1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/module.h> 26 #include <linux/suspend.h> 27 #include <linux/pagevec.h> 28 #include <linux/blkdev.h> 29 #include <linux/slab.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/nodemask.h> 36 #include <linux/vmalloc.h> 37 38 #include <asm/tlbflush.h> 39 #include "internal.h" 40 41 /* 42 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 43 * initializer cleaner 44 */ 45 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 46 EXPORT_SYMBOL(node_online_map); 47 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 48 EXPORT_SYMBOL(node_possible_map); 49 struct pglist_data *pgdat_list __read_mostly; 50 unsigned long totalram_pages __read_mostly; 51 unsigned long totalhigh_pages __read_mostly; 52 long nr_swap_pages; 53 54 /* 55 * results with 256, 32 in the lowmem_reserve sysctl: 56 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 57 * 1G machine -> (16M dma, 784M normal, 224M high) 58 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 59 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 60 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 61 */ 62 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 }; 63 64 EXPORT_SYMBOL(totalram_pages); 65 EXPORT_SYMBOL(nr_swap_pages); 66 67 /* 68 * Used by page_zone() to look up the address of the struct zone whose 69 * id is encoded in the upper bits of page->flags 70 */ 71 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 72 EXPORT_SYMBOL(zone_table); 73 74 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" }; 75 int min_free_kbytes = 1024; 76 77 unsigned long __initdata nr_kernel_pages; 78 unsigned long __initdata nr_all_pages; 79 80 /* 81 * Temporary debugging check for pages not lying within a given zone. 82 */ 83 static int bad_range(struct zone *zone, struct page *page) 84 { 85 if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages) 86 return 1; 87 if (page_to_pfn(page) < zone->zone_start_pfn) 88 return 1; 89 #ifdef CONFIG_HOLES_IN_ZONE 90 if (!pfn_valid(page_to_pfn(page))) 91 return 1; 92 #endif 93 if (zone != page_zone(page)) 94 return 1; 95 return 0; 96 } 97 98 static void bad_page(const char *function, struct page *page) 99 { 100 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n", 101 function, current->comm, page); 102 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", 103 (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags, 104 page->mapping, page_mapcount(page), page_count(page)); 105 printk(KERN_EMERG "Backtrace:\n"); 106 dump_stack(); 107 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"); 108 page->flags &= ~(1 << PG_lru | 109 1 << PG_private | 110 1 << PG_locked | 111 1 << PG_active | 112 1 << PG_dirty | 113 1 << PG_reclaim | 114 1 << PG_slab | 115 1 << PG_swapcache | 116 1 << PG_writeback); 117 set_page_count(page, 0); 118 reset_page_mapcount(page); 119 page->mapping = NULL; 120 tainted |= TAINT_BAD_PAGE; 121 } 122 123 #ifndef CONFIG_HUGETLB_PAGE 124 #define prep_compound_page(page, order) do { } while (0) 125 #define destroy_compound_page(page, order) do { } while (0) 126 #else 127 /* 128 * Higher-order pages are called "compound pages". They are structured thusly: 129 * 130 * The first PAGE_SIZE page is called the "head page". 131 * 132 * The remaining PAGE_SIZE pages are called "tail pages". 133 * 134 * All pages have PG_compound set. All pages have their ->private pointing at 135 * the head page (even the head page has this). 136 * 137 * The first tail page's ->mapping, if non-zero, holds the address of the 138 * compound page's put_page() function. 139 * 140 * The order of the allocation is stored in the first tail page's ->index 141 * This is only for debug at present. This usage means that zero-order pages 142 * may not be compound. 143 */ 144 static void prep_compound_page(struct page *page, unsigned long order) 145 { 146 int i; 147 int nr_pages = 1 << order; 148 149 page[1].mapping = NULL; 150 page[1].index = order; 151 for (i = 0; i < nr_pages; i++) { 152 struct page *p = page + i; 153 154 SetPageCompound(p); 155 p->private = (unsigned long)page; 156 } 157 } 158 159 static void destroy_compound_page(struct page *page, unsigned long order) 160 { 161 int i; 162 int nr_pages = 1 << order; 163 164 if (!PageCompound(page)) 165 return; 166 167 if (page[1].index != order) 168 bad_page(__FUNCTION__, page); 169 170 for (i = 0; i < nr_pages; i++) { 171 struct page *p = page + i; 172 173 if (!PageCompound(p)) 174 bad_page(__FUNCTION__, page); 175 if (p->private != (unsigned long)page) 176 bad_page(__FUNCTION__, page); 177 ClearPageCompound(p); 178 } 179 } 180 #endif /* CONFIG_HUGETLB_PAGE */ 181 182 /* 183 * function for dealing with page's order in buddy system. 184 * zone->lock is already acquired when we use these. 185 * So, we don't need atomic page->flags operations here. 186 */ 187 static inline unsigned long page_order(struct page *page) { 188 return page->private; 189 } 190 191 static inline void set_page_order(struct page *page, int order) { 192 page->private = order; 193 __SetPagePrivate(page); 194 } 195 196 static inline void rmv_page_order(struct page *page) 197 { 198 __ClearPagePrivate(page); 199 page->private = 0; 200 } 201 202 /* 203 * Locate the struct page for both the matching buddy in our 204 * pair (buddy1) and the combined O(n+1) page they form (page). 205 * 206 * 1) Any buddy B1 will have an order O twin B2 which satisfies 207 * the following equation: 208 * B2 = B1 ^ (1 << O) 209 * For example, if the starting buddy (buddy2) is #8 its order 210 * 1 buddy is #10: 211 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 212 * 213 * 2) Any buddy B will have an order O+1 parent P which 214 * satisfies the following equation: 215 * P = B & ~(1 << O) 216 * 217 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 218 */ 219 static inline struct page * 220 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 221 { 222 unsigned long buddy_idx = page_idx ^ (1 << order); 223 224 return page + (buddy_idx - page_idx); 225 } 226 227 static inline unsigned long 228 __find_combined_index(unsigned long page_idx, unsigned int order) 229 { 230 return (page_idx & ~(1 << order)); 231 } 232 233 /* 234 * This function checks whether a page is free && is the buddy 235 * we can do coalesce a page and its buddy if 236 * (a) the buddy is free && 237 * (b) the buddy is on the buddy system && 238 * (c) a page and its buddy have the same order. 239 * for recording page's order, we use page->private and PG_private. 240 * 241 */ 242 static inline int page_is_buddy(struct page *page, int order) 243 { 244 if (PagePrivate(page) && 245 (page_order(page) == order) && 246 !PageReserved(page) && 247 page_count(page) == 0) 248 return 1; 249 return 0; 250 } 251 252 /* 253 * Freeing function for a buddy system allocator. 254 * 255 * The concept of a buddy system is to maintain direct-mapped table 256 * (containing bit values) for memory blocks of various "orders". 257 * The bottom level table contains the map for the smallest allocatable 258 * units of memory (here, pages), and each level above it describes 259 * pairs of units from the levels below, hence, "buddies". 260 * At a high level, all that happens here is marking the table entry 261 * at the bottom level available, and propagating the changes upward 262 * as necessary, plus some accounting needed to play nicely with other 263 * parts of the VM system. 264 * At each level, we keep a list of pages, which are heads of continuous 265 * free pages of length of (1 << order) and marked with PG_Private.Page's 266 * order is recorded in page->private field. 267 * So when we are allocating or freeing one, we can derive the state of the 268 * other. That is, if we allocate a small block, and both were 269 * free, the remainder of the region must be split into blocks. 270 * If a block is freed, and its buddy is also free, then this 271 * triggers coalescing into a block of larger size. 272 * 273 * -- wli 274 */ 275 276 static inline void __free_pages_bulk (struct page *page, 277 struct zone *zone, unsigned int order) 278 { 279 unsigned long page_idx; 280 int order_size = 1 << order; 281 282 if (unlikely(order)) 283 destroy_compound_page(page, order); 284 285 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 286 287 BUG_ON(page_idx & (order_size - 1)); 288 BUG_ON(bad_range(zone, page)); 289 290 zone->free_pages += order_size; 291 while (order < MAX_ORDER-1) { 292 unsigned long combined_idx; 293 struct free_area *area; 294 struct page *buddy; 295 296 combined_idx = __find_combined_index(page_idx, order); 297 buddy = __page_find_buddy(page, page_idx, order); 298 299 if (bad_range(zone, buddy)) 300 break; 301 if (!page_is_buddy(buddy, order)) 302 break; /* Move the buddy up one level. */ 303 list_del(&buddy->lru); 304 area = zone->free_area + order; 305 area->nr_free--; 306 rmv_page_order(buddy); 307 page = page + (combined_idx - page_idx); 308 page_idx = combined_idx; 309 order++; 310 } 311 set_page_order(page, order); 312 list_add(&page->lru, &zone->free_area[order].free_list); 313 zone->free_area[order].nr_free++; 314 } 315 316 static inline void free_pages_check(const char *function, struct page *page) 317 { 318 if ( page_mapcount(page) || 319 page->mapping != NULL || 320 page_count(page) != 0 || 321 (page->flags & ( 322 1 << PG_lru | 323 1 << PG_private | 324 1 << PG_locked | 325 1 << PG_active | 326 1 << PG_reclaim | 327 1 << PG_slab | 328 1 << PG_swapcache | 329 1 << PG_writeback ))) 330 bad_page(function, page); 331 if (PageDirty(page)) 332 __ClearPageDirty(page); 333 } 334 335 /* 336 * Frees a list of pages. 