xref: /linux/mm/page_alloc.c (revision 2624f124b3b5d550ab2fbef7ee3bc0e1fed09722)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/nodemask.h>
36 #include <linux/vmalloc.h>
37 
38 #include <asm/tlbflush.h>
39 #include "internal.h"
40 
41 /*
42  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43  * initializer cleaner
44  */
45 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
46 EXPORT_SYMBOL(node_online_map);
47 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
48 EXPORT_SYMBOL(node_possible_map);
49 struct pglist_data *pgdat_list __read_mostly;
50 unsigned long totalram_pages __read_mostly;
51 unsigned long totalhigh_pages __read_mostly;
52 long nr_swap_pages;
53 
54 /*
55  * results with 256, 32 in the lowmem_reserve sysctl:
56  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57  *	1G machine -> (16M dma, 784M normal, 224M high)
58  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
61  */
62 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
63 
64 EXPORT_SYMBOL(totalram_pages);
65 EXPORT_SYMBOL(nr_swap_pages);
66 
67 /*
68  * Used by page_zone() to look up the address of the struct zone whose
69  * id is encoded in the upper bits of page->flags
70  */
71 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
72 EXPORT_SYMBOL(zone_table);
73 
74 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
75 int min_free_kbytes = 1024;
76 
77 unsigned long __initdata nr_kernel_pages;
78 unsigned long __initdata nr_all_pages;
79 
80 /*
81  * Temporary debugging check for pages not lying within a given zone.
82  */
83 static int bad_range(struct zone *zone, struct page *page)
84 {
85 	if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
86 		return 1;
87 	if (page_to_pfn(page) < zone->zone_start_pfn)
88 		return 1;
89 #ifdef CONFIG_HOLES_IN_ZONE
90 	if (!pfn_valid(page_to_pfn(page)))
91 		return 1;
92 #endif
93 	if (zone != page_zone(page))
94 		return 1;
95 	return 0;
96 }
97 
98 static void bad_page(const char *function, struct page *page)
99 {
100 	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
101 		function, current->comm, page);
102 	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
103 		(int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
104 		page->mapping, page_mapcount(page), page_count(page));
105 	printk(KERN_EMERG "Backtrace:\n");
106 	dump_stack();
107 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
108 	page->flags &= ~(1 << PG_lru	|
109 			1 << PG_private |
110 			1 << PG_locked	|
111 			1 << PG_active	|
112 			1 << PG_dirty	|
113 			1 << PG_reclaim |
114 			1 << PG_slab    |
115 			1 << PG_swapcache |
116 			1 << PG_writeback);
117 	set_page_count(page, 0);
118 	reset_page_mapcount(page);
119 	page->mapping = NULL;
120 	tainted |= TAINT_BAD_PAGE;
121 }
122 
123 #ifndef CONFIG_HUGETLB_PAGE
124 #define prep_compound_page(page, order) do { } while (0)
125 #define destroy_compound_page(page, order) do { } while (0)
126 #else
127 /*
128  * Higher-order pages are called "compound pages".  They are structured thusly:
129  *
130  * The first PAGE_SIZE page is called the "head page".
131  *
132  * The remaining PAGE_SIZE pages are called "tail pages".
133  *
134  * All pages have PG_compound set.  All pages have their ->private pointing at
135  * the head page (even the head page has this).
136  *
137  * The first tail page's ->mapping, if non-zero, holds the address of the
138  * compound page's put_page() function.
139  *
140  * The order of the allocation is stored in the first tail page's ->index
141  * This is only for debug at present.  This usage means that zero-order pages
142  * may not be compound.
143  */
144 static void prep_compound_page(struct page *page, unsigned long order)
145 {
146 	int i;
147 	int nr_pages = 1 << order;
148 
149 	page[1].mapping = NULL;
150 	page[1].index = order;
151 	for (i = 0; i < nr_pages; i++) {
152 		struct page *p = page + i;
153 
154 		SetPageCompound(p);
155 		p->private = (unsigned long)page;
156 	}
157 }
158 
159 static void destroy_compound_page(struct page *page, unsigned long order)
160 {
161 	int i;
162 	int nr_pages = 1 << order;
163 
164 	if (!PageCompound(page))
165 		return;
166 
167 	if (page[1].index != order)
168 		bad_page(__FUNCTION__, page);
169 
170 	for (i = 0; i < nr_pages; i++) {
171 		struct page *p = page + i;
172 
173 		if (!PageCompound(p))
174 			bad_page(__FUNCTION__, page);
175 		if (p->private != (unsigned long)page)
176 			bad_page(__FUNCTION__, page);
177 		ClearPageCompound(p);
178 	}
179 }
180 #endif		/* CONFIG_HUGETLB_PAGE */
181 
182 /*
183  * function for dealing with page's order in buddy system.
184  * zone->lock is already acquired when we use these.
185  * So, we don't need atomic page->flags operations here.
186  */
187 static inline unsigned long page_order(struct page *page) {
188 	return page->private;
189 }
190 
191 static inline void set_page_order(struct page *page, int order) {
192 	page->private = order;
193 	__SetPagePrivate(page);
194 }
195 
196 static inline void rmv_page_order(struct page *page)
197 {
198 	__ClearPagePrivate(page);
199 	page->private = 0;
200 }
201 
202 /*
203  * Locate the struct page for both the matching buddy in our
204  * pair (buddy1) and the combined O(n+1) page they form (page).
205  *
206  * 1) Any buddy B1 will have an order O twin B2 which satisfies
207  * the following equation:
208  *     B2 = B1 ^ (1 << O)
209  * For example, if the starting buddy (buddy2) is #8 its order
210  * 1 buddy is #10:
211  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
212  *
213  * 2) Any buddy B will have an order O+1 parent P which
214  * satisfies the following equation:
215  *     P = B & ~(1 << O)
216  *
217  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
218  */
219 static inline struct page *
220 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
221 {
222 	unsigned long buddy_idx = page_idx ^ (1 << order);
223 
224 	return page + (buddy_idx - page_idx);
225 }
226 
227 static inline unsigned long
228 __find_combined_index(unsigned long page_idx, unsigned int order)
229 {
230 	return (page_idx & ~(1 << order));
231 }
232 
233 /*
234  * This function checks whether a page is free && is the buddy
235  * we can do coalesce a page and its buddy if
236  * (a) the buddy is free &&
237  * (b) the buddy is on the buddy system &&
238  * (c) a page and its buddy have the same order.
239  * for recording page's order, we use page->private and PG_private.
240  *
241  */
242 static inline int page_is_buddy(struct page *page, int order)
243 {
244        if (PagePrivate(page)           &&
245            (page_order(page) == order) &&
246            !PageReserved(page)         &&
247             page_count(page) == 0)
248                return 1;
249        return 0;
250 }
251 
252 /*
253  * Freeing function for a buddy system allocator.
254  *
255  * The concept of a buddy system is to maintain direct-mapped table
256  * (containing bit values) for memory blocks of various "orders".
257  * The bottom level table contains the map for the smallest allocatable
258  * units of memory (here, pages), and each level above it describes
259  * pairs of units from the levels below, hence, "buddies".
260  * At a high level, all that happens here is marking the table entry
261  * at the bottom level available, and propagating the changes upward
262  * as necessary, plus some accounting needed to play nicely with other
263  * parts of the VM system.
264  * At each level, we keep a list of pages, which are heads of continuous
265  * free pages of length of (1 << order) and marked with PG_Private.Page's
266  * order is recorded in page->private field.
267  * So when we are allocating or freeing one, we can derive the state of the
268  * other.  That is, if we allocate a small block, and both were
269  * free, the remainder of the region must be split into blocks.
270  * If a block is freed, and its buddy is also free, then this
271  * triggers coalescing into a block of larger size.
272  *
273  * -- wli
274  */
275 
276 static inline void __free_pages_bulk (struct page *page,
277 		struct zone *zone, unsigned int order)
278 {
279 	unsigned long page_idx;
280 	int order_size = 1 << order;
281 
282 	if (unlikely(order))
283 		destroy_compound_page(page, order);
284 
285 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
286 
287 	BUG_ON(page_idx & (order_size - 1));
288 	BUG_ON(bad_range(zone, page));
289 
290 	zone->free_pages += order_size;
291 	while (order < MAX_ORDER-1) {
292 		unsigned long combined_idx;
293 		struct free_area *area;
294 		struct page *buddy;
295 
296 		combined_idx = __find_combined_index(page_idx, order);
297 		buddy = __page_find_buddy(page, page_idx, order);
298 
299 		if (bad_range(zone, buddy))
300 			break;
301 		if (!page_is_buddy(buddy, order))
302 			break;		/* Move the buddy up one level. */
303 		list_del(&buddy->lru);
304 		area = zone->free_area + order;
305 		area->nr_free--;
306 		rmv_page_order(buddy);
307 		page = page + (combined_idx - page_idx);
308 		page_idx = combined_idx;
309 		order++;
310 	}
311 	set_page_order(page, order);
312 	list_add(&page->lru, &zone->free_area[order].free_list);
313 	zone->free_area[order].nr_free++;
314 }
315 
316 static inline void free_pages_check(const char *function, struct page *page)
317 {
318 	if (	page_mapcount(page) ||
319 		page->mapping != NULL ||
320 		page_count(page) != 0 ||
321 		(page->flags & (
322 			1 << PG_lru	|
323 			1 << PG_private |
324 			1 << PG_locked	|
325 			1 << PG_active	|
326 			1 << PG_reclaim	|
327 			1 << PG_slab	|
328 			1 << PG_swapcache |
329 			1 << PG_writeback )))
330 		bad_page(function, page);
331 	if (PageDirty(page))
332 		__ClearPageDirty(page);
333 }
334 
335 /*
336  * Frees a list of pages.
337  * Assumes all pages on list are in same zone, and of same order.
338  * count is the number of pages to free, or 0 for all on the list.
339  *
340  * If the zone was previously in an "all pages pinned" state then look to
341  * see if this freeing clears that state.
342  *
343  * And clear the zone's pages_scanned counter, to hold off the "all pages are
344  * pinned" detection logic.
