
881 
882 #else
883 static inline struct capture_control *task_capc(struct zone *zone)
884 {
885 	return NULL;
886 }
887 
888 static inline bool
889 compaction_capture(struct capture_control *capc, struct page *page,
890 		   int order, int migratetype)
891 {
892 	return false;
893 }
894 #endif /* CONFIG_COMPACTION */
895 
896 /* Used for pages not on another list */
897 static inline void add_to_free_list(struct page *page, struct zone *zone,
898 				    unsigned int order, int migratetype)
899 {
900 	struct free_area *area = &zone->free_area[order];
901 
902 	list_add(&page->lru, &area->free_list[migratetype]);
903 	area->nr_free++;
904 }
905 
906 /* Used for pages not on another list */
907 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
908 					 unsigned int order, int migratetype)
909 {
910 	struct free_area *area = &zone->free_area[order];
911 
912 	list_add_tail(&page->lru, &area->free_list[migratetype]);
913 	area->nr_free++;
914 }
915 
916 /*
917  * Used for pages which are on another list. Move the pages to the tail
918  * of the list - so the moved pages won't immediately be considered for
919  * allocation again (e.g., optimization for memory onlining).
920  */
921 static inline void move_to_free_list(struct page *page, struct zone *zone,
922 				     unsigned int order, int migratetype)
923 {
924 	struct free_area *area = &zone->free_area[order];
925 
926 	list_move_tail(&page->lru, &area->free_list[migratetype]);
927 }
928 
929 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
930 					   unsigned int order)
931 {
932 	/* clear reported state and update reported page count */
933 	if (page_reported(page))
934 		__ClearPageReported(page);
935 
936 	list_del(&page->lru);
937 	__ClearPageBuddy(page);
938 	set_page_private(page, 0);
939 	zone->free_area[order].nr_free--;
940 }
941 
942 /*
943  * If this is not the largest possible page, check if the buddy
944  * of the next-highest order is free. If it is, it's possible
945  * that pages are being freed that will coalesce soon. In case,
946  * that is happening, add the free page to the tail of the list
947  * so it's less likely to be used soon and more likely to be merged
948  * as a higher order page
949  */
950 static inline bool
951 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
952 		   struct page *page, unsigned int order)
953 {
954 	struct page *higher_page, *higher_buddy;
955 	unsigned long combined_pfn;
956 
957 	if (order >= MAX_ORDER - 2)
958 		return false;
959 
960 	if (!pfn_valid_within(buddy_pfn))
961 		return false;
962 
963 	combined_pfn = buddy_pfn & pfn;
964 	higher_page = page + (combined_pfn - pfn);
965 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
966 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
967 
968 	return pfn_valid_within(buddy_pfn) &&
969 	       page_is_buddy(higher_page, higher_buddy, order + 1);
970 }
971 
972 /*
973  * Freeing function for a buddy system allocator.
974  *
975  * The concept of a buddy system is to maintain direct-mapped table
976  * (containing bit values) for memory blocks of various "orders".
977  * The bottom level table contains the map for the smallest allocatable
978  * units of memory (here, pages), and each level above it describes
979  * pairs of units from the levels below, hence, "buddies".
980  * At a high level, all that happens here is marking the table entry
981  * at the bottom level available, and propagating the changes upward
982  * as necessary, plus some accounting needed to play nicely with other
983  * parts of the VM system.
984  * At each level, we keep a list of pages, which are heads of continuous
985  * free pages of length of (1 << order) and marked with PageBuddy.
986  * Page's order is recorded in page_private(page) field.
987  * So when we are allocating or freeing one, we can derive the state of the
988  * other.  That is, if we allocate a small block, and both were
989  * free, the remainder of the region must be split into blocks.
990  * If a block is freed, and its buddy is also free, then this
991  * triggers coalescing into a block of larger size.
992  *
993  * -- nyc
994  */
995 
996 static inline void __free_one_page(struct page *page,
997 		unsigned long pfn,
998 		struct zone *zone, unsigned int order,
999 		int migratetype, fpi_t fpi_flags)
1000 {
1001 	struct capture_control *capc = task_capc(zone);
1002 	unsigned long buddy_pfn;
1003 	unsigned long combined_pfn;
1004 	unsigned int max_order;
1005 	struct page *buddy;
1006 	bool to_tail;
1007 
1008 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1009 
1010 	VM_BUG_ON(!zone_is_initialized(zone));
1011 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1012 
1013 	VM_BUG_ON(migratetype == -1);
1014 	if (likely(!is_migrate_isolate(migratetype)))
1015 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1016 
1017 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1018 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1019 
1020 continue_merging:
1021 	while (order < max_order) {
1022 		if (compaction_capture(capc, page, order, migratetype)) {
1023 			__mod_zone_freepage_state(zone, -(1 << order),
1024 								migratetype);
1025 			return;
1026 		}
1027 		buddy_pfn = __find_buddy_pfn(pfn, order);
1028 		buddy = page + (buddy_pfn - pfn);
1029 
1030 		if (!pfn_valid_within(buddy_pfn))
1031 			goto done_merging;
1032 		if (!page_is_buddy(page, buddy, order))
1033 			goto done_merging;
1034 		/*
1035 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1036 		 * merge with it and move up one order.
1037 		 */
1038 		if (page_is_guard(buddy))
1039 			clear_page_guard(zone, buddy, order, migratetype);
1040 		else
1041 			del_page_from_free_list(buddy, zone, order);
1042 		combined_pfn = buddy_pfn & pfn;
1043 		page = page + (combined_pfn - pfn);
1044 		pfn = combined_pfn;
1045 		order++;
1046 	}
1047 	if (order < MAX_ORDER - 1) {
1048 		/* If we are here, it means order is >= pageblock_order.
1049 		 * We want to prevent merge between freepages on isolate
1050 		 * pageblock and normal pageblock. Without this, pageblock
1051 		 * isolation could cause incorrect freepage or CMA accounting.
1052 		 *
1053 		 * We don't want to hit this code for the more frequent
1054 		 * low-order merging.
1055 		 */
1056 		if (unlikely(has_isolate_pageblock(zone))) {
1057 			int buddy_mt;
1058 
1059 			buddy_pfn = __find_buddy_pfn(pfn, order);
1060 			buddy = page + (buddy_pfn - pfn);
1061 			buddy_mt = get_pageblock_migratetype(buddy);
1062 
1063 			if (migratetype != buddy_mt
1064 					&& (is_migrate_isolate(migratetype) ||
1065 						is_migrate_isolate(buddy_mt)))
1066 				goto done_merging;
1067 		}
1068 		max_order = order + 1;
1069 		goto continue_merging;
1070 	}
1071 
1072 done_merging:
1073 	set_buddy_order(page, order);
1074 
1075 	if (fpi_flags & FPI_TO_TAIL)
1076 		to_tail = true;
1077 	else if (is_shuffle_order(order))
1078 		to_tail = shuffle_pick_tail();
1079 	else
1080 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1081 
1082 	if (to_tail)
1083 		add_to_free_list_tail(page, zone, order, migratetype);
1084 	else
1085 		add_to_free_list(page, zone, order, migratetype);
1086 
1087 	/* Notify page reporting subsystem of freed page */
1088 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1089 		page_reporting_notify_free(order);
1090 }
1091 
1092 /*
1093  * A bad page could be due to a number of fields. Instead of multiple branches,
1094  * try and check multiple fields with one check. The caller must do a detailed
1095  * check if necessary.
1096  */
1097 static inline bool page_expected_state(struct page *page,
1098 					unsigned long check_flags)
1099 {
1100 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1101 		return false;
1102 
1103 	if (unlikely((unsigned long)page->mapping |
1104 			page_ref_count(page) |
1105 #ifdef CONFIG_MEMCG
1106 			(unsigned long)page_memcg(page) |
1107 #endif
1108 			(page->flags & check_flags)))
1109 		return false;
1110 
1111 	return true;
1112 }
1113 
1114 static const char *page_bad_reason(struct page *page, unsigned long flags)
1115 {
1116 	const char *bad_reason = NULL;
1117 
1118 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1119 		bad_reason = "nonzero mapcount";
1120 	if (unlikely(page->mapping != NULL))
1121 		bad_reason = "non-NULL mapping";
1122 	if (unlikely(page_ref_count(page) != 0))
1123 		bad_reason = "nonzero _refcount";
1124 	if (unlikely(page->flags & flags)) {
1125 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1126 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1127 		else
1128 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1129 	}
1130 #ifdef CONFIG_MEMCG
1131 	if (unlikely(page_memcg(page)))
1132 		bad_reason = "page still charged to cgroup";
1133 #endif
1134 	return bad_reason;
1135 }
1136 
1137 static void check_free_page_bad(struct page *page)
1138 {
1139 	bad_page(page,
1140 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1141 }
1142 
1143 static inline int check_free_page(struct page *page)
1144 {
1145 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1146 		return 0;
1147 
1148 	/* Something has gone sideways, find it */
1149 	check_free_page_bad(page);
1150 	return 1;
1151 }
1152 
1153 static int free_tail_pages_check(struct page *head_page, struct page *page)
1154 {
1155 	int ret = 1;
1156 
1157 	/*
1158 	 * We rely page->lru.next never has bit 0 set, unless the page
1159 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1160 	 */
1161 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1162 
1163 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1164 		ret = 0;
1165 		goto out;
1166 	}
1167 	switch (page - head_page) {
1168 	case 1:
1169 		/* the first tail page: ->mapping may be compound_mapcount() */
1170 		if (unlikely(compound_mapcount(page))) {
1171 			bad_page(page, "nonzero compound_mapcount");
1172 			goto out;
1173 		}
1174 		break;
1175 	case 2:
1176 		/*
1177 		 * the second tail page: ->mapping is
1178 		 * deferred_list.next -- ignore value.
1179 		 */
1180 		break;
1181 	default:
1182 		if (page->mapping != TAIL_MAPPING) {
1183 			bad_page(page, "corrupted mapping in tail page");
1184 			goto out;
1185 		}
1186 		break;
1187 	}
1188 	if (unlikely(!PageTail(page))) {
1189 		bad_page(page, "PageTail not set");
1190 		goto out;
1191 	}
1192 	if (unlikely(compound_head(page) != head_page)) {
1193 		bad_page(page, "compound_head not consistent");
1194 		goto out;
1195 	}
1196 	ret = 0;
1197 out:
1198 	page->mapping = NULL;
1199 	clear_compound_head(page);
1200 	return ret;
1201 }
1202 
1203 static void kernel_init_free_pages(struct page *page, int numpages)
1204 {
1205 	int i;
1206 
1207 	/* s390's use of memset() could override KASAN redzones. */
1208 	kasan_disable_current();
1209 	for (i = 0; i < numpages; i++) {
1210 		u8 tag = page_kasan_tag(page + i);
1211 		page_kasan_tag_reset(page + i);
1212 		clear_highpage(page + i);
1213 		page_kasan_tag_set(page + i, tag);
1214 	}
1215 	kasan_enable_current();
1216 }
1217 
1218 static __always_inline bool free_pages_prepare(struct page *page,
1219 					unsigned int order, bool check_free)
1220 {
1221 	int bad = 0;
1222 
1223 	VM_BUG_ON_PAGE(PageTail(page), page);
1224 
1225 	trace_mm_page_free(page, order);
1226 
1227 	if (unlikely(PageHWPoison(page)) && !order) {
1228 		/*
1229 		 * Do not let hwpoison pages hit pcplists/buddy
1230 		 * Untie memcg state and reset page's owner
1231 		 */
1232 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1233 			__memcg_kmem_uncharge_page(page, order);
1234 		reset_page_owner(page, order);
1235 		return false;
1236 	}
1237 
1238 	/*
1239 	 * Check tail pages before head page information is cleared to
1240 	 * avoid checking PageCompound for order-0 pages.
1241 	 */
1242 	if (unlikely(order)) {
1243 		bool compound = PageCompound(page);
1244 		int i;
1245 
1246 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1247 
1248 		if (compound)
1249 			ClearPageDoubleMap(page);
1250 		for (i = 1; i < (1 << order); i++) {
1251 			if (compound)
1252 				bad += free_tail_pages_check(page, page + i);
1253 			if (unlikely(check_free_page(page + i))) {
1254 				bad++;
1255 				continue;
1256 			}
1257 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1258 		}
1259 	}
1260 	if (PageMappingFlags(page))
1261 		page->mapping = NULL;
1262 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1263 		__memcg_kmem_uncharge_page(page, order);
1264 	if (check_free)
1265 		bad += check_free_page(page);
1266 	if (bad)
1267 		return false;
1268 
1269 	page_cpupid_reset_last(page);
1270 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1271 	reset_page_owner(page, order);
1272 
1273 	if (!PageHighMem(page)) {
1274 		debug_check_no_locks_freed(page_address(page),
1275 					   PAGE_SIZE << order);
1276 		debug_check_no_obj_freed(page_address(page),
1277 					   PAGE_SIZE << order);
1278 	}
1279 	if (want_init_on_free())
1280 		kernel_init_free_pages(page, 1 << order);
1281 
1282 	kernel_poison_pages(page, 1 << order);
1283 
1284 	/*
1285 	 * arch_free_page() can make the page's contents inaccessible.  s390
1286 	 * does this.  So nothing which can access the page's contents should
1287 	 * happen after this.
1288 	 */
1289 	arch_free_page(page, order);
1290 
1291 	debug_pagealloc_unmap_pages(page, 1 << order);
1292 
1293 	kasan_free_nondeferred_pages(page, order);
1294 
1295 	return true;
1296 }
1297 
1298 #ifdef CONFIG_DEBUG_VM
1299 /*
1300  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1301  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1302  * moved from pcp lists to free lists.
1303  */
1304 static bool free_pcp_prepare(struct page *page)
1305 {
1306 	return free_pages_prepare(page, 0, true);
1307 }
1308 
1309 static bool bulkfree_pcp_prepare(struct page *page)
1310 {
1311 	if (debug_pagealloc_enabled_static())
1312 		return check_free_page(page);
1313 	else
1314 		return false;
1315 }
1316 #else
1317 /*
1318  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1319  * moving from pcp lists to free list in order to reduce overhead. With
1320  * debug_pagealloc enabled, they are checked also immediately when being freed
1321  * to the pcp lists.
1322  */
1323 static bool free_pcp_prepare(struct page *page)
1324 {
1325 	if (debug_pagealloc_enabled_static())
1326 		return free_pages_prepare(page, 0, true);
1327 	else
1328 		return free_pages_prepare(page, 0, false);
1329 }
1330 
1331 static bool bulkfree_pcp_prepare(struct page *page)
1332 {
1333 	return check_free_page(page);
1334 }
1335 #endif /* CONFIG_DEBUG_VM */
1336 
1337 static inline void prefetch_buddy(struct page *page)
1338 {
1339 	unsigned long pfn = page_to_pfn(page);
1340 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1341 	struct page *buddy = page + (buddy_pfn - pfn);
1342 
1343 	prefetch(buddy);
1344 }
1345 
1346 /*
1347  * Frees a number of pages from the PCP lists
1348  * Assumes all pages on list are in same zone, and of same order.
1349  * count is the number of pages to free.
1350  *
1351  * If the zone was previously in an "all pages pinned" state then look to
1352  * see if this freeing clears that state.
1353  *
1354  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1355  * pinned" detection logic.
1356  */
1357 static void free_pcppages_bulk(struct zone *zone, int count,
1358 					struct per_cpu_pages *pcp)
1359 {
1360 	int migratetype = 0;
1361 	int batch_free = 0;
1362 	int prefetch_nr = READ_ONCE(pcp->batch);
1363 	bool isolated_pageblocks;
1364 	struct page *page, *tmp;
1365 	LIST_HEAD(head);
1366 
1367 	/*
1368 	 * Ensure proper count is passed which otherwise would stuck in the
1369 	 * below while (list_empty(list)) loop.
1370 	 */
1371 	count = min(pcp->count, count);
1372 	while (count) {
1373 		struct list_head *list;
1374 
1375 		/*
1376 		 * Remove pages from lists in a round-robin fashion. A
1377 		 * batch_free count is maintained that is incremented when an
1378 		 * empty list is encountered.  This is so more pages are freed
1379 		 * off fuller lists instead of spinning excessively around empty
1380 		 * lists
1381 		 */
1382 		do {
1383 			batch_free++;
1384 			if (++migratetype == MIGRATE_PCPTYPES)
1385 				migratetype = 0;
1386 			list = &pcp->lists[migratetype];
1387 		} while (list_empty(list));
1388 
1389 		/* This is the only non-empty list. Free them all. */
1390 		if (batch_free == MIGRATE_PCPTYPES)
1391 			batch_free = count;
1392 
1393 		do {
1394 			page = list_last_entry(list, struct page, lru);
1395 			/* must delete to avoid corrupting pcp list */
1396 			list_del(&page->lru);
1397 			pcp->count--;
1398 
1399 			if (bulkfree_pcp_prepare(page))
1400 				continue;
1401 
1402 			list_add_tail(&page->lru, &head);
1403 
1404 			/*
1405 			 * We are going to put the page back to the global
1406 			 * pool, prefetch its buddy to speed up later access
1407 			 * under zone->lock. It is believed the overhead of
1408 			 * an additional test and calculating buddy_pfn here
1409 			 * can be offset by reduced memory latency later. To
1410 			 * avoid excessive prefetching due to large count, only
1411 			 * prefetch buddy for the first pcp->batch nr of pages.
1412 			 */
1413 			if (prefetch_nr) {
1414 				prefetch_buddy(page);
1415 				prefetch_nr--;
1416 			}
1417 		} while (--count && --batch_free && !list_empty(list));
1418 	}
1419 
1420 	spin_lock(&zone->lock);
1421 	isolated_pageblocks = has_isolate_pageblock(zone);
1422 
1423 	/*
1424 	 * Use safe version since after __free_one_page(),
1425 	 * page->lru.next will not point to original list.
1426 	 */
1427 	list_for_each_entry_safe(page, tmp, &head, lru) {
1428 		int mt = get_pcppage_migratetype(page);
1429 		/* MIGRATE_ISOLATE page should not go to pcplists */
1430 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1431 		/* Pageblock could have been isolated meanwhile */
1432 		if (unlikely(isolated_pageblocks))
1433 			mt = get_pageblock_migratetype(page);
1434 
1435 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1436 		trace_mm_page_pcpu_drain(page, 0, mt);
1437 	}
1438 	spin_unlock(&zone->lock);
1439 }
1440 
1441 static void free_one_page(struct zone *zone,
1442 				struct page *page, unsigned long pfn,
1443 				unsigned int order,
1444 				int migratetype, fpi_t fpi_flags)
1445 {
1446 	spin_lock(&zone->lock);
1447 	if (unlikely(has_isolate_pageblock(zone) ||
1448 		is_migrate_isolate(migratetype))) {
1449 		migratetype = get_pfnblock_migratetype(page, pfn);
1450 	}
1451 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1452 	spin_unlock(&zone->lock);
1453 }
1454 
1455 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1456 				unsigned long zone, int nid)
1457 {
1458 	mm_zero_struct_page(page);
1459 	set_page_links(page, zone, nid, pfn);
1460 	init_page_count(page);
1461 	page_mapcount_reset(page);
1462 	page_cpupid_reset_last(page);
1463 	page_kasan_tag_reset(page);
1464 
1465 	INIT_LIST_HEAD(&page->lru);
1466 #ifdef WANT_PAGE_VIRTUAL
1467 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1468 	if (!is_highmem_idx(zone))
1469 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1470 #endif
1471 }
1472 
1473 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1474 static void __meminit init_reserved_page(unsigned long pfn)
1475 {
1476 	pg_data_t *pgdat;
1477 	int nid, zid;
1478 
1479 	if (!early_page_uninitialised(pfn))
1480 		return;
1481 
1482 	nid = early_pfn_to_nid(pfn);
1483 	pgdat = NODE_DATA(nid);
1484 
1485 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1486 		struct zone *zone = &pgdat->node_zones[zid];
1487 
1488 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1489 			break;
1490 	}
1491 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1492 }
1493 #else
1494 static inline void init_reserved_page(unsigned long pfn)
1495 {
1496 }
1497 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1498 
1499 /*
1500  * Initialised pages do not have PageReserved set. This function is
1501  * called for each range allocated by the bootmem allocator and
1502  * marks the pages PageReserved. The remaining valid pages are later
1503  * sent to the buddy page allocator.
1504  */
1505 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1506 {
1507 	unsigned long start_pfn = PFN_DOWN(start);
1508 	unsigned long end_pfn = PFN_UP(end);
1509 
1510 	for (; start_pfn < end_pfn; start_pfn++) {
1511 		if (pfn_valid(start_pfn)) {
1512 			struct page *page = pfn_to_page(start_pfn);
1513 
1514 			init_reserved_page(start_pfn);
1515 
1516 			/* Avoid false-positive PageTail() */
1517 			INIT_LIST_HEAD(&page->lru);
1518 
1519 			/*
1520 			 * no need for atomic set_bit because the struct
1521 			 * page is not visible yet so nobody should
1522 			 * access it yet.
1523 			 */
1524 			__SetPageReserved(page);
1525 		}
1526 	}
1527 }
1528 
1529 static void __free_pages_ok(struct page *page, unsigned int order,
1530 			    fpi_t fpi_flags)
1531 {
1532 	unsigned long flags;
1533 	int migratetype;
1534 	unsigned long pfn = page_to_pfn(page);
1535 
1536 	if (!free_pages_prepare(page, order, true))
1537 		return;
1538 
1539 	migratetype = get_pfnblock_migratetype(page, pfn);
1540 	local_irq_save(flags);
1541 	__count_vm_events(PGFREE, 1 << order);
1542 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1543 		      fpi_flags);
1544 	local_irq_restore(flags);
1545 }
1546 
1547 void __free_pages_core(struct page *page, unsigned int order)
1548 {
1549 	unsigned int nr_pages = 1 << order;
1550 	struct page *p = page;
1551 	unsigned int loop;
1552 
1553 	/*
1554 	 * When initializing the memmap, __init_single_page() sets the refcount
1555 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1556 	 * refcount of all involved pages to 0.
1557 	 */
1558 	prefetchw(p);
1559 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1560 		prefetchw(p + 1);
1561 		__ClearPageReserved(p);
1562 		set_page_count(p, 0);
1563 	}
1564 	__ClearPageReserved(p);
1565 	set_page_count(p, 0);
1566 
1567 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1568 
1569 	/*
1570 	 * Bypass PCP and place fresh pages right to the tail, primarily
1571 	 * relevant for memory onlining.
1572 	 */
1573 	__free_pages_ok(page, order, FPI_TO_TAIL);
1574 }
1575 
1576 #ifdef CONFIG_NEED_MULTIPLE_NODES
1577 
1578 /*
1579  * During memory init memblocks map pfns to nids. The search is expensive and
1580  * this caches recent lookups. The implementation of __early_pfn_to_nid
1581  * treats start/end as pfns.
1582  */
1583 struct mminit_pfnnid_cache {
1584 	unsigned long last_start;
1585 	unsigned long last_end;
1586 	int last_nid;
1587 };
1588 
1589 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1590 
1591 /*
1592  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1593  */
1594 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1595 					struct mminit_pfnnid_cache *state)
1596 {
1597 	unsigned long start_pfn, end_pfn;
1598 	int nid;
1599 
1600 	if (state->last_start <= pfn && pfn < state->last_end)
1601 		return state->last_nid;
1602 
1603 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1604 	if (nid != NUMA_NO_NODE) {
1605 		state->last_start = start_pfn;
1606 		state->last_end = end_pfn;
1607 		state->last_nid = nid;
1608 	}
1609 
1610 	return nid;
1611 }
1612 
1613 int __meminit early_pfn_to_nid(unsigned long pfn)
1614 {
1615 	static DEFINE_SPINLOCK(early_pfn_lock);
1616 	int nid;
1617 
1618 	spin_lock(&early_pfn_lock);
1619 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1620 	if (nid < 0)
1621 		nid = first_online_node;
1622 	spin_unlock(&early_pfn_lock);
1623 
1624 	return nid;
1625 }
1626 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1627 
1628 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1629 							unsigned int order)
1630 {
1631 	if (early_page_uninitialised(pfn))
1632 		return;
1633 	__free_pages_core(page, order);
1634 }
1635 
1636 /*
1637  * Check that the whole (or subset of) a pageblock given by the interval of
1638  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1639  * with the migration of free compaction scanner. The scanners then need to
1640  * use only pfn_valid_within() check for arches that allow holes within
1641  * pageblocks.
1642  *
1643  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1644  *
1645  * It's possible on some configurations to have a setup like node0 node1 node0
1646  * i.e. it's possible that all pages within a zones range of pages do not
1647  * belong to a single zone. We assume that a border between node0 and node1
1648  * can occur within a single pageblock, but not a node0 node1 node0
1649  * interleaving within a single pageblock. It is therefore sufficient to check
1650  * the first and last page of a pageblock and avoid checking each individual
1651  * page in a pageblock.
1652  */
1653 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1654 				     unsigned long end_pfn, struct zone *zone)
1655 {
1656 	struct page *start_page;
1657 	struct page *end_page;
1658 
1659 	/* end_pfn is one past the range we are checking */
1660 	end_pfn--;
1661 
1662 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1663 		return NULL;
1664 
1665 	start_page = pfn_to_online_page(start_pfn);
1666 	if (!start_page)
1667 		return NULL;
1668 
1669 	if (page_zone(start_page) != zone)
1670 		return NULL;
1671 
1672 	end_page = pfn_to_page(end_pfn);
1673 
1674 	/* This gives a shorter code than deriving page_zone(end_page) */
1675 	if (page_zone_id(start_page) != page_zone_id(end_page))
1676 		return NULL;
1677 
1678 	return start_page;
1679 }
1680 
1681 void set_zone_contiguous(struct zone *zone)
1682 {
1683 	unsigned long block_start_pfn = zone->zone_start_pfn;
1684 	unsigned long block_end_pfn;
1685 
1686 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1687 	for (; block_start_pfn < zone_end_pfn(zone);
1688 			block_start_pfn = block_end_pfn,
1689 			 block_end_pfn += pageblock_nr_pages) {
1690 
1691 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1692 
1693 		if (!__pageblock_pfn_to_page(block_start_pfn,
1694 					     block_end_pfn, zone))
1695 			return;
1696 		cond_resched();
1697 	}
1698 
1699 	/* We confirm that there is no hole */
1700 	zone->contiguous = true;
1701 }
1702 
1703 void clear_zone_contiguous(struct zone *zone)
1704 {
1705 	zone->contiguous = false;
1706 }
1707 
1708 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1709 static void __init deferred_free_range(unsigned long pfn,
1710 				       unsigned long nr_pages)
1711 {
1712 	struct page *page;
1713 	unsigned long i;
1714 
1715 	if (!nr_pages)
1716 		return;
1717 
1718 	page = pfn_to_page(pfn);
1719 
1720 	/* Free a large naturally-aligned chunk if possible */
1721 	if (nr_pages == pageblock_nr_pages &&
1722 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1723 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1724 		__free_pages_core(page, pageblock_order);
1725 		return;
1726 	}
1727 
1728 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1729 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1730 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1731 		__free_pages_core(page, 0);
1732 	}
1733 }
1734 
1735 /* Completion tracking for deferred_init_memmap() threads */
1736 static atomic_t pgdat_init_n_undone __initdata;
1737 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1738 
1739 static inline void __init pgdat_init_report_one_done(void)
1740 {
1741 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1742 		complete(&pgdat_init_all_done_comp);
1743 }
1744 
1745 /*
1746  * Returns true if page needs to be initialized or freed to buddy allocator.
1747  *
1748  * First we check if pfn is valid on architectures where it is possible to have
1749  * holes within pageblock_nr_pages. On systems where it is not possible, this
1750  * function is optimized out.
1751  *
1752  * Then, we check if a current large page is valid by only checking the validity
1753  * of the head pfn.
1754  */
1755 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1756 {
1757 	if (!pfn_valid_within(pfn))
1758 		return false;
1759 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1760 		return false;
1761 	return true;
1762 }
1763 
1764 /*
1765  * Free pages to buddy allocator. Try to free aligned pages in
1766  * pageblock_nr_pages sizes.
1767  */
1768 static void __init deferred_free_pages(unsigned long pfn,
1769 				       unsigned long end_pfn)
1770 {
1771 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1772 	unsigned long nr_free = 0;
1773 
1774 	for (; pfn < end_pfn; pfn++) {
1775 		if (!deferred_pfn_valid(pfn)) {
1776 			deferred_free_range(pfn - nr_free, nr_free);
1777 			nr_free = 0;
1778 		} else if (!(pfn & nr_pgmask)) {
1779 			deferred_free_range(pfn - nr_free, nr_free);
1780 			nr_free = 1;
1781 		} else {
1782 			nr_free++;
1783 		}
1784 	}
1785 	/* Free the last block of pages to allocator */
1786 	deferred_free_range(pfn - nr_free, nr_free);
1787 }
1788 
1789 /*
1790  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1791  * by performing it only once every pageblock_nr_pages.
1792  * Return number of pages initialized.
1793  */
1794 static unsigned long  __init deferred_init_pages(struct zone *zone,
1795 						 unsigned long pfn,
1796 						 unsigned long end_pfn)
1797 {
1798 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1799 	int nid = zone_to_nid(zone);
1800 	unsigned long nr_pages = 0;
1801 	int zid = zone_idx(zone);
1802 	struct page *page = NULL;
1803 
1804 	for (; pfn < end_pfn; pfn++) {
1805 		if (!deferred_pfn_valid(pfn)) {
1806 			page = NULL;
1807 			continue;
1808 		} else if (!page || !(pfn & nr_pgmask)) {
1809 			page = pfn_to_page(pfn);
1810 		} else {
1811 			page++;
1812 		}
1813 		__init_single_page(page, pfn, zid, nid);
1814 		nr_pages++;
1815 	}
1816 	return (nr_pages);
1817 }
1818 
1819 /*
1820  * This function is meant to pre-load the iterator for the zone init.
1821  * Specifically it walks through the ranges until we are caught up to the
1822  * first_init_pfn value and exits there. If we never encounter the value we
1823  * return false indicating there are no valid ranges left.
1824  */
1825 static bool __init
1826 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1827 				    unsigned long *spfn, unsigned long *epfn,
1828 				    unsigned long first_init_pfn)
1829 {
1830 	u64 j;
1831 
1832 	/*
1833 	 * Start out by walking through the ranges in this zone that have
1834 	 * already been initialized. We don't need to do anything with them
1835 	 * so we just need to flush them out of the system.
1836 	 */
1837 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1838 		if (*epfn <= first_init_pfn)
1839 			continue;
1840 		if (*spfn < first_init_pfn)
1841 			*spfn = first_init_pfn;
1842 		*i = j;
1843 		return true;
1844 	}
1845 
1846 	return false;
1847 }
1848 
1849 /*
1850  * Initialize and free pages. We do it in two loops: first we initialize
1851  * struct page, then free to buddy allocator, because while we are
1852  * freeing pages we can access pages that are ahead (computing buddy
1853  * page in __free_one_page()).
1854  *
1855  * In order to try and keep some memory in the cache we have the loop
1856  * broken along max page order boundaries. This way we will not cause
1857  * any issues with the buddy page computation.
1858  */
1859 static unsigned long __init
1860 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1861 		       unsigned long *end_pfn)
1862 {
1863 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1864 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1865 	unsigned long nr_pages = 0;
1866 	u64 j = *i;
1867 
1868 	/* First we loop through and initialize the page values */
1869 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1870 		unsigned long t;
1871 
1872 		if (mo_pfn <= *start_pfn)
1873 			break;
1874 
1875 		t = min(mo_pfn, *end_pfn);
1876 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1877 
1878 		if (mo_pfn < *end_pfn) {
1879 			*start_pfn = mo_pfn;
1880 			break;
1881 		}
1882 	}
1883 
1884 	/* Reset values and now loop through freeing pages as needed */
1885 	swap(j, *i);
1886 
1887 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1888 		unsigned long t;
1889 
1890 		if (mo_pfn <= spfn)
1891 			break;
1892 
1893 		t = min(mo_pfn, epfn);
1894 		deferred_free_pages(spfn, t);
1895 
1896 		if (mo_pfn <= epfn)
1897 			break;
1898 	}
1899 
1900 	return nr_pages;
1901 }
1902 
1903 static void __init
1904 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1905 			   void *arg)
1906 {
1907 	unsigned long spfn, epfn;
1908 	struct zone *zone = arg;
1909 	u64 i;
1910 
1911 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1912 
1913 	/*
1914 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1915 	 * can avoid introducing any issues with the buddy allocator.