337 * Assumes all pages on list are in same zone, and of same order. 338 * count is the number of pages to free, or 0 for all on the list. 339 * 340 * If the zone was previously in an "all pages pinned" state then look to 341 * see if this freeing clears that state. 342 * 343 * And clear the zone's pages_scanned counter, to hold off the "all pages are 344 * pinned" detection logic. 345 */ 346 static int 347 free_pages_bulk(struct zone *zone, int count, 348 struct list_head *list, unsigned int order) 349 { 350 unsigned long flags; 351 struct page *page = NULL; 352 int ret = 0; 353 354 spin_lock_irqsave(&zone->lock, flags); 355 zone->all_unreclaimable = 0; 356 zone->pages_scanned = 0; 357 while (!list_empty(list) && count--) { 358 page = list_entry(list->prev, struct page, lru); 359 /* have to delete it as __free_pages_bulk list manipulates */ 360 list_del(&page->lru); 361 __free_pages_bulk(page, zone, order); 362 ret++; 363 } 364 spin_unlock_irqrestore(&zone->lock, flags); 365 return ret; 366 } 367 368 void __free_pages_ok(struct page *page, unsigned int order) 369 { 370 LIST_HEAD(list); 371 int i; 372 373 arch_free_page(page, order); 374 375 mod_page_state(pgfree, 1 << order); 376 377 #ifndef CONFIG_MMU 378 if (order > 0) 379 for (i = 1 ; i < (1 << order) ; ++i) 380 __put_page(page + i); 381 #endif 382 383 for (i = 0 ; i < (1 << order) ; ++i) 384 free_pages_check(__FUNCTION__, page + i); 385 list_add(&page->lru, &list); 386 kernel_map_pages(page, 1<<order, 0); 387 free_pages_bulk(page_zone(page), 1, &list, order); 388 } 389 390 391 /* 392 * The order of subdivision here is critical for the IO subsystem. 393 * Please do not alter this order without good reasons and regression 394 * testing. Specifically, as large blocks of memory are subdivided, 395 * the order in which smaller blocks are delivered depends on the order 396 * they're subdivided in this function. This is the primary factor 397 * influencing the order in which pages are delivered to the IO 398 * subsystem according to empirical testing, and this is also justified 399 * by considering the behavior of a buddy system containing a single 400 * large block of memory acted on by a series of small allocations. 401 * This behavior is a critical factor in sglist merging's success. 402 * 403 * -- wli 404 */ 405 static inline struct page * 406 expand(struct zone *zone, struct page *page, 407 int low, int high, struct free_area *area) 408 { 409 unsigned long size = 1 << high; 410 411 while (high > low) { 412 area--; 413 high--; 414 size >>= 1; 415 BUG_ON(bad_range(zone, &page[size])); 416 list_add(&page[size].lru, &area->free_list); 417 area->nr_free++; 418 set_page_order(&page[size], high); 419 } 420 return page; 421 } 422 423 void set_page_refs(struct page *page, int order) 424 { 425 #ifdef CONFIG_MMU 426 set_page_count(page, 1); 427 #else 428 int i; 429 430 /* 431 * We need to reference all the pages for this order, otherwise if 432 * anyone accesses one of the pages with (get/put) it will be freed. 433 * - eg: access_process_vm() 434 */ 435 for (i = 0; i < (1 << order); i++) 436 set_page_count(page + i, 1); 437 #endif /* CONFIG_MMU */ 438 } 439 440 /* 441 * This page is about to be returned from the page allocator 442 */ 443 static void prep_new_page(struct page *page, int order) 444 { 445 if ( page_mapcount(page) || 446 page->mapping != NULL || 447 page_count(page) != 0 || 448 (page->flags & ( 449 1 << PG_lru | 450 1 << PG_private | 451 1 << PG_locked | 452 1 << PG_active | 453 1 << PG_dirty | 454 1 << PG_reclaim | 455 1 << PG_slab | 456 1 << PG_swapcache | 457 1 << PG_writeback ))) 458 bad_page(__FUNCTION__, page); 459 460 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 461 1 << PG_referenced | 1 << PG_arch_1 | 462 1 << PG_checked | 1 << PG_mappedtodisk); 463 page->private = 0; 464 set_page_refs(page, order); 465 kernel_map_pages(page, 1 << order, 1); 466 } 467 468 /* 469 * Do the hard work of removing an element from the buddy allocator. 470 * Call me with the zone->lock already held. 471 */ 472 static struct page *__rmqueue(struct zone *zone, unsigned int order) 473 { 474 struct free_area * area; 475 unsigned int current_order; 476 struct page *page; 477 478 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 479 area = zone->free_area + current_order; 480 if (list_empty(&area->free_list)) 481 continue; 482 483 page = list_entry(area->free_list.next, struct page, lru); 484 list_del(&page->lru); 485 rmv_page_order(page); 486 area->nr_free--; 487 zone->free_pages -= 1UL << order; 488 return expand(zone, page, order, current_order, area); 489 } 490 491 return NULL; 492 } 493 494 /* 495 * Obtain a specified number of elements from the buddy allocator, all under 496 * a single hold of the lock, for efficiency. Add them to the supplied list. 497 * Returns the number of new pages which were placed at *list. 498 */ 499 static int rmqueue_bulk(struct zone *zone, unsigned int order, 500 unsigned long count, struct list_head *list) 501 { 502 unsigned long flags; 503 int i; 504 int allocated = 0; 505 struct page *page; 506 507 spin_lock_irqsave(&zone->lock, flags); 508 for (i = 0; i < count; ++i) { 509 page = __rmqueue(zone, order); 510 if (page == NULL) 511 break; 512 allocated++; 513 list_add_tail(&page->lru, list); 514 } 515 spin_unlock_irqrestore(&zone->lock, flags); 516 return allocated; 517 } 518 519 #ifdef CONFIG_NUMA 520 /* Called from the slab reaper to drain remote pagesets */ 521 void drain_remote_pages(void) 522 { 523 struct zone *zone; 524 int i; 525 unsigned long flags; 526 527 local_irq_save(flags); 528 for_each_zone(zone) { 529 struct per_cpu_pageset *pset; 530 531 /* Do not drain local pagesets */ 532 if (zone->zone_pgdat->node_id == numa_node_id()) 533 continue; 534 535 pset = zone->pageset[smp_processor_id()]; 536 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 537 struct per_cpu_pages *pcp; 538 539 pcp = &pset->pcp[i]; 540 if (pcp->count) 541 pcp->count -= free_pages_bulk(zone, pcp->count, 542 &pcp->list, 0); 543 } 544 } 545 local_irq_restore(flags); 546 } 547 #endif 548 549 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 550 static void __drain_pages(unsigned int cpu) 551 { 552 struct zone *zone; 553 int i; 554 555 for_each_zone(zone) { 556 struct per_cpu_pageset *pset; 557 558 pset = zone_pcp(zone, cpu); 559 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 560 struct per_cpu_pages *pcp; 561 562 pcp = &pset->pcp[i]; 563 pcp->count -= free_pages_bulk(zone, pcp->count, 564 &pcp->list, 0); 565 } 566 } 567 } 568 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 569 570 #ifdef CONFIG_PM 571 572 void mark_free_pages(struct zone *zone) 573 { 574 unsigned long zone_pfn, flags; 575 int order; 576 struct list_head *curr; 577 578 if (!zone->spanned_pages) 579 return; 580 581 spin_lock_irqsave(&zone->lock, flags); 582 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 583 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 584 585 for (order = MAX_ORDER - 1; order >= 0; --order) 586 list_for_each(curr, &zone->free_area[order].free_list) { 587 unsigned long start_pfn, i; 588 589 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 590 591 for (i=0; i < (1<<order); i++) 592 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 593 } 594 spin_unlock_irqrestore(&zone->lock, flags); 595 } 596 597 /* 598 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 599 */ 600 void drain_local_pages(void) 601 { 602 unsigned long flags; 603 604 local_irq_save(flags); 605 __drain_pages(smp_processor_id()); 606 local_irq_restore(flags); 607 } 608 #endif /* CONFIG_PM */ 609 610 static void zone_statistics(struct zonelist *zonelist, struct zone *z) 611 { 612 #ifdef CONFIG_NUMA 613 unsigned long flags; 614 int cpu; 615 pg_data_t *pg = z->zone_pgdat; 616 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 617 struct per_cpu_pageset *p; 618 619 local_irq_save(flags); 620 cpu = smp_processor_id(); 621 p = zone_pcp(z,cpu); 622 if (pg == orig) { 623 p->numa_hit++; 624 } else { 625 p->numa_miss++; 626 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 627 } 628 if (pg == NODE_DATA(numa_node_id())) 629 p->local_node++; 630 else 631 p->other_node++; 632 local_irq_restore(flags); 633 #endif 634 } 635 636 /* 637 * Free a 0-order page 638 */ 639 static void FASTCALL(free_hot_cold_page(struct page *page, int cold)); 640 static void fastcall free_hot_cold_page(struct page *page, int cold) 641 { 642 struct zone *zone = page_zone(page); 643 struct per_cpu_pages *pcp; 644 unsigned long flags; 645 646 arch_free_page(page, 0); 647 648 kernel_map_pages(page, 1, 0); 649 inc_page_state(pgfree); 650 if (PageAnon(page)) 651 page->mapping = NULL; 652 free_pages_check(__FUNCTION__, page); 653 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 654 local_irq_save(flags); 655 list_add(&page->lru, &pcp->list); 656 pcp->count++; 657 if (pcp->count >= pcp->high) 658 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 659 local_irq_restore(flags); 660 put_cpu(); 661 } 662 663 void fastcall free_hot_page(struct page *page) 664 { 665 free_hot_cold_page(page, 0); 666 } 667 668 void fastcall free_cold_page(struct page *page) 669 { 670 free_hot_cold_page(page, 1); 671 } 672 673 static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags) 674 { 675 int i; 676 677 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 678 for(i = 0; i < (1 << order); i++) 679 clear_highpage(page + i); 680 } 681 682 /* 683 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 684 * we cheat by calling it from here, in the order > 0 path. Saves a branch 685 * or two. 686 */ 687 static struct page * 688 buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags) 689 { 690 unsigned long flags; 691 struct page *page = NULL; 692 int cold = !!(gfp_flags & __GFP_COLD); 693 694 if (order == 0) { 695 struct per_cpu_pages *pcp; 696 697 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 698 local_irq_save(flags); 699 if (pcp->count <= pcp->low) 700 pcp->count += rmqueue_bulk(zone, 0, 701 pcp->batch, &pcp->list); 702 if (pcp->count) { 703 page = list_entry(pcp->list.next, struct page, lru); 704 list_del(&page->lru); 705 pcp->count--; 706 } 707 local_irq_restore(flags); 708 put_cpu(); 709 } 710 711 if (page == NULL) { 712 spin_lock_irqsave(&zone->lock, flags); 713 page = __rmqueue(zone, order); 714 spin_unlock_irqrestore(&zone->lock, flags); 715 } 716 717 if (page != NULL) { 718 BUG_ON(bad_range(zone, page)); 719 mod_page_state_zone(zone, pgalloc, 1 << order); 720 prep_new_page(page, order); 721 722 if (gfp_flags & __GFP_ZERO) 723 prep_zero_page(page, order, gfp_flags); 724 725 if (order && (gfp_flags & __GFP_COMP)) 726 prep_compound_page(page, order); 727 } 728 return page; 729 } 730 731 /* 732 * Return 1 if free pages are above 'mark'. This takes into account the order 733 * of the allocation. 734 */ 735 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 736 int classzone_idx, int can_try_harder, int gfp_high) 737 { 738 /* free_pages my go negative - that's OK */ 739 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 740 int o; 741 742 if (gfp_high) 743 min -= min / 2; 744 if (can_try_harder) 745 min -= min / 4; 746 747 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 748 return 0; 749 for (o = 0; o < order; o++) { 750 /* At the next order, this order's pages become unavailable */ 751 free_pages -= z->free_area[o].nr_free << o; 752 753 /* Require fewer higher order pages to be free */ 754 min >>= 1; 755 756 if (free_pages <= min) 757 return 0; 758 } 759 return 1; 760 } 761 762 static inline int 763 should_reclaim_zone(struct zone *z, unsigned int gfp_mask) 764 { 765 if (!z->reclaim_pages) 766 return 0; 767 if (gfp_mask & __GFP_NORECLAIM) 768 return 0; 769 return 1; 770 } 771 772 /* 773 * This is the 'heart' of the zoned buddy allocator. 774 */ 775 struct page * fastcall 776 __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order, 777 struct zonelist *zonelist) 778 { 779 const int wait = gfp_mask & __GFP_WAIT; 780 struct zone **zones, *z; 781 struct page *page; 782 struct reclaim_state reclaim_state; 783 struct task_struct *p = current; 784 int i; 785 int classzone_idx; 786 int do_retry; 787 int can_try_harder; 788 int did_some_progress; 789 790 might_sleep_if(wait); 791 792 /* 793 * The caller may dip into page reserves a bit more if the caller 794 * cannot run direct reclaim, or is the caller has realtime scheduling 795 * policy 796 */ 797 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait; 798 799 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */ 800 801 if (unlikely(zones[0] == NULL)) { 802 /* Should this ever happen?? */ 803 return NULL; 804 } 805 806 classzone_idx = zone_idx(zones[0]); 807 808 restart: 809 /* 810 * Go through the zonelist once, looking for a zone with enough free. 811 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 812 */ 813 for (i = 0; (z = zones[i]) != NULL; i++) { 814 int do_reclaim = should_reclaim_zone(z, gfp_mask); 815 816 if (!cpuset_zone_allowed(z, __GFP_HARDWALL)) 817 continue; 818 819 /* 820 * If the zone is to attempt early page reclaim then this loop 821 * will try to reclaim pages and check the watermark a second 822 * time before giving up and falling back to the next zone. 823 */ 824 zone_reclaim_retry: 825 if (!zone_watermark_ok(z, order, z->pages_low, 826 classzone_idx, 0, 0)) { 827 if (!do_reclaim) 828 continue; 829 else { 830 zone_reclaim(z, gfp_mask, order); 831 /* Only try reclaim once */ 832 do_reclaim = 0; 833 goto zone_reclaim_retry; 834 } 835 } 836 837 page = buffered_rmqueue(z, order, gfp_mask); 838 if (page) 839 goto got_pg; 840 } 841 842 for (i = 0; (z = zones[i]) != NULL; i++) 843 wakeup_kswapd(z, order); 844 845 /* 846 * Go through the zonelist again. Let __GFP_HIGH and allocations 847 * coming from realtime tasks to go deeper into reserves 848 * 849 * This is the last chance, in general, before the goto nopage. 850 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 851 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 852 */ 853 for (i = 0; (z = zones[i]) != NULL; i++) { 854 if (!zone_watermark_ok(z, order, z->pages_min, 855 classzone_idx, can_try_harder, 856 gfp_mask & __GFP_HIGH)) 857 continue; 858 859 if (wait && !cpuset_zone_allowed(z, gfp_mask)) 860 continue; 861 862 page = buffered_rmqueue(z, order, gfp_mask); 863 if (page) 864 goto got_pg; 865 } 866 867 /* This allocation should allow future memory freeing. */ 868 869 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 870 && !in_interrupt()) { 871 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 872 /* go through the zonelist yet again, ignoring mins */ 873 for (i = 0; (z = zones[i]) != NULL; i++) { 874 if (!cpuset_zone_allowed(z, gfp_mask)) 875 continue; 876 page = buffered_rmqueue(z, order, gfp_mask); 877 if (page) 878 goto got_pg; 879 } 880 } 881 goto nopage; 882 } 883 884 /* Atomic allocations - we can't balance anything */ 885 if (!wait) 886 goto nopage; 887 888 rebalance: 889 cond_resched(); 890 891 /* We now go into synchronous reclaim */ 892 p->flags |= PF_MEMALLOC; 893 reclaim_state.reclaimed_slab = 0; 894 p->reclaim_state = &reclaim_state; 895 896 did_some_progress = try_to_free_pages(zones, gfp_mask); 897 898 p->reclaim_state = NULL; 899 p->flags &= ~PF_MEMALLOC; 900 901 cond_resched(); 902 903 if (likely(did_some_progress)) { 904 for (i = 0; (z = zones[i]) != NULL; i++) { 905 if (!zone_watermark_ok(z, order, z->pages_min, 906 classzone_idx, can_try_harder, 907 gfp_mask & __GFP_HIGH)) 908 continue; 909 910 if (!cpuset_zone_allowed(z, gfp_mask)) 911 continue; 912 913 page = buffered_rmqueue(z, order, gfp_mask); 914 if (page) 915 goto got_pg; 916 } 917 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 918 /* 919 * Go through the zonelist yet one more time, keep 920 * very high watermark here, this is only to catch 921 * a parallel oom killing, we must fail if we're still 922 * under heavy pressure. 923 */ 924 for (i = 0; (z = zones[i]) != NULL; i++) { 925 if (!zone_watermark_ok(z, order, z->pages_high, 926 classzone_idx, 0, 0)) 927 continue; 928 929 if (!cpuset_zone_allowed(z, __GFP_HARDWALL)) 930 continue; 931 932 page = buffered_rmqueue(z, order, gfp_mask); 933 if (page) 934 goto got_pg; 935 } 936 937 out_of_memory(gfp_mask, order); 938 goto restart; 939 } 940 941 /* 942 * Don't let big-order allocations loop unless the caller explicitly 943 * requests that. Wait for some write requests to complete then retry. 944 * 945 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 946 * <= 3, but that may not be true in other implementations. 947 */ 948 do_retry = 0; 949 if (!