345  */
346 static int
347 free_pages_bulk(struct zone *zone, int count,
348 		struct list_head *list, unsigned int order)
349 {
350 	unsigned long flags;
351 	struct page *page = NULL;
352 	int ret = 0;
353 
354 	spin_lock_irqsave(&zone->lock, flags);
355 	zone->all_unreclaimable = 0;
356 	zone->pages_scanned = 0;
357 	while (!list_empty(list) && count--) {
358 		page = list_entry(list->prev, struct page, lru);
359 		/* have to delete it as __free_pages_bulk list manipulates */
360 		list_del(&page->lru);
361 		__free_pages_bulk(page, zone, order);
362 		ret++;
363 	}
364 	spin_unlock_irqrestore(&zone->lock, flags);
365 	return ret;
366 }
367 
368 void __free_pages_ok(struct page *page, unsigned int order)
369 {
370 	LIST_HEAD(list);
371 	int i;
372 
373 	arch_free_page(page, order);
374 
375 	mod_page_state(pgfree, 1 << order);
376 
377 #ifndef CONFIG_MMU
378 	if (order > 0)
379 		for (i = 1 ; i < (1 << order) ; ++i)
380 			__put_page(page + i);
381 #endif
382 
383 	for (i = 0 ; i < (1 << order) ; ++i)
384 		free_pages_check(__FUNCTION__, page + i);
385 	list_add(&page->lru, &list);
386 	kernel_map_pages(page, 1<<order, 0);
387 	free_pages_bulk(page_zone(page), 1, &list, order);
388 }
389 
390 
391 /*
392  * The order of subdivision here is critical for the IO subsystem.
393  * Please do not alter this order without good reasons and regression
394  * testing. Specifically, as large blocks of memory are subdivided,
395  * the order in which smaller blocks are delivered depends on the order
396  * they're subdivided in this function. This is the primary factor
397  * influencing the order in which pages are delivered to the IO
398  * subsystem according to empirical testing, and this is also justified
399  * by considering the behavior of a buddy system containing a single
400  * large block of memory acted on by a series of small allocations.
401  * This behavior is a critical factor in sglist merging's success.
402  *
403  * -- wli
404  */
405 static inline struct page *
406 expand(struct zone *zone, struct page *page,
407  	int low, int high, struct free_area *area)
408 {
409 	unsigned long size = 1 << high;
410 
411 	while (high > low) {
412 		area--;
413 		high--;
414 		size >>= 1;
415 		BUG_ON(bad_range(zone, &page[size]));
416 		list_add(&page[size].lru, &area->free_list);
417 		area->nr_free++;
418 		set_page_order(&page[size], high);
419 	}
420 	return page;
421 }
422 
423 void set_page_refs(struct page *page, int order)
424 {
425 #ifdef CONFIG_MMU
426 	set_page_count(page, 1);
427 #else
428 	int i;
429 
430 	/*
431 	 * We need to reference all the pages for this order, otherwise if
432 	 * anyone accesses one of the pages with (get/put) it will be freed.
433 	 * - eg: access_process_vm()
434 	 */
435 	for (i = 0; i < (1 << order); i++)
436 		set_page_count(page + i, 1);
437 #endif /* CONFIG_MMU */
438 }
439 
440 /*
441  * This page is about to be returned from the page allocator
442  */
443 static void prep_new_page(struct page *page, int order)
444 {
445 	if (	page_mapcount(page) ||
446 		page->mapping != NULL ||
447 		page_count(page) != 0 ||
448 		(page->flags & (
449 			1 << PG_lru	|
450 			1 << PG_private	|
451 			1 << PG_locked	|
452 			1 << PG_active	|
453 			1 << PG_dirty	|
454 			1 << PG_reclaim	|
455 			1 << PG_slab    |
456 			1 << PG_swapcache |
457 			1 << PG_writeback )))
458 		bad_page(__FUNCTION__, page);
459 
460 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
461 			1 << PG_referenced | 1 << PG_arch_1 |
462 			1 << PG_checked | 1 << PG_mappedtodisk);
463 	page->private = 0;
464 	set_page_refs(page, order);
465 	kernel_map_pages(page, 1 << order, 1);
466 }
467 
468 /*
469  * Do the hard work of removing an element from the buddy allocator.
470  * Call me with the zone->lock already held.
471  */
472 static struct page *__rmqueue(struct zone *zone, unsigned int order)
473 {
474 	struct free_area * area;
475 	unsigned int current_order;
476 	struct page *page;
477 
478 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
479 		area = zone->free_area + current_order;
480 		if (list_empty(&area->free_list))
481 			continue;
482 
483 		page = list_entry(area->free_list.next, struct page, lru);
484 		list_del(&page->lru);
485 		rmv_page_order(page);
486 		area->nr_free--;
487 		zone->free_pages -= 1UL << order;
488 		return expand(zone, page, order, current_order, area);
489 	}
490 
491 	return NULL;
492 }
493 
494 /*
495  * Obtain a specified number of elements from the buddy allocator, all under
496  * a single hold of the lock, for efficiency.  Add them to the supplied list.
497  * Returns the number of new pages which were placed at *list.
498  */
499 static int rmqueue_bulk(struct zone *zone, unsigned int order,
500 			unsigned long count, struct list_head *list)
501 {
502 	unsigned long flags;
503 	int i;
504 	int allocated = 0;
505 	struct page *page;
506 
507 	spin_lock_irqsave(&zone->lock, flags);
508 	for (i = 0; i < count; ++i) {
509 		page = __rmqueue(zone, order);
510 		if (page == NULL)
511 			break;
512 		allocated++;
513 		list_add_tail(&page->lru, list);
514 	}
515 	spin_unlock_irqrestore(&zone->lock, flags);
516 	return allocated;
517 }
518 
519 #ifdef CONFIG_NUMA
520 /* Called from the slab reaper to drain remote pagesets */
521 void drain_remote_pages(void)
522 {
523 	struct zone *zone;
524 	int i;
525 	unsigned long flags;
526 
527 	local_irq_save(flags);
528 	for_each_zone(zone) {
529 		struct per_cpu_pageset *pset;
530 
531 		/* Do not drain local pagesets */
532 		if (zone->zone_pgdat->node_id == numa_node_id())
533 			continue;
534 
535 		pset = zone->pageset[smp_processor_id()];
536 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
537 			struct per_cpu_pages *pcp;
538 
539 			pcp = &pset->pcp[i];
540 			if (pcp->count)
541 				pcp->count -= free_pages_bulk(zone, pcp->count,
542 						&pcp->list, 0);
543 		}
544 	}
545 	local_irq_restore(flags);
546 }
547 #endif
548 
549 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
550 static void __drain_pages(unsigned int cpu)
551 {
552 	struct zone *zone;
553 	int i;
554 
555 	for_each_zone(zone) {
556 		struct per_cpu_pageset *pset;
557 
558 		pset = zone_pcp(zone, cpu);
559 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
560 			struct per_cpu_pages *pcp;
561 
562 			pcp = &pset->pcp[i];
563 			pcp->count -= free_pages_bulk(zone, pcp->count,
564 						&pcp->list, 0);
565 		}
566 	}
567 }
568 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
569 
570 #ifdef CONFIG_PM
571 
572 void mark_free_pages(struct zone *zone)
573 {
574 	unsigned long zone_pfn, flags;
575 	int order;
576 	struct list_head *curr;
577 
578 	if (!zone->spanned_pages)
579 		return;
580 
581 	spin_lock_irqsave(&zone->lock, flags);
582 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
583 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
584 
585 	for (order = MAX_ORDER - 1; order >= 0; --order)
586 		list_for_each(curr, &zone->free_area[order].free_list) {
587 			unsigned long start_pfn, i;
588 
589 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
590 
591 			for (i=0; i < (1<<order); i++)
592 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
593 	}
594 	spin_unlock_irqrestore(&zone->lock, flags);
595 }
596 
597 /*
598  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
599  */
600 void drain_local_pages(void)
601 {
602 	unsigned long flags;
603 
604 	local_irq_save(flags);
605 	__drain_pages(smp_processor_id());
606 	local_irq_restore(flags);
607 }
608 #endif /* CONFIG_PM */
609 
610 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
611 {
612 #ifdef CONFIG_NUMA
613 	unsigned long flags;
614 	int cpu;
615 	pg_data_t *pg = z->zone_pgdat;
616 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
617 	struct per_cpu_pageset *p;
618 
619 	local_irq_save(flags);
620 	cpu = smp_processor_id();
621 	p = zone_pcp(z,cpu);
622 	if (pg == orig) {
623 		p->numa_hit++;
624 	} else {
625 		p->numa_miss++;
626 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
627 	}
628 	if (pg == NODE_DATA(numa_node_id()))
629 		p->local_node++;
630 	else
631 		p->other_node++;
632 	local_irq_restore(flags);
633 #endif
634 }
635 
636 /*
637  * Free a 0-order page
638  */
639 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
640 static void fastcall free_hot_cold_page(struct page *page, int cold)
641 {
642 	struct zone *zone = page_zone(page);
643 	struct per_cpu_pages *pcp;
644 	unsigned long flags;
645 
646 	arch_free_page(page, 0);
647 
648 	kernel_map_pages(page, 1, 0);
649 	inc_page_state(pgfree);
650 	if (PageAnon(page))
651 		page->mapping = NULL;
652 	free_pages_check(__FUNCTION__, page);
653 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
654 	local_irq_save(flags);
655 	list_add(&page->lru, &pcp->list);
656 	pcp->count++;
657 	if (pcp->count >= pcp->high)
658 		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
659 	local_irq_restore(flags);
660 	put_cpu();
661 }
662 
663 void fastcall free_hot_page(struct page *page)
664 {
665 	free_hot_cold_page(page, 0);
666 }
667 
668 void fastcall free_cold_page(struct page *page)
669 {
670 	free_hot_cold_page(page, 1);
671 }
672 
673 static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
674 {
675 	int i;
676 
677 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
678 	for(i = 0; i < (1 << order); i++)
679 		clear_highpage(page + i);
680 }
681 
682 /*
683  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
684  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
685  * or two.