1916 	 */
1917 	while (spfn < end_pfn) {
1918 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1919 		cond_resched();
1920 	}
1921 }
1922 
1923 /* An arch may override for more concurrency. */
1924 __weak int __init
1925 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1926 {
1927 	return 1;
1928 }
1929 
1930 /* Initialise remaining memory on a node */
1931 static int __init deferred_init_memmap(void *data)
1932 {
1933 	pg_data_t *pgdat = data;
1934 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1935 	unsigned long spfn = 0, epfn = 0;
1936 	unsigned long first_init_pfn, flags;
1937 	unsigned long start = jiffies;
1938 	struct zone *zone;
1939 	int zid, max_threads;
1940 	u64 i;
1941 
1942 	/* Bind memory initialisation thread to a local node if possible */
1943 	if (!cpumask_empty(cpumask))
1944 		set_cpus_allowed_ptr(current, cpumask);
1945 
1946 	pgdat_resize_lock(pgdat, &flags);
1947 	first_init_pfn = pgdat->first_deferred_pfn;
1948 	if (first_init_pfn == ULONG_MAX) {
1949 		pgdat_resize_unlock(pgdat, &flags);
1950 		pgdat_init_report_one_done();
1951 		return 0;
1952 	}
1953 
1954 	/* Sanity check boundaries */
1955 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1956 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1957 	pgdat->first_deferred_pfn = ULONG_MAX;
1958 
1959 	/*
1960 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1961 	 * interrupt thread must allocate this early in boot, zone must be
1962 	 * pre-grown prior to start of deferred page initialization.
1963 	 */
1964 	pgdat_resize_unlock(pgdat, &flags);
1965 
1966 	/* Only the highest zone is deferred so find it */
1967 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1968 		zone = pgdat->node_zones + zid;
1969 		if (first_init_pfn < zone_end_pfn(zone))
1970 			break;
1971 	}
1972 
1973 	/* If the zone is empty somebody else may have cleared out the zone */
1974 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1975 						 first_init_pfn))
1976 		goto zone_empty;
1977 
1978 	max_threads = deferred_page_init_max_threads(cpumask);
1979 
1980 	while (spfn < epfn) {
1981 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1982 		struct padata_mt_job job = {
1983 			.thread_fn   = deferred_init_memmap_chunk,
1984 			.fn_arg      = zone,
1985 			.start       = spfn,
1986 			.size        = epfn_align - spfn,
1987 			.align       = PAGES_PER_SECTION,
1988 			.min_chunk   = PAGES_PER_SECTION,
1989 			.max_threads = max_threads,
1990 		};
1991 
1992 		padata_do_multithreaded(&job);
1993 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1994 						    epfn_align);
1995 	}
1996 zone_empty:
1997 	/* Sanity check that the next zone really is unpopulated */
1998 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1999 
2000 	pr_info("node %d deferred pages initialised in %ums\n",
2001 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2002 
2003 	pgdat_init_report_one_done();
2004 	return 0;
2005 }
2006 
2007 /*
2008  * If this zone has deferred pages, try to grow it by initializing enough
2009  * deferred pages to satisfy the allocation specified by order, rounded up to
2010  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2011  * of SECTION_SIZE bytes by initializing struct pages in increments of
2012  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2013  *
2014  * Return true when zone was grown, otherwise return false. We return true even
2015  * when we grow less than requested, to let the caller decide if there are
2016  * enough pages to satisfy the allocation.
2017  *
2018  * Note: We use noinline because this function is needed only during boot, and
2019  * it is called from a __ref function _deferred_grow_zone. This way we are
2020  * making sure that it is not inlined into permanent text section.
2021  */
2022 static noinline bool __init
2023 deferred_grow_zone(struct zone *zone, unsigned int order)
2024 {
2025 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2026 	pg_data_t *pgdat = zone->zone_pgdat;
2027 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2028 	unsigned long spfn, epfn, flags;
2029 	unsigned long nr_pages = 0;
2030 	u64 i;
2031 
2032 	/* Only the last zone may have deferred pages */
2033 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2034 		return false;
2035 
2036 	pgdat_resize_lock(pgdat, &flags);
2037 
2038 	/*
2039 	 * If someone grew this zone while we were waiting for spinlock, return
2040 	 * true, as there might be enough pages already.
2041 	 */
2042 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2043 		pgdat_resize_unlock(pgdat, &flags);
2044 		return true;
2045 	}
2046 
2047 	/* If the zone is empty somebody else may have cleared out the zone */
2048 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2049 						 first_deferred_pfn)) {
2050 		pgdat->first_deferred_pfn = ULONG_MAX;
2051 		pgdat_resize_unlock(pgdat, &flags);
2052 		/* Retry only once. */
2053 		return first_deferred_pfn != ULONG_MAX;
2054 	}
2055 
2056 	/*
2057 	 * Initialize and free pages in MAX_ORDER sized increments so
2058 	 * that we can avoid introducing any issues with the buddy
2059 	 * allocator.
2060 	 */
2061 	while (spfn < epfn) {
2062 		/* update our first deferred PFN for this section */
2063 		first_deferred_pfn = spfn;
2064 
2065 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2066 		touch_nmi_watchdog();
2067 
2068 		/* We should only stop along section boundaries */
2069 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2070 			continue;
2071 
2072 		/* If our quota has been met we can stop here */
2073 		if (nr_pages >= nr_pages_needed)
2074 			break;
2075 	}
2076 
2077 	pgdat->first_deferred_pfn = spfn;
2078 	pgdat_resize_unlock(pgdat, &flags);
2079 
2080 	return nr_pages > 0;
2081 }
2082 
2083 /*
2084  * deferred_grow_zone() is __init, but it is called from
2085  * get_page_from_freelist() during early boot until deferred_pages permanently
2086  * disables this call. This is why we have refdata wrapper to avoid warning,
2087  * and to ensure that the function body gets unloaded.
2088  */
2089 static bool __ref
2090 _deferred_grow_zone(struct zone *zone, unsigned int order)
2091 {
2092 	return deferred_grow_zone(zone, order);
2093 }
2094 
2095 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2096 
2097 void __init page_alloc_init_late(void)
2098 {
2099 	struct zone *zone;
2100 	int nid;
2101 
2102 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2103 
2104 	/* There will be num_node_state(N_MEMORY) threads */
2105 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2106 	for_each_node_state(nid, N_MEMORY) {
2107 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2108 	}
2109 
2110 	/* Block until all are initialised */
2111 	wait_for_completion(&pgdat_init_all_done_comp);
2112 
2113 	/*
2114 	 * The number of managed pages has changed due to the initialisation
2115 	 * so the pcpu batch and high limits needs to be updated or the limits
2116 	 * will be artificially small.
2117 	 */
2118 	for_each_populated_zone(zone)
2119 		zone_pcp_update(zone);
2120 
2121 	/*
2122 	 * We initialized the rest of the deferred pages.  Permanently disable
2123 	 * on-demand struct page initialization.
2124 	 */
2125 	static_branch_disable(&deferred_pages);
2126 
2127 	/* Reinit limits that are based on free pages after the kernel is up */
2128 	files_maxfiles_init();
2129 #endif
2130 
2131 	buffer_init();
2132 
2133 	/* Discard memblock private memory */
2134 	memblock_discard();
2135 
2136 	for_each_node_state(nid, N_MEMORY)
2137 		shuffle_free_memory(NODE_DATA(nid));
2138 
2139 	for_each_populated_zone(zone)
2140 		set_zone_contiguous(zone);
2141 }
2142 
2143 #ifdef CONFIG_CMA
2144 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2145 void __init init_cma_reserved_pageblock(struct page *page)
2146 {
2147 	unsigned i = pageblock_nr_pages;
2148 	struct page *p = page;
2149 
2150 	do {
2151 		__ClearPageReserved(p);
2152 		set_page_count(p, 0);
2153 	} while (++p, --i);
2154 
2155 	set_pageblock_migratetype(page, MIGRATE_CMA);
2156 
2157 	if (pageblock_order >= MAX_ORDER) {
2158 		i = pageblock_nr_pages;
2159 		p = page;
2160 		do {
2161 			set_page_refcounted(p);
2162 			__free_pages(p, MAX_ORDER - 1);
2163 			p += MAX_ORDER_NR_PAGES;
2164 		} while (i -= MAX_ORDER_NR_PAGES);
2165 	} else {
2166 		set_page_refcounted(page);
2167 		__free_pages(page, pageblock_order);
2168 	}
2169 
2170 	adjust_managed_page_count(page, pageblock_nr_pages);
2171 }
2172 #endif
2173 
2174 /*
2175  * The order of subdivision here is critical for the IO subsystem.
2176  * Please do not alter this order without good reasons and regression
2177  * testing. Specifically, as large blocks of memory are subdivided,
2178  * the order in which smaller blocks are delivered depends on the order
2179  * they're subdivided in this function. This is the primary factor
2180  * influencing the order in which pages are delivered to the IO
2181  * subsystem according to empirical testing, and this is also justified
2182  * by considering the behavior of a buddy system containing a single
2183  * large block of memory acted on by a series of small allocations.
2184  * This behavior is a critical factor in sglist merging's success.
2185  *
2186  * -- nyc
2187  */
2188 static inline void expand(struct zone *zone, struct page *page,
2189 	int low, int high, int migratetype)
2190 {
2191 	unsigned long size = 1 << high;
2192 
2193 	while (high > low) {
2194 		high--;
2195 		size >>= 1;
2196 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2197 
2198 		/*
2199 		 * Mark as guard pages (or page), that will allow to
2200 		 * merge back to allocator when buddy will be freed.
2201 		 * Corresponding page table entries will not be touched,
2202 		 * pages will stay not present in virtual address space
2203 		 */
2204 		if (set_page_guard(zone, &page[size], high, migratetype))
2205 			continue;
2206 
2207 		add_to_free_list(&page[size], zone, high, migratetype);
2208 		set_buddy_order(&page[size], high);
2209 	}
2210 }
2211 
2212 static void check_new_page_bad(struct page *page)
2213 {
2214 	if (unlikely(page->flags & __PG_HWPOISON)) {
2215 		/* Don't complain about hwpoisoned pages */
2216 		page_mapcount_reset(page); /* remove PageBuddy */
2217 		return;
2218 	}
2219 
2220 	bad_page(page,
2221 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2222 }
2223 
2224 /*
2225  * This page is about to be returned from the page allocator
2226  */
2227 static inline int check_new_page(struct page *page)
2228 {
2229 	if (likely(page_expected_state(page,
2230 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2231 		return 0;
2232 
2233 	check_new_page_bad(page);
2234 	return 1;
2235 }
2236 
2237 #ifdef CONFIG_DEBUG_VM
2238 /*
2239  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2240  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2241  * also checked when pcp lists are refilled from the free lists.
2242  */
2243 static inline bool check_pcp_refill(struct page *page)
2244 {
2245 	if (debug_pagealloc_enabled_static())
2246 		return check_new_page(page);
2247 	else
2248 		return false;
2249 }
2250 
2251 static inline bool check_new_pcp(struct page *page)
2252 {
2253 	return check_new_page(page);
2254 }
2255 #else
2256 /*
2257  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2258  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2259  * enabled, they are also checked when being allocated from the pcp lists.
2260  */
2261 static inline bool check_pcp_refill(struct page *page)
2262 {
2263 	return check_new_page(page);
2264 }
2265 static inline bool check_new_pcp(struct page *page)
2266 {
2267 	if (debug_pagealloc_enabled_static())
2268 		return check_new_page(page);
2269 	else
2270 		return false;
2271 }
2272 #endif /* CONFIG_DEBUG_VM */
2273 
2274 static bool check_new_pages(struct page *page, unsigned int order)
2275 {
2276 	int i;
2277 	for (i = 0; i < (1 << order); i++) {
2278 		struct page *p = page + i;
2279 
2280 		if (unlikely(check_new_page(p)))
2281 			return true;
2282 	}
2283 
2284 	return false;
2285 }
2286 
2287 inline void post_alloc_hook(struct page *page, unsigned int order,
2288 				gfp_t gfp_flags)
2289 {
2290 	set_page_private(page, 0);
2291 	set_page_refcounted(page);
2292 
2293 	arch_alloc_page(page, order);
2294 	debug_pagealloc_map_pages(page, 1 << order);
2295 	kasan_alloc_pages(page, order);
2296 	kernel_unpoison_pages(page, 1 << order);
2297 	set_page_owner(page, order, gfp_flags);
2298 
2299 	if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
2300 		kernel_init_free_pages(page, 1 << order);
2301 }
2302 
2303 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2304 							unsigned int alloc_flags)
2305 {
2306 	post_alloc_hook(page, order, gfp_flags);
2307 
2308 	if (order && (gfp_flags & __GFP_COMP))
2309 		prep_compound_page(page, order);
2310 
2311 	/*
2312 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2313 	 * allocate the page. The expectation is that the caller is taking
2314 	 * steps that will free more memory. The caller should avoid the page
2315 	 * being used for !PFMEMALLOC purposes.
2316 	 */
2317 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2318 		set_page_pfmemalloc(page);
2319 	else
2320 		clear_page_pfmemalloc(page);
2321 }
2322 
2323 /*
2324  * Go through the free lists for the given migratetype and remove
2325  * the smallest available page from the freelists
2326  */
2327 static __always_inline
2328 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2329 						int migratetype)
2330 {
2331 	unsigned int current_order;
2332 	struct free_area *area;
2333 	struct page *page;
2334 
2335 	/* Find a page of the appropriate size in the preferred list */
2336 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2337 		area = &(zone->free_area[current_order]);
2338 		page = get_page_from_free_area(area, migratetype);
2339 		if (!page)
2340 			continue;
2341 		del_page_from_free_list(page, zone, current_order);
2342 		expand(zone, page, order, current_order, migratetype);
2343 		set_pcppage_migratetype(page, migratetype);
2344 		return page;
2345 	}
2346 
2347 	return NULL;
2348 }
2349 
2350 
2351 /*
2352  * This array describes the order lists are fallen back to when
2353  * the free lists for the desirable migrate type are depleted
2354  */
2355 static int fallbacks[MIGRATE_TYPES][3] = {
2356 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2357 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2358 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2359 #ifdef CONFIG_CMA
2360 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2361 #endif
2362 #ifdef CONFIG_MEMORY_ISOLATION
2363 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2364 #endif
2365 };
2366 
2367 #ifdef CONFIG_CMA
2368 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2369 					unsigned int order)
2370 {
2371 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2372 }
2373 #else
2374 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2375 					unsigned int order) { return NULL; }
2376 #endif
2377 
2378 /*
2379  * Move the free pages in a range to the freelist tail of the requested type.
2380  * Note that start_page and end_pages are not aligned on a pageblock
2381  * boundary. If alignment is required, use move_freepages_block()
2382  */
2383 static int move_freepages(struct zone *zone,
2384 			  struct page *start_page, struct page *end_page,
2385 			  int migratetype, int *num_movable)
2386 {
2387 	struct page *page;
2388 	unsigned int order;
2389 	int pages_moved = 0;
2390 
2391 	for (page = start_page; page <= end_page;) {
2392 		if (!pfn_valid_within(page_to_pfn(page))) {
2393 			page++;
2394 			continue;
2395 		}
2396 
2397 		if (!PageBuddy(page)) {
2398 			/*
2399 			 * We assume that pages that could be isolated for
2400 			 * migration are movable. But we don't actually try
2401 			 * isolating, as that would be expensive.
2402 			 */
2403 			if (num_movable &&
2404 					(PageLRU(page) || __PageMovable(page)))
2405 				(*num_movable)++;
2406 
2407 			page++;
2408 			continue;
2409 		}
2410 
2411 		/* Make sure we are not inadvertently changing nodes */
2412 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2413 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2414 
2415 		order = buddy_order(page);
2416 		move_to_free_list(page, zone, order, migratetype);
2417 		page += 1 << order;
2418 		pages_moved += 1 << order;
2419 	}
2420 
2421 	return pages_moved;
2422 }
2423 
2424 int move_freepages_block(struct zone *zone, struct page *page,
2425 				int migratetype, int *num_movable)
2426 {
2427 	unsigned long start_pfn, end_pfn;
2428 	struct page *start_page, *end_page;
2429 
2430 	if (num_movable)
2431 		*num_movable = 0;
2432 
2433 	start_pfn = page_to_pfn(page);
2434 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2435 	start_page = pfn_to_page(start_pfn);
2436 	end_page = start_page + pageblock_nr_pages - 1;
2437 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2438 
2439 	/* Do not cross zone boundaries */
2440 	if (!zone_spans_pfn(zone, start_pfn))
2441 		start_page = page;
2442 	if (!zone_spans_pfn(zone, end_pfn))
2443 		return 0;
2444 
2445 	return move_freepages(zone, start_page, end_page, migratetype,
2446 								num_movable);
2447 }
2448 
2449 static void change_pageblock_range(struct page *pageblock_page,
2450 					int start_order, int migratetype)
2451 {
2452 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2453 
2454 	while (nr_pageblocks--) {
2455 		set_pageblock_migratetype(pageblock_page, migratetype);
2456 		pageblock_page += pageblock_nr_pages;
2457 	}
2458 }
2459 
2460 /*
2461  * When we are falling back to another migratetype during allocation, try to
2462  * steal extra free pages from the same pageblocks to satisfy further
2463  * allocations, instead of polluting multiple pageblocks.
2464  *
2465  * If we are stealing a relatively large buddy page, it is likely there will
2466  * be more free pages in the pageblock, so try to steal them all. For
2467  * reclaimable and unmovable allocations, we steal regardless of page size,
2468  * as fragmentation caused by those allocations polluting movable pageblocks
2469  * is worse than movable allocations stealing from unmovable and reclaimable
2470  * pageblocks.
2471  */
2472 static bool can_steal_fallback(unsigned int order, int start_mt)
2473 {
2474 	/*
2475 	 * Leaving this order check is intended, although there is
2476 	 * relaxed order check in next check. The reason is that
2477 	 * we can actually steal whole pageblock if this condition met,
2478 	 * but, below check doesn't guarantee it and that is just heuristic
2479 	 * so could be changed anytime.
2480 	 */
2481 	if (order >= pageblock_order)
2482 		return true;
2483 
2484 	if (order >= pageblock_order / 2 ||
2485 		start_mt == MIGRATE_RECLAIMABLE ||
2486 		start_mt == MIGRATE_UNMOVABLE ||
2487 		page_group_by_mobility_disabled)
2488 		return true;
2489 
2490 	return false;
2491 }
2492 
2493 static inline bool boost_watermark(struct zone *zone)
2494 {
2495 	unsigned long max_boost;
2496 
2497 	if (!watermark_boost_factor)
2498 		return false;
2499 	/*
2500 	 * Don't bother in zones that are unlikely to produce results.
2501 	 * On small machines, including kdump capture kernels running
2502 	 * in a small area, boosting the watermark can cause an out of
2503 	 * memory situation immediately.
2504 	 */
2505 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2506 		return false;
2507 
2508 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2509 			watermark_boost_factor, 10000);
2510 
2511 	/*
2512 	 * high watermark may be uninitialised if fragmentation occurs
2513 	 * very early in boot so do not boost. We do not fall
2514 	 * through and boost by pageblock_nr_pages as failing
2515 	 * allocations that early means that reclaim is not going
2516 	 * to help and it may even be impossible to reclaim the
2517 	 * boosted watermark resulting in a hang.
2518 	 */
2519 	if (!max_boost)
2520 		return false;
2521 
2522 	max_boost = max(pageblock_nr_pages, max_boost);
2523 
2524 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2525 		max_boost);
2526 
2527 	return true;
2528 }
2529 
2530 /*
2531  * This function implements actual steal behaviour. If order is large enough,
2532  * we can steal whole pageblock. If not, we first move freepages in this
2533  * pageblock to our migratetype and determine how many already-allocated pages
2534  * are there in the pageblock with a compatible migratetype. If at least half
2535  * of pages are free or compatible, we can change migratetype of the pageblock
2536  * itself, so pages freed in the future will be put on the correct free list.
2537  */
2538 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2539 		unsigned int alloc_flags, int start_type, bool whole_block)
2540 {
2541 	unsigned int current_order = buddy_order(page);
2542 	int free_pages, movable_pages, alike_pages;
2543 	int old_block_type;
2544 
2545 	old_block_type = get_pageblock_migratetype(page);
2546 
2547 	/*
2548 	 * This can happen due to races and we want to prevent broken
2549 	 * highatomic accounting.
2550 	 */
2551 	if (is_migrate_highatomic(old_block_type))
2552 		goto single_page;
2553 
2554 	/* Take ownership for orders >= pageblock_order */
2555 	if (current_order >= pageblock_order) {
2556 		change_pageblock_range(page, current_order, start_type);
2557 		goto single_page;
2558 	}
2559 
2560 	/*
2561 	 * Boost watermarks to increase reclaim pressure to reduce the
2562 	 * likelihood of future fallbacks. Wake kswapd now as the node
2563 	 * may be balanced overall and kswapd will not wake naturally.
2564 	 */
2565 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2566 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2567 
2568 	/* We are not allowed to try stealing from the whole block */
2569 	if (!whole_block)
2570 		goto single_page;
2571 
2572 	free_pages = move_freepages_block(zone, page, start_type,
2573 						&movable_pages);
2574 	/*
2575 	 * Determine how many pages are compatible with our allocation.
2576 	 * For movable allocation, it's the number of movable pages which
2577 	 * we just obtained. For other types it's a bit more tricky.
2578 	 */
2579 	if (start_type == MIGRATE_MOVABLE) {
2580 		alike_pages = movable_pages;
2581 	} else {
2582 		/*
2583 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2584 		 * to MOVABLE pageblock, consider all non-movable pages as
2585 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2586 		 * vice versa, be conservative since we can't distinguish the
2587 		 * exact migratetype of non-movable pages.
2588 		 */
2589 		if (old_block_type == MIGRATE_MOVABLE)
2590 			alike_pages = pageblock_nr_pages
2591 						- (free_pages + movable_pages);
2592 		else
2593 			alike_pages = 0;
2594 	}
2595 
2596 	/* moving whole block can fail due to zone boundary conditions */
2597 	if (!free_pages)
2598 		goto single_page;
2599 
2600 	/*
2601 	 * If a sufficient number of pages in the block are either free or of
2602 	 * comparable migratability as our allocation, claim the whole block.
2603 	 */
2604 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2605 			page_group_by_mobility_disabled)
2606 		set_pageblock_migratetype(page, start_type);
2607 
2608 	return;
2609 
2610 single_page:
2611 	move_to_free_list(page, zone, current_order, start_type);
2612 }
2613 
2614 /*
2615  * Check whether there is a suitable fallback freepage with requested order.
2616  * If only_stealable is true, this function returns fallback_mt only if
2617  * we can steal other freepages all together. This would help to reduce
2618  * fragmentation due to mixed migratetype pages in one pageblock.
2619  */
2620 int find_suitable_fallback(struct free_area *area, unsigned int order,
2621 			int migratetype, bool only_stealable, bool *can_steal)
2622 {
2623 	int i;
2624 	int fallback_mt;
2625 
2626 	if (area->nr_free == 0)
2627 		return -1;
2628 
2629 	*can_steal = false;
2630 	for (i = 0;; i++) {
2631 		fallback_mt = fallbacks[migratetype][i];
2632 		if (fallback_mt == MIGRATE_TYPES)
2633 			break;
2634 
2635 		if (free_area_empty(area, fallback_mt))
2636 			continue;
2637 
2638 		if (can_steal_fallback(order, migratetype))
2639 			*can_steal = true;
2640 
2641 		if (!only_stealable)
2642 			return fallback_mt;
2643 
2644 		if (*can_steal)
2645 			return fallback_mt;
2646 	}
2647 
2648 	return -1;
2649 }
2650 
2651 /*
2652  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2653  * there are no empty page blocks that contain a page with a suitable order
2654  */
2655 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2656 				unsigned int alloc_order)
2657 {
2658 	int mt;
2659 	unsigned long max_managed, flags;
2660 
2661 	/*
2662 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2663 	 * Check is race-prone but harmless.
2664 	 */
2665 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2666 	if (zone->nr_reserved_highatomic >= max_managed)
2667 		return;
2668 
2669 	spin_lock_irqsave(&zone->lock, flags);
2670 
2671 	/* Recheck the nr_reserved_highatomic limit under the lock */
2672 	if (zone->nr_reserved_highatomic >= max_managed)
2673 		goto out_unlock;
2674 
2675 	/* Yoink! */
2676 	mt = get_pageblock_migratetype(page);
2677 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2678 	    && !is_migrate_cma(mt)) {
2679 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2680 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2681 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2682 	}
2683 
2684 out_unlock:
2685 	spin_unlock_irqrestore(&zone->lock, flags);
2686 }
2687 
2688 /*
2689  * Used when an allocation is about to fail under memory pressure. This
2690  * potentially hurts the reliability of high-order allocations when under
2691  * intense memory pressure but failed atomic allocations should be easier
2692  * to recover from than an OOM.
2693  *
2694  * If @force is true, try to unreserve a pageblock even though highatomic
2695  * pageblock is exhausted.
2696  */
2697 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2698 						bool force)
2699 {
2700 	struct zonelist *zonelist = ac->zonelist;
2701 	unsigned long flags;
2702 	struct zoneref *z;
2703 	struct zone *zone;
2704 	struct page *page;
2705 	int order;
2706 	bool ret;
2707 
2708 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2709 								ac->nodemask) {
2710 		/*
2711 		 * Preserve at least one pageblock unless memory pressure
2712 		 * is really high.
2713 		 */
2714 		if (!force && zone->nr_reserved_highatomic <=
2715 					pageblock_nr_pages)
2716 			continue;
2717 
2718 		spin_lock_irqsave(&zone->lock, flags);
2719 		for (order = 0; order < MAX_ORDER; order++) {
2720 			struct free_area *area = &(zone->free_area[order]);
2721 
2722 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2723 			if (!page)
2724 				continue;
2725 
2726 			/*
2727 			 * In page freeing path, migratetype change is racy so
2728 			 * we can counter several free pages in a pageblock
2729 			 * in this loop althoug we changed the pageblock type
2730 			 * from highatomic to ac->migratetype. So we should
2731 			 * adjust the count once.
2732 			 */
2733 			if (is_migrate_highatomic_page(page)) {
2734 				/*
2735 				 * It should never happen but changes to
2736 				 * locking could inadvertently allow a per-cpu
2737 				 * drain to add pages to MIGRATE_HIGHATOMIC
2738 				 * while unreserving so be safe and watch for
2739 				 * underflows.
2740 				 */
2741 				zone->nr_reserved_highatomic -= min(
2742 						pageblock_nr_pages,
2743 						zone->nr_reserved_highatomic);
2744 			}
2745 
2746 			/*
2747 			 * Convert to ac->migratetype and avoid the normal
2748 			 * pageblock stealing heuristics. Minimally, the caller
2749 			 * is doing the work and needs the pages. More
2750 			 * importantly, if the block was always converted to
2751 			 * MIGRATE_UNMOVABLE or another type then the number
2752 			 * of pageblocks that cannot be completely freed
2753 			 * may increase.
2754 			 */
2755 			set_pageblock_migratetype(page, ac->migratetype);
2756 			ret = move_freepages_block(zone, page, ac->migratetype,
2757 									NULL);
2758 			if (ret) {
2759 				spin_unlock_irqrestore(&zone->lock, flags);
2760 				return ret;
2761 			}
2762 		}
2763 		spin_unlock_irqrestore(&zone->lock, flags);
2764 	}
2765 
2766 	return false;
2767 }
2768 
2769 /*
2770  * Try finding a free buddy page on the fallback list and put it on the free
2771  * list of requested migratetype, possibly along with other pages from the same
2772  * block, depending on fragmentation avoidance heuristics. Returns true if
2773  * fallback was found so that __rmqueue_smallest() can grab it.
2774  *
2775  * The use of signed ints for order and current_order is a deliberate
2776  * deviation from the rest of this file, to make the for loop
2777  * condition simpler.
2778  */
2779 static __always_inline bool
2780 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2781 						unsigned int alloc_flags)
2782 {
2783 	struct free_area *area;
2784 	int current_order;
2785 	int min_order = order;
2786 	struct page *page;
2787 	int fallback_mt;
2788 	bool can_steal;
2789 
2790 	/*
2791 	 * Do not steal pages from freelists belonging to other pageblocks
2792 	 * i.e. orders < pageblock_order. If there are no local zones free,
2793 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2794 	 */
2795 	if (alloc_flags & ALLOC_NOFRAGMENT)
2796 		min_order = pageblock_order;
2797 
2798 	/*
2799 	 * Find the largest available free page in the other list. This roughly
2800 	 * approximates finding the pageblock with the most free pages, which
2801 	 * would be too costly to do exactly.
2802 	 */
2803 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2804 				--current_order) {
2805 		area = &(zone->free_area[current_order]);
2806 		fallback_mt = find_suitable_fallback(area, current_order,
2807 				start_migratetype, false, &can_steal);
2808 		if (fallback_mt == -1)
2809 			continue;
2810 
2811 		/*
2812 		 * We cannot steal all free pages from the pageblock and the
2813 		 * requested migratetype is movable. In that case it's better to
2814 		 * steal and split the smallest available page instead of the
2815 		 * largest available page, because even if the next movable
2816 		 * allocation falls back into a different pageblock than this
2817 		 * one, it won't cause permanent fragmentation.
2818 		 */
2819 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2820 					&& current_order > order)
2821 			goto find_smallest;
2822 
2823 		goto do_steal;
2824 	}
2825 
2826 	return false;
2827 
2828 find_smallest:
2829 	for (current_order = order; current_order < MAX_ORDER;
2830 							current_order++) {
2831 		area = &(zone->free_area[current_order]);
2832 		fallback_mt = find_suitable_fallback(area, current_order,
2833 				start_migratetype, false, &can_steal);
2834 		if (fallback_mt != -1)
2835 			break;
2836 	}
2837 
2838 	/*
2839 	 * This should not happen - we already found a suitable fallback
2840 	 * when looking for the largest page.
2841 	 */
2842 	VM_BUG_ON(current_order == MAX_ORDER);
2843 
2844 do_steal:
2845 	page = get_page_from_free_area(area, fallback_mt);
2846 
2847 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2848 								can_steal);
2849 
2850 	trace_mm_page_alloc_extfrag(page, order, current_order,
2851 		start_migratetype, fallback_mt);
2852 
2853 	return true;
2854 
2855 }
2856 
2857 /*
2858  * Do the hard work of removing an element from the buddy allocator.
2859  * Call me with the zone->lock already held.
2860  */
2861 static __always_inline struct page *
2862 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2863 						unsigned int alloc_flags)
2864 {
2865 	struct page *page;
2866 
2867 	if (IS_ENABLED(CONFIG_CMA)) {
2868 		/*
2869 		 * Balance movable allocations between regular and CMA areas by
2870 		 * allocating from CMA when over half of the zone's free memory
2871 		 * is in the CMA area.
2872 		 */
2873 		if (alloc_flags & ALLOC_CMA &&
2874 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2875 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2876 			page = __rmqueue_cma_fallback(zone, order);
2877 			if (page)
2878 				goto out;
2879 		}
2880 	}
2881 retry:
2882 	page = __rmqueue_smallest(zone, order, migratetype);
2883 	if (unlikely(!page)) {
2884 		if (alloc_flags & ALLOC_CMA)
2885 			page = __rmqueue_cma_fallback(zone, order);
2886 
2887 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2888 								alloc_flags))
2889 			goto retry;
2890 	}
2891 out:
2892 	if (page)
2893 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2894 	return page;
2895 }
2896 
2897 /*
2898  * Obtain a specified number of elements from the buddy allocator, all under
2899  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2900  * Returns the number of new pages which were placed at *list.