(gfp_mask & __GFP_NORETRY)) { 950 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 951 do_retry = 1; 952 if (gfp_mask & __GFP_NOFAIL) 953 do_retry = 1; 954 } 955 if (do_retry) { 956 blk_congestion_wait(WRITE, HZ/50); 957 goto rebalance; 958 } 959 960 nopage: 961 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 962 printk(KERN_WARNING "%s: page allocation failure." 963 " order:%d, mode:0x%x\n", 964 p->comm, order, gfp_mask); 965 dump_stack(); 966 show_mem(); 967 } 968 return NULL; 969 got_pg: 970 zone_statistics(zonelist, z); 971 return page; 972 } 973 974 EXPORT_SYMBOL(__alloc_pages); 975 976 /* 977 * Common helper functions. 978 */ 979 fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order) 980 { 981 struct page * page; 982 page = alloc_pages(gfp_mask, order); 983 if (!page) 984 return 0; 985 return (unsigned long) page_address(page); 986 } 987 988 EXPORT_SYMBOL(__get_free_pages); 989 990 fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask) 991 { 992 struct page * page; 993 994 /* 995 * get_zeroed_page() returns a 32-bit address, which cannot represent 996 * a highmem page 997 */ 998 BUG_ON(gfp_mask & __GFP_HIGHMEM); 999 1000 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1001 if (page) 1002 return (unsigned long) page_address(page); 1003 return 0; 1004 } 1005 1006 EXPORT_SYMBOL(get_zeroed_page); 1007 1008 void __pagevec_free(struct pagevec *pvec) 1009 { 1010 int i = pagevec_count(pvec); 1011 1012 while (--i >= 0) 1013 free_hot_cold_page(pvec->pages[i], pvec->cold); 1014 } 1015 1016 fastcall void __free_pages(struct page *page, unsigned int order) 1017 { 1018 if (!PageReserved(page) && put_page_testzero(page)) { 1019 if (order == 0) 1020 free_hot_page(page); 1021 else 1022 __free_pages_ok(page, order); 1023 } 1024 } 1025 1026 EXPORT_SYMBOL(__free_pages); 1027 1028 fastcall void free_pages(unsigned long addr, unsigned int order) 1029 { 1030 if (addr != 0) { 1031 BUG_ON(!virt_addr_valid((void *)addr)); 1032 __free_pages(virt_to_page((void *)addr), order); 1033 } 1034 } 1035 1036 EXPORT_SYMBOL(free_pages); 1037 1038 /* 1039 * Total amount of free (allocatable) RAM: 1040 */ 1041 unsigned int nr_free_pages(void) 1042 { 1043 unsigned int sum = 0; 1044 struct zone *zone; 1045 1046 for_each_zone(zone) 1047 sum += zone->free_pages; 1048 1049 return sum; 1050 } 1051 1052 EXPORT_SYMBOL(nr_free_pages); 1053 1054 #ifdef CONFIG_NUMA 1055 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1056 { 1057 unsigned int i, sum = 0; 1058 1059 for (i = 0; i < MAX_NR_ZONES; i++) 1060 sum += pgdat->node_zones[i].free_pages; 1061 1062 return sum; 1063 } 1064 #endif 1065 1066 static unsigned int nr_free_zone_pages(int offset) 1067 { 1068 /* Just pick one node, since fallback list is circular */ 1069 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1070 unsigned int sum = 0; 1071 1072 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1073 struct zone **zonep = zonelist->zones; 1074 struct zone *zone; 1075 1076 for (zone = *zonep++; zone; zone = *zonep++) { 1077 unsigned long size = zone->present_pages; 1078 unsigned long high = zone->pages_high; 1079 if (size > high) 1080 sum += size - high; 1081 } 1082 1083 return sum; 1084 } 1085 1086 /* 1087 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1088 */ 1089 unsigned int nr_free_buffer_pages(void) 1090 { 1091 return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK); 1092 } 1093 1094 /* 1095 * Amount of free RAM allocatable within all zones 1096 */ 1097 unsigned int nr_free_pagecache_pages(void) 1098 { 1099 return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK); 1100 } 1101 1102 #ifdef CONFIG_HIGHMEM 1103 unsigned int nr_free_highpages (void) 1104 { 1105 pg_data_t *pgdat; 1106 unsigned int pages = 0; 1107 1108 for_each_pgdat(pgdat) 1109 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1110 1111 return pages; 1112 } 1113 #endif 1114 1115 #ifdef CONFIG_NUMA 1116 static void show_node(struct zone *zone) 1117 { 1118 printk("Node %d ", zone->zone_pgdat->node_id); 1119 } 1120 #else 1121 #define show_node(zone) do { } while (0) 1122 #endif 1123 1124 /* 1125 * Accumulate the page_state information across all CPUs. 1126 * The result is unavoidably approximate - it can change 1127 * during and after execution of this function. 1128 */ 1129 static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1130 1131 atomic_t nr_pagecache = ATOMIC_INIT(0); 1132 EXPORT_SYMBOL(nr_pagecache); 1133 #ifdef CONFIG_SMP 1134 DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1135 #endif 1136 1137 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1138 { 1139 int cpu = 0; 1140 1141 memset(ret, 0, sizeof(*ret)); 1142 cpus_and(*cpumask, *cpumask, cpu_online_map); 1143 1144 cpu = first_cpu(*cpumask); 1145 while (cpu < NR_CPUS) { 1146 unsigned long *in, *out, off; 1147 1148 in = (unsigned long *)&per_cpu(page_states, cpu); 1149 1150 cpu = next_cpu(cpu, *cpumask); 1151 1152 if (cpu < NR_CPUS) 1153 prefetch(&per_cpu(page_states, cpu)); 1154 1155 out = (unsigned long *)ret; 1156 for (off = 0; off < nr; off++) 1157 *out++ += *in++; 1158 } 1159 } 1160 1161 void get_page_state_node(struct page_state *ret, int node) 1162 { 1163 int nr; 1164 cpumask_t mask = node_to_cpumask(node); 1165 1166 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1167 nr /= sizeof(unsigned long); 1168 1169 __get_page_state(ret, nr+1, &mask); 1170 } 1171 1172 void get_page_state(struct page_state *ret) 1173 { 1174 int nr; 1175 cpumask_t mask = CPU_MASK_ALL; 1176 1177 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1178 nr /= sizeof(unsigned long); 1179 1180 __get_page_state(ret, nr + 1, &mask); 1181 } 1182 1183 void get_full_page_state(struct page_state *ret) 1184 { 1185 cpumask_t mask = CPU_MASK_ALL; 1186 1187 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1188 } 1189 1190 unsigned long __read_page_state(unsigned long offset) 1191 { 1192 unsigned long ret = 0; 1193 int cpu; 1194 1195 for_each_online_cpu(cpu) { 1196 unsigned long in; 1197 1198 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1199 ret += *((unsigned long *)in); 1200 } 1201 return ret; 1202 } 1203 1204 void __mod_page_state(unsigned long offset, unsigned long delta) 1205 { 1206 unsigned long flags; 1207 void* ptr; 1208 1209 local_irq_save(flags); 1210 ptr = &__get_cpu_var(page_states); 1211 *(unsigned long*)(ptr + offset) += delta; 1212 local_irq_restore(flags); 1213 } 1214 1215 EXPORT_SYMBOL(__mod_page_state); 1216 1217 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1218 unsigned long *free, struct pglist_data *pgdat) 1219 { 1220 struct zone *zones = pgdat->node_zones; 1221 int i; 1222 1223 *active = 0; 1224 *inactive = 0; 1225 *free = 0; 1226 for (i = 0; i < MAX_NR_ZONES; i++) { 1227 *active += zones[i].nr_active; 1228 *inactive += zones[i].nr_inactive; 1229 *free += zones[i].free_pages; 1230 } 1231 } 1232 1233 void get_zone_counts(unsigned long *active, 1234 unsigned long *inactive, unsigned long *free) 1235 { 1236 struct pglist_data *pgdat; 1237 1238 *active = 0; 1239 *inactive = 0; 1240 *free = 0; 1241 for_each_pgdat(pgdat) { 1242 unsigned long l, m, n; 1243 __get_zone_counts(&l, &m, &n, pgdat); 1244 *active += l; 1245 *inactive += m; 1246 *free += n; 1247 } 1248 } 1249 1250 void si_meminfo(struct sysinfo *val) 1251 { 1252 val->totalram = totalram_pages; 1253 val->sharedram = 0; 1254 val->freeram = nr_free_pages(); 1255 val->bufferram = nr_blockdev_pages(); 1256 #ifdef CONFIG_HIGHMEM 1257 val->totalhigh = totalhigh_pages; 1258 val->freehigh = nr_free_highpages(); 1259 #else 1260 val->totalhigh = 0; 1261 val->freehigh = 0; 1262 #endif 1263 val->mem_unit = PAGE_SIZE; 1264 } 1265 1266 EXPORT_SYMBOL(si_meminfo); 1267 1268 #ifdef CONFIG_NUMA 1269 void si_meminfo_node(struct sysinfo *val, int nid) 1270 { 1271 pg_data_t *pgdat = NODE_DATA(nid); 1272 1273 val->totalram = pgdat->node_present_pages; 1274 val->freeram = nr_free_pages_pgdat(pgdat); 1275 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1276 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1277 val->mem_unit = PAGE_SIZE; 1278 } 1279 #endif 1280 1281 #define K(x) ((x) << (PAGE_SHIFT-10)) 1282 1283 /* 1284 * Show free area list (used inside shift_scroll-lock stuff) 1285 * We also calculate the percentage fragmentation. We do this by counting the 1286 * memory on each free list with the exception of the first item on the list. 1287 */ 1288 void show_free_areas(void) 1289 { 1290 struct page_state ps; 1291 int cpu, temperature; 1292 unsigned long active; 1293 unsigned long inactive; 1294 unsigned long free; 1295 struct zone *zone; 1296 1297 for_each_zone(zone) { 1298 show_node(zone); 1299 printk("%s per-cpu:", zone->name); 1300 1301 if (!zone->present_pages) { 1302 printk(" empty\n"); 1303 continue; 1304 } else 1305 printk("\n"); 1306 1307 for (cpu = 0; cpu < NR_CPUS; ++cpu) { 1308 