686  */
687 static struct page *
688 buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
689 {
690 	unsigned long flags;
691 	struct page *page = NULL;
692 	int cold = !!(gfp_flags & __GFP_COLD);
693 
694 	if (order == 0) {
695 		struct per_cpu_pages *pcp;
696 
697 		pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
698 		local_irq_save(flags);
699 		if (pcp->count <= pcp->low)
700 			pcp->count += rmqueue_bulk(zone, 0,
701 						pcp->batch, &pcp->list);
702 		if (pcp->count) {
703 			page = list_entry(pcp->list.next, struct page, lru);
704 			list_del(&page->lru);
705 			pcp->count--;
706 		}
707 		local_irq_restore(flags);
708 		put_cpu();
709 	}
710 
711 	if (page == NULL) {
712 		spin_lock_irqsave(&zone->lock, flags);
713 		page = __rmqueue(zone, order);
714 		spin_unlock_irqrestore(&zone->lock, flags);
715 	}
716 
717 	if (page != NULL) {
718 		BUG_ON(bad_range(zone, page));
719 		mod_page_state_zone(zone, pgalloc, 1 << order);
720 		prep_new_page(page, order);
721 
722 		if (gfp_flags & __GFP_ZERO)
723 			prep_zero_page(page, order, gfp_flags);
724 
725 		if (order && (gfp_flags & __GFP_COMP))
726 			prep_compound_page(page, order);
727 	}
728 	return page;
729 }
730 
731 /*
732  * Return 1 if free pages are above 'mark'. This takes into account the order
733  * of the allocation.
734  */
735 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
736 		      int classzone_idx, int can_try_harder, int gfp_high)
737 {
738 	/* free_pages my go negative - that's OK */
739 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
740 	int o;
741 
742 	if (gfp_high)
743 		min -= min / 2;
744 	if (can_try_harder)
745 		min -= min / 4;
746 
747 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
748 		return 0;
749 	for (o = 0; o < order; o++) {
750 		/* At the next order, this order's pages become unavailable */
751 		free_pages -= z->free_area[o].nr_free << o;
752 
753 		/* Require fewer higher order pages to be free */
754 		min >>= 1;
755 
756 		if (free_pages <= min)
757 			return 0;
758 	}
759 	return 1;
760 }
761 
762 static inline int
763 should_reclaim_zone(struct zone *z, unsigned int gfp_mask)
764 {
765 	if (!z->reclaim_pages)
766 		return 0;
767 	if (gfp_mask & __GFP_NORECLAIM)
768 		return 0;
769 	return 1;
770 }
771 
772 /*
773  * This is the 'heart' of the zoned buddy allocator.
774  */
775 struct page * fastcall
776 __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
777 		struct zonelist *zonelist)
778 {
779 	const int wait = gfp_mask & __GFP_WAIT;
780 	struct zone **zones, *z;
781 	struct page *page;
782 	struct reclaim_state reclaim_state;
783 	struct task_struct *p = current;
784 	int i;
785 	int classzone_idx;
786 	int do_retry;
787 	int can_try_harder;
788 	int did_some_progress;
789 
790 	might_sleep_if(wait);
791 
792 	/*
793 	 * The caller may dip into page reserves a bit more if the caller
794 	 * cannot run direct reclaim, or is the caller has realtime scheduling
795 	 * policy
796 	 */
797 	can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
798 
799 	zones = zonelist->zones;  /* the list of zones suitable for gfp_mask */
800 
801 	if (unlikely(zones[0] == NULL)) {
802 		/* Should this ever happen?? */
803 		return NULL;
804 	}
805 
806 	classzone_idx = zone_idx(zones[0]);
807 
808 restart:
809 	/*
810 	 * Go through the zonelist once, looking for a zone with enough free.
811 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
812 	 */
813 	for (i = 0; (z = zones[i]) != NULL; i++) {
814 		int do_reclaim = should_reclaim_zone(z, gfp_mask);
815 
816 		if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
817 			continue;
818 
819 		/*
820 		 * If the zone is to attempt early page reclaim then this loop
821 		 * will try to reclaim pages and check the watermark a second
822 		 * time before giving up and falling back to the next zone.
823 		 */
824 zone_reclaim_retry:
825 		if (!zone_watermark_ok(z, order, z->pages_low,
826 				       classzone_idx, 0, 0)) {
827 			if (!do_reclaim)
828 				continue;
829 			else {
830 				zone_reclaim(z, gfp_mask, order);
831 				/* Only try reclaim once */
832 				do_reclaim = 0;
833 				goto zone_reclaim_retry;
834 			}
835 		}
836 
837 		page = buffered_rmqueue(z, order, gfp_mask);
838 		if (page)
839 			goto got_pg;
840 	}
841 
842 	for (i = 0; (z = zones[i]) != NULL; i++)
843 		wakeup_kswapd(z, order);
844 
845 	/*
846 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
847 	 * coming from realtime tasks to go deeper into reserves
848 	 *
849 	 * This is the last chance, in general, before the goto nopage.
850 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
851 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
852 	 */
853 	for (i = 0; (z = zones[i]) != NULL; i++) {
854 		if (!zone_watermark_ok(z, order, z->pages_min,
855 				       classzone_idx, can_try_harder,
856 				       gfp_mask & __GFP_HIGH))
857 			continue;
858 
859 		if (wait && !cpuset_zone_allowed(z, gfp_mask))
860 			continue;
861 
862 		page = buffered_rmqueue(z, order, gfp_mask);
863 		if (page)
864 			goto got_pg;
865 	}
866 
867 	/* This allocation should allow future memory freeing. */
868 
869 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
870 			&& !in_interrupt()) {
871 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
872 			/* go through the zonelist yet again, ignoring mins */
873 			for (i = 0; (z = zones[i]) != NULL; i++) {
874 				if (!cpuset_zone_allowed(z, gfp_mask))
875 					continue;
876 				page = buffered_rmqueue(z, order, gfp_mask);
877 				if (page)
878 					goto got_pg;
879 			}
880 		}
881 		goto nopage;
882 	}
883 
884 	/* Atomic allocations - we can't balance anything */
885 	if (!wait)
886 		goto nopage;
887 
888 rebalance:
889 	cond_resched();
890 
891 	/* We now go into synchronous reclaim */
892 	p->flags |= PF_MEMALLOC;
893 	reclaim_state.reclaimed_slab = 0;
894 	p->reclaim_state = &reclaim_state;
895 
896 	did_some_progress = try_to_free_pages(zones, gfp_mask);
897 
898 	p->reclaim_state = NULL;
899 	p->flags &= ~PF_MEMALLOC;
900 
901 	cond_resched();
902 
903 	if (likely(did_some_progress)) {
904 		for (i = 0; (z = zones[i]) != NULL; i++) {
905 			if (!zone_watermark_ok(z, order, z->pages_min,
906 					       classzone_idx, can_try_harder,
907 					       gfp_mask & __GFP_HIGH))
908 				continue;
909 
910 			if (!cpuset_zone_allowed(z, gfp_mask))
911 				continue;
912 
913 			page = buffered_rmqueue(z, order, gfp_mask);
914 			if (page)
915 				goto got_pg;
916 		}
917 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
918 		/*
919 		 * Go through the zonelist yet one more time, keep
920 		 * very high watermark here, this is only to catch
921 		 * a parallel oom killing, we must fail if we're still
922 		 * under heavy pressure.
923 		 */
924 		for (i = 0; (z = zones[i]) != NULL; i++) {
925 			if (!zone_watermark_ok(z, order, z->pages_high,
926 					       classzone_idx, 0, 0))
927 				continue;
928 
929 			if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
930 				continue;
931 
932 			page = buffered_rmqueue(z, order, gfp_mask);
933 			if (page)
934 				goto got_pg;
935 		}
936 
937 		out_of_memory(gfp_mask, order);
938 		goto restart;
939 	}
940 
941 	/*
942 	 * Don't let big-order allocations loop unless the caller explicitly
943 	 * requests that.  Wait for some write requests to complete then retry.
944 	 *
945 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
946 	 * <= 3, but that may not be true in other implementations.
947 	 */
948 	do_retry = 0;
949 	if (!(gfp_mask & __GFP_NORETRY)) {
950 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
951 			do_retry = 1;
952 		if (gfp_mask & __GFP_NOFAIL)
953 			do_retry = 1;
954 	}
955 	if (do_retry) {
956 		blk_congestion_wait(WRITE, HZ/50);
957 		goto rebalance;
958 	}
959 
960 nopage:
961 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
962 		printk(KERN_WARNING "%s: page allocation failure."
963 			" order:%d, mode:0x%x\n",
964 			p->comm, order, gfp_mask);
965 		dump_stack();
966 		show_mem();
967 	}
968 	return NULL;
969 got_pg:
970 	zone_statistics(zonelist, z);
971 	return page;
972 }
973 
974 EXPORT_SYMBOL(__alloc_pages);
975 
976 /*
977  * Common helper functions.