2901  */
2902 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2903 			unsigned long count, struct list_head *list,
2904 			int migratetype, unsigned int alloc_flags)
2905 {
2906 	int i, alloced = 0;
2907 
2908 	spin_lock(&zone->lock);
2909 	for (i = 0; i < count; ++i) {
2910 		struct page *page = __rmqueue(zone, order, migratetype,
2911 								alloc_flags);
2912 		if (unlikely(page == NULL))
2913 			break;
2914 
2915 		if (unlikely(check_pcp_refill(page)))
2916 			continue;
2917 
2918 		/*
2919 		 * Split buddy pages returned by expand() are received here in
2920 		 * physical page order. The page is added to the tail of
2921 		 * caller's list. From the callers perspective, the linked list
2922 		 * is ordered by page number under some conditions. This is
2923 		 * useful for IO devices that can forward direction from the
2924 		 * head, thus also in the physical page order. This is useful
2925 		 * for IO devices that can merge IO requests if the physical
2926 		 * pages are ordered properly.
2927 		 */
2928 		list_add_tail(&page->lru, list);
2929 		alloced++;
2930 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2931 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2932 					      -(1 << order));
2933 	}
2934 
2935 	/*
2936 	 * i pages were removed from the buddy list even if some leak due
2937 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2938 	 * on i. Do not confuse with 'alloced' which is the number of
2939 	 * pages added to the pcp list.
2940 	 */
2941 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2942 	spin_unlock(&zone->lock);
2943 	return alloced;
2944 }
2945 
2946 #ifdef CONFIG_NUMA
2947 /*
2948  * Called from the vmstat counter updater to drain pagesets of this
2949  * currently executing processor on remote nodes after they have
2950  * expired.
2951  *
2952  * Note that this function must be called with the thread pinned to
2953  * a single processor.
2954  */
2955 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2956 {
2957 	unsigned long flags;
2958 	int to_drain, batch;
2959 
2960 	local_irq_save(flags);
2961 	batch = READ_ONCE(pcp->batch);
2962 	to_drain = min(pcp->count, batch);
2963 	if (to_drain > 0)
2964 		free_pcppages_bulk(zone, to_drain, pcp);
2965 	local_irq_restore(flags);
2966 }
2967 #endif
2968 
2969 /*
2970  * Drain pcplists of the indicated processor and zone.
2971  *
2972  * The processor must either be the current processor and the
2973  * thread pinned to the current processor or a processor that
2974  * is not online.
2975  */
2976 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2977 {
2978 	unsigned long flags;
2979 	struct per_cpu_pageset *pset;
2980 	struct per_cpu_pages *pcp;
2981 
2982 	local_irq_save(flags);
2983 	pset = per_cpu_ptr(zone->pageset, cpu);
2984 
2985 	pcp = &pset->pcp;
2986 	if (pcp->count)
2987 		free_pcppages_bulk(zone, pcp->count, pcp);
2988 	local_irq_restore(flags);
2989 }
2990 
2991 /*
2992  * Drain pcplists of all zones on the indicated processor.
2993  *
2994  * The processor must either be the current processor and the
2995  * thread pinned to the current processor or a processor that
2996  * is not online.
2997  */
2998 static void drain_pages(unsigned int cpu)
2999 {
3000 	struct zone *zone;
3001 
3002 	for_each_populated_zone(zone) {
3003 		drain_pages_zone(cpu, zone);
3004 	}
3005 }
3006 
3007 /*
3008  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3009  *
3010  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3011  * the single zone's pages.
3012  */
3013 void drain_local_pages(struct zone *zone)
3014 {
3015 	int cpu = smp_processor_id();
3016 
3017 	if (zone)
3018 		drain_pages_zone(cpu, zone);
3019 	else
3020 		drain_pages(cpu);
3021 }
3022 
3023 static void drain_local_pages_wq(struct work_struct *work)
3024 {
3025 	struct pcpu_drain *drain;
3026 
3027 	drain = container_of(work, struct pcpu_drain, work);
3028 
3029 	/*
3030 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3031 	 * we can race with cpu offline when the WQ can move this from
3032 	 * a cpu pinned worker to an unbound one. We can operate on a different
3033 	 * cpu which is allright but we also have to make sure to not move to
3034 	 * a different one.
3035 	 */
3036 	preempt_disable();
3037 	drain_local_pages(drain->zone);
3038 	preempt_enable();
3039 }
3040 
3041 /*
3042  * The implementation of drain_all_pages(), exposing an extra parameter to
3043  * drain on all cpus.
3044  *
3045  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3046  * not empty. The check for non-emptiness can however race with a free to
3047  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3048  * that need the guarantee that every CPU has drained can disable the
3049  * optimizing racy check.
3050  */
3051 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3052 {
3053 	int cpu;
3054 
3055 	/*
3056 	 * Allocate in the BSS so we wont require allocation in
3057 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3058 	 */
3059 	static cpumask_t cpus_with_pcps;
3060 
3061 	/*
3062 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3063 	 * initialized.
3064 	 */
3065 	if (WARN_ON_ONCE(!mm_percpu_wq))
3066 		return;
3067 
3068 	/*
3069 	 * Do not drain if one is already in progress unless it's specific to
3070 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3071 	 * the drain to be complete when the call returns.
3072 	 */
3073 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3074 		if (!zone)
3075 			return;
3076 		mutex_lock(&pcpu_drain_mutex);
3077 	}
3078 
3079 	/*
3080 	 * We don't care about racing with CPU hotplug event
3081 	 * as offline notification will cause the notified
3082 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3083 	 * disables preemption as part of its processing
3084 	 */
3085 	for_each_online_cpu(cpu) {
3086 		struct per_cpu_pageset *pcp;
3087 		struct zone *z;
3088 		bool has_pcps = false;
3089 
3090 		if (force_all_cpus) {
3091 			/*
3092 			 * The pcp.count check is racy, some callers need a
3093 			 * guarantee that no cpu is missed.
3094 			 */
3095 			has_pcps = true;
3096 		} else if (zone) {
3097 			pcp = per_cpu_ptr(zone->pageset, cpu);
3098 			if (pcp->pcp.count)
3099 				has_pcps = true;
3100 		} else {
3101 			for_each_populated_zone(z) {
3102 				pcp = per_cpu_ptr(z->pageset, cpu);
3103 				if (pcp->pcp.count) {
3104 					has_pcps = true;
3105 					break;
3106 				}
3107 			}
3108 		}
3109 
3110 		if (has_pcps)
3111 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3112 		else
3113 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3114 	}
3115 
3116 	for_each_cpu(cpu, &cpus_with_pcps) {
3117 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3118 
3119 		drain->zone = zone;
3120 		INIT_WORK(&drain->work, drain_local_pages_wq);
3121 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3122 	}
3123 	for_each_cpu(cpu, &cpus_with_pcps)
3124 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3125 
3126 	mutex_unlock(&pcpu_drain_mutex);
3127 }
3128 
3129 /*
3130  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3131  *
3132  * When zone parameter is non-NULL, spill just the single zone's pages.
3133  *
3134  * Note that this can be extremely slow as the draining happens in a workqueue.
3135  */
3136 void drain_all_pages(struct zone *zone)
3137 {
3138 	__drain_all_pages(zone, false);
3139 }
3140 
3141 #ifdef CONFIG_HIBERNATION
3142 
3143 /*
3144  * Touch the watchdog for every WD_PAGE_COUNT pages.
3145  */
3146 #define WD_PAGE_COUNT	(128*1024)
3147 
3148 void mark_free_pages(struct zone *zone)
3149 {
3150 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3151 	unsigned long flags;
3152 	unsigned int order, t;
3153 	struct page *page;
3154 
3155 	if (zone_is_empty(zone))
3156 		return;
3157 
3158 	spin_lock_irqsave(&zone->lock, flags);
3159 
3160 	max_zone_pfn = zone_end_pfn(zone);
3161 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3162 		if (pfn_valid(pfn)) {
3163 			page = pfn_to_page(pfn);
3164 
3165 			if (!--page_count) {
3166 				touch_nmi_watchdog();
3167 				page_count = WD_PAGE_COUNT;
3168 			}
3169 
3170 			if (page_zone(page) != zone)
3171 				continue;
3172 
3173 			if (!swsusp_page_is_forbidden(page))
3174 				swsusp_unset_page_free(page);
3175 		}
3176 
3177 	for_each_migratetype_order(order, t) {
3178 		list_for_each_entry(page,
3179 				&zone->free_area[order].free_list[t], lru) {
3180 			unsigned long i;
3181 
3182 			pfn = page_to_pfn(page);
3183 			for (i = 0; i < (1UL << order); i++) {
3184 				if (!--page_count) {
3185 					touch_nmi_watchdog();
3186 					page_count = WD_PAGE_COUNT;
3187 				}
3188 				swsusp_set_page_free(pfn_to_page(pfn + i));
3189 			}
3190 		}
3191 	}
3192 	spin_unlock_irqrestore(&zone->lock, flags);
3193 }
3194 #endif /* CONFIG_PM */
3195 
3196 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3197 {
3198 	int migratetype;
3199 
3200 	if (!free_pcp_prepare(page))
3201 		return false;
3202 
3203 	migratetype = get_pfnblock_migratetype(page, pfn);
3204 	set_pcppage_migratetype(page, migratetype);
3205 	return true;
3206 }
3207 
3208 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3209 {
3210 	struct zone *zone = page_zone(page);
3211 	struct per_cpu_pages *pcp;
3212 	int migratetype;
3213 
3214 	migratetype = get_pcppage_migratetype(page);
3215 	__count_vm_event(PGFREE);
3216 
3217 	/*
3218 	 * We only track unmovable, reclaimable and movable on pcp lists.
3219 	 * Free ISOLATE pages back to the allocator because they are being
3220 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3221 	 * areas back if necessary. Otherwise, we may have to free
3222 	 * excessively into the page allocator
3223 	 */
3224 	if (migratetype >= MIGRATE_PCPTYPES) {
3225 		if (unlikely(is_migrate_isolate(migratetype))) {
3226 			free_one_page(zone, page, pfn, 0, migratetype,
3227 				      FPI_NONE);
3228 			return;
3229 		}
3230 		migratetype = MIGRATE_MOVABLE;
3231 	}
3232 
3233 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3234 	list_add(&page->lru, &pcp->lists[migratetype]);
3235 	pcp->count++;
3236 	if (pcp->count >= READ_ONCE(pcp->high))
3237 		free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3238 }
3239 
3240 /*
3241  * Free a 0-order page
3242  */
3243 void free_unref_page(struct page *page)
3244 {
3245 	unsigned long flags;
3246 	unsigned long pfn = page_to_pfn(page);
3247 
3248 	if (!free_unref_page_prepare(page, pfn))
3249 		return;
3250 
3251 	local_irq_save(flags);
3252 	free_unref_page_commit(page, pfn);
3253 	local_irq_restore(flags);
3254 }
3255 
3256 /*
3257  * Free a list of 0-order pages
3258  */
3259 void free_unref_page_list(struct list_head *list)
3260 {
3261 	struct page *page, *next;
3262 	unsigned long flags, pfn;
3263 	int batch_count = 0;
3264 
3265 	/* Prepare pages for freeing */
3266 	list_for_each_entry_safe(page, next, list, lru) {
3267 		pfn = page_to_pfn(page);
3268 		if (!free_unref_page_prepare(page, pfn))
3269 			list_del(&page->lru);
3270 		set_page_private(page, pfn);
3271 	}
3272 
3273 	local_irq_save(flags);
3274 	list_for_each_entry_safe(page, next, list, lru) {
3275 		unsigned long pfn = page_private(page);
3276 
3277 		set_page_private(page, 0);
3278 		trace_mm_page_free_batched(page);
3279 		free_unref_page_commit(page, pfn);
3280 
3281 		/*
3282 		 * Guard against excessive IRQ disabled times when we get
3283 		 * a large list of pages to free.
3284 		 */
3285 		if (++batch_count == SWAP_CLUSTER_MAX) {
3286 			local_irq_restore(flags);
3287 			batch_count = 0;
3288 			local_irq_save(flags);
3289 		}
3290 	}
3291 	local_irq_restore(flags);
3292 }
3293 
3294 /*
3295  * split_page takes a non-compound higher-order page, and splits it into
3296  * n (1<<order) sub-pages: page[0..n]
3297  * Each sub-page must be freed individually.
3298  *
3299  * Note: this is probably too low level an operation for use in drivers.
3300  * Please consult with lkml before using this in your driver.
3301  */
3302 void split_page(struct page *page, unsigned int order)
3303 {
3304 	int i;
3305 
3306 	VM_BUG_ON_PAGE(PageCompound(page), page);
3307 	VM_BUG_ON_PAGE(!page_count(page), page);
3308 
3309 	for (i = 1; i < (1 << order); i++)
3310 		set_page_refcounted(page + i);
3311 	split_page_owner(page, 1 << order);
3312 }
3313 EXPORT_SYMBOL_GPL(split_page);
3314 
3315 int __isolate_free_page(struct page *page, unsigned int order)
3316 {
3317 	unsigned long watermark;
3318 	struct zone *zone;
3319 	int mt;
3320 
3321 	BUG_ON(!PageBuddy(page));
3322 
3323 	zone = page_zone(page);
3324 	mt = get_pageblock_migratetype(page);
3325 
3326 	if (!is_migrate_isolate(mt)) {
3327 		/*
3328 		 * Obey watermarks as if the page was being allocated. We can
3329 		 * emulate a high-order watermark check with a raised order-0
3330 		 * watermark, because we already know our high-order page
3331 		 * exists.
3332 		 */
3333 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3334 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3335 			return 0;
3336 
3337 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3338 	}
3339 
3340 	/* Remove page from free list */
3341 
3342 	del_page_from_free_list(page, zone, order);
3343 
3344 	/*
3345 	 * Set the pageblock if the isolated page is at least half of a
3346 	 * pageblock
3347 	 */
3348 	if (order >= pageblock_order - 1) {
3349 		struct page *endpage = page + (1 << order) - 1;
3350 		for (; page < endpage; page += pageblock_nr_pages) {
3351 			int mt = get_pageblock_migratetype(page);
3352 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3353 			    && !is_migrate_highatomic(mt))
3354 				set_pageblock_migratetype(page,
3355 							  MIGRATE_MOVABLE);
3356 		}
3357 	}
3358 
3359 
3360 	return 1UL << order;
3361 }
3362 
3363 /**
3364  * __putback_isolated_page - Return a now-isolated page back where we got it
3365  * @page: Page that was isolated
3366  * @order: Order of the isolated page
3367  * @mt: The page's pageblock's migratetype
3368  *
3369  * This function is meant to return a page pulled from the free lists via
3370  * __isolate_free_page back to the free lists they were pulled from.
3371  */
3372 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3373 {
3374 	struct zone *zone = page_zone(page);
3375 
3376 	/* zone lock should be held when this function is called */
3377 	lockdep_assert_held(&zone->lock);
3378 
3379 	/* Return isolated page to tail of freelist. */
3380 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3381 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3382 }
3383 
3384 /*
3385  * Update NUMA hit/miss statistics
3386  *
3387  * Must be called with interrupts disabled.
3388  */
3389 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3390 {
3391 #ifdef CONFIG_NUMA
3392 	enum numa_stat_item local_stat = NUMA_LOCAL;
3393 
3394 	/* skip numa counters update if numa stats is disabled */
3395 	if (!static_branch_likely(&vm_numa_stat_key))
3396 		return;
3397 
3398 	if (zone_to_nid(z) != numa_node_id())
3399 		local_stat = NUMA_OTHER;
3400 
3401 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3402 		__inc_numa_state(z, NUMA_HIT);
3403 	else {
3404 		__inc_numa_state(z, NUMA_MISS);
3405 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3406 	}
3407 	__inc_numa_state(z, local_stat);
3408 #endif
3409 }
3410 
3411 /* Remove page from the per-cpu list, caller must protect the list */
3412 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3413 			unsigned int alloc_flags,
3414 			struct per_cpu_pages *pcp,
3415 			struct list_head *list)
3416 {
3417 	struct page *page;
3418 
3419 	do {
3420 		if (list_empty(list)) {
3421 			pcp->count += rmqueue_bulk(zone, 0,
3422 					READ_ONCE(pcp->batch), list,
3423 					migratetype, alloc_flags);
3424 			if (unlikely(list_empty(list)))
3425 				return NULL;
3426 		}
3427 
3428 		page = list_first_entry(list, struct page, lru);
3429 		list_del(&page->lru);
3430 		pcp->count--;
3431 	} while (check_new_pcp(page));
3432 
3433 	return page;
3434 }
3435 
3436 /* Lock and remove page from the per-cpu list */
3437 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3438 			struct zone *zone, gfp_t gfp_flags,
3439 			int migratetype, unsigned int alloc_flags)
3440 {
3441 	struct per_cpu_pages *pcp;
3442 	struct list_head *list;
3443 	struct page *page;
3444 	unsigned long flags;
3445 
3446 	local_irq_save(flags);
3447 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3448 	list = &pcp->lists[migratetype];
3449 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3450 	if (page) {
3451 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3452 		zone_statistics(preferred_zone, zone);
3453 	}
3454 	local_irq_restore(flags);
3455 	return page;
3456 }
3457 
3458 /*
3459  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3460  */
3461 static inline
3462 struct page *rmqueue(struct zone *preferred_zone,
3463 			struct zone *zone, unsigned int order,
3464 			gfp_t gfp_flags, unsigned int alloc_flags,
3465 			int migratetype)
3466 {
3467 	unsigned long flags;
3468 	struct page *page;
3469 
3470 	if (likely(order == 0)) {
3471 		/*
3472 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3473 		 * we need to skip it when CMA area isn't allowed.
3474 		 */
3475 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3476 				migratetype != MIGRATE_MOVABLE) {
3477 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3478 					migratetype, alloc_flags);
3479 			goto out;
3480 		}
3481 	}
3482 
3483 	/*
3484 	 * We most definitely don't want callers attempting to
3485 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3486 	 */
3487 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3488 	spin_lock_irqsave(&zone->lock, flags);
3489 
3490 	do {
3491 		page = NULL;
3492 		/*
3493 		 * order-0 request can reach here when the pcplist is skipped
3494 		 * due to non-CMA allocation context. HIGHATOMIC area is
3495 		 * reserved for high-order atomic allocation, so order-0
3496 		 * request should skip it.
3497 		 */
3498 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3499 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3500 			if (page)
3501 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3502 		}
3503 		if (!page)
3504 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3505 	} while (page && check_new_pages(page, order));
3506 	spin_unlock(&zone->lock);
3507 	if (!page)
3508 		goto failed;
3509 	__mod_zone_freepage_state(zone, -(1 << order),
3510 				  get_pcppage_migratetype(page));
3511 
3512 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3513 	zone_statistics(preferred_zone, zone);
3514 	local_irq_restore(flags);
3515 
3516 out:
3517 	/* Separate test+clear to avoid unnecessary atomics */
3518 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3519 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3520 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3521 	}
3522 
3523 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3524 	return page;
3525 
3526 failed:
3527 	local_irq_restore(flags);
3528 	return NULL;
3529 }
3530 
3531 #ifdef CONFIG_FAIL_PAGE_ALLOC
3532 
3533 static struct {
3534 	struct fault_attr attr;
3535 
3536 	bool ignore_gfp_highmem;
3537 	bool ignore_gfp_reclaim;
3538 	u32 min_order;
3539 } fail_page_alloc = {
3540 	.attr = FAULT_ATTR_INITIALIZER,
3541 	.ignore_gfp_reclaim = true,
3542 	.ignore_gfp_highmem = true,
3543 	.min_order = 1,
3544 };
3545 
3546 static int __init setup_fail_page_alloc(char *str)
3547 {
3548 	return setup_fault_attr(&fail_page_alloc.attr, str);
3549 }
3550 __setup("fail_page_alloc=", setup_fail_page_alloc);
3551 
3552 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3553 {
3554 	if (order < fail_page_alloc.min_order)
3555 		return false;
3556 	if (gfp_mask & __GFP_NOFAIL)
3557 		return false;
3558 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3559 		return false;
3560 	if (fail_page_alloc.ignore_gfp_reclaim &&
3561 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3562 		return false;
3563 
3564 	return should_fail(&fail_page_alloc.attr, 1 << order);
3565 }
3566 
3567 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3568 
3569 static int __init fail_page_alloc_debugfs(void)
3570 {
3571 	umode_t mode = S_IFREG | 0600;
3572 	struct dentry *dir;
3573 
3574 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3575 					&fail_page_alloc.attr);
3576 
3577 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3578 			    &fail_page_alloc.ignore_gfp_reclaim);
3579 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3580 			    &fail_page_alloc.ignore_gfp_highmem);
3581 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3582 
3583 	return 0;
3584 }
3585 
3586 late_initcall(fail_page_alloc_debugfs);
3587 
3588 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3589 
3590 #else /* CONFIG_FAIL_PAGE_ALLOC */
3591 
3592 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3593 {
3594 	return false;
3595 }
3596 
3597 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3598 
3599 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3600 {
3601 	return __should_fail_alloc_page(gfp_mask, order);
3602 }
3603 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3604 
3605 static inline long __zone_watermark_unusable_free(struct zone *z,
3606 				unsigned int order, unsigned int alloc_flags)
3607 {
3608 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3609 	long unusable_free = (1 << order) - 1;
3610 
3611 	/*
3612 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3613 	 * the high-atomic reserves. This will over-estimate the size of the
3614 	 * atomic reserve but it avoids a search.
3615 	 */
3616 	if (likely(!alloc_harder))
3617 		unusable_free += z->nr_reserved_highatomic;
3618 
3619 #ifdef CONFIG_CMA
3620 	/* If allocation can't use CMA areas don't use free CMA pages */
3621 	if (!(alloc_flags & ALLOC_CMA))
3622 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3623 #endif
3624 
3625 	return unusable_free;
3626 }
3627 
3628 /*
3629  * Return true if free base pages are above 'mark'. For high-order checks it
3630  * will return true of the order-0 watermark is reached and there is at least
3631  * one free page of a suitable size. Checking now avoids taking the zone lock
3632  * to check in the allocation paths if no pages are free.
3633  */
3634 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3635 			 int highest_zoneidx, unsigned int alloc_flags,
3636 			 long free_pages)
3637 {
3638 	long min = mark;
3639 	int o;
3640 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3641 
3642 	/* free_pages may go negative - that's OK */
3643 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3644 
3645 	if (alloc_flags & ALLOC_HIGH)
3646 		min -= min / 2;
3647 
3648 	if (unlikely(alloc_harder)) {
3649 		/*
3650 		 * OOM victims can try even harder than normal ALLOC_HARDER
3651 		 * users on the grounds that it's definitely going to be in
3652 		 * the exit path shortly and free memory. Any allocation it
3653 		 * makes during the free path will be small and short-lived.
3654 		 */
3655 		if (alloc_flags & ALLOC_OOM)
3656 			min -= min / 2;
3657 		else
3658 			min -= min / 4;
3659 	}
3660 
3661 	/*
3662 	 * Check watermarks for an order-0 allocation request. If these
3663 	 * are not met, then a high-order request also cannot go ahead
3664 	 * even if a suitable page happened to be free.
3665 	 */
3666 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3667 		return false;
3668 
3669 	/* If this is an order-0 request then the watermark is fine */
3670 	if (!order)
3671 		return true;
3672 
3673 	/* For a high-order request, check at least one suitable page is free */
3674 	for (o = order; o < MAX_ORDER; o++) {
3675 		struct free_area *area = &z->free_area[o];
3676 		int mt;
3677 
3678 		if (!area->nr_free)
3679 			continue;
3680 
3681 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3682 			if (!free_area_empty(area, mt))
3683 				return true;
3684 		}
3685 
3686 #ifdef CONFIG_CMA
3687 		if ((alloc_flags & ALLOC_CMA) &&
3688 		    !free_area_empty(area, MIGRATE_CMA)) {
3689 			return true;
3690 		}
3691 #endif
3692 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3693 			return true;
3694 	}
3695 	return false;
3696 }
3697 
3698 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3699 		      int highest_zoneidx, unsigned int alloc_flags)
3700 {
3701 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3702 					zone_page_state(z, NR_FREE_PAGES));
3703 }
3704 
3705 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3706 				unsigned long mark, int highest_zoneidx,
3707 				unsigned int alloc_flags, gfp_t gfp_mask)
3708 {
3709 	long free_pages;
3710 
3711 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3712 
3713 	/*
3714 	 * Fast check for order-0 only. If this fails then the reserves
3715 	 * need to be calculated.
3716 	 */
3717 	if (!order) {
3718 		long fast_free;
3719 
3720 		fast_free = free_pages;
3721 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3722 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3723 			return true;
3724 	}
3725 
3726 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3727 					free_pages))
3728 		return true;
3729 	/*
3730 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3731 	 * when checking the min watermark. The min watermark is the
3732 	 * point where boosting is ignored so that kswapd is woken up
3733 	 * when below the low watermark.
3734 	 */
3735 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3736 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3737 		mark = z->_watermark[WMARK_MIN];
3738 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3739 					alloc_flags, free_pages);
3740 	}
3741 
3742 	return false;
3743 }
3744 
3745 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3746 			unsigned long mark, int highest_zoneidx)
3747 {
3748 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3749 
3750 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3751 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3752 
3753 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3754 								free_pages);
3755 }
3756 
3757 #ifdef CONFIG_NUMA
3758 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3759 {
3760 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3761 				node_reclaim_distance;
3762 }
3763 #else	/* CONFIG_NUMA */
3764 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3765 {
3766 	return true;
3767 }
3768 #endif	/* CONFIG_NUMA */
3769 
3770 /*
3771  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3772  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3773  * premature use of a lower zone may cause lowmem pressure problems that
3774  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3775  * probably too small. It only makes sense to spread allocations to avoid
3776  * fragmentation between the Normal and DMA32 zones.
3777  */
3778 static inline unsigned int
3779 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3780 {
3781 	unsigned int alloc_flags;
3782 
3783 	/*
3784 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3785 	 * to save a branch.
3786 	 */
3787 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3788 
3789 #ifdef CONFIG_ZONE_DMA32
3790 	if (!zone)
3791 		return alloc_flags;
3792 
3793 	if (zone_idx(zone) != ZONE_NORMAL)
3794 		return alloc_flags;
3795 
3796 	/*
3797 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3798 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3799 	 * on UMA that if Normal is populated then so is DMA32.
3800 	 */
3801 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3802 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3803 		return alloc_flags;
3804 
3805 	alloc_flags |= ALLOC_NOFRAGMENT;
3806 #endif /* CONFIG_ZONE_DMA32 */
3807 	return alloc_flags;
3808 }
3809 
3810 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3811 					unsigned int alloc_flags)
3812 {
3813 #ifdef CONFIG_CMA
3814 	unsigned int pflags = current->flags;
3815 
3816 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3817 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3818 		alloc_flags |= ALLOC_CMA;
3819 
3820 #endif
3821 	return alloc_flags;
3822 }
3823 
3824 /*
3825  * get_page_from_freelist goes through the zonelist trying to allocate
3826  * a page.
3827  */
3828 static struct page *
3829 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3830 						const struct alloc_context *ac)
3831 {
3832 	struct zoneref *z;
3833 	struct zone *zone;
3834 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3835 	bool no_fallback;
3836 
3837 retry:
3838 	/*
3839 	 * Scan zonelist, looking for a zone with enough free.
3840 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3841 	 */
3842 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3843 	z = ac->preferred_zoneref;
3844 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3845 					ac->nodemask) {
3846 		struct page *page;
3847 		unsigned long mark;
3848 
3849 		if (cpusets_enabled() &&
3850 			(alloc_flags & ALLOC_CPUSET) &&
3851 			!__cpuset_zone_allowed(zone, gfp_mask))
3852 				continue;
3853 		/*
3854 		 * When allocating a page cache page for writing, we
3855 		 * want to get it from a node that is within its dirty
3856 		 * limit, such that no single node holds more than its
3857 		 * proportional share of globally allowed dirty pages.
3858 		 * The dirty limits take into account the node's
3859 		 * lowmem reserves and high watermark so that kswapd
3860 		 * should be able to balance it without having to
3861 		 * write pages from its LRU list.
3862 		 *
3863 		 * XXX: For now, allow allocations to potentially
3864 		 * exceed the per-node dirty limit in the slowpath
3865 		 * (spread_dirty_pages unset) before going into reclaim,
3866 		 * which is important when on a NUMA setup the allowed
3867 		 * nodes are together not big enough to reach the
3868 		 * global limit.  The proper fix for these situations
3869 		 * will require awareness of nodes in the
3870 		 * dirty-throttling and the flusher threads.
3871 		 */
3872 		if (ac->spread_dirty_pages) {
3873 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3874 				continue;
3875 
3876 			if (!node_dirty_ok(zone->zone_pgdat)) {
3877 				last_pgdat_dirty_limit = zone->zone_pgdat;
3878 				continue;
3879 			}
3880 		}
3881 
3882 		if (no_fallback && nr_online_nodes > 1 &&
3883 		    zone != ac->preferred_zoneref->zone) {
3884 			int local_nid;
3885 
3886 			/*
3887 			 * If moving to a remote node, retry but allow
3888 			 * fragmenting fallbacks. Locality is more important
3889 			 * than fragmentation avoidance.
3890 			 */
3891 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3892 			if (zone_to_nid(zone) != local_nid) {
3893 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3894 				goto retry;
3895 			}
3896 		}
3897 
3898 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3899 		if (!zone_watermark_fast(zone, order, mark,
3900 				       ac->highest_zoneidx, alloc_flags,
3901 				       gfp_mask)) {
3902 			int ret;
3903 
3904 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3905 			/*
3906 			 * Watermark failed for this zone, but see if we can
3907 			 * grow this zone if it contains deferred pages.
3908 			 */
3909 			if (static_branch_unlikely(&deferred_pages)) {
3910 				if (_deferred_grow_zone(zone, order))
3911 					goto try_this_zone;
3912 			}
3913 #endif
3914 			/* Checked here to keep the fast path fast */
3915 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3916 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3917 				goto try_this_zone;
3918 
3919 			if (node_reclaim_mode == 0 ||
3920 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3921 				continue;
3922 
3923 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3924 			switch (ret) {
3925 			case NODE_RECLAIM_NOSCAN:
3926 				/* did not scan */
3927 				continue;
3928 			case NODE_RECLAIM_FULL:
3929 				/* scanned but unreclaimable */
3930 				continue;
3931 			default:
3932 				/* did we reclaim enough */
3933 				if (zone_watermark_ok(zone, order, mark,
3934 					ac->highest_zoneidx, alloc_flags))
3935 					goto try_this_zone;
3936 
3937 				continue;
3938 			}
3939 		}
3940 
3941 try_this_zone:
3942 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3943 				gfp_mask, alloc_flags, ac->migratetype);
3944 		if (page) {
3945 			prep_new_page(page, order, gfp_mask, alloc_flags);
3946 
3947 			/*
3948 			 * If this is a high-order atomic allocation then check
3949 			 * if the pageblock should be reserved for the future
3950 			 */
3951 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3952 				reserve_highatomic_pageblock(page, zone, order);
3953 
3954 			return page;
3955 		} else {
3956 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3957 			/* Try again if zone has deferred pages */
3958 			if (static_branch_unlikely(&deferred_pages)) {
3959 				if (_deferred_grow_zone(zone, order))
3960 					goto try_this_zone;
3961 			}
3962 #endif
3963 		}
3964 	}
3965 
3966 	/*
3967 	 * It's possible on a UMA machine to get through all zones that are
3968 	 * fragmented. If avoiding fragmentation, reset and try again.
3969 	 */
3970 	if (no_fallback) {
3971 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3972 		goto retry;
3973 	}
3974 
3975 	return NULL;
3976 }
3977 
3978 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3979 {
3980 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3981 
3982 	/*
3983 	 * This documents exceptions given to allocations in certain
3984 	 * contexts that are allowed to allocate outside current's set
3985 	 * of allowed nodes.