struct per_cpu_pageset *pageset; 1309 1310 if (!cpu_possible(cpu)) 1311 continue; 1312 1313 pageset = zone_pcp(zone, cpu); 1314 1315 for (temperature = 0; temperature < 2; temperature++) 1316 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n", 1317 cpu, 1318 temperature ? "cold" : "hot", 1319 pageset->pcp[temperature].low, 1320 pageset->pcp[temperature].high, 1321 pageset->pcp[temperature].batch, 1322 pageset->pcp[temperature].count); 1323 } 1324 } 1325 1326 get_page_state(&ps); 1327 get_zone_counts(&active, &inactive, &free); 1328 1329 printk("Free pages: %11ukB (%ukB HighMem)\n", 1330 K(nr_free_pages()), 1331 K(nr_free_highpages())); 1332 1333 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1334 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1335 active, 1336 inactive, 1337 ps.nr_dirty, 1338 ps.nr_writeback, 1339 ps.nr_unstable, 1340 nr_free_pages(), 1341 ps.nr_slab, 1342 ps.nr_mapped, 1343 ps.nr_page_table_pages); 1344 1345 for_each_zone(zone) { 1346 int i; 1347 1348 show_node(zone); 1349 printk("%s" 1350 " free:%lukB" 1351 " min:%lukB" 1352 " low:%lukB" 1353 " high:%lukB" 1354 " active:%lukB" 1355 " inactive:%lukB" 1356 " present:%lukB" 1357 " pages_scanned:%lu" 1358 " all_unreclaimable? %s" 1359 "\n", 1360 zone->name, 1361 K(zone->free_pages), 1362 K(zone->pages_min), 1363 K(zone->pages_low), 1364 K(zone->pages_high), 1365 K(zone->nr_active), 1366 K(zone->nr_inactive), 1367 K(zone->present_pages), 1368 zone->pages_scanned, 1369 (zone->all_unreclaimable ? "yes" : "no") 1370 ); 1371 printk("lowmem_reserve[]:"); 1372 for (i = 0; i < MAX_NR_ZONES; i++) 1373 printk(" %lu", zone->lowmem_reserve[i]); 1374 printk("\n"); 1375 } 1376 1377 for_each_zone(zone) { 1378 unsigned long nr, flags, order, total = 0; 1379 1380 show_node(zone); 1381 printk("%s: ", zone->name); 1382 if (!zone->present_pages) { 1383 printk("empty\n"); 1384 continue; 1385 } 1386 1387 spin_lock_irqsave(&zone->lock, flags); 1388 for (order = 0; order < MAX_ORDER; order++) { 1389 nr = zone->free_area[order].nr_free; 1390 total += nr << order; 1391 printk("%lu*%lukB ", nr, K(1UL) << order); 1392 } 1393 spin_unlock_irqrestore(&zone->lock, flags); 1394 printk("= %lukB\n", K(total)); 1395 } 1396 1397 show_swap_cache_info(); 1398 } 1399 1400 /* 1401 * Builds allocation fallback zone lists. 1402 */ 1403 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k) 1404 { 1405 switch (k) { 1406 struct zone *zone; 1407 default: 1408 BUG(); 1409 case ZONE_HIGHMEM: 1410 zone = pgdat->node_zones + ZONE_HIGHMEM; 1411 if (zone->present_pages) { 1412 #ifndef CONFIG_HIGHMEM 1413 BUG(); 1414 #endif 1415 zonelist->zones[j++] = zone; 1416 } 1417 case ZONE_NORMAL: 1418 zone = pgdat->node_zones + ZONE_NORMAL; 1419 if (zone->present_pages) 1420 zonelist->zones[j++] = zone; 1421 case ZONE_DMA: 1422 zone = pgdat->node_zones + ZONE_DMA; 1423 if (zone->present_pages) 1424 zonelist->zones[j++] = zone; 1425 } 1426 1427 return j; 1428 } 1429 1430 #ifdef CONFIG_NUMA 1431 #define MAX_NODE_LOAD (num_online_nodes()) 1432 static int __initdata node_load[MAX_NUMNODES]; 1433 /** 1434 * find_next_best_node - find the next node that should appear in a given node's fallback list 1435 * @node: node whose fallback list we're appending 1436 * @used_node_mask: nodemask_t of already used nodes 1437 * 1438 * We use a number of factors to determine which is the next node that should 1439 * appear on a given node's fallback list. The node should not have appeared 1440 * already in @node's fallback list, and it should be the next closest node 1441 * according to the distance array (which contains arbitrary distance values 1442 * from each node to each node in the system), and should also prefer nodes 1443 * with no CPUs, since presumably they'll have very little allocation pressure 1444 * on them otherwise. 1445 * It returns -1 if no node is found. 1446 */ 1447 static int __init find_next_best_node(int node, nodemask_t *used_node_mask) 1448 { 1449 int i, n, val; 1450 int min_val = INT_MAX; 1451 int best_node = -1; 1452 1453 for_each_online_node(i) { 1454 cpumask_t tmp; 1455 1456 /* Start from local node */ 1457 n = (node+i) % num_online_nodes(); 1458 1459 /* Don't want a node to appear more than once */ 1460 if (node_isset(n, *used_node_mask)) 1461 continue; 1462 1463 /* Use the local node if we haven't already */ 1464 if (!node_isset(node, *used_node_mask)) { 1465 best_node = node; 1466 break; 1467 } 1468 1469 /* Use the distance array to find the distance */ 1470 val = node_distance(node, n); 1471 1472 /* Give preference to headless and unused nodes */ 1473 tmp = node_to_cpumask(n); 1474 if (!cpus_empty(tmp)) 1475 val += PENALTY_FOR_NODE_WITH_CPUS; 1476 1477 /* Slight preference for less loaded node */ 1478 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1479 val += node_load[n]; 1480 1481 if (val < min_val) { 1482 min_val = val; 1483 best_node = n; 1484 } 1485 } 1486 1487 if (best_node >= 0) 1488 node_set(best_node, *used_node_mask); 1489 1490 return best_node; 1491 } 1492 1493 static void __init build_zonelists(pg_data_t *pgdat) 1494 { 1495 int i, j, k, node, local_node; 1496 int prev_node, load; 1497 struct zonelist *zonelist; 1498 nodemask_t used_mask; 1499 1500 /* initialize zonelists */ 1501 for (i = 0; i < GFP_ZONETYPES; i++) { 1502 zonelist = pgdat->node_zonelists + i; 1503 zonelist->zones[0] = NULL; 1504 } 1505 1506 /* NUMA-aware ordering of nodes */ 1507 local_node = pgdat->node_id; 1508 load = num_online_nodes(); 1509 prev_node = local_node; 1510 nodes_clear(used_mask); 1511 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1512 /* 1513 * We don't want to pressure a particular node. 1514 * So adding penalty to the first node in same 1515 * distance group to make it round-robin. 1516 */ 1517 if (node_distance(local_node, node) != 1518 node_distance(local_node, prev_node)) 1519 node_load[node] += load; 1520 prev_node = node; 1521 load--; 1522 for (i = 0; i < GFP_ZONETYPES; i++) { 1523 zonelist = pgdat->node_zonelists + i; 1524 for (j = 0; zonelist->zones[j] != NULL; j++); 1525 1526 k = ZONE_NORMAL; 1527 if (i & __GFP_HIGHMEM) 1528 k = ZONE_HIGHMEM; 1529 if (i & __GFP_DMA) 1530 k = ZONE_DMA; 1531 1532 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1533 zonelist->zones[j] = NULL; 1534 } 1535 } 1536 } 1537 1538 #else /* CONFIG_NUMA */ 1539 1540 static void __init build_zonelists(pg_data_t *pgdat) 1541 { 1542 int i, j, k, node, local_node; 1543 1544 local_node = pgdat->node_id; 1545 for (i = 0; i < GFP_ZONETYPES; i++) { 1546 struct zonelist *zonelist; 1547 1548 zonelist = pgdat->node_zonelists + i; 1549 1550 j = 0; 1551 k = ZONE_NORMAL; 1552 if (i & __GFP_HIGHMEM) 1553 k = ZONE_HIGHMEM; 1554 if (i & __GFP_DMA) 1555 k = ZONE_DMA; 1556 1557 j = build_zonelists_node(pgdat, zonelist, j, k); 1558 /* 1559 * Now we build the zonelist so that it contains the zones 1560 * of all the other nodes. 1561 * We don't want to pressure a particular node, so when 1562 * building the zones for node N, we make sure that the 1563 * zones coming right after the local ones are those from 1564 * node N+1 (modulo N) 1565 */ 1566 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1567 if (!node_online(node)) 1568 continue; 1569 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1570 } 1571 for (node = 0; node < local_node; node++) { 1572 if (!node_online(node)) 1573 continue; 1574 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1575 } 1576 1577 zonelist->zones[j] = NULL; 1578 } 1579 } 1580 1581 #endif /* CONFIG_NUMA */ 1582 1583 void __init build_all_zonelists(void) 1584 { 1585 int i; 1586 1587 for_each_online_node(i) 1588 build_zonelists(NODE_DATA(i)); 1589 printk("Built %i zonelists\n", num_online_nodes()); 1590 cpuset_init_current_mems_allowed(); 1591 } 1592 1593 /* 1594 * Helper functions to size the waitqueue hash table. 1595 * Essentially these want to choose hash table sizes sufficiently 1596 * large so that collisions trying to wait on pages are rare. 1597 * But in fact, the number of active page waitqueues on typical 1598 * systems is ridiculously low, less than 200. So this is even 1599 * conservative, even though it seems large. 1600 * 1601 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1602 * waitqueues, i.e. the size of the waitq table given the number of pages. 1603 */ 1604 #define PAGES_PER_WAITQUEUE 256 1605 1606 static inline unsigned long wait_table_size(unsigned long pages) 1607 { 1608 unsigned long size = 1; 1609 1610 pages /= PAGES_PER_WAITQUEUE; 1611 1612 while (size < pages) 1613 size <<= 1; 1614 1615 /* 1616 * Once we have dozens or even hundreds of threads sleeping 1617 * on IO we've got bigger problems than wait queue collision. 