978  */
979 fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
980 {
981 	struct page * page;
982 	page = alloc_pages(gfp_mask, order);
983 	if (!page)
984 		return 0;
985 	return (unsigned long) page_address(page);
986 }
987 
988 EXPORT_SYMBOL(__get_free_pages);
989 
990 fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
991 {
992 	struct page * page;
993 
994 	/*
995 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
996 	 * a highmem page
997 	 */
998 	BUG_ON(gfp_mask & __GFP_HIGHMEM);
999 
1000 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1001 	if (page)
1002 		return (unsigned long) page_address(page);
1003 	return 0;
1004 }
1005 
1006 EXPORT_SYMBOL(get_zeroed_page);
1007 
1008 void __pagevec_free(struct pagevec *pvec)
1009 {
1010 	int i = pagevec_count(pvec);
1011 
1012 	while (--i >= 0)
1013 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1014 }
1015 
1016 fastcall void __free_pages(struct page *page, unsigned int order)
1017 {
1018 	if (!PageReserved(page) && put_page_testzero(page)) {
1019 		if (order == 0)
1020 			free_hot_page(page);
1021 		else
1022 			__free_pages_ok(page, order);
1023 	}
1024 }
1025 
1026 EXPORT_SYMBOL(__free_pages);
1027 
1028 fastcall void free_pages(unsigned long addr, unsigned int order)
1029 {
1030 	if (addr != 0) {
1031 		BUG_ON(!virt_addr_valid((void *)addr));
1032 		__free_pages(virt_to_page((void *)addr), order);
1033 	}
1034 }
1035 
1036 EXPORT_SYMBOL(free_pages);
1037 
1038 /*
1039  * Total amount of free (allocatable) RAM:
1040  */
1041 unsigned int nr_free_pages(void)
1042 {
1043 	unsigned int sum = 0;
1044 	struct zone *zone;
1045 
1046 	for_each_zone(zone)
1047 		sum += zone->free_pages;
1048 
1049 	return sum;
1050 }
1051 
1052 EXPORT_SYMBOL(nr_free_pages);
1053 
1054 #ifdef CONFIG_NUMA
1055 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1056 {
1057 	unsigned int i, sum = 0;
1058 
1059 	for (i = 0; i < MAX_NR_ZONES; i++)
1060 		sum += pgdat->node_zones[i].free_pages;
1061 
1062 	return sum;
1063 }
1064 #endif
1065 
1066 static unsigned int nr_free_zone_pages(int offset)
1067 {
1068 	/* Just pick one node, since fallback list is circular */
1069 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1070 	unsigned int sum = 0;
1071 
1072 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1073 	struct zone **zonep = zonelist->zones;
1074 	struct zone *zone;
1075 
1076 	for (zone = *zonep++; zone; zone = *zonep++) {
1077 		unsigned long size = zone->present_pages;
1078 		unsigned long high = zone->pages_high;
1079 		if (size > high)
1080 			sum += size - high;
1081 	}
1082 
1083 	return sum;
1084 }
1085 
1086 /*
1087  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1088  */
1089 unsigned int nr_free_buffer_pages(void)
1090 {
1091 	return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1092 }
1093 
1094 /*
1095  * Amount of free RAM allocatable within all zones
1096  */
1097 unsigned int nr_free_pagecache_pages(void)
1098 {
1099 	return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1100 }
1101 
1102 #ifdef CONFIG_HIGHMEM
1103 unsigned int nr_free_highpages (void)
1104 {
1105 	pg_data_t *pgdat;
1106 	unsigned int pages = 0;
1107 
1108 	for_each_pgdat(pgdat)
1109 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1110 
1111 	return pages;
1112 }
1113 #endif
1114 
1115 #ifdef CONFIG_NUMA
1116 static void show_node(struct zone *zone)
1117 {
1118 	printk("Node %d ", zone->zone_pgdat->node_id);
1119 }
1120 #else
1121 #define show_node(zone)	do { } while (0)
1122 #endif
1123 
1124 /*
1125  * Accumulate the page_state information across all CPUs.
1126  * The result is unavoidably approximate - it can change
1127  * during and after execution of this function.
1128  */
1129 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1130 
1131 atomic_t nr_pagecache = ATOMIC_INIT(0);
1132 EXPORT_SYMBOL(nr_pagecache);
1133 #ifdef CONFIG_SMP
1134 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1135 #endif
1136 
1137 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1138 {
1139 	int cpu = 0;
1140 
1141 	memset(ret, 0, sizeof(*ret));
1142 	cpus_and(*cpumask, *cpumask, cpu_online_map);
1143 
1144 	cpu = first_cpu(*cpumask);
1145 	while (cpu < NR_CPUS) {
1146 		unsigned long *in, *out, off;
1147 
1148 		in = (unsigned long *)&per_cpu(page_states, cpu);
1149 
1150 		cpu = next_cpu(cpu, *cpumask);
1151 
1152 		if (cpu < NR_CPUS)
1153 			prefetch(&per_cpu(page_states, cpu));
1154 
1155 		out = (unsigned long *)ret;
1156 		for (off = 0; off < nr; off++)
1157 			*out++ += *in++;
1158 	}
1159 }
1160 
1161 void get_page_state_node(struct page_state *ret, int node)
1162 {
1163 	int nr;
1164 	cpumask_t mask = node_to_cpumask(node);
1165 
1166 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1167 	nr /= sizeof(unsigned long);
1168 
1169 	__get_page_state(ret, nr+1, &mask);
1170 }
1171 
1172 void get_page_state(struct page_state *ret)
1173 {
1174 	int nr;
1175 	cpumask_t mask = CPU_MASK_ALL;
1176 
1177 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1178 	nr /= sizeof(unsigned long);
1179 
1180 	__get_page_state(ret, nr + 1, &mask);
1181 }
1182 
1183 void get_full_page_state(struct page_state *ret)
1184 {
1185 	cpumask_t mask = CPU_MASK_ALL;
1186 
1187 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1188 }
1189 
1190 unsigned long __read_page_state(unsigned long offset)
1191 {
1192 	unsigned long ret = 0;
1193 	int cpu;
1194 
1195 	for_each_online_cpu(cpu) {
1196 		unsigned long in;
1197 
1198 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1199 		ret += *((unsigned long *)in);
1200 	}
1201 	return ret;
1202 }
1203 
1204 void __mod_page_state(unsigned long offset, unsigned long delta)
1205 {
1206 	unsigned long flags;
1207 	void* ptr;
1208 
1209 	local_irq_save(flags);
1210 	ptr = &__get_cpu_var(page_states);
1211 	*(unsigned long*)(ptr + offset) += delta;
1212 	local_irq_restore(flags);
1213 }
1214 
1215 EXPORT_SYMBOL(__mod_page_state);
1216 
1217 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1218 			unsigned long *free, struct pglist_data *pgdat)
1219 {
1220 	struct zone *zones = pgdat->node_zones;
1221 	int i;
1222 
1223 	*active = 0;
1224 	*inactive = 0;
1225 	*free = 0;
1226 	for (i = 0; i < MAX_NR_ZONES; i++) {
1227 		*active += zones[i].nr_active;
1228 		*inactive += zones[i].nr_inactive;
1229 		*free += zones[i].free_pages;
1230 	}
1231 }
1232 
1233 void get_zone_counts(unsigned long *active,
1234 		unsigned long *inactive, unsigned long *free)
1235 {
1236 	struct pglist_data *pgdat;
1237 
1238 	*active = 0;
1239 	*inactive = 0;
1240 	*free = 0;
1241 	for_each_pgdat(pgdat) {
1242 		unsigned long l, m, n;
1243 		__get_zone_counts(&l, &m, &n, pgdat);
1244 		*active += l;
1245 		*inactive += m;
1246 		*free += n;
1247 	}
1248 }
1249 
1250 void si_meminfo(struct sysinfo *val)
1251 {
1252 	val->totalram = totalram_pages;
1253 	val->sharedram = 0;
1254 	val->freeram = nr_free_pages();
1255 	val->bufferram = nr_blockdev_pages();
1256 #ifdef CONFIG_HIGHMEM
1257 	val->totalhigh = totalhigh_pages;
1258 	val->freehigh = nr_free_highpages();
1259 #else
1260 	val->totalhigh = 0;
1261 	val->freehigh = 0;
1262 #endif
1263 	val->mem_unit = PAGE_SIZE;
1264 }
1265 
1266 EXPORT_SYMBOL(si_meminfo);
1267 
1268 #ifdef CONFIG_NUMA
1269 void si_meminfo_node(struct sysinfo *val, int nid)
1270 {
1271 	pg_data_t *pgdat = NODE_DATA(nid);
1272 
1273 	val->totalram = pgdat->node_present_pages;
1274 	val->freeram = nr_free_pages_pgdat(pgdat);
1275 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1276 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1277 	val->mem_unit = PAGE_SIZE;
1278 }
1279 #endif
1280 
1281 #define K(x) ((x) << (PAGE_SHIFT-10))
1282 
1283 /*
1284  * Show free area list (used inside shift_scroll-lock stuff)
1285  * We also calculate the percentage fragmentation. We do this by counting the
1286  * memory on each free list with the exception of the first item on the list.
1287  */
1288 void show_free_areas(void)
1289 {
1290 	struct page_state ps;
1291 	int cpu, temperature;
1292 	unsigned long active;
1293 	unsigned long inactive;
1294 	unsigned long free;
1295 	struct zone *zone;
1296 
1297 	for_each_zone(zone) {
1298 		show_node(zone);
1299 		printk("%s per-cpu:", zone->name);
1300 
1301 		if (!zone->present_pages) {
1302 			printk(" empty\n");
1303 			continue;
1304 		} else
1305 			printk("\n");
1306 
1307 		for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1308 			struct per_cpu_pageset *pageset;
1309 
1310 			if (!cpu_possible(cpu))
1311 				continue;
1312 
1313 			pageset = zone_pcp(zone, cpu);
1314 
1315 			for (temperature = 0; temperature < 2; temperature++)
1316 				printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1317 					cpu,
1318 					temperature ? "cold" : "hot",
1319 					pageset->pcp[temperature].low,
1320 					pageset->pcp[temperature].high,
1321 					pageset->pcp[temperature].batch,
1322 					pageset->pcp[temperature].count);
1323 		}
1324 	}
1325 
1326 	get_page_state(&ps);
1327 	get_zone_counts(&active, &inactive, &free);
1328 
1329 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1330 		K(nr_free_pages()),
1331 		K(nr_free_highpages()));
1332 
1333 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1334 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1335 		active,
1336 		inactive,
1337 		ps.nr_dirty,
1338 		ps.nr_writeback,
1339 		ps.nr_unstable,
1340 		nr_free_pages(),
1341 		ps.nr_slab,
1342 		ps.nr_mapped,
1343 		ps.nr_page_table_pages);
1344 
1345 	for_each_zone(zone) {
1346 		int i;
1347 
1348 		show_node(zone);
1349 		printk("%s"
1350 			" free:%lukB"
1351 			" min:%lukB"
1352 			" low:%lukB"
1353 			" high:%lukB"
1354 			" active:%lukB"
1355 			" inactive:%lukB"
1356 			" present:%lukB"
1357 			" pages_scanned:%lu"
1358 			" all_unreclaimable? %s"
1359 			"\n",
1360 			zone->name,
1361 			K(zone->free_pages),
1362 			K(zone->pages_min),
1363 			K(zone->pages_low),
1364 			K(zone->pages_high),
1365 			K(zone->nr_active),
1366 			K(zone->nr_inactive),
1367 			K(zone->present_pages),
1368 			zone->pages_scanned,
1369 			(zone->all_unreclaimable ? "yes" : "no")
1370 			);
1371 		printk("lowmem_reserve[]:");
1372 		for (i = 0; i < MAX_NR_ZONES; i++)
1373 			printk(" %lu", zone->lowmem_reserve[i]);
1374 		printk("\n");
1375 	}
1376 
1377 	for_each_zone(zone) {
1378  		unsigned long nr, flags, order, total = 0;
1379 
1380 		show_node(zone);
1381 		printk("%s: ", zone->name);
1382 		if (!zone->present_pages) {
1383 			printk("empty\n");
1384 			continue;
1385 		}
1386 
1387 		spin_lock_irqsave(&zone->lock, flags);
1388 		for (order = 0; order < MAX_ORDER; order++) {
1389 			nr = zone->free_area[order].nr_free;
1390 			total += nr << order;
1391 			printk("%lu*%lukB ", nr, K(1UL) << order);
1392 		}
1393 		spin_unlock_irqrestore(&zone->lock, flags);
1394 		printk("= %lukB\n", K(total));
1395 	}
1396 
1397 	show_swap_cache_info();
1398 }
1399 
1400 /*
1401  * Builds allocation fallback zone lists.