3986 	 */
3987 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3988 		if (tsk_is_oom_victim(current) ||
3989 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3990 			filter &= ~SHOW_MEM_FILTER_NODES;
3991 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3992 		filter &= ~SHOW_MEM_FILTER_NODES;
3993 
3994 	show_mem(filter, nodemask);
3995 }
3996 
3997 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3998 {
3999 	struct va_format vaf;
4000 	va_list args;
4001 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4002 
4003 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4004 		return;
4005 
4006 	va_start(args, fmt);
4007 	vaf.fmt = fmt;
4008 	vaf.va = &args;
4009 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4010 			current->comm, &vaf, gfp_mask, &gfp_mask,
4011 			nodemask_pr_args(nodemask));
4012 	va_end(args);
4013 
4014 	cpuset_print_current_mems_allowed();
4015 	pr_cont("\n");
4016 	dump_stack();
4017 	warn_alloc_show_mem(gfp_mask, nodemask);
4018 }
4019 
4020 static inline struct page *
4021 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4022 			      unsigned int alloc_flags,
4023 			      const struct alloc_context *ac)
4024 {
4025 	struct page *page;
4026 
4027 	page = get_page_from_freelist(gfp_mask, order,
4028 			alloc_flags|ALLOC_CPUSET, ac);
4029 	/*
4030 	 * fallback to ignore cpuset restriction if our nodes
4031 	 * are depleted
4032 	 */
4033 	if (!page)
4034 		page = get_page_from_freelist(gfp_mask, order,
4035 				alloc_flags, ac);
4036 
4037 	return page;
4038 }
4039 
4040 static inline struct page *
4041 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4042 	const struct alloc_context *ac, unsigned long *did_some_progress)
4043 {
4044 	struct oom_control oc = {
4045 		.zonelist = ac->zonelist,
4046 		.nodemask = ac->nodemask,
4047 		.memcg = NULL,
4048 		.gfp_mask = gfp_mask,
4049 		.order = order,
4050 	};
4051 	struct page *page;
4052 
4053 	*did_some_progress = 0;
4054 
4055 	/*
4056 	 * Acquire the oom lock.  If that fails, somebody else is
4057 	 * making progress for us.
4058 	 */
4059 	if (!mutex_trylock(&oom_lock)) {
4060 		*did_some_progress = 1;
4061 		schedule_timeout_uninterruptible(1);
4062 		return NULL;
4063 	}
4064 
4065 	/*
4066 	 * Go through the zonelist yet one more time, keep very high watermark
4067 	 * here, this is only to catch a parallel oom killing, we must fail if
4068 	 * we're still under heavy pressure. But make sure that this reclaim
4069 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4070 	 * allocation which will never fail due to oom_lock already held.
4071 	 */
4072 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4073 				      ~__GFP_DIRECT_RECLAIM, order,
4074 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4075 	if (page)
4076 		goto out;
4077 
4078 	/* Coredumps can quickly deplete all memory reserves */
4079 	if (current->flags & PF_DUMPCORE)
4080 		goto out;
4081 	/* The OOM killer will not help higher order allocs */
4082 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4083 		goto out;
4084 	/*
4085 	 * We have already exhausted all our reclaim opportunities without any
4086 	 * success so it is time to admit defeat. We will skip the OOM killer
4087 	 * because it is very likely that the caller has a more reasonable
4088 	 * fallback than shooting a random task.
4089 	 *
4090 	 * The OOM killer may not free memory on a specific node.
4091 	 */
4092 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4093 		goto out;
4094 	/* The OOM killer does not needlessly kill tasks for lowmem */
4095 	if (ac->highest_zoneidx < ZONE_NORMAL)
4096 		goto out;
4097 	if (pm_suspended_storage())
4098 		goto out;
4099 	/*
4100 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4101 	 * other request to make a forward progress.
4102 	 * We are in an unfortunate situation where out_of_memory cannot
4103 	 * do much for this context but let's try it to at least get
4104 	 * access to memory reserved if the current task is killed (see
4105 	 * out_of_memory). Once filesystems are ready to handle allocation
4106 	 * failures more gracefully we should just bail out here.
4107 	 */
4108 
4109 	/* Exhausted what can be done so it's blame time */
4110 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4111 		*did_some_progress = 1;
4112 
4113 		/*
4114 		 * Help non-failing allocations by giving them access to memory
4115 		 * reserves
4116 		 */
4117 		if (gfp_mask & __GFP_NOFAIL)
4118 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4119 					ALLOC_NO_WATERMARKS, ac);
4120 	}
4121 out:
4122 	mutex_unlock(&oom_lock);
4123 	return page;
4124 }
4125 
4126 /*
4127  * Maximum number of compaction retries wit a progress before OOM
4128  * killer is consider as the only way to move forward.
4129  */
4130 #define MAX_COMPACT_RETRIES 16
4131 
4132 #ifdef CONFIG_COMPACTION
4133 /* Try memory compaction for high-order allocations before reclaim */
4134 static struct page *
4135 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4136 		unsigned int alloc_flags, const struct alloc_context *ac,
4137 		enum compact_priority prio, enum compact_result *compact_result)
4138 {
4139 	struct page *page = NULL;
4140 	unsigned long pflags;
4141 	unsigned int noreclaim_flag;
4142 
4143 	if (!order)
4144 		return NULL;
4145 
4146 	psi_memstall_enter(&pflags);
4147 	noreclaim_flag = memalloc_noreclaim_save();
4148 
4149 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4150 								prio, &page);
4151 
4152 	memalloc_noreclaim_restore(noreclaim_flag);
4153 	psi_memstall_leave(&pflags);
4154 
4155 	/*
4156 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4157 	 * count a compaction stall
4158 	 */
4159 	count_vm_event(COMPACTSTALL);
4160 
4161 	/* Prep a captured page if available */
4162 	if (page)
4163 		prep_new_page(page, order, gfp_mask, alloc_flags);
4164 
4165 	/* Try get a page from the freelist if available */
4166 	if (!page)
4167 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4168 
4169 	if (page) {
4170 		struct zone *zone = page_zone(page);
4171 
4172 		zone->compact_blockskip_flush = false;
4173 		compaction_defer_reset(zone, order, true);
4174 		count_vm_event(COMPACTSUCCESS);
4175 		return page;
4176 	}
4177 
4178 	/*
4179 	 * It's bad if compaction run occurs and fails. The most likely reason
4180 	 * is that pages exist, but not enough to satisfy watermarks.
4181 	 */
4182 	count_vm_event(COMPACTFAIL);
4183 
4184 	cond_resched();
4185 
4186 	return NULL;
4187 }
4188 
4189 static inline bool
4190 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4191 		     enum compact_result compact_result,
4192 		     enum compact_priority *compact_priority,
4193 		     int *compaction_retries)
4194 {
4195 	int max_retries = MAX_COMPACT_RETRIES;
4196 	int min_priority;
4197 	bool ret = false;
4198 	int retries = *compaction_retries;
4199 	enum compact_priority priority = *compact_priority;
4200 
4201 	if (!order)
4202 		return false;
4203 
4204 	if (compaction_made_progress(compact_result))
4205 		(*compaction_retries)++;
4206 
4207 	/*
4208 	 * compaction considers all the zone as desperately out of memory
4209 	 * so it doesn't really make much sense to retry except when the
4210 	 * failure could be caused by insufficient priority
4211 	 */
4212 	if (compaction_failed(compact_result))
4213 		goto check_priority;
4214 
4215 	/*
4216 	 * compaction was skipped because there are not enough order-0 pages
4217 	 * to work with, so we retry only if it looks like reclaim can help.
4218 	 */
4219 	if (compaction_needs_reclaim(compact_result)) {
4220 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4221 		goto out;
4222 	}
4223 
4224 	/*
4225 	 * make sure the compaction wasn't deferred or didn't bail out early
4226 	 * due to locks contention before we declare that we should give up.
4227 	 * But the next retry should use a higher priority if allowed, so
4228 	 * we don't just keep bailing out endlessly.
4229 	 */
4230 	if (compaction_withdrawn(compact_result)) {
4231 		goto check_priority;
4232 	}
4233 
4234 	/*
4235 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4236 	 * costly ones because they are de facto nofail and invoke OOM
4237 	 * killer to move on while costly can fail and users are ready
4238 	 * to cope with that. 1/4 retries is rather arbitrary but we
4239 	 * would need much more detailed feedback from compaction to
4240 	 * make a better decision.
4241 	 */
4242 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4243 		max_retries /= 4;
4244 	if (*compaction_retries <= max_retries) {
4245 		ret = true;
4246 		goto out;
4247 	}
4248 
4249 	/*
4250 	 * Make sure there are attempts at the highest priority if we exhausted
4251 	 * all retries or failed at the lower priorities.
4252 	 */
4253 check_priority:
4254 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4255 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4256 
4257 	if (*compact_priority > min_priority) {
4258 		(*compact_priority)--;
4259 		*compaction_retries = 0;
4260 		ret = true;
4261 	}
4262 out:
4263 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4264 	return ret;
4265 }
4266 #else
4267 static inline struct page *
4268 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4269 		unsigned int alloc_flags, const struct alloc_context *ac,
4270 		enum compact_priority prio, enum compact_result *compact_result)
4271 {
4272 	*compact_result = COMPACT_SKIPPED;
4273 	return NULL;
4274 }
4275 
4276 static inline bool
4277 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4278 		     enum compact_result compact_result,
4279 		     enum compact_priority *compact_priority,
4280 		     int *compaction_retries)
4281 {
4282 	struct zone *zone;
4283 	struct zoneref *z;
4284 
4285 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4286 		return false;
4287 
4288 	/*
4289 	 * There are setups with compaction disabled which would prefer to loop
4290 	 * inside the allocator rather than hit the oom killer prematurely.
4291 	 * Let's give them a good hope and keep retrying while the order-0
4292 	 * watermarks are OK.
4293 	 */
4294 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4295 				ac->highest_zoneidx, ac->nodemask) {
4296 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4297 					ac->highest_zoneidx, alloc_flags))
4298 			return true;
4299 	}
4300 	return false;
4301 }
4302 #endif /* CONFIG_COMPACTION */
4303 
4304 #ifdef CONFIG_LOCKDEP
4305 static struct lockdep_map __fs_reclaim_map =
4306 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4307 
4308 static bool __need_reclaim(gfp_t gfp_mask)
4309 {
4310 	/* no reclaim without waiting on it */
4311 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4312 		return false;
4313 
4314 	/* this guy won't enter reclaim */
4315 	if (current->flags & PF_MEMALLOC)
4316 		return false;
4317 
4318 	if (gfp_mask & __GFP_NOLOCKDEP)
4319 		return false;
4320 
4321 	return true;
4322 }
4323 
4324 void __fs_reclaim_acquire(void)
4325 {
4326 	lock_map_acquire(&__fs_reclaim_map);
4327 }
4328 
4329 void __fs_reclaim_release(void)
4330 {
4331 	lock_map_release(&__fs_reclaim_map);
4332 }
4333 
4334 void fs_reclaim_acquire(gfp_t gfp_mask)
4335 {
4336 	gfp_mask = current_gfp_context(gfp_mask);
4337 
4338 	if (__need_reclaim(gfp_mask)) {
4339 		if (gfp_mask & __GFP_FS)
4340 			__fs_reclaim_acquire();
4341 
4342 #ifdef CONFIG_MMU_NOTIFIER
4343 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4344 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4345 #endif
4346 
4347 	}
4348 }
4349 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4350 
4351 void fs_reclaim_release(gfp_t gfp_mask)
4352 {
4353 	gfp_mask = current_gfp_context(gfp_mask);
4354 
4355 	if (__need_reclaim(gfp_mask)) {
4356 		if (gfp_mask & __GFP_FS)
4357 			__fs_reclaim_release();
4358 	}
4359 }
4360 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4361 #endif
4362 
4363 /* Perform direct synchronous page reclaim */
4364 static unsigned long
4365 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4366 					const struct alloc_context *ac)
4367 {
4368 	unsigned int noreclaim_flag;
4369 	unsigned long pflags, progress;
4370 
4371 	cond_resched();
4372 
4373 	/* We now go into synchronous reclaim */
4374 	cpuset_memory_pressure_bump();
4375 	psi_memstall_enter(&pflags);
4376 	fs_reclaim_acquire(gfp_mask);
4377 	noreclaim_flag = memalloc_noreclaim_save();
4378 
4379 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4380 								ac->nodemask);
4381 
4382 	memalloc_noreclaim_restore(noreclaim_flag);
4383 	fs_reclaim_release(gfp_mask);
4384 	psi_memstall_leave(&pflags);
4385 
4386 	cond_resched();
4387 
4388 	return progress;
4389 }
4390 
4391 /* The really slow allocator path where we enter direct reclaim */
4392 static inline struct page *
4393 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4394 		unsigned int alloc_flags, const struct alloc_context *ac,
4395 		unsigned long *did_some_progress)
4396 {
4397 	struct page *page = NULL;
4398 	bool drained = false;
4399 
4400 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4401 	if (unlikely(!(*did_some_progress)))
4402 		return NULL;
4403 
4404 retry:
4405 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4406 
4407 	/*
4408 	 * If an allocation failed after direct reclaim, it could be because
4409 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4410 	 * Shrink them and try again
4411 	 */
4412 	if (!page && !drained) {
4413 		unreserve_highatomic_pageblock(ac, false);
4414 		drain_all_pages(NULL);
4415 		drained = true;
4416 		goto retry;
4417 	}
4418 
4419 	return page;
4420 }
4421 
4422 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4423 			     const struct alloc_context *ac)
4424 {
4425 	struct zoneref *z;
4426 	struct zone *zone;
4427 	pg_data_t *last_pgdat = NULL;
4428 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4429 
4430 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4431 					ac->nodemask) {
4432 		if (last_pgdat != zone->zone_pgdat)
4433 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4434 		last_pgdat = zone->zone_pgdat;
4435 	}
4436 }
4437 
4438 static inline unsigned int
4439 gfp_to_alloc_flags(gfp_t gfp_mask)
4440 {
4441 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4442 
4443 	/*
4444 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4445 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4446 	 * to save two branches.
4447 	 */
4448 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4449 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4450 
4451 	/*
4452 	 * The caller may dip into page reserves a bit more if the caller
4453 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4454 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4455 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4456 	 */
4457 	alloc_flags |= (__force int)
4458 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4459 
4460 	if (gfp_mask & __GFP_ATOMIC) {
4461 		/*
4462 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4463 		 * if it can't schedule.
4464 		 */
4465 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4466 			alloc_flags |= ALLOC_HARDER;
4467 		/*
4468 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4469 		 * comment for __cpuset_node_allowed().
4470 		 */
4471 		alloc_flags &= ~ALLOC_CPUSET;
4472 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4473 		alloc_flags |= ALLOC_HARDER;
4474 
4475 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4476 
4477 	return alloc_flags;
4478 }
4479 
4480 static bool oom_reserves_allowed(struct task_struct *tsk)
4481 {
4482 	if (!tsk_is_oom_victim(tsk))
4483 		return false;
4484 
4485 	/*
4486 	 * !MMU doesn't have oom reaper so give access to memory reserves
4487 	 * only to the thread with TIF_MEMDIE set
4488 	 */
4489 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4490 		return false;
4491 
4492 	return true;
4493 }
4494 
4495 /*
4496  * Distinguish requests which really need access to full memory
4497  * reserves from oom victims which can live with a portion of it
4498  */
4499 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4500 {
4501 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4502 		return 0;
4503 	if (gfp_mask & __GFP_MEMALLOC)
4504 		return ALLOC_NO_WATERMARKS;
4505 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4506 		return ALLOC_NO_WATERMARKS;
4507 	if (!in_interrupt()) {
4508 		if (current->flags & PF_MEMALLOC)
4509 			return ALLOC_NO_WATERMARKS;
4510 		else if (oom_reserves_allowed(current))
4511 			return ALLOC_OOM;
4512 	}
4513 
4514 	return 0;
4515 }
4516 
4517 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4518 {
4519 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4520 }
4521 
4522 /*
4523  * Checks whether it makes sense to retry the reclaim to make a forward progress
4524  * for the given allocation request.
4525  *
4526  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4527  * without success, or when we couldn't even meet the watermark if we
4528  * reclaimed all remaining pages on the LRU lists.
4529  *
4530  * Returns true if a retry is viable or false to enter the oom path.
4531  */
4532 static inline bool
4533 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4534 		     struct alloc_context *ac, int alloc_flags,
4535 		     bool did_some_progress, int *no_progress_loops)
4536 {
4537 	struct zone *zone;
4538 	struct zoneref *z;
4539 	bool ret = false;
4540 
4541 	/*
4542 	 * Costly allocations might have made a progress but this doesn't mean
4543 	 * their order will become available due to high fragmentation so
4544 	 * always increment the no progress counter for them
4545 	 */
4546 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4547 		*no_progress_loops = 0;
4548 	else
4549 		(*no_progress_loops)++;
4550 
4551 	/*
4552 	 * Make sure we converge to OOM if we cannot make any progress
4553 	 * several times in the row.
4554 	 */
4555 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4556 		/* Before OOM, exhaust highatomic_reserve */
4557 		return unreserve_highatomic_pageblock(ac, true);
4558 	}
4559 
4560 	/*
4561 	 * Keep reclaiming pages while there is a chance this will lead
4562 	 * somewhere.  If none of the target zones can satisfy our allocation
4563 	 * request even if all reclaimable pages are considered then we are
4564 	 * screwed and have to go OOM.
4565 	 */
4566 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4567 				ac->highest_zoneidx, ac->nodemask) {
4568 		unsigned long available;
4569 		unsigned long reclaimable;
4570 		unsigned long min_wmark = min_wmark_pages(zone);
4571 		bool wmark;
4572 
4573 		available = reclaimable = zone_reclaimable_pages(zone);
4574 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4575 
4576 		/*
4577 		 * Would the allocation succeed if we reclaimed all
4578 		 * reclaimable pages?
4579 		 */
4580 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4581 				ac->highest_zoneidx, alloc_flags, available);
4582 		trace_reclaim_retry_zone(z, order, reclaimable,
4583 				available, min_wmark, *no_progress_loops, wmark);
4584 		if (wmark) {
4585 			/*
4586 			 * If we didn't make any progress and have a lot of
4587 			 * dirty + writeback pages then we should wait for
4588 			 * an IO to complete to slow down the reclaim and
4589 			 * prevent from pre mature OOM
4590 			 */
4591 			if (!did_some_progress) {
4592 				unsigned long write_pending;
4593 
4594 				write_pending = zone_page_state_snapshot(zone,
4595 							NR_ZONE_WRITE_PENDING);
4596 
4597 				if (2 * write_pending > reclaimable) {
4598 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4599 					return true;
4600 				}
4601 			}
4602 
4603 			ret = true;
4604 			goto out;
4605 		}
4606 	}
4607 
4608 out:
4609 	/*
4610 	 * Memory allocation/reclaim might be called from a WQ context and the
4611 	 * current implementation of the WQ concurrency control doesn't
4612 	 * recognize that a particular WQ is congested if the worker thread is
4613 	 * looping without ever sleeping. Therefore we have to do a short sleep
4614 	 * here rather than calling cond_resched().
4615 	 */
4616 	if (current->flags & PF_WQ_WORKER)
4617 		schedule_timeout_uninterruptible(1);
4618 	else
4619 		cond_resched();
4620 	return ret;
4621 }
4622 
4623 static inline bool
4624 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4625 {
4626 	/*
4627 	 * It's possible that cpuset's mems_allowed and the nodemask from
4628 	 * mempolicy don't intersect. This should be normally dealt with by
4629 	 * policy_nodemask(), but it's possible to race with cpuset update in
4630 	 * such a way the check therein was true, and then it became false
4631 	 * before we got our cpuset_mems_cookie here.
4632 	 * This assumes that for all allocations, ac->nodemask can come only
4633 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4634 	 * when it does not intersect with the cpuset restrictions) or the
4635 	 * caller can deal with a violated nodemask.
4636 	 */
4637 	if (cpusets_enabled() && ac->nodemask &&
4638 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4639 		ac->nodemask = NULL;
4640 		return true;
4641 	}
4642 
4643 	/*
4644 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4645 	 * possible to race with parallel threads in such a way that our
4646 	 * allocation can fail while the mask is being updated. If we are about
4647 	 * to fail, check if the cpuset changed during allocation and if so,
4648 	 * retry.
4649 	 */
4650 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4651 		return true;
4652 
4653 	return false;
4654 }
4655 
4656 static inline struct page *
4657 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4658 						struct alloc_context *ac)
4659 {
4660 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4661 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4662 	struct page *page = NULL;
4663 	unsigned int alloc_flags;
4664 	unsigned long did_some_progress;
4665 	enum compact_priority compact_priority;
4666 	enum compact_result compact_result;
4667 	int compaction_retries;
4668 	int no_progress_loops;
4669 	unsigned int cpuset_mems_cookie;
4670 	int reserve_flags;
4671 
4672 	/*
4673 	 * We also sanity check to catch abuse of atomic reserves being used by
4674 	 * callers that are not in atomic context.
4675 	 */
4676 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4677 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4678 		gfp_mask &= ~__GFP_ATOMIC;
4679 
4680 retry_cpuset:
4681 	compaction_retries = 0;
4682 	no_progress_loops = 0;
4683 	compact_priority = DEF_COMPACT_PRIORITY;
4684 	cpuset_mems_cookie = read_mems_allowed_begin();
4685 
4686 	/*
4687 	 * The fast path uses conservative alloc_flags to succeed only until
4688 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4689 	 * alloc_flags precisely. So we do that now.
4690 	 */
4691 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4692 
4693 	/*
4694 	 * We need to recalculate the starting point for the zonelist iterator
4695 	 * because we might have used different nodemask in the fast path, or
4696 	 * there was a cpuset modification and we are retrying - otherwise we
4697 	 * could end up iterating over non-eligible zones endlessly.
4698 	 */
4699 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4700 					ac->highest_zoneidx, ac->nodemask);
4701 	if (!ac->preferred_zoneref->zone)
4702 		goto nopage;
4703 
4704 	if (alloc_flags & ALLOC_KSWAPD)
4705 		wake_all_kswapds(order, gfp_mask, ac);
4706 
4707 	/*
4708 	 * The adjusted alloc_flags might result in immediate success, so try
4709 	 * that first
4710 	 */
4711 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4712 	if (page)
4713 		goto got_pg;
4714 
4715 	/*
4716 	 * For costly allocations, try direct compaction first, as it's likely
4717 	 * that we have enough base pages and don't need to reclaim. For non-
4718 	 * movable high-order allocations, do that as well, as compaction will
4719 	 * try prevent permanent fragmentation by migrating from blocks of the
4720 	 * same migratetype.
4721 	 * Don't try this for allocations that are allowed to ignore
4722 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4723 	 */
4724 	if (can_direct_reclaim &&
4725 			(costly_order ||
4726 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4727 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4728 		page = __alloc_pages_direct_compact(gfp_mask, order,
4729 						alloc_flags, ac,
4730 						INIT_COMPACT_PRIORITY,
4731 						&compact_result);
4732 		if (page)
4733 			goto got_pg;
4734 
4735 		/*
4736 		 * Checks for costly allocations with __GFP_NORETRY, which
4737 		 * includes some THP page fault allocations
4738 		 */
4739 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4740 			/*
4741 			 * If allocating entire pageblock(s) and compaction
4742 			 * failed because all zones are below low watermarks
4743 			 * or is prohibited because it recently failed at this
4744 			 * order, fail immediately unless the allocator has
4745 			 * requested compaction and reclaim retry.
4746 			 *
4747 			 * Reclaim is
4748 			 *  - potentially very expensive because zones are far
4749 			 *    below their low watermarks or this is part of very
4750 			 *    bursty high order allocations,
4751 			 *  - not guaranteed to help because isolate_freepages()
4752 			 *    may not iterate over freed pages as part of its
4753 			 *    linear scan, and
4754 			 *  - unlikely to make entire pageblocks free on its
4755 			 *    own.
4756 			 */
4757 			if (compact_result == COMPACT_SKIPPED ||
4758 			    compact_result == COMPACT_DEFERRED)
4759 				goto nopage;
4760 
4761 			/*
4762 			 * Looks like reclaim/compaction is worth trying, but
4763 			 * sync compaction could be very expensive, so keep
4764 			 * using async compaction.
4765 			 */
4766 			compact_priority = INIT_COMPACT_PRIORITY;
4767 		}
4768 	}
4769 
4770 retry:
4771 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4772 	if (alloc_flags & ALLOC_KSWAPD)
4773 		wake_all_kswapds(order, gfp_mask, ac);
4774 
4775 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4776 	if (reserve_flags)
4777 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4778 
4779 	/*
4780 	 * Reset the nodemask and zonelist iterators if memory policies can be
4781 	 * ignored. These allocations are high priority and system rather than
4782 	 * user oriented.
4783 	 */
4784 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4785 		ac->nodemask = NULL;
4786 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4787 					ac->highest_zoneidx, ac->nodemask);
4788 	}
4789 
4790 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4791 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4792 	if (page)
4793 		goto got_pg;
4794 
4795 	/* Caller is not willing to reclaim, we can't balance anything */
4796 	if (!can_direct_reclaim)
4797 		goto nopage;
4798 
4799 	/* Avoid recursion of direct reclaim */
4800 	if (current->flags & PF_MEMALLOC)
4801 		goto nopage;
4802 
4803 	/* Try direct reclaim and then allocating */
4804 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4805 							&did_some_progress);
4806 	if (page)
4807 		goto got_pg;
4808 
4809 	/* Try direct compaction and then allocating */
4810 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4811 					compact_priority, &compact_result);
4812 	if (page)
4813 		goto got_pg;
4814 
4815 	/* Do not loop if specifically requested */
4816 	if (gfp_mask & __GFP_NORETRY)
4817 		goto nopage;
4818 
4819 	/*
4820 	 * Do not retry costly high order allocations unless they are
4821 	 * __GFP_RETRY_MAYFAIL
4822 	 */
4823 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4824 		goto nopage;
4825 
4826 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4827 				 did_some_progress > 0, &no_progress_loops))
4828 		goto retry;
4829 
4830 	/*
4831 	 * It doesn't make any sense to retry for the compaction if the order-0
4832 	 * reclaim is not able to make any progress because the current
4833 	 * implementation of the compaction depends on the sufficient amount
4834 	 * of free memory (see __compaction_suitable)
4835 	 */
4836 	if (did_some_progress > 0 &&
4837 			should_compact_retry(ac, order, alloc_flags,
4838 				compact_result, &compact_priority,
4839 				&compaction_retries))
4840 		goto retry;
4841 
4842 
4843 	/* Deal with possible cpuset update races before we start OOM killing */
4844 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4845 		goto retry_cpuset;
4846 
4847 	/* Reclaim has failed us, start killing things */
4848 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4849 	if (page)
4850 		goto got_pg;
4851 
4852 	/* Avoid allocations with no watermarks from looping endlessly */
4853 	if (tsk_is_oom_victim(current) &&
4854 	    (alloc_flags & ALLOC_OOM ||
4855 	     (gfp_mask & __GFP_NOMEMALLOC)))
4856 		goto nopage;
4857 
4858 	/* Retry as long as the OOM killer is making progress */
4859 	if (did_some_progress) {
4860 		no_progress_loops = 0;
4861 		goto retry;
4862 	}
4863 
4864 nopage:
4865 	/* Deal with possible cpuset update races before we fail */
4866 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4867 		goto retry_cpuset;
4868 
4869 	/*
4870 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4871 	 * we always retry
4872 	 */
4873 	if (gfp_mask & __GFP_NOFAIL) {
4874 		/*
4875 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4876 		 * of any new users that actually require GFP_NOWAIT
4877 		 */
4878 		if (WARN_ON_ONCE(!can_direct_reclaim))
4879 			goto fail;
4880 
4881 		/*
4882 		 * PF_MEMALLOC request from this context is rather bizarre
4883 		 * because we cannot reclaim anything and only can loop waiting
4884 		 * for somebody to do a work for us
4885 		 */
4886 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4887 
4888 		/*
4889 		 * non failing costly orders are a hard requirement which we
4890 		 * are not prepared for much so let's warn about these users
4891 		 * so that we can identify them and convert them to something
4892 		 * else.
4893 		 */
4894 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4895 
4896 		/*
4897 		 * Help non-failing allocations by giving them access to memory
4898 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4899 		 * could deplete whole memory reserves which would just make
4900 		 * the situation worse
4901 		 */
4902 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4903 		if (page)
4904 			goto got_pg;
4905 
4906 		cond_resched();
4907 		goto retry;
4908 	}
4909 fail:
4910 	warn_alloc(gfp_mask, ac->nodemask,
4911 			"page allocation failure: order:%u", order);
4912 got_pg:
4913 	return page;
4914 }
4915 
4916 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4917 		int preferred_nid, nodemask_t *nodemask,
4918 		struct alloc_context *ac, gfp_t *alloc_mask,
4919 		unsigned int *alloc_flags)
4920 {
4921 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4922 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4923 	ac->nodemask = nodemask;
4924 	ac->migratetype = gfp_migratetype(gfp_mask);
4925 
4926 	if (cpusets_enabled()) {
4927 		*alloc_mask |= __GFP_HARDWALL;
4928 		/*
4929 		 * When we are in the interrupt context, it is irrelevant
4930 		 * to the current task context. It means that any node ok.
4931 		 */
4932 		if (!in_interrupt() && !ac->nodemask)
4933 			ac->nodemask = &cpuset_current_mems_allowed;
4934 		else
4935 			*alloc_flags |= ALLOC_CPUSET;
4936 	}
4937 
4938 	fs_reclaim_acquire(gfp_mask);
4939 	fs_reclaim_release(gfp_mask);
4940 
4941 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4942 
4943 	if (should_fail_alloc_page(gfp_mask, order))
4944 		return false;
4945 
4946 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4947 
4948 	/* Dirty zone balancing only done in the fast path */
4949 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4950 
4951 	/*
4952 	 * The preferred zone is used for statistics but crucially it is
4953 	 * also used as the starting point for the zonelist iterator. It
4954 	 * may get reset for allocations that ignore memory policies.
4955 	 */
4956 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4957 					ac->highest_zoneidx, ac->nodemask);
4958 
4959 	return true;
4960 }
4961 
4962 /*
4963  * This is the 'heart' of the zoned buddy allocator.
4964  */
4965 struct page *
4966 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4967 							nodemask_t *nodemask)
4968 {
4969 	struct page *page;
4970 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4971 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4972 	struct alloc_context ac = { };
4973 
4974 	/*
4975 	 * There are several places where we assume that the order value is sane
4976 	 * so bail out early if the request is out of bound.
4977 	 */
4978 	if (unlikely(order >= MAX_ORDER)) {
4979 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4980 		return NULL;
4981 	}
4982 
4983 	gfp_mask &= gfp_allowed_mask;
4984 	alloc_mask = gfp_mask;
4985 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4986 		return NULL;
4987 
4988 	/*
4989 	 * Forbid the first pass from falling back to types that fragment
4990 	 * memory until all local zones are considered.
4991 	 */
4992 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4993 
4994 	/* First allocation attempt */
4995 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4996 	if (likely(page))
4997 		goto out;
4998 
4999 	/*
5000 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5001 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5002 	 * from a particular context which has been marked by
5003 	 * memalloc_no{fs,io}_{save,restore}.
5004 	 */
5005 	alloc_mask = current_gfp_context(gfp_mask);
5006 	ac.spread_dirty_pages = false;
5007 
5008 	/*
5009 	 * Restore the original nodemask if it was potentially replaced with
5010 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5011 	 */
5012 	ac.nodemask = nodemask;
5013 
5014 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5015 
5016 out:
5017 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5018 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5019 		__free_pages(page, order);
5020 		page = NULL;
5021 	}
5022 
5023 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5024 
5025 	return page;
5026 }
5027 EXPORT_SYMBOL(__alloc_pages_nodemask);
5028 
5029 /*
5030  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5031  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5032  * you need to access high mem.
5033  */
5034 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5035 {
5036 	struct page *page;
5037 
5038 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5039 	if (!page)
5040 		return 0;
5041 	return (unsigned long) page_address(page);
5042 }
5043 EXPORT_SYMBOL(__get_free_pages);
5044 
5045 unsigned long get_zeroed_page(gfp_t gfp_mask)
5046 {
5047 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5048 }
5049 EXPORT_SYMBOL(get_zeroed_page);
5050 
5051 static inline void free_the_page(struct page *page, unsigned int order)
5052 {
5053 	if (order == 0)		/* Via pcp? */
5054 		free_unref_page(page);
5055 	else
5056 		__free_pages_ok(page, order, FPI_NONE);
5057 }
5058 
5059 /**
5060  * __free_pages - Free pages allocated with alloc_pages().