1618 * Limit the size of the wait table to a reasonable size. 1619 */ 1620 size = min(size, 4096UL); 1621 1622 return max(size, 4UL); 1623 } 1624 1625 /* 1626 * This is an integer logarithm so that shifts can be used later 1627 * to extract the more random high bits from the multiplicative 1628 * hash function before the remainder is taken. 1629 */ 1630 static inline unsigned long wait_table_bits(unsigned long size) 1631 { 1632 return ffz(~size); 1633 } 1634 1635 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1636 1637 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1638 unsigned long *zones_size, unsigned long *zholes_size) 1639 { 1640 unsigned long realtotalpages, totalpages = 0; 1641 int i; 1642 1643 for (i = 0; i < MAX_NR_ZONES; i++) 1644 totalpages += zones_size[i]; 1645 pgdat->node_spanned_pages = totalpages; 1646 1647 realtotalpages = totalpages; 1648 if (zholes_size) 1649 for (i = 0; i < MAX_NR_ZONES; i++) 1650 realtotalpages -= zholes_size[i]; 1651 pgdat->node_present_pages = realtotalpages; 1652 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1653 } 1654 1655 1656 /* 1657 * Initially all pages are reserved - free ones are freed 1658 * up by free_all_bootmem() once the early boot process is 1659 * done. Non-atomic initialization, single-pass. 1660 */ 1661 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1662 unsigned long start_pfn) 1663 { 1664 struct page *page; 1665 unsigned long end_pfn = start_pfn + size; 1666 unsigned long pfn; 1667 1668 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) { 1669 if (!early_pfn_valid(pfn)) 1670 continue; 1671 if (!early_pfn_in_nid(pfn, nid)) 1672 continue; 1673 page = pfn_to_page(pfn); 1674 set_page_links(page, zone, nid, pfn); 1675 set_page_count(page, 0); 1676 reset_page_mapcount(page); 1677 SetPageReserved(page); 1678 INIT_LIST_HEAD(&page->lru); 1679 #ifdef WANT_PAGE_VIRTUAL 1680 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1681 if (!is_highmem_idx(zone)) 1682 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1683 #endif 1684 } 1685 } 1686 1687 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1688 unsigned long size) 1689 { 1690 int order; 1691 for (order = 0; order < MAX_ORDER ; order++) { 1692 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1693 zone->free_area[order].nr_free = 0; 1694 } 1695 } 1696 1697 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1698 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1699 unsigned long size) 1700 { 1701 unsigned long snum = pfn_to_section_nr(pfn); 1702 unsigned long end = pfn_to_section_nr(pfn + size); 1703 1704 if (FLAGS_HAS_NODE) 1705 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1706 else 1707 for (; snum <= end; snum++) 1708 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1709 } 1710 1711 #ifndef __HAVE_ARCH_MEMMAP_INIT 1712 #define memmap_init(size, nid, zone, start_pfn) \ 1713 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1714 #endif 1715 1716 static int __devinit zone_batchsize(struct zone *zone) 1717 { 1718 int batch; 1719 1720 /* 1721 * The per-cpu-pages pools are set to around 1000th of the 1722 * size of the zone. But no more than 1/4 of a meg - there's 1723 * no point in going beyond the size of L2 cache. 1724 * 1725 * OK, so we don't know how big the cache is. So guess. 1726 */ 1727 batch = zone->present_pages / 1024; 1728 if (batch * PAGE_SIZE > 256 * 1024) 1729 batch = (256 * 1024) / PAGE_SIZE; 1730 batch /= 4; /* We effectively *= 4 below */ 1731 if (batch < 1) 1732 batch = 1; 1733 1734 /* 1735 * Clamp the batch to a 2^n - 1 value. Having a power 1736 * of 2 value was found to be more likely to have 1737 * suboptimal cache aliasing properties in some cases. 1738 * 1739 * For example if 2 tasks are alternately allocating 1740 * batches of pages, one task can end up with a lot 1741 * of pages of one half of the possible page colors 1742 * and the other with pages of the other colors. 1743 */ 1744 batch = (1 << fls(batch + batch/2)) - 1; 1745 return batch; 1746 } 1747 1748 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1749 { 1750 struct per_cpu_pages *pcp; 1751 1752 pcp = &p->pcp[0]; /* hot */ 1753 pcp->count = 0; 1754 pcp->low = 2 * batch; 1755 pcp->high = 6 * batch; 1756 pcp->batch = max(1UL, 1 * batch); 1757 INIT_LIST_HEAD(&pcp->list); 1758 1759 pcp = &p->pcp[1]; /* cold*/ 1760 pcp->count = 0; 1761 pcp->low = 0; 1762 pcp->high = 2 * batch; 1763 pcp->batch = max(1UL, 1 * batch); 1764 INIT_LIST_HEAD(&pcp->list); 1765 } 1766 1767 #ifdef CONFIG_NUMA 1768 /* 1769 * Boot pageset table. One per cpu which is going to be used for all 1770 * zones and all nodes. The parameters will be set in such a way 1771 * that an item put on a list will immediately be handed over to 1772 * the buddy list. This is safe since pageset manipulation is done 1773 * with interrupts disabled. 1774 * 1775 * Some NUMA counter updates may also be caught by the boot pagesets. 1776 * 1777 * The boot_pagesets must be kept even after bootup is complete for 1778 * unused processors and/or zones. They do play a role for bootstrapping 1779 * hotplugged processors. 1780 * 1781 * zoneinfo_show() and maybe other functions do 1782 * not check if the processor is online before following the pageset pointer. 1783 * Other parts of the kernel may not check if the zone is available. 1784 */ 1785 static struct per_cpu_pageset 1786 boot_pageset[NR_CPUS]; 1787 1788 /* 1789 * Dynamically allocate memory for the 1790 * per cpu pageset array in struct zone. 1791 */ 1792 static int __devinit process_zones(int cpu) 1793 { 1794 struct zone *zone, *dzone; 1795 1796 for_each_zone(zone) { 1797 1798 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset), 1799 GFP_KERNEL, cpu_to_node(cpu)); 1800 if (!zone->pageset[cpu]) 1801 goto bad; 1802 1803 setup_pageset(zone->pageset[cpu], zone_batchsize(zone)); 1804 } 1805 1806 return 0; 1807 bad: 1808 for_each_zone(dzone) { 1809 if (dzone == zone) 1810 break; 1811 kfree(dzone->pageset[cpu]); 1812 dzone->pageset[cpu] = NULL; 1813 } 1814 return -ENOMEM; 1815 } 1816 1817 static inline void free_zone_pagesets(int cpu) 1818 { 1819 #ifdef CONFIG_NUMA 1820 struct zone *zone; 1821 1822 for_each_zone(zone) { 1823 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1824 1825 zone_pcp(zone, cpu) = NULL; 1826 kfree(pset); 1827 } 1828 #endif 1829 } 1830 1831 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb, 1832 unsigned long action, 1833 void *hcpu) 1834 { 1835 int cpu = (long)hcpu; 1836 int ret = NOTIFY_OK; 1837 1838 switch (action) { 1839 case CPU_UP_PREPARE: 1840 if (process_zones(cpu)) 1841 ret = NOTIFY_BAD; 1842 break; 1843 #ifdef CONFIG_HOTPLUG_CPU 1844 case CPU_DEAD: 1845 free_zone_pagesets(cpu); 1846 break; 1847 #endif 1848 default: 1849 break; 1850 } 1851 return ret; 1852 } 1853 1854 static struct notifier_block pageset_notifier = 1855 { &pageset_cpuup_callback, NULL, 0 }; 1856 1857 void __init setup_per_cpu_pageset() 1858 { 1859 int err; 1860 1861 /* Initialize per_cpu_pageset for cpu 0. 1862 * A cpuup callback will do this for every cpu 1863 * as it comes online 1864 */ 1865 err = process_zones(smp_processor_id()); 1866 BUG_ON(err); 1867 register_cpu_notifier(&pageset_notifier); 1868 } 1869 1870 #endif 1871 1872 /* 1873 * Set up the zone data structures: 1874 * - mark all pages reserved 1875 * - mark all memory queues empty 1876 * - clear the memory bitmaps 1877 */ 1878 static void __init free_area_init_core(struct pglist_data *pgdat, 1879 unsigned long *zones_size, unsigned long *zholes_size) 1880 { 1881 unsigned long i, j; 1882 int cpu, nid = pgdat->node_id; 1883 unsigned long zone_start_pfn = pgdat->node_start_pfn; 1884 1885 pgdat->nr_zones = 0; 1886 init_waitqueue_head(&pgdat->kswapd_wait); 1887 pgdat->kswapd_max_order = 0; 1888 1889 for (j = 0; j < MAX_NR_ZONES; j++) { 1890 struct zone *zone = pgdat->node_zones + j; 1891 unsigned long size, realsize; 1892 unsigned long batch; 1893 1894 realsize = size = zones_size[j]; 1895 if (zholes_size) 1896 realsize -= zholes_size[j]; 1897 1898 if (j == ZONE_DMA || j == ZONE_NORMAL) 1899 nr_kernel_pages += realsize; 1900 nr_all_pages += realsize; 1901 1902 zone->spanned_pages = size; 1903 zone->present_pages = realsize; 1904 zone->name = zone_names[j]; 1905 spin_lock_init(&zone->lock); 1906 spin_lock_init(&zone->lru_lock); 1907 zone->zone_pgdat = pgdat; 1908 zone->free_pages = 0; 1909 1910 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 1911 1912 batch = zone_batchsize(zone); 1913 1914 for (cpu = 0; cpu < NR_CPUS; cpu++) { 1915 #ifdef CONFIG_NUMA 1916 /* Early boot. Slab allocator not functional yet */ 1917 zone->pageset[cpu] = &boot_pageset[cpu]; 1918 setup_pageset(&boot_pageset[cpu],0); 1919 #else 1920 setup_pageset(zone_pcp(zone,cpu), batch); 1921 #endif 1922 } 1923 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 1924 zone_names[j], realsize, batch); 