1402  */
1403 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1404 {
1405 	switch (k) {
1406 		struct zone *zone;
1407 	default:
1408 		BUG();
1409 	case ZONE_HIGHMEM:
1410 		zone = pgdat->node_zones + ZONE_HIGHMEM;
1411 		if (zone->present_pages) {
1412 #ifndef CONFIG_HIGHMEM
1413 			BUG();
1414 #endif
1415 			zonelist->zones[j++] = zone;
1416 		}
1417 	case ZONE_NORMAL:
1418 		zone = pgdat->node_zones + ZONE_NORMAL;
1419 		if (zone->present_pages)
1420 			zonelist->zones[j++] = zone;
1421 	case ZONE_DMA:
1422 		zone = pgdat->node_zones + ZONE_DMA;
1423 		if (zone->present_pages)
1424 			zonelist->zones[j++] = zone;
1425 	}
1426 
1427 	return j;
1428 }
1429 
1430 #ifdef CONFIG_NUMA
1431 #define MAX_NODE_LOAD (num_online_nodes())
1432 static int __initdata node_load[MAX_NUMNODES];
1433 /**
1434  * find_next_best_node - find the next node that should appear in a given node's fallback list
1435  * @node: node whose fallback list we're appending
1436  * @used_node_mask: nodemask_t of already used nodes
1437  *
1438  * We use a number of factors to determine which is the next node that should
1439  * appear on a given node's fallback list.  The node should not have appeared
1440  * already in @node's fallback list, and it should be the next closest node
1441  * according to the distance array (which contains arbitrary distance values
1442  * from each node to each node in the system), and should also prefer nodes
1443  * with no CPUs, since presumably they'll have very little allocation pressure
1444  * on them otherwise.
1445  * It returns -1 if no node is found.
1446  */
1447 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1448 {
1449 	int i, n, val;
1450 	int min_val = INT_MAX;
1451 	int best_node = -1;
1452 
1453 	for_each_online_node(i) {
1454 		cpumask_t tmp;
1455 
1456 		/* Start from local node */
1457 		n = (node+i) % num_online_nodes();
1458 
1459 		/* Don't want a node to appear more than once */
1460 		if (node_isset(n, *used_node_mask))
1461 			continue;
1462 
1463 		/* Use the local node if we haven't already */
1464 		if (!node_isset(node, *used_node_mask)) {
1465 			best_node = node;
1466 			break;
1467 		}
1468 
1469 		/* Use the distance array to find the distance */
1470 		val = node_distance(node, n);
1471 
1472 		/* Give preference to headless and unused nodes */
1473 		tmp = node_to_cpumask(n);
1474 		if (!cpus_empty(tmp))
1475 			val += PENALTY_FOR_NODE_WITH_CPUS;
1476 
1477 		/* Slight preference for less loaded node */
1478 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1479 		val += node_load[n];
1480 
1481 		if (val < min_val) {
1482 			min_val = val;
1483 			best_node = n;
1484 		}
1485 	}
1486 
1487 	if (best_node >= 0)
1488 		node_set(best_node, *used_node_mask);
1489 
1490 	return best_node;
1491 }
1492 
1493 static void __init build_zonelists(pg_data_t *pgdat)
1494 {
1495 	int i, j, k, node, local_node;
1496 	int prev_node, load;
1497 	struct zonelist *zonelist;
1498 	nodemask_t used_mask;
1499 
1500 	/* initialize zonelists */
1501 	for (i = 0; i < GFP_ZONETYPES; i++) {
1502 		zonelist = pgdat->node_zonelists + i;
1503 		zonelist->zones[0] = NULL;
1504 	}
1505 
1506 	/* NUMA-aware ordering of nodes */
1507 	local_node = pgdat->node_id;
1508 	load = num_online_nodes();
1509 	prev_node = local_node;
1510 	nodes_clear(used_mask);
1511 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1512 		/*
1513 		 * We don't want to pressure a particular node.
1514 		 * So adding penalty to the first node in same
1515 		 * distance group to make it round-robin.
1516 		 */
1517 		if (node_distance(local_node, node) !=
1518 				node_distance(local_node, prev_node))
1519 			node_load[node] += load;
1520 		prev_node = node;
1521 		load--;
1522 		for (i = 0; i < GFP_ZONETYPES; i++) {
1523 			zonelist = pgdat->node_zonelists + i;
1524 			for (j = 0; zonelist->zones[j] != NULL; j++);
1525 
1526 			k = ZONE_NORMAL;
1527 			if (i & __GFP_HIGHMEM)
1528 				k = ZONE_HIGHMEM;
1529 			if (i & __GFP_DMA)
1530 				k = ZONE_DMA;
1531 
1532 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1533 			zonelist->zones[j] = NULL;
1534 		}
1535 	}
1536 }
1537 
1538 #else	/* CONFIG_NUMA */
1539 
1540 static void __init build_zonelists(pg_data_t *pgdat)
1541 {
1542 	int i, j, k, node, local_node;
1543 
1544 	local_node = pgdat->node_id;
1545 	for (i = 0; i < GFP_ZONETYPES; i++) {
1546 		struct zonelist *zonelist;
1547 
1548 		zonelist = pgdat->node_zonelists + i;
1549 
1550 		j = 0;
1551 		k = ZONE_NORMAL;
1552 		if (i & __GFP_HIGHMEM)
1553 			k = ZONE_HIGHMEM;
1554 		if (i & __GFP_DMA)
1555 			k = ZONE_DMA;
1556 
1557  		j = build_zonelists_node(pgdat, zonelist, j, k);
1558  		/*
1559  		 * Now we build the zonelist so that it contains the zones
1560  		 * of all the other nodes.
1561  		 * We don't want to pressure a particular node, so when
1562  		 * building the zones for node N, we make sure that the
1563  		 * zones coming right after the local ones are those from
1564  		 * node N+1 (modulo N)
1565  		 */
1566 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1567 			if (!node_online(node))
1568 				continue;
1569 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1570 		}
1571 		for (node = 0; node < local_node; node++) {
1572 			if (!node_online(node))
1573 				continue;
1574 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1575 		}
1576 
1577 		zonelist->zones[j] = NULL;
1578 	}
1579 }
1580 
1581 #endif	/* CONFIG_NUMA */
1582 
1583 void __init build_all_zonelists(void)
1584 {
1585 	int i;
1586 
1587 	for_each_online_node(i)
1588 		build_zonelists(NODE_DATA(i));
1589 	printk("Built %i zonelists\n", num_online_nodes());
1590 	cpuset_init_current_mems_allowed();
1591 }
1592 
1593 /*
1594  * Helper functions to size the waitqueue hash table.
1595  * Essentially these want to choose hash table sizes sufficiently
1596  * large so that collisions trying to wait on pages are rare.
1597  * But in fact, the number of active page waitqueues on typical
1598  * systems is ridiculously low, less than 200. So this is even
1599  * conservative, even though it seems large.
1600  *
1601  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1602  * waitqueues, i.e. the size of the waitq table given the number of pages.
1603  */
1604 #define PAGES_PER_WAITQUEUE	256
1605 
1606 static inline unsigned long wait_table_size(unsigned long pages)
1607 {
1608 	unsigned long size = 1;
1609 
1610 	pages /= PAGES_PER_WAITQUEUE;
1611 
1612 	while (size < pages)
1613 		size <<= 1;
1614 
1615 	/*
1616 	 * Once we have dozens or even hundreds of threads sleeping
1617 	 * on IO we've got bigger problems than wait queue collision.
1618 	 * Limit the size of the wait table to a reasonable size.
1619 	 */
1620 	size = min(size, 4096UL);
1621 
1622 	return max(size, 4UL);
1623 }
1624 
1625 /*
1626  * This is an integer logarithm so that shifts can be used later
1627  * to extract the more random high bits from the multiplicative
1628  * hash function before the remainder is taken.
1629  */
1630 static inline unsigned long wait_table_bits(unsigned long size)
1631 {
1632 	return ffz(~size);
1633 }
1634 
1635 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1636 
1637 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1638 		unsigned long *zones_size, unsigned long *zholes_size)
1639 {
1640 	unsigned long realtotalpages, totalpages = 0;
1641 	int i;
1642 
1643 	for (i = 0; i < MAX_NR_ZONES; i++)
1644 		totalpages += zones_size[i];
1645 	pgdat->node_spanned_pages = totalpages;
1646 
1647 	realtotalpages = totalpages;
1648 	if (zholes_size)
1649 		for (i = 0; i < MAX_NR_ZONES; i++)
1650 			realtotalpages -= zholes_size[i];
1651 	pgdat->node_present_pages = realtotalpages;
1652 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1653 }
1654 
1655 
1656 /*
1657  * Initially all pages are reserved - free ones are freed
1658  * up by free_all_bootmem() once the early boot process is
1659  * done. Non-atomic initialization, single-pass.