5061  * @page: The page pointer returned from alloc_pages().
5062  * @order: The order of the allocation.
5063  *
5064  * This function can free multi-page allocations that are not compound
5065  * pages.  It does not check that the @order passed in matches that of
5066  * the allocation, so it is easy to leak memory.  Freeing more memory
5067  * than was allocated will probably emit a warning.
5068  *
5069  * If the last reference to this page is speculative, it will be released
5070  * by put_page() which only frees the first page of a non-compound
5071  * allocation.  To prevent the remaining pages from being leaked, we free
5072  * the subsequent pages here.  If you want to use the page's reference
5073  * count to decide when to free the allocation, you should allocate a
5074  * compound page, and use put_page() instead of __free_pages().
5075  *
5076  * Context: May be called in interrupt context or while holding a normal
5077  * spinlock, but not in NMI context or while holding a raw spinlock.
5078  */
5079 void __free_pages(struct page *page, unsigned int order)
5080 {
5081 	if (put_page_testzero(page))
5082 		free_the_page(page, order);
5083 	else if (!PageHead(page))
5084 		while (order-- > 0)
5085 			free_the_page(page + (1 << order), order);
5086 }
5087 EXPORT_SYMBOL(__free_pages);
5088 
5089 void free_pages(unsigned long addr, unsigned int order)
5090 {
5091 	if (addr != 0) {
5092 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5093 		__free_pages(virt_to_page((void *)addr), order);
5094 	}
5095 }
5096 
5097 EXPORT_SYMBOL(free_pages);
5098 
5099 /*
5100  * Page Fragment:
5101  *  An arbitrary-length arbitrary-offset area of memory which resides
5102  *  within a 0 or higher order page.  Multiple fragments within that page
5103  *  are individually refcounted, in the page's reference counter.
5104  *
5105  * The page_frag functions below provide a simple allocation framework for
5106  * page fragments.  This is used by the network stack and network device
5107  * drivers to provide a backing region of memory for use as either an
5108  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5109  */
5110 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5111 					     gfp_t gfp_mask)
5112 {
5113 	struct page *page = NULL;
5114 	gfp_t gfp = gfp_mask;
5115 
5116 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5117 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5118 		    __GFP_NOMEMALLOC;
5119 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5120 				PAGE_FRAG_CACHE_MAX_ORDER);
5121 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5122 #endif
5123 	if (unlikely(!page))
5124 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5125 
5126 	nc->va = page ? page_address(page) : NULL;
5127 
5128 	return page;
5129 }
5130 
5131 void __page_frag_cache_drain(struct page *page, unsigned int count)
5132 {
5133 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5134 
5135 	if (page_ref_sub_and_test(page, count))
5136 		free_the_page(page, compound_order(page));
5137 }
5138 EXPORT_SYMBOL(__page_frag_cache_drain);
5139 
5140 void *page_frag_alloc(struct page_frag_cache *nc,
5141 		      unsigned int fragsz, gfp_t gfp_mask)
5142 {
5143 	unsigned int size = PAGE_SIZE;
5144 	struct page *page;
5145 	int offset;
5146 
5147 	if (unlikely(!nc->va)) {
5148 refill:
5149 		page = __page_frag_cache_refill(nc, gfp_mask);
5150 		if (!page)
5151 			return NULL;
5152 
5153 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5154 		/* if size can vary use size else just use PAGE_SIZE */
5155 		size = nc->size;
5156 #endif
5157 		/* Even if we own the page, we do not use atomic_set().
5158 		 * This would break get_page_unless_zero() users.
5159 		 */
5160 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5161 
5162 		/* reset page count bias and offset to start of new frag */
5163 		nc->pfmemalloc = page_is_pfmemalloc(page);
5164 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5165 		nc->offset = size;
5166 	}
5167 
5168 	offset = nc->offset - fragsz;
5169 	if (unlikely(offset < 0)) {
5170 		page = virt_to_page(nc->va);
5171 
5172 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5173 			goto refill;
5174 
5175 		if (unlikely(nc->pfmemalloc)) {
5176 			free_the_page(page, compound_order(page));
5177 			goto refill;
5178 		}
5179 
5180 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5181 		/* if size can vary use size else just use PAGE_SIZE */
5182 		size = nc->size;
5183 #endif
5184 		/* OK, page count is 0, we can safely set it */
5185 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5186 
5187 		/* reset page count bias and offset to start of new frag */
5188 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5189 		offset = size - fragsz;
5190 	}
5191 
5192 	nc->pagecnt_bias--;
5193 	nc->offset = offset;
5194 
5195 	return nc->va + offset;
5196 }
5197 EXPORT_SYMBOL(page_frag_alloc);
5198 
5199 /*
5200  * Frees a page fragment allocated out of either a compound or order 0 page.
5201  */
5202 void page_frag_free(void *addr)
5203 {
5204 	struct page *page = virt_to_head_page(addr);
5205 
5206 	if (unlikely(put_page_testzero(page)))
5207 		free_the_page(page, compound_order(page));
5208 }
5209 EXPORT_SYMBOL(page_frag_free);
5210 
5211 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5212 		size_t size)
5213 {
5214 	if (addr) {
5215 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5216 		unsigned long used = addr + PAGE_ALIGN(size);
5217 
5218 		split_page(virt_to_page((void *)addr), order);
5219 		while (used < alloc_end) {
5220 			free_page(used);
5221 			used += PAGE_SIZE;
5222 		}
5223 	}
5224 	return (void *)addr;
5225 }
5226 
5227 /**
5228  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5229  * @size: the number of bytes to allocate
5230  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5231  *
5232  * This function is similar to alloc_pages(), except that it allocates the
5233  * minimum number of pages to satisfy the request.  alloc_pages() can only
5234  * allocate memory in power-of-two pages.
5235  *
5236  * This function is also limited by MAX_ORDER.
5237  *
5238  * Memory allocated by this function must be released by free_pages_exact().
5239  *
5240  * Return: pointer to the allocated area or %NULL in case of error.
5241  */
5242 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5243 {
5244 	unsigned int order = get_order(size);
5245 	unsigned long addr;
5246 
5247 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5248 		gfp_mask &= ~__GFP_COMP;
5249 
5250 	addr = __get_free_pages(gfp_mask, order);
5251 	return make_alloc_exact(addr, order, size);
5252 }
5253 EXPORT_SYMBOL(alloc_pages_exact);
5254 
5255 /**
5256  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5257  *			   pages on a node.
5258  * @nid: the preferred node ID where memory should be allocated
5259  * @size: the number of bytes to allocate
5260  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5261  *
5262  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5263  * back.
5264  *
5265  * Return: pointer to the allocated area or %NULL in case of error.
5266  */
5267 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5268 {
5269 	unsigned int order = get_order(size);
5270 	struct page *p;
5271 
5272 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5273 		gfp_mask &= ~__GFP_COMP;
5274 
5275 	p = alloc_pages_node(nid, gfp_mask, order);
5276 	if (!p)
5277 		return NULL;
5278 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5279 }
5280 
5281 /**
5282  * free_pages_exact - release memory allocated via alloc_pages_exact()
5283  * @virt: the value returned by alloc_pages_exact.
5284  * @size: size of allocation, same value as passed to alloc_pages_exact().
5285  *
5286  * Release the memory allocated by a previous call to alloc_pages_exact.
5287  */
5288 void free_pages_exact(void *virt, size_t size)
5289 {
5290 	unsigned long addr = (unsigned long)virt;
5291 	unsigned long end = addr + PAGE_ALIGN(size);
5292 
5293 	while (addr < end) {
5294 		free_page(addr);
5295 		addr += PAGE_SIZE;
5296 	}
5297 }
5298 EXPORT_SYMBOL(free_pages_exact);
5299 
5300 /**
5301  * nr_free_zone_pages - count number of pages beyond high watermark
5302  * @offset: The zone index of the highest zone
5303  *
5304  * nr_free_zone_pages() counts the number of pages which are beyond the
5305  * high watermark within all zones at or below a given zone index.  For each
5306  * zone, the number of pages is calculated as:
5307  *
5308  *     nr_free_zone_pages = managed_pages - high_pages
5309  *
5310  * Return: number of pages beyond high watermark.
5311  */
5312 static unsigned long nr_free_zone_pages(int offset)
5313 {
5314 	struct zoneref *z;
5315 	struct zone *zone;
5316 
5317 	/* Just pick one node, since fallback list is circular */
5318 	unsigned long sum = 0;
5319 
5320 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5321 
5322 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5323 		unsigned long size = zone_managed_pages(zone);
5324 		unsigned long high = high_wmark_pages(zone);
5325 		if (size > high)
5326 			sum += size - high;
5327 	}
5328 
5329 	return sum;
5330 }
5331 
5332 /**
5333  * nr_free_buffer_pages - count number of pages beyond high watermark
5334  *
5335  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5336  * watermark within ZONE_DMA and ZONE_NORMAL.
5337  *
5338  * Return: number of pages beyond high watermark within ZONE_DMA and
5339  * ZONE_NORMAL.
5340  */
5341 unsigned long nr_free_buffer_pages(void)
5342 {
5343 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5344 }
5345 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5346 
5347 static inline void show_node(struct zone *zone)
5348 {
5349 	if (IS_ENABLED(CONFIG_NUMA))
5350 		printk("Node %d ", zone_to_nid(zone));
5351 }
5352 
5353 long si_mem_available(void)
5354 {
5355 	long available;
5356 	unsigned long pagecache;
5357 	unsigned long wmark_low = 0;
5358 	unsigned long pages[NR_LRU_LISTS];
5359 	unsigned long reclaimable;
5360 	struct zone *zone;
5361 	int lru;
5362 
5363 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5364 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5365 
5366 	for_each_zone(zone)
5367 		wmark_low += low_wmark_pages(zone);
5368 
5369 	/*
5370 	 * Estimate the amount of memory available for userspace allocations,
5371 	 * without causing swapping.
5372 	 */
5373 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5374 
5375 	/*
5376 	 * Not all the page cache can be freed, otherwise the system will
5377 	 * start swapping. Assume at least half of the page cache, or the
5378 	 * low watermark worth of cache, needs to stay.
5379 	 */
5380 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5381 	pagecache -= min(pagecache / 2, wmark_low);
5382 	available += pagecache;
5383 
5384 	/*
5385 	 * Part of the reclaimable slab and other kernel memory consists of
5386 	 * items that are in use, and cannot be freed. Cap this estimate at the
5387 	 * low watermark.
5388 	 */
5389 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5390 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5391 	available += reclaimable - min(reclaimable / 2, wmark_low);
5392 
5393 	if (available < 0)
5394 		available = 0;
5395 	return available;
5396 }
5397 EXPORT_SYMBOL_GPL(si_mem_available);
5398 
5399 void si_meminfo(struct sysinfo *val)
5400 {
5401 	val->totalram = totalram_pages();
5402 	val->sharedram = global_node_page_state(NR_SHMEM);
5403 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5404 	val->bufferram = nr_blockdev_pages();
5405 	val->totalhigh = totalhigh_pages();
5406 	val->freehigh = nr_free_highpages();
5407 	val->mem_unit = PAGE_SIZE;
5408 }
5409 
5410 EXPORT_SYMBOL(si_meminfo);
5411 
5412 #ifdef CONFIG_NUMA
5413 void si_meminfo_node(struct sysinfo *val, int nid)
5414 {
5415 	int zone_type;		/* needs to be signed */
5416 	unsigned long managed_pages = 0;
5417 	unsigned long managed_highpages = 0;
5418 	unsigned long free_highpages = 0;
5419 	pg_data_t *pgdat = NODE_DATA(nid);
5420 
5421 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5422 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5423 	val->totalram = managed_pages;
5424 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5425 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5426 #ifdef CONFIG_HIGHMEM
5427 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5428 		struct zone *zone = &pgdat->node_zones[zone_type];
5429 
5430 		if (is_highmem(zone)) {
5431 			managed_highpages += zone_managed_pages(zone);
5432 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5433 		}
5434 	}
5435 	val->totalhigh = managed_highpages;
5436 	val->freehigh = free_highpages;
5437 #else
5438 	val->totalhigh = managed_highpages;
5439 	val->freehigh = free_highpages;
5440 #endif
5441 	val->mem_unit = PAGE_SIZE;
5442 }
5443 #endif
5444 
5445 /*
5446  * Determine whether the node should be displayed or not, depending on whether
5447  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5448  */
5449 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5450 {
5451 	if (!(flags & SHOW_MEM_FILTER_NODES))
5452 		return false;
5453 
5454 	/*
5455 	 * no node mask - aka implicit memory numa policy. Do not bother with
5456 	 * the synchronization - read_mems_allowed_begin - because we do not
5457 	 * have to be precise here.
5458 	 */
5459 	if (!nodemask)
5460 		nodemask = &cpuset_current_mems_allowed;
5461 
5462 	return !node_isset(nid, *nodemask);
5463 }
5464 
5465 #define K(x) ((x) << (PAGE_SHIFT-10))
5466 
5467 static void show_migration_types(unsigned char type)
5468 {
5469 	static const char types[MIGRATE_TYPES] = {
5470 		[MIGRATE_UNMOVABLE]	= 'U',
5471 		[MIGRATE_MOVABLE]	= 'M',
5472 		[MIGRATE_RECLAIMABLE]	= 'E',
5473 		[MIGRATE_HIGHATOMIC]	= 'H',
5474 #ifdef CONFIG_CMA
5475 		[MIGRATE_CMA]		= 'C',
5476 #endif
5477 #ifdef CONFIG_MEMORY_ISOLATION
5478 		[MIGRATE_ISOLATE]	= 'I',
5479 #endif
5480 	};
5481 	char tmp[MIGRATE_TYPES + 1];
5482 	char *p = tmp;
5483 	int i;
5484 
5485 	for (i = 0; i < MIGRATE_TYPES; i++) {
5486 		if (type & (1 << i))
5487 			*p++ = types[i];
5488 	}
5489 
5490 	*p = '\0';
5491 	printk(KERN_CONT "(%s) ", tmp);
5492 }
5493 
5494 /*
5495  * Show free area list (used inside shift_scroll-lock stuff)
5496  * We also calculate the percentage fragmentation. We do this by counting the
5497  * memory on each free list with the exception of the first item on the list.
5498  *
5499  * Bits in @filter:
5500  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5501  *   cpuset.
5502  */
5503 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5504 {
5505 	unsigned long free_pcp = 0;
5506 	int cpu;
5507 	struct zone *zone;
5508 	pg_data_t *pgdat;
5509 
5510 	for_each_populated_zone(zone) {
5511 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5512 			continue;
5513 
5514 		for_each_online_cpu(cpu)
5515 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5516 	}
5517 
5518 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5519 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5520 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5521 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5522 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5523 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5524 		global_node_page_state(NR_ACTIVE_ANON),
5525 		global_node_page_state(NR_INACTIVE_ANON),
5526 		global_node_page_state(NR_ISOLATED_ANON),
5527 		global_node_page_state(NR_ACTIVE_FILE),
5528 		global_node_page_state(NR_INACTIVE_FILE),
5529 		global_node_page_state(NR_ISOLATED_FILE),
5530 		global_node_page_state(NR_UNEVICTABLE),
5531 		global_node_page_state(NR_FILE_DIRTY),
5532 		global_node_page_state(NR_WRITEBACK),
5533 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5534 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5535 		global_node_page_state(NR_FILE_MAPPED),
5536 		global_node_page_state(NR_SHMEM),
5537 		global_node_page_state(NR_PAGETABLE),
5538 		global_zone_page_state(NR_BOUNCE),
5539 		global_zone_page_state(NR_FREE_PAGES),
5540 		free_pcp,
5541 		global_zone_page_state(NR_FREE_CMA_PAGES));
5542 
5543 	for_each_online_pgdat(pgdat) {
5544 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5545 			continue;
5546 
5547 		printk("Node %d"
5548 			" active_anon:%lukB"
5549 			" inactive_anon:%lukB"
5550 			" active_file:%lukB"
5551 			" inactive_file:%lukB"
5552 			" unevictable:%lukB"
5553 			" isolated(anon):%lukB"
5554 			" isolated(file):%lukB"
5555 			" mapped:%lukB"
5556 			" dirty:%lukB"
5557 			" writeback:%lukB"
5558 			" shmem:%lukB"
5559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5560 			" shmem_thp: %lukB"
5561 			" shmem_pmdmapped: %lukB"
5562 			" anon_thp: %lukB"
5563 #endif
5564 			" writeback_tmp:%lukB"
5565 			" kernel_stack:%lukB"
5566 #ifdef CONFIG_SHADOW_CALL_STACK
5567 			" shadow_call_stack:%lukB"
5568 #endif
5569 			" pagetables:%lukB"
5570 			" all_unreclaimable? %s"
5571 			"\n",
5572 			pgdat->node_id,
5573 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5574 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5575 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5576 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5577 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5578 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5579 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5580 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5581 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5582 			K(node_page_state(pgdat, NR_WRITEBACK)),
5583 			K(node_page_state(pgdat, NR_SHMEM)),
5584 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5585 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5586 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5587 					* HPAGE_PMD_NR),
5588 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5589 #endif
5590 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5591 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5592 #ifdef CONFIG_SHADOW_CALL_STACK
5593 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5594 #endif
5595 			K(node_page_state(pgdat, NR_PAGETABLE)),
5596 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5597 				"yes" : "no");
5598 	}
5599 
5600 	for_each_populated_zone(zone) {
5601 		int i;
5602 
5603 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5604 			continue;
5605 
5606 		free_pcp = 0;
5607 		for_each_online_cpu(cpu)
5608 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5609 
5610 		show_node(zone);
5611 		printk(KERN_CONT
5612 			"%s"
5613 			" free:%lukB"
5614 			" min:%lukB"
5615 			" low:%lukB"
5616 			" high:%lukB"
5617 			" reserved_highatomic:%luKB"
5618 			" active_anon:%lukB"
5619 			" inactive_anon:%lukB"
5620 			" active_file:%lukB"
5621 			" inactive_file:%lukB"
5622 			" unevictable:%lukB"
5623 			" writepending:%lukB"
5624 			" present:%lukB"
5625 			" managed:%lukB"
5626 			" mlocked:%lukB"
5627 			" bounce:%lukB"
5628 			" free_pcp:%lukB"
5629 			" local_pcp:%ukB"
5630 			" free_cma:%lukB"
5631 			"\n",
5632 			zone->name,
5633 			K(zone_page_state(zone, NR_FREE_PAGES)),
5634 			K(min_wmark_pages(zone)),
5635 			K(low_wmark_pages(zone)),
5636 			K(high_wmark_pages(zone)),
5637 			K(zone->nr_reserved_highatomic),
5638 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5639 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5640 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5641 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5642 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5643 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5644 			K(zone->present_pages),
5645 			K(zone_managed_pages(zone)),
5646 			K(zone_page_state(zone, NR_MLOCK)),
5647 			K(zone_page_state(zone, NR_BOUNCE)),
5648 			K(free_pcp),
5649 			K(this_cpu_read(zone->pageset->pcp.count)),
5650 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5651 		printk("lowmem_reserve[]:");
5652 		for (i = 0; i < MAX_NR_ZONES; i++)
5653 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5654 		printk(KERN_CONT "\n");
5655 	}
5656 
5657 	for_each_populated_zone(zone) {
5658 		unsigned int order;
5659 		unsigned long nr[MAX_ORDER], flags, total = 0;
5660 		unsigned char types[MAX_ORDER];
5661 
5662 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5663 			continue;
5664 		show_node(zone);
5665 		printk(KERN_CONT "%s: ", zone->name);
5666 
5667 		spin_lock_irqsave(&zone->lock, flags);
5668 		for (order = 0; order < MAX_ORDER; order++) {
5669 			struct free_area *area = &zone->free_area[order];
5670 			int type;
5671 
5672 			nr[order] = area->nr_free;
5673 			total += nr[order] << order;
5674 
5675 			types[order] = 0;
5676 			for (type = 0; type < MIGRATE_TYPES; type++) {
5677 				if (!free_area_empty(area, type))
5678 					types[order] |= 1 << type;
5679 			}
5680 		}
5681 		spin_unlock_irqrestore(&zone->lock, flags);
5682 		for (order = 0; order < MAX_ORDER; order++) {
5683 			printk(KERN_CONT "%lu*%lukB ",
5684 			       nr[order], K(1UL) << order);
5685 			if (nr[order])
5686 				show_migration_types(types[order]);
5687 		}
5688 		printk(KERN_CONT "= %lukB\n", K(total));
5689 	}
5690 
5691 	hugetlb_show_meminfo();
5692 
5693 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5694 
5695 	show_swap_cache_info();
5696 }
5697 
5698 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5699 {
5700 	zoneref->zone = zone;
5701 	zoneref->zone_idx = zone_idx(zone);
5702 }
5703 
5704 /*
5705  * Builds allocation fallback zone lists.
5706  *
5707  * Add all populated zones of a node to the zonelist.
5708  */
5709 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5710 {
5711 	struct zone *zone;
5712 	enum zone_type zone_type = MAX_NR_ZONES;
5713 	int nr_zones = 0;
5714 
5715 	do {
5716 		zone_type--;
5717 		zone = pgdat->node_zones + zone_type;
5718 		if (managed_zone(zone)) {
5719 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5720 			check_highest_zone(zone_type);
5721 		}
5722 	} while (zone_type);
5723 
5724 	return nr_zones;
5725 }
5726 
5727 #ifdef CONFIG_NUMA
5728 
5729 static int __parse_numa_zonelist_order(char *s)
5730 {
5731 	/*
5732 	 * We used to support different zonlists modes but they turned
5733 	 * out to be just not useful. Let's keep the warning in place
5734 	 * if somebody still use the cmd line parameter so that we do
5735 	 * not fail it silently
5736 	 */
5737 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5738 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5739 		return -EINVAL;
5740 	}
5741 	return 0;
5742 }
5743 
5744 char numa_zonelist_order[] = "Node";
5745 
5746 /*
5747  * sysctl handler for numa_zonelist_order
5748  */
5749 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5750 		void *buffer, size_t *length, loff_t *ppos)
5751 {
5752 	if (write)
5753 		return __parse_numa_zonelist_order(buffer);
5754 	return proc_dostring(table, write, buffer, length, ppos);
5755 }
5756 
5757 
5758 #define MAX_NODE_LOAD (nr_online_nodes)
5759 static int node_load[MAX_NUMNODES];
5760 
5761 /**
5762  * find_next_best_node - find the next node that should appear in a given node's fallback list
5763  * @node: node whose fallback list we're appending
5764  * @used_node_mask: nodemask_t of already used nodes
5765  *
5766  * We use a number of factors to determine which is the next node that should
5767  * appear on a given node's fallback list.  The node should not have appeared
5768  * already in @node's fallback list, and it should be the next closest node
5769  * according to the distance array (which contains arbitrary distance values
5770  * from each node to each node in the system), and should also prefer nodes
5771  * with no CPUs, since presumably they'll have very little allocation pressure
5772  * on them otherwise.
5773  *
5774  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5775  */
5776 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5777 {
5778 	int n, val;
5779 	int min_val = INT_MAX;
5780 	int best_node = NUMA_NO_NODE;
5781 
5782 	/* Use the local node if we haven't already */
5783 	if (!node_isset(node, *used_node_mask)) {
5784 		node_set(node, *used_node_mask);
5785 		return node;
5786 	}
5787 
5788 	for_each_node_state(n, N_MEMORY) {
5789 
5790 		/* Don't want a node to appear more than once */
5791 		if (node_isset(n, *used_node_mask))
5792 			continue;
5793 
5794 		/* Use the distance array to find the distance */
5795 		val = node_distance(node, n);
5796 
5797 		/* Penalize nodes under us ("prefer the next node") */
5798 		val += (n < node);
5799 
5800 		/* Give preference to headless and unused nodes */
5801 		if (!cpumask_empty(cpumask_of_node(n)))
5802 			val += PENALTY_FOR_NODE_WITH_CPUS;
5803 
5804 		/* Slight preference for less loaded node */
5805 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5806 		val += node_load[n];
5807 
5808 		if (val < min_val) {
5809 			min_val = val;
5810 			best_node = n;
5811 		}
5812 	}
5813 
5814 	if (best_node >= 0)
5815 		node_set(best_node, *used_node_mask);
5816 
5817 	return best_node;
5818 }
5819 
5820 
5821 /*
5822  * Build zonelists ordered by node and zones within node.
5823  * This results in maximum locality--normal zone overflows into local
5824  * DMA zone, if any--but risks exhausting DMA zone.
5825  */
5826 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5827 		unsigned nr_nodes)
5828 {
5829 	struct zoneref *zonerefs;
5830 	int i;
5831 
5832 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5833 
5834 	for (i = 0; i < nr_nodes; i++) {
5835 		int nr_zones;
5836 
5837 		pg_data_t *node = NODE_DATA(node_order[i]);
5838 
5839 		nr_zones = build_zonerefs_node(node, zonerefs);
5840 		zonerefs += nr_zones;
5841 	}
5842 	zonerefs->zone = NULL;
5843 	zonerefs->zone_idx = 0;
5844 }
5845 
5846 /*
5847  * Build gfp_thisnode zonelists
5848  */
5849 static void build_thisnode_zonelists(pg_data_t *pgdat)
5850 {
5851 	struct zoneref *zonerefs;
5852 	int nr_zones;
5853 
5854 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5855 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5856 	zonerefs += nr_zones;
5857 	zonerefs->zone = NULL;
5858 	zonerefs->zone_idx = 0;
5859 }
5860 
5861 /*
5862  * Build zonelists ordered by zone and nodes within zones.
5863  * This results in conserving DMA zone[s] until all Normal memory is
5864  * exhausted, but results in overflowing to remote node while memory
5865  * may still exist in local DMA zone.
5866  */
5867 
5868 static void build_zonelists(pg_data_t *pgdat)
5869 {
5870 	static int node_order[MAX_NUMNODES];
5871 	int node, load, nr_nodes = 0;
5872 	nodemask_t used_mask = NODE_MASK_NONE;
5873 	int local_node, prev_node;
5874 
5875 	/* NUMA-aware ordering of nodes */
5876 	local_node = pgdat->node_id;
5877 	load = nr_online_nodes;
5878 	prev_node = local_node;
5879 
5880 	memset(node_order, 0, sizeof(node_order));
5881 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5882 		/*
5883 		 * We don't want to pressure a particular node.
5884 		 * So adding penalty to the first node in same
5885 		 * distance group to make it round-robin.
5886 		 */
5887 		if (node_distance(local_node, node) !=
5888 		    node_distance(local_node, prev_node))
5889 			node_load[node] = load;
5890 
5891 		node_order[nr_nodes++] = node;
5892 		prev_node = node;
5893 		load--;
5894 	}
5895 
5896 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5897 	build_thisnode_zonelists(pgdat);
5898 }
5899 
5900 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5901 /*
5902  * Return node id of node used for "local" allocations.
5903  * I.e., first node id of first zone in arg node's generic zonelist.
5904  * Used for initializing percpu 'numa_mem', which is used primarily
5905  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5906  */
5907 int local_memory_node(int node)
5908 {
5909 	struct zoneref *z;
5910 
5911 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5912 				   gfp_zone(GFP_KERNEL),
5913 				   NULL);
5914 	return zone_to_nid(z->zone);
5915 }
5916 #endif
5917 
5918 static void setup_min_unmapped_ratio(void);
5919 static void setup_min_slab_ratio(void);
5920 #else	/* CONFIG_NUMA */
5921 
5922 static void build_zonelists(pg_data_t *pgdat)
5923 {
5924 	int node, local_node;
5925 	struct zoneref *zonerefs;
5926 	int nr_zones;
5927 
5928 	local_node = pgdat->node_id;
5929 
5930 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5931 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5932 	zonerefs += nr_zones;
5933 
5934 	/*
5935 	 * Now we build the zonelist so that it contains the zones
5936 	 * of all the other nodes.
5937 	 * We don't want to pressure a particular node, so when
5938 	 * building the zones for node N, we make sure that the
5939 	 * zones coming right after the local ones are those from
5940 	 * node N+1 (modulo N)
5941 	 */
5942 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5943 		if (!node_online(node))
5944 			continue;
5945 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5946 		zonerefs += nr_zones;
5947 	}
5948 	for (node = 0; node < local_node; node++) {
5949 		if (!node_online(node))
5950 			continue;
5951 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5952 		zonerefs += nr_zones;
5953 	}
5954 
5955 	zonerefs->zone = NULL;
5956 	zonerefs->zone_idx = 0;
5957 }
5958 
5959 #endif	/* CONFIG_NUMA */
5960 
5961 /*
5962  * Boot pageset table. One per cpu which is going to be used for all
5963  * zones and all nodes. The parameters will be set in such a way
5964  * that an item put on a list will immediately be handed over to
5965  * the buddy list. This is safe since pageset manipulation is done
5966  * with interrupts disabled.
5967  *
5968  * The boot_pagesets must be kept even after bootup is complete for
5969  * unused processors and/or zones. They do play a role for bootstrapping
5970  * hotplugged processors.
5971  *
5972  * zoneinfo_show() and maybe other functions do
5973  * not check if the processor is online before following the pageset pointer.
5974  * Other parts of the kernel may not check if the zone is available.
5975  */
5976 static void pageset_init(struct per_cpu_pageset *p);
5977 /* These effectively disable the pcplists in the boot pageset completely */
5978 #define BOOT_PAGESET_HIGH	0
5979 #define BOOT_PAGESET_BATCH	1
5980 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5981 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5982 
5983 static void __build_all_zonelists(void *data)
5984 {
5985 	int nid;
5986 	int __maybe_unused cpu;
5987 	pg_data_t *self = data;
5988 	static DEFINE_SPINLOCK(lock);
5989 
5990 	spin_lock(&lock);
5991 
5992 #ifdef CONFIG_NUMA
5993 	memset(node_load, 0, sizeof(node_load));
5994 #endif
5995 
5996 	/*
5997 	 * This node is hotadded and no memory is yet present.   So just
5998 	 * building zonelists is fine - no need to touch other nodes.
5999 	 */
6000 	if (self && !node_online(self->node_id)) {
6001 		build_zonelists(self);
6002 	} else {
6003 		for_each_online_node(nid) {
6004 			pg_data_t *pgdat = NODE_DATA(nid);
6005 
6006 			build_zonelists(pgdat);
6007 		}
6008 
6009 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6010 		/*
6011 		 * We now know the "local memory node" for each node--
6012 		 * i.e., the node of the first zone in the generic zonelist.
6013 		 * Set up numa_mem percpu variable for on-line cpus.  During
6014 		 * boot, only the boot cpu should be on-line;  we'll init the
6015 		 * secondary cpus' numa_mem as they come on-line.  During
6016 		 * node/memory hotplug, we'll fixup all on-line cpus.
6017 		 */
6018 		for_each_online_cpu(cpu)
6019 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6020 #endif
6021 	}
6022 
6023 	spin_unlock(&lock);
6024 }
6025 
6026 static noinline void __init
6027 build_all_zonelists_init(void)
6028 {
6029 	int cpu;
6030 
6031 	__build_all_zonelists(NULL);
6032 
6033 	/*
6034 	 * Initialize the boot_pagesets that are going to be used
6035 	 * for bootstrapping processors. The real pagesets for
6036 	 * each zone will be allocated later when the per cpu
6037 	 * allocator is available.
6038 	 *
6039 	 * boot_pagesets are used also for bootstrapping offline
6040 	 * cpus if the system is already booted because the pagesets
6041 	 * are needed to initialize allocators on a specific cpu too.
6042 	 * F.e. the percpu allocator needs the page allocator which
6043 	 * needs the percpu allocator in order to allocate its pagesets
6044 	 * (a chicken-egg dilemma).
6045 	 */
6046 	for_each_possible_cpu(cpu)
6047 		pageset_init(&per_cpu(boot_pageset, cpu));
6048 
6049 	mminit_verify_zonelist();
6050 	cpuset_init_current_mems_allowed();
6051 }
6052 
6053 /*
6054  * unless system_state == SYSTEM_BOOTING.