1925 INIT_LIST_HEAD(&zone->active_list); 1926 INIT_LIST_HEAD(&zone->inactive_list); 1927 zone->nr_scan_active = 0; 1928 zone->nr_scan_inactive = 0; 1929 zone->nr_active = 0; 1930 zone->nr_inactive = 0; 1931 atomic_set(&zone->reclaim_in_progress, 0); 1932 if (!size) 1933 continue; 1934 1935 /* 1936 * The per-page waitqueue mechanism uses hashed waitqueues 1937 * per zone. 1938 */ 1939 zone->wait_table_size = wait_table_size(size); 1940 zone->wait_table_bits = 1941 wait_table_bits(zone->wait_table_size); 1942 zone->wait_table = (wait_queue_head_t *) 1943 alloc_bootmem_node(pgdat, zone->wait_table_size 1944 * sizeof(wait_queue_head_t)); 1945 1946 for(i = 0; i < zone->wait_table_size; ++i) 1947 init_waitqueue_head(zone->wait_table + i); 1948 1949 pgdat->nr_zones = j+1; 1950 1951 zone->zone_mem_map = pfn_to_page(zone_start_pfn); 1952 zone->zone_start_pfn = zone_start_pfn; 1953 1954 memmap_init(size, nid, j, zone_start_pfn); 1955 1956 zonetable_add(zone, nid, j, zone_start_pfn, size); 1957 1958 zone_start_pfn += size; 1959 1960 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 1961 } 1962 } 1963 1964 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 1965 { 1966 /* Skip empty nodes */ 1967 if (!pgdat->node_spanned_pages) 1968 return; 1969 1970 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1971 /* ia64 gets its own node_mem_map, before this, without bootmem */ 1972 if (!pgdat->node_mem_map) { 1973 unsigned long size; 1974 struct page *map; 1975 1976 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); 1977 map = alloc_remap(pgdat->node_id, size); 1978 if (!map) 1979 map = alloc_bootmem_node(pgdat, size); 1980 pgdat->node_mem_map = map; 1981 } 1982 #ifdef CONFIG_FLATMEM 1983 /* 1984 * With no DISCONTIG, the global mem_map is just set as node 0's 1985 */ 1986 if (pgdat == NODE_DATA(0)) 1987 mem_map = NODE_DATA(0)->node_mem_map; 1988 #endif 1989 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 1990 } 1991 1992 void __init free_area_init_node(int nid, struct pglist_data *pgdat, 1993 unsigned long *zones_size, unsigned long node_start_pfn, 1994 unsigned long *zholes_size) 1995 { 1996 pgdat->node_id = nid; 1997 pgdat->node_start_pfn = node_start_pfn; 1998 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 1999 2000 alloc_node_mem_map(pgdat); 2001 2002 free_area_init_core(pgdat, zones_size, zholes_size); 2003 } 2004 2005 #ifndef CONFIG_NEED_MULTIPLE_NODES 2006 static bootmem_data_t contig_bootmem_data; 2007 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2008 2009 EXPORT_SYMBOL(contig_page_data); 2010 #endif 2011 2012 void __init free_area_init(unsigned long *zones_size) 2013 { 2014 free_area_init_node(0, NODE_DATA(0), zones_size, 2015 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2016 } 2017 2018 #ifdef CONFIG_PROC_FS 2019 2020 #include <linux/seq_file.h> 2021 2022 static void *frag_start(struct seq_file *m, loff_t *pos) 2023 { 2024 pg_data_t *pgdat; 2025 loff_t node = *pos; 2026 2027 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) 2028 --node; 2029 2030 return pgdat; 2031 } 2032 2033 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2034 { 2035 pg_data_t *pgdat = (pg_data_t *)arg; 2036 2037 (*pos)++; 2038 return pgdat->pgdat_next; 2039 } 2040 2041 static void frag_stop(struct seq_file *m, void *arg) 2042 { 2043 } 2044 2045 /* 2046 * This walks the free areas for each zone. 2047 */ 2048 static int frag_show(struct seq_file *m, void *arg) 2049 { 2050 pg_data_t *pgdat = (pg_data_t *)arg; 2051 struct zone *zone; 2052 struct zone *node_zones = pgdat->node_zones; 2053 unsigned long flags; 2054 int order; 2055 2056 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2057 if (!zone->present_pages) 2058 continue; 2059 2060 spin_lock_irqsave(&zone->lock, flags); 2061 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2062 for (order = 0; order < MAX_ORDER; ++order) 2063 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2064 spin_unlock_irqrestore(&zone->lock, flags); 2065 seq_putc(m, '\n'); 2066 } 2067 return 0; 2068 } 2069 2070 struct seq_operations fragmentation_op = { 2071 .start = frag_start, 2072 .next = frag_next, 2073 .stop = frag_stop, 2074 .show = frag_show, 2075 }; 2076 2077 /* 2078 * Output information about zones in @pgdat. 2079 */ 2080 static int zoneinfo_show(struct seq_file *m, void *arg) 2081 { 2082 pg_data_t *pgdat = arg; 2083 struct zone *zone; 2084 struct zone *node_zones = pgdat->node_zones; 2085 unsigned long flags; 2086 2087 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2088 int i; 2089 2090 if (!zone->present_pages) 2091 continue; 2092 2093 spin_lock_irqsave(&zone->lock, flags); 2094 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2095 seq_printf(m, 2096 "\n pages free %lu" 2097 "\n min %lu" 2098 "\n low %lu" 2099 "\n high %lu" 2100 "\n active %lu" 2101 "\n inactive %lu" 2102 "\n scanned %lu (a: %lu i: %lu)" 2103 "\n spanned %lu" 2104 "\n present %lu", 2105 zone->free_pages, 2106 zone->pages_min, 2107 zone->pages_low, 2108 zone->pages_high, 2109 zone->nr_active, 2110 zone->nr_inactive, 2111 zone->pages_scanned, 2112 zone->nr_scan_active, zone->nr_scan_inactive, 2113 zone->spanned_pages, 2114 zone->present_pages); 2115 seq_printf(m, 2116 "\n protection: (%lu", 2117 zone->lowmem_reserve[0]); 2118 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2119 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2120 seq_printf(m, 2121 ")" 2122 "\n pagesets"); 2123 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) { 2124 struct per_cpu_pageset *pageset; 2125 int j; 2126 2127 pageset = zone_pcp(zone, i); 2128 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2129 if (pageset->pcp[j].count) 2130 break; 2131 } 2132 if (j == ARRAY_SIZE(pageset->pcp)) 2133 continue; 2134 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2135 seq_printf(m, 2136 "\n cpu: %i pcp: %i" 2137 "\n count: %i" 2138 "\n low: %i" 2139 "\n high: %i" 2140 "\n batch: %i", 2141 i, j, 2142 pageset->pcp[j].count, 2143 pageset->pcp[j].low, 2144 pageset->pcp[j].high, 2145 pageset->pcp[j].batch); 2146 } 2147 #ifdef CONFIG_NUMA 2148 seq_printf(m, 2149 "\n numa_hit: %lu" 2150 "\n numa_miss: %lu" 2151 "\n numa_foreign: %lu" 2152 "\n interleave_hit: %lu" 2153 "\n local_node: %lu" 2154 "\n other_node: %lu", 2155 pageset->numa_hit, 2156 pageset->numa_miss, 2157 pageset->numa_foreign, 2158 pageset->interleave_hit, 2159 pageset->local_node, 2160 pageset->other_node); 2161 #endif 2162 } 2163 seq_printf(m, 2164 "\n all_unreclaimable: %u" 2165 "\n prev_priority: %i" 2166 "\n temp_priority: %i" 2167 "\n start_pfn: %lu", 2168 zone->all_unreclaimable, 2169 zone->prev_priority, 2170 zone->temp_priority, 2171 zone->zone_start_pfn); 2172 spin_unlock_irqrestore(&zone->lock, flags); 2173 seq_putc(m, '\n'); 2174 } 2175 return 0; 2176 } 2177 2178 struct seq_operations zoneinfo_op = { 2179 .start = frag_start, /* iterate over all zones. The same as in 2180 * fragmentation. */ 2181 .next = frag_next, 2182 .stop = frag_stop, 2183 .show = zoneinfo_show, 2184 }; 2185 2186 static char *vmstat_text[] = { 2187 "nr_dirty", 2188 "nr_writeback", 2189 "nr_unstable", 2190 "nr_page_table_pages", 2191 "nr_mapped", 2192 "nr_slab", 2193 2194 "pgpgin", 2195 "pgpgout", 2196 "pswpin", 2197 "pswpout", 2198 "pgalloc_high", 2199 2200 "pgalloc_normal", 2201 "pgalloc_dma", 2202 "pgfree", 2203 "pgactivate", 2204 "pgdeactivate", 2205 2206 "pgfault", 2207 "pgmajfault", 2208 "pgrefill_high", 2209 "pgrefill_normal", 2210 "pgrefill_dma", 2211 2212 "pgsteal_high", 2213 "pgsteal_normal", 2214 "pgsteal_dma", 2215 "pgscan_kswapd_high", 2216 "pgscan_kswapd_normal", 2217 2218 "pgscan_kswapd_dma", 2219 "pgscan_direct_high", 2220 "pgscan_direct_normal", 2221 "pgscan_direct_dma", 2222 "pginodesteal", 2223 2224 "slabs_scanned", 2225 "kswapd_steal", 2226 "kswapd_inodesteal", 2227 "pageoutrun", 2228 "allocstall", 2229 2230 "pgrotated", 2231 "nr_bounce", 2232 }; 2233 2234 static void *vmstat_start(struct seq_file *m, loff_t *pos) 2235 { 2236 struct page_state *ps; 2237 2238 if (*pos >= ARRAY_SIZE(vmstat_text)) 2239 return NULL; 2240 2241 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2242 m->private = ps; 2243 if (!ps) 2244 return ERR_PTR(-ENOMEM); 2245 get_full_page_state(ps); 2246 ps->pgpgin /= 2; /* sectors -> kbytes */ 2247 ps->pgpgout /= 2; 2248 return (unsigned long *)ps + *pos; 2249 } 2250 2251 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2252 { 2253 (*pos)++; 2254 if (*pos >= ARRAY_SIZE(vmstat_text)) 2255 return NULL; 2256 return (unsigned long *)m->private + *pos; 2257 } 2258 2259 static int vmstat_show(struct seq_file *m, void *arg) 2260 { 2261 unsigned long *l = arg; 2262 unsigned long off = l - (unsigned long *)m->private; 2263 2264 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2265 