1660  */
1661 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1662 		unsigned long start_pfn)
1663 {
1664 	struct page *page;
1665 	unsigned long end_pfn = start_pfn + size;
1666 	unsigned long pfn;
1667 
1668 	for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1669 		if (!early_pfn_valid(pfn))
1670 			continue;
1671 		if (!early_pfn_in_nid(pfn, nid))
1672 			continue;
1673 		page = pfn_to_page(pfn);
1674 		set_page_links(page, zone, nid, pfn);
1675 		set_page_count(page, 0);
1676 		reset_page_mapcount(page);
1677 		SetPageReserved(page);
1678 		INIT_LIST_HEAD(&page->lru);
1679 #ifdef WANT_PAGE_VIRTUAL
1680 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1681 		if (!is_highmem_idx(zone))
1682 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1683 #endif
1684 	}
1685 }
1686 
1687 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1688 				unsigned long size)
1689 {
1690 	int order;
1691 	for (order = 0; order < MAX_ORDER ; order++) {
1692 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1693 		zone->free_area[order].nr_free = 0;
1694 	}
1695 }
1696 
1697 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1698 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1699 		unsigned long size)
1700 {
1701 	unsigned long snum = pfn_to_section_nr(pfn);
1702 	unsigned long end = pfn_to_section_nr(pfn + size);
1703 
1704 	if (FLAGS_HAS_NODE)
1705 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1706 	else
1707 		for (; snum <= end; snum++)
1708 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1709 }
1710 
1711 #ifndef __HAVE_ARCH_MEMMAP_INIT
1712 #define memmap_init(size, nid, zone, start_pfn) \
1713 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1714 #endif
1715 
1716 static int __devinit zone_batchsize(struct zone *zone)
1717 {
1718 	int batch;
1719 
1720 	/*
1721 	 * The per-cpu-pages pools are set to around 1000th of the
1722 	 * size of the zone.  But no more than 1/4 of a meg - there's
1723 	 * no point in going beyond the size of L2 cache.
1724 	 *
1725 	 * OK, so we don't know how big the cache is.  So guess.
1726 	 */
1727 	batch = zone->present_pages / 1024;
1728 	if (batch * PAGE_SIZE > 256 * 1024)
1729 		batch = (256 * 1024) / PAGE_SIZE;
1730 	batch /= 4;		/* We effectively *= 4 below */
1731 	if (batch < 1)
1732 		batch = 1;
1733 
1734 	/*
1735 	 * Clamp the batch to a 2^n - 1 value. Having a power
1736 	 * of 2 value was found to be more likely to have
1737 	 * suboptimal cache aliasing properties in some cases.
1738 	 *
1739 	 * For example if 2 tasks are alternately allocating
1740 	 * batches of pages, one task can end up with a lot
1741 	 * of pages of one half of the possible page colors
1742 	 * and the other with pages of the other colors.
1743 	 */
1744 	batch = (1 << fls(batch + batch/2)) - 1;
1745 	return batch;
1746 }
1747 
1748 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1749 {
1750 	struct per_cpu_pages *pcp;
1751 
1752 	pcp = &p->pcp[0];		/* hot */
1753 	pcp->count = 0;
1754 	pcp->low = 2 * batch;
1755 	pcp->high = 6 * batch;
1756 	pcp->batch = max(1UL, 1 * batch);
1757 	INIT_LIST_HEAD(&pcp->list);
1758 
1759 	pcp = &p->pcp[1];		/* cold*/
1760 	pcp->count = 0;
1761 	pcp->low = 0;
1762 	pcp->high = 2 * batch;
1763 	pcp->batch = max(1UL, 1 * batch);
1764 	INIT_LIST_HEAD(&pcp->list);
1765 }
1766 
1767 #ifdef CONFIG_NUMA
1768 /*
1769  * Boot pageset table. One per cpu which is going to be used for all
1770  * zones and all nodes. The parameters will be set in such a way
1771  * that an item put on a list will immediately be handed over to
1772  * the buddy list. This is safe since pageset manipulation is done
1773  * with interrupts disabled.
1774  *
1775  * Some NUMA counter updates may also be caught by the boot pagesets.
1776  *
1777  * The boot_pagesets must be kept even after bootup is complete for
1778  * unused processors and/or zones. They do play a role for bootstrapping
1779  * hotplugged processors.
1780  *
1781  * zoneinfo_show() and maybe other functions do
1782  * not check if the processor is online before following the pageset pointer.
1783  * Other parts of the kernel may not check if the zone is available.
1784  */
1785 static struct per_cpu_pageset
1786 	boot_pageset[NR_CPUS];
1787 
1788 /*
1789  * Dynamically allocate memory for the
1790  * per cpu pageset array in struct zone.
1791  */
1792 static int __devinit process_zones(int cpu)
1793 {
1794 	struct zone *zone, *dzone;
1795 
1796 	for_each_zone(zone) {
1797 
1798 		zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1799 					 GFP_KERNEL, cpu_to_node(cpu));
1800 		if (!zone->pageset[cpu])
1801 			goto bad;
1802 
1803 		setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1804 	}
1805 
1806 	return 0;
1807 bad:
1808 	for_each_zone(dzone) {
1809 		if (dzone == zone)
1810 			break;
1811 		kfree(dzone->pageset[cpu]);
1812 		dzone->pageset[cpu] = NULL;
1813 	}
1814 	return -ENOMEM;
1815 }
1816 
1817 static inline void free_zone_pagesets(int cpu)
1818 {
1819 #ifdef CONFIG_NUMA
1820 	struct zone *zone;
1821 
1822 	for_each_zone(zone) {
1823 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1824 
1825 		zone_pcp(zone, cpu) = NULL;
1826 		kfree(pset);
1827 	}
1828 #endif
1829 }
1830 
1831 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1832 		unsigned long action,
1833 		void *hcpu)
1834 {
1835 	int cpu = (long)hcpu;
1836 	int ret = NOTIFY_OK;
1837 
1838 	switch (action) {
1839 		case CPU_UP_PREPARE:
1840 			if (process_zones(cpu))
1841 				ret = NOTIFY_BAD;
1842 			break;
1843 #ifdef CONFIG_HOTPLUG_CPU
1844 		case CPU_DEAD:
1845 			free_zone_pagesets(cpu);
1846 			break;
1847 #endif
1848 		default:
1849 			break;
1850 	}
1851 	return ret;
1852 }
1853 
1854 static struct notifier_block pageset_notifier =
1855 	{ &pageset_cpuup_callback, NULL, 0 };
1856 
1857 void __init setup_per_cpu_pageset()
1858 {
1859 	int err;
1860 
1861 	/* Initialize per_cpu_pageset for cpu 0.
1862 	 * A cpuup callback will do this for every cpu
1863 	 * as it comes online
1864 	 */
1865 	err = process_zones(smp_processor_id());
1866 	BUG_ON(err);
1867 	register_cpu_notifier(&pageset_notifier);
1868 }
1869 
1870 #endif
1871 
1872 /*
1873  * Set up the zone data structures:
1874  *   - mark all pages reserved
1875  *   - mark all memory queues empty
1876  *   - clear the memory bitmaps
1877  */
1878 static void __init free_area_init_core(struct pglist_data *pgdat,
1879 		unsigned long *zones_size, unsigned long *zholes_size)
1880 {
1881 	unsigned long i, j;
1882 	int cpu, nid = pgdat->node_id;
1883 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1884 
1885 	pgdat->nr_zones = 0;
1886 	init_waitqueue_head(&pgdat->kswapd_wait);
1887 	pgdat->kswapd_max_order = 0;
1888 
1889 	for (j = 0; j < MAX_NR_ZONES; j++) {
1890 		struct zone *zone = pgdat->node_zones + j;
1891 		unsigned long size, realsize;
1892 		unsigned long batch;
1893 
1894 		realsize = size = zones_size[j];
1895 		if (zholes_size)
1896 			realsize -= zholes_size[j];
1897 
1898 		if (j == ZONE_DMA || j == ZONE_NORMAL)
1899 			nr_kernel_pages += realsize;
1900 		nr_all_pages += realsize;
1901 
1902 		zone->spanned_pages = size;
1903 		zone->present_pages = realsize;
1904 		zone->name = zone_names[j];
1905 		spin_lock_init(&zone->lock);
1906 		spin_lock_init(&zone->lru_lock);
1907 		zone->zone_pgdat = pgdat;
1908 		zone->free_pages = 0;
1909 
1910 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1911 
1912 		batch = zone_batchsize(zone);
1913 
1914 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
1915 #ifdef CONFIG_NUMA
1916 			/* Early boot. Slab allocator not functional yet */
1917 			zone->pageset[cpu] = &boot_pageset[cpu];
1918 			setup_pageset(&boot_pageset[cpu],0);
1919 #else
1920 			setup_pageset(zone_pcp(zone,cpu), batch);
1921 #endif
1922 		}
1923 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1924 				zone_names[j], realsize, batch);
1925 		INIT_LIST_HEAD(&zone->active_list);
1926 		INIT_LIST_HEAD(&zone->inactive_list);
1927 		zone->nr_scan_active = 0;
1928 		zone->nr_scan_inactive = 0;
1929 		zone->nr_active = 0;
1930 		zone->nr_inactive = 0;
1931 		atomic_set(&zone->reclaim_in_progress, 0);
1932 		if (!size)
1933 			continue;
1934 
1935 		/*
1936 		 * The per-page waitqueue mechanism uses hashed waitqueues
1937 		 * per zone.