6055  *
6056  * __ref due to call of __init annotated helper build_all_zonelists_init
6057  * [protected by SYSTEM_BOOTING].
6058  */
6059 void __ref build_all_zonelists(pg_data_t *pgdat)
6060 {
6061 	unsigned long vm_total_pages;
6062 
6063 	if (system_state == SYSTEM_BOOTING) {
6064 		build_all_zonelists_init();
6065 	} else {
6066 		__build_all_zonelists(pgdat);
6067 		/* cpuset refresh routine should be here */
6068 	}
6069 	/* Get the number of free pages beyond high watermark in all zones. */
6070 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6071 	/*
6072 	 * Disable grouping by mobility if the number of pages in the
6073 	 * system is too low to allow the mechanism to work. It would be
6074 	 * more accurate, but expensive to check per-zone. This check is
6075 	 * made on memory-hotadd so a system can start with mobility
6076 	 * disabled and enable it later
6077 	 */
6078 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6079 		page_group_by_mobility_disabled = 1;
6080 	else
6081 		page_group_by_mobility_disabled = 0;
6082 
6083 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6084 		nr_online_nodes,
6085 		page_group_by_mobility_disabled ? "off" : "on",
6086 		vm_total_pages);
6087 #ifdef CONFIG_NUMA
6088 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6089 #endif
6090 }
6091 
6092 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6093 static bool __meminit
6094 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6095 {
6096 	static struct memblock_region *r;
6097 
6098 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6099 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6100 			for_each_mem_region(r) {
6101 				if (*pfn < memblock_region_memory_end_pfn(r))
6102 					break;
6103 			}
6104 		}
6105 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6106 		    memblock_is_mirror(r)) {
6107 			*pfn = memblock_region_memory_end_pfn(r);
6108 			return true;
6109 		}
6110 	}
6111 	return false;
6112 }
6113 
6114 /*
6115  * Initially all pages are reserved - free ones are freed
6116  * up by memblock_free_all() once the early boot process is
6117  * done. Non-atomic initialization, single-pass.
6118  *
6119  * All aligned pageblocks are initialized to the specified migratetype
6120  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6121  * zone stats (e.g., nr_isolate_pageblock) are touched.
6122  */
6123 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6124 		unsigned long start_pfn, unsigned long zone_end_pfn,
6125 		enum meminit_context context,
6126 		struct vmem_altmap *altmap, int migratetype)
6127 {
6128 	unsigned long pfn, end_pfn = start_pfn + size;
6129 	struct page *page;
6130 
6131 	if (highest_memmap_pfn < end_pfn - 1)
6132 		highest_memmap_pfn = end_pfn - 1;
6133 
6134 #ifdef CONFIG_ZONE_DEVICE
6135 	/*
6136 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6137 	 * memory. We limit the total number of pages to initialize to just
6138 	 * those that might contain the memory mapping. We will defer the
6139 	 * ZONE_DEVICE page initialization until after we have released
6140 	 * the hotplug lock.
6141 	 */
6142 	if (zone == ZONE_DEVICE) {
6143 		if (!altmap)
6144 			return;
6145 
6146 		if (start_pfn == altmap->base_pfn)
6147 			start_pfn += altmap->reserve;
6148 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6149 	}
6150 #endif
6151 
6152 	for (pfn = start_pfn; pfn < end_pfn; ) {
6153 		/*
6154 		 * There can be holes in boot-time mem_map[]s handed to this
6155 		 * function.  They do not exist on hotplugged memory.
6156 		 */
6157 		if (context == MEMINIT_EARLY) {
6158 			if (overlap_memmap_init(zone, &pfn))
6159 				continue;
6160 			if (defer_init(nid, pfn, zone_end_pfn))
6161 				break;
6162 		}
6163 
6164 		page = pfn_to_page(pfn);
6165 		__init_single_page(page, pfn, zone, nid);
6166 		if (context == MEMINIT_HOTPLUG)
6167 			__SetPageReserved(page);
6168 
6169 		/*
6170 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6171 		 * such that unmovable allocations won't be scattered all
6172 		 * over the place during system boot.
6173 		 */
6174 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6175 			set_pageblock_migratetype(page, migratetype);
6176 			cond_resched();
6177 		}
6178 		pfn++;
6179 	}
6180 }
6181 
6182 #ifdef CONFIG_ZONE_DEVICE
6183 void __ref memmap_init_zone_device(struct zone *zone,
6184 				   unsigned long start_pfn,
6185 				   unsigned long nr_pages,
6186 				   struct dev_pagemap *pgmap)
6187 {
6188 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6189 	struct pglist_data *pgdat = zone->zone_pgdat;
6190 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6191 	unsigned long zone_idx = zone_idx(zone);
6192 	unsigned long start = jiffies;
6193 	int nid = pgdat->node_id;
6194 
6195 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6196 		return;
6197 
6198 	/*
6199 	 * The call to memmap_init_zone should have already taken care
6200 	 * of the pages reserved for the memmap, so we can just jump to
6201 	 * the end of that region and start processing the device pages.
6202 	 */
6203 	if (altmap) {
6204 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6205 		nr_pages = end_pfn - start_pfn;
6206 	}
6207 
6208 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6209 		struct page *page = pfn_to_page(pfn);
6210 
6211 		__init_single_page(page, pfn, zone_idx, nid);
6212 
6213 		/*
6214 		 * Mark page reserved as it will need to wait for onlining
6215 		 * phase for it to be fully associated with a zone.
6216 		 *
6217 		 * We can use the non-atomic __set_bit operation for setting
6218 		 * the flag as we are still initializing the pages.
6219 		 */
6220 		__SetPageReserved(page);
6221 
6222 		/*
6223 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6224 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6225 		 * ever freed or placed on a driver-private list.
6226 		 */
6227 		page->pgmap = pgmap;
6228 		page->zone_device_data = NULL;
6229 
6230 		/*
6231 		 * Mark the block movable so that blocks are reserved for
6232 		 * movable at startup. This will force kernel allocations
6233 		 * to reserve their blocks rather than leaking throughout
6234 		 * the address space during boot when many long-lived
6235 		 * kernel allocations are made.
6236 		 *
6237 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6238 		 * because this is done early in section_activate()
6239 		 */
6240 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6241 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6242 			cond_resched();
6243 		}
6244 	}
6245 
6246 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6247 		nr_pages, jiffies_to_msecs(jiffies - start));
6248 }
6249 
6250 #endif
6251 static void __meminit zone_init_free_lists(struct zone *zone)
6252 {
6253 	unsigned int order, t;
6254 	for_each_migratetype_order(order, t) {
6255 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6256 		zone->free_area[order].nr_free = 0;
6257 	}
6258 }
6259 
6260 void __meminit __weak memmap_init(unsigned long size, int nid,
6261 				  unsigned long zone,
6262 				  unsigned long range_start_pfn)
6263 {
6264 	unsigned long start_pfn, end_pfn;
6265 	unsigned long range_end_pfn = range_start_pfn + size;
6266 	int i;
6267 
6268 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6269 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6270 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6271 
6272 		if (end_pfn > start_pfn) {
6273 			size = end_pfn - start_pfn;
6274 			memmap_init_zone(size, nid, zone, start_pfn, range_end_pfn,
6275 					 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6276 		}
6277 	}
6278 }
6279 
6280 static int zone_batchsize(struct zone *zone)
6281 {
6282 #ifdef CONFIG_MMU
6283 	int batch;
6284 
6285 	/*
6286 	 * The per-cpu-pages pools are set to around 1000th of the
6287 	 * size of the zone.
6288 	 */
6289 	batch = zone_managed_pages(zone) / 1024;
6290 	/* But no more than a meg. */
6291 	if (batch * PAGE_SIZE > 1024 * 1024)
6292 		batch = (1024 * 1024) / PAGE_SIZE;
6293 	batch /= 4;		/* We effectively *= 4 below */
6294 	if (batch < 1)
6295 		batch = 1;
6296 
6297 	/*
6298 	 * Clamp the batch to a 2^n - 1 value. Having a power
6299 	 * of 2 value was found to be more likely to have
6300 	 * suboptimal cache aliasing properties in some cases.
6301 	 *
6302 	 * For example if 2 tasks are alternately allocating
6303 	 * batches of pages, one task can end up with a lot
6304 	 * of pages of one half of the possible page colors
6305 	 * and the other with pages of the other colors.
6306 	 */
6307 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6308 
6309 	return batch;
6310 
6311 #else
6312 	/* The deferral and batching of frees should be suppressed under NOMMU
6313 	 * conditions.
6314 	 *
6315 	 * The problem is that NOMMU needs to be able to allocate large chunks
6316 	 * of contiguous memory as there's no hardware page translation to
6317 	 * assemble apparent contiguous memory from discontiguous pages.
6318 	 *
6319 	 * Queueing large contiguous runs of pages for batching, however,
6320 	 * causes the pages to actually be freed in smaller chunks.  As there
6321 	 * can be a significant delay between the individual batches being
6322 	 * recycled, this leads to the once large chunks of space being
6323 	 * fragmented and becoming unavailable for high-order allocations.
6324 	 */
6325 	return 0;
6326 #endif
6327 }
6328 
6329 /*
6330  * pcp->high and pcp->batch values are related and generally batch is lower
6331  * than high. They are also related to pcp->count such that count is lower
6332  * than high, and as soon as it reaches high, the pcplist is flushed.
6333  *
6334  * However, guaranteeing these relations at all times would require e.g. write
6335  * barriers here but also careful usage of read barriers at the read side, and
6336  * thus be prone to error and bad for performance. Thus the update only prevents
6337  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6338  * can cope with those fields changing asynchronously, and fully trust only the
6339  * pcp->count field on the local CPU with interrupts disabled.
6340  *
6341  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6342  * outside of boot time (or some other assurance that no concurrent updaters
6343  * exist).
6344  */
6345 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6346 		unsigned long batch)
6347 {
6348 	WRITE_ONCE(pcp->batch, batch);
6349 	WRITE_ONCE(pcp->high, high);
6350 }
6351 
6352 static void pageset_init(struct per_cpu_pageset *p)
6353 {
6354 	struct per_cpu_pages *pcp;
6355 	int migratetype;
6356 
6357 	memset(p, 0, sizeof(*p));
6358 
6359 	pcp = &p->pcp;
6360 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6361 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6362 
6363 	/*
6364 	 * Set batch and high values safe for a boot pageset. A true percpu
6365 	 * pageset's initialization will update them subsequently. Here we don't
6366 	 * need to be as careful as pageset_update() as nobody can access the
6367 	 * pageset yet.
6368 	 */
6369 	pcp->high = BOOT_PAGESET_HIGH;
6370 	pcp->batch = BOOT_PAGESET_BATCH;
6371 }
6372 
6373 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6374 		unsigned long batch)
6375 {
6376 	struct per_cpu_pageset *p;
6377 	int cpu;
6378 
6379 	for_each_possible_cpu(cpu) {
6380 		p = per_cpu_ptr(zone->pageset, cpu);
6381 		pageset_update(&p->pcp, high, batch);
6382 	}
6383 }
6384 
6385 /*
6386  * Calculate and set new high and batch values for all per-cpu pagesets of a
6387  * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6388  */
6389 static void zone_set_pageset_high_and_batch(struct zone *zone)
6390 {
6391 	unsigned long new_high, new_batch;
6392 
6393 	if (percpu_pagelist_fraction) {
6394 		new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6395 		new_batch = max(1UL, new_high / 4);
6396 		if ((new_high / 4) > (PAGE_SHIFT * 8))
6397 			new_batch = PAGE_SHIFT * 8;
6398 	} else {
6399 		new_batch = zone_batchsize(zone);
6400 		new_high = 6 * new_batch;
6401 		new_batch = max(1UL, 1 * new_batch);
6402 	}
6403 
6404 	if (zone->pageset_high == new_high &&
6405 	    zone->pageset_batch == new_batch)
6406 		return;
6407 
6408 	zone->pageset_high = new_high;
6409 	zone->pageset_batch = new_batch;
6410 
6411 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6412 }
6413 
6414 void __meminit setup_zone_pageset(struct zone *zone)
6415 {
6416 	struct per_cpu_pageset *p;
6417 	int cpu;
6418 
6419 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6420 	for_each_possible_cpu(cpu) {
6421 		p = per_cpu_ptr(zone->pageset, cpu);
6422 		pageset_init(p);
6423 	}
6424 
6425 	zone_set_pageset_high_and_batch(zone);
6426 }
6427 
6428 /*
6429  * Allocate per cpu pagesets and initialize them.
6430  * Before this call only boot pagesets were available.
6431  */
6432 void __init setup_per_cpu_pageset(void)
6433 {
6434 	struct pglist_data *pgdat;
6435 	struct zone *zone;
6436 	int __maybe_unused cpu;
6437 
6438 	for_each_populated_zone(zone)
6439 		setup_zone_pageset(zone);
6440 
6441 #ifdef CONFIG_NUMA
6442 	/*
6443 	 * Unpopulated zones continue using the boot pagesets.
6444 	 * The numa stats for these pagesets need to be reset.
6445 	 * Otherwise, they will end up skewing the stats of
6446 	 * the nodes these zones are associated with.
6447 	 */
6448 	for_each_possible_cpu(cpu) {
6449 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6450 		memset(pcp->vm_numa_stat_diff, 0,
6451 		       sizeof(pcp->vm_numa_stat_diff));
6452 	}
6453 #endif
6454 
6455 	for_each_online_pgdat(pgdat)
6456 		pgdat->per_cpu_nodestats =
6457 			alloc_percpu(struct per_cpu_nodestat);
6458 }
6459 
6460 static __meminit void zone_pcp_init(struct zone *zone)
6461 {
6462 	/*
6463 	 * per cpu subsystem is not up at this point. The following code
6464 	 * relies on the ability of the linker to provide the
6465 	 * offset of a (static) per cpu variable into the per cpu area.
6466 	 */
6467 	zone->pageset = &boot_pageset;
6468 	zone->pageset_high = BOOT_PAGESET_HIGH;
6469 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6470 
6471 	if (populated_zone(zone))
6472 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6473 			zone->name, zone->present_pages,
6474 					 zone_batchsize(zone));
6475 }
6476 
6477 void __meminit init_currently_empty_zone(struct zone *zone,
6478 					unsigned long zone_start_pfn,
6479 					unsigned long size)
6480 {
6481 	struct pglist_data *pgdat = zone->zone_pgdat;
6482 	int zone_idx = zone_idx(zone) + 1;
6483 
6484 	if (zone_idx > pgdat->nr_zones)
6485 		pgdat->nr_zones = zone_idx;
6486 
6487 	zone->zone_start_pfn = zone_start_pfn;
6488 
6489 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6490 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6491 			pgdat->node_id,
6492 			(unsigned long)zone_idx(zone),
6493 			zone_start_pfn, (zone_start_pfn + size));
6494 
6495 	zone_init_free_lists(zone);
6496 	zone->initialized = 1;
6497 }
6498 
6499 /**
6500  * get_pfn_range_for_nid - Return the start and end page frames for a node
6501  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6502  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6503  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6504  *
6505  * It returns the start and end page frame of a node based on information
6506  * provided by memblock_set_node(). If called for a node
6507  * with no available memory, a warning is printed and the start and end
6508  * PFNs will be 0.
6509  */
6510 void __init get_pfn_range_for_nid(unsigned int nid,
6511 			unsigned long *start_pfn, unsigned long *end_pfn)
6512 {
6513 	unsigned long this_start_pfn, this_end_pfn;
6514 	int i;
6515 
6516 	*start_pfn = -1UL;
6517 	*end_pfn = 0;
6518 
6519 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6520 		*start_pfn = min(*start_pfn, this_start_pfn);
6521 		*end_pfn = max(*end_pfn, this_end_pfn);
6522 	}
6523 
6524 	if (*start_pfn == -1UL)
6525 		*start_pfn = 0;
6526 }
6527 
6528 /*
6529  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6530  * assumption is made that zones within a node are ordered in monotonic
6531  * increasing memory addresses so that the "highest" populated zone is used
6532  */
6533 static void __init find_usable_zone_for_movable(void)
6534 {
6535 	int zone_index;
6536 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6537 		if (zone_index == ZONE_MOVABLE)
6538 			continue;
6539 
6540 		if (arch_zone_highest_possible_pfn[zone_index] >
6541 				arch_zone_lowest_possible_pfn[zone_index])
6542 			break;
6543 	}
6544 
6545 	VM_BUG_ON(zone_index == -1);
6546 	movable_zone = zone_index;
6547 }
6548 
6549 /*
6550  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6551  * because it is sized independent of architecture. Unlike the other zones,
6552  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6553  * in each node depending on the size of each node and how evenly kernelcore
6554  * is distributed. This helper function adjusts the zone ranges
6555  * provided by the architecture for a given node by using the end of the
6556  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6557  * zones within a node are in order of monotonic increases memory addresses
6558  */
6559 static void __init adjust_zone_range_for_zone_movable(int nid,
6560 					unsigned long zone_type,
6561 					unsigned long node_start_pfn,
6562 					unsigned long node_end_pfn,
6563 					unsigned long *zone_start_pfn,
6564 					unsigned long *zone_end_pfn)
6565 {
6566 	/* Only adjust if ZONE_MOVABLE is on this node */
6567 	if (zone_movable_pfn[nid]) {
6568 		/* Size ZONE_MOVABLE */
6569 		if (zone_type == ZONE_MOVABLE) {
6570 			*zone_start_pfn = zone_movable_pfn[nid];
6571 			*zone_end_pfn = min(node_end_pfn,
6572 				arch_zone_highest_possible_pfn[movable_zone]);
6573 
6574 		/* Adjust for ZONE_MOVABLE starting within this range */
6575 		} else if (!mirrored_kernelcore &&
6576 			*zone_start_pfn < zone_movable_pfn[nid] &&
6577 			*zone_end_pfn > zone_movable_pfn[nid]) {
6578 			*zone_end_pfn = zone_movable_pfn[nid];
6579 
6580 		/* Check if this whole range is within ZONE_MOVABLE */
6581 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6582 			*zone_start_pfn = *zone_end_pfn;
6583 	}
6584 }
6585 
6586 /*
6587  * Return the number of pages a zone spans in a node, including holes
6588  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6589  */
6590 static unsigned long __init zone_spanned_pages_in_node(int nid,
6591 					unsigned long zone_type,
6592 					unsigned long node_start_pfn,
6593 					unsigned long node_end_pfn,
6594 					unsigned long *zone_start_pfn,
6595 					unsigned long *zone_end_pfn)
6596 {
6597 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6598 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6599 	/* When hotadd a new node from cpu_up(), the node should be empty */
6600 	if (!node_start_pfn && !node_end_pfn)
6601 		return 0;
6602 
6603 	/* Get the start and end of the zone */
6604 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6605 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6606 	adjust_zone_range_for_zone_movable(nid, zone_type,
6607 				node_start_pfn, node_end_pfn,
6608 				zone_start_pfn, zone_end_pfn);
6609 
6610 	/* Check that this node has pages within the zone's required range */
6611 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6612 		return 0;
6613 
6614 	/* Move the zone boundaries inside the node if necessary */
6615 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6616 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6617 
6618 	/* Return the spanned pages */
6619 	return *zone_end_pfn - *zone_start_pfn;
6620 }
6621 
6622 /*
6623  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6624  * then all holes in the requested range will be accounted for.
6625  */
6626 unsigned long __init __absent_pages_in_range(int nid,
6627 				unsigned long range_start_pfn,
6628 				unsigned long range_end_pfn)
6629 {
6630 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6631 	unsigned long start_pfn, end_pfn;
6632 	int i;
6633 
6634 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6635 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6636 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6637 		nr_absent -= end_pfn - start_pfn;
6638 	}
6639 	return nr_absent;
6640 }
6641 
6642 /**
6643  * absent_pages_in_range - Return number of page frames in holes within a range
6644  * @start_pfn: The start PFN to start searching for holes
6645  * @end_pfn: The end PFN to stop searching for holes
6646  *
6647  * Return: the number of pages frames in memory holes within a range.
6648  */
6649 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6650 							unsigned long end_pfn)
6651 {
6652 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6653 }
6654 
6655 /* Return the number of page frames in holes in a zone on a node */
6656 static unsigned long __init zone_absent_pages_in_node(int nid,
6657 					unsigned long zone_type,
6658 					unsigned long node_start_pfn,
6659 					unsigned long node_end_pfn)
6660 {
6661 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6662 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6663 	unsigned long zone_start_pfn, zone_end_pfn;
6664 	unsigned long nr_absent;
6665 
6666 	/* When hotadd a new node from cpu_up(), the node should be empty */
6667 	if (!node_start_pfn && !node_end_pfn)
6668 		return 0;
6669 
6670 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6671 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6672 
6673 	adjust_zone_range_for_zone_movable(nid, zone_type,
6674 			node_start_pfn, node_end_pfn,
6675 			&zone_start_pfn, &zone_end_pfn);
6676 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6677 
6678 	/*
6679 	 * ZONE_MOVABLE handling.
6680 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6681 	 * and vice versa.
6682 	 */
6683 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6684 		unsigned long start_pfn, end_pfn;
6685 		struct memblock_region *r;
6686 
6687 		for_each_mem_region(r) {
6688 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6689 					  zone_start_pfn, zone_end_pfn);
6690 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6691 					zone_start_pfn, zone_end_pfn);
6692 
6693 			if (zone_type == ZONE_MOVABLE &&
6694 			    memblock_is_mirror(r))
6695 				nr_absent += end_pfn - start_pfn;
6696 
6697 			if (zone_type == ZONE_NORMAL &&
6698 			    !memblock_is_mirror(r))
6699 				nr_absent += end_pfn - start_pfn;
6700 		}
6701 	}
6702 
6703 	return nr_absent;
6704 }
6705 
6706 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6707 						unsigned long node_start_pfn,
6708 						unsigned long node_end_pfn)
6709 {
6710 	unsigned long realtotalpages = 0, totalpages = 0;
6711 	enum zone_type i;
6712 
6713 	for (i = 0; i < MAX_NR_ZONES; i++) {
6714 		struct zone *zone = pgdat->node_zones + i;
6715 		unsigned long zone_start_pfn, zone_end_pfn;
6716 		unsigned long spanned, absent;
6717 		unsigned long size, real_size;
6718 
6719 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6720 						     node_start_pfn,
6721 						     node_end_pfn,
6722 						     &zone_start_pfn,
6723 						     &zone_end_pfn);
6724 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6725 						   node_start_pfn,
6726 						   node_end_pfn);
6727 
6728 		size = spanned;
6729 		real_size = size - absent;
6730 
6731 		if (size)
6732 			zone->zone_start_pfn = zone_start_pfn;
6733 		else
6734 			zone->zone_start_pfn = 0;
6735 		zone->spanned_pages = size;
6736 		zone->present_pages = real_size;
6737 
6738 		totalpages += size;
6739 		realtotalpages += real_size;
6740 	}
6741 
6742 	pgdat->node_spanned_pages = totalpages;
6743 	pgdat->node_present_pages = realtotalpages;
6744 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6745 							realtotalpages);
6746 }
6747 
6748 #ifndef CONFIG_SPARSEMEM
6749 /*
6750  * Calculate the size of the zone->blockflags rounded to an unsigned long
6751  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6752  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6753  * round what is now in bits to nearest long in bits, then return it in
6754  * bytes.
6755  */
6756 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6757 {
6758 	unsigned long usemapsize;
6759 
6760 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6761 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6762 	usemapsize = usemapsize >> pageblock_order;
6763 	usemapsize *= NR_PAGEBLOCK_BITS;
6764 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6765 
6766 	return usemapsize / 8;
6767 }
6768 
6769 static void __ref setup_usemap(struct pglist_data *pgdat,
6770 				struct zone *zone,
6771 				unsigned long zone_start_pfn,
6772 				unsigned long zonesize)
6773 {
6774 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6775 	zone->pageblock_flags = NULL;
6776 	if (usemapsize) {
6777 		zone->pageblock_flags =
6778 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6779 					    pgdat->node_id);
6780 		if (!zone->pageblock_flags)
6781 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6782 			      usemapsize, zone->name, pgdat->node_id);
6783 	}
6784 }
6785 #else
6786 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6787 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6788 #endif /* CONFIG_SPARSEMEM */
6789 
6790 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6791 
6792 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6793 void __init set_pageblock_order(void)
6794 {
6795 	unsigned int order;
6796 
6797 	/* Check that pageblock_nr_pages has not already been setup */
6798 	if (pageblock_order)
6799 		return;
6800 
6801 	if (HPAGE_SHIFT > PAGE_SHIFT)
6802 		order = HUGETLB_PAGE_ORDER;
6803 	else
6804 		order = MAX_ORDER - 1;
6805 
6806 	/*
6807 	 * Assume the largest contiguous order of interest is a huge page.
6808 	 * This value may be variable depending on boot parameters on IA64 and
6809 	 * powerpc.
6810 	 */
6811 	pageblock_order = order;
6812 }
6813 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6814 
6815 /*
6816  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6817  * is unused as pageblock_order is set at compile-time. See
6818  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6819  * the kernel config
6820  */
6821 void __init set_pageblock_order(void)
6822 {
6823 }
6824 
6825 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6826 
6827 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6828 						unsigned long present_pages)
6829 {
6830 	unsigned long pages = spanned_pages;
6831 
6832 	/*
6833 	 * Provide a more accurate estimation if there are holes within
6834 	 * the zone and SPARSEMEM is in use. If there are holes within the
6835 	 * zone, each populated memory region may cost us one or two extra
6836 	 * memmap pages due to alignment because memmap pages for each
6837 	 * populated regions may not be naturally aligned on page boundary.
6838 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6839 	 */
6840 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6841 	    IS_ENABLED(CONFIG_SPARSEMEM))
6842 		pages = present_pages;
6843 
6844 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6845 }
6846 
6847 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6848 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6849 {
6850 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6851 
6852 	spin_lock_init(&ds_queue->split_queue_lock);
6853 	INIT_LIST_HEAD(&ds_queue->split_queue);
6854 	ds_queue->split_queue_len = 0;
6855 }
6856 #else
6857 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6858 #endif
6859 
6860 #ifdef CONFIG_COMPACTION
6861 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6862 {
6863 	init_waitqueue_head(&pgdat->kcompactd_wait);
6864 }
6865 #else
6866 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6867 #endif
6868 
6869 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6870 {
6871 	pgdat_resize_init(pgdat);
6872 
6873 	pgdat_init_split_queue(pgdat);
6874 	pgdat_init_kcompactd(pgdat);
6875 
6876 	init_waitqueue_head(&pgdat->kswapd_wait);
6877 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6878 
6879 	pgdat_page_ext_init(pgdat);
6880 	lruvec_init(&pgdat->__lruvec);
6881 }
6882 
6883 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6884 							unsigned long remaining_pages)
6885 {
6886 	atomic_long_set(&zone->managed_pages, remaining_pages);
6887 	zone_set_nid(zone, nid);
6888 	zone->name = zone_names[idx];
6889 	zone->zone_pgdat = NODE_DATA(nid);
6890 	spin_lock_init(&zone->lock);
6891 	zone_seqlock_init(zone);
6892 	zone_pcp_init(zone);
6893 }
6894 
6895 /*
6896  * Set up the zone data structures
6897  * - init pgdat internals
6898  * - init all zones belonging to this node
6899  *
6900  * NOTE: this function is only called during memory hotplug
6901  */
6902 #ifdef CONFIG_MEMORY_HOTPLUG
6903 void __ref free_area_init_core_hotplug(int nid)
6904 {
6905 	enum zone_type z;
6906 	pg_data_t *pgdat = NODE_DATA(nid);
6907 
6908 	pgdat_init_internals(pgdat);
6909 	for (z = 0; z < MAX_NR_ZONES; z++)
6910 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6911 }
6912 #endif
6913 
6914 /*
6915  * Set up the zone data structures:
6916  *   - mark all pages reserved
6917  *   - mark all memory queues empty
6918  *   - clear the memory bitmaps
6919  *
6920  * NOTE: pgdat should get zeroed by caller.
6921  * NOTE: this function is only called during early init.
6922  */
6923 static void __init free_area_init_core(struct pglist_data *pgdat)
6924 {
6925 	enum zone_type j;
6926 	int nid = pgdat->node_id;
6927 
6928 	pgdat_init_internals(pgdat);
6929 	pgdat->per_cpu_nodestats = &boot_nodestats;
6930 
6931 	for (j = 0; j < MAX_NR_ZONES; j++) {
6932 		struct zone *zone = pgdat->node_zones + j;
6933 		unsigned long size, freesize, memmap_pages;
6934 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6935 
6936 		size = zone->spanned_pages;
6937 		freesize = zone->present_pages;
6938 
6939 		/*
6940 		 * Adjust freesize so that it accounts for how much memory
6941 		 * is used by this zone for memmap. This affects the watermark
6942 		 * and per-cpu initialisations
6943 		 */
6944 		memmap_pages = calc_memmap_size(size, freesize);
6945 		if (!is_highmem_idx(j)) {
6946 			if (freesize >= memmap_pages) {
6947 				freesize -= memmap_pages;
6948 				if (memmap_pages)
6949 					printk(KERN_DEBUG
6950 					       "  %s zone: %lu pages used for memmap\n",
6951 					       zone_names[j], memmap_pages);
6952 			} else
6953 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6954 					zone_names[j], memmap_pages, freesize);
6955 		}
6956 
6957 		/* Account for reserved pages */
6958 		if (j == 0 && freesize > dma_reserve) {
6959 			freesize -= dma_reserve;
6960 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6961 					zone_names[0], dma_reserve);
6962 		}
6963 
6964 		if (!is_highmem_idx(j))
6965 			nr_kernel_pages += freesize;
6966 		/* Charge for highmem memmap if there are enough kernel pages */
6967 		else if (nr_kernel_pages > memmap_pages * 2)
6968 			nr_kernel_pages -= memmap_pages;
6969 		nr_all_pages += freesize;
6970 
6971 		/*
6972 		 * Set an approximate value for lowmem here, it will be adjusted
6973 		 * when the bootmem allocator frees pages into the buddy system.
6974 		 * And all highmem pages will be managed by the buddy system.
6975 		 */
6976 		zone_init_internals(zone, j, nid, freesize);
6977 
6978 		if (!size)
6979 			continue;
6980 
6981 		set_pageblock_order();
6982 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6983 		init_currently_empty_zone(zone, zone_start_pfn, size);
6984 		memmap_init(size, nid, j, zone_start_pfn);
6985 	}
6986 }
6987 
6988 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6989 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6990 {
6991 	unsigned long __maybe_unused start = 0;
6992 	unsigned long __maybe_unused offset = 0;
6993 
6994 	/* Skip empty nodes */
6995 	if (!pgdat->node_spanned_pages)
6996 		return;
6997 
6998 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6999 	offset = pgdat->node_start_pfn - start;
7000 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7001 	if (!pgdat->node_mem_map) {
7002 		unsigned long size, end;
7003 		struct page *map;
7004 
7005 		/*
7006 		 * The zone's endpoints aren't required to be MAX_ORDER
7007 		 * aligned but the node_mem_map endpoints must be in order
7008 		 * for the buddy allocator to function correctly.