return 0; 2266 } 2267 2268 static void vmstat_stop(struct seq_file *m, void *arg) 2269 { 2270 kfree(m->private); 2271 m->private = NULL; 2272 } 2273 2274 struct seq_operations vmstat_op = { 2275 .start = vmstat_start, 2276 .next = vmstat_next, 2277 .stop = vmstat_stop, 2278 .show = vmstat_show, 2279 }; 2280 2281 #endif /* CONFIG_PROC_FS */ 2282 2283 #ifdef CONFIG_HOTPLUG_CPU 2284 static int page_alloc_cpu_notify(struct notifier_block *self, 2285 unsigned long action, void *hcpu) 2286 { 2287 int cpu = (unsigned long)hcpu; 2288 long *count; 2289 unsigned long *src, *dest; 2290 2291 if (action == CPU_DEAD) { 2292 int i; 2293 2294 /* Drain local pagecache count. */ 2295 count = &per_cpu(nr_pagecache_local, cpu); 2296 atomic_add(*count, &nr_pagecache); 2297 *count = 0; 2298 local_irq_disable(); 2299 __drain_pages(cpu); 2300 2301 /* Add dead cpu's page_states to our own. */ 2302 dest = (unsigned long *)&__get_cpu_var(page_states); 2303 src = (unsigned long *)&per_cpu(page_states, cpu); 2304 2305 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2306 i++) { 2307 dest[i] += src[i]; 2308 src[i] = 0; 2309 } 2310 2311 local_irq_enable(); 2312 } 2313 return NOTIFY_OK; 2314 } 2315 #endif /* CONFIG_HOTPLUG_CPU */ 2316 2317 void __init page_alloc_init(void) 2318 { 2319 hotcpu_notifier(page_alloc_cpu_notify, 0); 2320 } 2321 2322 /* 2323 * setup_per_zone_lowmem_reserve - called whenever 2324 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2325 * has a correct pages reserved value, so an adequate number of 2326 * pages are left in the zone after a successful __alloc_pages(). 2327 */ 2328 static void setup_per_zone_lowmem_reserve(void) 2329 { 2330 struct pglist_data *pgdat; 2331 int j, idx; 2332 2333 for_each_pgdat(pgdat) { 2334 for (j = 0; j < MAX_NR_ZONES; j++) { 2335 struct zone *zone = pgdat->node_zones + j; 2336 unsigned long present_pages = zone->present_pages; 2337 2338 zone->lowmem_reserve[j] = 0; 2339 2340 for (idx = j-1; idx >= 0; idx--) { 2341 struct zone *lower_zone; 2342 2343 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2344 sysctl_lowmem_reserve_ratio[idx] = 1; 2345 2346 lower_zone = pgdat->node_zones + idx; 2347 lower_zone->lowmem_reserve[j] = present_pages / 2348 sysctl_lowmem_reserve_ratio[idx]; 2349 present_pages += lower_zone->present_pages; 2350 } 2351 } 2352 } 2353 } 2354 2355 /* 2356 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2357 * that the pages_{min,low,high} values for each zone are set correctly 2358 * with respect to min_free_kbytes. 2359 */ 2360 static void setup_per_zone_pages_min(void) 2361 { 2362 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2363 unsigned long lowmem_pages = 0; 2364 struct zone *zone; 2365 unsigned long flags; 2366 2367 /* Calculate total number of !ZONE_HIGHMEM pages */ 2368 for_each_zone(zone) { 2369 if (!is_highmem(zone)) 2370 lowmem_pages += zone->present_pages; 2371 } 2372 2373 for_each_zone(zone) { 2374 spin_lock_irqsave(&zone->lru_lock, flags); 2375 if (is_highmem(zone)) { 2376 /* 2377 * Often, highmem doesn't need to reserve any pages. 2378 * But the pages_min/low/high values are also used for 2379 * batching up page reclaim activity so we need a 2380 * decent value here. 2381 */ 2382 int min_pages; 2383 2384 min_pages = zone->present_pages / 1024; 2385 if (min_pages < SWAP_CLUSTER_MAX) 2386 min_pages = SWAP_CLUSTER_MAX; 2387 if (min_pages > 128) 2388 min_pages = 128; 2389 zone->pages_min = min_pages; 2390 } else { 2391 /* if it's a lowmem zone, reserve a number of pages 2392 * proportionate to the zone's size. 2393 */ 2394 zone->pages_min = (pages_min * zone->present_pages) / 2395 lowmem_pages; 2396 } 2397 2398 /* 2399 * When interpreting these watermarks, just keep in mind that: 2400 * zone->pages_min == (zone->pages_min * 4) / 4; 2401 */ 2402 zone->pages_low = (zone->pages_min * 5) / 4; 2403 zone->pages_high = (zone->pages_min * 6) / 4; 2404 spin_unlock_irqrestore(&zone->lru_lock, flags); 2405 } 2406 } 2407 2408 /* 2409 * Initialise min_free_kbytes. 2410 * 2411 * For small machines we want it small (128k min). For large machines 2412 * we want it large (64MB max). But it is not linear, because network 2413 * bandwidth does not increase linearly with machine size. We use 2414 * 2415 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2416 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2417 * 2418 * which yields 2419 * 2420 * 16MB: 512k 2421 * 32MB: 724k 2422 * 64MB: 1024k 2423 * 128MB: 1448k 2424 * 256MB: 2048k 2425 * 512MB: 2896k 2426 * 1024MB: 4096k 2427 * 2048MB: 5792k 2428 * 4096MB: 8192k 2429 * 8192MB: 11584k 2430 * 16384MB: 16384k 2431 */ 2432 static int __init init_per_zone_pages_min(void) 2433 { 2434 unsigned long lowmem_kbytes; 2435 2436 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2437 2438 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2439 if (min_free_kbytes < 128) 2440 min_free_kbytes = 128; 2441 if (min_free_kbytes > 65536) 2442 min_free_kbytes = 65536; 2443 setup_per_zone_pages_min(); 2444 setup_per_zone_lowmem_reserve(); 2445 return 0; 2446 } 2447 module_init(init_per_zone_pages_min) 2448 2449 /* 2450 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2451 * that we can call two helper functions whenever min_free_kbytes 2452 * changes. 2453 */ 2454 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2455 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2456 { 2457 proc_dointvec(table, write, file, buffer, length, ppos); 2458 setup_per_zone_pages_min(); 2459 return 0; 2460 } 2461 2462 /* 2463 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2464 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2465 * whenever sysctl_lowmem_reserve_ratio changes. 2466 * 2467 * The reserve ratio obviously has absolutely no relation with the 2468 * pages_min watermarks. The lowmem reserve ratio can only make sense 2469 * if in function of the boot time zone sizes. 2470 */ 2471 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2472 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2473 { 2474 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2475 setup_per_zone_lowmem_reserve(); 2476 return 0; 2477 } 2478 2479 __initdata int hashdist = HASHDIST_DEFAULT; 2480 2481 #ifdef CONFIG_NUMA 2482 static int __init set_hashdist(char *str) 2483 { 2484 if (!str) 2485 return 0; 2486 hashdist = simple_strtoul(str, &str, 0); 2487 return 1; 2488 } 2489 __setup("hashdist=", set_hashdist); 2490 #endif 2491 2492 /* 2493 * allocate a large system hash table from bootmem 2494 * - it is assumed that the hash table must contain an exact power-of-2 2495 * quantity of entries 2496 * - limit is the number of hash buckets, not the total allocation size 2497 */ 2498 void *__init alloc_large_system_hash(const char *tablename, 2499 unsigned long bucketsize, 2500 unsigned long numentries, 2501 int scale, 2502 int flags, 2503 unsigned int *_hash_shift, 2504 unsigned int *_hash_mask, 2505 unsigned long limit) 2506 { 2507 unsigned long long max = limit; 2508 unsigned long log2qty, size; 2509 void *table = NULL; 2510 2511 /* allow the kernel cmdline to have a say */ 2512 if (!numentries) { 2513 /* round applicable memory size up to nearest megabyte */ 2514 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2515 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2516 numentries >>= 20 - PAGE_SHIFT; 2517 numentries <<= 20 - PAGE_SHIFT; 2518 2519 /* limit to 1 bucket per 2^scale bytes of low memory */ 2520 if (scale > PAGE_SHIFT) 2521 numentries >>= (scale - PAGE_SHIFT); 2522 else 2523 numentries <<= (PAGE_SHIFT - scale); 2524 } 2525 /* rounded up to nearest power of 2 in size */ 2526 numentries = 1UL << (long_log2(numentries) + 1); 2527 2528 /* limit allocation size to 1/16 total memory by default */ 2529 if (max == 0) { 2530 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2531 do_div(max, bucketsize); 2532 } 2533 2534 if (numentries > max) 2535 numentries = max; 2536 2537 log2qty = long_log2(numentries); 2538 2539 do { 2540 size = bucketsize << log2qty; 2541 if (flags & HASH_EARLY) 2542 table = alloc_bootmem(size); 2543 else if (hashdist) 2544 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2545 else { 2546 unsigned long order; 2547 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2548 ; 2549 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2550 } 2551 } while (!table && size > PAGE_SIZE && --log2qty); 2552 2553 if (!table) 2554 panic("Failed to allocate %s hash table\n", tablename); 2555 2556 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2557 tablename, 2558 (1U << log2qty), 2559 long_log2(size) - PAGE_SHIFT, 2560 size); 2561 2562 if (_hash_shift) 2563 *_hash_shift = log2qty; 2564 if (_hash_mask) 2565 *_hash_mask = (1 << log2qty) - 1; 2566 2567 return table; 2568 } 2569