1938 		 */
1939 		zone->wait_table_size = wait_table_size(size);
1940 		zone->wait_table_bits =
1941 			wait_table_bits(zone->wait_table_size);
1942 		zone->wait_table = (wait_queue_head_t *)
1943 			alloc_bootmem_node(pgdat, zone->wait_table_size
1944 						* sizeof(wait_queue_head_t));
1945 
1946 		for(i = 0; i < zone->wait_table_size; ++i)
1947 			init_waitqueue_head(zone->wait_table + i);
1948 
1949 		pgdat->nr_zones = j+1;
1950 
1951 		zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1952 		zone->zone_start_pfn = zone_start_pfn;
1953 
1954 		memmap_init(size, nid, j, zone_start_pfn);
1955 
1956 		zonetable_add(zone, nid, j, zone_start_pfn, size);
1957 
1958 		zone_start_pfn += size;
1959 
1960 		zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1961 	}
1962 }
1963 
1964 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1965 {
1966 	/* Skip empty nodes */
1967 	if (!pgdat->node_spanned_pages)
1968 		return;
1969 
1970 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1971 	/* ia64 gets its own node_mem_map, before this, without bootmem */
1972 	if (!pgdat->node_mem_map) {
1973 		unsigned long size;
1974 		struct page *map;
1975 
1976 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1977 		map = alloc_remap(pgdat->node_id, size);
1978 		if (!map)
1979 			map = alloc_bootmem_node(pgdat, size);
1980 		pgdat->node_mem_map = map;
1981 	}
1982 #ifdef CONFIG_FLATMEM
1983 	/*
1984 	 * With no DISCONTIG, the global mem_map is just set as node 0's
1985 	 */
1986 	if (pgdat == NODE_DATA(0))
1987 		mem_map = NODE_DATA(0)->node_mem_map;
1988 #endif
1989 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
1990 }
1991 
1992 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1993 		unsigned long *zones_size, unsigned long node_start_pfn,
1994 		unsigned long *zholes_size)
1995 {
1996 	pgdat->node_id = nid;
1997 	pgdat->node_start_pfn = node_start_pfn;
1998 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1999 
2000 	alloc_node_mem_map(pgdat);
2001 
2002 	free_area_init_core(pgdat, zones_size, zholes_size);
2003 }
2004 
2005 #ifndef CONFIG_NEED_MULTIPLE_NODES
2006 static bootmem_data_t contig_bootmem_data;
2007 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2008 
2009 EXPORT_SYMBOL(contig_page_data);
2010 #endif
2011 
2012 void __init free_area_init(unsigned long *zones_size)
2013 {
2014 	free_area_init_node(0, NODE_DATA(0), zones_size,
2015 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2016 }
2017 
2018 #ifdef CONFIG_PROC_FS
2019 
2020 #include <linux/seq_file.h>
2021 
2022 static void *frag_start(struct seq_file *m, loff_t *pos)
2023 {
2024 	pg_data_t *pgdat;
2025 	loff_t node = *pos;
2026 
2027 	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2028 		--node;
2029 
2030 	return pgdat;
2031 }
2032 
2033 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2034 {
2035 	pg_data_t *pgdat = (pg_data_t *)arg;
2036 
2037 	(*pos)++;
2038 	return pgdat->pgdat_next;
2039 }
2040 
2041 static void frag_stop(struct seq_file *m, void *arg)
2042 {
2043 }
2044 
2045 /*
2046  * This walks the free areas for each zone.
2047  */
2048 static int frag_show(struct seq_file *m, void *arg)
2049 {
2050 	pg_data_t *pgdat = (pg_data_t *)arg;
2051 	struct zone *zone;
2052 	struct zone *node_zones = pgdat->node_zones;
2053 	unsigned long flags;
2054 	int order;
2055 
2056 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2057 		if (!zone->present_pages)
2058 			continue;
2059 
2060 		spin_lock_irqsave(&zone->lock, flags);
2061 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2062 		for (order = 0; order < MAX_ORDER; ++order)
2063 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2064 		spin_unlock_irqrestore(&zone->lock, flags);
2065 		seq_putc(m, '\n');
2066 	}
2067 	return 0;
2068 }
2069 
2070 struct seq_operations fragmentation_op = {
2071 	.start	= frag_start,
2072 	.next	= frag_next,
2073 	.stop	= frag_stop,
2074 	.show	= frag_show,
2075 };
2076 
2077 /*
2078  * Output information about zones in @pgdat.
2079  */
2080 static int zoneinfo_show(struct seq_file *m, void *arg)
2081 {
2082 	pg_data_t *pgdat = arg;
2083 	struct zone *zone;
2084 	struct zone *node_zones = pgdat->node_zones;
2085 	unsigned long flags;
2086 
2087 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2088 		int i;
2089 
2090 		if (!zone->present_pages)
2091 			continue;
2092 
2093 		spin_lock_irqsave(&zone->lock, flags);
2094 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2095 		seq_printf(m,
2096 			   "\n  pages free     %lu"
2097 			   "\n        min      %lu"
2098 			   "\n        low      %lu"
2099 			   "\n        high     %lu"
2100 			   "\n        active   %lu"
2101 			   "\n        inactive %lu"
2102 			   "\n        scanned  %lu (a: %lu i: %lu)"
2103 			   "\n        spanned  %lu"
2104 			   "\n        present  %lu",
2105 			   zone->free_pages,
2106 			   zone->pages_min,
2107 			   zone->pages_low,
2108 			   zone->pages_high,
2109 			   zone->nr_active,
2110 			   zone->nr_inactive,
2111 			   zone->pages_scanned,
2112 			   zone->nr_scan_active, zone->nr_scan_inactive,
2113 			   zone->spanned_pages,
2114 			   zone->present_pages);
2115 		seq_printf(m,
2116 			   "\n        protection: (%lu",
2117 			   zone->lowmem_reserve[0]);
2118 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2119 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2120 		seq_printf(m,
2121 			   ")"
2122 			   "\n  pagesets");
2123 		for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2124 			struct per_cpu_pageset *pageset;
2125 			int j;
2126 
2127 			pageset = zone_pcp(zone, i);
2128 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2129 				if (pageset->pcp[j].count)
2130 					break;
2131 			}
2132 			if (j == ARRAY_SIZE(pageset->pcp))
2133 				continue;
2134 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2135 				seq_printf(m,
2136 					   "\n    cpu: %i pcp: %i"
2137 					   "\n              count: %i"
2138 					   "\n              low:   %i"
2139 					   "\n              high:  %i"
2140 					   "\n              batch: %i",
2141 					   i, j,
2142 					   pageset->pcp[j].count,
2143 					   pageset->pcp[j].low,
2144 					   pageset->pcp[j].high,
2145 					   pageset->pcp[j].batch);
2146 			}
2147 #ifdef CONFIG_NUMA
2148 			seq_printf(m,
2149 				   "\n            numa_hit:       %lu"
2150 				   "\n            numa_miss:      %lu"
2151 				   "\n            numa_foreign:   %lu"
2152 				   "\n            interleave_hit: %lu"
2153 				   "\n            local_node:     %lu"
2154 				   "\n            other_node:     %lu",
2155 				   pageset->numa_hit,
2156 				   pageset->numa_miss,
2157 				   pageset->numa_foreign,
2158 				   pageset->interleave_hit,
2159 				   pageset->local_node,
2160 				   pageset->other_node);
2161 #endif
2162 		}
2163 		seq_printf(m,
2164 			   "\n  all_unreclaimable: %u"
2165 			   "\n  prev_priority:     %i"
2166 			   "\n  temp_priority:     %i"
2167 			   "\n  start_pfn:         %lu",
2168 			   zone->all_unreclaimable,
2169 			   zone->prev_priority,
2170 			   zone->temp_priority,
2171 			   zone->zone_start_pfn);
2172 		spin_unlock_irqrestore(&zone->lock, flags);
2173 		seq_putc(m, '\n');
2174 	}
2175 	return 0;
2176 }
2177 
2178 struct seq_operations zoneinfo_op = {
2179 	.start	= frag_start, /* iterate over all zones. The same as in
2180 			       * fragmentation. */
2181 	.next	= frag_next,
2182 	.stop	= frag_stop,
2183 	.show	= zoneinfo_show,
2184 };
2185 
2186 static char *vmstat_text[] = {
2187 	"nr_dirty",
2188 	"nr_writeback",
2189 	"nr_unstable",
2190 	"nr_page_table_pages",
2191 	"nr_mapped",
2192 	"nr_slab",
2193 
2194 	"pgpgin",
2195 	"pgpgout",
2196 	"pswpin",
2197 	"pswpout",
2198 	"pgalloc_high",
2199 
2200 	"pgalloc_normal",
2201 	"pgalloc_dma",
2202 	"pgfree",
2203 	"pgactivate",
2204 	"pgdeactivate",
2205 
2206 	"pgfault",
2207 	"pgmajfault",
2208 	"pgrefill_high",
2209 	"pgrefill_normal",
2210 	"pgrefill_dma",
2211 
2212 	"pgsteal_high",
2213 	"pgsteal_normal",
2214 	"pgsteal_dma",
2215 	"pgscan_kswapd_high",
2216 	"pgscan_kswapd_normal",
2217 
2218 	"pgscan_kswapd_dma",
2219 	"pgscan_direct_high",
2220 	"pgscan_direct_normal",
2221 	"pgscan_direct_dma",
2222 	"pginodesteal",
2223 
2224 	"slabs_scanned",
2225 	"kswapd_steal",
2226 	"kswapd_inodesteal",
2227 	"pageoutrun",
2228 	"allocstall",
2229 
2230 	"pgrotated",
2231 	"nr_bounce",
2232 };
2233 
2234 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2235 {
2236 	struct page_state *ps;
2237 
2238 	if (*pos >= ARRAY_SIZE(vmstat_text))
2239 		return NULL;
2240 
2241 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2242 	m->private = ps;
2243 	if (!ps)
2244 		return ERR_PTR(-ENOMEM);
2245 	get_full_page_state(ps);
2246 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2247 	ps->pgpgout /= 2;
2248 	return (unsigned long *)ps + *pos;
2249 }
2250 
2251 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2252 {
2253 	(*pos)++;
2254 	if (*pos >= ARRAY_SIZE(vmstat_text))
2255 		return NULL;
2256 	return (unsigned long *)m->private + *pos;
2257 }
2258 
2259 static int vmstat_show(struct seq_file *m, void *arg)
2260 {
2261 	unsigned long *l = arg;
2262 	unsigned long off = l - (unsigned long *)m->private;
2263 
2264 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2265 	return 0;
2266 }
2267 
2268 static void vmstat_stop(struct seq_file *m, void *arg)
2269 {
2270 	kfree(m->private);
2271 	m->private = NULL;
2272 }
2273 
2274 struct seq_operations vmstat_op = {
2275 	.start	= vmstat_start,
2276 	.next	= vmstat_next,
2277 	.stop	= vmstat_stop,
2278 	.show	= vmstat_show,
2279 };
2280 
2281 #endif /* CONFIG_PROC_FS */
2282 
2283 #ifdef CONFIG_HOTPLUG_CPU
2284 static int page_alloc_cpu_notify(struct notifier_block *self,
2285 				 unsigned long action, void *hcpu)
2286 {
2287 	int cpu = (unsigned long)hcpu;
2288 	long *count;
2289 	unsigned long *src, *dest;
2290 
2291 	if (action == CPU_DEAD) {
2292 		int i;
2293 
2294 		/* Drain local pagecache count. */
2295 		count = &per_cpu(nr_pagecache_local, cpu);
2296 		atomic_add(*count, &nr_pagecache);
2297 		*count = 0;
2298 		local_irq_disable();
2299 		__drain_pages(cpu);
2300 
2301 		/* Add dead cpu's page_states to our own. */
2302 		dest = (unsigned long *)&__get_cpu_var(page_states);
2303 		src = (unsigned long *)&per_cpu(page_states, cpu);
2304 
2305 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2306 				i++) {
2307 			dest[i] += src[i];
2308 			src[i] = 0;
2309 		}
2310 
2311 		local_irq_enable();
2312 	}
2313 	return NOTIFY_OK;
2314 }
2315 #endif /* CONFIG_HOTPLUG_CPU */
2316 
2317 void __init page_alloc_init(void)
2318 {
2319 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2320 }
2321 
2322 /*
2323  * setup_per_zone_lowmem_reserve - called whenever
2324  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2325  *	has a correct pages reserved value, so an adequate number of
2326  *	pages are left in the zone after a successful __alloc_pages().