7009 		 */
7010 		end = pgdat_end_pfn(pgdat);
7011 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7012 		size =  (end - start) * sizeof(struct page);
7013 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7014 					  pgdat->node_id);
7015 		if (!map)
7016 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7017 			      size, pgdat->node_id);
7018 		pgdat->node_mem_map = map + offset;
7019 	}
7020 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7021 				__func__, pgdat->node_id, (unsigned long)pgdat,
7022 				(unsigned long)pgdat->node_mem_map);
7023 #ifndef CONFIG_NEED_MULTIPLE_NODES
7024 	/*
7025 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7026 	 */
7027 	if (pgdat == NODE_DATA(0)) {
7028 		mem_map = NODE_DATA(0)->node_mem_map;
7029 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7030 			mem_map -= offset;
7031 	}
7032 #endif
7033 }
7034 #else
7035 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7036 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7037 
7038 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7039 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7040 {
7041 	pgdat->first_deferred_pfn = ULONG_MAX;
7042 }
7043 #else
7044 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7045 #endif
7046 
7047 static void __init free_area_init_node(int nid)
7048 {
7049 	pg_data_t *pgdat = NODE_DATA(nid);
7050 	unsigned long start_pfn = 0;
7051 	unsigned long end_pfn = 0;
7052 
7053 	/* pg_data_t should be reset to zero when it's allocated */
7054 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7055 
7056 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7057 
7058 	pgdat->node_id = nid;
7059 	pgdat->node_start_pfn = start_pfn;
7060 	pgdat->per_cpu_nodestats = NULL;
7061 
7062 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7063 		(u64)start_pfn << PAGE_SHIFT,
7064 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7065 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7066 
7067 	alloc_node_mem_map(pgdat);
7068 	pgdat_set_deferred_range(pgdat);
7069 
7070 	free_area_init_core(pgdat);
7071 }
7072 
7073 void __init free_area_init_memoryless_node(int nid)
7074 {
7075 	free_area_init_node(nid);
7076 }
7077 
7078 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
7079 /*
7080  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7081  * PageReserved(). Return the number of struct pages that were initialized.
7082  */
7083 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn,
7084 					 int zone, int nid)
7085 {
7086 	unsigned long pfn, zone_spfn, zone_epfn;
7087 	u64 pgcnt = 0;
7088 
7089 	zone_spfn = arch_zone_lowest_possible_pfn[zone];
7090 	zone_epfn = arch_zone_highest_possible_pfn[zone];
7091 
7092 	spfn = clamp(spfn, zone_spfn, zone_epfn);
7093 	epfn = clamp(epfn, zone_spfn, zone_epfn);
7094 
7095 	for (pfn = spfn; pfn < epfn; pfn++) {
7096 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7097 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7098 				+ pageblock_nr_pages - 1;
7099 			continue;
7100 		}
7101 
7102 		__init_single_page(pfn_to_page(pfn), pfn, zone, nid);
7103 		__SetPageReserved(pfn_to_page(pfn));
7104 		pgcnt++;
7105 	}
7106 
7107 	return pgcnt;
7108 }
7109 
7110 /*
7111  * Only struct pages that correspond to ranges defined by memblock.memory
7112  * are zeroed and initialized by going through __init_single_page() during
7113  * memmap_init().
7114  *
7115  * But, there could be struct pages that correspond to holes in
7116  * memblock.memory. This can happen because of the following reasons:
7117  * - phyiscal memory bank size is not necessarily the exact multiple of the
7118  *   arbitrary section size
7119  * - early reserved memory may not be listed in memblock.memory
7120  * - memory layouts defined with memmap= kernel parameter may not align
7121  *   nicely with memmap sections
7122  *
7123  * Explicitly initialize those struct pages so that:
7124  * - PG_Reserved is set
7125  * - zone link is set accorging to the architecture constrains
7126  * - node is set to node id of the next populated region except for the
7127  *   trailing hole where last node id is used
7128  */
7129 static void __init init_zone_unavailable_mem(int zone)
7130 {
7131 	unsigned long start, end;
7132 	int i, nid;
7133 	u64 pgcnt;
7134 	unsigned long next = 0;
7135 
7136 	/*
7137 	 * Loop through holes in memblock.memory and initialize struct
7138 	 * pages corresponding to these holes
7139 	 */
7140 	pgcnt = 0;
7141 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7142 		if (next < start)
7143 			pgcnt += init_unavailable_range(next, start, zone, nid);
7144 		next = end;
7145 	}
7146 
7147 	/*
7148 	 * Last section may surpass the actual end of memory (e.g. we can
7149 	 * have 1Gb section and 512Mb of RAM pouplated).
7150 	 * Make sure that memmap has a well defined state in this case.
7151 	 */
7152 	end = round_up(max_pfn, PAGES_PER_SECTION);
7153 	pgcnt += init_unavailable_range(next, end, zone, nid);
7154 
7155 	/*
7156 	 * Struct pages that do not have backing memory. This could be because
7157 	 * firmware is using some of this memory, or for some other reasons.
7158 	 */
7159 	if (pgcnt)
7160 		pr_info("Zone %s: zeroed struct page in unavailable ranges: %lld pages", zone_names[zone], pgcnt);
7161 }
7162 
7163 static void __init init_unavailable_mem(void)
7164 {
7165 	int zone;
7166 
7167 	for (zone = 0; zone < ZONE_MOVABLE; zone++)
7168 		init_zone_unavailable_mem(zone);
7169 }
7170 #else
7171 static inline void __init init_unavailable_mem(void)
7172 {
7173 }
7174 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7175 
7176 #if MAX_NUMNODES > 1
7177 /*
7178  * Figure out the number of possible node ids.
7179  */
7180 void __init setup_nr_node_ids(void)
7181 {
7182 	unsigned int highest;
7183 
7184 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7185 	nr_node_ids = highest + 1;
7186 }
7187 #endif
7188 
7189 /**
7190  * node_map_pfn_alignment - determine the maximum internode alignment
7191  *
7192  * This function should be called after node map is populated and sorted.
7193  * It calculates the maximum power of two alignment which can distinguish
7194  * all the nodes.
7195  *
7196  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7197  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7198  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7199  * shifted, 1GiB is enough and this function will indicate so.
7200  *
7201  * This is used to test whether pfn -> nid mapping of the chosen memory
7202  * model has fine enough granularity to avoid incorrect mapping for the
7203  * populated node map.
7204  *
7205  * Return: the determined alignment in pfn's.  0 if there is no alignment
7206  * requirement (single node).
7207  */
7208 unsigned long __init node_map_pfn_alignment(void)
7209 {
7210 	unsigned long accl_mask = 0, last_end = 0;
7211 	unsigned long start, end, mask;
7212 	int last_nid = NUMA_NO_NODE;
7213 	int i, nid;
7214 
7215 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7216 		if (!start || last_nid < 0 || last_nid == nid) {
7217 			last_nid = nid;
7218 			last_end = end;
7219 			continue;
7220 		}
7221 
7222 		/*
7223 		 * Start with a mask granular enough to pin-point to the
7224 		 * start pfn and tick off bits one-by-one until it becomes
7225 		 * too coarse to separate the current node from the last.
7226 		 */
7227 		mask = ~((1 << __ffs(start)) - 1);
7228 		while (mask && last_end <= (start & (mask << 1)))
7229 			mask <<= 1;
7230 
7231 		/* accumulate all internode masks */
7232 		accl_mask |= mask;
7233 	}
7234 
7235 	/* convert mask to number of pages */
7236 	return ~accl_mask + 1;
7237 }
7238 
7239 /**
7240  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7241  *
7242  * Return: the minimum PFN based on information provided via
7243  * memblock_set_node().
7244  */
7245 unsigned long __init find_min_pfn_with_active_regions(void)
7246 {
7247 	return PHYS_PFN(memblock_start_of_DRAM());
7248 }
7249 
7250 /*
7251  * early_calculate_totalpages()
7252  * Sum pages in active regions for movable zone.
7253  * Populate N_MEMORY for calculating usable_nodes.
7254  */
7255 static unsigned long __init early_calculate_totalpages(void)
7256 {
7257 	unsigned long totalpages = 0;
7258 	unsigned long start_pfn, end_pfn;
7259 	int i, nid;
7260 
7261 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7262 		unsigned long pages = end_pfn - start_pfn;
7263 
7264 		totalpages += pages;
7265 		if (pages)
7266 			node_set_state(nid, N_MEMORY);
7267 	}
7268 	return totalpages;
7269 }
7270 
7271 /*
7272  * Find the PFN the Movable zone begins in each node. Kernel memory
7273  * is spread evenly between nodes as long as the nodes have enough
7274  * memory. When they don't, some nodes will have more kernelcore than
7275  * others
7276  */
7277 static void __init find_zone_movable_pfns_for_nodes(void)
7278 {
7279 	int i, nid;
7280 	unsigned long usable_startpfn;
7281 	unsigned long kernelcore_node, kernelcore_remaining;
7282 	/* save the state before borrow the nodemask */
7283 	nodemask_t saved_node_state = node_states[N_MEMORY];
7284 	unsigned long totalpages = early_calculate_totalpages();
7285 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7286 	struct memblock_region *r;
7287 
7288 	/* Need to find movable_zone earlier when movable_node is specified. */
7289 	find_usable_zone_for_movable();
7290 
7291 	/*
7292 	 * If movable_node is specified, ignore kernelcore and movablecore
7293 	 * options.
7294 	 */
7295 	if (movable_node_is_enabled()) {
7296 		for_each_mem_region(r) {
7297 			if (!memblock_is_hotpluggable(r))
7298 				continue;
7299 
7300 			nid = memblock_get_region_node(r);
7301 
7302 			usable_startpfn = PFN_DOWN(r->base);
7303 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7304 				min(usable_startpfn, zone_movable_pfn[nid]) :
7305 				usable_startpfn;
7306 		}
7307 
7308 		goto out2;
7309 	}
7310 
7311 	/*
7312 	 * If kernelcore=mirror is specified, ignore movablecore option
7313 	 */
7314 	if (mirrored_kernelcore) {
7315 		bool mem_below_4gb_not_mirrored = false;
7316 
7317 		for_each_mem_region(r) {
7318 			if (memblock_is_mirror(r))
7319 				continue;
7320 
7321 			nid = memblock_get_region_node(r);
7322 
7323 			usable_startpfn = memblock_region_memory_base_pfn(r);
7324 
7325 			if (usable_startpfn < 0x100000) {
7326 				mem_below_4gb_not_mirrored = true;
7327 				continue;
7328 			}
7329 
7330 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7331 				min(usable_startpfn, zone_movable_pfn[nid]) :
7332 				usable_startpfn;
7333 		}
7334 
7335 		if (mem_below_4gb_not_mirrored)
7336 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7337 
7338 		goto out2;
7339 	}
7340 
7341 	/*
7342 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7343 	 * amount of necessary memory.
7344 	 */
7345 	if (required_kernelcore_percent)
7346 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7347 				       10000UL;
7348 	if (required_movablecore_percent)
7349 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7350 					10000UL;
7351 
7352 	/*
7353 	 * If movablecore= was specified, calculate what size of
7354 	 * kernelcore that corresponds so that memory usable for
7355 	 * any allocation type is evenly spread. If both kernelcore
7356 	 * and movablecore are specified, then the value of kernelcore
7357 	 * will be used for required_kernelcore if it's greater than
7358 	 * what movablecore would have allowed.
7359 	 */
7360 	if (required_movablecore) {
7361 		unsigned long corepages;
7362 
7363 		/*
7364 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7365 		 * was requested by the user
7366 		 */
7367 		required_movablecore =
7368 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7369 		required_movablecore = min(totalpages, required_movablecore);
7370 		corepages = totalpages - required_movablecore;
7371 
7372 		required_kernelcore = max(required_kernelcore, corepages);
7373 	}
7374 
7375 	/*
7376 	 * If kernelcore was not specified or kernelcore size is larger
7377 	 * than totalpages, there is no ZONE_MOVABLE.
7378 	 */
7379 	if (!required_kernelcore || required_kernelcore >= totalpages)
7380 		goto out;
7381 
7382 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7383 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7384 
7385 restart:
7386 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7387 	kernelcore_node = required_kernelcore / usable_nodes;
7388 	for_each_node_state(nid, N_MEMORY) {
7389 		unsigned long start_pfn, end_pfn;
7390 
7391 		/*
7392 		 * Recalculate kernelcore_node if the division per node
7393 		 * now exceeds what is necessary to satisfy the requested
7394 		 * amount of memory for the kernel
7395 		 */
7396 		if (required_kernelcore < kernelcore_node)
7397 			kernelcore_node = required_kernelcore / usable_nodes;
7398 
7399 		/*
7400 		 * As the map is walked, we track how much memory is usable
7401 		 * by the kernel using kernelcore_remaining. When it is
7402 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7403 		 */
7404 		kernelcore_remaining = kernelcore_node;
7405 
7406 		/* Go through each range of PFNs within this node */
7407 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7408 			unsigned long size_pages;
7409 
7410 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7411 			if (start_pfn >= end_pfn)
7412 				continue;
7413 
7414 			/* Account for what is only usable for kernelcore */
7415 			if (start_pfn < usable_startpfn) {
7416 				unsigned long kernel_pages;
7417 				kernel_pages = min(end_pfn, usable_startpfn)
7418 								- start_pfn;
7419 
7420 				kernelcore_remaining -= min(kernel_pages,
7421 							kernelcore_remaining);
7422 				required_kernelcore -= min(kernel_pages,
7423 							required_kernelcore);
7424 
7425 				/* Continue if range is now fully accounted */
7426 				if (end_pfn <= usable_startpfn) {
7427 
7428 					/*
7429 					 * Push zone_movable_pfn to the end so
7430 					 * that if we have to rebalance
7431 					 * kernelcore across nodes, we will
7432 					 * not double account here
7433 					 */
7434 					zone_movable_pfn[nid] = end_pfn;
7435 					continue;
7436 				}
7437 				start_pfn = usable_startpfn;
7438 			}
7439 
7440 			/*
7441 			 * The usable PFN range for ZONE_MOVABLE is from
7442 			 * start_pfn->end_pfn. Calculate size_pages as the
7443 			 * number of pages used as kernelcore
7444 			 */
7445 			size_pages = end_pfn - start_pfn;
7446 			if (size_pages > kernelcore_remaining)
7447 				size_pages = kernelcore_remaining;
7448 			zone_movable_pfn[nid] = start_pfn + size_pages;
7449 
7450 			/*
7451 			 * Some kernelcore has been met, update counts and
7452 			 * break if the kernelcore for this node has been
7453 			 * satisfied
7454 			 */
7455 			required_kernelcore -= min(required_kernelcore,
7456 								size_pages);
7457 			kernelcore_remaining -= size_pages;
7458 			if (!kernelcore_remaining)
7459 				break;
7460 		}
7461 	}
7462 
7463 	/*
7464 	 * If there is still required_kernelcore, we do another pass with one
7465 	 * less node in the count. This will push zone_movable_pfn[nid] further
7466 	 * along on the nodes that still have memory until kernelcore is
7467 	 * satisfied
7468 	 */
7469 	usable_nodes--;
7470 	if (usable_nodes && required_kernelcore > usable_nodes)
7471 		goto restart;
7472 
7473 out2:
7474 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7475 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7476 		zone_movable_pfn[nid] =
7477 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7478 
7479 out:
7480 	/* restore the node_state */
7481 	node_states[N_MEMORY] = saved_node_state;
7482 }
7483 
7484 /* Any regular or high memory on that node ? */
7485 static void check_for_memory(pg_data_t *pgdat, int nid)
7486 {
7487 	enum zone_type zone_type;
7488 
7489 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7490 		struct zone *zone = &pgdat->node_zones[zone_type];
7491 		if (populated_zone(zone)) {
7492 			if (IS_ENABLED(CONFIG_HIGHMEM))
7493 				node_set_state(nid, N_HIGH_MEMORY);
7494 			if (zone_type <= ZONE_NORMAL)
7495 				node_set_state(nid, N_NORMAL_MEMORY);
7496 			break;
7497 		}
7498 	}
7499 }
7500 
7501 /*
7502  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7503  * such cases we allow max_zone_pfn sorted in the descending order
7504  */
7505 bool __weak arch_has_descending_max_zone_pfns(void)
7506 {
7507 	return false;
7508 }
7509 
7510 /**
7511  * free_area_init - Initialise all pg_data_t and zone data
7512  * @max_zone_pfn: an array of max PFNs for each zone
7513  *
7514  * This will call free_area_init_node() for each active node in the system.
7515  * Using the page ranges provided by memblock_set_node(), the size of each
7516  * zone in each node and their holes is calculated. If the maximum PFN
7517  * between two adjacent zones match, it is assumed that the zone is empty.
7518  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7519  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7520  * starts where the previous one ended. For example, ZONE_DMA32 starts
7521  * at arch_max_dma_pfn.
7522  */
7523 void __init free_area_init(unsigned long *max_zone_pfn)
7524 {
7525 	unsigned long start_pfn, end_pfn;
7526 	int i, nid, zone;
7527 	bool descending;
7528 
7529 	/* Record where the zone boundaries are */
7530 	memset(arch_zone_lowest_possible_pfn, 0,
7531 				sizeof(arch_zone_lowest_possible_pfn));
7532 	memset(arch_zone_highest_possible_pfn, 0,
7533 				sizeof(arch_zone_highest_possible_pfn));
7534 
7535 	start_pfn = find_min_pfn_with_active_regions();
7536 	descending = arch_has_descending_max_zone_pfns();
7537 
7538 	for (i = 0; i < MAX_NR_ZONES; i++) {
7539 		if (descending)
7540 			zone = MAX_NR_ZONES - i - 1;
7541 		else
7542 			zone = i;
7543 
7544 		if (zone == ZONE_MOVABLE)
7545 			continue;
7546 
7547 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7548 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7549 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7550 
7551 		start_pfn = end_pfn;
7552 	}
7553 
7554 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7555 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7556 	find_zone_movable_pfns_for_nodes();
7557 
7558 	/* Print out the zone ranges */
7559 	pr_info("Zone ranges:\n");
7560 	for (i = 0; i < MAX_NR_ZONES; i++) {
7561 		if (i == ZONE_MOVABLE)
7562 			continue;
7563 		pr_info("  %-8s ", zone_names[i]);
7564 		if (arch_zone_lowest_possible_pfn[i] ==
7565 				arch_zone_highest_possible_pfn[i])
7566 			pr_cont("empty\n");
7567 		else
7568 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7569 				(u64)arch_zone_lowest_possible_pfn[i]
7570 					<< PAGE_SHIFT,
7571 				((u64)arch_zone_highest_possible_pfn[i]
7572 					<< PAGE_SHIFT) - 1);
7573 	}
7574 
7575 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7576 	pr_info("Movable zone start for each node\n");
7577 	for (i = 0; i < MAX_NUMNODES; i++) {
7578 		if (zone_movable_pfn[i])
7579 			pr_info("  Node %d: %#018Lx\n", i,
7580 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7581 	}
7582 
7583 	/*
7584 	 * Print out the early node map, and initialize the
7585 	 * subsection-map relative to active online memory ranges to
7586 	 * enable future "sub-section" extensions of the memory map.
7587 	 */
7588 	pr_info("Early memory node ranges\n");
7589 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7590 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7591 			(u64)start_pfn << PAGE_SHIFT,
7592 			((u64)end_pfn << PAGE_SHIFT) - 1);
7593 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7594 	}
7595 
7596 	/* Initialise every node */
7597 	mminit_verify_pageflags_layout();
7598 	setup_nr_node_ids();
7599 	init_unavailable_mem();
7600 	for_each_online_node(nid) {
7601 		pg_data_t *pgdat = NODE_DATA(nid);
7602 		free_area_init_node(nid);
7603 
7604 		/* Any memory on that node */
7605 		if (pgdat->node_present_pages)
7606 			node_set_state(nid, N_MEMORY);
7607 		check_for_memory(pgdat, nid);
7608 	}
7609 }
7610 
7611 static int __init cmdline_parse_core(char *p, unsigned long *core,
7612 				     unsigned long *percent)
7613 {
7614 	unsigned long long coremem;
7615 	char *endptr;
7616 
7617 	if (!p)
7618 		return -EINVAL;
7619 
7620 	/* Value may be a percentage of total memory, otherwise bytes */
7621 	coremem = simple_strtoull(p, &endptr, 0);
7622 	if (*endptr == '%') {
7623 		/* Paranoid check for percent values greater than 100 */
7624 		WARN_ON(coremem > 100);
7625 
7626 		*percent = coremem;
7627 	} else {
7628 		coremem = memparse(p, &p);
7629 		/* Paranoid check that UL is enough for the coremem value */
7630 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7631 
7632 		*core = coremem >> PAGE_SHIFT;
7633 		*percent = 0UL;
7634 	}
7635 	return 0;
7636 }
7637 
7638 /*
7639  * kernelcore=size sets the amount of memory for use for allocations that
7640  * cannot be reclaimed or migrated.
7641  */
7642 static int __init cmdline_parse_kernelcore(char *p)
7643 {
7644 	/* parse kernelcore=mirror */
7645 	if (parse_option_str(p, "mirror")) {
7646 		mirrored_kernelcore = true;
7647 		return 0;
7648 	}
7649 
7650 	return cmdline_parse_core(p, &required_kernelcore,
7651 				  &required_kernelcore_percent);
7652 }
7653 
7654 /*
7655  * movablecore=size sets the amount of memory for use for allocations that
7656  * can be reclaimed or migrated.
7657  */
7658 static int __init cmdline_parse_movablecore(char *p)
7659 {
7660 	return cmdline_parse_core(p, &required_movablecore,
7661 				  &required_movablecore_percent);
7662 }
7663 
7664 early_param("kernelcore", cmdline_parse_kernelcore);
7665 early_param("movablecore", cmdline_parse_movablecore);
7666 
7667 void adjust_managed_page_count(struct page *page, long count)
7668 {
7669 	atomic_long_add(count, &page_zone(page)->managed_pages);
7670 	totalram_pages_add(count);
7671 #ifdef CONFIG_HIGHMEM
7672 	if (PageHighMem(page))
7673 		totalhigh_pages_add(count);
7674 #endif
7675 }
7676 EXPORT_SYMBOL(adjust_managed_page_count);
7677 
7678 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7679 {
7680 	void *pos;
7681 	unsigned long pages = 0;
7682 
7683 	start = (void *)PAGE_ALIGN((unsigned long)start);
7684 	end = (void *)((unsigned long)end & PAGE_MASK);
7685 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7686 		struct page *page = virt_to_page(pos);
7687 		void *direct_map_addr;
7688 
7689 		/*
7690 		 * 'direct_map_addr' might be different from 'pos'
7691 		 * because some architectures' virt_to_page()
7692 		 * work with aliases.  Getting the direct map
7693 		 * address ensures that we get a _writeable_
7694 		 * alias for the memset().
7695 		 */
7696 		direct_map_addr = page_address(page);
7697 		/*
7698 		 * Perform a kasan-unchecked memset() since this memory
7699 		 * has not been initialized.
7700 		 */
7701 		direct_map_addr = kasan_reset_tag(direct_map_addr);
7702 		if ((unsigned int)poison <= 0xFF)
7703 			memset(direct_map_addr, poison, PAGE_SIZE);
7704 
7705 		free_reserved_page(page);
7706 	}
7707 
7708 	if (pages && s)
7709 		pr_info("Freeing %s memory: %ldK\n",
7710 			s, pages << (PAGE_SHIFT - 10));
7711 
7712 	return pages;
7713 }
7714 
7715 #ifdef	CONFIG_HIGHMEM
7716 void free_highmem_page(struct page *page)
7717 {
7718 	__free_reserved_page(page);
7719 	totalram_pages_inc();
7720 	atomic_long_inc(&page_zone(page)->managed_pages);
7721 	totalhigh_pages_inc();
7722 }
7723 #endif
7724 
7725 
7726 void __init mem_init_print_info(const char *str)
7727 {
7728 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7729 	unsigned long init_code_size, init_data_size;
7730 
7731 	physpages = get_num_physpages();
7732 	codesize = _etext - _stext;
7733 	datasize = _edata - _sdata;
7734 	rosize = __end_rodata - __start_rodata;
7735 	bss_size = __bss_stop - __bss_start;
7736 	init_data_size = __init_end - __init_begin;
7737 	init_code_size = _einittext - _sinittext;
7738 
7739 	/*
7740 	 * Detect special cases and adjust section sizes accordingly:
7741 	 * 1) .init.* may be embedded into .data sections
7742 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7743 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7744 	 * 3) .rodata.* may be embedded into .text or .data sections.
7745 	 */
7746 #define adj_init_size(start, end, size, pos, adj) \
7747 	do { \
7748 		if (start <= pos && pos < end && size > adj) \
7749 			size -= adj; \
7750 	} while (0)
7751 
7752 	adj_init_size(__init_begin, __init_end, init_data_size,
7753 		     _sinittext, init_code_size);
7754 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7755 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7756 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7757 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7758 
7759 #undef	adj_init_size
7760 
7761 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7762 #ifdef	CONFIG_HIGHMEM
7763 		", %luK highmem"
7764 #endif
7765 		"%s%s)\n",
7766 		nr_free_pages() << (PAGE_SHIFT - 10),
7767 		physpages << (PAGE_SHIFT - 10),
7768 		codesize >> 10, datasize >> 10, rosize >> 10,
7769 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7770 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7771 		totalcma_pages << (PAGE_SHIFT - 10),
7772 #ifdef	CONFIG_HIGHMEM
7773 		totalhigh_pages() << (PAGE_SHIFT - 10),
7774 #endif
7775 		str ? ", " : "", str ? str : "");
7776 }
7777 
7778 /**
7779  * set_dma_reserve - set the specified number of pages reserved in the first zone
7780  * @new_dma_reserve: The number of pages to mark reserved
7781  *
7782  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7783  * In the DMA zone, a significant percentage may be consumed by kernel image
7784  * and other unfreeable allocations which can skew the watermarks badly. This
7785  * function may optionally be used to account for unfreeable pages in the
7786  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7787  * smaller per-cpu batchsize.
7788  */
7789 void __init set_dma_reserve(unsigned long new_dma_reserve)
7790 {
7791 	dma_reserve = new_dma_reserve;
7792 }
7793 
7794 static int page_alloc_cpu_dead(unsigned int cpu)
7795 {
7796 
7797 	lru_add_drain_cpu(cpu);
7798 	drain_pages(cpu);
7799 
7800 	/*
7801 	 * Spill the event counters of the dead processor
7802 	 * into the current processors event counters.
7803 	 * This artificially elevates the count of the current
7804 	 * processor.
7805 	 */
7806 	vm_events_fold_cpu(cpu);
7807 
7808 	/*
7809 	 * Zero the differential counters of the dead processor
7810 	 * so that the vm statistics are consistent.
7811 	 *
7812 	 * This is only okay since the processor is dead and cannot
7813 	 * race with what we are doing.
7814 	 */
7815 	cpu_vm_stats_fold(cpu);
7816 	return 0;
7817 }
7818 
7819 #ifdef CONFIG_NUMA
7820 int hashdist = HASHDIST_DEFAULT;
7821 
7822 static int __init set_hashdist(char *str)
7823 {
7824 	if (!str)
7825 		return 0;
7826 	hashdist = simple_strtoul(str, &str, 0);
7827 	return 1;
7828 }
7829 __setup("hashdist=", set_hashdist);
7830 #endif
7831 
7832 void __init page_alloc_init(void)
7833 {
7834 	int ret;
7835 
7836 #ifdef CONFIG_NUMA
7837 	if (num_node_state(N_MEMORY) == 1)
7838 		hashdist = 0;
7839 #endif
7840 
7841 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7842 					"mm/page_alloc:dead", NULL,
7843 					page_alloc_cpu_dead);
7844 	WARN_ON(ret < 0);
7845 }
7846 
7847 /*
7848  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7849  *	or min_free_kbytes changes.
7850  */
7851 static void calculate_totalreserve_pages(void)
7852 {
7853 	struct pglist_data *pgdat;
7854 	unsigned long reserve_pages = 0;
7855 	enum zone_type i, j;
7856 
7857 	for_each_online_pgdat(pgdat) {
7858 
7859 		pgdat->totalreserve_pages = 0;
7860 
7861 		for (i = 0; i < MAX_NR_ZONES; i++) {
7862 			struct zone *zone = pgdat->node_zones + i;
7863 			long max = 0;
7864 			unsigned long managed_pages = zone_managed_pages(zone);
7865 
7866 			/* Find valid and maximum lowmem_reserve in the zone */
7867 			for (j = i; j < MAX_NR_ZONES; j++) {
7868 				if (zone->lowmem_reserve[j] > max)
7869 					max = zone->lowmem_reserve[j];
7870 			}
7871 
7872 			/* we treat the high watermark as reserved pages. */
7873 			max += high_wmark_pages(zone);
7874 
7875 			if (max > managed_pages)
7876 				max = managed_pages;
7877 
7878 			pgdat->totalreserve_pages += max;
7879 
7880 			reserve_pages += max;
7881 		}
7882 	}
7883 	totalreserve_pages = reserve_pages;
7884 }
7885 
7886 /*
7887  * setup_per_zone_lowmem_reserve - called whenever
7888  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7889  *	has a correct pages reserved value, so an adequate number of
7890  *	pages are left in the zone after a successful __alloc_pages().
7891  */
7892 static void setup_per_zone_lowmem_reserve(void)
7893 {
7894 	struct pglist_data *pgdat;
7895 	enum zone_type i, j;
7896 
7897 	for_each_online_pgdat(pgdat) {
7898 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7899 			struct zone *zone = &pgdat->node_zones[i];
7900 			int ratio = sysctl_lowmem_reserve_ratio[i];
7901 			bool clear = !ratio || !zone_managed_pages(zone);
7902 			unsigned long managed_pages = 0;
7903 
7904 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
7905 				if (clear) {
7906 					zone->lowmem_reserve[j] = 0;
7907 				} else {
7908 					struct zone *upper_zone = &pgdat->node_zones[j];
7909 
7910 					managed_pages += zone_managed_pages(upper_zone);
7911 					zone->lowmem_reserve[j] = managed_pages / ratio;
7912 				}
7913 			}
7914 		}
7915 	}
7916 
7917 	/* update totalreserve_pages */
7918 	calculate_totalreserve_pages();
7919 }
7920 
7921 static void __setup_per_zone_wmarks(void)
7922 {
7923 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7924 	unsigned long lowmem_pages = 0;
7925 	struct zone *zone;
7926 	unsigned long flags;
7927 
7928 	/* Calculate total number of !ZONE_HIGHMEM pages */
7929 	for_each_zone(zone) {
7930 		if (!is_highmem(zone))
7931 			lowmem_pages += zone_managed_pages(zone);
7932 	}
7933 
7934 	for_each_zone(zone) {
7935 		u64 tmp;
7936 
7937 		spin_lock_irqsave(&zone->lock, flags);
7938 		tmp = (u64)pages_min * zone_managed_pages(zone);
7939 		do_div(tmp, lowmem_pages);
7940 		if (is_highmem(zone)) {
7941 			/*
7942 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7943 			 * need highmem pages, so cap pages_min to a small
7944 			 * value here.
7945 			 *
7946 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7947 			 * deltas control async page reclaim, and so should
7948 			 * not be capped for highmem.
7949 			 */
7950 			unsigned long min_pages;
7951 
7952 			min_pages = zone_managed_pages(zone) / 1024;
7953 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7954 			zone->_watermark[WMARK_MIN] = min_pages;
7955 		} else {
7956 			/*
7957 			 * If it's a lowmem zone, reserve a number of pages
7958 			 * proportionate to the zone's size.
7959 			 */
7960 			zone->_watermark[WMARK_MIN] = tmp;
7961 		}
7962 
7963 		/*
7964 		 * Set the kswapd watermarks distance according to the
7965 		 * scale factor in proportion to available memory, but
7966 		 * ensure a minimum size on small systems.
7967 		 */
7968 		tmp = max_t(u64, tmp >> 2,
7969 			    mult_frac(zone_managed_pages(zone),
7970 				      watermark_scale_factor, 10000));
7971 
7972 		zone->watermark_boost = 0;
7973 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7974 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7975 
7976 		spin_unlock_irqrestore(&zone->lock, flags);
7977 	}
7978 
7979 	/* update totalreserve_pages */
7980 	calculate_totalreserve_pages();
7981 }
7982 
7983 /**
7984  * setup_per_zone_wmarks - called when min_free_kbytes changes
7985  * or when memory is hot-{added|removed}
7986  *
7987  * Ensures that the watermark[min,low,high] values for each zone are set
7988  * correctly with respect to min_free_kbytes.
7989  */
7990 void setup_per_zone_wmarks(void)
7991 {
7992 	static DEFINE_SPINLOCK(lock);
7993 
7994 	spin_lock(&lock);
7995 	__setup_per_zone_wmarks();
7996 	spin_unlock(&lock);
7997 }
7998 
7999 /*
8000  * Initialise min_free_kbytes.
8001  *
8002  * For small machines we want it small (128k min).  For large machines
8003  * we want it large (256MB max).  But it is not linear, because network
8004  * bandwidth does not increase linearly with machine size.  We use
8005  *
8006  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8007  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8008  *
8009  * which yields
8010  *
8011  * 16MB:	512k
8012  * 32MB:	724k
8013  * 64MB:	1024k
8014  * 128MB:	1448k
8015  * 256MB:	2048k
8016  * 512MB:	2896k
8017  * 1024MB:	4096k
8018  * 2048MB:	5792k
8019  * 4096MB:	8192k
8020  * 8192MB:	11584k
8021  * 16384MB:	16384k
8022  */
8023 int __meminit init_per_zone_wmark_min(void)
8024 {
8025 	unsigned long lowmem_kbytes;
8026 	int new_min_free_kbytes;
8027 
8028 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8029 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8030 
8031 	if (new_min_free_kbytes > user_min_free_kbytes) {
8032 		min_free_kbytes = new_min_free_kbytes;
8033 		if (min_free_kbytes < 128)
8034 			min_free_kbytes = 128;
8035 		if (min_free_kbytes > 262144)
8036 			min_free_kbytes = 262144;
8037 	} else {
8038 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8039 				new_min_free_kbytes, user_min_free_kbytes);
8040 	}
8041 	setup_per_zone_wmarks();
8042 	refresh_zone_stat_thresholds();
8043 	setup_per_zone_lowmem_reserve();
8044 
8045 #ifdef CONFIG_NUMA
8046 	setup_min_unmapped_ratio();
8047 	setup_min_slab_ratio();
8048 #endif
8049 
8050 	khugepaged_min_free_kbytes_update();
8051 
8052 	return 0;
8053 }
8054 postcore_initcall(init_per_zone_wmark_min)
8055 
8056 /*
8057  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8058  *	that we can call two helper functions whenever min_free_kbytes
8059  *	changes.
8060  */
8061 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8062 		void *buffer, size_t *length, loff_t *ppos)
8063 {
8064 	int rc;
8065 
8066 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8067 	if (rc)
8068 		return rc;
8069 
8070 	if (write) {
8071 		user_min_free_kbytes = min_free_kbytes;
8072 		setup_per_zone_wmarks();
8073 	}
8074 	return 0;
8075 }
8076 
8077 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8078 		void *buffer, size_t *length, loff_t *ppos)
8079 {
8080 	int rc;
8081 
8082 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8083 	if (rc)
8084 		return rc;
8085 
8086 	if (write)
8087 		setup_per_zone_wmarks();
8088 
8089 	return 0;
8090 }
8091 
8092 #ifdef CONFIG_NUMA
8093 static void setup_min_unmapped_ratio(void)
8094 {
8095 	pg_data_t *pgdat;
8096 	struct zone *zone;
8097 
8098 	for_each_online_pgdat(pgdat)
8099 		pgdat->min_unmapped_pages = 0;
8100 
8101 	for_each_zone(zone)
8102 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8103 						         sysctl_min_unmapped_ratio) / 100;
8104 }
8105 
8106 
8107 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8108 		void *buffer, size_t *length, loff_t *ppos)
8109 {
8110 	int rc;
8111 
8112 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8113 	if (rc)
8114 		return rc;
8115 
8116 	setup_min_unmapped_ratio();
8117 
8118 	return 0;
8119 }
8120 
8121 static void setup_min_slab_ratio(void)
8122 {
8123 	pg_data_t *pgdat;
8124 	struct zone *zone;
8125 
8126 	for_each_online_pgdat(pgdat)
8127 		pgdat->min_slab_pages = 0;
8128 
8129 	for_each_zone(zone)
8130 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8131 						     sysctl_min_slab_ratio) / 100;
8132 }
8133 
8134 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8135 		void *buffer, size_t *length, loff_t *ppos)
8136 {
8137 	int rc;
8138 
8139 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8140 	if (rc)
8141 		return rc;
8142 
8143 	setup_min_slab_ratio();
8144 
8145 	return 0;
8146 }
8147 #endif
8148 
8149 /*
8150  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8151  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8152  *	whenever sysctl_lowmem_reserve_ratio changes.
8153  *
8154  * The reserve ratio obviously has absolutely no relation with the
8155  * minimum watermarks. The lowmem reserve ratio can only make sense
8156  * if in function of the boot time zone sizes.
8157  */
8158 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8159 		void *buffer, size_t *length, loff_t *ppos)
8160 {
8161 	int i;
8162 
8163 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8164 
8165 	for (i = 0; i < MAX_NR_ZONES; i++) {
8166 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8167 			sysctl_lowmem_reserve_ratio[i] = 0;
8168 	}
8169 
8170 	setup_per_zone_lowmem_reserve();
8171 	return 0;
8172 }
8173 
8174 /*
8175  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8176  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8177  * pagelist can have before it gets flushed back to buddy allocator.
8178  */
8179 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8180 		void *buffer, size_t *length, loff_t *ppos)
8181 {
8182 	struct zone *zone;
8183 	int old_percpu_pagelist_fraction;
8184 	int ret;
8185 
8186 	mutex_lock(&pcp_batch_high_lock);
8187 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8188 
8189 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8190 	if (!write || ret < 0)
8191 		goto out;
8192 
8193 	/* Sanity checking to avoid pcp imbalance */
8194 	if (percpu_pagelist_fraction &&
8195 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8196 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8197 		ret = -EINVAL;
8198 		goto out;
8199 	}
8200 
8201 	/* No change? */
8202 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8203 		goto out;
8204 
8205 	for_each_populated_zone(zone)
8206 		zone_set_pageset_high_and_batch(zone);
8207 out:
8208 	mutex_unlock(&pcp_batch_high_lock);
8209 	return ret;
8210 }
8211 
8212 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8213 /*
8214  * Returns the number of pages that arch has reserved but
8215  * is not known to alloc_large_system_hash().
8216  */
8217 static unsigned long __init arch_reserved_kernel_pages(void)
8218 {
8219 	return 0;
8220 }
8221 #endif
8222 
8223 /*
8224  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8225  * machines. As memory size is increased the scale is also increased but at
8226  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8227  * quadruples the scale is increased by one, which means the size of hash table
8228  * only doubles, instead of quadrupling as well.
8229  * Because 32-bit systems cannot have large physical memory, where this scaling
8230  * makes sense, it is disabled on such platforms.
8231  */
8232 #if __BITS_PER_LONG > 32
8233 #define ADAPT_SCALE_BASE	(64ul << 30)
8234 #define ADAPT_SCALE_SHIFT	2
8235 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8236 #endif
8237 
8238 /*
8239  * allocate a large system hash table from bootmem
8240  * - it is assumed that the hash table must contain an exact power-of-2
8241  *   quantity of entries
8242  * - limit is the number of hash buckets, not the total allocation size
8243  */
8244 void *__init alloc_large_system_hash(const char *tablename,
8245 				     unsigned long bucketsize,
8246 				     unsigned long numentries,
8247 				     int scale,
8248 				     int flags,
8249 				     unsigned int *_hash_shift,
8250 				     unsigned int *_hash_mask,
8251 				     unsigned long low_limit,
8252 				     unsigned long high_limit)
8253 {
8254 	unsigned long long max = high_limit;
8255 	unsigned long log2qty, size;
8256 	void *table = NULL;
8257 	gfp_t gfp_flags;
8258 	bool virt;
8259 
8260 	/* allow the kernel cmdline to have a say */
8261 	if (!numentries) {
8262 		/* round applicable memory size up to nearest megabyte */
8263 		numentries = nr_kernel_pages;
8264 		numentries -= arch_reserved_kernel_pages();
8265 
8266 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8267 		if (PAGE_SHIFT < 20)
8268 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8269 
8270 #if __BITS_PER_LONG > 32
8271 		if (!high_limit) {
8272 			unsigned long adapt;
8273 
8274 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8275 			     adapt <<= ADAPT_SCALE_SHIFT)
8276 				scale++;
8277 		}
8278 #endif
8279 
8280 		/* limit to 1 bucket per 2^scale bytes of low memory */
8281 		if (scale > PAGE_SHIFT)
8282 			numentries >>= (scale - PAGE_SHIFT);
8283 		else
8284 			numentries <<= (PAGE_SHIFT - scale);
8285 
8286 		/* Make sure we've got at least a 0-order allocation.. */
8287 		if (unlikely(flags & HASH_SMALL)) {
8288 			/* Makes no sense without HASH_EARLY */
8289 			WARN_ON(!(flags & HASH_EARLY));
8290 			if (!(numentries >> *_hash_shift)) {
8291 				numentries = 1UL << *_hash_shift;
8292 				BUG_ON(!numentries);
8293 			}
8294 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8295 			numentries = PAGE_SIZE / bucketsize;
8296 	}
8297 	numentries = roundup_pow_of_two(numentries);
8298 
8299 	/* limit allocation size to 1/16 total memory by default */
8300 	if (max == 0) {
8301 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8302 		do_div(max, bucketsize);
8303 	}
8304 	max = min(max, 0x80000000ULL);
8305 
8306 	if (numentries < low_limit)
8307 		numentries = low_limit;
8308 	if (numentries > max)
8309 		numentries = max;
8310 
8311 	log2qty = ilog2(numentries);
8312 
8313 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8314 	do {
8315 		virt = false;
8316 		size = bucketsize << log2qty;
8317 		if (flags & HASH_EARLY) {
8318 			if (flags & HASH_ZERO)
8319 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8320 			else
8321 				table = memblock_alloc_raw(size,
8322 							   SMP_CACHE_BYTES);
8323 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8324 			table = __vmalloc(size, gfp_flags);
8325 			virt = true;
8326 		} else {
8327 			/*
8328 			 * If bucketsize is not a power-of-two, we may free
8329 			 * some pages at the end of hash table which
8330 			 * alloc_pages_exact() automatically does
8331 			 */
8332 			table = alloc_pages_exact(size, gfp_flags);
8333 			kmemleak_alloc(table, size, 1, gfp_flags);
8334 		}
8335 	} while (!table && size > PAGE_SIZE && --log2qty);
8336 
8337 	if (!table)
8338 		panic("Failed to allocate %s hash table\n", tablename);
8339 
8340 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8341 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8342 		virt ? "vmalloc" : "linear");
8343 
8344 	if (_hash_shift)
8345 		*_hash_shift = log2qty;
8346 	if (_hash_mask)
8347 		*_hash_mask = (1 << log2qty) - 1;
8348 
8349 	return table;
8350 }
8351 
8352 /*
8353  * This function checks whether pageblock includes unmovable pages or not.
8354  *
8355  * PageLRU check without isolation or lru_lock could race so that
8356  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8357  * check without lock_page also may miss some movable non-lru pages at
8358  * race condition. So you can't expect this function should be exact.
8359  *
8360  * Returns a page without holding a reference. If the caller wants to
8361  * dereference that page (e.g., dumping), it has to make sure that it
8362  * cannot get removed (e.g., via memory unplug) concurrently.
8363  *
8364  */
8365 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8366 				 int migratetype, int flags)
8367 {
8368 	unsigned long iter = 0;
8369 	unsigned long pfn = page_to_pfn(page);
8370 	unsigned long offset = pfn % pageblock_nr_pages;
8371 
8372 	if (is_migrate_cma_page(page)) {
8373 		/*
8374 		 * CMA allocations (alloc_contig_range) really need to mark
8375 		 * isolate CMA pageblocks even when they are not movable in fact
8376 		 * so consider them movable here.
8377 		 */
8378 		if (is_migrate_cma(migratetype))
8379 			return NULL;
8380 
8381 		return page;
8382 	}
8383 
8384 	for (; iter < pageblock_nr_pages - offset; iter++) {
8385 		if (!pfn_valid_within(pfn + iter))
8386 			continue;
8387 
8388 		page = pfn_to_page(pfn + iter);
8389 
8390 		/*
8391 		 * Both, bootmem allocations and memory holes are marked
8392 		 * PG_reserved and are unmovable. We can even have unmovable
8393 		 * allocations inside ZONE_MOVABLE, for example when
8394 		 * specifying "movablecore".
8395 		 */
8396 		if (PageReserved(page))
8397 			return page;
8398 
8399 		/*
8400 		 * If the zone is movable and we have ruled out all reserved
8401 		 * pages then it should be reasonably safe to assume the rest
8402 		 * is movable.
8403 		 */
8404 		if (zone_idx(zone) == ZONE_MOVABLE)
8405 			continue;
8406 
8407 		/*
8408 		 * Hugepages are not in LRU lists, but they're movable.
8409 		 * THPs are on the LRU, but need to be counted as #small pages.
8410 		 * We need not scan over tail pages because we don't
8411 		 * handle each tail page individually in migration.
8412 		 */
8413 		if (PageHuge(page) || PageTransCompound(page)) {
8414 			struct page *head = compound_head(page);
8415 			unsigned int skip_pages;
8416 
8417 			if (PageHuge(page)) {
8418 				if (!hugepage_migration_supported(page_hstate(head)))
8419 					return page;
8420 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8421 				return page;
8422 			}
8423 
8424 			skip_pages = compound_nr(head) - (page - head);
8425 			iter += skip_pages - 1;
8426 			continue;
8427 		}
8428 
8429 		/*
8430 		 * We can't use page_count without pin a page
8431 		 * because another CPU can free compound page.
8432 		 * This check already skips compound tails of THP
8433 		 * because their page->_refcount is zero at all time.
8434 		 */
8435 		if (!page_ref_count(page)) {
8436 			if (PageBuddy(page))
8437 				iter += (1 << buddy_order(page)) - 1;
8438 			continue;
8439 		}
8440 
8441 		/*
8442 		 * The HWPoisoned page may be not in buddy system, and
8443 		 * page_count() is not 0.
8444 		 */
8445 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8446 			continue;
8447 
8448 		/*
8449 		 * We treat all PageOffline() pages as movable when offlining
8450 		 * to give drivers a chance to decrement their reference count
8451 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8452 		 * can be offlined as there are no direct references anymore.
8453 		 * For actually unmovable PageOffline() where the driver does
8454 		 * not support this, we will fail later when trying to actually
8455 		 * move these pages that still have a reference count > 0.
8456 		 * (false negatives in this function only)
8457 		 */
8458 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8459 			continue;
8460 
8461 		if (__PageMovable(page) || PageLRU(page))
8462 			continue;
8463 
8464 		/*
8465 		 * If there are RECLAIMABLE pages, we need to check
8466 		 * it.  But now, memory offline itself doesn't call
8467 		 * shrink_node_slabs() and it still to be fixed.
8468 		 */
8469 		return page;
8470 	}
8471 	return NULL;
8472 }
8473 
8474 #ifdef CONFIG_CONTIG_ALLOC
8475 static unsigned long pfn_max_align_down(unsigned long pfn)
8476 {
8477 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8478 			     pageblock_nr_pages) - 1);
8479 }
8480 
8481 static unsigned long pfn_max_align_up(unsigned long pfn)
8482 {
8483 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8484 				pageblock_nr_pages));
8485 }
8486 
8487 /* [start, end) must belong to a single zone. */
8488 static int __alloc_contig_migrate_range(struct compact_control *cc,
8489 					unsigned long start, unsigned long end)
8490 {
8491 	/* This function is based on compact_zone() from compaction.c. */
8492 	unsigned int nr_reclaimed;
8493 	unsigned long pfn = start;
8494 	unsigned int tries = 0;
8495 	int ret = 0;
8496 	struct migration_target_control mtc = {
8497 		.nid = zone_to_nid(cc->zone),
8498 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8499 	};
8500 
8501 	migrate_prep();
8502 
8503 	while (pfn < end || !list_empty(&cc->migratepages)) {
8504 		if (fatal_signal_pending(current)) {
8505 			ret = -EINTR;
8506 			break;
8507 		}
8508 
8509 		if (list_empty(&cc->migratepages)) {
8510 			cc->nr_migratepages = 0;
8511 			pfn = isolate_migratepages_range(cc, pfn, end);
8512 			if (!pfn) {
8513 				ret = -EINTR;
8514 				break;
8515 			}
8516 			tries = 0;
8517 		} else if (++tries == 5) {
8518 			ret = ret < 0 ? ret : -EBUSY;
8519 			break;
8520 		}
8521 
8522 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8523 							&cc->migratepages);
8524 		cc->nr_migratepages -= nr_reclaimed;
8525 
8526 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8527 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8528 	}
8529 	if (ret < 0) {
8530 		putback_movable_pages(&cc->migratepages);
8531 		return ret;
8532 	}
8533 	return 0;
8534 }
8535 
8536 /**
8537  * alloc_contig_range() -- tries to allocate given range of pages
8538  * @start:	start PFN to allocate
8539  * @end:	one-past-the-last PFN to allocate
8540  * @migratetype:	migratetype of the underlaying pageblocks (either
8541  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8542  *			in range must have the same migratetype and it must
8543  *			be either of the two.
8544  * @gfp_mask:	GFP mask to use during compaction
8545  *
8546  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8547  * aligned.  The PFN range must belong to a single zone.
8548  *
8549  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8550  * pageblocks in the range.  Once isolated, the pageblocks should not
8551  * be modified by others.
8552  *
8553  * Return: zero on success or negative error code.  On success all
8554  * pages which PFN is in [start, end) are allocated for the caller and
8555  * need to be freed with free_contig_range().
8556  */
8557 int alloc_contig_range(unsigned long start, unsigned long end,
8558 		       unsigned migratetype, gfp_t gfp_mask)
8559 {
8560 	unsigned long outer_start, outer_end;
8561 	unsigned int order;
8562 	int ret = 0;
8563 
8564 	struct compact_control cc = {
8565 		.nr_migratepages = 0,
8566 		.order = -1,
8567 		.zone = page_zone(pfn_to_page(start)),
8568 		.mode = MIGRATE_SYNC,
8569 		.ignore_skip_hint = true,
8570 		.no_set_skip_hint = true,
8571 		.gfp_mask = current_gfp_context(gfp_mask),
8572 		.alloc_contig = true,
8573 	};
8574 	INIT_LIST_HEAD(&cc.migratepages);
8575 
8576 	/*
8577 	 * What we do here is we mark all pageblocks in range as
8578 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8579 	 * have different sizes, and due to the way page allocator
8580 	 * work, we align the range to biggest of the two pages so
8581 	 * that page allocator won't try to merge buddies from
8582 	 * different pageblocks and change MIGRATE_ISOLATE to some
8583 	 * other migration type.
8584 	 *
8585 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8586 	 * migrate the pages from an unaligned range (ie. pages that
8587 	 * we are interested in).  This will put all the pages in
8588 	 * range back to page allocator as MIGRATE_ISOLATE.
8589 	 *
8590 	 * When this is done, we take the pages in range from page
8591 	 * allocator removing them from the buddy system.  This way
8592 	 * page allocator will never consider using them.
8593 	 *
8594 	 * This lets us mark the pageblocks back as
8595 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8596 	 * aligned range but not in the unaligned, original range are
8597 	 * put back to page allocator so that buddy can use them.
8598 	 */
8599 
8600 	ret = start_isolate_page_range(pfn_max_align_down(start),
8601 				       pfn_max_align_up(end), migratetype, 0);
8602 	if (ret)
8603 		return ret;
8604 
8605 	drain_all_pages(cc.zone);
8606 
8607 	/*
8608 	 * In case of -EBUSY, we'd like to know which page causes problem.
8609 	 * So, just fall through. test_pages_isolated() has a tracepoint
8610 	 * which will report the busy page.
8611 	 *
8612 	 * It is possible that busy pages could become available before
8613 	 * the call to test_pages_isolated, and the range will actually be
8614 	 * allocated.  So, if we fall through be sure to clear ret so that
8615 	 * -EBUSY is not accidentally used or returned to caller.
8616 	 */
8617 	ret = __alloc_contig_migrate_range(&cc, start, end);
8618 	if (ret && ret != -EBUSY)
8619 		goto done;
8620 	ret =0;
8621 
8622 	/*
8623 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8624 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8625 	 * more, all pages in [start, end) are free in page allocator.
8626 	 * What we are going to do is to allocate all pages from
8627 	 * [start, end) (that is remove them from page allocator).
8628 	 *
8629 	 * The only problem is that pages at the beginning and at the
8630 	 * end of interesting range may be not aligned with pages that
8631 	 * page allocator holds, ie. they can be part of higher order
8632 	 * pages.  Because of this, we reserve the bigger range and
8633 	 * once this is done free the pages we are not interested in.
8634 	 *
8635 	 * We don't have to hold zone->lock here because the pages are
8636 	 * isolated thus they won't get removed from buddy.
8637 	 */
8638 
8639 	lru_add_drain_all();
8640 
8641 	order = 0;
8642 	outer_start = start;
8643 	while (!PageBuddy(pfn_to_page(outer_start))) {
8644 		if (++order >= MAX_ORDER) {
8645 			outer_start = start;
8646 			break;
8647 		}
8648 		outer_start &= ~0UL << order;
8649 	}
8650 
8651 	if (outer_start != start) {
8652 		order = buddy_order(pfn_to_page(outer_start));
8653 
8654 		/*
8655 		 * outer_start page could be small order buddy page and
8656 		 * it doesn't include start page. Adjust outer_start
8657 		 * in this case to report failed page properly
8658 		 * on tracepoint in test_pages_isolated()
8659 		 */
8660 		if (outer_start + (1UL << order) <= start)
8661 			outer_start = start;
8662 	}
8663 
8664 	/* Make sure the range is really isolated. */
8665 	if (test_pages_isolated(outer_start, end, 0)) {
8666 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8667 			__func__, outer_start, end);
8668 		ret = -EBUSY;
8669 		goto done;
8670 	}
8671 
8672 	/* Grab isolated pages from freelists. */
8673 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8674 	if (!outer_end) {
8675 		ret = -EBUSY;
8676 		goto done;
8677 	}
8678 
8679 	/* Free head and tail (if any) */
8680 	if (start != outer_start)
8681 		free_contig_range(outer_start, start - outer_start);
8682 	if (end != outer_end)
8683 		free_contig_range(end, outer_end - end);
8684 
8685 done:
8686 	undo_isolate_page_range(pfn_max_align_down(start),
8687 				pfn_max_align_up(end), migratetype);
8688 	return ret;
8689 }
8690 EXPORT_SYMBOL(alloc_contig_range);
8691 
8692 static int __alloc_contig_pages(unsigned long start_pfn,
8693 				unsigned long nr_pages, gfp_t gfp_mask)
8694 {
8695 	unsigned long end_pfn = start_pfn + nr_pages;
8696 
8697 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8698 				  gfp_mask);
8699 }
8700 
8701 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8702 				   unsigned long nr_pages)
8703 {
8704 	unsigned long i, end_pfn = start_pfn + nr_pages;
8705 	struct page *page;
8706 
8707 	for (i = start_pfn; i < end_pfn; i++) {
8708 		page = pfn_to_online_page(i);
8709 		if (!page)
8710 			return false;
8711 
8712 		if (page_zone(page) != z)
8713 			return false;
8714 
8715 		if (PageReserved(page))
8716 			return false;
8717 
8718 		if (page_count(page) > 0)
8719 			return false;
8720 
8721 		if (PageHuge(page))
8722 			return false;
8723 	}
8724 	return true;
8725 }
8726 
8727 static bool zone_spans_last_pfn(const struct zone *zone,
8728 				unsigned long start_pfn, unsigned long nr_pages)
8729 {
8730 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8731 
8732 	return zone_spans_pfn(zone, last_pfn);
8733 }
8734 
8735 /**
8736  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8737  * @nr_pages:	Number of contiguous pages to allocate
8738  * @gfp_mask:	GFP mask to limit search and used during compaction
8739  * @nid:	Target node
8740  * @nodemask:	Mask for other possible nodes
8741  *
8742  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8743  * on an applicable zonelist to find a contiguous pfn range which can then be
8744  * tried for allocation with alloc_contig_range(). This routine is intended
8745  * for allocation requests which can not be fulfilled with the buddy allocator.
8746  *
8747  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8748  * power of two then the alignment is guaranteed to be to the given nr_pages
8749  * (e.g. 1GB request would be aligned to 1GB).
8750  *
8751  * Allocated pages can be freed with free_contig_range() or by manually calling
8752  * __free_page() on each allocated page.
8753  *
8754  * Return: pointer to contiguous pages on success, or NULL if not successful.
8755  */
8756 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8757 				int nid, nodemask_t *nodemask)
8758 {
8759 	unsigned long ret, pfn, flags;
8760 	struct zonelist *zonelist;
8761 	struct zone *zone;
8762 	struct zoneref *z;
8763 
8764 	zonelist = node_zonelist(nid, gfp_mask);
8765 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8766 					gfp_zone(gfp_mask), nodemask) {
8767 		spin_lock_irqsave(&zone->lock, flags);
8768 
8769 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8770 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8771 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8772 				/*
8773 				 * We release the zone lock here because
8774 				 * alloc_contig_range() will also lock the zone
8775 				 * at some point. If there's an allocation
8776 				 * spinning on this lock, it may win the race
8777 				 * and cause alloc_contig_range() to fail...
8778 				 */
8779 				spin_unlock_irqrestore(&zone->lock, flags);
8780 				ret = __alloc_contig_pages(pfn, nr_pages,
8781 							gfp_mask);
8782 				if (!ret)
8783 					return pfn_to_page(pfn);
8784 				spin_lock_irqsave(&zone->lock, flags);
8785 			}
8786 			pfn += nr_pages;
8787 		}
8788 		spin_unlock_irqrestore(&zone->lock, flags);
8789 	}
8790 	return NULL;
8791 }
8792 #endif /* CONFIG_CONTIG_ALLOC */
8793 
8794 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8795 {
8796 	unsigned int count = 0;
8797 
8798 	for (; nr_pages--; pfn++) {
8799 		struct page *page = pfn_to_page(pfn);
8800 
8801 		count += page_count(page) != 1;
8802 		__free_page(page);
8803 	}
8804 	WARN(count != 0, "%d pages are still in use!\n", count);
8805 }
8806 EXPORT_SYMBOL(free_contig_range);
8807 
8808 /*
8809  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8810  * page high values need to be recalulated.
8811  */
8812 void __meminit zone_pcp_update(struct zone *zone)
8813 {
8814 	mutex_lock(&pcp_batch_high_lock);
8815 	zone_set_pageset_high_and_batch(zone);
8816 	mutex_unlock(&pcp_batch_high_lock);
8817 }
8818 
8819 /*
8820  * Effectively disable pcplists for the zone by setting the high limit to 0
8821  * and draining all cpus. A concurrent page freeing on another CPU that's about
8822  * to put the page on pcplist will either finish before the drain and the page
8823  * will be drained, or observe the new high limit and skip the pcplist.
8824  *
8825  * Must be paired with a call to zone_pcp_enable().
8826  */
8827 void zone_pcp_disable(struct zone *zone)
8828 {
8829 	mutex_lock(&pcp_batch_high_lock);
8830 	__zone_set_pageset_high_and_batch(zone, 0, 1);
8831 	__drain_all_pages(zone, true);
8832 }
8833 
8834 void zone_pcp_enable(struct zone *zone)
8835 {
8836 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8837 	mutex_unlock(&pcp_batch_high_lock);
8838 }
8839 
8840 void zone_pcp_reset(struct zone *zone)
8841 {
8842 	unsigned long flags;
8843 	int cpu;
8844 	struct per_cpu_pageset *pset;
8845 
8846 	/* avoid races with drain_pages()  */
8847 	local_irq_save(flags);
8848 	if (zone->pageset != &boot_pageset) {
8849 		for_each_online_cpu(cpu) {
8850 			pset = per_cpu_ptr(zone->pageset, cpu);
8851 			drain_zonestat(zone, pset);
8852 		}
8853 		free_percpu(zone->pageset);
8854 		zone->pageset = &boot_pageset;
8855 	}
8856 	local_irq_restore(flags);
8857 }
8858 
8859 #ifdef CONFIG_MEMORY_HOTREMOVE
8860 /*
8861  * All pages in the range must be in a single zone, must not contain holes,
8862  * must span full sections, and must be isolated before calling this function.
8863  */
8864 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8865 {
8866 	unsigned long pfn = start_pfn;
8867 	struct page *page;
8868 	struct zone *zone;
8869 	unsigned int order;
8870 	unsigned long flags;
8871 
8872 	offline_mem_sections(pfn, end_pfn);
8873 	zone = page_zone(pfn_to_page(pfn));
8874 	spin_lock_irqsave(&zone->lock, flags);
8875 	while (pfn < end_pfn) {
8876 		page = pfn_to_page(pfn);
8877 		/*
8878 		 * The HWPoisoned page may be not in buddy system, and
8879 		 * page_count() is not 0.
8880 		 */
8881 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8882 			pfn++;
8883 			continue;
8884 		}
8885 		/*
8886 		 * At this point all remaining PageOffline() pages have a
8887 		 * reference count of 0 and can simply be skipped.
8888 		 */
8889 		if (PageOffline(page)) {
8890 			BUG_ON(page_count(page));
8891 			BUG_ON(PageBuddy(page));
8892 			pfn++;
8893 			continue;
8894 		}
8895 
8896 		BUG_ON(page_count(page));
8897 		BUG_ON(!PageBuddy(page));
8898 		order = buddy_order(page);
8899 		del_page_from_free_list(page, zone, order);
8900 		pfn += (1 << order);
8901 	}
8902 	spin_unlock_irqrestore(&zone->lock, flags);
8903 }
8904 #endif
8905 
8906 bool is_free_buddy_page(struct page *page)
8907 {
8908 	struct zone *zone = page_zone(page);
8909 	unsigned long pfn = page_to_pfn(page);
8910 	unsigned long flags;
8911 	unsigned int order;
8912 
8913 	spin_lock_irqsave(&zone->lock, flags);
8914 	for (order = 0; order < MAX_ORDER; order++) {
8915 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8916 
8917 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8918 			break;
8919 	}
8920 	spin_unlock_irqrestore(&zone->lock, flags);
8921 
8922 	return order < MAX_ORDER;
8923 }
8924 
8925 #ifdef CONFIG_MEMORY_FAILURE
8926 /*
8927  * Break down a higher-order page in sub-pages, and keep our target out of
8928  * buddy allocator.
8929  */
8930 static void break_down_buddy_pages(struct zone *zone, struct page *page,
8931 				   struct page *target, int low, int high,
8932 				   int migratetype)
8933 {
8934 	unsigned long size = 1 << high;
8935 	struct page *current_buddy, *next_page;
8936 
8937 	while (high > low) {
8938 		high--;
8939 		size >>= 1;
8940 
8941 		if (target >= &page[size]) {
8942 			next_page = page + size;
8943 			current_buddy = page;
8944 		} else {
8945 			next_page = page;
8946 			current_buddy = page + size;
8947 		}
8948 
8949 		if (set_page_guard(zone, current_buddy, high, migratetype))
8950 			continue;
8951 
8952 		if (current_buddy != target) {
8953 			add_to_free_list(current_buddy, zone, high, migratetype);
8954 			set_buddy_order(current_buddy, high);
8955 			page = next_page;
8956 		}
8957 	}
8958 }
8959 
8960 /*
8961  * Take a page that will be marked as poisoned off the buddy allocator.
8962  */
8963 bool take_page_off_buddy(struct page *page)
8964 {
8965 	struct zone *zone = page_zone(page);
8966 	unsigned long pfn = page_to_pfn(page);
8967 	unsigned long flags;
8968 	unsigned int order;
8969 	bool ret = false;
8970 
8971 	spin_lock_irqsave(&zone->lock, flags);
8972 	for (order = 0; order < MAX_ORDER; order++) {
8973 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8974 		int page_order = buddy_order(page_head);
8975 
8976 		if (PageBuddy(page_head) && page_order >= order) {
8977 			unsigned long pfn_head = page_to_pfn(page_head);
8978 			int migratetype = get_pfnblock_migratetype(page_head,
8979 								   pfn_head);
8980 
8981 			del_page_from_free_list(page_head, zone, page_order);
8982 			break_down_buddy_pages(zone, page_head, page, 0,
8983 						page_order, migratetype);
8984 			ret = true;
8985 			break;
8986 		}
8987 		if (page_count(page_head) > 0)
8988 			break;
8989 	}
8990 	spin_unlock_irqrestore(&zone->lock, flags);
8991 	return ret;
8992 }
8993 #endif
8994