2327  */
2328 static void setup_per_zone_lowmem_reserve(void)
2329 {
2330 	struct pglist_data *pgdat;
2331 	int j, idx;
2332 
2333 	for_each_pgdat(pgdat) {
2334 		for (j = 0; j < MAX_NR_ZONES; j++) {
2335 			struct zone *zone = pgdat->node_zones + j;
2336 			unsigned long present_pages = zone->present_pages;
2337 
2338 			zone->lowmem_reserve[j] = 0;
2339 
2340 			for (idx = j-1; idx >= 0; idx--) {
2341 				struct zone *lower_zone;
2342 
2343 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2344 					sysctl_lowmem_reserve_ratio[idx] = 1;
2345 
2346 				lower_zone = pgdat->node_zones + idx;
2347 				lower_zone->lowmem_reserve[j] = present_pages /
2348 					sysctl_lowmem_reserve_ratio[idx];
2349 				present_pages += lower_zone->present_pages;
2350 			}
2351 		}
2352 	}
2353 }
2354 
2355 /*
2356  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2357  *	that the pages_{min,low,high} values for each zone are set correctly
2358  *	with respect to min_free_kbytes.
2359  */
2360 static void setup_per_zone_pages_min(void)
2361 {
2362 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2363 	unsigned long lowmem_pages = 0;
2364 	struct zone *zone;
2365 	unsigned long flags;
2366 
2367 	/* Calculate total number of !ZONE_HIGHMEM pages */
2368 	for_each_zone(zone) {
2369 		if (!is_highmem(zone))
2370 			lowmem_pages += zone->present_pages;
2371 	}
2372 
2373 	for_each_zone(zone) {
2374 		spin_lock_irqsave(&zone->lru_lock, flags);
2375 		if (is_highmem(zone)) {
2376 			/*
2377 			 * Often, highmem doesn't need to reserve any pages.
2378 			 * But the pages_min/low/high values are also used for
2379 			 * batching up page reclaim activity so we need a
2380 			 * decent value here.
2381 			 */
2382 			int min_pages;
2383 
2384 			min_pages = zone->present_pages / 1024;
2385 			if (min_pages < SWAP_CLUSTER_MAX)
2386 				min_pages = SWAP_CLUSTER_MAX;
2387 			if (min_pages > 128)
2388 				min_pages = 128;
2389 			zone->pages_min = min_pages;
2390 		} else {
2391 			/* if it's a lowmem zone, reserve a number of pages
2392 			 * proportionate to the zone's size.
2393 			 */
2394 			zone->pages_min = (pages_min * zone->present_pages) /
2395 			                   lowmem_pages;
2396 		}
2397 
2398 		/*
2399 		 * When interpreting these watermarks, just keep in mind that:
2400 		 * zone->pages_min == (zone->pages_min * 4) / 4;
2401 		 */
2402 		zone->pages_low   = (zone->pages_min * 5) / 4;
2403 		zone->pages_high  = (zone->pages_min * 6) / 4;
2404 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2405 	}
2406 }
2407 
2408 /*
2409  * Initialise min_free_kbytes.
2410  *
2411  * For small machines we want it small (128k min).  For large machines
2412  * we want it large (64MB max).  But it is not linear, because network
2413  * bandwidth does not increase linearly with machine size.  We use
2414  *
2415  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2416  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2417  *
2418  * which yields
2419  *
2420  * 16MB:	512k
2421  * 32MB:	724k
2422  * 64MB:	1024k
2423  * 128MB:	1448k
2424  * 256MB:	2048k
2425  * 512MB:	2896k
2426  * 1024MB:	4096k
2427  * 2048MB:	5792k
2428  * 4096MB:	8192k
2429  * 8192MB:	11584k
2430  * 16384MB:	16384k
2431  */
2432 static int __init init_per_zone_pages_min(void)
2433 {
2434 	unsigned long lowmem_kbytes;
2435 
2436 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2437 
2438 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2439 	if (min_free_kbytes < 128)
2440 		min_free_kbytes = 128;
2441 	if (min_free_kbytes > 65536)
2442 		min_free_kbytes = 65536;
2443 	setup_per_zone_pages_min();
2444 	setup_per_zone_lowmem_reserve();
2445 	return 0;
2446 }
2447 module_init(init_per_zone_pages_min)
2448 
2449 /*
2450  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2451  *	that we can call two helper functions whenever min_free_kbytes
2452  *	changes.
2453  */
2454 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2455 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2456 {
2457 	proc_dointvec(table, write, file, buffer, length, ppos);
2458 	setup_per_zone_pages_min();
2459 	return 0;
2460 }
2461 
2462 /*
2463  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2464  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2465  *	whenever sysctl_lowmem_reserve_ratio changes.
2466  *
2467  * The reserve ratio obviously has absolutely no relation with the
2468  * pages_min watermarks. The lowmem reserve ratio can only make sense
2469  * if in function of the boot time zone sizes.
2470  */
2471 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2472 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2473 {
2474 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2475 	setup_per_zone_lowmem_reserve();
2476 	return 0;
2477 }
2478 
2479 __initdata int hashdist = HASHDIST_DEFAULT;
2480 
2481 #ifdef CONFIG_NUMA
2482 static int __init set_hashdist(char *str)
2483 {
2484 	if (!str)
2485 		return 0;
2486 	hashdist = simple_strtoul(str, &str, 0);
2487 	return 1;
2488 }
2489 __setup("hashdist=", set_hashdist);
2490 #endif
2491 
2492 /*
2493  * allocate a large system hash table from bootmem
2494  * - it is assumed that the hash table must contain an exact power-of-2
2495  *   quantity of entries
2496  * - limit is the number of hash buckets, not the total allocation size
2497  */
2498 void *__init alloc_large_system_hash(const char *tablename,
2499 				     unsigned long bucketsize,
2500 				     unsigned long numentries,
2501 				     int scale,
2502 				     int flags,
2503 				     unsigned int *_hash_shift,
2504 				     unsigned int *_hash_mask,
2505 				     unsigned long limit)
2506 {
2507 	unsigned long long max = limit;
2508 	unsigned long log2qty, size;
2509 	void *table = NULL;
2510 
2511 	/* allow the kernel cmdline to have a say */
2512 	if (!numentries) {
2513 		/* round applicable memory size up to nearest megabyte */
2514 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2515 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2516 		numentries >>= 20 - PAGE_SHIFT;
2517 		numentries <<= 20 - PAGE_SHIFT;
2518 
2519 		/* limit to 1 bucket per 2^scale bytes of low memory */
2520 		if (scale > PAGE_SHIFT)
2521 			numentries >>= (scale - PAGE_SHIFT);
2522 		else
2523 			numentries <<= (PAGE_SHIFT - scale);
2524 	}
2525 	/* rounded up to nearest power of 2 in size */
2526 	numentries = 1UL << (long_log2(numentries) + 1);
2527 
2528 	/* limit allocation size to 1/16 total memory by default */
2529 	if (max == 0) {
2530 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2531 		do_div(max, bucketsize);
2532 	}
2533 
2534 	if (numentries > max)
2535 		numentries = max;
2536 
2537 	log2qty = long_log2(numentries);
2538 
2539 	do {
2540 		size = bucketsize << log2qty;
2541 		if (flags & HASH_EARLY)
2542 			table = alloc_bootmem(size);
2543 		else if (hashdist)
2544 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2545 		else {
2546 			unsigned long order;
2547 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2548 				;
2549 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2550 		}
2551 	} while (!table && size > PAGE_SIZE && --log2qty);
2552 
2553 	if (!table)
2554 		panic("Failed to allocate %s hash table\n", tablename);
2555 
2556 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2557 	       tablename,
2558 	       (1U << log2qty),
2559 	       long_log2(size) - PAGE_SHIFT,
2560 	       size);
2561 
2562 	if (_hash_shift)
2563 		*_hash_shift = log2qty;
2564 	if (_hash_mask)
2565 		*_hash_mask = (1 << log2qty) - 1;
2566 
2567 	return table;
2568 }
2569